PHILIPS

ECL 10K and 100K

Data handbook

Electronic components and materials

Integrated circuits

Book ICO8

1986

14

ECL 10K and 100K logic families

IC08 1986

ECL 10K and 100K logic families

page	?
Introduction x	i
Contents xv	/
Ordering informationxvii	i
Product status and definitionsxix	ί
Section 1 – Selection Guides	
Index	
Availability Guide	3
Function Selection Guide 1.6	5
Section 2 – Quality and Reliability	
Quality and Reliability 2.3	3
Section 3 – Testing	
Introduction	3
Test Sequence	
Section 4 – ECL User's Guide	
Index	l
Section 5 – Data Sheet Specification Guide	
Index	l
Section 6 – 10K Series	
Data Sheets	3
Section 7 – 100K Series	
Data Sheets	3
Section 8 – ECL RAM	
Data Sheets	3
Section 9 – Package Outlines	
Index	I
Data information	
Soldering Recommendations	
Section 10 – Numerical index	
Numerical index	3

DATA HANDBOOK SYSTEM

Our Data Handbook System comprises more than 60 books with specifications on electronic components, subassemblies and materials. It is made up of four series of handbooks:

ELECTRON TUBES	BLUE
SEMICONDUCTORS	RED
INTEGRATED CIRCUITS	PURPLE
COMPONENTS AND MATERIALS	GREEN
The contents of each series are listed on pages iv to viii.	

The data handbooks contain all pertinent data available at the time of publication, and each is revised and reissued periodically.

When ratings or specifications differ from those published in the preceding edition they are indicated with arrows in the page margin. Where application information is given it is advisory and does not form part of the product specification.

Condensed data on the preferred products of Philips Electronic Components and Materials Division is given in our Preferred Type Range catalogue (issued annually).

Information on current Data Handbooks and on how to obtain a subscription for future issues is available from any of the Organizations listed on the back cover.

Product specialists are at your service and enquiries will be answered promptly.

ELECTRON TUBES (BLUE SERIES)

The blue series of data handbooks comprises:

т1	Tubes for r.f. heating
T2a	Transmitting tubes for communications, glass types
T2b	Transmitting tubes for communications, ceramic types
Т3	Klystrons
Т4	Magnetrons for microwave heating
T5	Cathode-ray tubes Instrument tubes, monitor and display tubes, C.R. tubes for special applications
Т6	Geiger-Müller tubes
Т8	Colour display systems Colour TV picture tubes, colour data graphic display tube assemblies, deflection units
Т9	Photo and electron multipliers
T10	Plumbicon camera tubes and accessories
T11	Microwave semiconductors and components
T12	Vidicon and Newvicon camera tubes
T13	Image intensifiers and infrared detectors
T15	Dry reed switches

T16 Monochrome tubes and deflection units Black and white TV picture tubes, monochrome data graphic display tubes, deflection units

iv

SEMICONDUCTORS (RED SERIES)

The red series of data handbooks comprises:

- S1 Diodes Small-signal silicon diodes, voltage regulator diodes (< 1,5 W), voltage reference diodes, tuner diodes, rectifier diodes
- S2a Power diodes
- S2b Thyristors and triacs
- S3 Small-signal transistors
- S4a Low-frequency power transistors and hybrid modules
- S4b High-voltage and switching power transistors
- S5 Field-effect transistors
- S6 R.F. power transistors and modules
- S7 Surface mounted semiconductors
- S8a Light-emitting diodes
- S8b Devices for optoelectronics Optocouplers, photosensitive diodes and transistors, infrared light-emitting diodes and infrared sensitive devices, laser and fibre-optic components
- S9 Power MOS transistors
- S10 Wideband transistors and wideband hybrid IC modules
- S11 Microwave transistors
- S12 Surface acoustic wave devices
- S13 Semiconductor sensors

INTEGRATED CIRCUITS (PURPLE SERIES)

The NEW SERIES of handbooks is now completed. With effect from the publication date of this handbook the "N" in the handbook code number will be deleted. Handbooks to be replaced during 1986 are shown below.

The purple series of handbooks comprises:

IC01	Radio, audio and associated systems Bipolar, MOS	new issue 1986 IC01N 1985
IC02a/b	Video and associated systems Bipolar, MOS	new issue 1986 IC02Na/b 1985
IC03	Integrated circuits for telephony Bipolar, MOS	new issue 1986 IC03N 1985
IC04	HE4000B logic family CMOS	new issue 1986 IC4 1983
IC05N	HE4000B logic family – uncased ICs CMOS	published 1984
IC06N	High-speed CMOS; PC74HC/HCT/HCU Logic family	published 1986
IC08	ECL 10K and 100K logic families	New issue 1986 IC08N 1984
IC09N	TTL logic series	published 1986
IC10	Memories MOS, TTL, ECL	new issue 1986 IC7 1982
IC11N	Linear LSI	published 1985
Supplement to IC11N	Linear LSI	published 1986
IC12	I ² C-bus compatible ICs	not yet issued
IC13	Semi-custom Programmable Logic Devices (PLD)	new issue 1986 IC13N 1985
IC14N	Microprocessors, microcontrollers and peripherals Bipolar, MOS	published 1985
IC15	FAST TTL logic series	new issue 1986 IC15N 1985
IC16	CMOS integrated circuits for clocks and watches	first issue 1986
IC17	Integrated Services Digital Networks (ISDN)	not yet issued
IC18	Microprocessors and peripherals	new issue 1986*

* The Microprocessors were included in handbook IC14N 1985, so IC18 will replace that part of IC14N.

COMPONENTS AND MATERIALS (GREEN SERIES)

The green series of data handbooks comprises:

- C2 Television tuners, coaxial aerial input assemblies, surface acoustic wave filters
- C3 Loudspeakers
- C4 Ferroxcube potcores, square cores and cross cores
- C5 Ferroxcube for power, audio/video and accelerators
- C6 Synchronous motors and gearboxes
- C7 Variable capacitors
- C8 Variable mains transformers
- C9 Piezoelectric quartz devices
- C11 Varistors, thermistors and sensors
- C12 Potentiometers, encoders and switches
- C13 Fixed resistors
- C14 Electrolytic and solid capacitors
- C15 Ceramic capacitors
- C16 Permanent magnet materials
- C17 Stepping motors and associated electronics
- C18 Direct current motors
- C19 Piezoelectric ceramics
- C20 Wire-wound components for TVs and monitors
- C22 Film capacitors

GENERAL CONTENTS

Introduction Contents Ordering information Product status definitions

Introduction

ECL Products

EMITTER-COUPLED LOGIC (ECL)

Emitter-coupled logic is the fastest logic technology available for practical use. Traditionally developed for the high-speed elements of mainframe computers, it is being applied wherever ultra-high switching speeds are required. Typical applications include signal generations and processing, digital switching and filtering networks, arithmetic and logic units of computers, optical transmission line interfaces and digital video systems.

This data manual describes the 10K and 100K ECL series. Other ECL products such as ECL Memories, are available from the Bipolar Memory family and ECL semicustom products, such as Advanced Customized ECL (ACE), are available from the Application Specific Division.

GENERAL

The Logic Families table compares the propagation delay and power consumption per gate of 10K and 100K ECL to other logic families.

ECL is a current switching logic. In the basic gate of Figure 1, the current from the current source flows continuously through either branch A or branch B. The exponential change of emitter current with base-emitter voltage results in rapid switching of the current path and allows a considerable amount of noise immunity to be built into the circuits. Furthermore, the constant current nature of the circuits minimizes voltage fluctuations (noise) due to switching in the supply lines. eliminating the need for ultra-fast, expensive voltage regulators. The effects of switching output loads are isolated from the inputs by the use of separate V_{CC} supplies for the outputs.

Since there are no internal output load resistors, outputs can be OR-wired, thus saving additional circuitry. Most devices in the family provide complementary outputs, allowing simpler system design and eliminating inverters that would otherwise increase power consumption and circuit cost.

The 100K ECL series is fully compensated for changes in both temperature and voltage, in both the internal bias generator and the output circuitry. Therefore, 100K ECL provides easier thermal management than the 10K or 10H series, which do not provide full

GATE DELAY ns	POWER CONSUMPTION mW
10	10
9	2
3	20
2	25
2	4
0.75	40
	ns 10 9 3 2 2

Higher 1. ECL is a Current-Switching Logic. The Current Drawn From the Supply Voltage (V_{CC1}) is thus Independent of the State of the Inputs. The Use of a Separate Supply (V_{CC2}) for the Output Load Minimizes the Effect of Output Noise on the Inputs.

temperature compensation in their output voltage circuitry.

The high current drive capability of the 100K ECL, as shown in the table on this page, is a valuable feature when switching signals at speeds requiring transmission line techniques. High current drive contributes to the signal-to-noise ratio achieved at the receiving end. It also permits a large fan-out, since all inputs have an internal pull-down resistor of typically 50,000 Ω to V_{EE}.

TECHNICAL FEATURES OF ECL

The Technology

A conventional planar process is used for the 10K ECL series with a density of about ten gates per mm² and a delay of 2ns per gate. This junction-isolated process achieves a 1.5GHz transition frequency.

To achieve the 0.75ns per gate delay and 20 gates per mm² density of 100K ECL, an oxide-isolated SUBILO (**SUB** nanosecond Isolation by Lateral Oxidation) process is used. This process achieves a transition frequency of about 4.5GHz.

What ECL Provides

a) First of all, ECL provides very high speed, enabling high frequency operation.

b) Furthermore, the power consumption required (although high for a simple gate) increases less rapidly than the complexity of the functions in an integrated circuit.

c) Moreover, thanks to ECL, it is possible to process fast phenomena in real time (e.g., monitoring of nuclear phenomena, time bases for oscilloscopes; and, in general, all measurements whose resolution should be less than one nanosecond).

Introduction

d) ECL also makes it possible to treat very complex phenomena in real-time (e.g., meteorology, the management of power networks, or of very large databases (in the case of large computers in which processing time is the determining factor)).

e) Lastly, ECL makes it possible to optimize the cost of a system by accelerating the subsystems that must respond rapidly (such as an ECL multiplier in a TTL computer).

When to Use ECL

ECL should be used when a gain in speed beyond that achievable with saturating logic families is necessary.

ECL makes it possible to improve the cost of a system. For example, in telecommunications and in data communication, the increase in the line rate makes it possible to use fewer lines, thereby reducing the overall system cost and system maintenance.

ECL should be used for data rates greater than 100 mega bits per second.

Where to Use ECL

a) Large-scale Computation

- Any CPU having a cycle time between 10 and 50ns is partly or entirely ECL.
- Likewise, high-speed I/O controllers (access channels to disks, memory blocks, high-speed peripherals, or to other processors.)
- Memories having very fast access time are ECL (buffer or ''cache'' memories, most of the time; but sometimes central memory too, for the fastest large computers).

b) Small- and Medium-scale Computing

- It is possible to increase the power of a small, microprocessor-based system by adding onto its bus some high-speed hardware functions, such as adders, multipliers, fast Fourier transforms, correlators, etc.
- It is also possible to increase the power of such a system by realizing part or all of the processor itself in ECL.

c) Instrumentation

- ECL makes it possible to build:
- rapid logic or analog testers for components or boards;
- logic analyzers, for the simultaneous acquisition of the logic state of several channels or signals in a system that is being developed or maintained;
- high-speed oscilloscopes, with acquisition, storage, and digital processing of signals;
- very-high-resolution chronometers and high-speed frequency counters.

d) Telecommunications

- ECL is presently being used in the development of computers that direct telephone switching centers.
- ECL also makes it possible to design new telephone centers that switch widebased signals (from video or from data channels), or even multiplex many audio channels.
- Lastly, ECL makes it possible to realize high-rate inter-center connections (for concentration, coding, repeaters and regenerators, decoding, demultiplexing) via coaxial cables, optic cables, or microwaves.

e) Real-time Digital Signal Processing

- ECL is the ideal technology for digital processing of television video signals (filtering, decoding, mixing, special effects, broadcasting).
- ECL also makes it possible to digitalize the principal functions of television sets.
- Real-time simulators of complex phenomena (such as flight simulators or artillery simulators) contain large portions in ECL.
- ECL also lends itself to radar-signal processing.

COMPARISON WITH OTHER LOGIC FAMILIES; SELECTION CRITERIA

ECL contains essentially the principal functions of other logic families (gates, flip-flops, complex or MSI circuits).

With a few exceptions, the functions are classified according to the following order of their last three digits (with the prefix 10 XXX) or 100 XXX):

- 100 to 109: Simple gates
- 110 to 119: Complex gates and line receivers
- 120 to 129: Interfaces
- 130 to 139: Flip-flops, counters
- 140 to 155: Registers, memories, combination of latches and multiplexers
- 156 to 179: Combinatorial MSI (parity, priority, multiplexers, decoders, delay)
- 180 to 189: Arithmetic circuits (adders, ALUs)
- 190 to 399: Other special interfaces
- 400 to 499: High-capacity memories
- 500 to 699: Military series
 - 800 to 899: Microprocessors and associated circuits

It was not possible to reproduce exactly, under the same numbers, the logic functions existing in TTL, for the following reasons:

 In general, ECL circuits require three power supply pins, as opposed to two for the TTL circuits. Therefore, the number of pins available for the input/output of logic signals is different.

2. The basic ECL gate performs an OR function, whereas the basic TTL gate performs an AND function.

3. ECL gates have built-in complementary outputs (Q and \overline{Q}), thus enabling great flexibility in use. The functions that utilize these outputs are special within the family, and often replace two TTL functions at the same time.

4. In the particular case of the ECL 100K series, the standard package contains 24 pins, thus enabling more complex functions, replacing several TL types. Thus, a 100170 decoder can be configured as a 1×8 or a 2×4 device with high or low outputs, thus performing the functions of four TTL decoders.

 Interface requirements are different for high-speed logic circuits, which normally only handle data, and for slower logic circuits that can be interfaced to display devices (''display drivers'') or power devices.

ECL devices can be interfaced in the following ways:

- using short-distance transmission lines [for example, twisted(-pair) wires] with line transmitters having differential inputs;
- through ECL-level data buses, by bus drivers that can provide a high current on the bus, or else can be disconnected, loading it as little as possible, thus realizing the equivalent of tri-state TTL circuits;
- to other logic families; ECL 10K to ECL 100K, ECL to CMOS or to TTL. Specifically, to be able to interface ECL processors to MOS central memories at the TTL level, via bidirectional interfaces.

Table 1 summarizes the principal characteristics of the logic families.

Other high-speed circuits exist which, without strictly being part of the ECL logic families, do have inputs or outputs that are compatible with ECL levels, and rely largely on emitter-coupled techniques in their internal electral circuitry. VHF and UHF frequency dividers ("prescalers") utilized in counters and synthesizers are the best known examples; but multivibrators, phase comparators, analog converters, etc., also exist.

Introduction

Table 1. Principal Characteristics of Logic Families

	CM	IOS	S TTL-COMPATIBLE			ECL		
PRINCIPAL CHARACTERISTICS	нс	нст	TTL	LS	S	FAST	10K	100K
Supply Voltage (V)		5	5	5	5	5	-5.2	-4.5
Supply Current (mA)		1.4	2	0.4	4	1	5	8
Logic Swing (V)	3	3	3	3	3	3	0.9	0.7
Maximum Fanout	10	10	10	20	10	30	> 30	> 30
Typical Propagation Delay (ns)	9	9	10	10	з	2.8	2	0.75
Edge Rate (V/ns)	0.5	0.5	0.35	0.2	2.0	2.0	0.3	0.5
Maximum Frequency of a D-type Flip-Flop (MHz)	15	15	15	25	75	100	125	400
Loss of Speed due to Output Loading (ns/Load Utilized) Figure of Merit Simple Gate (pj)	1.2	1.2	0.6	0.3	0.3	0.1	0.1	0.07
Complex Function (pj)	20	20		20			10	5
Principle Package (pins)	14, 16	14, 16	14, 16	14, 16	14, 16	14, 16	16	24
Number of Product Types	120	120	> 100	> 150	> 100	> 70	60	40
Operating Range: Commercial Military	YES YES	YES YES	YES YES	YES YES	YES YES	YES YES	YES NO	YES NO

* Operating speed = 5MHz

NOTE:

The sets of data given above is a very simplified representation of existing logic families. The values indicated are only approximate; they depend entirely on utilization conditions (supply voltage, loading conditions, etc.) and on the supplier.

DESCRIPTION OF ECL FAMILIES

Two ECL families (the ECL 10K and the ECL 10K series) are presently considered standard (multiple vendors). The former contains more than 60 types, and the latter approximately 40.

Logic Diagrams

At the elementary-circuit level, the basic gate is an OR/NOR gate with two inputs and complementary outputs:

The fact that all of these gates have true and complementary (inverting) outputs makes it easier to implement logic diagrams.

Another worthwhile possibility is the **wired-OR** gate which enables the direct connection of the outputs of two gates to obtain an OR function.

Design of a Logic Diagram

ECL is based on OR/NOR gates. It is easy to transform AND/NAND gates into OR/NOR gates using the de Morgan laws:

$$A \cdot B = \overline{\overline{A} + \overline{B}}$$
 and $A + B = \overline{\overline{A} \cdot \overline{B}}$

 $(A \cdot B \text{ indicates an AND operation, } A + B \text{ indicates an OR operation.})$

Some ECL inputs are non-inverting, as opposed to TTL circuits in which these inputs are inverted; for example, the "clear" and "set to one" inputs (CLEAR and SET). This is due to the difference in design between TTL and ECL, in which the basic gates are AND and OR, respectively. Therefore, to "force" an input signal toward the output, a 0 or a 1 is applied, respectively. This requirement does not present a problem, because non-inverting and inverting outputs are almost always available on simple circuits.

Other ECL families have been created in the past, but they have not become as widely known as the others. Among them are MECL 1 and MECL 2, which were the original ECL families.

MECL 3 is fairly close to the performance to the ECL 100K family, but uses more power and is less complete. Lastly, an intermediate series exists between the 10K and 100K families. It retains the operation and speed of the former, and the temperature-compensated electrical levels of the latter.

The 10K family was recently rounded out by faster circuits (the 10KH series, with speeds from 1 to 1.2ns).

Introduction

Handling

Like MOS circuits, ECL circuits can easily be damaged by electrostatic discharge (ESD). ESD applied to an input or an output causes very intense, instantaneous currents. When passing through junctions having a small area, these currents can cause a localized fusion of the junction. In the mild case, there will be an increase in the junction leakage current; in the worst case, the junction will be completely short-circuited. The short-circuit can then cause a local fusion of the metallizations of the circuit, and the appearance of an open circuit.

The resistance of TTL and MOS circuits to ESD is increased by the addition of diodes or resistor-diode networks. However, this solution has very limited application in ECL, because it introduces parasitic capacitances that impair the speed of the circuits. Protection is instead ensured by simply limiting discharge currents by means of resistors in series.

All insulators can acquire very high charges by rubbing against one another, or due to friction with moving air. Surface potentials of several tens of kilovoits are found on worksurfaces (laminates, PVC), on floor coverings (plastic flooring, pile carpeting), and on synthetic fabrics (nylon and acrylic). For the sake of prevention, conductive coverings are recommended for floors and work surfaces, connected to ground by resistive paths (1M Ω , for example.) Most risks can be avoided by having operators wear resistive wristbands connected to the work surface. But complete protection must also include a sprayed layer of anti-static varnish on all insulating objects, such as boxes, trays, the insulating portions of tools; or also (if applicable) an ionized air blower, to remove charges from untreated surfaces.

Signetics' ECL devices are shipped in conducting foam or anti-static tubes and foil-lined boxes to minimize ESD during shipment and unloading.

Before opening the shipment of ECL devices, make sure that the individual is grounded by a wrist-band connected to ground by a 1M Ω resistor and all handling means (such as tools, fixtures, benches, and chairs) grounded through a 1M Ω resistor.

After removal from the shipping material, the leads of the ECL devices should always be

grounded. In other words, ECL devices should be placed leads-down on a grounded surface, since ungrounded leads will attract static charge.

Before assembly of ECL devices, again make sure that the individual is grounded by a wristband connected to ground by a 1M Ω resistor and all handling means (such as tools, fixtures, benches, and chairs) grounded through a 1M Ω resistor.

Do not insert or remove ECL devices in sockets with power applied. Ensure that power supply transients, such as occur during power turn on-off, do not exceed absolute maximum ratings.

After assembly on PC boards, ensure that ESD is minimized during handling, storage, or maintenance.

ECL inputs should never be left floating on a PC board. As a temporary measure, a resistor greater than $10k\Omega$ should be soldered on the open input. The resistor will limit accidental damage if the PC board is removed and brought into contact with static-generating materials.

Contents

ECL Products

Introduction		×i
Ordering Information	on	xviii
Product Status		xix
Section 1 – Selec Availability GL		
•	Availability Guide	1-3
	Availability Guide	1-5
Functional Sel	lection Guide	1-6
Section 2 - Qualit	ty and Reliability	
Quality and R	eliability	2-3
Section 3 - Testir		
Introduction		3-3
Test Sequence	e (Functional, DC, and AC Testing)	3-3
Section 4 - ECL	User's Guide	
Chapter 1	ECL Circuit Basics	4-3
Chapter 2	Logic Function Operation	4-7
Chapter 3	ECL Gate - Static Characteristics	4-9
Chapter 4		4-5
•	ECL Gate - Dynamic Characteristics	
Chapter 5		4-12
Chapter 6	Transmission Theory	4-14
Chapter 7	Interconnections	4-19
Chapter 8	Power Supplies	4-23
Chapter 9	Packages and Thermal Constraints	4-25
Chapter 10	Interfacing ECL Families	4-27
Chapter 11	Circuit Boards	4-30
Chapter 12	Manual AC Testing	4-31
	Sheet Specification Guide	
		5-3
	gation Delay and Supply Current	5-3
	s mum Ratings	5-3 5-3
	Conditions	5-3
DC Characteri		5-3
AC Characteri	stics	5-9
Glossary, 10K	/100K Symbols, Terms, and Definitions	5-11
Section 6 - 10K S	Series Data Sheets	
10100	Quad 2-Input NOR Gate With Strobe	6-3
10101	Quad 2-Input OR/NOR Gate With Strobe	6-9
10102	Quad 2-Input NOR (3 NOR and 1 OR/NOR) Gate	6-15
10103	Quad 2-Input OR (3 OR and 1 OR/NOR) Gate	6-21
10104	Quad 2-Input AND Gate	6-27
10105	Triple 2-3-2 Input OR/NOR Gate	6-33
10106	Triple 4-3-3 Input NOR Gate	6-39
10107	Triple 2-Input Exclusive-OR/Exclusive-NOR Gate	6-45
10108	Dual 4-Input AND/NAND Gate	6-51
10109	Dual 4-5 Input OR/NOR Gate	6-57
10110	Dual 3-Input/3-Output OR Gate (Line Driver)	6-63
10110	Dual o-input o-output on date (Line Diver)	0-03

Contents

10111	Dual 3-Input/3-Output NOR Gate (Line Driver)	
10113	Quad Exclusive-OR Gate With Enable Input	6-75
10114	Triple Differential Line Receiver	6-81
10115	Quad Differential Line Receiver	6-89
10116	Triple Differential Line Receiver	6-96
10117	Dual 2-Wide 2-3 Input OR-AND/OR-AND-INVERT Gate	6-103
10118	Dual 2-Wide 3-Input OR-AND Gate	6-109
10119	4-Wide 4-3-3-3-Input OR-AND Gate	6-115
10121	4-Wide OR-AND/OR-AND-INVERT Gate	6-121
10123	Triple 4-3-3-Input Bus Driver	
10124	Quad TTL-to-ECL Translator	
10125	Quad ECL-to-TTL Translator	
10130	Dual D-Type Latch	
10131	Dual D-Type Master-Slave Flip-Flop	
10132	Dual 2-Input Multiplexer With Clocked D-Type Latches and Common Reset	
10133	Quad Latch With D-Type Inputs and Enable Outputs	
10134	Dual 2-Input Multiplexer With Clocked D-Type Latches	
10135	Dual J-K Master-Slave Flip-Flop	
10136	Universal Hexadecimal Counter	
10130	Universal Decade Counter	
10137	4-Bit Universal Shift Register	
10158		
10158	Quad 2-to-1 Multiplexer, Non-Inverting	
	Quad 2-to-1 Multiplexer, Inverting	
10160	12-Bit Parity Checker/Generator	
10161	1-of-8 Decoder With 2 Enable Inputs (Active LOW Outputs)	
10162	1-of-8 Decoder With 2 Enable Inputs (Active HIGH Outputs)	
10164	8-Input Multiplexer With Enable Input	
10165	8-Input Priority Encoder	6-245
10171	Dual 1-of-4 Decoder With One Common and Two Individual Inputs (Active LOW Outputs)	6-251
10172	Dual 1-of-4 Decoder With One Common and Two Individual Inputs (Active HIGH Outputs)	
10173	Quad 2-Input Multiplexer With Latched Outputs	
10174	Dual 4-to-1 Multiplexer (With Output Enable)	
10175	Quint D-Latch With Common Reset and 2 Wired-OR Common Clock Inputs	
10176	Hex D-Type Master-Slave Flip-Flop	
10179	Look-Ahead Carry Block	
10180	Dual 2-Bit Adder/Subtractor	
10181	4-Bit Arithmetic Logic Unit/Function Generator	
10188	Hex Buffer With Enable (Non-Inverting)	
10189	Hex Inverter With Enable	
10192	Quad Bus Driver	
10210	High-Speed Dual 3-Input/3-Output OR Line Driver	
10210	High-Speed Dual 3-Input/3-Output NOR Line Driver	
10216	Triple Differential OR/NOR Line Receiver (High-Speed)	
10210	Dual D-Type Master-Slave Flip-Flop (High-Speed)	
Section 7 - 100101		
	Triple 5-Input OR/NOR Gate	
100102	· · ·	
100107		
100112		
100113		
100114		
100117	Triple 1-2-2 Input OR-AND/OR-AND-INVERT Gate	7-40

Contents

100118	Quint 2-4-4-5-Input OR-AND Gate	7-46
100122	9-Gate Buffer	7-52
100123	Bus Driver	7-58
100124	Hex TTL-to-ECL Translator	7-64
100125	Hex ECL-to-TTL Translator	7-70
100126	9-Bit Backplane Driver	7-76
100131	Triple D-Type Master-Slave Flip-Flop	7-82
100136	4-Stage Counter/Shift Register	7-93
100141	8-Bit Shift Register	7-105
100145	16 × 4 Read-While-Write Register File	7-114
100150	Hex D-Type Latch	7-124
100151	Hex D-Type Master-Slave Flip-Flop	7-132
100155	Quad 2-Way Multiplexer/Latch	7-142
100158	8-Bit Shift Matrix	7-151
100160	Dual 9-Bit Parity Generator/8-Bit Comparator	7-158
100163	Dual 8-Input Multiplexer	7-165
100164	16-Input Multiplexer	7-172
100165	Universal Priority Encoder	7-179
100166	9-Bit Comparator	7-187
100170	Universal Demultiplexer/Decoder	7-194
100171	Triple 4-Input Multiplexer	7-202
100175	100K-to-10K Translator	7-209
100179	Carry Look-Ahead Generator	7-216
100180	High-Speed 6-Bit Adder	7-223
100181	4-Bit Binary/BCD ALU	7-230
100231	Triple D-Type Master-Slave Flip-Flop (High-Speed Version of 100131)	7-241
100255	Quint Bidirectional 100 K-to-TTL Translator	7-252
Section 8 – ECL I Introduction		8-3
10422B	1K-Bit ECL Bipolar RAM (256 × 4)	8-5
10422C	1K-Bit ECL Bipolar RAM (256 $ imes$ 4)	8-8
10470A	4K-Bit ECL Bipolar RAM (4096 × 1)	8-11
10474A	4K-Bit ECL, Bipolar RAM (1024 \times 4)	8-14
100422B	1K-Bit ECL Bipolar RAM (256 $ imes$ 4)	8-17
100422C	1K-Bit ECL Bipolar RAM (256 $ imes$ 4)	8-20
100470A	4K-Bit ECL Bipolar RAM (4096 × 1)	8-23
100474A	4K-Bit ECL Bipolar RAM (1024 × 4)	8-26
•	onon	9-3 9-3
Section 10 - Num Numerical Ind	erical Index ex	10-3

ECL Products

Ordering Information

Signetics' ECL products are available in 16-pin plastic and ceramic packages for 10K ECL and 24-pin ceramic DIP and flat pack packages for 100K ECL with two temperature ranges (0°C to $+85^{\circ}$ C for 100K ECL and -30° C to $+85^{\circ}$ C for 10K ECL). The ordering code for the devices is an alphanumeric sequence as explained below. The ordering codes in the individual data sheets indicate the normal or planned availability of the product. However, the availability of the specific part numbers can be obtained from local Signetics sales offices or franchised distributors.

<u>100101</u>

N

Package style

_____ Device Number

TEMPERATURE RANGE	DEVICE NUMBER	PACKAGE STYLE
Commercial Range T _A = -30°C to +85°C	10100	N = Plastic DIP F = Cerdip
Commercial Range $T_A = 0^{\circ}C$ to $+85^{\circ}C$	100101	F = Cerdip Y = Ceramic Flat Pack

ECL Products

Product Status

DEFINITIONS						
Data Sheet Identification	Product Status	Definition				
Objective Specification	Formative or In Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.				
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data and supplementary data will be published at a later date. Signetics reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.				
Product Specification	Full Production	This data sheet contains Final Specifications. Signetics reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.				

INDEX

Availability Guides	
10K ECL Availability Guide	1-3
100K ECL Availability Guide	1-5
Functional Selection Guide	1-6

10K ECL Availability Guide

ECL Products

10K ECL SERIES

DEVICE TYPE	DESCRIPTION	AVAIL.	COMMENTS
10100	Quad 2-Input NOR Gate	A	
10101	Quad OR/NOR Gate	A	
10102	Quad 2-Input NOR Gate	A	
10103	Quad 2-Input OR Gate	A	
10104	Quad 2-Input AND Gate	A	
10105	Triple 2-3-2-Input OR/NOR Gate	A	
10106	Triple 4-3-3-Input NOR Gate	A	
10107	Triple 2-Input Exclusive-OR/Exclusive-NOR Gate	A	
10108	Dual 3-Input AND/NAND Gate	A	
10109	Dual 4-5-Input OR/NOR Gate	A	
10110	Dual 3-Input/3-Output OR Gate (Line Driver)	A	
10111	Dual 3-Input/3-Output NOR Gate (Line Driver)	A	
10113	Quad Exclusive-OR Gate With Enable	A	
10114	Triple Line Receiver	A	
10115	Quad Line Receiver	A	
10116	Triple Line Receiver	A	
10117	Dual 2-Wide 2-3-Input OR-AND/OR-AND-INVERT Gate	A	
10118	Dual 2-Wide 3-Input OR-AND Gate	A	
10119	4-Wide 4-3-3-3-Input OR-AND Gate	A	
10121	4-Wide OR-AND/OR-AND-INVERT Gate	A	
10123	Triple 4-3-3-Input Bus Driver	A	
10124	Quad TTL-to-ECL Translator	A	
10125	Quad ECL-to-TTL Translator	A	
10130	Dual D-Type Latch	A	
10131	Dual D-Type Master-Slave Flip-Flop	A	
10132	Dual 2-Input Multiplexer With Clocked D-Type Latches and Common Reset	A	
10133	Quad Latch With D-Type Inputs and Enable Outputs	A	
10134	Dual 2-Input Multiplexer With Clocked D-Type Latches	A	
10135	Dual J-K Master-Slave Flip-Flop	A	
10136	Universal Hexadecimal Counter	A	· · · · · · · · · · · · · · · · · · ·
10137	Universal Decade Counter	A	
10141	4-Bit Universal Shift Register	A	
10149	1024-Bit, 4 Bits per Word PROM	A	
10155	16-Bit, 2 Bits per Word CAM	A	
10158	Quad 2-to-1 Multiplexer (Non-Inverting)	A	

1

Availability Guide

10K ECL

10K	ECL	SERIES	(Continued)
			· · · /

DEVICE TYPE	DESCRIPTION	AVAIL.	COMMENTS
10159	Quad 2-to-1 Multiplexer (Inverting)	A	
10160	12-Bit Parity Generator/Checker	A	
10161	1 3-Bit Decoder With 2 Enable Inputs (1-of-8 LOW)		
10162	3-Bit Decoder With 2 Enable Inputs (1-of-8 HIGH)	A	
10164	8-Input Multiplexer With Enable Input	A	
10165	8-Input Priority Encoder	A	
10171	Dual 2-Bit Decoder (1-of-4 Lines LOW)	A	
10172	Dual 2-Bit Decoder (1-of-4 Lines HIGH)	А	
10173	Quad 2-Input Multiplexer With Latched Outputs	A	
10174	Dual 4-to-1 Multiplexer With Enable	A	
10175	Quint D-Latch With Common Reset and 2 Wire-OR Common Clock Inputs	A	
10176	Hex D-Type Master-Slave Flip-Flop	A A	1 (1997)
10179	Look-Ahead Carry Block Arithmetic Functions	Α	
10180	Dual High-Speed Adder/Subtractor	Α	
10181	4-Bit Logic Unit/Function Generator	Α	
10188	Hex Buffer (Non-Inverting)	A	
10189	Hex Inverter	A	
10192	Quad Differential Line Driver	Α	
10210	Dual 3-Input/3-Output (High-Speed) OR Gate	A	
10211	Dual 3-Input/3-Output (High-Speed) NOR Gate	A	
10216	Triple Differential OR/NOR Line Receiver (High-Speed)	A	
10231	Dual D-Type Master-Slave Flip-Flop (High-Speed)	A	
10422B	1024-Bit RAM (256 $ imes$ 4)	Р	Q1 '86
10470A	4096-Bit RAM (4096 $ imes$ 1)	Р	Q1 '86
10474A	4096-Bit RAM (256 $ imes$ 4)	Р	Q1 '86

100K ECL Availability Guide

1

ECL Products

100K ECL SERIES

DEVICE TYPE	DESCRIPTION	AVAIL.	COMMENTS
100101	Triple 5-Input Gate	A	
100102	Quint 2-Input Gate	. A	
100107	Quint Exclusive-OR/NOR	A	
100112	Quad Driver	A	
100113	Line Driver	A	
100114	Line Receiver	A	
100117	Triple AOI	A	
100118	5-Wide AOI	A	
100122	9-Bit Buffer Gate	A	
100123	Hex Bus Driver	A	
100124	TTL-to-ECL Translator	Р	Q4 '86
100125	ECL-to-TTL Translator	Р	Q4 '86
100126	Backplane Driver	A	
100131	Triple D Flip-Flop (2ns)	A	
100136	Multipurpose Counting Register	A	
100141	8-Bit Universal Shift Register	A	
100145	16 × 4 Register File	Р	Samples Q4 '86
100150	Hex D-Latch	A	
100151	Hex D Flip-Flop	A	
100155	Quad Multiplexer/Latch	A	
100158	Shift Matrix	A	
100160	Dual 9-Bit Parity	A	
100163	Dual 8-Input Multiplexer	· A	
100164	16-Input Multiplexer	A	
100165	Universal Priority Encoder	A	
100166	9-Bit Comparator	A	
100170	Universal Decoder	A	
100171	Triple 4-Input Multiplexer	A	
100175	100K - 10K Translator	A	Signetics Proprietary
100179	Carry Look-Ahead Generator	Р	Samples Q2 '86
100180	Fast 6-Bit Adder	A	
100181	4-Bit Binary/Decimal ALU	A	New Release Signetics Proprietary
100255	TTL - 100K Bidirectional Translator	A	Signetics Proprietary
100422B	1024-Bit RAM (256 × 4)	Р	Q2 '86
100470A	4096-Bit RAM (4096 × 1)	Р	Q2 '86
100474A	4096-Bit RAM (1024 × 4)	P	Q2 '86

1–5

Functional Selection Guide

ECL Products

GATES

FUNCTION	DEVICE NUMBER
OR/NOR GATES	
Triple 4-3-3 input NOR	10106
Quad 2-input NOR with strobe	10100
Dual 4-5 input OR/NOR	10109
Triple 2-3-2 input OR/NOR	10105
Triple 5-input OR/NOR	100101
Quad 2-input OR/NOR (one input common)	10101
Quint 2-input OR/NOR with common enable input	100102
Quad 2-input NOR (one input common)	10102
Quad 2-input OR (3 OR and 1 OR/NOR)	10103
EXCLUSIVE-OR/NOR GATES	
Quad Exclusive-OR with enable input	10113
Triple 2-input Exclusive-OR/Exclusive-NOR	10107
Quint Exclusive-OR/Exclusive-NOR with compare output	100107
AND, AND/NAND GATES	farmer and the second
Dual 4-input AND/NAND	10108
Quad 2-input AND	10104
OR-AND-INVERT COMBINATION	
Dual 2-wide 3 input OR-AND	10118
4-wide 4-3-3-3 input OR-AND	10119
Dual 2-wide 2-3 input OR-AND/OR-AND-INVERT	10117
4-wide OR-AND/OR-AND-INVERT	10121
Triple 1-2-2 input OR-AND/OR-AND-INVERT	100117
Quint 2-4-4-5 input OR-AND/OR-AND-INVERT	100118

FLIP-FLOPS

FUNCTION	DEVICE NUMBER	COMMON CLOCK	CLOCK ENABLE	SET	RESET
Dual D-type master-slave	10131	LOW	LOW	LOW	LOW
Dual D-type master-slave (high-speed)	10231	LOW	LOW	LOW	LOW
Triple D-type master-slave	100131	LOW	LOW	LOW	LOW
Triple D-type master-slave (high-speed)	100231	LOW			
Hex D-type master-slave	10176	LOW			
Hex D-type master-slave	100151				LOW
Dual J-K master-slave	10135	LOW	LOW	LOW	LOW

Functional Selection Guide

LATCHES

FUNCTION		COMMON CLOCK	RESET	CLOCK ENABLE	OUTPUT
Dual D-type 2-input multiplexer, clock, and common reset	10132	HIGH	HIGH	LOW	True, Comp
Dual D-type 2-input multiplexer, clock, and common reset	10134	LOW	HIGH	LOW	True, Comp
Triple D-type	100130	LOW		LOW	True
Quad with D-type inputs and enable outputs	10133	HIGH		LOW	Comp
Quint D-type with common reset, and 2 wired-OR common clock inputs	10175	LOW	LOW		True
Hex D-type	100150		LOW	LOW	True, Comp

1

MULTIPLEXER

FUNCTION	DEVICE NUMBER	ENABLE INPUT	SELECT INPUTS	OUTPUT
Quad 2-to-1, non-inverting	10158		S	True
Quad 2-to-1, inverting	10159	LOW	S	Comp
8-input with enable input	10164	LOW	Aso, As1, As2	True
Quad 2-input with latch outputs	10173	LOW	Ds	True
Dual 4-to-1 with enable input	10174	LOW	A, B	True
Quad multiplexer/latch	100155	LOW	S ₀ , S ₁	True & Comp
Dual 8-input	100163		S ₀ , S ₁ , S ₂	Comp
Triple 4-input with enable input	100171	LOW	S ₀ , S ₁	True & Comp
16-input	100164		S ₀ , S ₁ , S ₂ , S ₃	Comp

DECODER/DEMULTIPLEXER

FUNCTION	DEVICE NUMBER	ADDRESS INPUT	ENABLE LEVEL	OUTPUT LEVEL
1-of-8 decoder with 2 enable inputs (active LOW outputs)	10161	3	2 (LOW)	8 (LOW)
1-of-8 decoder with 2 enable inputs (active HIGH outputs)	10162	3	2 (LOW)	8 (HIGH)
Dual 1-of-4 decoder with one common and two individual inputs (active LOW outputs)	10171	2	2 (HIGH), 1 (LOW)	1 (LOW)
Dual 1-of-4 decoder with one common and two individual inputs (active HIGH outputs)	10172	2	2 (LOW), 1 (HIGH)	8 (HIGH)
Universal demultiplexer/decoder	100170	5	4 (LOW)	8 (HIGH)

REGISTERS/SHIFT REGISTERS

FUNCTION	DEVICE NUMBER	BITS	SERIAL ENTRY	PARALLEL ENTRY	CLOCK EDGE
4-bit universal shift register	10141	4	D _n	D ₀ , D ₁ , D ₂ , D ₃	1 1
8-bit shift register	100141	8	Dn	P ₀ ,,P ₇	1 T
16 \times 4 read-while-write	100145	16 × 4			
Register file					
8-bit shift matrix	100158	8		D ₀ ,,D ₇	

Functional Selection Guide

COUNTERS

FUNCTION	DEVICE NUMBER	MODULUS	PARALLEL ENTRY	PRESETTABLE	CLOCK EDGE
Universal hexadecimal	10136	16	Synchronous	X	1
Universal decade	10137	10	Synchronous	X	las in tra
4-stage counter/shift register	100136	4	Synchronous	X	

BUS AND LINE DRIVERS

FUNCTION	DEVICE NUMBER	OUTPUT
Dual 3-input/3-output OR line driver	10110	True
High-speed dual 3-input/3-output OR line driver	10210	True
Dual 3-input/3-output NOR line driver	10111	Complement
High-speed dual 3-input/3-output NOR line driver	10211	Complement
Triple 4-3-3-input bus driver	10123	Complement
Quad current-mode differential bus driver	10192	True & Complement
Quad driver	100112	True & Complement
Quad driver (high-speed)	100113	True & Complement
Hex bus driver	100123	True
9-bit backplane driver	100126	True

RECEIVERS

FUNCTION	DEVICE NUMBER	OUTPUT
Triple differential line receiver	10114	True & Complement
Quad differential line receiver	10115	True
Triple differential line receiver	10116	True & Complement
Triple differential line receiver (high-speed)	10216	True & Complement
Quint differential line receiver	100114	True & Complement

BUFFERS, INVERTERS, TRANSLATORS

FUNCTION	DEVICE NUMBER	OUTPUT
Hex buffer with enable input, non-inverting	10188	True
9-gate buffer	100122	Complement
Hex inverter with enable input	10189	Complement
Quad TTL-to-ECL translator	10124	True & Complement
Hex TTL-to-ECL translator	100124	True
Quad ECL-to-TTL translator	10125	True
Hex ECL-to-TTL translator	100125	True
100K-to-10K translator	100175	True
TTL-to-100K bidirectional translator	100255	True

PRIORITY ENCODERS

FUNCTION	DEVICE	INPUT ENABLE	INPUT/OUTPUT
	NUMBER	(LEVEL)	(LEVEL)
8-Input	10165	LOW	Active LOW
Universal	100165	LOW	Active LOW

Functional Selection Guide

ARITHMETIC FUNCTIONS

FUNCTION	DEVICE NUMBER
4-bit arithmetic logic unit/function generator	10181
4-bit binary/BCD ALU	100181
High-speed 6-bit adder	100180
Dual 2-bit adder/subtractor	10180
Look-ahead carry block	10179
Carry look-ahead generator	100179

COMPARATORS

FUNCTION	DEVICE NUMBER
9-bit comparator	100166

PARITY

FUNCTION	DEVICE NUMBER
12-bit parity checker/generator	10160
Dual 9-bit parity generator/8-bit comparator	100160

LSI

FUNCTION	DEVICE NUMBER
28-bit ALU	100310
4-byte MUX	100330
16×8 switching matrix	100331
4-byte comparator with MUX	100340
High-speed FIFO RAM controller	100380

ECL RAMS

FUNCTION	DEVICE NUMBER
1K-bit (variable organization)	10422B
	10422C
	100422B
	100422C
4K-bit (4096 $ imes$ 1)	10470A
	100470A
4K-bit (1024 $ imes$ 4)	10474A
	100474A

1

ECL Products

Section 2 Quality and Reliability

2

Quality and Reliability

ECL Products

SIGNETICS QUALITY

Signetics has put together a winning process for manufacturing ECL Logic. Our standard is zero defects, and current customer quality statistics demonstrate our commitment to this goal.

The ECL Logic produced in the Standard Products Division must meet rigid criteria as defined by our design rules and as evaluated with a thorough product characterization and quality process. The capabilities of our manufacturing process are measured and the results evaluated and reported through our corporate-wide QAO5 database system. The SURE (Systematic Uniform Reliability Evaluation) program monitors the performance of our product in a variety of accelerated environmental stress conditions. All of these programs and systems are intended to prevent product-related problems and to inform our customers and employees of our progress in achieving zero defects.

RELIABILITY BEGINS WITH THE DESIGN

Reliability and quality must begin with design. No amount of extra testing or inspection will produce reliable ICs from a design that is inherently unreliable. Signetics follows very strict design and layout practices with its digital circuits. To eliminate the possibility of metal migration, current density in any path cannot exceed $1 \times 10^5 \text{Amp/cm}^2$ for 10K ECL and 2×10^5 Amp/cm² for 100K ECL. Layout rules are followed to minimize the possibility of shorts, circuit anomalies, and SCR-type latch-up effects. Numerous groundto-substrate connections are required to ensure that the entire chip is at the same potential, thereby precluding internal noise problems.

PRODUCT CHARACTERIZATION

Before a new design is released, the characterization phase must be completed so that the distribution of parameters resulting from lot-to-lot variations is well within specified limits. Such extensive characterization data also provides a basis for identifying unique application-related problems which are not part of normal data sheet guarantees. Characterization takes place from 0°C to +85°C and at $\pm 10\%$ supply voltage.

QUALIFICATION

Formal qualification procedures are required for all new or changed products, processes and facilities. These procedures ensure the high level of product reliability our customers expect. New facilities are qualified by corporate groups as well as by the quality organizations of specific units that will operate in the facility. After qualification, products manufactured by the new facility are subjected to highly accelerated environmental stresses to ensure that they can meet rigorous failure rate requirements. New or changed processes are similarly qualified.

QAO5

The QAO5 system collects the results of product assurance testing on all finished goods lots and feeds this data back to concerned organizations where appropriate action can be taken. The QAO5 reports EPQ (Estimated Process Quality) and AOQ (Average Outgoing Quality) results for electrical visual/mechanical, hermeticity, and documentation audits. Data from this system is available on request.

THE SURE PROGRAM

The SURE (Systematic Uniform Reliability Evaluation) program audits/monitors products from all Signetics' divisions under a variety of accelerated environmental stress conditions. This program, first introduced in 1964, has evolved to suit changing product complexities and performance requirements.

The SURE program has two major functions: Long-term accelerated stress performance audit and a short-term accelerated stress monitor. In the case of ECL Logic products, samples are selected that represent all generic product groups in all wafer fabrication and assembly locations.

THE LONG-TERM AUDIT

One hundred devices are subjected to each of the following stresses every eight weeks:

- High Temperature Operating Life:
- $T_J = 150^{\circ}C$, 1000 hours, static biased
- High Temperature Storage: T_J = 150°C, 1000 hrs
- Temperature-Humidity-Biased Life: 85°C, 85% relative humidity, 1000 hrs, static biased

 Temperature Cycling (Air-to-Air): -65°C to +150°C, 100 cycles

THE SHORT-TERM MONITOR

Ten parts of each process batch (25,000 pcs typ) are subjected to a High Temperature Operating Life XXX 125°C, 168 hours, reverse biased at $V_{\rm EE} = -5V$.

SURE REPORTS

The data from these test matrices provides a basic understanding of product capability, an indication of major failure mechanisms and an estimated failure rate resulting from each stress. This data is compiled periodically and is available to customers upon request.

Many customers use this information in lieu of running their own qualification tests, thereby eliminating time-consuming and costly additional testing.

RELIABILITY ENGINEERING

In addition to the product performance monitors encompassed in the Logic SURE Program, Signetics' Corporate and Division Reliability Engineering departments sustain a broad range of evaluation and qualification activities.

Included in the engineering program are:

- evaluation and qualification of new or changed materials, assembly/waferfab processes and equipment, product designs, facilities and subcontractor;
- device or generic group failure rate studies;
- advanced environmental stress development;
- -failure mechanism characterization.

The environmental stresses utilized in the engineering programs are similar to those utilized for the SURE monitor, however, more highly accelerated conditions and extended durations typify the engineering projects. Additional stress systems such as biased pressure pot, power-temperature cycling, and cycle-biased temperature-humidity, are also included in the evaluation programs.

FAILURE ANALYSIS

The SURE Program and the Reliability Engineering Program both include failure analysis

Quality and Reliability

activities and are complemented by Corporate, Divisional, and Plant Failure Analysis departments. These engineering units provide a service to our customers who desire detailed failure analysis support, and they in turn provide Signetics with the technical understanding of the failure modes and mechanisms actually experienced in service. This information is essential feedback necessary for the continued assessment of the applicability of the stress conditions utilized to measure product performance.

ZERO DEFECTS PROGRAM

In recent years United States Industry, and particularly those of you who buy integrated circuits, has increasingly demanded improved product family. We at Signetics believe you have every right to expect quality products from a supplier. The benefits which are derived from quality products can be summed up in the words, lower cost of ownership. Those of you who invest in costly test equipment and engineering to assure that incoming products meet your specifications have a special understanding of the cost of ownership. But your cost does not end there; you are also burdened with inflated inventories, lengthened lead times, and more rework.

SIGNETICS UNDERSTANDS CUSTOMERS' NEEDS

Signetics has long had an organization of quality professionals within the operating units, coordinated by a corporate quality department. This organization provides leadership, feedback, and direction for achieving our high level of quality. Special programs are targeted on specific quality issues. For example, a program to reduce electrically defective units improved outgoing quality levels by an order of magnitude.

In 1980 we recognized that in order to achieve outgoing levels on the order of 100 ppm (parts per million), down from an industry practice of 10,000 ppm, we needed to supplement our traditional quality programs with one that encompassed all activities and all levels of the company. Such unprecedented low levels could only be achieved by contributions from all employees, from the R&D laboratory to the shipping dock. In short, a program that would effect a total cultural change within Signetics in our attitude toward quality.

QUALITY PAYS OFF FOR OUR CUSTOMERS

Signetics' dedicated programs in product quality improvement, supplemented by close working relationships with many of our customers, have improved outgoing product quality more than twenty-fold. Today, many major customers no longer test Signetics circuits. Incoming product moves directly from the receiving dock to the production line, greatly accelerating throughput and reducing inventories. Additional customers have pared significantly the amount of sampling done on our products. Others are beginning to adopt these cost-saving practices.

We closely monitor the electrical, visual, and mechanical quality of all our products and review each return to find and correct the cause. Since 1981, over 90% of our customers report a significant improvement in overall quality. (See Figure 1.)

At Signetics, quality means more than working circuits. It means on-time delivery of the right quantity of the product at the agreed upon price. (See Figure 2.) Our quality improvement programs extend out from the traditional areas of product performance into the administrative areas which affect order entry, scheduling, delivery, shipping, and invoicing.

ONGOING QUALITY PROGRAM

"Do it Right the First Time"

The intent of this innovative program is to change the perception of Signetics' employees that somehow quality is solely a manufacturing issue where some level of defects is inevitable. This attitude has been replaced by one of acceptance of the fact that all errors and defects are preventable; a point of view shared by technical and administrative functions equally, and, we are sure, welcomed by our customers.

This program extends into every area of the company, and more than 40 quality improvement teams throughout the organization drive its ongoing refinement and progress. Key components of the program are the Quality College, the "Make Certain" Program, Corrective Action Teams, and the Error Cause Removal System.

The core concepts of doing it right the first time are embodied in the four absolutes of quality:

- 1. The definition of quality is conformance to requirements.
- The system to achieve quality improvement is prevention.
- 3. The performance standard is zero defects.
- 4. The measurement system is the cost of quality.

Quality College

Almost continuously in session, the Quality College is a prerequisite for all management and technical employees. The intensive curriculum is built around the four "absolutes" of quality; colleges are conducted at company facilities throughout the world.

"Making Certain" — Administrative Quality Improvement

Signetics' experience has shown that the largest source of errors affecting product and

Quality and Reliability

service quality is found in paperwork and in other administrative functions. The "Make Certain" program focuses the attention of management and administrative personnel on error prevention, beginning with each employee's own actions.

This program promotes defect prevention in three ways: by educating employees as to the impact and cost of administrative errors, by changing attitudes from accepting occasional errors to one of accepting a personal work standard of zero defects, and by providing a formal mechanism for preventing errors.

Corrective Action Teams

Employees with the perspective, knowledge, and necessary skills are formed into ad hoc groups called Correction Action Teams. These teams, the major force within the company for quality improvement, resolve administrative, technical and manufacturing problems.

Error Cause Removal (ECR) System

The ECR System permits our employees to report to management any impedient to doing their job right the first time. Once reported, management is obliged to respond promptly with a corrective program. Doing it right the first time in all company activities produces lower cost of ownership through product defect prevention.

Product Quality Program

To reduce defects in outgoing products to nearly immeasurable levels, we created the Product Quality Program. This is managed by the Product Engineering Council, a task force composed of the top product engineering and test professionals in the company. This group:

- 1. Sets aggressive product quality improvement goals.
- 2. Provides corporate-level visibility and focuses on problem areas.
- Serves as a corporate resource for any group requiring assistance in quality improvement.
- 4. Drives quality improvement projects.

As a result of this aggressive program, every major customer who reports back to us on product performance is reporting significant progress.

Standard Quality Programs

Qualification — Formal qualification procedures are required for all new or changed products, processes and facilities. These procedures ensure the high level of product reliability our customers expect. New facilities are qualified by the corporation and by the quality organizations of the product line that will operate the facility. After qualifications, products manufactured by the new facility are subjected to highly accelerated environmental stresses to ensure that the products can meet rigorous failure rate requirements. New or changed processes are qualified similarly.

Failure Analysis — This vital function is conducted by product line and plant failure analysis units coordinated through the corporate failure analysis group, a part of corporate reliability engineering. Our ten failure analysis groups were expanded to 16 during 1984 in our ongoing effort to accelerate and improve our understanding of product failure mechanisms.

Reliability Database — This computerized database contains product reliability information collected from around the world. It is updated and published quarterly in the "Signetics Product Reliability Summary".

Many customers use this information in lieu of running their own qualification tests, thereby eliminating time-consuming and costly procedures.

Vendor Certification Program — Our vendors are taking ownership of their own product quality by establishing improved process control and inspection systems. They subscribe to the zero defects philosophy. Progress has been excellent. Through intensive work with vendors, we have improved our lot acceptance rate on incoming materials as shown in Figure 3. Simultaneously, waivers of incoming material have been eliminated. Higher incoming quality material to us ensures higher outgoing quality products for you.

QUALITY AND RELIABILITY ORGANIZATION

Quality and reliability specialists at the product-line level are involved in all aspects of the product, from design through every step in the manufacturing process, and provide product assurance testing of outgoing product. A separate corporate-level group provides direction and common facilities.

Quality and Reliability Functions

- · Manufacturing quality control
- · Product assurance testing
- Laboratory facilities failure analysis, chemical, metallurgy, thin film, oxides
- Environmental stress testing
- · Quality and reliability engineering
- Customer liaison

COMMUNICATING WITH EACH OTHER

For information on Signetics' quality programs or for any question concerning product quality, the field representative in your area will provide you with the quickest access to answers. Or, write on your letterhead directly to the Corporate Director of Quality at the corporate address shown at the back of this data manual.

We are dedicated to preventing defects. When product problems do occur, we want to know about them so we can eliminate their causes. We are committed to zero defects.
Quality and Reliability

- Here are some ways we can help each other: • Provide us with one informed contact within your organization. This will
- within your organization. This will establish continuity and build confidence levels.
- Periodic face-to-face exchanges of data and quality improvement ideas between your engineers and ours can help prevent problems before they occur.
- Test correlation data is very useful. Line-pull information and field failure reports also help us improve product performance.
- Provide us with as much specific data on the problem as soon as possible to speed analysis and enable us to take corrective action.
- An advance sample of the devices in question can start us on the problem

resolution before physical return of shipment.

This teamwork with you will allow us to achieve our mutual goal of improved product quality.

MANUFACTURING: DOING IT RIGHT THE FIRST TIME

In dealing with the standard manufacturing flows, it was recognized that significant improvement would be achieved by "doing every job right the first time", a key concept of the quality improvement program. During the development of the program many profound changes are being made. Key changes include such things as implementing 100% AC testing on all products as well as upgrading test handlers to insure 100% positive binning. Some of the other changes and additions are to tighten the outgoing QA lot acceptance criteria to the tightest in the industry, with zero defect lot acceptance sampling across all three temperatures.

The achievements resulting from the improved process flow have helped Signetics to be recognized as the leading Quality supplier of ECL Logic. These achievements have also led to our participation in Ship-to-Stock programs, which our customers use to eliminate incoming inspection. Such programs reduce the user cost of ownership by saving both time and money.

INDEX

Introduction	3-3
Test Sequence (Functional, DC, and AC Testing)	3-3

Testing

ECL Products

INTRODUCTION

The purpose of this section is to assist personnel involved with testing of ECL by discussing various testing methods and techniques needed in testing ECL devices.

TEST SEQUENCE

ECL testing is usually done in the following sequence: functional testing, DC testing and AC testing.

Functional Testing

The purpose of functional testing is to verify that the device is working. Functional testing is done on the automatic tester by simulating in-circuit condition. The inputs are driven using V_{IH} and V_{IL} values. The outputs are compared against V_{OH} and V_{OL} limits.

DC Testing

After the functional testing, all DC parameters in the DC Characteristics are tested for each input and output on the automatic tester.

It is important to emphasize that the specified limits in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min). Threshold measurement is the most difficult DC parameter test on the automatic tester. If all inputs are at threshold simultaneously, the device may tend to oscillate when in a test environment.

Make sure that each input and output is terminated through a 50 Ω resistor to -2.0V.

Although suggested test conditions are described for V_{OH}, V_{OHT}, V_{OL}, and V_{OLT}, they

are not necessarily worst case. The following is a recommendation as to what to look for in considering output voltages in the worst case.

 V_{OH} and V_{OL} levels on ECL devices are somewhat current path dependent, i.e., the output voltage level can vary depending on how the output is being driven by the internal circuitry. Also, the effect is different for V_{OH} than for V_{OL} . This can be explained by analyzing the circuit in Figure 1.

Power Supply	Current capability	Since ECL is noted for high current requirements, power supplies of V _{EE} should be capable of supplying current with a 25% reserve over the highest powered part. The power supply must provide well over 1 Ampere.
Power Supply	Noise-free power supply current	Since the voltage swing on ECL input and output levels is only about 800mV, it is important that the power supplies be extremely clean and free of spikes, hum, or other types of noise.
Pulse Generator	DC resolution	Since the threshold measurements require that input voltage be extremely accurate and repeatable, the driver and the output comparator should have an accuracy of ± 1 mV.
Pulse Generator	Edge rates	It is important that the rise and fall time of the clock pulses be fast, clean, and free from overshoot.
Sampling Scope	Rise time	The Sampling scope should be able to handle rise time of 100ps and preferably should have a digital display for easier readout.
Test Fixture	Contact resistance	Contact resistance between device pins and test pins should be kept to less than $50m\Omega$ to avoid oscillation. Free length of contact (portion not matched to 50Ω terminating resistor) should be kept to less than 10mm.
Test Fixture	Input	All inputs must be terminated through a 50Ω resistor to ground or through a built-in 50Ω resistor of pulse generator.
Test Fixture	Output termination	To minimize reflection, all outputs must be terminated through a 50 Ω resistor to Ground, or through a built-in 50 Ω resistor of the sampling scope.
Test Fixture	Jig delay	Effort should be made to cut down propagation delay due to the fixture (jig) itself.
Test Fixture	Decoupling	To avoid oscillations, great care should be taken to decouple the V _{CC1} , V _{CC2} , V _{CC3} , and V _{EE} to Ground.
Interconnection		

Testing

Q0, Q1, and Q2 are the input transistors in this simplified schematic of a 10100. Q4, D1 and D2, and R9 and R10 form the voltage reference supply (V_{BB}). If the voltage at the base of any or all of the input transistors rises above V_{BB}, the transistor will begin to conduct current down through R6, thus diverting most of the base current away from the output transistor, Q5. The voltage at the output pin will drop toward V_T via a 50 Ω termination resistor, R_T.

If only one input transistor is conducting, all the current that is diverted away from Q5 will flow through it.

If two input transistors are conducting, that same amount of current will be split evenly by each transistor. Since the saturation resistance (R_{sat}) of any real transistor is not zero, a smaller voltage drop will result causing a slightly lower voltage at the output.

If all three input transistors are conducting, the current will be split three ways and a still lower voltage will result. Since the most negative output voltage is V_{OLmin} , the above condition would represent the worst case for that test. Therefore, if the most positive LOW state is V_{OLmax} , the worst-case condition for that would be with only one input transistor conducting. It is advisable then to test V_{OLmax} with each input HIGH, one at a time.

In the case of V_{OH}, there is only one possibility — all inputs low — so it is not necessary (or possible) to test anything but that one condition.

It is fairly simple to see from the above example what the worst cases are for most gates (provided a schematic is available). As the circuitry advances into flip-flops and beyond into the even more advanced functions, the worst-case conditions become a little more difficult to determine, although the philosophy remains the same. The easiest way to determine how the output is affected is to see what components directly drive it, then determine all of the possible combinations from all of the available inputs. Of course, only the worst possible combinations need to be tested.

When testing inverting circuits, the parameter that is usually affected is V_{DL} ; but in noninverting circuits, V_{OH} is path dependent. Referring to the simplified schematic of a 10101 in Figure 2, the inverting output is affected the same as in the previous example but this device also has a non-inverting output from the emitter of Q3. With both inputs HIGH, Q4 diverts most of the base current away from the base of Q3, thus the output is LOW and that is the only LOW state condition that can exist.

If one input goes HIGH, most of the current from R5 can now flow into the base of Q3 pulling the emitter HIGH. If the other input transistor goes high also, the voltage drop will be shared equally between Q1 and Q2 and the voltage at their emitters could rise a few more millivolts. In turn, the emitter of Q4 will rise along with the collector of Q4, the base of Q3 and therefore the output emitter. So the worst-case V_{OHmax} test for this device would be with both inputs HIGH and the worst-case V_{OHmin} mould be with only one input HIGH at a time.

Every effort has been made to include simplified circuit schematics for all devices in the limited space of this databook to aid the in testing and circuit design with Signetics' ECL devices.

AC Testing

It is important to emphasize that the specified limits in the AC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board.

Since few automatic testers have sufficient accuracy to perform sub-nanosecond testing, AC testing is one of the most difficult tests to accomplish. Depending on the accuracy and repeatability of the automatic tester, a manual bench-type tester may be required for correlation to complement the AC testing with the automatic tester.

Section 4 ECL User's Guide

ECL Products

INDEX

0
-3
-7
-9
11
12
14
19
23
25
27
30
31

ECL Products

THE ECL GATE

Figure 1.1 shows a basic ECL 10K OR/NOR gate having two inputs and two complementary outputs. The gate's current switching stage is shown in Figure 1.2. The input voltage, V_{IN} , controls the current, I. When V_{IN} changes logic levels, I is switched between Q_2 and Q_5 . V_{BB} , the reference voltage, is held at a fixed voltage by an internal voltage driver, with the fixed voltage being midway between the input voltage threshold region. As the current is switched, the output voltage V_{OUT1} and V_{OUT2} also change, giving a NOR and an OR logical output, respectively.

The net output voltage swing is determined by R_3 and R_6 and the magnitude of I. I can be determined from:

$$I = \frac{Max(V_{IN}, V_{BB}) - V_{BE} - V_{EE}}{R_7} \quad Eq. 1.1$$

where V_{BE} is the base-emitter voltage drop of Q_2 or $Q_5,$ (on the order of 0.8V).

If $Max(V_{IN}) > Max(V_{BB})$, then

$$I = \frac{Max(V_{IN}) - V_{BE} - V_{EE}}{B_7}$$
 Eq. 1.2

If Max(V_{IN}) < Max(V_{BB}), then

$$I = \frac{Max(V_{BB}) - V_{BE} - V_{EE}}{B_{T}} \qquad Eq.$$

I is on the order of several milliamperes (4mA for a 10K gate).

Chapter 1 ECL Circuit Basics

Figure 1.3 gives the switching characteristics of the circuit in Figure 1.2, with the output voltage given as a function of the input voltage. Four operating zones are shown, labeled A, B, C, and D.

In Zone A, V_{IN} is enough below V_{BB} to turn Q_2 off. V_1 is

V_{CC} - (I leakage Q₂) (R₃)

The current, I, passes almost entirely through R₆ creating a voltage drop across R₆ of about 1V (the value of R₆ is selected specifically to achieve this). V_{BB} is designed to be slightly lower than V_{CC} – (I) (R₆) to avoid saturation of Q₅ while maintaining a collector-base voltage > 0. For this purpose, V_{CC} – V_{BB} is selected to be on the order of 1.3V.

In Zone B, the transition region, the V_{IN} is nearly V_{BB}. Both transistors, Q₂ and Q₅, are on and conducting current. In this region the switching stage behaves like a differential amplifier. Q₂ and Q₅ are designed to be as nearly identical as possible so that when V_{IN} = V_{BB}, the current, I, is divided equally between the two, making the voltage drop across both R₃ and R₆ approximately 0.5V. The width of this zone is approximately 100mV at 25°C. The width varies with temperature by (4kT)/q (where k is the Boltzman Constant, q is the charge of an electron, and T is the absolute temperature of the V_{BE}

junction) due to the temperature dependence of the emitter-base junctions of Q_2 and Q_5 .

In Zone C, V_{IN} is enough above V_{BB} to turn off Q₅. As V_{IN} rises, the emitter voltage, V_E, increases (since V_E = V_{IN} – V_{BE} (Q₂) and V_{BE} (Q₂) is approximately constant) while V_{BB} remains constant until the base-emitter voltage drop of Q₅ is sufficient to keep Q₅ on. In this zone V₂ becomes equal to V_{CC} – (I leakage Q₅) (R₆) and V₁ = (R₃) (I). R₃ is designed to make V₁ close to V_{CC} – 1V. I varies in Zone C due to its dependence on V_E. Because of this, R₇ is replaced by a current source in many circuits to produce better matched output characteristics, as well as other advantages that will be discussed in a later section.

1.3

4

TC0277

V_O

Vcc

٧π

In (mA)

00010

Vour Vcc

٧,

Vee

Vin

OP019905

Vcc

V_{OH}

20

CHARGE 50Q

CHARGE 250C

In Zone D, VE is high enough to allow Q2 to saturate. Under this circumstance, the basecollector junction of Q2 is forward-biased and the collector voltage begins to follow the input voltage, creating the upturn in the characteristic curve for V1 in Figure 1.3. Because the current I can no longer be provided completely by the collector of the transistor. the difference is supplied by the base current of Q2, which increases considerably. The change in base current with increased input voltage is shown in Figure 1.4. This current is the input current of the simplified gate. The input voltage of an ECL gate is usually limited to prevent operation in Zone D.

Figure 1.5. Emitter-Follower Outputs

EMITTER-FOLLOWER BUFFERS OUTPUT AND TRANSFER **CHARACTERISTICS**

The V_1 and V_2 signals of Figure 1.2 could be used directly as the output signals of the gate. However, there are two disadvantages in doing so. First, the voltage values of the logic levels generated by these nodes are not compatible with an input threshold voltage equal to V_{BB} , so a downward shift of V_1 and V₂ is required. Second, V₁ and V₂ would have

Figure 1.6 shows the output characteristic, Vo $(=V_3 \text{ or } V_4)$, as a function of the output current, IO, for Zone A or Zone C. Two load lines are shown: 50Ω and 250Ω . The 50Ω load is connected to an intermediate voltage, VTT, to limit the output current of the gate. Larger loads can be connected directly to VEE.

Figure 1.7 gives the transfer characteristic, V_{O} (= V_{3} or V_{4}) as a function of V_{E} . Note that the logic swing is now almost symmetrical about the reference voltage, VBB, due to the voltage-level shifting by the VBE of the emitter-follower transistors, Q1 and Q4.

INTERNAL THRESHOLD VOLTAGE GENERATOR

In 10K ECL circuits, the threshold voltage, V_{BB}, is provided by the internal voltage gener-

ator shown in Figure 1.8. (The NOR output circuitry has been excluded for simplicity.) As with other device technologies, the transfer and other characteristics of ECL gates are temperature-dependent. This is mainly due to the temperature dependence of V_{BE}.

As stated earlier, the logic HIGH and logic LOW noise margins of ECL gates should be symmetrical about VEE. Due to the temperature dependence of V_{BE} , this is possible at only a single temperature when the reference voltage, V_{BB}, is kept fixed. However, it is possible to maintain the symmetry of the noise margins over a wide temperature range if the reference voltage itself is made to be temperature-dependent. The voltage generator of Figure 1.8 accomplishes this. The reference voltage for the current switch is taken from an emitter-follower, Q₆. D₁ and D₂ help to stabilize the current in the emitters of Q3 and Q5 against variations in temperature in that any change with temperature of the VBE of Q6 and Q5 is compensated by a similar change across D1 and D2.

Assume a temperature change, ΔT . This temperature change will produce a voltage change in each forward-biased VBE junction, the amount of voltage change being $\Delta V_{BF} = -k\Delta T$, where k = 2mV/°C. Assuming the gain through Q6 is unity, the change in the reference voltage, V_{BB} , due to ΔT is given by

When Q_5 conducts, V_{OUT} is at logic level θ . The change in V_{OUT} due to ΔT is given by Eq. 1.5

$$\begin{split} \Delta V_{\text{OUT}}\left(\theta\right) &= -\Delta V_{\text{BB}}\left(\frac{\text{R}_{6}}{\text{R}_{7}}\right) + \Delta V_{\text{BE}}\left(\frac{\text{R}_{6}}{\text{R}_{7}}\right) - \Delta V_{\text{BE}} \\ &= \left(\frac{\text{R}_{6}}{\text{R}_{7}}\right)\left(-\Delta V_{\text{BB}} + \Delta V_{\text{BE}}\right) - \Delta V_{\text{BE}} \end{split}$$

Note that in the equations for ΔV_{BB} and ΔV_{OUT} only resistor ratios appear. This result is important because it is possible to hold resistor ratios to a much tighter tolerance than absolute values of resistors during device fabrication.

When Q₅ is off and V_{OUT} is at logic level 1,

 $\Delta V_{OUT}(1) = -\Delta V_{BE} \qquad Eq. 1.6$

Resistor values are chosen so that the ''average'' ΔV_{BE} of the two logic levels will equal ΔV_{BE} . Therefore, if the V_{BE} of Q₄ and Q₆ are equal, then V_{BB} will remain centered between V_{OH} and V_{OL}.

SELECTION OF V_{CC} AS REFERENCE VOLTAGE (GROUND)

Unlike TTL gates, with ECL gates it is common practice to ground the positive end of the voltage supply. One advantage of using this arrangement with ECL gates is that it minimizes external noise transfer.

Figure 1.9 shows our ECL gate with the NOR output omitted for simplification. Usually the output voltage of the gate is the voltage between the emitter of Q_4 and V_{CC} (V_{OUT}), but we could just as easily consider the output voltage to be that between the emitter of Q4 and V_{EE} (V'_{OUT}). As far as the output signal is concerned, the positive and negative sides of the supply are the same electrical point. As Figure 1.9 shows, closed-circuit loops are formed by the connection to V_{CC}. A varying magnetic flux can be produced in these loops by the currents in the gate, or by currents in neighboring gates, which produces an electromagnetic field in the loops and in V_{CC}. This electromagnetic field, or induced voltage, is referred to as "noise" because it is random and unpredictable. It is represented in Figure 1.10 by the voltage source V_N .

With the inclusion of V_N, the two sides of the power supply, A and B, are no longer equivalent and V_{OUT} and V'_{OUT} are also no longer equivalent. Assume Q₅ is cut off. Then V_N can be considered across R₆, Q₄ and R_{EX} only. The impedance between the collector and emitter of Q₄ is

$$Z_{CE} = \frac{R_6}{(h_{FE} + 1)}$$
Eq. 1.7

For h_{FE} = 99 and R_6 = 300 Ω , Z_{CE} = 3 Ω . Then, V_{OUT} = (3/1,500) V_N = 0.002 V_N while

 $V'_{OUT} = (1,500/1,503)V_N \cong V_N$. The advantage lies clearly with using V_{OUT} rather than V'_{OUT} .

It is also common practice to have the output terminal of a signal source and the input terminal of a signal measuring device use ground as one signal terminal. This practice is convenient since ground is usually the chassis on the relay rack on which the circuit is built, including the cabinet that houses the unit, if any, and has the advantage that when units are interconnected, the chassis, cabinets, etc., are all joined electrically.

Thus, since it is advantageous to use the positive side of $V_{\rm CC}$ as one of the output terminals, and also advantageous to use ground as one such terminal, the positive side of $V_{\rm CC}$ is grounded.

Another advantage to the grounding arrangement employed with ECL is shown in Figure

1.11 where the output voltages of two gates, one powered by V_{CC} and one powered by V_{EE}, is shown. When V_{CC} is common to both gates, V_{OH} varies very little and the V_{OL} of each gate remains compatible with the threshold voltage, V_{BB}, of the other. However, when V_{EE} is common to both gates, the output voltages V_{OH} and V_{OL} of both gates can become so different that the threshold of the second gate is no longer compatible with the output voltage of the first gate.

ECL LOGIC IMPLEMENTATION

An ECL gate incorporating the basic structure of Figure 1.1 is shown in Figure 1.12. The input transistors Q_2 and Q_3 are shown here in parallel. Additional transistors can be added in parallel to provide for multiple gate inputs.

When the input voltages V_{IN1} and V_{IN2} are in the LOW state (i.e. < V_{BB}), the input transistors Q₂ and Q₃ are cut off and Q₅ is conducting. This creates a LOW level at the V_{OUT2} output and a HIGH level at the V_{OUT1} output. If either of the input voltages goes to the HIGH state (i.e. > V_{BB}), the current will switch to the corresponding input transistor and cut Q₅ off. Consequently, the V_{OUT2} output will go to HIGH and the V_{OUT1} output will go LOW. Thus, the circuit performs an OR function

$$V_{O4} = A + B$$
 Eq. 1.8

at the V_{OUT2} output and performs a NOR function

Eq. 1.9

 $V_{O1} = \overline{A + B}$

at the VOUT1 output.

ECL Products

SERIES GATING

The switching stage described in the previous section behaves like an inverting relay contact and, as with relays where contacts can be cascaded, ECL differential stages can also be cascaded. An example is shown in Figure 2.1. Input transistors A and B have been placed in series to share a common current source, Q10, and implement an AND function. It is important to avoid saturating the lower transistors so that the complete benefits of non-saturating logic can be maintained. This can be accomplished by shifting the thresholds of the two differential stages by a voltage comparable to the logic swing on input A. Therefore, a second reference voltage, VB2, is added to shift from 1V to 1.6V with respect to VB1. An equal shift is implemented for input A by the emitter-follower, Q12, shown in Figure 2.2.

This logic block, called "series gating," adds the NAND and AND logic functions to the OR and NOR capability of the basic ECL gate. This technique is so powerful, consumes so little power, and requires so few components that it has become the standard building block for complex circuits in ECL families having two or three levels of current-switching. (The voltage of the 10K family was set at -5.2V to allow three levels of current-switching — two voltage shifts. For a simple gate with only one level of current switching, 2.6V to 3V would certainly have been sufficient.)

Chapter 2 Logic Function Operation

4

FLIP-FLOPS

Flip-flop functions make extensive use of series gating. Figure 2.3 shows a simple flipflop that, under the control of a clock signal, latches a "data" bit. When the clock is in the LOW state, current from the source transistor, Q₉, is switched by Q₁₂ to the differential "data" stage formed by Q5 and Q13, and from there to the outputs V_{OUT} and $\overline{V_{OUT}}$. During the transition, this current controls the logic state of the "internal outputs," Q8 and Q10, which reproduce the state of the data input. When the clock goes HIGH, the current is switched by Q7 to the differential pair formed by Q6 and Q11, which is itself controlled by the internal outputs. The circuit is then latched on the data state that preceded the rise in the clock signal, regardless of the subsequent state of the data input.

In this latched state, the data in the flip-flop can be changed by applying a LOW logic state to transistor Q_4 or Q_{14} , which then forces the output HIGH or LOW, thereby accomplishing a "set-reset" function.

WIRED-OR FUNCTIONS

Figure 2.4 shows another technique for implementing complex ECL functions: the ability to control several output emitter-followers with the same gate. This makes it very easy to generate supplementary signals.

In Figure 2.4, four independent logic functions are implemented via only two differential stages by combining outputs. Note that for the internal outputs, which need only drive internal inputs having relatively high impedance rather than 50 Ω lines, fairly large internal resistors (R_T = 1k to 5k Ω) can be used for V_{EE} connections.

ECL Products

OUTPUT CHARACTERISTICS

Figure 3.1 shows transfer curve and DC specification test points for a 10K ECL OR gate. Note the two sets of min/max logic level parameters. The first set, V_{ILmin}/V_{IHmax}, should cause the output to take a level somewhere within the V_{OLmax}/V_{OLmin} and V_{OHmax}/V_{OHmin} specification. The second set of logic level parameters relates to the switching thresholds. When a voltage V_{ILT} is applied to the input, the OR output should be below the V_{OLT} level; and, when a voltage V_{IHT} is applied to the input, the output should be be above the V_{OLT} level.

Since variations in wafer fabrication process parameters can affect a gate's transfer characteristics, device performance is tested at the indicated test points to ensure that:

- 1. the switching threshold falls within the rectangle defined at the lower left by the V_{ILT}/V_{OLT} corner point and at the upper right by the V_{IHT}/V_{OHT} corner point; i.e. that switching does not begin outside this rectangle;
- quiescent logic levels fall within the specified min/max ranges.

In 10K ECL, this curve varies with temperature and supply voltage changes. This is explained in detail in a later section.

NOISE MARGIN

Noise margin is a measure of a circuit's immunity to adverse DC operating conditions. Noise margin is defined for the HIGH state as

$$V_{NH} = V_{OHT} - V_{IHT}$$
 Eq. 3.

and for the LOW state as

$$V_{NL} = V_{ILT} - V_{OLT}$$
 Eq. 3.2

Where "T" is used to denote the threshold value for V_{OH}, V_{OL}, V_{IH} and V_{IL}. Figure 3.2a gives noise margins vs. temperature variations for 10K ECL and 3.2b gives noise margins vs. power supply variations for 10K ECL.

"Noise immunity" measures the minimum input noise that will propagate through cascaded gates. This measurement, indicative of a device's immunity to noise during actual AC system operation, is difficult to measure and,

Chapter 3 ECL Gate — Static Characteristics

Figure 3.1. ECL OR Gate Transfer Curve With DC Specification Test Points

PARAME	TER	-30°C	+ 25°C	+ 85°C
V _{IHmin} to V _{OHCmin}	V _{NH} (mV)	125	125	125
VILmax to VOLCmax	V _{NL} (mV)	155	155	155

Minimum Noise Margin vs. Temperature Variations

PARAMETER		V _{EE} - 10%	V _{EE} - 5%	V _{EE} + 5%
V _{iHmin} to V _{OHmin}	V _{NH} (mV)	127	166	241
V _{ILmax} to V _{OLmax}	V _{NL} (mV)	223	249	301

Minimum Noise Margin vs. V_{EE} Variations

Figure 3.2. 10K ECL Minimum Noise Margins

therefore, is not specified on datasheets. However, noise immunity of 10K devices is typically at least 40mV greater than the DC noise margin.

Both 10K and 100K ECL device specifications dictate that only one input at a time should be connected to a threshold level (V_{IHT} or V_{ILT}) and that all other inputs should be at V_{IHTmax} or V_{ILmin} during testing.

INPUT CHARACTERISTICS

As shown in Figure 1.1, gate inputs are not connected directly to the base of their input transistors, but instead are connected through a network of two resistors, R_1 and R_2

(or R₄ and R₅). The resistor R₁ (R₄) guarantees a positive (real) input impedance at all frequencies. High frequency capacitive effects could cause the input current to be put out of phase by more than 90° with regard to the input voltage, causing the appearance of a negative resistance on the base of Q₂, if R₁ (R₄) was not included. The resistor R₂ (R₅) pulls any unused inputs LOW, eliminating the need for external wiring on these inputs. However, because of large switching transients associated with fast rise and fall times and the sensitivity of clocked devices (flipflops, counters, etc.), it is advisable to use external components with clocked devices to assure that the unused inputs of such devices are securely tied to a low logic level.

Figure 3.3 shows the input characteristics of an ECL gate. I_{IHmax} is the guaranteed maximum static load that is represented by the gate input. I_{ILmin} guarantees the internal pull-down resistance.

CURRENT CONSUMPTION

Current consumption is specified as the Power Supply Drain Current, I_{EE}, and is the current that is drawn through the supply pin, V_{EE}-I_{EEmax} is measured with V_{CC} at 0V and

V_{EE} at -5.2V since maximum circuit speed is achieved at this power supply value.

The magnitude of I_{EE} is affected by three separate portions of the ECL gate: the current switch, the reference voltage supply, and the output emitter-followers. I_{EE} limits specified for a particular device reflect the power requirements of the current switch (or switches) and reference voltage supply. However, ECL devices can support a broad range of output termination resistor values, with the particular value chosen depending on individual system performance requirements. Therefore, it is necessary to add power requirements due to input current drain and output loading to the specified power supply drain current limit given in the device's datasheet.

EFFECT OF TEMPERATURE

10K ECL outputs rise with increasing temperature. This is mainly due to the dependence of V_{BE} on temperature.

Figure 3.4 shows output voltage as a function of temperature. Because of this temperature dependence, DC parameters are generally specified at three ambient temperatures: -30° C, $+25^{\circ}$ C, and $+85^{\circ}$ C.

When designing with ECL devices, the following should be kept in mind:

- Maximum noise immunity is obtained when two connected circuits are at the same temperature;
- When a circuit is tested, thermal equilibrium must be obtained before any measurements are made.

EFFECT OF SUPPLY VOLTAGE ON 10K ECL

As explained in Chapter 1, 10K ECL devices are specified with V_{CC} at ground and V_{EE} at -5.2V because maximum noise immunity is achieved with this supply configuration. This convention is not mandatory; and, while not recommended because of loss of noise immunity, it is possible to operate ECL devices from a TTL +5V power supply.

10K ECL devices are specified for $V_{EE} = -5.2 \pm 10\%$. However, the best circuit speed is achieved with $V_{EE} = -5.2V$. As V_{EE} becomes more negative, both noise margin and power dissipation increases. As V_{EE} becomes more positive, power dissipation decreases, but at the expense of a decrease in noise margin.

Most 10K ECL devices have two power supply pins, V_{CC1} and V_{CC2} , to reduce cross-coupling between internal device components when the outputs are driving heavy loads. V_{CC1} supplies current to the output transistors and V_{CC2} supplies current to the circuit logic transistors.

ECL Products

TRANSITION TIME AND PROPAGATION DELAY

The dynamic characteristics of a device are those that define its effect on a specified input signal as that signal travels through the device. They include the time required to change the output from one logic state to another, specified as the output transition time, and the time required for the output of the device to respond to an input signal, specified as the propagation delay.

To accurately measure a device's dynamic performance, an environment very similar to the system environment in which the device will be used should be created. Input voltages applied should represent signals the device will see in the system; i.e., pulses having HIGH and LOW levels that are typical of VOH and VOL and having edges that are representative of the edges generated by the outputs of an interfacing device. An example is shown in Figure 4.1.

The output transition time (t_{TLH} and t_{THL}) also gives an indication of the maximum operating frequency and of any high-frequency parasitic effects. For ECL devices, both t_{TLH} and t_{THL} are measured between 20% and 80% of the signal amplitude; i.e., in the transition region. Because ECL utilizes current-mode switching to eliminate transistor saturation storage delays and permits the use of differential comparison techniques, transition rise times can, by design, be slowed via internal time constants without sacrificing throughput delays. This is an important advantage of ECL because slower rise times minimize ringing and reflections and, therefore, simplify board design. The typical edge rate for 100K ECL is 1V/ns, 80% of the Schottky TTL edge rate.

Propagation delay (t_{PD}) defines the time it takes for a signal to travel internally from the input terminal and the output terminal of a device. Test equipment limitations make it necessary to measure the propagation time of ECL devices at 50% of the amplitude of both signals rather than at VBB.

INTERNAL SWITCHING

Internal switching of the gate takes place in two stages (see Figure 1.10):

1. In the first stage, the input voltage rises to VIH. The voltage change at the input of

Chapter 4 ECL Gate — Dynamic **Characteristics**

transistor Q2 is delayed, however, because of its input capacitance. When its input voltage enters Zone B in Figure 1.3, Q₂ begins to conduct after a given time delay dependent on its cut-off frequency, fт.

2. In the second stage Q2 delivers current into resistor R₃. The collector voltage, followed by the output voltage, begins to change. The rate of change of the output voltage depends on the total capacitance on the collector of Q2, and varies inversely with the load resistance of the emitter of Q1.

The transition time is dependent on the second stage, whereas the propagation delay depends on both stages.

EFFECT OF CAPACITIVE LOAD

The speed of an ECL gate is adversely affected by capacitive loading due to the emitter-followers used at the outputs. When the base voltage of an emitter-follower increases, the emitter follows. Any capacitance across the output charges rapidly through the low output impedance of the emitter-follower. But, when the base voltage decreases, the emitter voltage remains fixed momentarily due to the coupled capacitor. Since the base voltage has dropped, the emitter-follower cuts off and any capacitance must discharge through a relatively large emitter resistance. The voltage difference between logic levels is small in comparison to the difference between the supply voltage and the logic level voltages, however, so the discharge time will not be excessively large with moderate capacitive loads.

As with all extremely fast logic gates, the upper limit on fanout of an ECL gate is not due to the DC loading factor, but rather due to the total capacitive load that a gate can drive in a given time.

SETUP AND HOLD TIMES

Two additional dynamic characteristics are often important: the setup time (ts) and the hold time (t_H). The setup time is the time interval between the active transition of a timing pulse or control input during which the data must be maintained at the input to insure its accurate recognition. A minimum value is specified that is the shortest interval for which correct operation of the device is guaranteed. The setup time can sometimes be a negative value, in which case the minimum limit defines the longest interval between the active transition and the application of the other input signal for which correct operation of the device is guaranteed.

The hold time is the interval during which the data must be retained at a specified input terminal after an active transition of a timing pulse or control input. A minimum value is specified that is the shortest interval for which correct operation of the device is guaranteed. Again, the hold time may have a negative value. In this case the minimum limit then defines the longest interval between the release of data and the active transition for which correct operation of the device is quaranteed.

Chapter 5 100K ECL

ECL Products

ADVANTAGES OF 100K ECL

The 100K family provides a 0.75ns typical internal gate delay, higher on-chip integration, and improved immunity to voltage and temperature variations. Subnanosecond speeds are achieved via an oxide lateral isolation process that allows very small transistors with reduced parasitic capacitance (less than 0.2pF) and very high switching speed ($f_T = 5$ GHz). An increased current through the output gates also contributes to faster speed.

A new, smaller flat package with improved propagation and high-frequency characteristics has been developed to support the increased performance offered by the 100K family.

100K ECL devices have better immunity to temperature variations than do 10KH devices. While both 100K and 10KH have internal bias voltage generators that compensate internal thresholds for variations in supply and temperature, only 100K devices offer temperature compensation at device outputs.

THE BASIC 100K GATE

Figure 5.1 shows a standard 100K gate. Note that the 100K gate is similar to a 10K gate, the essential differences occuring in the voltage and temperature compensation networks.

TEMPERATURE COMPENSATION OF A 100K GATE OUTPUT

Additional temperature compensation at the gate outputs is achieved by adding a current-controlling network (R₈, D₁, D₂) between the collectors of Q₂ and Q₃ and by a regulator that generates a constant 1.3V control voltage for the current source, V_{CS}, regardless of variations in V_{EE} or temperature. R₇ and the V_{BE} of Q₅ (Figure 5.1) are designed so that when current, I, is passing through the gate, (R₇) (I) + V_{BE}Q₅ will be equal to 1.3V. When V_{IN} = V_{BB} = -1.3V, current is divided equally between the differential pair formed by Q₂ and Q₃, R₆ is cut off, and the two output voltages are equal: V₃ = V₄ = (R₃ (I/2) + V_{BE}Q₁. By design V_{BE}Q₄ = V_{BE}Q₅,

 $R_7 = R_3/3$, and $V_3 = V_4 = V_{CS} = -1.3V$. The switching threshold (central crossover point in the transfer characteristic) is, therefore, stabilized at $V_{IN} = V_{OLT} = 1.3V$, regardless of supply voltage and temperature.

The V_{BE} of Q₅ decreases with increasing temperature; therefore, for a constant V_{CS}, the current in R₇ increases with increasing temperature. The network (R₈, D₁, D₂) keeps this increase in current stable during variations in the output levels when the gate is fully switched. It also absorbs an increasingly

large portion of the current as temperature increases.

Figure 5.2, shows the behavior of the output voltage levels when the stabilization network is not functioning. Below 0°C, practically no current remains in R_8 and the stabilization network ceases to function. Devices can still be utilized below this temperature, but with reduced noise immunity; therefore, 100K ECL device characteristics are not specified below 0°C.

THRESHOLD REGULATOR

The threshold regulator used in 100K ECL devices is shown in Figure 5.3. V_{BB} is regulated to hold the input voltage threshold constant with temperature. V_{CS} is regulated to hold internal thresholds constant over temperature to help keep the output voltage constant.

Since

$$I_{R9} = \frac{(V_{CS} - V_{BE} Q_9)}{R_9}$$
 Eq. 5.1

and

$$I_{R11} = \frac{(V_5 - V_{BE} \ Q_{11})}{B_{11}}$$
 Eq. 5.2

the current density, J₉, through Q₉ is determined by R₉ and (V_{CS} - V_{BE}Q₉) and the current density, J₁₀, through Q₁₀ is determined by R₁₁ and (V_{BE}Q₅ - V_{BE}Q₁₁). Also, since V_{CS} and V₅ are connected to V₆ by V_{BE}Q₇ and V_{BE}Q₈. V_{CS} and V₅ are almost equal. Therefore, the ratio between J₉ and J₁₀ is fixed by the ratio between R₁₁ and R₈.

Due to the physics of semiconductor junctions, $(V_{BE}Q_9 - V_{BE}Q_{10})$ is proportional to the temperature, resulting in a high positive temperature tracking coefficient across R₁₀. The current through R₁₀ is the same as that through R₁₁ and R₁₃; therefore, they also have a high positive temperature tracking coefficient. R₁₁ and R₁₃ are designed so that

the positive temperature coefficient across them exactly cancels the negative diode tracking coefficient of $V_{BE}Q_{11}$ and $V_{BE}Q_{6}$. Thus, the voltages V_{5} and V_{BB} are temperature-independent.

 Q_{11} is a shunt regulator, with Q_8 and R_{11} in negative feedback between its collector and base. In the absence of current from Q_{10}, Q_{11} sets V_5 at 1 V_{BE} and V_6 at 2 V_{BE} , independent of V_{CC} and any current through R_{12} . Additional current from Q_{10} compensates the negative temperature coefficient of Q_{11} , and makes it

possible to maintain V₅ independent of variations in supply voltage and temperature.

The capacitor, C, stabilizes the feedback loop, $Q_{11} - Q_8 - R_{11}$, and prevents oscillations in the regulator when fluctuations occur in current or supply voltage.

This regulator is designed to function across a V_{EE} range of -4.2V to -5.7V.

Figure 5.4 compares the effects of temperature and supply variations on the various ECL logic families.

PARAMETER	10K	10KH	100K
t _{PD} Variation vs. Temp (ps/°C)	7.0	4.0	0.2
t _{PD} Variation vs. Supply (ps/V)	80	0	0
ΔV _{OH} /ΔT (mV/°C)	1.50	1.50	0.06
$\Delta V_{OL}/\Delta T \text{ (mV/°C)}$	0.75	0.60	0.10
$\Delta V_{BB} / \Delta T \text{ (mV/°C)}$	1.20	1.20	0.08
$\Delta V_{OH} / \Delta V_{EE}$ (mV/V)	30	20	0
$\Delta V_{OL} / \Delta V_{EE}$ (mV/V)	320	50	0
$\Delta V_{BB}/\Delta V_{EE}$ (mV/V)	190	25	0

Figure 5.4. Effects of Temperature and Supply Variations; DC Tracking Rates for 10K, 10KH and 100K Circuits

ECL Products

LIMITATIONS OF THE REAL WORLD

Logic functions implemented in the real world must take into account that interconnection wires do not transmit a perfect replica of a theoretical signal, but instead add signal reflections and noise that can cause a system to malfunction. The degree to which noise and reflections will affect a system depends on the speed of the signal being transmitted and the distance the signal has to travel.

The maximum duration of noise or reflections that can be produced on a piece of wire is related to its length, varying between 3 to 4ns/ft of length, depending on the type of insulation used. Therefore, a flip-flop with a minimum setup time of 10ns can be used with interconnections of up to ${}^{19}\!_{4}$ = 2.4 ft. long without much worry while a flip-flop with a minimum setup time of 2ns may experience problems with wires greater than ${}^{2}\!_{4}$ = ${}^{1}\!_{2}$ ft. long.

Simple transmission line concepts allow waveform reflections to be predicted with great accuracy and provides an easy way to look at high-speed system wiring.

SIGNAL TRANSMISSION

Figure 6.1 shows a fixed voltage source, V, connected to a load, R, through a switch and a pair of wires of length x. When the switch is closed, the voltage does not immediately appear across the load. Instead, the voltage propagates from source to load with a finite velocity. Assuming the lines connecting the source to the load have a uniform cross section, the propagation velocity is given by

$$5v = \frac{1}{\sqrt{\left(\frac{dL}{dx}\right)\left(\frac{dC}{dx}\right)}}$$
 Eq. 6.

1

where L and C are the inductance and capacitance, respectively, of both lines. It turns out that even though L and C each depend on geometry, the propagation velocity itself is not dependent on geometry. When a geometry is reduced, L decreases and C increases such that the product, LC, is relatively independent of geometry. Therefore, the propagation velocity of a wave is determined more by the dielectric constant of the material and less by the geometry. The reciprocal of the propagation velocity is the "delay per unit length," usually referred to as the "propagation delay."

Chapter 6

Transmission Lines

$$p_{D} = \sqrt{\left(\frac{dL}{dx}\right)\left(\frac{dC}{dx}\right)}$$
 Eq. 6.2

tı

Figures 6.2a and b show the distribution of the voltage along the line at times $t_1 = x_1/v$ and $t_2 = x_2/v$. At t_1 , the line voltage is V from x = 0 to $x = x_1$ and is zero for $x > x_1$. The voltage travels to the right with a velocity v so that at time $t_2 > t_1$ the voltage travels down the line, it is accompanied by a current which charges the capacitance of the line to voltage V. As the current moves a distance dx, the additional capacitance that is charged to voltage V is Cd_x. The charge required to accomplish this is dQ = VCd_x. Therefore,

Ea. 6.3

$$I = \frac{dQ}{dt} = VC\frac{dx}{dt} = VCv = VC\frac{1}{\sqrt{LC}}$$
$$= V\sqrt{\frac{C}{L}} = \frac{V}{Z_{O}}$$

The parameter $Z_0 = \sqrt{(L/C)}$ is called the "characteristic impedance" of the line.

The current, I, in Equation 6.3 above is the magnitude of current flowing from x = 0 up to the point where the voltage front is located. To the right of the voltage front the current is 0. I is positive when current flows to the right on the upper wire of Figure 6.1 and to the left on the lower wire of Figure 6.1.

Let I_X and V_X represent the current and voltage as a function of line distance, x. When the switch closes, a front of voltage, V_X moves to the right on the line with a velocity, v. A current front, I_X , accompanies V_X . The distribution of current on the line at the times t_1 and t_2 is shown in Figure 6.2c and d. The voltage and current on the line, up to their respective fronts, is given by

$$\frac{V_X}{I_X} = \frac{V}{I} = Z_O = \sqrt{\frac{L}{C}} \qquad Eq. 6.4$$

If the locations of source and load in Figure 6.1 were interchanged, then at the closing of the switch a voltage and current front would start moving toward the left. Using the same sign convention as above, this voltage and current is given by

$$\frac{V_X}{I_X} = -Z_O = -\sqrt{\frac{L}{C}}$$
 Eq. 6.5

The inductance and capacitance of a line can be determined from Equations 6.2 and 6.4

when the propagation delay, line length and line impedance are known. For a length i and delay T, d = T/i. And

$$L = d(Z_0) \qquad \qquad C = \frac{d}{Z_0}$$

THE CHARACTERISTIC IMPEDANCE

The characteristic impedance $Z_O = \sqrt{L/C}$ is a function of the geometry of the cross section of the line. The cross sections of three common lines are shown in Figure 6.3, with the expression for their respective capacitances given below each diagram. Since C increases and L decreases with reduced spacing, Z_O will decrease with reduced between the two parallel wires in Figure 6.3c is reduced. A dielectric introduced between the wires will increase C while L remains unchanged, again decreasing Z_O . (However, the propagation velocity is also reduced.)

While the impedance of the coaxial cable in Figure 6.3a depends on the logarithm of the dimension ratio, the logarithm function varies so slowly with changes of its argument that it is generally not feasible to make very large changes in Z_O by changes in dimension. When attenuation of the line results principally from ohmic losses in the conductors, the loss for a fixed D is a minimum for D/d = 3.6. With D/d = 3.6, using a relative dielectric constant of 2.3, $Z_O = 51\Omega$. Most commercially available coaxial lines have impedances under 100 Ω . Parallel-wire lines may have impedances up to several hundred ohms.

REFLECTIONS

Usually a wave incident on a discontinuity is partly reflected and partly transmitted. Any change in characteristic impedance encountered along a transmission line behaves like a discontinuity. This is due to the fact that Ohm's Law, V = IR, must be satisfied at all times at all points along the line. Rearranging Ohm's Law to R = V/1, if R₁ = R₂ then V₁/1, = V₂/1₂, where R is the impedance encountered along the line and V and I are the voltage and current fronts travelling down the line. Therefore, a reflected voltage and current front will develop such that V₁/1, will equal V₂/1₂.

At the moment the switch in Figure 6.4 closes, the voltage source (assumed to have zero internal impedance) applies a voltage V to the line and delivers a current V/Z_Q (since the impedance seen by the source looking into the line is the characteristic impedance Z_Q). If the line is infinitely long so that the fronts of voltage and current never encounter a discontinuity, the fronts would continue indefinitely and there would be a constant impedance Z_Q looking into the line.

If the line is not infinitely long, and a resistor $R_L = Z_O$ is bridged across the line to ground, the bridge would look like an infinite extension of the line. Then, when the switch closes, a front of voltage V and current V/ Z_O would travel down the line to the right. After a

March 1986

Figure 6.5. Transmission Line With Source Impedance, R_S and $Z_O \neq R_L$

time, t = /v, the fronts will have reached the bridge and from that time on the voltage across the line at any position, as well as the voltage across the bridge, will be V while the current at all points on the line and in the bridge will be V/Z_O . In other words, the fronts reach termination and nothing further hap-

Figure 6.4. Transmission Line Model

If the bridge resistor R_L does not equal Z_O , a discontinuity exists. When the fronts arrive at x = they will be related by $V_i/I_i = Z_O$. At x = the impedance is now R_L , and the ratio of voltage to current in the initial wave is not equal to the ratio of voltage to current required by R_L . Therefore another voltage and current wave is created at x = in order to satisfy Ohm's law at this point; i.e. a reflection will develop and start moving to the left. The amplitude and polarity of the reflected fronts will be such that the sum of the incident and reflected voltage and current will be

$$V_i + V_r = V_L$$
 Eq. 6.6

$$l_i + l_r = l_L$$
 Eq. 6.7

Thus,

pens.

$$I_{L} = \frac{V_{L}}{R_{L}} = \frac{V_{i} + V_{r}}{R_{L}}$$
 Eq. 6.8

$$I_i = \frac{V_i}{Z_O}$$
 and $I_r = \frac{-V_r}{Z_O}$ Eqs. 6.9 & 6.10

$$\begin{split} \frac{V_i}{Z_O} &- \frac{V_r}{Z_O} = \frac{V_i + V_r}{R_L} = \frac{V_i}{R_L} + \frac{V_r}{R_L} \\ &= V_i \left(\frac{1}{Z_O} - \frac{1}{R_L} \right) \\ &= V_r \left(\frac{1}{R_L} + \frac{1}{Z_O} \right) \\ o, \\ V_r &= V_i \left(\frac{R_L - Z_O}{R_L + Z_O} \right) = \rho V_i \quad \text{Eq. 6.11} \end{split}$$

and

Solving for Vr,

$$I_r = \frac{-V_r}{Z_O} = \frac{-\rho_L V_i}{Z_O}$$
 Eq. 6.12

Where the parameter $\rho_{\rm L}$ is the ''reflection coefficient' at the load end of the line.

Since

$$V_L = V_i + V_r$$
 Eq. 6.13 then

$$V_{\rm L} = V_{\rm i} (1 + \rho_{\rm L})$$
 Eq. 6.14

 V_L can also be determined without ρ . Using Equation 6.11 above,

$$1 + \rho_{L} = 1 + \frac{R_{L} - Z_{O}}{R_{L} + Z_{O}} = 2 \left(\frac{R_{L}}{R_{L} + Z_{O}} \right)$$

so
$$V_{L} = 2 \left(\frac{R_{L}}{R_{L} + Z_{O}} \right) V_{i} \qquad \text{Eq. 6.15}$$

A typical situation, where the load is not equal to Z_O , is shown in Figure 6.5. A line with impedance Z_O is terminated at the receiving end by $R_L=Z_O$. The source has an impedance $R_S=Z_O$. Let a voltage, V_L , of amplitude V be applied at t=0. The input to the line appears to be a resistance Z_O , so at t=0 + the voltage step at x=0 is

$$V'_{i} = \left(\frac{Z_{O}}{R_{S} + Z_{O}}\right) V_{i} \qquad \qquad \text{Eq. 6.16}$$

 V_i' travels down the line to the receiving end, where the load would dissipate the entire front and no reflections would occur if $R_L = Z_O$. However, a reflection will develop in this example since $R_L \neq Z_O$. This reflection will again be reflected at the line input, with reflections continuing back and forth. Each time a reflection arrives at the source or receiving ends of the line, its front will be smaller than the incident front so that eventually a steady-state will be established. In the special cases where the reflection coefficients are +1 or -1, excluding the effect of attenuation, a steady-state will theoretically never be attained.

Figure 6.6 shows the effect of the ratio of R_L to Z_O. In Figure 6.6a, R_L > Z_O and a positive voltage is reflected back to the source. To the left of V_r the current flowing to the right is I_i. To the right of V_r the net current flowing to the right is I_i, – I_r, a net decrease in current. In Figure 6.6b, R_L < Z_O and a negative voltage is reflected back to the source. To the left of V_r the current flowing to the right is again I_i. But to the right of V_r the net current flowing to the right is I_i + I_r, a net increase in current.

MULTIPLE REFLECTIONS

The reflection coefficient at the source determines the response to a voltage front reflected back to the source. From Equation 6.11, the reflection coefficient is

If the source impedance and line impedance match, the reflected wave will not be reflected back to the load and the voltage and current on the line will be stable with the values given in Equations 6.6 and 6.7. But, if neither the source or load impedance matches the line impedance, multiple reflections will occur.

In the presence of multiple reflections, keeping track of the waves on the line and the net voltages and currents at the ends can be very tedious. A systematic method has been de-March 1986

4-16

veloped to make the job much more convenient. This method combines magnitude, polarity and time into a graph called a lattice diagram. A lattice diagram for the line conditions of Figure 6.7a is shown in Figure 6.8. The vertical lines represent the discontinuities at the ends of the line. A time scale is marked off on each line in increments of 2T, starting at t(o) for V_S and T for V_T. The diagonal lines indicate the voltages and currents travelling between the ends of the line.

The reflection coefficient of the unterminated end of the line is +1. Successive reflections tend toward steady-state of zero line current and a line voltage equal to the source voltage. (If the unterminated end of the line were shorted to ground, the reflection coefficient would be -1 and successive reflections would tend toward steady-state of zero voltage and a line current determined by the source voltage and resistance.) A negative coefficient of reflection always reflects voltage in the opposite polarity. A positive coefficient of reflection reflects voltage in the same polarity.

At t = 0, the voltage source switches from 0V to 0.9V. Due to the voltage divider action of R_S and Z_O , the voltage at V_S is:

$$V_{\rm S} = V_{\rm STEP} \left(\frac{Z_{\rm O}}{Z_{\rm O} + R_{\rm S}} \right) = 1V$$
$$= \left(\frac{93}{118} \right) = 0.79V \qquad \text{Eq. 6.18}$$

The voltages and currents at each point on the lattice diagram are determined by summing all the voltages and currents arriving at and leaving from the point. The process continues until the voltage at the end of the line approaches the new steady-state voltage, i.e., 1.0V in this example. Figure 6.7b illustrates the extended ringing when the source, R_S, is reduced to 13 Ω from 25 Ω .

A shorted line, with the reflection coefficient at the source end of the line negative also, is shown in Figure 6.9. Graph 6.9a shows the result when the input step function has a pulse width much longer than the line delay. In this circumstance the reflections constitute a train of positive pulses. Graph 6.9b shows the result when the input step function has a pulse width shorter than the line delay. In this circumstance the reflections constitute a train of positive pulses. Figure 6.9c shows a shorted line for an input pulse duration >> line delay when the source, $R_{\rm S}$, and the load, $Z_{\rm O}$, are equal (50 Ω in this case).

ECL Products

PC BOARD INTERCONNECTIONS

Often multilayer PC boards, as shown in Figure 7.1, are used. Interconnections are implemented on one or more layers, with a separate laver (often more) utilized as a ground "plane". The ground plane is a continuous sheet of copper, and the impedance of the ground connection thus becomes so low that the signal appears almost entirely on the signal wire. Therefore, this is a very effective way to reduce ground noise.

The characteristic impedance of a wire over a ground plane is:

$$Z_{\rm C} = \left(\frac{60}{\sqrt{E_{\rm r}}}\right) \ln \left(\frac{4h}{d}\right) \qquad \text{Eq. 7.1}$$

where d = wire diameter

h = distance from ground to wire center.

Two common types of PC boards are Microstrip, shown in Figure 7.2, and Stripline, shown in Figure 7.3. Of the two, Microstrip offers easier fabrication and faster signal transmission but complex designs with high packing density will require more design effort. Stripline, providing more interconnect layers, more easily facilitates a high packing density by providing shorter signal paths.

The characteristic impedance of Microstrip, derived from Equation 7.1 above, is given by the following equation:

$$Z_{C} = \frac{87\Omega}{\sqrt{E_{r} + 1.41}} \ln \left(\frac{5.98e}{h + 0.8w}\right)$$

The parameters e, h, and w are defined in Figure 7.2. Er is the relative dielectric constant of the insulating material.

From Equation 6.2, the propagation delay is a property of the dielectric material rather than line width or spacing, and

$$t_{PD} = 1.016\sqrt{E_r} \text{ ns/ft.}$$
 Eq. 7.3

where 1.016 is the reciprocal of the velocity of light in free space. The effective dielectric constant can be determined by measuring the propagation delay per unit of length and using Equation 7.3 above.

The characteristic impedance of a Microstrip line, printed in copper on glass-epoxy, is given as a function of dielectric thickness and trace width in Figure 7.4.

Chapter 7 Interconnections

- 24

n

Figure 7.4. Impedance and Capacitance of Microstrip for Various Trace Widths, Printed in Copper on G-10 Epoxy

10 20

30 40 50 60 70 80 90 100 110

OP02101S

TRACE WIDTH (MILS)

March 1986

10 20 30 40 50 60 70 80 90 100 110

TRACE WIDTH (MILS)

20

۸

When the signal line is enclosed between two ground planes, as in Figure 7.3, the board material determines the dielectric constant. G-10 epoxy Stripline boards have a typical propagation delay of 2.26ns/ft. Using Equation 7.3, the characteristic impedance of Stripline is Enc. 7.4

$$Z_{\rm C} = \left(\frac{60}{\sqrt{E_{\rm r}}}\right) \ln \left[\frac{4e}{0.67\pi(0.8 \text{ w} + \text{h})}\right]$$

The characteristic impedance of Stripline, printed in copper on glass-filled epoxy, is given as a function of dielectric thickness and trace width in Figure 7.5.

ECL CIRCUIT INTERCONNECTIONS

Consider the connection of the output of a driving ECL gate to the input of a driven gate. The emitter-follower driver acts like a source. It has a low output impedance (< 10Ω including the package pin and internal connection). The characteristic impedance of high-speed PC board interconnections is usually in the range of 40 to 60Ω , depending on line width and insulating material used. The line load consists of the input impedance of the gates connected on the line, and any termination resistors that may be present. The input resistance (several $k\Omega$) of gates connected on the line can be ignored because input capacitance, usually several pF, outweighs the effects of input resistance.

A model for the interconnection between ECL gates can be represented by a line of one-way delay, t_D , with characteristic impedance, Z_O . The sending end termination is $R_S << Z_O$ and the receiving endtermination is $R_L >> Z_O$.

As discussed in the previous chapter on transmission line theory, any change in characteristic impedance encountered along a transmission line behaves like a discontinuity and causes reflections to occur.

LINE TERMINATION

Let's consider the case where a transmission line has no termination (an "open line"). At t = 0, a voltage front, V, starts at x = 0 and travels down the line (Figure 7.6). At $t = t_D$, the front reaches x = 1 and is reflected with a reflection coefficient of

$$\rho_{\rm L} = \frac{{\rm R}_{\rm L} - {\rm Z}_{\rm O}}{{\rm R}_{\rm L} + {\rm Z}_{\rm O}} = 1$$
Eq. 7.5

since the impedance of the load is very high with respect to Z_0 . At $t = 2t_D$, the reflected front will reach x = 0 and be reflected by with a reflection coefficient of

$$\rho_{\rm S} = \frac{{\rm R}_{\rm S} - {\rm Z}_{\rm O}}{{\rm R}_{\rm S} + {\rm Z}_{\rm O}} = -1$$
 Eq. 7.6

because R_S is very low with respect to Z_O . The negative reflection results in a front at x = 1 at time $t = 3t_D$ that travels in the opposite direction to the initial front. Positive reflections cause the signal to "overshoot" the initial voltage level, and negative reflections cause the signal to "undershoot" the initial voltage level. When occuring together, these reflections cause a condition known as "ringing."

If the signal line is short, the initial signal will still be rising at $t = t_D$ and the reflection will become part of the rising edge. If the signal line is long, the rise of the signal will be completed before $t - t_D$ and the reflections will act like overshoot and undershoot. Therefore, unterminated lines have a maximum recommended length

$$I_{max} \leq \frac{t_R}{2 t_{PD}}$$
 Eq. 7.7

where t_R = rise time t_{PD} = propagation delay/unit length.

There are two configurations generally used to terminate transmission lines: (1) terminating the line at the receiving end, which is called "parallel termination;" and (2) driving the line through a resistor inserted at the

Figure 7.7. Termination Configurations

output of the gate, which is called "series termination." These are shown in Figure 7.7.

Parallel termination is used for highest speed and for driving distributed loads. Since Signetics' ECL devices do not have internal pull-down resistors on the outputs, the terminating resistor must be returned to a voltage more negative than V_{OL} , commonly –2V. No additional pull-down resistors are required at the output of the driving gate.

The configuration shown in Figure 7.7b allows parallel termination without the use of a separate termination supply. In this configuration, a pair of resistors is connected in series between V_{CC} and the V_{EE} supply. The values of R_1 and R_2 are chosen to provide the Thevenin equivalent of the single resistor to -2V shown in Figure 7.7a.

There is a trade-off between the two parallel termination configurations. While the latter eliminates the need for a separate V_T supply, its average power dissipation is close to 10 times the power dissipation of the former configuration. Decoupling capacitors are required between the supply and ground for both configurations.

Signetics' ECL output transistors are designed to drive low impedance loads with a maximum output current of 50mA. Using a 50 Ω load returned to -2V gives nominal output levels of -0.955V at 20.9mA and -1.705V at 5.9mA. These output levels will vary with load current due to the fact that the transistor's output resistance is nonlinear with load current (the V_{BE} of the emitter-follower is logarithmic with output current). The effective source resistance, using a 50 Ω load, is approximately 6Ω in the HIGH state and 8Ω in the LOW state.

The circuit shown in Figure 7.8 can be used to estimate quiescent output levels at various loads. The linearized portion of the output characteristic is given by

 V_{OH} : $V_{OUT} = -850 \text{mV} - (6\Omega) (I_{OUT} \text{ mA})$

 V_{OL} : $V_{OUT} = -1670 \text{mV} - (8\Omega) (I_{OUT} \text{ mA})$

Since ECL outputs can drive two or more lines in parallel (provided the load does not cause the maximum rated current to be exceeded), the effect of load configurations on noise margin should be considered. Using Figure 7.8, two parallel 75 Ω terminations provide V_{OH} = -1.00V and V_{OL} = -1.72V, approximately. A single 50 Ω termination, provides V_{OH} = -0.96V and V_{OL} = -1.73V, approximately. The single 50 Ω termination, therefore, provides 35mV less margin for V_{OH} and 10mV more margin for V_{OL} = -1.77V and V_{OL} = -1.75V, 110mV less margin for V_{OH} and 10mV more margin for V_{OL}.

When using series termination, a resistor value should be selected such that the driver source resistance plus the series resistor equals the line impedance. The net series resistance and the line impedance act like a voltage divider and cause an incident wave of half amplitude to travel down the line. The coefficient of reflection of an open line is + 1, so when the incident signal arrives at the unterminated end of the line it will double and be restored to its full amplitude. If the combi-

nation of the series resistor and drive source resistance equals the line impedance, the reflected wave will be absorbed without further reflection, eliminating any possibility of ringing. The ability to absorb reflected waves makes series termination good for interconnection configurations having impedance discontinuities, such as backplane wiring

A disadvantage of series termination is that driven inputs must be near the end of the line to avoid receiving a 2-step signal. An input will receive a full amplitude signal with a continuous edge provided the distance, I, to the open end of the line is within the recommended length for unterminated lines (Equation 7.7).

MATCHED LONG LINES

The output signal of an ECL gate with a 50Ω load is shown in Figure 7.10. An applied input voltage, V_{IN}, has a corresponding output voltage, V_S, characterized by a propagation time, t_P, and a transition time t_T.

A line having characteristic impedance of 50Ω , terminated by a resistor having the same value, behaves like a pure 50Ω resistor and, therefore, can be used to load the gate without affecting its behavior (Figure 7.11). The output voltage V_S of the gate has the same t_P and t_T as in Figure 7.10. V_S propagates along the line until it reaches the load resistor. The voltage across the 50Ω load tesistor will be identical to V_S after a time equal to the propagation delay of the line.

MISMATCHED LONG LINES

If the load terminating the line is not a 50Ω resistor, as shown in Figure 7.12, the output voltage remains the same as it was in the preceding case and is transmitted over the line in the same manner. However, the voltage will be deformed by the load voltage, V_L , when it arrives at the load and will not have the same form as V_S . If the load is capacitive, then the edge t_{T2} will be slower than the edge at the gate output t_{T1} , and an additional delay will be added to t_D . Also, because the resistive portion of the load differs from 50Ω , the amplitude of V_1 will be different.

The effect of a load can be calculated from the diagram shown in Figure 7.13. The difference between V_L and the incident wave, V_S , will be reflected toward the gate causing a perturbation in the voltage at time $2t_D$.

SHORT LINES

If the line is short; i.e., if t_D is less than or equal to t_T , then it is difficult to separate V_S and V_L at the line terminals. Therefore, it is preferable in this case to discard the transmission line concept and work instead from the equivalent diagram shown in Figure 7.14.

TCOSSFOR

MULTIPLE LINES

Figure 7.15 shows an ECL circuit driving multiple lines. The signal from gate G_1 is distributed successively to gates G_2 , G_3 and to the group of gates, G_4 through G_6 . A matching resistor, R_T , is placed as far as possible down the line to minimize the length, L_1 , of "non-terminated" line.

The effect of the capacitance of this nonterminated, and therefore unmatched, portion is reduced by giving it a high characteristic impedance, Z₁. The reflections generated by the input capacitances of gates G₄ through G₆, and the unmatched line segments that connect them to the main line, should be limited to 15% or 20% of the amplitude of the signal to maintain proper noise immunity between the gates. This factor is usually the main limitation to fanout.

The product ($Z_C \times C_T$), where C_T is the sum of the capacitances loading the line, should not exceed the transition time, t_T , of the signal driving the line. Therefore, it is the input capacitance of the other gates that causes the limitation to fanout. Fanout is typically 3

gates, but can exceed 8 gates if the system is well designed.

It is possible to branch a 50Ω line into two 100Ω lines, or three 150Ω lines, as shown in Figure 7.16. In this configuration, each line is terminated by a load corresponding to its characteristic impedance.

BUS LINES

Bidirectional buses for ECL can be constructed by interconnecting gate outputs and inputs along a matched line terminated at both ends. Each gate output will then appear to be loaded by two lines in parallel; i.e., by $Z_C/2$. In this configuration, a signal can be propagated from one gate to another gate only if the outputs of the non-active gates are in the LOW state.

Bus drivers are available to provide optimum results under these conditions. These devices can generally provide more current and voltage that ordinary gates, and with less sharp edges, to minimize reflections.

Chapter 8 Power Supplies

ECL Products

POWER SUPPLY CONFIGURATIONS

The most common power supply network used in ECL systems consists of three distribution lines (Figure 8.1):

- 1. the overall V_{CC} line;
- 2. the termination voltage, V_T , line; and

3. the switching-state voltage, V_{EE}, line.

Two different voltage sources are used to supply V_T and V_{EE}. V_T is on the order of –2V, and V_{EE} is on the order of –4.5V to –5.2V, depending on the family. Thus, the network consists of two interleaved current loops, each with different functions.

The V_{EE} loop supplies the current for the biasing networks, the switching stages, and for some of the internal circuit loads. These currents are relatively constant. As explained in the preceding chapter, gate function is insensitive to the value of V_{EE}. The V_{EE} power supply receives almost no high-frequency current components when the gates switch.

The V_T loop supplies the current for the gate output loads. This current is affected by sudden transients. Using a 50Ω output resistor, this current changes from 8mA to 22mA within one or two nanoseconds whenever the gate output switches.

The V_{CC} connection, which serves as a reference potential for the logic signals, receives the sum total of these two currents simultaneously (one with a strong continuous component and the other with a strong alternating component).

STATIC PARASITIC EFFECTS

The power density distributed on boards implemented in ECL can exceed $10W/cm^2$. This means that currents passing through the board can reach $2A/cm^2$. These currents can cause ohmic voltage drops in the distribution lines, in connectors, in printed circuit traces, and even in the package pins themselves. Therefore, all circuits do not receive exactly the same V_{CC} voltage.

A difference between supply voltages can cause a reduction in noise immunity. For

example, if a 20mV loss of noise immunity is acceptable, then the line must represent less than 0.02V/2A = 0.01 Ω . A resistance this low requires a large cross-section for V_{CC} connections.

The effect of V_{CC} on noise immunity is four times larger than that of V_{EE} for 10K ECL, and approximately twenty times larger (due to the bias regulator) for 100K ECL. Consequently, a larger distribution resistance is tolerated by V_{EE}.

The effect of V_T on output levels and noise immunity depends on the relationship between the load resistances (50 Ω) and the gate output resistance (6 to 12 Ω). It turns out, therefore, that V_T is just as tolerant of voltage drops as V_{EE} is.

Depending on whether a system consists primarily of simple circuits (with many outputs per gate) or of complex circuits (with many gates per output), either the V_T line or the V_{EE} line will be the more critical from the point of view of static voltage drops. Power supplies that provide both V_T and V_{EE} also reduce static noise immunity as a function of loading. This should be kept in mind when designing a system.

In small systems using one power supply it is advisable that the power supply and its regulator be connected by four separate lines: two to carry the input current, and two for remote voltage sensing. This technique, known as a "Kelvin connection," is shown in Figure 8.2.

When several sub-systems have independent power supplies, a power supply connection, as shown in Figure 8.3b, prevents current passing through the link between the V_{CC} lines and guarantees the supplies will provide equal voltages.

DYNAMIC PARASITIC EFFECTS

Figure 8.4 shows the effect of distance between the decoupling capacitor and output pin of an ECL circuit. The distance, x, acts like an inductance in series with the circuit and limits the effectiveness of the decoupling regardless of the value of the capacitor. Too large a distance between the decoupling capacitor and output pin could allow saturation of the output transistor and create a significant delay in response.

Two methods of decoupling are generally used. One consists of placing a decoupling capacitor at a distance of less than one centimeter from each 100K ECL package, and at a distance of less than five centimeters from each 10K ECL package (as shown in Figure 8.4b). These capacitors should, of course, be suitable for very high-frequency decoupling — several tens of nanofarads in value and constructed with high-quality dielectric material with low absorbtion characteristics.

In the second method, shown in Figure 8.4c, a long duration of reflection is acceptable because the reflection's amplitude is reduced by the power distribution having a very low characteristic impedance, thus providing an equivalent low inductance. This is obtained by means of large capacitors located near one another. In this case, the best solution is to use a multi-layer PC board with separate parallel planes for ground and V_{TT}. (If using a single- or dual-layer PC board, capacitance rails can be placed vertically on the PC board.) The impedance of the two parallel plane conductors can be calculated from:

where:

- h = the thickness of the dielectric between the conductors
- d = the width of the smaller conductor
- t = the relative dielectric constant of the insulating material
- $Z_{\rm C}$ = the characteristic impedance (expressed in Ω)

With $Z_C < 1 \Omega$, currents on the order of 20mA will cause voltage fluctuations of less than 20mV on the power supply lines, which is acceptable. Having Z_C too high risks interaction between two circuits, even in the absence of a signal on their inputs, due to fluctuations of voltage on the V_{CC} line. This in turn creates a risk of oscillation. On isolated circuits, excessively inductive power supplies can cause coupling to occur between inputs and outputs. The resulting oscillations can, over the longterm, destroy some junctions in the rigulator.

ECL Products

Integrated circuits implemented on silicon chips must generally be mounted in a package to be used. This package, located between the circuit and its environment, imposes its own characteristics, or modifies those of the chip. In ECL, this effect is especially important.

ROLE OF THE PACKAGE

First of all, the silicon chip is very small, mechanically fragile, and difficult to handle. It can be subject to corrosion, especially at the level of its connections to the outside world (metallic interfaces).

Finally, the chip is a major source of heat during operation. This heat must be removed efficiently to avoid the risk of rapid destruction of the chip due to excessive temperatures.

In view of these problems, the package provides greater ease of handling, and mechanical protection for the chip against shocks, scratches, and corrosive atmospheres. It also makes connections to the circuit easier, by connecting the fragile, microscopic areas on the silicon to sturdy metallic pins, which are accessible and easy to solder. This also makes circuit testing easier. On the thermal level, the package conducts the heat of the chip toward a larger surface area, and also makes chip-cooling easier to control.

THERMAL BEHAVIOR OF THE PACKAGE

The silicon chip acts as a heat generator connected to a heat media (the ambient air) by means of an environment consisting of different substances that present a resistance (depending on their type and size) to the circulation of the thermal flow.

The temperature of the chip is an important parameter, for both the electrical performance of the circuit and its reliability. It should be noted that the lifetime of a component is reduced by half for each 10°C increase in temperature. This is true for all logic families; but ECL circuits require more attention because their power level is generally higher.

The calculation of thermal resistances depends on several factors.

The chip acts as a heat generator which, by means of the Joule effect, provides a power W which it receives in electrical form from its power supplies. This power W has approxi-

March 1986

Chapter 9 Packages and Thermal Constraints

mately the value of the product $V_{EE} \times I_{EE}$, to which must be added the power dissipated in the output transistors: $(V_0 \times I_0)$. The power associated with the inputs can generally be ignored (see Figure 9.1).

In order for this heat to be removed, the temperature of the chip must increase above that of the surrounding environment. The ratio between the difference in temperature (once it has stabilized) and the amount of heat dissipated is termed the "thermal resistance", θ .

Each element in the path of the thermal flow thus presents resistance, and the entire set of resistances is associated, in series or in parallel, to form the overall thermal resistance.

Thus, the package shown schematically in Figure 9.2 behaves thermally in a way that is analogous to the thermal behavior of the network shown in Figure 9.3. The characteristic temperatures are T_1 (the temperature of the junctions on the chip), T_3 (the temperature of the package wall), and T_5 (the initial temperature of the cooling air).

The thermal resistances to be taken into consideration belong to three types:

- Conduction thermal resistances in solids: such as the silicon of the chip, the ceramic or plastic of the package, the metal of the pins, the glass-epoxy plane and the copper traces of which the printed-circuit board consists, etc.;
- Convection thermal resistances related to a fluid medium: exchanges between the package wall and the ambient air, and (if applicable) between the wall of a tube and the cooling liquid, heat-transport phenomena within fluids in motion (ventilated air);
- 3) Radiation thermal resistances related to the heated surfaces. Some of these resistances are determined by the circuit manufacturer, who generally specifies the thermal resistance θ_{JC} between the internal heat-source (junctions of integrated circuits) and the package wall. On the other hand, the rest of these resistances depend on the user, who defines the mechanical assembly (part of the heat being dissipated via connections) and the ventilation conditions.

Thermal resistances can be calculated based on the specific thermal conductivities of the materials used.

Good thermal conductors, such as gold, aluminum, and copper, have conductivities from 200 to 400W/cm/°C; steel and alumina (of which ordinary packages are made) have lower conductivities, e.g., 15 to 30W/cm/°C. Still air and plastic substances (epoxy, etc.) are bad thermal conductors, typically having conductivities of less than 0.2W/cm/°C.

The standard method of removing heat from the package to the ambient environment is a mixture of convection and radiation, for which the theoretical analysis is very difficult. The power emitted by radiation is proportional to the surface area of the package, and to the fourth power of the absolute temperature of

the emitting body (Stefan's Law), and depends greatly on the color of the package and on the condition of its surface.

Surfaces that are matte black in color allow better emission. However, within a system, this phenomenon is very limited, because the energy radiated by a package is essentially re-absorbed by the packages surrounding it, and vice-versa. Overall, this phenomenon does not contribute toward cooling the system.

Therefore, the principal phenomenon is convection, whether natural (air movement caused by the difference in density between the air heated by the package and the surrounding air) or forced (by a fan with a known speed).

Thermal resistance decreases as the air-flow increases, and as the surface area of the package exposed to the flow increases. ECL packages are generally specified for a transverse air-flow of 2.5 meters per second.

For low air-flow speeds (those less than one m/s, or natural convection), thermal resistance is not very well defined, and depends greatly on the environment and on the measurement conditions, inasmuch as the actual air-speed at the level of the package wall can be non-homogeneous, or very different from the measured speed.

Figure 9.4 shows, for a flat ECL 100K package, an example of the variation of the junction-to-ambient-air thermal resistance as a function of the air-flow rate. Therefore, it is important to ensure good ventilation of the circuits, so as to be certain of the measurement conditions and of the operation of the circuits.

It should be noted that in very dense ECL systems containing many LSI packages sideby-side, some manufacturers use a cooling liquid (water or freon), because air-cooling is not sufficient to maintain a reasonable temperature at the junction area.

PRINCIPAL ECL PACKAGES

The ECL logic families, and memories, are available in conventional plastic or ceramic dual-in-line packages (DIPs). ECL 10K comes in 16-pin packages, and ECL 100K in 24-pin packages. The thermal resistance of the 16-pin package is approximately 50°C/W, and that of the 24-pin package is approximately 35°C/W, under normal utilization conditions (transverse air flow of 2.5m/s). In the absence of ventilation, these values can double or triple, which would be harmful to the circuits. The advantage of these packages is their easy insertion into boards, which makes them compatible with the utilization of auto-

matic-insertion equipment. The disadvantage is that electrical performance of extremely fast circuits, such as ECL 100K, is penalized by 200 to 400ps.

For these reasons, another type of package is preferred by some customers: the "flat pack." ECL 100K is available in a flat, square, 4×6 -pin package, which has a thermal resistance of 30°C/W under normal conditions. Because of the smaller size of this package, the propagation time through the pins is shorter (on the order of 50ps), and parasitic inductances are smaller. The ability to place the packages closer together also makes it possible to reduce the length (and thus the propagation time) of connections between packages. However, these packages are more delicate, requiring greater care in handling and mounting, and are therefore more expensive to use.

When even denser interconnections are necessary, it is also possible to use ECL circuits in micropackages ('Imin-DIP'') or in leadless chip-carriers. This approach can cause problems for circuits having high power dissipation, but many 10K device types can be put into the SO package and are being offered as customer demand dictates. A ceramic J-lead chip-carrier package has been developed for 100K devices and will be available in the very near future. Contact your Field Applications Engineer or salesman for information.

In the case of highly complex integrated circuits (such as gate arrays), the amount of power dissipation (several watts) and the number of pins (50 to 200) require special attention. Special packages have been designed to solve these two problems, and several types can be utilized, depending on whether the cooling is by air or by a liquid, and depending on the method selected for placing them on the printed circuit board.

Chapter 10 Interfacing ECL Families

ECL Products

ECL is sometimes used in a system only in areas in which speed is critical. The rest of the system is implemented in slower technologies. Therefore, it is necessary to know how to interface between ECL circuits and other circuits. Precautions are also necessary when ECL circuits belonging to different families are connected to one another; and even when circuits in the same family, but located on different cards or in different sub-systems, are connected. This section provides several recommendations for implementing these interfaces.

INTERFACING 10K ECL TO 100K ECL

The problems encountered are mainly due to circuit power supplies and to the different behavior of logic levels depending on the temperature. With regard to the power supply, the around for the two circuits should be the same. ECL 100K can operate at -5.2V and specification guarantees over this supply range are given in this data book for each Signetics 100K device. On the other hand, generally speaking, ECL 10K cannot operate at -4.5V. Therefore, two methods can be used. First, one could use two separate V_{EE} power supplies, which would be complicated and expensive; or else one could use a single -5.2V power supply. The latter solution is generally preferred when 100K circuits are in the minority in a system.

The diagrams in Figure 10.1 and Figure 10.2 show that direct 10K/100K coupling is functional throughout the temperature range, even though noise-immunity is reduced (mainly when an ECL 100K circuit controls a 10K circuit at high temperature).

In this case, it is recommended that the supply voltage of the 10K circuit be increased slightly (for example, to -5.5V). A more rigorous approach consists of utilizing a special 100K/10K interface circuit (100175), which has 100K input thresholds and 10K output levels. The "buffer register" function of this circuit also facilitates the asynchronous transfer of data between sub-systems, at different speeds.

INTERFACES BETWEEN ECL BOARDS

By utilizing the conventional interconnection system consisting of wires or ''wrapped'' panels between ECL boards, one risks causing phenomena such as ECL signal reflections at impedance discontinuities, or signal cross-coupling via radiation or by mutual capacitance.

Because the magnitude of these effects increases with the frequencies present in signals transmitted, and therefore with the sharpness of the edges, the simplest solution is to filter the signals as they are output from the boards by utilizing output circuits with

especially slow edges (ECL 10K rather than ECL 100K), or special circuits. The outputs can also be slowed by capacitors on the order of 100pF, but the slopes obtained are not symmetrical (faster on the rise).

A radical solution to this type of problem is to implement the interconnections between boards by means of 50Ω coaxial cables.

This method is used when the connections are fairly few, because of the high cost of this technique (see Figure 10.3).

Good results can also be obtained with twisted-pair wire connections driven by complementary signals. These signals can be provided by most ECL gates.

The symmetrical dual-wire line has a regular characteristic impedance, and emits very little radiation. Therefore, its performance is scarcely worse than that of a coaxial cable. It also has the advantage of allowing the use of more conventional connectors. At the end of the line, a special "line receiver" with differential inputs should be used (see Figure 10.4).

This type of link allows great noise immunity, even when the grounds of the boards do not have exactly the same potential.

If absolutely necessary, ECL 10K signals can be transmitted via flat or ribbon cables provided that the signal and its complement are transmitted simultaneously on adjacent lines, so as to reduce radiation and coupling, and to systematically separate the pairs thus formed by ground lines. Thus, structures are obtained whose characteristic impedance is fairly regular, as indicated in Figure 10.5.

For short connections, a line receiver is not necessary. The characteristic impedance of flat cables is generally indicated by the cable manufacturer, so that the termination resistor can be selected.

All of these precautions become less critical when the links are short. Nevertheless, a signal connection should never be placed as far as several millimeters from a groundplane, or from a connection transmitting the complementary signal. This way most echos and parasitic radiation can be avoided.

INTERFACE TO TTL CIRCUITS

The following remarks pertaining to TTL circuits also apply to all the circuits that are compatible with TTL levels and power supplies (TTL, TTL-LS, TTL-S, NMOS, and 5V CMOS circuits).

In all large systems in which ECL is utilized extensively, there is a negative power supply (V_{EE}) for ECL, and a separate positive power supply (V_{CC}) for TTL. These power supplies share a common ground. Translation circuits must be used to transmit signals between the two groups (see Figure 10.6).

There are two types of translation circuits:

 Unidirectional interfaces, having inputs in one logic family, and outputs in the other. These perform very simple logic functions, as indicated below:

TTL/10K interface: 10124 10K/TTL interface: 10125

TTL/100K interface: 100124 100K/TTL interface: 100125

 Bidirectional interfaces, allowing transmission in both directions, controlled by auxiliary logic signals, to define the direction of transmission and (in some cases) to improve the signal (see Figure 10.7). For example:

TTL 100K interface: 100255

INTERFACE TO CMOS CIRCUITS

Some CMOS circuits require power at 9 to 12V, and have no TTL-compatible levels.

Although direct interfaces with ECL are fairly rare, they are possible by interfacing first via an ECL/TTL translation circuit, and then through a TTL gate with an open-collector output.

This interface is complex to use (see Figure 10.8). Furthermore, if there is no V_{CC} power supply for TTL within the system, it would be wiser to build the interface with discrete components.

SINGLE-SUPPLY TTL INTERFACE

In systems in which a single ECL circuit must be added and interfaced to TTL circuits, it is

possible to avoid having to provide a special power supply for ECL by using the circuit with TTL power supplies.

The necessary level translation is achieved by a differential stage (consisting of discrete components) in the ECL-to-TTL direction, and by a diode-resistor network in the other direction (see Figure 10.9).

ANALOG ECL INTERFACE

High-speed digital signal-processing applications are becoming more and more common. For these purposes, digital-to-analog converters (DACs) and analog-to-digital converters (ADCs) have been developed whose logic is compatible with ECL levels. The ADC converters are the simultaneous parallel conversion type; some of them allow sampling frequencies greater than 50MHz. DAC converters are simpler, utilizing current-source switching controlled by ECL gates.

Chapter 11 Circuit Boards

ECL Products

THERMAL MANAGEMENT

At the board level, local overheating must be avoided. As a general rule, ECL circuit boards are cooled by moving air.

Overheating can be caused by either of two mechanisms:

- The temperature of the air flow increases from the time it enters the system until it leaves, and the circuits located near the output risk reaching excessively high temperatures;
- A component that is taller than the others can screen the flow of air from the other circuits.

Components subjected to overheating suffer a modification of their electrical characteristics. Moreover, their lifetime can be shortened considerably.

The board itself can contribute significantly to the removal of heat from the circuits, if care is taken to place it in close contact (via its edges) with the metallic chassis of the equipment. In some cases, the chassis itself can be cooled by a liquid (water or freon).

BOARD PRECAUTIONS

Generally speaking, the use of sockets is not recommended. On the contrary, circuits should be soldered directly onto the boards. This applies even to prototypes. Doing so avoids problems with oscillations or signal deformations caused by unsuitable connections. When it is absolutely necessary (as in the case of a test board, or of accelerated aging), a connection length less than 6mm should be used.

With regard to accelerated-aging boards (i.e. "burn-in"), it is important that all pins have electrical conditions that reflect normal operation, and that the power supply and environmental conditions respect the *maximum junction temperature* specified. (Somewhat paradoxically, this means cooling of the burn-in chamber, more often it means heating of the chamber!)

It is recommended that specially-designed burn-in chambers be used for ECL circuits because standard chambers risk insufficient temperature and air-flow control.

The section on interconnections explained why careless or semi-accurate implementation could lead to erratic operation and to reduced immunity to system noise. As an example, the use of wired-OR connections causes variations in the static and dynamic characteristics of the outputs connected between them. Because each output carries a smaller average current, it sees its static voltage levels VOH and VOL increase by several tens of millivolts. With regard to dynamic characteristics, the switching gate sees a line loaded by the outputs of other gates. If these gates are located too far from one another for the signal to reach them before it has completed its transition, then multiple echos will occur and the resulting signal will have undesirable oscillations.

Another necessary precaution concerns unused inputs or outputs. All outputs, even those not used, must be connected to V_T via a load resistor. If this precaution is not taken, then (1) the internal voltage drops of the circuit will be affected, significantly affecting the other outputs, and (2) for circuits with fast edges, having complementary outputs, a break in the load symmetry will cause irregular current "calls" on the auxiliary V_{CC}, possibly causing significant perturbations of the shape and duration of the (waveform) edges of the gate.

It is wise to connect all unused inputs to V_T (if they are in the LOW state). This procedure is a must for some circuits, like line receivers or certain memories, which do not have internal pull-down resistors on all their pins. For inputs that must be kept in the HIGH state, a small auxiliary source (on the order of -0.8V) should be used, formed by a diode and a resistor located between V_{CC} and V_T. These inputs can also be connected to a HIGH output of an unused gate. Some circuit inputs may be connected directly to V_{CC}, but this is not generally the case. Use of this method requires prior consultation with the vendor.

Furthermore, very long lines on the board can capture parasitic signals arising from a local electromagnetic field. It is possible to reduce this interference by interposing lines, or zones, connected to ground between the lines, driving the signals over a given distance.

Care should be taken to implement all ground connections (such as the bottom ends of load resistors or of decoupling capacitors, and the shielding of coaxial cables) by means of a short, wide conductor, to limit parasitic inductances. In fact, any loop, even one that appears small, presents an inductance and can radiate a high-frequency signal.

DEVICE PRECAUTIONS

High-speed components require very small dimensions, which limit the breakdown voltages of the transistors, allowing them to be destroyed by relatively small energies. Therefore, it is very important that the limit values for voltages, currents, and power recommended by the vendor be respected, even when the equipment is turned on and off.

In particular, care should be taken not to apply $V_T = -2V$ to the inputs and outputs before V_{EE} is applied.

Likewise, short-circuiting an output directly to V_{EE} or to V_{T} should be avoided.

In systems in which other supply voltages are present (e.g., TTL at +5V), care should be taken not to connect the inputs to these voltages. Unfortunately, this is a frequent mishap when boards are tested or when maintenance is performed, through contact with a screwdriver or with the probes of a measurement device.

ECL Products

TEST PHILOSOPHY

One of the primary concerns when testing ECL devices on a manual or bench setup is the accuracy and repeatability of measurements. The largest contributing factor in this accuracy and repeatability is the ability of the operator to precisely duplicate the amplitude and offset values of the pulse generator

Chapter 12 Manual AC Testing

waveforms every time a new setup is made or when checking for equipment drift.

The procedure outlined in this section provides a method by which an operator can make these pulse generator waveform adjustments consistently identical between test sessions by eliminating as many variables as possible. Note: At this writing, a few digitallycontrolled pulse generators do exist which can automatically provide very repeatable waveforms setups, but these are still quite expensive and are not widely available in the industry. This information is provided for users who are still equipped with the older, analog adjustment-type pulse generators.

User's Guide

TEST FIXTURES

One major variable in manual AC testing is the test fixture. Every test engineer has his own idea of what the ideal test jig should be and it is difficult to say which method is better than another. The thing to keep in mind, however, is eliminating variables. Things like maintaining a continuous 50Ω environment to reduce reflections and therefore reduce waveform anomalies. This includes eliminating a unterminated stubs that are longer than about 1/4", since at ECL speeds a reflection can be generated with sufficient amplitude and phase characteristics to distort the wavefront and reduce measurement accuracy.

Another variable is jig delay or the delay that is added by the test fixture itself over and above that of the DUT (Device Under Test). A jig that cancels the effects of its own internal delay is quite simple to design and build but must be dedicated to one part type or group of part types having their input and output pins located in the same places. This makes fixturing rather expensive. However, certain compromises can be made with results that are completely satisfactory as far as cost effectiveness and test integrity are concerned.

Figure 12.1 shows an example of such a test fixture. The PC Board consists of four layers and incorporates micro-stripline techniques to achieve a consistent 50Ω environment. Jig delay cancellation is accomplished by returning the input signal reference to the sampling scope directly from the DUT input pin under test. Since the length of the PCB trace from the DUT input pin to the reference output connector (see Figure 12.2), and the length of each coax cable from the jig to the sampling scope inputs are also equal, the jig delay is virtually transparent.

The only problem now is that there is an unterminated stub also connected to the DUT output pin which is two or three inches long, causing abberations on the output waveform which may or may not be visible on the scope display, depending on their amplitude and phase relationship to the actual output signal. These abberations may appear as a slight overshoot or undershoot or subtle roll-off of the rising or falling edge. The signal may be grossly distorted or no distortion may be apparent at all except that the measured propagation delay may vary from its true value by a few hundred picoseconds.

This stub could be removed by cutting the trace, but this would prevent the jig from being used for any other device whose input pin is in that particular location. Therefore, a compromise will need to be made. In Figure

Figure 12.3. Trace Used as an Input has Jumper (A) installed but Trace Used as an Output has no Jumper (B), Leaving a Stub (C) of Less Than $\frac{1}{4}$ " Long.

12.3, the input traces have been designed so that a jumper may be installed, if needed, or removed, if not needed, for a given part. With the jumper removed (as in the case of an output pin), the unterminated stub is less than $V_4^{\prime\prime}$ long. Even at 100K ECL speeds this length does not create enough delay in the reflected signal to significantly distort the waveform, i.e., the roundtrip delay in the transition time of the output signal.

With the jumper installed (as in the case of an input pin), the line is now terminated via the scope input, and although there is a short length (less than $\frac{1}{4}$ ") of discontinuity in the 50 Ω microstrip, it is not significantly different in impedance to cause anything but a minor

distortion in the signal that reaches the DUT input pin. Since the input signal's reference to the scope is taken after the jumper, both the scope and the DUT will see the same signal and the DUT itself will tend to ignore these minor abberations at its input.

One other very important thing to remember is to use adequate power supply bypass and filtering capacitance. Because of the extremely fast edge rates associated with ECL, the instantaneous power factors during transition times are almost astronomical. These capacitors need to be placed as close to the DUT power and ground leads as physically possible. Bypass (or decoupling) capacitors should be selected for their integrity at ultrahigh frequencies, i.e., their dielectric absorp-

User's Guide

Table 1. Input Parameters for Manual AC Measurement of ECL Devices at Room Temperature (25°C)

	FAN	AILY
PARAMETER	10K	100K
Amplitude	800mV	740mV
Offset	310mV	310mV
t _R , t _F	2ns	700ps
Rep. Rate	1MHz	1MHz
Duty Cycle	50%	50%

tion characteristics should be as low as possible.

PULSE SOURCE ADJUSTMENTS

As mentioned earlier, the pulse generator waveform adjustments are probably the single biggest variable in ECL AC measurements and also the most difficult to control because of the inability of the operator to accurately repeat exactly the same setup at each test session. The procedure outlined below is suggested in order to eliminate as many of the human and mechanical variables as possible so as to reduce this art closer to the science that it should be.

THE HUMAN FACTOR

In many of today's test labs, most of the sampling scopes that can be found which include built-in digital readout capability which can display the precise value of a signal's amplitude, transition times, and propagation delay, do not have a provision for digitizing its DC offset from ground. Because of the CRT display size, the graticule resolution, and parallax error, the human eye is incapable of consistently resolving the offset measurement to any better than 10 to 20mV. But a difference of even 2 or 3mV in the signal offset will alter the propagation delay measurement of an ECL device by several tens of picoseconds.

The repeatability of this offset measurement can be increased significantly with the use of a few other pieces of standard laboratory equipment, including a high-quality DVM (Digital Volt Meter) with resolution down to at least 1mV.

DC OFFSET MEASUREMENT

To accurately measure the input signal's DC offset using a DVM, a few assumptions have

to be made. First, it is assumed that a squarewave of amplitude A and exactly 50% duty cycle will generate a display of A/2 on a DVM that is set to measure DC volts, provided that there is no DC offset on the signal. Second, it is assumed that any DC offset added to the signal will merely add to the A/2 value. And third, it is assumed that the bandwidth of the DVM is wide enough to prevent significant roll-off of the squarewave signal which could introduce non-linearities into the measurement. This, however, will decrease the accuracy of the measurement but not the repeatability of it as long as the same DVM is used each time.

Keeping these assumptions in mind, the DC offset adjustment is made as follows:

- Set the pulse generator output signal to a repetition rate of approximately 1MHz and exactly 50% duty cycle (a frequency counter should be used for this).
- Using a sampling scope with a digital readout set to measure volts, adjust the signal amplitude of the pulse generator to 800mV (for 10K ECL).
- Adjust t_R and t_F to 2ns, 20 to 80% (for 10K ECL).
- Recheck steps 2 and 3 until satisfied with the adjustment accuracy (the amplitude and transition time adjustments might interact with each other).
- 5. Disconnect the 50Ω coax cable from the input of the sampling scope and connect it to the input of a DVM whose input is terminated in 50Ω. The 50Ω termination should be as physically close as possible to the DVM input connector. With the DC offset of the pulse generator set at 0V, i.e., the negative swing of the signal is at 0V and the positive swing is at 800mV, the DVM should read 800mV divided by 2, or 400mV.
- 6. The standard DC offset for a 10K ECL input signal is 310mV (see Figure 12.4).

Therefore, the DC offset control of the pulse generator should be adjusted so that the DVM reads 710mV, which is one half the amplitude or 400mV plus 310mV of offset.

The input signal is now set up and may be connected to the test fixture but it should be checked periodically during a test session to make sure it has not drifted. Variations of this method will need to be developed to suit individual test requirements, but if the basic principle is followed, one of the major variables in ECL AC testing will be brought under control.

AC MEASUREMENTS OVER TEMPERATURE RANGE

In 10K ECL devices, V_{BB} drifts with temperature. The amount of drift varies between part types due to internal power dissipation and various other characteristics but is approximately equal to 1.1mV/°C. This affects the amount of DC offset to be used when measuring AC parameters at other than room temperature. For example: At room temperature (25°C), a part would normally require a 310mV offset. If the part were to be tested at 85°C, the offset would have to be increased by 1.1mV/°C times 60° (ΔT) or 66mV. A total offset of 376mV would be required. Using the formula from step 6 above, one-half the signal amplitude (400mV) plus 376mV of offset would produce a reading on the DVM of 776mV

100K ECL devices are designed with internal compensation which virtually eliminates any drift due to operating temperature. Therefore, the same offset value may be used over the entire temperature range. However, the input signal conditions for 100K devices differ slightly from those used for 10K, but the same principles apply to either family and the same procedures and precautions should be used (refer to Table 1 for input pulse parameters).

ECL Products

Section 5 Data Sheet Specification Guide

INDEX

Introduction	5-3
Typical Propagation Delay and Supply Current	5-3
Logic Symbols	5-3
Absolute Maximum Ratings	5-3
DC Operating Conditions	5-3
DC Characteristics	5-3
AC Characteristics	5-9
Glossary, 10K/100K Symbols, Terms, and Definitions	5-11

5

Signetics

ECL Products

INTRODUCTION

Signetics' 10K and 100K ECL data sheets have been configured for quick usability. They are self-contained and should require minimum reference to other sections for further information.

FEATURES AND DESCRIPTION

Features and/or Descriptions are shown on the left column starting at the top of the first page of the data sheets for quick reference.

TYPICAL PROPAGATION DELAY AND SUPPLY CURRENT

The typical propagation delays listed at the top of the data sheets are the average between t_{PLH} and t_{PHL} for the most significant data path through the part.

The typical I_{EE} current shown in that same specification block is the average current. It represents the total current through the package, not the current through the individual functions.

LOGIC SYMBOLS

There are two types of logic symbols. The conventional one, "Logic Symbol," explicitly shows the internal logic (except for complex logic). The other is "Logic Symbol (IEEE/ IEC)" as developed by the IEC and IEEE. The Logic Symbol by IEEE/IEC is described in

IEEE Standard Graphic Symbols for Logic Functions ANSI/IEEE Std 91-1984 (Review of ANSI/IEEE Std 91-1973 [ANSI Y32.14-1973])

and can be ordered through IEEE Service Center 445 Hoes Lane Piscataway, New Jersey 08854 Phone: 201-981-0060

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are limiting values of operating and environmental conditions applicable to all 10K and 100K devices, which should not be exceeded under the worst probable conditions.

These values are chosen by Signetics to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.

Data Sheet

Specification Guide

The user should design so that, initially and throughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, equipment control adjustment, load variations, signal variation, environmental conditions, and variations in characteristics of the device under consideration and of all other electronic devices.

Absolute maximum ratings imply that any transient voltages, currents, and temperatures should not exceed the maximum ratings.

Input voltage, V_{IN} , should never be more negative than V_{EE} at any time.

Output current should never exceed the maximum value in either HIGH level or LOW level state.

Family Specifications for Absolute Maximum Ratings for 10K and 100K families are shown in Tables 1 and 2, respectively.

DC OPERATING CONDITIONS

The DC Operating Conditions table has a dual purpose. In one sense, it sets some environmental conditions (operating case temperature), and in another, it sets the conditions under which the limits set forth in the DC Electrical Characteristics table and AC Electrical Characteristics table will be met. Another way of looking at this table is to think of it not as a set of limits guaranteed by Signetics, but as the conditions Signetics uses to test the parts and guarantee that they will then meet the limits set forth in the DC and AC Electrical Characteristics tables.

10K ECL circuits are characterized with V_{CC1} and V_{CC2} at ground level and V_{EE} at -5.2V. This arrangement gives the best noise immunity. V_{EE} at -5.2 results in the best circuit speed. A more negative V_{EE} will increase noise margins at the expense of increased power consumption. Other values of V_{EE} are possible but DC and AC parameters will differ slightly from the specified values.

100K ECL circuits are characterized with V_{CC1} and V_{CC2} at ground level and V_{EE} at -4.2V, -4.5V, and -4.8V. This arrangement also gives the best noise immunity. Other values of V_{EE} are possible but DC and AC parameters will slightly differ from the specified values.

Family Specifications for DC Operating Conditions for 10K and 100K families are shown in Tables 3 and 4, respectively.

DC CHARACTERISTICS

Family Specifications for DC Characteristics for 10K and 100K ECL families are shown in Tables 5 and 6, respectively. However, I_{IH}, I_{IL}, and I_{EE} vary from device to device for 10K ECL families and similarly I_{IH}, I_{IL}, I_{EE}, $\Delta V_{OH}/\Delta V_{EE}$, $\Delta V_{BH}/\Delta V_{EE}$ vary from device to device for 100K ECL families.

It must be emphasized that the specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board.

Make sure that each output is terminated via a 50Ω resistor to -2.0V.

Although it is not recommended to use V_{EE} other than -5.2V, if V_{EE} other than -5.2V is used, changes in V_{OL}, V_{OH} , and V_{BB} level must be taken into consideration.

Although suggested test conditions are described for V_{OH}, V_{OH7}, V_{OL}, and V_{OL7}, refer to Section 3 Testing, DC testing for what to look for in considering output voltages in the worst cases.

The test values for DC Characteristics are defined and given in the Family Specifications for Transfer Characteristics for 10K and 100K ECL families and shown in Figures 1 and 2, respectively.

The conditions for the Transfer Characteristics for the 10K ECL families are T_A = $\pm 25^{\circ}$ C, V_{EE} = -5.2V, V_{CC1} = V_{CC2} = GND; and 50 Ω matched inputs and outputs.

The conditions for the Transfer Characteristics for the 100K ECL family are $T_A=25^\circ\text{C};$ $V_{EE}=-4.5V,~V_{CC1}=V_{CC2}=GND;$ and 50Ω matched inputs and outputs.

542 Shot

Data Sheet Specification Guide

Table 1. Family Specification for Absolute Maximum Ratings for 10K ECL Families

(Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating case temperature range.)

	PARAMETER	10K ECL	UNIT	
VEE	Supply voltage	-8.0	v	
ViN	Input voltage (VIN should never be more nega	0 to V _{EE}	V	
lo	Output source current	-50	mA	
TS	Storage temperature		-55 to +125	°C
T	Manimum institut to support up	Ceramic package	+ 165	°C
Tj	Maximum junction temperature	+ 150	°C	

Table 2. Family Specification for Absolute Maximum Ratings for 100K ECL Families

(Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating case temperature range.)

	PARAMETER	100K ECL	UNIT
VEE	Supply voltage (negative)	-7.0	V
VIN	Input voltage (V _{IN} should never be more negative than V _{EE})	0 to -6.0	V
lo	Output source current	-55	mA
TS	Storage temperature	-55 to +125	°C
TJ	Maximum junction temperature	+ 150	°C
			N

March 1986

		10K ECL				
	PARAMETER	Min	Тур	Max	Unit	
V _{CC1} , V _{CC2}	Circuit ground	0	0	0	v	
VEE	Supply voltage (negative)				-5.2	v
		T _A = -30°C			-890	mV
VIH	HIGH level input voltage	T _A = + 25°C			-810	mV
		T _A = +85°C			-700	mV
		T _A = -30°C	- 1205			mV
VIHT	HIGH level input threshold voltage	T _A = + 25°C	-1105			mV
		T _A = +85°C	-1035			mV
		T _A = -30°C			-1500	mV
VILT	LOW level input threshold voltage	T _A = + 25°C			-1475	mV
		T _A = +85°C			-1440	mV
		T _A = -30°C	-1890			mV
VIL	LOW level input voltage	T _A = + 25°C	-1850			mV
		T _A = +85°C	-1825			mV
T _A	Ambient temperature		-30	+ 25	+85	°C

Table 3. DC Operating Conditions (Family Specification for 10K ECL Families)

				100	ECL		
	PARAMET		Min	Тур	Max	Unit	
V _{CC1} , V _{CC2}	C1, V _{CC2} Circuit ground					0	v
V _{EE}	Supply voltage (negative)			-4.2	-4.5	-4.8	٧
V _{EE}	Supply voltage (negative) W	hen operating with 10k	ECL Family.			-5.7	V
			V _{EE} = -4.2V	-1150			
VIH	HIGH level VIH input voltage		V _{EE} = -4.5V	-1165		-880	mV
			$V_{EE} = -4.8V$	-1100			
		V _{EE} = -4.2V	-1150			mV	
V _{IHT}	HIGH level input threshold voltage	$V_{EE} = -4.5V$ $V_{CC1} = V_{CC2} = GND$ $V_{EE} = -4.8V$	-1165				
	theories renage		$V_{EE} = -4.8V$	-1105			mV
		$T_A = 0^{\circ}C$ to $+85^{\circ}C$	V _{EE} = -4.2V			4.175	
VILT	LOW level input threshold voltage	$V_{EE} = -4.5V$		1		-1475	mV
	throshold voltage		$V_{EE} = -4.8V$			- 1490	mV
-]	$V_{EE} = -4.2V$			4.475	
V.	LOW level input voltage		V _{EE} = -4.5V	-1810	-1475		mV
	input tonugo		V _{EE} = -4.8V	1		-1490	
TA	Ambient temperature	· · · · · · · · · · · · · · · · · · ·		0		+ 85	°C

NOTE:

When operating at other than specified voltages (-4.2V, -4.5V, -4.8V) DC & AC Characteristics may vary slightly from specified values.

5

Table 5. DC Characteristics (Family Specification for 10K Families)

$V_{CC1} =$	$V_{CC2} = GND, V_{FF} =$	-5.2V ± 0.010V. TA	= -30°C to +85°C. Ou	tout loading with 50 Ω to -2	2.0V ±0.010V, unless otherwise s	pecified ^{1,3}
-------------	---------------------------	--------------------	----------------------	-------------------------------------	----------------------------------	-------------------------

PARAMETER			MIN TYP MAX UNIT			UNIT	TEST CONDITIONS ²		
		T _A = -30°C	-1060		-890	mV			
VOH	HIGH level output voltage	T _A = + 25°C	-960		-810	mV			
	output voltage	T _A = +85°C	-890		-700	mV			
	HIGH level	$T_A = -30^{\circ}C$	-1080			mV			
V _{OHT}	output threshold	T _A = +25°C	-980	9 C.		mV			
	voltage	$T_A = +85^{\circ}C$	-910			mV	i de la companya de l		
	LOW level	$T_A = -30^{\circ}C$			-1655	mV			
V _{OLT}	output threshold	T _A = + 25°C			-1630	mV			
	voltage	T _A = +85°C			- 1595	mV			
	•	$T_A = -30^{\circ}C$	-1890		-1675	mV			
	LOW level output voltage	$T_A = +25^{\circ}C$	- 1850		-1650	mV			
	output voltage	T _A = +85°C	- 1825		-1615	mV			
		$T_A = -30^{\circ}C$				μA			
		T _A = + 25°C				μA			
IIH	HIGH I level	T _A = +85°C				μA			
'H	input	$T_A = -30^{\circ}C$				μA			
	current	$T_A = +25^{\circ}C$				μA			
		T _A = +85°C				μA			
		$T_A = -30^{\circ}C$				μA			
ΙL	LOW level input current	T _A = + 25°C				μA			
	input current	T _A = +85°C				μA			
	V _{EE}	$T_A = -30^{\circ}C$	1			mA			
-I _{EE}	supply	T _A = + 25°C				mA			
	current	T _A = +85°C				mA			
$rac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation			0.016		v/v			
$\frac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	T _A = +25°C		0.250		v/v			
$\frac{\Delta V_{BB}}{\Delta V_{EE}}$	Reference bias voltage compensation			0.148		v/v			

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst case testing guidelines, refer to Section 3 Testing, DC Testing,
 The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 1.

Table 6. DC Characteristics (Family Specification for 100K Families)

 $V_{CC1} = V_{CC2} =$ GND, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$, $T_A = 0^{\circ}C$ to $+85^{\circ}C$, unless otherwise specified^{1, 3}

	PARAMETE	R	MIN	ТҮР	MAX	UNIT	TEST CONDITIONS ²
		$V_{EE} = -4.2V$	-1025		-870	mV	
V _{OH}	HIGH level output voltage	$V_{EE} = -4.5V$	-1025	-955	-880	mV	
		$V_{EE} = -4.8V$	-1035		-880	mV	
	HIGH level	$V_{EE} = -4.2V$	- 1035			mV	
V _{OHT}	output threshold	$V_{EE} = -4.5V$	-1035			mV	
	voltage	$V_{EE} = -4.8V$	-1045			mV	
	LOW level	$V_{EE} = -4.2V$			-1590	mV	
V _{OLT}	output threshold	$V_{EE} = -4.5V$			-1610	mV	
	voltage	$V_{EE} = -4.8V$			-1610	mV	
		$V_{EE} = -4.2V$	-1810		- 1605	mV	
V _{OL}	LOW level output voltage	$V_{EE} = -4.5V$	-1810	-1705	- 1620	mV	
		$V_{EE} = -4.8V$	-1830		- 1620	mV	
Ьн	HIGH level					μA	
ЧН	input current					μA	
կլ	LOW level input current					μA	
-I _{EE}	V _{EE} supply current					μΑ	

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

2. Conditions for testing shown in the tables are not necessarily worst case. For worst case testing guidelines, refer to Section 3 Testing, DC Testing,

3. The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 2.

AC CHARACTERISTICS

Since AC Characteristics vary from device to device there is no family specifications as such.

It must be emphasized that the specified limits shown in the AC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. AC Characteristics may be tested either in non-offset bias condition or in offset bias condition. For 10K ECL, the non-offset bias condition is V_{CC1} = V_{CC2} = 0V and V_{EE} = –5.2V \pm 0.010V and the offset condition is $V_{CC1} = V_{CC2} = +2V$ $\pm\,0.010V$ and V_{EE} = -3.2V $\pm\,0.010V.$ For

100K ECL, the non-offset bias condition is $V_{CC1} = V_{CC2} = 0V$, and $V_{EE} = -4.2V$ to -4.8V(±0.010V), and the offset condition is V_{CC1} $= V_{CC2} = +2V \pm 0.010V$ and $V_{EE} = -2.2V$ to -2.8V (±0.010V). The offset bias condition is for bench-type tester to accommodate the oscilloscope ground configuration. Of course, the specified limits remain the same for the non-offset and the offset condition.

AC WAVEFORMS

AC test conditions for 10K and 100K ECL are described in AC Waveforms. Test Circuit, and Input Pulse Definition in each individual data sheet

There is no Family Specification for AC Waveforms. However, Typical AC Waveforms describing the Propagation Delay (tPLH, tPHL), Transition Time (tTLH, tTHL), Setup Time, Hold Time, and Release Time are shown for your reference. Since AC Waveforms vary from device to device, refer to each individual data choot

AC TEST CIRCUIT

The AC test circuit shows how to arrange the test circuit for each device with pulse generator, sampling scope, and power supplies. A simplified arrangement for 10K and 100K families are shown in Figure 7. However, since AC test circuits vary from device to device, refer to each individual data sheet.

Since AC Characteristics are difficult to test, a whole section is devoted to Testing including a whole section describing the bench-type testing for AC Characteristics (Refer to Section 3 Testing, AC Testing).

- ±0.010V. 2. Decoupling 0.1μF and 25μF from GND to V_{CC}. 0.01μF from GND to V_{EE}(0.01 and 0.1μF capacitors should be NPO Ceramic or MLC type). Decoupling capacitors should be placed as close as physically possible to the DUT and lead length should be kept
- possible to the DUT and lead renger should be key, to less than ¼ inch (6mm). 3. All unused inputs should be connected to either HIGH or LOW state consistent with the logic
- All unused outputs are loaded with 50 Ω to GND. L_1 and L_2 equal length 50Ω impedance lines. L_3 the distance from the DUT pin and the junction of the 5. cable from the Pulse Generator and the cable to
- and pins under test must be less than 1/4 inch (6mm) long for proper test.
- the transmission line between the pulse generator and the DUT or between the DUT and the scope should not exceed ¹/₄ inch (6mm) in length (refer to section on AC setup procedure).
- 10. All 50 Ω resistors should have tolerance of ± 1% or hetter

INPUT PULSE DEFINITION

The Input Pulse definition defines the input pulse requirements such as pulse amplitude,

repetition rate, pulse width, and Transition Time (t_{TLH}, t_{THL}) together with the input pulse waveform.

The Family Specification for 10K and 100K for Input Pulse Definition and Requirement is as follows:

Table 7. Input Pulse Requirements for 10K and 100K Families

		0.010V, V _{EE} = -	E REQUIREMENTS -3.2V \pm 0.010V, V _T = 2.5V \pm 0.010V, V _T =		
FAMILY	AMPLITUDE	REP RATE	PULSE WIDTH	t _{TLH}	t _{THL}
10K ECL	800 mVp-p	1MHz	500ns	2.0 ± 0.2ns	2.0 ±0.2ns
100K ECL	740 mVp-p	1MHz	500ns	0.7 ±0.1ns	0.7 ±0.1ns

March 1986

DC SYMBOLS AND DEFINITIONS

Voltages

All voltages are referenced to V_{CC} (V_{CC1} and V_{CC2}) which is usually ground (common) and the most positive potential in an ECL system.

V _{BB}	Reference Bias voltage: The internally-generated reference voltage which is used to set the input and output threshold
V _{BBmax}	level. Maximum Reference Bias voltage
V _{BBmin}	Minimum Reference Blas voltage
V _{BIN} (TTL)	Input breakdown voltage: Reverse breakdown voltage of the input diodes of a TTL/ECL Translator with 1.0 mA flowing into the input pin.
V	
V _{BE}	Base to Emitter voltage
V _{CB}	Collector to Base voltage
V _{CC}	Circuit Ground: This is the most positive potential in the ECL system and it is used as the reference for other voltages and is
	usually ground except for the TTL/ECL or ECL/TTL system such as translator and interface circuits.
V _{CC1}	Circuit Ground: Usually ground in the ECL system (Output reference).
V _{CC2}	Circuit Ground: Usually ground in the ECL system (Internal circuit reference).
V _{CS}	Current source voltage: An internally-generated reference potential in an ECL system.
V _{EE}	Power supply voltage: This potential is the ECL system power supply voltage and it is the most negative potential in the ECL system.
V _F (TTL)	Forward voltage: Input voltage for measuring I _F on TTL/ECL translators.
VIH	HIGH level input voltage: An input voltage within the more positive (less negative) of the two ranges of values used to
	represent the binary variables. A logical "1" (nominal value).
VIHmax	Maximum HIGH level input voltage: The most positive V _{IH}
VIHH	V _{IHmax} + 1.0V (V _{IHmax} shifted positive one volt for CMR test)
VIHL	V _{IHmax} - 1.0V (V _{IHmax} shifted negative one volt for CMR test)
VIHT	HIGH level input threshold voltage: The guaranteed HIGH level input threshold voltage
V _{IHT} " (TTL)	Hysteresis Mode HIGH level input threshold voltage: VIHT for HIGH to LOW level transition in Hysteresis mode.
V _{IHT} " ' (TTL)	Hysteresis Mode HIGH level input threshold voltage: VIHT for LOW to HIGH level transition in Hysteresis mode.
VIK	Input clamp voltage: The input voltage level across the input clamping diode in a region of relatively low differentia
	resistance that serves to limit the input voltage swing.
VIKmax	Maximum input clamp diode voltage: The most negative voltage at an input when the specified current is forced out of tha
	input terminal. This parameter guarantees the integrity of the input diode intended to clamp negative ringing at the inpu
	terminal.
VIL	LOW level input voltage: An input voltage level within the less positive (more negative) of the two ranges of values used to
	represent the binary variables. A logical "0" (nominal level).
VILT	LOW level input threshold voltage: The guaranteed LOW level input threshold voltage.
V _{ILT} " (TTL)	Hysteresis Mode LOW level input threshold voltage: VIHT for HIGH to LOW level transition in Hysteresis mode.
V _{ILT} " ' (TTL)	Hysteresis Mode LOW level input threshold voltage: VIHT for LOW to HIGH level transition in Hysteresis mode.
VILmin	Minimum LOW level input voltage: The most negative VIL.
V _{ILH}	V _{ILmin} + 1.0V (V _{ILmin} shifted positive one volt for CMR tests.)
VILL	V _{!Lmin} -1.0V (V _{ILmin} shifted negative one volt for CMR tests.)
V _{IN}	Input Voltage
V _{NH}	HIGH level Noise Margin: Noise margin between the output HIGH level of a driving circuit and the input HIGH threshold
	level of its driven load. A conservative value for V _{NH} is the difference between V _{OHT} and V _{IHmin} .
V _{NL}	LOW level Noise Margin: Noise margin between the output LOW level of a driving circuit and the input LOW threshold level
	of its drive load. A conservative value for V _{NL} is the difference between V _{ILmax} and V _{OLT} .
V _{OH}	HIGH level output voltage: The voltage at an output terminal with input conditions applied that, according to the produc
	specification, will establish a HIGH level at the output (nominal output ''1'' state).
V _{OHmax}	Maximum HIGH level output voltage: The most positive VOH under the specified input and loading conditions.
V _{OHmin}	Minimum HIGH level output voltage: The most negative VOH under the specified input and loading condition.
V _{OHT}	HIGH level output threshold voltage: The guaranteed HIGH level threshold output voltage with the inputs set to their respective threshold levels, one at a time.
VOL	LOW level output voltage: The voltage at an output terminal with input conditions applied that, according to the produc
	specification, will establish a LOW level at the output (nominal output "0" state).
	Maximum LOW level output voltage: The most positive V _{OL} under the specified input and loading conditions.
Volmey	
	Minimum LOW level output voltage: The most negative Volumber the specified input and loading conditions
V _{OLmax} V _{OLmin} V _{OLT}	Minimum LOW level output voltage: The most negative V _{OL} under the specified input and loading conditions. LOW level output threshold voltage: The guaranteed LOW level output threshold voltage with the inputs set to thei

DC SYMBOLS AND DEFINITIONS (Continued)

$\frac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation: The ratio of the change in the LOW level output voltage to the change in the supply voltage.
$\frac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation: The ratio of the change in the HIGH level output voltage to the change in the supply voltage.
$\frac{\Delta V_{BB}}{\Delta V_{EE}}$	Reference Bias voltage compensation: The ratio of the change in the input reference voltage to the change in the supply voltage.
V _{OLS1} (TTL)	LOW level output voltage on 10K ECL/TTL translator with all inputs at VEE voltage to check indeterminate input level.
V _{OLS2} (TTL)	LOW level output voltage on 10K ECL/TTL translator with all inputs open to check indeterminate input level.
VOUT	Output Voltage
V _R (TTL)	Reverse input voltage: Input voltage for measuring I _R on TTL/ECL Translator.
VT	Line load-resistor terminating voltage, positive or negative.
GND	Ground (Common): The reference point from which all voltages in the system are measured. In a TTL/ECL or ECL/TTL translator, or other interface circuits, it is the common point to which all other voltage supplies are referenced.

Currents

Positive current is defined as conventional current (Hole) flow into a device. Negative current is defined as conventional current flow out of a device.

ICC	Supply current: The current flowing into the V _{CC} supply terminal of the circuit with specified input conditions and open
	outputs. Input conditions are chosen to guarantee worst-case operations unless specified. Current out of a terminal is given
	as a negative value.
I _{CBO}	Input (Collector to Base) leakage current: Leakage current flowing out of an input on devices without pull-down resistors
	when test voltage is applied.
I _{CCH} (TTL)	Supply current, outputs HIGH: The current into the V _{CC} supply terminal of an integrated circuit when all (or a specified
	number) of the outputs are at the HIGH level. Current out of a terminal is given as a negative value.
ICCL (TTL)	Supply current, outputs LOW: The current into the V _{CC} supply terminal of an integrated circuit when all (or a specified
	number) of the outputs are at the LOW level. Current out of a terminal is given as a negative value.
IEE	Power supply current: The current required by each device from the VFF supply. This value represents only the internal
	current required by the specified device and does not include the current required for loads or termination.
i _F (TTL)	Input forward current: The forward conduction current out of the input diode of a TTL/ECL Translator with the input voltage
	at a LOW logic level (V _F).
I _I (TTL)	Input leakage current: The current flowing into an input when the maximum allowed voltage is applied to the input. This
	parameter guarantees the minimum breakdown voltage for the input.
Чн	HIGH level input current: The current flowing into an input when a specified HIGH level voltage is applied to the input.
	Current out of the input is given as a negative value.
IIHmax	Maximum HIGH level input current: The most positive IIH.
IIHmin	Minimum HIGH level input current: The most negative lift.
IIL .	LOW level input current: The current flowing into an input when a LOW level input voltage is applied to that input. In ECL
-	devices, this is a measurement of the current flowing into the input pull-down resistor.
Lmax	Maximum LOW level input current: The most positive In.
Lmin	Minimum LOW level input current: The most negative IIL.
I _{OH}	HIGH level output current: The current into an output with input conditions applied that, according to the product
	specification, will establish a HIGH level at the output. Current out of the output is given as a negative value.
OHT	HIGH level output threshold current: The guaranteed maximum HIGH level output current of an ECL Bus Driver with
	current switch mode outputs with the inputs at their respective threshold levels, one at a time.
IOL	LOW level output current: The current into an output with input conditions applied that, according to the product
	specification, will establish a LOW level at the output. Current out of the output is given as a negative value.
IOLT	LOW level output threshold current: The guaranteed maximum LOW level output current of an ECL Bus Driver with
	current switch mode outputs with the inputs at their respective threshold levels, one at a time.
ю	Output source current (Absolute Maximum Rating): The maximum current that may flow out of an output without causing
	permanent damage to the device. This is a function of the external Load Resistance and the Terminating Voltage (VT) to
	which it is referenced and logic state of the output (V _{OHmax} is worst-case).
los	Short circuit output current: The current out of an output of an ECL/TTL translator when the output is short-circuited to
	ground with input conditions applied to establish a HIGH state output logic level. Only one output should be shorted to
	ground at a time.
I _R (TTL)	Reverse input current: Reverse (leakage) current flowing into the input diodes of a TTL/ECL Translator when the input is at
	a HIGH logic level (V _R).
Ιτ	Line Terminating (Load) current

AC SYMBOLS AND DEFINITIONS

f _{MAX}	Maximum clock frequency: The maximum input frequency at a clock input for which predictable performance is
	guaranteed. Above this frequency the device may cease to function. (Specified as a limit.)
t _h	Hold time: The time interval during which a signal must be retained at a specified input terminal after an active transition
	occurs at another specified input terminal. NOTES:
	 The hold time is the actual time interval between two signal events and is determined by the system in which the digital circuit operated. A minimum value is specified that is the shortest interval for which correct operation of the digital circuit is guaranteed.
	The hold time may have a negative value, in which case the minimum limit defines the longest interval (between the release of the signal and active transition) fo which correct operation of the digital circuit is guaranteed.
t _{PD}	Propagation delay time
t _{PLH}	Propagation delay time, LOW to HIGH: The time between the specified reference points on the input and output
	waveforms with the output changing from the defined LOW level to the defined HIGH level.
t _{PHL}	Propagation delay time, HIGH to LOW: The time between the specified reference points on the input and output
	waveforms with the output changing from the defined HIGH level to the defined LOW level.
t _r	Release time: The interval immediately preceding the active transition of the timing pulse (usually the clock pulse) or
	preceding the transition of the control input to its latching level, during which the master set or reset must be released
	(inactive) to ensure valid data is recognized.
t _s	Setup time: The time interval prior to an active transition applied to a specified input terminal that a signal at another
	specified input terminal must be applied in order to achieve the desired operation of the device.
	NOTES: 1. The setup time is the actual time interval between two signal events and is determined by the system in which the digital circuit operated. A minimum value is specified that is the shortest interval for which correct operation of the digital circuit is guaranteed.
	The setup time may have a negative value, in which case the minimum limit defines the longest interval (between the release of the signal and active transition) fo which correct operation of the digital circuit is guaranteed.
tTLH	Transition time, LOW to HIGH: The time between two specified reference points on a waveform, normally 20% and 80%
	points, that is changing from LOW to HIGH.
t _{THL}	Transition time, HIGH to LOW: The time between two specified reference points on a waveform, normally 80% and 20%
	points, that is changing from HIGH to LOW.
tw	Pulse width: The time between the specified reference points on the leading and trailing edges of a pulse.

ANALOG SYMBOLS AND DEFINITIONS

CMR	Common-Mode Rejection: Ratio of common-mode voltage to common-mode error voltage where common-mode voltage is
	defined as the voltage above or below the reference level at each input when both inputs are at the same potential and
	common-mode error voltage is defined as the resultant error voltage measured at the input.
	power level (mW)
dBm	Power level relative to 1mW. dBm (Power level) = 10 $\log_{10} \frac{1}{1}$ 1mW
fi	Input frequency
f _{lmax}	Maximum input frequency
f _{lmin}	Minimum input frequency
SR	Slew rate: Maximum rate of change of output voltage for a large step change.
VCM	Common-mode voltage: The voltage above or below ground at each input when both inputs are at the same voltage.
VID	Differential input voltage: The voltage applied between two input terminals of a circuit.
VL	Load voltage

THERMAL SYMBOLS AND DEFINITIONS

θ	Thermal resistance
0 JC	Thermal resistance, junction to case
θ_{JA}	Thermal resistance, junction to ambient
tc	Case temperature: Case temperature of an integrated circuit package.
tj	Junction temperature (absolute maximum rating): The absolute maximum allowable temperature at the junction of any P
	and N type material on the silicon chip. Temperatures exceeding this value will cause a permanent migration of the materials
	and therefore damage the junction.
ts	Storage temperature (absolute maximum rating): Maximum temperature at which device may be stored without damage
	or performance degradation.

Signetics

ECL Products

Section 6 10K Series Data Sheets

INDEX

10100	Quad 2-Input NOR Gate With Strobe	6-3
10101	Quad 2-Input OR/NOR Gate (One Input Common)	6-9
10102	Quad 2-Input NOR (3 NOR and 1 OR/NOR) Gate	6-15
10103	Quad 2-Input OR (3 OR and 1 OR/NOR) Gate	6-21
10104	Quad 2-Input AND Gate	6-27
10105	Triple 2-3-2 Input OR/NOR Gate	6-33
10106	Triple 4-3-3 Input NOR Gate	6-39
10107	Triple 2-Input Exclusive-OR/Exclusive-NOR Gate	6-45
10108	Dual 4-Input AND/NAND Gate	6-51
10109	Dual 4-5 Input OR/NOR Gate	6-57
10110	Dual 3-Input/3-Output OR Gate (Line Driver)	6-63
10111	Dual 3-Input/3-Output NOR Gate (Line Driver)	6-69
10113	Quad Exclusive-OR Gate With Enable	6-75
10114	Triple Differential Line Receiver	6-81
10115	Quad Differential Line Receiver	6-89
10116	Triple Differential Line Receiver	6-96
10117	Dual 2-Wide 2-3 Input OR-AND/OR-AND-INVERT Gate	6-103
10118	Dual 2-Wide 3-Input OR-AND Gate	6-109
10119	4-Wide 4-3-3-3-Input OR-AND Gate	6-115
10121	4-Wide OR-AND/OR-AND-INVERT Gate	6-121
10123	Triple 4-3-3-Input Bus Driver	6-127
10124	Quad TTL-to-ECL Translator	6-133
10125	Quad ECL-to-TTL Translator	6-140
10130	Dual D-Type Latch	6-147
10131	Dual D-Type Master-Slave Flip-Flop Dual 2-Input Multiplexer With Clocked D-Type Latches	6-154
10132	and Common Reset	6-162
10133	Quad Latch With D-Type Inputs and Enable Outputs	6-162
10133	Dual 2-Input Multiplexer With Clocked D-Type Latches	6-176
10135	Dual J-K Master-Slave Flip-Flop	6-183
10136	Universal Hexadecimal Counter	6-190
10137	Universal Decade Counter	6-198
10141	4-Bit Universal Shift Register	6-205
10158	Quad 2-to-1 Multiplexer, Non-Inverting	6-211
10159	Quad 2-to-1 Multiplexer, Inverting	6-216
10160	12-Bit Parity Checker/Generator	6-221
10161	1-of-8 Decoder With 2 Enable Inputs	
	(Active LOW Outputs)	6-227
10162	1-of-8 Decoder With 2 Enable Inputs	
	(Active HIGH Outputs)	6-233
10164	8-Input Multiplexer With Enable Input	6-239
10165	8-Input Priority Encoder	6-245
10171	Dual 1-of-4 Decoder With One Common and	
	Two Individual Inputs (Active LOW Outputs)	6-251
10172	Dual 1-of-4 Decoder With One Common and	
	Two Individual Inputs (Active HIGH Outputs)	6-257
10173	Quad 2-Input Multiplexer With Latched Outputs	6-263
10174	Dual 4-to-1 Multiplexer (With Output Enable)	6-269
10175	Quint D-Latch With Common Reset and 2 Wired-OR	
10176	Common Clock Inputs	6-276
10176	Hex D-Type Master-Slave Flip-Flop	6-283
10179	Look-Ahead Carry Block	6-288

Dual 2-Bit Adder/Subtractor	6-294
4-Bit Arithmetic Logic Unit/Function Generator	
Hex Buffer With Enable (Non-Inverting)	6-308
Hex Inverter With Enable	6-313
Quad Bus Driver	6-318
High-Speed Dual 3-Input/3-Output OR Line Driver	6-324
High-Speed Dual 3-Input/3-Output NOR Line Driver	6-330
Triple Differential OR/NOR Line Receiver (High-Speed)	6-336
Dual D-Type Master-Slave Flip-Flop (High-Speed)	6-344

÷

Signetics

ECL Products

DESCRIPTION

The 10100 is a Quad 2-Input NOR Gate with another input common to all gates. All unused inputs can be left open due to integrated pull-down resistors, which avoid the need for a supply voltage.

10100 Gate

Quad 2-Input NOR Gate With Strobe Product Specification

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
10100	2.0ns	21mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -5.2V$ $T_A = -30^{\circ}C \text{ to } + 85^{\circ}C$
Plastic DIP	10100N
Ceramic DIP	10100F

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₇	Data Inputs
St	Strobe Input
$\overline{Q}_0 - \overline{Q}_3$	Data Outputs

853-0636 82177

10100

6-4

10100

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	10K ECL	UNIT	
V _{EE}	V _{EE} Supply voltage		-8.0	v
V _{IN}	VIN Input voltage (VIN should never be more negative than VEE)		0 to V _{EE}	V
ю	IO Output current		-50	mA
Τs	T _S Storage temperature		-55 to +150	°C
Ŧ		Ceramic package	+ 165	°C
Тј	Maximum junction temperature	Plastic package	+ 150	°C

DC OPERATING CONDITIONS

	PARAMETER			10K ECL		
				Nom	Max	UNIT
V _{CC1} , V _{CC2}	V _{CC1} , V _{CC2} Circuit ground			0	0	V
V _{EE}	Supply voltage (negative)			-5.2		v
		T _A = -30°C			-890	mV
ViH	HIGH level input voltage	T _A = +25°C			-810	mV
		T _A = +85°C			-700	mV
	HIGH level input threshold voltage	T _A = -30°C	-1205			mV
VIHT		T _A = +25°C	-1105			mV
		T _A = +85°C	-1035			mV
	LOW level input threshold voltage	T _A = -30°C			-1500	mV
VILT		T _A = +25°C			-1475	mV
		T _A = +85°C			-1440	mV
	LOW level input voltage	T _A = -30°C	-1890			mV
VIL		T _A = + 25°C	-1850			mV
		T _A = +85°C	-1825			mV
T _A	T _A Operating ambient temperature		-30	+ 25	+ 85	°C

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Electrical Characteristics)

10100

PARAMETER			MIN	ТҮР	MAX	UNIT	TEST CONDITIONS ²	
	· · · · · · · ·		$T_A = -30^{\circ}C$	-1060		-890	mV	
VOH	HIGH le		T _A = + 25°C	-960	- 1. Th	-810	mV	Apply V _{ILmin} to all inputs.
	output v	oltage	T _A = +85°C	-890		-700	mV	
			T _A = -30°C	-1080			mV	
V _{OHT}	HIGH leve threshold		T _A = +25°C	-980			mV	Apply V _{ILT} to S _t input with V _{ILmin} applied to all other inputs.
	1110311010	vonage	T _A = +85°C	-910		,	mV	
			T _A = -30°C			-1655	mV	
V _{OLT}	LOW leve		T _A = +25°C			-1630	mV	Apply V _{IHT} to each input, one at a time, with V _{ILmin} applied to all oth er inputs.
	threshold voltage		T _A = +85°C			-1595	mV	
			T _A = -30°C	-1890		-1675	mV	
V _{OL}	LOW lev		T _A = + 25°C	-1850		-1650	mV	Apply V _{IHmax} to all inputs.
	output v	oltage	T _A = +85°C	-1825		-1615	mV	
			T _A = -30°C		.1	390	. μΑ	
	HIGH level input	D _n inputs	T _A = + 25°C			245	μA	Apply V _{IHmax} to each input under test, one at a time, with V _{ILmin} applied to all other inputs.
		linputs	T _A = +85°C			245	μA	
чн		S _t input	T _A = -30°C			750	μA	
	current		T _A = + 25°C			470	μA	Apply V_{IHmax} to S_t input with V_{ILmin} applied to all other inputs.
			T _A = +85°C	1.00		470	μA	nihoro.
			T _A = -30°C	0.5			μA	
կլ	LOW lev		T _A = + 25°C	0.5			μA	Apply V _{ILmin} to each input under test, one at a
	input cu	rent	T _A = +85°C	0.3			μA	time, with V _{IHmax} applied to all other inputs.
	:		T _A = -30°C			29	mA	
- I _{EE}	V _{EE} sup	ply	T _A = + 25°C		21	26	mA	
	current		T _A = +85°C			29	mA	
$rac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH ler output v compens	oltage			0.016		V/V	
$\frac{\Delta V_{OL}}{\Delta V_{EE}}$	————————————————————————————————————		T _A = +25°C		0.250		V/V	
$\frac{\Delta V_{BB}}{\Delta V_{EE}} \begin{array}{c} \text{Reference bias} \\ \text{voltage} \\ \text{compensation} \end{array}$		•		0.148		v/v		

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to $+85^{\circ}C$, output loading with 50Ω to $-2.0V \pm 0.010V$ unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.
 The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 5.

10100

Gate

AC ELECTRICAL CHARACTERISTICS v_{CC1} = v_{CC2} = +2.0V $\pm 0.010V, ~v_{EE}$ = -3.2V $\pm 0.010V$

DADAMETER	T _A = -30°C			T _A = + 25°C			T _A = +85°C		TEAT ADURITIONS	
PARAMETER	Min	Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS	
t_{PLH} Propagation delay t_{PHL} D_n to \overline{Q}_n	1.0 1.0	3.1 3.1	1.0 1.0	2.0 2.0	2.9 2.9	1.0 1.0	3.3 3.3	ns ns	Figs. 6, 7, 8	
t_{TLH} Transition time t_{THL} 20% to 80%, 80% to 20%	1.1 1.1	3.6 3.6	1.1 1.1	2.0 2.0	3.3 3.3	1.1 1.1	3.7 3.7	ns ns	Figs. 6, 7, 8	

AC WAVEFORMS

10100

Gate

TEST CIRCUITS AND WAVEFORMS

Signetics

10101 Gate

Quad 2-Input OR/NOR Gate With Strobe Product Specification

ECL Products

DESCRIPTION

The 10101 is a Quad 2-Input OR/NOR gate with one input from each gate common to pin 12. All unused inputs can be left open due to integrated pull-down resistors, which avoid the need for a supply voltage.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})				
10101	20ns	20mA				

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -5.2V$ $T_A = -30^{\circ}C$ to $+85^{\circ}C$
Plastic DIP	10101N
Ceramic DIP	10101F

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₃	Data Inputs
St	Strobe Input
Q _n , Q̄n	Data Outputs (OR/NOR)

LOGIC SYMBOL

PIN CONFIGURATION

Vcci 16 Vcc1 Vcc2 1 15 Q6 ā0 2 14 Q4 Q2 3 7 à 13 D3 Do 4 12 12 S_t 10 õ, Q1 5 14 Q; 11 Q3 6 11 Q5 10 D2 õ, D1 7 13 15 Q7 9 Q7 9 VEE 8 VEE CD08430S 8 LD04600S Figure 1 Figure 2

853-0637 82177

10101

10101

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature ra

ange.)

ang tao an ing ang ang ang ang ang ang ang ang ang a	PARAMETER		10K ECL	UNIT	
V _{EE}	Supply voltage		-8.0	v	
VIN	Input voltage (VIN should never be more neg	jative than V _{EE})	0 to V _{EE}		
lo	Output current		-50	mA	
Ts	Storage temperature		-55 to +150	°C	
-	• • • · · · · · · · · · · · · · · · · ·	Ceramic package	+ 165	°C	
IJ	Maximum junction temperature	Plastic package	+ 150	°C	

DC OPERATING CONDITIONS

	PARAMETER							
V _{CC1} , V _{CC2}	Circuit ground		0	0	0	v		
V _{EE}	Supply voltage			-5.2		v		
		T _A = -30°C			-890	mV		
VIH	HIGH level input voltage	T _A = +25°C			-810	mV		
		T _A = +85°C			-700	mV		
		T _A = -30°C	-1205			mV		
VIHT	HIGH level input threshold voltage	T _A = + 25°C	-1105			mV		
		T _A = +85°C	-1035			mV		
		T _A = -30°C			-1500	mV		
VILT	LOW level input threshold voltage	T _A = + 25°C			-1475	mV		
		$T_A = +85^{\circ}C$			-1440	mV		
		T _A = -30°C	-1890			mV		
VIL	LOW level input voltage	T _A = + 25°C	-1850			mV		
		T _A = +85°C	-1825			mV		
TA	Operating ambient temperature		-30	+ 25	+ 85	°C		

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Electrical Characteristics.)

10101

PARAMETER			MIN	ТҮР	MAX	UNIT	TEST CONDITIONS ²	
			T _A = -30°C	-1060		-890	mV	· · · · · · · · · · · · · · · · · · ·
VOH	HIGH le		T _A = + 25°C	-960	1.1	-810	mV	For Q_n outputs, apply V_{iHmax} to all inputs. For \overline{Q}_n out-
	output v	ontage	T _A = +85°C	-890		-700	mV	puts, apply V _{ILmin} to all inputs.
			$T_A = -30^{\circ}C$	-1080			mV	For Q_n outputs, apply V_{IHT} to S_t input and V_{ILmin} to all
VOHT	HIGH level threshold		T _A = + 25°C	-980			mV	other inputs. For \overline{Q}_n outputs, apply V _{ILT} to S _t input
		ronugo	T _A = +85°C	-910			mV	and V _{ILmin} to all other inputs.
			T _A = -30°C			-1655	mν	For Q_n outputs, apply V_{ILT} to S_t input and V_{ILmin} to all
VOLT	LOW leve threshold		T _A = + 25°C			-1630	mV	other inputs. For \overline{Q}_n outputs, apply V _{IHT} to S _t input
	in carloid	voltage	T _A = +85°C			-1595	mV	and V _{ILmin} to all other inputs.
		4	T _A = -30°C	-1890		-1675	mV	
VOL	LOW lev		T _A = + 25°C	-1850		-1650	mV	For Q_n outputs, apply V_{ILmin} to all inputs. For \overline{Q}_n out-
,	output v	oltage	T _A = +85°C	-1825	· .	-1615	mV	puts, apply V _{IHmax} to all inputs.
			T _A = -30°C			425	μA	
		D _n inputs	T _A = + 25°C			265	μA	Apply V _{IHmax} to each input under test, one at a time, with V _{II min} applied to all other inputs.
	HIGH level input	mputo	T _A = +85°C			265	μA	
ĥн		S _t input	T _A = -30°C			850	μA	
	current		$T_A = +25^{\circ}C$			535	μA	Apply V _{IHmax} to S _t input with V _{ILmin} applied to all other inputs.
			T _A = +85°C			535	μA	
			$T_A = -30^{\circ}C$	0.5			μA	
Ι _{ΙL}	LOW lev		T _A = + 25°C	0.5			μA	Apply V _{ILmin} to each input under test, one at a time,
	input cu	rent	T _A = +85°C	0.3			μA	with V _{IHmax} applied to all other inputs.
			T _A = -30°C			29	mA	
-I _{EE}	V _{EE} sup	ply	T _A = + 25°C		20	26	mA	
	current		T _A = +85°C			29	mA	
$\frac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH le output v compens	oltage			0.016		v/v	
$\frac{\Delta V_{OL}}{\Delta V_{EE}}$			T _A = +25°C		0.250		v/v	
$\frac{\Delta V_{BB}}{\Delta V_{EE}} \begin{array}{c} \text{Reference bias} \\ \text{voltage} \\ \text{compensation} \end{array}$				0.148	-	v/v		

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to +85°C, output loading with 50 Ω to -2.0V ± 0.010V unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.
 The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 5.

10101

6

Gate

AC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = +2.0V \pm 0.010V$, $V_{EE} = -3.2V \pm 0.010V$

PARAMETER	T _A = -	T _A = + 25°C			T _A = +85°C		UNIT	TECT CONDITIONS		
PARAMETER	Min	Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH} Propagation delay	1.0	3.1	1.0	2.0	2.9	1.0	3.3	ns	Figs. 6, 7, 8	
t _{PHL} D _n to Q _n , Q _n	1.0	3.1	1.0	2.0	2.9	1.0	3.3	ns		
t _{TLH} Transition time	1.1	3.6	1.1	2.0	3.3	1.1	3.7	ns	Figs. 6, 7, 8	
t _{THL} 20% to 80%, 80% to 20%	1.1	3.6	1.1	2.0	3.3	1.1	3.7	ns		

AC WAVEFORMS

10101

Gate

TEST CIRCUITS AND WAVEFORMS

Signetics

10102 Gate

Quad 2-Input NOR (3 NOR and 1 OR/NOR) Gate Product Specification

ECL Products

DESCRIPTION

The 10102 is a Quad 2-Input NOR gate. All unused inputs can be left open due to integrated pull-down resistors, which avoid the need for a supply voltage.

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})					
10102	2.0ns	20mA					

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -5.2V$ $T_A = -30^{\circ}C$ to $+85^{\circ}C$
Plastic DIP	10102N
Ceramic DIP	10102F

PIN DESCRIPTION

PINS	DESCRIPTION							
D ₀ -D ₇	Data Inputs							
Q ₄	Data Output (OR)							
Q ₀ -Q ₃ Data Outputs (NOR)								

PIN CONFIGURATION LOGIC SYMBOL 16 11 Vcc1 Vcc2 16 Vcc1 Vcc2 ā, D ā [2 15 Q3 14 Q2 ā1 3 6 ō١ D₃ 13 D7 Do 4 12 D6 D1 5 D, ā2 11 14 De 11 D5 D2 6 D3 7 10 D4 12 13 ā, D₇ Q4 9 04 VEE 8 VEE CD08440S 8 LD04620S Figure 1 Figure 2

853-0638 82177

10102

10102

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	10K ECL	UNIT	
V _{EE}	Supply voltage	-8.0	V	
V _{IN}	Input voltage (VIN should never be more ne	0 to V _{EE}	V	
lo	Output current	-50	mA	
T _S	Storage temperature	-55 to +150	°C	
+		Ceramic package	+ 165	°C
زا	Maximum junction temperature	Plastic package	+ 150	°C

DC OPERATING CONDITIONS

			UNIT				
	PARAMETER						
V _{CC1} , V _{CC2}	Circuit ground		0	0	0	v	
V _{EE}	Supply voltage (negative)			-5.2		v	
		$T_A = -30^{\circ}C$			-890	mV	
VIH	HIGH level input voltage	$T_A = +25^{\circ}C$			-810	mV	
		$T_A = +85^{\circ}C$			-700	mV	
		$T_A = -30^{\circ}C$	-1205			mV	
VIHT	HIGH level input threshold voltage	T _A = + 25°C	-1105			mV	
		T _A = +85°C	-1035			mV	
		$T_A = -30^{\circ}C$			-1500	mV	
VILT	LOW level input threshold voltage	$T_A = +25^{\circ}C$			-1475	mV	
		$T_A = +85^{\circ}C$			-1440	mV	
		$T_A = -30^{\circ}C$	-1890			mV	
VIL	LOW level input voltage	$T_A = +25^{\circ}C$	-1850			mV	
		$T_A = +85^{\circ}C$	-1825			mV	
T _A	Operating ambient temperature		-30	+ 25	+ 85	°C	

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Electrical Characteristics)

10102

	PARAMETE	MIN	ТҮР	МАХ	UNIT	TEST CONDITIONS ²					
· .		T _A = -30°C	-1060		-890	mV					
V _{OH}	HIGH level output voltage	T _A = + 25°C	-960		-810	mV	For \overline{Q}_n outputs, apply V_{ILmin} to all inputs. For Q_4 output, apply V_{ILmox} to all inputs.				
		T _A = +85°C	-890		-700	mV	apply V _{IHmax} to all inputs.				
		$T_A = -30^{\circ}C$	-1080			mV	For \overline{Q}_n outputs, apply V_{ILT} to one gate input with V_{ILmin}				
VOHT	HIGH level output threshold voltage	T _A = +25°C	-980			mV	applied to the other gate input. For Q_4 output, apply V_{IHT} to one gate input with V_{ILmin} applied to the othe				
	unosiloid voltago	T _A = +85°C	-910			mV	gate input.				
		T _A = -30°C			- 1655	mV	For \overline{Q}_n outputs, apply V_{IHT} to one gate input with V_{ILmin}				
VOLT	LOW level output threshold voltage	T _A = + 25°C			-1630	mV	applied to the other gate input. For Q_4 output, apply V_{ILT} to one gate input with V_{ILmin} applied to the other				
	unosnola voltago	T _A = +85°C			-1595	mV	gate input.				
		T _A = -30°C	-1890		-1675	mν					
VOL	LOW level output voltage	$T_A = +25^{\circ}C$	-1850		-1650	mV	For \overline{Q}_n outputs, apply V_{IHmax} to all inputs. For Q_4 output				
		T _A = +85°C	-1825		-1615	mV	apply V _{ILmin} to all inputs.				
		T _A =30°C		-	425	μA	n na align at na nation se an an an an Align State				
ĥн	HIGH level input current	T _A = + 25°C			265	μA	Apply V _{IHmax} to each input under test, one at a time,				
		T _A = +85°C			265	μA	with V _{ILmin} applied to all other inputs.				
	LOW level input current	T _A = -30°C	0.5			μA					
ι _L		T _A = +25°C	0.5	- S		μA	Apply V_{ILmin} to each input under test, one at a time, with V_{IHmax} applied to all other inp uts.				
		T _A = +85°C	0.3			μA	with Vigmax applied to all other hip dis.				
		$T_A = -30^{\circ}C$	¥		29	mA					
$-I_{EE}$	V _{EE} supply current	T _A = +25°C		20	26	mA					
		T _A = +85°C			29	mA					
$\frac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation			0.016		V/V					
$rac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	T _A = +25°C		0.250		V/V					
$\frac{\Delta V_{BB}}{\Delta V_{EE}}$	Reference bias voltage compensation			0.148		v/v					

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to $+85^{\circ}C$, loading with 50Ω to $-2.0V \pm 0.010V$ unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

2. Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing,

3. The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 5.

10102

Gate

AC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = +2.0V \pm 0.010V$, $V_{EE} = -3.2V \pm 0.010V$

	T _A = -30°C		T _A = + 25°C			T _A = +85°C		UNIT	TEST CONDITIONS
PARAMETER		Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} Propagation delay t _{PHL} D _n to Q _n , Q ₄	1.0 1.0	3.1 3.1	1.0 1.0	2.0 2.0	2.9 2.9	1.0 1.0	3.3 3.3	ns ns	Figs. 6, 7, 8
t_{TLH} Transition time t_{THL} 20% to 80%, 80% to 20%	1.1 1.1	3.6 3.6	1.1 1.1	2.0 2.0	3.3 3.3	1.1 1.1	3.7 3.7	ns ns	Figs. 6, 7, 8

AC WAVEFORMS

Gate

TEST CIRCUITS AND WAVEFORMS

- = V_{CC2} = + 2V ± 0.010V, V_{EE} = 3.2V
- Decoupling 0.1μ F and 25μ F from GND to V_{CC}. 0.01μ F and 25μ F from GND to V_{EE}. (0.01 and 0.1μ F capacitors should be NPO Ceramic or MLC type). capacitors should be hard caranic of Micc type). Decoupling capacitors should be placed as close as physically possible to the DUT and lead length should be kept to less than 1/4 inch (6mm). 3. All unused inputs should be connected to either HIGH or LOW state consistent with the LOGIC
- function required.
- All unused outputs are loaded with 50Ω to GND. All unused outputs are loaded with 50.2 to GND.
 L₁ and L₂ are equal length 50Ω impedance lines. L₃, the distance from the DUT pin to the junction of the cable from the Pulse Generator and the cable to the Scope, should not exceed 1/4 inch (6mm). 6. $R_T = 50\Omega$ terminator internal to Scope.
- 7. The unmatched wire stub between coaxial cable and pins under test must be less than 1/4 inch (6mm) long for proper test. 8. C_L = Fixture and stray capacitance \leq 3pF.
- C₁ = Fixture and stray capacitance ≪ 3pr.
 Any unterminated stubs connected anywhere along the transmission line between the Pulse Generator and the DUT or between the DUT and the Scope should not exceed 1/4 inch (6mm) in length (refer to section on AC setup procedure).
 All 502 resistors should have tolerance of ± 1% or

Figure 8. Input Pulse Definition

Signetics

10103 Gate

Quad 2-Input OR (3 OR and 1 OR/NOR) Gate Product Specification

ECL Products

DESCRIPTION

The 10103 is a Quad 2-Input 3 OR and 1 OR/NOR gate. All unused inputs can be left open due to integrated pull-down resistors which avoid the need for a supply voltage.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
10103	2.0ns	21mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -5.2V$ $T_A = -30^{\circ}C$ to $+85^{\circ}C$
Plastic DIP	10103N
Ceramic DIP	10103F

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ D ₇	Data Inputs
Q ₀ , Q ₁ , Q ₂ , Q ₄	Data Outputs (OR)
\overline{Q}_3	Data Output (NOR)

PIN CONFIGURATION

LOGIC SYMBOL

10103

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	10K ECL	UNIT	
V _{EE}	Supply voltage	-8.0	V	
V _{IN}	Input voltage (VIN should never be more neg	0 to V _{EE}	V	
lo	Output current	-50	mA	
Τ _S	Storage temperature		-55 to +150	°C
-	Manimum in the American American	Ceramic package	+ 165	°C
l lj	T _J Maximum junction temperature	Plastic package	+ 150	°C

DC OPERATING CONDITIONS

						UNIT
	PARAMETER					
V _{CC1} , V _{CC}	C2 Circuit ground		0	0	0	V
V _{EE}	Supply voltage (negative)			-5.2		v
		T _A = -30°C			-890	mV
VIH	V _{IH} HIGH level input voltage	$T_A = +25^{\circ}C$			-810	mV
		$T_A = +85^{\circ}C$			-700	mV
		T _A = -30°C	-1205			mV
VIHT	HIGH level input threshold voltage	$T_A = +25^{\circ}C$	-1105			mV
		$T_{A} = +85^{\circ}C$	-1035			mV
		$T_{A} = -30^{\circ}C$			-1500	mV
VILT	LOW level input threshold voltage	$T_A = +25^{\circ}C$			-1475	mV
		T _A = +85°C			-1440	mV
		$T_A = -30^{\circ}C$	-1890			mV
VIL	LOW level input voltage	$T_A = +25^{\circ}C$	-1850			mV
		$T_A = +85^{\circ}C$	-1825			mV
TA	Operating ambient temperature		-30	+ 25	+ 85	°C

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Electrical Characteristics)

10103

	PARAMETE	R	MIN	ТҮР	МАХ	UNIT	TEST CONDITIONS ²
		T _A = -30°C	-1060		-890	mV	
VOH	HIGH level output voltage	T _A = + 25°C	-960		-810	mV	For Q_n outputs, apply V_{IHmax} to all inputs.
	output voltage	T _A = +85°C	-890		-700	mV	
	HIGH level	$T_A = -30^{\circ}C$	-1080			mV	For Q_n outputs, apply V_{IHT} to one gate input with V_{ILmin}
V _{OHT}	output threshold	T _A = + 25°C	-980			mV	applied to the other gate input. For \overline{Q}_3 output, apply V_{ILT} to one gate input with V_{ILmin}
	voltage	$T_A = +85^{\circ}C$	-910			mV	applied to the other gate input.
	LOW level	$T_A = -30^{\circ}C$			-1655	mV	For Q_n outputs, apply V_{ILT} to one gate input with V_{ILmin}
V _{OLT}	output threshold	$T_A = +25^{\circ}C$			-1630	mV	applied to the other gate input. For \overline{Q}_3 output, apply V_{IHT} to one gate input with $V_{II min}$
	voltage	$T_A = +85^{\circ}C$			-1595	mV	applied to the other gate input.
		$T_A = -30^{\circ}C$	-1890		-1675	mV	
V_{OL}	LOW level V _{OL} output voltage	$T_A = +25^{\circ}C$	-1850		-1650	mV	For Q_n outputs, apply V_{ILmin} to all inputs. For \overline{Q}_3 output, apply V_{IHmax} to all inputs.
		$T_A = +85^{\circ}C$	-1825		-1615	mV	
		$T_A = -30^{\circ}C$			390	μA	
I _{IH}	HIGH level input current	$T_A = +25^{\circ}C$			245	μA	Apply V_{IHmax} to each input under test, one at a time, with V_{ILmin} applied to all other inputs.
		$T_A = +85^{\circ}C$			245	μA	
-		$T_A = -30^{\circ}C$	0.5			μA	
I _{IL}	LOW level input current	$T_A = +25^{\circ}C$	0.5			μA	Apply V _{ILmin} to each input under test, one at a time, with V _{ILmax} applied to all other inputs.
		$T_A = +85^{\circ}C$	0.3			μA	
		$T_A = -30^{\circ}C$			29	mA	
$-I_{\rm EE}$	V _{EE} supply current	$T_A = +25^{\circ}C$		21	26	mA	
		$T_A = +85^{\circ}C$	1. A. 1.		29	mA	
$rac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation			0.016		V/V	
$\frac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	T _A = +25°C		0.250		V/V	
$\frac{\Delta V_{BB}}{\Delta V_{EE}}$	Reference bias voltage compensation			0.148		V/V	

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to $+85^{\circ}C$, output loading with 50Ω to $-2.0V \pm 0.010V$ unless otherwise specified^{1.3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

2. Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.

3. The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 5.

Gate

AC ELECTRICAL CHAR	RACTERISTICS V _{CC1} =	$= V_{CC2} = + 2V \pm 0.010V,$	$V_{EE} = -3.2V \pm 0.010V$
--------------------	---------------------------------	--------------------------------	-----------------------------

		T _A = -30°C		T _A = + 25°C		T _A = +85°C			TEAT CONDITIONS
PARAMETER	Min	Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS
t_{PLH} Propagation delay t_{PHL} D _n to Q _n , \overline{Q}_3	1.0 1.0	3.1 3.1	1.0 1.0	2.0 2.0	2.9 2.9	1.0 1.0	3.3 3.3	ns ns	Figs. 6, 7, 8
t_{TLH} Transition time t_{THL} 20% to 80%, 80% to 20%	1.1 1.1	3.6 3.6	1.1 1.1	2.0 2.0	3.3 3.3	1.1 1.1	3.7 3.7	ns ns	Figs. 6, 7, 8

AC WAVEFORMS

10103

TEST CIRCUITS AND WAVEFORMS

Figure 8. Input Pulse Definition

Signetics

10104 Gate

Quad 2-Input AND Gate Product Specification

ECL Products

DESCRIPTION

The 10104 is a high-speed logic, low power, AND function.

All unused inputs can be left open due to integrated pull-down resistors which avoid the need for a supply voltage.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
10104	2.7ns	20mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -5.2V$ $T_A = -30^{\circ}C \text{ to } + 85^{\circ}C$
Plastic DIP	10104N
Ceramic DIP	10104F

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ -D ₇	Data Inputs
Q ₀ , Q ₁ , Q ₂ , Q ₄	Data Outputs (AND)
\overline{Q}_3	Data Output (NAND)

PIN CONFIGURATION

LOGIC SYMBOL

6–27

853-0640 82177

10104

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	10K ECL	UNIT	
VEE	Supply voltage	-8.0	V	
V _{IN}	Input voltage (VIN should never be more ne	0 to V _{EE}	V	
lo	Output current	-50	mA	
Τ _S	Storage temperature		-55 to +150	°C
т		Ceramic package	+ 165	°C
IJ	Maximum junction temperature	Plastic package	+ 150	°C

DC OPERATING CONDITIONS

	PARAMETER								
	Min	Nom	Max	UNIT					
V _{CC1} , V _{CC2}	Circuit ground		0	0	0	v			
V _{EE}	Supply voltage (negative)			-5.2		v			
		$T_A = -30^{\circ}C$			-890	mV			
VIH	HIGH level input voltage	T _A = + 25°C			-810	mV			
		T _A = +85°C			-700	mV			
		T _A = -30°C	-1205			mV			
VIHT	HIGH level input threshold voltage	T _A = +25°C	-1105			mV			
		T _A = +85°C	-1035			mV			
		T _A = -30°C			-1500	mV			
VILT	LOW level input threshold voltage	T _A = +25°C			-1475	mV			
		T _A = +85°C			-1440	mV			
		$T_A = -30^{\circ}C$	-1890			mV			
VIL	LOW level input voltage	T _A = + 25°C	- 1850			mV			
		T _A = +85°C	-1825			mV			
T _A	Operating ambient temperature		-30	+ 25	+85	°C			

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

10104

PARAMETER		MIN	ТҮР	МАХ	UNIT	TEST CONDITIONS ²		
			T _A = -30°C	-1060		-890	mV	
V _{OH}	V _{OH} HIGH level output voltage		T _A = +25°C	-960		-810	mV	For Q_n outputs, apply V_{IHmax} to all inputs. For \overline{Q}_3 output, apply V_{ILmin} to all inputs.
	ouput n	ilugo i	T _A = +85°C	-890		-700	mV	
	HIGH lev	/el	T _A = -30°C	-1080			mV	For Q_n outputs, apply V_{IHT} to one gate input with V_{IHmax}
V _{OHT}	output th		T _A = + 25°C	-980			mV	applied to the other gate input. For \overline{O}_3 output, apply V _{ILT} to one gate input with V _{IHmax}
	voltage		T _A = +85°C	-910			mV	applied to the other gate input.
	LOW lev	ما	T _A = -30°C			- 1655	mV	For Q_n outputs, apply V_{ILT} to one gate input with V_{IHmax}
VOLT	output th		T _A = +25°C			-1630	mV	applied to the other gate input. For \overline{Q}_3 output, apply V _{IHT} to one gate input with V _{IHmax}
	voltage		T _A = +85°C			-1595	mV	applied to the other gate input.
			T _A = -30°C	-1890		-1675	mV	
VOL	LOW lev		T _A = + 25°C	-1850		-1650	mV	For Q_n outputs, apply V_{ILmin} to all inputs. For \overline{Q}_3 output, apply V_{IHmax} to all inputs.
	output th	lago	T _A = +85°C	-1825		-1615	mV	Tor ag output, apply VIHmax to an inputs.
		D ₀ ,	T _A = -30°C			425	μA	
		D ₃ , D ₄ , D ₇	T _A = +25°C			265	μA	
	HIGH level	inputs	T _A = +85°C			265	μA	Apply V _{IHmax} to each input under test, one at a time,
ΙH	input	D ₁ ,	T _A = -30°C			350	μA	with VILmin applied to all other inputs.
	current	D ₂ , D ₅ , D ₆	T _A = +25°C			220	μA	
		inputs	T _A = +85°C			220	μA	
			T _A = -30°C	0.5			μA	
μ	LOW lev current	el input	T _A = +25°C	0.5			μA	Apply V _{ILmin} to each input under test, one at a time, with V _{IHmax} applied to all other inputs.
			T _A = +85°C	0.3			μA	
			T _A = -30°C			39	mA	
-I _{EE}	V _{EE} supp current	ply	T _A = + 25°C		20	35	mA	
	• • • • • • • • • • • • • • • • • • •		$T_A = +85^{\circ}C$			39	mA	
$rac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH lev output vo compens	oltage			0.016		v/v	
$\frac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW lev output vo compens	oltage	T _A = + 25°C		0.250		v/v	
$\frac{\Delta V_{BB}}{\Delta V_{EE}}$	Reference voltage compens				0.148		v/v	

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to $+85^{\circ}C$, output loading with 50Ω to $-2.0V \pm 0.010V$, unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.
 The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 5.

Figure	5.	Transfer	Characteristics
--------	----	----------	-----------------

AC ELECTRICAL CHARACTERISTICS v_{CC1} = v_{CC2} = +2.0V $\pm 0.010V, ~v_{EE}$ = -3.2V $\pm 0.010V$

DADANETED	T _A = -	-30°C	T _A = + 25°C			T _A = -	+ 85°C		TEST CONDITIONS	
PARAMETER	Min	Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS	
t_{PLH} Propagation delay t_{PHL} D _n to Q _n , \overline{Q}_3	1.0 1.0	4.3 4.3	1.0 1.0	2.7 2.7	4.0 4.0	1.0 1.0	4.2 4.2	ns ns	Figs. 6, 7, 8	
t _{TLH} Transition time t _{THL} 20% to 80%, 80% to 20%	1.5 1.5	3.7 3.7	1.5 1.5	2.0 2.0	3.5 3.5	1.5 1.5	3.6 3.6	ns ns	Figs. 6, 7, 8	

AC WAVEFORMS

10104

Gate

TEST CIRCUITS AND WAVEFORMS

Figure 7. AC Test Circuit for 10104

Signetics

10105 Gate

Triple 2-3-2 Input OR/NOR Gate Product Specification

ECL Products

DESCRIPTION

The 10105 is a Triple 2-3-2 Input OR/ NOR Gate.

All unused inputs can be left open due to integrated pull-down resistors which avoid the need for a supply voltage.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
10105	2.0ns	17mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -5.2V$ $T_A = -30^{\circ}C$ to $+85^{\circ}C$
Plastic DIP	10105N
Ceramic DIP	10105F

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ -D ₆	Data Inputs
Q ₀ , Q ₂ , Q ₄	Data Outputs (OR)
$\overline{Q}_1, \overline{Q}_3, \overline{Q}_5$	Data Outputs (NOR)

6

January 30, 1986

10105

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	10K ECL	UNIT	
V _{EE}	Supply voltage	-8.0	v	
V _{IN}	Input voltage (VIN should never be more n	0 to V _{EE}	V	
lo	Output current	-50	mA	
Ts	Storage temperature		-55 to +150	°C
_		Ceramic package	+ 165	°C
l IJ	Maximum junction temperature	+ 150	°C	

DC OPERATING CONDITIONS

	PARAMETER						
V _{CC1} , V _{CC2}	Circuit ground		0	0	0	v	
VEE	Supply voltage (negative)			-5.2		v	
		T _A = -30°C			-890	mV	
VIH	HIGH level input voltage	T _A = + 25°C			-810	mV	
		T _A = +85°C			-700	mV	
		T _A = -30°C	-1205			mV	
VIHT	HIGH level input threshold voltage	$T_A = +25^{\circ}C$	-1105			mV	
		T _A = +85°C	-1035			mV	
		T _A = -30°C			-1500	mV	
VILT	LOW level input threshold voltage	T _A = + 25°C			-1475	mV	
		T _A = +85°C			-1440	mV	
		T _A = -30°C	-1890			mV	
VIL	LOW level input voltage	T _A = + 25°C	-1850			mV	
		T _A = +85°C	-1825			mV	
T _A	Operating ambient temperature		-30	+ 25	+ 85	°C	

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

10105

	PARAMETE	R	MIN	ТҮР	МАХ	UNIT	TEST CONDITIONS ²
		$T_A = -30^{\circ}C$	-1060		-890	mV	
VOH	HIGH level output voltage	T _A = +25°C	-960		-810	mV	For Q_n outputs, apply V_{IHmax} to all inputs. For \overline{Q}_n outputs, apply V_{ILmin} to all inputs.
	output voltage	T _A = +85°C	-890		-700	mV	
	HIGH level	T _A = -30°C	-1080			mV	For Q_n outputs, apply V_{IHT} to each input, one at a time,
VOHT	output threshold	T _A = + 25°C	-980			mV	with V _{ILmin} applied to all other inputs. For \overline{Q}_n outputs, apply V _{ILT} to each input, one at a time,
	voltage	T _A = +85°C	-910			mV	with V_{ILmin} applied to all other inputs.
	LOW level	T _A = -30°C			- 1655	mV	For Q_n outputs, apply V_{ILT} to each input, one at a time,
V _{OLT}	output threshold	T _A = +25°C			-1630	mV	with V _{ILmin} applied to all other inputs. For \overline{Q}_n outputs, apply V _{IHT} to each input, one at a time,
	voltage	T _A = +85°C			-1595	mV	with V_{ILmin} applied to all other inputs.
		$T_A = -30^{\circ}C$	-1890		-1675	mV	
VOL	LOW level output voltage	T _A = +25°C	-1850		-1650	mV	For Q_n outputs, apply V _{ILmin} to all inputs. For \overline{Q}_n outputs, apply V _{ILmax} to all inputs.
	output voitage	T _A = +85°C	-1825		-1615	mV	To an outputs, apply VIHmax to an inputs.
· · ·		$T_A = -30^{\circ}C$		· · ·	425 μA		
h _H	HIGH level input current	$T_A = +25^{\circ}C$			265	μA	Apply V_{IHmax} to each input under test, one at a time, with V_{ILmin} applied to all other inputs.
	current	T _A = +85°C			265	μA	
		$T_A = -30^{\circ}C$	0.5			μA	
I _{IL}	LOW level input current	T _A = + 25°C	0.5			μA	Apply V _{ILmin} to each input under test, one at a time, with V _{IHmax} applied to all other inputs.
	ourion	T _A = +85°C	0.3			μA	
		$T_A = -30^{\circ}C$			23	mA	
$-I_{EE}$	V _{EE} supply current	T _A = + 25°C		17	21	mA	
		T _A = +85°C			23	mA	
$rac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation			0.016		v/v	
$\frac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	T _A = + 25°C		0.250		v/v	
$\frac{\Delta V_{BB}}{\Delta V_{EE}}$	Reference bias voltage compensation			0.148		v/v	

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to +85°C, output loading with 50 Ω to -2.0V ± 0.010V unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.
 The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying

power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 5.

6

Gate

AC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = +2.0V \pm 0.010V$, $V_{EE} = -3.2V \pm 0.010V$

	T _A = -30°C		$T_A = +25^{\circ}C$		T _A = +85°C					
PARAMETER	Min	Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH} Propagation delay t _{PHL} D _n to Q _n , Q _n	1.0 1.0	3.1 3.1	1.0 1.0	2.0 2.0	2.9 2.9	1.0 1.0	3.3 3.3	ns ns	Figs. 6, 7, 8	
t_{TLH} Transition time t_{THL} 20% to 80%, 80% to 20%	1.1 1.1	3.6 3.6	1.1 1.1	2.0 2.0	3.3 3.3	1.1 1.1	3.7 3.7	ns ns	Figs. 6, 7, 8	

AC WAVEFORMS

Gate

TEST CIRCUITS AND WAVEFORMS

Figure 8. Input Pulse Definition

500ns

2.0 ±0.2ns

2.0 ± 0.2ns

1MHz

10K ECL

800mVp-p

Signetics

ECL Products

DESCRIPTION

The 10106 is a Triple 4-3-3 Input NOR Gate. All unused inputs can be left open due to integrated pull-down resistors which avoid the need for a supply voltage.

10106 Gate

Triple 4-3-3 Input NOR Gate Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (I _{EE})
10106	2.0ns	17mA

ORDERING CODE

PACKAGES	$\begin{array}{l} \mbox{COMMERCIAL RANGE} \\ \mbox{V}_{CC1} = \mbox{V}_{CC2} = \mbox{GND}; \ \mbox{V}_{EE} = -5.2 \mbox{V} \\ \mbox{T}_{A} = -30^{\circ} \mbox{C} \ \ \mbox{to} \ \ + 85^{\circ} \mbox{C} \end{array}$
Plastic DIP	10106N
Ceramic DIP	10106F

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₉	Data Inputs
$\overline{Q}_0 - \overline{Q}_2$	Data Outputs

10106

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	10K ECL	UNIT	
VEE	Supply voltage	-8.0	V	
VIN	Input voltage (VIN should never be mo	re negative than V _{EE})	0 to V _{EE}	v
IO	Output current		-50	mA
Ts	Storage temperature		-55 to +150	°C
-		Ceramic package	+ 165	°C
TJ	Maximum junction temperature	+ 150	°C	

DC OPERATING CONDITIONS

	PARAMETER						
V _{CC1} , V _{CC2}	Circuit ground		0	0	0	V	
V _{EE}	Supply voltage (negative)			-5.2		v	
		$T_A = -30^{\circ}C$			-890	mV	
VIH	HIGH level input voltage	$T_A = +25^{\circ}C$			-810	mV	
		$T_A = +85^{\circ}C$			-700	mV	
	HIGH level input threshold voltage	$T_A = -30^{\circ}C$	-1205			mV	
VIHT		T _A = + 25°C	-1105			mV	
		T _A = +85°C	-1035			mV	
		$T_A = -30^{\circ}C$			-1500	mV	
VILT	LOW level input threshold voltage	$T_A = +25^{\circ}C$			-1475	mV	
		T _A = +85°C			-1440	mV	
		$T_A = -30^{\circ}C$	-1890			mV	
VIL	LOW level input voltage	$T_A = +25^{\circ}C$	-1850			mV	
		T _A = +85°C	-1825			mV	
T _A	Operating ambient temperature		-30	+ 25	+ 85	°C	

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

10106

	PARAMETER		MIN	TYP	MAX	UNIT	TEST CONDITIONS ²
		T _A = -30°C	-1060		-890	mV	
V _{OH}	HIGH level output voltage	T _A = +25°C	-960		-810	mV	Apply V _{lmin} to all inputs.
	culput ronago	T _A = +85°C	-890	1.1	-700	mV	
	HIGH level	T _A = -30°C	-1080			mV	
VOHT	output threshold	T _A = +25°C	-980			mV	Apply V _{ILT} to each input, one at a time, with V _{ILmin} applied to all other inputs.
	voltage	T _A = +85°C	-910			mV	
	LOW level	T _A = -30°C			-1655	mV	
V _{OLT}	output threshold	T _A = +25°C			-1630	mV	Apply V _{IHT} to each input, one at a time, with V _{ILmin} applied to all other inputs.
	voltage	T _A = +85°C			-1595	mV	
		$T_A = -30^{\circ}C$	- 1890		-1675	mV	
V _{OL}	LOW level output voltage	T _A = +25°C	-1850		-1650	mV	Apply V _{IHmax} to all inputs.
	oulput voltage	T _A = +85°C	-1825		-1615	mV	
		$T_A = -30^{\circ}C$	1.		425	μA	and the second secon
l _{iH}	HIGH level input current	$T_A = +25^{\circ}C$	1		265	μA	Apply V _{IHmax} to each input under test, one at a time, with V _{ILmin} applied to all other inputs.
	current	T _A = +85°C			265	μA	
		T _A = -30°C	0.5			μA	
Ι _{ΙL}	LOW level input current	$T_A = +25^{\circ}C$	0.5			μA	Apply V _{ILmin} to each input under test, one at a time, with V _{ILmax} applied to all other inputs.
	current	T _A = +85°C	0.3			μA	with Virimax applied to all other inputs.
		T _A = -30°C			23	mA	
-I _{EE}	V _{EE} supply current	T _A = +25°C		17	21	mA	
	Guilent	T _A = +85°C			23	mA	
$rac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation			0.016		v/v	
$\frac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	T _A = +25°C		0.250		v/v	
ΔV_{BB}	Reference bias voltage compensation			0.148		v/v	

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to $+85^{\circ}C$, output loading with 50Ω to $-2.0V \pm 0.010V$ unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.
 The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 5.

Gate

Figure 5. Transfer Characteristics

AC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = +2.0V \pm 0.010V$, $V_{EE} = -3.2 \pm 0.010V$

PARAMETER	$T_A = -30^{\circ}C \qquad T_A = +25^{\circ}C$			°C	T _A = -	+ 85°C		TEAT CONDITIONS	
PARAMETER	Min	Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} Propagation delay t _{PHL} D _n to Q _n	1.0 1.0	3.1 3.1	1.0 1.0	2.0 2.0	2.9 2.9	1.0 1.0	3.3 3.3	ns ns	Figs. 6, 7, 8
t_{TLH} Transition time t_{THL} 20% to 80%, 80% to 20%	1.1 1.1	3.6 3.6	1.1 1.1	2.0 2.0	3.3 3.3	1.1 1.1	3.7 3.7	ns ns	Figs. 6, 7, 8

AC WAVEFORMS

Gate

TEST CIRCUITS AND WAVEFORMS

NOTES:

- 1. $V_{CC1} = V_{CC2} = + 2V \pm 0.010V$, $V_{EE} = -3.2V \pm 0.010V$
- 2. Decoupling 0.1μ F and 25μ F from GND to V_{CC}. 0.01 μ F and 25μ F from GND to V_{EE}. (0.01 and 0.1μ F capacitors should be NPO Ceramic or MLC type). Decoupling capacitors should be placed as close as physically possible to the DUT and lead length should be kept to less than 1/4 inch (6mm).
- З. All unused inputs should be connected to either HIGH or LOW state consistent with the LOGIC function required
- 4. All unused outputs are loaded with 50Ω to GND. 4. All unused outputs are loaded with 502 to GNU. 5. L₁ and L₂ are equal length 50Ω impedance lines. L₃, the distance from the DUT pin to the junction of the cable from the Pulse Generator and the cable to the Scope, should not exceed 1/4 inch (6mm).
 6. R_T = 50Ω terminator internal to Scope.
- 7. The unmatched wire stub between coaxial cable and The diffraction will stud between Coaxia cable and pins under test must be less than 1/4 inch (6mm) long for proper test.
 C_L = Fixture and stray capacitance ≤ 3pF.
- Any unterminated stubs connected anywhere along the transmission line between the Pulse Generator and the DUT or between the DUT and the Scope and the DD1 or between the DD1 and the Scope should not exceed 1/4 inch (6mm) in length (refer to section on AC setup procedure).
 10. All 50Ω resistors should have tolerance of ± 1% or
- better.

Signetics

ECL Products

DESCRIPTION

The 10107 is a three gate array designed to provide the positive Exclusive-OR and NOR functions. All unused inputs can be left open due to pull-down resistors which avoid the need for a supply voltage.

10107 Gate

Triple 2-Input Exclusive-OR/Exclusive-NOR Gate Product Specification

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})			
10107	2.8 ns	22mA			

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -5.2V$ $T_A = -30^{\circ}C$ to $+85^{\circ}C$
Plastic DIP	10107N
Ceramic DIP	10107F

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₅	Data Inputs
Q ₁ , Q ₃ , Q ₅	Data Outputs (OR)
$\overline{Q}_0, \overline{Q}_2, \overline{Q}_4$	Data Outputs (NOR)

PIN CONFIGURATION LOGIC SYMBOL 16 11 CC1 /cc2 ā, 16 Vcc1 Vcc2 1 Q0 [2 Q1 3 15 Ds 14 D4 Q1 3 ā2 D₀ 4 13 Q5 11 9 Q3 10 12 Q4 D1 5 11 Q2 NC 6 Q4 12 D2 7 10 Q3 15 Q5 13 VEE 8 9 D3 VEE CD084909 8 LD05240S Figure 1 Figure 2

January 30, 1986

C.

W.A.C.

Gate

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature

range.)

	PARAMETER	10K ECL	UNIT	
V _{EE}	Supply voltage	-8.0	V	
V _{IN}	Input voltage (VIN should never be more negative th	0 to V _{EE}	V	
lo	Output current		-50	mA
Ts	Storage temperature		-55 to +150	°C
	Manimum in the Annual state	Ceramic package	+ 165	°C
ال	Maximum junction temperature	+ 150	°C	

DC OPERATING CONDITIONS

	PARAMETER	Min	Nom	Max	UNIT			
V _{CC1} , V _{CC2}	Circuit ground		0	0	0	V		
V _{EE}	Supply voltage (negative)			-5.2		V		
		T _A = -30°C			-890	mV		
VIH	HIGH level input voltage	T _A = + 25°C			-810	mV		
		T _A = +85°C			-700	mV		
	HIGH level input threshold voltage	T _A = -30°C	-1205			mV		
VIHT		T _A = + 25°C	-1105			mV		
		T _A = +85°C	-1035			mV		
		T _A = -30°C			-1500	mV		
VILT	LOW level input threshold voltage	T _A = +25°C			-1475	mV		
		T _A = +85°C			-1440	mV		
		T _A = -30°C	-1890			mV		
VIL	LOW level input voltage	T _A = + 25°C	-1850			mV		
		T _A = +85°C	-1825			mV		
T _A	Operating ambient temperature		-30	+ 25	+85	°C		

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

Gate

	ECTRIC		ARACIERISI					5.2V ± 0.010V, $T_A = -30^{\circ}$ C to + 85°C, output loading with 50 Ω herwise specified ^{1,3}
	PA	RAMETE	R	MIN	ТҮР	МАХ	UNIT	TEST CONDITIONS ²
			T _A = -30°C	-1060		-890	mV	For \overline{Q}_n outputs, apply V_{ILmin} to all inputs. For Q_n outputs, apply V_{IHmax} to each input (D ₁ , D ₂ , D ₅),
V _{OH}		IIGH level utput voltage	T _A = +25°C	-960		-810	mV	one at a time, with V_{ILmin} applied to all other inputs. For Q_n outputs apply V_{IHmax} to each input (D ₀ , D ₃ , D ₄),
			T _A = +85°C	-890		-700	mV	one at a time, with V_{ILmin} applied to all other inputs. For \overline{Q}_n outputs, apply V_{IHmax} to all inputs.
	HIGH lev	vel	T _A = -30°C	-1080			mV	For Q_n outputs, apply V_{IHT} to one gate input with V_{ILmin}
VOHT	output th		$T_A = +25^{\circ}C$	-980			mV	applied to the other gate input. For \overline{Q}_n outputs, apply V _{IHT} to one gate input with V _{ILmax}
V	voltage		$T_A = +85^{\circ}C$	-910			mV	applied to the other gate input.
	LOW lev	rel	$T_A = -30^{\circ}C$			-1655	mV	For \mathbf{Q}_n outputs, apply V_{ILT} to one gate input with V_{ILmin}
VOLT		1	T _A = + 25°C			-1630	mV	applied to the other gate input. For \overline{Q}_n outputs, apply V _{IHT} to one gate input with V _{ILmin}
	voltage		T _A = +85°C			-1595	mV	applied to the other gate input.
			T _A = -30°C	-1890		- 1675	mV	For Q_n outputs, apply V _{ILmin} to all inputs. For \overline{Q}_n outputs, apply V _{II-max} to each input (D ₁ , D ₂ , D ₅),
Voi	LOW lev		T _A = +25°C	-1850	1.5	- 1650	mV	one at a time, with V_{ILmin} applied to all other inputs. For \overline{Q}_n outputs apply V_{IHmax} to each input (D ₀ , D ₃ , I
			T _A = +85°C	-1825		-1615	mV	one at a time, with V_{ILmin} applied to all other inputs. For Q_n outputs, apply V_{IHmax} to all inputs.
		D ₀ ,	T _A = -30°C			425	μA	
	HIGH	D ₃ , D ₄	$T_A = -25^{\circ}C$			265	μA	Apply V _{IHmax} to each input under test, one at a time, with V _{ILmin} applied to all other inputs.
t	level	Inputs	$T_A = +25^{\circ}C$			265	μA	
ίH	input current	D ₁ ,	$T_A = +30^{\circ}C$	A		350	μA	
	current	D ₂ , D ₅	$T_A = +25^{\circ}C$			220	μA	Apply V _{IHmax} to each input under test, one at a time, with V _{ILmin} applied to all other inputs.
			T _A = +85°C			220	μA	
			$T_A = -30^{\circ}C$	0.5			μA	
hL.	LOW lev current	el input	T _A = +25°C	0.5			μA	Apply V_{ILmin} to each input under test, one at a time, with V_{IHmax} applied to all other inputs.
	current		T _A = +85°C	0.3			μA	
			$T_A = -30^{\circ}C$			31	mA	
-I _{EE}	V _{EE} supplications of the second sec	ply	$T_A = +25^{\circ}C$			28	mA	Apply V_{1Hmax} to D_1 , D_2 , D_5 .
	ourient		$T_A = +85^{\circ}C$			31	mA	
$\frac{\Delta V_{OH}}{\Delta V_{EE}}$	output voitade				0.016		v/v	
$\frac{\Delta V_{OL}}{\Delta V_{EE}}$			T _A = + 25°C		0.250		v/v	
$\frac{\Delta V_{BB}}{\Delta V_{EE}}$	Reference voltage compense				0.148		v/v	

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to $\pm 85^{\circ}C$, output loading with 50Ω

NOTES:

1. The specified limits represent the ''worst case'' value for the parameter. Since these ''worst case'' values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

2. Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.

3. The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 5.

6

Gate

AC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = +2V \pm 0.010V$, $V_{EE} = -3.2V \pm 0.010V$

		T _A = -30°C		T _A = + 25°C			T _A = +85°C			
PARAMETER	Min	Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS	
t_{PLH} Propagation delay t_{PHL} D _n to Q _n , \overline{Q}_n	1.1 1.1	3.8 3.8	1.1 1.1	2.8 2.8	3.7 3.7	1.1 1.1	4.0 4.0	ns ns	Figs. 6, 7, 8	
t_{TLH} Transition time t_{THL} 20% to 80%, 80% to 20%	1.1 1.1	3.5 3.5	1.1 1.1	2.5 2.5	3.5 3.5	1.1 1.1	3.8 3.8	ns ns	Figs. 6, 7, 8	

AC WAVEFORMS

Gate

TEST CIRCUITS AND WAVEFORMS

Signetics

ECL Products

DESCRIPTION

The 10108 is a Dual AND/NAND Gate. All unused inputs can be left open due to integrated pull-down resistors which avoid the need for a supply voltage.

10108 Gate

Dual 4-Input AND/NAND Gate Product Specification

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT					
10108	AND output 2.3ns	28mA					
	NAND output 2.8ns	2811A					

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -5.2V$ $T_A = -30^{\circ}C$ to $+85^{\circ}C$
Plastic DIP	10108N
Ceramic DIP	10108F

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₇	Data Inputs
Q ₀ , Q ₂	Data Outputs (AND)
$\overline{Q}_1, \overline{Q}_3$	Data Outputs (NAND)

PIN CONFIGURATION LOGIC SYMBOL 16 V_{CC2} /cci 16 Vcc2 Vcci 1 15] Q2 Q, Q0 2 ā ā1 3 14 Q3 13 D7 D₀ 4 12 D6 D1 5 11 D5 D₂ 6 Q2 15 ã3 10 D4 14 D3 7 9 NC VEE 8 VEE CD08500S 8 LD05470S Figure 1 Figure 2

853-0644 82177

10108

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	10K ECL	UNIT		
V _{EE}	Supply voltage	-8.0	V		
V _{IN}	Input voltage (VIN should never be more negative that	n V _{EE})	0 to V _{EE}		
lo	Output current		-50	mA	
Ts	Storage temperature	-55 to +150	°C		
-	Maximum inaction temperature	Ceramic package	+ 165	°C	
ان	Maximum junction temperature	Plastic package	+ 150	°C	

DC OPERATING CONDITIONS

			UNIT				
	PARAMETER						
V _{CC1} , V _{CC2}	Circuit ground	0	0	0	V		
V _{EE}	Supply voltage (negative)			-5.2		v	
		T _A = -30°C			-890	mV	
VIH	HIGH level input voltage	T _A = + 25°C			-810	mV	
		T _A = +85°C			-700	mV	
		T _A = -30°C	-1205			mV	
VIHT	HIGH level input threshold voltage	T _A = + 25°C	-1105			mV	
		T _A = +85°C	-1035			mV	
		T _A = -30°C			-1500	mV	
VILT	LOW level input threshold voltage	T _A = +25°C			-1475	mV	
		T _A = +85°C			-1440	mV	
		$T_A = -30^{\circ}C$	-1890			mV	
VIL	LOW level input voltage	T _A = +25°C	-1850			mV	
		T _A = +85°C	-1825			mV	
T _A	Operating ambient temperature		-30	+25	+ 85	°C	

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

10108

PARAMETER			MIN	ТҮР	MAX	UNIT	TEST CONDITIONS ²				
		$T_A = -30^{\circ}C$	- 1060		-890	mV					
VOH	HIGH level output voltage	$T_A = +25^{\circ}C$	-960		-810	mV	For Q_n outputs apply V _{IHmax} to all inputs. For \overline{Q}_n outputs, apply V _{ILmin} to all inputs.				
	oulput voltage	T _A = +85°C	-890		-700	mV	Γ is $\mathbf{G}_{\mathbf{n}}$ outputs, apply $\mathbf{V}_{ \mathbf{L}_{\mathbf{m} \mathbf{n}} }$ to an inputs.				
	HIGH level	$T_A = -30^{\circ}C$	-1080			mV	For Q_n outputs, apply V_{IHT} to each input, one at a time,				
V _{OHT}		$T_A = +25^{\circ}C$	-980			mV	with V_{IHmax} applied to all other inputs. For \overline{Q}_n outputs, apply V_{IIT} to each input, one at a time,				
	voltage	$T_A = +85^{\circ}C$	-910			mV	with V_{IHmax} applied to all other inputs.				
	LOW level	T _A = -30°C			-1655	mV	For Q_n outputs, apply V_{ILT} to each input, one at a time,				
V _{OLT}	output threshold	T _A = + 25°C			-1630	mV	with V_{IHmax} applied to all other inputs. For \overline{Q}_n outputs, apply V_{IHT} to each input, one at a time.				
	voltage	T _A = +85°C			-1595	mV	with V_{IHmax} applied to all other inputs.				
		T _A = -30°C	- 1890		-1675	mV					
VOL	LOW level output voltage	$T_A = +25^{\circ}C$	-1850		- 1650	mV	For Q_n outputs, apply V _{ILmin} to all inputs. For \overline{Q}_n outputs, apply V _{ILmax} to all inputs.				
	ouput vonage	T _A = +85°C	- 1825		-1615	mV	To an outputs, apply villmax to an inputs.				
	HIGH level input current	$T_A = -30^{\circ}C$			425	μA	Satur Contractor				
IIH		T _A = +25°C			265	μA	Apply V_{IHmax} to input under test, one at a time, with V_{ILmin} applied to all other inputs.				
		T _A = +85°C			265	μA	VILmin applied to all other inputs.				
		$T_A = -30^{\circ}C$	0.5	1.1		μA					
h.	LOW level input current	$T_A = +25^{\circ}C$	0.5			μA	Apply V _{ILmin} to input under test, one at a time, with V _{ILmax} applied to all other inputs.				
		T _A = +85°C	0.3			μA					
		T _A = -30°C			40	mA					
-l _{EE}	V _{EE} supply current	$T_A = +25^{\circ}C$		28	36	mA					
	current .	T _A = +85°C			40	mA					
$rac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation			0.016		v/v					
$\frac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	T _A = +25°C		0.250		V/V					
$\frac{\Delta V_{BB}}{\Delta V_{EE}}$	Reference bias voltage compensation			0.148		V/V					

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to +85°C, output loading with 50 Ω to -2.0V ±0.010V unless otherwise specified¹

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.
 The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying

power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 5.

10108

6

Ļ

AC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = +2.0V \pm 0.010V$, $V_{EE} = -3.2V \pm 0.010V$

PARAMETER	$T_A = -30^{\circ}C$		T _A = + 25°C			T _A = +85°C		UNIT	TEST CONDITIONS	
PARAMETER	Min	Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH} Propagation delay t _{PHL} D _n to Q _n , Q _n	1.4 1.4	4.1 4.1	1.4 1.4	2.3 2.3	3.7 3.7	1.4 1.4	4.1 4.1	ns ns	Figs. 6, 7, 8	
t_{TLH} Transition time t_{THL} 20% to 80%, 80% to 20%	1.1 1.1	4.5 4.5	1.1 1.1	2.8 2.8	4.0 4.0	1.1 1.1	4.5 4.5	ns ns	Figs. 6, 7, 8	

AC WAVEFORMS

10108

TEST CIRCUITS AND WAVEFORMS

NOTES:

- 1. $V_{CC1} = V_{\pm 0.010V}$ $= V_{CC2} = + 2V \pm 0.010V, V_{EE} = -3.2V$
- Decoupling 0.1μ F and 25μ F from GND to V_{CC}, 0.01 μ F and 25μ F from GND to V_{EE}. (0.01 and 0.1μ F capacitors should be NPO Ceramic or MLC type). Decoupling capacitors should be placed as close as
- Decoupling capacitors should be placed as close as physically possible to the DUT and lead length, should be kept to less than 1/4 inch (6mm). All unused inputs should be connected to either HIGH or LOW state consistent with the LOGIC function required.
- 4. All unused outputs are loaded with 50Ω to GND. 4. All unused outputs are loaded with 50Ω to GND. 5. L₁ and L₂ are equal length 50Ω impedance lines. L₃, the distance from the DUT pin to the junction of the cable from the Pulse Generator and the cable to the Scope, should not exceed 1/4 inch (6mm).
 6. R_T = 50Ω terminator internal to Scope.
- The unmatched wire stub between coaxial cable and pins under test must be less than 1/4 inch (6mm) long for proper test. 8. C_L = Fixture and stray capacitance \leq 3pF.
- C₁ = hrkture and stray capacitance < 3pr.
 Any unterminated stubs connected anywhere along the transmission line between the Pulse Generator and the DUT or between the DUT and the Scope should not exceed 1/4 inch (6mm) in length (refer to section on AC setup procedure).
 All 502 resistors should have tolerance of ±1% or
- hotter

Signetics

10109 Gate

Dual 4-5 Input OR/NOR Gate Product Specification

ECL Products

DESCRIPTION

The 10109 is a Dual 4-5 Input OR/NOR Gate. All unused inputs can be left open due to integrated pull-down resistors which avoid the need for a supply voltage.

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
10109	2.0ns	11mA

ORDERING CODE

PACKAGES	$\begin{array}{l} \mbox{COMMERCIAL RANGE} \\ \mbox{V}_{CC1} = \mbox{V}_{CC2} = \mbox{GND}; \ \mbox{V}_{EE} = -5.2 \mbox{V} \\ \mbox{T}_{A} = -30^{\circ}\mbox{C} \ \mbox{to} \ +85^{\circ}\mbox{C} \end{array}$
Plastic DIP	10109N
Ceramic DIP	10109F

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₈	Data Inputs
Q ₁ , Q ₃	Data Outputs (OR)
$\overline{Q}_0, \ \overline{Q}_2$	Data Outputs (NOR)

LOGIC SYMBOL

6

PIN CONFIGURATION

CC2 Vcc2 1 16 Vcc1 ã, Q1 2 15 Q3 Q 14 Q2 Q0 3 7 13 D8 Do 4 D1 5 12 D7 ō. D₂ 6 11 D6 1011112 14 Q3 15 D3 7 10 D5 D7 13 D8 VEE 8 9 D4 VE CD08510S LD05250S Figure 1 Figure 2

853-0645 82177

10109

10109

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature

range.)

	PARAMETER	10K ECL	UNIT	
V _{EE}	Supply voltage		-8.0	V
V _{IN}	Input voltage (VIN should never be more negative that	n V _{EE})	0 to V _{EE}	V
lo	Output current		-50	mA
Ts	Storage temperature		-55 to +150	°C
	Maximum in ation to an autom	Ceramic package	+ 165	°C
IJ	Maximum junction temperature	Plastic package	+ 150	°C

DC OPERATING CONDITIONS

	PARAMETER					UNIT
V _{CC1} , V _{CC2}	Circuit ground		0	0	0	V
V _{EE}	Supply voltage (negative)			-5.2		V
		$T_A = -30^{\circ}C$			-890	mV
VIH	HIGH level input voltage	T _A = + 25°C			-810	mV
		T _A = +85°C			-700	mV
	HIGH level input threshold voltage	T _A = -30°C	-1205			mV
VIHT		T _A = + 25°C	-1105			mV
		T _A = +85°C	-1035			mV
	LOW level input threshold voltage	T _A = -30°C			-1500	mV
VILT		$T_A = +25^{\circ}C$			-1475	mV
		T _A = +85°C			-1440	mV
	LOW level input voltage	$T_A = -30^{\circ}C$	-1890			mV
V _{IL}		$T_A = +25^{\circ}C$	-1850			mV
		T _A = +85°C	-1825			mV
T _A	Operating ambient temperature	••••••••••••••••••••••••••••••••••••••	-30	+ 25	+ 85	°C

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

10109

	PARAMETE	R	MIN	түр	МАХ	UNIT	TEST CONDITIONS ²
		T _A = -30°C	-1060		-890	mV	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
VOH	HIGH level output voltage	T _A = +25°C	-960		-810	mV	For Q_n outputs, apply V _{IHmax} to all inputs. For \overline{Q}_n outputs, apply V _{ILmin} to all inputs.
	cuput tonago	T _A = +85°C	-890		-700	mV	
	HIGH level	$T_A = -30^{\circ}C$	-1080		mV		For Q_{n} outputs, apply V_{IHT} to each input, one at a time,
VOHT	output threshold	T _A = +25°C	-980		mV		with V_{ILmin} applied to all other inputs. For \overline{Q}_n outputs, apply V_{ILT} to each input, one at a time,
	voltage	T _A = +85°C	-910		mV		with V _{IHmin} applied to all other inputs.
	LOW level	$T_A = -30^{\circ}C$			-1655	mV	For Q_n outputs, apply V_{ILT} to each input, one at a time,
VOLT	output threshold	T _A = +25°C			-1630	mV	with V_{ILmin} applied to all other inputs. For \overline{Q} outputs, apply V_{IHT} to each input, one at a time,
	voltage	T _A = +85°C			-1595	mV	with V_{ILmin} applied to all other inputs.
		T _A = -30°C	-1890		-1675	mV	
V _{OL}	LOW level output voltage	T _A = + 25°C	-1850		-1650	mV	For \overline{Q}_n outputs, apply V _{IHmax} to all inputs. For \overline{Q}_n outputs, apply V _{ILmin} to all inputs.
	output tonago	T _A = +85°C	-1825		-1615	mV	
		T _A = -30°C			425	μA	
Iн	HIGH level input current	T _A = + 25°C			265	μA	Apply V_{IHmax} to input under test, one at a time, with V_{ILmin} applied to all other inputs.
	Junon	T _A = +85°C	1	1. A.	265	μA	
		$T_A = -30^{\circ}C$	0.5			μA	
կլ	LOW level input current	T _A = +25°C	0.5			μA	Apply V_{ILmin} to input under test, one at a time, with V_{IHmax} applied to all other inputs.
		T _A = +85°C	0.3			μA	
		$T_A = -30^{\circ}C$			15	mA	
$-I_{EE}$	V _{EE} supply current	T _A = + 25°C		11	14	mA	
		T _A = +85°C			15	mA	
$rac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation			0.016		v/v	
$rac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	T _A = +25°C		0.250		v/v	
ΔV_{BB}	Reference bias voltage compensation			0.148		v/v	

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to $+85^{\circ}C$, output loading with 50Ω to $-2.0V \pm 0.010V$ unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.
 The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 5.

10109

Gate

AC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = +2.0V \pm 0.010V$, $V_{EE} = -3.2V \pm 0.010V$

DADAMETED		$T_A = -30^{\circ}C$		T _A = + 25°C		T _A = + 85°C			TEAT CONDITIONS
PARAMETER	Min	Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS
t_{PLH} Propagation delay t_{PHL} D _n to Q ₁ , Q ₃	1.0 1.0	3.1 3.1	1.0 1.0	2.0 2.0	2.9 2.9	1.0 1.0	3.3 3.3	ns ns	Figs. 6, 7, 8
t_{PLH} Propagation delay t_{PHL} D_n to \overline{Q}_0 , \overline{Q}_2	1.0 1.0	3.1 3.1	1.0 1.0	2.0 2.0	2.9 2.9	1.0 1.0	3.3 3.3	ns ns	Figs. 6, 7, 8
t _{TLH} Transition time t _{THL} 20% to 80%, 80% to 20%	1.1 1.1	3.6 3.6	1.1 1.1	2.0 2.0	3.3 3.3	1.1 1.1	3.7 3.7	ns ns	Figs. 6, 7, 8

AC WAVEFORMS

10109

Gate

TEST CIRCUITS AND WAVEFORMS

Signetics

ECL Products

DESCRIPTION

The 10110 is a Dual 3-Input/3-Output OR Gate intended to drive up to three transmission lines simultaneously. This feature makes the device particularly useful in clock distribution applications. All unused inputs can be left open due to integrated pull-down resistors which avoid the need for a supply voltage.

10110 Gate

Dual 3-Input/3-Output OR Gate (Line Driver) Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
10110	2.4ns	30mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -5.2V,$ $T_A = -30^{\circ}C$ to $+85^{\circ}C$
Plastic DIP	10110N
Ceramic DIP	10110F

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₅	Data Inputs
Q ₀ – Q ₅	Data Outputs (OR)

LOGIC SYMBOL

PIN CONFIGURATION

16 1 15 Vcc1 Vcc2 16 Vcc1 Vcc2 1 D0 Q0 2 15 V_{CC2} 7 Q1 3 14 Q5 ĥ 13 Q4 Q2 4 12 Q3 Do 5 10 D 11 D5 D1 6 11 D5 0 13 10 D4 D2 7 14 9 D3 VEE 8 CD09170S VEI LD052605 Figure 1 Figure 2

January 30, 1986

853-0646 82177

10110

10110

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	10K ECL	UNIT	
V _{EE}	Supply voltage		-8.0	v
V _{IN}	Input voltage (VIN should never be more negative that	n V _{EE})	0 to V _{EE}	V
lo	Output current		-50	mA
Τ _S	Storage temperature		-55 to +150	°C
Ŧ	Mariana in the tangant	Ceramic package	+ 165	°C
IJ	Maximum junction temperature	Plastic package	+ 150	°C

DC OPERATING CONDITIONS

				UNIT			
	PARAMETER						
V _{CC1} , V _{CC2} , V _{CC3}	Circuit ground		0	0	0	v	
V _{EE}	Supply voltage (negative)			-5.2		v	
		$T_A = -30^{\circ}C$			-890	mV	
VIH	HIGH level input voltage	T _A = +25°C			-810	mV	
		T _A = +85°C			-700	mV	
	HIGH level input threshold voltage	T _A = -30°C	-1205			mV	
VIHT		T _A = + 25°C	-1105			mV	
		T _A = +85°C	-1035			mV	
		T _A = -30°C			-1500	mV	
VILT	LOW level input threshold voltage	T _A = +25°C			-1475	mV	
		T _A = +85°C			-1440	mV	
-		T _A = -30°C	-1890			mV	
VIL	LOW level input voltage	T _A = +25°C	-1850			mV	
		T _A = +85°C	- 1825			mV	
T _A	Operating ambient temperature		-30	+ 25	+ 85	°C	

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

10110

	PARAMETE	ER	MIN	ТҮР	МАХ	UNIT	TEST CONDITIONS ²
		T _A = -30°C	-1060		-890	mV	
V _{OH}	HIGH level	$T_A = +25^{\circ}C$	-960		-810	mV	Apply V _{IHmax} to all inputs.
	output voltage	T _A = +85°C	-890		-700	mV	
		$T_A = -30^{\circ}C$	-1080			mV	
VOHT	HIGH level output threshold voltage	T _A = +25°C	-980			mV	Apply V _{IHT} to each input, one at a time, with V _{ILmin} applied to all other inputs.
	unconoid voitage	T _A = +85°C	-910			mV	
		T _A = -30°C			- 1655	mV	
VOLT	LOW level output threshold voltage	T _A = +25°C			-1630	mV	Apply V _{ILT} to each input, one at a time, with V _{ILmin} applied to all other inputs.
	anconola voltage	T _A = +85°C			- 1595	mV	
		T _A = -30°C	-1890		-1675	mV	
VOL	LOW level	T _A = +25°C	-1850		-1650	mV	Apply V _{ILmin} to all inputs.
	output voltage	T _A = +85°C	-1825		-1615	mV	
		$T_A = -30^{\circ}C$			680	μA	
Чн	HIGH level	$T_A = +25^{\circ}C$	1		425	μA	Apply V _{IHmax} to each input under test, one at a time,
	input current	$T_A = +85^{\circ}C$			425	μA	with V _{ILmin} applied to all other inputs.
		$T_A = -30^{\circ}C$	0.5			μA	
կլ	LOW level	T _A = +25°C	0.5			μA	Apply V _{ILmin} to each input under test, one at a time,
	input current	T _A = +85°C	0.3			μA	with V _{IHmax} applied to all other inputs.
		$T_A = -30^{\circ}C$			42	mA	
-I _{EE}	V _{EE} supply	T _A = + 25°C	1	30	38	mA	
	current	T _A = +85°C	-		42	mA	1
$\frac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation			0.016		v/v	
$rac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	T _A = +25°C		0.250		v/v	
$\frac{\Delta V_{BB}}{\Delta V_{EE}}$	Reference bias voltage compensation			0.148		v/v	

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to $+85^{\circ}C$, output loading with 50Ω to $-2.0V \pm 0.010V$ unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.
 The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 5.

10110

Gate

AC ELECTRICAL CHARACTERISTICS V_{CC1} = V_{CC2} = + 2V \pm 0.010V, V_{EE} = -3.2V \pm 0.010V

	$T_A = -30^{\circ}C$		T _A = + 25°C		T _A = + 85°C			TEST CONDITIONS	
PARAMETER	Min	Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} Propagation delay	1.4	3.5	1.4	2.4	3.5	1.5	3.8	ns	Figs. 6, 7, 8
t _{PHL} D _n to Q _n	1.4	3.5	1.4	2.4	3.5	1.5	3.8	ns	
t _{TLH} Transition time	1.0	3.5	1.1	2.2	3.5	1.2	3.8	ns	Figs. 6, 7, 8
t _{THL} 20% to 80%, 80% to 20%	1.0	3.5	1.1	2.2	3.5	1.2	3.8	ns	

AC WAVEFORMS

10110

TEST CIRCUITS AND WAVEFORMS

Signetics

ECL Products

DESCRIPTION

The 10111 is a Dual 3-Input/3-Output NOR Gate intended to drive up to three transmission lines simultaneously. The ability to control three parallel lines makes this device particularly useful in clock distribution applications. All unused inputs can be left open due to integrated pull-down resistors which avoid the need for a supply voltage.

10111 Gate

Dual 3-Input/3-Output NOR Gate (Line Driver) Product Specification

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
10111	2.4ns	29mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -5.2V$ $T_A = -30^{\circ}C$ to $+85^{\circ}C$
Plastic DIP	10111N
Ceramic DIP	10111F

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₅	Data Inputs
$\overline{Q}_0 - \overline{Q}_5$	Data Outputs (NOR)

January 30, 1986

853-0647 82177

6

10111

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	·······			
	PARAMETER	10K ECL	UNIT	
VEE	Supply voltage		-8.0	v
VIN	Input voltage (VIN should never be more nega	tive than V _{EE})	0 to V _{EE}	V
lo	Output current		-50	mA
Ts	Storage temperature		-55 to +150	°C
		Ceramic package	+ 165	°C
١J	Maximum junction temperature	Plastic package	+ 150	°C

DC OPERATING CONDITIONS

			UNIT				
	PARAMETER						
V _{CC1} , V _{CC2}	Circuit ground	0	0	0	V		
V _{EE}	Supply voltage (negative)			-5.2		V	
		T _A = -30°C			-890	mV	
VIH	HIGH level input voltage	T _A = + 25°C			-810	mV	
		T _A = +85°C			-700	mV	
		T _A = -30°C	-1205			mV	
VIHT	HIGH level input threshold voltage	$T_A = +25^{\circ}C$	-1105			mV	
		T _A = +85°C	-1035			mV	
		T _A = -30°C			-1500	mV	
VILT	LOW level input threshold voltage	T _A = +25°C			-1475	mV	
		T _A = +85°C			-1440	mV	
		T _A = -30°C	-1890			mV	
VIL	LOW level input voltage	T _A = +25°C	-1850			mV	
		T _A = +85°C	- 1825			mV	
T _A	Operating ambient temperature		-30	+ 25	+ 85	°C	

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

10111

Gate

	PARAMETE	R	MIN	ТҮР	MAX	UNIT	TEST CONDITIONS ²
		$T_A = -30^{\circ}C$	-1060		-890	mV	
V _{OH}	HIGH level	T _A = + 25°C	-960		-810	mV	Apply V _{ILmin} to all inputs.
output voltage	T _A = +85°C	-890		-700	mV		
		T _A = -30°C	-1080			mV	
Vонт	HIGH level output threshold voltage	T _A = + 25°C	-980	-		mV	Apply V_{ILT} to each input, one at a time, with V_{ILmin} applied to all other inputs.
	threshold voltage	T _A = +85°C	-910			mV	
		T _A = -30°C			- 1655	mV	
V _{OLT}	LOW level output threshold voltage	T _A = +25°C			- 1630	mV	Apply V_{IHT} to each input, one at a time, with V_{ILmin} applied to all other inputs.
	anoshola voltago	T _A = +85°C			- 1595	mV	
		$T_A = -30^{\circ}C$	-1890		-1675	mV	
V _{OL}	LOW level	T _A = + 25°C	-1850		- 1650	mV	Apply V _{IHmax} to all inputs.
output voltage	T _A = +85°C	-1825		-1615	mV		
	$T_A = -30^{\circ}C$			680	μA		
hн	HIGH level	T _A = + 25°C			425	μA	Apply V _{IHmax} to each input under test, one at a time,
	input current	T _A = +85°C			425	μA	with V _{ILmin} applied to all other inputs.
		$T_A = -30^{\circ}C$	0.5			μA	
Ι _Ι Γ	LOW level	T _A = +25°C	0.5			μA	Apply V _{ILmin} to each input under test, one at a time,
	input current	T _A = +85°C	0.3			μA	with V _{IHmax} applied to all other inputs.
		T _A = -30°C			42	mA	
-I _{EE}	V _{EE} supply	T _A = + 25°C		29	38	mA	
	current	T _A = +85°C			42	mA	
$\frac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation			0.016		v/v	
ΔV _{OL} ΔV _{EE}	LOW level output voltage compensation	T _A = +25°C		0.250		v/v	
ΔV _{BB} ΔV _{EE}	Reference bias voltage compensation			0.148		v/v	

$\label{eq:cct} \begin{array}{l} \textbf{DC ELECTRICAL CHARACTERISTICS } V_{CC1} = V_{CC2} = \text{GND}, \ V_{EE} = -5.2V \pm 0.010V, \ T_A = -30^\circ\text{C} \ \text{to} + 85^\circ\text{C}, \ \text{output loading with} \ 50\Omega \ \text{to} \ -2.0V \pm 0.010V \ \text{unless otherwise specified}^{1,3} \end{array}$

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing,
 The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 5.

10111

6

DADAMETER	$T_A = -30^{\circ}C$		T _A = + 25°C		T _A = + 85°C			TEAT CONDITIONS		
PARAMETER	Min	Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH} Propagation delay t _{PHL} D _n to Q _n	1.4 1.4	3.5 3.5	1.4 1.4	2.4 2.4	3.5 3.5	1.5 1.5	3.8 3.8	ns ns	Figs. 6, 7, 8	
t_{TLH} Transition time t_{THL} 20% to 80%, 80% to 20%	1.0 1.0	3.5 3.5	1.1 1.1	2.2 2.2	3.5 3.5	1.2 1.2	3.8 3.8	ns ns	Figs. 6, 7, 8	

AC WAVEFORMS

10111

TEST CIRCUITS AND WAVEFORMS

$V_{CC1} = V_{CC2} = +2.0V \pm 0.010V, V_{EE} = -3.2V \pm 0.010V, V_T = GND (0V)$								
Family	Amplitude	Rep Rate	Pulse Width	t _{TLH}	t _{THL}			
10K ECL	800mVp-p	1MHz	500ns	2.0 ± 0.2ns	2.0 ± 0.2ns			

Figure 8. Input Pulse Definition

Signetics

ECL Products

DESCRIPTION

The 10113 is a Quadruple Exclusive-OR Gate with enable input common to all gates. The enable is active in LOW state. A 4-bit comparision function (A = B) can be obtained by wire-ORing the four outputs together. Direct connection to buses is possible thanks to open-emitter outputs. All unused inputs can be left open due to integrated pull-down resistors which avoid the need for a supply voltage.

10113 Gate

Quad Exclusive-OR Gate With Enable Input Product Specification

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
10113	2.6ns	34mA

ORDERING CODE

PACKAGES	$\begin{array}{l} \mbox{COMMERCIAL RANGE} \\ \mbox{V}_{CC1} = \mbox{V}_{CC2} = \mbox{GND}; \ \mbox{V}_{EE} = -5.2 \mbox{V} \\ \mbox{T}_{A} = -30^{\circ} \mbox{C} \ \ \mbox{to} \ \ + 85^{\circ} \mbox{C} \end{array}$
Plastic DIP	10113N
Ceramic DIP	10113F

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₇	Data Inputs
Ē	Enable Input
Q ₀ – Q ₃	Data Outputs

PIN CONFIGURATION LOGIC SYMBOL 16 Vcc Vcc2 ۵ 16 Vcc1 Vcc2 1 Q0 2 15 Q3 Q1 3 14 Q2 Q1 D₀ 4 13 D7 D1 5 12 D6 Q: 14 D₂ 6 11 D5 10 D4 D₃ 7 ٥. 15 13 D. VEE 8 9 Ē CD08520S LD0528 Figure 1 Figure 2

10113

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	10K ECL	UNIT	
V _{EE}	Supply voltage		-8.0	V
V _{IN}	Input voltage (V _{IN} should never be more negative than	0 to V _{EE}	V	
lo	Output current		-50	mA
Τ _S	Storage temperature		-55 to +150	°C
т	Maximum innotion townships	Ceramic package	+ 165	°C
IJ	Maximum junction temperature	Plastic package	+ 150	°C

DC OPERATING CONDITIONS

				10K ECL			
	PARAMETER						
V _{CC1} , V _{CC2}	Circuit ground		0	0	0	V	
V _{EE}	Supply voltage (negative)			-5.2		V	
		$T_A = -30^{\circ}C$			-890	mV	
VIH	HIGH level input voltage	$T_A = +25^{\circ}C$			-810	mV	
		T _A = +85°C			-700	mV	
	HIGH level input threshold voltage	$T_A = -30^{\circ}C$	-1205			mV	
VIHT		$T_A = +25^{\circ}C$	-1105			mV	
		$T_A = +85^{\circ}C$	-1035			mV	
	LOW level input threshold voltage	$T_A = -30^{\circ}C$			-1500	mV	
VILT		$T_A = +25^{\circ}C$			-1475	mV	
		$T_A = +85^{\circ}C$			-1440	mV	
		$T_A = -30^{\circ}C$	-1890			mV	
VIL	LOW level input voltage	$T_A = +25^{\circ}C$	- 1850			mV	
		$T_A = +85^{\circ}C$	- 1825			mV	
T _A	Operating ambient temperature		-30	+25	+ 85	°C	

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

6

,

10113

PARAMETER			MIN	түр	МАХ	UNIT	TEST CONDITIONS ²	
			T _A = -30°C	-1060		-890	mV	
V _{OH} HIGH level output voltage		T _A = + 25°C	-960		-810	mV	Apply V _{ILmin} to enable input and one gate input with	
		onage	T _A = +85°C	-890		-700	mV	V _{IHmax} applied to the other gate input.
HIGH level output V _{OHT} threshold voltage		$T_A = -30^{\circ}C$	-1080			mV		
		T _A = + 25°C	-980			mV	Apply V _{IHT} to one gate input with V _{ILmin} applied to the other gate input and enable input.	
		ronago	T _A = +85°C	-910			mV	and onlor gate input and onable input.
V _{OLT} LOW level output threshold voltage		$T_A = -30^{\circ}C$			- 1655	mV		
		T _A = + 25°C			-1630	mV	Apply V _{ILT} to one gate input with V _{ILmin} applied to the other gate input.	
		voltage	T _A = +85°C			-1595	mV	
			$T_A = -30^{\circ}C$	-1890		-1675	mV	
V _{OL} LOW level		$T_A = +25^{\circ}C$	-1850		-1650	mV	Apply V _{ILmin} to all inputs for each output.	
	output v	oltage	T _A = +85°C	-1825		-1615	mV	
			$T_A = -30^{\circ}C$			425	μA	
		D ₀ , D ₃ D ₄ , D ₇	$T_A = +25^{\circ}C$			265	μA	
		inputs	T _A = +85°C			265	μA	Apply V _{IHmax} to each input under test, one at a time,
l _{IH} lev inp	HIGH		$T_A = -30^{\circ}C$		1	350	μA	with V _{ILmin} applied to all other inputs.
	level	D ₁ , D ₂ D ₅ , D ₆	T _A = + 25°C			220	μA	
	input current	inputs	T _A = +85°C			220	μA	1
	current Inpu		T _A = -30°C			870	μA	
			T _A = + 25°C			545	μA	Apply V_{IHmax} to \overline{E} input with V_{ILmin} applied to all other inputs.
		input	T _A = +85°C			545	μA	- inputs.
			$T_A = -30^{\circ}C$	0.5			μA	
կլ	LOW lev		$T_A = +25^{\circ}C$	0.5			μA	Apply VILmin to each input under test, one at time,
	input cur	rent	T _A = +85°C	0.3			μA	with V _{IHmax} applied to all other inputs.
* * * *			$T_A = -30^{\circ}C$			46	mA	
-I _{EE}	V _{EE} sup	oly	$T_A = +25^{\circ}C$		34	42	mA	
	current		$T_{A} = +85^{\circ}C$			46	mA	1
$ \begin{array}{c} \frac{\Delta V_{OH}}{\Delta V_{EE}} & \mbox{HIGH level} \\ \mbox{output voltage} \\ \mbox{compensation} \end{array} \\ \frac{\Delta V_{OL}}{\Delta V_{EE}} & \mbox{LOW level} \\ \mbox{output voltage} \\ \mbox{compensation} \end{array} $		oltage	· · · · · ·		0.016		V/V	
		T _A = +25°C		0.250		V/V		
$\frac{\Delta V_{BB}}{\Delta V_{EE}}$	Reference voltage compense				0.148		V/V	

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to $+85^{\circ}C$, output loading with 50Ω to $-2.0V \pm 0.010V$ unless otherwise specified^{1, 3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.
 The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 5.

6

AC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = +2.0V \pm 0.010V$, $V_{EE} = -3.2V \pm 0.010V$

DADAMETER	T _A = -30°C		T _A = + 25°C		$T_A = +85^{\circ}C$			TEST CONDITIONS		
PARAMETER	Min	Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH} Propagation delay t _{PHL} D _n to Q _n	1.2 1.2	3.8 3.8	1.3 1.3	2.6 2.6	3.7 3.7	1.3 1.3	4.2 4.2	ns ns	Figs. 6, 7, 8	
t _{PLH} Propagation delay t _{PHL} Ē to Q _n	1.3 1.3	4.1 4.1	1.5 1.5	3.4 3.4	4.0 4.0	1.5 1.5	4.6 4.6	ns ns	Figs. 6, 7, 8	
t_{TLH} Transition time t_{THL} 20% to 80%, 80% to 20%	1.3 1.3	3.5 3.5	1.3 1.3	2.5 2.5	3.5 3.5	1.3 1.3	3.5 3.5	ns ns	Figs. 6, 7, 8	

AC WAVEFORMS

Product Specification

10113

Gate

TEST CIRCUITS AND WAVEFORMS

INPUT PULSE REQUIREMENTS $V_{CC1} = V_{CC2} = +2.0V \pm 0.010V, V_{EE} = -3.2V \pm 0.010V, V_{T} = GND (0V)$									
Family	Amplitude	Rep Rate	Pulse Width	t _{TLH}	t _{THL}				
10K ECL	800mVp-p	1MHz	500ns	2.0 ±0.2ns	2.0 ± 0.2ns				
	•	•••••••	••••••••••••••••••••••••••••••••••••••						

Figure 8. Input Pulse Definition

Signetics

ECL Products

DESCRIPTION

The 10114 is a Triple Differential Line Receiver with low-impedance emitterfollower complementary outputs. With translated emitter-follower inputs and an active current source, it features a peak common-mode rejection voltage of ± 1V.

Furthermore, the OR outputs keep a LOW logic level whenever the inputs are left floating. Intended primarily to receive data from balanced twisted-pair lines, this device is also suitable for minicomputers, testing and instrumentation.

It can also be used as a sense amplifier for MOS RAMs as a MOS-to-ECL interface circuit, as a high-speed comparator and, having an internal reference bias voltage (V_{BB}) output, it can operate as a Schmitt trigger.

10114 Line Receiver

Triple Differential Line Receiver Product Specification

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
10114	2.4ns	28mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -5.2V$ $T_A = -30^{\circ}C$ to $+85^{\circ}C$
Plastic DIP	10114N
Ceramic DIP	10114F

PIN DESCRIPTION

PINS	DESCRIPTION
\overline{D}_0 , \overline{D}_2 , \overline{D}_4 ; D ₁ , D ₃ , D ₅	Data Inputs
Q ₁ , Q ₃ , Q ₅	Data Outputs (OR)
$\overline{Q}_0, \overline{Q}_2, \overline{Q}_4$	Data Outputs (NOR)
V _{BB}	Reference Bias Voltage Output

LOGIC SYMBOL

10114

Line Receiver

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	10K ECL	UNIT	
V _{EE}	Supply voltage		-8.0	V
V _{IN}	Input voltage (VIN should never be more negative	than V _{EE})	0 to V _{EE}	V
lo	Output current		-50	mA
Τ _S	Storage temperature		-55 to +150	°C
-		Ceramic package	+ 165	°C
Ij	Maximum junction temperature	Plastic package	+ 150	°C

Line Receiver

10114

6

DC OPERATING CONDITIONS

						UNIT
	PARAMETER					
V _{CC1} , V _{CC2}	Circuit Ground	0	0	0	V	
V _{EE}	Supply Voltage (Negative)			-5.2		V
		$T_A = -30^{\circ}C$			-890	mV
VIH	HIGH level input voltage	T _A = + 25°C			-810	mV
		T _A = +85°C			-700	mV
	HIGH level input threshold voltage	$T_A = -30^{\circ}C$	-1205			mV
· VIHT		T _A = + 25°C	-1105			mV
		T _A = +85°C	-1035			mV
		T _A = -30°C			-1500	mV
VILT	LOW level input threshold voltage	T _A = +25°C	}		-1475	mV
		T _A = +85°C			-1440	mV
		T _A = -30°C	-1890			mV
VIL	LOW level input voltage	T _A = +25°C	- 1850			mV
		T _A = +85°C	- 1825			mV
T _A	Operating ambient temperature		-30	+ 25	+ 85	°C

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

DC OPERATING CONDITIONS FOR COMMON-MODE REJECTION TEST V_{CC1} = V_{CC2} = GND, V_{EE} = $-5.2V \pm 0.010V$

	PARAMETER				10K ECL			
	PARAMETER					UNIT		
		T _A = -30°C			+110	mV		
VIHH	V _{IHmax} + 1.0V	$T_A = +25^{\circ}C$			+ 190	mV		
		$T_A = +85^{\circ}C$			+ 300	mV		
		$T_A = -30^{\circ}C$			-1890	mV		
VIHL	V _{IHmax} – 1.0V	$T_A = +25^{\circ}C$			-1810	mV		
		T _A = +85°C			-1700	mV		
		T _A = -30°C	-890			mV		
VILH	V _{ILmin} + 1.0V	T _A = + 25°C	-850			mV		
		T _A = +85°C	-825			mV		
		T _A = -30°C	-2890			mV		
VILL	V _{ILmin} – 1.0V	T _A = + 25°C	-2850			mV		
		T _A = +85°C	-2825			mV		

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

Line Receiver

10114

	PARAMETER	2	MIN	ТҮР	MAX	UNIT	TEST CONDITIONS ²
		T _A = -30°C	-1060		-890	mV	For \overline{Q}_n outputs, apply V _{IHmax} to each inverting input, one at a time, with V _{ILmin} applied to all other inverting inputs and V _{BB} applied to all non-inverting
V _{OH}	HIGH level output voltage	T _A = +25°C	-960		-810	mV	inputs. For Q_{n} outputs, apply V_{ILmin} to each inverting input, one at a time, with V_{BB} applied to all non-inverting
		T _A = +85°C	-890		-700	mV	inputs and with V _{IHmax} applied to all other inverting inputs. (Refer to Fig. 8.)
		T _A = -30°C	- 1080			mV	For \overline{Q}_n outputs, apply V _{IHT} to each inverting input, one at a time, with V _{ILmin} applied to allother inverting inputs and V _{BB} applied to all non-inverting inputs.
V _{OHT}	HIGH level output threshold voltage	T _A = +25°C	-980			mν	For Q_n outputs, apply V_{ILT} to each inverting input, one at a time, with V_{BB} applied to all non-inverting
		T _A = +85°C	-910			mV	inputs and with V _{IHmax} applied to all other inverting inputs. (Refer to Fig. 8.)
	LOW level output threshold voltage	$T_A = -30^{\circ}C$			-1655	mV	For \overline{Q}_n outputs, apply V_{ILT} to each inverting input, one at a time, with V_{BB} applied to all non-inverting
V _{OLT}		T _A = + 25°C			-1630	mV	piputs and V_{IHmax} applied to all other-inverting inputs. For Q_n outputs, apply V_{IHT} to each inverting input, one at a time, with V_{BB} applied to all non-inverting
		T _A = +85°C			-1595	mV	inputs and V_{ILmin} applied to all other inverting inputs. (Refer to Fig. 8.)
		T _A = -30°C	-1890		-1675	mV	For \overline{Q}_n outputs, apply V_{ILmin} to each inverting input, one at a time, with V_{BB} applied to all non-inverting
V_{OL}	LOW level output voltage	T _A = + 25°C	-1850		-1650	mV	inputs and V _{IHmax} applied to all other inverting inputs. For Q_n outputs, apply V _{IHmax} to each inverting input, one at a time, with V _{BB} applied to all non-inverting
	· · · ·	T _A = +85°C	-1825		-1615	mV	inputs and V_{ILmin} applied to all other inverting inputs. (Refer to Fig. 8.)
		T _A = -30°C			70	μA	Apply V _{IHmax} to each inverting input under test one at a time, with V _{ILmin} applied to all other inverting inputs and V _{BB} applied to all non-
I _{IH}	HIGH level input current	T _A = +25°C			45	μA	inverting inputs. Apply V_{IHmax} to each non- inverting input under test, one at a time, with V_{ILmin} applied to all other non-inverting
		T _A = +85°C			45	μA	inputs and V_{BB} applied to all inverting inputs. (Refer to Fig. 8.)
		$T_A = -30^{\circ}C$			39	mA	
-I _{EE}	V _{EE} supply current	T _A = + 25°C		28	35	mA	Apply V _{ILmin} to all inverting inputs. Apply V _{BB} to all non-inverting inputs.
	supply current	T _A = +85°C			39	mA	Apply the to all non-inverting inputs.

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V$, $\pm 0.010V$, $T_A = -30^{\circ}C$ to $+85^{\circ}C$, output loading with 50Ω to $-2.0V \pm 0.010V$, unless otherwise specified^{1,3}

10114

Line Receiver

	PARAMETER	}	MIN	ТҮР	MAX	UNIT	TEST CONDITIONS ²
$rac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation			0.016		v/v	
$\frac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	T _A = +25°C		0.250		v/v	
$\frac{\Delta V_{BB}}{\Delta V_{EE}}$	voltano			0.148		v/v	
		$T_A = -30^{\circ}C$	-1420		-1280	mV	
VBB	Reference voltage	T _A = + 25°C	-1350	-1290	-1230	mV	All inverting or all non-inverting input pins are
		T _A = +85°C	-1295		-1150	mV	tied to the V _{BB} pin during measurement.
	HIGH level	T _A = -30°C	-1060		-1280	mV	For \overline{Q}_n outputs, apply V_{IHH} to inverting inputs and
V _{OH}	output voltage for Common-Mode	T _A = + 25°C	-960		-810	mV	V_{ILH} to non-inverting inputs. For Q _n outputs, apply V _{ILL} to inverting inputs and
	Rejection Test	T _A = +85°C	-890		-700	mV	V _{IHL} to non-inverting inputs.
	LOW level	T _A = -30°C	-1890		-1675	mV	For \overline{Q}_n outputs, apply V_{ILH} to inverting inputs and
VOL	output voltage for Common-Mode	$T_A = +25^{\circ}C$	-1850		-1650	mV	V _{IHH} to non-inverting inputs. For Q _n outputs, apply V _{IHL} to inverting inputs and
	Rejection Test	T _A = +85°C	-1825		-1615	mV	V _{ILL} to non-inverting inputs.
	Input leakage current	$T_A = -30^{\circ}C$			1.5	μA	Apply V_{EE} to each inverting input under test, one at
-I _{CBO}		T _A = + 25°C			1.0	μA	a time, with V _{ILmin} applied to all other inverting inputs and V _{BB} applied to all non-inverting inputs
		T _A = +85°C			1.0	μA	(Refer to Fig. 8.)

DC ELECTRICAL CHARACTERISTICS (Continued)

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3, Testing, DC Testing.
 The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 5.

Line Receiver

10114

AC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = +2.0V \pm 0.010V$, $V_{EE} = -3.2V \pm 0.010V$

DADAMETED		T _A = -30°C		$T_A = +25^{\circ}C$		T _A = +85°C					
PARAMETER	Min	Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS		
t _{PLH} Propagation delay	1.0	4.4	1.0	2.4	4.0	0.9	4.3	ns	Figs. 6, 7, 9		
t _{PHL} D _n to Q _n	1.0	4.4	1.0	2.4	4.0	0.9	4.3	ns			
t _{PLH} Propagation delay	1.0	4.4	1.0	2.4	4.0	0.9	4.3	ns	Figs. 6, 7, 9		
t _{PHL} D _n to Q _n	1.0	4.4	1.0	2.4	4.0	0.9	4.3	ns			
t _{TLH} Transition time	1.5	3.8	1.5	2.1	3.5	1.5	3.7	ns	Figs. 6, 7, 9		
t _{THL} 20% to 80%, 80% to 20%	1.5	3.8	1.5	2.1	3.5	1.5	3.7	ns			

AC WAVEFORMS

10114

Line Receiver

TEST CIRCUITS AND WAVEFORMS

6

Product Specification

Line Receiver

10114

Signetics

ECL Products

DESCRIPTION

The 10115 is a Quad Differential Line Receiver intended for use in sensing signals over long lines. The base Reference Bias Voltage (V_{BB}) makes the device useful in other applications where a stable reference voltage is necessary. It features a peak common-mode rejection voltage of \pm 1V.

One input from any unused amplifier in a package must be tied to $\ensuremath{\mathsf{V}}_{\text{BB}}.$

10115 Line Receiver

Quad Differential Line Receiver Product Specification

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
10115	2.0ns	18mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND, V_{EE} = -5.2V$ $T_A = -30^{\circ}C$ to $+85^{\circ}C$
Plastic DIP	10115N
Ceramic DIP	10115F

PIN DESCRIPTION

PINS	DESCRIPTION
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Data Inputs
V _{BB}	Reference Bias Voltage Output
Q ₀ – Q ₃	Data Outputs

LOGIC SYMBOL

6

PIN CONFIGURATION

January 30, 1986

6-89

853-0650 82177

Line Receiver

10115

Figure 4. Logic Diagram

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	10K ECL	UNIT		
VEE	Supply voltage		-8.0	v	
VIN	Input voltage (VIN should never be more ne	egative than V _{EE})	0 to V _{EE}		
lo	Output current		-50	mA	
Ts	Storage temperature		-55 to +150	°C	
	••	Ceramic package	+ 165	°C	
ال	Maximum junction temperature	Plastic package	+ 150	°C	

Line Receiver

10115

DC OPERATING CONDITIONS

			UNIT					
	PARAMETER							
V _{CC1} , V _{CC2}	Circuit ground		0	0	0	V		
V _{EE}	Supply voltage (negative)			-5.2		v		
		$T_A = -30^{\circ}C$			-890	mV		
VIH	HIGH level input voltage	$T_A = +25^{\circ}C$			-810	mV		
		T _A = +85°C			-700	mV		
	HIGH level input threshold voltage	T _A = -30°C	-1205			mV		
V _{IHT}		$T_A = +25^{\circ}C$	-1105			mV		
		$T_A = +85^{\circ}C$	-1035			mV		
	LOW level input threshold voltage	$T_A = -30^{\circ}C$			-1500	mV		
VILT		T _A = + 25°C			-1475	mV		
		T _A = +85°C			-1440	mV		
	LOW level input voltage	$T_A = -30^{\circ}C$	- 1890			mV		
VIL		T _A = + 25°C	- 1850			mV		
		T _A = +85°C	-1825			mV		
T _A	Operating ambient temperature		-30	+ 25	+ 85	°C		

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

DC OPERATING CONDITIONS FOR COMMON-MODE REJECTION TEST $v_{CC1} = v_{CC2}$ = GND, $v_{EE} = -5.2 \forall \pm 0.010 \forall E = -5.2 \forall E = -5.2$

		10K ECL			UNIT	
	PARAMETER	Min	Nom	Max	UNIT	
		$T_A = -30^{\circ}C$			+110	mV
VIHH	V _{IHmax} + 1.0V	$T_A = +25^{\circ}C$			+ 190	mV
		$T_A = +85^{\circ}C$			+ 300	mV
		$T_{A} = -30^{\circ}C$			-1890	mV
VIHL	V _{IHmax} – 1.0V	$T_A = +25^{\circ}C$			-1810	mV
		$T_A = +85^{\circ}C$			-1700	mV
		$T_A = -30^{\circ}C$	-890			mV
VILH	V _{ILmin} + 1.0V	$T_A = +25^{\circ}C$	-850			mV
		$T_{A} = +85^{\circ}C$	-825			mV
	V _{ILmin} – 1.0V	$T_A = -30^{\circ}C$	-2890			mV
VILL		$T_A = +25^{\circ}C$	-2850			mV
		$T_A = +85^{\circ}C$	-2825			mV

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)
10115

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		PARAMETE	R	MIN	TYP	MAX		TEST CONDITIONS ²			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								Apply V_{ILmin} to each inverting input, one at a time, with			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Vон							applied to all non-inverting inputs. Apply V_{IHmax} to each			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	011	output voltage		-890		-700	mV	all other non-inverting inputs and with V_{BB} applied to all			
$ \begin{array}{ c c c c c } \hline V_{OHT} & \mbox{intrace} V$			T _A = -30°C	- 1080			mV	Apply V_{ILT} to each inverting input, one at a time, with			
$ \frac{1}{V_{OLT}} = \frac{V_{BC}}{V_{OLT}} = \frac{V_{BC}}{V_{OLT}} = \frac{V_{BC}}{V_{OLT}} = \frac{V_{BC}}{V_{OLT}} = \frac{V_{BC}}{V_{OLT}} = \frac{V_{BC}}{V_{OLT}} = \frac{V_{BC}}{V_{CL}} = \frac$	V _{OHT}	output threshold	T _A = +25°C	-980			mV	applied to all non-inverting inputs. Apply V_{IHT} to each			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		voltage	T _A = +85°C	-910			mV	all other non-inverting inputs and with VBB applied to all			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			T _A = -30°C			-1655	mV	Apply VIHT to each inverting input, one at a time, with			
Vol.T_A = +85°C-1595mVall other non-inverting inputs and VgB applied to all invertion inverting inputs. (Refer to Fig. 8)Vol.LOW level output voltage $T_A = -30°C$ -1890-1675mVApply ViHmax to each inverting inputs. and VgB applied to all one-inverting inputs. Apply ViLmin to each on-inverting inputs. (Refer to Fig. 8)I_HHIGH level input current $T_A = +25°C$ -1825-1615mVApply ViHmax to each inverting inputs. Apply ViLmin to each on-inverting inputs. (Refer to Fig. 8)I_HHIGH level input current $T_A = +25°C$ 95 μA Apply ViHmax to each inverting inputs. (Refer to Fig. 8) $T_A = +85°C$ 95 μA Apply ViLmin applied to all one-inverting inputs.Apply User to each inverting inputs. $-1EE$ VEE supply current $T_A = +25°C$ 1826mA $T_A = +25°C$ 1826mAApply ViLmin to all inverting inputs and VgB to all non-inverting inputs. $-1EE$ VEE supply current $T_A = +25°C$ 1826mA ΔV_{OH} HIGH level output voltage $T_A = +25°C$ 29mA ΔV_{OE} LOW level output voltage $T_A = +25°C$ 29mA ΔV_{DE} Reference bias voltage $T_A = +25°C$ 29mA ΔV_{BE} Reference bias voltage $T_A = +25°C$ 29<	V _{OLT}	output threshold	T _A = + 25°C			- 1630	mV				
VOLLOW level output voltageTA = -00° C100° C <td></td> <td>voltage</td> <td>T_A = +85°C</td> <td></td> <td></td> <td>-1595</td> <td>mV</td> <td>all other non-inverting inputs and VBB applied to all</td>		voltage	T _A = +85°C			-1595	mV	all other non-inverting inputs and VBB applied to all			
$ \begin{array}{c} V_{OL} \\ V_{OH} \\ V_{V$			T _A = -30°C	-1890		-1675	mV	Apply V_{IHmax} to each inverting input, one at a time, with V_{ILmin} applied to all other inverting inputs and V_{BB}			
$\frac{T_{A} + 86^{\circ}C}{V_{C}} - \frac{1925}{120} - \frac{1615}{100} \text{ mV} \text{inverting inputs. (Refer to Fig. 8)} \\ \frac{HIGH level input}{\text{current}} \frac{T_{A} = -30^{\circ}C}{T_{A} = +25^{\circ}C} = \frac{150}{95} \mu A Apply V_{\text{HImax}} \text{ to each inverting input under test one a time, with Vl_{Lmin}} applied to all other inverting inputs at V_{BB} applied to all non-inverting inputs. (Refer to Fig. 8) \\ \frac{T_{A} = +25^{\circ}C}{T_{A} = +25^{\circ}C} = \frac{95}{95} \mu A (Refer to Fig. 8) \\ \frac{T_{A} = +25^{\circ}C}{T_{A} = +25^{\circ}C} = \frac{29}{18} \mu A (Refer to Fig. 8) Apply V_{\text{ILmin}} \text{ to all inverting inputs and V}_{BB} \text{ to all non-inverting inputs and V}_{BB} \text{ to all non-inverting inputs and V}_{BB} \text{ to all non inverting inputs.} \\ \frac{\Delta V_{OH}}{\Delta V_{EE}} \frac{HIGH level}{\text{output voltage}} \text{ compensation} T_{A} = +25^{\circ}C 0.250 V/V V/V Apply V_{\text{ILmin}} \text{ to all inverting inputs and V}_{BB} \text{ to all non-inverting inputs.} \\ \frac{\Delta V_{OH}}{\Delta V_{EE}} \frac{COW level}{\text{output voltage}} \text{ compensation} T_{A} = +25^{\circ}C 0.250 V/V V/V Apply V_{\text{ILmin}} \text{ or al non-inverting input pins are tied to V_{VV} All inverting or al non-inverting input pins are tied to V_{BB} \text{ prinduring measurement.} \\ \frac{MV_{BB}}{V_{DH}} \frac{Reference}{\text{voltage}} T_{A} = -30^{\circ}C -1295 -1150 mV V_{B} \text{ prinduring measurement.} T_{A} = +25^{\circ}C -1295 -1150 mV V_{B} \text{ prinduring measurement.} \\ \frac{M_{B}}{V_{OH}} \frac{MIGH level}{\text{output voltage}} T_{A} = -30^{\circ}C -1295 -1150 mV V_{B} \text{ prinduring measurement.} Apply V_{IHH} \text{ to non-inverting inputs and V_{ILH} to inverting inputs and V_{ILH} to inverting inputs and V_{ILH} to inverting inputs.} Apply V_{IHH} \text{ to non-inverting inputs and V_{ILH} to inverting inputs.} Apply V_{IHH} \text{ to non-inverting inputs and V_{ILH} to inverting inputs.} Apply V_{IHH} \text{ to non-inverting inputs and V_{ILH} to inverting inputs.} Apply V_{IHH} \text{ to non-inverting inputs and V_{ILH} to inverting inputs.} Apply V_{IHH} \text{ to non-inverting inputs and V_{ILH} to i$	V _{OL}	1	$T_A = +25^{\circ}C$	- 1850		-1650	mV	applied to all non-inverting inputs. Apply $V_{\rm ILmin}$ to each non-inverting input, one at a time, with $V_{\rm IHmax}$ applied to			
$\begin{array}{c} \label{eq:hermitian} & \begin{tabular}{ c c c c } \hline T_{A} = + 25^{\circ} C & \begin{tabular}{ c c c c c c c c c c $			$T_A = +85^{\circ}C$	-1825		-1615	mV				
$\frac{ A }{ V_{CH} } = \frac{ A }{ V_{CH} } = $			$T_A = -30^{\circ}C$			150	μA	Apply V_{IHmax} to each inverting input under test one at a			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	IIH		T _A = + 25°C			95	μA				
$ \begin{array}{c c c c c c } \hline -I_{EE} & V_{EE} \mbox{ supply} \\ \hline Current & T_A = +25^{\circ}\mbox{C} & 18 & 26 & mA \\ \hline T_A = +85^{\circ}\mbox{C} & 29 & mA \\ \hline T_A = +85^{\circ}\mbox{C} & 29 & mA \\ \hline T_A = +85^{\circ}\mbox{C} & 29 & mA \\ \hline \hline \Delta V_{OH} & Uptu \mbox{ voltage} \\ \hline \Delta V_{EE} & UDW \mbox{ level} \\ \hline output \mbox{ voltage} \\ \hline \Delta V_{EE} & Output \mbox{ voltage} \\ \hline \Delta V_{EE} & Output \mbox{ voltage} \\ \hline \Delta V_{EE} & Voltage \\ \hline Compensation & & & & \\ \hline \Delta V_{EE} & V_{A} = +25^{\circ}\mbox{C} & 0.250 & V/V \\ \hline \Delta V_{EE} & V/V \\ \hline \Delta V_{EE} & Voltage \\ \hline \Delta V_{EE} & Voltage \\ \hline mbox{ compensation } & & & \\ \hline T_A = +25^{\circ}\mbox{C} & -1420 & -1280 & mV \\ \hline T_A = +25^{\circ}\mbox{C} & -1350 & -1290 & -1230 & mV \\ \hline T_A = +25^{\circ}\mbox{C} & -1295 & -1150 & mV \\ \hline T_A = +85^{\circ}\mbox{C} & -1295 & -1150 & mV \\ \hline T_A = +25^{\circ}\mbox{C} & -1060 & -890 & mV \\ \hline T_A = +25^{\circ}\mbox{C} & -960 & -810 & mV \\ \hline T_A = +25^{\circ}\mbox{C} & -960 & -810 & mV \\ \hline \end{array} $		ouriont	$T_A = +85^{\circ}C$			95	μA				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			$T_A = -30^{\circ}C$			29	mA				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-I _{EE}		T _A = + 25°C		18	26	mA	Apply V _{ILmin} to all inverting inputs and V _{BB} to all non-			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		current	T _A = +85°C			29	mA				
$ \frac{\Delta V_{\text{EE}}}{\Delta V_{\text{EE}}} \begin{array}{c} \text{output voltage} \\ \text{compensation} \end{array} \end{array} \begin{array}{c} T_{\text{A}} = +25^{\circ}\text{C} \\ \hline & 0.250 \end{array} \\ \hline & V/V \end{array} \end{array} \begin{array}{c} V/V \\ \hline & V/V \\ \hline & V_{\text{VEE}} \end{array} \begin{array}{c} \text{Reference bias} \\ \text{voltage} \\ \text{compensation} \end{array} \end{array} \begin{array}{c} T_{\text{A}} = +25^{\circ}\text{C} \\ \hline & 0.140 \end{array} \\ \hline & 0.140 \end{array} \\ \hline & V/V \\ \hline & V_{\text{V}} \end{array} \end{array} \begin{array}{c} \text{Reference bias} \\ \hline & v_{\text{outgage}} \\ \hline & v_{\text{outgage}} \end{array} \\ \hline & T_{\text{A}} = -30^{\circ}\text{C} \\ \hline & -1420 \\ \hline & -1280 \end{array} \\ \hline & V_{\text{V}} \end{array} \\ \hline & \begin{array}{c} \text{All inverting or all non-inverting input pins are tied to} \\ \hline & V_{\text{BB}} \end{array} \\ \hline & \begin{array}{c} \text{Reference} \\ \text{voltage} \\ \hline & v_{\text{oltage}} \end{array} \\ \hline & T_{\text{A}} = +25^{\circ}\text{C} \\ \hline & -1295 \end{array} \\ \hline & -1150 \end{array} \\ \hline & \text{mV} \end{array} \\ \hline & \begin{array}{c} \text{All inverting or all non-inverting input pins are tied to} \\ \hline & V_{\text{BB}} \end{array} \\ \hline & \begin{array}{c} \text{HIGH level} \\ \text{output voltage} \\ \text{for Common-} \\ \text{Mode Rejection} \end{array} \\ \hline & T_{\text{A}} = +25^{\circ}\text{C} \end{array} \\ \hline & -960 \end{array} \\ \hline & -810 \end{array} \\ \hline & \text{mV} \end{array} \\ \hline & \begin{array}{c} \text{Apply V}_{\text{IH}} \text{ to non-inverting inputs and V}_{\text{ILH}} \text{ to inverting inputs} \end{array}$		output voltage			0.016		v/v				
$\frac{\Delta V_{BB}}{\Delta V_{EE}} \frac{voltage}{compensation}$ $V_{BB} \frac{Reference}{voltage} \frac{T_A = -30^{\circ}C}{T_A = +25^{\circ}C} \frac{-1420}{-1290} \frac{-1280}{-1290} \frac{mV}{-1230} \frac{MV}{mV}$ $\frac{V_{BB}}{T_A = +85^{\circ}C} \frac{-1350}{-1295} \frac{-1290}{-1150} \frac{-1230}{mV} \frac{mV}{V_{BB}} \frac{MI}{B} inverting or all non-inverting input pins are tied to v_{BB} pin during measurement.$ $\frac{HIGH}{V_{OH}} \frac{V_{OH}}{V_{OH}} \frac{T_A = -30^{\circ}C}{T_A = +25^{\circ}C} \frac{-960}{-960} \frac{-890}{-810} \frac{mV}{mV}$ $\frac{AII}{A} inverting or all non-inverting input pins are tied to v_{BB} pin during measurement.$ $\frac{HIGH}{T_A = -30^{\circ}C} \frac{-1060}{-1060} \frac{-890}{-810} \frac{mV}{mV}$		output voltage	T _A = + 25°C		0.250	-	v/v				
$ \begin{array}{c} V_{BB} \end{array} \begin{array}{c} Reference \\ voltage \end{array} \begin{array}{c} T_A = +25^\circ C & -1350 & -1290 & -1230 & mV \\ \hline T_A = +85^\circ C & -1295 & -1150 & mV \end{array} \end{array} \begin{array}{c} All inverting or all non-inverting input pins are tied to \\ V_{BB} pin during measurement. \end{array} \\ \begin{array}{c} HIGH \ Ievel \\ output \ voltage \\ for \ Common- \\ Mode \ Rejection \end{array} \begin{array}{c} T_A = -30^\circ C & -1060 & -890 & mV \\ \hline T_A = +25^\circ C & -960 & -810 & mV \end{array} \\ \begin{array}{c} Rightarrow \\ T_A = +25^\circ C & -960 & -810 & mV \end{array} \end{array} \\ \begin{array}{c} Apply \ V_{IHH} \ to \ non-inverting \ inputs \ and \ V_{ILH} \ to \ inverting \ inputs \end{array}$		voltage			0.140		v/v				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			T _A = -30°C	-1420		-1280	mV				
$T_{A} = +85^{\circ}C - 1295 - 1150 \text{ mV}$ HIGH level output voltage V_{OH} for Common- Mode Rejection Mode Rejection A spectrum of the term of	V_{BB}		T _A = +25°C	-1350	-1290	-1230	mV	All inverting or all non-inverting input pins are tied to the			
$V_{OH} \begin{array}{c c c c c c c c c c c c c c c c c c c $		voltage	$T_A = +85^{\circ}C$	-1295		-1150	mV				
V_{OH} for Common- Mode Rejection $T_A = +25^{\circ}C$ -960 -810 mV Apply V _{IHH} to non-inverting inputs and V _{ILH} to inverting inputs.			T _A = -30°C	-1060		-890	mV				
	V _{OH}	for Common-	T _A = +25°C	-960		-810	mV	Apply V_{IHH} to non-inverting inputs and V_{ILH} to inverting inputs.			
		•	T _A = +85°C	-890		-700	mV				
LOW level $T_A = -30^{\circ}C$ -1890 -1675 mV			$T_A = -30^{\circ}C$	- 1890		-1675	mV				
V_{OL} for Common- Mode Rejection $T_A = +25^{\circ}C$ -1850 -1650 mV Apply V_{IHH} to inverting inputs and V_{ILH} to non-inverting inputs.	V_{OL}	for Common-	T _A = +25°C	- 1850		-1650	mV	Apply V _{IHH} to inverting inputs and V _{ILH} to non-inverting inputs.			
Test $T_A = +85^{\circ}C$ -1825 -1615 mV		•	T _A = +85°C	-1825		-1615	mV				

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to $+85^{\circ}C$, output loading with 50Ω to $-2.0V \pm 0.010V$ unless otherwise specified^{1,3}

January 30, 1986

10115

DC ELECTRICAL CHARACTERISTICS (Continued)

PARAMET	MIN	ТҮР	MAX	UNIT	TEST CONDITIONS ²	
	$T_A = -30^{\circ}C$			1.5	μA	Apply V _{FF} to each inverting input under test, one at a
-I _{CBO} Input leakage	T _A = +25°C			1.0	μA	time, with VILmin applied to all other inverting inputs and
	T _A = +85°C			1.0	μA	V_{BB} applied to all non-inverting inputs. (Refer to Fig. 8)

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.
 The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 5.

	$T_A = -30^{\circ}C \qquad T_A = +25^{\circ}C$				5°C	T _A = -	+ 85°C		
PARAMETER	Min	Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} Propagation delay t _{PHL} D _n , D _n to Q _n	1.0 1.0	3.1 3.1	1.0 1.0	2.0 2.0	2.9 2.9	1.0 1.0	3.3 3.3	ns	Figs. 6, 7, 9
t _{TLH} Transition time t _{THL} 20% to 80%, 80% to 20%	1.1 1.1	3.6 3.6	1.1 1.1	2.0 2.0	3.3 3.3	1.1 1.1	3.7 3.7	ns	Figs. 6, 7, 9

AC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = +2.0V \pm 0.010V$, $V_{EE} = -3.2V \pm 0.010V$

10115

AC WAVEFORMS

TEST CIRCUITS AND WAVEFORMS

6

Line Receiver

Signetics

10116 Line Receiver

Triple Differential Line Receiver Product Specification

ECL Products

DESCRIPTION

The 10116 is a Triple Differential Line Receiver with low-impedance emitterfollower complementary outputs.

It features a common-mode rejection of $\pm \, 1V.$

Intended primarily to receive data from twisted-pair lines, this device is also suitable for minicomputers, testing and instrumentation. It can also be used as a sense amplifier for MOS RAMs as a MOS-to-ECL interface circuit; as a high-speed comparator and having an internal reference supply voltage (V_{BB}) output, it can operate as a Schmitt Trigger.

One input from any unused amplifer in a package must be tied to $\ensuremath{\mathsf{V}_{\text{BB}}}$

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
10116	2.4ns	17mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND, V_{EE} = -5.2V$ $T_A = -30^{\circ}C$ to $+85^{\circ}C$
Plastic DIP	10116N
Ceramic DIP	10116F

PIN DESCRIPTION

PINS	DESCRIPTION
$\overline{D}_0, \overline{D}_2, \overline{D}_4; D_1, D_3, D_5$	Data Inputs
V _{BB}	Reference Bias Voltage Output
Q ₁ , Q ₃ , Q ₅	Data Outputs (OR)
$\overline{Q}_0, \overline{Q}_2, \overline{Q}_4$	Data Outputs (NOR)

V_{CC2} 1

Q1 3

D0 4

D1 5

Q2 6

Q3 7

VEE 8

LOGIC SYMBOL

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	10K ECL	UNIT	
V _{EE}	Supply voltage		-8.0	V
V _{IN}	Input voltage (VIN should never be more negative	han V _{EE})	0 to V _{EE}	V
lo	Output current		-50	mA
Τ _S	Storage temperature		-55 to +150	°C
T		Ceramic package	+ 165	°C
ТJ	Maximum junction temperature	Plastic package	+ 150	°C

6

10116

DC OPERATING CONDITIONS

				10K ECI	L	UNIT		
	PARAMETER							
V _{CC1} , V _{CC2}	Circuit ground		0	0	0	V		
V _{EE}	Supply voltage (negative)	·		-5.2		v		
		T _A = -30°C			-890	mV		
VIH	HIGH level input voltage	$T_A = +25^{\circ}C$			-810	mV		
		$T_A = +85^{\circ}C$			-700	mV		
		T _A = -30°C	-1205			mV		
VIHT	HIGH level input threshold voltage	T _A = + 25°C	-1105			mV		
		T _A = +85°C	-1035			mV		
		$T_A = -30^{\circ}C$			- 1500	mV		
VILT	LOW level input threshold voltage	$T_A = +25^{\circ}C$			- 1475	mV		
		T _A = +85°C			-1440	mV		
		T _A = -30°C	-1890			mV		
VIL	LOW level input voltage	T _A = +25°C	-1850			mV		
		$T_A = +85^{\circ}C$	-1825			mV		
T _A	Operating ambient temperature		-30	+ 25	+ 85	°C		

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

DC OPERATING CONDITIONS FOR COMMON-MODE REJECTION TEST $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 0.010V$

	PARAMETER	Min	Nom	Max	UNIT	
		$T_A = -30^{\circ}C$			+110	mV
VIHH	V _{IHmax} + 1.0V	T _A = + 25°C			+ 190	mV
		T _A = +85°C		n an An Antar	+ 300	mV
		T _A = -30°C			-1890	mV
VIHL	V _{IHmax} – 1.0V	$T_A = +25^{\circ}C$			-1810	mV
-		T _A = +85°C			-1700	mV
		$T_A = -30^{\circ}C$	-890			mV
VILH	V _{ILmin} + 1.0V	T _A = +25°C	-850			mV
		T _A = +85°C	-825			mV
		T _A = -30°C	-2890			mV
VILL	V _{ILmin} – 1.0V	$T_A = +25^{\circ}C$	-2850			mV
		T _A = +85°C	-2825			mV

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

10116

with 50 Ω to -2.0V ± 0.010V, unless otherwise specified ^{1,3}										
	PARAMETER	l 	MIN	ТҮР	MAX	UNIT	TEST CONDITIONS ²			
		T _A = -30°C	-1060		-890	mV	For Q_n outputs, apply V_{ILmin} to each inverting input, one at a time, with V_{IHmax} applied to all other inverting inputs and V_{BB} applied to all			
V _{OH}	HIGH level output voltage	T _A = +25°C	-960		-810	mV	non-inverting inputs. For \overline{Q}_n outputs, apply V_{IHmax} to each inverting input, one at a time, with V_{ILmin} applied to all other inverting inputs and			
		T _A = +85°C	-890		-700	mV	V_{BB} applied to all non-inverting inputs. (Refer to Fig. 8.)			
		T _A = -30°C	-1080			mV	For Q_n outputs, apply V_{ILT} to each inverting input, one at a time, with V_{IHmax} applied to all other inverting inputs and V_{BB} applied to all			
V _{OHT}	HIGH level output threshold voltage	T _A = +25°C	-980			mV	non-inverting inputs. For \overline{Q}_n outputs, apply V_{IHT} to each inverting input, one at a time, with V_{ILmin} applied to all other inverting inputs and			
		T _A = +85°C	-910			mV	V _{BB} applied to all non-inverting inputs. (Refer to Fig. 8.)			
		T _A = -30°C			- 1655	mV	For Q_n outputs, apply V_{IHT} to each inverting input, one at a time, with V_{ILmin} applied to all other inverting inputs and V_{BB} applied to all			
V _{OLT}	LOW level output threshold voltage	T _A = +25°C			- 1630	mV	non-inverting inputs. For \overline{Q}_n outputs, apply V_{ILT} to each inverting input, one at a time, with V_{IHmax} applied to all other inverting inputs and			
		T _A = +85°C			- 1595	mV	V_{BB} applied to all non-inverting inputs. (Refer to Fig. 8.)			
		T _A = -30°C	-1890		-1675	mV	For Q_n outputs apply V_{IHmax} to each inverting input, one at a time, with V_{ILmin} applied to all other inverting inputs and V_{BB} applied to all			
V _{OL}	LOW level output voltage	T _A = +25°C	- 1850		-1650	mV	non-inverting inputs. For \overline{Q}_n outputs, apply V_{ILmin} to each inverting input, one at a time, with V_{IHmax} applied to all other inverting inputs and			
		T _A = +85°C	- 1825		-1615	mV	V_{BB} applied to all non-inverting inputs. (Refer to Fig. 8.)			
		T _A = -30°C			150	μΑ	Apply V_{IHmax} to each inverting input under test one at a time, with V_{ILmin} applied to all other inverting inputs and V_{BB} applied to all non-			
Iн	HIGH level input current	T _A = +25°C			95	μΑ	inverting inputs. Apply V_{IHmax} to each non- inverting input under test, one at a time, with $V_{II min}$ applied to all other non-inverting			
		T _A = +85°C			95	μA	inputs and V_{BB} applied to all inverting inputs. (Refer to Fig. 8.)			
		$T_A = -30^{\circ}C$			23	mA				
-I _{EE}	V _{EE} supply current	T _A = +25°C		17	21	mA	Apply V_{ILmin} to all inverting inputs. Apply V_{BB} to all non-inverting inputs.			
		T _A = +85°C			23	mA	The second secon			
$rac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation			0.016		v/v				
$rac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	T _A = +25°C		0.250		v/v				
$rac{\Delta V_{BB}}{\Delta V_{EE}}$	Reference Bias voltage compensation			0.148		v/v				

DC ELECTRICAL CHARACTERISTICS V_{CC1} = V_{CC2} = GND, V_{EE} = $-5.2V \pm 0.010V$, T_A = $-30^{\circ}C$ to $+85^{\circ}C$, output loading with 50Ω to $-2.0V \pm 0.010V$, unless otherwise specified^{1,3}

Line Receiver

	PARAMETER		MIN	ТҮР	МАХ	UNIT	TEST CONDITIONS ²
		$T_A = -30^{\circ}C$	-1420		-1280	mV	
V _{BB}	Reference Bias	$T_A = +25^{\circ}C$	-1350	-1290	-1230	mV	All inverting or all non-inverting input pins are
	voltage	$T_A = +85^{\circ}C$	-1295		-1150	mV	tied to the V _{BB} pin during measurement.
	HIGH level	$T_A = -30^{\circ}C$	-1060		-890	mV	For Q_{n} outputs, apply V_{ILL} to inverting inputs and V_{IHL}
V _{OH}	output voltage for Common-Mode	T _A = +25°C	-960		-810	mV	to non-inverting inputs. For \overline{Q}_n outputs, apply V _{IHH} to inverting inputs and
	Rejection Test	T _A = +85°C	-890		-700	mV	V _{ILH} to non-inverting inputs.
	LOW level	T _A = -30°C	-1890		-890	mV	For Q_n outputs, apply V_{IHL} to inverting inputs and V_{ILL}
V _{OL}	output voltage for Common-Mode	T _A = +25°C	- 1850		-810	mV	to non-inverting inputs. For \overline{Q}_n outputs, apply V _{ILH} to inverting inputs and
	Rejection Test	T _A = +85°C	- 1825		-700	mV	V _{IHH} to non-inverting inputs.
		T _A = -30°C			1.5	μA	Apply V_{EE} to each inverting input under test, one at a
-I _{CBO}	Input leakage current	T _A = + 25°C			1.0	μA	time, with V_{ILmin} applied to all other inverting inputs and V_{BB} applied to all non-inverting inputs. (Refer to
		T _A = +85°C			1.0	μA	Fig. 8.)

DC ELECTRICAL CHARACTERISTICS (Continued)

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

2. Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.

3. The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 5.

AC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = +2.0V \pm 0.010V$, $V_{EE} = -3.2V \pm 0.010V$

	T _A = -	-30°C	T _A = + 25°C			T _A = +85°C			
PARAMETER	Min	Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} Propagation delay t _{PHL} D _n to Q _n , Q _n	1.0 1.0	3.1 3.1	1.0 1.0	2.0 2.0	2.9 2.9	1.0 1.0	3.3 3.3	ns ns	Figs. 6, 7, 9
t _{PLH} Propagation delay t _{PHL} D _n to Q _n , Q _n	1.0 1.0	3.1 3.1	1.0 1.0	2.0 2.0	2.9 2.9	1.0 1.0	3.3 3.3	ns ns	Figs. 6, 7, 9
t_{TLH} Transition time t_{THL} 20% to 80%, 80% to 20%	1.1 1.1	3.6 3.6	1.1 1.1	2.0 2.0	3.3 3.3	1.1 1.1	3.7 3.7	ns ns	Figs. 6, 7, 9

6

AC WAVEFORMS

TEST CIRCUITS AND WAVEFORMS

Line Receiver

TEST CIRCUITS AND WAVEFORMS

Signetics

ECL Products

DESCRIPTION

The 10117 is a dual 2-wide 2-input OR-AND/OR-AND-INVERT Gate designed for use in data control as a general purpose logic element. All unused inputs can be left open due to integrated pulldown resistors which avoid the need for a supply voltage.

10117 Gate

Dual 2-Wide 2-3 Input OR-AND/OR-AND-INVERT Gate Product Specification

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (- I _{EE})
10117	2.3ns	20mA

ORDERING CODE

PACKAGES	$\begin{array}{l} \mbox{COMMERCIAL RANGE} \\ \mbox{V}_{CC1} = \mbox{V}_{CC2} = \mbox{GND}, \ \mbox{V}_{EE} = -5.2 \mbox{V} \\ \mbox{T}_{A} = -30^{\circ} \mbox{C} \ \ \mbox{to} \ \ + 85^{\circ} \mbox{C} \end{array}$
Plastic DIP	10117N
Ceramic DIP	10117F

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ - D ₈	Data Inputs
\overline{Q}_0 , \overline{Q}_2 , Q_1 , Q_3	Data Outputs

10117

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	10K ECL	UNIT	
V _{EE}	Supply voltage		-8.0	V
V _{IN}	Input voltage (VIN should never be more negative th	an V _{EE})	0 to V _{EE}	V
Ι _Ο	Output current		-50	mA
Τ _S	Storage temperature		-55 to +150	°C
т. Т	Manianana ing diang danang and an	Ceramic package	+ 165	°C
ТJ	Maximum junction temperature	Plastic package	+ 150	°C

DC OPERATING CONDITIONS

				10K ECL			
	PARAMETER N						
V _{CC1} , V _{CC2}	Circuit ground		0	0	0	V	
V _{EE}	Supply voltage (negative)			-5.2		V	
		$T_A = -30^{\circ}C$			-890	mV	
VIH	HIGH level input voltage	$T_A = +25^{\circ}C$			-810	mV	
		T _A = +85°C			-700	mV	
	HIGH level input threshold voltage	$T_A = -30^{\circ}C$	-1205			mV	
VIHT		$T_A = +25^{\circ}C$	-1105			mV	
		$T_A = +85^{\circ}C$	-1035			mV	
	LOW level input threshold voltage	$T_A = -30^{\circ}C$			-1500	mV	
VILT		$T_A = +25^{\circ}C$			-1475	mV	
		$T_A = +85^{\circ}C$			-1440	mV	
		$T_A = -30^{\circ}C$	1890			mV	
VIL		$T_A = +25^{\circ}C$	- 1850			mV	
		$T_A = +85^{\circ}C$	- 1825			mV	
T _A	Operating ambient temperature		-30	+ 25	+ 85	°C	

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

10117

	PA	RAMETE	R	MIN	TYP	MAX	UNIT	TEST CONDITIONS ²
			T _A = -30°C	-1060		-890	mV	
V _{OH}	HIGH level output voltage		T _A = + 25°C	-960		-810	mV	For $Q_1 \& Q_3$ outputs, apply V_{IHmax} to all inputs. For $\overline{Q}_0 \& \overline{Q}_2$ outputs, apply V_{ILmin} to all inputs.
		Jilage	T _A = +85°C	-890		-700	mV	
	HIGH level output V _{OHT} threshold voltage		$T_A = -30^{\circ}C$	-1080			mV	For Q_1 input, apply V_{IHT} to D_0 input with V_{ILmin} applied
VOHT			T _A = +25°C	-980			mV	to D_1 input and V_{IHmax} applied to all other inputs. For \overline{Q}_0 output, apply V_{ILT} to D_0 input with V_{ILmin} applied
			T _A = +85°C	-910			mV	to D_1 input and V_{IHmax} applied to all other inputs.
	_		$T_A = -30^{\circ}C$			-1655	mV	For Q_1 input, apply V_{ILT} to D_0 input with V_{ILmin} applied
V _{OLT}	LOW leve		T _A = + 25°C			-1630	mV	to D_1 input and V_{IHmax} applied to all other inputs. For \overline{Q}_0 output, apply V_{IHT} to D_0 input with V_{ILmin} applied
	VOLT threshold voltage		T _A = +85°C			-1595	mV	to D_1 input and V_{IHmax} applied to all other inputs.
			$T_A = -30^{\circ}C$	-1890		-1675	mV	
V _{OL}	V _{OL} LOW level output voltage		T _A = +25°C	-1850		-1650	mV	For $Q_1 \& Q_3$ outputs, apply V_{ILmin} to all inputs. For $\overline{Q}_0 \& \overline{Q}_2$ outputs, apply V_{IHmax} to all inputs.
			T _A = +85°C	-1825		-1615	mV	
		_	$T_A = -30^{\circ}C$			560	μA	
	HIGH level I _{IH} input current		T _A = +25°C			350	μA	
			T _A = +85°C			350	μA	Apply V _{IHmax} to each input under test, one at a time,
чн		All	$T_A = -30^{\circ}C$			390	μA	with VILmin applied to all other inputs.
		other	$T_A = +25^{\circ}C$			245	μA	
		inputs	$T_A = +85^{\circ}C$			245	μA	
			$T_A = -30^{\circ}C$	0.5			μA	
կլ	LOW lev input cur		$T_A = +25^{\circ}C$	0.5			μA	Apply V _{ILmin} to each input under test, one at a time, with V _{IHmax} applied to all other inputs.
			$T_A = +85^{\circ}C$	0.3			μA	
			$T_A = -30^{\circ}C$			29	mA	
$-I_{EE}$	V _{EE} supp current	bly	$T_A = +25^{\circ}C$		20	26	mA	
			$T_A = +85^{\circ}C$			29	mA	
$\frac{\Delta V_{OH}}{\Delta V_{EE}}$	ΔV _{DH} HIGH level ΔV _{EE} output voltage compensation ΔV _{DL} LOW level ΔV _{EE} output voltage compensation ΔV _{EE} output voltage compensation voltage ΔV _{EE} voltage ΔV _{EE} voltage compensation voltage				0.016		V/V	
			T _A = +25°C		0.250		V/V	
					0.148		V/V	

NOTES:

NOTES:
1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
2. Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.
3. The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 5.

AC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = +2.0V \pm 0.010V$, $V_{EE} = -3.2V \pm 0.010V$

DADAMETER	$T_A = -30^{\circ}C$		T _A = + 25°C		T _A = +85°C				
PARAMETER	Min	Max	Min	Тур	Мах	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} Propagation delay t _{PHL} D _n to Q _n	1.4 1.4	3.9 3.9	1.4 1.4	2.3 2.3	3.4 3.4	1.4 1.4	3.8 3.8	ns ns	Figs. 6, 7, 8
t _{PLH} Propagation delay t _{PHL} D _n to Q _n	1.4 1.4	3.9 3.9	1.4 1.4	2.3 2.3	3.4 3.4	1.4 1.4	3.8 3.8	ns ns	Figs. 6, 7, 8
t_{TLH} Transition time t_{THL} 20% to 80%, 80% to 20%	0.9 0.9	4.1 4.1	1.1 1.1	2.2 2.2	4.0 4.0	1.1 1.1	4.6 4.6	ns ns	Figs. 6, 7, 8

AC WAVEFORMS

Gate

TEST CIRCUITS AND WAVEFORMS

Figure 8. Input Pulse Definition

Signetics

ECL Products

DESCRIPTION

The 10118 is a dual 2-Wide 3-Input OR-AND Gate designed for use in data control as a general purpose logic element. All unused inputs can be left open due to integrated pull-down resistors, which avoid the need for a supply voltage.

10118 Gate

Dual 2-Wide 3-Input OR-AND Gate Product Specification

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
10118	2.3ns	20mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND, V_{EE} = -5.2V$ $T_A = -30^{\circ}C$ to $+85^{\circ}C$
Plastic DIP	10118N
Ceramic DIP	10118F

PIN DESCRIPTION

PINS	DESCRIPTION
$D_0 - D_{10}$	Data Inputs
Q ₀ , Q ₁	Data Outputs

10118

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER		10K ECL	UNIT
V _{EE}	Supply voltage	-8.0	V	
V _{IN}	Input voltage (V _{IN} should never be more negative than V _{EE})		0 to V _{EE}	V
lo	Output current	-50	mA	
Ts	Storage temperature		-55 to +150	°C
Ŧ	Mariana in dia dana dana	Ceramic package	+ 165	°C
IJ	Maximum junction temperature	+ 150	°C	

DC OPERATING CONDITIONS

PARAMETER					10K ECL			
	N							
V _{CC1} , V _{CC2}	Circuit ground		0	0	0	V		
V _{EE}	Supply voltage (negative)			-5.2		V		
		$T_A = -30^{\circ}C$			-890	mV		
VIH	HIGH level input voltage	$T_A = +25^{\circ}C$			-810	mV		
		T _A = +85°C			-700	mV		
	HIGH level input threshold voltage	T _A = -30°C	-1205			mV		
VIHT		$T_A = +25^{\circ}C$	-1105			mV		
		$T_A = +85^{\circ}C$	-1035			mV		
		$T_A = -30^{\circ}C$			-1500	mV		
VILT	LOW level input threshold voltage	$T_A = +25^{\circ}C$			-1475	mV		
		T _A = +85°C			-1440	mV		
		$T_A = -30^{\circ}C$	- 1890			mV		
VIL	LOW level input voltage	T _A = + 25°C	- 1850			mV		
		T _A = +85°C	- 1825			mV		
T _A	Operating ambient temperature		-30	+ 25	+ 85	°C		

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

PARAMETER MIN TYP ΜΔΧ UNIT TEST CONDITIONS² $T_A = -30^{\circ}C$ -1060 -890 m٧ HIGH level V_{OH} $T_A = +25^{\circ}C$ -960 -810 m٧ Apply VIHmax to all inputs. output voltage $T_A = +85^{\circ}C$ -890 -700 mν $T_A = -30^{\circ}C$ -1080 m٧ HIGH level For Q_0 output, apply V_{IHT} to D_0 input with VOHT output threshold $T_A = +25^{\circ}C$ -980 m٧ VILmin applied to D1 and D2 inputs and VIHmax voltage applied to all other inputs. $T_A = +85^{\circ}C$ -910 m٧ $T_A = -30^{\circ}C$ -1655 m٧ LOW level For Q0 output, apply VILT to D0 input with $T_A = +25^{\circ}C$ -1630 V_{ILmin} applied to D_1 and D_2 inputs and V_{IHmax} output threshold m٧ VOLT applied to all other inputs. voltage $T_A = +85^{\circ}C$ -1595 m٧ $T_A = -30^{\circ}C$ -2000 -1675 m٧ LOW level $T_A = +25^{\circ}C$ -1990 -1650 m٧ VOL Apply VILmin to all inputs. output voltage $T_A = +85^{\circ}C$ -1920 -1615 m٧ $T_A = -30^{\circ}C$ 560 μA Apply V_{IHmax} to each input under test, one at a time, with V_{ILmin} applied to all other inputs. D_5 $T_A = +25^{\circ}C$ 350 μA input HIGH $T_A = +85^{\circ}C$ 350 μA level Ι_Η input $T_A = -30^{\circ}C$ 390 μA current All other Apply VIHmax to each input under test, one at a $T_A = +25^{\circ}C$ 245 μA time, with VILmin applied to all other inputs. inputs $T_A = +85^{\circ}C$ 245 μA $T_A = -30^{\circ}C$ 0.5 μA Apply VILmin to each input under test, one at LOW level $T_A = +25^{\circ}C$ 0.5 μA a time, with VIHmax applied to all h input current other inputs. $T_A = +85^{\circ}C$ 0.3 μA $T_A = -30^{\circ}C$ 29 mΑ V_{EE} supply $T_A = +25^{\circ}C$ 20 26 mΑ -IEE current $T_A = +85^{\circ}C$ 29 mΑ ∆V_{OH} HIGH level $\overline{\Delta V_{EE}}$ output voltage 0.016 V/V compensation ΔV_{OL} LOW level $\overline{\Delta V_{EE}}$ output voltage $T_A = +25^{\circ}C$ 0.250 V/V compensation ΔV_{BB} Reference bias v/v ^{∆V}EE voltage 0.148 compensation

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to +85°C, output loading with 50 Ω to -2.0V ±0.010V unless otherwise specified^{1,3}

NOTES:

 The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
 Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.

Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.
 The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 5.

6

Gate

AC ELECTRICAL CHARACTERISTICS V_{CC1} = V_{CC2} = +2.0V \pm 0.010V, V_{EE} = -3.2V \pm 0.010V

PARAMETER		$T_A = -30^{\circ}C$		T _A = + 25°C		T _A = +85°C			TEST CONDITIONS	
		Min	Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH}	Propagation delay D _n to Q _n	1.4 1.4	3.9 3.9	1.4 1.4	2.3 2.3	3.4 3.4	1.4 1.4	3.8 3.8	ns ns	Figs. 6, 7, 8
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.8 0.8	4.1 4.1	1.5 1.5	2.5 2.5	4.0 4.0	1.5 1.5	4.6 4.6	ns ns	- Figs. 6, 7, 8

AC WAVEFORMS

Gate

TEST CIRCUITS AND WAVEFORMS

Signetics

ECL Products

DESCRIPTION

The 10119 is a 4-wide 4-3-3-3-Input OR-AND Gate designed for use in data control as a general purpose logic element. All unused inputs can be left open due to integrated pull-down resistors, which avoid the need for a supply voltage.

10119 Gate

4-Wide 4-3-3-3-Input OR-AND Gate Product Specification

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
10119	2.3ns	20mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND, V_{EE} = -5.2V$ $T_A = -30^{\circ}C$ to $+85^{\circ}C$
Plastic DIP	10119N
Ceramic DIP	10119F

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ - D ₁₁	Data Inputs
Q	Data Output

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	10K ECL	UNIT	
V _{EE}	Supply voltage		-8.0	V
V _{IN}	Input voltage (VIN should never be mo	0 to V _{EE}	V	
lo	Output current		-50	mA
Τ _S	Storage temperature		-55 to +150	°C
	Maximum institut town out up	Ceramic package	+ 165	°C
TJ	Maximum junction temperature	+ 150	°C	

DC OPERATING CONDITIONS

	PARAMETER							
V _{CC1} , V _{CC2}	Circuit ground	0	0	0	v			
V _{EE}	Supply voltage (negative)			-5.2		v		
		$T_A = -30^{\circ}C$			-890	mV		
V _{IH}	HIGH level input voltage	T _A = +25°C			-810	mV		
		T _A = +85°C			-700	mV		
	HIGH level input threshold voltage	T _A = -30°C	-1205			mV		
VIHT		T _A = +25°C	-1105			mV		
		T _A = + 85°C	-1035			mV		
	LOW level input threshold voltage	T _A = -30°C			1500	mV		
VILT		T _A = +25°C			-1475	mV		
		T _A = +85°C			-1440	mV		
	LOW level input voltage	T _A = -30°C	-1890			mV		
VIL		T _A = +25°C	-1850			mV		
		T _A = +85°C	-1825			mV		
T _A	Operating ambient temperature		-30	+ 25	+85	°C		

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

10119

	PA	RAMETER	1	MIN	ТҮР	МАХ	UNIT	TEST CONDITIONS ²
			$T_A = -30^{\circ}C$	-1060		-890	mV	
VOH	HIGH level output volta	ane	T _A = +25°C	-960		-810	mV	Apply VIHmax to all inputs.
	output voit	,go	T _A = +85°C	-890		-700	mV	
	HIGH level	1.1	T _A = -30°C	-1080			mV	
VOHT	output three	shold	T _A = +25°C	-980			mV	Apply V_{IHT} to D_0 input with V_{ILmin} applied to D_1 ,
	voltage		T _A = +85°C	-910			mV D ₂ , and D ₃ inputs and V _{IHmax} to all other in mV	
	LOW level		T _A = -30°C			-1655	mV	
VOLT	output three	shold	T _A = + 25°C			-1630	mV	Apply V_{ILT} to D_0 input with V_{ILmin} applied to D_1 , D_2 , and D_3 inputs and V_{IHmax} to all other inputs.
	voltage		T _A = +85°C			-1595	mV	
			T _A = -30°C	-2000		-1675	mV	
VOL	LOW level output volta	nde	$T_A = +25^{\circ}C$	-1990		-1650	mV	Apply V _{ILmin} to all inputs.
	output tone	.90	T _A = +85°C	-1920		-1615	mV	
		_	$T_A = -30^{\circ}C$			560	mV	
	HIGH level input current	D ₆ input	T _A = + 25°C			350	mV	
			T _A = +85°C			350	mV	Apply Villmax to each input under test, one at a
ίн		Other inputs	$T_A = -30^{\circ}C$			390	mV	time, with V _{ILmin} applied to all other inputs.
			$T_A = +25^{\circ}C$			245	mV	
			T _A = +85°C			245	mV	
			T _A = -30°C	0.5			μA	
h.	LOW level input currer	nt	T _A = +25°C	0.5			μA	Apply V _{ILmin} to each input under test, one at a time, with V _{ILmax} applied to all other inputs.
	input ourior		T _A = +85°C	0.3			μA	
			$T_A = -30^{\circ}C$			29	mA	
$-I_{EE}$	V _{EE} supply current		$T_A = +25^{\circ}C$		20	26	mA	
	ourion		T _A = +85°C			29	mA	
$\frac{\Delta V_{OH}}{\Delta V_{EE}}$	V _{QH} HIGH level V _{EE} output voltage compensation VOL V _{EE} output voltage compensation compensation				0.016		V/V	
$\frac{\Delta V_{OL}}{\Delta V_{EE}}$			T _A = + 25°C		0.250		V/V	
	Reference voltage compensati				0.148		V/V	

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to +85°C, output loading with 50 Ω to -2.0V ± 0.010V unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.
 The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 5.

6

Gate

AC ELECTRICAL CHARACTERISTICS V_{CC1} = V_{CC2} = + 2.0V \pm 0.010V, V_{EE} = -3.2V \pm 0.010V

	PARAMETER		$T_A = -30^{\circ}C$		T _A = + 25°C		T _A = +85°C		UNIT	TEST CONDITIONS
			Мах	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS
	t _{PLH} Propagation delay t _{PHL} D _n to Q	1.4 1.4	3.9 3.9	1.4 1.4	2.3 2.3	3.4 3.4	1.4 1.4	3.8 3.8	ns ns	Figs. 6, 7, 8
1	t_{TLH} Transition time t_{THL} 20% to 80%, 80% to 20%	0.8 0.8	4.1 4.1	1.5 1.5	2.5 2.5	4.0 4.0	1.5 1.5	4.6 4.6	ns ns	Figs. 6, 7, 8

AC WAVEFORMS

Product Specification

10119

Gate

TEST CIRCUITS AND WAVEFORMS

- = V_{CC2} = + 2V ± 0.010V, V_{EE} = 3.2V
- ± 0.010V.
 Decoupling 0.1μF and 25μF from GND to V_{CC}, 0.01μF and 25μF from GND to V_{EE} (0.01 and 0.1μF capacitors should be NPO Ceramic or MLC type). capacitors should be NPU Certamic or MLC type). Decoupling capacitors should be placed as close as physically possible to the DUT and lead length should be kept to less than ¼ inch (6mm). 3. All unused inputs should be connected to either HIGH or LOW state consistent with the LOGIC function required.
- Initiation required. All unused outputs are loaded with 50Ω to GND. L₁ and L₂ are equal length 50Ω impedance lines. L₃, the distance from the DUT pin to the junction of the cable from the Pulse Generator and the cable
- to the Scope, should not exceed and the cable to the Scope, should not exceed 4 inch (6mm). 6. R_T = 50Ω terminator internal to Scope. 7. The unmatched wire stub between coaxial cable and pins under test must be less than 1/4 inch (6mm) long for proper test. $C_L = Fixture and stray capacitance < 3pF.$
- Any unterminated stubs connected anywhere along the transmission line between the Pulse Generator and the DUT or between the DUT and the Scope should not exceed ¹/₄ inch (6mm) in length (refer to section on AC setup procedure). 10. All 50Ω resistors should have tolerance of ± 1% or

Signetics

ECL Products

DESCRIPTION

The 10121 is a 4-Wide OR-AND/OR-AND-INVERT Gate designed for use in data control as a general purpose logic element. All unused inputs can be left open due to integrated pull-down resistors, which avoid the need for a supply voltage.

10121 Gate

4-Wide OR-AND/OR-AND-INVERT Gate Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
10121	2.3ns	20mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGES $V_{CC1} = V_{CC2} = GND, V_{EE} = -5.2V$ $T_A = -30^{\circ}C$ to $+85^{\circ}C$
Plastic DIP	10121N
Ceramic DIP	10121F

PIN DESCRIPTION

PINS	DESCRIPTION
$D_0 - D_{10}$	Data Inputs
Q ₀ , Q ₁	Data Outputs

PIN CONFIGURATION

Vcc2 1

Q1 2

Q0 3

D₀ 4

D1 5

D₂ 6 D₃ 7

VEE 8

January 30, 1986

Figure 1 6-121

853-0655 82177

Figure 2

10121

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	10K ECL	UNIT	
V _{EE}	Supply voltage	-8.0	V	
V _{IN}	Input voltage (VIN should never be more negative than	0 to V _{EE}	V	
lo	Output current	-50	mA	
T _S	Storage temperature		-55 to +150	°C
	Manianana inantian kamanakan	Ceramic package	+ 165	°C
l lj	Maximum junction temperature	Plastic package	+ 150	°C

DC OPERATING CONDITIONS

	PARAMETER						
V _{CC1} , V _{CC2}	V _{CC1} , V _{CC2} Circuit ground						
V _{EE}	Supply voltage (negative)			-5.2		V	
		$T_A = -30^{\circ}C$			-890	mV	
VIH	HIGH level input voltage	$T_A = +25^{\circ}C$,	-810	mV	
		T _A = + 85°C			-700	mV	
		T _A = -30°C	-1205			mV	
VIHT	GH level input threshold voltage	$T_A = +25^{\circ}C$	-1105			mV	
		T _A = +85°C	-1035			mV	
		$T_A = -30^{\circ}C$		-1500		mV	
VILT	LOW level input threshold voltage $T_A = +25^{\circ}C$		-1475	mV			
		T _A = +85°C			-1440	mV	
		$T_A = -30^{\circ}C$	-1890			mV	
VIL	LOW level input voltage	$T_A = +25^{\circ}C$	- 1850			mV	
		$T_A = +85^{\circ}C$	-1825			mV	
T _A	Operating ambient temperature		-30	+ 25	+85	°C	

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

10121

				10 -	2.0V 1		mess of	herwise specified ^{1,3}		
PARAMETER			MIN	TYP	MAX	UNIT	TEST CONDITIONS ²			
			$T_A = -30^{\circ}C$	-1060		-780	mV			
V _{OH} HIGH le output v		$T_A = +25^{\circ}C$	-960		-700	mV	For Q_1 output, apply V _{IHmax} to all inputs. For \overline{Q}_0 output, apply V _{ILmin} to all inputs.			
output voltage			$T_A = +85^{\circ}C$	-890		-590	mV			
HIGH level output V _{OHT} threshold		vel	T _A = -30°C	-1080			mV	For Q_1 output, apply V_{IHT} to D_0 input with V_{ILmin} applet to D_1 and D_2 inputs and V_{IHmax} applied to all other in		
		T _A = +25°C	-980			mV	puts. For \overline{Q}_0 output, apply V_{ILT} to D_0 input with V_{ILmin} apply V_{ILT} to D_0 input with V_{IL} apply V_{I			
	voltage		T _A = +85°C	-910			mV	to D ₁ and D ₂ and V _{IHmax} applied to all other inputs.		
	LOW lev	rel	$T_A = -30^{\circ}C$			- 1655	mV	For Q ₁ output, apply V _{ILT} to D ₀ input with V _{ILmin} applied to D ₁ and D ₂ inputs and V _{IHmax} applied to all other in-		
V _{OLT}	output		$T_A = +25^{\circ}C$			-1630	mV	puts. For \overline{Q}_0 output, apply V_{IHT} to D_0 inputs with V_{ILmin}		
	voltage		T _A = +85°C			- 1595	mV	applied to D_1 and D_2 inputs and V_{IHmax} applied to all other inputs.		
			T _A = -30°C	-2000		-1675	mV			
V _{OL}	LOW lev		T _A = + 25°C	-1990		-1650	mV	For Q_1 output, apply V_{ILmin} to all inputs. For \overline{Q}_0 output, apply V_{IHmax} to all inputs.		
	output v	onaye	T _A = +85°C	-1920		-1615	mV	Tor Go output, apply VIHmax to an inputs.		
		D ₅ input	$T_A = -30^{\circ}C$			495	μA			
			T _A = + 25°C			310	μA			
	HIGH level		T _A = +85°C			310	μA	Apply V _{IHmax} to each input under test, one at a time,		
lιΗ	input	Other inputs	$T_A = -30^{\circ}C$	1		390	μA	with VILmin applied to all other inputs.		
	current		T _A = + 25°C			245	μA			
			T _A = +85°C			245	μA			
	LOW level		T _A = -30°C	0.5			μA			
I _{IL}			T _A = +25°C	0.5			μA	Apply V_{ILmin} to each input under test one at a time with V_{IHmax} applied to all other inputs.		
	input cui	Tent	T _A = +85°C	0.3			μA	with VIAmax applied to all other inputs.		
			T _A = -30°C	1		29	mA			
-I _{EE}	V _{EE} sup	ply	T _A = +25°C	1	20	26	mA			
	current	-	T _A = +85°C			29	mA			
$\frac{\Delta V_{OH}}{\Delta V_{EE}}$		oltage			0.016		v/v			
$rac{\Delta V_{OL}}{\Delta V_{EE}}$	output voltage		T _A = +25°C		0.250		v/v			
$\frac{\Delta V_{BB}}{\Delta V_{EE}} \begin{array}{c} \text{Reference bias} \\ \text{voltage} \\ \text{compensation} \end{array}$				0.148		v/v				

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to $+85^{\circ}C$, output loading with 50Ω to $-2.0V \pm 0.010V$ unless otherwise specified^{1, 3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

2. Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.

3. The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 5.

6

Gate

Figure	5.	Transfer	Characteristics
--------	----	----------	-----------------

AC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = +2.0V \pm 0.010V$, $V_{EE} = -3.2V \pm 0.010V$

PARAMETER		T _A = -30°C		T _A = + 25°C		T _A = +85°C			TEAT CONDITIONS
		Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} Propagation delay D _n to Q ₀ , Q ₁	1.4 1.4	3.9 3.9	1.4 1.4	2.3 2.3	3.4 3.4	1.4 1.4	3.8 3.8	ns ns	Figs. 6, 7, 8
t_{TLH} Transition time t_{THL} 20% to 80%, 80% to 20%	0.9 0.9	4.1 4.1	1.1 1.1	2.5 2.5	4.0 4.0	1.1 1.1	4.6 4.6	ns ns	Figs. 6, 7, 8

AC WAVEFORMS

Gate

TEST CIRCUITS AND WAVEFORMS

Signetics

ECL Products

DESCRIPTION

The 10123 consists of three NOR Gates for use as Drivers. Each can drive a bus with characteristic impedance of not less than 25Ω , such as the case of a bus terminated at both ends in 50Ω . When the output is LOW it presents a high impedance to the bus so that its characteristic impedance is not reduced. All unused inputs can be left open due to integrated pull-down resistors which avoid the need for a supply voltage.

10123 Bus Driver

Triple 4-3-3-Input Bus Driver Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})				
10123	3.0ns	71mA				

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND, V_{EE} = -5.2V$ $T_A = -30^{\circ}C$ to $+85^{\circ}C$
Plastic DIP	10123N
Ceramic DIP	10123F

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₉	Data Inputs
$\overline{Q}_0 - \overline{Q}_2$	Data Outputs

6

January 30, 1986

853-0656 82177
10123

LD04850S

Figure 4. Logic Diagrams

10123

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	10K ECL	UNIT	
V _{EE}	Supply voltage		-8.0	V
V _{IN}	Input voltage (VIN should never be more negative that	in V _{EE})	0 to V _{EE}	V
lo	Output current		-90	mA
Τ _S	Storage temperature		-55 to +150	°C
-		Ceramic package	+ 165	°C
j J	Maximum junction temperature	Plastic package	+ 150	°C

DC OPERATING CONDITIONS

	DADAMETER							
	PARAMETER							
V _{CC1} , V _{CC2}	Circuit ground		0	0	0	V		
V _{EE}	Supply voltage (negative)			-5.2		V		
		T _A = -30°C	}		-890	mV		
VIH	HIGH level input voltage	T _A = + 25°C			-810	mV		
		T _A = +85°C			-700	mV		
		T _A = -30°C	-1205			mV		
VIHT	HIGH level input threshold voltage	T _A = + 25°C	-1105			mV		
		T _A = +85°C	-1035			mV		
		$T_A = -30^{\circ}C$			- 1500	mV		
V _{ILT}	LOW level input threshold voltage	T _A = + 25°C			-1475	mV		
		T _A = +85°C			-1440	mV		
		T _A = -30°C	-1890			mV		
VIL	LOW level input voltage	T _A = + 25°C	-1850			mV		
		T _A = +85°C	-1825			mV		
T _A	Operating ambient temperature		-30	+ 25	+ 85	°C		

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

10123

	PARAMETE	R	MIN	ТҮР	MAX	UNIT	TEST CONDITIONS ²
		$T_A = -30^{\circ}C$	-1060		-890	mV	
VOH	HIGH level	T _A = +25°C	-960		-810	mV	Apply V _{ILmin} to all inputs.
	output voltage	T _A = +85°C	-890		-700	mV	
		$T_A = -30^{\circ}C$	-1080		-2010	mV	
VOHT	HIGH level output threshold voltage	T _A = +25°C	-980		-2010	mV	Apply V_{ILT} to one input of each gate, one at a time, with V_{ILmin} applied to all other inputs.
	in concide voltage	T _A = +85°C	-910		-2010	mV	
		T _A = -30°C			-2010	mV	
VOLT	LOW level output threshold voltage	T _A = +25°C			-2010	mV	Apply V_{IHT} to one input of each gate, one at a time, with V_{ILmin} applied to all other inputs.
	anoonola voltago	T _A = +85°C			-2010	mV	
		$T_A = -30^{\circ}C$	-2100		-2030	mV	
VOL	LOW level	T _A = + 25°C	-2100		-2030	mV	Apply V _{IHmax} to all inputs.
	output voltage	T _A = +85°C	-2100		-2030	mV	
		T _A = -30°C			350	μA	
hн	HIGH level	$T_A = +25^{\circ}C$			220	μA	Apply V _{IHmax} to each input under test, one at a time,
	input current	$T_A = +85^{\circ}C$			220	μA	with V _{ILmin} applied to all other inputs.
		$T_A = -30^{\circ}C$	0.5			μA	
l _{IL}	LOW level	$T_A = +25^{\circ}C$	0.5			μA	Apply V _{IHmax} to each input under test, one at a time,
	input current	T _A = +85°C	0.3			μA	with V _{IHmax} applied to all other inputs.
		T _A = -30°C			82	mA	
-I _{EE}	V _{EE} supply	T _A = +25°C		71	75	mA	Apply V _{IHmax} to all inputs.
	current	T _A = +85°C			82	mA	
$\frac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation			0.016		v/v	
$\frac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	T _A = +25°C		0.250		V/V	
$\frac{\Delta V_{BB}}{\Delta V_{EE}}$	Reference Bias voltage compensation			0.148		v/v	

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to $+85^{\circ}C$, output loading with 25Ω to $-2.1V \pm 0.010V$ unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.
 The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 5.

Bus Driver

AC ELECTRICAL CHARACTERISTICS V_{CC1} = V_{CC2} = +2.1V \pm 0.010V, V_{EE} = -3.1V \pm 0.010V

	$T_A = -30^{\circ}C$		T _A = + 25°C		T _A = +85°C			TEAT CONDITIONS	
PARAMETER	Min	Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} Propagation delay t _{PHL} D _n to Q _n	1.2 1.2	4.6 4.6	1.2 1.2	3.0 3.0	4.4 4.4	1.2 1.2	4.8 4.8	ns ns	Figs. 6, 7, 8
t_{TLH} Transition time t_{THL} 20% to 80%, 80% to 20%	1.0 1.0	3.7 3.7	1.0 1.0	2.5 2.5	3.5 3.5	1.0 1.0	3.9 3.9	ns ns	Figs. 6, 7, 8

AC WAVEFORMS

10123

TEST CIRCUITS AND WAVEFORMS

NOTES:

- 1. $V_{CC1} = V_{CC2} = +2.1V \pm 0.010V$, $V_{EE} = -3.1V \pm 0.010V$
- Decoupling 0.1μF and 25μF from GND to V_{CC}, 0.01μF and 25μF from GND to V_{EE}. (0.01 and 0.1μF capacitors should be NPO Ceramic or MLC type). Decoupling capacitors should be falced as close as physically possible to the DUT and lead length should be kept to less than 1/4 inch (6mm).
- 3. All unused inputs should be connected to either HIGH or LOW state consistent with the LOGIC function required.
- tunction required. 4. All unused outputs are loaded with 25Ω to GND. 5. L₁ and L₂ are equal length 50Ω impedance lines. L₃ and L₄, the distance from the DUT input and output pins to the junction of their respective interconnect-
- In so the particular of their respective interconnecting cables, should not exceed 1/4 inch (6mm). 6. R_T = 50\Omega terminator internal to Scope, R_T = 50Ω terminator resistor at the end of a 50Ω impedance line, the length of which is irrelevant but should be kept as short as possible to reduce stray capacitance.
- The unmatched wire stub between coaxial cable and pins under test must be less than 1/4 inch (6mm)
- pins under test must be less than 1/4 inch (6mm) long for proper test.
 8. C₁ = Fixture and stray capacitance ≤ 3pF.
 9. Any unterminated stubs connected anywhere along the transmission line between the Pulse Generator and the DUT or between the DUT and the Scope should not exceed 1/4 inch (6mm) in length (refer to section on AC setup procedure).
 10. Al_502. resistors should have tolerance of ±1% or
- better

Signetics

10124 Translator

Quad TTL-to-ECL Translator Product Specification

ECL Products

DESCRIPTION

The 10124 is a Quad TTL-ECL Translator with an individual Data and a common Select TTL-compatable input on each gate. When the Select input is in the LOW state, all ECL non-inverting outputs are in a LOW state and inverting outputs are in a HIGH state.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-1 _{EE})
10124	3.5ns	53mA

ORDERING CODE

PACKAGES	$\begin{array}{l} \mbox{COMMERCIAL RANGE} \\ \mbox{V}_{CC} = +5V, \ \mbox{GND} = 0V, \ \mbox{V}_{EE} = -5.2V \\ \mbox{T}_{A} = -30^{\circ}\mbox{C} \ \mbox{to} \ +85^{\circ}\mbox{C} \end{array}$
Plastic DIP	10124N
Ceramic DIP	10124F

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ - D ₃	Data Inputs (Schottky TTL)
S	Select Input (Schottky TTL)
Q ₁ , Q ₃ , Q ₅ , Q ₇	Data Outputs (AND) (10K ECL)
$\overline{Q}_0, \ \overline{Q}_2, \ \overline{Q}_4, \ \overline{Q}_6$	Data Outputs (NAND) (10K ECL)

6

16 GND

15 Q5

14 07

13 Q6

12 Q4

11 D3

10 D2

9 Vcc

CD09361S

PIN CONFIGURATION

Q3 1

Q1 2

Q2 3

ā. 4

D₀ 5

s 6

D1 7

VEE 8

10124

<u>ā</u>6

Q7

D₃

Positive Logic H = HIGH state = 1 L = LOW state = 0

Figure 4. Logic Diagram

LD05511S

6

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	10K ECL	UNIT	
VEE	Supply voltage (negative)	-8.0	V	
V _{CC}	Supply voltage (positive)		+ 7.0	V
VIN	Input voltage (VIN should never be more positiv	ve than V _{CC3})	0 to V _{CC}	V
Io	Output current		50	mA
Τ _S	Storage temperature		-55 to +150	°C
		Ceramic package	+ 165	°C
IJ	Maximum junction temperature	+ 150	°C	

DC OPERATING CONDITIONS

				10K ECI	_	UNIT	
	PARAMETER						
GND	Device ground (common)		0	0	0	V	
V _{CC}	Supply voltage (positive)			5.0		V	
V _{EE}	Supply voltage (negative)			-5.2		V	
		$T_A = -30^{\circ}C$	2.0		4.0	V	
VIH	HIGH level input voltage	$T_A = +25^{\circ}C$	1.8		4.0	V	
		$T_A = +85^{\circ}C$	1.8		4.0	V	
		$T_A = -30^{\circ}C$	2.0			V	
VIHT	HIGH level input threshold voltage	$T_A = +25^{\circ}C$	1.8			V	
		$T_A = +85^{\circ}C$	1.8			V	
		$T_A = -30^{\circ}C$			1.1	V	
VILT	LOW level input threshold voltage	$T_A = +25^{\circ}C$			1.1	V	
		$T_A = +85^{\circ}C$			0.9	V	
		$T_A = -30^{\circ}C$	0.4		1.1	V	
VIL	LOW level input voltage	$T_A = +25^{\circ}C$	0.4		1.1	V	
		$T_A = +85^{\circ}C$	0.4		0.8	V	
TA	Operating ambient temperature		-30	+ 25	+ 85	°C	

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

10124

	PARAMETE	ER	MIN	ТҮР	МАХ	UNIT	TEST CONDITIONS ²
		T _A = -30°C	-1060		-890	mV	
V _{OH}	HIGH level	T _A = +25°C	-960		-810	mV	For Q _n outputs, apply V _{IHmax} to all inputs.
	output voltage	T _A = +85°C	-890		-700	mV	For \overline{Q}_n outputs, apply V_{ILmin} to all inputs.
		T _A = -30°C	-1080			mV	For Q_n outputs, apply V_{IHT} to D_1 input with V_{IHmax}
VOHT	HIGH level output threshold voltage	T _A = +25°C	-980			mV	applied to all other inputs. For \overline{Q}_n outputs, apply V_{ILT} to D_1 input with V_{IHmax}
	an concert contage	$T_A = +85^{\circ}C$	-910			mV	applied to all other inputs.
		$T_A = -30^{\circ}C$			-1655	mV	For Q_n outputs, apply V_{ILT} to D_1 input with V_{IHmax}
VOLT	LOW level output threshold voltage	$T_A = +25^{\circ}C$			- 1630	mV	applied to all other inputs. For \overline{Q}_n outputs, apply V _{IHT} to D ₁ input with V _{IHmax}
	the second se	T _A = +85°C			-1595	mV	applied to all other inputs.
		T _A = -30°C	-1890		-1675	mV	
VOL	LOW level output voltage	$T_A = +25^{\circ}C$	-1850		-1650	mV	For Q_n outputs, apply V _{ILmin} to all inputs. For \overline{Q}_n outputs, apply V _{IHmax} to all inputs.
	ouiput voltage	$T_A = +85^{\circ}C$	-1825		-1615	mV	
		$T_A = -30^{\circ}C$			72	mA	
-l _{EE}	V _{EE} supply current	T _A = +25°C		53	66	mA	Apply V _{IHmax} to all inputs.
	current	$T_A = +85^{\circ}C$			72	mA	· · · · · · · · · · · · · · · · · · ·
$rac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation			0.016		V/V	
$\frac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	T _A = +25°C		0.250		v/v	
$\frac{\Delta V_{BB}}{\Delta V_{EE}}$	Reference Bias voltage compensation			0.148		v/v	

DC ELECTRICAL CHARACTERISTICS GND = 0V, V_{CC} = +5.0V ±0.010V, V_{EE} = -5.2V ±0.010V, T_A = -30°C to +85°C, output loading with 50Ω to -2.0V ±0.010V unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC testing.
 The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 5.

10124

			T				
PARAMETER			MIN	түр	мах	UNIT	TEST CONDITIONS
	Clamp input	S input			-1.5	v	Apply -20mA to S input.
VIK	voltage	other inputs					Apply -10mA to each input under test, one at a time.
V _{BIN}	Input breakdown	voltage	5.5			V	Apply 1.0mA to each input under test, one at a time.
		S input			-12.8	mA	Apply VF(0.40V) to S input and VR(2.4V) to all other inputs.
ΙF	Forward current	other inputs			-3.2	mA	Apply VF(0.40V) to each input under test, one at a time, with VR(2.4V) applied to all other inputs.
		S input			200	μA	Apply VR(2.4V) to S input with VF(0.4V) to all other in- puts.
IR	Reverse current	other inputs			50	μA	Apply VR(2.4V) to each input under test, one at a time with VF(0.4V) to all other inputs.
	Supply current	$T_A = -30^{\circ}C$			16	mA	
ICCH		T _A = + 25°C			16	mA	Apply V _{IHmax} to all inputs.
	(positive)	T _A = +85°C			18	mA	
ICCL	Supply current LC	DW (positive)			25	mA	Ground all inputs.

AC ELECTRICAL CHARACTERISTICS GND = +2.0V ±0.010V, V_{CC} = +7.0V ±0.010V, V_{EE} = -3.2V ±0.010V, V_T = System

Gnd.

BADANETED	T _A = -	-30°C	Tړ	= + 25	5°C	T _A = +85°C																											
PARAMETER	Min	Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS																								
t _{PLH} Propagation delay	1.0	6.5	1.0	3.5	6.0	1.0	6.5	ns	Figs. 6, 7, 8																								
t _{PHL} D _n to Q _n , Q _n	1.0	6.5	1.0	3.5	6.0	1.0	6.5	ns																									
t _{TLH} Transition time	1.3	4.1	1.3	2.5	3.9	1.3	4.1	ns	Figs. 6, 7, 8																								
t _{THL} 20% to 80%, 80% to 20%	1.3	4.1	1.3	2.5	3.9	1.3	4.1	ns																									

AC WAVEFORMS

TEST CIRCUITS AND WAVEFORMS

Signetics

10125 Gate

Quad ECL-to-TTL Translator Product Specification

ECL Products

DESCRIPTION

The 10125 is a Quad ECL – TTL Translator for interfacing data between two different logic systems. It also provides a separate Reference Bias Voltage output (V_{BB}) to be used in case of single-ended input busing. Input and output levels are, respectively, ECL 10K and TTL Schottky. This device features a peak common-mode rejection voltage of \pm 1V.

The 10125 outputs are designed to go to a LOW logic level whenever both inputs are left open.

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
10125	3.5ns	30mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE GND = OV, V_{CC} = +5.0V, V_{EE} = -5.2V T_A = -30°C to +85°C
Plastic DIP	10125N
Ceramic DIP	10125F

PIN DESCRIPTION

PINS	DESCRIPTION
$D_0 - D_3, \ \overline{D}_0 - \overline{D}_3$	Data Inputs (ECL 10K)
V _{BB}	Reference Bias Voltage Output (ECL 10K)
Q ₀ – Q ₃	Data Outputs (Schottky TTL)

PIN CONFIGURATION

V_{BB}

D₀ 2

D₀ 3

Q₀ 4

Q15

D16

D1 7

VEE 8

LOGIC SYMBOL

16 GND

15 D3

14 D₃

13 Q3

12 Q2

11 D₂ 10 D₂

9 Vcc

CD09351S

Gate

6

LD054825 Figure 4. Logic Diagram

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER		10K ECL	UNIT
V _{EE}	Supply voltage (negative)		-8.0	V
V _{CC}	Supply voltage (positive)		+7.0	V
VIN(ECL)	Input voltage (VIN should never be more	negative than V _{EE})	0 to V _{EE}	V
V _{OUT} (TTL)	Voltage applied to output in HIGH state		-0.5 to $+V_{CC}$	V
Т _S	Storage temperature		-55 to +150	°C
+		Ceramic package	+ 165	°C
Т _Ј	Maximum junction temperature	Plastic package	+ 150	°C

Gate

10125

DC OPERATING CONDITIONS

			10K ECL			
	PARAMETER				Max	UNIT
GND	Device ground (common)		0	0	0	v
V _{CC}	Supply Voltage (positive)			+5.0		v
V _{EE}	Supply voltage (negative)			-5.2		v
		T _A = -30°C			-890	mV
VIH	HIGH level input voltage	T _A = + 25°C			-810	mV
		T _A = +85°C			-700	mV
		T _A = -30°C	-1205			mV
VIHT	HIGH level input threshold voltage	$T_A = +25^{\circ}C$	-1105			mV
		T _A = +85°C	-1035			mV
		T _A = -30°C			-1500	mV
VILT	LOW level input threshold voltage	$T_A = +25^{\circ}C$			-1475	mV
		T _A = +85°C			-1440	mV
		T _A = -30°C	-1890			mV
VIL	LOW level input voltage	T _A = + 25°C	-1850			mV
		T _A = +85°C	-1825			mV
T _A	Operating ambient temperature	•	-30	+ 25	+85	°C

DC OPERATING CONDITIONS FOR COMMON-MODE REJECTION TEST GND = 0V, V_{CC} = + 5.0V \pm 0.010V, V_{EE} = -5.2V \pm 0.010V

	PARAMETER		10K ECL					
	PARAMETER		Min	Nom	Max	Unit		
	· · ·	T _A = -30°C			+110	mV		
VIHH	V _{IHmax} + 1.0V	$T_A = +25^{\circ}C$			+ 190	mV		
		T _A = +85°C			+ 300	mV		
		T _A = -30°C			-1890	mV		
VIHL	V _{IHmax} – 1.0V	$T_A = +25^{\circ}C$			-1810	mV		
		T _A = +85°C			-1700	mV		
		T _A = -30°C	-890			mV		
VILH	V _{ILmin} + 1.0V	$T_A = +25^{\circ}C$	-850			mV		
		$T_A = +85^{\circ}C$	-825			mV		
		T _A = -30°C	-2890			mV		
VILL	V _{ILmin} – 1.0V	T _A = + 25°C	-2850			mV		
		T _A = +85°C	-2825			mV		

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

Gate

10125

DC ELECTRICAL CHARACTERISTICS GND = 0V, $V_{CC} = +5.0V \pm 0.010V$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to $+85^{\circ}C$

			u	nless otl	nerwise :	specified	1,4
	PARAMET	ER	MIN	түр	МАХ	UNIT	TEST CONDITIONS ²
V _{OH}	HIGH level output voltage		2.5			v	Apply V_{IHmax} to all non-inverting inputs with V_{BB} applied to all inverting inputs. Force –2.0mA on measured output. (Refer to Fig. 7.)
V _{OHT}	HIGH level output threshold voltage		2.5			v	Apply V_{IHT} to each non-inverting input, one at time, with V_{ILmin} applied to all other non-inverting input and V_{BB} applied to all inverting inputs. Force -2.0mA on measured output. (Refer to Fig. 7.)
V _{OHT}	LOW level output threshold voltage				0.5	v	Apply V_{ILT} to each non-inverting input one at time, with V_{IHmax} applied to all other non-inverting input and V_{BB} applied to all inverting inputs. Force 20mA on measured output. (Refer to Fig. 7.)
V _{OL}	LOW level output voltage				0.5	v	Apply V_{1Lmin} to all non-inverting inputs with V_{BB} applied to all inverting inputs. Force 20mA on measured output. (Refer to Fig. 7.)
			-1420		-1280	mV	
V_{BB}	Reference Bias voltage		-1350	-1290	-1230	mV	Connect all inverting inputs to V _{BB} pin during test. All other inputs are not connected.
	voltage		-1295		-1150	mV	
V _{OH}	HIGH level output voltage for CMR		2.5			v	Apply V_{IHH} to D_n and V_{ILH} to \overline{D}_n inputs. Apply V_{IHL} to D_n and V_{ILL} to \overline{D}_n inputs. Force -2.0mA on measured output.
V _{OL}	LOW level output voltage for CMR				0.5	v	Apply V_{IHH} to \overline{D}_n and V_{ILH} to D_n inputs. Apply V_{IHL} to \overline{D}_n and V_{ILL} to D_n inputs. Force +20mA on measured output.
V _{OLS1}	Indeterminate inp protection test	out			0.5	v	Apply $V_{\mbox{\scriptsize EE}}$ to all inputs. Force 20mA on measured output.
V _{OLS2}	Indeterminate inp protection test	put			0.5	v	All inputs left floating. Force 20mA on measured output.
		$T_A = -30^{\circ}C$			180	μA	
Ι _Η	HIGH level input current	$T_A = +25^{\circ}C$			115	μA	Apply V _{IHmax} to each input under test, one at a time, with V _{ILmin} applied to all other inputs.
	input current	$T_A = +85^{\circ}C$			115	μA	
		$T_A = -30^{\circ}C$			1.5	μA	Apply V _{EE} to each inverting input under test,
-I _{CB0}	Input leakage	$T_A = +25^{\circ}C$			1.0	μA	one at a time, with V_{ILmin} applied to all other inverting inputs and V_{BB} applied to all non-inverting inputs.
	current	T _A = +85°C			1.0	μΑ	(Refer to Fig. 7.)
		$T_A = -30^{\circ}C$			44	mA	
$-I_{EE}$	V _{EE} supply current	$T_A = +25^{\circ}C$		30	40	mA	Apply V_{BB} to all \overline{D}_n inputs and V_{ILmin} to all D_n inputs.
		$T_A = +85^{\circ}C$			44	mA	
		$T_A = -30^{\circ}C$			40	mA	Apply V _{IL min} to all \overline{D}_n inputs with V _{BB} applied to all D_n
los	Short circuit ³ current	$T_A = +25^{\circ}C$			40	mA	inputs. Test each output, one at a time, with all other
		T _A = +85°C			40	mA	outputs unloaded. Force 0V (GND) on measured output ³ .
ICCH	Supply current H	IGH			52	mA	Apply V_{IHmax} to all \overline{D}_n inputs with V_{BB} applied to D_n inputs.
ICCL	Supply current Le	OW	1		39	mA	Apply V_{ILmin} to all \overline{D}_n inputs with V_{BB} applied to D_n inputs.

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

2. Conditions for testing shown in the tables are not necessarily worst case. For worst case testing guidelines, refer to Section 3 Testing, DC Testing.

3. Not more than one output should be shorted at a time. For testing I_{OS}, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a HIGH output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I_{OS} tests should be performed last.

4. The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 5.

Gate

AC ELECTRICAL CHARACTERISTICS GND1 = +2.0V $\pm 0.010V$, V_{CC} = +7.0V $\pm 0.010V$, V_{EE} = -3.2V $\pm 0.010V$

DADANSTED	T _A =	-30°C	TA	= + 25	°C	T _A = -	+ 85°C		TEOT CONDITIONO
PARAMETER	Min	Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} Propagation delay t _{PHL} D _n to Q _n	1.0 1.0	6.0 6.0	1.0 1.0	4.5 4.5	6.0 6.0	1.0 1.0	6.0 6.0	ns ns	Figs. 6, 7, 9
t _{TLH} Transition time t _{THL} 10% to 90%, 90% to 10%	0.5 0.5	3.3 3.3	0.5 0.5		3.3 3.3	0.5 0.5	3.3 3.3	ns ns	Figs. 6, 7, 9

AC WAVEFORMS

NOTE: The output waveform in Figure 6 is shown with the actual output voltages of the test circuit of Figure 5 which are attenuated by a factor of 10 as a result of the voltage divider formed by the 450 Ω resistor and R_T.

Figure 6. Propagation Delay and Transition Times

6

Gate

TEST CIRCUITS AND WAVEFORMS

- 1. GND = System Gnd (0V), $V_{CC} = +5.0V \pm 0.010V$,
- Decoupling capacitors should be NPO certained in NEO type). Decoupling capacitors should be placed as close as physically possible to the DUT and lead length should be kept to less than ¹/₄ inch (6mm). 3. All unused inputs should be connected to either
- HIGH or LOW state consistent with the LOGIC function required.
- 4. All unused outputs are loaded identically to output under test, substituting a 50Ω termination for the
- scope. 5. L₁ and L₂ equal length 50Ω impedance lines. L₃, the distance from the DUT pin to the junction of the cable from the Pulse Generator and the cable to the Scope, should not exceed $\frac{1}{4}$ inch (6mm). 6. R_T = 50 Ω terminator internal to Scope.
- The unmatched wire stub between coaxial cable and pins under test must be less than ¼ inch (6mm) long for proper test.
- 8. C_L = Fixture and stray capacitance \leq 3pF. 9. Any unterminated stubs connected anywhere along the transmission line between the Pulse Generator the transmission line between the Pulse Generator and the DUT or between the DUT and the Scope should not exceed ¼ inch (6mm) in length (refer to section on AC setup procedure). 10.0, through D₄ are High Frequency (low capacitance) switching diodes, MMD7000 or equivalent.

January 30, 1986

Gate

Signetics

ECL Products

DESCRIPTION

The 10130 is a clocked Dual D-Type Latch. Each element can be clocked separately by holding the common clock in the LOW state and using the clock enable inputs for the clocking function. The outputs are latched when the level of the clock is HIGH. All unused inputs must be tied to V_{IL} or V_{EE} .

10130 Latch

Dual D-Type Latch Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
10130	2.5ns	30mA

ORDERING CODE

PACKAGES	$\begin{array}{l} \mbox{COMMERCIAL RANGE} \\ \mbox{V}_{CC1} = \mbox{V}_{CC2} = \mbox{GND}; \ \mbox{V}_{EE} = -5.2 \mbox{V} \\ \mbox{T}_{A} = -30^{\circ} \mbox{C} \ \mbox{to} \ +85^{\circ} \mbox{C} \end{array}$
Plastic DIP	10130N
Ceramic DIP	10130F

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ , D ₁	Data Inputs
CP	Clock Input
$\overline{CE}_0, \overline{CE}_1$	Clock Enable Inputs
S ₀ , S ₁	Set Inputs
R ₀ , R ₁	Reset Inputs
Q ₀ , Q ₁ , <u>Q</u> ₀ , <u>Q</u> ₁	Data Outputs

PIN CONFIGURATION

Vcc2 1

Q0 2

Q₀ <u>3</u> R₀ <u>4</u>

S0 5

ČE₀ [6

D₀ [7

VEE 8

LOGIC SYMBOL

January 30, 1986

853-0659 82177

SYNCHRONOUS OPERATION

TINCHHONOUS OPENATION					
Dn	CP	C E	Q _{n + 1} *		
L	L	L	L		
L	L	н	Qn		
L	н	L	Qn		
L	н	н	Q _n Q _n Q _n		
н	L	L	н		
н	L	н	Qn		
н	н	L	Qn		
н	н	н	Q _n Q _n Q _n		

ASYNCHRONOUS OPERATION

R	S	Q ₁
L	L	Q
) L	Н	н
н	L	L
н	н	N

R and S = LOW

Latch

10130

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER		100K ECL	UNIT
V _{EE}	Supply voltage (V _{CC1} = V _{CC2} = GND)		-8.0 to 0	V
V _{IN}	Input voltage (VIN should never be more negative	than V _{EE})	0 to V _{EE}	V
lo	Output source current		50	mA
Ts	Storage temperature		-55 to +150	°C
-		Ceramic package	+ 165	°C
TJ	Maximum junction temperature	Plastic package	+ 150	°C

DC OPERATING CONDITIONS

				10K EC	L	
	PARAMETER				Max	UNIT
V _{CC1} , V _{CC2}	Circuit ground	0	0	0	V	
V _{EE}	Supply voltage (negative)			-5.2		V
		T _A = -30°C			-890	m\
VIH	HIGH level input voltage	T _A = + 25°C			-810	m١
		T _A = + 85°C			-700	m١
	HIGH level input threshold voltage	T _A = -30°C	- 1205			m\
VIHT		T _A = + 25°C	-1105			m\
		T _A = +85°C	- 1035			m\
		T _A = -30°C			-1500	m١
V _{ILT}	LOW level input threshold voltage	T _A = + 25°C			-1475	m١
		T _A = +85°C			-1440	m١
		T _A = -30°C	- 1890			m١
V _{IL}	LOW level input voltage	$T_{A} = +25^{\circ}C$	- 1850			۳۱
		T _A = +85°C	- 1825			m۱
TA	Operating ambient temperature		-30	+ 25	+ 85	°C

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

Latch

10130

	P	ARAMETE	R	MIN	ТҮР	MAX	UNIT	TEST CONDITIONS ²
			$T_A = -30^{\circ}C$	-1060		-890	mV	For Qn output, apply VIHmax to each Dn input, one at a
V _{OH}	HIGH le		T _A = + 25°C	-960		-810	mV	time, with VILmin applied to all other inputs.
	output	onage	T _A = +85°C	-890		-700	mV	For Q _n output, apply V _{ILmin} to all inputs.
	HIGH le	avel	T _A = -30°C	-1080			mV	For Q_n output, apply V_{IHT} to each D_n input, one at a
VOHT	output t	hreshold	$T_A = +25^{\circ}C$	-980			mV	time, with V _{ILmin} applied to all other inputs. For \overline{Q}_n output, apply V _{ILT} to each D _n input, one at a
	voltage		T _A = +85°C	-910			mV	time, with V_{ILmin} applied to all other inputs.
	LOW le	vel	T _A = -30°C			-1655	mV	For Qn output, apply VILT to each Dn input, one at a
V _{OLT}	output t	hreshold	$T_A = +25^{\circ}C$			-1630	mV	time, with V _{ILmin} applied to all other inputs. For \overline{Q}_n output, apply V _{IHT} to each D _n input, one at a
	voltage		T _A = +85°C			-1595	mV	time, with V_{ILmin} applied to all other inputs.
			$T_A = -30^{\circ}C$	-1890		-1675	mV	For \underline{Q}_n output, apply V_{ILmin} to all inputs.
V _{OL}	LOW le		T _A = + 25°C	-1850		-1650	mV	For Q _n output, apply V _{IHmax} to each D _n input, one
	output (onugo	T _A = +85°C	-1825		-1615	mV	at a time, with V _{ILmin} applied to all other inputs.
			$T_A = -30^{\circ}C$	1		360	μA	
		CE ₀ , CE ₁ inputs	T _A = +25°C	1		220	μA	Apply V _{IHmax} to each input under test, one at a time, with V _{ILmin} applied to all other inputs.
		inputo	T _A = +85°C			220	μA	
			$T_A = -30^{\circ}C$	1		425	μA	
		CP input	$T_A = +25^{\circ}C$			265	μA	Apply V _{IHmax} to CP input with V _{ILmin} applied to all other inputs.
			T _A = +85°C			265	μA	
	HIGH		$T_A = -30^{\circ}C$			455	μA	
lιH	level input	D _n inputs	$T_A = +25^{\circ}C$			285	μA	Apply V_{IHmax} to each D_n input under test, one at a time, with V_{ILmin} applied to all other inputs.
	current		$T_A = +85^{\circ}C$			285	μA	
			$T_A = -30^{\circ}C$			455	μA	
		R _n inputs	$T_A = +25^{\circ}C$			285	μA	Apply V_{IHmax} to S_n and CP inputs and R_n input under test, one at a time, with V_{ILmin} applied to all other inputs.
			T _A = +85°C			285	μA	
			$T_A = -30^{\circ}C$			455	μA	
		S _n inputs	T _A = + 25°C			285	μA	Apply V_{IHmax} to R_n and CP inputs and S_n input under test, one at a time, with V_{ILmin} applied to all other inputs.
			T _A = +85°C			285	μA	
			$T_A = -30^{\circ}C$	0.5			μA	
hι		W level $T_A = +25^{\circ}C$ 0.5			μA	Apply V _{ILmin} to each input under test, one at a time, with V _{IHmax} applied to all other inputs.		
	input cu	nem	T _A = +85°C	0.3			μA	
			$T_A = -30^{\circ}C$			38	mA	
-I _{EE}	V _{EE} sup	ply	$T_A = +25^{\circ}C$		30	35	mA	
current		T _A = +85°C			38	mA		
$\frac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH le output v compen	oltage			0.016		v/v	
$\frac{\Delta V_{OL}}{\Delta V_{EE}}$	1.0111.1		T _A = +25°C		0.230		v/v	
$\frac{\Delta V_{BB}}{\Delta V_{EE}}$	Referen voltage compen				0.140		V/V	

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to +85°C, output loading with 50 Ω to -2.0V ± 0.010V unless otherwise specified^{1,3}

NOTES:

NOTES:
1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
2. Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.
3. The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 5.

Latch

DADAMETED	T _A = -30°C		T _A = + 25°C		T _A = ·	+ 85°C		TEAT CONDITIONS	
PARAMETER	Min	Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} Propagation delay t _{PHL} D _n to Q _n , Q _n	1.0 1.0	3.6 3.6	1.0 1.0	2.5 2.5	3.5 3.5	1.0 1.0	3.8 3.8	ns ns	
t _{PLH} Propagation delay t _{PHL} R _n to Q _n , Q _n	1.0 1.0	3.6 3.6	1.0 1.0	2.7 2.7	3.5 3.5	1.0 1.0	3.9 3.9	ns ns	Figs. 6, 8, 9
t _{PLH} Propagation delay t _{PHL} S _n to Q _n , Q _n	1.0 1.0	3.6 3.6	1.0 1.0	2.7 2.7	3.5 3.5	1.0 1.0	3.9 3.9	ns ns	
t_{PLH} Propagation delay t_{PHL} \overline{CP} , \overline{CE}_n to Q_n , \overline{Q}_n	1.0 1.0	4.3 4.3	1.0 1.0	-	4.0 4.0	1.0 1.0	4.1 4.1	ns ns	
t_s Setup time D_n to \overline{CP} , \overline{CE}_n	2.5	-	2.5	-	-	2.5	-	ns	Figs. 7, 8, 9
t_h Hold time D_n to \overline{CP} , \overline{CE}_n	1.5	-	1.5	—	_	1.5	-	ns	- -
t_{TLH} Transition time t_{THL} 20% to 80%, 80% to 20%	1.0 1.0	3.6 3.6	1.1 1.1	2.7 2.7	3.5 3.5	1.1 1.1	3.8 3.8	ns ns	Figs. 6, 8, 9

Latch

10130

Product Specification

1212 1938 189

Latch

Product Specification

10130

6

TEST CIRCUITS AND WAVEFORMS

Figure 9. Input Pulse Definition

Signetics

10131 Flip-Flop

Dual D-Type Master-Slave Flip-Flop Product Specification

ECL Products

DESCRIPTION

The 10131 is a Dual Master-Slave Flip-Flop. Each flip-flop can be clocked separately by holding the common Clock in the LOW state and using the Clock Enable inputs for the clocking function. The output states of the flip-flops register the data present at the D_n inputs on the rising edge of Clock. All unused inputs must be tied LOW to V_{IL} or V_{EE}.

TYPE TYPICAL PROPAGATION DELAY TYPICAL SUPPLY CURRENT (-IEE) 10131 3.0ns 45mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -5.2V$ $T_A = -30^{\circ}C$ to $+85^{\circ}C$
Plastic DIP	10131N
Ceramic DIP	10131F

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ , D ₁	Data Inputs
CP	Clock Input
$\overline{CE}_0, \overline{CE}_1$	Clock Enable Inputs
S ₀ , S ₁	Set Inputs
R ₀ , R ₁	Reset Inputs
$Q_0, Q_1, \overline{Q}_0, \overline{Q}_1$	Data Outputs

PIN CONFIGURATION

Vcc2 1

Q₀ 2 Q₀ 3

R0 4

S0 5

CE₀ 6

D₀ 7

VEE 8

LOGIC SYMBOL

January 30, 1986

16 Vcc1

14 Q₁ 13 R₁

12 S1

11 CE1

10 D1

9 CP

CD08610S

853-0660 82177

10131

FUNCTION TABLES

SYNCHRONOUS OPERATION

Dn	D _n CP		Q _{n + 1} **
L	L	L	Q _n Q _n
L	L	н	Qn
L	н	L	L Q _n
L	н	н	Qn
н	L	L	Q _n Q _n Н Q _n
н	L	н	Qn
н	- н і	L	н
н	н	н	Q _n

*Conditions for CP and \overline{CE} may be interchanged. In this table \overline{CE} is static, while for CP and H represent a transition from LOW to HIGH between t_n and t_{n+1} . **R and S = LOW.

ASYNCHRONOUS OPERATION

R	S	Q _{n + 1}
L	L	Q _n
L	н	Q _n H
н	L	L
н	н	N
D 111 1 1		

Positive Logic:

H = HIGH state (the more positive voltage) = 1 L = LOW state (the less positive voltage) = 0

N = not allowed.

10131

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER		10K ECL	UNIT
V _{EE}	Supply voltage		-8.0	V
V _{IN}	Input voltage (VIN should never be more negative that	n V _{EE})	0 to V _{EE}	V
10	Output source current		-50	mA
Ts	Storage temperature		-55 to +150	°C
+	Maximum in atim American	Ceramic package	+ 165	°C
i ij	Maximum junction temperature	Plastic package	+ 150	°C

DC OPERATING CONDITIONS

				10K ECL		
	PARAMETER					
V _{CC1} , V _{CC2}	Circuit ground	0	0	0	V	
V _{EE}	Supply voltage (negative)			-5.2		v
		$T_A = -30^{\circ}C$			-890	mV
VIH	HIGH level input voltage	$T_A = +25^{\circ}C$			-810	mV
		T _A = +85°C			-700	mV
		T _A = -30°C	-1205			mV
VIHT	HIGH level input threshold voltage	$T_A = +25^{\circ}C$	-1105			mV
		$T_A = +85^{\circ}C$	-1035		mV	
		$T_A = -30^{\circ}C$			-1500	mV
VILT	LOW level input threshold voltage	T _A = + 25°C			-1475	mV
		T _A = +85°C			-1440	mV
	· · · · · · · · · · · · · · · · · · ·	$T_A = -30^{\circ}C$	-1890			mV
VIL	LOW level input voltage	$T_A = +25^{\circ}C$	-1850			mV
		T _A = +85°C	-1825			mV
TA	Operating ambient temperature		-30	+ 25	+ 85	°C

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

10131

PARAMETER				MIN	TYP	MAX	UNIT	TEST CONDITIONS ²	
		$T_A = -30^{\circ}C$	-1060		-890	mV	For Q outputs apply Views to S, inputs with Views		
VOH	HIGH level output voltage		T _A = +25°C	-960		-810	mV	For Q outputs, apply V_{IHmax} to S_n inputs with V_{ILmin} applied to all other inputs. For \overline{Q} outputs, apply V_{IHmax}	
			T _A = +85°C	-890		-700	mV	to R_n inputs with V_{ILmin} applied to all other inputs.	
	HIGH le	vel	$T_A = -30^{\circ}C$	-1080			mV	For Q outputs, apply V_{IHT} to S_n inputs with V_{ILmin}	
VOHT	output threshold		T _A = +25°C	-980			mV	applied to all other inputs. For Q outputs, apply VIHT	
voltage			$T_A = +85^{\circ}C$	-910			mV	to R _n inputs, with V _{ILmin} applied to all other inputs.	
	LOW le	vel	$T_A = -30^{\circ}C$			-1655	mV	For Q outputs, apply V_{IHT} to R_n inputs, with V_{ILmin}	
VOLT	output threshold voltage		$T_A = +25^{\circ}C$			-1630	mV	applied to all other inputs. For Q outputs, apply VIHT	
			$T_A = +85^{\circ}C$			-1595	mV	to S _n inputs with V _{ILmin} applied to all other inputs.	
			$T_A = -30^{\circ}C$	-1890		-1675	mV	For Q outputs, apply V_{IHmax} to \underline{R}_n inputs with V_{ILmin}	
VOL	LOW le		$T_A = +25^{\circ}C$	-1850		-1650	mV	applied to all other inputs. For Q outputs, apply VIHmax	
	output voltage		T _A = +85°C	-1825		-1615	mV	to S _n inputs with V _{ILmin} applied to all other inputs.	
			$T_A = -30^{\circ}C$			425	μA		
		CP input	T _A = +25°C	1		265	μA	Apply V _{IHmax} to CP input with V _{ILmin} applied to all other inputs.	
			T _A = +85°C			265	μA		
			$T_A = -30^{\circ}C$			350	μA		
		CE ₀ , CE ₁ inputs	T _A = +25°C			220	μA		
			T _A = +85°C			220	μA	Apply VIHmax to each input under test, one at a time,	
	HIGH		$T_A = -30^{\circ}C$			390	μA	with VILmin applied to all other inputs.	
ĥн	level input current	D ₀ , D ₁ inputs	T _A = +25°C			245	μΑ		
			T _A = +85°C			245	μA		
		R _n inputs	$T_A = -30^{\circ}C$			525	μA		
			$T_A = +25^{\circ}C$			330	μA	For R_n inputs, apply V_{IHmax} to D_n inputs and to R_n input under test with V_{ILmin} applied to all other inputs.	
			$T_A = +85^{\circ}C$	[330	μA		
		S _n inputs	$T_A = -30^{\circ}C$			525	μA		
			$T_A = +25^{\circ}C$			330	μA	For S_n inputs, apply V_{IHmax} to D_n inputs and S_n input under test with V_{ILmin} applied to all other inputs.	
			$T_A = +85^{\circ}C$			330	μA		
	LOW level input current		$T_A = -30^{\circ}C$	0.5			μA		
ήL			$T_A = +25^{\circ}C$	0.5			μA	Apply V _{ILmin} to each input under test, one at a time,	
			$T_A = +85^{\circ}C$	0.3			μA	with V _{IHmax} applied to all other inputs.	
			$T_A = -30^{\circ}C$			62	mA		
-i _{EE}	V _{EE} supply current		$T_A = +25^{\circ}C$		45	56	mA		
			$T_A = +85^{\circ}C$			62	mA		
$\frac{\Delta V_{OH}}{\Delta V_{EE}} \begin{array}{c} \text{HIGH level} \\ \text{output voltage} \\ \text{compensation} \end{array}$				0.016		v/v			
$\frac{\Delta V_{OL}}{\Delta V_{EE}}$	$\frac{\Delta V_{OL}}{\Delta V_{EE}} \begin{array}{c} \text{LOW level} \\ \text{output voltage} \\ \text{compensation} \end{array}$		T _A = +25°C		0.250		v/v		
$ \frac{\Delta V_{BB}}{\Delta V_{EE}} \begin{array}{c} \text{Reference bias} \\ \text{voltage} \\ \text{compensation} \end{array} $				0.148		v/v			

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

2. Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.

3. The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 5.

Signetics ECL Products

Flip-Flop

DADAMETED		$T_A = -30^{\circ}C$		T _A = + 25°C		T _A = +85°C				
	PARAMETER		Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS
f _{MAX} Maxi	mum clock frequency	125		125	160		125		MHz	Figs. 6, 8, 10
t _{PLH} Prop t _{PHL} D _n to	agation delay o Q _n , Q _n	1.7 1.7	4.6 4.6	1.8 1.8	3.0 3.0	4.5 4.5	1.8 1.8	5.0 5.0	ns ns	
t _{PLH} Prop t _{PHL} R _n to	agation delay o Q _n , Q _n	1.7 1.7	4.4 4.4	1.8 1.8	2.8 2.8	4.3 4.3	1.8 1.8	4.8 4.8	ns ns	Figs. 6, 9, 10
t _{PLH} Prop t _{PHL} S _n to	agation delay o Q _n , Q _n	1.7 1.7	4.4 4.4	1.8 1.8	2.8 2.8	4.3 4.3	1.8 1.8	4.8 4.8	ns ns	
t _s Setu	p time D _n to CP	2.5		2.5			2.5		ns	Figs. 7, 9, 10
t _h Hold	time D _n to CP	1.5		1.5			1.5		ns	
	sition time to 80%, 80% to 20%	1.0 1.0	4.6 4.6	1.1 1.1	2.5 2.5	4.5 4.5	1.1 1.1	4.9 4.9	ns ns	Figs. 6, 9, 10

AC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = +2.0V \pm 0.010V$, $V_{EE} = -3.2V \pm 0.010V$

Product Specification

10131

AC WAVEFORMS

Flip-Flop

TEST CIRCUITS AND WAVEFORMS

10131

January 30, 1986

6-161

Signetics

ECL Products

DESCRIPTION

The 10132 is a Dual 2-Input Multiplexer with Clocked D-type Latches and a Common Reset. Latch can be clocked by the common Clock (CP) when the Clock Enable input (CE) is LOW or by the Clock Enable input when the common Clock is held in the LOW state. The outputs are latched by the positive transition of the Clock. Any change at the data input will be registered at the output only if the Clock is LOW.

Data inputs are selected by a common data Select (S). All unused inputs must be tied LOW to V_{IL} or V_{EE}.

10132 Multiplexer/Latch

Dual 2-Input Multiplexer With Clocked D-Type Latches and Common Reset Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
10132	3.0ns	44mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -5.2V$ $T_A = -30^{\circ}C$ to $+85^{\circ}C$					
Plastic DIP	10132N					
Ceramic DIP	10132F					

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₃	Data Inputs
CP	Clock Input
$\overline{CE}_0, \overline{CE}_1$	Clock Enable Inputs
S	Data Select Input
R	Reset Inputs
Q _n , Q̄ _n	Data Outputs

PIN CONFIGURATION

Vcc2 1

Q₀ 2 Q₀ 3

D0 4

D1 5

R 6

CP 7

VEE 8

LOGIC SYMBOL

16 V_{CC1}

14 Q₁ 13 D₂

12 D3

11 S

10 CE.

9 CE1

CD08250S

853-0661 82177

Multiplexer/Latch

10132

6

Figure 4. Logic Diagram

R	S	CP*	Ē _E *	Q _{n+1}
	L L L		L H L H	D ₀ Q _n Q _n
	нннн		L H L H	D1 n n Q Q n Q n
H H H	X X X	X H L	H X L	L L Q _n

*Conditions for C and CE may be interchanged as indicated in the truth table.
Multiplexer/Latch

10132

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER		10K ECL	UNIT		
V _{EE}	Supply voltage		-8.0	V		
V _{IN}	Input voltage (VIN should never be more negation	ive than V _{EE})	0 to V _{EE}			
lo	Output source current		50	mA		
Ts	Storage temperature		-55 to +150	°C		
–	Maximum lunation tannantura	Ceramic package	+ 165	°C		
l J	Maximum junction temperature	Plastic package	+ 150	°C		

DC OPERATING CONDITIONS

			10K ECL			
	PARAMETER		Min	Nom	Max	UNIT
V _{CC1} , V _{CC2}	Circuit ground	·. ·	0	0	0	V
V _{EE}	Supply voltage (negative)	, ···		-5.2		V
		T _A = -30°C			-890	mV
V _{IH}	HIGH level input voltage	$T_A = +25^{\circ}C$			-810	mV
		T _A = +85°C			-700	mV
		T _A = -30°C	-1205			mV
VIHT	HIGH level input threshold voltage	T _A = + 25°C	-1105			mV
		T _A = +85°C	-1035			mV
		$T_{A} = -30^{\circ}C$			-1500	mV
V _{ILT}	LOW level input threshold voltage	T _A = + 25°C			-1475	mV
		T _A = +85°C			-1440	mV
		T _A = -30°C	-1890			mV
V _{IL}	LOW level input voltage	T _A = +25°C	-1850			mV
		T _A = +85°C	-1825			mV
T _A	Operating ambient temperature		-30	+ 25	+ 85	°C

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

Multiplexer/Latch

10132

6

	PARAMETER				ТҮР	МАХ	UNIT	TEST CONDITIONS ²
			T _A = -30°C	-1060		-890	mV	For Q outputs, apply V_{IHmax} to D ₀ input with V_{ILmin}
V _{OH}	HIGH lev		T _A = + 25°C	-960		-810	mV	applied to all other inputs.
	output v	onage	T _A = +85°C	-890		-700	mV	For \overline{Q} outputs, apply V_{ILmin} to all inputs.
	HIGH lev	/el	T _A = -30°C	-1080			mV	For Q outputs, apply V_{IHT} to D_0 input with V_{ILmin}
V _{OHT}	output th		T _A = + 25°C	-980			mV	applied to all other inputs. For \overline{Q} outputs, apply V _{ILT} to D ₀ input with V _{ILmin}
	voltage		T _A = +85°C	-910			mV	applied to all other inputs.
	LOW lev	el	$T_A = -30^{\circ}C$			-1655	mV	For Q outputs, apply V_{ILT} to D_0 input with V_{ILmin}
V _{OLT}	output th		$T_A = +25^{\circ}C$			-1630	mV	applied to all other inputs. For \overline{Q} outputs, apply V _{IHT} to D ₀ input with V _{ILmin}
	voltage		$T_A = +85^{\circ}C$			-1595	mV	applied to all other inputs.
			T _A = -30°C	-1890		- 1675	mV	For Q outputs, apply V _{ILmin} to all inputs.
VOL	LOW lev		T _A = + 25°C	-1850		-1650	mV	For \overline{Q} outputs, apply V _{IHmax} to D ₀ input
			$T_A = +85^{\circ}C$	-1825		-1615	mV	with V _{ILmin} applied to all other inputs.
			T _A = -30°C			460	μA	Apply V_{IHmax} to D_0 input with V_{ILmin} applied to all
		D _n inputs	T _A = +25°C			290	μA	other inputs. Apply V _{IHmax} to D ₁ input and S input with V _{ILmin}
			T _A = +85°C			290	μA	applied to all other inputs.
	HIGH level input current	R input	T _A = -30°C			620	μA	
			T _A = +25°C			390	μA	Apply V _{IHmax} to CP and R inputs with V _{ILmin} applied to all other inputs.
hн			T _A = +85°C			390	μA	
		CP input	$T_A = -30^{\circ}C$			460	μA	
			T _A = +25°C			290	μA	Apply V _{IHmax} to CP input with V _{ILmin} applied to all other inputs.
			T _A = +85°C			290	μA	
		S, CE _n inputs	$T_A = -30^{\circ}C$			425	μΑ	
			T _A = +25°C			265	μA	Apply V_{IHmax} to S or \overline{CE}_n input under test, one at a time, with V_{ILmin} applied to all other inputs.
			$T_A = +85^{\circ}C$			265	μA	
			$T_A = -30^{\circ}C$	0.5			μA	
hι	LOW lev		T _A = +25°C	0.5			μA	Apply V_{ILmin} to each input under test, one at a time, with V_{IHmax} applied to all other inputs.
			T _A = +85°C	0.3			μA	
			$T_A = -30^{\circ}C$			60	mA	
-I _{EE}	V _{EE} supp current	bly	T _A = + 25°C		44	55	mA	
	Current		T _A = +85°C			60	mA	
$\frac{\Delta V_{OH}}{\Delta V_{EE}}$	$ \frac{\Delta V_{OH}}{\Delta V_{EE}} \begin{array}{c} \text{HIGH level} \\ \text{output voltage} \\ \text{compensation} \end{array} $				0.016		v/v	
$rac{\Delta V_{OL}}{\Delta V_{EE}}$	$\frac{\Delta V_{OL}}{\Delta V_{EE}} \begin{array}{c} \text{LOW level} \\ \text{output voltage} \\ \text{compensation} \end{array}$		T _A = +25°C		0.250		v/v	
$\frac{\Delta V_{BB}}{\Delta V_{EE}}$	Referenc voltage compens				0.148		v/v	

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to $+85^{\circ}C$, output loading with 50Ω to -2.0V \pm 0.010V unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

 Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.
 The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 5.

Multiplexer/Latch

Figure 5. Transfer Characteristics

		T _A = -30°C		TA	T _A = + 25°C			T _A = +85°C		
	PARAMETER		Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS
	Propagation delay D_n to Q_n , \overline{Q}_n	1.0 1.0	3.6 3.6	1.0 1.0	3.0 3.0	3.3 3.3	1.0 1.0	3.7 3.7	ns ns	
	Propagation delay R to Q _n , Q _n	1.0 1.0	4.0 4.0	1.0 1.0		3.8 3.8	1.0 1.0	4.2 4.2	ns ns	
	Propagation delay CP to Q _n , Q _n	1.0 1.0	6.0 6.0	1.0 1.0		5.7 5.7	1.0 1.0	6.3 6.3	ns ns	
	Propagation delay S to Q _n , Q _n	1.0 1.0	4.8 4.8	1.0 1.0		4.6 4.6	1.0 1.0	5.0 5.0	ns ns	Figs. 6, 7, 8
ts	Setup time Dn to CP	2.5		2.5			2.5		ns	
t _h	Hold time Dn to CP	1.5		1.5			1.5		ns	
ts	Setup time S to CP	3.5		3.5			3.5		ns	
th	Hold time S to CP	1.0		1.0			1.0		ns	
	Transition time 20% to 80%, 80% to 20%	1.5 1.5	3.7 3.7	1.5 1.5		3.5 3.5	1.5 1.5	3.8 3.8	ns ns	

AC ELECTRICAL CHARACTERISTICS V_{CC1} = V_{CC2} = +2.0V $\pm 0.010V, \ V_{EE}$ = -3.2V $\pm 0.010V$

Multiplexer/Latch

10132

6

AC WAVEFORMS

Multiplexer/Latch

10132

TEST CIRCUITS AND WAVEFORMS

Signetics

ECL Products

DESCRIPTION

The 10133 is a Quad Latch with D-Type Inputs and Enable Outputs. Data (D_n) inputs are registered at output while the clock is HIGH. Data inputs are latched by the negative transition of the clock. All unused inputs must be tied LOW to V_{1L} or V_{EE} .

10133 Latch

Quad Latch With D-Type Inputs and Enable Outputs Product Specification

TYPE	TYPICAL PROPAGATION TYPICAL SUPPLY CURRENT DELAY (-1 _{EE})				
10133	4.0ns	59.6mA			

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -5.2V$ $T_A = -30^{\circ}C$ to $+85^{\circ}C$
Plastic DIP	10133N
Ceramic DIP	10133F

PIN DESCRIPTION

PINS	DESCRIPTION	
D ₀ – D ₃	Data Inputs	
CP	Clock Input	
$\overline{CE}_0, \overline{CE}_1$	Clock Enable Inputs	
$\overline{OE}_0, \overline{OE}_1$	Output Enable Inputs	
$\overline{Q}_0 - \overline{Q}_3$	Data Outputs	

6

PIN CONFIGURATION

Vcc2 1

Q0 2

D0 3

CE₀

ŌE₀ 5

Q1 6

D1 7

V_{EE} 8

LOGIC SYMBOL

16 Vcc1

15 Q₃

14 D₃

13 CP

12 CE1

11 Q2

10 OE1

9 D2

CD08260S

Product Specification

Latch

10133

FUNCTION TABLE

ŌĒ	CP	CE	D	Q _{n+1}
н	X	х	X X	Ĺ
L	L	L	х	Qn L
L	L	н	L	L
L	н	L	L	L
L	н	н	L	L
L	L	н	н	н Н
L	н	L	н	
L	н	н	н	н

Positive Logic: H = HIGH state (the more positive voltage) = 1 L = LOW state (the less postive voltage) = 0 X = Don't Care

Latch

10133

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	10K ECL	UNIT	
V _{EE}	Supply voltage	-8.0	v	
V _{IN}	Input voltage (VIN should never be m	0 to V _{EE}	v	
lo	Output source current		-50	mA
Τ _S	Storage temperature		-55 to +150	°C
+		Ceramic package	+ 165	°C
Tj	Maximum junction temperature	Plastic package	+ 150	°C

DC OPERATING CONDITIONS

		10K ECL				
	Min	Nom	Max	UNIT		
V _{CC1} , V _{CC2}	Circuit ground		0	0	0	V
V _{EE}	Supply voltage (negative)			-5.2		v
		$T_A = -30^{\circ}C$			-890	mV
V _{IH}	HIGH level input voltage	$T_A = +25^{\circ}C$			-810	m۷
		T _A = +85°C			-700	m٧
		T _A = -30°C	-1205			mV
V _{IHT}	HIGH level input threshold voltage	T _A = + 25°C	-1105			m٧
		T _A = +85°C	- 1035			m٧
		T _A = -30°C			-1500	m٧
V _{ILT}	LOW level input threshold voltage	T _A = + 25°C			-1475	m٧
		T _A = +85°C			-1440	m٧
	· · · · · · · · · · · · · · · · · · ·	T _A = -30°C	-1890			m١
V _{IL}	LOW level input voltage	T _A = + 25°C	-1850			-m\
		T _A = +85°C	-1825			m\
T _A	Operating ambient temperature		-30	+ 25	+ 85	°C

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

Latch

10133

	PA	RAMETE	R	MIN	ТҮР	MAX	UNIT	TEST CONDITIONS ²
		T _A = -30°C	-1060		-890	mV	Apply V_{IHmax} to each D_n input, one at a time, with	
V _{OH} HIGH output	HIGH lev		T _A = + 25°C	-960		-810	mV	VILmin applied to OEn inputs and VIHmax applied
	output ve	oitage	T _A = +85°C	-890		-700	mV	to CP and CE _n inputs.
	HIGH lev	/el	T _A = -30°C	-1080			mV	Apply V_{IHT} to each D_n input, one at a time, with
VOHT	output th		T _A = + 25°C	-980			mV	VILmin applied to OEn inputs and VIHmax
	voltage		T _A = +85°C	-910			mV	applied to CP and CE _n inputs.
	LOW lev	el	T _A = -30°C			-1655	mV	Apply V_{ILT} to each D_n input, one at a time, with
V _{OLT}	output th		T _A = + 25°C			-1630	mV	VIHmax applied to CP and CEn inputs and VILmin
	voltage		T _A = +85°C			-1595	mV	applied to OE _n inputs.
			T _A = -30°C	-1890		-1675	mV	Apply V_{ILmin} to each D_n input, one at a time, with
V _{OL}	LOW lev		T _A = + 25°C	-1850		-1650	mV	VIHmax applied to CP and CEn inputs, and VILmin
	output ve	Jilage	T _A = +85°C	-1825		-1615	mV	applied to OE _n inputs.
			$T_A = -30^{\circ}C$			390	μA	Apply V_{IHmax} to the \overline{CP} input and to each D_n input
		D _n inputs	T _A = + 25°C			245	μA	under test, one at a time, with VILmin applied
		"iputs	T _A = +85°C			245	μA	to all other inputs.
		CE _n inputs	T _A = -30°C			425	μA	
			T _A = + 25°C			265	μA	Apply V_{IHmax} to each \overline{CE}_n input under test, one at a time, with V_{ILmin} applied to all other inputs.
	HIGH level		T _A = +85°C			265	μA	
łΗ	input current	CP input	T _A = -30°C			560	μA	
			T _A = + 25°C			350	μA	Apply V _{IHmax} to CP input with V _{ILmin} applied to all other inputs.
			T _A = +85°C			350	μA	
		OE _n inputs	T _A = + 30°C			560	μA	Apply V_{IHmax} to the \overline{CP} input and to all D_n inputs
			T _A = +25°C			350	μA	and to each OEn input under test, one at a time,
			T _A = +85°C			350	μA	with V _{ILmin} applied to all other inputs.
			T _A = -30°C	0.5			μA	
Ι _{ΙL}	LOW lev		T _A = +25°C	0.5			μA	Apply V _{ILmin} to each input under test, one at a time,
	input cur	rent	T _A = +85°C	0.3			μA	with V _{IHmax} applied to all other inputs.
			T _A = -30°C			82	mA	
$-I_{EE}$	V _{EE} sup	oly	T _A = +25°C		59.6	72	mA	Apply V _{ILmin} to CP input.
	current		T _A = +85°C			82	mA	
$\frac{\Delta V_{OH}}{\Delta V_{EE}} \begin{array}{c} \text{HIGH level} \\ \text{output voltage} \\ \text{compensation} \end{array}$				0.016		v/v		
$\frac{\Delta V_{OL}}{\Delta V_{EE}}$	Vol LOW level		T _A = +25°C		0.250		v/v	
$\frac{\Delta V_{BB}}{\Delta V_{EE}} \begin{array}{c} \text{Reference bias} \\ \text{voltage} \\ \text{compensation} \end{array}$				0.148		v/v		

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to $+85^{\circ}C$, output loading with 50 Ω to -2.0V ±0.010V unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional

The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
 Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.
 The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 5.

Latch

AC ELECTRICAL CHARACTERISTICS	$V_{CC1} = V_{CC2} = +2.0V \pm 0.010V, V_{EE} = -3.2V \pm 0.010V$
-------------------------------	---

	PARAMETER		$T_A = -30^{\circ}C$		T _A = + 25°C			T _A = + 85°C		
			Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS
	Propagation delay D_n to \overline{Q}_n	1.0 1.0	5.6 5.6	1.0 1.0	4.0 4.0	5.4 5.4	1.1 1.1	5.9 5.9	ns ns	
	Propagation delay $\overline{CP} \ \overline{CE}_n$ to \overline{Q}_n	1.0 1.0	5.4 5.4	1.0 1.0	4.0 4.0	5.4 5.4	1.2 1.2	6.0 6.0	ns ns	
	Propagation delay \overline{OE}_n to \overline{Q}_n	1.0 1.0	3.2 3.2	1.0 1.0	2.0 2.0	3.1 3.1	1.0 1.0	3.4 3.4	ns ns	Figs. 6, 7, 8
ts	Setup time Dn to CP	2.5		2.5	0.7		2.5		ns	
t _h	Hold time Dn to CP	1.5		1.5	0.7		1.5		ns	
	Transition time 20% to 80%, 80% to 20%	1.0 1.0	3.6 3.6	1.1 1.1	2.0 2.0	3.5 3.5	1.1 1.1	3.8 3.8	ns ns	

6

AC WAVEFORMS

TEST CIRCUITS AND WAVEFORMS

NOTES: 1. $V_{CC1} = V_{CC2} = + 2V \pm 0.010V$, $V_{EE} = -3.2V \pm 0.010V$.

- Decoupling 0.1μF and 25μF from GND to V_{CC}, 0.01μF and 25mF from GND to V_{EE} (0.01 and 0.1μF capacitors should be NPO Ceramic or MLC 0.1µF capacitors should be NPU Ceramic or MLC type). Decoupling capacitors should be placed as close as physically possible to the DUT and lead length should be kept to less than ½ inch (6mm). 3. All unused inputs should be connected to either HIGH or LOW state consistent with the LOGIC function required.
 - function required.
- tunction required. 4. All unused outputs are loaded with 50Ω to GND. 5. L₁ and L₂ are equal length 50Ω impedance lines. L₃ the distance from the DUT pin to the junction of the cable from the Pulse Generator and the cable to the Scope, should not exceed $\frac{1}{4}$ inch (6mm). 6. R_T = 50Ω terminator internal to Scope.
- 7. The unmatched wire stub between coaxial cable and pins under test must be less than ¹/₄ inch (6mm) long for proper test. 8. C_L = Fixture and stray capacitance \leq 3pF.
- c. = ⊢rkutre and stray capacitance ≤ opr.
 Any unterminated stubs connected anywhere along the transmission line between the Pulse Generator and the DUT or between the DUT and the Scope should not exceed ½ inch (6mm) in length (refer to section on AC setup procedure).
 All 50Ω resistors should have tolerance of ± 1% or
- better.

Latch

10133

6

Signetics

ECL Products

DESCRIPTION

The 10134 is a Dual 2-Input Multiplexer with Clocked D-Type Latches. Latches can be clocked by the common Clock (CP) when the Clock Enable input (\overline{CE}) is LOW or by the Clock Enable input when the common Clock is held in the LOW state. The outputs are latched by the positive transition of the clock. Any change in the data will be registered at the output only if the clock is LOW.

Data inputs are selected by two Data Select inputs (S₀, S₁). All unused inputs must be tied LOW to V_{IL} or V_{EE}.

10134 Multiplexer/Latch

Dual 2-Input Multiplexer With Clocked D-Type Latches Product Specification

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
10134	3.0ns	42mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -5.2V$ $T_A = -30^{\circ}C \text{ to } +85^{\circ}C$
Plastic DIP	10134N
Ceramic DIP	10134F

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₃	Data Inputs
CP	Clock Input
CE ₀ , CE ₁	Clock Enable Inputs
S ₀ , S ₁	Select Inputs
$Q_0, Q_1, \overline{Q}_0, \overline{Q}_1$	Data Outputs

PIN CONFIGURATION

Vcc2 1

Q₀ 2 Q₀ 3

Do 4

D1 5

So 6

CP 7

VEE 8

LOGIC SYMBOL

16 Vcc1

15 Q1

14 Q1

13 D2

12 D₃

11 S1

10 CE0

9 CE1

CD08271S

Multiplexer/Latch

10134

6

Multiplexer/Latch

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	10K ECL	UNIT					
V _{EE}	Supply voltage		-8.0	v				
V _{IN}	Input voltage (VIN should never be more negative th	an V _{EE})	0 to V _{EE}	V				
lo	Output source current		-50	mA				
Ts	Storage temperature		-55 to +150	°C				
	Maximum in adian tamparatura	Ceramic package	+ 165	°C				
١J	Maximum junction temperature	Plastic package	+ 150	°C				

DC OPERATING CONDITIONS

	PARAMETER						
V _{CC1} , V _{CC2}	Circuit ground		0	0	0	v	
V _{EE}	Supply voltage (negative)			-5.2	÷	V	
		T _A = -30°C			-890	mV	
VIH	HIGH level input voltage	T _A = +25°C			-810	mV	
		T _A = +85°C			-700	mV	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		T _A = -30°C	-1205			mV	
VIHT	HIGH level input threshold voltage	$T_A = +25^{\circ}C$	-1105			mV	
		T _A = +85°C	-1035			mV	
		T _A = -30°C			-1500	mV	
VILT	LOW level input threshold voltage	$T_A = +25^{\circ}C$		· · · · ·	-1475	mV	
		$T_A = +85^{\circ}C$			-1440	mV	
		T _A = -30°C	- 1890	· .		mV	
VIL	LOW level input voltage	T _A = +25°C	- 1850			mV	
		T _A = +85°C	- 1825			mV	
TA	Operating ambient temperature		-30	+ 25	+ 85	°C	

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

Multiplexer/Latch

10134

PARAMETER		MIN	ТҮР	MAX	UNIT	TEST CONDITIONS ²		
			T _A = -30°C	-1060		-890	mV	For Qo output, apply Viewen to Do input with Viewin
V _{OH}	HIGH leve output vol		T _A = +25°C	-960		-810	mV	For Q ₀ output, apply V _{IHmax} to D ₀ input with V _{ILmin} applied to S ₀ , \overline{CE}_0 and \overline{CP} inputs.
		J	T _A = + 85°C	-890		-700	mV	For \overline{Q}_0 outputs, apply V_{ILmin} to all inputs.
			T _A = -30°C	-1080			mV	For Q ₀ outputs, apply V _{IHT} to D ₀ input with V _{ILmin}
V _{OHT}	HIGH leve threshold		T _A = + 25°C	-980			mV	applied to S_0 , \overline{CE}_0 and \overline{CP} inputs.
	uresiloid	voltage	T _A = +85°C	-910			mV	For $\overline{\Omega}_0$ outputs, apply V_{ILT} to D_0 input with V_{ILmin} applied to S_0 , \overline{CE}_0 , and \overline{CP} inputs.
			T _A = -30°C			- 1655	mV	For Q_0 outputs, apply V_{ILT} to D_0 input with V_{ILmin} applied to S_0 , CE_0 and CP inputs.
VOLT	LOW leve threshold		T _A = + 25°C			-1630	mV	applied to S ₀ , CE ₀ and CP inputs. For \overline{O}_0 outputs, apply $\underline{V}_{\underline{I}\underline{H}}$ to D ₀ input with V _{ILmin} ap-
	uneanoid	voltage	T _A = + 85°C		1	-1595	mV	plied to S_0 , \overline{CE}_0 , and \overline{CP} inputs.
			T _A = -30°C	-1890		-1675	mV	For On outputs, apply Views to all inputs
VOL	LOW leve		T _A = + 25°C	-1850		-1650	mV	For \underline{Q}_0 outputs, apply V_{ILmin} to all inputs. For \overline{Q}_0 outputs, apply $V_{I\underline{Hmax}}$ to D_0 input with V_{ILmin}
	output vol	tage	T _A = +85°C	-1825		-1615	mV	applied to S_0 , \overline{CE}_0 , and \overline{CP} inputs.
			T _A = -30°C			460	μA	
		D ₀ input	T _A = + 25°C			290	μA	Apply V_{IHmax} to D_0 input with V_{ILmin} applied to S_0 and all other inputs (measure D_0 input only).
		mput	T _A = + 85°C			290	μA	and an other inputs (measure D0 input only).
			T _A = -30°C			460	μA	
		D ₁ input	$T_A = +25^{\circ}C$			290	μA	Apply V_{IHmax} to D_1 and S_0 inputs with V_{ILmin} applied to all other inputs (measure D_1 input only).
	HIGH level	mput	T _A = +85°C			290	μA	to an other inputs (measure b) input only).
Чн	input	D ₂ input	T _A = -30°C			460	μA	
	current		T _A = +25°C			290	μA	Apply V_{IHmax} to D_2 input with V_{ILmin} applied to all other inputs (measure D_2 input only).
		mpat	T _A = +85°C			290	μA	
			T _A = -30°C			460	μA	
		D ₃ input	T _A = + 25°C			290	μA	Apply V_{IHmax} to D_3 and S_1 inputs with V_{ILmin} applied to all other inputs (measure D_3 input only).
		mpat	T _A = +85°C			290	μA	
			T _A = -30°C			425	μA	
		CE _n , S _n inputs	T _A = + 25°C			265	μA	Apply V_{IHmax} to each input under test, one at a time, with V_{ILmin} applied to all other inputs.
•	HIGH level	inputo	T _A = +85°C			265	μA	
ін	input		T _A = -30°C			460	μA	
	current	CP input	T _A = + 25°C			290	μA	Apply V _{IHmax} to CP input with V _{ILmin} applied to all other inputs.
		mpat	T _A = + 85°C			290	μA	
			T _A = -30°C	0.5			μA	
հլ	LOW leve		T _A = + 25°C	0.5			μA	Apply V _{ILmin} to each input under test, one at a time,
	input curre	HIL	T _A = +85°C	0.3			μA	with V _{IHmax} applied to all other inputs.
			T _A = -30°C			60	mA	
-I _{EE}	-IEE VEE supply		T _A = + 25°C		42	55	mA]
	current		T _A = +85°C			60	mA	
$\frac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH leve output vol compensa	tage			0.016		V/V	
$\frac{\Delta V_{OL}}{\Delta V_{EE}}$			T _A = +25°C		0.250		v/v	
$ \frac{\Delta V_{BB}}{\Delta V_{EE}} \begin{array}{c} \text{Reference bias} \\ \text{voltage} \\ \text{compensation} \end{array} $					0.148		v/v	

DC ELECTRICAL CHARACTERISTICS V_{CC1} = V_{CC2} = GND, V_{EE} = $-5.2V \pm 0.010V$, T_A = -30° C to $+85^{\circ}$ C, output loading with 50Ω to $-2.0V \pm 0.010V$ unless otherwise specified^{1,3}

NOTES:

NO LES:
 1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
 2. Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.
 3. The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 5.

Multiplexer/Latch

AC ELECTRICAL CHARAC	TERISTICS V _{CC1} = V _{CC2} = +2.0V	$\pm 0.010V$, V _{FF} = $-3.2V \pm 0.010V$
----------------------	---	---

	· · · · · · · · · · · · · · · · · · ·		0000	-					[
	PARAMETER	$T_A = -30^{\circ}C$		T _A = + 25°C		$T_A = +85^{\circ}C$		UNIT	TEST CONDITIONS	
		Min	Max	Min	Тур	Max	Min	Max		
	Propagation delay D _n to Q _n	1.0 1.0	3.5 3.5	1.0 1.0	3.0 3.0	3.3 3.3	1.0 1.0	3.6 3.6	ns ns	
	Propagation delay CP to Q _n	1.0 1.0	6.0 6.0	1.0 1.0		5.7 5.7	1.0 1.0	6.3 6.3	ns ns	
	Propagation delay S _n to Q _n	1.0 1.0	4.8 4.8	1.0 1.0		4.6 4.6	1.0 1.0	5.0 5.0	ns ns	
ts	Setup time D_n to \overline{CP}	2.5		2.5			2.5		ns	Figs. 6, 7, 8
t _h	Hold time Dn to CP	1.5		1.5			1.5		ns	
ts	Setup time S_n to \overline{CP}	3.5		3.5			3.5		ns	
t _h	Hold time Sn to CP	1.0		1.0			1.0		ns	
	Transition time 20% to 80%, 80% to 20%	1.5 1.5	3.7 3.7	1.5 1.5		3.5 3.5	1.5 1.5	3.8 3.8	ns ns	

Multiplexer/Latch

10134

6

AC WAVEFORMS

Multiplexer/Latch

TEST CIRCUITS AND WAVEFORMS

Signetics

ECL Products

DESCRIPTION

The 10135 is a Dual Master-Slave DC coupled J-K Flip-Flop. It contains a common clock and separate \overline{J} -K inputs which do not affect the output when the Clock is static. The outputs of the 10135 register a change on the \overline{J} or \overline{K} inputs with a positive transition of the Clock. Asynchronous Set (S) and Reset (R) inputs are provided which override the Clock. Unused inputs must be tied LOW to V_{IL} or V_{EE}.

10135 Flip-Flop

Dual J-K Master-Slave Flip-Flop Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
10135	3.0ns	54mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -5.2V$ $T_A = -30^{\circ}C \text{ to } +85^{\circ}C$
Plastic DIP	10135N
Ceramic DIP	10135F

PIN DESCRIPTION

PINS	DESCRIPTION
J _n , K _n	J, K Inputs
CP	Clock Input
S _n , R _n	Set and Reset Inputs
Q _n , Q̄ _n	Data Outputs

LOGIC SYMBOL

PIN CONFIGURATION

16 11 cc Vcci a 16 Vcc1 Vcc2 1 ō Q0 2 15 Q1 ā0 3 14 Q1 R₀ 13 R1 R₀ 4 9 СР S₀ 5 12 S1 12 S1 K0 6 11 K1 10 J Q1 15 J₀ 7 10 J₁ õ, V_{EE} 8 9 CP 11 K1 CD08280S 13 R1 VEE 8 LD04420S Figure 1 Figure 2

January 30, 1986

853-0664 82177

Flip-Flop

10135

FUNCTION TABLES

R	S	Q _{n + 1}
L	L	Q _n H
Ļ	н	н
н	L	L
н	н	*
Not allowed.		**************************************

R and S must be low.

J	ĸ	Q _{n + 1}
L	L	\overline{Q}_n
н	L	L
L	н	н
Н	н	Q _n

Positive Logic: H = HIGH state (the more positive voltage) = 1 L = LOW state (the less positive voltage) = 0 X = Don't Care

Flip-Flop

10135

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	10K ECL	UNIT		
V _{EE}	Supply voltage	-8.0	v		
V _{IN}	Input voltage (VIN should never be more negative t	han V _{EE})	0 to V _{EE}		
lo	Output current		- 50	mA	
Ts	Storage temperature		-55 to +150	°C	
		Ceramic package	+ 165	°C	
IJ	Maximum junction temperature	Plastic package	+ 150	°C	

DC OPERATING CONDITIONS

	PARAMETER								
V _{CC1} , V _{CC2}	V _{CC1} , V _{CC2} Circuit ground								
V _{EE}	Supply voltage (negative)			-5.2		v			
		$T_A = -30^{\circ}C$			-890	mV			
VIH	HIGH level input voltage	T _A = +25°C			-810	mV			
		T _A = +85°C			-700	mV			
		$T_A = -30^{\circ}C$	-1205			mV			
VIHT	HIGH level input threshold voltage	T _A = + 25°C	-1105			mV			
		T _A = +85°C	-1035			mV			
		T _A = -30°C			-1500	mV			
VILT	LOW level input threshold voltage	T _A = + 25°C			-1475	mV			
		T _A = +85°C			-1440	mV			
		T _A = -30°C	-1890			mV			
V _{IL}	LOW level input voltage	T _A = + 25°C	-1850			mV			
		T _A = +85°C	-1825			mV			
T _A	Operating ambient temperature		-30	+ 25	+ 85	°C			

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

Flip-Flop

10135

PARAMETER			MIN	ТҮР	MAX	UNIT	TEST CONDITIONS ²	
		T _A = -30°C	-1060		-890	mV	For Q outputs, apply V_{IHmax} to S input with V_{ILmin}	
VOH	HIGH lev		T _A = +25°C	-960		-810	mV	applied to R input and all other inputs. For \overline{Q} outputs, apply V _{IHmax} to R input with V _{ILmin}
	output to		T _A = +85°C	-890		-700	mV	applied to S input and all other inputs.
V _{OHT} HIGH level output threshold voltage		$T_A = -30^{\circ}C$	-1080			mV	For Q outputs, apply V_{IHT} to S input with V_{ILmin}	
			T _A = +25°C	-980			mV	applied to R input and all other inputs. For \overline{Q} outputs, apply V _{IHT} to R input with V _{ILmin}
	threshold voltage		T _A = +85°C	-910			mV	applied to S input and all other inputs.
			T _A = -30°C			- 1655	mV	For Q outputs, apply V_{IHT} to R input with V_{ILmin}
V _{OLT}	LOW leve		T _A = +25°C			- 1630	mV	applied to S input and all other inputs. For \overline{Q} outputs, apply V _{IHT} to S input with V _{ILmin}
	threshold voltage		T _A = +85°C			-1595	mV	applied to R input and all other inputs.
			$T_A = -30^{\circ}C$	- 1890		-1675	mV	For Q outputs, apply V_{IHmax} to R input with V_{ILmin}
V _{OL} LOW level output vo		T _A = + 25°C	- 1850		- 1650	mV	applied to S input and all other inputs. For \overline{Q} outputs, apply V _{IHmax} to S input with V _{ILmin}	
	output ve	nago	T _A = +85°C	- 1825		-1615	mV	applied to R input and all other inputs.
			T _A = -30°C			620	μA	
leve I _{IH} inp		S, R inputs	T _A = +25°C			390	μA	Apply V_{IHmax} to each input under test, one at a time, with V_{ILmin} applied to all other inputs.
	HIGH level		T _A = +85°C			390	μA	
	input	J, K, CP inputs	T _A = -30°C			425	μA	
	current		T _A = + 25°C			265	μA	Apply V _{IHmax} to each input under test, one at a time, with V _{ILmin} applied to all other inputs.
		mputo	T _A = +85°C			265	μA	
			T _A = -30°C	0.5			μA	
$I_{\rm IL}$	LOW lev		T _A = + 25°C	0.5			μA	Apply V _{ILmin} to each input under test, one at a time,
	input cur	rent	T _A = +85°C	0.3			μA	with V _{IHmax} applied to all other inputs.
			T _A = -30°C			75	mA	
-I _{EE}	V _{EE} supp	bly	T _A = +25°C		54	68	mA	
	current		T _A = +85°C			75	mA	
$rac{\Delta V_{OH}}{\Delta V_{EE}}$	$\begin{array}{c} \frac{\Delta V_{OH}}{\Delta V_{EE}} & \mbox{HIGH level} \\ \mbox{output voltage} \\ \mbox{compensation} \\ \frac{\Delta V_{OL}}{\Delta V_{EE}} & \mbox{LOW level} \\ \mbox{output voltage} \\ \mbox{compensation} \\ \end{array}$				0.016		v/v	
			T _A = +25°C		0.250		v/v	
$\frac{\Delta V_{BB}}{\Delta V_{EE}}$	Referenc voltage compens				0.148		v/v	

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to $+85^{\circ}C$, output loading with 50Ω to $-2.0V \pm 0.010V$ unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.
 The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 5.

6

Flip-Flop

	$T_A = -30^{\circ}C \qquad T_A = +25^{\circ}C$		°C	T _A = +85°C					
PARAMETER	Min	Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS
f _{MAX} Maximum clock frequency	125		125	140		115		MHz	
t _{PLH} Propagation delay t _{PHL} D _n , J̄ _n , K̄ _n to Q _n , Q _n	1.8 1.8	5.0 5.0	1.8 1.8	3.0 3.0	4.5 4.5	1.8 1.8	4.6 4.6	ns ns	
t _{PLH} Propagation delay t _{PHL} S _n to Q _n , Q _n	1.8 1.8	5.6 5.6	1.8 1.8	3.0 3.0	5.0 5.0	1.8 1.8	5.2 5.2	ns ns	
t _{PLH} Propagation delay t _{PHL} R _n to Q _n , Q _n	1.8 1.8	5.6 5.6	1.8 1.8	3.0 3.0	5.0 5.0	1.8 1.8	5.2 5.2	ns ns	Figs. 6, 7, 8
t_s Setup time \overline{J}_n , \overline{K}_n to CP	2.5		2.5	1.0		2.5		ns	
t_h Hold time \overline{J}_n , \overline{K}_n to CP	1.5		1.5	1.0		1.5		ns	
t_{TLH} Transition time t_{THL} 20% to 80%, 80% to 20%	1.1 1.1	4.8 4.8	1.1 1.1	2.0 2.0	4.5 4.5	1.1 1.1	4.7 4.7	ns ns	

AC ELECTRICAL CHARACTERISTICS V_{CC1} = V_{CC2} = +2.0V $\pm 0.010V,~V_{EE}$ = -3.2V $\pm 0.010V$

Flip-Flop

AC WAVEFORMS

.

TEST CIRCUITS AND WAVEFORMS

6

Signetics

10136 Universal Counter

Universal Hexadecimal Counter Product Specification

ECL Products

DESCRIPTION

The 10136 is a high-speed Hexadecimal Synchronous Counter that can count up, count down, preset, or stop count at frequencies exceeding 100MHz. The operation mode of the counter is programmed by three control lines (S₀, S₁, and CP) as can be seen in the function select table. In the preset mode (loading step), a clock pulse is needed for the information present on the data inputs (D₀, D₁, D₂, and D₃) to be entered into the counter. \overline{C}_{out} goes LOW on the terminal count, or when the counter is being preset.

The counter changes state only on the positive-going edge of the clock, so at any other time any other input may change without any result (except for \overline{C}_{out}).

This binary counter can be used in many applications, such as in computing for high-speed control processors and peripheral controllers. Unused inputs must be tied LOW to V_{IL} or V_{EE} .

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
10136	3.3ns	120mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -5.2V$ $T_A = -30^{\circ}C$ to $+85^{\circ}C$
Plastic DIP	10136N
Ceramic DIP	10136F

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₃	Data Inputs
СР	Clock Input
C in	Carry-in Input
S ₀ , S ₁	Select Inputs
C out	Carry-out Output
Q ₀ – Q ₃	Data Outputs

PIN CONFIGURATION

Vcc1 1 Q2 2

Q3 3

C_{out} 4 D₃ 5

S1

VEE 8

D₃ 5 D₂ 6

LOGIC SYMBOL

January 30, 1986

16 Vcc2

15 Q1

14 Q0

13 CP

12 D₀

11 D1

10 Čin

9 S₀

CDD

853-0665 82177

Universal Counter

10136

6

FUNCTION SELECT TABLE

S ₀	S ₁	OPERATING MODE
L	L	Preset (program)
L) н	Increment (count up)
н	L	Decrement (count down)
н	н	Hold (stop count)

Positive Logic: H = HIGH state (the more positive voltage) = 1 L = LOW state (the less positive voltage) = 0 X = Don't Care

SEQUENTIAL FUNCTION TABLE

			INP	UTS						OUTPUTS		
S ₀	S 1	Do	D ₁	D ₂	D ₃	Ū.N	СР	Q ₀	Q ₁	Q ₂	Q ₃	C o∪T
L	L	L	L	н	н	х	н	L	L	н	н	L
L	н	х	х	х	х	L	н	н	L	н	н	н
L	н	х	х	х	х	L	н	L	н	н	н	н
L	н	Х	х	х	х	L	н	н	н	н	н.	L
L	н	х	х	х	х	н	L	н	н	н	н	н
L	н	Х	х	х	х	н	н	н	н	н	н	н
н	н	х	х	х	х	х	н	н	н	н	н	н
L	L	н	н	L	L	х	н	н	н	L	L	L
н	L	х	х	х	х	L	н	L	н	L	L	н
н	L	х	х	х	х	L	н	н	L	L	L	н
н	L	х	х	х	х	L	н	L	L	· L	L	L
н	L	х	х	X	x	L	н	н	н	н	н	н

Universal Counter

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	10K ECL	UNIT	
V _{EE}	Supply voltage	-8.0	V	
V _{IN}	Input voltage (VIN should never be more negative that	0 to V _{EE}		
10	Output source current	-50	mA	
TS	Storage temperature		-55 to +150	°C
-	Manimum in attended and and and	Ceramic package	+ 165	°C
l lj	Maximum junction temperature	Plastic package	+ 150	°C

DC OPERATING CONDITIONS

	DAD AVETED							
	PARAMETER							
V _{CC1} , V _{CC2}	Circuit ground		0	0	0	v		
V _{EE}	Supply voltage (negative)			-5.2		V		
		$T_A = -30^{\circ}C$			-890	mV		
VIH	HIGH level input voltage	$T_A = +25^{\circ}C$			-810	mV		
		$T_A = +85^{\circ}C$			-700	mV		
		T _A = -30°C	- 1205			mV		
VIHT	HIGH level input threshold voltage	$T_A = +25^{\circ}C$	-1105			mV		
		T _A = + 85°C	-1035			mV		
		T _A = -30°C			-1500	mV		
VILT	LOW level input threshold voltage	$T_A = +25^{\circ}C$			-1475	mV		
		T _A = +85°C			-1440	mV		
		T _A = -30°C	-1890			mV		
VIL	LOW level input voltage	$T_A = +25^{\circ}C$	-1850			mV		
		T _A = +85°C	-1825			mV		
T _A	Operating ambient temperature		-30	+ 25	+ 85	°C		

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

Universal Counter

10136

6

	PARAMETER				түр	MAX	UNIT	TEST CONDITIONS ²	
			T _A = -30°C	-1060		-890	mV		
V _{OH}	HIGH level output voltage		T _A = + 25°C	-960		-810	mV	Apply V _{IHmax} to all inputs.	
			T _A = +85°C	-890		-700	mV		
	HIGH le	vel	T _A = -30°C	-1080			mV		
VOHT	output th		T _A = + 25°C	-980			mV	Apply V _{IHT} to each input, one at a time, with V _{IHmax} applied to all other inputs.	
	voltage		T _A = +85°C	-910			mV	Thinax appres to an other inputs	
	LOW lev	rel	T _A = -30°C			-1655	mV		
VOLT	output th		T _A = + 25°C			-1630	mV	Apply V_{IHT} to S ₀ input with V_{IHmax} applied to CP input and $V_{II min}$ applied to all other inputs.	
	voltage		T _A = +85°C			-1595	mV		
			T _A = -30°C	-1890		-1675	mV		
V _{OL}	LOW level output voltage		T _A = + 25°C	-1850		-1650	mV	Apply V_{IHmax} to S ₀ and CP inputs with V_{ILmin} applied to	
			T _A = +85°C	-1825		-1615	mV	all other inputs.	
	HIGH level input current	D _n inputs	$T_A = -30^{\circ}C$			350	μA		
			T _A = + 25°C			220	μA		
			mpate	$T_A = +85^{\circ}C$			220	μA	
			T _A = -30°C			425	μA		
		S ₁ input	T _A = + 25°C			265	μA	Apply V _{IHmax} to each input under test, one at a time, with V _{ILmin} applied to all other inputs.	
			T _A = +85°C			265	μA		
ιн		_	$T_A = -30^{\circ}C$			390	μA		
		current	S ₀ , Ĉ _{in} inputs	T _A = + 25°C			245	μA	
			mpato	T _A = +85°C			245	μA	
				$T_A = -30^{\circ}C$			460	μA	
		CP input	T _A = + 25°C			290	μA	Apply V_{IHmax} to CP input with V_{ILmin} applied to all other inputs.	
		mpat	T _A = +85°C			290	μA		
			$T_A = -30^{\circ}C$	0.5			μA		
I _{IL}	LOW lev		T _A = +25°C	0.5			μA	Apply V _{ILmin} to each input under test, one at a time,	
	input cu	rrent	T _A = +85°C	0.3			μA	with V _{IHmax} applied to all other inputs.	
			T _A = -30°C			165	mA		
I _{EE}	V _{EE} sup	ply	T _A = +25°C		120	150	mA]	
	current		T _A = +85°C			165	mA		

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to +85°C, output loading with 50 Ω to -2.0V ± 0.010V unless otherwise specified^{1,3}

	DC	ELECTRICAL	CHARACTERISTICS	(Continued)
--	----	------------	-----------------	-------------

PARAM	MIN	ΤÝΡ	МАХ	UNIT	TEST CONDITIONS ²	
$\frac{\Delta V_{OH}}{\Delta V_{EE}} \begin{array}{c} HIGH \text{ level} \\ \text{output voltage} \\ \text{compensation} \end{array}$			0.016		V/V	
$ \begin{array}{c} \Delta V_{OL} & \text{LOW level} \\ \hline \Delta V_{EE} & \text{output voltage} \\ \hline \Delta V_{EE} & \text{compensation} \end{array} $	T _A = +25°C		0.250		V/V	
$ \begin{array}{c} \Delta V_{BB} \\ \overline{\Delta V_{EE}} \end{array} \begin{array}{c} \text{Reference bia} \\ \text{voltage} \\ \text{compensation} \end{array} $	S		0.148		V/V	

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

2. Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.

3. The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

Universal Counter

10136

	PARAMETER		-30°C	T _A = + 25°C		T _A = +85°C					
			Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS	
fMAX	Maximum clock frequency	125		125	150		125		MHz	Figs. 5, 10, 11	
t _{PLH}	Propagation delay CP to Q _n	1.7 1.7	4.8 4.8	1.7 1.7	3.3 3.3	4.5 4.5	1.7 1.7	5.0 5.0	ns ns		
t _{PHL}	Propagation delay CP to \overline{C}_{OUT}	2.0 2.0	10.9 10.9	2.5 2.5	7.0 7.0	10.5 10.5	2.4 2.4	11.5 11.5	ns ns	Figs. 5, 6, 7, 10, 11	
t _{PLH} t _{PHL}	Propagation delay \overline{C}_{IN} to $\overline{C}_{\text{OUT}}$	1.6 1.6	7.4 7.4	1.6 1.6	5.0 5.0	6.9 6.9	1.9 1.9	7.5 7.5	ns ns		
ts	Setup time Dn to CP	3.5		3.5			3.5		ns		
t _h	Hold time Dn to CP	0.0		0.0			0.0		ns	Figs. 8, 10, 11	
ts	Setup time Sn to CP	7.5		7.5			7.5		ns		
t _h	Hold time Sn to CP	-2.5		-2.5			-2.5		ns		
ts	Setup time \overline{C}_{IN} to CP CP to \overline{C}_{IN}	4.5 -1.0		3.7 -1.0			4.5 -1.0		ns ns	Figs. 9, 10, 11	
t _h	Hold time CP to \overline{C}_{IN} \overline{C}_{IN} to CP	-1.6 4.0		-1.6 3.1			-1.6 4.0		ns ns		
	Transition time 20% to 80%, 80% to 20%	0.9 0.9	3.3 3.3	1.1 1.1	2.0 2.0	3.3 3.3	1.1 1.1	3.5 3.5	ns ns	Figs. 5, 6, 7, 10, 11	

AC ELECTRICAL CHARACTERISTICS V_{CC1} = V_{CC2} = +2.0V \pm 0.010V, V_{EE} = -3.2V \pm 0.010V

AC WAVEFORMS

6

Product Specification

Universal Counter

10136

Universal Counter

10136

6

TEST CIRCUITS AND WAVEFORMS

Figure	11.	Input	Pulse	Definition
riguie		mput	1 0100	Demmon

500ns

2.0 ± 0.2ns

2.0 ± 0.2ns

1MHz

800mVp-p

10K ECL

Signetics

ECL Products

DESCRIPTION

The 10137 is a high-speed Synchronous Decade Counter that can count up, count down, preset, or stop count at frequencies exceeding 100MHz.

The operation mode of the counter is programmed by three control lines (S_0 , S_1 and $\overline{C}_{|N}$) as can be seen in the function select table.

In the preset mode (loading step), a clock pulse is needed for the information present on the data inputs (D₀, D₁, D₂, and D₃) to be entered into the counter. \overline{C}_{OUT} goes LOW on the terminal count. \overline{C}_{OUT} is partially decoded from Q₀ and Q₁ directly, so in the preset mode the condition of \overline{C}_{OUT} after the clock's positive excursion will depend on the condition of Q₀ and/or Q₁.

The counter changes state only on the positive going edge of the clock, so at any other time, any other input may change without any result (except \overline{C}_{OUT}). The sequence for counting out of proper states is as shown in the state diagrams. This binary counter can be used in many applications, such as in computing for high speed control processors and peripheral controllers.

Unused inputs must be tied LOW to V_{IL} or $V_{\text{EE}}.$

10137 Universal Counter

Universal Decade Counter Product Specification

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
10137	3.3ns	120mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -5.2V$ $T_A = -30^{\circ}C$ to $+85^{\circ}C$
Plastic DIP	10137N
Ceramic DIP	10137F

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₃	Data Inputs
CP	Clock Input
Ū _{IN}	Carry-in Input
S ₀ , S ₁	Select Inputs
⊂ _{out}	Carry-out Output
Q ₀ – Q ₃	Data Outputs

PIN CONFIGURATION

LOGIC SYMBOL

Universal Counter

10137

6

FUNCTION SELECT TABLE

S ₀	S ₁	OPERATING MODE
L	L	Preset
L	н	Increment (count up)
н	L	Decrement (count down)
н	н	Hold (stop count)

Positive Logic:

H = HIGH state (the more positive voltage) = 1

L = LOW state (the less positive voltage) = 0

X = Don't Care
Universal Counter

10137

SEQUENTIAL FUNCTION TABLE

	INPUTS									OUTPUTS			
S ₀	S ₁	Do	D ₁	D ₂	D ₃	C IN	С	Q ₀	Q1	Q ₂	Q ₃	C ou⊤	
L	L	Н	н	н	н	х	н	н	н	н	L	н	
5 L	н	X	X	х	X	L	н	L	L	L	н	н	
L	H	X	X	X	x	L	H I	н	L	L	н	1. 1. L. 1.	
L	н	х	X	х	x	- L -	н	L	L	L	L	н	
L	н	х	х	х	X	L	н	н	L	L	L	н	
, L	н	х	x	х	x	÷н	н	н	L	L '	L	н	
L	н	х	X	х	х	н	н	н	L	L	L	н	
н	н	х	x	X	x	x	н	н	L	L	L	н	
L	L	н	н	L	L	x	н	н	н	L	L	н	
н	L	X	х	x	X	L	н	L	н	L	L	н	
н	1 L .	х	x	х	х	L L	н	н	L	L L	L	н	
н	L	X	X	х	х	L	н	L	L	L	L	L	

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	100K ECL	UNIT	
V _{EE}	Supply voltage	-8.0	V	
V _{IN}	Input voltage (VIN should never be mo	0 to V _{EE}	V	
lo	Output source current		-50	mA
Ts	Storage temperature		-55 to +150	°C
т.	Maximum junction temperature	Ceramic package	+ 165	°C
· J	maximum junction temperature	Plastic package	+ 150	°C

DC OPERATING CONDITIONS

	PARAMETER	Min	Nom	Max	UNIT	
V _{CC1} , V _{CC2}	Circuit ground	0	0	0	V	
VEE	Supply voltage (negative)	-		-5.2		V
	·	T _A = -30°C			-890	mV
VIH	HIGH level input voltage	$T_A = +25^{\circ}C$			-810	mV
		T _A = +85°C			-700	mV
		T _A = -30°C	-1205			mV
VIHT	HIGH level input threshold voltage	T _A = + 25°C	-1105			mV
		T _A = +85°C	-1035			mV
		T _A = -30°C			-1500	mV
V _{ILT}	LOW level input threshold voltage	T _A = + 25°C			-1475	mV
		T _A = +85°C			-1440	mV
		T _A = -30°C	- 1890			mV
VIL	LOW level input voltage	T _A = + 25°C	- 1850			mV
		T _A = +85°C	- 1825			mV
TA	Operating ambient temperature		-30	+ 25	+ 85	°C

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V) the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

Universal Counter

10137

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to $+85^{\circ}C$, output loading with 50Ω
to $-2.0V \pm 0.010V$ unless otherwise specified ^{1,3}

	PA	RAMETE	R	MIN	ТҮР	MAX	UNIT	TEST CONDITIONS ²			
V _{OH}	HIGH level output voltage		T _A = -30°C	- 1060		-890	mV	For Q_n outputs, apply V_{ILmin} to CP, S_0 , and S_1 inputs. After applying V_{IHmax} to all other inputs, change the CP			
			$T_A = +25^{\circ}C$	-960		-810	mV	input from V_{ILmin} to V_{IHmax} . For \overline{C}_{OUT} , apply V_{ILmin} to CP, \overline{C}_{IN} , S_0 , and S_1 inputs. After applying V_{IHmax} to D_n inputs, change CP from V_{ILmin} to			
			T _A = +85°C	-890		-700	mV	V_{IHmax} then change S_0 and \overline{C}_{IN} from V_{ILmin} to V_{IHmax}			
	HIGH lev	(al	T _A = -30°C	-1080			mV	For Q_0 output, apply V_{IHT} to D_0 input and V_{ILmin} to CP, S_0 , S_1 , and D_1 , D_2 , and D_3 . Raise CP from V_{ILmin} to V_{IHmax} and measure Q_0 . Repeat this process for Q_1 , Q_2 ,			
V _{OHT}	output threshold		T _A = +25°C	-980			mV	and Q_3 by applying V_{IHT} to D_1 , D_2 , and D_3 , respectively, one at a time. For \overline{C}_{OUT} , apply V_{ILmin} to CP, \overline{C}_{IN} , S_0 , and S_1 inputs. After			
	voltage		T _A = +85°C	-910			mV	applying V _{IImmax} to D _n inputs, change CP from V _{ILmin} to V _{IHT} then change S ₀ and \overline{C}_{IN} from V _{ILmin} to V _{IHmax} .			
	LOW lev	el	$T_A = -30^{\circ}C$			- 1655	mV	For Q_n outputs, apply V_{ILmin} to D_n inputs and to CP, S_0 , and S_1 inputs. Raise CP from V_{ILmin} to V_{IHT} and measure Q_n			
V _{OLT}	output threshold		T _A = +25°C			-1630	mV	outputs. For $\overline{C}_{OUT},$ apply V_{ILT} to CP, $\overline{C}_{IN},$ $S_0,$ and S_1 inputs. After			
	voltage		T _A = +85°C			- 1595	mV	applying V_{IHmax} to D_n inputs, change CP from V_{ILmin} to V_{IHmax} and measure $\overline{C}_{OUT}.$			
V _{OL}	LOW level		$T_A = -30^{\circ}C$	- 1890		-1675	mV	For Q_n outputs, apply V_{ILmin} to D_n inputs and to CP, $S_0,$ and S_1 inputs. Raise CP from V_{ILmin} to V_{IHmax} and measure			
			T _A = +25°C	- 1850		- 1650	mV	Q_n outputs. For $\overline{C}_{OUT},$ apply V_{ILmin} to CP, $C_{IN},\ S_0$ and S_1 inputs.			
			T _A = +85°C	- 1825		- 1615	mV	After applying V _{IHmax} to D _n inputs, change CP from V _{ILmin} to V _{IHmax} and measure \overline{C}_{OUT} .			
		D _n inputs	$T_A = -30^{\circ}C$			350	μA				
			T _A = +25°C			220	μA				
			T _A = +85°C			220	μA				
		0	$T_A = -30^{\circ}C$			390	μA	· · · · · · · · · · · · · · · · · · ·			
		S₀, Ĉ _{IN}	T _A = + 25			245	μA				
	HIGH level	inputs	T _A = +85			245	μA	Apply V _{IHmax} to each input under test, one at a time, with			
IIH	input		$T_A = -30^{\circ}C$			425	μA	V _{IHmax} applied to all other inputs.			
	current	S ₁ input	T _A = +25			265	μA				
		niput	$T_A = +85^{\circ}C$			265	μA				
			$T_A = -30^{\circ}C$			460	μA				
		CP input	$T_A = +25^{\circ}C$			290	μA				
		input	T _A = +85°C			290	μA				
			$T_A = -30^{\circ}C$	0.5			μA	· · ·			
կլ	LOW lev		T _A = + 25°C	0.5			μA	Apply V _{ILmin} to each input under test, one at a time, with V _{ILmax} applied to all other inputs.			
	input cur	i en l	T _A = +85°C	0.3			μA	Hmax applied to all other inputs.			
	V		T _A = -30°C			165	mA				
IEE	V _{EE} supply		T _A = + 25°C		120	150	mA	1			
	current		T _A = +85°C			165	mA	1			

NOTES:

The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
 Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.

Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.
 The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying approximation of the specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying approximation of the specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying approximation of the specified limits the table to extend to ext

power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

Universal Counter

AC ELECTRICAL CHARACTERISTICS V	$V_{\rm CC1} = V_{\rm CC2} = +2.0V \pm 0.010V, V_{\rm EE} = -3.2V \pm 0.010V$
---------------------------------	---

PARAMETER			T _A = -	$T_A = -30^{\circ}C$ $T_A = +25^{\circ}C$		T _A = +85°C			TEAT CONDITIONS			
	PARAMEIER			Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS	
f _{MAX}	f _{MAX} Maximum clock frequency				125	150		125		MHz		
	Propagation d CP to Q _n	elay	0.8 0.8	4.8 4.8	1.0 1.0	3.3 3.3	4.5 4.5	1.1 1.1	5.0 5.0	ns ns		
t _{PLH} Propagation delay t _{PHL} CP to C _{OUT}		2.0 2.0	10.9 10.9	2.5 2.5	7.0 7.0	10.5 10.5	2.4 2.4	11.5 11.5	ns ns	Figs. 5, 8, 9		
	Propagation d \overline{C}_{IN} to \overline{C}_{OUT}	elay	1.6 1.6	7.4 7.4	1.6 1.6	5.0 5.0	6.9 6.9	1.9 1.9	7.5 7.5	ns ns		
ts	Setup time	D _n to CP	3.5		3.5			3.5		ns		
t _h	Hold time	CP to D _n	0.0		0.0			0.0		ns	Figs. 6, 8, 9	
ts	Setup time	S _n to CP	7.5	·	7.5			7.5		ns		
t _h	Hold time	CP to S _n	-2.5		-2.5			-2.5		ns		
ts	Setup time	\overline{C}_{IN} to CP	4.5		3.7			4.5		ns		
t _h	Hold time	CP to CIN	-1.6		-1.6			-1.6		ns	Figs. 7, 8, 9	
ts	Setup time	CP to CIN	-1.0		-1.0			-1.0		ns		
t _h	Hold time	\overline{C}_{IN} to CP	4.0		3.1			4.0		ns		
t _{TLH} Transition time t _{THL} 20% to 80%, 80% to 20%			0.9 0.9	3.3 3.3	1.1 1.1	2.0 2.0	3.3 3.3	1.1 1.1	3.5 3.5	ns ns	Figs. 5, 8, 9	

Universal Counter

10137

6

AC WAVEFORMS

Universal Counter

TEST CIRCUITS AND WAVEFORMS

Figure 8. AC Test Circuit for 10137

NOTES:

- 1. $V_{CC1} = V_{CC2} = +2V \pm 0.010V$, $V_{EE} = -3.2V \pm 0.010V$.
- Decoupling 0.1μF and 25μF from GND to V_{CC}, 0.01μF from GND to V_{EE} (0.01 and 0.1uF capacitors should be NPO Ceramic or MLC type). Decouping capacitors should be placed as close as physically possible to the DUT and lead length should be kept to less than ¹/₄ inch (6mm). All unused inputs should be connected to either HIGH or LOW state consistent with the LOGIC
- function required.
- All unused outputs are loaded with 50Ω to GND.
 L₁ and L₂ equal length 50Ω impedance lines. L₃, the distance from the DUT pin and the junction of the cable from the Pulse Generator and the cable
- the cable from the rules contractor and the cable to the Scope, should not exceed $\frac{1}{4}$ inch (6mm). 6. R_T = 50Ω terminator internal to Scope. 7. The unmatched wire slub between coaxial cable and pins under test must be less than $\frac{1}{4}$ inch (6mm) long for proper test. $C_L = Fixture and stray capacitance \leq 3pF.$
- 8.
- Any unterminated stubs connected anywhere along the transmission line between the Pulse Generator and the DUT or between the DUT and the Scope should not exceed ¹/₄ inch (6mm) in length (refer to
- section on AC setup procedure). 10. All 50Ω resistors should have tolerance of ± 1% or better.

Signetics

ECL Products

DESCRIPTION

The 10141 is a four-bit serial-/parallelout shift register. Inputs S_0 and S_1 are used to determine the four possible functions of the register, these being no shift, shift left, and parallel entrance of data with no external gating of the clock. The other inputs D_R and D_L are intended for shifting in from the left and the right, while inputs D_0 to D_3 are normal data inputs. All four outputs are capable of driving 50Ω lines. When the register is operating for serial output only, the unused outputs may be left open. All unused inputs must be tied LOW to V_{IL} or V_{EE} .

10141 Shift Register

4-Bit Universal Shift Register Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
10141	2.9ns	82mA

ORDERING CODE

PACKAGES	$\begin{array}{l} \mbox{COMMERCIAL RANGE} \\ \mbox{V}_{CC1} = \mbox{V}_{CC2} = \mbox{GND}; \ \mbox{V}_{EE} = -5.2 \mbox{V} \\ \mbox{T}_{A} = -30^{\circ} \mbox{C} \ \ \mbox{to} \ +85^{\circ} \mbox{C} \end{array}$				
Plastic DIP	10141N				
Ceramic DIP	10141F				

PIN DESCRIPTION

PINS	DESCRIPTION				
D ₀ – D ₃	Data Inputs				
CP	Clock Input				
S ₀ , S ₁	Select Inputs				
DR	Serial Shift Right Register				
DL	Serial Shift Left Register				
$Q_0 - Q_3$	Data Outputs				

PIN CONFIGURATION

Vcc2 1

Q₂ 2

Q3 3

CP 4

D_R 5

D3 6

S1 7

VEE 8

LOGIC SYMBOL

16 V_{CC1}

15 Q1

14 Q0

13 DL

12 D₀

11 D1

10 S₀

9 D2

CD08310S

Shift Register

10141

Figure 3. Logic Diagram

FUNCTION TABLE

	ECT UTS	OPERATION MODE		OUTPUTS						
S ₁	S ₂		Q _{0(n + 1)}	Q _{1(n + 1)}	Q _{3(n + 1)}					
L	L	Parallel	Do	D ₁	D ₂					
L	н	Shift right*	Q _{1n}	Q _{2n}	Q _{3n}					
н	L	Shift left*	DL	Q _{0n}	Q _{1n}					
н	н	Stop shift	Q _{0n}	Q _{1n}	Q _{2n}					

Positive Logic:

H = HIGH state (the more positive voltage) = 1

 $\begin{array}{l} \label{eq:linear} \mathsf{L} = \mathsf{LOW} \text{ state (the less positive voltage) = 1 } \\ \mathsf{L} = \mathsf{LOW} \text{ state (the less positive voltage) = 0 } \\ \end{tabular} \text{Outputs as they exist after pulse at "CP" input with conditions as shown.} \\ \end{tabular} \mathsf{Pulse} \text{ is positive transition of clock (CP) input.} \end{array}$

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	10KECL	UNIT	
V _{EE}	Supply voltage	-8.0	v	
V _{IN}	Input voltage (VIN should never be more	0 to V _{EE}	V	
lo	Output source current		-50	mA
Ts	Storage temperature		-55 to +150	°C
T,	Maximum junction temperature	Ceramic package	+ 165	°C
۰J		Plastic package	+ 150	°C

Shift Register

			to –	2.0V ±0	.010V u	nless oth	nerwise s	pecified ^{1,3}	
PARAMETER				MIN	ТҮР	MAX	UNIT	TEST CONDITIONS ²	
			$T_A = -30^{\circ}C$	-1060		-890	mV	Apply VIHmax to CP input and Dn inputs, one	
V_{OH}	HIGH level output voltag	e	$T_A = +25^{\circ}C$	-960		-810	mV	at a time, with VILmin applied to all other	
		-	$T_A = +85^{\circ}C$	-890		-700	mV	inputs.	
	HIGH level		T _A = -30°C	- 1080			mV	Apply VIHT to CP input. Apply VIHmax to Dn	
V _{OHT}	output threshold		$T_A = +25^{\circ}C$	-980			mV	inputs, one at a time, with V_{ILmin} applied to	
	voltage		$T_A = +85^{\circ}C$	-910			mV	all other inputs.	
	LOW level		T _A = -30°C			-1655	mV		
V _{OLT}	output threshold		$T_A = +25^{\circ}C$			-1630	mV	Apply V_{IHT} to CP input with V_{ILmin} applied to all other inputs.	
	voltage		T _A = +85°C			-1595	mV		
			T _A = -30°C	- 1890		-1675	mV		
VOLT	LOW level output voltag	e	T _A = + 25°C	-1850		-1650	mV	Apply V _{IHmax} to CP input with V _{ILmin} applie to all other inputs.	
	output foliag		$T_A = +85^{\circ}C$	- 1825		-1515	mV		
		D _n , D _B	T _A = -30°C			350	μA		
		D _L inputs	T _A = + 25°C			200	μA		
			T _A = +85°C			200	μA	Apply V _{IHmax} to each input under test, one	
	HIGH	S ₀ , S ₁ input	T _A = -30°C			390	μA	at a time, with V _{ILmin} applied to all other inputs.	
ιн	level input		T _A = + 25°C			245	μA		
	current		$T_A = +85^{\circ}C$			245	μA		
			$T_A = -30^{\circ}C$			425	μA		
		CP input	T _A = + 25°C			265	μA	Apply V _{IHmax} to CP input with V _{ILmin} applied to all other inputs.	
			T _A = +85°C			265	μA		
		•	T _A = -30°C	0.5			μA	Apply VII min to each input under test one	
IIL	LOW level input current		T _A = +25°C	0.5			μA	at a time with VIHmax applied to all other	
	pat ouriont		T _A = +85°C	0.3			μA	inputs.	
	V _{EE}		T _A = -30°C			112	mA		
$-I_{EE}$	supply		T _A = + 25°C		82	102	mA		
	current		T _A = +85°C			112	mA	1	

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to $+85^{\circ}C$, output loading with 50Ω to $-2.0V \pm 0.010V$ unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

2. Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.

3. The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

Shift Register

	PARAMETER			T _A = + 25°C			T _A = + 85°C				
				Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS	
f _{MAX}	Maximum clock frequency	150		150	200		150		MHz	Figs. 5, 8, 9	
t _{PLH} t _{PHL}	Propagation delay D _n to Q _n	1.7 1.7	3.9 3.9	1.8 1.8	2.9 2.9	3.8 3.8	2.0 2.0	4.2 4.2	ns ns	Figs. 5, 7, 9	
ts	Setup time Dn to CP	2.5		2.5			2.5		ns		
t _h	Hold time CP to Dn			1.5			1.5		ns		
ts	t _s Setup time S _n to CP			5.0		5.5			ns	Figs. 6, 7, 9	
t _h	h Hold time CP to Sn			1.5			1.5		ns		
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%		3.4 3.4	1.1 1.1	2.0 2.0	3.3 3.3	1.1 1.1	3.6 3.6	ns ns	Figs. 5, 7, 9	

AC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = +2.0V \pm 0.010V$, $V_{EE} = -3.2V \pm 0.010V$

Shift Register

10141

AC WAVEFORMS

TEST CIRCUITS AND WAVEFORMS

Shift Register

Signetics

ECL Products

DESCRIPTION

The 10158 is a high-speed, low power, Quad 2-to-1 Multiplexer. With respect to a single control signal(s), it transmits to a common output pin the data present on either of two input pins.

As contrasted with the 10159, the 10158 has no enable input and non-inverting outputs. All unused inputs can be left open due to integrated pull-down resistors which avoid the need for a supply voltage.

10158 Multiplexer

Quad 2-to-1 Multiplexer, Non-Inverting Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
10158	2.5ns	38mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -5.2V$ $T_A = -30^{\circ}C$ to $+85^{\circ}C$
Plastic DIP	10158N
Ceramic DIP	10158F

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₇	Data Inputs
S	Select Input
Q ₀ – Q ₃	Data Outputs

LOGIC SYMBOL

PIN CONFIGURATION

116 /cc 6 D1 16 V_{CC} Q₀ 1 3 15 Q3 D2 Q1 2 D0 3 14 Q2 4 Da D1 4 13 D7 12 D6 D2 5 12 D4 D3 6 11 D5 13 D5 10 D4 NC 7 VEE 8 9 S D6 10 CD083205 11 07 Figure 1 Figure 2

853-0668 82177

15

14

LD04470S

10158

FUNCTION TABLE

	INPUTS	OUTPUT	
Do	D ₁	S	Q ₀
L	X	L	L
н	X	L	н
X	L	н	L
X	н	н	н

Positive Logic:

H = HIGH state (the more positive voltage) = 1 L = LOW state (the less positive voltage) = 0

X = Don't Care

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	10K ECL	UNIT		
V _{EE}	Supply voltage	-8.0	v		
VIN	Input voltage (VIN should never be more nega	tive than V _{EE})	0 to V _{EE}		
I _O	Output current		-50	mA	
Τs	Storage temperature		-55 to +150	°C	
-		Ceramic package	+ 165	°C	
IJ	Maximum junction temperature	Plastic package	+ 150	°C	

DC OPERATING CONDITIONS

	PARAMETER						
	Min	Nom	Max	UNIT			
V _{CC1} , V _{CC2}	Circuit ground	0	0	0	v		
V _{EE}	Supply voltage (negative)			-5.2		v	
		$T_A = -30^{\circ}C$			-890	mV	
V _{IH}	HIGH level input voltage	T _A = + 25°C			-810	mV	
		T _A = +85°C			-700	mV	
		T _A = -30°C	-1205			mV	
VIHT	HIGH level input threshold voltage	T _A = + 25°C	-1105			mV	
		$T_A = +85^{\circ}C$	-1035			mV	
		$T_A = -30^{\circ}C$			-1500	mV	
VILT	LOW level input threshold voltage	$T_A = +25^{\circ}C$			-1475	mV	
		$T_A = +85^{\circ}C$			-1440	mV	
		T _A = -30°C	-1890			m٧	
V _{IL}	LOW level input voltage	$T_A = +25^{\circ}C$	-1850			m٧	
4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		$T_A = +85^{\circ}C$	-1825			m\	
Τ _A	Operating ambient temperature		-30	+ 25	+ 85	°C	

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

10158

						·····	· · · · · ·	
PARAMETER			MIN	TYP	MAX	UNIT	TEST CONDITIONS ²	
			T _A = -30°C	-1060		-890	mV	For even inputs, apply V _{ILmin} to S input with V _{IHmax}
V _{OH}	HIGH lev output v		T _A = +25°C	-960		-810	mV	applied to all other inputs.
			T _A = +85°C	-890		-700	mV	For odd inputs, apply V _{IHmax} to all inputs.
	HIGH lev	vel	$T_A = -30^{\circ}C$	- 1080			mV	Apply V_{IHT} to D_0 input with V_{ILmin} applied to S input.
V _{OHT}	output th		$T_A = +25^{\circ}C$	-980			mV	Repeat for each even input. Apply V_{IHT} to D ₁ input with V_{IHmax} applied to S in-
	voltage		T _A = +85°C	-910			mV	put.Repeat for each odd input.
	LOW lev	el	T _A = -30°C			-1655	mV	Apply V_{ILT} to D_0 input with V_{ILmin} applied to S input.
VOLT	output th		T _A = + 25°C			- 1630	mV	Repeat for each even input. Apply V_{ILT} to D ₁ input with V_{IHmax} applied to S in-
	voltage		T _A = +85°C			-1595	mV	put.Repeat for each odd input.
			T _A = -30°C	-1890		-1675	mV	For even inputs, apply V _{ILmin} to all inputs.
VOL	LOW lev		T _A = + 25°C	- 1850		-1650	mV	For odd inputs, apply V_{IHmax} to S input and V_{ILmin} to
	output t	onago	T _A = +85°C	- 1825		-1615	mV	all other inputs.
			T _A = -30°C			360	μA	
		S input	T _A = +25°C			225	μA	Apply V _{IHmax} to S input with V _{ILmin} applied to all other inputs.
	HIGH		T _A = +85°C			225	μA	
Чн	level input current	Other inputs	$T_A = -30^{\circ}C$			400	μΑ	For even inputs, apply V _{IHmax} to input under test, one at a time, with V _{ILmin} applied to all other inputs.
	current		T _A = +25°C			250	μA	For odd inputs, apply VIHmax to S input and to input
			$T_A = +85^{\circ}C$			250	μA	under test, one at a time, with V _{ILmin} applied to all other inputs.
			$T_A = -30^{\circ}C$	0.5			μA	
hι	LOW lev	1	$T_A = +25^{\circ}C$	0.5			μA	Apply V _{ILmin} to each input under test, one at a time,
	input cur	rent	T _A = +85°C	0.3			μA	with V _{IHmax} applied to all other inputs.
			$T_A = -30^{\circ}C$			53	mA	
-I _{EE}	V _{EE} supp current	ply	$T_A = +25^{\circ}C$		38	46	mA	
	current		$T_A = +85^{\circ}C$			53	mA	
$\frac{\Delta V_{OH}}{\Delta V_{EE}} \begin{array}{c} \text{HIGH level} \\ \text{output voltage} \\ \text{compensation} \end{array}$				0.016		V/V		
$\frac{\Delta V_{OL}}{\Delta V_{EE}}$	output voltage		T _A = + 25°C		0.250		V/V	
$\frac{\Delta V_{BB}}{\Delta V_{EE}} \begin{array}{c} \text{Reference bias} \\ \text{voltage} \\ \text{compensation} \end{array}$				0.148		V/V		

DC ELECTRICAL CHARACTERISTICS V_{CC} = GND, V_{EE} = $-5.2V \pm 0.010V$, T_A = $-30^{\circ}C$ to $+85^{\circ}C$, output loading with 50Ω to $-2.0V \pm 0.010V$ unless otherwise specified^{1, 3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.
 The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

AC ELECTRICAL CHARACTERISTICS $V_{CC} = +2.0V \pm 0.010V$, $V_{EE} = -3.2V \pm 0.010V$

	T _A =	T _A = + 25°C			T _A = +85°C					
PARAMETER	Min	Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH} Propagation delay t _{PHL} D _n to Q _n	1.3	3.1	1.2	2.5	3.0	1.3	3.2	ns	Figs. 5, 6, 7	
t _{PLH} Propagation delay t _{PHL} S to Q _n	2.5	4.8	2.4	3.2	4.5	2.5	4.8	ns	Figs. 5, 6, 7	
t _{TLH} Transition time t _{THL} 20% to 80%, 80% to 20%	1.6 1.6	3.4 3.4	1.5 1.5	2.5 2.5	3.3 3.3	1.6 1.6	3.4 3.4	ns ns	Figs. 5, 6, 7	

AC WAVEFORMS

Product Specification

10158

6

TEST CIRCUITS AND WAVEFORMS

NOTES:

- 1. $V_{CC1} = V_{CC2} = + 2V \pm 0.010V$, $V_{EE} = -3.2V \pm 0.010V$. Decoupling 0.1μF and 25μF from GND to V_{CC}, 0.01μF and 25μF from GND to V_{EE} (0.01 and 0.1μF capacitors should be NPO Ceramic or MLC type).
- capacitors should be NPO certaint or MRC type). Decoupling capacitors should be placed as close as physically possible to the DUT and lead length should be kept to less than ¹/₄ inch (6mm). 3. All unused inputs should be connected to either
- HIGH or LOW state consistent with the LOGIC function required.
- tunction required. 4. All unused outputs are loaded with 50Ω to GND. 5. L₁ and L₂ are equal length 50Ω impedance lines. L₃ the distance from the DUT pin to the junction of the cable from the Pulse Generator and the cable
- the cable from the Puise Generator and the cable to the Scope, should not exceed ¼ inch (6mm). 6. R_T = 50Ω terminator internal to Scope. 7. The unmatched wire stub between coaxial cable and pins under test must be less than ¼ inch
- and pins under test must be less than 74 inch (6mm) long for proper test. $C_L = Fixture and stray capacitance < 3pF.$ Any unterminated stubs connected anywhere along the transmission line between the Pulse Generator
- and the DUT or between the DUT and the Scope should not exceed ¹/₄ inch (6mm) in length (refer to section on AC setup procedure). 10. All 50Ω resistors should have tolerance of $\pm 1\%$ or
- better.

Figure 6. AC Test Circuit

Signetics

10159 Multiplexer

Quad 2-to-1 Multiplexer, Inverting Product Specification

ECL Products

DESCRIPTION

The 10159 is a high-speed, low power, Quad 2-to-1 Multiplexer.

With respect to a single control signal, (S), it transmits to a common output pin the data present on either of two input pins.

As contrasted with the 10158, the 10159 has a common output enable input (\overline{OE}) and inverting outputs.

All unused inputs can be left open due to integrated pull-down resistors which avoid the need for a supply voltage.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
10159	2.5ns	42mA

ORDERING CODE

PACKAGES	$\begin{array}{l} \mbox{COMMERCIAL RANGE} \\ \mbox{V}_{CC1} = \mbox{V}_{CC2} = \mbox{GND}; \ \mbox{V}_{EE} = -5.2 \mbox{V} \\ \mbox{T}_{A} = -30^{\circ} \mbox{C} \ \ \mbox{to} \ \ +85^{\circ} \mbox{C} \end{array}$					
Plastic DIP	10159N					
Ceramic DIP	10159F					

PIN DESCRIPTION

PINS	DESCRIPTION
$D_0 - D_7$	Data Inputs
S	Select Input
ŌĒ	Output Enable Input
$\overline{Q}_0 - \overline{Q}_3$	Data Outputs

PIN CONFIGURATION

Q0 1

Q1 2

D₃ 3

D₂ 4

D1 5

D₀ 6

OE 7

VEE 8

LOGIC SYMBOL

16 Vcc

15 Q2

14 Q₃

13 D4 12 D5

11 D6

10 D7

9 S

CD08330S

853-0669 82177

10159

FUNCTION TABLE

	INP	OUTPUT		
D ₀	D ₁	s	ŌĒ	Q ₀
х	Х	Х	н	L
L	х	L	L	н
н	х	L	L	L
х	L	н	L	н
х	н	н	L	L

Positive Logic:

H = HIGH state (the more positive voltage) = 1

L = LOW state (the less positive voltage) = 0

X = Don't Care

0 means even numbers

1 means odd numbers

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating case temperature range.)

	PARAMETER	3	10K ECL	UNIT	
V _{EE}	Supply voltage	-8.0	v		
VIN	Input voltage (VIN should never be	more negative than V _{EE})	0 to V _{EE}		
lo	Output source current		-50	mA	
TS	Storage temperature		-55 to +150	°C	
-		Ceramic package	+ 165	°C	
IJ	T _J Maximum junction temperature	Plastic package	+ 150	°C	

DC OPERATING CONDITIONS

				10K EC	L	
	PARAMETER					UNIT
V _{CC1} , V _{CC2}	Circuit ground		0	0	0	v
V _{EE}	Supply voltage (negative)			-5.2		v
		$T_A = -30^{\circ}C$			-890	mV
V _{IH}	HIGH level input voltage	T _A = + 25°C			-810	mV
		T _A = +85°C			700	mV
		T _A = -30°C	-1205			mV
VIHT	HIGH level input threshold voltage	T _A = + 25°C	-1105			mV
		T _A = +85°C	- 1035			mV
		$T_A = -30^{\circ}C$			- 1500	mV
VILT	LOW level input threshold voltage	T _A = + 25°C			-1475	mV
		T _A = +85°C			-1440	mV
		$T_A = -30^{\circ}C$	- 1890			mV
V _{IL}	LOW level input voltage	T _A = + 25°C	-1850			mV
		T _A = +85°C	- 1825			mV
TA	Operating ambient temperature		-30	+ 25	+ 85	°C

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

10159

	PA	RAMETE	R	MIN	ТҮР	MAX	UNIT	TEST CONDITIONS ²
			$T_A = -30^{\circ}C$	-1060		-890	mV	For even inputs, apply V _{ILmin} to all inputs.
VOH	output voltage		T _A = +25°C	-960		-810	mV	For odd inputs, apply V_{ILmin} to all inputs.
			$T_A = +85^{\circ}C$	-890		-700	mV	other inputs.
	HIGH level		T _A = -30°C	-1080			mV	For even inputs, apply V_{ILT} to S input with V_{ILmin}
VOHT	HIGH level _{HT} output threshold voltage		T _A = -25°C	-980			mV	applied to all other inputs. For odd inputs, apply V _{IHT} to S input with V _{ILmin}
			T _A = -85°C	-910			mV	applied to all other inputs.
			T _A = -30°C			- 1655	mV	
VOLT			T _A = -25°C			-1630	mV	Apply V_{IHT} to \overline{OE} input with V_{ILmin} applied to all other inputs.
	voltage		T _A = -85°C			-1595	mV	inputs.
	LOW level V _{OL} output voltage		T _A = -30°C	-1890		-1675	mV	· · · · · · · · · · · · · · · · · · ·
VOL			$T_A = +25^{\circ}C$	-1850		-1650	mV	Apply V_{IHmax} to \overline{OE} input with V_{ILmin} applied to all other inputs.
			$T_A = +85^{\circ}C$	-1825		-1615	mV	_ inputs.
			T _A = -30°C			360	μA	
	HIGH inp	S input	T _A = + 25°C			225	μA	Apply V _{IHmax} to S input with V _{ILmin} applied to all other inputs.
		mpar	T _A = +85°C			225	μA	
I _{IH}	input		T _A = -30°C			400	μA	
	current Other		$T_A = +25^{\circ}C$			250	μA	Apply V_{IHmax} to \overline{OE} or D_n input under test, one at a time, with $V_{II min}$ applied to all other inputs.
		inputs	T _A = +85°C			250	μA	a time, with villmin applied to an other inputs.
			$T_A = -30^{\circ}C$	0.5			μA	
hĽ	LOW lev		T _A = + 25°C	0.5			μA	Apply V_{1Lmin} to each input under test, one at a time,
	input cur	rent	T _A = +85°C	0.3			μA	with V _{IHmax} applied to all other inputs.
			T _A = -30°C			58	mA	
$-I_{EE}$	V _{EE} sup	oly	$T_A = +25^{\circ}C$		42	53	mA	
	current		T _A = +85°C			58	mA	
$\frac{\Delta V_{OH}}{\Delta V_{EE}}$	$ \begin{array}{c} \frac{\Delta V_{OH}}{\Delta V_{EE}} & HIGH \ \text{level} \\ \text{output voltage} \\ \text{compensation} \end{array} \\ \frac{\Delta V_{OL}}{\Delta V_{EE}} & \begin{array}{c} LOW \ \text{level} \\ \text{output voltage} \\ \text{compensation} \end{array} \\ \frac{\Delta V_{BB}}{\Delta V_{EE}} & \begin{array}{c} \text{Reference bias} \\ \text{voltage} \\ \text{compensation} \end{array} \end{array} $				0.016		v/v	
ΔV_{OL}			T _A = +25°C		0.250		v/v	
					0.148		v/v	

DC ELECTRICAL CHARACTERISTICS $V_{CC} = GND$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to $+85^{\circ}C$, output loading with 50Ω to $-2.0V \pm 0.010V$ unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

2. Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC testing.

3. The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

AC ELECTRICAL CHARACTERISTICS V_{CC}= +2.0V $\pm 0.010V, \ V_{EE}$ = -3.2V $\pm 0.010V$

	PARAMETER		-30°C	T _A = + 25°C		T _A = +85°C				
	PARAMETER	Min	Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH}	Propagation delay	1.1	3.8	1.2	2.5	3.3	1.1	3.8	ns	
t _{PHL}	D _n to Q _n	1.1	3.8	1.2	2.5	3.3	1.1	3.8	ns	
t _{PLH}	Propagation delay	1.5	5.3	1.5	3.2	5.0	1.5	5.3	ns	Figs. 5, 6, 7
t _{PHL}	S to Q _n	1.5	5.3	1.5	3.2	5.0	1.5	5.3	ns	
t _{PLH} t _{PHL}			5.3 5.3	1.5 1.5	2.5 2.5	5.0 5.0	1.4 1.4	5.3 5.3	ns ns	
t _{TLH}	Transition time	1.0	3.7	1.1	2.5	3.5	1.0	3.7	ns	Figs. 5, 6, 7
t _{THL}	20% to 80%, 80% to 20%	1.0	3.7	1.1	2.5	3.5	1.0	3.7	ns	

AC WAVEFORMS

10159

Multiplexer

Signetics

ECL Products

DESCRIPTION

The 10160 is a 12-bit Parity Checker or Generator. The output goes HIGH when an odd number on inputs are HIGH. If parity detection or generation is required for less than 12 bits, all unused inputs can be left open due to integrated pulldown resistors which avoid the need for a supply voltage.

10160 Parity Checker/Generator

12-Bit Parity Checker/Generator Product Specification

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
10160	5.0ns	62mA

ORDERING CODE

PACKAGES	$\begin{array}{l} \mbox{COMMERCIAL RANGE} \\ \mbox{V}_{CC1} = \mbox{V}_{CC2} = \mbox{GND}; \ \mbox{V}_{EE} = -5.2 \mbox{V} \\ \mbox{T}_A = -30^{\circ} \mbox{C} \ \ \mbox{to} \ \ +85^{\circ} \mbox{C} \end{array}$
Plastic DIP	10160N
Ceramic DIP	10160F

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ - D ₁₁	Data Inputs
Q	Data Output

853-0670 82177

10160

FUNCTION TABLE

SUM OF INPUTS AT HIGH STATE	Q			
Odd				
Even				

Positive Logic:

H = HIGH state (the more positive voltage) = 1 L = LOW state (the less positive voltage) = 0

10160

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER		10K ECL	UNIT
V _{EE}	Supply voltage	-8.0	v	
V _{IN}	V_{IN} Input voltage (V _{IN} should never be more negative than V_{EE})		0 to V _{EE}	V
lo	IO Output source current		-50	mA
Τ _S	Storage temperature		-55 to +150	°C
	• • • · · · · · · · · · · · · · · · · ·	Ceramic package	+ 165	°C
l IJ	T _J Maximum junction temperature	Plastic package	+ 150	°C

DC OPERATING CONDITIONS

				L.		
	PARAMETER					UNIT
V _{CC1} , V _{CC2}	Circuit ground		0	0	0	V
V _{EE}	Supply voltage (negative)			-5.2		v
		T _A = -30°C			-890	mV
VIH	V _{IH} HIGH level input voltage	$T_A = +25^{\circ}C$			-810	mV
		T _A = +85°C			-700	mV
	HIGH level input threshold voltage	T _A = -30°C	- 1205			mV
VIHT		$T_A = +25^{\circ}C$	-1105			mV
		T _A = +85°C	-1035			mV
	LOW level input threshold voltage	T _A = -30°C			-1500	mV
VILT		$T_A = +25^{\circ}C$			-1475	mV
		T _A = +85°C			-1440	mV
		$T_A = -30^{\circ}C$	-1890			mV
VIL	LOW level input voltage	$T_A = +25^{\circ}C$	-1850			mV
		T _A = +85°C	-1825			mV
TA	Operating ambient temperature		-30	+ 25	+85	°C

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

10160

	PA	RAMETE	R	MIN	түр	МАХ	UNIT	TEST CONDITIONS ²
			T _A = -30°C	-1060		-890	mV	
VOH	HIGH lev		T _A = +25°C	-960		-810	mV	Apply V _{IHmax} to each input, one at a time, with V _{ILmin} applied to all other inputs.
	output voltage		T _A = +85°C	-890		-700	mV	- applied to all other inputs.
	HIGH lev	/el	$T_A = -30^{\circ}C$	-1080			mV	
VOHT	output th		$T_A = -25^{\circ}C$	-980			mV	Apply V_{IHT} to each input, one at a time with $V_{IL \min}$ applied to all other inputs.
	voltage		T _A = -85°C	-910			mV	
	LOW lev	el	$T_A = -30^{\circ}C$			- 1655	mV	
V_{OLT}	output th		T _A = -25°C			-1630	mV	Apply V_{ILT} to each input, one at a time with V_{ILmin} applied to all other inputs.
	voltage		T _A = −85°C			-1595	mV	
			T _A = -30°C	-1890		- 1675	mV	
VOL	LOW lev		$T_A = +25^{\circ}C$	-1850		- 1650	mV	Apply V _{IHmax} to all inputs or apply V _{ILmin} to all
	output v	oitage	T _A = +85°C	-1825		-1615	mV	- inputs.
		Input pins	T _A = -30°C			425	μA	
			T _A = + 25°C			265	μA	
	HIGH level	3, 6, 7, 11, 12, 1	5 T _A = +85°C			265	μA	Apply VIHmax to each input under test, one at a time,
Iн	input		$T_A = +30^{\circ}C$			360	μA	with VILmin applied to all other inputs.
	current	Other inputs	$T_A = +25^{\circ}C$			220	μA	
		inputs	T _A = +85°C			220	μA	
			T _A = -30°C	0.5			μA	
II.	LOW lev	1	T _A = + 25°C	0.5			μA	Apply V _{ILmin} to each input under test, one at a time,
	input cur	rent	$T_A = +85^{\circ}C$	0.3			μA	with V _{IHmax} applied to all other inputs.
			$T_A = -30^{\circ}C$			86	mA	
-I _{EE}	V _{EE} supplications of the second sec	oly	$T_A = +25^{\circ}C$		62	78	mA	Apply V _{IHmax} to input pins 4, 5, 9, 10, 13, 14 and V _{ILmin} to all other pins.
	ourront		T _A = +85°C			86	mA	
$rac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH lev output v compens	oltage			0.016		v/v	
$\frac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW lev output ve compense	oltage	T _A = + 25°C		0.250		v/v	
ΔV_{BB}	Reference voltage compense	e bias			0.148		v/v	

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to +85°C, output loading with 50 Ω to -2.0V ± 0.010V unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.
 The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

AC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = +2.0V \pm 0.010V$, $V_{EE} = -3.2V \pm 0.010V$

DADAMETED	T _A = -30°C		T _A = + 25°C			T _A = + 85°C			TEAT CONDITIONS	
PARAMETER	Min	Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS	
t_{PLH} Propagation delay t_{PHL} A ₀ – A ₁₁ to Q _n	1.8 1.8	8.1 8.1	2.0 2.0	5.0 5.0	7.5 7.5	2.0 2.0	8.0 8.0	ns ns	Figs. 5, 6, 7	
t _{TLH} Transition time t _{THL} 20% to 80%, 80% to 20%	1.1 1.1	3.5 3.5	1.1 1.1	2.0 2.0	3.3 3.3	1.0 1.0	3.5 3.5	ns ns	Figs. 5, 6, 7	

AC WAVEFORMS

10160

Parity Checker/Generator

TEST CIRCUITS AND WAVEFORMS

Signetics

ECL Products

DESCRIPTION

The 10161 accepts three binary weighted inputs (A₀, A₁, A₂) and, when enabled, provides eight mutually-exclusive active LOW outputs (Q₀ – Q₇). The device features two active LOW enable inputs. All unused inputs can be left open due to integrated pull-down resistors which avoid the need for a supply voltage.

10161 Decoder

1-of-8 Decoder With 2 Enable Inputs (Active LOW Outputs) Product Specification

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
10161	4.0ns	61mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -5.2V$ $T_A = -30^{\circ}C$ to $+85^{\circ}C$
Plastic DIP	10161N
Ceramic DIP	10161F

PIN DESCRIPTION

PINS	DESCRIPTION	
A ₀ – A ₂	Address Inputs	
Ē ₀ , Ē ₁	Enable Inputs (Active LOW)	
Q ₀ – Q ₇	Data Outputs	

.

FUNCTION TABLE

ENABLE BINARY INPUTS INPUTS		DECIMAL OUTPUTS										
Ēo	E1	A ₀	Α1	A ₂	Q ₀	Q1	Q ₂	Q ₃	Q4	Q ₅	Q ₆	Q7
н	н	х	х	x	н	н	н	н	н	н	н	н
L	н	Х	х	X	н	н	н	н	н	н	н	н
н	L	Х	х	Х	н	н	H	н	н	н	н	н
L	L	L	L	L	L	н	н	н	н	н	н	н
L	L	н	L	L	Н	L	н	н	н	н	н	н
L	L	L	н	L	н	н	L	н	н	н	н	н
L	L	н	н	L	н	н	н	L	н	н	н	н
L	L	L	L	н	н	н	н	н	L	н	н	н
L	L	н	L	н	н	н	н	н	н	L	н	н
L	L	L	н	н	н	н	н	н	н	н	L	́Н
L	L	н	н	н	н	н	н	н	н	н	н	L

Positive Logic: H = HIGH state (the more positive voltage) = 1 L = LOW state (the less positive voltage) = 0

X = Don't Care

10161

6

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER		10K ECL	UNIT
VEE	Supply voltage	-8.0	V	
VIN	Input voltage (VIN should never be more negative that	ו V _{EE})	0 to V _{EE}	v
lo	Output source current		-50	mA
Τs	Storage temperature		-55 to +150	°C
т	Manianana inantina damanandana	Ceramic package	+ 165	°C
Тj	Maximum junction temperature	+ 150	°C	

DC OPERATING CONDITIONS

				10K ECL			
	PARAMETER	Min	Nom	Max	UNIT		
V _{CC1} , V _{CC2}	Circuit ground		0	0	0	v	
V _{EE}	Supply voltage (negative)			-5.2		v	
		T _A = -30°C			-890	mV	
VIH	HIGH level input voltage	T _A = + 25°C			-810	mV	
		T _A = +85°C			-700	mV	
		$T_A = -30^{\circ}C$	-1205			mV	
VIHT	HIGH level input threshold voltage	T _A = + 25°C	-1105			mV	
		T _A = +85°C	-1035			mV	
		$T_A = -30^{\circ}C$			-1500	mV	
V _{ILT}	LOW level input threshold voltage	T _A = + 25°C			-1475	mV	
		$T_A = +85^{\circ}C$			-1440	mV	
		$T_A = -30^{\circ}C$	-1890			mV	
VIL	LOW level input voltage	T _A = + 25°C	-1850			mV	
		T _A = +85°C	-1825			mV	
T _A	Operating ambient temperature		-30	+ 25	+ 85	°C	

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

10161

	PARAMETE	R	MIN	ТҮР	мах	UNIT	TEST CONDITIONS ²
		T _A = -30°C	-1060		-890	mV	
VOH	HIGH level	T _A = +25°C	-960		-810	mV	Apply V_{IHmax} to \overline{E}_0 input with V_{ILmin} applied to all other
	output voltage	T _A = +85°C	-890		-700	mV	- inputs.
	HIGH level	T _A = -30°C	-1080			mV	_
VOHT		T _A = + 25°C	-980			mV	Apply V_{IHT} to \overline{E}_0 input with V_{ILmin} applied to all other inputs.
	voltage	T _A = +85°C	-910			mV	inputs.
	LOW level	T _A = -30°C			-1655	mV	Using V_{IHmax} and V_{ILmin} , apply a functional pattern as
VOLT	output threshold	$T_A = +25^{\circ}C$			-1630	mV	indicated in the Function Table, Substituting V _{IHT} for V _{IHmax} and V _{ILT} for V _{ILmin} on one input at a time and
	voltage	T _A = +85°C			-1595	mV	measure V_{OLT} on the respective output.
		T _A = -30°C	-1890		1675	mV	Using V _{IHmax} and V _{ILmin} , apply a functional pattern as
VOL	LOW level output voltage	$T_A = +25^{\circ}C$	-1850	•	-1650	mV	indicated in the Function Table and measure V_{OL} on the
	oulput voltage	$T_A = +85^{\circ}C$	-1825		-1615	mV	respective output.
		T _A = -30°C			350	μA	
Iн	HIGH level	T _A = + 25°C			220	μA	Apply VIHmax to each input under test, one at a time,
	input current	T _A = +85°C	+		220	μA	with V _{ILmin} applied to all other inputs.
		T _A = -30°C	0.5			μA	
I _{IL}	LOW level	T _A = + 25°C	0.5			μA	Apply V_{ILmin} to each input under test, one at a time,
	input current	T _A = +85°C	0.3			μA	with V _{IHmax} applied to all other inputs.
		T _A = -30°C			84	mA	
-I _{EE}	V _{EE} supply	$T_A = +25^{\circ}C$		61	76	mA	Apply VIHmax to pins 2, 7, 9, 14, 15 and VILmin
	current	T _A = +85°C			84	mA	to all other inputs.
$rac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation			0.016		v/v	
$\frac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	T _A = +25°C		0.250		V/V	
$\frac{\Delta V_{BB}}{\Delta V_{EE}}$	Reference bias voltage compensation			0.148		v/v	

 $\label{eq:cc} \begin{array}{l} \textbf{DC ELECTRICAL CHARACTERISTICS} \ V_{CC1} = V_{CC2} = \text{GND}, \ V_{EE} = -5.2V \pm 0.010V, \ T_A = -30^\circ\text{C} \ \text{to} \ +85^\circ\text{C}, \ \text{output loading with} \ 50\Omega \ \text{to} \ -2.0V \pm 0.010V \ \text{unless otherwise specified}^{1,3} \end{array}$

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

2. Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.

3. The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

Decoder

DADAMETED	T _A = -	-30°C	T _A = + 25°C			T _A = +85°C			TEST CONDITIONS	
PARAMETER	Min	Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS	
t_{PLH} Propagation delay $t_{PHL} = \overline{E}_n$, A_n to Q_n	1.5 1.5	6.2 6.2	1.5 1.5	4.0 4.0	6.0 6.0	1.5 1.5	6.4 6.4	ns ns	Figs. 5, 6, 7	
t _{TLH} Transition time t _{THL} 20% to 80%, 80% to 20%	1.0 1.0	3.3 3.3	1.1 1.1	2.0 2.0	3.3 3.3	1.1 1.1	3.5 3.5	ns ns	Figs. 5, 6, 7	

AC WAVEFORMS

Decoder

TEST CIRCUITS AND WAVEFORMS

Figure 7. Input Pulse Definition

Signetics

ECL Products

DESCRIPTION

The 10162 accepts three binary weighted inputs (A₀, A₁, A₂) and when enabled, provides eight mutually-exclusive active HIGH outputs (Q₀ – Q₇). The device features two active LOW enable inputs. All unused inputs can be left open due to integrated pull-down resistors which avoid the need for a supply voltage.

10162 Decoder

1-of-8 Decoder With 2 Enable Inputs (Active HIGH Outputs) Product Specification

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
10162	4.0ns	61mA

ORDERING CODE

PACKAGES	$\begin{array}{l} \mbox{COMMERCIAL RANGE} \\ \mbox{V}_{CC1} = \mbox{V}_{CC2} = \mbox{GND}; \ \mbox{V}_{EE} = -5.2 \mbox{V} \\ \mbox{T}_{A} = -30^{\circ} \mbox{C} \ \ \mbox{to} \ \ +85^{\circ} \mbox{C} \end{array}$
Plastic DIP	10162N
Ceramic DIP	10162F

PIN DESCRIPTION

PINS	DESCRIPTION
$A_0 - A_2$	Address Inputs
$\overline{E}_0, \overline{E}_1$	Enable Inputs (Active LOW)
Q ₀ - Q ₇	Data Outputs

January 30, 1986

6-233

853-0672 82177

Decoder

FUNCTION TABLE

ENABLE INPUTS		BINARY INPUTS			DECIMAL OUTPUTS							
Ē ₀	Ē1	A ₀	A 1	A ₃	Q ₀	° Q ₁	Q2	Q3	Q4	Q ₅	Q_6	Q7
н	н	Х	Х	Х	L	L	L	L	L	L	L	L
L	н	X	х	х	L	L	L	L	L	L	L	L
н	L	X	х	х	L	L	L	L	L	L	L	L
L	L	L	L	L	н	L	L	L	L	L	L	L
L	L	н	L	L	L	н	L	L	L	L	L	L
L	L	L	н	L	L	L	н	L	L	L	L	L
L	L	н	н	L	L	L	L	н	L	L	L	L
L	L	L	L	н	L	L	L	L	н	L	L	L
L	L	н	L	н	L	L	L	L	L	н	. L	L
L	L	L	н	н	L	L	L	L	L	L	н	L
L L	L	н	н	н	L	L	Ĺ	L	L	L	L	н

Positive Logic:

H = HIGH state (the more positive voltage) = 1 L = LOW state (the less positive voltage) = 0

X = Don't Care

10162

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETE	10K ECL	UNIT		
V _{EE}	Supply voltage		-8.0	v	
VIN	Input voltage (VIN should never be	more negative than V _{EE})	0 to V _{EE}	V	
IO Output source current			-50		
T _S Storage temperature			-55 to +150	°C	
+		Ceramic package	+ 165	°C	
IJ	Maximum junction temperature	Plastic package	+ 150	°C	

DC OPERATING CONDITIONS

			10K ECL			
PARAMETER				Nom	Max	UNIT
V _{CC1} , V _{CC2}	Circuit ground	0	0	0	v	
V _{EE}	Supply voltage (negative)			-5.2		v
	HIGH level input voltage	$T_A = -30^{\circ}C$			-890	mV
VIH		T _A = + 25°C			-810	mV
		T _A = +85°C			-700	mV
	HIGH level input threshold voltage	$T_A = -30^{\circ}C$	-1205			mV
VIHT		T _A = + 25°C	-1105			mV
		T _A = +85°C	-1035			mV
	LOW level input threshold voltage	T _A = -30°C			-1500	mV
VILT		T _A = + 25°C			-1475	mV
		$T_A = +85^{\circ}C$			-1440	mV
		$T_A = -30^{\circ}C$	-1890			mV
V _{IL}	LOW level input voltage	T _A = + 25°C	-1850			mV
		$T_A = +85^{\circ}C$	-1825			mV
T _A	Operating ambient temperature	•	-30	+ 25	+85	°C

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)
Decoder

UNIT **TEST CONDITIONS²** PARAMETER MIN TYP MAX $T_A = -30^{\circ}C$ -1060 -890 m٧ Using V_{IHmax} and V_{ILmin} , apply a functional HIGH level pattern as indicated in the Function $T_A = +25^{\circ}C$ -960 VOH -810 m٧ Table and measure VOH on the respective output voltage $T_A = +85^{\circ}C$ -700 m٧ -890 outputs. Using V_{IHmax} and V_{ILmin} , apply a functional $T_A = -30^{\circ}C$ -1080 m٧ pattern as indicated in the Function Table, HIGH level output VOHT $T_A = +25^{\circ}C$ -980 m٧ substituting VIHT for VIHmax and VILT for threshold voltage VILmin on one input at a time and measure $T_A = +85^{\circ}C$ -910 mV VOHT on the respective output. $T_{\Delta} = -30^{\circ}C$ -1655 m٧ Apply V_{ILmin} to \overline{E}_0 input and V_{IHT} to \overline{E}_1 LOW level output input. $T_A = +25^{\circ}C$ -1630 VOLT m٧ Apply V_{ILmin} to \overline{E}_1 input and V_{IHT} to \overline{E}_0 threshold voltage T₄ = +85°C -1595 mV input. $T_A = -30^{\circ}C$ -1890 -1675 m٧ LOW level Apply V_{IHmax} to \overline{E}_0 input and V_{ILmin} to \overline{E}_1 VOL $T_A = +25^{\circ}C$ -1850 -1650 m٧ output voltage input. Apply VIHmax to all inputs. $T_A = +85^{\circ}C$ -1825 -1615 m٧ $T_A = -30^{\circ}C$ 350 μA Apply VIHmax to each input under test, HIGH level one at a time, with VILmin applied Iн $T_A = +25^{\circ}C$ 220 μA input current to all other inputs. $T_A = +85^{\circ}C$ 220 μA $T_A = -30^{\circ}C$ 0.5 μA Apply VILmin to each input under test, LOW level $T_A = +25^{\circ}C$ 0.5 one at a time, with VIHmax applied μA hι input current to all other inputs. $T_A = +85^{\circ}C$ 0.3 μA $T_{A} = -30^{\circ}C$ 84 mΑ V_{EE} supply $T_A = +25^{\circ}C$ 76 61 mΑ -IEE current $T_A = +85^{\circ}C$ 84 mΑ HIGH level ΔV_{OH} v/v output voltage 0.016 ΔV_{EE} compensation LOW level ΔV_{OL} $T_A = +25^{\circ}C$ 0.250 V/V output voltage $\overline{\Delta V_{EE}}$ compensation Reference bias ΔV_{BB} V/V voltage 0.148 ΔV_{EE} compensation

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to $+85^{\circ}C$, output loading with 50Ω to $-2.0V \pm 0.010V$ unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.
 The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

Decoder

Figure 4. Transfer Characteristics

AC ELECTRICAL CHARACTERISTICS V_{CC1} = V_{CC2} = +2.0V $\pm 0.010V, ~V_{EE}$ = -3.2V $\pm 0.010V$

		T _A = -30°C		T _A = + 25°C			T _A = ·	+ 85°C		TEAT CONDITIONS	
	PARAMETER		Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH} t _{PHL}	Propagation delay \overline{E}_n , A_n to Q_n	1.5 1.5	6.2 6.2	1.5 1.5	4.0 4.0		1.5 1.5	6.4 6.4	ns ns	Figs. 5, 6, 7	
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	1.0 1.0	3.3 3.3	1.1 1.1	2.0 2.0	3.3 3.3	1.1 1.1	3.5 3.5	ns ns	Figs. 5, 6, 7	

AC WAVEFORMS

6

Decoder

TEST CIRCUITS AND WAVEFORMS

Signetics

ECL Products

DESCRIPTION

The 10164 performs 8-input multiplexing with enable input. The output goes LOW when not enabled, thus permitting expansion of multiplexers by wire-ORing. All unused inputs can be left open due to integrated pull-down resistors which avoid the need for a supply voltage.

10164 Multiplexer

8-Input Multiplexer With Enable Input Product Specification

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-1 _{EE})
10164	3.0ns	60mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -5.2V$ $T_A = -30^{\circ}C \text{ to } +85^{\circ}C$
Plastic DIP	10164N
Ceramic DIP	10164F

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₇	Data Inputs
A ₀ – A ₂	Address Inputs
Ē	Enable Input
Q	Data Output

853-0673 82177

Multiplexer

FUNCTION TABLE

INPUTS												
A ₀	Α ₁	A ₂	Ē	Do	D ₁	D ₂	D ₃	D4	D ₅	D ₆	D7	Q
L	L	L	L	L	х	х	х	Х	х	х	х	L
L	L	L	L) н	х	X	х	х	х	Х	х	н
н	L	L	L	X	L	х	х	х	х	х	х	L
н	L	L	L	X	н	х	х	х	х	х	Х	н
L	н	L	L	X	х	L	х	х	х	х	х	L
L	н	L	L	X	х	н	х	х	х	х	Х	н
н	н	L	L	X	х	х	L	х	х	х	х	L
н	н	L	L	X	х	х	н	х	х	х	Х	н
L	L	н	L	X	х	х	х	L	х	х	х	L
L	L	н	L	X	х	х	х	н	X	х	х	н
н	L	н	L	X	х	х	х	х	L	х	Х	L
н	L	н	L	X	х	х	х	х	н	х	X	Н
L	н	н	L	X	х	х	х	х	х	L	х	L
L	н	н	L	X	х	х	х	х	х	н	х	н
н	н	н	L	X	Х	Х	х	Х	х	х	L	L
н	н	н	L	X	х	х	х	х	х	х	н	н
X	Х	Х	н	X	х	х	Х	х	х	Х	х	L

Positive Logic:

 $\begin{array}{l} H = H(GH \text{ state (the more positive voltage)} = 1 \\ L = LOW \text{ state (the less positive voltage)} = 0 \\ X = Don't \text{ Care} \end{array}$

Multiplexer

10164

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	R	10K ECL	UNIT		
V _{EE}	Supply voltage	······	-8.0	V		
VIN	Input voltage (VIN should never be	more negative than V _{EE})	0 to V _{EE} V			
lo	Output source current		- 50	mA		
Τs	Storage temperature		-55 to +150	°C		
		Ceramic package	+ 165	°C		
ТJ	Maximum junction temperature	Plastic package	+ 150	°C		

DC OPERATING CONDITIONS

	PARAMETER			10K EC	L	
	Min	Nom	Max	UNIT		
V _{CC1} , V _{CC2}	Circuit ground		0	0	0	v
VEE	Supply voltage (negative)			-5.2		v
		T _A = -30°C			-890	mV
V _{IH}	HIGH level input voltage	T _A = + 25°C			-810	mV
		T _A = +85°C			0	mV
		$T_{A} = -30^{\circ}C$	- 1205			mV
VIHT	HIGH level input threshold voltage	$T_{A} = +25^{\circ}C$	-1105			mV
		T _A = +85°C	- 1035		Max 0 -890 -700 -700 -1500 -1475	mV
		$T_{A} = -30^{\circ}C$			-1500	mV
VILT	LOW level input threshold voltage	$T_A = +25^{\circ}C$			-1475	mV
		T _A = +85°C			Max 0 -890 -700 -1500 -1475 -1440	mV
		$T_{A} = -30^{\circ}C$	1890			mV
V _{IL}	LOW level input voltage	T _A = + 25°C	- 1850			mV
		T _A = +85°C	- 1825		Max 0 -890 -700 -1500 -1475 -1440	mV
T _A	Operating ambient temperature		-30	+ 25	+ 85	°C

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

Multiplexer

UNIT TEST CONDITIONS² PARAMETER MIN TYP MAX $T_A = -30^{\circ}C$ -1060 -890 mV Using VIHmax and VII min, apply a functional HIGH level V_{OH} $T_A = +25^{\circ}C$ -960 -810 m٧ pattern as indicated in the Function Table output voltage and measure VOH on the output. $T_{A} = +85^{\circ}C$ -890 -700 m٧ $T_A = -30^{\circ}C$ Apply V_{ILT} to \overline{E} input and apply a functional -1080 mV HIGH level output pattern using VIHmax and VILmin as indicated VOHT $T_A = +25^{\circ}C$ -980 m٧ threshold voltage in the Function Table and measure VOHT $T_{A} = +85^{\circ}C$ -910 m٧ on the output. $T_A = -30^{\circ}C$ m٧ - 1655 LOW level output Apply VIHT to E input with VIHmax applied to $T_A = +25^{\circ}C$ -1630 m٧ VOLT threshold voltage all other inputs. $T_A = +85^{\circ}C$ -1595 m٧ $T_A = -30^{\circ}C$ -1890 -1675 mV Apply V_{IHmax} to all inputs. LOW level Apply VIHmax to E input with VILmin applied $T_A = +25^{\circ}C$ VOL -1850 -1650 m٧ output voltage to all other inputs. $T_A = +85^{\circ}C$ -1825 -1615 mV $T_A = -30^{\circ}C$ 425 μA Apply VIHmax to each input under test, HIGH level $T_A = +25^{\circ}C$ 265 one at a time, with VILmin applied lιн μA input current to all other inputs. $T_{A} = +85^{\circ}C$ 265 μA $T_A = -30^{\circ}C$ 0.5 μA Apply VILmin to each input under test, LOW level $T_A = +25^{\circ}C$ 0.5 hι μA one at a time, with VIHmax applied input current to all other inputs. $T_A = +85^{\circ}C$ 0.3 μA $T_A = -30^{\circ}C$ 83 mΑ V_{EE} supply $T_A = +25^{\circ}C$ 60 75 -IEE mΑ current $T_A = +85^{\circ}C$ 83 mA HIGH level ∆V<u>oh</u> output voltage 0.016 V/V $\overline{\Delta V_{\text{EE}}}$ compensation LOW level ΔV_{OL} $T_A = +25^{\circ}C$ 0.250 V/V output voltage ΔV_{EE} compensation Reference bias ΔV_{BB} 0.148 V/V voltage ΔV_{EE} compensation

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to $+85^{\circ}C$, output loading with 50Ω to $-2.0V \pm 0.010V$ unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.
 The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying

power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

10164

Multiplexer

Figure 4. Transfer Characteristics

AC ELECTRICAL CHARACTERISTICS V_{CC1} = V_{CC2} = +2.0V $\pm 0.010V, \ V_{EE}$ = -3.2V $\pm 0.010V$

	DADANETED	$T_A = -30^{\circ}C$		T _A = + 25°C			T _A = ·	+ 85°C			
	PARAMETER		Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH} t _{PHL}	Propagation delay D _n to Q	1.5 1.5	4.7 4.7	1.5 1.5	3.0 3.0	4.5 4.5	1.6 1.6	4.8 4.8	ns ns	Figs. 5, 6, 7	
t _{PLH} t _{PHL}	Propagation delay A _n to Q	1.9 1.9	6.3 6.3	2.0 2.0	4.0 4.0	6.0 6.0	2.2 2.2	6.5 6.5	ns ns		
t _{PLH}	Propagation delay E to Q	0.9 0.9	3.3 3.3	1.0 1.0	2.0 2.0	2.9 2.9	1.0 1.0	3.1 3.1	ns ns	Figs. 5, 6, 7	
t _{TLH} t _{THL}			3.3 3.3	1.1 1.i	2.0 2.0	3.3 3.3	1.2 1.2	3.6 3.6	ns ns	Figs. 5, 6, 7	

AC WAVEFORMS

Multiplexer

TEST CIRCUITS AND WAVEFORMS

Signetics

ECL Products

DESCRIPTION

The 10165 is able to encode eight inputs to binary coded outputs. Each output is stored in a D-type latch which allows synchronous operation. When the clock input is LOW the outputs follow the inputs and latch when the clock goes HIGH. The output code is that of the highest order input so that any input of lower priority is ignored.

The input is active when HIGH (e.g. the three binary outputs are LOW when input D_0 is HIGH). Output Q_3 is HIGH when any input is HIGH, which allows direct extension into another priority encoder when more than 8 inputs are used.

The device can be used in many applications, such as testing systems and checking system status in control processors and peripheral controllers. It can also be used to generate binary codes from random logic inputs, for addressing ROMs, RAMs, or for multiplexing data.

All unused inputs must be tied LOW to V_{IL} or $V_{\text{EE}}.$

10165 Priority Encoder/Latch

8-Input Priority Encoder Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
10165	4.5ns	105mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -5.2V$ $T_A = -30^{\circ}C$ to +85°C
Plastic DIP	10165N
Ceramic DIP	10165F

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₇	Data Inputs
CP	Clock Input
Q ₀ – Q ₃	Data Outputs

10165

FUNCTION TABLE

			INP	UTS					OUT	PUTS	
D ₀	D1	D ₂	D ₃	D4	D ₅	D ₆	D ₇	Q ₃	Q ₂	Q1	Q ₀
н	х	х	х	х	x	х	х	н	L	L	L
L	н	х	х	х	х	х	х	н	L	L	н
L	L	н	х	х	х	х	х	н	L	н	L
L	L	L	н	х	х	х	х	н	L	H	н
L	L	L	L	н	х	х	х	н	н	L	L
L	L	L	L	L	н	х	х	н	н	L	н
L	L	L	Ľ	L	L	н	х	н	н	н	L
L	L	L	L	L	L	L	н	н	н	н	н
L	L	L	L	L	L	L	L	L	L	L	L

Positive Logic: H = HIGH state (the more positive voltage) = 1

L = LOW state (the less positive voltage) = 0

X = Don't Care

10165

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER		10K ECL	UNIT		
V _{EE}	Supply voltage		-8.0	v		
V _{IN}	Input voltage (VIN should never be m	0 to V _{EE}				
lo	Output current		- 50			
Ts	Storage temperature		-55 to +150			
т.	Maximum junction temperature	Ceramic package	+ 165	°C		
• 3	Maximum junction temperature	Plastic package	+ 150	°C		

DC OPERATING CONDITIONS

	Min	Min Nom I	Max	UNIT		
V _{CC1} , V _{CC2}	Circuit ground	· · · · · · · · · · · · · · · · · · ·	0	0	0	v
V _{EE}	Supply voltage (negative)			-5.2		v
		T _A = -30°C			-890	mV
V _{IH}	HIGH level input voltage	T _A = +25°C			-810	mV
		T _A = +85°C			-700	mV
		T _A = -30°C	-1205			mV
VIHT	HIGH level input threshold voltage	$T_A = +25^{\circ}C$	-1105			mV
		T _A = +85°C	- 1035			mV
		T _A = -30°C			-1500	mV
V _{ILT}	LOW level input threshold voltage	$T_A = +25^{\circ}C$			-1475	mV
		$\Gamma_A = +85^{\circ}C$			-1440	mV
		T _A = -30°C	-1890			mV
V _{IL}	LOW level input voltage	T _A = +25°C	- 1850			mV
		T _A = +85°C	- 1825			mV
T _A	Operating ambient temperature		-30	+ 25	+ 85	°C

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

10165

	PA	RAMETE	R	MIN	ТҮР	MAX	UNIT	TEST CONDITIONS ²
			$T_A = -30^{\circ}C$	-1060		-890	mV	
V_{OH}	HIGH lev		T _A = + 25°C	-960		-810	mV	Apply V _{IHmax} to D ₇ input with V _{ILmin} applied to all other
	output v	bitage	T _A = +85°C	-890		-700	mV	- inputs.
	HIGH lev	/el	$T_A = -30^{\circ}C$	-1080			mV	
\mathbf{V}_{OHT}	output th		T _A = + 25°C	-980			mV	Apply V _{IHT} to D ₇ input with V _{ILmin} applied to all other inputs.
	voltage		T _A = +85°C	-910			mV	inputo.
	LOW lev	el	T _A = -30°C			-1655	mV	
V _{OLT}	output th		T _A = + 25°C			-1630	mV	Apply V_{ILT} to CP input with V_{ILmin} applied to all other inputs.
	voltage		T _A = +85°C			-1595	mV	
V _{OL} LOW lev			T _A = -30°C	-1890		-1675	mV	
			T _A = +25°C	-1850		-1650	mV	Apply V _{ILmin} to all inputs.
	output v	oitage	T _A = +85°C	-1825		-1615	mV	
			$T_A = -30^{\circ}C$			390	μA	
		CP input	T _A = +25°C			245	μA	Apply V _{IHmax} to CP input with V _{ILmin} applied to all other inputs.
	HIGH level	mput	T _A = +85°C			245	μA	
łн	input current		$T_A = -30^{\circ}C$			350	μA	
		other inputs	T _A = + 25°C			220	μA	Apply V_{IHmax} to each input under test, one at a time, with V_{ILmin} applied to all other inputs.
			T _A = +85°C			220	μA	
			T _A = -30°C	0.5			μA	
կլ	LOW lev		T _A = + 25°C	0.5			μA	Apply V _{ILmin} to each input under test, one at a time,
	input cur	rent	T _A = +85°C	0.3			μA	with V _{IHmax} applied to all other inputs.
			T _A = -30°C			144	mA	
$-I_{EE}$	V _{EE} sup	oly	T _A = + 25°C		105	131	mA	
	current		T _A = +85°C			144	mA	
$\frac{\Delta V_{OH}}{\Delta V_{EE}}$	$\begin{array}{c} \hline \\ \hline $				0.016		V/V	
$\frac{\Delta V_{OL}}{\Delta V_{EE}}$			T _A = +25°C		0.250		v/v	
$\frac{\Delta V_{BB}}{\Delta V_{EE}}$					0.148		V/V	

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to $+85^{\circ}C$, output loading with 50Ω to $-2.0V \pm 0.010V$ unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.
 The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

AC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = +2.0V \pm 0.010V$, $V_{EE} = -3.2V \pm 0.010V$

DADAMETED	$T_A = -30^{\circ}$		T _A = + 25°C			T _A = +85°C			TEST CONDITIONS	
PARAMETER	Min	Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH} Propagation delay t _{PHL} D _n to Q _n	2.0 2.0	7.0 7.0	2.0 2.0	4.5 4.5	7.0 7.0	2.0 2.0	8.0 8.0	ns ns	Figs. 5, 7, 8	
t _{PLH} Propagation delay t _{PHL} CP to Q _n	1.5 1.5	4.5 4.5	1.5 1.5	4.5 4.5	4.0 4.0	1.5 1.5	4.5 4.5	ns ns		
$t_s(H)$ Setup time $t_s(L)$ D _n to CP	6.0 6.0		6.0 6.0	3.4 3.0		6.0 6.0		ns ns	Figs. 6, 7, 8	
t _h (H) Hold time t _h (L) D _n to CP	1.0 1.0		1.0 1.0	-2.3 -2.7		1.0 1.0		ns ns		
t _{TLH} Transition time t _{THL} 20% to 80%, 80% to 20%	1.1 1.1	3.5 3.5	1.1 1.1	2.0 2.0	3.3 3.3	1.1 1.1	3.5 3.5	ns ns	Figs. 5, 7, 8	

AC WAVEFORMS

10165

6

Priority Encoder/Latch

Signetics

ECL Products

10

DESCRIPTION

The 10171 is a Dual 1-of-4 Decoder with common address inputs, one common (\overline{E}) and two individual enable (\overline{E}_0 , \overline{E}_1) inputs.

The common enable (E), when HIGH, forces all outputs HIGH. All unused inputs can be left open due to integrated pull-down resistors which avoid the need for a supply voltage.

10171 Decoder

Dual 1-of-4 Decoder With One Common and Two Individual Inputs (Active-LOW Outputs) Product Specification

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
10171	4.0ns	65mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -5.2V$ $T_A = -30^{\circ}C \text{ to } +85^{\circ}C$
Plastic DIP	10171N
Ceramic DIP	10171F

PIN DESCRIPTION

PINS	DESCRIPTION
A ₀ , A ₁	Address Inputs
Ē, Ē ₀ , Ē ₁	Enable Inputs
Q ₀ – Q ₇	Data Outputs

8

Figure 2

PIN CONFIGURATION

Vcc2 1

Ē1 2

Q7 3 Q6 4

Q5 5

Q4 6

A1 7

VEE 8

January 30, 1986

LD045305

6

FUNCTION TABLE

ENAB	LE INF	PUTS	INP	UTS	OUTPUTS							
Ē	Ē0	Ē1	A ₀	A 1	Q ₄	Q 5	Q ₆	Q7	Q ₀	Q1	Q ₂	Q3
L	L	L	L	L	L	н	н	н	L	н	н	н
L	L	L	L	н	н	L	н	н	н	L	н	н
L	L	L	н	L	н	н	L	н	н	н	L	н
L	L	L	н	н	н	н	н	L	н	н	н	L
L	· L	н	L	Ł	н	н	н	н	L	н	н	н
L	н	L	L	L	L	н	н	н	н	н	н	н
н	х	х	x	х	н	н	н	н	н	H	н	н

Positive Logic: H = HIGH state (the more positive voltage) = 1 L = LOW state (the less positive voltage) = 0 X = Don't Care

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature

range.)

r						
	PARAMETER	10K ECL	UNIT			
V _{EE}	Supply voltage	-8.0				
V _{IN}	input voltage (VIN should never be r	0 to V _{EE}				
lo	Output source current		-50			
Ts	Storage temperature		-55 to +150	°C		
	Movimum innotion tomporture	Ceramic package	+ 165	°C		
Тј	Maximum junction temperature	+ 150	°C			

DC OPERATING CONDITIONS

	} .					
	Min	Nom	Max	UNIT		
V _{CC1} , V _{CC2}	Circuit ground	0	0	0	v	
V _{EE}	Supply voltage (negative)			-5.2		v
		$T_A = -30^{\circ}C$			-890	mV
V _{IH}	HIGH level input voltage	T _A = +25°C			-810	mV
		T _A = +85°C			-700	mV
		$T_A = -30^{\circ}C$	-1205			mV
VIHT	HIGH level input threshold voltage	T _A = +25°C	-1105			mV
		T _A = +85°C	-1035			m٧
		$T_A = -30^{\circ}C$			-1500	m٧
V _{ILT}	LOW level input threshold voltage	T _A = + 25°C			-1475	m٧
		T _A = +85°C			-1440	m٧
		$T_A = -30^{\circ}C$	- 1890			m٧
V _{IL}	LOW level input voltage	T _A = +25°C	- 1850			m٧
		T _A = +85°C	-1825			m٧
T _A	Operating ambient temperature		-30	+ 25	+ 85	°C

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

10171

	PARAMETER		MIN	ТҮР	MAX	UNIT	TEST CONDITIONS ²
2		T _A = -30°C	-1060		890	mV	_
VOH	HIGH level output voltage	$T_A = +25^{\circ}C$	-960		[`] -810	mV	Apply V_{IHmax} to \overline{E} input with V_{ILmin} applied to all other inputs.
	output tonago	T _A = +85°C	-890	×.	-700	mV	
		T _A = -30°C	-1080			mV	_
VOHT	HIGH level output threshold voltage	T _A = + 25°C	-980			mV	Apply V_{IHT} to \overline{E} input with V_{ILmin} applied to all other inputs.
		T _A = +85°C	-910			mV	
		T _A = -30°C			-1655	mV	For Q_0 and Q_4 outputs, apply V_{ILT} to \overline{E} in-
VOLT	LOW level output threshold voltage	$T_A = +25^{\circ}C$			-1630	mV	put with V_{ILmin} applied to all other inputs. Apply functional pattern to A_0 and A_1 for
	threehold voltage	T _A = +85°C			-1595	mV	other output combinations.
		T _A = -30°C	-1890		-1675	mV	For Q_0 and Q_4 outputs, apply $V_{ Lmin}$ to all
V _{OL}	LOW level output voltage	$T_A = +25^{\circ}C$	-1850		-1675	mV	inputs. Apply functional pattern to A_0 and A_1 for
	output voltage	T _A = +85°C	1825		-1615	mV	other output combinations.
		$T_A = -30^{\circ}C$			350	μΑ	Apply V _{IHmax} to each input under test,
I _{IH}	HIGH level input current	$T_A = +25^{\circ}C$			220	μA	one at a time, with V _{ILmin} applied to all
		T _A = +85°C			220	μA	other inputs.
		$T_A = -30^{\circ}C$	0.5			μA	Apply V _{ILmin} to each input under test,
կլ	LOW level input current	T _A = + 25°C	0.5			μΑ	one at a time, with V _{IHmax} applied to all
	input current	$T_A = +85^{\circ}C$	0.3			μΑ	other inputs.
		$T_A = -30^{\circ}C$			85	mA	
-I _{EE}	V _{EE} supply current	T _A = + 25°C		65	77	mA	Apply V _{IHmax} to inputs.
		T _A = +85°C			85	mA	
$\frac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation			0.016		v/v	
$\frac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	T _A = +25°C		0.250		v/v	
$\frac{\Delta V_{BB}}{\Delta V_{EE}}$	Reference bias voltage compensation			0.148		v/v	

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to +85°C, output loading with 50 Ω to -2.0V ±0.010V unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

 Conditions for testing shown in the tables are not necessarily worst case. For worst case testing guidelines, refer to Section 3 Testing, DC Testing.
 The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

Figure 4. Transfer Characteristics

AC ELECTRICAL CHARACTERISTICS V_{CC1} = V_{CC2} = +2.0V $\pm 0.010V, \ V_{EE}$ = -3.2V $\pm 0.010V$

	PARAMETER		T _A = -30°C		T _A = + 25°C			+85°C		TEST CONDITIONS	
PARAMETER		Min	Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH} t _{PHL}	Propagation delay A_0 , A_1 to Q_n	1.5 1.5	6.2 6.2	1.5 1.5	4.0 4.0	6.0 6.0	1.5 1.5	6.4 6.4	ns ns	Figs. 5, 6, 7	
t _{PLH} t _{PHL}	Propagation delay Ē, Ē ₀ , Ē ₁ to Q _n	1.5 1.5	6.2 6.2	1.5 1.5	4.0 4.0	6.0 6.0	1.5 1.5	6.4 6.4	ns ns	Figs. 5, 6, 7	
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	1.0 1.0	3.3 3.3	1.1 1.1	2.0 2.0	3.3 3.3	1.1 1.1	3.4 3.4	ns ns	Figs. 5, 6, 7	

AC WAVEFORMS

10171

6

TEST CIRCUITS AND WAVEFORMS

Signetics

ECL Products

DESCRIPTION

The 10172 is a Dual 1-of-4 Decoder with common address inputs, one common and two individual enable (E_0 , E_1) inputs. The common Enable (\overline{E}), when HIGH, forces all outputs LOW. All unused inputs can be left open due to integrated pull-down resistors which avoid the need for a supply voltage.

10172 Decoder

Dual 1-of-4 Decoder With One Common and Two Individual Inputs (Active-HIGH Outputs) Product Specification

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})				
10172	4.0ns	62mA				

ORDERING CODE

PACKAGES	$\begin{array}{l} \mbox{COMMERCIAL RANGE} \\ \mbox{V}_{CC1} = \mbox{V}_{CC2} = \mbox{GND}; \ \mbox{V}_{EE} = -5.2 \mbox{V} \\ \mbox{T}_{A} = -30^{\circ} \mbox{C} \ \ \mbox{to} \ \ +85^{\circ} \mbox{C} \end{array}$
Plastic DIP	10172N
Ceramic DIP	10172F

PIN DESCRIPTION

PINS	DESCRIPTION
A ₀ , A ₁	Address Inputs
Ē, E ₀ , E ₁	Enable Inputs
Q ₀ – Q ₇	Data Outputs

January 30, 1986

853-0676 82177

Product Specification

Decoder

10172

FUNCTION TABLE

ENABLE INPUTS		INP	UTS				OUT	PUTS				
Ē	E1	E ₀	A ₀	A 1	Q4	Q 5	Q ₆	Q7	Q ₀	Q1	Q ₂	Q3
L	н	н	L	L	н	L	L	L	н	L	L	L
L	н	н	L	н	L	н	L	L	L	н	L	L
L	н	н	н	L	L	L	н	L	L	L	н	L
L	н	н	н	н	L	L	L	н	L	L	L	н
L	L	н	L	L	н	L	L	L	L	L	L	L
L	н	L	L	L	L	L	L	L	н	L	L	L
н	х	х	X	х	L	L	L	L	L	۰L	L	L

Positive Logic: H = HIGH state (the more positive voltage) = 1 L = LOW state (the less positive voltage) = 0

X = Don't Care

10172

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETE	R	10K ECL	UNIT	
V _{EE}	Supply voltage		-8.0	v	
V _{IN}	Input voltage (VIN should never be	more negative than V _{EE})	0 to V _{EE}		
lo	Output source current		-50	mA	
Ts	Storage temperature		-55 to +150	°C	
		Ceramic package	+ 165	°C	
IJ	Maximum junction temperature	Plastic package	+ 150	°C	

DC OPERATING CONDITIONS

	DADAMETED				10K ECL			
V _{CC1} , V _{CC2}	Circuit ground		0	0	0	v		
V _{EE}	Supply voltage (negative)			-5.2		V		
		T _A = -30°C			-890	mV		
V _{IH}	HIGH level input voltage	T _A = + 25°C			-810	mV		
		T _A = +85°C			-700	mV		
		$T_A = -30^{\circ}C$	-1205			mV		
VIHT	HIGH level input threshold voltage	$T_A = +25^{\circ}C$	-1105			mV		
		T _A = +85°C	-1035			mV		
A		T _A = -30°C			-1500	mV		
V _{ILT}	LOW level input threshold voltage	$T_A = +25^{\circ}C$			-1475	mV		
		T _A = +85°C			-1440	mV		
		$T_A = -30^{\circ}C$	-1890			mV		
V _{IL}	LOW level input voltage	$T_A = +25^{\circ}C$	-1850			mV		
		T _A = +85°C	-1825			mV		
T _A	Operating ambient temperature	•	-30	+ 25	+ 85	°C		

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

PARAMETER MIN TYP MAX UNIT TEST CONDITIONS² $T_A = -30^{\circ}C$ -1060 -890 mV HIGH level For Q₀ and Q₄ outputs, apply V_{IHmax} to E₀ VOH $T_A = +25^{\circ}C$ -960 -810 mV output voltage and E1 inputs with VILmin applied to all T_A = +85°C -700 -890 m٧ other inputs. $T_A = -30^{\circ}C$ -1080 m٧ HIGH level output For Q0 output, apply VIHT to E1 input -980 VOHT $T_A = +25^{\circ}C$ m٧ with V_{ILmin} applied to all other inputs. threshold voltage $T_A = +85^{\circ}C$ -910 m٧ $T_A = -30^{\circ}C$ -1655 m٧ LOW level output Apply VIHT to E input with VILmin $T_A = +25^{\circ}C$ VOLT -1630 m٧ threshold voltage applied to all other inputs. $T_{A} = +85^{\circ}C$ -1595 m٧ $T_A = -30^{\circ}C$ -1890 -1675 m٧ LOW level Apply V_{IHmax} to \overline{E} input with V_{ILmin} $T_A = +25^{\circ}C$ VOL -1850 -1650 m٧ output voltage applied to all other inputs. $T_A = +85^{\circ}C$ -1825 -1615 m٧ $T_A = -30^{\circ}C$ 350 μA Apply VIHmax to each input under test, one HIGH level $T_A = +25^{\circ}C$ 220 μA at a time, with VILmin applied to all other hн input current inputs. $T_A = +85^{\circ}C$ 220 uА $T_A = -30^{\circ}C$ 0.5 μA Apply VILmin to each input under test, one LOW level $T_A = +25^{\circ}C$ 0.5 μA hι at a time, with VIHmax applied to all other input current inputs. μA $T_{A} = +85^{\circ}C$ 0.3 $T_A = -30^{\circ}C$ 85 mΑ V_{EE} supply -I_{EE} $T_A = +25^{\circ}C$ 62 77 mΑ current $T_A = +85^{\circ}C$ 85 mΑ HIGH level ΔV_{OH} output voltage 0.016 V/V $\overline{\Delta V_{\text{EE}}}$ compensation LOW level ΔV_{OL} output voltage $T_A = +25^{\circ}C$ 0.250 V/V ΔV_{EE} compensation Reference bias ΔV_{BB} v/v voltage 0.148 $\overline{\Delta V_{EE}}$ compensation

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to +85°C, output loading with 50 Ω to -2.0V ± 0.010V unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

2. Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.

3. The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has beeb established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

10172

Decoder

Figure 4. Transfer Characteristics

AC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = +2.0V \pm 0.010V$, $V_{EE} = -3.2V \pm 0.010V$

		T _A = -30°C		T _A = + 25°C		T _A = + 85°C			TEAT CONDITIONS		
	PARAMETER	Min	Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH} t _{PHL}			6.2 6.2	1.5 1.5	4.0 4.0	6.0 6.0	1.5 1.5	6.4 6.4	ns ns	Figs. 5, 6, 7	
t _{PLH} t _{PHL}	Propagation delay \overline{E} to Q_n	1.5 1.5	6.2 6.2	1.5 1.5	4.0 4.0	6.0 6.0	1.5 1.5	6.4 6.4	ns ns	Figs. 5, 6, 7	
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	1.0 1.0	3.3 3.3	1.1 1.1	2.0 2.0	3.3 3.3	1.1 1.1	3.4 3.4	ns ns	Figs. 5, 6, 7	

AC WAVEFORMS

6

Decoder

TEST CIRCUITS AND WAVEFORMS

Figure 6. AC Test Circuit

NOTES:

- 1. $V_{CC1} = V_{CC2} = + 2V \pm 0.010V$, $V_{EE} = -3.2V \pm 0.010V$.
- Decoupling 0.1μF and 25μF from GND to V_{CC}, 0.01μF and 25μF from GND to V_{EE} (0.01 and 0.1μF capacitors should be NPO Ceramic or MLC type). Decoupling capacitors should be NFO certaine of MCC (ype). Decoupling capacitors should be placed as closed as closed as closed as should be kept to less than ¼ inch (6mm).
- 3. All unused inputs should be connected to either HIGH or LOW state consistent with the LOGIC
- function required. 4. All unused outputs are loaded with $5\Omega 2$ to GND. 5. L₁ and L₂ are equal length $5\Omega 2$ impedance lines. L₃ the distance from the DUT pin to the junction of the cable from the Pulse Generator and the cable to the Scope, should not exceed 1/4 inch (6mm).
- 6. $R_T = 50\Omega$ terminator internal to Scope. 7. The unmatched wire stub between coaxial cable 7. The unmatched wire stub petween coaxial cable and pins under test must be less than $\frac{1}{4}$ inch (6mm) long for proper test. 8. C_L = Fixture and stray capacitance \leq 3pF. 9. Any unterminated stubs connected anywhere along
- Any unterminated stubs connected anywhere along the transmission line between the PUIse Generator and the DUT or between the DUT and the Scope should not exceed ¼ inch (6mm) in length (refer to section on AC setup procedure).
 All 50Ω resistors should have tolerance of ±1% or better
- better.

Signetics

ECL Products

DESCRIPTION

The 10173 is a quad 2-input multiplexer with latched outputs. Each multiplexer has two inputs, selected by the common Select (S) input. Outputs are latched when the clock is HIGH. All unused inputs must be tied LOW to V_{IL} or V_{EE} .

10173 Multiplexer/Latch

Quad 2-Input Multiplexer With Latched Outputs Product Specification

ТҮРЕ	TYPICAL PROPAGATION	TYPICAL SUPPLY CURRENT
	DELAY	(– I _{EE})
10173	2.5ns	53mA

ORDERING CODE

PACKAGES	$\label{eq:commercial RANGE} \begin{array}{c} \mbox{COMMERCIAL RANGE} \\ \mbox{V}_{CC1} = \mbox{V}_{CC2} = \mbox{GND}; \ \mbox{V}_{EE} = -5.2 \mbox{V} \\ \mbox{T}_{A} = -30^{\circ}\mbox{C} \ \ \mbox{to} \ \ +85^{\circ}\mbox{C} \end{array}$
Plastic DIP	10173N
Ceramic DIP	10173F

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₇	Data Inputs
S	Select Input
CP	Clock Input
Q ₀ – Q ₃	Data Outputs

6

853-0677 82177

Multiplexer/Latch

FUNCTION TABLE

S	СР	Q _{n + 1}
н	L	D ₀
L	L	D ₁
X	н	Qn

Positive Logic:

H = HIGH state (the more positive voltage) = 1 L = LOW state (the less positive voltage) = 0 X = Don't Care

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETE	R	10K ECL	UNIT
V _{EE}	Supply voltage	-8.0	v	
V _{IN}	Input voltage (VIN should never be	0 to V _{EE}	V	
lo	Output source current		-50	mA
Ts	Storage temperature		-55 to +150	°C
-		Ceramic package	+ 165	°C
ŢJ	Maximum junction temperature	+ 150	°C	

DC OPERATING CONDITIONS

	PARAMETER					
	Min	Nom	Max	UNI		
V _{CC1} , V _{CC2}	Circuit ground		0	0	0	v
V _{EE}	Supply voltage (negative)			-5.2		V
		$T_A = -30^{\circ}C$			-890	m۷
V _{IH}	HIGH level input voltage	T _A = + 25°C			-810	m٧
		T _A = +85°C			-700	m\
	HIGH level input threshold voltage	$T_A = -30^{\circ}C$	-1205			m\
VIHT		T _A = +25°C	-1105			m\
		T _A = +85°C	-1035			m\
	LOW level input threshold voltage	$T_A = -30^{\circ}C$			-1500	m\
V _{ILT}		T _A = + 25°C			-1475	m\
		T _A = +85°C			-1440	m\
		T _A = -30°C	-1890			m\
VIL	LOW level input voltage	$T_A = +25^{\circ}C$	-1850			m۱
		$T_A = +85^{\circ}C$	- 1825			m١
TA	Operating ambient temperature		-30	+ 25	+ 85	°C

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

Multiplexer/Latch

10173

	PA	RAMETE	B	MIN	ТҮР	МАХ	UNIT	TEST CONDITIONS ²
			T _A = -30°C	-1060		-890	mV	
V _{OH}	HIGH le	vel	$T_A = -36^{\circ}C$ $T_A = +25^{\circ}C$	-960		-810	mV	Apply V_{IHmax} to D ₁ input, with V_{ILmin} applied to D ₀ , CP
*OH	output v	oltage	$T_A = +85^{\circ}C$	-890		-700	mV	and S inputs.
	$T_A = -30^{\circ}C$		-1080			mV		
VOHT	HIGH level V _{OHT} output threshold		$T_A = -25^{\circ}C$	-980			mV	Apply V_{IHT} to D_1 input, with V_{ILmin} applied to D_0 , CP
voltage		$T_A = -85^{\circ}C$	-910			mV	and S inputs.	
			$T_A = -30^{\circ}C$		=10	- 1655	mV	
VOLT	LOW lev		$T_A = -25^{\circ}C$			- 1630	mV	Apply V_{ILT} to D_1 input with V_{ILmin} applied to all other
· OLI	V _{OLT} output threshold voltage		$T_A = -85^{\circ}C$			- 1595	mV	inputs.
			T _A = -30°C	-1890		-1675	mV	
Voi	V _{OL} LOW level output voltage		$T_A = +25^{\circ}C$	-1850		- 1650	mV	Apply V _{ILmin} to all inputs.
· OL			$T_A = +85^{\circ}C$	-1825		-1615	mV	
			T _A = -30°C			470	μA	
	HIGH Ievel	$T_A = +25^{\circ}C$			295	μA	Apply V_{1Hmax} to each input under test, one at a time,	
		inputs	T _A = +85°C	· •		295	μA	with V _{ILmin} applied to all other inputs.
Чн	input		T _A = -30°C			400	μA	
	current	S, CP inputs	$T_A = +25^{\circ}C$			250	μA	Apply V_{IHmax} to S and CP inputs under test, one at a time, with $V_{II min}$ applied to all other inputs.
		inputs	T _A = +85°C			250	μA	time, with Villmin applied to all other inputs.
			$T_A = -30^{\circ}C$	0.5			μA	
Ι _{ΙΕ}	LOW lev		T _A = + 25°C	0.5			μA	Apply V_{ILmin} to each input, one at a time, with V_{IHmax}
	input cur	rent	T _A = +85°C	0.3			μA	applied to all other inputs.
			$T_A = -30^{\circ}C$			73	mA	
-I _{EE}	V _{EE} supp current	ply	T _A = + 25°C		53	66	mA	
	current		T _A = +85°C			73	mA	
$rac{\Delta V_{OH}}{\Delta V_{EE}}$	output ve	oltage			0.016		V/V	
$\frac{\Delta V_{OL}}{\Delta V_{EE}}$	/ _{OL} LOW level		T _A = + 25°C		0.250		V/V	
$\frac{\Delta V_{BB}}{\Delta V_{EE}}$	Reference voltage compens	1			0.148		V/V	

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to $+85^{\circ}C$, output loading with 50Ω to $-2.0V \pm 0.010V$ unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.
 The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

Multiplexer/Latch

Figure 4. Transfer Characteristics

		T _A = -	-30°C	TA	= + 25	°C	T _A = ·	+ 85°C		
	PARAMETER	Min	Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS
	Propagation delay D _n to Q _n	0.8 0.8	3.7 3.7	1.0 1.0	2.5 2.5	3.5 3.5	1.1 1.1	5.3 5.3	ns ns	
	Propagation delay CP to Q _n	1.6 1.6	7.2 7.2	1.6 1.6	4.5 4.5	6.8 6.8	1.4 1.4	6.8 6.8	ns ns	Figs. 5, 7, 8
	t _{PLH} Propagation delay t _{PHL} S to Q _n		6.2 6.2	1.3 1.3	3.5 3.5	5.7 5.7	1.2 1.2	6.7 6.7	ns ns	
ts	Setup time Dn to CP	2.0		2.0	1.5		2.0		ns	
t _h	Hold time Dn to CP	2.5		2.5	0		2.5		ns	
ts	Setup time S to CP	3.0		x Min Typ Max Min Max Max 7 1.0 2.5 3.5 1.1 5.3 ns 2 1.6 4.5 6.8 1.4 6.8 ns 2 1.6 4.5 6.8 1.4 6.8 ns 2 1.3 3.5 5.7 1.2 6.7 ns 2.0 1.5 2.0 1.5 2.0 ns 2.0 1.5 2.0 ns 3.5 3.0 2.5 0 2.5 ns 3.0 2.5 1.5 1.5 ns 1.5 0.5 1.5 1.5 ns 3.0 2.5 0 1.5 ns 1.5 0.5 1.5 1.5 ns 1.5 0.5 1.5 1.5 ns	Figs. 6, 7, 8					
t _h	th Hold time S to CP			1.5	0.5		1.5		ns	
	Transition time 20% to 80%, 80% to 20%	1.2 1.2	4.0 4.0				1			Figs. 5, 7, 8

AC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = +2.0V \pm 0.010V$, $V_{EE} = -3.2V \pm 0.010V$

Multiplexer/Latch

10173

6

AC WAVEFORMS

Multiplexer/Latch

TEST CIRCUITS AND WAVEFORMS

- V_{CC2} = + 2V ± 0.010V, V_{EE} = -3.2V
- 1. VCC1 VCC2 12.V \pm 0.010V, VEE 3.2V ±0.010V. 2. Decoupling 0.1µF and 25µF from GND to VCC. 0.01µF and 25µF from GND to VEE (0.01 and 0.1µF capacitors should be NPO Cerramic or MLC type). Decoupling capacitors should be placed as close as physically possible to the DUT and lead length
- should be kept to less than 1/4 inch (6mm). 3. All unused inputs should be connected to either HIGH or LOW state consistent with the LOGIC function required.
- function required.
 All unused outputs are loaded with 50Ω to GND.
 L₁ and L₂ are equal length 50Ω impedance lines.
 L₂, the distance from the DUT pin to the junction of the cable from the Pulse Generator and the cable to the Scope, should not exceed 4ⁱ inch (6mm).
 F_T = 50Ω terminator internal to Scope.
 The unmatched wire stub between coaxial cable defines under the standard state.

- and pins under test must be less than 74 inch (6mm) long for proper test. 8. C_L = Fixture and stray capacitance < 3pF. 9. Any unterminated stubs connected anywhere along the transmission line between the Pulse Generator and the DUT or between the DUT and the Scope should not exceed ¹/₄ inch (6mm) in length (refer to section on AC setup procedure). 10. All 50Ω resistors should have tolerance of ± 1% or

Signetics

ECL Products

DESCRIPTION

The 10174 is a Dual 4-to-1 Multiplexer with output enable input. The 10174 performs two 4-input multiplexer functions. The output of each multiplexer reflects one of the 4 data inputs determined by the states on the two select inputs. An enable input is provided for easy bit expansion by wire-ORing several multiplexers. Each output will go LOW with the enable input in the HIGH state. All unused inputs can be left open due to antegrated pull-down resistors which avoid the need for a supply voltage.

10174 Multiplexer

Dual 4-to-1 Multiplexer (With Output Enable) Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
10174	3.5ns	58mA

ORDERING CODE

PACKAGES	$\begin{array}{l} \mbox{COMMERCIAL RANGE} \\ \mbox{V}_{CC1} = \mbox{V}_{CC2} = \mbox{GND}; \ \mbox{V}_{EE} = -5.2 \mbox{V} \\ \mbox{T}_{A} = -30^{\circ} \mbox{C} \ \mbox{to} \ +85^{\circ} \mbox{C} \end{array}$
Plastic DIP	10174N
Ceramic DIP	10174F

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₇	Data Inputs
S ₀ , S ₁	Select Inputs
OE	Output Enable Input
Q ₀ , Q ₁	Data Outputs

LOGIC SYMBOL

PIN CONFIGURATION

12 13 11 10 16 Vcc1 V_{CC2} 1 Dc D₅ D1 D₂ D₃ D4 D₆ D7 15 Q1 Q0 2 ŌĒ 14 D₀ 3 14 OE D₂ 4 13 D4 q s 12 D6 D1 5 Q Q D3 6 11 D5 S₀ 7 10 D7 2 15 VEE 8 9 S1 V_{CC1} = 16 V_{CC2} = 1 V_{EE} = 8 CD08620S LS10440S Figure 1 Figure 2

Multiplexer

10174

FUNCTION TABLE

	INPUTS	OUTPUTS				
S ₀	S ₁	Q ₀	Q ₁			
L	L	L	D ₀	D ₄		
н	L	L	D ₀ D ₁	D4 D5 D6 D7		
L	н	L	D ₂	D ₆		
н	н	L	D2 D3	D ₇		
х	X	н	L	L		

Positive Logic: H = HIGH state (the more positive voltage) = 1 L = LOW state (the less positive voltage) = 0 X = Don't Care

Multiplexer

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETEI	R	10K ECL	UNIT
V _{EE}	Supply voltage		-8.0	v
V _{IN}	Input voltage (VIN should never be	more negative than V _{EE})	0 to V _{EE}	v
lo	Output source current		-50	mA
Ts	Storage temperature		-55 to +150	°C
		Ceramic package	+ 165	°C
ن ا	T _J Maximum junction temperature	Plastic package	+ 150	°C

DC OPERATING CONDITIONS

			10K ECL			
PARAMETER					Max	
V _{CC1} , V _{CC2}	Circuit ground		0	0	0	V
V _{EE}	Supply voltage (negative)			-5.2		V
		$T_A = -30^{\circ}C$			-890	۳ı
VIH	HIGH level input voltage	T _A = +25°C			-810	m
		T _A = +85°C			-700	m
	HIGH level input threshold voltage	$T_A = -30^{\circ}C$	-1205			m
VIHT		T _A = + 25°C	-1105			m
		T _A = +85°C	- 1035			m
	LOW level input threshold voltage	$T_A = -30^{\circ}C$			-1500	m
VILT		$T_A = +25^{\circ}C$			-1475	m
		T _A = +85°C			-1440	m
4.1.000 c		T _A = -30°C	- 1890			m
V _{IL}	LOW level input voltage	T _A = +25°C	- 1850			m
		T _A = +85°C	-1825			m
TA	Operating ambient temperature		-30	+ 25	+ 85	°

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)
Multiplexer

10174

PARAMETER			MIN	ТҮР	MAX	UNIT	TEST CONDITIONS ²	
			$T_A = -30^{\circ}C$	-1060		-890	mV	
VOH	HIGH le		T _A = +25°C	-960		-810	mV	Apply V_{IHmax} to D_0 and D_4 inputs, with V_{ILmin} applied
	output v	onage	T _A = +85°C	-890		-700	mV	to all other inputs.
	HIGH lev	/el	T _A = -30°C	-1080			mV	Apply V_{IHT} to D_0 input, with V_{ILmin} applied to all other
VOHT	output th		T _A = -25°C	-980			mV] inputs. Measure Q_0 . Apply V _{IHT} to D_4 input, with V _{ILmin} applied to all other
	voltage		T _A = -85°C	-910			mV	inputs. Measure Q_1 .
	LOW lev	rel	T _A = -30°C			-1655	mV	
V _{OLT}	output th		T _A = -25°C			-1630	mV	Apply V _{IHT} to OE input with V _{ILmin} applied to all other inputs
	voltage		T _A = -85°C			-1595	mV	
			T _A = -30°C	-1890		-1675	mV	
VOL	LOW lev		T _A = +25°C	-1850		-1650	mV	Apply V_{IHmax} to \overline{OE} input with V_{ILmin} applied to all other
	output v	oitage	T _A = +85°C	-1825		-1615	mV	- inputs.
			$T_A = -30^{\circ}C$			350	μA	
	HIGH level input current	Other inputs	T _A = +25°C			220	μA	Apply V _{IHmax} to each input under test, one at a time, with V _{ILmin} applied to all other inputs.
			T _A = +85°C			220	μA	
ЦH		OE input	T _A = -30°C			525	μA	
			T _A = + 25°C			310	μA	Apply V_{IHmax} to \overline{OE} input with V_{ILmin} applied to all other inputs.
			T _A = +85°C			330	μA	
			T _A = -30°C	0.5			μA	
h∟	LOW lev		T _A = +25°C	0.5			μA	Apply V _{ILmin} to each input under test, one at a time,
	input cur	rent	T _A = +85°C	0.3			μA	with V _{IHmax} applied to all other inputs.
			$T_A = -30^{\circ}C$			80	mA	
$-I_{EE}$	V _{EE} sup	ply	T _A = +25°C		58	73	mA	
	current		$T_A = +85^{\circ}C$			80	mA	
$rac{\Delta V_{OH}}{\Delta V_{EE}}$	ΔVEE output voltage compensation ΔVOL LOW level ΔVEE output voltage compensation				0.016		v/v	
$\frac{\Delta V_{OL}}{\Delta V_{EE}}$			T _A = +25°C		0.250		v/v	
ΔV_{BB}					0.148		v/v	

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to +85°C, output loading with 50 Ω to -2.0V ±0.010V unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.
The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

Multiplexer

Figure 4. Transfer Characteristics

AC ELECTRICAL CHARACTERISTICS V_{CC1} = V_{CC2} = +2.0V \pm 0.010V, V_{EE} = -3.2V \pm 0.010V

	T _A = -30°C			T _A = + 25°C			T _A = +85°C			
PARAMETER		Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS	
Propagation delay D _n to Q _n	1.4 1.4	4.8 4.8	1.5 1.5	3.5 3.5	4.5 4.5	1.4 1.4	4.8 4.8	ns ns	Figs. 5, 6, 7	
Propagation delay S _n to Q _n	1.9 1.9	6.4 6.4	2.0 2.0	5.0 5.0	6.0 6.0	2.1 2.1	6.4 6.4	ns ns	r iga. 0, 0, 7	
Propagation delay \overline{E} to Q_n	1.0 1.0	3.1 3.1	1.0 1.0	2.0 2.0	2.9 2.9	0.9 0.9	3.2 3.2	ns ns	Figs. 5, 6, 7	
Transition time 20% to 80%, 80% to 20%	1.0 1.0	3.4 3.4	1.1 1.1	2.0 2.0	3.3 3.3	1.1 1.1	3.6 3.6	ns ns	Figs. 5, 6, 7	

Product Specification

Multiplexer

10174

AC WAVEFORMS

Multiplexer

Product Specification

10174

6

TEST CIRCUITS AND WAVEFORMS

Signetics

ECL Products

DESCRIPTION

The 10175 includes five D-latches with common reset and two wired-OR common clock inputs. When the clock is in the HIGH state, any change of the data input does not affect the output state. When the clock is in the LOW state, any change of the data input is transferred at the output. The outputs are latched on the positive transition of the clock. The reset input is enabled only when the Clock is HIGH. All unused inputs must be tied LOW to V_{IL} or V_{EE}.

10175 Latch

Quint D-Latch With Common Reset and 2 Wired-OR Common Clock Inputs Product Specification

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})				
10175	2.5ns	78mA				

ORDERING CODE

PACKAGES	$\begin{array}{l} \mbox{COMMERCIAL RANGE} \\ \mbox{V}_{CC1} = \mbox{V}_{CC2} = \mbox{GND}; \ \mbox{V}_{EE} = -5.2 \mbox{V} \\ \mbox{T}_{A} = -30^{\circ} \mbox{C} \ \ \mbox{to} \ +85^{\circ} \mbox{C} \end{array}$
Plastic DIP	10175N
Ceramic DIP	10175F

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₄	Data Input
CP ₀ , CP ₁	Clock Inputs
R	Reset Input
Q ₀ – Q ₄	Data Outputs

853-0679 82178

Product Specification

Latch

CP ₀	CP ₁	R	D	Q _{n + 1}
L	L	X	L	L
L	L	X	н	н
н	X	L	х	Qn
Х	н	L	Х	Q _n Q _n
н	X	н	х	L
х	н	н	х	L

Positive Logic:

H = HIGH state (the more positive voltage) = 1

L = LOW state (the less positive voltage) = 0

X = Don't Care

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	10K ECL	UNIT	
V _{EE}	Supply voltage		-8.0	V
V _{IN}	Input voltage (VIN should never be more negative that	an V _{EE})	0 to V _{EE}	V
lo	Output source current		-50	mA
Ts	Storage temperature		-55 to +150	°C
Ŧ		Ceramic package	+ 165	°C
IJ	Maximum junction temperature	+ 150	°C	

DC OPERATING CONDITIONS

	.	10K ECL				
	Min	Nom	Max	UNIT		
V _{CC1} , V _{CC2}	Circuit ground		0	0	0	v
V _{EE}	Supply voltage (negative)			-5.2		v
		T _A = -30°C			-890	mV
V _{IH}	HIGH level input voltage	T _A = + 25°C			-810	mV
		T _A = +85°C			-700	mV
		T _A = -30°C	-1205			mV
VIHT	HIGH level input threshold voltage	T _A = + 25°C	-1105			mV
		T _A = +85°C	-1035			mV
		T _A = -30°C			-1500	mV
VILT	LOW level input threshold voltage	$T_A = +25^{\circ}C$			-1475	mV
		T _A = +85°C			-1440	mV
		T _A = -30°C	-1890			mV
VIL	LOW level input voltage	T _A = + 25°C	-1850			mV
		T _A = + 85°C	-1825			mV
TA	Operating ambient temperature		-30	+ 25	+ 85	°C

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

10175

PARAMETER			MIN	түр	MAX	UNIT	TEST CONDITIONS ²	
$T_{A} = -30^{\circ}C$		T _A = -30°C	-1060		-890	mV		
V _{OH}	HIGH le	,	T _A = + 25°C	-960		-810	mV	Apply V _{IHmax} to each D _n input, with V _{ILmin}
	output v	oitage	T _A = +85°C	-890		-700	mV	applied to all other inputs.
	HIGH lev	vel	T _A = -30°C	-1080			mV	
V _{OHT}	output th		$T_A = +25^{\circ}C$	-980			mV	Apply V_{IHT} to each D_n input, one at a time, with V_{ILmin} applied to all other inputs.
	voltage		T _A = +85°C	-910			mV	
	LOW lev	/el	$T_A = -30^{\circ}C$			-1655	mV	
VOLT	output th	-	$T_A = +25^{\circ}C$			-1630	mV	Apply V _{ILT} to each input, one at a time, with V _{ILmin} applied to all other inputs.
	voltage		T _A = +85°C			-1595	mV	
			$T_A = -30^{\circ}C$	-1890		-1675	mV	
VOL	LOW lev		$T_A = +25^{\circ}C$	- 1850		- 1650	mV	Apply V _{ILmin} to all inputs.
	output v	oitage	T _A = +85°C	- 1825		-1615	mV	
		Other inputs	T _A = -30°C			480	μA	
	HIGH level input		T _A = + 25°C			290	μA	Apply V _{IHmax} to each input under test, one at a time, with V _{ILmin} applied to all other inputs.
			T _A = +85°C			290	μA	
Чн		R input	$T_A = -30^{\circ}C$			1000	μA	
	current		T _A = + 25°C			650	μA	Apply V _{IHmax} to R input with V _{ILmin} applied to all other inputs.
			T _A = +85°C			650	μA	
			$T_A = -30^{\circ}C$				μA	
l _{IL}	LOW lev		T _A = + 25°C	0.5			μA	Apply V _{ILmin} to each input under test, one at a time,
	input cui	rrent	T _A = +85°C	0.3			μA	with V _{IHmax} applied to all other inputs.
			$T_A = -30^{\circ}C$			107	mA	
-I _{EE}	V _{EE} sup	ply	T _A = +25°C		78	97	mA	
	current		T _A = +85°C			107	mA	
$rac{\Delta V_{OH}}{\Delta V_{EE}}$	output voltage				0.016		v/v	
$rac{\Delta V_{OL}}{\Delta V_{EE}}$	V _{OL} LOW level output voltage compensation		T _A = + 25°C		0.250		v/v	
ΔV_{BB}					0.148		V/V	

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to $+85^{\circ}C$, output loading with 50Ω to $-2.0V \pm 0.010V$ unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.
The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying

3. The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 5.

	PARAMETER		-30°C	T _A = + 25°C			T _A = +85°C			TEAT CONDITIONS
			Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS
	Propagation delay D _n to Q _n	1.0 1.0	3.6 3.6	1.0 1.0	2.5 2.5	3.5 3.5	1.0 1.0	3.6 3.6	ns ns	Figs. 6, 8, 9
	t_{PLH} Propagation delay t_{PHL} \overline{CP}_n to Q_n		4.7 4.7	1.0 1.0		4.3 4.3	1.0 1.0	4.4 4.4	ns ns	Figs. 6, 8, 9
	Propagation delay R to Q _n	1.0 1.0	4.0 4.0	1.0 1.0		3.9 3.9	1.0 1.0	4.2 4.2	ns ns	
ts	Setup time D_n to \overline{CP}_n	2.5		2.5			2.5		ns	
t _h	Hold time D_n to \overline{CP}_n	1.5		1.5			1.5		ns	Figs. 7, 8, 9
	Transition time 20% to 80%, 80% to 20%	1.0 1.0	3.6 3.6	1.1 1.1		3.5 3.5	1.1 1.1	3.7 3.7	ns ns	Figs. 6, 8, 9

AC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = +2.0V \pm 0.010V$, $V_{EE} = -3.2V \pm 0.010V$

10175

6

AC WAVEFORMS

Latch

TEST CIRCUITS AND WAVEFORMS

Signetics

ECL Products

DESCRIPTION

The 10176 includes six high-speed master-slave D-type flip-flops with one common input Clock for all six. Data enters into the master during the LOW state of the Clock and is transferred to the slave during the positive-going Clock transition. Due to the master-slave structure of the device, a change in the information present at the data (Dn) input will not modify the output information at any other time. All unused inputs must be tied LOW to V_{IL} or V_{EE} .

10176 Flip-Flop

Hex D-Type Master-Slave Flip-Flop **Product Specification**

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
10176	150MHz	88mA

ORDERING CODE

PACKAGES	$\begin{array}{l} \mbox{COMMERCIAL RANGE} \\ \mbox{V}_{CC1} = \mbox{V}_{CC2} = \mbox{GND}; \ \mbox{V}_{EE} = -5.2 \mbox{V} \\ \mbox{T}_{A} = -30^{\circ}\mbox{C} \ \mbox{to} \ +85^{\circ}\mbox{C} \end{array}$
Plastic DIP	10176N
Ceramic DIP	10176F

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₅	Data Input
СР	Clock Input
Q ₀ – Q ₅	Data Outputs

PIN CONFIGURATION

Vcc2 1

Flip-Flop

10176

FUNCTION TABLE

CP	D _n	Q _{n + 1}
L	Х	Qn
н	L	L
н	н	н

Positive Logic:

H = HIGH state (the more positive voltage) = 1 L = LOW state (the less positive voltage) = 0 X = Don't Care

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER		10K ECL	UNIT				
V _{EE}	Supply voltage		-8.0	V				
V _{IN}	Input voltage (VIN should never be more neg	ative than V _{EE})	0 to V _{EE}	V				
lo	Output source current		-50	mA				
Τ _S	Storage temperature		-55 to +150	°C				
	N4	Ceramic package	+ 165	°C				
IJ	Maximum junction temperature	Plastic package	+ 150	°C				

DC OPERATING CONDITIONS

	PARAMETER								
V _{CC1} , V _{CC2}	V _{CC1} , V _{CC2} Circuit ground								
V _{EE}	Supply voltage (negative)			-5.2		v			
		$T_A = -30^{\circ}C$			-890	mV			
VIH	HIGH level input voltage	T _A = +25°C			-810	mV			
		T _A = +85°C			-700	mV			
		$T_A = -30^{\circ}C$	-1205			mV			
VIHT	HIGH level input threshold voltage	T _A = + 25°C	-1105			mV			
		T _A = +85°C	-1035			mV			
		$T_A = -30^{\circ}C$			-1500	mV			
VILT	LOW level input threshold voltage	T _A = +25°C			-1475	mV			
		T _A = +85°C			-1440	mV			
		$T_A = -30^{\circ}C$	-1890			mV			
VIL	LOW level input voltage	T _A = + 25°C	-1850			mV			
		T _A = +85°C	-1825			mV			
T _A	Operating ambient temperature		-30	+ 25	+ 85	°C			

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

Flip-Flop

10176

	PARAMETER			MIN	ТҮР	MAX	UNIT	TEST CONDITIONS ²
			T _A = -30°C	-1060		-890	mV	Apply VILmin to CP input with VIHmax applied to all other
V _{OH}	HIGH lev		T _A = + 25°C	-960		-810	mV	inputs. Raise CP from VILmin to VIHmax and
	output ti	Shugo	T _A = +85°C	-890		-700	mV	measure V _{OH} .
	HIGH lev	vel	T _A = -30°C	-1080			mV	
VOHT	output th		T _A = + 25°C	-980			mV	Apply V_{ILmin} to CP input with V_{IHmax} applied to all other inputs. Raise CP from V_{ILmin} to V_{IHT} and measure V_{OHT} .
	voltage		$T_A = +85^{\circ}C$	-910			mV	
	LOW lev	rel	$T_A = -30^{\circ}C$			- 1655	mV	
VOLT	output th		$T_A = +25^{\circ}C$			-1630	mV	Apply V_{ILmin} to all inputs. Raise CP input from V_{ILmin} to V_{IHT} and measure V_{OLT} .
	voltage		$T_A = +85^{\circ}C$			-1595	mV	
			$T_A = -30^{\circ}C$	-1890		-1675	mV	
V _{OL}	LOW lev		T _A = + 25°C	-1850		- 1650	mV	Apply V _{ILmin} to all inputs. Raise CP input from
	output vi	onage	T _A = +85°C	-1825		-1615	mV	V _{ILmin} to V _{IHmax} . Measure V _{OL} .
			$T_A = -30^{\circ}C$			350	μA	
	HIGH level	Other inputs	T _A = +25°C			220	μA	Apply V_{IHmax} to each D_n input under test, one at a time, with V_{ILmin} applied to all other inputs.
			$T_A = +85^{\circ}C$			220	μA	
<u></u> 1 ин	input		$T_A = -30^{\circ}C$			495	μA	
	current	CP input	$T_A = +25^{\circ}C$			310	μA	Apply V _{IHmax} to C input with V _{ILmin} applied to all other inputs.
			$T_A = +85^{\circ}C$			310	μA	
			$T_A = -30^{\circ}C$	0.5			μA	
Ι _{ΙL}	LOW lev input cur	-	T _A = + 25°C	0.5			μA	Apply V _{ILmin} to each input under test, one at a time, with V _{ILmax} applied to all other inputs.
	input cui	Tent	$T_A = +85^{\circ}C$	0.3			μA	With VIHmax applied to all other inputs.
			$T_A = -30^{\circ}C$			121	mA	
-I _{EE}	V _{EE} support	ply	$T_A = +25^{\circ}C$		88	110	mA	
	current		$T_A = +85^{\circ}C$			121	mA	
$\frac{\Delta V_{OH}}{\Delta V_{EE}}$	$\frac{\Delta V_{OH}}{\Delta V_{EE}} \begin{array}{c} \text{HIGH level} \\ \text{output voltage} \\ \text{compensation} \end{array}$		1		0.016		V/V	
$\frac{\Delta V_{OL}}{\Delta V_{EE}}$	$\frac{\Delta V_{OL}}{\Delta V_{EE}} \begin{array}{c} \text{LOW level} \\ \text{output voltage} \\ \text{compensation} \end{array}$		T _A = +25°C		0.250		V/V	
$\frac{\Delta V_{BB}}{\Delta V_{EE}}$	Reference voltage compens				0.148		v/v	

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to $+85^{\circ}C$, output loading with 50Ω to $-2.0V \pm 0.010V$ unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

2. Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.

3. The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

Signetics ECL Products

Flip-Flop

AC ELECTRICAL CHARACTERISTICS V_{CC1} = V_{CC2} = +2.0V $\pm 0.010V, \ V_{EE}$ = -3.2V $\pm 0.010V$

	PARAMETER		-30°C	T _A = + 25°C		T _A = +85°C			TEAT CONDITIONS	
			Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS
f _{MAX}	Maximum clock frequency	125		125	150		125		MHz	
	Propagation delay CP to Q _n	1.6 1.6	4.6 4.6	1.6 1.6		4.5 4.5	1.6 1.6	5.0 5.0	ns ns	Figs. 5, 7, 8
t _s	Setup time Dn to CP	2.5		2.5			2.5		ns	
t _h	Hold time Dn to CP	1.5		1.5			1.5		ns	Figs. 6, 7, 8
	Transition time 20% to 80%, 80% to 20%	1.0 1.0	4.1 4.1	1.1 1.1		4.0 4.0	1.1 1.1	4.4 4.4	ns ns	Figs. 5, 7, 8

AC WAVEFORMS

6

TEST CIRCUITS AND WAVEFORMS

Figure 8. Input Pulse Definition

Signetics

ECL Products

DESCRIPTION

The 10179 is a Look-Ahead Carry Block. It can be used in conjunction with the 10181 4-bit arithmetic/logic unit to perform a high order look-ahead carry, in applications requiring high-speed arithmetic operation on long words. All unused inputs can be left open due to integrated pull-down resistors, which avoid the need for a supply voltage.

10179 Look-Ahead Carry Block

Look-Ahead Carry Block Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
10179	2.3ns	58mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -5.2V$ $T_A = -30^{\circ}C$ to $+85^{\circ}C$
Plastic DIP	10179N
Ceramic DIP	10179F

PIN DESCRIPTION

PINS	DESCRIPTION
C _n	Carry Input
P ₀ - P ₃	Carry Propagate Input
G ₀ – G ₃	Carry Generate Inputs
C _{n + 2} , C _{n + 4}	Carry Outputs
PG	Carry Propagate Output
GG	Carry Generate Output

PIN CONFIGURATION

Vcc2 1

GG 2

Cn+4 3

G0 4

G₃ 5 C_{n+2} 6

G1 7

VEE 8

LOGIC SYMBOL

16 Vcc1

15 PG

14 Po

13 P₃

12 P2

11 C.

10 P1

9 G2

CD08650S

Look-Ahead Carry Block

10179

LOGIC FUNCTION

 $\begin{array}{l} P_{G} = P_{1} + P_{2} + _{3} + P_{4}, P_{n} = P_{n-1} \\ G_{G} = G_{4} \quad (G_{3} + P_{4}) \quad (G_{2} + P_{3} + P_{4}) \quad (G_{1} + P_{2} + P_{3} + P_{4}), G_{n} = G_{n-1}, P_{n} = P_{n-1} \\ C_{n+2} = G_{2} \quad (G_{1} + P_{2}) \quad (C_{n} + P_{1} + P_{2}), G_{n} = G_{n-1}, P_{n} = P_{n-1} \\ C_{n+4} = G_{4} \quad (G_{3} + P_{4}) \quad (G_{2} + G_{3} + P_{4}) \quad (G_{1} + P_{2} + P_{2} + P_{4}) \\ C_{n+4} = G_{4} \quad (G_{3} + P_{4}) \quad (G_{2} + G_{3} + P_{4}) \quad (G_{1} + P_{2} + P_{2} + P_{4}) \quad (C_{n} + P_{1} + P_{2} + P_{3} + P_{4}), G_{n} = G_{n-1}, P_{n} = P_{n-1} \\ C_{n+4} = G_{4} \quad (G_{3} + P_{4}) \quad (G_{2} + G_{3} + P_{4}) \quad (G_{1} + P_{2} + P_{2} + P_{4} + P_{4}) \quad (C_{n} + P_{1} + P_{2} + P_{3} + P_{4}), G_{n} = G_{n-1}, P_{n} = P_{n-1} \\ C_{n+4} = G_{4} \quad (G_{3} + P_{4}) \quad (G_{2} + G_{3} + P_{4}) \quad (G_{1} + P_{2} + P_{2} + P_{4} + P_{4}) \quad (G_{1} + P_{2} + P_{3} + P_{4}), G_{n} = G_{n-1}, P_{n} = P_{n-1} \\ C_{n+4} = G_{4} \quad (G_{3} + P_{4}) \quad (G_{1} + P_{2} + P_{3} + P_{4}) \quad (G_{1} + P_{2} + P_{3} + P_{4}) \quad (G_{1} + P_{2} + P_{3} + P_{4}), G_{1} = G_{n-1}, P_{n} = P_{n-1} \\ C_{n+4} = G_{4} \quad (G_{3} + P_{4}) \quad (G_{1} + P_{2} + P_{3} + P_{4}) \quad (G_{1} + P_{3} + P_{3} + P_{4}) \quad (G_{1} + P_{3} + P_{3} + P_{4}) \quad (G_{1} + P_{3} + P_{3} + P_{3} + P_{4}) \quad (G_{1} + P_{3} + P_{3} + P_{3} + P_{4}) \quad (G_{1} + P_{3} + P_{3} + P_{4}) \quad (G_{1} + P_{3} + P_{3} + P_{4}) \quad (G_{1} + P_{3} + P_{3} + P_{3} + P_{4}) \quad (G_{1} + P_{3} + P_{3} + P_{4} + P_{5} + P$

In Positive Logic: H = HIGH state (the more positive voltage) = 1 L = LOW state (the less positive voltage) = 0

The overall carry function is invariant with the polarity (positive or negative) of the logic if the P and G inputs are interchanged.

Look-Ahead Carry Block

10179

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

L	PARAMETER	10K ECL	UNIT	
V _{EE}	Supply voltage		-8.0	v
V _{IN}	Input voltage (VIN should never be i	more negative than V _{EE})	0 to V _{EE}	V
lo	Output source current		- 50	mA
T _S	Storage temperature		-55 to +150	°C
-	• • • • • • • • • • • • • • • • • • •	Ceramic package	+ 165	°C
TJ	Maximum junction temperature	Plastic package	+ 150	°C

DC OPERATING CONDITIONS

	PARAMETER						
V _{CC1} , V _{CC2}	Circuit ground		0	0	0	v	
V _{EE}	Supply voltage (negative)			-5.2		V	
		$T_{A} = -30^{\circ}C$			-890	mV	
VIH	HIGH level input voltage	T _A = +25°C			-810	mV	
		T _A = +85°C			-700	mV	
	HIGH level input threshold voitage	$T_{A} = -30^{\circ}C$	-1205			mV	
VIHT		T _A = + 25°C	-1105			mV	
		$T_A = +85^{\circ}C$	- 1035			mV	
	· · · · · · · · · · · · · · · · · · ·	$T_{A} = -30^{\circ}C$			-1500	mV	
VILT	LOW level input threshold voltage	LOW level input threshold voltage $T_A = +25^{\circ}C$	-1475	mV			
		$T_{A} = +85^{\circ}C$			-1440	mV	
		T _A = -30°C	-1890			mV	
VIL	LOW level input voltage	$T_{A} = +25^{\circ}C$	-1850			mV	
		$T_{A} = +85^{\circ}C$	- 1825			mV	
T _A	Operating ambient temperature		-30	+ 25	+ 85	°C	

NOTE:

1 ...

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

Look-Ahead Carry Block

	-	PARAMETEI	MIN	TYP	MAX	UNIT	TEST CONDITIONS ²	
			T _A = -30°C	-1060		-890	mV	
V _{OH}	HIGH le		T _A = + 25°C	-960		-810	mV	For GG output, apply V _{IHmax} to all G _n inputs with V _{ILmin}
	output v	onage	T _A = +85°C	-890		-700	mV	applied to all other inputs.
	HIGH le	vel	$T_A = -30^{\circ}C$	-1080			mV	
VOHT	output	-	T _A = + 25°C	-980			mV	For GG output, apply $V_{\rm IHT}$ to each G _n input, one
	threshol voltage	a	T _A = +85°C	-910			mV	at a time, V _{IHmax} applied to all other Gn inputs.
	LOW le	vel	$T_A = -30^{\circ}C$			- 1655	mV	
VOLT	ouput		$T_A = +25^{\circ}C$			-1630	mV	For GG output, apply V_{ILT} to G ₃ input with V_{IHmax}
	threshol voltage	d	T _A = +85°C			-1595	mV	applied to all other inputs.
			$T_A = -30^{\circ}C$	-1890		-1675	mV	· ·
VOL	LOW le		T _A = + 25°C	-1850		-1650	mV	For GG output, apply VILmin to all Gn inputs with
	output v	oltage	T _A = + 85°C	-1825		-1615	mV	V _{IHmax} applied to all other inputs.
			$T_A = -30^{\circ}C$			430	μA	
		G ₀ , G ₁ , C _n inputs	$T_A = +25^{\circ}C$			270	μA	
		On Inputs	T _A = + 85°C			270	μA	Apply V _{IHmax} to each input under test, one at a time,
			T _A = -30°C			360	μA	with VILmin applied to all other inputs.
		G ₂ , G ₃ inputs	T _A = + 25°C			225	μA	
		inputs	T _A = + 85°C			225	μA	
F	IIGH	P ₀ input	T _A = -30°C			565	μA	
	evel nput		T _A = + 25°C			355	μA	Apply V _{IHmax} to P ₀ input with V _{ILmin} applied to all other inputs.
	urrent		T _A = +85°C			355	μA	
			T _A = -30°C			700	μA	
		P ₁ , P ₃ inputs	T _A = + 25°C			440	μΑ	Apply V _{IHmax} to each input under test, one at a time, with V _{ILmin} applied to all other inputs.
		mputa	T _A = +85°C			440	μA	
			$T_A = -30^{\circ}C$			630	μA	
		P ₂ input	T _A = + 25°C			395	μA	Apply V _{IHmax} to P ₃ input with V _{ILmin} applied to all other inputs.
		mpat	T _A = +85°C			395	μA	
			$T_A = -30^{\circ}C$	0.5			μA	
hι	LOW lev		T _A = + 25°C	0.5			μA	Apply V _{ILmin} to each input, one at a time, with
	input cu	rrent	T _A = +85°C	0.3			μA	V _{IHmax} applied to all other inputs.
			T _A = -30°C			79	mA	
$-I_{EE}$	V _{EE} sup current	ply	T _A = + 25°C		58	72	mA]
	Surrent		T _A = +85°C			79	mA	
$ \begin{array}{c} \Delta V_{OH} \\ \overline{\Delta V_{EE}} \end{array} \begin{array}{c} HIGH \ level \\ output \ voltage \\ compensation \end{array} $				0.016		v/v		
$ \frac{\Delta V_{OL}}{\Delta V_{EE}} ~~ \begin{array}{c} \text{LOW level} \\ \text{output voltage} \\ \text{compensation} \end{array} $		T _A = +25°C		0.250		V/V		
$\frac{\Delta V_{BB}}{\Delta V_{EE}}$	Referen voltage compen				0.148		v/v	

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to +85°C, output loading with 50 Ω to -2.0V ± 0.010V unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

2. Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.

3. The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

Look-Ahead Carry Block

AC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = +2.0V \pm 0.010V$, $V_{EE} = -3.2V \pm 0.010V$

	T _A =	-30°C	T _A = + 25°C			T _A = + 85°C			
PARAMETER	Min	Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} Propagation delay	1.0	3.7	1.0	2.3	3.5	1.0	3.9	ns	
t _{PHL} P _n to PG	1.0	3.7	1.0	1.8	3.5	1.0	3.9	ns	
t _{PLH} Propagation delay	1.0	5.8	1.0	3.0	4.5	1.0	6.1	ns	Figs. 5, 6, 7
t _{PHL} C _n to C _{n + 2}	1.0	5.8	1.0	3.0	4.5	1.0	6.1	ns	
t _{PLH} Propagation delay	1.0	5.8	1.0	3.2	5.5	1.0	6.1	ns	
t _{PHL} G _n to GG	1.0	5.8	1.0	3.2	5.5	1.0	6.1	ns	
t _{TLH} Transition time	1.3	3.5	1.3	2.5	3.5	1.3	3.5	ns	
t _{THL} 20% to 80%, 80% to 20%	1.3	3.5	1.3	2.5	3.5	1.3	3.5	ns	

AC WAVEFORMS

6

Look-Ahead Carry Block

TEST CIRCUITS AND WAVEFORMS

Signetics

ECL Products

DESCRIPTION

The 10180 is a high-speed, low power, general purpose adder/subtractor. Inputs for each adder are: Carry-in (C_{0in}, C_{1in}), Operand A (A₀, A₁), Operand B (B₀, B₁). Outputs are Sum (F₀, F₁), Sum (F₀, F₁) and Carry-out (C_{0out}, C_{1out}). Common select inputs act as control lines to invert A or B for subtraction. A very high-speed operation is possible with Operand in the Sum or Carry-ut propagation delay of 4.5ns, and Carry-in to Carry-out propagation delay of 2.2ns. The 10180 is designed to be used in special purpose adder/subtractor or in high-speed multiplier arrays.

All unused inputs can be left open due to integrated pull-down resistors which avoid the need for a supply voltage.

10180 Adder/Subtractor

Dual 2-Bit Adder/Subtractor Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
10180	A _n , B _n to C _{out} 4.5ns	70mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC} = GND; V_{EE} = -5.2V$ $T_A = -30^{\circ}C$ to $+85^{\circ}C$
Plastic DIP	10180N
Ceramic DIP	10180F

PIN DESCRIPTION

PINS	DESCRIPTION
A ₀ , A ₁	A Operand Inputs
B ₀ , B ₁	B Operand Inputs
S ₀ , S ₁	Select Inputs
C _{0in} , C _{1in}	Carry-in Inputs
C _{0out} , C _{1out}	Carry-out Outputs
F ₀ , F ₀ , F ₁ , F ₁	Sum Outputs

PIN CONFIGURATION

F₁ 1

C_{0out} 3

C_{0in} 4

A₀ 5

B0 6

S₀ 7

V_{EE} 8

LOGIC SYMBOL

16 Vcc

15 Fo

14 F1

13 C_{1out}

12 C1in

11] A1

10 B1

9 S1

CD08660

853-0682 82178

Adder/Subtractor

FUNCTION SELECT TABLE

FUNCTION TABLE

S ₀	S ₁	FUNCTIONS F	FUNCTION			INPUTS				OUTPU	rs
н	н	A + B + C _{in}	FUNCTION	S ₀	S ₁	A	В	Cin	F	F	Cout
H L	L H	$C_{in} + A - B$ $C_{in} + B - A$	ADD	н	н	L	L	L	L	н	L
L L		(A + B + C ₁)	н	н	L	L	н	н	L	L	
Positive Lo	aic:			H	н н		Н	L H			L H
H = HIGH	state = 1							1		+	
L = LOW s Positive log				H	H H	н Н		L H	1		L H
$A' = \overline{A \oplus S_0} =$				н	н	Н	н	L	1		н
B' = <u>B⊕S</u> 1 =	= B⊙S₁			н	н	н	н	н	н	L	н
	i positive and negative logic: Ĉ _{in} (ĀƁ + AƁ) + Ĉ _{in} (AƁ + ĀƁ) = Ĉ _{in} A' + Ĉ _{in} B' + AƁ		SUBTRACT	н	L	L	L.	L	н	L	L
			(C ₁ + A – B)	н	L	L	L	н	L	н	н
				н	L	L	н	L	L	н	L
				н	L	L	н	н	н	L	L
				н	L	н	L	L	L	н	н
				н	L	н	L	н		L	н
				Н		H H	н Н	L H			L H
			Reverse SUBTRACT	L	н н	L	L	L Н			
			$(C_1 + B - A)$		H H		L				Н Н
			(01 + 0 - 7)	L	Н	L	н	H	н	L	н
				L	н	н	L	L	1	н	L
				L	н	н	L	н	H L H H L L H L L H L L H L L H L L H L L H L L H L L H L L H L L H L L H L L H L L H L L H L L H H L L H H L L H H L L H H L L H H L L H H L L H H L L H H L L H H L L H H H H L L H	L	
				L	н	н	н	L			L
			(C ₁ – A – B)	L	н	н	н	н	L	н	н
			(01 - A - B)	L	L	L	L	L			н
				L	L	L	L	н			н
				L	L	L	н н	L			L H
				L	L	Н	L	L			L
				L		н н	L	H		н	H
							н	н	, с Н		
			L		L	L_''	L	L	L	L	<u></u>

Adder/Subtractor

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER		10K ECL	UNIT
VEE	Supply voltage		-8.0	V
V _{IN}	Input voltage (VIN should never be more negative that	an V _{EE})	0 to V _{EE}	V
lo	Output source current		-50	mA
Ts	Storage temperature	-	-55 to +150	°C
_		Ceramic package	+ 165	°C
J	Maximum junction temperature	Plastic package	+ 150	°C

DC OPERATING CONDITIONS

				IOK EC	OK ECL	
	PARAMETER		Min	Nom	Max	UNIT
V _{CC}	Circuit ground		0	0	0	V
V _{EE}	Supply voltage (negative)			-5.2		V
		T _A = -30°C	-		-890	mV
VIH	HIGH level input voltage	T _A = + 25°C			-810	mV
		T _A = +85°C			-700	mV
	:	T _A = -30°C	- 1205			mV
VIHT	HIGH level input threshold voltage	T _A = + 25°C	-1105			mV
		T _A = +85°C	-1035			mV
	· · ·	$T_A = -30^{\circ}C$			-1500	mV
VILT	LOW level input threshold voltage	$T_A = +25^{\circ}C$			-1475	mV
		T _A = +85°C			-1440	mV
		T _A = -30°C	-1890			mV
VIL	LOW level input voltage	T _A = + 25°C	-1850			mV
		T _A = +85°C	-1825			mV
T _A	Operating ambient temperature		-30	+25	+85	°C

NOTE:

When operating at V_{EE} other than specified voltage (~5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

Adder/Subtractor

10180

			· · · · · · · · · · · · · · · · · · ·	to -2	.0V ±0.01	0V unless	otherwise	specified ^{1,3}
	PA	RAMETER		MIN	ТҮР	MAX	UNIT	TEST CONDITIONS ²
			$T_A = -30^{\circ}C$	-1060		-890	mV	Using VIHmax and VILmin, apply a functional
V _{OH} HIGH le			$T_A = +25^{\circ}C$	-960		-810	mV	pattern as indicated in the FUNCTION TA- BLE and measure V _{OH} on the respective
		onago	T _A = +85°C	-890		-700	mV	outputs.
			$T_A = -30^{\circ}C$	-1080			mV	Apply V_{IHT} or V_{ILT} to one input at a time
V _{OHT}		vel output d voltage	T _A = + 25°C	-980			mV	while applying V _{IHmax} or V _{ILmin} to all other inputs in accordance with the FUNCTION
		0	T _A = +85°C	-910			mV	TABLE and measure V _{OHT} on the respec- tive outputs.
			T _A = -30°C			- 1655	mV	Apply V_{ILT} or V_{IHT} to one input at a time while applying V_{IIIT} or V_{IIII} to all other
V _{OLT}		vel output d voltage	T _A = + 25°C			- 1630	mV	while applying V _{IHmax} or V _{ILmin} to all other inputs in accordance with the FUNCTION
		_	$T_A = +85^{\circ}C$			- 1595	mV	TABLE and measure V _{OLT} on the respec- tive outputs.
	_		$T_A = -30^{\circ}C$	-1890		-1675	mV	Using V _{IHmax} and V _{ILmin} , apply a functional
VOL	LOW lev output v		$T_A = +25^{\circ}C$	-1850		- 1650	mV	pattern as indicated in the FUNCTION TA- BLE and measure V _{OL} on the respective
	output t	onago	T _A = +85°C	-1825		-1615	mV	outputs.
		C _{0in}	T _A = -30°C		590 μΑ			
		Ctin	T _A = + 25°C			370	μA	
		outputs	$T_A = +85^{\circ}C$			370	μΑ	
	HIGH	A ₀ , A ₁ ,	T _A = -30°C			350	μΑ	Apply V _{IHmax} to each input under test,
ιн	level input	B ₀ , B ₁	T _A = + 25°C			220	μΑ	one at a time, with VILmin applied
	current	inputs	T _A = +85°C			220	μΑ	to all other inputs.
			T _A = -30°C			460	μΑ	
		S ₀ , S ₁ inputs	$T_A = +25^{\circ}C$			290	μΑ	
		mputo	T _A = +85°C			290	μΑ	
			$T_A = -30^{\circ}C$	0.5			μΑ	Apply V _{ILmin} to each input under test,
Ι _{ΙL}	LOW lev input cu		T _A = +25°C	0.5			μΑ	one at a time, with VIHmax applied
	nipat ou		T _A = +85°C	0.3			μA	to all other inputs.
			T _A = -30°C			95	mA	
-I _{EE}	V _{EE} sup current	ply	T _A = + 25°C		70	86	mA	
	ourront		T _A = +85°C			95	mA	
$rac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH le output v compens	oltage			0.016		v/v	
$rac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation		T _A = +25°C		0.250		v/v	
$rac{\Delta V_{BB}}{\Delta V_{EE}}$	Reference voltage compens				0.148		V/V	

DC ELECTRICAL CHARACTERISTICS $V_{CC} = GND$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to $+85^{\circ}C$, output loading with 50Ω to $-2.0V \pm 0.010V$ unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

2. Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing. 3. The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying

power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

Adder/Subtractor

Figure 4. Transfer Characteristics

		T _A =	-30°C	T _A = + 25°C			T _A = + 85°C				
	PARAMETER	Min	/lin Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH} t _{PHL}	Propagation delay A_0 , A_1 , B_0 , B_1 , to F_0 , F_1	1.3 1.3	5.8 5.8	1.3 1.3	4.5 4.5	5.4 5.4	1.1 1.1	5.8 5.8	ns ns		
t _{PLH} t _{PHL}	Propagation delay C_{0in} to C_{0out}	1.0 1.0	3.4 3.4	1.0 1.0	2.2 2.2	3.3 3.3	0.9 0.9	3.6 3.6	ns ns	Figs. 5, 6, 7	
t _{PLH} t _{PHL}	Propagation delay S_0 , S_1 to \overline{F}_0 , \overline{F}_1	1.3 1.3	5.8 5.8	1.3 1.3	4.5 4.5	5.4 5.4	1.1 1.1	5.8 5.8	ns ns	1 igs. 3, 0, 7	
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	1.0 1.0	3.8 3.8	1.1 1.1	2.4 2.4	3.7 3.7	1.1 1.1	3.9 3.9	ns ns		

AC ELECTRICAL CHARACTERISTICS $V_{CC} = +2.0V \pm 0.010V$, $V_{EE} = -3.2V \pm 0.010V$

AC WAVEFORMS

TEST CIRCUITS AND WAVEFORMS

Signetics

ECL Products

DESCRIPTION

The 10181 is a high-speed, Arithmetic Logic Unit. It performs 16 logic operations and 16 arithmetic operations on two 4-bit words. Arithmetic or logic mode of operation is selected by the mode control (M). Arithmetic logic operations are selected by a 4-bit select input $(S_0 - S_3)$ in accordance with the function table. The device provides a group Carry Propagate (PG) and a Carry Generate (GG) for high-speed operations on very long words, using a 10179 as a high order look-ahead carry block. The internal carry is enabled while the mode control input (M) is LOW (arithmetic operation).

All unused inputs can be left open due to integrated pull-down resistors which avoid the need for a supply voltage.

10181 Arithmetic Unit

4-Bit Arithmetic Logic Unit/Function Generator Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
10181	4.2ns	130mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -5.2V$ $T_A = -30^{\circ}C$ to $+85^{\circ}C$	
Plastic DIP	10181N	
Ceramic DIP	10181F	

PIN DESCRIPTION

PINS	DESCRIPTION	
М	Mode Control Input	
A ₀ – A ₃ , B ₀ – B ₃	Operand Inputs	
S ₀ - S ₃	Function Select Inputs	
Cn	Carry Inputs	
F ₀ – F ₃	Data Outputs	
Cn + 4	Carry Output	
GG	Carry Generate Output	
PG	Carry Propagate Output	

PIN CONFIGURATION

Vcc2 1

Fo 2

F1 3

GG 4

Cn+4 5

F3 6

F2 7

PG 8 B₃ 9

A3 10

B₂ 11

V_{EE} 12

24 Vcc1

23 M

22) C.

21 A0

20 Bo

19 B1

18 A1

17 S1

16 A₂ 15 S₂

14 S₀

13 S₃

CD08670S

LOGIC SYMBOL

Arithmetic Unit

6

FUNCTION TABLE

FUN	FUNCTION SELECT INPUTS			LOGIC FUNCTION MODE	ARITHMETIC OPERATION MODE				
S ₃	S ₂	S ₁	S ₀	F (M = HIGH)	$F (M = LOW; C_n = LOW)$				
L	L	L	L	Ā	A				
L	L	L	н	Ā + B	A plus (A·B)				
L	L	н	L	Ā + B	A plus (A·B)				
L	L	н	н	logic ''1''	A times 2				
L	н	L	L	Ā·B	(A + B) plus 0				
L	н	L.	н	B	$(A + B)$ plus $(A \cdot \overline{B})$				
- Le	н	н	L	AB + AB	A plus B				
L	н	н	н	A + B	A plus (A + B)				
н	L	L	L	Ā·B	$(A + \overline{B})$ plus 0				
н	L	L	н	AB + AB	A minus B minus 1				
н	L	н	L	В	$(A + \overline{B})$ plus $(A \cdot B)$				
н	L	н	н	A + B	A plus $(A + \overline{B})$				
н	н	L	L	logic ''0''	minus 1 (two's complement)				
н	н	L	н	A·B	(A⋅B) minus 1				
н	• H	н	L	AB	(A·B) minus 1				
н	н	н	н	A	A minus 1				

Positive Logic: H = HIGH state = 1

L = LOW state = 0

Arithmetic Unit

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER		10K ECL	UNIT		
V _{EE}	Supply voltage		-8.0	v		
VIN	Input voltage (VIN should never be more negative	ve than V _{EE})	0 to V _{EE}			
lo	Output source current		-50	mA		
Ts	Storage temperature		-55 to +150	°C		
-		Ceramic package	+ 165	°C		
łj	Maximum junction temperature	Plastic package	+ 150	°C		

DC OPERATING CONDITIONS

				UNIT			
	PARAMETER						
V _{CC1} , V _{CC2}	Circuit ground		0	0	0	V	
V _{EE}	Supply voltage (negative)			-5.2		V	
		$T_A = -30^{\circ}C$			-890	mV	
VIH	HIGH level input voltage	T _A = + 25°C			-810	mV	
		T _A = + 85°C			-700	mV	
		$T_{A} = -30^{\circ}C$	-1205			mV	
VIHT	HIGH level input threshold voltage	T _A = + 25°C	-1105			mV	
		T _A = + 85°C	-1035			mV	
		T _A = -30°C			-1500	mV	
VILT	LOW level input threshold voltage	T _A = + 25°C			-1475	mV	
		T _A = +85°C			-1440	mV	
		$T_A = -30^{\circ}C$	-1890			mV	
VIL	LOW level input voltage	$T_A = +25^{\circ}C$	-1850			mV	
		T _A = +85°C	-1825			mV	
T _A	Operating ambient temperature		-30	+ 25	+ 85	°C	

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

Arithmetic Unit

				with 50	Ω to -2.0	0V ± 0.010	V unless o	otherwise specified ^{1,3}
	PAF	AMETER		MIN	ТҮР	MAX	UNIT	TEST CONDITIONS ²
			$T_A = -30^{\circ}C$	-1060		-890	mV	
V _{OH}	HIGH lev output va		T _A = +25°C	-960		-810	mV	
	output vonage		T _A = +85°C	-890		-700	mV	
			T _A = -30°C	-1080			mV	
VOHT	HIGH lev threshold	•	T _A = + 25°C	-980			mV	All input/output combinations in accordance with the functional table. Input conditions:
		ronago	T _A = +85°C	-910			mV	V _{ILmin} , V _{IHmax} (for V _{OH} and V _{OL}) or V _{ILT} ,
			T _A = -30°C			- 1655	mV	V_{IHT} (for V_{OHT} and V_{OLT}). Only 1 input at a time should be at V_{IHT} or
V _{OLT}	LOW leve threshold		T _A = + 25°C			-1630	mV	V _{ILT} . All other inputs should be at V _{IHmax} or
	aneshola	vonage	$T_A = +85^{\circ}C$			- 1595	mV	V _{ILmin} during test.
			$T_A = -30^{\circ}C$	-1890		- 1675	mV	
VOL	LOW leve output vo		T _A = + 25°C	- 1850		- 1650	mV	
	output ve	mage	T _A = +85°C	- 1825		-1615	mV	
			T _A = -30°C			350	μΑ	
		A _n inputs	T _A = +25°C			220	μΑ	
			T _A = +85°C			220	μA	
			T _A = -30°C			390	μΑ	Apply V _{IHmax} to each input under test,
		B _n inputs	T _A = + 25°C			245	μΑ	one at a time, with V _{ILmin} applied
		inputs	T _A = +85°C			245	μΑ	to all other inputs.
	HIGH		$T_A = -30^{\circ}C$			425	μΑ	
hн	level input	S _n inputs	T _A = + 25°C			265	μΑ	
	current	inputs	T _A = +85°C			265	μΑ	
			T _A = -30°C			460	μΑ	
		C _n input	T _A = +25°C			290	μΑ	Apply V_{IHmax} to C_n input with V_{ILmin} applied to all other inputs.
		mpar	T _A = +85°C			290	μΑ	
			T _A = -30°C			320	μΑ	
		M input	T _A = + 25°C			200	μA	Apply V _{IHmax} to M input with V _{ILmin} applied to all other inputs.
		linput	T _A = +85°C			200	μΑ	
		•	T _A = -30°C	0.5			μΑ	Apply V _{ILmin} to each input under test,
Ι _{ΙL}	LOW leve		T _A = + 25°C	0.5			μΑ	one at a time, with VIHmax applied
	input curi	ont	T _A = +85°C	0.3			μΑ	to all other inputs.
			T _A = -30°C			150	mA	
$-I_{EE}$	V _{EE} supp current	ly	T _A = +25°C		130	145	mA	Apply V _{IHmax} to all inputs.
	current		T _A = +85°C			150	mA	1

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to $+85^{\circ}C$, output loading with 50Ω to $-2.0V \pm 0.010V$ unless otherwise specified^{1,3}

January 30, 1986

Arithmetic Unit

10181

DC ELECTRICAL CHARACTERISTICS (Continued)

	PARAMETER	MIN	ТҮР	MAX	UNIT	TEST CONDITIONS ²	
$rac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation			0.016	-	V/V	
$\frac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	T _A = +25°C		0.250		v/v	
$\frac{\Delta V_{BB}}{\Delta V_{EE}}$	Reference bias voltage compensation			0.148		v/v	

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

2. Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.

3. The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

Arithmetic Unit

		Τ _Α = -	-30°C	T,	T _A = + 25°C			+ 85°C			
	PARAMETER	Min	Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH}	Propagation delay	1.0	5.1	1.1	3.1	5.0	1.1	5.4	ns	Figs. 5, 6, 7	
t _{PHL}	C _n to C _{n+4}	1.0	5.1	1.1	3.1	5.0	1.1	5.4	ns	A ₀ , A ₁ , A ₂ , A ₃	
t _{TLH}	Transition time ²	1.0	3.2	1.0	2.0	3.0	1.0	3.2	ns	Figs. 5, 6, 7	
t _{THL}	C _n to C _{n+4}	1.0	3.2	1.0	2.0	3.0	1.0	3.2	ns	A ₀ , A ₁ , A ₂ , A ₃	
t _{PLH} t _{PHL}	Propagation delay C _n to F ₁	1.7	7.2 7.2	2.0 2.0	4.5 4.5	7.0 7.0	2.0 2.0	7.5 7.5	ns ns	Figs. 5, 6, 7 A ₀	
t _{TLH}	Transition time ²	1.3	5.3	1.5	3.0	5.0	1.5	5.3	ns	Figs. 5, 6, 7	
t _{THL}	C_n to F_1	1.3	5.3	1.5	3.0	5.0	1.5	5.3	ns	A ₀	
t _{PLH}	Propagation delay	2.6	10.4	3.0	6.5	10.0	3.0	10.8	ns	Figs. 5, 6, 7	
t _{PHL}	A ₁ to F ₁	2.6	10.4	3.0	6.5	10.0	3.0	10.8	ns		
t _{TLH}	Transition time ²	1.3 1.3	5.4 5.4	1.5 1.5	3.0 3.0	5.0 5.0	1.5 1.5	5.3 5.3	ns ns	Figs. 5, 6, 7	
t _{THL}	A ₁ to F ₁ Propagation delay	1.6	7.0	2.0	5.0	6.5	2.0	7.0	ns	Figs. 5, 6, 7	
t _{PLH} t _{PHL}	A ₁ to PG	1.6	7.0	2.0	5.0	6.5	2.0	7.0	ns	S_0, S_3	
t _{TLH}	Transition time ²	0.8	3.7	1.1	2.0	3.5	1.1	3.8	ns	Figs. 5, 6, 7	
t _{THL}	A ₁ to PG	0.8	3.7	1.1	2.0	3.5	1.1	3.8	ns	S ₀ , S ₃	
t _{PLH}	Propagation delay	1.1	7.4	2.0	4.5	7.0	1.3	7.7	ns	Figs. 5, 6, 7	
t _{PHL}	A ₁ to GG	1.1	7.4	2.0	4.5	7.0	1.3	7.7	ns	A ₀ , A ₂ , A ₃ , C _n	
t _{TLH} t _{THL}	Transition time ² A ₁ to GG	1.2	5.1 5.1	1.5 1.5	4.0 4.0	5.0 5.0	1.2 1.2	5.3 5.3	ns ns	Figs. 5, 6, 7 A ₀ , A ₂ , A ₃ , C _n	
t _{PLH}	Propagation delay	1.7	7.3	2.0	5.0	7.0	2.0	7.8	ns	Figs. 5, 6, 7	
t _{PHL}	A_1 to C_{n+4}	1.7	7.3	2.0	5.0	7.0	2.0	7.8	ns	A_0, A_2, A_3, C_n	
t _{TLH}	Transition time ²	1.0	3.1	1.0	2.0	3.0	1.0	3.2	ns	Figs. 5, 6, 7	
t _{THL}	A ₁ to C _{n+4}	1.0	3.1	1.0	2.0	3.0	1.0	3.2	ns	A ₀ , A ₂ , A ₃ , C _n	
t _{PLH}	Propagation delay	2.7	11.3 11.3	3.0 3.0	8.0	11.0	3.0 3.0	11.9 11.9	ns	Figs. 5, 6, 7	
t _{PHL}	B ₁ to F ₁ Transition time ²	2.7			8.0	11.0			ns	S ₃ , C _n Figs. 5, 6, 7	
t _{TLH} t _{THL}	B_1 to F_1	1.2	5.3 5.3	1.5 1.5	3.5 3.5	5.0 5.0	1.5 1.5	5.3 5.3	ns ns	$F_{10}S_{3}, C_{n}$	
t _{PLH}	Propagation delay	1.6	7.7	2.0	6.0	7.5	2.0	8.0	ns	Figs. 5, 6, 7	
t _{PHL}	B ₁ to PG	1.6	7.7	2.0	6.0	7.5	2.0	8.0	ns	S ₀ , S ₃	
t _{TLH}	Transition time ²	1.0	3.6	1.1	2.0	3.5	1.1	3.9	ns	Figs. 5, 6, 7	
t _{THL}	B ₁ to PG	1.0	3.6	1.1	2.0	3.5	1.1	3.9	ns	S ₀ , S ₃	
t _{PLH} t _{PHL}	Propagation delay B1 to GG	1.7	8.2 8.2	2.0 2.0	6.0 6.0	8.0 8.0	2.0 2.0	8.6 8.6	ns ns	Figs. 5, 6, 7 S ₃ , C _n	
t _{TLH}	Transition time ²	1.4	5.2	1.5	3.0	5.0	1.2	5.4	ns	Figs. 5, 6, 7	
t _{THL}	B ₁ to GG	1.4	5.2	1.5	3.0	5.0	1.2	5.4	ns	S ₃ , C _n	
t _{PLH}	Propagation delay	1.8	8.2	2.0	6.0	8.0	2.0	8.7	ns	Figs. 5, 6, 7	
t _{PHL}	B ₁ to C _{n+4}	1.8	8.2	2.0	6.0	8.0	2.0	8.7	ns	S ₃ , C _n	
t _{TLH}	Transition time ²	0.9 0.9	3.1 3.1	1.0 1.0	2.0 2.0	3.0 3.0	1.0 1.0	3.2 3.2	ns ns	Figs. 5, 6, 7	
t _{THL}	B ₁ to C _{n+4}	2.4	10.3	3.0			3.0	10.8		S ₃ , C _n	
t _{PLH} t _{PHL}	Propagation delay M to F ₁	2.4	10.3	3.0	6.5 6.5	10.0 10.0	3.0	10.8	ns ns	Figs. 5, 6, 7	
t _{TLH}	Transition time ²	1.1	5.1	1.5	4.0	5.0	1.5	5.3	ns		
t _{THL}	M to F ₁	1.1	5.1	1.5	4.0	5.0	1.5	5.3	ns	Figs. 5, 6, 7	
t _{PLH}	Propagation delay	2.5	10.7	3.0	6.5	10.0	3.0	10.8	ns	Figs. 5, 6, 7	
t _{PHL}	S ₁ to F ₁	2.5	10.7	3.0	6.5	10.0	3.0	10.8	ns	A ₁ , B ₁	
	Transition time ²	1.0	5.4	1.5	3.0	5.0	1.5	5.4	ns	Figs. 5, 6, 7	

AC ELECTRICAL CHARACTERISTICS v_{CC1} = v_{CC2} = +2.0V $\pm 0.010V, \ v_{EE}$ = -3.2V $\pm 0.010V$

January 30, 1986

Arithmetic Unit

10181

AC	ELECTRICAL	CHARACTERISTICS	(Continued)
----	------------	-----------------	-------------

	PARAMETER		$T_A = -30^{\circ}C$		T _A = + 25°C			T _A = +85°C		
			Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS ¹
t _{PLH}	Propagation delay	1.7	8.3	2.0	6.0	8.0	2.0	8.4	ns	Figs. 5, 6, 7
t _{PHL}	S ₁ to PG	1.7	8.3	2.0	6.0	8.0	2.0	8.4	ns	A ₃ , B ₃
t _{TLH}	Transition time ²	0.8	5.1	1.1	3.0	5.0	1.1	5.2	ns	Figs. 5, 6, 7
t _{THL}	S ₁ to PG	0.8	5.1	1.1	3.0	5.0	1.1	5.2	ns	A ₃ , B ₃
t _{PLH}	Propagation delay S_1 to C_{n+4}	1.6	9.3	2.0	6.0	9.0	2.0	9.9	ns	Figs. 5, 6, 7
t _{PHL}		1.6	9.3	2.0	6.0	9.0	2.0	9.9	ns	A ₃ , B ₃
t _{TLH}	Transition time ²	0.9	5.3	1.1	3.0	5.0	1.0	5.2	ns	Figs. 5, 6, 7
t _{THL}	S ₁ to C_{n+4}	0.9	5.3	1.1	3.0	5.0	1.0	5.2	ns	A ₃ , B ₃
t _{PLH}	Propagation delay	1.5	9.6	2.0	6.0	9.0	1.9	9.7	ns	Figs. 5, 6, 7
t _{PHL}	S ₁ to GG	1.5	9.6	2.0	6.0	9.0	1.9	9.7	ns	A ₃ , B ₃
t _{TLH}	Transition time ²	0.8	6.2	0.8	3.0	6.0	0.8	6.5	ns	Figs. 5, 6, 7
t _{THL}	S ₁ to GG	0.8	6.2	0.8	3.0	6.0	0.8	6.5	ns	A ₃ , B ₃

NOTES:

Apply 1110mV to pins listed with 310mV applied to all other inputs.
All transition times are from 20% to 80% and 80% to 20% (refer to Figs. 5, 6, 7).

AC WAVEFORMS

Product Specification

Arithmetic Unit

10181

6

TEST CIRCUITS AND WAVEFORMS

Signetics

ECL Products

DESCRIPTION

The 10188 includes six buffers offering individual inputs and outputs and a common Enable input, driving all outputs LOW. Each input is connected to V_{EE} via a pull-down resistor resulting in high input impedance and eliminating the need for connecting unused inputs LOW.

Due to open emitter outputs the 10188 features OR capability with high fan-out for driving 50Ω lines.

10188 Hex Buffer

Hex Buffer With Enable (Non-Inverting) Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
10188	2.0ns	33mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -5.2V$ $T_A = -30^{\circ}C$ to $+85^{\circ}C$
Plastic DIP	10188N
Ceramic DIP	10188F

PIN DESCRIPTION

PIN CONFIGURATION

PINS	DESCRIPTION
D ₀ – D ₅	Data Inputs
Ē	Common Enable Input
Q ₀ – Q ₅	Data Outputs

16 V_{CC1} Vcc2 1 Q5 2 15 Q₀ Q4 3 14 Q1 13 Q2 Q3 4 12 Do D5 5 11 D1 D4 6 10 D2 D3 7 VEE 8 9 E CD08 Figure 1

LOGIC SYMBOL

853-0684 82178

Hex Buffer

10188

FUNCTION TABLE

INP	UTS	OUTPUT
Ē	D _n	Q _n
L	L	L
L	н	н
н	Х	L

H = HIGH state = 1 L = LOW state = 0 X = Don't Care

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

. PARAMETER			10K ECL	UNIT
VEE	Supply voltage		-8.0	V
VIN	Input voltage (VIN should never be more negation	ive than V _{EE})	0 to V _{EE}	V
l _o	Output source current		-50	mA
Ts	Storage temperature		-55 to +150	°C
-		Ceramic package	+ 165	°C
IJ	Maximum junction temperature	Plastic package	+ 155	°C

DC OPERATING CONDITIONS

	212417772					
	PARAMETER					UNIT
V _{CC1} , V _{CC2}	Circuit ground	0	0	0	v	
VEE	Supply voltage (negative)			-5.2		v
		T _A = -30°C			-890	mV
VIH	HIGH level input voltage	T _A = + 25°C			-810	mV
		T _A = +85°C			-700	mV
	HIGH level input threshold voltage	T _A = -30°C	-1205			mV
VIHT		T _A = + 25°C	-1105			mV
		$T_A = +85^{\circ}C$	-1035			mV
	LOW level input threshold voltage	T _A = -30°C			-1500	mV
VILT		T _A = + 25°C			-1475	mV
		T _A = +85°C			-1440	mV
		$T_A = -30^{\circ}C$	-1890			mV
VIL	LOW level input voltage	$T_A = +25^{\circ}C$	-1850			mV
		T _A = +85°C	-1825			mV
TA	Operating ambient temperature		-30	+ 25	+ 85	°C

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

Hex Buffer

10188

PARAMETER		MIN	ТҮР	MAX	UNIT	TEST CONDITIONS ²		
			$T_A = -30^{\circ}C$	-1060		-890	mV	
V _{OH}	HIGH lev		T _A = + 25°C	-960		-810	mV	Apply V _{ILmin} to E input with V _{IHmax} applied to all other inputs.
	output v	Jilage	T _A = +85°C	-890		-700	mV	
		$T_A = -30^{\circ}C$	-1080			mV	· _	
VOHT		vel output	T _A = +25°C	-980			mV	Apply V _{ILT} to E input with V _{IHmax} applied to all other inputs.
		, tonago	T _A = +85°C	-910			mV	
			T _A = -30°C			-1655	mV	_
VOLT		el output	T _A = + 25°C			-1630	mV	Apply V _{IHT} to E input with V _{IHmax} applied to all other inputs.
	, tonago	T _A = +85°C			-1595	mV	•	
			T _A = -30°C	-1890		-1675	mV	
V _{OL}	LOW lev		T _A = + 25°C	-1850		-1650	mV	Apply V _{ILmin} to all inputs.
	output to	Jilligo	T _A = +85°C	-1825		-1615	mV	
			T _A = -30°C			425	μA	Apply V _{IHmax} to each input under test,
	HIGH	Other inputs	T _A = + 25°C			265	μA	one at a time, with VILmin applied
	level	puto	T _A = +85°C			265	μA	to all other inputs.
Чн	input current	_	$T_A = -30^{\circ}C$			460	μA	_
		E input	T _A = +25°C			290	μA	Apply V _{IHmax} to E with V _{ILmin} applied to all other inputs.
			T _A = +85°C			290	μΑ	
			$T_A = -30^{\circ}C$	0.5			μΑ	Apply VILmin to each input under test,
I _{IL}	LOW lev		T _A = +25°C	0.5			μΑ	one at a time, with V _{IHmax} applied
			T _A = +85°C	0.3			μΑ	to all other inputs.
			$T_A = -30^{\circ}C$			46	mA	
$-I_{EE}$	V _{EE} supp current	oly	T _A = +25°C		33	42	mA	
			T _A = +85°C			46	mA	
$rac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH lev output vo compens	oltage			0.016		v/v	
$\frac{\Delta V_{OL}}{\Delta V_{EE}}$	VEE compensation Reference bias		T _A = +25°C		0.250		v/v	
$\frac{\Delta V_{BB}}{\Delta V_{EE}}$					0.148		V/V	

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to +85°C, output loading with 50 Ω to -2.0V ± 0.010V unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.
The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

Hex Buffer

10188

AC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = +2.0V \pm 0.010V$, $V_{EE} = -3.2V \pm 0.010V$

		$T_A = -30^{\circ}C$		T _A = + 25°C			T _A = + 85°C				
	PARAMETER		Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH}	Propagation delay	1.0	3.3	1.0	2.0	2.9	1.0	3.3	ns	Figs. 5, 7, 8	
t _{PHL}	D _n to Q _n	1.0	3.3	1.0	2.0	2.9	1.0	3.3	ns		
t _{PLH}	Propagation delay	1.1	3.9	1.1	2.5	3.5	1.1	3.9	ns	Figs. 6, 7, 8	
t _{PHL}	Ē to Q _n	1.1	3.9	1.1	2.5	3.5	1.1	3.9	ns		
t _{TLH}	Transition time	1.1	3.7	1.1	2.0	3.3	1.1	3.7	ns	Figs. 5, 6, 7, 8	
t _{THL}	20% to 80%, 80% to 20%	1.1	3.7	1.1	2.0	3.3	1.1	3.7	ns		

AC WAVEFORMS

Hex Buffer

tTLH **t**THL +1110 mV 80% 80% NEGATIVE 50 50% PULSE 20 20% ⊦310 mV tw(L) t_w(H) +1110 mV POSITIVE 80% 80% 50% 50 PULSE 20% 20% +310 mV t_{TLH} **TTHL** WF12390S INPUT PULSE REQUIREMENTS $V_{CC1} = V_{CC2} = +2.0V \pm 0.010V, V_{EE} = -3.2V \pm 0.010V, V_T = GND (0V)$ Family Amplitude **Rep Rate Pulse Width** t_{TLH} t_{THL} 10K ECL 800mVp-p 500ns 2.0 ± 0.2ns 2.0 ±0.2ns 1MHz Figure 8. Input Pulse Definition

Signetics

ECL Products

DESCRIPTION

The 10189 includes six inverters offering individual inputs and outputs and a common enable input, driving all outputs LOW. Each input is connected to V_{EE} via a pull-down resistor resulting in high input impedance and eliminating the need for tying unused inputs LOW.

Due to open emitter outputs, the 10189 features OR capability with high fan-out for driving 50 Ω lines.

10189 Inverter

Hex Inverter With Enable Product Specification

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
10189	2.0ns	30mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -5.2V$ $T_A = -30^{\circ}C$ to $+85^{\circ}C$
Plastic DIP	10189N
Ceramic DIP	10189F

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₅	Data Inputs
Ē	Common Enable Input
$\overline{Q}_0 - \overline{Q}_5$	Data Outputs

PIN CONFIGURATION LOGIC SYMBOL | 16 Vcci CC2 12 D₀ 11 Dı Vcc2 1 16 Vcc1 Q₅ 2 15 Q₀ 10 D₂ Q4 3 14 Q1 Õ3 4 13 Q2 7 D₂ D5 5 12 D₀ 11 D1 D4 6 6 D4 10 D₂ D3 7 5 VEE 8 9 Ē D٩ CDO VE 8 Figure 1 Figure 2

.

January 30, 1986

853-0685 82178

14

13

2

LS10510S

Inverter

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	10K ECL	UNIT	
V _{EE}	Supply voltage	-8.0	V	
V _{IN}	Input voltage (VIN should never be more negative that	n V _{EE})	0 to V _{EE}	V
lo	Output source current		-50	mA
Τ _S	Storage temperature		-55 to +150	°C
т	Mariana in the tangent	Ceramic package	+ 165	°C
IJ	Maximum junction temperature	Plastic package	+ 150	°C

DC OPERATING CONDITIONS

			1	IOK ECI	-	
	PARAMETER		Min	Nom	Max	UNIT
V _{CC1} , V _{CC2}	Circuit ground		0	0	0	V
V _{EE}	Supply voltage (negative)			-5.2		V
		T _A = -30°C			-890	mV
VIH	HIGH level input voltage	T _A = + 25°C			-810	mV
		T _A = +85°C			-700	mV
		T _A = -30°C	-1205			mV
VIHT	HIGH level input threshold voltage	T _A = + 25°C	-1105			mV
		T _A = +85°C	-1035			mV
		T _A = -30°C			-1500	mV
VILT	LOW level input threshold voltage	T _A = +25°C			-1475	mV
		T _A = +85°C			-1440	mV
		T _A = -30°C	-1890			mV
VIL	LOW level input voltage	T _A = +25°C	- 1850			mV
		T _A = +85°C	-1825			mV
TA	Operating ambient temperature		-30	+ 25	+ 85	°C

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

Inverter

10189

				r		r		otherwise specified ^{1,3}
	PAR	RAMETER		MIN	ТҮР	MAX	UNIT	TEST CONDITIONS ²
			$T_A = -30^{\circ}C$	-1060		-890	mV	
V _{OH}	HIGH lev		$T_A = +25^{\circ}C$	-960		-810	mV	Apply V _{ILmin} to all inputs.
			T _A = +85°C	-890		-700	mV	
			$T_A = -30^{\circ}C$	-1080			mV	Apply V_{ILT} to each D_n input one at
V _{OHT}	HIGH lev threshold	vel output	$T_A = +25^{\circ}C$	-980			mV	a time, with V _{ILmin} applied to E input and V _{IHmax} applied to all
		5	$T_A = +85^{\circ}C$	-910			mV	other inputs.
			$T_A = -30^{\circ}C$			-1655	mV	Apply V _{IHT} to each D _n input one at
VOLT	LOW lev threshold	el output I voltage	$T_A = +25^{\circ}C$			-1630	mV	a time, with V_{ILmin} applied to \overline{E} input and V_{ILmin} applied to all
			$T_A = +85^{\circ}C$			-1595	mV	other inputs.
			T _A = -30°C	-1890		-1675	mV	
V _{OL}	LOW lev		T _A = + 25°C	-1850		-1650	mV	Apply V_{IHmax} to all D_n inputs with V_{ILmin} applied to \overline{E} input.
			T _A = +85°C	-1825		-1615	mV	
			$T_A = -30^{\circ}C$			425	μA	Apply V _{IHmax} to each input under test,
	HIGH	Other inputs	T _A = + 25°C			265	μA	one at a time, with VILmin applied
Iн	level		T _A = +85°C			265	μA	to all other inputs.
101	input current	_	$T_A = -30^{\circ}C$			890	μA	
		E input	$T_A = +25^{\circ}C$			555	μA	Apply V _{IHmax} to E input with V _{ILmin} applied to all other inputs.
		·	$T_A = +85^{\circ}C$			555	μA	
			$T_A = -30^{\circ}C$	0.5			μA	Apply V _{ILmin} to each input under test,
ί _{ιL}	LOW lev		$T_A = +25^{\circ}C$	0.5			μA	one at at time, with VIHmax applied
			T _A = +85°C	0.3			μA	to all other inputs.
			$T_A = -30^{\circ}C$			44	mA	
-I _{EE}	V _{EE} supp current	bly	$T_A = +25^{\circ}C$		30	40	mA	
			T _A = +85°C			44	mA	
$rac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH lev output vo compens	oltage			0.016		v/v	
$rac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW lev output vo compens	oltage	T _A = + 25°C		0.250		v/v	
$\frac{\Delta V_{BB}}{\Delta V_{EE}}$	Referenc voltage compens				0.148		v/v	:

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to $+85^{\circ}C$, output loading with 50Ω to $\pm 2.0V + 0.010V$ unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.
The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

Signetics ECL Products

Inverter

AC ELECTRICAL CHARACTERISTICS V_{CC1} = V_{CC2} = +2.0V $\pm 0.010V, \ V_{EE}$ = -3.2V $\pm 0.010V$

	DADAMETED	T _A =	-30°C	т,	A = + 25	°C	T _A = ·	+85°C		TEAT CONDITIONS
	PARAMETER	Min	Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH}	Propagation delay	1.0	3.3	1.0	2.0	2.9	1.0	3.3	ns	Figs. 5, 7, 8
t _{PHL}	D _n to Q _n	1.0	3.3	1.0	2.0	2.9	1.0	3.3	ns	
t _{PLH}	Propagation delay	1.1	3.9	1.1	2.5	3.5	1.1	3.9	ns	Figs. 6, 7, 8
t _{PHL}	Ē to Q _n	1.1	3.9	1.1	2.5	3.5	1.1	3.9	ns	
t _{TLH}	Transition time	1.1	3.6	1.1	2.0	3.3	1.1	3.7	ns	Figs. 5, 6, 7, 8
t _{THL}	20% to 80%, 80% to 20%	1.1	3.6	1.1	2.0	3.3	1.1	3.7	ns	

AC WAVEFORMS

6

TEST CIRCUITS AND WAVEFORMS

Signetics

ECL Products

DESCRIPTION

The 10192 contains four line drivers with complementary outputs. Each driver has a Data (Dn) input and shares an Enable (\overline{E}_{n}) input with another driver. The two driver outputs are the uncommitted collectors of a pair of NPN transistors operating as a current switch. Each driver accepts 10K ECL input signals and provides a nominal signal of 800mV across a 50 Ω load at each output collector. Outputs can drive higher values of load resistance, provided that the combination of IR drop and load return voltage VLR does not cause an output collector to go more negative than -2.4V with respect to V_{CC}. To avoid output transistor breakdown, the load return voltage should not be more positive than +5.5V with respect to V_{CC} . When the \overline{E}_n input is HIGH, both output transistors of a driver are nonconducting. When not used, the En inputs, as well as the Dn inputs, may be left open.

10192 Bus Driver

Quad Bus Driver Product Specification

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
10192	3.0ns	110mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC} = GND; V_{EE} = -5.2V$ $T_A = -30^{\circ}C$ to $+85^{\circ}C$
Plastic DIP	10192N
Ceramic DIP	10192F

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₃	Data Inputs
Ē ₀ , Ē ₁	Enable Inputs
$Q_0 - Q_3, \ \overline{Q}_0 - \overline{Q}_3$	Data Outputs

PIN CONFIGURATION

LOGIC SYMBOL

853-0686 82178

10192

Figure 3. Simplified Circuit Diagram

Basic driver operation
$$\label{eq:VOH} \begin{split} V_{OH} &= V_T \\ V_{OL} &= V_T - 0.016. \ \ R_L \ \ (typ.) \end{split}$$

FUNCTION TABLE

INP	170		Ουτ	PUTS	
INP	115	Cur	rent	Vol	tage
Ē	D	Q	Q	ā	Q
L	L	L	н	н	L
L	н	н	L	L	н
н	x	L	L	н	н

Positive Logic: H (Voltage) = HIGH state (the more positive voltage) = 1 H (Current) = Output transistor not conducting (the least current flow)

L (Voltage) = LOW state (the more negative voltage) = 0

L (Current) = Output transistor conducting (the most current flow)

X = Don't Care

Z = High Impedance (Current source turned off)

10192

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER		10K ECL	UNIT
V _{EE}	Supply voltage		-8.0	V
VIN	Input voltage (VIN should never be more negative than	V _{EE})	0 to V _{EE}	v
VT	Load termination voltage		5.5	V
		Мах	+ 5.5	V
Vo	Output voltage (at collector)	Min	-2.4	V
Τs	Storage temperature		-55 to +150	°C
T		Ceramic package	+ 165	°C
TJ	Maximum junction temperature	Plastic package	+ 150	°C

DC OPERATING CONDITIONS

				10K EC	L	
	PARAMETER		Min	Nom	Max	UNI
V _{CC}	Circuit ground		0	0	0	v
V _{EE}	Supply voltage (negative)			-5.2		V
		$T_{A} = -30^{\circ}C$			-890	m۱
VIH	HIGH level input voltage	$T_{A} = +25^{\circ}C$;		-810	m\
		T _A = +85°C	;		-700	m\
		T _A = -30°C	-1205			m۱
VIHT	HIGH level input threshold voltage	T _A = + 25°C	-1105			m١
		$T_{A} = +85^{\circ}C$	- 1035			m
		$T_{A} = -30^{\circ}C$			-1500	m
VILT	LOW level input threshold voltage	T _A = + 25°C	;		-1475	۳۱
		T _A = +85°C	;		-1440	۳١
		$T_{A} = -30^{\circ}C$	-1890			m'
VIL	LOW level input voltage	T _A = + 25°C	- 1850			mʻ
		T _A = +85°C	-1825			m
T _A	Operating ambient temperature		-30	+ 25	+ 85	°C

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

10192

	PARAMETER		MIN	ТҮР	MAX	UNIT	TEST CONDITIONS ²
	Output	$T_A = -30^{\circ}C$			2.0	mA	For \overline{Q} outputs, apply $V_{II min}$ to all inputs.
Юн	current	T _A = + 25°C			2.0	mA	For Q outputs, apply V_{ILmin} to \overline{E}_n inputs
	HIGH state	$T_A = +85^{\circ}C$			2.0	mA	with V _{IHmax} applied to D _n inputs.
	Output threshold	$T_A = -30^{\circ}C$				mA	For Q outputs, apply V_{IHT} to each D_n input, one at a time, with V_{ILmin} applied to
I _{OHT}	current HIGH state	T _A = + 25°C			2.0	mA	all other inputs. For \overline{Q} outputs, apply V_{ILT} to each D_n
		T _A = +85°C				mA	input, one at a time, with V_{ILmin} applied to all other inputs.
	Output threshold	T _A = -30°C	13.5			mA	For Q outputs, apply V_{ILT} to each D_n input, one at a time, with V_{ILmin} applied to
IOLT	current LOW state	T _A = + 25°C	14			mA	all other inputs. For \overline{Q} outputs, apply V_{IHT} to each D_n
		$T_A = +85^{\circ}C$	14			mA	input, one at a time, with V _{ILmin} applied to all other inputs.
	Output	$T_A = -30^{\circ}C$	13.5		18	mA	For \overline{Q} outputs, apply V _{IHmax} to D _n inputs
loi	current	$T_A = +25^{\circ}C$	14		18	mA	with V_{ILmin} applied to \overline{E}_n inputs.
	LOW state	$T_A = +85^{\circ}C$	14		19	mA	For Q outputs, apply V _{ILmin} to all inputs.
	Output leakage	$T_A = -30^{\circ}C$			300	μA	
loz	current HIGH	$T_A = +25^{\circ}C$			300	μA	Apply V _{IHmax} to all inputs.
	impedance	$T_A = +85^{\circ}C$			300	μA	
		$T_A = -30^{\circ}C$			425	μA	Apply V _{IHmax} to each input under
$\mathfrak{h}_{\mathrm{H}}$	HIGH level input current	$T_A = +25^{\circ}C$			265	μA	test, one at a time, with VILmin
	input outroite	T _A = +85°C			265	μA	applied to all other inputs.
		T _A = -30°C	0.5			μA	Apply VILmin to each input under
h	LOW level input current	$T_A = +25^{\circ}C$	0.5			μA	test, one at a time, with VIHmax
	input outfolk	T _A = +85°C	0.3			μΑ	applied to all other inputs.
	V _{EE}	T _A = -30°C			154	mA	
-IEE	supply	$T_A = +25^{\circ}C$		110	140	mA]
	current	$T_A = +85^{\circ}C$			154	mA	1
$rac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation			0.016		v/v	
$\frac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	T _A = +25°C		0.250		v/v	
$rac{\Delta V_{BB}}{\Delta V_{EE}}$	Reference bias voltage compensation			0.148		v/v	

DC ELECTRICAL CHARACTERISTICS V_{CC} = GND, V_{EE} = -5.2V ± 0.010V, T_A = -30°C to +85°C, output loading with 50 Ω to V_T unless otherwise specified^{1, 3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges

Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.
The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board.

10192

AC ELECTRICAL CHARACTERISTICS V_{CC} = 0V (GND), V_{EE} = -5.2V $\pm 0.010V, \ V_{T}$ = GND (0V)

		T _A =	30°C	т	A = + 25	°C	T _A = -	+ 85°C		
	PARAMETER	Min	Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} t _{PHL}	Propagation delay D_n to Q_n , \overline{Q}_n	2.0 2.0	4.7 4.7	2.0 2.0	3.0 3.0	4.5 4.5	2.0 2.0	4.8 4.8	ns ns	Figs. 5, 7, 8
t _{PLH} t _{PHL}	Propagation delay \overline{E}_n to Q_n , \overline{Q}_n	2.5 2.5	6.3 6.3	2.5 2.5	3.5 3.5	6.0 6.0	2.5 2.5	6.6 6.6	ns ns	Figs. 6, 7, 8
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	1.3 1.3	3.5 3.5	1.3 1.3	2.3 2.3	3.3 3.3	1.3 1.3	3.5 3.5	ns ns	Figs. 5, 6, 7, 8

AC WAVEFORMS

6

Bus Driver

TEST CIRCUITS AND WAVEFORMS

		50% 0%	80% X	50% 20% - 410	mV
			REQUIREMEN [®] 5.2V ± 0.010V, V	rs	F12391S
Family	Amplitude	Rep Rate	Pulse Width	t _{TLH}	t _{THL}

80%

£ 80%

Figure 8. Input Pulse Definition

Signetics

ECL Products

DESCRIPTION

The 10210 is a high-speed dual 3-input/ 3-output OR line driver intended to drive up to six transmission lines simultaneously. This feature makes the device particularly useful in clock distribution applications. The 10210 is a higher speed version of the 10110. It is a pinfor-pin replacement for the device. All unused inputs can be left open due to integrated pull-down resistors, which avoid the need for a supply voltage.

10210 Line Driver

High-Speed Dual 3-Input/3-Output OR Line Driver Product Specification

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
10210	1.5ns	31mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -5.2V$ $T_A = -30^{\circ}C \text{ to } +85^{\circ}C$
Plastic DIP	10210N
Ceramic DIP	10210F

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₅	Data Inputs
Q ₀ – Q ₅	Data Outputs (OR)

10210

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER		10K ECL	UNIT
V _{EE}	Supply voltage	-8.0	v	
V _{IN}	Input voltage (VIN should never be more negative that	an V _{EE})	0 to V _{EE}	v
lo	Io Output source current		-50	mA
Τ _S	Storage temperature		-55 to +150	°C
		Ceramic package	+ 165	°C
IJ	Maximum junction temperature	Plastic package	+ 150	°C

DC OPERATING CONDITIONS

				IOK EC	L	UNIT
	PARAMETER		Min	Nom	Max	
V _{CC1} , V _{CC2}	Circuit ground		0	0	0	v
V _{EE}	Supply voltage (negative)			-5.2		- V
		T _A = -30°C			-890	mV
VIH	HIGH level input voltage	T _A = + 25°C			-810	mV
		T _A = +85°C			-700	mV
	HIGH level input threshold voltage	T _A = -30°C	-1205			mV
VIHT		T _A = + 25°C	-1105			mV
		T _A = +85°C	- 1035			mV
		T _A = -30°C			-1500	mV
VILT	LOW level input threshold voltage	T _A = + 25°C			-1475	mV
		T _A = +85°C			-1440	mV
		$T_A = -30^{\circ}C$	- 1890			mV
VIL	LOW level input voltage	T _A = + 25°C	- 1850			mV
		T _A = +85°C	- 1825			mV
TA	Operating ambient temperature		-30	+ 25	+ 85	°C

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

10210

6

	PARAMETE	ER	MIN	түр	МАХ	UNIT	TEST CONDITIONS ²
		$T_A = -30^{\circ}C$	-1060		-890	mV	
V _{OH}	HIGH level	$T_A = +25^{\circ}C$	-960		-810	mV	Apply Villious to all inputs
	output voltage	T _A = +85°C	-890		-700	mV	
		$T_A = -30^{\circ}C$	-1080			mV	
V _{OHT}	HIGH level output threshold voltage	T _A = + 25°C	-980			mV	Apply V_{IET} to each D_n input, one at a time, with V_{ILmin} applied to all other inputs.
	anoshola volago	T _A = +85°C	-910			mV	
		$T_A = -30^{\circ}C$			- 1655	mV	
VOLT	LOW level output threshold voltage	T _A = + 25°C			-1630	mV	Apply V_{ILT} to each D_n input; one at a time, with $V_{II min}$ applied to all other inputs.
	unconoid voitago	T _A = +85°C			- 1595	mV	
		$T_A = -30^{\circ}C$	-1890		- 1675	mV	
VOL	LOW level output voltage	T _A = + 25°C	- 1850		- 1650	mV	Apply V _{ILmin} to all inputs.
	output voltage	T _A = +85°C	-1825		- 1615	mV]
		T _A = -30°C			650	μA	
Iн	HIGH level	T _A = + 25°C			410	μA	Apply V _{IHmax} to each input under test, one at a time,
	input current	T _A = + 85°C			410	μA	with V_{1Lmin} applied to all other inputs.
		$T_A = -30^{\circ}C$	0.5			μΑ	
hι	LOW level	$T_A = +25^{\circ}C$	0.5			μA	Apply V _{ILIMIN} to each input under test, one at a time, with V _{ILIMIN} applied to all other inputs.
	input current	$T_A = +85^{\circ}C$	0.3			μΑ	with Vielmax applied to an other inputs.
		$T_A = -30^{\circ}C$			42	mA	
-I _{EE}	V _{EE} supply current	T _A = + 25°C		31	38	mA	
	current	T _A = +85°C			42	mA	
$rac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation			0.016		V/V	
$\frac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	T _A = + 25°C		0.250		V/V	
$\frac{\Delta V_{BB}}{\Delta V_{EE}}$	Reference bias voltage compensation			0.148		v/v	

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -6.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to +85°C, output loading with 50 Ω to -2.0V ±0.010V unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.
The specified limits shown in the DC Characteristics can be met orly after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 5.

Line Driver

AC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = +2.0V \pm 0.010V$, $V_{EE} = -3.2V \pm 0.010V$

PARAMETER	T _A = -	-30°C	TA	= + 25	5°C	T _A = -	+ 85°C	UNIT	TEST CONDITIONS
PARAMETER	Min	Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} Propagation delay t _{PHL} D _n to Q _n	1.0 1.0	2.6 2.6	1.0 1.0	1.5 1.5	2.5 2.5	1.0 1.0	2.8 2.8	ns ns	Figs. 6, 7, 8
t_{TLH} Transition time t_{THL} 20% to 80%, 80% to 20%	1.0 1.0	2.6 2.6	1.0 1.0	1.5 1.5	2.5 2.5	1.0 1.0	2.8 2.8	ns ns	Figs. 6, 7, 8

AC WAVEFORMS

6

Line Driver

TEST CIRCUITS AND WAVEFORMS

Signetics

ECL Products

DESCRIPTION

The 10211 is a high-speed dual 3-input/ 3-output NOR line driver intended to drive up to three transmission lines simultaneously. This feature makes the device particularly useful in clock distribution applications. The 10211 is a higher speed version of 10111. It is a pin-for-pin replacement for this type. All unused inputs can be left open due to integrated pull-down resistors, which avoid the need for a supply voltage.

10211 Line Driver

High-Speed Dual 3-Input/3-Output NOR Line Driver Product Specification

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
10211	1.5ns	30mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -5.2V$ $T_A = -30^{\circ}C$ to $+85^{\circ}C$
Plastic DIP	10210N
Ceramic DIP	10210F

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₅	Data Inputs
$\overline{Q}_0 - \overline{Q}_5$	Data Outputs

6

6–331

10211

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	· · · ·	10K ECL	UNIT
VEE	Supply voltage		-8.0	V
VIN	V _{IN} Input voltage (V _{IN} should never be more negative than V _{EE})		0 to V _{EE}	V
Io	Output source current		-50	mA
Τs	Storage temperature		-55 to +150	°C
.		Ceramic package	+ 165	°C
۱j	Maximum junction temperature	Plastic package	+ 150	°C

DC OPERATING CONDITIONS

				10K ECL			
	PARAMETER I V _{CC1} , V _{CC2} Circuit ground					UNIT	
V _{CC1} , V _{CC2}	Circuit ground	0	0	0	V		
VEE	Supply voltage (negative)			-5.2		v	
		$T_A = -30^{\circ}C$			-890	mV	
VIH	HIGH level input voltage	$T_A = +25^{\circ}C$			-810	mV	
		T _A = +85°C			-700	mV	
		T _A = -30°C	-1205			mV	
VIHT	HIGH level input threshold voltage	$T_A = +25^{\circ}C$	-1105			mV	
		$T_{A} = +85^{\circ}C$	-1035			mV	
	·	T _A = -30°C			-1500	mV	
VILT	LOW level input threshold voltage	T _A = + 25°C			-1475	mV	
		T _A = +85°C			-1440	mV	
		T _A = -30°C	-1890			mV	
VIL	LOW level input voltage	T _A = + 25°C	-1850			mV	
		T _A = +85°C	-1825			mV	
T _A	Operating ambient temperature		-30	+ 25	+ 85	°C	

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

6

Line Driver

	PARAMETE	R	MIN	түр	MAX	UNIT	TEST CONDITIONS ²
		T _A = -30°C	-1060		-890	mV	
V _{OH}	HIGH level	$T_A = +25^{\circ}C$	-960		-810	mV	Apply V _{ILmin} to all inputs.
	output voltage	T _A = +85°C	-890		-700	mV	
		T _A = -30°C	-1080			mV	
V _{OHT}	HIGH level output threshold voltage	T _A = + 25°C	-980			mV	Apply V_{ILT} to each input, one at a time, with V_{ILmin} applied to all other inputs.
	threshold voltage	T _A = +85°C	-910			mV	
		T _A = -30°C			- 1655	mV	
VOLT	LOW level output threshold voltage	$T_A = +25^{\circ}C$			- 1630	mV	Apply V_{IHT} to each input, one at a time, with V_{ILmin} applied to all other inputs.
	theshold voltage	T _A = +85°C			-1595	mV	
		$T_A = -30^{\circ}C$	-1890		-1675	mV	
V _{OL}	LOW level	$T_A = +25^{\circ}C$	-1850		-1650	mV	Apply V _{IHmax} to all inputs.
	output voltage	T _A = +85°C	-1825		-1615	mV	
		$T_A = -30^{\circ}C$			650	μA	
Чн	HIGH level input current	$T_A = +25^{\circ}C$			410	μA	Apply VIHmax to each input under test, one at a time
		$T_A = +85^{\circ}C$			410	μA	with V _{ILmin} applied to all other inputs.
		$T_A = -30^{\circ}C$	0.5			μA	
I _{IL}	LOW level	$T_A = +25^{\circ}C$	0.5			μA	Apply V_{ILmin} to each input under test, one at a time,
	input current	$T_A = +85^{\circ}C$	0.3			μA	with V _{IHmax} applied to all other inputs.
		$T_A = -30^{\circ}C$			42	mA	
-I _{EE}	V _{EE} supply	$T_A = +25^{\circ}C$		30	38	mA	
	current	T _A = +85°C			42	mA	-
$rac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation			0.016		V/V	
ΔV_{OL}	LOW level output voltage compensation	T _A = +25°C		0.250		V/V	
$\frac{\Delta V_{BB}}{\Delta V_{EE}}$	Reference bias voltage compensation			0.148		v/v	

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to $+85^{\circ}C$, output loading with 50 to -2.0V $\pm 0.010V$ unless otherwise specified 1,3

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

2. Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing. 3. The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 5.

Signetics ECL Products

Product Specification

10211

Line Driver

Figure	5.	Transfer	Characteristics
--------	----	----------	-----------------

AC ELECTRICAL CHARACTERISTICS	$V_{CC1} = V_{CC2} = +2.0V \pm 0.010V, V_{EE} = -3.2V \pm 0.010V$
-------------------------------	---

	T _A =	T _A = -30°C		T _A = + 25°C			T _A = + 85°C			
PARAMETER	Min	Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH} Propagation delay t _{PHL} D _n to Q _n	1.0 1.0	2.6 2.6	1.0 1.0	1.5 1.5	2.5 2.5	1.0 1.0	2.8 2.8	ns ns	Figs. 6, 7, 8	
t_{TLH} Transition time t_{THL} 20% to 80%, 80% to 20%	1.0 1.0	2.6 2.6	1.0 1.0	1.5 1.5	2.5 2.5	1.0 1.0	2.8 2.8	ns ns	Figs. 6, 7, 8	

AC WAVEFORMS

Product Specification

10211

6

Line Driver

TEST CIRCUITS AND WAVEFORMS

Figure 8. Input Pulse Definition

Signetics

ECL Products

DESCRIPTION

The 10216 is a high-speed triple differential amplifier for use in sensing differential signals over long lines. The Reference Bias Voltage (V_{BB}) is made available at pin 11 to make the device useful as a Schmitt Trigger or in other applications where a stable reference voltage is necessary. Active current sources provide the 10216 with excellent common-mode noise rejection. If any amplifier in a package is not used the input of that amplifier must be tied to V_{BB} (pin 11) to prevent upsetting the current source bias network.

10216 Line Receiver

Triple Differential OR/NOR Line Receiver (High-Speed) Product Specification

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
10216	1.5ns	20mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -5.2V$ $T_A = -30^{\circ}C \text{ to } +85^{\circ}C$
Plastic DIP	10216N
Ceramic DIP	10216F

PIN DESCRIPTION

PINS	DESCRIPTION	
\overline{D}_0 , \overline{D}_2 , \overline{D}_4 , D_1 , D_3 , D_5	Data Inputs	
$\overline{Q}_0, \ \overline{Q}_2, \ \overline{Q}_4$	Data Outputs (NOR)	
Q ₁ , Q ₃ , Q ₅	Data Outputs (OR)	
V _{BB}	Reference Bias Voltage Output	

January 30, 1986

10216

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER		10K ECL	UNIT
VEE	Supply voltage		-8.0	V
V _{IN}	Input voltage (VIN should never be more negative t	0 to V _{EE}	V	
lo	Output current		-50 at a suggest	mA
Ts	Storage temperature		-55 to +150	°C
т. Т	Marian	Ceramic package	+ 165	°C
IJ	Maximum junction temperature	+ 150	°C	

DC OPERATING CONDITIONS

	PARAMETER							
V _{CC1} , V _{CC2}	Circuit ground	0	0	0	V			
VEE	Supply voltage (negative)			-5.2		V		
		$T_A = -30^{\circ}C$			-890	m٧		
VIH	HIGH level input voltage	T _A = + 25°C			-810	m\		
		T _A = +85°C			-700	m۱		
		T _A = -30°C	-1205			m\		
VIHT	HIGH level input threshold voltage	T _A = + 25°C	-1105		1.4.1.4.1.1.1	m١		
		T _A = +85°C	-1035			۳ı		
		T _A = -30°C			-1500	m۱		
VILT	LOW level input threshold voltage	T _A = + 25°C			-1475	۳۱		
		T _A = +85°C			-1440	m۱		
		T _A = -30°C	-1890			m۱		
VIL	LOW level input voltage	T _A = + 25°C	-1850			m		
		T _A = +85°C	-1825			۳ı		
TA	Operating ambient temperature	••••••••••••••••••••••••••••••••••••••	-30	+ 25	+ 85	°C		

NOTE: When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

DC OPERATING CONDITIONS FOR COMMON-MODE/REJECTION TEST $v_{CC1} = v_{CC2} = GND$, $v_{EE} = -5.20 \pm 0.010V$

				10K EC	L	
	PARAMETER	Min	Nom	Max	UNIT	
- ·		T _A = -30°C			+110	mV
VIHH	V _{IHmax} + 1.0V	T _A = + 25°C			+ 190	mV
		T _A = +85°C			+ 300	mV
		T _A = -30°C			-1890	mV
VIHL	V _{IHmax} – 1.0V	$T_A = +25^{\circ}C$			-1810	mV
		T _A = +85°C			-1700	mV
		T _A = -30°C	-890			mV
VILH	V _{ILmin} + 1.0V	T _A = + 25°C	-850			mV
		T _A = +85°C	-825			mV
		T _A = -30°C	-2890			mV
VILL	V _{ILmin} – 1.0V	T _A = + 25°C	-2850			mV
		T _A = +85°C	-2825			mV

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

10216

PARAMETER				ТҮР	MAX	UNIT	
		MIN	111				
		T _A = -30°C	-1060		-890	mV	For Q_n outputs, apply V_{ILmin} to each inverting input, one at a time, with V_{BB} applied to all non-inverting inputs and with V_{IHmax} applied to all other inverting inputs.
V _{OH}	HIGH level output voltage	T _A = + 25°C	-960		-810	mV	For Ω_n outputs, apply V _{IHmax} to each inverting input one at a time, with V _{ILmin} applied to all other inverting
		T _A = +85°C	-890		-700	mV	inputs and V_{BB} applied to all non-inverting inputs. (Refer to Fig. 8)
		T _A = -30°C	-1080			mV	For Q_n outputs, apply V_{ILT} to each inverting input, one at a time, with V_{BB} applied to all non-inverting inputs
V _{OHT}	HIGH level output threshold voltage	T _A = +25°C	-980			mV	and with V _{IHmax} applied to all other inverting inputs. For \overline{Q}_n outputs, apply V _{IHT} to each inverting input, one at a time, with V _{ILmin} applied to all other inverting inputs
		T _A = +85°C	-910			mV	and V_{BB} applied to all non-inverting inputs. (Refer to Fig. 8)
		T _A = -30°C			-1655	mV	For Q_n outputs, apply V_{IHT} to each inverting input, one at a time, with V_{BB} applied to all non-inverting inputs
VOLT	LOW level output threshold voltage	T _A = +25°C			-1630	mV	and V _{ILmin} applied to all other inverting inputs. For \overline{Q}_n outputs, apply V _{ILT} to each inverting input, one at a time, with V _{BB} applied to all non-inverting inputs
		T _A = +85°C			-1595	mV	and V _{IHmax} applied to all other inverting inputs. (Refer to Fig. 8)
		T _A = -30°C	-1890		-1675	mV	For Q_n outputs, apply V_{IHmax} to each inverting input, one at a time, with V_{BB} applied to all non-inverting
V _{OL}	LOW level output voltage	T _A = +25°C	-1850		-1650	mV	inputs and V _{ILmin} applied to all other inverting inputs. For $\overline{\Omega}_n$ outputs, apply V _{ILmin} to each inverting input, one at a time, with V _{BB} applied to all non-inverting
		T _A = +85°C	-1825		-1615	mV	and V_{IHmax} applied to all other inverting inputs. (Refer to Fig. 8)
		T _A = -30°C			180	μA	Apply V_{IHmax} to each inverting input under test one at a time, with V_{ILmin} applied to all other inverting inputs and
Чн	HIGH level input current	T _A = +25°C			115	μA	V_{BB} applied to all non-inverting inputs. Apply V_{IHmax} to each non-inverting input under test, one at a time, with V_{ILmin} applied to all other non-inverting
		T _A = +85°C			115	μA	inputs and V_{BB} applied to all inverting inputs. (Refer to Fig. 8)
		T _A = -30°C			27	mA	
-I _{EE}	V _{EE} supply	T _A = +25°C		20	25	mA	Apply V _{ILmin} to all inverting inputs.
	current	T _A = +85°C			27	mA	Apply V _{BB} to all non-inverting inputs.
$\frac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation	· · · · · · · · · · · · · · · · · · ·		0.016		v/v	
$\frac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	T _A = +25°C		0.250		V/V	
$rac{\Delta V_{BB}}{\Delta V_{EE}}$	Reference bias voltage compensation			0.148		V/V	

DC ELECTRICAL CHARACTERISTICS V_{CC1} = V_{CC2} = GND, V_{EE} = $-5.2V \pm 0.010V$, T_A = $-30^{\circ}C$ to $+85^{\circ}C$, output loading with 50Ω to $-2.0V \pm 0.010V$ unless otherwise specified^{1,3}

	PARAMETER			түр	MAX	UNIT	TEST CONDITIONS ²
		T _A = -30°C	-1420		-1280	mV	
VBB	Reference	T _A = +25°C	-1350	-1290	-1230	mV	All inverting or all non-inverting input pins are
	voltage	T _A = +85°C	-1295		-1150	mV	tied to the V_{BB} pin during measurement.
	HIGH level	T _A = -30°C	-1060		-890	mV	For \overline{Q}_n outputs, apply V_{IHH} to inverting inputs and V_{ILH} to
V _{OH}	output voltage for common mode	T _A = +25°C	-960		-810	mV	non-inverting inputs. For Q_n outputs, apply V_{III} to inverting inputs and V_{IHI} to
	rejection test	T _A = +85°C	-890		-700	mV	non-inverting inputs.
	LOW level	T _A = -30°C	-1890		-1675	mV	For \overline{Q}_n outputs, apply V_{ILH} to inverting inputs and V_{IHH} to
VOL	output voltage for common mode	$T_A = +25^{\circ}C$	-1850		-1650	mV	non-inverting inputs. For Q_n outputs, apply V_{IHL} to inverting inputs and V_{ILL}
	rejection test	T _A = +85°C	-1825		-1615	mV	to non-inverting inputs.
		T _A = -30°C			1.5	μA	Apply V _{FF} to each inverting input under test, one at a time,
-I _{CBO}	Input leakage current	T _A = +25°C			1.0	μA	with V_{ILmin} applied to all other inverting inputs and V_{BB}
		$T_A = +85^{\circ}C$			1.0	μA	applied to all non-inverting inputs. (Refer to Fig. 8)

DC ELECTRICAL CHARACTERISTICS (Continued)

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.
The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 5.

AC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = +2.0V \pm 0.010V$, $V_{EE} = -3.2V \pm 0.010V$

PARAMETER	$T_A = -30^{\circ}C$		T _A = + 25°C			T _A = +85°C		UNIT	TEST CONDITIONS
	Min	Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} Propagation delay	1.0	2.6	1.0	1.5	2.5	1.0	2.8	ns	Figs. 6, 7, 9
t _{PHL} D _n , D _n to Q _n , Q _n	1.0	2.6	1.0	1.5	2.5	1.0	2.8	ns	
t _{TLH} Transition time	1.0	2.6	1.0	1.5	2.5	1.0	2.8	ns	Figs. 6, 7, 9
t _{THL} 20% to 80%, 80% to 20%	1.0	2.6	1.0	1.5	2.5	1.0	2.8	ns	

AC WAVEFORMS

Line Receiver

TEST CIRCUITS AND WAVEFORMS

10216

January 30, 1986
ECL Products

DESCRIPTION

The 10231 is a High-Speed Dual D-type Master-Slave Flip-Flop. It contains Asynchronous Set (S) and Reset (R) which override Clock (CP) and Clock Enable (\overline{CE}_n) inputs. Each flip-flop may be clocked separately by using the enable inputs for the clocking function and holding the Clock in the LOW state. For the two flip-flops to be clocked, the Clock must be used with the Clock Enable inputs held in the LOW state.

The outputs of the 10231 change state with the positive transition of the Clock. Due to the master-slave structure of the device, a change in the information present at the data (D) input will not modify the output information at any other time. All unused inputs must be tied to V_{IL} or V_{EE}.

10231 Flip-Flop

Dual D-Type Master-Slave Flip-Flop (High-Speed) Product Specification

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
10231	2.0ns	52mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -5.2V$ $T_A = -30^{\circ}C$ to $+85^{\circ}C$
Plastic DIP	10231N
Ceramic DIP	10231F

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ , D ₁	Data Inputs
CP	Clock Input
$\overline{CE}_0, \overline{CE}_1$	Clock Enable Inputs
S ₀ , S ₁	Set Inputs
R ₀ , R ₁	Reset Inputs
$Q_0, Q_1, \overline{Q}_0, \overline{Q}_1$	Data Outputs

PIN CONFIGURATION

V_{CC2} 1

Q0 2

ã₀ 3

R0 4

S₀ 5 CE₀ 6

D₀ 7

VEE 8

LOGIC SYMBOL

853-0690 82178

FUNCTION TABLES

SYNCHRONOUS OPERATION

*Conditions for CP and \overline{CE} may be interchanged. In this table \overline{CE} is static, while for CP and H represent a transition from LOW to HIGH between t_n and t_{n+1} . **R and S = LOW.

ASYNCHRONOUS OPERATION

JTS	OUTPUT
S	Q _{n + 1}
L	Qn
н	н
L	L
н	N
	S L H L

Positive Logic: H = HIGH state = 1

H = HIGH state = 1L = LOW state = 0

X = Don't Care

N = Not allowed

10231

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	10K ECL	UNIT	
V _{EE}	Supply voltage		-8.0	V
V _{IN}	Input voltage (VIN should never be more negative th	an V _{EE})	0 to V _{EE}	V
lo	Output source current		-50	mA
Τ _S	Storage temperature		-55 to +150	°C
Ŧ		Ceramic package	+ 165	°C
IJ.	Maximum junction temperature	Plastic package	+ 150	°C

DC OPERATING CONDITIONS

	PARAMETER					
V _{CC1} , V _{CC2}	Circuit ground	· · · ·				
VEE	Supply voltage (negative)			-5.2		V
		$T_A = -30^{\circ}C$			-890	mV
VIH	HIGH level input voltage	T _A = + 25°C			-810	mV
		T _A = +85°C			-700	mV
		$T_A = -30^{\circ}C$	-1205			mV
VIHT	HIGH level input threshold voltage	T _A = + 25°C	-1105			mV
		T _A = +85°C	-1035			mV
		$T_A = -30^{\circ}C$			-1500	mV
VILT	LOW level input threshold voltage	T _A = + 25°C			-1475	mV
		T _A = +85°C			-1440	mV
		$T_A = -30^{\circ}C$	-1890			mV
VIL	LOW level input voltage	T _A = + 25°C	-1850			mV
		T _A = +85°C	-1825			mV
T _A	Operating ambient temperature		-30	+ 25	+ 85	°C

NOTE:

When operating at V_{EE} other than specified voltage (-5.2V), the DC and AC Characteristics will vary slightly from specified values. (See table of DC Characteristics)

10231

6

	PA	RAMETER		MIN	түр	MAX	UNIT	TEST CONDITIONS ²
			$T_A = -30^{\circ}C$	-1060		-890	mV	For Q outputs, apply V _{IHmax} to S _n inputs with V _{ILmin} ap-
V _{OH}	HIGH lev output vo		T _A = + 25°C	-960		-810	mV	plied to all other inputs. For \overline{Q} outputs, apply V_{IHmax} to R_n
		T _A = +85°C	-890		-700	mV	inputs with V _{ILmin} applied to all other inputs.	
			T _A = -30°C	-1080			mV	For Q outputs, apply V_{IHT} to S _n inputs, with V_{ILmin} applied
V _{OHT}	HIGH lev threshold		$T_A = +25^{\circ}C$	-980			mV	to all other inputs. For \overline{Q} outputs, apply V_{IHT} to R_n inputs,
			T _A = +85°C	-910			mV	with V _{ILmin} applied to all other inputs.
	1014		$T_A = -30^{\circ}C$			-1655	mV	For Q outputs, apply V_{IHT} to R_n inputs, with V_{ILmin} applied
VOLT	LOW leve threshold		T _A = + 25°C			-1630	mV	to all other inputs. For \overline{Q} outputs, apply V_{IHT} to S_n inputs
			T _A = +85°C			-1595	mV	with V _{ILmin} applied to all other inputs.
			$T_A = -30^{\circ}C$	-1890		-1675	mV	For Q outputs, apply V_{IHmax} to R_n inputs, with V_{ILmin} ap-
VOL	LOW leve		$T_A = +25^{\circ}C$	- 1850		-1650	mV	plied to all other inputs. For \overline{Q} outputs, apply V_{IHmax} to S_n
	•		T _A = +85°C	- 1825		-1615	mV	inputs with V _{ILmin} applied to all other inputs.
		D 00	T _A = -30°C			350	μA	
		D _n , CE _n inputs	T _A = +25°C			220	μA	
	HIGH		T _A = +85°C			220	μA	Apply VIHmax to each input under test, one at a time,
			$T_A = -30^{\circ}C$			650	μA	with VILmin applied to all other inputs.
Чн	level input	R _n , S _n inputs	T _A = +25°C			410	μA	
	current	•	T _A = +85°C			410	μA	
		00	$T_A = -30^{\circ}C$			460	μA	
		CP input	T _A = + 25°C			290	μA	Apply V _{IHmax} to CP input with V _{ILmin} applied to all other inputs.
		•	T _A = +85°C			290	μA	
			T _A = -30°C	0.5			μA	
Ι _{ΙL}	LOW leve		T _A = +25°C	0.5			μA	Apply V_{ILmin} to each input under test, one at a time, with V_{IHmax} applied to all other inputs.
	•		T _A = +85°C	0.3			μA	
			$T_A = -30^{\circ}C$			72	mA	
-I _{EE}	V _{EE} supp current	iy	T _A = +25°C		52	65	mA	
			$T_A = +85^{\circ}C$			72	mA	
$\frac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH lev output vo compensa	Itage			0.016		V/V	
$ \frac{\Delta V_{OL}}{\Delta V_{EE}} \begin{array}{c} \text{LOW level} \\ \text{output voltage} \\ \text{compensation} \end{array} $		T _A = +25°C		0.250		`v/v		
$ \frac{\Delta V_{BB}}{\Delta V_{EE}} \ \ \begin{array}{c} \text{Reference bias} \\ \text{voltage} \\ \text{compensation} \end{array} $				0.148		V/V		

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} =$ GND, $V_{EE} = -5.2V \pm 0.010V$, $T_A = -30^{\circ}C$ to $+85^{\circ}C$, output loading with 50Ω to $-2.0V \pm 0.010V$ unless otherwise specified.^{1,3}

NOTES:

1. The specified limits represent the 'worst case' value for the parameter. Since these 'worst case' values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

2. Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing,

3. The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 5.

Signetics ECL Products

Product Specification

10231

Flip-Flop

AC ELECTRICAL CHARACTERISTICS	$V_{CC1} = V_{CC2} = +2.0V \pm 0.010V, V_{EE} = -3.2V \pm 0.010V$
-------------------------------	---

DADAMETED		$T_A = -30^{\circ}C$		T _A = + 25°C		T _A = + 85°C					
1	PARAMETER		Max	Min	Тур	Max	Min	Max	UNIT	TEST CONDITIONS	
f _{MAX}	Maximum clock frequency	200		200	225		200		MHz	Figs. 7, 10, 11	
t _{PLH} t _{PHL}	Propagation delay CP to Q _n , Q _n	1.5 1.5	3.4 3.4	1.5 1.5	2.0 2.0	3.3 3.3	1.6 1.6	3.7 3.7	ns ns		
t _{PLH} t _{PHL}	Propagation delay S_n , R_n to Q_n , \overline{Q}_n	1.1 1.1	3.4 3.4	1.1 1.1	2.0 2.0	3.3 3.3	1.2 1.2	3.7 3.7	ns ns	Figs. 6, 9, 11	
ts	Setup time Dn to CP	1.5		1.0			1.5		ns	Fire 0.0.11	
t _h	Hold time CP to Dn	0.9		0.75			0.9		ns	Figs. 8, 9, 11	
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.9 0.9	3.3 3.3	1.0 1.0	1.3 1.3	3.1 3.1	1.0 1.0	3.6 3.6	ns ns	Figs. 6, 9, 11	

January 30, 1986

AC WAVEFORMS

10231

TEST CIRCUITS AND WAVEFORMS

NOTES:

- $V_{CC1} = V_{CC2} = + 2V \pm 0.010V, V_{EE} = -3.2V \pm 0.010V.$ 1. 2
- Decoupling $0.1\mu F$ and $25\mu F$ from GND to V_{CC}, $0.01\mu F$ and $25\mu F$ from GND to V_{EE}. (0.01 and $0.1\mu F$ capacitors should be NPO Ceramic or MLC type). Decoupling capacitors should be placed as close as physically possible to the DUT and lead length should be kept to less than 1/4 inch (6mm).
- All unused inputs should be connected to either HIGH or LOW state consistent with the LOGIC 3 function required.
- 4. All unused outputs are loaded with 50 Ω to GND. 4. All brussed outputs are loaded with 50x2 to 4ND.
 5. L₁ and L₂ are equal length 50Ω impedance lines. L₃, the distance from the DUT pin to the junction of the cable from the Pulse Generator and the cable to the
- Scope, should not exceed 1/4 inch (6mm). 6. $R_T = 50\Omega$ terminator internal to Scope.
- 7. The unmatched wire stub between coaxial cable and pins under test must be less than 1/4 inch (6mm) long for proper test. $C_L = Fixture$ and stray capacitance $\leq 3pF$.
- 9. Any unterminated stubs connected anywhere along the transmission line between the Pulse Generator
- and the DUT or between the DUT and the Scope should not exceed 1/4 inch (6mm) in length (refer to section on AC setup procedure). 10. All 50Ω resistors should have tolerance of ± 1% or
- better

NOTES: 1. $V_{CC1} = V_{CC2} = + 2V \pm 0.010V$, $V_{EE} = -3.2V \pm 0.010V$. +2.0 V ± 0.010 V Decoupling 0.1μF and 25μF from GND to V_{CC}, 0.01μF and 25μF from GND to V_{EE}. (0.01 and 0.1μF PULSE 25µF 0.1 GENERATOR capacitors should be NPO Ceramic or MLC type). Decoupling capacitors should be N=0 certaine of MEC (ype). Decoupling capacitors should be placed as close as physically possible to the DUT and lead length should be kept to less than 1/4 inch (6mm). All unused inputs should be connected to either HIGH or LOW state consistent with the LOGIC З. V_{CC1} V_{CC2} SCOPE SCOPE CP Q CHANNEL B CHANNEL A function required All unused outputs are loaded with 50 Ω to GND. ā, s, 5. L₁ and L₂ are equal length 50Ω impedance lines. L₃, the distance from the DUT pin to the junction of the 50Q 15 CE. Q. cable from the Pulse Generator and the cable to the 50 S Scope, should not exceed 1/4 inch (6mm). ā R, 6. $R_T = 50\Omega$ terminator internal to Scope. 7. The unmatched wire stub between coaxial cable and V_{IHmax} OF 12 S. The unmatched wire stub between coaval cable and pins under test must be less than 1/4 inch (6mm) long for proper test.
 C₁ = Fixture and stray capacitance ≤ 3pF.
 Any unterminated stubs connected anywhere along the transmission line between the Putse Generator and the DUT or between the DUT and the Scope checkled neared 1/4 inch (6mm) in costh (regrt incent) for the transmission line between the Put and the scope VILmir 10 D, 11 ĈĒ 13 should not exceed 1/4 inch (6mm) in length (refer to section on AC setup procedure). D. 10. All 50 Ω resistors should have tolerance of $\pm\,$ 1% or better. • 500 0.01µF 25µ -32V + 0.010VTC05440S

Figure 10. AC Test Circuit for 10231 (Clock Frequency)

10231

6

ECL Products

Section 7 100K Series Data Sheets

INDEX

100101	Triple 5-Input OR/NOR Gate	7-3
100102	Quint 2-Input OR/NOR Gate With Common Enable	7-9
100107	Quint Exclusive-OR/Exclusive-NOR Gate With	
	Compare Output	7-15
100112	Quad Driver	7-21
100113	Quad Driver (High-Speed)	7-27
100114	Quint Differential Line Receiver	7-33
100117	Triple 1-2-2-Input OR-AND/OR-AND-INVERT Gate	7-40
100118	Quint 2-4-4-5-Input OR-AND Gate	7-46
100122	9-Gate Buffer	7-52
100123	Bus Driver	7-58
100124	Hex TTL-to-ECL Translator	7-64
100125	Hex ECL-to-TTL Translator	7-70
100126	9-Bit Backplane Driver	7-76
100131	Triple D-Type Master-Slave Flip-Flop	7-82
100136	4-Stage Counter/Shift Register	7-93
100141	8-Bit Shift Register	7-105
100145	16 × 4 Read-While-Write Register File	7-114
100150	Hex D-Type Latch	7-124
100151	Hex D-Type Master-Slave Flip-Flop	7-132
100155	Quad 2-Way Multiplexer/Latch	7-142
100158	8-Bit Shift Matrix	7-151
100160	Dual 9-Bit Parity Generator/8-Bit Comparator	7-158
100163	Dual 8-Input Multiplexer	7-165
100164	16-Input Multiplexer	7-172
100165	Universal Priority Encoder	7-179
100166	9-Bit Comparator	7-187
100170	Universal Demultiplexer/Decoder	7-194
100171	Triple 4-Input Multiplexer	7-202
100175	100K-to-10K Translator	7-209
100179	Carry Look-Ahead Generator	7-216
100180	High-Speed 6-Bit Adder	7-223
100181	4-Bit Binary/BCD ALU	7-230
100231	Triple D-Type Master-Slave Flip-Flop (High-Speed Version of	
	100131)	7-241
100255	Quint Bidirectional 100 K-to-TTL Translator	7-252

100101 Gate

Triple 5-Input OR/NOR Gate Product Specification

ECL Products

DESCRIPTION

100101 is a triple 5-input OR/NOR gate. Each gate has an OR and a NOR output.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
100101	0.75ns	27mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -4.2V$ to -4.8V $T_A = 0^{\circ}C$ to +85°C
Ceramic DIP	100101F
Ceramic Flat Pack	100101Y

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₁₄	Data Inputs
Q ₀ – Q ₂	Data Outputs (OR)
$\overline{Q}_0 - \overline{Q}_2$	Data Outputs (NOR)

LOGIC SYMBOL

January 30, 1986

7-3

853-0604 82178

7

100101

FUNCTION TABLE (One Gate)

		OUT	PUTS			
Do	D ₁	D ₂	D ₃	D ₄	Q ₀	Q ₀
L	L	L	L	L	н	L
н	X	x	X	X	L	н
х	н	x	X	x	L	н
X	X	н	X	X	L	Н
х	X	x	н	x	L	н
Х	x	х	x	н	L	· • H • •

Positive Logic:

H = HIGH state (more positive voltage level) = 1

L = LOW state (less positive voltage) = 0

X = Don't Care

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	100K ECL	UNIT
V _{EE}	Supply voltage (V _{CC1} = V _{CC2} = GND)	-7.0 to 0	V
V _{IN}	Input voltage (V _{IN} should never be more negative than V _{EE})	V _{EE} to +0.5	V
lo	Output current	-55	mA
T _S	Storage temperature	-65 to +150	°C
Тj	Maximum junction temperature	+ 150	°C

DC OPERATING CONDITIONS

	_	RAMETER			100K ECL			
	P/	Min	Nom	Max	UNIT			
V _{CC1} , V _{CC2}	Circuit ground			0	0	0	V	
V _{EE}	Supply voltage (negative	e)		-4.2	-4.5	-4.8	v	
V _{EE}	Supply voltage (negative	e) when operating with 10K	ECL family			-5.7	V	
			V _{EE} = -4.2V	-1150		1	uro (Potrice	
VIH	HIGH level		V _{EE} = -4.5V		1	-880	mV	
			V _{EE} = -4.8V	1165				
			$V_{EE} = -4.2V$	-1150			mV	
VIHT	HIGH level input threshold voltage	$V_{CC1} = V_{CC2} = GND$	V _{EE} = -4.5V					
	theshold voltage		$V_{EE} = -4.8V$	1165			mV	
				V _{EE} = -4.2V	1			
VILT	LOW level input threshold voltage	$T_A = 0^{\circ}C \text{ to } + 85^{\circ}C$	V _{EE} = -4.5V	1		-1475	mV	
	theshold voltage		$V_{EE} = -4.8V$			-1490	mV	
			$V_{EE} = -4.2V$					
V _{IL}	LOW level input voltage		$V_{EE} = -4.5V$	- 1810		-1475	mV	
input Vonage		V _{EE} = -4.8V		1		-1490		
TA	Operating ambient temperature				+ 25	+ 85	°C	

NOTE:

When operating at other than specified voltages (-4.2V, -4.5V, -4.8V) DC & AC Characteristics will vary slightly from specified values.

100101

	PARAMETER		MIN	ТҮР	MAX	UNIT	TEST	CONDITIONS ²		
		$V_{EE} = -4.2V$	-1025		-870	mV	V _{IN} = V _{IHmax}			
V _{OH}	HIGH level output voltage	V _{EE} = -4.5V	-1025	-955	-880	mV	or			
	output voltage	V _{EE} = -4.8V	-1035		-880	mV	$V_{IN} = V_{ILmin}$			
		V _{EE} = -4.2V	-1035			mV	V _{IN} = V _{IHmin}			
VOHT	HIGH level output threshold voltage	V _{EE} = -4.5V	-1035			mV	or			
	anoonola voltago	$V_{EE} = -4.8V$	- 1045			mV	V _{IN} = V _{ILmax}	Loading with		
		V _{EE} = -4.2V			-1590	mV	V _{IN} = V _{IHmin}	50Ω to -2.0V ±0.010V		
V _{OLT}	LOW level output threshold voltage	V _{EE} = -4.5V			-1610	mV	or			
		$V_{EE} = -4.8V$			-1610	mV	V _{IN} = V _{ILmax}			
		V _{EE} = -4.2V	-1810		-1600	mV	V _{IN} = V _{IHmax}			
VOL	LOW level output voltage	V _{EE} = -4.5V	-1810	-1705	-1620	mV	or			
	calpar ronage	$V_{EE} = -4.8V$	-1830		-1620	mV	V _{IN} = V _{ILmin}			
iн	HIGH level input c	urrent			350	μA	$V_{IN} = V_{IHmax}$			
l _{IL}	LOW level input cu	irrent	0.5			μA	V _{IN} = V _{ILmin}			
-I _{EE}	VEE supply current		18	27	38	mA	Inputs open			
$\frac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation	V _{EE} = -4.2V			0.025	v/v				
$\frac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	$T_A = +25^{\circ}C$			0.05	v/v				

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$, $T_A = 0^{\circ}C$ to $+85^{\circ}C$ unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

2. Conditions for testing shown in the tables are not necessarily worst case. For worst case testing guidelines, refer to Section 3 Testing, DC testing.

3. The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 3.

Gate

Figure 3. Transfer Characteristics

AC ELECTRICAL CHARACTERISTICS

Ceramic DIP V_{CC1} = V_{CC2} = GND, V_{EE} = $-4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$

			T _A = 0°C		T _A = + 25°C		T _A = + 85°C		UNIT	
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH} t _{PHL}	Propagation delay D _n to Q _n , Q _n	0.50 0.50	1.15 1.15	0.50 0.50	1.15 1.15	0.55 0.55	1.30 1.30	ns	Figs. 4, 5, 6	
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.20 1.20	0.45 0.45	1.10 1.10	0.45 0.45	1.10 1.10	ns		

Ceramic DIP $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 5\%$

	DADAMETED		T _A = 0°C		T _A = -	T _A = + 25°C		+ 85°C	115.07	TEST CONDITIONS
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH} t _{PHL}	Propagation delay D _n to Q _n , Q _n	0.50 0.50	1.15 1.15	0.50 0.50	1.15 1.15	0.55 0.55	1.30 1.30	ns	Figs. 4, 5, 6	
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.20 1.20	0.45 0.45	1.10 1.10	0.45 0.45	1.10 1.10	ns		

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$

		T _A =	= 0°C	T _A = ·	+ 25°C	T _A = ·	+ 85°C		TEAT CONDITIONS	
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH} t _{PHL}	Propagation delay D _n to Q _n , Q _n	0.50 0.50	0.95 0.95	0.50 0.50	0.95 0.95	0.55 0.55	1.10 [:] 1.10	ns	Figs. 4, 5, 6	
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.20 1.20	0.45 0.45	1.10 1.10	0.45 0.45	1.10 1.10	ns		

Flat Pack V_{CC1} = V_{CC2} = GND, V_{EE} = $-5.2V~\pm5\%$

			T _A = 0°C		T _A = -	T _A = + 25°C		+ 85°C		
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH} t _{PHL}	Propagation delay D _n to Q _n , Q _n	0.50 0.50	0.95 0.95	0.50 0.50	0.95 0.95	0.55 0.55	1.10 1.10	ns	Figs. 4, 5, 6	
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.20 1.20	0.45 0.45	1.10 1.10	0.45 0.45	1.10 1.10	ns		

100101

AC WAVEFORMS

TEST CIRCUITS AND WAVEFORMS

100101

100102 Gate

Quint 2-Input OR-NOR Gate With Common Enable Product Specification

ECL Products

DESCRIPTION

The 100102 has five 3-input gates. One input is a common enable to all five gates.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
100102	0.75ns	55mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -4.2V$ to -4.8V $T_A = 0^{\circ}C$ to +85°C
Ceramic DIP	100102F
Ceramic Flat Pack	100102Y

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₉	Data Inputs
Ē	Enable Input
Q ₀ – Q ₄	Data Outputs (OR)
$\overline{Q}_0 - \overline{Q}_4$	Data Outputs (NOR)

PIN CONFIGURATION Dg 1 24 Da Q4 [2 23 D7 ā4 3 22 De ā, 4 21 D5 Q3 5 20 04 Vcci 6 CERAMIC 19 E Vcc2 7 18 VEE Q2 8 17 D3 Q2 9 16 D2 Q1 10 15 D1 14 Do ā1 11 Q₀ 12 D₅ D₄ Ē V_{EE} D₃ D₂ 24 23 22 21 20 19 18 D1 D6 1 D7 2 17 00 D8 3 16 Qo FLAT PACK D9 4 15 ā, Q4 5 14 Q1 **ā**₄ 6 13 Q1 7 8 9 10 11 12

LOGIC SYMBOL

Q3 VCC1 VCC2 02 Q2

CD09251S

TOP VIEW

100102

FUNCTION TABLE (One Gate)

	INPUTS	OUT	PUTS	
Do	D ₁	Ē	Q ₀	$\overline{\mathbf{Q}}_{0}$
Х	X	- H - H	н	L. :
х	н	X	Γ, H	L
H	X	X	H	L
L	L	L	L L	н

Positive Logic:

H = HIGH state (more positive voltage) = 1

L = LOW state (less positive voltage) = 0

X = Don't Care

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	100K ECL	UNIT
V _{EE}	Supply voltage (V _{CC1} = V _{CC2} = GND)	-7.0 to 0	V
V _{IN}	Input voltage (V _{IN} should never be more negative than V _{EE})	V _{EE} to +0.5	V
lo	Output current	-55	mA
Τs	Storage temperature	-65 to +150	°C
Тj	Maximum junction temperature	+ 150	°C

DC OPERATING CONDITIONS

	DADAMETED						
PARAMETER				Min	Nom	Max	UNIT
V _{CC1} , V _{CC2}	Circuit ground			0	0	0	v
V _{EE}	Supply voltage (negative)			-4.2	-4.5	-4.8	v
V _{EE}	Supply voltage (negative)	when operating with 10K I	ECL family			-5.7	V
			$V_{EE} = -4.2V$	-1150			1
VIH	HIGH level input voltage		$V_{EE} = -4.5V$	4405	1	-880	mV
	input voltage		$V_{EE} = -4.8V$	1165			
	······································		$V_{EE} = -4.2V$	-1150			mV
VIHT	HIGH level input threshold voltage	$V_{CC1} = V_{CC2} = GND$	$V_{EE} = -4.5V$				
	theshold voltage		$V_{EE} = -4.8V$	- 1165			mV
			$V_{EE} = -4.2V$				
VILT	LOW level input threshold voltage	$T_A = 0^{\circ}C$ to $+85^{\circ}C$	$V_{EE} = -4.5V$			-1475	mV
	uneshold voltage		$V_{EE} = -4.8V$			-1490	mV
			$V_{EE} = -4.2V$	1			
VIL	LOW level input voltage		V _{EE} = -4.5V	-1810		-1475	mV
	input voitage		$V_{EE} = -4.8V$	1		-1490	
T _A	Operating ambient tempe	rature	i	0	+ 25	+ 85	°C

NOTE:

When operating at other than specified voltages (-4.2V, -4.5V, -4.8V) DC & AC Characteristics will vary slightly from specified values.

Gate

unless otherwise specified1, 3 PARAMETER MIN TYP MAX UNIT **TEST CONDITIONS²** -870 $V_{EE} = -4.2V$ -1025 m٧ $V_{IN} = V_{IHmax}$ HIGH level -1025 VOH $V_{EE} = -4.5V$ -955 -880 m٧ or output voltage $V_{IN} = V_{ILmin}$ $V_{EE} = -4.8V$ -1035 -880 m٧ $V_{EE} = -4.2V$ - 1035 m٧ $V_{IN} = V_{IHmin}$ HIGH level output VOHT $V_{EE} = -4.5V$ -1035 m٧ or threshold voltage $V_{IN} = V_{ILmax}$ $V_{EE} = -4.8V$ -1045 m٧ Loading with $V_{EE} = -4.2V$ -1590 m٧ 50Ω to $-2.0V \pm 0.010V$ $V_{IN} = V_{IHmin}$ LOW level output $V_{EE} = -4.5V$ VOLT -1610 m٧ or threshold voltage $V_{IN} = V_{ILmax}$ $V_{EE} = -4.8V$ -1610 m٧ -1810 -1600 $V_{EE} = -4.2V$ m٧ $V_{IN} = V_{IHmax}$ LOW level VOL $V_{EE} = -4.5V$ -1810 -1705 -1620 m٧ or output voltage $V_{IN} = V_{ILmin}$ $V_{EE} = -4.8V$ -1830 -1620 m٧ D_n inputs 350 HIGH level μA $V_{IN} = V_{IHmax}$ Iн input current E input 300 μA LOW level input current $V_{IN} = V_{ILmin}$ ΙL 0.5 μA -IFF V_{FF} supply current 38 55 80 mΑ Inputs open HIGH level ΔV_{OH} 0.025 V/V output voltage $\overline{\Delta V_{EE}}$ compensation $V_{EE} = -4.2V$ LOW level $T_{A}^{-} = +25^{\circ}C$ ΔV_{OL} output voltage v/v 0.05 $\overline{\Delta V_{EE}}$ compensation

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$, $T_A = 0^{\circ}C$ to $+85^{\circ}C$

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

2. Conditions for testing shown in the tables are not necessarily worst case. For worst case testing guidelines, refer to Section 3 Testing, DC testing. З. The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 3.

Gate

AC ELECTRICAL CHARACTERISTICS

Ceramic DIP $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$

			$T_{A} = 0^{\circ}C$: 0°C	$T_A = +25^{\circ}C$ $T_A = +85^{\circ}C$		A = +85°C		TEAT CONDITIONS
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH}	Propagation delay	0.45	1.35	0.45	1.15	0.45	1.40	ns		
t _{PHL}	D _n to Q _n	0.45	1.35	0.45	1.15	0.45	1.40	ns		
t _{PLH}	Propagation delay	0.90	2.15	0.95	2.15	0.95	2.20	ns	Figs. 4, 5, 6	
t _{PHL}	E to Q _n	0.90	2.15	0.95	2.15	0.95	2.20	ns		
t _{TLH}	Transition time	0.45	1.20	0.45	1.10	0.45	1.10	ns		
t _{THL}	20% to 80%, 80% to 20%	0.45	1.20	0.45	1.10	0.45	1.10	ns		

Ceramic DIP V_{CC1} = V_{CC2} = GND, V_{EE} = -5.2V $\pm\,5\%$

	DADAMETED	T _A =	: 0°C	T _A = -	+ 25°C	T _A = -	+ 85°C		TEAT CONDITIONS
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH}	Propagation delay	0.45	1.35	0.45	1.15	0.45	1.40	ns	
t _{PHL}	D _n to Q _n	0.45	1.35	0.45	1.15	0.45	1.40	ns	
t _{PLH}	Propagation delay	0.90	2.15	0.95	2.15	0.95	2.20	ns	Figs. 4, 5, 6
t _{PHL}	E to Q _n	0.90	2.15	0.95	2.15	0.95	2.20	ns	
t _{TLH}	Transition time	0.45	1.20	0.45	1.10	0.45	1.10	ns	
t _{THL}	20% to 80%, 80% to 20%	0.45	1.20	0.45	1.10	0.45	1.10	ns	

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$

		T _A = 0°C		T _A = + 25°C		T _A = + 85°C			TEAT CONDITIONS
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} t _{PHL}	Propagation delay D _n to Q _n	0.45 0.45	1.15 1.15	0.45 0.45	0.95 0.95	0.45 0.45	1.20 1.20	ns ns	
t _{PLH} t _{PHL}	Propagation delay	0.90 0.90	1.95 1.95	0.95 0.95	1.95 1.95	0.95 0.95	2.00 2.00	ns ns	Figs. 4, 5, 6
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.20 1.20	0.45 0.45	1.10 1.10	0.45 0.45	1.10 1.10	ns ns	

100102

7

AC ELECTRICAL CHARACTERISTICS

Flat Pack $V_{CC1} = V_{CC2} = GND, \ V_{EE} = -5.2V \ \pm 5\%$

	DADAMETED	T _A = 0°C		T _A = + 25°C		T _A = +85°C		LINUT	TEST CONDITIONS
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} t _{PHL}	Propagation delay D _n to Q _n	0.45 0.45	1.15 1.15	0.45 0.45	0.95 0.95	0.45 0.45	1.20 1.20	ns ns	
t _{PLH} t _{PHL}	Propagation delay	0.90 0.90	1.95 1.95	0.95 0.95	1.95 1.95	0.95 0.95	2.00 2.00	ns ns	Figs. 4, 5, 6
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.20 1.20	0.45 0.45	1.10 1.10	0.45 0.45	1.10 1.10	ns ns	

AC WAVEFORMS

TEST CIRCUITS AND WAVEFORMS

NOTES:

- **TTES:** $V_{CC1} = V_{CC2} = + 2V \pm 0.010V$, $V_{EE} = -3.2V \pm 0.010V$. Decoupling 0.1 μ F and 25 μ F from GND to V_{CC} . 0.01 μ F and 25 μ F from GND to V_{EE} (0.01 and 0.1 μ F capacitors should be NPO Ceramic or MLC Uppe). Decoupling capacitors should be NPO Ceramic or MLC type). Decoupling capacitors should be placed as close as physically possible to the DUT and lead length should be kept to less than 1/4 inch (6mm). All unused inputs should be connected to either HIGH or LOW state consistent with the LOGIC function
- function required.
- tunction required. All unused outputs are loaded with 50Ω to GND. L₁ and L₂ are equal length 50Ω impedance lines. L₃, the distance from the DUT pin to the junction of the cable from the Pulse Generator and the cable to the cable from the Pulse Generator and the cable to the Scope, should not exceed 1/4 inch (6mm). $R_T=50\Omega$ terminator internal to Scope. The unmatched wire stub between coaxial cable and pins under test must be less than 1/4 inch
- (6mm) long for proper test. C_{L} = Fixture and stray capacitance \leq 3pF. Any unterminated stubs connected anywhere along
- the transmission line between the Pulse Generator and the DUT or between the DUT and the Scope should not exceed 1/4 inch (6mm) in length (refer to section on AC setup procedure). 10. All 50Ω resistors should have tolerance of ± 1% or
- better.
- 11. Pin connections are for Flat Pack and in parentheses for Ceramic DIP package.

Figure 5. Test Circuit

100107 Gate

Quint Exclusive-OR/Exclusive-NOR Gate With Compare Output Product Specification

ECL Products

DESCRIPTION

The 100107 has five 2-input, 2-output Exclusive-OR/NOR gates with a compare output.

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
100107	0.95ns	68mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -4.2V$ to -4.8V $T_A = 0^{\circ}C$ to +85°C
Ceramic DIP	100107F
Ceramic Flat Pack	100107Y

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₉	Data Inputs
Q ₀ – Q ₄	Data Outputs (OR)
$\overline{Q}_0 - \overline{Q}_4$	Data Outputs (NOR)
Q ₅	Compare Output

LOGIC SYMBOL

PIN CONFIGURATION

24 D9 94 1 (6) 9 10 ō4 [2 23 Da Q3 3 22 De V_{CC1} Vcc2 ₫₃ [4 21 D7 (14) 17 D₀ Õo 15 (12) Q5 5 20 D5 (15) 18 D1 Q₀ 16 (13) CERAMIC DIP 19 D4 Vcci 6 (16) 19 D₂ Q1 13 (10) Vccz 7 18 VEE (17) 20 D₃ Q1 14 (11) Q2 8 17 D3 (19) 22 D4 Q2 11 (8) Q2 12 (9) (20) 23 D5 Q2 9 16 D₂ ā₃ 7 (4) (21) 24 D7 Q1 10 15 D1 (22) 1 D₆ Q3 6 (3) Q1 11 14 00 Q4 5 (2) (23) 2 D Q₀ 12 13 Qo (24) 3 D۹ Q4 4 (1) D7 D5 D4 VEE D3 D2 24 23 22 21 20 19 D6 1 18 D1 Q5 8 (5) 17 Do D8 2 D9 3 16 Q₀ VEE FLAT PACK Q4 4 15 Q₀ 21 (18) Q4 5 14 Q1 Pin connections for Flat Pack and in () for Ceramic DIP package 13 Q1 Q3 6 7 8 9 10 11 12 Q3 Q5 VCC1 VCC2 Q2 Q2 LD05110S CD09010S Figure 1 Figure 2

7

853-0606 82178

100107

TRUTH TABLE

FUNCTION TABLE (One Gate)

	OUTPUT				
D ₀ ⊕ D ₁	$D_2 \oplus D_3$	D4 ⊕ D5	D ₆ ⊕ D ₇	D8 ⊕ D9	Q ₅
L	L	L	L	L	L
н	х	X	х	X	н
X	н	X	Х	X	H
X	х	H	X	x	н
×	х	X	н	X	н
х	X	х	X -	н	H

INPL	JTS	OUTPUTS				
D ₀	D ₁	Q ₀	Q ₀			
L	L	L	н			
L. L	н	н	· L			
H I	L	H.	L			
H .	н	L	н			

 \oplus = Exclusive OR

Positive Logic:

H = HIGH state (more positive voltage) = 1

L = LOW state (less positive voltage) = 0

X = Don't Care

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	100K ECL	UNIT
V _{EE}	Supply voltage V _{CC1} = V _{CC2} = GND	-7.0 to 0	V
V _{IN}	Input voltage (VIN should never be more negative than VEE)	V _{EE} to +0.5	V
lo	Output source current	-55	mA
Ts	Storage temperature	-65 to +150	°C
TJ	Maximum junction temperature	+ 150	°C

DC OPERATING CONDITIONS

		RAMETER		·	100K ECL		
	PAI	Min	Nom	Max	UNIT		
V _{CC1} , V _{CC2}	Circuit ground			0	0	0	v
V _{EE}	Supply voltage (negative))		-4.2	-4.5	-4.8	v
V _{EE}	Supply voltage (negative)	when operating with 10K	ECL family			-5.7	V
		$V_{EE} = -4.2V$	-1150				
V _{IH}	HIGH level		$V_{EE} = -4.5V$	1405	1	-880	mV
	input voltago		$V_{EE} = -4.8V$	-1165			
			$V_{EE} = -4.2V$	-1150			mV
VIHT	HIGH level input threshold voltage	$V_{CC1} = V_{CC2} = GND$	$V_{EE} = -4.5V$	4405			
	threshold voltage		$V_{EE} = -4.8V$	1165			mV
	· · ·		$V_{EE} = -4.2V$				
V _{ILT}	LOW level input threshold voltage	$T_A = 0^{\circ}C$ to $+85^{\circ}C$	$V_{EE} = -4.5V$			-1475	mV
	in conord vonago		$V_{EE} = -4.8V$			-1490	mV
			V _{EE} = -4.2V		-		
V _{IL} LOW level input voltag	LOW level		$V_{EE} = -4.5V$	-1810		-1475	mV
			$V_{EE} = -4.8V$]		-1490	
T _A	Operating ambient tempe	erature		0	+ 25	+ 85	°C

NOTE:

When operating at other than specified voltages (-4.2V, -4.5V, -4.8V) DC & AC Characteristics will vary slightly from specified values.

100107

r								
	PARAMETER		MIN	TYP	MAX	UNIT	TEST CO	NDITIONS ²
		$V_{EE} = -4.2V$	- 1025		-870	mV	V _{IN} = V _{IHmax}	
V _{OH}	HIGH level output voltage	$V_{EE} = -4.5V$	-1025	-955	-880	mV	or	
	oolpar rollago	V _{EE} = -4.8V	-1035		-880	mV	V _{IN} = V _{ILmin}	
		$V_{EE} = -4.2V$	- 1035			mV	V _{IN} = V _{IHmin}	
V _{OHT}	HIGH level output threshold voltage	$V_{EE} = -4.5V$	- 1035		·	mV	or	
	an concis tonago	$V_{EE} = -4.8V$	- 1045			mV	$V_{IN} = V_{ILmax}$	Loading with
		$V_{EE} = -4.2V$			-1590	mV	V _{IN} = V _{IHmin}	50Ω to -2.0V
VOLT	LOW level output threshold voltage	$V_{EE} = -4.5V$			-1610	mV	or	1
	an concio tenago	$V_{EE} = -4.8V$			-1610	mV	$V_{IN} = V_{ILmax}$	
		V _{EE} =4.2V	- 1810		- 1605	mV	V _{IN} = V _{IHmax} or	
VOL	LOW level output voltage	V _{EE} =4.5V	1810	-1705	- 1620	mV		
	output ronago	$V_{EE} = -4.8V$	1830		-1620	mV	V _{IN} = V _{ILmin}	
Цн	HIGH level	D ₁ , D ₃ , D ₅ D ₇ , D ₉			250	μΑ		
.01	input current	D ₀ , D ₂ , D ₄ D ₆ , D ₈			350	μA	V _{IN} = V _{IHmax}	
۱ _{۱L}	LOW level input cu	irrent	0.5			μA	V _{IN} = V _{ILmin}	
-I _{EE}	V _{EE} supply current		46	68	96	mA	Inputs open	
$rac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation	V _{FF} = -4.2V			0.025	v/v		
$rac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	$T_A = +25^{\circ}C$			0.05	v/v		

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$, $T_A = 0^{\circ}C$ to $+85^{\circ}C$ 10V unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

2. Conditions for testing shown in the tables are not necessarily worst case. For worst case testing guidelines, refer to Section 3 Testing.

3. The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 3.

Signetics ECL Products

100107

Gate

AC ELECTRICAL CHARACTERISTICS

Ceramic DIP $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$

		T _A =	°C	T _A = -	+ 25°C	T _A = -	+ 85°C		
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} t _{PHL}	Propagation delay D ₀ , D ₂ , D ₄ , D ₆ , D ₈ to Q ₀ - Q ₄ , Q _n	0.55 0.55	1.90 1.90	0.55 0.55	1.80 1.80	0.55 0.55	1.90 1.90	ns ns	
t _{PLH} t _{PHL}	Propagation delay D_1 , D_3 , D_5 , D_7 , D_9 to $Q_0 - Q_4$, \overline{Q}_n	0.55 0.55	1.70 1.70	0.55 0.55	1.60 1.60	0.55 0.55	1.70 1.70	ns ns	Figs. 4, 5, 6
t _{PLH} t _{PHL}	Propagation delay D_n to Q_5	1.15 1.15	2.75 2.75	1.15 1.15	2.75 2.75	1.15 1.15	3.00 3.00	ns ns	
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.70 1.70	0.45 0.45	1.55 1.55	0.45 0.45	1.70 1.70	ns ns	

Ceramic DIP $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 5\%$

	PARAMETER		= 0°C	T _A = ·	+ 25°C	T _A = -	+85°C		TEST CONDITIONS
PARAMETER		Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} t _{PHL}	Propagation delay D_0 , D_2 , D_4 , D_6 , D_8 to $Q_0 - Q_4$, \overline{Q}_n	0.55 0.55	1.90 1.90	0.55 0.55	1.80 1.80	0.55 0.55	1.90 1.90	ns ns	
t _{PLH} t _{PHL}	Propagation delay D_1 , D_3 , D_5 , D_7 , D_9 to $Q_0 - Q_4$, \overline{Q}_n	0.55 0.55	1.70 1.70	0.55 0.55	1.60 1.60	0.55 0.55	1.70 1.70	ns ns	Figs. 4, 5, 6
t _{PLH} t _{PHL}	Propagation delay D_n to Q_5	1.15 1.15	2.75 2.75	1.15 1.15	2.75 2.75	1.15 1.15	3.00 3.00	ns ns	
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.70 1.70	0.45 0.45	1.55 1.55	0.45 0.45	1.70 1.70	ns ns	

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$

	PARAMETER		= 0°C	T _A = -	+ 25°C	T _A = -	⊦85°C		
			Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} t _{PHL}	Propagation delay D_0 , D_2 , D_4 , D_6 , D_8 to $Q_0 - Q_4$, \overline{Q}_n	0.55 0.55	1.70 1.70	0.55 0.55	1.60 1.60	0.55 0.55	1.70 1.70	ns ns	
t _{PLH} t _{PHL}	Propagation delay D_1 , D_3 , D_5 , D_7 , D_9 to $Q_0 - Q_4$, \overline{Q}_n	0.55 0.55	1.50 1.50	0.55 0.55	1.40 1.40	0.55 0.55	1.50 1.50	ns ns	Figs. 4, 5, 6
t _{PLH} t _{PHL}	Propagation delay D_n to Q_5	1.15 1.15	2.55 2.55	1.15 1.15	2.55 2.55	1.15 1.15	2.80 2.80	ns ns	
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.70 1.70	0.45 0.45	1.55 1.55	0.45 0.45	1.70 1.70	ns ns	

January 30, 1986

AC ELECTRICAL CHARACTERISTICS

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 5\%$

	PARAMETER		= 0°C	T _A = -	+ 25°C	T _A = ·	+ 85°C	UNIT	TEST CONDITIONS
			Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} t _{PHL}	Propagation delay D ₀ , D ₂ , D ₄ , D ₆ , D ₈ to Q ₀ - Q ₄ , Q _n	0.55 0.55	1.70 1.70	0.55 0.55	1.60 1.60	0.55 0.55	1.70 1.70	ns ns	
t _{PLH} t _{PHL}	Propagation delay D_1 , D_3 , D_5 , D_7 , D_9 to $Q_0 - Q_4$, \overline{Q}_n	0.55 0.55	1.50 1.50	0.55 0.55	1.40 1.40	0.55 0.55	1.50 1.50	ns ns	Figs. 4, 5, 6
t _{PLH} t _{PHL}	Propagation delay D_n to Q_5	1.15 1.15	2.55 2.55	1.15 1.15	2.55 2.55	1.15 1.15	2.80 2.80	ns ns	
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.70 1.70	0.45 0.45	1.55 1.55	0.45 0.45	1.70 1.70	ns ns	

AC WAVEFORMS

100107

TEST CIRCUITS AND WAVEFORMS

Figure 5. Test Circuit

NOTES:

- $V_{CC1} = V_{CC2} = +2.0V \pm 0.010V$, $V_{EE} = -3.2V \pm 0.010V$. 1.
- Decoupling $0.1\mu F$ and $25\mu F$ from GND to $V_{CC},$ $0.01\mu F$ and $25\mu F$ from GND to $V_{EE}.$ (0.01 and $0.1\mu F$ capacitors should be NPO Ceramic or MLC 2 type). Decoupling capacitors should be placed as close as physically possible to the DUT and lead length should be kept to less than 1/4 inch (6mm).
- All unused inputs should be connected to either HIGH or LOW state consistent with the LOGIC 3 function required.

- HiGH or LOW state consistent with the LOGIC function required. 4. All unused outputs are loaded with 50Ω to GND. 5. L₁ and L₂ are equal length 50Ω impedance lines. L₃, the distance from the DUT pin to the junction of the cable from the Pulse Generator and the cable to the scope, should not exceed 1/4 inch (6mm). 6. R₇ = 50Ω terminator internal to Scope 7. The unmatched wire stub between coaxial cable and pins under test must be less than 1/4 inch (6mm) long for proper test. 8. C_L = Fixture and stray capacitance ≤ 3pF. 9. Any unterminated stubs connected anywhere along the transmission line between the Pulse Generator and the DUT or between the DUT and the Scope should not exceed 1/4 inch (6mm) in length (refer to section on AC setup procedure). 10. All 50Ω resistors should have tolerance of ±1% or better.
- better.
- Pin connections are for Flat Pack and in parenthe-ses for Ceramic DIP package.

100112 Driver

Quad Driver Product Specification

ECL Products

DESCRIPTION

The 100112 has four 2-input OR-NOR gates, with one common enable input. Each gate has two OR outputs and two NOR outputs.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
100112	0.85ns	73mA
100112	Enable input 1.4ns	73114

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -4.2V$ to -4.8V $T_A = 0^{\circ}C$ to +85°C
Ceramic DIP	100112F
Ceramic Flat Pack	100112Y

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₃	Data Inputs
Ē	Enable Input
Q ₀ – Q ₇	Data Outputs (OR)
$\overline{Q}_0 - \overline{Q}_7$	Data Outputs (NOR)

PIN CONFIGURATION

LOGIC SYMBOL

January 30, 1986

Driver

100112

FUNCTION TABLE (One Gate)

INP	UTS	OUTPUTS					
Do	E	$\overline{\mathbf{Q}}_{0}$	Q ₁	Q ₀	Q ₁		
н	х	L	L	н	н		
X	н	- L	L	н	н		
L.	L /	н	н	L	L		

Positive Logic: H = HIGH state (more positive voltage) = 1 L = LOW state (less positive voltage) = 0

X = Don't Care

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	100K ECL	UNIT
V _{EE}	Supply voltage V _{CC1} = V _{CC2} = GND	-7.0 to 0	V
V _{IN}	Input voltage (V _{IN} should never be more negative than V _{EE})	V _{EE} to +0.5	V
lo	Output source current	-55	mA
Τ _S	Storage temperature	-65 to +150	°C
Тj	Maximum junction temperature	+ 150	°C

DC OPERATING CONDITIONS

					100K ECL				
	PAR	Min	Nom	Max	UNIT				
V _{CC1} , V _{CC2}	Circuit ground			0	0	0	v		
V _{EE}	Supply voltage (negative)			-4.2	-4.5	-4.8	v		
V _{EE}	Supply voltage (negative)	when operating with 10K	ECL family			-5.7	V		
			V _{EE} = -4.2V	-1150					
VIH	HIGH level input voltage		V _{EE} = -4.5V	1105		-880	mV		
	input voltage		V _{EE} = -4.8V	1165					
			V _{EE} = -4.2V	-1150			mV		
VIHT	HIGH level input threshold voltage	V _{CC1} = V _{CC2} = GND	V _{EE} = -4.5V						
	threshold voltage		V _{EE} = -4.8V	- 1165			mV		
	· · · · · · · · · · · · · · · · · · ·		V _{EE} = -4.2V						
VILT	LOW level input threshold voltage	$T_A = 0^{\circ}C$ to $+85^{\circ}C$	V _{EE} = -4.5V		1	-1475	mV		
	threahold voltage		$V_{EE} = -4.8V$			-1490	mV		
					V _{EE} = -4.2V				
VIL	LOW level input voltage		V _{EE} = -4.5V	-1810		-1475	mV		
	input voltage		V _{EE} = -4.8V	1		-1490			
T _A	Operating ambient tempe	rature		0	+ 25	+ 85	°C		

NOTE:

When operating at other than specified voltages (-4.2V, -4.5V, -4.8V) DC & AC Characteristics will vary slightly from specified values.

Driver

100112

	PARAMETER		MIN	TYP	MAX	UNIT	TEST	CONDITIONS ²		
		V _{EF} = -4.2V	-1025		-870	mV				
V _{OH}	HIGH level	$V_{EE} = -4.5V$	-1025	-955	-880	mV	$V_{IN} = V_{IHmax}$			
•он	output voltage	$V_{EE} = -4.8V$	-1025		-880	mV	V _{IN} = V _{ILmin}			
					-660					
	HIGH level output	V _{EE} = -4.2V	-1035			. mV	V _{IN} = V _{IHmin}			
V _{OHT}	threshold voltage	$V_{EE} = -4.5V$	-1035			mV	or			
		$V_{EE} = -4.8V$	- 1045			mV	$V_{IN} = V_{ILmax}$	Loading with		
		$V_{EE} = -4.2V$			-1590	mV	V _{IN} = V _{IHmin}	50 Ω to -2.0V ±0.010V		
VOLT	LOW level output threshold voltage	$V_{EE} = -4.5V$			-1610	mV	or			
	in concile tonage	$V_{EE} = -4.8V$			-1610	mV	V _{IN} = V _{ILmax}			
		V _{EE} = -4.2V	-1810		-1600	mV	V _{IN} = V _{IHmax}			
VOL	LOW level output voltage	$V_{EE} = -4.5V$	-1810	-1705	-1620	mV	or			
		$V_{EE} = -4.8V$	-1830		-1620	mV	V _{IN} = V _{ILmin}			
	HIGH level	D _n inputs			550	μA				
чн	input current	E input			450	μA	V _{IN} = V _{IHmax}			
կլ	LOW level input cu	irrent	0.5			μA	V _{IN} = V _{ILmin}			
-l _{EE}	VEE supply current		51	73	106	mA	Inputs open			
$\frac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation	V _{EE} = -4.2V			0.025	v/v				
$rac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	$T_A = +25^{\circ}C$			0.05	v/v				

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$, $T_A = 0^{\circ}C$ to $+85^{\circ}C$ unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst case testing guidelines, refer to Section 3 Testing, DC Testing.
 The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 3.

Signetics ECL Products

100112

Driver

AC ELECTRICAL CHARACTERISTICS

Ceramic DIP V_{CC1} = V_{CC2} = GND, V_{EE} = -4.2V $\pm 0.010V$ to -4.8V $\pm 0.010V$

	PARAMETER		T _A = 0°C		T _A = + 25°C		+ 85°C		
			Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH}	Propagation delay	0.45	1.40	0.45	1.35	0.45	1.40	ns	
t _{PHL}	D _n to Q _n , Q _n	0.45	1.40	0.45	1.35	0.45	1.40	ns	
t _{PLH}	Propagation delay	0.55	1.90	0.55	1.90	0.55	1.90	ns	Figs. 4, 5, 6
t _{PHL}	E to Q _n , Q _n	0.55	1.90	0.55	1.90	0.55	1.90	ns	
t _{TLH}	Transition time	0.45	1.50	0.45	1.40	0.45	1.50	ns	
t _{THL}	20% to 80%, 80% to 20%	0.45	1.50	0.45	1.40	0.45	1.50	ns	

Ceramic DIP $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 5\%$

	PARAMETER		T _A = 0°C		T _A = + 25°C		+ 85°C		TEOT CONDITIONS
			Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH}	Propagation delay	0.45	1.40	0.45	1.35	0.45	1.40	ns	
t _{PHL}	D _n to Q _n , Q _n	0.45	1.40	0.45	1.35	0.45	1.40	ns	
t _{PLH}	Propagation delay	0.55	1.90	0.55	1.90	0.55	1.90	ns	Figs. 4, 5, 6
t _{PHL}	E to Q _n , Q _n	0.55	1.90	0.55	1.90	0.55	1.90	ns	
t _{TLH}	Transition time	0.45	1.50	0.45	1.40	0.45	1.50	ns	
t _{THL}	20% to 80%, 80% to 20%	0.45	1.50	0.45	1.40	0.45	1.50	ns	

Flat Pack V_{CC1} = V_{CC2} = GND, V_{EE} = -4.2V $\pm 0.010V$ to -4.8V $\pm 0.010V$

	PARAMETER		T _A = 0°C		T _A = + 25°C		+ 85°C		TEAT CONDITIONS	
			Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH}	Propagation delay	0.45	1.20	0.45	1.15	0.45	1.20	ns		
t _{PHL}	D _n to Q _n	0.45	1.20	0.45	1.15	0.45	1.20	ns		
t _{PLH}	Propagation delay	0.55	1.70	0.55	1.70	0.55	1.70	ns	Figs. 4, 5, 6	
t _{PHL}	E to Q _n , Q _n	0.55	1.70	0.55	1.70	0.55	1.70	ns		
t _{TLH}	Transition time	0.45	1.50	0.45	1.40	0.45	1.50	ns		
t _{THL} •	20% to 80%, 80% to 20%	0.45	1.50	0.45	1.40	0.45	1.50	ns		

Driver

100112

AC ELECTRICAL CHARACTERISTICS

Flat Pack V_{CC1} = V_{CC2} = GND, V_{EE} = -5.2V $\pm\,5\,\%$

	PARAMETER		T _A = 0°C		T _A = + 25°C		+ 85°C		TEAT CONDITIONS
			Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH}	Propagation delay	0.45	1.20	0.45	1.15	0.45	1.20	ns	
t _{PHL}	D _n to Q _n	0.45	1.20	0.45	1.15	0.45	1.20	ns	
t _{PLH}	Propagation delay	0.55	1.70	0.55	1.70	0.55	1.70	ns	Figs. 4, 5, 6
t _{PHL}	E to Q _n , Q _n	0.55	1.70	0.55	1.70	0.55	1.70	ns	
t _{TLH}	Transition time	0.45	1.50	0.45	1.40	0.45	1.50	ns	
t _{THL}	20% to 80%, 80% to 20%	0.45	1.50	0.45	1.40	0.45	1.50	ns	

AC WAVEFORMS

Driver

TEST CIRCUITS AND WAVEFORMS

INPUT PULSE REQUIREMENTS $V_{CC1} = V_{CC2} = +2.0V \pm 0.010V, \ V_{EE} = -2.5V \pm 0.010V, \ V_{T} = GND \ (0V)$							
Family	Amplitude	Rep Rate	Pulse Width	t _{TLH}	t _{THL}		
100K ECL	740mVp-p	1MHz	500ns	0.7 ±0.1ns	0.7 ±0.1ns		

Figure 6. Input Pulse Definition

100113 Driver

Quad Driver (High-Speed) Product Specification

ECL Products

DESCRIPTION

The 100113 has four 2-input OR-NOR Gates, with one enable input. Each gate has two OR outputs and two NOR outputs.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})	
100113	0.80ns	75mA	
100113	Enable input 1.4ns	75MA	

ORDERING CODE

PACKAGES	$\label{eq:commercial range} \begin{array}{c} \mbox{COMMERCIAL RANGE} \\ \mbox{V}_{CC1} = \mbox{V}_{CC2} = \mbox{GND}; \ \mbox{V}_{EE} = -4.2 \mbox{V} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Ceramic DIP	100113F
Ceramic Flat Pack	100113Y

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₃	Data Inputs
Ē	Enable Input
Q ₀ – Q ₇	Data Outputs (OR)
$\overline{\mathbf{Q}}_0 - \overline{\mathbf{Q}}_7$	Data Outputs (NOR)

PIN CONFIGURATION

Q2 1 24 Q3 Õ0 2 23 Q2 ō, 3 22 a, Q0 4 21 4 Q1 5 20 Da CERAN 19 E Vcc1 6 18 VEE Vcca 7 Q6 8 17 D2 16 D3 Q4 9 Ō5 [10 15 07 ō4 [1] 14 06 Ğe [12 13 ā7 D1 D0 E VEE D2 D3 Q3 1 18 Q7 Q2 2 17 06 õ3 🛐 16 Q, FLAT PACK ō2 4 15 G. Q0 5 14 64 0, 6 13 Q5 7 8 9 10 11 12 Q₀ Q1 VCC1VCC2 Q5 Q4 TOP VIEW CD09051S Figure 1

LOGIC SYMBOL

January 30, 1986

853-0608 82178

7
Driver

100113

TRUTH TABLE (One Gate)

INPUTS			OUTPUTS					
D ₀	E	\overline{Q}_0	Q ₁	Q ₀	Q ₁			
н	X	L	L	н	Н			
X	н	L	۲L ,	Н	H.			
L	L	н	e Haller	e e la L a	L L			

Positive Logic:

H = HIGH state (more positive voltage) = 1

L = LOW state (less positive voltage) = 0

X = Don't Care

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	100K ECL	UNIT
V _{EE}	Supply voltage (V _{CC1} = V _{CC2} = GND)	-7.0 to 0	V
V _{IN}	Input voltage (V _{IN} should never be more negative than V _{EE})	V _{EE} to +0.5	V
lo	Output source current	-55	mA
Ts	Storage temperature	-65 to +150	°C
Тј	Maximum junction temperature	+ 150	°C

DC OPERATING CONDITIONS

		BAMETER			100K ECL		LINIT	
	PAP	Min	Nom	Max	UNIT			
V _{CC1} , V _{CC2}	Circuit ground	0	0	0	v			
V _{EE}	Supply voltage (negative)			-4.2	-4.5	-4.8	v	
V _{EE}	Supply voltage (negative)	when operating with 10K	ECL family			-5.7	v	
			$V_{EE} = -4.2V$	-1150			· .	
VIH	HIGH level input voltage		$V_{EE} = -4.5V$	4405		-880	mV	
		input voltage		$V_{EE} = -4.8V$	-1165			
		-	$V_{EE} = -4.2V$	-1150			mV	
V _{IHT}	HIGH level input threshold voltage	$V_{CC1} = V_{CC2} = GND$	V _{EE} = -4.5V	1165				
	threshold voltage		$V_{EE} = -4.8V$				mV	
		-	$V_{EE} = -4.2V$				mV	
V _{ILT}	LOW level input threshold voltage	$T_A = 0^{\circ}C \text{ to } + 85^{\circ}C$	$V_{EE} = -4.5V$			-1475		
	theshold voltage		$V_{EE} = -4.8V$			-1490	mV	
	· · ·		$V_{EE} = -4.2V$					
VIL	V _{IL} LOW level		$V_{EE} = -4.5V$	- 1810		-1475	mV	
	input voltage		$V_{EE} = -4.8V$	1		-1490	-1490	
T _A	Operating ambient tempe	erature		0	+ 25	+ 85	°C	

NOTE:

When operating at other than specified voltages (-4.2V, -4.5V, -4.8V) DC & AC Characteristics will vary slightly from specified values.

Driver

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$, $T_A = 0^{\circ}C$ to $+85^{\circ}C$ unless otherwise specified^{1,3}

	PARAMETER		MIN	TYP	MAX	UNIT	TEST	CONDITIONS ²		
		$V_{EE} = -4.2V$	-1025		-870	mV	V _{IN} = V _{IHmax}			
V _{OH}	HIGH level output voltage	$V_{EE} = -4.5V$	-1025	-955	-880	mV	or			
		$V_{EE} = -4.8V$	- 1035		-880	mV	$V_{IN} = V_{ILmin}$			
		$V_{EE} = -4.2V$	-1035			mV	V _{IN} = V _{IHmin}			
V _{OHT}	HIGH level output threshold voltage	$V_{EE} = -4.5V$	- 1035			mV	or			
	J	$V_{EE} = -4.8V$	- 1045			mV	$V_{IN} = V_{ILmax}$	Loading with		
		$V_{EE} = -4.2V$			-1590	mV	V _{IN} = V _{IHmin}	50Ω to $-2.0V \pm 0.010V$		
VOLT	LOW level output threshold voltage	V _{EE} = -4.5V			-1610	mV	$ V_{IN} = V_{ILmax} $			
		$V_{EE} = -4.8V$			-1610	mV				
		V _{EE} = -4.2V	-1810		-1600	mV	V _{IN} = V _{IHmax}			
VOL	LOW level output voltage	$V_{EE} = -4.5V$	-1810	-1705	-1620	mV	or			
	calper renage	$V_{EE} = -4.8V$	-1830		-1620	mV	V _{IN} = V _{ILmin}			
hu .	HIGH level	D _n input			550	μA	V V.			
Чн	input current	E input			450	μA	V _{IN} = V _{IHmax}			
h	LOW level input cu	rrent	0.5			μA	V _{IN} = V _{ILmin}			
-I _{EE}	VEE supply current		54	75	116	mA	Inputs open			
$rac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation	V _{FF} = -4.2V			0.025	v/v				
$\frac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	$T_A = +25^{\circ}C$			0.05	v/v				

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst case testing guidelines, refer to Section 3 Testing, DC Testing.
The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 3.

Signetics ECL Products

Product Specification

100113

Driver

AC ELECTRICAL CHARACTERISTICS

Ceramic DIP V_{CC1} = V_{CC2} = GND, V_{EE} = -4.2V $\pm 0.010V$ to -4.8V $\pm 0.010V$

	DADAMETER		$T_A = 0^{\circ}C$ $T_A = +25^{\circ}C$		T _A = +85°C			TEST CONDITIONS	
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH}	Propagation delay	0.45	1.40	0.45	1.35	0.45	1.40	ns	
t _{PHL}	D _n to Q _n , Q _n	0.45	1.40	0.45	1.35	0.45	1.40	ns	
tегн	Propagation delay	0.55	1.90	0.55	1.90	0.55	1.90	ns	Figs. 4, 5, 6
тенг	E to Q _n , Q _n	0.55	1.90	0.55	1.90	0.55	1.90	ns	
t _{тLH}	Transition time	0.45	1.50	0.45	1.40	0.45	1.50	ns	
t _{тнL}	20% to 80%, 80% to 20%	0.45	1.50	0.45	1.40	0.45	1.50	ns	

Ceramic DIP $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 5\%$

	PARAMETER		T _A = 0°C		+ 25°C	T _A = ·	+ 85°C		TEAT CONDITIONS
			Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} t _{PHL}	Propagation delay D _n to Q _n , Q _n	0.45 0.45	1.40 1.40	0.45 0.45	1.35 1.35	0.45 0.45	1.40 1.40	ns ns	
t _{PLH} t _{PHL}	Propagation delay E to Q_n , \overline{Q}_n	0.55 0.55	1.90 1.90	0.55 0.55	1.90 1.90	0.55 0.55	1.90 1.90	ns ns	Figs. 4, 5, 6
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.50 1.50	0.45 0.45	1.40 1.40	0.45 0.45	1.50 1.50	ns ns	

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$

			$T_A = 0^{\circ}C$		+ 25°C	T _A = -	+ 85°Ç		TEAT ADVIDITIONS	
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH}	Propagation delay	0.45	1.20	0.45	1.15	0.45	1.20	ns		
t _{PHL}	D _n to Q _n , Q _n	0.45	1.20	0.45	1.15	0.45	1.20	ns		
t _{PLH}	Propagation delay	0.55	1.70	0.55	1.70	0.55	1.70	ns	Figs. 4, 5, 6	
t _{PHL}	E to Q _n , Q _n	0.55	1.70	0.55	1.70	0.55	1.70	ns		
t _{TLH}	Transition time	0.45	1.50	0.45	1.40	0.45	1.50	ns		
t _{THL}	20% to 80%, 80% to 20%	0.45	1.50	0.45	1.40	0.45	1.50	ns		

Driver

100113

AC ELECTRICAL CHARACTERISTICS

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 5\%$

	PARAMETER		$T_A = 0^{\circ}C$		T _A = -	+ 25°C	T _A = -	+ 85°C		TEST CONDITIONS
			Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
	t _{PLH} t _{PHL}	Propagation delay D _n to Q _n , Q _n	0.45 0.45	1.20 1.20	0.45 0.45	1.15 1.15	0.45 0.45	1.20 1.20	ns ns	
	t _{PLH} t _{PHL}	Propagation delay E to Q _n , Q _n	0.55 0.55	1.70 1.70	0.55 0.55	1.70 1.70	0.55 0.55	1.70 1.70	ns ns	Figs. 4, 5, 6
	t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.50 1.50	0.45 0.45	1.40 1.40	0.45 0.45	1.50 1.50	ns ns	

AC WAVEFORMS

Driver

TEST CIRCUITS AND WAVEFORMS

Figure 6. Input Pulse Definition

Signetics

ECL Products

DESCRIPTION

The 100114 contains five gates with differential inputs and complementary outputs. An internal reference bias is available (V_{BB}), which enables, when connected to a gate input, the other to operate as a standard 100K ECL input. The direct output of a gate goes LOW, and the complementary one goes HIGH when both inputs are either open, or at V_{CC} , or have equal voltage applied.

100114 Line Receiver

Quint Differential Line Receiver Product Specification

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
100114	1.40ns	73mA

ORDERING CODE

PACKAGES	$\label{eq:commercial range} \begin{array}{c} \mbox{COMMERCIAL RANGE} \\ \mbox{V}_{CC1} = \mbox{V}_{CC2} = \mbox{GND}; \ \mbox{V}_{EE} = -4.2 \mbox{V} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Ceramic DIP	100114F
Ceramic Flat Pack	100114Y

PIN DESCRIPTION

PINS	DESCRIPTION
D ₁ , D ₃ , D ₅ , D ₇ , D ₉	Data Inputs
\overline{D}_0 , \overline{D}_2 , \overline{D}_4 , \overline{D}_6 , \overline{D}_8	Inverting Data Inputs
$Q_0 - Q_4, \ \overline{Q}_0 - \overline{Q}_4$	Data Outputs

PIN CONFIGURATION LOGIC SYMBOL Do 1 24 D1 Õ0 2 23 D₂ (6) 9 (7) 10 Q0 3 22 D3 Vcci Vcc2 ā1 [4 21 D.4 ō, 01 5 (1) 4 5 (2) Do 20 Ds (24) 3 D1 Qo 6 (3) CERAMIC DIP Vcc1 6 19 Vas Vcc2 7 ō, (23) 2 D₂ 7 (4) 18 VEE (22)1 D₃ Q2 8 17 D. Q1 8 (5) Q2 9 16 D7 (21) 24 D₄ õ2 11 (8) Ğ₃ [10 15 Da (20) 23 D5 Q2 12 (9) Q3 11 14 Dş (17) 20 D₆ ā₃ 13 (10) Q4 12 13 04 (16) 19 D7 Q3 14 (11) D4 D5 VBB VEE D8 D7 24 23 22 21 20 19 (15) 18 D8 Q4 15 (12) (14) 17 Dg Q4 16 (13) D3 1 18 D8 D2 2 VBB 22 (19) 17 Ds D1 3 FLAT PACK 16 Q4 15 Õ4 14 Q3 D₀ 4 Ver Q0 5 21 (18) 00 6 13 Q₃ Pin connections for Flat Pack and in () for Slim Dip 7 8 9 10 11 12 package à, Q1 VCC1 VCC2 Q2 0 LD05140S (TOP VIEW) CD09070S Figure 1 Figure 2

January 30, 1986

853-0609 82178

100114

FUNCTION TABLE (One Gate)

INP	INPUTS					
\overline{D}_0	D ₁	$\overline{\mathbf{Q}}_{0}$	Q1			
н	V _{BB}	н	L			
L	V _{BB}	L	Н			
V _{BB}	H H	L	н			
V _{BB}	L	н	L			
V _{ID} ≥0V	V _{ID} ≥0V	н	1 · L			
V _{ID} ≤ -0.150V	V _{ID} ≤ −0.150V	L	н			
-0.150V < V _{ID} < 0V	-0.150V < V _{ID} < 0V	*	*			
open	open	н	L			
V _{CC}	V _{cc}	н	L			

Positive Logic: H = HIGH state (more positive voltage) = 1

L = LOW state (less positive voltage) = 0 * = Indeterminate state

 $\label{eq:VBB} \begin{array}{l} \mathsf{V}_{BB} = \mathsf{Internal} \ \mathsf{reference} \ \mathsf{pin} \ 22 \ (18) \\ \mathsf{V}_{ID} = \mathsf{Complement} \ \mathsf{to} \ \mathsf{direct} \ \mathsf{input} \ \mathsf{voltage} \ \mathsf{difference}. \end{array}$

ABSOLUTE MAXIMUM RATINGS	(Operation beyo	nd the limits	set forth in this ta	able may impair the	e useful life of the device. Unless
	otherwise noted	I, these limit	is are specified of	ver the operating	ambient temperature range.)

	PARAMETER	100K ECL	UNIT
V _{EE}	Supply voltage (V _{CC1} = V _{CC2} = GND)	-7.0 to 0	V
V _{IN}	Input voltage (VIN should never be more negative than VEE)	V _{EE} to +0.5	V
10	Output source current	-55	mA
Ts	Storage temperature	-65 to +150	°C
Tj	Maximum junction temperature	+ 150	°C

100114

DC OPERATING CONDITIONS

					100K ECL			
	PAR	AMETER		Min	Nom	Max	UNIT	
V _{CC1} , V _{CC2}	Circuit ground			0	0	0	v	
V _{EE}	Supply voltage (negative)			-4.2	-4.5	-4.8	v	
VEE	Supply voltage (negative)	when operating with 10K	ECL family			-5.7	v	
			$V_{EE} = -4.2V$	-1150				
V _{IH}	HIGH level input voltage	$V_{EE} = -4$		4405	1 .	-880	mV	
	input volugo		$V_{EE} = -4.8V$	1165				
			$V_{EE} = -4.2V$	-1150			mV	
VIHT	HIGH level input threshold voltage		$V_{EE} = -4.5V$	1105				
	anobriola voltago		V _{EE} = -4.8V	1165			mV	
			V _{EE} = -4.2V			1 475		
V _{ILT}	LOW level input threshold voltage		$V_{EE} = -4.5V$	7		-1475	mV	
	anobriora voltago	$V_{CC1} = V_{CC2} = GND$	$V_{EE} = -4.8V$			-1490	mV	
		$T_A = 0^{\circ}C$ to $+85^{\circ}C$	V _{EE} = -4.2V					
VIL	LOW level input voltage		$V_{EE} = -4.5V$	-1810		-1475	mV	
	input tonago		$V_{EE} = -4.8V$	1		-1490		
			$V_{EE} = -4.2V$					
V _{IHmax}	Minimum permissable HIGH level input voltage		$V_{EE} = -4.5V$			-230	mV	
	That love hput vehage		$V_{EE} = -4.8V$	1			-	
	Minimum permissable		V _{EE} = -4.2V					
VREFmin	extended input		$V_{EE} = -4.5V$	-2300			mV	
	reference voltage		V _{EE} = -4.8V	1				
		$V_{CC1} = V_{CC2} = GND$	$V_{EE} = -4.2V$				v	
V _{CM}	Common mode voltage	$T_A = 0^{\circ}C$ to $+85^{\circ}C$ permissable $\pm V_{CM}$	V _{EE} = -4.5V	1		1.0		
		with respect to V _{BB}	$V_{EE} = -4.8V$	1				
		$V_{CC1} = V_{CC2} = GND$	V _{EE} = -4.2V					
VDIFF	Differential input voltage	T _A = 0°C to +85°C required for full	V _{EE} = -4.5V	150			mV	
	input vonago	swing output	V _{EE} = -4.8V	1				
TA	Operating ambient temper	ature		0	+ 25	+ 85	°C	

NOTE:

When operating at other than specified voltages (-4.2V, -4.5V, -4.8V) DC & AC Characteristics will vary slightly from specified values.

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND, V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$, $T_A = 0^{\circ}C$ to $+85^{\circ}C$ unless otherwise specified^{1, 3}

				s otherwise	speemed		·	: 	
	PARAMETER		MIN	TYP	MAX	UNIT	TEST	CONDITIONS ²	
		$V_{EE} = -4.2V$	-1025		-870	mV	V _{IN} = V _{IHmax}		
V _{OH}	HIGH level output voltage	$V_{EE} = -4.5V$	-1025	-955	-880	mV	or	and the second	
	output foliago	$V_{EE} = -4.8V$	-1035	· · · ·	-880	mV	V _{IN} = V _{ILmin}	n an	
		V _{EE} = -4.2V	-1035			mV	V _{IN} = V _{IHmin}	and the	
VOHT	HIGH level output threshold voltage	V _{EE} = -4.5V	-1035	-		mV	or		
	theshold voltage	V _{EE} = -4.8V	- 1045			mV	V _{IN} = V _{ILmax}	Loading with	
	· · · · · · · · · · · · · · · · · · ·	$V_{EE} = -4.2V$			-1590	mV	V _{IN} = V _{IHmin}	50Ω to -2.0V ±0.010V	
VOLT	LOW level output threshold voltage	$V_{EE} = -4.5V$			-1610	mV	or		
	unconola voltago	V _{EE} = -4.8V			-1610	mV	V _{IN} = V _{ILmax}		
1.		$V_{EE} = -4.2V$	-1810		-1600	mV	V _{IN} = V _{IHmax}		
VOL	LOW level output voltage	V _{EE} = -4.5V	-1810	- 1705	-1620	mV	or		
	output tonago	$V_{EE} = -4.8V$	-1830		-1620	mV	V _{IN} = V _{ILmin}		
	Output reference	V _{EE} = -4.5V	-1380	-1320	-1260	mV		· · · · · · · · · · · · · · · · · · ·	
V _{BB}	voltage	V _{EE} = -4.2V to -4.8V	-1396	-1320	-1244	mV	I _{BB} = 0 to 475μA		
ЦН	HIGH level input c	urrent	·		65	μA	V _{IN} = V _{IHmax} , sec	ond input to V _{BB}	
ICBO	Input leakage curre	ent	-10			μΑ	V _{IN} = V _{EE} , secon	d input to V _{BB}	
-I _{EE}	VEE supply current		51	73	106	mA	Inputs open		
$rac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation	V _{FF} = -4.2V			0.035	v/v			
$rac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	$T_A = +25^{\circ}C$			0.07	v/v		1,71 	

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst case testing guidelines, refer to Section 3 Testing, DC Testing.
The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 3.

100114

Line Receiver

AC ELECTRICAL CHARACTERISTICS

Ceramic DIP V_{CC1} = V_{CC2} = GND, V_{EE} = -4.2V $\pm 0.010V$ to -4.8V $\pm 0.010V$

		T _A =	: 0°C	T _A = ·	+ 25°C	T _A = ·	+ 85°C		TEST CONDITIONS	
PARAMETER		Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH}	Propagation delay	0.55	2.20	0.60	2.20	0.70	2.40	ns	Figs. 4, 5, 6	
t _{PHL}	D _n , D _n to Q _n , Q _n	0.55	2.20	0.60	2.20	0.70	2.40	ns		
t _{TLH}	Transition time	0.45	1.30	0.45	1.20	0.45	1.30	ns		
t _{THL}	20% to 80%, 80% to 20%	0.45	1.30	0.45	1.20	0.45	1.30	ns		

Ceramic DIP V_{CC1} = V_{CC2} = GND, V_{EE} = $-5.2V~\pm5\%$

*	DA DA 117720	T _A =	= 0°C	T _A = -	+ 25°C	T _A = ·	+ 85°C		TEAT AGNIDITIONA	
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH}	Propagation delay	0.55	2.20	0.60	2.20	0.70	2.40	ns	Figs. 4, 5, 6	
t _{PHL}	D _n , D _n to Q _n , Q _n	0.55	2.20	0.60	2.20	0.70	2.40	ns		
tтін	Transition time	0.45	1.30	0.45	1.20	0.45	1.30	ns		
tтні	20% to 80%, 80% to 20%	0.45	1.30	0.45	1.20	0.45	1.30	ns		

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$

DADAMETED	T _A =	= 0°C	T _A = ·	+ 25°C	T _A = ·	+ 85°C	LINIT	TEST CONDITIONS	
PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH} Propagation delay	0.55	2.00	0.60	2.00	0.70	2.20	ns	Figs. 4, 5, 6	
t _{PHL} D _n , D _n to Q _n , Q _n	0.55	2.00	0.60	2.00	0.70	2.20	ns		
t _{TLH} Transition time	0.45	1.30	0.45	1.20	0.45	1.30	ns		
t _{THL} 20% to 80%, 80% to 20%	0.45	1.30	0.45	1.20	0.45	1.30	ns		

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 5\%$

		DADAMETER	T _A =	• 0°C	T _A = ·	+25°C	T _A = -	+ 85°C	UNIT	TEST CONDITIONS
PARAMETER		Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
	t _{PLH} t _{PHL}	Propagation delay D _n , D _n to Q _n , Q _n	0.55 0.55	2.00 2.00	0.60 0.60	2.00 2.00	0.70 0.70	2.20 2.20	ns ns	Figs. 4, 5, 6
	t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.30 1.30	0.45 0.45	1.20 1.20	0.45 0.45	1.30 1.30	ns ns	

Line Receiver

AC WAVEFORMS

TEST CIRCUITS AND WAVEFORMS

100114

Signetics

100117 Gate

Triple 1-2-2 Input OR-AND/OR-AND-INVERT Gate Product Specification

ECL Products

DESCRIPTION

The 100117 has three 1-2-2 input OR/ NAND gates with true and complementary outputs.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
100117	E_n to Q_n , \overline{Q}_n 0.75ns	57mA
100117	D _n to Q _n , Q _n 1.40ns	5711A

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -4.2V$ to -4.8V $T_A = 0^{\circ}C$ to +85°C
Ceramic DIP	100117F
Ceramic Flat Pack	100117Y

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₁₁	Data Inputs
E ₀ – E ₂	Enable Inputs
$Q_0 - Q_2, \ \overline{Q}_0 - \overline{Q}_2$	Data Outputs

PIN CONFIGURATION

D3 1 24 D₂ 23 D₅ 22 D₄ 21 D₇ D₀ 2 D1 3 Q0 4 ā, 5 20 D₆ 19 E. V_{CC1} 6 CERAMIC DIP V_{CC2} 7 18 V_{EE} Q1 8 17 E, 16 E₂ 15 D₁₁ 14 D₁₀ Q 9 Q₂ 10 0₂ 11 D₈ 12 13 D₉ D7 D6 E0 VEE E1 E2 24 23 22 21 20 19 D4 1 18 D₁₁ 17 D10 D5 2 D2 3 16 D9 FLAT PACK D3 4 15 D8 14 Q2 D₀ 5 D1 6 13 Q₂ 7 8 9 10 11 12 Q0 Q0 VCC1VCC2 Q1 Q1 TOP VIEW CD09090S Figure 1

LOGIC SYMBOL

Gate

FUNCTION TABLE (One Gate)

		OUTPUTS				
D ₄	D ₂	D3	D ₀	D ₁	$\overline{\mathbf{Q}}_{0}$	Q ₀
L	x	x	x	х	Н	L
х	L	L	x	х	н	L
х	x	x	L	L	н	L
н	н	x	н	Х	L	н
н	x	Н	x	н	L	н
н	н	x	x	н	L	н
н	x	н	н	х	L	н

Positive Logic:

H = HIGH state (more positive voltage) = 1

L = LOW state (less positive voltage) = 0

X = Don't Care

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	100K ECL	UNIT
V _{EE}	Supply voltage (V _{CC1} = V _{CC2} = GND)	-7.0 to 0	V
V _{IN}	Input voltage (VIN should never be more negative than VEE)	V _{EE} to +0.5	V
lo	Output source current	-55	mA
Ts	Storage temperature	-65 to +150	°C
Tj	Maximum junction temperature	+ 150	°C

DC OPERATING CONDITIONS

					100K ECL			
	PAI	RAMETER		Min	Nom	Max	UNIT	
V _{CC1} , V _{CC2}	Circuit ground			0	0	0	v	
V _{EE}	Supply voltage (negative)		-4.2	-4.5	-4.8	v		
V _{EE}	Supply voltage (negative)			-5.7	v			
			V _{EE} = -4.2V	-1150				
VIH	HIGH level input voltage		$V_{EE} = -4.5V$	1105	1	-880	mV	
	input voltago		$V_{EE} = -4.8V$	- 1165				
			V _{EE} = -4.2V	-1150			mV	
VIHT	HIGH level input threshold voltage	$V_{CC1} = V_{CC2} = GND$	$V_{EE} = -4.5V$	4405				
	threshold voltage		$V_{EE} = -4.8V$	- 1165			mV	
			V _{EE} = -4.2V					
VILT	LOW level input threshold voltage	$T_A = 0^{\circ}C \text{ to } + 85^{\circ}C$	$V_{EE} = -4.5V$	1		-1475	mV	
	in conditional voltage		V _{EE} = -4.8V			-1490	mV	
			V _{EE} = -4.2V					
V _{IL}	LOW level input voltage		$V_{EE} = -4.5V$	-1810		-1475	mV	
	input tonugo		$V_{EE} = -4.8V$	1		-1490		
T _A	Operating ambient tempe	erature		0	+ 25	+ 85	°C	

NOTE:

When operating at other than specified voltages (-4.2V, -4.5V, -4.8V) DC & AC Characteristics will vary slightly from specified values.

Gate

100117

	PARAMETER		MIN	ТҮР	MAX	UNIT	TEST	CONDITIONS ²
		V _{EE} = -4.2V	-1025		-870	mV	V _{IN} = V _{IHmax}	
V _{OH}	HIGH level output voltage	$V_{EE} = -4.5V$	-1025	-955	-880	mV	or	
	output ronago	V _{EE} = -4.8V	-1035		-880	mV	V _{IN} = V _{ILmin}	
		V _{EE} = −4.2V	-1035			mV	V _{IN} = V _{IHmin}	
VOHT	HIGH level output threshold voltage	V _{EE} = -4.5V	-1035			mV	or	
		V _{EE} = -4.8V	-1045			mV	V _{IN} = V _{ILmax}	Loading with
	· · ·	V _{EE} = -4.2V			-1590	mV	V _{IN} = V _{IHmin}	50Ω to $-2.0V \pm 0.010V$
V _{OLT}	OLT LOW level output threshold voltage	V _{EE} = -4.5V			-1610	mV	or	
		V _{EE} = -4.8V			-1610	mV	V _{IN} = V _{ILmax}	
		V _{EE} = -4.2V	-1810		-1600	mV	V _{IN} = V _{IHmax}	
VOL	LOW level output voltage	V _{EE} = -4.5V	-1810	-1705	-1620	mV	or	
	ouput tonago	V _{EE} = -4.8V	-1830		-1620	mV	$V_{IN} = V_{ILmin}$	
	HIGH level	D ₄ , D ₉ , D ₁₄			350	μA	V _V	
Iн	input current	Other inputs		•	220	μA	$V_{IN} = V_{IHmax}$	
IIL	LOW level input cu	irrent	0.5			μA	V _{IN} = V _{ILmin}	
-I _{EE}	VEE supply current		37	57	79	mA	Inputs open	
$rac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation	V _{EE} = -4.2V			0.025	v/v		
$rac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	$T_A = +25^{\circ}C$			0.050	v/v		

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$, $T_A = 0^{\circ}C$ to $+85^{\circ}C$ unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst case testing guidelines, refer to Section 3 Testing, DC Testing.
The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 3.

Gate

AC ELECTRICAL CHARACTERISTICS

Ceramic DIP v_{CC1} = v_{CC2} = GND, v_{EE} = -4.2V $\pm 0.010V$ to -4.8V $\pm 0.010V$

	PARAMETER		= 0°C	T _A = -	+ 25°C	T _A = -	+ 85°C		TEOT CONDITIONS
			Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} t _{PHL}	Propagation delay D_n to Q_n , \overline{Q}_n	0.90 0.90	2.60 2.60	0.90 0.90	2.50 2.50	0.90 0.90	2.60 2.60	ns ns	
t _{PLH} t _{PHL}	Propagation delay E_n to Q_n , \overline{Q}_n	0.45 0.45	1.40 1.40	0.45 0.45	1.30 1.30	0.45 0.45	1.40 1.40	ns ns	Figs. 4, 5, 6
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.20 1.20	0.45 0.45	1.10 1.10	0.45 0.45	1.20 1.20	ns ns	

Ceramic DIP $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 5\%$

	DADAMETED	T _A =	= 0°C	T _A = -	+ 25°C	T _A = -	+ 85°C				
	PARAMETER		Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS		
t _{PLH} t _{PHL}	Propagation delay D_n to Q_n , \overline{Q}_n	0.90 0.90	2.60 2.60	0.90 0.90	2.50 2.50	0.90 0.90	2.60 2.60	ns ns			
t _{PLH} t _{PHL}	Propagation delay E_n to Q_n , \overline{Q}_n	0.45 0.45	1.40 1.40	0.45 0.45	1.30 1.30	0.45 0.45	1.40 1.40	ns ns	Figs. 4, 5, 6		
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.20 1.20	0.45 0.45	1.10 1.10	0.45 0.45	1.20 1.20	ns ns			

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$

	DADAMETED	T _A =	= 0°C	T _A = ·	+ 25°C	T _A = +	+85°C		TEAT CONDITIONS		
	PARAMETER		Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS		
t _{PLH} t _{PHL}	Propagation delay D_n to Q_n , \overline{Q}_n	0.90 0.90	2.40 2.40	0.90 0.90	2.30 2.30	0.90 0.90	2.40 2.40	ns ns			
t _{PLH} t _{PHL}	Propagation delay E_n to Q_n , \overline{Q}_n	0.45 0.45	1.20 1.20	0.45 0.45	1.10 1.10	0.45 0.45	1.20 1.20	ns ns	Figs. 4, 5, 6		
t _{TLH} t _{THL}			1.20 1.20	0.45 0.45	1.10 1.10	0.45 0.45	1.20 1.20	ns ns			

Gate

100117

AC ELECTRICAL CHARACTERISTICS

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 5\%$

		T _A =	= 0°C	T _A = ·	+ 25°C	T _A = -	+ 85°C				
	PARAMETER		Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS		
t _{PLH} t _{PHL}	Propagation delay D_n to Q_n , \overline{Q}_n	0.90 0.90	2.40 2.40	0.90 0.90	2.30 2.30	0.90 0.90	2.40 2.40	ns ns			
t _{PLH} t _{PHL}	Propagation delay E_n to Q_n , \overline{Q}_n	0.45 0.45	1.20 1.20	0.45 0.45	1.10 1.10	0.45 0.45	1.20 1.20	ns ns	Figs. 4, 5, 6		
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.20 1.20	0.45 0.45	1.10 1.10	0.45 0.45	1.20 1.20	ns ns			

AC WAVEFORMS

Gate

TEST CIRCUITS AND WAVEFORMS

Signetics

100118 Gate

Quint 2-4-4-5-Input OR-AND Gate Product Specification

ECL Products

DESCRIPTION

The 100118 is a 5-wide OR-AND 2-4-4-5 input Gate with true and complementary outputs.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
100118	1.15ns	43mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -4.2V \text{ to } -4.8V$ $T_A = 0^{\circ}C \text{ to } +85^{\circ}C$
Ceramic DIP	100118F
Ceramic Flat Pack	100118Y

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₁₈	Data Inputs
Q, <u>Q</u>	Data Outputs

LOGIC SYMBOL

January 30, 1986

853-0611 82178

Gate

100118

7

FUNCTION TABLE

INPUTS														ουτι	PUTS					
D ₀	D ₁	D ₂	D ₃	D ₄	D_5	D ₆	D7	D ₈	D ₉	D ₁₀	D ₁₁	D ₁₂	D ₁₃	D ₁₄	D ₁₅	D ₁₆	D ₁₇	D ₁₈	Q	Q
L	L	L	L	L	х	х	Х	х	х	х	х	х	Х	Х	х	х	х	х	н	L
Х	Х	х	Х	Х	L	L	L	L	Х	х	х	х	Х	Х	Х	Х	Х	х	н	L
х	х	х	х	х	Х	х	х	х	L	L	L	L	х	х	х	х	Х	х	н	L
х	х	х	х	х	х	х	х	х	Х	х	х	х	L	L	L	L	х	х	н	L
Х	х	х	х	х	х	Х	Х	х	х	х	х	х	х	х	х	х	L	L	н	L
	all other combinations										L	н								

Positive Logic:

H = HIGH state (more positive voltage) = 1

L = LOW state (less positive voltage) = 0

X = Don't Care

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	100K ECL	UNIT
V _{EE}	Supply voltage ($V_{CC1} = V_{CC2} = GND$)	-7.0 to 0	V
V _{IN}	Input voltage (VIN should never be more negative than VEE)	V _{EE} to +0.5	V
lo	Output source current	-55	mA
Τ _S	Storage temperature	-65 to +150	°C
TJ	Maximum junction temperature	+ 150	°C

DC OPERATING CONDITIONS

	P/	Min Nom		Max	UNIT		
V _{CC1} , V _{CC2}	Circuit ground			0	0	0	v
V _{EE}	Supply voltage (negative	э)		-4.2	-4.5	-4.8	v
V _{EE}	Supply voltage (negative	e) when operating with 10K	ECL family			-5.7	v
			$V_{EE} = -4.2V$	-1150			
VIH	HIGH level input voltage		$V_{EE} = -4.5V$	1.105]	-880	mV
			V _{EE} = -4.8V	1165			
	HIGH level input threshold voltage		$V_{EE} = -4.2V$	-1150			mV
VIHT		$V_{CC1} = V_{CC2} = GND$	$V_{EE} = -4.5V$	1105			
			$V_{EE} = -4.8V$	1165			mV
			$V_{EE} = -4.2V$				
VILT	LOW level input threshold voltage	$T_A = 0^{\circ}C to + 85^{\circ}C$	$V_{EE} = -4.5V$	1		-1475	mV
	unoshola voltage		$V_{EE} = -4.8V$			-1490	mV
			V _{EE} = -4.2V				
V _{IL}	LOW level input voltage		V _{EE} = -4.5V			-1475	mV
	input tonago		V _{EE} = -4.8V	1		-1490]
T _A	Operating ambient temp	•	0	+ 25	+ 85	°C	

NOTE:

When operating at other than specified voltages (-4.2V, -4.5V, -4.8V) DC & AC Characteristics will vary slightly from specified values.

Gate

100118

			r		· · · · · · · · · · · · · · · · · · ·		1			
	PARAMETER		MIN	TYP	MAX	UNIT	TEST	CONDITIONS ²		
		$V_{EE} = -4.2V$	-1025		-870	mV	V _{IN} = V _{IHmax}			
V _{OH}	HIGH level output voltage	$V_{EE} = -4.5V$	-1025	-955	-880	mV	or			
		$V_{EE} = -4.8V$	-1035		-880	mV	V _{IN} = V _{ILmin}			
		$V_{EE} = -4.2V$	-1035			mV	V _{IN} = V _{IHmin}			
V _{OHT}	HIGH level output threshold voltage	$V_{EE} = -4.5V$	-1035			mV	or			
		$V_{EE} = -4.8V$	-1045			mV	$V_{IN} = V_{ILmax}$	Loading with		
		V _{EE} = -4.2V			-1590	mV	V _{IN} = V _{IHmin} or	50Ω to $-2.0V \pm 0.010V$		
VOLT	LOW level output threshold voltage	V _{EE} = -4.5V			-1610	mV				
		$V_{EE} = -4.8V$			-1610	mV	$V_{IN} = V_{ILmax}$			
		$V_{EE} = -4.2V$	-1810		-1600	mV	V _{IN} = V _{IHmax}			
VOL	LOW level output voltage	$V_{EE} = -4.5V$	-1810	-1705	-1620	mV	or			
		$V_{EE} = -4.8V$	-1830		-1620	mV	V _{IN} = V _{ILmin}			
Ιн	HIGH level input c	urrent			350	μA	$V_{IN} = V_{IHmax}$			
I _{IL}	LOW level input cu	rrent	0.5			μA	V _{IN} = V _{ILmin}			
-I _{EE}	V _{EE} supply current		32	43	92	mĄ	Inputs open			
$rac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation	V _{FF} = -4.2V			0.025	v/v				
$\frac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	$T_{A} = +25^{\circ}C$			0.05	v/v				

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$, $T_A = 0^{\circ}C$ to $+85^{\circ}C$ unless otherwise specified^{1, 3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

2. Conditions for testing shown in the tables are not necessarily worst case. For worst case testing guidelines, refer to Section 3, DC Testing.

3. The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 3.

Gate

AC ELECTRICAL CHARACTERISTICS

Ceramic DIP v_{CC1} = v_{CC2} = GND, v_{EE} = -4.2V $\pm 0.010V$ to -4.8V $\pm 0.010V$

	PARAMETER		T _A = 0°C		T _A = + 25°C		+ 85°C	LINUT		
			Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH}	Propagation delay	0.85	3.20	0.85	3.20	0.85	3.40	ns	Figs. 4, 5, 6	
t _{PHL}	D _n to Q, Q	0.85	3.20	0.85	3.20	0.85	3.40	ns		
t _{TLH}	Transition time	0.45	1.50	0.45	1.40	0.45	1.50	ns	, igo. ,, o, o	
t _{THL}	20% to 80%, 80% to 20%	0.45	1.50	0.45	1.40	0.45	1.50	ns		

Ceramic DIP $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 5\%$

	PARAMETER		$T_A = 0^{\circ}C \qquad T_A = +25^{\circ}C$		+ 25°C	T _A = + 85°C			TEAT CONDITIONS	
			Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH}	Propagation delay	0.85	3.20	0.85	3.20	0.85	3.40	ns	Figs. 4, 5, 6	
t _{PHL}	D _n to Q, Q	0.85	3.20	0.85	3.20	0.85	3.40	ns		
t _{TLH}	Transition time	0.45	1.50	0.45	1.40	0.45	1.50	ns		
t _{THL}	20% to 80%, 80% to 20%	0.45	1.50	0.45	1.40	0.45	1.50	ns		

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$

	PARAMETER		$T_A = 0^{\circ}C$ $T_A = +2$		+ 25°C	25°C T _A = + 85°C			TEAT CONDITIONS	
			Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH}	Propagation delay	0.85	3.00	0.85	3.00	0.85	3.20	ns	Figs. 4, 5, 6	
t _{PHL}	D _n to Q, Q	0.85	3.00	0.85	3.00	0.85	3.20	ns		
t _{TLH}	Transition time	0.45	1.50	0.45	1.40	0.45	1.50	ns		
t _{THL}	20% to 80%, 80% to 20%	0.45	1.50	0.45	1.40	0.45	1.50	ns		

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 5\%$

		$T_A = 0^{\circ}C$		T _A = + 25°C		T _A = + 85°C			TEAT CONDITIONS	
	PARAMETER		Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH}	Propagation delay	0.85	3.00	0.85	3.00	0.85	3.20	ns	Figs. 4, 5, 6	
t _{PHL}	D _n to Q, Q	0.85	3.00	0.85	3.00	0.85	3.20	ns		
t _{TLH}	Transition time	0.45	1.50	0.45	1.40	0.45	1.50	ns		
t _{THL}	20% to 80%, 80% to 20%	0.45	1.50	0.45	1.40	0.45	1.50	ns		

Gate

100118

AC WAVEFORMS

TEST CIRCUITS AND WAVEFORMS

Gate

100118

Signetics

100122 **Buffer**

9-Gate Buffer **Product Specification**

ECL Products

DESCRIPTION

The 100122 contains 9 Buffer Gates with single input and output.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})			
100122	0.75ns	78mA			

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -4.2V$ to -4.8V $T_A = 0^{\circ}C$ to +85°C
Ceramic DIP	100122F
Ceramic Flat Pack	100122Y

PIN DESCRIPTION

PINS	DESCRIPTION					
D ₀ – D ₈	Data Inputs					
Q ₀ – Q ₈	Data Outputs					

PIN CONFIGURATION Vcc2 1

Q2 2

Q1 [3

Q0 4

Q8 5

Vcc1 6

Vcc2 7

Q7 8

Q6 9

Q5 10

Q4 [1] Q3 12

D₀ 1

D1 2

D2 3

Vcc2 4

Q2 5

Q1 6

24) D2

23 D1

22 Do

21 Da

20 D7

19 NC

18 V_{EE}

17 08

16 D5

15 D4

14 D3

13 V_{CC2}

18 D4

17 D3

15 Q3

14 04

13 Q5

CD09130S

16 Vcc2

CERAMIC DIP

D8 D7 NC VEE D8 D5

FLAT PACK

7 8 9 10 11 12 Q0 Q8 VCC1 VCC2 Q7 Q8 (TOP VIEW)

LOGIC SYMBOL

January 30, 1986

853-0612 82178

Buffer

100122

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

·····			
	PARAMETER	100K ECL	UNIT
V _{EE}	Supply voltage ($V_{CC1} = V_{CC2} = GND$)	-7.0 to 0	V
VIN	Input voltage (VIN should never be more negative than VEE)	V _{EE} to +0.5V	
lo	Output source current	-55	mA
Ts	Storage temperature	-65 to +150	°C
Tj	Maximum junction temperature	+ 150	°C

RECOMMENDED OPERATING CONDITIONS

	PAI	Min	Nom	Max	UNIT		
V _{CC1} , V _{CC2}	Circuit ground			0	0	0	v
V _{EE}	Supply voltage (negative)			-4.2	-4.5	-4.8	v
V _{EE}	Supply voltage (negative)	when operating with 10K	ECL family			-5.7	v
			V _{EE} = -4.2V	-1150			
VIH	HIGH level input voltage		$V_{EE} = -4.5V$	1405	1	-880	mV
			$V_{EE} = -4.8V$	1165			
			V _{EE} = -4.2V	-1150			mV
VIHT	HIGH level input threshold voltage	$V_{CC1} = V_{CC2} = GND$	$V_{EE} = -4.5V$	4405			mV
	theshold voltage		$V_{EE} = -4.8V$	1165			
			$V_{EE} = -4.2V$				mV
V _{ILT}	LOW level input threshold voltage	$T_A = 0^{\circ}C$ to $+85^{\circ}C$	$V_{EE} = -4.5V$	1		-1475	
	unconcia voltage		V _{EE} = -4.8V			-1490	mV
			V _{EE} = -4.2V				
V _{IL}	LOW level input voltage		V _{EE} = -4.5V	-1810	}	-1475	mV
	input tonugo		$V_{EE} = -4.8V$	1		-1490	
T _A	Operating ambient tempe	0	+ 25	+ 85	°C		

NOTE:

When operating at other than specified voltages (-4.2V, -4.5V, -4.8V) DC & AC Characteristics will vary slightly from specified values.

Buffer

100122

			uniess	otnerwise	specified '				
	PARAMETER		MIN	ТҮР	MAX	UNIT	TEST	CONDITIONS ²	
		V _{EE} = -4.2V	-1025		-870	mV	V _{IN} = V _{IHmax}		
V _{OH}	HIGH level output voltage	V _{EE} = -4.5V	-1025	-955	-880	mV	or		
	ouput voltage	V _{EE} = -4.8V	-1035		-880	mV	$V_{IN} = V_{ILmin}$		
		V _{EE} = -4.2V	-1035			mV	V _{IN} = V _{IHmin}	·	
V _{OHT}	HIGH level output threshold voltage	V _{EE} = -4.5V	-1035			mV	or		
	threshold voltage	V _{EE} = -4.8V	-1045			mV	$V_{IN} = V_{ILmax}$	Loading with	
		V _{EE} = -4.2V			-1590	mV	V _{IN} = V _{IHmin} or	50Ω to -2.0V ±0.010V	
VOLT	LOW level output threshold voltage	V _{EE} = -4.5V			-1610	mV			
	inconoid voltage	V _{EE} = -4.8V			-1610	mV	V _{IN} = V _{ILmax}		
		V _{EE} = -4.2V	-1810		-1600	mV	V _{IN} = V _{IHmax}		
VOL	LOW level output voltage	V _{EE} = -4.5V	-1810	-1705	-1620	mV	or		
	oulput tonago	$V_{EE} = -4.8V$	-1830		-1620	mV	V _{IN} = V _{ILmin}		
Iн	HIGH level input c	urrent			350	μA	V _{IN} = V _{IHmax}		
կլ	LOW level input cu	irrent	0.5			μA	V _{IN} = V _{ILmin}		
-I _{EE}	VEE supply current		46	78	96	mA	Inputs open		
$rac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation	V _{EE} = -4.2V			0.025	v/v			
$rac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	$T_A = +25^{\circ}C$			0.050	v/v			

DC ELECTRICAL CHARACTERISTICS $V_{CG1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$, $T_A = 0^{\circ}C$ to $+85^{\circ}C$ unless otherwise specified^{1,3}

NOTES:

The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Conditions for testing shown in the tables are not necessarily worst case. For worst case testing guidelines, refer to Section 3 Testing, DC Testing.

Conditions for testing shown in the tables are not necessarily worst case. For worst case testing guidelines, refer to Section 3 Testing, DC Testing.
The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 3.

Buffer

AC ELECTRICAL CHARACTERISTICS

Ceramic DIP v_{CC1} = v_{CC2} = GND, v_{EE} = -4.2V $\pm 0.010V$ to -4.8V $\pm 0.010V$

	PARAMETER	T _A =	$T_A = 0^{\circ}C \qquad T_A = +25^{\circ}C$		T _A = +85°C		UNIT	TEAT CONDITIONS		
		Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH} t _{PHL}	Propagation delay D _n to Q _n	0.45 0.45	1.60 1.60	0.45 0.45	1.45 1.45	0.45 0.45	1.60 1.60	ns ns	Figs. 4, 5, 6	
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.40 1.40	0.45 0.45	1.30 1.30	0.45 0.45	1.30 1.30	ns ns		

Ceramic DIP $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 5\%$

		T _A = 0°C		T _A = + 25°C		T _A = + 85°C			TEAT CONDITIONS	
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH}	Propagation delay	0.45	1.60	0.45	1.45	0.45	1.60	ns	Figs. 4, 5, 6	
t _{PHL}	D _n to Q _n	0.45	1.60	0.45	1.45	0.45	1.60	ns		
t _{TLH}	Transition time	0.45	1.40	0.45	1.30	0.45	1.30	ns		
t _{THL}	20% to 80%, 80% to 20%	0.45	1.40	0.45	1.30	0.45	1.30	ns		

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$

	PARAMETER	T _A = 0°C T _A =		+ 25°C T _A = +		+85°C		TEAT CONDITIONS		
		Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH}	Propagation delay	0.45	1.40	0.45	1.25	0.45	1.40	ns	Figs. 4, 5, 6	
t _{PHL}	D _n to Q _n	0.45	1.40	0.45	1.25	0.45	1.40	ns		
t _{TLH}	Transition time	0.45	1.40	0.45	1.30	0.45	1.30	ns		
t _{THL}	20% to 80%, 80% to 20%	0.45	1.40	0.45	1.30	0.45	1.30	ns		

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 5\%$

		$T_A = 0^{\circ}C$		T _A = + 25°C		T _A = + 85°C		UNIT	TEST CONDITIONS	
PARAMETER		Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH}	Propagation delay	0.45	1.40	0.45	1.25	0.45	1.40	ns	Figs. 4, 5, 6	
t _{PHL}	D _n to Q _n	0.45	1.40	0.45	1.25	0.45	1.40	ns		
t _{TLH}	Transition time	0.45	1.40	0.45	1.30	0.45	1.30	ns		
t _{THL}	20% to 80%, 80% to 20%	0.45	1.40	0.45	1.30	0.45	1.30	ns		

Buffer

100122

AC WAVEFORMS

TEST CIRCUITS AND WAVEFORMS

Buffer

100122

7–57

Signetics

ECL Products

DESCRIPTION

The 100123 contains six bus drivers capable of driving terminated lines with terminations as low as 25Ω . Each output has its respective ground connection. The driver itself performs the positive logic AND of a data input and the OR of two enable inputs. The output voltage LOW level is more negative than usual ECL outputs. This allows an emitterfollower output transistor to turn off, when the termination supply V_T is –2.0V \pm 10%.

100123 Driver

Bus Driver Product Specification

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
100123	0.75ns	176mA

ORDERING CODE

PACKAGES	$\label{eq:VCC1} \begin{array}{l} \mbox{COMMERCIAL RANGE} \\ \mbox{V}_{CC1} = \mbox{V}_{CC2} = \mbox{GND}; \ \mbox{V}_{EE} = -4.2 \mbox{V} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Ceramic DIP	100123F
Ceramic Flat Pack	100123Y

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₅	Data Inputs
Ē	Common Enable Input
$\overline{DE}_0 - \overline{DE}_2$	Dual Enable Inputs
Q ₀ – Q ₅	Data Outputs

PIN CONFIGURATION

24 Q5 [T Q4 2 23 D3 V_{CC2} 3 22 D4 Q3 4 21 Ds Vcc2 5 20 DE2 Vcc1 6 19 Ē Vcc2 7 18 V_{EE} Q0 8 17 DE1 V_{CC2} 9 16 DE₀ Q1 10 15 Do Vcc2 11 14 D1 Q2 12 13 D2 D5 DE2 E VEE DE1 DE0 24 23 22 21 20 19 D4 1 18 Do D3 2 17 D1 Q5 3 FLAT PACK 16 D₂ VCC2 4 15 Q2 Q4 5 14 Vcc2 Vccz 6 13 Q1 7 8 9 10 11 12 Q3 VCC2VCC1VCC2Q0 VCC2 (TOP VIEW) CD091505 Figure 1

LOGIC SYMBOL

853-0613 82178

Driver

100123

FUNCTION TABLE

	INPUTS					
Ē	DE	Dn	Qn			
X	X	L	L			
L	L	н	L			
Н	Х	н	н			
X	н	н	н			

Positive Logic:

H = HIGH state (more positive voltage) = 1

L = LOW state (less positive voltage) = 0

X = Don't Care

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	100K ECL	UNIT
V _{EE}	Supply voltage ($V_{CC1} = V_{CC2} = GND$)	-7.0 to o	V
V _{IN}	Input voltage (V _{IN} should never be more negative than V _{EE})	V _{EE} to +0.5	V
lo	Output source current	-55	mA
Τ _S	Storage temperature	-65 to +150	°C
TJ	Maximum junction temperature	+ 150	°C

DC OPERATING CONDITIONS

		RAMETER					
	PA		Min	Nom	Max	UNIT	
V _{CC1} , V _{CC2}	Circuit ground			0	0	0	v
V _{EE}	Supply voltage (negative)		-4.2	-4.5	-4.8	v
V _{EE}	Supply voltage (negative) when operating with 10K	ECL family			-5.7	v
			V _{EE} = -4.2V	-1150		-	
V _{IH} HIGH level input voltage			V _{EE} = -4.5V	4405		-880	mV
	input fondgo		$V_{EE} = -4.8V$	1165			
	HIGH level input threshold voltage		V _{EE} = -4.2V	-1150			mV
VIHT		$V_{CC1} = V_{CC2} = GND$	V _{EE} = -4.5V	1105			
			$V_{EE} = -4.8V$	1165			mV
			V _{EE} = -4.2V				mV
VILT	LOW level input threshold voltage	$T_A = 0^{\circ}C \text{ to } + 85^{\circ}C$	V _{EE} = -4.5V	1		-1475	
	unconoid voltago		V _{EE} = -4.8V			-1490	mV
			V _{EE} = -4.2V				
V _{IL}	LOW level input voltage		$V_{EE} = -4.5V$	-1810		-1475	mV
	input tonago		$V_{EE} = -4.8V$	1		-1490	
T _A	Operating ambient temp	erature		0	+ 25	+ 85	°C

NOTE:

When operating at other than specified voltages (-4.2V, -4.5V, -4.8V) DC & AC Characteristics will vary slightly from specified values.

Driver

TEST CONDITIONS² түр UNIT PARAMETER MIN MAX $V_{EE} = -4.2V$ -1035 -870 m٧ $V_{IN} = V_{IHmax}$ Loading with HIGH level 25Ω to -2.0V V_{OH} $V_{FF} = -4.5V$ -1025 -955 -880 m٧ or output voltage $V_{IN} = V_{ILmin}$ $V_{EE} = -4.8V$ -1035 -870 mV $V_{EE} = -4.2V$ -1045 m٧ $V_{IN} = V_{IHmin}$ Loading with HIGH level output $V_{EE} = -4.5V$ -1035 mV 25Ω to -2.1V VOHT or threshold voltage $V_{IN} = V_{ILmax}$ $V_{FF} = -4.8V$ -1045 mV $V_{EE} = -4.2V$ -1590 m\/ Loading with LOW level output VIN = VIHmin $V_{FF} = -4.5V$ 25 Ω to -2.0V $\pm\,0.010V$ VOLT -1610 m٧ or threshold voltage $V_{IN} = V_{ILmax}$ $V_{EE} = -4.8V$ -1610 m٧ $V_{EE} = -4.2V$ -2200 mV V_{IN} = V_{IHmax} Loading with LOW level VOL $V_{EE} = -4.5V$ -2200 m٧ or 25Ω to -2.4Voutput voltage V_{IN} = V_{ILmin} $V_{EE} = -4.8V$ -2200 m٧ Ē 350 μA HIGH level ŀн $V_{IN} = V_{IHmax}$ D_n, \overline{DE} μA input current 260 LOW level input current 0.5 μA $V_{IN} = V_{ILmin}$ hι -IEE VEE supply current 113 176 235 mΑ Inputs open HIGH level ΔV<u>0H</u> $V_{EE} = -4.2V$ v/v 0.035 output voltage $T_{A} = +25^{\circ}C$ $\overline{\Delta V_{\text{EE}}}$ compensation

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$, $T_A = 0^{\circ}C$ to $+85^{\circ}C$ unless otherwise specified^{1, 3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

2. Conditions for testing shown in the tables are not necessarily worst case. For worst case testing guidelines, refer to Section 3 Testing, DC Testing.

3. The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 3.

Driver

AC ELECTRICAL CHARACTERISTICS

Ceramic DIP V_{CC1} = V_{CC2} = GND, V_{EE} = -4.2V $\pm 0.010V$ to -4.8V $\pm 0.010V$

	PARAMETER		T _A = 0°C		T _A = + 25°C		T _A = + 85°C		TEST CONDITIONS
			Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} t _{PHL}	Propagation delay D _n to Q _n	1.70 1.00	4.35 2.40	1.75 1.00	4.35 2.40	1.75 1.10	4.65 2.60	ns ns	Figs. 4, 5, 6
t _{PLH} t _{PHL}	Propagation delay DE _n to Q _n	2.00 1.20	4.70 3.00	2.00 1.20	4.70 3.00	2.00 1.20	5.10 3.40	ns ns	
t _{PLH} t _{PHL}	Propagation delay \overline{E} to Q_n	2.10 1.20	5.40 3.30	2.10 1.20	5.30 3.30	2.10 1.20	5.80 3.70	ns ns	
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.70 0.45	2.00 1.30	0.70 0.45	1.90 1.20	0.70 0.45	2.10 1.30	ns ns	

Ceramic DIP V_{CC1} = V_{CC2} = GND, V_{EE} = –5.2V $\pm\,5\%$

	PARAMETER		$T_A = 0^{\circ}C$		T _A = + 25°C		T _A = +85°C		TEST CONDITIONS		
· · ·			Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS		
t _{PLH} t _{PHL}	Propagation delay D _n to Q _n	1.70 1.00	4.35 2.40	1.75 1.00	4.35 2.40	1.75 1.10	4.65 2.60	ns ns			
t _{PLH} t _{PHL}	Propagation delay DE _n to Q _n	2.00 1.20	4.70 3.00	2.00 1.20	4.70 3.00	2.00 1.20	5.10 3.40	ns ns	Figs. 4, 5, 6		
t _{PLH} t _{PHL}	Propagation delay Ē to Q _n	2.10 1.20	5.40 3.30	2.10 1.20	5.30 3.30	2.10 1.20	5.80 3.70	ns ns			
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.70 0.45	2.00 1.30	0.70 0.45	1.90 1.20	0.70 0.45	2.10 1.30	ns ns			

Flat Pack V_{CC1} = V_{CC2} = GND, V_{EE} = -4.2V $\pm\,0.010V$ to -4.8V $\pm\,0.010V$

PARAMETER		T _A = 0°C		T _A = + 25°C		T _A = +85°C			TEAT CONDITIONS
		Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} t _{PHL}	Propagation delay D _n to Q _n	1.70 1.00	4.15 2.20	1.75 1.00	4.15 2.20	1.75 1.10	4.45 2.40	ns ns	– Figs. 4, 5, 6
t _{PLH} t _{PHL}	Propagation delay $\overline{\text{DE}}_n$ to Q_n	2.00 1.20	4.50 2.80	2.00 1.20	4.50 2.80	2.00 1.20	4.90 3.20	ns ns	
t _{PLH} t _{PHL}	Propagation delay Ē to Q _n	2.10 1.20	5.20 3.10	2.10 1.20	5.10 3.10	2.10 1.20	5.60 3.50	ns ns	
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.70 0.45	2.00 1.30	0.70 0.45	1.90 1.20	0.70 0.45	2.10 1.30	ns ns	

January 30, 1986

Driver

100123

AC ELECTRICAL CHARACTERISTICS

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 5\%$

4 	PARAMETER		T _A = 0°C		T _A = + 25°C		T _A = + 85°C		
			Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} t _{PHL}	Propagation delay D _n to Q _n	1.70 1.00	4.15 2.20	1.75 1.00	4.15 2.20	1.75 1.10	4.45 2.40	ns ns	- Figs. 4, 5, 6
t _{PLH} t _{PHL}	Propagation delay DE _n to Q _n	2.00 1.20	4.50 2.80	2.00 1.20	4.50 2.80	2.00 1.20	4.90 3.20	ns ns	
t _{PLH} t _{PHL}	Propagation delay Ē to Q _n	2.10 1.20	5.20 3.10	2.10 1.20	5.10 3.10	2.10 1.20	5.60 3.50	ns ns	
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.70 0.45	2.00 1.30	0.70 0.45	1.90 1.20	0.70 0.45	2.10 1.30	ns ns	

AC WAVEFORMS

Driver

TEST CIRCUITS AND WAVEFORMS

Figure 5. Test Circuit

Signetics

ECL Products

DESCRIPTION

The 100124 is a Hex Translator, designed to convert TTL logic levels to 100K ECL logic levels. The inputs are compatible with standard or Schottky TTL. A common Enable input (E), when LOW, holds all inverting HIGH and holds all true outputs LOW. The differential outputs allow each circuit to be used as an inverting/non-inverting translator or as a differential line driver. The output levels are voltage compensated. When the circuit is used in the differential mode, the 100124, due to its high common-mode rejection, overcomes voltage gradients between the mode rejection, overcomes voltage gradients between the TTL and ECL ground systems. The V_{EE} and V_{CC} power may be applied in either order.

100124 **Translator**

Hex TTL-to-ECL Translator Preliminary Specification

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
100124	1.7ns	105mA

ORDERING CODE

PACKAGES	$\label{eq:VCC1} \begin{array}{l} \mbox{COMMERCIAL RANGE} \\ \mbox{V}_{CC1} = \mbox{V}_{CC2} = \mbox{V}_{CC3} &= \mbox{GND}; \ \mbox{V}_{TTL} = +5.0V; \ \ \mbox{V}_{EE} = -4.2V \\ & \mbox{to} \ -4.8V; \ \ \mbox{T}_{A} = 0^{\circ}\mbox{C} \ \ \mbox{to} \ +85^{\circ}\mbox{C} \end{array}$
Ceramic DIP	100124F
Ceramic Flat Pack	100124Y

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₅	Data Inputs (Schottky TTL)
E	Enable Inputs (Schottky TTL)
Q ₀ – Q ₅	Data Outputs
$\overline{Q}_0 - \overline{Q}_5$	Complementary Data Outputs

PIN CONFIGURATION ā0 1

Q1 2

ā1 3

Q2 4

Q2 5

VCC1 6

Vcc2 7

Vcc3 8 03 9

Q₃ 10

ã₄ [1]

Q4 12

D1 1

D2 2

Q0 3 ā, 4

Q1 5

ā1 6

24 Q₀

23 D2

22 D1

21 Do

20 VTTL

19 E

18 VEE

17 D3

16 D4

15 D₅

14 Q5

13 Q₅

18 D₅

17 Q5 16 Ōs

15 Q4

14 04

13 Q3

CD09201S

LOGIC SYMBOL

7 8 9 10 11 12 Q2 Q2 VCC1VCC2VCC3Q3

Do VTTL E VEE D3 D4

100124

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	VALUE	UNIT
40016 501	V _{EE} Supply voltage (GND1 = GND2 = GND3 = GND)	-7.0 to 0	v
100K ECL	IO Output source current	55	mΛ
	V _{CC} Supply voltage	+ 7.0	V
TTL	V _{IN} Input voltage	-0.5 to +5.5	V
	I _{IN} Input current	-30 to +5.0	mA
T _S	Storage temperature	-65 to +150	°C
TJ	Maximum junction temperature	+ 150	°C

DC OPERATING CONDITIONS FOR TTL

	DAD 11/7750		TTL					
	PARAMETER	Min	Nom	Max	UNIT			
V _{CC1} V _{CC2}	Supply voltage	4.5	5.0	5.5	V			
VIH	HIGH level input voltage	2.0			v			
VIL	LOW level input voltage			+0.8	v			
l _{IK}	Input clamp current			- 18	mA			
юн	HIGH level output current		,	1	V			
IOL	LOW level output current	2.0		20	v			
TA	Operating ambient temperature	0	+ 25	+ 85	°C			

DC OPERATING CONDITIONS FOR ECL

			UNIT			
	PARAMETER	Min	Nom	Max	UNIT	
V _{CC1} V _{CC2}	Circuit ground	0	0	0	V	
V _{EE}	Supply voltage (negative)	-4.2	-4.5	-4.8	V	
V _{EE}	Supply voltage (negative) when operating with 10K ECL family			-5.7	V	

100124

DC ELECTRICAL CHARACTERISTICS (TTL) $V_{CC1} = V_{CC2} = V_{CC3} = GND$, $V_{TTL} = +5.0V \pm 0.010V$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$, $T_A = 0^{\circ}C$ to $+85^{\circ}C$ unless otherwise specified¹

	PARAMETER			100124			TEST CONDITIONS		
- It -	Input current at input voltage	maximum			1.0	mA	V _{IN} = +5.5V All other inputs = GND		
,	HIGH level	D _n inputs			20		$V_{IN} = +2.4V$		
Чн	input current	E inputs			120	- μΑ	All other inputs = GND		
	LOW level	D _n inputs	-1.6				$V_{IN} = +0.4V$		
ιL	input current	E inputs	-9.6			- mA	All other inputs = GND		
Icc	Supply current			44	75	mA	All inputs V _{IN} = GND		

DC ELECTRICAL CHARACTERISTICS (100K ECL) $V_{CC1} = V_{CC2} = V_{CC3} = GND$, $V_{TTL} = +5.0V \pm 0.010V$, $V_{EE} = -4.2V$ to $-4.8V \pm 0.010V$, $T_A = 0^{\circ}C$ to $+85^{\circ}C$ unless otherwise specified^{1,3}

	PARAMETER		MIN	ТҮР	MAX	UNIT	TEST CO	ONDITIONS ²
		V _{EE} =4.2V	-1025		-870	mV		
V_{OH}	HIGH level output voltage	V _{EE} = -4.5V	-1025	-955	-880	mV	V _{IN} = 0.4V (TTL)	
	ostput tonago	$V_{EE} = -4.8V$	-1035		-880	mV		
		V _{EE} = -4.2V	-1035			mV		-
V _{OHT}	HIGH level output threshold voltage	V _{EE} =4.5V	-1035			mV	V _{IN} = 0.8V (TTL)	
	through the totage	$V_{EE} = -4.8V$	-1045			mV		Loading with
		V _{EE} = -4.2V			-1590	mV		25Ω to $-2.0V$
VOLT	LOW level output threshold voltage	$V_{EE} = -4.5V$			-1610	mV	V _{IN} = 2.0V (TTL)	
	anoonola tokago	V _{EE} = -4.8V			-1610	mV		
		V _{EE} = -4.2V	-1810		-1600	mV		
V _{OL}	LOW level output voltage	V _{EE} = -4.5V	1810	1705	1620	mV	V _{IN} = 2.4V (TTL)	
		V _{EE} =4.8V	- 1830		-1620	mV		
$-I_{EE}$	Supply current		52	96	140	mA	For all inp	buts $V_{IN} = +4.0V$
$rac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation	V _{FF} = -4.2V			0.035	v/v		
$rac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	$T_A = +25^{\circ}C$			0.070	v/v		

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

2. Conditions for testing shown in the tables are not necessarily worst case. For worst case testing guidelines, refer to Section 3 Testing, DC testing.

3. The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 3.

100124

Translator

AC ELECTRICAL CHARACTERISTICS

Ceramic DIP $V_{CC1} = V_{CC2} = V_{CC3} = GND$, $V_{TTL} = +5.0V \pm 0.010V$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$

	PARAMETER		T _A = 0°C		T _A = + 25°C		+ 85°C		TEST CONDITIONS
			Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH}	Propagation delay D _n to Q _n , Q _n	0.50 0.50	3.00 3.00	0.50 0.50	2.90 2.90	0.50 0.50	3.00 3.00	ns ns	Fig. 5, 6, 7
tтін tтні	Transition time TTL 20% to 80%, 80% to 20%	0.45 0.45	1.80 1.80	0.45 0.45	1.80 1.80	0.45 0.45	1.80 1.80	ns ns	Fig. 5, 7

Ceramic DIP $V_{CC1} = V_{CC2} = V_{CC3} = GND$, $V_{TTL} = +5.0V \pm 0.010V$, $V_{EE} = -5.2V \pm 5\%$

	PARAMETER		T _A = 0°C		T _A = + 25°C		+ 85°C		TEAT COMPLETIONS
			Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH}	Propagation delay	0.50	3.00	0.50	2.90	0.50	3.00	ns	Fig. 5, 6, 7
t _{PHL}	D _n to Q _n , Q _n	0.50	3.00	0.50	2.90	0.50	3.00	ns	
t _{TLH}	Transition time TTL	0.45	1.80	0.45	1.80	0.45	1.80	ns	Fig. 5, 7
t _{THL}	20% to 80%, 80% to 20%	0.45	1.80	0.45	1.80	0.45	1.80	ns	

Flat Pack $V_{CC1} = V_{CC2} = V_{CC3} = GND$, $V_{TTL} = +5.0V \pm 0.010V$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$

			T _A = 0°C		T _A = + 25°C		+85°C		TEAT CONDITIONS
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} t _{PHL}	Propagation delay D _n to Q _n , Q _n	0.50 0.50	2.80 2.80	0.50 0.50	2.70 2.70	0.50 0.50	2.80 2.80	ns ns	Fig. 5, 6, 7
t _{TLH} t _{THL}	Transition time TTL 20% to 80%, 80% to 20%	0.45 0.45	1.70 1.70	0.45 0.45	1.70 1.70	0.45 0.45	1.70 1.70	ns ns	Fig. 5, 7

Flat Pack $V_{CC1} = V_{CC2} = V_{CC3} = GND$, $V_{TTL} = +5.0V \pm 0.010V$, $V_{EE} = -5.2V \pm 5\%$

	PARAMETER		T _A = 0°C		T _A = + 25°C		+ 85°C		TEAT CONDITIONS
			Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} t _{PHL}	Propagation delay D _n to Q _n , Q _n	0.50 0.50	2.80 2.80	0.50 0.50	2.70 2.70	0.50 0.50	2.80 2.80	ns ns	Fig. 5, 6, 7
t _{TLH} t _{THL}	Transition time TTL 20% to 80%, 80% to 20%	0.45 0.45	1.70 1.70	0.45 0.45	1.70 1.70	0.45 0.45	1.70 1.70	ns ns	Fig. 5, 7

100124

AC WAVEFORMS

TEST CIRCUITS AND WAVEFORMS

Signetics

ECL Products

DESCRIPTION

100125 is a Hex Translator to convert 100K ECL logic levels to TTL logic levels. Differential inputs allow each circuit to be used as an inverting, noninverting or differential receiver. An internal reference voltage generator provides V_{BB} for single-ended operation or for use in Schmitt trigger applications.

All inputs have 50k pulldown resistors; therefore, the outputs will go LOW when the inputs are left unconnected. When used in the differential mode, the inputs have a common-mode rejection of +1V, making this device tolerant of ground offsets and transients between the signal source and the translator. The VEE and V_{CC} power may be applied in either order.

100125 **Translator**

Hex ECL-to-TTL Translator **Preliminary Specification**

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
100125	2.2ns	105mA

ORDERING CODE

PACKAGES	$\begin{array}{l} \mbox{COMMERCIAL RANGE} \\ \mbox{V}_{TTL1} = \mbox{V}_{TTL2} = + 5.0 \mbox{V}, \mbox{V}_{CC1} = \mbox{V}_{CC2} = \mbox{GND}; \mbox{V}_{EE} = -4.2 \mbox{V} \\ \mbox{to} \ -4.8 \mbox{V}; \ \mbox{T}_{A} = \mbox{0}^{\circ} \mbox{C} \ \ \ to \ + 85^{\circ} \mbox{C} \end{array}$
Ceramic DIP	100125F
Ceramic Flat Pack	100125Y

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₅	Data Inputs
$\overline{D}_0 - \overline{D}_5$	Data Inputs, Inverting
V _{BB}	Reference Bias Voltage Output
Q ₀ – Q ₅	Data Outputs (Schottky TTL)

PIN CONFIGURATION Q5 1

Q4 2

Q3 3

V77L1 4 VTTL2 5

Vcc1 6

Vcc2 7

Q2 8

Q1 9

Q₀ 10

D₀ [1]

D₀ 12

DA 1

D5 2

Ds 3

Q4 4

Q4 5

Q3 6

24 D5

23 D6

22 D4

21 04

20 D₃

19 D₃

18 VEE

17 V88

16 D₂

15 D2

14 D1

13 D₁

18 D₂

17 D1

16 D₁

15 D₀

14 D₀

13 Q4

CD09221S

LOGIC SYMBOL

7 8 9 10 11 12 VTTLI VTTL2VCC1VCC2Q2 Q1

D4 D3 D3 VEE VBB D2

24 23 22 21 20 19

100125

Translator

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limits set forth in this table may impair useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

		PARAMETER	100K ECL	UNIT
100K ECL	V _{EE}	Supply voltage (GND1 = GND2 = GND3 = GND)	-7.0 to 0	v
TOUR ECL	10	Output source current	55	mA
	V _{CC}	Supply voltage	+ 7.0	V
TTL	V _{IN}	Input voltage	-0.5 to +5.5	V
	I _{IN}	Input current	-30 to +5.0	mA
Τ _S		Storage temperature	-65 to +150	°C
TJ		Maximum junction temperature	+ 150	°C

DC OPERATING CONDITIONS FOR SINGLE ENDED MODE

			100K ECL				
	PA	Min	Nom	Max	UNIT		
V _{CC1} , V _{CC2}	Circuit ground	and an	0	0	0	٧	
V _{EE}	Supply voltage (negative)			-4.2	-4.5	4.8	V
V _{EE}	Supply voltage (negative)	when operating with 10K	ECL Family			-5.7	V
	HIGH level	GH level		-1150			
VIH	input voltage		V _{EE} = -4.5V	- 1165	1	-880	~\/
	(Single ended)		V _{EE} = -4.8V	1 -1100		-000	mV
			V _{EE} = -4.2V	1150			mV
V _{IHT}	/IHT HIGH level input threshold voltage		$V_{EE} = -4.5V$	-1165			mV
· ·		$V_{CC1} = V_{CC2} = GND$	$V_{EE} = -4.8V$	-1105			
		$T_A = 0^{\circ}C \text{ to } + 85^{\circ}C$	$T_A = 0^{\circ}C \text{ to } + 85^{\circ}C$ $V_{EE} = -4.2V$			-1475	m۷
V _{ILT}	LOW level input threshold voltage		V _{EE} = -4.5V			-1475	IIIV
	in concia vonago		$V_{EE} = -4.8V$			-1490	mV
	LOW level		$V_{EE} = -4.2V$			- 1475	
VIL	input voltage		$V_{EE} = -4.5V$	1810		- 14/5	mV
	(Single ended)		$V_{EE} = -4.8V$			-1490	
			$V_{EE} = -4.2V$	-1396		-1244	
V_{BB}	V _{BB} Output reference voltage		$V_{EE} = -4.5V$	-1380	-1320	- 1260	mV
			$V_{EE} = -4.8V$	-1396		-1244	
TA	Operating ambient tempe	rature		0	+ 25	+ 85	°C

NOTE:

When operating at other than specified voltages (-4.2V, -4.5V, -4.8V) DC & AC Characteristics will vary slightly from specified values.

100125

				100K ECL	·	UNIT
	PARAMETER		Min	Nom	Max	
		$V_{EE} = -4.2V$	- 150			mV
VIHH	V _{IHmax} + 1.0V	$V_{EE} = -4.5V$	105		+ 120	mV
		$V_{EE} = -4.8V$	165	-		mV
		$V_{EE} = -4.2V$	-2150			mV
VIHL	V _{IHmax} -1.0V	$V_{EE} = -4.5V$	0405		- 1880	mV
		V _{EE} = -4.8V	2165		1	mV
		$V_{EE} = -4.2V$			175	mV
V _{ILH} V _{ILmin} + 1.0V	V _{ILmin} + 1.0V	$V_{EE} = -4.5V$	-810		475	mV
		V _{EE} = -4.8V	-		-490	mV
		$V_{EE} = -4.2V$			0.475	mV
VILL	V _{ILmin} – 1.0V	$V_{EE} = -4.5V$	-2810	-2475	24/5	mV
		$V_{EE} = -4.8V$	1		-2490	mV
		V _{EE} = -4.2V				
VDIFF	Input voltage differential	$V_{EE} = -4.5V$	150			mV
		$V_{EE} = -4.8V$	1			
		$V_{EE} = -4.2V$				
V _{CM}	Common-mode voltage	V _{EE} = -4.5V	1			v
		$V_{EE} = -4.8V$	1			

DC OPERATING CONDITIONS FOR DIFFERENTIAL MODE

NOTE:

When operating at VEE other than specified voltage (-4.2V, -4.5V, -4.8V), the DC and AC Characteristics will vary slightly from specified values.

DC ELECTRICAL	CHARACTERISTICS	$V_{CC1} = V_{CC2} = GND$, $V_{TTL} = +5.0 \pm 0.010V$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$,
		$T_A = 0^{\circ}C$ to +85°C unless otherwise specified ^{1, 3}

							sopeemee	
		PARAMETER		MIN	ТҮР	МАХ	UNIT	TEST CONDITIONS ²
	hн	HIGH level input current				350	μΑ	$\begin{split} V_{IN} &= V_{IHmax}, \ D_0 - D_5 = V_{BB} \\ D_0 - D_5 &= V_{ILmin} \end{split}$
	μL	LOW input current		0.5			μA	$V_{IN} = V_{ILmin}, D_0 - D_5 = V_{BB}$
	-I _{EE}	VEE supply current		60	105	150	mA	$D_0 - D_1 = V_{BB}$
ECL	$rac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation	V _{EE} = -4.2V			0.035	v/v	
	$rac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	$T_A = +25^{\circ}C$			0.070	v /v	
	VOH	HIGH level output vol	tage	2.4	3.4		v	I _{OH} = -2.0mA
TTL	VoL	LOW level output volt	age			0.4	v	I _{OL} = 20mA
11L	los	Short circuit output cu	ırrent ⁴	-100		-40	mA	V _{OUT} = GND
	Icc	V _{CC} Supply Current			75	115	mA	$D_0 - D_5 = VBB$

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

2. Conditions for testing shown in the tables are not necessarily worst case. For worst-case testing guidelines, refer to Section 3 Testing, DC Testing.

3. The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 3.

100125

AC ELECTRICAL CHARACTERISTICS

Ceramic DIP $V_{CC1} = V_{CC2} = GND$, $V_{TTL} = +5V \pm 0.010V$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8 \pm 0.010V$

	DADAMETER	T _A =	• 0°C	T _A = -	+ 25°C	T _A = ·	+ 85°C			
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH}	Propagation delay	0.80	3.50	0.90	3.70	1.00	4.00	ns	Figs. 4, 5, 6	
t _{PHL}	D _n to Q _n	0.80	3.50	0.90	3.70	1.00	4.00	ns		
t _{TLH}	Transition time TTL	0.50	2.60	0.50	2.60	0.50	2.60	ns	Figs. 4, 6	
t _{THL}	10% to 90% to 90% to 10%	0.50	2.60	0.50	2.60	0.50	2.60	ns		

Ceramic DIP v_{CC1} = v_{CC2} = GND, v_{TTL} = +5V $\pm 0.010V, ~v_{EE}$ = -5.2V $\pm 5\%$

		T _A =	• 0°C	T _A = -	+ 25°C	T _A = -	+ 85°C		TEAT CONDITIONS	
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH}	Propagation delay	0.80	3.50	0.90	3.70	1.00	4.00	ns	Figs. 4, 5, 6	
t _{PHL}	D _n to Q _n	0.80	3.50	0.90	3.70	1.00	4.00	ns		
t _{TLH}	Transition time TTL	0.50	2.60	0.50	2.60	0.50	2.60	ns	Figs. 4, 6	
t _{THL}	10% to 90% to 90% to 10%	0.50	2.60	0.50	2.60	0.50	2.60	ns		

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{TTL} = +5V \pm 0.010V$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$

	DADANETED	T _A =	= 0°C	T _A = -	+ 25°C	T _A = -	+ 85°C		TEST CONDITIONS	
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT		
t _{PLH}	Propagation delay	0.80	3.30	0.90	3.50	1.00	3.80	ns	Figs. 4, 5, 6	
t _{PHL}	D _n to Q _n	0.80	3.30	0.90	3.50	1.00	3.80	ns		
t _{TLH}	Transition time TTL	0.50	2.50	0.50	2.50	0.50	2.50	ns	Figs. 4, 6	
t _{THL}	10% to 90% to 90% to 10%	0.50	2.50	0.50	2.50	0.50	2.50	ns		

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{TTL} = +5V \pm 0.010V$, $V_{EE} = -5.2V \pm 5\%$

					0°C	0°C T _A = + 25°C		T _A = +85°C		UNIT	
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS		
t _{PLH}	Propagation delay	0.80	3.30	0.90	3.50	1.00	3.80	ns	Figs. 4, 5, 6		
t _{PHL}	D _n to Q _n	0.80	3.30	0.90	3.50	1.00	3.80	ns			
t _{TLH}	Transition time TTL	0.50	2.50	0.50	2.50	0.50	2.50	ns	Figs. 4, 6		
t _{THL}	10% to 90% to 90% to 10%	0.50	2.50	0.50	2.50	0.50	2.50	ns			

100125

AC WAVEFORMS

TEST CIRCUITS AND WAVEFORMS

Signetics

100126 Backplane Driver

9-Bit Backplane Driver Product Specification

ECL Products

DESCRIPTION

100126 contains nine independent, high-speed buffer gates each with a single input and a single output. The gates are non-inverting. These buffers are useful in bus-oriented systems where minimal output loading or bus isolation is desired. The output transition times are longer to minimize noise when used as a backplane driver.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
100126 .	2.0ns	78mA

ORDERING CODE

PACKAGES	$\label{eq:VCC1} \begin{array}{l} \mbox{COMMERCIAL RANGE} \\ \mbox{V}_{CC1} = \mbox{V}_{CC2} = \mbox{GND}; \ \mbox{V}_{EE} = -4.2 \mbox{V} \ \ to \ -4.8 \mbox{V} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
Ceramic DIP	100126F
Ceramic Flat Pack	100126Y

PIN DESCRIPTION

PIN CONFIGURATION

PINS	DESCRIPTION
D ₀ – D ₈	Data Inputs
Q ₀ – Q ₈	Data Outputs

24 D2 Vcc2 1 Q2 2 23 D1 Q1 3 22 Do Q0 4 21 Da Q8 5 20 D7 Vcc1 6 19 NC 18 VEE Vcc2 7 Q7 8 17 D6 Q6 9 16 D5 15 D4 Q5 10 14 D3 Q4 11 Q3 12 13 V_{CC2} D8 D7 NC VEE D6 D5 D₀ 18 D4 D1 2 17 D3 D₂ 3 16 V_{CC2} V_{CC2} 15 Q3 14 Q4 Q2 5 Q1 6 13 Q5 7 8 9 10 11 12 Q0 Q8 VCC1VCC2 Q7 Qe CD09340S Figure 1

LOGIC SYMBOL

January 30, 1986

853-0616 82178

Backplane Driver

100126

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	100K ECL	UNIT
V _{EE}	Supply voltage ($V_{CC1} = V_{CC2} = GND$)	-7.0 to 0	V
V _{IN}	Input voltage (V _{IN} should never be more negative than V _{EE})	V _{EE} to +0.5	V
lo	Output source current	-55	mA
T _S	Storage temperature	-55 to +150	°C
Tj	Maximum junction temperature	+ 150	°C

DC OPERATING CONDITIONS

			100K ECL					
	PAR	Min	Nom	Max	UNIT			
V _{CC1} , V _{CC2}	Circuit ground			0	0	0	V	
V _{EE}	Supply voltage (negative)			-4.2	-4.5	-4.8	V	
V _{EE}	Supply voltage (negative)	when operating with 10K	ECL family			-5.7	v	
			$V_{EE} = -4.2V$	-1150				
VIH	HIGH level input voltage		$V_{EE} = -4.5V$	4405		-880	mV	
input voltage	input voltago		$V_{EE} = -4.8V$	1165				
		V _{EE} = -4.2V	-1150			mV		
VIHT	HIGH level input threshold voltage	$V_{CC1} = V_{CC2} = GND$	$V_{EE} = -4.5V$	1165			mV	
	an concia tonago		$V_{EE} = -4.8V$				mv	
	_			V _{EE} = -4.2V				
V _{ILT}	LOW level input threshold voltage	$T_A = 0^{\circ}C \text{ to } + 85^{\circ}C$	$V_{EE} = -4.5V$]		-1475	mV	
			$V_{EE} = -4.8V$			-1490	mV	
			$V_{EE} = -4.2V$					
VIL	LOW level input voltage		$V_{EE} = -4.5V$	-1810		-1475	1475 mV	
			$V_{EE} = -4.8V$]		-1490		
T _A	Operating ambient temper	ature		0	+ 25	+ 85	°C	

When operating at other than specified voltages (-4.2V, -4.5V, -4.8V) DC & AC Characteristics will vary slightly from specified values.

Backplane Driver

100126

	PARAMETER		MIN	ТҮР	MAX	UNIT	TEST	CONDITIONS ²		
		V _{EE} = -4.2V	-1025		-870	mV	V _{IN} = V _{IHmax}			
V _{OH}	HIGH level output voltage	V _{EE} = -4.5V	-1025	-955	-880	mV	or			
	output tonago	$V_{EE} = -4.8V$	-1035		-880	mV	$V_{IN} = V_{ILmin}$			
		$V_{EE} = -4.2V$	-1035			mV	V _{IN} = V _{IHmin}			
V _{OHT}	HIGH level output threshold voltage	$V_{EE} = -4.5V$	-1035			mV	or			
		$V_{EE} = -4.8V$	-1045			mV	$V_{IN} = V_{ILmax}$	Loading with		
		V _{EE} = -4.2V			-1590	mV	V _{IN} = V _{IHmin}	50Ω to $-2.0V \pm 0.010V$		
V _{OLT}	LOW level output threshold voltage	V _{EE} = -4.5V			-1610	mV	or			
		$V_{EE} = -4.8V$			-1610	mV	$V_{IN} = V_{ILmax}$			
		$V_{EE} = -4.2V$	-1810		-1600	mV	V _{IN} = V _{IHmax}			
VOL	LOW level output voltage	V _{EE} = -4.5V	-1810	-1705	-1620	mV	or			
	ealpar renage	V _{EE} = -4.8V	-1830		-1620	mV	$V_{IN} = V_{ILmin}$			
Чн	HIGH level input ci	urrent			350	μA	$V_{IN} = V_{IHmax}$			
hι	LOW level input cu	irrent	0.5			μA	$V_{IN} = V_{ILmin}$			
-I _{EE}	V _{EE} supply current		46	78	96	mA	Inputs open			
$rac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation	V _{EE} = -4.2V			0.025	v/v				
$rac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	$T_A = +25^{\circ}C$			0.050	v/v				

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$, $T_A = 0^{\circ}C$ to $+85^{\circ}C$ unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst case testing guidelines, refer to Section 3 Testing, DC Testing.
 The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 3.

100126

Backplane Driver

Figure 3. Transfer Characteristics

AC ELECTRICAL CHARACTERISTICS

Ceramic DIP $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$

		T _A =	: 0°C	T _A = -	+ 25°C	T _A = ·	+ 85°C		TEST CONDITIONS
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH}	Propagation delay	1.05	2.75	1.05	2.75	1.05	2.75	ns	Figs. 4, 5, 6
t _{PHL}	D _n to Q _n	1.05	2.75	1.05	2.75	1.05	2.75	ns	
t _{TLH}	Transition time	1.15	3.30	1.15	3.30	1.05	3.30	ns	
t _{THL}	20% to 80%, 80% to 20%	1.15	3.30	1.15	3.30	1.05	3.30	ns	

Ceramic DIP $V_{CC1} = V_{CC2} = GND, V_{EE} = -5.2V \pm 5\%$

		T _A =	= 0°C	T _A = -	+ 25°C	T _A = -	+85°C		TEAT CONDITIONS
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} t _{PHL}	Propagation delay D _n to Q _n	1.05 1.05	2.75 2.75	1.05 1.05	2.75 2.75	1.05 1.05	2.75 2.75	ns ns	Figs. 4, 5, 6
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	1.15 1.15	3.30 3.30	1.15 1.15	3.30 3.30	1.05 1.05	3.30 3.30	ns ns	

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$

	PARAMETER		T _A = 0°C		T _A = + 25°C		+ 85°C		TEST CONDITIONS
			Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH}	Propagation delay	1.05	2.55	1.05	2.55	1.05	2.55	ns	Figs. 4, 5, 6
t _{PHL}	D _n to Q _n	1.05	2.55	1.05	2.55	1.05	2.55	ns	
t _{PLH}	Transition time	1.15	3.30	1.15	3.30	1.05	3.30	ns	
t _{PHL}	20% to 80%, 80% to 20%	1.15	3.30	1.15	3.30	1.05	3.30	ns	

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 5\%$

	PARAMETER		T _A = 0°C		T _A = + 25°C		+ 85°C		TEST CONDITIONS
			Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH}	Propagation delay	1.05	2.55	1.05	2.55	1.05	2.55	ns	Figs. 4, 5, 6
t _{PHL}	D _n to Q _n	1.05	2.55	1.05	2.55	1.05	2.55	ns	
t _{PLH}	Transition time	1.15	3.30	1.15	3.30	1.05	3.30	ns	
t _{PHL}	20% to 80%, 80% to 20%	1.15	3.30	1.15	3.30	1.05	3.30	ns	

Backplane Driver

100126

AC WAVEFORMS

TEST CIRCUITS AND WAVEFORMS

Backplane Driver

Signetics

ECL Products

DESCRIPTION

100131 has three D-type master-slave flip-flops, with direct and complement output, separate clock, set and reset. In addition, all three flip-flops have a common clock, set and reset.

100131 Flip-Flop

Triple D-Type Master-Slave Flip-Flop Product Specification

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-1 _{EE})
100131	1.3ns	110mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -4.2V$ to -4.8V $T_A = 0^{\circ}C$ to +85°C
Ceramic DIP	100131F
Ceramic Flat Pack	100131Y

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₂	Data Inputs
CPc	Common Clock Input
CP0-CP2	Clock Inputs
MS	Master Set Input
S ₀ – S ₂	Set Inputs
MR	Master Reset Input
$R_0 - R_2$	Reset Inputs
$Q_0 - Q_2, \ \overline{Q}_0 - \overline{Q}_2$	Data Outputs

PIN CONFIGURATION R₂ 1

CP2 2

D2 3

Q2 4

Q2 5

Vcc1 6

V_{CC2} 7 Q1 8

ā, 9

Q₀ 10

Q₀ [1]

D₀ 12

CP1 1

R1 2

S₂ 3

R₂ 4

CP2 5

D2 6

CERAMIC

D1 S1 MR VEE CPC MS

24 23 22 21 20 19

FLAT PACK

7 8 9 10 11 12 Q2 Q2 VCC1 VCC2 Q1 Q1 (TOP VIEW)

24 S2

23 R1

22 CP1

21 01

20 S1 19 MR

18 V_{EE}

17 CPc

16 MS

15 So

14 Ro

13 CP

18 S₀

17 Ro

16 CP₀

15 D₀

14 Q₀

13 Q₀

CD09260S

LOGIC SYMBOL

100131

7

TRUTH TABLE

	INPUTS							
D	CPc	CPn	MS	S	MR	R	Q _n + 1	Q _n + 1
×	х	х	L	L	н	х	L	н
x	х	х	L	L	х	н	L	н
x	х	х	н	х	L	L	н	L
x	х	х	x	н	L	L	н	L
X	х	1	L	L	L	L	Qn	\overline{Q}_n
x	ſ	н	L	L	L	L	Qn	\overline{Q}_n
x	х	x	L	L	L	L	Qn	<u>Q</u> n
н	1	L	L	L	L	L	н	L
L	1	L	L	L	L	L	L	н
н	L	1	L	L	L	L	н	L
L	L	1	L	L	L	L	L	н

D: Data input; CP_C: Common Clock; CK; Clock; MS: Master Set; S: Set; MR: Master Reset; R: Reset; Q: Direct output; \overline{Q} : Complement output; n: State before transition; n + 1: State after transition; \uparrow : LOW to HIGH transition.

Data enters a master when both clock and common clock are LOW, and transfers to the slave when the clock or master clock (or both) go HIGH. If the set (or master set) is HIGH while the reset (or master reset) is HIGH, the output is undefined.

Positive Logic:

H = HIGH state (more positive voltage) = 1

L = LOW state (less positive voltage) = 0

X = Don't Care

100131

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature ran

nge.)	`	
igo.	/	

	PARAMETER	10K ECL	UNIT
V _{EE}	Supply voltage ($V_{CC1} = V_{CC2} = GND$)	-7.0 to 0	V
V _{IN}	Input voltage (VIN should never be more negative than VEE)	V _{EE} to +0.5	v
lo	Output source current	-55	mA
T _S	Storage temperature	-65 to +150	°C
TJ	Maximum junction temperature	+ 150	°C

DC OPERATING CONDITIONS

	-		100K ECL				
	PA	Min	Nom	Max	UNIT		
V _{CC1} , V _{CC2}	Circuit ground	0	0	0	V		
V _{EE}	Supply voltage (negative)		-4.2	-4.5	-4.8	v
V _{EE}	Supply voltage (negative) when operating with 10K	ECL family			-5.7	v
			$V_{EE} = -4.2V$	-1150			
VIH	HIGH level /IH input voltage		V _{EE} = -4.5V	1105	1	-880	mV
			V _{EE} = -4.8V	1165			
		V _{EE} = -4.2V	-1150			mV	
VIHT	HIGH level input threshold voltage	$V_{CC1} = V_{CC2} = GND$	V _{EE} = -4.5V	1165			
	unconcia voltago		V _{EE} = -4.8V				mV
			V _{EE} = -4.2V				
V _{ILT}	LOW level input threshold voltage	$T_A = 0^{\circ}C$ to $+85^{\circ}C$	V _{EE} = -4.5V	1	ļ	-1475	mV
	anoonola voltago		V _{EE} = -4.8V			-1490	mV
			V _{EE} = -4.2V				
VIL	LOW level input voltage		$V_{EE} = -4.5V$	-1810		-1475	mV
input voltage					-1490		
T _A	Operating ambient temp	erature		0	+ 25	+ 85	°C

NOTE:

when operating at other than specified voltages (-4.2V, -4.5V, -4.8V) DC & AC Characteristics will vary slightly from specified values.

100131

Flip-Flop

otherwise specified1,3 TYP TEST CONDITIONS² PARAMETER MIN MAX UNIT $V_{EE} = -4.2V$ -1025 -870 rηV V_{IN} = V_{!Himax} HIGH level $V_{EE} = -4.5V$ - 1025 -880 V_{OH} -955 m٧ or output voltage $V_{IN} = V_{ILmin}$ $V_{FE} = -4.8V$ -1035 -880 m٧ V_{EE} = -4 ∛√ -1035 m٧ V_{IN} = V_{IHmin} HIGH level output $V_{EE} = -4.5V$ VOHT -1035 m٧ or threshold voltage $V_{IN} = V_{ILmax}$ $V_{EE} = -4.8V$ -1045 m٧ Loading with $V_{EE} = -4.2V$ -1590 m٧ 50 Ω to -2.0V $\pm 0.010V$ $V_{IN} = V_{IHmin}$ LOW level output VOLT $V_{EE} = -4.5V$ -1610 m٧ or threshold voltage $V_{IN} = V_{ILmax}$ $V_{EE} = -4.8V$ -1610 mV $V_{EE} = -4.2V$ -1810 -1600 mV $V_{IN} = V_{IHmax}$ LOW level VOL $V_{EE} = -4.5V$ -1810 -1705 -1620 m٧ or output voltage $V_{IN} = V_{ILmin}$ $V_{EE} = -4.8V$ -1830 -1620 m٧ D_n, CP_n 240 μA HIGH level MC, MS, MR, 450 μA $V_{IN} = V_{IHmax}$ Iн input current R_n, S_n 530 μA hι LOW level input current 0.5 μA $V_{IN} = V_{ILmin}$ -IEE 74 110 V_{EE} supply current 149 mΑ Inputs open HIGH level ΔV_{OH} v/v output voltage 0.035 $\overline{\Delta V_{EE}}$ compensation $V_{FF} = -4.2V$ LOW level $T_{A}^{--} = +25^{\circ}C$ ΔV_{OL} output voltage 0.070 V/V ΔV_{EE} compensation

DC ELECTRICAL CHARACTERISTICS V_{CC1} = V_{CC2} = GND, V_{EE} = -4.2V $\pm 0.010V$ to -4.8V $\pm 0.010V$, T_A = 0°C tr \Rightarrow 85°C unless

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

2. Conditions for testing shown in the tables are not necessarily worst case. For worst case testing guidelines, refer to Section 3 Testing, DC Testing. 3. The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 3,

Signetics ECL Products

100131

Flip-Flop

AC ELECTRICAL CHARACTERISTICS

Ceramic DIP v_{CC1} = v_{CC2} = GND, v_{EE} = -4.2V $\pm 0.010V$ to -4.8V $\pm 0.010V$

		T _A =	• 0°C	T _A = -	+ 25°C	T _A = ·	+ 85°C			
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CO	ONDITIONS
f _{MAX}	Maximum toggle frequency	350		350		350		MHz	Figs. 3, 8	·····
t _{PLH} t _{PHL}	Propagation delay MC to Q _n	0.75 0.75	2.40 2.40	0.75 0.75	2.15 2.15	0.70 0.70	2.30 2.30	ns ns		
t _{PLH} t _{PHL}	Propagation delay CP _n to Q _n ,	0.70 0.70	2.20 2.20	0.70 0.70	2.00 2.00	0.70 0.70	2.20 2.20	ns ns	Figs. 3, 7,	8
t _{PLH} t _{PHL}	Propagation delay MS, MR to Q _n	1.10 1.10	2.70 2.70	1.05 1.05	2.60 2.60	1.05 1.05	2.70 2.70	ns ns	CP _n = LOW	
t _{PLH} t _{PHL}	Propagation delay MS, MR to Q _n	1.10 1.10	3.05 3.05	1.10 1.10	2.95 2.95	1.10 1.10	3.05 3.05	ns ns	CP _n = HIGH	Figs. 4, 6, 1
t _{PLH} t _{PHL}	Propagation delay R _n , S _n to Q _n	0.65 0.65	1.90 1.90	0.70 0.70	1.70 1.70	0.70 0.70	1.90 1.90	ns ns	CP _n = LOW	, igo, o, i
t _{PLH} t _{PHL}	Propagation delay R _n , S _n to Q _n	0.70 0.70	2.10 2.10	0.70 0.70	2.00 2.00	0.70 0.70	2.20 2.20	ns ns	CP _n = HIGH	
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	2.00 2.00	0.45 0.45	1.60 1.60	0.45 0.45	1.70 1.70	ns ns	Figs. 4, 6,	8
ts	Setup time D _n to CP _n	0.90		0.70		0.90		ns	Figs. 5, 8	
t _h	Hold time D _n to CP _n	0.60		0.60		0.80		ns		
t _r	Release time R _n , S _n to CP _n	1.50		1.30		1.50		ns	Figs. 4, 8	
t _r	Release time MR, MS to CP _n	2.50		2.30		2.50		ns		
t _w (H)	Pulse width HIGH MR, MS, R _n , S _n , CP _n	2.50		2.50		2.50		ns	Figs. 3, 4,	8

100131

AC ELECTRICAL CHARACTERISTICS

Ceramic DIP V_{CC1} = V_{CC2} = GND, V_{EE} = –5.2V $\pm\,5\,\%$

		T _A =	: 0°C	T _A = ·	+ 25°C	T _A = -	+85°C		UNIT TEST CONDITION	
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	IEST CU	DITIONS
f _{MAX}	Maximum toggle frequency	350		350		350		MHz	Figs. 3, 8	
t _{PLH} t _{PHL}	Propagation delay MC to Q _n	0.75 0.75	2.40 2.40	0.75 0.75	2.15 2.15	0.70 0.70	2.30 2.30	ns ns		
t _{PLH} t _{PHL}	Propagation delay CP _n to Q _n ,	0.70 0.70	2.20 2.20	0.70 0.70	2.00 2.00	0.70 0.70	2.20 2.20	ns ns	Figs. 3, 7,	8
t _{PLH} t _{PHL}	Propagation delay MS, MR to Q _n	1.10 1.10	2.70 2.70	1.05 1.05	2.60 2.60	1.05 1.05	2.70 2.70	ns ns	CP _n = LOW	
t _{PLH} t _{PHL}	Propagation delay MS, MR to Q _n	1.10 1.10	3.05 3.05	1.10 1.10	2.95 2.95	1.10 1.10	3.05 3.05	ns ns	CP _n = HIGH	Figs. 4, 6, 8
t _{PLH} t _{PHL}	Propagation delay R _n , S _n to Q _n	0.65 0.65	1.90 1.90	0.70 0.70	1.70 1.70	0.70 0.70	1.90 1.90	ns ns	CP _n = LOW	1 193. 4, 0, 0
t _{PLH} t _{PHL}	Propagation delay R _n , S _n to Q _n	0.70 0.70	2.10 2.10	0.70 0.70	2.00 2.00	0.70 0.70	2.20 2.20	ns ns	CP _n = HIGH	
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	2.00 2.00	0.45 0.45	1.60 1.60	0.45 0.45	1.70 1.70	ns ns	Figs. 4, 6,	. 8
t _s	Setup time D _n to CP _n	0.90		0.70		0.90		ns	Figs. 5, 8	
t _h	Hold time D _n to CP _n	0.60		0.60		0.80		ns	- Figs. 5, δ	
t _r	Release time R _n , S _n to CP _n	1.50		1.30		1.50		ns	Figs. 4, 8	
t _r	Release time MR, MS to CP _n	2.50		2.30		2.50		ns		
t _w (H)	Pulse width HIGH MR, MS, R _n , S _n , CP _n	2.50		2.50		2.50		ns	Figs. 3, 4,	8

100131

AC ELECTRICAL CHARACTERISTICS

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$

	DADAMETED	T _A =	• 0°C	T _A = -	+ 25°C	T _A = ·	+ 85°C		TEST CONDITIONS	
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CO	NDITIONS
f _{MAX}	Maximum toggle frequency	350		350		350		MHz		
t _{PLH} t _{PHL}	Propagation delay MC to Q _n	0.75 0.75	2.20 2.20	0.75 0.75	1.95 1.95	0.70 0.70	2.10 2.10	ns ns	Figs. 3, 8	
t _{PLH} t _{PHL}	Propagation delay CP _n to Q _n	0.70 0.70	2.00 2.00	0.70 0.70	1.80 1.80	0.70 0.70	2.00 2.00	ns ns	Figs. 3, 7,	8
t _{PLH} t _{PHL}	Propagation delay MS, MR to Q _n	1.10 1.10	2.50 2.50	1.05 1.05	2.40 2.40	1.05 1.05	2.50 2.50	ns ns	CP _n = LOW	
t _{PLH} t _{PHL}	Propagation delay MS, MR to Q _n	1.15 1.15	2.85 2.85	1.05 1.05	2.75 2.75	1.05 1.05	2.85 2.85	ns ns	CP _n = HIGH	Figs. 4, 6, 8
t _{PLH} t _{PHL}	Propagation delay R _n , S _n to Q _n	0.65 0.65	1.70 1.70	0.70 0.70	1.50 1.50	0.70 0.70	1.70 1.70	ns ns	CP _n = LOW	1.90. 1, 0, 0
t _{PLH} t _{PHL}	Propagation delay R _n , S _n to Q _n	0.70 0.70	1.90 1.90	0.70 0.70	1.80 1.80	0.70 0.70	2.00 2.00	ns ns	CP _n = HIGH	
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	2.00 2.00	0.45 0.45	1.60 1.60	0.45 0.45	1.70 1.70	ns ns	Figs. 4, 6,	8
ts	Setup time D _n to CP _n	0.80		0.60		0.80		ns	Figs. 5, 8	
t _h	Hold time D _n to CP _n	0.50		0.50		0.70		ns		
t _r	Release time R _n , S _n to CP _n	1.40		1.20		1.40		ns	Figs. 4, 8	
t _r	Release time MR, MS to CP _n	2.40		2.20		2.40		ns		
t _w (H)	Pulse width HIGH MR, MS, R _n , S _n , CP _n	2.50		2.50		2.50		ns	Figs. 3, 4,	8

100131

AC ELECTRICAL CHARACTERISTICS

Flat Pack V_{CC1} = V_{CC2} = GND, V_{EE} = -5.2V $\pm\,5\,\%$

		T _A =	°C	T _A = -	+ 25°C	T _A = ·	+ 85°C		TEST CONDITIONS		
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CO	INDITIONS	
f _{MAX}	Maximum toggle frequency	350		350		350		MHz			
t _{PLH} t _{PHL}	Propagation delay MC to Q _n	0.75 0.75	2.20 2.20	0.75 0.75	1.95 1.95	0.70 0.70	2.10 2.10	ns ns	Figs. 3, 8		
t _{PLH} t _{PHL}	Propagation delay CP _n to Q _n	0.70 0.70	2.00 2.00	0.70 0.70	1.80 1.80	0.70 0.70	2.00 2.00	ns ns	Figs. 3, 7,	8	
t _{PLH} t _{PHL}	Propagation delay MS, MR to Q _n	1.10 1.10	2.50 2.50	1.05 1.05	2.40 2.40	1.05 1.05	2.50 2.50	ns ns	CP _n = LOW		
t _{PLH} t _{PHL}	Propagation delay MS, MR to Q _n	1.15 1.15	2.85 2.85	1.05 1.05	2.75 2.75	1.05 1.05	2.85 2.85	ns ns	CP _n = HIGH	Figs. 4, 6, 8	
t _{PLH} t _{PHL}	Propagation delay R _n , S _n to Q _n	0.65 0.65	1.70 1.70	0.70 0.70	1.50 1.50	0.70 0.70	1.70 1.70	ns ns	CP _n = LOW	1 igs. 4, 0, 0	
t _{PLH} t _{PHL}	Propagation delay R _n , S _n to Q _n	0.70 0.70	1.90 1.90	0.70 0.70	1.80 1.80	0.70 0.70	2.00 2.00	ns ns	CP _n = HIGH		
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	2.00 2.00	0.45 0.45	1.60 1.60	0.45 0.45	1.70 1.70	ns ns	Figs. 4, 6,	8	
ts	Setup time D _n to CP _n	0.80		0.60		0.80		ns	Figs. 5, 8		
t _h	Hold time D _n to CP _n	0.50		0.50		0.70		ns	1 190. 0, 0	- Figs. 5, 8	
tr	Release time R _n , S _n to CP _n	1.40		1.20		1.40		ns	Figs. 4, 8		
t _r	Release time MR, MS to CP _n	2.40		2.20		2.40		ns			
t _w (H)	Pulse width HIGH MR, MS, R _n , S _n , CP _n	2.50		2.50		2.50		ns	Figs. 3, 4,	8	

100131

AC WAVEFORMS

CP_c, CP_n INPUTS

Figure 6. Data Setup and Hold Time

1050 mV

+310 mV WF12430S

100131

Flip-Flop

TEST CIRCUITS AND WAVEFORMS

NOTES:

- 1. $V_{CC1} = V_{CC2} = +2V \pm 0.010V$, $V_{EE} = -3.2V \pm 0.010V$.
- 2.0 Decoupling 0.1 μF and 25 μF from GND to V_{CC}. 0.01 μF and 25 μF from GND to V_{EE}. (0.01 and 0.1 μF capacitors should be NPC Ceramic or MLC type). Decoupling capacitors should be placed as close as physically possible to the DUT and lead length should be kept to less than 1/4 inch (6mm).
- All unused inputs should be connected to either HIGH or LOW state consistent with the LOGIC function required.
- 4. All unused outputs are loaded with 50Ω to GND. 5. L₁ and L₂ are equal length 50Ω impedance lines. L₃, the distance from the DUT pin to the junction of the cable from the Pulse Generator and the cable to the Scope should not exceed 1/4 inch (firm)
- Scope, should not exceed 1/4 inch (6mm). 6. $R_T = 50\Omega$ terminator internal to Scope.
- The unmatched wire stub between coaxial cable and pins under test must be less than 1/4 inch (6mm) long for proper test.
 C_L = Fixture and stray capacitance ≤ 3pF.
- B. C_L = Fixture and stray capacitance < 3pF.</p>
 9. Any unterminated stubs connected anywhere along the transmission line between the Pulse Generator and the DUT or between the DUT and the Scope should not exceed 1/4 inch (6mm) in length (refer to content and co
- section on AC setup procedure). 10. All 50Ω resistors should have tolerance of $\pm 1\%$ or better.
- 11. Pin connections are for Flat Pack and in parentheses for Ceramic DIP.

February 12, 1986

Signetics

ECL Products

DESCRIPTION

100136 operates as a 4-bit Up/Down Counter, or as a 4-bit Left/Right Shift Register; the operating mode is fixed by three selection inputs, S_n . These selection inputs also enable parallel loading, synchronous reset or complement of lip-flop outputs. D_0 is the serial input for left shifting, D_3 for right shifting. A carry output TC goes low for 15 value in up counting mode, for 0 in down counting mode. In shifting mode, TC repeats output Q₃. A HIGH level on MR enables asynchronous master reset. Two count enables (CEP, CET) allow multi-stage counter cascading.

100136 Counter/Shift Register

4-Stage Counter/Shift Register Product Specification

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
100136	1.8ns	210mA

ORDERING CODE

PACKAGES	$\label{eq:commercial RANGE} \begin{array}{c} \mbox{COMMERCIAL RANGE} \\ \mbox{V}_{CC1} = \mbox{V}_{CC2} = \mbox{GND}; \ \mbox{V}_{EE} = -4.2 \mbox{V} \ \ to \ -4.8 \mbox{V} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
Ceramic DIP	100136F
Ceramic Flat Pack	100136Y

PIN DESCRIPTION

PINS	DESCRIPTION
D ₃	Serial Data Input
P ₀ – P ₃	Preset Inputs
CP	Clock Input
D ₀ /CET	Serial Data Input/Count Enable Trickle Input (Active LOW)
CEP	Count Enable Parallel Input (Active LOW)
S ₀ – S ₂	Select Inputs
MR	Master Reset Input
TC	Terminal Count Output
$Q_0 - Q_3, \ \overline{Q}_0 - \overline{Q}_3$	Data Outputs

PIN CONFIGURATION

LOGIC SYMBOL

Product Specification

Counter/Shift Register

100136

LOGIC DIAGRAM

100136

FUNCTION TABLE

MR	S ₀	S 1	S ₂	CEP	D ₀ /CET	D ₃	СР	Q ₀	Q1	Q ₂	Q3	тс	MODE
н	L	L	L	Х	х	Х	х	L	L	L	L	L	▲
I ▲ I	L	н	L	▲	х			•		A	•	L	
	н	н	L		х							L	
	L	L	н		L							L	Asynchronous
	L	L	н		н							н	Master reset
	L	н	н		×							н	
	н	н	н		Х				1 [н	
V	н	L	L	•	х	•	¥	•	V	•	Ý	L	
н	н	L	н	Х	Х	X	X	L	L		L	н	▼
L	L	L	L	Х	Х	X	↑	P ₀	P ₁	P ₂	I P3	L	Preset
L	L	L	н	L	L	X	↑			minus		0	Count Down
	L	L	н	н	L	X	X	Q ₀	Q1	Q2	Q ₃	1	Count Down with CEP
1.									-		-	1	not active
L	L	L	н	X	н	X	X	Q ₀	Q1	Q ₂	Q ₃	н	Count Down with CET
1.							•				_	-	not active
L	L	н	L	X	X	X		Q1	Q ₂	I Q ₃	D ₃	D ₃	Shift Right
L	L	н	н		L	X				plus 1		2	Count Up
L	L	н	н	н	L	X	X	Q ₀	Q1	Q2	Q3	2	Count Up with CEP not
1.1													active
	L	н	н	X	н	x	x	Q ₀	Q1	Q ₂	Q ₃	н	Count Up with CET not
1.					v		↑	5	5	5	5	Ι.	active Invert
L	н			X	X	X		$\overline{Q_0}$	Q1	Q ₂	$\overline{Q_3}$		
	н	L	н	×	X	X	1		L		L	н	Clear
	н	н			X X	X	x	D ₀		Q ₁	Q ₂	Q ₂	Shift Left
	н	Н	н	X	X	I X		I Q ₀	Q ₁	Q ₂	Q ₃	Н	Hold
								0 14	~ ~			A 1 #	
													$Q_0 - Q_3 = HHHH$ $Q_0 - Q_3 \neq HHHH$
L								11 11	Q0 - C	k3 ≁ LL		.1 11	

Positive Logic:

H = HIGH state (the most positive voltage) = 1

L = LOW state (the less positive voltage) = 0

X = Don't Care ↑ = LOW to HIGH transition

SELECTION TABLE

S ₀	S 1	S ₂	OPERATING MODES (SYNCHRONOUS)	
L	L	L	Parallel load: Data available on Pn will be loaded with next clock pulse.	
L	L	н	Down counter: Each clock pulse decreases the counter value.	
L	н	L	Right shift: Each clock pulse shifts D_3 to Q_3 , Q_n to Q_{n-1} .	
L	н	н	Up counter: Each clock pulse increases the counter value.	
н	ĹL	L	Complement mode: contents of flip-flop can be synchronously inverted.	
н) L	н	Reset: Enables a synchronous reset.	
н	н	L	Left shift: Each clock pulse shifts Q_n to Q_{n+1} , D_0 to Q_0 .	
н	н	н	Hold mode: No change for Qn.	

The C/Q3 output of a 100136 can be connected to the D0/CET input of another 100136, for multi-stage counting of left shift operation.

100136

Counter/Shift Register

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

PARAMETER	100K ECL	UNIT
V _{EE} Supply voltage (V _{CC1} = V _{CC3} = GND)	-7.0 to 0	V
V _{IN} Input voltage (V _{IN} should never be more negative than V _{EE})	V _{EE} to +0.5	V
I _O Output source current	-55	mA
T _S Storage temperature	-65 to +150	°C
TJ Maximum junction temperature	+ 150	°C

DC OPERATING CONDITIONS

	PARA	METER		Min	Nom	Max	UNIT
V _{CC1} , V _{CC2}	Circuit ground			0	0	0	v
VEE	Supply voltage (negative)			-4.2	-4.5	-4.8	V
VEE	Supply voltage (negative) w	when operating with 10K	ECL family		1	-5.7	v
		· · · · · · · · · · · · · · · · · · ·	V _{EE} = -4.2V	-1150	1. J. 1.		
V _{IH}	HIGH level input voltage		V _{EE} = -4.5V	1105		-880	mV
	input voitage		V _{EE} = -4.8V	- 1165			
			$V_{EE} = -4.2V$	-1150			mV
VIHT	HIGH level input threshold voltage	$V_{CC1} = V_{CC2} = GND$	V _{EE} = -4.5V	1105	1.1		
			V _{EE} = -4.8V	- 1165			mV
·····			V _{EE} = -4.2V				
V _{ILT}	LOW level input threshold voltage	$T_A = 0^{\circ}C$ to $+85^{\circ}C$	V _{EE} = -4.5V			-1475	mV
	uneshold voltage		V _{EE} = -4.8V			-1490	mV
	r		V _{EE} = -4.2V				
VIL	LOW level input voltage		V _{EE} = -4.5V	-1810		-1475	mV
	input voitago		V _{EE} = -4.8V	1		-1490	
TA	Operating ambient tempera	ture	•	0	+ 25	+ 85	°C

NOTE:

When operating at other than specified voltages (-4.2V, -4.5V, -4.8V) DC & AC Characteristics will vary slightly from specified values.

100136

	PARAMETER	MIN	ТҮР	MAX	UNIT	TEST	CONDITIONS ²		
		$V_{EE} = -4.2V$	-1025		-870	mV	V _{IN} = V _{IHmax}		
V _{OH}	HIGH level output voltage	V _{EE} = -4.5V	-1025	955	-880	mV	or		
	output voltage	$V_{EE} = -4.8V$	-1035		-880	mV	V _{IN} = V _{ILmin}		
		$V_{EE} = -4.2V$	-1035			mV	V _{IN} = V _{IHmin}]	
V _{OHT}	HIGH level output threshold voltage	V _{EE} = -4.5V	- 1035			mV	or		
	an concidence and go	V _{EE} = -4.8V	-1045			mV	V _{IN} = V _{ILmax}	Loading with	
		$V_{EE} = -4.2V$			- 1590	mV	$V_{IN} = V_{IHmin}$	50Ω to -2.0V ±0.010V	
VOLT	LOW level output threshold voltage	$V_{EE} = -4.5V$			-1610	mV	or		
	in concidencia renargo	$V_{EE} = -4.8V$			-1610	mV	$V_{IN} = V_{ILmax}$		
	_	$V_{EE} = -4.2V$	-1810		- 1600	mV	V _{IN} = V _{IHmax}		
VOL	LOW level output voltage	$V_{EE} = -4.5V$	-1810	-1705	-1620	mV	or		
		$V_{EE} = -4.8V$	-1830		-1620	mV	V _{IN} = V _{ILmin}		
		P _n , S _n			180	μA			
		CEP			200	μA			
	HIGH level	MR			240	μA			
Чн	input current	D ₃			280	μA	V _{IN} = V _{IHmax}		
		CP	-		390	μA			
		D ₀ /CET			530	μA			
hL.	LOW level input cu	irrent	0.5			μA	V _{IN} = V _{ILmin}		
-I _{EE}	V _{EE} supply current		136	210	283	mA	Inputs open		
$rac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation	V _{EF} = -4.2V			0.035	v/v			
$rac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	$T_A = +25^{\circ}C$	· .		0.070	v/v			

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$, $T_A = 0^{\circ}C$ to $+85^{\circ}C$ unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst case testing guidelines, refer to Section 3 Testing, DC Testing.
 The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

rigure 4. transier enaracterie

AC ELECTRICAL CHARACTERISTICS

 $\label{eq:ceramic DIP} \begin{array}{c} V_{CC1} = V_{CC2} = GND, \ V_{EE} = -4.2V \ \pm 0.010V \ to \ -4.8V \ \pm 0.010V \end{array}$

			T _A = 0°C		T _A = + 25°C		⊦85°C			
PARAMETER		Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
f _{MAX}	Maximum shift frequency	250		250		250		MHz	Figs. 5, 10, 11	
t _{PLH} t _{PHL}	Propagation delay CP to Q_n , \overline{Q}_n	0.85 0.85	2.10 2.10	0.85 0.85	2.10 2.10	0.85 0.85	2.25 2.25	ns ns	Figs. 5, 9, 11	
t _{PLH} t _{PHL}	Propagation delay CP to TC	1.80 1.80	4.80 4.80	1.80 1.80	4.60 4.60	1.80 1.80	5.20 5.20	ns ns	Figs. 5, 9, 11	
t _{PLH} t _{PHL}	Propagation delay MR to Q _n , Q	1.20 1.20	2.95 2.95	1.35 1.35	2.95 2.95	1.20 1.20	3.10 3.10	ns ns	Figs. 6, 9, 11	
t _{PLH} t _{PHL}	Propagation delay MR to TC	2.10 2.10	4.80 4.80	2.10 2.10	4.80 4.80	2.10 2.10	5.00 5.00	ns ns	Figs. 6, 9, 11	
t _{PLH} t _{PHL}	Propagation delay D_0/\overline{CET} to \overline{TC}	1.40 1.40	3.20 3.20	1.40 1.40	3.20 3.20	1.40 1.40	3.50 3.50	ns ns	Figs. 7, 9, 11	
t _{PLH} t _{PHL}	Propagation delay S _n to TC	1.40 1.40	4.60 4.60	1.60 1.60	4.60 4.60	1.60 1.60	4.80 4.80	ns ns		
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.80 1.80	0.45 0.45	1.80 1.80	0.45 0.45	1.80 1.80	ns ns	Figs. 5, 6, 7, 9, 11	
ts	Setup time D0, D3 to CP	2.30		2.30		2.30		ns		
t _h	Hold time D ₀ , D ₃ to CP	0.20		0.20		0.20		ns		
ts	Setup time Pn to CP	1.70		1.70		1.70		ns		
t _h	Hold time Pn to CP	0.10		0.10		0.10		ns	Fire 0.11	
ts	Setup time D ₀ /CEP, CET to CP	2.30		2.30		2.30		ns	Figs. 8, 11	
t _h	Hold time D_0/\overline{CEP} , \overline{CET} to CP	0.20		0.20		0.20		ns	1	
ts	Setup time S _n to CP	3.80		3.80		3.80		ns	1	
t _h	Hold time S _n to CP	-0.9		-0.9		-0.9		ns	1	
t _r	Release time/ MR to CPn	2.50		2.50		2.50		ns	Figs. 6, 11	
t _w (H)	Pulse width HIGH MR, CP	2.50		2.50		2.50		ns	Figs. 5, 6, 11	

AC ELECTRICAL CHARACTERISTICS

 $\label{eq:ceramic DIP} \begin{array}{c} \textbf{V}_{CC1} = \textbf{V}_{CC2} = \textbf{GND}, \ \textbf{V}_{EE} = -5.2 \textbf{V} \ \pm 5\% \end{array}$

		$T_A = 0^{\circ}C$		T _A = + 25°C		T _A = + 85°C				
PARAMETER		Min	Max	Min	Мах	Min	Max	UNIT	TEST CONDITIONS	
f _{MAX}	Maximum shift frequency	250		250		250		MHz	Figs. 5, 10, 11	
t _{PLH} t _{PHL}	Propagation delay CP to Q _n , Q _n	0.85 0.85	2.10 2.10	0.85 0.85	2.10 2.10	0.85 0.85	2.25 2.25	ns ns	Figs. 5, 9, 11	
t _{PLH} t _{PHL}	Propagation delay CP to TC	1.80 1.80	4.80 4.80	1.80 1.80	4.60 4.60	1.80 1.80	5.20 5.20	ns ns		
t _{PLH} t _{PHL}	Propagation delay MR to Q _n , Q	1.20 1.20	2.95 2.95	1.35 1.35	2.95 2.95	1.20 1.20	3.10 3.10	ns ns	Figs. 6, 9, 11	
t _{PLH} t _{PHL}	Propagation delay MR to TC	2.10 2.10	4.80 4.80	2.10 2.10	4.80 4.80	2.10 2.10	5.00 5.00	ns ns	Figs. 0, 9, 11	
t _{PLH} t _{PHL}	Propagation delay D_0/\overline{CET} to \overline{TC}	1.40 1.40	3.20 3.20	1.40 1.40	3.20 3.20	1.40 1.40	3.50 3.50	ns ns	Figs. 7, 9, 11	
t _{PLH} t _{PHL}	Propagation delay S _n to TC	1.40 1.40	4.60 4.60	1.60 1.60	4.60 4.60	1.60 1.60	4.80 4.80	ns ns	1 195. 7, 0, 11	
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.80 1.80	0.45 0.45	1.80 1.80	0.45 0.45	1.80 1.80	ns ns	Figs. 5, 6, 7, 9, 11	
ts	Setup time D ₀ , D ₃ to CP	2.30		2.30		2.30		ns		
t _h	Hold time D ₀ , D ₃ to CP	0.20		0.20		0.20		ns		
ts	Setup time Pn to CP	1.70		1.70		1.70		ns		
t _h	Hold time Pn to CP	0.10		0.10		0.10		ns		
ts	Setup time D ₀ /CEP, CET to CP	2.30		2.30		2.30		ns	Figs. 8, 11	
t _h	Hold time D_0/\overline{CEP} , \overline{CET} to CP	0.20		0.20		0.20		ns	1	
ts	Setup time Sn to CP	3.80		3.80		3.80		ns]	
t _h	Hold time Sn to CP	-0.9		-0.9		-0.9		ns]	
t _r	Release time/ MR to CPn	2.50		2.50		2.50		ns	Figs. 6, 11	
t _w (H)	Pulse width HIGH MR, CP	2.50		2.50		2.50		ns	Figs. 5, 6, 11	

.
Counter/Shift Register

AC ELECTRICAL CHARACTERISTICS

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$

		T _A =	= 0°C	T _A = ·	+ 25°C	T _A = -	+ 85°C			
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
f _{MAX}	Maximum shift frequency	250		250		250		MHz	Figs. 5, 10, 11	
t _{PLH} t _{PHL}	Propagation delay CP to Q _n , Q _n	0.85 0.85	2.15 2.15	0.85 0.85	2.15 2.15	0.85 0.85	2.30 2.30	ns ns	Figs. 5, 9, 11	
t _{PLH} t _{PHL}	Propagation delay CP to TC	1.80 1.80	4.60 4.60	1.80 1.80	4.40 4.40	1.80 1.80	5.00 5.00	ns ns		
t _{PLH} t _{PHL}	Propagation delay MR to Q _n , Q	1.20 1.20	2.75 2.75	1.35 1.35	2.75 2.75	1.20 1.20	2.90 2.90	ns ns	Figs. 6, 9, 11	
t _{PLH} t _{PHL}	Propagation delay MR to TC	2.10 2.10	4.60 4.60	2.10 2.10	4.60 4.60	2.10 2.10	4.80 4.80	ns ns		
t _{PLH} t _{PHL}	Propagation delay D_0/\overline{CET} to \overline{TC}	1.40 1.40	3.00 3.00	1.40 1.40	3.00 3.00	1.40 1.40	3.30 3.30	ns ns	Figs. 7, 9, 11	
t _{PLH} t _{PHL}	Propagation delay S _n to TC	1.40 1.40	4.60 4.60	1.60 1.60	4.60 4.60	1.60 1.60	4.80 4.80	ns ns		
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.80 1.80	0.45 0.45	1.80 1.80	0.45 0.45	1.80 1.80	ns ns	Figs. 5, 6, 7, 9, 11	
ts	Setup time D ₀ , D ₃ to CP	1.40	·	1.40		1.40		ns		
t _h	Hold time D0, D3 to CP	0.00		0.00		0.00		ns		
ts	Setup time Pn to CP	1.60		1.60		1.60		ns		
t _h	Hold time Pn to CP	0.00		0.00		0.00		ns		
ts	Setup time D ₀ /CEP, CET to CP	1.80		1.80		1.80		ns	Figs. 8, 11	
t _h	Hold time D0/CEP, CET to CP	0.00		0.00		0.00		ns		
ts	Setup time Sn to CP	3.60		3.60		3.60		ns		
t _h	Hold time Sn to CP	-0.4		-0.4		-0.4		ns		
tr	Release time MR to CPn	2.50		2.50		2.50		ns	Figs. 6, 11	
t _w (H)	Pulse width HIGH MR, CP	2.50		2.50		2.50		ns	Figs. 5, 6, 11	

Counter/Shift Register

AC ELECTRICAL CHARACTERISTICS

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 5\%$

		T _A =	= 0°C	T _A = -	+ 25°C	T _A = -	+ 85°C		TEST CONDITIONS
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
f _{MAX}	Maximum shift frequency	250		250		250		MHz	Figs. 5, 10, 11
t _{PLH} t _{PHL}	Propagation delay CP to Q _n , Q _n	0.85 0.85	2.15 2.15	0.85 0.85	2.15 2.15	0.85 0.85	2.30 2.30	ns ns	Figs. 5, 9, 11
t _{PLH} t _{PHL}	Propagation delay CP to TC	1.80 1.80	4.60 4.60	1.80 1.80	4.40 4.40	1.80 1.80	5.00 5.00	ns ns	
t _{PLH} t _{PHL}	Propagation delay MR to Q _n , Q	1.20 1.20	2.75 2.75	1.35 1.35	2.75 2.75	1.20 1.20	2.90 2.90	ns ns	Figs. 6, 9, 11
t _{PLH} t _{PHL}	Propagation delay MR to TC	2.10 2.10	4.60 4.60	2.10 2.10	4.60 4.60	2.10 2.10	4.80 4.80	ns ns	
t _{PLH} t _{PHL}	Propagation delay D_0/\overline{CET} to \overline{TC}	1.40 1.40	3.00 3.00	1.40 1.40	3.00 3.00	1.40 1.40	3.30 3.30	ns ns	Figs. 7, 9, 11
t _{PLH} t _{PHL}	Propagation delay S_n to \overline{TC}	1.40 1.40	4.60 4.60	1.60 1.60	4.60 4.60	1.60 1.60	4.80 4.80	ns ns	- 11go. 7, 0, 11
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.80 1.80	0.45 0.45	1.80 1.80	0.45 0.45	1.80 1.80	ns ns	Figs. 5, 6, 7, 9, 11
ts	Setup time D ₀ , D ₃ to CP	1.40		1.40		1.40		ns	
t _h	Hold time D ₀ , D ₃ to CP	0.00		0.00		0.00		ns	
ts	Setup time Pn to CP	1.60		1.60		1.60		ns	
t _h	Hold time Pn to CP	0.00		0.00		0.00		ns	1
ts	Setup time D ₀ /CEP, CET to CP	1.80		1.80		1.80		ns	Figs. 8, 11
t _h	Hold time D ₀ /CEP, CET to CP	0.00		0.00		0.00		ns	
ts	Setup time Sn to CP	3.60		3.60		3.60		ns	
t _h	Hold time Sn to CP	-0.4		-0.4		-0.4		ns	1
t _r	Release time MR to CPn	2.50		2.50		2.50		ns	Figs. 6, 11
t _w (H)	Pulse width HIGH MR, CP	2.50		2.50		2.50		ns	Figs. 5, 6, 11

100136

Counter/Shift Register

100136

AC WAVEFORMS

Counter/Shift Register

TEST CIRCUITS AND WAVEFORMS

Counter/Shift Register

100136

NOTES: $\label{eq:VCC1} \begin{array}{l} \mathsf{V_{CC1}} = \mathsf{V_{CC2}} = + 2\mathsf{V} \pm 0.010\mathsf{V}, \ \mathsf{V_{EE}} = -3.2\mathsf{V} \\ \pm 0.010\mathsf{V}. \\ \mathsf{Decoupling} \ 0.1\mu\mathsf{F} \ \text{and} \ 25\mu\mathsf{F} \ \text{from GND to} \ \mathsf{V_{CC}}, \\ \mathsf{0.01}\mu\mathsf{F} \ \text{and} \ 25\mu\mathsf{F} \ \text{from GND to} \ \mathsf{V_{EE}}, \ \mathsf{(0.01 and} \ 0.1\mu\mathsf{F} \ \mathsf{capacitors} \ \mathsf{should} \ \mathsf{be} \ \mathsf{NPO} \ \mathsf{Ceramic or} \ \mathsf{MLC} \end{array}$ +2 NV + 0.010V 1. 2. 25μF 0.1µF type). Decoupling capacitors should be here certainte of MLC close as physically possible to the DUT and lead length should be kept to less than 1/4 inch (6mm). PULSE GENERATOR All unused inputs should be connected to either HIGH or LOW state consistent with the LOGIC 6 (9) 10 (7) 3 V_{CC2} V_{CC1} (17) 20 SCOPE 5 (2) SCOPE CHANNEL B function required. CP ۵ All unused outputs are loaded with 50Ω to GND. L₁ and L₂ are equal length 50Ω impedance lines. L₃, the distance from the DUT pin to the junction of (19) 22 5 AF Rı (16) 19 the cable from the Pulse Generator and the cable to Ρ, the scope from the Puise Generator and the cable to the Scope, should not exceed 1/4 inch (6mm). $R_T = 502$ terminator internal to Scope. The unmatched wire stub between coaxial cable (15) 18 6. 7. (14) 17 Ρ, ā, and pins under test must be less than 1/4 inch (6mm) long for proper test. (13) 16 8 (5) Ρ3 Q C_L = Fixture and stray capacitance \leq 3pF. Any unterminated stubs connected anywhere along (20) 23 8 Vitte 7 (4) s, 50() 9 OR ō, (21) 24 the transmission line between the Pulse Generator and the DUT or between the DUT and the Scope VILmir s. 1 (8) 50 Q2 (22) 1 s2 should not exceed 1/4 inch (6mm) in length (refer to section on AC setup procedure). 12 (9) 503 ā, (23) 2 CEP 14(11)50Ω 10. All 50 Ω resistors should have tolerance of ± 1% or (24) 3 Q3 better. D₀/CET 13(10) 50() 11. Pin connections are for Flat Pack and in parentheses for Ceramic DIP package. ā, (12) 15 D₃ **50**Ω 4 (1) TC VEE 21 (18) 0.01µ 25µF ± 0.010V -2.5V TC05130S Figure 10. Shift Frequency Test Circuit (Shift Left)

Signetics

ECL Products

DESCRIPTION

100141 has eight D-type flip-flops, and two selection inputs, S₀, S₁, allowing a parallel loading or left shifting or right shifting, or hold operation mode.

100141 Shift Register

8-Bit Shift Register **Product Specification**

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
100141	1.7ns	175mA

ORDERING CODE

PACKAGES	$\begin{array}{l} \mbox{COMMERCIAL RANGE} \\ \mbox{V}_{CC1} = \mbox{V}_{CC2} = \mbox{GND}; \ \mbox{V}_{EE} = -4.2 \mbox{V} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Ceramic DIP	100141F
Ceramic Flat Pack	100141Y

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₇	Serial Data Inputs
P ₀ – P ₃	Parallel Data Inputs
СР	Clock Input
S ₀ , S ₁	Select Inputs
Q ₀ – Q ₇	Data Outputs

LOGIC SYMBOL

7

Product Specification

Shift Register

100141

LOGIC DIAGRAM

FUNCTION TABLE

	INPUTS			OUTPUTS										
MODE	S ₀	S ₁	СР	7 Q _{n + 1}	6 Q _{n + 1}	5 Q _{n + 1}	4 Q _{n + 1}	3 Q _{n + 1}	2 Q _{n + 1}	1 Q _{n + 1}	0 Q _{n+1}			
				7	6	5	4	3	2	1	0			
Register load	L	L	1	Pn	Pn									
-				7	7	6	5	4	3	2	1			
Right shift	L	н	1	Dn	Qn	Qn	Qn	Qn	Qn	Qn	Qn			
				6	5	4	3	2	1	0	0			
Left shift	н	L	1	Qn	Dn									
				7	6	5	4	3	2	1	0			
Hold state	н	н	X	Qn	Qn									

Positive Logic:

 HIGH state (more positive voltage) = 1
LOW state (less positive voltage) = 0
LOW-to-HIGH transition н

х = Don't Care

n = last state

n + 1 = next state after transition

100141

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	100K ECL	UNIT
V _{EE}	Supply voltage ($V_{CC1} = V_{CC2} = GND$)	-7.0 to 0	v
V _{IN}	Input voltage (VIN should never be more negative than VEE)	V _{EE} to +0.5	v
lo	Output source current	-55	mA
T _S	Storage temperature	-65 to +150	°C
Tj	Maximum junction temperature	+ 150	°C

DC OPERATING CONDITIONS

		AMETER			100K ECL		
	PAF		Min	Nom	Max	UNIT	
V _{CC1} , V _{CC2}	Circuit ground			0	0	0	v
V _{EE}	Supply voltage (negative)			-4.2	-4.5	-4.8	v
V _{EE}	Supply voltage (negative)			-5.7	v		
			$V_{EE} = -4.2V$	-1150			
VIH	HIGH level input voltage		$V_{EE} = -4.5V$	1165]	-880	mV
			$V_{EE} = -4.8V$	1105			
			$V_{EE} = -4.2V$	-1150			mV
VIHT	HIGH level input threshold voltage	$V_{CC1} = V_{CC2} = GND$	$V_{EE} = -4.5V$	4405			
			$V_{EE} = -4.8V$	1165			mV
			V _{EE} = -4.2V				
V _{ILT}	LOW level input threshold voltage	$T_A = 0^{\circ}C \text{ to } + 85^{\circ}C$	$V_{EE} = -4.5V$	1		-1475	mV
	uneshold voltage		$V_{EE} = -4.8V$			-1490	mV
		1	$V_{EE} = -4.2V$				
VIL	LOW level input voltage		$V_{EE} = -4.5V$	- 1810		-1475	m∨
			$V_{EE} = -4.8V$	1		-1490	
T _A	Operating ambient tempe	rature	•	0	+ 25	+ 85	°C

NOTE:

When operating at other than specified voltages (-4.2V, -4.5V, -4.8V) DC & AC Characteristics will vary slightly from specified values.

100141

	DADAMETED			TVD			TFOT	
	PARAMETER		MIN	ТҮР	MAX	UNIT	TEST	CONDITIONS ²
		$V_{EE} = -4.2V$	-1025		-870	mV	V _{IN} = V _{IHmax}	
V _{OH}	HIGH level output voltage	$V_{EE} = -4.5V$	-1025	-955	-880	mV	or	
		$V_{EE} = -4.8V$	-1035		-880	mV	V _{IN} = V _{ILmin}	
		$V_{EE} = -4.2V$	-1035	_		mV	V _{IN} = V _{IHmin}	
V _{OHT}	HIGH level output threshold voltage	$V_{EE} = -4.5V$	-1035			mV	or	
	J. J	V _{EE} = -4.8V	-1045			mV	$V_{IN} = V_{ILmax}$	Loading with
		V _{EE} = -4.2V			-1590	mV	V _{IN} = V _{IHmin}	50Ω to $-2.0V \pm 0.010V$
V _{OLT}	LOW level output threshold voltage	V _{EE} = -4.5V			-1610	mV	or	
		$V_{EE} = -4.8V$			-1610	mV	$V_{IN} = V_{ILmax}$	
		V _{EE} = -4.2V	-1810		-1600	mV	V _{IN} = V _{IHmax}	1
V _{OL}	LOW level output voltage	V _{EE} = -4.5V	-1810	-1705	-1620	mV	or	
	ealpar renage	V _{EE} = -4.8V	-1830		-1620	mV	V _{IN} = V _{ILmin}	
I _{IH}	HIGH level	CP			640	μA		·
	input current	D _n , P _n , S _n			220	μA	$V_{IN} = V_{IHmax}$	
Ι _{ΙL}	LOW level input cu	irrent	0.5			μA	V _{IN} = V _{ILmin}	
-I _{EE}	VEE supply current		120	175	238	mA	Inputs open	
$rac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation	V _{EE} = -4.2V			0.025	v/v		
$\frac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	$T_A = +25^{\circ}C$			0.050	v/v		

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$, $T_A = 0^{\circ}C$ to $+85^{\circ}C$ unless otherwise specified^{1.3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst case testing guidelines, refer to Section 3 Testing, DC Testing.
The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

AC ELECTRICAL CHARACTERISTICS

Ceramic DIP V_{CC1} = V_{CC2} = GND, V_{EE} = -4.2V $\pm 0.010V$ to -4.8V $\pm 0.010V$

	DADAMETED	T _A =	: 0°C	T _A = ·	T _A = + 25°C		+ 85°C			
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
f _{MAX}	Maximum shift frequency	275		275		275		MHz	Figs. 5, 8, 9	
t _{PLH} t _{PHL}	Propagation delay CP to Q _n	0.90 0.90	2.40 2.40	1.10 1.10	2.40 2.40	1.10 1.10	2.55 2.55	ns ns	Figs. 5, 7, 9	
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.40 1.40	0.45 0.45	1.30 1.30	0.45 0.45	1.40 1.40	ns ns	Figs. 5, 7, 9	
t _s	Setup time D _n , P _n to CP	1.40		1.40		1.70		ns	Figs. 6, 9	
t _h	Hold time D _n , P _n to CP	0.60		0.60		0.60		ns		
ts	Setup time S _n to CP	3.80		3.80		3.40		ns	Figs. 6, 9	
t _h	Hold time S _n to CP	0.10		0.10		0.10		ns		
t _w (H)	Pulse width HIGH CP	2.50		2.50		2.50		ns	Figs. 5, 9	

100141

100141

AC ELECTRICAL CHARACTERISTICS

Ceramic DIP $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 5\%$

		$T_A = 0^{\circ}C$ $T_A = +25^{\circ}$		+ 25°C	25°C T _A = +85°C			TEAT AGNIDITIONS		
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
f _{MAX}	Maximum shift frequency	275		275		275		MHz	Figs. 5, 8, 9	
t _{PLH} t _{PHL}	Propagation delay CP to Q _n	0.90 0.90	2.40 2.40	1.10 1.10	2.40 2.40	1.10 1.10	2.55 2.55	ns ns	Figs. 5, 7, 9	
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.40 1.40	0.45 0.45	1.30 1.30	0.45 0.45	1.40 1.40	ns ns	- Figs. 5, 7, 8	
ts	Setup time D _n , P _n to CP	1.40		1.40	-	1.70		ns	Figs. 6, 9	
t _h	Hold time D _n , P _n to CP	0.60		0.60		0.60		ns	- 1 195. 0, 9	
ts	Setup time S _n to CP	3.80		3.80		3.40		ns	- Figs. 6, 9	
t _{h.}	Hold time S _n to CP	0.10		0.10		0.10		ns		
t _w (H)	Pulse width HIGH CP	2.50		2.50		2.50		ns	Figs. 5, 9	

Flat Pack V_{CC1} = V_{CC2} = GND, V_{EE} = $-4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$

	DADAMETER	T _A = 0°C		T _A = + 25°C		T _A = + 85°C				
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
f _{MAX}	Maximum shift frequency	300		300		300		MHz	Figs. 5, 8, 9	
t _{PLH} t _{PHL}	Propagation delay CP to Q _n	0.90 0.90	2.20 2.20	1.10 1.10	2.20 2.20	1.10 1.10	2.35 2.35	ns ns	Figs. 5, 7, 9	
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.40 1.40	0.45 0.45	1.30 1.30	0.45 0.45	1.40 1.40	ns ns	. 1 igs. 5, 7, 9	
ts	Setup time D _n , P _n to CP	1.20		1.20		1.50		ns	Figs. 6, 9	
t _h	Hold time D _n , P _n to CP	0.50		0.50		0.50		ns		
ts	Setup time S _n to CP	2.80		2.80		3.20		ns	Figs. 6, 9	
t _h	Hold time S _n to CP	0.00		0.00		0.00		ns		
t _w (H)	Pulse width HIGH CP	2.50		2.50		2.50		ns	Figs. 5, 9	

AC ELECTRICAL CHARACTERISTICS

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 5\%$

	DADANETED	T _A = 0°C		T _A = + 25°C		T _A = -	+ 85°C		TEST CONDITIONS		
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS		
f _{MAX}	Maximum shift frequency	300		300		300		MHz	Figs. 5, 8, 9		
t _{PLH} t _{PHL}	Propagation delay CP to Q _n	0.90 0.90	2.20 2.20	1.10 1.10	2.20 2.20	1.10 1.10	2.35 2.35	ns ns	Figs. 5, 7, 9		
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.40 1.40	0.45 0.45	1.30 1.30	0.45 0.45	1.40 1.40	ns ns			
ts	Setup time D _n , P _n to CP	1.20		1.20		1.50		ns	Figs. 6, 9		
t _h	Hold time D _n , P _n to CP	0.50		0.50		0.50		ns			
t _s	Setup time S _n to CP	2.80		2.80		3.20		ns	Figs. 6, 9		
t _h	Hold time S _n to CP	0.00		0.00		0.00		ns			
t _w (H)	Pulse width HIGH CP	2.50		2.50		2.50		ns	Figs. 5, 9		

AC WAVEFORMS

7–111

Shift Register

TEST CIRCUITS AND WAVEFORMS

NOTES:

- $V_{CC1} = V_{\pm 0.010V.}$ = V_{CC2} = + 2V ± 0.010V, V_{EE} = - 3.2V
- Decoupling 0.1 μ F and 25 μ F from GND to V_{CC}. 0.01 μ F and 25 μ F from GND to V_{EE}. (0.01 and 0.1 μ F capacitors should be NPO Ceramic or MLC type). Decoupling capacitors should be placed as close as physically possible to the DUT and lead inserth should be kent to lead the (frem). length should be kept to less than 1/4 inch (6mm).
- All unused inputs should be connected to either HIGH or LOW state consistent with the LOGIC function required.
- All unused outputs are loaded with 50 to GND. All unused outputs are loaded with box to Grid. L_1 and L_2 are equal length 50Ω impedance lines. L_3 , the distance from the DUT pin to the junction of the cable from the Pulse Generator and the cable to the Scope, should not exceed 1/4 inch (6mm). $R_T = 50\Omega$ terminator internal to Scope.
- The unmatched wire stub between coaxial cable and pins under test must be less than 1/4 inch
- (6mm) long for proper test. $C_L = Fixture$ and stray capacitance $\leq 3pF$.
- Any unterminated stubs connected anywhere along the transmission line between the Pulse Generator and the DUT or between the DUT and the Scope should not exceed 1/4 inch (6mm) in length (refer to section on AC setup procedure). 10. All 50Ω resistors should have tolerance of ± 1% or
- hetter
- 11. Pins connections are for Flat Pack and in parentheses for Ceramic DIP.

100141

Signetics

ECL Products

DESCRIPTION

The 100145 is a 64-bit Register File organized as an array of 16×4 . Separate address inputs for Read (AR_n) and Write (AWn) are intended for shorter overall cycle time by allowing one address to be setting up, while the other is being executed.

Four output latches, which store data from previous operation while writing is in progress, also increase operating speed. The Write Enable input (WE) selects the Read or Write mode. In the Read mode, the outputs can be forced LOW by a HIGH level on either of the output enables (\overline{OE}_n). One \overline{WE} and one OE can be tied together, to serve as a Chip Select (\overline{CS}) . When \overline{CS} input is HIGH (with other OE at LOW) the circuit is in the Read mode and the data are latched in the output latches, and become available as soon as CS goes LOW.

The Master Reset signal (MR) clears all cells, forces the outputs LOW and resets the output latches.

100145 Read-While-Write Register File

 16×4 Read-While-Write Register File **Preliminary Specification**

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
100145	3.5ns	167mA

ORDERING CODE

PACKAGES	$\label{eq:VCC1} \begin{array}{l} \mbox{COMMERCIAL RANGE} \\ \mbox{V}_{CC1} = \mbox{V}_{CC2} = \mbox{GND}; \ \mbox{V}_{EE} = -4.2 \mbox{V} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Ceramic DIP	100145F
Ceramic Flat Pack	100145Y

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₃	Data Inputs
AR ₀ – AR ₃	Read Address Inputs
AW ₀ – AW ₃	Write Address Inputs (Active LOW)
$\overline{WE}_0 - \overline{WE}_1$	Write Enable Inputs
MR	Master Reset Input
$\overline{OE}_1 - \overline{OE}_2$	Output Enable Inputs
Q ₀ – Q ₃	Data Outputs

PIN CONFIGURATION AR2 1

AR1 2

AR₀ 3

Q0 4

Q1 5

Vcc1 6

Vcc2 7

Q2 8

Q3 9

D₃ 10

D₂ 11

D1 12

AW2 1

AW3 2

AR3 3

AR₂ 4

AR1 5

AR₀ 6

CERAMIC

AW1 AW0 MR VEE WE0 WE1 24 23 22 21 20 19

FAST PACK

7 8 9 10 11 12 Q1 VCC1 VCC2 Q2 Q3 (TOP VIEW)

24 AR3

23 AW3

22 AW2

21 AW1

20 AWo

19 MR

18 V_{EE}

17 WE.

16 WE1

15 OE1

14 ŌĒ0

13 Do

18 OE1

17 OE.

16 D₀

15 D1

14 D₂

13 D₃

CD093005

LOGIC SYMBOL

100145

7

LOGIC DIAGRAM

FUNCTION TABLE

		INP	UTS				Ουτ	PUTS			
Dn	WE ₀	WE ₁	OE ₀	OE1	MR	Q	Q1	Q ₂	Q ₃		OPERATING MODE
х	L	L	L	L	L		Data from	Latches		Write	Hold (previous operation)
Х	н	x	L	L	L		Read Data				Data are latched
х	н	X	X	н	L		L	_		Read	Data are latched
х	н	X	н	X	L		1	-		Read	Data are latched
х	X	н	L	L	L		Read	Data		Read	Data are latched
х	X	н	X	н	L		L	-		Read	Data are latched
х	x	н	н	×	L		ι	-		Read	Data are latched
х	X	x	X	x	н		L				Clears all cells

Positive Logic:

H = HIGH state (the more positive voltage level) = 1

L = LOW state (the less positive voltage level) = 0

X = Don't Care

Read-While-Write Register File

1

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	100K ECL	UNIT
V _{EE}	Supply voltage ($V_{CC1} = V_{CC2} = GND$)	-7.0 to 0	v
V _{IN}	Input voltage (VIN should never be more negative than VEE)	V _{EE} to +0.5	V
Io	Output source current	-55	mA
Τ _S	Storage temperature	-65 to +150	°C
Tj	Maximum junction temperature	+ 150	°C

DC OPERATING CONDITIONS

			100K ECL				
	PAR	Min	Nom	Max	UNIT		
V _{CC1} , V _{CC2}	Circuit ground		· · · · · · · · · · · · · · · · · · ·	0	0	0	v
V _{EE}	Supply voltage (negative)			-4.2	-4.5	-4.8	v
V _{EE}	Supply voltage (negative)	when operating with 10K	ECL family			-5.7	v
			$V_{EE} = -4.2V$	-1150			
VIH	HIGH level input voltage		$V_{EE} = -4.5V$	1105		-880	mV
	input voltago		V _{EE} = -4.8V	-1165			
			V _{EE} = -4.2V	-1150			mV
VIHT	HIGH level input threshold voltage	$V_{CC1} = V_{CC2} = GND$	V _{EE} = -4.5V	4405			
	unconcid voltago		$V_{EE} = -4.8V$	- 1165			mV
			$V_{EE} = -4.2V$		İ		
VILT	LOW level input threshold voltage	$T_A = 0^{\circ}C \text{ to } + 85^{\circ}C$	V _{EE} = -4.5V	1		-1475	mV
	through the stage		V _{EE} = -4.8V			-1490	mV
			V _{EE} = -4.2V				a statut Santa
VIL	LOW level input voltage		V _{EE} = -4.5V	-1810		-1475	mV
	input totago		V _{EE} = -4.8V	1		-1490	
T _A	Operating ambient temper	rature	· · · · · · · · · · · · · · · · · · ·	0	+ 25	+ 85	°C

NOTE:

When operating at other than specified voltages (-4.2V, -4.5V, -4.8V) DC & AC Characteristics will vary slightly from specified values.

100145

			uniess	otherwise	specified ',						
	PARAMETER		MIN	ТҮР	MAX	UNIT	TEST	CONDITIONS ²			
		$V_{EE} = -4.2V$	-1025		-870	mV	V _{IN} = V _{IHmax}				
V _{OH}	HIGH level output voltage	V _{EE} = -4.5V	- 1025	-955	-880	mV	or				
		$V_{EE} = -4.8V$	- 1035		-880	mV	V _{IN} = V _{ILmin}				
		V _{EE} = -4.2V	- 1035			mV	$V_{IN} = V_{IHmin}$				
V _{OHT}	HIGH level output threshold voltage	V _{EE} = -4.5V	-1035			mV	or				
		V _{EE} = -4.8V	- 1045			mV	V _{IN} = V _{ILmax}	Loading with			
		V _{EE} = -4.2V			- 1590	mV	V _{IN} = V _{IHmin} or	50Ω to -2.0V ± 0.010V			
VOLT	LOW level output threshold voltage	V _{EE} = -4.5V			-1610	mV					
	theshold voltage	V _{EE} = -4.8V			-1610	mV	$V_{IN} = V_{ILmax}$				
		V _{EE} = -4.2V	-1810		-1600	mV	V _{IN} = V _{IHmax}	7			
VOL	LOW level output voltage	V _{EE} = -4.5V	-1810	-1705	-1620	mV	or				
	output tonago	V _{EE} = -4.8V	- 1830		-1620	mV	V _{IN} = V _{ILmin}				
цн	HIGH level input c	urrent			240	μA	V _{IN} = V _{IHmax}				
l _{iL}	LOW level input cu	irrent	0.5			μA	V _{IN} = V _{ILmin}				
-I _{EE}	V _{EE} supply current		119	167	247	mA	Inputs open				
$\frac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation	V _{EE} = -4.2V			0.025	v/v					
$\frac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	$T_A = +25^{\circ}C$			0.050	v/v					

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$, $T_A = 0^{\circ}C$ to $+85^{\circ}C$ unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst case testing guidelines, refer to Section 3 Testing, DC Testing.
The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

AC ELECTRICAL CHARACTERISTICS

Ceramic DIP V_{CC1} = V_{CC2} = GND, V_{EE} = -4.2V $\pm 0.010V$ to -4.8V $\pm 0.010V$

			T _A =	= 0°C	T _A = + 25°C		T _A = + 85°C			TEST
	PA	RAMETER	Min	Max	Min	Max	Min	Max	UNIT	CONDITIONS
Access	t _{AA}	Address access ARn to Qn	2.00	6.70	2.00	6.70	2.00	6.70	ns	Fig. 5
recovery	tOR	Output recovery \overline{OE}_n to Q_n	1.00	3.10	1.00	3.10	1.00	3.10	ns	5-0
timing	top	Output disable OE to Qn		3.10	1.00	3.10	1.00	3.10	ns	Fig. 6
Read timing	t _{RSA1}	Address setup ARn to WE	3.20		3.20		3.20		ns	
	t _{WEQ}	Output delay WE to Qn		6.10	2.00	6.10	2.00	6.10	ns	Fig. 7
Output	t _{RSA2}	Address setup \overline{AR}_n to WE	8.50		8.50		8.50		ns	Fig. 8
latch timing	t _{RHA}	Address hold AR_n to \overline{WE}	0.20		0.20		0.20		ns	Fig. 9
	t _{WSA}	Address setup \overline{AW}_n to WE	3.20		3.20		3.20		ns	
Write	twha	Address hold \overline{WE} to AW_n	0.20		0.20		0.20		ns	
timing	t _{WSD}	Data setup Dn to WE	6.20		6.20		6.20		ns	Fig. 10
	twhD	Data hold WE to Dn	0.20		0.20		0.20		ns	
	tw	Write pulse width, LOW	5.20		5.20		5.20		ns	-
M	t _M	Reset pulse width, LOW	13.7		13.7		13.7		ns	F 44
Master reset timing	t _{MHW}	WE hold to write	18.4	-	18.4		18.4		ns	- Fig. 11
	t _{MQ}	Output disable MR to Qn	3.70		3.70		3.70		ns	Fig. 12
t _{TLH} t _{THL}	Transiti 20% to	on time 0 80%, 80% to 20%	0.50 0.50	2.30 2.30	0.50 0.50	2.30 2.30	0.50 0.50	2.30 2.30	ns ns	Figs. 13, 14

AC ELECTRICAL CHARACTERISTICS

Ceramic DIP V_{CC1} = V_{CC2} = GND, V_{EE} = –5.2V $\pm\,5\,\%$

			T _A =	= 0°Ç	T _A = + 25°C		T _A = +85°C		UNIT	TEST
	PA	RAMETER	Min	Max	Min	Max	Min	Max	UNIT	CONDITIONS
Access	t _{AA}	Address access AR _n to Q _n	2.00	6.70	2.00	6.70	2.00	6.70	ns	Fig. 5
recovery	tOR	Output recovery \overline{OE}_n to Q_n	1.00	3.10	1.00	3.10	1.00	3.10	ns	Fig. 6
timing	t _{OD}	Output disable OE to Qn		3.10	1.00	3.10	1.00	3.10	ns	Fig. 6
Read timing	t _{RSA1}	Address setup \overline{AR}_n to WE	3.20		3.20		3.20		ns	
	tweq	Output delay WE to Qn		6.10	2.00	6.10	2.00	6.10	ns	- Fig. 7
Output	t _{RSA2}	Address setup \overline{AR}_n to WE	8.50		8.50		8.50		ns	Fig. 8
latch timing	t _{RHA}	Address hold AR_n to \overline{WE}	0.20		0.20		0.20		ns	Fig. 9
	twsa	Address setup \overline{AW}_n to WE	3.20		3.20		3.20		ns	
Write	t _{WHA}	Address hold $\overline{\text{WE}}$ to AW_{n}	0.20		0.20		0.20		ns]
timing	twsp	Data setup D _n to WE	6.20		6.20		6.20		ns	Fig. 10
-	twHD	Data hold WE to Dn	0.20		0.20		0.20		ns	7
	tw	Write pulse width, LOW	5.20		5.20		5.20		ns	1
M	t _M	Reset pulse width, LOW	13.7		13.7		13.7		ns	Fig. 44
Master reset	t _{MHW}	WE hold to write	18.4		18.4		18.4		ns	- Fig. 11
timing	t _{MQ}	Output disable MR to Qn	3.70		3.70		3.70		ns	Fig. 12
t _{TLH} t _{THL}		on time 9 80%, 80% to 20%	0.50 0.50	2.30 2.30	0.50 0.50	2.30 2.30	0.50 0.50	2.30 2.30	ns ns	Figs. 13, 14

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$

			T _A =	= 0°C	T _A = -	+ 25°C	T _A = -	+ 85°C	UNIT	TEST
	PA	RAMETER	Min	Max	Min	Max	Min	Max	UNIT	CONDITIONS
Access	t _{AA}	Address access AR _n to Q _n	2.00	6.50	2.00	6.50	2.00	6.50	ns	Fig. 5
recovery	t _{OR}	Output recovery OEn to Qn	1.00	2.90	1.00	2.90	1.00	2.90	ns	Fig. 6
timing	t _{OD}	Output disable OE to Qn	1.00	2.90	1.00	2.90	1.00	2.90	ns	Fig. 6
Read	t _{RSA1}	Address setup ARn to WE	3.00		3.00		3.00		ns	Fig. 7
timing	t _{WEQ}	Output delay WE to Qn	2.00	5.90	2.00	5.90	2.00	5. 9 0	ns	Fig. 7
Output	t _{RSA2}	Address setup AR _n to WE	. 8.30		8.30		8.30		ns	Fig. 8
latch timing	t _{RHA}	Address hold AR _n to WE	0.00		0.00		0.00		ns	Fig. 9
	t _{WSA}	Address setup AW _n to WE	3.00		3.00		3.00		ns	
18/1010	twha	Address hold WE to AWn	0.00		0.00		0.00		ns	
Write timing	twsp	Data setup D _n to WE	6.00		6.00		6.00		ns	Fig. 10
	twhD	Data hold WE to D _n	0.00		0.00		0.00		ns]
	tw	Write pulse width, LOW	5.00		5.00		5.00		ns	
	t _M	Reset pulse width, LOW	13.5		13.5		13.5		ns	Fig. 44
Master reset	t _{MHW}	WE hold to write	18.2		18.2		18.2		ns	Fig. 11
timing	t _{MQ}	Output disable MR to Qn	3.50		3.50		3.50		ns	Fig. 12
t _{TLH} t _{THL}		on time 0 80%, 80% to 20%	0.50 0.50	2.20 2.20	0.50 0.50	2.20 2.20	0.50 0.50	2.20 2.20	ns ns	Figs. 13, 14

AC ELECTRICAL CHARACTERISTICS

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 5\%$

	DAI	PARAMETER			T _A = + 25°C		T _A = +85°C		UNIT	TEST
	PAI	FARAMEIER		Max	Min	Max	Min	Max	UNIT	CONDITIONS
Access	t _{AA}	Address access AR _n to Q _n	2.00	6.50	2.00	6.50	2.00	6.50	ns	Fig. 5
recovery	tOR	Output recovery OEn to Qn	1.00	2.90	1.00	2.90	1.00	2.90	ns	Ein 0
timing	t _{OD}	Output disable OE to Qn	1.00	2.90	1.00	2.90	1.00	2.90	ns	- Fig. 6
Read	t _{RSA1}	Address setup ARn to WE	3.00		3.00		3.00		ns	Fig. 7
timing	t _{WEQ}	Output delay WE to Qn		5.90	2.00	5.90	2.00	5.90	ns	- Fig. 7
Output	t _{RSA2}	Address setup AR _n to WE	8.30		8.30		8.30		ns	Fig. 8
latch timing	t _{RHA}	Address hold ARn to WE	0.00		0.00		0.00		ns	Fig. 9
	t _{WSA}	Address setup AWn to WE	3.00		3.00		3.00		ns	
Write	t _{WHA}	Address hold WE to AWn	0.00		0.00		0.00		ns	1
timing	t _{WSD}	Data setup Dn to WE	6.00		6.00		6.00		ns	Fig. 10
-	twHD	Data hold WE to D _n	0.00		0.00		0.00		ns	
	tw	Write pulse width, LOW	5.00		5.00		5.00		ns	
Master	t _M	Reset pulse width, LOW	13.5		13.5		13.5		ns	Fig. 44
Master reset timing	t _{MHW}	WE hold to write	18.2		18.2		18.2		ns	- Fig. 11
	t _{MQ}	Output disable MR to Qn	3.50		3.50		3.50		ns	Fig. 12
t _{TLH} t _{THL}	Transitio 20% to	on time 9 80%, 80% to 20%	0.50 0.50	2.20 2.20	0.50 0.50	2.20 2.20	0.50 0.50	2.20 2.20	ns ns	Figs. 13, 14

100145

100145

AC WAVEFORMS

WF12550S

Figure 12. Master Reset Timing

Read-While-Write Register File

MC

۵

100145

Signetics

ECL Products

DESCRIPTION

The 100150 contains six D-type latches with true and complement outputs, a pair of common enables (\overline{E}_a and \overline{E}_b), and a common Master Reset (MR). A Q output follows its D input when both \overline{E}_a and \overline{E}_b are LOW. When either \overline{E}_a or \overline{E}_b (or both) are HIGH, a latch stores the last valid data present on its D input before \overline{E}_a or Eb goes HIGH. The MR input overrides all other inputs and makes the Q output LOW.

100150 Latch

Hex D-Type Latch **Product Specification**

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
100150	1.2ns (Ē)/0.85ns (Data)	102mA

ORDERING CODE

PACKAGES	$\label{eq:VCC1} \begin{array}{l} \mbox{COMMERCIAL RANGE} \\ \mbox{V}_{CC1} = \mbox{V}_{CC2} = \mbox{GND}; \ \mbox{V}_{EE} = -4.2 \mbox{V} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Ceramic DIP	100150F
Ceramic Flat Pack	100150Y

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₅	Data Inputs
Ē _a , Ē _b	Common Enable Inputs
MR	Master Reset Input
Q ₀ – Q ₅	Data Outputs
$\overline{Q}_0 - \overline{Q}_5$	Complementary Data Outputs

PIN CONFIGURATION ā₅ [1

Q4 2

Q4 3

ā₃ [4

Q3 5

V_{CC1} 6

Vcc2 7

Q2 8

Q2 9

Q1 10

Q1 11

Q₀ 12

D4 1

D5 2

Q5 3

Q5 4

Q4 5

Q4 6

CERAMIC

E1 E0 MR VEE D3 D2

24 23 22 21 20 19

FLAT PACK

7 8 9 10 11 12 Q3 Q3 VCC1 VCC2 Q2 Q2 (TOP VIEW)

24 Q5

23 D5

22 D4

21] Ē,

20 Ē,

19 MR

18 VEE

17 D3

16 D₂

15 D1

14 Do

13 Q₀

18 D1

17 Do

16 Q₀

15 Qo

14 Q1

13 Q1

CD09310S

LOGIC SYMBOL

Latch

100150

FUNCTION TABLE (Each Latch)

	INP	UTS		Ουτι	PUTS	
Dn	Ē0	Ē1	MR	Qn	$\overline{\mathbf{Q}}_{\mathbf{n}}$	OPERATING MODE
н	L	L	L	н	L	
L	L	L	L	L	н	Latch
х	X	н	L	Latched*	Latched*	
Х	н	×	L	Latched*	Latched*	
х	х	³ X	н	L	н	Asynchronous

*Retains data that is present before $\overline{\mathsf{E}}$ positive transition

Positive Logic:

H = HIGH state (the more positive voltage) = 1

L = LOW state (the less positive voltage) = 0

X = Don't Care

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	100K ECL	UNIT
V _{EE}	Supply voltage ($V_{CC1} = V_{CC2} = GND$)	-7.0 to 0	v
V _{IN}	Input voltage (VIN should never be more negative than VEE)	V _{EE} to +0.5	V
lo	Output source current	- 55	mA
Τ _S	Storage temperature	-65 to +150	°C
Т _Ј	Maximum junction temperature	+ 150	°C

DC OPERATING CONDITIONS

		RAMETER					
	PA	Min	Nom	Max	UNIT		
V _{CC1} , V _{CC2}	Circuit ground	······································		0	0	0	v
VEE	Supply voltage (negative	3)		-4.2	-4.5	-4.8	v
V _{EE}	Supply voltage (negative) when operating with 10K	ECL family			-5.7	V
			$V_{EE} = -4.2V$	-1150			
VIH	HIGH level ^H input voltage		$V_{EE} = -4.5V$	4405		-880	mV
			$V_{EE} = -4.8V$	1165			
			$V_{EE} = -4.2V$	-1150			mV
V _{IHT}	HIGH level input threshold voltage	$V_{CC1} = V_{CC2} = GND$	$V_{EE} = -4.5V$	4405			
	anoonola voltago		$V_{EE} = -4.8V$	1165		1	mV
			$V_{EE} = -4.2V$				
V _{ILT}	LOW level input threshold voltage	$T_A = 0^{\circ}C \text{ to } + 85^{\circ}C$	$V_{EE} = -4.5V$	1		-1475	mV
	theshold voltage		$V_{EE} = -4.8V$			-1490	mV
Vii	LOW level input voltage		$V_{EE} = -4.5V$	-1810		-1475	mV
]		-1490			
T _A	Operating ambient temp	0	+ 25	+ 85	°C		

NOTE:

When operating at other than specified voltages (-4.2V, -4.5V, -4.8V) DC & AC Characteristics will vary slightly from specified values.

Latch

unless otherwise specified^{1,3} PARAMETER MIN TYP MAX UNIT **TEST CONDITIONS²** $V_{EE} = -4.2V$ -1025 -870 m٧ $V_{IN} = V_{IHmax}$ HIGH level VOH $V_{EE} = -4.5V$ -1025 -955 -880 m٧ or output voltage $V_{IN} = V_{ILmin}$ $V_{EE} = -4.8V$ -1035 -880 m٧ $V_{EE} = -4.2V$ -1035 m٧ $V_{IN} = V_{IHmin}$ HIGH level output V_{EE} = -4.5V -1035 VOHT m٧ or threshold voltage $V_{IN} = V_{ILmax}$ $V_{EE} = -4.8V$ -1045 m٧ Loading with $V_{EE} = -4.2V$ -1590 mV 50Ω to -2.0V ±0.010V $V_{IN} = V_{IHmin}$ LOW level output $V_{EE} = -4.5V$ -1610 VOLT m٧ or threshold voltage $V_{IN} = V_{ILmax}$ $V_{EE} = -4.8V$ -1610 m٧ $V_{EE} = -4.2V$ -1810 -1600 mV $V_{IN} = V_{IHmax}$ LOW level $V_{EE} = -4.5V$ -1810 -1705 VOL -1620 m٧ or output voltage $V_{IN} = V_{ILmin}$ $V_{EE} = -4.8V$ -1830 -1620 m٧ R 450 μA HIGH level Dn $V_{IN} = V_{IHmax}$ 340 μA ŀн input current $\overline{E}_a, \overline{E}_b$ 520 μA ΙL LOW level input current 0.5 μA $V_{IN} = V_{ILmin}$ -I_{EE} VEE supply current 79 102 Inputs open 159 mΑ HIGH level ΔV_{OH} output voltage 0.035 V/V ΔV_{EE} compensation V_{EE} = -4.2V LOW level $T_{A} = +25^{\circ}C$ ΔV_{OL} output voltage 0.070 v/v $\overline{\Delta V_{EE}}$ compensation

DC ELECTRICAL CHARACTERISTICS V_{CC1} = V_{CC2} = GND, V_{EE} = -4.2V ±0.010V to -4.8V ±0.010V, T_A = 0°C to +85°C

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

2. Conditions for testing shown in the tables are not necessarily worst case. For worst case testing guidelines, refer to Section 3 Testing, DC Testing. 3. The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 3.

Latch

AC ELECTRICAL CHARACTERISTICS

Ceramic DIP V_{CC1} = V_{CC2} = GND, V_{EE} = -4.2V $\pm 0.010V$ to -4.8V $\pm 0.010V$

	PARAMETER		T _A = 0°C		T _A = +25°C		+ 85°C		
			RAMETER UNIT		UNIT	TEST CONDITIONS			
t _{PLH} t _{PHL}	Propagation delay D _n to Q _n	0.45 0.45	1.50 1.50	0.50 0.50	1.40 1.40	0.50 0.50	1.50 1.50	ns ns	Figs. 4, 7, 8
t _{PLH} t _{PHL}	Propagation delay \overline{E}_a , \overline{E}_b to Q_n	0.75 0.75	2.05 2.05	0.75 0.75	1.85 1.85	0.75 0.75	2.05 2.05	ns ns	, , , , , , , , , , , , , , , , , , ,
t _{PLH} t _{PHL}	Propagation delay R to Q _n	0.80 0.80	2.40 2.40	0.90 0.90	2.40 2.40	0.90 0.90	2.60 2.60	ns ns	Figs. 5, 7, 8
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.50 1.50	0.45 0.45	1.50 1.50	0.45 0.45	1.50 1.50	ns ns	Figs. 4, 7, 8
t _s	Setup time D _n to Ē _n	0.70 0.70		0.70 0.70		0.70 0.70		ns ns	Figs. 6, 8
t _h	Hold time D _n to Ē _n	0.70 0.70		0.70 0.70		0.70 0.70		ns ns	, , , , , , , , , , , , , , , , , , ,
t _r	Release time R to Ē _n	2.10 2.10		2.10 2.10		2.10 2.10		ns ns	Figs. 5, 8
t _{PW(L)}	Pulse width $\overline{E}_{a}, \overline{E}_{b}$	2.50 2.50		2.50 2.50		2.50 2.50		ns ns	Figs. 4, 8
t _{PW(H)}	Pulse width $\overline{E}_{a}, \ \overline{E}_{b}$	2.50 2.50		2.50 2.50		2.50 2.50		ns ns	Figs. 4, 8

Latch

100150

AC ELECTRICAL CHARACTERISTICS

Ceramic DIP $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 5\%$

	DADAMETED		T _A = 0°C		T _A = +25°C		+ 85°C		TEST CONDITIONS
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} t _{PHL}	Propagation delay D _n to Q _n	0.45 0.45	1.50 1.50	0.50 0.50	1.40 1.40	0.50 0.50	1.50 1.50	ns ns	Figs. 4, 7, 8
t _{PLH} t _{PHL}	Propagation delay $\overline{E}_a, \overline{E}_b$ to Q_n	0.75 0.75	2.05 2.05	0.75 0.75	1.85 1.85	0.75 0.75	2.05 2.05	ns ns	
t _{PLH} t _{PHL}	Propagation delay R to Q _n	0.80 0.80	2.40 2.40	0.90 0.90	2.40 2.40	0.90 0.90	2.60 2.60	ns ns	Figs. 5, 7, 8
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.50 1.50	0.45 0.45	1.50 1.50	0.45 0.45	1.50 1.50	ns ns	Figs. 4, 7, 8
ts	Setup time D _n to Ē _n	0.70 0.70		0.70 0.70		0.70 0.70		ns • ns	Figs. 6, 8
t _h	Hold time D _n to Ē _n	0.70 0.70		0.70 0.70		0.70 0.70		ns ns	
tr	Release time R to Ē _n	2.10 2.10		2.10 2.10		2.10 2.10		ns ns	Figs. 5, 8
^t ₽W(L)	Pulse width Ē _a , Ē _b	2.50 2.50		2.50 2.50		2.50 2.50		ns ns	Figs. 4, 8
t _{PW(H)}	Pulse width $\overline{E}_{a}, \overline{E}_{b}$	2.50 2.50		2.50 2.50		2.50 2.50		ns ns	Figs. 4, 8

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$

			0°C	T _A = -	+ 25°C	T _A = -	+ 85°C		
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} t _{PHL}	Propagation delay D _n to Q _n	0.45 0.45	1.30 1.30	0.50 0.50	1.20 1.20	0.50 0.50	1.30 1.30	ns ns	Figs. 4, 7, 8
t _{PLH} t _{PHL}	Propagation delay $\overline{E}_a, \ \overline{E}_b$ to Q_n	0.75 0.75	1.85 1.85	0.75 0.75	1.65 1.65	0.75 0.75	1.85 1.85	ns ns	
t _{PLH} t _{PHL}	Propagation delay R to Q _n	0.80 0.80	2.20 2.20	0.90 0.90	2.20 2.20	0.90 0.90	2.40 2.40	ns ns	Figs. 5, 7, 8
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.50 1.50	0.45 0.45	1.50 1.50	0.45 0.45	1.50 1.50	ns ns	Figs. 4, 7, 8
ts	Setup time D _n to Ē _n	0.60 0.60		0.60 0.60		0.60 0.60		ns ns	Figs. 6, 8
t _h	Hold time D _n to Ē _n	0.60 0.60		0.60 0.60		0.60 0.60		ns ns	1 195. 0, 0
t _r	Release time R to Ē _n	2.00 2.00		2.00 2.00		2.00 2.00		ns ns	Figs. 5, 8
t _{PW(L)}	Pulse width $\overline{E}_a, \overline{E}_b$	2.50 2.50		2.50 2.50		2.50 2.50		ns ns	Figs. 4, 8
t _{PW(H)}	Pulse width Ē _a , Ē _b	2.50 2.50		2.50 2.50		2.50 2.50		ns ns	Figs. 4, 8

7

AC ELECTRICAL CHARACTERISTICS

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 5\%$

		$T_A = 0^{\circ}C$		T _A = + 25°C		T _A = + 85°C				
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH} t _{PHL}	Propagation delay D _n to Q _n	0.45 0.45	1.30 1.30	0.50 0.50	1.20 1.20	0.50 0.50	1.30 1.30	ns ns	Figs. 4, 7, 8	
t _{PLH} t _{PHL}	Propagation delay $\overline{E}_a, \ \overline{E}_b$ to Q_n	0.75 0.75	1.85 1.85	0.75 0.75	1.65 1.65	0.75 0.75	1.85 1.85	ns ns		
t _{PLH} t _{PHL}	Propagation delay R to Q _n	0.80 0.80	2.20 2.20	0.90 0.90	2.20 2.20	0.90 0.90	2.40 2.40	ns ns	Figs. 5, 7, 8	
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.50 1.50	0.45 0.45	1.50 1.50	0.45 0.45	1.50 1.50	ns ns	Figs. 4, 7, 8	
ts	Setup time D _n to Ē _n	0.60 0.60		0.60 0.60		0.60 0.60		ns ns	Figs. 6, 8	
t _h	Hold time D _n to Ē _n	0.60 0.60		0.60 0.60		0.60 0.60		ns ns	Figs. 6, 8	
t _r	Release time R to Ē _n	2.00 2.00		2.00 2.00		2.00 2.00		ns ns	Figs. 5, 8	
t _{PW(L)}	Pulse width $\overline{E}_a, \overline{E}_b$	2.50 2.50		2.50 2.50		2.50 2.50		ns ns	Figs. 4, 8	
t _{PW(H)}	Pulse width $\overline{E}_a, \ \overline{E}_b$	2.50 2.50		2.50 2.50		2.50 2.50		ns ns	Figs. 4, 8	

Latch

100150

AC WAVEFORMS

Latch

100150

TEST CIRCUITS AND WAVEFORMS

Signetics

100151 Flip-Flop

Hex D-Type Master-Slave Flip-Flop Product Specification

ECL Products

DESCRIPTION

The 100151 contains six flip-flops with complement and data outputs, a master reset (MR) and a pair of common clock inputs. Data enter the flip-flop on the LOW-to-HIGH transition of one of two clock inputs.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
100151	1.7ns	137mA
	••••••••••••••••••••••••••••••••••••••	

ORDERING CODE

PACKAGES	$\begin{array}{l} \textbf{COMMERCIAL RANGE} \\ \textbf{V}_{CC1} = \textbf{V}_{CC2} = \textbf{GND}; \ \textbf{V}_{EE} = -4.2 \textbf{V} \ \textbf{to} \ -4.8 \textbf{V} \\ \textbf{T}_{A} = 0^{\circ} \textbf{C} \ \textbf{to} \ +85^{\circ} \textbf{C} \end{array}$
Ceramic DIP	100151F
Ceramic Flat Pack	100151Y

PIN DESCRIPTION

PINS	DESCRIPTION				
D ₀ – D ₄	Data Inputs				
CP _a , CP _b	Common Clock Inputs				
MR	Master Reset Input				
Q ₀ – Q ₄	Data Outputs				
$\overline{Q}_0 - \overline{Q}_4$	Complementary Data Outputs				

PIN CONFIGURATION ās 🚺

ā4 2

Q4 3

ā₃ [4 Q3 5

Vcc1 6

Vcc2 7 Q2 8

Q2 9

Q1 10

Q1 [1]

Q0 12

D4 1 D5 2 Q5 3

ās [4

ā₄ 5

Q4 6

24 Q5

23 D5

22 D4 21 CP,

20 CP,

19 MR

18 VEE

17 D3

16 D2

15 D1

14 Do

13 Qo

18 D1

17 Do

16 Q0

15 Ōo

14 Q1

13 Q1

CD093205

CERAMIC DIP

CP1 CP0 MR VEE D3 D2

24 23 22 21 20 19

FAST PACK

7 8 9 10 11 12 Q3 Q3 VCC1 VCC2 Q2 Q2 (TOP VIEW)

LOGIC SYMBOL

January 30, 1986

Flip-Flop

100151

7

LOGIC DIAGRAM

FUNCTION TABLE

	INPUTS				PUTS	
D	CPa	CPb	R	Q	Q	
н	L	1	· L	L	н	
L	L	1	L	Н	L	
н	1	L	L	L	н	
L	1	L	L	н	L	
X	х	н	L	No change		
X	н	х	L	No change		
X	х	х	н	н	L	
X	L	L	L	No change		

Positive Logic:

Positive Logic: H = HIGH state (more positive voltage) = 1 L = LOW state (less positive voltage) = 0 X = Don't Care $\uparrow = LOW-to-HIGH \text{ transition.}$

Flip-Flop

100151

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	100K ECL	UNIT
V _{EE}	Supply voltage (V _{CC1} = V _{CC2} = GND)	-7.0 to 0	V
V _{IN}	Input voltage (VIN should never be more negative than VEE)	V _{EE} to +0.5	V
lo	Output source current	-55	mA
T _S	Storage temperature	-65 to +150	°C
TJ	Maximum junction temperature	+ 150	°C

DC OPERATING CONDITIONS

		100K ECL					
	PAI	Min	Nom	Max	UNIT		
V _{CC1} , V _{CC2}	Circuit ground		0	0	0	v	
V _{EE}	Supply voltage (negative)			-4.2	-4.5	-4.8	v
V _{EE}	Supply voltage (negative)	when operating with 10K	ECL family			-5.7	V
	HIGH level input voltage		$V_{EE} = -4.2V$	-1150			
V _{IH}		$V_{EE} = -4.5V$		4405	-880	mV	
			$V_{EE} = -4.8V$	1165			
V _{IHT}	HIGH level input threshold voltage	$V_{CC1} = V_{CC2} = GND$	$V_{EE} = -4.2V$	-1150			mV
			$V_{EE} = -4.5V$	1105			
			$V_{EE} = -4.8V$	1165			mV
	LOW level input threshold voltage	$T_A = 0^{\circ}C \text{ to } +85^{\circ}C$	$V_{EE} = -4.2V$			-1475	
V _{ILT}			$V_{EE} = -4.5V$				mV
			$V_{EE} = -4.8V$			-1490	mV
V _{IL}	LOW level input voltage		$V_{EE} = -4.2V$				
		V _{EE} = -4.5V		-1810		-1475	mV
	input tonago		$V_{EE} = -4.8V$	1		-1490	
T _A	Operating ambient temperature			0	+ 25	+ 85	°C

NOTE:

When operating at other than specified voltages (-4.2V, -4.5V, -4.8V) DC & AC Characteristics will vary slightly from specified values.

Flip-Flop

100151

······			F	r					
PARAMETER		MIN	TYP	MAX	UNIT	TEST	CONDITIONS ²		
		$V_{EE} = -4.2V$	- 1025		-870	mV	V _{IN} = V _{IHmax}		
V _{OH} HIGH level output voltage	$V_{EE} = -4.5V$	- 1025	-955	-880	mV	or			
		$V_{EE} = -4.8V$	- 1035		-880	٧m	$V_{IN} = V_{II \min}$		
		$V_{EE} = -4.2V$	- 1035			mV	V _{IN} = V _{IHmin}		
V _{OHT}	HIGH level output threshold voltage	$V_{EE} = -4.5V$	- 1035			mV	or		
		$V_{EE} = -4.8V$	- 1045			mV	$V_{IN} = V_{ILmax}$	Loading with	
		$V_{EE} = -4.2V$			- 1590	mV	V _{IN} = V _{IHmin}	50Ω to -2.0V ±0.010V	
VOLT	LOW level output threshold voltage	$V_{EE} = -4.5V$			-1610	mV	or		
		V _{EE} = -4.8V			-1610	mV	V _{IN} V _{ILmax}		
		$V_{EE} = -4.2V$	- 1810		- 1600	mV	V _{IN} = V _{IHmax}		
VOL	V _{OL} LOW level output voltage	$V_{EE} = -4.5V$	÷1810	-1705	-1620	mV	or		
		$V_{EE} = -4.8V$	- 1830		-1620	mV	V _{IN} = V _{ILmin}		
		R			450	μA			
Чн	HIGH level input current	D _n			225	μA	V _{IN} = V _{IHmex}		
		CP _a , CP _b			520	μA			
կլ	IIL LOW level input current		0.5			μA	$V_{iN} = V_{iLmin}$		
-I _{EE}	-I _{EE} V _{EE} supply current		98	137	210	mA	Inputs open		
$\frac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation	V _{FF} = -4.2V			0.035	v/v			
$rac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	$T_A = +25^{\circ}C$			0.070	v/v			

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$, $T_A = 0^{\circ}C$ to $+85^{\circ}C$ unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst case testing guidelines, refer to Section 3 Testing, DC Testing.
The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermai equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.
Flip-Flop

AC ELECTRICAL CHARACTERISTICS

Ceramic DIP v_{CC1} = v_{CC2} = GND, v_{EE} = -4.2V $\pm 0.010V$ to -4.8V $\pm 0.010V$

		T _A =	0°C	T _A = -	+ 25°C	T _A = -	+85°C			
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
f _{max}	Toggle frequency	375		375		375		MHz	Figs. 4, 8, 9	
t _{PLH} t _{PHL}	Propagation delay CP _a , CP _b to Q _n	0.80 0.80	2.20 2.20	0.80 0.80	2.20 2.20	0.90 0.90	2.40 2.40	ns ns	Figs. 4, 7, 9	
t _{PLH} t _{PHL}	Propagation delay MR to Q _n	1.20 1.20	2.90 2.90	1.30 1.30	3.00 3.00	1.20 1.20	3.10 3.10	ns ns	Figs. 4, 7, 9	
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.70 1.70	0.45 0.45	1.60 1.60	0.45 0.45	1.70 1.70	ns ns	Figs. 4, 7, 9	
ts	Setup time D _n to CP _n	0.95		0.90		0.95		ns	Figs. 6, 9	
t _h	Hold time D _n to CP _n	0.70	r.	0.70		0.70		ns	. ⊢iys. 0, 9	
t _r	Release time MR to CP _n	2.30		2.30		2.30		ns	Figs. 5, 9	
t _w (H)	Pulse width CP _a , CP _b , MR	2.50		2.50		2.50		ns	Figs. 4, 5, 9	

Flip-Flop

100151

AC ELECTRICAL CHARACTERISTICS

Ceramic DIP $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 5\%$

	DADAMETED	T _A =	• 0°C	T _A = -	+ 25°C	T _A = -	+ 85°C			
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
f _{max}	Toggle frequency	375		375		375		MHz	Figs. 5, 9, 10	
t _{PLH} t _{PHL}	Propagation delay CP _a , CP _b to Q _n	0.80 0.80	2.20 2.20	0.80 0.80	2.20 2.20	0.90 0.90	2.40 2.40	ns ns	Figs. 5, 8, 10	
t _{PLH} t _{PHL}	Propagation delay MR to Q _n	1.20 1.20	2.90 2.90	1.30 1.30	3.00 3.00	1.20 1.20	3.10 3.10	ns ns	Figs. 5, 8, 10	
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.70 1.70	0.45 0.45	1.60 1.60	0.45 0.45	1.70 1.70	ns ns	Figs. 5, 8, 10	
t _s	Setup time D _n to CP _n	0.95		0.90		0.95		ns	Figs. 7, 10	
t _h	Hold time D _n to CP _n	0.70		0.70		0.70		ns	, ingo. i, io	
t _r	Release time MR to CP _n	2.30		2.30		2.30		ns	Figs. 6, 10	
t _w (H)	Pulse width CP _a , CP _b , MR	2.50		2.50		2.50		ns	Figs. 5, 6, 10	

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$

	DADAMETED	т _А =	: 0°C	T _A = -	+ 25°C	T _A = -	+ 85°C		TEAT CONDITIONS
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
f _{max}	Toggle frequency	375		375		375		MHz	Figs. 5, 7, 10
t _{PLH} t _{PHL}	Propagation delay CP _a , CP _b to Q _n	0.80 0.80	2.00 2.00	0.80 0.80	2.00 2.00	0.90 0.90	2.20 2.20	ns ns	Figs. 5, 8, 10
t _{PLH} t _{PHL}	Propagation delay MR to Q _n	1.20 1.20	2.70 2.70	1.30 1.30	2.80 2.80	1.20 1.20	2.90 2.90	ns ns	Figs. 5, 8, 10
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.70 1.70	0.45 0.45	1.60 1.60	0.45 0.45	1.70 1.70	ns ns	Figs. 5, 8, 10
ts	Setup time D _n to CP _n	0.75		0.70		0.75		ns	Figs. 7, 10
• t _h	Hold time D _n to CP _n	0.60		0.60		0.60		ns	
tr	Release time MR to CP _n	2.20		2.20		2.50		ns	Figs. 6, 10
t _w (H)	Pulse width CP _a , CP _b , MR	2.50		2.50		2.50		ns	Figs. 5, 6, 10

Flip-Flop

AC ELECTRICAL CHARACTERISTICS

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 5\%$

		T _A =	: 0°C	T _A = -	+ 25°C	T _A = -	+ 85°C		TEAT CONDITIONS
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
f _{max}	Toggle frequency	375		375		375		MHz	Figs. 5, 9, 10
t _{PLH} t _{PHL}	Propagation delay CP _a , CP _b to Q _n	0.80 0.80	2.00 2.00	0.80 0.80	2.00 2.00	0.90 0.90	2.20 2.20	ns ns	Figs. 5, 8, 10
t _{PLH} t _{PHL}	Propagation delay MR to Q _n	1.20 1.20	2.70 2.70	1.30 1.30	2.80 2.80	1.20 1.20	2.90 2.90	ns ns	Figs. 5, 8, 10
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.70 1.70	0.45 0.45	1.60 1.60	0.45 0.45	1.70 1.70	ns ns	Figs. 5, 8, 10
ts	Setup time D _n to CP _n	0.75		0.70		0.75		ns	Figs. 7, 10
t _h	Hold time D _n to CP _n	0.60		0.60		0.60		ns	
t _r	Release time MR to CP _n	2.20		2.20		2.50		ns	Figs. 6, 10
t _w (H)	Pulse width CP _a , CP _b , MR	2.50		2.50		2.50		ns	Figs. 5, 6, 10

Flip-Flop

100151

AC WAVEFORMS

50%

Figure 7. Data Setup and Hold Time

CLOCK

+0.31V +1.05V

+0.31V WF12610S

Flip-Flop

TEST CIRCUITS AND WAVEFORMS

Flip-Flop

100151

Signetics

ECL Products

DESCRIPTION

The 100155 has four flip-flops with complement and data outputs, a common reset, and a common clock, fed by a 2input negative AND gate, data inputs from a 2-way multiplexer. Each multiplexer has two data inputs selected by two common address inputs (S₀, S₁). One address input is complemented, so address inputs can be tied together to form a single select input.

100155 Multiplexer-Latch

Quad 2-Way Multiplexer/Latch Product Specification

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
100155	1.1ns	93mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -4.2V$ to -4.8V $T_A = 0^{\circ}C$ to +85°C
Ceramic DIP	100155F
Ceramic Flat Pack	100155Y

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₇	Data Inputs
Ē ₀ , Ē ₁	Enable Inputs
<u></u> 50, S ₁	Select Inputs
MR	Master Reset Input
Q ₀ – Q ₃	Data Outputs
$\overline{Q}_0 - \overline{Q}_3$ $\overline{Q}_0 - \overline{Q}_3$	Complementary Data Outputs

PIN CONFIGURATION D7 1

Q3 2

ā3 3

Q2 4

Q2 5

V_{CC1} 6

V_{CC2} 7

Q1 8

Q1 9

Q₀ 10

ā, 11

D₀ 12

D4 1

D5 2

D6 3

D7 4

Q3 5

Q₃ 6

24 D6

23 D5

22 D4

21 E1

20 Ē₀

19 MR

17 S1

16 S₀

15 D3

14 D₂

13 D1

E1 E0 MR VEE S1 S0

24 23 22 21 20 19

FLAT PACK

7 8 9 10 11 12 Q2 Q2 VCC1 VCC2 Q1 Q1 (TOP VIEW)

LOGIC SYMBOL

Product Specification

100155

7

LOGIC DIAGRAM

FUNCTION TABLE

			INPUTS				OUT	PUTS
Reset	Ena	able	Add	ress	Da	ıta	Q	Q
н	х	х	х	х	х	х	н	L
L	L	L	н	н	н	Х	L	н
L	L	L	н	н	L	Х	н	L
Ł	L	L	L	L	Х	н	L	н
L	L	L	L	L	х	L	н	L
L	L	L	L	н	Х	Х	н	L
L	L	L	н	L	н	Х	L	н
L	L	L	н	L	Х	н	L	н
L	L	L	н	L	L	L	н	L
L	н	Х	Х	х	х	х	No cl	nange
L	х	н	х	х	х	х		nange

Positive Logic:

H = HIGH state (more positive voltage) = 1

L = LOW state (less positive voltage) = 0

X = Don't Care

100155

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	100K ECL	UNIT
V _{EE}	Supply voltage ($V_{CC1} = V_{CC2} = GND$)	-7.0 to 0	V
V _{IN}	Input voltage (VIN should never be more negative than VEE)	V _{EE} to +0.5	V
lo	Output source current	-55	mA
Ts	Storage temperature	-65 to +150	°C
Tj	Maximum junction temperature	+ 150	°C

DC OPERATING CONDITIONS

		AMETER			100K ECL		
	PAH		Min	Nom	Max	UNIT	
V _{CC1} , V _{CC2}	Circuit ground	. ·		0	0	0	v
V _{EE}	Supply voltage (negative)			-4.2	-4.5	-4.8	V
V _{EE}	Supply voltage (negative)	when operating with 10K	ECL family			-5.7	v
			V _{EE} = -4.2V	-1150			
VIH	HIGH level input voltage		V _{EE} = -4.5V	-1165		-880	mV
		1	$V_{EE} = -4.8V$	1105			
			V _{EE} = -4.2V	-1150			mV
	HIGH level input threshold voltage	$V_{CC1} = V_{CC2} = GND$	$V_{EE} = -4.5V$	-1165			
			$V_{EE} = -4.8V$	1 -1105			mV
			V _{EE} = -4.2V				
V _{ILT}	LOW level input threshold voltage	$T_A = 0^{\circ}C \text{ to } + 85^{\circ}C$	V _{EE} = -4.5V			-1475	mV
	anoonola voltago		V _{EE} = -4.8V			-1490	mV
			V _{EE} = -4.2V				
VIL	LOW level input voltage		V _{EE} = -4.5V		-1475		mV
			$V_{EE} = -4.8V$]		-1490	:
T _A	Operating ambient tempe	0	+ 25	+ 85	°C		

NOTE:

When operating at other than specified voltages (-4.2V, -4.5V, -4.8V) DC & AC Characteristics will vary slightly from specified values.

100155

	PARAMETER		MIN	ТҮР	MAX	UNIT	TEST	CONDITIONS ²		
		$V_{EE} = -4.2V$	-1025		-870	mV	V _{IN} = V _{IHmax}			
V _{OH}	HIGH level output voltage	$V_{EE} = -4.5V$	-1025	-955	-880	mV	or			
	output voltage	$V_{EE} = -4.8V$	-1035		-880	mV	V _{IN} = V _{ILmin}			
		$V_{EE} = -4.2V$	-1035			mV	V _{IN} = V _{IHmin}			
VOHT	HIGH level output threshold voltage	$V_{EE} = -4.5V$	-1035			mV	or			
	throshold voltage	$V_{EE} = -4.8V$	-1045			mV	V _{IN} = V _{ILmax}	Loading with		
		V _{EE} = -4.2V			-1590	mV	V _{IN} = V _{IHmin}	50Ω to $-2.0V \pm 0.010V$		
VOLT	LOW level output threshold voltage	$V_{EE} = -4.5V$			-1610	mV	or			
	thround voltage	$V_{EE} = -4.8V$			-1610	mV	V _{IN} = V _{ILmax}			
		V _{EE} = -4.2V	-1810		-1600	mV	V _{IN} = V _{IHmax} or			
V _{OL}	LOW level output voltage	$V_{EE} = -4.5V$	-1810	-1705	-1620	mV				
	output voltage	$V_{EE} = -4.8V$	-1830		-1620	mV	$V_{IN} = V_{ILmin}$			
		<u></u> 5₀, S ₁			220	μA				
	HIGH level	$\overline{E}_1, \overline{E}_2$			350	μA	1			
Iн	input current	D _n			340	μA	$V_{IN} = V_{IHmax}$			
		MR			430	μA				
կլ	LOW level input cu	rrent	0.5			μA	V _{IN} = V _{ILmin}			
-I _{EE}	V _{EE} supply current		66	93	133	mA	Inputs open			
$rac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation	V _{FF} = -4.2V			0.035	v/v				
$rac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	$T_A = +25^{\circ}C$			0.070	v/v				

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$, $T_A = 0^{\circ}C$ to $+85^{\circ}C$ unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst case testing guidelines, refer to Section 3 Testing, DC Testing.
 The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

Multiplexer-Latch

AC ELECTRICAL CHARACTERISTICS

Ceramic DIP $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$

	DADAMETER	T _A =	• 0°C	T _A = ·	+ 25°C	T _A = +85°C				
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH} t _{PHL}	Propagation delay D _n to Q _n	0.50 0.50	1.90 1.90	0.60 0.60	1.85 1.85	0.50 0.50	1.90 1.90	ns ns		
t _{PLH} t _{PHL}	Propagation delay \overline{S}_0 , S_1 to Q_n	1.50 1.50	3.50 3.50	1.50 1.50	3.40 3.40	1.50 1.50	3.50 3.50	ns ns	Figs. 5, 8, 9	
t _{PLH} t _{PHL}	Propagation delay \overline{E}_0 , \overline{E}_1 to Q_n	0.90 0.90	2.50 2.50	1.00 1.00	2.40 2.40	1.00 1.00	2.50 2.50	ns ns		
t _{PLH} t _{PHL}	Propagation delay MR to Q _n	0.90 0.90	3.00 3.00	0.90 0.90	2.90 2.90	0.90 0.90	3.00 3.00	ns ns	Figs. 6, 8, 9	
t _{TLH} t _{THL}	Trấnsition time 20% to 80%, 80% to 20%	0.60 0.60	2.20 2.20	0.60 0.60	2.10 2.10	0.45 0.45	2.20 2.20	ns ns	Figs. 5, 8, 9	
ts	Setup time D _n to Ē _n	0.90		0.90		0.90		ns		
t _h	Hold time D _n to Ē _n	0.40		0.40		0.40		ns	Figs. 7, 9	
ts	Setup time S ₀ , S ₁ to D _n	2.40		2.40		2.70		ns	- Figs. 7, 8	
t _h	Hold time S ₀ , S ₁ to D _n	-0.6		-0.6		-0.6		ns		
t _r	Release time MR to E _n	1.50		1.50		1.50		ns	Figs. 6, 9	
t _w (H)	Pulse width MR	2.50		2.50		2.50		ns	Figs. 6, 9	
t _w (L)	Pulse width \overline{E}_0 , \overline{E}_1	2.50		2.50		2.50		ns	Figs. 5, 9	

AC ELECTRICAL CHARACTERISTICS

Ceramic DIP $V_{CC1} = V_{CC2} = \text{GND}, \ V_{EE} = -5.2 \text{V} \pm 5\%$

	DADAMETER	T _A =	• 0°C	T _A = ·	+ 25°C	T _A = -	+ 85°C		TEAT CONDITIONS	
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH} t _{PHL}	Propagation delay D _n to Q _n	0.50 0.50	1.90 1.90	0.60 0.60	1.85 1.85	0.50 0.50	1.90 1.90	ns ns		
t _{PLH} t _{PHL}	Propagation delay \overline{S}_0 , S_1 to Q_n	1.50 1.50	3.50 3.50	1.50 1.50	3.40 3.40	1.50 1.50	3.50 3.50	ns ns	Figs. 5, 8, 9	
t _{PLH} t _{PHL}	Propagation delay \overline{E}_0 , \overline{E}_1 to Q_n	0.90 0.90	2.50 2.50	1.00 1.00	2.40 2.40	1.00 1.00	2.50 2.50	ns ns		
t _{PLH} t _{PHL}	Propagation delay MR to Q _n	0.90 0.90	3.00 3.00	0.90 0.90	2.90 2.90	0.90 0.90	3.00 3.00	ns ns	Figs. 6, 8, 9	
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.60 0.60	2.20 2.20	0.60 0.60	2.10 2.10	0.45 0.45	2.20 2.20	ns ns	Figs. 5, 8, 9	
ts	Setup time D _n to Ē _n	0.90		0.90		0.90		ns		
t _h	Hold time D _n to Ē _n	0.40		0.40		0.40		ns	Figs. 7, 9	
t _s	Setup time S ₀ , S ₁ to D _n	2.40		2.40		2.70		ns		
t _h	Hold time S ₀ , S ₁ to D _n	-0.6		-0.6		-0.6		ns]	
t _r	Release time MR to \overline{E}_n	1.50		1.50		1.50		ns	Figs. 6, 9	
t _w (H)	Pulse width MR	2.50		2.50		2.50		ns	Figs. 6, 9	
t _w (L)	Pulse width E ₀ , E ₁	2.50		2.50		2.50		ns	Figs. 5, 9	

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$

		T _A =	• 0°C	T _A = -	+ 25°C	T _A = ·	+ 85°C		
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} t _{PHL}	Propagation delay D _n to Q _n	0.50 0.50	1.70 1.70	0.60 0.60	1.65 1.65	0.50 0.50	1.70 1.70	ns ns	
t _{PLH} t _{PHL}	Propagation delay \overline{S}_0 , S_1 to Q_n	1.50 1.50	3.30 3.30	1.50 1.50	3.20 3.20	1.50 1.50	3.30 3.30	ns ns	Figs. 5, 8, 9
t _{PLH} t _{PHL}	Propagation delay \overline{E}_0 , \overline{E}_0 to Q_n	0.90 0.90	2.30 2.30	1.00 1.00	2.20 2.20	1.00 1.00	2.30 2.30	ns ns	
t _{PLH} t _{PHL}	Propagation delay MR to Q _n	0.90 0.90	2.80 2.80	0.90 0.90	2.70 2.70	0.90 0.90	2.80 2.80	ns ns	Figs. 6, 8, 9
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.60 0.60	2.20 2.20	0.60 0.60	2.10 2.10	0.45 0.45	2.20 2.20	ns ns	Figs. 5, 8, 9
t _s	Setup time D _n to Ē _n	0.80		0.80		0.80		ns	
t _h	Hold time D _n to Ē _n	0.30		0.30		0.30		ns	Figs. 7, 9
t _s .	Setup time S ₀ , S ₁ to D _n	2.60		2.60		2.60		ns	
t _h	Hold time S ₀ , S ₁ to D _n	-0.8		-0.8		-0.8		ns].
t _r	Release time MR to Ē _n	1.40		1.40		1.40		ns	Figs. 6, 9
t _w (H)	Pulse width MR	2.50		2.50		2.50		ns	Figs. 6, 9
t _w (L)	Pulse width \overline{E}_0 , \overline{E}_1	2.50		2.50		2.50		ns	Figs. 5, 9

AC ELECTRICAL CHARACTERISTICS

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 5\%$

	DADAMETED	T _A =	• 0°C	T _A = ·	+ 25°C	T _A = ·	+ 85°C			
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH} t _{PHL}	Propagation delay D _n to Q _n	0.50 0.50	1.70 1.70	0.60 0.60	1.65 1.65	0.50 0.50	1.70 1.70	ns ns		
t _{PLH} t _{PHL}	Propagation delay \overline{S}_0 , S_1 to Q_n	1.50 1.50	3.30 3.30	1.50 1.50	3.20 3.20	1.50 1.50	3.30 3.30	ns ns	Figs. 5, 8, 9	
t _{PLH} t _{PHL}	Propagation delay \overline{E}_0 , \overline{E}_0 to Q_n	0.90 0.90	2.30 2.30	1.00 1.00	2.20 2.20	1.00 1.00	2.30 2.30	ns ns		
t _{PLH} t _{PHL}	Propagation delay MR to Q _n	0.90 0.90	2.80 2.80	0.90 0.90	2.70 2.70	0.90 0.90	2.80 2.80	ns ns	Figs. 6, 8, 9	
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.60 0.60	2.20 2.20	0.60 0.60	2.10 2.10	0.45 0.45	2.20 2.20	ns ns	Figs. 5, 8, 9	
t _s	Setup time D _n to Ē _n	0.80		0.80		0.80		ns		
t _h	Hold time D _n to Ē _n	0.30		0.30		0.30		ns	Figs. 7, 9	
ts	Setup time S ₀ , S ₁ to D _n	2.60		2.60		2.60		ns		
t _h	Hold time S ₀ , S ₁ to D _n	-0.8		-0.8		-0.8		ns		
tr	Release time MR to E _n	1.40		1.40		1.40		ns	Figs. 6, 9	
t _w (H)	Pulse width MR	2.50		2.50		2.50		ns	Figs. 6, 9	
t _w (L)	Pulse width \overline{E}_0 , \overline{E}_1	2.50		2.50		2.50		ns	Figs. 5, 9	

100155

7

AC WAVEFORMS

Multiplexer-Latch

TEST CIRCUITS AND WAVEFORMS

Signetics

ECL Products

DESCRIPTION

The 100158 contains a combinatorial network which performs the function of an 8-bit Shift Matrix. Three control lines (Sn) are internally decoded and define the number of places which an 8-bit word present at the inputs (D_n) is shifted to the left and presented at the outputs (Qn). A Mode Control is provided which, if LOW, forces LOW all outputs to the right of the one that contains D7. This operation is sometimes referred to as LOW backfill. If M is HIGH, an endaround shift is performed such that D₀ appears at the output to the right of the one that contains D7. This operation is commonly referred to as barrel shifting.

100158 Shift Matrix

8-Bit Shift Matrix **Product Specification**

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
100158	1.9ns	118mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -4.2V$ to -4.8V $T_A = 0^{\circ}C$ to +85°C
Ceramic DIP	100158F
Ceramic Flat Pack	100158Y

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₇	Data Inputs
S ₀ – S ₂	Select Inputs
М	Mode Control Input
Q ₀ – Q ₇	Data Output

LOGIC SYMBOL

LS1059

D₅ D₆ D7

Q5 Qe Q;

> 5 4

100158

LOGIC DIAGRAM

FUNCTION TABLE

		INP	UTS					OUT	PUTS			
	м	S ₂	S ₁	S ₀	Q7	Q 6	Q ₅	Q4	Q ₃	Q ₂	Q ₁	Q ₀
No shift	X	L	L	L	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀
Left shift	L	L	L	н	L	D7	D_6	D5	D_4	D_3	D_2	D ₁
	L	L	н	L	L	L	D ₇	D ₆			-	
	L	L	н	н	L	L	L	D7	D ₆			
	L	н	L	L	L	L	L	L	D ₇	D_6		
	L	н	L	н	L	L	L	L	L	D7	D ₆	
	L	н	н	L	L	L	L	L	L	L	D_7	D ₆
	L	н	н	L	L	L	L	L	L	L	L	D ₇
End around carry	н	L	L	н	D ₀	D7	D ₆	D_5	D_4	D ₃	D_2	D ₁
	н	L	н	L	D	Do	D7	D ₆	D_5	D_4	D_3	D_2
	н	L	н	н	D ₂	D ₁	Do	D ₇	D ₆	D ₅	D_4	D_3
	н	н	L	٠L	D ₃	D ₂	D ₁	Do	D ₇	D ₆	D_5	D4
	Н	н	L	н	D ₄	D ₃	D_2	D ₁	Do	D ₇	D ₆	D ₅
	Н	н	н	L	D ₅	D_4	D_3	D ₂	D	Do	D7	D ₆
	н	Н	н	н	D ₆	D ₅	D ₄	D_3^-	D ₂	D ₁	D ₀	D ₇

Positive Logic: H = HIGH state (more positive voltage) = 1 L = LOW state (less positive voltage) = 0

Blank = Don't Care

100158

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	100K ECL	UNIT
V _{EE}	Supply voltage (V _{CC1} = V _{CC2} = GND)	-7.0 to 0	v
VIN	Input voltage (VIN should never be more negative than VEE)	V _{EE} to +0.5	V
lo	Output source current	-55	mA
TS	Storage temperature	-65 to +150	°C
Tj	Maximum junction temperature	+ 150	°C

DC OPERATING CONDITIONS

					100K ECL		UNIT	
	PAI	RAMETER		Min	Nom	Max	UNIT	
V _{CC1} , V _{CC2}	Circuit ground			0	0	0	v	
V _{EE}	Supply voltage (negative)		n an	-4.2	-4.5	-4.8	v	
V _{EE}	Supply voltage (negative)	when operating with 10K	ECL family			-5.7	v	
			V _{EE} = -4.2V	-1150				
V _{IH}	HIGH level input voltage		$V_{EE} = -4.5V$	4405		-880	mV	
			$V_{EE} = -4.8V$	1165				
	HIGH level input threshold voltage		$V_{EE} = -4.2V$	-1150			mV	
V _{IHT}		$V_{CC1} = V_{CC2} = GND$	V _{EE} = -4.5V	1165				
			$V_{EE} = -4.8V$	1100			mV	
			$V_{EE} = -4.2V$					
V _{ILT}	LOW level input threshold voltage	$T_A = 0^{\circ}C$ to $+85^{\circ}C$	$V_{EE} = -4.5V$	1		- 1475	mV	
	in contra ronage		$V_{EE} = -4.8V$			-1490	mV	
			$V_{EE} = -4.2V$					
VIL	LOW level input voltage		-1810		-1475	mV		
			$V_{EE} = -4.8V$]		-1490		
T _A	Operating ambient tempe	erature	······································	0	+ 25	+ 85	°C	

NOTE:

When operating at other than specified voltages (-4.2V, -4.5V, -4.8V) DC & AC Characteristics will vary slightly from specified values.

100158

	PARAMETER		MIN	ТҮР	MAX	UNIT	TEST	CONDITIONS ²			
		V _{EE} = -4.2V	- 1025		-870	mV	V _{IN} = V _{IHmax}				
V _{OH}	HIGH level output voltage	V _{EE} = -4.5V	-1025	-955	-880	mV	or				
	calpat tenage	V _{EE} = -4.8V	- 1035		-880	mV	V _{IN} = V _{ILmin}				
		$V_{EE} = -4.2V$	- 1035			mV	V _{IN} = V _{IHmin}				
V _{OHT}	HIGH level output threshold voltage	$V_{EE} = -4.5V$	- 1035			mV	or				
		$V_{EE} = -4.8V$	- 1045			mV	V _{IN} = V _{ILmax}	Loading with			
		$V_{EE} = -4.2V$			-1590	mV	V _{IN} = V _{IHmin}	50Ω to $-2.0V \pm 0.010V$			
VOLT	LOW level output threshold voltage	$V_{EE} = -4.5V$			-1610	mV	or				
	g.	$V_{EE} = -4.8V$			-1610	mV	$V_{IN} = V_{ILmax}$				
		$V_{EE} = -4.2V$	-1810		-1600	mV	V _{IN} = V _{IHmax}				
VOL	LOW level output voltage	$V_{EE} = -4.5V$	-1810	-1705	-1620	mV	or				
		$V_{EE} = -4.8V$	-1830		-1620	mV	V _{IN} = V _{ILmin}				
Iн	HIGH level input cu	urrent			220	μA	$V_{IN} = V_{IHmax}$				
կլ	LOW level input cu	rrent	0.5			μA	$V_{IN} = V_{ILmin}$				
-I _{EE}	V _{EE} supply current		84	118	205	mA	Inputs open				
$\frac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation	V _{EE} = -4.2V			0.025	v/v					
$\frac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	$T_A = +25^{\circ}C$			0.050	v/v					

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} =$ GND, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$, $T_A = 0^{\circ}C$ to $+85^{\circ}C$ unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the ''worst case'' value for the parameter. Since these ''worst case'' values normally occur at the temperature extremes, additional The specified limits represent the worst case value for the parameter. Since these worst case worst case values for limits represent the worst case value for limits represent worst case values for limits represent worst case values for limits represent worst case.
 Conditions for testing shown in the tables are not necessarily worst case. For worst case testing guidelines, refer to Section 3 Testing, DC Testing.
 The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying

power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

Shift Matrix

AC ELECTRICAL CHARACTERISTICS

Ceramic DIP $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$

	8484W5758	$T_A = 0^{\circ}C$		T _A = + 25°C		T _A = +85°C		UNIT	TEST CONDITIONS	
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
	Propagation delay D_n to Q_n	1.10 1.10	3.00 3.00	1.10 1.10	2.90 2.90	1.10 1.10	3.10 3.10	ns ns		
	Propagation delay // to Q _n	1.15 1.15	4.40 4.40	1.25 1.25	4.40 4.40	1.15 1.15	4.70 4.70	ns ns	Figs. 5, 6, 7	
1	Propagation delay S_n to Q_n	1.70 1.70	4.50 4.50	1.70 1.70	4.50 4.50	1.70 1.70	4.80 4.80	ns ns		
1	ransition time 10% to 80%, 80% to 20%	0.50 0.50	2.20 2.20	0.50 0.50	2.20 2.20	0.50 0.50	2.20 2.20	ns ns		

Ceramic DIP $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 5\%$

		T _A =	$T_A = 0^{\circ}C$		T _A = + 25°C		T _A = +85°C			
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH}	Propagation delay	1.10	3.00	1.10	2.90	1.10	3.10	ns		
t _{PHL}	D _n to Q _n	1.10	3.00	1.10	2.90	1.10	3.10	ns		
t _{PLH}	Propagation delay	1.15	4.40	1.25	4.40	1.15	4.70	ns	Figs. 5, 6, 7	
t _{PHL}	M to Q _n	1.15	4.40	1.25	4.40	1.15	4.70	ns		
t _{PLH}	Propagation delay	1.70	4.50	1.70	4.50	1.70	4.80	ns		
t _{PHL}	S _n to Q _n	1.70	4.50	1.70	4.50	1.70	4.80	ns		
t _{TLH}	Transition time	0.50	2.20	0.50	2.20	0.50	2.20	ns		
t _{THL}	20% to 80%, 80% to 20%	0.50	2.20	0.50	2.20	0.50	2.20	ns		

7

AC ELECTRICAL CHARACTERISTICS

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$

		T _A =	: 0°C	T _A = ·	+ 25°C	T _A = +85°C			TEST CONDITIONS
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH}	Propagation delay	1.10	2.80	1.10	2.70	1.10	2.90	ns	
t _{PHL}	D _n to Q _n	1.10	2.80	1.10	2.70	1.10	2.90	ns	
t _{PLH}	Propagation delay	1.15	4.20	1.25	4.20	1.15	4.50	ns	Figs. 5, 6, 7
t _{PHL}	M to Q _n	1.15	4.20	1.25	4.20	1.15	4.50	ns	
t _{PLH}	Propagation delay	1.70	4.30	1.70	4.30	1.70	4.60	ns	
t _{PHL}	S _n to Q _n	1.70	4.30	1.70	4.30	1.70	4.60	ns	
t _{TLH}	Transition time	0.50	2.20	0.50	2.20	0.50	2.20	ns	
t _{THL}	20% to 80%, 80% to 20%	0.50	2.20	0.50	2.20	0.50	2.20	ns	

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 5\%$

	DADANETED	T _A =	• 0°C	т _А = -	+ 25°C	T _A = -	+85°C			
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH} t _{PHL}	Propagation delay D_n to Q_n	1.10 1.10	2.80 2.80	1.10 1.10	2.70 2.70	1.10 1.10	2.90 2.90	ns ns		
t _{PLH}	Propagation delay	1.15	4.20	1.25	4.20	1.15	4.50	ns	Figs. 5, 6, 7	
t _{PHL}	M to Q _n	1.15	4.20	1.25	4.20	1.15	4.50	ns		
t _{PLH}	Propagation delay	1.70	4.30	1.70	4.30	1.70	4.60	ns		
t _{PHL}	S _n to Q _n	1.70	4.30	1.70	4.30	1.70	4.60	ns		
t _{TLH}	Transition time	0.50	2.20	0.50	2.20	0.50	2.20	ns		
t _{THL}	20% to 80%, 80% to 20%	0.50	2.20	0.50	2.20	0.50	2.20	ns		

AC WAVEFORMS

100158

100158

TEST CIRCUITS AND WAVEFORMS

Signetics

ECL Products

DESCRIPTION

The 100160 is a dual 9-bit Parity Generator. It generates high parity outputs for an even number of high inputs on respective 9-bit input groups. The circuit also compares 8 pairs of inputs and has an active LOW output (\overline{C}), if all 8 pairs are equal.

The input D_{a} , D_{b} have the shorter throughput delay and can serve for generating parity for 16 or more bits.

100160 Parity Generator/Comparator

Dual 9-Bit Parity Generator/8-Bit Comparator Product Specification

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
100160	1.8ns	78mA

ORDERING CODE

PACKAGES	$\begin{array}{l} \mbox{COMMERCIAL RANGE} \\ \mbox{V}_{CC1} = \mbox{V}_{CC2} = \mbox{GND}; \ \mbox{V}_{EE} = -4.2 \mbox{V} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Ceramic DIP	100160F
Ceramic Flat Pack	100160Y

PIN DESCRIPTION

PINS	DESCRIPTION	
D _a , D _b	Parity Inputs	
D _{a0} – D _{a7} , D _{b0} – D _{b7}	Data Inputs	
ō	Compare Output	
Q _a , Q _b	Parity Odd Output	

100160

LOGIC DIAGRAM

FUNCTION TABLE

ium of HIGH bits ODD		OUTP		UTS	
$D_a, D_{a0}, D_{a1}, D_{a2}, D_{a3}, D_{a4}, D_{a5}, D_{a6}, D_{a7}$	$D_a, D_{b0}, D_{b1}, D_{b2}, D_{b3}, D_{b4}, D_{b5}, D_{b6}, D_{b7}$	Qa	Qb	Ē	
Sum of HIGH bits ODD		L			
Sum of HIGH bits EVEN		н			
	Sum of HIGH bits ODD		L		
	Sum of HIGH bits EVEN		н		
$D_{a0} = D_{b0}, D_{a1} = D_{b1}, D_{a2} = D_{b2}, D_{a3} = D_{b3}, D_{a4} = 0$	$D_{b4}, D_{a5} = D_{b5}, D_{a6} = D_{b6}, D_{a7} = D_{b7}$			L	
All other combinations				н	

Positive Logic:

H = HIGH state (the more positive voltage) = 1 L = LOW state (the less positive voltage) = 0

100160

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	100K ECL	UNIT
V _{EE}	Supply voltage ($V_{CC1} = V_{CC2} = GND$)	-7.0 to 0	V
V _{IN}	Input voltage (V _{IN} should never be more negative than V _{EE})	V _{EE} to +0.5	V
lo	Output source current	-55	mA
T _S	Storage temperature	-65 to +150	°C
Tj	Maximum junction temperature	+ 150	°C

DC OPERATING CONDITIONS

	PAR	Min	Nom	Max	UNIT		
V _{CC1} , V _{CC2}	Circuit ground	0	0	0	v		
V _{EE}	Supply voltage (negative)			-4.2	-4.5	-4.8	v
V _{EE}	Supply voltage (negative)	when operating with 10K	ECL family			-5.7	V
Varia			$V_{EE} = -4.2V$	-1150			
	HIGH level input voltage		$V_{EE} = -4.5V$	1105	1	-880	mV
			$V_{EE} = -4.8V$	-1165			
	HIGH level input threshold voltage		V _{EE} = -4.2V	-1150			mV
VIHT		$V_{CC1} = V_{CC2} = GND$	$V_{EE} = -4.5V$	-1165			mV
			$V_{EE} = -4.8V$	1105			mv
			$V_{EE} = -4.2V$				mV
V _{ILT}	LOW level input threshold voltage	$T_A = 0^{\circ}C \text{ to } + 85^{\circ}C$	$V_{EE} = -4.5V$			-1475	
	anoonola voltago		$V_{EE} = -4.8V$			-1490	mV
			V _{EE} = -4.2V				
V _{IL}	LOW level input voltage		$V_{EE} = -4.5V$	-1810		-1475	mV
	mpar ronago		$V_{EE} = -4.8V$	1		-1490	
T _A	Operating ambient tempe	rature		0	+ 25	+ 85	°C

NOTE:

When operating at other than specified voltages (-4.2V, -4.5V, -4.8V) DC & AC Characteristics will vary slightly from specified values.

100160

				otherwise	specified1,	3					
	PARAMETER		MIN	ТҮР	MAX	UNIT	TEST	CONDITIONS ²			
		$V_{EE} = -4.2V$	-1025		-870	mV	V _{IN} = V _{IHmax}				
V _{OH}	HIGH level output voltage	V _{EE} = -4.5V	-1025	-955	-880	mV	or				
	output ronago	$V_{EE} = -4.8V$	-1035		-880	mV	$V_{IN} = V_{ILmin}$				
		$V_{EE} = -4.2V$	-1035			mV	V _{IN} = V _{IHmin}				
V _{OHT}	HIGH level output threshold voltage	$V_{EE} = -4.5V$	-1035			mV	or				
		$V_{EE} = -4.8V$	-1045			mV	$V_{IN} = V_{ILmax}$	Loading with			
		$V_{EE} = -4.2V$			-1590	mV	$V_{IN} = V_{IHmin}$ or $V_{IN} = V_{ILmax}$	50Ω to $-2.0V \pm 0.010V$			
VOLT	LOW level output threshold voltage	$V_{EE} = -4.5V$			-1610	mV					
	anoonola tonago	$V_{EE} = -4.8V$			-1610	mV					
		V _{EE} = -4.2V	-1810		-1600	mV	V _{IN} = V _{IHmax}				
VOL	LOW level output voltage	V _{EE} = -4.5V	-1810	-1705	-1620	mV	or				
	ou.put voitago	$V_{EE} = -4.8V$	-1830		-1620	mV	$V_{IN} = V_{ILmin}$				
	HIGH level	D _a , D _b			340	μA	V _{IN} = V _{IHmax}				
Чн	input current	D _{an} , D _{bn}			340	μA	VIN = VIHmax				
1 _{IL}	LOW level input cu	irrent	0.5			μA	V _{IN} = V _{ILmin}				
-I _{EE}	V _{EE} supply current		57	78	115	mA	Inputs open				
$\frac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation	V _{FF} = -4.2V			0.025	V/V					
$\frac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	$T_A = +25^{\circ}C$			0.050	v/v					

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$, $T_A = 0^{\circ}C$ to $+85^{\circ}C$ unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst case testing guidelines, refer to Section 3 Testing, DC Testing.
 The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

Product Specification

100160

Parity Generator/Comparator

AC ELECTRICAL CHARACTERISTICS

Ceramic DIP $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$

		T _A =	= 0°C	T _A = -	+ 25°C	T _A = -	+ 85°C		TEST CONDITIONS
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
^t РLН	Propagation delay	1.30	4.30	1.30	4.10	1.30	4.30	ns	
^t РНL	D _{an} , D _{bn} to Q _a , Q _b	1.30	4.30	1.30	4.10	1.30	4.30	ns	
^t PLH ^t PHL	Propagation delay D_a , D_b to Q_a , Q_b	0.50 0.50	1.60 1.60	0.50 0.50	1.60 1.60	0.50 0.50	1.60 1.60	ns ns	Figs. 5, 6, 7
^t PLH	Propagation delay	1.20	3.30	1.20	3.10	1.20	3.30	ns	
^t PHL	D _{an} , D _{bn} to C	1.20	3.30	1.20	3.10	1.20	3.30	ns	
t _{TLH}	Transition time	0.40	1.70	0.40	1.65	0.40	1.65	ns	
t _{THL}	20% to 80%, 80% to 20%	0.40	1.70	0.40	1.65	0.40	1.65	ns	

Ceramic DIP $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 5\%$

		T _A =	= 0°C	T _A = -	+ 25°C	T _A = -	T _A = + 85°C		
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
^t РLН	Propagation delay	1.30	4.30	1.30	4.10	1.30	4.30	ns	
^t РНL	D _{an} , D _{bn} to Q _a , Q _b	1.30	4.30	1.30	4.10	1.30	4.30	ns	
t _{PLH} t _{PHL}	Propagation delay D_a , D_b to Q_a , Q_b	0.50 0.50	1.60 1.60	0.50 0.50	1.60 1.60	0.50 0.50	1.60 1.60	ns ns	Figs. 5, 6, 7
t _{PLH}	Propagation delay	1.20	3.30	1.20	3.10	1.20	3.30	ns	
t _{PHL}	D _{an} , D _{bn} to C	1.20	3.30	1.20	3.10	1.20	3.30	ns	
t _{TLH}	Transition time	0.40	1.70	0.40	1.65	0.40	1.65	ns	
t _{THL}	20% to 80%, 80% to 20%	0.40	1.70	0.40	1.65	0.40	1.65	ns	

AC ELECTRICAL CHARACTERISTICS

Flat Pack v_{CC1} = v_{CC2} = GND, v_{EE} = -4.2V $\pm 0.010V$ to -4.8V $\pm 0.010V$

	PARAMETER	T _A =	= 0°C	T _A = -	+ 25°C	T _A = ·	= +85°C		TEST CONDITIONS
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH}	Propagation delay	1.30	4.10	1.30	3.90	1.30	4.10	ns	
t _{PHL}	D _{an} , D _{bn} to Q _a , Q _b	1.30	4.10	1.30	3.90	1.30	4.10	ns	
t _{PLH}	Propagation delay	0.50	1.40	0.50	1.40	0.50	1.40	ns	Figs. 5, 6, 7
t _{PHL}	D _a , D _b to Q _a , Q _b	0.50	1.40	0.50	1.40	0.50	1.40	ns	
t _{PLH}	Propagation delay	1.20	3.10	1.20	2.90	1.20	3.10	ns	
t _{PHL}	D _{an} , D _{bn} to C	1.20	3.10	1.20	2.90	1.20	3.10	ns	
t _{TLH}	Transition time	0.40	1.70	0.40	1.65	0.40	1.65	ns	
t _{THL}	20% to 80%, 80% to 20%	0.40	1.70	0.40	1.65	0.40	1.65	ns	

Flat Pack $V_{CC1} = V_{CC2} = GND, \ V_{EE} = -5.2V \ \pm 5\%$

		T _A =	= 0°C	T _A =	+ 25°C	T _A = -			
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} t _{PHL}	Propagation delay D _{an} , D _{bn} to Q _a , Q _b	1.30 1.30	4.10 4.10	1.30 1.30	3.90 3.90	1.30 1.30	4.10 4.10	ns ns	
t _{PLH} t _{PHL}	Propagation delay D_a , D_b to Q_a , Q_b	0.50 0.50	1.40 1.40	0.50 0.50	1.40 1.40	0.50 0.50	1.40 1.40	ns ns	Figs. 5, 6, 7
t _{PLH} t _{PHL}	Propagation delay D_{an} , D_{bn} to \overline{C}	1.20 1.20	3.10 3.10	1.20 1.20	2.90 2.90	1.20 1.20	3.10 3.10	ns ns	
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.40 0.40	1.70 1.70	0.40 0.40	1.65 1.65	0.40 0.40	1.65 1.65	ns ns	

AC WAVEFORMS

Parity Generator/Comparator

TEST CIRCUITS AND WAVEFORMS

Signetics

100163 Multiplexer

Dual 8-Input Multiplexer Product Specification

ECL Products

DESCRIPTION

The 100163 circuit is a dual 8-input multiplexer fed by 3 common address inputs. The 3-bit address selects one of eight data lines in each multiplexer, which is gated to the output.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
100163	1.25ns	125mA

ORDERING CODE

PACKAGES	$\begin{array}{l} \mbox{COMMERCIAL RANGE} \\ V_{CC1} = V_{CC2} = GND; \ V_{EE} = -4.2V \ \ to \ -4.8V \\ T_A = 0^\circ C \ \ to \ +85^\circ C \end{array}$
Ceramic DIP	100163F
Ceramic Flat Pack	100163Y

PIN DESCRIPTION

PINS	DESCRIPTION
D _{a0} – D _{a7}	Data Inputs
D _{b0} – D _{b7}	Data Inputs
S ₀ , S ₁ , S ₂	Data Select Inputs
Q _a , Q _b	Data Outputs

7

Product Specification

Multiplexer

100163

LOGIC DIAGRAM

FUNCTION TABLE

	INPUTS	OUTPUT			
S ₀	S ₁	S ₂	Qa	Qb	
L	L	L	D _{a0}	D _{b0}	
H	L	L	D _{a1}	D _{b1}	
L	H	L	D _{a2}	D _{b2}	
H	H	L	D _{a3}	D _{b3}	
L	L		D _{a4}	D _{b4}	
H	L		D _{a5}	D _{b5}	
L	H		D _{a6}	D _{b6}	
H	H		D _{a7}	D _{b7}	

Positive Logic:

 $\begin{array}{l} H = H|GH \text{ state (the more positive voltage)} = 1 \\ L = LOW \text{ state (the less positive voltage)} = 0 \\ X = Don't \text{ Care} \end{array}$

Multiplexer

100163

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	100K ECL	UNIT
V _{EE}	Supply voltage (V _{CC1} = V _{CC2} = GND)	-7.0 to 0	v
VIN	Input voltage (V _{IN} should never be more negative than V _{EE})	V _{EE} to +0.5	V
lo	Output source current	-55	mA
T _S	Storage temperature	-65 to +150	°C
TJ	Maximum junction temperature	+ 150	°C

DC OPERATING CONDITIONS

	PAF	Min	Nom	Max	UNIT		
V _{CC1} , V _{CC2}	Circuit ground	0	0	0	V		
V _{EE}	Supply voltage (negative)			-4.2	-4.5	-4.8	V
V _{EE}	Supply voltage (negative)	when operating with 10K	ECL family			-5.7	V
			$V_{EE} = -4.2V$	-1150			
VIH	HIGH level input voltage		$V_{EE} = -4.5V$	1105		-880	mV
			V _{EE} = -4.8V	-1165			
	HIGH level input threshold voltage		V _{EE} = -4.2V	-1150			mV
VIHT		$V_{CC1} = V_{CC2} = GND$	$V_{EE} = -4.5V$	- 1165			mV
			$V_{EE} = -4.8V$	-1105			
			$V_{EE} = -4.2V$				
V _{ILT}	LOW level input threshold voltage	$T_A = 0^{\circ}C \text{ to } + 85^{\circ}C$	$V_{EE} = -4.5V$			1475	mV
			$V_{EE} = -4.8V$			-1490	mV
]	V _{EE} = -4.2V				
VIL	LOW level input voltage		$V_{EE} = -4.5V$	-1810		-1475	mV
			V _{EE} = -4.8V]		-1490	
T _A	Operating ambient tempe	rature		0	+ 25	+ 85	°C

NOTE:

When operating at other than specified voltages (-4.2V, -4.5V, -4.8V) DC & AC Characteristics will vary slightly from specified values.

Multiplexer

100163

	PARAMETER		MIN	ТҮР	MAX	UNIT	TEST CONDITIONS ²			
	1.	V _{EE} ≈ -4.2V	- 1025		-870	mV	V _{IN} = V _{IHmax}			
V _{OH}	HIGH level output voltage	V _{EE} = -4.5V	-1025	-955	-880	mV	or			
	output rentage	$V_{EE} = -4.8V$	-1035		-880	mV	V _{IN} = V _{ILmin}			
		$V_{EE} = -4.2V$	-1035			mV	V _{IN} = V _{IHmin}			
VOHT	HIGH level output threshold voltage	V _{EE} = -4.5V	-1035	-		mV	or			
	an concia vonago	$V_{EE} = -4.8V$	- 1045			mV	V _{IN} = V _{ILmax}	Loading with		
		V _{EE} = -4.2V			-1590	mV	V _{IN} = V _{IHmin}	50Ω to $-2.0V \pm 0.010V$		
VOLT	LOW level output threshold voltage	$V_{EE} = -4.5V$			-1610	mV	or V _{IN} = V _{ILmax}			
	un contra ronago	$V_{EE} = -4.8V$			-1610	mV				
		V _{EE} = -4.2V	1810		-1600	mV	V _{IN} = V _{IHmax}			
V _{OL}	LOW level output voltage	$V_{EE} = -4.5V$	-1810	-1705	-1620	mV	or			
	eutput tentage	$V_{EE} = -4.8V$	-1830		-1620	mV	V _{IN} = V _{ILmin}			
	HIGH level	Sn			265	μA				
lιΗ	input current	D _{an} , D _{bn}			340	μA	$V_{IN} = V_{IHmax}$			
IIL.	LOW level input cu	irrent	0.5			μA	V _{IN} = V _{ILmin}			
-I _{EE}	VEE supply current		76	125	161	mA	Inputs open			
$\frac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation	V _{EF} = -4.2V			0.025	v/v				
$rac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	$T_A = +25^{\circ}C$			0.050	v/v				

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$, $T_A = 0^{\circ}C$ to $+85^{\circ}C$ unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst case testing guidelines, refer to Section 3 Testing, DC Testing.
 The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

Multiplexer

AC ELECTRICAL CHARACTERISTICS

Ceramic DIP $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$

			T _A = 0°C		T _A = + 25°C		+ 85°C		
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH}	Propagation delay	0.55	1.90	0.60	1.90	0.65	2.00	ns	
t _{PHL}	D _{an} , D _{bn} to Q _a , Q _b	0.55	1.90	0.60	1.90	0.65	2.00	ns	
t _{PLH}	Propagation delay	1.10	2.80	1.10	2.80	1.20	3.10	ns	Figs. 5, 6, 7
t _{PHL}	S _n to Q _a , Q _b	1.10	2.80	1.10	2.80	1.20	3.10	ns	
t _{TLH}	Transition time	0.50	1.75	0.50	1.70	0.50	1.70	ns	
t _{THL}	20% to 80%, 80% to 20%	0.50	1.75	0.50	1.70	0.50	1.70	ns	

Ceramic DIP v_{CC1} = v_{CC2} = GND, v_{EE} = -5.2V $\pm 5\%$

		$T_A = 0^{\circ}C$		T _A = + 25°C		T _A = + 85°C			TEAT CONDITIONS
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH}	Propagation delay	0.55	1.90	0.60	1.90	0.65	2.00	ns	
t _{PHL}	D _{an} , D _{bn} to Q _a , Q _b	0.55	1.90	0.60	1.90	0.65	2.00	ns	
t _{PLH}	Propagation delay	1.10	2.80	1.10	2.80	1.20	3.10	ns	Figs. 5, 6, 7
t _{PHL}	S _n to Q _a , Q _b	1.10	2.80	1.10	2.80	1.20	3.10	ns	
t _{TLH}	Transition time	0.50	1.75	0.50	1.70	0.50	1.70	ns	
t _{THL}	20% to 80%, 80% to 20%	0.50	1.75	0.50	1.70	0.50	1.70	ns	

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$

		$T_A = 0^{\circ}C$		T _A = + 25°C		T _A = + 85°C			
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH}	Propagation delay	0.55	1.70	0.60	1.70	0.65	1.80	ns	
t _{PHL}	D _{an} , D _{bn} to Q _a , Q _b	0.55	1.70	0.60	1.70	0.65	1.80	ns	
t _{PLH}	Propagation delay	1.10	2.60	1.10	2.60	1.20	2.90	ns	Figs. 5, 6, 7
t _{PHL}	S _n to Q _a , Q _b	1.10	2.60	1.10	2.60	1.20	2.90	ns	
t _{TLH}	Transition time	0.50	1.75	0.50	1.70	0.50	1.70	ns	
t _{THL}	20% to 80%, 80% to 20%	0.50	1.75	0.50	1.70	0.50	1.70	ns	

Multiplexer

100163

AC ELECTRICAL CHARACTERISTICS

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 5\%$

	DADAMETED	$T_A = 0^{\circ}C$		T _A = + 25°C		T _A = +85°C			
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH}	Propagation delay	0.55	1.70	0.60	1.70	0.65	1.80	ns	
t _{PHL}	D _{an} , D _{bn} to Q _a , Q _b	0.55	1.70	0.60	1.70	0.65	1.80	ns	
t _{PLH}	Propagation delay	1.10	2.60	. 1.10	2.60	1.20	2.90	ns	Figs. 5, 6, 7
t _{PHL}	S _n to Q _a , Q _b	1.10	2.60	1.10	2.60	1.20	2.90	ns	
t _{TLH}	Transition time	0.50	1.75	0.50	1.70	0.50	1.70	ns	
t _{THL}	20% to 80%, 80% to 20%	0.50	1.75	0.50	1.70	0.50	1.70	ns	

AC WAVEFORMS

Multiplexer

TEST CIRCUITS AND WAVEFORMS

Signetics

100164 Multiplexer

16-Input Multiplexer Product Specification

ECL Products

DESCRIPTION

The 100164 is a 16-way multiplexer for one bit. Four address inputs select one of the 16 input bits which is gated to the output.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
100164 .	1.60ns	71mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -4.2V$ to -4.8V $T_A = 0^{\circ}C$ to +85°C
Ceramic DIP	100164F
Ceramic Flat Pack	100164Y

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₁₅	Data Inputs
S ₀ – S ₃	Data Select Inputs
Q	Data Output

853-0627 82178

Multiplexer

100164

LOGIC DIAGRAM

FUNCTION TABLE

	INPUTS									
S ₃	S ₂	S ₁	S ₀	Q						
L	L	L	L	Do						
L	L	L	н	D ₁						
L	L	н	L	D ₂						
L	L	н	н	D3						
L L	н	L	L	D ₄						
L	н	L	н	D ₅						
L	н	н	L	D ₄ D ₅ D ₆						
L	н	н	н	D7						
н	L	L	L	D ₈						
н	L	L	н	D ₉						
Н	L	н	L	D ₁₀						
Н	L	н	н	D ₁₁						
н	н	L	L	D ₁₂						
н	н	L	н	D ₁₃						
н	н	н	L	D ₁₄						
н	н	н	н	D ₁₄ D ₁₅						

Positive Logic:

H = HIGH state (the more positive voltage) = 1

L = LOW state (the less positive voltage) = 0

Multiplexer

100164

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	100K ECL	UNIT
VEE	Supply voltage ($V_{CC1} = V_{CC2} = GND$)	-7.0 to 0	v
VIN	Input voltage (VIN should never be more negative than VEE)	V _{EE} to +0.5	V
lo	Output source current	-55	mA
Τ _S	Storage temperature	-65 to +150	°C
TJ	Maximum junction temperature	+ 150	°C

DC OPERATING CONDITIONS

			100K ECL				
	PAR	Min	Nom	Max	UNIT		
V _{CC1} , V _{CC2}	Circuit ground			0	0	0	V
V _{EE}	Supply voltage (negative)			-4.2	-4.5	-4.8	V
V _{EE}	Supply voltage (negative)	when operating with 10K	ECL family			-5.7	V
			V _{EE} = -4.2V	-1150			
VIH	HIGH level input voltage		$V_{EE} = -4.5V$	1105	1	-880	mV
	input voltago		$V_{EE} = -4.8V$	1165			
			$V_{EE} = -4.2V$	-1150			mV
VIHT	HIGH level input threshold voltage	$V_{CC1} = V_{CC2} = GND$	$V_{EE} = -4.5V$	1165			
	ineshold voltage		$V_{EE} = -4.8V$	1105			mV
			$V_{EE} = -4.2V$				
V _{ILT}	LOW level input threshold voltage	$T_A = 0^{\circ}C$ to $+85^{\circ}C$	$V_{EE} = -4.5V$	1		-1475	mV
	theshold voltage		$V_{EE} = -4.8V$			-1490	mV
			$V_{EE} = -4.2V$				
V _{IL}	LOW level input voltage		$V_{EE} = -4.5V$	-1810		-1475	mV
			$V_{EE} = -4.8V$	1		-1490	
T _A	Operating ambient temper	ature		0	+ 25	+ 85	°C

NOTE:

When operating at other than specified voltages (-4.2V, -4.5V, -4.8V) DC & AC Characteristics will vary slightly from specified values.

Multiplexer

PARAMETER түр MAX UNIT TEST CONDITIONS² MIN $V_{FF} = -4.2V$ -1025 -870 m٧ $V_{IN} = V_{IHmax}$ HIGH level $V_{EE} = -4.5V$ -880 v_{OH} -1025 -955 mV or output voltage $V_{IN} = V_{ILmin}$ $V_{EE} = -4.8V$ -1035 -880 m٧ $V_{EE} = -4.2V$ -1035 m٧ $V_{IN} = V_{IHmin}$ HIGH level output VOHT $V_{EE} = -4.5V$ -1035 mV or threshold voltage $V_{IN} = V_{ILmax}$ $V_{EE} = -4.8V$ -1045 m٧ Loading with $V_{EE} = -4.2V$ 50Ω to $-2.0V \pm 0.010V$ -1590 m٧ $V_{IN} = V_{IHmin}$ LOW level output m٧ $V_{EE} = -4.5V$ -1610 or VOLT threshold voltage $V_{IN} = V_{ILmax}$ $V_{EE} = -4.8V$ -1610 m٧ $V_{EE} = -4.2V$ -1810 -1600 m٧ $V_{IN} = V_{IHmax}$ LOW level $V_{EE} = -4.5V$ -1810 -1705 -1620 m٧ VOL or output voltage $V_{IN} = V_{ILmin}$ $V_{EE} = -4.8V$ -1830 -1620 m٧ Dn 280 uА HIGH level S₀, S₁ 240 μA $V_{IN} = V_{IHmax}$ łн input current S₂, S₃ 240 μA LOW level input current 0.5 μA $V_{IN} = V_{ILmin}$ hL VEE supply current -I_{EE} 49 71 105 mΑ Inputs open HIGH level ΔV_{OH} output voltage 0.025 V/V ΔV_{EE} compensation $V_{FF} = -4.2V$ $T_A = +25^{\circ}C$ LOW level ΔV_{OL} output voltage 0.050 V/V $\overline{\Delta V_{EE}}$ compensation

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$, $T_A = 0^{\circ}C$ to $+85^{\circ}C$ unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst case testing guidelines, refer to Section 3 Testing, DC Testing.
The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

Multiplexer

AC ELECTRICAL CHARACTERISTICS

Ceramic DIP $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$

			T _A = 0°C		T _A = + 25°C		+ 85°C		TEAT CONDITIONS
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} t _{PHL}	Propagation delay D _n to Q _n	0.80 0.80	2.20 2.20	0.90 0.90	2.35 2.35	0.90 0.90	2.55 2.55	ns ns	·-
t _{PLH} t _{PHL}	Propagation delay S_0 , S_1 to Q_n	1.45 1.45	3.20 3.20	1.45 1.45	3.20 3.20	1.45 1.45	3.60 3.60	ns ns	Figs. 5, 6, 7
t _{PLH} t _{PHL}	Propagation delay S_2 , S_3 to Q_n	1.10 1.10	2.50 2.50	1.10 1.10	2.50 2.50	1.10 1.10	2.80 2.80	ns ns	, igo. 0, 0, 7
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.60 1.60	0.45 0.45	1.60 1.60	0.45 0.45	1.60 1.60	ns ns	

Ceramic DIP $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 5\%$

			T _A = 0°C		T _A = + 25°C		+ 85°C		TEAT CONDITIONS
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} t _{PHL}	Propagation delay D _n to Q _n	0.80 0.80	2.20 2.20	0.90 0.90	2.35 2.35	0.90 0.90	2.55 2.55	ns ns	
t _{PLH} t _{PHL}	Propagation delay S_0 , S_1 to Q_n	1.45 1.45	3.20 3.20	1.45 1.45	3.20 3.20	1.45 1.45	3.60 3.60	ns ns	Figs. 5, 6, 7
t _{PLH} t _{PHL}	Propagation delay S_2 , S_3 to Q_n	1.10 1.10	2.50 2.50	1.10 1.10	2.50 2.50	1.10 1.10	2.80 2.80	ns ns	- Figs. 5, 6, 7
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.60 1.60	0.45 0.45	1.60 1.60	0.45 0.45	1.60 1.60	ns ns	

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$

		T _A = 0°C T		T _A = ·	T _A = + 25°C		+ 85°C		
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} t _{PHL}	Propagation delay D _n to Q _n	0.80 0.80	2.00 2.00	0.90 0.90	2.15 2.15	0.90 0.90	2.35 2.35	ns ns	
t _{PLH} t _{PHL}	Propagation delay S_0 , S_1 to Q_n	1.45 1.45	3.00 3.00	1.45 1.45	3.00 3.00	1.45 1.45	3.40 3.40	ns ns	Figs. 5, 6, 7
t _{PLH} t _{PHL}	Propagation delay S_2 , S_3 to Q_n	1.10 1.10	2.30 2.30	1.10 1.10	2.30 2.30	1.10 1.10	2.60 2.60	ns ns	- rigs. 5, 6, 7
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.60 1.60	0.45 0.45	1.60 1.60	0.45 0.45	1.60 1.60	ns ns	

Multiplexer

100164

AC ELECTRICAL CHARACTERISTICS Flat Pack V_{CC1} = V_{CC2} = GND, V_{EE} = -5.2V $\pm\,5\%$

		$T_A = 0^{\circ}C$		T _A = + 25°C		T _A = + 85°C			
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} t _{PHL}	Propagation delay D _n to Q _n	0.80 0.80	2.00 2.00	0.90 0.90	2.15 2.15	0.90 0.90	2.35 2.35	ns ns	
t _{PLH} t _{PHL}	Propagation delay S_0 , S_1 to Q_n	1.45 1.45	3.00 3.00	1.45 1.45	3.00 3.00	1.45 1.45	3.40 3.40	ns ns	- Figs. 5, 6, 7
t _{PLH} t _{PHL}	Propagation delay S_2 , S_3 to Q_n	1.10 1.10	2.30 2.30	1.10 1.10	2.30 2.30	1.10 1.10	2.60 2.60	ns ns	
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.60 1.60	0.45 0.45	1.60 1.60	0.45 0.45	1.60 1.60	ns ns	

AC WAVEFORMS

Multiplexer

TEST CIRCUITS AND WAVEFORMS

Signetics

ECL Products

DESCRIPTION

The 100165 operates as a Dual 4-Input Decoder, or as a Single 8-Input Decoder; the operating mode is fixed by the mode control input. The circuit contains eight latch inputs with a common enable (\overline{E}) and generates the binary address (Q) of the highest priority input, having a HIGH signal and a relevant group signal output (GS). A HIGH level on the output enable input (\overline{OE}) forces all Q_n outputs LOW and all GS_n outputs HIGH. The GS output of a higher priority group and the \overline{OE} input of the next lower priority group can be tied together to accomodate more inputs.

100165 Encoder

Universal Priority Encoder Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
100165	2.50ns	125mA

ORDERING CODE

PACKAGES	$\label{eq:commercial range} \begin{array}{c} \mbox{COMMERCIAL RANGE} \\ \mbox{V}_{CC1} = \mbox{V}_{CC2} = \mbox{GND}; \ \mbox{V}_{EE} = -4.2 \mbox{V} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Ceramic DIP	100165F
Ceramic Flat Pack	100165Y

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₇	Data Inputs
М	Mode Control Input
Ē	Enable Input (Active LOW)
ŌĒ	Output Enable Input (Active LOW)
GS ₁ , GS ₂	Group Signal Outputs
Q ₀ – Q ₃	Data Outputs
$\overline{Q}_0 - \overline{Q}_3$	Data Outputs

PIN CONFIGURATION

D₂ 1

D1 2

D₀ 3

Q₀ 4

Q₀ 5

Q1 6

Q0 1 24 Do <u>0</u>, 2 23 D1 Q1 3 22 D₂ (17) (19) (20) 20 22 23 Q1 4 21 D3 G_{S1} 5 20 M м Vcc1 6 19 Ē (4) 1 3 (24) D (5) 2 18 V_{EE} Vcc2 7 ā, 2 (23) Gs2 8 17) OE (2) 4 D Q1 1 (22) Q2 9 16 D4 (6) 3 D2 Q1 Q2 10 15 D5 24 (21) (8) 5 GS1 D3 Q3 11 14 D6 (11) 8 19 (16) GS₂ D Q3 12 13 D7 (12) 9 18 (15) Q2 D5 D₃ M E V_{EE} OE D₄ 24 23 22 21 20 19 (13) 10 $\overline{\mathbf{Q}_2}$ 17 (14) D₆ (15) 12 Q3 16 (13) 18 D₅ (14) 11 D 07 17 D6 16 D7 V_{CC1} = 9 (11) V_{CC2} = 10 (7) V_{EE} = 21 (18) 15 Q3 14 Q₃ 13 Q2 LS10620S 7 8 9 10 11 12 Q1 GS1 VCC1 VCC2 GS2 G2 CD08870S Figure 1 Figure 2

LOGIC SYMBOL

7

853-0628 82178

Encoder

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

,	PARAMETER	100K ECL	UNIT
V _{EE}	Supply voltage (V _{CC1} = V _{CC2} = GND)	-7.0 to 0	v
VIN	Input voltage (VIN should never be more negative than VEE)	V _{EE} to +0.5	V
lo	Output source current	-55	mA
Ts	Storage temperature	-65 to +150	°C
Тj	Maximum junction temperature	+ 150	°C

DC OPERATING CONDITIONS

	_	RAMETER			100K ECL				
	PA	Min	Nom	Max	UNIT				
V _{CC1} , V _{CC2}	Circuit ground	0	0	0	v				
V _{EE}	Supply voltage (negative	э) -		-4.2	-4.5	-4.8	v		
V _{EE}	Supply voltage (negative	e) when operating with 10K	ECL family			-5.7	V		
V _{IH}			V _{EE} = -4.2V	-1150					
	HIGH level input voltage		$V_{EE} = -4.5V$	- 1165		-880	0 mV		
			$V_{EE} = -4.8V$	- 1105		· .			
			$V_{EE} = -4.2V$	-1150			mV		
VIHT	HIGH level input threshold voltage	$V_{CC1} = V_{CC2} = GND$	$V_{EE} = -4.5V$	- 1165					
	anoonola voltago		$V_{EE} = -4.8V$	1105			mV		
			$V_{EE} = -4.2V$				29 A.S.		
V _{ILT}	LOW level input threshold voltage	$T_A = 0^{\circ}C \text{ to } + 85^{\circ}C$	$V_{EE} = -4.5V$	1		-1475	mV		
	through the		$V_{EE} = -4.8V$			-1490	mV		
			$V_{EE} = -4.2V$				endara ng		
Vu	LOW level input voltage		$V_{EE} = -4.5V$	-1810		-1475	mV		
	input tonago		$V_{EE} = -4.8V$	1		-1490			
T _A	Operating ambient temp	0	+ 25	+ 85	°C				

NOTE:

When operating at other than specified voltages (-4.2V, -4.5V, -4.8V) DC & AC Characteristics will vary slightly from specified values.

Encoder

100165

	PARAMETER		MIN	ТҮР	MAX	UNIT	TEST	CONDITIONS ²			
		$V_{EE} = -4.2V$	-1025		-870	mV	V _{IN} = V _{IHmax}				
V _{OH}	HIGH level output voltage	$V_{EE} = -4.5V$	-1025	-955	-880	mV	or				
		$V_{EE} = -4.8V$	-1035		-880	mV	V _{IN} = V _{ILmin}				
		$V_{EE} = -4.2V$	-1035			mV	V _{IN} = V _{IHmin}				
V _{OHT}	HIGH level output threshold voltage	V _{EE} = -4.5V	- 1035			mV	or				
	j	$V_{EE} = -4.8V$	- 1045			mV	$V_{IN} = V_{ILmax}$	Loading with			
		$V_{EE} = -4.2V$			-1590	mV	V _{IN} = V _{IHmin}	50Ω to $-2.0V \pm 0.010V$			
VOLT	V _{OLT} LOW level output threshold voltage	V _{EE} = -4.5V			-1610	mV	or				
		$V_{EE} = -4.8V$			-1610	mV	V _{IN} = V _{ILmax}	1			
		$V_{EE} = -4.2V$	-1810		-1600	mV	V _{IN} = V _{IHmax}				
VOL	LOW level output voltage	$V_{EE} = -4.5V$	- 1810	-1705	-1620	mV	or				
		$V_{EE} = -4.8V$	-1830		-1620	mV	V _{IN} = V _{ILmin}				
Чн	HIGH level input ci	urrent			230	μA	$V_{IN} = V_{IHmax}$				
կլ	LOW level input cu	irrent	0.5			μA	V _{IN} = V _{ILmin}				
-I _{EE}	V _{EE} supply current		77	125	200	mA	Inputs open				
$\frac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation	V _{FF} = -4.2V			0.025	v/v					
$\frac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	$T_A = +25^{\circ}C$			0.050	v/v					

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$, $T_A = 0^{\circ}C$ to $+85^{\circ}C$ unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst case testing guidelines, refer to Section 3 Testing, DC Testing.
The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 3.

Encoder

AC ELECTRICAL CHARACTERISTICS

Ceramic DIP v_{CC1} = v_{CC2} = GND, v_{EE} = -4.2V $\pm 0.010V$ to -4.8V $\pm 0.010V$

		T _A = 0°C		T _A = + 25°C		T _A = + 85°C				
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH} t _{PHL}	Propagation delay D _n to Q _n , Q _n	1.10 1.10	4.10 4.10	1.10 1.10	4.10 4.10	1.10 1.10	4.60 4.60	ns ns	Fig. 5, 7, 8	
t _{PLH} t _{PHL}	Propagation delay D _n to GS	1.10 1.10	4.10 4.10	1.10 1.10	4.10 4.10	1.10 1.10	4.60 4.60	ns ns	· · · · · · · · · · · · · · · · · · ·	
t _{PLH} t _{PHL}	Propagation delay \overline{OE} to Q_n , \overline{Q}_n	1.00 1.00	3.30 3.30	1.00 1.00	3.30 3.30	1.00 1.00	3.40 3.40	ns ns		
t _{PLH} t _{PHL}	Propagation delay OE to GS	1.00 1.00	3.30 3.30	1.00 1.00	3.30 3.30	1.00 1.00	3.40 3.40	ns ns	Figs. 4, 7, 8	
t _{PLH} t _{PHL}	Propagation delay M to Q_n , \overline{Q}_n , GS	0.90 0.90	3.60 3.60	1.00 1.00	3.60 3.60	1.00 1.00	3.80 3.80	ns ns		
t _{PLH} t _{PHL}	Propagation delay Ē to Q _n , Q̄ _n , GS	1.40 1.40	4.70 4.70	1.40 1.40	4.60 4.60	1.40 1.40	5.00 5.00	ns ns	Figs. 6, 7, 8	
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.40 1.40	0.45 0.45	1.40 1.40	0.45 0.45	1.40 1.40	ns ns	Figs. 5, 6, 7, 8	
t _s	Setup time D_n to \overline{E}	1.10		1.00		1.10		ns	Fige 6 9	
t _h	Hold time D_n to \overline{E}	1.30		1.30		1.30		ns	Figs. 6, 8	

AC ELECTRICAL CHARACTERISTICS

Ceramic DIP $V_{CC1} = V_{CC2} = GND, V_{EE} = -5.2V \pm 5\%$

		T _A =	• 0°C	T _A = -	+ 25°C	T _A = ·	+ 85°C		
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH}	Propagation delay	1.10	4.10	1.10	4.10	1.10	4.60	ns	Fig. 5, 7, 8
t _{PHL}	D _n to Q _n , Q _n	1.10	4.10	1.10	4.10	1.10	4.60	ns	
t _{PLH}	Propagation delay	1.10	4.10	1.10	4.10	1.10	4.60	ns	
t _{PHL}	D _n to GS	1.10	4.10	1.10	4.10	1.10	4.60	ns	
t _{PLH}	Propagation delay	1.00	3.30	1.00	3.30	1.00	3.40	ns	
t _{PHL}	OE to Q _n , Q _n	1.00	3.30	1.00	3.30	1.00	3.40	ns	
t _{PLH}	Propagation delay	1.00	3.30	1.00	3.30	1.00	3.40	ns	Figs. 4, 7, 8
t _{PHL}	OE to GS	1.00	3.30	1.00	3.30	1.00	3.40	ns	
t _{PLH}	Propagation delay	0.90	3.60	1.00	3.60	1.00	3.80	ns	
t _{PHL}	M to Q _n , Q̄ _n , GS	0.90	3.60	1.00	3.60	1.00	3.80	ns	
t _{PLH}	Propagation delay	1.40	4.70	1.40	4.60	1.40	5.00	ns	Figs. 6, 7, 8
t _{PHL}	Ē to Q _n , Q̄ _n , GS	1.40	4.70	1.40	4.60	1.40	5.00	ns	
t _{TLH} t _{THL}			1.40 1.40	0.45 0.45	1.40 1.40	0.45 0.45	1.40 1.40	ns ns	Figs. 5, 6, 7, 8
ts	t_s Setup time D_n to \overline{E}			1.00		1.10		ns	Figs. 6, 8
t _h	Hold time D_n to \overline{E}	1.30		1.30		1.30		ns	

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$

		T _A =	• 0°C	T _A = -	+ 25°C	T _A = -	+ 85°C			
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH}	Propagation delay	1.10	3.90	1.10	3.90	1.10	4.40	ns	Figs. 5, 7, 8	
t _{PHL}	D _n to Q _n , Q _n	1.10	3.90	1.10	3.90	1.10	4.40	ns		
t _{PLH}	Propagation delay	1.10	3.90	1.10	3.90	1.10	4.40	ns		
t _{PHL}	D _n to GS	1.10	3.90	1.10	3.90	1.10	4.40	ns		
t _{PLH}	Propagation delay	1.00	3.10	1.00	3.10	1.00	3.20	ns		
t _{PHL}	OE to Q _n , Q _n	1.00	3.10	1.00	3.10	1.00	3.20	ns		
t _{PLH}	Propagation delay	1.00	3.10	1.00	3.10	1.00	3.20	ns	Figs. 4, 7, 8	
t _{PHL}	OE to GS	1.00	3.10	1.00	3.10	1.00	3.20	ns		
t _{PLH}	Propagation delay	0.90	3.40	1.00	3.40	1.00	3.60	ns		
t _{PHL}	M to Q _n , Q̄ _n , GS	0.90	3.40	1.00	3.40	1.00	3.60	ns		
t _{PLH}	Propagation delay	1.40	4.50	1.40	4.40	1.40	4.80	ns	Figs. 6, 7, 8	
t _{PHL}	Ē to Q _n , Q̄ _n , GS	1.40	4.50	1.40	4.40	1.40	4.80	ns		
t _{TLH}	Transition time	0.45	1.40	0.45	1.40	0.45	1.40	ns	Figs. 5, 6, 7, 8	
t _{THL}	20% to 80%, 80% to 20%	0.45	1.40	0.45	1.40	0.45	1.40	ns		
ts	Setup time D_n to \overline{E}	0.90		0.80		0.90		ns	- Figs. 6, 8	
t _h	Hold time D _n to Ē	1.10		1.10		1.10		ns		

7

Encoder

100165

AC ELECTRICAL CHARACTERISTICS

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 5\%$

		T _A =	:0°C	T _A = ·	+ 25°C	T _A = +85°C			TEST CONDITIONS	
	PARAMETER	Min	Max	Min	Min Max Min Max		Max	UNIT		
t _{PLH} t _{PHL}			3.90 3.90	1.10 1.10	3.90 3.90	1.10 1.10	4.40 4.40	ns ns	Figs. 5, 7, 8	
			3.90 3.90	1.10 1.10	3.90 3.90	1.10 1.10	4.40 4.40	ns ns		
t _{PLH} t _{PHL}	Propagation delay OE to Q _n , Q _n	1.00 1.00	3.10 3.10	1.00 1.00	3.10 3.10	1.00 1.00	3.20 3.20	ns ns		
t _{PLH}	Propagation delay OE to GS	1.00 1.00	3.10 3.10	1.00 1.00	3.10 3.10	1.00 1.00	3.20 3.20	ns ns	Figs. 4, 7, 8	
t _{PLH} t _{PHL}	Propagation delay M to Q_n , \overline{Q}_n , GS	0.90 0.90	3.40 3.40	1.00 1.00	3.40 3.40	1.00 1.00	3.60 3.60	ns ns		
t _{PLH} t _{PHL}	Propagation delay Ē to Q _n , Q̄ _n , GS	1.40 1.40	4.50 4.50	1.40 1.40	4.40 4.40	1.40 1.40	4.80 4.80	ns ns	Figs. 6, 7, 8	
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.40 1.40	0.45 0.45	1.40 1.40	0.45 0.45	1.40 1.40	ns ns	Figs. 5, 6, 7, 8	
ts	Setup time D_n to \overline{E}	0.90		0.80		0.90		ns	- Figs. 6, 8	
t _h	Hold time D_n to \overline{E}	1.10		1.10		1.10		ns	riys. 0, 8	

AC WAVEFORMS

Encoder

100165

7

Encoder

TEST CIRCUITS AND WAVEFORMS

NOTES: 1.

- $V_{CC1} = V_{CC2} = + 2V \pm 0.010V, V_{EE} = -3.2V \pm 0.010V.$
- Decoupling 0.1 μ F and 25 μ F from GND to V_{CC}, 0.01 μ F and 25 μ F from GND to V_{EE}. (0.01 and 0.1 μ F capacitors should be NPO Ceramic or MLC 2 type). Decoupling capacitors should be placed as close as physically possible to the DUT and lead length should be kept to less than 1/4 inch (6mm).
- All unused inputs should be connected to either HIGH or LOW state consistent with the LOGIC 3. function required.
- All unused outputs are loaded with 50 Ω to GND. L_1 and L_2 are equal length 50 Ω impedance lines. L₃, the distance from the DUT pin to the junction of 5 the cable from the Pulse Generator and the cable to the Scope, should not exceed 1/4 inch (6mm).
- 6. 7. $R_T = 50\Omega$ terminator internal to Scope. The unmatched wire stub between coaxial cable
- and pins under test must be less than 1/4 inch (6mm) long for proper test. 8
- $C_L =$ Fixture and stray capacitance \leq 3pF. Any unterminated stubs connected anywhere along 9. the transmission line between the Pulse Generator and the DUT or between the DUT and the Scope should not exceed 1/4 inch (6mm) in length (refer to section on AC setup procedure).
- 10. All 50 Ω resistors should have tolerance of ± 1% or better.
- Pin connections are for Flat Pack and in parenthe-ses for Ceramic DIP.

Signetics

100166 Comparator

9-Bit Comparator Product Specification

ECL Products

DESCRIPTION

The 100166 is a 9-bit Comparator which compares the arithmetic values of two 9-bit words and indicates whether one word is greater or equal to the other one.

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
100166	2.3ns	140mA

ORDERING CODE

PACKAGES	$\label{eq:VCC1} \begin{array}{l} \mbox{COMMERCIAL RANGE} \\ \mbox{V}_{CC1} = \mbox{V}_{CC2} = \mbox{GND}; \ \mbox{V}_{EE} = -4.2 \mbox{V} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Ceramic DIP	100166F
Ceramic Flat Pack	100166Y

PIN DESCRIPTION

PINS	DESCRIPTION
A ₀ – A ₈	A Data Inputs
B ₀ – B ₈	B Data Inputs
A > B	A Greater Than B Outputs
A < B	B Greater Than A Outputs
$\overline{A} = \overline{B}$	Complement A Equal To B Output (Active LOW)

January 30, 1986

853-0629 82178

100166

LOGIC DIAGRAM

FUNCTION TABLE

	INPUTS									OUTPUTS		
A ₀ B ₀	A ₁ B ₁	A ₂ B ₂	A ₃ B ₃	A ₄ B ₄	A ₅ B ₅	A ₆ B ₆	A7B7	A ₈ B ₈	A < B	B > A	A = B	
								ΗL	н	L	н	
								LH	L	н	н	
							ΗL	$A_8 = A_8$	н	L	н	
				e .			LH	$A_8 = A_8$	L	н	н	
						ΗL	$A_7 = A_7$	$A_8 = A_8$	н	L	н	
) сн	$A_7 = A_7$	$A_8 = A_8$	L	н	н	
	Į	Į		ļ	HL	$A_6 = A_6$	$A_7 = A_7$	$A_8 = A_8$	н	L	н	
					LH	$A_6 = A_6$	$A_7 = A_7$	$A_8 = A_8$	L	н	н	
				ΗL	$A_{5} = A_{5}$	$A_6 = A_6$	$A_7 = A_7$	$A_8 = A_8$	н	L	н	
	-			LH	$A_5 = A_5$	$A_6 = A_6$	$A_7 = A_7$	$A_8 = A_8$	L	н	н	
			HL	$A_4 = A_4$	$A_{5} = A_{5}$	$A_6 = A_6$	$A_7 = A_7$	$A_8 = A_8$	н	L	н	
			LH	$A_4 = A_4$	$A_{5} = A_{5}$	$A_6 = A_6$	$A_7 = A_7$	$A_8 = A_8$	L	н	н	
		ΗL	$A_{3} = A_{3}$	$A_4 = A_4$	$A_{5} = A_{5}$	$A_6 = A_6$	$A_7 = A_7$	$A_8 = A_8$	н	L ·	н	
		сн	$A_{3} = A_{3}$	$A_4 = A_4$	$A_5 = A_5$	$A_6 = A_6$	$A_7 = A_7$	$A_8 = A_8$	L	н	н	
	HL	$A_2 = A_2$	$A_3 = A_3$	$A_4 = A_4$	$A_{5} = A_{5}$	$A_6 = A_6$	$A_7 = A_7$	$A_8 = A_8$	н	L	н	
	LH	$A_2 = A_2$	$A_3 = A_3$	$A_4 = A_4$	$A_{5} = A_{5}$	$A_6 = A_6$	$A_7 = A_7$	$A_8 = A_8$	L	н	н	
ΗL	$A_1 = A_1$	$A_2 = A_2$	$A_3 = A_3$	$A_4 = A_4$	$A_{5} = A_{5}$	$A_6 = A_6$	$A_7 = A_7$	$A_8 = A_8$	н	L	н	
LΗ	$A_1 = A_1$	$A_2 = A_2$	$A_3 = A_3$	$A_4 = A_4$	$A_{5} = A_{5}$	$A_6 = A_6$	$A_7 = A_7$	$A_8 = A_8$	L	н	н	
$A_0 = A_0$	$A_1 = A_1$	$A_2 = A_2$	$A_3 = A_3$	$A_4 = A_4$	$A_{5} = A_{5}$	$A_6 = A_6$	$A_7 = A_7$	$A_8 = A_8$	L	L	L	

Positive Logic: H = HIGH state (the more positive voltage) = 1 L = LOW state (the less positive voltage) = 0

Blank = Don't Care

100166

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	100K ECL	UNIT
V _{EE}	Supply voltage (V _{CC1} = V _{CC2} = GND)	-7.0 to 0	V
V _{IN}	Input voltage (V _{IN} should never be more negative than V _{EE})	V _{EE} to +0.5	V
lo	Output source current	-55	mA
Τ _S	Storage temperature	-65 to +150	°C
Tj	Maximum junction temperature	+ 150	°C

DC OPERATING CONDITIONS

		AMETER			100K ECL		
	PAF	Min	Nom	Max	UNIT		
V _{CC1} , V _{CC2}	Circuit ground	0	0	0	v		
V _{EE}	Supply voltage (negative)			-4.2	-4.5	-4.8	v
V _{EE}	Supply voltage (negative)	when operating with 10K	ECL family			-5.7	v
			$V_{EE} = -4.2V$	-1150			
VIH	HIGH level input voltage		V _{EE} = -4.5V	4405	1	-880	mV
	input tonago		$V_{EE} = -4.8V$	1165			
			$V_{EE} = -4.2V$	-1150			mV
VIHT	HIGH level input threshold voltage	$V_{CC1} = V_{CC2} = GND$	$V_{EE} = -4.5V$	4405			
	in concide voltage		$V_{EE} = -4.8V$	- 1165			mV
			$V_{EE} = -4.2V$				
V _{ILT}	LOW level input threshold voltage	$T_A = 0^{\circ}C \text{ to } + 85^{\circ}C$	$V_{EE} = -4.5V$	1		-1475	mV
	anoonola voltago		$V_{EE} = -4.8V$			-1490	mV
			V _{EE} = -4.2V				
V _{IL}	LOW level input voltage		$V_{EE} = -4.5V$	-1810		-1475	mV
			$V_{EE} = -4.8V$]		-1490	
TA	Operating ambient tempe		0		+ 85	°C	

NOTE:

When operating at other than specified voltages (-4.2V, -4.5V, -4.8V) DC & AC Characteristics will vary slightly from specified values.

100166

	PARAMETER		MIN	ТҮР	MAX	UNIT	TEST	CONDITIONS ²		
		V _{EE} = -4.2V	-1025		-870	mV	V _{IN} = V _{IHmax}			
V _{OH}	HIGH level output voltage	V _{EE} = -4.5V	-1025	-955	-880	mV	or			
		$V_{EE} = -4.8V$	-1035	~	-880	mV	$V_{IN} = V_{ILmin}$			
		V _{EE} = -4.2V	-1035			mV	V _{IN} = V _{IHmin}			
V _{OHT}	HIGH level output threshold voltage	$V_{EE} = -4.5V$	-1035			mV	or			
	g.	$V_{EE} = -4.8V$	-1045			mV	$V_{IN} = V_{ILmax}$	Loading with		
		V _{EE} = -4.2V			-1590	mV	V _{IN} = V _{IHmin}	50Ω to -2.0V ±0.010V		
V _{OLT}	LOW level output threshold voltage	V _{EE} = -4.5V			-1610	mV	or			
	an concer contage	$V_{EE} = -4.8V$			-1610	mV	$V_{IN} = V_{ILmax}$			
		$V_{EE} = -4.2V$	-1810		-1600	mV	V _{IN} = V _{IHmax}			
V _{OL}	LOW level output voltage	$V_{EE} = -4.5V$	-1810	-1705	-1620	mV	or			
		$V_{EE} = -4.8V$	- 1830		-1620	mV	$V_{IN} = V_{ILmin}$			
I _{IH}	HIGH level input ce	urrent			250	μA	$V_{IN} = V_{IHmax}$			
IIL	LOW level input cu	irrent	0.5			μA	$V_{IN} = V_{ILmin}$			
-I _{EE}	VEE supply current		119	140	238	mA	Inputs open			
$\frac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation	V _{EE} = -4.2V			0.035	v/v				
$rac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	$T_A = +25^{\circ}C$			0.070	v/v				

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$, $T_A = 0^{\circ}C$ to $+85^{\circ}C$ unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst case testing guidelines, refer to Section 3 Testing, DC Testing.
The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

Comparator

AC ELECTRICAL CHARACTERISTICS

Ceramic DIP V_{CC1} = V_{CC2} = GND, V_{EE} = -4.2V $\pm 0.010V$ to -4.8V $\pm 0.010V$

		T _A =	= 0°C	T _A = ·	+ 25°C	T _A = -	+ 85°C		
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH}	Propagation delay	1.40	3.50	1.40	3.50	1.40	3.90	ns	Figs. 5, 6, 7
t _{PHL}	D _n to Q _n	1.40	3.50	1.40	3.50	1.40	3.90	ns	
t _{TLH}	Transition time	0.45	1.60	0.45	1.60	0.45	1.60	ns	
t _{THL}	20% to 80%, 80% to 20%	0.45	1.60	0.45	1.60	0.45	1.60	ns	

Ceramic DIP $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 5\%$

		T _A =	= 0°C	T _A = -	+ 25°C	T _A = -	+ 85°C				
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS		
t _{PLH}	Propagation delay	1.40	3.50	1.40	3.50	1.40	3.90	ns	Figs. 5, 6, 7		
t _{PHL}	D _n to Q _n	1.40	3.50	1.40	3.50	1.40	3.90	ns			
t _{TLH}	Transition time	0.45	1.60	0.45	1.60	0.45	1.60	ns			
t _{THL}	20% to 80%, 80% to 20%	0.45	1.60	0.45	1.60	0.45	1.60	ns			

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$

		T _A =	= 0°C	T _A =	+ 25°C	T _A = -	+ 85°C				
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS		
t _{PLH}	Propagation delay	1.40	3.30	1.40	3.30	1.40	3.70	ns	Figs. 5, 6, 7		
t _{PHL}	D _n to Q _n	1.40	3.30	1.40	3.30	1.40	3.70	ns			
t _{TLH}	Transition time	0.45	1.60	0.45	1.60	0.45	1.60	ns			
t _{THL}	20% to 80%, 80% to 20%	0.45	1.60	0.45	1.60	0.45	1.60	ns			

Flat Pack V_{CC1} = V_{CC2} = GND, V_{EE} = –5.2V $\pm 5\,\%$

	PARAMETER	T _A = 0°C				T _A = -	+ 85°C				
			Max	Min Ma		Min	Max	UNIT	TEST CONDITIONS		
t _{PLH} t _{PHL}	Propagation delay D _n to Q _n	1.40 1.40	3.30 3.30	1.40 1.40	3.30 3.30	1.40 1.40	3.70 3.70	ns ns	Figs. 5, 6, 7		
t _{TLH} t _{THL}			1.60 1.60	0.45 0.45	1.60 1.60	0.45 0.45	1.60 1.60	ns ns			

100166

AC WAVEFORMS

TEST CIRCUITS AND WAVEFORMS

100166

Signetics

ECL Products

DESCRIPTION

The 100170 operates as a Dual 1-of-4 Decoder, or as a Single 1-of-8 Decoder; the operating mode is fixed by the mode control input (M). The inputs H_a , H_b , H_c , determine whether the outputs are active LOW or HIGH. In the 1-of-8 mode, the two pairs of active LOW Enables can be tied together (pin 19 to 20 and 22 to 23), to provide two active LOW Enables.

100170 Demultiplexer/Decoder

Universal Demultiplexer/Decoder Product Specification

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
100170	1.8ns	110mA

ORDERING CODE

PACKAGES	$\label{eq:VCC1} \begin{array}{l} \mbox{COMMERCIAL RANGE} \\ \mbox{V}_{CC1} = \mbox{V}_{CC2} = \mbox{GND}; \ \mbox{V}_{EE} = -4.2 \mbox{V} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Ceramic DIP	100170F
Ceramic Flat Pack	100170Y

PIN DESCRIPTION

PINS	DESCRIPTION
A _{na} , A _{nb}	Address Inputs
Ē _{na} , Ē _{nb}	Enable inputs
М	Mode Control Input
H _a	Q ₀ – Q ₃ Polarity Select Input
Н _b	Q ₄ – Q ₇ Polarity Select Input
H _c	Common Polarity Select Input
Q ₀ – Q ₇	Data Outputs

Q7 2

Q4 3

Q6 4

Q5 5

Vcc1 6

VCC2 7

Q3 8

Q₀ 9 Q₂ 10

Q1 11

A_{0a} [12

H_c 1

Нь 2

Аоь <u>3</u> Аіь <u>4</u>

Q7 5

Q4 6

24 Aob

23 нь

22 н.

21 н.

20 E_{2a} 19 E_{2b}

18 VEE

17 Ē1.6 16 Ē1.e

15 A₂₄

14 M 13 A1a

18 A₂₈

17 M

16 A1.

15 A0a

14 Q1

13 Q2

CD089105

LOGIC SYMBOL

7 8 9 10 11 12 Q6 Q5 VCC1 VCC2 Q3 Q0

Ha E2a E2b VEE E1b E1a

24 23 22 21 20 19

100170

LOGIC DIAGRAM

Figure 3. Universal Demux/Decoder

FUNCTION TABLE (Dual 1-of-4 Mode)

		170					OUT	PUTS				
	INPU	112			H _a = H _b	= HIGH	4		$H_a = H_b$	= LOW	I	OPERATING MODE
E _{0b}	Ē _{1b}	A _{0b}	A _{1b}	Q ₀	Q1	Q_2	Q_3	Q ₀	Q1	Q_2	Q ₃	
H X L L L	X H L L	X X L H H	X X H L H	L L H L L		L L H L	L L L H	H H H H	H H H L H	H H H H H	H H H L	Dusi 1-0f-4 Mode M - A ₀₄ = H ₆ = LOW

7

100170

FUNCTION TABLE (Single 1-of-8 Mode)

		NPUT	<u> </u>									ουτι	PUTS								
	Ir	VPUT	5					H _c =	HIGH				H _c = LOW								OPERATING MODE
Ē0	Ē1	A _{0a}	A _{1a}	A _{2a}	Q ₀	Q1	Q2	Q_3	Q4	Q 5	Q ₆	Q7	Q ₀	Q1	Q2	Q ₃	Q4	Q 5	Q ₆	Q7	
н	X	х	х	х	L	L	L	L	L	L	L	L	н	н	н	н	н	н	н	н	
Х	н	X	х	Х	L	L	L	L	L	L	L	L	н	н	н	н	н	н	н	н	
L	L	L	L	L	н	L	L	L	L	L	L	L	L	н	н	н	н	н	н	н	
L	L	н	L	L	L	н	L	L	L	L	L	L	н	L.	н	н	н	н	н	н	Single 1-of-8 Mode
L	L	L	н	L	L	L	н	L	L	L	L	L	н	н	L	н	н	н	н	н	M = HIGH
L	L	н	н	L	L	L	L	н	L	L	L	L	н	н	н	L	н	н	н	н	$A_{0b} = A_{1b} = H_a = H_b$
L	L	L	L	н	L	L	L	L	н	L	L	L	н	н	н	н	L	н	н	н	= LOW
L	L	н	L	н	L	L	L	L	L	н	L	L	н	н	н	н	н	L	н	н	a an she a she i a
L	L	L	н	н	L	L	L	L	L	L	н	L	н	н	н	н	н	н	L	н	
Ĺ	L	н	н	н	L	L	L	L	L	L	L	н	н	н	н	н	н	н	н	L	

 $\begin{array}{l} \label{eq:constraint} \mathsf{Positive Logic:} \\ \mathsf{H} = \mathsf{HIGH} \ \mathsf{state} \ (\mathsf{the more positive voltage}) = 1 \\ \mathsf{L} = \mathsf{LOW} \ \mathsf{state} \ (\mathsf{the less positive voltage}) = 0 \\ \mathsf{X} = \mathsf{Don't Care} \\ \overline{\mathsf{E}_0} = \overline{\mathsf{E}_{0a}} \ \mathsf{and} \ \overline{\mathsf{E}_{0b}} \ \mathsf{wired}; \ \overline{\mathsf{E}_1} = \overline{\mathsf{E}_{1a}} \ \mathsf{and} \ \overline{\mathsf{E}_{1b}} \ \mathsf{wired} \\ \end{array}$

*.

178

100170

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	100K ECL	UNIT
V _{EE}	Supply voltage ($V_{CC1} = V_{CC2} = GND$)	-7.0 to 0	v
V _{IN}	Input voltage (V _{IN} should never be more negative than V _{EE})	V _{EE} to +0.5	V
lo	Output source current	-55	mA
Τ _S	Storage temperature	-65 to +150	°C
TJ	Maximum junction temperature	+ 150	°C

DC OPERATING CONDITIONS

					100K ECL				
	PAR	Min	Nom	Max	UNIT				
V _{CC1} , V _{CC2}	Circuit ground		0	0	0	v			
V _{EE}	Supply voltage (negative)			-4.2	-4.5	-4.8	v		
V _{EE}	Supply voltage (negative)	when operating with 10K	ECL family			-5.7	v		
			V _{EE} = -4.2V	-1150					
VIH	HIGH level input voltage		V _{EE} = -4.5V	-1165		-880	mV .		
	input voltago		$V_{EE} = -4.8V$	-1105					
			V _{EE} = -4.2V	-1150			mV		
VIHT	HIGH level input threshold voltage	$V_{CC1} = V_{CC2} = GND$	V _{EE} = -4.5V	1165			mV		
	threshold voltage	$V_{EE} = -4.8V$	V _{EE} = -4.8V						
			V _{EE} = -4.2V						
V _{ILT}	LOW level input threshold voltage	$T_A = 0^{\circ}C$ to $+85^{\circ}C$	V _{EE} = -4.5V			-1475	mV		
	threahold voltage		V _{EE} = -4.8V			-1490	mV		
		DW level	V _{EE} = -4.2V						
VIL	LOW level input voltage		$V_{EE} = -4.5V$	-1810		-1475	mV		
input voltage		$V_{EE} = -4.8V$	1		-1490				
T _A	Operating ambient temper	rature	-	0	+ 25	+ 85	°C		

NOTE:

When operating at other than specified voltages (-4.2V, -4.5V, -4.8V) DC & AC Characteristics will vary slightly from specified values.

. پ

			unless	otherwise	specified.,	0		
	PARAMETER		MIN	TYP	MAX	UNIT	TEST	CONDITIONS ²
		$V_{EE} = -4.2V$	-1025		-870	mV	V _{IN} = V _{IHmax}	
V _{OH}	HIGH level output voltage	$V_{EE} = -4.5V$	-1025	-955	-880	mV	or	and the second
	output voltage	$V_{EE} = -4.8V$	-1035		-880	mV	$V_{IN} = V_{ILmin}$	
		$V_{EE} = -4.2V$	-1035			mV	V _{IN} = V _{IHmin}	
VOHT	HIGH level output threshold voltage	$V_{EE} = -4.5V$	-1035			mV	or	
	infeatiold voltage	V _{EE} = -4.8V	-1045			mV	$V_{IN} = V_{ILmax}$	Loading with
		$V_{EE} = -4.2V$			-1590	mV	$V_{IN} = V_{IHmin}$	50Ω to $-2.0V \pm 0.010V$
VOLT	LOW level output threshold voltage	V _{EE} = -4.5V			-1610	mV	or	
	ancanola voltage	$V_{EE} = -4.8V$			-1610	mV	$V_{IN} = V_{ILmax}$	
	***	$V_{EE} = -4.2V$	-1810		- 1600	mV	V _{IN} = V _{IHmax}	
VOL	LOW level output voltage	$V_{EE} = -4.5V$	-1810	-1705	-1620	mV	or	
	output vonage	V _{EE} = -4.8V	-1830		-1620	mV	$V_{IN} = V_{ILmin}$	
	HIGH level	H _C , A _{0a} , A _{1a} , A _{2a}			310	μA	V _{IN} = V _{IHmax}	· · · · · · · · · · · · · · · · · · ·
lιH	input current	All others			250	μΛ	VIN - VIHmax	
hι	LOW level input cu	urrent	0.5			μA	V _{IN} = V _{ILmin}	n an
-I _{EE}	V _{EE} supply current		76	110	153	mA	Inputs open	
$rac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation	Ver = -4.2V			0.035	V/V		
$\frac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	$T_A = +25^{\circ}C$			0.070	V/V		

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$, $T_A = 0^{\circ}C$ to $+85^{\circ}C$

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

2. Conditions for testing shown in the tables are not necessarily worst case. For worst case testing guidelines, refer to Section 3 Testing, DC Testing.

3. The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

100170

Demultiplexer/Decoder

AC ELECTRICAL CHARACTERISTICS

Ceramic DIP V_{CC1} = V_{CC2} = GND, V_{EE} = -4.2V $\pm 0.010V$ to -4.8V $\pm 0.010V$

		T _A = 0°C		T _A = + 25°C		T _A = + 85°C				
	PARAMETER		Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH}	Propagation delay	0.80	2.30	0.80	2.20	0.80	2.30	ns		
t _{PHL}	Ē _{na} , Ē _{nb} to Q _n	0.80	2.30	0.80	2.20	0.80	2.30	ns		
t _{PLH}	Propagation delay	0.95	2.80	0.95	2.70	1.00	2.90	ns		
t _{PHL}	A _{na} , A _{nb} to Q _n	0.95	2.80	1.00	2.70	1.00	2.90	ns		
t _{PLH}	Propagation delay	1.00	3.00	1.00	2.90	1.00	3.00	ns	Figs. 5, 6, 7	
t _{PHL}	H _a , H _b , H _c to Q _n	1.00	3.00	1.00	2.90	1.00	3.00	ns		
t _{PLH}	Propagation delay	1.50	3.90	1.60	3.80	1.60	3.90	ns		
t _{PHL}	M to Q _n	1.50	3.90	1.60	3.80	1.60	3.90	ns		
t _{TLH}	Transition time	0.45	1.60	0.45	1.60	0.45	1.60	ns		
t _{THL}	20% to 80%, 80% to 20%	0.45	1.60	0.45	1.60	0.45	1.60	ns		

Ceramic DIP V_{CC1} = V_{CC2} = GND, V_{EE} = -5.2V $\pm 5\%$

		$T_A = 0^{\circ}C$		T _A = + 25°C		T _A = +85°C				
PARAMETER		Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH}	Propagation delay	0.80	2.30	0.80	2.20	0.80	2.30	ns		
t _{PHL}	Ē _{na} , Ē _{nb} to Q _n	0.80	2.30	0.80	2.20	0.80	2.30	ns		
t _{PLH}	Propagation delay	0.95	2.80	0.95	2.70	1.00	2.90	ns		
t _{PHL}	A _{na} , A _{nb} to Q _n	1.00	2.80	1.00	2.70	1.00	2.90	ns		
t _{PLH}	Propagation delay	1.00	3.00	1.00	2.90	1.00	3.00	ns	Figs. 5, 6, 7	
t _{PHL}	H _a , H _b , H _c to Q _n	1.00	3.00	1.00	2.90	1.00	3.00	ns		
t _{PLH}	Propagation delay	1.50	3.90	1.60	3.80	1.60	3.90	ns		
t _{PHL}	M to Q _n	1.50	3.90	1.60	3.80	1.60	3.90	ns		
t _{TLH}	Transition time	0.45	1.60	0.45	1.60	0.45	1.60	ns		
t _{THL}	20% to 80%, 80% to 20%	0.45	1.60	0.45	1.60	0.45	1.60	ns		

AC ELECTRICAL CHARACTERISTICS

Flat Pack V_{CC1} = V_{CC2} = GND, V_{EE} = -4.2V $\pm 0.010V$ to -4.8V $\pm 0.010V$

		T _A = 0°C		T _A = + 25°C		T _A = +85°C				
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH}	Propagation delay	0.80	2.10	0.80	2.00	0.80	2.10	ns		
t _{PHL}	Ē _{na} , Ē _{nb} to Q _n	0.80	2.10	0.80	2.00	0.80	2.10	ns		
t _{PLH}	Propagation delay	0.95	2.60	0.95	2.50	1.00	2.70	ns		
t _{PHL}	A _{na} , A _{nb} to Q _n	0.95	2.60	1.00	2.50	1.00	2.70	ns		
t _{PLH}	Propagation delay	1.00	2.80	1.00	2.70	1.00	2.80	ns	Figs. 5, 6, 7	
t _{PHL}	H _a , H _b , H _c to Q _n	1.00	2.80	1.00	2.70	1.00	2.80	ns		
t _{PLH}	Propagation delay	1.50	3.70	1.60	3.60	1.60	3.70	ns		
t _{PHL}	M to Q _n	1.50	3.70	1.60	3.60	1.60	3.70	ns		
t _{TLH}	Transition time	0.45	1.60	0.45	1.60	0.45	1.60	ns		
t _{THL}	20% to 80%, 80% to 20%	0.45	1.60	0.45	1.60	0.45	1.60	ns		

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 5\%$

	DADAWETED	T _A = 0°C		T _A = + 25°C		T _A = +85°C		115117	TEST CONDITIONS	
	PARAMETER			Min	Max	UNIT				
t _{PLH}	Propagation delay	0.80	2.10	0.80	2.00	0.80	2.10	ns		
t _{PHL}	E _{na} , E _{nb} to Q _n	0.80	2.10	0.80	2.00	0.80	2.10	ns		
t _{PLH}	Propagation delay	0.95	2.60	0.95	2.50	1.00	2.70	ns		
t _{PHL}	A _{na} , A _{nb} to Q _n	0.95	2.60	1.00	2.50	1.00	2.70	ns		
t _{PLH}	Propagation delay	1.00	2.80	1.00	2.70	1.00	2.80	ns	Figs. 5, 6, 7	
t _{PHL}	H _a , H _b , H _c to Q _n	1.00	2.80	1.00	2.70	1.00	2.80	ns		
t _{PLH}	Propagation delay	1.50	3.70	1.60	3.60	1.60	3.70	ns		
t _{PHL}	M to Q _n	1.50	3.70	1.60	3.60	1.60	3.70	ns		
t _{TLH}	Transition time	0.45	1.60	0.45	1.60	0.45	1.60	ns		
t _{THL}	20% to 80%, 80% to 20%	0.45	1.60	0.45	1.60	0.45	1.60	ns		

AC WAVEFORMS

100170

Demultiplexer/Decoder

TEST CIRCUITS AND WAVEFORMS

Signetics

ECL Products

DESCRIPTION

The 100171 is a Triple 4-input Multiplexer fed by 2 common address inputs, with true and complementary data outputs. A HIGH state on the Enable Input (\overline{E}) forces all true outputs low.

100171 Multiplexer

Triple 4-Input Multiplexer Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-1 _{EE})
100171	1.10ns	83mA

ORDERING CODE

PACKAGES	$\begin{array}{l} \mbox{COMMERCIAL RANGE} \\ \mbox{V}_{CC1} = \mbox{V}_{CC2} = \mbox{GND}; \ \mbox{V}_{EE} = -4.2 \mbox{V} \ \ to \ -4.8 \mbox{V} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
Ceramic DIP	100171F
Ceramic Flat Pack	100171Y

PIN DESCRIPTION

PIN CONFIGURATION

PINS	DESCRIPTION
D _{na} , D _{nb} , D _{nc}	Data Inputs
S ₀ , S ₁	Select Inputs
Ē	Enable Input
$\begin{array}{ccc} Q_{a}, \ Q_{b}, \ Q_{c}; \overline{Q}_{a}, \ \overline{Q}_{b}, \\ \overline{Q}_{c} \end{array}$	Data Outputs

D1c 1 24 D_{0c} D_{2c} 2 23 D₃₀ 22 D_{2b} D_{3c} 3 Q. 4 21 D1b ā, 5 20 D₀₆ Vcc1 6 19 Ē Vcc2 7 18 VEE Q_b 8 17 So ã₀ 9 16 S₁ Q. 10 15 D_{3a} 14 D_{2a} Q, 11 13 D1. D_{0e} 12 D1b D0b Ê VEE S0 S1 24 23 22 21 20 19 D_{2b} 1 18 D_{3e} D36 2 17 D₂₈ D_{0c} 3 16 D1a D1c 4 15 D₀₈ D_{2c} 5 14 Qa 13 Q. D2 6 7 8 9 10 11 12 Qc Qc VCC1VCC2 Qb Qb CD08930S Figure 1

LOGIC SYMBOL

Product Specification

Multiplexer

100171

7

LOGIC DIAGRAM

FUNCTION TABLE

	INPUTS								
Ē	S ₀	S ₁	D ₀	D ₁	D ₂	D ₃	Q	Q	
Н	x	х	х	х	х	х	н	L	
L	L	L	L	х	х	х	н	L	
L	L	L	н	х	х	х	L	н	
L	L	н	х	L	х	х	н	L	
L	L	н	х	н	х	х	L	н	
L	н	L	х	х	L	х	н	L	
L L	н	L	х	х	н	х	L	н	
L	н	н	х	х	х	L	н	L	
L	н	н	х	х	х	н	L	н	

Positive Logic: H = HIGH state (more positive voltage) = 1

L = LOW state (less positive voltage) = 0

X = Don't care

Multiplexer

100171

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	100K ECL	UNIT
V _{EE}	Supply voltage ($V_{CC1} = V_{CC2} = GND$)	-7.0 to 0	V
V _{IN}	Input voltage (VIN should never be more negative than VEE)	V _{EE} to +0.5	V
lo	Output source current	-55	mA
Τs	Storage temperature	-65 to +150	°C
, Tj	Maximum junction temperature	+ 150	°C

DC OPERATING CONDITIONS

	_						
	P/	Min	Nom	Max	UNIT		
V _{CC1} , V _{CC2}	Circuit ground		0	0	0	v	
V _{EE}	Supply voltage (negativ	е)		-4.2	-4.5	-4.8	v
V _{EE}	Supply voltage (negativ	e) when operating with 10K	ECL family			-5.7	v
			V _{EE} = -4.2V	-1150			
VIH	HIGH level input voltage		$V_{EE} = -4.5V$			-880	mV
			$V_{EE} = -4.8V$	1165	1		
V _{IHT}	HIGH level input threshold voltage		$V_{EE} = -4.2V$	-1150			mV
		$V_{CC1} = V_{CC2} = GND$	$V_{EE} = -4.5V$	4405			mV
			$V_{EE} = -4.8V$	1165			
	LOW level input threshold voltage		$V_{EE} = -4.2V$				
VILT		$T_A = 0^{\circ}C$ to $+85^{\circ}C$	$V_{EE} = -4.5V$	1		-1475	mV
			$V_{EE} = -4.8V$			-1490	mV
V _{IL}	· · · · · · · · · · · · · · · · · · ·		$V_{EE} = -4.2V$				
	LOW level input voltage		$V_{EE} = -4.5V$	-1810		-1475	mV
			$V_{EE} = -4.8V$]		-1490	
T _A	Operating ambient tem	perature	0	+ 25	+ 85	°C	

NOTE:

When operating at other than specified voltages (-4.2V, -4.5V, -4.8V) DC & AC Characteristics will vary slightly from specified values.

Multiplexer

100171

[PARAMETER		MIN	MAX	UNIT	TEOT	CONDITIONS ²		
	PARAMEIER		MIN	TYP	MAX	UNIT	1531	CONDITIONS	
		$V_{EE} = -4.2V$	- 1025		-870	mV	V _{IN} = V _{IHmax}		
V _{OH}	HIGH level output voltage	$V_{EE} = -4.5V$	-1025	-955	-880	mV	or		
	· •	$V_{EE} = -4.8V$	-1035		-880	m∨	V _{IN} = V _{ILmin}		
		$V_{EE} = -4.2V$	- 1035			mV	V _{IN} = V _{IHmin}		
V _{OHT}	HIGH level output threshold voltage	$V_{EE} = -4.5V$	-1035			mV	or		
		$V_{EE} = -4.8V$	-1045			mV	$V_{IN} = V_{ILmax}$	Loading with	
		V _{EE} = -4.2V			1590	mV	V _{IN} = V _{IHmin}	50Ω to -2.0V ±0.010V	
VOLT	LOW level output threshold voltage	$V_{EE} = -4.5V$			-1610	mV	or		
		$V_{EE} = -4.8V$			-1610	mV	$V_{IN} = V_{ILmax}$		
		V _{EE} = -4.2V	-1810		-1600	mV	V _{IN} = V _{IHmax}		
VOL	LOW level output voltage	V _{EE} = -4.5V	-1810	-1705	-1620	mV	or		
		$V_{EE} = -4.8V$	- 1830		- 1620	mV	$V_{IN} = V_{ILmin}$		
	High level	D _{na} , D _{nb} , D _{nc}			340	μA			
Чн	input current	S ₀ , S ₁ , Ē			300	μΑ	V _{IN} = V _{IHmax}		
կլ	LOW level input cu	irrent	0.5			μA	V _{IN} = V _{ILmin}	,	
-I _{EE}	VEE supply current		56	83	114	mA	Inputs open		
$\frac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation	V _{FF} = -4.2V			0.035	v/v			
$\frac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	$T_A = +25^{\circ}C$			0.070	v/v			

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$, $T_A = 0^{\circ}C$ to $+85^{\circ}C$ unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst case testing guidelines, refer to Section 3 Testing, DC Testing.
The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

Multiplexer

AC ELECTRICAL CHARACTERISTICS

Ceramic DIP V_{CC1} = V_{CC2} = GND, V_{EE} = -4.2V $\pm 0.010V$ to -4.8V $\pm 0.010V$

	DA DAMETED	$T_A = 0^{\circ}C$		T _A = + 25°C		T _A = +85°C				
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH} t _{PHL}	Propagation delay D _{na} , D _{nb} , D _{nc} to output	0.45 0.45	1.70 1.70	0.45 0.45	1.60 1.60	0.50 0.50	1.70 1.70	ns ns		
t _{PLH} t _{PHL}	Propagation delay S_0 , S_1 to output	0.90 0.90	2.40 2.40	0.90 0.90	2.60 2.60	1.00 1.00	3.00 3.00	ns ns	- Figs. 5, 6, 7	
t _{PLH} t _{PHL}	Propagation delay Ē to output	0.65 0.65	2.40 2.40	0.65 0.65	2.30 2.30	0.75 0.75	2.40 2.40	ns ns		
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.70 1.70	0.45 0.45	1.50 1.50	0.45 0.45	1.50 1.50	ns ns		

Ceramic DIP V_{CC1} = V_{CC2} = GND, V_{EE} = -5.2V $\pm\,5\,\%$

		$T_A = 0^{\circ}C$		T _A = + 25°C		T _A = + 85°C				
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH}	Propagation delay	0.45	1.70	0.45	1.60	0.50	1.70	ns		
t _{PHL}	D _{na} , D _{nb} , D _{nc} to output	0.45	1.70	0.45	1.60	0.50	1.70	ns		
t _{PLH}	Propagation delay	0.90	2.40	0.90	2.60	1.00	3.00	ns	Figs. 5, 6, 7	
t _{PHL}	S ₀ , S ₁ to output	0.90	2.40	0.90	2.60	1.00	3.00	ns		
t _{PLH} t _{PHL}	Propagation delay \overline{E} to output	0.65 0.65	2.40 2.40	0.65 0.65	2.30 2.30	0.75 0.75	2.40 2.40	ns ns	- ings. 5, 6, 7	
t _{TLH}	Transition time	0.45	1.70	0.45	1.50	0.45	1.50	ns		
t _{THL}	20% to 80%, 80% to 20%	0.45	1.70	0.45	1.50	0.45	1.50	ns		

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$

	PARAMETER		$T_A = 0^{\circ}C$		T _A = + 25°C		+ 85°C		
			Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} t _{PHL}	Propagation delay D _{na} , D _{nb} , D _{nc} to output	0.45 0.45	1.50 1.50	0.45 0.45	1.40 1.40	0.50 0.50	1.50 1.50	ns ns	
t _{PLH} t _{PHL}	Propagation delay S_0 , S_1 to output	0.90 0.90	2.20 2.20	0.90 0.90	2.40 2.40	1.00 1.00	2.80 2.80	ns ns	Figs. 5, 6, 7
t _{PLH} t _{PHL}	Propagation delay \overline{E} to output	0.65 0.65	2.20 2.20	0.65 0.65	2.10 2.10	0.75 0.75	2.20 2.20	ns ns	
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.70 1.70	0.45 0.45	1.50 1 <i>.</i> 50	0.45 0.45	1.50 1.50	ns ns	

Multiplexer

100171

AC ELECTRICAL CHARACTERISTICS

Flat Pack V_{CC1} = V_{CC2} = GND, V_{EE} = –5.2V $\pm 5\%$

	DADAMETER	T _A = 0°C		T _A = + 25°C		T _A = +85°C			TEAT CONDITIONS
	PARAMETER		Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH}	Propagation delay	0.45	1.50	0.45	1.40	0.50	1.50	ns	
t _{PHL}	D _{na} , D _{nb} , D _{nc} to output	0.45	1.50	0.45	1.40	0.50	1.50	ns	
t _{PLH} t _{PHL}	Propagation delay S_0 , S_1 to output	0.90 0.90	2.20 2.20	0.90 0.90	2.40 2.40	1.00 1.00	2.80 2.80	ns ns	Figs. 5, 6, 7
t _{PLH}	Propagation delay	0.65	2.20	0.65	2.10	0.75	2.20	ns	
t _{PHL}	E to output	0.65	2.20	0.65	2.10	0.75	2.20	ns	
t _{TLH}	Transition time	0.45	1.70	0.45	1.50	0.45	1.50	ns	
t _{THL}	20% to 80%, 80% to 20%	0.45	1.70	0.45	1.50	0.45	1.50	ns	

AC WAVEFORMS

.

Multiplexer

TEST CIRCUITS AND WAVEFORMS

Signetics

ECL Products

DESCRIPTION

The 100175 is composed of five latches with one data input and one data output. All latches have a Master Reset (MR) input and two Enable (E₀, E₁) inputs. A Q output follows its D_n inputs when both \overline{E}_0 and \overline{E}_1 are LOW. When either \overline{E}_0 or \overline{E}_1 (or both) are HIGH, the latches store the last valid data present on their D_n inputs. The MR input makes the Q outputs LOW if either \overline{E}_0 or \overline{E}_1 (or both) are HIGH. The inputs are 100K compatible and the outputs are 10K compatible.

100175 Translator

100K-to-10K Translator Product Specification

ТҮРЕ	TYPICAL PROPAGATION TYPICAL SUPPLY CURREN DELAY (-I _{EE})		TYPICAL SUPPLY CURRENT (-I _{EE})
100175	D _n to Q _n	2.2ns	78mA
100175	Ē _n to Q _n	2.7ns	70mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -5.2V$ $T_A = 0^{\circ}C \text{ to } +75^{\circ}C$			
Ceramic DIP	100175F			

PIN DESCRIPTION

PINS	DESCRIPTION
$D_0 - D_4$	Data Inputs
MR	Master Reset Input
$\overline{E}_0, \overline{E}_1$	Enable Inputs
Q ₀ – Q ₄	Data Outputs

7-209

853-0632 82179

100175

LOGIC DIAGRAM

FUNCTION TABLE

Dn	Ē ₀	Ē1	MR	Qn
н	L	L	х	н
L L	L	L	х	L
X	н.	х	L	Q _n - 1
X	X	н	1 L	Q _n - 1
X	н	х	н	L
X	х	н	н	L

Positive Logic:

H = HIGH state (more positive voltage) = 1 L = LOW state (less positive voltage) = 0

X = Don't Care

 $Q_n - 1 =$ Previous state (state does not change)

100175

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	100K ECL	UNIT
V _{EE}	Supply voltage (V _{CC1} = V _{CC2} = GND)	-7.0 to 0	v
VIN	Input voltage (VIN should never be more negative than VEE)	V _{EE} to +0.5	V
lo	Output source current	-55	mA
T _S	Storage temperature	-65 to +150	°C
Tj	Maximum junction temperature	+ 150	°C

DC OPERATING CONDITIONS

	PARAMETER		Min	Nom	Max	UNIT
V _{CC1} , V _{CC2}	Circuit ground		0	0	0	v
V _{EE}	Supply voltage (negative)			-5.2		v
V _{EE}	Supply voltage (negative) when operating w	vith 10K ECL family			-5.7	v
VIH	HIGH level input voltage		-1165		-880	mV
VIHT	HIGH level input threshold voltage	$V_{CC1} = V_{CC2} = GND$	-1165			mV
VILT	LOW level input threshold voltage	$V_{EE} = -5.2V$ $T_A = 0^{\circ}C \text{ to } +75^{\circ}C$			-1475	mV
VIL	LOW level input voltage		-1810		-1475	mV
TA	Operating ambient temperature		0	+ 25	+ 75	°C

NOTE:

When operating at other than specified voltages (-5.2V) DC & AC Characteristics will vary slightly from specified values.

100175

	PARAMETER		MIN	ТҮР	MAX	UNIT	TEST	CONDITIONS ²
		T _A = 0°C	-1000		-840	mV	V _{IN} = V _{IHmax}	
VOH	HIGH level output voltage	T _A = + 25°C	-960		-810	mV	or	
		T _A = +75°C	-900		-720	mV	V _{IN} = V _{ILmin}	and a second s
		$T_A = 0^{\circ}CV$	-1020			mV	V _{IN} = V _{IHmin}	
VOHT	V _{OHT} HIGH level output threshold voltage	T _A = +25°CV	-980			mV	or	
		T _A = +75°CV	-920			mV	V _{IN} = V _{ILmax}	Loading with
		T _A = 0°CV			-1645	mV	V _{IN} = V _{IHmin} or V _{IN} = V _{ILmax}	50Ω to -2.0V ±0.010V
V _{OLT}	LOW level output threshold voltage	$T_A = +25$ °CV			-1630	mV		
	anoonola voltago	T _A = +75°CV			-1605	mV		
		T _A = 0°CV	-1870		-1665	mV	V _{IN} = V _{IHmax}	
V _{OL}	LOW level output voltage	$T_A = +25^{\circ}CV$	- 1850		-1650	mV	or	a dan sa basa na sa
	output foliago	T _A = +75°CV	-1830		-1625	mV	V _{IN} = V _{ILmin}	
	HIGH level	C input			650			
ιн	input current	All others			290	μA	$V_{IN} = V_{IHmax}$	
Ί _{ΙL}	LOW level input o	urrent	0.5			μA	V _{IN} = V _{ILmin}	
-I _{EE}	V _{EE} supply curren	t	50	67	102	mA	Inputs open	
$\frac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation				0.035	v/v		
$rac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	$T_A = +25^{\circ}C$		-	0.070	v/v		

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 5\%$, $T_A = 0^{\circ}C$ to +75°C unless otherwise specifical^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst case testing guidelines, refer to Section 3 Testing, DC Testing.
The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

Translator

AC ELECTRICAL CHARACTERISTICS

Ceramic DIP V_{CC1} = V_{CC2} = GND, V_{EE} = –5.2V $\pm\,5\,\%$

			T _A = 0°C		+ 25°C	T _A = -	+75°C	UNIT	TEST CONDITIONS
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} t _{PHL}	Propagation delay D _n to output	1.00 1.00	3.40 3.40	1.00 1.00	3.40 3.40	1.00 1.00	3.40 3.40	ns ns	
t _{PLH} t _{PHL}	Propagation delay \overline{E}_1 , \overline{E}_2 to output	1.00 1.00	4.30 4.30	1.00 1.00	4.30 4.30	1.00 1.00	4.30 4.30	ns ns	
t _{PLH} t _{PHL}	Propagation delay C to output	1.00 1.00	3.90 3.90	1.00 1.00	3.90 3.90	1.00 1.00	3.90 3.90	ns ns	Figs. 5, 6, 7
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.90 0.90	3.50 3.50	1.00 1.00	3.50 3.50	0.90 0.90	3.50 3.50	ns ns	
t _s	Setup time, D_n to \overline{E}_n	2.5		2.5		2.5		ns	
t _h	Hold time, D_n to \overline{E}_n	0.5		0.5		0.5		ns	

Translator

100175

TEST CIRCUITS AND WAVEFORMS

Signetics

100179 Carry Look-Ahead Generator

Preliminary Specification

ECL Products

DESCRIPTION

The 100179 is a high-speed Carry Look-Ahead Generator intended for use with the F100180 6-Bit Fast Adder and the F100181 4-Bit ALU.

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
100179	1.9ns	150mA

ORDERING CODE

PACKAGES	$V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V$ to $-4.8V$ $T_A = 0^{\circ}C$ to $+ 85^{\circ}C$
Ceramic DIP	100179F
Ceramic Flat Pack	100179Y

PIN DESCRIPTION

PINS	DESCRIPTION
C _n	Carry Input (active LOW)
$\overline{P}_0 - \overline{P}_7$	Carry Look-Ahead Propagate Input (Active LOW)
$\overline{G}_0 - \overline{G}_7$	Carry Look-Ahead Generate Input (Active LOW)
C _{n + 2} , C _{n + 4}	Carry Outputs
C _{n + 6} , C _{n + 8}	Carry Outputs

LOGIC SYMBOL

PIN CONFIGURATIONS

March 1986

Carry Look-Ahead Generator

The second sec

Ρ₃

х

Carry Look-Ahead Generator

100179

OUTPUT

 \overline{C}_{n+4}

L L L L L

н

FUNCTION TABLES

Cn + 2 OUTPUT

INPUTS					OUTPUT
Շ n	G ₀	P ₀	G1	P ₁	C n + 2
Х	Х	х	L	х	L
х	L	х	X	L	L
L	x	L	x	L	L
	All oth	er combir	ations		н

 $\overline{\overline{C}_{n+2}} = \overline{G}_1 \cdot (\overline{P}_1 + \overline{G}_0) \cdot (\overline{P}_1 + \overline{P}_0 + \overline{C}_n)$

H = HIGH Voltage Level L = LOW Voltage Level

X = Don't Care

INPUTS **C**_n **G**₀ $\overline{\mathbf{P}}_{\mathbf{0}}$ Ğ₁ ₽₁ ₫2 ₽₂ $\overline{\mathbf{G}}_3$ X X X Х Х X X L

Cn + 4 OUTPUT

	All other combinations									
	L	X	L	х	L	Х	L	Х	L	
1	х	L	х	Х	L	Х	L	X	L	
	X	X	х	L	х	Х	L	х	L	
	X	X	X	X	X	L	· X		Ļ	

 $\overline{C}_{n+4} = \overline{G}_3 \bullet (\overline{P}_3 + \overline{G}_2) \bullet (\overline{P}_3 + \overline{P}_2 + \overline{G}_1) \bullet (\overline{P}_3 + \overline{P}_2 + \overline{P}_1 + \overline{G}_0)$ $\bullet (\overline{P}_3 + \overline{P}_2 + \overline{P}_1 + \overline{P}_0 + \overline{C}_0)$

Cn + 6 OUTPUT

	INPUTS							OUTPUT					
C _n	\overline{G}_0	P ₀	G ₁	P ₁	G ₂	₽ ₂	\overline{G}_3	₽ ₃	G4	₽ ₄	\overline{G}_5	$\overline{\mathbf{P}}_{5}$	¯C _{n+6}
х	x	х	х	х	X	х	x	x	X	х	L	x	Ĺ
х	x	х	x	х	X	х	X	х	L	х	X	L	L
х	x	х	x	х	X	X	L	х	X	L	X	L	L
Х	х	х	х	х	L	X	x	L	X	Ĺ	x	L	L
X	X	X	L	x	x	L	X	L	X	L	x	L	L
х	L	х	x	L	X	L	X	L	X	L	X	L	L L
L	X	L	x	L	X	L	x	L	X	L	X	L	L
	All other combinations								н				

 $\overline{C}_{n+6} = \overline{G}_5 \bullet (\overline{P}_5 + \overline{G}_4) \bullet (\overline{P}_5 + \overline{P}_4 + \overline{G}_3) \bullet (\overline{P}_5 + \overline{P}_4 + \overline{P}_3 + \overline{G}_2) \bullet (\overline{P}_5 + \overline{P}_4 + \overline{P}_3 + \overline{P}_2 + \overline{G}_1) \bullet (\overline{P}_5 + \overline{P}_4 + \overline{P}_3 + \overline{P}_2 + \overline{P}_1 + \overline{P}_0 + \overline{C}_n)$

Cn + 8 OUTPUT

	INPUTS									OUTPUT							
C _n	\overline{G}_0	₽ ₀	G1	₽ ₁	G2	₽ ₂	\overline{G}_3	₽ ₃	G4	\overline{P}_4	\overline{G}_5	₽ ₅	$\overline{\mathbf{G}}_{6}$	P ₆	G7	P7	C n + 8
Х	X	х	X	х	X	Х	X	Х	X	Х	X	Х	X	Х	L	х	L
х	X	х	X	х	X	х	x	х	X	х	X	х	L	х	X	L	L
х	X	х	X	х	X	х	X	х	X	х	L	х	X	L	X	L	L
Х	X	Х	X	х	X	х	Х	х	L	х	X	L	X	L	X	L	L
Х	X	x	Х	х	X	x	L	х	X	L	X	L	X	L	X	L	L
х	x	х	X	х	L	х	x	ι L -	X	L	X	L	X	L	X	L	L
х	X	х	L	х	X	L	X	L	X	L	X	L	X	L	X	L	L
х	L	х	X	L	X	L	X	L	X	L	X	L	X	L	X	L	L
L	X	L	X	L	Х	L	X	L	X	L	X	L	X	L	X	L	L
All other combinations										н							

 $\begin{array}{c} \\ \hline C_{n+8} = \overline{G_7} \bullet (\overline{P_7} + \overline{G_6}) \bullet (\overline{P_7} + \overline{P_6} + \overline{G_5}) \bullet (\overline{P_7} + \overline{P_6} + \overline{P_5} + \overline{G_4}) \bullet (\overline{P_7} + \overline{P_6} + \overline{P_5} + \overline{P_4} + \overline{G_3}) \bullet (\overline{P_7} + \overline{P_6} + \overline{P_5} + \overline{P_4} + \overline{P_3} + \overline{G_2}) \bullet (\overline{P_7} + \overline{P_6} + \overline{P_5} + \overline{P_4} + \overline{P_3} + \overline{P_2} + \overline{G_1}) \\ \bullet (\overline{P_7} + \overline{P_6} + \overline{P_5} + \overline{P_4} + \overline{P_3} + \overline{P_2} + \overline{P_1} + \overline{G_0}) \bullet (\overline{P_7} + \overline{P_6} + \overline{P_5} + \overline{P_4} + \overline{P_3} + \overline{P_2} + \overline{P_1} + \overline{P_0} + \overline{C_n}) \\ H = HIGH Voltage Level \\ L = LOW Voltage Level \\ X = Don't Care \\ \end{array}$

Carry Look-Ahead Generator

100179

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	100K ECL	UNIT
V_{EE}	Supply voltage (V _{CC1} = V _{CC2} = GND)	-7.0 to 0	v
VIN	Input voltage (V _{IN} should never be more negative than V _{EE})	V _{EE} to +0.5	v
I _O	Output source current	-55	mA
Τ _S	Storage temperature	-65 to +150	°C
TJ	Maximum junction temperature	+ 150	°C

DC OPERATING CONDITIONS

				1	00K EC	L I	
	PAR	AMETER		Min	Nom	Max	UNIT
V _{CC1} , V _{CC2}	Circuit ground		0	0	0	v	
V_{EE}	Supply voltage (negative)			-4.2	-4.5	-4.8	v
V _{EE}	Supply voltage (negative) When operating				-5.7	V	
			$V_{EE} = -4.2V$	-1150			
VIH	HIGH level input voltage		$V_{EE} = -4.5V$	4405		-880	mV
			$V_{EE} = -4.8V$	- 1165			
			$V_{EE} = -4.2V$	-1150			mV
VIHT	HIGH level input threshold voltage	$V_{CC1} = V_{CC2} = GND$	$V_{EE} = -4.5V$	4405			
			$V_{EE} = -4.8V$	- 1165			mV
			$V_{EE} = -4.2V$			4.475	
VILT	LOW level input threshold voltage	$T_A = 0^{\circ}C \text{ to } + 85^{\circ}C$	$V_{EE} = -4.5V$			-1475	mV
			$V_{EE} = -4.8V$			-1490	mV
			$V_{EE} = -4.2V$			1475	
VIL	LOW level input voltage		$V_{EE} = -4.5V$	-1810		-1475	mV
			$V_{EE} = -4.8V$	7		-1490	
TA	Operating ambient temperature		······	0	+ 25	+ 85	°C

NOTE:

When operating at other than specified voltages (-4.2V, -4.5V, -4.8V) DC & AC Characteristics will vary slightly from specified values.

Carry Look-Ahead Generator

100179

	PARAMETER		MIN	ТҮР	МАХ	UNIT	TEST C	ONDITIONS ²
		$V_{EE} = -4.2V$	-1025		-870	mV	V _{IN} = V _{IHmax}	
V _{OH}	HIGH level output voltage	$V_{EE} = -4.5V$	- 1025	-955	-880	mV	or	
	vollago	$V_{EE} = -4.8V$	- 1035		-880	mV	$V_{IN} = V_{ILmax}$	
		$V_{EE} = -4.2V$	-1035			mV	$V_{IN} = V_{IHT}^3$	
VOHT	HIGH level output threshold voltage	$V_{EE} = -4.5V$	-1035			mV	or	
	anoonola voltago	$V_{EE} = -4.8V$	-1045			mV	$V_{\rm IN} = V_{\rm ILT}^3$	Loading with 50 Ω
		$V_{EE} = -4.2V$			-1590	mV	$V_{\rm IN} = V_{\rm IHT}^3$	to -2.0V ±0.010V
V _{OLT}	LOW level output threshold voltage	$V_{EE} = -4.5V$			-1610	mV	or	
	anoonola voltago	$V_{EE} = -4.8V$			-1610	mV	$V_{IN} = V_{ILT}^3$	
		$V_{EE} = -4.2V$	-1810		-1600	mV	V _{IN} = V _{IHmax}	
VOL	LOW level output voltage	$V_{EE} = -4.5V$	-1810	-1705	-1620	mV	or	
	Vollage	$V_{EE} = -4.8V$	-1830		-1620	mV	$V_{IN} = V_{ILmin}$	
	HIGH level input	$\overline{C}_n, \ \overline{G}_0 - \overline{G}_7$			250	μA	X - X	
Iн	current	$P_0 - P_7$			340	μA	$V_{IN} = V_{IHmax}$	
կլ	IIL LOW level input current		0.5			μA	V _{IN} = V _{ILmin}	
-I _{EE}	-I _{EE} V _{EE} supply current		100	150	220	mA	Inputs open	

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$, $T_A = 0^{\circ}C$ to $+85^{\circ}C$ unless otherwise specified^{1,4}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst case testing guidelines, refer to Section 3 Testing, DC testing,
Only one input at a time should be at the threshold level; all other inputs should be at a V_{i+max} or V_{i,Lmin}.
The specified limited shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by

4. The specified limited shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are in the DC Operating Conditions and defined in Figure 4.

Carry Look-Ahead Generator

100179

AC ELECTRICAL CHARACTERISTICS

Ceramic DIP V_{CC1} = V_{CC2} = GND, V_{EE} = -4.2V $\pm 0.010V$ to -4.8V $\pm 0.010V$

	PARAMETER		= 0°C	T _A = ·	+ 25°C	T _A = -	+ 85°C	UNIT	TEST CONDITIONS
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} t _{PHL}	Propagation delay \overline{C}_n , $\overline{G}_0 - \overline{G}_7$, $\overline{P}_0 - \overline{P}_7$ to \overline{C}_{n+4}	1.10 1.10	2.90 2.90	1.10 1.10	2.90 2.90	1.10 1.10	3.00 3.00	ns ns	
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.80 1.80	0.45 0.45	1.80 1.80	0.45 0.45	1.80 1.80	ns ns	Figs. 5, 6, 7

Ceramic DIP $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 5\%$

	PARAMETER		• 0°C	T _A = ·	+ 25°C	T _A = -	+85°C	LINUT	TEST CONDITIONS
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} t _{PHL}	Propagation delay C_n , $G_0 - G_7$, $P_0 - P_7$ to C_{n+4}	1.10 1.10	2.90 2.90	1.10 1.10	2.90 2.90	1.10 1.10	3.00 3.00	ns ns	
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.80 1.80	0.45 0.45	1.80 1.80	0.45 0.45	1.80 1.80	ns ns	Figs. 5, 6, 7

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$

	DADAMETER		: 0°C	T _A = -	+ 25°C	T _A = -	+85°C		TEAT CONDITIONS
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} t _{PHL}	Propagation delay C_n , $G_0 - G_7$, $P_0 - P_7$ to C_{n+4}	1.10 1.10	2.70 2.70	1.10 1.10	2.70 2.70	1.10 1.10	2.80 2.80	ns ns	
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.70 1.70	0.45 0.45	1.70 1.70	0.45 0.45	1.70 1.70	ns ns	Figs. 5, 6, 7

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 5\%$

	PARAMETER		: 0°C	T _A = -	+ 25°C	T _A = -	+ 85°C	UNUT	TEST CONDITIONS
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} t _{PHL}	Propagation delay \overline{C}_n , $\overline{G}_0 - \overline{G}_7$, $\overline{P}_0 - \overline{P}_7$ to C_{n+4}	1.10 1.10	2.70 2.70	1.10 1.10	2.70 2.70	1.10 1.10	2.80 2.80	ns ns	
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.70 1.70	0.45 0.45	1.70 1.70	0.45 0.45	1.70 1.70	ns ns	Figs. 5, 6, 7

AC WAVEFORMS

Carry Look-Ahead Generator

TEST CIRCUITS AND WAVEFORMS

tтн ttl+ +1050 mV NEGATIVE PULSE +310 mV . t.../H\ +1050m POSITIVE PULSE 204 +310mV **t**TLH tтн WE122005 INPUT PULSE REQUIREMENTS $V_{CC1} = V_{CC2} = +2.0V \pm 0.010V, V_{EE} = -2.5V \pm 0.010V, V_T = GND$ (0V) Family Amplitude **Rep Rate** Pulse Width t_{THL} t_{TLH} 100K ECL 740mVp-p 1MHz 500ns 0.7 ±0.1ns 0.7 ±0.1ns

Figure 7. Input Pulse Definition

Signetics

100180 Adder

High-Speed 6-Bit Adder Product Specification

ECL Products

DESCRIPTION

The 100180 is a High-Speed 6-bit Adder which performs a full 6-bit addition of 2 operands in 2ns. The inputs are: carrying (CN) (active LOW), operands A (An), operands B (Bn); the outputs are: function (Fn), carry generate (G) (active LOW), carry propagate (P) (active LOW).

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
100180	2.35ns	205mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{EE} = -4.2V \text{ to } -4.8V$ $T_A = 0^{\circ}C \text{ to } +85^{\circ}C$
Ceramic DIP	100180F
Ceramic Flat Pack	100180Y

PIN DESCRIPTION

PINS	DESCRIPTION
A ₀ – A ₅	Operand A Inputs
B ₀ – B ₅	Operand B Inputs
¯C _n	Carry Input (Active LOW)
G	Carry Generate Output (Active LOW)
P	Carry Propagate Output (Active LOW)
F ₀ – F ₅	Function Outputs

100180

LOGIC DIAGRAM

100180

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	100K ECL	UNIT
V _{EE}	Supply voltage ($V_{CC1} = V_{CC2} = GND$)	-7.0 to 0	V
V _{IN}	Input voltage (V _{IN} should never be more negative than V _{EE})	V _{EE} to +0.5	V
lo	Output source current	55	mA
Ts	Storage temperature	-65 to +150	°C
TJ	Maximum junction temperature	+ 150	°C

DC OPERATING CONDITIONS

	PA	RAMETER		Min	Nom	Max	UNIT
V _{CC1} , V _{CC2}	Circuit ground		· · · · · · · · · · · · · · · · · · ·	0	0	0	V
V _{EE}	Supply voltage (negative)		-4.2	-4.5	-4.8	v
V _{EE}	Supply voltage (negative	when operating with 10K	ECL family			-5.7	v
			$V_{EE} = -4.2V$	-1150			
Voi	HIGH level input voltage		$V_{EE} = -4.5V$	1105		-880	mV
	input voltage		$V_{EE} = -4.8V$	-1165			
		-	$V_{EE} = -4.2V$	-1150			mV
VIHT	HIGH level input threshold voltage	$V_{CC1} = V_{CC2} = GND$	$V_{EE} = -4.5V$	1105			
	threahold voltage		$V_{EE} = -4.8V$	1165			mV
			$V_{EE} = -4.2V$				mV
VILT	LOW level input threshold voltage	$T_A = 0^{\circ}C \text{ to } + 85^{\circ}C$	$V_{EE} = -4.5V$	1		-1475	
	threahold voltage		$V_{EE} = -4.8V$			-1490	mV
	,		$V_{EE} = -4.2V$				
M.	LOW level input voltage		$V_{EE} = -4.5V$	-1810		-1475	mV
	input tonago		$V_{EE} = -4.8V$	1		-1490	
T _A	Operating ambient tempe	0	+ 25	+ 85	°C		

NOTE:

When operating at other than specified voltages (-4.2V, -4.5V, -4.8V) DC & AC Characteristics will vary slightly from specified values.

100180

	PARAMETER	1	MIN	TYP	MAX	UNIT	TEST	CONDITIONS ²			
		V _{EE} = -4.2V	-1025		-870	mV	V _{IN} = V _{IHmax}				
V _{OH}	HIGH level output voltage	V _{EE} = -4.5V	-1025	-955	-880	mV	or				
		$V_{EE} = -4.8V$	-1035		-880	mV	V _{IN} = V _{ILmin}				
		V _{EE} = -4.2V	-1035			mV	V _{IN} = V _{IHmin}				
V _{OHT}	HIGH level output threshold voltage	V _{EE} = -4.5V	-1035			mV	or				
		$V_{EE} = -4.8V$	-1045			mV	$V_{IN} = V_{ILmax}$	Loading with			
		$V_{EE} = -4.2V$			- 1590	mV	V _{IN} = V _{IHmin}	50Ω to $-2.0V \pm 0.010V$			
VOLT	LOW level output threshold voltage	$V_{EE} = -4.5V$			-1610	mV	or				
		V _{EE} = -4.8V			-1610	mV	$V_{IN} = V_{ILmax}$				
		V _{EE} = -4.2V	-1810		-1600	mV	V _{IN} = V _{IHmax}				
VOL	LOW level output voltage	$V_{EE} = -4.5V$	-1810	- 1705	-1620	mV	or				
		V _{EE} = -4.8V	-1830		-1620	mV	$V_{IN} = V_{ILmin}$				
lін	Input high current				220	μA	V _{IN} = V _{IHmin}				
հլ	Input low current		0.5			μA	V _{IN} = V _{ILmin}				
-I _{EE}	V _{EE} supply current	t	135	205	290	mA	Inputs open				
$\frac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation	V _{EE} = -4.2V			0.035	v/v					
$\frac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	$T_A = +25^{\circ}C$		-	0.070	V/V					

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$, $T_A = 0^{\circ}C$ to $+85^{\circ}C$ unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst case testing guidelines, refer to Section 3 Testing, DC Testing.
The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters's (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

Adder

AC ELECTRICAL CHARACTERISTICS

Ceramic DIP V_{CC1} = V_{CC2} = GND, V_{EE} = -4.2V $\pm 0.010V$ to -4.8V $\pm 0.010V$

	DADAMETER	T _A =	0°C	T _A = + 25°C		T _A = +85°C			TEST CONDITIONS
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} t _{PHL}	Propagation delay A _n , B _n , to F _n	1.10 1.10	4.70 4.70	1.10 1.10	4.60 4.60	1.10 1.10	4.70 4.70	ns ns	
t _{PLH} t _{PHL}	Propagation delay A _n , B _n , to P	1.00 1.00	3.00 3.00	1.00 1.00	3.00 3.00	1.00 1.00	3.30 3.30	ns ns	
t _{PLH} t _{PHL}	Propagation delay A_n , B_n , to \overline{G}	1.10 1.10	3.90 3.90	1.20 1.20	3.80 3.80	1.20 1.20	3.90 3.90	ns ns	Figs. 5, 6, 7
t _{PLH} t _{PHL}	Propagation delay \overline{G} to F_n	0.90 0.90	4.00 4.00	0.90 0.90	3.90 3.90	0.90 0.90	4.00 4.00	ns ns	
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	2.30 2.30	0.45 0.45	2.20 2.20	0.45 0.45	2.30 2.30	ns ns	

Ceramic DIP V_{CC1} = V_{CC2} = GND, V_{EE} = -5.2V $\pm\,5\%$

	DADAMETED	T _A =	• 0°C	т _А = -	T _A = + 25°C		+ 85°C		TEST CONDITIONS
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH}	Propagation delay	1.10	4.70	1.10	4.60	1.10	4.70	ns	
t _{PHL}	A _n , B _n , to F _n	1.10	4.70	1.10	4.60	1.10	4.70	ns	
t _{PLH}	Propagation delay	1.00	3.00	1.00	3.00	1.00	3.30	ns	
t _{PHL}	A _n , B _n , to P	1.00	3.00	1.00	3.00	1.00	3.30	ns	
t _{PLH} t _{PHL}	Propagation delay A_n , B_n , to \overline{G}	1.10 1.10	3.90 3.90	1.20 1.20	3.80 3.80	1.20 1.20	3.90 3.90	ns ns	Figs. 5, 6, 7
t _{PLH}	Propagation delay	0.90	4.00	0.90	3.90	0.90	4.00	ns	
t _{PHL}	G to F _n	0.90	4.00	0.90	3.90	0.90	4.00	ns	
t _{TLH}	Transition time	0.45	2.30	0.45	2.20	0.45	2.30	ns	l
t _{THL}	20% to 80%, 80% to 20%	0.45	2.30	0.45	2.20	0.45	2.30	ns	I

7

100180

AC ELECTRICAL CHARACTERISTICS

Flat Pack V_{CC1} = V_{CC2} = GND, V_{EE} = -4.2V $\pm 0.010V$ to -4.8V $\pm 0.010V$

	DADAMETED	$T_A = 0^{\circ}C$		T _A = + 25°C		T _A = + 85°C			TEST CONDITIONS	
	PARAMETER	Min	Max 4.50 4.50	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH} t _{PHL}	Propagation delay A _n , B _n , to F _n	1.10 1.10		1.10 1.10	4.40 4.40	1.10 1.10	4.50 4.50	ns ns	in and and a second	
t _{PLH} t _{PHL}	Propagation delay A _n , B _n , to P	1.00 1.00	2.80 2.80	1.00 1.00	2.80 2.80	1.00 1.00	3.10 3.10	ns ns		
t _{PLH} t _{PHL}	Propagation delay A_n , B_n , to \overline{G}	1.10 1.10	3.70 3.70	1.20 1.20	3.60 3.60	1.20 1.20	3.70 3.70	ns ns	Figs. 5, 6, 7	
t _{PLH} t _{PHL}	Propagation delay G to F _n	0.90 0.90	3.80 3.80	0.90 0.90	3.70 3.70	0.90 0.90	3.80 3.80	ns ns		
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	2.30 2.30	0.45 0.45	2.20 2.20	0.45 0.45	2.30 2.30	ns ns		

Flat Pack V_{CC1} = V_{CC2} = GND, V_{EE} = –5.2V $\pm 5\%$

	DADAMETED	T _A =	• 0°C	T _A = ·	$T_A = +25^{\circ}C$		+ 85°C		TEAT CONDITIONS
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH}	Propagation delay	1.10	4.50	1.10	4.40	1.10	4.50	ns	
t _{PHL}	A _n , B _n , to F _n	1.10	4.50	1.10	4.40	1.10	4.50	ns	
t _{PLH}	Propagation delay	1.00	2.80	1.00	2.80	1.00	3.10	ns	
t _{PHL}	A _n , B _n , to P	1.00	2.80	1.00	2.80	1.00	3.10	ns	
t _{PLH}	Propagation delay	1.10	3.70	1.20	3.60	1.20	3.70	ns	Figs. 5, 6, 7
t _{PHL}	A _n , B _n , to G	1.10	3.70	1.20	3.60	1.20	3.70	ns	
t _{PLH}	Propagation delay	0.90	3.80	0.90	3.70	0.90	3.80	ns	
t _{PHL}	G to F _n	0.90	3.80	0.90	3.70	0.90	3.80	ns	
t _{TLH}	Transition time	0.45	2.30	0.45	2.20	0.45	2.30	ns	
t _{THL}	20% to 80%, 80% to 20%	0.45	2.30	0.45	2.20	0.45	2.30	ns	

AC WAVEFORMS

Adder

TEST CIRCUITS AND WAVEFORMS

Signetics

ECL Products

DESCRIPTION

The 100181 is a 4-bit Binary/BCD Arithmetic Logic Unit which performs eight logic operations and eight arithmetic operations on two 4-bit words. Arithmetic and logic operations are selected by a 4bit select input (S₀, S₃). The circuit performs BCD addition and subtraction, in supplement of binary arithmetic.

It contains four output latches, in order to increase operating speed. The latches are transparent, when the enable input (E) is open. The internal lookahead carry minimizes delay to the F outputs and to the ripple carry output $(\overline{C_{n+4}})$. Group carry look-ahead propagate (P) and generate (\overline{G}) outputs are also provided with independance from carry in (\overline{C}_n) . P output goes low when a plus operation produces fifteen (or nine in BCD), or when a minus operation produces zero. G output goes low when the sum of word A and word B is greater than fifteen (or nine in BCD), or when their difference is greater than zero in a minus mode.

100181 **ALU**

4-Bit Binary/BCD ALU **Preliminary Specification**

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
100181	2.10ns	205mA

ORDERING CODE

PACKAGES	$\begin{array}{l} \mbox{COMMERCIAL RANGE} \\ \mbox{V}_{CC1} = \mbox{V}_{CC2} = \mbox{GND}; \ \mbox{V}_{EE} = -4.2 \mbox{V} \ \ to \ -4.8 \mbox{V} \\ \mbox{T}_A = 0^{\circ} \mbox{C} \ \ to \ +85^{\circ} \mbox{C} \end{array}$
Ceramic DIP	100181F
Ceramic Flat Pack	100181Y

PIN DESCRIPTION

PINS	DESCRIPTION								
A ₀ – A ₃	Word A Operand Inputs								
B ₀ – B ₃	Word B Operand Inputs								
	Carry Input (Active LOW)								
$S_0 - S_3$	Function Select Inputs								
Ē	Enable Input (Active LOW)								
P	Carry Lookahead Propagate Output (Active LOW)								
G	Carry Lookahead Propagate Output (Active LOW)								
Cn + 4	Carry Output								
F ₀ – F ₃	Function Outputs								

PIN CONFIGURATION Ao 1

F0 2

F1 3

F2 4

F3 5

Vcc1 6

V_{CC2} 7

CN+4 8

P 9

G 10

CN 11

B₀ 12

A3 1

A2 2

A1 3

A0 4

F0 5

F1 6

S₃ S₂ E V_{EE} S₁

24 23 22 21 20 19

24 A1

23 A2

22 A3

21 S3

20 S2

19 Ē

18 VEE

17 S1

16 So

15 B₃

14 B2

13 B₁

LOGIC SYMBOL

Figure 1 7-230

7 8 9 10 11 12 F2 F3 VCC1 VCC2 CN+4 P

100181

7

LOGIC DIAGRAM

100181

FUNCTION TABLE

						FUNCTIONS										
	S ₃	S ₂	S ₁	S ₀		C _N = H							C _N = L			
	L	L	L	L	A	plus	В	(BCD)		Α	plus	В	plus	1	(BCD)	
	L	L	L	н	A	minus	В	(BCD)		Α	minus	В	plus	1	(BCD)	
	L	L	н	L	В	minus	А	(BCD)		в	minus	Α	plus	1	(BCD)	
	L	L	н	н	0	minus	В	(BCD)		0	minus	В	plus	1	(BCD)	
6	L	н	L	L	A	plus	В	(Binary)		A	plus	в	plus	1	(Binary)	
	L	н	L	н	A	minus	В	(Binary)		Α	minus	в	plus	1	(Binary)	
	L	н	н	L	В	minus	Α	(Binary)		в	minus	Α	plus	1	(Binary)	
	L	н	н	н	0	minus	В	(Binary)		0	minus	в	plus	1	(Binary)	
	н	L	L	L	F,	$= A_n B_n + 2$	Ā _n B _n									
	н	L	L	н	F,	$= A_n \overline{B_n} + 1$	A _n B _n									
	н	L	н	L	F,	$A = A_n + B_n$										
	н	L	н	н	F,	$A = A_n$										
	н	н	L	L		$=\overline{B_n}$			1 A.			+ 5/	AME LO	GIU		
	н	н	L	н		$= B_n$										
	H	н	н	L	F,	$= A_n B_n$										
	н	н	н	н	F,	h = LOW										

Positive Logic: L = LOW state (the less positive voltage level) = 0 H = HIGH state (the more positive voltage level) = 1

NOTE:

None $\overline{C_N}$ is low, BCD subtractions are performed in ten's complement, or binary subtractions are performed in one's complement.

100181

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	100K ECL	UNIT
V _{EE}	Supply voltage ($V_{CC1} = V_{CC2} = GND$)	-7.0 to 0	v
VIN	Input voltage (VIN should never be more negative than VEE)	V _{EE} to +0.5	V
lo	Output source current	-55	mA
Ts	Storage temperature	-65 to +150	°C
ΤJ	Maximum junction temperature	+ 150	°C

DC OPERATING CONDITIONS

	-		100K ECL				
	PA	Min	Nom	Max	UNIT		
V _{CC1} , V _{CC2}	Circuit ground	1		0	0	0	٧
V _{EE}	Supply voltage (negative)		-4.2	-4.5	-4.8	V
V _{EE}	Supply voltage (negative) when operating with 10K	ECL family			-5.7	٧
			$V_{EE} = -4.2V$	-1150			
HIGH level V _{IH} input voltage	HIGH level		$V_{EE} = -4.5V$	-1165		-880	mV
	input voltago		$V_{EE} = -4.8V$	1165			
		$V_{EE} = -4.2V$	-1150			mV	
VIHT	HIGH level input threshold voltage	$V_{CC1} = V_{CC2} = GND$	$V_{EE} = -4.5V$	-1165			mV
	threshold voltage		$V_{EE} = -4.8V$	- 1165			
		7	$V_{EE} = -4.2V$				
VILT	LOW level input threshold voltage	$T_A = 0^{\circ}C \text{ to } + 85^{\circ}C$	$V_{EE} = -4.5V$	1		-1475	mV
	throshold voltage		$V_{EE} = -4.8V$			- 1490	mV
	· · · · · · · · ·		$V_{EE} = -4.2V$				
LOW level VIL input voltage		$V_{EE} = -4.5V$	-1810		-1475	mV	
		$V_{EE} = -4.8V$]		- 1490		
T _A	Operating ambient temp	erature		0	+ 25	+ 85	°C

NOTE:

When operating at other than specified voltages (-4.2V, -4.5V, -4.8V) DC & AC Characteristics will vary slightly from specified values.

ALU

VOH

VOL

lιH

hι

-lee

unless otherwise specified^{1,3} PARAMETER MIN TYP MAX UNIT TEST CONDITIONS² $V_{EE} = -4.2V$ -1025 -870 m٧ $V_{IN} = V_{IHmax}$ HIGH level $V_{EE} = -4.5V$ -1025 -955 -880 m٧ or output voltage $V_{IN} = V_{ILmin}$ $V_{EE} = -4.8V$ -1035 -880 m٧ $V_{EE} = -4.2V$ -1035 m٧ $V_{IN} = V_{IHmin}$ HIGH level output VOHT $V_{EE} = -4.5V$ -1035 m٧ or threshold voltage $V_{IN} = V_{ILmax}$ $V_{EE} = -4.8V$ -1045 m٧ Loading with $V_{EE} = -4.2V$ -1590 m٧ 50 Ω to -2.0V $\pm\,0.010V$ $V_{IN} = V_{IHmin}$ LOW level output $V_{EE} = -4.5V$ -1610 VOLT m٧ or threshold voltage $V_{IN} = V_{ILmax}$ $V_{EE} = -4.8V$ -1610 m٧ $V_{FF} = -4.2V$ -1810 -1600 m٧ $V_{IN} = V_{IHmax}$ LOW level -1810 $V_{EE} = -4.5V$ -1705 -1620 m٧ or output voltage $V_{IN} = V_{ILmin}$ $V_{EE} = -4.8V$ -1830 -1620 m٧ S_n, Ē 220 HIGH level μA $V_{IN} = V_{IHmax}$ Others 350 input current LOW level input current 0.5 μA $V_{IN} = V_{ILmin}$ VEE supply current 130 205 300 mΑ Inputs open HIGH level ΔV_{OH} output voltage 0.035 V/V ΔV_{FF} compensation $V_{EE} = -4.2V$

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$, $T_A = 0^{\circ}C$ to $+85^{\circ}C$

$\overline{\Delta V_{EE}}$ NOTES:

 ΔV_{OL}

LOW level

output voltage

compensation

 $T_A = +25^{\circ}C$

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

0.070

v/v

2. Conditions for testing shown in the tables are not necessarily worst case. For worst case testing guidelines, refer to Section 3 Testing, DC Testing, 3. The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

ALU

AC ELECTRICAL CHARACTERISTICS

Ceramic DIP V_{CC1} = V_{CC2} = GND, V_{EE} = -4.2V $\pm 0.010V$ to -4.8V $\pm 0.010V$

	DADAMETED	Τ _Α =	• 0°C	T _A = -	+ 25°C	T _A = ·	+ 85°C		TEAT CONDITIONS
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} t _{PHL}	Propagation delay A _n , B _n , to F _n	2.00 2.00	6.90 6.90	2.10 2.10	6.80 6.80	2.10 2.10	7.40 7.40	ns ns	
t _{PLH} t _{PHL}	Propagation delay A _n , B _n , to P̄, Ḡ	1.40 1.40	4.70 4.70	1.40 1.40	4.40 4.40	1.40 1.40	4.70 4.70	ns ns	
t _{PLH} t _{PHL}	Propagation delay A_n , B_n , to \overline{C}_{n+4}	2.00 2.00	6.50 6.50	2.00 2.00	6.50 6.50	2.10 2.10	6.80 6.80	ns ns	
t _{PLH} t _{PHL}	Propagation delay \overline{C}_n to F_n	1.60 1.60	5.10 5.10	1.60 1.60	5.20 5.20	1.60 1.60	5.50 5.50	ns ns	
t _{PLH} t _{PHL}	Propagation delay \overline{C}_n to \overline{C}_{n+4}	1.30 1.30	3.00 3.00	1.40 1.40	3.00 3.00	1.40 1.40	3.10 3.10	ns ns	
t _{PLH} t _{PHL}	Propagation delay S _n to F _n	1.40 1.40	8.80 8.80	1.50 1.50	8.60 8.60	1.50 1.50	9.00 9.00	ns ns	Figs. 5, 6, 7
t _{PLH} t _{PHL}	Propagation delay S _n to P, G	1.70 1.70	7.40 7.40	2.00 2.00	5.90 5.90	2.00 2.00	6.50 6.50	ns ns	
t _{PLH} t _{PHL}	Propagation delay \overline{S}_n to \overline{C}_{n+4}	2.70 2.70	10.1 10.1	2.80 2.80	8.50 8.50	2.90 2.90	8.70 8.70	ns ns	
t _{PLH} t _{PHL}	Propagation delay Ē to F _n	1.00 1.00	3.40 3.40	0.90 0.90	3.60 3.60	1.10 1.10	3.80 3.80	ns ns	
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	3.50 3.50	0.45 0.45	3.50 3.50	0.45 0.45	3.50 3.50	ns ns	
t _s	Setup time A_n , B_n to \overline{E}	6.00		6.00		6.00		ns	
t _h	Hold time A_n , B_n to \overline{E}	0.10		0.10		0.10		ns	
t _s	Setup time S_n to \overline{E}	7.00		7.00		7.00		ns	Figs. 6, 8
t _h	Hold time S_n to \overline{E}	0.60		0.60		0.60		ns	1 193. 0, 0
ts	Setup time \overline{C}_n to \overline{E}	4.00		4.00		4.00		ns	
t _h	Hold time \overline{C}_n to \overline{E}	0.60		0.60		0.60		ns	
t _w (L)	Pulse width, LOW E	2.50		2.50	/	2.50		ns	Figs. 5, 8

100181

AC ELECTRICAL CHARACTERISTICS

Ceramic DIP V_{CC1} = V_{CC2} = GND, V_{EE} = -5.2V $\pm\,5\,\%$

	DADAMETER	T _A =	: 0°C	T _A = ·	+ 25°C	T _A = ·	+ 85°C		TEAT CONDITIONS	
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH} t _{PHL}	Propagation delay A_n , B_n , to F_n	2.00 2.00	6.90 6.90	2.10 2.10	6.80 6.80	2.10 2.10	7.40 7.40	ns ns		
t _{PLH} t _{PHL}	Propagation delay A _n , B _n , to P, G	1.40 1.40	4.70 4.70	. 1.40 1.40	4.40 4.40	1.40 1.40	4.70 4.70	ns ns		
t _{PLH} t _{PHL}	Propagation delay A_n , B_n , to \overline{C}_{n+4}	2.00 2.00	6.50 6.50	2.00 2.00	6.50 6.50	2.10 2.10	6.80 6.80	ns ns		
t _{PLH} t _{PHL}	Propagation delay C _n to F _n	1.60 1.60	5.10 5.10	1.60 1.60	5.20 5.20	1.60 1.60	5.50 5.50	ns ns		
t _{PLH} t _{PHL}	Propagation delay \overline{C}_n to \overline{C}_{n+4}	1.30 1.30	3.00 3.00	1.40 1.40	3.00 3.00	1.40 1.40	3.10 3.10	ns ns		
t _{PLH} t _{PHL}	Propagation delay S _n to F _n	1.40 1.40	8.80 8.80	1.50 1.50	8.60 8.60	1.50 1.50	9.00 9.00	ns ns	Figs. 5, 6, 7	
t _{PLH} t _{PHL}	Propagation delay S _n to P, G	1.70 1.70	7.40 7.40	2.00 2.00	5.90 5.90	2.00 2.00	6.50 6.50	ns ns		
t _{PLH} t _{PHL}	Propagation delay \overline{S}_n to \overline{C}_{n+4}	2.70 2.70	10.1 10.1	2.80 2.80	8.50 8.50	2.90 2.90	8.70 8.70	ns ns		
t _{PLH} t _{PHL}	Propagation delay E to F _n	1.00 1.00	3.40 3.40	0.90 0.90	3.60 3.60	1.10 1.10	3.80 3.80	ns ns		
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	3.50 3.50	0.45 0.45	3.50 3.50	0.45 0.45	3.50 3.50	ns ns		
ts	Setup time A_n , B_n to \overline{E}	6.00		6.00		6.00		ns		
t _h	Hold time A_n , B_n to \overline{E}	0.10		0.10		0.10		ns		
ts	Setup time S_n to \overline{E}	7.00		7.00		7.00		ns	Figs. 6, 8	
t _h	Hold time S_n to \overline{E}	0.60		0.60		0.60		ns	i iga. 0, 0	
ts	Setup time \overline{C}_n to \overline{E}	4.00		4.00		4.00		ns		
t _h	Hold time \overline{C}_n to \overline{E}	0.60		0.60		0.60		ns	1	
t _w (L)	Pulse width, LOW E	2.50		2.50		2.50		ns	Figs. 5, 8	

ALU

AC ELECTRICAL CHARACTERISTICS

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$

	DADAMETED	T _A =	= 0°C	T _A = -	+ 25°C	T _A = -	+ 85°C		
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH}	Propagation delay	2.00	6.70	2.10	6.60	2.10	7.20	ns	
tPHL	A _n , B _n , to F _n	2.00	6.70	2.10	6.60	2.10	7.20	ns	
t _{PLH}	Propagation delay	1.40	4.50	1.40	4.20	1.40	4.50	ns	
t _{PHL}	A _n , B _n , to P̄, Ḡ	1.40	4.50	1.40	4.20	1.40	4.50	ns	
t _{PLH}	Propagation delay	2.00	6.30	2.00	6.30	2.10	6.60	ns	
t _{PHL}	A_n , B_n , to \overline{C}_{n+4}	2.00	6.30	2.00	6.30	2.10	6.60	ns	
t _{PLH}	Propagation delay	1.60	4.90	1.60	5.00	1.60	5.30	ns	
t _{PHL}	\overline{C}_n to F_n	1.60	4.90	1.60	5.00	1.60	5.30	ns	
t _{PLH}	Propagation delay	1.30	2.80	1.40	2.80	1.40	2.90	ns	
t _{PHL}	\overline{C}_n to \overline{C}_{n+4}	1.30	2.80	1.40	2.80	1.40	2.90	ns	
t _{PLH}	Propagation delay	1.40	8.60	1.50	8.40	1.50	8.80	ns	
t _{PHL}	S _n to F _n	1.40	8.60	1.50	8.40	1.50	8.80	ns	Figs. 5, 6, 7
t _{PLH}	Propagation delay	1.70	7.20	2.00	5.70	2.00	6.30	ns	
t _{PHL}	S _n to P, G	1.70	7.20	2.00	5.70	2.00	6.30	ns	
t _{PLH}	Propagation delay	2.70	9.90	2.80	8.30	2.90	8.50	ns	
t _{PHL}	\overline{S}_n to \overline{C}_{n+4}	2.70	9.90	2.80	8.30	2.90	8.50	ns	
t _{PLH}	Propagation delay	1.00	3.20	0.90	3.40	1.10	3.60	ns	
t _{PHL}	Ē to F _n	1.00	3.20	0.90	3.40	1.10	3.60	ns	
t _{TLH}	Transition time	0.45	3.50	0.45	3.50	0.45	3.50	ns	
t _{THL}	20% to 80%, 80% to 20%	0.45	3.50	0.45	3.50	0.45	3.50	ns	
ts	Setup time A_n , B_n to \overline{E}	7.50		7.50		8.00		ns	
t _h	Hold time An, Bn to E	0.00		0.00		0.00		ns	
ts	Setup time S _n to E	8.60		8.40		9.50		ns	Figs. 6, 8
t _h	Hold time S _n to E	0.50		0.50		0.50		ns	, .93. 0, 0
ts	Setup time \overline{C}_n to \overline{E}	4.70		4.90		5.20		ns	
t _h	Hold time \overline{C}_n to \overline{E}	0.50		0.50		0.50		ns	
t _w (L)	Pulse width, LOW E	2.50		2.50		2.50		ns	Figs. 5, 8

7

AC ELECTRICAL CHARACTERISTICS

Flat Pack $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -5.2V \pm 5\%$

		T _A =	= 0°C	T _A = ·	+ 25°C	T _A = ·	+ 85°C		TEAT ADURITIONS
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS
t _{PLH} t _{PHL}	Propagation delay A _n , B _n , to F _n	2.00 2.00	6.70 6.70	2.10 2.10	6.60 6.60	2.10 2.10	7.20 7.20	ns ns	
t _{PLH} t _{PHL}	Propagation delay A _n , B _n , to P̄, Ḡ	1.40 1.40	4.50 4.50	1.40 1.40	4.20 4.20	1.40 1.40	4.50 4.50	ns ns	
t _{PLH} t _{PHL}	Propagation delay A_n , B_n , to \overline{C}_{n+4}	2.00 2.00	6.30 6.30	2.00 2.00	6.30 6.30	2.10 2.10	6.60 6.60	ns ns	
t _{PLH} t _{PHL}	Propagation delay \overline{C}_n to F_n	1.60 1.60	4.90 4.90	1.60 1.60	5.00 5.00	1.60 1.60	5.30 5.30	ns ns	
t _{PLH} t _{PHL}	Propagation delay \overline{C}_n to \overline{C}_{n+4}	1.30 1.30	2.80 2.80	1.40 1.40	2.80 2.80	1.40 1.40	2.90 2.90	ns ns	
t _{PLH} t _{PHL}	Propagation delay S _n to F _n	1.40 1.40	8.60 8.60	1.50 1.50	8.40 8.40	1.50 1.50	8.80 8.80	ns ns	Figs. 5, 6, 7
t _{PLH} t _{PHL}	Propagation delay S_n to \overline{P} , \overline{G}	1.70 1.70	7.20 7.20	2.00 2.00	5.70 5.70	2.00 2.00	6.30 6.30	ns ns	
t _{PLH} t _{PHL}	Propagation delay \overline{S}_n to \overline{C}_{n+4}	2.70 2.70	9.90 9.90	2.80 2.80	8.30 8.30	2.90 2.90	8.50 8.50	ns ns	
t _{PLH} t _{PHL}	Propagation delay Ē to F _n	1.00 1.00	3.20 3.20	0.90 0.90	3.40 3.40	1.10 1.10	3.60 3.60	ns ns	
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	3.50 3.50	0.45 0.45	3.50 3.50	0.45 0.45	3.50 3.50	ns ns	
ts	Setup time A_n , B_n to \overline{E}	7.50		7.50		8.00		ns	
t _h	Hold time A_n , B_n to \overline{E}	0.00		0.00		0.00		ns	
ts	Setup time S_n to \overline{E}	8.60		8.40		9.50		ns	Figs. 6, 8
t _h	Hold time S _n to E	0.50		0.50		0.50		ns]
ts	Setup time \overline{C}_n to \overline{E}	4.70		4.90		5.20		ns -	1
t _h	Hold time \overline{C}_n to \overline{E}	0.50		0.50		0.50		ns	
t _w (L)	Pulse width, LOW E	2.50		2.50		2.50		ns	Figs. 5, 8

100181

100181

AC WAVEFORMS

100181

TEST CIRCUITS AND WAVEFORMS

Signetics

ECL Products

DESCRIPTION

100231 is a high-speed version of the 100131.

100231 has three D-type master-slave flip-flops, with true and complementary output, separate clock, set and reset. In addition, all three flip-flops have a common clock, set and reset.

100231 Flip-Flop

Triple D-Type Master-Slave Flip-Flop (High-speed version of 100131) **Product Specification**

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (-I _{EE})
100131	1.3ns	110mA

ORDERING CODE

PACKAGES	$\label{eq:commercial RANGE} \begin{array}{c} \mbox{COMMERCIAL RANGE} \\ \mbox{V}_{CC1} = \mbox{V}_{CC2} = \mbox{GND}; \ \mbox{V}_{EE} = -4.2 \mbox{V} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Ceramic DIP	100131F
Ceramic Flat Pack	100131Y

PIN DESCRIPTION

PINS	DESCRIPTION
D ₀ – D ₂	Data Inputs
CPc	Common Clock Input
$CP_0 - CP_2$	Clock Inputs
MS	Master Set Input
S ₀ – S ₂	Set Inputs
MR	Master Reset Input
$R_0 - R_2$	Reset Inputs
$Q_0 - Q_2, \ \overline{Q}_0 - \overline{Q}_2$	Data Outputs

LOGIC SYMBOL

PIN CONFIGURATION

LD05370S

12 21

D₀ D₁ D₂

Q, ā, ۵, ā

8 9 4 5

3

Flip-Flop

FUNCTION TABLE

			INPUTS				OUTPUTS		
Dn	CPc	CPn	MS	Sn	MR	R _n	Q _{n + 1}	Q _{n+1}	
х	x	X	L	L	н	х	L	н	
х	x	x	L	L	x	н	L	н	
х	x	x	н	x	L	L	н	L	
х	x	x	x	н	L	L	н	L	
х	x	1	L	L	L	L	Q _n	Q_n	
х	1	н	L	L	L	L	Qn	<u></u>	
х	x	x	Ľ	L	L	L	Qn		
Н	1	L	L	L	L	L	Н	L	
L	1	L	L	L	L	L	L	н	
н	L	↑	L	L	Ľ	L	н	L	
L	L	↑	L	L	L	L	L	н	

D_n: Data input; CP_C: Common Clock; CP_n: Clock; MS: Master Set; S_n: Set; MR: Master Reset; R_n: Reset; Q: Direct output; Q: Complement output; n: State before transition; n + 1: State after transition;

1: LOW to HIGH transition.

Data enters a master, when both Clock and Common Clock are LOW, and transfers to the slave, when the clock or master clock (or both) go HIGH. If the set (or master set) is HIGH while the reset (or master reset) is HIGH, the output is undefined.

Positive Logic:

H = HIGH state (more positive voltage) = 1

L = LOW state (less positive voltage) = 0 \uparrow = LOW-to-HIGH transition

X = Don't Care

Flip-Flop

100231

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	100K ECL	UNIT
V _{EE}	Supply voltage ($V_{CC1} = V_{CC2} = GND$)	-7.0 to 0	V
V _{IN}	Input voltage (VIN should never be more negative than VEE)	V _{EE} to +0.5	V
lo	Output source current	-55	mA
T _S	Storage temperature	-65 to +150	°C
TJ	Maximum junction temperature	+ 150	°C

DC OPERATING CONDITIONS

	_		100K ECL				
	P/	Min	Nom	Max	UNIT		
V _{CC1} , V _{CC2}	Circuit ground			0	0	0	v
V _{EE}	Supply voltage (negativ	e)		-4.2	-4.5	-4.8	v
V _{EE}	Supply voltage (negativ	e) when operating with 10K	ECL family			-5.7	V
	,		$V_{EE} = -4.2V$	-1150			
V _{IH} HIGH level V _{IH} input voltage		$V_{EE} = -4.5V$	4405		-880	mV	
	mput voltugo		$V_{EE} = -4.8V$	1165			
		$V_{EE} = -4.2V$	-1150			mV	
V _{IHT}	HIGH level input threshold voltage	$V_{CC1} = V_{CC2} = GND$	$V_{EE} = -4.5V$	1105			mV
	thicshold voltage		$V_{EE} = -4.8V$	1165			
			$V_{EE} = -4.2V$				1
V _{ILT}	LOW level input threshold voltage	$T_A = 0^{\circ}C \text{ to } + 85^{\circ}C$	$V_{EE} = -4.5V$	1		-1475	mV
	anoonola voltago		$V_{EE} = -4.8V$			-1490	mV
			$V_{EE} = -4.2V$				
LOW level V _{IL} input voltage		$V_{EE} = -4.5V$			-1475	mV	
		$V_{EE} = -4.8V$]		-1490		
TA	Operating ambient temp	perature		0	+ 25	+ 85	°C

NOTE:

When operating at other than specified voltages (-4.2V, -4.5V, -4.8V) DC & AC Characteristics will vary slightly from specified values.
100231

	PARAMETER		MIN	ТҮР	MAX	UNIT	TEST	CONDITIONS ²		
		V _{EE} = -4.2V	-1025		-870	mV	V _{IN} = V _{IHmax}			
V _{OH}	HIGH level output voltage	$V_{EE} = -4.5V$	-1025	-955	-880	mV	or			
	calput tonage	$V_{EE} = -4.8V$	- 1035		-880	mV	V _{IN} = V _{ILmin}			
		V _{EE} = -4.2V	- 1035			mV	$V_{IN} = V_{IHmin}$			
V _{OHT}	HIGH level output threshold voltage	$V_{EE} = -4.5V$	- 1035			mV	or			
	g-	$V_{EE} = -4.8V$	- 1045			mV	V _{IN} = V _{ILmax}	Loading with		
		$V_{EE} = -4.2V$			-1590	mV	V _{IN} = V _{IHmin}	50Ω to -2.0V ±0.010V		
VOLT	LOW level output threshold voltage	$V_{EE} = -4.5V$			-1610	mV	or			
	anoonola voltago	$V_{EE} = -4.8V$			-1610	mV	$V_{IN} = V_{ILmax}$			
		$V_{EE} = -4.2V$	-1810		-1600	mV	V _{IN} = V _{IHmax}			
VOL	LOW level output voltage	$V_{EE} = -4.5V$	-1810	-1705	-1620	mV	or			
	ouput tohugo	$V_{EE} = -4.8V$	-1830		-1620	mV	$V_{IN} = V_{ILmin}$			
		D _n , CP _n			240	μA				
ιн	HIGH level input current	CP _C , MS, MR,			450	μA	$V_{IN} = V_{IHMAX}$			
	input ouriont	R _n , S _n			530	μA]			
կլ	LOW level input cu	irrent	0.5			μA	V _{IN} = V _{ILmin}	-12 		
-I _{EE}	VEE supply current		74	110	149	mA	Inputs open			
$\frac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation	V _{FF} = -4.2V			0.035	v/v				
$\frac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	$T_A = +25^{\circ}C$			0.070	V/V				

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} = GND$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$, $T_A = 0^{\circ}C$ to $+85^{\circ}C$ unless otherwise specified^{1,3}

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst case testing guidelines, refer to Section 3 Testing, DC Testing.
 The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

100231

Flip-Flop

AC ELECTRICAL CHARACTERISTICS

Ceramic DIP V_{CC1} = V_{CC2} = GND, V_{EE} = -4.2V $\pm 0.010V$ to -4.8V $\pm 0.010V$

		T _A =	: 0°C	T _A = + 25°C		T _A = +85°C			TEST CONDITIONS		
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CO	DNDITIONS	
f _{MAX}	Maximum clock frequency	400		400		400		MHz	Figs. 5, 9	10	
t _{PLH} t _{PHL}	Propagation delay CP_C to Q_n	0.75 0.75	2.00 2.00	0.75 0.75	2.00 2.00	0.70 0.70	2.05 2.05	ns ns			
t _{PLH} t _{PHL}	Propagation delay CP _n to Q _n	0.70 0.70	1.80 1.80	0.70 0.70	1.80 1.80	0.70 0.70	1.80 1.80	ns ns	Figs. 6, 8	10	
t _{PLH} t _{PHL}	Propagation delay MS, MR to Q _n	1.05 1.05	2.50 2.50	1.05 1.05	2.50 2.50	1.05 1.05	2.50 2.50	ns ns	CP _n = LOW		
t _{PLH} t _{PHL}	Propagation delay MS, MR to Q _n	1.10 1.10	2.80 2.80	1.10 1.10	2.80 2.80	1.10 1.10	2.80 2.80	ns ns	CP _n = HIGH CP _n = LOW	Figs. 7, 8, 10	
t _{PLH} t _{PHL}	Propagation delay R _n , S _n to Q _n	0.65 0.65	1.70 1.70	0.70 0.70	1.70 1.70	0.70 0.70	1.90 1.90	ns ns			
t _{PLH} t _{PHL}	Propagation delay R _n , S _n to Q _n	0.70 0.70	2.00 2.00	0.70 0.70	1.90 1.90	0.70 0.70	2.20 2.20	ns ns	CP _n = HIGH		
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.40 1.40	0.45 0.45	1.40 1.40	0.45 0.45	1.40 1.40	ns ns	Figs. 6, 7	10	
ts	Setup time D _n to CP _n	0.90		0.70		0.90		ns			
t _h	Hold time CPn to Dn	0.60		0.60		0.80		ns	7		
t _r	Release time R _n , S _n to CP _n	1.50		1.30		1.50		ns	Figs. 7, 8	, 10	
t _r	Release time MR, MS to CPn	2.50		2.30		2.50		ns			
t _w (H)	Pulse width HIGH MR, MS, R _n , S _n , CP _n	2.50		2.50		2.50		ns	Figs. 6, 7		

7

100231

AC ELECTRICAL CHARACTERISTICS

Ceramic DIP V_{CC1} = V_{CC2} = GND, V_{EE} = -5.2V $\pm\,5\%$

		T _A =	$T_A = 0^{\circ}C \qquad T_A = +2$		+ 25°C	T _A =	+ 85°C		TEAT CONDITIONS	
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
f _{MAX}	Maximum clock frequency	400		400		400		MHz	Figs. 5, 9, 10	
t _{PLH} t _{PHL}	Propagation delay CP _C to Q _n	0.75 0.75	2.00 2.00	0.75 0.75	2.00 2.00	0.70 0.70	2.05 2.05	ns ns		
t _{PLH} t _{PHL}	Propagation delay CP_n to Q_n	0.70 0.70	1.80 1.80	0.70 0.70	1.80 1.80	0.70 0.70	1.80 1.80	ns ns	Figs. 6, 8, 10	
t _{PLH} t _{PHL}	Propagation delay MS, MR to Q _n	1.05 1.05	2.50 2.50	1.05 1.05	2.50 2.50	1.05 1.05	2.50 2.50	ns ns	CP _n = LOW	
t _{PLH} t _{PHL}	Propagation delay MS, MR to Q _n	1.10 1.10	2.80 2.80	1.10 1.10	2.80 2.80	1.10 1.10	2.80 2.80	ns ns	CP _n = HIGH Figs. 7, 8, 1	
t _{PLH} t _{PHL}	Propagation delay R _n , S _n to Q _n	0.65 0.65	1.70 1.70	0.70 0.70	1.70 1.70	0.70 0.70	1.90 1.90	ns ns	CP _n = LOW	
t _{PLH} t _{PHL}	Propagation delay R _n , S _n to Q _n	0.70 0.70	2.00 2.00	0.70 0.70	1.90 1.90	0.70 0.70	2.20 2.20	ns ns	CP _n = HIGH	
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.40 1.40	0.45 0.45	1.40 1.40	0.45 0.45	1.40 1.40	ns ns	Figs. 6, 7, 10	
ts	Setup time Dn to CPn	0.90		0.70		0.90		ns		
t _h	Hold time CP _n to D _n	0.60		0.60		0.80		ns		
tr	Release time R _n , S _n to CP _n	1.50		1.30		1.50		ns	Figs. 7, 8, 10	
tr	Release time MR, MS to CPn	2.50		2.30		2.50		ns		
t _w (H)	Pulse width HIGH MR, MS, R _n , S _n , CP _n	2.50		2.50		2.50		ns	Figs. 6, 7	

AC ELECTRICAL CHARACTERISTICS

Flat Pack V_{CC1} = V_{CC2} = GND, V_{EE} = -4.2V $\pm 0.010V$ to -4.8V $\pm 0.010V$

		T _A =	: 0°C	T _A = ·	+ 25°C	T _A = -	+ 85°C				
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CO	TEST CONDITIONS	
fMAX	Maximum toggle frequency	400		400		400		MHz			
t _{PLH} t _{PHL}	Propagation delay CP_C to Q_n	0.75 0.75	1.80 1.80	0.75 0.75	1.80 1.80	0.70 0.70	1.85 1.85	ns ns	Figs. 5, 9	, 10	
t _{PLH} t _{PHL}	Propagation delay CP_n to Q_n	0.70 0.70	1.60 1.60	0.70 0.70	1.60 1.60	0.70 0.70	1.70 1.70	ns ns	Figs. 6, 8	, 10	
t _{PLH} t _{PHL}	Propagation delay MS, MR to Q _n	1.05 1.05	2.30 2.30	1.05 1.05	2.30 2.30	1.05 1.05	2.40 2.40	ns ns	CP _n = LOW		
t _{PLH} t _{PHL}	Propagation delay MS, MR to Q _n	1.10 1.10	2.60 2.60	1.10 1.10	2.50 2.50	1.10 1.10	2.70 2.70	ns ns	CP _n = HIGH CP _n = LOW	Figs. 7, 8, 10	
t _{PLH} t _{PHL}	Propagation delay R _n , S _n to Q _n	0.65 0.65	1.50 1.50	0.70 0.70	1.50 1.50	0.70 0.70	1.70 1.70	ns ns			
t _{PLH} t _{PHL}	Propagation delay R _n , S _n to Q _n	0.70 0.70	1.80 1.80	0.70 0.70	1.70 1.70	0.70 0.70	2.00 2.00	ns ns	CP _n = HIGH		
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.40 1.40	0.45 0.45	1.40 1.40	0.45 0.45	1.40 1.40	ns ns	Figs. 6, 7	, 10	
ts	Setup time Dn to CPn	0.80		0.60		0.80		ns			
t _h	Hold time CP _n to D _n	0.50		0.50		0.70		ns	-		
t _r	Release time R _n , S _n to CP _n	1.40		1.20		1.40		ns	Figs. 7, 8	, 10	
t _r	Release time MR, MS to CPn	2.40		2.20		2.40		ns			
t _w (H)	Pulse width HIGH MR, MS, R _n , S _n , CP _n	2.50		2.50		2.50		ns	Figs. 6, 7		

100231

AC ELECTRICAL CHARACTERISTICS

Flat Pack V_{CC1} = V_{CC2} = GND, V_{EE} = $-5.2V \pm 5\%$

		$T_A = 0^{\circ}C$		T _A = + 25°C		T _A =	+85°C				
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS		
f _{MAX}	Maximum toggle frequency	400		400		400		MHz			
t _{PLH} t _{PHL}	Propagation delay CP_C to Q_n	0.75 0.75	1.80 1.80	0.75 0.75	1.80 1.80	0.70 0.70	1.85 1.85	ns ns	Figs. 5, 9	, 10 🦂 🦏	
t _{PLH} t _{PHL}	Propagation delay CP_n to Q_n	0.70 0.70	1.60 1.60	0.70 0.70	1.60 1.60	0.70 0.70	1.70 1.70	ns ns	Figs. 6, 8	, 10	
t _{PLH} t _{PHL}	Propagation delay MS, MR to Q _n	1.05 1.05	2.30 2.30	1.05 1.05	2.30 2.30	1.05 1.05	2.40 2.40	ns ns	CP _n = LOW		
t _{PLH} t _{PHL}	Propagation delay MS, MR to Q _n	1.10 1.10	2.60 2.60	1.10 1.10	2.50 2.50	1.10 1.10	2.70 2.70	ns ns	CP _n = HIGH CP _n = LOW	- Figs. 7, 8, 10	
t _{PLH} t _{PHL}	Propagation delay R _n , S _n to Q _n	0.65 0.65	1.50 1.50	0.70 0.70	1.50 1.50	0.70 0.70	1.70 1.70	ns ns			
t _{PLH} t _{PHL}	Propagation delay R _n , S _n to Q _n	0.70 0.70	1.80 1.80	0.70 0.70	1.70 1.70	0.70 0.70	2.00 2.00	ns ns	CP _n = HIGH		
t _{TLH} t _{THL}	Transition time 20% to 80%, 80% to 20%	0.45 0.45	1.40 1.40	0.45 0.45	1.40 1.40	0.45 0.45	1.40 1.40	ns ns	Figs. 6, 7	, 10	
ts	Setup time D _n to CP _n	0.80		0.60		0.80		ns		· · · · · · · · · · · · · · · · · · ·	
t _h	Hold time CP _n to D _n	0.50		0.50		0.70		ns			
t _r	Release time R _n , S _n to CP _n	1.40		1.20		1.40		ns	Figs. 7, 8	10	
t _r	Release time MR, MS to CPn	2.40		2.20		2.40		ns	7		
t _w (H)	Pulse width HIGH MR, MS, R _n , S _n , CP _n	2.50		2.50		2.50		ns	Figs. 6, 7		

100231

AC WAVEFORMS

Product Specification

100231

TEST CIRCUITS AND WAVEFORMS

100255 Translator

Quint Bidirectional 100K-to-TTL Translator **Product Specification**

ECL Products

DESCRIPTION

The 100255 is a Quint Bidirectional ECL 100K-to-TTL Translator. The ECL input/ outputs (I/OEn) are compatible with the temperature- and voltage-compensated ECL 100K series. I/OT_n are TTL compatible input/outputs. A mode control input selects the translation and the \overline{CE} input enables the translation.

M and CE are ECL inputs.

TYPE	TYPICAL PRO DELA		TYPICAL SUPPLY CURRENT (-I _{EE})
100055	TTL-to-ECL	2.40ns	105mA
100255	ECL-to-TTL	4.50ns	AMGUI

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC1} = V_{CC2} = GND; V_{CC3} = +5V$ $V_{EE} = -4.2V$ to $-4.8V, T_A = 0^{\circ}C$ to $+85^{\circ}C$
Ceramic DIP	100255F

PIN DESCRIPTION

PINS	DESCRIPTION
I/OE ₀ – I/OE ₄	ECL Data Inputs And Outputs
I/OT ₀ – I/OT ₄	TTL Data Inputs And Outputs
М	ECL/TTL Mode Select ECL Input
CE	ECL/TTL Enable ECL Input

LOGIC SYMBOL

853-635 82179

100255

7

LOGIC DIAGRAM

FUNCTION TABLE

CE	м	ECL INPUT	TTL OUTPUT
L	X H	L H	Z*
H	H	L	L H
CE	м	TTL INPUT	ECL OUTPUT
H H	L L	H L	L H

Positive Logic: H = HIGH state (more positive voltage) = 1 L = LOW state (more negative voltage) = 0

X = Don't Care * ECL output in off state; $V_0 = V_T$

Z = High impedance TTL output.

January 30, 1986

7-253

100255

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.)

	PARAMETER	100K ECL	UNIT
V _{EE}	Supply voltage (V _{CC1} = V _{CC2} = GND)	-7.0 to 0	V
VIN	Input voltage (V _{IN} should never be more negative than V _{EE})	V _{EE} to +0.5	v
lo	Output source current	-55	mA
TS	Storage temperature	-65 to +150	°C
TJ	Maximum junction temperature	+ 150	°C
	PARAMETER	TTL	UNIT
V _{CC}	Supply voltage	7.0	v
VIN	Input voltage	-0.5 to +5.5	v
IIN	Input current	-30 to +5.0	mA
VOUT	Voltage applied to output in HIGH output state	-0.5 to $+V_{CC}$	V
Ts	Storage temperature	-55 to +125	°C
Tj	Maximum junction temperature	+ 150	°C

DC OPERATING CONDITIONS

	PA	RAMETER		Min	Nom	Nom Max	UNIT	
V _{CC1} , V _{CC2}	Circuit ground			0	0	0	v	
V _{EE}	Supply voltage (negative	e e e e e e e e e e e e e e e e e e e		-4.2	-4.5	-4.8	V	
V _{EE}	Supply voltage (negative	e) when operating with 10K	ECL family			-5.7	v	
			V _{EE} = -4.2V	-1150				
VIH	HIGH level input voltage		$V_{EE} = -4.5V$	1105		-880	mV	
($V_{EE} = -4.8V$	1165				
			$V_{EE} = -4.2V$	-1150			mV	
VIHT	HIGH level input threshold voltage	$V_{CC1} = V_{CC2} = GND$	$V_{EE} = -4.5V$	4405				
	theonora voltage	sanola voltage		1165			mV	
			V _{EE} = -4.2V					
V _{ILT}	LOW level input threshold voltage	$T_A = 0^{\circ}C \text{ to } + 85^{\circ}C$	$V_{EE} = -4.5V$	1		-1475	mV	
	theonoid voltage		$V_{EE} = -4.8V$			-1490	mV	
			$V_{EE} = -4.2V$					
V _{IL}	LOW level input voltage		$V_{EE} = -4.5V$	-1810		-1475	mV	
	input tonago		$V_{EE} = -4.8V$	1		-1490		
T _A	Operating ambient temp	erature		0	+ 25	+ 85	°C	

NOTE:

When operating at other than specified voltages (-4.2V, -4.5V, -4.8V) DC & AC Characteristics will vary slightly from specified values.

100255

DC OPERATING CONDITIONS FOR TTL

		TTL					
	PARAMETER	Min	Nom	Max	UNIT		
V _{CC}	Supply voltage	4.5	5.0	5.5	v		
VIH	HIGH level input voltage	2.0			V		
VIL	LOW level input voltage			+0.8	v		
lik	Input clamp current			-18	mA		
I _{OH}	HIGH level output current			-1	mA		
IOL	LOW level output current	2.0		20	mA		
TA	Operating ambient temperature	0		+ 85	°C		

DC ELECTRICAL CHARACTERISTICS $V_{CC1} = V_{CC2} =$ GND, $V_{CC3} = +5V$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$, $T_A = 0^{\circ}C$ to $+85^{\circ}C$ unless otherwise specified^{1,3}

			r			specified			
	PARAMETER	•	MIN	ТҮР	MAX	UNIT	TEST	CONDITIONS ²	
		$V_{EE} = -4.2V$	-1025		-870	mV			
V _{OH}	HIGH level output voltage	$V_{EE} = -4.5V$	-1025	-955	-880	mV	$V_{IN} = 0.4V(TTL)$		
		$V_{EE} = -4.8V$	-1035		-880 mV				
		$V_{EE} = -4.2V$	-1035			mV			
VOHT	HIGH level output threshold voltage	$V_{EE} = -4.5V$	-1035			mV	$V_{IN} = 0.8V(TTL)$		
	3	$V_{EE} = -4.8V$	- 1045			mV		Loading with	
		$V_{EE} = -4.2V$			- 1590	mV		25Ω to $-2.0V \pm 0.010V$	
VOLT	LOW level output threshold voltage	$V_{EE} = -4.5V$			- 1610	mV	V _{IN} = 2.0V(TTL)	= 2.0V(TTL)	
		$V_{EE} = -4.8V$			-1610	mV			
		$V_{EE} = -4.2V$	-1810		-1600	mV			
VOL	LOW level output voltage	$V_{EE} = -4.5V$	-1810	-1705	-1620	mV	V _{IN} = 2.4V(TTL)		
		$V_{EE} = -4.8V$	- 1830		-1620	mV			
l	HIGH level	M, CE			350	μA	Apply -880mV +	5mV to each input one at	
l _{iн}	input current	1/0			350	μΑ	a time		
l _{IL}	ECL LOW input cu	rrent	0.5			μΑ	Apply -1810mV + a time	5mV to each input one at	
-I _{EE}	Supply current		60	105	150	mA	For all modes		
$rac{\Delta V_{OH}}{\Delta V_{EE}}$	HIGH level output voltage compensation	V _{EF} = -4.2V			0.035	v/v			
$rac{\Delta V_{OL}}{\Delta V_{EE}}$	LOW level output voltage compensation	$T_A = +25^{\circ}C$			0.070	v/v			
INTES-									

NOTES:

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst case testing guidelines, refer to Section 3 Testing, DC Testing.
 The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s (500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

100255

Translator

AC ELECTRICAL CHARACTERISTICS

Ceramic DIP $V_{CC1} = V_{CC2} = GND$, $V_{CC3} = +5V$, $V_{EE} = -4.2V \pm 0.010V$ to $-4.8V \pm 0.010V$

	DADAMETED		$T_A = 0^{\circ}C$		T _A = + 25°C		+85°C	110117	TEAT CONDITIONS	
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH} t _{PHL}	Propagation delay ECL I/O-to-TTL I/O		7.00 7.00	·	7.00 7.00		7.00 7.00	ns ns	Figs. 5, 8, 9	
t _{PLH} t _{PHL}	Propagation delay TTL I/O-to-ECL I/O		8.00 8.00		8.00 8.00		8.00 8.00	ns ns	Figs. 6, 8, 9	
t _{PLH} t _{PHL}	Propagation delay CE to ECL I/O		8.00 8.00		8.00 8.00		8.00 8.00	ns ns	Figs. 7, 8, 9	
t _{TLH} t _{THL}	Transition time ECL 20% to 80%, 80% to 20%	0.75 0.75		0.75 0.75		0.75 0.75		ns ns	Figs. 6, 9	
t _{TLH} t _{THL}	Transition time TTL 20% to 80%, 80% to 20%	0.75 0.75		1.00 1.00		1.00 1.00		ns ns	Figs. 6, 9	

100255

AC ELECTRICAL CHARACTERISTICS

Ceramic DIP V_{CC1} = V_{CC2} = GND, V_{EE} = –5.2V \pm 5%

	DADAMETED		T _A = 0°C		T _A = + 25°C		+ 85°C		TEST CONDITIONS	
	PARAMETER	Min	Max	Min	Max	Min	Max	UNIT	TEST CONDITIONS	
t _{PLH} t _{PHL}	Propagation delay ECL I/O-to-TTL I/O		7.00 7.00		7.00 7.00		7.00 7.00	ns ns	Figs. 5, 8, 9	
t _{PLH} t _{PHL}	Propagation delay TTL I/O-to-ECL I/O		8.00 8.00		8.00 8.00		8.00 8.00	ns ns	Figs. 6, 8, 9	
t _{PLH} t _{PHL}	Propagation delay CE to ECL I/O		8.00 8.00		8.00 8.00		8.00 8.00	ns ns	Figs. 7, 8, 9	
t _{TLH} t _{THL}	Transition time ECL 20% to 80%, 80% to 20%	0.75 0.75		0.75 0.75		0.75 0.75		ns ns	Figs. 6, 9	
t _{TLH} t _{THL}	Transition time TTL 20% to 80%, 80% to 20%	0.75 0.75		1.00 1.00		1.00 1.00		ns ns	Figs. 6, 9	

AC WAVEFORMS

January 30, 1986

100255

Translator

TEST CIRCUITS AND WAVEFORMS

Figure 8. Test Circuit

- NOTES: = V_{CC2} = + 2V ± 0.010V, V_{EE} = -3.2V V_{CC1} = V ± 0.010V. 1.
- Decoupling 0.1 μ F and 25 μ F from GND to V_{CC}, 0.01 μ F and 25 μ F from GND to V_{EE}. (0.01 and 0.1 μ F capacitors should be NPO Ceramic or MLC 2. type). Decoupling capacitors should be placed as
- close as physically possible to the DUT and lead length should be kept to less than 1/4 inch (6mm). All unused inputs should be connected to either HIGH or LOW state consistent with the LOGIC 3 function required.
- All unused outputs are loaded with 50 Ω to GND. L_1 and L_2 are equal length 50 Ω impedance lines. L₃, the distance from the DUT pin to the junction of 5 the cable from the Pulse Generator and the cable to the Scope, should not exceed 1/4 inch (6mm).
- $R_T = 50\Omega$ terminator internal to Scope. The unmatched wire stub between coaxial cable 6. 7. and pins under test must be less than 1/4 inch
- (6mm) long for proper test. 8. 9.
- (of min) for a poper test. $C_{\perp} = Fixture and stray capacitance \leq 3pF.$ Any unterminated stubs connected anywhere along the transmission line between the Pulse Generator and the DUT or between the DUT and the Scope should not exceed 1/4 inch (6mm) in length (refer to section on AC setup procedure).
- 10. All 50 Ω resistors should have tolerance of ± 1% or better.
- 11. Pin connections are for Flat Pack and in parentheses for Ceramic DIP.

100255

Amplitude	нер нате	Pulse wiath	^I TLH	[™] THL
740mVp-p	1MHz	500ns	0.7 ±0.1ns	0.7 ±0.1ns
		·		

January 30, 1986

100K ECL

Signetics

Section 8 ECL RAM Data Sheets

Bipolar Memory Products

INDEX

	8-3
1K-Bit ECL Bipolar RAM (256 $ imes$ 4)	8-5
1K-Bit ECL Bipolar RAM (256 $ imes$ 4)	8-8
4K-Bit ECL Bipolar RAM (4096 $ imes$ 1)	8-11
4K-Bit ECL Bipolar RAM (1024 $ imes$ 4)	8-14
1K-Bit ECL Bipolar RAM (256 $ imes$ 4)	8-17
1K-Bit ECL Bipolar RAM (256 $ imes$ 4)	8-20
4K-Bit ECL Bipolar RAM (4096 × 1)	8-23
4K-Bit ECL Bipolar RAM (1024 $ imes$ 4)	8-26
	$\begin{array}{llllllllllllllllllllllllllllllllllll$

ECL RAM Overview

Bipolar Memory Products

All ECL RAMs described in this section are desiged with our advanced oxide-isolated process. This process provides the performance characteristics neccessary for today's ECL RAMs. Current designs manufactured with this process have demonstrated excel-

lent results when subjected to alpha particle tests, with the latest test resulting in over 4 million device hours with zero soft failures.

Each of the configurations, (256 \times 4, 4K \times 1 and 1K \times 4) are compatible with 10K and

100K logic levels through the application of a mask option.

Performance of these devices allows applications such as high-speed buffers, scratch pad, cache memory and other ECL highspeed data processing.

8

Bipolar Memory Products

DESCRIPTION

The 10422B device is a 256-word by 4bit, fully encoded ECL Read/Write Random Access Memory designed for highspeed scratchpad, control, and buffer storage applications. The 10422B is available in a slimline 24-pin dual-in-line, flat or leadless package. This circuit may be reconfigured as 512 imes 2 or 1024 imes 1 organization by utilizing the block select feature. Each block has its own LOW active block select to enable the output. Write enable LOW active enables the write function in selected blocks. The memory has eight Address inputs, four Data inputs, four Block Select inputs, one Write Enable input and four Data outputs. The Open Emitter outputs have a 50 Ω drive capability. The input pulldown resistor to V_{CC} is 50,000 Ω typical for the block selects.

Ordering information can be found on the following page.

10422B 1K-Bit ECL Bipolar RAM

Preliminary Specification

FEATURES

- \bullet 256 words imes 4 bits organization
- Fully compatible with 10K series ECL families
- Address access time:
 10422B, 10ns max.
- Low power dissipation of 0.8mW/bit
- Operating temperature: 0°C to +75°C (ambient)
- Block select allows variable organization

APPLICATIONS

- High-speed scratchpad
- Control and buffer storage

ABSOLUTE MAXIMUM RATINGS

	PARAMETER	RATING	UNIT
V _{EE}	Supply voltage	+0.5 to -7	
V _{IN}	Input voltage	0 to V _{EE}	V _{DC}
lo	Output current	-30	mA
T _A	Operating ambient temperature	0 to +75	
Tj	Operating junction temperature	+ 125	°C
T _{STG}	Storage temperature	-55 to +150	

BLOCK DIAGRAM

PIN CONFIGURATION

F PACKAGE							
		24 V _{cc}					
DO ₁ [2]		23 00,					
BS, [3		22 BS4					
DO ₂ 4		21 003					
BS ₂ 5		20 BS3					
рц 🕫		19 DI₄					
DI ₂ 7		18 DI ₃					
WE 8		17 A4					
A5 9		16 A3					
A6 10		15 A ₂					
A7 11		14 A,					
V _{EE} [12]		13 A ₀					
L.	TOP VIEW						
		CD04990S					

8

1K-Bit ECL Bipolar RAM (256 imes 4)

10422B

ORDERING CODE

DESCRIPTION	ORDER CODE
Ceramic Dual-In-line 400mil wide 24-pin	10422B F

DC ELECTRICAL CHARACTERISTICS $V_{EE} = -5.2V \pm 5\%$, $R_L = 50\Omega$ to -2V

		0	°C	+2	5°C	+75°C		
PARAMETER	TEST CONDITIONS	Min	Max	Min	Max	Min	Max	UNIT
Input voltage								
V _{IH} High V _{IL} Low		-1.145 -1.870	-0.840 -1.490	-1.105 -1.850	-0.810 -1.475	-1.045 -1.830	-0.720 -1.450	V
Output voltage V _{OH} High V _{OL} Low V _{OHT} Threshold HIGH V _{OLT} Threshold LOW	V _{IH} = Max V _{IL} = Min V _{IH} = Min V _{IL} = Max	-1.0 -1.870 -1.020	-0.840 -1.665 -1.645	-0.960 -1.850 -0.980	-0.810 -1.650 -1.630	-0.900 -1.830 -0.920	-0.720 -1.625 -1.605	v
Input current I _{IH} High I _{IL} Low I _{IL} BS	V _{IH} = Max V _{IL} = Min V _{IL} = Min	-50 0.5	220	-50 0.5	220	-50 0.5	220	μΑ
IEE Supply current	V _{IL} = Min		200		200		200	mA

NOTES:

1. Voltages are defined with respect to ground, pins 1 and 24.

2. Unit is in a test socket or mounted in a printed circuit board with transverse air flow > 400ft/min.

3. DC limits apply after thermal equilibrium has been established.

4. For current measurement, maximum is defined as the maximum absolute value.

AC ELECTRICAL CHARACTERISTICS $V_{CC} = 0V$, $V_{EE} = -5.2V \pm 5\%$, $R_L = 50\Omega$ to -2V, $T_A = 0^{\circ}C$ to $+75^{\circ}C$

	BARAMETER				
	PARAMETER	Min	Тур	Max	UNIT
t _{AA}	Address access time			10	
t _{RBS}	Block select recovery time			5	
t _{ABS}	Block select access time			5	1
t _{WD}	Write disable time			5	
twpw	Write pulse width	7			
t _{WR}	Write recovery time		4.5	9	
t _{WHA}	Address hold time	2	1		ns
t _{WHBS}	Block select hold time	2	1		1
t _{WHD}	Data hold time	2	1		
t _{WSA}	Address setup time	3	1		
t _{WSBS}	Block select setup time	2	1		1
t _{WSD}	Data setup time	2	1		7
t _f	Output fall time		2	/	15
t _r	Output rise time		2		1
Capacitance					
CIN	Input		1	8	pF
COUT	Output			8	

NOTES:

1. AC limits apply after thermal equilibrium has been established.

2. Unit is in a test socket or mounted on a printed circuit board with transverse air flow > 400ft/min.

3. Output fall and rise times are measured between 20% and 80% points.

4. All propagation measurements to output are measured from 50% of the input pulse to 50% output level.

1K-Bit ECL Bipolar RAM (256 imes 4)

Preliminary Specification

10422B

8

TRUTH TABLE

NODE		INPUTS		
MODE	BSN	WE	DIN	OUTPUTS
Disable	н	Х	х	L
Write 0	L	L	L	L
Write 1	L	L	н	L
Read	L	н	X	Dout

NOTES:

H = HIGH voltage level

L = LOW voltage level

X = Don't Care

N = Blocks 1 - 4

TIMING DIAGRAMS

Bipolar Memory Products

DESCRIPTION

The 10422C device is a 256-word by 4bit, fully encoded ECL Read/Write Random Access Memory designed for highspeed scratch pad, control, and buffer storage applications. The 10422C is available in a slimline 24-pin dual-in-line, flat or leadless package. This circuit may be reconfigured as 512 \times 2 or 1024 \times 1 organization by utilizing the block select feature. Each block has its own LOW active block select to enable the output. Write enable LOW active enables the write function in selected blocks. The memory has eight Address inputs, four Data inputs, four Block Select inputs, one Write Enable input and four Data outputs. The Open Emitter outputs have a 50 Ω drive capability. The input pulldown resistor to V_{CC} is 50,000 Ω typical for the block selects.

Ordering information can be found on the following page.

10422C**1K-Bit ECL Bipolar RAM**

Preliminary Specification

FEATURES

- 256 words × 4 bits organization
- Fully compatible with 10K series ECL families
- Address access time: - 10422C, 7ns max
- Low power dissipation of 0.8mW/ bit
- Operating temperature: 0°C to +75°C (ambient)
- Block select allows variable organization

APPLICATIONS

- High speed scratch pad
- Control and buffer storage

PIN CONFIGURATION F PACKAGE

BSOLUTE MAXIMUM RATINGS						
	PARAMETER	RATING	UNIT			
VEE	Supply voltage	+0.5 to -7				
VIN	Input voltage	0 to V _{EE}	V _{dc}			
lo	Output current	-30	mA			
T _A	Operating	0 to +75				
Tj	Operating junction	125	°C			
T _{STG}	Storage	-55 to +150				

BLOCK DIAGRAM

10422C

8

ORDERING CODE

DESCRIPTION	ORDER CODE
Ceramic Dual Inline 400mil wide 24-pin	10422C F

DC ELECTRICAL CHARACTERISTICS $V_{EE} = -5.2V \pm 5\%$, $R_L = 50\Omega$ to -2V

PARAMETER			0	0°C		5°C	+ 75°C		
		TEST CONDITIONS	Min	Max	Min	Max	Min	Max	UNIT
Input v	voltage								
V _{IH}	High		-1.145	-0.840	-1.105	-0.810	-1.045	-0.720	V V
VIL	Low		-1.870	-1.490	-1.850	-1.475	-1.830	-1.450	
Output	voltage								
V _{OH}	High	V _{IH} = Max	-1.0	-0.840	-0.960	-0.810	-0.900	-0.720	
VOL	Low	V _{IL} = Min	-1.870	-1.665	-1.850	-1.650	-1.830	-1.625	V
VOHT	Threshold HIGH	$V_{IH} = Min$	-1.020		-0.980		-0.920		
VOLT	Threshold LOW	V _{IL} = Max		-1.645		-1.630		-1.605	
Input o	current								
ųн.	High	V _{IH} = Max		220		220		220	
hL	Low	V _{IL} = Min	-50		-50		-50		μA
μ	BS	V _{IL} = Min	0.5		0.5		0.5		
IEE	Supply current	V _{IL} = Min		200		200		200	mA

NOTES:

1. Voltages are defined with respect to ground, pins 1 and 24.

2. Unit is in a test socket or mounted in a printed circuit board with transverse air flow > 400 ft/min.

3. DC limits apply after thermal equilibrium has been established.

4. For current measurement, maximum is defined as the maximum absolute value.

AC ELECTRICAL CHARACTERISTICS $V_{CC} = 0V$, $V_{EE} = -5.2V \pm 5\%$, $R_L = 50\Omega$ to -2V, $T_A = 0^{\circ}C$ to $+75^{\circ}C$

			LIMITS				
	PARAMETER	Min	Тур	Max	UNIT		
T _{AA}	Address access time			7			
T _{RBS}	Block select recovery time		4				
T _{ABS}	Block select access time		6]		
T _{WD}	Write disable time		4				
TWPW	Write pulse width	5			1		
T _{WR}	Write recovery time		6		1		
T _{WHA}	Address hold time	-	1		ns		
T _{WHBS}	Block select hold time		1				
TWHD	Data hold time		1				
T _{WSA}	Address set-up time		1				
T _{WSBS}	Block select set-up time		1		1		
T _{WSD}	Data set-up time		1				
t _f	Output fall time		2				
t _r	Output rise time		2		1		
Capacitance							
C _{IN} C _{OUT}	Input Output			8	pF		

NOTES:

1. AC limits apply after thermal equilibrium has been established.

2. Unit is in a test socket or mounted on a printed circuit board with transverse air flow > 400 ft/min.

3. Output fall and rise times are measured between 20% and 80% points.

4. All propagation measurements to output are measured from 50% of the input pulse to 50% output level.

Preliminary Specification

10422C

TRUTH TABLE

MODE		INPUTS		
	BSN	WE	DI _N	OUTPUTS
Disable	н	Х	х	L
Write 0	L	L	L	L
Write 1	L	L	н	L
Read	L	н	х	D _{OUT}

NOTES:

H = HIGH voltage level L = LOW voltage level

X = Don't care

N = Blocks 1 - 4

TIMING DIAGRAMS

Bipolar Memory Products

DESCRIPTION

The 10470A device is a 4096 words by 1 bit fully decoded Read/Write Random Access Memory, designed for high speed scratch pad, control and buffer storage applications. The device also includes full address decoding, on-chip separate data in and noninverting data out lines, and an active LOW Chip Select input.

The 10470A is compatible with the 10K ECL families and includes on-chip voltage compensation for improved noise margin.

Ordering information can be found on the following page.

Preliminary Specification

4K-Bit ECL Bipolar RAM

10470A

- FEATURES
 Organization: 4096 words by 1 bit
- Fully compatible with 10K ECL families
- Operating temperature: 0°C to +75°C
- Address access time:
 10470A: 15ns max
- Low supply current of 150mA max
- Read cycle time
- 10470A: 15ns

APPLICATIONS

- High speed scratch pad
- Control and buffer storage

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

	PARAMETER	RATING	UNIT
V _{EE}	Supply voltage	+0.5 to -7	
V _{IN}	Input voltage	+0.5 to V _{EE}	V _{dc}
lo	Output current	-30	mA
TA	Operating	0 to +75	
T _{STG}	Storage	-55 to +150	°C

BLOCK DIAGRAM

10470A

ORDERING CODE

DESCRIPTION	ORDER CODE
Ceramic Dual Inline 300mil wide 18-pin	10470A F

DC ELECTRICAL CHARACTERISTICS $V_{EE} = -5.2V \pm 5\%$, $R_L = 50\Omega$ to -2V

			0	0°C		5°C	+ 75°C		
PARAMETER		TEST CONDITIONS	Min	Max	Min	Max	Min	Max	UNIT
Input ve	oltage								
V _{IH} V _{IL}	High Low		-1.145 -1.870	-0.840 -1.490	-1.105 -1.850	-0.810 -1.475	-1.045 -1.830	-0.720 -1.450	V
Output V _{OH} V _{OL} V _{OHT} V _{OLT}	voltage High Low Threshold HIGH Threshold LOW	V _{IH} = Max V _{IL} = Min V _{IH} = Min V _{IL} = Max	-1.0 -1.870 -1.020	-0.840 -1.665 -1.645	-0.960 -1.850 -0.980	-0.810 -1.650 -1.630	-0.900 -1.830 -0.920	-0.720 -1.625 -1.605	v
Input ci I _{IH} I _{IL} I _{IL}	urrent High Low CS	V _{IH} = Max V _{IL} = Min V _{IL} = Min	-50 0.5	220	-50 0.5	220	-50 0.5	220	μA
IEE	Supply current	V _{IL} = Min		150		150		150	mA

NOTES:

1. Voltages are defined with respect to ground, pin 18.

2. Unit is in a test socket or mounted in a printed circuit board with transverse air flow > 400 ft/min.

3. DC limits apply after thermal equilibrium has been established.

4. For current measurement, maximum is defined as the maximum absolute value.

AC ELECTRICAL CHARACTERISTICS $V_{CC} = 0V$, $V_{EE} = -5.2V \pm 5\%$, $R_L = 50\Omega$ to -2V, $T_A = 0^{\circ}C$ to $+75^{\circ}C$

	PARAMETER	Min	Тур	Max	UNIT
T _{AA}	Address access time			15	
T _{RCS}	Chip select recovery time			5	
T _{ACS}	Chip select access time		-	5	
T _{WD}	Write disable time			6	
T _{WPW}	Write pulse width	10			
T _{WR}	Write recovery time			10	
T _{WHA}	Address hold time	3			ns
T _{WHCS}	Chip select hold time	3			
T _{WHD}	Data hold time	3			
T _{WSA}	Address set-up time	3			
T _{WSCS}	Chip select set-up time	3			
T _{WSD}	Data set-up time	3	•		
t _f	Output fall time		1.5		
t _r	Output rise time		1.5		
Capacitance C _{IN} C _{OUT}	Input Output			8	pF

NOTES:

1. AC limits apply after thermal equilibrium has been established.

2. Unit is in a test socket or mounted on a printed circuit board with transverse air flow > 400 ft/min.

3. Output fall and rise times are measured between 20% and 80% points.

4. All propagation measurements to output are measured from 50% of the input pulse to 50% output level.

4K-Bit ECL Bipolar RAM (4096 imes 1)

10470A

8

TRUTH TABLE

		INPUTS		
MODE	MODE		D _{IN}	OUTPUTS
Disable	н	Х	Х	L
Write 0	L	L	L	L
Write 1	L	L	н	L
Read	L	н	Х	D _{OUT}

NOTES:

H = HIGH voltage level L = LOW voltage level

X = Don't care

TIMING DIAGRAMS

Bipolar Memory Products

DESCRIPTION

The 10474A device is a 1024 words by 4 bits fully decoded Read/Write Random Access Memory, designed for high speed scratch pad, control and buffer storage applications. The device also includes full address decoding, on-chip separate data in and noninverting data out lines.

The 10474A is compatible with the 10K ECL families and includes on-chip voltage compensation for improved noise margin.

Ordering information can be found on the following page.

10474A 4K-Bit ECL Bipolar RAM

Preliminary Specification

FEATURES

- Organization: 1024 words by 4 bits
- Fully compatible with 10K ECL families
- Operating temperature: 0°C to +75°C
- Address access time - 10474A: 15ns max
- Low supply current of 210mA max
- Read cycle time:
- 10474A: 15ns

APPLICATIONS

- High speed scratch pad
- Control and buffer storage

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

	PARAMETER	RATING	UNIT
VEE	Supply voltage	+0.5 to -7	
V _{IN}	Input voltage	+0.5 to V _{EE}	V _{dc}
lo	Output current	-30	mA
TA	Operating	0 to +75	
T _{STG}	Storage	-55 to +150	°C

BLOCK DIAGRAM

4K-Bit ECL Bipolar RAM (1024 imes 4)

10474A

8

ORDERING CODE

DESCRIPTION	ORDER CODE
Ceramic Dual Inline 400mil wide 24-pin	10474A F

DC ELECTRICAL CHARACTERISTICS V_{EE} = $-5.2V \pm 5\%$, R_L = 50Ω to -2V

PARAMETER			0	0°C		+ 25°C		+ 75°C	
		TEST CONDITIONS	Min	Max	Min	Max	Min	Max	UNIT
Input v	oltage								
VIH	High		-1.145	-0.840	-1.105	-0.810	-1.045	-0.720	V
VIL	Low		-1.870	-1.490	-1.850	-1.475	- 1.830	-1.450	
Output	voltage								
V _{OH}	High	V _{IH} = Max	-1.0	-0.840	-0.960	-0.810	-0.900	-0.720	
VOL	Low	V _{II} = Min	-1.870	-1.665	-1.850	-1.650	- 1.830	-1.625	V
VOHT	Threshold HIGH	V _{IH} = Min	-1.020		-0.980		-0.920		
VOLT	Threshold LOW	V _{IL} = Max		-1.645		- 1.630		- 1.605	
input c	urrent								
ųн	High	V _{IH} = Max		220		220		220	
liL.	Low	V _{II} = Min	-50		-50		-50		μA
hμ	CS	V _{IL} = Min	0.5		0.5		0.5		
IEE	Supply current	V _{IL} = Min		210		210		210	mA

NOTES:

1. Voltages are defined with respect to ground, pins 1 and 24.

2. Unit is in a test socket or mounted in a printed circuit board with transverse air flow > 400 ft/min.

3. DC inputs apply after thermal equilibrium has been established.

4. For current measurement, maximum is defined as the maximum absolute value.

AC ELECTRICAL CHARACTERISTICS $V_{CC} = 0V$, $V_{EE} = -5.2V \pm 5\%$, $R_L = 50\Omega$ to -2V, $T_A = 0^{\circ}C$ to $+75^{\circ}C$

		LIMITS			
PARAMETER		Min	Тур	Max	UNIT
T _{AA}	Address access time			15	
T _{RCS}	Chip select recovery time			5	
T _{ACS}	Chip select access time			5]
T _{WD}	Write disable time			6	
T _{WPW}	Write pulse width	10			
T _{WR}	Write recovery time			10	1
T _{WHA}	Address hold time	3			ns
T _{WHCS}	Chip select hold time	3			
T _{WHD}	Data hold time	3]
T _{WSA}	Address setup time	3			
T _{WSCS}	Chip select setup time	3]
T _{WSD}	Data setup time	3			
t _f	Output fall time		1.5]
t _r	Output rise time		1.5]
Capacitance C _{IN} C _{OUT}	Input Output			8	pF

NOTES:

1. AC limits apply after thermal equilibrium has been established.

2. Unit is in a test socket or mounted on a printed circuit board with transverse air flow >400 ft/min.

3. Output fall and rise times are measured between 20% and 80% points.

4. All propagation measurements to output are measured from 50% of the input pulse to 50% output level.

10474A

TRUTH TABLE

	INPUTS			011701170	
MODE	CS	WE	D _{IN}	OUTPUTS	
Disable	н	Х	Х	L	
Write 0	L	L	L	L	
Write 1	L	L	н	Ľ	
Read	L	н	X	D _{OUT}	

NOTES:

H = HIGH voltage level

L = LOW voltage level

X = Don't care

TIMING DIAGRAMS

Bipolar Memory Products

DESCRIPTION

The 100422B device is a 256-word by 4bit, fully encoded ECL Read/Write Random Access Memory designed for highspeed scratchpad, control, and buffer storage applications. The 100422B contains voltage and temperature compensation circuits making it 100K family compatible. The 100422B is available in a slimline 24-pin dual-in-line package. This circuit may be reconfigured as 512×2 or 1024×1 organization by utilizing the block select feature. Each block has its own LOW active block select to enable the output. Write enable LOW active enables the write function in selected blocks. The memory has eight Address inputs, four Data inputs, four Block Select inputs, one Write Enable input and four Data outputs. The outputs require external resistance terminations as they are not terminated internally through resistance to the V_{FF} supply voltage. The input pull-down resistor to V_{EE} is 50,000 Ω typical for the block selects.

Ordering information can be found on the following page.

100422B **1K-Bit ECL Bipolar RAM**

Preliminary Specification

FEATURES

- 256 words × 4 bits organization
- Fully compatible with 100K series ECL families
- Address access time: - 100422B: 10ns max.
- Low power dissipation of 0.8mW/bit
- Operating temperature: 0°C to +85°C
- Block select allows variable organization

APPLICATIONS

- High-speed scratchpad
- Control and buffer storage

Δ

BSOLU	ITE MAXIMUM RATINGS		
	PARAMETER	RATING	UNIT
VEE	Supply voltage	+0.5 to -7	
VIN	Input voltage	0 to V _{EE}	V _{DC}
lo	Output current	-30	mA
TA	Operating ambient temperature	0 to +85	
TJ	Operating junction temperature	+ 125	°C
T _{STG}	Storage temperature	-55 to +150	

BLOCK DIAGRAM

PIN CONFIGURATION

DI4 1

BS₃ 2

DOn 3

BS, 4

DO4 5

V_{cc} 6

Vccn 7

DO₁ 8

BS₁9

DO₂ 10

BS₂ 11

DI, 12

F PACKAGE

TOP VIEW

24) DI2

23 A4

22 A3

21 A2

20] A,

19 Ao

18 V_{EE}

17 A7

16 A,

15 A5

14) WE

13 DI₂

CD04980S

100422B

ORDERING CODE

DESCRIPTION	ORDER CODE
Ceramic Dual-In-line 400mil wide 24-pin	100422B F

DC ELECTRICAL CHARACTERISTICS V_{CC} = 0V, V_{EE} = -4.5V \pm 5%, R_L = 50 Ω to -2V, T_A = 0°C to 85°C

			LIMITS			
PARAMETER	TEST CONDITIONS	Min	Тур	Max	UNIT	
Input voltage						
V _{IL} Low		-1.810		-1.475	V	
V _{IH} High		-1.165		-0.880		
Output voltage						
V _{OL} Low	V _{IL} = Min	-1.810	-1.715	-1.620		
V _{OH} High	V _{IH} = Max	-1.025	-0.955	-0.880	V	
VOLT Threshold LOW	V _{IL} = Max	1		-1.610		
V _{OHT} Threshold HIGH	V _{IH} = Min	- 1.035				
Input current						
Low	V _{IL} = Min	-50				
I _{IL} BS	V _{IL} = Min	+ 0.5			μA	
l _{IH} High	V _{IH} = Max			220		
IEE Supply current				210	mA	

NOTES:

1. Voltages are defined with respect to ground, pins 6 and 7.

2. Unit is in a test socket or mounted in a printed circuit board with transverse air flow > 400ft/min.

3. DC limits apply after thermal equilibrium has been established.

4. For current measurement, maximum is defined as the maximum absolute value.

AC ELECTRICAL CHARACTERISTICS V_{CC} = 0V, V_{EE} = -4.5V \pm 5%, R_L = 50 Ω to -2V, T_A = 0°C to 85°C

		LIMITS			
PARAMETER		Min	Тур	Max	UNIT
t _{AA}	Address access time			10	
t _{RBS}	Block select recovery time			5	
t _{ABS}	Block select access time			5	
t _{WD}	Write disable time			5	
twpw	Write pulse width	7	20 ¹⁰		
t _{WR}	Write recovery time		4.5	9	
t _{WHA}	Address hold time	2	1		ns
twHBS	Block select hold time	2	1	х	
twhD	Data hold time	2	1		
t _{WSA}	Address setup time	3	1		1.1
twsbs	Block select setup time	2	1	·	- N.
twsp	Data setup time	2	1		
t _f	Output fall time		2]
t _r	Output rise time		2		
Capacitance				0	-5
C _{IN} C _{OUT}	Input Output			8 8	pF

NOTES:

1. AC limits apply after thermal equilibrium has been established.

2. Unit is in a test socket or mounted on a printed circuit board with transverse air flow > 400ft/min.

3. Output fall and rise times are measured between 20% and 80% points.

4. All propagation measurements to output are measured from 50% of the input pulse to 50% output level.

Preliminary Specification

100422B

TRUTH TABLE

	INPUTS			0.170.170	
MODE	BSN	WE	DIN	OUTPUTS	
Disable	н	Х	Х	L	
Write 0	L	L	L	L	
Write 1	L	L	н	L	
Read	L	н	X	D _{OUT}	

NOTES:

H = HIGH voltage level L = LOW voltage level

X = Don't Care

N = Blocks 1 - 4

TIMING DIAGRAMS

8
Bipolar Memory Products

DESCRIPTION

The 100422C device is a 256-word by 4bit, fully encoded ECL Read/Write Random Access Memory designed for highspeed scratch pad, control, and buffer storage applications. The 100422C contains voltage and temperature compensation circuits making it 100K family compatible. The 100422C is available in a slimline 24-pin dual-in-line package. This circuit may be reconfigured as 512 \times 2 or 1024 \times 1 organization by utilizing the block select feature. Each block has its own LOW active block select to enable the output. Write enable LOW active enables the write function in selected blocks. The memory has eight Address inputs, four Data inputs, four Block Select inputs, one Write Enable input and four Data outputs. The outputs require external resistance terminations as they are not terminated internally through resistance to the V_{FF} supply voltage. The input pull-down resistor to V_{EE} is 50,000 Ω typical for the block selects.

Ordering information can be found on the following page.

100422C 1K-Bit ECL Bipolar RAM

Preliminary Specification

FEATURES

- 256 words imes 4 bits organization
- Fully compatible with 100K series ECL families
- Address access time:
 100422C: 7ns max
- Low power dissipation of 0.8mW/ bit
- Operating temperature: 0°C to +85°C
- Block select allows variable organization

APPLICATIONS

- High speed scratch pad
- Control and buffer storage

ABSOLUTE MAXIMUM RATINGS

PIN CONFIGURATION F PACKAGE DI4 1 24 DI₃ 85₃ 2 23 A. 22 A3 DO₀ 3 BS4 4 21 A2 104 5 20 A, V_{CC} B 19 A. V_{CC0} [7] 18 V_{EE} DO₁ 8 17 A7 85, 9 16 A6 15 A5 DO2 10 BS₂ 11 14) WE DI₁ 12 13 DI₂ TOP VIEW CD04980S

	PARAMETER	RATING	UNIT
VEE	Supply voltage	+0.5 to -7	
VIN	Input voltage	0 to V _{EE}	V _{dc}
lo	Output current	-30	mA
TA	Operating	0 to +85	
Tj	Operating junction	+ 125	°C
T _{STG}	Storage	-55 to +150	

BLOCK DIAGRAM

1K-Bit ECL Bipolar RAM (256 imes 4)

100422C

ORDERING CODE

DESCRIPTION	ORDER CODE
Ceramic Dual Inline 400mil wide 24-pin	100422C F

DC ELECTRICAL CHARACTERISTICS V_{CC} = 0V, V_{EE} = -4.5V \pm 5%, R_L = 50 Ω to -2V, T_A = 0°C to 85°C

			LIMITS			
	PARAMETER	TEST CONDITIONS	Min	Тур	Max	UNIT
Input v	oltage					
VIL	Low		-1.810		-1.475	V
VIH	High		-1.165		-0.880	
Output	voltage					
V _{OL}	Low	V _{IL} = Min	-1.810	-1.715	-1.620	
VOH	High	V _{IH} = Max	-1.025	-0.955	-0.880	V
VOLT	Threshold LOW	V _{IL} = Max	1		-1.610	
VOHT	Threshold HIGH	V _{IH} = Min	-1.035			
Input c	urrent					
կլ՝	Low	V _{IL} = Min	-50			
ι.	BS	V _{IL} = Min	+ 0.5			μA
liμ	High	V _{IH} = Max			220	
IEE	Supply current				210	mA

NOTES:

1. Voltages are defined with respect to ground, pins 6 and 7.

2. Unit is in a test socket or mounted in a printed circuit board with transverse air flow >400 ft/min.

3. DC limits apply after thermal equilibrium has been established.

4. For current measurement, maximum is defined as the maximum absolute value.

AC ELECTRICAL CHARACTERISTICS V_{CC} = 0V, V_{EE} = -4.5V \pm 5%, R_L = 50 Ω to -2V, T_A = 0°C to 85°C

			LIMITS			
PARAMETER		Min Typ Max			UNIT	
T _{AA}	Address access time			7		
T _{RBS}	Block select recovery time		4			
T _{ABS}	Block select access time		6			
T _{WD}	Write disable time		4			
T _{WPW}	Write pulse width	5				
T _{WR}	Write recovery time		6			
T _{WHA}	Address hold time		1		ns	
T _{WHBS}	Block select hold time		1			
T _{WHD}	Data hold time		1			
T _{WSA}	Address set-up time		1			
T _{WSBS}	Block select set-up time		1			
T _{WSD}	Data set-up time		1			
t _f	Output fall time		2			
t _r	Output rise time		2			
Capacitance					448	
C _{IN} C _{OUT}	Input Output			8 8	pF	

NOTES:

1. AC limits apply after thermal equilibrium has been established.

2. Unit is in a test socket or mounted on a printed circuit board with transverse air flow >400 ft/min.

3. Output fall and rise times are measured between 20% and 80% points.

4. All propagation measurements to output are measured from 50% of the input pulse to 50% output level.

1K-Bit ECL Bipolar RAM (256 imes 4)

Preliminary Specification

100422C

TRUTH TABLE

NODE		INPUTS		
MODE	BSN	WE	DIN	OUTPUTS
Disable	н	X	X	L
Write 0	L	L	L	L
Write 1	L	L	н	L
Read	L	н	x	D _{OUT}

NOTES:

H = HIGH voltage level L = LOW voltage level

X = Don't careN = Blocks 1 - 4

TIMING DIAGRAMS

Bipolar Memory Products

DESCRIPTION

The 100470A device is a 4096 words by 1 bit fully decoded Read/Write Random Access Memory, designed for high speed scratch pad, control, and buffer storage applications. The device also includes full address decoding, on-chip separate data in and noninverting data out lines, and an active LOW Chip Select Input.

The 100470A is compatible with the 100K ECL families and includes on-chip voltage and temperature compensation.

Ordering information can be found on the following page.

100470A 4K-Bit ECL Bipolar RAM

Preliminary Specification

FEATURES

- Organization: 4096 words by 1 bit
- Fully compatible with 100K ECL families
- Operating temperature: 0°C to +85°C
- Address access time:
 100470A: 15ns max
- Low supply current of 150mA max
- Read cycle time:
- 100470A: 15ns max

APPLICATIONS

- High speed scratch pad
- Control and buffer storage

PIN CONFIGURATION

8

ABSOLUTE MAXIMUM RATINGS

	PARAMETER	RATING	UNIT
V _{EE}	Supply voltage	+0.5 to -7	
VIN	Input voltage	+0.5 to V _{EE}	V _{dc}
lo .	Output current	-30	mA
TA	Operating	0 to +85	
T _{STG}	Storage	-55 to +150	°C

BLOCK DIAGRAM

100470A

ORDERING CODE

DESCRIPTION	ORDER CODE
Ceramic Dual Inline 300mil wide 18-pin	100470A F

DC ELECTRICAL CHARACTERISTICS V_{CC} = 0V, V_{EE} = -4.5V \pm 5%, R_L = 50 Ω to -2V, T_A = 0°C to 85°C

				LIMITS		
	PARAMETER	TEST CONDITIONS	Min	Тур	Max	UNIT
Input v	oltage					en en de la composition de la
VIL	Low		-1.810		-1.475	V
VIH	High		-1.165		-0.880	
Output	voltage	9				
VOL	Low	V _{IL} = Min	-1.810	-1.715	-1.620	
VOH	High	V _{IH} = Max	-1.025	-0.955	-0.880	V
VOLT	Threshold LOW	V _{IL} = Max			-1.610	
VOHT	Threshold HIGH	V _{IH} = Min	-1.035			
Input c	urrent					
hι	Low	V _{IL} = Min	-50			
կլ	CS	V _{IL} = Min	+ 0.5			μA
I _{IH}	High	V _{IH} = Max			220	
IEE	Supply current				150	mA

NOTES:

1. Voltages are defined with respect to ground, pin 18.

2. Unit is in a test socket or mounted in a printed circuit board with transverse air flow > 400 ft/min.

3. DC limits apply after thermal equilibrium has been established.

4. For current measurement, maximum is defined as the maximum absolute value.

AC ELECTRICAL CHARACTERISTICS $V_{CC} = 0V$, $V_{EE} = -4.5V \pm 5\%$, $R_L = 50\Omega$ to -2V, $T_A = 0^{\circ}C$ to $85^{\circ}C$

PARAMETER			LIMITS		
		Min	Тур	Max	UNIT
T _{AA}	Address access time			15	
T _{RCS}	Chip select recovery time			5	
T _{ACS}	Chip select access time			5	
T _{WD}	Write disable time			6	
T _{WPW}	Write pulse width	10			
TWR	Write recovery time			10	
T _{WHA}	Address hold time	3			ns
T _{WHCS}	Chip select hold time	3			1
T _{WHD}	Data hold time	3			
T _{WSA}	Address set-up time	3			1
Twscs	Chip select set-up time	3			1
T _{WSD}	Data set-up time	3			
t _f	Output fall time		1.5		
tr	Output rise time		1.5		1
Capacitance					
C _{IN} C _{OUT}	Input Output			8	pF

NOTES:

1. AC limits apply after thermal equilibrium has been established.

2. Unit is in a test socket or mounted on a printed circuit board with transverse air flow > 400 ft/min.

3. Output fall and rise times are measured between 20% and 80% points.

4. All propagation measurements to output are measured from 50% of the input pulse to 50% output level.

4K-Bit ECL Bipolar RAM (4096 imes 1)

Preliminary Specification

100470A

8

TRUTH TABLE

NODE	INPUTS			0.1751.150
MODE	CS	WE	D _{IN}	OUTPUTS
Disable	н	Х	х	L
Write 0	L	L	L	L
Write 1	L	L	н	L
Read	L	н	х	D _{OUT}

NOTES:

H = HIGH voltage level

L = LOW voltage level

X = Don't care

TIMING DIAGRAMS

Bipolar Memory Products

DESCRIPTION

The 100474A device is a 1024 words by 4 bits fully decoded Read/Write Random Access Memory, designed for high speed scratch pad, control, and buffer storage applications. The device also includes full address decoding, on-chip separate data in and noninverting data out lines.

The 100474A, with its voltage and temperature compensation, is compatible with the 100K ECL families.

Ordering information can be found on the following page.

100474A 4K-Bit ECL Bipolar RAM

Preliminary Specification

FEATURES

- Organization: 1024 words by 4 bits
- Fully compatible with 100K ECL families
- Operating temperature: 0°C to +85°C
- Address access time:
- 100474A: 15ns max
- Low supply current of 210mA max
- Read Cycle time:
 100474A: 15ns

APPLICATIONS

- High speed scratch pad
- Control and buffer storage

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

	PARAMETER	RATING	UNIT
V _{EE}	Supply voltage	+0.5 to -7	
V _{IN}	Input voltage	+0.5 to V _{EE}	V _{dc}
lo	Output current	-30	mA
TA	Operating	0 to +85	
T _{stg}	Storage	-55 to +150	0°

BLOCK DIAGRAM

4K-Bit ECL Bipolar RAM (1024 imes 4)

100474A

ORDERING CODE

DESCRIPTION	ORDER CODE
Ceramic Dual Inline 400mil wide 24-pin	100474A F

DC ELECTRICAL CHARACTERISTICS V_{CC} = 0V, V_{EE} = -4.5V \pm 5%, R_L = 50 Ω to -2V, T_A = 0°C to 85°C

				LIMITS			
	PARAMETER	TEST CONDITIONS	Min	Тур	Max	UNIT	
Input v	oltage						
V _{IL} V _{IH}	Low High		-1.810 -1.165		-1.475 -0.880	v	
Output	voltage						
VOL	Low	V _{IL} = Min	-1.810	-1.715	-1.620		
VOH	High	V _{IH} = Max	-1.025	-0.955	-0.880	V	
VOLT	Threshold LOW	V _{IL} = Max			-1.610		
VOHT	Threshold HIGH	V _{IH} = Min	-1.035				
Input c	urrent						
hL.	Low	V _{IL} = Min	-50			μA	
կլ	BS	V _{IL} = Min	+ 0.5			μΑ	
ЧH	High	V _{IH} = Max			220		
IEE	Supply current				210	mA	

NOTES:

1. Voltages are defined with respect to ground, pins 6 and 7.

2. Unit is in a test socket or mounted in a printed circuit board with transverse air flow > 400 ft/min.

3. DC limits apply after thermal equilibrium has been established.

4. For current measurement, maximum is defined as the maximum absolute value.

AC ELECTRICAL CHARACTERISTICS V_{CC} = 0V, V_{EE} = $-4.5V\pm5\%$, R_L = 50Ω to -2V, T_A = $0^{\circ}C$ to $85^{\circ}C$

PARAMETER					
		Min	Min Typ		UNIT
T _{AA}	Address access time			15	
T _{RCS}	Chip select recovery time			5	
T _{ACS}	Chip select access time			5	
T _{WD}	Write disable time			6	
T _{WPW}	Write pulse width	10			
T _{WR}	Write recovery time			10	
T _{WHA}	Address hold time	3			ns
T _{WHCS}	Chip select hold time	3			
T _{WHD}	Data hold time	3			
T _{WSA}	Address set-up time	3			
T _{WSCS}	Chip select set-up time	3			
T _{WSD}	Data set-up time	3			
t _f	Output fall time		1.5		
t _r	Output rise time		1.5	1	1
Capacitance					
C _{IN} C _{OUT}	Input Output			8	pF

NOTES:

1. AC limits apply after thermal equilibrium has been established.

2. Unit is in a test socket or mounted on a printed circuit board with transverse air flow > 400 ft/min.

3. Output fall and rise times are measured between 20% and 80% points.

4. All propagation measurements to output are measured from 50% of the input pulse to 50% output level.

TRUTH TABLE

MODE	<u>CS</u>	WE	D _{IN}	OUTPUTS		
Disable	н	X	х	L		
Write 0	L	L	Ľ	L		
Write 1	L	L	н	La Cara de Cara		
Read	L	н	X	D _{OUT}		

NOTES:

H = HIGH voltage level

L = LOW voltage level X = Don't care

TIMING DIAGRAMS

100474A

Signetics

ECL Products

Section 9 Package Outlines

INDEX

Data Information	9-3
Soldering Recommendations	 9-3

9

ECL Products

INTRODUCTION

The following information applies to all packages unless otherwise specified on individual package outline drawings.

General

- 1. Dimensions are shown in metric units (Millimeters) and English units (Inches).
- Thermal resistance values are determined by temperature-sensitive parameter (TSP) method. This method uses the forward voltage drop of a calibrated di-

technology device is generally the diode used in these tests. Die size and test environment have significant effects on thermal resistance values. Plastic DIP

ode to measure the change in junction

temperature due to a known power appli-

cation. The substrate diode of a bipolar

Package Outlines

Recommendations

and Soldering

- Lead material: Copper Alloy, solder (63% Sn/37% Pb) dipped.
- 4. Body material: Plastic (Epoxy).

- 5. Index in top center denotes lead No. 1 for Plastic Dual-in-Line packages.
- 6. Body dimensions do not include molding flash.

Ceramic DIP and Flat Pack

- Lead material: Alloy 42, Tin-plated or solder (60% Sn/40% Pb) dipped.
- 8. Body material: Alumina with glass seal at leads.
- 9. Lid material: Alumina, glass seal.

ECL PACKAGE OUTLINES

PACKAGE	NUMBER OF LEADS	PACKAGE FEATURE	PACKAGE ORDERING CODE	PACKAGE OUTLINE CODE	THERMAL RESISTANCE θ_{JA}/JC (°C/W)	DIE SIZE (SQUARE MILS)	TEST CONDITIONS		
TYPE							Test Ambient	Test Fixture	
Plastic (Copper Leadframe)	16-pin	.300″ Lead row centers	N	NJ1	86/43	2,500	Still air at room temp.	Device in Textool ZIF socket with 0.040 inch, stand-off. Accuracy: ± 15%	
Ceramic	16-pin	.400" Lead	F	FJ1*	100/NA	5,000	Still air		Device in Textool ZIF socket with 0.040 inch.
Ceramic	24-pin	row centers	F	FN2	72/NA	5,000	at room temp.	stand-off. Accuracy: ±15%	
Ceramic	18-pin	.300″ Lead row centers	F .	FK1	73/27	10,000	Still air at room temp.	Device in Textool ZIF socket with 0.040 inch, stand-off. Accuracy: ±15%	
Flat pack	24-pin		Y	YN1	130/NA	5,000	Still air at room temp.	Device in Texttool socket with plastic carrier. Accuracy: ± 15%	

* = Package outline not available at time of publication

NA = Characteristics not available at time of publication

Package Outlines and Soldering Recommendations

FK1 HERMETIC CDIP-18

FN2 HERMETIC CDIP-24

9–5

Package Outlines and Soldering Recommendations

NJ1 PLASTIC PDIP-16

Signetics

ECL Products

Section 10 Numerical Index

Numerical Index

ECL Products

10K SERIES

10100	Quad 2-Input NOR Gate With Strobe	6-3
10101	Quad 2-Input OR/NOR Gate With Strobe	6-9
10102	Quad 2-Input NOR (3 NOR and 1 OR/NOR) Gate	6-15
10103	Quad 2-Input OR (3 OR and 1 OR/NOR) Gate	6-21
10104	Quad 2-Input AND Gate	6-27
10105	Triple 2-3-2 Input OR/NOR Gate	6-33
10106	Triple 4-3-3 Input NOR Gate	6-39
10107	Triple 2-Input Exclusive-OR/Exclusive-NOR Gate	6-45
10108	Dual 4-Input AND/NAND Gate	6-51
10109	Dual 4-5 Input OR/NOR Gate	6-57
10110	Dual 3-Input/3-Output OR Gate (Line Driver)	6-63
10111	Dual 3-Input/3-Output NOR Gate (Line Driver)	6-69
10113	Quad Exclusive-OR Gate With Enable Input	6-75
10114	Triple Differential Line Receiver	6-81
10115	Quad Differential Line Receiver	6-89
10116	Triple Differential Line Receiver	6-96
10117	Dual 2-Wide 2-3 Input OR-AND/OR-AND-INVERT Gate	6-103
10118	Dual 2-Wide 3-Input OR-AND Gate	6-109
10119	4-Wide 4-3-3-3-Input OR-AND Gate	6-115
10121	4-Wide OR-AND/OR-AND-INVERT Gate	6-121
10123	Triple 4-3-3-Input Bus Driver	6-127
10124	Quad TTL-to-ECL Translator	6-133
10125	Quad ECL-to-TTL Translator	6-140
10130	Dual D-Type Latch	6-147
10131	Dual D-Type Master-Slave Flip-Flop	6-154
10132	Dual 2-Input Multiplexer With Clocked D-Type Latches and Common Reset	6-162
10133	Quad Latch With D-Type Inputs and Enable Outputs	6-169
10134	Dual 2-Input Multiplexer With Clocked D-Type Latches	6-176
10135	Dual JK Master-Slave Flip-Flop	6-183
10136	Universal Hexadecimal Counter	6-190
10137	Universal Decade Counter	6-198
10141	4-Bit Universal Shift Register	6-205
10158	Quad 2-to-1 Multiplexer, Non-Inverting	6-211
10159	Quad 2-to-1 Multiplexer, Inverting	6-216
10160	12-Bit Parity Checker/Generator	6-221
10161	1-of-8 Decoder With 2 Enable Inputs (Active LOW Output)	6-227
10162	1-of-8 Decoder With 2 Enable Inputs (Active HIGH Outputs)	
10164	8-Input Multiplexer With Enable Input	6-239
10165	8-Input Priority Encoder	
10171	Dual 1-of-4 Decoder With One Common and Two Individual Inputs (Active LOW Outputs)	
10172	Dual 1-of-4 Decoder With One Common and Two Individual Inputs (Active HIGH Outputs)	6-257
10173	Quad 2-Input Multiplexer With Latched Outputs	
10174	Dual 4-to-1 Multiplexer (With Output Enable)	
10175	Quint D-Latch With Common Reset and 2 Wired-OR Common Clock Inputs	6-276
10176	Hex D-Type Master-Slave Flip-Flop	
10179	Look-Ahead Carry Block	
10180	Dual 2-Bit Adder/Subtractor	6-294
10181	4-Bit Arithmetic Logic Unit/Function Generator	
10188	Hex Buffer With Enable (Non-Inverting)	
10189	Hex Inverter With Enable	6-313
10192	Quad Bus Driver	
10210	High-Speed Dual 3-Input/3-Output OR Line Driver	
10211	High-Speed Dual 3-Input/3-Output NOR Line Driver	
10216	Triple Differential OR/NOR Line Receiver (High-Speed)	
10231	Dual D-Type Master-Slave Flip-Flop (High-Speed)	
10422B	1K-Bit ECL Bipolar RAM (256 $ imes$ 4)	8-3

Numerical Index

10K SERIES

10422C	1K-Bit ECL Bipolar RAM (256 $ imes$ 4)		8-5
1047 0A	4K-Bit ECL Bipolar RAM (4096 $ imes$ 1)		8-8
10474 A	4K-Bit ECL Bipolar RAM (1024 $ imes$ 4)	· · · · · · · · · · · · · · · · · · ·	8-11

100K SERIES

100101	Triple 5-Input OR/NOR Gate	7-3
100102	Quint 2-Input OR/NOR Gate With Common Enable	7-9
100107	Quint Exclusive-OR/Exclusive-NOR Gate With Compare Output	7-15
100112	Quad Driver	7-21
100113	Quad Driver (High-Speed)	7-27
100114	Quint Differential Line Receiver	7-33
100117	Triple 1-2-2 Input OR-AND/OR-AND-INVERT Gate	7-40
100118	Quint 2-4-4-5-Input OR-AND Gate	7-46
100122	9-Gate Buffer	7-52
100123	Bus Driver	7-58
100124	Hex TTL-to-ECL Translator	7-64
100125	Hex ECL-to-TTL Translator	7-70
100126	9-Bit Backplane Driver	7-76
100131	Triple D-Type Master-Slave Flip-Flop	7-82
100136	4-Stage Counter/Shift Register	7-93
100141	8-Bit Shift Register	7-105
100145	16 $ imes$ 4 Read-While-Write Register File	7-114
100150	Hex D-Type Latch	7-124
100151	Hex D-Type Master-Slave Flip-Flop	7-132
100155	Quad 2-Way Multiplexer/Latch	7-142
100158	8-Bit Shift Matrix	7-151
100160	Dual 9-Bit Parity Generator/8-Bit Comparator	7-158
100163	Dual 8-Input Multiplexer	7-165
100164	16-Input Multiplexer	7-172
100165	Universal Priority Encoder	7-179
100166	9-Bit Comparator	7-187
100170	Universal Demultiplexer/Decoder	7-194
100171	Triple 4-Input Multiplexer	7-202
100175	100K-to-10K Translator	7-209
100179	Carry Look-Ahead Generator	7-216
100180	High-Speed 6-Bit Adder	7-223
100181	4-Bit Binary/BCD ALU	7-230
100231	Triple D-Type Master-Slave Flip-Flop (High-Speed Version of 100131)	7-241
100255	Quint Bidirectional 100 K-to-TTL Translator	7-252
100422B	1K-Bit ECL Bipolar RAM (256 $ imes$ 4)	8-17
100422B	1K-Bit ECL Bipolar RAM (256 $ imes$ 4)	8-20
100470A	4K-Bit ECL Bipolar RAM (4096 $ imes$ 1)	8-23
100474A	4K-Bit ECL Bipolar RAM (1024 $ imes$ 4)	8-26

Electronic components and materials for professional, industrial and consumer uses from the world-wide Philips Group of Companies

Argentina: PHILIPS ARGENTINA S.A., Div. Elcoma, Vedia 3892, 1430 BUENOS AIRES, Tel, 541-7141/7242/7343/7444/7545, Australia: PHILIPS INDUSTRIES HOLDINGS LTD., Elcoma Division, 11 Waltham Street, ARTARMON, N.S.W. 2064, Tel. (02) 439 3322. Austria: ÖSTERBEICHISCHE PHILIPS BAUELEMENTE INDUSTRIE G.m.b.H., Triester Str. 64, A-1101 WIEN, Tel. 629111-0. Belgium: N.V. PHILIPS & MBLE ASSOCIATED, 9 rue du Pavillon, B-1030 BRUXELLES, Tel. (02) 2427400. Brazil: IBRAPE, Caixa Postal 7383, Av. Brigadeiro Faria Lima, 1735 SAO PAULO, SP, Tel. (011) 211-2600. Canada: PHILIPS ELECTRONICS LTD., Elcoma Division, 601 Milner Ave., SCARBOROUGH, Ontario, M1B 1M8, Tel. 292-5161. Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. 39-4001. Colombia: IND, PHILIPS DE COLOMBIA S.A., c/o IPRELENSO LTD., Cra. 21, No. 56-17, BOGOTA, D.E., Tel. 2497624. Denmark: MINIWATT A/S, Strandlodsvej 2, P.O. Box 1919, DK 2300 COPENHAGEN S, Tel. (01) 541133. Finland: OY PHILIPS AB, Elcoma Division, Kaivokatu 8, SF-00100 HELSINKI 10, Tel. 17271. France: RTC-COMPELEC, 130 Avenue Ledru Rollin, F-75540 PARIS 11, Tel. 43388000. Germany (Fed. Republic): VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2 HAMBURG 1, Tel. (040) 3296-0. Greece: PHILIPS HELLENIQUE S.A., Elcoma Division, 54, Syngru Av., ATHENS 11742, Tel. 9215311/319. Hong Kong: PHILIPS HONG KONG LTD., Elcoma Div., 15/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, Tel. (0)-245121. India: PEICO ELECTRONICS & ELECTRICALS LTD., Elcoma Dept., Band Box Building, 254-D Dr. Annie Besant Rd., BOMBAY - 400025, Tel. 4930311/4930590. Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Elcoma Div., Setiabudi II Building, 6th Fl., Jalan H.R. Rasuna Said (P.O. Box 223/KBY) Kuningan, JAKARTA - Selatan, Tel. 512572. Ireland: PHILIPS ELECTRICAL (IRELAND) LTD., Newstead, Clonskeagh, DUBLIN 14, Tel. 693355. Italy: PHILIPS S.p.A., Sezione Elcoma, Piazza IV Novembre 3, I-20124 MILANO, Tel. 2-6752.1. Japan: NIHON PHILIPS CORP., Shuwa Shinagawa Bldg., 26-33 Takanawa 3-chome, Minato-ku, TOKYO (108), Tel. 448-5611. (IC Products) SIGNETICS JAPAN LTD., 8-7 Sanbancho Chiyoda-ku, TOKYO 102, Tel. (03) 230-1521. Korea (Republic of): PHILIPS ELECTRONICS (KOREA) LTD., Elcoma Div., Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. 794-5011. Malaysia: PHILIPS MALAYSIA SDN. BERHAD, No. 4 Persiaran Barat, Petaling Jaya, P.O.B. 2163, KUALA LUMPUR, Selangor, Tel. 774411. Mexico: ELECTRONICA, S.A de C.V., Carr. México-Toluca km. 62.5, TOLUCA, Edo. de México 50140, Tel. Toluca 91 (721) 613-00. Netherlands: PHILIPS NEDERLAND, Marktgroep Elonco, Postbus 90050, 5600 PB EINDHOVEN, Tel. (040) 793333. New Zealand: PHILIPS NEW ZEALAND LTD., Elcoma Division, 110 Mt. Eden Road, C.P.O. Box 1041, AUCKLAND. Tel. 605-914. Norway: NORSK A/S PHILIPS, Electronica Dept., Sandstuveien 70, OSLO 6, Tel. 680200. Peru: CADESA, Av. Alfonso Ugarte 1268, LIMA 5, Tel. 326070. Philippines: PHILIPS INDUSTRIAL DEV. INC., 2246 Pasong Tamo, P.O. Box 911, Makati Comm. Centre, MAKATI-RIZAL 3116, Tel. 86-89-51 to 59. Portugal: PHILIPS PORTUGUESA S.A.R.L., Av. Eng. Duarte Pacheco 6, 1009 LISBOA Codex, Tel. 683121. Singapore: PHILIPS PROJECT DEV. (Singapore) PTE LTD., Elcoma Div., Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. 35 02 000. South Africa: EDAC (PTY.) LTD., 3rd Floor Rainer House, Upper Railway Rd. & Ove St., New Doornfontein, JOHANNESBURG 2001, Tel, 614-2362/9. Spain: MINIWATT S.A., Balmes 22, BARCELONA 7, Tel. 301 63 12. Sweden: PHILIPS KOMPONENTER A.B., Lidingövägen 50, S-11584 STOCKHOLM 27, Tel. 08/7821000. Switzerland: PHILIPS A.G., Elcoma Dept., Allmendstrasse 140-142, CH-8027 ZÜRICH, Tel. 01-4882211. Taiwan: PHILIPS TAIWAN LTD., 150 Tun Hua North Road, P.O. Box 22978, TAIPEI, Taiwan, Tel. 7120500. Thailand: PHILIPS ELECTRICAL CO. OF THAILAND LTD., 283 Silom Road, P.O. Box 961, BANGKOK, Tel. 233-6330-9. Turkey: TÜRK PHILIPS TICARET A.S., Elcoma Department, Inönü Cad, No. 78-80, P.K.504, 80074 ISTANBUL, Tel. 435910. United Kingdom: MULLARD LTD., Mullard House, Torrington Place, LONDON WC1E 7HD, Tel, 01-580 6633. United States: (Active Devices & Materials) AMPEREX SALES CORP., Providence Pike, SLATERSVILLE, R.I. 02876, Tel. (401) 762-9000. (Passive Devices) MEPCO/ELECTRA INC., Columbia Rd., MORRISTOWN, N.J. 07960, Tel. (201) 539-2000. (Passive Devices & Electromechanical Devices) CENTRALAB INC., 5855 N. Glen Park Rd., MILWAUKEE, WI 53201, Tel. (414)228-7380. (IC Products) SIGNETICS CORPORATION, 811 East Arques Avenue, SUNNYVALE, California 94086, Tel. (408) 991-2000. Uruguay: LUZILECTRON S.A., Avda Uruguay 1287, P.O. Box 907, MONTEVIDEO, Tel. 914321.

Venezuela: IND. VENEZOLANAS PHILIPS S.A., c/o MAGNETICA S.A., Calle 6, Ed. Las Tres Jotas, App. Post. 78117, CARACAS, Tel. (02) 2393931.

For all other countries apply to: Philips Electronic Components and Materials Division, International Business Relations, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Telex 35000 phtcnl

AS52

© Philips Export B.V. 1986

This information is furnished for guidance, and with no guarantee as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be reproduced in any way, in whole or in part, without the written consent of the publisher.