PHILIPS

Data handbook

Phllps Electronic components and materials

Integrated circuits

Part 2 May 1980

Bipolar ICs for video equipment

INTEGRATED CIRCUITS

PART 2 - MAY 1980
BIPOLAR ICs FOR VIDEO EQUIPMENT

FUNCTIONAL AND NUMERICAL INDEX MAINTENANCE TYPE LIST

GENERAL

PACKAGE OUTLINES

INTRODUCTION

DEVICE DATA

\ddots
\vdots

DATA HANDBOOK SYSTEM

Our Data Handbook System is a comprehensive source of information on electronic components, subassemblies and materials; it is made up of four series of handbooks each comprising several parts.

ELECTRON TUBES BLUE

SEMICONDUCTORS RED

INTEGRATED CIRCUITS PURPLE

COMPONENTS AND MATERIALS
GREEN

The several parts contain all pertinent data available at the time of publication, and each is revised and reissued periodically.
Where ratings or specifications differ from those published in the preceding edition they are pointed out by arrows. Where application information is given it is advisory and does not form part of the product specification.
If you need confirmation that the published data about any of our products are the latest available, please contact our representative. He is at your service and will be glad to answer your inquiries.

ELECTRON TUBES (BLUE SERIES)

Starting in 1980, new part numbers and corresponding codes are being introduced. The former code of the preceding issue is given in brackets under the new code.

Part 1	February 1980	T1 02-80 (ET1a 12-75)
Part 2	Tubes for r.f. heating	

Part 9 March 1978 ET9 03-78 Photomultiplier tubes; phototubes

SEMICONDUCTORS (RED SERIES)

Starting in 1980, new part numbers and corresponding codes are being introduced. The former code of the preceding issue is given in brackets under the new code.

Part 1	March 1980	$\begin{array}{ll} \text { S1 } & 03-80 \\ \text { (SC1b 05-77) } \end{array}$	Diodes Small-signal germanium diodes, small-signal silicon diodes, special diodes, voltage regulator diodes $(<1,5 \mathrm{~W})$, voltage reference diodes, tuner diodes, rectifier diodes
Part 2	May 1980	$\begin{array}{ll} \text { S2 } \quad 05-80 \\ \text { (SC.1a 08-78) } \end{array}$	Power diodes, thyristors, triacs Rectifier diodes, voltage regulator diodes ($>1,5 \mathrm{~W}$), rectifier stacks, thyristors, triacs
Part 2	June 1979	SC2 06-79	Low-frequency power transistors
Part 3	January 1978	SC3 01-78	High-frequency, switching and field-effect transistors*
Part 3	April 1980	$\begin{aligned} & \text { S3 } 04-80 \\ & \text { (SC2 11-77, p } \\ & \text { (SC3 01-78, } \end{aligned}$	Small-signal transistors artly) artly)
Part 4a	December 1978	SC4a 12-78	Transmitting transistors and modules
Part 4b	September 1978	SC4b 09-78	Devices for optoelectronics Photosensitive diodes and transistors, light-emitting diodes, photocouplers, infrared sensitive devices, photoconductive devices
Part 4c	July 1978	SC4c 07-78	Discrete semiconductors for hybrid thick and thin-film circ

[^0]
INTEGRATED CIRCUITS (PURPLE SERIES)

Starting in 1980, new part numbers and corresponding codes are being introduced. The former code of the preceding issue is given in brackets under the new code. Books with the purple cover will replace existing red covered editions as each is revised.

Part 1	May 1980		IC1 $04-80$ (SC5b 03-77)
		Bipolar ICs for radio and audio equipment	

COMPONENTS AND MATERIALS (GREEN SERIES)

Starting in 1980, new part numbers and corresponding codes are being introduced. The former code of the preceding issue is given in brackets under the new code.

Part 1 July 1979 CM1 07-79 Assemblies for industrial use
PLC modules, high noise immunity logic FZ/30 series, NORbits 60 -series, 61 -series, 90 -series, input devices, hybrid integrated circuits, peripheral devices

Part 3a	September 1978	CM3a 09-78	FM tuners, television tuners, surface acoustic wave filters
Part 3b	October 1978	CM3b 10-78	Loudspeakers
Part 4a	November 1978	CM4a 11-78	Soft Ferrites Ferrites for radio, audio and television, beads and chokes Ferroxcube potcores and square cores, Ferroxcube transformer cores
Part 4b	February 1979	CM4b 02-79	Piezoelectric ceramics, permanent magnet materials
Part 6	April 1977	CM6 04-77	Electric motors and accessories Small synchronous motors, stepper motors, miniature direct current motors

Part 7 September 1971 CM7 09-71 Circuit blocks
Circuit blocks 100 kHz -series, circuit blocks 1 -series, circuit blocks 10 -series, circuit blocks for ferrite core memory drive

Part 7a January 1979 CM7a 01-79 Assemblies
Circuit blocks 40 -series and CSA70 (L), counter modules 50 -series, input/output devicés

Part 8	June 1979	CM8 06-79	Variable mains transformers
Part 9	August 1979	CM9 08-79	Piezoelectric quartz devices Quartz crystal units, temperature compensated crystal oscillators
Part 10	April 1978	CM10 04-78	Connectors
Part 11	December 1979 CM11 12-79	Non-linear resistors Voltage dependent resistors (VDR), light dependent resist- ors (LDR), negative temperature coefficient thermistors	
			(NTC), positive temperature coefficient thermistors (PTC)

Part 12	November 1979	CM12 11-79	Variable resistors and test switches
Part 13	December 1979	CM13 12-79	Fixed resistors
Part 14	April 1980	C14 04-80	Electrolytic and solid capacitors
		(CM2b 02-78)	
Part 15	May 1980	C15 05-80	Film capacitors, ceramic capacitors, variable capacitors
		(CM2b 02-78)	

$$
1
$$

SELECTION GUIDE BY FUNCTION

VISION I.F. CIRCUITS

Economical circuits

TCA270S; SQ	i.f. amplifier and demodulator; $n-p-n$ tuners TDA2540; Q
i.f. amplifier and demodulator; $n-p-n$ tuners	
TDA2541; Q	i.f. amplifier and demodulator; $n-p-n$ tuners
TDA2542; Q	i.f. amplifier and demodulator; for E and L standards; $p-n-p$ tuners
TDA2544	i.f. amplifier and demodulator; MOS tuners

High-performance circuits

TDA3540; Q	i.f. amplifier and demodulator; $n-p-n$ tuners
TDA3541; Q	i.f. amplifier and demodulator; $n-p-n$ tuners

COLOUR DECODING CIRCUITS

TBA530; Q
TBA540; Q
TBA560C; CQ
TCA640
TCA650
TCA660B
TDA2510; Q
TDA2520; Q
TDA2522; 0
TDA2523; Q
TDA2530; Q
TDA2532; \mathbf{Q}
TDA2560; 0
TDA3500
TDA3501
TDA3510
TDA3520
TDA3560
TDA3570

RGB matrix preamplifier reference combination luminance and chrominance control combination chrominance amplifier for SECAM or PfoL/SECAM decoders chrominance demodulator for SECAM or PAL/SECAM decoders contrast, saturation and brightness control circuit for colour difference and luminance signals chrominance combination colour demodulator combination colour demodulator combination colour demodulator combination RGB matrix preamplifier RGB matrix preamplifier luminance and chrominance control combination video control of combination video control combination PAL decoder SECAM decoder PAL decoder NTSC decoder

SYNC PROCESSORS; HORIZONTAL; VERTICAL
TBA720A; AQ horizontal oscillator circuit
TBA890; Q signal processing circuit
TBA920; Q; S
horizontal combination
TDA2571A; AQ
TDA2573A
TDA2575A; AQ
TDA2576
TDA2576A
TDA2593

SELECTION GUIDE BY FUNCTION (continued)

VERTICAL DEFLECTION CIRCUITS

TDA2652
TDA2653
TDA2654
TDA3650
vertical deflection circuit ((20 AX; 30 AX systems) vertical deflection circuit (large screen; 30 AX systems) vertical deflection circuit (monochrome, 110°; tiny-vision colour, 90°) vertical deflection circuit (large screen; 30 AX systems)

SOUND CIRCUITS

TBA750C; CQ limiter/amplifier
TCA420A hi-fi FM/IF amplifier
TDA1512
TDA2610; A
TDA2611A
TDA2612
TDA2790
TDA2791
12 to 20 W hi-fi audio power amplifier
4 to 7 W audio power amplifier 5 W audio power amplifier 10 W hi-fi audio power amplifier

TDA2791

VIDEO RECORDER CIRCUITS

TDA2700
TDA2710
TDA2720
TDA2730

MISCELLANEOUS

TAA550
TCA530
TCA750
TDA0820
TDA2581
TDA2582
TDA2640; 0
$562,5 \mathrm{kHz}$ oscillator
chrominance signal/mixer
colour sub-carrier oscillator
FM limiter/demodulator
voltage stabilizer for electronic tuning voltage stabilizer for electronic tuning multi-stabilizer for electronic tuning double balanced modulator/demodulator control circuit for SMPS control circuit for PPS SMPS drive circuit

NUMERICAL INDEX

TAA550	voltage stabilizer for electronic tuning
TBA530; Q	RGB matrix preamplifier
TBA540; Q	reference combination
TBA560C; CQ	luminance and chrominance control combination
TBA720A; AQ	horizontal oscillator circuit
TBA750C; CQ	limiter/amplifier
TBA890; Q	signal processing circuit
TBA920; Q	horizontal combination
TBA920S	horizontal combination
TCA270S; SQ	i.f. amplifier and demodulator; n-p-n tuners
TCA420A	hi-fi FM/IF amplifier
TCA530	voltage stabilizer for electronic tuning
TCA640	chrominance amplifier for SECAM or PAL/SECAM decoders
TCA650	chrominance demodulator for SECAM or PAL/SECAM decoders
TCA660B	contrast, saturation and brightness control circuit for colour difference and luminance signals
TCA750	multi-stabilizer for electronic tuning
TDA0820	double balanced modulator/demodulator
TDA1512	12 to 20 W hi-fi audio power amplifier
TDA2510; Q	chrominance combination
TDA2520; Q	colour demodulator combination
TDA2522; Q	colour demodulator combination
TDA2523; Q	colour demodulator combination
TDA2530; Q	RGB matrix preamplifier
TDA2532; Q	RGB matrix preamplifier
TDA2540; 0	i.f. amplifier and demodulator; n-p-n tuners
TDA2541; 0	i.f. amplifier and demodulator; p-n-p tuners
TDA2542; Q	i.f. amplifier and demodulator; for E and L standards; p-n-p tuners
TDA2544	i.f. amplifier and demodulator; MOS tuners
TDA2560; Q	luminance and chrominance control combination
TDA2571A; AQ	horizontal synchronization and vertical 625 divider system
TDA2573A	horizontal oscillator combination with vertical 525 divider system
TDA2575A; AQ	horizontal synchronization and vertical 525 divider system
TDA2576	horizontal oscillator combination with vertical divider
TDA2576A	horizontal oscillator combination with vertical 625 divider system
TDA2581; 0	control circuit for SMPS

NUMERICAL INDEX (continued)

TDA2582; Q
TDA2593
TDA2610; A
TDA2611A
TDA2612
TDA2640; Q
TDA2652
TDA2653
TDA2654
TDA2700
TDA2710
TDA2720
TDA2730
TDA2790
TDA2791
TDA3500 video control combination
TDA3501 video control combination
TDA3510 PAL decoder
TDA3520
TDA3540; Q
TDA3541; \mathbf{Q}
TDA3560
TDA3570
TDA3650
control circuit for PPS
horizontal combination
4 to 7 W audio power amplifier
5 W audio power amplifier
10 W hi-fi audio power amplifier
SMPS drive circuit
$562,5 \mathrm{kHz}$ oscillator (video recorders)

FM limiter/demodulator (video recorders)

SECAM decoder
i.f. amplifier and demodulator; n-p-n tuners

PAL decoder
NTSC decoder
vertical deflection circuit (20 AX; 30 AX system)
vertical deflection circuit (large screen; 30 AX systems)
vertical deflection circuit (monochrome, 110 ; tiny-vision colour, 900)
chrominance signal/mixer (video recorders)
colour sub-carrier oscillator (video recorders)
television sound combination (volume, treble, bass)
television sound combination (volume, treble, bass)
i.f. amplifier and demodulator; p-n-p tuners
vertical deflection system (large screen; 30 AX system)

MAINTENANCE TYPE LIST

The types listed below are not included in this handbook.
Detailed information will be supplied on request.

TAA630S
TAA630T
TBA510; Q
TBA520; Q
TBA550; Q
TBA750A; AQ (successor type: TBA750C; CQ)
TBA900; Q
TBA990; 0
TCA290A
TCA540; 0
TCA800
TCA820 (successor type: TDA0820)
TDA2500; 0
TDA2571; Q (successor type: TDA2571A; AQ)
TDA2590; 0

TDA2591 (successor type: TDA2593)
TDA2600; Q
TDA2620; Q
TDA2630; 0
TDA2631; 0
TDA2670
TDA2680
TDA2690

GENERAL
Preface to data of ICs
Type designation
Rating systems
Letter symbols

PREFACE TO DATA OF INTEGRATED CIRCUITS

1. General

The published data comprise particulars needed by designers of equipment in which integrated circuits are to be incorporated, and criteria on which to base acceptance testing of such circuits. For ease of reference, the data on each circuit are grouped according to the several headings discussed below.
The limiting values quoted under the headings Characteristics and Package Outline may be taken as references for acceptance testing.
Values cited as typical are given for information only.
For an explanation of the type designation code, see the section Type Designation. For an explanation of the letter symbols used in designating terminals and performance of integrated circuits, and the electrical and logicquantities pertaining to them, see the section Letter Symbols.
2. Quick Reference Data

The main properties of the integrated circuit summarized for quick reference
3. Ratings

Ratings are limits beyond which the serviceability of the integrated circuit may be impaired. The ratings given here are in accordance with the Absolute Maximum System as defined in publication no. 134 of the International Electrical Commission; for further details see item 2 of the section Rating Systems.
If a circuit is used under the conditions set forth in the sections Characteristics and Additional System Design Data, its operation within the ratings is ensured.
4. Circuit diagram

Circuit diagrams and logic symbols are given to illustrate the circuit function. The diagrams show onlyessential elements, parasitic elements due to the method of manufacture normally being omitted. The manufacturer reserves the right to make minor changes to improve manufacturability.
5. System Design Data and Additional System Design Data

System Desigń Data normally derived from the Characteristics and based on worst-case assumptions as to temperature, loading and supply voltage, are quoted for the guidance of equipment designers. Supplementary information derived from measurements on large production samples may be given under Additional System Design Data.

PREFACE

6. Application information

Under this heading, practical circuit connections and the resulting performance are described. Care has been taken to ensure the accuracy and completeness of the information given, but no liability therefor is assumed, nor is licence under any patent implied.
7. Characteristics

Characteristics are measurable properties of the integrated circuit described. Under a specific set of test conditions compliance with limit values given under this heading establishes the specified performance of the circuit; this can be used as a criterion for acceptance testing.
Values cited as typical are given for information only and are not subject to any form of guarantee.
8. Logic symbols (digital circuits)

Graphical logic symbols accord with MIL standard 806B.
Supplementary drawings correlate logic functions with pin locations as a help to laying out printed circuit boards.
9. Outline drawing and pin 1 identification

Dimensional drawings indicate the pin numbering of circuit packages.
Dual in-line packages have a notch at one end to identify pin 1.
Take care not to mistake adventitious moulding marks for the pin 1 identification. Flat packs identify pin 1 by a small projection on the pin itself and/or by a dot on the body of the package.
Metal can encapsulations identify pin 1 by a tab on the rim of the can.

PRO ELECTRON TYPE DESIGNATION CODE FOR INTEGRATED CIRCUITS

This type nomenclature applies to semiconductor monolithic, semiconductor multi-chip, thin-film, thick-film and hybrid integrated circuits.

A basic number consists of:
THREE LETTERS FOLLOWED BY A SERIAL NUMBER

FIRST AND SECOND LETTER

1. DIGITAL FAMILY CIRCUITS

The FIRST TWO LETTERS identify the FAMILY (see note 1).

2. SOLITARY CIRCUITS

The FIRST LETTER divides the solitary circuits into:

S : Solitary digital circuits

T: Analogue circuits
U: Mixed analogue/digital circuits
The SECOND LETTER is a serial letter without any further significance except ' H ' which stands for hybrid circuits.

3. MICROPROCESSORS

The FIRST TWO LETTERS identify microprocessors and correlated circuits as follows:
MA : $\left\{\begin{array}{l}\text { Microcomputer } \\ \text { Central processing unit }\end{array}\right.$
MB : Slice processor (see note 2)
MD : Correlated memories
ME : Other correlated circuits (interface, clock, peripheral controller, etc.)

THIRD LETTER

It indicates the operating ambient temperature range.
The letters A to G give information about the temperature:
A : temperature range not specified
B: 0 to $+70^{\circ} \mathrm{C}$
C : -55 to $+125^{\circ} \mathrm{C}$
D : -25 to $+70^{\circ} \mathrm{C}$
E : -25 to $+85^{\circ} \mathrm{C}$
F: -40 to $+85^{\circ} \mathrm{C}$
G : -55 to $+85^{\circ} \mathrm{C}$

If a circuit is published for another temperature range, the letter indicating a narrower temperature range may be used or the letter ' A '.
Example: the range 0 to $+75^{\circ} \mathrm{C}$ can be indicated by ' B^{\prime} or ' A^{\prime}.

SERIAL NUMBER

This may be either a 4-digit number assigned by Pro Electron, or the serial number (which may be a combination of figures and letters) of an existing company type designation of the manufacturer.

To the basic type number may be added:
A VERSION LETTER
Indicates a minor variant of the basic type or the package. Except for ' Z ', which means customized wiring, the letter has no fixed meaning. The following letters are recommended for package variants:
C : for cylindrical
D : for ceramic DIL
F: for flat pack
P: for plastic DIL
Q : for OIL
U : for uncased chip
Alternatively a TWO LETTER SUFFIX may be used instead of a single package version letter, if the manufacturer (sponsor) wishes to give more information.

FIRST LETTER: General shape
C: Cylindrical
D : Dual-in-line (DIL)
E: Power DIL (with external heatsink)
F: Flat (leads on 2 sides)
G: Flat (leads on 4 sides)
K : Diamond (TO-3 family)
M : Multiple-in-line (except Dual-, Triple-, Quadruple-in-line)
Q : Quadruple-in-line (OIL)
R : Power OIL (with external heatsink)
S : Single-in-line
T: Triple-in-line
A hyphen precedes the suffix to avoid confusion with a version letter.

Notes

1. A logic family is an assembly of digital circuits designed to be interconnected and defined by its basic electrical characteristics (such as: supply voltage, power consumption, propagation delay, noise immunity).
2. By 'slice processor' is meant: a functional slice of microprocessor.

RATING SYSTEMS

The rating systems described are those recommended by the International Electrotechnical Commission (IEC) in its Publication 134.

DEFINITIONS OF TERMS USED

Electronic device. An electronic tube or valve, transistor or other semiconductor device.
Note
This definition excludes inductors, capacitors, resistors and similar components.
Characteristic. A characteristic is an inherent and measurable property of a device. Such a property may be electrical, mechanical, thermal, hydraulic, electro-magnetic, or nuclear, and can be expressed as a value for stated or recognized conditions. A characteristic may also be a set of related values, usually shown in graphical form.

Bogey electronic device. An electronic device whose characteristics have the published nominal values for the type. A bogey electronic device for any particular application can be obtained by considering only those characteristics which are directly related to the application.

Rating. A value which establishes either a limiting capability or a limiting condition for an electronic device. It is determined for specified values of environment and operation, and may be stated in any suitable terms.
Note
Limiting conditions may be either maxima or minima.
Rating system. The set of principles upon which ratings are established and which determine their interpretation.
Note
The rating system indicates the division of responsibility between the device manufacturer and the circuit designer, with the object of ensuring that the working conditions do not exceed the ratings.

ABSOLUTE MAXIMUM RATING SYSTEM

Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, which should not be exceeded under the worst probable conditions.
These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.
The equipment manufacturer should design so that, initially and throughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, equipment control adjustment, load variations, signal variation, environmental conditions, and variations in characteristics of the device under consideration and of all other electronic devices in the equipment.

DESIGN MAXIMUM RATING SYSTEM

Design maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.
These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the electronic device under consideration.

The equipment manufacturer should design so that, initially and throughout life, no design maximum value for the intended service is exceeded with a bogey device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, variation in characteristics of all other devices in the equipment, equipment control adjustment, load variation, sighal variation and environmental conditions.

DESIGN CENTRE RATING SYSTEM

Design centre ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under normal conditions.
These values are chosen by the device manufacturer to provide acceptable serviceability of the device in average applications, taking responsibility for normal changes in operating conditions due to rated supply voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of all electronic devices.
The equipment manufacturer should design so that, initially, no design centre value for the intended service is exceeded with a bogey electronic device in equipment operating at the stated normal supply voltage.

LETTER SYMBOLS FOR LINEAR INTEGRATED CIRCUITS

General

The voltages and currents are normally related to the terminals to which they are applied or at which they appear. Each terminal is indicated by a number. In appropriate cases voltages, currents etc. pertinent to one or more of the circuit elements (transistors, diodes) are given in which case symbols are based on the recommendations as published in I.E.C. Publication 148.

Quantity symbols

1. Instantaneous values of current, voltage and power, which vary with time are represented by the appropriate lower case letter.
Examples: i, v, p
2. Maximum (peak), average, d.c. and root-mean-square values are represented by the appropriate upper case letter.

> Examples: I, V, P

Polarity of current and voltage

A current is defined to be positive when its conventional direction of flow is into the device.
A voltage is measured with respect to the reference terminal, which is indicated by the subscripts. Its polarity is defined to be positive when the potential is higher than that of the reference terminal.

Subscripts

For currents the number behind the quantity symbol indicates the terminal carrying the current.

$$
\text { Examples: } \mathrm{I}_{2}, \mathrm{i}_{14}
$$

For voltages normally two number subscripts are used, connected by a hyphen. The first number indicates the terminal at which the voltage is measured and the second subscript the reference terminal.
Where there is no possibility of confusion the second subscript may be omitted.

$$
\text { Examples: } \mathrm{V}_{2-12}, \mathrm{v}_{14-2}, \mathrm{~V}_{5}, \mathrm{v}_{8}
$$

To distinguish between maximum (peak), average,d.c.and root-mean-square values the following subscripts are added:

For maximum (peak) yalues : M or m
For average values $\quad: A V$ or av
For root-mean-square values: (RMS) or (rms)
For d.c. values : no additional subscripts
The upper case subscripts indicate total values.
The lower case subscripts indicate values of varying components:
Examples: $\mathrm{I}_{2}, \mathrm{I}_{2 \mathrm{AV}}, \mathrm{I}_{2}(\mathrm{rms}), \mathrm{I}_{2}(\mathrm{RMS})$
If in appropriate cases quantity symbols are pertinent to single elements of a circuit (transistors or diodes), the normal subscripts for semiconductor devices can be used.

> Examples: $\mathrm{V}_{\mathrm{CBO}}, \mathrm{V}_{\mathrm{be}}, \mathrm{V}_{\mathrm{CES}}, \mathrm{I}_{\mathrm{C}}$
> $\mathrm{V}_{\mathrm{DSS}}, \mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}$

List of subscripts:
E, e $\quad=$ Emitter terminal
$\mathrm{B}, \mathrm{b} \quad=\quad$ Base terminal for bipolar transistors, Substrate for MOS devices
C, c $\quad=$ Collector terminal
$\mathrm{D}, \mathrm{d} \quad=\quad$ Drain terminal
$\mathrm{G}, \mathrm{g} \quad=$ Gate terminal
$\mathrm{S}, \mathrm{s}=$ Source terminal for MOS devices Substrate for bipolar transistor circuits
(BR) $\quad=$ Break-down
$\mathrm{M}, \mathrm{m} \quad=\quad$ Maximum (peak) value
AV, av $=$ Average value
(RMS), (rms) $=$ R.M.S. value

Electrical Parameter Symbols

1. The values of four pole matrix parameters or other resistances, impedances, admittances; etc., inherent in the device, are represented by the lower case symbol with appropriate subscript.

$$
\text { Examples: } h_{i}, z_{f}, y_{0}, k_{r}
$$

Subscripts for Parameter Symbols

1. The static values of parameters are indicated by upper case subscripts.

Examples: $\mathrm{h}_{\mathrm{FE}}, \mathrm{h}_{\mathrm{I}}$
2. The small signal values of parameters are indicated by lower case subscripts.

Examples: h_{i}, z_{0}
3. The first subscript, in matrix notation identifies the element of the four pole matrix.
i $($ for 11) $=$ input
o $($ for 22$)=$ output
f (for 21) $=$ forward transfer
r (for 12) $=$ reverse transfer

$$
\text { Examples: } \begin{aligned}
\mathrm{V}_{1} & =\mathrm{h}_{\mathrm{i}} \mathrm{I}_{\mathrm{l}}+\mathrm{h}_{\mathrm{r}} \mathrm{~V}_{2} \\
\mathrm{I}_{2} & =\mathrm{h}_{\mathrm{f}} \mathrm{I}_{1}+\mathrm{h}_{\mathrm{o}} \mathrm{~V}_{2}
\end{aligned}
$$

The voltage and current symbols in matrix notation are indicated by a single digit subscript.
The subscript 1 = input; the subscript 2 = output.
The voltages and currents in these equations may be complex quantities.
4. A second subscript is used only for separate circuit elements (e.g. transistors) to identify the circuit configuration:
$\mathrm{e}=$ common emitter
b $=$ common base
$c=$ common collector
5. If it is necessary to distinguish between real and imaginary parts of the four pole parameters, the following notation may be used:
$\mathrm{R}_{\mathrm{e}}\left(\mathrm{h}_{\mathrm{i}}\right)$ etc. ... for the real part
$\mathrm{I}_{\mathrm{m}}\left(\mathrm{h}_{\mathrm{i}}\right)$ etc. ... for the imaginary part

16-LEAD DUAL IN-LINE; PLASTIC (SOT-38)

SOLDERING

1. By hand

Apply the soldering iron below the seating plane (or not more than 2 mm above it).
If its temperature is below $300^{\circ} \mathrm{C}$ it must not be in contact for more than 10 seconds; if between $300^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$, for not more than 5 seconds.

2. By dip or wave

The maximum permissible temperature of the solder is $260^{\circ} \mathrm{C}$; this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.
The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

3. Repairing soldered joints

The same precautions and limits apply as in (1) above.

16-LEAD QUADRUPLE IN-LINE; PLASTIC (SOT-58)

SOLDERING

1. By hand

Apply the soldering iron below the seating plane (or not more than 2 mm above it). If its temperature is below $300^{\circ} \mathrm{C}$ it must not be in contact for more than 10 seconds; if between $300^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$, for not more than 5 seconds.

2. By dip or wave

The maximum permissible temperature of the solder is 260° C; this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.
The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

3. Repairing soldered joints

The same precautions and limits apply as in (1) above.

16-LEAD DUAL IN-LINE; PLASTIC POWER (SOT-69B, D)

Dimensions in mm
(2) Lead spacing tolerances apply from seating plane to the line indicated.

SOLDERING

1. By hand

Apply the soldering iron below the seating plane (or not more than 2 mm above it).
If its temperature is below $300^{\circ} \mathrm{C}$ it must not be in contact for more than 10 seconds; if between $300^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$, for not more than 5 seconds.

2. By dip or wave

The maximum permissible temperature of the solder is $260^{\circ} \mathrm{C}$; this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.
The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

3. Repairing soldered joints

The same precautions and limits apply as in (1) above.

PACKAGE OUTLINES

16-LEAD DUAL IN-LINE; PLASTIC POWER (SOT-69C)

SOLDERING

1. By hand

Apply the soldering iron below the seating plane (or not more than 2 mm above it).
If its temperature is below $300^{\circ} \mathrm{C}$ it must not be in contact for more than 10 seconds; if between $300^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$, for not more than 5 seconds.

2. By dip or wave

The maximum permissible temperature of the solder is $260^{\circ} \mathrm{C}$; this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.
The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

3. Repairing soldered joints

The same precautions and limits apply as in (1) above.

24-LEAD DUAL IN-LINE; PLASTIC (SOT-101A)

Dimensions in $\mathbf{m m}$

.SOLDERING

See SOT-69C, for example.

9-LEAD SINGLE IN-LINE; PLASTIC (SOT-110A)

top view

Dimensions in mm

\bigoplus Positional accuracy.
(M) Maximum Material Condition.
(1) Centre-lines of all leads are within $\pm 0,127 \mathrm{~mm}$ of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by $\pm 0,254 \mathrm{~mm}$.
(2) Lead spacing tolerances apply from seating plane to the line indicated.

28-LEAD DUAL IN-LINE; PLASTIC (SOT-117)

Dimensions in mm
© Positional accuracy.
(M) Maximum Material Condition.
(1) Centre-lines of all leads are within $\pm 0,127 \mathrm{~mm}$ of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by $\pm 0,254 \mathrm{~mm}$.
(2) Lead spacing tolerances apply from seating plane to the line indicated.
(3) Index may be horizontal as shown, or vertical.

SOLDERING

See SOT-69C, for example.

9-LEAD SINGLE IN-LINE; PLASTIC POWER (SOT-131B)

Dimensions in mm

(1) Positional accuracy.
(II) Maximum Material Condition.
(1) Centre-lines of all leads are
within $\pm 0,127 \mathrm{~mm}$ of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by
$\pm 0,254 \mathrm{~mm}$.

13-LEAD DUAL IN-LINE; PLASTIC POWER (SOT-141)

Dimensions in mm

Positional accuracy.
(M) Maximum Material Condition.
(1) Centre-lines of all leads are within $\pm 0,127 \mathrm{~mm}$ of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by $\pm 0,254 \mathrm{~mm}$.
(2) Lead spacing tolerances apply from seating plane to the line indicated.

INTEGRATING COLOUR TELEVISION

INTRODUCTION TO BIPOLAR ICs FOR VIDEO EQUIPMENT

Bipolar ICs find extensive application in video equipment: black-and-white and colour television, video tape recorders, video long play systems, etc.

The diagram opposite shows our range of bipolar ICs for celour television. The complete range of video ICs is given in this data handbook.

TAA550

VOLTAGE STABILIZER

The TAA550 is an integrated monolithic voltage stabilizer, especially designed to provide the supply voltage for variable capacitance diodes in television tuners independent of supply voltage and temperature variations.

	QUICK REFERENCE DATA				
Supply current	I_{1}	typ.	5	mA	
Stabilized voltage	V_{12}	32 to	35	V	
Differential internal resistance	r_{12}	typ.	10	Ω	

PACKAGE OUTLINE

Dimensions in mm
TO-18; 2 pins

pin 1 connected to the case

RECOMMENDED CIRCUIT

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{B}} \gg \mathrm{~V}_{12} \\
& \mathrm{I}_{1} \text { typ. } 5 \mathrm{~mA} \\
& \mathrm{R} \geq 22 \Omega \\
& \mathrm{C}_{1}=300 \text { to } 4700 \mathrm{pF}
\end{aligned}
$$

C_{2} : to be connected if decoupling for low frequent noise is necessary In practice values up to $10 \mu \mathrm{~F}$ are used.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Maximum allowable supply current versus temperature

Temperatures
Storage temperature
Operating ambient temperature
$\begin{array}{lll}\mathrm{T}_{\text {stg }} & -55 \text { to }+150 & { }^{\circ} \mathrm{C} \\ \mathrm{T}_{\mathrm{amb}}\end{array} \quad-20$ to $+150{ }^{\circ} \mathrm{C}$
CHARACTERISTICS

Recommended supply current
Stabilized voltage
Differential internal resistance at $\mathrm{f}=1 \mathrm{kHz}$ $\mathrm{I}_{1}=5 \mathrm{~mA}$

Temperature coefficient at $\mathrm{T}_{\mathrm{amb}}=10$ to $50^{\circ} \mathrm{C} \quad \frac{\Delta \mathrm{V}_{12}}{\Delta \mathrm{~T}_{\mathrm{amb}}}$
I_{1}
V_{12}
$\begin{array}{llll} & \text { typ. } & 10 & \Omega \\ r_{12} & 25 & \Omega\end{array}$
typ. $\quad-0,13 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ $-3,1$ to $+1,55 \mathrm{mV} /{ }^{\circ} \mathrm{C}$

RGB MATRIX PREAMPLIFIER

The TBA530 is an integrated circuit for colour television receivers incorporating a matrix preamplifier for RGB cathode or grid drive of the picture tube without clamping circuits. The chip lay-out has been designed to ensure tight thermal coupling between all the transistors in each channel to minimise and equalise thermal drifts between channels. Also, each channel follows an identical lay-out to ensure equal frequency behaviour of the three channels.

QUICK REFERENCE DATA					
Supply voltage	V_{8-6}	nom.	12	V	
Ambient temperature		Tamb		25	o°
Gain of luminance and colour-difference channels	G	typ.	100		
Total current consumption	$\mathrm{I}_{\text {tot }}$	typ.	30	mA	

PACKAGE OUTLINES

TBA530 : 16-lead DIL; plastic (SOT-38).
TBA530Q: 16-lead QIL; plastic (SOT-58).

CIRCUIT DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltage
Supply voltage $\quad \mathrm{V}_{8-6} \quad \max . \quad 13.2 \mathrm{~V}$

Currents

| Supply currents | $\mathrm{I}_{1} ; \mathrm{I}_{11} ; \mathrm{I}_{14}$ | \max. | 10 | mA |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{I}_{10} ; \mathrm{I}_{13} ; \mathrm{I}_{16}$ | \max. | 50 | $\left.\mathrm{~mA}^{\mathrm{l}}\right)$ | |

Power dissipation
Total power dissipation
$P_{\text {tot }} \quad \max . \quad 400 \quad \mathrm{~mW}^{1}$)
Temperatures

Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ}{ }^{\circ} \mathrm{C}$
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-20 to +60	${ }^{{ }^{\circ} \mathrm{C}}$

CHARACTERISTICS measured in circuit on page 5
Measuring conditions: $\quad \mathrm{V}_{8-6}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

$$
\text { black level: } V_{R-Y}=V_{G}-Y=V_{B-Y}=7.5 \mathrm{~V}
$$

$$
\mathrm{V}_{\mathrm{Y}}=1.5 \mathrm{~V}
$$

Colour difference input

peak-to-peak values	$\begin{aligned} & V_{2}-6(p-p) \\ & V_{3}-6(p-p) \\ & V_{4}-6(p-p) \end{aligned}$	typ. typ. typ.	$\begin{array}{r} 1.4 \\ 0.82 \\ 1.78 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
Luminance input signal (peak-to-peak value)	$\mathrm{V}_{5}-16(\mathrm{p}-\mathrm{p})$	typ.	1	V
Gain of colour channels	G_{2-6}			
($\mathrm{B}-\mathrm{Y} ; \mathrm{G}-\mathrm{Y} ; \mathrm{R}-\mathrm{Y}$) at $\mathrm{f}=0.5 \mathrm{MHz}$	$\left.\begin{array}{l}\mathrm{G}_{3-6} \\ \mathrm{G}_{4-6}\end{array}\right\}$	typ.	100	${ }^{2}$)
Ratio of gain of luminance amplifier to colour amplifiers		typ.	1	
D. C. output voltage	$\left.\begin{array}{l} \mathrm{v}_{\mathrm{R}} \\ \mathrm{~V}_{\mathrm{G}} \\ \mathrm{~V}_{\mathrm{B}} \end{array}\right\}$	typ.	165	V

1) At increased voltages due to external failures (e.g. collector-basis breakdown in the output transistors) a maximum current of 50 mA is permitted between pins 16 and 8,13 and 8,10 and 8 , The maximum allowable dissipation in this case is 500 mW .
${ }^{2}$) G is defined as the voltage ratio between the input signals at the pins $2,3,4$ and the output signals at the collectors of the output transistors.

CHARACTERISTICS (continued)
Input resistance
difference amplifiers at $f=1 \mathrm{kHz}$
$\left.\begin{array}{l}\text { R2-6 } \\ R 3-6 \\ R 4-6\end{array}\right\} \quad$ typ. $60 \quad k \Omega$

Input capacitance of colour
difference amplifiers at $f=1 \mathrm{MHz}$
$\left.\begin{array}{l}\mathrm{C}_{2}-6 \\ \mathrm{C}_{3}-6 \\ \mathrm{C}_{4}-6\end{array}\right\}$ typ. $3 \mathrm{pF}, ~$

PINNING see also APPLICATION INFORMATION circuit diagram on page 5.

1. Output load resistor (red signal)
2. $\mathrm{R}-\mathrm{Y}$ input signal
3. G-Y input signal
4. B-Y input signal
5. Luminance signal input
6. Earth (negative supply)
7. Current feed point
8. 12 V positive supply
9. Bluechannel feedback
10. Blue signal output
11. Output load resistor (blue signal)
12. Green channel feedback
13. Green signal output
14. Output load resistor (green signal)
15. Red channel feedback
16. Red signal output

APPLICATION INFORMATION

APPLICATION INFORMATION (continued)

The function is quoted against the corresponding pin numbering (see also page 5)

1. Output load resistor, red signal (pin 11: blue signal, pin 14: green signal)

Resistors ($47 \mathrm{k} \Omega, 1 \mathrm{~W}$) connected to +200 V provide the high value loads for the internal amplifying stages. The nominal operating potential on these pins is defined by an internal zener type junction and the d.c. feedback and is approximately +8 V . The maximum current which can be allowed at each of these pins is 10 mA .
2. $R-Y$ input signal

This signal is fed via a low-pass filter from the TBA520 demodulator i.c. (pin 7) having a d.c. level of +7.5 V and an amplitude of $/ 1.44 \mathrm{~V}$ peak to peak. The input resistance for this pin is typically $60 \mathrm{k} \Omega$ with an input capacitance of less than 3 pF (similarly for pins 3 and 4).
3. G-Y input signal

The d.c. black level of this signal is +7.5 V and its amplitude is 0.82 V peak to peak (see pin 2).
4. B-Y input signal

The d.c. black level of this signal is +7.5 V and its amplitude isl 1.78 V peak to peak (see pin 2)
5. Luminance signal input

The d.c. level on this pin for picture black is +1.5 V . The required signal amplitude is 1 V black-to-white with negative-going sync (or blanking) for cathode drive as shown. The input resistance at this pin is $20 \mathrm{k} \Omega$ approximately with a capacitance of typ. 10 pF .
6. Negative supply (earth)
7. Current feed point

A current of approximately 2.5 mA is required at this pin, fed via a $3.9 \mathrm{k} \Omega$ resistor from +12 V , to bias the internal differential amplifiers. A decoupling capacitor of 4.7 nF is necessary.
8. Positive 12 V supply

Maximum supply voltage permitted, 13.2 V . Current consumption approximately 30 mA .
9. Blue channel feedback (green channel, pin 12: red channel, pin 15)

The d.c. working points and gains of both the output stages and the i.c.amplifier stages are stabilised by the feedback circuits. The black level potentials at the collectors of the output stages (tube cut-off) are adjustedby setting correctly the d.c. level of the colour difference signals produced by the TBA520 demodulator i.c. The gains of the $\mathrm{R}-\mathrm{G}-\mathrm{B}$ output stages are adjusted to give the correct white points setting on the picture tube by adjusting the potentiometers in the feedback paths (VR1, VR2). (See notes on setting up decoder).

APPLICATION INFORMATION (continued)

10. Biue signal output (green and red signal outputs on 13 and 16)

These pins are internally connected with pins 11,14 and 1 respectively via zener type junctions to give a d.c. level shift appropriate for driving the output transistor bases directly. To by-pass the zener junctions at h.f. three 10 nF capacitors are required.
11. Output load resistor, blue channel (pin 1).
12. Green channel feedback (see pin 9).
13. Green signal output (see pin 10).
14. Output load resistor , green channel (see pin 1).
15. Red channel feedback (see pin 9).
16. Red signal output (see pin 10).

BRIEF PERFORMANCE DETAILS AND COMMENTS

1. Spread of the ratio of voltage gains for colour difference and luminance signal inputs 0.9 to 1.1 .
2. Very careful attention to earth paths should be given, avoiding common impedances between the input (decoder) side and the output stages. Also, to enable matched performance to be achieved, a symmetrical board and component layout should be adopted for the three output stages. To compensate for the effect upon h.f. response of inevitable differences, e.g., the absence of a potentiometer in one of the stages, the compensating capacitors $\mathrm{C}_{1}, \mathrm{C}_{2}$ and C_{3} may be appropriately selected for any given board layout.
3. The signal black level at the collectors of the R-G-B output stages depends upon the +12 V supply, the d.c. level of the colour difference signals from the TBA520 demodulator i.c. and the black level potential of the luminance signal applied to the TBA530 matrix i.c. The d.c. levels of the signals produced and handled by the i.c.'s are designed to have approximately proportional tracking with the 12 V supply potential,

$$
\text { i.e., } \frac{\Delta \mathrm{V}_{\text {(d.c. level, signal) }}}{\Delta \mathrm{V}_{12 \mathrm{~V}}} \approx \frac{\mathrm{~V}_{\text {nom(d.c. level, signal) }}}{12}
$$

To ensure that changes in picture black level due to variations on the 12 V supply to the i.c.'s occur in a predictable way, all the $\overline{\mathrm{i}} . \mathrm{c}$. 's should be operated from a common supply line. This is specially important for the TBA520 and TBA530. Furthermore, to limit the changes in picture black level during receiver operation, the 12 V supply should have a stability of not worse than $\pm 3 \%$ due to operational variations, and preferably be tracked with the screen-grid supply of the picture tube.

REFERENCE COMBINATION

The TBA540 is an integrated reference oscillator circuit for colour television receivers incorporating an automatic phase and amplitude controlled oscillator employing a quartz crystal, together with a half-line frequency synchronous demodulator circuit. The latter compares the phases and amplitude of the swinging burst ripple and the PAL flip-flop waveform, and generates appropriate a.c.c., colour killer and identification signals. The use of synchronous demodulation for these functions per mits a high standard of noise immunity.

QUICK REFERENCE DATA				
Supply voltage	V3-16	nom.	12	V
Total current drain	I3	typ.	33	mA
$\mathrm{R}-\mathrm{Y}$ reference signal output peak-to-peak value	V4-16(p-p)	typ.	1,5	V
Colour killer output: colour on colour off	$\begin{aligned} & v_{7-16} \\ & v_{7-16} \end{aligned}$	typ.	$\begin{array}{r} 12 \\ 250 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{mV} \end{aligned}$
A.C.C. output voltage range at correct phase of PAL switch	V9-16		+4 to +0, 2	V
at incorrect phase of PAL switch	V9-16		+4 to +11	V

PACKAGE OUTLINES

TBA540 : 16-lead DIL; plastic (SOT-38).
TBA540Q: 16-lead QIL; plastic (SOT-58).

CIRCUIT DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltage

Supply voltage	$\mathrm{V} 3-16$	\max.	13.2	V
Power dissipation				
Total power dissipation at $\mathrm{T}_{\mathrm{amb}}=50^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{tot}}$	\max.	680	mW
Temperatures				
Storage temperature	$\mathrm{T}_{\mathrm{stg}}$	-55 to +125	${ }^{\circ} \mathrm{C}$	
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-20 to	+60	${ }^{\circ} \mathrm{C}$

CHARACTERISTICS at $\mathrm{V} 3-16=12 \mathrm{~V}$; T amb $=25^{\circ} \mathrm{C}$; V5-16 M $=0.7 \mathrm{~V}$ (burst signal input); $\mathrm{V}_{8}-16(\mathrm{p}-\mathrm{p})=2.5 \mathrm{~V}$ (P.A. L. square wave input) Measured in circuit shown on page 4.

Output signals
R-Y reference signal output peak-to-peak value ${ }^{-\cdots--}$

V4-16(p-p) typ. 1.5 V
Colour killer output: colour on
V7-16 typ. 12 V colour off

V7-16 < 250 mV
A.C.C. output signal range
at correct phase of P.A. L. switch
at incorrect phase of P.A.L. switch

V9-16	+4 to +0.2	V
V9-16	+4 to +11	V

Oscillator section (amplifier)

Input resistance	R_{15-16}	typ.	3.5	$\mathrm{k} \Omega$
Input capacitance	C_{15-16}	typ.	5	pF
Voltage gain	G_{15-1}	typ.	4.7	

Reactance control section
Voltage gain with pins 13 and 14 interconnected G_{15-2} typ. 1.3
Rate of change of gain G_{15-2} with phase difference

between burst and reference signal	$\frac{\Delta G_{15-2}}{\Delta \varphi_{5-4}}$	typ.	5	$\frac{1}{\text { rad }}$
Supply current consumption	I_{3}	typ.	33	mA

PINNING

1. Oscillator feedback output
2. Reactance control stage feedback
3. Supply voltage (12 V)
4. Reference waveform output
5. Burst waveform input
6. Reference waveform input
7. Colour killer output
8. P.A.L. flip-flop square wave input
9. A.C.C. output
10. A.C.C. level setting (see also pin 12)
11. A.C.C. gain setting
12. A.C.C. level setting (see also pin 10)
13. D.C. control points for
14. oscillator phase control loop
15. Oscillator feedback input
16. Earth (negative supply)

APPLICATION INFORMATION

APPLICATION INFORMATION (continued)

The function is quoted against the corresponding pin number

1. Oscillator feedback output

The crystal receives its energy from this pin. The input impedance is approximately $2 \mathrm{k} \Omega$ in parallel with 5 pF .
2. Reactance control stage feedback

This pin is fed internally with a sinewave derived from the reference input (pin 6) and controlled in amplitude by the internal reactance control circuit. The pitase of the feedback from pin 2 to the crystal via Cl is such that the value of C 1 is ef fectively increased. Pin 2 is held internally at a very low impedance therefore the tuning of the crystal is controlled automatically by the amplitude of the feedback waveform and its influence on the effective value of C1.
3. Positive 12 V supply

The maximum voltage must not exceed 13.2 V .
4. Reference waveform output

This pin is driven internally by the regenerated subcarrier waveform in $R-Y$ phase. An output amplitude of nominally 1.5 V peak-to-peak is produced at low impedance. No d.c.load to earth is required. A d.c.connection between pins 4 and 6 is, however, necessary via the bifilar coupling inductor. The function of this inductor is to produce, on pin 6, a signal of equal amplitude and opposite phase ($-(\mathrm{R}-\mathrm{Y}$)) to that on pin 4. Acentre tap on the inductor, connected to earth via a d.c. blocking capacitor, is therefore necessary.
5. Burst waveform input

A burst waveform amplitude of 1 V peak-to-peak is required to be a.c.-coupled to this pin. The amplitude of the burst will normally be controlled by the adjustment and operation of the a.c.c. circuit. The input impedance at this pin is approximately $1 \mathrm{k} \Omega$ and a threshold level of 0.7 V must be exceeded before the burst signal becomes effective. A d.c. bias of 400 mV is internally derived for pin 5 The absolute level of the tip of the burst at pin 5 will normally reach $1.25 \mathrm{~V}(1.5 \mathrm{~V}$ peak-to-peak burst amplitude). Under abnormal conditions the burst amplitude should not be allowed to exceed 3 V peak-to-peak and a limiting condition will be reached in the i.c. which inhibits the performance of the phase lock loop.

APPLICATION INFORMATION (continued)

6. Reference waveform input

This pin requires a reference waveform in the - $(\mathrm{R}-\mathrm{Y})$ phase, derivedfrom pin 4 via a bifilar transformer (see pin 4), to drive the internal balanced reactance control stage. A d.c. connection between pins 4 and 6 must be made via the transformer.
7. Colour killer output

This pin is driven from the collector of an internal switching transistor and requires an external load resistor (typical $10 \mathrm{k} \Omega$) connected to +12 V . The unkilled and killed voltages on this pin are then +12 V and $<250 \mathrm{mV}$ respectively. (The voltage on pin 9 at which switching of the colour killer output on pin 7 occurs is nominally +2.5 V
8. P.A.L. flip-flop square wave input

A 2.5 V peak-to-peak square wave derived from the P.A.L. flip-flop (in the TBA520 demodulator i.c.) is required at this pin, a.c.-coupled via a capacitor. The input impedance is about $3.3 \mathrm{k} \Omega$.
9. A.C.C. output

An emitter follower provides a low impedance output potential which is negativegoing with a rising burst input amplitude. With zero input signal the d.c. potential produced at pin 9 is set to be +4 V (RV1). The appearance of a burst signal on pin 5 will cause the potential on pin 9 to go in a negative direction in the event that the P.A.L. flip-flop is identified to be in the correct phase. The range of potential over which full a.c.c. control is excercised at pin 9 is determined by the control characteristics of the a.c.c. amplifier i.e. for the TBA560 from 1 V to 0.2 V . The potential at pin 9 will fall to a value within this range as the burst input signal is stabilised at 1.5 V peak-to-peak. The latter condition is achieved by correct adjustment of RV2. If, however, the P.A.L. flip-flop phase is wrong the potential on pin 9 will move positively. The potential divider R5, R6 will then operate a P.A.L. switch cut-off function in the TBA520 demodulator i.c. The switching of the colour killer output at pin 7 is designed to occur as the potential on pin 9 moves past +2.5 V .
10. A.C.C. level setting

The network connected between pins 10 and 12 balances the a.c.c. circuit and RV1 is adjusted to give +4 V on pin 9 with no burst input signal to pin 5.
C5 provides filtering.
11. A.C.C. gain control

RV2 is adjusted to give the correct amplitude of burst signal on pin $5(1.5 \mathrm{~V}$ peak--to-peak) under a.c.c. control;
12. See pin 10.
13. See pin 14.

APPLICATION INFORMATION (continued)

14. D.C. control points in reference control loop

Pins 13 and 14 are connected to opposite sides of a differential amplifier circuit and are brought out for the purposes d.c. balancing of the reactance stage and the connection of the bandwidth-determining filter network. The conventional double time constant filter networks are $\mathrm{R} 2, \mathrm{C} 2, \mathrm{R} 3, \mathrm{C} 3$ and $\mathrm{R}_{4}, \mathrm{C}_{4}$. The d.c. potentials on these pins are nominally $+7,2 \mathrm{~V}$.
15. Oscillator feedback input

The input impedance at this pin is nominally $3.5 \mathrm{k} \Omega$ in parallel with 5 pF . No d.c. connection is required on this pin. The voltage in the i.c. between pin 15 and pin 1 is nominally 4.7 times.
16. Negative supply (earth)

PERFORMANCE AND COMMENTS

Initial adjustment

(a) Remove burst signal.
(b) Short-circuit pins 13-14. Adjust oscillator to correct frequency by C1. Remove short circuit.
(c) Set the a.c.c. level adjustment RV1, to give +4 V on pin 9 .
(d) Apply burst signal.
(e) Adjust a.c.c. gain, RV 2, to give a burst amplitude of 1.5 V peak-to-peak on pin 5.

Phase lock loop performance (with crystal type 43221520110)
(a) Phase difference between reference and burst signals for $\pm 400 \mathrm{~Hz}$ deviation of crystal frequency, $\pm 10^{\circ}$.
(b) Typical holding range, $\pm 600 \mathrm{~Hz}$.
(c) Typical pull-in range, $\pm 300 \mathrm{~Hz}$.
(d) Temperature coefficient of oscillator frequency, i.c. only, $2 \mathrm{~Hz} /{ }^{\circ} \mathrm{C}$.

LUMINANCE AND CHROMINANCE CONTROL COMBINATION

The TBA560C is a monolithic integrated circuit used in the decoding system of colour television receivers. The circuit consists of a luminance and a chrominance amplifier. The luminance amplifier input is matched to the luminance delay line and performs the following functions:
d.c. contrast control * brightness control * black level clamping * blanking.

The chrominance amplifier comprises:
gain -controlled amplifier * chrominance gain control tracked with contrast control * separate d.c. saturation control * PAL delay line driver * burst gate * colour killer.

QUICK REFERENCE DATA				
Supply voltage	V_{11-16}	nom.	12	V
Supply current	I_{11}	nom.	30	mA
Luminance signal input current	$\mathrm{I}_{3(p-p)}$	typ.	1,5	mA
Chrominance input signal	$\mathrm{V}_{1-15}(\mathrm{p}-\mathrm{p})$	$\left\{\begin{array}{l}> \\ <\end{array}\right.$	4 80	mV mV
Luminance output signal at nominal contrast setting	$\mathrm{V}_{5-16}(\mathrm{p}-\mathrm{p})$	typ.	3	V
Chrominance output signal at nominal contrast and saturation setting	V9-16(p-p)	typ.	1	V
Contrast control range		\geq	20	dB
Saturation control range		\geq	20	dB
Burst output (closed a.c.c. loop)	$\mathrm{V}_{7-16}(\mathrm{p}-\mathrm{p})$	typ.	1	V

PACKAGE OUTLINES

TBA560C : 16-lead DIL; plastic (SOT-38).
TBA560CQ: 16-lead QIL; plastic (SOT-58).

Note: the circuits are interconnected in the numerical sequence I, II, III, IV

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltage
Supply voltage
$\mathrm{V}_{11-16} \quad \max . \quad 13 \quad \mathrm{~V} \quad{ }^{1}$)
Power dissipation
Total power dissipation $\quad P_{\text {tot }} \quad \max . \quad 510 \quad \mathrm{~mW}^{\mathrm{l}}$)

Temperatures

Storage temperature	$\mathrm{T}_{\text {stg }}$	-25 to +125	${ }^{\circ} \mathrm{C}$
Operating ambient temperature	$\mathrm{T}_{\text {amb }}$	0 to +60	${ }^{\circ} \mathrm{C}$

Voltages with respect to pin 16

V_{1-16}	0 to +5 V	$\mathrm{~V}_{10-16}$	min. -5	V
$\mathrm{~V}_{2-16}$	0 to $+12 \mathrm{~V}^{2}$)	V_{12-16}	-5 to +6	V
$\mathrm{~V}_{4-16}$	0 to +6 V	$\mathrm{~V}_{13-16}$	-3 to $+6,5 \mathrm{~V}^{2}$)	
V_{6-16}	0 to +3 V	$\mathrm{~V}_{14-16}$	min. -5	V
$\mathrm{~V}_{8-16}$	-5 to +5 V	$\mathrm{~V}_{15-16}$	0 to +5	V

Currents (positive when flowing into the integrated circuit)

| I_{1} | 0 to +1 mA | I_{7} | -3 to +2 | mA |
| ---: | ---: | :--- | :--- | :--- | :--- |
| I_{3} | -1 to +3 mA | I_{9} | -10 to 0 | mA |
| I_{5} | -5 to 0 mA | I_{10} | $\max .+3$ | mA |
| I_{6} | -1 to +1 mA | I_{14} | $\max .+1$ | mA |
| | | I_{15} | 0 to +1 | mA |

[^1]CHARACTERISTICS measured in the circuit on page 6

| Supply voltage | V_{11-16} | typ.12
 10 to 13 V |
| :--- | :--- | :--- | :--- |

Required input signals at $\mathrm{V}_{11-16}=12 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Chrominance input signal
peak-to-peak value $\quad \mathrm{V}_{1-15(\mathrm{p}-\mathrm{p})} \quad 4$ to 80 mV
Luminance input current black-to-white value
$\mathrm{I}_{3} \quad$ typ. $\quad 1,5 \mathrm{~mA}$
Contrast control voltage range
$\left.\begin{array}{cccc}\text { for } 20 \mathrm{~dB} \text { of control } & \mathrm{V}_{2-16} & \text { see graph on page 11 } \\ \text { Brightness control voltage } & \mathrm{V}_{6-16} & \text { see graph on page 11 } & 1\end{array}\right)$

Saturation control voltage range
for 20 dB of control $\quad \mathrm{V}_{13-16}$ see graph on page 11
Burst keying pulse (positive)
peak-to-peak value $\quad \mathrm{I}_{10}(\mathrm{p}-\mathrm{p}) \quad 0,05$ to 1 mA
Fly-back blanking pulses (negative)
peak-to-peak value
for 0 V blanking level at pin 5
for $1,5 \mathrm{~V}$ blanking level at pin 5
Colour killer
Automatic chrominance control starting

$\mathrm{V}_{8-16(p-p)}$	typ.	$-0,5$	V	
$\mathrm{~V}_{8-16(\mathrm{p}-\mathrm{p})}$	typ.	$-2,5$	V	
$\mathrm{~V}_{13-16}$	$<$	1	V	
$\mathrm{~V}_{14-16}$	typ.	1,2	V	$\left.{ }^{2}\right)$

[^2]
CHARACTERISTICS (continued)

Obtainable output signals

Luminance output voltage at nominal

| contrast (peak-to-peak value) | $\mathrm{V}_{5-16(p-p)}$ | typ. | 3 | V | 1), |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| urst signal (peak-to-peak value) | $\mathrm{V}_{7-16(p-p)}$ | typ. | 1 | V | ${ }^{2}$), |

Chrominance signal at nominal
contrast and saturation (peak-to -peak value) $\quad \mathrm{V}_{9-16(p-p)}$ typ. $\quad 1 \quad \mathrm{~V} \quad{ }^{1}$)
3 dB bandwidth of chrominance and
luminance amplifier
B
typ.
5 MHz

Change of ratio luminance to
chrominance signals at 10 dB
contrast control
$<\quad 2 \quad \mathrm{~dB}$

APPLICATION INFORMATION

Application diagram for operation in combination with the TBA540.

APPLICATION INFORMATION (continued)

Pinning

1. Balanced chroma signal input
2. Contrast control
3. Luminance signal input
4. Black level clamp capacitor
5. Luminance signal output
6. Brightness control
7. Burst output
8. Fly-back blanking input
9. Chroma signal output
10. Burst gate and clamping pulse input
11. Supply voltage (12 V)
12. D.C. feedback for chroma channel
13. Chroma saturation control
14. A.C.C. input
15. Chroma signal input
16. Earth (negative supply)

The function is quoted against the corresponding pin number

1. Balanced chroma signal input (in conjunction with pin 15)

This is derived from the chroma signal bandpass filter, designed to provide the push -pull input. An input signal amplitude of at least 4 mV peak-to-peak is required on pins 1 and 15 . Both pins require a d.c. potential of approximately $+3,0 \mathrm{~V}$. This is derived as a common-mode signal from a network connected to pin 7 (burst out put). In this way d.c. feedback is provided over the burst channel to stabilise its operation.
All figures for the chrominance signals are based on a colour bar signal with 75% saturation: i.e. burst to-chroma ratio of input signal is $1: 2$.
2. D.C. contrast control

With $+3,7 \mathrm{~V}$ on this pin, the gain in the luminance channel is such that a $1,5 \mathrm{~mA}$ peak-to-peak input signal to pin 3 gives a luminance output signal amplitude on pin 5 of 3 V black-to-white. A variation of voltage on pin 2 between +6 V and +2 V gives a corresponding gain variation of +6 to $>-14 \mathrm{~dB}$. A similar variation in gain in the chroma channel occurs in order to provide the correct tracking between the two signals.
3. Luminance signal input

This terminal has a very low input impedance and acts as a current sink. The luminance signal from the delay line is fed via a series terminating resistor and must have about $1,5 \mathrm{~mA}$ black-to-white amplitude.
4. Charge storage capacitor for black level clamp $(5,0 \mu \mathrm{~F})$
5. Luminance signal output

An emitter follower provides a low impedance output signal of 3 V black-to-white àmplitude at nominal contrast setting having a black level in the range 0 to +3 V . An external emitter load resistor is required, not less than $1 \mathrm{k} \Omega$.
Black level shift at contrast control is max. $\pm 20 \mathrm{mV}$ if the luminance input current during black level is about $0,75 \mathrm{~mA}$. When this current has a different value a larger black level shift has to be taken into account. If the input current during black level differs 1 mA from the nominal value of $0,75 \mathrm{~mA}$, the black level shift will be about 100 mV over the complete contrast control range. For smaller differences of the input current the black level shift will be correspondingly smaller.
Black level shift with video signal content occurs only when the input signal is a.c. coupled. The value depends on the drive current amplitude and can be calculated from

APPLICATION INFORMATION (continued)

the figures given above (for maximum contrast; for a lower contrast setting the variation is correspondingly smaller).
Black level shift over an ambient temperature variation of $30^{\circ} \mathrm{C}$ is typ. -140 mV .
6. The d.c. level of the luminance output signal may be controlled by the d.c. potential applied to this pin
Over the range of potential $+0,9$ to $+1,7 \mathrm{~V}$ the black level of the luminance output signal (pin 5) is increased from 0 to $+2,7 \mathrm{~V}$. The output signal black level remains at $+2,7 \mathrm{~V}$ when the potential on pin 6 is increased above $+1,7 \mathrm{~V}$.
7. Burst output

A 1 V peak-to-peak burst (kept constant by the a.c.c. system) is produced here. Also, to achieve good d.c. stability by negative feedback in the burst channel the d.c. potential at this pin is fed back to pins 1 and 15 via the chroma input transformer. When limiting occurs the burst amplitude is min. $2,5 \mathrm{~V}$.
8. Fly-back blanking input waveform

Negative-going horizontal and vertical blanking pulses may be applied here. If rectangular blanking pulses of not greater than -1 V negative excursion are applied the signal level at the luminance output (pin 5) during blanking will be 0 V . However, if the blanking pulses applied to pin 8 have an amplitude of -2 to -3 V the signal level at the luminance output during blanking will be $+1,5 \mathrm{~V}$.
9. Chroma signal output

With an 1 V peak-to-peak burst output signal (pin 7) and at nominal contrast and saturation setting (pins 2 and 13) the chroma signal output amplitude is 1 V peak-topeak. An external d.c. network is required which provides negative feedback in the chroma channel via pin 12.
10. Burst gating and clamping pulse input

A positive pulse of minimum $50 \mu \mathrm{~A}$ is required on this pin to provide gating in the burst channel and luminance channel black-level clamp circuit. The timing and width of this current pulse should be such that no appreciable encroachment occurs into the sync pulse or picture line periods during normal operation of the receiver.
11. $+12 \mathrm{~V} \mathrm{L.T}$ power supply

Correct operation occurs within the range 10 to 13 V . All signal and control levels have a linear dependency on supply voltage but, in any given receiver design this range may be restricted due to considerations of tracking between the power supply variations and picture contrast and chroma levels. The power dissipation must not exceed 550 mW at $60^{\circ} \mathrm{C}$ ambient temperature.
12. D.C. feedback for chroma channel (see pin 9)
13. Chroma saturation control

A control range of +6 to $>+14 \mathrm{~dB}$ is provided over a range of d.c. potential on pin 13 from $+2,7$ to $+6,2 \mathrm{~V}$. Colour killing is also done at this terminal by reducingthe d.c. potential to less than +1 V , e.g., from the TBA540 colour killer output terminal. The kill factor is min. 40 dB .

APPLICATION INFORMATION (continued)

14. A.C.C. input

A negative-going potential gives a 26 dB range of a.c.c. starting at $+1,2 \mathrm{~V}$ and giving maximum gain reduction at an input voltage of min. 500 mV .
15. Chroma signal input (see pin 1)
16. Negative supply (earth)

Contrast control of luminance amplifier

Saturation of chrominance amplifier

Control of black level at output luminance amplifier

LINE OSCILLATOR CIRCUIT

This circuit has been designed for use as line-oscillator and reactance stage in colour and monochrome t.v. receivers.
The circuit consists of a Miller-integrator-oscillator followed by a pulse shaping circuit, which delivers a positive pulse of 8 V and adjustable width. The available output current is in excess of 60 mA . Finally a supply voltage take-over switch for starting purposes is built in. The TBA720A can co-operate with the TBA890.

PACKAGE OUTLINES

TBA720A : 16-lead DIL; plastic (SOT-38).
TBA720AQ: 16-lead QIL; plastic (SOT-58).

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134).

Voltages

Supply voltage
Starting voltage

Currents

Output current $\quad I_{5} \quad \max . \quad 60 \mathrm{~mA}$

Power dissipation
Total power dissipation
when mounted on a printed-wiring board $\quad P_{\text {tot }} \quad \max . \quad 280 \mathrm{~mW}$

Temperatures

Storage temperature
Operating ambient temperature
$T_{s t g}$

$$
-55 \text { to }+125^{\circ} \mathrm{C}
$$

Tamb

CHARACTERISTICS Measured in the test set-up on page 4

Supply voltage	V_{11-16}	typ.	12 V
Starting voltage			10 to 13 V
	$\mathrm{~V}_{9-16}$	$>$	8 V
		$1)$	

CHARACTERISTICS at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{11-16}=12 \mathrm{~V}$
Supply current ${ }^{2}$)
typ.
$10,5 \mathrm{~mA}$ 7.5 to $13,5 \mathrm{~mA}$

Required input signals
D.C. control voltage for nominal frequency at pin No. 1 and pin No. 3

Sensitivity of reactance stage
Duty cycle regulation at pin No. 14
$V_{1-16}=V_{3-16} \quad 2,4$ to $5,3 \mathrm{~V}$
V_{1-3} typ. $2 \mathrm{kHz} / \mathrm{V}$

Delivered output signals
Output voltage at pin No. 5
no load; peak-to-peak value
Output current
Duty cycle; without regulation
with regulation

$\mathrm{V}_{5-16}(\mathrm{p}-\mathrm{p})$	typ.	8 V
I_{5}		60 mA
δ		

Rise time at pin No. 5
leading edge of output pulse
${ }^{\mathrm{t}} \mathrm{r} \quad$ typ. 200 ns
${ }^{1}$) Maximum starting voltage should not exceed the value of the supply voltage minus 1 volt.
${ }^{2}$) No load connected to the output. When the output is loaded, the extra current is: $\delta \times \mathrm{I}$, in which $\delta=$ duty cycle of output pulse and $I=$ current flowing during output pulse.

CHARACTERISTICS (continued)

Relative frequency deviation for $\Delta V_{11}=1 \mathrm{~V}$
Relative frequency deviation for change of ambient temperature 25 to $55^{\circ} \mathrm{C}$

Allowable hum-ripple on supply line (peak-to-peak value)
$\Delta V_{11-16(p-p)} \quad$ typ. $\quad 100 \mathrm{mV}$
Test set-up

APPLICATION INFORMATION

The TBA720A with the TBA890 or TBA900 in a receiver with transistorized line deflection.

IIIIIII

APPLICATION INFORMATION (continued)

Notes

1. The TBA720A is intended to drive a line deflection circuit equipped with transistors.
2. The duty cycle δ can be adjusted by connecting a resistor between pin 14 and ground or the supply.
3. The oscillation frequency can be set between 10 kHz and 25 kHz by connecting a resistor between pins 4 and 13, and a capacitor between pins 12 and 13 .
4. At a nominal oscillation frequency of $15,625 \mathrm{kHz}$, the frequency deviation is limited to $\pm 1,3 \mathrm{kHz}$ to safeguard the line timebase output circuits.
5. Besides the oscillator, the TBA720A incorporates a reactance stage and a supply voltage take-over switch for starting purposes (pin 9). The latter can be used to advantage if the 12 V supply is derived from the line flyback pulse.
6 . Pins $2,7,10$ and 15 should not be connected.

LIMITER/AMPLIFIER

The TBA750C is a limiter/amplifier with f.m. detector, d.c. volume control and a.f. preamplifier. It is intended for $4,5 \mathrm{MHz}, 5,5 \mathrm{MHz}$ or $10,7 \mathrm{MHz}$. The limiter/amplifier is a four-stage differential amplifier that gives very good noise and interference suppression. The detector is of the balanced type. The d.c. volume control stage has excellent control characteristics with a control range of more than 80 dB . The a.f. preamplifier can drive a triode-pentode output stage or a class-A push-pull transistor output stage.

QUICK REFERENCE DATA

Supply voltage	V_{2-5}	typ	12 V
Total current drain	$\mathrm{I}_{\text {tot }}$	typ	34 mA
Frequency	f_{0}		$5,5 \mathrm{MHz}$
Input voltage at start of limiting	$V_{i} \mathrm{lim}$	typ	$130 \mu \mathrm{~V}$
A.M. rejection at $\mathrm{V}_{\mathrm{i}}=1 \mathrm{mV}$	α	typ	45 dB
A.F. output voltage at $\Delta f= \pm 15 \mathrm{kHz}$ at pin 16	$V_{\text {o(rms }}$	typ	2,7 V
D.C. volume control range		>	80 dB

PACKAGES OUTLINES

TBA750C: 16-lead DIL; plastic (SOT-38).
TBA750CQ: 16-lead QIL; plastic (SOT-58).

ШН

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage	V_{2-5}	$\max 16 \mathrm{~V}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to $+125^{\circ} \mathrm{C}$
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-25 to $+55{ }^{\circ} \mathrm{C}$

Power dissipation

Fig. 2.

CHARACTERISTICS

Measured in test circuit Fig. 3.
Supply voltage range see also Fig. 4
Total current drain; pin 15 not connected
Input limiting voltage at $\mathrm{V}_{\mathrm{O}}=-3 \mathrm{~dB}$ (r.m.s. value)
I.F. output voltage at pins 6 and 7
(peak-to-peak value)

V_{2-5}	10 to 25 V
l_{2}	25 to 45 mA
$\mathrm{~V}_{\mathrm{i} \text { lim(rms) }}$	typ
	$130 \mu \mathrm{~V}$

$\left.\begin{array}{l}V_{6-5(p-p)} \\ V_{7-5(p-p)}\end{array}\right\} \quad$ typ $\quad 380 \mathrm{mV}$
A.M. rejection
$V_{i}=1 \mathrm{mV}$
$V_{i}=10 \mathrm{mV}$
$V_{i}=100 \mathrm{mV}$

α	typ	45 dB
α	typ	50 dB
α	typ	55 dB
	$>$	80 dB

D.C. volume control range; see also Fig. 5
A.F. preamplifier voltage gain
pin 1 to pin 16

G_{v}	typ	10
$\mathbf{R}_{\mathbf{i}}$	\geqslant	$35 \mathrm{k} \Omega$

[^3]
CHARACTERISTICS (continued)

$\Delta f= \pm 15 \mathrm{kHz} ; f_{m}=1 \mathrm{kHz}$	$\left.\begin{array}{l} \mathrm{V}_{10-5(\mathrm{rms})} \\ \mathrm{V}_{11-5(\mathrm{rms})} \end{array}\right\}$	typ	65 mV
	V_{12-5} (rms)	typ	250 mV
	V_{16-5} (rms).	typ	2,7 V
Total harmonic distortion at pin 12; $\Delta \mathrm{f}=15 \mathrm{kHz}$	$\mathrm{d}_{\text {tot }}$	typ	3 \%
at pin 1 with respect to pin 16; $\mathrm{V}_{0}(\mathrm{rms})=3 \mathrm{~V}$	$\mathrm{d}_{\text {tot }}$	typ	2,6\%

Fig. 3 Test circuit; for f.m.: $\mathrm{f}_{\mathrm{O}}=5,5 \mathrm{MHz} ; \Delta \mathrm{f}= \pm 15 \mathrm{kHz} ; \mathrm{f}_{\mathrm{m}}=70 \mathrm{~Hz}$. For a.m.: $m=0,3 ; f_{m}=1 \mathrm{kHz}$.

Fig. 4 Maximum and minimum values for the power supply series resistance (R_{S}).

Fig. 5 Remote control characteristic.

APPLICATION INFORMATION at $f=5,5 \mathrm{MHz}$

Fig. 6.
$\mathrm{L} 1=18 \mu \mathrm{H} ; \mathrm{Q}_{\mathrm{L} 1}=36$

Note

$\mathrm{L} 2=2,2 \mu \mathrm{H} ; \mathrm{Q}_{\mathrm{L} 2}=21$
$Q_{L 1}, Q_{L 2}$ and $Q_{L 3}$ are the loaded Q-factors.
$\mathrm{L} 3=0,84 \mu \mathrm{H} ; \mathrm{O}_{\mathrm{L} 3}=22$
The transfer ratio of the input bandpass filter: $\frac{V_{2}}{V_{1}}=0,54$.
The peak-to-peak bandwidth of the detector S-curve is 300 kHz .

TELEVISION SIGNAL PROCESSING CIRCUIT

The TBA890 is a silicon monolithic integrated signal processing circuit for monochrome and colour television receivers.
It combines the following functions:

- video pre-amplifier with emitter-follower output and short circuit protection.
- blanking facility for the video amplifier.
- gated a.g.c. detector supplying the a.g.c. voltages for the vision i.f. amplifier and tuner.
- noise cancelling circuit in the a.g.c. and sync separator circuits.
- sync separator.
- automatic horizontal phase detector
- vertical sync pulse separator.

The circuit is designed for receivers equipped with tubes or transistors in the deflection and video output stages.
The control stages in the i.f. amplifier and the tuner have to be equipped with $n-p-n$ transistors. The circuit is developed for signals with negative modulation.

QUICK REFERENCE DATA				
Supply voltage	V_{P}	typ.	12	V
Ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	typ.	25	${ }^{\circ} \mathrm{C}$
Video input voltage (peak -io-peak value)	V9-16(p-p)	typ.	2,7	V
Voltage gain of the video amplifier	G_{v}	typ.	7	dB
A.G.C. voltage for i.f. part	V_{7-16}	1,0 to	12	V
A. G.C. voltage for tuner	V_{6-16}	0,3 to	12	V
Output voltage range horizontal phase detector	V_{2-16}	2 to	10	V
Vertical sync output voltage (positive going pulse; peak-to-peak value)	$V_{14-16(p-p)}$	typ.	11.	V

PACKAGE OUTLINES

TBA890 : 16-lead DIL; plastic (SOT-38).
TBA890Q: 16-lead QIL; plastic (SOT-58).

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage
Power dissipation
Temperatures
Storage temperature
Operating ambient temperature

V_{P}	max.	20	$\left.\mathrm{~V}^{1}\right)$
$\mathrm{P}_{\text {tot }}$	max.	700	mW

Maximum allowable nominal supply voltage as a function of the maximum ambient temperature.
${ }^{1)}$ Allowed only while receiver is warming up.

CHARACTERISTICS

Supply voltage range $\quad \mathrm{V}_{\mathrm{P}} \quad$ See curves on page 3

The following characteristics are measured in the circuit on p .7 at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; $\mathrm{V}_{\mathrm{P}}=12 \mathrm{~V}$.

Video amplifier

Input resistance	R9-16	$>$	30	$\mathrm{k} \Omega$
Input capacitance	C9-16	$<$	3	pF
Bandwidth (3 dB)	B	$>$	5	MHz
Linearity (m)		$>$	0.9	
Rise time and fall time at the output	$\mathrm{t}_{\mathrm{r}} ; \mathrm{t}_{\mathrm{f}}$	$<$	50	ns
Voltage gain	G_{V}	typ.	7	dB
Video input voltage (peak -to -peak value)	V9-16(p-p)	typ.	2.7	$\mathrm{V}^{1)}$
D. C. bias video detector voltage	$\mathrm{V}_{\text {bias }}$	typ.	6	$\mathrm{V}^{2)}$
Video output voltage (peak-to-peak value)	$\mathrm{V}_{11-16}(\mathrm{p}-\mathrm{p})$	typ.	6	$\mathrm{V}^{1)}$
Black level at the output	V.11-16	typ.	5	V^{3})
Available video output current (peak value)	$\mathrm{I}_{11 \mathrm{M}}$	\leq	30	mA^{4}

Tolerances on the video output voltages.

I. C. processing spreads	$\pm \Delta V_{11-16}$	$<$	420	$\left.\mathrm{mV}^{5}\right)$
Temperature drift	$-\Delta \mathrm{V}_{11-16}$	typ.	1.8	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Spreads over a.g.c. expansion (entire range)	$\pm \Delta \mathrm{V}_{11-16}$	$<$	100	$\mathrm{mV} 6)$
Supply voltage	$\frac{\Delta V_{11-16}}{\Delta V_{P}}$	typ.	0.5	

1) Signal with negative going sync.; this value is obtained only when the input signal meets the C.C.I.R. standard.
2) A voltage divider with 5% tolerance resistors is required between pin 9 and sup ply terminal.
3) Only valid if the video signal is in accordance with the C.C.I.R. standard.
4) The total load on pin 11 must be such that the d.c. output current $I_{11} \leq 15 \mathrm{~mA}$.
5) The spreads of the voltage divider for the bias of the video detector of $\pm 5 \%$ is included in this figure.
6) Variation about a nominal condition, the i.f. being fully controlled and the tuner uncontrolled.

CHARACTERISTICS (continued)

Tolerances on the black level at the output
I. C. processing spreads

Temperature drift
Spreads over a.g.c. expansion (entire range)

Supply voltage
Video blanking
Input voltage (peak-to-peak value)
Input resistance
Output voltage during blanking
A.G.C. circuit

Range of control voltage i.f. amplifier
Range of control voltage tuner
Signal expansion for full control of i.f. amplifier and tuner

Current i.f. control point
Current tuner control point
Current i.f. control point for tuner take-over
Keying input pülse (peak-to-peak value)
Input resistance

$\pm \Delta \mathrm{V}_{11-16}$	$<$	420	$\mathrm{mV}^{1)}$
$-\Delta \mathrm{V}_{11-16}$	typ.	1.7	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\pm \Delta \mathrm{V}_{11-16}$	$<$	130	mV^{2}
$\frac{\Delta \mathrm{~V}_{11-16}}{\Delta \mathrm{~V}_{\mathrm{P}}}$	typ.	0.4	

$\mathrm{V}_{10-16(\mathrm{p}-\mathrm{p})}$		1 to 5	V
R_{10-16}	typ.	1	$\mathrm{k} \Omega$
V_{11-16}	$<$	500	mV

V_{7-16}	1 to 12	$\left.\mathrm{~V}^{3}\right)$
V_{6-16}	0.3 to 12	$\mathrm{~V} 3)$

	typ.	0.5	dB
I_{7}	$<$	20	mA
I_{6}	$<$	20	mA

$\mathrm{V}_{5-16(p-p)}$ see note 5
$\mathrm{R}_{5-16} \quad$ typ. $2 \quad \mathrm{k} \Omega$

1) The spreads of the voltage divider for the bias of the video detector of $\pm 5 \%$ is included in this figure (pin 9).
2) Variation about a nominal condition, the i.f. being fully controlled and the tuner uncontrolled.
3) Positive going at increasing input signal.
4) This value depends on the ratio between the external impedances on pins 6 and 7 . With equal impedances the current of the i.f. control point at tuner take-over will be about 16% from its maximum value (minimum control voltage).
5) Negative going pulse is required. The voltage during scan should be between 1 V and 2 V .

CHARACTERISTICS (continued)
Horizontal synchronization circuit

Sync. separator	see note 1			
Output voltage range of phase detector	V_{2-16}		to 10	v^{2}
Control steepness	S_{φ}	typ.	2.5	$\mathrm{V} / \mu \mathrm{s}^{3}$
Phase deviation between front edge sync. pulse and front edge flyback pulse	φ_{0}	typ.	1.5	$\mu \mathrm{s}$
Variation φ_{0} caused by internal spreads	$\pm \Delta_{\varphi 0}$	typ.	0.3	μs^{4}
Output voltage range as a frequency detector	V_{2-16}		4 to 8	V^{5}
Vertical synchronization circuit				
Output voltage vertical sync. pulse generator	V_{14-16}	typ.	11	V
Output impedance	R_{14-16}	typ.	2	k ת

1) The sync. pulse is sliced about 25% below top sync. level: A sliding bias circuit makes the slicing level independent of the signal strength.
2) Nominal voltage 6 V .
3) Higher values of this control steepness can be obtained by changing R_{S} (see cir cuit on page 7). For example $\mathrm{R}_{\mathrm{S}}=56 \Omega, \mathrm{~S}_{\varphi}=5 \mathrm{~V} / \mu \mathrm{s}$ and $\mathrm{R}_{\mathrm{S}}=0, \mathrm{~S}_{\varphi}=\geq 25 \mathrm{~V} / \mu \mathrm{s}$.
4) In addition to this figure $\pm 7 \%$ of the retrace time of the sawtooth generated on pin 3 has to be added to find the total spreads of φ_{0}.
This value of $\pm 7 \%$ is obtained only when the tolerance of the capacitor connected to pin 3 does not exceed $\pm 10 \%$.
5) Nominal voltage 6 V .

The load impedance on pin 2 of the circuit on page 7 is about $50 \mathrm{k} \Omega$.
When a higher impedance is used (tube equipped reactance stage) values from 2 V to 10 V can be reached.

APPLICATION INFORMATION

HORIZONTAL COMBINATION

The TBA 920 is a monolithic integrated circuit intended for television receivers with transistor -thyristor -or tube equipped output stages.
It combines the following functions:

- noise gated sync separator
- line oscillator
- phase comparison between sync pulse and oscillator
- loopgain and time constant switching (also for video recorder applications)
- phase comparison between line-flyback pulse and oscillator
- output stage for drive a variety of line output stages

QUICK REFERENCE DATA				
Süpply voltage	V_{1-16}	nom.	12	V
Ambient temperature	Tamb		25	${ }^{\circ} \mathrm{C}$
Input signals				
Video input voltage (positive-going sync) top sync to white value	$\mathrm{V}_{8-16}(\mathrm{p}-\mathrm{p})$		1 to $\begin{array}{r}3 \\ 7\end{array}$	V
Noise gate input current (peak value)	$\mathrm{I}_{9 \mathrm{M}}$	>	30	$\mu \mathrm{A}$
Input resistance of noise gate	R9-16	typ.	200	Ω
Flyback signal input voltage (peak value)	V5-16M	typ.	± 1	V
Flyback signal input current (peak value)	$\mathrm{I}_{5 \mathrm{M}}$	typ.	1	mA
Output signals				
Line driver output voltage (peak -to -peak value)	$\mathrm{V}_{2}-16(\mathrm{p}-\mathrm{p})$	typ.	10	V
Line driver output current (average value)	$\mathrm{I}_{2(\mathrm{AV})}$	max.	20	mA
Line driver output current (peak value)	$\mathrm{I}_{2 \mathrm{M}}$	max.	200	mA
Composite sync output voltage (peak value)	$\mathrm{V}_{7-16 \mathrm{M}}$	typ.	10	V

PACKAGE OUTLINES

TBA920 : 16-lead DIL; plastic (SOT-38). TBA920Q: 16-lead QIL; plastic (SOT-58).

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)
Voltages
Supply voltage
Pin No. 3 voltage
Pin No. 8 voltage
Pin No. 10 voltage

V_{1-16}	$\max . \quad 13,2$	V
$\mathrm{~V}_{3-16}$	0 to 13,2	V
$-\mathrm{V}_{8-16}$	\max	12
$\mathrm{~V}_{10-16}$	$-0,5$ to +5	V

Currents

Pin No. 2 current (average value)
(peak value)
Pin.No. 5 current (peak value)
Pin.No. 7 current (peak value)
$\mathrm{I}_{2(\mathrm{AV})}$
$\mathrm{I}_{2 \mathrm{M}}$
$\mathrm{I}_{5 \mathrm{M}}$
$\mathrm{I}_{7 \mathrm{M}}$
Pin No. 8 current (peak value)
Pin No. 9 current (peak value)
$I_{8 M}$
$\mathrm{I}_{9 \mathrm{M}}$
Power dissipation
Total power dissipation
$P_{\text {tot }} \quad \max .600 \quad \mathrm{~mW}{ }^{1}$)

Temperatures

Storage temperature
Operating ambient temperature
$\mathrm{T}_{\mathrm{stg}}$
Tamb

-55 to +125	${ }^{\circ} \mathrm{C}$
-20 to +60	${ }^{\circ} \mathrm{C}$

CHARACTERISTICS at $\mathrm{V}_{1-16}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$
Measured in circuit on page 6 (CCIR standard).
Current consumption at $\mathrm{I}_{2}=0$
I_{1}
Required input signals
Video signal
Input voltage (positive going sync)
peak-to-peak value
Input current during sync pulse (peak value)

$\mathrm{V}_{\mathbf{i}(\mathrm{p}-\mathrm{p})}$	typ.	$\begin{array}{r} 3 \\ 1 \text { to } 7 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{I}_{8 \mathrm{M}}$	typ.	100	$\mu \mathrm{A}$
$\mathrm{V}_{9-16 \mathrm{M}}$	$>$	0,7.	V
$\mathrm{I}_{9 \mathrm{M}}$	$>$	30	$\mu \mathrm{A}$
R9-16	typ.	200	Ω

1) 800 mW permissible while tubes are heating up.

CHARACTERISTICS (continued)

Flyback pulse (pin 5)

Input voltage (peak value)	$\mathrm{V}_{5-16 \mathrm{M}}$	typ.	± 1	V
Input current (peak value)		$>$	50	$\mu \mathrm{~A}$
	$\mathrm{I}_{5 \mathrm{M}}$	typ.	1	mA
Input resistance	R_{5-16}	typ.	400	Ω
Pulse duration at 15625 Hz	t_{5}	$>$	10	$\mu \mathrm{~s}$

Delivered output signals

Composite sync pulses (positive; pin 7)

Output voltage (peak-to-peak value)	V_{7-16} (p-p)	typ.	10	V
Output resistance at leading edge of pulse (emitter follower) at trailing edge	$\begin{aligned} & \mathrm{R}_{7-16} \\ & \mathrm{R}_{7-16} \end{aligned}$	typ.	50 2,2	Ω $\mathrm{k} \Omega$
Additional external load resistance	$\mathrm{R}_{7-16 \text { (ext) }}$	>	2	k Ω
Driver pulse (pin 2)				
Output voltage (peak-to-peak value)	$\mathrm{V}_{2-16(p-p)}$	typ.	10	V
Average output current	$\mathrm{I}_{2(\mathrm{AV})}$	<	20	mA
Peak output current	$\mathrm{I}_{2 \mathrm{M}}$	$<$	200	mA
Output resistance (low ohmic)	R_{2-16}	typ. 2		Ω
Output pulse duration when synchronised	t_{2}		o 32	$\mu \mathrm{s}$
Permissible delay between leading edge of output pulse and flyback pulse at $\mathrm{t}_{5}=12 \mu \mathrm{~s}$	t_{0} tot		o. 15	$\mu \mathrm{s}$
Supply voltage at which output pulses are obtained	V_{1-16}	$>$	4	V

[^4]
CHARACTERISTICS (continued)

Oscillator

Frequency; free running ($\left.\mathrm{R}_{15-16}=3,3 \mathrm{k} \Omega\right) \quad \mathrm{f}_{\mathrm{o}} \quad 15625 \mathrm{~Hz} \quad 1$)
Spread of frequency at nominal values of peripheral components
$\frac{\Delta f_{o}}{f_{o}} \quad<\quad \pm 5 \% \quad 2$)
Frequency change when decreasing the supply down to minimum 4 V
$\left|\frac{\Delta \mathrm{f}_{\mathrm{O}}}{\mathrm{f}_{\mathrm{o}}}\right|<\quad<\quad 10 \%$

Frequency control sensitivity
$\frac{\Delta f_{\mathrm{o}}}{\Delta \mathrm{I}_{15}} \quad$ typ. $\quad 16,5 \quad \mathrm{~Hz} / \mu \mathrm{A}$

Adjustment range of network
in circuit on page 6^{\prime}
$\frac{\Delta f_{0}}{f_{0}} \quad$ typ. $\quad \pm 10 \quad \%$
Influence of supply voltage
on frequency at $\mathrm{V}_{\mathrm{P}}=12 \mathrm{~V}$
$\frac{\delta f_{\mathrm{o}}}{\mathrm{f}_{\mathrm{o}}} / \frac{\delta \mathrm{V}_{\mathrm{P}}}{\mathrm{V}_{\text {Pnom }}}<\quad 5 \%$
Control loop 1 (between sync pulse and oscillator)
Control voltage range $\quad \mathrm{V}_{12-16} \quad 0,8$ to $5,5 \mathrm{~V}$
Control current (peak values)

at $V_{10-16}>4,5 \mathrm{~V} ; \mathrm{V}_{6-16}>1,5 \mathrm{~V}$	$\mathrm{I}_{12 \mathrm{M}}$	typ.	± 2	mA
at $\mathrm{V}_{10}-16<2 \mathrm{~V} ; \mathrm{V}_{6-16}>1,5 \mathrm{~V}$	$\mathrm{I}_{12 \mathrm{M}}$	typ.	± 6	mA

Loopgain of APC system
a. Time coincidence between sync pulse and flyback pulse or $\mathrm{V}_{10-16}>4,5 \mathrm{~V}$

$\frac{\Delta \mathrm{f}}{\Delta \mathrm{t}}$	typ.	1	$\mathrm{kHz} / \mu \mathrm{s}$
$\frac{\Delta \mathrm{f}}{\Delta \mathrm{t}}$	typ.	3	$\mathrm{kHz} / \mu \mathrm{s}$

Catching and holding range $\quad \Delta \mathrm{f}$ typ. $\pm 1 \mathrm{kHz}{ }^{3}$)

[^5]
CHARACTERISTICS (continued)

$\left.\begin{array}{lllllll}\text { Pull -in time for } \Delta f / f_{0}= \pm 3 \%(\Delta f=470 \mathrm{~Hz}) & \mathrm{t} & \approx & 20 & \mathrm{~ms} & 1\end{array}\right)$

Control loop II (between flyback pulse and oscillator)

Permissible delay between leading edge of output pulse (pin 2) and leading edge of flyback pulse $\quad t_{d}$ tot $\quad 0$ to $15 \quad \mu \mathrm{~s}$

Static control error

$\frac{\Delta t}{\Delta t_{d}}$	$<$	0,5	$\%$	$2)$
$I_{4 M}$	typ.	$\pm 0,7$	mA	

Overall phase relation

Phase relation between leading edge of sync pulse and middle of flyback pulse

Tolerance of phase relation

t	typ.	4,9	$\mu \mathrm{~s}$	$\left.{ }^{3}\right)$
$\|\Delta \mathrm{t}\|$	$<$	1	$\mu \mathrm{~s}$	$4)$
V_{3-16}		6 to 8	V	
$\frac{\Delta \mathrm{~T} 2}{\Delta \mathrm{~V}_{3}-16}$	typ.	10	$\mu \mathrm{~s} / \mathrm{V}$	
I_{3}	$<$	2	$\mu \mathrm{~A}$	

External switch -over of parameters (loop filter and loop gain) of control loop I (e.g. for video recorder application) see note 5.

Required switch-over voltage
at $R_{11-16}=150 \Omega$

V_{10-16}	$>$	4,5	V
$\mathrm{~V}_{10}-16$	V		

at $R_{11-16}=2 \mathrm{k} \Omega$
$\mathrm{V}_{10-16}<2 \mathrm{~V}$
Required switch -over current
at $\mathrm{R}_{11-16}=150 \Omega ; \mathrm{V}_{10-16}=4,5 \mathrm{~V}$
$\begin{array}{lrrrr}\mathrm{I}_{10} & \text { typ. } & 80 & \mu \mathrm{~A} & 5 \text {) } \\ \mathrm{I}_{10} & \text { typ. } & 120 & \mu \mathrm{~A} & \end{array}$

1) See application information circuit on page 6.
2) The control error is the remaining error in reference to the nominal phase position between leading edge of the sync pulse and the middle of the flyback pulse caused by a variation in delay of the line output stage.
3) This phase relation assumes a luminance delay line with a delay of 500 ns between the input of the sync separator and the drive to the picuture tube. If the sync separator is inserted after the luminance delay line or if there is no delay line at all (black -andwhite sets), then the phase relation is achieved at $\mathrm{C}_{5-16}=560 \mathrm{pF}$.
4) The adjustment of the overall phase relation and consequently the leading edge of the output pulse at pin 2 occurs automatically by the control loop II or by applying a d.c. voltage to pin 3.
5) With sync pulses at pin 7 and 8; without RC network at pin 10.

HORIZONTAL COMBINATION

The TBA920S is identical to the TBA920, except for the following data:

Oscillator

Spread of frequency at
$\mathrm{R}_{15-16}=3,3 \mathrm{k} \Omega ; \mathrm{C}_{14-16}=10 \mathrm{nF}$

$$
\begin{array}{lll}
\frac{\Delta \mathrm{f}_{\mathrm{O}}}{\mathrm{f}_{\mathrm{O}}} & < & 1,5
\end{array} \%
$$

Note: The above network is the only part that differs from the circuit given on page 6 of TBA920 data.

Overall phase relation

Tolerance of phase relation between
leading edge of sync pulse and
middle of flyback pulse $|\Delta t|<0,4 \mu s$
Other circuit possibilities for oscillator frequency adjustment

TELEVISION SIGNAL PROCESSING CIRCUIT

The TCA270S is a monolithic integrated circuit combining the following functions:

- synchronous demodulator
- video amplifier with buffer output stages
- noise inverters
- A. G.C. detector with output stages for $n-p-n$ tuner and i.f. amplifier
- A. F.C. demodulator with buffer output stage

Opposite polarity video signals are available from emitter followers, the negative-going signal being matched to integrated circuit type TBA 920.

QUICK REFERENCE DATA				
Supply voltage	V_{3-16}	nom.	12	V
Ambient temperature	Tamb	typ.	25	${ }^{\circ} \mathrm{C}$
Frequency	f	typ.	38,9	MHz
Supply current	I3	typ.	47	mA
Video output voltage (peak value)	$\mathrm{V}_{9-16 \mathrm{M}}$	typ.	3	V
Bandwidth (3 dB)	B	typ.	5	MHz
Intermodulation products (blue colour bar)				
$1,1 \mathrm{MHz}$ with respect to $\mathrm{B}-\mathrm{W}$ level		typ.	-60	dB
$3,3 \mathrm{MHz}$ with respect to $\mathrm{B}-\mathrm{W}$ level		typ.	-67	dB
A.F.C. output control voltage swing (peak-to-peak value)	$V_{11-16(p-p)}$	>	10	V
A.G.C. control current for $\mathrm{n}-\mathrm{p}-\mathrm{n}$ i.f. (pin 4)	I_{4}	$>$	10	mA
A. G. C. control current for tuner (pin 5)	I_{5}	>	10	mA

PACKAGE OUTLINES

TCA270S : 16-lead DIL; plastic (SOT-38).
TCA270SQ: 16-lead QIL; plastic (SOT-58).

CIRCUIT DIAGRAM

CIRCUIT DIAGRAM (continued)

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Supply voltage during switch on ($t \leq 10 \mathrm{~s}$)
Power dissipation

Temperatures

Storage temperature
Operating ambient temperature

CHARACTERISTICS

Supply voltage range

Supply current range
D. C. output voltage (zero signal; pin 9)
D. C. output voltage (zero signal; pin 10)
D.C. output voltage at start of a.g.c. (pin 9)

Unbalanced r.m.s. input voltage for a.g.c.
Input resistance at pin 1
Input resistance at pin 2
Bandwidth (3 dB) of video output
Differential gain
Differential phase
Intermodulation products (blue colour bar)
$1,1 \mathrm{MHz}$
Carrier frequency rejection at pins 9, 10 and 11
Twice carrier frequency rejection at pins 9, 10 and 11

V_{3-16}	max.	18	V
$\mathrm{P}_{\text {tot }}$	\max.	1	W

$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}$	-25 to +55	${ }^{\circ} \mathrm{C}$

$\begin{array}{lll}\text { typ. } & 12,0 & \mathrm{~V} \\ 10,2 \text { to } & 13,8 & \mathrm{~V}\end{array}$
typ. 47 mA
I_{3}

V_{9-16}	typ.	6	V
$\mathrm{~V}_{10-16}$	typ.	6	V
$\mathrm{~V}_{9-16}$	typ.	3	V
	typ.	70	mV
$\mathrm{V}_{\mathrm{i}(\mathrm{rms})}$	50 to	100	mV

R_{1-16}	typ.	3	$k \Omega$
$R_{2}-16$	typ.	3	$k \Omega$

B
R_{2-16} typ. 3 k Ω

typ.	5	MHz	
$<$	10	$\%$	$1)$
$<$	10	0	$1)$

typ.	-60	dB
typ.	-67	dB
$>$	40	dB
$>$	40	dB

1) CCIR system of modulation, peak of white signal $=10 \%$ of carrier.

CHARACTERISTICS (continued)
A. G. C. circuit

Saturation voltage of tuner control at 10 mA (pin 4)	$\mathrm{V}_{4-13 s a t}$	$<$	0,3	V
Saturation voltage of i.f. control at 10 mA (pin 5)	$\mathrm{V}_{5-13 \text { sat }}$	0, 7 to		V
Breakdown voltage at 1 mA (pins 4 and 5)	$\left.\begin{array}{l} V_{(B R) 4-13} \\ V_{(B R) 5-13} \end{array}\right\}$	$>$	14	V
Control current at pins 4 and 5	$\mathrm{I}_{4} ; \mathrm{I}_{5}$	$>$	10	mA
Signal expansion for complete a.g.c.		$<$	0, 5	dB

A. G.C. gating (optional) by negative
line flyback pulse; input voltage (peak -to-peak
value)
input resistance
Current ratio of unsaturated outputs (pins 4 and 5)
at $\mathrm{I}_{5}=1 \mathrm{~mA}$
$\mathrm{V}_{\mathbf{i}(\mathrm{p}-\mathrm{p})} \stackrel{>}{<} \quad \begin{gathered}2 \\ \text { supply voltage }\end{gathered}$
$\mathrm{R}_{\mathrm{i}} \quad$ typ. $1,8 \quad \mathrm{k} \Omega$
$\frac{\mathrm{I}_{4}}{\mathrm{I}_{5}} \quad>\quad 6$
A.F.C. circuit

Output control voltage swing (peak -to-peak value) $\quad V_{11-16(p-p)}>\quad 10 \mathrm{~V}$
Change of frequency for complete output voltage swing
< 400 kHz
Change of frequency to maintain peak output voltage
> $\quad \pm 1 \quad \mathrm{MHz}$
Noise inverters ${ }^{1}$)
Negative-goingnoise pulses in pin 9 inversion threshold
typ. 2,55 V
Positive-going noise pulses in pin 9 inversion threshold
typ. 6,6 V

1) Noise pulses are inverted to a point near black level.

APPLICATION INFORMATION

Unloaded Q of L1 and L2 must be >50.

HI-FI F.M./I.F. AMPLIFIER

The TCA420A is a monolithic integrated f.m./i.f. amplifier for car and hi-fi equipment provided with the following functions:

- limiter amplifier
- symmetrical quadrature detector
- symmetrical a.f.c. output
- field-strength indication output
- stereo decoder switching voltage
- adjustable side response suppression
- muting

QUICK REFERENCE DATA

Supply voltage (pin 11)	V_{p}	typ.	15 V
Supply current (pin 11)	Ip	typ.	26 mA
Input limiting voltage (-3 dB) ; $\mathrm{f}_{0}=10,7 \mathrm{MHz}$	$V_{\text {i lim }}$	typ.	$20 \mu \mathrm{~V}$
A.F. output voltage (pin 5) ; $\Delta \mathrm{f}= \pm 15 \mathrm{kHz} ;$ r.m.s. value	V_{o} (rms)	typ.	115 mV
Signal plus noise-to-noise ratio; $\mathrm{V}_{\mathrm{i}}>1 \mathrm{mV} ; \Delta \mathrm{f}= \pm 15 \mathrm{kHz}$	$\mathrm{S}+\mathrm{N} / \mathrm{N}$	typ.	72 dB
I.F. input voltage; $\Delta \mathrm{f}= \pm 15 \mathrm{kHz}$			
$S+N / N=26 \mathrm{~dB}$	V_{i}	typ.	$15 \mu \mathrm{~V}$
$S+N / N=46 d B$	V_{i}	typ.	$45 \mu \mathrm{~V}$
A.M. rejection; $V_{i}=10 \mathrm{mV} ; \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}$ (f.m.) ; $\Delta \mathrm{f}= \pm 15 \mathrm{kHz}$	α	typ.	50 dB
Total distortion (single tuned circuit); $\Delta f= \pm 15 \mathrm{kHz}$	$\mathrm{d}_{\text {tot }}$	typ.	0,1 \%
Centre shift of f.m. detector curve	$\Delta f=\left\|f_{01}-f_{o 2}\right\|$	typ.	7 kHz
Field-strength indication range	ΔV_{i}	typ.	70 dB
Supply voltage range (pin 11)	V_{P}		- 18 V
Ambient temperature range	$T_{\text {amb }}$	-30	$+80{ }^{\circ} \mathrm{C}$

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38).

Fig. 1b Part of circuit diagram; continued from Fig. 1a.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage (pin 11)
Total power dissipation
Storage temperature
Operating ambient temperature

$V_{P}=V_{11-16}$	max.	18 V
$P_{\text {tot }}$	\max.	720 mW
$T_{\text {stg }}$	-55 to $+150^{\circ}{ }^{\circ} \mathrm{C}$	
$T_{\text {amb }}$	-30 to $+80^{\circ} \mathrm{C}$	

CHARACTERISTICS

$\mathrm{V}_{\mathrm{P}}=8$ or $15 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{f}_{\mathrm{o}}=10,7 \mathrm{MHz} ; \Delta \mathrm{f}= \pm 15 \mathrm{kHz} ; \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz} ; \mathrm{R}_{\mathrm{G}}=30 \Omega$; with de-emphasis ($\mathrm{C}_{5-6}=10 \mathrm{nF}$); adjustment conforms to adjustment procedure unless otherwise specified; the characteristics are valid for a TCA420A mounted on a printed-circuit board (see Figs 2, 3 and 4).
Supply voltage range (pin 11)

Supply current; R7-16 $=5 \mathrm{k} \Omega$; pin 11

I.F. amplifier/detector

Input voltages (d.c. value)

Input limiting voltage (-3 dB)

$V_{13-16} ; V_{14-16 ;} V_{15-16}$	typ. typ.	2,6
V_{i} lim	20	

I.F. output voltage (peak-to-peak value)
$V_{i}=5 \mathrm{mV} ; f=1 \mathrm{MHz}$; without detector circuit;
$\left.\begin{array}{ll}V_{1-16(p-p)} \\ V_{2-16(p-p)}\end{array}\right) \gg 300$
$\mathrm{Z}_{1-16}=\mathrm{Z}_{2-16}=10 \mathrm{M} \Omega$ in parallel with 8 pF
Output voltages (d.c. value)
Output voltage difference (d.c. value)
$V_{i}=1 \mathrm{mV} ; \Delta \mathrm{f}= \pm 75 \mathrm{kHz}$
A.F. output voltage; $\mathrm{V}_{\mathrm{i}}=1 \mathrm{mV}$ (pins 5 and 6)
$\Delta \mathrm{f}= \pm 15 \mathrm{kHz}$
$\Delta f= \pm 40 \mathrm{kHz}$
$\Delta f= \pm 75 \mathrm{kHz}$
$\left.\begin{array}{l}V_{5-16} \\ V_{6-16}\end{array}\right\} \begin{array}{ll}> & 4,7 \\ \text { typ. } & 5,0 \\ < & 5,3\end{array}$

Total distortion; $\mathrm{V}_{\mathrm{i}}=1 \mathrm{mV}$; single tuned circuit; $\mathrm{Q}_{\mathrm{L}}=20$
with de-emphasis; $\mathrm{C}_{5-6}=10 \mathrm{nF}$
$\Delta \mathrm{f}= \pm 15 \mathrm{kHz}$
$\Delta f= \pm 40 \mathrm{kHz}$
$\Delta f= \pm 75 \mathrm{kHz}$

$d_{\text {tot }}$	$<$	0,1
$d_{\text {tot }}$	typ.	0,18
$d_{\text {tot }}$	typ.	0,45
$d_{\text {tot }}$	$<$	0,1
$d_{\text {tot }}$	typ.	0,22
$d_{\text {tot }}$	typ.	0,65
	$<$	1

2,8 V
$20 \mu \mathrm{~V}$ $50 \mu \mathrm{~V}$

320 mV
375 mV
8,3 V
9,5 V
$11,0 \mathrm{~V}$
350 mV
95 mV
115 mV
307 mV
575 mV

0,1 \%
0,18 \%
0,45 \%

0,1 \%
0,22 \%
0,65 \%
1 \%
I.F. iriput voltage; with filter: $B=250 \mathrm{~Hz}$ to 16 kHz
$S+N / N=26 \mathrm{~dB}$; with de-emphasis; $\mathrm{C}_{5-6}=10 \mathrm{nF}$
$\Delta f= \pm 15 \mathrm{kHz}$
$\Delta f= \pm 75 \mathrm{kHz}$
$\mathrm{S}+\mathrm{N} / \mathrm{N}=26 \mathrm{~dB}$; without de-emphasis; $\mathrm{C}_{5-6}=220 \mathrm{pF}$
$\Delta \mathrm{f}= \pm 15 \mathrm{kHz}$
$\Delta f= \pm 75 \mathrm{kHz}$

	$V_{P}=8 \mathrm{~V}$		$V_{P}=15 \mathrm{~V}$
V_{i}	typ.	15	$15 \mu \mathrm{~V}$
V_{i}	typ.	5	$5 \mu \mathrm{~V}$
V_{i}	typ.	20	$20 \mu \mathrm{~V}$
V_{i}	typ.	8	$8 \mu \mathrm{~V}$
V_{i}	typ.	45	$45 \mu \mathrm{~V}$
V_{i}	typ.	20	$20 \mu \mathrm{~V}$
V_{i}	typ.	65	$65 \mu \mathrm{~V}$
V_{i}	typ.	30	$30 \mu \mathrm{~V}$

$\mathrm{S}+\mathrm{N} / \mathrm{N}=46 \mathrm{~dB}$; with de-emphasis; $\mathrm{C}_{5-6}=10 \mathrm{nF}$
$\Delta f= \pm 15 \mathrm{kHz}$
$\Delta f= \pm 75 \mathrm{kHz}$
$\mathrm{S}+\mathrm{N} / \mathrm{N}=46 \mathrm{~dB}$; without de-emphasis; $\mathrm{C}_{5-6}=220 \mathrm{pF}$
$\Delta f= \pm 15 \mathrm{kHz}$
typ. 65
$30 \mu \mathrm{~V}$
Signal plus noise-to-noise ratio; with filter:
$B=250 \mathrm{~Hz}$ to $16 \mathrm{kHz} ; \mathrm{V}_{\mathrm{i}}=1 \mathrm{mV}$
with de-emphasis

$\Delta f= \pm 15 \mathrm{kHz}$	$\mathrm{S}+\mathrm{N} / \mathrm{N}$
$\Delta \mathrm{f}= \pm 75 \mathrm{kHz}$	$\mathrm{S}+\mathrm{N} / \mathrm{N}$
without de-emphasis	
$\Delta \mathrm{f}= \pm 15 \mathrm{kHz}$	$\mathrm{S}+\mathrm{N} / \mathrm{N}$
$\Delta \mathrm{f}= \pm 75 \mathrm{kHz}$	$\mathrm{S}+\mathrm{N} / \mathrm{N}$

Noise output voltage; weighted conform DIN45405
with de-emphasis
$V_{i}=0$
$V_{i}=1 \mathrm{mV}$
A.M. rejection; with filter: $B=700 \mathrm{~Hz}$ to 5 kHz
$f_{m}=70 \mathrm{~Hz} ; \Delta f= \pm 15 \mathrm{kHz}$ (for f.m.);
$f_{m}=1 \mathrm{kHz} ; m=0,3$ (for a.m.); simultaneously modulated
$V_{i}=0,3 \mathrm{mV}$
typ. 52
52 dB
$V_{i}=1 \mathrm{mV}$
α
$V_{i}=10 \mathrm{mV}$
α
$V_{i}=100 \mathrm{mV}$
α
typ. 40
40 dB
typ. 52
52 dB
typ. 43
43 dB
Zero crossing shift of f.m. detector curve (see note)
$f_{m}=70 \mathrm{~Hz} ; \Delta f= \pm 75 \mathrm{kHz}$ (for f.m.);
$f_{m}=1 \mathrm{kHz} ; m=85 \%$ (for a.m.)
Detector input impedance
Output resistance

Note

Zero crossing shift is defined as the difference between frequencies $f_{o 1}$ at $V_{i}=1 \mathrm{mV}$ and $f_{o 2}$ at $V_{i}=30 \mu \mathrm{~V}$.

CHARACTERISTICS (continued)
Side response suppression
Input voltage for 10 dB side response suppression at S1 = 'on' adjust R1, so $V_{10-16}=1,3 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{i}}=0$;
S1 = 'off'; R4 $=3,9 \mathrm{k} \Omega$
Side response suppression level

$$
\Delta f= \pm 15 \mathrm{kHz} ; \mathrm{V}_{\mathrm{i}(\mathrm{rms})}=1 \mathrm{mV}
$$

control voltage for $\Delta V_{0}=-1 \mathrm{~dB}$
control voltage for $\Delta \mathrm{V}_{\mathrm{O}}=-10 \mathrm{~dB}$

Muting

Output signal muting at $\mathbf{S} 2=$ 'on';
reference signal at $\mathbf{S 2}=$ 'off';
$\left.V_{i(r m s}\right)=1 \mathrm{mV} ; \Delta f= \pm 75 \mathrm{kHz} ; R 4=3,9 \mathrm{k} \Omega$
Field-strength indication
Output voltages (d.c. value)
$V_{i}=0 ; I_{8-9}=0 ; R_{8-16}=4,3 \mathrm{k} \Omega$

Field-strength indicator current
Rindicator $=2 \mathrm{k} \Omega$;
adjust R2 so I $_{8-9}=0$ at $V_{i}=0$ and $R 3=0$
measured at $\mathrm{V}_{\mathrm{i}(\mathrm{rms})}=120 \mathrm{mV}$
Output resistance

Stereo decoder switching voltage
Reference voltage; without load: $I_{7}=0$
Output voltage; $\mathrm{I}_{10}=\mathrm{I}_{10} \max$
Available output current
Output voltage as a function of the
i.f. input voltage
$R_{10-16}=3,9 \mathrm{k} \Omega ; R 1=5 \mathrm{k} \Omega$

Input voltage for $\mathrm{V}_{10-16}=0,8 \mathrm{~V}$
adjust $R 1$ so $V_{10-16}=1,3 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{i}(\mathrm{rms})}=0$
Input voltage for $\mathrm{V}_{10-16}=1,3 \mathrm{~V}$
adjust R 1 so $\mathrm{V}_{10-16}=0,8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{i}(\mathrm{rms})}=3 \mathrm{mV}$

Input resistance (pin 7)

$0,7 \mathrm{~V}$
$1,1 \mathrm{~V}$

1,85 V
2,00 V
$140 \mu \mathrm{~A}$
$210 \mu \mathrm{~A}$
850Ω
$3,7 \mathrm{k} \Omega$

2,25 V
1,90 V
0,85 mA
$100 \mu \mathrm{~V}$
$200 \mu \mathrm{~V}$
$0,5 \mathrm{mV}$
$1,3 \mathrm{mV}$
$4,7 \mathrm{k} \Omega$

(1) $\mathrm{C}_{8}=\mathrm{C}_{5-6}$ (see Fig. 2).

For mono: $\mathrm{C8}=10 \mathrm{nF}$.
For stereo: $\mathrm{C8}=220 \mathrm{pF}$.
Fig. 3 Circuit diagram showing components arrangement for printed-circuit board (Fig. 4). The circuit is similar to the test circuit of Fig. 2.

Fig. 4 Printed-circuit board component side, showing component layout. For circuit diagram see Fig. 3.

Fig. $5 \mathrm{~V}_{\mathrm{P}}=15 \mathrm{~V} ; \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz} ; \mathrm{B}=250 \mathrm{~Hz}$ to 16 kHz ; typical values.

a.m.: $m=30 \% ; f_{m}=1 \mathrm{kHz}$; simultaneously modulated.

Fig. 7 Total distortion as a function of frequency deviation; single tuned circuit with $\mathrm{Q}_{\mathrm{L}}=20$; $\mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz} ; \mathrm{C}_{5-6}=220 \mathrm{pF}$.

Fig. 8 Total distortion as a function of detuning; single tuned circuit with $Q_{L}=20 ; f_{m}=1 \mathrm{kHz}$; $\mathrm{C}_{5-6}=\mathbf{2 2 0} \mathrm{pF}$.

Fig. 9 Field-strength indication output voltages as a function of i.f. input voltage; R2 adjusted so $\mathrm{V}_{8-9}=0$ at $\mathrm{V}_{\mathrm{i}}=0 ; \mathrm{R}_{\text {indicator }}+\mathrm{R} 2=2 \mathrm{k} \Omega$; for $\mathrm{V}_{8-16}{ }^{*}$ definition see Fig. 11.

Fig. 9 Scale division of indicator as a function of i.f. input voltage; $R 2$ adjusted so $\mathrm{V}_{8-9}=0$ at $\mathrm{V}_{\mathrm{i}}=0$; $R_{\text {indicator }}=2 \mathrm{k} \Omega ;$ R3 adjusted at indication 100%; indicator current $=140 \mu \mathrm{~A}$; see Fig. 11.

Fig. 11 Circuit diagram showing field-strength indicator adjustment components.

Fig. 12 Stereo decoder switching voltage as a function of i.f. input voltage; R4 $=3,9 \mathrm{k} \Omega ;-\ldots \mathrm{R} 1$ adjusted so $\mathrm{V}_{10-16}=0$ at $\mathrm{V}_{\mathrm{i}}=0$; see Fig. 13.

Fig. 13 Circuit diagram showing stereo decoder switching voltage adjustment.

Fig. 14 Supply current consumption.

Fig. 16 A.F. output voltage; $\Delta \mathrm{f}= \pm 15 \mathrm{kHz}$; $\mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz} ; \mathrm{V}_{\mathrm{i}}=1 \mathrm{mV}$.

Fig. 15 Output voltage range.

Fig. 17 Total distortion; $\mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}$; $\mathrm{V}_{\mathrm{i}}=1 \mathrm{mV} ; \mathrm{C}_{5-6}=220 \mathrm{pF}$.

Fig. 18 Example of the TCA420A when using a detector with two tuned circuits; $\mathrm{f}_{\mathrm{o}}=10,7 \mathrm{MHz}$; $\mathrm{L} 1=\mathrm{L} 2 \approx 0,4 \mu \mathrm{H} ; \mathrm{O}_{\mathrm{O}}=70$.
Adjustment of the detector:
When having an i.f. input signal on top of the limiter capability, L2 should be detuned, L1 should be adjusted to minimum distortion, and then L 2 to minimum distortion.

Fig. 19 Total distortion as a function of detuning; circuit as Fig. $18 ; \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz} ; \mathrm{C}_{5-6}=220 \mathrm{pF}$. $V_{0}=500 \mathrm{mV}$ for a frequency deviation $\Delta \mathrm{f}= \pm 75 \mathrm{kHz}$ and $\mathrm{d}_{\text {tot }}<0,1 \%$.

APPLICATION INFORMATION

Fig. 20 I.F. coupling circuit, using LC filter; $L 1=L 2=7+7$ turns h.f. litz wire ($5 \times 0,04$); $L 3=3$ turns h.f. litz wire wound on L2 ($5 \times 0,04$).

Fig. 21 I.F. coupling circuit, using ceramic filter; L1 $=14$ turns h.f. litz wire $(5 \times 0,04)$, tab at 3 turns.

APPLICATION INFORMATION (continued)

(1) For mono: $\mathrm{C}_{5-6}=10 \mathrm{nF}$.

For stereo: $\mathrm{C}_{5-6}=220 \mathrm{pF}$.
Fig. 22 Application example of using TCA420A.

INTEGRATED VOLTAGE STABILIZER

The TCA530 is an adjustable 30 V integrated circuit voltage stabilizer for use with variable capacitance diodes.
The circuit features: continuous short-circuit protected output, a.f.c. control voltage input, internal switch-on delay (can be adjusted externally), pre-stabilization and crystal temperature control (temperature sensor and heater).

QUICK REFERENCE DATA

Fig. 1 Block diagram.

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages: pin 1 (heater voltage)
pin 3 (muting switch supply)
pins 10 and 11 (a.f.c. input control voltage)
Currents: pin 3
pin 4
pin 5
pin 6
pin 8
pin 10
V_{1-16}
0 to 20 V
V_{3-16} max. 15 V
$\pm \mathrm{V}_{10-11}$ max. 6 V
$\pm I_{3} \quad \max \quad 5 \mathrm{~mA}$
I_{4} max. $500 \mu \mathrm{~A}$
pin 11
pin 14
$I_{5} \max \quad 25 \mathrm{~mA}$
$I_{6} \quad \max \quad 30 \mathrm{~mA}$
$\mathrm{I}_{8} \quad \max \quad 500 \mu \mathrm{~A}$
I_{10} max. $500 \mu \mathrm{~A}$
I_{11} max. $500 \mu \mathrm{~A}$
I_{14} max. 15 mA
Total power dissipation (excluding heater power)
at $\mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}$
$P_{\text {tot }} \quad \max . \quad 500 \mathrm{~mW}$
Storage temperature
Operating ambient temperature
$T_{\text {stg }} \quad-55$ to $+150{ }^{\circ} \mathrm{C}$

CHARACTERISTICS

$\mathrm{V}_{6-12}=30 \mathrm{~V} ; \mathrm{V}_{10-12}=\mathrm{V}_{11-12}=10 \mathrm{~V} ; \mathrm{V}_{1-16}=15 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in Fig. 3.

Voltage control

Input (supply) voltage range*
$R_{i}=3,3 \mathrm{k} \Omega ; I_{6}=3,5 \mathrm{~mA}$
Current consumption

Regulator voltage drop within operating range of the pre-stabilizer V_{5-6} outside operating range of the pre-stabilizer**

Output current (start of current limiting)
Internal reference voltage
typ.
$2,7 \mathrm{~V}$ 2 to $3,5 \mathrm{~V}$
$\mathrm{V}_{5-6}<6 \mathrm{~V}$
$\mathrm{I}_{6} \gg 8 \mathrm{~mA}$
V_{8-12} typ. $\begin{array}{r}20 \mathrm{~V} \\ 18,2 \text { to } 21,8 \mathrm{~V}\end{array}$
$V_{1}=V_{P} \quad 50$ to 68 V
lp typ. $\quad 8,1 \mathrm{~mA}$ 5,2 to $11,0 \mathrm{~mA}$ typ. $\mathrm{I}_{6}+(1,1 \pm 0,3) \mathrm{mA}$
I_{5}

* For other input (supply) voltage ranges and output currents, the series resistor R_{i} has to be altered (see also Fig. 2).
** The specified output voltage dependency of the input (supply) voltage is not guaranteed outside the operating range of the pre-stabilizer.

Input current of control amplifier
Variation of output voltage as a function of * input (supply) voltage variations
output current variations temperature variations heater voltage variations
Hum suppression at $\mathrm{f}=50 \mathrm{~Hz}$
between input (supply) voltage and pin 6
between pins 5 and 6
between pins 1 and 6
Output noise voltage at $f=10 \mathrm{~Hz}$ to 15 kHz (r.m.s. value) $\mathrm{V}_{\mathrm{n}}(\mathrm{rms})$
${ }^{1} 8$
$\Delta V_{6-12} / \Delta V_{l} \quad$ typ. $\quad 0,2 \mathrm{mV} / \mathrm{V}$ $\Delta V_{6-12} / \Delta \mathrm{I}_{6} \quad$ typ. $\quad 0,5 \mathrm{mV} / \mathrm{mA}$ $\Delta V_{6-12} / \Delta T_{\text {amb }} \quad$ typ. $\quad 0,1 \mathrm{mV} / \mathrm{K}$ $\Delta V_{6-12} / \Delta V_{1-16} \quad$ typ. $\quad 0,2 \mathrm{mV} / \mathrm{V}$
typ. $\quad 80 \mathrm{~dB}$
typ. $\quad 60 \mathrm{~dB}$
typ. $\quad 80 \mathrm{~dB}$
$<\quad 50 \mu \mathrm{~V}$
A.F.C. control amplifier

Common mode input voltage range
Common mode rejection ratio
Input current
Input resistance

$V_{10-12}=V_{11-12}$	6,0 to	
typ.	60 V	
CMRR	typ.	60 dB
	typ.	$0,1 \mu \mathrm{~A}$
$\mathrm{I}_{10}=\mathrm{I}_{11}$	$<$	$0,5 \mu \mathrm{~A}$
$\mathrm{R}_{\mathrm{i}(10-11)}$	$>$	$1 \mathrm{M} \Omega$

Ratio between output voltage variation and a.f.c. input voltage variation
$\Delta \mathrm{V}_{6-12} / \Delta \mathrm{V}_{10-11} \quad 1,2: 1$
Amplitude range of output voltage
ΔV_{6-12}
typ. $\pm 0,75 \mathrm{~V}$
$\pm 0,5$ to $\pm 1,0 \vee$

Muting switch

When the crystal temperature has reached approximately its stationary final value, the output of the muting switch (pin 3) becomes high-ohmic. The switching of pin 3 can be delayed by an external RC-circuit at pin 4 or by a switching voltage.
Muting switch ON (pin 3 low-ohmic)

Input voltage	V_{4-16}	$<$	8 V
Input current	14	typ.	$1 \mu \mathrm{~A}$
Output saturation voltage at $\mathrm{I}_{3}=1 \mathrm{~mA}$	$V_{3-16 ~ s a t ~}^{\text {a }}$	$\stackrel{\text { typ. }}{ }$	$\begin{array}{r} 0,45 \mathrm{~V} \\ 0,6 \mathrm{~V} \end{array}$
Muting switch OFF (pin 3 high-ohmic)			
Input voltage	V_{4-16}		8 to 11 V
Input current	14	>	0,1 $\mu \mathrm{A}$
Output voltage	V_{3-16}	$<$	15 V
Output current	13	$<$	$1 \mu \mathrm{~A}$
Internal switch-on delay	${ }^{\text {d }}$	$<$	3 s

[^6]
CHARACTERISTICS (continued)

Crystal temperature control

Heater voltage range	V_{1-16}	8 to 20 V	
Heater peak current at switching on	l_{19}	$\stackrel{\text { typ. }}{<}$	$\begin{aligned} & 230 \mathrm{~mA} \\ & 300 \mathrm{~mA} \end{aligned}$
Continuous heater current at $\mathrm{V}_{1-16}=15 \mathrm{~V}$	11	$\stackrel{\text { typ. }}{<}$	40 mA 55 mA
Continuous heater power	P_{h}	typ.	600 mW

Fig. 2 Curves to obtain R_{i}-values for various input (supply) voltages and/or output currents. Conditions: $\mathrm{V}_{6-12}=30 \mathrm{~V}$; tolerance of $\mathrm{I}_{6}= \pm 20 \% ; \mathrm{R}_{5-14}=3,6 \mathrm{k} \Omega$; tolerance of $\mathrm{R}_{\mathrm{i}}= \pm 2 \%$. Above the dotted curve a tolerance of $V_{1}\left(V_{p}\right)$ of $\pm 15 \%$ is allowed.

(1) It is recommended that fixed resistors of the same kind be used for the voltage divider.

The voltage divider of Fig. 4 can be used when a narrow temperature dependency is required.
(2) This capacitor can be applied to increase the internal delay.
(3) This resistor is recommended when the IC is not soldered on a printed-circuit board.
(4) Can be connected to pin 6, for example.

Fig. 3 Test circuit.

Fig. 4 Voltage divider for the narrowest possible temperature dependency.

Fig. 5 Circuit extension by means of a series transistor at the output, for output currents $>4,6 \mathrm{~mA}$.

The following table gives some resistor value examples for various output voltages with $\Delta R / R \leqslant \pm 2 \%$ and $\Delta R p / R p \leqslant \pm 20 \%$.

$V_{\text {Ostab }}$ V	$R_{P 2}$ $k \Omega$	$R 21$ $k \Omega$	$R 22$ $k \Omega$	$R 23$ $k \Omega$	$R_{p 1}$ $k \Omega$	$R 1$ $k \Omega$	$R 2$ $k \Omega$
30	100	200	82	300	10	20	10
30	47	180	82	300	47	100	47
29					22	39	18
28	100	220	75	300	22	39	15
28	47	300	100	430			
27					47	68	24
26					22	27	8,2
25	100	560	91	390	47	47	12
25	47	620	100	430			

The series resistors R_{i} and $R_{i}{ }^{\prime}$ (see Fig. 3), as well as the input (supply) voltage $V_{1}\left(V_{p}\right)$, have to be adapted to the chosen output voltages $\mathrm{V}_{\text {Ostab }}$.

1

TCA640

CHROMINANCE AMPLIFIER FOR SECAM OR PAL/SECAM DECODERS

The TCA640 is an integrated chrominance amplifier for either a SECAM decoder or a double standard PAL/SECAM decoder.
Switching of the standard is performed internally, controlled by an external applied d.c. signal.
In addition to the chrominance amplifier the circuit also incorporates a $7,8 \mathrm{kHz}$ flip-flop and an identification circuit for SECAM.
For PAL identification the circuit included in the TBA540 should be used.
Furthermore, the TCA640 incorporates a blanking circuit, a burst gating circuit and a colour killer detector.

QUICK REFERENCE DATA				
Supply voltage Supply current		$\begin{aligned} & \mathrm{V}_{14-2} \\ & \mathrm{I}_{14} \end{aligned}$		nom. 12 V nom. 37 mA
		PA		SECAM
Chrominance input signals (peak-to-peak value)	$\mathrm{V}_{3-5(p-p)}$	>	4 80	7 mV 400 mV
Chrominance output signals (peak-to-peak value)	$\begin{aligned} & \mathrm{V}_{15-2}(\mathrm{p}-\mathrm{p}) \\ & \mathrm{V}_{1-2}(\mathrm{p}-\mathrm{p}) \end{aligned}$	typ.	500	2000 mV
Burst output (closed a.c.c. loop) (peak-to-peak value)	$\mathrm{V}_{13-2(\mathrm{p}-\mathrm{p})}$	typ.	1	- V
System switching signal	V_{4-2}	typ.	12	0 V
Burst blanking of chrominance signal			40	- dB
Chrominance blanking at field identification			-	40 dB
Square-wave output ($7,8 \mathrm{kHz}$) (peak-to-peak value)	$\mathrm{V}_{12-2}(\mathrm{p}-\mathrm{p})$	typ.	3	3 V

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38).

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltage

Supply voltage $\quad \mathrm{V}_{14-2}$ max. $13,2 \mathrm{~V}$
Power dissipation
Total power dissipation $P_{\text {tot }} \max \quad 625 \mathrm{~mW}$

Temperatures

Storage temperature
Operating ambient temperature
$\mathrm{T}_{\text {stg }} \quad-25$ to $+125^{\circ} \mathrm{C}$
Tamb $\quad-25$ to $+65^{\circ} \mathrm{C}{ }^{1)}$
CHARACTERISTICS measured in the circuit on page 6
Supply voltage
V_{14-2}
typ. 12 V
10,2 to $13,2 \mathrm{~V}$

Required input signals at $\mathrm{V}_{14-2}=12 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Chrominance input signal
peak-to-peak value
Automatic chrominance control starting

Flyback pulses for blanking and

burst/identification lines-keying

$$
\mathrm{V}_{3-5(\mathrm{p}-\mathrm{p})}\left\{\begin{array}{lr}
\text { PAL } & 4 \text { to } 80 \mathrm{mV} \\
\text { SECAM } & 72) \text { to } 400 \mathrm{mV}
\end{array}\right.
$$

V_{16-2} PAL
typ. $\quad 1,2 \mathrm{~V}^{3}$)

Line flyback pulses (positive)
peak-to-peak value

$$
v_{6-2(p-p)}
$$

$$
4,5 \text { to } 12 \mathrm{~V}
$$

Field idenfication pulses (positive)
peak-to-peak value
$\mathrm{v}_{7-2(p-p)}$
$\mathrm{V}_{4-2}\left\{\begin{array}{l}\text { PAL } \\ \text { SECAM }\end{array}\right.$
7 to $\mathrm{V}_{14-2} \mathrm{~V}$
0 to 1 V
V_{16-2} PAL
typ.
$2,5 \mathrm{~V} 5)$

[^7]
CHARACTERISTICS (continued)

Obtainable output signals
Chrominance output signals
peak-to-peak value

Phase difference between output pins
$\left.\begin{array}{l|lll}\mathrm{V}_{15-2(p-p)} \\ \mathrm{V}_{\mathrm{l}-2(\mathrm{p}-\mathrm{p})}\end{array}\right\} \begin{array}{ll}\text { PAL } & 425 \text { to } 575 \\ \mathrm{SECAM} & 1,8 \text { to } 2,3\end{array}$

Burst signal (peak-to-peak value)
$\Delta \varphi_{15-1} \quad$ PAL $\quad 170^{\circ}$ to $190^{\circ} \quad 1$)
$\begin{array}{lllll}\mathrm{V}_{13-2(p-p)} & \text { PAL } & \text { typ. } & 1 & 2\end{array}$
Identification signal
peak-to-peak value
Output resistance
$\mathrm{I}_{11(\mathrm{p}-\mathrm{p})} \quad$ SECAM $\quad 1,4$ to $2,4 \mathrm{~mA}$
$\mathrm{R}_{11-2} \quad 2$ to $2,9 \mathrm{k} \Omega$
Flip-flop signial
peak-to-peak value
Colour killer
killed
unkilled

$\mathrm{V}_{12-2(\mathrm{p}-\mathrm{p})}$	2,5 to 3,5	V	
$\mathrm{~V}_{8-2}$	$<$	0,5	V
I_{8}	$<$	10	mA

$\mathrm{~V}_{8-2}$
I_{8}

Bandwidth of chrominance amplifier (-1 dB)
at a carrier frequency of $4,2 \mathrm{MHz} \quad>\quad \pm 1 \mathrm{MHz}$
Blanking

burst rejection rejection identification lines with field identification	PAL	$>$	40	dB
	SECAM	$>$	40	dB

1) Over the a.c.c. control range the phase difference varies less than 2,50 .
2) The burst is kept constant at 1 V peak-to-peak by automatic gain control.
4-
\qquad
$\square \longrightarrow$

APPLICATION INFORMATION

Pinning

1. Chrominance output
2. Earth (negative supply)
3. Chrominance input
4. System switch input
5. Chrominance input
6. Line fly-back pulse input
7. Field identification pulse input
8. Colour killer output
9.) Identification integrating
10.) capacitor (SECAM)
9. Identification tank circuit (SECAM)
10. Flip-flop output
11. Burst output (PAL)
12. Supply voltage (12 V)
13. Chrominance output
14. A.C.C. input

APPLICATION INFORMATION (continued)

The function is quoted against the corresponding pin number

1. Chrominance output (in conjunction with pin 15)

A balanced output is available at pins 1 and 15.
At SECAM reception a limited signal of 2 V peak-to-peak is available, starting from an input voltage of 15 mV peak-to-peak.
At PAL reception the output signal is 500 mV peak-to-peak for a burst signal of 1 V peak-to-peak.
An external d.c. network is required which provides negative feedback to pin 3. The same holds for the feedback from pin 15 to pin 5.
The figures for input and output signals are based on a 100% saturated colour bar signal.
2. Negative supply (earth)
3. Chrominance input (in conjunction with pin 5)

The input signal is derived from a bandpass filter which provides the required "bell" shape bandpass for the SECAM signal and a flat bandpass for the PAL signal.
The input signal can be supplied either in a balanced mode or single ended. Both inputs (pins 3 and 5) require a d.c. potential of about $2,5 \mathrm{~V}$ obtained from a resistive divider connected to output pins 1 and 15. The figures for the input signals are based on a 100% saturated colour bar signal and a burst-to-chrominance ratio of $1: 3$ of the input signal (PAL).
4. System switch input

Between 7 V and the supply voltage, the gain of the chrominance amplifier is controlled by the a.c.c. voltage at pin 16 .
The chrominance amplifier then provides linear amplification required for the PAL signal. Between 0 V and 1 V the chrominance amplifier operates as a limiter for the SECAM signal.
5. Chrominance input (see pin 3)
6. Line fly-back pulse input (in conjunction with pin 11)

Positive going pulses provide

- blanking of the chrominance signal at the outputs (pins 1 and 15).
- burst gating for both PAL and SECAM.

The carrier signal present during the second half of the back porch of the SECAM signal is gated. It provides line identification when the circuit $L_{1} C_{1}$ (see circuit on page 6) is tuned to $4,25 \mathrm{MHz}$ (at $\mathrm{C}_{1}=470 \mathrm{pF}$).

- trigger signal for the flip-flop.

7. Field identification pulse input (in conjunction with pin 11)

Like the line fly-back pulses, positive going identification pulses provide blanking and burst gating.
To operate the TCA640 on the identification lines (SECAM) in the field blanking period the circuit $\mathrm{L}_{1} \mathrm{C}_{1}$ (see circuit on page 6) should be tuned to $3,9 \mathrm{MHz}$ and the capacitor C_{1} should be increased to 1 nF . The field fly-back pulse should be shaped so that its amplitude exceeds 4 V during the identification lines.

APPLICATION INFORMATION (continued)

8. Colour killer output

This pin is driven from the collector of an internal switching transistor and requires an external load resistor connected to the supply voltage. The killer is operative when the a.c.c. voltage exceeds the threshold, when the SECAM chrominance signal at the input is below the limiting level or when the flip-flop operates in the wrong phase.
9. Identification integrating capacitor (SECAM)
10. Identification integrating capacitor (SECAM)
11. Identification detector tank circuit (see pins 6 and 7)
12. Flip-flop output

A square wave of $7,8 \mathrm{kHz}$ with an amplitude of 3 V is available at this pin. An external load resistor is not required.
13. Burst output (PAL)

A 1 V peak-to-peak burst (kept constant by the a.c.c. system) is produced here.
14. Supply voltage (12 V)

Correct operation occurs within the range 10,2 to $13,2 \mathrm{~V}$.
The power dissipation must not exceed 625 mW at $65{ }^{\circ} \mathrm{C}$ ambient temperature.
15. Chrominance output (see pin 1)
16. A.C.C. input

With the system switch input (pin 4) connected for PAL operation, a negative going potential gives a 26 dB range of a.c.c. starting at $+1,2 \mathrm{~V}$
During SECAM operation, the voltage at the input should not exceed $+0,5 \mathrm{~V}$, otherwise the SECAM identification circuit and the colour killer become inoperative.

CHROMINANCE DEMODULATOR FOR SECAM OR PAL/SECAM DECODERS

The TCA650 is an integrated synchronous demodulator for both the SECAM and PAL chrominance signals.
Switching of the standard is performed internally, controlled by an external applied d.c. signal.

In addition to the synchronous demodulator, which delivers colour difference signals, the circuit also incorporates:

- a PAL matrix, used for adding the delayed and non-delayed signals to obtain separately the ($\mathrm{R}-\mathrm{Y}$) and ($\mathrm{B}-\mathrm{Y}$) components of the chrominance signal.
- a PAL switch, which reverses the phase of the ($\mathrm{R}-\mathrm{Y}$) component of the chrominance signal on alternating lines.
- a SECAM switch, which performs the separation of the D_{R} and D_{B} components of the chrominance signal by switching the delayed and non-delayed signals.
- a SECAM limiter.

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38).

\square^{-}

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltage

Supply voltage

Power dissipation

Total power dissipation $\quad P_{\text {tot }} \quad \max \quad 510 \mathrm{~mW}$
Temperatures

Storage temperature	$\mathrm{T}_{\text {stg }}$	-25 to	+125	${ }^{\circ} \mathrm{C}$
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-25 to	+65	$\left.{ }^{\circ} \mathrm{C}^{1}\right)$

CHARACTERISTICS measured in the circuit on page 6
Supply voltage
V_{14-2}
typ. 12 V
10,2 to $13,2 \mathrm{~V}$
Required input signals at $\mathrm{V}_{14-2}=12 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
$\overline{\text { Chrominance input signal }}$
peak-to-peak value

Input impedance
PAL matrix
Gain from both inputs to pin 13
Gain from both inputs to pin 15
Gain difference from line-to-line

$\mathrm{V}_{1-2(p-p)}$	PAL	35 to 75	mV
$\mathrm{V}_{3-2}(\mathrm{p}-\mathrm{p})$	SECAM	150 to 400	mV
$\left\|Z_{1-2}\right\|$ $\left\|Z_{3-2}\right\|$		1,2 to 2,6	$\mathrm{k} \Omega$

Phase errors from line-to-line in the
($\mathrm{R}-\mathrm{Y}$) output for zero error in the ($\mathrm{B}-\mathrm{Y}$) output
$<2,5^{\circ}$
Output impedance

$<\quad 100 \Omega$
SECAM permutator
$\left.\begin{array}{lll}\text { Diaphotie } & \ll-46 \mathrm{~dB} \\ \text { Output signal (peak-to-peak value) } & \mathrm{V}_{13-2(\mathrm{p}-\mathrm{p})} \\ & \left.\mathrm{V}_{15-2(\mathrm{p}-\mathrm{p})}\right\} \\ \text { Output impedance } & \left|\mathrm{Z}_{13-2}\right| \\ \left|\mathrm{Z}_{15-2}\right|\end{array}\right\} \quad 1,6^{2}$) to $2,2 \mathrm{~V}$

[^8]
CHARACTERISTICS (continued)

Demodulator

Chrominance input signal amplitude

PAL: (B-Y); peak-to-peak value
($\mathrm{R}-\mathrm{Y}$); peak-to-peak value
SECAM: peak-to-peak value

Input impedance

$V_{9-2(p-p)}$
$V_{11-2(p-p)}$
$\left.\begin{array}{l}\mathrm{V} 9-2(\mathrm{p}-\mathrm{p}) \\ \mathrm{V}_{11-2(\mathrm{p}-\mathrm{p})}\end{array}\right\}$
$\left.\left\lvert\, \begin{array}{l}\left|Z_{9-2}\right| \\ \left|Z_{1 I-2}\right|\end{array}\right.\right\}$
$\left.\begin{array}{l}\mathrm{V}_{6-2(p-p)} \\ \mathrm{V}_{7-2(p-p)}\end{array}\right\}$
$\left.\begin{array}{l}\mathrm{V}_{5-2(p-p)} \\ \mathrm{V}_{8-2(p-p)}\end{array}\right\}$
$\left.\begin{array}{l}\left|Z_{5-2}\right| ;\left|Z_{7-2}\right| \\ \left|Z_{6-2}\right| ;\left|Z_{8-2}\right|\end{array}\right\}$
typ. $0,22 \mathrm{~V}$
typ. 0,28 V
1,5 to 3 V
$>\quad 1 \quad \mathrm{k} \Omega$

0,5 to 1,5 V
$0,18^{1}$) to $1,5 \quad \mathrm{~V}$

0,75 to $1,25 \mathrm{k} \Omega$

0,99 to $1,21 \mathrm{~V}^{2}$)
1,32 to $1,62 \mathrm{~V}^{2}$)
2,4 to $4,2 \quad \mathrm{k} \Omega$
$\left.\begin{array}{l}\left|\mathrm{Z}_{10-2 \mid}\right| \\ \left|\mathrm{Z}_{12-2}\right|\end{array}\right\}$
Diaphotie at SECAM operation
Diaphotie of the total circuit at frequencies
corresponding to saturated green
$\mathrm{D}_{\mathrm{R}}=4,72 \mathrm{MHz}$ and $\mathrm{D}_{\mathrm{B}}=4,04 \mathrm{MHz}$
Square wave input

peak-to-peak value	$\mathrm{V}_{16-2(p-p)}$	2,5 to 3,5	V
Input impedance	$\left\|\mathrm{Z}_{16-2}\right\|$	$>\quad 3,8$	$k \Omega$
System switch input ${ }^{3}$)			
PAL:		7 to V_{14-2}	V
SECAM:		0 to 1	V

$\left.\begin{array}{lr}\left.\begin{array}{l}\mathrm{V}_{12-2(\mathrm{p}-\mathrm{p})} \\ \mathrm{V}_{10-2(\mathrm{p}-\mathrm{p})} \\ \left|\mathrm{Z}_{10-2 \mid}\right| \\ \left|\mathrm{Z}_{12-2}\right|\end{array}\right\} & \begin{array}{l}0,99 \text { to } 1,21 \\ 1,32 \text { to } 1,62\end{array} \\ \mathrm{~V}^{2} \text {) }\end{array}\right\}$
($\mathrm{R}-\mathrm{Y}$); peak-to-peak value
($\mathrm{B}-\mathrm{Y}$); peak-to-peak value
Output impedance

APPLICATION INFORMATION

Pinning

1. Chrominance input
2. Earth (negative supply)
3. Chrominance input
4. System switch input
5. Reference ($\mathrm{R}-\mathrm{Y}$) input SECAM
6. Reference ($\mathrm{R}-\mathrm{Y}$) input PAL.
7. Reference ($B-Y$) input PAL
8. Reference (B-Y) input SECAM
9. Chrominance ($\mathrm{B}-\mathrm{Y}$) , D_{B} input
10. Colour difference ($B-Y$) output
11. Chrominance $(\mathrm{R}-\mathrm{Y})$, D_{R} input
12. Colour difference ($\mathrm{R}-\mathrm{Y}$) output
13. Chrominance ($\mathrm{R}-\mathrm{Y}$) , D_{R} output
14. Supply voltage (12 V)
15. Chrominance $(B-Y), D_{B}$ output
16. Square wave input

APPLICATION INFORMATION (continued)

The function is quoted against the corresponding pin number

1. Chrominance input

The blanked composite chrominance signal from pin 1 of the TCA640 is applied to this input via a resistive divider.
2. Negative supply (earth)
3. Chrominance input

The blanked composite chrominance signal from pin 15 of the TCA640 is applied to this input via a delay-line, which has a delay time of $64 \mu \mathrm{~s}$.
4. System switch input

The control voltage for switching the standard is applied to this input via a resistor of $2,7 \mathrm{k} \Omega(\pm 10 \%)$. A decoupling capacitor of at least 10 nF is recommended. Between 7 V and the supply voltage the circuit operates in the PAL mode, whereas between 0 V and 1 V the mode SECAM is selected.
5. Reference input for the ($\mathrm{R}-\mathrm{Y}$) demodulator

The SECAM reference signal is applied to this pin. The reference signal is obtained from pin 11 via a tank circuit. The tank circuit is tuned such that the level at the ($\mathrm{R}-\mathrm{Y}$) output (pin 12) during black ($\mathrm{f}_{\mathrm{O}}=4,4 \mathrm{MHz}$) equals the level during blanking (no signal). The output voltage amplitude at pin 12 can be adjusted by*damping the tank circuit.
6. Reference input for the ($\mathrm{R}-\mathrm{Y}$) demodulator .

A PAL reference signal having ($\mathrm{R}-\mathrm{Y}$) phase is applied to this pin.
7. Reference input for the ($B-Y$) demodulator

A PAL reference signal having ($B-Y$) phase is applied to this pin.
8. Reference input for the ($B-Y$) demodulator

The SECAM reference signal is applied to this pin. The reference signal is obtained from pin 15 via a tank circuit. The tank circuit is tuned such that the level at the ($\mathrm{B}-\mathrm{Y}$) output (pin 10) during black ($\mathrm{f}_{\mathrm{O}}=4,25 \mathrm{MHz}$) equals the level during blanking (no signal). The output voltage amplitude at pin 10 can be adjusted by damping the tank circuit.
9. Chrominance input to the ($\mathrm{B}-\mathrm{Y}$), D_{B} demodulator

The output signal of pin 15 is applied via a coupling capacitor of $4,7 \mathrm{nF}$.
10. Output of the ($\mathrm{B}-\mathrm{Y}$) demodulator

The output signal of the balance demodulator contains an r.f. ripple of twice the chrominance frequency to be filtered by a π filter. At SECAM the required deemphasis circuit should be applied.
11. Chrominance input to the $(\mathrm{R}-\mathrm{Y}), \mathrm{D}_{\mathrm{R}}$ demodulator

The output signal of pin 13 is applied via a coupling capacitor of $4,7 \mathrm{nF}$.

APPLICATION INFORMATION (continued)

12. Output of the $(\mathrm{R}-\mathrm{Y})$ demodulator

See pin 10.
13. Chrominance ($\mathrm{R}-\mathrm{Y}$), D_{R} output

The ($\mathrm{R}-\mathrm{Y}$) component of the chrominance signal (D_{R} component at SECAM) is present at this pin.
The signal is applied to the input of the ($\mathrm{R}-\mathrm{Y}$) demodulator ($\operatorname{pin} 11$) and to the tank circuit for the SECAM reference signal.
The emitter follower output should be loaded with a $2,7 \mathrm{k} \Omega$ resistor to obtain an output impedance of $<100 \Omega$.
14. Supply voltage (12 V)

Correct operation occurs within the range 10,2 to $13,2 \mathrm{~V}$.
The power dissipation must not exceed 510 mW at $65^{\circ} \mathrm{C}$ ambient temperature.
15. Chrominance ($\mathrm{B}-\mathrm{Y}$), D_{B} output

The ($\mathrm{B}-\mathrm{Y}$) component of the chrominance signal (DB_{B} component at SECAM) is present at this pin.
The signal is applied to the input of the ($\mathrm{B}-\mathrm{Y}$) demodulator (pin 9) and to the tank circuit for the SECAM reference signal.
The emitter follower output should be loaded with a $2,7 \mathrm{k} \Omega$ resistor to obtain an output impedance of $<100 \Omega$.
16. Square wave input

A square wave with an amplitude of 3 V drives the PAL switch or the SECAM permutator.
The square wave is available at pin 12 of the TCA640.

TCA660B

CONTRAST, SATURATION AND BRIGHTNESS CONTROL CIRCUIT FOR COLOUR DIFFERENCE AND LUMINANCE SIGNALS

The TCA 660 B is an integrated circuit performing the control functions of contrast, saturation and brightness in colour television receivers.
Contrast is controlled by three tracking electronic potentiometers; one for the luminance signal and the other two for the ($\mathrm{R}-\mathrm{Y}$) and ($\mathrm{B}-\mathrm{Y}$) colour difference signals.
In addition two tracking electronic potentiometers provide the saturation control of the colour difference signals.
Brightness is controlled by varying the black level of the luminance signal at the output. An inverting amplifier is also included for matrixing the ($\mathrm{G}-\mathrm{Y}$) signal from the ($\mathrm{R}-\mathrm{Y}$) and (B-Y) colour difference signals.

QUICK REFERENCE DATA				
Supply voltage	V_{13-4}	nom.	12	V
Supply current	I_{13}	nom.	35	mA
Luminance input current (black-to-white positive video signal)	${ }_{1} 16$	typ.	0,7	mA
Luminance output voltage (black-to-white positive video signal; peak-to-peak value)	V_{1-4} (p	typ.	3	
Black level (nominal value)	V_{1-4}	typ.	4,2	V
Brightness control (around nominal black level)	V_{1-4}			V
Gain of the ($\mathrm{R}-\mathrm{Y}$) and ($\mathrm{B}-\mathrm{Y}$) amplifier			5	
Gain of the (G-Y) amplifier		typ.	1	
Contrast control range				
Saturation control range				
${ }^{1}$) At nominal contrast setting (max. contrast -3 dB)				
${ }^{2}$) At nominal saturation control setting (max. saturation -6 dB)				
${ }^{3}$) Nominal contrast and nominal saturation are specified as 0 dB .				

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38).

CIRCUIT DIAGRAM

CIRCUIT DIAGRAM (continued)

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltage
Supply voltage $\quad \mathrm{V}_{13-4} \max \quad 13,2 \mathrm{~V}$
Power dissipation
Total power dissipation $\quad P_{\text {tot }} \quad \max \quad 600 \mathrm{~mW}$
Temperatures

Storage temperature	$\mathrm{T}_{\mathrm{stg}}$	-25 to $+125{ }^{\circ} \mathrm{C}$
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-25 to $+65^{\circ} \mathrm{C}{ }^{1}$)

CHARACTERISTICS measured in the circuit on page 7
Supply voltage $\quad \mathrm{V}_{13-4} \quad$ typ. 10,2 to $13,2 \mathrm{~V}$

Required input signals at $\mathrm{V}_{13-4}=12 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Luminance input current

black-to-white positive video signal	I_{16}	typ.	$\begin{array}{r} 0,7 \mathrm{~mA} \\ 0 \text { to } 2,5 \mathrm{~mA} \end{array}$
Input impedance at $\mathrm{I}_{16}=1 \mathrm{~mA}$	$\left\|Z_{16-4}\right\|$		60 to 90Ω
Input impedance variation for an			
input current variation $\Delta \mathrm{I}_{16}= \pm 0,5 \mathrm{~mA}$	$\left\|\Delta Z_{16-4}\right\|$		$\mp 25 \Omega$
Colour difference input voltage			
($\mathrm{R}-\mathrm{Y}$); peak-to-peak value	$\mathrm{V}_{9-4(p-p)}$	$<$	0,7 V
(B-Y); peak-to-peak value	V_{8-4} (p-p)	$<$	0,9 V
Input voltage variation before clipping			
of the output voltage occurs	$\left.\begin{array}{l} \Delta V_{8-4} \\ \Delta V_{9-4} \end{array}\right\}$	typ.	0, 8 V
Input impedance	$\left.\begin{array}{l}\left\|z_{8-4}\right\| \\ \left\|z_{9-4}\right\|\end{array}\right\}$		3,5 to $6,5 \mathrm{k} \Omega$
Blanking pulse (peak value)	$\mathrm{V}_{3-4 \mathrm{M}}$		-1,5 to -10 V
Black level reinsertion pulse (peak value)	$\mathrm{V}_{3-4 \mathrm{M}}$		+2 to $+12 \mathrm{~V}^{2}$)
Black level clamp pulse (peak value)	$\mathrm{V}_{2-4 \mathrm{M}}$		+1 to +12 V
Luminance output voltage at nominal contrast			
black-to-white positive video signal; peak-to-peak value	$\mathrm{V}_{1-4(p-p)}$		2 to $4 \mathrm{~V}^{3}$)

[^9]
CHARACTERISTICS (continued)

Black level at nominal brightness setting

$$
\mathrm{V}_{1-4} \quad \text { typ. } \quad 4,2 \quad \mathrm{~V} \quad 1 \text {) }
$$

Black level variation with brightness
setting
Contrast control voltage range
Black level variation
with contrast control
Black level variation
with video contents
Variation between video black level
and reinserted black level
at $\Delta \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and $\Delta \mathrm{V}_{13-4} \pm 10 \%$
$\mathrm{V}_{1-4} \quad<\quad \pm 20 \mathrm{mV}$
Blanking level with respect to
nominal brightness
Bandwidth $(-3 \mathrm{~dB})$ of luminance sign
Colour difference output signal for
nominal contrast and saturation $\left.{ }^{4}\right)^{5}$)
($\mathrm{R}-\mathrm{Y}$); peak-to-peak value
(B-Y); peak-to-peak value
D.C. output level

Output level variation
with contrast and saturation control

Permissible d.c. load impedance
Saturation control voltage range
Saturation control at $\mathrm{V}_{6-4}<0,5 \mathrm{~V}$
Bandwidth $(-3 \mathrm{~dB})$ of colour difference signal B

$\mathrm{V}_{10-4}(\mathrm{p}-\mathrm{p})$	typ.	1,25	V
$\mathrm{V}_{7-4}(\mathrm{p}-\mathrm{p})$	typ.	1,6	V
$\left.\begin{array}{l} V_{7-4} \\ V_{10-4} \end{array}\right\}$	typ.	6,1	V

$\left.\begin{array}{llrl}\left.\begin{array}{l}\Delta V_{7-4} \\ \Delta V_{10-4}\end{array}\right\} & < & 500 & \mathrm{mV} \\ \left|Z_{7-4}\right| \\ \left|Z_{10-4}\right|\end{array}\right\} \quad>\quad 4 \quad \mathrm{k} \Omega$

See graph on page 6

$<$	-50	dB
$>$	2,5	MHz

[^10]
CHARACTERISTICS (continued)

$(\mathrm{G}-\mathrm{Y})$ amplifier			
input voltage (peak-to-peak value)			
output voltage (peak-to-peak value)	$\mathrm{V}_{11-4(\mathrm{p}-\mathrm{p})}<$	1 V	
valtage gain	$\mathrm{V}_{12-2(\mathrm{p}-\mathrm{p})}<$	1 V	
	G_{11-12}		-1 to $+0,5 \mathrm{~dB}$

Tracking during contrast and saturation control
at a contrast decrease of 20 dB
change of the ratio $\left(\frac{(R-Y)}{(\bar{B}-\bar{Y})}\right.$
$<$
change of the ratio $\frac{\mathrm{Y}}{(\mathrm{B}-\mathrm{Y})}$
at a saturation decrease of 20 dB
change of the ratio $\frac{(\mathrm{R}-\mathrm{Y})}{(\mathrm{B}-\mathrm{Y})}$
Cross coupling
luminance signal to colour difference signal
($B-Y$) signal to ($R-Y$) signal
colour difference signal to luminance signal

APPLICATION INFORMATION

Pinning

1. Luminance signal output
2. Black level clamp puIse input
3. Blanking pulse input
4. Earth (negative supply)
5. Contrast control input
6. Saturation control input
7. (B-Y) signal output
8. ($\mathrm{B}-\mathrm{Y}$) signal input
9. ($\mathrm{R}-\mathrm{Y}$) signal input
10. ($R-Y$) signal output
11. ($\mathrm{G}-\mathrm{Y}$) signal input
12. (G-Y) signal output
13. Supply voltage (12 V)
14. Brightness control input
15. Black level clamp capacitor
16. Luminance signal input

APPLICATION INFORMATION (continued)

The function is quoted against the corresponding pin number

1. Luminance signal output

A positive video signal of 3 V peak-to-peak is available at nominal contrast setting. The black level is clamped internally on the back porch.
By means of the brightness control the black level can be varied between $2,2 \mathrm{~V}$ and $5,2 \mathrm{~V}$. The blanking level of the output signal will assume a value of 3,0 to $3,4 \mathrm{~V}$.
2. Black level clamp pulse input

A positive pulse with a peak value between +1 V and +12 V will clamp the black level of the video signal to a nominal level of $4,2 \mathrm{~V}$. The pulse may only be present during the back porch and should have a duration of about $3 \mu \mathrm{~s}$.
3. Blanking pulse input

Two modes operation can be selected by the choice of the amplitude of the pulse applied:

- blanking
- black level reinsertion

Blanking of the luminance output signal is obtained when the peak value of the pulse ranges from $-1,5$ to -10 V . An artificial black level of nominally $+4,2 \mathrm{~V}$ is inserted in the luminance output signal during the blanking period when the peak value of the pulse ranges from +2 to +12 V .
During scan the amplitude at pin 3 should remain between $+0,7 \mathrm{~V}$ and $-0,7 \mathrm{~V}$ to avoid blanking.
4. Negative supply (earth)
5. Contrast control input

The contrast curve is given on page 4. To avoid damaging of the circuit by flashover pulses, picked-up by the leads, it is recommended that a capacitor of 100 nF be connected between this pin and earth.
6. Saturation control input

The control curve is given on page 4. To avoid damaging of the circuit by flashover pulses, picked-up by the leads, it is recommended that a capacitor of 100 nF be connected between this pin and earth.
7. (B-Y) signal output

The amplitude of this signal is controlled by the contrast setting and the saturation setting simultaneously. At nominal contrast and nominal saturation setting an amplitude of $1,6 \mathrm{~V}$ peak-to-peak is obtained at an input amplitude of $0,9 \mathrm{~V}$ peak-to-peak. The average level is typically $6,1 \mathrm{~V}$.
8. ($\mathrm{B}-\mathrm{Y}$) signal input

The signal has to be a.c. coupled to the input.
To cope with the variation of picture contents an input voltage margin of $\pm 0,8 \mathrm{~V}$ is provided, whereas the input signal has a typical value of $\pm 0,45 \mathrm{~V}$ for a saturated colour bar signal.

APPLICATION INFORMATION (continued)

9. (R-Y) signal input

The signal has to be a.c. coupled to the input.
To cope with the variation of picture contents an input voltage margin of $\pm 0,8 \mathrm{~V}$ is provided, whereas the input signal has a typical value of $\pm 0,35 \mathrm{~V}$ for a saturated colour bar input.
10. ($\mathrm{R}-\mathrm{Y}$) signal output

The amplitude of this signal is controlled by the contrast setting and saturation setting simultaneously. At nominal contrast and nominal saturation setting an amplitude of $1,25 \mathrm{~V}$ peak-to-peak is obtained at an input amplitude of $0,7 \mathrm{~V}$ peak to peak. The average level is typically $6,1 \mathrm{~V}$.
11. ($\mathrm{G}-\mathrm{Y})$ signal input

The ($G-Y$) signal is obtained by matrixing a part of the ($\mathrm{R}-\mathrm{Y}$) and ($\mathrm{B}-\mathrm{Y}$) signals in a resistor network. The input may range from 1 to $6,5 \mathrm{~V}$.
An average level of typical $5,9 \mathrm{~V}$ is required to produce an average output level of $6,1 \mathrm{~V}$. The gain of the inverter stage is typically 1.
12. ($\mathrm{G}-\mathrm{Y}$) signal output

An inverted signal with an amplitude of maximum 1 V peak-to-peak is available at this pin.
13. Supply voltage (12 V)

Correct operation occurs within the range 10,2 to $13,2 \mathrm{~V}$.
The power dissipation must not exceed 600 mW at $65^{\circ} \mathrm{C}$ ambient temperature.
14. Brightness control input

The black level of the luminance output signal tracks the potential applied to this pin.
A typical value for setting the brightness control is $5,7 \mathrm{~V}$, for which a black level of
$4,2 \mathrm{~V}$ is obtained.
It is recommended that a capacitor of at least $10 \mu \mathrm{~F}$ be connected between this pin and earth.
15. Black level clamp capacitor

The level of the back porch of the luminance output signal is stored in an external capacitor of about $0,68 \mu \mathrm{~F}$; the latter to be connected between pins 14 and 15 .
16. Luminance signal input

A positive luminance signal of $0,7 \mathrm{~mA}$ peak-to-peak between black and white level drives the luminance amplifier.
A black level of about $0,3 \mathrm{~mA}$ is recommended. For a.c. coupling a bias resistor to the supply line is required to bias the amplifier properly.
The resistance depends on the signal amplitude e.g.: $15 \mathrm{k} \Omega$ is recommended for a input signal of $0,7 \mathrm{~mA}$ peak-to-peak.

MULTI-STABILIZER FOR ELECTRONIC TUNING

The TCA750 is basically a stabilizer for use in electronic tuning systems. The circuit is combined with an external reference diode which entirely determines the thermal stability of the system and can be adapted to the stability requirements of AM, FM or TV receivers.
The reference diode BZV38 used in conjunction with the TCA750 form an ideal pair for FM tuners in radio or TV receivers.

Additional to a stabilized voltage $\left(\mathrm{V}_{0} 1\right)$ for the electronic tuning system, the TCA750 incorporates two other output voltages ($\mathrm{V}_{0} 2$ and $\mathrm{V}_{0} 3$) for stabilized supply of the entire receiver combination as well as the following attractive features:

- The output current of any of the three stabilizers can be increased by a discrete power transistor without affecting circuit stability.
- For mute control at switching on, $\mathrm{V}_{\mathrm{o}} 2$ can be delayed by external components.
- An a.f.c. coupling circuit provides a constant correction factor by superimposing an a.f.c. voltage on $\mathrm{V}_{\mathrm{O}} 1$.
- Adjustable a.f.c. amplification factor (<5).
- Pulse or touch contact operation switches off the a.f.c. whilst changing stations.
- Delayed switching on of the a.f.c., externally adjustable ($\mathrm{t}_{\mathrm{d}}<2 \mathrm{~s}$).
- Search tuning becomes very simple when using the a.f.c. current source (pin 10).
- All three stabilized outputs are protected against short-circuit and are individually adjustable.

QUICK REFERENCE DATA see page 2

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38).

QUICK REFERENCE DATA

Input voltage range	V_{13-16}	26,5 to 54 V
Ambient temperature	$\mathrm{T}_{\text {amb }}$	typ. $25{ }^{\circ} \mathrm{C}$
Input voltage	V_{13}-16	typ. 45 V
Tuning voltage ($\left.\mathrm{V}_{\mathrm{O}} 1\right)^{*}$	V_{12-16}	21 to 34 V
Output current (11) *	l_{12}	$<14,5 \mathrm{~mA}$
Stabilizing time	$\mathrm{t}_{\text {stab }}$	typ. $0,8 \mathrm{~s}$
$\begin{aligned} & \text { Temperature coefficient }\left(\mathrm{V}_{0} 1\right) \\ & \text { TCA750 } \\ & \text { BZV38 } \end{aligned}$	$\Delta V_{0} 1 / \Delta T$	$\begin{array}{lr} \text { typ. } & 1 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \text { typ. } & 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$
Line regulation	$\Delta \mathrm{V}_{0} 1 / \Delta \mathrm{V}_{\text {in }}$	typ. $10 \mathrm{ppm} / \mathrm{V}$
Output voltage ($\left.\mathrm{V}_{0} 2\right)^{*}$	V_{14-16}	8 to 21 V
Output current (12) *	${ }^{14}$	$<6 \mathrm{~mA}$
Output voltage ($\left.\mathrm{V}_{0} 3\right)^{*}$	V_{2-16}	8 to 29 V
Output current (13) *	12	$<\quad 6 \mathrm{~mA}$

[^11]

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Input voltage (supply)
A.F.C. input voltages (pins 8 and 9)

Output current
pin 12
pin 14
pin 2
Input current (pin 11)
Storage temperature
Operating ambient temperature
Total power dissipation
V_{13-16}
V_{8-16}, V_{9-16}
$\pm V_{8-9}$
max. $\quad 54 \mathrm{~V}$
max. 17 V
$\max . \quad 6 \mathrm{~V}$
112 max. 55 mA
114 max. 20 mA
I_{2}
$\pm 1_{11}$
$\mathrm{T}_{\mathrm{stg}}$
$T_{\text {amb }}$
see derating curve Fig. 2

Fig. 2 Power derating curve.

[^12]

* $\mathrm{V}_{\mathrm{afc}} \mathrm{in}$ is superimposed on a common-mode voltage $\left(\mathrm{V}_{\text {com }}\right)$ of 5 V to 17 V .

Fig. 3 Test circuit and multi-stabilizer peripheral components.

Note to power reduction resistor RD

For worst case conditions (maximum output currents of the three stabilizers and a high supply voltage $V_{\text {in }}$) the power dissipation ($P_{\text {tot }}$) must be reduced by the use of the external resistor RD.
Power reduction $=\frac{\left(V_{\text {in }}-V_{0} 1\right)^{2}}{R D}$
The minimum permissible value of $R D$ is derived by the formula

$$
R D_{\min }=\frac{V_{\text {in max }}-V_{0} 1-V_{\mathrm{afc}} \text { out }}{I_{12}-I_{13 \min }}
$$

where,

$$
\begin{aligned}
I_{13 \min } & =4,5 \mathrm{~mA}\left(\text { stand }- \text { by current } I_{s}\right) \\
I_{12} & =I_{Z}+I_{R A 1}+I_{\text {min }}
\end{aligned}
$$

CHARACTERISTICS and APPLICATION INFORMATION

$T_{a m b}=25^{\circ} \mathrm{C}$; see test circuit Fig. 3.

Supplies

Input voltage
Input current
note min. typ. max.
$V_{\text {in }}$
Itot
Output characteristics

1	26,5	-	54	V
2	-	-	31	$m A$

$R_{\text {out }}$	-	-	1	-	Ω
$t_{\text {short }}$	-	continuous			
	-	-	-	10	s

Stabilizer 1

\rightarrow Output voltage range (adjustable)	$\mathrm{V}_{0} 1$	3	21	-	34	V
Output current	11	4,5	0	-	5	mA
Stabilizing time	$\mathrm{t}_{\mathrm{stab}}$	6	-	-	1	s
Output voltage temp. coefficient	$\Delta \mathrm{V}_{\mathrm{o}} 1 / \Delta T$	7,8	-	40	-	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Line regulation	$\Delta \mathrm{V}_{\mathrm{o}} 1 / \Delta \mathrm{V}_{\mathrm{in}}$	8	-	10	-	$\mathrm{ppm} / \mathrm{V}$

A.F.C. coupling circuit
A.F.C. input voltage ($1 / 2 V_{\text {afc }}$ swing)
A.F.C. output voltage ($1 / 2 \mathrm{~V}_{\text {afc }}$ lim swing)
A.F.C. output current threshold
A.F.C. output current swing
A.F.C. off delay

Amplification factor
A.F.C. slope ($\Delta I_{\text {afc }} / \Delta V_{a f c}$ in)

Common-mode voltage
$V_{0} 1$ change due to a.f.c. switching
Asymmetry of a.f.c. input (a.f.c. off)

$V_{\text {afc }}$ in	-	-	-	5	V
$V_{\text {afc }} \mathrm{lim}$		-	-	0,9	V
110		-	-	1,5	mA
lafc lim		-	-	3,0	mA
t_{d}	-	-	2	-	s
μ	-	-	-	5	
S	. 14	-	2,5	-	mA/V
$V_{\text {com }}$	9	5	-	17	V
$\Delta V_{0} 1 / \mathrm{afc}$	-	-	-	25	mV
$\pm(18-\mathrm{lg})$	-	-	-	0,5	$\mu \mathrm{A}$

A.F.C. switch operated by manual switch

Input voltage (a.f.c. on)
Positive input voltage (a.f.c. off)
Negative input voltage (a.f.c. off)
Positive input current (a.f.c. off)
Negative input current (a.f.c. off)

V_{SW}	-	$-0,5$	-	$+0,5$	V
$+\mathrm{V}_{\mathrm{SW}}$	-	0,8	-	6	V
$-\mathrm{V}_{\mathrm{SW}}$	-	0,8	-	-	V
$+I_{11}$	-	0,004	-	3	mA
$-I_{11}$	-	0,8	-	2	mA

A.F.C. switch operated by pulse

Positive trigger pulse peak current	$+I_{11}$ pulse	13				
pulse width $=10 \mu \mathrm{~s}$	-	800	-	3000	$\mu \mathrm{~A}$	
$100 \mu \mathrm{~s}$	-	80	-	3000	$\mu \mathrm{~A}$	
1 ms		-	8	-	3000	$\mu \mathrm{~A}$
10 ms		-	4	-	3000	$\mu \mathrm{~A}$
Negative trigger pulse peak current	-111 pulse	-	0,8	-	2	mA
Negative trigger pulse width		-	10	-	-	$\mu \mathrm{s}$

Stabilizer 2

Output voltage range (adjustable)
Output current
Output voltage temp. coefficient
Switch-on delay time
Switching voltage

Stabilizer 3

Output voltage range (adjustable)
Output current
Output voltage temp. coefficient

	note	min.	typ.	max.	
$\mathrm{V}_{\mathrm{o}} 2$	10	8	-	21	V
12	5	0	-	5,5	mA
$\Delta \mathrm{~V}_{\mathrm{o}} 2 / \Delta \mathrm{T}$	7,8	-	45	-	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{d} \text { on }}$	11	0	-	6	s
$\mathrm{~V}_{1-16}$	-	0,8	-	1	V

$\mathrm{V}_{0} 3$	12	8	-	29	V
13	5	0	-	5,5	mA
$\Delta \mathrm{~V}_{0} 3 / \Delta \mathrm{T}$	7,8	-	45	-	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$

Notes

1. The $\mathrm{V}_{\text {in }}$ range depends on the value of $\mathrm{V}_{0} 1$ (see Fig. 4).
2. At $I 1=5 \mathrm{~mA}, \mathrm{I} 2=\mathrm{I} 3=5,5 \mathrm{~mA}, 110=0$.
3. Adjustable by means of RA1, RB1 and RP.
4. If a higher level is required from the output of stabilizer 1 , the reference diode supply may be obtained from the emitter of a power transistor connected to the output from stabilizer 3 (see Fig. 8). In this case, the current available from stabilizer 1 is increased to $12,5 \mathrm{~mA}$ (bleeder current $I_{\text {RA1 }}=2 \mathrm{~mA}$).
5. At $\mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}$ maximum with all stabilizers at rated currents.
6. With $V_{0} 1$ within $0,05 \%$ of its steady value.
7. Temperature coefficient at $T_{\text {amb }}$ from $10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ with $\mathrm{V}_{\text {in }}$ constant, and using metal film bleed resistors having a temperature coefficient of $\leqslant 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
8. With all stabilizer output currents constant and within the specified limits.
9. Common-mode voltage $=$ voltage between pins 8 and 16 , and 9 and 16 of the I.C.
10. $V_{0} 2$ depends on the value of $V_{0} 1$ (see Fig. 6); adjustable with RA2.
11. Adjustable by means of $R T$ and C_{T} 1. The delay time is limited by the leakage current of C_{T} 1.
12. $\mathrm{V}_{\mathrm{o}} 3$ depends on the value of $\mathrm{V}_{\mathrm{o}} 1$ (see Fig. 7); adjustable with RA3.
13. The delay time after triggering depends on the value of $C_{T} 2$.
14. With $R E=10 \mathrm{k} \Omega$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
15. $V_{\text {afc }}$ out at $V_{\text {afc }}$ in after limiting.
16. With $\mathrm{RE}=10 \mathrm{k} \Omega ; \operatorname{RA} 1=12 \mathrm{k} \Omega$.

Fig. 4 Range of values for $V_{0} 1$.

Fig. 6 Range of values for $V_{o} 2$.

Fig. 5 Determination of 10 and S-factor ($\mathrm{S}=$ a.f.c. slope) from RE. 7264573.3

Fig. 7 Range of values for $V_{0} 3$.

Fig. 8 Hi -fi radio receiver with electronic tuning using TCA750.

DOUBLE BALANCED MODULATOR/DEMODULATOR

The TDA0820 is a monolithic integrated circuit for use at frequencies up to 650 MHz .
Typical applications are:

- modulator
- mixer
- switch/chopper
- a.m. synchronous demodulator
- f.m. quadrature demodulator
- phase comparator
- differential amplifier

The circuit is arranged to offer very flexible circuit design possibilities. The excellent matching and temperature tracking of the transistors in the circuit allow the use of circuit techniques which are not available when using discrete devices.

Fig. 1 Circuit diagram.

PACKAGE OUTLINE

14-lead 4-side; plastic (SOT-43).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage range	$\mathrm{V}_{10-8} ; \mathrm{V}_{10-14} ; \mathrm{V}_{12-8} ; \mathrm{V}_{12-14}$	0 to 13,2 V
Voltages (each transistor)		
Collector-substrate voltage (open base) and emitter)	$\mathrm{V}_{\text {CSO }}$	max. 15 V
Collector-base voltage (open emitter)	$\mathrm{V}_{\text {CBO }}$	max. 12 V
Collector-emitter voltage (open base)	$V_{\text {CEO }}$	max. 10 V
Emitter-base voltage (open collector)	$V_{\text {EBO }}$	max. 5 V
Currents (each transistor)		
Emitter current	${ }^{\prime} E$	max. $\quad 10 \mathrm{~mA}$
Base current	${ }^{\prime} \mathrm{B}$	max. $\quad 10 \mathrm{~mA}$
Total power dissipation when		
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to $+125{ }^{\circ} \mathrm{C}$
Operating ambient temperature	Tamb	0 to $+70{ }^{\circ} \mathrm{C}$
THERMAL RESISTANCE		
From junction to ambient	$\mathrm{R}_{\text {th } \mathrm{j}-\mathrm{a}}$	220 K/W

CHARACTERISTICS

$\mathrm{V}_{10-8}=\mathrm{V}_{10-14}=\mathrm{V}_{12-8}=\mathrm{V}_{12-14}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in Fig. 2

Supply current	$\mathrm{I}_{10}+\mathrm{I}_{12}$	$\stackrel{\text { typ. }}{<}$	$\begin{array}{r} 2,5 \mathrm{~mA} \\ 3 \mathrm{~mA} \end{array}$
Input signals			
carrier signal (r.m.s. value)	$\mathrm{V}_{3-4}(\mathrm{rms}) ; \mathrm{V}_{5-4}(\mathrm{rms})$	$<$	100 mV
video signal; negative modulated (peak-to-peak value)	$\mathrm{V}_{6-2(p-p)}$	<	1,4 V
Output signal at top sync over 75Ω			
Carrier suppression in balanced condition	V_{10-12}	>	38 dB
Differential phase		$<$	60
Differential gain		<	15 \%
Distortion of video signal		$<$	$-38 \mathrm{~dB}$

(1) $\mathrm{L}=$ air coil; 3 turns; $\phi 3 \mathrm{~mm}$.
(2) U.H.F. decoupling capacitor 221266998003.

Fig. 2 Test circuit.

12 TO 20 W HI-FI AUDIO POWER AMPLIFIER

The TDA1512 is a monolithic integrated hi-fi audio power amplifier designed for asymmetrical or symmetrical power supplies for mains-fed apparatus.
Special features are:

- Thermal protection
- Low intermodulation distortion
- Low transient intermodulation distortion
- Built-in output current limiter
- Low input offset voltage
- Output stage with low cross-over distortion
- Single in-line (SIL) power package

QUICK REFERENCE DATA

Supply voltage range	V_{p}	15 to 35 V		
Total quiescent current at $\mathrm{V}_{\mathrm{p}}=25 \mathrm{~V}$	$I_{\text {tot }}$	typ.		
Output power at $d_{\text {tot }}=0,7 \%$ sine-wave power				
$\mathrm{V}_{\mathrm{P}}=25 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$	P_{O}	typ.		W
$\mathrm{V}_{\mathrm{P}}=25 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega$	P_{0}	typ.		W
music power				
$\mathrm{V}_{\mathrm{P}}=32 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$	P_{0}	typ.	21	W
$\mathrm{V}_{\mathrm{P}}=32 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega$	P_{0}	typ.	12	W
Closed-loop voltage gain (externally determined)	G_{c}	typ.		
Input resistance (externally determined)	Ri	typ.	20	
Signal-to-noise ratio at $\mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW}$	S / N	typ.		
Supply voltage ripple rejection at $\mathrm{f}=100 \mathrm{~Hz}$	RR	typ.	50	dB

PACKAGE OUTLINE

9-lead SIL; plastic power (SOT-131B).

Fig. 1 Simplified internal circuit diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage
Repetitive peak output current
Non-repetitive peak output current
Total power dissipation
Storage temperature
Operating ambient temperature
A.C. short-circuit duration of load during full-load sine-wave drive
$R_{L}=0 ; V_{P}=30 \mathrm{~V}$ with $\mathrm{R}_{\mathrm{i}}=4 \Omega$
V_{P}
IORM
IOSM
see derating curve Fig. 2

$$
\begin{array}{ll}
\mathrm{T}_{\text {stg }} & -55 \text { to }+150{ }^{\circ} \mathrm{C} \\
\mathrm{~T}_{\mathrm{amb}} & -25 \text { to }+150{ }^{\circ} \mathrm{C}
\end{array}
$$

Fig. 2 Power derating curves.

THERMAL RESISTANCE

From junction to mounting base $R_{\text {th } j-m b} \leqslant$
4 K/W

D.C. CHARACTERISTICS

Supply voltage range
V_{p} $I_{\text {tot }}$

15 to 35 V
typ. 65 mA

A.C. CHARACTERISTICS

$V_{P}=25 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega ; \mathrm{f}=1 \mathrm{kHz} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in test circuit of Fig. 3; unless otherwise specified

Output power
sine-wave power at $d_{\text {tot }}=0,7 \%$
$R_{L}=4 \Omega$
$R_{L}=8 \Omega$
music power at $\mathrm{V}_{\mathrm{P}}=32 \mathrm{~V}$
$R_{L}=4 \Omega ; d_{\text {tot }}=0,7 \%$.
$R_{L}=4 \Omega ; d_{\text {tot }}=10 \%$
$R_{L}=8 \Omega ; d_{\text {tot }}=0,7 \%$
$R_{L}=8 \Omega ; d_{\text {tot }}=10 \%$
Power bandwidth; $-3 \mathrm{~dB} ; \mathrm{d}_{\text {tot }}=0,7 \%$

P_{0}	typ.	13	W
P_{0}	typ.	7	W
P_{0}	typ.	21	W
P_{0}	typ.	25	W
P_{0}	typ.	12	W
P_{0}	typ.	15	W
B		20	kHz

Voltage gain
open-loop
closed-loop
Input resistance (pin 1)
Input resistance of test circuit (Fig. 3)
Input sensitivity
for $P_{\mathrm{O}}=50 \mathrm{~mW}$
for $\mathrm{P}_{\mathrm{O}}=10 \mathrm{~W}$

G_{0}	typ.	74 dB
G_{c}	typ.	30 dB
R_{i}	>	$100 \mathrm{k} \Omega$
R_{i}	typ.	$20 \mathrm{k} \Omega$
v_{i}	typ.	16 mV
V_{i}	typ.	210 mV
S/N	typ.	72 dB
S/N	typ.	76 dB
RR	typ.	50 dB
$\mathrm{d}_{\text {tot }}$	typ.	0,1 \%
R_{0}	typ.	0,1 Ω

Fig. 3 Test circuit.

TDA1512

Fig. 4 Output power as a function of the supply voltage; $f=1 \mathrm{kHz}$;
$-d_{\text {tot }}=0,7 \% ;--d_{\text {tot }}=10 \%$.

Fig. 5 Total harmonic distortion as a function of the output power.

CHROMINANCE COMBINATION

The TDA2510 is an integrated chrominance amplifier circuit for colour television receivers incorporating the following functions:

- chrominance amplifier with a.c.c.
- control voltage amplifier
- burst separator
- colour killer and colour killer voltage detector
- linear electronic potentiometer for saturation control
- Schmitt trigger for colour killer
- chrominance delay line driver stage
- colour burst output stage

	QUICK REFERENCE DATA		
Supply voltage Input signal (colour bars) peak-to-peak value	V_{1-16}	typ.	12 V
Output signal (colour bars) peak-to-peak value	$\mathrm{V}_{2-16(\mathrm{p}-\mathrm{p})}$	typ.	100 mV
Burst signal output peak-to-peak value	$\mathrm{V}_{7-16(\mathrm{p}-\mathrm{p})}$	typ.	$0,5 \mathrm{~V}$

PACKAGE OUTLINES

TDA2510 : 16-Iead DIL; plastic (SOT-38).
TDA2510Q : 16-lead QIL; plastic (SOT-58).

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltage

Supply voltage (pin 1)
Power dissipation
Total power dissipation

Temperatures

Storage temperature
Operating ambient temperature

V1-16 max. 15 V

Ptot max. 500 mW

$T_{\text {stg }}$	-20 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}$	-20 to +60	${ }^{\circ} \mathrm{C}$

CHARACTERISTICS at $\mathrm{V}_{1-16}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

Chrominance input signal

Input voltage (symmetrical or asymmetrical) colour bars (peak-to-peak value)

Input voltage range
Input impedance

$\mathrm{V}_{2-16}(\mathrm{p}-\mathrm{p})$	typ.	100	mV
$\mathrm{V}_{2}-16$	10 to 200	mV	
$\left\|\mathrm{Z}_{2}-16\right\|$	$>$	2	$\mathrm{k} \Omega$

Burst signal output (emitter follower)
D.C. voltage

Output signal (peak-to-peak value)
Limiting level of output signal (peak-to-peak value)

V_{8-16}	typ.	9	V	
$\mathrm{~V}_{8-16(p-p)}$	typ.	0,5	V	$1)$
$\mathrm{V}_{8-16}(\mathrm{p}-\mathrm{p})$	typ.	1,5	V	

Chrominance output signal (without burst)
D.C. voltage

V6-16 typ. $\quad 7 \quad \mathrm{~V}$
Output signal (colour bars)
at nominal saturation (see note 2) and
maximum contrast (peak-to-peak value)
Signal-to-noise ratio
Saturation control range
Phase angle compared to burst output at nom. saturation

Phase angle shift during saturation control range +6 to -50 dB
Collector current of output transistor

$\mathrm{V}_{6}-16(\mathrm{p}-\mathrm{p})$	typ.	0,5	V
$\mathrm{~S} / \mathrm{N}$	$>$	50	dB
	+6 to -50	dB	

1) Kept constant by a.c.c. circuit.
2) Nominal saturation is defined as maximum saturation -6 dB .

CHARACTERISTICS (continued)

Collector voltage of output transistor at $\mathrm{P}_{\text {tot } \max }=100 \mathrm{~mW}$

Control voltage amplifier input

Reference voltage
Control voltage
Input impedance

Linearization for saturation input

Linear part of control curve
Threshold voltage for 50 dB suppression

Adjustment voltage behaviour for higher chrominance output voltage

Input impedance
Colour killer input at pin 15
Input voltage for : colour on
for : colour off
Signal suppression at colour off
Colour killer output
Switching voltage for: colour on
for : colour off
Internal resistance
Collector current of output transistor

Burst gating and blanking pulse

Burst gating and blanking pulse (positive or negative)
Input impedance

Colour killer

Colour unkill delay; depends on C_{d} (see circuit on page 5)
$\mathrm{V}_{7-16}<20 \mathrm{~V}$

V_{12-16}	typ.	7	V
$\mathrm{~V}_{12-15}$	typ.	$\mathrm{V}_{12-16^{-1}, 5}$	V
$\left\|\mathrm{Z}_{15-16}\right\|$	$>$	500	$\mathrm{k} \Omega$

		1,75 to 4	V
$\mathrm{~V}_{10-16}$		1,6	V
$\mathrm{~V}_{10-16}$	typ.	1,75	V

$\left|Z_{9-16}\right|$ typ. $10 \quad \mathrm{k} \Omega$

V_{15-16}	$<$	5,7	V
$\mathrm{~V}_{15-16}$	$>$	6,0	V
	$>$	50	dB

V_{11-16}	typ.	V_{1-16}	V
$\mathrm{~V}_{11-16}$	$<$	0.5	V
R_{i}	typ.	10	$\mathrm{k} \Omega$
I_{11}	$<$	10	mA

$\pm V_{9-16}$		1 to 4	V
$\left\|Z_{9}-16\right\|$	typ.	1	$k \Omega$

t_{d} typ. $24 \mathrm{~ms} / \mu \mathrm{F}$

APPLICATION INFORMATION

COLOUR DEMODULATOR COMBINATION

The TDA2520 is an integrated synchronous demodulator combination for colour television receivers incorporating the following functions:

- $8,8 \mathrm{MHz}$ oscillator followed by a divider giving two $4,4 \mathrm{MHz}$ signals used as reference signals
- keyed burst phase detector for optimum noise behaviour
- a stage to obtain chrominance signal control (a.c.c.) and an a.c.c. reference level
- a colour killer and identification signal detector
- two synchronous demodulators for the ($\mathrm{B}-\mathrm{Y}$) and ($\mathrm{R}-\mathrm{Y}$) signals
- temperature compensated emitter follower outputs
- PAL switch
- PAL flip-flop
- integrated capacitors in the symmetrical demodulators reduce unwanted carriersignals at the outputs.

QUICK REFERENCE DATA					
Supply voltage		V_{12-16}	typ.	12	V
Supply current	I_{12}	typ.	40	mA	
Colour difference output signals					
peak-to-peak values	$-(\mathrm{R}-\mathrm{Y})$	$\mathrm{V}_{3-16(\mathrm{p}-\mathrm{p})}$	$>$	2,4	V
	$-(\mathrm{G}-\mathrm{Y})$	$\mathrm{V}_{2-16(\mathrm{p}-\mathrm{p})}$	$>$	1,35	V
	$-(\mathrm{B}-\mathrm{Y})$	$\mathrm{V}_{1-16(\mathrm{p}-\mathrm{p})}$	$>$	3	V
Impedance of colour difference					
\quad signal outputs					

PACKAGE OUTLINES

TDA2520 : 16-lead DIL ; plastic (SOT-38). TDA2520Q: 16-lead QIL ; plastic (SOT-58).

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltage

Supply voltage

Power dissipation

Total power dissipation $\quad P_{\text {tot }} \quad \max \quad 600 \mathrm{~mW}$

Temperatures

Storage temperature
Operating ambient temperature
$\mathrm{V}_{12-16} \max .14 \mathrm{~V}$
$\mathrm{T}_{\mathrm{stg}}$
Tamb
-20 to $+125{ }^{\circ} \mathrm{C}$
-20 to $+60{ }^{\circ} \mathrm{C}$

CHARACTERISTICS at $\mathrm{V}_{12-16}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

Demodulator part

Ratio of demodulated signals

$$
\left.\begin{array}{lllll}
\text { B-Y/R-Y: } & \frac{V_{1-16}}{V_{3-16}} & \text { typ. } & 1,78 & \\
\text { G-Y/R-Y: } & \frac{V_{2-16}}{V_{3-16}} & \text { typ. } & 0,85 & 1
\end{array}\right)
$$

Colour difference output signals ${ }^{3}$)
peak-to-peak values

$-(\mathrm{R}-\mathrm{Y})$	$\mathrm{V}_{3}-16(\mathrm{p}-\mathrm{p})$	$>$	2,4	V
$-(\mathrm{G}-\mathrm{Y})$	$\mathrm{V}_{2-16(p-p)}$	$>$	1,35	V
$-(\mathrm{B}-\mathrm{Y})$	$\mathrm{V}_{1-16(p-p)}$	$>$	3	V

Impedance of colour difference signal outputs

$\left\|Z_{3-16}\right\|$	typ.	250	Ω
$\left\|Z_{2-16}\right\|$	typ.	250	Ω
$\left\|Z_{1-16}\right\|$	typ.	250	Ω
	$<$	10	mV

Blanking and keying pulse
burst keying: active for
inactive for
blanking : active for inactive for

V_{15-16}	$>$	7,5	V
$\mathrm{~V}_{15-16}$	$<$	6,5	V
$\mathrm{~V}_{15-16}$	$>$	2	V
$\mathrm{~V}_{15-16}$	$<$	1	V

[^13]2) As under note 1 , but the phase of the ($\mathrm{R}-\mathrm{Y}$) reference signal reversed.
3) The d.c. level of the colour difference outputs can be adjusted from 6 to 10 V at pin 4 .

CHARACTERISTICS (continued)

Reference part

Colour burst (peak-to-peak value)
Phase difference between reference and burst signals for $\pm 400 \mathrm{~Hz}$ deviation of crystal frequency
$V_{7-16(p-p)} \quad$ typ. $\quad 0,5 \mathrm{~V}$

Overall holding range with typical crystal
A.C.C. reference output voltage
Δf
V_{13-16} $<\quad \pm 5^{\circ}$
A.C.C. voltage at $0,5 \mathrm{~V}$ peak-to-peak burst at correct phase with zero burst

Oscillator input resistance
Oscillator input capacitance
Oscillator output resistance

V_{14-16}	typ.	$5,5 \mathrm{~V}$
$\mathrm{~V}_{14-16}$	typ.	$7,0 \mathrm{~V}$
R_{11-16}	typ.	270Ω
C_{11-16}	see note	
R_{10-16}	typ.	200Ω

COLOUR DEMODULATOR COMBINATION

The TDA2522 is an integrated synchronous demodulator combination for colour television receivers incorporating the following functions:

- $8,8 \mathrm{MHz}$ oscillator followed by a divider giving two $4,4 \mathrm{MHz}$ signals used as reference signals
- keyed burst phase detector for optimum noise behaviour
- a.c.c. detector and amplifier
- a colour killer
- two synchronous demodulators for the ($B-Y$) and ($R-Y$) signals
- temperature compensated emitter follower outputs
- PAL switch and PAL flip-flop with internal identification
- integrated capacitors in the symmetrical demodulators reduce unwanted carrier signals at the outputs

QUICK REFERENCE DATA					
Supply voltage		V_{11-4}	typ.	12	V
Supply current		I_{11}	typ.	40	mA
Colour difference output signals peak-to-peak values; for the following input signals	$\begin{aligned} & -(\mathrm{R}-\mathrm{Y}) \\ & -(\mathrm{G}-\mathrm{Y}) \\ & -(\mathrm{B}-\mathrm{Y}) \end{aligned}$	$\begin{aligned} & \mathrm{V}_{3-4(p-p)} \\ & \mathrm{V}_{2-4(p-p)} \\ & \left.\mathrm{V}_{1-4(\mathrm{p}} \mathrm{p}-\mathrm{p}\right) \end{aligned}$	$\begin{aligned} & > \\ & > \\ & > \end{aligned}$	2,4 1,35 3	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
Chrominance input signal (including burst) peak-to-peak value	$\begin{aligned} & \mathrm{R}-\mathrm{Y} \\ & \mathrm{~B}-\mathrm{Y} \end{aligned}$	$\begin{aligned} & V_{6}-4(p-p) \\ & V_{5}-4(p-p) \end{aligned}$		$\begin{aligned} & 500 \\ & 350 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Impedance of colour difference signal outputs			typ.	250	Ω

PACKAGE OUTLINES

TDA2522 : 16-lead DIL ; plastic (SOT-38). TDA2522Q: 16-lead QIL.; plastic (SOT-58).

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage	V_{11-4}	\max.	14	V
Total power dissipation	$\mathrm{P}_{\text {tot }}$	\max.	600	mW
Storage temperature	$\mathrm{T}_{\text {stg }}$	-20 to +125	${ }^{\circ} \mathrm{C}$	
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-20 to	+60	${ }^{\circ} \mathrm{C}$

CHARACTERISTICS at $\mathrm{V}_{11-4}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

Demodulator part

Ratio of demodulated signals

B-Y/R-Y:	$\frac{V_{1-4}}{V_{3-4}}$	typ.	1,78	
G-Y/R-Y:	$\frac{V_{2-4}}{V_{3-4}}$	typ.	0,85	$1)$
G-Y/R-Y:	$\frac{V_{2-4}}{V_{3-4}}$	typ.	0,17	2)

Colour difference output signals peak-to-peak values; for the following input signals

Chrominance input signal (including
burst) peak-to-peak value; note 3

$-(R-Y)$	$V_{3-4(p-p)}$	$>$	2,4	V
$-(G-Y)$	$V_{2-4(p-p)}$	$>$	1,35	V
$-(B-Y)$	$V_{1-4(p-p)}$	$>$	3	V

$R-Y$	$V_{6}-4(p-p)$	500	mV
$B-Y$	$\mathrm{~V}_{5}-4(\mathrm{p}-\mathrm{p})$	350	mV

Impedance of colour difference signal outputs	$\begin{aligned} & \left\|z_{3-4}\right\| \\ & \left\|Z_{2-4}\right\| \\ & \left\|z_{1-4}\right\| \end{aligned}$	$\begin{aligned} & \text { typ. } \\ & \text { typ. } \\ & \text { typ. } \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \end{aligned}$
$\mathrm{H} / 2$ ripple at $\mathrm{R}-\mathrm{Y}$ output (peak-to-peak value)		<	10	mV
Blanking and keying pulse burst keying : active for inactive for	$\begin{aligned} & V_{15-4} \\ & V_{15-4} \end{aligned}$	$\begin{aligned} & > \\ & < \end{aligned}$	$\begin{array}{r} 7,5 \\ 6,5 \end{array}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
blanking: active for inactive for	$\begin{aligned} & \mathrm{V}_{15-4} \\ & \mathrm{~V}_{15-4} \end{aligned}$	$<$	2	V

1) The demodulators are driven by a chrominance signal of equal amplitude for the ($\mathrm{R}-\mathrm{Y}$) and the ($B-Y$) components. The phase of the ($R-Y$) chrominance signal equals the phase of the ($\mathrm{R}-\mathrm{Y}$) reference signal.
The same holds for the ($B-Y$) signals.
${ }^{2}$) As under note 1 , but the phase of the ($\mathrm{R}-\mathrm{Y}$) reference signal reversed.
${ }^{3}$) Colour bar with 75% saturation.

CHARACTERISTICS (continued)

Reference part

Phase difference between reference and burst signals for $\pm 400 \mathrm{~Hz}$ deviation of crystal frequency

$$
<\quad \pm 50
$$

signals -400 Hz deviation of crystal frequency
$\Delta \mathrm{f} \quad$ typ. $\pm 500 \mathrm{~Hz}$

Burst signal input at keying pulse
width of $4 \mu \mathrm{~s}$ (peak-to-peak value)
Oscillator input resistance
Oscillator input capacitance
Oscillator output resistance
A.C.C. reference voltage
A.C.C. voltage at $0,25 \mathrm{~V}$ peak-to-peak burst at correct phase : with zero burst :
A.C.C. amplifier output voltage range at $\pm \mathrm{I}_{13}<200 \mu \mathrm{~A}$
V_{13-4}
0,5 to 5 V

Colour killer

Via pin 14
Colour off
Colour on
Alternatively via pin 16
Colour off
Colour on
Colour unkill delay

V_{14-4}	$>$	6	V
$\mathrm{~V}_{14-4}$	$<$	5,6	V

V_{16-4}	$>$	7	V
$\mathrm{~V}_{16-4}$	$<$	5	V
t_{d}	typ.	20	$\mathrm{~ms} / \mu \mathrm{F} 3)$

[^14]
COLOUR DEMODULATOR COMBINATION

The TDA2523 is an integrated synchronous demodulator combination for colour television receivers incorporating the following functions:

- $8,8 \mathrm{MHz}$ oscillator followed by a divider giving two $4,4 \mathrm{MHz}$ signals used as reference signals
- keyed burst phase detector for optimum noise behaviour
- a.c.c. detector and amplifier
- a colour killer
- two synchronous demodulators for the ($B-Y$) and ($R-Y$) signals
- temperature compensated emitter follower outputs
- PAL switch and PAL flip-flop with internal identification
- integrated capacitors in the symmetrical demodulators reduce unwanted carrier signals at the outputs

QUICK REFERENCE DATA					
Supply voltage		V_{11-4}	typ.	12	V
Supply current		I_{11}	typ.	40	mA
Colour difference output signals peak-to-peak values; for the	($\mathrm{R}-\mathrm{Y}$)	V_{3-4} (p-p)	>	2,4	V
following input signals	(G-Y)	$\mathrm{V}_{2-4}(\mathrm{p}-\mathrm{p})$	$>$	1,35	V
	($B-\mathrm{Y}$)	$\mathrm{V}_{1-4}(\mathrm{p}-\mathrm{p})$	$>$	3	V
Chrominance input signal (including burst) peak-to-peak value	R-Y	$\mathrm{V}_{6}-4(\mathrm{p}-\mathrm{p})$		500	mV
	B - Y	$\mathrm{V}_{5}-4(\mathrm{p}-\mathrm{p})$		350	mV
Impedance of colour difference signal outputs			typ.	250	Ω

PACKAGE OUTLINES

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage	V_{11-4}	\max.	14	V
Total power dissipation	$\mathrm{P}_{\text {tot }}$	\max.	600	mW
Storage temperature	$\mathrm{T}_{\text {stg }}$	-20 to	+125	${ }^{\circ} \mathrm{C}$
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-20 to	+60	${ }^{\circ} \mathrm{C}$

CHARACTERISTICS at $\mathrm{V}_{11-4}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Demodulator part

[^15]
CHARACTERISTICS (continu

Reference part

Phase difference between reference and burst signal sfor $\pm 400 \mathrm{~Hz}$ deviation of crystal frequency
Overall holding range with typical crystal
Δf

$$
<\quad \pm 5^{\circ}
$$

typ. $\pm 500 \mathrm{~Hz}$
Burst signal input at keying pulse
width of $4 \mu \mathrm{~s}$ (peak-to-peak value)
Oscillator input resistance
Oscillator input capacitance
Oscillator output resistance
A.C.C. reference voltage

$\mathrm{V}_{5-6(\mathrm{p}-\mathrm{p})}$	typ.	0,25	V	$\mathrm{l}_{\text {) }}$
R_{10-4}	typ.	270	Ω	
C_{10-4}	typ.	note 2	pF	
R_{9-4}	typ.	200	Ω	
$\mathrm{~V}_{12-4}$	typ.	7	V	

A.C.C. voltage at $0,25 \mathrm{~V}$ peak-to-peak burst at correct phase : with zero burst :
$V_{14-4} \quad$ typ. $\quad 5,5 \quad \mathrm{~V}$
A.C.C. amplifier output voltage range
at $\pm \mathrm{I}_{13}<200 \mu \mathrm{~A}$
V_{13-4}
0,5 to $5 \quad \mathrm{~V}$

Colour killer

Via pin 14
Colour off
Colour on

V_{14-4}	$>$	6	V
$\mathrm{~V}_{14-4}$	$<$	5,6	V
$\mathrm{~V}_{16-4}$	$>$	7	V
$\mathrm{~V}_{16-4}$	$<$	5	V
t_{d}	typ.	20	$\left.\mathrm{~ms} / \mu \mathrm{F}^{3}\right)$

Alternatively via pin 16
Colour off
Colour on
Colour unkill delay

[^16]
RGB MATRIX PREAMPLIFIER

The TDA2530 is an integrated RGB matrix preamplifier for colour television receivers, incorporating a matrix preamplifier for RGB cathode drive of the picture tube with clamping circuits. The three channels have the same layout to ensure identical frequency behaviour.
This integrated circuit has been designed to be driven from the TDA2522 synchronous demodulator and oscillator IC.

QUICK REFERENCE DATA					
Supply voltage	$\mathrm{V}_{9}-16$	typ.	12 V		
Operating ambient temperature range	$\mathrm{T}_{\mathrm{amb}}$	-20 to $+60{ }^{\circ} \mathrm{C}$			
Luminance input resistance	R_{1-16}	$>$	$100 \mathrm{k} \Omega$		
Input current of colour difference inputs	$\mathrm{I}_{2}, \mathrm{I}_{4}, \mathrm{I}_{6}$	typ.	$2 \mu \mathrm{~A}$		
during clamping	$\mathrm{I}_{2}, \mathrm{I}_{4}, \mathrm{I}_{6}$	$-0,2$ to $+0,2 \mathrm{~mA}$			
Clamping pulse input current	$-\mathrm{I}_{8}$	$<$	$20 \mu \mathrm{~A}$		
Gain of RGB preamplifiers	G	typ.	0 dB		
Gain d. c. adjustment range	$\Delta \mathrm{G}$	typ.	$\pm 3 \mathrm{~dB}$		
Gain of error amplifier (conductance)		typ.	$20 \mathrm{~mA} / \mathrm{V}$		
Input current of feedback inputs	$\mathrm{I}_{11}, \mathrm{I}_{13}, \mathrm{I}_{15}$	typ.	$2 \mu \mathrm{~A}$		
Output current swing	$\mathrm{I}_{10}, \mathrm{I}_{12}, \mathrm{I}_{14}$	$-4,4$ to $+4,4 \mathrm{~mA}$			

PACKAGE OUTLINES

TDA2530 : 16-lead DIL; plastic (SOT-38).
TDA2530Q : 16-lead QIL; plastic (SOT-58).

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Voltages

Supply voltage (pin 9)
Pin 1
Pins 3, 5 and 7
Pins 2, 4 and 6
Pin 8
Pin 10
Pin 12
Pin 14
Pins 11, 13 and 15

$V_{P}\left(V_{9-16)}\right.$	max.
V_{1-16}	0 to V_{P}
$V_{3 ; 5 ; 7-16}$	0 to V_{P}
$V_{2 ; 4 ; 6-16}$	0 to V_{P}
V_{8-16}	max.

Current

Pin 8
$-\mathrm{I}_{8} \quad \max . \quad 1 \mathrm{~mA}$

Power dissipation
Total power dissipation $\quad P_{\text {tot }} \max \quad 1 \mathrm{~W}$

Temperatures

Storage temperature	$\mathrm{T}_{\mathrm{stg}}$	-20 to $+125^{\circ} \mathrm{C}$
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-20 to $+60^{\circ} \mathrm{C}$

CHARACTERISTICS at $\mathrm{V}_{\mathrm{P}}=12 \mathrm{~V} ; \mathrm{V}_{1-16}=1,5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in circuit on page 5 .
Current consumption

$$
\text { I9 } \quad \text { typ. } \quad 50 \mathrm{~mA}
$$

Luminance input

Black level
Black-to-white input voltage (peak-to-peak value)
Input resistance

V_{1-16}	typ.	$1,5 \mathrm{~V}$
$\mathrm{~V}_{1-16(\mathrm{p}-\mathrm{p})}$	typ.	$1,0 \mathrm{~V}$
$\mathrm{R}_{1-16}>$	$>$	$100 \mathrm{k} \Omega$

Colour difference input

Input signals (peak-to-peak values) R-Y 1)
G-Y $\quad 1$)
$\mathrm{B}-\mathrm{Y} \quad 1)$
Input currents (source resistance 300Ω max.)

Input currents during clamping

$\mathrm{V}_{2-16(\mathrm{p}-\mathrm{p})}$	typ.	$1,4 \mathrm{~V}$
$\mathrm{~V}_{4-16(\mathrm{p}-\mathrm{p})}$	typ.	$0,82 \mathrm{~V}$
$\mathrm{~V}_{6-16(\mathrm{p}-\mathrm{p})}$ typ.	$\mathrm{I}, 78 \mathrm{~V}$	
$\mathrm{I}_{2}, \mathrm{I}_{4}, \mathrm{I}_{6}$	typ.	$2 \mu \mathrm{~A}$
	$<$	$4 \mu \mathrm{~A}$
$\mathrm{I}_{2}, \mathrm{I}_{4}, \mathrm{I}_{6}$	$-0,2$ to	$+0,2 \mathrm{~mA}$

${ }^{1}$) This prescribed order is not mandatory, as all three channels are identical.

CHARACTERISTICS (continued)

Clamp pulse input for d.c. feedback

Input voltage for clamping: on level	$\begin{aligned} & \mathrm{V}_{8-16} \\ & \mathrm{~V}_{8-16} \end{aligned}$		$\begin{array}{r} 6,5 \text { to } 12 \\ 0 \text { to } 5,5 \end{array}$	
Input current for clamping: on level	I_{8}	$<$	1	$\mu \mathrm{A}$
off level	$-\mathrm{I}_{8}$	<	20	$\mu \mathrm{A}$

Feedback input

D. C. level during clamping

$$
\mathrm{V}_{11 ; 13 ; 15-16} \quad \text { typ. } \quad 0,5 \mathrm{~V}_{\mathrm{P}}
$$

Gain adjustment for colour drive
Adjustment voltage range
Adjustment voltage for nominal gain

$V_{3 ; 5 ; 7-16}$		0 to 10	V
$\mathrm{~V}_{3 ; 5 ; 7-16}$	typ.	5	V

Nominal gain between colour difference inputs, luminance input and colour feedback inputs (pins 11, 13 and 15)
Adjustment range of nominal gain at $\Delta \mathrm{V}_{3 ; 5 ; 7-16}= \pm 5 \mathrm{~V}$

$$
\Delta \mathrm{G}
$$

typ.
$0 \quad \mathrm{~dB}$ 2)

G	typ.	0	$d B 2$
ΔG	$>$	± 3	$d B$

Differential amplifier

Input current of feedback inputs
Gain of error amplifier (conductance)
Output current swing
Integrated load resistance

$\mathrm{I}_{11}, \mathrm{I}_{13}, \mathrm{I}_{15}$	typ. typ.	2	$\mu \mathrm{~A}$
	20	$\mathrm{~mA} / \mathrm{V}$	

Output bias voltage (see application information)

APPLICATION INFORMATION (see circuit on page 5)

Clamping level (V_{cl}) of video output stages, with set clamping level potentiometers in their mid-positions :

$$
\mathrm{V}_{\mathrm{cl}}=\mathrm{V}_{\mathrm{P}}\left(1+\frac{\mathrm{R} 1}{\mathrm{R} 2}-\frac{\mathrm{R} 1}{\mathrm{R} 3}\right)
$$

Gain of video output stages: $G=1+\frac{R 1}{R 2}+\frac{R 1}{R 3}+\frac{R 1}{R 4}$
${ }^{1}$) Switching from clamping on to off occurs at about 6 V .
2) Error signal is assumed to be negligible.
${ }^{3}$) The fact that the load resistors have series diodes (D; see block diagram on page 2), means that the resistors can be ignored when $\mathrm{V}_{10 ; 12 ; 14} \geq \mathrm{V}_{\mathrm{P}}$.
In that case, external load resistors must be chosen such that the nominal current will be $4,4 \mathrm{~mA}$.

RGB MATRIX PREAMPLIFIER

The TDA2532 is an integrated matrix preamplifier for use in conjunction with discrete video amplifiers to provide RGB drive to the cathodes of a colour television picture tube. The integrated circuit incorporates:

- matrix circuits;
- gain control stages, operated by d.c. setting;
- preamplifiers with feedback and integral black-level clamps;
- facilities for video blanking during data display.

The three channels have the same layout to ensure identical frequency behaviour. The integrated circuit has been designed to be driven by the integrated colour demodulator combination type TDA2522.

QUICK REFERENCE DATA

Supply voltage	V_{9-16}	typ.	12	V
Operating ambient temperature range	Tamb	-25 to $+60{ }^{\circ} \mathrm{C}$		
Luminance input resistance	R_{1-16}	>		
Input current of colour difference inputs	I_{2}, l_{4}, I_{6}	typ.		$\mu \mathrm{A}$
Clamping pulse input current	-18	<	60	$\mu \mathrm{A}$
Gain of RGB preamplifiers	G	typ.		dB
Gain d.c. adjustment range	$\Delta \mathrm{G}$	>	± 40	
Gain of error amplifier (transconductance)		typ.		mA / V
Output current swing	$110,112, l_{14}$ typ. $\pm 3,5 \mathrm{~mA}$			

PACKAGE OUTLINES

TDA2532: 16-lead DIL; plastic (SOT-38).
TDA25320: 16 -lead OIL; plastic (SOT-58).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage (pin 9)
Pin 1
Pins 3, 5
Pins 2, 4 and 6
Pin 7
Pin 8
Pin 10
Pin 12
Pin 14
Pins 11,13 and 15
Pin 8
Total power dissipation
Storage temperature
Operating ambient temperature

V_{P} (V9-16)	max. 13,2 V
V_{1-16}	0 to V_{P}
$V_{3 ; 516}$	0 to V_{P}
$\mathrm{V}_{2} ; 4 ; 6$-16	0 to V_{P}
V_{7-16}	-0,5 V to V_{P}
V_{8-16}	max. V_{P}
V_{10-16}	V_{11-16} to $V_{P}+3 V$
V_{12-16}	V_{13-16} to $V_{P}+3 V$
V_{14-16}	V_{15-16} to $V_{P}+3 \mathrm{~V}$
V_{11}; 13; 15-16	$0,3 V_{p}$ to V_{P}
-1_{8}	max. 1 mA
$\mathrm{P}_{\text {tot }}$	max. $\quad 1,1 \mathrm{~W}$
$\mathrm{T}_{\text {stg }}$	-25 to $+125{ }^{\circ} \mathrm{C}$
Tamb	-25 to $+60{ }^{\circ} \mathrm{C}$

CHARACTERISTICS

At $\mathrm{V}_{\mathrm{P}}=12 \mathrm{~V} ; \mathrm{V}_{1-16}=1,5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in circuit on page 6 .

Current consumption

Luminance input

Black level
Black-to-white input voltage (peak-to-peak value)
Input resistance

Colour difference input

$$
\begin{aligned}
& \text { Input signals (peak-to-peak values) R-Y } \\
& \text { for } 100 \% \text { saturated colour bars G-Y }
\end{aligned}
$$

19
$V_{6} 16$ (p-p)
typ.
1,4 V
$V_{4-16(p-p)} \quad$ typ. $\quad 0,82 \mathrm{~V}$
$V_{2-16(p-p)}$
I_{2}, I_{4}, I_{6}
V_{1-16}
$V_{1-16(p-p)}$
R_{1-16}
R_{1-16}
typ.
60 mA
$\begin{array}{cc}\text { typ. } & 1,5 \mathrm{~V} \\ \text { typ. } & 1,0 \mathrm{~V} \\ > & 100 \mathrm{k} \Omega\end{array}$
-
typ.
,

Input currents (source resistance 300Ω max.) B-Y

CHARACTERISTICS (continued)
Clamp pulse input

Input voltage for clamping on level off level	$\begin{aligned} & V_{8-16} \\ & V_{8-16} \end{aligned}$		$\begin{aligned} & 7,5 \text { to } 12 \mathrm{~V} \\ & 0 \text { to } 6,5 \mathrm{~V}^{*} \end{aligned}$
Input voltage to enable video blanking input	V_{8-16}	$<$	1 V
Input voltage to disable video blanking input	V_{8-16}		2 to 12 V
Input current for clamping on level off level	$\begin{aligned} & 18 \\ & -18 \end{aligned}$	$<$	$\begin{array}{r} 1 \mu \mathrm{~A} \\ 60 \mu \mathrm{~A} \end{array}$
Clamp pulse duration	${ }^{\text {t clamp }}$	>	3,5 $\mu \mathrm{s}$
Video blanking input			
Input voltage for blanking on level off level	$\begin{aligned} & v_{7-16} \\ & v_{7-16} \end{aligned}$	>	$\begin{aligned} & 1,5 \mathrm{~V} \\ & 0,5 \mathrm{~V} \end{aligned}$

Feedback input

D.C. level during clamping
$\mathrm{V}_{11} ; 13 ; 15-16$
6 to $6,2 \mathrm{~V}$

Gain adjustment for colour drive

Adjustment voltage range
Adjustment voltage for nominal gain
Nominal gain between colour difference inputs, luminance input and colour feedback inputs (pins 11, 13 and 15)
Adjustment range of nominal gain at $\Delta V_{3 ; 5-16}= \pm 5 \mathrm{~V}$
$V_{3 ; 5-16}$
$V_{3 ; 5-16}$

G
$\Delta \mathrm{G}$

Differential amplifier

Gain of error amplifier (transconductance)
Output current swing
Integrated load resistance
Output bias voltage (see application information)

	typ.	$20 \mathrm{~mA} / \mathrm{V}$
$\mathrm{I}_{10}, \mathrm{I}_{12}, \mathrm{I}_{14}$	\geqslant	$\pm 3,5 \mathrm{~mA}$
$\mathrm{R}_{10} ; 12 ; 14-9$	typ.	$640 \Omega \mathrm{as}$
$\mathrm{V}_{10} ; 12 ; 14-16$	typ.	8 VA

* Switching from clamping on to off occurs at about 7 V .
** Error signal is assumed to be negligible.
Δ The fact that the load resistors have series diodes (D; see block diagram on page 2), means that the resistors can be ignored when $\mathrm{V}_{10} ; 12 ; 14 \geqslant \mathrm{~V}_{\mathrm{p}}$. In that case, external load resistors must be chosen such that the nominal current will be $3,5 \mathrm{~mA}$.

APPLICATION INFORMATION (see circuit on page 6)

Clamping level (V_{cl}) of video output stages, with set clamping level potentiometers in their mid-positions:

$$
V_{c l}=0,5 V_{p}\left(1+\frac{R 1}{R 2}-\frac{R 1}{R 3}\right) .
$$

Gain of video output stages: $G=1+\frac{R 1}{R 2}+\frac{R 1}{R 3}+\frac{R 1}{R 4+0,25 R 5}$.

APPLICATION INFORMATION

R5 = clamping level adjustment (70 V to 170 V); R6 = gain adjustment (65 to 140).

TELEVISION I.F. AMPLIFIER AND DEMODULATOR

The TDA2540 is an i.f. amplifier and demodulator circuit for colour and black and white television receivers using $n-p-n$ tuners.
It incorporates the following functions:

- gain-controlled wide-band amplifier, providing complete i.f. gain
- synchronous demodulator
- white spot inverter
- video preamplifier with noise protection
- a.f.c. circuit which can be switched on/off by a d.c. level, e.g. during tuning
- a.g.c. circuit with noise gating
- tuner a.g.c. 'output (n-p-n tuners)
- VCR switch, which switches off the video output; e.g. for insertion of a VCR playback signal

QUICK REFERENCE DATA

Supply voltage	V_{11-13}	typ.	12 V
Supply current	l_{11}	typ.	50 mA
I.F. input voltage at $\mathrm{f}=38,9 \mathrm{MHz}$ (r.m.s. value)	$\mathrm{V}_{1-16}(\mathrm{rms})$	typ.	$100 \mathrm{\mu V}$
Video output voltage (white at 10% of top sync)	$\mathrm{V}_{12}(\mathrm{p}-\mathrm{p})$	typ.	$2,7 \mathrm{~V}$
l.F. voltage gain control range	G_{V}	typ.	64 dB
Signal-to-noise ratio at $\mathrm{V}_{\mathrm{i}}=10 \mathrm{mV}$	S / N	typ.	58 dB
A.F.C. output voltage swing for $\Delta \mathrm{f}=100 \mathrm{kHz}$	$\Delta \mathrm{V}_{5-13}$	typ.	10 V

PACKAGE OUTLINES

TDA2540 : 16-lead DIL; plastic (SOT-38).
TDA25400: 16-lead QIL; plastic (SOT-58).

Fig. 1 Block diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Supply voltage
Tuner a.g.c. voltage
Total power dissipation

V_{11-13}	max.	$13,2 \mathrm{~V}$
$\mathrm{~V}_{4-13}$	max.	12 V
$\mathrm{P}_{\text {tot }}$	max.	900 mW
$\mathrm{~T}_{\text {stg }}$	-55 to $+125^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {amb }}$	-25 to $+60{ }^{\circ} \mathrm{C}$	

$\mathrm{T}_{\mathrm{amb}}$ -25 to $+60^{\circ} \mathrm{C}$

CHARACTERISTICS (measured in Fig. 5)
Supply voltage range

$$
\mathrm{V}_{11-13} \quad \text { typ. } 12 \mathrm{~V}
$$

The following characteristics are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{11-13}=12 \mathrm{~V} ; f=38,9 \mathrm{MHz}$
I.F. input voltage for onset of a.g.c. (r.m.s. value)
$\mathrm{V}_{1-16(\mathrm{rms})}$
$\begin{array}{ll}\text { typ. } & 100 \mu \mathrm{~V} \\ < & 150 \mu \mathrm{~V}\end{array}$
Differential input impedance
$\left|z_{1-16}\right|$
Zero-signal output level
Top sync output level
V_{12-13}
I.F. voltage gain control range

Bandwidth of video amplifier (3 dB)
Signal-to-noise ratio at $\mathrm{V}_{\mathrm{i}}=10 \mathrm{mV}$.
Differential gain
\vee_{12-13}
G_{v}
B
S / N
dG
Differential phase
$d \varphi$
$2 \mathrm{k} \Omega$ in parallel with 2 pF
typ. $6 \pm 0,3 \mathrm{~V}^{*}$
typ. $\quad 3,07 \mathrm{~V}$ 2,9 to 3,2 V
typ. $\quad 64 \mathrm{~dB}$
typ. $\quad 6 \mathrm{MHz}$
typ. $\quad 58 \mathrm{~dB}^{* *}$
typ. $\quad 4 \%$
$<\quad 10 \%$
typ. $\quad 2^{\circ}$
$<\quad 10^{\circ}$

* So-called 'projected zero point', e.g. with switched demodulator.
${ }^{* *} \mathrm{~S} / \mathrm{N}=\frac{\mathrm{V}_{\mathrm{o}} \text { black-to-white }}{\mathrm{V}_{\mathrm{n}}(\mathrm{rms}) \text { at } \mathrm{B}=5 \mathrm{MHz}}$.

CHARACTERISTICS (continued)

Intermodulation at $1,1 \mathrm{MHz}$: blue*	$>$	46 dB
	yellow*	typ.
		dB
46 dB		

S.C.: sound carrier level
C.C.: chrominance carrier level \quad with respect to top sync level
P.C.: picture carrier level

Fig. 2 Input conditions for intermodulation measurements; standard colour bar with 75% contrast.

Fig. 3 Test set-up for intermodulation.
$* 20 \log \frac{V_{0} \text { at } 4,4 \mathrm{MHz}}{V_{0} \text { at } 1,1 \mathrm{MHz}}+3,6 \mathrm{~dB} . \quad * * 20 \log \frac{V_{0} \text { at } 4,4 \mathrm{MHz}}{V_{0} \text { at } 3,3 \mathrm{MHz}}$.

Carrier signal at video output

2nd harmonic of carrier at video output
White spot inverter threshold level (Fig. 4)
White spot insertion level (Fig. 4)
Noise inverter threshold level (Fig. 4)
Noise insertion level (Fig. 4)
External video switch (VCR) switches off the output at:

	$\stackrel{\text { typ. }}{<}$	$\begin{array}{r} 4 \mathrm{mV} \\ 30 \mathrm{mV} \end{array}$
	typ.	20 mV
	<	30 mV
	typ.	6,6 V
	typ.	$4,7 \mathrm{~V}$
	typ.	$1,8 \mathrm{~V}$
	typ.	$3,8 \mathrm{~V}$
V_{14-13}	$<$	1,1 V

Fig. 4 Video output waveform showing white spot and noise inverter threshold levels.
Tuner a.g.c. output current range ,
Tuner a.g.c. output voltage at $\mathrm{I}_{4}=10 \mathrm{~mA}$
Tuner a.g.c. output leakage current

$$
V_{14-13}=5 V_{i} V_{4-13}=12 \mathrm{~V}
$$

Maximum a.f.c. output voltage swing
Detuning for a.f.c. output voltage swing of 10 V
A.F.C. zero-signal output voltage (minimum gain)
A.F.C. switches on at:
A.F.C. switches off at:

14
V_{4-13}
14
ΔV_{5-13}
Δf
V_{5-13}
V_{6-13}
v_{6-13}
$>3,2 \mathrm{~V}$
$<\quad 1,5 \mathrm{~V}$
yp.
6 V 4 to 8 V

Fig. 5 Typical application circuit diagram; Q of $L 1$ and $L 2 \approx 80 ; f=38,9 \mathrm{MHz}$.

Television i.f. amplifier and demodulator

Fig. 6 A.F.C. output voltage (V_{5-13}) as a function of the frequency.

Fig. 7 Signal-to-noise ratio as a function of the input voltage $\left(\mathrm{V}_{1-16}\right)$.

TELEVISION I.F. AMPLIFIER AND DEMODULATOR

The TDA2541 is an i.f. amplifier and demodulator circuit for colour and black and white television receivers using p-n-p tuners.
It incorporates the following functions:

- gain-controlled wide-band amplifier, providing complete i.f. gain
- synchronous demodulator
- white spot inverter
- video preamplifier with noise protection
- a.f.c. circuit which can be switched on/off by a d.c. level, e.g. during tuning
- a.g.c. circuit with noise gating
- tuner a.g.c. output (p-n-p tuners)
- VCR switch, which switches off the video output; e.g. for insertion of a VCR playback signal.

QUICK REFERENCE DATA

Supply voltage	V_{11-13}	typ.	12 V
Supply current	I_{11}	typ.	50 mA
I.F. input voltage at $\mathrm{f}=38,9 \mathrm{MHz}$ (r.m.s. value)	$\mathrm{V}_{1-16(\mathrm{rms})}$	typ.	$100 \mathrm{\mu V}$
Video output voltage (white at 10% of top sync)	$\mathrm{V}_{12(\mathrm{p}-\mathrm{p})}$	typ.	$2,7 \mathrm{~V}$
I.F. voltage gain control range	G_{V}	typ.	64 dB
Signal-to-noise ratio at $\mathrm{V}_{\mathrm{i}}=10 \mathrm{mV}$	S / N	typ.	58 dB
A.F.C. output voltage swing for $\Delta \mathrm{f}=100 \mathrm{kHz}$	$\Delta \mathrm{V}_{5-13}$	typ.	10 V

PACKAGE OUTLINES

TDA2541 : 16-lead DIL; plastic (SOT-38).
TDA25410: 16-lead QIL; plastic (SOT-58).

Fig. 1 Block diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage	V_{11-13}	$\max . \quad 13,2 \mathrm{~V}$
Tuner a.g.c. voltage	V_{4-13}	$\max . \quad 12 \mathrm{~V}$
Total power dissipation	$\mathrm{P}_{\text {tot }}$	$\max \quad 900 \mathrm{~mW}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to $+125{ }^{\circ} \mathrm{C}$
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-25 to $+60{ }^{\circ} \mathrm{C}$

CHARACTERISTICS (measured in Fig. 5)

Supply voltage range	V_{11-13}		$\begin{array}{r} 12 \mathrm{~V} \\ 2 \text { to } 13,2 \mathrm{~V} \end{array}$
The following characteristics are measured at $\mathrm{Tamb}=25^{\circ} \mathrm{C} ; \mathrm{V}_{11-13}=12 \mathrm{~V} ; \mathrm{f}=38,9 \mathrm{MHz}$			
I.F. input voltage for onset of a.g.c. (r.m.s. value)	$V_{1-16 \text { (rms) }}$	$\stackrel{\text { typ. }}{<}$	$\begin{aligned} & 100 \mu \mathrm{~V} \\ & 150 \mu \mathrm{~V} \end{aligned}$
Differential input impedance	$\left\|z_{1-16}\right\|$		$2 \mathrm{k} \Omega$ in paralle with 2 pF
Zero-signal output level	V_{12-13}	typ.	$6 \pm 0,3 \mathrm{~V}$ *
Top sync output level	V_{12-13}		$\begin{array}{r} 3,07 \mathrm{~V} \\ , 9 \text { to } 3,2 \vee \end{array}$
I.F. voltage gain control range	G_{v}	typ.	64 dB
Bandwidth of video amplifier (3 dB)	B	typ.	6 MHz
Signal-to-noise ratio at $\mathrm{V}_{\mathrm{i}}=10 \mathrm{mV}$	S/N	typ.	$58 \mathrm{~dB} * *$
Differential gain	dG	$\stackrel{\text { typ. }}{<}$	$\begin{array}{r} 4 \% \\ 10 \% \end{array}$
Differential phase	d φ	typ.	$\begin{array}{r} 2^{\circ} \\ 10^{\circ} \end{array}$

* So-called 'projected zero point', e.g. with switched demodulator.
${ }^{* *} \mathrm{~S} / \mathrm{N}=\frac{\mathrm{V}_{\mathrm{O}} \text { black-to-white }}{\mathrm{V}_{\mathrm{n}}(\mathrm{rms}) \text { at } \mathrm{B}=5 \mathrm{MHz}}$.

CHARACTERISTICS (continued)

Intermodulation at $1,1 \mathrm{MHz}$: blue*

$>$	46 dB
typ.	60 dB
$>$	46 dB
typ.	50 dB
$>$	46 dB
typ.	54 dB

Fig. 2 Input conditions for intermodulation measurements; standard colour bar with 75\% contrast.

Fig. 3 Test set-up for intermodulation.
${ }^{*} 20 \log \frac{V_{0} \text { at } 4,4 \mathrm{MHz}}{V_{0} \text { at } 1,1 \mathrm{MHz}}+3,6 \mathrm{~dB} . \quad * * 20 \log \frac{V_{0} \text { at } 4,4 \mathrm{MHz}}{V_{0} \text { at } 3,3 \mathrm{MHz}}$.

Carrier signal at video output.

2nd harmonic of carrier at video output
White spot inverter threshold level (Fig. 4)
White spot insertion level (Fig. 4)
Noise inverter threshold level (Fig. 4)
Noise insertion level (Fig. 4)
External video switch (VCR) switches off the output at:

	typ.	4 mV
	$<$	30 mV
	typ.	20 mV
	$<$	30 mV
	typ.	$6,6 \mathrm{~V}$
	typ.	$4,7 \mathrm{~V}$
	typ.	$1,8 \mathrm{~V}$
	typ.	$3,8 \mathrm{~V}$
$\mathrm{~V}_{14-13}$	$<$	$1,1 \mathrm{~V}$

Fig. 4 Video output waveform showing white spot and noise inverter threshold levels.

Tuner a.g.c. output current range
Tuner a.g.c. output voltage at $\mathrm{I}_{4}=10 \mathrm{~mA}$
Tuner a.g.c. output leakage current

$$
V_{14-13}=11 \mathrm{~V} ; V_{4-13}=12 \mathrm{~V}
$$

Maximum a.f.c. output voltage swing
Detuning for a.f.c. output voltage swing of 10 V
A.F.C. zero-signal output voltage (minimum gain)
A.F.C. switches on at:
A.F.C. switches off at:

14
V_{4-13}
14
$\Delta \mathrm{V}_{5-13}$
Δf
v_{5-13}
v_{6-13}
v_{6-13}

0 to 10 mA
$<0,3$ V
$<\quad 15 \mu \mathrm{~A}$
$>10 \mathrm{~V}$
typ. $\quad 11 \mathrm{~V}$
typ. $\quad 100 \mathrm{kHz}$
< $\quad 200 \mathrm{kHz}$
typ. 6 V
4 to 8 V
$>3,2 \mathrm{~V}$
$<\quad 1,5 \mathrm{~V}$

APPLICATION INFORMATION

Fig. 5 Typical application circuit diagram; Q of $L 1$ and $L 2 \approx 80 ; f_{\mathrm{O}}=38,9 \mathrm{MHz}$.

Fig. 6 A.F.C. output voltage (V_{5-13}) as a function of the frequency.

Fig. 7 Signal-to-noise ratio as a function of the input voltage $\left(V_{1-16}\right)$.

TELEVISION I.F. AMPLIFIER AND DEMODULATOR

The TDA2542 is an i.f. amplifier and demodulator circuit for E and L standards in colour and black and white television receivers using p-n-p tuners.
It incorporates the following functions:

- gain-controlled wide-band amplifier, providing complete i.f. gain
- synchronous demodulator
- video preamplifier
- a.f.c. circuit which can be switched on/off by a d.c. level, e.g. during tuning
- a.g.c. circuit
- tuner a.g.c. output (p-n-p tuners)

QUICK REFERENCE DATA

Supply voltage	V_{11-13}	typ.	12 V
Supply current	I_{11}	typ.	50 mA
I.F. input voltage at $\mathrm{f}=32,7 \mathrm{MHz}$			
(r.m.s. value)	$\mathrm{V}_{1-16(\mathrm{rms})}$	typ.	$100 \mu \mathrm{~V}$
Video output voltage (peak-to-peak value)	$\mathrm{V}_{12(\mathrm{p}-\mathrm{p})}$	typ.	3 V
I.F. voltage gain control range	G_{V}	typ.	64 dB
Signal-to-noise ratio at $\mathrm{V}_{\mathrm{i}}=10 \mathrm{mV}$	S / N	typ.	58 dB
A.F.C. output voltage swing for $\Delta \mathrm{f}=100 \mathrm{kHz}$	$\Delta \mathrm{V}_{5-13}$	typ.	10 V

PACKAGE OUTLINES
TDA2542 : 16-lead DIL; plastic (SOT-38).
TDA2542Q: 16-lead QIL; plastic (SOT-58).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage	V_{11-13}	\max.	$13,8 \mathrm{~V}$
Tuner a.g.c. voltage	V_{4-13}	max.	12 V
Total power dissipation	$\mathrm{P}_{\text {tot }}$	$\max . \quad 900 \mathrm{~mW}$	
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to $+125{ }^{\circ} \mathrm{C}$	
Operating ambient	$\mathrm{T}_{\mathrm{amb}}$	-25 to $+60{ }^{\circ} \mathrm{C}$	

CHARACTERISTICS (measured in Fig. 2)
Supply voltage range
typ. 12 V 10,2 to $13,8 \mathrm{~V}$

The following characteristics are measured at $T_{\text {amb }}=25^{\circ} \mathrm{C} ; \mathrm{V}_{11-13}=12 \mathrm{~V} ; \mathrm{f}=32,7 \mathrm{MHz}$

* $S / N=\frac{V_{0} \text { black-to-white }}{V_{n(r m s)} \text { at } B=5 \mathrm{MHz}}$.

CHARACTERISTICS (continued)

Fig． 2 Typical application circuit diagram；Q of $L 1$ and $L 2 \approx 80 ; f=32,7 \mathrm{MHz}$ ．

Fig. 3 A.F.C. output voltage (V_{5-13}) as a function of the frequency.

Fig. 4 Signal-to-noise ratio as a function of the input voltage $\left(V_{1-16}\right)$.

TELEVISION I.F. AMPLIFIER AND DEMODULATOR

The TDA2544 is an i.f. amplifier and demodulator circuit for colour and black and white television receivers.
It incorporates the following functions:

- gain-controlled wide-band amplifier, providing complete i.f. gain
- low-level synchronous demodulator
- white spot inverter
- video preamplifier with noise protection
- a.f.c. circuit with balanced output
- a.g.c. circuit with noise gating
- tuner a.g.c. output for control of MOS tuners
- external video switch

QUICK REFERENCE DATA

Supply voltage	V_{11-13}	typ.	12 V
Supply current	I_{11}	typ.	50 mA
I.F. input sensitivity at $\mathrm{f}=45,75 \mathrm{MHz}$ (r.m.s. value)	$\mathrm{V}_{1-16 \text { (rms) }}$	typ.	$150 \mathrm{\mu V}$
Video output voltage (white at $12,5 \%$ of top sync)	$\mathrm{V}_{12}(\mathrm{p}-\mathrm{p})$	typ.	$2,6 \mathrm{~V}$
I.F. voltage gain control range	G_{V}	typ.	63 dB
Signal-to-noise ratio $\mathrm{V}_{\mathrm{i}}=10 \mathrm{mV}$	S / N	typ.	58 dB
A.F.C. sensitivity		typ.	$80 \mathrm{mV} / \mathrm{kHz}$

PACKAGE OUTLINES

TDA2544 16-lead DIL; plastic (SOT-38).

Fig. 1 Block diagram.

Television i.f. amplifier and demodulator

RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage	V_{11-13}	\max.	$13,8 \mathrm{~V}$
Tuner a.g.c. voltage	V_{4-13}	\max.	12 V
Total power dissipation	$\mathrm{P}_{\text {tot }}$	\max.	$1,2 \mathrm{~W}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to $+125{ }^{\circ} \mathrm{C}$	
Operating ambient temperature	$\mathrm{T}_{\text {amb }}$	-25 to $+65{ }^{\circ} \mathrm{C}$	

CHARACTERISTICS (measured in Fig. 5)

Supply voltage range	V_{11-13}	$\begin{array}{lr} \text { typ. } & 12 \mathrm{~V} \\ 10,2 & \text { to } \\ 13,8 & \mathrm{~V} \end{array}$
The following characteristics are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{11-13}=12 \mathrm{~V}$		
I.F. input voltage for onset of a.g.c. at $\mathrm{f}=45,75 \mathrm{MHz}$	$\mathrm{V}_{1-16(\mathrm{rms})}$	typ. $150 \mu \mathrm{~V}$
Differential input impedance	$\left\|z_{1-16}\right\|$	$\begin{aligned} & \text { typ. } 3 \mathrm{k} \Omega \text { in parallel } \\ & \text { with } 2 \mathrm{pF} \end{aligned}$
Zero-signal output level	V_{12-13}	typ. $5,5 \mathrm{~V}^{*}$
Top sync output level	V_{12-13}	typ. $2,5 \mathrm{~V}$
l.F. voltage gain control range	G_{v}	typ. 63 dB
Bandwidth of video amplifier (3 dB)	B	typ. $\quad 6 \mathrm{MHz}$
Signal-to-noise ratio at $\mathrm{V}_{\mathrm{i}}=10 \mathrm{mV}$.	S/N	typ. 58 dB **
Differential gain	dG	$\begin{array}{lr} \text { typ. } & 4 \% \\ < & 10 \% \end{array}$
Differential phase	d φ	$\begin{array}{lr} \text { typ. } & 2^{2} \\ < & 10^{0} \end{array}$

* So-called 'projected zero point', e.g. with switched demodulator.
${ }^{* *} \mathrm{~S} / \mathrm{N}=\frac{\mathrm{V}_{0} \text { black-to-white }}{\mathrm{V}_{\mathrm{n}}(\mathrm{rms}) \text { at } \mathrm{B}=5 \mathrm{MHz}}$.

CHARACTERISTICS (continued)

S.C. : sound carrier level
C.C. : chrominance carrier level $\}$ with respect to top sync level
P.C. : picture carrier level

Fig. 2 Input conditions for intermodulation measurements; standard colour bar with 75% contrast.

Fig. 3 Test set-up for intermodulation.

* $20 \log \frac{V_{0} \text { at } 3,6 \mathrm{MHz}}{V_{0} \text { at } 0,9 \mathrm{MHz}}+3,6 \mathrm{~dB} . \quad{ }^{*} 20 \log \frac{V_{0} \text { at } 3,6 \mathrm{MHz}}{V_{0} \text { at } 2,6 \mathrm{MHz}}$.

Carrier signal at video output
2nd harmonic of carrier at video output
White spot inverter threshold level (Fig. 4)
White spot insertion level (Fig. 4)
Noise inverter threshold level (Fig. 4)
Noise insertion level (Fig. 4)
External video switch (VCR) switches off the output at
$<\quad 30 \mathrm{mV}$
$<\quad 30 \mathrm{mV}$
typ. $\quad 6,4 \mathrm{~V}$
typ. $4,1 \mathrm{~V}$
typ. $\quad 1,6 \mathrm{~V}$
typ. $\quad 3,3 \mathrm{~V}$
V_{14-13}
$<\quad 1,0$ V

Fig. 4 Video output waveform showing white spot and noise inverter threshold levels.

Tuner a.g.c. output current range
Tuner a.g.c. output voltage at $\mathrm{I}_{4}=0,3 \mathrm{~mA}$
Tuner a.g.c. output leakage current

$$
v_{14-13}=3 V_{;} V_{4-13}=12 \mathrm{~V}
$$

A.F.C. output voltage (d.c. value)
A.F.C. output offset voltage

Maximum a.f.c. output voltage
Minimum a.f.c. output voltage
A.F.C. sensitivity

14		0 to 0,3 mA
V_{4-13}	$<$	0,3 V
14	$<$	$10 \mu \mathrm{~A}$
$V_{5 ; 6-13}$	typ.	6,8 V
$\left\|V_{5-6}\right\|$	$<$	1,5 V
$V_{5 ; 6-13}$	$>$	$11,6 \mathrm{~V}$
$V_{5 ; 6-13}$	$<$	2,8 V
	typ.	$80 \mathrm{mV} / \mathrm{kHz}$

Fig. 6 Signal-to-noise ratio as a function of the input voltage $\left(\mathrm{V}_{1-16}\right)$.

LUMINANCE AND CHROMINANCE CONTROL COMBINATION

The TDA2560 is a monolithic integrated circuit for use in decoding systems of colour television receivers. The circuit consists of a luminance and chrominance amplifier. The luminance amplifier has a low input impedance so that matching of the luminance delay line is very easy.
It also incorporates the following functions:

- d.c. contrast control;
- d.c. brightness control;
- black level clamp;
- blanking;
- additional video output with positive-going sync.

The chrominance amplifier comprises:

- gain controlled amplifier;
- chrominance gain control tracked with contrast control;
- separate d.c. saturation control;
- combined chroma and burst output, burst signal amplitude not affected by contrast and saturation control;
- the delay line can be driven directly by the IC.

QUICK REFERENCE DATA				
Supply voltage	V_{8-5}	typ.	12	V
Supply current	I_{8}	typ.	45	mA
Luminance signal input current (black-to-white value)	I_{14}	typ.	0,2	mA
Chrominance input signal (peak-to-peak value)	$\mathrm{V}_{2-1(p-p)}$		4 to 80	mV
Luminance output signal at nominal contrast (black-to-white value)	V_{10-5}	typ.	3	V
Chrominance output signal at nominal contrast and saturation and $1,25 \mathrm{~V}$ peak-to-peak burst output (peak-to-peak value)	$\mathrm{V}_{6}-5(\mathrm{p}-\mathrm{p})$	typ.	2,5	V
Contrast control range		$>$	20	dB
Saturation control range		>	20	dB

PACKAGE OUTLINES

TDA2560 : 16-lead DIL ; plastic (SOT-38).
TDA2560Q: 16-lead QIL ; plastic (SOT-58).

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)
Voltage
Supply voltage $\quad \mathrm{V}_{8-5} \quad \max \quad 14 \quad \mathrm{~V}$
Power dissipation
Total power dissipation . $P_{\text {tot }}$ max. 930 mW
Temperatures

Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$	
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	0 to +65	${ }^{\circ} \mathrm{C}$	
CHARACTERISTICS measured in the circuit on page 7				
Supply voltage range	V_{8-5}	typ.	12	V
Supply current	I_{8}	typ.	45	$\mathrm{~mA}^{1}$)
Allowable hum on supply line (peak-to-peak value)	$\mathrm{V}_{8-5(\mathrm{p}-\mathrm{p})}$	$<$	100	mV

The following data are measured at $\mathrm{V}_{8-5}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{G}}=2,7 \mathrm{k} \Omega$
Luminance amplifier

Input signal current; black-to-white value	I_{14}	typ.	0,2	mA
Input bias current	I_{14}	typ.	0,25	mA
Input impedance	$\left\|\mathrm{Z}_{14-5}\right\|$	typ.	150	Ω^{2})
Gain (pin 13)	see note 1	on page	5	
Contrast control range		$>$	20	dB

Contrast control voltage range
Contrast control current
Black level range
Brightness control voltage range
Brightness control current
V_{16-5} (see control curve on page 6)

I_{16}	$<$	8	$\mu \mathrm{~A}$
$\mathrm{~V}_{10-5}$		1 to 3	V
$\mathrm{~V}_{11-5}$	typ.	1 to 3	V
I_{11}	$<$	20	$\left.\mu \mathrm{~A}^{3}\right)$
	typ.	0,1	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

Black level stability when changing contrast
Bandwidth (-3 dB)
see page 9 (pin 10)
B $\quad>\quad 5 \quad \mathrm{MHz}^{4}$)

[^17]CHARACTERISTICS (continued)

Output voltage (black-to-white value)
Output voltage (additional; positive-going sync) peak-to-peak value

Black level clamp pulse (see note 2 on page 5) on level
off level
Blanking pulse (see note 3 on page 5)
for 0 V on pin 10: on level
off level
for $1,5 \mathrm{~V}$ on pin 10 : on level off level

Chrominance amplifier 2)
Input signal (peak-to-peak value)
Chrominance output signal at nominal contrast and saturation setting (peak-to-peak value)

Maximum chrominance output signal
Bandwidth (-3 dB)
Ratio of burst and chrominance at nominal contrast and saturation
A.C.C. starting voltage (see note 6 on page 5)
A.C.C. range

Tracking between luminance and chrominance with contrast control (10 dB control)

Saturation control range
Saturation control voltage range
Gating pulse for chrominance amplifier on level
off level
width
Signal-to-noise ratio at nominal input voltage
Phase shift between burst and chrominance

V_{10-5}	typ.	V
$\mathrm{V}_{15-5}(\mathrm{p}-\mathrm{p})$	typ. 3,4	V^{1})
V7-5	7 to V_{8-5}	V
V_{7-5}	$<$ 5	V
V_{9-5}	2, 5 to 4,5	V
V_{9-5}	$<\quad 1,5$	V
V9-5	6 to V_{8-5}	V
V9-5	$<4,5$	V

$$
\mathrm{V}_{2-1(\mathrm{p}-\mathrm{p})} \quad 4 \text { to } 80 \quad \mathrm{mV}
$$

$\mathrm{V}_{6-5(\mathrm{p}-\mathrm{p})}$	typ.	2	$\mathrm{~V} 3)$
V_{6-5}		4,6	V
B	typ.	6	MHz

see notes 4 and 5 on page 5

V_{3-5}	typ.	1,2	V
	$>$	30	dB

typ. $\quad \pm 1 \quad \mathrm{~dB}$
$>\quad 20 \mathrm{~dB}$
V_{4-5} (see control curve on page 6)

V_{7-5}		2,3 to 5	V
$\mathrm{~V}_{7-5}$	$<$	1	V
t_{7}	$>$	8	$\mu \mathrm{~s}$
$\mathrm{~S} / \mathrm{N}$	$>$	46	dB
	$<$	5°	

[^18]
NOTES

1. The gain of the luminance amplifier can be adjusted, by setting the gain of the contrast control circuit by selection of discrete resistor R_{G} (see also circuit on page 7). This circuit configuration has been chosen to reduce the spread of the gain to a minimum (main cause of spread is now the spread of the ratio of the delay line matching resistors and the resistor R_{G}). At $\mathrm{R}_{\mathrm{G}}=2,7 \mathrm{k} \Omega$ the output voltage at nominal contrast (maximum -3 dB) is 3 V black-to-white for an input current of $0,2 \mathrm{~mA}$ black-to-white.
2. This pulse (pin 7) is used for gating of the chrominance amplifier and black level clamping. The latter function is actuated at a +7 V level. The input pulse must have such an amplitude that the clamping circuit is active only during the back porch of the blanking interval. The gating pulse switches the gain of the chroma amplifier to maximum during the flyback time, when the pulse rises above $2,3 \mathrm{~V}$ and switches it back to normal setting when the pulse falls below 1 V .
3. This pulse (pin 9) is used for blanking the luminance amplifier. When the pulse exceeds the $+2,5 \mathrm{~V}$ level the output signal is blanked to a level of about 0 V . When the input exceeds a +6 V level a fixed level of typ. $+1,5 \mathrm{~V}$ is inserted in the output signal. This level can be used for clamping purposes.
4. The chrominance and burst signal are both available on this pin (6).

The burst signal is not affected by the contrast and saturation control and is kept constant by the a.c.c. circuit of the TDA2522.
The output of the delay line matrix circuit, which is the input of the TDA2522, is thus automatically compensated for the insertion losses. This means that the output signal of the TDA. 2560 is determined by the insertion losses of the delay line. At nominal contrast and saturation setting the ratio of burst to chrominance signal at the output is typically identical to that at the input.
5. Nominal contrast is specified as maximum contrast -3 dB .

Nominal saturation is specified as maximum saturation -6 dB .
6. A negative-going control voltage gives a decrease in gain.
\square

Contrast control of luminance and chrominance amplifier

Saturation control of chrominance amplifier

APPLICATION INFORMATION

APPLICATION INFORMATION (continued)

The function is quoted against the corresponding pin number

1. Balanced chrominance input signal (in conjunction with pin 2)

This is derived from the chrominance signal bandpass filter, designed to provide a push-pull input. A signal amplitude of at least 4 mV peak-to-peak is required between pins 1 and 2. The chrominance amplifier is stabilized by an external feedback loop from the output (pin 6) to the input (pins 1 and 2). The required level at pins 1 and 2 will be 3 V .
All figures for the chrominance signals are based on a colour bar signal with 75% saturation: i.e. burst-to-chrominance ratio of input signal is $1: 2$.
2. Chrominance signal input (see pin 1)
3. A.C.C. input

A negative-going potential, starting at $+1,2 \mathrm{~V}$, gives a 40 dB range of a.c.c. Maximum gain reduction is achieved at an input voltage of 500 mV .
4. Chrominance saturation control

A control range of +6 dB to $>-14 \mathrm{~dB}$ is provided over a range of d.c. potential on pin 4 from +2 to +4 V . The saturation control is a linear function of the control voltage.
5. Negative supply (earth)
6. Chrominance signal output

For nominal settings of saturation and contrast controls (max. -6 dB for saturation, and max. -3 dB for contrast) both the chroma and burst are available at this pin, and in the same ratio as at the input pins 1 and 2 . The burst signal is not affected by the saturation and contrast controls. The a.c.c. circuit of the TDA 2522 will hold constant the colour burst amplitude at the input of the TDA2522. As the PAL delay line is situated here between the TDA2560 and TDA2522 there may be some variation of the nominal 1 V peak-to-peak burst output of the TDA2560, according to the tolerances of the delay line. An external network is required from pin 6 of the TDA2560 to provide d.c. negative feedback in the chroma channel via pins 1 and 2.
7. Burst gating and clamping pulse input

A two-level pulse is required at this pin to be used for burst gate and black level clamping. The black level clamp is activated when the pulse level is greater than 7 V . The timing of this interval should be such that no appreciable encroachment occurs into the sync pulse on picture line periods during normal operation of the receiver. The burst gate, which switches the gain of the chroma amplifier to maximum, requires that the input pulse at pin 7 should be sufficiently wide, at least $8 \mu \mathrm{~s}$, at the actuating level of $2,3 \mathrm{~V}$.

APPLICATION INFORMATION (continued)

8. +12 V power supply

Correct operation occurs within the range 10 to 14 V . All signal and control levels have a linear dependency on supply voltage but, in any given receiver design, this range may be restricted due to considerations of tracking between the power supply variations and picture contrast and chroma levels.
9. Flyback blanking input waveform

This pin is used for blanking the luminance amplifier. When the input pulse exceeds the $+2,5 \mathrm{~V}$ level, the output signal is blanked to a level of about 0 V . When the input exceeds a +6 V level, a fixed level of about $1,5 \mathrm{~V}$ is inserted in the output. This level can be used for clamping purposes.
10. Luminance signal output

An emitter follower provides a low impedance output signal of 3 V black-to-white amplitude at nominal contrast setting having a black level in the range 1 to 3 V . An external emitter load resistor is not required.
The luminance amplitude available for nominal contrast may be modified according to the resistor value from pin 13 to the +12 V supply. At an input bias current I_{14} of $0,25 \mathrm{~mA}$ during black level the amplifier is compensated so that no black level shift more than 10 mV occurs at contrast control. When the input current deviates from the quoted value the black level shift amounts to $100 \mathrm{mV} / \mathrm{mA}$.
11. Brightness control

The black level at the luminance output (pin 10) is identical to the control voltage required at this pin. A range of black level from 1 to 3 V may be obtained.
12. Black level clamp capacitor
13. Luminance gain setting resistor

The gain of the luminance amplifier may be adjusted by selection of the resistor value from pin 13 to +12 V . Nominal luminance output amplitude is then 3 V black-to-white at pin 10 when this resistor is $2,7 \mathrm{kS}$ and the input current is $0,2 \mathrm{~mA}$ black-to-white. Maximum and minimum values of this resistor are $3,9 \mathrm{kS}$ and $1,8 \mathrm{k} \Omega$.
14. Luminance signal input

A low input impedance in the form of a current sink is obtained at this pin. Nominal input current is $0,2 \mathrm{~mA}$ black-to-white. The luminance signal may be coupled to pin 14 via a d.c. blocking capacitor and, in addition, a resistor employed to give a d.c. current into pin 14 at black level of about $0,25 \mathrm{~mA}$. Alternatively d.c. coupling from a signal source such as the TDA2540 and TDA2541 may be employed.

APPLICATION INFORMATION (continued)

15. Luminance signal output for sync separator purposes

A luminance signal output with positive-going sync is available which is not affected by the contrast control or the value of resistor at pin 13. This voltage is intended for drive of sync separator circuits. The output amplitude is $3,4 \mathrm{~V}$ peak-to-peak when the luminance signal input is $0,2 \mathrm{~mA}$ black-to-white.

16. Contrast control

With 3 V on this pin the gain of the luminance channel is such that $0,2 \mathrm{~mA}$ black-towhite at pin 14 gives a luminance output on pin 10 of 3 V black-to-white. The nominal value of $2,7 \mathrm{kS}$ is then assumed for the resistor from pin 13 to the +12 V supply. The variation of control potential at pin 16 from 2 to 4 V gives -17 to +3 dB gain variation of the luminance channel. A similar variation in the chrominance channel occurs in order to provide correct tracking between the two signals.

HORIZONTAL SYNCHRONIZATION AND VERTICAL 625 DIVIDER SYSTEM

The TDA2571A is designed in combination with the TDA2581 as a matched pair for switched-mode driven horizontal defiection stages. When supplied with a composite video signal the TDA2571A delivers drive pulses for the TDA2581 and sync pulses for the vertical deflection. The circuit is optimized for a horizontal and vertical frequency ratio of 625.
The circuit incorporates the following functions:

- Horizontal sync separator with sliding bias in such a way that the sync pulse is always sliced between top-sync level and blanking level.
- Noise gate.
- Horizontal phase detector switching to a small time constant during catching. The phase detector is gated when the oscillator is synchronized.
- Horizontal oscillator $(31,25 \mathrm{kHz})$.
- Burst-key pulse generator. This pulse can also be applied as black level clamp pulse.
- Vertical sync pulse separator.
- Automatic vertical synchronization (625 divider system), without delay after channel change.

QUICK REFERENCE DATA

Supply voltage horizontal vertical	$\begin{aligned} & V_{12-11} \\ & V_{16-11} \end{aligned}$	$\begin{aligned} & \text { typ. } \\ & \text { typ. } \end{aligned}$	$\begin{aligned} & 12 \mathrm{~V} \\ & 12 \mathrm{~V} \end{aligned}$
Sync input voltage (peak-to-peak value)	V_{2-11} (p-p)		07 to 1 V
Slicing level		typ.	50%
Control sensitivity of horizontal PLL		typ.	$2000 \mathrm{~Hz} / \mu \mathrm{s}$
Holding range	$\Delta \mathrm{f}$	typ.	$\pm 1000 \mathrm{~Hz}$
Catching range	Δf	typ.	$\pm 900 \mathrm{~Hz}$
Horizontal output pulse (peak-to-peak value)	$V_{8-11}(\mathrm{p}-\mathrm{p})$	typ.	11 V
Vertical sync output pulse (peak-to-peak value)	$V_{1-11(p-p)}$	typ.	11 V
Burst-key output pulse(peak-to-peak value)	$\mathrm{V}_{13-11}(\mathrm{p}-\mathrm{p})$	typ.	11 V

PACKAGE OUTLINES

TDA2571A: 16 lead DIL; plastic (SOT-38). TDA2571AQ: 16-lead QIL; plastic (SOT-58).

Fig. 1 Block diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Sypply voltage
horizontal
vertical
Total power dissipation
Storage temperature
Operating ambient temperature

V_{12-11}	max.	$13,2 \mathrm{~V}$
V_{16-11}	max.	$13,2 \mathrm{~V}$
$\mathrm{P}_{\text {tot }}$	max.	1 W
$\mathrm{~T}_{\text {stg }}$	-25 to $+130{ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {amb }}$	-25 to $+65{ }^{\circ} \mathrm{C}$	

CHARACTERISTICS

At $\mathrm{V}_{\text {12-11 }}=12 \mathrm{~V} ; \mathrm{V}_{16-11}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in Fig. 1
Supply voltage range (pins 12 and 16)
Current consumption

Sync separator and noise gate

Sync pulse amplitude (negative going)
peak-to-peak value
Top-sync level
Slicing level
Slicing level noise gating
$V_{2-11(p-p)}$
V_{2-11}
V_{2-11}

0,07 to 1 V *
1,0 to $3,5 \mathrm{~V}$
typ. $\quad 50$ \%**
typ. $0,7 \mathrm{~V}$

Phase locked loop

Holding range

$$
\Delta f
$$

typ. $\pm 1000 \mathrm{~Hz}$
Catching range
Δf
Control sensitivity of horizontal PLL
Control sensitivity of phase detector
typ. $\pm 900 \mathrm{~Hz}$
typ. $2000 \mathrm{~Hz} / \mu \mathrm{s}$

Delay between sync input, and detector output (pin 6)
t_{d}
typ. $\quad 0,4 \mu \mathrm{~s}$
Phase modulation due to hum on the supply line
typ. $\quad 2,0 \mu \mathrm{~s} / \mathrm{V} \mathbf{\Delta}$

* Up to 1 V peak-to-peak the slicing level is constant; at amplitudes exceeding $1 . \mathrm{V}$ peak-to-peak the slicing level will increase.
** The slicing level is defined as the ratio of the amplitude of the slicing level to black level to the amplitude of the sync pulse.
4 The voltage is a peak-to-peak value; the figure given can be reduced to $0,6 \mu \mathrm{~s} / \mathrm{V}(\mathrm{p}-\mathrm{p})$ by means of an extra capacitor of 330 nF between pins 12 and 7.

CHARACTERISTICS (continued)

Horizontal oscillator

Frequency; free running
Frequency at output pin 8
Spread of frequency without spread of external components
Temperature coefficient
Change of frequency when V_{12-11} drops to 6 V
Change of frequency when $\mathrm{V}_{12 \text {-11 }}$ increases from 10 to $13,2 \mathrm{~V}$
Output voltage; no load (peak-to-peak value)
Output resistance
Output current range (peak-to-peak value)
Duty factor of output pulse
Delay between falling edge of output pulse and end of sync pulse at pin 2

Burst-key pulse

Output voltage (peak-to-peak value)
Duration of upper part of output pulse
Duration of lower part of output pulse
Amplitude of lower part of output pulse
Output resistance
Delay between the end of the sync pulse at pin 2 and the rising edge of the burst key pulse

Coincidence detector

Voltage level of time constant switch
Voltage when the oscillator is in sync
Voltage when the oscillator is out-of-sync
Voltage during noise
typ. $31,250 \mathrm{kHz}$
typ. $15,625 \mathrm{kHz}$
$\Delta f_{0} \quad<\quad 4 \%$
T
Δf_{o}

Δf_{o}	$<$	$0,5 \%$
$\mathrm{~V}_{8-11(\mathrm{p}-\mathrm{p})}$	$>$	10 V
R_{8-11}	typ.	300Ω
$l_{8(p-p)}$		0 to 40 mA
δ	typ.	$46 \%^{*}$

$\mathrm{t}_{\mathrm{d}} \quad$ typ. $0,9 \mu \mathrm{~s}^{* *}$

$V_{13-11(p-p)}$	$>$	10 V
t_{p}	typ.	$3,6 \mu \mathrm{~s}^{* *}$
t_{p}	typ.	$9,1 \mu \mathrm{~s}^{* *}$
$\mathrm{~V}_{13-11(\mathrm{p}-\mathrm{p})}$	typ.	$3 \mathrm{~V}^{* *}$
R_{13-11}	typ.	200Ω

$\mathrm{t}_{\mathrm{d}} \quad$ typ. $0,9 \mu \mathrm{~s}^{* *}$
V_{10-11} typ. $2,0 \mathrm{~V}$
V_{10-11} typ. $0,4 \mathrm{~V}$
V_{10-11} typ. $2,5 \mathrm{~V}$
V_{10-11} typ. $1,0 \mathrm{~V}$

[^19]
$$
\delta=\frac{t}{T} \times 100 \%
$$

[^20]Vertical sync pulse
Output voltage (peak-to-peak value)
Duration of output pulse during indirect synchronization
Duration of output pulse during direct synchronization (coincidence detector high)
Load resistor to pin 2
Output voltage low with $R_{L}=2 \mathrm{k} \Omega$

$\mathrm{V}_{1-11 \text { (p-p) }}$	$>$	10 V
t_{p}	typ.	$170 \mu \mathrm{~s}$
t_{p}	typ.	$160 \mu \mathrm{~s}$
R_{L}	$>$	$2 \mathrm{k} \Omega$
V_{1-11}	$<$	500 mV
		$625 *$

Fig. 2 Relationship between the video input signal to the TDA2571A and the horizontal sync and burst-key pulse output.

* When a non-standard sync signal is applied the separated vertical sync pulse of the incoming signal is connected to pin 1; the pulse of the divider circuit is switched off.

PINNING

1. Vertical sync pulse output
2. Video input
3. Sync separator slicing level output
4. Black level detector output
5. Vertical integrator bias network
6. Horizontal phase detector output
7. Reference voltage horizontal frequency control stage
8. Horizontal sync pulse output
9. Time constant switch
10. Coincidence detector output
11. Negative supply (ground)
12. Positive supply (horizontal)
13. Burst-key pulse output
14. RC-network horizontal oscillator
15. Control horizontal oscillator
16. Positive supply (vertical)

APPLICATION INFORMATION

The function is quoted against the corresponding pin number

1. Vertical sync pulse output

A resistor of about $10 \mathrm{k} \Omega$ must be connected between pin 1 and the positive supply line (pin 16; vertical supply).
The output pulse will come from the 625 divider stage (standard signal) or from the vertical sync pulse separator (non-standard signal), depending on the input signal on pin 2. The standard and nonstandard signals are detected automatically.
2. Video input

The input signal must have negative-going sync pulses. The top-sync level can vary between 1 V and $3,5 \mathrm{~V}$ without affecting the sync separator operation.
The slicing level of the sync separator is fixed at 50%, for the sync pulse amplitude range 0,07 to 1 V . As a consequence the circuit gives a good sync separation down to pulses with an amplitude of 70 mV peak-to-peak (sync pulse compression). For sync pulses in excess of 1 V peak-to-peak the slicing level will increase.
The noise gate is activated at an input level $<0,7 \mathrm{~V}$, thus, when noise gating is required the top-sync level should be chosen close to the minimum level of 1 V . When i.f. circuits with a noise gate are used (e.g. TDA2540; TDA2541) the noise gate of the TDA2571A is not required.
3. Sync separator slicing level output

The sync separator slicing level is determined on this pin. A slicing level of 50% is obtained by comparing this level with the black level of the video signal, which is detected at pin 4. The capacitor connected to pin 3 must be about $0,47 \mu \mathrm{~F}$.
4. Black level detector output

The black level of the input signal is detected on this pin, which is required to obtain good sync separator operation. A capacitor of $47 \mu \mathrm{~F}$ in series with a resistor of 82Ω has to be connected to this pin. A $5,6 \mathrm{k} \Omega$ resistor must be connected between pins 3 and 4.
5. Vertical sync pulse integrator bias network

The vertical sync pulse is obtained by integrating the composite sync signal in an internal RC-network. An external RC-network is required for the correct biasing of this circuit for various input conditions. Typical values are: $\mathrm{R}=56 \mathrm{k} \Omega ; \mathrm{C}=22 \mu \mathrm{~F}$.
6. Horizontal phase detector output

The control voltage for the horizontal oscillator is obtained on this pin. The output current is about 2 mA .
7. Reference voltage horizontal frequency control stage

This pin has two functions. It is used to decouple the reference voltage for the frequency control of the horizontal oscillator (so a good suppression of interference is obtained which may be present on the supply line). This pin is also used to control the reference waveform for the phase detector to the middle of the gating, giving a good noise immunity of the synchronization.
8. Horizontal sync pulse output

This pulse is obtained from the horizontal oscillator via a divider circuit. The duty factor is 46%. The falling edge of this pulse has a delay of $0,9 \mu \mathrm{~s}$ with respect to the end of the sync pulse. Because of this phase relationship this pulse can directly drive the TDA2581.
9. Time constant switch

This pin is used to switch the time constant of the flywheel filter. The pin condition is determined by the coincidence detector (pin 10). During in-sync or when only noise is received pin 9 assumes ground level, which results in a long time constant and good noise immunity.
During out-of-sync or VCR playback, pin 9 has a high impedance and consequently only the short time constant is available. In this condition a large catching range is obtained.
10. Coincidence detector output

A $1 \mu \mathrm{~F}$ capacitor must be connected to this pin. The output voltage depends on the oscillator condition (synchronized or not) and on the video input signal.
The following output voltages can occur:

- when in-sync: . $0,4 \mathrm{~V}$
- when out-of-sync: $\quad 2,0 \mathrm{~V}$
- during noise at input: $1,0 \mathrm{~V}$

When the output voltage $<1,85 \mathrm{~V}$, the flywheel filter is switched to a long time constant, and the gating of the phase detector is switched-on.
For a voltage $>1,85 \mathrm{~V}$, the flywheel filter has a short time constant, and the gating of the phase detector is switched-off. The result is that during noise the flywheel time constant remains long thus preventing large shifts in the frequency of the horizontal oscillator (and screening of the horizontal output transformer).

The information of the line coincidence detector is fed to the divider circuit so that there is no delay in vertical synchronization after a channel change, or an unsynchronized camera change in the studio. Thus, the divider circuit is reset to direct sync, when line synchronization is lost.
The time constant value can be switched manually by a resistor ($10 \mathrm{k} \Omega$) to +12 V .
11. Negative supply (ground)
12. Positive supply horizontal oscillator

Interference and hum on this supply line can affect the oscillator frequency. It is therefore necessary to have a separate decoupling of this pin with respect to pin 16. The current-draw of this pin is typically 33 mA .
13. Burst-key pulse output

This pulse is composed of two parts. The lower part has an amplitude of 3 V peak-to-peak and a width of $9,1 \mu \mathrm{~s}$ (for phase relation see Fig. 2). The upper part has a total amplitude in excess of 10 V peak-to-peak and a width of $3,6 \mu \mathrm{~s}$. The leading edge of this pulse has a delay of $0,9 \mu \mathrm{~s}$ with respect to the falling edge of the sync pulse at the input (pin 2).
This pulse can directly drive the burst gate/black level clamp input of the TDA2560.

APPLICATION INFORMATION (continued)

14. RC-network horizontal oscillator

Stable components should be chosen for good frequency stability. For adjusting the frequency a part of the total resistance must be variable. This part should be as small as possible, because of poor stability of variable carbon resistors.
The oscillator can be adjusted when pins 7 and 15 are short-circuited.
15. Horizontal oscillator control pin
16. Positive supply sync separator and divider circuit (vertical)

For this supply only a simple decoupling is required. The current-draw of this pin is typically 17 mA .

HORIZONTAL OSCILLATOR COMBINATION WITH VERTICAL 525 DIVIDER SYSTEM

The TDA2573A is a horizontal oscillator combination intended to be used in various types of transistorized horizontal deflection circuits, e.g. switched-mode driven and power-pack system circuits.
The circuit is optimized for a horizontal and vertical frequency ratio of 525.
The circuit incorporates the following functions:

- Horizontal sync separator with sliding bias in such way that the sync pulse is always sliced between top sync level and blanking level.
- Noise gate.
- Phase detector which compares the sync pulse with the oscillator voltage; this phase detector is gated.
- Phase detector which compares the line flyback pulse with the oscillator voltage.
- Horizontal oscillator $(31,5 \mathrm{kHz})$.
- Time constant switching of the first control loop (short time constant during catching and reception of VCR signals).
- Burst key pulse generator (sandcastle pulse with three levels).
- Vertical sync pulse separator.
- Very stable vertical synchronization due to the 525 divider system, without delay after channel change.

QUICK REFERENCE DATA

Supply voltage	V_{16-9}	typ.	12 V
Supply current consumption	116	typ.	53 mA
Sync input voltage (peak-to-peak value)	$V_{4-9(p-p)}$		0,1 to 1 V
Slicing level		typ.	50 \%
Control sensitivity sync to flyback		typ.	$10 \mathrm{kHz} / \mu \mathrm{s}$
Holding range	Δf	typ.	$\pm 1000 \mathrm{~Hz}$
Catching range	Δf	typ.	$\pm 900 \mathrm{~Hz}$
Horizontal output pulse (peak-to-peak value)	$V_{10-9}(\mathrm{p}-\mathrm{p})$	typ.	11 V
Vertical output pulse; pin 2 (peak-to-peak value)	$V_{2-9(p-p)}$	typ.	11 V
Sandcastle output pulse (peak-to-peak value)	$\mathrm{V}_{14-9(p-p)}$	typ.	11 V

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38).

Fig. 1 Block diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage
Total power dissipation
Storage temperature
Operating ambient temperature

V_{16-9}	max.	$13,2 \mathrm{~V}$
$P_{\text {tot }}$	\max.	1 W
$\mathrm{~T}_{\text {stg }}$	-55 to $+125{ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {amb }}$	-25 to $+65^{\circ} \mathrm{C}$	

CHARACTERISTICS

$\mathrm{V}_{16-9}=12 \mathrm{~V}$; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in Fig. 2.
Supply voltage
V_{16-9}
typ. 12 V
10 to $13,2 \mathrm{~V}$
Supply current consumption
116
typ. $\quad 53 \mathrm{~mA}$
$<\quad 70 \mathrm{~mA}$

Sync separator and noise gate

Sync pulse amplitude (negative going)
peak-to-peak value
Top-sync level
Slicing level noise gate
Delay between sync input and detector output (pin 7)

First control loop (sync-to-oscillator)
Holding range
Catching range
$V_{4-9(p-p)}$
V_{4-9}
V_{4-9}
0,1 to $1 \mathrm{~V}^{*}$
$<$

1,0 to $3,5 \mathrm{~V}$
1 V

typ. $\quad 0,35 \mu \mathrm{~s}$

Control sensitivity video with respect to oscillator with respect to sandcastle with respect to flyback pulse
Phase modulation due to hum
on the supply line (pin 16)
Second control loop (oscillator-to-flyback)
Control sensitivity
Control range

$\Delta \mathrm{t}_{\mathrm{d}} / \Delta \mathrm{t}_{\mathrm{o}}$	typ.	$250 \wedge$
t_{d}	$<$	$26 \mu \mathrm{~s}$

* Up to 1 V peak-to-peak the slicing level is constant; at amplitudes exceeding 1 V peak-to-peak the slicing level will increase.
** This voltage is a peak-to-peak value.
A $t_{d}=$ delay between positive transient of horizontal output pulse and the rising edge of the flyback pulse.
$t_{0}=$ delay between the rising edge of the flyback and the start of the current in $\varphi_{1}\left(1_{7}\right)$.

CHARACTERISTICS (continued)
Horizontal oscillator
Frequency; free running
Frequency at output pin 10
Spread of frequency without spread of external components
Temperature coefficient
Δf_{o}
Change of frequency when V_{16-9} increases from 10 to $13,2 \mathrm{~V}$
Minimum supply voltage (+ hor. see Fig. 1)
Frequency deviation at min. supply voitage

Horizontal output (pin 10)

Maximum supply voltage
Minimum output voltage at a current of 60 mA
Maximum output current
Duration of the output pulse

	$<$	$13,2 \mathrm{~V}$
$\mathrm{~V}_{10-9}$	$<$	700 mV
l_{10}	$<$	60 mA
t_{p}	\ddots	

Sandcastle pulse (pin 1)

Output voltage during burst key pulse
Pulse duration
Amplitude of second level of output pulse
Pulse duration
Amplitude of third level of output pulse
Pulse duration
Delay between the start of the sync pulse at the video input (pin 4) and the rising edge of the burst key pulse

Phase adjustment (pin 12)
Voltage at pin 12
Control sensitivity
Control range
Coincidence detector (pin 8)
Voltage level of time constant switch
Voltage when the oscillator is in sync
Voltage when the oscillator is out-of-sync
Voltage during noise
V_{1-9}
t_{p}
V_{1-9}
flyback pulse
V_{1-9}
t_{p}
t_{d}
V_{12-9}
V_{8-9}
V_{8-9}
V_{8-9}
V_{8-9}
typ. $\quad 31,500 \mathrm{kHz}$
typ. $\quad 15,750 \mathrm{kHz}$
$<\quad 4 \%$
typ. 2,5 to 10^{-4}

$<$	$0,5 \%$
typ.	7 V
$<$	10%

12 to $38 \mu \mathrm{~s}$

$$
10 \mathrm{~V}
$$

$4,0 \mu \mathrm{~s}$
$4,5 \mathrm{~V}$
typ.

2,5 V
$1,34 \mu \mathrm{~s}^{*}$
typ. $\quad 4,9 \mu \mathrm{~s}$

typ.	$2,8 \mathrm{~V}$
typ.	$0,6 \mathrm{~V} / \mu \mathrm{s}$
typ.	$\pm 1 \mu \mathrm{~s}$

typ.	$2,1 \mathrm{~V}$
typ.	$1,2 \mathrm{~V}$
typ.	$2,6 \mathrm{~V}$
typ.	$1,7 \mathrm{~V}$.

[^21]Flyback input pulse (pin 14)

Switching level	V_{14-9}	typ.	0.7 V
Input pulse	V_{14-9}	<	12 V
Input resistance		typ.	2,5 k
Delay between the start of the sync pulse at the video input (pin 4) and the rising edge of the flyback pulse	t_{p}	typ.	1,5 $\mu \mathrm{s}$
Vertical outputs			
Output voltage (peak-to-peak value)	$\mathrm{V}_{2-9(p-p)}$	>	10 V
Output current	I_{2}	$<$	5 mA
Output voltage low at $\mathrm{I}_{2}=5 \mathrm{~mA}$	V_{2-9}	$<$	500 mV
Duration of output pulse during indirect synchronization	${ }^{\text {p }}$	typ.	$190 \mu \mathrm{~s}$
Duration of output pulse during direct synchronization	${ }^{t} p$	typ.	$190 \mu \mathrm{~s}$
Ratio between basic horizontal oscillator frequency and vertical pulse			525 *

[^22]
APPLICATION INFORMATION (see also Fig. 2)

The function is described against the corresponding pin number

1. Sandcastle output pulse

This output pulse has three levels. The first and highest level (10 V) is the burst key pulse with a typical duration of $4,0 \mu \mathrm{~s}$. The second level for the line blanking is typ. $4,5 \mathrm{~V}$ with a pulse duration equal to the line flyback pulse. The third level (typ. 2,5 V) is used for frame blanking and has a pulse duration of typ. $1,34 \mathrm{~ms}$ (21 lines). This last pulse is only available with a standard video input signal. Under all other conditions, an external vertical flyback pulse must be applied to this pin. This pulse will be clamped to $2,5 \mathrm{~V}$ by means of an internal clamping circuit. The input current is typ. 2 mA .
2. Vertical output pulse

This pulse is obtained from the divider circuit, the amplitude is in excess of 10 V peak-to-peak. This pulse has a duration of $190 \mu \mathrm{~s}$ when standard signals are received. The pulse is obtained from the vertical sync pulse integrator during non-standard signals and has a duration of about $190 \mu \mathrm{~s}$. It has good stability and accuracy, so it is intended to be used for triggering the vertical oscillator.
3. Vertical sync pulse integrator bias network

The vertical sync pulse is obtained by integrating the composite sync signal in an internal RC-network. An external capacitor with an internal resistor are required for the correct biasing of this circuit for various input conditions. A typical value for the capacitor is $10 \mu \mathrm{~F}$.
4. Video input

The input signal must have negative-going sync pulses. The top-sync level can vary between 1 V and $3,5 \vee$ without affecting the sync separator operation.
The slicing level of the sync separator is fixed at 50%, for the sync pulse amplitude range 0,1 to 1 V peak-to-peak. As a consequence the circuit gives a good sync separation down to pulses with an amplitude of 100 mV peak-to-peak (sync pulse compression). For sync pulses in excess of 1 V peak-to-peak the slicing level will increase.
The noise gate is activated at an input level $<1 \mathrm{~V}$ (typ. $0,7 \mathrm{~V}$), thus, when noise gating is required the top-sync level should be chosen close to the minimum level of 1 V .
5. Sync separator slicing level output

The sync separator slicing level is determined on this pin. A slicing level of 50% is obtained by comparing this level with the black level of the video signal, which is detected at pin 6 . The capacitor connected to pin 5 must be about $1 \mu \mathrm{~F}$.
6. Black level detector output

The black level of the input signal is detected on this pin. A capacitor of $22 \mu \mathrm{~F}$ in series with a resistor of 33Ω has to be connected to this pin. A $4,7 \mathrm{k} \Omega$ resistor must be connected between pins 5 and 6.
7. Horizontal phase detector output and control oscillator input

The flywheel filter must be connected to this pin. Typical values for the components are a capacitor of 100 nF in parallel with an RC-network of $1 \mathrm{k} \Omega$ and $10 \mu \mathrm{~F}$. Furthermore, a resistor of $270 \mathrm{k} \Omega$ should be connected between pins 7 and 12.
The output current of the phase detector depends on the condition of the coincidence detector. The output current is high when the oscillator is out of sync. The result is a large catching range, and the phase detector is not gated in that condition. The output current is low when the oscillator is synchronized and the phase detector is gated. A good noise immunity is obtained in this case.
8. Coincidence detector output

A $1 \mu \mathrm{~F}$ capacitor must be connected to his pin. The output voltage depends on the oscillator condition (synchronized or not) and on the video input signal.
The foilowing oiltput voltages can occur:

- when in-sync $1,2 \mathrm{~V}$
- when out-of-sync $\quad 2,6 \mathrm{~V}$
- during noise at the input $1,7 \mathrm{~V}$

When the output voltage $<2,1 \mathrm{~V}$, the phase detector output current is low and the phase detector is gated. A good noise immunity is obtained in this case. For a voltage $>2,1 \mathrm{~V}$, the output current of the phase detector is high and the phase detector is not gated. This results in a large catching range and a high dynamical steepness of the PLL. This latter condition is required during VCRplayback. It can be obtained by connecting pin 8 to the positive supply line via a resistor of $10 \mathrm{k} \Omega$. The information of the line coincidence detector is fed to the divider circuit so that there is no delay in vertical synchronization after a channel change, or an unsynchronized camera change in the studio. Thus, the divider circuit is reset to direct sync, when line synchronization is lost.
9. Negative supply (ground)
10. Horizontal output

This is an open collector output. The collector resistor must be chosen such that sufficient current is supplied to the driver stage. The maximum current is 60 mA . The output stage is designed such that the line output transistor cannot be switched-on during flyback. Switching-on occurs directly after the flyback pulse to avoid linearity errors. The duty factor of the output pulse depends on the delay in the output stage (correction via the second control loop).
11. Control voltage second loop

This voltage controls the start of the output pulse at pin 10 (positive-going edge). The capacitor connected to this pin must have a value of about 22 nF .
12. Reference voltage control loops

The reference voltage must be decoupled by means of a capacitor of about $10 \mu \mathrm{~F}$.
It is possible to obtain a phase shift between video and flyback pulse by changing this reference voltage externally. The possible phase shift is $\pm 1 \mu \mathrm{~s}$.
The required voltage change is $\pm 0,6 \mathrm{~V}$.
13. Decoupling internal power supply

The IC has two power supply terminals. The main terminal (pin 16) supplies the output stages, the sync separator and the divider circuit. The specially decoupled supply terminal (pin 13) supplies the horizontal oscillator. This is to avoid coupling of the video signal into the oscillator part. The capacitor connected to pin 13 should have a value of about $22 \mu \mathrm{~F}$. The resistor connected between pins 13 and 16 should have a value of about $1 \mathrm{k} \Omega$.
14. Flyback input pulse

The flyback input pulse is required for the second phase control loop and for generating the line blanking pulse in the sandcastie output. The input current should be at least $10 \mu \mathrm{~A}$ and not exceed 3 mA .
15. RC-network horizontal oscillator

Stable components should be chosen for a good frequency stability. A part of the total resistance must be variable for adjusting the frequency. This part should be as small as possible, because of poor stability of variable carbon resistors.
The oscillator can be adjusted when pins 7 and 12 are short-circuited (see Fig. 2).
16. Positive supply: The supply voltage may vary between 10 V and $13,2 \mathrm{~V}$. The current-draw is 53 mA (typical) and a range of 35 to 70 mA at 12 V .

(1) Optional circuit for phase adjustment.

Fig. 2 Application circuit diagram.

HORIZONTAL SYNCHRONIZATION AND VERTICAL 525 DIVIDER SYSTEM

The TDA2575A is designed in combination with the TDA2581 as a matched pair for switched-mode driven horizontal deflection stages. When supplied with a composite video signal the TDA2575A delivers drive pulses for the TDA2581 and sync pulses for the vertical deflection. The circuit is optimized for a horizontal and vertical frequency ratio of 525 .
The circuit incorporates the following functions:

- Horizontal sync separator with sliding bias in such a way that the sync pulse is always sliced between top-sync level and blanking level.
- Noise gate.
- Horizontal phase detector switching to a small time constant during catching. The phase detector is gated when the oscillator is synchronized.
- Horizontal oscillator ($31,5 \mathrm{kHz}$).
- Burst-key pulse generator. This pulse can also be applied as black level clamp pulse.
- Vertical sync pulse separator.
- Automatic vertical synchronization (525 divider system), without delay after channel change.

QUICK REFERENCE DATA

Supply voltage horizontal vertical	$\begin{aligned} & V_{12-11} \\ & V_{16-11} \end{aligned}$	$\begin{aligned} & \text { typ. } \\ & \text { typ. } \end{aligned}$	$\begin{aligned} & 12 \mathrm{~V} \\ & 12 \mathrm{~V} \end{aligned}$
Sync input voltage (peak-to-peak value)	V_{2-11} (p-p)	0,07 to 1 V	
Slicing level		typ.	50 \%
Control sensitivity of horizontal PLL		typ.	$2000 \mathrm{~Hz} / \mu \mathrm{s}$
Holding range	$\Delta \mathrm{f}$	typ.	$\pm 1000 \mathrm{~Hz}$
Catching range	$\Delta \mathrm{f}$	typ.	$\pm 900 \mathrm{~Hz}$
Horizontal output pulse (peak-to-peak value)	$V_{8-11}(\mathrm{p}-\mathrm{p})$	typ.	11 V
Vertical sync output puise (peak-to-peak value)	$V_{1-11(p-p)}$	typ.	11 V
Burst-key output pulse (peak-to-peak value)	$V_{13-11}(\mathrm{p}-\mathrm{p})$	typ.	11 V

PACKAGE OUTLINES

TDA2575A : 16-lead DIL; plastic (SOT-38).
TDA2575AQ: 16 -lead OIL; plastic (SOT-58).

Fig. 1 Block diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Supply voltage

| horizontal | V_{12-11} | $\max . \quad 13,2 \mathrm{~V}$ |
| :--- | :--- | :--- | ---: |
| vertical | V_{16-11} | $\max .13,2 \mathrm{~V}$ |
| otal power dissipation | $\mathrm{P}_{\text {tot }}$ | $\max . \quad 1 \mathrm{~W}$ |
| Storage temperature | $\mathrm{T}_{\text {stg }}$ | -25 to $+130{ }^{\circ} \mathrm{C}$ |
| Operating ambient temperature | $\mathrm{T}_{\text {amb }}$ | -25 to $+65{ }^{\circ} \mathrm{C}$ |

CHARACTERISTICS

At $\mathrm{V}_{12-11}=12 \mathrm{~V} ; \mathrm{V}_{16-11}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in Fig. 1
Supply voltage range (pins 12 and 16)
$\mathrm{V}_{12-11} ; \mathrm{V}_{16-11}$
typ. 12 V

Current consumption

$12+l_{16}$	typ.	50 mA
$<$	75 mA	

Sync separator and noise gate
Sync pulse amplitude (negative going)
peak-to-peak value
Top-sync level
Slicing level
Slicing level noise gating

Phase locked loop

Holding range

Catching range
Control sensitivity of horizontal PLL
Control sensitivity of phase detector
Delay between sync input and detector output (pin 6)
Phase modulation due to hum on the supply line

$\mathrm{V}_{2-11(\mathrm{p}-\mathrm{p})}$	0,07 to $1 \mathrm{~V}^{*}$	
$\mathrm{~V}_{2-11}$	1,0 to $3,5 \mathrm{~V}$	
	typ.	$50 \%{ }^{* *}$
$\mathrm{~V}_{2-11}$	typ.	$0,7 \mathrm{~V}$

Δf
Δf
 t_{d}
typ. $\quad 0,4 \mu \mathrm{~s}$
typ. $\quad 2,0 \mu \mathrm{~s} / \mathrm{V} \boldsymbol{\Delta}$

* Up to 1 V peak-to-peak the slicing level is constant; at amplitudes exceeding 1 V peak-to-peak the slicing level will increase.
**. The slicing level is defined as the ratio of the amplitude of the slicing level to black level to the amplitude of the sync pulse.
4 The voltage is a peak-to-peak value; the figure given can be reduced to $0,6 \mu \mathrm{~s} / \mathrm{V}(\mathrm{p}-\mathrm{p})$ by means of an extra capacitor of 330 nF between pins 12 and 7.

CHARACTERISTICS (continued)
Horizontal oscillator

Frequency; free running	f_{0}	typ.	$31,500 \mathrm{kHz}$
Frequency at output pin 8	f_{8}	typ.	$15,750 \mathrm{kHz}$
Spread of frequency without spread of external components	$\Delta \mathrm{f}_{\mathrm{o}}$	$<$	4 \%
Temperature coefficient	T	typ.	$2,5 \times 10^{-4} \mathrm{~K}^{-1}$
Change of frequency when V_{12-11} drops to 6 V	$\Delta \mathrm{f}_{\mathrm{o}}$	<	10 \%
Change of frequency when V_{12-11} increases from 10 to 13,2 V	$\Delta \mathrm{f}_{\mathrm{o}}$	$<$	0,5 \%
Output voltage; no load (peak-to-peak value)	$\mathrm{V}_{8-11}(\mathrm{p}-\mathrm{p})$	>	10 V
Output resistance	R_{8-11}	typ.	300Ω
Output current range (peak-to-peak value)	$18(p-p)$		0 to 40 mA
Duty factor of output pulse	δ	typ.	46 \%*
Delay between falling edge of output pulse and end of sync pulse at pin 2	t_{d}	typ.	0,9 $\mu \mathrm{s}$ **

Burst-key pulse

Output voltage (peak-to-peak value)
Duration of upper part of output pulse
Duration of lower part of output pulse
Amplitude of lower part of output pulse
Output resistance
Delay between the end of the sync pulse at pin 2 and the rising edge of the burst key pulse

Coincidence detector
Voltage level of time constant switch
Voltage when the oscillator is in sync
Voltage when the oscillator is out-of-sync
Voltage during noise

$V_{13-11(p-p)}$	$>$	10 V
t_{p}	typ.	$3,6 \mu \mathrm{~s}^{* *}$
t_{p}	typ.	$9,1 \mu \mathrm{~s}^{* *}$
$\mathrm{~V}_{13-11(\mathrm{p}-\mathrm{p})}$	typ.	$3 \mathrm{~V}{ }^{* *}$
R_{13-11}	typ.	200Ω
t_{d}	typ.	$0,9 \mu \mathrm{~s}^{* *}$

V_{10-11}	typ.	$2,0 \mathrm{~V}$
V_{10-11}	typ.	$0,4 \mathrm{~V}$
V_{10-11}	typ.	$2,5 \mathrm{~V}$
V_{10-11}	typ.	$1,0 \mathrm{~V}$

* The duty factor is specified as follows:

$$
\delta=\frac{\mathrm{t}}{\mathrm{~T}} \times 100 \%
$$

See waveforms Fig. 2.

Vertical sync pulse

Output voltage (peak-to-peak value)

$\mathrm{V}_{1-11(\mathrm{p}-\mathrm{p})}$	$>$	10 V
t_{p}	typ.	$170 \mu \mathrm{~s}$
t_{p}	typ.	$190 \mu \mathrm{~s}$
R_{L}	$>$	$2 \mathrm{k} \Omega$
V_{1-11}	$<$	500 mV
		$525 *$

Fig. 2 Relationship between the video input signal to the TDA2575A and the horizontal sync and burst-key pulse output.

* When a non-standard sync signal is applied the separated vertical sync pulse of the incoming signal is connected to pin 1; the pulse of the divider circuit is switched off.

PINNING

1. Vertical sync pulse output
2. Time constant switch
3. Video input
4. Coincidence detector output
5. Sync separator slicing level output
6. Negative supply (ground)
7. Black level detector output
8. Positive supply (horizontal)
9. Vertical integrator bias network
10. Burst-key pulse output
11. Horizontal phase detector output
12. Reference voltage horizontal frequency control stage
13. RC-network horizontal oscillator
14. Control horizontal oscillator
15. Positive supply (vertical)
. Horizontal sync pulse output

APPLICATION INFORMATION

The function is quoted against the corresponding pin number

1. Vertical sync pulse output

A resistor of about $10 \mathrm{k} \Omega$ must be connected between pin 1 and the positive supply line (pin 16; vertical supply).
The output pulse will come from the 525 divider stage (standard signal) or from the vertical sync pulse separator (non-standard signal), depending on the input signal on pin 2. The standard and nonstandard signals are detected automatically.

2. Video input

The input signal must have negative-going sync pulses. The top-sync level can vary between 1 V and $3,5 \vee$ without affecting the sync separator operation.
The slicing level of the sync separator is fixed at 50%, for the sync pulse amplitude range 0,07 to 1 V . As a consequence the circuit gives a good sync separation down to pulses with an amplitude of 70 mV peak-to-peak (sync pulse compression). For sync pulses in excess of 1 V peak-to-peak the slicing level will increase.
The noise gate is activated at an input level $<0,7 \mathrm{~V}$, thus, when noise gating is required the top-sync level should be chosen close to the minimum level of 1 V . When i.f. circuits with a noise gate are used (e.g. TDA2540; TDA2541) the noise gate of the TDA2575A is not required.
3. Sync separator slicing level output

The sync separator slicing level is determined on this pin. A slicing level of 50% is obtained by comparing this level with the black level of the video signal, which is detected at pin 4. The capacitor connected to pin 3 must be about $0,47 \mu \mathrm{~F}$.
4. Black level detector output

The black level of the input signal is detected on this pin, which is required to obtain good sync separator operation. A capacitor of $47 \mu \mathrm{~F}$ in series with a resistor of 82Ω has to be connected to this pin. A $5,6 \mathrm{k} \Omega$ resistor must be connected between pins 3 and 4.
5. Vertical sync pulse integrator bias network

The vertical sync pulse is obtained by integrating the composite sync signal in an internal RC-network. An external RC-network is required for the correct biasing of this circuit for various input conditions. Typical values are: $\mathrm{R}=56 \mathrm{k} \Omega ; \mathrm{c}=22 \mu \mathrm{~F}$.
6. Horizontal phase detector output

The control voltage for the horizontal oscillator is obtained on this pin. The output current is about 2 mA .

7. Reference voltage horizontal frequency control stage

This pin has two functions. It is used to decouple the reference voltage for the frequency control of the horizontal oscillator (so a good suppression of interference is obtained which may be present on the supply line). This pin is also used to control the reference waveform for the phase detector to the middle of the gating, giving a good noise immunity of the synchronization.
8. Horizontal sync pulse output

This pulse is obtained from the horizontal oscillator via a divider circuit. The duty factor is 46%. The falling edge of this pulse has a delay of $0,9 \mu$ s with respect to the end of the sync pulse. Because of this phase relationship this pulse can directly drive the TDA2581.

9. Time constant switch

This pin is used to switch the time constant of the flywheel filter. The pin condition is determined by the coincidence detector (pin 10). During in-sync or when only noise is received pin 9 assumes ground level, which results in a long time constant and good noise immunity.
During cut-of-sync or VCR playback, pin 9 has a high impedance and consequently only the short time constant is available. In this condition a large catching range is obtained.
10. Coincidence detector output

A $1 \mu \mathrm{~F}$ capacitor must be connected to this pin. The output voltage depends on the oscillator condition (synchronized or not) and on the video input signal.
The following output voltages can occur:

- when in-sync: $\quad 0,4 \mathrm{~V}$
- when out-of-sync: $\quad 2,0 \mathrm{~V}$
- during noise at input: $1,0 \mathrm{~V}$

When the output voltage $<1,85 \mathrm{~V}$, the flywheel filter is switched to a long time constant, and the gating of the phase detector is switched-on.
For a voltage $>1,85 \mathrm{~V}$, the flywheel filter has a short time constant, and the gating of the phase detector is switched-off. The result is that during noise the flywheel time constant remains long thus preventing large shifts in the frequency of the horizontal oscillator (and screening of the horizontal output transformer).
The information of the line coincidence detector is fed to the divider circuit so that there is no delay in vertical synchronization after a channel change, or an unsynchronized camera change in the studio. Thus, the divider circuit is reset to direct sync, when line synchronization is lost.

The time constant value can be switched manually by a resistor ($10 \mathrm{k} \Omega$) to +12 V .
11. Negative supply (ground)
12. Positive supply horizontal oscillator

Interference and hum on this supply line can affect the oscillator frequency. It is therefore necessary to have a separate decoupling of this pin with respect to pin 16. The current-draw of this pin is typically 33 mA .
13. Burst-key pulse output

This pulse is composed of two parts. The lower part has an amplitude of 3 V peak-to-peak and a width of $9,1 \mu \mathrm{~s}$ (for phase relation see Fig. 2). The upper part has a total amplitude in excess of $10 \vee$ peak-to-peak and a width of $3,6 \mu \mathrm{~s}$. The leading edge of this pulse has a delay of $0,9 \mu \mathrm{~s}$ with respect to the falling edge of the sync pulse at the input (pin 2).
This pulse can directly drive the burst gate/black level clamp input of the TDA2560.

APPLICATION INFORMATION (continued)

14. RC-network horizontal oscillator

Stable components should be chosen for good frequency stability. For adjusting the frequency a part of the total resistance must be variable. This part should be as small as possible, because of poor stability of variable carbon resistors.
The oscillator can be adjusted when pins 7 and 15 are short-circuited.
15. Horizontal oscillator control pin
16. Positive supply sync separator and divider circuit (vertical)

For this supply only a simple decoupling is required. The current-draw of this pin is typically 17 mA .

HORIZONTAL OSC̣ILLATOR COMBINATION WITH VERTICAL DIVIDER

The TDA2576 is a horizontal oscillator combination intended to be used in various types of transistorized line deflection circuits, e.g. switched-mode driven and power-pack system circuits.
The circuit incorporates the following functions:

- Horizontal sync separator with sliding bias in such way that the sync pulse is always sliced between top-sync level and blanking level.
- Noise gate.
- Phase detector which compares the sync pulse with the oscillator voltage.
- Phase detector which compares the line flyback pulse with the oscillator voltage.
- Horizontal oscillator.
- Time constant switching of the first control loop (short time constant during catching and reception of VCR signals).
- Burst key pulse generator (sandcastle pulse).
- Vertical sync pulse separator.
- Very stable vertical synchronization due to the divider system.

QUICK REFERENCE DATA

Supply voltage	\vee_{16-9}	typ.		V
Supply current consumption	116	typ.		
Sync input voltage (peak-to-peak value)	$V_{4-9(p-p)}$		0,1 to 1	V
Slicing level		typ.		\%
Control sensitivity sync to flyback		typ.		kHz/ $\mu \mathrm{s}$
Holding range	Δf	typ.	± 1000	Hz
Catching range	Δf	typ.	± 900	Hz
Horizontal output pulse (peak-to-peak value)	$\mathrm{V}_{10-9(p-p)}$	typ.	11	V
Vertical output pulse; pin 1 (peak-to-peak value)	$V_{1-9(p-p)}$	typ.	11	V
Vertical output pulse; pin 2 (peak-to-peak value)	$V_{2-9}(\mathrm{p}-\mathrm{p})$	typ.	10	V
Sandcastle output pulse (peak-to-peak value)	$\mathrm{V}_{14-9(p-p)}$	typ.	11	V

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38).

Fig. 1 Block diagram.

Horizontal oscillator combination with vertical divider

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage
Total power dissipation
Storage temperature
Operating ambient temperature

V_{16-9}	max.	$13,2 \mathrm{~V}$
$\mathrm{P}_{\text {tot }}$	max.	1 W
$\mathrm{~T}_{\text {stg }}$	-55 to $+125{ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {amb }}$	-25 to $+65{ }^{\circ} \mathrm{C}$	

CHARACTERISTICS

$V_{16-9}=12 \mathrm{~V}$; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in Fig. 2.

Supply voltage		typ.
	V_{16-9}	8 to $13,2 \mathrm{~V}$
Supply current consumption		I_{16}
		typ.
		53 mA
		70 mA

Sync separator and noise gate

First control loop (sync-to-oscillator)

Holding range
Catching range
$\Delta f \quad$ typ. $\pm 1000 \mathrm{~Hz}$

Control sensitivity video with respect to oscillator with respect to sandcastle with respect to flyback pulse
typ. $\pm 900 \mathrm{~Hz}$

Second control loop (oscillator-to-flyback)
Control sensitivity
Control range

$\Delta \mathrm{t}_{\mathrm{d}} / \Delta \mathrm{t}_{\mathrm{o}}$	typ.	$20^{* *}$
t_{d}	$<$	$18 \mu \mathrm{~s}$

* Up to 1 V peak-to-peak the slicing level is constant; at amplitudes exceeding 1 V peak-to-peak the slicing level will increase.
** $t_{d}=$ delay between positive transient of horizontal output pulse and the rising edge of the flyback pulse.
$t_{0}=$ delay between the rising edge of the flyback pulse and the start of the current in $\varphi_{1}\left(I_{7}\right)$.

CHARACTERISTICS (continued)

Horizontal oscillator

Frequency; free running	f_{0}	typ. $\quad 31,250 \mathrm{kHz}$		
Frequency at output pin 10	f_{10}	typ.		kHz
Spread of frequency without spread of external components	$\Delta \mathrm{f}_{\mathrm{o}}$	$<$	4	\%
Temperature coefficient	T	typ. $2,5 \times 10^{-4}$		
Change of frequency when V_{16-9} increases from 10 to $13,2 \mathrm{~V}$	Δf_{0}	$<$	0,5	\%
Minimum supply voltage (+ hor. see Fig. 1)		typ.	6	V
Frequency deviation at min. supply voltage		<	10	\%

Horizontal output (pin 10)

Maximum supply voltage
Minimum output voltage at a current of 20 mA
Maximum output current

Sandcastle pulse (pin 14)

Output voltage during burst key pulse
Pulse duration
Amplitude of lower part of output pulse
Pulse duration
Delay between the start of the sync pulse at the video input (pin 4) and the rising edge of the flyback pulse
Input current
Phase adjustment (pin 12)
Voltage at pin 12
Control sensitivity
Control range
Coincidence detector (pin 8)
Voltage level of time constant switch
Voltage when the oscillator is in sync
Voltage when the oscillator is out-of-sync
Voltage during noise

V_{14-9}	$<$	10 V
t_{p}	typ.	$3,6 \mu \mathrm{~s}$
$\mathrm{~V}_{14-9}$	typ.	$4,5 \mathrm{~V}$
flyback pulse		
	typ.	$1,5 \mu \mathrm{~s}$
I_{14}	$<$	20 mA

V_{12-9}	typ.	$2,8 \mathrm{~V}$
	typ.	$0,6 \mathrm{~V} / \mu \mathrm{s}$
	typ.	$\pm 1 \mu \mathrm{~s}$

V_{8-9}	typ.	$2,1 \mathrm{~V}$
V_{8-9}	typ.	$1,2 \mathrm{~V}$
V_{8-9}	typ.	$2,5 \mathrm{~V}$
$\mathrm{~V}_{8-9}$	typ.	$1,7 \mathrm{~V}$

Vertical outputs
Output voltage (peak-to-peak value)
Output current
Duration of output pulse during
indirect synchronization; 21 lines
Output voltage (peak-to-peak value)
Output current

$V_{1-9(p-p)}$	$>$	10 V
I_{1}	$<$	5 mA
t_{p}	typ.	$1,34 \mathrm{~ms}$
$\mathrm{~V}_{2-9(p-p)}$	$>$	9 V
I_{2}	$<$	2 mA

APPLICATION INFORMATION (see also Fig. 2)

The function is described against the corresponding pin number

1. Vertical output pulse

This pulse is obtained from the divider circuit, the amplitude is in excess of 10 V peak-to-peak. This pulse has a duration of $1,34 \mathrm{~ms}$ (21 lines) when standard signals are received. The pulse is obtained from the vertical sync pulse integrator during non-standard signals and has a duration of about $150 \mu \mathrm{~s}$. It has good stability and accuracy, so it is intended to be used for triggering the vertical oscillator and blanking the video signal (e.g. teletext signals).
2. Vertical output pulse

This pulse is directly obtained from the vertical sync pulse separator. The amplitude-is in excess of 9 V peak-to-peak. It can be used for search tuning purposes.
3. Vertical sync pulse integrator bias network

The vertical sync pulse is obtained by integrating the composite sync signal in an internal RC-network. An external RC-network is required for the correct biasing of this circuit for various input conditions. Typical values are: $\mathrm{R}=100 \mathrm{k} \Omega ; \mathrm{C}=22 \mu \mathrm{~F}$.
4. Video input

The input signal must have negative-going sync pulses. The top-sync level can vary between 1 V and $3,5 \vee$ without affecting the sync separator operation.
The slicing level of the sync separator is fixed at 50%, for the sync pulse amplitude range 0,1 to 1 V peak-to-peak. As a consequence the circuit gives a good sync separation down to pulses with an amplitude of 100 mV peak-to-peak (sync pulse compression). For sync pulses in excess of 1 V peak-to-peak the slicing level will increase.
The noise gate is activated at an input level $<1 \mathrm{~V}$ (typ. $0,7 \mathrm{~V}$), thus, when noise gating is required the top-sync level should be chosen close to the minimum level of 1 V .
5. Sync separator slicing level output

The sync separator slicing level is determined on this pin. A slicing level of 50% is obtained by comparing this level with the black level of the video signal, which is detected at pin 6 . The capacitor connected to pin 5 must be about $1 \mu \mathrm{~F}$.
6. Black level detector output

The black level of the input signal is detected on this pin. A capacitor of $22 \mu \mathrm{~F}$ in series with a resistor of 33Ω has to be connected to this pin. A $4,7 \mathrm{k} \Omega$ resistor must be connected between pins 5 and 6.

APPLICATION INFORMATION (continued)

7. Horizontal phase detector output and control oscillator input

The flywheel filter must be connected to this pin. Typical values for the components are a capacitor of 100 nF in parallel with an RC-network of $1 \mathrm{k} \Omega$ and $10 \mu \mathrm{~F}$. Furthermore, a resistor of $270 \mathrm{k} \Omega$ should be connected between pins 7 and 12.
The output current of the phase detector depends on the condition of the coincidence detector. The output current is high when the oscillator is out of sync. The result is a large catching range, and the phase detector is not gated in that condition. The output current is low when the oscillator is synchronized and the phase detector is gated. A good noise immunity is obtained in this case.
8. Coincidence detector output

A $10 \mu \mathrm{~F}$ capacitor must be connected to this pin. The output voltage depends on the oscillator condition (synchronized or not) and on the video input signal.
The following output voltages can occur:

- when in-sync $1,2 \mathrm{~V}$
- when out-of-sync $\quad 2,5 \mathrm{~V}$
- during noise at the input $\quad 1,7 \mathrm{~V}$

When the output voltage $<2,1 \mathrm{~V}$, the phase detector output current is low and the phase detector is gated. A good noise immunity is obtained in this case. For a voltage $>2,1 \mathrm{~V}$, the output current of the phase detector is high and the phase detector is not gated. This results in a large catching range and a high dynamical steepness of the PLL. This latter condition is required during VCRplayback. It can be obtained by connecting pin 8 to the positive supply line via a resistor of $10 \mathrm{k} \Omega$.
9. Negative supply (ground)
10. Horizontal output

This is an open collector output. The collector resistor must be chosen such that sufficient current is supplied to the driver stage. The maximum current is 60 mA . The output stage is designed such that the line output transistor cannot be switched-on during flyback. Switching-on occurs directly after the flyback pulse to avoid linearity errors. The duty factor of the output pulse depends on the delay in the output stage (correction via the second control loop).
11. Control voltage second loop

This voltage controls the start of the output pulse at pin 10 (positive-going edge). The capacitor connected to this pin must have a value of about 100 nF .
A resistor of $270 \mathrm{k} \Omega$ should be connected between pins 11 and 12 for safe operation.
12. Reference voltage control loops

The reference voltage must be decoupled by means of a capacitor of about $10 \mu \mathrm{~F}$. It is possible to obtain a phase shift between video and flyback pulse by changing this reference voltage externally. The possible phase shift is $\pm 1 \mu \mathrm{~s}$.
The required voltage change is $\pm 0,6 \mathrm{~V}$.
13. Decoupling internal power supply

The IC has two power supply terminals. The main terminal (pin 16) supplies the output stages, the sync separator and the divider circuit. The specially decoupled supply terminal (pin 13) supplies the horizontal oscillator. This is to avoid coupling of the video signal into the oscillator part. The capacitor connected to pin 13 should have a value of about $22 \mu \mathrm{~F}$. The resistor connected between pins 13 and 16 should have a value of about $1 \mathrm{k} \Omega$.
14. Flyback input/sandcastle output

This pin combines two functions e.g.:

- Input for the line flyback pulse, which is required for the second phase control loop.
- Generation of a sandcastle pulse. The flyback pulse has to be applied to pin 14 via a suitable series resistance. The amplitude of the flyback pulse must be about 100 V peak to peak. The pulse is clamped to a level of $4,5 \mathrm{~V}$ at the input of the IC. This level is increased to the supply voltage during the burst gate pulse.

15. RC-network horizontal oscillator

Stable components should be chosen for a good frequency stability. A part of the total resistance must be variable for adjusting the frequency. This part should be as small as possible, because of poor stability of variable carbon resistors.
The oscillator can be asjusted when pins 7 and 12 are short-circuited, or when pins 5 and 8 are connected to ground (see Fig. 2).
16. Positive supply

The supply voltage may vary between 8 V and $13,2 \mathrm{~V}$. The current-draw is 53 mA (typical) and a range of 35 to 70 mA at 12 V .

Fig. 2 Application circuit diagram.

HORIZONTAL OSCILLATOR COMBINATION WITH VERTICAL 625 DIVIDER SYSTEM

The TDA2576A is a horizontal oscillator combination intended to be used in various types of transistorized horizontal deflection circuits, e.g. switched-mode driven and power-pack system circuits.

The circuit is optimized for a horizontal and vertical frequency ratio of 625.
The circuit incorporates the following functions:

- Horizontal sync separator with sliding bias in such way that the sync pulse is always sliced between top-sync level and blanking level.
- Noise gate.
- Phase detector which compares the sync pulse with the oscillator voltage; this phase detector is gated.
- Phase detector which compares the line flyback pulse with the oscillator voltage.
- Horizontal oscillator ($31,25 \mathrm{kHz}$).
- Time constant switching of the first control loop (short time constant during catching and reception of VCR signals).
- Burst key pulse generator (sandcastle pulse with three levels).
- Vertical sync pulse separator.
- Very stable vertical synchronization due to the 625 divider system, without delay after channel change.

QUICK REFERENCE DATA

Supply voltage			
Supply current consumption	V_{16-9}	typ.	12 V
Sync input voltage (peak-to-peak value)	$1 / 6$	typ.	53 mA
Slicing level	$V_{4-9(p-p)}$	0,1 to 1 V	
Control sensitivity sync to flyback		typ.	50%
Holding range		typ.	$10 \mathrm{kHz} / \mu \mathrm{s}$
Catching range	Δf	typ.	$\pm 1000 \mathrm{~Hz}$
Horizontal output pulse (peak-to-peak value)	Δf	typ.	$\pm 900 \mathrm{~Hz}$
Vertical output pulse; pin 2 (peak-to-peak value)	$V_{10-9(p-p)}$	typ.	11 V
Sandcastle output pulse (peak-to-peak value)	$V_{2-9(p-p)}$	typ.	11 V

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38).

Fig. 1 Block diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage
Total power dissipation
Storage temperature
Operating ambient temperature

V_{16-9}	max.	$13,2 \mathrm{~V}$
$\mathrm{P}_{\text {tot }}$	max.	1 W
$\mathrm{~T}_{\text {stg }}$	-55 to $+125{ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {amb }}$	-25 to $+65{ }^{\circ} \mathrm{C}$	

CHARACTERISTICS

$\mathrm{V}_{16-9}=12 \mathrm{~V}$; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in Fig. 2.

Supply voltage	V_{16-9}	typ.	12 V
Supply current consumption		10 to $13,2 \mathrm{~V}$	
	I_{16}	typ.	53 mA
		70 mA	

Sync separator and noise gate

Sync pulse amplitude (negative going)
peak-to-peak value
Top-sync level
Slicing level noise gate
Delay between sync input and detector output (pin 7)

First control loop (sync-to-oscillator)
Holding range
Catching range
Control sensitivity video with respect to oscillator with respect to sandcastle with respect to flyback pulse
Phase modulation due to hum on the supply line (pin 16)

Second control loop (oscillator-to-flyback)
Control sensitivity
Control range

$\mathrm{V}_{4-9(p-p)}$		0,1 to $1 \mathrm{~V}^{*}$
V_{4-9}		1,0 to 3,5 V
V_{4-9}	$<$	1 V

$\Delta f \quad$ typ. $\pm 1000 \mathrm{~Hz}$
$\Delta f \quad$ typ. $\pm 900 \mathrm{~Hz}$
typ. $\quad 2,0 \mathrm{kHz} / \mu \mathrm{s}$
typ. $\quad 10,0 \mathrm{kHz} / \mu \mathrm{s}$
typ. $\quad 10,0 \mathrm{kHz} / \mu \mathrm{s}$
$<\quad 1,0 \mu \mathrm{~s} / \mathrm{V}^{* *}$
$\Delta t_{d} / \Delta t_{0} \quad$ typ. 250
$t_{d} \quad<\quad 26 \mu \mathrm{~s}$

* Up to 1 V peak-to-peak the slicing level is constant; at amplitudes exceeding 1 V peak-to-peak the slicing level will increase.
** This voltage is a peak-to-peak value.
- $t_{d}=$ delay between positive transient of horizontal output pulse and the rising edge of the flyback pulse.
$t_{0}=$ delay between the rising edge of the flyback pulse and the start of the current in $\varphi_{1}\left(I_{7}\right)$.

CHARACTERISTICS (continued)

Horizontal oscillator

Frequency; free running
Frequency at output pin 10
Spread of frequency without spread of external components
Temperature coefficient
Change of frequency when V_{16-9} increases from 10 to $13,2 \mathrm{~V}$
Minimum supply voltage (+ hor. see Fig. 1)
Frequency deviation at min. supply voltage

Horizontal output (pin 10)

Maximum supply voltage
Minimum output voltage at a current of 60 mA
Maximum output current
Duration of the output pulse

Sandcastle puise (pin 1)

Output voltage during burst key pulse
Pulse duration
Amplitude of second level of output pulse
Pulse duration
Amplitude of third level of output pulse
Pulse duration
Delay between the start of the sync pulse at the video input (pin 4) and the rising edge of the burst key pulse

Phase adjustment (pin 12)
Voltage at pin 12
Control sensitivity
Control range

Coincidence detector (pin 8)

Voltage level of time constant switch
Voltage when the oscillator is in sync
Voltage when the oscillator is out-of-sync
Voltage during noise

V_{8-9}	typ.	$2,1 \mathrm{~V}$
V_{8-9}	typ.	$1,2 \mathrm{~V}$
V_{8-9}	typ.	$2,6 \mathrm{~V}$
V_{8-9}	typ.	$1,7 \mathrm{~V}$

[^23]Flyback input pulse (pin 14)

Switching level	V_{14-9}	typ.	$0,7 \mathrm{~V}$
Input pulse	V_{14-9}	$<$ typ.	$2,5 \mathrm{k} \Omega$
Input resistance Delay between the start of the sync pulse at the video input (pin 4) and the rising edge of the flyback pulse			

Vertical outputs

Output voltage (peak-to-peak value)
Output current
Output voltage low at $I_{2}=5 \mathrm{~mA}$
Duration of output pulse during indirect synchronization
Duration of output pulse during direct synchronization

$\mathrm{V}_{2-9(\mathrm{p}-\mathrm{p})}$	$>$	10 V
I_{2}	$<$	5 mA
$\mathrm{~V}_{2-9}$	$<$	500 mV
t_{p}		typ.
t_{p}		$190 \mu \mathrm{~s}$
	typ.	$160 \mu \mathrm{~s}$

[^24]
APPLICATION INFORMATION (see also Fig. 2)

The function is described against the corresponding pin number

1. Sandcastle output pulse

This output pulse has three levels. The first and highest level (10 V) is the burst key pulse with a typical duration of $4,0 \mu \mathrm{~s}$. The second level for the line blanking is typ. $4,5 \mathrm{~V}$ with a pulse duration equal to the line flyback pulse. The third level (typ. 2,5 V) is used for frame blanking and has a duration of typ. $1,34 \mathrm{~ms}$ (21 lines). This last pulse is only available with a standard video input signal. Under all other conditions, an external vertical flyback pulse must be applied to this pin. This pulse will be clamped to $2,5 \mathrm{~V}$ by means of an internal clamping circuit. The input current is typ. 2 mA .

2. Vertical output pulse

This pulse is obtained from the divider circuit, the amplitude is in excess of 10 V peak-to-peak. This pulse has a duration of $190 \mu \mathrm{~s}$ when standard signals are received. The pulse is obtained from the vertical sync pulse integrator during non-standard signals and has a duration of about $160 \mu \mathrm{~s}$. It has good stability and accuracy, so it is intended to be used for triggering the vertical oscillator.
3. Vertical sync pulse integrator bias network

The vertical sync pulse is obtained by integrating the composite sync signal in an internal RC-network. An external capacitor with an internal resistor are required for the correct biasing of this circuit for various input conditions. A typical value for the capacitor is $10 \mu \mathrm{~F}$.
4. Video input

The input signal must have negative-going sync pulses. The top-sync level can vary between 1 V and $3,5 \mathrm{~V}$ without affecting the sync separator operation.
The slicing level of the sync separator is fixed at 50%, for the sync pulse amplitude range 0,1 to 1 V peak-to-peak. As a consequence the circuit gives a good sync separation down to pulses with an amplitude of 100 mV peak-to-peak (sync pulse compression). For sync pulses in excess of 1 V peak-to-peak the slicing level will increase.
The noise gate is activated at an input level $<1 \mathrm{~V}$ (typ. $0,7 \mathrm{~V}$), thus, when noise gating is required the top-sync level should be chosen close to the minimum level of 1 V .
5. Sync separator slicing level output

The sync separator slicing level is determined on this pin. A slicing level of 50% is obtained by comparing this level with the black level of the video signal, which is detected at pin 6 . The capacitor connected to pin 5 must be about $1 \mu \mathrm{~F}$.
6. Black level detector output

The black level of the input signal is detected on this pin. A capacitor of $22 \mu \mathrm{~F}$ in series with a resistor of 33Ω has to be connected to this pin. A $4,7 \mathrm{k} \Omega$ resistor must be connected between pins 5 and 6.
7. Horizontal phase detector output and control oscillator input

The flywheel filter must be connected to this pin. Typical values for the components are a capacitor of 100 nF in parallel with an RC-network of $1 \mathrm{k} \Omega$ and $10 \mu \mathrm{~F}$. Furthermore, a resistor of $270 \mathrm{k} \Omega$ should be connected between pins 7 and 12.
The output current of the phase detector depends on the condition of the coincidence detector. The output current is high when the oscillator is out of sync. The result is a large catching range, and the phase detector is not gated in that condition. The output current is low when the oscillator is synchronized and the phase detector is gated. A good noise immunity is obtained in this case.

8 Coincidence detector output
A $1 \mu \mathrm{~F}$ capacitor must be connected to this pin. The output voltage depends on the oscillator condition (synchronized or not) and on the video input signal.
The following output voltages can occur:

- when in-sync $\quad 1,2 \mathrm{~V}$
- when out-of-sync $\quad 2,6 \mathrm{~V}$
- during noise at the input $1,7 \mathrm{~V}$

When the output voltage $<2,1 \mathrm{~V}$, the phase detector output current is low and the phase detector is gated. A good noise immunity is obtained in this case. For a voltage $>2,1 \mathrm{~V}$, the output current of the phase detector is high and the phase detector is not gated. This results in a large catching range and a high dynamical steepness of the PLL. This latter condition is required during VCRplayback. It can be obtained by connecting pin 8 to the positive supply line via a resistor of $10 \mathrm{k} \Omega$. The information of the line coincidence detector is fed to the divider circuit so that there is no delay in vertical synchronization after a channel change, or an unsynchronized camera change in the studio. Thus, the divider circuit is reset to direct sync, when line synchronization is lost.
9. Negative supply (ground)
10. Horizontal output

This is an open collector output. The collector resistor must be chosen such that sufficient current is supplied to the driver stage. The maximum current is 60 mA . The output stage is designed such that the line output transistor cannot be switched-on during flyback. Switching-on occurs directly after the flyback pulse to avoid linearity errors. The duty factor of the output pulse depends on the delay in the output stage (correction via the second control loop).
11. Control voltage second loop

This voltage controls the start of the output pulse at pin 10 (positive-going edge). The capacitor connected to this pin must have a value of about 22 nF .
12. Reference voltage control loops

The reference voltage must be decoupled by means of a capacitor of about $10 \mu \mathrm{~F}$.
It is possible to obtain a phase shift between video and flyback pulse by changing this reference voltage externally. The possible phase shift is $\pm 1 \mu \mathrm{~s}$.
The required voltage change is $\pm 0,6 \mathrm{~V}$.
13. Decoupling internal power supply

The IC has two power supply terminals. The main terminal (pin 16) supplies the output stages, the sync separator and the divider circuit. The specially decoupled supply terminal (pin 13) supplies the horizontal oscillator. This is to avoid coupling of the video signal into the oscillator part. The capacitor connected to pin 13 should have a value of about $22 \mu \mathrm{~F}$. The resistor connected between pins 13 and 16 should have a value of about $1 \mathrm{k} \Omega$.
14. Flyback input pulse

The flyback input pulse is required for the second phase control loop and for generating the line blanking pulse in the sandcastle output. The input current should be at least $10 \mu \mathrm{~A}$ and not exceed 3 mA .
15. RC-network horizontal oscillator

Stable components should be chosen for a good frequency stability. A part of the total resistance must be variable for adjusting the frequency. This part should be as small as possible, because of poor stability of variable carbon' resistors.
The oscillator can be adjusted when pins 7 and 12 are short-circuited (see Fig. 2).
16. Positive supply: The supply voltage may vary between 10 V and $13,2 \mathrm{~V}$. The current-draw is 53 mA (typical) and a range of 35 to 70 mA at 12 V .

CONTROL CIRCUIT FOR SMPS

The TDA2581 is a monolithic integrated circuit for controlling switched-mode power supplies (SMPS) which are provided with the drive for the horizontal deflection stage.
The circuit features the following:

- Voltage controlled horizontal oscillator.
- Phase detector.
- Duty factor control for the positive-going transient of the output signal.
- Duty factor increases from zero to its normal operation value.
- Adjustable maximum duty factor.
- Over-voltage and over-current protection with automatic re-start after switch-off.
- Counting circuit for permanent switch-off when n-times over-current or over-voltage is sensed.
- Protection for open-reference voltage.
- Protection for too low supply voltage.
- Protection against loop faults.
- Positive tracking of duty factor and feedback voltage when the feedback voltage is smaller than the reference voltage minus $1,5 \mathrm{~V}$.

QUICK REFERENCE DATA

Supply voitage	V_{9-16}	typ.	12	V
Supply current	19	typ.	15	mA
Input signals				
Horizontal drive pulse (peak-to-peak value)	$V_{3-16(p-p)}$	typ.	11	v
Flyback pulse (differentiated deflection current); peak-to-peak value	$V_{2-16(p-p)}$	typ.	5	v
External reference voltage	V_{10-16}	typ.	6,7	V
Output signals				
Duty factor of output pulse	δ	\geq	$\begin{array}{r} 0 \\ 98 \pm 0,6 \end{array}$	$\begin{aligned} & \% \\ & \% \end{aligned}$
Output voltage at $\mathrm{I}_{0}<20 \mathrm{~mA}$ (peak value)	$V_{11-16 M}$	typ.	11,8	V
Output current (peak value)	$\mathrm{I}_{11 \mathrm{M}}$	<	40	mA

PACKAGE OUTLINES

TDA2581: 16-lead DIL; plastic (SOT-38).
TDA2581Q: 16-lead QIL; plastic (SOT-58).

BLOCK DIAGRAM

Note: trip levels are nominal values.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage	V_{9-16}	\max.	14 V
Voltage at pin 11	V_{11-16}		0 to 14 V
Output current	I_{11}	\max.	40 mA
Total power dissipation	$P_{\text {tot }}$	\max	340 mW
Storage temperature	$T_{\text {stg }}$		-25 to $+125{ }^{\circ} \mathrm{C}$
Operating ambient temperature	$T_{\text {amb }}$		-25 to $+80^{\circ} \mathrm{C}$

CHARACTERISTICS

$\mathrm{V}_{9-16}=12 \mathrm{~V} ; \mathrm{V}_{10-16}=6,7 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in the circuit on page 2

Supply voltage range		V_{9-16}	typ.
		12 V	
Protection voltage too low supply voltage	V_{9-16}	typ.	10 to 14 V
Supply current at $\delta=50 \%$		$9,4 \mathrm{~V}$	
Supply current during protection		8	typ.

Required input signals
Reference voltage
V_{10-16} typ.
6,7 V

High reference voltage protection: threshold voltage	V_{10-16}	typ.	$8,4 \mathrm{~V}$ Feedback input impedance at pin 8
	$\left\|Z_{8-16}\right\|$	typ.	7,9 to $8,9 \mathrm{~V}$
			$200 \mathrm{k} \Omega$

Horizontal drive pulse (square-wave or
differentiated; negative transient is reference)
peak-to-peak value
Flyback pulse or differential deflection current
Over-current protection: threshold voltage

Over-voltage protection: threshold voltage
$V_{3-16(p-p)}$ typ.
11 V
5 to 12 V

* This value refers to the minimum required supply current that will start all devices under the following conditions: $V_{9-16}=10 \mathrm{~V} ; \mathrm{V}_{10-16}=6,8 \mathrm{~V} ; \delta=50 \%$.
** Voltage obtained via an external reference diode. Specified voltages do not refer to the nominal voltages of reference diodes.
\triangle This spread is inclusive temperature rise of the IC due to warming up. For other ambient temperatures the values must be corrected by using a temperature coefficient of typical $-1,85 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.

CHARACTERISTICS (continued)

Remote control voltage; switch off switch on

| V_{4-16} |
| :--- | :--- | :--- |
| $\mathrm{~V}_{4-16}$ |$>\quad 5,8 \mathrm{~V}^{*}$

Delivered output signals

Horizontal drive pulse (loaded with a resistor of 560Ω to +12 V) peak-to-peak value
Output current; peak value
Saturation voltage of output transistor at $I_{11}=20 \mathrm{~mA}$

$$
\text { at } I_{11}=40 \mathrm{~mA}
$$

Duty factor of output pulse**
Charge current for capacitor on pin 4
Charge current for capacitor on pin 5
Supply current for reference

$V_{11-16(p-p)}$	>	11,6 V
111 M	$<$	40 mA
$\mathrm{V}_{\text {CEsat }}$	$\stackrel{\text { typ. }}{<}$	$\begin{aligned} & 200 \mathrm{mV} \\ & 400 \mathrm{mV} \end{aligned}$
$V_{\text {CEsat }}$	$<$	525 mV
δ		$\begin{array}{r} 0 \% \\ \pm 0,6 \% \end{array}$
I_{4}	typ.	$120 \mu \mathrm{~A}$
l_{5}	typ.	$130 \mu \mathrm{~A}$
${ }^{10}$	typ.	$\begin{array}{r} 1 \mathrm{~mA} \\ 1,45 \mathrm{~mA} \end{array}$

Oscillator

Temperature coefficient
Relative frequency deviation for V_{10-16} changing from 6 to. 7 V

Oscillator frequency spread (with fixed external components)
Frequency control sensitivity at pin 15
typ. $-300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$<\quad-400 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
typ. $-1,5 \%$.
$\leqslant \quad-2 \%$
$\leqslant \quad \pm 3 \%$
typ. $\quad 4,5 \mathrm{kHz} / \mathrm{V}^{\mathbf{4}}$
Phase control loop
Loop gain of APC-system (automatic phase control)
Catching range
Phase relation between negative transient of sync pulse and middle of flyback

Tolerance of phase relation

* See pin 4 on pages 7 and 8.
** The duty factor is specified as follows:

The maximum duty factor value can be set to a desired value (see application information pin 12 on page 9).
\triangle For component values see circuit diagram on page 2.

PINNING

1. Phase detector output
2. Flyback pulse position input
3. Reference frequency input
4. Re-start count capacitor/remote control input
5. Slow start and transfer characteristic for low feedback voltages
6. Over-current protection input
7. Over-voltage protection input
8. Feedback voltage input
9. Positive supply
10. Reference input
11. Output
12. Maximum duty factor adjustment/smoothing
13. Oscillator timing network
14. Reactance stage reference voltage
15. Reactance stage input
16. Negative supply (ground)

APPLICATION INFORMATION

The TDA2571 and TDA2581 controlling an SMPS driver stage.

The function is quoted against the corresponding pin number

1. Phase detector output

The output circuit consists of a bidirectional current source which is active for the time that the signal on pin 2 exceeds 1 V .
The current values are chosen such that the correct phase relation is obtained when the reference signal on pin 3 is delivered by the TDA2571.
With a resistor of $18 \mathrm{k} \Omega$ and a capacitor of $2,7 \mathrm{nF}$ the control steepness is $0,55 \mathrm{~V} / \mu \mathrm{s}$.
2. Flyback pulse input

The signal applied to pin 2 is normally a flyback pulse with a duration of about $12 \mu \mathrm{~s}$. However, the phase detector system also accepts a signal derived by differentiating the deflection current by means of a small toroidal core (pulse duration $>3 \mu \mathrm{~s}$).

(a)

(b)

The toroidal transformer in (a) is for obtaining a pulse representing the mid-flyback from the deflection current. The connection of the picture phase information is shown in (b).
3. Reference frequency input

The input circuit can be driven directly by the square-wave output voltage from pin 8 of the TDA2571.
The negative-going transient switches the current source connected to pin 1 from positive to negative. The input circuit is made such that a differentiated signal of the square-wave from the TDA2571 is also accepted (this enables mains isolation). The input circuit switching level is about $3 \vee$ and the input impedance is about $10 \mathrm{k} \Omega$.
4. Re-start count capacitor/remote control input

Counting

An external capacitor ($\mathrm{C} 4=47 \mu \mathrm{~F}$) is connected between pins 4 and 16. This capacitor controls the characteristics of the protection circuits as follows.
If the protection circuits are required to operate, e.g. over-current at pin 6, the duty factor will be set to zero thus turning off the power supply.
After a short interval (determined by the time constant on pin 5) the power supply will be restarted via the slow start circuit.
If the fault condition has cleared, then normal operation will be resumed. If the fault condition is persistent, the duty factor of the pulses is again reduced to zero and the protection cycle is repeated.
The number of times this action is repeated (n) for a persisting fault condition is now determined by: $n=C 4 / C 5$.

APPLICATION INFORMATION (continued)

Remote control input

For this application the capacitor on pin 4 has to be replaced by a resistor with a value between 4,7 and $18 \mathrm{k} \Omega$. When the externally applied voltage $\mathrm{V}_{4-16}>5,8 \mathrm{~V}$, the circuit switches off; switching on occurs when $\mathrm{V}_{4-16}<4,5 \mathrm{~V}$ and the normal starting-up procedure is followed. Pin 4 is internally connected to an emitter-follower, with an emitter voltage of $1,5 \mathrm{~V}$.
5. Slow start and transfer characteristics for low feedback voltages

Slow start

An external shunt capacitor ($C 5=4,7 \mu \mathrm{~F}$) and resistor ($\mathrm{R} 5=270 \mathrm{k} \Omega$) are connected between pins 5 and 16. The network controls the rate at which the duty factor increases from zero to its steadystate value after switch-on. It provides protection against surges in the power transistor.

Transfer characteristic for low feedback voltages

The duty factor transfer characteristic for low feedback voltages can be influenced by R5.
The transfer for three different resistor values is given in the graph on page 10.
6. Over-current protection input

A voltage proportional to the current in the power switching device is applied to the integrated circuit between pins 6 and 16. The circuit trips on both positive and negative polarity.

7. Over-voltage protection input

When the voltage applied to this pin exceeds the threshold level, the protection circuit will operate. When this function is not used, pin 7 should be connected to pin 16.
8. Feedback voltage input

The control loop input is applied to pin 8. This pin is internally connected to one input of a differential amplifier, functioning as an amplitude comparator, the other input of which is connected to the reference source on pin 10.
Under normal operating conditions, the voltage on pin 8 will be about equal to the reference voltage on pin 10. For further information refer to the graphs on pages 10 and 11.
9. 12 V positive supply

The maximum voltage that may be applied is 14 V . Where this is derived from an unstabilized supply rail, a regulator diode (12 V) should be connected between pins 9 and 16 to ensure that the maximum voltage does not exceed 14 V . When the voltage on this pin falls below a minimum of $8,6 \mathrm{~V}$ (typically $9,4 \mathrm{~V}$), the protection circuit will switch-off the power supply.
10. Reference input

An external reference diode must be connected between this pin and pin 16.
The reference voltage must be between 5,6 and $7,5 \mathrm{~V}$. The IC delivers about 1 mA into the external regulator diode. When the external load on the regulator diode approaches this current, replenishment of the current can be obtained by connecting a suitable resistor between pins 9 and 10.
11. Output

An external resistor determines the output current fed into the base of the driver transistor. The output circuit uses an n-p-n transistor with 3 series-connected clamping diodes to the internal 12 V supply rail. This provides a low impedance in the " $\mathrm{ON}^{\prime \prime}$ state, that is with the drive transistor turned-off.
12. Maximum duty factor adjustment/smoothing

Maximum duty factor adjustment
Pin 12 is connected to the output voltage of the amplitude comparator (V_{10-8}). This voltage is internally connected to one input of a differential amplifier, the other input of which is connected to the sawtooth voltage of the horizontal oscillator. A low voltage on pin 12 results in a low duty factor. This enables the maximum duty factor to be adjusted by limiting the voltage by connecting pin 12 to the emitter of a p-n-p transistor used as a voltage source.
The graph on page 10 plots the maximum duty factor as a function of the voltage applied to pin 12. If some spread is acceptable the maximum duty factor can also be limited by connecting a resistor from pin 12 to pin 16. A resistor of $12 \mathrm{k} \Omega$ limits the maximum duty factor to about 50%. This application also reduces the total IC gain.

Smoothing

Any double pulsing of the IC due to circuit layout can be suppressed by connecting a capacitor of about 470 pF between pins 12 and 16.
13. Oscillator timing network

The timing network comprises a capacitor between pins 13 and 16, and a resistor between pin 13 and the reference voltage on pin 10.
The charging current for the capacitor (C 13) is derived from the voltage reference diode connected to pin 10 and discharged via an internal resistor of about 330Ω.
14. Reactance stage reference voltage

This pin is connected to an emitter follower which determines the nominal reference voltage for the reactance stage ($1,5 \mathrm{~V}$ for reference voltage $V_{10-16}=6,7 \mathrm{~V}$). Free-running frequency is obtained when pins 14 and 15 are short-circuited.
15. Reactance stage input

The output voltage of the phase detector (pin 1) is connected to pin 15 via a resistor. The voltage applied to pin 15 shifts the upper level of the voltage sensor of the oscillator thus changing the oscillator frequency and phase. The time constant network is connected between 14 and 15. Control sensitivity is typically $4,5 \mathrm{kHz} / \mathrm{V}$.
16. Negative supply (ground)

Duty factor of output pulses as a function of V_{8-16} with R 5 as a parameter, and with V_{12} as a limiting value; $V_{10-16}=6,8 \mathrm{~V}$.

Maximum duty factor limitation as a function of $\mathrm{V}_{12 \text {-16 }}$.

Duty factor of output pulses as a function of error amplifier input $\left(\mathrm{V}_{\mathbf{8 - 1 0}}\right)$.

Change in duty factor of output pulses for a 1 mV error amplifier input change $\left(\mathrm{V}_{8-10}\right)$ as a function of initial duty factor.

CONTROL CIRCUIT FOR POWER SUPPLIES

The TDA2582 is a monolithic integrated circuit for controlling power supplies which are provided with the drive for the horizontal deflection stage.
The circuit features the following:

- Voltage controlled horizontal oscillator.
- Phase detector.
- Duty factor control for the negative-going transient of the output signal.
- Duty factor increases from zero to its normal operation value.
- Adjustable maximum duty factor.
- Over-voltage and over-current protection with automatic re-start after switch-off.
- Counting circuit for permanent switch-off when n-times over-current or over-voltage is sensed.
- Protection for open-reference voltage.
- Protection for too low supply voltage.
- Protection against loop faults.
- Positive tracking of duty factor and feedback voltage when the feedback voltage is smaller than the reference voltage minus $1,5 \mathrm{~V}$.
- Normal and 'smooth' remote ON/OFF possibility.

QUICK REFERENCE DATA

Supply voltage	V_{9-16}	typ.	12 V
Supply current	19	typ.	14 mA
Input signals			
Horizontal drive pulse (peak-to-peak value)	$V_{3-16(p-p)}$		5 to 11 V
Flyback pulse (differentiated deflection current); peak-to-peak value	$\mathrm{V}_{2-16(p-p)}$		1 to 5 V
External reference voltage	V_{10-16}	typ.	$6,1 \mathrm{~V}$
Output signals			
Duty factor of output pulse	δ	\geq	$\begin{array}{r} 0 \% \\ 98 \pm 0,8 \% \end{array}$
Output voltage at $\mathrm{I}_{\mathrm{O}}<20 \mathrm{~mA}$ (peak value)	$\mathrm{V}_{11-16 \mathrm{M}}$	typ.	$11,8 \mathrm{~V}$
Output current (peak value)	11 M	<	40 mA

PACKAGE OUTLINES

TDA2582 : 16-lead DIL; plastic (SOT-38).
TDA2582Q: 16 -lead OIL; plastic (SOT-58).

Fig. 1 Block diagram.
Note: trip levels are nominal values.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage at pin 9
Voltage at pin 11
Output current (peak value)
Total power dissipation
Storage temperature
Operating ambient temperature

V_{9-16}	max.	14 V
$\mathrm{~V}_{11-16}$		0 to 14 V
$\mathrm{I}_{11 \mathrm{M}}$	max.	40 mA
$\mathrm{P}_{\text {tot }}$	max.	280 mW
$\mathrm{~T}_{\text {stg }}$	-25 to $+125{ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {amb }}$	-25 to $+80^{\circ} \mathrm{C}$	

CHARACTERISTICS

$\mathrm{V}_{9-16}=12 \mathrm{~V} ; \mathrm{V}_{10-16}=6,1 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in Fig. 4
Supply voltage range

Protection voltage too low supply voltage

V_{9-16}	10 to 14 V		
V9-16	typ.	9,4 9,9	v
19	typ.	14	mA
19	typ.	14	mA
19	$<$	17	mA
P	typ.	170	mW

Required input signals

Reference voltage (note 2)
Feedback input impedance
High reference voltage protection: threshold voltage
Horizontal reference signal (square-wave or
differentiated; negative transient is reference)
Voltage driven (peak-to-peak value)
Current driven (peak value)
Switching level current
Flyback pulse or differential deflection current
Flyback pulse current (peak value)
Over-current protection: (note 3)
threshold voltage
V_{10-16}
$\left|z_{8-16}\right|$
V_{10-16}
$V_{3-16(p-p)}$
I3M
$\pm I_{3}$
V_{2-16}
$1_{2 M}$
$-V_{6-16}$
$+V_{6-16}$
typ. $\quad 6,1 \mathrm{~V}$
5,6 to 6,6 V
typ. $\quad 200 \mathrm{k} \Omega$
typ. $\quad 8,4 \mathrm{~V}$
7,9 to 8,9 V

640 to 735 mV

Notes

1. This value refers to the minimum required supply current that will start all devices under the following conditions: $\mathrm{V}_{9-16}=10 \mathrm{~V} ; \mathrm{V}_{10-16}=6,2 \mathrm{~V} ; \delta=50 \%$.
2. Voltage obtained via an external reference diode. Specified voltages do not refer to the nominal voltages of reference diodes.
3. This spread is inclusive temperature rise of the IC due to warming up. For other ambient temperatures the values must be corrected by using a temperature coefficient of typical $-1,85 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.

CHARACTERISTICS (continued)

Over-voltage protection:
($\mathrm{V}_{\text {ref }}=\mathrm{V}_{10-16}$) threshold voltage
Remote control voltage; switch-off (note 1)
Remote control voltage; switch-on
'Smooth' remote control; switch-off (note 2)
'Smooth' remote control; switch-on
Remote control switch-off current

V_{7-16}	$\begin{aligned} & \text { typ. } \quad V_{\text {ref }}-60 \mathrm{mV} \\ & V_{\text {ref }}-130 \text { to } V_{\text {ref }}-0 \mathrm{mV} \end{aligned}$	
V_{4-16}	>	5,6
V_{4-16}	$<$	4,5
V_{5-16}	>	4,5
V_{5-16}	$<$	3
14	$<$	

$V_{11-16(p-p)}$	$>$	$11,6 \mathrm{~V}$
$\mathrm{I}_{11 \mathrm{M}}$	$<$	40 mA
$V_{\text {CEsat }}$	typ.	200 mV
$V_{\text {CEsat }}$	$<$	400 mV
δ	$>$	525 mV
	$<$	08 m
I_{4}	typ.	$110 \mu \mathrm{AA}$
I_{5}	typ.	$120 \mu \mathrm{~A}$
I_{10}	typ.	0,6 to $1,45 \mathrm{~mA}$

typ.	$0,0003 \mathrm{o}^{-1}$ $<$
$0,0004 \mathrm{oc}^{-1}$	
typ.	$-1,4 \%$
$<$	-2%
$<$	3%
typ.	$5 \mathrm{kHz} / \mathrm{V}$

Notes

1. See function description pin 4 (pages 9 and 10).
2. See function description pin 5 (page 10).
3. The duty factor is specified as follows: $\delta=\frac{\mathrm{t}_{\mathrm{p}}}{\mathrm{T}} \times 100 \%$ (see Fig. 2). After switch-on the duty factor rises gradually from 0% to the steady value. The relationship between V_{8-16} and the duty factor is given in Fig. 7 and the relationship between V_{12-16} and the duty factor is shown

Fig. 2.

Control circuit for power supplies

Phase control loop

Loop gain of APC-system (automatic phase control) *
Catching range ($\mathrm{f}_{\text {nom }}=15,625 \mathrm{kHz}$)
Phase relation between negative transient of sync pulse and middle of flyback
Tolerance of phase relation

PINNING

1. Phase detector output
2. Flyback pulse position input
3. Reference frequency input
4. Re-start count capacitor/remote control input
5. Slow start and transfer characteristic for low feedback voltages
6. Over-current protection input
7. Over-voltage protection input
8. Feedback voltage input
9. Positive supply
10. Reference input
11. Output
12. Maximum duty factor adjustment/smoothing
13. Oscillator timing network
14. Reactance stage reference voltage
15. Reactance stage input
16. Negative supply (ground)

For component values see Fig. 1.

APPLICATION INFORMATION

Fig. 3a.

Fig. 3b.
Lead 6 (pin 10) of circuit TDA2576 connected to lead 2 (pin 14) of circuit TDA2582.

Fig. 4 Circuit diagram.

The function is described against the corresponding pin number

1. Phase detector output

The output circuit consists of a bidirectional current source which is active for the time that the signal on pin 2 exceeds 1 V .
The current values are chosen such that the correct phase relation is obtained when the output signal of the TDA2571 is applied to pin 3.
With a resistor of $2 \times 33 \mathrm{k} \Omega$ and a capacitor of $2,7 \mathrm{nF}$ the control steepness is $0,55 \mathrm{~V} / \mu \mathrm{s}$ (Fig. 4).

2. Flyback pulse input

The signal applied to pin 2 is normally a flyback pulse with a duration of about $12 \mu \mathrm{~s}$. However, the phase detector system also accepts a signal derived by differentiating the deflection current by means of a small toroidal core (pulse duration $>3 \mu \mathrm{~s}$).

Fig. 5a.

Fig. 5b.

The toroidal transformer in Fig. 5a is for obtaining a pulse representing the mid-flyback from the deflection current. The connection of the picture phase information is shown in Fig. 5b.

3. Reference frequency input

The input circuit can be driven directly by the square-wave output voltage from pin 8 of the TDA2571.
The negative-going transient switches the current source connected to pin 1 from positive to negative. The input circuit is made such that a differentiated signal of the square-wave from the TDA2571 is also accepted (this enables mains isolation). The input circuit switching level is about 3 V and the input impedance is about $8 \mathrm{k} \Omega$.

4. Re-start count capacitor/remote control input
 Counting

An external capacitor ($\mathrm{C} 4=47 \mu \mathrm{~F}$) is connected between pins 4 and 16. This capacitor controls the characteristics of the protection circuits as follows.
If the protection circuits are required to operate, e.g. over-current at pin 6 , the duty factor will be set to zero thus turning off the power supply.
After a short interval (determined by the time constant on pin 5) the power supply will be restarted via the slow start circuit.
If the fault condition has cleared, then normal operation will be resumed. If the fault condition is persistent, the duty factor of the pulses is again reduced to zero and the protection cycle is repeated.
The number of times this action is repeated (n) for a persisting fault condition is now determined by: $n=C 4 / C 5$.

APPLICATION INFORMATION (continued)

Remote control input

For this application the capacitor on pin 4 has to be replaced by a resistor with a value between 4,7 and $18 \mathrm{k} \Omega$. When the externally applied voltage $\mathrm{V}_{4-16}>5,6 \mathrm{~V}$, the circuit switches off; switching on occurs when $\mathrm{V}_{4-16}<4,5 \mathrm{~V}$ and the normal starting-up procedure is followed. Pin 4 is internally connected to an emitter-follower, with an emitter voltage of $1,5 \mathrm{~V}$.

5. Slow start and transfer characteristics for low feedback voltages

Slow start

An external shunt capacitor ($\mathrm{C} 5=4,7 \mu \mathrm{~F}$) and resistor ($\mathrm{R} 5=270 \mathrm{k} \Omega$) are connected between pins 5 and 16. The network controls the rate at which the duty factor increases from zero to its steadystate value after switch-on. It provides protection against surges in the power transistor.

Transfer characteristic for low feedback voltages

The duty factor transfer characteristic for low feedback voltages can be influenced by R5. The transfer for three different resistor values is given in Fig. 7.

'Smooth' remote ON/OFF

The ON/OFF information should be applied to pin 5 via a high ohmic resistor, a high OFF-level gives a slow rising voltage at pin 5 , which results in a slowly decreasing duty factor.
6. Over-current protection input

A voltage proportional to the current in the power switching device is applied to the integrated circuit between pins 6 and 16. The circuit trips on both positive and negative polarity. When the tripping level is reached, the output pulse is immediately blocked and the starting circuit is activated again.

7. Over-voltage protection input

When the voltage applied to this pin exceeds the threshold level the protection circuit will operate. The tripping level is about the same as the reference voltage on pin 10.

8. Feedback voltage input

The control loop input is applied to pin 8 . This pin is internally connected to one input of a differential amplifier, functioning as an amplitude comparator, the other input of which is connected to the reference source on pin 10.
Under normal operating conditions, the voltage on pin 8 will be about equal to the reference voltage on pin 10. For further information refer to the Figs 7 and 8.

9. 12 V positive supply

The maximum voltage that may be applied is 14 V . Where this is derived from an unstabilized supply rail, a regulator diode (12 V) should be connected between pins 9 and 16 to ensure that the maximum voltage does not exceed 14 V . When the voltage on this pin fallis below a minimum of $8,6 \mathrm{~V}$ (typically $9,4 \mathrm{~V}$), the protection circuit will switch-off' the power supply.
10. Reference input

An external reference diode must be connected between this pin and pin 16.
The reference voltage must be between 5,6 and $6,6 \mathrm{~V}$. The IC delivers about 1 mA into the external regulator diode. When the external load on the regulator diode approaches this current, replenishment of the current can be obtained by connecting a suitable resistor between pins 9 and 10. A higher reference voltage value up to $7,5 \mathrm{~V}$ is allowed when use is made of a duty factor limiting resistor $<27 \mathrm{k} \Omega$ between pins 12 and 16 .
11. Output

An external resistor determines the output current fed into the base of the driver transistor. The output circuit uses an n-p-n transistor with 3 series-connected clamping diodes to the internal 12 V supply rail. This provides a low impedance in the " ON " state, that is with the drive transistor turned-off.
12. Maximum duty factor adjustment/smoothing

Maximum duty factor adjustment
Pin 12 is connected to the output voltage of the amplitude comparator (V_{10-8}). This voltage is internally connected to one input of a differential amplifier, the other input of which is connected to the sawtooth voltage of the horizontal oscillator. A high voltage on pin 12 results in a low duty factor. This enables the maximum duty factor to be adjusted by limiting the voltage by connecting pin 12 to the emitter of an $n-p-n$ transistor used as a voltage source.
Fig. 9 plots the maximum duty factor as a function of the voltage applied to pin 12. If some spread is acceptable the maximum duty factor can also be limited by connecting a resistor from pin 12 to pin 16. A resistor of $12 \mathrm{k} \Omega$ limits the maximum duty factor to about 50%. This application also reduces the total IC gain.

Smoothing

Any double pulsing of the IC due to circuit layout can be suppressed by connecting a capacitor of about 470 pF between pins 12 and 16.
13. Oscillator timing network

The timing network comprises a capacitor between pins 13 and 16, and a resistor between pin 13 and the reference voltage on pin 10.
The charging current for the capacitor (C13) is derived from the voltage reference diode connected to pin 10 and discharged via an internal resistor of about 330Ω.
14. Reactance stage reference voltage

This pin is connected to an emitter follower which determines the nominal reference voltage for the reactance stage ($1,4 \mathrm{~V}$ for reference voltage $\mathrm{V}_{10-16}=6,1 \mathrm{~V}$). Free-running frequency is obtained when pins 14 and 15 are short-circuited.
15. Reactance stage input

The output voltage of the phase detector (pin 1) is connected to pin 15 via a resistor. The voltage applied to pin 15 shifts the upper level of the voltage sensor of the oscillator thus changing the oscillator frequency and phase. The time constant network is connected between 14 and 15. Control sensitivity is typically $5 \mathrm{kHz} / \mathrm{V}$.
16. Negative supply (ground)

Fig. 6 Duty factor change as a function of initial duty factor; at 1 mV error amplifier input change; $\Delta V_{8-10(p-p)}=1 \mathrm{mV}$.

Fig. 7 Duty factor of output pulses as a function of feedback input voltage (V_{8-16}) with R 5 as a parameter and V_{12-16} as a limiting value; $\mathrm{V}_{10-16}=6,1 \mathrm{~V}$.

Fig. 8 Duty factor of output pulses as a function of error amplifier input $\left(\mathrm{V}_{8-10}\right) ; \mathrm{V}_{10-16}=6,1 \mathrm{~V}$.

Fig. 9 Maximum duty factor limitation as a function of the voltage applied to pin $12 ; \mathrm{V}_{10-16}=6,1 \mathrm{~V}$.

HORIZONTAL COMBINATION

The TDA2593 is a monolithic integrated circuit intended for use in colour television receivers in combination with TDA2510, TDA2520, TDA2560 as well as with TDA3500, TDA3510 and TDA3520. The circuit incorporates the following functions:

- horizontal oscillator based on the threshold switching principle
- phase comparison between sync pulse and oscillator voltage $\left(\varphi_{1}\right)$
- internal key pulse for phase detector $\left(\varphi_{1}\right)$ (additional noise limiting)
- phase comparison between line flyback pulse and oscillator voltage $\left(\varphi_{2}\right)$
- larger catching range obtained by coincidence detector (φ_{3}; between sync and key pulse)
- switch for changing the filter characteristic and the gate circuit (VCR-operation)
- sync separator
- noise separator
- vertical sync separator and output stage
- colour burst keying and line flyback blanking pulse generator
- phase shifter for the output pulse
- output pulse duration switching
- output stage with separate supply voltage for direct drive of thyristor deflection circuits
- low supply voltage protection

QUICK REFERENCE DATA

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38).

Fig. 1 Block diagram.

Horizontal combination

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Supply voltage
at pin 1 (voltage source)
at $\operatorname{pin} 2$
Voltages
Pin 4
Pin 9
Pin 10
Pin 11
Currents
Pins 2 and 3 (thyristor driving) (peak value)
Pins 2 and 3 (transistor driving) (peak value)
Pin 4
Pin 6
Pin 7
Pin 11
Total power dissipation
Storage temperature
Operating ambient temperature

		max.
V_{1-16}	$13,2 \quad V$	
V_{2-16}	max.	$18 \quad \mathrm{~V}$
V_{4-16}	max.	$13,2 \quad \mathrm{~V}$
$\pm \mathrm{V}_{9-16}$	max.	6 V
$\pm \mathrm{V}_{10-16}$	max.	6 V
$\mathrm{~V}_{11-16}$	max.	$13,2 \quad \mathrm{~V}$

$\mathrm{I}_{2 \mathrm{M},-13 \mathrm{M}}$	max. 650 mA
$\mathrm{l}_{2 \mathrm{M},-13 \mathrm{l}}$	max. $\quad 400 \mathrm{~mA}$
I_{4}	max. $\quad 1 \mathrm{~mA}$
$\pm{ }_{6}$	max. $\quad 10 \mathrm{~mA}$
-17	max. $\quad 10 \mathrm{~mA}$
l_{11}	max. 2 mA
$P_{\text {tot }}$	max. 800 mW
$\mathrm{T}_{\text {stg }}$	-25 to $+125{ }^{\circ} \mathrm{C}$
Tamb	-20 to $+70{ }^{\circ} \mathrm{C}$

CHARACTERISTICS at $\mathrm{V}_{1-16}=12 \mathrm{~V}$; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in Fig. 1
Sync separator

Input switching voltage
Input keying current
Input leakage current at $\mathrm{V}_{9-16}=-5 \mathrm{~V}$
Input switching current
Switch off current
Input signal (peak-to-peak value)

V_{9-16}	typ.	0,8 V
19		5 to $100 \mu \mathrm{~A}$
19	$<$	$1 \mu \mathrm{~A}$
19	\leqslant	$5 \mu \mathrm{~A}$
19	$>$	$100 \mu \mathrm{~A}$
9	typ.	$150 \mu \mathrm{~A}$
$\mathrm{V}_{9-16}(\mathrm{p}-\mathrm{p})$		3 to 4 V*

[^25]
Noise separator

Input switching voltage	V_{10-16}	typ.	1,4 V
Input keying current	110		5 to $100 \mu \mathrm{~A}$
Input switching current	I_{10}	$>$ typ.	$\begin{aligned} & 100 \mu A \\ & 150 \mu A \end{aligned}$
Input leakage current at $V_{10-16}=-5 \mathrm{~V}$	110	<	$1 \mu \mathrm{~A}$
Input signal (peak-to-peak value)	$V_{10-16(p-p)}$		3 to 4 V *
Permissible superimposed noise signal (peak-to-peak value)	$\mathrm{V}_{10-16}(\mathrm{p}-\mathrm{p})$	$<$	7 V

Line flyback pulse

Input current $\quad \mathrm{I}_{6}$

Input switching voltage
Input limiting voltage
V_{6-16}
V_{6-16}
typ. $\quad 1 \mathrm{~mA}$ 0,02 to 2 mA
typ. $\quad 1,4 \mathrm{~V}$
$-0,7$ to $+1,4 \mathrm{~V}$

Switching on VCR

input voltage

Input current
V_{11-16}
V_{11-16}
-111
111

	0 to 2,5
	9 to V_{1-16}
<	200
$<$	2

Pulse duration switch

For $t=7 \mu$ s (thyristor driving)
Input voltage
Input current
For $\mathrm{t}=14 \mu \mathrm{~s}+\mathrm{t}_{\mathrm{d}}$ (transistor driving)
Input voltage
Input current
For $t^{\prime}=0 ; V_{3-16}=0$ or input pin 4 open
Input voltage
Input current
V_{4-16}
I_{4}
V_{4-16}
-14
V_{4-16}
I_{4}

9,4 to $V_{1-16} \mathrm{~V}$
$>\quad 200 \mu \mathrm{~A}$

0 to 3,5 V
$>$$\quad 200 \mu \mathrm{~A}$

5,4 to $6,6 \mathrm{~V}$
typ. $\quad 0 \mu \mathrm{~A}$

[^26]Vertical sync pulse (positive-going)
Output voltage (peak-to-peak value)
Output resistance
Delay between leading edge of input and output signal
Delay between trailing edge of input and output signal

	$>$	10 V
$\mathrm{~V}_{8 \text {-16 (p-p) }}$	typ.	11 V
R_{8}	typ.	$2 \mathrm{k} \Omega$
$\mathrm{t}_{\text {on }}$	typ.	$15 \mu \mathrm{~s}$
$\mathrm{t}_{\text {off }}$	typ.	$\mathrm{t}_{\text {on }} \mu \mathrm{s}$

Burst gating pulse (positive-going)
Output voltage (peak-to-peak value)
$V_{7-16(p-p)}$

Output resistance
Pulse duration; $\mathrm{V}_{7-16}=7 \mathrm{~V}$
Phase relation between middle of sync pulse at the input and the leading edge of the burst gating pulse; $V_{7-16}=7 \mathrm{~V}$

Output trailing edge current
t

Line flyback-blanking pulse (positive-going)
Output voltage (peak-to-peak value)
Output resistance
Output trailing edge current

$V_{7-16(p-p)}$		4 to 5 V
R_{7}	typ.	70Ω
I_{7}	typ.	2 mA

Line drive pulse (positive-going)
Output voltage (peak-to-peak value)
Output resistance
for leading edge of line pulse
for trailing edge of line pulse

$V_{3-16(p-p)}$	typ. $10,5 \mathrm{~V}$
R_{3}	typ. $2,5 \Omega$
R_{3}	typ. 20Ω
${ }^{\text {t }}$ p	
t_{p}	$14+t_{d} \mu \mathrm{~S}^{*}$
V_{1-16}	yp

Overall phase relation

Phase relation between middle of sync pulse and the middle of the flyback pulse
Tolerance of phase relation

t	typ.	$2,6 \mu \mathrm{~s}^{* *}$
$\|\Delta \mathrm{t}\|$	$<$	$0,7 \mu \mathrm{~s}$

[^27]The adjustment of the overall phase relation and consequently the leading edge of the line drive pulse occurs automatically by phase control φ_{2}.
If additional adjustment is applied it can be arranged by current supply at pin 5 such that

Oscillator

Threshold voltage low level
Threshold voltage high level
Discharge current
Frequency; free running ($C_{\text {osc }}=4,7 \mathrm{nF}$; $\mathrm{R}_{\mathrm{osc}}=12 \mathrm{k} \Omega$
Spread of frequency
Frequency control sensitivity
Adjustment range of network in circuit (Fig. 1)
Influence of supply voltage on frequency
Change of frequency when V_{1-16} drops to 5 V
Temperature coefficient of oscillator frequency

Phase comparison φ_{1}

Control voltage range
Control current (peak value)
Output leakage current at $V_{13-16}=4$ to 8 V
Output resistance
at $V_{13-16}=4$ to 8 V at $V_{13-16}<3,8 \mathrm{~V}$ or $>8,2 \mathrm{~V}$
Control sensitivity
Catching and holding range ($82 \mathrm{k} \Omega$ beteeen pins 13 and 15)
Spread of catching and holding range

V_{13-16}	3,8 to 8,2 V	
$\pm 113 \mathrm{M}$	1,9 to 2,3 mA	
l_{13}	<	$1 \mu \mathrm{~A}$
R_{13}	high ohmic low ohmic	**
R_{13}		A
	typ.	2 k
$\Delta \mathrm{f}$	typ. ± 7	0 Hz
$\Delta(\Delta f)$	typ.	0 \%*

[^28]Phase comparison φ_{2} and phase shifter

Gontrol voltage range	V_{5-16}	5,4 to 7,6 V	
Control current (peak value)	$\pm \mathrm{I}_{5 \mathrm{M}}$	typ.	1 mA
$\begin{aligned} & \text { Output resistance } \\ & \text { at } V_{5-16}=5,4 \text { to } 7,6 \mathrm{~V} \\ & \text { at } V_{5-16}<5,4 \mathrm{~V} \text { or }>7,6 \mathrm{~V} \end{aligned}$	R_{5}	high ohmic typ.	$8 \mathrm{k} \Omega$
Input leakage current $V_{5-16}=5,4 \text { to } 7,6 \mathrm{~V}$	I_{5}	$<$	$5 \mu \mathrm{~A}$
Permissible delay between leading edge of output pulse and leading edge of flyback pulse ($\mathrm{t}_{\mathrm{fp}}=12 \mu \mathrm{~s}$)	t_{d}	$<$	$15 \mu \mathrm{~s}$
Static control error	$\Delta t / \Delta t_{d}$	$<$	0,2 \%

Coincidence detector φ_{3}

Output voltage
Output current (peak value)
without coincidence
with coincidence
V_{11-16}
0,5 to 6 V

111M typ. $0,1 \mathrm{~mA}$

Time constant switch

Output voltage
Output current (limited)
Output resistance
at $V_{11-16}=2,5$ to 7 V
at $\mathrm{V}_{11-16}<1,5 \mathrm{~V}$ or $>9 \mathrm{~V}$

Internal gating pulse

Pulse duration

V_{12-16}	typ.	6 V
$\pm 1_{12}$	$<$	1 mA

R_{12}	typ.	$0,1 \mathrm{k} \Omega$
R_{12}	typ.	$60 \mathrm{k} \Omega$

$t_{p} \quad$ typ. $\quad 7,5 \mu \mathrm{~s}$

[^29]
SOUND OUTPUT CIRCUIT

The TDA2610 and TDA2610A are sound output circuits for use in colour and black and white television receivers.
The output circuit in the TDA2610 is a class-B arrangement and can deliver an output power of 7 W . A current stabilizing circuit is incorporated in the TDA2610A to obtain a constant current drain and an output power of 4 W is available.
This constant current mode allows the TDA2610A to be supplied by the horizontal output transformer.
Furthermore the TDA2610 and TDA2610A feature :

- short circuit protected output
- thermal shut-down circuit
- low number of external components

QUICK REFERENCE DATA										
Supply voltage	V_{5-11}	typ.	25	V						
Supply current	I_{5}	typ.	300	mA						
Load resistance	R_{16-11}	typ.	15	Ω						
Output power at $\mathrm{f}=1 \mathrm{kHz} ; \mathrm{d}_{\text {tot }}=10 \%$	P_{O}	typ.	4	W						
Input voltage for $\mathrm{P}_{\mathrm{O}}=\mathrm{P}_{\mathrm{O} \text { max }}$	V_{10-11}	typ.	100	mW						
Input impedance	$\left\|\mathrm{Z}_{10-11}\right\|$	typ.	45	$\mathrm{k} \Omega$						

PACKAGE OUTLINE

16-lead DIL; plastic power (SOT-69B).

BLOCK DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltage
Supply voltage at pin 5
at pin 1
V_{5-11}

\max.	35	V
\max.	35	V

Current
Output current (peak value)
$\mathrm{I}_{16 \mathrm{M}}$
max.
2 A
Power dissipation
Total power dissipation
see derating curve on page 3

Temperatures

Storage temperature
Operating ambient temperature

$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	-25 to +150	${ }^{\circ} \mathrm{C}$

RATINGS (continued)

Power derating curve

CHARACTERISTICS at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in the top circuit on page 4
Supply voltage
V_{5-11} typ. $\begin{array}{rr}25 & \mathrm{~V} \\ 15 \text { to } 35 & \mathrm{~V}\end{array}$

Performance at $\mathrm{V}_{5-11}=25 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=15 \Omega ; \mathrm{f}=1 \mathrm{kHz}$
Stabilizing current

Output power at $d_{\text {tot }}=10 \%$
Output current (repetitive peak value)
Input voltage for $\mathrm{P}_{\mathrm{O}}=\mathrm{P}_{\mathrm{O}}$ max
Input impedance
Frequency response
Noise output voltage at $\mathrm{R}_{\mathrm{S}}=5 \mathrm{k} \Omega ; \mathrm{B}=60 \mathrm{~Hz}$ to 15 kHz
I_{3}
P_{o}

$\mathrm{I}_{16 \mathrm{RM}}$	typ.	0,8	A
$\mathrm{~V}_{10-11}$	typ.	100	mV
$\left\|\mathrm{Z}_{10-11}\right\|$	typ.	45	$\mathrm{k} \Omega$
f	$>$	15	kHz

typ. 0,3 A
< $0,5 \mathrm{~A}$
typ. 4 W
yp. 0,8 A
mV
$\mathrm{k} \Omega$
kHz
$\mathrm{V}_{16-11}<$
$0,5 \mathrm{mV}$

CHARACTERISTICS at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in the bottom circuit on page 4
Performance at $\mathrm{V}_{1-11}=25 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=10 \Omega ; \mathrm{f}=1 \cdot \mathrm{kHz}$
Output power at $\mathrm{d}_{\text {tot }}=10 \%$
Output current (repetitive peak value)
Input voltage for $\mathrm{P}_{\mathrm{O}}=4 \mathrm{~W}$
Total quiescent current

P_{o}	typ.	7	W
$\mathrm{I}_{16 \mathrm{RM}}$	typ.	1,2	A
$\mathrm{~V}_{10-11}$	typ.	90	mV
$\mathrm{I}_{\text {tot }}$	typ.	22	mA

APPLICATION INFORMATION

Sound output circuit with shunt stabilizer ($\mathrm{P}_{\mathrm{o}}=4 \mathrm{~W}$)

Sound output circuit without shunt stabilizer ($\mathrm{P}_{\mathrm{o}}=7 \mathrm{~W}$)

[^30]
5 W AUDIO POWER AMPLIFIER

The TDA2611A is a monolithic integrated circuit in a 9-lead single in-line (SIL) plastic package with a high supply voltage audio amplifier. Special features are:

- possibility for increasing the input impedance
- single in-line (SIL) construction for easy mounting
- very suitable for application in mains-fed apparatus
- extremely low number of external components
- thermal protection
- well defined open loop gain circuitry with simple quiescent current setting and fixed integrated closed loop gain

QUICK REFERENCE DATA

Supply voltage range	V_{P}	6 to 35 V
Repetitive peak output current	$\mathrm{l}_{\mathrm{ORM}}$	$<$
Output power at $\mathrm{d}_{\text {tot }}=10 \%$		$1,5 \mathrm{~A}$
$\mathrm{~V}_{\mathrm{P}}=18 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega$	P_{O}	typ.
$\mathrm{V}_{\mathrm{P}}=25 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=15 \Omega$	P_{o}	typ.
Total harmonic distortion at $\mathrm{P}_{\mathrm{O}}<2 \mathrm{~W} ; \mathrm{R}_{\mathrm{L}}=8 \Omega \mathrm{~W}$		
Input impedance	$\mathrm{d}_{\text {tot }}$	typ.
Total quiescent current at $\mathrm{V}_{\mathrm{P}}=18 \mathrm{~W}$	$0,3 \%$	
Sensitivity for $\mathrm{P}_{\mathrm{O}}=2,5 \mathrm{~W} ; \mathrm{R}_{\mathrm{L}}=8 \Omega$	$\mathrm{Z}_{\mathrm{i}} \mid$	typ.
Operating ambient temperature	$\mathrm{I}_{\text {tot }}$	typ.
Storage temperature	V_{i}	typ.

PACKAGE OUTLINE

9-lead SIL; plastic (SOT-110A).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage	V_{P}	max.	35 V
Non-repetitive peak output current	$I_{\text {OSM }}$	max.	3 A
Repetitive peak output current	$I_{\text {ORM }}$	max.	$1,5 \mathrm{~A}$
Total power dissipation	see derating curves Fig. 2		
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to $+150{ }^{\circ} \mathrm{C}$	
Operating ambient temperature	$\mathrm{T}_{\text {amb }}$	-25 to $+150{ }^{\circ} \mathrm{C}$	

Fig. 2 Power derating curves.

D.C. CHARACTERISTICS

Supply voltage range	V_{P}	6 to 35 V
Repetitive peak output current	$I_{\text {ORM }}$	$<$
Total quiescent current at $V_{P}=18 \mathrm{~V}$	$I_{\text {tot }}$	typ.

A.C. CHARACTERISTICS

$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{P}}=18 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega ; \mathrm{f}=1 \mathrm{kHz}$ unless otherwise specified; see also Fig. 3
A.F. output power at $d_{\text {tot }}=10 \%$

$$
\begin{aligned}
& V_{P}=18 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega \\
& \mathrm{~V}_{\mathrm{P}}=12 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega \\
& \mathrm{~V}_{\mathrm{P}}=8,3 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega \\
& \mathrm{~V}_{\mathrm{P}}=20 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega \\
& \mathrm{~V}_{\mathrm{P}}=25 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=15 \Omega
\end{aligned}
$$

Fig. 3 Test circuit; pin 3 not connected.

Fig. 4 Total harmonic distortion as a function of output power.

Fig. 5 Output power as a function of supply voltage.

Fig. 6 Input impedance as a function of frequency; curve a for $\mathrm{C}=1 \mu \mathrm{~F}, \mathrm{R}=0 \Omega$; curve b for $\mathrm{C}=1 \mu \mathrm{~F}, \mathrm{R}=1 \mathrm{k} \Omega$; circuit of Fig. 3; C2 = 10 pF ; typical values.

TDA2611A

Fig. 7 Input impedance as a function of R in circuit of Fig. $3 ; C=1 \mu \mathrm{~F} ; \mathrm{f}=1 \mathrm{kHz}$.

Fig. 8 Total harmonic distortion as a function of R_{S} in the circuit of Fig. $3 ; P_{o}^{\prime}=3,5 \mathrm{~W} ; f=1 \mathrm{kHz}$.

Fig. 9 Total power dissipation and efficiency as a function of output power.

APPLICATION INFORMATION

Fig. 10 Ceramic pickup amplifier circuit.

Fig. 11 Total harmonic distortion as a function of output power; - with tone control;

- - - without tone control; in circuit of Fig. 10; typical values.

Fig. 12 Frequency characteristics of the circuit of Fig. 10; - tone control max. high; - - - tone control min. high; P_{O} relative to $0 \mathrm{~dB}=3 \mathrm{~W}$; typical values.

Fig. 13 Frequency characteristic of the circuit of Fig. 10; volume control at the top; tone control max. high.

HI-FI POWER AMPLIFIER

The TDA2612 is a monolithic hi-fi power amplifier, intended for hi-fi television sets, radios, record players, tape recorders.
This IC can be used very well in conjunction with sound channel ICs, e.g. TBA570A, TBA120S and TDA2790.
The performance of the circuit fulfils DIN45500.
Features:

- Low harmonic distortion
- Low intermodulation distortion
- Low transient intermodulation
- Good hum suppression

QUICK REFERENCE DATA

Supply voltage range (pin 6)	$\mathrm{V}_{\text {S }}$	10 to 35 V		
Output power at $d_{\text {tot }}=0,7 \%$; $\mathrm{R}_{\mathrm{L}}=4 \Omega ; \mathrm{V}_{6-9}=26 \mathrm{~V}$	P_{o}	>	10	W
Total harmonic distortion at $\mathrm{P}_{\mathrm{O}}=6 \mathrm{~W}$	$\mathrm{d}_{\text {tot }}$	typ.	0,1	\%
Power bandwidth (-3 dB) ; $\mathrm{d}_{\text {tot }}=0,7 \%$	B	40 Hz	- 16	
Input voltage for $\mathrm{P}_{\mathrm{O}}=10 \mathrm{~W}$	V_{i}	typ.	180	
Signal-to-noise ratio (unweighted) related to $P_{o}=100 \mathrm{~mW}$	S/N	typ.	72	

PACKAGE OUTLINE

16-lead DIL; plastic power (SOT-69B).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage
Non-repetitive peak output current
Total power dissipation
Shot-circuit time of load impedance during signal drive; $\mathrm{V}_{\mathrm{S}}=25 \mathrm{~V}$.
Storage temperature
Ambient temperature
$V_{6-9} \max \quad 35 \mathrm{~V}$
l_{12}
$\max \quad 5 \mathrm{~A}$
see derating curves Fig. 2

$\mathrm{t}_{\text {sc }}$	max.	100	hours
$\mathrm{T}_{\text {stg }}$	max.	$150{ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {amb }}$	max.	$1500^{\circ} \mathrm{C}$	

THERMAL RESISTANCE

The power derating curves (Fig. 2) are based on the following data
From junction to case
From junction to ambient

$R_{\text {th j-c }}$	$=3,3^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th j-a }}$	$=$

Fig. 2 Power derating curves.

CHARACTERISTICS

Supply voltage (pin 6)

VS \quad| typ. 26 V |
| ---: |
| 10 to 35 V |

Characteristics at $\mathrm{V}_{\mathrm{S}}=26 \mathrm{~V}$; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; $\mathrm{f}=1 \mathrm{kHz}$; see Fig. 3 .
Output current (peak value)
Total quiescent current

Input impedance
note 2
Signal-to-noise ratio related to $\mathrm{P}_{\mathrm{O}}=100 \mathrm{~mW}$ (note 3)

Damping factor (note 4)

Frequency response
Ripple rejection at $f=100 \mathrm{~Hz} ; \mathrm{R}_{\mathrm{S}}=5 \mathrm{k} \Omega$ (note 5)
$>\quad 60 \mathrm{~dB}$
typ. $\quad 72 \mathrm{~dB}$
$R_{L} / Z_{0} \quad \begin{array}{rr}> \\ \text { typ. } & 32\end{array}$
f
RR
$>\quad 16 \mathrm{kHz}$.
typ. $\quad 50 \mathrm{~dB}$

Notes

1. Output power measured with an ideal coupling capacitor to the load impedance.
2. The input impedance determinated by the external resistor R1.
3. The unweighted noise is measured in a bandwidth of 40 Hz to 16 kHz at $\mathrm{R}_{\mathrm{S}}=5 \mathrm{k} \Omega$.
4. Z_{0} is the output impedance measured between 40 Hz and $12,5 \mathrm{kHz}$.
5. The ripple rejection is defined as: $20 \log \frac{V_{S R}}{V_{O R}}$ in which $V_{S R}=$ ripple voltage at supply line and $V_{O R}=$ ripple voltage across loudspeaker load.

Fig. 3 Test circuit.

MOUNTING INSTRUCTIONS

When using an external heatsink, connected to the heat spreader of the IC, the thermal power in the circuit can be reduced to a negligible value.
The optimum heatsink dimensions (blackened aluminium) for a given operating ambient temperature, can be found from the derating curves in Fig. 2.
The fact that the thermal resistance of the encapsulation is very good, results in a relatively small heatsink for thermal power reduction.
Two mounting methods are shown in Figs 4 and 5.
By using these methods, no extra copper area is required on the printed-circuit board, so a saving in printed-wiring area is obtained.
Mounting the external heatsink can be done by screwing or clipping.
Mechanical stresses do not damage the IC.
It is recommended that a heatsink-compound be used between IC heat spreader andheatsink.

Fig. 4 Mounting method 1.

Fig. 5 Mounting method 2.

SWITCHED-MODE POWER SUPPLY DRIVE CIRCUIT

The TDA2640 is a mon olithic integrated circuit for driving the switched-mode power supply of a colour or black and white television receiver.
Except for the drive and output voltage stabilizing circuitry the TDA 2640 incorporates the following functions:
.- fixed frequency determined by external components

- remote switch off and restart
- over-current protection
- over-voltage protection
- slow starting
- low supply voltage protection
- open-circuit feedback protection
- optional synchronization

QUICK REFERENCE DATA					
Supply voltage	V_{1-16}	typ.	12	V	
Supply current	I_{1}	typ.	8,1	mA	
Output voltage (peak-to-peak value)	$\mathrm{V}_{6-16(\mathrm{p}-\mathrm{p})}$	$>$	11,5	V	
Output current (peak value)	$\mathrm{I}_{6 \mathrm{M}}$	$<$	20	mA	
Duty factor of output pulse	δ	typ.	20 to 85	$\%$	
Reference input voltage	V_{9-16}	typ.	6,2	V	
Sync pulse (peak-to-peak value)	$\mathrm{V}_{2-16(\mathrm{p}-\mathrm{p})}$		1 to 10	V	

PACKAGE OUTLINES

TDA2640 : 16-lead DIL; plastic (SOT-38).
TDA2640Q : 16-lead QIL; plastic (SOT-58).

BLOCK DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Voltages

Supply voltage
Pin 2
Pin 8
Pin 9
Pin 10
Pin 9 with respect to pin 10
Pin 11 (pin 12 not connected)

Current

Output current (peak value)
Power-dissipation
Total power dissipation
Temperatures
Storage temperature
Operating ambient temperature
CHARACTERISTICS at $\mathrm{V}_{1-16}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Supply current at $\delta=50 \%$

Reference voltage
Sync pulse (peak-to-peak value)
Remote switch: inhibit (switched off)
normal (switched on)
Over-voltage protection: threshold voltage
input current temperature coefficient

Over-current protection: threshold voltage
Low supply voltage protection: threshold voltage
Horizontal drive pulse (peak-to-peak value)
Duty factor of output pulse: maximum
minimum
$\mathrm{V}_{1-16} \max \quad 13,8 \mathrm{~V}$
V_{2}-16 -5 to +10 V
$\mathrm{V}_{8-16} \quad 0$ to +10 V
$\mathrm{V}_{9-16} \quad 0$ to +10 V
$\mathrm{V}_{10-16} 0$ to $\mathrm{V}_{9}-16+1 \mathrm{~V}$
$\mathrm{V}_{9-10}-1$ to +7 V
$\mathrm{V}_{11-16}-1$ to 0 V
$\mathrm{I}_{6 \mathrm{M}} \quad \max . \quad 20 \mathrm{~mA}$
$P_{\text {tot }} \quad \max . \quad 145 \mathrm{~mW}$

$\mathrm{T}_{\text {stg }}$	-55 to $+125^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}$	-25 to $+65^{\circ} \mathrm{C}$

$\mathrm{I}_{1} \quad$ typ. $\quad 8,1 \mathrm{~mA}$ 5,1 to $10,4 \mathrm{~mA}$
typ. $\quad 6,2 \mathrm{~V} 1)$
$\mathrm{V}_{2-16(p-p)}$ 1 to 10 V
V_{14-16}
V_{14-16}
0 to 3 V
5 to 12 V)
V_{8-16} typ. $6,2 \mathrm{~V}^{3}$)
I_{8}
V_{12-11} 660 to $760 \mathrm{mV}^{4}$)
V_{1-16} typ. $8,6 \mathrm{~V}$
8 to $9,5 \mathrm{~V}$
$\left.\mathrm{V}_{6-16(\mathrm{p}-\mathrm{p})}>\quad 11,5 \mathrm{~V}^{5}\right)$
$\delta_{\text {max }}$
$\delta_{\text {min }}$

$>$	85%
typ.	90%
typ.	15%
$<$	20%

For notes see page 5.

CHARACTERISTICS (continued)

Saturation voltage of output transistor at $I_{6}=20 \mathrm{~mA}$

Feedback input impedance at pin 10
Temperature coefficient for constant duty factor at pin 10

Oscillator frequency spread (with fixed external components)
Rise time of leading edge of output pulse

V CEsat	typ. $<$	280 mV 400 mV
$\mid \mathrm{Z}_{10-16^{\prime}}$	typ.	$100 \mathrm{k} \Omega$

PINNING

1. Positive supply
2. Sync pulse input
3. Oscillator timing capacitor
4. Junction of oscillator timing C and R
5. Oscillator timing resistor
6. Output
7. Low feedback protection external resistor
8. Over-voltage protection input
9. Reference input
10. Feedback voltage input
11. Over-current protection input (emitter)
12. Over-current protection input (base)
13. Slow start C and R controlling network
14. Inhibitor
15. Re-start count capacitor
16. Negative supply (ground)

Notes (from page 4)

1. Voltage obtained via an external reference diode ($6,2 \mathrm{~V}$).
2. Or pin 14 not connected.
3. The over-voltage protection threshold is equal to the reference voltage $\mathrm{V} 9-16 \pm 50 \mathrm{mV}$.
4. The temperature coefficient is typ. $-1,7 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ (pin 11 or pin 12 can be connected to pin 16).
5. The maximum voltage on pin 6 is limited to approximately the supply voltage (pin 1) by an internal diode.
6. Valid for normal operating conditions. The circuit starts with 0% duty factor, controlled by the switch-on circuit; the duty factor then rises to the normal operating value.

The duty factor is specified as follows:

$$
\delta=\frac{\mathrm{t}}{\mathrm{~T}} \times 100 \%
$$

APPLICATION INFORMATION (see circuits on pages 3 and 8)

The function is quoted against the corresponding pin number

1. 12 V positive supply

The maximum voltage that may be applied is $13,8 \mathrm{~V}$. Where this is derived from an unstabilized supply rail, a regulator diode (12 V) should be connected between pins 1 and 16 to ensure that the maximum voltage does not exceed $13,8 \mathrm{~V}$. When the voltage on this pin falls below a minimum of 8 V the protection circuit will switch off the power supply.
2. Sync pulse input

The switching repetition rate may be synchronized to a source of positive-going sync pulses between 1 and 10 V . The free-running frequency of the TDA2640 oscillator must be above the synchronized frequency.
The minimum duration of the sync pulses is the difference between the period of the oscillator pulses and the period of the sync pulses. Synchronization reduces the . maximum obtainable duty factor. If synchronization is not required, connect pin 2 to pin 16.

3, 4 and 5. Oscillator timing network
The timing network consists of a capacitor connected between pins 3 and 4, and a resistor connected between pins 4 and 5. The value of these components determines the switching period of the SMPS drive pulses.
6. Output

An external resistor connected between this pin and the supply rail determines the base drive current for the drive transistor. The integrated output circuit consists of an $n-p-n$ transistor with a catching diode connected between its collector and an internal 12 V supply. This provides a low impedance in the "ON" state, that is with the drive transistor turned off.
7. Low feedback protection

An external resistor connected between this pin and pin 13 determines the maximum obtainable duty factor for the output pulses if the feedback voltage (pin 10) remains below the specified limit during starting.
8. Over-voltage protection

A voltage that is proportional to the power supply output voltage can be connected to this pin to operate a protection circuit if a threshold level is exceeded. The threshold level is determined by the external voltage reference diode connected to pin $9(6,2 \mathrm{~V}$ nominal). If over-voltage protection is not required, pin 8 should be connected to pin 16 .
9. Reference input

An external voltage reference diode ($6,2 \mathrm{~V}$ nominal) must be connected between this pin and pin 16. The stability of the reference source determines the overall stability of the power supply output voltage. The voltage reference diode current is derived from within the integrated circuit; it has a typical value of $0,8 \mathrm{~mA}$.

10. Feedback voltage input

The control loop input is applied to pin 10. This pin is internally connected to one input of a differential error amplifier, functioning as an amplitude comparator, the other input of which is connected to the reference source on pin 9 . Under normal operating conditions with the comparator at balance, the voltage on pin 10 will be about equal to the reference voltage on pin $9(6,2 \mathrm{~V})$, and the d.c. feedback factor of the external network should be designed for this value.

11 and 12. Over-current protection

A voltage proportional to the output current of the SMPS is applied to these pins. Pin 11 is connected to the emitter of an internal $n-p-n$ detection transistor; pin 12 is connected to its base. Either of these pins may be grounded (pin 16) depending on the polarity of the input during increasing current. For example, if pin 11 is grounded the trip level on pin 12 is 660 mV to 760 mV ; if pin 12 is grounded, the trip level on pin 11 is -660 mV to -760 mV .
13. Slow start

A resistor and capacitor in parallel must be connected between this pin and pin 16 ($1 \mu \mathrm{~F}$ and $390 \mathrm{k} \Omega$). This network controls the rate at which the duty factor of the SMPS drive pulses increases to its normal operating value after switch-on. This minimizes inrush current. The network also influences the repetition period of the slow start during a fault.
14. Inhibitor

The power supply is switched off if the voltage on this pin is between 0 V and 3 V $\left(-I_{14}>0,1 \mathrm{~mA}\right)$. The power supply is switched on if this pin is not connected, or is connected to a voltage of between 5 V and the 12 V supply. The slow start and protection circuits remain operative under both conditions.
15. Re-start count capacitor

An external capacitor ($\mathrm{C} 15=10 \mu \mathrm{~F}$) should be connected between pins 15 and 16 . This capacitor controls the characteristics of the protection circuits as follows. When the protection circuit operates due to a fault, the duty factor of the drive pulses is reduced to zero. After an interval determined by the time-constant of the circuit connected to pin 13, the duty factor of the pulses slowly increases toward its normal operating value. If the fault persists, the duty factor of the pulses is again reduced to zero and the protection cycle is repeated. The number of times that the cycle is repeated before the power supply drive pulses are permanently discontinued is determined by the value of the capacitor connected to pin 15. The number of counts is roughly C15/C13.
16. Negative supply (ground)

1. Change of transfer characteristic against duty factor for $\Delta \mathrm{V}_{10-16}=1 \mathrm{mV}$.
2. Percentage change of transfer characteristics against duty factor for $\Delta V_{10-16}=1 \mathrm{mV}$.

VERTICAL DEFLECTION CIRCUIT

The TDA2652 is a monolithic integrated circuit for colour television receivers with 110° deflection. With an external circuit it can be used in 20AX and 30AX systems. The circuit incorporates the following functions:

- Synchronization circuit
- Vertical oscillator
- Blanking pulse generator
- Sawtooth generator with buffer stage
- Preamplifier
- Driver and output stage
- Short-circuit and thermal protection
- Guard circuit
- Voltage stabilizer

QUICK REFERENCE DATA

Supply voltage range	V_{P}	15 to 35 V		
Output current (peak-to-peak value)	$19(p-p)$	max.	4	A
Total power dissipation	$P_{\text {tot }}$	max.	10	W
Operating junction temperature	T_{j}	max.		${ }^{\circ} \mathrm{C}$
Thermal resistance from junction to copper heat spreader (tab)	$\mathrm{R}_{\text {th j-tab }}$	$=$	3	K/W

PACKAGE OUTLINE

16-lead DIL; plastic power (SOT-69C).

RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages

Pin 2
${ }^{1 i n \mid}$ Pin 4
Pin 7 (supply voltage)
Pin 9
Pin 11
Pin 12
Pin 13
Pin 15
Currents
Pin 1
Pin 3
Pin 5
Pin 6
Pin 7, 9, 10
Pin 14
Total power dissipation internally limited by the thermal protection circuit.
Storage temperature
Operating junction temperature
$T_{\text {stg }}$
T_{j}

-11	max.	1 mA
I_{3}	max.	1 mA
I_{5}	max.	5 mA
I_{6}	max.	1 mA
Internally limited by		
short-circuit protection		
$\pm I_{14}$	max.	15 mA

Internally limited by short-circuit protection
$\pm \mathrm{I}_{14}$ max.
15 mA

V_{2-16}	max.	8 V
V_{4-16}	\max.	50 V
$V_{7-16}\left(V_{p}\right)$	\max.	50 V
V_{9-16}	\max.	50 V
V_{11-16}	\max.	50 V
V_{12-16}	\max.	12 V
V_{13-16}	\max.	50 V
V_{15-16}	\max.	12 V

CHARACTERISTICS

$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Supply voltage
Input voltage
$V_{P}=30,5 \mathrm{~V}$
Input current
$V_{P}=30,5 \mathrm{~V}$
Blanking pulse duration synchronized at 50 Hz

Blanking pulse current
Blanking pulse generator output voltage $\pm \mathrm{I}_{14}=10 \mathrm{~mA}$

Oscillator voltage (d.c.)
Sawtooth generator output voltage
Sync pulse amplitude
Oscillator temperature dependency

$$
T_{\text {case }}=20 \text { to } 100^{\circ} \mathrm{C}
$$

Oscillator voltage dependency $V_{p}=15$ to 35 V
Junction temperature switching point thermal protection

Synchronization range
Output voltage
$-19=2 \mathrm{~A}$
$\mathrm{I}_{\mathrm{g}}=2 \mathrm{~A}$
Output current
$V_{P}=V_{7-16}$
15 to 35 V
typ.
2,07 V 2,01 to 2,13 V
l_{12}
t_{p}
$\pm \mathrm{l}_{14}$
V7-14
V_{14-16}
V_{1-16}
V_{5-16}
V_{15-16}
$(\Delta f / f) / \Delta T$
$(\Delta f / f) / \Delta V_{P}$
T_{j}
V_{9-16}
\vee_{9-16}
19
$1 \mu \mathrm{~A}$
typ.
$1,4 \mathrm{~ms}$
1,33 to $1,47 \mathrm{~ms}$
typ.
12 mA
typ. 1 V
typ. 1 V
typ. $\quad 9 \mathrm{~V}$
1 to $V_{p}-0,5 \mathrm{~V}$
1 to 12 V
typ. $\quad 0,0001{ }^{\circ} \mathrm{C}^{-1}$

typ.	$0,0004 \mathrm{~V}^{-1}$
typ.	$150 \mathrm{o}^{\circ} \mathrm{C}$
	142 to $158 \mathrm{O}^{\circ} \mathrm{C}$
typ.	15%

$V_{p}-2,3$ to $V_{p}-2,6 \vee$
2,3 to 2,6 V
\leqslant
2 A

PINNING

1. Oscillator adjustment
2. Oscillator capacitor
3. Amplitude adjustment
4. Sawtooth capacitors
5. Output ramp oscillator
6. Guard circuit
7. Positive supply
8. n.c.
9. Output
10. Ground
11. Preamplifier
12. Preamplifier input
13. Reference voltage stage
14. Blanking output
15. Synchronization input
16. Ground.

APPLICATION INFORMATION

The function is described against the corresponding pin number

1.2. Oscillator

The frequency of the oscillator is determined by a potentiometer at pin 1 and a capacitor at pin 2.
3.4. Sawtooth generator

The timing of the ramp generator is determined by a potentiometer at pin 3 and a capacitor at pin 4. This capacitor has been split to realize linearity control.
5. Output ramp oscillator

This pin delivers a ramp signal which is used for linearity control, and drive of the preamplifier. The ramp signal is applied via a shaping network to pin 4 (linearity) and via a resistor to pin 12 (preamplifier).
6. Guard circuit input

When a capacitor is connected between this pin and ground a continuous blanking signal is available at pin 14 in case of missing vertical deflection qurrent.
When no continuous blanking is required this capacitor is replaced by a resistor between pin 6 and pin 7.
7. Positive supply

No voltage stabilizer is necessary resulting in optimum tracking with line deflection. The internal stabilizer delivers the voltage for the oscillator, ramp generator and preamplifier.
8. Not connected.
9. Output of class B power stage

The deflection coil is connected to this pin, via a four-pole network, a coupling capacitor and a feedback resistor, to ground.
10. Ground for output stage.
11. Preamplifier

The cut-off frequency of the internal differential amplifier (preamplifier) is adjusted with the capacitor between pin 11 and ground.
12. Preamplifier input

The d.c. voltage is proportional to the output voltage (d.c. feedback). The a.c. voltage is proportional to the sum of the ramp voltage at pin 5 and the voltage, with opposite polarity, at the feedback resistor (a.c. feedback).
13. Reference voltage stage

The bias stage of the preamplifier is decoupled at this pin.
14. Blanking output

The maximum pulse amplitude with no load is V_{P}. When I_{14} is 10 mA the amplitude of the pulse is 1 V .
15. Synchronization input

The oscillator has to be synchronized by a positive-going pulse of between 1 and 12 V .
16. Ground of small signal part.

APPLICATION INFORMATION (continued)

Supply voltage

Output voltage (d.c.)
Output voltage (peak value)
Supply current
Deflection current (peak-to-peak value)
Output current (peak-to-peak value)
Flyback time
Total power dissipation in I.C.
Blanking time
Non-linearity

		20AX (Fig. 3)	30AX (Fig. 4)
V_{S}	typ.	33 V	35 V
V_{9-16}	typ.	17 V	16 V
V_{9-16}	typ.	36 V	43 V
17	typ.	500 mA	290 mA
${ }^{1}(\mathrm{p}-\mathrm{p})$	typ.	3,6 A	2,1 A
$\pm \mathrm{l} 9(\mathrm{p}-\mathrm{p})$	typ.	1,9 A	1,1 A
t_{fl}	typ.	0,85 ms	1,2 ms
$P_{\text {tot }}$	typ.	8,5 W *	$4 \mathrm{~W}^{* *}$
t_{b}	typ.	1,4 ms	$1,4 \mathrm{~ms}$
	<	3%	3%

* For 20AX systems the heatsink has to be constructed for $\mathrm{P}_{\text {tot }}<10 \mathrm{~W}, \mathrm{R}_{\text {th } h-a}=4{ }^{\circ} \mathrm{C} / \mathrm{W}$ at $\mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}$.
** For 30AX systems the heatsink has to be constructed for $\mathrm{P}_{\text {tot }}<5 \mathrm{~W}, \mathrm{R}_{\text {th }} \mathrm{h}-\mathrm{a}=8,5^{\circ} \mathrm{C} / \mathrm{W}$ at $\mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}$.

Fig. 3 Complete vertical deflection circuit for 20AX.

TDA2652

Fig. 4 Complete vertical deflection circuit for 30AX.

VERTICAL DEFLECTION CIRCUIT

The TDA2653 is a monolithic integrated circuit for vertical deflection in large screen colour television receivers.
The circuit incorporates the following functions:

- Oscillator
- Synchronization circuit
- Blanking pulse generator
- Frequency detector and storage
- Sawtooth generator
- Amplitude switch for $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$
- Buffer stage
- Reference voltage unit
- Preamplifier
- Output stage
- Flyback generator
- Voltage stabilizer
- Guard circuit
- Output stage protections

QUICK REFERENCE DATA

Supply voltage range (pin 6)	$V_{6-16}=V_{P}$	9 to 50 V
Output current (peak-to-peak value)	$\lg (\mathrm{p}-\mathrm{p})$	typ.$2,4 \mathrm{~A}$ Operating junction temperature
Thermal resistance from junction to copper heat spreader (mounting base)	T_{j}	max.

PACKAGE OUTLINE

16-lead DIL; plastic power (SOT-69C).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages

Pin 2; oscillator voltage

V_{2-16}	max.	7 V
V_{4-16}	max.	40 V
V_{5-16}	max.	40 V
$V_{6-16}=V_{P}$	max.	40 V
V_{7-16}	max.	40 V
V_{9-16}	max.	50 V
V_{11-16}	max.	50 V
V_{12-16}	max.	12 V
V_{15-16}	max.	30 V

Currents
Pin 1; oscillator $\quad-1_{1} \quad \max \quad 1 \mathrm{~mA}$
Pin 3; sawtooth generator
Pin 7; flyback generator
Pins 8, 9, 10; internally limited by the short-circuit protection circuit
Pin 14; blanking pulse
max. $\quad 1 \mathrm{~mA}$
$-1,5$ to $+1,2$ A
Pin 4; sawtooth voltage
Pin 5; decoupling reference voltage
Pin 6; supply voltage
Pin 7; output voltage flyback generator
Pin 9; output voltage
Pin 11; supply voltage output stage
Pin 12; input voltage preamplifier
\vee_{12-16}
max. $\quad 30 \mathrm{~V}$
Pin 15; sync voltage

13
17
$\pm 1_{14}$
V_{15-16}
max. $\quad 15 \mathrm{~mA}$
Total power dissipation; internally limited by the thermal protection circuit (see also Fig. 2)

Storage temperature	$\mathrm{T}_{\text {stg }}$	-25 to $+150{ }^{\circ} \mathrm{C}$
Operating junction temperature	T_{j}	$\max .150{ }^{\circ} \mathrm{C}$

Fig. 2 Total power dissipation. $R_{\text {th } h-a}$ includes $R_{\text {th }}$ mb-h which is expected when heatsink compound is used. $R_{\text {th }} \mathrm{j}-\mathrm{mb}=5 \mathrm{~K} / \mathrm{W}$.

Sawtooth generator output voltage
Oscillator voltage (d.c.)
Output voltage at $\lg (p-p)=2,2 \mathrm{~A}$
minimum
maximum
Output current (peak-to-peak value)
Current at pin 7
Voltage at pin 7 during flyback
Blanking pulse generator output voltage
$\pm \mathrm{I}_{14}=10 \mathrm{~mA}$
Blanking pulse output current
Blanking pulse duration at 50 Hz
Tracking range oscillator
Oscillator temperature dependency
$T_{\text {case }}=20$ to $100^{\circ} \mathrm{C}$
Oscillator voltage dependency
$V_{P}=10$ to 30 V
Junction temperature
switching point thermal protection
Thermal resistance from junction to copper heat spreader (mounting base)

$V_{6-16}=V_{P}$		9 to $50 V^{*}$
V_{11-16}		9 to 50 V
V_{7-16}	typ.	$V_{P}-2,2 \mathrm{~V}$
V_{12-16}	typ.	2 V
$-l_{12}$	typ.	$1 \mu \mathrm{~A}$
V_{15-16}		1 to 12 V

14

typ.	$50 \mu \mathrm{~A}$
typ.	$60 \mu \mathrm{~A}$

1,2 to $V_{p}-0,5 \mathrm{~V}$
6 to $9 . V$

V_{9-16}	typ.	$1,3 \mathrm{~V}$
V_{9-16}	typ.	$V_{11-16-1,9 \mathrm{~V}}$
$I_{9(p-p)}$	$<$	$2,4 \mathrm{~A}$
$\pm I_{7}$	$<$	$1,2 \mathrm{~A}$
V_{7-16}	typ.	$V_{p-2,2 ~ V}$
V_{14-16}	typ.	6 V
V_{6-14}	typ.	6 V
$\pm I_{14}$	$<$	12 mA
t_{b}		$1,4 \pm 0,07 \mathrm{~ms}$
	typ.	28%

$(\Delta f / f) / \Delta T \quad$ typ. $\quad 0,0001 \mathrm{~K}^{-1}$
$(\Delta f / f) / \Delta V_{P} \quad$ typ. $\quad 0,0004 \mathrm{~V}^{-1}$
$T_{j} \quad$ typ. $\quad 150 \pm 8{ }^{\circ} \mathrm{C}$
$R_{\text {th j-mb }} \quad$ typ. $\quad 5 \mathrm{~K} / \mathrm{W}$

[^31]1. Oscillator adjustment
2. Oscillator capacitor
3. Amplitude adjustment
4. Sawtooth capacitor
5. Reference voltage decoupling
6. Positive supply
7. Flyback generator output
8. Negative supply (ground) of output stage
9. Output
10. n.c. (not connected)
11. Positive supply of output stage
12. Preamplifier input
13. Output of sawtooth buffer stage
14. Blanking output
15. Synchronization input
16. Negative supply (ground) of small signal part

APPLICATION INFORMATION

The function is described against the corresponding pin number

1. 2. Oscillator

The oscillator frequency is determined by a potentiometer at pin 1 and a capacitor at pin 2.
3. 4. Sawtooth generator

The timing of the sawtooth generator is determined by a potentiometer at pin 3 and a capacitor at pin 4. This capacitor has been split to realize linearity control.
5. Reference voltage decoupling

An electrolytic capacitor connected from this pin to ground, suppresses the ripple voltage on the supply voltage, from which, via an internal resistor divider the reference voltage is derived.
6. Positive supply

The supply voltage at this pin is used to supply the flyback generator, the voltage stabilizer, reference voltage unit, buffer stage and blanking pulse generator.
7. Flyback generator output

An electrolytic capacitor has to be connected between pins 7 and 11 to complete the flyback generator.
8. Negative supply (ground) of output stage
9. Output of class-B power stage

The vertical deflection coil is connected to this pin, via a series connection of a coupling capacitor and a feedback resistor, to ground.
10. Not connected
11. Positive supply of output stage

This supply is obtained from the flyback generator. An electrolytic capacitor between pins 11 and 7, and a diode between pins 6 and 11 have to be connected for proper operation of the flyback generator.
12. Preamplifier input

The d.c. voltage is proportional to the output voltage (d.c. feedback). The a.c. voltage is proportional to the sum of the buffered sawtooth voltage at pin 13 and the voltage, with opposite polarity, at the feedback resistor (a.c. feedback).
13. Output of sawtooth buffer stage

The sawtooth signal is fed via a buffer stage to pin 13. It delivers the signal which is used for linearity control, and drive of the preamplifier. The sawtooth is applied via a shaping network to pin 4 (linearity) and via a resistor to pin 12 (preamplifier).

APPLICATION INFORMATION (continued)

14. Blanking output

The maximum pulse amplitude with no load is V_{p}. When I_{14} is 10 mA the amplitude of the pulse is 6 V .
15. Synchronization input

The oscillator has to be synchronized by a positive-going pulse between 1 and 12 V . The integrated frequency detector, with storage and amplitude switch, takes care of automatic recognition and processing of 50 Hz or 60 Hz signals.
16. Negative supply (ground) of small signal part.

The following application data are measured in a typical 30AX system (Fig. 3).

Supply voltage
Output voltage (d.c. value)
Output voltage (peak value)
Supply current
Output current (peak-to-peak value)
Flyback time
Blanking time
Total power dissipation in IC
Total power consumption
Non-linearity
Thermal resistance of heatsink

$\mathrm{V}_{\mathrm{P}}=\mathrm{V}_{6-16}$	typ.	26 V
$\mathrm{~V}_{\mathrm{g}-16}$	typ.	14 V
$\mathrm{~V}_{9-16}$	typ.	42 V
$\mathrm{I}_{3}+\mathrm{I}_{6}$	typ.	310 mA
$\mathrm{I}_{\mathrm{g}}(\mathrm{p}-\mathrm{p})$	typ.	$2,1 \mathrm{~A}$
t_{fl}	typ.	$0,85 \mathrm{~ms}$
t_{b}	typ.	$1,46 \mathrm{~ms}$
$\mathrm{P}_{\text {tot }}$	typ.	4 W
P	typ.	$8,1 \mathrm{~W}$
	$<$	2%
		2

[^32]

Fig. 3 Complete vertical deflection circuit for 30AX.

VERTICAL DEFLECTION CIRCUIT

The TDA2654 is a monolithic integrated circuit for vertical deflection in monochrome and tiny-vision colour television receivers.

The circuit incorporates the following functions:

- Oscillator
- Synchronization circuit
- Blanking pulse generator
- Sawtooth generator
- S-correction and linearity circuit
- Comparator and drive circuit
- Output stage
- Flyback dissipation limiting circuit
- Supply for pre-stages via internal voltage divider
- Thermal protection circuit'
- Controlled switch-on

QUICK REFERENCE DATA

PACKAGE OUTLINE

9-lead SIL; plastic (SOT-110A).

Fig. 1 Block diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
All voltages and currents refer to the tab (ground) connection.

Voltages

Pin 2
Pin 3
Pin 4
Pin 5
Pin 6
Pin 7
Pin 8
Currents
Pin 1
Pin 2
Pin 3
Pin 4
Pin 5
Pin 6
Pin 9 (repetitive)
Pin 9 (non-repetitive)
Total power dissipation (see also Fig. 2)
Storage temperature
Operating junction temperature

V_{2}	max.		V
V_{3}	max.	17	V
V_{4}	max.	17	V
V_{5}	max.	6	V
V_{6}	max.	13	V
V_{7}	max.	18	V
$V_{8}\left(V_{p}\right)$	max.	35	V
$+11$	max.	1	mA
-1_{1}	max.	5	mA
I_{2}	max.	2,5	mA
13	max.	30	mA
14	max.	30	mA
± 15	max.	1	mA
± 16	max.	3	mA
± 19	max.	1	A
± 19	max.	1,5	A
$\mathrm{P}_{\text {tot }}$	max.	5	W
$\mathrm{T}_{\text {stg }}$	-25	150	${ }^{\circ} \mathrm{C}$
T_{j}	max.	150	${ }^{\circ} \mathrm{C}$

Fig. 2 Total power dissipation. The graph takes into account an $R_{\text {th } t a b-h}=1^{\circ} \mathrm{C} / \mathrm{W}$ which is to be expected when the tab is connected to a heatsink with one 3 mm bolt, without using heatsink compound. $R_{\text {th } j-t a b}=12^{\circ} \mathrm{C} / \mathrm{W}$.

CHARACTERISTICS

$T_{a m b}=25^{\circ} \mathrm{C}$ unless otherwise specified; voltages and currents ref. to tab (ground)

			monochrome (Fig. 3)	tiny-vision colour (Fig. 4)	
Supply voltage (pin 8)	V_{p}	typ.	25	31	v
Supply current (pin 8)	Ip	typ.	165	150	mA
Total power dissipation	$\mathrm{P}_{\text {tot }}$	typ.	3,1	3,5	W
Output voltage (peak-to-peak value)	$V_{9}(p-p)$	typ.	22	28	V
Blanking pulse; $\mathrm{I}_{1}=1 \mathrm{~mA}$	V_{1}	typ.	11,5	14,5	V
Blanking pulse duration	t_{p}	typ.	1,3	1,4	ms
D.C. input voltage (pin 6)	V_{6}	typ.	3,4	4,4	V
Deflection current (peak-to-peak value)	$\lg (p-p)$	typ.	1,1	0,92	A
Flyback time	t	typ.	1,3	1,32	ms
Free running oscillator frequency	${ }_{\text {fosc }}$	typ.	46	46	Hz
Oscillator thermal drift		typ.	-0,01	-0,01	$\mathrm{Hz} /{ }^{\circ} \mathrm{C}$
Oscillator voltage shift		typ.	-0,13	-0,12	Hz / V
Tracking range oscillator		typ.	18	18	\%
Synchronization input voltage	V_{2}	>	1	1	V
Voltage divider ratio	V_{7} / V_{8}	typ.	0,52	0,52	
Input resistance pin 7	R_{7}	typ.	2,8	2,8	k Ω
Recommended thermal resistance of heatsink for $T_{a m b}$ up to $70^{\circ} \mathrm{C}$	Rth h-a	$<$	13	10	ºc/w

PINNING

1. Blanking pulse output
2. Synchronization input
3. Oscillator timing network
4. Sawtooth generator
5. S-correction and linearity control
6. Feedback input
7. Voltage divider
8. Positive supply
9. Output

Tab. Negative supply (ground)

APPLICATION INFORMATION (see also Fig. 1)

The function is described against the corresponding pin number

1. Blanking pulse output

When the IC is adjusted on a free running frequency of 46 Hz the internal blanking pulse generator delivers a blanking pulse with a duration between $1,2 \mathrm{~ms}$ and $1,5 \mathrm{~ms}$. The circuit is, however, made such that when the flyback time of the deflection current is longer, the blanking pulse corresponds to the flyback time. The output voltage is also high when the voltage at pin 9 is lower than nominal 5 V . An external blanking circuit is recommended when tiny-vision receivers are operated from a car-battery.
2. Synchronization input

The oscillator has to be synchronized by a positive-going pulse. The circuit is made such that synchronization is inhibited during the flyback time.

APPLICATION INFORMATION (continued)

3. Oscillator

The oscillator frequency is set by the potentiometer P1 and resistor R2 between pins 3 and 7 and capacitor C1 between pin 3 and ground. For 50 Hz systems the free running frequency is preferably adjusted to 46 Hz .
4. Sawtooth generator

This pin supplies the charging and discharging currents of the capacitor between pin 4 and ground (C2).
5. S-correction and linearity control

The amount of S-correction can be set by the value of C3. For 110° deflection coils, e.g. AT1040/15, a capacitor of $15 \mu \mathrm{~F}$ will give the right value for S-correction. For 90° deflection systems (e.g. AT1235/00) a nearly linear deflection current is required, this can be achieved by increasing C3 to $100 \mu \mathrm{~F}$. The linearity can be adjusted by potentiometer P2.
6. Output current feedback

To this pin is applied a part of the output current measured across R6 and superimposed on a d.c. voltage derived from the voltage across the output coupling capacitor. This signal is compared with the internal reference sawtooth. The internal reference sawtooth has an amplitude of about $0,6 \mathrm{~V}$ peak to peak and a d.c. level of about $3,4 \mathrm{~V}$, for a supply voltage of 25 V at pin 8 .
7. Internal voltage divider decoupling

The voltage on this pin is about half the supply voltage at pin 8 and is applied to the bases of emitter followers supplying the pre-stages of the IC. This voltage controls the amplitude of the internal reference sawtooth. In this way tracking with the line deflection system is achieved when the supply voltage at pin 8 is derived from the line output transformer.
8. Positive supply

The value depends on the deflection coil.
9. Output

The deflection coil is connected to ground via coupling capacitor C9 and current sensing resistor R6. The line frequency superimposed on the output voltage may be too high due to the current feedback system. The line frequency ripple can be decreased by connecting a resistor across the deflection coil. The flyback time can be influenced by the resistor divider (R4, R5) for the d.c. feedback to pin 6. It should be noted that the output voltage shows a negative swing of about 1 V during the first (positive current) part of the flyback.
Tab
The tab is used as negative supply (ground) connection. Therefore, the tab should be well connected to the negative side of the power supply.

Controlled switch-on

This feature is achieved by charging the a.c. coupling capacitor (C4; connected to pin 6) from an internal current source of about 2 mA (voltage limited to maximum 15 V) for a short period after switch-on. The charging time can be influenced by the value of C5 (connected to pin 7). Discharging of C 4 results in a slowly increasing deflection current after a delay of about 1 second. The blanking voltage at pin 1 is high during this delay.

Fig. 3 Monochrome 110° vertical deflection system.

APPLICATION INFORMATION (continued)

(1) Only required when rapid variations in the supply voltage are expected.

Fig. 4 Colour 90° vertical deflection system.

IIIIIII

OSCILLATOR FOR VIDEO RECORDERS

The TDA2700 is a monolithic integrated circuit for video recorders incorporating the following functions:

- $562,5 \mathrm{kHz}$ oscillator
- pulse separator
- noise separator
- phase detector
- pulse generator
- low-ohmic output stage

PACKAGE OUTLINE 16-lead DIL; plastic (SOT-38).

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages

Supply voltage
Pin 3

V_{1-16}	max.	13,2	V
$\mathrm{~V}_{3-16}$	0 to V_{1-16}	V	
$-\mathrm{V}_{8-16}$	\max.	12	V

Currents ${ }^{\prime}$

Pin 2 (average value)
(peak value)
Pin 6 (peak value)
Pin 7 (peak value)
Pin 8 (peak value)
Pin 9 (peak value)

$\left.-\mathrm{I}_{2(\mathrm{AV}}\right)$	\max.	20	mA
$-\mathrm{I}_{2 \mathrm{M}}$	\max.	200	mA
$\pm \mathrm{I}_{6 \mathrm{M}}$	\max.	10	mA
$-\mathrm{I}_{7 \mathrm{M}}$	\max.	10	mA
$\mathrm{I}_{8 \mathrm{M}}$	max.	10	mA
$\pm \mathrm{I}_{9 \mathrm{M}}$	\max.	10	mA

Power dissipation

Total power dissipation
Ptot max. 600 mW
Temperatures
Storage temperature

$$
-25 \text { to }+125 \circ^{\circ} \mathrm{C}
$$

Operating ambient temperature

$$
\mathrm{T}_{\mathrm{stg}}
$$

$$
\mathrm{T}_{\mathrm{amb}}
$$

$$
-20 \text { to }+60^{\prime} \quad{ }^{\circ} \mathrm{C}
$$

CHARACTERISTICS at $\mathrm{V}_{1-16}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in circuit on page 4 Inputs

Supply
Supply current at $\mathrm{I}_{2}=0$
$\mathrm{I}_{1} \quad$ typ. $\quad 36 \mathrm{~mA}$
Sync pulse separator

Negative video input signal (peak-to-peak value)	$\mathrm{V}_{8-16(p-\mathrm{p})}$	typ.	3	V
Input current (peak value)		1 to 7	V	
Input leakage current at $\mathrm{V}_{8-16}=-3 \mathrm{~V}$	$\mathrm{I}_{8 \mathrm{M}}$	\geq	10	$\mu \mathrm{~A}$
	$-\mathrm{I}_{8}$	\leq	1	$\mu \mathrm{~A}$

Noise separator

Input voltage
Input current range
Input resistance

V_{9-16}	typ.	0,7	V
I_{9}	0,03 to 10	$\mu \mathrm{~A}$	
R_{9-16}	typ.	200	Ω

CHARACTERISTICS (continued)

Outputs

Sync pulse separator

Output voltage (peak-to-peak value)
Output resistance : at leading edge of sync pulse at trailing edge of sync pulse

Additional external load resistance

Output stage

Output voltage (peak-to-peak value)
Output resistance
Duty factor of output pulse

Phase detector

Input voltage
Input current range
Control voltage range
Output resistance in the control voltage range
Control current
Input voltage range for I_{12} positive for I_{12} negative
Input current at $V_{13-16} \geq 7,2 \mathrm{~V}$
at $\mathrm{V}_{13-16} \leq 5,5 \mathrm{~V}$
Catching and holding range (based on $15,625 \mathrm{kHz}$)
D. C. level at pin 11

Internal resistance at pin 11

Oscillator

Output voltage (peak-to-peak value)
Charge and discharge current
Voltage at pin 15
Frequency ; free running
Frequency adjustment range

V_{7-16} (p-p)	typ.	10	V
R_{7-16}	typ.	50	Ω
R_{7-16}	typ.	2, 2	$\mathrm{k} \Omega$
R7-16(ext)	\geq	2	ks

$\mathrm{V}_{2-16(\mathrm{p}-\mathrm{p})}$ typ. $\quad 10 \mathrm{~V}$
R_{2-16} low-ohmic
$\delta \quad$ typ. $\quad 50$ \%

$\mathrm{V}_{14-16(\mathrm{p}-\mathrm{p})}$	typ.	3 V	
$\mathrm{I}_{14}= \pm \mathrm{I}_{15}$	typ.	$0,94 \mathrm{~mA}$	
$\mathrm{~V}_{15-16}$	typ.	$3,1 \mathrm{~V}$	
f_{O}	typ.	$562,5 \mathrm{kHz}$	
$\Delta \mathrm{f}_{\mathrm{O}} / \mathrm{f}_{\mathrm{O}}$	typ.	10	$\%$

[^33]
APPLICATION INFORMATION

CHROMINANCE SIGNAL/MIXER FOR VIDEO RECORDERS

The TDA2710 is a monolithic integrated circuit for video recorders incorporating the following functions:

- controlled chrominance amplifier
- control voltage amplifier
- mixer for the chrominance signal
- electronic recording/playback switch
- Schmitt trigger for killing the chrominance signal
- colour killer output stage

BLOCK DIAGRAM

PACKAGE OUTLINE

16-1ead DIL; plastic (SOT-38).

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages

Supply voltage (pin 1)

$V_{P}\left(V_{1-16}\right)$	0 to 13,2	V
V_{4-16}	0 to V_{P}	V
$\mathrm{~V}_{5-16}$	0 to V_{P}	V
V_{12-16}	0 to V_{P}	V
V_{13-16}	0 to V_{P}	V
V_{15-16}	0 to V_{P}	V
$\pm \mathrm{V}_{9-16}$	\max	4
		V

Currents
At pin 6
At $\operatorname{pin} 7$

$-\mathrm{I}_{6}$	max.	5	mA
$-\mathrm{I}_{7}$	max.	5	mA
$-\mathrm{I}_{8}$	max.	5	mA
I_{11}	max.	5	mA

At pin 11
I_{11}
$\max \quad 5 \quad \mathrm{~mA}$
Power dissipation
Total power dissipation $\quad P_{\text {tot }} \quad \max \quad 700 \mathrm{~mW}$

Temperatures

Storage temperature	$\mathrm{T}_{\text {stg }}$	-25 to +125
Operating ambient temperature	Tamb	${ }_{7}-20$ to +60

CHARACTERISTICS at $\mathrm{V}_{\mathrm{P}}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in circuit on page 4

Inputs

Chrominance input (pins 2 and 3)

Input resistance	$\mathrm{R}_{2 ; 3-16}$	typ.	3,3	$\mathrm{k} \Omega$	
D.C. input voltage (without signal)	$\mathrm{V}_{2 ; 3-16}$	typ.	5,9	V	
Input voltage range at a peak-to-peak burst of $0,5 \mathrm{~V}$	$\mathrm{~V}_{2 ; 3-16}$	2,5	to	75	mV
Sub-carrier (pin 10)					
Input resistance	R_{10-16}	typ.	2	$\mathrm{k} \Omega$	
D.C. input voltage (without signal)	V_{10-16}	typ.	4,4	V	
Input voltage range (peak-to-peak value)	$\mathrm{V}_{10}-16(\mathrm{p}-\mathrm{p})$	60 to	500	mV	

CHARACTERISTICS (continued)
Reference voltage (pin 12)
External reference voltage
Control voltage (pin 15)
Voltage at control voltage input
for colour on
for colour off
Colour killer input (pin 13)
Input voltage for colour off
Recording/playback switch (pin 9)
Input resistance

Input voltage : for recording
for playback

Outputs

Colour killer output (pin 11)
Output resistance for colour on
Output voltage for colour off

Recording

Output voltages (peak-to-peak values) at a peak-to-peak burst of $0,5 \mathrm{~V}$
Output voltage at pin 8 (peak-to-peak value) at $V_{6-16(p-p)}=0,5 \mathrm{~V}$

R_{11-1}	typ.	10	$\mathrm{k} \Omega$
V_{11-16}	\leq	0,5	V

Playback

Sub-carrier suppression at pins 6 and 7 at $\mathrm{V}_{10-16(p-p)}=300 \mathrm{mV} ; \mathrm{V}_{6-16(p-p)}=$ $\mathrm{V}_{7-16(\mathrm{p}-\mathrm{p})}=1 \mathrm{~V}$; sub-carrier suppression at pins 4 and 5
V_{12-16} typ. 7 V

V_{15-16}	\leq	5,7	V
V_{15-16}	\geq	6,1	V

V_{15-16}
V_{13-16}
\geq
6 V

R_{9-16}	typ.	1	$\mathrm{k} \Omega$
V_{9-16}	\leq	0,3	V
$\mathrm{~V}_{9-16}$	\geq	0,85	V

11-16
0,5 V
$\mathrm{V}_{6 ; 7-16(\mathrm{p}-\mathrm{p})} \quad$ typ. $\quad 0,5 \quad \mathrm{~V}$
$\mathrm{V}_{8-16(p-p)} \quad 0,35$ to $0,5 \quad \mathrm{~V}$

$$
-
$$

APPLICATION INFORMATION

COLOUR SUB-CARRIER OSCILLATOR FOR VIDEO RECORDERS

The TDA2720 is a monolithic integrated circuit for video recorders incorporating the following functions:
$-8,8 \mathrm{MHz}$ colour sub-carrier oscillator with divider stage

- keyed phase comparison for optimum noise behaviour
- a stage to obtain automatic chrominance control
- a stage to obtain a colour killer signal and an identification signal
- 2 mixer stages to obtain the $4,99 \mathrm{MHz}$ sub-carrier frequency

BLOCK DIAGRAM

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38).

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages

Supply voltage (pin 12)
At pin 1
At pin 2
At pin 3
At pins 5, 6, 7 and 11
At pin 13
At pin 14
At pin 15

Currents

At pins 2, 5 and 6
At pins 7, 11 and 13
At pin 10

Power dissipation

Total power dissipation

Temperatures

Storage temperature
Operating ambient temperature
CHARACTERISTICS at $\mathrm{V}_{\mathrm{P}}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Supply current (pin 12)

$8,8 \mathrm{MHz}$ oscillator

Input resistance
Output resistance
Overall holding range
Oscillator output voltage

$\mathrm{V}_{\mathrm{P}}\left(\mathrm{V}_{12-16}\right)$	max. 13,2
V_{1-16}	0 to V_{P}
V_{2-16}	min.
V_{3-16}	0 to V_{P}
$\mathrm{V}_{5 ; 6 ; 7 ; 11-16}$	min. 0
V_{13-16}	0 to V_{P}
V_{14-16}	0 to V_{P}
V_{15-16}	0 to V_{P}

$\mathrm{I}_{2 ; 5 ; 6}$	\max.	5	mA
$\mathrm{I}_{7 ; 11 ; 13}$	\max.	5	mA
$-\mathrm{I}_{10}$	\max.	2	mA

$P_{\text {tot }} \quad \max \quad 750 \mathrm{~mW}$

$\mathrm{T}_{\text {stg }}$	-25 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}$	-20 to +60	${ }^{\circ} \mathrm{C}$

$\mathrm{I}_{12} \quad$ typ. $\quad 40 \mathrm{~mA}$

R_{11-16}	typ.	270	Ω
R_{10-16}	typ.	200	Ω
Δ_{f}	typ.	± 500	Hz
$\mathrm{~V}_{10-16}$	typ.	10	V

CHARACTERISTICS (continued)

Reference voltage part

Burst signal (peak-to-peak value)
Linear output voltage range
(peak-to-peak value)
D, C. voltage at pin 14 with a peak-to-peak
burst of $0,5 \mathrm{~V}$
without burst
Reference voltage
Burst keying pulse
Voltage at pin 2; 4,4 MHz (peak-to-peak value)
$\mathrm{V}_{7-16(\mathrm{p}-\mathrm{p})}$ typ. $0,5 \mathrm{~V}$
$V_{7-16(p-p)} \leq \quad 1,5 \quad V$
V_{14-16} typ. $5,5 \mathrm{~V}$
V_{14-16} typ. 7,0 V
V_{13-16} typ. 7,0 V
$\mathrm{V}_{15-16} \geq 2,0 \quad \mathrm{~V}$
$\mathrm{V}_{2-16(\mathrm{p}-\mathrm{p})}$ typ. $0,5 \mathrm{~V}$

Mixer

Carrier suppression at $1 . \mathrm{V}$ peak-to-peak; $4,99 \mathrm{MHz}{ }^{1}$) Recording mixer
$\geq \quad 20 \quad \mathrm{~dB}$
Playback mixer
Gain for both mixers
Gain variation
Gain difference of mixers
Linear output voltage range (peak-to-peak value) pin 5 pin 6
Voltage at pin $4 ; 4,4 \mathrm{MHz}$ (peak-to-peak value)
D.C. voltage at pin 4
at pin 5
at pin 6

[^34]
APPLICATION INFORMATION

FM LIMITER/DEMODULATOR

'The TDA2730 is a monolithic integrated circuit for use in audio-visual equipment, e.g.; video recorders and video disc players.
The circuit comprises an f.m. limiter/demodulator for the playback signal, a video amplifier and an electronic switch, which can be used for drop-out elimination.

| | QUICK REFERENCE DATA | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Supply voltage | V_{6-11} | typ. | 12 | V |
| Supply current | I_{6} | typ. | 42 | mA |
| Input signal range (peak-to-peak value) | $\mathrm{V}_{4-5(\mathrm{p}-\mathrm{p})}$ | 30 to 2000 | mV | |
| Video output signal (peak-to-peak value) | $\mathrm{V}_{2-11(\mathrm{p}-\mathrm{p})}$ | typ. | 4 | V |

BLOCK DIAGRAM

"IIII

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38).

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134) Voltage

Supply voltage

Power dissipation

Total power dissipation
(see also derating curve below)
Temperatures
Storage temperature
Operating ambient temperature
$\mathrm{V}_{6-11} \max \quad 13 \mathrm{~V}$
$P_{\text {tot }} \quad \max . \quad 1,25 \mathrm{~W}$
$\mathrm{T}_{\text {stg }} \quad-65$ to $+125 \quad{ }^{\circ} \mathrm{C}$ see derating curve below

CHARACTERISTICS measured in the circuit on page 7 (Fig. 1)

Supply voltage range	V_{6-11}	typ. 12	V

The following characteristics are measured at $\mathrm{V}_{6-11}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

Supply current

$\mathrm{I}_{6} \quad$| typ. |
| :--- |
| 25 to 54 |
| mA |
| mA |

Limiter

Start of limiting (-3 dB)
$\left.\begin{array}{lllll}\mathrm{f}_{\mathrm{O}}=4 \mathrm{MHz} \text {; peak-to-peak value } & \mathrm{V}_{4-5(\mathrm{p}-\mathrm{p})} & \text { typ. } & 0,8 & \mathrm{~V} \\ \text { nput signal range for constant luminance output }\end{array}\right)$

Demodulator

Measured at $\mathrm{I}_{1}=4 \mathrm{~mA} ;\left|\mathrm{Z}_{16-11}\right|=1,5 \mathrm{k} \Omega$; delay time $\tau=64 \mathrm{~ns} ; \Delta \mathrm{f}=1,4 \mathrm{MHz}$ $\left(\mathrm{f}_{\mathrm{L}}=3,0 \mathrm{MHz}, \mathrm{f}_{\mathrm{H}}=4,4 \mathrm{MHz}\right.$)

Current ratio

Output voltage (peak-to-peak value)

Drop-out switch

Input drive voltage range	$\mathrm{V}_{7 ; 9-11}$	6,5 to 12	v
Voltage drop between input and output			
for signal flow from pin 7 to pin 8	V_{7-8}	typ. 1,5	V
for signal flow from pin 9 to pin 8	V_{9-8}	typ. 1,5	V
Input offset voltage	$\left\|\mathrm{v}_{7-8}-\mathrm{v}_{9-8}\right\|$	< 20	mV
Switch actuating input voltage			
for signal flow from pin 7 to pin 8	V_{10-11}	0 to 2, 7	V
for signal flow from pin 9 to pin 8	V_{10-11}	3,7 to 6,0	V
Output impedance at $1,5 \mathrm{~mA}$ by internal load	Z_{8-11}	emitter foll	

$\mathrm{I}_{1} / \mathrm{I}_{16}$	typ.	1	
$\mathrm{~V}_{16-11}$	typ.	540	mV

$\begin{array}{llll}V_{7-8} & \text { typ. } & 1,5 & \mathrm{~V} \\ \mathrm{~V}_{9-8} & \text { typ. } & 1,5 & \mathrm{~V}\end{array}$
$\left|\mathrm{V}_{7-8}-\mathrm{V}_{9-8}\right|<20 \mathrm{mV}$
V_{10-11}
0 to 2,7 V
emitter follower

CHARACTERISTICS (continued)

Video amplifier

Input voltage level	V_{3-11}	typ.	730	mV
Output voltage level	V_{2-11}	typ.	5,5	V
Open loop gain	G	typ.	43	dB
Bandwidth $(3 \mathrm{~dB})$	B	typ.	8,8	MHz
Output voltage (peak-to-peak value; see note)	$\mathrm{V}_{2-11(\mathrm{p}-\mathrm{p})}$	typ.	4	V

Note

The gain of the amplifier is determined by the feedback network comprising the impedances between pins 2 and 3 , and pins 8 and 3 . The values quoted apply to the circuit on page 7 (Fig.1).

PINNING

1. Current setting demodulator
2. Video amplifier output
3. Video amplifier input
4. F. M. signal input
5. F. M. signal input
6. Positive supply
7. Switch input
8. Switch output
9. Switch input
10. Switch actuating input
11. Negative supply (ground)
12. Limiter output
13. Limiter output
14. Demodulator input
15. Demodulator input
16. Demodulator output

APPLICATION INFORMATION

The function is quoted against the corresponding pin number

1. Current setting of demodulator

The current into this pin directly determines the amplitude and the d.c. level of the demodulator output. At $\mathrm{I}_{1}=4 \mathrm{~mA}$, optimum temperature compensation is obtained.
2. Video amplifier output

A signal up to 4 V peak-to-peak is available from this output (Fig.1).
This can be the video signal (Fig. I) or the f.m. signal to the delay line (drop-out elimination; Fig. 2).
3. Video amplifier input

The demodulator output signal is the input signal to this pin (Fig.1) or the f.m. modulated signal (Fig. 2).
4. F.M. signal input (in conjunction with pin 5)

A frequency modulated signal of 1 V peak-to-peak is applied between pins 4 and 5. D. C. feedback from the limiter output is applied to stabilize the operation.
5. F.M. signal input

[^35]
APPLICATION INFORMATION (continued)

6. Positive supply

Correct operation can be obtained in the range 11 to 13 V .
7. Switch input

The signal applied to pin 7 or to pin 9 is transferred to pin 8, depending on the switch position. For an input level between 0 and $2,7 \mathrm{~V}$ at pin 10 , the signal at pin 7 is transferred to pin 8, and when between 3,7 and 6 V the input signal at pin 9 is transferred to pin 8.
The signal at pin 7 or pin 9 may vary from 6,5 to 12 V .
The signal at pin 8 is $1,5 \mathrm{~V}$ below the value at pin 7 or 9 .
The difference in input level at pins 7 and 9 , to obtain equal output at pin 8 , will be less than 20 mV .
8. Switch output

See pin 7.
9. Switch input

See pin 7.
10. Switch actuating input

See pin 7.
11. Negative supply (ground)
12. Limiter output

A balanced signal is available between pins 12 and 13. The signal amplitude is limited to 750 mV at both outputs.
13. Limiter output

See pin 12.
14. Demodulator input

A phase shifted signal (with respect to the internally applied signal) is applied between pins 14 and 15.
15. Demodulator input

See pin 14.
16. Demodulator output

The output signal is proportional to :

- current into pin 1
* - slope of the phase characteristic of the network between pins 12 and 13 , and pins 14 and 15
- impedance level at the output
- the sweep ($\Delta \mathrm{f}$) of the $\mathrm{f} . \mathrm{m}$. signal.

A signal of typically 540 mV is available at this pin when using the component values in Fig. 1 and $\Delta f=1,4 \mathrm{MHz}$.

APPLICATION INFORMATION (continued)
Test circuit

Fig. 1

IIIIII

APPLICATION INFORMATION (continued)

Fig. 2. Drop-out eliminator.

TELEVISION SOUND COMBINATION

The TDA2790 contains the following functions:

- Limiter/amplifier.
- F.M. detector.
- Physiological d.c. volume control.
- D.C. tone control.

The limiter/amplifier is designed as a four-stage differential amplifier, to obtein good noise and interference suppression.
The detector is a balanced quadrature demodulator.
The demodulator output impedance is low during normal operation.
The limiter/amplifier and demodulator can be switched-off via pin 4; in that condition the output impedance becomes high ($10 \mathrm{k} \Omega$).
This switching action occurs without a d.c. shift, so that no transients will be noticed in the speaker. Due to this switching action audio signals (e.g. from a VCR) can be inserted before the tone and volume control circuits.
The circuit is very flexible in its application because the characteristics of the various controls can be adapted by changing external component values.

QUICK REFERENCE DATA

Supply voltage	V_{13-3}	typ. 12 V
Total current drain, normal operation	113	typ. 50 mA
Total current drain, VCR operation	113	typ. 53 mA
Frequency	f_{0}	$5,5 \mathrm{MHz}$
Input voltage at start of limiting	$V_{i(r m s)}$	typ. $100 \mu \mathrm{~V}$
A.M. rejection at $V_{i}=1 \mathrm{mV}$	α	typ. 45 dB
A.F. output voltage at $\Delta f= \pm 15 \mathrm{kHz}$ (at pin 7 after de-emphasis)	Vo(rms)	typ. 100 mV
D.C. bass control range		$<\begin{array}{r}+16 \\ -19\end{array} \mathrm{~dB}$
D.C. treble control range		$<\quad+12 \mathrm{~dB}$
D.C. volume control range		$>-75 \mathrm{~dB}$

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38).

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Supply voltage
Power dissipation $\mathrm{V}_{13-3} \quad \max .14 \mathrm{~V}$

Storage temperature
Operating ambient temperature

$\mathrm{T}_{\text {stg }}$	-25 to $+125{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	-25 to $+65{ }^{\circ} \mathrm{C}$

CHARACTERISTICS

Measured in circuit on page 10 , at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{13-3}=12 \mathrm{~V} ; \mathrm{f}=5 ; 5 \mathrm{MHz}$ (unless otherwise specified)

Supply voltage range
Total current drain, normal operation
Total current drain, VCR operation
Limiter/amplifier/demadulator (note 1)
Input limiting voltage at $\mathrm{V}_{7-3}=-3 \mathrm{~dB}$ (r.m.s. value)
Input impedance
A.M. rejection
$V_{i}=0,5 \mathrm{mV}$
$V_{i}=1 \mathrm{mV}$
$V_{i}=10 \mathrm{mV}$
$V_{i}=100 \mathrm{mV}$
note 2
A.F. output voltage at $f_{m}=1 \mathrm{kHz} ; \Delta f= \pm 15 \mathrm{kHz}$;
$\mathrm{V}_{\mathrm{i}}=10 \mathrm{mV} ; \mathrm{Q}_{\mathrm{L} 3}=25$; pin 7
Total harmonic distortion at pin 7
$f_{m}=1 \mathrm{kHz} ; \Delta f= \pm 40 \mathrm{kHz} ; \mathrm{V}_{\mathrm{i}}=10 \mathrm{mV}$
Zero-point stability at $30 \mu \mathrm{~V}$ to 10 mV ; pin 7

V_{13-3}	10,8 to 14 V		
113	$\begin{aligned} & 37 \text { to } 64 \mathrm{~mA} \\ & 39 \text { to } 68 \mathrm{~mA} \end{aligned}$		
l_{13}			
$V_{i(r m s)}$	typ.		
$\left\|z_{1-3}\right\|$	typ.	200	$k \Omega$
α	typ.	45	dB
α	typ.	45	dB
α	typ.	50	dB
α	typ.	55	

V_{o} (rms) typ. $\quad 100 \mathrm{mV}$
$d_{\text {tot }} \quad$ typ. $\quad 1,6 \%$
typ. $\quad 2 \mathrm{kHz}$

Notes

1. At all measurements, the demodulator is controlled at minimum distortion.
2. See test set-up on page 7.

CHARACTERISTICS (continued)

Signal-to-noise ratio at pin 7

$$
f_{m}=1 \mathrm{kHz} ; \Delta f= \pm 15 \mathrm{kHz} ; \mathrm{V}_{\mathrm{i}}=10 \mathrm{mV} \text { (note } 1 \text {) }
$$

Demodulator output impedance, normal operation
Demodulator output impedance, VCR operation
D.C. shift at demodulator output, when demodulator is switched to VCR condition

S/N typ. 70 dB
$\left|Z_{7-3}\right| \quad$ typ. 100Ω
$\left|Z_{7-3}\right|$ typ. $10 \mathrm{k} \Omega$
ΔV_{7-3} typ. 50 mV

A.F. amplifier

Bass control
Input impedance
Treble control
Input impedance
Control voltages for linear frequençy characteristic

Volume control
Input impedance
Bass and treble compensation
Voltage gain (pin 16 to output) $f=1 \mathrm{kHz} ; \mathrm{V}_{11-3}=2,9 \mathrm{~V} ; \mathrm{V}_{14-3}=3,1 \mathrm{~V} ; \mathrm{V}_{8-3}=4 \mathrm{~V}$
D.C. volume control range

Unweighted signal-to-noise ratio at an output
voltage of $10,7 \mathrm{mV} ; \mathrm{V}_{\mathrm{i}}=100 \mathrm{mV}$ (note 2)
Total harmonic distortion at output $f=1 \mathrm{kHz} ; \mathrm{V}_{16-3}=100 \mathrm{mV}$
(related to max output; note 3)
in the range: 0 to -20 dB

$$
\begin{aligned}
& -20 \text { to }-40 \mathrm{~dB} \\
& -40 \text { to }-60 \mathrm{~dB}
\end{aligned}
$$

see graph on page 8
$\left|Z_{14-3}\right|$ typ. $500 \mathrm{k} \Omega$
see graph on page 8
$\left|Z_{11-3}\right|$ typ. $500 \mathrm{k} \Omega$
V_{11-3} typ. 2,9 V
V_{14-3} typ. 3,1 V
see graph on page 8
$\left|Z_{8-3}\right| \quad$ typ. $200 \mathrm{k} \Omega$
see graph on page 9
$\mathrm{G}_{\mathrm{v}} \quad$ typ. 8 dB
$>-75 \mathrm{~dB}$.

S/N typ. 52 dB

$d_{\text {tot }}$	typ.	0,2	$\%$
$d_{\text {tot }}$	typ.	0,5	$\%$
$d_{\text {tot }}$.	typ.	0,7	$\%$

Notes

1. Unweighted signal-to-noise ratio, measured for a frequency range between $31,5 \mathrm{~Hz}$ and 20 kHz .
2. See test condition on page 7.
3. Measured at flat tone control characteristics.

Test condition for \mathbf{S} / \mathbf{N} ratio

In combination with the TDA2612 (input impedance $36 \mathrm{k} \Omega$), this output voltage corresponds to an audio output power of 100 mW (at 1 kHz) in accordance with DIN45500. This figures are measured for a frequency range between $31,5 \mathrm{~Hz}$ and 20 kHz (unweighted).

A		B	C	S/N ratio A
107 mV	$\max -7,5 \mathrm{~dB}$	90 mV	10 W	-
$10,7 \mathrm{mV}$	$\max -27,5 \mathrm{~dB}$	9 mV	$0,1 \mathrm{~W}$	52 dB

TEST SET-UP

Bass control curve at $f=40 \mathrm{~Hz} ; \mathrm{V}_{\mathrm{i}(\mathrm{rms})}=100 \mathrm{mV}$. Treble control curve at $\mathrm{f}=15 \mathrm{kHz} ; \mathrm{V}_{\mathrm{i}}(\mathrm{rms})=100 \mathrm{mV}$.

Volume control curve at $\mathrm{f}=1 \mathrm{kHz}$.

APPLICATION INFORMATION

The function is quoted against the corresponding pin number

1. Limiter input.
2. The decoupling capacitor for the internal limiter feedback is connected to this pin.
3. Negative supply (ground).
4. a. Limiter output for external feedback to pin 1.
b. The demodulator will switch to VCR condition when pin 4 is grounded.

5 and 6. External tank circuit (demodulator reference signal).
7. Demodulator output.
8. D.C. volume control.

9 and 10. External circuit for physiological volume control.
11. D.C. treble control.
12. External capacitor for treble control.
13. Positive supply.
14. D.C. bass control.

15 and 16. External circuit for bass control.

TELEVISION SOUND COMBINATION

The TDA2791 contains the following functions:

- Limiter/amplifier
- F.M. detector.
- Physiological d.c. volume control.
- D.C. tone control.

The limiter/amplifier is designed as a four-stage differential amplifier, to obtain good noise and interference suppression. The detector is a balanced quadrature demodulator.
During VTR operation audio signals can be inserted before the tone and volume control circuits. The limiter amplifier and demodulator must be switched off by grounding pin 2 . This switching action occurs without a d.c. shift, so that no transients will be noticed in the speaker. The circuit is very flexible in its application because the characteristics of the various controls can be adapted by changing external component values.

QUICK REFERENCE DATA

Supply voltage	V_{13-3}	typ.	12 V
Total current drain	113	typ.	61 mA
Frequency	f_{0}		$5,5 \mathrm{MHz}$
Input voltage at start of limiting (r.m.s. value)	$V_{i(r m s)}$	typ.	$100 \mu \mathrm{~V}$
A.M. rejection at $\mathrm{V}_{\mathrm{i}}=5 \mathrm{mV}$	α	typ.	60 dB
A.F. output voltage at $\Delta f= \pm 27 \mathrm{kHz}$ (r.m.s. value) (at pin 7 after de-emphasis)	$V_{\text {o }}$ (rms)	typ.	700 mV
D.C. bass control range		$<$	$\begin{aligned} & +16 \\ & -19 \end{aligned} \mathrm{~dB}$
D.C. treble control range		$<$	$\begin{aligned} & +12 d B \\ & -15 \end{aligned}$
D.C. volume control range		>	$-75 \mathrm{~dB}$

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38).

Fig. 1a Circuit diagram; continued in Fig. 1b.

Fig. 1b Circuit diagram; continued from Fig. 1a; continued in Fig. 1c, for line ' n ' see Fig. 1d.

Fig. 1c Circuit diagram; continued from Fig. 1b; continued in Fig. 1d.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Supply voltage
$V_{13-3} \max \quad 13,2 \vee$

Fig. 3 Power derating curve.

Storage temperature
Operating ambient temperature

$$
\begin{array}{ll}
\mathrm{T}_{\mathrm{stg}} & -25 \text { to }+130{ }^{\circ} \mathrm{C} \\
\mathrm{~T}_{\mathrm{amb}} & -25 \text { to }+65{ }^{\circ} \mathrm{C}
\end{array}
$$

CHARACTERISTICS.

Measured in Fig. 9 at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{13-3}=12 \mathrm{~V} ; \mathrm{f}=5,5 \mathrm{MHz}$ (unless otherwise specified)

Supply voltage range
Total current drain

V_{13-3}	10,8 to $13,2 \mathrm{~V}$
I_{13}	43 to 79 mA

Limiter/amplifier/demodulator (note 1)

Input limiting voltage at $\mathrm{V}_{7-3}=-3 \mathrm{~dB}$ (r.m.s. value)
Input impedance

$V_{i(\text { rms })}$	typ.	$100 \mu V$
$\left\|Z_{1-3}\right\|$	typ.	$200 \mathrm{k} \Omega$

A.M. rejection
$V_{i}=0,5 \mathrm{mV} \quad \alpha \quad$ typ. 50 dB
$V_{i}=1 \mathrm{mV}$
$V_{i}=5 \mathrm{mV}$ note 2
$V_{i}=50 \mathrm{mV}$
α
$\alpha \quad$ typ. 60 dB
A.F. output voltage at pin 7 (r.m.s. value)
$f_{m}=1 \mathrm{kHz} ; \Delta \mathrm{f}= \pm 27 \mathrm{kHz} ; \mathrm{V}_{\mathrm{i}}=5 \mathrm{mV} ; \mathrm{Q}_{\mathrm{L} 3}=12,5 \quad \mathrm{~V}_{\mathrm{o}}(\mathrm{rms}) \quad$ typ. 700 mV

Notes

1. The quadrature reference circuit must be tuned in such a way that there is no difference in the demodulator d.c. output voltage when the limiter input is switched from signal to no signal.
2. See test set-up Fig. 4.

CHARACTERISTICS (continued)
Total harmonic distortion at pin 7

$$
f_{m}=1 \mathrm{kHz} ; \Delta f= \pm 27 \mathrm{kHz} ; \mathrm{V}_{\mathrm{i}}=5 \mathrm{mV}
$$

Zero-point stability at $30 \mu \mathrm{~V}$ to 10 mV ; pin 7
Hum suppression; pin 7
Signal-to-noise ratio at pin 7
$f_{m}=1 \mathrm{kHz} ; \Delta \mathrm{f}= \pm 27 \mathrm{kHz} ; \mathrm{V}_{\mathrm{i}}=5 \mathrm{mV}$ (note 1)
Demodulator output impedance

A.F. amplifier

Input voltage bass control circuit at pin 16 (r.m.s. value)
at $\Delta f= \pm 27 \mathrm{kHz}$
Bass control
Input impedance
Treble control
Input impedance
Control voltages for flat frequency characteristic
Volume control
Input current at $\mathrm{V}_{8-3}=4 \mathrm{~V}$
Physiological volume control (bass and treble compensation)
Voltage gain of audio part
$f=1 \mathrm{kHz} ; \mathrm{V}_{11-3}=3,2 \mathrm{~V}_{;} \mathrm{V}_{14-3}=3,2 \mathrm{~V}$; $\mathrm{V}_{8-3}=4 \mathrm{~V}$
D.C. volume control range

Weighted signal-to-noise ratio

Total harmonic distortion at output
$\mathrm{f}=1 \mathrm{kHz} ; \mathrm{V}_{\mathrm{i}(\mathrm{rms})}=215 \mathrm{mV}$
(related to max. output; note 2) at:
0 dB
$-20 \mathrm{~dB}$

$d_{\text {tot }}$	typ.	$0,35 \%$
	typ.	2 kHz
	typ.	20 dB
$\mathrm{~S} / \mathrm{N}$	typ.	63 dB
$\left\|\mathrm{Z}_{7-3}\right\|$	typ.	25Ω

$V_{i(r m s)} \quad$ typ. 215 mV see graph, Fig. 5
$\left|Z_{14-3}\right| \quad$ typ. $\quad 500 \mathrm{k} \Omega$
see graph, Fig. 6
$\left|Z_{11-3}\right| \quad$ typ. $\quad 500 \mathrm{k} \Omega$
V_{11-3} typ. $3,2 \mathrm{~V}$
V_{14-3} typ. $3,2 \mathrm{~V}$
see graph, Fig. 7
I8 typ. $\quad 40 \mu \mathrm{~A}$
see graph, Fig. 8

G_{v}	typ.	4 dB
	$>$	-75 dB

d

$d_{\text {tot }}$	typ.	$0,2 \%$
$d_{\text {tot }}$	typ.	$0,4 \%$

Notes

1. Specified according to DIN 45405; weighted noise (peak value).
2. Measured at flat-tone control characteristics.

Fig. 4 Test set-up.

Fig. 5 Bass control curve; $f=40 \mathrm{~Hz}$;
$V_{11-3}=3,2 \mathrm{~V}$; $\mathrm{V}_{8-3}=4 \mathrm{~V}$.

Fig. 6 Treble control curve; $f=15 \mathrm{kHz}$; $\mathrm{V}_{14-3}=3,2 \mathrm{~V} ; \mathrm{V}_{8-3}=4 \mathrm{~V}$.

Fig. 7 Volume control curve; $\mathrm{f}=1 \mathrm{kHz}$. $V_{14-3}=3,2 . V ; V_{11-3}=3,2 \mathrm{~V}$.

Fig. 8 Physiological volume control curves (typical values); $\mathrm{V}_{14-3}=3,2 \mathrm{~V} ; \mathrm{V}_{11-3}=3,2 \mathrm{~V}$.

APPLICATION INFORMATION

The function is quoted against the corresponding pin number

1. Limiter input.
2. The decoupling capacitor for the internal limiter feedback is connected to this pin.
3. \quad Negative supply (ground).
4. Limiter output for external feedback to pin 1.

5 and 6. External tank circuit (demodulator reference signal).
7. Demodulator output.
$8 . \quad$ D.C. volume control.
9 and 10. External circuit for physiological volume control.
11. D.C. treble control.
12. External capacitor for treble control.
13. Positive supply.
$14 . \quad$ D.C. bass control.
15 and 16. External circuit for bass control.

VIDEO CONTROL COMBINATION

The TDA3500 is a monolithic integrated circuit performing the control functions in a PAL/SECAM decoder which additionally comprises the integrated circuits TDA3510 (PAL decoder) and/or TDA3520 (SECAM decoder).
The required input signals are: luminance and colour difference $-(R-Y)$ and $-(B-Y)$, while linear $R G B$ signals can be inserted from an external source.
RGB signals are provided at the output to drive the video output stages.
The TDA3500 has the following features:

- capacitive coupling of the input signals
- linear saturation control
- (G-Y) and RGB matrix
- insertion possibility of linear RGB signals, e.g. video text, video games, picture-in-picture, camera or slide-scanner
- equal black level for inserted and matrixed signals by clamping
- 3 identical channels for the RGB signals
- linear contrast and brightness control, operating on both the inserted and matrixed RGB signals
- horizontal and vertical blanking (black and ultra-black respectively) and black-level clamping obtained via a 3 -level sandcastle pulse
- differential amplifiers with feedback-inputs for stabilization of the RGB output stages
- 3 d.c. gain controls for the RGB output signals (white point adjustment)

QUICK REFERENCE DATA

Supply voltage	V_{6-24}	typ.	12 V
Supply current	16	typ.	100 mA
Luminance input signal (peak-to-peak value)	- $\mathrm{V}_{15-24(p-p)}$	typ.	0,45 V
Luminance input resistance	R^{15-24}	typ.	$12 \mathrm{k} \Omega$
Colour difference input signals (peak-to-peak values)			
-(B-Y)	$\mathrm{V}_{18-24(p-p)}$	typ.	1,33 V
-(R-Y)	$V_{17-24(p-p)}$	typ.	1,05 V
Inserted RGB signals (peak-to-peak values)	$\mathrm{V}_{12,13,14-24(p-p)}$	typ.	1 V
Three-level sandcastie pulse detector	V_{10-24}	typ.	2,5/4,5/8,0 V
Control voltage ranges			
brightness	V_{20-24}		1 to 3 V
contrast	V_{19-24}		2 to 4 V
saturation	V_{16-24}		2,1 to 4 V

PACKAGE OUTLINE

28-lead DIL; plastic (SOT-117).

Fig. 1 Block diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage

Voltages with respect to pin 24
pins 1,4,26
pins 2,5,27
pin 10
pin 11
pins 16,19,20
pins 21,22,23
pins 3,25,28; 7,8,9; 12,13,14; 15,17,18
Current at pin 20
Total power dissipation
Storage temperature
Operating ambient temperature
$V_{P}=V_{6-24}$
$v_{1,4,26-24}$
$v_{2,5,27-24}$
V_{10-24}
V_{11-24}
$V_{16,19,20-24}$
$V_{21,22,23-24}$

\min.	\max	
-	13,2	V
$1 / 2 V_{P}$	$V_{P}+1$	V
0	V_{P}	V
0	V_{P}	V
$-0,5$	3	V
0	$1 / 2 V_{P}$	V
0	V_{P}	V

no external d.c. voltage

I_{20}	max.	5	mA
$\mathrm{P}_{\text {tot }}$	max.	1,7	W
$\mathrm{~T}_{\text {stg }}$		-25 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$		-20 to +70	${ }^{\circ} \mathrm{C}$

CHARACTERISTICS

Supply voltage range

10,8 to $13,2 \quad \mathrm{~V}$

The following characteristics are measured in Fig. 2; $\mathrm{V}_{\mathrm{P}}=12 \mathrm{~V}$; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$;
$V_{18-24(p-p)}=1,33 \mathrm{~V} ; \mathrm{V}_{17-24(p-p)}=1,05 \mathrm{~V} ; \mathrm{V}_{15-24(\mathrm{p}-\mathrm{p})}=0,45 \mathrm{~V} ; \mathrm{V}_{12,13,14-24(\mathrm{p}-\mathrm{p})}=1 \mathrm{~V}$; unless

otherwise specified
Current consumption

Colour difference inputs

-(B-Y) input signal (peak-to-peak value)*	$V_{18-24(p-p)}$		1,33	V
-(R-Y) input signal (peak-to-peak value)*	$V_{17-24(p-p)}$		1,05	v
Internal resistance of colour difference sources		$<$	200	Ω
Input resistance	R 17,18-24	>	100	$k \Omega$
Internal d.c. voltage due to clamping	$\mathrm{V}_{17,18-24}$	typ.	4,2	V
Saturation control control voltage range for a change of saturation from -20 dB to +6 dB	V_{16-24}		2,1 to 4	v
control voltage for attenuation $>40 \mathrm{~dB}$	V_{16-24}	$<$	1,8	v
nominal saturation (6 dB below max.)	V_{16-24}	typ.	3	v
input current	${ }^{1} 16$	<	20	$\mu \mathrm{A}$

[^36]
CHARACTERISTICS (continued)

(G-Y) matrix

Matrixed according the equation

Luminance amplifier

Input signal (peak-to-peak)	$V_{15-24(p-p)}$	$0,45 \mathrm{~V}$
Input resistance	R_{15-24}	typ.
Internal d.c. voltage	V_{15-24}	typ.
		$2,7 \mathrm{~V} \Omega$

RGB channels

Signal switching input voltage for insertion
on level
off level
Input current
Signal insertion
external RGB input signal (peak-to-peak value)*
internal d.c. voltage due to clamping
input current
Contrast control
control voltage range for a change of
contrast from -17 dB to +3 dB
nominal contrast (3 dB below max.)
control voltage for -6 dB
input current
V_{11-24}
V_{11-24}
111

$V_{12,13,14-24(p-p)}$		1 V
$V_{12,13,14-24}$	typ.	$3,5 \mathrm{~V}$
$l_{12,13,14}$	$<$	$5 \mu \mathrm{~A}$

V_{19-24}
V_{19-24}
V_{19-24}
119
Brightness control
control voltage range
nominal brightness voltage
input current
control voltage for nominal black level which equals the inserted artificial black level
change of black level in the control range
related to the nominal luminance signal (black-white)
Internal signal limiting **
signal limiting for nominal luminance
(black to white $=100 \%$)
black
V_{20-24}
V_{20-24}
120
V_{20-24}
typ.
2 to 4 V
typ.
3,4 V
typ. $\quad 2,7 \mathrm{~V}$
$<\quad 10 \mu \mathrm{~A}$

1 to 3 V
2 V
$<\quad 10 \mu \mathrm{~A}$
$2 V$
typ. $\pm 50 \%$
white
typ. - 25 \%
typ. 125 \%

* During the clamping time (see sandcastle detector Fig. 1), the inserted RGB signals are clamped to the same black level as the internal RGB signals. For proper clamping, the internal resistance of the external signal sources should be $<200 \Omega$.
** Brightness, contrast and saturation control in nominal position.

Video control combination

White point adjustment

A.C. voltage gain*

Differential output amplifier

Feedback inputs (pins 2, 5, 27)
d.c. voltage during clamping
voltage difference between the feedback inputs
input resistance
Output amplifiers (pins 1, 4, 26)
transconductance
integrated load resistance
output current (peak value) at $V_{1,4,26-24}=8,2 \mathrm{~V}$

$\mathrm{V}_{2,5,27-24}$	typ.	6 V
$\Delta \mathrm{V}$	$<$	80 mV
$\mathrm{R}_{2,5,27-24}$	>	$100 \mathrm{k} \Omega$
Δl_{26}		
-24 $=\frac{\mathrm{V}_{27-24}}{\text { der }}$	typ.	$20 \mathrm{~mA} / \mathrm{V}$
$\mathrm{R}_{1,4,26-24}$	typ.	610Ω
$\pm{ }_{1} 1,4,26 \mathrm{~m}$	typ.	5 mA

Gain data

At nominal contrast, saturation and
white point adjustment
Voltage gain between Y -input (pin 15) and feedback inputs (pins 2, 5, 27)
Frequency response (0 to 5 MHz)
Voltage gain between colour differenceinputs (pins 17 and 18) and feedback inputs (pins 5 and 27)
Frequency response (0 to 2 MHz)
Voltage gain between signal display inputs
(pins 12, 13, 14) and feedback inputs
(pins 2, 5, 27)
Frequency response (0 to 5 MHz)

$\mathrm{G}_{2,5,27-15}$	typ.	10 dB
$\mathrm{~d}_{2,5,27-15}$	$<$	3 dB

$\mathrm{G}_{5-18}=\mathrm{G}_{27-17}$	typ.	0 dB
$\mathrm{~d}_{5-18}=\mathrm{d}_{27-17}<$	3 dB	

$\mathrm{G}_{2-13}=\mathrm{G}_{5-12}=\mathrm{G}_{27-14} \ll \quad 0 \mathrm{~dB}$
$\mathrm{~d}_{2-13}=\mathrm{d}_{5-12}=\mathrm{d}_{27-14}<\quad 3 \mathrm{~dB}$

[^37]CHARACTERISTICS (continued)

Sandcastle detector

There are 3 internal thresholds (proportional to V_{p})
the following amplitudes are required for
separating the various pulses:
horizontal and vertical blanking pulses (note 1)
horizontal pulse (note 2)
clamping pulse (note 3)
d.c. voltage for artificial black level (note 4) (scan and flyback)
no keying
V_{10-24}
V_{10-24}
V_{10-24}
V_{10-24}
V_{10-24}

1 V

Notes

1. Blanking to ultra-black (-20%).
2. Insertion of artificial black level.
3. Pulse duration $>3,5 \mu \mathrm{~s}$.
4. This function will also be obtained by leaving pin 10 open.

Video control combination

VIDEO CONTROL COMBINATION

The TDA3501 is a monolithic integrated circuit performing the control functions in a PAL/SECAM decoder which additionally comprises the integrated circuits TDA3510 (PAL decoder) and/or TDA3520 (SECAM decoder).
The required input signals are: luminance and colour difference $-(R-Y)$ and $-(B-Y)$, while linear RGB signals can be inserted from an external source.
RGB signals are provided at the output to drive the video output stages.
The TDA3501 has the following features:

- capacitive coupling of the input signals
- linear saturation control
- (G-Y) and RGB matrix
- insertion possibility of linear RGB signals, e.g. video text, video games, picture-in-picture, camera or slide-scanner
- equal black level for inserted and matrixed signals by clamping
- 3 identical channels for the RGB signals
- linear contrast and brightness control, operating on both the inserted and matrixed RGB signals
- horizontal and vertical blanking (black and ultra-black respectively) and black-level clamping obtained via a 3-level sandcastle pulse
- differential amplifiers with feedback-inputs for stabilization of the RGB output stages
- 2 d.c. gain controls for the green and blue output signals (white point adjustment)
- beam current limiting possibility

QUICK REFERENCE DATA

Supply voltage	V_{6-24}	typ.	12 V
Supply current	I_{6}	typ.	100 mA
Luminance input signal (peak-to-peak value)	$\mathrm{V}_{15-24(p-p)}$	typ.	0,45 V
Luminance input resistance	R_{15-24}	typ.	$12 \mathrm{k} \Omega$
Colour difference input signals (peak-to-peak values)			
-(B-Y)	$V_{18-24(p-p)}$	typ.	1,33 V
-(R-Y)	$V_{17-24(p-p)}$	typ.	1,05 V
Inserted RGB signals (peak-to-peak values)	$V_{12,13,14-24(p-p)}$	typ.	1 V
Three-level sandcastle pulse detector	V_{10-24}	typ.	2,5/4,5/8,0 V
Control voltage ranges			
brightness	V_{20-24}		1 to 3 V
contrast	V_{19}-24		2 to 4 V
saturation	V_{16-24}		2,1 to 4 V

PACKAGE OUTLINE

28-lead DIL; plastic (SOT-117).

Fig. 1 Block diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage
Voltages with respect to pin 24
pins 1,4,26
pins 2,5,27
pin 10
pin 11
pins 16,19,20
pins 21,22
pin 23
pins 3,25,28; 7,8,9; 12,13,14; 15,17,18
Current at pin 20
Total power dissipation
Storage temperature
Operating ambient temperature
$V_{P}=V_{6-24}$
$V_{1,4,26-24}$
$V_{2,5,27-24}$
V_{10-24}
V_{11-24}
$V_{16,19,20-24}$
$V_{21,22-24}$
V_{23-24}
no external d.c. voltage

min.	max.	
-	13,2	V
$1 / 2 V_{P}$	$V_{P}+1$	V
0	V_{P}	V
0	V_{P}	V
$-0,5$	3	V
0	$1 / 2 V_{P}$	V
0	V_{P}	V
0	V_{P}	V

20 max

5	mA
1,7	W
-25 to +125	${ }^{\circ} \mathrm{C}$
-20 to +70	${ }^{\circ} \mathrm{C}$

CHARACTERISTICS

Supply voltage range
V_{p}
10,8 to $13,2 \mathrm{~V}$
The following characteristics are measured in Fig. 2; $\mathrm{V}_{\mathrm{P}}=12 \mathrm{~V}$; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$;
$V_{18-24(p-p)}=1,33 V ; V_{17-24(p-p)}=1,05 V V_{15-24(p-p)}=0,45 \mathrm{~V} ; V_{12,13,14-24(p-p)}=1 \mathrm{~V}$; unless otherwise specified
$\begin{array}{lllll}\text { Current consumption typ. } & 1_{6} & 100 \mathrm{~mA}\end{array}$
Colour difference inputs

-(B-Y) input signal (Fsak-to-peak value)*	$V_{18-24(p-p)}$		1,33	V
-(R-Y) input signal (peak-to-peak value)*	$V_{17-24(p-p)}$		1,05	V
Internal resistance of colour difference sources		$<$	200	Ω
Input resistance	$\mathrm{R}_{17,18-24}$	>	100	k Ω
Internal d.c. voltage due to clamping	$\mathrm{V}_{17,18-24}$	typ.	4,2	V
Saturation control control voltage range for a change of saturation from -20 dB to +6 dB	V_{16-24}		2,1 to 4	V
control voltage for attenuation $>40 \mathrm{~dB}$	V_{16-24}	$<$	1,8	v
nominal saturation (6 dB below max.)	V_{16-24}	typ.	3	V
input current	l_{16}	<	20	$\mu \mathrm{A}$

[^38]
CHARACTERISTICS (continued)

(G-Y) matrix
Matrixed according the equation
$V_{(G-Y)}=-0,51 V_{(R-Y)}-0,19 V_{(B-Y)}$
-Luminance amplifier

Input signal (peak-to-peak)	$V_{15-24(p-p)}$	$0,45 \mathrm{~V}$	
Input resistance	R_{15-24}	typ.	$12 \mathrm{k} \Omega$
Internal d.c. voltage	V_{15-24}	typ.	$2,7 \mathrm{~V}$

RGB channels

Signal switching input voltage for insertion
on level
off level
Input current
Signal insertion
external RGB input signal (peak-to-peak value)*
internal d.c. voltage due to clamping
input current
Contrast control
control voltage range for a change of
contrast from -17 dB to +3 dB
nominal contrast (3 dB below max.)
control voltage for -6 dB
input current at $\mathrm{V}_{23-24} \geqslant 6 \mathrm{~V}$
Beam current limiting
internal d.c. voltage
input resistance
input current contrast control
$V_{23-24}=5,8 \mathrm{~V}$
$V_{23-24}=5,7 \mathrm{~V}$
$\mathrm{V}_{23-24}=5,6 \mathrm{~V}$
Brightness control
control voltage range
nominal brightness voltage
input current
control voltage for nominal black level which equals the inserted artificial black level
change of black level in the control range
related to the nominal luminance signal (black-white)
V_{11-24}
V_{11-24}
111
$V_{12,13,14-24(p-p)}$
$\mathrm{V}_{12,13,14-24}$
1 12,13,14
V_{19-24}
V_{19-24}
V_{19-24}
I19
V_{23-24}
R_{23-24}

119
119
119
V_{20-24}
V_{20-24}
I_{20}
V_{20-24}
e)

0,9 to $1,5 \mathrm{~V}$
$-0,5$ to $+0,3 \mathrm{~V}$
-100 to $+200 \mu \mathrm{~A}$

1 V
typ. $\quad 3,5 \mathrm{~V}$
$<\quad 5 \mu \mathrm{~A}$

	2 to 4 V
typ.	$3,4 \mathrm{~V}$
typ.	$2,7 \mathrm{~V}$
$<$	$2,5 \mu \mathrm{~A}$

typ.	6 V
typ.	$10 \mathrm{k} \Omega$
typ.	$0,7 \mathrm{~mA}$
typ.	10 mA
typ.	16 mA

1 to 3 V 2 V $<\quad 10 \mu \mathrm{~A}$
typ.
2 V
typ. $\pm 50 \%$

* During the clamping time (see sandcastle detector Fig. 1), the inserted RGB signals are clamped to the same black level as the internal RGB signals. For proper clamping, the internal resistance of the external signal sources should be $<200 \Omega$.

Internal signal limiting*
signal limiting for nominal luminance
(black to white $=100 \%$)
black typ. -25\%
white

White point adjustment
A.C. voltage gain **
at $V_{21,22-24}=6 \mathrm{~V}$

		100%
	$<$	60%
$R_{21,22-24}$	$>$	140%
	typ.	$20 \mathrm{k} \Omega$

Differential output amplifier

Feedback inputs (pins $2,5,27$)
d.c. voltage during clamping
voltage difference between the feedback inputs
input resistance
Output amplifiers (pins 1,4,26)
transconductance
integrated load resistance
output current (peak value) at $V_{1,4,26-24}=8,2 \mathrm{~V}$
$V_{2,5,27-24}$
ΔV
$R_{2,5,27-24}$
$\frac{\Delta I_{1}}{\Delta V_{2-24}}=\frac{\Delta I_{4}}{\Delta V_{5-24}}=\frac{\Delta I_{26}}{\Delta V_{27-24}}$
$R_{1,4,26-24}$
$\pm 1_{1,4,26 m}$

Gain data

At nominal contrast, saturation and white point adjustment
Voltage gain between Y-input (pin 15) and feedback inputs (pins 2,5,27)
Frequency response (0 to 5 MHz)
Voltage gain between colour difference inputs (pins 17 and 18) and feedback inputs (pin 5 and 27)
Frequency response (0 to 2 MHz)
Voltage gain between signal display inputs
(pins $12,13,14$) and feedback inputs
(pins 2,5,27)
Frequency response (0 to 5 MHz)

$\mathrm{G}_{2,5,27-15}$	typ.	10 dB
$\mathrm{~d}_{2,5,27-15}$	$<$	3 dB

$\mathrm{G}_{5-18}=\mathrm{G}_{27-17}$	typ.	0 dB
$\mathrm{~d}_{5-18}=\mathrm{d}_{27}-17$	$<$	3 dB

$\mathrm{G}_{2-13}=\mathrm{G}_{5-12}=\mathrm{G}_{27-14}$	typ.	0 dB
$\mathrm{~d}_{2-13}=\mathrm{d}_{5-12}=\mathrm{d}_{27-14}$	$<$	3 dB

* Brightness, contrast and saturation control in nominal position.
** With input pins 21 and 22 not connected an internal bias voltage of 6 V is supplied.

CHARACTERISTICS (continued)

Sandcastle detector

There are 3 internal thresholds (proportional to V_{p})
the following amplitudes are required for
separating the various pulses:
horizontal and vertical blanking pulses (note 1)
horizontal pulse (note 2)
clamping pulse (note 3)
d.c. voltage for artificial black level (note 4)
(scan and flyback)
no keying
Input current

V_{10-24}	$>$	2	V
	$<$	3	V
V_{10-24}	$>$	4	V
	$<$	5	V
V_{10-24}	$>$	7.5	V
V_{10-24}	>	7,5	V
V_{10-24}	$<$	1	V
-110	<	100	

Notes

1. Blanking to ultra-black (-20%).
2. Insertion of artificial black level.
3. Pulse duration $>3,5 \mu \mathrm{~s}$.
4. This function will also be obtained by leaving pin 10 open.

PAL DECODER

The TDA3510 is a monolithic integrated colour decoder for the PAL standard.
The circuit incorporates the following functions:

Chrominance part

- Controlled chrominance amplifier
- Chrominance output stage with automatic standard switch for driving the 64μ s delay line
- Blanking circuit for the colour burst signal

Reference voltage and control voltage part

- $8,8 \mathrm{MHz}$ reference oscillator with divider stage to obtain both the $4,4 \mathrm{MHz}$ reference signals
- Gated phase comparison for an optimum noise ratio
- Circuit for obtaining the chrominance control voltage and a reference voltage
- Circuit for generating the colour killer signal and the identification signal

Demodulator part

- Two synchronous demodulators for the ($B-Y$) and ($R-Y$) signals
- PAL flip-flop and PAL switch
- Flyback blanking incorporated in the synchronous demodulators
- ($R-Y$) and ($B-Y$) signal output stages, which are controlled by the colour killer with switchable dic. voltage levels

QUICK REFERENCE DATA

Supply voltage	$V_{p}=V_{9-24}$	typ.	12 V
Supply current	I_{9}	typ.	58 mA
Chrominance input signal (peak-to-peak value)	$V_{1-24(p-p)}$		10 to 200 mV
Sandcastle pulse burst gating level blanking level	V_{20-24}	$>$	$7,5 \mathrm{~V}$
Colour difference output signals peak-to-peak values $-(R-Y)$ signal	V_{20-24}		$1,8 \mathrm{~V}$
$-(B-Y)$ signal			

PACKAGE OUTLINE

24-lead DIL; plastic (SOT-101A).

External capacitors in Fig. 1

capacitor	pins	
C1	$22-24$	filter capacitor for control voltage
C2	$17-24$	time constant for control voltage
C3	$19-24$	time constant for colour ON
C4	$16-24$	identification signal and colour OFF time constant
C5	$18-24$	load capacitor for the reference voltage
C6	$8-24$	time constant for the rise or fall time of the
		d.c. voltage level of the colour difference signal

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage range
Currents
at pin 5
at pins 10 and 11
at pin 21
Total power dissipation
Storage temperature
Operating ambient temperature

CHARACTERISTICS

$\mathrm{V}_{\mathrm{P}}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Supply current

Chrominance part

Chrominance signal is asymmetric (pins 1,2)
Input voltage range (peak-to-peak value)
Nominal input voltage (peak-to-peak value) with 75% colour bar signal
Input impedance
Colour ON
chrominance output voltage (peak-to-peak value)
with 75% colour bar signal
d.c. voltage at chrominance output

Colour OFF
chrominance suppression
d.c. voltage at chrominance output
$\mathrm{V}_{\mathrm{P}}=\mathrm{V}_{9-24}$
10,8 to $13,2 \mathrm{~V}$

$-I_{5}$	max.	10 mA
$-I_{10},-I_{11}$	max.	1 mA
I_{21}	max.	10 mA
$\mathrm{P}_{\text {tot }}$	max.	$1,1 \mathrm{~W}$
$\mathrm{~T}_{\text {stg }}$	-20 to $+125 \mathrm{o}^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {amb }}$	-20 to $+65{ }^{\circ} \mathrm{C}$	

lg typ. 58 mA

$V_{1-24(p-p)}$		10 to 200 mV
$V_{1-24(p-p)}$	typ.	100 mV
$\left\|Z_{i}\right\|$	typ.	$3,3 \mathrm{k} \Omega$

$V_{5-24(p-p)}$	typ.	2 V
V_{5-24}	typ.	8 V
	$>$	56 dB
V_{5-24}	typ.	4 V

CHARACTERISTICS (continued)

Reference voltage and control voltage part
Oscillator ($8,8 \mathrm{MHz}$)

Gain
Input resistance
Output resistance
Catching range
Sandcastle pulse ($\operatorname{pin} 20$)

Burst gating level

Blanking level
Colour switching voltage (open collector)
Maximum output current
Colour ON
Colour OFF
Reference output voltage
Colour killer voltages
colour OFF at
or at
colour ON at
or at
Colour unkill delay; depends on C3
Identification ON

Demodulator part

Delayed chrominance input signal (peak-to-peak value) with 75% colour bar signal
Colour difference output signals (peak-to-peak values)
$-(R-Y)$ signal
$-(B-Y)$ signal
Ratio of colour difference output signals (R-Y)/(B-Y)
D.C. voltage at colour difference outputs at colour ON at colour OFF
Signal attenuation at colour OFF
Residual $4,4 \mathrm{MHz}$ signal
$\mathrm{H} / 2$ ripple at ($\mathrm{R}-\mathrm{Y}$) output (peak-to-peak value) without input signal

G_{14-15}	$>$	8 dB
R_{15-24}	typ.	270Ω
R_{14-24}	$<$	200Ω
$\Delta \mathrm{f}$	typ.	500 Hz

V_{20-24}	$>$	$7,5 \cdot \mathrm{~V}$
$\mathrm{~V}_{20-24}$	$>$	$1,8 \mathrm{~V}$

$\mathrm{I}_{21 \text { max }}$	typ.	10 mA
$\mathrm{~V}_{21-24}$	typ.	V_{P}
V_{21-24}	$<$	$0,5 \mathrm{~V}$
$\mathrm{~V}_{18-24}$	typ.	$5,5 \mathrm{~V}$

V_{18-16}	typ.	$0 \mathrm{~V} V$
V_{19-24}	$>$	6 V
V_{18-16}	typ.	$1,5 \mathrm{~V}$
V_{19-24}	$<$	4 V
t_{d}	typ.	$20 \mathrm{~ms} / \mu \mathrm{F}$
V_{16-18}	$<$	200 mV

$V_{7-24(p-p)}$	typ.	250 mV
$V_{11-24(p-p)}$	typ.	$1,05 \mathrm{~V} \pm 3 \mathrm{~dB}$
$V_{10-24(p-p)}$	typ.	$1,33 \mathrm{~V} \pm 3 \mathrm{~dB}$
V_{11-24}		
V_{10-24}	typ.	$0,79 \pm 10 \%$
$V_{10 ;} 11-24$	typ.	8 V
$V_{10 ; 11-24}$	typ.	4 V
	$>$	60 dB
$V_{10 ; 11-24}$	$<$	20 mV
$V_{11-24(p-p)}$	$<$	10 mV

SECAM DECODER

The TDA3520 is a monolithic integrated circuit which contains all the functions necessary for decoding the SECAM signal from the composite video and which offers the colour difference signals - (R-Y) and - $(B-Y)$ to the video circuits TDA3500 or TDA 3501 in order to complete the SECAM decoding system.

By simply adding the PAL decoder circuit TDA3510, the SECAM system can be extended to receive SECAM/PAL signals as well. The 64μ s delay line is used in common and all system switching functions are performed automatically.

One of the main features of the TDA3520 is that only the clock filter has to be adjusted; all the other adjustments can be left out due to usage of PLL-type FM demodulators, the system of horizontal identification and the gain controlled chrominance amplifier.

The TDA3520 incorporates the following main functions:

- gain controlled chrominance amplifier
- delay line amplifier (fixed gain of nom. 8), controlled by the colour killer (black-white/colour and SECAM/PAL commutation)
- limiter stages for direct signals and delayed signals
- permutator
- horizontal identification system; in PAL/SECAM receivers automatic standard switching is obtained if only a fixed phase shift circuit is added
- internal clamping generator and identification ($1 \mu \mathrm{~s}$) triggered either by the sandcastle pulse or by the video signal via the internal sync separator together with the flyback pulse
- ($B-Y$) and ($\mathrm{R}-\mathrm{Y}$) demodulators (without control) with burst level memory by means of an external capacitor
- circuits for horizontal and vertical blanking, during which de-emphasizing and restoring of black levels in the ($R-Y$) and ($B-Y$) signals occurs
- low-impedance output stages controlled by the colour killer (black/white/colour and SECAM/PAL switches)
- possibility for vertical identification by adding a simple external circuit
- colour killer output with $\mathrm{H} / 2$ information is available to control the luminance suppression filter from line to line.

QUICK REFERENCE DATA

Supply voltage (pins $5,14,15$)	V_{p}	typ.	12 V
Supply current $\left(I_{5}+I_{14}+I_{15}\right)$	I_{p}	typ.	90 mA
Input voltage range (peak-to-peak value)	$V_{27-28(p-p)}$	10 to	200 mV
A.G.C. control range		$<$	26 dB
Colour killer output current (SECAM not identified)	I_{8}		5
PLL demodulator catching range	Δf	mA	
$-(R-Y)$ output voltage (peak-to-peak value)	$V_{16-24(p-p)}$	typ.	$1,05 \mathrm{MHz}$
$-(B-Y)$ output voltage (peak-to-peak value)	$V_{13-24(p-p)}$	typ.	$1,33 \mathrm{~V}$

PACKAGE OUTLINE

28-lead DI L; plastic (SOT-117).

Fig. 1 Block diagram.

\max.	$13,2 \mathrm{~V}$
\max.	$1,7 \mathrm{~W}$
-25 to $+125{ }^{\circ} \mathrm{C}$	
-20 to $+70^{\circ} \mathrm{C}$	

10,8 to 13,2 V
typ. $\quad 90 \mathrm{~mA}$

Chrominance amplifier (pins 27 and 28)
Input voltage range (peak-to-peak value)
Input resistance
A.G.C. control range
at 3 dB output signal variation at pin 25
Delay line amplifier (pin 25)
Output voltage (peak-to-peak value)
Output impedance
D.C. output voltage SECAM identified
SECAM not identified
Attenuation (SECAM not identified)

Delay line input (pin 23)

Input voltage (peak-to-peak value) *	$\mathrm{V}_{23-24}(\mathrm{p}-\mathrm{p})$	typ.	325 mV
Input resistance	R_{23-24}	$>$	$3 \mathrm{k} \Omega$
Identification circuit (pins 2 and 4)			
Output voltage (phase-shift circuit input) (peak-to-peak value)	V_{2-24} (p-p)	typ.	2,8 V
Output resistance	R_{2-24}	<	200Ω
Input voltage (phase-shift circuit output) (peak-to-peak value)	$\mathrm{V}_{4-24}(\mathrm{p}-\mathrm{p})$	typ.	300 mV
Input resistance	R4-24	>	$1 \mathrm{k} \Omega$

[^39]Colour difference output stages (pins 13 and 16)
Output voltages (peak-to-peak values)
$-(R-Y)$ signal
$-(B-Y)$ signal
D.C. output voltage

Output resistance
Attenuation (SECAM not identified)
H / Z ripple at the outputs (peak-to-peak value)
CHARACTERISTICS (continued)
Colour killer output (pin 8; open collector)
Saturation voltage (SECAM not identified)
Output current (SECAM not identified)
Output current (SECAM identified; blue line)
Output current (SECAM identified; red line)

Sync separator (pin 21)
Slicing level *
Video input voltage (peak-to-peak value)
Sandcastie input (or flyback pulse) (pin 22)
Blanking level for driving the sync separator
Flip-flop slicing level
Maximum input current
Demodulators (pins 9 and 19)
PLL demodulator catching range
Equivalent error at the reinserted reference levels

Attenuation (SECAM not identified)
V_{8-24}
$-l_{8}$
$-I_{8}$
$-l_{8}$
V_{21-24}
V_{21-24} (p-p)
V_{22-24}
V_{22-24}
${ }^{\prime} 22$ max
Δf
Δf_{o}

typ.	300 mV
$<$	5 mA
typ.	0 mA
typ.	$0,5 \mathrm{~mA}$

typ.	$2,5 \mathrm{~V}$
typ.	1 V

1,0 to $2,0 \mathrm{~V}^{*}$
$<$
3,0 to $4,0 \mathrm{~V}^{*}$
$100 \mu \mathrm{~A}$

$>$	1 MHz
$<$	4 kHz

$V_{16-24(p-p)}$	typ.	$1,05 \mathrm{~V}$
$\mathrm{~V}_{13-24}(\mathrm{p}-\mathrm{p})$	typ.	$1,33 \mathrm{~V}$
$\mathrm{~V}_{13,16-24}$	typ.	6 V *
$\mathrm{R}_{13,16-24}$	$<$	100Ω
	typ.	62 dB
$V_{13,16-24(p-p)}$	$<$	$10 \cdot \mathrm{mV}$

*Proportional to the supply voltage.
** Capacitive coupling; see Fig. 2.

TELEVISION I.F. AMPLIFIER AND DEMODULATOR

The TDA3540 is an i.f. amplifier and demodulator circuit for colour and black and white television receivers using n-p-n tuners.
It incorporates the following functions:

- gain-controlled wide-band amplifier, providing complete i.f. gain
- synchronous demodulator with excellent intermodulation
- white spot inverter
- video preamplifier with noise protection
- a.f.c. circuit with a.f.c. on/off switch
- a.g.c. circuit with noise gating
- tuner a.g.c. output (n-p-n tuners)
- external video switch which switches off the video output; e.g. for insertion of a VCR playback signal, by either a high or a low level.

QUICK REFERENCE DATA

Supply voltage	V_{11-13}	typ.	12 V
Supply current	I_{11}	typ.	53 mA
I.F. input sensitivity (r.m.s. value)	$\mathrm{V}_{1-16(\mathrm{rms})}$	typ.	$70 \mathrm{\mu V}$
Video output voltage (white at 10% of top sync)	$\mathrm{V}_{12}(\mathrm{p}-\mathrm{p})$	typ.	$2,7 \mathrm{~V}$
I.F. voltage gain control range	G_{V}	typ.	65 dB
Signal-to-noise ratio at $\mathrm{V}_{\mathrm{i}}=10 \mathrm{mV}$	S / N	typ.	57 dB
A.F.C. output voltage swing for $\Delta \mathrm{f}=70 \mathrm{kHz}$	$\Delta \mathrm{V}_{5-13}$	typ.	10 V

PACKAGE OUTLINES

TDA3540 : 16-lead DIL; plastic (SOT-38).
TDA3540Q: 16-lead QIL; plastic (SOT-58).

Fig. 1 Block diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Supply voltage
Tuner a.g.c. voltage
Total power dissipation
Storage temperature
Operating ambient temperature
CHARACTERISTICS (measured in Fig. 5)
Supply voltage range
V_{11-13}
typ.
12 V
10,2 to $13,2 \mathrm{~V}$
The following characteristics are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{11-13}=12 \mathrm{~V}$
I.F. input voltage for onset of a.g.c. (r.m.s. value)

at $f=38,9$ or $45,75 \mathrm{MHz}$ at $\mathrm{f}=58,75 \mathrm{MHz}$	$\begin{aligned} & V_{1-16(\mathrm{rms})} \\ & \mathrm{V}_{1-16(\mathrm{rms})} \end{aligned}$	$\begin{aligned} & \text { typ. } \\ & \text { typ. } \end{aligned}$	$\begin{aligned} & 70 \mu \mathrm{~V} \\ & 90 \mu \mathrm{~V} \end{aligned}$
Differential input impedance	$\left\|z_{1-16}\right\|$	typ.	$10 \mathrm{k} \Omega$ in parallel with 2 pF
Zero-signal output level	V_{12-13}	typ.	$6 \pm 0,3 \mathrm{~V}^{*}$
Top sync output level	V_{12-13}	typ.	$\begin{array}{r} 3,07 \mathrm{~V} \\ 2,9 \text { to } 3,2 \mathrm{~V} \end{array}$
.F. voltage gain control range	G_{v}	typ.	65 dB
Bandwidth of video amplifier (3 dB)	B	typ.	9 MHz
Signal-to-noise ratio at $\mathrm{V}_{\mathrm{i}}=10 \mathrm{mV}$	S / N	typ.	$57 \mathrm{~dB} * *$
Differential gain	dG	$\stackrel{\text { typ. }}{<}$	$\begin{array}{r} 5 \% \\ 10 \% \end{array}$
Differential phase	d φ	$\stackrel{\text { typ. }}{<}$	$\begin{array}{r} 20 \\ 10^{\circ} \end{array}$

* ' So-called 'projected zero point', e.g. with switched demodulator.
${ }^{* *} \mathrm{~S} / \mathrm{N}=\frac{\mathrm{V}_{\mathrm{O}} \text { black-to-white }}{\mathrm{V}_{\mathrm{n}}(\mathrm{rms}) \text { at } \mathrm{B}=5 \mathrm{MHz}}$

CHARACTERISTICS (continued)

Intermodulation at $1,1 \mathrm{MHz}$: blue*

yellow*
at $3,3 \mathrm{MHz}^{* *}$

$>$	60 dB
typ.	65 dB
$>$	54 dB
typ.	58 dB
$>$	60 dB
typ.	70 dB

S.C. : sound carrier level
C.C. : chrominance carrier level with respect to top sync level
P.C. : picture carrier level

Fig. 2 Input conditions for intermodulation measurements; standard colour bar with 75% contrast.

Fig. 3 Test set-up for intermodulation.

* $20 \log \frac{V_{0} \text { at } 4,4 \mathrm{MHz}}{V_{0} \text { at } 1,1 \mathrm{MHz}}+3,6 \mathrm{~dB} . \quad{ }^{* *} 20 \log \frac{V_{0} \text { at } 4,4 \mathrm{MHz}}{V_{0} \text { at } 3,3 \mathrm{MHz}}$.

Carrier signal at video output
2nd harmonic of carrier at video output
White spot inverter threshold level (Fig. 4)
White spot insertion level (Fig. 4)
Noise inverter threshold level (Fig. 4)
Noise insertion level (Fig. 4)
External video switch (VCR) switches off the output at
$<30 \mathrm{mV}$
< 30 mV
typ. 6,6 V
typ. $4,7 \mathrm{~V}$
typ. $1,8 \mathrm{~V}$
typ. $3,8 \mathrm{~V}$
v_{14-13}
$<1,5 \mathrm{~V}$
$>$
$>10,5 \mathrm{~V}$

Fig. 4 Video output waveform showing white spot and noise inverter threshold levels.

Tuner a.g.c. output current range
Tuner a.g.c. output voltage at $\mathrm{I}_{4}=10 \mathrm{~mA}$
Tuner a.g.c. output leakage current $\mathrm{V}_{14-13}=3 \mathrm{~V} ; \mathrm{V}_{4-13}=12 \mathrm{~V}$
Lowest tuner a.g.c. take-over point
Highest tuner a.g.c. take-over point
Maximum a.f.c. output voltage swing
Detuning for a.f.c. output voltage swing of 10 V $f=38,9 \mathrm{MHz}$
A.F.C. zero-signal output voltage (minimum gain)
A.F.C. switches on at:
A.F.C. switches off at:

14	10 to 0 mA
V_{4-13}	< 0,3 V
14	< $10 \mu \mathrm{~A}$
V_{i}	< 10 mV
V_{i}	$>100 \mathrm{mV}$
$\Delta \mathrm{V}_{5-13}$	$\begin{array}{ll} > & 10 \mathrm{~V} \\ \text { typ. } & 11 \mathrm{~V} \end{array}$
$\Delta \mathrm{f}$	$\stackrel{\text { typ. } \quad 70 \mathrm{kHz}}{<} \quad 150 \mathrm{kHz}$
V_{5-13}	$\begin{array}{r} \text { typ. } \begin{array}{r} 6 \mathrm{~V} \\ 4 \text { to } 8 \mathrm{~V} \end{array} \end{array}$
V_{6-13}	$>3,2 \mathrm{~V}$
V_{6-13}	$<2,0 \mathrm{~V}$

Fig. 5 Typical application circuit diagram; Q of $L 1$ and $L 2 \approx 80 ; f_{0}=38,9 \mathrm{MHz}$.

Fig. 7 Signal-to-noise ratio as a function of the input voltage $\left(V_{1-16}\right)$.

TELEVISION I.F. AMPLIFIER AND DEMODULATOR

The TDA3541 is an i.f. amplifier and demodulator circuit for colour and black and white television receivers using $p-n-p$ tuners.
It incorporates the following functions:

- gain-controlled wide-band amplifier, providing complete i.f. gain
- synchronous demodulator with excellent intermodulation
- white spot inverter
- video preamplifier with noise protection
- a.f.c. circuit with a.f.c. on/off switch
- a.g.c. circuit with noise gating
- tuner a.g.c. output (p-n-p tuners)
- external video switch which switches off the video output; e.g. for insertion of a VCR playback signal, by either a high or a low level

QUICK REFERENCE DATA

Supply voltage			
Supply current	V_{11-13}	typ.	12 V
I.F. input sensitivity (r.m.s. value)	I_{11}	typ.	53 mA
Video output voltage (white at 10% of top sync)	$\mathrm{V}_{1-16(\mathrm{rms})}$	typ.	$70 \mathrm{\mu V}$
I.F. voltage gain control range	$\mathrm{V}_{12(\mathrm{p}-\mathrm{p})}$	typ.	$2,7 \mathrm{~V}$
Signal-to-noise ratio at $\mathrm{V}_{\mathrm{i}}=10 \mathrm{mV}$	G_{V}	typ.	65 dB
A.F.C. output voltage swing for $\Delta \mathrm{f}=70 \mathrm{kHz}$	S / N	typ.	57 dB

PACKAGE OUTLINES

TDA3541 : 16-lead DIL; plastic (SOT-38).
TDA3541Q: 16-lead QIL; plastic (SOT-58).

Fia. 1 RInck dianram

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage
Tuner a.g.c. voltage
Total power dissipation
Storage temperature
Operating ambient temperature
V_{11-13}
V_{4-13}
$P_{\text {tot }}$
$T_{\text {stg }}$
$T_{\text {amb }}$
max. $\quad 13,2 \mathrm{~V}$
max. $13,2 \mathrm{~V}$
max. $\quad 1,1 \mathrm{~W}$
-55 to $+150{ }^{\circ} \mathrm{C}$ -25 to $+70{ }^{\circ} \mathrm{C}$

CHARACTERISTICS (measured in Fig. 5)

* So-called 'projected zero point', e.g. with switched demodulator.
** $\mathrm{S} / \mathrm{N}=\frac{\mathrm{V}_{0} \text { black-to-white }}{\mathrm{V}_{\mathrm{n}}(\mathrm{rms}) \text { at } \mathrm{B}=5 \mathrm{MHz}}$.

CHARACTERISTICS (continued)

Intermodulation at 1,1 MHz: blue*
yellow*
at $3,3 \mathrm{MHz}^{* *}$

$>$	60 dB
typ.	65 dB
$>$	54 dB
typ.	58 dB
$>$	60 dB
typ.	70 dB

S.C. : sound carrier level
C.C. : chrominance carrier level with respect to top sync level
P.C. : picture carrier level

Fig. 2 Input conditions for intermodulation measurements; standard colour bar with 75% contrast.

Fig. 3 Test set-up for intermodulation.

* $20 \log \frac{V_{0} \text { at } 4,4 \mathrm{MHz}}{V_{0} \text { at } 1,1 \mathrm{MHz}}+3,6 \mathrm{~dB} . \quad * * 20 \log \frac{V_{0} \text { at } 4,4 \mathrm{MHz}}{V_{0} \text { at } 3,3 \mathrm{MHz}}$.

Television i.f. amplifier and demodulator

Carrier signal at video output
2nd harmonic of carrier at video output
White spot inverter threshold level (Fig. 4)
White spot insertion level (Fig. 4)
Noise inverter threshold level (Fig. 4)
Noise insertion level (Fig. 4)
External video switch (VCR) switches off the output at

	$<$	30 mV
	$<$	30 mV
	typ.	$6,6 \mathrm{~V}$
	typ.	$4,7 \mathrm{~V}$
	typ.	$1,8 \mathrm{~V}$
	typ.	$3,8 \mathrm{~V}$
V_{14-13}	$<$	$1,5 \mathrm{~V}$
	$>$	$10,5 \mathrm{~V}$

Fig. 4 Video output waveform showing white spot and noise inverter threshold levels.

Tuner a.g.c. output current range
Tuner a.g.c. output voltage at $\mathrm{I}_{4}=10 \mathrm{~mA}$
Tuner a.g.c. output leakage current

$$
V_{14-13}=11 V_{;} V_{4-13}=12 \mathrm{~V}
$$

Lowest tuner a.g.c. take-over point
Highest tuner a.g.c. take-over point
Maximum a.f.c. output voltage swing
Detuning for a.f.c. output voltage swing of 10 V $\mathrm{f}=38,9 \mathrm{MHz}$
A.F.C. zero-signal output voltage (minimum gain)
A.F.C. switches on at:
A.F.C. switches off at:
I_{4}
V_{4-13}
1_{4}
v_{i}
$\mathrm{V}_{\mathrm{i}} \quad>\quad 100 \mathrm{mV}$
ΔV_{5-13}
Δf
V_{5-13}
V_{6-13}
V_{6-13}

0 to 10 mA
$<\quad 0,3 . \mathrm{V}$
$<\quad 10 \mu \mathrm{~A}$
$<\quad 10 \mathrm{mV}$
$>\quad 10 \mathrm{~V}$
typ. 11 V
typ. $\quad 70 \mathrm{kHz}$
$<\quad 150 \mathrm{kHz}$
typ. 6 V
4 to 8 V
$>\quad 3,2 \mathrm{~V}$
< 2,0 V

Fig. 5 Typical application circuit diagram; Q of $L 1$ and $L 2 \approx 80 ; f_{0}=38,9 \mathrm{MHz}$.
Television i.f. amplifier and demodulator

Fig. 7 Signal-to-noise ratio as a function of the input voltage $\left(\mathrm{V}_{1-16}\right)$.

PAL DECODER

The TDA3560 is a monolithic integrated colour decoder for the PAL standard. It combines all functions required for the identification and demodulation of PAL signals. Furthermore it contains a luminance amplifier, an RGB-matrix and amplifier. These amplifiers supply output signals up to 5 V peak-to-peak (picture information) enabling direct drive of the output stages. The circuit also contains separate inputs for data insertion, analogue as well as digital, which can be used for Teletext information, channel number display, etc.

QUICK REFERENCE DATA

Supply voltage	V_{1-27}	typ.	12 V
Supply current	I_{1}	typ.	85 mA
Luminance input signal (peak-to-peak value)	$\vee_{10-27(p-p)}$	typ.	0.45 V
Chrominance input signal (peak-to-peak value)	$V_{3-27(p-p)}$	55 to	1100 mV
Data input signals (peak-to-peak value)	$V_{13,15,17-27(p-p)}$	typ.	1 V
RGB output signals at nominal contrast and saturation (peak-to-peak value)	$V_{12,14,16-27(p-p)}$	typ.	5 V
Contrast control range		typ.	20 dB
Saturation control range		typ.	50 dB
Input for fast video-data signal switching	V9-27	typ.	1 V
Blanking input voltage	V_{8-27}	typ.	1,5 V
Burst gating and black-level gating input voltage	V_{8-27}	typ.	7 V

PACKAGE OUTLINE

Fig. 1 Block diagram.

PAL decoder

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage
Input saturation voltage
Input contrast voltage
Input blanking pulse and sandcastle
Input video-data switch voltage
Input brightness voltage

	min.	max.
$V_{P}=V_{1-27}$	-	13,2 V
V_{6-27}	0	$\mathrm{V}_{\mathrm{P}} \mathrm{V}$
V_{7-27}	0	$V_{p} \mathrm{~V}$
V_{8-27}	0	$V_{P} \mathrm{~V}$
V_{9-27}	0	$V_{p} \mathrm{~V}$
V_{11-27}	0	$V_{P} \mathrm{~V}$

Power dissipation
Storage temperature
Operating ambient temperature
see Fig. 2
$\mathrm{T}_{\text {stg }} \quad-25$ to $+150{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}} \quad-25$ to $+65{ }^{\circ} \mathrm{C}$

CHARACTERISTICS

$\mathrm{V}_{1-27}=12 \mathrm{~V} ; \mathrm{V}_{10-27(p-p)}=0 ; 45 \mathrm{~V} ; \mathrm{V}_{3-27(\mathrm{p}-\mathrm{p})}=500 \mathrm{mV} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in Fig. 6; unless otherwise specified

Supply voltage range	V_{P}	typ.12 V Supply current
	I_{1}	typ.$13,2 \mathrm{~V}$ 85 mA

Luminance amplifier

Input voltage (peak-to-peak value)
Input current

$V_{10-27(p-p)}$	typ.	$0,45 \mathrm{~V}$
I_{10}	$<$	$1 \mu \mathrm{~A}$
		-17 to +3 dB

Contrast control range
see Fig. 3
Chrominance amplifier
Input voltage (peak-to-peak value)
A.C.C. control range

Saturation control range
Saturation control voltage range see Fig. 4
Phase shift between burst and chrominance *
Tracking between luminance and chrominance with contrast control over a range of 10 dB , starting at maximum contrast
typ. $\quad 1 \mathrm{~dB}$

* At nominal contrast and saturation setting. Nominal setting $=$ maximum contrast -3 dB ; maximum saturation -6 dB.

CHARACTERISTICS (continued)

Reference oscillator
Phase locked loop:

- catching range (note 1)
- phase shift (note 2)

Oscillator:

- input resistance
- input capacitance
- output resistance
A.C.C. generation:
- reference voltage
- control voltage at nominal input signal
- control voltage without burst

R_{26-27}	typ.	300Ω
C_{26-27}	$<$	10 pF
R_{25-27}	typ.	200Ω
$\mathrm{~V}_{4-27}$	typ.	$4,6 \mathrm{~V}$
$\mathrm{~V}_{2-27}$	typ.	$4,7 \mathrm{~V}$
$\mathrm{~V}_{2-27}$	typ.	$2,4 \mathrm{~V}$

Demodulator circuit

Input burst signal amplitude (peak-to-peak value)	$\mathrm{V}_{21,22-27(p-p)}$	typ.	60 mV
Ratio of demodulated signals.			
without luminance input signal	V_{16-27}		178
	$\overline{V_{12-27}}$	typ.	1,78
(G-Y)/(R-Y)	V_{14-27}	typ.	-0,51
(G-Y)(RY)	V_{12-27}		0,51
(G-Y)/(B-Y)	V_{14-27}	typ.	-0,19
	V_{16-27}		

RGB matrix and amplifiers

Output voltage (peak-to-peak value) (note 3)
Maximum white level
Birghtness control voltage range
Relative spread between
R, G and B output signals
Variation of black level with contrast control

$V_{12,14,16-27(p-p)}$	typ.	5 V
	typ.	$9,3 \mathrm{~V}$

see Fig. 5

Relative black-level variation between the three stages during variation of contrast saturation, brightness and supply voltage
Differential black-level drift over a
temperature range of $40^{\circ} \mathrm{C}$
Blanking lével at RGB outputs
Signal-to-noise ratio of output signals (note 4)

$<$	10%
$<$	200 mV

	$<$	20 mV
		20 mV
S / N		
		$2,1 \mathrm{~V}$
		62 dB

Notes

1. Frequency referred to $4,4 \mathrm{MHz}$ carrier frequency.
2. For $\pm 400 \mathrm{~Hz}$ deviation of the oscillator frequency.
3. For nominal setting of the controls.
4. The signal-to-noise ratio is specified as the nominal peak-to-peak output signal with respect to r.m.s. noise.

Residual $8,8 \mathrm{MHz}$ and higher harmonics
on RGB-outputs (peak-to-peak value)
Output impedance RGB outputs
Frequency response of total luminance and RGB amplifier circuits for $f=0$ to 5 MHz

Signal insertion

Input signals for an RGB output voltage of 5 V (peak-to-peak value)
Difference between the black levels of the RGB signals and the inserted signals at the output
Output rise time
Differential delay time for the three channels

Video-data switching

Input voltage for switching from video to inserted signals

Input voltage for no data insertion
Delay between signal switching at the output and the signal switching input pulse at pin 9

Sandcastle and field blanking input (pin 8)

Burst gate and clamping pulse
RGB blanking level
on
off

	$<$	150 mV
$\left\|\mathrm{Z}_{\mathrm{O}}\right\|$	typ.	50Ω
	$<$	-3 dB

$V_{13,15,17-27(p-p)} \quad$ typ. $1 \vee$

ΔV	$<$	60 mV
t_{r}	typ.	50 ns
t_{d}	$<$	40 ns

V9-27
V_{9-27}
t_{d}
V_{8-27}
V_{8-27}
V8-27

0,9 to 2 V
$0,3 \mathrm{~V}$

20 ns

7,5 V

2 to 6,5 V
$0,8 \mathrm{~V}$

Fig. 4 Saturation control voltage range.

APPLICATION INFORMATION

Fig. 6 Application circuit.
For adjustments see page 10.

APPLICATION INFORMATION

The function is described against the corresponding pin number.

1. + 12 V power supply

The circuit gives good operation in a supply voltage range between 8 and $13,2 \mathrm{~V}$ provided that the supply voltage for the controls is equal to the supply voltage for the TDA3560. All signal and control levels have a linear dependency on the supply voltage. The current taken by the device at 12 V is typically 85 mA . It is linearly dependent on the supply voltage.

2. Control voltage for identification

This pin requires a detection capacitor of about 330 nF for correct operation. The voltages available under various signal conditions are given in the specification.

3. Chrominance input

The chroma signal must be a.c.-coupled to the input. Its amplitude must be between 55 mV and 1100 mV peak-to-peak (25 mV to 500 mV peak-to-peak burst signal). All figures for the chroma signals are based on a colour bar signal with 75% saturation, that is the burst-to-chroma ratio of the input signal is $1: 2,25$.

4. Reference voltage A.C.C. detector

This pin must be decoupled by a capacitor of about 330 nF . The voltage at this pin is $4,6 \mathrm{~V}$.

5. Control voltage A.C.C.

The A.C.C. is obtained by synchronous detection of the burst signal followed by a peak detector. A good noise immunity is obtained in this way and an increase of the colour for weak input signals is prevented. The recommended capacitor value at this pin is $2,2 \mu \mathrm{~F}$.

6. Saturation control

The saturation control range is in excess of 50 dB . The control voltage range is 2 to 4 V . Saturation control is a linear function of the control voltage.
When the colour killer is active, the saturation control voltage is reduced to a low level if the resistance of the external saturation control network is sufficiently high. Then the chroma amplifier supplies no signal to the demodulator. Colour switch-on can be delayed by proper choice of the time constant for the saturation control setting circuit.
When the saturation control pin is connected to the power supply the colour killer circuit is overruled so that the colour signal is visible on the screen. In this way it is possible to adjust the oscillator frequency without using a frequency counter (see also pins 25 and 26).

7. Contrast control

The contrast control range is 20 dB for a control voltage change from +2 to +4 V . Contrast control is a linear function of the control voltage. The output signal is suppressed when the control voltage is 1 V or less. If one or more output signals surpasses the level of 9 V the peak white limiter circuit becomes active and reduces the output signals via the contrast control by discharging C 2 via an internal current sink.

8. Sandcastle and field blanking input

The output signals are blanked if the amplitude of the input pulse is between 2 and $6,5 \mathrm{~V}$. The burst gate and clamping circuits are activated if the input pulse exceeds a level of $7,5 \mathrm{~V}$.
The higher part of the sandcastle pulse should start just after the sync pulse to prevent clamping of video signal on the sync pulse. The width should be about $4 \mu \mathrm{~s}$ for proper A.C.C. operation.

9. Video-data switching

The insertion circuit is activated by means of this input by an input pulse between 1 V and 2 V . In that condition, the internal RGB signals are switched off and the inserted signals are supplied to the output amplifiers. If only normal operation is wanted this pin should be connected to the negative supply. The switching times are very short ($<20 \mathrm{~ns}$) to avoid coloured edges of the inserted signals on the screen.

10. Luminance signal input

The input signal should have a peak-to-peak amplitude of $0,45 \mathrm{~V}$ (peak white to sync) to obtain a black-white output signal of 5 V at nominal contrast. It must be a.c.-coupled to the input by a capacitor of about 22 nF . The signal is clamped at the input to an internal reference voltage. A $1 \mathrm{k} \Omega$ luminance delay line can be applied because the luminance input impedance is made very high. Consequently the charging and discharging currents of the coupling capacitor are very small and do not influence the signal level at the input noticeably. Additionally the coupling capacitor value may be small.

11. Brightness control

The black level of the RGB outputs can be set by the voltage on this pin (see Fig. 5). The minimum black level is identical to the blanking level. The black level can be set higher than 4 V however the available output signal amplitude is reduced (see pin 7). Brightness control also operates on the black level of the inserted signals.

12, 14, 16. RGB outputs

The output circuits for red, green and blue are identical. Output signals are 5 V (black-white) for nominal input signals and control settings. The black levels of the three outputs have the same value. The blanking level at the outputs is 2 V . The peak white level is limited to 9 V . When this level is exceeded the output signal amplitude is reduced via the contrast control (see pin 7).

13, 15, 17. Inputs for external RGB signals

The external signals must be a.c.-coupled to the inputs via a coupling capacitor of about 100 nF . Source impedance should not exceed 150Ω. The input signal required for a 5 V peak-to-peak output signal is 1 V peak -to-peak. At the RGB outputs the black level of the inserted signal is identical to that of normal RGB signals. When these inputs are not used the coupling capacitors have to be connected to the negative supply.

18, 19, 20. Black level clamp capacitors

The black level clamp capacitors for the three channels are connected to these pins. The value of each capacitor should be about 100 nF .

21, 22. Inputs ($B-Y$) and ($R-Y$) demodulators

The input signal is automatically fixed to the required level by means of the burst phase detector and A.C.C. generator which are connected to this pin and pin 22. As the burst (applied differentially to those pins) is kept constant by the A.C.C., the colour difference signals automatically have the correct value.

APPLICATION INFORMATION (continued)

23, 24. Burst phase detector outputs

At these pins the output of the burst phase detector is filtered and controls the reference oscillator. An adequate catching range is obtained with the time constants given in the application circuit (see Fig. 6).

25, 26. Reference oscillator

The frequency of the oscillator is adjusted by the variable capacitor C 1 . For frequency adjustment interconnect pin 23 and pin 24. The frequency can be measured by connecting a suitable frequency counter to pin 25.

28. Output of the chroma amplifier

Both burst and chroma signals are available at the output. The burst-to-chroma ratio at the output is identical to that at the input for nominal control settings. The burst signal is not affected by the controls. The amplitude of the input signal to the demodulator is kept constant by the A.C.C. Therefore the output signal at pin 28 will depend on the signal loss in the delay line.

Adjustments (see Fig. 6)
C1 $\quad 8,8 \mathrm{MHz}$ oscillator
L1 phase delay line
$=10,7 \mu \mathrm{H}$
L2 nominal value
$=10,7 \mu \mathrm{H}$
L3 $\quad 4,4 \mathrm{MHz}$ chrominance input filter
$=10,7 \mu \mathrm{H}=\mathrm{L} .1$
L4 $\quad 4,4 \mathrm{MHz}$ trap in luminance signal line
$=5,6 \mu \mathrm{H}$
L5 delay equalization
$=66,1 \mu \mathrm{H}$
P1 amplitude of direct chroma signal
$\left.\begin{array}{l}R 1 \\ R 2\end{array}\right\}$ field blanking $\frac{\mathrm{R} 1}{\mathrm{R} 1+\mathrm{R2}} \times$ field blanking amplitude $2,0 \mathrm{~V}$ to $6,5 \mathrm{~V}$.
For a video input voltage of 1 V peak-to-peak: $\mathrm{R} 4=1 \mathrm{k} \Omega ; R 3, R 5$ and $R 6$ can be omitted.

NTSC DECODER

The TDA3570 is a monolithic integrated colour decoder for the NTSC standard. It combines all functions required for the identification and demodulation of NTSC signals. Furthermore it contains a luminance amplifier, an RGB-matrix and amplifier. The amplifier supplies output signals up to 3,5 V peak-to-peak (picture information) enabling direct drive of the output stages. The circuit also contains an automatic picture setting switch to preset positions of both saturation and tint controls.

QUICK REFERENCE DATA

Supply voltage	V_{1-14}	typ.	12 V
Supply current	l_{1}	typ.	43 mA
Luminance input signal (peak-to-peak value)	$V_{5-14(p-p)}$	typ.	1 V
RGB output signals (peak-to-peak value)	$\mathrm{V}_{26,27,28-14(p-p)}$	typ.	3,5 V
Contrast control range		typ.	13 dB
Blanking pulse and black level gating input voltage	$\mathrm{V}_{24,20-14}$	\geqslant	2 V
Chrominance input voltage (peak-to-peak value)	$\mathrm{V}_{13-14(p-p)}$	10 to 300 mV	
Saturation control range		\geqslant	40 dB
Tint control range		typ.	$\pm 45^{\circ}$

PACKAGE OUTLINE

28-lead DIL; plastic

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage
Input saturation voltage
Input contrast voltage
Input tint voltage
Input picture voltage
Input brightness voltage
Input sandcastle current
Input blanking pulse voltage
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$
Storage temperature
Operating ambient temperature

	min.	max.	
	0	14,4	V
$V_{P}=V_{1-14}$	0	V_{P}	V
V_{9-14}	0	V_{P}	V
V_{10-14}	0	V_{P}	V
V_{7-14}	0	V_{P}	V
V_{4-14}	0	V_{P}	V
V_{3-14}	-30	-	$m A$
I_{20}	-6	V_{P}	V
V_{24-14}		750	$m W$
	-40 to +125	${ }^{\circ} \mathrm{C}$	
$T_{\text {stg }}$	-20 to +70	${ }^{\circ} \mathrm{C}$	

CHARACTERISTICS

$\mathrm{V}_{1-14}=12 \mathrm{~V} ; \mathrm{V}_{5-14(\mathrm{p}-\mathrm{p})}=1 \mathrm{~V} ; \mathrm{V}_{13-14(\mathrm{p}-\mathrm{p})}=150 \mathrm{mV}$;
$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in Fig. 2
Supply voltage
Supply current

V_{1-14}	typ.	12	V
I_{1}	typ.	43	$m A$

Luminance

Input voltage (positive-going sync pulse; peak-to-peak value) $V_{5-14(p-p)}$
Video gain

Video gain
Contrast control voltage range
Contrast control range
Brightness control voltage range
Black level range
Max. output voltage
Blanking and gating pulse
Input impedance (pin 24)
Black level clamp and burst gating pulse
Input impedance (pin 20)
G_{v}
v_{10-14}
V_{3-14}
$V_{26,27,28-14}$
$V_{26,27,28-14}$
V_{24-14}
$\left|Z_{24-14}\right|$
V_{20-14}
$\left|Z_{20-14}\right|$
Input circuit: 3 pF in parallel with $9 \mathrm{k} \Omega$
Output circuit: emitter followers with internal $R_{E}=2,2 \mathrm{k} \Omega$
Picture control voltage
V_{4-14}

0 to 12 V

[^40]
Chrominance

Input voltage (peak-to-peak value)
A.C.C. control range

Colour kill level (peak-to-peak value)
Saturation control voltage range
Saturation control range
Saturation control range in position AUTO*
Tint control voltage range
Tịnt control range
Tịnt control range in position AUTO*
Pull in range of oscillator
Phase difference for 100 Hz change of burst

$V_{13-14(p-p)}$	typ.	150 m
	typ.	30 dB
$V_{13-14 \text { (p-p) }}$	typ.	5 ml
V_{9-14}		1 to 6 V
	typ.	40 dB
	typ.	6 dB
		1 to 6 V
V_{7-14}	typ. $\pm 45^{\circ}$	
	typ. ± 170	
	typ. $\pm 600 \mathrm{~Hz}$	
		typ. $\pm 1,50$

Input circuit: 6 pF in parallel with $3 \mathrm{k} \Omega$

* Depends on the ratio of R1/R2 in Fig. 2; position AUTO: switch closed.

Fig. 2 Application circuit

28-LEAD DUAL IN-LINE; PLASTIC

This information is derived from development samples
made available for evaluation. It does not necessarily
TDA3650

VERTICAL DEFLECTION CIRCUIT

The TDA3650 is a monolithic integrated circuit for vertical deflection in large screen colour television receivers.

The circuit incorporates the following functions:

- Oscillator
- Synchronization circuit
- Blanking pulse generator
- Sawtooth generator
- S-correction and linearity control
- Comparator and drive circuit
- Output stage
- Flyback generator
- Voltage stabilizer
- Thermal protection circuit
- Guard circuit
- Output stage protection

QUICK REFERENCE DATA

Supply voltage range (pin 13)	V_{P}	10 to 50 V	
Output current (peak-to-peak value)	$I_{3(p-p)}$	typ.	3 A
Operating junction temperature	T_{j}	max.	$150{ }^{\circ} \mathrm{C}$
Thermal resistance from junction to copper heat spreader (mounting base)	$R_{\text {th j-mb }}$	$=$	$4 \mathrm{~K} / \mathrm{W}$

PACKAGE OUTLINE

13-lead DIL; plastic power (SOT-141).

Fig. 1 Block diagram.

Total power dissipation internally limited by the thermal protection circuit (see also Fig. 2)

Storage temperature	$T_{\text {stg }}$	-25 to $+150{ }^{\circ} \mathrm{C}$
Operating junction temperature	T_{j}	$\max .150{ }^{\circ} \mathrm{C}$

Fig. 2 Total power dissipation. $R_{\text {th } h \text {-a }}$ includes $R_{\text {th }} \mathrm{mb}$-h which is expected when heatsink compound is used. $R_{\text {th }} j-\mathrm{mb}=4 \mathrm{~K} / \mathrm{W}$.

CHARACTERISTICS			
$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$ unless otherwise specified			
Supply voltage	$V_{P}=V_{13-2}$		10 to 50 V
Supply voltage output stage	V4-2		10 to 50 V
Maximum flyback generator output voltage	V_{6-2}	typ.	$\mathrm{V}_{\mathrm{p}}-2 \mathrm{~V}$
Comparator input voltage	V_{1-12}	typ.	3,8 V
Comparator input current	l_{1}	$<$	$1 \mu \mathrm{~A}$
Synchronization input voltage	V_{5-12}		1 to 8 V
Synchronization input impedance	$\left\|z_{5-12}\right\|$	typ.	$2 \mathrm{k} \Omega^{\prime}$
Oscillator input current during scan period	17		1 to $5 \mu \mathrm{~A}$
Sawtooth generator input current during scan period	19		1,5 to $5 \mu \mathrm{~A}$
Sawtooth generator discharge current during flyback	19	typ.	$4,7 \mathrm{~mA}$
Minimum sawtooth voltage level	V_{9-12}	typ.	$1,1 \mathrm{~V}$
Supply current (without load)	l_{13}	typ.	55 mA
Output voltage minimum maximum	$\begin{aligned} & V_{3-2} \\ & v_{3-2} \end{aligned}$	$V_{4-2}-3$ to	$\begin{array}{r} 2 \text { to } 3 \mathrm{~V}{ }^{*:} . \\ \mathrm{V}_{4-2}-2 \mathrm{~F} \text { :. } \end{array}$
Output current (peak-to-peak value)	$13(p-p)$	<	$4 . \mathrm{A}$
Blanking pulse generator output voltage; $1_{11}=0$	V_{11-12}	typ.	6,5 V
Blanking pulse duration	t_{b}		$1,4 \pm 0,1 \mathrm{~ms}$
Blanking pulse output current	l_{11}	$<$	10 mA
Blanking pulse output impedance	$\left\|z_{11-12}\right\|$	typ.	400Ω
Tracking range oscillator		typ.	18 \%
Oscillator temperature dependency		typ.	0,02 Hz/k
Oscillator voltage dependency		typ.	0,03 Hz/v
Junction temperature switching point thermal protection	T_{j}	typ.	$170{ }^{\circ} \mathrm{C}$
Thermal resistance from junction to copper heat spreader (mounting base)	$\mathrm{R}_{\text {th j-mb }}$	typ.	4 K/W

IPINNING

1. Comparator input
2. Negative supply (ground) for output stage
3. Output
4. Positive supply of output stage
5. Synchronization input
6. Buffered sawtooth signal
7. Flyback generator output
8. Tuning of sawtooth generator
9. Decoupling of output driver stage
10. Blanking output
11. Negative supply (ground)
12. Positive supply
13. Tuning of oscillator (frequency control)

APPLICATION INFORMATION

The function is described against the corresponding pin number

1. Comparator input

The d.c. and a.c. feedback, which are measured at the output of the class-B amplifier, are fed into pin 1 via an external circuitry. Pin 1 is one of the two comparator inputs, the other is fed internally with the sawtooth signal.
2. Negative supply (ground) for output stage.
3. Output of class-B power stage.

The vertical deflection coil is connected to this pin, via a series connection of a coupling capacitor and a feedback resistor, to ground.
4. Positive supply of output stage

This supply is obtained from the flyback generator. An electrolytic capacitor between pins 4 and 6 , a diode between pins 4 and 13, and a resistor between pins 6 and ground have to be connected for proper operation of the flyback generator.
5. Synchronization input

The oscillator has to be synchronized by a positive-going synchronization pulse of between 1 and 8 V .
6. Flyback generatoroutput.

An electrolytic capacitor between pins 6 and 4 and a resistor between pins 6 and 12 (ground) have to be connected to complete the flyback generator.
7. Tuning of oscillator

The oscillator frequency is determined by the values of the resistor and capacitor connected in parallel to pin 7.
8. Buffered sawtooth signal

The sawtooth signal is applied via a buffer stage to pin 8 . This signal is applied via an external circuit to the mid-point of the sawtooth generator tuning capacitors to obtain linearity and part of S-correction.

9. Tuning of sawtooth generator

The timing of the sawtooth generator is defined by the potentiometer setting and the capacitors connected to pin 9 . This capacitance is divided to realize linearity control and part of the S -shape.

APPLICATION INFORMATION (continued)

10. Decoupling of output driver stage

A capacitor with a low value has to be connected to pin 10 for decoupling of the output driver stage.
11. Blanking output

The maximum pulse amplitude without load is $6,5 \mathrm{~V}$. The maximum available current is 10 mA .
12. Negative supply (ground) of small-signal part.
13. Positive supply

The supply voltage at this pin is used to supply the flyback generator, the voltage stabilizer and the protection circuits.

The following application data are measured in a typical 30 AX system (Fig. 3).

Supply voltage	$V_{P}=V_{13-12}$	typ.	26 V
Output voltage (d.c. value)	V_{3-2}	typ.	14 V
Output voltage (peak value)	V_{3-2}	typ.	42 V
Supply current	$I_{4}+I_{13}$	typ.	300 mA
Output current (peak-to-peak value)	13 (p-p)	typ.	2,1 A
Flyback time	t_{ff}	typ.	1,2 ms
Blanking time	t_{b}	typ.	$1,4 \mathrm{~ms}$
Total power dissipation in IC	$P_{\text {tot }}$	typ.	4 W
Total power consumption	P	typ.	8 W
Non-linearity		$<$	3%
Thermal resistance of heatsink	$\mathrm{R}_{\text {th }} \mathrm{h}-\mathrm{a}$	typ.	10 K/W

Fig. 3 Complete vertical deflection circuit for 30 AX .

1

BIPOLAR ICs FOR VIDEO EQUIPMENT

FUNCTIONAL AND NUMERICAL INDEX MAINTENANCE TYPE LIST

GENERAL

PACKAGE OUTLINES

INTRODUCTION

DEVICE DATA

Argentina: FAPESAI.y.C., Av. Crovara 2550, Tablada, Prov. de BUENOS AIRES, Tel. 652-7438/7478.
Australia: PHILIPS INDUSTRIES HOLDINGS LTD., Elcoma Division, 67 Mars Road, LANE COVE, 2066, N.S.W., Tel. 4270888.
Austria: OSTERREICHISCHE PHILIPS BAUELEMENTE Industrie G.m.b.H., Triester Str. 64, A-1101 WIEN, Tel. 629111.
Belgium: M.B.L.E., 80, rue des Deux Gares, B-1070 BRUXELLES, Tel. 5230000.
Brazil: IBRAPE, Caixa Postal 7383, Av. Brigadeiro Faria Lima, 1735 SAO PAULO, SP, Tel. (011) 211-2600.
Canada: PHILIPS ELECTRONICS LTD., Electron Devices Div., 601 Milner Ave., SCARBOROUGH, Ontario, M1B 1M8. Tel. 292-5161.
Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. 39-4001.
Colombia: SADAPE S.A., P.O. Box 9805 , Calle 13, No. 51 + 39, BOGOTA D.E. 1., Tel. 600600.
Denmark: MINIWATT A/S, Emdrupvej 115A, DK-2400 KOBENHAVN NV., Tel. (01) 691622.
Finfand: OY PHILIPS AB, Elcoma Division, Kaivokatu 8, SF-00100 HELSINKI 10, Tel. 17271.
France: R.T.C. LA RADIOTECHNIQUE-COMPELEC, 130 Avenue Ledru Rollin, F-75540 PARIS 11, Tel. 355-44-99.
Germany: VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2 HAMBURG 1, Tel. (040) 3296-1.
Greece: PHILIPS S.A. HELLENIQUE, EIcoma Division, 52, Av. Syngrou, ATHENS, Tel. 915311.
Hong Kong: PHILIPS HONG KONG LTD., Elcoma Div., 15/F Philips Ind. BIdg., 24-28 Kung Yip St., KWAI CHUNG, TeI. NT 245121.
India: PEICO ELECTRONICS \& ELECTRICALS LTD., Ramon House, 169 Backbay Reclamation, BOMBAY 400020, Tel. 295144.
Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Elcoma Division, 'Timah' Building, JI. Jen. Gatot Subroto, P.O. Box 220, JAKARTA, Tel. 44163.
Ireland: PHILIPS ELECTRICAL (IRELAND) LTD., Newstead, Clonskeagh, DUBLIN 14, Tel. 693355.
Italy: PHILIPS S.p.A., Sezione Elcoma, Piazza IV Novembre 3, I-20124 MILANO, Tel. 2-6994.
Japan: NIHON PHILIPS CORP., Shuwa Shinagawa Bldg., 26-33 Takanawa 3-chome, Minato-ku, TOKYO (108), Tel. 448-5611. (IC Products) SIGNETICS JAPAN, LTD, TOKYO, Tel. (03)230-1521.
Korea: PHILIPS ELECTRONICS (KOREA) LTD., EIcoma Div., Philips House, 260-199 Itaewon-dong, Yongsan-ku, C.P.O. Box 3680 , SEOUL, Tel. 7 Malaysia: PHILIPSMALAYSIA SDN. BERHAD, Lot 2, Jalan 222, Section 14, Petaling Jaya, P.O.B. 2163, KUALA LUMPUR, Selangor, Tel. 774411. Mexico: ELECTRONICA S.A. de C.V., Varsovia No. 36, MEXICO 6, D.F., Tel. 533-11-80.
Netherlands: PHILIPS NEDERLAND B.V., Afd. Elonco, Boschdijk 525, 5600 PB EINDHOVEN, Tel. (040) 793333.
New Zealand: PHILIPS ELECTRICAL IND. LTD., Elcoma Division, 2 Wagener Place, St. Lukes, AUCKLAND, Tel. 867119.
Norway: NORSK A/SPHILIPS, Electronica, Sørkedalsveien 6. OSLO 3, Tel. 463890.
Peru: CADESA, Rocca de Vergallo 247, LIMA 17, Tel. 628599.
Philippines: PHILIPS INDUSTRIAL DEV. INC., 2246 Pasong Tamo, P.O. Box 911, Makati Comm. Centre, MAKATI-RIZAL 3116, Tel. $86-89-51$ to 59.
Portugal: PHILIPS PORTUGESA S.A.R.L., Av. Eng. Duharte Pacheco 6, LISBOA 1, Tel. 683121.
Singapore: PHILIPS PROJECT DEV. (Singapore) PTE LTD., Elcoma Div., P.O.B. 340, Toa Payoh CPO, Lorong 1, Toa Payoh, SINGAPORE 12, Tel.
South Africa: EDAC (Pty.) Ltd., 3rd Floor Rainer House, Upper Railway Rd. \& Ove St., New Doornfontein, JOHANNESBURG 2001, Tel. 614-2362/9. I
Spain: COPRESA S.A., Balmes 22, BARCELONA 7, Tel. 3016312.
Sweden: A.B. ELCOMA, Lidingövägen 50, S-11584 STOCKHOLM 27, Tel. 08/679780.
Switzerland: PHILIPS A.G., Elcoma Dept., Allmendstrasse 140-142, CH-8027 ZÜRICH, Tel. 01/432211.
Taiwan: PHILIPS TAIWAN LTD., 3rd Fl., San Min Building, 57-1, Chung Shan N. Rd, Section 2, P.O. Box 22978, TAIPEI, Tel. 5513101-5.
Thailand: PHILIPS ELECTRICAL CO. OF THAILAND LTD., 283 Silom Road, P.O. Box 961, BANGKOK, Tel. 233-6330-9.
Turkey: TÜRK PHILIPS TICARET A.S., EMET Department, Inonu Cad. No. 78-80, ISTANBUL, Tel. 435910.
United Kingdom: MULLARD LTD., Mullard House, Torrington Place, LONDON WC1E 7HD, Tel. 01-580 6633.
United States: (Active devices \& Materials) AMPEREX SALES CORP., Providence Pike, SLATERSVILLE, R.I. 02876, Tel. (401) 762-9000.
(Passive devices) MEPCO /ELECTRA INC., Columbia Rd., MORRISTOWN, N.J. 07960, Tel. (201) 539-2000.
(IC Products) SIGNETICS CORPORATION, 811 East Arques Avenue, SUNNYVALE, California 94086, Tel. (408) 739-7700:
Uruguay: LUZILECTRON S.A., Rondeau 1567, piso 5, MONTEVIDEO, Tel. 94321.
Venezuela: IND. VENEZOLANAS PHILIPS S.A., Elcoma Dept., A. Ppal de tos Ruices, Edif. Centro Colgate, CARACAS, Tel. 360511.

[^0]: * Field-effect transistors and wideband transistors will be transferred to S5 and SC3c respectively. The old book SC3 01-78 should be kept until then.

[^1]: ${ }^{1}$) Permissible while tubes are heating up: $V_{11-16} \max .16 \mathrm{~V}$ and $\mathrm{P}_{\text {tot }} \max .700 \mathrm{mw}$.
 ${ }^{2}$) V_{2-16} and V_{13-16} must always be lower than V_{11-16}.

[^2]: 1) When V_{6-16} is increased above $1,7 \mathrm{~V}$ the black level of the output signal remains at 2,7 . V
 ${ }^{2}$) A negative going potential provides a 26 dB a.c.c. range with negligible signal distortion. Maximum gain reduction is obtained at an input voltage of min. 500 mV .
[^3]: * Allowable only if the dissipation in the IC is limited by means of a series resistor in the supply (see also Fig. 4).

[^4]: ${ }^{1}$) Depends on switch position and polarity output current. $\mathrm{R}_{2}-16=2,5 \Omega$ is valid for $\mathrm{V}_{2-16}=+10,5 \mathrm{~V}$ and a load between pins 2 and 16 (e.g. an external resistor).
 ${ }^{2}$) The output pulse duration is adjusted by shifting the leading edge $\left(\mathrm{V}_{3-16}\right.$ from 6 V to 8 V). The pulse duration is a result of delay in the line output device and the action of the second control loop in the TBA920.
 For a line output stage with a BU108 high voltage transistor the resulting duration is about $22 \mu \mathrm{~s}$, and in such a way that the line output transistor is switched on again about $8 \mu \mathrm{~s}$ after the middle of the line flyback pulse. This pulse duration must be taken into account when designing the driver stage and driver transformer as this way of driving the line output device differs from the usual, i.e. a driver duty cycle of about 50%.

[^5]: ${ }^{1}$) The oscillator frequency can be changed for other t.v. standards by an appropriate value of C_{14-16}.
 ${ }^{2}$) Exclusive external components tolerances.
 3) Adjustable with R_{12-15}.

[^6]: * External component value changes are not taken into account.

[^7]: ${ }^{1}$) When a stabilized power supply of $\leqslant 12 \mathrm{~V}$ is applied, $\mathrm{T}_{\mathrm{amb}}$ is max. $75^{\circ} \mathrm{C}$.
 ${ }^{2}$) Start of limiting.
 3) A negative-going potential provides a 26 dB a.c.c. range.
 ${ }^{4}$) The line flyback pulses also provide the clock pulses for the flip-flop.
 ${ }^{5}$) The colour killer is operative above the quoted input voltage.

[^8]: ${ }^{1}$) When a stabilized power supply of $\leq 12 \mathrm{~V}$ is applied, T amb is max. $75^{\circ} \mathrm{C}$.
 ${ }^{2}$) At an input voltage of $0,15 \mathrm{~V}$; at an input voltage $>0,2 \mathrm{~V}$ the figure is $1,7 \mathrm{~V}$.

[^9]: ${ }^{1}$) When a stabilized power supply of $\leq 12 \mathrm{~V}$ is applied, $\mathrm{T}_{\mathrm{amb}}$ is max. $75^{\circ} \mathrm{C}$.
 ${ }^{2}$) During scan V3-4 must be kept lower than $0,7 \mathrm{~V}$ (positive and negative) to avoid blanking of the luminance signal.
 ${ }^{3}$) Nominal contrast is specified as maximum contrast -3 dB .

[^10]: ${ }^{1}$) Nominal brightness setting $\mathrm{V}_{14-4}=5,7 \mathrm{~V}$.
 2) Only valid if the input current does not exceed $0,5 \mathrm{~mA}$ during black.
 3) For a.c. coupling only.
 4) Nominal contrast is specified as maximum contrast -3 dB .
 5) Nominal saturation is specified as maximum saturation -6 dB .
 $6)$ This value is obtained at the specified maximum input voltage.

[^11]: * Symbols used in test circuit Fig. 3.

[^12]: * See derating curve Fig. 2.

[^13]: ${ }^{1}$) The demodulators are driven by a chrominance signal of equal amplitude for the ($\mathrm{R}-\mathrm{Y}$) and the ($\mathrm{B}-\mathrm{Y}$) components. The phase of the ($\mathrm{R}-\mathrm{Y}$) chrominance signal equals the phase of the ($\mathrm{R}-\mathrm{Y}$) reference signal.
 The same holds for the ($B-Y$) signals.

[^14]: 1) The amplitude of the burst is kept constant by a.c.c. action, but depends linearly on the keying pulse width.
 2) To be established.
 3) The delay depends on the value of C_{d}.
[^15]: 1) The demodulators are driven by a chrominance signal of equal amplitude for the ($\mathrm{R}-\mathrm{Y}$) and the ($\mathrm{B}-\mathrm{Y}$) components. The phase of the ($\mathrm{R}-\mathrm{Y}$) chrominance signal equals the phase of the ($\mathrm{R}-\mathrm{Y}$) reference signal.
 The same holds for the ($\mathrm{B}-\mathrm{Y}$) signals.
 ${ }^{2}$) As under note 1 , but the phase of the ($\mathrm{R}-\mathrm{Y}$) reference signal reversed.
 3) Colour bar with 75% saturation.
[^16]: ${ }^{1}$) The amplitude of the burst is kept constant by a.c.c. action, but depends linearly on the keying pulse width.
 2) To be established.
 ${ }^{3}$) The delay depends on the value of C_{d}.

[^17]: 1) At a load on pin 6 of $1,5 \mathrm{k} \Omega$, and no load on pins 10 and 15 .
 ${ }^{2}$) At an input bias current of $0,25 \mathrm{~mA}$.
 ${ }^{3}$) At $V_{11-5}>4 \mathrm{~V}$.
 ${ }^{4}$) At nominal contrast (max. contrast setting -3 dB).
[^18]: 1) For $\mathrm{I}_{14}=0,2 \mathrm{~mA}$ (black-to-white value).
 ${ }^{2}$) All figures for the chrominance signals are based on a colour bar signal with 75% saturation: i.e. burst-to-chrominance ratio is 1:2.
 ${ }^{3}$) At a burst signal of 1 V peak-to-peak; see also notes 4 and 5 on page 5 .
[^19]: * The duty factor is specified as follows:

[^20]: ** See waveforms Fig. 2.

[^21]: * During standard video signals.

[^22]: * When a non-standard sync signal is applied the separated vertical sync pulse of the incoming signal is connected to pin 2; the pulse of the divider circuit is switched off.

[^23]: * During standard video signals.

[^24]: * When a non-standard sync signal is applied the separated vertical sync pulse of the incoming signal is connected to pin 2; the pulse of the divider circuit is switched off.

[^25]: * Permissible range 1 to 7 V .

[^26]: * Permissible range 1 to 7 V .

[^27]: * $t_{d}=$ switch-off delay of line output stage.
 ** Line flyback pulse duration $\mathrm{t}_{\mathrm{fp}}=12 \mu \mathrm{~s}$.

[^28]: * Excluding external component tolerances.
 ** Current source.
 4 Emitter follower.

[^29]: * Current source.

[^30]: * Obtained via a transformer.

[^31]: * When the flyback generator is used, the maximum supply voltage must be chosen such that during flyback the voltage at pin 11 (supply voltage output stage) does not exceed 50 V .

[^32]: * Including 6\% overscan.

[^33]: 1) Emitter follower.
 ${ }^{2}$) Current source.
 2) Adjustable with $\mathrm{R}_{12-15(e x t)}$.
[^34]: 1) Pin 4 connected to pin 2 via a 1 nF capacitor.
[^35]: See pin 4.

[^36]: * For saturated colour bar with 75% of maximum amplitude.

[^37]: * With input pins 21,22 and 23 not connected an internal bias voltage of 6 V is supplied.

[^38]: * For saturated colour bar with 75% of maximum amplitude.

[^39]: Corresponds with an attenuation of nom. 18 dB at pins 23 and 25 (delay line).

[^40]: * Usable range depends on the output signal amplitude.

