

Data handbook

PHILIPS

Electronic components and materials

Components and materials

Book C9

1986

Piezoelectric quartz devices

60

1986

PHILIPS

PIEZOELECTRIC QUARTZ DEVICES

Quartz crystal units, general	
Survey of types	2
Introduction	5
Terms and definitions	7
Electrical properties and behaviour	9
Measuring procedures	20
Quartz crystal units as digital temperature sensor	22
How to specify a guartz crystal unit	24
Marking	24
Holders	25
Quartz crystal units, economy types	
Types for frequency control	30
Low cost high precision digital quartz temperature sensors	36
Quartz crystal units for general frequency stabilization	
Device data	38
Temperature compensated crystal oscillators	
Type selection	66
Device data	67
Compact integrated oscillators	
Device data	87

DATA HANDBOOK SYSTEM

Our Data Handbook System comprises more than 60 books with specifications on electronic components, subassemblies and materials. It is made up of four series of handbooks:

ELECTRON TUBES	BLUE
SEMICONDUCTORS	RED
INTEGRATED CIRCUITS	PURPLE
COMPONENTS AND MATERIALS	GREEN
The contents of each series are listed on pages iv to viii.	

The data handbooks contain all pertinent data available at the time of publication, and each is revised and reissued periodically.

When ratings or specifications differ from those published in the preceding edition they are indicated with arrows in the page margin. Where application information is given it is advisory and does not form part of the product specification.

Condensed data on the preferred products of Philips Electronic Components and Materials Division is given in our Preferred Type Range catalogue (issued annually).

Information on current Data Handbooks and on how to obtain a subscription for future issues is available from any of the Organizations listed on the back cover.

Product specialists are at your service and enquiries will be answered promptly.

ELECTRON TUBES (BLUE SERIES)

The blue series of data handbooks comprises:

T1	Tubes for r.f. heating
T2a	Transmitting tubes for communications, glass types
T2b	Transmitting tubes for communications, ceramic types
тз	Klystrons
T4	Magnetrons for microwave heating
T5	Cathode-ray tubes Instrument tubes, monitor and display tubes, C.R. tubes for special applications
T 6	Geiger-Müller tubes
Т8	Colour display systems Colour TV picture tubes, colour data graphic display tube assemblies, deflection units
Т9	Photo and electron multipliers
T10	Plumbicon camera tubes and accessories
T11	Microwave semiconductors and components
T12	Vidicon and Newvicon camera tubes
T13	Image intensifiers and infrared detectors
T15	Dry reed switches

T16 Monochrome tubes and deflection units Black and white TV picture tubes, monochrome data graphic display tubes, deflection units

SEMICONDUCTORS (RED SERIES)

The red series of data handbooks comprises:

S1 Diodes

Small-signal silicon diodes, voltage regulator diodes (< 1,5 W), voltage reference diodes, tuner diodes, rectifier diodes

- S2a Power diodes
- S2b Thyristors and triacs
- S3 Small-signal transistors
- S4a Low-frequency power transistors and hybrid modules
- S4b High-voltage and switching power transistors
- S5 Field-effect transistors
- S6 R.F. power transistors and modules
- S7 Surface mounted semiconductors
- S8a Light-emitting diodes
- S8b Devices for optoelectronics Optocouplers, photosensitive diodes and transistors, infrared light-emitting diodes and infrared sensitive devices, laser and fibre-optic components
- S9 Power MOS transistors
- S10 Wideband transistors and wideband hybrid IC modules
- S11 Microwave transistors
- S12 Surface acoustic wave devices
- S13 Semiconductor sensors

INTEGRATED CIRCUITS (PURPLE SERIES)

Superseded by:

The purple series of data handbooks comprises:

EXISTING SERIES

IC1	Bipolar ICs for radio and audio equipment	IC01N
IC2	Bipolar ICs for video equipment	IC02Na and IC02Nb
IC3	ICs for digital systems in radio, audio and video equipment	IC01N, IC02Na and IC02Nb
IC4	Digital integrated circuits CMOS HE4000B family	
IC5	Digital integrated circuits – ECL ECL10 000 (GX family), ECL100 000 (HX family), dedicat	ed designs
IC6	Professional analogue integrated circuits	IC03N and Supplement to IC11N
IC7	Signetics bipolar memories	
1C8	Signetics analogue circuits	IC11N
IC9	Signetics TTL logic	IC09N and IC15N
IC10	Signetics Integrated Fuse Logic (IFL)	IC13N
IC11	Microprocessors, microcomputers and peripheral circuitry	IC14N

NEW SERIES

IC01N	Radio, audio and associated systems Bipolar, MOS	(published 1985)
IC02Na	Video and associated systems Bipolar, MOS Types MAB8031AH to TDA1524A	(published 1985)
IC02Nb	Video and associated systems Bipolar, MOS Types TDA2501 to TEA1002	(published 1985)
1C03N	Integrated circuits for telephony	(published 1985)
IC04N	HE4000B logic family CMOS	
IC05N	HE4000B logic family – incased ICs CMOS	(published 1984)
IC06N*	High-speed CMOS; PC74HC/HCT/HCU Logic family	(published 1986)
IC07N	High-speed CMOS; PC54/74HC/HCT/HCU — uncased ICs Logic family	
1C08N	ECL 10K and 100K logic families	(published 1984)
IC09N	TTL logic series	(published 1984)
IC10N	Memories MOS, TTL, ECL	
IC11N	Linear LSI	(published 1985)
Supplement to IC11N	Linear LSI	(published 1986)
IC12N	Semi-custom gate arrays & cell libraries ISL, ECL, CMOS	
IC13N	Semi-custom Integrated Fuse Logic	(published 1985)
IC14N	Microprocessors, microcontrollers & peripherals Bipolar, MOS	(published 1985)
IC15N	FAST TTL logic series	(published 1984)
Note		

Books available in the new series are shown with their date of publication.

* Supersedes the IC06N 1985 edition and the Supplement to IC06N issued Autumn 1985.

COMPONENTS AND MATERIALS (GREEN SERIES)

The green series of data handbooks comprises:

- C1 Programmable controller modules PLC modules, PC20 modules
- C2 Television tuners, coaxial aerial input assemblies, surface acoustic wave filters
- C3 Loudspeakers
- C4 Ferroxcube potcores, square cores and cross cores
- C5 Ferroxcube for power, audio/video and accelerators
- C6 Synchronous motors and gearboxes
- C7 Variable capacitors
- C8 Variable mains transformers
- C9 Piezoelectric guartz devices
- C10 Connectors
- C11 Varistors, thermistors and sensors
- C12 Potentiometers, encoders and switches
- C13 Fixed resistors
- C14 Electrolytic and solid capacitors
- C15 Ceramic capacitors
- C16 Permanent magnet materials
- C17 Stepping motors and associated electronics
- C18 Direct current motors
- C19 Piezoelectric ceramics
- C20 Wire-wound components for TVs and monitors
- C21* Assemblies for industrial use HNIL FZ/30 series, NORbits 60-, 61-, 90-series, input devices
- C22 Film capacitors

* To be issued shortly.

QUARTZ CRYSTAL UNITS, GENERAL

SURVEY OF TYPES

See p.32 for additional details

Table 1 Specifications of quartz crystal units in RW-43 holder; economy range.

catalogue number	frequency range	typical application
4322 143	kHz	
04033	4782,720	general purpose
04043	4433,619	video
04051	8867,238	video
04083	4194,304	clock
04093	4000,000	digital tuners
04101	6000,000	teletext, VCR
04111	4500,000	video
04121	4531,468	video
04132	4905,021	video
04141	4915,200	record player
04151	5000,000	cameras
04161	5120,000	car radio
04171	7151,223	CTV (subcarrier)
04181	7159,090	CTV (subcarrier)
04191	7164,112	CTV (subcarrier)
04201	4915,200	video
04222	8867,238	video
04252	4433,619	VCR
04261	4000,000	video
04271	4000,000	video
04282	4433,619	video
04291	4782,720	two-tone dialling
04301	8000,000	general purpose
04311	6400,000	general purpose
04321	6144,000	microprocessor
04331	5068,800	general purpose
04341	4608,000	general purpose
04351	4406,250	general purpose
04361	4250,000	video
04371	3686,400	general purpose
04381	3582,056	video
04391	3579,545	video
04401	3579,545	two-tone dialling
04411	3000,000	automotive
04421	3276,800	general purpose
04431	3750,000	VLP
04441	3840,000	general purpose
04451	5068,800	general purpose
04461	4233,600	compact disc

January 1986

GENERAL

catalogue number 4322 143	frequency range kHz	typical application
04471	4194 304	automotive. Hi Bel
04471	2007 606	
04481	3997,090	yeneral purpose
04491	5011 000	video games
04521	5911,000	video games
04532	5000,000	Video
04541	5068,800	general purpose
04551	3686,400	general purpose
04561	4233,600	compact disc
04571	3440,000	general purpose
04582	6000,000	temperature sensing
04591	6041,957	teletext, USA
04601	4905,021	general purpose
04611	9830,400	microprocessor
04621	10000,000	automotive, Hi Rel
04631	12000,000	automotive, Hi Rel
04670	3932,160*	automotive, Hi Rel
04680	3000,000*	automotive, Hi Rel
04690	3640,890*	automotive, Hi Rel
04700	4096,000*	automotive, Hi Rel
04710	6000,000	automotive, Hi Rel
04721	8000,000	automotive, Hi Rel
04731	8867,238	automotive
04741	11000,000	automotive, Hi Rel
04751	5120,000	car radio
04761	3440,000	general purpose
04771	4096,000	general purpose
04781	4865,000	general purpose
04791	7000,000	general purpose
04810	5760,000*	automotive
04821	8388,608	automotive, Hi Rel
04830	6000,000*	automotive
04840	4000,000*	automotive
04850	3276,800*	automotive
04860	3000,000*	automotive
04872	4435,571	general purpose
04881	4000,000	general purpose
04891	13875,000	computer coded teletext
04911	3439,593	automotive
04921	11059,000	CD-ROM
04931	11059,200	teletext
04941	11000,000	automotive
04951	7372.800	automotive. Hi Rel
04961	13875.000	teletext
04971	10000.000	automotive. Hi Bel
04981	6000.000*	compact disc
05031	11289 600	compact disc

* Development types.

AT-cut quartz crystals for general frequency stabilization.

mode of	frequency	holder			catalogue	page
VIDration	range MHz	type	housing	connections	number	
funda- metal	3 to 10	RW-10	resistance welded	leads	4322 148	48
funda- mental	3 to 20	RW-43	resistance welded	pins	4322 144	44
funda- mental	1 to 1,8 1,8 to 25	HC-6/U HC-27/U HC-27 ext. HC-33/U RW-36	solder sealed all-glass all-glass solder sealed resistance welded	pins pins pins pins pins	4322 152 4322 154 4322 154 4322 154 4322 154 4322 154 4322 149 4322 149	54 56 56 50 50
	4,5 to 25	HC-26/U HC-29/U RW-42 RW-43	all-glass all-glass resistance welded resistance welded	leads pins pins leads	4322 155 4322 155 4322 156 4322 156	60 60 63 63
	10 to 75	HC-27/U HC-33/U RW-36	all-glass solder sealed resistance welded	pins pins pins	4322 159 4322 162 4322 162	64 68 68
third overtone	17 to 75	RW-42 RW-43	resistance welded resistance welded	pins leads	4322 161 4322 161	67 67
	20 to 75	HC-26/U HC-29/U	all-glass all-glass	leads pins	4322 160 4322 160	66 66
fifth overtone	50 to 125	HC-26/U HC-27/U HC-29/U HC-33/U RW-36 RW-42	all-glass all-glass all-glass solder sealed resistance welded resistance welded	leads pins pins pins pins pins	4322 166 4322 165 4322 166 4322 166 4322 168 4322 168 4322 167	70 69 70 72 72 71

Special types

funda- mental	1 6,144 21,480	HC-6/U TO-39 RW-80	solder sealed resistance welded resistance welded	pins leads leads	4322 152 01241 4322 150 00011 4322 145 00011	55 53 46
third overtone	10 MHz high precision	HC-27/U	all-glass	pins	4322 159 00001	65

7th, 9th and 11th overtone crystals up to 250 MHz are available upon request.

INTRODUCTION

A quartz crystal unit consists of a quartz crystal element with electrodes, mounted in an hermetically sealed enclosure with connecting pins or leads.

The quartz crystal element is a vibrating resonant plate which relies upon the piezoelectric effect to couple it to electrical circuits. The intrinsic properties of quartz make it a unique device for accurate and stable frequency control and selection. Although the properties of quartz (T.C., ageing, high Q-factor) are very stable, the ultimate performance of the element is largeley dependent on the environment and the associated electrical circuits. We strongly advise that a particular application be discussed with the crystal manufacturer at the earliest stage in any design.

Crystal elements are normally cut in the form of plates or bars. The dimensions of these elements and their orientation with respect to the axes of the crystal give the characteristic of the element. The dimensions are such that the mechanical resonance frequency equals the desired electrical frequency. There are a large number of crystal cuts but the most advantageous orientation is the so-called AT-cut. The frequency range that can be covered herewith is from 1 to 250 MHz. A practical range is from 1,8 to 125 MHz. The crystal element may vibrate in the frequency of a fundamental mode of vibration or in the third, fifth or higher overtone.

Several cuts specially for digital temperature measurements are applied as temperature sensors.

Note

All dimensional drawings are in mm unless otherwise indicated.

TERMS AND DEFINITIONS

in accordance with IEC 122-1

Resonance frequency frThe lower of the two frequencies of the crystal unit
alone, under specified conditions, at which the
electrical impedance of the crystal unit is resistive.Anti-resonance frequency faThe higher of the two frequencies of a crystal unit

Load resonance frequency f

Nominal frequency fn

Working frequency fw

Overall tolerance

Adjustment tolerance

Ageing tolerance

Tolerance over the temperature range

Tolerance due to level of drive variation

The higher of the two frequencies of a crystal unit alone, under specified conditions, at which the electrical impedance of the crystal unit is resistive.

One of the two frequencies of a crystal unit in association with a series or with a parallel load capacitance, under specified conditions, at which the electrical impedance of the combination is resistive. This frequency is the lower of the two frequencies when the load capacitance is in series and the higher when it is in parallel (see Fig. 2). For a given value of load capacitance (C_L), these frequencies are identical for all practical purposes and given by:

$$\frac{1}{f} = 2\pi \sqrt{\frac{L_1 C_1 (C_0 + C_L)}{C_1 + C_0 + C_L}}$$

The frequency assigned by the specification of the crystal unit.

The operational frequency of the crystal unit together with its associated circuits.

The maximum permissible deviation of the working frequency from nominal frequency due to a specific cause or a combination of causes.

The permissible deviation from the nominal frequency at the reference temperature under specified conditions.

The permissible deviation due to time under specified conditions.

The permissible deviation over the temperature range with respect to the frequency at the specified referance temperature.

The permissible deviation due to the variation of level of drive.

QUARTZ CRYSTAL UNITS

Operating temperature range

Operable temperature range

Reference temperature

Resonance resistance Rr

Load resonance resistance RL

Level of drive

Unwanted response

Load capacitance C₁

Ageing (long-term parameter variation)

Motional capacitance C1

Motional inductance L1

The range of temperatures as measured on the enclosure over which the crystal unit must function within the specified tolerances.

The range of temperatures as measured on the enclosure over which the crystal unit must function though not necessarily within the specified tolerances.

The temperature at which certain crystal measurements are made. For controlled temperature units, the reference temperature is the mid-point of the controlled temperature range. For non-controlled temperature units, the reference temperature is normally 25 ± 2 °C.

The resistance of the crystal unit alone at the resonance frequency f_r .

The resistance of the crystal unit in series with a stated external capacitance at the load resonance frequency $f_{\rm I}$.

Note: The value of R_L is related to the value of R_r by the following expression:

$$R_{L} = R_{r} (1 + \frac{C_{0}}{C_{L}})^{2}$$

A measure of the conditions imposed upon the crystal unit expressed in terms of power dissipated.

Note: In special cases, the level of drive may be specified in terms of crystal current or voltage.

A state of resonance of a crystal vibrator other than that associated with the working frequency.

The effective external capacitance associated with the crystal unit which determines the load resonance frequency $f_{\rm I}$.

The relation which exists between any parameter (e.g. resonance frequency) and time.

Note: Such parameter variation is due to long-term changes in the crystal unit and is usually expressed in fractional parts per period of time.

The capacitance of the motional (series) arm of the equivalent circuit.

The inductance in the motional (series) arm of the equivalent circuit.

8

ELECTRICAL PROPERTIES AND BEHAVIOUR

CRYSTAL UNIT EQUIVALENT CIRCUIT

The equivalent circuit, which has the same impedance as the unit in the immediate neighbourhood of resonance, is usually represented by an inductance, capacitance and resistance in series, this series branch being shunted by the capacitance between the terminals of the unit. The parameters of the series branch are usually given by L_1 , C_1 and R_1 . The parallel capacitance is given by C_0 (see Fig. 1).

Fig. 1 Crystal unit equivalent circuit.

The parameters of the series branch are termed the "motional parameters" of the crystal unit. The parameter C_{Ω} is termed the "parallel capacitance".

The equivalent circuit has two resonance frequencies at which the electrical impedance is resistive: the "resonance frequency f_r " and the "anti-resonance frequency f_a ". The resistance of the equivalent circuit at the resonance frequency f_r is termed the "resonance resistance R_r ".

For
$$R_1 \ll \frac{1}{\omega C_0}$$
 the following relations hold:
 $f_r = \frac{1}{2\pi\sqrt{L_1C_1}}$ (1)
 $f_a = \frac{1}{2\pi\sqrt{L_1}\frac{C_1C_0}{C_1 + C_0}}$ (2)
 $R_r = R_1$ (3)

LOAD CAPACITANCE AND FREQUENCY PULLING

During manufacture, definable limits are set to the accuracy of frequency. In an oscillator, a load capacitance C_L is required to trim the working frequency f_W to the nominal frequency f_n . Figure 2 shows the crystal unit equivalent circuit with a load capacitance in series and in parallel. Each combination has two resonance frequencies at which the electrical impedance of the circuit is resistive. The lower of the two frequencies, when the load capacitance is connected in series and the higher, when it is connected in parallel are termed "load resonance frequencies f_L ". At the frequency f_L the resistance of the combination with the load capacitance in series is termed "load resonance resistance R_L ". For $R_1 \ll 1/\omega C_0$:

$$f_{L} = \frac{1}{2\pi \sqrt{L_{1} \frac{C_{1}(C_{0} + C_{L})}{C_{1} + (C_{0} + C_{L})}}}$$
(4)
$$R_{L} = R_{r} (1 + \frac{C_{0}}{C_{L}})^{2} * (5)$$

For a given value of C_L the load resonance frequencies of the series and the parallel combinations are identical.

In practice, however, the parallel combination shown in Fig. 2c rarely occurs in an oscillator. From equation (4) two second parameters of vital concern can be derived: the difference between load resonance frequency f_L and resonance frequency f_r , " Δf ", and the relative change in frequency as a function of the change in load capacitance, termed "pulling sensitivity S".

$$\Delta f = f_L - f_r$$
(6)
with f_L from equation (4)
C_1 Δf^2

$$\Delta f = \frac{1}{2} f_r \frac{C_1}{C_0 + C_L} - \frac{\Delta f}{2 f_s}$$
(7)

and to a close approximation

$$\Delta f = \frac{1}{2} f_{r} \frac{C_{1}}{C_{0} + C_{L}}$$
(8)

Equation (8) greatly simplifies calculations and methods of measurement, whilst the error is negligible in nearly all cases.

* The resistance of the combination with the load capacitance in parallel is given by

$$R_{L par} = \frac{1}{R_{1} \cdot \omega_{r}^{2} (C_{0} + C_{L})^{2}}$$

Electrical properties and behaviour

QUARTZ CRYSTAL UNITS

Pulling sensitivity S

$$S = \frac{1}{f_{L}} \left(\frac{\delta f}{\delta C_{L}} \right)_{f} = f_{L} = + \frac{1}{f_{L}} \cdot \frac{\delta \Delta f}{\delta C_{L}}$$

with Δf from equation (8)

$$S = -\frac{1}{2} f_r \frac{C1}{(C_0 + C_L)^2} \cdot \frac{1}{f_L}$$
(9)

and to a close approximation

$$S = -\frac{C1}{2(C_0 + C_L)^2}$$
(10)

Standard values of load capacitance

The standard values of load capacitance for crystal units operating at the fundamental frequency of the mode are:

20 pF, 30 pF, 50 pF, 100 pF.

Note that in some countries 32 pF is still in use, but this value should not be considered as a standard value and its use is not recommended.

In special cases, load capacitances of the values 8, 12 and 15 pF may be used for fundamental mode crystal units.

Overtone crystals are often operated at series resonance. Where a load capacitance is used, it should be chosen from the following standard values:

8 pF, 12 pF, 15 pF, 20 pF, 30 pF.

The pulling sensitivity expressed in 10⁻⁶/pF is a good measure for the frequency sensitivity as a function of load capacitance variations at the working frequency.

Figure 3 illustrates Δf and the pulling sensitivity S as a function of the load capacitance, for two quartz crystals having different C₁ values. It should be noted that a tolerance of ½ pF on a 20 pF load capacitance may lead to an error of ± 11.10⁻⁶.

Crystal (a)	Crystal (b)
f _r = 10 000,000 kHz	f _r = 10 000,000 kHz
C ₀ = 5 pF	C ₀ = 2 pF
C ₁ = 28 fF	C ₁ = 5,6 fF
C _L = 20 pF	C _L = 20 pF
f _L = 10 005,600 kHz	f _L = 10 001,273 kHz
$S = -22, 4.10^{-6}/pF$	S =5,79.10 ⁻⁶ /pF

Specified, or in special cases, measured Δf and S, as given for crystal (a) in Table 1, offer a simple direct guidance.

Table 1

March 1984

nominal frequency $f_n = f_L$	10 000,000 kHz 20 pF	
nominal load capacitance C_L		
	specified	measured
Δf	5,600 kHz	5,700 kHz
pulling sensitivity S	$-22 \pm 2 \times 10^{-6}/\text{pF}$	−22,4 x 10 ⁻⁶ /pF

Electrical properties and behaviour

QUARTZ CRYSTAL UNITS

Fig. 3. Δf and pulling sensitivity as a function of the load capacitance. Tolerances on the parameters f_r , C0 and C1 are required for calculating the " Δf " and the "pullability at f_n ".

QUARTZ CRYSTAL UNITS

Fig. 4 Nomogram enabling the determination of the pulling sensitivity S.

14

Electrical properties and behaviour

QUARZ CRYSTAL UNITS

April 1979

QUARTZ CRYSTA UNITS

> The power dissipated in a crystal unit is termed "level of drive" and is usually expressed in mW. In the level of drive range 10^{-12} to 10^{-3} W the drive level dependency of the crystal unit characteristics is almost negligible. For drive level greater than approximately 0.5 mW, the crystal unit characteristics tend to change. For this reason the crystal unit characteristics are specified at a level of drive of 0,5 mW.

Low drive levels

When a crystal oscillator is switched on, there will initially be some noise in the circuit. The noise power, which depends on the circuit design and on the components used, will be in the region of 10^{-16} W. From this level, the oscillatory power builds up in the crystal unit, passing through a power range of approximately 12 decades to its maximum value. At the extremely low power levels that occur during build up of oscillation, the resonance resistance Rr may increase slightly. The crystal oscillator should, therefore, have sufficient loop gain to avoid start-up problems. As a rule of thumb, a negative resistance of twice the specified Rr max, value is sufficient.

High drive levels

For applications requiring high stability, a drive level between 5 μ W and 0,5 mW should be used. Drive levels greater that 0.5 mW should be avoided, and excessively high drive levels (greater than say 5 mW) may seriously affect the crystal's behaviour.

FREQUENCY/TEMPERATURE CHARACTERISTICS

The frequency drift as a function of temperature can be represented by a graph, the T.C. curve or drift characteristic. In the case of AT cuts, the relation of drift and temperature is approximated by a cubic curve; the drift characteristic of the other cuts is parabolic.

Figure 5 shows a number of frequency-temperature curves obtained from AT-cut crystals with various angles of cut α (from -4' to + 16' increasing angle of cut). The curves are symmetrical with respect to 27 °C, and it is not possible to shift this point. A temperature range which is fairly symmetrical with respect to 27 °C (e.g. 0 - 60 °C) will, therefore, result in the smallest frequency drift in that range, A small frequency drift over a wide temperature range, e.g. -40 to +80 °C, will result in a guite steep temperature coefficient at room temperature.

It will be evident that, for AT-cut crystals, the angle of cut and its accuracy are decisive for the frequency drift over a given temperature range.

ADVANTAGES OF ALL-GLASS HOLDERS

Crystal units with all-glass holders show the following advantages over those with metal holders:

- (a) a lower series resistance, which also means a higher Q-factor, thanks to the fact that glass holders are evacuated giving less mechanical damping;
- (b) better performance under adverse climatic conditions;
- (c) a higher frequency stability.

AGEING

A non-reversible, mostly gradual change with time in resonance frequency is called (an effect of) ageing. Only where very good long-term stability is required should ageing be of consequence. It should be borne in mind that (with a view to ageing only):

- (a) crystal units having an all-glass holder are preferred to those having a metal holder;
- (b) low frequency crystals are favourable preferred to high frequency crystals having the same crystal cut;
- (c) overtone crystals are preferred to fundamental crystals for the same frequency (or fifth overtone compared with third overtone crystals).

16

CRYSTAL BEHAVIOUR IN AN OSCILLATOR

In the vicinity of resonance the impedance of a quartz crystal unit can be represented by a circle (see Fig. 6). The circle is shifted downwards with respect to the resistance axis over

$$X_0 = \frac{1}{2\pi f_r C_0}.$$

When a load capacitance is connected in series with the unit the shift is $X_0 + X_1$, where

$$X_{L} = \frac{1}{2\pi f_{L}C_{L}}.$$

The difference between anti-resonance frequency and resonance frequency

$$f_{a} - f_{r} \approx \frac{C_{1}}{2C_{0}} \cdot f_{r} \cdot \frac{C_{L}}{C_{0} + C_{L}}$$

is assumed to be 100%.

It can be seen that the difference between the two frequencies, determined by the phase angle φ , disappears at $f_W = 50\%$. The phase angle in the oscillator should be kept sufficiently small to avoid crystal unit operation in the uncertain 50% area (frequency switching).

Quartz crystal units for frequencies higher than 100 to 125 MHz (depending on type) have an impedance circle with a greater downwards shift, even to below the real axis. When the figure of merit given by

$$M = \frac{X_0}{R_1} = \frac{1}{(2\pi f_r) R_1 C_0}$$

is less than approximately 5, the resonance frequency f_r is arbitrary.

QUARTZ CRYSTAL UNITS

Fig. 6 Working frequency and impedance of a quartz crystal unit in the impedance diagram.

18

Indications for use

Keep phase deviations in the circuit sufficiently low to avoid crystal unit operation in the 50% working frequency area, in particular when phase variation is used for frequency pulling (P.L.L. system). Ensure that amplification is sufficiently high, in particular when applying phase variation. Keep crystal unit drive level low (generally ≤ 0.5 mW), see Fig. 7.

Fig. 7.

MEASURING PROCEDURES

Several methods of measuring quartz crystal units are in use.* Because different methods may give different results, our measuring procedure is given below. This is the *passive method with* π -network according to IEC publication 444. Further, the method is mentioned with *crystal test oscillator type* 150A, (make Saunders), which is recommended if a frequency correlation of 2 to 5 x 10⁻⁶ is tolerable. The accuracy of reproduction of the π -network method ranges between 10⁻⁶ and 10⁻⁸ depending on the type of crystal unit to be measured. The π -network method can be extended for measuring crystal unit parameters very accurately. This is achieved by a slight modification of the π -network, the use of precision reference resistors and two precision high-frequency load capacitors.

PASSIVE METHOD WITH *π*-NETWORK (IEC)

QUARTZ CRYSTAL UNITS

The principle of this method is very simple. With the equipment shown in the block diagram of Fig. 1, a stable signal source (frequency synthesizer) is adjusted to the frequency at which the signal has zero phase change when passing through the crystal as measured by the phase meter; this frequency (measured with the frequency counter) is then the resonance frequency of the crystal.

For ease of operation, it is possible to phase-lock the system by feeding back the analogue output of the phase error (from zero) to control the precise frequency of the signal source (A.F.C. loop shown by dashed line).

Fig. 1.

^t The following measuring methods can be applied on request for the time the obsolete equipment is available:

Method using *Crystal Test Set, type TS193A* (British Military Standard). Method using *Crystal Impedance Meter TS330/TSM* (U.S. Army Standard). Method using *Crystal Impedance Meter TS683/TSM* (U.S. Army Standard).

π -network

The first departure which must be made from the simple system of Fig. 1 is the test jig for holding the crystal. The test jig consists of two π -connected resistive pads, carefully manufactured to represent a pure, constant resistance, which is frequency insensitive at the terminals of the quartz crystal (see Fig. 2).

.

- The function of the input and output'pads' is twofold: (a) to match the crystal impedance to the associated equipment,
- (b) to attenuate reflections from the associated equipment.

For further particulars consult IEC recommendations, Publication 444.

Quartz crystal parameter measurements

A 5 pF trimming capacitor should be connected in parallel with each of the resistors R2 for accurate compensation of the transmission circuit. A shield is mounted between the contacting plates to reduce the capacitance between them. Two measuring procedures for crystal parameter measurement with the modified π -network are in use:

The CL method

In general, this method is used for fundamental mode crystal units with frequencies up to 25 MHz.

Precision load capacitors are inserted in the π -network. Load resonance frequency and load resonance resistance can then be measured directly. C1 can be calculated.

The impedance method

Generally this method is used for higher frequencies up to approximately 125 MHz.

Phase and impedance are measured, all other parameters can be calculated by means of a computer.

Crystal shielding

Depending on the application, crystal shielding may give rise to frequency deviations, in particular for fundamental mode crystal units with a considerable pulling sensitivity.

In our procedure the metal enclosure of the crystal unit normally is not earthed. If, in special cases, earthing is required this should be mentioned in the specification for ordering.

QUARTZ CRYSTAL UNITS

TESTS AND REQUIREMENTS

	1				
IEC 68-2 test method	TEST	PROCEDURE	REQUIREMENTS		
В	Ageing	storage for 1000h at +100 °C	Δ f/f $<$ ± 5 x 10 ⁻⁶		
Db	Accelerated damp-heat	+25 to +55 ^o C 6 cycles at > 95% R.H.	$ \begin{split} &\Delta f/f < \pm 5 \; x \; 10^{-6} \\ &\Delta R_{f} < \pm 20\% \\ &R_{ins} > 10^{8} \; \Omega \; \text{at 50 V (d.c.)} \end{split} $		
Na	Temperature cycling	—40 / +85 ºC 10 cycles 1h/cycle	$\Delta f/f < \pm 5 \times 10^{-6}$ $\Delta R_r < \pm 20\%$		
Ea	Shock	100g half sine 6 directions 1 blow/direction	$\Delta f/f < \pm 5 \times 10^{-6}$ $\Delta R_r < \pm 20\%$		
Fc	Vibration	10-500-10 Hz acceleration 10g 3 directions 30 min/direction	$\Delta f/f < \pm 5 \times 10^{-6}$ $\Delta R_r < \pm 20\%$		
Eb	Bump	4000 bumps of 40g	$\Delta f/f < \pm 5 \times 10^{-6}$ $\Delta R_r < \pm 20\%$		
_	Free fall	3 times h = * on hard wood	$\Delta f/f < \pm 5 \times 10^{-6}$ $\Delta R_r < \pm 20\%$		
UB	Bending of terminations	1 x 90 ^o load 5 N	No visual damage No leaks		
Qc, Qk	Sealing	16 hours 700 kPa Helium	< 10 ⁻⁸ ncc/s He		
Tb	Resistance to soldering heat	350 ± 10 °C 3,5 ± 0,5 s	$ \Delta f/f < \pm 5 \times 10^{-6} $		
Та	Solderability	235 ± 5 °C 2 ± 0,5 s	Good tinning No visual damage No leaks		

Table 1 RW-43 - economy range

* h = 750 mm for the frequency range from 3 to 8 MHz h = 250 mm for the frequency range from 8 to 14 MHz

IEC 68-2 test method	TEST	PROCEDURE	REQUIREMENTS						
	Ageing	storage for 1000 h at + 85 °C	Δ f/f $<$ ± 5 x 10 ⁻⁶						
Db	Accelerated damp-heat	+25 to +55 °C 6 cycles at > 95% R.H.	$\begin{split} & \Delta f/f < \pm 5 \ x \ 10^{-6} \\ & \Delta R_r < \pm 20\% \\ & R_{ins} > 10^8 \ \Omega \ \text{at } 50 \ \text{V} \ (\text{d.c.}) \end{split}$						
Na	Temperature * cycling	−40 / +85 °C 10 cycles 1h/cycle	Δ f/f $<$ ± 5 x 10 ⁻⁶ Δ R _r $<$ ± 20%						
Ea	Shock	100g half sine 6 directions 1 blow/direction	$\Delta f/f < \pm 5 \times 10^{-6}$ $\Delta R_r < \pm 20\%$						
Fc	Vibration	10-500-10 Hz acceleration 10g 3 directions 30 min/directions	$\Delta f/f < \pm 5 \times 10^{-6}$ $\Delta R_r < \pm 20\%$						
Eb	Bump	3000 bumps of 30g	$ \Delta f/f < \pm 5 \times 10^{-6} \\ \Delta R_r < \pm 20\% $						
Ed	Free fall	3 times h = 250 mm on hard wood	$\Delta f/f < \pm 5 \times 10^{-6}$ $\Delta R_r < \pm 20\%$						
UB	Bending of terminations	1 x 90 ^o load 5 N	No visual damage No leaks						
Qc, Qx	Sealing	16 hours 700 kPa Helium	< 10 ⁻⁸ ncc/s						
Тb	Resistance to heat	350 ± 5 °C 3 ± 1 s	$\Delta f/f < \pm 5 \times 10^{-6}$ $\Delta R_r < \pm 20\%$						
Т	Solderability	260 ± 5 °C 10 ± 1 s	Good tinning No visual damage No leaks						

Table 2 RW-10 and RW 43

Table 3, RW-36; RW-42/43; RW 80; TO-39

IEC 68-2 test method	TEST	PROCEDURE	REQUIREMENTS		
	Ageing	storage for 1000h at + 85 °C	$\Delta f/f < \pm 10 \times 10^{-6}$		
Db	Accelerated damp heat	+25 to +55 °C 6 cycles at > 95% R.H.	$\begin{split} &\Delta f/f < \pm 5 \times 10^{-6} \\ &\Delta R_r < \pm 20\% \\ &R_{ins} > 10^8 \; \Omega \text{ at } 50 \; \text{V (d.c.)} \end{split}$		
Na	Temperature cycling	–40 / +85 °C 10 cycles 1h/cycle	Δ f/f \leq ± 5 x 10 ⁻⁶ Δ R _r $<$ ± 20%		
Ea	Shock	100g half sine 6 directions 1 blow/direction	$\Delta f/f < \pm 5 \times 10^{-6}$ $\Delta R_r < \pm 20\%$		
Fc	Vibration	10-500-10 Hz acceleration 10g 3 directions 30 min/direction	$\Delta f/f < \pm 5 \times 10^{-6}$ $\Delta R_r < \pm 20\%$		
Eb	Bump	3000 bumps of 30g	$\Delta f/f < \pm 5 \times 10^{-6}$ $\Delta R_r < \pm 20\%$		
UB*	Bending of terminations	1 x 90 ^o Ioad 5 N	No visual damage No leaks		
Qc, Qx	Sealing	16 hours 700 kPa Helium	< 10 ⁻⁸ ncc/s		
Tb*	Resistance to soldering heat	350 ± 5 °C 3 ± 1 s	$ \Delta f/f < \pm 5 \times 10^{-6} \\ \Delta R_r < \pm 20\% $		
Τ*	Solderability	260 ± 5 °C 10 ± 1 s	Good tinning No visual damage No leaks		

* Only for encapsulation-types with leads.

QUARTZ CRYSTAL UNITS AS DIGITAL TEMPERATURE SENSOR

The most well-known applications of quartz crystal units are those where the crystal is used in oscillator and filter circuits, as a frequency-selective element with an extremely high Q-factor. By correct choice of the cutting angle of the vibrating plate, it is possible to obtain a very low TC over a limited temperature range.

Examples of such crystal cuts are: AT, BT, CT and GT cuts.

On the other hand, it is also possible to cut crystal plates in such a way that the resonance frequency is an almost linear function of the temperature. In fact, the very first discovered quartz crystal cut, the "Y-cut", was such a cut.

There are, however, some disadvantages which make this cut less suitable for temperature sensing, for which reason special cuts have been introduced depending on the application.

How to use a quartz crystal unit as a temperature sensor

To be able to measure temperatures with a quartz crystal sensor, the device should be connected to an oscillator circuit which usually consists of one or two transistors or an integrated circuit. The oscillator will produce an output signal whose frequency will change by -40 to $+80 \cdot 10^{-6}/K$, depending on the cutting angle. There are several possible ways of processing this signal as shown in Figs 1 to 4.

Thanks to the excellent stability, the low ageing and its 'digital' nature, resolutions of 0,001 K are easy to achieve without noise problems. This renders the device particular suitable for measurements of very small temperature differences as in distillation columns and flow meters.

Fig. 1.

Fig. 4 Miniature wireless temperature sensor,

QUARTZ CRYSTAL UNITS

HOW TO SPECIFY A QUARTZ CRYSTAL UNIT

When ordering quartz crystal units for which a catalogue number (12 digits) has been fixed, please quote catalogue numbers as stated in this Data Handbook.

For quotation or ordering a quartz crystal unit which still has no complete catalogue number the supplier needs to know certain basic information. Please use the following check list.

Type of crystal unit

Type of holder				
Nominal frequency	kHz			
Mode of vibration		fundamental or <mark>third</mark> overtone		
Permissible deviation from nominal frequency (adjustment tolerance) at + 25 °C				
Temperature range	from	to	°C	
Frequency drift over specified temperature range	x 10 ⁻⁶			
Circuit conditions: resonant frequency f_r or load resonant frequency f_L and load capacitance C_L maximum resonance resistance R_r or maximum load resonance resistance R_L				
Crystal unit equivalent parameters C1 C0 R1 L1	fF pF Ω mH			
Level of drive	mW			
Ageing $\Delta f/f$ per month or year				
Mechanical requirements/tests				

MARKING

The marking on the unit includes the nominal frequency by means of 7 or 8 figures, in kHz in the case of fundamental crystals and in MHz in the case of overtone crystals. Other figures include the five last digits of the catalogue number. The last digit printed on the unit may, however, be different. Also a manufacturing date is stated, referring to the year and month of manufacture, e.g. 424 means the 24th week of 1984.

HOLDERS

February 1986

METAL HOLDERS

Dimensions in mm (in inches between brackets)

RW-10 resistance welded

Holders

QUARTZ CRYSTAL UNITS

RW-42 resistance welded

resistance welded ℓ is specified per type

RW-80 resistance welded

TO-39

Resistance welded

Pin 2 is connected to the case.

CORRESPONDING IEC AND DIN TYPE NUMBERS

	IEC 122-3	DIN 45110
HC-6/U	AA	K1A
HC-26/U	CY	R2A
HC-27/U	DA	Q1A
HC-27/U, extended	DB	Q1B
HC-29/U	CZ	R1A
HC-33/U	¹ (-
RW-10	DS	K4A
RW-36	-	КЗА
RW-42	DQ	МЗА
RW-43	DP	M4A
RW-80	35/EB	N4B
ТО-39	17/CK	T1A

MOUNTING

Crystal units provided with pins (such as HC-6/U, HC-27/U etc.) are for mounting in sockets. These sockets are not supplied by us.

Crystal units with leeds are for mounting on p.c. boards. There are basicly two methods: horizontal and vertical mounting.

Horizontal (flat) mounting gives better mechanical stability while vertical mounting uses less p.c. board space.

To prevent a permanent damage of crystal units during mounting operations, some precautions have to be taken:

- -- Glass feed-throughs are rather vulnerable so avoid excessive forces on the leads which can cause leakage. If cutting of the leads is nessesary, use suitable tools to prevent shockwaves in the leads.
- If bending of the leads is nessesary e.g. in case of flat mounting, make the bend at least 2 mm away from the body with a bending radius > 0.5 mm.
- Keep in mind, especially in case of vertical mounting, that for the first mm of the leads away from the body tinning is not guaranteed. For thin p.c. boards (e.g. 0,7 mm) the use of spacers is recommended.
- All crystal types are designed such that they withstand all commonly used soldering technics (see tests and requirements). Exposing the crystal units to high temperatures for a prolonged time, however, should be avoided.

Several crystal types can be ordered with two lead-lengths: standard 12 mm for flat mounting and 5 mm for vertical mounting.

For utmost mechanical stability and electrical reproducebility, metal types can be supplied with a third (top)lead which serves both as a ground wire and a three-point attachment to the p.c. board.

QUARTZ CRYSTAL UNITS, ECONOMY TYPES

economy types in RW-43 encapsulation

QUICK REFERENCE DATA

Nominal frequency	3 000,000 to 14 000,000 kHz
Mode of vibration	fundamental
Type of encapsulation	RW-43

APPLICATION

Industrial and consumer equipment. See table on next pages.

DESCRIPTION

The unit consists of a metal-plated AT-cut quartz plate, mounted in a hermetically sealed resistance welded RW-43 encapsulation and is provided with two connecting leads. These units are massproduced on an automated production line which guarantees a very high level of

uniformity and reliability.

See also "General" section.

MECHANICAL DATA

Outlines: see General section, RW-43

Mass: 2 g approximately

ELECTRICAL DATA

Unless otherwise specified the values apply at a temperature of 25 \pm 2 °C and a level of drive of 0,5 mW related to 25 Ω . Measuring system π -network according to IEC-444 recommendation.

Frequency tolerance	$< \pm$ 25 x 10 ⁻⁶ *
Load capacitance C	20 pF **
Motional capacitance C1	see Fig. 1
Parallel capacitance Co	see Fig. 1
Resonance resistance Rr	see Fig. 2
Frequency tolerance w.r.t. +25 °C	see Fig. 2
in the temperature range: 0 to +50 °C	$< \pm$ 15 x 10 ⁻⁶ *
-20 to +70 °C	< ± 25 x 10 ⁻⁶ *
-40 to +85 °C	< ± 40 x 10 ⁻⁶ *
Resonance of unwanted responses	>2 R _r
Insulation resistance	$>$ 10 ¹⁰ Ω at 100 V (d.c.)
Permissible d.c. voltage between the leads	max. 100 V

See table on the next pages for other parameters and for standard frequencies.

TESTS AND REQUIREMENTS

See General section, Table 1

- * Other combinations of tolerance and temperature range available on request.
- ** 20 pF is the standard load capacitance for 4322 143 series. Crystals can be calibrated at other C₁ values on request.

Table 1

Specifications of quartz crystal units in RW-43 holder; economy range.

kHz 4322 143 °C $p\bar{F}$ $< \pm x 10^{-6}$ 3000,000 04480 -40 to + 90 30 60 3276,800 04421 -20 to + 70 20 30 3276,800 04421 -20 to + 70 20 30 3276,800 04421 -20 to + 70 20 30 3439,593 04911 -40 to + 80 - 30 3440,000 04761 -40 to + 80 20 30 3547,000 04491 -10 to + 60 30 20 3579,545 04391 -20 to + 70 - 100 3582,056 04381 -10 to + 60 20 25 3640,000 04651 -20 to + 70 - 40 3750,545 04431 -10 to + 66 30 25 3686,400 04551 -20 to + 70 - 40 3750,000 04481 0 to + 60 20 15 3932,160 04670 -40 to + 90 17	frequency range	catalogue number	temp. range	CI	freq. tol.	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	kHz	4322 143	°C	pF	$< \pm x \ 10^{-6}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3000.000	04411	-20 to + 70	20	30	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3000,000	04680	-40 to $+90$	30	60	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3000.000*	04860				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3276 800	04421	$-20 \text{ to } \pm 70$	20	30	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3276 800*	04850	2010.10	20		
3440,000 04571 -40 to $+80$ 20 30 3440,000 04761 -40 to $+80$ 30 30 3547,000 04491 -10 to $+70$ 20 30 3579,545 04391 -20 to $+70$ $-$ 100 3582,056 04381 -10 to $+70$ $-$ 100 3640,890 04690 -40 to $+90$ 20 50 3666,400 04371 -10 to $+60$ 30 25 3686,400 04451 -20 to $+70$ $-$ 40 3750,000 04431 -10 to $+60$ 30 25 3686,400 04451 -20 to $+70$ 30 50 3927,696 04481 0 to $+60$ 20 15 4000,000 044261 -10 to $+60$ 30 25 4000,000 04261 -10 to $+60$ 30 15 4000,000 044261 -20 40 4096,000 000,000 04483 -10 to $+60$	3439 593	04911	-40 to $+80$	_	30	
3440,00004761 -40 to $+80$ 30303547,00004491 -10 to $+60$ 30203579,54504391 -20 to $+70$ $-$ 1003682,05604381 -10 to $+60$ 20253640,89004690 -40 to $+90$ 20503886,40004451 -10 to $+66$ 30253686,40004451 -20 to $+70$ $-$ 403750,00004441 -20 to $+70$ $-$ 403784,00004431 -10 to $+66$ 30253932,16004670 -40 to $+90$ 17503937,696044810 to $+60$ 30254000,00004093 -10 to $+60$ 30254000,00004261 -10 to $+60$ 30254000,00004480 -10 to $+60$ 30254000,00004470 -40 to $+90$ 20504006,00004700 -40 to $+90$ 20504006,00004700 -40 to $+90$ 20504096,00004711 -10 to $+60$ 30254194,30404471 -20 to $+70$ $-$ 304233,61904043 -10 to $+60$ 20254433,61904252 -10 to $+60$ 20254433,61904252 -10 to $+60$ 20254433,61904282 -10 to $+60$ 20254433,61904282 -10 to $+60$ 2025<	3440,000	04571	-40 to $+80$	20	30	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3440,000	04761	-40 to + 80	30	30	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3547 000	04491	-10 to + 60	30	20	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3579 545	04391	-20 to + 70	20	30	
3582.05604381 -10 to $+60$ 20253640,89004690 -40 to $+90$ 20503686,40004371 -10 to $+60$ 30253686,40004451 -20 to $+70$ $-$ 403750,00004431 -10 to $+65$ 1373840,00004441 -20 to $+70$ 30503932,16004670 -40 to $+90$ 17503997,696044810 to $+60$ 30254000,00004093 -10 to $+60$ 30154000,00004261 -10 to $+60$ 30154000,0000422710 to $+60$ 30154000,000044840 -40 to $+90$ 20504096,000*04770 -40 to $+90$ 20504194,30404083 -10 to $+60$ 11,4254194,30404483 -10 to $+60$ 11,425423,60004461 -20 to $+70$ -30 30423,61904431 -10 to $+60$ 20254433,61904252 $+10$ to $+55$ 20154433,61904282 -10 to $+60$ 20254433,61904282 -10 to $+66$ 2025 </td <td>3579 545</td> <td>04401</td> <td>-20 to + 70</td> <td>_</td> <td>100</td> <td></td>	3579 545	04401	-20 to + 70	_	100	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3582 056	04381	-10 to + 60	20	25	
$3686,400$ 04371 $-10 \text{ to} + 60$ 30 25 $3686,400$ 04551 $-20 \text{ to} + 70$ $ 40$ $3750,000$ 04431 $-10 \text{ to} + 65$ 13 7 $3840,000$ 04441 $-20 \text{ to} + 70$ 30 50 $3932,160$ 04670 $-40 \text{ to} + 90$ 17 50 $3997,696$ 04481 $0 \text{ to} + 60$ 20 15 $4000,000$ 04261 $-10 \text{ to} + 60$ 30 25 $4000,000$ 04261 $-10 \text{ to} + 60$ 30 15 $4000,000$ 04261 $-10 \text{ to} + 60$ 30 15 $4000,000$ 04281 $-10 \text{ to} + 60$ 30 25 $4000,000$ 04480 $-40 \text{ to} + 90$ 20 50 $4096,000$ 04700 $-40 \text{ to} + 90$ 20 50 $4096,000^*$ 04771 $-10 \text{ to} + 60$ 30 25 $4194,304$ 04471 $-40 \text{ to} + 80$ 20 50 $4233,600$ 04461 $-20 \text{ to} + 70$ 30 30 $4233,600$ 04351 $-10 \text{ to} + 60$ 20 25 $4433,619$ 04282 $-10 \text{ to} + 55$ 20 15 $4433,619$ 04282 $-10 \text{ to} + 60$ 20 25 $4433,619$ 04282 $-10 \text{ to} + 65$ 13 7 $4531,468$ 04121 $-10 \text{ to} + 65$ 13 7 $4608,000$ 04331 $0 \text{ to} + 70$ $ 30$ $4782,720$	3640 890	04690	-40 to + 90	20	50	
$3686,400$ 04551 $-20 to + 70$ $ 40$ $3750,000$ 04431 $-10 to + 65$ 13 7 $3840,000$ 04441 $-20 to + 70$ 30 50 $3932,160$ 04670 $-40 to + 90$ 17 50 $3997,696$ 04481 $0 to + 60$ 20 15 $4000,000$ 04093 $-10 to + 60$ 30 25 $4000,000$ 04261 $-10 to + 60$ 30 25 $4000,000$ 04271 $0 to + 60$ 30 15 $4000,000^*$ 044840 $-40 to + 90$ 20 50 $4096,000$ 04771 $-10 to + 60$ $11,4$ 25 $4194,304$ 04471 $-40 to + 80$ 20 50 $4233,600$ 04461 $-20 to + 70$ $ 30$ $4250,000$ 04351 $-10 to + 60$ 20 25 $4406,250$ 04351 $-10 to + 60$ 20 25 $4433,619$ 04252 $+10 to + 55$ 20 15 $4433,619$ 04252 $-10 to + 60$ 20 25 $4433,619$ 04282 $-10 to + 60$ 20 25 $4435,571$ 04872 $-10 to + 60$ 20 25 $4435,671$ 04872 $-10 to + 60$ 20 25 $4435,619$ 04252 $+10 to + 55$ 13 7 $4531,468$ 04121 $-10 to + 60$ 20 25 $4500,000$ 04331 $0 to + 70$ $ 30$ $4782,720$ <	3686 400	04371	-10 to + 60	30	25	
$3750,000$ 04431 -10 to $+65$ 13 7 $3840,000$ 04431 -20 to $+70$ 30 50 $3932,160$ 04670 -40 to $+90$ 17 50 $3997,696$ 04481 0 to $+60$ 20 15 $4000,000$ 04093 -10 to $+60$ 30 25 $4000,000$ 04261 -10 to $+60$ 30 25 $4000,000$ 04261 -10 to $+60$ 30 15 $4000,000$ 04271 0 to $+60$ 30 15 $4000,000^*$ 04481 -10 to $+60$ 30 25 $4000,000^*$ 04771 -10 to $+60$ 30 25 $4096,000$ 047700 -40 to $+90$ 20 50 $4096,000^*$ 04771 -10 to $+60$ 30 25 $4194,304$ 04083 -10 to $+60$ $11,4$ 25 $4194,304$ 04471 -40 to $+80$ 20 50 $4233,600$ 04461 -20 to $+70$ $ 30$ $4233,600$ 04351 -10 to $+60$ 20 25 $4433,619$ 04252 $+10$ to $+55$ 20 15 $4433,619$ 04282 -10 to $+60$ 20 25 $4433,619$ 04282 -10 to $+65$ 13 7 $4608,000$ 04341 0 to 70 $ 30$ $4782,720$ 04033 -20 to 70 $ 30$ $4782,720$ 04033 -20 to 70 $ 50$ </td <td>3686 400</td> <td>04551</td> <td>-20 to + 70</td> <td>_</td> <td>40</td> <td></td>	3686 400	04551	-20 to + 70	_	40	
$3840,000$ 04441 $-20 to + 70$ 30 50 $3932,160$ 04670 $-40 to + 90$ 17 50 $3997,696$ 04481 $0 to + 60$ 20 15 $4000,000$ 04093 $-10 to + 60$ 30 25 $4000,000$ 04261 $-10 to + 60$ 30 25 $4000,000$ 04271 $0 to + 60$ 30 15 $4000,000^{\circ}$ 04881 $-10 to + 60$ 20 40 $4096,000^{\circ}$ 04700 $-40 to + 90$ 20 50 $4096,000^{\circ}$ 04771 $-10 to + 60$ 30 25 $4194,304$ 04083 $-10 to + 60$ $11,4$ 25 $4194,304$ 044711 $-40 to + 80$ 20 50 $4233,600$ 04461 $-20 to + 70$ 30 30 $4250,000$ 04351 $-10 to + 60$ 20 25 $4433,619$ 04252 $+10 to + 55$ 20 15 $4433,619$ 04252 $-10 to + 60$ 20 25 $4433,619$ 04282 $-10 to + 60$ 20 25 $4433,619$ 04282 $-10 to + 65$ 13 7 $4531,468$ 04121 $-10 to + 70$ $ 30$ $4782,720$ 04033 $-20 to + 70$ $ 30$ $4782,720$ 04231 $-20 to + 70$ $ 30$ $4905,021$ 04601 $-20 to + 70$ 20 30	3750,000	04431	-10 to + 65	13	7	
$3932,180$ 0.4670 -40 to $+90$ 17 50 $3997,696$ 04481 0 to $+60$ 20 15 $4000,000$ 04093 -10 to $+60$ 30 25 $4000,000$ 04261 -10 to $+60$ 30 15 $4000,000$ 04271 0 to $+60$ 30 15 $4000,000^*$ 04840 -10 to $+60$ 20 40 $4000,000^*$ 04881 -10 to $+60$ 20 40 $4096,000$ 047700 -40 to $+90$ 20 50 $4096,000^*$ 04771 -10 to $+60$ $11,4$ 25 $4194,304$ 04483 -10 to $+80$ 20 50 $4233,600$ 04461 -20 to $+70$ $ 30$ $4233,600$ 04461 -20 to $+70$ 30 30 $4233,600$ 04451 -10 to $+60$ 20 25 $4406,250$ 04351 -10 to $+60$ 20 25 $4433,619$ 04252 $+10$ to $+55$ 20 15 $4433,619$ 04282 -10 to $+60$ 20 25 $4433,619$ 04282 -10 to $+65$ 13 7 $4608,000$ 04111 -10 to $+65$ 13 7 $4608,000$ 04781 -20 to $+70$ $ 30$ $4782,720$ 04033 -20 to $+70$ $ 30$ $4905,021$ 04601 -20 to $+70$ 20 30	3840,000	04441	-20 to + 70	30	50	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3932 160	04670	-40 to $+90$	17	50	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3997 696	04481	0 to + 60	20	15	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4000,000	04093	-10 to + 60	30	25	
$1000,000$ 04271 $10 to + 60$ 20 $10 to + 60$ $4000,000^*$ 04840 $0 to + 60$ 20 40 $4096,000$ 04700 $-40 to + 90$ 20 50 $4096,000^*$ 04771 $-10 to + 60$ 30 25 $4194,304$ 04083 $-10 to + 60$ $11,4$ 25 $4194,304$ 044711 $-40 to + 80$ 20 50 $4233,600$ 044611 $-20 to + 70$ $ 30$ $4233,600$ 044611 $-20 to + 70$ 30 30 $4233,600$ 044611 $-10 to + 60$ 20 25 $4406,250$ 04351 $-10 to + 60$ 20 25 $4433,619$ 044252 $+10 to + 55$ 20 15 $4433,619$ 04282 $-10 to + 60$ 20 25 $4433,619$ 04282 $-10 to + 60$ 20 25 $4433,619$ 04282 $-10 to + 65$ 13 7 $4531,468$ 04121 $-10 to + 65$ 13 7 $4608,000$ 04341 $0 to + 70$ $ 30$ $4782,720$ 04291 $-20 to + 70$ $ 30$ $4782,720$ 04291 $-20 to + 70$ $ 50$ $4905,021$ 04132 $-20 to + 70$ 20 30	4000 000	04261	-10 to + 60	20	25	
$4000,000^*$ 04840 $-10 \text{ to } + 60$ 20 40 $4000,000$ 04881 $-10 \text{ to } + 60$ 20 50 $4096,000$ 04700 $-40 \text{ to } + 90$ 20 50 $4096,000^*$ 04771 $-10 \text{ to } + 60$ 30 25 $4194,304$ 04083 $-10 \text{ to } + 60$ $11,4$ 25 $4194,304$ 04471 $-40 \text{ to } + 80$ 20 50 $4233,600$ 04461 $-20 \text{ to } + 70$ $ 30$ $4233,600$ 04461 $-20 \text{ to } + 70$ 30 30 $4233,600$ 04361 $-10 \text{ to } + 60$ 20 25 $4406,250$ 04351 $-10 \text{ to } + 60$ 20 25 $4433,619$ 04252 $+10 \text{ to } + 55$ 20 15 $4433,619$ 04282 $-10 \text{ to } + 60$ 20 25 $4433,619$ 04282 $-10 \text{ to } + 60$ 20 25 $4433,619$ 04282 $-10 \text{ to } + 60$ 20 25 $4433,619$ 04282 $-10 \text{ to } + 65$ 13 7 $4608,000$ 04341 $0 \text{ to } + 70$ $ 30$ $4782,720$ 04033 $-20 \text{ to } + 70$ $ 30$ $4782,720$ 04291 $-20 \text{ to } + 70$ $ 50$ $4905,021$ 04132 $-20 \text{ to } + 70$ $ 50$ $4905,021$ 04132 $-20 \text{ to } + 70$ 20 30	4000,000	04271	0 to + 60	30	15	
$4000,000$ 04881 $-10 \text{ to } + 60$ 20 40 $4096,000$ 04700 $-40 \text{ to } + 90$ 20 50 $4096,000^*$ 04771 $-10 \text{ to } + 60$ 30 25 $4194,304$ 04083 $-10 \text{ to } + 60$ $11,4$ 25 $4194,304$ 04471 $-40 \text{ to } + 80$ 20 50 $4233,600$ 04461 $-20 \text{ to } + 70$ $ 30$ $4233,600$ 04561 $-20 \text{ to } + 70$ $ 30$ $4250,000$ 04361 $-10 \text{ to } + 60$ 20 25 $4406,250$ 04351 $-10 \text{ to } + 60$ 20 25 $4433,619$ 04252 $+10 \text{ to } + 55$ 20 15 $4433,619$ 04282 $-10 \text{ to } + 60$ 20 25 $4433,619$ 04282 $-10 \text{ to } + 65$ 13 7 $4531,468$ 04121 $-10 \text{ to } + 65$ 13 7 $4608,000$ 04341 $0 \text{ to } + 70$ $ 30$ $4782,720$ 04033 $-20 \text{ to } + 70$ $ 30$ $4782,720$ 04291 $-20 \text{ to } + 70$ $ 50$ $4905,021$ 04132 $-20 \text{ to } + 70$ 20 30	4000 000*	04840	0.00.00	00		
$4096,000$ 04700 $-40 \text{ to } + 90$ 20 50 $4096,000^*$ 04771 $-10 \text{ to } + 60$ 30 25 $4194,304$ 04083 $-10 \text{ to } + 60$ $11,4$ 25 $4194,304$ 04471 $-40 \text{ to } + 80$ 20 50 $4233,600$ 04461 $-20 \text{ to } + 70$ $ 30$ $4233,600$ 04461 $-20 \text{ to } + 70$ $ 30$ $4233,600$ 04461 $-20 \text{ to } + 70$ 30 30 $4233,600$ 04461 $-10 \text{ to } + 60$ 20 25 $4406,250$ 04351 $-10 \text{ to } + 60$ 20 25 $4433,619$ 04252 $+10 \text{ to } + 55$ 20 15 $4433,619$ 04282 $-10 \text{ to } + 60$ 20 25 $4433,619$ 04282 $-10 \text{ to } + 65$ 13 7 $4531,468$ 04121 $-10 \text{ to } + 65$ 13 7 $4608,000$ 04341 $0 \text{ to } + 70$ $ 30$ $4782,720$ 04033 $-20 \text{ to } + 70$ $ 30$ $4782,720$ 04291 $-20 \text{ to } + 70$ $ 50$ $4905,021$ 04132 $-20 \text{ to } + 70$ 20 30	4000,000	04881	-10 to + 60	20	40	
$4096,000^*$ 04771 -10 to $+60$ 30 25 $4194,304$ 04083 -10 to $+60$ $11,4$ 25 $4194,304$ 04471 -40 to $+80$ 20 50 $4233,600$ 04461 -20 to $+70$ $ 30$ $4233,600$ 04461 -20 to $+70$ $ 30$ $4233,600$ 04461 -20 to $+70$ 30 30 $4233,600$ 04361 -10 to $+60$ 20 25 $4406,250$ 04351 -10 to $+60$ 20 25 $4433,619$ 04282 -10 to $+60$ 20 25 $4433,619$ 04282 -10 to $+60$ 20 25 $4433,619$ 04282 -10 to $+65$ 13 7 $4531,468$ 04121 -10 to $+65$ 13 7 $4608,000$ 04341 0 to $+70$ $ 40$ $4782,720$ 04033 -20 to $+70$ $ 30$ $4782,720$ 04291 -20 to $+70$ $ 50$ $4905,021$ 04132 -20 to $+70$ 20 30	4096 000	04700	-40 to $+90$	20	50	
4194,304 04083 -10 to $+60$ $11,4$ 25 $4194,304$ 04471 -40 to $+80$ 20 50 $4233,600$ 04461 -20 to $+70$ $ 30$ $4233,600$ 04461 -20 to $+70$ $ 30$ $4233,600$ 04561 -20 to $+70$ 30 30 $4250,000$ 04361 -10 to $+60$ 20 25 $4406,250$ 04351 -10 to $+60$ 20 25 $4433,619$ 04043 -10 to $+60$ 20 25 $4433,619$ 04252 $+10$ to $+55$ 20 15 $4433,619$ 04252 -10 to $+60$ 20 25 $4433,619$ 04282 -10 to $+60$ 20 25 $4433,619$ 04282 -10 to $+65$ 13 7 $4531,468$ 04121 -10 to $+65$ 13 7 $4608,000$ 04341 0 to $+70$ $ 40$ $4782,720$ 04033 -20 to $+70$ $ 30$ $4782,720$ 04291 -20 to $+70$ $ 50$ $4905,021$ 04132 -20 to $+70$ 20 30	4096.000*	04771	-10 to + 60	30	25	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4194.304	04083	-10 to $+60$	11.4	25	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4194.304	04471	-40 to $+80$	20	50	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4233.600	04461	-20 to + 70		30	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4233,600	04561	-20 to + 70	30	30	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4250,000	04361	10 to + 60	20	25	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4406,250	04351	-10 to + 60	20	25	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4433,619	04043	-10 to + 60	20	25	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4433,619	04252	+ 10 to + 55	20	15	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4433,619	04282	-10 to + 60	20	25	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4435,571	04872	-10 to + 60	20	25	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4500,000	04111	-10 to + 65	13	7	
4608,000 04341 0 to + 70 - 40 4782,720 04033 -20 to + 70 - 30 4782,720 04291 -20 to + 70 - 100 4865,000 04781 -20 to + 70 - 50 4905,021 04601 -20 to + 70 20 30 4905,021 04132 -20 to + 70 20 30	4531,468	04121	-10 to + 65	13	7	
4782,720 04033 -20 to + 70 - 30 4782,720 04291 -20 to + 70 - 100 4865,000 04781 -20 to + 70 - 50 4905,021 04601 -20 to + 70 20 30 4905,021 04132 -20 to + 70 20 30	4608,000	04341	0 to + 70		40	
4782,72004291-20 to + 70-1004865,00004781-20 to + 70-504905,02104601-20 to + 7020304905,02104132-20 to + 702030	4782,720	04033	-20 to + 70		30	
4865,000 04781 -20 to + 70 - 50 4905,021 04601 -20 to + 70 20 30 4905,021 04132 -20 to + 70 20 30	4782,720	04291	-20 to + 70		100	
4905,021 04601 -20 to + 70 20 30 4905,021 04132 -20 to + 70 20 30	4865,000	04781	-20 to + 70	_	50	
4905,021 04132 -20 to + 70 20 30	4905,021	04601	-20 to + 70	20	30	
	4905,021	04132	-20 to + 70	20	30	

* Development types.

R	С _О	C ₁	pullability	wire length	application
Ω	pF	fF	10 ⁻⁶ /pF	mm	
< 150	4,0	10,0	> 8	12	automotive
< 200		—	-	12	automotive
< 100	4,3	13,5	> 7	12	automotive general purpose
< 100	4,3	13,5	-	12	automotive
< 100	4,3	13,5	> 9	12	general purpose
< 100	4,3	13,5	> 4	12	general purpose
< 100	4,5	14,5	> 5	12	video games
< 100	4,5	14,7	> 10	12	video
< 100	4,5	14,7	-	12	two-tone dialling
< 100	4,5	14,7	> 10	12	video
< 100			-	12	automotive
< 100	4,5	15,0	> 5	12	general purpose
< 100	4,5	15,0	-	12	general purpose
< 75 < 75 < 75	4,5 4,6	15,0 15,4	> 22 > 5	12 12	VLP general purpose
< 75 < 75 < 75	4,7 2,8 2,8	15,8 11,0 11,0	> 14 > 7 > 3	12 12 12	general purpose digital tuners
< 75	2,8	11,0	> 9	12	video
< 75	2,8	11,0	> 3	12	video
< 75	2,8	11,0	> 9	13,2	general purpose
< 60	5,0	18,5	>12	12	automotive,
< 75	5,0	18,5	> 6	12	general purpose
< 60	2,9	11,6	> 24	12	clock
< 60 < 60	2,9 5,2 5,2	16,7 16,7	> 9 - > 6	12 12 12	compact disc
< 60 < 60 < 60	5,2 5,4	16,7 20,5	> 12 > 15	12 12 12	video general purpose
< 60 < 60 < 60	5,5 5,5 5,5	20,6 20,6 20,6	> 12 > 12 > 12 > 12	5	VCR video
< 60 < 60 < 60	5,5 5,6 5,6	20,6 18,4 18.4	> 12 > 22 > 22	5 12 12	video video
< 60 < 60 < 60	5,8 5,7	22,0 21,4	- 22 -	12 12 12	general purpose general purpose
< 60 < 60 < 60	5,7 5,7 5 0	21,4 22,5 22.9	- - > 12	12 12 12	two-tone dialling general purpose
< 60	5,9	22,9	> 13	5	yenerai purpose
< 60	5,9	22,9	> 13		video

4322 143 SERIES

Table 1 (continued)

frequency range	catalogue number	temp. range	CL	freq. tol.	
kHz	4322 143	°C	pF	<± x 10 ⁻⁶	
4915,200	04141	+ 5 to + 45	30	50	
4915,200	04201	+ 5 to + 45	30	20	
5000,000	04151	-20 to + 70	20	20	
5068,800	04331	20 to + 70	20	30	
5068,800	04451	20 to + 70	-	30	
5068,800	04541	-15 to + 70	-	30	
5120,000	04161	-20 to + 70	20	30	
5120,000	04751	-20 to + 70	20	30	
5760,000*	04810	-40 to + 105	20	100	
5911,000	04521	-20 to + 60	20	20	
6000,000	04101	-20 to + 70	20	30	
6000,000	04532	-20 to + 70	20	30	
6000,000	04582	-10 to + 40	20	-27,5/K	
6000,000	04710	-40 to + 115	22	80	
6000,000*	04830	-40 to + 105	20	80	
6000,000*	04981	-20 to + 70			
6041,957	04591	-20 to + 70	20	30	
6144,000	04321	0 to + 70	20	50	
6400,000	04311	-20 to + 70	20	25	
7000,000	04791	-10 to + 60	20	30	
7151,223	04171	-10 to + 60	20	25	
7159,090	04181	-10 to + 60	20	25	
7164,112	04191	-20 to + 70	20	25	
7372,800	04951	-40 to + 115	20	80	
8000,000	04301	-20 to + 70	20	25	
8000,000	04721	-40 to + 115	20	80	
8388,608	04821	-40 to + 115	20	80	
8867,238	04051	-10 to + 60	20	25	
8867,238	04222	-10 to + 60	20	25	
8867,238	04731	-40 to + 115	20	80	
9830,400	04611	0 to + 70	-	50	
10000,000	04621	-40 to + 115	20	80	
10000,000	04971	-40 to + 115	22	80	
11000,000	04741	-40 to + 115	20	80	
11059,000	04921	-10 to + 60	30	30	
11059,200	04931	-10 to + 60	30	30	
11289,600	05031	-20 to + 70	30	19	
12000,000	04631	-40 to + 115	20	80	
13875,000	04891	20 to + 70	20	30	
13875,000	04961	-20 to + 70	20	30	

* Development types.

R Ω	С _О pF	C ₁ fF	pullability 10 ⁻⁶ /pF	wire length mm	application
$\begin{array}{cccc} & 60 \\ < & 60 \\ < & 60 \\ < & 60 \\ < & 60 \\ < & 60 \\ < & 60 \\ < & 60 \\ < & 100 \\ < & 60 \\ < & 60 \\ < & 60 \\ < & 60 \\ < & 60 \\ < & 40 \end{array}$	3,2 3,2 3,2 3,2 3,2 3,2 3,2 3,5 3,5 3,5 3,5 3,5 3,7 6,9 6,9 3,7 5,0	13,6 13,6 13,8 14,0 14,0 14,0 14,6 14,6 16,5 16,5 27,6 27,6 10,7 21,0	> 5 > 5 > 12 > 12 - - > 11 > 11 - - - - - - - - - - - - -	12 12 12 12 12 12 12 12 12 12 12 12 5 12 12 12	record player video cameras general purpose general purpose general purpose car radio car radio automotive video games teletext, VCR video temperature sensing automotive
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5,0 3,8 6,9 3,8 4,0 4,2 4,4 4,4 4,4 4,4 5,5 5,5 4,6 5,7 4,1 4,7	21,0 17,0 27,6 17,0 18,0 19,2 19,5 19,5 20,0 21,0 18,0 19,0 22,0 20,0 25,3 19,0 19,0 19,0 20,0	$\begin{array}{c} - \\ - \\ > 17 \\ > 12 \\ > 12 \\ > 12 \\ > 14 \\ > 14 \\ > 14 \\ > 15 \\ > 10 \\ > 10 \\ > 16 \\ > 10 \\ - \\ > 10 \\ > 10 \\ > 10 \\ > 10 \\ > 10 \end{array}$	12 12 12 12 12 12 12 12 12 12 12 12 13,2 13,	automotive automotive compact disc teletext, USA microprocessor general purpose CTV (subcarrier) CTV (subcarrier) automotive general purpose automotive video video automotive general purpose automotive general purpose automotive automotive automotive automotive automotive automotive automotive automotive automotive
< 60 < 60 < 11 < 40 < 40 < 40	6,1 6,1 4,7 5,0 5,8 5,8	28,5 28,5 20 21,0 24,5 24,5	> 8 > 8 > 12 > 14 > 14	12 12 12 12 12 12 5	CD-ROM teletext compact disc automotive computer coded teletext teletext

4322 143 SERIES

Fig. 1 Motional (C1) and parallel (C0) capacitances as a function of frequency.

Fig. 2 Resonance resistance, R_r as a function of frequency.

QUARTZ CRYSTAL UNITS FOR GENERAL FREQUENCY STABILIZATION

QUICK REFERENCE DATA

Nominal frequency	21480,000 kHz
Mode of vibration	fundamental
Type of holder	RW-80

APPLICATION

I.F. oscillator in small portable professional radio equipment, e.g. pagers.

DESCRIPTION

The unit consists of a metal-plated AT-cut quartz plate, mounted in a hermetically sealed resistance welded metal holder, provided with two connecting leads.

MECHANICAL DATA

Outlines : see general section "Holders"

Mass : 0,5 g approximately

ELECTRICAL DATA

Unless otherwise specified the values apply at a temperature of 25 \pm 2 °C and a level of drive of 0,5 mW related to 25 $\Omega.$

Load resonance frequency f	
load capacitance 32 pF	21480,000 kHz
Adjustment tolerance	± max. 15 x 10 ⁻⁶
Tolerance over the temperature range of -5 to $+45$ °C, with	
respect to + 25 °C	± max. 15 x 10⁻⁰
Motional capacitance (C1)	typ. 17,5 fF
Parallel capacitance (C ₀)	typ. 4,6 pF
Resonance resistance	max. 40 Ω
Pullability $\left(-\frac{df}{dC}\right)$ at fL	
with load capacitance variation	min. + 5 x 10 ⁻⁶ x f _L /pF
Maximum permissible d.c. voltage	
between terminations	100 V
Operating temperature range	5 to + 45 °C

TESTS AND REQUIREMENTS

See general section, table 3

LOW COST HIGH PRECISION DIGITAL QUARTZ TEMPERATURE SENSORS

DESCRIPTION

The sensor consists of a metal-plated special T.C.-cut piezoelectric quartz plate, mounted in a hermetically-sealed, resistance-welded metal holder, with two leads. The holder is filled with a dry inert gas. The quartz plate oscillates in a fundamental thickness-shear mode. The resonance frequency is an almost linear function of the temperature. See also section "General".

Features

- no A/D conversion
- excellent linearity
- high stability, very low ageing
- wide temperature range
- high noise immunity
- easy calibration
- quantity production at low cost

APPLICATIONS

These sensors can be used in industrial temperature measurement and control, car electronics, flow meters, weather balloons, medical systems and in energy saving projects such as heat monitors and solar panels.

QUICK REFERENCE DATA

	economy design	special design	
Frequency range	4 to 20	1 to 25	MHz
Temperature range	-100 to + 150	-100 to + 300	oC
Temperature coefficient	-40 to + 80	-50 to + 85	x 10 ⁻⁶ /K
Linearity	< ± 2,5	<±1,5	%
Adjustment tolerance	< ± 150	< ± 50	x 10 ⁻⁶
Thermal time constant	typ. 10	3 to 30	S
Type of holder	RW-43	RW-43; RW-80; HC-26/U HC-27/U; TO-39	

For additional details the supplier should be contacted.

economy types in RW-10 encapsulation

QUICK REFERENCE DATA

Nominal frequency3 000,000 to 10 000,000 kHzMode of vibrationfundamentalType of encapsulationRW-10

APPLICATION

Industrial and consumer equipment in medium quantity series.

DESCRIPTION

The unit consists of a metal-plated AT-cut quartz plate, mounted in a hermetically sealed resistance welded RW-10 encapsulation and is provided with two connecting leads. See also "General" section.

MECHANICAL DATA

Outlines : see general section "Holders"

Mass : 4 g approximately

ELECTRICAL DATA

Unless otherwise specified the values apply at a temperature of 25 ± 2 °C and a level of drive of 0,5 mW related to 25 Ω . Measuring system π - network according to IEC-444 recommendation.

Frequency tolerance Load capacitance C_L Motional capacitance C_0 Motional inductance L_1 Resonance resistance R_r Frequency tolerance w.r.t. +25 °C in the temperature range: 0 to +50 °C -20 to +70 °C -40 to +85 °C Resonance of unwanted responses

Insulation resistance Permissible d.c. voltage between the leads

TESTS AND REQUIREMENTS

See general section, table 2

 $< \pm 25 \times 10^{-6} * \\ 30 \text{ pF} ** \\ \text{see Fig. 1} \\ \text{see Fig. 1} \\ \text{see Fig. 2} \\ < \pm 15 \times 10^{-6} * \\ < \pm 25 \times 10^{-6} * \\ < \pm 40 \times 10^{-6} * \\ > 2 \text{ Rr} \\ > 10^8 \Omega \text{ at } 50 \text{ V (d.c.)} \\ \text{max. 100 V}$

- * Other combinations of tolerance and temperature range available on request.
- ** 30 pF is the standard load capacitance for 4322 148 series. Crystals can be calibrated at other CL - values on request.

Fig. 1 Typical values for C_0 , C_1 and L_1 as a function of frequency.

Fig. 2 Resonance resistance R_r as a function of frequency.

QUICK REFERENCE DATA

1,8 to 25 MHz
fundamental
RW-33 or RW-36
± 10 × 10 ⁻⁶
30 pF
0,5 mW
5 to 30 fF
max. 7 pF
see Table 1
see Table 2
100 V

TESTS

Mechanical and climatic tests

according to MIL and IEC procedures

 $^{\ast}~$ Data at other CL values and for series resonance available on request.

February 1986

Table 1 Resonance resistance R_r

frequency MHz	max. R _r Ω
1,800000 - 1,999999	300
2,000000 - 2,249999	250
2,250000 – 3,749999	150
3,750000 – 4,999999	100
5,000000 – 6,999999	50
7,000000 — 9,999999	30
10,000000 - 25,000000	25

Table 2 Frequency tolerance in different temperature ranges with respect to + 25 °C

frequency range MHz	temperature range oC	frequency tolerance		
		class 0	class I	class II
1,8 - 25	5/+ 45 10/+ 50 15/+ 70	± 5 × 10 ⁻⁶ ± 7,5 × 10 ⁻⁶ ± 10 × 10 ⁻⁶	± 7,5 x 10 ⁻⁶ ± 10 x 10 ⁻⁶ ± 15 x 10 ⁻⁶	± 10 x 10 ⁻⁶ ± 15 x 10 ⁻⁶ ± 20 x 10 ⁻⁶
1,8 - 2,3 2,3 - 4 4 - 25	55/+ 105 55/+ 105 55/+ 105	± 30 × 10 ⁻⁶ ± 32,5 × 10 ⁻⁶ ± 25 × 10 ⁻⁶	± 35 × 10 ⁻⁶ ± 35 × 10 ⁻⁶ ± 30 × 10 ⁻⁶	± 40 × 10 ⁻⁶ ± 40 × 10 ⁻⁶ ± 40 × 10 ⁻⁶
1,8 - 25	T _{nom} ±5.		± 5 x 10 ⁻⁶	

QUICK REFERENCE DATA

Nominal frequency	6144,000 kHz
Mode of vibration	fundamental
Type of holder	то-39

APPLICATION

General, e.g. microprocessors.

DESCRIPTION

The unit consists of a metal-plated AT-cut quartz plate, mounted in a hermetically sealed resistance welded metal holder, provided with three connecting leads.

MECHANICAL DATA

Outlines : See general section "Holders"

Mass : 0,8 g approximately

ELECTRICAL DATA

Unless otherwise specified the values apply at a temperature of 25 \pm 2 oC and a level of drive of 0,5 mW related to 25 $\Omega.$

Load resonance frequency fL,	
load capacitance 20 pF	6144,000 kHz
Adjustment tolerance	± max. 25 x 10 ⁻⁶
Tolerance over the temperature range of -10 to $+60$ °C, with respect to $+25$ °C	± max. 25 x 10-6
Motional capacitance (C1)	typ. 7,2 fF
Parallel capacitance (C0)	typ. 2,2 pF
Resonance resistance	max. 75 Ω
Pullability $\left(-\frac{df}{dC}\right)$ at fL	
with load capacitance variation	min. + 6 x 10 ⁻⁶ x fL/pF
Maximum permissible d.c. voltage between terminations	100 V
Operating temperature range	-10 to + 60 °C

TESTS AND REQUIREMENTS

See general section, table 3

4322 152 SERIES

QUARTZ CRYSTAL UNITS

QUICK REFERENCE DATA

Frequency range	1 to 1,8 MHz
Mode of vibration	fundamental
Type of holder	HC-6/U
MECHANICAL DATA	
Outlines See general section "Holders".	
Mass 4 g	
ELECTRICAL DATA	
Adjustment tolerance at + 25 °C	± 20 x 10 ⁻⁶
Load capacitance CL*	30 pF
Level of drive	0,5 mW
Motional capacitance C1	5 to 30 fF
Parallel capacitance CO	max. 7 pF
Resonance resistance R _r 1,000000 — 1,599999 MHz 1,600000 — 1,799999 MHz	max. 600 Ω max. 300 Ω
Frequency tolerance in different temp. ranges with respect to + 25 °C	see Table
Maximum permissible d.c. voltage between terminations	100 V

TESTS

Mechanical and climatic tests

according to MIL and IEC procedures

Table Frequency tolerance in different temperature ranges with respect to + 25 °C.

frequency	temperature	frequency tolerance		
range MHz	oC	class 0	class I	class II
1 to 1,8	5/+ 45 10/+ 50 15/+ 70	± 5 x 10 ⁻⁶ ± 7,5 x 10 ⁻⁶ ± 10 x 10 ⁻⁶	± 7,5 x 10 ⁻⁶ ± 10 x 10 ⁻⁶ ± 15 x 10 ⁻⁶	± 10 x 10 ⁻⁶ ± 15 x 10 ⁻⁶ ± 20 x 10 ⁻⁶
1 to 1,8	-55/+ 105	± 30 x 10 ⁻⁶	± 35 x 10 ⁻⁶	± 40 x 10 ⁻⁶
1 to 1,8	T _{nom} ± 5		± 5 x 10 ⁻⁶	

 * Data at other C $_{L}$ values and for series resonance available on request.

February 1986

QUICK REFERENCE DATA

Nominal frequency	1000,000 kHz
Mode of vibration	fundamental
Type of holder	HC-6/U

MECHANICAL DATA

Outlines: see general section "Holders"

Mass: 4 g approximately

ELECTRICAL DATA

.

Unless otherwise specified the values apply at a temperature of 25 \pm 2 oC and a level of drive of 0,5 mW related to 25 $\Omega.$

load resonance frequency fL, load capacitance 30 pF	1000,000 kHz
Adjustment tolerance	± max. 20 x 10 ⁻⁶
Tolerance over the temperature range of -20 to $+70$ °C, with respect to $+25$ °C	± max. 30 x 10 ⁻⁶
Motional capacitance C ₁	typ. 9 fF
Parallel capacitance C _O	typ. 3,5 pF
Resonance resistance R _r	max. 600 Ω
Pullability $\left(-\frac{df}{dC}\right)$ at fL	
with load capacitance variation	min. + 4 x 10 ⁻⁶ x fL/pF
Maximum permissible d.c. voltage between terminations	100 V
Operating temperature range	-20 to + 70 °C

Marking

The frequency in kHz, the last 5 digits of the catalogue number, and a code for the date of manufacture are stamped on the holder.

QUICK REFERENCE DATA

Frequency range

Mode of vibration

Type of holder 1,8 to 2,3 MHz 2,4 to 25 MHz 1,8 to 25 MHz fundamental

HC-27/U, extended (26 mm) HC-27/U

MECHANICAL DATA

Outlines	See general section	"Holders"
Mass	2,5 g	

ELECTRICAL DATA

Adjustment tolerance at + 25 °C	± 10 × 10 ⁻⁶
Load capacitance CL*	30 pF
Level of drive	0,5 mW
Motional capacitance C ₁	see Figs 1 to 4
Parallel capacitance C _O	max. 7 pF, see also Fig. 1
Motional inductance L ₁	see Figs 1 to 4
Resonance resistance R _r	see Table 1
Frequency tolerance in different temperature ranges with respect to + 25 °C	see Table 2
Maximum permissible d.c. voltage between terminations	100 V
Ageing after 90 days non-operative at + 85 ± 2 °C	(0,5 to + 1) x 10 ⁻⁶

TESTS

Mechanical and climatic tests according to MIL and IEC procedures.

* Data at other C_L values and for series resonance available on request.

Table 1 Resonance resistance R_r

frequency	max. R _r
MHz	Ω
1.800000 - 1.869999	220
1,870000 - 1,999999	9 185
2,000000 - 2,119999	9 165
2,120000 - 2,249999	9 150
2,250000 - 2,599999	9 125
2,600000 - 2,999999	90
3,000000 - 3,399999	9 70
3,400000 - 3,749999	9 52
3,750000 - 3,999999	9 45
4,000000 - 4,999999	37
5,000000 - 6,999999	9 25
7,000000 - 9,999999	20
10,000000 - 14,999999	9 18
15,000000 - 25,000000) 15

	Table 2, Frequency	tolerance in different	temperature ranges	s with respect to + 25	oC
--	--------------------	------------------------	--------------------	------------------------	----

frequency	temperature range ^O C	frequency tolerance			
range MHz		class 0	class I	class II	
1,8 to 25	5/+ 45 10/+ 50 15/+ 70	± 5 x 10 ⁻⁶ ± 7,5 x 10 ⁻⁶ ± 10 x 10 ⁻⁶	± 7,5 x 10 ⁻⁶ ± 10 x 10 ⁻⁶ ± 15 x 10 ⁻⁶	± 10 x 10 ⁻⁶ ± 15 x 10 ⁻⁶ ± 20 x 10 ⁻⁶	
1,8 to 2,3 2,3 to 7 7 to 25	55/+ 105 55/+ 105 55/+ 105	± 30 x 10 ⁻⁶ ± 32,5 x 10 ⁻⁶ ± 25 x 10 ⁻⁶	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	± 40 × 10 ⁻⁶ ± 40 × 10 ⁻⁶ ± 40 × 10 ⁻⁶	
1,8 to 25	T _{nom} ± 5		± 2,5 × 10 ⁻⁶	± 5 × 10 ⁻⁶	

March 1984

Quartz control units

4322 154 SERIES

QUICK REFERENCE DATA

Frequency range Mode of vibration Type of holder		4,5 to 25 MHz		
		fundamental		
		HC-26/U or HC-29/U		
MECHANIC	CAL DATA			
Outlines	See general section "Holders".			
Mass	0,8 g			
ELECTRIC	AL DATA			
Adjustment tolerance at + 25 °C		± 10 × 10 ⁻⁶		
Load capacitance CL*		30 pF		
Level of drive		0,5 mW		
Motional ca	apacitance C ₁			
Parallel capacitance CO		see Figs 1 and 2		
Motional in	ductance L ₁			
Resonance resistance R _r		see Table 1		
Frequency ranges wit	tolerance in different temperature th respect to + 25 ºC	see Table 2		
Maximum permissible d.c. voltage between terminations		100 V		
Ageing after 90 days non-operative at + 85 ± 2 °C		(-0,5 to + 1) x 10 ⁻⁶		

TESTS

Mechanical and climatic tests according to MIL and IEC procedures.

* Data at other C_L values and for series resonance available on request.

60

Table 1 Resonance resistance Rr

frequency MHz	max. R _r Ω
4,500000 4,749999	110
4,750000 - 5,999999	70
6,000000 6,999999	45
7,000000 - 9,999999	30
10,000000 - 14,999999	25
15,000000 - 25,000000	20

 Table 2 Frequency tolerance in different temperature ranges with respect to + 25 °C

frequency range MHz	temperature range ^o C	frequency tolerance		
		class 0	class I	class II
4,5 to 25	5/+ 45 10/+ 50 15/+ 70	± 5 x 10 ⁻⁶ ± 7,5 x 10 ⁻⁶ ± 10 x 10 ⁻⁶	± 7,5 x 10 ⁻⁶ ± 10 x 10 ⁻⁶ ± 15 x 10 ⁻⁶	± 10 x 10 ⁻⁶ ± 15 x 10 ⁻⁶ ± 20 x 10 ⁻⁶
4,5 to 6 6 to 12 12 to 25	55/+ 105 55/+ 105 55/+ 105	± 30 × 10 ⁻⁶ ± 32,5 × 10 ⁻⁶ ± 25 × 10 ⁻⁶	± 40 x 10 ⁻⁶ ± 35 x 10 ⁻⁶ ± 30 x 10 ⁻⁶	± 50 x 10 ⁻⁶ ± 40 x 10 ⁻⁶ ± 40 x 10 ⁻⁶
4,5 to 25	T _{nom} ±5		± 2,5 × 10 ⁻⁶	± 5 x 10 ⁻⁶

March 1984

62

economy types

QUICK REFERENCE DATA

Frequency range	4,5 to 25 MHz
Mode of vibration	fundamental
Type of holder	RW-42 or RW-43
MECHANICAL DATA	
Outlines : See general section "Holders"	
Mass : 1 g	
ELECTRICAL DATA	
Adjustment tolerance at + 25 °C	± 10 × 10 ⁻⁶
Load capacitance CL *	30 pF
Level of drive	0,5 mW
Motional capacitance C1	5 to 30 fF
Parallel capacitance Co	max. 7 pF
Resonance resistance R _r 4,5 to 7 MHz 7 to 25 MHz	max. 80 Ω max. 40 Ω
Frequency tolerance in different temperature ranges with respect to + 25 °C	see Table
Maximum permissible d.c. voltage between terminations	100 V

TESTS

Mechanical and climatic tests according to MIL and IEC procedures.

Table Frequency tolerance in different temperature ranges with respect to + 25 °C.

temperature	frequency tolerance			
range °C	class 0	class I	class II	
5/+ 45 10/+ 50 15/+ 70 55/+ 105	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	± 10 x 10 ⁻⁶ ± 15 x 10 ⁻⁶ ± 20 x 10 ⁻⁶ ± 40 x 10 ⁻⁶	
T _{nom.} ± 5		± 5 x 10 ⁻⁶	L	

* Data at other CL values and for series resonance available on request.
4322 159 SERIES

QUARTZ CRYSTAL UNITS

QUICK REFERENCE DATA

Frequency range	10 to 75 MHz
Mode of vibration	third overtone
Type of holder	HC-27/U
MECHANICAL DATA	
Outlines See general section "Holders".	
Mass 2,5 g	
ELECTRICAL DATA	
Adjustment tolerance at + 25 °C	± 10 x 10 ⁻⁶
Level of drive	0,5 mW
Motional capacitance C ₁	typ. 1,5 fF
Parallel capacitance C _O	max.7 pF
Resonance resistance R _r	max.40 Ω
Frequency tolerance in different temperature ranges with respect to + 25 °C	see Table
Maximum permissible d.c. voltage between terminations	100 V
Ageing after 90 days non-operative at + 85 ± 2 °C	(-0,5 to + 1) x 10 ⁻⁶

TESTS

Mechanical and climatic tests according to MIL and IEC procedures.

temperature	frequency tolerance		
range °C	class 0	class I	class II
-5/+ 50 -10/+ 60 -20/+ 70 -55/+ 105	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	± 10 x 10 ⁻⁶ ± 15 x 10 ⁻⁶ ± 20 x 10 ⁻⁶ ± 40 x 10 ⁻⁶
T _{nom} ± 5		± 2,5 × 10 ⁻⁶	± 5 x 10 ⁻⁶

QUICK REFERENCE DATA

Nominal	frequency	10,00000 MHz
Mode of vibration		third overtone
Type of h	nolder	HC-27/U
MECHAN	IICAL DATA	
Outlines	See general section ''Holders''	
Mass	2,5 g approximately	
ELECTR	ICAL DATA	
Unless ot	herwise specified the values apply at a temperature of	+25 \pm 2 ^O C and a level of drive of 1 mA
Load reso load ca	onance frequency fL, apacitance 75 pF**	10,000 00 MHz
Adjustme	ent tolerance	± max. 5 x 10 ⁻⁶
Tolerance with re	e over the temperature range of +69 to +71 $^{\rm O}$ C, spect to +70 $^{\rm O}$ C	± max. 3 x 10 ⁻⁷
Motional	capacitance (C1)	typ. 2,1 fF
Parallel ca	apacitance (C _O)	typ. 5 pF
Motional	inductance (L ₁)	typ. 120 mH
Resonance -40 to	te resistance over the temperature range of $_{9}$ +75 $^{\mathrm{O}}\mathrm{C}$	max. 40 Ω
Maximum	n permissible d.c. voltage between terminations	100 V
Ageing		±5 x 10 ⁻⁸ /month
Operating	g temperature range	—40 to +75 ^o C

Stability of oscillator frequency. This depends on the crystal oven used. Stability figures of 1×10^{-6} or better can be achieved.

TESTS AND REQUIREMENTS

According to MIL-C-3098.	$\Delta f/f$	± max. 3 x 10 ⁻⁶
	$\Delta R/R$	± max. 15%

Marking

The frequency in kHz, the last 5 digits of the catalogue number, and a code for the date of manufacture are stamped on the holder.

Mounting

The unit is provided with pins for socket mounting.

* Influence of drive level on frequency is max. 2 x 10^{-8} /dB.

** Data at other C_L and for series resonance available on request.

QUICK REFERENCE DATA

Mode of vibrationthird overtoneType of holderHC-26/U or HC-29/UMECHANICAL DATAHolders''.OutlinesSee general section ''Holders''.Mass0,8 gELECTRICAL DATA 10×10^{-6} Adjustment tolerance at + 25 °C $\pm 10 \times 10^{-6}$ Level of drive0,5 mWMotional capacitance C1typ. 1,5 fFParallel capacitance C0max. 7 pFResonance resistance Rrmax. 30 Ω Frequency tolerance in different temperature ranges with respect to + 25 °Csee TableMaximum permissible d.c. voltage between terminations100 VAgeing after 90 days non-operative at + 85 ± 2 °C(-0,5 to + 1) x 10^{-6}	Frequenc	y range	20 to 75 MHz
Type of holderHC-26/U or HC-29/UMECHANICAL DATAOutlinesSee general section "Holders".Mass $0,8 \text{ g}$ ELECTRICAL DATAAdjustment tolerance at + 25 °C $\pm 10 \times 10^{-6}$ Level of drive $0,5 \text{ mW}$ Motional capacitance C_1 typ. 1,5 fFParallel capacitance C_0 max. 7 pFResonance resistance R_r max. 30 Ω Frequency tolerance in different temperature ranges with respect to + 25 °Csee TableMaximum permissible d.c. voltage between terminations100 VAgeing after 90 days non-operative at + 85 ± 2 °C $(-0,5 \text{ to } + 1) \times 10^{-6}$	Mode of vibration		third overtone
MECHANICAL DATAOutlinesSee general section "Holders".Mass $0,8 \text{ g}$ ELECTRICAL DATAAdjustment tolerance at + 25 °C $\pm 10 \times 10^{-6}$ Level of drive $0,5 \text{ mW}$ Motional capacitance C_1 typ. 1,5 fFParallel capacitance C_0 max. 7 pFResonance resistance R_r max. 30 Ω Frequency tolerance in different temperature ranges with respect to + 25 °Csee TableMaximum permissible d.c. voltage between terminations100 VAgeing after 90 days non-operative at + 85 $\pm 2 ^{\circ}$ C $(-0,5 \text{ to } + 1) \times 10^{-6}$	Type of h	nolder	HC-26/U or HC-29/U
MECHANICAL DATAOutlinesSee general section "Holders".Mass $0,8 \text{ g}$ ELECTRICAL DATAAdjustment tolerance at $+25 \text{ °C}$ $\pm 10 \times 10^{-6}$ Level of drive $0,5 \text{ mW}$ Motional capacitance C1typ. 1,5 fFParallel capacitance C0max. 7 pFResonance resistance Rrmax. 30 Ω Frequency tolerance in different temperature ranges with respect to $+25 ^{\circ}$ Csee TableMaximum permissible d.c. voltage between terminations100 VAgeing after 90 days non-operative at $+85 \pm 2 ^{\circ}$ C $(-0,5 \text{ to } + 1) \times 10^{-6}$		2	
OutlinesSee general section "Holders".Mass $0,8 \text{ g}$ ELECTRICAL DATA $\pm 10 \times 10^{-6}$ Adjustment tolerance at $+25 ^{\circ}$ C $\pm 10 \times 10^{-6}$ Level of drive $0,5 \text{ mW}$ Motional capacitance C_1 typ. $1,5 \text{ fF}$ Parallel capacitance C_0 max. 7 pFResonance resistance R_r max. 30 Ω Frequency tolerance in different temperature ranges with respect to $+25 ^{\circ}$ Csee TableMaximum permissible d.c. voltage between terminations100 VAgeing after 90 days non-operative at $+85 \pm 2 ^{\circ}$ C $(-0,5 \text{ to } + 1) \times 10^{-6}$	MECHAN	NICAL DATA	
Mass $0,8 \text{ g}$ ELECTRICAL DATA $\pm 10 \times 10^{-6}$ Adjustment tolerance at $+25 ^{\circ}$ C $\pm 10 \times 10^{-6}$ Level of drive $0,5 \text{ mW}$ Motional capacitance C_1 typ. 1,5 fFParallel capacitance C_0 max. 7 pFResonance resistance R_r max. 30 Ω Frequency tolerance in different temperature ranges with respect to $+25 ^{\circ}$ Csee TableMaximum permissible d.c. voltage between terminations100 VAgeing after 90 days non-operative at $+85 \pm 2 ^{\circ}$ C $(-0,5 \text{ to } +1) \times 10^{-6}$	Outlines	See general section "Holders".	
ELECTRICAL DATAAdjustment tolerance at + 25 °C \pm 10 x 10 ⁻⁶ Level of drive0,5 mWMotional capacitance C1typ. 1,5 fFParallel capacitance C0max. 7 pFResonance resistance Rrmax. 30 Ω Frequency tolerance in different temperature ranges with respect to + 25 °Csee TableMaximum permissible d.c. voltage between terminations100 VAgeing after 90 days non-operative at + 85 ± 2 °C(-0,5 to + 1) x 10 ⁻⁶	Mass	0,8 g	
Adjustment tolerance at + 25 °C \pm 10 x 10-6Level of drive0,5 mWMotional capacitance C1typ. 1,5 fFParallel capacitance C0max. 7 pFResonance resistance Rrmax. 30 Ω Frequency tolerance in different temperature ranges with respect to + 25 °Csee TableMaximum permissible d.c. voltage between terminations100 VAgeing after 90 days non-operative at + 85 ± 2 °C(-0,5 to + 1) x 10-6	ELECTR	ICAL DATA	
Level of drive0,5 mWMotional capacitance C_1 typ. 1,5 fFParallel capacitance C_0 max. 7 pFResonance resistance R_r max. 30 Ω Frequency tolerance in different temperature ranges with respect to + 25 °Csee TableMaximum permissible d.c. voltage between terminations100 VAgeing after 90 days non-operative at + 85 ± 2 °C $(-0,5 \text{ to } + 1) \times 10^{-6}$	Adjustme	ent tolerance at + 25 °C	± 10 x 10 ⁻⁶
Motional capacitance C_1 typ. 1,5 fFParallel capacitance C_0 max. 7 pFResonance resistance R_r max. 30 Ω Frequency tolerance in different temperature ranges with respect to + 25 °Csee TableMaximum permissible d.c. voltage between terminations100 VAgeing after 90 days non-operative at + 85 ± 2 °C $(-0,5 \text{ to } + 1) \times 10^{-6}$	Level of e	drive	0,5 mW
Parallel capacitance C_0 max. 7 pFResonance resistance R_r max. 30 Ω Frequency tolerance in different temperature ranges with respect to + 25 °Csee TableMaximum permissible d.c. voltage between terminations100 VAgeing after 90 days non-operative at + 85 ± 2 °C $(-0,5 \text{ to } + 1) \times 10^{-6}$	Motional	capacitance C ₁	typ. 1,5 fF
Resonance resistance R_r max. 30 Ω Frequency tolerance in different temperature ranges with respect to + 25 °Csee TableMaximum permissible d.c. voltage between terminations100 VAgeing after 90 days non-operative at + 85 ± 2 °C $(-0,5 \text{ to } + 1) \times 10^{-6}$	Parallel c	apacitance C _O	max. 7 pF
Frequency tolerance in different temperature ranges with respect to + 25 °C see Table Maximum permissible d.c. voltage between terminations 100 V Ageing after 90 days non-operative at + 85 ± 2 °C (-0,5 to + 1) x 10 ⁻⁶	Resonance	ce resistance R _r	max. 30 Ω
Maximum permissible d.c. voltage between terminations100 VAgeing after 90 days non-operative at + 85 ± 2 °C(-0,5 to + 1) x 10^{-6}	Frequence with re	cy tolerance in different temperature ranges espect to + 25 °C	see Table
Ageing after 90 days non-operative at + 85 \pm 2 °C(-0,5 to + 1) x 10 ⁻⁶	Maximun betwee	n permissible d.c. voltage en terminations	100 V
	Ageing at at + 85	fter 90 days non-operative 5 ± 2 ^o C	(-0,5 to + 1) x 10 ⁻⁶

TESTS

Mechanical and climatic tests according to MIL and IEC procedures.

temperature	frequency tolerance			
oC	class 0	class I	class II	
5/+ 50 10/+ 60 20/+ 70 55/+ 105	± 5 × 10 ⁻⁶ ± 7,5 × 10 ⁻⁶ ± 10 × 10 ⁻⁶ ± 25 × 10 ⁻⁶	± 7,5 x 10 ⁻⁶ ± 10 x 10 ⁻⁶ ± 13 x 10 ⁻⁶ ± 30 x 10 ⁻⁶	± 10 x 10 ⁻⁶ ± 15 x 10 ⁻⁶ ± 20 x 10 ⁻⁶ ± 40 x 10 ⁻⁶	
T _{nom} ± 5		± 2,5 x 10 ⁻⁶	± 5 x 10 ⁻⁶	

QUICK REFERENCE DATA

Frequency range	17 to 75 MHz
Mode of vibration	third overtone
Type of holder	RW-42 or RW-43

MECHANICAL DATA

Outlines	: See general section "Holders".
Mass	:1g

ELECTRICAL DATA

Adjustment tolerance at + 25 °C	± 10 x 10 ⁻⁶
Level of drive	0,5 mW
Motional capacitance C ₁	typ. 1,5 fF
Parallel capacitance C ₀	max. 7 pF
Resonance resistance R _r	max. 40 Ω
Frequency tolerance in different temperature ranges with respect to + 25 °C	see Table
Maximum permissible d.c. voltage between terminations	100 V

TESTS

Mechanical and climatic tests according to MIL and IEC procedures.

temperature	frequency tolerance		
oC	class 0	class I	class II
5/+ 50 10/+ 60 20/+ 70 55/+ 105	$\begin{array}{cccc} \pm & 5 & \times & 10^{-6} \\ \pm & 7,5 \times & 10^{-6} \\ \pm & 10 & \times & 10^{-6} \\ \pm & 25 & \times & 10^{-6} \end{array}$	± 7,5 x 10 ⁻⁶ ± 10 x 10 ⁻⁶ ± 13 x 10 ⁻⁶ ± 30 x 10 ⁻⁶	± 10 x 10 ⁻⁶ ± 15 x 10 ⁻⁶ ± 20 x 10 ⁻⁶ ± 40 x 10 ⁻⁶
T _{nom} ± 5		± 5 x 10 ⁻⁶	

QUICK REFERENCE DATA

4322 162 SERIES

Frequency range		10 to 75 MHz
Mode of vibration		third overtone
Type of holder		HC-33/U or RW-36

MECHANICAL DATA

Outlines : See general section "Holders" Mass : 4 g

ELECTRICAL DATA

Adjustment tolerance at + 25 °C	± 10 x 10 ⁻⁶
Level of drive	0,5 mW
Motional capacitance C1	typ. 1,5 fF
Parallel capacitance CO	max. 7 pF
Resonance resistance R _r	max. 60 Ω
Frequency tolerance in different temperature ranges with respect to + 25 °C	see Table
Maximum permissible d.c. voltage between terminations	100 V

TESTS

Mechanical and climatic tests according to MIL and IEC procedures.

temperature	frequency tolerance		
oC	class 0	class I	class II
-5/+ 50 -10/+ 60 -20/+ 70 -55/+ 105	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	± 7,5 x 10 ⁻⁶ ± 10 x 10 ⁻⁶ ± 13 x 10 ⁻⁶ ± 30 x 10 ⁻⁶	± 10 x 10 ⁻⁶ ± 15 x 10 ⁻⁶ ± 20 x 10 ⁻⁶ ± 40 x 10 ⁻⁶
T _{nom} ± 5	х.	± 5 x 10 ⁻⁶	

QUICK REFERENCE DATA

Frequency range		50 to 125 MHz
Mode of vibration Type of holder		fifth overtone
		HC-27/U
MECHAN	ICAL DATA	
Outlines	See general section "Holders".	
Mass 2,5 g		
ELECTRICAL DATA		

Adjustment tolerance at + 25 °C $\pm 10 \times 10^{-6}$ Level of drive 0,5 mW Motional capacitance C1 typ. 0,5 fF Parallel capacitance Co max. 7 pF Resonance resistance Rr max. 50 Ω Frequency tolerance in different temperature ranges with respect to + 25 °C see Table Maximum permissible d.c. voltage 100 V between terminations Ageing after 90 days non-operative at + 85 ± 2 °C $(-0.5 \text{ to} + 1) \times 10^{-6}$

TESTS

т

Mechanical and climatic tests according to MIL and IEC procedures.

Table	Frequency	tolerance	in different	temperature	ranges	with	respect t	o +	25	οС

temperature	frequency tolerance			
oC	class 0	class I	class II	
-5/+ 50 -10/+ 60 -20/+ 70 -55/+ 105	± 5 × 10 ⁻⁶ ± 7,5 × 10 ⁻⁶ ± 10 × 10 ⁻⁶ ± 25 × 10 ⁻⁶	± 7,5 × 10 ⁻⁶ ± 10 × 10 ⁻⁶ ± 13 × 10 ⁻⁶ ± 30 × 10 ⁻⁶	± 10 x 10 ⁻⁶ ± 15 x 10 ⁻⁶ ± 20 x 10 ⁻⁶ ± 40 x 10 ⁻⁶	
T _{nom} ± 5		± 2,5 x 10 ⁻⁶	± 5 x 10 ⁻⁶	

QUICK REFERENCE DATA

Frequency range Mode of vibration Type of holder		50 to 125 MHz fifth overtone			
		MECHAN			
Outlines	See general section "Holders".				
Mass	0,8 g				
ELECTRI	CAL DATA				
Adjustmer	nt tolerance at + 25 °C	± 10 x 10 ⁻⁶			
Level of d	rive	0,5 mW			
Motional o	capacitance C ₁	typ. 0,5 fF			
Parallel ca	pacitance CO	max. 7 pF			
Resonance 50 to 90 90 to 12	e resistance R _r) MHz 25 MHz	max. 50 Ω max. 70 Ω			
Frequency with resp	/ tolerance in different temperature ranges pect to + 25 ^o C	see Table			
Maximum between	permissible d.c. voltage terminations	100 V			
Ageing aft at + 85±	ter 90 days non-operative 2 °C	(–0,5 to + 1) × 10 ⁻⁶			

TESTS

Mechanical and climatic tests according to MIL and IEC procedures.

temperature	frequency tolerance			
oC	class 0	class I	class II	
-5/+ 50 -10/+ 60 -20/+ 70 -55/+ 105	± 5 x 10 ⁻⁶ ± 7,5 x 10 ⁻⁶ ± 10 x 10 ⁻⁶ ± 25 x 10 ⁻⁶	± 7,5 x 10 ⁻⁶ ± 10 x 10 ⁻⁶ ± 13 x 10 ⁻⁶ ± 30 x 10 ⁻⁶	± 10 x 10 ⁻⁶ ± 15 x 10 ⁻⁶ ± 20 x 10 ⁻⁶ ± 40 x 10 ⁻⁶	
T _{nom} ± 5		± 2,5 x 10 ⁻⁶	± 5 x 10 ⁻⁶	

QUICK REFERENCE DATA

Frequency range	50 to 125 MHz
Mode of vibration	fifth overtone
Type of holder	RW-42 or RW-43

MECHANICAL DATA

Outlines : See general section "Holders".

Mass : 1 g

ELECTRICAL DATA

Adjustment tolerance at + 25 °C	± 10 x 10 ⁻⁶
Level of drive	0,5 mW
Motional capacitance C1	typ. 0,5 fF
Parallel capacitance CO	max. 7 pF
Resonance resistance R _r 50 to 90 MHz 90 to 125 MHz	max. 60 Ω max. 80 Ω
Frequency tolerance in different temperature ranges with respect to + 25 °C	see Table
Maximum permissible d.c. voltage between terminations	100 V

TESTS

Mechanical and climatic tests according to MIL and IEC procedures.

temperature	frequency tolerance			
oC	class 0	class I	class 11	
5/+ 50 10/+ 60 20/+ 70 55/+ 105	± 5 × 10 ⁻⁶ ± 7,5 × 10 ⁻⁶ ± 10 × 10 ⁻⁶ ± 25 × 10 ⁻⁶	± 7,5 x 10 ⁻⁶ ± 10 x 10 ⁻⁶ ± 13 x 10 ⁻⁶ ± 30 x 10 ⁻⁶	± 10 x 10 ⁻⁶ ± 15 x 10 ⁻⁶ ± 20 x 10 ⁻⁶ ± 40 x 10 ⁻⁶	
T _{nom} ± 5		± 5 x 10 ⁻⁶		

QUICK REFERENCE DATA

Frequency range	50 to 125 MHz
Mode of vibration	fifth overtone
Type of holder	HC-33/U or RW-36

MECHANICAL DATA

Outlines	: See general section "Holders"
Mass	:4 g

ELECTRICAL DATA

Adjustment tolerance at + 25 °C	± 10 x 10 ⁻⁶
Level of drive	0,5 mW
Motional capacitance C ₁	typ. 0,5 fF
Parallel capacitance CO	max. 7 pF
Resonance resistance R _r	20 to 100 Ω
Frequency tolerance in different temperature ranges with respect to + 25 °C	see Table
Maximum permissible d.c. voltage between terminations	100 V

TESTS

Mechanical and climatic tests according to MIL and IEC procedures.

temperature range oC	frequency tolerance					
	class 0	class I	class II			
5/+ 50 10/+ 60 20/+ 70 55/+ 105	$\begin{array}{cccc} \pm & 5 & \times & 10^{-6} \\ \pm & 7,5 \times & 10^{-6} \\ \pm & 10 & \times & 10^{-6} \\ \pm & 25 & \times & 10^{-6} \end{array}$	± 7,5 x 10 ⁻⁶ ± 10 x 10 ⁻⁶ ± 13 x 10 ⁻⁶ ± 30 x 10 ⁻⁶	± 10 x 10 ⁻⁶ ± 15 x 10 ⁻⁶ ± 20 x 10 ⁻⁶ ± 40 x 10 ⁻⁶			
T _{nom} ± 5		± 5 x 10 ⁻⁶				

QUARTZ CRYSTAL CONTROLLED OSCILLATORS

SURVEY OF TYPES

frequency range MHz	temperature range °C	su vo V	pply Itage ±	frequency tolerance ± x 10 ⁻⁶	adjustment facility	catalogue number 4322	page
4,5 to 15 (TCXO)	0 to + 50 -10 to + 60 -20 to + 70	12 12 12	10% 10% 10%	1,0 1,5 2,0	none	4322 190 2 190 1 190 0	81
4,5 to 15 (TCXO)	0 to + 50 -10 to + 60 -20 to + 70	12 12 12	10% 10% 10%	1,0 1,5 2,0	external variable capacitor	4322 191 2 191 1 191 0	85
4,5 to 12 (TCXO)	0 to + 50 -10 to + 60 -20 to + 70	12 12 12	10% 10% 10%	1,0 1,5 2,0	external variable resistor	4322 192 2 192 1 192 0	89
20 to 50 (TCXO)	0 to + 50 -20 to + 70 0 to + 50 -20 to + 70	12 12 12 12 12	2% 2% 10% 10%	1,0 2,0 2,0 3,0	external variable capacitor	4322 195 0 195 1 195 2 195 3	93
4,5 to 15 (DTCXO)	-40 to + 85	5	5%	0,5	external variable resistor	4322 198	97
1,0 to 20 (CIO)	0 to + 70	5	10%	100	none	4322 199	99
8 to 15 (VCXO)	-5 to + 60	5	5%	20	control voltage	t.b.f.	101

INTRODUCTION

Our quartz crystal controlled oscillators consists in general of a quartz crystal unit and an oscillator circuit, packaged together in a hermetically sealed encapsulation. When connected to a fit supply voltage, the oscillator produces an output signal with a certain waveform and frequency. For applications where a high frequency stability is a demand, a temperature compensating network is added to the oscillator circuit which reduces the original temperature drift of the quartz crystal unit with a factor 20 to 60. Our range of quartz crystal controlled oscillators comprise the following main groups:

I COMPACT INTEGRATED OSCILLATORS (CIO)

These are small oscillators in a DIL-14/4 encapsulation without temperature compensation. The frequency stability is moderate, the output characteristic is designed for TTL-level applications with symmetric waveform. Microprocessor and logic circuitry are typical applications for CIOs.

II TEMPERATURE COMPENSATED X-TAL OSCILLATORS (TCXO)

In this type of oscillator, an analog circuit is incorporated which compensates the temperature influence on the frequency stability of the oscillator.

TCXOs are available with stability figures of ± 1 to 3×10^{-6} . Oscillators of this type are used i.a. in measuring and communication equipment.

III DIGITAL TEMPERATURE COMPENSATED X-TAL OSCILLATORS (DTCXO)

This is the latest development in temperature compensated crystal oscillator design. Temperature compensation is carried out by means of a digital circuit and is based upon the following principle: A memory chip contains a table with temperature correction data for both crystal and oscillator over a certain temperature range of say -40 to +85 oC.

The memory is addressed by a digital (quartz-) thermometer. So at each temperature within this range, a certain memory cell contains the specific correction factor to keep the output frequency within very close tolerances.

Oscillators of this type show a frequency stability of $<\pm$ 0,5 x 10^{-6} in the temperature range of -40 to + 85 °C.

DTCXOs are used in high-professional equipment especially where high frequency stability combined with low power consumption, small dimensions and no warming-up time is a demand.

IV VOLTAGE CONTROLLED CRYSTAL OSCILLATORS (VCXO)

These units comprise a quartz crystal and a low power Schottky integrated circuit device. The frequency can be shifted by means of a control voltage.

VCXOs are specially suitable for digital telephone switching networks.

TERMS AND DEFINITIONS

Nominal frequency: The frequency assigned to the oscillator when operated under specified conditions.

Frequency offset:

The frequency difference, positive or negative, which should be added to the specified nominal frequency of the oscillator, when adjusting the oscillator frequency at +25 °C, in order to minimize its deviation from nominal frequency over the specified range of operating conditions.

Frequency tuning range:

Frequency tuning range is the range over which the oscillator frequency may be varied by means of an external resistor (4322 192 and 198 series) or by an external capacitance (4322 191, 193 and 195 series), for the purpose of:

- Setting the frequency to a particular value f.e. to give a frequency offset.
- Correcting the oscillator frequency after deviation due to ageing or other changed conditions.

Operating temperature range:

The temperature range over which the oscillator shall function, maintaining frequency and other output signal atributes within specified tolerances.

Operable temperature range:

The temperature range over which the oscillator shall continue to provide an output signal, though not within the specified tolerances of frequency, level, waveform, etc.

Storage temperature range:

The temperature range within which the (non operating) oscillator may be stored for a prolonged time without any damage.

After storage, the oscillator shall maintain frequency and other output attributes within specified tolerances.

Frequency ageing:

The relationship between oscillator frequency and time. This long-term frequency drift is caused by secular changes in the crystal unit and/or other elements of the oscillator circuit, and is expressed as fractional change in mean frequency per specified time interval (f.e. $\pm 1 \times 10^{-6}$ per year).

TESTS AND REQUIREMENTS

I Compact integrated oscillators, CIO

			and the second
IEC-68-2 test method	test	procedure	requirements
Db	Accelerated damp heat	+ 25 to + 55 ^o C 6 cycles at > 95% R.H.	Δ f/f $< \pm$ 5 x 10 ⁻⁶
Na	Temperature cycling	-40/+ 85 ^o C 10 cycles 1 h + 1h/cycle	$\Delta f/f < \pm 5 \times 10^{-6}$ no damage
Ea	Shock	100g half sine 6 directions 1 blow/direction	$\Delta f/f < \pm 5 \times 10^{-6}$
Fc	Vibration	10-500-10 Hz acceleration 10g 3 directions 30 min/direction	Δ f/f $< \pm$ 5 x 10 ⁻⁶ no damage
Eb	Bump	3000 bumps of 30g	Δ f/f $< \pm$ 5 x 10 ⁻⁶
Ed	Free fall	3 times h = 250 mm on hard wood	$\Delta f/f < \pm 5 \times 10^{-6}$
UB	Bending of terminations	1 x 90 ⁰ load 5 N	no visible damage no leaks
Ως, Ωχ	Sealing	16 hours 700 kPa Helium	< 10 ⁻⁸ ncc/s
Tb	Resistance to soldering heat	350 ± 5 °C 3 ± 1 s	$\Delta f/f < \pm 5 \times 10^{-6}$
Ŧ	Solderability	260 ± 5 ^o C 10 ± 1 s	Good tinning No visual damage No leaks
MIL-0-55310/16	Ageing	30 days continuous operation at + 70 °C	$\Delta f/f < \pm 1,5 \times 10^{-6}$
MIL-Std-883	Visual inspection	method 2017.1	by agreement with customer

II Temperature compensated quartz crystal oscillator, TCXO

IEC-68-2 test method	test	procedure	requirements
Db	Accelerated damp heat	+ 25 to + 55 ^o C 6 cycles at > 95% R.H.	$\Delta f/f < \pm 0.5 \times 10^{-6}$
Ea	Shock	50 g 6 directions 1 blow/direction	$\Delta f/f < \pm 0.5 \times 10^{-6}$
Fc	Vibration	10-500-10 Hz acceleration 10g 3 directions 30 min/direction	Δf/f < ± 0,5 x 10 ⁻⁶
ТЬ	Resistance to soldering heat	260 +/- 5 °C 10 +/- 1 s	$\Delta f/f < \pm 0.5 \times 10^{-6}$

III Digital temperature compensated quartz crystal oscillators, DTCXO

management of the second			
IEC-68-2 test method	test	procedure	requirements
Db	Accelerated damp heat	+ 25 to + 55 ^o C 6 cycles at > 95% R.H.	$\Delta f/f < \pm 0,2 \times 10^{-6}$
Ea	Shock	50 g 6 directions 1 blow/direction	$\Delta f/f < \pm 0.2 \times 10^{-6}$
Fc	Vibration	10-500-10 Hz acceleration 10g 3 directions 30 min/direction	Δf/f < ± 0,2 x 10 ⁻⁶
ТЬ	Resistance to soldering heat	260 +/- 5 °C 10 +/- 1 s	$\Delta f/f < \pm 0,2 \times 10^{-6}$

IV Voltage controlled crystal oscillators, VCXO

IEC 68 test method	test	procedure	requirements
Aa, Ba	storage	16 h, 125 ^o C/2 h, –55 ^o C	no failures
Db	accelerated damp heat	+ 25 ^o C to + 55 ^o C 6 cycles	$\Delta f \leq 5 \times 10^{-6}$
Ea	shock	100 g 6 shocks, 3 directions	$\left. \right\} \Delta f \leq 5 \times 10^{-6}$
Ed	free fall	250 mm on wood)
Fc	vibration	frequency 10 - 500 Hz acceleration 20 g, three directions, 30 min.	no damage ∆f ≤ 5 x 10 ⁻⁶
Na	temperature cycling	1 h, –40 ^o C/1 h, + 85 ^o C 10 cycles	no damage Δf ≤ 5 x 10 ⁻⁶
Q _c , Q _x	sealing	16 h, 700 kPa He	< 1 x 10 ⁻⁸ ncc/s
т	soldering	solderability: max. 10 s, 260 °C thermal shock: 3 s, 350 °C	good tinning no damage ∆f ≤ 5 • 10 ⁻⁶
Ub	bending of terminations	load 5 N, method 1	no visible damage no leaks

Table 2

MIL test method	test	method	requirements
MIL-0-55310/16	ageing	30 days, 60 ^o C continuous	Δf ≤ 1,5 x 10 ⁻⁶
MIL-Std-883	visual inspection	2017.1	by agreement with customer

TEMPERATURE COMPENSATED CRYSTAL OSCILLATOR (TCXO)

OUICK REFERENCE DATA

Catalogue numbers	4322 190 0	4322 190 1	4322 190 2	
Frequency range	4,5 to 15*	4,5 to 15	4,5 to 15	MHz 🖛
Frequency tolerance	± 2 x 10 ⁻⁶	± 1,5 x 10⁻ ⁶	± 1 x 10 ⁻⁶	
Temperature range	-20 to + 70	-10 to + 60	0 to + 50	oC
Supply voltage	+ 12	+ 12	+ 12	V

APPLICATION

Temperature compensated crystal oscillators (TCXOs) are used in mobilophones, electronic timing devices, measuring equipment, synthesizers, etc.

DESCRIPTION

A TCXO module comprises a guartz crystal oscillator, and a thermally controlled circuit that compensates for frequency changes over the whole temperature range. The metal housing is filled with dry nitrogen and hermetically sealed. The unit is provided with 5 connecting pins which are arranged to fit printed-wiring boards with a grid pitch of 2,54 mm (see Fig. 1).

MECHANICAL DATA

Outlines

5 MHz : 4322 190 00011

10 MHz : 4322 190 00001

Catalogue numbers for TCXOs with other frequencies will be fixed upon request.

14.6

Mass

25 g approximately

Marking

The units are provided with a label showing the following information:

	тсхо	Type 4322 190	
	Frequency	MHz	
	Δf 25 °C	Hz	
	Range	oC	
	No.		
ELECTRICAL DATA			
- Supply voltage, V _s		+ 12 V ± 10% via R	$_1$ = 470 Ω (see Fig. 2)
 Power consumption 		max. 150 mW	
Frequency range		4,5 - 15 MHz	
Frequency tolerance/temperature	e range		
at a temp, rate of max, 1 K/mi	n		
cat. numbers 4322 190 0	-20 to + 70 °C	± 2 x 10 ⁻⁶	
cat. numbers 4322 190 1	-10 to + 60 °C	± 1,5 x 10⁻ ⁶	
cat. numbers 4322 190 2	0 to 50 °C	± 1 x 10 ⁻⁶	
Ageing		± 1 x 10 ⁻⁶ per year	
Correction on aging influence by connecting pin 3 to pin 2		-2 ⁺¹ _{-0,5} × 10 ⁻⁶	
Internal resistance, R _i		$2800~\Omega \pm 5\%$	
Internal capacitance, C _i		5,5 pF ± 5%	
Internal voltage source, V _i		600 mV ± 40%	
Load impedance, ZL		min. 500 Ω	
Output voltage, V _O		see Figs 3 and 4	
Storage temperature range		-25 to + 85 °C	
	internally	Ri	
03	4 connected	, └──┌──┝	

Fig. 2 Connection diagram.

Fig. 3 Equivalent circuit.

Fig. 4 Output voltage as a function of load impedance (typical values).

ENVIRONMENTAL TESTS AND REQUIREMENTS

See general section, table II

TEMPERATURE COMPENSATED CRYSTAL OSCILLATOR (TCXO)

OUICK REFERENCE DATA

Catalogue numbers	4322 191 0	4322 191 1	4322 191 2	
Frequency range	4,5 to 15*	4,5 to 15	4,5 to 15	MHz 🖛
Frequency tolerance	± 2 x 10 ⁻⁶	± 1,5 x 10 ⁻⁶	± 1 x 10 ⁻⁶	
Temperature range	20 to + 70	-10 to + 60	0 to + 50	оС
Supply voltage	+ 12	+ 12	+ 12	V
Frequency is adjustable by exten	rnal variable capacitor			

APPLICATION

Temperature compensated crystal oscillators (TCXOs) are used in mobilophones, electronic timing devices, measuring equipment, synthesizers, etc.

DESCRIPTION

A TCXO module comprises a guartz crystal oscillator, and a thermally controlled circuit that compensates for frequency changes over the whole temperature range. The metal housing is filled with dry nitrogen and hermetically sealed. The unit is provided with 5 connecting pins which are arranged to fit printed-wiring boards with a grid pitch of 2,54 mm (see Fig. 1).

MECHANICAL DATA

* Complete 12-digit catalogue numbers have been fixed for TCXOs for the following frequencies:

5 MHz : 4322 191 00011 10 MHz : 4322 191 00001 Catalogue numbers for TCXOs with other frequencies will be fixed upon request.

4,194304 MHz : 4322 191 00031 4,433619 MHz : 4322 191 00041

Mass

25 g approximately

Marking

The units are provided with a label showing the following information:

тсхо	Type 4322 191	
Frequency	MHz	-
Δf 25 °C	Hz	
Range	°C	
No.		

ELECTRICAL DATA

Power consumption

Frequency range

Frequency tolerance/temperature range after adjustment (see note), at specified V_s , Z_L and at a temperature rate of max. 1 K/min. cat. numbers 4322 191 0 -20 to + 70 ° C cat. numbers 4322 191 1 -10 to + 60 °C cat. numbers 4322 191 2 . . . 0 to 50 °C

Ageing

Correction on aging influence Internal resistance, R:

Internal capacitance, Ci

Internal voltage source, Vi

Load impedance, ZL

Output voltage, Vo

Storage temperature range

+ 12 V \pm 10% via R₁ = 470 Ω (see Fig. 2) max. 150 mW 4.5 – 15 MHz

 $\pm 2 \times 10^{-6}$ $\pm 1,5 \times 10^{-6}$ $\pm 1 \times 10^{-6}$ $\pm 1 \times 10^{-6}$ (see note below) $2800 \Omega \pm 5\%$ $5,5 pF \pm 5\%$ $600 mV \pm 40\%$ min. 500 Ω see Figs 3 and 4 -25 to + 85 °C

Note

It is not guaranteed that the nominal frequency occurs at room temperature. The nominal frequency can be shifted by connecting a variable capacitor of max. 60 pF externally between pin 2 and 3. For optimum stability over the whole temperature range the oscillator should be adjusted at room temperature to a frequency which deviates from the nominal one by an amount mentioned as " Δ f 25 °C ... Hz" on the label on the module. After this adjustment a trimming range of ± min. 2 x 10⁻⁶ is still available to correct ageing influences.

Temperature compensated crystal oscillator

Fig. 2 Connection diagram.

Fig. 3 Equivalent circuit.

Fig. 4 Output voltage as a function of load impedance (typical values).

ENVIRONMENTAL TESTS AND REQUIREMENTS

See general section, table II

TEMPERATURE COMPENSATED CRYSTAL OSCILLATOR (TCXO)

QUICK REFERENCE DATA

			· · · · · · · · · · · · · · · · · · ·		
Catalogue numbers	4322 192 0	4322 192 1	4322 192 2 .		
Frequency range	4,5 to 12*	4,5 to 12	4,5 to 12	MHz 🖛	-
Frequency tolerance	± 2 x 10 ⁻⁶	± 1,5 x 10 ⁻⁶	± 1 x 10 ⁻⁶		
Temperature range	-20 to +70	-10 to +60	0 to + 50	°C	
Supply voltage	+ 12	+ 12	+ 12	V	
Frequency is adjustable by external va	riable resistor	l	l		

APPLICATION

Temperature compensated crystal oscillators (TCXOs) are used in mobilophones, electronic timing devices, measuring equipment, synthesizers, etc.

DESCRIPTION

A TCXO module comprises a guartz crystal oscillator, and a thermally controlled circuit that compensates for frequency changes over the whole temperature range. The metal housing is filled with dry nitrogen and hermetically sealed. The unit is provided with 5 connecting pins which are arranged to fit printed-wiring boards with a grid pitch of 2,54 mm (see Fig. 1).

MECHANICAL DATA

Outlines

* Complete 12-digit catalogue number has been fixed for TCXOs for the following frequency:

10 MHz: 4322 192 00001

Catalogue numbers for TCXOs with other frequencies will be fixed upon request.

Mass

25 g approximately

Marking

The units are provided with a label showing the following information:

тсхо	Туре 4322 192
Frequency ∆f 25 ^o C Range No.	MHz Hz °C

ELECTRICAL DATA

Supply voltage, V _S	+ 12 V \pm 10% via R ₁ = 470 Ω (see Fig. 2	
→ Supply current, I _s	max. 12 mA via $R_1 = 470 \Omega$ (see Fig. 2)	
Power consumption	max. 200 mW	
- Frequency range	4,5 — 12 MHz	
Frequency tolerance/temperature range after adjustment (see note), at specified V_s , Z_L , and at a temperature rate of max. 1 K/min.		
cat. numbers 4322 192 020 to + 70° cat. numbers 4322 192 110 to + 60° cat. numbers 4322 192 2 0 to 50°	± 2 x 10 ⁻⁶ ± 1,5 x 10 ⁻⁶ ± 1 x 10 ⁻⁶	
Ageing	\pm 1 x 10 ⁻⁶ per year	
Correction on ageing influence	$\pm 2 \times 10^{-6}$ (see note below)	
Internal resistance, R _i	2800 Ω ± 5%	
Internal capacitance, C _i	5,5 pF ± 5%	
Internal voltage source, V _i	600 mV ± 40%	
Load impedance, Z _L	min. 500 Ω	
Output voltage, V _o	see Figs 3 and 4	
Storage temperature range	–25 to +85 ^o C	

Note

It is not guaranteed that the nominal frequency occurs at room temperature. The nominal frequency can be shifted by connecting a variable resistor of 2 k Ω externally between pin 2 and 3. For optimum stability over the whole temperature range the oscillator should be adjusted at room temperature to a frequency which deviates from the nominal one by an amount mentioned as " Δf 25 °C ... Hz" on the label on the module. After this adjustment a trimming range of ± min. 2 x 10⁻⁶ is still available to correct ageing influences.

Temperature compensated crystal oscillator

4322 192 SERIES

Fig. 2 Connection diagram.

Fig. 3 Equivalent circuit.

Fig. 4 Output voltage as a function of load impedance (typical values).

ENVIRONMENTAL TESTS AND REQUIREMENTS

See general section, Table II

TEMPERATURE COMPENSATED CRYSTAL OSCILLATOR (TCXO)

QUICK REFERENCE DATA

Catalogue numbers	4322 195 0	4322 195 1	4322 195 2	4322 195 3	
Frequency range	20 to 50	20 to 50	20 to 50	20 to 50	MHz
Frequency tolerance	± 1 x 10 ⁻⁶	± 2 x 10 ⁻⁶	± 2 x 10 ⁻⁶	± 3 x 10 ⁻⁶	
Temperature range	0 to + 50	-20 to + 70	0 to + 50	-20 to + 70	°C
Supply voltage	12 V ± 2%	12 V ± 2%	12 V ± 10%	12 V ± 10%	
Frequency is adjustable	e by external variab	le capacitor	•	1	

APPLICATION

Temperature compensated crystal oscillators (TCXOs) are used in mobilophones, electronic timing devices, measuring equipment, synthesizers, etc.

DESCRIPTION

A TCXO module comprises a quartz crystal oscillator, and a thermally controlled circuit that compensates for frequency changes over the whole temperature range. The metal housing is filled with dry nitrogen and hermetically sealed. The unit is provided with 5 connecting pins which are arranged to fit printed-wiring boards with a grid pitch of 2,54 mm (see Fig. 1).

MECHANICAL DATA

Outlines

Mass

25 g approximately

Marking

The units are provided with a label showing the following information:

	тсхо	Туре 4322 195	
	Frequency ∆f 25 ^o C Range No.	MHz Hz °C	
ELECTRICAL DATA			
Supply voltage, V _s , see Fig. 2 cat. numbers 4322 195 0 a cat. numbers 4322 195 2 a	and 4322 195 1 and 4322 195 3	+ 12 V ± max + 12 V ± max	. 2% . 10%
Power consumption		typ. 160 mW,	max. 180 mW
Frequency range		20 to 50 MHz	
Frequency tolerance/temperature after adjustment (see note), at specified V _S , Z _L , and at a ten rate of 1 K/min cat. numbers 4322 195 0 cat. numbers 4322 195 1 cat. numbers 4322 195 2 cat. numbers 4322 195 3	range nperature 0 to + 50 °C -20 to + 70 °C 0 to 50 °C -20 to + 70 °C	see also Fig. 4 ± 1 × 10 ⁻⁶ ± 2 × 10 ⁻⁶ ± 2 × 10 ⁻⁶ ± 3 × 10 ⁻⁶	
Ageing		± 1 x 10⁻⁰ per	year
Correction on ageing influence		$\pm > 2 \times 10^{-6}$,	see note
Internal resistance, Ri		2800 Ω ± 5%	
Internal capacitance, C _i		5,5 pF ± 5%	
Internal voltage source, V _i		600 mV ± 409	%
Load impedance, Z _L		min. 5 00 Ω	
Output voltage, V _O		see Fig. 5	
Storage temperature range		-25 to + 85 c	C S

Note

It is not guaranteed that the nominal frequency occurs at room temperature. The nominal frequency can be shifted by connecting a variable capacitor of max. 20 pF externally between pins 2 and 3. For optimum stability over the whole temperature range the oscillator should be adjusted at room temperature to a frequency which deviates from the nominal one by an amount mentioned as " Δf 25 °C . . . Hz" on the label on the module. After this adjustment a trimming range of ± min. 2 x 10⁻⁶ is still available to correct aging influences.

Temperature compensated crystal oscillator

7765649

Fig. 2 Connection diagram. R1 = 390 Ω

Fig. 4 Frequency tolerance as a function of the tolerance on supply voltage over the entire temperature range.

ENVIRONMENTAL TESTS AND REQUIREMENTS

See general section, Table II

DIGITAL TEMPERATURE COMPENSATED OSCILLATOR (DTCXO)

QUICK REFERENCE DATA

Frequency range	4,5 to 15 MHz
Stability	≤±5 x 10 ⁻⁷
Supply voltage	5 V ± 5%
Supply current	20 mA (typ.)
Output	10 x LPS TTL (2 x TTL)

APPLICATION

DTCXOs are used in communication and measuring equipment for which a very high stability is required at low power consumption.

DESCRIPTION

A DTCXO comprises a quartz crystal oscillator, a quartz crystal temperature measuring device together with an electronic compensation network which is digitally controlled. The metal housing is filled with dry nitrogen and hermetically sealed.

MECHANICAL DATA

Outlines

4322 198 SERIES

Marking

The frequency in MHz, the stability, the temperature range, the catalogue number, date code (month/ year) and the connecting circuit are printed on a label which is stuck to the holder.

<1s

Mounting

The unit can be mounted on a printed circuit board and/or secured by 4 bolts M3.

ELECTRICAL DATA

Frequency range Stability Temperature range Storage temperature range Ageing Supply voltage Supply current Output Duty cycle Stability versus supply variation Time to reach a stability within ± 5 x 10⁻⁷ at switch on 4,5 to 15 MHz $\leq \pm 5 \times 10^{-7}$ -40 to + 85 °C -55 to + 125 °C $\leq 1,5 \times 10^{-6}$ during 10 years at 85 °C 5 V ± 5% max. 25 mA; typ. 20 mA standard low power Schottky (on request 2 x TTL) 40 to 60% $\leq 1 \cdot 10^{-7}$

ENVIRONMENTAL TESTS AND REQUIREMENTS

See general section, Table III

Note

For optimum stability over the whole temperature range the oscillator should be adjusted at room temperature to a frequency which deviates from the nominal one by an amount mentioned as " Δf 25 °C . . . Hz" on the label on the module. After this adjustment a trimming range of ± min. 2 x 10⁻⁶ is still available to correct ageing influences, by means of an external resistor of 47 k Ω .

COMPACT INTEGRATED OSCILLATORS (CIO)

QUICK REFERENCE DATA

Frequency range	1,0 to 20 MHz
Frequency tolerance, all effects included	± 100 x 10 ⁻⁶
Operating temperature range	0 to + 70 ^o C
Supply voltage	5 V ± 10%
Load	up to 10 standard TTL

APPLICATION

Due to their small size and hermetical sealing the oscillators can be supplied in microprocessors, measuring equipment, medical equipment, electronic timing devices, etc.

DESCRIPTION

A compact integrated oscillator comprises a quartz crystal and a thin film hybrid oscillator circuit. The metal housing is filled with dry nitrogen and hermetically sealed. The unit is provided with four connecting pins having a spacing compatible with 14-pin DIL packages.

MECHANICAL DATA

Outlines

- pin 1 = not connected, can be made available for enable input on special request.
- pin 7 = ground, 0 V*
- pin 8 = output
- pin 14 = supply, + 5 V

* The case can be connected to pin 7 for shielding, on special request.
4322 199 SERIES

Marking

The units are marked as follows:

- frequency in kHz
- last five digits of catalogue number
- code for month and year of manufacture

Mounting

Soldering conditions

max. 260 °C, max. 10 s

ELECTRICAL DATA			
Supply voltage		Vcc	+ 5 V ± 10%
Supply current at 25 ^O C over the whole temp. range			60 mA 70 mA
Frequency range			1,0 to 20 MHz
Frequency tolerance			± 500 x 10 ⁻⁶

This tolerance includes:

Initial calibration tolerance at 25 $^{\circ}$ C; change in operating temperature (0 to + 70 $^{\circ}$ C); change in supply voltage; change in load; change in environmental conditions and ageing.

Output charac	teristics		min.	max.
low level vo	Itage	Vol		0,4 V
high level cu	irrent	IOH	2,4	\mathbf{V}
short circuit	t current (1 s max; $V_{CC} = 5,5 V$)	los	13	100 mA
rise time*	(0,5 V to 2,4 V)			10 ns
fall time*	(2,4 to 0,5 V)			10 ns
symmetry*	(1,4 V; 25 °C)		40	60 %

* At 16 mA sink, 0,4 mA source current, 20 pF load capacitance

Start time		typ. 5 ms; max. 50 ms
Temperature range		
operating		0 to + 70 °C
storage		-55 to + 125 °C

AVAILABLE TYPES

Catalogue number of 12 digits are fixed per contract, but the following preferred types have been fixed.

1,0 MHz : 4322 199 00111	4,0 MHz : 4322 199 00161
1,5 MHz : 4322 199 00121	4,9152 MHz : 4322 199 00171
2,0 MHz : 4322 199 00131	6,0 MHz : 4322 199 00181
3,0 MHz : 4322 199 00141	8,0 MHz : 4322 199 00191
3,6864 MHz : 4322 199 00151	9,216 MHz : 4322 199 00211
	10.0 MHz · /322 100 00201

Special types

Compact integrated oscillatorrs with smaller frequency- or symmetry tolerances or other special requirements are available upon request.

Please consult your supplier for further information.

TESTS AND REQUIREMENTS

See general section, Table I.

DEVELOPMENT DATA

This data sheet contains advance information and specifications are subject to change without notice.

VOLTAGE CONTROLLED CRYSTAL OSCILLATORS (VCXO)

QUICK REFERENCE DATA

Frequency range	8 to 15 MHz
Frequency stability	± 20 x 10 ⁻⁶
Operating temperature range	–5 to + 60 ^o C
Supply voltage	5 V ± 5%
Output load	max. 3 standard TTL

APPLICATION

Due to their small size and low power consumption, these hermetically sealed oscillators are especially suitable for digital telephone switching networks.

DESCRIPTION

A voltage controlled crystal oscillator comprises a quartz crystal and a low power Schottky integrated circuit as active device. The frequency can be varied by means of a control voltage. The metal housing is filled with dry nitrogen and hermetically sealed. The unit is provided with four connecting pins having a spacing compatible with 14-pin DIL packages.

MECHANICAL DATA

Outlines

- pin 1 = control voltage
- pin 7 = ground, case terminal
- pin 8 = output
- pin 14 = supply, +5 V

4322 SERIES VCXO

Marking

The units are marked as follows:

- frequency in kHz
- last five digits of catalogue number
- code for month and year of manufacture

Mounting

Soldering conditions

ELECTRICAL DATA

Supply voltage	Vcc	+ 5 V ± 5%	
Supply current	Icc	typ. 6 mA; max. 10 mA	
Frequency range		8 to 15 MHz	
Frequency stability, temp. range -5 to $+60$ °C		± 20 x 10 ⁻⁶	
Pullability		typ. ± 160 x 10 ⁻⁶	
and the second			
Control voltage			
low frequency		+ 5 V	
high frequency			
myn rrequency		-5 V	
Adjusting tolerance at zero volt		± 30 x 10 ⁻⁶	
Ageing, 10 years, constant condition		typ. ± 10 x 10 ⁻⁶	
Output characteristics	7400		
	100		
Dynamic measurements with 15 pF load capacitance			
Start-up time		typ. 10 ms	
Temperature range			
operating		-5 to + 60 °C	
storage		-40 to +100 °C	

Catalogue number

to be fixed

max. 260 °C, max. 10 s

Electronic components and materials for professional, industrial and consumer uses from the world-wide Philips Group of Companies

Argentina: PHILIPS ARGENTINA S.A., Div. Elcoma, Vedia 3892, 1430 BUENOS AIRES, Tel. 541-7141/7242/7343/7444/7545. Australia: PHILIPS INDUSTRIES HOLDINGS LTD., Elcoma Division, 11 Waltham Street, ARTARMON, N.S.W. 2064, Tel. (02) 439 3322. Austria: ÖSTERREICHISCHE PHILIPS BAUELEMENTE INDUSTRIE G.m.b.H., Triester Str. 64, A-1101 WIEN, Tel, 629111-0, Belgium: N.V. PHILIPS & MBLE ASSOCIATED, 9 rue du Pavillon, B-1030 BRUXELLES, Tel. (02) 242 74 00. Brazil: IBRAPE, Caixa Postal 7383, Av. Brigadeiro Faria Lima, 1735 SAO PAULO, SP, Tel. (011) 211-2600. Canada: PHILIPS ELECTRONICS LTD., Elcoma Division, 601 Milner Ave., SCARBOROUGH, Ontario, M1B 1M8, Tel, 292-5161, Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. 39-4001. Colombia: IND. PHILIPS DE COLOMBIA S.A., c/o IPRELENSO LTD., Cra. 21, No. 56-17, BOGOTA, D.E., Tel. 2497624. Denmark: MINIWATT A/S, Strandlodsvei 2, P.O. Box 1919, DK 2300 COPENHAGEN S, Tel. (01) 54 11 33. Finland: OY PHILIPS AB, Elcoma Division, Kaivokatu 8, SF-00100 HELSINKI 10, Tel. 17271. France: RTC-COMPELEC, 130 Avenue Ledru Rollin, F-75540 PARIS 11, Tel. 43388000. Germany (Fed. Republic): VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2 HAMBURG 1, Tel. (040) 3296-0. Greece: PHILIPS HELLENIQUE S.A., Elcoma Division, 54, Syngru Av., ATHENS 11742, Tel. 9215311/319. Hong Kong: PHILIPS HONG KONG LTD., Elcoma Div., 15/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, Tel. (0)-245121. India: PEICO ELECTRONICS & ELECTRICALS LTD., Elcoma Dept., Band Box Building, 254-D Dr. Annie Besant Rd., BOMBAY - 400025, Tel. 4930311/4930590. Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Elcoma Div., Setiabudi II Building, 6th Fl., Jalan H.R. Rasuna Said (P.O. Box 223/KBY) Kuningan, JAKARTA - Selatan, Tel. 512572. Ireland: PHILIPS ELECTRICAL (IRELAND) LTD., Newstead, Clonskeagh, DUBLIN 14, Tel. 693355. Italy: PHILIPS S.p.A., Sezione Elcoma, Piazza IV Novembre 3, I-20124 MILANO, Tel. 2-6752.1. Japan: NIHON PHILIPS CORP., Shuwa Shinagawa Bldg., 26-33 Takanawa 3-chome, Minato-ku, TOKYO (108), Tel. 448-5611. (IC Products) SIGNETICS JAPAN LTD., 8-7 Sanbancho Chivoda-ku, TOKYO 102, Tel. (03) 230-1521. Korea (Republic of): PHILIPS ELECTRONICS (KOREA) LTD., Elcoma Div., Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. 794-5011. Malaysia: PHILIPS MALAYSIA SDN. BERHAD, No. 4 Persiaran Barat, Petaling Jaya, P.O.B. 2163, KUALA LUMPUR, Selangor, Tel. 77 44 11. Mexico: ELECTRONICA, S.A de C.V., Carr. México-Toluca km. 62.5, TOLUCA, Edo. de México 50140, Tel. Toluca 91 (721) 613-00. Netherlands: PHILIPS NEDERLAND, Marktgroep Elonco, Postbus 90050, 5600 PB EINDHOVEN, Tel. (040) 793333. New Zealand: PHILIPS NEW ZEALAND LTD., Elcoma Division, 110 Mt. Eden Road, C.P.O. Box 1041, AUCKLAND, Tel. 605-914. Norway: NORSK A/S PHILIPS, Electronica Dept., Sandstuveien 70, OSLO 6, Tel. 680200. Peru: CADESA, Av. Alfonso Ugarte 1268, LIMA 5, Tel. 326070. Philippines: PHILIPS INDUSTRIAL DEV. INC., 2246 Pasong Tamo, P.O. Box 911, Makati Comm. Centre, MAKATI-RIZAL 3116, Tel. 86-89-51 to 59. Portugal: PHILIPS PORTUGUESA S.A.R.L., Av. Eng. Duarte Pacheco 6, 1009 LISBOA Codex, Tel. 683121. Singapore: PHILIPS PROJECT DEV. (Singapore) PTE LTD., Elcoma Div., Lorong 1, Toa Pavoh, SINGAPORE 1231, Tel. 35 02 000. South Africa: EDAC (PTY.) LTD., 3rd Floor Rainer House, Upper Railway Rd. & Ove St., New Doornfontein, JOHANNESBURG 2001, Tel. 614-2362/9. Spain: MINIWATT S.A., Balmes 22, BARCELONA 7, Tel. 301 63 12. Sweden: PHILIPS KOMPONENTER A.B., Lidingövägen 50, S-11584 STOCKHOLM 27, Tel. 08/7821000. Switzerland: PHILIPS A.G., Elcoma Dept., Allmendstrasse 140-142, CH-8027 ZÜRICH, Tel. 01-4882211. Taiwan: PHILIPS TAIWAN LTD., 150 Tun Hua North Road, P.O. Box 22978, TAIPEI, Taiwan, Tel. 7120500. Thailand: PHILIPS ELECTRICAL CO. OF THAILAND LTD., 283 Silom Road, P.O. Box 961, BANGKOK, Tel. 233-6330-9. Turkey: TÜRK PHILIPS TICARET A.S., Elcoma Department, Inönü Cad, No. 78-80, P.K.504, 80074 ISTANBUL, Tel. 435910. United Kingdom: MULLARD LTD., Mullard House, Torrington Place, LONDON WC1E 7HD, Tel. 01-5806633. United States: (Active Devices & Materials) AMPEREX SALES CORP., Providence Pike, SLATERSVILLE, R.I. 02876, Tel. (401) 762-9000. (Passive Devices) MEPCO/ELECTRA INC., Columbia Rd., MORRISTOWN, N.J. 07960, Tel. (201) 539-2000. (Passive Devices & Electromechanical Devices) CENTRALAB INC., 5855 N. Glen Park Rd., MILWAUKEE, WI 53201, Tel. (414)228-7380. (IC Products) SIGNETICS CORPORATION, 811 East Argues Avenue, SUNNYVALE, California 94086, Tel. (408) 991-2000, Uruguay: LUZILECTRON S.A., Avda Uruguay 1287, P.O. Box 907, MONTEVIDEO, Tel. 914321.

Venezuela: IND. VENEZOLANAS PHILIPS S.A., c/o MAGNETICA S.A., Calle 6, Ed. Las Tres Jotas, App. Post. 78117, CARACAS, Tel. (02) 2393931.

For all other countries apply to: Philips Electronic Components and Materials Division, International Business Relations, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Telex 35000 phtcnl

AS52

© Philips Export B.V. 1986

This information is furnished for guidance, and with no guarantee as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be reproduced in any way, in whole or in part, without the written consent of the publisher.