LCD DRIVER/CONTROLLER DATABOOK
 1986

-

1310 Kifer Road
Sunnyvale, CA 94086

(408) 737-0204

CONTENTS

1 PRODUCT LINE-UP 1
2 PACKAGING 3
3 DATA SHEET 11

- STATIC LCD DRIVER 13
MSM58292GS 5 DIGIT LCD DRIVER 14
MSM5219BGS 48 DOT LCD DRIVER 25
MSM5221GS 56 DOT LCD DRIVER 31
MSM5265GS 160 DOT LCD DRIVER 36
- DOT MATRIX LCD DRIVER 49
MSM5238GS 32 DOT COMMON DRIVER 50
MSM5839BGS 40 DOT SEGMENT DRIVER 58
MSM5259GS 40 DOT SEGMENT DRIVER 65
MSM5260GS 80 DOT COMMON/SEGMENT DRIVER 74
MSM5278GS 64 DOT COMMON DRIVER 82
MSM5979GS 80 DOT SEGMENT DRIVER 89
- DOT MATRIX LCD CONTROLLER 99
MSM6222B-01GS DOT MATRIX LCD CONTROLLER WITH 16 DOT COMMON DRIVER AND 40 DOT SEGMENT DRIVER 100
MSM6240GS DOT MATRIX LCD CONTROLLER 137
MSM6255GS DOT MATRIX LCD CONTROLLER 162
MSM6265GS DOT MATRIX LCD CONTROLLER 196

[^0]
PRODUCT LINE-UP

PRODUCT LINE-UP

APPLICATION	TYPE NO	FUNCTION	OUTPUT		DUTY	PACKAGE	REMARKS
			COMMON	SEGMENT			
STATIC LCD DRIVER	MSM58292	static driver	5 digit (7 segment)		1/1	56 FLT .	
	MSM5219B	static driver	48 dot		1/1	60 FLT .	
	MSM5221	static driver	56 dot		1/1	80 FLT .	
	MSM5265	static driver	160 dot		1/1 or $1 / 2$	100 FLT.	
DOT MATRIX LCD DRIVER	MSM5238	COMMON DRIVER	32	-	1/32-1/128	44 FLT .	
	MSM5839B	SEGMENT DRIVER	-	40	1/8-1/128	56 FLT.	
	MSM5259	SEGMENT DRIVER	-	40	1/1-1/16	56 FLT.	use with MSM6222B-01
	MSM5260	COMMON/ SEGMENT DRIVER	80	80	1/1-1/128	100 FLT .	COMMON/ SEGMENT selectable
	MSM5278	COMMON DRIVER	64	-	1/8-1/128	80 FLT.	
	MSM5279	SEGMENT DRIVER	-	80	1/8-1/128	100 FLT .	
$\begin{aligned} & \text { DOT MATRIX } \\ & \text { LCD } \\ & \text { CONTROLLER } \end{aligned}$	$\begin{array}{r} \text { MSM6222B } \\ -01 \end{array}$	$\begin{aligned} & \text { DRIVER/ } \\ & \text { CON- } \\ & \text { TROLLER } \end{aligned}$	16	40	1/8-1/16	80 FLT .	with character generator ROM
	MSM6240	$\begin{array}{\|c\|} \text { CON- } \\ \text { TROLLER } \end{array}$	-	-	1/32-1/144	60 FLT .	
	MSM6255	$\begin{array}{\|c\|} \text { CON- } \\ \text { TROLLER } \end{array}$	-	-	1/2-1/256	80 FLT .	512K dot
	MSM6265	$\begin{gathered} \text { CON- } \\ \text { TROLLER } \end{gathered}$	-	-	1/100 $\times 2$	80 FLT .	512K dot software compatible with CRT Controller

Note: 1. MSM5259 and MSM5260 can be used as static display dot drives like MSM5219B and so forth.
2. The duty of LCD module is determined by the performance of drivers and the material of LCD panel. So, to select suitable LCD driver for superior display, it is necessary to study the material of the LCD panel.

PACKAGING

	PRODUCT	PLASTIC FLAT PACKAGE (No. of Pins)	GS-K	GS-L	GS-L2
STATIC LCD DRIVER	MSM58292	56 (small)	\bigcirc		
	MSM5219B	60	\bigcirc		
	MSM5221	80	\bigcirc		
	MSM5265	100	\bigcirc		
DOT MATRIX LCD DRIVER	MSM5238	44	\bigcirc		\bigcirc
	MSM5839B	56 (small)	\bigcirc		\bigcirc
	MSM5259	56 (small)	\bigcirc		\bigcirc
	MSM5260	100	\bigcirc	\bigcirc	
	MSM5278	80	\bigcirc		
	MSM5279	100	\bigcirc		
DOT MATRIX LCD CONTROLLER	MSM6222B-01	80		0	
	MSM6240	60	\bigcirc		
	MSM6255	80	\bigcirc		
	MSM6265	80	\bigcirc		

Note: Model names suffixed by GS denote plastic mold flat package, while -K, -L or -L2 denote the direction of the lead bent.

Plastic Flat Package Variations

- 44 PIN PLASTIC FLAT PACKAGE

- 56 PIN PLASTIC FLAT PACKAGE

- 60 PIN PLASTIC FLAT PACKAGE

- 80 PIN PLASTIC FLAT PACKAGE

- 100 PIN PLASTIC FLAT PACKAGE

- 44 PIN PLASTIC FLAT PACKAGE (LEAD BENT OPPOSITE DIRECTION)

- 56 PIN PLASTIC FLAT PACKAGE (LEAD BENT OPPOSITE DIRECTION)

- 80 PIN PLASTIC FLAT PACKAGE (LEAD BENT OPPOSITE DIRECTION)

- 100 PIN PLASTIC FLAT PACKAGE (LEAD BENT OPPOSITE DIRECTION)

OKXI semiconductor
 MSM58292GS

5-DIGIT STATIC LCD DRIVER

GENERAL DESCRIPTION

The OKI MSM58292GS is a 7 -segment static LCD driver LSI which is fabricated by low power CMOS metal gate technology. This LSI consists of 32 -bit shift register, 32 -bit latch, 5 sets of 7 -segment decoder and LCD drivers.

It receives the serial display data from the microcomputer etc, converts it to a parallel data, then output to the 7-segment LCD panel.

The input code for each digit is a 4-bot binary code. The input codes are decoded into digits $0 \sim 9$ and alphabetic letters $A \sim F$, to display hexadecimal numbers. The expansion of display can be easily made by using another MSM58292GS in cascade connection.

The MSM58292GS can directly drive the LCD panel, as the AC driving circuit is integrated on the chip.

FEATURES

- 5 digit 7 -segment LCD display
- Serial input from the microcomputer etc.
- Expansion of display by cascade connection
- Supply voltage: 3~7V
- 56 pin plastic flat package

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Condition	Limits	Unit
Supply voltage	$V_{D D}$	$T_{a}=25^{\circ} \mathrm{C}$	$-0.3 \sim 7$	V
Input voltage	V_{l}		$-0.3 \sim V_{D D}$	V
Storage temperature	Tstg	-	$-55 \sim+150$	${ }^{\circ} \mathrm{C}$

OPERATING RANGE

Item		Symbol	Condition	Limits	Unit
Supply voltage		VDD	-	$3 \sim 7$	\checkmark
Operating temperature		TOP	-	$-30 \sim+85$	${ }^{\circ} \mathrm{C}$
Fan out	$\overline{\text { BI/RBO }}$	N	MOS load	1	-
	SERIAL OUT	N	MOS load	40	-
			TrL load	1	-

DC CHARACTERISTICS

$\left(V_{D D}=5 V \pm 5 \%, T_{a}=-30 \sim+85^{\circ} \mathrm{C}\right)$

Item	Symbol	Condition	MIN	TYP	MAX	Unit
High Input voltage	$\mathrm{V}_{\text {IH }}$	-	3.6	-	-	\checkmark
Low Input voltage	$V_{\text {IL }}$	-	-	-	0.8	V
High Output voltage ${ }^{1}$	V_{OH}	$\mathrm{I}_{\mathrm{O}}=-5 \mu \mathrm{~A}$	4.95	-	-	V
Low Output voltage ${ }^{1}$	V_{OL}	$\mathrm{I}_{0}=5 \mu \mathrm{~A}$	-	-	0.05	V
High Output voltage ${ }^{2}$	V_{OH}	$1 \mathrm{O}=-40 \mu \mathrm{~A}$	4.2	-	-	V
Low Output voltage ${ }^{2}$	V_{OL}	$\mathrm{I}_{\mathrm{O}}=1.6 \mathrm{~mA}$	-	-	0.4	V
High Output voltage ${ }^{3}$	v_{OH}	$\mathrm{I}_{\mathrm{O}}=-500 \mu \mathrm{~A}$	4.5	-	-	V
Low Output voltage ${ }^{3}$	VOL	$\mathrm{I}^{\mathrm{O}}=500 \mu \mathrm{~A}$	-'	-	0.5	V
High Output voltage ${ }^{4}$	V_{OH}	$\mathrm{I}_{\mathrm{O}}=-250 \mu \mathrm{~A}$	4.5	-	-	V
Low Output voltage ${ }^{4}$	V_{OL}	$\mathrm{I}_{\mathrm{O}}=250 \mu \mathrm{~A}$	-	-	0.5	V
Input current ${ }^{5}$	${ }_{1 / H / 1 / L}$	$V_{1}=V_{D D} / V_{1}=0 V$	-	-	1/-1	$\mu \mathrm{A}$
Output current ${ }^{1}$	${ }^{1} \mathrm{OH} /{ }^{\prime} \mathrm{OL}$	$V_{O}=0 V / V_{O}=V_{D D}$	$\begin{gathered} -0.21 \\ 0.2 \end{gathered}$	-	-	mA
Output current ${ }^{2}$	${ }^{1} \mathrm{OH} /{ }^{\prime} \mathrm{OL}$	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V} / \mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$	$\begin{gathered} \hline-0.21 \\ 1.6 \end{gathered}$	-	-	mA
$\overline{\mathrm{BI} / \mathrm{RBO}}$ short-circuit current	${ }^{1} \mathrm{OH} /{ }^{\prime} \mathrm{OL}$	$\mathrm{V}_{\mathrm{O}}=0 \cdot \mathrm{~V} / \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {DD }}$	$\begin{gathered} -10 / \\ 10 \end{gathered}$	-	$\begin{gathered} -5001 \\ 500 \end{gathered}$	$\mu \mathrm{A}$
Dynamic current consumption	IDD	${ }^{f}(\mathrm{OSC})=360 \mathrm{~Hz}$ no load	-	-	500	$\mu \mathrm{A}$

Note 1: Applied to the output pins excluding the SERIAL OUT, $\overline{B I / R B O}, \overline{C O M}$ and COM Pins.
Note 2: Applied to the SERIAL OUT pin.
Note 3: Applied to the COM pin.
Note 4: Applied to the COM pin.
Note 5: Applied to the input pins excluding the OSC pin.

SWITCHING CHARACTERISTICS

$\left(V_{D D}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{CL}=15 \mathrm{pF}\right)$

Item	Symbol	Condition	MIN	TYP	MAX	Unit
Propagation delay time (for a shift in the shift register)	${ }^{\mathrm{t} P \mathrm{HL}}$ ${ }^{\text {tpLH }}$	-	-	-	1000	nS
SERIAL OUT rise/fall time	${ }^{\text {t THL }}$ tTLH	-	-	-	300	nS
Maximum clock frequency	$f(C K)$ max	-	1	-	-	MHz
Minimum clock pulse width	$\mathrm{t}_{\mathrm{w}}(\mathrm{CK})$	-	-	-	500	nS
Minimum load pulse width	$\mathrm{t}_{\mathrm{w}}(\mathrm{L}$)	-	-	-	500	nS
Data setup time SERIAL IN \rightarrow CLOCK	$\mathrm{t}_{\text {setup }}{ }^{1}$	-	-	-	250	nS
Data setup time SERIAL OUT \rightarrow LOAD	$\mathrm{t}_{\text {setup }}{ }^{2}$	-	-	-	500	nS

FUNCTION TABLE

Hexadecimal digit	$\overline{\mathrm{RBI}}$	$\overline{\mathrm{BI} / \mathrm{RBO}}$	SEGMENT OUT（Note 1）							Display
			a	b	c	d	e	f	g	
＊	＊	L	L	L	L	L	L．	L	L	（Note 3）
0	＊	（Note 2）	L	L	L	L	L	L	L	（Note 4）
0	＊	H	H	H	H	H	H	H	L	！1
1	＊	H	L	H	H	L．	L	L	L	1
2	＊	H	H	H	L	H	H	L	H	\square
3	＊	H	H	H	H	H	L	L	H	二！
4	＊	H	L	H	H	L	L	H	H	$1-1$
5	＊	H	H	L	H	H	L	H	H	三1
6	＊	H	H	L	H	H	H	H	H	示
7	＊	H	H	H	H	L	L	L	L	1
8	＊	H	H	H	H	H	H	H	H	二1
9	＊	H	H	H	H	H	L	H	H	1 二1
A	＊	H	H	H	H	L	H	H	H	1二
B	＊	H	L	L	H	H	H	H	H	1－1
C	＊	H	H	L	L	H	H	H	L	12
D	＊	H	L	H	H	H	H	L	H	二1
E	＊	H	H	L	L	H	H	H	H	1＝
F	＊	H	H	L	L	L	H	H	H	$\stackrel{1}{-}$

Note 1：The H indicates that the segment is displayed，and the L indicates that the segment is not displayed．The H is an antiphase output of the COM output，and the L is an in－phase output of the COM output．
Note 2：The $\overline{R I / R B O}$ pin goes to low level only when the $\overline{\mathrm{RBI}}$ pin is at a low level and all the digit are 0 （the display is blank）．
If the $\overline{B I / R B O}$ pin is forcibly turned to high level， 0 at LSD is displayed．
Note 3：If the $\overline{\mathrm{BI/RBO}}$ pin is forcibly turned to low level，the LSD is made blank．
Note 4：If the $\overline{R B I}$ pin is turned to low level，the display is placed in the leading zero blanking status，in which the contiguous Os preceding the MSD are made blank．

FUNCTIONAL DESCRIPTION

- SERIAL in

The SERIAL IN pin is a shift register data input pin. The display data are input to this pin synchronized with the clock pulses. The data are input
in the order of blank data, flag data, decimal point data, then numeric data (beginning with the LSB) (positive logic).
< Data input procedure >

- serial out

The SERIAL OUT pin is a shift register serial output pin. The data input to the SERIAL IN pin is output from this pin synchronised with the clock pulses, with a delay of the total bit count of the shift register (32 bits). This pin is used for extension of digit display capacity.

- Clock

The CLOCK pin is a synchronizing pulse input pin used for data input to the shift register or data output from the shift register. The data is shifted at the rising edge (low to high) of each clock pulse. A Schmitt trigger circuit is employed as the CLOCK input circuit (the hysteresis is approximately 0.5 V).

- LoAD

The LOAD pin is an input pin for latching the shift register contents. When this pin is at high level, the shift register contents are transferred to the decoders, and when this pin is at low level, the last data to be transferred from the shift register when this pin was at high level is held, so that the display contents are not changed with the change of the shift register contents.

- $\overline{\mathrm{RBI}}$

The $\overline{R B I}$ PIN is an input pin for suppressing the display of leading 0 s. When this pin is at high level, the leading $0 s$, if any, are displayed; when this pin is at a low level, contiguous Os preceding the MSD are not displayed. The $\overline{\text { RBI }}$ pin is connected to the decoder circuit for the MSD.
Note: The DP_{1} through DP_{5} are not made blank.

- $\overline{\text { BI/RBO }}$

The $\overline{\mathrm{BI} / \mathrm{RBO}}$ pin is used for both input and output. As an input pin, the input level can forcibly be set to low regardless of the output level, since the output resistance is treat.
1 For use as an output pin $\overline{\mathrm{R}} \overline{\mathrm{BO}}$
When the $\overline{\mathrm{RBI}}$ pin is turned to low level, if all the digits are Os, the display is made blank and the $\overline{\text { RBO }}$ pin is turned to low level. If the $\overline{R B 1}$ pin is at high level or a number including some significant digits is displayed, the $\overline{\mathrm{RBO}}$ pin is turned to high level. If two MSM58292GS chips are connected for extension of the digit display capacity, the $\overline{\mathrm{RBO}}$ pin of the first chip is connected to the $\overrightarrow{R B I}$ pin of the second chip, which connects to the MSD of the second chip, so that all the continguous os preceding the MSD are made blank.

2 For use as an input pin $\overline{\mathrm{BI}}$
The $\overline{\mathrm{BI}}$ pin is connected to the decoder circuit for the LSD. Therefore, if this pin is turned to low level, only the LSD digit is made blank. Since this pin is also used as an output pin $\overline{\mathrm{ROB}}$, some current indicated in the rating flows when this pin is set to low level. level.
The $\bar{B} 1$ pin may be open when not used.
Note: The DP_{1} through DP_{5} are not made blank.

- SEGMENT OUT ($\left.a_{1}-g_{5}, D P_{1}-D P_{5}, F_{1}, F_{2}\right)$

The SEGMENT OUT pins are output pins for driving the seven segments of digits $\left(a_{1}-g_{5}\right)$,
decimal points ($D P_{1}-D P_{5}$), and flags (F_{1} and F_{2}) on the display device.
The seven segment outputs ($a-g$) for each digit are used to display a digit $0-9$ or an alphabetic letter A-F.

- OSC

The OSC pin is an input pin for a signal generator circuit which outputs $A C$ signals required for driving a LCD panel. The oscillator starts to generate AC signals only by connecting a resistor and a capacitor to the OSC pin as shown in the figure below.
$f(O S C)=360 \mathrm{~Hz}$ when the $V_{D D}=5 \mathrm{~V}, \mathrm{C}=0.068 \mu \mathrm{~F}$, and $\mathrm{R}=100 \mathrm{k} \Omega$

- COM, $\overline{\operatorname{COM}}$

The COM pin is an output pin for sending an antiphase signal of the seven segment outputs required for AC-driving the LCD panel. The COM output drives the COMMON pin on the LCD panel.
The $\overline{C O M}$ pin is an output pin for sending an inphase signal of the seven segment outputs (antiphase of the COM pin). This pin is not necessary in general display.
Both the COM and $\overline{C O M}$ pins output square waves whose frequency is one eighth of the oscillator output appearing at the OSC pin (with a duty factor of 50%).

- OUTPUT DISABLE

The OUTPUT DISABLE pin is an input pin for control of the COM pin. Setting this pin to high level places the COM pin in the normal status (the COM pin is used as an ordinary output pin), and setting this pin to low level makes the COM pin impedance high, so that the COM pin can be used as an input pin.
When two MSM58292GS chips are interconnected in a cascade, the OUTPUT DISABLE pin of the second chip is set to low level and the COM pin is used as an input pin.

- BLANK

The $\overline{B L A N K}$ pin is an input pin for making the display blank. Setting this pin to high level makes normal display, and setting this pin to low level makes the entire display blank.

- Blanking a specific digit position

Any given digit position of the 5 digit display can be made blank by setting the MSM58292GS to ON. A specific digit position can be made blank by setting a bit of the shift register bits 28-32, as shown in the table below.

Shift register bit setting	Digit position which is made blank
Set bit 28 to 1	Digit position with segments $a_{5}-g_{5}$ (MSD)
Set bit 29 to 1	Digit position with segments $a_{4}-g_{4}$
Set bit 30 to 1	Digit position with segments $a_{3}-g_{3}$
Set bit 31 to 1	Digit position with segments $a_{2}-g_{2}$
Set bit 32 to 1	Digit position with segments $a_{1}-g_{1}$ (LSD)

- Decimal points

A digit position for which a decimal point has been specified is not subject to zero blanking even though that digit position contains the value 0 . A decimal point can be used as a flag by setting the blank bit corresponding to that digit position to 1 to suppress the $a-g$ segment display of that digit position (when the $\overline{\text { RBI pin is at low level). }}$

- Output circuit

Each output pin consists of a CMOS FET, and the $\overline{B I / R B O}$ pin and SERIAL OUT pin output signals at high or low level.
The output pins for display (for segments, decimal points, and flags) output pulse signals which are antiphase of the COM pin output when displaying, and output pulse signals which are in-phase of the COM pin output when not displaying. The output pins for display can directly drive the LCD panel.

- Application circuit
I. 10 digit display (using two MSM58292GSs, cascade connection)

Note: $\overline{O . D}$ is the abbreviation of OUTPUT DISABLE.
II. 5 digit display

Note: $\overline{\mathrm{O} . \mathrm{D}}$ the abbreviation of $\overline{O U T P U T}$ DIS $\overline{A B L E}$.

- Data input example (FM 103.25 MHz)

OKI semiconductor

MSM5219BGS

48-DOT STATIC LCD DRIVER

GENERAL DESCRIPTION

The OKI MSM5219BGS is a 48 dot static LCD driver which is fabricated by low power CMOS metal gate technology. This LSI consists of 48 -bit shift register, 48 -bit latch and 48 -bit LCD driver. The display data, which was input to the 48 -bit shift register, is shifted to the 48 -bit latch by the LOAD signal. Then the data is output to the LCD panel through the 48-bit LCD driver.

FEATURES

- 48 dots static LCD driving capability
- Simple interface with microcomputer chip (controlled by three input signals)
- Bit-to-bit correspondence between the input and the output
- Cascade connection capability
- LCD driving $A C$ frequency is directly input exter. nally
- Applicable as an output expander
- Supply voltage: $3 \sim 7 \mathrm{~V}$
- 60 pin plastic flat package (bent lead)

PIN CONFIGURATION

(Top View) 80 Lead Plastic Flat Package

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Condition	Limits	Unit
Supply voltage	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	$-0.3 \sim+7$	V
Input voltage	V_{I}	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{SS}}-0.3 \sim \mathrm{~V}_{\mathrm{DD}}+0.3$	V
Storage temperature	$\mathrm{T}_{\mathrm{stg}}$	-	$-55 \sim+150$	${ }^{\circ} \mathrm{C}$

OPERATING RANGE

Item	Symbol	Condition	Limits	Unit
Supply voltage	$V_{\text {DD }}-V_{\text {SS }}$	Self-Oscillation circuit	$4 \sim 7$	V
		External oscillation	$3 \sim 7$	V
Operating temperature	Top	-	$-40 \sim+85$	${ }^{\circ} \mathrm{C}$

DC CHARACTERISTICS
$\left(V_{D D}-V_{S S}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40 \sim+85^{\circ} \mathrm{C}\right)$

Item	Symbol	Condition	MIN	TYP	MAX	Unit
" H " Input voltage* 1	$\mathrm{V}_{\text {IH }}$	-	3.6	-	-	V
"L' Input voltage* 1	$V_{\text {IL }}$	-	-	-	1.0	V
Input leakage current*1	$1 / \mathrm{H} / \mathrm{IIL}^{\text {l }}$	$\mathrm{V}_{1}=5 \mathrm{~V} / \mathrm{V}_{1}=0 \mathrm{~V}$	-	-	1/-1	$\mu \mathrm{A}$
SEG "H" Output voltage	VOHS	$\mathrm{I}_{\mathrm{O}}=-30 \mu \mathrm{~A}$	4.8	-	-	\checkmark
SEG ' $\mathrm{L}^{\prime \prime}$ ' Output voltage	$\mathrm{V}_{\text {OLS }}$	${ }_{1} \mathrm{O}=30 \mu \mathrm{~A}$	-	-	0.2	V
COM "H' Output voltage	$\mathrm{V}_{\mathrm{OHC}}$	$1_{0}=-150 \mu \mathrm{~A}$	4.8	-	-	V
COM "'L" Output voltage	$\mathrm{V}_{\mathrm{OLC}}$	$I^{\prime}=150 \mu \mathrm{~A}$	-	-	0.2	V
SEG Output current 1	IOHS1/IOLS	$\mathrm{V}_{\mathrm{OH}}=4.5 \mathrm{~V} / \mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$	$\begin{gathered} -100 / \\ 100 \end{gathered}$	-	-	$\mu \mathrm{A}$
SEG Output current 2	IOHS2/IOLS2	$\mathrm{VOH}_{\mathrm{OH}}=1 \mathrm{~V} / \mathrm{VOL}=4 \mathrm{~V}$	$\begin{gathered} -400 / \\ 400 \end{gathered}$	-	-	$\mu \mathrm{A}$
COM Output current 1	${ }^{\text {IOHC1/IOLC1 }}$	$\mathrm{VOH}_{\mathrm{OH}}=4.5 \mathrm{~V} / \mathrm{VOL}=0.5 \mathrm{~V}$	$\begin{gathered} -500 / \\ 500 \end{gathered}$	-	-	$\mu \mathrm{A}$
COM Output current 2	${ }^{\text {IOHC2 }}$ / OLC 2	$\mathrm{V}_{\mathrm{OH}}=1 \mathrm{~V} / \mathrm{V}_{\mathrm{OL}}=4 \mathrm{~V}$	-2/2	-	-	mA
"H" Output voltage*2	V_{OH}	${ }^{1} \mathrm{O}=-40 \mu \mathrm{~A}$	4.2	-	-	V
"L' Output voltage*2	V_{OL}	$1 \mathrm{O}=1.6 \mathrm{~mA}$	-	-	0.4	V
Output current*2	$1 \mathrm{OH}^{\prime} / \mathrm{OL}$	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V} / \mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$	$\begin{gathered} -0.2 / \\ 1.6 \end{gathered}$	-	-	V
Clock pulse width	${ }^{t} \mathbf{W} \phi$	* 3	5	-	-	$\mu \mathrm{S}$
		* 4	0.5	-	-	
Max. clock pulse frequency	${ }_{\text {f }}^{\text {¢ M }}$ (${ }^{\text {d }}$	*3	0.1	-	-	MHz
		* 4	1	-	-	
Input signal rising/falling time	$\mathrm{t}_{\mathrm{r}} \mathrm{t} \mathrm{t}_{\mathrm{f}} \phi$	*5	-	-	5	$\mu \mathrm{S}$
Static current consumption	'DD1	-	-	-	100	$\mu \mathrm{A}$
Active current consumption	IDD2	No load when $R_{\text {OSC }}=150 \mathrm{k} \Omega$, $\mathrm{C}_{\text {OSC }}=0.015 \mu \mathrm{~F}$	-	-	2	mA
COM Frequency (Self oscillation)	${ }^{\text {f }}$ COM	No load when $V_{D D}=5 \mathrm{~V}$	25	-	300	Hz

[^1]
FUNCTIONAL DESCRIPTION

- Operational Description

The display data is input to the shift register by the DATA IN signal and CLOCK signal. It is transferred
to the 48 -bit latch by the LOAD signal and it is output to the LCD panel through 48 -bit LCD driver.

- CLOCK_{2}

The clock, which is used to generate the COM signal and the LCD driving signal, is input to this pin.

- DATA IN CLOCK 1

DATA IN is a data input pin which enables the LCD to display when DATA IN pin is at high level. The 48 -bit shift register is shifted at the rising edge of the CLOCK signal. Initially, the first bit of the shift register contains the current logic level of the DATA IN pin, and the bit $N(N=2 \sim 48)$ contains the data which was in bit $N-1(N=2 \sim 48)$ before the start of the operation. The data which was in bit 48 before the operation start is considered invalid.

- LOAD

The data in the 48 -bit shift register is shifted to the 48-bit latch when the LOAD pin set at high level, while the last data which was transferred to the latch when the LOAD pin was set at high level is constantly output when the LOAD pin is set at low level.

- ALL SEG ON

When this pin is set at high level, all segments display turn on. This pin has the priority to the BLANK pin described as below.

- BLANK

When this pin is set at high level, all segments display turn off. The ALL SEG ON pin has the priority over this pin.

- SEG1~SEG48

LCD driving output pins. The reversed phase of the COM signal, which is used to display the data, is output from these pins when SEG1 ~ SEG48 are set at high level, while there is no display on the LCD when these pins are set at low level. The data which was input from the DATA IN pin is output from these pins to the LCD panel. The SEG N pin corresponds to the bit N of the shift register.

- COM

Output terminal for the LCD. It is connected to the common side of the LCD.

- DATA OUT 32, DATA OUT 48

Output pin of the shift register. It is used when the MSM5219BGS is connected in a series (cascade connection). It is connected to next MSM5219BGS's DATA IN terminal.

APPLICATION CIRCUIT

- Single MSM5219BGS

*1: When this IC is used under a strong external noise or large-capacity LCD load, this resistor prevents latch-up to be caused by a low output impedance of the COM pin.
The resistance is about 100Ω.

- Cascade connection

*1: The COM pin of the slave MSM5219BGS can be WIRED OR.
*2: When this IC is used under a strong external noise or large-capacity LCD load, this resistor prevents latch-up to be caused by a low output impedance of the COM pin.
The resistance is about 100Ω.
- Output Expander

As explained above, this IC can drive the static LCD with the COM pin. In addition, it can also be
used as an output pin expander for a microcomputer with the following connections:

*1: In this example, " H " is output by the positive logic, that is, when " H " is written from DATA IN, " H " is output with a LOAD signal. If the OSC pin is connected to $V_{D D}$, the output has the negative logic, that is, the logic level input from the DATA IN pin is inverted and output.

QIKI semiconductor

MSM5221GS

GENERAL DESCRIPTION

The OKI MSM5221GS is a 56 dot static LCD driver which is fabricated by low power CMOS metal gate technology. This LSI consists of 56 -bit shift register, 56 -bit latch and 56 -bit LCD driver. The display data, which was input to the 56 -bit shift register by the DATA IN signal and CLOCK signal, is transferred to the 56 -bit latch by the LOAD signal and the data is output to the LCD through the 56-bit LCD driver.

FEATURES

- 56 dots static LCD driving capability
- Simple interface with microcomputer chip (controlled by three input signals).
- Bit-to-bit correspondence between the input and output
- Cascade connection capability
- Fully controlled by the software
- LCD driving AC frequency is directly input externally
- Applicable as an output expander
- Supply voltage: $3 \sim 7 \mathrm{~V}$
- 80 pin plastic package (bent lead)

PIN CONFIGURATION

(Top View) 80 Lead Plastic Flat Package

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Condition	Limits	Unit
Supply voltage	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	$-0.3 \sim+7$	V
Input voltage	V_{I}	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{SS}}-0.3 \sim \mathrm{~V}_{\mathrm{DD}}+0.3$	V
Storage temperature	$\mathrm{T}_{\mathrm{stg}}$	-	$-55 \sim+150$	${ }^{\circ} \mathrm{C}$

OPERATING RANGE

Item	Symbol	Condition	Limits	Unit
Supply voltage	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$	-	$3 \sim 7$	V
Operating temperature	T_{OP}	-	$-40 \sim+85$	${ }^{\circ} \mathrm{C}$

DC CHARACTERISTICS

$\left(V_{D D}-V_{S S}=5 V, T_{a}=-40 \sim+85^{\circ} \mathrm{C}\right)$

Item	Symbol	Condition	MIN	TYP	MAX	Unit
'H" Input voltage	$V_{\text {IH }}$	-	3.6	-	-	V
''L' Input voltage	$V_{\text {IL }}$	-	-	-	1.0	V
Input leakage current	$\mathrm{I}_{\text {IH }} / \mathrm{ILL}^{\text {l }}$	$V_{1}=5 \mathrm{~V} / \mathrm{V}_{1}=0 \mathrm{~V}$	-	-	1/-1	$\mu \mathrm{A}$
"H" SEG Output voltage	$\mathrm{V}_{\text {OHS }}$	$\mathrm{I}_{0}=-30 \mu \mathrm{~A}$	4.8	-	-	V
'"L' SEG Output voltage	VOLS	$10=30 \mu \mathrm{~A}$	-	-	0.2	v
"H" COM Output voltage	VohC	${ }^{1} \mathrm{O}=-150 \mu \mathrm{~A}$	4.8	-	-	V
" L ' COM output voltage	$\mathrm{V}_{\text {OLC }}$	$\mathrm{I}^{\prime} \mathrm{O}=150 \mu \mathrm{~A}$	-	-	0.2	V
SEG Output current 1	IOHS1/'OLS1	$\mathrm{VOH}_{\text {OH }}=4.5 \mathrm{~V} / \mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$	$\begin{gathered} -100 \mid \\ 100 \end{gathered}$	-	-	$\mu \mathrm{A}$
SEG Output current 2	IOHS2/IOLS2	$\mathrm{V}_{\mathrm{OH}}=1 \mathrm{~V} / \mathrm{V}_{\mathrm{OL}}=4 \mathrm{~V}$	$\begin{gathered} -400 \prime \\ 400 \end{gathered}$	-	-	$\mu \mathrm{A}$
COM Output current 1	'OHC1/'OLC ${ }^{\text {/ }}$	$\mathrm{VOH}_{\mathrm{OH}}=4.5 \mathrm{~V} / \mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$	$\begin{array}{\|c\|} \hline-500 / \\ 500 \end{array}$	-	-	$\mu \mathrm{A}$
COM Output current 2	$1 \mathrm{OHC2} / 1 \mathrm{OLC} 2$	$\mathrm{V}_{\mathrm{OH}}=1 \mathrm{~V} / \mathrm{V}_{\mathrm{OL}}=4 \mathrm{~V}$	-2/2	-	-	mA
" H " Output voltage* ${ }^{\text {1 }}$	V_{OH}	$1 \mathrm{O}=-0.1 \mathrm{~mA}$	4.5	-	-	V
"L' Output voltage* 1	V_{OL}	$1{ }^{1}=0.1 \mathrm{~mA}$	-	-	0.5	V
Clock pulse width* 2	${ }^{\text {t }} \mathrm{W} \phi$	-	0.5	-	-	$\mu \mathrm{S}$
Maximum clock pulse frequency* 2	${ }^{\text {f }}$ ¢ MAX	-	1	-	-	MHz
Input signal rising/falling time		-	-	-	5	$\mu \mathrm{S}$
Static current consumption	IDD	$V_{\text {IN }}=V_{\text {DD }}, V_{S S}$	-	-	100	$\mu \mathrm{A}$

*1: Applied to DATA OUT 56.
*2: Applied to the clock for shift register.

FUNCTIONAL DESCRIPTION

- Operation Description

The display data is input to the shift register by the DATA IN signal and CLOCK signal. It is transferred
to the 56 -bit latch by the LOAD signal and it is output to the LCD panel through 56 -bit LCD driver.

- COM IN

Input pin to generate the COM OUT signal. The same phase signal as the COM IN pin is output from the COM OUT pin.

- DATA IN, CLOCK

DATA IN is a data input in which enables the LCD to display when DATA IN signal is at high level. The 56 -bit shift register is shifted at the rising edge of the CLOCK signal. Initially, the first bit of the shift register contains the current logic level of the DATA IN pin, and the bit $N(N=2 \sim 56)$ contains the data which was in bit $\mathrm{N}-1(\mathrm{~N}=2 \sim 56)$ before the start of the operation. The data which was in bit 56 before the operation start is considered invalid.

- LOAD

The data in the 56 -bit shift register is shifted to the 56 -bit latch when the LOAD pin is set at the high level, while the last data which was transferred to the latch when the LOAD pin was set at high level is constantly output when the L.OAD is set at low level.

- ALL SEG ON

When this pin is set at high level, all segments display turn on. This pin has the priority to the BLANK pin described as below.

- BLANK

When this pin is set at high level, all segments display turn off. The ALL SEG ON pin has the priority over this pin.

- SEG1~SEG56

LCD driving output pins. The reversed phase of the COM signal, which is used to display the data, is output from these pins when SEG1 ~SEG56 are. set at high level, while there is no display on the LCD when these pins are set at low level.
The display data which was input from the DATA IN pin is output from these pins to the LCD panel. The SEG N pin corresponds to the bit N of the shift register.

- COM OUT

Output terminal for the LCD. It is connected to the common side of the LCD panel.

- DATA OUT 56

Output pin of the shift register. It is used when the MSM5221GS is connected in a series (cascade connection). MSM5221GS's DATA OUT 56 is connected to the next MSM5221GS's DATA IN terminal.

APPLICATION CIRCUIT

- Single MSM5221GS to the LCD panel

- Cascade connection

OKZI semiconductor

MSM5265GS

160-DOT LCD DRIVER

GENERAL DESCRIPTION

The OKI MSM5265GS is an LCD driver which can directly drive up to 80 segments in the static display mode, while it can directly drive up to 160 segments in the $1 / 2$ duty dynamic display mode.

The MSM5265GS is fabricated by low power CMOS metal gate technology, consisting of 160 -stage shift register, 160 -bit latch, 80 sets of LCD driver and a common signal generator.

The display data is serially input from the DATA-IN terminal to the 160 -stage shift register synchronized with the CLOCK pulse. The data is shifted to the 160 -bit latch by the LOAD signal. Then the latched data is directly output to the LCD from the 80 sets of LCD driver as serial output.

The common signal can be generated by the on-chip generator, or can be externally input. The common synchronization circuit which is used in the dynamic display mode is integrated on the chip.

FEATURES

- 80 segments display drive (in the static display mode)
- 160 segments display drive (in the dynamic display mode)
- Simple interface with microcomputer
- Bit-to-bit correspondence between input data and output data

> H: Display

L: No display

- Cascade connection capability
- On-chip common signal generator
- Can be synchronized with the external common signal
- Testing terminals for all-on (SEG-TEST) and all-off (BLANK)
- Applicable as an output expander
- LCD driving voltage can be adjusted by the combination of $\mathrm{V}_{\text {LC1 }}$ and $\mathrm{V}_{\text {LC2 }}$
- Supply voltage: $3.0 \sim 6.0 \mathrm{~V}$
- 100 pin plastic flat package (bent lead)

PIN CONFIGURATION

(Top View)

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Condition	Limits	Unit
Supply voltage	$V_{D D}$	$T_{a}=25^{\circ} \mathrm{C}$	$-0.3 \sim+6.5$	V
Input voltage	V_{1}	$\mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	$\mathrm{GND}-0.3 \sim \mathrm{~V}_{\mathrm{DD}}+0.3$	V
Storage temperature	$\mathrm{T}_{\text {stg }}$	-	$-55 \sim+150$	${ }^{\circ} \mathrm{C}$

OPERATING RANGE

Item	Symbol	Condition	Limits	Unit
Supply voltage	V_{DD}	-	$3 \sim 6$	V
Operating temperature	T_{OP}	-	$-40 \sim 85$	${ }^{\circ} \mathrm{C}$
LCD driving voltage	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LC}} 2$	-	$3 \sim \mathrm{~V}_{\mathrm{DD}}$	V

RECOMMENDING OSCILLATION CIRCUIT CONDITION

Item	Symbol	Corresponding pin	Condition	MIN	TYP	MAX	Unit
Ossillator resistance	$\mathrm{R}_{\mathbf{0}}$	36 OSC-OUT	-	56	100	220	$\mathrm{k} \Omega$
Oscillator capacitance	C_{0}	37 OSC-OUT	Film capacitor	0.001	-	0.047	$\mu \mathrm{~F}$
Current limiter resistance	R_{1}	38 OSC-IN	$\mathrm{R}_{1} \geqq 10 \mathrm{R}_{0}$	0.56	1	2.2	$\mathrm{M} \Omega$
Common signal frequency	fCOM	48 49 COM-A COM-B	-	25	-	150	Hz

D.C. CHARACTERISTICS

$\left(V_{D D}=5.0 \vee T_{a}=-40 \sim+85^{\circ} \mathrm{C}\right)$

Item	Symbol	Corresponding pin	Condition	MIN	TYP	MAX	Unit
" H " Input voltage	$V_{\text {IH }}$	$\begin{array}{ll} \hline 43 & \text { SEG-TEST } \\ 44 & \text { BLANK } \end{array}$	-	3.6	-	-	V
"L"Input voltage	$V_{\text {IL }}$	33 DATA-IN 32 CLOCK	-	-	-	1.0	V
Input leakage current	IIL	39 EXT/INT 38 OSC-IN	$\mathrm{V}_{1}=5.0 \mathrm{~V} / 0 \mathrm{~V}$	-	-	± 1	$\mu \mathrm{A}$
"H" Output voltage	V_{OH}	34 DATA.OUT1 35 DATA.OUT2 46 COM-OUT	$\mathrm{I}_{\mathrm{O}}=-100 \mu \mathrm{~A}$	4.5	-	-	V
		37 OSC-OUT	$\mathrm{I}^{\prime}=-200 \mu \mathrm{~A}$	4.5	-	-	V
		$50 \sim 100,1 \sim 30$ output of all segments	$\begin{aligned} & V_{L C 1}=2.5 \mathrm{~V} \quad V_{L C 2}=0 \mathrm{~V} \\ & I_{O}=-30 \mu \mathrm{~A} \end{aligned}$	4.8	-	-	V
		$\begin{array}{ll}48 & \text { COM-A } \\ 49 & \text { COM-B }\end{array}$	$\begin{aligned} & V_{L C 1}=2.5 \mathrm{~V} \quad V_{\mathrm{LC} 2}=0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}=150 \mu \mathrm{~A} \end{aligned}$	4.8	-	-	V
"M"Output voltage	$\mathrm{V}_{\text {OM }}$	48 COM-A 49 COM-B	$\begin{aligned} & V_{\mathrm{LC} 1}=2.5 \mathrm{~V} \quad V_{\mathrm{LC} 2}=0 \mathrm{~V} \\ & I_{\mathrm{O}}= \pm 150 \mu \mathrm{~A} \end{aligned}$	2.3	-	2.7	V
"L" Output voltage	$\mathrm{V}_{\text {OL }}$	34 DATA-OUT1 35 DATA-OUT2 46 COM-OUT	$I_{0}=100 \mu \mathrm{~A}$	-	-	0.5	V
		$\begin{array}{ll}37 & \text { OSC-OUT } \\ 36 & \text { OSC-OUT }\end{array}$	$I_{0}=200 \mu \mathrm{~A}$	-	-	0.5	V
		$51 \sim 100 \quad 1 \sim 30$ Output of all segments	$\begin{aligned} & V_{\mathrm{LC} 1}=2.5 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{LC} 2}=0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}=30 \mu \mathrm{~A} \end{aligned}$	-	-	0.2	V
		$\begin{array}{ll}48 & \text { COM-A } \\ 49 & \text { COM-B }\end{array}$	$\begin{aligned} & V_{\text {LC1 }}=2.5 \mathrm{~V} \quad V_{\mathrm{LC} 2}=0 \mathrm{~V} \\ & I_{\mathrm{O}}=150 \mu \mathrm{~A} \end{aligned}$	-	-	0.2	V
		45 SYNC	$\mathrm{I}_{\mathrm{O}}=250 \mu \mathrm{~A}$	-	-	0.8	\checkmark
Output leakage current	I Lo	45 SYNC	$v_{O}=5 \mathrm{~V}$ when internal Tr is off	-	-	5	$\mu \mathrm{A}$
Segment output impedance	$\mathrm{R}_{\text {SEG }}$	$51 \sim 100 \quad 1 \sim 30$ Output of all segments	$\begin{aligned} & V_{\mathrm{LC} 1}=\left(5+V_{\mathrm{LC} 2} 1 / 2\right. \\ & V_{\mathrm{LC} 2}=0 \sim 2 \mathrm{~V} \end{aligned}$	-	-	10	k Ω

Item	Symbol	Corresponding pin		Condition	MIN	TYP	MAX	Unit
Common output impedance	$\mathrm{R}_{\text {COM }}$	488	$\begin{aligned} & \text { COM-A } \\ & \text { COM-B } \end{aligned}$	$\begin{aligned} & V_{\mathrm{LC} 1}=\left(5+V_{\mathrm{LC} 2}\right) / 2 \\ & V_{\mathrm{LC} 2}=0 \sim 2 \mathrm{~V} \end{aligned}$	-	-	1.5	k Ω
Static mode consumption current	IDD1	40	VDD	Set all input level either " H " or " L "			100	$\mu \mathrm{A}$
Dynamic mode consumption current	'DD2			No load oscillation. $\begin{aligned} & \mathrm{R}_{0}=100 \mathrm{k} \Omega \\ & \mathrm{C}_{0}=0.01 \mu \mathrm{~F}, \mathrm{R}_{1}=1 \mathrm{~m} \Omega \end{aligned}$		0.12	0.5	mA

SWITCHING CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{DD}}=3.0 \sim 6.0 \mathrm{~V} \mathrm{~T}_{\mathrm{a}}=-40 \sim+85^{\circ} \mathrm{C}\right)$

Item	Symbol	Cor	responding pin	Condition	MIN	MAX	Unit
Maximum clock frequency	${ }^{\text {f }}$ ¢ MAX	32	CLOCK	-	1	-	MHz
Clock "H" time	${ }^{\text {t }}$ ¢ H			-	0.3	-	μ_{s}
Clock " L " time	${ }^{\text {t }}$ ¢ L			-	0.5	-	$\mu_{\text {s }}$
Clock pulse rising/ falling time	$\begin{aligned} & \mathrm{t} \phi^{r} \\ & \mathrm{t} \phi_{\mathrm{f}} \end{aligned}$			-	-	0.1	μ_{s}
Data setup time	${ }^{t} \mathrm{D}-\phi$	33 DATA-IN [32] CLOCK		-	0.1	-	μ_{s}
Data hold time	${ }^{t} \phi-\mathrm{D}$			-	0.1	-	μ_{s}
"'H", "L" propagation delay time	${ }^{\text {tPHL }}$ tplh	34 35 32	$\begin{aligned} & \text { DATA-OUT }{ }_{1} \\ & \text { DATA-OUT }_{2} \\ & \text { CLOCK } \end{aligned}$	When 15PF output capacitors are locaded 34 and 35.	-	0.8	μ_{s}
LOAD " H " time width	${ }^{t}$	31	LOAD	-	0.2	-	μ_{s}
CLOCK \rightarrow LOAD time	${ }^{\text {t }}$ ¢ -L	32	$\begin{aligned} & \text { CLOCK } \\ & \text { LOAD } \\ & \hline \end{aligned}$	-	0.1	-	μ_{s}
OSC-IN Maximum input frequency	${ }^{\text {foscmax }}$	38	OSC-IN	-	5	-	kHz
$\overline{\text { SYNC }}$ "L' time width	t_{5}	45	$\overline{\text { SYNC }}$	-	0.2	-	μ_{s}

FUNCTIONAL DESCRIPTION

- Operational description

The MSM5265GS consists of 160 -stage shift register, 160 -bit latch, and 80 sets of LCD driver. The display data is input from the DATA-IN terminal to the 160 -stage shift register at the rising edge of the

CLOCK pulse and it is shifted to the 160-bit latch when the LOAD signal is set at " H " level, then it is directly output to the LCD panel from the 80 sets of LCD driver.

- OSC-IN, OSC-OUT, $\overline{\text { OSC.OUT }}$

By connecting the external registors R_{0}, R_{1} and external capacitor C_{1} with OSC-IN, OSC-OUT and $\overline{\text { OSC-OUT }}$ respectively as shown in the figure below, an oscillating circuit to generate the common signal is formed.
This frequency is divided into either $1 / 8$ or $1 / 4$ by the internal dividing circuit. The $1 / 8$ divided frequency is used in the static display mode, while the $1 / 4$ divided frequency is used as the common signal in the dynamic display mode which is output
from the COM-OUT terminal. (EXT//INT should be set at low level.)
The resistor R_{1} is to limit the current on the OSC-IN terminal's protecting diodes. The value of the R_{1} should be 10 times more than that of R_{0}.
When the external common signal is used, the EXT/ INT terminal should be set at high level and the external common signal should be input from the OSC-IN terminal.

- D/S

When this pin is set at high level, the MSM5265GS operates in the dynamic display mode, while it operates in the static display mode when this pin is set at low level.

- EXT/INT

When the external common signal is used, this pin should be set at high level and the external common signal is to be input from the OSC-IN terminal. The input common signal is used same as the internal common signal and is output from the COM-OUT pin through the buffer.
When the on-chip common signal generator is used, this pin should be set at low level.
When the MSM5265GS is used as an output expander, this pin should be set at high level and the OSC-IN pin should be set at low level.

- COM-OUT

When more than two MSM5265GSs are connected in a series (cascade connection), this pin should be connected with all of the slave MSM5265GS's OSC-IN terminal.

- $\overline{\text { SYNC }}$

This pin is an input/output pin which is used when more than two MSM5265GSs are used in a series (cascade connection) in the dynamic display mode. All of the involved MSM5265GS's $\overline{\text { SYNC pins }}$ should be connected in a same line so that they should be pulled up by the common resistor, which makes phase level of all involved MSM5265GS's COM-A terminals and COM-B terminals equal. When single MSM5265GS is used in the dynamic display mode, $\overline{\text { SYNC }}$ should be pulled up by the resistor.
In the static display mode including single MSM5265GS's operation, cascade connection and output expander operation, this pin should be set at ground level.

- DATA.IN, CLOCK

The display data is serially input from the DATAIN terminal to the 160 -stage shift register at the rising edge of the CLOCK pulse. The high level of the display data is used to turn the display on, while low level of the display data is used to turn off the display.

- DATA-OUT ${ }_{1}$

The 80th stage of the shift register contents is output from this pin.
When more than two MSM5265GSs are connected in a series (cascade connection) in the static display mode, this pin should be connected to the next MSM5265GS's DATA-IN terminal.

- DATA-OUT ${ }_{2}$

The 160th stage of the shift register contents is output from this pin.
When more than two MSM5265GSs are connected in a series (cascade connection) in the dynamic display mode, this pin should be connected to the next MSM5265GS's DATA-IN terminal.

- LOAD

The signal for latching the shift register contents is input from this pin.
When LOAD pin is set at high level, the shift register contents is shifted to the 80 sets of the LCD driver. When this pin is set at low level, the last display data, which was transferred to the 80 sets of LCD driver when LOAD pin was set at high level, is held.

- $\mathbf{V}_{\text {LC2 }}$

Supply voltage pin for the 80 sets of LCD driver. The input level to this pin should be the low level output voltage of segment output (SEG1 ~SEG80) and common output (COM-A, COM-B).
In this case, the high level of segment output and common output is VOD level, while low level of segment output and common output is $V_{\text {LC2 }}$ level. V_{LC} should be set at more than ground level.

- V_{LC}

Supply voltage pin for the middle level voltage of the common output. The input level of this pin is the middle level output voltage of the common output (COM-A, COM-B) in the dynamic display mode.
The value of the V_{LC} is calculated by the following formula.

$$
V_{L C 1}=\left(V_{D D}+V_{L C 2}\right) / 2
$$

In the static display mode, this pin should be set at open level.

- СОМ-А, СОМ-В

LCD driving common signal is output from these pins and these pins should be connected to the common side of the LCD panel.

- In the static display mode

Same phase pulse as COM-OUT terminal is output from both of COM-A and COM-B. In this case high level is $V_{D D}$ level and low level is V_{LC} level.

- In the dynamic display mode

The COM-A and COM-B output signal are alternately changed within each COM-OUT output cycle, resulting in alternately repetition of select and non-select modes.

In the select mode the, same phase level as the COM-OUT signal is output.
In this case, $V_{D D}$ or $V_{L C 2}$ is output at high level or low level respectively. In the non-select mode, $V_{\text {LC1 }}$ is output at the middle level. In the select mode of COM-A (non-select mode of COM $-B$), the 1st ~ 80 th latched data contents are output from the 80 sets of LCD driver to the LCD panel.
In the select mode of COM-B (non-select mode of COM-A), the 81st ~ 160 th latched data contents are output from the 80 sets of LCD driver to the LCD panel.

- SEG1~SEG80

LCD segment driving signal is output from these pins and these pins should be connected to the segment side of the LCD panel.
" H " level : V_{DD} level, " L " level : $\mathrm{V}_{\mathrm{LC} 2}$ level

- In the static display mode

Since the Nth bit of the latched data contents corresponds to the SEG N , the data after 81st bit is invalid for the display in the static display mode.
The inversed phase signal as the COM-OUT signal is output to the LCD, when the display turns on, while the same phase signal is output when the display turns off.

- In the dynamic display mode Output of the SEG N corresponds as follows.

When COM-A is select mode:
Nth bit of the latched data contents
When COM-B is select mode:
$(80+N)$ th bit of the latched data contents
When the display turns on, the inversed phase signal as the common signal is output, while the same phase signal as the common signal is output when the display turns off.

- SEG-TEST

This pin is used to test the segment output (SEG1 ~ SEG80). All display turn on when this pin is set at high level, while the display becomes the same condition before this pin was set at high level, when this pin is set at low level. This pin has the priority over BLANK terminal.

- BLANK

This pin is also used to test the segment output (SEG1 ~ SEG80). All display turn off when this pin is set at high level, while the display becomes the same condition before this pin was set at high level, when this pin is set at low level.
When SEG-TEST pin is set at high level, the input on this pin is invalid.

APPLICATION CIRCUIT

1) Single MSM5265GS operation in the static display mode.

2) Single MSM5265GS operation in the dynamic display mode.

3) Output-expander

*The output logic can be reversed in respect to the input data by setting OSC-IN to " H " level.
\square

QIEI semiconductor

MSM5238GS

DOT MATRIX LCD 32 DOT COMMON DRIVER

GENERAL DESCRIPTION

The OKI MSM5238GS is a dot matrix LCD's common driver LSI which is fabricated by low power CMOS metal gate technology. The scanning signal in one matrix display frame can be divided into up to $1 / 32$ duty. This LSI consists of $\mathbf{3 2}$-bit shift register, 32 -bit level shifter and $\mathbf{3 2}$-bit 4 -level driver.

This LSI can drive a variety of LCD panel because the bias voltage, which determines the LCD driving voltage, can be optionally supplied from external source.

FEATURES

- Supply voltage: $3 \sim 7 \mathrm{~V}$
- Bias voltage can be supplied externally
- LCD driving voltage: $3 \sim 16 \mathrm{~V}$
- 44 pin PLASTIC FLAT Package
- Applicable LCD duty: $1 / 32 \sim 1 / 64$
(Two chips of MSM5238GS are required to drive 1/64
duty LCD panell.
PIN CONFIGURATION
(Top View)

*Pin 17 is an auxiliary pin. It shall be connected to the power supply or disconnected to any other terminal.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Condition	Limits	Unit
Supply voltage	$V_{D D}$		$-0.3 \sim 7$	V
Supply voltage	$T a=25^{\circ} \mathrm{C}$	$0 \sim 16$	V	
Input voltage			$-0.3 \sim V_{D D}$	V
Storage temperature			-	$-55 \sim+150$

OPERATING RANGE

Item	Symbol	Condition	Value	Unit
Supply voltage	VDD	-	$3 \sim 7$	V
Supply voltage	VDD $-V_{E E}$	-	$3 \sim 16$	V
Operation temperature	Topr	-	$-40 \sim+85$	${ }^{\circ} \mathrm{C}$
Fan-out	N	MOS load	5	-

$$
v_{D D} \geq v_{1} \geq v_{2} \geq v_{3} \geq v_{4}\left(v_{E E}\right)
$$

D.C. CHARACTERISTICS

Item	Symbol	Condition				Limits			Unit
		$V_{D D}$ (V)	$v_{S S}$ (V)	VEE (V)		MIN	TYP	MAX	
	$\begin{array}{r} * 1 \\ \mathrm{~V}_{1 \mathrm{H}_{1}} \\ \mathrm{~V}_{1 \mathrm{H}_{2}} \end{array}$	5	0	$\begin{gathered} 0 \sim \\ -9 \end{gathered}$	-	$\begin{aligned} & 3.6 / \\ & 4.2 \end{aligned}$	-	-	
		7	0	$\begin{aligned} & 0 \sim \\ & -7 \end{aligned}$	-	$\begin{aligned} & 5.2 / \\ & 6.0 \end{aligned}$	-	-	
"L" input voltage	$\begin{aligned} & \quad{ }^{* 1} \\ & v_{I L L_{1} /} \\ & \mathrm{V}_{\mathrm{LL}_{2}} \end{aligned}$	5	0	$\begin{gathered} 0 \sim \\ -9 \end{gathered}$	-	-	-	$\begin{aligned} & 0.8 / \\ & 0.4 \end{aligned}$	
		7	0	$\begin{gathered} 0 \sim \\ -7 \end{gathered}$	-			$\begin{aligned} & 1.1 / \\ & 0.5 \end{aligned}$	
Input voltage	$\mathrm{I}_{1} \mathrm{H}$	7	0	-7	$\mathrm{V}_{1}=7 \mathrm{~V}$	-	-	1	$\mu \mathrm{A}$
	IIL	7	0	-7	$\mathrm{V}_{1}=0 \mathrm{~V}$	-	-	-1	
" H " output voltage	$\begin{array}{r} { }^{2} \\ \mathrm{v}_{\mathrm{OH}} \end{array}$	5	0	$0 \sim$ -9	$\mathrm{I}_{0 D}=-40 \mu \mathrm{~A}$	4.2	-	-	
		7	0	$0 \sim$ -7	$\mathrm{I}_{0} \mathrm{D}=-56 \mu \mathrm{~A}$	5.8	-	-	
"L" output voltage	${ }^{* 2}$	5	0	$0 \sim$ -9	$\mathrm{I}_{0 \mathrm{D}}=0.2 \mathrm{~mA}$	-	-	0.4	
		7	0	$0 \sim$ -7	$\mathrm{I}_{\text {OD }}=0.3 \mathrm{~mA}$	-	-	0.4	
ON Resistance	RON$\left(V_{1}, V_{4}\right)$	5	0	0	$\begin{aligned} & V_{0}: \text { DRV output } \\ & V_{0}-V_{1}=0.25 \mathrm{~V} \\ & V_{1}=V_{E E} \sim\left(V_{D D}-0.25 \mathrm{~V}\right) \\ & V_{0}-V_{4}=0.25 \mathrm{~V} \\ & V_{4}\left(V_{E E}\right): \text { MAX OV } \end{aligned}$	-	500	2000	Ω
			0	-5		-	250	1000	
		7	0	0		-	350	1400	
			0	-7		-	200	800	
	RON$\left(v_{2}, v_{3}\right)$	5	0	0	$\begin{aligned} & V_{N}=V_{2} \text { or } V_{3} \\ & V=D R V \text { output } \\ & V_{0}-V_{N}=0.25 V \\ & V_{N}=V_{E E} \sim\left(V_{D D}-0.25 V\right) \end{aligned}$	-	800	3200	Ω
			0	-5		-	450	1800	
		7	0	0		-	550	2200	
			0	-7		-	350	1400	
OFF Lead current	Ioff	5	0	-9	-	-	-	± 5	$\mu \mathrm{A}$
		7	0	-7	-	-	-	± 5	
Power supply current	IDD	5	0	-9	-	-	-	0.5	mA
		7	0	-7	-	-	-	1.0	
Input capacitance	Cl_{1}				-	-	5	-	pF

* $1 \mathrm{~V}_{1 \mathrm{H}_{1}}$ and $\mathrm{V}_{1 \mathrm{~L}_{1}}$ are input pins for DI and $D F$, while $\mathrm{V}_{1 \mathrm{H}_{2}}$ and $\mathrm{V}_{1 \mathrm{~L}_{2}}$ are input pins for CP .
${ }^{*} 2 \mathrm{~V}_{\mathrm{OH}}$ and V_{OL} are output pins for D_{0}.

SWITCHING CHARACTERISTICS

Item	Symbol	$V_{D D}$ (V)	Condition	MIN	TYP	MAX	Unit
Maximum clock frequency	t (cp)	5	-	400	-	-	KHz
		7	-	550	-	-	
Clock pulse width	${ }^{\prime}{ }_{w}(c p)$	5	-	400	-	-	ns
		7	-	300	-	-	
Data setup time (DATAIN \rightarrow CP)	$\mathrm{t}_{\text {setup }}$	5	-	100	-	-	ns
		7	-	50	-	-	
Data hold time (DATAIN \rightarrow CP)	thold	5	-	800	-	-	ns
		7	-	500	-	-	
Clock pulse Rising/Falling time		5	-	-	-	0.5	ms
		7	-	-	-	0.1	

PIN DESCRIPTION

- DI

The data from LCD controller LSI is input to 32-bit shift register from DI. (Positive logic)
This LSI is applicable up to $1 / 32$ duty LCD panel because this LSI consists of 32 -bit shift register.

- CP

Clock pulse input pin for 32 -bit shift register. The data is shifted to 32 -bit level shifter at the falling edge of the clock pulse. A data set up time ($\mathrm{t}_{\text {setup }}$) and data hold time (thold) is required between DI and CP signal. (Refer to SWITCHING CHARACTERICS.) Schmit circuit is included in $C P$ input circuit.

- DF

Alternate signal input pin for LCD driving waveform.

- $V_{D D} V_{S S}$
$V_{D D}$ is a supply voltage pin. Usually it is used at $\mathrm{V}_{\mathrm{DD}}=3.0 \sim 7.0 \mathrm{~V} \mathrm{~V}_{\mathrm{SS}}$ is a ground pin. $\left(\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}\right)$
- $\mathrm{O}_{1}-\mathrm{O}_{32}$

Display data output pins which correspond to each data bit in the latch. One of V_{1}, V_{2}, V_{3} and V_{4} is selected as a display driving voltage source according to the combination of latched data level and DF signal. Refer to the truth table and Time Chart. Output signal is a analog signal. $\mathrm{O}_{1}-\mathrm{O}_{32}$ are connected to the common side of the LCD panel.

Latched data	DF	Display data output level
L	L	V_{2}
	H	V_{3}
H	L	V_{4}
	H	V_{1}

*The value of R should be decided according to the power consumption and LCD panel size.

- $V_{1}, V_{2}, V_{3}, V_{4}$

Bias supply voltage pin to drive the LCD. Bias voltage divided by the registance is usually used as supply voltage source.
Fig. 1 shows the case when the bias voltage, which determines the LCD driving voltage, is supplied from the external source.

- DO

Shift register contents output pin. The data which was input from DI is output from DO with 32 bits' delay, synchronized with the clock pulse. By connecting DO with next MSM5238GS's DI, this LSI is applicable to the LCD, the duty of which is $1 / 64$. Refer to the Fig. 2 below.

TIME CHART
1/32 duty, $1 / 7$ bias

LCD DRIVING WAVEFORM

$1 / 32$ duty, $1 / 7$ bias

Common O_{1} - Segment O_{1} (Selected waveform)

Common O_{2} - Segment O_{1} (Non-selected waveform)
$v_{a}=V_{D D}-1 / 7 V_{L C D}$
$v_{b}=v_{D D} \cdot 2 / 7 V_{L C D}$
$V_{c}=V_{D D}-5 / 7 V_{L C D}$
$V_{d}=V_{D D}-6 / 7 V_{L C D}$
$V_{e}=V_{D D}-V_{L C D}$

OKK semiconauctor
 MSM5839BGS

DOT MATRIX LCD 40 DOT SEGMENT DRIVER

GENERAL DESCRIPTION

The OKI MSM5839BGS is a dot matrix LCD's segment driver LSI which is fabricated by low power CMOS metal gate technology. This LSI consists of 40-bit shift register (two 20-bit shift registers), 40-bit latch (tvjo 20-bit latches), 40 -bit level shifter and 40 -bit 4 -level driver.

It converts serial data, which is received from LCD controller LSI, to parallel data and outputs LCD driving waveform to the LCD panel.

This LSI can drive a variety of LCD panel because the bias voltage, which determines the LCD driving voltage, can be optionally supplied from the external source.

FEATURES

- Supply voltage: $4.5 \sim 5.5 \mathrm{~V}$ - Bias voltage can be supplied externally
- LCD driving voltage: $8 \sim 18 \mathrm{~V}$
- 56 pin plastic flat package
- Applicable LCD duty: $1 / 8 \sim 1 / 128$

PIN CONFIGURATION

(Top View)

*This pin is internally connected with $V_{D D}$, so it must not be connected to other signals. It is also prohibited to use the 21 pin as a $V_{D D}$ independently. This pin may be used as a line reinforcing $V_{D D}$.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Condition	Value	Unit
Supply voltage (1)	$V_{D D}$	$T_{a}=25^{\circ} \mathrm{C}$	$-0.3 \sim 6$	V
Supply voltage (2)	$V_{D D}-V_{E E}{ }^{*} 1$	$T_{a}=25^{\circ} \mathrm{C}$	$0 \sim 18$	V
	$V_{D D}-V_{E E * 2}^{* 1}$	$T_{a}=25^{\circ} \mathrm{C}$	$0 \sim 18$	V
	V_{1}	$T_{a}=25^{\circ} \mathrm{C}$	$-0.3 \sim V_{D D}+0.3$	V
Storage temperature	$T_{\text {stg }}$	-	$-55 \sim+150$	${ }^{\circ} \mathrm{C}$

*1: $V_{D D}>V_{2}>V_{3}>V_{E E}$
*2 When a series resistance of more than 47Ω is connected as shown below.

OPERATING RANGE

Item	Symbol	Condition	Limit	Unit
Supply voltage (1)	V_{DD}	-	$4.5 \sim 5.5$	V
Supply voltage (2)	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE} * 1}$	-	$8 \sim 16$	V
	$\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE} * 2}^{* 1}$	-	$8 \sim 18$	V
Operating temperature	T_{Op}	-	$-20 \sim+85$	${ }^{\circ} \mathrm{C}$

*1: $V_{D D}>V_{2}>V_{3}>V_{E E}$
*2 When a series resistance of more than 47Ω is connected as shown below.

D.C. CHARACTERISTICS

$\left(V_{D D}=5 V \pm 10 \%, T_{a}=-20 \sim+85^{\circ} \mathrm{C}\right.$)

Item	Symbol	Condition	MIN	TYP	MAX	Unit
"H" input voltage	$\mathrm{V}_{\text {IH }}{ }^{*} 1$	-	0.8 V DD	-	-	V
"L' input voltage	$V_{\text {IL }}{ }^{*} 1$	-	-	-	0.2 V DD	V
'"H" input current	$11 H^{* 1}$	$V_{\text {IH }}=V_{\text {DD }}$	-	-	1	$\mu \mathrm{A}$
"L' input current	ILL*	$V_{I L}=O V$	-	-	-1	$\mu \mathrm{A}$
'"H" output voltage	$\mathrm{VOH}^{*} 2$	$\mathrm{I}_{0}=-0.4 \mathrm{~mA}$	$V_{\text {DD }}-0.4$	-	-	V
"L' output voltage	$\mathrm{V}_{\mathrm{OL}}{ }^{*} 2$	$\mathrm{I}_{0}=0.4 \mathrm{~mA}$	-	-	0.4	V
ON registance	$\mathrm{R}_{\mathrm{ON}}{ }^{4}$	$\begin{aligned} & V_{D D}=V_{E E}=10 V \\ & \left\|V_{N}-V_{O}\right\|=0.25 V * 3 \end{aligned}$	-	3.5	7	$k \Omega$
Power consunption	IDD	$\begin{aligned} & C P=D C \\ & V_{D D}-V_{E E}=18 V \text { No load } \end{aligned}$	-	-	100	$\mu \mathrm{A}$

* 1 : LOAD, CP, DI $1, \mathrm{DI}_{21}, \mathrm{DF}$
*2 : $\mathrm{DO}_{20}, \mathrm{DO}_{40}$
*3 $: V N=V_{D D} \sim V_{E E}, V_{2}=\frac{8}{9}\left(V_{D D}-V_{E E}\right), V_{3}=\frac{1}{9}\left(V_{D D}-V_{E E}\right)$
*4: Applicable to $\mathrm{O}_{1} \sim \mathrm{O}_{40}$

SWITCHING CHARACTERISTICS

Item	Symbol	Condition	MIN	TYP	MAX	Unit
" H ", " L " propagation delay time	tplH tpHL	-	-	-	250	ns
Max. clock frequency	${ }^{\text {f }} \mathrm{CP}$	DUTY $=50 \%$	3.3	-	-	M Hz
Clock pulse width	${ }^{\text {t }}$ ($(C P)$	-	125	-	-	ns
LOAD pulse width	tw(L)	-	125	-	-	ns
Data setup time DI \rightarrow CP	$\mathrm{t}_{\text {setup }}$	-	50	-	-	ns
CP \rightarrow LOAD time	${ }^{\text {t }} \mathrm{CL}$	-	250	-	-	ns
LOAD \rightarrow CP time	${ }^{\text {t }} \mathrm{LC}$	-	0	-	-	ns
DATA hold time DI \rightarrow CP	thold	-	50	-	-	ns
CP Rising/Falling time	$\begin{aligned} & \mathrm{t}_{\mathrm{r}}(\mathrm{CP}) \\ & \mathrm{t}_{\mathrm{f}}(\mathrm{CP}) \end{aligned}$	-	-	-	50	ns
LOAD Rising/Falling time	$\begin{aligned} & t_{r}(L) \\ & t_{f}(L) \end{aligned}$	-	-	-	1	$\mu_{\text {s }}$

PIN DESCRIPTION

- Dl_{1}

The 1st ~ 20 th data from the LCD controller LSI is input to shift register from $D I_{1}$. (Positive logic)

- CP

Clock pulse input pin for the two 20 -bit shift register. The data is shifted to the two 20 -bit latch at the falling edge of the clock pulse. A data setup time ($\mathrm{t}_{\text {setup }}$) and data hold time (thold) are required each between $\mathrm{Dl}_{1}, \mathrm{Dl}_{21}$ and CP .
Schmit circuit is included in CP input circuit.

- DO_{20}

The 20th bit of shift register contents is output from DO_{20} synchronized with the clock pulse. By connecting DO_{20} with DI_{21}, two 20 -bit shift registers are connected and becomes 40 -bit shift register.

- DI_{21}

The 21st ~ 40 th data from the LCD controller LSI is input to shift register from Dl_{21}. By connecting DO_{20} with DI_{21}, two 20 -bit shift registers are connected and becomes 40 -bit shift register.

- DO 40

The 40 th bit of shift register contents is output from DO_{40} synchronized with the clock pulse. By connecting DO_{40} with next MSM5839BGS's DI_{1}, this LSI is applicable to a wide screen LCD. Refer to the sample application circuit.

- \mathbf{V}_{1} (VDD), $\mathbf{V}_{2}, \mathbf{V}_{3}, V_{E E}\left(\mathbf{V}_{4}\right)$

Bias supply voltage pin to drive the LCD. Bias voltage divided by the resistance is usually used as supply voltage source.

- LOAD

The signal for latching the shift register contents is input from this pin.
When LOAD pin is set at " H ", the shift register contents are transferred to 40-bit 4-level driver. When LOAD pin is set at " L ", the last display output data $\left(\mathrm{O}_{1} \sim \mathrm{O}_{40}\right)$, which was transferred when LOAD pin was at " H ", is held.

- $\mathrm{O}_{1} \sim \mathrm{O}_{40}$

Display data output pins which correspond to each data bit in the latch.
One of $V_{D D}, V_{2}, V_{3}$ or $V_{E E}$ is selected as a display driving voltage source according to the combination of latched data level and DF signal.
These pins should be connected to the SEGMENT side of the LCD panel. Refer to the truth table below.

Latched data	DF	Display data output level
H	H	$\mathrm{V}_{\mathrm{EE}}\left(\mathrm{V}_{4}\right)$
	L	V_{DD}
L	H	V_{3}
	L	$\mathrm{~V}_{2}$

- DF

Alternate signal input pin for LCD driving waveform.

- $V_{D D}\left(V_{1}\right), V_{S S}$

Supply voltage pin. $V_{D D}$ should be $4.5 \sim 5.5 \mathrm{~V}$.
V_{SS} is a ground pin $\left(\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}\right)$.

TIME CHART
1/64 duty, $1 / 9$ bias

OKI semiconductor
 MSM5259GS

DOT MATRIX LCD 40 DOT SEGMENT DRIVER

GENERAL DISCRIPTION

The OKI MSM5259GS is a dot matrix LCD's segment driver which is fabricated by low power CMOS metal gate technology. This LSI consists of 40 -bit shift register (two 20 -bit shift registers), 40 -bit latch and 40 -bit 4 -level driver.

It converts serial data, which is received from LCD controller LSI, to parallel data and output LCD driving waveform to LCD.

Expansion of display can be easily made according to the number and structure of characters. Its 40-bit shift register consists of two 20 -bit shift registers and this make it possible to allot bits efficiently according to the numbers of characters.

The MSM5259GS can drive a variety of LCD panel because the bias voltage, which determines the LCD driving voltage, can be optionally supplied from the external source.

FEATURES

- Supply voltage: $3.5 \sim 6.0 \mathrm{~V}$
- LCD driving voltage: $3.0 \sim 6.0 \mathrm{~V}$
- Applicable LCD duty: $1 / 8 \sim 1 / 16$
- Interface with MSM6222GS (LCD controller LSI with 16 -bit common driver and 40 -bit segment driver)
- 56 pin plastic flat package (bent lead)
- Bias voltage can be supplied externally

PIN CONFIGULATION

(Top View)

[^2]
BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Condition	Limits	Unit
Supply voltage (1)	$V_{\text {DD }}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	$-0.3 \sim+6.5$	V
Supply voltage (2)	$V_{\text {DD }}-V_{5}{ }^{*}$		$0 \sim+6.5$	V
Input voltage	V_{1}		$-0.3 \sim V_{D D}+0.3$	V
Storage temperature	$\mathrm{T}_{\text {stg }}$	-	$-55 \sim+150$	${ }^{\circ} \mathrm{C}$

OPERATING RANGE

Item	Symbol	Condition	Limits	Unit
Supply voltage (1)	V_{DD}	-	$3.5 \sim 6.0$	V
Supply voltage (2)	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{5}{ }^{* 1}$	-	$3.0 \sim 6.0^{* 2}$	V
Operating temperature	T_{Op}	-	$-20 \sim+85$	${ }^{\circ} \mathrm{C}$

*1. $V_{D D}>V_{2} \geq V_{3}>V_{5} \geq V_{S S}$ (Dynamic display) $\mathrm{V}_{\mathrm{SS}}=\mathrm{V}_{3}>\mathrm{V}_{2}=\mathrm{V}_{5}=\mathrm{V}_{\text {SS }}$ (Static display)
*2. To decide the LCD driving voltage, change the value of V_{5}. (Minimum OV)

D.C. CHARACTERISTICS

$\left.V_{D D}=5 \pm 10 \%, \mathrm{Ta}=-20 \sim 85^{\circ} \mathrm{C}\right)$

Item	Symbol	Condition	MIN	TYP	MAX	Unit
" H " input voltage	$\mathrm{V}_{1 \mathrm{H}^{* 1}}$	-	0.8 V DD	-	-	V
"L' ${ }^{\prime \prime}$ input voltage	$V_{1 L}{ }^{* 1}$	-	-	-	$0.2 V_{\text {DD }}$	V
" H " input current	$\mathrm{IIH}^{* 1}$	$V_{\text {IH }}=V_{\text {DD }}$	-	-	1	$\mu \mathrm{A}$
' L " input current	IIL* ${ }^{1}$	$V_{\text {IL }}=0 \mathrm{~V}$	-	-	-1	$\mu \mathrm{A}$
" H " output voltage	$\mathrm{VOH}^{* 2}$	$\mathrm{I}^{\mathrm{O}}=-40 \mu \mathrm{~A}$	4.2	-	-	V
"L' output voltage	$\mathrm{VOL}^{* 2}$	$1 \mathrm{O}=0.4 \mathrm{~mA}$	-	-	0.4	V
ON resistance	RON*3	$\begin{aligned} & V_{D D}-V_{5}=5 V \\ & \left\|V_{N}-V_{O}\right\|=0.25 V * 4 \end{aligned}$	-	-	5	$k \Omega$
Current consumption	IDD	$C P=D C$, No load	-	-	0.5	mA

*1. Applicable to $D F, L O A D, \mathrm{DI}_{1}$ and DI_{21} terminals.
*2. Applicable to DO_{20} and DO_{40} terminals.
*3. Applicable to $\mathrm{O}_{1} \sim \mathrm{O}_{40}$ terminals.
*4. $V_{N}=V_{D D} \sim V_{5}, V_{2}=\frac{2}{3}\left(V_{D D}-V_{5}\right), v_{3}=\frac{1}{3}\left(V_{D D}-V_{5}\right)$

SWITCHING CHARACTERISTICS

$\left(V_{D D}=5 \pm 10 \%, \mathrm{Ta}=-20 \sim+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\right)$

Item	Symbol	Condition	MIN	TYP	MAX	Unit
' H ", " L " propagation delay time	tple tpHL	-	-	-	250	ns
Max. clock frequency	${ }^{\mathrm{f}} \mathrm{CP}$	Duty = 50\%	3.3	-	-	MHz
Clock pulse width	${ }^{\text {t }}$ (${ }^{\text {CPP }}$)	-	125	-	-	ns
Load pulse width	${ }^{\text {t }}$ W(L)	-	125	-	-	ns
Data set-up time, DI \rightarrow CP	$\mathrm{t}_{\text {setup }}$	-	50	-	-	ns
$C P \rightarrow$ LOAD time	${ }^{\text {t }} \mathrm{CL}$	-	250	-	-	ns
LOAD \rightarrow CP time	${ }^{\text {t }} \mathrm{C}$	-	0	-	-	ns
Data hold time DI \rightarrow CP	thold	一	50	-	-	ns
Clock pulse Rising/Falling time	$\begin{aligned} & \mathrm{t}_{\mathrm{r}}(\mathrm{CP}) \\ & \mathrm{t}_{\mathrm{f}}(\mathrm{CP}) \end{aligned}$	-	-	-	50	ns
Load pulse Rising/Falling time	$\begin{aligned} & \hline t_{r}(L) \\ & t_{f}(L) \end{aligned}$	-	-	-	1	μ_{s}

PIN DESCRIPTION

- $\mathrm{DI}_{1}, \mathrm{DI}_{21}$

The date (1st ~ 20 th bit) from the LCD controller LSI is input to 20 -bit shift register from DI_{1}. The data (21st ~ 40 th bit) is input to another 20 -bit shift register from DI_{21}.
(Positive logic)

- CP

Clock pulse input pin for the two 20 -bit shift register. The data is shifted to 40 -bit latch at the falling edge of the clock pulse. A data set up time ($\mathrm{t}_{\text {setup }}$) and data hold time (thold^{\prime}) are required between a DI_{1} signal and a clock pulse.
Clock pulse rising time (t_{r}) and clock pulse falling time (t_{f}) should be maximum 50 ns respectively.

- DO_{20}

20th bit of the shift register contents is output from DO_{20}. The data which was input from DI_{1} is output from this pin with 20 bits' delay, synchronized with the clock pulse. By connecting DO_{20} to DI_{21}, two 20 -bit shift registers can be used as a 40 -bit shift register.

- DO 40

40th bit of the shift register contents is output from DO_{40}. The data which was input from Dl_{21} is output from this pin with 20 bits' delay, synchronized with the clock pulse. By connecting DO_{40} to the next MSM5259GS's DI_{1}, this LSI is applicable to a wide screen LCD.
Refer to the application circuit.

- DF

Alternate signal input pin for LCD driving.

- LOAD

The signal for latching the shift register contents is input from this pin.
When LOAD pin is set at " H " level, the shift register contents are transferred to the 40 -bit 4 -level driver. When LOAD pin is set at " L " level, the last display output data $\left(O_{1} \sim O_{40}\right)$, which was transferred when LOAD pin was at " H ' level, is held.

- $V_{D D} V_{S S}$

Supply voltage pins. $V_{D D}$ should be $3.0 \sim 6.0 \mathrm{~V}$.
$V_{S S}$ is a ground pin $\left(V_{S S}=O V\right)$

- $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{5}$

Bias supply voltage pins to drive the LCD. Bias voltage divided by the register is usually used as supply voltage source.
Refer to the application circuit.

- $\mathrm{O}_{1} \sim \mathrm{O}_{40}$

Display data output pin which corresponds to each data bit in the latch.
One of $V_{D D}, V_{2}, V_{3}$ and V_{5} is selected as a display driving voltage source according to the combination of latched data level and DF signal.
(Refer to the truth table below)

Latched data	DF	Display data output level
(Selected)	H	V_{5}
	L	VDD
(Non-selected)	H	V_{3}
	L	V_{2}

Truth Table

TIME CHART

$1 / 5$ bias, $1 / 16$ duty

LCD DRIVING WAVEFORM

1/5 bias, $1 / 16$ duty

The MSM5259GS is applicable to a static LCD by setting V_{2} and V_{5} at ground level, connecting V_{3} to $V_{D D}$ and inputting COMMON SIGNAL to DF pin.

This sample application circuit below is the case when the MSM5259GS is applied to a 80-bit LCD panel by connecting two MSM5259GS in series.

OKKI semiconductor

MSM5260GS
DOT MATRIX LCD 80 DOT COMMON/SEGMENT DRIVER

GENERAL DESCRIPTION

The OKI MSM5260 is a dot matrix common/segment LCD driver LSI which is fabricated by low power CMOS metal gate technology. This LSI consists of 80 -bit shift register, 80 -bit data latch, 80 -bit level shifter and 80 -bit 4 -level driver.

It converts serial data, which is received from LCD controller LSI, to parallel data and outputs LCD driving waveform to LCD.

This LSI can drive a variety of LCD pannel because the bias voltage can be optionally provided from the external source.

FEATURES

- Supply voltage: $4.5 \sim 5.5 \mathrm{~V}$
- LCD driving voltage: $8 \sim 18 \mathrm{~V}$
- Duty $1 / 1 \sim 1 / 128$
- Bias voltage can be supplied externally
- Can be used either as common driver or segment driver
- Interface with MSM6240GS LCD controller LSI
- 100 pin plastic flat package

PIN CONFIGURATION

(Top View)

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Limit .	Unit
Supply Voltage (1)	$V_{D D}$	$T a=25^{\circ} \mathrm{C}$	$-0.3 \sim 6$	V
Supply Voltage (2)	$V_{D D}-V_{5}{ }^{*}{ }^{1}$	$T a=25^{\circ} \mathrm{C}$	$0 \sim 18$	V
	$V_{D D}-V_{5 * 2}^{* 1}$	$T a=25^{\circ} \mathrm{C}$	$0 \sim 20$	V
Input Voltage	V_{I}	$T a=25^{\circ} \mathrm{C}$	$-0.3 \sim V_{D D}+0.3$	V
Storage Temperature	$V_{\text {stg }}$	-	$-55 \sim+150$	${ }^{\circ} \mathrm{C}$

*1: $V_{D D}>V_{2}>V_{3}>V_{5}$
*2 When a series resistance of more than 47Ω is connected as shown below:

OPERATING RANGE

Parameter	Symbol	Condition	Limit	Unit
Supply Voltage $(1)^{* 1}$	$\mathrm{~V}_{\mathrm{DD}}$	-	$4.5 \sim 5.5$	V
Supply Voltage $(2)_{* 2}^{* 1}$	$\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{5}{ }^{* 1}$	-	$8 \sim 16$	V
	$\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{5}{ }^{* 1}$	-	$8 \sim 18$	V
Operating Temperature	Top	-	$-20 \sim+85$	${ }^{\circ} \mathrm{C}$

*1: $V_{D D}>V_{2}>V_{3}>V_{5}$
*2 : When a series resistance of more than 47Ω is connected as shown below:

D.C. CHARACTERISTICS

$\left(V_{D D}=5 \mathrm{~V} \pm 10 \% \mathrm{~T}_{\mathrm{a}}=-20 \sim+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Condition	Value			Unit
			MIN	TYP	MAX	
"H" Input Voltage	$\mathrm{V}_{1 \mathrm{H}^{*}}{ }^{1}$		0.8 V DD	-	-	V
"L" Input Voltage	$\mathrm{V}_{\mathrm{IL}}{ }^{* 1}$		-	-	$0.2 \mathrm{~V}_{\text {DD }}$	V
"H" Input Current	$1_{1 H^{* 1}}$	$V_{\text {IH }}=V_{\text {DD }}$	-	-	1	$\mu \mathrm{A}$
"L" Input Current	IIL* ${ }^{\text {/ }}$	$V_{\text {IL }}=0 \mathrm{~V}$	-	-	-1	$\mu \mathrm{A}$
'H' Output Voltage	$\mathrm{VOH}^{* 2}$	$\mathrm{I}_{\mathrm{O}}=-0.4 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}-0.4$	-	-	V
"L' Output Voltage	$\mathrm{V}_{\mathrm{OL}}{ }^{2}$	$\mathrm{I}^{0}=0.4 \mathrm{~mA}$	-	-	0.4	V
ON Resistance	RON*4	$\begin{aligned} & V_{D D}-V_{5}=10 V \\ & \left\|V_{N}-V_{O}\right\|=0.25^{* 3} \end{aligned}$	-	-	2	$k \Omega$
Power Consumption	IDD	$\begin{aligned} & C P=D C \\ & V_{D D}-V_{5}=18 V \text { No load } \end{aligned}$	-	-	100	$\mu \mathrm{A}$

[^3]
SWITCHING CHARACTERISTICS

$\left(V_{D D}=5 \mathrm{~V} \pm 10 \%, \quad T_{a}=20 \sim 85^{\circ} \mathrm{C} . C L=15_{\mathrm{p}} \mathrm{F}\right)$

Parameter	Symbol	Condition	Value			Unit
			MIN	TYP	MAX	
"H", "L'" Propagation Delay Time	${ }^{\text {tPLH }}$ tphl	-	-	-	250	ns
Max. Clock Frequency	${ }^{\text {f }}$ CP	Duty $=50 \%$	3.3	-	-	MHz
Clock Pulse Width	t W (CP)	-	125	-	-	ns
LOAD Pulse Width	tw(L)	-	125	-	-	ns
Data Set-up Time $\mathrm{D}_{1} \rightarrow C P$	${ }^{\text {setup }}$	-	50	-	-	ns
CP \rightarrow LOAD Time	${ }^{\text {t }} \mathrm{CL}$	-	250	-	-	ns
LOAD \rightarrow CP Time	${ }^{\text {t }}$ LC	-	0	-	-	ns
Data Hold Time DI \rightarrow CP	thold	-	50	-	-	ns
CP Rising/Falling Time	$\begin{aligned} & \mathrm{t}_{\mathrm{r}}(\mathrm{CP}) \\ & \mathrm{t}_{\mathrm{f}}(\mathrm{CP}) \\ & \hline \end{aligned}$	-	-	-	50	ns
LOAD Rising/Falling Time	$\begin{aligned} & \mathrm{t}_{\mathrm{r}}(L) \\ & \mathrm{t}_{\mathrm{f}}(\mathrm{~L}) \end{aligned}$	-	-	-	1	$\mu \mathrm{s}$

PIN DESCRIPTION

- DI 1_{1}

The date from the LCD controller LSI is input to 80 -bit shift register from DI_{1}. (Positive logic)

- CP

Clock pulse input pin for 80 -bit shift register. The data is shifted to 80 -bit latch at the falling edge of the clock pulse. A data set up time ($\mathrm{t}_{\text {setup }}$) and a data hold time (thold) are required between a DI_{1} signal and a clock pulse.
Clock pulse rising time (t_{r}) and clock pulse falling time (tf) should be maximum 50 ns respectively.

- DO_{80}

80th bit of the shift register contents is output from DO_{80}. The data which was input from DI_{1} is output from this pin with 80 bits' delay, synchronized with the clock pulse. By connecting DO_{80} with next MSM5260GS's DI_{1}, this LSI is applicable to a wide screen LCD. Refer to the application circuit.

- loAd

The signal for latching the shift register contents is input from this pin.
When LOAD pin is set at " H " level, the shift register contents are transferred to 80 -bit 4 -level driver through 80-bit level shifter.
When LOAD pin is set at low level, the last display output data ($\mathrm{O}_{1} \sim \overline{\mathrm{O}}_{80}$), which was transferred when LOAD pin was at high level, is held.

- DF

Alternate signal input pin for LCD driving.

- COM/SEG

Selection signal input pin. MSM5260GS is used either as common driver or segment driver according to input signal level at COM/SEG pin.
When this pin is set at high level, MSM5260 is used as a common driver, while it is used as a row driver at low level.

The display driving data $\mathrm{O}_{1} \sim \mathrm{O}_{80}$, which are determined according to the combination of latched data and DF signal, are shown in the Table 1 below.

COM/SEG	Latched data level	DF	Display data output level $\left(\mathrm{O}_{1} \sim \mathrm{O}_{80}\right)$	Note
H	High (Selected)	H	$V_{\text {DD }}$	Common driver
		L	V_{5}	
	Low (Non-selected)	H	V_{3}	
		L	V_{2}	
L	High (Selected)	H	V_{5}	Segment driver
		L	VDD	
	Low (Non-selected)	H	V_{3}	
		L	V_{2}	

Table 1

When MSM5260GS is used as common driver, both LOAD pin and COM/SEG pin are to be connected to $V_{D D}$. In this case, a bias voltage of common
side's non-selected level is to be supplied to V_{2} and V_{3} pins.

- VDD. $V_{\text {SS }}$

Supply voltage pins. $V_{D D}$ should be $4.5 \sim 5.5 \mathrm{~V}$:
$V_{S S}$ is a ground pin ($\left.V_{S S}=O V\right)$

- $\mathbf{V D D}_{\mathrm{DD}}, \mathbf{V}_{2}, \mathbf{V}_{3}, \mathbf{V}_{5}$

Bias supply voltage pin to drive the LCD. Bias voltage divided by the register is usually used as supply voltage source.
Figure 1 shows the case when bias voltage, which is used to drive the LCD, is obtained by the voltage disivion by external registers.

- $\mathrm{O}_{1} \sim \mathbf{O}_{80}$

Display data output pins which correspond to the 80-bit latch contents.
One of $V_{D D}, V_{2}, V_{3}$ and V_{5} is selected as a display driving voltage source according to the combination of latched data level and DF signal. (Refer to the time chart and Table 1.)

Figure 1

TIME CHART (COMMON DRIVER)

1/64 duty, $1 / 9$ bias

TIME CHART (SEGMENT DRIVER)

APPLICATION CIRCUIT

- static display

The MSM5260GS can make a static drive of a LCD by controlling the supply voltage. So it can be used to drive a color $L C D$ which requires high driving voltage. The value $V_{D D} \sim V_{5}$ must be $18 \mathrm{~V}>V_{D D} \sim V_{5} \geqq 5 \mathrm{~V}$.

- 1/64 duty, $1 / 9$ bias

QIEI semiconductor

MSM5278GS

DOT MATRIX LCD 64 DOT COMMON DRIVER

GENERAL

The OKI MSM5278GS is a dot matrix LCD's common driver LSI which is fabricated by low power CMOS metal gate technology. This LSI consists of 64 -bit bidirectional shift register, 64 -bit level shifter and 64 -bit 4 -level driver.

This LSI has 64 output pins to be connected to the LCD. By connecting more than two MSM5278GSs in series, this LSI is applicable to a wide LCD panel.

This LSI can drive a variety of LCD because the bias voltage, which determines the LCD driving voltage, can be optionally supplied from the external source.

FEATURES

- Supply voltage: $4.5 \sim 5.5 \mathrm{~V}$
- LCD driving voltage: $8 \sim 20 \mathrm{~V}$
- Applicable LCD duty: $1 / 64 \sim 1 / 128$

Two chips of the MSM5278GS are required to drive 1/128 duty LCD.

- Bias voltage can be supplied externally
- 80 pin plastic flat package

PIN CONFIGURATION

(Top View) 80 Lead Plastic Flat Package

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Value	Unit
Supply voltage (1)	$V_{D D}$	$T_{a}=25^{\circ} \mathrm{C}$	$-0.3 \sim 6$	V
Supply voltage (2)	$V_{D D}-V_{E E}{ }^{*}{ }^{1}$	$T_{a}=25^{\circ} \mathrm{C}$	$0 \sim 22$	V
Input voltage	V_{I}	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	$-0.3 \sim V_{D D}+0.3$	V
Storage temperature	$\mathrm{T}_{\text {stg }}$	-	$-55 \sim+150$	${ }^{\circ} \mathrm{C}$

*1 $V_{1}>V_{2}>V_{5}>V_{E E}, V_{1} \leqq V D D$

OPERATING RANGE

Parameter	Symbol	Condition	Limits	Unit
Supply voltage (1)	$V_{\text {DD }}$	-	$4.5 \sim 5.5$	V
Supply voltage (2)	$V_{\text {DD }}-V_{\text {EE }}{ }^{* 1}$	-	$8 \sim 20$	V
Operating temperature	$T_{\text {Op }}$	-	$-20 \sim+85$	${ }^{\circ} \mathrm{C}$

${ }^{*} 1 V_{1}>V_{2}>V_{5}>V_{E E}, V_{1} \leqq V_{D D}$

D.C. CHARACTERISTICS

$\left(V_{D D}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{a}}=-20 \sim+85^{\circ} \mathrm{C}\right.$)

Parameter	Symbol	Condition	MIN	TYP	MAX	Unit
"H" Input voltage	$\mathrm{V}_{1 H^{* 1}}$	-	0.8 V DD	-	-	V
"L" Input voltage	$\mathrm{V}_{1 L^{* 1}}$	-	-	-	$0.2 V_{\text {DD }}$	V
"H" Input current	$\mathrm{IIH}^{* 1}$	$V_{\text {IH }}=V_{\text {DD }}$	-	-	1	$\mu \mathrm{A}$
"L" Input current	IIL*1	$\mathrm{V}_{\text {IL }}=O V$	-	-	-1	$\mu \mathrm{A}$
"H" Output voltage	$\mathrm{V}_{\mathrm{OH}^{* 2}}$	$1 \mathrm{O}=-0.4 \mathrm{~mA}$	$V_{\text {DD }}-0.4$	-	-	V
"L' Output voltage	$\mathrm{VOL}^{* 2}$	$1 \mathrm{O}=0.4 \mathrm{~mA}$	-	-	0.4	V
ON Resistance	RON*4	$\begin{aligned} & V_{D D}-V_{E E}=1.8 V \\ & \left\|V_{N}-V_{O}\right\|=0.25 V \end{aligned}$	-	1	2	k Ω
Power consumption	IDD	$\begin{aligned} & C P=D C \\ & V_{D D}-V_{E E}=18 \mathrm{~V} \text { No load } \end{aligned}$	-	-	100	$\mu \mathrm{A}$
Input capacitance	C_{1}	$\mathrm{f}=1 \mathrm{MHz}$	-	5	-	PF

*1 Application to $\mathrm{CP}, 1 \mathrm{O}_{1}, 1 \mathrm{O}_{64} \mathrm{SHL}$ and DF terminals.
*2 Applicable to $1 \mathrm{O}_{1}$, and $1 \mathrm{IO}_{64}$ terminals.
*3 $V \dot{N}=V_{D D} \sim V_{E E}, V_{2}=\frac{10}{11}\left(V_{D D}-V_{E E}\right), V_{5}=\frac{1}{11}\left(V_{D D}-V_{E E}\right), V_{D D}=V_{1}$
*4 Applicable to $\mathrm{O}_{1} \sim \mathrm{O}_{64}$ terminals.

SWITCHING CHARACTERISTICS

$\left(V_{D D}=5 V \pm 10 \%, T_{a}=-20 \sim+85^{\circ} \mathrm{CCL}=15 \mathrm{pF}\right)$

Parameter	Symbol	Condition	MIN	TYP	MAX	Unit
"H" 'L'" propagation delay time	$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	-	-	-	250	ns
Max. clock frequency	${ }^{\text {f }}$ CP	-	1	-	-	MHz
Clock pulse width	${ }^{\text {t }}$ (${ }^{\text {(CP) }}$	-	125	-	-	ns
Data set-up time $\mathrm{IO}_{1}\left(1 \mathrm{O}_{64}\right) \rightarrow \mathrm{CP}$	$\mathrm{t}_{\text {setup }}$	-	100	-	-	ns
Data hold time $1 \mathrm{O}_{1}\left(\mathrm{O}_{64}\right) \rightarrow \mathrm{CP}$	thold	-	100	-	-	ns
Clock pulse Rising/Falling time	$\begin{aligned} & \operatorname{tr}_{r}(C P) \\ & t_{f}(C P) \end{aligned}$	-	-	-	50	ns

PIN DESCRIPTION

- $1 \mathrm{O}_{1}, 1 \mathrm{O}_{64}, \mathrm{SHL}$
10_{1} and 10_{64} are 64-bit bidirectional shift register input/output pins. The shifting direction is selected
by the H / L condition of SHL pin. Refer to the table below.

SEL	Shifting direction	$10_{1} / 10_{64}$	Input/output	Pin description
L	$\mathrm{O}_{1} \rightarrow \mathrm{O}_{64}$	10_{1}	Input	The scanning data from the LCD controller LSI is input from $1 \mathrm{O}_{1}$ synchronized with the clock pulse. *1
		10_{64}	Output	Shift register contents output pin. The data which was input from $1 \mathrm{O}_{1}$ is output from IO_{64} with 64 bits' delay, synchronized with the clock pulse. Refer to the application circuit.
H	$\mathrm{O}_{64} \rightarrow \mathrm{O}_{1}$	10_{64}	Input	The scanning data from the LCD controller LSI is input from IO_{64} synchronized with the clock pulse. *1
		10_{1}	Output	Shift register contents output pin. The data which was input from IO_{64} is output from IO_{1} with 64 bits' delay, synchronized with the clock pulse. Refer to the application circuit.

*1 The combination of the scanning data, $1 \mathrm{O}_{1}$ or $1 \mathrm{O}_{64}$, and the LCD driving output, $\mathrm{O}_{1} \sim \mathrm{O}_{64}$, is shown in the table below.

$1 \mathrm{IO}_{1}, 1 \mathrm{O}_{64}$	LCD driving output
H	Selected level $\left(\mathrm{V}_{1}, \mathrm{~V}_{\mathrm{EE}}\right)$
L	Non-selected level $\left(\mathrm{V}_{2}, \mathrm{~V}_{5}\right)$

- CP

Clock pulse input pin for 64 -bit bidirectional shift register. The data is shifted to 64 -bit level shifter at the falling edge of the clock pulse.

- DF

Alternate signal input pin for LCD driving. Normal frame inversion signal is input.

- $V_{D D}, V_{S S}$

Supply voltage pins. $V_{D D}$ should be $4.5 \sim 5.5 \mathrm{~V}$.
V_{SS} is a ground pin. $\left(\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}\right)$

- $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{5}, \mathrm{~V}_{\mathrm{EE}}$

Bias supply voltage pins to drive the LCD. Bias voltage divided by the resistance is usually used as supply voltage source.
The below figure shows the case when bias voltage is divided by the resistance. V_{1} is not necessarily connected to $V_{\text {DD }}$.

The figure below shows the case when bias voltage is supplied by the Op-Amps. By using Op-Amps, the bias voltage becomes low impedance and the power consumption of MSM5278 becomes low.

Op-Amp voltage follower

1/11 Bias, $1 / 100$ duty

- $\mathrm{O}_{1} \sim \mathrm{O}_{64}$

Display data output pins which correspond to 64-bit shift register contents. One of V_{1}, V_{2}, V_{5} and $V_{E E}$ is selected as a display driving voltage
source according to the combination of the latched data level and DF signal. (Refer to the truth table below.)

DF	Latched data level	Display data output level $\left(O_{1} \sim O_{64}\right)$
L	L	V_{2}
L	H	$V_{E E}$
H	L	V_{5}
H	H	V_{1}

Truth table

TIMING CHART
1/100 duty, $1 / 11$ bias

MSM5279GS

DOT MATRIX LCD 80 DOT SEGMENT DRIVER

GENERAL

The OKI MSM5279GS is a dot matrix LCD's segment driver LSI which is fabricated by CMOS low power metal gate technology. This LSI consists of 80 -bit bidirectional shift register, 80 -bit latch, 80 -bit level shifter and 80 -bit 4 -level driver.

It receives the display driving data, which consists of 4 -bit parallel, from the LCD controller LSI, then output the LCD driving waveform to the LCD'.

The MSM5279GS has the power down function which enables the MSM5279GS's power consumption low.
The MSM5279GS can drive a variety of LCD panel because the bias voltage, which determines the LCD driving voltage, can be optionally supplied from the external source.

FEATURES

- Supply voltage: $4.5 \sim 5.5 \mathrm{~V}$
- LCD driving voltage: $8 \sim 20 \mathrm{~V}$
- Applicable LCD duty: $1 / 8 \sim 1 / 128$
- Bias voltage can be supplied externally
- Power down function
- 4-bit parallel data processing
- Can be interfaced with the MSM6255GS, MSM6265GS, LCD controller LSI
- 100 pin plastic flat package

PIN CONFIGURATION

(Top View)

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Limits	Unit
Supply voltage (1)	$V_{D D}$	$T_{a}=25{ }^{\circ} \mathrm{C}$	$-0.3 \sim 6$	V
Supply voltage (2)	$V_{D D}-V_{E E}{ }^{*} 1$	$T_{a}=25{ }^{\circ} \mathrm{C}$	$0 \sim 22$	V
Input voltage	$\mathrm{V}_{\text {I }}$	$\mathrm{T}_{\mathrm{a}}=25{ }^{\circ} \mathrm{C}$	$-0.3 \sim \mathrm{~V}_{\mathrm{DD}}+0.3$	V
Storage temperature	$\mathrm{T}_{\text {stg }}$	-	$-55 \sim+150$	${ }^{\circ} \mathrm{C}$

${ }^{*} 1 \mathrm{~V}_{1}>\mathrm{V}_{3}>\mathrm{V}_{4}>\mathrm{V}_{\mathrm{EE}}, \mathrm{V}_{1} \leqq \mathrm{~V}_{\mathrm{DD}}$

OPERATING RANGE

Parameter	Symbol	Condition	Limits	Unit
Supply voltage (1)	$V_{D D}$	-	$4.5 \sim 5.5$	V
Supply voltage (2)	$V_{\mathrm{DD}}-\mathrm{VEE}^{* 1}$	-	$8 \sim 20$	V
Operating temperature	Top	-	$-20 \sim+85$	${ }^{\circ} \mathrm{C}$

*1 $V_{1}>V_{3}>V_{4}>V_{E E}, V_{1} \leqq V_{D D}$

DC CHARACTERISTICS

$\left(\mathrm{V}_{\text {DD }}=5 \mathrm{~V} \pm 10 \%, \mathrm{Ta}=-20 \sim+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Condition	MIN	TYP	MAX	Unit
" H " Input voltage	$\mathrm{V}_{1 \mathrm{H}^{* 1}}$	-	0.8 V D	-	-	V
'LL" Input voltage	$V_{I L}{ }^{1}$	-	-	-	0.2 VDD	V
"H" Input current	$1 / \mathrm{H}^{* 1}$	$\mathrm{V}_{\text {IH }}=\mathrm{V}_{\text {DD }}$	-	-	1	$\mu \mathrm{A}$
' L " Input current	IIL* ${ }^{1}$	$V_{I L}=0 \mathrm{~V}$	-	-	-1	$\mu \mathrm{A}$
" H " Output voltage	$\mathrm{VOH}^{* 2}$	$\mathrm{I}_{\mathrm{O}}=-0.2 \mathrm{~mA}$	$\begin{array}{\|c} \mathrm{V}_{\mathrm{DD}}- \\ 0.4 \end{array}$	-	-	V
"L'" Output voltage	$\mathrm{VOL}^{* 2}$	$\mathrm{I}^{\mathrm{O}}=0.2 \mathrm{~mA}$	-	-	0.4	V
ON resistance	RON*4	$\begin{aligned} & V_{D D}-V_{E E}=18 V \\ & \left\|V_{N}-V_{O}\right\|=0.25 V \end{aligned}$	-	2	4	k Ω
Stand-by current consumption	${ }^{\prime} \mathrm{DDSBY}$	$\begin{aligned} & C P=1 \mathrm{MHz} \\ & V_{D D}-V_{E E}=18 \mathrm{~V}, \text { No load*5 } \end{aligned}$	-	-	200	$\mu \mathrm{A}$
Current consumption (1)	' DDi	$\begin{aligned} & C P=1 \mathrm{MHz} \\ & V_{D D}-V_{E E}=18 \mathrm{~V}, \text { No load } * 6 \end{aligned}$	-	-	4	mA
Current consumption (2)	IV	$\begin{aligned} & C P=1 \mathrm{MHz} \\ & V_{D D}-V_{E E}=18 \mathrm{~V}, \text { No load*7 } \end{aligned}$	-	-	± 100	$\mu \mathrm{A}$
Input capacitance	C_{1}	$\mathrm{f}=\mathbf{1} \mathrm{MHz}$	-	5	-	PF

* 1 Applicable to LOAD, CP, $D_{0} \sim D_{3}$, ECLK, EL, ER, SHL, DF terminals.
*2 Applicable to EL, ER terminals.
*3 $V \dot{N}=V_{D D} \sim V_{E E} V_{3}=\frac{9}{11}\left(V_{D D}-V_{E E}\right), V_{2}=\frac{9}{11}\left(V_{D D}-V_{E E}\right), V_{D D}=V_{1}$.
*4 Applicable to $\mathrm{O}_{1} \sim \mathrm{O}_{80}$ terminals.
*5 Display data $1010-D F=40 \mathrm{~Hz}$, Current from $V_{D D}$ to $V_{S S}$ when the display data is not processing.
*6 Display data $1010-D F=40 \mathrm{~Hz}$, Current from VDD to $V_{S S}$ when the display data is processing.
* 7 Display data $1010-D F=40 \mathrm{~Hz}$, Current on V_{1}, V_{3}, V_{4} and $V_{E E}$ terminals.
- DOT MATRIX LCD DRIVER •MSM5279GS ■

SWITCHING CHARACTERISTICS

Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit
" H ", " L " propagation delay time	${ }^{\text {tpLH. }}$ tphL	-	-	-	250	ns
MAX. clock frequency	${ }^{\mathrm{f}} \mathrm{CP}$	DUTY $=50 \%$	3	-	-	MHz
CP ELCK pulse width	tw	-	125	-	-	ns
Load pulse width	${ }^{t} \mathrm{~W}(\mathrm{~L})$	-	125	-	-	ns
Data set-up time	${ }^{\text {t }}$ setup	-	100	-	---	ns
$C P \rightarrow$ LOAD time	${ }^{\text {t }} \mathrm{CL}$	\bigcirc	250	-	-	ns
LOAD \rightarrow CP time	${ }_{\text {t }} \mathrm{C}$	-	0	-	-	ns
Data hold time CP $\rightarrow \mathrm{D}_{0} \sim \mathrm{D}_{3}$, ECLK \rightarrow LOAD	thold	-	100	-	-	ns
Clock pulse Rising/Falling time	$\begin{aligned} & \mathrm{t}_{\mathrm{r}} \\ & \mathrm{t}_{\mathrm{f}} \end{aligned}$	-	-	-	50	ns
Load pulse Rising/Falling time	$\begin{aligned} & \operatorname{tr}_{r}(L) \\ & t_{f}(L) \end{aligned}$	-	-	-	1	μ_{s}
CP \rightarrow ECLK time	${ }^{\text {t }}$ CE	-	0	-	-	ns
ECLK \rightarrow CP time	${ }^{\text {t }}$ EC	-	150	-	-	ns

POWER DOWN FUNCTION

When more than two MSM5279GSs are being connected in series, cascade connection, power down function of MSM5279GS can be utilized using the ENABLE F/F (flip flop circuit) in individual MSM5279GSs. (Regarding the internal circuit configuration of MSM5279GS, refer to the figure below.) The display data is processed only in the MSM5279GS, the ENABLE F/F of which is being activated by setting its ER and EL at high level, while the display data is not processed in the MSM5279GS, the ENABLE F/F of which is not being activated and the low power consumption condition (IDD $S B Y$) is being held. The activated condition of this ENABLE F/F is being shifted to next MSM5279GS one after another so that the ENABLE F/F of only one MSM5279GS out of the cascade connected MSM5279GSs should be being activated.

PIN DESCRIPTION

- ER,EL.

Pin	Input/Output	SHL	
ER	Input	Description	
EL	Output		Input pin to ENABLE F/F of MSM5279GS.
			Output pin of ENABLE F/F. EL is connected to next MSM5279GS's ER when MSM5279GSs are connected in series (cascade connection).
EL	Input	H	Input pin to ENABLE F/F of MSM5279GS.
ER	Output		Output pin of ENABLE F/F. ER is connected to next MSM5279GS's EL when MSM5279GSs are connected in series (cascade connection).

- ELCK

Clock pulse input pin for ENABLE F/F. The active condition of ENABLE F/F is shifted to next MSM5279GS's ENABLE F/F at the falling edge of the clock pulse. ELCK is required every 20 CP. (Clock Pulse).

- CP

Clock pulse input pin for the 4 -bit parallel shift register. The data is shifted to 80 -bit latch at the
falling edge of the clock pulse. The clock pulse, which was input when the ENABLE F/F is not active condition, is invalid.

- SHL

ER and EL can be used as either input pin or output pin according to the H/L condition of SHL. The shifting direction of each data, $D_{0} \sim D_{3}$, the Input/ Output condition of ER and EL and the H/L condition of SHL are described in the table below.

SHL	ER	EL	Shifting direction
L	Input	Output	$\begin{aligned} & \mathrm{D}_{0} \rightarrow \mathrm{O}_{1} \rightarrow \mathrm{O}_{5} \longrightarrow \mathrm{O}_{77} \\ & \mathrm{D}_{1} \rightarrow \mathrm{O}_{2} \rightarrow \mathrm{O}_{6} \longrightarrow \mathrm{O}_{78} \\ & \mathrm{D}_{2} \rightarrow \mathrm{O}_{3} \rightarrow \mathrm{O}_{7} \longrightarrow \mathrm{O}_{79} \\ & \mathrm{D}_{3} \rightarrow \mathrm{O}_{4} \rightarrow \mathrm{O}_{8} \longrightarrow \mathrm{O}_{80} \end{aligned}$
H	Output	Input	$\begin{aligned} & \mathrm{D}_{0} \rightarrow \mathrm{O}_{80} \rightarrow \mathrm{O}_{76} \longrightarrow \mathrm{O}_{4} \\ & \mathrm{D}_{1} \rightarrow \mathrm{O}_{79} \rightarrow \mathrm{O}_{75} \longrightarrow \mathrm{O}_{3} \\ & \mathrm{D}_{2} \rightarrow \mathrm{O}_{78} \rightarrow \mathrm{O}_{74} \longrightarrow \mathrm{O}_{2} \\ & \mathrm{D}_{3} \rightarrow \mathrm{O}_{77} \rightarrow \mathrm{O}_{73} \longrightarrow \mathrm{O}_{1} \end{aligned}$

- $D_{0}, D_{1}, D_{2}, D_{3}$

Data input pins for 4 -bit parallel shift register and it is input synchronized with the clock pulse. The
combination of $D_{0} \sim D_{3}$ level, DF signal, display data output level and the display on the LCD panel is described on the table below.

$\mathrm{D}_{0} \sim \mathrm{D}_{3}$	DF	Display data output level	Display on the LCD
L	L	V_{3}	OFF
H	L	V_{1}	ON
L	H	V_{4}	OFF
H	H	V_{EE}	ON

- LOAD

The signal for latching the shift register contents is input from this pin. When LOAD pin is set at " H " level, the shift register contents are transferred to 80 -bit latch at the falling edge of the LOAD pulse.

When more than two MSM5279GSs are connected in series, cascade connection, the first MSM5279GS's EL terminal (when SHL = " H ") or ER terminal (when SHL = "L") should be connected with first" MSM5279GS's LOAD terminal.

- DF

Alternate signal input pin for LCD driving. Frame inversion signal is input to this terminal.

- $\mathrm{V}_{\mathrm{DD}} \mathrm{V}_{\mathrm{SS}}$

Supply voltage pins. $V_{D D}$ should be $4.5 \sim 5.5 \mathrm{~V}$. $V_{S S}$ is a ground pin $\left(V_{S S}=O V\right)$

- $V_{1}, V_{3}, V_{4}, V_{E E}$

Bias supply voltage pin to drive the LCD. Bias voltage divided by the resistance is usually used as supply voltage source. The figure below shows the case when bias voltage, which determines the LCD driving voltage, is supplied from the external source. V_{1} is not necessarily connected with $V_{D D}$.

The figure below shows the case when the bias voltage is supplied by using Ope-Amps, which enables the bias source low impedance and low power consumption.

- $\mathrm{O}_{1} \sim \mathrm{O}_{80}$

Display data output pin which corresponds to the respective latch contents. One of V_{1}, V_{3}, V_{4} and $V_{E E}$ is selected as a display driving voltage source according to the combination of the latched data level and DF signal. (Refer to the truth table on the right).

$D F$	Latched data	Display data output level
L	L	V_{3}
L	H	V_{1}
H	L	V_{4}
H	H	$V_{E E}$

Truth table

TIME CHART
1/100 duty, $1 / 11$ Bias

MSM6222B-01GS

DOT MATRIX LCD CONTROLLER WITH 16 DOT COMMON DRIVER AND 40 DOT SEGMENT DRIVER

GENERAL DESCRIPTION

The OKI MSM6222B-01GS is a dot matrix LCD controller which is fabricated by low power CMOS silicon gate technology. In combination with 4 -bit/8-bit microcontroller, character display on the dot matrix character type LCD can be effected. This LSI consists of 16 dot COMMON driver, 40 dot SEGMENT driver, DISPLAY RAM, character generator RAM, character generator ROM and control circuit. Max. 80 characters' display can be controlled by MSM6222B-01GS by using together with the MSM5259GS.

The OKI MSM6222B-01GS has the same performance as HD44780. There is, however, slight differences between these two devices as described in the table on page 101.

MSM6222B has ROM area for character code that can be programmed by custom mask. -01GS is the standard version with 160 characters, with small letter font 5×7, and 32 characters, with capital letter font 5×10, in this ROM area.

FEATURES

- Easy interface with an 8-bit or 4-bit microcontroller.
- Dot matrix LCD controller/driver for small letter font (6×7 dots) or capital letter font (5×10 dots).
- Automatic power ON reset.
- COMMON signal drivers (16) and SEGMENT signal drivers (40).
- Control up to 80 characters when used in combination with MSM5259GS.
- Character generator ROM for 160 characters with small letter font (5×7 dots) and 32 characters with capital letter font (5×10 dots).
- Character patterns can be programmable by CG RAM. (Small letter font: 8 kinds, 5×8 dots, Capital letter font: 4 kinds, 5×11 dots).
- Oscillation circuit for external register or ceramic resonator.
- $1 / 8$ duty (1 line; 5×7 dots + cursor), $1 / 11$ duty (1 line; 5×10 dots + cursor), or $1 / 16$ duty (2 lines; 5×7 dots + cursor), selectable.
- Clear display even in case of $1 / 5$ bias, 3.0V LCD driving voltage.

PIN CONFIGURATION

(Top View)

3

Item	HD44780	MSM6222B-01GS
LCD driving voltage 1/4 bias $1 / 5$ bias	$\begin{aligned} & 3.0 \sim 11.0(\mathrm{~V}) \\ & 4.6 \sim 11.0(\mathrm{~V}) \end{aligned}$	$\begin{aligned} & 3.0 \sim 8.0(\mathrm{~V}) \\ & 3.0 \sim 8.0(\mathrm{~V}) \end{aligned}$
Bus interface speed with CPU	1 MHz (1000 ns)	1.5 MHz (667 ns) Signal rising/falling time is quite fast. So, the conduction between lines of the PCB and the cable assignment are very important.
The increment and decrement of the address counter in writing/reading the data to/from the CGRAM/DDRAM.	The address counter is incremented or decremented $6 \mu \mathrm{sec}$ (when $f_{\text {OSc }}=250 \mathrm{KHZ}$) after the busy condition is released. (Period of busy condition is $40 \mu \mathrm{~s}$) So, the data cannot be written into/read out from the RAM for $6 \mu \mathrm{sec}$ after the busy condition was over.	The address counter is incremented or decremented during the busy condition. So, data can be written into/ read out from the RAM immediately after the busy condition was over.

ω

ABSOLUTE MAXIMUM RATING

Parameter	Symbol	Condition	Value	Unit	Applicable terminal
Supply voltage	V_{DD}	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	$-0.3 \sim+7.0$	V	$\mathrm{~V}_{\mathrm{DD}}-\mathrm{GND}$
Supply voltage for LCD displaying	$\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}$ $\mathrm{~V}_{4}, \mathrm{~V}_{5}$	$\mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{DD}}-9.0 \sim$ $\mathrm{~V}_{\mathrm{DD}}+0.3$	V	$\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}$ $\mathrm{~V}_{4}, \mathrm{~V}_{5}$
Input voltage	V_{IN}	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	$-0.3 \sim \mathrm{~V}_{\mathrm{DD}}+0.3$	V	$\mathrm{R} / \mathrm{W}, \mathrm{RS}, \mathrm{E}$, $\mathrm{DB}_{0} \sim \sim_{\mathrm{DB}}$ OSC_{7}
Permissible loss	P_{D}	-	500	mW	-
Storage temperature	$\mathrm{T}_{\mathrm{stg}}$	-	$-55 \sim+125$	${ }^{\circ} \mathrm{C}$	-
Operating temperature	$\mathrm{T}_{\mathrm{Opr}}$	-	$-20 \sim+75$	${ }^{\circ} \mathrm{C}$	-

OPERATING RANGE

Parameter	Symbol	Condition	Value	Unit	Applicable terminal
Supply voltage	$V_{\text {DD }}$	-.	$4.5 \sim 5.5$	V	$V_{D D}$
LCD driving voltage	$\begin{gathered} V_{D D}-V_{5}(3) \\ \left(V_{L C D}\right) \end{gathered}$	1/4 bias (1)	$3.0 \sim 8.0$	V	$V_{\text {DD }}, \mathrm{V}_{5}$
		1/5 bias (2)	$3.0 \sim 8.0$	V	
Operating temperature	Topr	-	$-20 \sim+75$	${ }^{\circ} \mathrm{C}$	-

(1) This voltage should be applied to $V_{D D}-V_{5}$.

Voltage applicable to V_{1}, V_{2}, V_{3} and V_{4} are as follows.
(2) $V_{1}=V_{D D}-1 / 4\left(V_{D D}-V_{5}\right)$
$V_{2}=V_{3}=V_{D D}-1 / 2\left(V_{D D}-V_{5}\right)$
$V_{4}=V_{D D}-3 / 4\left(V_{D D}-V_{5}\right)$
(3) $V_{1}=V_{D D}-1 / 5\left(V_{D D}-V_{5}\right)$
$V_{2}=V_{D D}-2 / 5\left(V_{D D}-V_{5}\right)$
$V_{3}=V_{D D}-3 / 5\left(V_{D D}-V_{5}\right)$
$V_{4}=V_{D D}-4 / 5\left(V_{D D}-V_{5}\right)$

DC CHARACTERISTICS
$\left(V_{D D}=4.5 \sim 5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20 \sim+75^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Condition	MIN	TYP	MAX	Unit	Applicable terminal
"H" input voltage	V_{1+1}	-	2.2	-	$V_{D D}$	V	R/W, RS, E, $\mathrm{DB}_{0} \sim \mathrm{DB}_{7}$
" L " input voltage	VILI	-	-0.3	-	0.6	V	
" H " input voltage	$\mathrm{V}_{1} \mathrm{H}_{2}$	-	$V_{D D}-1.0$	-	$V_{D D}$	V	OSC1
"L" input voltage	$V_{\text {IL2 }}$	-	-0.3	-	1.0	V	
"H' output voltage	$\mathrm{V}_{\mathrm{OH} 1}$	$\mathrm{I}^{\prime}=-0.205 \mathrm{~mA}$	2.4	-		V	$D B_{0} \sim \mathrm{DB}_{7}$
"L" output voltage	$\mathrm{V}_{\mathrm{OL} 1}$	$1 \mathrm{O}=0.4 \mathrm{~mA}$	-	-	0.4	V	
"H' output voltage	$\mathrm{VOH}^{\text {O }}$	${ }^{1} \mathrm{O}=-40 \mu \mathrm{~A}$	0.9 VDD	-		V	DO, CP, L, DC, OSC2
"L" output voltage	VOL2	${ }^{\prime} \mathrm{O}=40 \mu \mathrm{~A}$	-	-	$0.1 \mathrm{~V}_{\text {DD }}$	V	
COM voltage drop	V_{C}	$I_{0}= \pm 50 \mu \mathrm{~A}$ Note 1	-	-	2.9	V	$\mathrm{COM}_{1} \sim \mathrm{COM}_{16}$
SEG voltage drop	$\mathrm{v}_{\text {S }}$	$I_{0}= \pm 50 \mu \mathrm{~A}$ Note 1	-	-	3.8	V	$\mathrm{SEG}_{1} \sim \mathrm{SEG}_{40}$
Input leak current	IIL	$V_{\text {IN }}=O V$	-	-	-1	$\mu \mathrm{A}$	E
		$V_{\text {IN }}=V_{\text {DD }}$	-	-	1	$\mu \mathrm{A}$	
"L" input current	IIL	$V_{\text {DD }}=5.0 \mathrm{~V}$	-50	-125	-250	$\mu \mathrm{A}$	R/W, RS
		$V_{I N}=0 \mathrm{~V}$	-30	-92.5	-185	$\mu \mathrm{A}$	$\mathrm{DB}_{\mathbf{0}} \sim \mathrm{DB}_{7}$
" H " input current	I/H	$V_{\text {IN }}=V_{\text {DD }}$	-	-	2	$\mu \mathrm{A}$	

Parameter	Symbol	Condition	MIN	TYP	MAX	Unit	Applicable terminal
Current consumption (1)	${ }^{\prime} \mathrm{DD}_{1}$	$V_{D D}=5.0 \mathrm{~V}$ $E=L$ level registor oscillator $=270 \mathrm{KHz}$ R/W, RS, and DB_{0} ī DB_{7} are open. Output terminals are all no load. See Note 2.	-	0.35	0.6	mA	$V_{D D}$
Current consumption (2)	${ }^{1} \mathrm{DD} 2$	$V_{D D}=5 \mathrm{~V}$, ceramic oscillator. $\mathrm{f}_{\mathrm{OSC}}=250 \mathrm{KHz}$. E is in " L " level. R/W, RS, and $D B_{0}$ to DB_{7} are open. Output terminals are all no load. See Note 2.	-	0.55	0.8	mA	VDD
R_{f} clock oscillation frequency	fosc	$\begin{aligned} & R_{f}=91 \mathrm{~K} \Omega \pm 2 \% \\ & \text { Note } 3 \end{aligned}$	200	300	380	KHz	$\begin{aligned} & \text { OSC1 } \\ & \text { OSC2 } \end{aligned}$
Clock input frequency	${ }^{\text {fin }}$	OSC 2 is open. Input from OSC1	150	250	380	KHz	OSC1
Input clock duty	fouty	Note 4	45	50	55	\%	OSC1
Input clock rise time	${ }^{\text {f }}$ fr	Note 5	-	-	0.2	$\mu \mathrm{S}$	OSC1
Input clock fall time	t_{ff}	Note 5	-	-	0.2	$\mu \mathrm{S}$	OSC1
Ceramic filter oscillation frequency	fosc	$\begin{aligned} R f & =1 \mathrm{M} \Omega, \\ \mathrm{C}_{1} & =\mathrm{C}_{2} \\ & =680 \mathrm{PF}, \\ \mathrm{Rd} & =3.3 \mathrm{~K} \Omega, \end{aligned}$ and ceramic filter CS8250A. See Note 6.	245	250	255	KHz	$\begin{aligned} & \text { OSC1 } \\ & \text { OSC2 } \end{aligned}$
LCD driving bias input voltage	$V_{\text {LCD }}$	Refer to the interface between LCD and MSM5839GS.	4.0		8.0	v	$\begin{gathered} V_{D D}-V_{5} \\ \text { potential } \end{gathered}$

(Note 1) Applied to the voltage drop (V_{C}) occuring from terminals $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{1}, \mathrm{~V}_{4}$, and V_{5} to each COMMON terminal (COM1 to COM16) when $50 \mu \mathrm{~A}$ is flown in or out to and from all COM and SEG terminals, and also to voltage drop (V_{S}) occurring from terminals $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{2}, \mathrm{~V}_{3}$, and V_{5} to each SEG terminal (SEG1 to SEG40).

When output level is at $V_{D D}, V_{1}$, or V_{2} level, $50 \mu \mathrm{~A}$ is flown out, while $50 \mu \mathrm{~A}$ is flown in when the output level is at V_{3}, V_{4} or V_{5} level.

This occurs when $5 V$ or $-5 V$ is input to $V_{D D}, V_{1}$, and V_{3} or to V_{2}, V_{4}, and V_{5}, respectively.
(Note 2) Applied to the current value flown in terminal $V_{D D}$ when power is input as follows:
$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, G N D=0 \mathrm{~V}, \mathrm{~V}_{1}=3.4 \mathrm{~V}, \mathrm{~V}_{2}=1.8 \mathrm{~V}, \mathrm{~V}_{3}=0.2 \mathrm{~V}, \mathrm{~V}_{4}=-1.4 \mathrm{~V}$, and $\mathrm{V}_{2}=-3 \mathrm{~V}$.
(Note 3)

$$
R_{f}=91 \mathrm{~K} \Omega \pm 2 \%
$$

Minimum wiring is recommended between OSC 1 and R_{f} and between OSC 2 and R_{f}.
(Note 4)

(Note 5)

(Note 6)

OSC 1

OSC 2

Ceramic filter : CSB250D (MURATA SEISAKUSHO Works)
$\mathrm{Rf}: 1 \mathrm{M} \Omega \pm 10 \%$
$\begin{aligned} \mathrm{C} 1=\mathrm{C} 2 & : 680 \mathrm{pF} \pm 10 \% \\ \mathrm{Rd}: & : 3 \mathrm{~K} \Omega \pm 5 \%\end{aligned}$
(Note) Input the voltage listed in the table below to $V_{1}-V_{5}$:

N(LCD line number)	1-line mode	2-line mode
V_{1}	$V_{D D}-\frac{V L C D}{4}$	$V_{D D}-\frac{V_{L C D}}{5}$
V_{2}	$V_{D D}-\frac{V L C D}{2}$	$V_{D D}-\frac{2 V L C D}{5}$
V_{3}	$V_{D D}-\frac{V L C D}{2}$	$V_{D D}-\frac{3 V L C D}{5}$
V_{4}	$V_{D D}-\frac{3 V L C D}{4}$	$V_{D D}-\frac{4 V L C D}{5}$
V_{5}	$V_{D C D}$	$V_{D D}-V_{L C D}$

[^4]
INPUT/OUTPUT CIRCUIT

Applied to terminal E.

Applied to $\mathrm{DB}_{0}-\mathrm{DB}_{7}$.

Applied to terminals R/W and RS.

Applied to DO, CP, L, and DF.

PIN DESCRIPTION

Terminal Name	Function
R/W	Read/write selection input terminal. "H": Read, and "L": Write
RS	Register selection input terminal. "H": Data register, and "L": Instruction register
E	Input terminal for data input/output between CPU and MSM6222B-01GS and for instruction register activation.
$\mathrm{DB}_{0} \sim \mathrm{DB}_{7}$	Input/output terminal for data send/receive between CPU and MSM6222B-01GS
OSC1, OSC2	Clock oscillating terminal required for internal operation upon receipt of the LCD drive signal and CPU instruction.
$\mathrm{COM}_{1} \sim \mathrm{COM}_{16}$	LCD COMMON signal output terminal.
SEG1 ~SEG ${ }_{40}$	LCD SEGMENT signal output terminal.
DO	Output terminal to be connected to MSM5259GS to expend the number of characters to be displayed.
CP	Clock output terminal used when DO terminal data output shifts the inside of MSM5259GS.
1	Clock output terminal for the serially transfered data to be latched to MSM5259GS.
DF	The alternating signal (DF, display frequency) output pin.
V ${ }_{\text {DD }}$	Power supply pin.
GND	Ground pin.
$\mathrm{V}_{1} \sim \mathrm{~V}_{5}$	Bias voltage input pin to drive the LCD.

FUNCTIONAL DESCRIPTION

1. Instruction Register (IR) and Data Register (DR)

These two registers are selected by the register selector (RS) terminal.
The DR is selected when the " H " level is input and IR when the " L " level is input.
The IR is used to store the address code and instruction code of the display data RAM (DD RAM) or character generator RM (CG RAM)
The IR can be written into, but not be read out by the microcontroller (or CPU).
The DR is used to write into/read out the data to/ from the DD RAM or CGRAM.
The data written to DR by the CPU is automatically written to the DD RAM or CG RAM as an internal operation.

Abstract

When an address code is written to IR, the data (of the specified address) is automatically transferred from the DD RAM or CG RAM to the DR. By having the CPU subsequently read the DR (from the DR data), it is possible to verify DD RAM or CG RAM data. After the writing of DR by the CPU, the DD RAM or CG RAM of the next address is selected to be ready for the next CPU writing. Likewise, after the reading out of DR by the CPU, DD RAM or CG RAM data is read out by the DR to be ready for the next CPU reading. Write/read to and from both registers is carried out by the READ/WRITE (R/W) terminal.

Table 1 Register and R/W terminals function table

R/W	RS	Function
L	L	IR write
H	L	Read of busy flag (BF) and address counter (ADC)
L	H	DR write
H	H	DR read

2. Busy Flag (BF)

When the busy flgag output is at " H ", it indicates that the MSM6222B-01GS is engaged in internal operation.
When the busy flag is at " H " level, any new instruction is ignored.
When R/W = "H" and RS = " L ", the busy flag is output from DB7.
New instruction should be input when BF is "L" level.
When the busy flag is set to " H ", the output code of the address counter (ADC) cannot be fixed.

3. Address Counter (ADC)

The address counter (ADC) allocates the address for the DD RAM and CG RAM write/read and also for the cursor display.
When the instruction code for a DD RAM address or CG RAM address setting is input to IR, after
deciding whether it is DD RAM or CG RAM, the address code is transferred from IR to ADC. After writing (reading) the display data to (from) the DD RAM or CG RAM, the ADC increments (decrements) by 1 as its internal operation
The data of the ADC is output to DB0 - DB6 under the conditions that $R / W=$ " H ", $R S=L$, and $B F=$ " L" $^{\prime}$

4. Timing Generator Circuit

This circuit is used to generate timing signals to activate internal operations upon receipt of CPU instruction and also from such internal circuits as the DD RAM, CG RAM, and CG ROM.
It is so designed that the internal operation caused by accessing from the CPU will not interfere with the internal operation caused by LCD display. Consequently, when data is written from the CPU to DD RAM no ill effect, e.g., flickering occurs in other than the display area where the data is written. In addition, the circuit generates the transfer signal to MSM5259GS for display character expansion.

5. Display Data RAM (DD RAM)

This RAM is used to store display data of 8 -bit character codes (see Table 2).
DD RAM address corresponds to the display posittion of the LCD. The coordination between the two is described in the following.

DD RAM address (set to $A D C$) is expressed in hexadecimal notation as shown below:

ADC

Hexadecimal notation
Hexadecimal notation
(Example)
When DD RAM
address is 2 A

(1) Coordination between address and display position in the 1 -line display mode

First

- When the MSM6222B-01GS is used alone, 8 characters max. can be displayed from the first digit to the eighth digit.

First

digit	2	3	4	5	6	7	8
00	01	02	03	04	05	06	07

When the display is shifted by instruction, the coordination between the LCD display position and the DD RAM address changes as shown below:

First
(Display
shifted
to right)

digit	2	3	4	5	6	7	8
$4 F$	00	01	02	03	04	05	06

(Display shifted to left)

First

digit	2	3	4	5	6	7	8
01	02	03	04	05	06	07	08

- When the MSM6222GS is used with one MSM5259GS, 16 characters max. can be displayed from the first digit to the sixteenth digit as shown below:

First

| digit | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | $O A$ | $O B$ | $O C$ | $O D$ | $O E$ | $O F$ |

MSM6222B-01GS display
MSM5259GS display

When the display is shifted by instruction, the coordination between the LCD display and DD RAM address changes as shown below:

- Since the MSM6222B-01GS has a DD RAM capacity for 80 characters, max. 9 pieces of MSM5259GS can be connected to MSM6222B-01GS so that 80 characters can be displayed.

First

(2) Coordination between address and display position in the 2-line display mode

(Note) Note that the last address of the first line is not consecutive to the head address of the second line.

- When MSM6222B-01GS is ued alone, 16 characters (8 characters $\times 2$ lines) max. can be displayed from the first digit to the eight digit.

First line
Second line
First

digit	2	3	4	5		6	7
00	01	02	03	04	05	06	07
40	41	42	43	44	45	46	47

When the display is shifted by instruction, the coordination between the LCD display position and the DD RAM address changes as shown below:

(Display shifted to right)	First line Second line	First digit	2	3	4	5	6	7	8
		27	00	01	02	03	04	05	06
		67	40	41	42	43	44	45	46
(Display shifted to left)	First digit		2	3	4	5	6	7	8
	First line Second line	01	02	03	04	05	06	07	08
		41	42	43	44	45	46	47	48

- When the MSM6222B-01GS is used with one MSM5259GS, 32 characters (16 characters $\times 2$ lines) max. can be displayed from the first digit to the sixteenth digit.

First line
Second line
First

| digit | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | $O A$ | $0 B$ | $0 C$ | $0 D$ | $0 E$ | $0 F$ |
| 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | $4 A$ | $4 B$ | $4 C$ | $4 D$ | $4 E$ | $4 F$ |

When the display is shifted by instruction, the coordination between the LCD display position and the DD RAM address changes as shown below:
(Display shifted to right)

First

Second line

27	00	01	02	03	04	05	06	07	08	09	OA	OB	OC	OD	OE
67	40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E

(Display shifted to left)

First line
Second line
First

- Since the MSM6222B-01GS has a DD RAM capacity for 80 characters, max. 4 pieces of MSM5259GS can be connected to the MSM6222B-01GS in the 2 -line display mode.

First

6. Character Generator ROM (CG ROM)

The CG ROM is used to generate 5×7 dot (160 kinds) character patterns or 5×10 dot (32 kinds) character patterns from an 8 -bit DD RAM character code signal.
The coordination between 8 -bit character codes and character patterns is shown in Table 2.
When the 8 -bit character code of a CG ROM is written to the DD RAM, the character pattern of the CG ROM corresponding to the code is displayed on the LCD display position corresponding to the DD RAM address.

7. Character Generator RAM (CG RAM)

The CG RAM is used to display user's original character patterns other than the CG ROM.
The CG RAM has the capacity (64 bytes $=512$ bits) to write 8 kinds for 5×7 dots and 4 kinds for 5×10 dots.
When displaying character patterns stored in the CG RAM, write 8-bit character codes (00-07 or 02 to 0F; hex.) on the left side as shown in Table 2. It is then possible to output the character pattern to the LCD display position corresponding to the DD RAM address.
The following is a description on how to write and read character patterns to and from the CG RAM.
(1) When the character pattern is 5×7 dots (See Table 3-1).

- A method to write character pattern into CG RAM by CPU:
Three bits of CG RAM address $0-2$ correspond to the line position of the character pattern.
First, set increment or decrement by the CPU, and then input the CG RAM address.
After this, write character pattern codes into $C G R A M$ through $\mathrm{DB}_{0} \sim \mathrm{DB}_{7}$ line by line.
$D B_{0}$ to $D B_{7}$ correspond to CG RAM data $0-7$ in Table 3-1.
It is displayed when " H " is set as input data and is not display when " L " is set as input data.
Since the ADC is automatically incremented or decremented by 1 after the writing of data to the CG RAM, it is not necessary to set the CG RAM address again.
The line, the CG RAM address $0-2$ of which are all "H" (" 7 " in hexadecimal notation), is the cursor position. It is ORed with the cursor at the cursor position and displayed to LCD.
For this reason, it is necessary to set all input data that become cursor positions to "L".
Although CG RAM data 0-4 bit are output to the LCD as display data, CG RAM data bit 5-7 are not. The latter can be written and read to and from the RAM, it is therefore allowed to be used as data RAM.
Accordingly, it is necessary to set all input data which become cursor positions to " H ". $0-4$ bit of CG RAM data are output to the LCD as the display data, however, 5-7 bit of CG RAM data are not. But it can be used as RAM because data can be written/read into/from it.
- A method to display the CG RAM character pattern to the LCD:
The CG RAM is selected when 4-upper order bits MSB of the character code are all "'L".
As character code bit 3 is invalid, the display of " O " in Table 3-1, is selected by
character code " 00 " (hex.) or " 08 " (hex.).
When the 8-bit character code of the CG RAM is written to the DD RAM, the character pattern of the CG RAM is displayed on the LCD display position corresponding to the DD RAM address. (DD RAM data, bit $0-2$ correspond to CG RAM address, bit 3-5.)
(2) When character pattern is 5×10 dots (See Table 3-2)
- A method to write character pattern into the CG RAM by the CPU
Four bits of CG RAM address, bit $0-3$, correspond to the line position of the character pattern.
First, set increment or decrement by the CPU, and then input the address of the CG RAM.
After this, write the character pattern code into the CG RAM, line by line from $\mathrm{DB}_{0^{-}}$ DB7.
$D B_{0}$ to $D B_{7}$ correspond to CG RAM data, bit 0-7, in Table 3-2.
It is displayed when " H " is set as the input data, while it is not displayed when " L " is set as the input data.
As the ADC is automatically incremented or decremented by 1 after the writing of data to the CG RAM, it is not necessary to set the CG RAM address again.
The line in which the CG RAM address 0 to 3 is " A " (hex) is ORed with cursor at the cursor position and displayed on the LCD.
When the CG RAM data, bit 0-4, CG RAM address, bit $0-3$, is " 0 " \sim " A ". it is displayed on the LCD as the display data. When the CG RAM data, bit of 5-7, and CG RAM, bit data is 0-4 and CG RAM address data is " B " \sim " F ", it is not output to the LCD.
But in this case, CG RAM can be used as RAM and it can be written into/read out. So, it can be used as the data RAM.
- A method to display the CG RAM character pattern to the LCD:
The CG RAM is selected when 4-upper order bits MSB of the character code are all "L".
As MSB and LSB of character code LSD are invalid, the display of "year" 年 in Kanji character is selected by character codes " 00 ", " 01 ", " 08 ", and " 09 " (hex.) as in Table 3-2.
When the CG RAM character code is written to the DD RAM, the CG RAM character pattern is displayed on the LCD display position corresponding to the DD RAM address.
(DD RAM data bit 1, 2 coirespond to CG RAM address bit 4, 5.)

X : Irrespective of H / L

Table 3-1 Relation between CG RAM data (character pattern) vs. CG RAM address and DD RAM data vs. character pattern when the caracter pattern is 5×7 dots. Above example indicate "OKI".

CG RAM address	CG RAM data (character pattern)		DD RAM data (character code)
$\begin{array}{lllllll} \hline 5 & 4 & 3 & 2 & 1 & 0 \\ \text { MSB } & & & & \text { LSB } \end{array}$	$\begin{array}{lllllllll} \hline 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\ \text { MSB } \end{array}$		$\begin{array}{llllllll} \hline 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\ \text { MSB } & & & & & \text { LSB } \end{array}$
$\begin{aligned} & L \\ & L \end{aligned} L$			L L L L X L L X
\| $\left\lvert\, \begin{array}{llll}1 & H & L & H\end{array}\right.$	$\int^{x \times x x}$		
$\begin{aligned} & H \\ & H \\ & L \\ & L \end{aligned} L$			L L L L X H X
$\xrightarrow[\sim]{-}$			C-3._-3
$\left(\begin{array}{llll}\text { L } & L & L & L \\ L & L & L & H \\ L & L & H & L \\ L & L & H & H \\ L & \\ L & H & L & L \\ L & H & L & H \\ L & H & H & L \\ L & H & H & H \\ H & L & L & L \\ H & L & \end{array}\right.$			L L L L X H X

X : Irrespective of H / L

Table 3-2 Relation between CG RAM dada (character pattern) example vs. CG RAM address and DD RAM data vs. character pattern when the character pattern is 5×10 dots. Above examples indicate 年, g, v respectively.

8. Cursor/Blink Control Circuit:

This is a circuit that generates the LCD cursor and blink.
This circuit is under the control of the CPU program. The display of the cursor and blink on the LCD is made at a position corresponding to the DD RAM
address set to the ADC
The figure below shows an example of the curson/ blink position when the value of ADC is set at " 07 " (hex.).

(Note) The cursor and blink are displayed even when the CG RAM address is set to ADC.
For this reason, it is necessary to inhibit the cursor and blink display while the CG RAM address is set to the ADC.

9. LCD Display Circuit (COM 1 to 16, SEG

1 to 40, L, CP, DO, and DF):
As the MSM6222B-01GS provides the COM signal outputs (16 pcs.) and the SEG signal outputs (40 pcs.), it can display 8 characters (1 -line display) or 16 characters (2 -line display) as a unit.
The SEG1 ~ SEG40 are used to display 8 digit display on the LCD. To expand the display, an MSM5259GS is used.
The MSM5259GS, 40 dot segement driver, is used for expansion of the SEG signal output.
Interface with the MSM5259GS is made through data output terminal (DO), clock output terminal
(CP), latch output terminal (L), and display frequency terminal (DF). The character pattern data is serially transferred to MSM5259GS through DO and CP. When the data of 72 characters 360 -bit ($=5$-bit/ch. $\times 72 \mathrm{ch} .=1$-line display) or 32 characters 160 -bit (5 -bit/ch. $\times 32$ ch. $=2$-line display) is output, the latch pulse is also output through terminal L. By this latch pulse, the data transferred serially to MSM5259GS is latched to be used as display data. The display frequency signal (DF) required when LCD is displayed is also synchronously output from DF terminal with this latch pulse.

10. Built-in Reset Circuit

The MSM6222B-01GS is automatically initialized when the power is turned on.
During initialization, the busy flag ($B F$) holds " H " and does not accept instructions (other than the busy flag read).
The busy flag goes to " H " for 15 ms after $V_{D D}$ reaches 4.5 V or more.
During initialization, the MSM6222B-01GS executes the following instructions:

- Display clear
- Data length of interface with CPU:

8 bits $(8 B / 4 B=H)$

- LCD: 1 -line display ($\mathrm{N}=\mathrm{L}$)
- Character font: 5×7 dots ($F=\mathrm{L}$)
- ADC: Increment $(1 / D=H)$
- No display shift $(\mathrm{SH}=\mathrm{L})$
- Display: Off (DI = L)
- Cursor: Off $(C=L)$
- No blink ($B=L$)

When the built-in reset circuit is used, it is required to satisfy the following power supply conditions. As the built-in reset circuit does not operate normally unless these power supply conditions are met, initialize the MSM6222B-01GS by instruction through the CPU (refer to initialize instruction).
When a battery is used as supply voltage source, it is required to initialize the instruction.

11. Data Bus with CPU

The data bus with CPU is available either once for 8 bits or twice for 4 bits allowing the MSM6222B01GS to be interfaced with either an 8 -bit or 4 -bit CPU.
(1) When the interface data length is 8 bits

Data buses DB0 to DB7 (8 pcs.) are all used and data input/output is carried out simultaneously.
(2) When the interface data length is $\mathbf{4}$ bits

The 8-bit data input/output is carried out in two steps by using only 4 -high order bits of data buses DB4 to DB7 (4 pcs.).

The first time data input/output is made for 4 -high order bits (DB4 to DB7 when the interfaces data length is 8 bits) and the second time data input/output is made for 4 -low order bits (DBO to DB3 when the interface data length is 8 bits). Even when the data input/output can be completely made through 4 -high order bits, be sure to make another input/output of 4 -low order bits. (Example: Busy flag Read)
Since the data input/output is carried out in two steps but as one execution, no normal data transfer is executed from the next input/ output if accessed only once.

Fig. 3 Example of 4-bit data transfer

12. Instruction Code

The instruction code is defined as the signal through which the MSM6222B-01GS is accessed by the CPU. CPU.
The MSM6222B-01GS begins operation upon receipt of the instruction code input.
As the internal processing operation of MSM6222B01GS is started with a timing that does not affect
the LCD display, the busy status continues longer than the CPU cycle time.
Under the busy status (when the busy flag is set to " H "), the MSM6222B-01GS does not execute any instructions other than the busy flag read.
Therefore, the CPU has to verify that the busy flag is set to " L " prior to the input of the instruction code.

(1) Display clear:

Instruction code

R / W	RS	DB_{7}	DB_{6}	DB_{5}	DB_{4}	DB_{3}	DB_{2}	DB_{1}	DB_{0}
L	L	L	L	L	L	L	L	L	H

When this instruction is executed, the LCD display is cleared.
When the cursor and blink are in display, the blinking position moves to the left end of the LCD (the left end of the first line in the 2 -line display mode).
(Note) All DD RAM data goes to " 20 " (hex.), while the address counter ($A D C$) goes to " 00 " (hex.). The execution time, when the OSC oscillation frequency

(2) Cursor home

Instruction code

R / W	RS	DB_{7}	DB_{6}	DB_{5}	DB_{4}	DB_{3}	DB_{2}	DB_{1}	DB_{0}
L	L	L	L	L	L	L	L	H	X

X: Irrespective of H/L

When this instruction is executed, the blinking position moves to the left end of the LCD (to the left end of the first line in the 2 -line display mode) when the cursor and blink are being displayed.
When the display is in shift, the display returns to its original position before shifting.
(Note) The address counter (ADC) goes to " 00 " (hex.). The execution time, when the OSC oscillation frequency is 250 KHz , is 1.64 ms (max.).
(3) Shift mode set Instruction code

R / W	RS	DB_{7}	DB_{6}	DB_{5}	DB_{4}	DB_{3}	DB_{2}	DB_{1}	DB_{0}
L	L	L	L	L	L	L	H	I / D	SH

When the I/D is set, the 8 -bit character code is written or read to and from the DD RAM, the cursor and blink shift to the right by 1 character position (I/D $=\mathrm{H}$; increment) or to the left by 1 character position (I/D = L; decrement).
The address counter is incremented ($1 / \mathrm{D}=\mathrm{H}$) or decremented (I/D $=L$) by 1 at this time. Even after the character pattern code is written or read to and from the CG RAM, the address counter (ADC) is incremented $(I / D=H)$ or decremented $(I / D=L)$ by 1 .When $\mathrm{SH}=\mathrm{H}$ is set, the character code is written to the DD RAM, and then the cursor and blink stop and the entire display
shifts to the left ($I / D=H$) or to the right (I/D $=\mathrm{L}$) by 1 character position.
When the character is read from the DD RAM when $S H=H$ is set, or when the character pattern data is written or read to or from the CG RAM when $S H=H$ is set, the entire display does not shift, but normal write/read is performed the entire display does not shift, but the cursor and blink shift to the right $(1 / \mathrm{D}=\mathrm{H})$ or to the left (I/D $=\mathrm{L}$) by $\mathbf{1}$ character position.
When SH = L is set, the display does not shift, but normal write/read is performed.
The execution time when the OSC oscillation frequency is 250 KHz is $40 \mu \mathrm{~s}$.
(4) Display mode set

	R/W	RS	DB_{7}	DB_{6}	DB_{5}	DB_{4}	DB_{3}	DB_{2}	DB_{1}	DB ${ }_{0}$
Instruction code	L	L	L	L	L	L	H	DI	C	B

(1) The DI bit controls whether the character pattern is displayed or extinguished.
When DI is " H ", this bit makes the LCD display the character pattern.
When DI is " L ", this bit distinguishes the LCD character pattern. The cursor and blink are also cancelled at this time.
(Note) Different from the display clear, the character code is absolutely not rewritten.
(2) The cursor goes off when $C=L$ and it is displayed when $\mathrm{DI}=\mathrm{H}$ and $\mathrm{C}=\mathrm{H}$.
(3) The blink is cancelled when $B=L$ and it is executed when $D I=H$ and $B=H$.
In the blink mode, all dots (including the cursor), displaying character pattern, and cursor are displayed alternately at 409.6 ms (in 5×7 dots character font) or 563.2 ms (in 5×10 dots character font) when the OSC oscillation frequency is 250 KHz . The execution time when the OSC oscillation frequency is 250 KHz is $40 \mu \mathrm{~s}$.

(5) Cursor and display shift

	R/W	RS	DB_{7}	DB_{6}	DB_{5}	DB_{4}	DB_{3}	DB_{2}	DB_{1}	DB_{0}
Instruction code	L	L	L	L	L	L	D/C	R/L	X	X

X: Irrespective of H/L

When $D / C=L$ and $R / L=L$, the cursor and blink position are shifted to the left by 1 character position (ADC is then decremented by 1).
When $D / C=L$ and $R / L=H$, the cursor and blink position are shifted to the right by 1 character position (ADC is then incremented by 1).
When $D / C=H$ and $R / L=L$, the entire display is shifted to the left by 1 character position. The cursor and blink positions are also shifted with the display (ADC remains unchanged). When $D / C=H$ and $R / L=H$, the entire display is shifted to right by 1 character position. The cursor and blink positions are also shifted with the display (ADC remains unchanged). In the 2-line display mode, the cursor and
blink positions are shifted from the first line to the second line when the cursor is shifted to the right next to the fortieth digit (27; hex.) in the first line. No such shifting is made in other cases.
When shifting the entire display, the display pattern, cursor, and blink positions are in no case shifted between lines (from the first line to the second line or vice versal.
The execution time when the OSC oscillation frequency is 250 KHz is $40 \mu_{\mathrm{s}}$.
(6) Initial set

	R/W	RS	DB_{7}	DB_{6}	DB_{5}	DB_{4}	DB_{3}	DB_{2}	DB_{1}	DB_{0}
Instruction code	L	L	L	L	H	8B/4B	N	F	X	x

X : Irrespective of L/O

When $8 \mathrm{~B} / 4 \mathrm{~B}=\mathrm{H}$, the data input/output to and from the CPU is carried out simultaneously by means of 8 bits DB7 to DB0. When $8 B / 4 B=L$, the data input/output to and from the CPU is carried out in two
steps through of 4 bits DB7 to DB4.
(2) The 2-line display mode of the LCD is selected when $N=H$, while the 1-line display mode is selected when $N=L$.

The 5×7 dots character font is selected when $F=L$, while the 5×10 dots character font is selected when $F=H$ and $N=L$.

This initial set has to be accessed prior to other instructions excepting the busy flag read after powering ON the MSM6222B01GS.

N	F	Number of display lines	Character font	Duty ratio	Number of biases	Number of COMMON signals
L	L	1-line	5×7 dots	$1 / 8$	4	8
L	H	1-line	5×10 dots	$1 / 11$	4	11
H	L	2-line	5×7 dots	$1 / 16$	5	16
H	H	2-line	5×7 dots	$1 / 16$	5	16

Generate biases externally and input them to the MSM6222B-01GS (VDD, V1, V2. V3, V4, and V5).
When the number of biases is 4 , input the same potential to V 2 and V 3 . The execution time, when the OSC oscillation frequency is 250 KHz , is $40 \mu \mathrm{~s}$.

(7) CG RAM address set

	R/W	RS	DB_{7}	DB_{6}	DB_{5}	DB_{4}	DB_{3}	DB_{2}	DB_{1}	DB_{0}
Instruction code	L	L	L	H	C_{5}	C_{4}	C_{3}	C_{2}	C_{1}	C_{0}

When CG RAM addresses, bit C_{5} to C_{0} (binary), are set, the CG RAM is specified, until the DD RAM address is set. Write/read of the character pattern to and
from the CPU begins with addresses, bit C_{5} to C_{0}, starting from CG RAM selection.
The execution time, when the OSC oscillation frequency is 250 KHz , is $40 \mu \mathrm{~s}$.
(8) DD RAM address set

	R/W	RS	DB_{7}	DB_{6}	DB_{5}	DB_{4}	DB_{3}	DB_{2}	DB_{1}	DB_{0}
Instruction code	L	L	H	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}

When the DD RAM addresses D6 to D0 (binary) are selected, the DD RAM is specified until the DD RAM address is set.
Write/read of the character code to and from the CPU begins with addresses D_{6} to D_{0} starting from DD RAM selection.
In the 1 -line display mode ($\mathrm{N}=\mathrm{H}$), however, D_{6} to D_{0} (binary) must be set to one of the values among " 00 " to " 4 F " (hex.).

Likewise, in the 2 -line mode, D_{6} to D_{0} (binary) must be set to one of the values among " 00 " ~ " 27 " (hex.) or " 40 " - " 67 " (hex.). When any value other than the above is input, it is impossible to make a normal write/read of character codes to and from the DD RAM. The execution time, when the OSC oscillation frequency is 250 KHz , is $40 \mu \mathrm{~s}$.
(9) DD RAM and CG RAM data write

Instruction code

| R / W | RS | DB_{7} | DB_{6} | DB_{5} | DB_{4} | DB_{3} | DB_{2} | DB_{1} | DB_{0} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L | H | E_{7} | E_{6} | E_{5} | E_{4} | E_{3} | E_{2} | E_{1} | E_{0} |

When E7 to EO (binary) codes are written to the DD RAM or CG RAM, the cursor and display move as described in "(5) Cursor and
display shift". The execution time, when the OSC oscillation frequency is 250 KHz , is $40 \mu \mathrm{~s}$.
(10) Busy flag and address counter read Instruction code

R / W	RS	DB_{7}	DB_{6}	DB_{5}	DB_{4}	DB_{3}	DB_{2}	DB_{1}	
H	L	BF	OB_{6}						

The busy flag (BF) is output by this instruction to indicate whether the MSM6222B-01GS is engaged in internal operations ($B F=$ " H ") or not ($B F=$ " L ").
When $\mathrm{BF}=$ " H ", no new instruction is accepted. It is therefore necessary to verify $\mathrm{BF}=$ " L " before inputting a new instruction. When $\mathrm{BF}=$ = L ", a correct address counter value is output. The address counter value must
match the DD RAM address or CG RAM address. The decision of whether it is a DD RAM address or CG RAM address is made by the address previously set.
Since the address counter value when $\mathrm{BF}=$ " H " is sometimes incremented or decremented by 1 during internal operations, it is not always a correct value. Execution time is $1 \mu \mathrm{~s}$.

(11)DD RAM and CG RAM data read

	R/W	RS	DB_{7}	DB_{6}	DB_{5}	DB_{4}	DB_{3}	DB_{2}	DB_{1}	DB_{0}
Instruction code	H	H	P_{7}	P_{6}	P_{5}	P_{4}	P_{3}	P_{2}	P_{1}	P_{0}

Character codes (bit P_{7} to P_{0}) are read from the DD RAM, while character patterns ($P 7$ to PO) from the CG RAM.
Selection of DD RAM or CG RAM is decided by the address previously set.
After reading those data, the address counter (ADC) is incremented or decremented by 1 as set by the shift mode mentioned in item "(3) shift mode set".
The execution time, when the OSC oscillation frequency is 250 KHz , is $40 \mu \mathrm{~s}$.
(Note) Conditions for the reading of correct data:
1 When the DD RAM address set or CG RAM address set is input before inputting this instruction.
2 When the cursor/display shift is input before inputting this instruction in case the character code is read.
3 Data after the second reading from RAM when read more than 2 times. Correct data is not output in any other case.

13. Instruction Initialization

(1) When data input/ouput to and from the CPU is carried out by 8 bits (DB0 to DB7):
(1) Turn on the power
(2) Wait for 15 ms or more after $V_{D D}$ has reached 4.5 V or more.
(3) - Set $8 \mathrm{~B} / 4 \mathrm{~B}$ at H by initial reset of instruction.
(4) Wait for 4.1 ms or more,
(5) - Set $8 \mathrm{~B} / 4 \mathrm{~B}$ at H by initial reset of instruction.
(6) Wait for 100μ s or more.
(7) Set $8 \mathrm{~B} / 4 \mathrm{~B}$ at H by initial reset of instruction.
(8) - Check the busy flag as No Busy.
(9) Set $8 B / 4 B$ at H. Set LCD line number (N) and character font (F).
(After this, do not change the LCD line number and character font.)
(10) Check No Busy.
(11) Clear the display by setting the display mode.
(12) Check No Busy.
(13) Clear the display.
(14) Check No Busy.
(15) Set the shift mode.
(16) Check No Busy.
(17) - Initialization completed.

Example of Instruction Code for Steps (3), (5) , and (7).

| R / W | RS | DB_{7} | DB_{6} | DB_{5} | DB_{4} | DB_{3} | DB_{2} | DB_{1} | $\mathrm{DB}_{\mathbf{0}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L | L | L | L | H | H | X | X | X | X |

X : Irrespective of H / L
(2) When data input/output to and from the CPU is carried out by 4 bits (DB4 to DB7):
(1) Turn on the power.
(2) Wait for 15 ms or more after $V_{D D}$ has reached 4.5 V or more.
(3) - Set $8 B / 4 \mathrm{~B}$ at H by initial reset of instruction.
(4) Wait for 4.1 ms or more.
(5) Set $8 \mathrm{~B} / 4 \mathrm{~B}$ at H by initial reset of instruction.
(6) Wait for 100μ s or more.
(7) Set $8 \mathrm{~B} / 4 \mathrm{~B}$ at H by initial reset of instruction.
(8) Check the busy flag as No Busy.
(9)- Set $8 \mathrm{~B} / 4 \mathrm{~B}$ at L . Set LCD line number (N) and character font (F).
(10) Check No Busy.
(11) - Set $8 B / 4 B$ at L. Set LCD line number (N) and character font (F).
(12) Check No Busy.
(13) Clear the display by setting the display mode.

LCD DRIVE WAVEFORM

Figures 4, 5 and 6 show the LCD driving waveform consists of COM signal, SEG signal DF signal and L (latch pulse waveform) signal, in the duty of $1 / 8,1 / 11$ and $1 / 16$ respectively.

Example of Instruction Code for Step (9).

The relation between duty and frame frequency is described in the table below.

Duty	Frame frequency
$1 / 8$	78.1 Hz
$1 / 11$	56.8 Hz
$1 / 16$	78.1 Hz

(Note) The OSC oscillation frequency is assumed to be 250 KHz .

Figure 4 LCD driving waveform at $1 / 8$ duty.

Figure 5 LCD driving waveform at $1 / 11$ duty.


```
L -. + | | | | | | | | | | | | | | | | | | | |_-
```

Figure 6 LCD driving waveform at $1 / 16$ duty.

INPUT/OUTPUT TIMING TO AND
FROM THE CPU AND OUTPUT
TIMING TO MSM5259GS
Table 4, 5 and 6 show input characteristics from the CPU, output characteristics to the CPU and output characteristics to MSM5259GS respectively.

- Input characteristics from the CPU

Item	Symbol	Range			Unit
		MIN	TYP	MAX	
R/W and RS set-up time	${ }^{\text {t }}$ B	140	-	-	nS
E and H pulse width	tw	280	-	-	nS
R/W and RS holding time	${ }^{\text {t }}$ A	10	-	-	nS
E rise time	t_{r}	-	-	25	nS
E fall time	t_{f}	-	-	25	nS
E and L pulse width	${ }_{t}$	280	-	-	nS
E cycle time	${ }^{t} \mathrm{C}$	667	-	-	nS
DB_{0} to DB_{7} input data set-up time	t_{1}	180	-	-	nS
DB_{0} to DB_{7} input data holding time	${ }^{\text {t }} \mathrm{H}$	10	-	-	nS

Table 4: Input characteristics from the CPU

- Output characteristics to the CPU
$\left(V_{D D}=4.5 \sim 5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20 \sim+75^{\circ} \mathrm{C}\right)$

Item	Symbol	Range			Unit
		MIN	TYP	MAX	
R/W and RS set-up time	${ }^{\text {t }}$ B	140	-	-	nS
E and H pulse width	tw	280	-	-	nS
R/W and RS holding time	${ }^{t}$ A	10	-	-	nS
E rise time	t_{r}	-	-	25	nS
E fall time	t_{f}	-	-	25	nS
E and L pulse width	${ }^{t}$ L	280	-	-	nS
E cycle time	${ }^{t} \mathrm{C}$	667.	-	-	nS
$D B_{0}$ to DB_{7} data output delay time	${ }^{t} \mathrm{D}$	-	-	220	nS
DB_{0} to DB_{7} data output holding time	${ }^{1} \mathrm{O}$	20	-	-	nS

Table 5: Output characteristics to the CPU

- Output characteristics to MSM5259GS
$\left(V_{D D}=4.5 \sim 5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20 \sim+75^{\circ} \mathrm{C}\right)$

Item	Symbol	Range			Unit
		MIN	TYP	MAX	
CP and H pulse width	tHW1	800	-	-	nS
CP and L pulse width	${ }^{\text {t }}$ LW	800	-	-	nS
DO set-up time	ts	300	-	-	nS
DO holding time	${ }^{\text {t }} \mathrm{DH}$	300	-	-	nS
L clock set-up time	${ }^{\text {t }}$ U	500	-	-	nS
L clock holding time	tho	100	-	-	$n \mathrm{~S}$
L and H pulse width	${ }^{\text {t HW2 }}$	800	-	-	nS
DF delay time	${ }^{\text {m }} \mathrm{M}$	-1000	-	1000	nS

Table 6: Output characteristics to MSM5259GS
Figures 7, 8 and 9 show input timing from the CPU, output timing to the CPU and output timing to MSM5259GS respectively.

Input timing from the CPU

- Output timing to the CPU

Figure 8

- Output timing to MSM5259GS

TYPICAL APPLICATION

Interface with LCD and MSM5259GS

Display examples when setting the 5×7 dots character font 1 -line mode, 5×10 dots character font 1 -line mode, and 5×7 dots character font 2 -line mode through instructions are shown in Figures 10,11 , and 12 , respectively.
When the 5×7 dots character font is set in the 1 -line display mode, the COM signals COM9 to COM 16 are output for extinguishing.
Likewise, when the 5×10 dots character font 11-line is set, the COM signals COM12 to COM16 are output for extinguishing.
The display example shows a combination of 16 characters (32 characters for the 2 -line display mode) and the LCD. When the number of MSM5259GSs are increased according to the increase in the number of characters, it is possible to display a maximum of 80 characters.
Besides, it is necessary to generate bias voltage required for LCD operation by splitting resistors outside the IC to input it to MSM6222B-01GS and MSM5259GS.

Examples of these bias voltages are shown in Figures $13,14,15$, and 16. Basically, this can be done by dividing the voltage of the resistors as shown in Figures 4 and 5 . If the value of resistor R is made larger to reduce system power consumption, the LCD operating margin decreases and the LCD drive To prevent this, a by-pass condenser is serially connected to the resistor to lower voltage division impedance caused by the splitting of resistors as shown in Figures 15 and 16.
As the values of R, VR, and C vary according to the LCD size used and $V_{\text {LCD }}$ (LCD drive voltage), these values have to be determined through actual experimentation in combination with the LCD. (Example set values:

$$
\begin{aligned}
& \mathrm{R}=3.3-10 \mathrm{~K} \Omega, V_{\mathrm{R}}=10-30 \mathrm{~K} \Omega \text {, and } \\
& \mathrm{C}=0.0022 \mu \mathrm{~F} \text { to } 0.047 \mu \mathrm{~F})
\end{aligned}
$$

Figure 17 shows an application circuit for the MSM6222B-01GS and MSM5259GS including a bias circuit.
The bias voltage has to maintain the following potential relation:
$V_{D D}>V_{1}>V_{2} \geqq V_{3}>V_{4}>V_{5}$

- In the case of 1 -line 16 characters display (5×7 dot/font).

Figure 11

- In the case of 2 -lines 16 characters display (5×7 dot/font)

Figure 12

- Bias voltage circuit (1-line display mode)

Figure 13

- Bias voltage circuit (2-line display mode)

- Bias voltage circuit (1-line display mode)

- Bias voltage circuit (2-line display mode)

[^5]

MSM6240GS

DOT MATRIX LCD CONTROLLER

GENERAL DESCRIPTION

The OKI MSM6240GS is a CMOS Si-gate LSI to control large size dot matrix LCD in characters and graphics.

Three kinds of display modes are provided; Semi-graphic mode, Full-graphic mode and Character mode.

FEATURES

- Number of characters: 32,40, 64 and $80 / l i n e$
- Number of lines: $4 \times 2,6 \times 2,8 \times 2$ and 16×2
- Font composition (vertical): 8, 12, 18 and 20; hereinafter called VP (vertical pitch)
- Font composition (horizontal): 5, 6, 7, 8, 10, 12, 14 and 16; hereinafter called HP (horizontal pitch)
- Address: Straight binary
- Attribute

1) Display inversion
2) Display blank
3) Cursor display
4) Character blink
5) Cursor blink

- Applicable LCD duty: $1 / 32,1 / 48,1 / 64,1 / 72,1 / 80$, 1/96, 1/108, 1/128, $1 / 144$
- Low power CMOS Silicon gate technology
- Single +5 V power supply.
- 60 pin plastic flag package (bent lead)

PIN CONFIGURATION

(Top View) 60 Lead Flag Package

ABSOLUTE MAXIMUM RATING

Parameter	Symbol	Condition	Rating	Unit
Power supply voltage	$V_{D D}$	$T_{a}=25^{\circ} \mathrm{C}$	$-0.3 \sim 6.0$	V
Input voltage	$\mathrm{V}_{I N}$	$\mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	$-0.3 \sim V_{D D}$	V
Storage temperature	$\mathrm{T}_{\text {stg }}$	-	$-50 \sim 150$	${ }^{\circ} \mathrm{C}$

OPERATING RANGE

Parameter	Symbol	Condition	Rating	Unit
Power supply voltage	VDD	-	$4.5 \sim 5.5$	\vee
Operating temperature	$T_{\text {Op }}$	-	$-20 \sim 85$	${ }^{\circ} \mathrm{C}$

INPUT CHARACTERISTICS

$\left(V_{D D}=5 \mathrm{~V} \pm 10 \%, T_{a}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Condition	MIN	TYP	MAX	Unit	Applicable terminal
" H ' Input voltage	$V_{1 H}$	-	2.4	-	-	V	$\mathrm{D}_{0} \sim \mathrm{D}_{7}, \mathrm{REN}$
"L" Input voltage	$V_{\text {IL }}$	-	-	-	0.8	V	DAEN, CHBL, CSEN, UDEN, UDBL, DIEN
" H " Input vol tage	$\mathrm{V}_{1} \mathrm{H}$	-	3.6	-	-	V	$\mathrm{HS}_{0} \sim \mathrm{HS}_{2}, \mathrm{CS}_{0}$,
"L' Input voltage	$V_{\text {IL }}$	-	-	-	1.0	V	$\mathrm{CS}_{1}, \mathrm{~S}_{0} \sim S_{3}$, OEEN
" H " Input current	$\mathrm{IIH}^{\text {H }}$	-	-	-	-1	$\mu \mathrm{A}$	$D_{0} \sim D_{7}$, REN, DAEN, CHBL, CSEN, UDEN, UDBL,
"L" Input current	IIL	-	-	-	1	$\mu \mathrm{A}$	FS, DIEN, $\mathrm{HS}_{0} \sim \mathrm{HS}_{2}$, $\mathrm{CS}_{0}, \mathrm{CS}_{1}, \mathrm{~S}_{0} \sim \mathrm{~S}_{3}, \mathrm{OEEN}$
" H " Input current	IIH	--	-	-	-1	$\mu \mathrm{A}$	TEST1 ~ TEST3
' L " Input current	$1 / \mathrm{L}$	-	-	500		$\mu \mathrm{A}$	TST1 ~ TEST
" H " Input current	1 IH	-	-	-	-1	$\mu \mathrm{A}$	$\overline{\mathrm{CL}}$
"L" Input current	IIL	-	-	50		$\mu \mathrm{A}$	

OUTPUT CHARACTERISTICS

$\left(V_{D D}=5 \mathrm{~V} \pm 10 \%, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Condition	MIN	TYP	MAX	Unit	Applicable terminal
" H " Output current	I_{OH}	$V_{\mathrm{OH}}=2.8 \mathrm{~V}$	-500	-	-	$\mu \mathrm{A}$	$\mathrm{MA}_{0} \sim \mathrm{MA}_{11}$, $\mathrm{LA}_{0} \sim \mathrm{LA}_{4}, O D_{1}$, $E D_{1}, O D_{2}, E D_{2}$, CP, BUSY, FRM, FRP, MCE, LIP
"L" Output current	IOL	$V_{\mathrm{OL}}=0.4 \mathrm{~V}$	2.1	-	-	mA	

POWER CONSUMPTION

$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	$V_{\text {DD }}$	Condition	MIN	TYP	MAX	Unit	
Static current	IDDS	5	$f_{\text {OSC }}=0 \mathrm{~Hz}$	-	-	50	μA	No load
Operating current	IDD	5	$\mathrm{f}_{\text {OSC }}=10 \mathrm{MHz}$	-	-	10	mA	No load

SWITCHING CHARACTERISTICS

($V_{D D}=5 \mathrm{~V} \pm 10 \%$)

Parameter	Symbol	Load condition	MIN	TYP	MAX	Unit	Applicable terminal
Clock pulse	t_{r}	$\mathrm{CL}=150 \mathrm{PF}$	-	-	100	ns	All output terminals
Rise and fall time	t_{f}	$\mathrm{CL}=150 \mathrm{PF}$	-	-	100	ns	

MAXIMUM OPERATING FREQUENCY

($V_{D D}=5 \mathrm{~V} \pm 10 \%$)

Parameter	Symbol	Condition	MIN	TYP	MAX	Unit
Oscillation frequency	fosc	-	10	-	-	MHz

INTERFACE WITH EXTERNAL RAM, ROM

Parameter	Symbol	MIN	TYP	MAX	Unit
Memory address time to the upper part	${ }^{\text {tMAL }}$	500	-	-	ns
Memory address time to the lower part	${ }^{\text {t }} \mathrm{MAH}$	500	-	-	ns
Memory data delay time of the upper part	${ }^{\text {m M L }}$	-	-	$\mathrm{t}_{\mathrm{MAL}} 70$	ns
Memory data delay time of the lower part	${ }_{\text {t MDH }}$	-	-	${ }^{\text {t MAH }} \mathbf{} 70$	ns

Note: $\mathrm{t}_{\mathrm{MAL}}$ and $\mathrm{t}_{\mathrm{MAH}}$ is calculated by the following formula.
$t_{M A L}=t_{M A H}=2 / f_{\text {osc }} \times H P / 2$
${ }^{t_{M A L}}$ and $\mathrm{t}_{\mathrm{MAH}}$ become the minimum speed when HP is set at 5 and $\mathrm{f}_{\mathrm{osc}}$ is 5 MHz .

$(C L=150 p F)$

Parameter	Symbol	MIN	TYP	MAX	Unit
Drawing address delay time	$t_{A} d_{1}$			20	ns
Display address delay time	$\mathrm{t}_{\mathrm{A}} \mathrm{d}_{2}$			120	ns

THE DISPLAY DATA TO LCD DRIVERS

1) Without ODD/EVEN data processing

2) Under ODD/EVEN data processing

$$
\left(C_{L}=80 p F\right)
$$

Parameter	Symbol	Condition	MIN	TYP	MAX	Unit
Shift clock pulse cycle time	t_{f}	-	300	-	-	ns
Shift data delay time	$\mathrm{t}_{\mathrm{tAH}}$	-	-	-	50	ns
Shift clock pulse cycle time	$2_{\mathrm{tf}} \mathrm{f}$	-	400	-	-	ns
Shift clock data delay time	t_{I} OED	-	-	-	80	ns

PIN DESCRIPTION

Terminal name	1/0/2	Function
$\begin{aligned} & O D_{1} \\ & E D_{1} \end{aligned}$	$\bar{\square}$	(Odd data) Output of serial data for X driver (Even data) Upper screen's data
$\begin{aligned} & \mathrm{OD}_{2} \\ & \mathrm{ED}_{2} \end{aligned}$	$\overline{0}$	(Odd data) Output of serial data for X driver (Even data) Lower screen's data
LIP	$\overline{0}$	(Latch pulse) Latch pulse for one line
FRP	$\overline{\mathrm{O}}$	(Frame pulse) Signal input to Y driver
FRM	$\overline{\mathrm{O}}$	(Frame) Frame inversion signal
CP	$\overline{0}$	(Shift clock pulse) Shift clock pulse for X driver
BUSY	$\overline{0}$	"READY" SIGNAL L druing suspension of serial transfer
DIEN	1	(Display enable) Display enable signal; active H
MCE	$\overline{0}$	(Chip Enable) Memory chip enable control signal
$\overline{C L}$	1	(Clear) Clear terminal
$\frac{X T}{X T}$	$\frac{1}{0}$	(X 'tal OSC) Crystal oscillation
VDD		+5V
GND		OV
OEEN	1	Odd-number even-number data enable; active H

$\underset{\substack{\text { Terminal } \\ \text { name }}}{\text { and }}$	1/0/2	Function					
$\int_{M A_{10}}^{M A_{0}}$	$\bar{O} / 2$	(Memory address) Memory refresh address output, straight binary address $M A_{0} \sim M A_{11}$ and $L A_{0} \sim L A_{4}$ are at high impedance during DIEN $=L$					
MA_{11}	$\overline{0} / 2$	Highest order bit of address signal, switching of upper and lower surfaces $M A_{0} \sim M A_{11}$ and $L A_{0} \sim L A_{4}$ are at high impedance during DIEN $=L$					
$\int_{L A_{4}}^{L A_{0}}$	$\overline{0} / 2$	(Line address) Line scan output for character generation $M A_{0} \sim M A_{11}$ and $L A_{0} \sim L A_{4}$ are at high impedance during $\mathrm{DIEN}=\mathrm{L}$					
$\int_{\mathrm{D}_{7}}^{\mathrm{D}_{0}}$	1	Display data input					
$S_{S_{3}}^{S_{0}}$	1	Selection of number of VP and lines Refer to Sec. 10					
$\int_{\mathrm{CS}_{1}}^{\mathrm{CS}_{0}}$	1	Selection of number of characters to be displayed	CS_{1}	L	L	H	H
			CS_{0}	L	H	L	H
			No. of characters	32	40	64	80
$\int_{\mathrm{HS}_{2}}^{\mathrm{HS}}$	1	(Horizontal select) HP programming					
REN	1	(Reverse enable) Display inversion; active H					
DAEN	1	Data input enable signal; active H					
UDEN	1	Cursor display; active H					
CHBL	1	Character blink; active H					
UDBL	1	Cursor blink; active H					
CSEN	1	Cursor display; active H					
$\int_{\text {TEST3 }}^{\text {TEST }}$	1	Test pins. On-chip pull-up resistors					

FUNCTIONAL DESCRIPTION

1. Selection of HP

$H P$ is determined by the logic levels of $\mathrm{HS}_{2}, \mathrm{HS}_{1}$ and HS_{0}.

HS_{2}	HS_{1}	HS_{0}	$H P$
L	L	L	5 dot
L	L	H	6
L	H	L	7
L	H	H	8
H	L	L	10
H	L	H	12
H	H	L	14
H	H	H	16

- The horizontal space in a font

The horizontal space is determined by HP and number of horizontal dots/character (hereinafter called CN_{H}) in the character generator ROM. $\mathrm{HP}>\mathrm{CN}_{\mathrm{H}} \quad$ Space $=\mathrm{HP}=\mathrm{CN}_{\mathrm{H}}$
(Example)
$H P=8\left(\mathrm{HS}_{2} \mathrm{HS}_{1} \mathrm{HS}_{0}: 011\right)$
$C N_{H}=5$
(Example)
$H P=5\left(\mathrm{HS}_{2} \mathrm{HS}_{1} \mathrm{HS}_{0}: 000\right)$

HP

- $\mathrm{HP}=\mathrm{CN}_{\mathrm{H}}$ No space
- $\mathrm{HP}<\mathrm{CN}_{\mathrm{H}}$ No space

*The data $D_{5} \sim D_{7}$ are invalid for display.
- The vertical space in a font

The vertical space is determined by VP and vertical dots/character (hereinafter called CN_{V}) in the character ROM.

2. Selection of Number of Characters

Number of characters controlled by MSM6240GS is determined by the logic levels of CS_{0} and CS_{1}, as follows:

CS_{1}	L	L	H	H
CS_{0}	L	H	L	H
No. of characters	32	40	64	80

- $V P>C N_{V}$ Space $=V P-N_{V}$
- $V P=C N V$ No space
- VP < CNV No space

The data whose number of bits are more than the number of HP are invalid for display.
(Note) When HP is set to 10, 12, 14 or 16, display of characters on the LCD panel is made by accessing twice to the character generator ROM.
The memory address signal, $\mathrm{MA}_{0} \sim \mathrm{MA}_{10}$, to the LCD panel is addressed as shown in the table below.

$8(4 \times 2)$ lines $\times 80$ characters

This is the case when HP is 8 or less. When HP is $10 \sim 16$, the display on the LCD panel becomes $8(4 \times 2)$ lines $\times 40$ characters.

3. Selection of Number of HP and Lines

$\mathrm{S}_{3} \mathrm{~S}_{2}$				VP	No. of lines	Number of characters/line								Duty	
		HP is $10 \sim 16$				HP is 8 or less									
L	L		L	L	8	4	80	64	40	32	80	64	40	32	1/32
L	L	L	H	8	6	80	64	40	32	80	64	40	32	1/48	
L	L	H	L	8	8		64	40	32	80	64	40	32	1/64	
L	L	H	H	8	12	80	64	40	32	80	64	40	32	1/96	
H	H	H	H	8	16	(80)	64	40	32	80	64	40	32	1/128	
L	H	L	L	12	4	80	64	40	32	80	64	40	32	1/48	
L	H	H	L	12	8	80	64	40	32	80	64	40	32	1/96	
H	L	L	L	18	4	80	64	40	32	80	64	40	32	1/72	
H	L	L	H	18	6	80	64	40	32	80	64	40	32	1/108	
H	L	H	L	18	8	80	64	40	32	80	64	40	32	1/144	
H	H	L	L	20	4	80	64	40	32	80	64	40	32	1/80	

*Number of lines on above table is half of the actual number of lines on the LCD panel.
When all of $S_{3} \sim S_{0}$ are set at high level (which means HP is 16 and number of characters/line is 80), the display on the LCD panel becomes as shown below because the capacity of the display RAM overflows.

$$
\left\{\begin{array}{l}
H P=8 \\
\text { Number of lines }=12 \\
V P=16 \\
\text { Number of characters } / \text { line }=80
\end{array}\right.
$$

4. Attribute Function

This function is determined by the data of the external attribute RAM. The attribute function per font is available.

- Character Display, Blink

DAEN	CHBL	Display
L	L	Blink
L	H	Blink
H	L	Display
H	H	$\overline{\text { Blink }}$

- Cursor Display and Blink

UDBL	CSEN	UDEN	Cursor Display
L	L	L	None
L	L	H	None
L	H	L	None
L	H	H	Cursor display
H	L	L	None
H	L	H	None
H	H	L	Cursor blink
H	H	H	$\overline{\text { Cursor blink* }}$

*The character and cursor blink alternately.

- Cursor display position

Cursor is displayed in the bottom line of the font. The number of horizontal dots/font is same as that of HP.
(Example)

- Blink

The blink cycle is $640 \mathrm{~ms}(F R P=50 \mathrm{~Hz})$ and is cynchronized to FRM signal.

- Display inversion

The display of character and cursor is inverted.

5. Display RAM (2K bytes)

The MSM6240GS is applicable to both character mode and graphic mode, which is only determined by system configuration, not by software.

- When using Display RAM in the character mode

<System configuration >

- Relationship between $L A_{0} \sim L A_{4}$ and $V P$
$L A_{0} \sim L A_{4}$ are valid for octal, duodecimal, octdicimal and vigesimal signals.
$V P=8$

L_{2}	LA $_{1}$	L_{0}
L	L	L
L	L	H
L	H	L
L	H	H
H	L	L
H	L	H
H	H	L
H	H	H

$V P=12$

$L A_{3}$	LA $_{2}$	LA $_{1}$	LA $_{0}$
L	L	L	L
L	L	L	H
L	L	H	L
L	L	H	H
L	H	L	L
L	H	L	H
L	H	H	L
L	H	H	H
H	L	L	L
H	L	L	H
H	L	H	L
H	L	H	H

LA_{4}	$L^{\text {L }} 3$	$L^{\prime}{ }_{2}$	LA ${ }_{1}$	LA ${ }_{0}$
L	L	L	L	L
L	L	L	L	H
L	L	L	H	L
L	L	L	H	H
L	L	H	L	L
L	L	H	L	H
L	L	H	H	L
L	L	H	H	H
L	H	L	L	L
L	H	L	L	H
L	H	L	H	L
L	H	L	H	H
L	H	H	L	L
L	H	H	L	H
L	H	H	H	L
L	H	H	H	H
H	L	L	L	L
H	L	L	L	H
H	L	L	H	L
H	L	L	H	H

- Limitation of No. of characters and No. of lines

The No. of characters and the No. of lines are subject to limitation according to the RAM capacity.

When HP is set at 8 or less

No.	No. of characters/line	No. of lines	Display RAM area
1	80	16	$000 \sim 4 \mathrm{FF}(\mathrm{H})$
2	64	16	$000 \sim 3 \mathrm{FF}(\mathrm{H})$
3	40	16	$000 \sim 27 \mathrm{~F}(\mathrm{H})$
4	32	16	$000 \sim 1 \mathrm{FF}(\mathrm{H})$

When HP is set at $10 \sim 16$

No.	No. of characters/line	No. of lines	Display RAM area
5	80	12	$000 \sim 77 F(H)$
6	64	16	$000 \sim 7 F F(H)$
7	40	16	$000 \sim 4 F F(H)$
8	32	16	$000 \sim 3 F F(H)$

(Note) Number of lines on above table is half of the actual number of lines on the LCD panel.
(Example) RAM area $000 \sim 3 B F$

Memory address	$\mathrm{MA}_{11}{ }^{\text {1 }}$	MA_{10}	$\mathrm{MA}_{9}{ }^{1}$	MA_{8}		A_{7}		MA 6		MA_{5}		MA_{4}		MA_{3}		MA_{2}		MA_{1}		MA_{0}
Start address	L I	11	1 L 1	L	1	L	1	L	i	L	1	L	1	L		L	1	L		L
End address	L I	L I	H I	H	1	H	1	L	1	H	1	H	1	H	1	H		H		H
Start address	H	L i	1 L I	L	1	L	1	L	i	L	1	L	I	L	$!$	L		L		L
End address	H	L	H ${ }^{1}$	H	1	H	,	L	1	H	1	H	1	H		H		H		H

Set HP at 8 or less

No. 1 In the case of 80 characters/line (Number of lines: 16 lines max.)

000	001	002	003		04E	04F
050	051	052	053		09E	09F
OAO	OA1	OA2	0A3		OEE	OEF
OFO	OF1	OF2	OF3		13E	13F
140	141	142	143		18E	18F
190	191	192	193		1DE	1DF
1 EO	$1 \mathrm{E1}$	1 E 2	1 E 3		22E	22F
230	231	232	233		27E	27F
280	281	282	283		2CE	2CF
2 D 0	2 D 1	2D2	2D3		31 E	31 F
320	321	322	323		36E	36F
370	371	372	373		3BE	3BF
3 CO	3 C 1	3 C 2	3 C 3		40 E	40F
410	411	412	413		45E	45F
400	401	402	403		4AE	4AF
4B0	4B1	4B2	4B3		4FE	4FE

The table above shows the memory address to the LCD panel.
It only shows the address to the upper part of the LCD panel. Whether it be the upper or lower will be determined by the H / L condition of $M A_{11}$.

No. 2 In the case of 64 characters/line (Number of lines: 16 lines max.)

000	001	002	003		03E	03F
040	041	042	043		07E	07F
080	081	082	083		OBE	OBF
0CO	0 C 1	0C2	0C3		OFE	OFF
100	101	102	103		13E	13F
140	141	142	143		17E	17F
180	181	182	183		1 BE	1BF
1 CO	$1 \mathrm{C1}$	1 C 2	1 C 3		1FE	1 FF
200	201	202	203		23E	23F
240	241	242	243		27E	27F
280	281	282	283		2BE	2BF
2CO	2C1	2C2	2C3		2FE	2FF
300	301	302	303		33E	33F
340	341	342	343		37E	37 F
380	381	382	383		3BE	3BF
3 CO	3 C 1	3C2	3 C 3		3FE	3FF

The table above shows the memory address to the LCD panel.
It only shows the address to the upper part of the LCD panel. Whether it be the upper or lower will be determined by the H / L condition of $M A_{11}$.

No. 3 In the case of 40 characters/line (Number of lines: 16 lines max.)

000	001	002	003		026	027
028	029	02A	02B		04E	04F
050	051	052	053		076	077
078	079	07A	07B		09E	09F
OAO	0 A 1	OA2	OA3		OC6	0C7
$0 \mathrm{C8}$	OC9	OCA	OCB		OEE	OEF
OFO	OF1	OF2	OF3		116	117
118	119	11A	11 V		13 E	13F
140	141	142	143		166	167
168	169	16A	16B		18E	18F
190	191	192	193		186	$1 \mathrm{B7}$
188	189	1BA	1BB		1DE	10F
1E0	1E1	1 E 2	1 E3		206	207
208	209	20A	20B		22E	22F
230	231	232	233		256	257
258	259	25A	25B		27 E	27F

The table above shows the memory address to the LCD panel.
It only shows the address to the upper part of the LCD panel. Whether it be the upper or lower will be determined by the H / L condition of $M A_{11}$.

No. 4 In the case of $\mathbf{3 2}$ characters/line (Number of lines: 16 lines max.)

000	001	002	003		$01 E$	$01 F$
020	021	022	023		$03 E$	$03 F$
040	041	042	043		$05 E$	$05 F$
060	061	062	063		$07 E$	$07 F$
080	081	082	083		$09 E$	$09 F$
$0 A 0$	$0 A 1$	$0 A 2$	$0 A 3$		$0 B E$	$0 B F$
$0 C 0$	$0 C 1$	$0 C 2$	$0 C 3$		$0 D E$	$0 D F$
$0 E 0$	$0 E 1$	$0 E 2$	$0 E 3$		$0 F E$	$0 F F$
100	101	102	103		$11 E$	$11 F$
120	121	122	123		$13 E$	$13 F$
140	141	142	143		$15 E$	$15 F$
160	161	162	163		$17 E$	$17 F$
180	181	182	183		$19 E$	$19 F$
$1 A 0$	$1 A 1$	$1 A 2$	$1 A 3$		$1 B E$	$1 B F$
$1 C 0$	$1 C 1$	$1 C 2$	1 C 3		$1 D E$	$1 D F$
$1 E 0$	$1 E 1$	$1 E 2$	$1 E 3$		$1 F E$	1 FF

The table above shows the memory address to the LCD panel.
It only shows the address to the upper part of the LCD panel. Whether it be the upper or lower will be determined by the H / L condition of $\mathrm{MA}_{1_{1}}$.

Set HP at $10 \sim 16$

No. 5 In the case of 80 characters/line (Number of lines: 12 lines max.)

000	001	002	003		09E	09F
OAO	OA1	OA2	0A3		13E	13F
140	141	142	143		1DE	1DF
1 EO	1 E 1	1 E 2	1E3		27E	27F
280	281	282	283		31 E	31F
320	321	322	323		3BE	3BF
3 CO	3 C 1	3 C 2	3C3		45 E	45F
460	461	462	463		4FE	4FF
500	501	502	503		59 E	59F
5AO	5A1	5A2	5A3		63 E	63F
640	641	642	643		6DE	6DF
6 E 0	6 E 1	6 E 2	6 E 3		77E	77F

The table above shows the memory address to the LCD panel.
It only shows the address to the upper part of the LCD panel. Whether it be the upper or lower will be determined by the H / L condition of $M A_{11}$.

No. 6 In the case of 64 characters/line (Number of lines: 16 lines max.)

000	001	002	003		07E	07F
080	081	082	083		OFE	OFF
100	101	102	103		17E	17 F
180	181	182	183		1FE	1FF
200	201	202	203		27E	27F
280	281	282	283		2FE	2FF
300	301	302	303		37E	37 F
380	381	382	383		3FE	3FF
400	401	402	403		47E	47F
480	481	482	483		4FE	4FF
500	501	502	503		57E	57F
580	581	582	583		5FE	5FF
600	601	602	603		67E	67F
680	681	682	683		6FE	6FF
700	701	702	703		77E	77F
780	781	782	783		7FE	7FF

The table above shows the memory address to the LCD panel.
It only shows the address to the upper part of the LCD panel. Whether it be the upper or lower will be determined by the H / L condition of $M A_{11}$.

No. 7 In the case of 40 characters/line (Number of lines: 16 lines max.)

000	001	002	003		04E	04F
050	051	052	053		09E	09F
OAO	0 A 1	0A2	0 A3		OEE	OEF
OFO	0F1	OF2	OF3		13E	13F
140	141	142	143		18E	18F
190	191	192	193		1DE	1DF
1E0	1E1	1E2	1E3		22E	22F
230	231	232	233		27E	27F
280	281	282	283		2CE	2CF
2D0	2D1	2D2	2D3		31E	31 F
320	321	322	323		36E	36F
370	371	372	373		3BE	3BF
3 CO	3C1	3C2	3C3		40E	40F
410	411	412	413		45E	45F
460	461	462	463		4AE	4AF
4B0	4B1	4B2	4B3		4FE	4FF

The table above shows the memoray address to the LCD panel.
It only shows the address to the upper part of the LCD panel. Whether it be the upper or lower will be determined by the H / L condition of $M A_{11}$.

No. 8 In the case of 32 characters/line (Number of lines: 16 lines max.)

000	001	002	003		03E	03F
040	041	042	043		07E	07F
080	081	082	083		OBE	OBF
0co	0C1	OC2	0C3		OFE	OFF
100	101	102	103		13E	13F
140	141	142	143		17E	17F
180	181	182	183		18 E	1BF
$1 \mathrm{C0}$	1C1	1 C 2	1C3		1 FE	1FF
200	201	202	203		23 E	23 F
240	241	242	243		27E	27F
280	281	282	283		2BE	2BF
2C0	2 C 1	2 C 2	2 C 3		2FE	2FF
300	301	302	303		33 E	33F
340	341	342	343		37E	37 F
380	381	382	383		3BE	3BF
3 CO	3 C 1	3C2	3 C 3		3FE	3FF

The table above shows the memory address to the LCD panel.
It only shows the address to the upper part of the LCD panel. Whether it be the upper or lower will be determined by the H / L condition of MA_{11}.

- When using Display RAM in the graph mode

(Note) The cursor display should not be used by setting CSEN at L.
(Example) HP $=8, \mathrm{VP}=8,64$ characters/line, 16 lines

6. Dien Signal

Before writing the data into DISPLAY RAM or ATTRIBUTE RAM, DIEN signal should be set at L.

7. Memory Chip Enable Signal (MCE)

Normally this signal is set at L. This signal becomes H when BUSY signal or DIEN signal become L, which reduces the current consumption of the external RAM by half.
8. ODD/EVEN Number Data Processing

When OEEN is set at H, ODD/EVEN number data
processing is proceeded.
The purpose of ODD/EVEN number data processing is to reduce the shift pulse "CP" speed by half. When MSM6240 is applied to wide LCD's control, the speed of shift pulse becomes high and it exceeds the maximum clock frequency of the LCD drivers, so, to reduce the shift pulse speed is required. When OEEN is set at L, ODD/EVEN number data processing is not proceeded.
OEEN may set at L only when HP is set at 8 or less. In this case, the data is sent to $O D_{1}$ (upper part) and OD_{2} (lower part).

9. Frame Pulse, Frame, Latch

- Time chart

The proper FRP frequency is 50 to 70 Hz . $f_{\text {osc }}$ must be calculated so that it might match with FRP frequency.
10. X'TAL Oscillation

The frequency of the crystal is calculated by following formula.

- HP is 8 or less
$f_{\text {osc }}=$ (Number of characters +8) $\times \mathrm{HP}$ $\times 1$ duty \times FRP $\times 2$
$H P$ is $10 \sim 16$
$f_{\text {osc }}=($ Number of characters $\times 2+16)$
$\times 8 \times 1$ dduty \times FRP $\times 2$

11. X'TAL Oscillation Frequency Table

$H P=8, F R P+50 \sim 70 \mathrm{~Hz}$

No. of Duty characters	32	40	64	80
$1 / 128$	$4.1 \sim 5.7$	$4.9 \sim 6.9$	$7.4 \sim 10.3$	$9.0 \sim 12.6$
$1 / 96$	$3.1 \sim 4.3$	$3.7 \sim 5.2$	$5.5 \sim 7.7$	$6.8 \sim 9.5$
$1 / 64$	$2.0 \sim 2.9$	$2.5 \sim 3.5$	$3.7 \sim 5.18$	$4.5 \sim 6.3$
$1 / 48$	$1.5 \sim 2.1$	$1.8 \sim 2.5$	$2.8 \sim 3.9$	$3.4 \sim 4.8$

$H P=7, F R P=50 \sim 70 \mathrm{~Hz}$

No. of Duty characters	32	40	64	80
$1 / 128$	$3.6 \sim 5.0$	$4.3 \sim 6.0$	$6.5 \sim 9.1$	$7.9 \sim 11.1$
$1 / 96$	$2.7 \sim 3.8$	$3.2 \sim 4.5$	$4.8 \sim 6.7$	$5.9 \sim 8.3$
$1 / 64$	$1.7 \sim 2.5$	$2.2 \sim 3.1$	$3.2 \sim 4.5$	$3.9 \sim 5.5$
$1 / 48$	$1.3 \sim 1.8$	$1.6 \sim 2.2$	$2.5 \sim 3.5$	$3.0 \sim 4.2$

$H P=6, F R P=50 \sim 70 \mathrm{~Hz}$

No. of characters	32	40	64	80
$1 / 128$	$3.1 \sim 4.3$	$3.7 \sim 5.2$	$5.6 \sim 7.8$	$6.8 \sim 9.5$
$1 / 96$	$2.3 \sim 3.2$	$2.8 \sim 3.9$	$4.1 \sim 5.7$	$5.1 \sim 7.1$
$1 / 64$	$1.5 \sim 2.1$	$1.9 \sim 2.7$	$2.8 \sim 3.9$	$3.4 \sim 4.8$
$1 / 48$	$1.1 \sim 1.5$	$1.4 \sim 2.0$	$2.1 \sim 2.9$	$2.6 \sim 3.6$

$H P=5, F R P=50 \sim 70 \mathrm{~Hz}$

No. of characters	32	40	64	80
$1 / 128$	$2.6 \sim 3.6$	$3.1 \sim 4.3$	$4.6 \sim 6.4$	$5.6 \sim 7.8$
$1 / 96$	$1.9 \sim 2.7$	$2.3 \sim 3.2$	$3.4 \sim 4.8$	$4.3 \sim 6.0$
$1 / 64$	$1.3 \sim 1.8$	$1.6 \sim 2.2$	$2.3 \sim 3.2$	$2.8 \sim 3.9$
$1 / 48$	$0.9 \sim 1.3$	$1.1 \sim 1.5$	$1.8 \sim 2.5$	$2.1 \sim 2.9$

$H P=10 \sim 16, F R P=50 \sim 70 \mathrm{~Hz}$

No. of characters	32	40	64	80
Duty				
$1 / 128$	$8.2 \sim 11.5$	$9.8 \sim 13.7$	$14.7 \sim 20.6$	$18.0 \sim 25.2$
$1 / 96$	$6.1 \sim 8.5$	$7.4 \sim 10.4$	$11.1 \sim 15.5$	$13.5 \sim 18.9$
$1 / 64$	$4.1 \sim 5.7$	$4.9 \sim 6.9$	$7.4 \sim 10.3$	$9.0 \sim 12.6$
$1 / 48$	$3.1 \sim 4.3$	$3.7 \sim 5.2$	$5.5 \sim 7.7$	$6.8 \sim 9.5$

The value on above tables are affected by the maximum frequency of LCD driver's shift clock input and an maximum frequency of fosc-
The relation between $f_{\text {osc }}$ and shift clock is as follows.

- When ODD/EVEN data processing is proceeded $C P=f_{\text {osc }} / 4$
- When ODD/EVEN data processing is not proceeded

$$
C P=f_{\text {osc }} / 2
$$

For example, the fosc is limited as follows when MSM5260GS, whose maximum frequency of shift pulse is 3.3 MHz , is connected to MSM6240GS.

- When ODD/EVEN data processing is proceeded $f_{\text {osc }} \leq 10 \mathrm{MHz}$
- When ODD/EVEN data processing is not proceeded
$f_{\text {osc }} \leq 6.6 \mathrm{MHz}$

TYPICAL SYSTEM CONFIGURATION

MSM6255GS

DOT MATRIX LCD CONTROLLER

GENERAL DESCRIPTION

The OKI MSM6255GS is a CMOS Si-gate LSI designed for use in controlling large size of DOT MATRIX LCD panels in characters and graphics.

FEATURES

- Display control capacity
- Graphic mode: 512,000 dots (2^{16} bytes) Memory address $\mathrm{MA}_{\mathrm{O}} \sim \mathrm{MA}_{15}$
- Character mode: 65,536 characters (2^{16} bytes) Display address $\mathrm{MA}_{0} \sim \mathrm{MA}_{15}$
- Direct interface with 8085 or $\mathbf{Z 8 0}$ CPU
- Duty: $1 / 2$ to $1 / 256$ selectable
- Attribute
- Screen clear
- Cursor ON/OFF/blink
- Scrolling and paging
- Display system: AC inversion at each frame
- Data output (upper and lower display outputs) 4-bit parallel output, 2-bit parallel output 1-bit serial output
- Crystal oscillation
- Low C-MOS Silicon gate process
- Single +5 V power supply
- 80-pin flat package

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Rating value	Unit
Supply voltage	V_{DD}	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	$-0.3 \sim 6$	V
Input voltage	V_{IN}	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	$-0.3 \sim \mathrm{~V}_{\mathrm{DD}}$	V
Storage temperature	$\mathrm{T}_{\text {stg }}$	-	$-50 \sim 150$	${ }^{\circ} \mathrm{C}$

OPERATING RANGE

Parameter	Symbol	Condition	Range	Unit
Supply voltage	$V_{D D}$	-	$4.5 \sim 5.5$	V
Operating temperature	$T_{\text {Op }}$	-	$-20 \sim 85$	${ }^{\circ} \mathrm{C}$
Operating frequency	$f_{\text {OSC }}$	$V_{D D}=5 \mathrm{~V} \pm 10 \%$	$0 \sim 11$	MHz

INPUT CHARACTERISTICS

$\left(V_{D D}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{a}}=-20 \sim 85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	MIN	TYP	MAX	Unit	Applicable terminal
" H " input voltage	$\mathrm{V}_{I H}$	2.4	-	-	V	$\mathrm{DB}_{0} \sim \mathrm{DB}_{7}, \overline{\mathrm{CS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{A}_{0} \sim \mathrm{~A}_{15}$,
" L " input voltage	$\mathrm{V}_{I L}$	-	-	0.7	V	$\mathrm{DIEN}, \mathrm{ADF}, \mathrm{RD}$ RD_{7}

OUTPUT CHARACTERISTICS

$\left(V_{D D}=5 V \pm 5 \%, T_{a}=-20 \sim 85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Condition	MIN	TYP	MAX	Unit	Applicable terminal
"H" output current	${ }^{1} \mathrm{OH}$	$\mathrm{V}_{\mathrm{OH}}=2.8 \mathrm{~V}$	-500	-	-	$\mu \mathrm{A}$	$\begin{aligned} \mathrm{LD}_{0} & \sim \mathrm{LD}_{3} \\ U D_{0} & \sim U D_{3} \\ \mathrm{MA}_{0} & \sim \mathrm{MA}_{15} \end{aligned}$
"L' output current	${ }^{1} \mathrm{OL}$	$\mathrm{V}_{\text {OL }}=0.4 \mathrm{~V}$	2.4	-	-	mA	$\begin{gathered} \mathrm{RA}_{0} \sim \mathrm{RA}_{3} \\ \mathrm{CH}_{\phi}, \mathrm{CE} \mathrm{E}_{\phi}, \mathrm{LIP}, \mathrm{FRP} \\ \mathrm{FRMB}_{\mathrm{B}} \mathrm{~B} \cup \mathrm{SY}, \mathrm{CLP} \\ \mathrm{DB}_{0} \sim \mathrm{DB}_{7} \end{gathered}$

CURRENT CONSUMPTION

$\left(V_{D D}=5 V \pm 5 \%, T_{a}=-20 \sim 85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	$V_{D D}$	Condition	MIN	TYP	MAX	Unit
Static current	IDDS	5	$f_{\text {OSC }}=0 \mathrm{~Hz}$, No load	-	-	50	μA
Dynamic current	IDD	5	$f_{\text {OSC }}=10 \mathrm{MHz}$, No load	-	-	15	mA

Note: TEST1 and TEST2 are open, and other inputs are either $V_{\text {DD }}$ or GND.

SWITCHING CHARACTERISTICS

$\left(V_{D D}=5 V \pm 5 \%, T_{a}=-20 \sim 85^{\circ} \mathrm{C}\right)$

Parameters	Symbol	Load condition	MIN	TYP	MAX	Unit	Applicable terminals
Rising time	$\mathrm{t}_{\mathbf{r}}$	60 pF	-	-	100	ns	All output terminals
Falling time	t_{f}	60 pF	-	-	100	ns	

MAXIMUM OPERATING FREQUENCY

$\left(V_{D D}=5 \mathrm{~V} \pm 5 \%, T_{a}=-20 \sim 85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Condition	MIN	TYP	MAX	Unit	Notes
Oscillating frequency	$\mathrm{f}_{\text {osc }}$	$\overline{\text { DIV }}=$ " L "	11	-	-	MHz	Crystal oscillator
Basic clock frequency	f_{s}	$\overline{\mathrm{DIV}}=$ " $\mathrm{H}^{\prime \prime}$	5.5	-	-	MHz	External clock

LCDC CONTROL SIGNAL TIMING CHARACTERISTICS

($C_{L}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{a}=-20 \sim 85^{\circ} \mathrm{C}$)

Parameter	Symbol	MIN	TYP	MAX	Unit
Clock cycle time	${ }^{t} \mathrm{CP}$	180	-	-	ns
Clock 'H" level pulse width	PWH	80	-	-	ns
Clock 'L' level pulse width	PWL	80	-	-	ns
Clock rising/falling time	$\mathrm{t}_{\mathrm{cr}} / \mathrm{t}_{\mathrm{cf}}$	-	-	20	ns
Character clock delay time	${ }^{\text {t }} \mathrm{CH}$	-	-	200	ns
Memory address clock delay time	tMA	-	-	100	ns
Memory address disable delay time	${ }^{t}$ AD1	-	-	40	ns
Memory address enable delay time	${ }^{t} A D 2$	-	-	40	ns
CPU address delay time	${ }^{\text {t }}$ AD3	-	-	100	ns
Refresh address delay time	${ }^{t}$ AD4	-	-	100	ns
Reset "H" level pulse width	tRES	1	-	-	$\mu \mathrm{s}$

BUS TIMING CHARACTERISTICS

$\left(C_{L}=50 \mathrm{pF}, V_{D D}=5 \mathrm{~V} \pm 5 \%, T_{a}=-20 \sim 85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	MIN	TYP	MAX	Unit
A_{0}, CS Set up time	$\mathrm{t}^{\mathrm{t}} \mathrm{CS}$	100	-	-	ns
$\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ Pulse width	t^{CW}	300	-	-	ns
Address hold time	t^{AH}	40	-	-	ns
Data set-up time	t^{DS}	200	-	-	ns
Data hold time	t^{DH}	40	-	-	ns
Output disable time	t^{OH}	0	-	40	ns
Access time	$\mathrm{t}_{\mathrm{ACC}}$	-	-	200	ns

LCD DRIVER INTERFACE TIMING CHARACTERISTICS

$\left(C_{L}=30 p F, V_{D D}=5 V \pm 5 \%, T_{a}=-20 \sim+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	MIN	TYP	MAX	Unit
Data delay time	${ }^{t}$ DA	-	-	100	ns
1 Character cycle time	${ }^{\text {t }} \mathrm{CH} \phi$	730	-	-	ns
Latch signal delay time	t_{ℓ}	-	-	200	ns
Latch signal " $\mathrm{H}^{\prime \prime}$ time	${ }^{\text {t LIP }}$	1.46	-	-	ns
Chip enable clock delay time	${ }^{t} \mathrm{CE}$	-	-	200	ns
Chip enable clock 'H' time	${ }^{\text {t }}$ CE ϕ	730	-	-	ns
Ready signal delay time	${ }^{1} \mathrm{~B}$	-	-	200	ns
Ready signal "H' time	${ }^{\text {t BUSY }}$	5.11	-	-	$\mu \mathrm{s}$
Frame signal delay time	t FRP	${ }^{21} \mathrm{CH} \phi$	-	$2 \mathrm{t}^{\text {CH } \phi^{+}}{ }^{+200}$	ns
Alternating frame signal delay time	${ }^{t} \mathrm{FR}$	-	-	200	ns

TIMING FOR FETCHING PATTERN DATA
$\left(V_{D D}=5 V \pm 5 \%, T_{a}=-20 \sim 85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	MIN	TYP	MAX	Unit
Upper side data set-up time	tUDS	120	-	-	ns
Upper side data hold time	tUDH	40	-	-	ns
Lower side data set-up time	t LDS	120	-	-	ns
Lower side data hold time	t LDH	40	-	-	ns

PIN DESCRIPTION

Terminal No.	Terminal name	I/O//Z	Function
$\begin{aligned} 1 & \sim 6 \\ 71 & \sim 80 \end{aligned}$	$\int_{M A_{15}}^{M A_{0}}$	Ј/Z	Address output for displaying RAM.
\int_{22}^{7}	$\int_{A_{15}}^{A_{0}}$	1	Memory address input terminals.
23	FRP	$\bar{\square}$	Frame signal Synchronization of display
24	LIP	ర	Display data latch signal
25	$\mathrm{CE}_{\phi}{ }^{\text {d }}$	ठ	Chip enable clock for LCD segment driver.
26	CLP	$\bar{\square}$	Display data shift clock
27	FRMB	$\overline{0}$	AC signal
\int_{31}^{28}		ס	Display data parallel output for lower side.
32	$V_{\text {DD }}$		Supply voltage
\int_{36}^{33}	$\int_{U D_{3}}^{U D_{0}}$	$\bar{\square}$	Display data parallel output, Upper display 4-bit output (OD1, ED1, OD2 and ED2 outputs)
37	CH_{ϕ}	$\bar{\sigma}$	Character clock
38	Busy	$\bar{\square}$	Ready state signal. This signal is used while serial transmission stops.
39	DIEN	1	Display enable signal. When this signal is H , display is enabled.
40	$\overline{\text { ADF }}$	1	Address floating input. When this signal is $\mathrm{L}, \mathrm{MA}_{0} \sim$ $M A_{15} R A_{0} \sim R A_{3}$ are high impedance. Whereas, it is H, $A_{0} \sim A_{15}$ or a refresh address is output to $M A_{0} \sim M A_{15}$.
41	$\overline{\mathrm{CS}}$	1	Chip select.
42	$\overline{\mathrm{RD}}$	1	Read Reading data is valid when $\widetilde{\mathrm{RD}}=\mathrm{L}$
43	$\overline{W R}$	1	Write Data is written when $\overline{W R}=\mathrm{H}$
44	$\overline{\text { RES }}$	1	Reset Resets each counter.
\int_{52}^{45}	$\int_{D B_{7}}^{D B_{0}}$	I/OT/Z	8-bit data bus . . . Common terminal for three state I/O.
\int_{60}^{53}	$\int_{\mathrm{RD}_{7}}^{\mathrm{RD}_{0}}$	1	ROM/RAM data input . . . Dot pattern data for the character generator
\int_{64}^{61}	$\int_{R A_{3}}^{R A_{0}}$	\bar{O} / Z	Raster address output. *This output is not used in the graphic mode.
65 66	$\begin{aligned} & X T \\ & \overline{X T} \end{aligned}$	I $\overline{0}$	X'tal osc. . . . When an external clock is used by setting
67	$\mathrm{V}_{\text {s }}$		Ground pin.
70	$\overline{\text { DIV }}$	1	"H": EXT clock. "L": Self-excided oscillation

FUNCTIONAL DESCRIPTION

1. LCDC Internal Registers

The internal registers include one instruction register (IR) and nine data registers. (See Table 1).

Table 1 MSM6255GS internal registers

Note: " L " is read if the data of the registers marked X is read.

- Instruction register

The instruction register is a register for specifying the address of the data register which is accessed.
This register is cleared when RES input is "L".

Mode control register

The mode control register is specified by writing " $00 \mathrm{H}_{\mathrm{H}}$ " in the instruction register.

- Character pitch register

Register	A_{0}	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	
Instruction register	H	L	L	L	L	L	L	L	H	
Character pitch register	L	$\left(\mathrm{V}_{\mathrm{p}}-1\right)$					L	$\left(\mathrm{H}_{\mathrm{p}}-1\right)$		

H_{p} represents the number of bits to be displayed among one byte display data sent from RAM. The value of H_{p} is the following five types.

H_{p}	D_{2}	D_{1}	D_{0}
4	L	H	H
5	H	L	L
6	H	L	H
7	H	H	L
8	H	H	H

- Horizontal character number register

	A_{0}	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
Instruction register	H	L	L	L	L	L	L	H	L
Character number register	L	L	$\left(\mathrm{H}_{\mathrm{N}}-1\right)$						

Assuming the total horizontal dot number of the display is η_{H},

$$
\eta_{H}=H_{p} \times H_{N} . \quad \text { where } H_{N}=2 \sim 128 .
$$

The maximum value of $\eta_{\mathrm{H}}=8 \times 128=128$ bytes $=1,024$ dots .

- Duty number register

Register	A_{0}	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	$\mathrm{D}_{\mathbf{2}}$	D_{1}	D_{0}
Instruction register	H	L	L	L	L	L	L	H	H
Time division register	L	$\left(\mathrm{N}_{\mathrm{X}}-1\right)$							

$$
N_{x}=2 \sim 256
$$

- Cursor form register

. Register	A_{0}	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	$\mathrm{D}_{\mathbf{0}}$		
Instruction register	H	L	L	L	L	L	H	L	L		
Cursor position register	L	$\left(\mathrm{C}_{\text {pu }}-1\right)$					$\left(\mathrm{C}_{\text {pd }}-1\right)$				

The cursor is displayed on the lines from C_{pu} to C_{pd} in the character display mode. The length of the cursor in the horizontal direction is equal to the character pitch in the horizontal direction, H_{p}.

The cursor is not displayed in graphic mode. The relation between the cursor and V_{p} is as follows.

Note: (1) Setting of $C_{p u}, C_{p d}>V_{p}$ is not available.
(2) The cursor signal and pattern data are displayed subject to EX-OR.

- Start address (lower) register

Register	A_{0}	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
Instruction register	H	L	L	L	L	L	H	L	H
Display start address register (lower byte)	L	Start address (lower)							

- Start address (upper) register

Register	$\mathrm{A}_{\mathbf{0}}$	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}.	D_{1}	D_{0}
Instruction register	H	L	L	L	L	L	H	H	L
Display start address register (upper byte)	L	Start address (upper)							

The display start address shows an address of the RAM which stores data displayed at the left end and the most upper position.

The start address is composed of upper and lower 8 bits (16 bits in total).

- Cursor address (lower) register

Register	A_{0}	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
Instruction register	H	L	L	L	L	L	H	H	H
Cursor address register (lower byte)	L	Cursor address (lower)							

- Cursor address (upper) register

Register	A_{0}	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
Instruction register	H	L	L	L	L	H	L	L	L
Cursor address register (upper byte)	L	Cursor address (upper)							

By this instruction, the value of the cursor address is written in the cursor address register. The cursor is displayed at the position specified by the cursor address register.

2. LCD Display

Table 2 Legend

Symbol	Name	Meaning	Value
H_{p}	Horizontal pitch	Pitch of characters in horizontal direction	$4 \sim 8$ dots
V_{p}	Vertical pitch	Pitch of characters in vertical direction	$1 \sim 16$ dots
H_{N}	Number of characters in one line	Number of characters per line or number of words per line	$2 \sim 128$ characters
V_{ℓ}	Number of rows	Display duty	$2 \sim 256$
C_{pu}	Cursor start position	A position where the cursor starts display	Line $1 \sim 16$
C_{pd}	Cursor end position	A position where the cursor stops display	Line $1 \sim 16$

3. Built-In Bus Averter

The bus averter which switches the address buses $A_{0} \sim A_{15}$ of the CPU with the memory address buses of the refresh. The refresh memory addresses are output to $M A_{0} \sim \mathrm{MA}_{15}$ when the input terminal of DIEN is set at high level and $A_{0} \sim A_{15}$ are output to $M A_{0} \sim M A_{15}$ when the input terminal of DIEN is set at low level.

4. External Clock Operation

An external clock enables the MSM6255GS to operate when the input terminal of $\overline{\mathrm{DIV}}$ is set at high level. The external clock is input to XT .

5. Address Output Floating

$M A_{0} \sim M A_{15}$ and $R A_{0} \sim R A_{3}$ become high impedance when the input terminal of $\overline{\mathrm{ADF}}$ is set at low level. This function is used when the address buses of memory are opened to others than $M A_{0} \sim M A_{15}$.
$M A_{0} \sim M A_{15}$ and $R A_{0} \sim R A_{3}$ become normal impedance when the input terminal of $\overline{A D F}$ is set at high level.

6. Power Down Function

Power down function of the MSM5279GS (segment driver) can be used by connecting the output terminal of CE_{ϕ} to the ECLK input of the MSM5279GS. This function is valid only in 4 -bit parallel output mode.

7. Refresh Memory Address ($\mathrm{MA}_{0} \sim \mathrm{MA}_{15}{ }^{\prime}$) Operation

In the horizontal direction, MAxx is counted up at the trailing edge of CH_{ϕ}. Upper side is addressed while CH_{ϕ} is set at low level and lower side is addressed while CH_{ϕ} is set at high level.
MAxx is counted up even if it exceeds the number of horizontal display characters, but this does not affect the display since no data is being transferred at the time.
The period in which the data transfer is suspended corresponds to eight characters. When the period passes, one horizontal cycle is completed and the next cycle is commenced.
Memory address operation in the graphic mode is shown in Fig. 2 and that in the character mode is shown in Fig. 3.

Address configuration of display RAM

HSB
MA_{15} MA_{14} MA_{13} MA 12 MA_{11} MA_{10} MA_{9} MA_{8} MA_{7} MA_{6} MA_{5} MA_{4}

Note: L is output for $\mathrm{RA}_{0} \sim \mathrm{RA}_{3}$.

Note: Start address is 0000,80 characters $\times 24$ lines and $V_{p}=8$.
Fig. 3 Memory address in the character mode (80 characters $\times 24$ lines)

8. Output Mode

Three kinds of modes, 1 bit serial, 2-bit parallel and 4 bit parallel, are available as output modes. Data flow of each mode is shown below.

Fig. 41 bit seriel data transfer

Figure 5 2-bit parallel data transfer

Fig. 64 bit parallel data transfer
Time charts corresponding to data transfers shown in Fig. 4 - Fig. 6 are shown in Fig. 7 - Fig. 9.

Note: STAN: First memory address of one horizontal line. in the upper side STAM: First memory address of one horizontal line in the lower side ENDN: Last memory address of one horizontal line in the upper side ENDM: Last memory address of one horizontal line in the lower side

Fig. $7 \quad 1$ bit serial data transfer

Note: STAN: First memory address of one horizontal line in the upper side STAM: First memory address of one horizontal line in the lower side ENDN: Last memory address of one horizontal line in the upper side ENDM: Last memory address of one horizontal line in the lower side

Fig. 8 2-bit parallel data transfer

DOT MATRIX LCD CONTROLLER •MSM6255GS

9. LCD Driver

The most suitable LCD drivers for 4 -bit parallel data transfer are MSM5278GS (common driver) and MSM5279GS (segment driver). MSM5260GS is the most suitable common/segment LCD driver in the case of 1 -bit serial data transfer and 2 -bit parallel data transfer.
Note: 4-bit parallel data transfer cannot be applied to MSM5260GS. Both 1-bit serial data transfer and 2-bit parallel data transfer cannot be applied to MSM5279GS.

10. Relation Between Duty and Number of Lines

Number of lines is determined by V_{p}, vertical character pitch, and $V_{\ell^{\prime}}$, number of lines in vertical direction.
Number of lines $=V_{\ell} / V_{p} \times 2$
Note: In the graphic mode, number of lines should not be odd number.

11. Calculation of Crystal Oscillation

 Frequency (fosc)Table 3 Calculation formula of fosc

$\overline{\text { DIV }}$	Output mode	Calculation formula of $\mathrm{f}_{\mathrm{osc}}$	Calculation example (MHz)
L	(1)	FRP $\times\left(\mathrm{H}_{\mathrm{N}}+8\right) \times \mathrm{H}_{\mathrm{p}} \times \mathrm{V}_{\ell} \times 2$	9.856
	(2)	FRP $\times\left(\mathrm{H}_{\mathrm{N}}+8\right) \times \mathrm{V}_{\ell} \times 4$	2.464
H	(1)	FRP $\times\left(\mathrm{H}_{\mathrm{N}}+8\right) \times \mathrm{V}_{\mathrm{p}} \times \mathrm{V}_{\ell}$	4.928
	(2)	FRP $\times\left(\mathrm{H}_{\mathrm{N}}+8\right) \times \mathrm{V}_{\ell} \times 2$	1.232

Note: (1) Table 3 shows a calculation example assuming that $F R P=70 \mathrm{~Hz}, \mathrm{H}_{\mathrm{N}}=80, H_{p}=8$ and $V \ell=100$, however, the example of $\mathrm{H}_{\mathrm{p}}=4 \sim 7$ in 4 -bit parallel is not included.
(2) Output mode (1): $H_{p}=4 \sim 7$ in 1-bit serial, 2-bit parallel and 4-bit parallel Output mode (2) : $H_{p}=8$ in 4-bit parallel

12. Calculation of Character Clock

 $\left(\mathrm{CH}_{\phi}\right)$ Frequency$$
\mathrm{CH}_{\phi}=\mathrm{FRP} \times\left(\mathrm{H}_{\mathrm{N}}+8\right) \times \mathrm{V}_{\ell}
$$

Example: Assuming FRP $=70 \mathrm{~Hz}, \mathrm{H}_{\mathrm{N}}=80$ and $\mathrm{V}_{\ell}=100$, $\mathrm{CH}_{\phi}=1.62\left(\mu_{\mathrm{s}}\right)$

13. Calculation Shift Clock (CLP) Frequency

Table 4 Calculation formula of CLP

Output mode	Calculation formula of CLP	Calculation example (MHz)
1 bit serial	FRP $\times\left(\mathrm{H}_{\mathrm{N}}+8\right) \times \mathrm{H}_{\mathrm{p}} \times \mathrm{V}_{\ell}$	4.928
2-bit parallel	FRP $\times\left(\mathrm{H}_{\mathrm{N}}+8\right) \times \mathrm{H}_{\mathrm{p}} \times \mathrm{V}_{\ell} \times 1 / 2$	2.464
4-bit parallel	FRP $\times\left(\mathrm{H}_{\mathrm{N}}+8\right) \times \mathrm{H}_{\mathrm{p}} \times \mathrm{V}_{\ell} \times 1 / 4$	1.232

Note: Table 4 shows an calculation example assuming that $F R P=70 \mathrm{~Hz}, \mathrm{H}_{\mathrm{N}}=80, H_{\mathrm{p}}=8$ and $V_{\ell}=100$.

14. Relation Between Reference Clock (f_{s}) and External Clock

f_{s} functions as a dot clock in LCDC and the dot counter inside the $I C$ is counted up at the tailing edge of f_{s}. The dot counter operates in N number system and its signals are output as CH_{ϕ}. (Refer to time charts Fig. 7-9 and Fig. 14.)

15. Access to the Display RAM

In writing/reading the data to/from the CPU, DIEN should be low level. By setting DIEN signal at low level, the address from the CPU are output from $M A_{0} \sim M A_{15}$, and this enables the access to the display RAM.
There are 3 method about accessing display RAM from the CPU.
(1) Direct access from CPU

Display RAM is accessed directly from the CPU, irrespective of MSM6255GS condition (refresh cycle or not).
In this method, the RAM address changes to the CPU address when the display is on the screen. So, frequent address to the RAM causes flickering on the screen.
(2) Access during BUSY signal is at high level

BUSY signal indicates the period when the data transfer is stopped and BUSY signal is set at high level during the data transfer is stopped. The period when BUSY signal is high corresponds to that of seven characters'. If display RAM is accessed during this period (when

BUSY is high), the display on the screen does not flicker.

Note: This method is effective when the size of screen is small. In the case of big size screen, 640×200 dot, 1 -character needs approx. $1.6 \mu_{\mathrm{s}}$. So, in this case, the period when BUSY is at high level is $11.2 \mu_{s}$, which is impossible to write a lot of data.

(3) Synchronized access

Refresh scycle and CPU scycle are alternately performed. So, there is no flickering on the screen and there is no need to scence the BUSY signal.
In this method, however, some external circuits are necessary. The timing chart of this method is described in the Figure 10 below.

Figure 10 Basic timing of synchronized access to the display RAM.
legend
TC : Period wihen the address bus is occupied by CPU
TL : Period when the LCDC fetches the refreshed data
${ }^{\text {tRAM }}$: Refresh address delay time + memory access time
tUDS : Upper side data set-up time
tUDH : Upper side data hold time
$M A_{0} \sim M A_{15}$ output address to the upper side when DIEN is high and CH_{ϕ} is low.
To perform synchronized access method, the timing between DIEN and CH_{ϕ} should be as described in Figure 10

Figure 11 Wait function controlling circuit

Display RAM must meet following requirement.

$$
T_{L}>t_{\text {RAM }}+t_{U D S}
$$

In writing data into the display RAM, LCDC
should be synchronized so that the write pulse should occur during the period of T_{C}. In reading the pattern data from the CPU, the data of display RAM should be talched first. Figure 11 shows the controlling circuit.

16. DIEN

DIEN has to be generated when the display RAM is accessed by Synchronized access method described in 15-(3).
(1) Control the LCD module by separating upper side and lower side

Timing chart of XT and CH_{ϕ} is described as below. In this case, 4-bit data transfer is applied and $H_{p}=8$.

DIEN signal is generated by XT and CH_{ϕ}. DIEN signal generating circuit is described in the figure bellow.

When $\mathrm{H}_{\mathrm{p}} \neq 8$ in the 1 -bit serial, 2-bit parallel and 4 -bit parallel mode, the relation between XT and CH_{ϕ} should be refered to Figures 7 and 8 .

17. Scroll•Paging

Scroll•paging is enabled by setting the display start address to the scroll address register.

(1) Memory address of vertical scroll•paging

Figure 2 shows the memory address when the start address is 0000 . When the start address is set at 0050, display will be vertically shifted by +1 .
By setting the starting address one by one, screen will scroll vertically.
Paging will be performed by setting the start address as 3 E80.
(2) Memory address of horizontal scroll

When the starting address is set at 0001 in Figure 2, the display on the screen will be shifted by +1 byte horizontally. The data shown as 004F in Figure 2 corresponds to the memory data in the 2nd line shown as 0050.

INTERFACE WITH CPU

- DOT MATRIX LCD CONTROLLER • MSM6255GS

*Minimum mode

Figure 15 Time chart of LIP, FRP and FRMB

$\underset{>}{2}$

$\begin{array}{l}\text { Memory } \\ \text { address }\end{array}$
LIP
FRP
FRMB
X driver
Y driver

Synchronized access method is used as accessing method to the display VRAM.

Figure 16-2

(O)IEI semiconductor

MSM6265GS

DOT MATRIX LCD CONTROLLER

GENERAL DESCRIPTION

The OKI MSM6265GS is CMOS Si-gate LSI to control large size dot matrix LCD in characters and graphics.

FEATURES

- Software compatibility with HD6845 and HD46505 CRT controllers.
- Display control capacity

Number of characters: $16,384\left(2^{14}\right)$ characters
Display addresses
MA_{0} to MA_{13}
Raster addresses
$R A_{0}$ to $R A_{4}$

- Duty: $1 / 100 \times 2$
- Number of characters per row: 2 to 128 (program. mable)
- Font configuration: Vp: programmable
$H p=8$ (4-bit parallel output), $H p=4$ to 8 (ODD/EVEN
output)
- Attributes: Cursor ON/OFF/BLINK
- Scrolling, paging
- Data output: 4-bit parallel output, ODD/EVEN output
- Display system: AC inversion at each frame
- Crystal oscillator, external clock input
- Low power CMOS silicon gate process
- Single +5 V power supply
- 80-pin flat package

PIN CONFIGURATION

BLOCK DIAGRAM

Figure 1 Block diagram

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Rating	Unit
Power supply voltage	V_{DD}	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	$-0.3 \sim 6.0$	V
Input voltage	$\mathrm{V}_{I N}$	$\mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	$-0.5 \sim \mathrm{~V}_{\mathrm{DD}}+0.5$	V
Storage temperature	$\mathrm{T}_{\text {stg }}$	-	$-55 \sim 150$	${ }^{\circ} \mathrm{C}$

OPERATING RANGES

Parameter	Symbol	Condition	Rating	Unit
Power supply voltage	VDD	-	$4.5 \sim 5.5$	V
Operating temperature	$T_{\text {Op }}$	-	$-20 \sim 85$	${ }^{\circ} \mathrm{C}$

INPUT CHARACTERISTICS

$\left(V_{D D}=5 \mathrm{~V} \pm 10 \%, T_{a}=-20 \sim 85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	MIN	TYP	MAX	Unit	Applicable terminal
" H " input voltage	$\mathrm{V}_{1} \mathrm{H}$	2.2	-	VDD	V	$\mathrm{DB}_{0} \sim \mathrm{DB}_{7}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{DINH}, \mathrm{RD}_{0} \sim \mathrm{RD}_{7}$, $\overline{A D F}, \overline{C S}$, WIDE, RS, $\overline{R E S}, ~ E X B L$. MONO, 4B/ODEV.
"L" input voltage	$V_{\text {IL }}$	-0.3	-	0.8	V	
" H ' input volage	$V_{1 H}$	3.6	-	VDD	V	XT, TEST1, TEST2, $\overline{\text { DIV }}$
" L "' input voltage	$V_{\text {IL }}$	-0.3	-	1.0	\checkmark	
" H ' input voltage	$\mathrm{V}_{\text {IH }}$	2.4	-	VDD	V	$\begin{gathered} H P_{0} \sim H P_{2} \\ 640 \mathrm{D} \end{gathered}$
'"L' input voltage	$V_{\text {IL }}$	-0.3	-	0.6	V	
" H " input current	$\mathrm{IIH}^{\text {H }}$	-	-	-1	$\mu \mathrm{A}$	RS, $\overline{\mathrm{CS}}, \overline{\mathrm{WR}}, \overline{\mathrm{RD}}, \overline{\mathrm{ADF}}, \overline{\mathrm{RES}}, \overline{\mathrm{DIV}}$, MONO, 640D, $\mathrm{HP}_{0} \sim \mathrm{HP}_{2}$, DINH, DB_{0} to $\mathrm{DB}_{7}, \mathrm{RD}_{0}$ to RD_{7}
"L" input current	IIL	-	-	1	=A	
"H" input current	1 IH	-	-	-1	$\mu \mathrm{A}$	TEST1, TEST2,
"L' input current	1 IL	-	-	100	$\mu \mathrm{A}$	
Input capacitance	Cl_{1}	-	-	5	pF	All input terminals

OUTPUT CHARACTERISTICS

$\left(V_{D D}=5 V \pm 10 \%, T_{a}=-20 \sim 85^{\circ} \mathrm{C}\right)$

Parameter	Symbol		MIN	TYP	MAX	Unit	Applicable terminal
" H " output current	${ }^{1} \mathrm{OH}$	$\begin{aligned} & \mathrm{VOH}_{\mathrm{OH}}=2.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=4.2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -500 \\ & -100 \end{aligned}$	-	-	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} \mathrm{MA}_{0} \sim \mathrm{MA}_{13}, \\ \mathrm{DB}, \\ \mathrm{UD}_{0} \sim \mathrm{DB}_{7}, \\ \mathrm{UD}_{3}, \\ \mathrm{LD}_{0} \sim \mathrm{LD}_{3}, \end{gathered}$ CLP, FRP, FRMB LIP, BUSY, $\mathrm{CH}_{\phi} \mathrm{MA}_{\phi}$, fs
"L' output current	IOL	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	2.1	-	-	mA	

- DOT MATRIX LCD CONTROLLER •MSM6265GS

POWER CONSUMPTION
($\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	$V_{\text {OD }}$	Condition	MIN	TYP	MAX	Unit
Static current	IDDS	5_{v}	$f_{\text {OSC }}=0 \mathrm{~Hz}$, No load	-	-	50	μA
Dynamic current	IDD	5_{v}	$f_{\text {OSC }}=10 \mathrm{MHz}$, No load	-	-	15	mA

Note: TEST1 and TEST2 are open, and other inputs are either $V_{D D}$ or GND level.

SWITCHING CHARACTERISTICS

$\left(V_{D D}=5 \mathrm{~V} \pm 10 \%, T_{a}=-20\right.$ to $85^{\circ} \mathrm{C}$)

Parameters	Symbol	Load condition	MIN	TYP	MAX	Unit	Applicable
Rising and falling times	t_{r}	60pF	-	-	40	ns	All output terminal
	t_{f}	60 pF	-	-	40	ns	

MAXIMUM OPERATING FREQUENCY

$\left(V_{D D}=5 \mathrm{~V} \pm 10 \%, T_{a}=-20 \sim 85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit	
Oscillating frequency	$\mathrm{f}_{\text {osc }}$	$\overline{\overline{\mathrm{DIV}}=}{ }^{\prime \prime} \mathrm{L} "$	11	-	-	MHz	Crystal oscillator
Basic clock frequency	f_{s}	$\overline{\mathrm{DIV}}=$ " $\mathrm{H} "$	5.5	-	-	MHz	External clock

PIN DESCRIPTION

Pin No.	Pin name	1/0/2	Function
1	WIDE	1	Expansion mode when " H ". Normal when ' L ".
$\begin{gathered} 2 \\ 2 \\ 17 \end{gathered}$	$\begin{gathered} \mathrm{MA}_{13} \\ ? \\ \mathrm{MA}_{0} \end{gathered}$	0/Z	Address output to display RAM. High impedance when ADF = "L".
18	FRP	0	Frame signal
19	LIP	0	Display data latch signal
20	CE_{ϕ}	0	Segment Drv chip enable clock
21	CLP	0	Display data shift clock
22	FRMB	\bigcirc	Alternate signal
$\begin{gathered} 23 \\ ? \\ 26 \end{gathered}$	$\begin{gathered} \mathrm{LD}_{0} \\ \stackrel{?}{2} \\ \mathrm{LD} \mathrm{D}_{3} \\ \hline \end{gathered}$	0	Display data parallel outputs (lower side)
$\begin{gathered} 27 \\ ? \\ 30 \end{gathered}$	$\begin{gathered} U D_{0} \\ ? ~ \\ U D_{3} \end{gathered}$	0	Display data parallel outputs (upper side)
32	VDD		+5V
33	CH_{ϕ}	0	Character clock
34	BUSY	0	Ready status signal. " H " during serial transfer halt period.
35	EXBL	1	Cursor control signal input
36	$\overline{\text { ADF }}$	1	Address floating input. Floating when " L ".
37	RS	1	Register select input
38	$\overline{\mathrm{CS}}$	1	Chip select . . . selection status when $\overline{\mathrm{CS}}=$ " L "'
39	$\overline{\mathrm{R}}$	1	Read . . . data reading possible while $\overline{\mathrm{R}} \mathrm{D}=$ " L "
40	WR	1	Write . . . data writing executed by $\overline{W A}$ leading edge.
41	$\overline{\text { RES }}$	1	Reset signal input. Reset when "L'.
$\begin{gathered} 42 \\ ? \\ 50 \end{gathered}$	$\begin{gathered} \mathrm{DB}_{0} \\ ? \\ \mathrm{DB}_{7} \end{gathered}$	1/0/2	8 -bit data bus . . . three-state input/output common pins Pull-up registor on-chip Positive logic
$\begin{gathered} \hline 51 \\ ? \\ 59 \end{gathered}$	$\begin{gathered} \mathrm{RD}_{0} \\ ? \\ \mathrm{RD}_{7} \end{gathered}$	1	ROM data inputs . . . Dot pattern data of CGROM.
$\begin{gathered} 60 \\ 2 \\ 64 \end{gathered}$	$\begin{gathered} \mathrm{RA}_{0} \\ ? \\ \mathrm{RA}_{4} \end{gathered}$	O/Z	Raster address outputs. High impedance when $\overline{A D F}=$ " L ".
$\begin{aligned} & 65 \\ & 66 \end{aligned}$	$\begin{aligned} & \bar{X} \bar{X} \bar{T} \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	Crystal oscillator pins External clock is input to $X T$. ($\overline{\mathrm{XT}}$ is open.)
67	GND		OV
68	MONO	1	Change R9, R10, and R11 contents when " H ". Normal when " L ". Direct $V_{D D}$ and GND connections possible
$\begin{aligned} & \hline 69 \\ & 70 \end{aligned}$	$\begin{aligned} & \text { TEST }_{1} \\ & \text { TEST }_{2} \end{aligned}$	1	Test input pins Left open for use.
71	$\overline{\text { DIV }}$	1	External clock when " H ". Self-oscillation when " L ". Direct $V_{D D}$ and GND connections possible.
72	DINH	1	display OFF signal input. Display OFF when "L".
73	fs	0	Dot clock
74	MA ϕ	0	Memory address counter clock output
75	640D	1	40 -character memory address output and 80 -character data reading when " H " Normal when "L"
77	4B/ODEV	1	4-bit parallel output when " H ", ODD/EVEN output when " L ". Direct V_{DD} and GND connections possibie.
$\begin{gathered} 78 \\ ? \\ 80 \end{gathered}$	$\begin{gathered} H P_{0} \\ ? \\ H P_{2} \end{gathered}$	1	1 font horizontal pitch program input. Direct V_{DD} and GND connections possible.

TIMING CHARACTERISTICS OF LCDC CONTROL SIGNAL

LCDC Control Signals
$\left(C_{L}=30 \mathrm{pF}, V_{D D}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{a}}=-20\right.$ to $\left.85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	MIN	TYP	MAX	Unit
Clock cycle time	${ }^{\text {t }} \mathrm{p}$	180	-	-	ns
Clcck "H" level pulse width	PWH	80	-	-	ns
Clock "L' level pulse width	PWL	80	-	-	ns
Clock rising and falling edge time	$\mathrm{t}_{\mathrm{cr}}, \mathrm{t}_{\mathrm{cf}}$	-	-	20	ns
Dot clock delay time	$t_{f s}$	-	-	110	ns
Character clock delay time	${ }^{\text {t }} \mathrm{CH}$	-	-	100	ns
Memory address clock delay time	${ }^{\text {t }}$ MA ${ }_{\text {¢ }}$	-	-	340	ns
Memory address hold time	${ }^{\text {t MAH }}$	5	-	-	ns
Upper side address delay time	${ }^{\text {t MAU }}$	-	-	290	ns
Lower side address delay time	${ }^{\text {t MAL }}$	-	-	120	ns
Drawing address delay time	${ }^{\text {twRA }}$	-	-	40	ns
Display address delay time	${ }^{\text {t REA }}$	-	-	40	ns
Reset " H " level pulse width	tres	1	-	-	$\mu \mathrm{s}$

BUS TIMING CHARACTERISTICS

Bus Timing Characteristics
($C_{L}=50 p F, V_{D D}=5 \mathrm{~V} \pm 10 \%, T_{a}=-20$ to $85^{\circ} \mathrm{C}$)

Parameter	Symbol	MIN	TYP	MAX	Unit
Rs, $\overline{\mathrm{CS}}$ set-up time	tRCS	300	-	-	ns
$\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ pulse width	${ }^{\text {t }} \mathrm{CW}$	300	-	-	ns
Address hold time	${ }^{t} \mathrm{AH}$	40	-	-	ns
Data set-up time	${ }^{\text {t }} \mathrm{DS}$	200	-	-	ns
Data hold time	${ }^{\text {t }} \mathrm{DH}$	40	-	-	ns
Output disable time	${ }^{\text {t OM }}$	0	-	40	ns
Access time	t ACC	-	-	200	ns

LCD DRIVER INTERFACE TIMING CHARACTERISTICS

LCD Driver Interface Timing Characteristics

($C_{L}=30 \mathrm{pF}, V_{D D}=5 \mathrm{~V} \pm 10 \%, T_{a}=-20 \sim 85^{\circ} \mathrm{C}$)

Parameter	Symbol	MIN	TYP	MAX	Unit
Data delay time	tDA	-	-	100	ns
Cycle time for 1 character	${ }^{\text {t }} \mathrm{CH}$ ¢	730	-	-	ns
Latch signal delay time	${ }^{\text {t }}$ ¢	-	-	200	ns
Latch signal " H " time	${ }^{\text {t LIP }}$	1.46	-	-	μ_{s}
Chip enable clock delay time	${ }^{\text {t }}$ CE	-	-	200	ns
Chip enable clock " H ' time	${ }^{\text {t CE }}$ ¢	730	-	-	ns
Ready signal delay time	${ }^{\text {t }}$	-	-	200	ns
Ready signal " H " time	tbusy	5.11	-	-	μ_{s}
Frame signal delay time	${ }^{\text {t }}$ FRP	${ }^{2 t} \mathrm{CH} \phi$	-	$2 \mathrm{t} \mathrm{CH} \phi+200$	ns
AC signal delay time	${ }^{\text {t }}$ FR	-	-	200	ns

PATTERN DATA FETCHING TIMING

$\left(C_{L}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{a}}=-20 \sim 85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	MIN	TYP	MAX	Unit
Upper side data set-up time	tUDS	140	-	-	ns
Upper side data hold time	tUDH	40	-	-	ns
Lower side data set-up time	t LDS	140	-	-	ns
Lower side data hold time	tLDH	40	-	-	ns

FUNCTIONAL DESCRIPTION

1. LCDC Internal Registers

The internal registers include one address register (AR), and eight data registers R1 and R9 ~R15. (See Table 1).

1) Address register (AR)

When a data register is accessed, this register specifies the number of that register. Once this register has been written, the same value is held until the power is switched off without being influenced by $\overline{\mathrm{RES}}$.
2) Horizontal display character number setting register (\mathbf{R}_{1})

Setting of the number of characters per line on the screen. Any value from 2 to 128 can be set.

Example: $\mathbf{8 0}$-character setting $\left(50_{H}\right)$

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
L	H	L	H	L	L	L	L

3) Maximum raster address register (R9)

Setting of the value obtained by subtracting 1 from the raster counter corresponding to one line. The vertical pitch V_{p} for 1 font can be set to any value from 1 to 32.
Example: $V_{p}=8$ setting

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
L	L	L	L	L	H	H	H

4) Cursor start raster register (R10)

This is one of the cursor control registers. The raster address of the top edge of the cursor is specified in the five lower order bits, and the cursor display mode is specified in the two higher order bits. The cursor display mode is set to either mode A or mode B by the EXBL input pin.

Cursor display mode A

D_{6}	D_{5}	$E X B L=$ ' H '"
L	L	Cursor displayed in stationary position
L	H	No cursor display
H	L	Cursor blinked on and off every 32 frames
H	H	Cursor blinked on and off every 64 frames

Cursor display mode B

D_{6}	D_{5}	$E X B L=$ " L "'
L	L	
L	H	
H	L	No cursor display
H	H	

Note 1 \& 2:
Blinking cycles:

Note 3:
If the blinking cycle is applied to EXBL from an. external source with $\mathrm{D}_{6}=0$ and $\mathrm{D}_{5}=0$, the cursor is blinked on and off by the EXBL frequency.

5) Cursor end raster address (R11)

This is another cursor control register. This register specifies the raster address of the bottom edge of the cursor. The relation to R10 is outlined below.

- $H P=7, V_{p}=11$, cursor start address
\leq cursor end address \leq maximum raster address

Cursor start address $=9$
Cursor start address $=\mathbf{1 0}$

Cursor end address $=5$

- $H P=7, V_{p}=11$, cursor start address $>$ cursor end address

Cursor start address $=9$
Cursor end address $=8$

- Maximum raster address < cursor start address \leqq cursor end address.

Cursor display is switched off.
Note: When the cursor overlaps pattern data, the result of an EX-OR operation between the cursor signal and the pattern data is displayed.
6) Start address registers (R12 \& R13)

Register for setting the memory address corresponding to the first character in the first line on the screen. The LCDC commences data display from this address. Both reading and writing are possible, and when reading, the two higher order bits become " 00 ".

7) Cursor registers (R14 \& R15)

The cursor display address is specified by two bytes. The LCDC controls the cursor when the memory address MAxx reaches this address while within the R10/R11 range.
Both reading and writing are possible, and when reading, the two higher order bits become " 00 ".

Table 1 MSM6265GS internal registers

$\overline{\mathrm{CS}}$	RS	Address register				Register	Register name	READ	WRITE	Data bit							
		3	2	1	0					7	6	5	4	3	2	1	0
H	X	X	X	X	X		Invalid	-	-								
L	L	X	X	X	X	AR	Address register	X	-	X	X	X	\times				
L	H	L	L	L	H	R_{1}	Horizontal display character count	X	0	X							
L	H	H	L	L	H	R_{9}	Maximum raster address	X	0	X	X	X					
L	H	H	L	H	L	R_{10}	Cursor start raster	x	0	X	B	P					
L	H	H	L	H	H	R_{11}	Cursor end raster	X	0	X	X	X					
L	H	H	H	L	L	R_{12}	Start address (H)	0	0	X	X						
L	H	H	H	L	H	R_{13}	Start address (L)	0	0								
L	H	H	H.	H	L	R_{14}	Cursor (H)	0	0	X	x						
L	H	H	H	H	H	R_{15}	Cursor (L)	0	0								

Note 1: B denotes cursor blinking, and P denotes the blinking cycle period.
Note 2: " 00 " is read if registers marked X are read.
2. R9, R10, \& R11 Register Re-Reading

Function

The maximum raster register (R9), cursor start raster (R10), and cursor and raster (R11) are re-read in the following way when the MONO input pin is switched to " H ". Normal operation when "L".

- Maximum raster address (R9)

R9 setting	R9 re-reading
$0 \sim 7$	0 to 7 (according to setting)
$8 \sim 1 \mathrm{~F}(\mathrm{H})$	Fixed at 7

- Cursor start raster (R10)

R10 setting	R10 re-reading
$0 \sim 6$	0 to 6 (according to setting)
$7 \sim 1 \mathrm{~F}(\mathrm{H})$	Fixed at 6

- Cursor end raster (R11)

R11 setting	R11 re-reading
$0 \sim 7$	0 to 7 (according to setting)
$8 \sim 1 \mathrm{~F}$	Fixed at 7

Note: Since MSM6265 has been fixed at 1/100 duty $\times 2$, the 25 -line structure will no longer be possible if V_{p} exceeds 8 . If this function is used, 25 -line displays can be achieved even if $V_{p}>8$ is set by the CRTC application sof tware.

3. 40-Character Mode

If the 640D input pin is set to " H ", memory addresses for 40 characters per horizontal line are output to $M A_{0} \sim M A_{13}$ regardless of the R1 contents. Pattern data equivalent to 80 characters per horizontal line is fetched.
Normal when "L". See time chart in Figures 9 and 11.

4. Display Off Function

Whenthe DINH input pin is set to " L ", 0 is output by $U D_{0} \sim U D_{3}$ and $L D_{0} \sim L D_{3}$, resulting in the display being switched off. This function is useful in cases where the power supply is switched on, and where the display is to be left off for relatively long periods of time. Leave set to " H " when the function is not to be used.

5. External Clock Operation

Operation by external clock is enabled when the $\overline{\mathrm{DIV}}$ input pin is set to " H ". The external clock is applied to $\overline{X T}$ input.
The crystal oscillator is used when the pin is left at "L".

6. Address Output Floating

$\mathrm{MA}_{0} \sim \mathrm{MA}_{13}$ and $\mathrm{RA}_{0} \sim \mathrm{RA}_{4}$ are switched to high impedance when the ADF input pin is set to " L ". This function can be used when the memory bus is opened to other than LCDC (for example to drawing cycle from refresh cycle).

7. Power Down Function

The LCDC generates the CE_{ϕ} output signal for chip select of the segment driver. This $C E \phi$ signal is connected to the ECLK input of MSM5279GS. Note that this function can only be used when in 4 -bit parallel output mode. See the time chart in Figure 13.

8. Expansion Mode

The shift clock count is doubled when " H " is applied to the WIDE input pin. Normal mode, when " L " is applied. In this mode, the clock frequency has to be changed.
Example: When 40 -characters per line has been set The number of display dots in the horizontal direction is changed to 640
The difference between 80 -characters per line in normal mode and 40 -characters per line in expansion mode is outlined in the following diagram.

" A " displayed in normal mode

" A " displayed in expansion mode

The data transfer time charts are shown in Figures 3 and 4.

9. Refresh Memory Address ($M A_{0} \sim M A_{13}$) Operation

1) $\mathbf{M A}_{0} \sim$ MA $_{13}$ Operation

In the horizontal direction, the MAxx output is synchronized with the CH_{ϕ} trailing edge. And although MAxx is counted up even if the horizontal display character count is exceeded, this does not effect the display since no data is being transferred at the time. The interval in
which data transfer is stopped corresponds to eight characters, and when that interval is exceeded, a single horizontal cycle is completed and the next cycle is commenced. Memory address operation is as indicated in Figure 5 below.

Figure 5 Refresh memory address ($\mathrm{MA}_{0} \sim \mathrm{MA}_{13}$)
Note: When start address is 0000,80 characters $\times 25$ lines, $V p=8$.

2) Upper and Lower Screen Division

Since the screen is divided into upper and lower halves, MAxx for the upper side and MAxx for the lower side are sent by LCDC.

- Simultaneous output of upper and lower screen halves
The upper and lower screen half addresses are sent upon being switched within a single character period. The upper side address is sent when the CH_{ϕ} is " L " while the lower side address is sent when CH_{ϕ} is " H ".

10. Output Mode Setting

Output mode is set by the 4B/ODEV input pin.

No.	4B/ODFV	Output mode
Mode 1	L	Simultaneous output of upper side and lower side data under 2-bit parallel data processing mode.
Mode 2	H	Simultaneous data output of upper side and lower side data under 4-bit parallel data processing mode.

\cdot
The time charts for modes 1 and 2 are shown in Figure $10 \sim$ Figure 13 .

Note: MSM5260GS is used for the segment and common drivers. See Figure 8 and Figure 9 for the time chart.

Figure 6 Mode 1 data flow

Note: MSM5279GS is used for the segment driver, and MSM5278GS is used for the common driver. See Figure 10 and Figure 11 for the time chart.

[^6]
's

$\mathrm{o}_{2} \mathrm{Z} \mathrm{I}$

ub_{3}

11. Relation between Duty and Number of Lines

Duty is fixed at $1 / 100 \times 2$. The screen is divided into upper and lower halves. The number of lines is determined according to the following equation.

Number of lines (number of characters in vertical display) $=200 / V_{p}$

Note: V_{p} is the vertical pitch for 1 font (R9 contents)
Example 1. 25 lines when $V_{p}=8$
Example 2. 20 lines when $V_{p}=10$
Example 3. When $V_{p}=14$ is set, only two rasters of contents are displayed in the line 8 font.

12. H_{p} Setting

The horizontal pitch H_{p} for 1 font is set by input pins $H_{0} \sim H_{2}$.

$H P_{2}$	$H P_{1}$	$H P_{0}$	$H P$
L	H	H	4
H	L	L	5
H	L	H	6
H	H	L	7
H	H	H	8

Note: $H_{p}=8$ is fixed in 4-bit parallel output mode. $H_{p}=4$ to 8 can only be set in ODD/EVEN output mode.
L denotes GND, and H denotes $V_{D D}$.

13. Crystal Oscillator Frequency Calculation

External clock or self-oscillation is selected by the $\overline{\text { DIV input pin. }}$

$\overline{\text { DIV }}$	Oscillation source
L	Crystal oscillator
H	External clock connected to $\overline{X T}$ input pin.

$f_{\text {osc }}$ calculation equation
$f_{\text {osc }}=F R P \times(H N+8) \times H_{p} \times 1 /$ Duty $\times M$
where FRP is the frame frequency,
HN is the horizontal display character count. $H P$ is the horizontal pitch for 1 font.
8 denotes the data transfer stopped interval, 8 characters per horizontal line, and $M=2$ when $\overline{\text { DIV }}$ is L $M=1$ when $\overline{\text { DIV }}$ is H

Example of crystal oscillator Frequency Calculation
Calculation of output modes 1 and 2 with horizontal display character count of 80 characters, HP of 8 , V_{p} of 8 , and $1 /$ duty $=100$.

Substitute FRP $=70 \mathrm{~Hz}, \mathrm{HN}=80, \mathrm{Hp}=8$,
1 duty $=100$, and $M=2$ into the equation. $f_{\text {osc }}=9.856(\mathrm{MHz})$
14. Character Clock $\left(\mathrm{CH}_{\phi}\right)$ Frequency Calculation
$\mathrm{CH}_{\phi}=$ FRP $\times(\mathrm{HN}+8) \times 1 /$ Duty
Example: $\mathrm{FRP}=70 \mathrm{~Hz}, \mathrm{HN}=80$, and $1 /$ Duty $=100$
$\mathrm{CHO}=70 \times 88 \times 100=616(\mathrm{~K} \cdot \mathrm{~Hz})$
$=1.62\left(\mu_{\mathrm{s}}\right)$ (approx.)
Note: The CH_{ϕ} cycle period is not related to output mode.

15. Shift Clock (CLP) Frequency Calculation

If the same conditions as in the fosc calculated are used,

$$
\begin{aligned}
& \left.C L P=f_{s} / 2=2.464(\mathrm{MHz}) \quad \text { (Output mode } 1\right) \\
& \left.C L P=\mathrm{fs}_{\mathrm{s}} / 4=1.232(\mathrm{MHz}) \quad \text { (Output mode } 2\right)
\end{aligned}
$$

16. LCD Driver Interface

Signals related to the LCD driver include FRP, FRMB, CLP, CE $\dot{\varphi}$, and LIP. The time charts for these signals are shown in Figures 13 and 14.

APPLICATION NOTE

1. Mono-Chro Mode

Only character mode is available in Mono-Chro mode. There is no graphic mode in this mode. Description of character mode is described as follows.

Character box	$: 8 \times 8$
Character font	$:$ According to the CGROM
	contents
Shape of cursor	$: 2$ rasters
Display	$: 80$ characters $\times 25$ lines

- Character box

Horizontal pitch of the font is determined by $H P_{2} \sim H P_{0}$. In the mono-chro mode, all of $H P_{2} \sim H P_{0}$ should be set at " H " level and this determines the horizontal pitch at 8 . Since the number of horizontal dot of the LCD is fixed at 640 dots, 80 characters/line can be displayed on the LCD panel.
Vertical pitch of the font is determined by R_{9} contents. In the mono-chro mode, the vertical pitch of the font should be set at 8 . Since the number of vertical dot of the LCD is fixed at 200 dots, 25 lines are displayed on the LCD. Even if the vertical pitch is set at 14^{*}, it will be read as 8 when MONO input pin is set at " H " level.

* In the case of CRT display control by HD6845, vertical pitch is set at 14.

- Character font

The construction of character font can be changed according to the CG ROM contents. The pattern data has to be written into so that it can meet the character box.

- Shape of cursor

The shape of cursor is determined by R_{10} and R_{11} contents. Since the vertical pitch (14) is read as 8 , the R_{10} and R_{11} contents have to be re-read.
Setting MONO input pin at " H " enables this re-reading as follows.
(example)
MSM6265 CRT Software
$\mathrm{R}_{10}: 6 \leftarrow \mathrm{R}_{10}: \mathrm{B}$
$R_{11}: 7 \leftarrow R_{11}: C$

- Attribute

In this mode following attribute functions are available.

Character inversion, Display off, Under line, Cursor On/Off/Blink

These attribute functions are determined by the external circuit, however, the contents of these attribute functions are stored in the attribute RAM.
In the Figure 15, writing data into the attribute RAM and character code RAM is effected by assigning the even number address to the character code and odd number address to the attribute function after selecting A_{0} of the address bus from the CPU.
In reading out the data, 2-bytes are read out simultaneously.
Memory Address
B0000
Character code

B0001 Attribute \begin{tabular}{c}
B0002

 Character code \quad B0003

Attribute

.

.

.
\end{tabular}

- Cursor blink

The cursor blink frequency should be supplid from the external source to EXBL.

Figure 15 Mono-Chro mode (80 characters $\times 25$ lines)

2. Color Mode

Both character mode and graphic mode are available in the color mode.

1) Character mode

Character box : 8×8
Character font : 5×7 or 7×7
Shape of cursor : 2 rasters
Display $\quad: 80$ characters $\times 25$ lines or 40 characters $\times 25$ lines (display expasion mode)

The registers which determine the vertical pitch and the shape of cursor are determined as follows.

$$
R_{9}: 07, R_{10}: 06, R_{11}: 07
$$

So, MONO input pin can be either "H" or "L".

- $\mathbf{4 0}$ characters $\times 25$ lines display

The shape of displayed characters have to be horizontally enlarged double to enable 40 characters/line display. To enable 40 characters/ line display, WIDE input pin has to be set at " H " level. In this mode, however, the clock frequency has to be changed.
(example)
$f(O S C)$ is calculated by following formula. $\mathrm{f}(\mathrm{OSC})=\mathrm{F}_{\mathrm{RP}} \times\left(\mathrm{H}_{\mathrm{N}} \times 8\right) \times H P \times 1 / D U T Y \times M$ f (OSC) is 4.928 MHz when $\mathrm{F}_{\mathrm{RP}}=70 \mathrm{~Hz}$, $H_{N}=80, H_{p}=8$, DUTY $=1 / 100$ and $M=1$. So, if H_{N} is changed to $40, f(O S C)$ has to be changed to 2.464 MHz to maintain other conditions.

2) Graphic mode

640 dots $\times 200$ dots graphic display is enabled if the vertical pitch is set at 2 and number of horizontal characters is set at 40 . In this case, the constructure of the display buffer address are described in Figure 16.

If 8 K byte is assigned to the even number address and odd number address respectively as CPU address, a signal is necessary for the RAM address signal. This signal (MA) is provided when 640D input pin is set at " H " level. Figure 17 shows an example of system configuration in the color mode.

$R A_{0}$	$M A_{11}$	$M A_{10}$	$M A_{9}$	$M A_{8}$	$M A_{7}$	$M A_{6}$	$M A_{5}$	$M A_{4}$

Figure 16

3. DISPLAY METHOD

V-RAM is provided in the system configuration. So, inadequate access of CPU to the V-RAM results flickers on the display. Therefore, refresh cycle and CPU cycle should come alternatively, in other words, without omitting the refresh cycle, the V-RAM is accessed. This is commonly called the "Cycle Steal Method". Figure 18 shows the timing chart.

Writing data into V-RAM has to be done during the course of the CPU cycle. So, external circuit is necessary to generate timing for $\overline{W R}$ signal. In reading the data of the V-RAM, the data bus has to be latched as the address bus is changing alternatively. Figure 19 shows an example circuit.

Figure 19 Wait control circuit

Legend

Symbol	Function
M-WR	Write signal to V-RAM from CPU
M-RD	Read signal to V-RAM from CPU
V-RAM SEL	Address bus of CPU is decoded and being output
ADR SEL	Address bus switching signal. $1 / 4$ of fs signal is to be output
READY	Signal which let the CPU to wait
$\overline{W R}$	Write signal of V-RAM
DATA LATCH	Signal to latch the data output from V-RAM

All specifications and details published are subject to change without notice.

```
OKI Electric Industry Co., Ltd.
10-3 Shibaura 4-chome, Minato-ku,
Tokyo 108, Japan
Tel: Tokyo 454-2111
Telex J22627
Fax: Tokyo452-5912 (GIII)
Electronics devices Group
Overseas Marketing Dept.
Overseas Marketing Dept.
```

OKI Semiconductor Group
650 N Mary Avenue
Sunnyvale, Calif 94086, US A
Tel 408-720-1900
Telex: 9103380508 OKI SUVL
Fax: 408-720-1918 (GIII)

OKI Electric Europe GmbH
Niederkasseler Lohweg 8 D 4000 Düsseldorf 11 West Germany
Tel 0211-59550
Telex 8584312
Fax: 0211-591669 (GIII

OKI Electronics (Hong Kong) Lid
16 th Floor Fairmont House, 8 Cotton Tree Drive, Hong Kong
Tel 5-263111-3
Telex 62459 OKIHK HX
Fax 5-200102 (GIII)

[^0]: OKI makes no warranty for the use of its products and assumes no responsibility for any errors which may appear in this document nor does it make a commitment to update the information contained herein.
 OKI retains the right to make changes to these specifications at any time, without notice.

[^1]: *1: Applicable to all terminals except OSC. This condition is applied to OSC in the external oscillation mode.
 *2: Applicable to DATA OUT 32, DATA OUT 48.
 *3: Applicable to OSC.
 *4: Applicable to CLOCK.
 *5: Applicable to all terminals except OSC terminal.

[^2]: * 21 pin is used as a $V_{D D}$ supporting pin, however, 21 pin alone cannot be used as $V_{D D}$ pin.

[^3]: *1 Applicable to LOAD, CP, DT $1, D F$ and COM/SEG pins.
 *2 DO_{80}

 * $3 V_{N}=V_{D D} \sim V_{5} \quad V_{2}=8 / 9\left(V_{D D}-V_{5}\right) \quad V_{3}=1 / 9\left(V_{D D}-V_{5}\right)$
 *4 Applicable to $\mathrm{O}_{1} \sim \mathrm{O}_{80}$ display data output pin.

[^4]: $V_{\text {LCD }}$ is the LCD driving voltage. (For " N (LCD line number), refer to the initial set of the instruction code.)

[^5]: ($\mathrm{V}_{\mathrm{LCD}}$: LCD driving voltage)

[^6]: Figure 7 Mode 2 data flow

