IHO

 Y009 甘VO IS7 WOJ

TELECOM LSI DATA BOOK

TELECOM LSI DATA BOOK

 1987PRODUCT LINE-UP

PACKAGING

II

DATA SHEET

APPLICATION NOTE FOR SINGLE CHIP MODEM
© Copyright 1986, OKI ELECTRIC INDUSTRY COMPANY, LTD.
OKI makes no warranty for the use of its products and assumes no responsibility for any errors which may appear in this document nor does it make a commitment to update the information contained herein.
OKI retains the right to make changes to these specifications at any time, without notice.

CONTENTS

I PRODUCT LINE-UP
II PACKAGING

- 16 PIN PLASTIC DIP II-5
- 18 PIN PLASTIC DIP II-5
- 22 PIN PLASTIC DIP II-6
- 24 PIN PLASTIC DIP II-6
- 28 PIN PLASTIC DIP II-7
- 40 PIN PLASTIC DIP II-7
- 42 PIN PLASTIC DIP II-8
- 16 PIN CERAMIC DIP (CERDIP) II-8
- 22 PIN CERAMIC DIP (CERDIP) II-9
- 28 PIN CERAMIC DIP (CERDIP) II-9
- 120 PIN CERAMIC PGA II-10
- 132 PIN CERAMIC PGA II-10
- 24 PIN PLASTIC FLAT II-11
- 32 PIN PLASTIC FLAT II-11
- 44 PIN PLASTIC FLAT II-12
- 56 PIN PLASTIC FLAT II-12
- 60 PIN PLASTIC FLAT II-13
- 28 PIN PLCC II-13
- 44 PIN PLCC II-14
- 28 PIN CERAMIC CC II-14
- 64 PIN MINI SIZE PLASTIC DIP II-15
III DATA SHEET
A. MODEM APPLICATION
MSM6926 SINGLE CHIP FSK MODEM, 300 BPS FULL DUPLEX, CCITT V. 21 .. III-A-5
MSM6946 SINGLE CHIP FSK MODEM, 300 BPS FULL DUPLEX, BELL 103 III-A-5
MSM6927 SINGLE CHIP FSK MODEM, 1200 BPS HALF DUPLEX,CCITT V. 23III-A-28
MSM6947 SINGLE CHIP FSK MODEM, 1200 BPS HALF DUPLEX, BELL 202 . III-A-28MSM6948 SINGLE CHIP MSK MODEM, 1200 BPSIII-A-56
CHIP SET FOR BELL 212A MODEM III-A-67
CHIP SET FOR 2400 BPS FULL DUPLEX MODEM III-A-81
MSM6928-06 DSP FOR OKI'S 1200 BPS FDX MODEM CHIP SET III-A-138
MSM61057 GATE ARRAY FOR OKI'S 1200 BPS FDX MODEM CHIP SET III-A-152
MSM6928-07 DSP FOR OKI'S 2400 BPS FDX MODEM CHIP SET III-A-164
MSM61077 GATE ARRAY FOR OKI'S 2400 BPS FDX MODEM CHIP SET III-A-178
MSM6950 ANALOG FRONT END FOR 1200 BPS/2400 BPS FDX MODEM III-A-187
MSM6949 ANALOG FRONT END FOR 4800 BPS/9600 BPS HDX MODEM III-A-220
B. TELEPHONE APPLICATION
MSM6052 4-BIT MCU WITH ON-CHIP DTMF GENERATOR III-B-3
MSM6052-01 TONE/PULSE REPERTORY DIALER III-B-14
MSM6052-20 TONE/PULSE REPERTORY DIALER III-B-14
MSM6052-05 TONE/PULSE REPERTORY DIALER III-B-28
MSM6052-10 TONE/PULSE REPERTORY DIALER III-B-28
MSM6052-11 TONE/PULSE REPERTORY DIALER III-B-28
MSM6052-25 TONE/PULSE REPERTORY DIALER III-B-49
MSM5070 TONE/PULSE DIALER WITH REDIAL III-B-63
MSM5071 TONE/PULSE DIALER WITH REDIAL III-B-63
MSM6224 TONE DIALER III-B-73
MSM6234 TONE DIALER III-B-81
C. COMBO CODEC
MSM6932 μ-LAW COMBO CODEC III-C-3
MSM6933 A-LAW COMBO CODEC III-C-3
MSM6962 μ-LAW COMBO CODEC III-C-14
MSM6963 A-LAW COMBO CODEC III-C-14
MSM6982 μ-LAW COMBO CODEC III-C-14
MSM6983 A-LAW COMBO CODEC III-C-14
MSM6996H A-LAW COMBO CODEC III-C-28
MSM6997H $\quad \mu$-LAW COMBO CODEC III-C-28
MSM6996V A-LAW COMBO CODEC III-C-28
MSM6997V \quad-LAW COMBO CODEC III-C-28
MSM6998 A-LAW COMBO CODEC III-C-28
MSM6999 μ-LAW COMBO CODEC III-C-28
MSM6814 μ-LAW COMBO TA CODEC III-C-44
MSM6815 A-LAW COMBO TA CODEC III-C-44
D. PABX APPLICATION
MSA4710 BSH LSI FOR SLIC III-D-3
MSA4722-1 RINGING SWITCHES FOR CODEC III-D-19
MSM6912 PCM VOICE CHANNEL FILTER III-D-30
MSM6913 8-BIT SERIAL-PARALLEL CONVERTER III-D-39
MSM6914 HIGHWAY SWITCH MATRIX III-D-46
E. DIGITAL SIGNAL PROCESSOR
MSM77C20 DIGITAL SIGNAL PROCESSOR III-E-3
MSM6992 HIGH-SPEED FLOATING POINT DIGITAL SIGNAL PROCESSOR III-E-19
F. CELLULAR MOBILE PHONE
MSM6807 BASEBAND FILTER FOR AMPS CELLULAR PHONE III-F-3
MSM6817 BASEBAND FILTER FOR TACS CELLULAR PHONE III-F-3
MSM6808 SPLIT FILTER FOR AMPS CELLULAR PHONE III-F-20
MSM6818 SPLIT FILTER FOR TACS CELLULAR PHONE III-F-20
MSM74017 MODEM FOR CELLULAR MOBILE PHONE III-F-39
MSM6960 PLL FREQUENCY SYNTHESIZER III-F-51
G. OTHERS
MSM6252 FIFO MEMORY III-G-3
MSM6920 SINGLE CHIP DTMF DECODER FOR PABX III-G-12
MSM6945 SINGLE CHIP DTMF DECODER FOR TERMINAL III-G-12
MSM6980-03 32K-BIT/SEC ADPCM CODEC III-G-26
IV APPLICATION NOTE FOR SINGLE CHIP MODEM IV-3

PRODUCT LINE－UP

Type No．	Function	Features		Power		Package	Process	Applications
				Supply （V）	Con－ sump－ tion （mW）			
MSM6926	Single Chip FSK Modem， 300 bps Full Duplex	－CCITT V． 21 －Modulator，Demodula－ tor，Filters and Carrier Detect		＋5，＋12	90	$\begin{aligned} & 28 \text { Pin DIP } \\ & 44 \text { Pin FLAT } \end{aligned}$	CMOS	－POS terminal －CAT system －Handy data terminal
MSM6946	Single Chip FSK Modem， 300 bps Full Duplex	－Bell 103 －Modulator，Demodula－ tor，Filter and Carrier Detect		＋5，＋12	90	$\begin{aligned} & 28 \text { Pin DIP } \\ & 44 \text { Pin FLAT } \end{aligned}$	CMOS	－Tele－writing system －Vending ma－ chine
MSM6927	Single Chip FSK Modem， 1200 bps Half Duplex	－CCITT V． 23 －Modulator，Demodula－ tor，Filters and Carrier Detect		＋5，＋12	90	$\begin{aligned} & 28 \text { Pin DIP } \\ & 44 \text { Pin FLAT } \end{aligned}$	CMOS	system Coin telephone
MSM6947	Single Chip FSK Modem， 1200 bps Half Duplex	－Bell 202 －Modulator，Demodula－ tor，Filters and Carrier Detect		＋5，＋12	90	$\begin{aligned} & 28 \text { Pin DIP } \\ & 44 \text { Pin FLAT } \end{aligned}$	CMOS	
MSM6948	Single Chip MSK Modem， 1200 bps	－Mod tor， PLL －Carri 15	ulator，Demodula－ Filters and Digital ier Frequency： $500 \pm 300 \mathrm{~Hz}$	＋5	15	$\begin{aligned} & 18 \text { Pin DIP } \\ & 24 \text { Pin FLAT } \end{aligned}$	CMOS	－Wireless com－ munication －Cordless tele－ phone －Pager
CHIP SET	1200 bps Full Duplex Modem	－Bell 212A －Hayes Compatible －Adaptive Equalizing Function		± 5.0	600	－	CMOS	－Stand alone modem －Modem card
		$\left\lvert\, \begin{aligned} & \text { 上 } \\ & w \\ & \frac{0}{J} \\ & \bar{J} \end{aligned}\right.$	MSM6928－06					
			MSM6950					
			MSM61057					
			MSM80C31					
			MSM81C55A					
CHIP SET	2400 bps Full Duplex Modem	－CCITT V． 22 bis Bell 212A －Adaptive Equalizing Function		± 5.0	400	－	CMOS	－Stand alone modem ． －Modem card
		$\begin{array}{\|l} \hline \stackrel{亡}{w} \\ \text { 号 } \\ \bar{\top} \\ \hline \end{array}$	MSM6928－07					
			MSM6950					
			MSM61077					
$\begin{gathered} \text { MSM6928- } \\ 06 \end{gathered}$	$\begin{aligned} & \text { DSP for OKI's } \\ & 1200 \text { bps FDX } \\ & \text { Modem Chip Set } \end{aligned}$	－Demodulator －Carrier PLL，Timing P_{LL} －Adaptive EOL －Carrier Detect		＋5．0	150	$\begin{aligned} & 42 \text { Pin DIP } \\ & 60 \text { Pin FLAT } \end{aligned}$	CMOS	OKI＇s 1200 bps FDX Modem Chip Set
MSM61057	Gate Array for OKI＇s 1200 bps FDX Modem Chip Set	－Asynchronous／Syn－ chronous and Syn－ chronous／Asynchronous Converters$\cdot P_{L L}$		＋5．0	50	$\begin{aligned} & 40 \text { Pin DIP } \\ & 60 \text { Pin FLAT } \end{aligned}$	CMOS	
$\underset{07}{\text { MSM6928- }}$	$\begin{aligned} & \text { DSP for OKI's } \\ & 2400 \text { bps FDX } \\ & \text { Modem Chip Set } \end{aligned}$	－Demodulator －Adaptive EOL		＋5．0	150	$\begin{aligned} & 42 \text { Pin DIP } \\ & 60 \text { Pin FLAT } \end{aligned}$	CMOS	OKI＇s 2400 bps FDX Modem Chip Set
MSM61077	Gate Array for OKI＇s 2400 bps FDX Modem Chip Set	－Asynchronous／Syn－ chronous and Syn－ chronous／Asynchro－ nous connecters －PLL		＋5．0	50	60 Pin FLAT	CMOS	

Type No.	Function	Features	Power				Applications
			Supply (V)	$\begin{array}{\|c\|} \hline \text { Con- } \\ \text { sump- } \\ \text { tion } \\ \text { (mW) } \end{array}$	Package	Process	
MSM6950	Analog Front End for $1200 \mathrm{bps} / 2400$ bps FDX Modem	- Analog Functions for CCITT V.22, V. 22 bis and Bell 212A - 8-bit D/A and A/D Converter	± 5.0	100	42 Pin DIP 56 Pin FLAT	CMOS	- $V .22$ modem - V. 22 bis modem - Bell 212A modem
MSM6949	Analog Front End for $4800 \mathrm{bps} / 9600$ bps HDX Modem	- Analog Functions for CCITT V.26, V. 27 and V. 29 -8-bit D/A and A/D Converter - Band Limiting Filter, AGC	± 5.0	140	64 Pin Mini DIP	CMOS	- V. 26 modem - V. 27 modem - V. 29 modem
MSM6052	4-bit MCU with On-Chip DTMF Generator	- 2,048×14-bit ROM - 640×4-bit RAM - 3×4 Input Port - 3×4 Output Port - 1×4 Input/Output Port	$\begin{gathered} +2.5 \sim \\ +6.0 \end{gathered}$	$\begin{gathered} 3.6 \\ (3 \mathrm{~V}) \\ 20 \\ (6 \mathrm{~V}) \end{gathered}$	$\begin{aligned} & 28 \text { Pin DIP } \\ & 40 \text { Pin DIP } \\ & 44 \text { Pin FLAT } \\ & \text { DIE } \end{aligned}$	CMOS	- Telephone - Answering machine - Security system
MSM6052- 01 MSM6052- 20	Tone/Pulse Repertory Dialer	- 500 Digit Memory (54 Numbers) - Last Number Redial: 32 Digit - Make/Break Ratio Selectable - Dial Pulse Ratio Selectable - Off-hook Memory Storing	$\begin{aligned} & +2.5 \sim \\ & +6.0 \end{aligned}$	$\begin{gathered} 3.6 \\ (3 \mathrm{~V}) \\ 20 \\ (6 \mathrm{~V}) \end{gathered}$	28 Pin DIP	CMOS	Feature phone
MSM6052- 05 MSM6052- 10	Tone/Pulse Repertory Dialer	- 500 Digit Memory (54 Numbers) - Last Number Redial: 32 Digit - Make/Break Ratio Selectable - Dial Pulse Ratio Selectable - On-hook/Off-hook Memory Storing - 4-bit Parallel Data Input	$\begin{gathered} +2.5 \sim \\ +6.0 \end{gathered}$	$\begin{gathered} 3.6 \\ (3 \mathrm{~V}) \\ 20 \\ (6 \mathrm{~V}) \end{gathered}$	44 Pin FLAT	CMOS	
MSM605211	Tone/Pulse Repertory Dialer	- 500 Digit Memory (54 Numbers) - Last Number Redial: 32 Digit - Make/Break Ratio Selectable - Dial Pulse Ratio Selectable - On-hook Memory Storing	$\begin{gathered} +2.5 \sim \\ +6.0 \end{gathered}$	$\begin{gathered} 3.6 \\ (3 \mathrm{~V}) \\ 20 \\ (6 \mathrm{~V}) \end{gathered}$	28 Pin DIP	CMOS	
$\begin{array}{\|c} \text { MSM6052- } \\ 25 \end{array}$	Tone/Pulse Repertory Dialer	- 505 Digits Memory (52 Numbers) - Last Number Redial: 32 Digit - Make/Break Ratio Selectable - Dial Pulse Ratio Selectable - Off-hook Memory Storing	$\begin{gathered} +2.5 \sim \\ +6.0 \end{gathered}$	$\begin{gathered} 3.6 \\ (3 \mathrm{~V}) \\ 20 \\ (6 \mathrm{~V}) \end{gathered}$	28 Pin DIP	cMOS	

Type No.	Function	Features	Power		Package	Process	Applications
			Supply (V)	Con-sumption (mW)			
MSM5070	Tone/Pulse Dialer with Redial	- Last Number Redial: 31 Digits - Make/Break: 33/67	$\begin{array}{r} +3.5 \sim \\ +6.0 \end{array}$	55	18 Pin DIP	CMOS	- Telephone - Answering machine - Security system - Modem phone - Feature phone
MSM5071	Tone/Pulse Dialer with Redial	- Last Number Redial: 31 Digits - Make/Break: 40/60	$\begin{gathered} +3.5 \sim \\ +6.0 \end{gathered}$	55	18 Pin DIP	CMOS	
MSM6224	Tone Dialer	- MK5087 Compatible	$\begin{gathered} +2.5 \sim \\ +8.5 \end{gathered}$	$\begin{gathered} 25 \\ \text { (MAX) } \end{gathered}$	16 Pin DIP	CMOS	
MSM6234	Tone Dialer	MK5089 Compatible - Easy Interface with MCU	$\begin{gathered} +2.5 \sim \\ +8.5 \end{gathered}$	$\begin{gathered} 25 \\ (M A X) \end{gathered}$	16 Pin DIP	CMOS	
MSM6932	COMBO CODEC	- MSM6932: μ-Law - MSM6933: A-Law - Serial Data Rate: 64K bps~2048K bps	± 5.0	65	16 Pin DIP	CMOS	- PABX - Key system - SLIC - PCM system - ADPCM system - Digital telephone - Voice recognition - Digital voice recorder
MSM6933							
MSM6962	COMBO CODEC	- MSM6962, MSM6982: μ-Law - MSM6963, MSM6983: A-Law - Serial Data Rate: 512/1024/1536/1544 / 2048 K bps	± 5.0	55	16 Pin DIP	CMOS	
MSM6963							
MSM6982					28 Pin PLCC		
MSM6983							
MSM6996H	COMBO CODEC	- MSM6996H: A-Law - MSM6997H: μ-Law - Serial Data Rate: 64 K bps~2048K bps - 600Ω Drive Capability	± 5.0	65	16 Pin DIP	CMOS	
$\begin{gathered} \text { MSM6997- } \\ H \end{gathered}$							
MSM6996V	COMBO CODEC	- MSM6996V : A-Law - MSM6997V : μ-Law - Serial Data Rate: 64k bps~2048k bps - 600Ω Drive and Analog Loop Test Capability	± 5.0	65	16 Pin DIP	CMOS	
MSM6997V							
MSM6998	COMBO CODEC	- MSM6998: A-Law - MSM6999: μ-Law - Serial Data Rate: 64k bps ~ 2048k bps - 600Ω Push-pull Drive and Analog Loop Test Capability	± 5.0	70	16 Pin DIP	CMOS	
MSM6999							
MSM6814	COMBO CODEC with Time Slot Assignment	- MSM6814: μ-Law MSM6815: A-Law - Time Slot Assignment: 32 Time/Frame Maximum - Serial Data Rate: 512/1024/1536/1544/ 2048k bps	± 5.0	70	22 Pin DIP 28 Pin PLCC	CMOS	
MSM6815							
MSA4710	BSH LSI for SLIC	- Battery Feed, Supervision and Hybrid Function - Loop Current Capability: 20~80 mA - Longitudinal Balance: 53 dB	$\begin{aligned} & -48, \\ & \pm 5.0 \end{aligned}$	120	28 Pin DIP	Bipolar	- PABX -SLIC
$\begin{gathered} \text { MSA4722- } \\ 1 \end{gathered}$	RINGING SWITCHES for SLIC	- Ringing, Line Test Function - Breakdown Voltage: 350 V - ON Resistance: 6Ω - DC Current Capability: 250mA	± 5.0	40	22 Pin DIP	Bipolar	

Type No.	Function	Features	Power		Package	Process	Applications
			Supply (V)	Con-sumption (mW)			
MSM6912	PCM Voice Channel Filter	Transmit BPF: $0.3 \sim 3.4 \mathrm{kHz}$ Receive LPF: $0 \sim 3.4 \mathrm{kHz}$	± 5.0	50	16 ' Pin Ceramic DIP	CMOS	- PABX - Digital switching system - Multiplexer
MSM6913	8-bit Serialparallel Converter	-8-bit Serial-parallel/ Parallel-serial Conversion - Maximum Operating Frequency: 9 MHz	+5.0	$\begin{gathered} 250 \\ \text { (MAX) } \end{gathered}$	24 Pin DIP	CMOS	
MSM6914	Highway Switch Matrix	- Matrix Size: 16-bit x 4-bit x 3-layers - Maximum Operating Frequency: 9 MHz	+5.0	$\begin{gathered} 650 \\ \text { (MAX) } \end{gathered}$	120 Pin Ceramic PGA	CMOS	
$\begin{gathered} \text { MSM77C- } \\ 20 \end{gathered}$	Digital Signal Processor	- Instruction Cycle: 250 ns Instruction ROM: 512×23-bit - Data ROM: $512 \times$ 13-bit - Data RAM: 128 x 16-bit - Multiplexer: $16 \times 16=$ 31 bits	+5.0	120	$\begin{aligned} & 28 \text { Pin DIP } \\ & 44 \text { Pin PLCC } \end{aligned}$	CMOS	- Modem - Voice synthesizer - Voice recognition
MSM6992	High Speed Floating Point Digital Signal Processor	- Data Form: Floating Point $16 E 6 \times 16 E 6 \rightarrow 16 E 6$ Fixed Point $16 \times 16 \rightarrow 31$ - Instruction Cycle: $100 \mathrm{~ns} / 125 \mathrm{~ns}$ - ROM: Internal 1k x 32-bit External $64 \mathrm{k} \times 32$-bit -RAM: Internal $128 \times 22 \text {-bit } \times 2$ External $64 \mathrm{k} \times 22$-bit - Data Word Length: 22 bit	+5.0	400	132 Pin PGA	CMOS	- Modem - Voice Recognition - Echo canceller - ADPCM
MSM6807	Baseband Filter for Cellular	- Voice BPF, Preemphasis, De-emphasis	+5.0	30	32 Pin FLAT	cmos	- Wireless Communication
MSM6817		and Smoothing Filter MSM6807 : AMPS MSM6817 : TACS					- Cellular phone
MSM6808	Split Filter for Cellular Mobile Phone	- 10k bps/8k bps SPL Modem Timing Extractor	+5	40	44 Pin FLAT	CM	
MSM6818		SPL modem - DTMF Tone Generator MSM6808 : AMPS MSM6818 : TACS					
MSM74017	Modem for Cellular Mobile Phone	- SPL Modem - Built in Data PLL - Built in SAT PLL	+5.0	20	56 Pin FLAT	CMOS	
MSM6960	PLL Frequency Synthesizer	- 10 bits Programmable and 7 bits Swallow Counter - Selectable Reference Divider: 2^{9} or 2^{10}	+5.0	20	24 Pin FLAT	CMOS	- Wireless Communication

Type No.	Function	Features	Power		Package	Process	Applications
			$\begin{gathered} \text { Supply } \\ \text { (V) } \end{gathered}$	Con-sumption (mW)			
MSM6252	FIFO Memory	- 64 Words x 4-bit First-in First-out Memory F3341 (Fairchild) Compatible	+5.0	80	16 Pin DIP	CMOS	- Digital transmission system - LAN
MSM6920	Single Chip DTMF Decoder for $P^{P A B X}$	- Receive Signal Level: $-5 \sim-32 \mathrm{dBm}$ - Voice Hit Protection Filter	$\begin{aligned} & +5.0 \\ & +12.0 \end{aligned}$	80	28 Pin DIP	CMOS	- PABX - Key system - Dial-in equipment
MSM6945	Single Chip DTMF Decoder for Terminal	- Receive Signal Level: $-5 \sim-48 \mathrm{dBm}$ - Echo Control Circuit:	$\begin{aligned} & +5.0, \\ & +12.0 \end{aligned}$	80	28 Pin DIP	CMOS	- Security system - Answering machine . - Telecontrol system - Dial-in equipment
MSM6980	32k-bit/sec ADPCM CODEC	OKI's Original 24k bps and 32 k bps ADPCM Algorithm 9600 bps Data Transmission Capability Selectable Coder and Decoder Functions	+5.0	70	42 Pin DIP	CMOS	- Digital transmission system

PACKAGING

Product Name	No. of Pins	PACKAGE						
		RS	AS	AS	GS	JS	ES	SS
		$\begin{gathered} \hline \text { PLASTIC } \\ \text { DIP } \end{gathered}$	$\begin{gathered} \text { CERAMIC } \\ \text { DIP } \end{gathered}$	PGA	PLASTIC FLAT	PLASTIC LCC	$\begin{aligned} & \text { CERAMIC } \\ & \text { CC } \end{aligned}$	MINI-SIZE PLASTIC DIP
MSM6926	28	\bigcirc						
	44				\bigcirc			
MSM6946	28	\bigcirc						
	44				\bigcirc			
MSM6927	28	\bigcirc						
	44				\bigcirc			
MSM6947	28	0						
	44				0			
MSM6948	18	0						
	24				\bigcirc			
MSM6928-06	42	\bigcirc						
	60				0			
MSM61057	40	0						
	60				0			
MSM6928-07	42	\bigcirc						
	60				\bigcirc			
MSM61077	60				\bigcirc			
MSM6950	42	O						
	56				\bigcirc			
MSM6949	64							\bigcirc
MSM6052	28	\bigcirc						
	40	\bigcirc						
	44				\bigcirc			
MSM6052-01	28	\bigcirc						
MSM6052-05	44				0			
MSM6052-10	40	\bigcirc						
MSM6052-11	28	\bigcirc						
MSM6052-20	28	\bigcirc						
MSM6052-25	28	\bigcirc						
MSM5070	18	\bigcirc						
MSM5071	18	\bigcirc						
MSM6224	16	\bigcirc						
MSM6234	16	\bigcirc						
MSM6932	16	\bigcirc	0					
MSM6933	16	\bigcirc	0					
MSM6962	16.	\bigcirc	\bigcirc					
MSM6963	16	O	\bigcirc					
MSM6982	28					0	0	
MSM6983	28					\bigcirc	\bigcirc	
MSM6996H	16	\bigcirc	\bigcirc					
MSM6997H	16	O	O					
MSM6996V	16	0	0					
MSM6997V	16	\bigcirc	0					
MSM6998	16	\bigcirc	\bigcirc					
MSM6999	16	\bigcirc	\bigcirc					

Product Name	No. of Pins	PACKAGE						
		RS	AS	AS	GS	JS	ES	SS
		PLASTIC DIP	CERAMIC DIP	PGA	PLASTIC FLAT	PLASTIC LCC	CERAMIC CC	MINI-SIZE PLASTIC DIP
MSM6814	22	\bigcirc	\bigcirc					
	28					\bigcirc		
MSM6815	22	\bigcirc	-					
	28					0		
MSA4710	28	0						
MSA4722-1	22	\bigcirc						
MSM6912	16		\bigcirc					
MSM6913	24	\bigcirc						
MSM6914	120			\bigcirc				
MSM77C20	28	\bigcirc	\bigcirc					
	44					\bigcirc		
MSM6992	132			0				
MSM6807	32				\bigcirc			
MSM6817	32				\bigcirc			
MSM6808	44				\bigcirc			
MSM6818	44				\bigcirc			
MSM74017	56				\bigcirc			
MSM6960	24				\bigcirc			
MSM6252	16	\bigcirc						
MSM6920	28	\bigcirc						
MSM6945	28	\bigcirc						
MSM6980-03	42	\bigcirc						

- 16 PIN PLASTIC DIP

- 18 PIN PLASTIC DIP

- 22 PIN PLASTIC

- 24 PIN PLASTIC DIP

- 28 PIN PLASTIC DIP

II

- 40 PIN PLASTIC DIP

- 42 PIN PLASTIC DIP

- 16 PIN CERAMIC DIP (CERDIP)

- 22 PIN CERAMIC DIP (CERDIP)

- 28 PIN CERAMIC DIP (CERDIP)

- 120 PIN CERAMIC PGA

- 132 PIN CERAMIC PGA

- 24 PIN PLASTIC FLAT

II

- 32 PIN PLASTIC FLAT

- 44 PIN PLASTIC FLAT

- 56 PIN PLASTIC FLAT (L)

- 60 PIN PLASTIC FLAT

- 28 PIN PLCC

- 28 PIN CERAMIC CC

- 64 PIN MINI SIZE PLASTIC DIP

 DATA SHEEI

MSM6926 CCITT V.21/ MSM6946 BEL 103

300 BPS SINGLE CHIP MODEM

GENERAL DESCRIPTION

The MSM6926 and the MSM6946 are OKI's 300 bps single chip modem series that transmit and receive serial, binary data over a switched telephone network using frequency shift keyed (FSK) modulation.

The MSM6926 is compatible with CCITT V. 21 series data sets, while the MSM6946 is compatible with Bell 103 series data sets.

These devices provide all the necessary modulation, demodulation, and filtering required to implement a serial, asynchronous communication link.

OKI's single chip modem series are designed for users who are not telecommunication experts and are easy to use cost effective alternative to standard discrete modem design.

CMOS LSI technology provides the advantages of small size, low power, and increased reliability.

The design of the integrated circuit assures compatibility with a broad base of installed low speed modems and acoustic couplers. Applications include interactive terminals, desk top computers, point of sale equipment, and credit verification systems.

FEATURES

- Compatible with CCITT V. 21 (MSM6926)
- Compatible with BELL 103 (MSM6946)
- CMOS silicon gate process
- Switched capacitor and advanced CMOS analog technology
- Data rate from zero to 300 bps
- Full duplex (2-wire)
- Originate and Answer modes
- Selectable built-in timers and external delay timers possible
- All filtering, modulation, demodulation, and DTE interface on chip
- TTL compatible digital interface
- Low power dissipation 90 mW
- 28 pin plastic DIP package
- 44 pin plastic FLAT package

BLOCK DIAGRAM

PIN CONFIGURATION (TOP VIEW)
28 LEAD PLASTIC DIP PACKAGE (RS)

44 LEAD PLASTIC FLAT PACKAGE (GS-K)

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Ratings	Unit
Power supply voltage	VA	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ With respect to AG or DG	-0.3 ~ 15	V
	VD		-0.3~7	
Analog * ${ }_{1}$ input voltage	VIA		-0.3 ~VA + 0.3	
Digital *2 input voltage	VID		-0.3 ~VD +0.3	
Operating temperature	TOP	-	$0 \sim 70$	
Storage temperature	TSTG	-	$-55 \sim 150$	

*1 CDR2, AIN
2 X1, LT, $\overline{C C}, \overline{R S 1}, \overline{R S 2}, X D, \frac{ 3}{C D 2}, R D 2, M, F T, T S 1, T S 2$
${ }^{* 3}: \overline{\mathrm{CD} 2}$ is I / O terminal.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Power supply voltage	VA	With respect to AG	10.8	12.0	13.2	V
	VD	With respect to DG	4.75	5.00	5.25	
	AG, DG			0		
Operating temperature	TOP		0		70	${ }^{\circ} \mathrm{C}$
CRYSTAL				3.579545		M Hz
R_{1}		Transformer impedance $=600 \Omega$		600		Ω
R_{2}				51		k Ω
R_{3}				51		
R_{4}				51		
R_{5}				51		
R_{6}				51		
R_{7}				51		
R_{8}				33		
R,				51		
$\mathrm{C}_{0}, \mathrm{C}_{1}$				0.047		$\mu \mathrm{F}$
C_{2}				2.2		
C_{3}			1.0			
C_{4}			0.01			
C_{5}				10		
C_{6}				10		

Application circuits using above conditions are proviced in Figure 8.

DC AND DIGITAL INTERFACE CHARACTERISTICS

$\left(\mathrm{VA}=12 \mathrm{~V} \pm 10 \%, \mathrm{VD}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{a}}=0 \sim 70^{\circ} \mathrm{C}\right)$						
Parameter	Symbol	Condition	Min	Typ	Max	Unit
Power supply current	IA	Ordinary operation		7.5	15.0	mA
	ID			1.0	2.0	
Input leakage current *1	IIL	$V_{1}=O_{V}$	-10		10	$\mu \mathrm{A}$
	${ }_{1} \mathrm{H}$	$V_{1}=V_{D}$	-10		10	
Input voltage *1	$\stackrel{\rightharpoonup}{V}_{\text {IL }}$		0		0.8	V
	$\mathrm{V}_{\text {IH }}$		2.2		VD	
Output voltage *2	V_{OL}	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$	0		0.4	
	$\mathrm{VOH}_{\mathrm{OH}}$	$\mathrm{IOH}=400 \mu \mathrm{~A}$	$0.8 \cdot \mathrm{VD}$		VD	

1 LT, $\overline{C C}, \overline{R S 1}, \overline{R S 2}, X D, \stackrel{ 3}{C D 2}, R D 2, M, F T, T_{S 1}, T_{S 2}$
2 CLK, $\overline{\mathrm{CS}}, \mathrm{RD}, \overline{\mathrm{CD} 1}, \stackrel{ 3}{\mathrm{CD} 2}, \mathrm{RD} 1$
*3 $\overline{\mathrm{CD} 2}$ is I/O terminal.

ANALOG INTERFACE CHARACTERISTICS

1. MSM6926

(VA $\left.=12 \mathrm{~V} \pm 10 \%, \mathrm{VD}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{a}}=0 \sim 70^{\circ} \mathrm{C}\right)$								
Parameter	Symbol	Condition	Min	Typ	Max	Unit		

Transmit Carrier Out ($\mathrm{A}_{\mathbf{0}}$)

ORIGINATE MODE Carrier frequency	Mark 1	fom	${ }^{\text {f }}$ CRYSTAL $=3.579545 \mathrm{MHz}$	974	980	986	Hz
	$\begin{gathered} \text { Space } \\ 0 \end{gathered}$	fos		1174	1180	1186	
ANSWER MODE Carrier frequency	Mark 1	${ }^{\text {f }} \mathrm{AM}$		1644	1650	1656	
	$\begin{gathered} \text { Space } \\ 0 \end{gathered}$	${ }^{\text {f }}$ AS		1844	1850	1856	
Output resistance		ROXA				200	Ω
Load resistance		R LXA		50			$k \Omega$
Load capacitance		CLXA				100	PF
Transmit level		VOXA		4	6	8	${ }^{* 1} \mathrm{dBm}$
Output offset voltage		Vosx		$\frac{\mathrm{VA}}{2}-1$	$\frac{\mathrm{VA}}{2}$	$\frac{\mathrm{VA}}{2}+1$	V
Out-of-band energy (referred to carrier level)		EOX	$\mathrm{C}_{1}=0.047 \mu \mathrm{~F}$	Refer to Figure 1			dB

Receive Carrier Input (AIN)

Input resistance		RIRA		100		$k \Omega$
Receive signal level range		VIRA		-48	-6	* ${ }^{1} \mathrm{dBm}$
Carrier detect level	ON	$\mathrm{V}_{\text {CD }} \mathrm{ON}$	$\begin{aligned} & \mathrm{R}_{8}=33 \mathrm{k} \Omega^{* 2} \\ & \mathrm{R}_{9}=51 \mathrm{k} \Omega \end{aligned}$		-43	
	OFF	$\mathrm{V}_{\text {CD }}$ OFF		-48		
Carrier detect hysteresis		HYS	$\mathrm{V}_{\text {CD }} \mathrm{ON}-\mathrm{V}_{\text {CD }} \mathrm{OFF}$	2		dB

Receive Filter

Group delay distortion	DDL	ORIG. MODE	$1600 \sim 1900 \mathrm{~Hz}$		800		
	ANS. MODE	$930 \sim 1230 \mathrm{~Hz}$		850	$\mu \mathrm{~S}$		
	LAC	$V_{\text {AIN }}=-6 \mathrm{dBm}$		50		dB	

Note: *1 $0 \mathrm{dBm}=0.775 \mathrm{Vrms}$
*2 The resistor values are typical.

Figure 1 MSM6926 Out-of-Band Energy referred to Carrier Level ($C_{1}=0.047 \mu \mathrm{~F}$)

2. MSM6946

$$
\left(\mathrm{VA}=12 \mathrm{~V} \pm 10 \%, \mathrm{VD}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{a}}=0 \sim 70^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Condition	Min	Typ	Max	Unit

Transmit Carrier Out ($\mathrm{A}_{\mathbf{0}}$)

ORIGINATE MODE Carrier frequency	Mark 1	${ }^{\text {f OM }}$	${ }^{\mathrm{f}}$ CRYSTAL $=3.579545 \mathrm{MHz}$	1264	1270	1276	Hz
	Space 0	${ }^{\text {f }} \mathrm{OS}$		1064	1070	1076	
ANSWER MODE Carrier frequency	Mark 1	${ }^{\text {f }} \mathrm{AM}$		2219	2225	2231	
	Space 0	${ }^{\text {f }}$ AS		2019	2025	2031	
Output resistance		ROXA				200	Ω
Load resistance		$\mathrm{R}_{\text {LXA }}$		50			$\mathrm{k} \Omega$
Load capacitance		$C_{\text {LXA }}$				100	PF
Transmit level		VOXA		4	6	8	${ }^{* 1} \mathrm{dBm}$
Output offset voltage		V OSX		$\frac{V A}{2}-1$	$\frac{\mathrm{VA}}{2}$	$\frac{V A}{2}+1$	V
Out-of-band energy (referred to carrier level)		EOX	$\mathrm{C}_{1}=0.047 \mu \mathrm{~F}$	Refer to Figure 4			dB

Receive Carrier Input (AIN)

Input resistance		RIRA		100		$k \Omega$
Receive signal level range		VIRA		-48	-6	* ${ }^{1} \mathrm{dBm}$
Carrier detect level	ON	$\mathrm{V}_{\text {CD }} \mathrm{ON}$	$\begin{aligned} & R_{8}=33 \mathrm{k} \Omega^{* 2} \\ & \mathrm{R}_{9}=51 \mathrm{k} \Omega \end{aligned}$		-43	
	OFF	$V_{\text {CD }}$ OFF		-48		
Carrier detect hysteresis		HYS	$\mathrm{V}_{\text {CD }} \mathrm{ON}-\mathrm{V}_{\text {CD }} \mathrm{OFF}$	2		dB

Receive Filter

| Group delay
 distortion | ORIG.
 MODE | $1975 \sim 2275 \mathrm{~Hz}$ | | 650 | | |
| :--- | :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| | | $1020 \sim 1320 \mathrm{~Hz}$ | | 750 | | |

Note: *1 $0 \mathrm{dBm}=0.775 \mathrm{Vrms}$
*2 The resistor values are typical.

Figure 4 MSM6946 Out-of-Band Energy referred to Carrier Level ($C_{1}=0.047 \mu \mathrm{~F}$)

DEMODULATED BIT CHARACTERISTICS
$\left(V A=12 V \pm 10 \%, V D=5 V \pm 5 \%, T_{a}=0 \sim 70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Condition			Min	Typ	Max	Unit
Peak intersymbol distortion	ID	Back-to-back over input signal range -6 to -40 dBm. 511-bit test pattern.				6		\%
Bit error rate	BER	Back-to-back with $0.3 \sim 3.4 \mathrm{kHz}$ flat noise. Receive signal level -25 dBm .				10^{-5}		

TIMING CHARACTERISTICS

1. MSM6926

(VA $\left.=12 \mathrm{~V} \pm 10 \%, \mathrm{VD}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{a}}=0 \sim 70^{\circ} \mathrm{C}\right)$								
Parameter	Symbol	Condition	TS2	TS1	Min	Typ	Max	Unit
RS/CS delay time	T_{RC} ON	$\begin{aligned} & \text { RS1 }=" ' 0^{\prime \prime} \\ & \rightarrow \text { CS }=" 0 \prime \prime \end{aligned}$	0	0	395	400	405	ms
			0	1	25	30	35	
			1	0	345	350	355	
			1	1	External delay timer			
	TRC OFF	$\begin{aligned} & \mathrm{RS} 1="{ }^{1 "} \\ & \rightarrow \mathrm{CS}=" 1 ", \end{aligned}$	*	*	0		0.5	
CD/ON delay time	$\mathrm{T}_{\mathrm{CD}} \mathrm{ON}$		0	0	300		320	
			0	1	5		20	
			1	0	150		170	
			1	1	External delay timer			
CD/OFF delay time	TCD OFF		0	0	20		70	
			0	1	20		70	
			1	0	10		40	
			1	1	External delay timer			
Soft Turn-OFF time	$\mathrm{T}_{\text {ST }}$		*	*		10		

Refer to Figure 7.
Note: * Irrespective of $1 / 0$ condition.
2. MSM6946

Parameter	Symbol	Condition	TS2	TS1	Min	Typ	Max	Unit
RS/CS delay time	Trc ON	$\begin{aligned} & \text { RS1 }="{ }^{\prime \prime}{ }^{\prime \prime} \\ & \rightarrow \mathrm{CS}=" 0 \text { " } \end{aligned}$	0	0	195	200	205	ms
			0	1		+		
			1	0		+		
			1	1	External delay timer			
	TRS OFF	$\begin{aligned} & \text { RS1 = " } 1 " \text { ", } \\ & \rightarrow \mathrm{CS}=" 1 " \end{aligned}$	*	*	0		0.5	
CD/ON delay time	$\mathrm{T}_{\mathrm{CD}} \mathrm{ON}$		0	0	100		120	
			0	1		+		
			1	0		+		
			1	1	External delay timer			
CD/OFF delay time	TCD OFF		0	0	10		50	
			0	1		+		
			1	0		+		
			1	1	External delay timer			
Soft Turn-OFF time	$\mathrm{T}_{\text {ST }}$		*	*		10		

Refer to Figure 8.
Note: * Irrespective of $1 / 0$ condition.

+ Reserved

TIMING DIAGRAM

Figure 7 MSM6926/6946 Timing Diagram

PIN DESCRIPTIONS

Name	Pin No.		I/O	Function
	RS	GS-K		

POWER

DG	15	19		Ground reference of V_{D} (digital ground)
AG	19	23		Ground reference of V_{A} (analog ground)
V_{A}	24	33		Supply voltage $\left(+12 \mathrm{~V}^{\text {nominal })}\right.$
V_{D}	26	35		Supply voltage $(+5 \mathrm{~V}$ nominal)

CLOCKS

X1	1	41		Master clock timing is provided by either a series resonant crystal (3.579545 MHz $\pm 0.01 \%$) connected across X1 and
X2, or by an external TTL/CMOS clock driving X2 with AC				
coupling where X1 is left unconnected. See Figure 10.				

CONTROL

LT	4	44	I	Digital loop back. During digital "High", any data sent on the X_{D} pin will appear on the RD pin, and any data sent on the $\overline{\mathrm{RS} 1}$ pin will immediately appear on the $\overline{\mathrm{CS}}$ pin. Any data demodulated from the received carrier on the AIN pin will be the modulated data to implement the transmitted carrier. In this case, sending the transmitted carrier to the phone line depends on the $\overline{\mathrm{CC}}$, but never on $\overline{\mathrm{RS} 1}$.
$\overline{C C}$	5	2	I	During digital loopback, the data on this pin becomes a control signal for sending the transmitted carrier to the phone line in place of $\overline{\mathrm{RS} 1}$.
$\overline{\mathrm{RS} 2}$	8	8	I	When an external circuit gives the RS/CS delay time which is not within the device as required, this pin should be connected to the external circuit output. See Figure 11.
$\overline{\text { CD1 }}$	11	12	0	The fast carrier detection output. This pin is internally connected to the input of the built-in carrier detect delay circuit. When an external delay circuit provides the delay time which is not within the device as required, the $\overline{\mathrm{CD}} 1$ should be connected to the external circuit input. See Figure 11.

Name	Pin No.		I/O	Function
	RS	GS-K		
$\overline{\mathrm{CD} 2}$	12	13	I/O	When an external circuit gives the carrier detect delay time which is not within the device as required, this pin becomes the input pin for the external circuit output signal. In other cases (when using the delay time within the device, the data on the TS1 or TS2 is not digital "High"), this pin becomes the Carrier-Detect signal output.
RD1	13	14	0	The RD1 data is demodulated data from the received carrier and the RD2 is the input of the following logic circuits referred to in Figure 12. Usually, the RD1 data is
RD2	14	16	I	the data that is controlled by NCU (Network-Control-Unit) etc. may be required in stead of the RD1 data.
CDR1	16	20	0	These two pins are the output (CRD1) and inverting input (CDR2) of the buffer operational amplifier of which noninverting input is connected to the built-in voltage reference, stabilized to variations in the supply voltage and
CDR2	17	21	I	level can be set by selecting the ratio of R_{8} and R_{9}. Therefore, the loss in the received carrier level by phone-line transformer can be compensated by adjusting the ratio of R_{8} and $R_{9} . R_{8}+R_{9}$ should be greater than $50 \mathrm{k} \Omega$.
M	22	31	I	Answer/Originate mode select. During digital "High", the originate mode is selected. A low input selects the answer mode.
FT	23	32	I	This pin may be used for device tests only. During digital "High", the AO pin will be connected to receiving filter output instead of transmitting filter output.
TS1	27	36	I	RS/CS delay and carrier detect delay options referred to chapter about timing characteristics are selected by TS1 and TS2 inputs. Be careful that each delay can not be individually selected. If the other delay time unprovided within the device as option is required, input digital "High"
TS2	28	38	I	to the TS1 and TS2 pin and implement the external delay circuits to obtain the desired delay characteristics. In this case, the CD2 pin becomes not only the input for the external circuit output signal, but also the Carrier Detect output. See Figure 11.

Name	Pin No.		I/O	Function
	RS	GS-K		

INPUT/OUTPUT

$\overline{\mathrm{CS}}$	6	3	0	Clear-to-Send signal output. The digital "High" level indicates the "OFF" state and digital "Low" indicates the "ON" state. This output goes "Low" at the end of a delay (RS/CS delay) initiated when $\overline{\mathrm{RS1}}$ (Request-to-Send) goes "Low".
$\overline{\mathrm{RS} 1}$	7	4	I	Request-to-Send signal input. The digital "High" level indicates the "OFF" state. The digital "Low" level indicates the "ON" state and instructs the modem to enter the transmit mode. This input must remain "Low" for the duration of data transmission. "High" turns the transmitter off.
XD	9	9	I	This is digital data to be modulated and transmitted via AO. Digital "High" will be transmitted as "Mark". Digital "Low" will be transmitted as "Space". No signal sppears at A_{O} unless $\overline{R S 1}$ is "Low".
RD	10	10	0	Digital data demodulated from AIN is serially available at this output. Digital "High" indicates "Mark" and digital "Low" indicates "Space". For example, under the following condition, this output is forced to be "Mark" state because the data may be invalid. - When CD2 (Carrier-detect) is in the "OFF" state.
SG2 SG1	18 20	22	0 0	The SG1 and SG2 are built-in analog signal grounds. SG2 is used only for Carrier-Detect function. The DC voltage of SG1 is approximately 6 V , so the analog line interface must be implemented by AC coupling. See Figure 9. To make impedance lower and ensure the device performance, it is necessary to put bypass capacitors on SG1 and SG2 in close physical proximity to the device.
AIN	21	26	I	This is the input for the analog signal from the phone line. The modem extracts the information in this modulated carrier and converts it into a serial data stream for presentation at RD output.
AO	25	34	0	This analog output is the modulated carrier to be conditioned and sent over the phone line.

Note：1．The crystal should be wired in close physical proximity to the device．
2．High level signals should not be routed next to low level signals．
3．Bypass capacitors on $V_{A}, S G 1$ ，and SG2 should be as close to the device as possible．$_{\text {she }}$ ．
4．AG and DG should be connected as close to the system ground as possible．
Figure 8 Application Circuit Using MSM6926RS／MSM6946RS

Figure 9-2 MSM6926RS/MSM6946RS Application

C_{0}, C_{1}	$0.047 \mu \mathrm{~F}$	R_{2}	$51 \mathrm{k} \Omega$	R_{6}	$(51 \mathrm{k} \Omega)$
C_{2}	$2.2 \mu \mathrm{~F}$	R_{3}	$51 \mathrm{k} \Omega$	Receive signal level	
C_{3}	$1 \mu \mathrm{~F}$	R_{4}	$51 \mathrm{k} \Omega$	R_{7}	$51 \mathrm{k} \Omega$
R_{1}	600Ω	R_{5}	$(51 \mathrm{k} \Omega)$	Transmit signal level	R_{9}

Note: The signal level on the AIN pin should not exceed -6 dBm .

Crystal Oscillator Connection

*1 TTL or Hi-Speed CMOS GATE
*2 Left unconnected
External Oscillator Connection
Figure 10

(A) RS/CS delay, (B) CD/ON delay, (C) CD/OFF delay

Note: Supply voltage equals V_{D} for all gates.
*: The desired delay can be realized by selecting the appropriate bits from 4020's outputs.
The number of the bits is not always 3 . Each delay can be set differently from built-in delays.

Figure 11 External Delays Connection

Figure 12 Equivalent Logic Interface of the Integrated Modem

Figure 13 External Resistor Connection for the Setting of Carrier Detect Level

MSM6927 CCITT V.23/ MSM6947 BELL 202

1200 BPS SINGLE CHIP MODEM

GENERAL DESCRIPTION

The MSM6927 and the MSM6947 are OKI's 1200 bps single chip modem series that trasmit and receive serial, binary data over a telephone network using frequency shift keyed (FSK) modulation.

The MSM6927 is compatible with CCITT V. 23 series data sets, while the MSM6947 is compatible with BELL 202 series data sets.

These devices provide all the necessary modulation, demodulation, and filtering required to implement a serial, asynchronous communication link.

OKI's single chip modem series are designed for users who are not telecommunication experts and are easy to use cost effective alternative to standard discrete modem design.

CMOS LSI technology provides the advantages of small size, low power, and increased reliability.

The design of the integrated circuit assures compatibility with a broad base of installed low speed modems and acoustic couplers. Applications include interactive terminals, desk top computers, point of sale equipment, and credi verification systems.

FEATURES

- Compatible with CCITT V. 23 (MSM6927)
- Compatible with BELL 202 (MSM6947)
- CMOS silicon gate process
- Switched capacitor and advanced CMOS analog technology
- Data rate from zero to $1200 \mathrm{~b} / \mathrm{s}$
- Half duplex (2-wire)
- Receive Squelch delay and Soft-Turn OFF
- Selectable built-in timers and external delay timers possible
- All filtering, modulation, demodulation, and DTE interface on chip
- Crystal controlled oscillator on chip
- TTL compatible digital interface
- Low power dissipation 90 mW
- 28 pin plastic DIP package
- 44 pin plastic FLAT package

BLOCK DIAGRAM

PIN CONFIGURATION (TOP VIEW)

28 LEAD PLASTIC DIP PACKAGE (RS)

All pin descriptions except No. 27 and No. 28 pins are same for both MSM6927RS and MSM6947RS.

44 LEAD PLASTIC FLAT PACKAGE (GS-K)

All pin descriptions except No. 36 and No. 28 pins are same for both MSM6927GS-K and MSM6947GS-K.

* Both No. 17 pin and No. 39 pin are set to be at VA level by setting No. 33 pin at VA level.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Ratings	Unit
Power supply voltage	VA	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ With respect to AG or DG	-0.3 ~ 15	V
	VD		$-0.3 \sim 7$	
Analog *1 input voltage	VIA		$-0.3 \sim \mathrm{VA}+0.3$	
Digital *2 input voltage	VID		-0.3 ~ VD + 0.3	
Operating temperature	TOP	-	$0 \sim 70$	${ }^{\circ} \mathrm{C}$
Storage temperature	TSTG	-	$-55 \sim 150$	

*1 CDR2, AIN
2 $\mathrm{X} 1, \mathrm{LT}, \overline{\mathrm{CC}}, \overline{\mathrm{RS} 1}, \overline{\mathrm{RS} 2}, \mathrm{XD}, \stackrel{ 3}{\mathrm{CD} 2}, \mathrm{RD} 2, \overline{\mathrm{SO}}, \mathrm{TS}_{1}$ (TS), TS $2(\overline{\mathrm{ATE}})$
*3 $\overline{\mathrm{CD} 2}$ is I / O terminal.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Power supply voltage	VA	With respect to AG	10.8	12.0	13.2	V
	VD	With respect to DG	4.75	5.00	5.25	
	AG, DG			0		
Operating temperature	Top		0		70	${ }^{\circ} \mathrm{C}$
CRYSTAL			.	3.579545		MHz
R_{1}		Transformer impedance $=600 \Omega$		600		Ω
R_{2}				51		$k \Omega$
R_{3}				51		
R_{4}				51		
R_{5}				51		
R_{6}				51		
R_{7}				51		
R_{8}				33		
R ,				51		
$\mathrm{C}_{0}, \mathrm{C}_{1}$				0.047		$\mu \mathrm{F}$
C_{2}				2.2		
C_{3}			1.0			
C_{4}			0.01			
C_{5}				10		
C_{6}				10		

Application circuits using above conditions are proviced in Figure 8.

DC AND DIGITAL INTERFACE CHARACTERISTICS

$\left(\mathrm{VA}=12 \mathrm{~V} \pm 10 \%, \mathrm{VD}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{a}}=0 \sim 70^{\circ} \mathrm{C}\right)$						
Parameter	Symbol	Condition	Min	Typ	Max	Unit
Power supply current	IA	Ordinary operation		9.0	18.0	mA
	ID			1.0	2.0	
Input leakage current *1	IIL	$v_{1}=O_{V}$	-10		10	$\mu \mathrm{A}$
	I/H	$v_{1}=V_{D}$	-10		10	
Input voltage *1	VIL		0		0.8	V
	$\mathrm{V}_{\text {IH }}$		2.2		VD	
Output voltage *2	$\mathrm{VOL}_{\mathrm{OL}}$	$\mathrm{I}^{\mathrm{OL}}=1.6 \mathrm{~mA}$	0		0.4	
	V OH	$\mathrm{I}^{\mathrm{OH}}=400 \mu \mathrm{~A}$	$0.8 \cdot \mathrm{VD}$		VD	

* $1 \quad L T, \overline{C C}, \overline{R S 1}, \overline{R S 2}, X D, \stackrel{*}{C D} 2, R D 2, \overline{S Q}, T S_{1}(T S), T S_{2}(\overline{A T E})$

CLK, $\overline{\mathrm{CS}}, \mathrm{RD}, \overline{\mathrm{CD} 1}, \stackrel{* 3}{\mathrm{CD} 2}, \mathrm{RD} 1$
*3 CD2 is 1/O terminal.

ANALOG INTERFACE CHARACTERISTICS

1. MSM6927

$\left(\mathrm{VA}=12 \mathrm{~V} \pm 10 \%, \mathrm{VD}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{a}}=0 \sim 70^{\circ} \mathrm{C}\right)$							
Parameter	Symbol	Condition	Min	Typ	Max	Unit	

Transmit Carrier Out (AO)

Carrier frequency	Mark 1	${ }^{\mathrm{m}} \mathrm{M}$	${ }^{\text {f CRYSTAL }}=3.579545 \mathrm{MHz}$	1290	1300	1310	Hz
	$\begin{gathered} \text { Space } \\ 0 \end{gathered}$	F_{S}		2090	2100	2100	
Output resistance		ROXA				200	Ω
Load resistance		R LXA		50			$\mathrm{k} \Omega$
Load capacitance		$C_{\text {LXA }}$				100	PF
Transmit level		VOXA		4	6	8	${ }^{* 1} \mathrm{dBm}$
Output offset voltage		$\mathrm{v}_{\text {Osx }}$		$\frac{\mathrm{VA}}{2}-1$	$\frac{\mathrm{VA}}{2}$	$\frac{\mathrm{VA}}{2}+1$	V
Out-of-band energy (referred to carrier level)		Eox	$\mathrm{C}_{1}=0.047 \mu \mathrm{~F}$	Refer to Figure 1			dB

Receive Carrier Input (AIN)

Input resistance		RIRA		100		k Ω
Receive signal level range		VIRA		-48	-6	
Carrier detect level	ON	$\mathrm{V}_{\text {CD }} \mathrm{ON}$	$\begin{aligned} & \mathrm{R}=33 \mathrm{k} \Omega^{* 2} \\ & \mathrm{R}=51 \mathrm{k} \Omega \end{aligned}$		-43	${ }^{* 1} \mathrm{dBm}$
	OFF	$\mathrm{V}_{\text {CD }}$ OFF		-48		
Carrier detect hysteresis		$\mathrm{H}_{Y S}$	$\mathrm{V}_{\text {CD }} \mathrm{ON}-\mathrm{V}_{\text {CD }} \mathrm{OFF}$	2		dB

Receive Filter

| Group delay
 distortion | DDL | $1100 \sim 2300 \mathrm{~Hz}$ | | 210 | $\mu \mathrm{~S}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |

Note: *1 $0 \mathrm{dBm}=0.775 \mathrm{Vrms}$
*2 The resistor values are typical.

Figure 1 MSM6927 Out-of-Band Energy referred to Carrier Level ($\mathrm{C}_{1}=0.047 \mu \mathrm{~F}$)

2. MSM6947

$$
\left(V A=12 V \pm 10 \%, V D=5 \mathrm{~V} \pm 5 \%, T_{a}=0 \sim 70^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Condition	Min	Typ	Max	Unit

Transmit Carrier Out (AO)

Carrier frequency	Mark 1	${ }^{\prime} M$	${ }^{\text {f }}$ CRYSTAL $=3.579545 \mathrm{MHz}$	1190	1200	1210	Hz
	$\begin{gathered} \text { Space } \\ 0 \end{gathered}$	Fs		2190	2200	2200	
Answer tone frequency		${ }^{\text {f }}$ A	$\overline{\text { ATE }}=\times 0$ "	2019	2025	2031	
Output resistance		ROXA				200	Ω
Load resistance		RLXA		50			k Ω
Load capacitance		CLXA				100	PF
Transmit level		VOXA		4	6	8	${ }^{* 1} \mathrm{dBm}$
Output offset voltage		VosX		$\frac{\mathrm{VA}}{2}-1$	$\frac{\mathrm{VA}}{2}$	$\frac{V A}{2}+1$	v
Out-of-band energy (referred to carrier level)		Eox	$\mathrm{C}_{1}=0.047 \mu \mathrm{~F}$		to Fi	ure 4	dB

Receive Carrier Input (A|N)

Input resistance		$R_{\text {IRA }}$		100		k Ω
Receive signal level range		VIRA		-48	-6	* ${ }^{1} \mathrm{dBm}$
Carrier detect level	ON	$\mathrm{V}_{\text {CD }} \mathrm{ON}$	$\begin{aligned} & \mathrm{R}_{8}=33 \mathrm{k} \Omega^{* 2} \\ & \mathrm{R}_{9}=51 \mathrm{k} \Omega \end{aligned}$		-43	
	OFF	$\mathrm{V}_{\text {CD }}$ OFF		-48		
Carrier detect hysteresis		HYS	$\mathrm{V}_{\text {CD }} \mathrm{ON}-\mathrm{V}_{\text {CD }} \mathrm{OFF}$	0.5		dB

Receive Filter

| Group delay
 distortion | DDL | $1100 \sim 2300 \mathrm{~Hz}$ | | 210 | $\mu \mathrm{~S}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |

Note: *1 $0 \mathrm{dBm}=0.775 \mathrm{Vrms}$
*2 The resistor values are typical.

DEMODULATED BIT CHARACTERISTICS
$\left(\mathrm{VA}=12 \mathrm{~V} \pm 10 \%, \mathrm{VD}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{a}}=0 \sim 70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Condition			Min	Typ	Max	Unit
Peak intersymbol distortion	ID	Back-to-back over input signal range -6 to -40 dBm. 511-bit test pattern.				9		\%
Bit error rate	BER	Back-to-back with $0.3 \sim 3.4 \mathrm{kHz}$ flat noise. Receive signal level -25 dBm .				10^{-3}		

III

TIMING CHARACTERISTICS

1. MSM6927

Parameter	Symbol	Condition	TS2	TS1	Min	Typ	Max	Unit
RS/CS delay time	$\mathrm{T}_{\mathrm{RC}} \mathrm{ON}$	$\begin{aligned} & \overline{\mathrm{RS} 1}="{ }^{\prime \prime}{ }^{\prime \prime} \\ & \rightarrow \overline{\mathrm{CS}}=" 0^{\prime \prime} \end{aligned}$	0	0	195	200	205	ms
			0	1	25	30	35	
			1	0	65	70	75	
			1	1	External delay timer			
	Trc OFF	$\begin{aligned} & \overline{\mathrm{RS1}}=" 1 ", \\ & \rightarrow \overline{\mathrm{CS}}=" 1 " \end{aligned}$	*	*	0		0.5	
CD/ON delay time	$\mathrm{T}_{\text {CD }} \mathrm{ON}$		0	0	10		25	
			0	1	10		25	
			1	0	10		25	
			1	1	External delay timer			
CD/OFF delay time	$\mathrm{T}_{\text {cd }}$ OFF		0	0	5		15	
			0	1	5		15	
			1	0	5		15	
			1	1	External delay timer			
Soft Turn-OFF time	$\mathrm{T}_{\text {ST }}$		*	*		10		
Receive Data Squelch Delay Time	TsQ	$\overline{\mathrm{SO}}={ }^{\prime} 0$ "	0	0	145	150	155	
		$\begin{aligned} & \overline{\mathrm{RS1}}=" 1 ", " \\ & \rightarrow \text { RD }=" 1 " \\ & \text { Hold } \end{aligned}$	0	1	145	150	155	
			1	0	35	40	45	
			1	1	External delay timer			

Refer to Figure 7.
Note: * Irrespective of $1 / 0$ condition
2. MSM6947

Parameter	Symbol	Condition	TS	Min	Typ	Max	Unit
RS/CS Delay Time	TrCON	$\begin{aligned} & \overline{\mathrm{RS1}}="{ }^{\prime \prime} \overline{\prime \prime}, \overline{\mathrm{CS}}={ }^{\prime \prime} \end{aligned}$	0	175	180	185	ms
			1	External Delay Timer			
	Trcoff	$\begin{aligned} & \overline{\mathrm{RS} 1}=" 1 ", \\ & \rightarrow \overline{\mathrm{CS}}=" 1 " \end{aligned}$	*	0		0.5	
CD/ON Delay Time	$\mathrm{T}_{\text {CDON }}$		0	15		35	
			1	External Delay Timer			
CD/OFF Delay Time	TCDOFF		0	10		20	
			1	External Delay Timer			
Soft Turn OFF Time	Tst		*		10		
Receive Data Squelch Delay Time	Tso	$\overline{\mathrm{SQ}}={ }^{\prime} 0^{\prime}$	0		156		
		$\begin{aligned} & \overline{\mathrm{RS1}}={ }^{\prime \prime}{ }^{\prime \prime} \\ & \rightarrow \mathrm{RD}=1{ }^{\prime \prime} \\ & \text { Hold } \end{aligned}$	1	External Delay Timer			

Refer to Figure 7.
Note: * Irrespective of $1 / 0$ condition

TIMING DIAGRAM

Figure 7 MSM6927/MSM6947 Timing Diagram

PIN DESCRIPTIONS

Name	Pin No.		I / O	Function
	RS	GS-K		

POWER

DG	15	19		Ground reference of V_{D} (digital ground)
AG	19	23		Ground reference of V_{A} (analog ground)
V_{A}	24	33		Supply voltage (+12 V nominal)
V_{D}	26	35		Supply voltage (+5 V nominal)

CLOCKS

X1	1	41		Master clock timing is provided by either a series resonant crystal (3.579545 MHz $\pm 0.01 \%)$ connected across X1 and X2, or by an external TTL/CMOS clock driving X2 with AC coupling where X1 is left unconnected. See Figure 10.
X2	2	42		873.9 Hz clock output. This clock is used to implement external delay circuits etc.

CONTROL

LT	4	44	I	Digital loop back. During digital "High", any data sent on the X_{D} pin will appear on the RD pin, and any data sent on the $\overline{\mathrm{RS} 1}$ pin will immediately appear on the $\overline{\mathrm{CS}}$ pin. Any data demodulated from the received carrier on the AIN pin will be the modulated data to implement the transmitted carrier. In this case, sending the transmitted carrier to the phone line depends on the $\overline{\mathrm{CC}}$, but never on $\overline{\mathrm{RS}}$.
$\overline{C C}$	5	2	1	During digital loopback, the data on this pin becomes a control signal for sending the transmitted carrier to the phone line in place of $\overline{\mathrm{RS} 1}$.
$\overline{\mathrm{RS} 2}$	8	8	I	When an external circuit gives the RS/CS delay time which is not within the device as required, this pin should be connected to the external circuit output. See Figure 11-1 or Figure 11-2 for MSM6927, MSM6947 respectively.

Name	Pin No.		I/O	Function
	RS	GS-K		
CD1	11	12	0	The fast carrier detection output. This pin is internally connected to the input of the built-in carrier detect delay circuit. When an external delay circuit provides the delay time which is not within the device as required, the $\overline{\mathrm{CD}} 1$ should be connected to the external circuit input. See Figure 11-1 or Figure 11-2 for MSM6927, MSM6947 respectively.
$\overline{\mathrm{CD} 2}$	12	13	I/O	When an external circuit gives the carrier detect delay time which is not within the device as required, this pin becomes the input pin for the external circuit output signal. In other cases (when using the delay time within the device, the data on the TS_{1} (TS) or TS_{2} is not digital "High"), this pin becomes the Carrier-Detect signal output.
RD1	13	14	0	The RD1 data is demodulated data from the received carrier and the RD2 is the input of the following logic circuits referred to in Figure 12 and Figure 14. Usually, the
RD2	14	16	I	data to RD2, the data that is controlled by NCU (Network-Control-Unit) etc. may be required in stead of the RD1 data.
CDR1	16	20	0	These two pins are the output (CRD1) and inverting input (CDR2) of the buffer operational amplifier of which noninverting input is connected to the built-in voltage reference, stabilized to variations in the supply voltage and temperature. See Figure 13. An adequate carrier-detect
CDR2	17	21	I	level can be set by selecting the ratio of R_{8} and R_{9}. Therefore, the loss in the received carrier level by phone-line transformer can be compensated by adjusting the ratio of R_{8} and $R_{9} . R_{8}+R_{9}$ shouid be greater than $50 \mathrm{k} \Omega$.
$\overline{\mathrm{SO}}$	22	31	I	When data rate is 1200 BPS and at half duplex operation on two-wire facilities, the delay function called as receiversquelch is required. In case of four wire facilities, this function is not required usually. When digital "High" input to the $\overline{\mathrm{SQ}}$ pin, this function can be omitted.
FT	23	32	I	This pin may be used for device tests only. During digital "High", the AO pin will be connected to receiving filter output instead of transmitting filter output.

Both MSM6927RS (or GS-K) and MSM6947RS (or GS-K) have 28 (or 44) pins. The pin descriptions for these 28 (or 44) pins are same except those for No. 27 (or No. 36) pin and No. 28 (or No. 38). The pin descriptions for No. 27 (or No. 36) pin and No. 28 (or No. 38) pin are described as follows.

MSM6927

Name	Pin No.		I/O	Function
	GS-K			RS/CS delay and carrier detect delay options referred to in the chapter about timing characteristics are selected
by TS1 and TS2 inputs. The receiver-squelch delay will				
be set at the same time. Be careful that each delay can				
not be individually selected. If the other delay time un-				
provided within the device as option is required, input				
digital "High" to the TS1 and TS2 pin and implement				
the external delay circuits to obtain the desired delay				
characteristics. In this case, the CD2 pin becomes not only				
the input for the external circuit output signal, but also				
the Carrier Detect output. See Figure 11-1.				

MSM6947

Name	Pin No.		I/O	Function
	RS	GS-K		
TS	27	36	I	When digital "Low" input to the TS pin, built-in RS/CS, carrier detect and receiver-squelch delay are provided. If the other delay time is required, by inputting digital "High" to this pin and implementing the external delay circuits, the desired delay can be realized. In this case, the CD2 pin becomes not only the input for the external circuit output signal, but also the Carrier Detect output. See
Figure 11-2.				

INPUT/OUTPUT

$\overline{\text { CS }}$	6	3	0	Clear-to-Send signal output. The digital "High" level indicates the "OFF" state and digital "Low" indicates the "ON" state. This output goes "Low" at the end of a delay (RS/CS delay) initiated when RS1 (Request-to-Send) goes "Low".
$\overline{\mathrm{RS1}}$	7	4	I	Request-to-Send signal input. The digital "High" level indicates the "OFF" state. The digital "Low" level indicates the "ON" state and instructs the modem to enter the transmit mode. This input must remain "Low" for the duration of data transmission. "High" turns the transmitter off.
XD	9	9	I	This is digital data to be modulated and transmitted via AO. Digital "High" will be transmitted as "Mark". Digital "Low" will be transmitted as "Space". No signal appears at AO unless $\overline{\mathrm{RS}} 1$ is "'Low".
RD	10	10	0	Digital data demodulated from $A_{I N}$ is serially available at this output. Digital "High" indicates "Mark" and digital "Low" indicates "Space". For example, under the following conditions this output is forced to be "Mark" state because the data may be invalid. - When CD2 (Carrier-detect) is in the "OFF" state. - When $\overline{\mathrm{SO}}$ is in digital "Low" (two-wire facilities) and $\overline{\mathrm{RS} 1}$ is in the "ON" state. - During the receive data squelch delay at half duplex operation on two wire facilities.
SG2 SG1	18 20	22	0	The SG1 and SG2 are built-in analog signal grounds. SG2 is used only for Carrier-Detect function. The DC voltage of SG1 is approximately 6 V , so the analog line interface must be implemented by AC coupling. See Figure 9. To make these impedance lower and ensure the device performance, it is necessary to put bypass capacitors on SG1 and SG2 in close physical proximity to the device.
AIN	21	26	I	This is the input pin for the analog signal from the phone line. The modem extracts the information in this modulated carrier and converts it into a serial data stream for presentation at RD output.
Ao	25	34	0	This analog output is the modulated carrier to be conditioned and sent over the phone line.

Notes: 1. The crystal should be wired in close physical proximity to the device.
2. High level signals should not be routed next to low level signals.
3. Bypass capacitors on $V_{A}, S G 1$, and $S G 2$ should be as close to the device as possible
4. $A G$ and $D G$ should be connected as close to the system ground as possible.

Figure 8-1 Application Circuit Using MSM6927RS

Notes: 1. The crystal should be wired in close physical proximity to the device.
2. High level signals should not be routed next to low level signals.
3. Bypass capacitors on $V_{A}, S G 1$, and SG 2 should be as close to the device as possible.
4. AG and DG should be connected as close to the sy stem ground as possible.

Figure 8-2 Application Circuit Using MSM6947RS

C_{0}, C_{1}	$0.047 \mu \mathrm{~F}$	R_{2}	$51 \mathrm{k} \Omega$	R_{6}	$(51 \mathrm{k} \Omega)$	Receive signal level
C_{2}	$2.2 \mu \mathrm{~F}$	R_{3}	$51 \mathrm{k} \Omega$	R_{7}	$51 \mathrm{k} \Omega$	
C_{3}	$1 \mu \mathrm{~F}$	R_{4}	$51 \mathrm{k} \Omega$	R_{8}	$(33 \mathrm{k} \Omega)$	Carrier detect level
R_{1}	600Ω	R_{5}	$(51 \mathrm{k} \Omega)$			

Note: The signal level on the $A_{I N}$ pin should not exceed $\mathbf{- 6 ~ d B m}$.

Crystal Oscillator Connection

Figure 10

(A) RS/CS delay, (B) Receiver-squelch delay, (C) CD/ON delay, (D) CD/OFF delay

Note: Supply voltage equals V_{D} for all gates.
*1: The desired delay can be realized by selecting the appropriate bits from 4020's outputs. The number of the bits is not always 3 . Each delay can be set differently from built-in delays.
*2: In the case that the Receiver-dquelch delay is unnecessary, circuit (B) and this OR gate should be omitted and the output of the NOR gate should be connected to DC2 directly.

Figure 11-1 MSM6927 External Delays Connection

(A) RS/CS delay, (B) Receiver-squelch delay, (C) CD/ON delay, (D) CD/OFF delay

Note: Supply voltage equals V_{D} for all gates.
*1: The desired delay can be realized by selecting the appropriate bits from 4020's outputs. The number of the bits is not always 3. Each delay can be set differently from built-in delays.
*2: In the case that the Receiver-dquelch delay is unnecessary, circuit (B) and this OR gate should be omitted and the output of the NOR gate should be connected to DC2 directly.

Figure 11-2 MSM6947 External Delays Connection

Figure 12-1 MSM6927 Equivalent Logic Interface of the Integrated Modem

Figure 12-2 MSM6947 Equivalent Logic Interface of the Integrated Modem

Figure 13 External Resistor Connection for the Setting of Carrier Detect Level

MSM6948

SINGLE CHIP MSK MODEM

GENERAL DESCRIPTION

The MSM6948 is a single chip MSK (Minimum Shift Keying) modem which is fabricated by OKI's low power consumption CMOS silicon gate technology.

The modulator receives the data to be transmitted (SD) synchronized with the transmit timing clock (ST) generated by the on-chip clock generator. The signal, which is modulated by MSK method, is output.

The demodulator converts the received MSK signal to the received data (RD) by means of delay detection technique after limiting the band of the received MSK signal. This signal is input to the digital PLL and re-generated timing clock is output from the demodulator, synchronized with the RD.

FEATURES

- On-chip SCF (Switched Capacitor Filter)
- The transmit filter can be used as voice splutter filter.
- The receive timing re-generator has two different lock-in time performance options to be chosen from.
- On-chip oscillation circuit.
- Small numbers of external components for easy application.
- Wide application-wireless data equipment, MCA system.
- +5 V signal power supply.
- Low power consumption CMOS.
- 18 pin plastic DIP package.

BLOCK DIAGRAM

*Post Detection Filter

PIN CONFIGURATION

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

Parameter	Symbol	Condition	Rating	Unit
Power Supply Voltage	V_{DD}	$\begin{gathered} \mathrm{Ta}=25^{\circ} \mathrm{C} \\ \text { Referred to } \\ \text { AG or DG } \end{gathered}$	$-0.3 \sim 7$	V
Analog Input Voltage *1	$V_{\text {IA }}$		$-0.3 \sim V_{\text {DD }}+3$	
Digital Input Voltage *2	$V_{\text {ID }}$		$-0.3 \sim V_{D D}+0.3$	
Operating Temperature	Top	-	-25~70	${ }^{\circ} \mathrm{C}$
Storage Temperature	Tstg	-	-55~150	

*1 TI, AI
*2 ME, SD, CF, CT, $\overline{F T}$

Recommended Operating Conditions

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Power Supply Voltage	VDD	Referred to AG or DG	4.75	5	5.25	v
	AG, DG	-	-	0	-	
Operating Temperature	Top	-	-25	25	70	${ }^{\circ} \mathrm{C}$
Crystal Resonant	${ }^{\text {f }}$ ' ${ }^{\text {TAL }}$	-	3.6860	3.6864	3.6868	MHz
Data rate	Ts	-	-	1200	-	bit/s
C_{1}	-	-	-	2.2	-	$\mu \mathrm{F}$
C_{2}	-	-	-	0.1	-	
C_{3}	-	-	-	0.047	-	
C_{4}	-	Depend on Load Impedance for Ao Output				
C_{5}	-	-		0.047	-	

DC and Digital Interface Characteristics

$\mathrm{V}_{\text {DD }}=5 \mathrm{~V} \pm 5 \%, \mathrm{Ta}=-25 \sim 70^{\circ} \mathrm{C}$						
Parameter	Symbol	Condition	Min	Typ	Max	Unit
Power Supply Current	IDD	Normal Operating Condition	-	3	6	mA
Oscilating Frequency	${ }^{\text {f }}$ MCK	$\begin{gathered} { }^{f} X^{\prime} \mathrm{TAL}= \\ 3.6864 \mathrm{MHz} \pm 0.01 \% \end{gathered}$	3.6857	3.6864	3.6871	MHz
Input Leakage Current *1	IIL	$\mathrm{V}_{\text {IN }}=\mathrm{O}_{V}$	-10	-	10	$\mu \mathrm{A}$
	I_{IH}	$\mathrm{v}_{\text {IN }}=\mathrm{v}_{\text {DD }}$	-10	-	10	
Input Voltage *1	$\mathrm{V}_{\text {IL }}$	-	0	-	0.8	v
	$\mathrm{V}_{\text {IH }}$	-	2.2	-	V_{DD}	
Output Voltage *2	$\mathrm{V}_{\mathrm{OL} 1}$	$\mathrm{IOL}=1.6 \mathrm{~mA}$	0	-	0.4	
	$\mathrm{V}_{\mathrm{OH} 1}$	$\mathrm{IOH}^{\prime}=400 \mu \mathrm{~A}$	0.8 V DD	-	VDD	
Output Voltage *3	$\mathrm{V}_{\mathrm{OL} 2}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}>50 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{L}}<20 \mathrm{pF} \end{aligned}$	0	-	0.4	
	$\mathrm{V}_{\mathrm{OH} 2}$		0.6 V DD	-	V_{DD}	

* $1 \quad \mathrm{ME}, \mathrm{SD}, \mathrm{CF}, \mathrm{CT}, \overline{\mathrm{FT}}$
*2 $\mathrm{ST}, \mathrm{RD}, \mathrm{RT}$
*3 MCK

Analog Interface Characteristics ($\mathrm{V} D \mathrm{DD}=5 \mathrm{~V} \pm 5 \%, \mathrm{Ta}=-25 \sim 70^{\circ} \mathrm{C}$)
Transmit signal output (A_{0})

Parameter	Symbol	Condition		Min	Typ	Max	Unit
Carrier frequency	f_{M}	SD $=$ " 1 "		1199	1200	1201	Hz
	${ }^{\text {f }}$	SD $=\times{ }^{\prime \prime}$		1799	1800	1801	
Carrier level	Vox	$\begin{aligned} & \mathrm{R}_{\mathrm{L}} \geq \\ & 100 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{L}} \leq \\ & 40 \mathrm{PF} \end{aligned}$	$\begin{aligned} & \overline{\mathrm{FT}}=" 1 " \\ & \mathrm{ME}=" 1 " \end{aligned}$				
Output voltage swing	VOPP		$\begin{aligned} & \overline{F T}=" 1 " \\ & M E=" "^{\prime \prime} \end{aligned}$	2.2	3	-	Vp-p
Output resistance	Rox	${ }^{\mathrm{A}} \mathrm{AO} \leq 4 \mathrm{kHz}$		-	-	1	k Ω
Load resistance	R_{LX}	-		100	-	-	
Load capacitance	$c_{L X}$	-		-	-	40	PF
Output DC voltage	Vosx	-		$\frac{1}{2} \mathrm{~V}_{\mathrm{DD}}-0.1$	$\frac{1}{2} v_{D D}$	$\frac{1}{2} v_{\text {DD }}+0.1$	V

Note: $0 \mathrm{dBm}=0.775 \mathrm{Vrms}$

Voice signal input (TI)

Voltage gain	G_{T}	$\mathrm{V}_{\mathrm{AO}} / \mathrm{V}_{\mathrm{TI}}$	$\begin{aligned} & \overline{\mathrm{FT}}="{ }^{\prime \prime}, \\ & \mathrm{ME}={ }^{\prime \prime} 0^{\prime \prime} \end{aligned}$	-2	0	+2	dB
Input signal level	$V_{\text {TI }}$	-		-	-	0	dBm
Input resistance	R_{TI}	${ }_{\mathrm{f}} \mathrm{I} \leq 4 \mathrm{kHz}$		50	-	-	k Ω

Built-in Signal Ground (SG)

DC Voltage	$V_{S G}$	Without DC Load	$\frac{V_{D D}}{2}-0.1$	$\frac{V_{D D}}{2}$	$\frac{V_{D D}}{2}+0.1$	V

Receive Signal Input (AI) and Demodulator

Input Resistance	R_{IR}	$\mathrm{f} \mathrm{AI} \leq 4 \mathrm{kHz}$	50	-	-	$\mathrm{k} \Omega$
Receive Signal Level	V IR	-		-30	-	dBm
Bit Error Rate	BER	S / N (at AI)	8 dB	-	4×10^{-3}	-

Re-generated Receive Data Timing Clock Output (RT)

Data Bit Number For PLL's Lock-in	NPLL1	$\begin{aligned} & C F= \\ & " 1 ", \end{aligned}$	$\begin{aligned} & \text { CT = } \\ & \text { " }{ }^{\prime \prime} \end{aligned}$	$\begin{aligned} & \|\Delta \theta\| \\ & <5^{\circ} \end{aligned}$	-	-	31	Bit
	NPLL2		$\begin{aligned} & \mathrm{CT}= \\ & \text { "1" } \end{aligned}$		-	-	65	

BUILT-IN FILTER FREQUENCY CHARACTERISTICS

Transmit Low-pass Filter

GAIN (dB)

Receive Band-pass Filter

PIN DESCRIPTION

Pin Name	Pin No.	Function
X1	1	Crystal connection pins. A 3.6864 MHz crystal shall be connected. When an external clock is applied for MSM6948's oscillation source, it has to be input to X 2 . In this case, X 2 has to be AC-compled by the capacitor of 200 pF . X1 shall be left open.
X2	2	
MCK	3	$3.6864 \mathrm{MHz} \pm 0.02 \%$ clock output. This can be used for other devices under limited load conditions.
ME	4	When digital " 1 " is put on this pin, MSK modulator output is connected to the input of transmit LPF. When digital " 0 " is put on, the input of transmit LPF is connected to TI that is voice signal input. The data put on ME terminal is synchronized with the negative edge of ST and input to internal logic as a control data. The positive edge of this synchronized data resets MSK modulator.
SD	5	Transmit data input terminal. The data on this pin is synchronized with the negative edge of ST and input to MSK modulator as a actual transmit data. ST is synchronizing signal used for ME and SD. This is made from master clock and is usually 1200 Hz .
ST	6	
SG	7	Built-in analog signal ground. The DC voltage is approximately half of VDD, so the analog signal interfaces of AI, AO and TI with peripheral circuits must be implemented by AC-coupling. To make this voltage source impedance lower and ensure the device performance, it is necessary to put a bypass capacitor on SG in close physical proximity to the device.
AG	8	Analog ground. This pin should be common with DG at the system ground point as close as possible.
DG	9	Digital ground. This pin should be common with AG at the system ground point as close as possible.
TI	10	Voice signal input terminal. The signal input to this pin can be sent out to AO through the transmit LPF, the characteristics of which, gives the splutter filter for voice band signal. When this function is used, digital " 0 " must be input to ME. TI is biased internally to SG with about $100 \mathrm{k} \Omega$.

Pin Name	Pin No.	Function				
AO	11	Transmit analog signal output terminal. According to the control data on ME and FT, AO is set to various state as an output terminal as follows.				
		$\overline{\mathrm{FT}}$	ME	Transmit LPF	State of AO	
		"1"	"1"	Power On	The output of Transmit LPF	MSK Signal
		"1"	"0"			Voice Signal
		" 0 "	"1"	Power Down	The Output of Receive BPF (Used for Device Test Only)	
		"0'	"0"		No-sig (DC-b	$\begin{aligned} & \text { lutput } \\ & \text { to SG) } \end{aligned}$
		The state when $\overline{\mathrm{FT}}$ and $\mathrm{ME}=$ " 0 " is shown above. When the input digital data on FT changes to " 1 " from " 0 ", AO remains to be connected to SG during about 12 ms and after that, and AO will be switched to transmit LPF. This delay time prevents AO from outputting meaningless signal during transient time from power down to on of LPF.				
AI	12	Receive analog signal input terminal. AI is biased internally to SG with about $100 \mathrm{k} \Omega$ same as TI. Receive BPF and demodulator extract the information in this signal and convert it into a serial data stream at RD output.				
RD	13	Demodulated serial data output. This data is synchronized with the re-generated timing clock RT.				
RT	14	Receive data timing clock output. This signal is re-generated by internal digital PLL. Synchronizing to negative edge of RT, RD is output.				

Pin Name	Pin No.	Function
CF	15	Receive data timing clock is re-generated by digital PLL of which phase correcting speed can be selected with CF. When digital " 1 " is put on CF and phase difference between receive data timing and RT is more than 22.5 degree, phase correcting speed is high. In this case, as the phase difference enters within 22.5 degree, that speed changes to low immediately. When digital " 0 "' is input to CF, phase correcting speed of PLL remians to be low regardless of the phase difference.. Usually, CF is connected to digital "1".
CT	16	PLL's lock-in characteristics can be selected with CT. When digital " 1 " is put on CF, PLL requires max. 65 bit alternative data pattern. On the other hand, when digital " 0 " is input to CF, PLL can be locked in below 31 bit data.
		Equipment ${ }^{\text {CT }}$
		Personal/MCA wireless terminals "1".
		MCA wireless bases \quad " 0 '
$\overline{\mathrm{FT}}$	17	Control signal for the internal connection of AO. Refer to column AO. When digital " O " is input to this pin, transmit L.PF enters in power down mode, but the output buffer operational amplifier remains to be active.
VDD	18	+5 V power supply input terminal. This device is sensitive to supply noises as the switched capacitor techniques are utilized in plenty. By pass capacitor is indispensable to ensure the performance.

HINTS FOR APPLICATION

CHIP SET FOR BELL 212A MODEM
 (0 ~ $\mathbf{3 0 0}$ bps or 1200 bps IN FULL OR HALF-DUPLEX MODE)

GENERAL DESCRIPTION

This is the chip set to realize the data communication between computers or terminals via telephone line in full or half-duplex mode at a rate of $0 \sim 300 \mathrm{bps}$ or 1200 bps .

This chip set consists of 6 LSIs. The MSM6950, MSM6928-06 and MSM61057 are OKI's original LSIs which are fabricated by OKI's low power CMOS silicon gate technology. The MSM80C31, MSM81C55 and MSM2764 are standard LSIs which can be sourced besides OKI.

Since this chip set provides most of all necessary functions for Bell 212A standard, only small number of MSIs, OP-amps and other components are required to make a complete modem set.

With this chip set, a modem which is compatible with the "Smartmodem 1200*" can be realized easily by programming MSM2764 accordingly by customer.

In the data sheets following herewith, OKI can provide application circuits of a modem based on Bell 212A standard by using this chip set.
(This modem is hereafter called OKI PC MODEM 212A.)

FEATURES

- Applied Netowrk:
- Network Interface:
- DTE Interface:
- Operating Mode:
- Low Speed Data Format: ($0 \sim 300 \mathrm{bps}$)
- High Speed Data Format: (1200 bps)
- Modem Compatibility:
- Receive Sensitivity:
- Transmit Level:
- Dialing Capability:
- Command Buffer:
- Power Supply Voltage:

Public Switched 2-wire Line
600 ohm Balance
RS-232C (refer to 4-2.)
Full-duplex or Half-duplex
Serial/Binary/Asynchronous; 7 or 8 data bits; 1 or 2 stop bits; odd, even, or no parity.
Serial/Binary/Asynchronous;
$\bullet 7$ data bits; 1 or 2 stop bits; odd, even, or fixed parity.
-8 data bits; 1 or 2 stop bits; no parity.
Compatible with Bell System 103 or 212A modems, for asynchronous communication, in originate or answer mode.
-45 dBm typical
-10 dBm typical
Touch-Tone and Pulse (10 pps) Dialing
40 Characters
$+5 /-5 \mathrm{~V},+12 /-12 \mathrm{~V}$ (RS-232C)

<Additional High Speed Specifications>

- Input Data Rate:
- Line Data Rate:
- Modem to Terminal Data Rate:
- Carrier Frequencies:
- Received Signal Frequency: Tolerance:
- Data Modulation:
- Encoding:

$$
1182 \text { ~ } 1212 \text { bps }
$$

1200 bps $\pm 0.01 \%$
1219 bps

Originate Mode	Answer Mode		
Transmit:	$1200 \mathrm{~Hz} \pm 0.01 \%$	Transmit:	$2400 \mathrm{~Hz} \pm 0.01 \%$
Receive:	$2400 \mathrm{~Hz} \pm 0.01 \%$	Receive:	$1200 \mathrm{~Hz} \pm 0.01 \%$

$\pm 7 \mathrm{~Hz}$
4-level Differential PSK at 600 baud $\pm 0.01 \%$

Dibit	Phase Shift
00	+90
01	0
10	180
11	-90

- Scrambler Polynominal:
- Line Equalization:
$X=1+X^{-14}+X^{-17}$
Auto-equalizing function is provided in receiver
*Smartmodem 1200 is the registered trademark of Hayes Microcomputer Products Inc.,

LIST OF CHIP SET

Type No.	Function	Power Dissipation Unit: mA				Package	
		Min	Typ	Max	Conditon	DIP	FLAT
MSM6950	Analog Front-End	-	12	20	+5V	42 pin	56 pin
		-	11	20	-5V		
MSM6928-06	DSP for Demodulation	-	35	40	+5V	42 pin	60 pin
MSM61057	SYNC/ASYNC, Scramble/ Descramble	-	-	40		40 pin	60 pin
MSM80C31 ${ }^{* 1}$	Modulator, Hand-Shake, DTMF dialing	12	16	20		40 pin	44 pin
MSM81C55*2	I/O Port expander	-	-	5		40 pin	44 pin
MSM2764*3 or MSM27C64	ROM for MSM80C31	-	$\overline{32}$	100 -		28 pin	-

* 1 Refer to the MICROCONTROLLER DATABOOK.
*2 Refer to the MICROPROCESSOR DATABOOK.
*3 Refer to the MEMORY DATABOOK.

Descriptions of Signal Interface (BD-25 Connector)

Pin No.	Circuit	Description	Direction
1	FG (AA)	Protective Ground	NA
2	TD (BA)	Transmit Data	To Modem
3	RD (BB)	Receive Data	From Modem
5	CS (CB)	Clear to Send	From Modem
6	DR (CC)	Data Set Ready	From Modem
7	SG (AB)	Signal Ground	NA
8	CD (CF)	Carrier Detect	From Modem
12	HS (CI)	High Speed Indicator	From Modem
20	ER (CD)	Data Terminal Ready	To Modem
22	RI (CE)	Ring Indicator	From Modem

Additional Interface

15	ST2 (DB)	Transmit Data Element Timing	From Modem
17	RT (DD)	Receive Data Element Timing	From Modem
24	ST1 (DA)	Transmit Data Element Timing	To Modem

Components Table (1/3)
Chip Set; IC1, IC2, IC3, IC4, IC5, IC8

Name	Part Number	Note	Name	Part Number	Note
IC1	MSM61057RS		PC1	TLP521-1-A	Toshiba
IC2	MSM80C31RS		$\underset{2}{\text { ARR1, }}$	ERZ-C07DK151	Matsushita Denshi Buhin
IC3	MSM6928-06RS	DSP for Demodulator	RL1	NR-SD-12V	Matsushita Denko
IC4	MSM81C55RS		RL2	SY-12	Takamizawa
IC5	MSM2764	212A5Z	V1, 2	VR-61B-A	Shin Den Gen
IC6	MSM74HC273		01, 2	2SC372	
IC7	MSM74HC244		X	CXO-042B	$\begin{aligned} & \hline(11.0592 \mathrm{MHz}) \\ & \text { Kinseki } \\ & \hline \end{aligned}$
IC8	MSM6950RS	Analog Front-End	D1, 2	V06C	
IC9	HA17458PS	Hitachi	D3	15953	
IC10	MSM74HC74		$\begin{array}{r} \text { D4~ } \\ 11 \end{array}$	SEL1110R-Z	
IC11	HD74LS92	Hitachi			
IC12	MSM74HC74				
IC13	MSM74HC368		SW1	DYS-8	8-contacts DIP Switch
IC14	MSM74HC32		J1		6-Position Modular Jack
IC15	MSM74HCO4		J2	DB-25SA-J4	$\begin{aligned} & \text { DB-25 Connector } \\ & \text { JAE } \end{aligned}$
IC16	MSM74HC02		T	31222-1	Daiwa Denki
IC17	MSM74HC08				
IC18	MSM4049				
IC19	HD75188P	Hitachi			
IC20	HD75188P	Hitachi			
IC21	HD75189P	Hitachi			
IC22	MSM4050				
IC23	TCM1520AP	Texas Inst.			

- MODEM• 1200 bps CHIP SET

Components Table (2/3)

Name	Value	Tolerance	Wattage	Name	Value	Tolerance	Wattage
R1	$39 \mathrm{k} \Omega$	10\%	1/4 W	R25	$3.3 \mathrm{k} \Omega$	10\%	1/2 W
R2				R26	300Ω	1\%	1/4 W
R3	$39 \mathrm{k} \Omega$	10\%	1/4 W	R27	$10 \mathrm{k} \Omega$	10\%	1/4 W
R4				R28	$2.4 \mathrm{k} \Omega$	10\%	1/4 W
R5				R29	$2.2 \mathrm{k} \Omega$	10\%	1/4 W
R6				R30	$10 \mathrm{k} \Omega$	10\%	1/4 W
R7				R31	$10 \mathrm{k} \Omega$	10\%	1/4 W
R8				R32	$2.2 \mathrm{k} \Omega$	10\%	$1 / 4 \mathrm{~W}$
R9	$1.2 \mathrm{k} \Omega$	10\%	1/4 W	R33	150Ω	10\%	1/4 W
R10	$39 \mathrm{k} \Omega$	10\%	1/4 W	R34	10 k	10\%	1/4 W
R11							
R12							
R13	$10 \mathrm{k} \Omega$	10\%	1/4 W				
R14	$100 \mathrm{k} \Omega$	10\%	1/4 W				
R15							
R16	$10 \mathrm{k} \Omega$	10\%	1/4 W				
R17	$5.1 \mathrm{k} \Omega$	1\%	1/4 W	RG1	$10 \mathrm{k} \Omega \times 8$	10\%	1/4 W
R18	$100 \mathrm{k} \Omega$	1\%	1/4 W	RG2	$10 \mathrm{k} \Omega \times 8$	10\%	1/4 W
R19	620Ω	1\%	1/4 W	RG3	$10 \mathrm{k} \Omega \times 8$	10\%	1/4 W
R20	$51 \mathrm{k} \Omega$	1\%	1/4 W	RG4	$330 \Omega \times 8$	10\%	1/4 W
R21	620Ω	1\%	1/4 W	VR1	$\begin{aligned} & \text { Max } \\ & 50 \mathrm{k} \Omega \end{aligned}$	Variable Resistor	
R22	$100 \mathrm{k} \Omega$	1\%	1/4 W	VR2	$\begin{gathered} \mathrm{Max} \\ 50 \mathrm{k} \Omega \end{gathered}$	Variable Resistor	
R23	$33 \mathrm{k} \Omega$	1\%	1/4 W	VR3	$\begin{gathered} \text { Max } \\ 100 \mathrm{k} \Omega \end{gathered}$	Variable Resistor	
R24	2.4Ω	$\begin{aligned} & +50 \% \\ & -20 \% \end{aligned}$	1/4 W				

Components Table (3/3)

Name	Value	Tolerance	DC-rated Voltage	Name	Value	Tolerance	DC-rated Voltage
C1	$10 \mu \mathrm{~F}$	50\%	$>15 \mathrm{~V}$	C25	$0.1 \mu \mathrm{~F}$	50\%	$>15 \mathrm{~V}$
C2	$10 \mu \mathrm{~F}$	50\%	$>15 \mathrm{~V}$	C26	$0.22 \mu \mathrm{~F}$	50\%	$>15 \mathrm{~V}$
C3	$10 \mu \mathrm{~F}$	50\%	$>15 \mathrm{~V}$	C27	$0.22 \mu \mathrm{~F}$	50\%	$>15 \mathrm{~V}$
C4	$10 \mu \mathrm{~F}$	50\%	>15 V	C28	$0.1 \mu \mathrm{~F}$	50\%	$>15 \mathrm{~V}$
C5	$10 \mu \mathrm{~F}$	50\%	$>15 \mathrm{~V}$	C29	$0.1 \mu \mathrm{~F}$	50\%	$>15 \mathrm{~V}$
C6	$10 \mu \mathrm{~F}$	50\%	$>15 \mathrm{~V}$	C30	$0.1 \mu \mathrm{~F}$	50\%	$>15 \mathrm{~V}$
C7	$10 \mu \mathrm{~F}$	50\%	$>15 \mathrm{~V}$	C31	1000 pF	20\%	$>15 \mathrm{~V}$
C8	$10 \mu \mathrm{~F}$	50\%	>15 V	C32	$0.47 \mu \mathrm{~F}$	20\%	$>60 \mathrm{~V}$
C9	$10 \mu \mathrm{~F}$	50\%	$>60 \mathrm{~V}$	C33			
C10				C34			
C11	1000 pF	20\%	$>15 \mathrm{~V}$	C35			
C12	1000 pF	20\%	$>15 \mathrm{~V}$	C36			
C13	1000 pF	20\%	>15 V	C37			
C14	1000 pF	20\%	$>15 \mathrm{~V}$	C38			
C15	1000 pF	20\%	$>15 \mathrm{~V}$	C39			
C16	1000 pF	20\%	$>15 \mathrm{~V}$	C40			
C 17	1000 pF	20\%	$>15 \mathrm{~V}$	C41			
C18	1000 pF	20\%	$>15 \mathrm{~V}$	C42			
C19	1000 pF	20\%	>15 V	C43			
C20	$0.47 \mu \mathrm{~F}$	50\%	$>15 \mathrm{~V}$	C44			
C21	$0.1 \mu \mathrm{~F}$	50\%	$>15 \mathrm{~V}$	C45	$0.1 \mu \mathrm{~F}$	50\%	$>15 \mathrm{~V}$
C22	$0.1 \mu \mathrm{~F}$	50\%	$>15 \mathrm{~V}$	C46	$0.1 \mu \mathrm{~F}$	50\%	$>15 \mathrm{~V}$
C23	$0.022 \mu \mathrm{~F}$	20\%	$>15 \mathrm{~V}$				
C24	: $1 \mu \mathrm{~F}$	50\%	>15 V				

- MODEM• 1200 bps CHIP SET

Initial Adjustment

Trimming for Reference Voltage

VR2 should be trimmed so that the DC voltage on pin 26 becomes +2.50 V .

Adjustment for Transmit/Receive Signal Level

Figure-2
First, connect a 600Ω signal source to pin 3 and pin 4 of J 1 (normally 1200 Hz).
Next, make the signal source level minimum and make the modem send the PSK transmit signal to the phone line through the hybrid transformer using the "ATS10 = 255D" command mentioned in section 6-5.

Then, tune VR3 so that the signal between pin 3 and pin 4 of J1 should become -10 dBm .

Stop the modem to send the transmit signal using the "ATCOS10 $=255 \mathrm{D}$ " command and set the signal level between pin 3 and pin 4 of J 1 at -10 dBm by increasing the signal source output level.

Then, tune VR1 so that the signal on AIN (pin 27) shouid be +4 dBm .
Note 1: $0 \mathrm{dBm}=0.775 \mathrm{Vrms}$
The input impedance of a level meter used for measurments must be "High".
Note 2: The mode of the level meter should be "Balance" when measuring the signal level between pin 3 and pin 4 of J1.
"Unbalance" mode should be used when measuring the signal level on AIN (pin 27), AOUT (pin 30), TP1 and TP2.

Decision Point of Monitoring

Decision point monitoring is the practical evaluation method.
It can be easily performed by using XIC provided on the evaluation board and the external monitoring circuit.

At first, it is required to put a 22 pin - IC socket into XIC's holes by soldering.
Figure-4 shows how to connect the external monitoring circuit (drawn in figure-5) through the XIC's socket.

Figure-5. DECISION POINTS MONITORING CIRCUIT
semiconductor

CHIP SET FOR 2400 bps FULL DUPLEX MODEM

 (0 ~ $\mathbf{3 0 0}$ bps, 1200 bps or 2400 bps IN FULL OR HALF DUPLEX MODE)
INTRODUCTION TO OKI PC MODEM 224

This chip set allows computers and terminals to communicate via telephone lines with other computers and terminals by using the additional microprocessor as the controller through an RS-232-C port. It operates on-line in full-duplex at a rate of 2400, 1200, 0-300 bps. It is compatible with CCITT V.22-bis, V.22, Bell 212A modem system.

This chip set consists of 5 LSIs. MSM80C51-98/99 (MICROCONTROLLER: MCU), MSM-6928-07 (Digital Signal Processor: DSP), MSM6950 (Analog Front End: AFE) and MSM61077 (Gate Array: GA) and this chip set is hereafter called OKI PC MODEM 224.

Figure 1 shows the typical configuration of the 2400 bps full-duplex intelligent modem system. It consists of two blocks; One is the controller, and another is the original MODEM. As an intelligent data communications system just like the Smartmodem 2400 (Hayes Microcomputer Products, Inc.), the controller analyzes and executes commands and sends results codes in optional English word or decimal digit form. Therefore, this controller plays the role of the command interpreter, and also sets up the status of the original MODEM operation.

The OKI PC MODEM 224 is the original MODEM designed to construct the intelligent high-performance modem system, hence it needs the controller whose role is to set up the status and to define the several kinds of modes of modem operation. The interface between OKI PC MODEM 224 and the controller is designed to have flexibility and also to be adjustable. Using this chip set and the controller, a low-cost and compact-size intelligent modem system at 2400 bps in full-duplex can be realized easily.

Figure 1 Typical configuration of 2400 FDX MODEM

FUNCTIONAL BLOCK DIAGRAM

Figure 2 shows the functional block diagram of the OKI PC MODEM 224. It consists of two parts; One is the speed conversion, another is synchronous modem, so that the composite one operates as an asynchronous modem. OKI PC MODEM 224 consists of four LSI-chips; MSM80C51-98/99 (MICROCONTROLLER: MCU) is functioning as synchronous to synchronous conversion and modulation, MSM61077 is functioning as synchronous to asynchronous conversion and transceiver PLL, MSM6928-07 and MSM6950 are functioning as demodulation and analog front and (AD, DA, Filters) , respectively.

Figure 2 Functional block diagram of OKI PC MODEM 224

GENERAL CONTROL DATA FLOW

Figure 3 shows the schematic diagram of the control data flow. The data stream is divided into three groups; the first group is the parallel bit stream of approximate 3 bytes, that mainly control the operation modes of MSM80C51-98/99 (MICROCONTROLLER: MCU) and MSM6950, and that is the output port of MSM61077. The second one is the serial bit stream of 2 bytes, that define the status of MSM61077. The last one is the serial bit stream of 2 bytes, that are dealt as the input data of External Flags of DSP, and control the demodulation programing environments of MSM6928-07.

Figure 3 General control data flow

CONTROL DATA MAP

Figure 4 shows the control data map. Each map is represented by the elliptic circle, and is classified into the functional roles. The groups A-D correspond to each LSI chip.

Figure 4 Control data map

1) Group $A(M S M 61077)$

A-I)
Group A-I are fundamental CCITT V. 24 interfaces, that are TD (Transmitted Data), RD (Received Data), $\overline{\text { ST1 }}$ (transmitter timing from DTE), $\overline{\text { ST2 }}$ (transmitter timing from DCE), and $\overline{\mathrm{RT}}$ (Receiver timing).

A-II)
Group A-II are received data outputs directly given from the demodulator, that are D1 (Internal RD. . .PSK), DO (Internal RD. . .FSK). Those outputs are used when evaluating the demodulator performance, or synchronous modem operation.

A-III)

Group A-III are the serial control data inputs, that are SDATA (control DATA), GSTB (Strobe clock), SCLK (Shift clock). The input data of SDATA are 16 bits data stream, whose assignments are described in the General Description.

Table 1 Control data of Group A (MSM61077)

Group A	Name	1/O	Function	Note
V. 24 Interface (A-I)	$\begin{aligned} & \mathrm{TD} \\ & \mathrm{RD} \\ & \overline{\mathrm{ST} 1} \\ & \overline{\mathrm{ST} 2} \\ & \overline{\mathrm{RT}} \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Transmitted Data Received Data Transmitter Timing Transmitter Timing Receiver Timing	From DTE to DCE From DCE to DTE
$\begin{aligned} & \text { Internal RD } \\ & (A-I I) \end{aligned}$	D D1 REQF	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	Internal RD (PSK) Internal RD (FSK) Enable D0 and D1	Also enable RDIN (B-IV)
Gate Array Status Control (A-III)	SDATA GSTB SCLK	1	Data Strobe Clock Shift Clock	Same as SCLK in C-I

2) Group B (MSM80C51-98/99)

B-I)

Group B-I are the modulation mode definitions, that are described briefly in the item of Control Data Table and also in details afterwards.

B-II)

Group B-II are the mode definitions of Asynchronous to Synchronous Speed Conversion, that are 1/2.3 (a rate of speed tolerance), SASO-2 (character bit length selection). They are described in details in the item of the General Description.
B-III)
Group B-III are the special signal detector outputs, that are TRCD (S1 data detection specified in CCITT V. 22 bis, S158 (TRCD timer selection), US1D (Unscrambled Mark detection). The S1 data is detected by means of observing the threshold energy level at some frequencies points, and detection periods are selected to 50 msec or 80 msec by S 158 according to the cases of handshake sequence and retrain sequence. The US1D is detected through the descramble operation.

B-IV)

Group B-IV are the descrambler output port assignments, that are REQF (Enable RDIN, D0-1), RDIN (descrambler output at $\mathrm{DSPO}=1$, or descrambler input at $\mathrm{DSPO}=0$), ACK (Latch clock for RDIN, D0-1). Those are used when detecting unscrambled or scrambled mark at the handshake sequence through the descrambler operation.

Table 2 Control data of Group B (MSM80C51-98/99)

Group B	Name	1/0	Function	Note
Modulation Mode Definition (B-I)	INRS FSPS DTA DTB MCP3 DOP2 SCP1 DSP0 DSS A/O		Enable Transmitter Tone Select These pins define the several kinds of modulation modes. Please see the paper described in detail. Answer/Originate	FSK, PSK, DTMF, etc.
Speed Conversion Mode Definition (B-II)	1/2.3 SAS2 SAS1 SASO	I I I I	Speed tolerance \int-Character Bit Length	+1.0\%/-2.5\% or $+2.3 \% /-2.5 \%$
Signal Detector Output (B-III)	TRCD S158 US1D	$\begin{aligned} & 0 \\ & 1 \\ & 0 \end{aligned}$	S1 Data Detection TRCD Timer Select Unscrambled 1 Detection	Specified in CCITT V.22-bis $50 \mathrm{msec} / 80 \mathrm{msec}$
Descrambler Input/Output (B-IV)	RDIN ACK	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\left\{\begin{array}{l} \text { Descrambler Output (DSPO=1) } \\ \text { Descrambler Input (DSPO=0) } \\ \text { Latch Clock for RDIN } \end{array}\right.$	Latch Clock for D0, D1 (A-II)

3) Group C (MSM6928-07)

C-I)

Group C-I are the serial control data inputs, that are EXTFLG (control DATA), DSTB (Strobe clock), SCLK (Shift clock). The input data of EXTFLG are 16 bits data stream, whose assignments are described in details in the items of General Description and Appendix B.

C-II)
Group C-II are the data signal quality detector outputs, that are SQDA (Demodulator has no convergence), SQDB (threshold level detection of bit error rate).

Table 3 Control data of Group C (MSM6928-07)

Group C	Name	I/O	Function	
DSP Control	EXTFLG	I	Data	
	DSTB	I	Strobe clock	
	SCLK	I	Shift clock	Same as SCLK in A-III
(C-II)	SQDA	O	Data signal quality	No convergence

4) Group D (MSM6950)

D-I)

Group D-I are the status control data, DT (formation of call progress tone loop), PT (formation of DTMF tone loop), LT (formation of analog loop back), GT (guard tone selection), A/O (Answer/originate). Those are described in details in the item of General Description.

Table 4 Control data of Group D (MSM6950)

Group D	Name	I/O	Function	Note
	DT	I	Call progress tone loop	
AFE	PT	I	DTMF tone loop	
Status Control	LT	I	Analog loop back	
(D-1)	GT	I	Guard tone select	
	MODE	1	Answer/originate	

FEATURES OF OKI PC MODEM 224

- CCITT V. 22 -bis $(2400,1200)$.
- CCITT V. $22(1200,600)$
- Bell 212A (1200, 300 bps).
- Synchronous Mode operations; 2400, 1200,600 bps +/- 0.01\%.
- Asynchronous mode operations; 2400, 1200, 600 bps $+1 \%,-2.5 \% \quad(+2.3 \%$, $-2.5 \%) 0-300 \mathrm{bps}$ (FSK).
- Character length; 8, 9, 10, 11 bits.
- $2 w$-full duplex, and half-duplex.
- DTE interfaces of V. 24 are TTL compatible.
- Included powerful Adaptive Equalizer.
- Tone transmitting capability;

DTMF tone
Guard tone $(550,1800 \mathrm{~Hz})$
Answer back tone (2100, 2225 Hz)

- Test loop facility; Digital loop, Analog loop, Remote Digital loop.
- All CMOS chips.
- Power Supplies; +5.0V, -5.0V.
- Typical Power Dissipation; 500 mW .

LIST OF CHIP SET

Table 5

Type No.	Function	Power Dissipation, Unit: mA				Package	
		Min	Typ	Max	Condition	DIP	FLAT
MSM6950	Analog Front End	-	12	20	+5V	42 pin	56 pin
		-	11	20	$-5 \mathrm{~V}$		
MSM6928-07	DSP for demodulation, Adaptive equalizer and AGC control	-	35	40	+5V	42 pin	60 pin
MSM61077	Timing PLL, Random logic, Speed conversion	-	-	40	+5 V	-	60 pin
$\begin{aligned} & \text { MSM80C51- } \\ & 98 / 99 \end{aligned}$	Modulator, Scrambler/descrambler Speed conversion	12	16	20	+5V	40 pin (-98)	44 pin (-99)

Figure 5 Functional Circuit Block Diagram

OKI PC MODEM 224 APPLICATION CIRCUIT

Figure 6 OKI PC MODEM 224 Application Circuit

INTERFACE SIGNAL DESCRIPTION

Interface	1/O	Description								
DT	1	MSM6950 (AFE) mode definition.								
		Operation mode					DT	PT	GT LT	MODE
		ORIGINATE (Transmit-Lowband)					1	1	$\times \quad 0$	0
PT	1	ANSWER (Transmit -Highband) Note: Guard tones shall be transmitted when $\mathrm{DT}=\mathrm{PT}=0$ only.			No guard tone		1	1	$\times 0$	1
					Guard tone; 550 Hz		0	0	0 0	1
LT	1				Guard tone; 1800 Hz		0	0	10	1
		DTMF tone, Answer Tone					0	1	10	x
GT	1	Analog loop back			Highband		X	X	$\times 1$	0
MODE	1				Lowband		x	X	$\times 1$	1
		Note 4)								
A/O	1	Answer/originate selection 0; ORG (Transmit-Lowband) 1; ANS (Transmit-Highband)								
INRS	0 ; Transmitter enable 1; Transmitter disable									
FSPS	1	0; FSK modulation, Answer tone, DTMF tone				1; PSK, QAM modulation				
DTA	I	DTB/DTA	0	-		DTB/DTA		0		1
		0 DTMF FSK				0	Reversals (Note 2)			Data
DTB	1	1 Answer FSK (mark)				1	S1 data (Note 1)			Mark
MCP3	1	DTMF tone $(D T A=0, D T B=0)$ Refer to Table 6 - Answer tone ($D T A=0, D T B=1$) Refer to Table 7				Scrambler/descrambler instigation 0; OFF 1; ON				
DOP2	1					- See DSS column				
SCP1	1					Scrambler control 0; Unscramble 1; Scramble				
DSPO	1					Descrambler control 0; Undescramble 1; Descramble				

Note 1) S1 data: Unscrambled repetitive double dibit pattern of 00 and 11 at 1200 bps.
Note 2) Reversals: Alternating binary ones and zeros.
Note 3) To detect a sequence of 64 consecutive ones and to invert the next input. During Handshake and Remote DC Loop instigation, MCP3 must be Low.
Note 4) When analog loop back, MODE assignment is in reverse for A / O assignment.

MODEM•2400 bps CHIP SET

Interface	1/O	Description
SQDB	o	Signal quality detector B (Optional function) (Bit error rate) $0 ; B E R$ (predictive) is under $10^{-3} / 10^{-4}$ 1 ; BER (predictive) is over $10^{-3} / 10^{-4-}$ See SQDC in Table 9.
TRCD	0	
US1D	0	Unscrambled mark detect output To detect unscrambled mark (digital " 1 ") for 154 ms . DO US1D (Valid when $\overline{\mathrm{FCD}}=$ " 0 " $)$
ACK	0	
REQF	0	Status indicator of DO, D1 and RDIN data 0 ; Invalid 1; Valid
DO	0	Internal RD (PSK) (Undescrambled RD) 0 ; Space 1; Mark
D1	0	Internal RD (FSK) 0; Space 1; Mark

- MODEM• 2400 bps CHIP SET

Interface	1/0	Description
RDIN	O	Descrambler input/output DSPO =0; RDIN is the undescrambled data. DSPO = 1; RDIN is the descrambled data.
$\begin{gathered} \text { TD } \\ \text { (V. } 24 \text { interface) } \end{gathered}$	1	Transmitted data 0; Space 1; Mark
$\begin{gathered} \overline{\text { ST1 }} \\ \text { (V. } 24 \text { interface } \end{gathered}$	1	Transmitter signal element timing input (to MODEM)
$\begin{gathered} \overline{\text { ST2 }} \\ \text { (V. } 24 \text { interface) } \end{gathered}$	0	Transmitter signal element timing output (from MODEM)
$\begin{gathered} \text { RD } \\ \text { (V. } 24 \text { interface) } \end{gathered}$	0	Received data 0; Space 1; Mark
$\begin{gathered} \overline{\mathrm{RT}} \\ \text { (V. } 24 \text { interface) } \end{gathered}$	0	Receiver signal element timing output (from MODEM)
AOUT	0	Transmit analog signal output (to phone line)
AIN	1	Receive analog signal input (from phone line)

Note: As for the description of $D_{0} \sim D_{15}$, refer to the Table 8.
2. Serial control data for MSM6928-07 (DSP)

	(First)				(Last)				

SCLK

$$
\tau>1 \mu \mathrm{~s}
$$

Note: As for the description of $D_{0} \sim D_{15}$, refer to the Table 9.

Interface	I/O	
+5 V		Positive power supply
-5 V		Negative power supply
GND		Ground, 0 V

Note) Higher dual power supplies, for instance, $\pm 12 \mathrm{~V}$ may be necessary for the analog line interface circuit when the transmit and receive analog signal level cannot be satisfied with $\pm 5 \mathrm{~V}$ power supplies.

Table 6 DTMF Tone

MCP 3	DOP 2	SCP 1	DSP 0	Symbol	Lowband Frequency	Highband Frequency
0	0	0	0	1	697 Hz	1209 Hz
0	0	0	1	2	697	1336
0	0	1	0	3	697	1477
0	0	1	1	4	770	1209
0	1	0	0	5	770	1336
0	1	0	1	6	770	1477
0	1	1	0	7	852	1209
0	1	1	1	8	852	1336
1	0	0	0	9	941	1377
1	0	0	1	0	941	1209
1	0	1	0	$*$	941	1477
1	0	1	1	$\#$	697	1633
1	1	0	1	B	1633	
1	1	1	0	C	0	8
1	1	1	1	D	9	1631

Table 7 Answer Tone

MCP 3	DOP 2	SCP 1	DSP 0	Answer Tone Frequency
-	-	-	0	2100 Hz
-	-	-	1	2225 Hz

Table 8 MSM61077 Serial Control Data Table

No.	Name	Description
D0	TESTA	0; Normally set at digital " L " level. 1; Test mode. In the testing mode of this I.C., digital " H " have to be applied
D1	DSS1	Data signalling rate select 0; 2400 bps 1; 1200/600 bps (refer to D7)
D2	SDCLP	
D3	GA123	Speed conversion tolerance selection $\begin{aligned} & 0 ;+1 \% /-2.5 \% \\ & 1 ;+2,3 \% /-2.5 \% \end{aligned}$
D4	GAVB	Speed conversion method selection $\begin{aligned} & \text { 0; CCITT } \\ & \text { 1; Bell } \end{aligned}$
D5	CD1	Receive timing PLL control 0; Free run 1; Normal operation
D6	CD2	Lock in time control of receive timing PLL 0; Slow 1; Fast
D7	DSSO	Data signalling rate select $\begin{aligned} & 0 ; 1200 \mathrm{bps} \\ & 1 ; \quad 600 \mathrm{bps} \end{aligned}$
D8	GADC	```Received Data (RD) select 0; Asynchronous (Receiver speed converter output) 1; Synchronous (Direct demodulator output) Note 2)```
D9	GASAS	
D10	GALSHS	```Transmission mode control for AFE (6950) 0; 600/1200/2400 bps 1; 300 pbs, DTMF, Answer Tone Note 4)```
D11	GASLSH	```Originate or answer mode select 0; Answer (Transmit - Highband) 1; Originate (Transmit - Lowband)```

No.	Name			Description
D12	SWLA	Character bit length (Asynchronous mode)		
D13	SWLB	SWLB	SWLA	Character Length
		0	0	8 bits
		0	1	9 bits
		1	0	10 bits
		1	1	11 bits
D14	STA	Transmit element timing select		
D15	STB	STB	STA	Transmit timing
		0	0	$\overline{S T}_{2}$
		0	1	
		1	0	$\overline{S T}_{1}$
		1	1	$\overline{\mathrm{RT}}$

Note 1) When SDCLP=0, don't change GASAS, SWLA, and SWLB. Keep the previous status. If changing GASAS, SWLA and SWLB when SDCLP=0, mis-operating may happen in the IC.
Note 2) In case of receiving FSK signal, GADC must be HIGH.
In case of synchronous operation (PSK, QAM), Both GADC and GASAS must be HIGH. In case of asynchronous operation (PSK, QAM), Both GADC and GASAS must be LOW.
Note 3) Speed converters mean SYN/ASYN and ASYN/SYN converters.
Note 4) When GADC=1, if GALSHS=1, RD is demodulated FSK signal. if GALSHS $=0$, RD is demodulated PSK or QAM signal.

Table 9 MSM6928-07 Serial Control Data Table

No.	Name	Description	
D8	PLEN	Carrier PLL enable 0; Disable 1; Enable	
D9	SANSORG	Originate/answer mode select for receiver 0; Answer (Receive - Lowband) 1; Originate (Receive - Highband)	
D10	AGCTO	AGC circuit control coefficients	
D11	AGCT1	AGCT1 AGCTO	See Appendix B.
		0 0	
		0 1	
		10	
		1 1	
D12	SODC		
D13	SODEN	LPF accumulate register clear for SQDA and SQDB (signal quality detecter) 0 ; Normal operation 1; Reset See Appensix B.	
D14	TRCDC	Threshold level for S1 data detection 0; Low (Handshake) 1; High (Retrain)	
D15	XFCD1	DSP software reset except for AGC control 0 ; Normal operation 1; Reset	

Table 10 shows the summary of transmitter mode definition. Table 11 shows the category of control data.

In table 11, Initial Installation means the initialization procedure at power ON, or at make up call. Call Progress means dialing procedure concerning the transmitting DTMF tone and detecting call progress tones. Handshake means Handshake sequence specified in the CCITT recommendation or BELL 212A Critera. Test Loop means testing procedure specified in the CCITT recommendation or BELL 212A Critera.

Monitor means the output signals which the controller should observe during handshake sequence or data mode. Each control data is classified into these categories, and some of control data belong to different categories in duplicate.

Please note that each control data will be mainly controlled in each procedure, but in special case, may be controlled in other procedure.

Table 10 Transmitter Mode Definition Table
1 : Logical High
0 : Logical Low

Operations			INRS	FSPS	DTA	DTB	MCP3	DOP2	SCP1	DSPO	DSS	GA			
			DSS1									DSSO	GALSHS		
Transmitter Disable				1	X	X	X	x	X	x	X	x	x	X	X
DTMF Tone			0	0	0	0	See table 6				X	x	x	1	
Answer Tone			0	0	0	1	See table 7				X	X	X	1	
$\underset{\Delta}{\mathbb{K}}$	FSK	300 bps	0	0	1	0	x	X	x	x	X	X	X	1	
	PSK	600 bps	0	1	1	0	1	1	1	1	1	1	1	0	
		1200 bps	0	1	1	0	1	0	1	1	1	1	0	0	
	QAM	2400 bps	0	1	1	0	1	0	1	1	0	0	X	0	
	PSK	S1 data*	0	1	0	1	0	0	0	X	1	1	0	0	
			0	1	0	1	0	1	0	X	0	0	X	0	
		USR/SCR-1*	0	1	1	1	0	0	0/1	X	1	1	0	0	
			0	1	1	1	0	1	0/1	X	0	0	X	0	
		Reversals*	0	1	0	0	0	0	0	X	1	1	0	0	
			0	1	0	0	0	1	0	X	0	0	X	0	

* When DOP2 = 1 and DSS = 0, Data Signalling Rate between DTE and Modem is at 2400 bps.

But, Modulation Rate is maintained at 1200 bps. These mode shall be difined in the handshake sequence.

Table 11 Category of Control Data

		Initial Installation	Call Progress	Handshake	Test Loop	Monitor	Notes
ered ןoxuoo loןfesed	DT		O	0			DTMF Tone Loop, Dial Tone Loop, with or without Guard Tone. When LT = 1, AC Loop will be formed in 6950. When AC Loop Test, Transmitter mode must be in reverse. Transmitter mode definition - DTMF, Answer Tone, - FSK, PSK, QAM - Unscramble, Scramble Mark - Data Signalling Rate S158 shall be controlled as same as TRCDC. $\overline{F C D}$ status shall be always sensed in real-time. Controller should observe SQD output frequently in order to request Retrain sequence if necessary. In Data mode, US1D shall be used to detect RDL requirement. By observing D0, D1, and RDIN at the same time, Controller can recognize whether received signal is unscramble-1, scramble-1 or FSK mark. These signals are V. 24 interfaces. Controller shall intermediate to accomodate these signals to the proper V. 24 interface timing and status. Analog input and output in 6950.
	PT		0	0			
	LT				0		
	GT	0					
	MODE	0					
	A/O	0			0		
	INRS		0	0			
	FSPS		\bigcirc	0			
	DTA		0	0			
	DTB		0	0			
	MCP3		0	\bigcirc			
	DOP2		0	0			
	SCP1		0	0			
	DSPO		0	0			
	DSS		0	O			
	1/2.3	O					
	RESET	0					
	S158			0			
	SAS2	0					
	SAS1	0					
	SASO	0					
	FCD					0	
	SQDA					0	
	SODB					0	
	TRCD					\bigcirc	
	US1D					0	
	ACK					0	
	REQF					0	
	DO					0	
	D1					0	
	RDIN					0	
	TD			0		0	
	ST1			0		0	
	ST2			\bigcirc		0	
	RD			\bigcirc		\bigcirc	
	RT			\bigcirc		0	
	AOUT						
	AIN						

ㅌ

		Initial Installation	Call Progress	Handshake	Test	Monitor	Notes
	TESTA	\bigcirc					TESTA must be Logical Low.
	DSS1			0			
	SDCLP	0					
	GAL23	\bigcirc					
	GAVB	\bigcirc					
	CD1			0			
	CD2			\bigcirc			g PLL of demodulator.
	DSSO			\bigcirc			
	GADC			\bigcirc			
	GASAS	0					
	GALSHS		0	0			GALSHS controls write clock of 6950.
	GASLSH	0			0		When AC Loop Test, GA mode must be in reverse.
	SWLA	0					
	SWLB	0					
	STA	0			0		
	STB	0			0		In RDL, both STA and STB shall be Logical High.
	XFCD			0			XFCD equals to negative logical state of $\overline{\mathrm{FCD}}$.
	TAPH			0			Tap hold control for AEQL.
	DSSO			\bigcirc			Data signalling rate of PSK/QAM demodulator in DSP.
	DSS1			O			These are no relationship with FSK demodulator in DSP.
$\stackrel{\text { ® }}{ }$	EGC0			0			
O	EGC1			O			Adaptive EQL control
$\stackrel{\rightharpoonup}{\square}$	AOID			0			
O	PLCR			\bigcirc			
-	PLEN			O			Carrier PLL control
$\stackrel{\square}{\text { ¢ }}$	SANSORG	0			0		
0	AGCTO			0			
¢	AGCT1			\bigcirc			AGC control
	SQDC	0					
	SQDEN			\bigcirc			SQD control
	TRCDC			O			
	XFCD1			O			

HANDSHAKE SEQUENCE

Figure 7 to Figure 14 show the timing charts of control data in the Handshake Sequences as follows.

Figure 7	2400 bps	Orig. Modem	CCITT
Figure 8	2400 bps	Ans. Modem	CCITT
Figure 9	1200 bps	Orig. Modem	CCITT
Figure 10	1200 bps	Ans. Modem	CCITT
Figure 11	1200 bps	Orig. Modem	BELL
Figure 12	1200 bps	Ans. Modem	BELL
Figure 13	300 bps	Orig. Modem	BELL
Figure 14	300 bps	Ans. Modem	BELL

The timing charts of control data in CCITT 600 bps Orig./Ans. are same as those in CCITT 1200 bps Orig./Ans. except for data signalling rate assignments. In CCITT 600 bps, data signalling rate assignments, (DSS1, DSSO) of GA, (DSS1, DSSO) of DSP, and (DSS, DOP2) of MCU are logical high each other.

Supplementary Comments about Handshake Sequence.

(Originate Modem)

1) Originate modem shall wait the answer tone transmitted from the answer modem after dialing procedures. The answer tone detector of 2100 Hz is not incorporated in this chip set, therefore, carrier detection circuit is functioning as the detector. But the answer tone of 2225 Hz will be correctly detected by FSK demodulator in DSP through D1 output pin installed at GA.
2) AGC control should start after XFCD turning OFF to ON. After 20 ms , AGC output level deviation will be converged within a limited range.
3) In CCITT mode, Carrier PLL control of PLEN and PLCR should be controlled 20 ms later at the head of unscramble-1 in order to detect unscramble-1 correctly.
4) There are two methods to recognize unscramble-1. One is to observe US1D output, and the other is to observe DO output.
5) AEQL control should start 100 ms after the end of S1 data (2400) or the end of unscramble-1 (1200). Because it takes 100 ms for timing PLL to be locked in a tolerance range.
6) In 2400 bps establishment, after recognizing S1 data each other, Data Signalling Rate for DTE shall be changed to 2400 bps. From this time, Data Signalling Rate of GA will be changed to 2400 bps, and also Data Signalling Rate between GA and MCU will be changed to 2400 bps. Transmitter should, however, transmit the signal of S1 data or scramble-1 at 1200 bps. At this time, special signal transmitting mode is prepared. When DOP2 $=1$ and DSS $=0$, Data Signalling Rate is at 2400 bps, but modulation is maintained on 4 phase at 1200 bps. In this case, transmitter decimates the incoming signal at 2400 bps, and keeps modulation on 4 pahse PSK at 1200 bps.

(Answer Modem)

1) Generally speaking, Answer modem should adopt own data signalling rate to the opposite modem (Originate modem). Therefore, Answer modem must observe the several kinds of incoming signals at the same time because Answer modem can't know whether Originate modem is set on 300 bps, 1200 pbs, or 2400 pbs. In this case, the first judgement will be decided when detecting the first incoming signal, that is S1 data, scramble1, or FSK mark (1270 Hz).
In this situation, when DSPO is set on High, S1 data, scramble-1, and FSK mark can be detected at the same time through TRCD, RDIN, D1 outputs, respectively.
2) In Answer modem, AGC control, carrier PLL control, and AEQL control are almost same as those of Originate modem, but those control sequences are not separated unlike the Originate modem. As shown in the timing charts, each sequence should be controlled orderly (control after control).
3) In $1200 \mathrm{bps} / \mathrm{BELL}$ establishment, scramble-1 signal should be detected while transmitting Answer tone. In this case, the state of DSPO concerning to descrambler control will be neglected because of Low state of FSPS. Hence, descrambler is uncontrollable externally at this time. But, if DSPO is set on High before FSPS turning to OFF, the previous state (that is logical High) of DSPO will be memorized in MCU, and as the result, descrambled output data will appear at RDIN.
4). In FSK receiving, the control sequence concerning about carrier PLL, timing PLL and AEOL of demodulator will not be cared.
4) In Data mode, US1D output shall be used as interrupt signal for controller to reply remote DC loop test requirement of the opposite modem.

CONTROLLER FOR COMMAND INTERPRETTING AND HANDSHAKE SEOUENCING, PHONE LINE INTERFACE

The chip set provides only the original MODEM functions as described, therefore, it is necessary to implement the controller with software, some network control circuit and phone line interface.

Figure 6 (Application circuit) includes only the original MODEM functions, and does not show the additional functions which are required to realize the stand-alone MODEM.

Figure 15 shows one example of the block diagram for it.
OKI wishes to support customers for the design of the whole modem, and intends to provide an example of the controller and command interpretter with software.

Figure 15 Intelligent MODEM block diagram

- MODEM• 2400 bps CHIP SET

APPENDIX A

Figure A-1 shows the example of the interface circuit between the controller and the OKI PC MODEM 224. The main function of this circuit is to convert the serial bits stream into the parallel bits stream. MSM82C55 acts as to expand the output port of the controller, that is 1 byte to 3 bytes. And some gates, latch (HC574F) are auxilialy prepared to supply the diagnostic signals (TRCD, US1D, ... etc) to the controller.

Figure A-1 An example of the interface circuit between OKI PC MODEM 224 and controller

APPENDIX B

Figure B-1 shows the functional block diagram of the demodulator (MSM6928-07).
In many cases, the demodulator functions are masked and uncontrollable, therefore, their performance largely depends on the chip itself. In case of the OKI PC MODEM 224, however, some blocks in the Fig. B-1 are controllable and adjustable to adapt the demodulating environment with flexibility, so that the demodulation performance, that is the convergence ability of the adaptive equalizer, or bit error rate, could be improved.

The OKI PC MODEM 224 allows the following functions to be controllable and adjustable.

1) AGC Control
2) Signal Quality Detector
3) Carrier PLL
4) Adaptive Equalizer

Items of 1), 2), 4) are described in details as follows.

(I) AGC Control

Figure B-2 shows the schematic explanation of the AGC control given to the AFE through DSP output port. These control are done by the following processes.

1) Calculating the carrier power of the present input signal.
2) Comparing the power value with the predetermined reference value (Vref).
3) Feeding the subtracted value back to the AFE.

When the FCD (carrier detection) turn OFF to ON, the error value is immediately fed back to the AFE to chase the input signal. But, when the input carrier level become into the steady, we had not better control the error value frequently because DSP could follow the carrier deviation sensitively even though it might be the instant carrier loss or its ripple. Therefore, the feed back quantity should be decreased at that time. Beta $1-3$ are supplementary coefficient multiplied by the error value, and selected by AGCT0-1 listed in the table.

Note: $0<\beta_{3}<\beta_{2}<\beta_{1}<1$
Figure B-2 AGC control

(II) Signal Quality Detector Output

DSP includes the self-diagnosis function for the demodulated signal quality as shown in the Fig. B-3. Both SQDA and SQDB are output results of its function. The error value of the area decision is passed through the digital lowpass filter with a large time constant as a integlator, the output of which is compared with the predetermined threshold level by the digital comparator.

The comparator-A compares the LPF output with Vr 1 , and outputs the result of SQDA, which means that the status of demodulator is no convergence when it turns to the logical High level. This information shall be used for the retrain requirement to the opposite modem.

The comparator-B compares the LPF output with Vr 2 or Vr 3 , and outputs the result of SQDB. Either Vr 2 or Vr 3 is selected as the threshold level for comparator-B by the control signal of SQDC. The SQDB means that the bit error rate of the demodulator section might be seemed to overreach the rate of 10^{-3} or 10^{-4} when it turns to the logical High level.

Please note that the Vr 2 and Vr 3 which correspond to the preset rate of 10^{-3} and 10^{-4} respectively are experimental values so that there are some difference between a measurement value and a predictive value.

As mentioned before, the LPF has a large time constant, therefore, the internal accumulated register of LPF can be cleared by the SQDEM to avoid the large transient time responses.

(III) Adaptive Equalizer

In the demodulator, the adaptive equalizer takes an important charge of it on to determine its performance, and also has sophisticated functions. The OKI PC MODEM 224 adopts the MSE (Mean Square Error) method as the algorism of Adaptive Equalizer. Figure B-4 shows the schematic diagram of adaptive equalizer. When the FCD (carrier detection) turns OFF to ON, the adaptive equalizer begins to study the actual line condition in the training sequence, and determines the adaptive tap coefficients of the equalizer. At that time, to set the center value to tap coefficients of the equalizer (AQID $=0$) would not only provide good convergence for demodulator speedy, but facilitate the following processes of equalizer algorism. And then, we should immediately renew the tap coefficients by adding or subtracting the error value. However, after the training sequence, we had not better change the tap coefficients frequently because Equalizer could follow the line environment changes sensitivity ever though it might be a little bit change caused by the frequency hit, jitter, or some other factors. Alpha 1~4 are supplementary coefficient multiplied by the error value, and selected by EGC0-1 listed in the table.

Figure B-4 Adaptive equalizer

APPENDIX C

Initial Adjustment
Trimming for Reference Voltage

Figure C-1

VR2 should be trimmed so that the DC voltage on pin 26 becomes +2.50 V .

Adjustment for Transmit/Receive Signal Level

First, connect a 600Ω signal source to the transformer (normally 1200 Hz).
Next, make the signal source level minimum and make the modem send the single tone signal to the phone line through the hybrid transformer.

Then, tune $V R T$ so that the signal between point A and B should become -10 dBm .

- MODEM• 2400 bps CHIP SET

Stop the modem to send the transmit signal, and set the signal level between point A and B at -10 dBm by increasing the signal source output level.

Then, tune VRR so that the signal on AIN (pin 27) should be 0 dBm .
Note 1: $0 \mathrm{dBm}=0.775 \mathrm{Vrms}$
The input impedance of a level meter used for measurments must be "High".
Note 2: The mode of the level meter should be "Balance" when measuring the signal level between point A and B .
"Unbalance" mode should be used when measuring the signal level on AIN (pin 27), AOUT (pin 30).

APPENDIX D

Decision Point Monitoring

Decision point monitoring is the practical evaluation method.
It can be easily performed by using XIC provided on the evaluation board and the external monitoring circuit.

At first, it is required to put a 22 pin - IC socket into XIC's holes by soldering.
Figure D-2 shows how to connect the external monitoring circuit (drawn in figure D-3) through the XIC's socket.

Figure D-2

* XIC is provided on the modem evaluation board. BO~B15 are connected to pin25 through pin40 of MSM6928 and ST is connected to pin 11 of MSM 6950.

Figure-5. DECISION POINTS MONITORING CIRCUIT

APPENDIX E

The chip set does not include the carrier detect function, therefore, it is necessary to implement this function using discrete components.

Figure E-1 shows an example of carrier detect circuit. In this circuit, OPA 41/2 requires the power supply voltages of more than $\pm 9 \mathrm{~V}$. When using $\pm 5 \mathrm{~V}$ for operational amplifier, it is necessary to re-design this circuit, especially for the part of threshold detector with hysteresis constructed by OPA 412.

For normall 2400 bps modem systems, it is difficult to apply $\pm 5 \mathrm{~V}$ as power supply voltages for, line interface circuit. Because QAM modulated analog signal has the peak factor for the wave form and $\pm 5 \mathrm{~V}$ are too low to guarantee the linearity of the QAM analog signal. For 300 bps (FSK) and 1200 bps (PSK) modem systems, $\pm 5 \mathrm{~V}$ power supplies may be used for the line interface circuit. So, when the chip set is applied for 300 or 1200 bps systems and the power supply voltages are $\pm 5 \mathrm{~V}$, the carrier detect circuit shown in Figure $\mathrm{E}-1$ can not be applied without re-designning.

Figure E-1 An example of external carrier detect circuit

MSM6928-06

DSP FOR 1200 BPS FULL DUPLEX MODEM CHIP SET

GENERAL DESCRIPTION

The MSM6928-06 is a digital signal processor which is used as a demodulator in the chip for 1200 bps full duplex modem based on Bell 212A standard or CCITT V22 standard.

The MSM6928-06 operates as a PSK demodulator, FSK demodulator, FCD detector etc by using the digital signal processing method and it transmits the AGC signal to the MSM6950 (Analog Front End).

The MSM6928-06 is fabricated by OKI's low power consumption CMOS silicon gate technology. By utilizing MSM6928-06 together with MSM6950, MSM80C31 (Modulator), MSM61057 (Asynchronous/Synchronous Switching, etc.), MSM81C55 and MSM2764 (or MSM27C64), an intelligent modem system based on Bell 212A or CCITT V. 22 standard can be realized easily.

FEATURES

- PSK Demodulation

The received signal is multiplied with an internal demodulation carrier, and input to the next stage PDF, as a baseband signal. The PDF output is generated as the demodulated PSKRD after the line distortion, is corrected by an automatic equalizer.

- FSK Demodulation

The received signal is demodulated through a BPF, a delay detector, and an LPF, and then output as FSK-RD.

- FCD Detection

In the FCD detection block, the level of the input signal is calculated and compared with a threshold level. The detection result is output as FCD.

- AGC

In the AGC block, the power of the input signal is calculated and its difference from the reference voltage is output as the control signal for the Analog-Front-End variable control.

- 42 pin plastic DIP package or 60 pin plastic flat package.

PIN CONFIGURATION

MSM6928-06RS

MSM6928-06GS

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

Item	Symbol	Rating	Unit	Remark
Power Supply Voltage	$V_{\text {DD }}$	$-0.3 \sim+7$	V	
Input Voltage	$\mathrm{V}_{\text {IN }}$	$-0.3 \sim \mathrm{~V}_{\mathrm{DD}}$	V	
Power Dissipation	Pd	1.0	W	
Operating Temperature Range	Top	$-10 \sim+70$	${ }^{\circ} \mathrm{C}$	
Storage Temperature Range	TsT	$-55 \sim+150$	${ }^{\circ} \mathrm{C}$	

Guaranteed Operating Range

Item	Symbol	Rating	Unit	Remark
Power Supply Voltage	VDD	$+4.75 \sim 5.25$	V	
Ambient Temperature Range	Ta	$0 \sim+60$	${ }^{\circ} \mathrm{C}$	

Static Electrical Characteristics

Item	Symbol	Condition	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 5 \%, \mathrm{Ta}=0 \sim 60^{\circ} \mathrm{C}$				
			Limit			Unit	Remark
			Min	Typ	Max		
Output Voltage	V_{OH} VOL	$\begin{aligned} & \mathrm{I}_{\mathrm{Q}}=-40 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{Q}}=1.6 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 4.2 \\ -0.3 \end{gathered}$	-	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \\ 0.4 \end{gathered}$	v	-
Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$	-	$\begin{gathered} \hline 2.4 \\ -0.3 \\ \hline \end{gathered}$	-	V_{DD} 0.8	v	-
Input Leakge Current	IIL	$\begin{aligned} & \mathrm{GND}<\mathrm{V}_{\text {IN }} \\ & <\mathrm{V}_{\mathrm{DD}} \end{aligned}$	-	-	± 10	$\mu \mathrm{A}$	-
Bus Output Voltage	$B \mathrm{VOH}_{\mathrm{OH}}$ $\mathrm{BV}_{\mathrm{OL}}$	$\begin{aligned} & \mathrm{I}_{\mathrm{Q}}=-80 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{Q}}=1.6 \mathrm{~mA} \end{aligned}$	4.2	-	$\begin{gathered} - \\ 0.4 \end{gathered}$	V	-
Bus Input Voltage	$\begin{aligned} & B V_{1 H} \\ & B V_{I L} \end{aligned}$	-	2.4	-	0.8	v	-
Bus Input Leakage Current	BIL	$\begin{aligned} & \mathrm{GND}<\mathrm{V}_{\mathrm{IN}} \\ & <\mathrm{V}_{\mathrm{DD}} \end{aligned}$	-	-	± 10	$\mu \mathrm{A}$	@ BUS OFF Condition
Operating Current	IDDQ	-	-	35	40	mA	MCK: 5529.6 kHz
Quiescent Current	'DDs	-	-	-	0.3	mA	MCK: OFF

Dynamic Electrical Characteristics

PIN DESCRIPTION

Pin Name	Pin No.		1/0	Function
	RS	GS		
DSTB	1	25	IN	Loads the signal on EXT Bus into Input Register.
TESTB	2	26	IN	Test signal. Loads the signal on internal bus into Output Register. 1: Load, 0: Normal
RESET	3	27	IN	Operation start instruction signal. Operation in synchronization with \sqrt{L} 1: Stop, 0: Operation start
STEP	4	28	IN	Selects either of continuous operation and single step operation. 1: Continuous operation (Normal) 0 : Single step operation
MCK	5	29	IN	Master clock signal, normally 5529.6 kHz .
ENDF	6	31	OUT	Program specifying sync signal.
INSCK	7	32	OUT	Machine cycle sync signal.
STF 0	8	35	IN	External specifying address signal 2° (LSB)
STF 1	9	37	IN	External specifying address signal 2^{1}
STF 2	10	38	IN	External specifying address signal 2^{2}
STF 3	11	39	IN	External specifying address signal 2^{3}
STF 4	12	40	IN	External specifying address signal 2^{4}
STF 5	13	41	IN	External specifying address signal 2^{5}
STF 6	14	43	IN	External specifying address signal 2^{6}
STF 7	15	44	IN	External specifying address signal 2^{7}
STF 8	16	45	IN	External specifying address signal 2^{8} (MSB)
START	17	47	IN	Operation starting sync signal. Loads external specifying address.
SYN	18	48	IN	Causes the serially input jump condition to be loaded into EXT FLG Register in the parallel form.
EXTFLG	19	49	IN	Serially input jump condition. This signal is loaded into S / P on the negative-going edge of SCK.
SCK	20	51	IN	Serially input jump condition loading clock.
GND	21	52	-	Ground.

Pin Name	Pin No.		1/0	Function
	RS	GS		
TESTA	22	54	IN	Test signal. Holds Program Counter. 0: Hold, 1: Normal
TESTC	23	55	IN	Test signal.
TESTD	24	56	IN	Test signal.
EXTB 0	25	57	1/0	External bidirectional bus 2^{0} (LSB)
EXTB 1	26	59	1/0	External bidirectional bus $\mathbf{2}^{1}$
EXTB 2	27	60	1/0	External bidirectional bus $\mathbf{2}^{\mathbf{2}}$
EXTB 3	28	1	1/0	External bidirectional bus 2^{3}
EXTB 4	29	2	1/0	External bidirectional bus 2^{4}
EXTB 5	30	4	1/0	External bidirectional bus $\mathbf{2}^{5}$
EXTB 6	31	5	1/0	External bidirectional bus $\mathbf{2}^{6}$
EXTB 7	32	7	1/0	External bidirectional bus 2^{7}
EXTB 8	33	9	1/0	External bidirectional bus $\mathbf{2}^{8}$
EXTB 9	34	10	1/0	External bidirectional bus $\mathbf{2}^{9}$
EXTB 10	35	12	1/0	External bidirectional bus $\mathbf{2}^{\mathbf{1 0 0}}$
EXTB 11	36	13	110	External bidirectional bus 2^{11}
EXTB 12	37	15	1/0	External bidirectional bus 2^{12}
EXTB 13	38	16	1/0	External bidirectional bus 2^{13}
EXTB 14	39	18	1/0	External bidirectional bus 2^{14}
EXTB 15	40	19	1/0	External bidirectional bus 2^{15} (MSB)
BSC	41	21	IN	External bidirectional bus specifying signal. 1: Input, 0: Output
$V_{\text {DD }}$	42	23	-	Power supply +5V

Figure 1 Test conditions and timing charts

Timing Chart C

Timing Chart D

Figure 2 Test conditions and timing charts

Note: The test pin conditions are shown below.

No.	Pin Name	Pin No.	Set Condition
1	TEST A	22	High
2	TEST B	2	Low
3	TEST C	23	High
4	TEST D	24	High
5	STEP	4	High

Figure 3 Test conditions and timing charts

TIMING CHARTS

Input/Output Data

Demodulating data (A/D output) and gain setting data for AGC are input and output via the bus every sampling period (STM). See Figure 5 and Figure 6.

Control Signals

Each baud rate (BTM) is divided into 12 (1 BTM = 12 STMs), and the start vectors are input from STF0-3 every STM. See Figure 7.

Mode specifications, such as data speed, ORG/ANS switching, and FCD selection, are input as 8 -bit serial data. See Figure 8.

Figure 7 MSM6928-06 Timing Chart

	EXT FLG	Function	
D7~15	-	ANY	
D6	-	$1:$ FIX	
D5	EXT-FCD	$1:$ ON	$0:$ OFF
D4	FCD SELECT	$1:$ EXT-FCD	$0:$ INT-FCD
D3	DATA SPEED	$1: 600$ bps	$0: 1,200$ bps
D2	A-EQL	$1:$ OFF	$0:$ ON
D1	FCD DETECT LEVEL	$1:-35$ dBm	$0:-40$ dBm
D0	ORG/ANS	$1:$ ORIGINATE	$0:$ ANSWER

EXTFLG \qquad

SCK

SYNC

Figure 8 MSM6928-06 Timing Chart

OKKI

GATE ARRAY FOR 1200 BPS FULL DUPLEX MODEM CHIP SET

GENERAL DESCRIPTION

The MSM61057 is a gate array LSI which is used in the chip set for 1200 bps full duplex modem based on Bell 212A or CCITT V. 22 standard.

The MSM61057 plays a role for asynchronous/synchronous converting, scrambler and descrambler in the 1200 bps full duplex modem system.

The MSM61057 is fabricated by OKI's low power consumption CMOS silicon gate technology. By utilizing MSM61057 together with MSM6928-06 (Digital Signal Processor DSP used for Demodulator). MSM6950 (Analog Front End - AFE), MSM80C31 (Modulator), MSM81C55 and MSM2764 (or 27C64), an intelligent modem system based on Bell 212A or CCITI V. 22 standard can be realized easily.

FEATURES

- S. PLL:

Built-in a Digital PLL for TransmitTiming (ST). ST is output from this PLL in the synchronous mode.

- R.PLL:

Built-in a Digital PLL for ReceiveTiming (RT). Receive-Timing signals demodulated by the DSP are recovered in the PLL and output as RT.

- DSP Control:

The DSP is controlled by a start signal, start vectors, and bus control signals.

- Sync/Async and Async/Sync Conversion:
MSM61057 provides a part of the sync/async and async/sync converting function. But main conversion are carried out by the MSM80C31.
- AFE Control: MSM61057 controls the AFE's A/D and D/A conversion and AGC.
- 40 pin plastic DIP package or 60 pin plastic flat package.

PIN CONFIGURATION

MSM61057GS

Figure 1 MSM61057 Block Diagram

ELECTRICAL CHARACTERISTICS

Please refer to that of MSM61000 series in OKI GATE ARRAY DATABOOK.

PIN DESCRIPTION

Pin Name	Pin No.		1/0	Function
	RS	GS		
MCK	1	1	1	Master clock input ($921.6 \mathrm{kHz} \pm 0.01 \%$). The duty of this clock should be $50 \% \pm 5 \%$.
MT	2	2	0	This clock is available for modulation and it indicates the sample timing of AFE and D/A data. See Fig. 2.
ST	3	3	0	$1200 / 600 \mathrm{~Hz}$ clock output. This clock is synchronous to INTERNAL/ $\mathrm{ST}_{1} / \mathrm{RT}$ by setting ST A/B. See Fig. 2.
ST_{1}	4	4	1	External transmit timing input. ($1200 / 600 \mathrm{~Hz} \pm 0.01 \%$). If ST_{1} is not used, ST should be held the digital "Low".
RT	5	5	1	Receive timing signal input.
SCK	6	6	0	These pins may be used for device tests only. In normal operation, SCK should be tied to SIN.
SIN	7	7	1	
SD	8	8	1	Transmit-Data ($\overline{\mathrm{SD}}$) signal input.
RD	9	9	0	Receive-Data ($\overline{R D}$) signal output.
RSMP	10	10	1	This is used for sampling $\overline{\text { PSKRD }}$ and $\overline{\text { FSKRD }}$. RSMP should be made by inverting SAM in external.

Pin Name	Pin No.		I/O	Function
	RS	GS		
RD ${ }_{0}$	11	11	1	$\overline{\text { PSKRD }}$ signal input. $\overline{\text { PSKRD }}$ is the PSK Receive-Data which is demodulated in DSP, and it is input via Data-Bus.
RD_{1}	12	12	1	$\overline{\text { FSKRD }}$ signal input. $\overline{\text { FSKRD }}$ is the FSK Receive-Data which is demodulated in DSP, and it is input via Data-Bus.
DRT	13	13	0	Data Rate Receive-Timing (RT) signal output. This pin should be tied to the RT.
RCK	14	14	0	These pins may be used for device tests only. In normal operation, they will be connected each other.
RIN	15	15	1	
TIM	16	16	1	This is the input pin for the receive-timing signal which is demodulated in DSP.
STFO	17	17	0	DSP vector signal outputs.
STF1	18	18	0	
STF2	19	19	0	
GND	20	23		Ground reference of $\mathrm{V}_{\text {cc }}$.
STE3	21	21	0	DSP vector signal output.
STRT	22	22	0	DSP start signal output.
DSTB	23	20	0	This is one of the DSP control signals. When the signal turns to digital "High", Parallel Bus Dates are input to the DSP.
BSC	24	24	0	The DSP output control signal. During digital "Low", the DSP parallel Bus outputs will be enable.
SMP	25	25	o	DSP outputs are sampled by this signal.
ADS	26	26	0	A/D convertor start timing signal.
READ	27	27	0	A/D convertor data out timing signal.
BCK	28	28	0	These pins may be used for device tests only. In normal operation, BCK should be tied to BIN.
BIN	29	29	1	
REQ	30	30	0	When the interrupt to the MSM80C31 is requested, this output turns active "High"

Pin Name	Pin No.		I/O	Function
	RS	GS		
ACK	31	31	1	
REQF	32	32	0	
D0	33	33	O	The timing diagram of these signals is shown in Fig. 3.
D1	34	34	o	
MSD	35	35	0	
DATA	36	36	1	
CLK	37	37	1	These pins are used to input the control signals from MSM80C31 See Fig. 1.
STB	38	38	1	
CLR	39	39	1	During the CLR is active "High" all brocks may be initialized. In normal operation, this pin should be hold "Low".
$\mathrm{V}_{\text {cc }}$	40	53		Supply voltage (+5 V nominal)

Figure 2 Timing Chart (1)

Figure 3 Timing Chart (2)

DATA

CLK \square
STB
Figure 4
\square
$S / P \overline{R D}$

S/P SPINS
" ${ }^{\prime \prime}$

- S/P RSTF should be high for the duration of character length M (ST \rightarrow SP) in both Bell 212A and V. 22 modes ii, iii. Low to high transitions should be synchronized with ST of S/P $\overline{R D}$. High to low transitions should be synchronized with SP of S/P RD.
- S/P SPINS should be low in both Bell 212A and V. 22 modes ii, iv.

Figure 5 Receiving Normal Data

S/P SPINS

- S/P RSTF should be high for the duration of continuous A polarity, in both Bell 212A and $V .22$ modes.
- S/P SPINS should be low for the duration of continuous A polarity, in both Bell 212A and V. 22 modes.

Figure 6 Receiving Break Signals

Figure 8 Transmit-timing
Figure 9 Control Timing of DSP, AFE

GENERAL DESCRIPTION

The MSM6928-07 is a digital signal processor which is used as a demodulator in the chip for 2400 bps full duplex modem based on CCITT V. 22 bis standard.

The MSM6928-07 operates as a QAM modulator, PSK demodulator, FSK demodulator, etc. by using the digital signal processing method and it transmits the AGC signal to the MSM6950 (Analog Front End).

The MSM6928-07 is fabricated by OKI's low power consumption CMOS silicon gate technology. By utilizing MSM6928-07 together with MSM6950, MSM80C51-58 (Modulator), MSM61077 (Asynchronous/Synchronous Conversion, etc.), and external controller, an intelligent modem system based on CCITT V. 22 bis standard can be realized easily.

FEATURES

- QAM/PSK Demodulation

The received signal is multiplied with an internal demodulation carrier, and input to the next stage PDF, as a baseband signal. The PDF output is generated as the demodulated PSKRD after the line distortion, is corrected by an automatic equalizer.

- FSK Demodulation

The received signal is demodulated through a BPF, a delay detector, and an LPF, and then output as FSK-RD.

- AGC

In the AGC block, the power of the input signal is calculated and its difference from the reference voltage is output as the control signal for the Analog-Front-End variable control.

- 42 pin plastic DIP package or 60 pin plastic flat package.

PIN CONFIGURATION

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

Item	Symbol	Rating	Unit	Remark
Power Supply Voltage	V_{DD}	$-0.3 \sim+7$	V	
Input Voltage	V_{IN}	$-0.3 \sim \mathrm{~V}_{\mathrm{DD}}$	V	
Power Dissipation	Pd	1.0	W	
Operating Temperature Range	Top	$-10 \sim+70$	${ }^{\circ} \mathrm{C}$	
Storage Temperature Range	TsT	$-55 \sim+150$	${ }^{\circ} \mathrm{C}$	

Guaranteed Operating Range

Item	Symbol	Rating	Unit	Remark
Power Supply Voltage	VDD	$+4.75 \sim 5.25$	V	
Ambient Temperature Range	Ta	$0 \sim+60$	${ }^{\circ} \mathrm{C}$	

Static Electrical Characteristics

Item	Symbol	Condition	Limit			Unit	Remark
			Min	Typ	Max		
Output Voltage	$\begin{aligned} & \mathrm{v}_{\mathrm{OH}} \\ & \mathrm{v}_{\mathrm{OL}} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{Q}}=-40 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{Q}}=1.6 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 4.2 \\ -0.3 \end{gathered}$	-	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \\ 0.4 \end{gathered}$	v	-
Input Voltage	$\begin{aligned} & v_{I H} \\ & v_{I L} \end{aligned}$	-	$\begin{gathered} 2.4 \\ -0.3 \end{gathered}$	-	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \\ 0.8 \end{gathered}$	v	-
Input Leakge Current	IIL	$\begin{aligned} & G N D<V_{\text {IN }} \\ & <\mathrm{V}_{\text {DD }} \end{aligned}$	-	-	± 10	$\mu \mathrm{A}$	-
Bus Output Voltage	$B V_{\mathrm{OH}}$ BVOL	$\begin{aligned} & \mathrm{I}_{\mathrm{Q}}=-80 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{Q}}=1.6 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 4.2 \\ - \end{gathered}$	-	0.4	v	-
Bus Input Voltage	$\begin{aligned} & B V_{I H} \\ & B V_{I L} \end{aligned}$	-	2.4	-	0.8	v	-
Bus Input Leakage Current	BIL	$\begin{aligned} & \mathrm{GND}<\mathrm{V}_{\text {IN }} \\ & <\mathrm{V}_{\mathrm{DD}} \end{aligned}$	-	-	± 10	$\mu \mathrm{A}$	@ BUS OFF Condition
Operating Current	IDDO	-	-	35	40	mA	MCK: 5529.6 kHz
Quiescent Current	IDDS	-	-	-	0.3	mA	MCK: OFF

Dynamic Electrical Characteristics

Item	Symbol	Condition	Limit		Unit	Remark
			Min	Max		
$\begin{aligned} & \text { BSC-EXTB } \\ & \text { Delay Time } \end{aligned}$	TD	Timing Chart A	-	200	ns	Common to EXTB 0 ~ EXTB 15 Refer to Figure 1
Rise Time Fall Time	TR		-	100		
	TF		-	100		
DSTB-EXTB Pusle Width Setup Time Hold Time	Tw	Timing Chart B	300	-	ns	Refer to Figure 1
	TSET		100	-		
	THOLD		100	-		
SCK-SIN Pulse Width Setup Time Hold Time	Tw	Timing Chart C	180	-	ns	Refer to Figure 2
	TSET		100	-		
	THOLD		100	-		
SCY-SYN Pulse Width Setup Time Hold Time	Tw	Timing Chart D	180	-	ns	Refer to Figure 2
	TSET		100	-		
	Thold		100	-		
START-START FLAG Pulse Width	T_{w}	Timing Chart E$\begin{gathered} \text { MCK }=5529.6 \mathrm{kHz} \\ \pm 1 \times 10^{-4} \end{gathered}$	1300	-	ns	Refer to Figure 3
Setup Time Hold Time	TSET		100	-		
	Thold		100	-		
MCK Rise Time	TR	Timing Chart F	-	30	ns	Refer to Figure 3
Fall Time	TF ${ }_{1}$		-	30		
Duty Ratio	T1/T2		95	105	\%	
Frequency	FM		5529	5530	kHz	

PIN DESCRIPTION

Pin Name	Pin No.		1/O	Function
	RS	GS		
DSTB	1	25	IN	Loads the signal on EXT Bus into Input Register.
TESTB	2	26	IN	Test signal. Loads the signal on internal bus into Output Register. 1: Load, 0: Normal
RESET	3	27	IN	Operation start instruction signal. Operation in synchronization with $\frac{-}{2}$: Operation start
STEP	4	28	IN	Selects either of continuous operation and single step operation. 1: Continuous operation (Normal) 0: Single step operation
MCK	5	29	IN	Master clock signal, normally 5529.6 kHz .
ENDF	6	31	OUT	Program specifying sync signal.
INSCK	7	32	OUT	Machine cycle sync signal.
STF 0	8	35	IN	External specifying address signal 2^{0} (LSB)
STF 1	9	37	IN	External specifying address signal 2^{1}
STF 2	10	38	IN	External specifying address signal $\mathbf{2}^{\mathbf{2}}$
STF 3	11	39	IN	External specifying address signal 2^{3}
STF 4	12	40	IN	External specifying address signal 2^{4}
STF 5	13	41	IN	External specifying address signal 2^{5}
STF 6	14	43	IN	External specifying address signal $\mathbf{2}^{\mathbf{6}}$
STF 7	15	44	IN	External specifying address signal 2^{7}
STF 8	16	45	IN	External specifying address signal $\mathbf{2}^{\mathbf{8}}$ (MSB)
START	17	47	IN	Operation starting sync signal. Loads external specifying address.
SYN	18	48	IN	Causes the serially input jump condition to be loaded into EXT FLG Register in the parallel form.
EXTFLG	19	49	IN	Serially input jump condition. This signal is loaded into S / P on the negative-going edge of SCK.
SCK	20	51	IN	Serially input jump condition loading clock.
GND	21	52	-	Ground.

Pin Name	Pin No.		1/0	Function
	RS	GS		
TESTA	22	54	IN	Test signal. Holds Program Counter. 0: Hold, 1: Normal
TESTC	23	55	IN	Test signal.
TESTD	24	56	IN	Test signal.
EXTB 0	25	57	1/O	External bidirectional bus 2^{0} (LSB)
EXTB 1	26	59	1/O	External bidirectional bus $\mathbf{2}^{1}$
EXTB 2	27	60	1/O	External bidirectional bus $\mathbf{2}^{2}$
EXTB 3	28	1	1/0	External bidirectional bus 2^{3}
EXTB 4	29	2	1/0	External bidirectional bus 2^{4}
EXTB 5	30	4	1/O	External bidirectional bus $\mathbf{2}^{5}$
EXTB 6	31	5	1/O	External bidirectional bus $\mathbf{2}^{6}$
EXTB 7	32	7	1/0	External bidirectional bus $\mathbf{2}^{7}$
EXTB 8	33	9	1/O	External bidirectional bus $\mathbf{2}^{8}$
EXTB 9	34	10	1/0	External bidirectional bus 2^{9}
EXTB 10	35	12	1/O	External bidirectional bus 2^{10}
EXTB 11	36	13	I/O	External bidirectional bus 2^{11}
EXTB 12	37	15	1/O	External bidirectional bus 2^{12}
EXTB 13	38	16	1/O	External bidirectional bus 2^{13}
EXTB 14	39	18	I/O	External bidirectional bus 2^{14}
EXTB 15	40	19	1/O	External bidirectional bus 2^{15} (MSB)
BSC	41	21	IN	External bidirectional bus specifying signal. 1: Input, 0: Output
$V_{\text {DD }}$	42	23	-	Power supply +5 V

Timing Chart A

Timing Chart B

Figure 1 Test conditions and timing charts

Timing Chart C

Timing Chart D

Figure 2 Test conditions and timing charts

Note: The test pin conditions are shown below.

No.	Pin Name	Pin No.	Set Condition
1	TEST A	22	High
2	TEST B	2	Low
3	TEST C	23	High
4	TEST D	24	High
5	STEP	4	High

Figure 3 Test conditions and timing charts

TIMING CHARTS

Input/Output Data

Demodulating data (A/D output) and gain setting data for AGC are input and output via the bus every sampling period (STM). See Figure 5 and Figure 6.

Control Signals

Each baud rate ($B T M$) is divided into 12 (1 BTM $=12$ STMs), and the start vectors are input from STF0-3 every STM. See Figure 7.

Mode specifications, such as data speed, ORG/ANS switching, and FCD selection, are input as 16 -bit serial data. See Figure 8.

Figure 7 MSM6928-07 Timing Chart

No.	Name	Function				
D0	XFCD	FCD (carrier detect) signal for Demodulator			$\begin{aligned} & 0 ; \text { OFF }(\text { Set } 0 \text { when } \overline{F C D}=1) \\ & 1 ; \text { ON }(\text { Set } 1 \text { when } \overline{F C D}=0) \end{aligned}$	
D1	TAPH	AEQL operation control 0 ; Active 1 ; Hold				
D2	DSS0	Demodulator data signalling rate select Note) Not related to FSK mode.	DSS1	DSS0	Mode	
D3	DSS1		0	0	16 values QAM	2400 bps
			0	1		
			1	0	4 phase PSK	1200 bps
			1	1	2 phase PSK	600 bps
D4	EGC0	AEGL tap coefficient control	EGC1	EGCO	$\alpha \quad$ See	See Appendix B.
D5	EGC1		0	0	α_{1}	
			0	1	α_{2}	$\begin{aligned} & \text { Note } \\ & \alpha_{4}=0(\text { Tap hold })\end{aligned}$
			1	0	$\alpha_{3} \quad$ No	
			1	1	α_{4}	
D6	AQID	Adaptive equalizer (AEQL) reset 0 ; Reset (Set the center tape) See Appendix B. 1 ; Normal operation				
D7	PLCR	Carrier PLL reset $0 ;$ Reset $1 ;$ Normal operation				
D8	PLEN	Carrier PLL enable 0; Disable $1 ;$ Enable 				
D9	SANSORG	Originate/answer mode select for receiver		$\begin{array}{ll} \hline 0 \text {; Answer } & \text { (Re } \\ \text { 1; Originate } & \text { (Re } \end{array}$		$\begin{aligned} & \text { e- Lowband) } \\ & \text { e-Highband) } \end{aligned}$
D10	AGCTO	AGC circuit control coefficient		CT1	AGCTO β	See Appendix B.
D11	AGCT1			0	0 β_{1}	
				0	$1 \beta_{2}$	
				1	0	
				1	$1 \quad \beta_{3}$	
D12	SQDC	Threshold level selection for SCDB $0 ; \operatorname{High}\left(\sim 10^{-3}\right)$ See appendix B. 1; Low $\left(\sim 10^{-4}\right)$				NOTE) Does not mean to measure the bit error rate itself.
D13	SQDEN	LPF accumulate register clear for SQDA and SQDB (signal quality detecter) $0 ; N o r m a l ~ o p e r a t i o n ~$ 1; Reset\quad See Appendix B.				
D14	TRCDC	Threshold level for S1 data detection 0 ; Low (Handshake) 1; High (Retrain)				
D15	XFCD1	DSP software reset except for AGC control 0 ; Normal operation 1; Reset				

GENERAL DESCRIPTION

The MSM61077 is a gate array LSI which is used in the chip set for 2400 bps full duplex modem based on Bell 212A, CCITT V. 22 and V.22-bis.

The MSM61077 plays a role for asynchronous/synchronous converting, scrambler and descrambler in the 2400 bps full duplex modem system.

The MSM61077 is fabricated by OKI's low power consumption CMOS silicon gate technology. By utilizing MSM61077 together with MSM6928-07 (Digital Signal Processor DSP used for Demodulator). MSM6950 (Analog Front End - AFE) and MSM80C51 (Modulator), an intelligent modem system based on Bell 212A or CCITT V. 22 and V.22-bis can be realized easily.

FEATURES

- S. PLL:

Built-in a Digital PLL for TransmitTiming (ST). ST is output from this PLL in the synchronous mode.

- R.PLL:

Built-in a Digital PLL for ReceiveTiming (RT). Receive-Timing signals demodulated by the DSP are recovered in the PLL and output as RT.

- DSP Control:

The DSP is controlled by a start signal, start vectors, and bus control signals derived from this GA.

- Sync/Async and Async/Sync Conversion:
MSM61077 provides a part of the sync/async and async/sync converting function.
- AFE Control: MSM61077 controls A / D and D / A converters and AGC in AFE.
- 60 pin plastic flat package.

PIN CONFIGURATION

MSM61077GS-K

E

Figure 1 MSM61077 Block Diagram

ELECTRICAL CHARACTERISTICS

Please refer to that of MSM61000 series in OKI GATE ARRAY DATABOOK.

PIN DESCRIPTION

Pin Name	Pin No.	I/O	Function
MCK	1	1	Master clock input ($921.6 \mathrm{kHz} \pm 0.01 \%$). The duty of this clock should be $50 \% \pm 5 \%$.
IPTO	2	0	This signal is write clock of D/A converter in AFE. See Figure 2.
ST	3	0	$2400 / 1200 / 600 \mathrm{~Hz}$ clock output. This clock is synchronous to INTERNAL/ST ${ }_{i} /$ RT by setting ST A/B. See Figure 2.
ST ${ }_{1}$	4	1	External transmit timing input. ($2400 / 1200 / 600 \mathrm{~Hz} \pm 0.01 \%$). If ST_{1} is not used, ST should be held the digital "Low".
RT	5	1	Receive-Timing signal input.
RSTF	6	1	Control flag for SYN/ASYN converter.
SPINS	7	1	Control flag for SYN/ASYN converter.
SD	8	1	Transmit-Data ($\overline{\mathrm{SD}}$) signal input.
RD	9	0	Receive-Data ($\overline{R D}$) signal output.
RSMP	10	1	Latch clock input of demodulated receive data from DSP. The invert signal of SMP must be given to RSMP.

Pin Name	Pin No.	I/O	Function
PRD	11	1	Demodulated Receive-Data input (PSK, QAM). PRD is given from I/O port of DSP.
FRD	12	1	Demodulated Receive-Data input (FSK). FRD is given from I/O port of DSP.
DRT	13	0	Data Rate Receive-Timing (RT) signal output. This pin should be tied to the RT.
RDIN	14	1	Receive-Data input from descrambler output in MCU.
TCLK	15	1	Master clock for RPLL (1.8432 MHz).
TIM	16	1	This is the input pin for the Receive-Timing signal which is recovered in DSP.
STFO	17	\bigcirc	
STF1	18	\bigcirc	Vector signal outputs for DSP.
STF2	19	0	
vcc	23		Voltage supply (+5 V) .
STF3	21	0	Vector signal output for DSP.
STRT	22	0	Start signal output for DSP. See Figure 4.
DSTB	20	0	Write clock of I/O port for DSP. See Figure 4.
BSC	24	0	Read clock of I/O port for DSP. See Figure 4.
SMP	25	0	Latch clock of read data from I/O port.
ADS	26	0	A/D convertor start timing signal. See Figure 4.
READ	27	0	A/D convertor read timing signal. See Figure 4.
BCK	28	0	These pins may be used for device tests only. In normal operation,
BIN	29	1	BCK should be tied to BIN.
IPT1	30	0	Interrupt signal to MCU.

Pin Name	Pin No.	1/0	Function
ACK	31	1	The timing diagram of these signals is shown in Figure 3.
REQF	32	0	
D0	33	0	
D1	34	0	
MSD	35	0	
DATA	36	1	Serial status control data input. See Table 1.
CLK	37	1	Shift clock of status control data.
STB	38	1	Strobe clock of status contro! data.
CLR	39	1	During the CLR is active "High", all blocks can be initialized. In normal operation, this pin should be set "Low"
GND	53		Ground (0 V)

Figure 2 Timing Chart (1)

II MOSCO

Table 1 GA Mode Definition Table

Mode					TESTA	DSS 1	SDCLP	GA123	GAVB	CD1	CD2	DSSO	GADC	GASAS	GALSHS	GASLSH	SWLA	SWLB	STA	STB		
	Asynchronous		Speed	+1.0\%	0	0	1	0	0	Timing PLL Control		X	0	0	0	0/1	Character Bit length Definition (8~11 bit)		Transmitter signal Element Timing Definition $\left(S T_{1}, \mathrm{ST}_{2}\right.$, RT)			
$\stackrel{0}{8}$			Tolerance	+2.3\%	0	0	1	1	0			X	0	0	0	0/1						
	Synchronous		2400 $\pm 0.01 \%$		0	0	1	X	X			X	1	1	0	0/1						
		CCITT	Speed Conversion Tolerance	+1.0\%	0	1	1	0	0			0	0	0	0	0/1						
				+2.3\%	0	1	1	1	0			0	0	0	0	0/1						
O		BELL ($1200+1.0 \sim-2.5 \%)$			0	1	1	0	1			0	0	0	0	0/1						
	Synchronous		1200 $\pm 0.01 \%$		0	1	1	X	X			0	1	1	0	0/1						
$\begin{aligned} & \text { an } \\ & \stackrel{2}{2} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Asynchronous		Speed Conversion Tolerance	+1.0\%	0	1	1	0	0			1	0	0	0	0/1						
			+2.3\%	0	1	1	1	0	1			0	0	0	0/1							
	Synchronous			600 $\pm 0.01 \%$		0	1	1	X			X	1	1	1	0			0/1			
300 bps					0	X	X	X	X	X	X	X	1	1	1	0/1	X	X			X	X

$$
\begin{aligned}
& \text { DATA } \\
& \text { CLK } \\
& \text { STB }
\end{aligned}
$$

Figure 4 Control Timing of DSP, AFE

OKXI

GENERAL DESCRIPTION

The MSM6950 is a analog front-end LSI which is fabricated by OKI's low power consumption CMOS silicon gate technology for modem chip set based on Bell 212A. CCITT V. 22 and CCITT V. 22 bis standard. The MSM6950 consists of two BPFs, for low band and high band, an A/D converter with 8 -bit parallel output, a D/A converter with 8 -bit parallel input, an AGC circuit controlled by external digital signals, a guard tone generator ($550 \mathrm{~Hz} / 1800 \mathrm{~Hz}$ selectable) and some analogue signal control switches for various applications.

The MSM6950 communicates with a modulator and a demodulator via each 8 bits parallel digital line.
This chip does not contain a carrier detect function but it will be performed with a digital signal processor dedicated to implement a demodulator by using digital signals from the A/D converter.

This device provides an analog signal input, an analog signal output and some signal-loop control inputs, and requires a 3.6864 MHz clock input to generate the operating time-base.

FEATURES

- Conforms to Bell 212A, 224 and CCITT V. 22 and V. 22 bis.
- 8-bit parallel output A/D converter and 8 -bit parallel input D/A converter on chip.
- On-chip voltage reference.
- On-chip AGC circuit controlled by 8-bit external digital signal, over the received signal level range of 48 dB with 0.19 dB step.
- Dynamic range, 70 dB .
- Guard tone mixing function, 550 Hz or 1800 Hz .
- Selectable cut off frequency of transmitting for the guard tone, the DTMF tone and another, 725 Hz or 2900 Hz .
- Provides AC loop test function, a transmitting analog signal can be looped back as a receive analog signal within the chip.
- Supply voltage, $\pm 5 \mathrm{~V}$.
- Low power dissipation, 80 mW .
- 3.6864 MHz external clock for operation.
- 42-pin plastic DIP package or 56-pin plastic flat package.

PIN CONFIGURATION (Top view)

42 pin DIP (MSM6950RS)

56 pin FLAT (MSM6950GS)

Pin Assignment

Pin Name	Pin No.		In/Out	Function	
	RS	GS			
TD1	1	51	Input	Transmit signal digital data input to DA (LSB)	
TD2	2	52	Input	Transmit signal digital data input to DA	
TD3	3	53	Input	Transmit signal digital data input to DA	
TD4	4	54	Input	Transmit signal digital data input to DA	
TD5	5	55	Input	Transmit signal digital data input to DA	
TD6	6	3	Input	Transmit signal digital data input to DA	
TD7	7	4	Input	Transmit signal digital data input to DA	
TD8	8	5	Input	Transmit signal digital data input to DA (MSB)	
WRITE	9	6	Input	TD writing control signal for DA	
MCK	10	7	Input	Master clock input 3.6864 MHz	
START	11	8	Input	Control signal for starting of AD conversion	
$\overline{\text { READ }}$	12	9	Input	RD reading control signal for AD	
RD1	13	10	In/Out	Receive signal digital data output from AD (LSB)	
RD2	14	11	In/Out	Receive signal digital data output from AD	
RD3	15	12	In/Out	Receive signal digital data output from AD	
RD4	16	13	In/Out	Receive signal digital data output from AD	
RD5	17	16	In/Out	Receive signal digital data output from AD	
RD6	18	17	In/Out	Receive signal digital data output from AD	
RD7	19	18	In/Out	Receive signal digital data output from AD	
RD8	20	19	In/Out	Receive signal sigital data output from AD (MSB)	
VDD2	21	20		Positive power supply (+5 V)	
DG	22	22,23		Digital ground (0 V)	
AG	23	24		Analog ground (0 V)	
AGCC	24	25		External capacitor terminal for AGC ($0.1 \mu \mathrm{~F}$)	
VR1	25	26	Input	External resistor terminal for reference voltage	
VR2	26	29	Output	External resistor terminal for reference voltage	
AIN	27	30	Input	Receive analog signal input	
DT	28	31	Input	Dial tone detecting loop	H
PT	29	32	Input	DTMF signal transmitting loop	H
AOUT	30	33	Output	Transmit analog signal output	
LT	31	35	Input	AC loop test	H
FT	32	36	Input	XIN enable (Filter test or External input)	H
GT	33	37	Input	Guard tone select ($1800 / 550 \mathrm{~Hz}$)	H/L
XIN	34	38	Input	External transmit analog signal input	
SP	35	39	Input	DA output PAM width select	
MODE	36	40	Input	Originate/Answer mode select	L/H
RFO	37	41	Output	Receive filter output	
AGCI	38	44	Input	AGC circuit input	
GR2	39	45	Output	External resistor terminal for Guard tone level	
GR1	40	47	Input	External resistor terminal for Guard tone level	
VSS	41	48		Negative power supply (-5 V)	
VDD1	42	21,49		Positive power supply (+5 V)	

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	VDD		$-0.3 \sim+7$	V
	VSS		+0.3 ~ -7	
Analog input voltage	VIA		VSS - $0.3 \sim$ VDD +0.3	
Digital input voltage	VID		$-0.3 \sim \mathrm{VDD}+0.3$	
Operating temperature	TOP	-	$-40 \sim+85$	${ }^{\circ} \mathrm{C}$
Storage temperature	TSTG	-	-55~+150	

2. Recommended Operating Conditions

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Power Supply Voltage	$V_{\text {DD }}$	With Respect to AG or DG	4.75	5.00	5.25	V
	$V_{\text {SS }}$		-5.25	-5.00	-4.75	
	AG, DG	-	-	0	-	
Operating temperature	TOP	-	0	-	70	${ }^{\circ} \mathrm{C}$
R_{1}	-	Transformer Impedance (Hybrid)$\left[\frac{600 \Omega}{600 \Omega}\right]: 600 \Omega$	-	600	-	Ω
R_{2}	-		-	600	-	
R_{3}	-		-	300	-	
R_{4}	-	-	-	51	-	$K \Omega$
R_{5}	-		-	51	-	
R_{6}	-		-	51	-	
R_{7}	-		-	51	-	
R_{8}	-		10	33	-	
R_{9}	-		-	36	-	
R_{10}	-		-	100	-	
R_{11}	-		-	51	-	
R_{12}	-		-	51	-	
C_{1}	-	-	-	2.2	-	$\mu \mathrm{F}$
C_{2}	-		-	1	-	
C_{3}	-		-	0.1	-	
C_{4}	-		-	1	-	
$\mathrm{C}_{5}, \mathrm{C}_{7}, \mathrm{C}_{9}$	-		-	10	-	
$\mathrm{C}_{6}, \mathrm{C}_{8}$	-		-	1	-	
$\mathrm{R}_{13} \sim \mathrm{R}_{20}$	-	-	-	20	-	$K \Omega$
Reference Voltage	V_{R}	Adjusted by External Resistors	-	+2.50	-	V
Master Clock Frequency	$\mathrm{F}_{\text {MCK }}$	-	3.6860	3.6864	3.6867	MHz
MCK Duty Cycle	DMCK	50\% to 50\%	30	50	70	\%
Digital Input Rise Time	T_{R}	$\mathrm{T}_{\mathrm{D}_{1}} \sim \mathrm{~T}_{\mathrm{D}_{8}}, \overline{\text { WRITE }}$, START, READ, $\mathrm{R}_{\mathrm{D}_{1}} \sim \mathrm{R}_{\mathrm{D}_{8}}$, See Figure 1	0	-	50	nS
Digital Input Fall Time	T_{F}		0	-	50	nS

* Since descrambler control of DSPO will be disabled while transmitting Answer Tone (FSPS=0), DSPO should be set on High before FSPS goes Low.
This pre-control of DSPO allows descrambler to be enabled (descrambler ON).

Pre-control of DSPO for descrambler (When orig. modem declares 300 bps , this pre-control shall be insignificant.)

* This status doesn't be cared.

Parameter	Symbol	Condition	Min	Typ	Max	Unit
WRITE Period *1	TPW	See Figure 2, 3	115	$\begin{gathered} 1 / \\ 0.0072 \end{gathered}$	143	$\mu \mathrm{S}$
WRITE Width	TWW		0.55	-	100	$\mu \mathrm{S}$
START Period	TPS		90	$\begin{gathered} 1 / \\ 0.0072 \end{gathered}$	143	$\mu \mathrm{S}$
START Width	TWS		1.1	-	79	$\mu \mathrm{S}$
$\overline{\text { READ Width }}$	TWR		2.2	-	* 2	$\mu \mathrm{S}$
$\overline{\text { START }} \rightarrow \overline{\text { READ }}$ Timing	TSR		80	-	*2	$\mu \mathrm{S}$
$\begin{gathered} \overline{\mathrm{READ}} \rightarrow \overline{\mathrm{START}} \\ \text { Timing } \end{gathered}$	TRS		15	-	* 2	$\mu \mathrm{S}$
Allowable XIN Input DC Offset Voltage	VOSXIN	-	-100	-	+100	mV
Allowable AIN Input DC Offset Voltage	$\mathrm{V}_{\text {OSAIN }}$	-	-100	-	+100	mV

*1 Except for OKI's Special DPSK modulating mode (See APPLICATIONS INFORMATION 1-2)
*2 ${ }^{2}$ WR MAX $=$ TPS $-T_{\text {SR }}-$ TRS $^{\text {R }}$
TSR MAX $=$ TPS $-T_{W R}-T_{R S}$
$T_{\text {RS MAX }}=T_{P S}-T_{W R}-T_{S R}$
Refer to Figure 9.

3. Power Dissipation

$$
\left(V_{D D}=+5 V \pm 5 \%, V_{S S}=-5 V \pm 5 \%, T_{a}=0 \sim 70^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Positive Power Supply Current	IDD	-	-	12	20	mA
Negative Power Supply Current	ISS	-	-	11	20	mA

Note: $V_{D D}$ means both of $V_{D D_{1}}$ and $V_{D D_{2}}$.

4. Digital Interface

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Input Low Voltage	$V_{\text {IL }}$	-	0	-	0.6	V
Input High Voltage	$\mathrm{V}_{\text {IH }}$	-	2.2	-	V ${ }_{\text {DD }}$	v
Output Low Voltage	V_{OL}	$\mathrm{IOL}^{\prime}=0.36 \mathrm{~mA}$	0	-	0.4	v
Output High Voltage	V_{OH}	$\mathrm{IOH}^{\prime}=20 \mu \mathrm{~A}$	2.4	-	V ${ }_{\text {DD }}$	v
Input Low Current	IIL	DG $\leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {IL }}$	-10	-	10	$\mu \mathrm{A}$
Input High Current	Ith	$\mathrm{V}_{1 \mathrm{H}} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{DD}}$	-10	-	10	$\mu \mathrm{A}$
DA Data Set-up Time	$\mathrm{T}_{\text {SD }}$	See Figure 3	0	-	-	$\mu \mathrm{S}$
DA Data Hold Time	T_{HD}		1.1	-	-	$\mu \mathrm{S}$
AGC Data Set-up Time	TSA	See Figure 2	0	-	-	$\mu \mathrm{S}$
AGC Data Hold Time	THA		2.2	-	-	$\mu \mathrm{S}$
AD Data Output Delay Time	$\mathrm{T}_{\mathrm{D}_{1}}$	Pull-up Resistor $=20 \mathrm{~K} \Omega$ See Figure 2	0.4	-	3	$\mu \mathrm{S}$
	$\mathrm{T}_{\mathrm{D}_{2}}$		0.5	-	3	$\mu \mathrm{S}$

5. Analog Interface

$$
\left(V_{D D}=+5 V \pm 5 \%, V_{S S}=-5 V \pm 5 \%, T_{a}=0 \sim 70^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Condition	Min	Typ	Max	Unit

Reference Voltage

Reference Voltage	V_{R}	Without Adjustment $R 8=\infty$	1.03	1.16	1.3	V

Transmit Analog Signal Characteristics (XIN, AOUT)

Input Resistance		RXIN	XIN		200	350	-	$K \Omega$
Input Voltage		V XIN	XIN		-	-	5	VPP
Output Voltage		$V_{\text {AOUT }}$	$R_{\text {AOUT }}$ CAOUT	$\begin{aligned} & \geq 10 \mathrm{~K} \Omega \\ & \leq 100 \mathrm{pF} \end{aligned}$	5	-	-	VPP
Load Resistance		RAOUT		-	10	-	-	$K \Omega$
Load Capacitance		CAOUT		-	-	-	100	pF
DC Offset Voltage		VOST	AOUT, XIN $=0 \mathrm{~V}$		-1000	-	+1000	mV
Absolute Voltage Gain *	OKI's Special DPSK Mode	$\mathrm{G}_{\mathrm{T}_{1}}$	$1,200 \mathrm{~Hz}$	Originate	7.5	-	9.5	dB
		$\mathrm{G}_{\mathrm{T}_{2}}$	2,400 Hz	Answer	12.5	-	14.5	dB
		$\mathrm{G}^{\text {T }}$	2,400 Hz	Answer with Guard Tone	11.5	-	13.5	dB
	FSK or Normal DPSK	G_{4}	1,200 Hz	Originate	1.0	-	3.0	dB
		$\mathrm{G}_{\mathrm{T}_{5}}$	$2,400 \mathrm{~Hz}$	Answer	0	-	2.0	dB
	Tone Transmit Mode	$\mathrm{G}_{\mathrm{T}_{6}}$	$1,020 \mathrm{~Hz}$		1.0	-	3.0	dB
Total Harnomic Distortion		THDT	-		-	-50	-40	dB
Idel Channel Noise		NIDLT	Using a $0.3 \sim 3.4 \mathrm{KHz}$ flat weighted filter		-	-44	-	dBm
Frequency		FGT_{1}	$G T=V_{I L}$		530	553.7	570	Hz
		FGT_{2}	$\mathrm{GT}=\mathrm{V}_{1} \mathrm{H}$		1,780	1,799.7	1,820	Hz
Guard Tone	Signal Level	VGT_{1}	550 Hz	Without adjustment $R_{11}=\infty$	-13	-11	-9	dBm
		$\mathrm{V}_{\mathrm{GT}}{ }_{2}$	$1,800 \mathrm{~Hz}$		-12	-10	-8	dBm
	Total Harmonic Distortion	THDGT		-	-	-50	-40	dB

[^0]Note: $0 \mathrm{dBm}=0.775 \mathrm{Vrms}$

- MODEM•MSM6950

Receive Analog Signal Characteristics (AIN, RFO)

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Input Resistance	$\mathrm{R}_{\text {AIN }}$	AIN	200	350	-	$K \Omega$
Input Voltage	$V_{\text {AIN }}$	AIN	-	-	5	VPP
Absolute Voltage Gain	G_{R}	$1,200 \mathrm{~Hz}$ Answer	-1	-	+1	dB
		$2,400 \mathrm{~Hz}$ Originate				
Output Voltage	VRFO	$\begin{aligned} & \mathrm{R}_{\mathrm{RFO}} \geq 10 \mathrm{~K} \Omega \\ & \mathrm{C}_{\mathrm{RFO}} \leq 100 \mathrm{pF} \end{aligned}$	5	-	-	VPP
Load Resistance	$\mathrm{R}_{\text {RFO }}$	-	10	-	-	$K \Omega$
Load Capacitance	$\mathrm{C}_{\text {RFO }}$	-	-	-	100	pF
DC Offset Voltage	VOSR	$\mathrm{R}_{\text {FO, }}, \mathrm{A}_{\text {IN }}=0 \mathrm{~V}$	-500	-	+500	mV
Idle Channel Noise	NIDLR	Using a $0.3 \sim 3.4 \mathrm{KHz}$ flat weighted filter	-	-59	-	dBm
Total Harmonic Distortion	THDR	-	-	-50	-40	dB

6. Filter Transfer Characteristics

Low-band BPF

$$
\left(V_{D D}=+5 V \pm 5 \%, V_{S S}=-5 V \pm 5 \%, T_{a}=0 \sim 70^{\circ} \mathrm{C}\right)
$$

Relative Voltage Gain to FF_{4}	$\mathrm{GF}_{L_{1}}$	$50 \sim 500 \mathrm{~Hz}$	-	-44	-40	dB
	GFL_{2}	555 Hz	-	-60	-48	dB
	GFL_{3}	900 Hz	-1	-	+1	dB
	GFL_{4}	$1,000 \mathrm{~Hz}$	Referred Gain 0			dB
	GFL_{5}	$1,150 \mathrm{~Hz}$	-1	-	+1	dB
	$\mathrm{G}_{\mathrm{FL6}}$	$1,350 \mathrm{~Hz}$	-1	-	+1	dB
	GFL_{7}	$1,500 \mathrm{~Hz}$	-1	-	+1	dB
	GFLs	$1,800 \mathrm{~Hz}$	-	-65	-45	dB
	$\mathrm{G}_{\mathrm{FL} 9}$	2400 Hz	-	-55	-50	dB
Group Delay Distortion	G_{DL}	$900 \sim 1,500 \mathrm{~Hz}$	-	-	100	$\mu \mathrm{S}$

High-band BPF

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Relative Voltage Gain to GFH_{4}	GFH_{1}	$\leq 1,500 \mathrm{~Hz}$	-	-55	-50	dB
	GFH_{2}	$1,640 \mathrm{~Hz}$	-	-55	-50	dB
	GFH_{3}	$2,050 \mathrm{~Hz}$	-0.5	-	+1.5	dB
	GFH_{4}	2,200 Hz	Referred Gain 0			dB
	GFH_{5}	2,400 Hz	-1	\cdots	+1	dB
	GFH_{6}	$2,600 \mathrm{~Hz}$	-1	-	+1	dB
	$\mathrm{G}_{\mathrm{FH}}^{7}$	2,750 Hz	-0.2	-	+1.8	dB
	GFH_{8}	$3,210 \mathrm{~Hz}$	-	-43	-40	dB
	GFH_{9}	$\geq 3,400 \mathrm{~Hz}$	-	-35	-30	dB
Group Delay Distortion	G_{DH}	2,100 $\sim 2,700 \mathrm{~Hz}$	-	-	200	$\mu \mathrm{S}$

Multip-purpose LPF

Parameter	Symbol	Condition		Min	Typ	Max	Unit
Absolute Voltage Gain	GLPF_{1}	300 Hz	$\mathrm{G}_{\mathrm{T}}=\mathrm{V}_{\text {IL }}$	-1.5	-0.5	+0.5	dB
	$\mathrm{G}_{\text {LPF }}{ }_{2}$	$1,020 \mathrm{~Hz}$	$G_{T}=V_{I L}$	-1	0	+1	dB
Relative Voltage Gain to $\mathrm{G}_{\mathrm{LPF}}^{1} 1$	GFLF_{1}	$0 \sim 200 \mathrm{~Hz}$	$\mathrm{G}_{\mathrm{T}}=\mathrm{V}_{\mathrm{IL}}$	-1	-	+1	dB
	GFLF_{2}	300 Hz		Referred Gain 0			dB
	GFLF_{3}	750 Hz		-4	-3	-2	dB
	GFLF_{4}	$1,500 \mathrm{~Hz}$		-	-	-30	dB
Relative Voltage Gain to LLPF $_{2}$	GFHF_{1}	$0 \sim 80 \mathrm{~Hz}$	$\mathrm{G}_{\mathrm{T}}=\mathrm{V}_{\mathbf{I H}}$	-1	-	+1	dB
	GFHF_{2}	$1,020 \mathrm{~Hz}$		Referred Gain 0			dB
	GFHF_{3}	$3,000 \mathrm{~Hz}$		-4	-3	-2	dB
	GFHF_{4}	$3,900 \mathrm{~Hz}$		-	-	-10	dB

7. AGC Circuit and DA, AD Converters

$$
\left(V_{D D}=+5 V \pm 5 \%, V_{S S}=-5 V \pm 5 \%, T_{a}=0 \sim 70^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Condition	Min	Typ	Max	Unit

AGC Amplifier

Input Resistance	$\mathrm{R}_{\mathrm{AGCI}}$	-	-	1	-	$\mathrm{M} \Omega$
Variable Voltage Gain Range	$\mathrm{G}_{\mathrm{AGC}}$	-	-4	-	+43.8	dB
Voltage Gain Accuracy	G_{E}		-0.4	+0.03	+0.4	dB
Output DC Offset Voltage	VOSAGC		-60	-	+60	mV

Transmit Digital to Analog Converter

Bits of Resolution	BREST	-	-	8	-	bit	
End-point Linearity	NLDA	-	-	0.36	0.5	$\%$	
Differential Non-linearity		DNLDA	-	-	$1 / 5$	$1 / 2$	LSB
Full Scale	Plus Full Scale	PFVDA	-	-	$+2,481$	-	mV
	Minus Full Scale	NFVDA	-	-	$-2,500$	-	mV
	VOSDA	-	-10	-1.5	+10	mV	

Receive Analog to Digital Converter

Bits of Resolution	BRESR	-	-	8	-	bit	
End-point Linearity	NLAD	-	-	0.24	0.5	$\%$	
Differential Non-linearity			DNLAD	-	-	$1 / 5$	
Full Scale	Plus Full Scale	PFVAD	-	-	$+2,471$	-	
	Minus Full Scale	NFVDA	-	mV			
	DC Offset Voltage*		VOSAD	-	$-2,490$	-	mV

* Only of AD converter. In practice, Output DC Offset is determined by VOSAGC and the gain of AGC circuit.

Figure 1 Definition of Rise/Fall Time

A: AD Data Output
B: AGC Gain Data Input
Figure 2 Receive Data Timing Chart

Figure 3 Transmit Data Timing Chart

Figure 4 Low/High - band BPF FREQUENCY CHARACTERISTICS

PIN DESCRIPTION

Pin Name	Pin No.		Function										
	RS	GS											
TD1 ~ TD8	$1 \sim 8$	$\begin{gathered} 3 \sim 5, \\ 51 \sim 55 \end{gathered}$	Transmit signal digital data input for DA conversion. These pins are 8 bit parallel two's complement data input pins. The data is loaded to the DA converter at the falling edge of WRITE. TD1 is the LSB and TD8 is the MSB. Refer to Table 1 below.										
			то	8	7	6	5	4	3	2	1	Total Value	$\begin{gathered} \text { Nominal } \\ \text { Output Voltage* } \end{gathered}$
			Plus Full Scale	0	1	1	1	1	1	1	1	+127	+2,172.1 mV
			 									$\stackrel{+126}{\sim}$	
			$\frac{\text { Plus } \theta}{\text { Minus } \theta}$	0	0	0	0	0	0	0	0	0	0
				1	1	1	1	1	1	1	1	-1	$-17.1 \mathrm{mv}$
												$\stackrel{-2}{-127}$	
			Minus Full Scale	1	0	0	0	0	0	0	0	-128	$-2,189.2 \mathrm{mv}$
			Table 1 *The reference voltage for AD conversion is +2.5 V . This output voltage is defined at AOUT.										
WRITE	9	6	This signal enables TD1 ~ TD8 pins to write data into DA converter. The digital input from TD1 ~ TD8 is latched to the DA converter at the falling edge of WRITE signal, and then converted to analog signal. The analog output signal is renewed about $9 \mu \mathrm{sec}$ after the falling edge of $\overline{\text { WRITE }}$ signal. The cycle of this signal can be chosen out of $115 \mu \mathrm{sec} \sim 143 \mu \mathrm{sec}$.										
MCK	10	7	A 3.6864 MHz clock signal should be applied to this pin. This is the time base for the operation of the MSM6950.										
START	11	8	This signal enables MSM6950 to start the AD conversion. This signal is also used to latch the input data used for setting the amplitude of the AGC circuit. The input data is supplied from a demodulating chip, the general performance of which is digital signal processing. These two operations are performed at the falling edge of START. The cycle of this signal can be chosen out of $90 \mu \mathrm{sec} \sim 143 \mu \mathrm{sec}$.										
$\overline{\text { READ }}$	12	9	This is a control signal for 3-state output data bus line, RD1 ~ RD8. While this pin is at digital 0 state, the output bus is activated and the result of the AD conversion is output from RD1 ~ RD8 terminals. While this pin is at digital 1 state, the output bus is inactivated and RD1 ~ RD8 become input terminals.										

- MODEM•MSM6950

Pin Name	Pin No.		Function
	RS	GS	
VR1, VR2	25, 26	26, 29	The MSM6950 provides the voltage reference which is used for AD and DA convertions. The electrical potential is stabilized to variations of temperature or supply voltages, but tends to be different from chip to chip. Therefore, a external adjustment is necessary. The resistors used to adjust the reference voltage are connected to these pins as shown in Figure 6.

Figure 6 (MSM6950RS)

A bypass capacitor is required to keep this reference electical in the silent condition. A capacitor with the value of more than $1 \mu \mathrm{~F}$ is recommended. The reference voltage on VR2 is determined by the following equation and the typical value is +2.5 V .

$$
V_{\text {REF }}=1.2 \times \frac{R_{8}+R_{9}}{R_{8}}[\text { volts }]
$$

AIN	27	30	Receive analog signal input pin. The maximum input level is about $+7.2 \mathrm{dBm}(5 \mathrm{Vp-p})$.
DT, PT	28,29	31,32	These pins control the transmit and receive analog signal paths for AC loop test, DTMF tone, guard tone and call progress tone. For details, refer to Table 9.
AOUT	30	33	This is the transmit analog signal output terminal. The output resistance is about 10Ω and the load resistance should be more than $10 \mathrm{k} \Omega$. The higher the road resistor is, the lower the power dissipation of MSM6950 becomes. When the full scale digital data is input to DA, the output voltage on AOUT becomes as follows.

Input Data to DA	Reference Voltage	Output Voltage (AOUT)
Plus Full Scale	(+2.17 V
Minus Full Scale		-2.19 V

Table 4

Pin Name	Pin No.		Function
	RS	GS	
AGCI	38	44	AGCI is the input pin of the AGC circuit and is connected to RFO through an external capacitor as shown in Figure 7. The role of the capacitor is to avoid a bad influence for the DC offset voltage generated in the receive filter. The input resistance is high and the maximum input voltage swing is about $5 \mathrm{Vp}-\mathrm{p}$. Figure 7 (MSM6950RS)
GR2, GR1	39,40	45,47	The output guard tone level can be adjusted by using external resistors as shown in Figure 8. The approximate output tone level is determined by the following equation. $V_{A O U T}=20 \cdot \log \frac{R_{11}+R_{12}}{R_{11}}-14[\mathrm{dBm}]$ In Bell's standard sets, as the guard tone function is not applied, GR1 should be connected to GR2 directly.
VSS	41	48	Negative power supply pin. -5 V .
$V_{\text {DD }}$	42	21,49	Positive power supply pin. +5 V.

Figure 9

APPLICATIONS INFORMATION

1. Operating Modes

MSM6950 provides a variety of operating modes. By utilizing these operating modes of MSM6950, a superior modem system can be realized easily. The operating modes determined by some control pins are summarized in Table 9.

1-1 FSK and Normal PSK Mode

This mode is useful not only for normal applications that utilize DSP as modulator and demodulator, but also for the special application that uses only filtering functions of the MSM6950.

The sampling rate for DA and AD conversions - the same length as WRITE and START signal respectively - should be between 7 kHz and 9 kHz . Timing chart is shown in Figure 2 and Figure 3. In this mode, the wide of PAM signal derived from DA is to be set at 1/9.6 kHz . Therefore, when the sampling rate is 7.2 kHz , the amplitude of the fundamental component on DA's output is less than 2.5 dB compared with the PAM signal of 100% hold.

The signal level of a sine wave of $2.5 \mathrm{Vp}-\mathrm{p}$ is +7.2 dBm equivalent. Therefore, if the transmit filter has a voltage gain of +2.0 dB , and DA has a voltage gain of -0.34 dB , the transmit output signal level on AOUT becomes as follows.

$$
\mathrm{V}_{\mathrm{AOUT}}=+7.2 \mathrm{dBm}-2.5 \mathrm{~dB}+2.0 \mathrm{~dB}-0.34=+6.36 \mathrm{dBm}
$$

Figure 10 (MSM6950RS)

1-2 OKI's Special DPSK Mode

This is the special mode that can save the ROM size and number of processing step in the modulating processor. Normal DPSK and the special modulating method are shown in Figure 11 and 12, respectively.

In the OKI's special DPSK mode, DSP is not required to perform multiplying of real part by COS wct and imaginary part by SIN wct. At the same time, as the coefficient table for multiplying is not required, the required ROM capacity of the DSP can be small. The special mode requires the special interface timing for handling the data of real and imaginary part from DSP to AFE to execute the equivalent processing in AFE. The data input timing for DA is as follows.

Figure 13

In the originate mode, the transmit carrier frequency is 1200 Hz . The interval between the real part data and the imaginary part data should be set at $1 / 4 \cdot \mathrm{fc}(1 / 4 \cdot 1200 \mathrm{~Hz}=$ $1 / 4800 \mathrm{~Hz}$) to generate the carrier of SIN wct.

Using this method, the modulated signal, the carrier frequency of which is 1200 Hz , is obtained after filtering through the low channel BPF. The transmit output signal level on AOUT becomes as follows.

$$
V_{\text {AOUT }}=+7.2 \mathrm{dBm}+\frac{20 \cdot \log 1 / 8}{A}+\frac{20 \cdot \log \sqrt{2}}{B}+\frac{6.0 \mathrm{~dB}}{\mathrm{C}}+\frac{9 \mathrm{~dB}}{\mathrm{D}}-\frac{0.34 \mathrm{~dB}}{E}=+6.81 \mathrm{dBm}
$$

A: 1/8 PAM
B : Vector sum of real and imaginary part
C: Lower side band component after modulating
D: Voltage gain of the transmit filter (See Table 9)
The width of the PAM signal and the voltage gain are set automatically so as to satisfy the above equation.

Figure 14

In the answer mode, the transmit carriver frequency is 2400 Hz .
Same as in the originate mode, the interval time should be set at $1 / 4 \cdot \mathrm{fc}(1 / 4 \cdot 2400 \mathrm{~Hz}=$ $1 / 9600 \mathrm{~Hz}$). The modulated signal, the carrier frequency of which is 2400 Hz , is obtained after filtering through the high channel BPF.

The transmit output signal level on AOUT becomes as follows.

$$
V_{\text {AOUT }}=+7.2 \mathrm{dBm}+20 \cdot \log 1 / 16+20 \cdot \log \sqrt{2}+6 \mathrm{~dB}+14.5 \mathrm{~dB}-0.34=+6.26 \mathrm{dBm}
$$

The width of the PAM signal and the voltage gain are set automatically internally.
When OKI's special modulating method is applied, there are some limitations about the transmit data on TD1 ~ TD8 and the timing of WRITE. But there are also many advantages about the modulator chip as described before.

1-3 Originate Transmission Mode

The low band signal must be transmitted and the high band signal must be received. MODE determines the positions of two BPFs by controlling SWT1, SWT2, SWR 1 and SWR2. When MODE is in digital 0 state, the low channel BPF is assigned to the transmitter and the high channel BPF is assigned to the receiver. Both DT and PT should be in digital 1 state so that the guard tone function should be disabled.

Figure 15 (MSM6950RS)

1-4 Answer Transmission Mode

The high band signal must be transmitted and the low band signal must be received. When MODE is in digital 1 state, the high channel BPF is assigned to the transmitter and the low channel BPF is assigned to the receiver. In some applications, it is required to mix a guard tone to the high channel transmit signal in the answer mode. The control signals on DT, PT and GT determine the guard tone function. When DT and PT are in digital 1 state, the guard tone function is disabled and only the high channel transmitter is enabled. When DT, PT and GT are in digital 0 state, the guard tone, the frequency of which is 550 Hz , is mixed to the transmit signal.

When GT is changed to digital 1 keeping DT and PT in digital 0 state, another guard tone, the frequency of which is 1800 Hz , is mixed to the transmit signal.

The original guard tone is filtered through LPF and only its fundamental component is extracted and mixed to the transmit signal. The cut-off frequency of LPF is about 725 Hz while GT is in digital 0 state and becomes about 2900 Hz while GT is in digital 1 state.

Figure 16 (MSM6950RS)

1-5 Tone Transmit Mode

The signal path in this mode is shown in Figure 17.
LPF put in this route has two kinds of its cut-off frequency ($725 \mathrm{~Hz} / 2900 \mathrm{~Hz}$). So, this mode is effective in DTMF signaling and so forth. Refer to Table 9.

Figure 17 (MSM6950RS)

1-6 Tone Receive Mode

The signal path in this mode is shown in Figure 18.
As LPF put in this route has two kinds of cut-off frequency -725 Hz and 2900 Hz , this mode is effective for call progress tone monitoring, such as for tone dialing. Refer to Table 9. In this mode, AOUT is connected to AG (OV) internally.

Figure 18 (MSM6950RS)

1-7 AC Loop-back Test Mode

The signal path in this mode is shown in Figure 19.
The modem system has to receive its own transmit signal to check the modem operation.
In this mode, the transmit BPF is skipped from the signal route and the channel used for AC Loop-back test determined by the receiver's channel determined by MODE. Refer to Table 9.

AOUT is connected to $\mathrm{AG}(\mathrm{OV})$ internally.

Figure 19 (MSM6950RS)

Control Signal						Transmitter				Receiver		Note		
DT	PT	MODE	GT	SP	LT	Pass Band*1	Gain*1	Guard Tone	DA-PAM Width	Pass Band*2	Gain*2			
1	1	0	X	0	0	$800 \sim 1600 \mathrm{~Hz}$	$+2.0 \mathrm{~dB}$		$104 \mu \mathrm{~s}$	2000~2800Hz	OdB	Originate	FSK DPSK	
1	1	1	X	0	0	$2000 \sim 2800 \mathrm{~Hz}$	$+2.0 \mathrm{~dB}$			$800 \sim 1600 \mathrm{~Hz}$	OdB	Answer		
0	0	1	0	0	0	$2000 \sim 2800 \mathrm{~Hz}$	$+2.0 \mathrm{~dB}$	550 Hz		$800 \sim 1600 \mathrm{~Hz}$	OdB			
0	0	1	1	0	0	2000~2800Hz	+2.0dB	1800 Hz		800~1600Hz	OdB			
1	1	0	X	1	0	$800 \sim 1600 \mathrm{~Hz}$	+9dB		$104 \mu \mathrm{~s}$	$2000 \sim 2800 \mathrm{~Hz}$	OdB	Originate	OKI's Special DPSK	
1	1	1	X	1	0	$2000 \sim 2800 \mathrm{~Hz}$	+14.5dB		$52 \mu \mathrm{~s}$	$800 \sim 1600 \mathrm{~Hz}$	OdB	Answer		
0	0	1	0	1	0	$2000 \sim 2800 \mathrm{~Hz}$	+13.5dB	550 Hz		$800 \sim 1600 \mathrm{~Hz}$	OdB			
0	0	1	1	1	0	$2000 \sim 2800 \mathrm{~Hz}$	+13.5dB	1800 Hz		$800 \sim 1600 \mathrm{~Hz}$	OdB			
0	1	0	0	0	0	$0 \sim 725 \mathrm{~Hz}$	-0.5dB		$104 \mu \mathrm{~s}$	$2000 \sim 2800 \mathrm{~Hz}$	OdB	Guard Tone/DTMF Tone Transmitting		
0	1	1	0	0	0	$0 \sim 725 \mathrm{~Hz}$	-0.5dB			$800 \sim 1600 \mathrm{~Hz}$	OdB			
0	1	0	1	0	0	$0 \sim 2900 \mathrm{~Hz}$	OdB			$2000 \sim 2800 \mathrm{~Hz}$	0 dB			
0	1	1	1	0	0	$0 \sim 2900 \mathrm{~Hz}$	OdB			$800 \sim 1600 \mathrm{~Hz}$	OdB			
1	0	X	0	X	0					$0 \sim 725 \mathrm{~Hz}$	OdB	Filtering for Call Progress Tone		
1	0	X	1	x	0					$0 \sim 2900 \mathrm{~Hz}$	OdB			
X	X	0	X	0	1	${ }^{* 3}(0 \sim 10 \mathrm{KHz})$	(0dB)		$104 \mu \mathrm{~s}$	$2000 \sim 2800 \mathrm{~Hz}$	OdB	AC Loopback Test	$\begin{gathered} \text { FSK } \\ \text { DPSK } \end{gathered}$	
X	x	1	X	0	1	${ }^{* 3}(0 \sim 10 \mathrm{KHz})$	(0dB)			$800 \sim 1600 \mathrm{~Hz}$	OdB			
X	X	0	X	1	1	${ }^{* 3}(0 \sim 10 \mathrm{KHz})$	(0dB)		$52 \mu \mathrm{~s}$	2000~2800Hz	OdB		OKI's Special	
X	X	1	X	1	1	${ }^{3}(0 \sim 10 \mathrm{KHz})$	(0dB)		$104 \mu \mathrm{~s}$	$800 \sim 1600 \mathrm{~Hz}$	OdB		DPSK	

*1 XIN \rightarrow AOUT
*2 AIN \rightarrow RFO
*3 AOUT is connected to Ground.
Table 9. Various Operating Modes

2. Considerations for duplexer (Line Hybrid Using Op. Amps)

In case of full-duplex systems, a duplexer plays a important role. Its purpose is to help reject transmit signal energy from the receive signal.

Theoretically, a duplexer can be adjusted to achieve infinite rejection (no existence of cross-talk) - where the phase and amplitude of the inverting and non-inverting signals cancel through the duplexer OP-Amps. In practice however, telephone line impedances vary enough such that only about $10 \sim 15 \mathrm{~dB}$ of rejection can be expected. To attain this rejection, it is recommended that the duplexer components $\left(R_{1}, R_{2}, R_{3}\right.$ and C_{1} in Figure 20) be tuned for the impedance and loss characteristics of the particular type of transformer being used. This will minimize the impedance variation of the line.

Once these component values have been determined for a particular transformer type, further trimming is usally unnecessary on a board-to-board basis. A recommended procedure for balancing the duplexer, which was used in finding the values in Figure 20, is as follows.
a) A recommended procedure for balancing the duplexer
(1) First, set the chip into the transmit squelch mode. Next, connect a 600 ohm signal source to points A and B (the signal source; -12 dBm and 1200 Hz). Tweak R_{1} until the loss at point A and B is exactly 6 dB . This allows maximum power transfer through the transformer.
(2) With R_{1} at this new value, replace the signal source with a 600 ohm resistor at point A and B. Now output the transmit signal from AOUT via OPA1 at the frequency of 1200 Hz .
(3) Now tune R_{3} until the signal out of AOUT reaches a minimum at OPA2 output terminal $\left(V_{2}{ }^{\circ}\right)$. Then tune C_{1} until a new, lower minimum is reached which should be around 30 dB .
The phase and amplitude of the two signal components have now been matched for the best rejection over the spread of telephone lines.
A crosstalk characteristic of the duplexer adjusted in steps (1) through (3) is shown in Figure 21. It was obtained by measuring the V_{0}-to V_{2} transfer characteristic with the modem chip and the duplexer disconnected from each other.
The duplexer has the attenuation pole at about 1420 Hz when a line impedance is ideal 600 ohm.
b) Characteristics on an practical line

Figure 21 also shows the practical characteristics of the duplexer connected to existing telephone lines.
These are represented by $\mathrm{V}_{0}-$ to $-\mathrm{V}_{2}$ transfer characteristics; it should be noticed that the receive signal level at AIN terminal $\left(V_{3}\right)$ will be lower than V_{2} by about 6 dB typically because of the existence of R_{6} and R_{7}.

Figure 20 Duplexer (Line Hybrid Circuit) Considerations (MSM6950RS)

(I) Terminal by 600Ω pure resistor
(II) Connected to a private phone line
(III) Connected to a public switched network

Figure 21 Experimental Cross-Talk Characteristics

GENERAL DESCRIPTION

The MSM6949 is an analog front end LSI which is fabricated by OKI's low power consumption CMOS silicon gate technology. The MSM6949 is used to implement an analog front end function required in the modem set based on CCITT V. 26, V. 27 and V. 29 recommendations.

The MSM6949 performs all basic analog signal processing functions such as transmit and receive filters, selectable amplitude equalizers, transmit signal level attenuator, fast carrier detector, AD and DA converter with 8 -bit parallel input/output.

In addition to it, the MSM6949 performs analog loop test, the detection of call progress tones, 75 bps backward channel transmitter and automatic gain control (AGC). AGC circuit is digitally controlled by the digital signal processor which performs the demodulating function.

By utilizing the MSM6949 together with OKI's digital signal processors, a cost effective modem can be designed easily.

FEATURES

- Performs all analog signal processing functions required for CCITT V. 26, V. 27 and V. 29.
- 75 bps backward channel FSK transmitter.
- Interfaces to digital signal processors with receive and transmit parallel data bus.
- Call progress tone monitoring.
- An chip AGC circuit controlled by external digital signals, over the received signal level range of 51 dB with 0.2 dB step.
- Analog loop test: A transmitting analog signal can be looped back as a receive analog signal within the chip.
- A set of carrier detection circuits, the on/off levels of which, are fixed at each of the compromised values within the chip, and also can be adjusted by external resistors.
- Two CD circuits are useful for Fall-Back operation and so forth.
- 3.456 MHz external clock for operation.
- On-chip voltage reference.
- Few external components required.
- Supply voltage, $\pm 5 \mathrm{~V}$.
- Low power dissipation: 140 mW typical.
- Power stand by mode available.
- 64 pin mini-size DIP, 68 pin PLCC will be available by 10 ' 87 .

PIN CONFIGURATION (Top View)

64 pin mini DIP (MSM6949SS)

$\overline{\text { BRS }}$	1	64	V VDD1
BTD	2	63	ATT3
TRSW	3	62	ATT2
RDL	4	61	ATT1
WRT	5	60	EQT2
TD8	6	59	EQT1
TD7	7	58	$\square \mathrm{L}$
TD6	8	57	PWDN
TD5	9	56	BOUT
TD4	10	55	\square XIN
TD3	11	54	AOUT
TD2	12	53	$\square \mathrm{NC}$
TD1	13	52	\square AIN
MCK	14	51	VR2
VDD2	15	50	$\square \mathrm{VR} 1$
NC	16	49	$\square \mathrm{CD} 2 \mathrm{H}$
RD8	17	48	$\square \mathrm{CD} 2 \mathrm{~L}$
RD7	18	47	$\square \mathrm{CD1H}$
RD6	19	46	CD1L
RD5	20	45	RFO
RD4	21	44	A AGCI
RD3	22	43	AGCO
RD2	23	42	AGCC
RD1	24	41	VSS
RDB	25	40	AG
RDA	26	39	DG
ST	27	38	EQR2
READ	28	37	EQR1
AGCW	29	36	BWC2
CSW	30	35	BWC1
LD1	31	34	CD2
LD2	32	33	CD1

68 pin PLCC (MSM6949JS): Available by 10 ' 87.

PIN ASSIGNMENTS (SS --. 64 pin mini-size DIP, JS --. 68 pin PLCC)

Pin Name	Pin No.		Function	
	SS	JS		
$\overline{\text { BRS }}$	1		Request to Send for backward channel (V.23)	
BTD	2		Transmit Data for backward channel (V.23)	
TRSW	3		Control signal for connection of DA input bus	
RDL	4		Latch clock for RD to input to DA within chip	
WRT	5		Control signal for writing TD to DA	
TD8	6		Transmit signal digital data bus input to DA	MSB
TD7	7			-
TD6	8			-
TD5	9			-
TD4	10			-
TD3	11			-
TD2	12			-
TD1	13			LSB
MCK	14		Master clock input 3.456 MHz	
VDD2	15		+5V power supply	
N.C.	16			
RD8	17		Receive signal digital data bus output from AD (3-state I/O)	MSB
RD7	18			-
RD6	19			-
RD5	20			-
RD4	21			-
RD3	22			-
RD2	23			-
RD1	24			LSB
RDB	25		Additional digit for RD bit shifting (3-state output)	
RDA	26			
ST	27		Control signal for starting of AD conversion	
READ	28		Control signal for reading RD from AD	
AGCW	29		Writing clock for setting data to AGC circuit	
CSW	30		RD bit shifting enable	
LD1	31		Outputs of level comparators put to AGC circuit's output. These are used to set AGC at typical gain when detecting urgent changes.	
LD2	32			
CD1	33		Carrier detect for QAM/PSK signal	
CD2	34		Carrier detect for FSK signal (T.30)	

Pin Name	Pin No.		Function
	SS	JS	
BWC1	35		Receive filter bandwidth select
BWC2	36		
EQR1	37		Fixed compromise cable amplitude equalization select for receiving
EQR2	38		
DG	39		Digital ground (0V)
AG	40		Analog ground (0V)
VSS	41		-5 V power supply
AGCC	42		External capacitor terminal for AGC circuit
AGCO	43		AGC circuit output
AGCI	44		AGC circuit input connected for RFO through external capacitor
RFO	45		Receive filter output connected to AGCI through external capacitor
CD1L	46		Carrier detect level select for CD1
CD1H	47		
CD2L	48		Carrier detect level select for CD2
CD2H	49		
VR1	50		On-chip reference voltage adjust using external resistors
VR2	51		
AIN	52		Receive analog signal input
N.C.	53		
AOUT	54		Transmit analog signal output
XIN	55		External analog signal input
BOUT	56		75 bps FSK transmit signal output
PWDN	57		Power down mode select
LT	58		Analog loop test
EQT1	59		Fixed compromise cable amplitude equalization select for transmitting
EQT2	60		
ATT1	61		8 steps attenuator select for transmit signal level
ATT2	62		
ATT3	63		
VDD1	64		+5V power supply

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Condition	Ratings	Unit
Power supply voltage	VDD	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ With respect to AG or DG	$-0.3 \sim+7$	V
	$\mathrm{V}_{\text {SS }}$		$-7 \sim+0.3$	
Analog input voltage	$V_{1 A}$		$\mathrm{V}_{\text {SS }}{ }^{-0.3} \sim \mathrm{~V}_{\text {DD }}{ }^{+0.3}$	
Digital input voltage	VID		$-0.3 \sim \mathrm{~V}_{\text {DD }}+0.3$	
Operating temperature	TOP	-	-40~85	
Storage temperature	TSTG	-	$-55 \sim 150$	

2. Recommended Operating Conditions

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Power Supply Voltage	VDD	With respect to AG or DG	4.75	5,00	5.25	V
	$\mathrm{V}_{\text {SS }}$		-5.25	-5.00	-4.75	
	AG, DG	-	-	0	-	
Operating Temperature	TOP	-	0	-	70	${ }^{\circ} \mathrm{C}$
R1	-	Transformer impedance (Hybrid)$\frac{600 \Omega}{600 \Omega}: 600 \Omega$	-	600	-	Ω
R2	-		-	600	-	
R3	-		-	300	-	
R4	-	-	-	51	-	$k \Omega$
R5	-		-	51	-	
R6	-		-	51	-	
R7	-		-	51	-	
R8	-		10	33	-	
R9	-		-	36	-	
C1	-	-	-	2.2	-	$\mu \mathrm{F}$
C2	-		-	1	-	
C3	-		-	0.1	-	
C4	-		-	1	-	
C5, C7, C9	-		-	10	-	
C6, C8	-		-	1	-	
$\mathrm{R} 10 \sim \mathrm{R17}$	-	-	-	10	-	$k \Omega$
Reference Voltage	$V_{\text {REF }}$	Ajusted by External Resistors	-	+2.50	-	V
'Master Clock Frequency	$\mathrm{f}_{\text {MCK }}$		3.4557	3.456	3.4563	MHz
MCK Duty Cycle	D MCK	50\% to 50\%	30	50	70	\%
Digital Input Rise Time	t_{r}	RDL, WRT, MCK, $\overline{S T}$, READ, AGCW See Figure 1	0	-	50	ns
Digital Input Fall Time	t_{f}		0	-	50	ns
$\overline{\text { ST Period }}$	tPS	See Figure 2, 3	51	-	143	$\mu \mathrm{S}$
$\overline{\text { ST Width }}$	$t_{\text {ws }}$		0.3	-	tPS -0.3	$\mu \mathrm{S}$
READ Width	tWRE		0.3	-	-	$\mu \mathrm{s}$

Parameter	Symbol	Condition	Min	Typ	Max	Unit
$\begin{gathered} \overline{\mathrm{ST}} \rightarrow \overline{\mathrm{READ}} \\ \text { Timing } \end{gathered}$	${ }^{\text {tSR}}$	See Figure 2, 3	51	-	tPS ${ }^{\text {+50 }}$	$\mu \mathrm{s}$
$\begin{gathered} \overline{\mathrm{ST}} \rightarrow \mathrm{AGCW} \\ \text { Timing } \end{gathered}$	${ }^{\text {t }}$ SA		5	-	tPS ${ }^{-10}$	$\mu \mathrm{s}$
AGCW Width	tWA		0.3	-	tPS-0.3	$\mu \mathrm{s}$
WRT Period	tPW		20	-	143	$\mu \mathrm{s}$
WRT Width	${ }^{\text {t WW }}$		0.3	-	${ }^{\text {t P W }}$-0.3	$\mu \mathrm{s}$
RDL Period	tPRD	See Figure 3	20	-	143	$\mu \mathrm{s}$
RDL Width	tWRD		0.3	-	tPRD-0.3	$\mu \mathrm{S}$
$\text { RDL } \rightarrow \text { WRT }$ Timing	tr ${ }^{\text {t }}$		0	-	tPRD-0.6	$\mu \mathrm{s}$
Allowable XIN Input DC Offset Voltage	VOSXIN	-	-100	-	+100	mV
Allowable AIN Input DC Offset Voltage	VOSAIN	-	-100	-	+100	mV

Refer to Figure 16.

3. Power Dissipation

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Power-Down Current	IdDS	PDWN $=1$	-	0.2	0.5	mA
	Isss		-	0.2	0.5	mA
Active Current	IDD	$P D W N=0$	-	14	25	mA
	Iss		-	13	25	mA

NOTE) $V_{D D}$ means both of $V_{D D 1}$ and $V_{D D 2}$.

4. Digital Interface

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Input Low Voltage	$V_{\text {IL }}$	-	0	-	0.6	V
Input High Voltage	$V_{\text {IH }}$	-	2.2	-	$V_{\text {DD }}$	V
Output Low Voltage	V_{OL}	$\mathrm{IOL}^{\prime}=0.4 \mathrm{~mA}$	0	-	0.4	V
Output High Voltage	V_{OH}	$\mathrm{I}^{\text {OH }}=20 \mu \mathrm{~A}$	2.4	-	V_{DD}	V
Input Low Current	IIL	$\mathrm{DG} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {IL }}$	-10	-	10	$\mu \mathrm{A}$
Input High Current	IIH	$\mathrm{V}_{\text {IH }} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {DD }}$	-10	-	10	$\mu \mathrm{A}$
TD Data Set-up Time	${ }^{\text {tsTD }}$	See Figure 2, 3	100	-	-	ns
TD Data Hold Time	thTD		100	-	-	ns
AGC Data Set-up Time	tsAG		100	-	-	ns
AGC Data Hold Time	thag		100	-	-	ns
RD Data Set-up Time	${ }^{\text {tSRD }}$	See Figure 3	100	-	-	ns
RD Data Hold Time	thRD		100	-	-	ns
AD Data Output Delay Time	${ }^{\text {t }} 1$	See Figure 2, 3	-	-	300	ns
	${ }^{t}{ }^{\text {D }}$		-	-	300	ns

5. Analog Interface

$$
\left(V_{D D}=+5 \mathrm{~V}+5 \%, V_{S S}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{a}}=0 \sim 70^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Condition	Min	Typ	Max	Unit

Reference Voltage

Reference Voltage	VR	Without adjustment $R_{8}=\infty$	+1.02	+1.20	+1.38	V

Backward Channel Transmit Signal Output (BOUT), External Signal Input (XIN)

Output Resistance		R_{OB}	BOUT	-	-	10	20	Ω
Load Resistance		$\mathrm{R}_{\text {BOUT }}$		-	10	-	-	$k \Omega$
Load Capacitance		$\mathrm{C}_{\text {BOUT }}$		-	-	-	100	PF
DC Offset Voltage		$\mathrm{V}_{\text {OSB }}$		-	-200	-	+200	mV
Output Carrier Level		$\mathrm{V}_{\text {BOUT }}$		$\begin{aligned} & \mathrm{R}_{\mathrm{BOUT}} \geq 10 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{REF}}=+2.50 \mathrm{~V} \end{aligned}$	$\begin{gathered} 1.74 \\ -2 \end{gathered}$	$\begin{gathered} 2.19 \\ 0 \end{gathered}$	2.76	Vpp dBm
BWC Transmit Signal Level Ratio		LRBWC	$\frac{V_{\text {AOUT }}(450 \mathrm{~Hz})}{V_{\text {AOUT }}(390 \mathrm{~Hz})}$		-1	0	1	dB
BWC Transmit Carrier Frequency	Mark " 1 "	${ }^{\text {f OBM }}$	$B T D=0$		389	390	391	Hz
	Space " 0 "	${ }^{\text {fobs }}$	$B T D=1$		449	450	451	Hz
Input Resistance		RXIN	XIN	-	25	50	-	$\mathrm{k} \Omega$
Input Signal Level		V XIN		-	-	-	$\begin{gathered} 4.38 \\ +6 \end{gathered}$	Vpp dBm

NOTE) $0 \mathrm{dBm}=0.775 \mathrm{Vrms}=2.19 \mathrm{Vpp}$

Transmit Analog Signal Ouput (AOUT)

Output Resistance		$\mathrm{R}_{\text {OT }}$		-		-	10	20	Ω
Load Resistance		RAOUT		-		10	-	-	$\mathrm{k} \Omega$
Load Capacitance		$\mathrm{C}_{\text {AOUT }}$		-		-	-	100	PF
DC Offset Voltage		V OST	XIN	$=\mathrm{A}$		-200	-	+200	mV
Transmit Level (Single Tone)	Forward* Channel	$V_{\text {AOUT }}$	$\begin{aligned} & \text { EQT1 }=1 \\ & \text { EQT2 }=1 \\ & \text { ATT1 }=1 \\ & \text { ATT2 }=1 \\ & \text { ATT3 }=1 \\ & \mathrm{~V}_{\text {REF }}=+2.50 \mathrm{~V} \end{aligned}$	$\mathrm{fin}^{\text {I }}$	$\begin{aligned} & 1.8 \mathrm{kHz} \\ & \text { Full scale } \end{aligned}$	$\begin{gathered} 3.48 \\ +4 \end{gathered}$	$\begin{gathered} 4.38 \\ +6 \end{gathered}$	$\begin{gathered} 5.52 \\ +8 \end{gathered}$	Vpp dBm
Idle Channel Noise		NIDLT	Using a $0.3 \sim 3.4 \mathrm{kHz}$ flat weighted filter			-	-80	-	dBm
Total Harmonic Distortion		THDT	-			-	-65	-50	dB

* Transmit data (TD1~TD8) determine this level essentially. If the DA converter sends a single sine wave signal of which amplitude is ± 2.5 Vop (Full scale of DA converter, equivalent +7 dBm) to the transmit filter, the transmit signal level at AOUT becomes $+6 \mathrm{dBm}(4.37 \mathrm{Vpp})$. But, generally in PSK or QAM modulation, maximum peak factor of about 3 dB or 7 dB should be considered in the design. Therefore, for instance, the transmit signal in the QAM forward channel is designed to be -1 dBm . This value shows one example of designs.

Parameter	Symbol	Condition	Min	Typ	Max	Unit

Receive Analog Signal Input (AIN)

Input Resistance	$\mathrm{R}_{\text {AIN }}$	-	100	-	-	k Ω
Receive Signal Level Range (Single Tone)	VAIN	Single Tone	$\begin{aligned} & 4.36 \\ & -48 \end{aligned}$		$\begin{gathered} 1095 \\ 0 \end{gathered}$	$\begin{gathered} \text { mVo-p } \\ \text { dBm } \end{gathered}$
		Allows the level increase by PSK or QAM modulation.		-		

Receive Filter Output (RFO)

Output Resistance	$\mathrm{R}_{\text {OR }}$. -	-	10	20	Ω
Load Resistance	RRFO	-	50	-	-	$\mathrm{k} \Omega$
Load Capacitance	$\mathrm{C}_{\text {RFO }}$	-	-	-	100	PF
DC Offset Voltage	V OSR	AIN = AG	-200	-	+200	mV
Output Signal Level	VRFO	$\begin{gathered} \text { EQR1 }=1, \text { EQR2 }=V 1 \\ \mathrm{f}_{\mathrm{IN}}=1800 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\text {AIN }} \\ -2 \end{gathered}$	$V_{\text {AIN }}$	$\begin{aligned} & V_{\text {AIN }} \\ & +2 \end{aligned}$	dBm
Idle Channel Noise	NIDLR	Using a $0.3 \sim 3.4 \mathrm{kHz}$ flat weighted filter	-	-80	-	dBm
Total Harmonic Distortion	THDR	-	-	-	-50	dB

AGC Circuit Input (AGCI), Output (AGCO)

Input Resistance	$\mathrm{R}_{\mathrm{AGCI}}$	AGCI	-	50	100	-	$k \Omega$
Allowable Input DC Offset Voltage	VOSAGCI		-	-0.5	-	+0.5	mV
Input Signal Level Range*	$\mathrm{V}_{\text {AGCI }}$		-	-45.4	-	+5.6	dBm
Output Resitance	R_{OA}	AGCO	-	-	10	20	Ω
Load Resistance	RAGCO		$\mathrm{V}_{\text {AGCO }}=-6 \mathrm{dBm}$	10	-	-	k Ω
Load Capacitance	$\mathrm{C}_{\text {AGCO }}$		-	-	-	100	PF
DC Offset Voltage	V OSA		-	-50	-	+50	mV
Output Signal Level*	$\mathrm{V}_{\text {AGCO }}$		Controlled by Demodulator	-	-6	-	dBm

[^1]
6. Attenuator, Amplitude Equalizers and Filters Characteristics

$$
\left(V_{D D}=+5 V \pm 5 \%, V_{S S}=-5 V \pm 5 \%, T_{a}=0 \sim 70^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Condition	Min	Typ	Max	Unit

Attenuator

Attenuation Accuracy $(0 \sim 14 \mathrm{~dB}, 2 \mathrm{~dB}$ step $)$	ATT	To the Designed Values	-1	0	+1	dB

Amplitude Equalizer (Transmit and Receive Paths)

NOTE) This spec is applicable for only amplitude equalizers and does not include other filters' frequency characteristics.

Parameter	Symbol	Condition	Min	Typ	Max	Unit

BWC Transmit LPF

2nd/3rd Harmonics Components Amplitude	$\mathrm{H}_{B W C}$	$B T D=0$	2-fobM	780 Hz	-	-60	-55	dB
			$3 \cdot \mathrm{f}$ OBM	1170 Hz	-	-60	-55	dB
$\left(\begin{array}{l} \text { Relative values to } \\ \text { the fundamental } \\ \text { component amplitude } \end{array}\right)$		$B T D=1$	$2 \cdot f$ OBS	900 Hz	-	-60	-55	dB
			$3 \cdot \mathrm{fOBS}$	1350 Hz	-	-60	-55	dB

Transmit LPF

Transmit LPF Voltage Gain	$\mathrm{G}_{\text {TL }}$	$\begin{aligned} & \text { EQT1, } 2=1 \\ & \text { ATT } 1,2,3=1 \\ & V_{\text {XIN }}=0 \mathrm{dBm} \end{aligned}$		$\begin{aligned} & 390 \mathrm{~Hz} \\ & 450 \mathrm{~Hz} \end{aligned}$	-2	0	+2	dB
				$\begin{aligned} & 1700 \mathrm{~Hz} \\ & 1800 \mathrm{~Hz} \end{aligned}$	-0.8	+1.2	+3.2	dB
Frequency - Amplitude Characteristics$\binom{\text { Relative gain to }}{\mathrm{G}_{\mathrm{TL}} \text { at } 390 \mathrm{~Hz}}$	ATL	$\begin{aligned} & \text { EQT1, } 2=1 \\ & \text { ATT1, } 2,3=1 \\ & V_{X I N}=0 \mathrm{dBm} \end{aligned}$	fin	2400 Hz	+0.5	+1.5	+2.5	dB
				6000 Hz	-	-26	-23	dB
Group Delay Distortion	DTL	$\begin{aligned} & \text { EQT1, } 2=1 \\ & 300 \mathrm{~Hz} \leq \mathrm{f} \mathrm{IN} \leq 4000 \mathrm{~Hz} \end{aligned}$			-	-	150	$\mu \mathrm{s}$

Receive BPF

Receive BPF Voltage Gain	GRB	$\begin{aligned} & \text { EQR1, } 2=1 \\ & V_{\text {AIN }}=0 \mathrm{dBm} \\ & \mathrm{f}_{\mathrm{IN}}=1700 \mathrm{~Hz} \end{aligned}$			-2	0	+2	dB
Frequency - Amplitude Characteristic$\binom{\text { Relative gain to }}{\mathrm{G}_{\mathrm{RB}}}$	$A_{\text {RB }}$	$\begin{aligned} & \text { EQR1, } 2=1 \\ & V_{\text {AIN }}=0 \mathrm{dBm} \end{aligned}$	fin	150 Hz	-	-17	-14	dB
				300 Hz	-4	-3	-1	dB
				3000 Hz	+3	+4	+6	dB
				6000 Hz	-	-19	-16	dB
Group Delay Distortion	DRB	$\begin{aligned} & \text { EQR1, } 2=1 \\ & 300 \mathrm{~Hz} \leq \mathrm{fIN} \leq 4000 \mathrm{~Hz} \end{aligned}$			-	-	1.3	ms

Parameter	Symbol	Condition	Min	Typ	Max	Unit

Receive HPF

Receive HPF Voltage Gain	$\mathrm{GRH}_{\text {R }}$	$\begin{aligned} & \text { EQR1, } 2=1 \\ & \text { VAIN }=0 \mathrm{dBm} \\ & \mathrm{f}_{\mathrm{IN}}=620 \mathrm{~Hz} \end{aligned}$			-2	0	+2	dB
Frequency - Amplitude Characteristics	$A_{\text {RH }}$	$\begin{aligned} & \text { EQR1, } 2=1 \\ & V_{\text {AIN }}=0 \mathrm{dBm} \end{aligned}$	fin	390 Hz	-	-77	-65	dB
				450 Hz	-	-71	-65	dB
$\mathrm{GRH}_{\text {RH }} \quad * 1$				500 Hz	-	-40	-36	dB
Group Delay Distortion	$\mathrm{D}_{\text {RH }}$	$\begin{aligned} & \text { EQR1, } 2=1 \\ & 800 \mathrm{~Hz} \leq \mathrm{f} / \mathrm{N} \leq 4000 \mathrm{~Hz} \end{aligned}$			-	-	1	ms

${ }^{* 1}$: Includes Receive BPF's characteristics. $\quad{ }^{* 2}$: Only Receive HPF itself.

Receive LPF (for Call Progress Tone Detection)

Receive LPF Voltage Gain	G_{RL}	$\begin{aligned} & \text { EQR1, } 2=1 \\ & \text { VAIN }=0 \mathrm{dBm} \\ & \mathrm{f}_{\mathrm{IN}}=620 \mathrm{~Hz} \end{aligned}$			-2	0	+2	dB
Frequency - Amplitude Characteristics$\binom{\text { Relative gain to }}{\mathrm{G}_{\mathrm{RL}}}_{* 1}$	$\mathrm{ARL}^{\text {R }}$	$\begin{aligned} & \text { EQR1, } 2 \\ & =1 \\ & \text { VAIN } \\ & =0 \mathrm{dBm} \end{aligned}$	${ }^{\text {f }}$ IN	350 Hz	-3	-2	-1	dB
				910 Hz	-	-60	-54	dB

${ }^{* 1}$: Includes Receive BPF's characteristics.

NOTE) Each Spec. is measured according to the following table.

Circuits	Signal Input	Signal Output	BWC1	BWC2	ATT $1,2,3$	EQT 1,2	EQR 1,2	Measured Block	Reference Figure
Attenuator	AOUT	-	-	000 $?$ 111	1	-	ATT + T•LPF	5	
Transmit Amplitude Equalizer	XIN	AOUT	-	-	1	00 2 11	-	AEQL + T•LPF	4,5
BWC Transmit LPF	BOUT \rightarrow XIN	AOUT	1	1	1	1	-	BWC•LPF + T•LPF	5,6
Transmit LPF	XIN	AOUT	-	-	1	1	-	T•LPF	5
Receive Amplitude Equalizer	AIN	RFO	1	1	-	-	2 2	AEQL	4
Receive BPF	AIN	RFO	0	0	-	-	1	R•BPF	7
Receive HPF	AIN	RFO	0	1	-	-	1	R•HPF + R•BPF	7,8
Receive LPF	AIN	RFO	1	0	-	-	1	R•LPF + R•BPF	6,7

Table 1
7. DA, AD Converter and AGC Circuit

$$
\left(V_{D D}=+5 V \pm 5 \%, V_{S S}=-5 V \pm 5 \%, T_{a}=0 \sim 70^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Condition	Min	Typ	Max	Unit

Transmit Digital to Analog Converter

Bits of Resolution		BREST		-	-	8	-	bit
DA Conversion Reference Voltage		$V_{\text {REF }}$		-	-	+2.50	-	V
Full Scale*	Plus Full Scale	PFV ${ }_{\text {DA }}$	$\begin{aligned} & V_{R E F}= \\ & +2.50 \mathrm{~V} \end{aligned}$	$\begin{gathered} \text { TD8 ~ TD1: } \\ 01111111 \end{gathered}$	+2.16	+2.21	+2.27	V
	Minus Full Scale	NFV ${ }_{\text {DA }}$		$\begin{aligned} & \text { TD8 ~ TD1: } \\ & 10000000 \end{aligned}$	-2.29	-2.23	-2.18	V
Linearity*		NLDA	-			0.36	0.5	\%

* This specification is defined as the voltage at the AOUT terminal, but does not include the DC offset voltage at the terminal.

Receive Analog to Digital Converter

Bits of Resolution		Bresr	-	-	8	-	bit
AD Conversion Reference Voltage		$V_{\text {REF }}$	-	-	+2.50	-	V
Full Scale*	Plus Full Scale	PFV ${ }_{\text {AD }}$	$V_{\text {REF }}=+2.50 \mathrm{~V}$ Equivalent values to the input voltage of AD converter	+2.42	+2.48	+2.54	V
	Minus Full Scale	$N F V_{\text {AD }}$		-2.56	-2.50	-2.44	V
Linearity*		NLAD	-	-	0.24	0.5	\%
Output DC Offset*		V OSAD	-	-1/2	-	+1/2	LSB

* This specification does not include the DC offset voltage at the input of the AD converter (AGCO).

AGC Circuit

Gain Control Bits of Resolution	BRESA	-	-	8	-	bit
Dynamic Range	DY AGC	-	-	51	-	dB
Gain Setting Minimum Step	GSTP	-	-	0.2	-	dB
Gain Setting Accuracy	GE	-	-0.2	0	+0.2	dB
Total Harmonic Distortion	THDAGC	-	-	-	-50	dB
Signal to Noise Ratio	SNAGC	Set Gain = Maximum Signal/Noise at AGCO	50	-	-	dB

8. Timing Characteristics

$$
\left(V_{D D}=+5 \mathrm{~V} \pm 5 \%, V_{S S}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{a}}=0 \sim 70^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Condition	Min	Typ	Max	Unit

Carrier Detect and Level Comparator for AGC Circuit

```CD1 See Figure 9-1```	OFF $\rightarrow$ ON	TCDON1	$\begin{aligned} & \mathrm{CD1H} \\ & =\mathrm{V}_{\mathrm{SS}} \end{aligned}$	$\begin{aligned} & \text { CD1L } \\ & =0 \\ & \text { BWC } 1 \\ & =0 \end{aligned}$	$\begin{aligned} & V_{\mathrm{AIN}}=0 \mathrm{dBm} \\ & \mathrm{f}_{\mathrm{IN}}=1700 \mathrm{~Hz} \end{aligned}$	-	2.5	-	ms
	$\mathrm{ON} \rightarrow \mathrm{OFF}$	TCDOFF1				-	9.6	-	ms
	OFF $\rightarrow$ ON	TCDON2			$\begin{aligned} & V_{\text {AIN }}=-36 \mathrm{dBm} \\ & \mathrm{f}_{\mathrm{IN}}=1700 \mathrm{~Hz} \end{aligned}$	-	3.5	-	ms
	ON $\rightarrow$ OFF	TCDOFF2				-	6.0	-	ms
	OFF $\rightarrow$ ON	TCDON3		$\begin{aligned} & \text { CD1L } \\ & =1 \\ & \text { BWC1 } \\ & =0 \end{aligned}$	$\begin{aligned} & V_{\mathrm{AIN}}=0 \mathrm{dBm} \\ & \mathrm{f}_{\mathrm{IN}}=1800 \mathrm{~Hz} \end{aligned}$	-	1.8	-	ms
	ON $\rightarrow$ OFF	TCDOFF3				-	9.0	-	ms
	OFF $\rightarrow$ ON	TCDON4			$\begin{aligned} & V_{A I N}=-39 \mathrm{dBm} \\ & \mathrm{f}_{\mathrm{IN}}=1800 \mathrm{~Hz} \end{aligned}$	-	3.1	-	ms
	ON $\rightarrow$ OFF	TCDOFF4				-	4.6	-	ms
	OFF $\rightarrow$ ON	TCDON5		$\begin{aligned} & \text { CD1L } \\ & =0 \\ & \text { BWC1 } \\ & =1 \\ & \text { BWC2 } \\ & =0 \end{aligned}$	$\begin{aligned} & V_{\mathrm{AIN}}=0 \mathrm{dBm} \\ & \mathrm{f}_{\mathrm{IN}}=400 \mathrm{~Hz} \end{aligned}$	0	1.8	90	ms
	ON $\rightarrow$ OFF	TCDOFF5				0	1.8	90	ms
	OFF $\rightarrow$ ON	TCDON6			$\begin{aligned} & V_{\text {AIN }}=-40 \mathrm{dBm} \\ & \mathrm{f}_{\mathrm{IN}}=400 \mathrm{~Hz} \end{aligned}$	0	5.0	90	ms
	ON $\rightarrow$ OFF	TCDOFF6				0	4.6	90	ms
CD2   See   Figure 9-1	OFF $\rightarrow$ ON	TCDON7	$\begin{aligned} & \mathrm{CD} 2 \mathrm{H} \\ & =\mathrm{V}_{\mathrm{SS}} \end{aligned}$		$\begin{aligned} & V_{\text {AIN }}=0 \mathrm{dBm} \\ & \mathrm{f}_{\mathrm{IN}}=1650 \mathrm{~Hz} \end{aligned}$	-	1.2	-	ms
	ON $\rightarrow$ OFF	TCDOFF7			-	10	-	ms	
	OFF $\rightarrow$ ON	TCDON8			$\begin{aligned} & V_{\text {AIN }}=-40 \mathrm{dBm} \\ & \mathrm{f}_{\mathrm{IN}}=1650 \mathrm{~Hz} \end{aligned}$	-	5.6	-	ms
	ON $\rightarrow$ OFF	TCDOFF8			-	2.2	-	ms	
LD1   See   Figure 9-2	OFF $\rightarrow$ ON	TLD1ON				-	2.5	-	ms
	ON $\rightarrow$ OFF	TLD10FF				-	1.5	-	ms
$\begin{aligned} & \quad \text { LD2 } \\ & \text { See } \\ & \text { Figure 9-2 } \end{aligned}$	OFF $\rightarrow$ ON	TLD20N				-	5.4	-	ms
	ON $\rightarrow$ OFF	TLD20FF				-	0.6	-	ms

## Power Down Control Timing

Power ON Time	TPWON	PWDN: 1 $\rightarrow 0$   See Figure 10	-	-	200	ms
Power Down Time	TPWOFF	PWDN: 0 $\rightarrow 1$   See Figure 10	-	-	10	ms

9. Transmission Performance

$$
\left(V_{D D}=+5 V \pm 5 \%, V_{S S}=-5 V \pm 5 \%, T_{a}=0 \sim 70^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Condition	Min	Typ	Max	Unit

## Transmitter

Out-of-Band Energy Referred to Carrier Level	EOT	$\begin{aligned} & \text { EQT1, } 2=1 \\ & \mathrm{~V}_{\text {AOUT }}=0 \mathrm{dBm} \end{aligned}$   See Figure 11	$4 \sim 8 \mathrm{kHz}$	-	-	-20	dB
			$8 \sim 12 \mathrm{kHz}$	-	-	-40	dB
			12 kHz ~	-	-	-60	dB

Receiver

Dynamic Range	DY ${ }_{R}$	As a single tone				-48	-	0	$\begin{aligned} & \mathrm{dBm} / \\ & 600 \Omega \end{aligned}$	
Carrier Detect Threshold*3	THCDON1	$\begin{aligned} & \text { CD1H } \\ & =V_{S S} \end{aligned}$	$\begin{aligned} & C D 1 L=0 \\ & B W C 1=0 \end{aligned}$	CD1	ON	-	-39.2	-	dBm	
	THCDOFF1				OFF	-	-49.3	-	dBm	
	THCDON2		$\begin{aligned} & \mathrm{CD} 1 \mathrm{~L}=1 \\ & \mathrm{BWC1}=0 \end{aligned}$	CD1	ON	-	-41.8	-	dBm	
	TH CDOFF2				OFF	-	-46.8	-	dBm	
	$\begin{gathered} \mathrm{TH} \mathrm{CDON} / \\ \text { OFF3 } \end{gathered}$		$\begin{aligned} & B W C 1=1 \\ & B W C 2=0 \end{aligned}$	CD1	$\begin{aligned} & \text { ON/ } \\ & \text { OFF } \end{aligned}$	-	$-45^{* 1}$	-	dBm	
	THCDON4	$\mathrm{CD} 2 \mathrm{H}=\mathrm{V}_{\text {SS }}$		CD2	ON	-	-45	-	dBm	
	TH CDOFF4			OFF	-	-50	-	dBm		
*2 Optional Carrier Detect Threshold by External Potentials	THCDON5	CD1L: $0 \sim V_{\text {DD }}$			CD1	ON	Adjustable			dBm
	THCDOFF5	CD1H: $0 \sim V_{\text {DD }}$		OFF			djustab		dBm	
	THCDON6	CD2L: $0 \sim V_{\text {DD }}$		CD2	ON		djustab		dBm	
	THCDOFF6	CD2H: $0 \sim V_{\text {DD }}$			OFF		djustab		dBm	

*1 This operating mode is used during the call progress tone monitoring and does not provide the hysteresis of the detect ON and OFF level.
*2 In this mode, CD1's ON/OFF and CD2's ON/OFF levels are determined by external adjustments. It is impossible to use the optional threshold either for CD1 or CD2.
*3 Threshold levels are defined by a single tone input on the AIN terminal. In actual applications, however, input analog signal is not a single tone but a modulated signal by FSK, PSK or QAM. Therefore, the hysteresis values (CD/OFF-CD/ON) become less than the differences of CD/ON and CD/OFF levels shown in the specification table.


Figure 1 Definition of Rise/Fall Time


Figure 2-1 Receive Data Timing Chart


Figure 2-2 Transmit Data Timing Chart

NOTE) Figure 2-1 and Figure 2-2 show the timing when transmit data is input to the chip via TD1 through TD8.


Figure 3 Transmit and Receive Data Timing Chart

NOTE) Figure 3 shows the timing when transmit, receive and AGC data are interfaced via RD1 through RD8 as a common data bus.

-6769WSW•WヨaOW



Figure 6 LPF for Backward Channel/Receive LPF Frequency Characteristics
NOTE) The LPF is used for both transmit and receive path changed its bandwidth.
III


Figure 8 Receive HPF Frequency Characteristics


Figure 9-1


Figure 9-2


Figure 10 Power Down Mode Response


PIN DESCRIPTION


Figure 12


To input digital 1 to each digit of RD1 ~RD8 means the following amplitude per digit for AGC circuit.

Pin	Gain	Pin	Gain
RD1	+0.2 dB	RD5	+3.2 dB
2	+0.4	6	+6.4
3	+0.8	7	+12.8
4	+1.6	8	+25.6

Table 5
The actual values of AGC circuit's relative and obsolute gain are as shown in Table 6.

								Gain (dB)		
8	7	6	5	4	3	2	1	Relative	Absolute	
1	0	0	0	0	0	0	0	-25.5	-11.6	
1	0	0	0	0	0	0	1	-25.3	-11.4	
1	1	1	1	1	1	1	1	-0.1	+13.8	
0	0	0	0	0	0	0	0	+0.1	+14.0	
0	1	1	1	1	1	1	0	+25.3	+39.2	
0	1	1	1	1	1	1	1	+25.5	+39.4	

Table 6
These are 3 -state output pins to extend the RD bit length when CSW is set at digital 1 state. When CSW is set at digital 1 state, each digit of RD8 $\sim$ RD1 is shifted toward less significant bit by 2 bits and this makes RDA become LSB and MSB appears on RD6, RD7 and RD8 with the same data. This processing is useful to attenuate the received signal level for the demodulator.

This signal allows the MSM6949 to start the AD conversion on the negative edge of ST. The conversion period should be within $51 \sim 143 \mu \mathrm{~s}$. The latest AD converted data appear on the RD pins $44 \mu \mathrm{~s}$ after from the falling edge of $\overline{\mathrm{ST}}$.

Pin Name	Pin No.		Function
	SS	JS	
$\overline{\text { READ }}$	28		This is a control signal for 3-state output data bus line RD8 ~ RD1, RDA and RDB.   While this pin is in digital 0 state, the output bus is active and the result of the AD conversion appears on RD8 ~ RD1, While this pin is in digital 1 state, the output bus is inactive and RD8 ~ RD1, RDA and RDB become input terminals.
AGCW	29		This signal controls to load the gain setting data into the register for AGC circuit through RD8 $\sim$ RD1 on the positive edge of AGCW. At this time, $\overline{\text { READ }}$ must be in digital 1 state.
CSW	30		As mentioned in the description of RDA and RDB, the RD bit length is extended from 8 -bits to 10 -bits and the position of each digit is shifted by 2-bits toward the less significant digit when CSW is set at digital 1 state.
LD1	31		These output signals are of comparators which have different threshold levels each other and the inputs are connected to the output of AGC circuitry (AGCO).
LD2	32		When AGCO shows an extraordinary signal level by the abrupt change in the received signal level, LD1 and LD2 can be a warning signal for the demodulator and the AGC circuit.


|  | Signal level on AGCO (dBm) |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $2+2+1$ | $-14.5-15.5$ |  |
| LD1 | 0 | 0 | 1 |
| LD2 |  | 0 | 1 |

## Table 7

For example, the demodulator should be reset when LD1 indicates the digital 0 state.
In other case when LD2 indicates the digital 1 state, the AGC circuit should be set at the nominal gain by setting digital 0 to all of RD digits for the quick escape from the abnormal state. Refer to Table 7 and Figure 13.


Figure 13

Pin Name	Pin No.		Function				
	SS	JS					
CD1	33		The MSM6949 provides a pair of carrier detect circuitry and each of them has a inherent detect level which is internally fixed.				
CD2	34		On the other hand, their carrier detect levels can be determined by external circuit by using CD1L, CD1H, CD 2 L and CD 2 H .   Usually, CD1 is used for 2400, 4800, 7200 and 9600 bps data transmission, or for call progress tone monitoring. CD2 is used for FSK transmission, such as CCITT T. 30. The state of digital 1 means that the received signal is within the level range to be demodulated.   When indicating the digital 0 state, the received data should be ignored as meaningless information.   Refer to the descriptions for CD1L, CD1H, CD2L and CD2H.				
BWC1	35		These control signals determine the receive filter bandwidth according to the application's requirement. Refer to Figure 6, 7 and 8.				
BWC2	36	1	BWC	C1 BWC2	Receive Filter Composition	Band-   width      $0.3 \sim$   3.4 kHz	Application
			0	0			No backward channel transmitting
			0	1		$\begin{gathered} 0.6 ~ ~ \\ 3.4 \mathrm{kHz} \end{gathered}$	Backward channel transmitting
			1	0		$\begin{gathered} 0.3 \sim \\ 0.65 \mathrm{kHz} \end{gathered}$	Call progress tone monitoring
				1	$\rightarrow \triangle$ - पPFF-	Through	Special case $\binom{$ External }{ Filter }



Pin Name	Pin No.		Function									
	SS	JS										
AGCC	42		An external capacitor of $1 \mu \mathrm{~F}$ should be connected between AGCC and AG. This capacitor is necessary to compensate the DC offset voltage generated in the AGC circuit.									
AGCO	43		The output of the AGC circuit. This pin is used for the chip test, etc. The gain setting data should be loaded into the chip through RD8 $\sim$ RD1 so that the signal level at AGCO becomes -6 dBm .									
AGCI RFO	44   45		AGCI is the input of the AGC circuit and RFO is the receive filter's output. These pins should be mutually connected via an external capacitor of $0.1 \mu \mathrm{~F}$. This capacitor is required as an AC-coupling not to transfer the DC offset voltage to the AGC-circuit. The input impedance of AGCI is typically $100 \mathrm{k} \Omega$.									
CD1L	46		As described in the description of CD1 and CD2, a pair of carrier detect circuits can be used with the internally fixed inherent detect levels.   On the other hand, detect levels can be externally adjusted for various kinds of applications. Internal fixed values and external adjustments are as follows.									
CD1H	47											
CD2L	48		CD1H CD	CD2L	CD 2 H	BWC1	BWC2	CD1		CD2		Operating MODE
								ON	OFF	ON	OFF	
			0 vss	*	*	0	*	-39.2	-49.3	-	-	$\begin{gathered} 7200 / 9600 \\ \text { bps } \end{gathered}$
CD 2 H	49		1 vss	*	*	0	*	-41.8	-46.8	-	-	$\begin{gathered} 2400 / 4800 \\ \text { bps } \end{gathered}$
			vss	*	*	1	0	-45	-	-	-	$\begin{aligned} & \text { Call Progress } \\ & \text { Tone } \end{aligned}$
			* *	*	vSS	*	*	-	-	-45	-50	$\begin{aligned} & 300 \mathrm{bps} \\ & \text { (T. 30) } \end{aligned}$
			>ov >ov	*	*	0	*	Depend on   VCD1L,   $\mathrm{V}_{\mathrm{CD} 1 \mathrm{H}}$   Depend on VCD1L, VCD1H		-	-	External Adjustment
			$>0 \mathrm{~V}>0 \mathrm{v}$	*	*	1	0			-	-	
			>	>0v	>ov	*	*	-	-	Depend on   $V_{C D 2 L}$   $V_{C D 2 H}$		
			NOTE 1) Unit of $\mathrm{CD} 1 / 2$ detect level: $\mathrm{dBm}(0 \mathrm{dBm}=0.775 \mathrm{Vrms})$   2) These levels are defined with a single tone.   Table 10									



Figure 14
A bypass capacitor is required to keep this reference potential in the silent condition and the value of $1 \mu \mathrm{~F}$ is recommended. The reference voltage on VR2 (VREF) is approximately determined by the following equation and the typical value is +2.5 V .

$$
V_{R E F} \simeq 1.2 \times \frac{R 8+R 9}{R 8}[\mathrm{~V}]
$$

This pin is the receive analog signal input. The maximum input level is about $0 \mathrm{dBm}\left(1.1 \mathrm{~V}_{\mathrm{o}-\mathrm{p}}\right)$.

Pin Name	Pin No.		Function
	SS	JS	
AOUT	54		This is the transmit analog signal output pin. The output resistance is about $10 \Omega$ and the load resistance should be more than $10 \mathrm{k} \Omega$.   The output signal level is set at typically +3 dBm or -1 dBm for PSK or QAM mode, respectively.
XIN	55		This is an external analog signal input. Usually, XIN is used as the input for the backward channel transmitter, and frequently for an external DTMF tone.   This signal is routed to the transmit filter's input via an adder same as the signal from the DA converter.

Figure 15
An external operational amplifier can be omitted when the DTMF tone is not input to XIN , and BOUT is connected to XIN directly.

BOUT	56	This is an output terminal of the backward channel   transmitter. Refer to the description for XIN.   The signal level is about 0 dBm.   While call progress tone monitoring is proceeding, BOUT   is internally connected to AG, because LPF is used in the   receiver side.	
PWDN	57	58	When digital 1 is input to PWDN, whole functions in the   MSM6949 are disabled and the MSM6949 goes into the   power standby mode. At this time, AOUT and RFO   become high impedance state.
LT	LT is used to provide the signal path for the local analog   loop (AC) test function.   When digital 1 is input to LT, the transmit analog signal   is routed to the input of the receive filter and AOUT is   connected to AG internally.		


Pin Name	Pin No.		Function		
	SS	JS			
EQT1	59		Refer to the description of EQR1 and EQR2.		
EQT2	60				
ATT1 ATT3	$\int_{63}^{61}$		The MSM6949 provides attenuator for transmit signal.		
			ATT1 ATT2	ATT3	Signal Level Loss (dB)
			0 0	0	14
			0 0	1	12
			0 1	0	10
			$0{ }^{1}$	1	8
			10	0	6
			10	1	4
			1 1	0	2
			1 1	1	0
			Table 12		
VDD1	64		Positive power supply, +5 V .		



# B. TELEPHONE APPLICATION 

$\square$

## MSM6052

## CMOS 4BIT SINGLE CHIP LOW POWER MICROCONTROLLER FOR TELEPHONE

## GENERAL DESCRIPTION

The OKI MSM6052 is low-power and high-performance single-chip 4 bits microcontroller employing complementary Metal Oxide Semiconductor technology, especially designed for use in sophisticated telephone sets. Integrated onto a single chip are 4 bits ALU, 28 kbits of mask programmable ROM, 2560 bits of data RAM, programmable timer, oscillator, 12 bits of input port, 12 bits of output port and 4 bits of input/output port. In addition to these units, DTMF generator is provided.

With MSM6052, sophisticated telephone sets become feasible by a single chip instead of conventional 3-chip configuration.

## FEATURES

- Low Power Consumption 0.3mA Typical @3V (DTMF output off)
- $2048 \times 14$ Internal ROM
- $640 \times 4$ Internal RAM
- $3 \times 4$ Input Port
- $3 \times 4$ Output Port
- $1 \times 4$ Input/Output Port
- DTMF Generator
- Buzzer Sound Output
- 4 Bits Programmable Timer Applicable for Output of Dial Pulse
- Interrupt by Progammable Timer
- 5 Level Stack
- Power Down Mode
- 52 Instruction Sets
- Instructions Useful for Data Management (Data Search and Block Data Transfer)
- 2.5 to 6.0 V Operating Voltage
- 3.58 MHz Oscillator
- $17.9 \mu \mathrm{~S}$ Instruction Cycle
- -20 to $75^{\circ} \mathrm{C}$ Operating Temperature
- 28 Pin DIP or 40 Pin DIP or 44 Pin FLAT


## FUNCTIONAL BLOCK DIAGRAM




## PIN DESCRIPTION

Pin Name	Function
$V_{\text {DD }}$	Pource source
$\mathrm{V}_{\text {SS }}$	Circuit ground potential
AC	Terminal to clear internal logic, pulled down to $V_{\text {SS }}$. After power is turned on, the MSM6052 must be reset by this terminal.
TEST	Terminal to test internal logic, pulled down to $\mathrm{V}_{\mathrm{SS}}$. This terminal must be open in normal operation.
XT, $\overline{\text { XT }}$	Input and output terminals of oscillator inverter. 3.58 MHz ceramic resonator is connected to these terminals.
$\overline{\text { HS }}$	Input terminal connected to the hook switch, pulled up tp $\mathrm{V}_{\text {DD }}$.
DP OUT	Output terminal of dial pulse.   Dial pulse rate ( 10 pps or 20 pps ) and Make Break ràtio ( $40 \%$ or $33 \%$ ) can be selected by software.
DTMF OUT	Output terminal of DTMF signal
BD	Output terminal of buzzer sound
32 kHz	Output terminal of 32 kHz clock
$\begin{aligned} & R_{1} \sim R_{4} \\ & R_{5} \sim R_{8} \end{aligned}$	Input port pulled down to $\mathrm{V}_{\text {SS }}$.
$\mathrm{I}_{1} \sim \mathrm{I}_{4}$	Input port having clocked pull-down resistor to $V_{\text {SS }}$. Only when this port is accessed, pull-down resistors are connected to this port.
$\begin{aligned} & \mathrm{C}_{1} \sim \mathrm{C}_{4} \\ & \mathrm{O}_{1} \sim \mathrm{O}_{4} \end{aligned}$	Output port
$\mathrm{IO}_{1} \sim 1 \mathrm{O}_{4}$	Tri-state bidirectional port
IOE	Output terminal   When $\mathrm{IO}_{1} \sim \mathrm{IO}_{4}$ is accessed, input completion signal (when read) or load signal (when written) is output from IOE terminal.

## FUNCTIONAL DESCRIPTION

A block diagram of the MSM6052 is given on page 102. Each block of logic will be briefly discussed. For more information, please refer to the MSM6052 user's manual.

## Program ROM

The MSM6052 will address up to $2 k$ words of internal mask programmable ROM. Each word consists of 14 bits and all instructions are one word. The instructions are routed to a programmed logic array which generates the signals necessary for control of logic.

## Data RAM

Data is organized in 4 bit nibbles. Internal data RAM consists of 640 nibbles.

All locations are addressed by 10 bits address registers ( $A R_{1}, A R_{2}$ ), 2 bits bank register ( $B$ ), 4 bits page register ( $P$ ) or a part of the instruction's operand.

## ALU

The ALU performs 4 bits parallel operation of RAM and ACC contents, or RAM contents and an immediate digit. It sets or resets the three flags ( $Z, C, G$ ) depending on the condition.

## Program Counter (PC)

The program counter is 11 bits wide counter to specify the address of program ROM.

The PC is incremented by one every execution of the instruction, and then specifies the next instruction to be executed. However, the contents of the PC are rewritten by the execution of Jump, Call or Branch instruction.

As there is no boundary in the ROM, Jump, Call or Branch instruction can be put anywhere in the ROM

## Stack

The MSM6052 has 5 level stack aparting from data RAM. The contents of the PC are loaded into stack when Call instruction is executed or interrupt is generated. Nesting of subroutines within subroutines can continue up to 4 times including the interrupt.

## Input Port

## Port (R1~R4)

4 bits input port. Each pin of the ports is pulled down to $V_{S S}$ by internal resistor, and status of the port is fetched by input instruction.

## Port (R5 ~R8)

4 bits input port. Each pin of the port is pulled down to VSS by internal resistor, and status of the port is fetched by input instruction.

Port (11~14)
4 bits input port. Each pin of the ports is pulled down to VSS by internal resistor and transistor. Only when it is desired to fetch status of the port, input current flows through these pins. Status of the port is fetched by input instruction.

## Output Port

## Port (C1~C4)

4 bits output port. These ports consist of data latches and buffers, and the contents of data latches are rewritten by output instruction.

## Port (01~04)

4 bits output port. These ports consist of data latches and buffers, and the contents of data latches are rewritten by output instruction.

Electrical characteristics of O3 and O4 are different from those of O1 and O2. O3 and O4 of the ports are used as XMIT MUTE and MUTE normally.

## Port (E01 ~ E04)

4 bits output port. These ports consist of data latches and buffers, and the contents of data latches are rewritten by output instruction.

- Input/Output Port


## Port ( 101 ~ 104 )

4 bits bidirectional port. These ports consist of data latches, output buffers and input buffers. The contents of data latches are rewritten by output instruction and status of the port is fetched by input instruction.

Address Registers (AR1, AR2)
The address registers are used to specify 10 bits address of data RAM, when data search instruction (RDAR) or block data transfer instruction (MVAR) is executed.

These registers are up/down counter, and incremented or decremented by 1 with execution of the instruction.

## Timing Generator

By connecting 3.58 MHz ceramic resonator to XT and $\overline{X T}$ terminal, the timing generator generates basic timing signal to control the MSM6052.

The MSM6052 can operate in 2 modes, normal operating mode and power down mode. STOP instruction is used to place the MSM6052 in the power down mode. The oscillation stops and the entire functions are stopped. However, the contents of RAM and all registers are maintained.

## Programmable Timer

The programmable timer consists of 4 bits down counter and 1/100 prescaler.

Any of 7990.1 Hz clock, 1997.5 Hz clock and 998.8 Hz clock is input to $1 / 100$ prescaler. Output of $1 / 100$ prescaler decrements 4 bits down counter by 1 .

When the contents of 4 bits down counter is decremented to 0 , the programmable timer generates interrupt.

This programmable timer can be used as dial pulse generator. Dial pulse rate ( $10 \mathrm{pps}: 20 \mathrm{pps}$ ) and Make/Break ratio ( $40 \%, 33 \%$ ) of dial pulse
which the programmable timer generates are selectable.

## DTMF Circuit

DTMF circuit is used to generate DTMF signal. 12 kinds of DTMF signal ( 0 to $9, \#, *$ ) can be output by output instruction.

## BD Circuit

$B D$ circuit generates the square wave which can be used as the confirmation sound, warning sound and so on. 15 kinds of sound (4.66 to 0.82 kHz ) are output by output instruction specifying the frquency.

## ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Conditions	Limits	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{DD}}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-0.3 to 7.0	V
Input Voltage	$\mathrm{V}_{\mathrm{I}}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Output Voltage	$\mathrm{V}_{\mathrm{O}}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-0.3 to $\mathrm{VDD}_{\mathrm{D}}+0.3$	V
Storage Temperature	Tstg	-	-55 to 125	${ }^{\circ} \mathrm{C}$
Power Dissipation	PD	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	200	mW

## OPERATING CONDITIONS

Parameter	Symbol	Limits	Unit
Operating Voltage	VDD	2.5 to 6.0	V
Memory Retension   Voltage	VDDM	1.2 to 6.0	V
Operating Temperature	Topr	-20 to 75	${ }^{\circ} \mathrm{C}$

## DC CHARACTERISTICS

(VDD $=3 \mathrm{~V}, \mathrm{Ta}=-20$ to $75^{\circ} \mathrm{C}$ )

Parameter	Symbol	Conditions		Limits			Unit
				Min	Typ	Max	
"H" Input Voltage	$\mathrm{V}_{\mathrm{IH}}$	$V_{D D}=3 V$		2.2	-	-	V
		$V_{\text {DD }}=6 \mathrm{~V}$		4.4	-	-	V
"L" Input Voltage	$V_{\text {IL }}$	$V_{D D}=3 \mathrm{~V}$		-	-	0.8	V
		$\mathrm{V}_{\text {DD }}=6 \mathrm{~V}$		-	-	1.6	V
"H" Output Current (1)	${ }^{1} \mathrm{OH}{ }_{1}$	$\begin{aligned} & \mathrm{O}_{3}, \mathrm{O}_{4} \\ & \mathrm{DP} \text { OUT } \end{aligned}$	$\mathrm{V}_{\mathrm{OH}}=2.6 \mathrm{~V}$	-200	-	-	$\mu \mathrm{A}$
"L" Output Current (1)	${ }^{\mathrm{I} \mathrm{OL}_{1}}$		$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	500	-	-	$\mu \mathrm{A}$
"H" Output Current (2)	$\mathrm{IOH}_{2}$	$\mathrm{C}_{1} \sim \mathrm{C}_{4}$	$\mathrm{VOH}=2.6 \mathrm{~V}$	-1	-	-	mA
"L" Output Current (2)	${ }^{1} \mathrm{OL} 2$		$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	10	-	-	$\mu \mathrm{A}$
"H" Output Current (3)	${ }^{\prime} \mathrm{OH}_{3}$	$\mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{BD}$	$\mathrm{VOH}=2.6 \mathrm{~V}$	-20	-	-	$\mu \mathrm{A}$
"L" Output Current (3)	${ }^{1} \mathrm{OL} 3$		$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	10	-	-	$\mu \mathrm{A}$

- TELEPHONE•MSM6052


## DC CHARACTERISTICS (CONT.)

Parameter	Symbol	Conditions		Limits			Unit
				Min	Typ	Max	
"H" Output Current (4)	${ }^{1} \mathrm{OH}_{4}$	$\begin{aligned} & \mathrm{IO}_{1} \sim \mathrm{IO}_{4} \\ & \mathrm{IOE} \\ & \mathrm{E}_{\mathrm{O}_{1}} \sim \mathrm{E}_{\mathrm{O}_{4}} \end{aligned}$	$\mathrm{V}_{\mathrm{OH}}=2.6 \mathrm{~V}$	-150	-	-	$\mu \mathrm{A}$
"L" Output Current (4)	$\mathrm{IOL}_{4}$		$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	300	-	-	$\mu \mathrm{A}$
"H" Output Current (5)	${ }^{1} \mathrm{OH}_{5}$	32 kHz	$\mathrm{V}_{\mathrm{OH}}=2.6 \mathrm{~V}$	-40	-	-	$\mu \mathrm{A}$
"L" Output Current (5)	$\mathrm{IOL}_{5}$		$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	25	-	-	$\mu \mathrm{A}$
Pull-up Resistance	RUP	$\overline{\mathrm{HS}}$		17	-	150	$\mathrm{k} \Omega$
Pull down Resistance (1)	Rdwon 1	$\mathrm{R}_{1} \sim \mathrm{R}_{8}$		33	-	300	$\mathrm{k} \Omega$
Pull down Resistance (2)	Rdwon 2	$I_{1} \sim I_{4}, A C$, TEST		10		100	$\mathrm{k} \Omega$
Input Leak Current	IIL	$\mathrm{IO}_{1} \sim \mathrm{I}^{\left(\mathrm{O}_{4}\right.}$	$\begin{aligned} & 0 \leq \mathrm{V}_{I N} \leq \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{DD}}=2.5 \text { to } 6.0 \mathrm{~V} \end{aligned}$	-	-	$\pm 2$	$\mu \mathrm{A}$
Current Consumption (1)	IDDP	DTMF output off	$V_{D D}=3 V$	-	0.3	0.6	mA
			$V_{D D}=6 \mathrm{~V}$	-	1.2	2.4	mA
Current Consumption (2)	IDDT	DTMF output on	$V_{D D}=3 \mathrm{~V}$	-	1.2	2.4	mA
			$\mathrm{V}_{\text {DD }}=6 \mathrm{~V}$	-	3.5	7.0	mA
Memory retention Current	IDDM	$\begin{aligned} & \text { ON HOOK } \\ & \text { VDD=2.5V } \end{aligned}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-	0.01	0.2	$\mu \mathrm{A}$
			$\mathrm{Ta}=-20$ to $75^{\circ} \mathrm{C}$	-	-	2	$\mu \mathrm{A}$

## AC CHARACTERISTICS

(VDD $=3 \mathrm{~V}, \mathrm{Ta}=-20$ to $75^{\circ} \mathrm{C}$ )

Parameter	Symbol	Conditions		Limits			Unit
				Min	Typ	Max	
Key Input Time	TKIN	$\mathrm{V}_{\mathrm{DD}}=2.5$ to 6.0 V		33	-	-	ms
Tone Output Voltage	VOUT	Row only$R_{L}=1 \mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$	-	250	-	$\underset{\mathrm{rms}}{\mathrm{mV}}$
			$\mathrm{V}_{\mathrm{DD}}=4.0 \mathrm{~V}$	-	350	-	
			$\mathrm{V}_{\mathrm{DD}}=6.0 \mathrm{~V}$	-	480	-	
High/Low Level Ratio	$\mathrm{dB}_{\mathrm{CR}}$	$\mathrm{V}_{\mathrm{DD}}=2.5$ to 6.0 V		1	2	3	dB
Distortion Ratio	\%DIS	$R_{L}=1 \mathrm{k} \Omega$		-	1	5	\%
Rise/Fall Time (1)	$\mathrm{t}_{\mathrm{TLH}}^{1}$	$\mathrm{O}_{3}, \mathrm{O}_{4}$, DP OUT $C_{L}=50 \mathrm{pF}$		-	-	0.5	$\mu \mathrm{S}$
	$\mathrm{t}_{\mathrm{THL}_{1}}$			-	-	0.5	
Rise/Fall Time (2)	$\mathrm{t}^{\text {TLH }}{ }_{2}$	$\begin{aligned} & \mathrm{C}_{1} \sim \mathrm{C}_{4} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\perp$	-	0.5	$\mu \mathrm{S}$
	${ }^{\text {t }}{ }_{\text {HL }}{ }_{2}$			-	-	10	
Rise/Fall Time (3)	$\mathrm{t}^{\text {TLH }} 3$	$\begin{aligned} & \mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{BD}, 32 \mathrm{kHz} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		-	-	5	$\mu \mathrm{S}$
	${ }_{\text {t }}^{\text {THL }} 3$			-	-	10	
Rise/Fall Time (4)	$\mathrm{t}^{\text {TLH }}{ }_{4}$	$\begin{aligned} & \mathrm{IO}_{1} \sim 1 \mathrm{O}_{4}, \mathrm{IOE}, \mathrm{EO}_{1} \sim \mathrm{EO}_{4} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		-	-	1	$\mu \mathrm{S}$
	${ }_{\text {t }}{ }^{\text {HL }}$			-	-	1	

III-B-8

## DESCRIPTION OF INSTRUCTIONS



## DESCRIPTION OF INSTRUCTIONS (CONT.)



## DESCRIPTION OF INSTRUCTIONS (CONT.)

	Mnemonic	Instruction Code				Operation
		1312	111098	$7 \begin{array}{llll}7 & 6 & 5 & 4\end{array}$	$3 \begin{array}{llll}3 & 2 & 1 & 0\end{array}$	
$\begin{aligned} & \stackrel{Q}{E} \\ & \vdots \end{aligned}$	JMP adrs	10	$0 \mathrm{a}_{10} \mathrm{a}_{9} \mathrm{a}_{8}$	$a_{7} a_{6} a_{5} a_{4}$	$a_{3} \quad a_{2} \quad a_{1} \quad a_{0}$	PC $\leftarrow$ adrs
	JMP @ AP	00	$0 \quad 0 \quad 0 \quad \mathrm{P}$	$\begin{array}{llll}1 & 1 & 0 & 1\end{array}$	A	$P C \leftarrow(P C)+(A P)+1$
	JMPIO @AP	00	0	$\begin{array}{llll}1 & 1 & 0 & 1\end{array}$	A	$\mathrm{PC} \leftarrow(\mathrm{PC})+\{(\mathrm{AP}) \wedge 7 \mathrm{H}\}+1$
ᄃ든©©	$\begin{aligned} & \text { BEQ n } \\ & (B Z E n) \end{aligned}$	11	1018	$\begin{array}{llll}0 & 1 & 0 & n_{4}\end{array}$	$n_{3} n_{2} n_{1} n_{0}$	$\begin{aligned} & \text { if } Z=1 \text { then } P C \leftarrow P C-n \text { or } \\ & P C \leftarrow P C+n+1 \\ & \text { else } \leftarrow P C \leftarrow P C+1 \end{aligned}$
	BNE n   (BNZ n)	11	101 P	$\begin{array}{llll}1 & 1 & 0 & n_{4}\end{array}$	$n_{3} n_{2} n_{1} n_{0}$	$\begin{aligned} & \text { if } Z=0 \text { then } P C \leftarrow P C-n \text { or } \\ & P C \leftarrow P C+n+1 \\ & \text { else } P C \leftarrow P C+1 \end{aligned}$
	BCS $n$	11	1018	$\begin{array}{llll}0 & 0 & 0 & n_{4}\end{array}$	$n_{3} n_{2} n_{1} n_{0}$	$\begin{aligned} & \text { if } C=1 \text { then } P C-P C-n \text { or } \\ & P C \leftarrow P C+n+1 \\ & \text { else } P C \leftarrow P C+1 \end{aligned}$
	BCC $n$	11	101 P	$1 \begin{array}{llll}1 & 0 & 0 & n_{4}\end{array}$	$n_{3} n_{2} n_{1} n_{0}$	$\begin{aligned} & \text { if } \mathrm{C}=0 \text { then } \mathrm{PC}-\mathrm{PC}-\mathrm{n} \text { or } \\ & \mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{n}+1 \\ & \text { else } \mathrm{PC} \leftarrow \mathrm{PC}+1 \end{aligned}$
	BGT $n$	11	101 P	$\begin{array}{llll}0 & 0 & 1 & n_{4}\end{array}$	$\mathrm{n}_{3} \mathrm{n}_{2} \mathrm{n}_{1} \mathrm{n}_{0}$	$\begin{aligned} & \text { if } G=1 \text { then } P C \leftarrow P C-n \text { or } \\ & P C \leftarrow P C+n+1 \\ & \text { else } P C \leftarrow P C+1 \end{aligned}$
	BLE n	11	101 P	$1 \begin{array}{llll}1 & 0 & 1 & n_{4}\end{array}$	$\begin{array}{llll}n_{3} & n_{2} & n_{1} & n_{0}\end{array}$	$\begin{aligned} & \text { if } G=0 \text { then } P C \leftarrow P C-n \text { or } \\ & P C \leftarrow P C+n+1 \\ & \text { else } P C \leftarrow P C+1 \end{aligned}$
	BGE n	11	1018	$\begin{array}{llll}0 & 1 & 1 & n_{4}\end{array}$	$\mathrm{n}_{3} \mathrm{n}_{2} \mathrm{n}_{1} \mathrm{n}_{0}$	$\begin{aligned} & \text { if } \mathrm{G}=1 \text { or } \mathrm{Z}=1 \\ & \text { then } \mathrm{PC}-\mathrm{PC}-\mathrm{n} \text { or } \\ & \mathrm{PC}-\mathrm{PC}+\mathrm{n}+1 \text {, } \\ & \text { else } \mathrm{PC}-P C+1 \end{aligned}$
	BLT $n$	11	1018	$\begin{array}{llll}1 & 1 & 1 & n_{4}\end{array}$	$\begin{array}{llll}n_{3} & n_{2} & n_{1} & n_{0}\end{array}$	$\begin{aligned} & \text { if } G=0 \text { and } Z=0 \\ & \text { then } P C-P C-n \text { or } \\ & P C-P C+n+1 \\ & \text { else } P C-P C+1 \end{aligned}$
$\begin{aligned} & \text { 흘 } \\ & \text { 뮬 } \\ & \text { 듬 } \end{aligned}$	IN PORT, AP	$0 \quad 0$	$\begin{array}{lllll}0 & 1 & 0 & P\end{array}$	$P_{L}$	A	$A P \leftarrow(P O R T)$
	OUT AP, PORT	$0 \quad 0$	$10 \mathrm{PH}^{\text {P }}$	PL	A	PORT ¢ (AP)
	OUT \#D, PORT	$0 \quad 0$	11 PHO	PL	D	PORT - D
	STOP	0	$\begin{array}{lllll}1 & 1 & 1 & 0\end{array}$	00000	00000	Stop system clock
	HALT	$0 \quad 0$	$\begin{array}{llll}1 & 1 & 1 & 0\end{array}$	000001	00000	Halt CPU
	ACT	0	$\begin{array}{llll}1 & 1 & 1 & 0\end{array}$	0	00000	Activate CPU
	EI	0	$\begin{array}{llll}1 & 1 & 1 & 0\end{array}$	$\begin{array}{llll}0 & 1 & 1 & 0\end{array}$	10000	Enable timer interrupt
	DI	0	$\begin{array}{llll}1 & 1 & 1 & 0\end{array}$	$\begin{array}{llll}0 & 1 & 1 & 0\end{array}$	0	Disable timer interrupt
	ET	0	$1 \begin{array}{llll}1 & 1 & 1 & 0\end{array}$	$\begin{array}{llll}0 & 1 & 1 & 0\end{array}$	00010	Enable timer activate
	DT	0	$\begin{array}{llll}1 & 1 & 1 & 0\end{array}$	$\begin{array}{llll}0 & 1 & 1 & 0\end{array}$	0	Disable timer activate
	EC	0	$\begin{array}{llll}1 & 1 & 1 & 0\end{array}$	$\begin{array}{lllll}0 & 1 & 1 & 1\end{array}$	1000	Enable output port ( $\left.\mathrm{C}_{1} \sim \mathrm{C}_{4}\right)$
	DC	0	$\begin{array}{llll}1 & 1 & 1 & 0\end{array}$	$\begin{array}{llll}0 & 1 & 1 & 1\end{array}$	01010	Disable output port ( $\mathrm{C}_{1} \sim \mathrm{C}_{4}$ )

## DESCRIPTION OF INSTRUCTIONS (CONT.)

	Mnemonic	Instruction Code				Operation
		$1312$	111098	7 6 5 4  	$3{ }^{3}$	
	OM	00	$1 \begin{array}{llll}1 & 1 & 1 & 0\end{array}$	$\begin{array}{lllll}0 & 1 & 1 & 1\end{array}$	0	Set I/O port $\left(\mathrm{IO}_{1} \sim \mathrm{IO}_{4}\right)$ to output mode
	IM	00	$1 \begin{array}{llll}1 & 1 & 1 & 0\end{array}$	$\begin{array}{llll}0 & 1 & 1 & 1\end{array}$	000001	Set I/O port $\left(\mathrm{IO}_{1} \sim \mathrm{IO}_{4}\right)$ to input mode
	RST	00	$\begin{array}{llll}1 & 1 & 1 & 0\end{array}$	100001	00000	Reset divider
	NOP	00	$0 \quad 0 \quad 00$	$0 \quad 0 \quad 0$	0	No operation

## APPLICATION FOR DISPLAY TELEPHONE

INTERFACING WITH LCD SEGMENT DRIVER


INTERFACING WITH A DCT MATRIX LCD DRIVER/CONTROLLER


## APPLICATION FOR DISPLAY TELEPHONE (CONT.)

INTERFACING WITH FLT SEGMENT DRIVER


# OIEI semiconductor 

MSM6052-01RS/20RS
TONE/PULSE SWITCHABLE REPERTORY DIALER

## GENERAL DESCRIPTION

The MSM6052-01RS and MSM6052-20RS are repertory tone/pulse switchable dialer which are fabricated by OKI's low power consumption CMOS silicon gate technology. These LSIs can generate either DTMF (Dual Tone Multi Frequency) signal or DP (Dial Pulse) signal.

The repertory memory has a capacity of 500 digits. Maximum 54 telephone numbers of 32 digits maximum/number can be stored in it, so far as total number of stored digits does not exceed 500 .

It operates on $2.5 \mathrm{~V} \sim 6 \mathrm{~V}$ single supply. Standby current is $0.2 \mu \mathrm{~A}$ maximum and memory retention voltage is 1.2 V .

## FEATURES

- Either DTMF signal or DP signal generation.
- DP/TONE output starts 100 msec after keying in normal dialing (-20RS).
- DP/TONE output starts 300 msec after keying in normal dialing (-01RS).
- 500 digits repertory memory.
(54 numbers maximum, 32 digits maximum/number).
- 24 numbers repertory dialing by single key dialing plus maximum 30 numbers repertory dialing by 2-digit abbreviated code dialing.
- Last number redial (32 digits maximum).
- Mixed dialing/storing.
- Auto insersion of 4 seconds access pause.
- Pulse rate $10 / 20$ pps pin selectable.
- Make/Break ratio $34 / 66$ or $40 / 60$ pin selectable.
- Tone output for valid key input ( 2 kHz , 32 msec ).
- Alarm tone for wrong operations.
- Single contact matrix keyboard to be used.
- 3.58 MHz oscillation circuit on chip for ceramic resonator.
- Supply voltage range $2.5 \mathrm{~V} \sim 6 \mathrm{~V}$.
- Low standby current $0.2 \mu \mathrm{~A}$ maximum.
- 28-pin plastic DIP Package.


## PIN CONFIGURATION

$\mathrm{R}_{1} 1$		28 C
$\mathrm{R}_{2} 2$		$27 \mathrm{C}_{2}$
$\mathrm{R}_{3}{ }^{3}$		$26 \mathrm{c}_{3}$
$\mathrm{R}_{4} 4$		25 c ,
$\mathrm{R}_{5} 5$		24 LsEL
R. 6		23 dp mode out
R, 7		22.
- $\overline{\text { S }} 8$		$21 \overline{\text { XMIT MUTE }}$
mode sel 9		20 dialpulse
MB 10		19 dtmfout
drs 11		$18 \mathrm{~V}_{\mathrm{DD}}$
XT 12		17 BD
$\overline{\text { XT }} 13$		16 AC
test 14		$15 \mathrm{v}_{\text {Ss }}$

## KEYBOARD INTERFACE



A $7 \times 4$ single contact keyboard shall be used. $L_{1} / L_{13} \sim L_{12} / L_{24}$ are one touch memory recall keys. By connecting or disconnecting LSEL to/from VDD, two telephone numbers can be assigned for each key. So, the 24 numbers in total can be recalled by single key operation.

In addition to it, maximum 30 numbers can be abbreviated into 2 -digit address code ( $00 \sim 29$ ) .

## PIN DESCRIPTION

Pin Name	Pin No.	Function
$\begin{aligned} & \mathrm{R}_{1} \sim \mathrm{R}_{7} \\ & \mathrm{C}_{1} \sim \mathrm{C}_{4} \end{aligned}$	$\begin{gathered} 1 \sim 7 \\ 25 \sim 28 \end{gathered}$	Key input pins.   $\mathrm{C}_{1} \sim \mathrm{C}_{4}$ are set to low level in on-hook mode, while they are set to high level in off-hook standby mode. When the key input is off, key scanning and oscillation stop. Single contact keyboard shall be connected.
$\overline{\mathrm{HS}}$	8	Hook switch input pin.   $\begin{array}{lll}\overline{\mathrm{HS}}=\text { High: } & & \text { On-hook } \\ \overline{\mathrm{HS}}=\text { Low: } & & \text { Off-hook }\end{array}$
LSEL	24	Selection pin for $L_{1} \sim L_{12}$ or $L_{13} \sim L_{24}$ for single-key dialin $\begin{aligned} & \text { LSEL }=\text { Low: } \mathrm{L}_{1} \sim \mathrm{~L}_{12} \\ & \text { LSEL }=\text { High: } \mathrm{L}_{13} \sim \mathrm{~L}_{24} \end{aligned}$
MB	10	Make/Break ratio selection pin. $\begin{array}{ll} \text { MB = Low: } & 40 / 60 \\ \text { MB = High: } & 34 / 66 \end{array}$   This input is sensed during the transition stage from On-hook to Off-hook.
DRS	11	Dial rate selection pin.   DRS = Low: 10 pps   DRS = High: 20 pps   This input is sensed during the transition stage from On-hook to Off-hook.
MODE SEL	9	DP/DTMF mode selection pin.   MODE SEL = Low: DP mode   MODE SEL = High: DTMF mode   The status at off-hook is maintained.   If TONE key is pressed when this pin is being set to low level, the DTMF mode is established.
XT, $\overline{X T}$	12, 13	Ceramic resonator connection pins. Since this LSI is provided with oscillation inverter and feed-back resistor, 3.58 MHz ceramic resonator and capacitors are connected to XT and $\overline{\mathrm{XT}}$ pin.
$\mathrm{V}_{\text {DD }}, \mathrm{V}_{\text {SS }}$	18, 15	VDD: Positive power supply pin. 2.5 V ~ 6 V .   $V_{\text {SS }}$ : Negative power supply pin (Ground).
AC	16	IC initial pin. When IC is powered on, " H "' level reset signal has to be applied to this pin.
TEST	14	Test pin.


Pin Name	Pin No.	Function
BD	17	Buzzer output pin.   It outputs key tone for valid key input. It also outputs various alarm/confirming tone. Refer to "Sound output waveforms" for details.
DTMF OUT	19	DTMF output pin.   In case of double keying or pressing some key without releasing a previous key, DTMF output is disabled.
DIAL PULSE	20	Dial pulse output pin.   Make: High   Break: Low   $\overline{\mathrm{HS}}=$ High (On hook): Low
$\overline{\text { XMIT MUTE }}$	21	Transmit mute output pin.   When $\overline{\mathrm{HS}}=$ High (On-hook): Low   When $\overline{\mathrm{HS}}=$ Low (Off-hook)   (1) While DP signal or DTMF signal is being sent out: Low   (2) All other times: High
$\overline{\text { MUTE }}$	22	Mute output pin.   When $\overline{\mathrm{HS}}=$ High (On-hook): Low   When $\overline{\mathrm{HS}}=$ Low (Off-hook)   (1) While DP is being sent out: Low   (2) All other times: High
DP MODE OUT	23	Dial Pulse Mode output pin.   MODE SEL = High: Low   MODE SEL = Low: High   When mode is changed to DTMF mode by TONE key input: Low

## FUNCTIONAL DESCRIPTION

## Dialing Function

(1) Normal Dialing


Maximum 32 digits can be sent out at a time. Further key inputs are effective only after the first 32 digits have been sent out to the line. If more than 32 digits are dialed, redialing of that number is disabled. Pressing PAUSE key causes 4 seconds access pause. The access pause is released automatically 4 seconds later or manually by pressing PAUSE, RECALL, STORE or TONE key again.

Switching from DP dialing to DTMF dialing can be done during the course of dialing. By pressing TONE key during DP mode, the mode is changed to DTMF mode. When TONE key is pressed, if DP signal is being sent out, the mode will be changed after sending out all DP signal and an access pause of 4 seconds is automatically inserted. An access pause can be released earlier by pressing PAUSE, RECALL, STORE or TONE key, if so desired.

## (2) Redialing



The last dialed number can be redialed by pressing RECALL key twice. The functions of TONE and PAUSE signals included in the redialed number are same as in the repertory dialing. When the redialing is being prohibited, an alarm sound is generated at the second RECALL key input. The normal dialing can follow after that leaving the telephone off hook.
(3) Repertory Dialing


The telephone numbers abbreviated to $L_{n}$ code can be dialed by single key operation ( $L_{1} \sim L_{24}$ ), while those abbreviated to 2-digit can be dialed by pressing RECALL key followed by 2-digit code.

If a wrong address code is input, an alarm sound is generated.
If a stored number has an access pause, dialing halts for 4 seconds or until [PAUSE , RECALL , STORE or TONE key is pressed. If a stored number has a TONE signal, the dialing mode is changed from DP mode to DTMF mode, and dialing halts for 4 seconds or until PAUSE, RECALL, STORE or TONE key is pressed.
(4) Mixed Dialing

Off-Hook


Mixed dialing of normal dialing, redialing and repertory dialing can be done. In that case, however, redialing must come to the first part. If the digits of the mixed dialed number is up to 32 , that number can be redialed.

## Memory Storing/Clearing Function

(1) Storing of telephone number


Storing operation can be continued leaving the telephone off hook. When the storing of a telephone number has been completed, a sound is generated to indicate that the next number's storing is allowed. The first STORE key input can be omitted from the second number.

If the empty space of the repertory memory is less than 16 digits, an alarm sound is generated at the first STORE key input. In other words, if an alarm is not generated at the first STORE key input, minimum 16 digits can be newly stored.

An alarm sound is generated at the 500th digit input showing the memory has no more capacity. That 500th input digit can be stored in the memory, however, if the 501 st digit is input, an alarm sound is generated again. That input digit is neglected and the entire key operation is disabled until the telephone is hooked on.

Maximum digits of a telephone number to be stored is 32. TONE signal and PAUSE signal are counted as one digit respectively.

If the 33 rd digit is input, an alarm sound is generated and the entire key operation is disabled until the telephone is hooked on.

24 telephone numbers can be abbreviated to single key address codes, which are $L_{1} \sim L_{24}$. Other than those single key address codes, maximum 30 telephone numbers can be abbreviated to 2 -digit address codes, which are $00 \sim 29$, so fas as total stored digits in the repertory memory do not exceed 500.
$0 \sim 2$ can be used for the first digit $A_{1}$, and $0 \sim 9$ can be used for the second digit $A_{2}$. If a wrong number is used, an alarm sound is generated and that input is neglected.
(2) Mixed Storing


Store into 2-digit abbreviated code address

Store into single key address

The telephone number once stored in the repertory memory can be used as a part of the newly stored telephone number in the form of abbreviated code ( $L_{n}$ or $R$ A $A_{1} A_{2}$ ). Maximum 32 digits can be mixed-stored. Either $L_{n}$ or $R$ A $A$ 3 digits.

Therefore, if $L_{n}$ key or $R$ key is pressed at 31st or 32nd digit, an alarm sound is generated and storing is disabled.

Abbreviated code used for the newly stored number must not include abbreviated code of the other telephone number.

## (3) Clearing of Telephone Number



Clearing operation can be continued leaving the telephone off hook. Pressing STORE key twice followed by $\mathrm{L}_{n}$ key or 2-digit code clears the stored number in that address. Clearing operation and storing operation can be done alternately leaving the telephone off-hook.

If a wrong address code is input after pressing STORE key twice, an alarm sound is generated and that key input is neglected.

## Redial Inhibition



Pressing STORE key twice after all signals have been sent out to the line disables the redialing of that telephone number. It is applicable to any of normal dialing, repertory dialing and mixed dialing. Redialing is also disabled when more than 32 digits are dialed or after telephone number's clearing/storing operation.

## Others

When there is no data in the specified memory address, an alarm sound is generated and that key input is neglected.

## SOUND OUTPUT WAVEFORM

## Operation Confirmation Sound

It is output for valid key input.


## Storing Confirmation Sound

It is output when storing or clearing of telephone number has been completed.


## Alarm Sound (a)

It is output for the followings.

- Wrong key input.
- 33rd digit input for storing.
- STORE key input when the empty capacity of repertory memory is less than 16 digits.



## Alarm Sound (b)

It is used when the repertory number using other telephone number's abbreviated code as a part of it is used as a part of newly stored number.


## Alarm Sound (c)

It is output when there is no data in the accessed memory address.


## Alarm Sound (d)

It is output when redial is prohibited.


## ELECTRICAL CHARACTERISTICS

## Absolute Maximum Ratings

Parameter	Symbol	Condition	Limits	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{DD}}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	$-0.3 \sim+7.0$	V
Input/Output Voltage	$\mathrm{V}_{\text {IO }}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{SS}}-0.3 \sim \mathrm{~V}_{\mathrm{DD}}+0.3$	V
Power Dissipation	$\mathrm{P}_{\mathrm{D}}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	200	mW
Operating Temperature	Topr	-	$-20 \sim+75$	${ }^{\circ} \mathrm{C}$
Storage Temperature	Tstg	-	$-55 \sim+125$	${ }^{\circ} \mathrm{C}$

DC Characteristics

DC Characteristics	$\mathrm{V}_{\text {DD }}=3.0 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}, \mathrm{f}_{\text {OSC }}=3.579545 \mathrm{MHz}, \mathrm{T}_{\mathrm{a}}=-20 \sim+75^{\circ} \mathrm{C}$						
Parameter	Symbol	Condition		Min	Typ	Max	Unit
Operating Voltage	$V_{\text {DD }}$			2.5	-	6.0	V
Memory Retention Voltage	$V_{\text {DDM }}$	Standby mode		1.2	-	6.0	V
Current   Consumption (1)	IDDP	Pulse Mode, No load		-	300	600	$\mu \mathrm{A}$
Current Consumption (2)	IDDT	Tone Mode, No load		-	1.2	2.4	mA
Memory Retention Current	IDDM	ON HOOK,	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \\ & \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$	-	-	0.2	$\mu \mathrm{A}$
Output Current	${ }^{1} \mathrm{OH}_{1}$	$\overline{\text { MUTE, }}$   XMIT MUTE, DP	$\mathrm{V}_{\mathrm{OH}}=2.6 \mathrm{~V}$	-200	-	-	$\mu \mathrm{A}$
	${ }^{1} \mathrm{OL}_{1}$		$\mathrm{V}_{\text {OL }}=0.4 \mathrm{~V}$	500	-	-	$\mu \mathrm{A}$
Output Current	${ }^{1} \mathrm{OH}_{2}$	$\mathrm{C}_{1} \sim \mathrm{C}_{4}$	$\mathrm{V}_{\mathrm{OH}}=2.6 \mathrm{~V}$	-1	-	-	mA
	${ }^{1} \mathrm{OL}_{2}$		$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	10	-	-	$\mu \mathrm{A}$
Output Current	${ }^{1} \mathrm{OH}_{3}$	DP MODE OUT BD	$\mathrm{V}_{\mathrm{OH}}=2.6 \mathrm{~V}$	-20	-	-	$\mu \mathrm{A}$
	${ }^{1} \mathrm{OL}_{3}$		$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	10	-	-	$\mu \mathrm{A}$
Input Current	$\mathrm{I}_{1 \mathrm{H}_{1}}$	$\overline{\mathrm{HS}}$	$\mathrm{V}_{\text {IH }}=3.0 \mathrm{~V}$	-	-	2	$\mu \mathrm{A}$
	$1 \mathrm{IL}_{1}$		$V_{\text {IL }}=0 \mathrm{~V}$	-20	-	-180	$\mu \mathrm{A}$
Input Current	$\mathrm{I}_{1 \mathrm{H}_{2}}$	$\mathrm{R}_{1} \sim \mathrm{R}_{7}$	$\mathrm{V}_{1 \mathrm{H}}=3.0 \mathrm{~V}$	10	-	90	$\mu \mathrm{A}$
	$11 L_{2}$		$V_{\text {IL }}=0 \mathrm{~V}$	-	-	-2	$\mu \mathrm{A}$
Input Current	$\mathrm{I}_{1} \mathrm{H}_{3}$	LSEL, MB, DRS MODE SEL AC, TEST	$\mathrm{V}_{1 \mathrm{H}}=3.0 \mathrm{~V}$	30	-	300	$\mu \mathrm{A}$
	$\mathrm{I}_{1 L_{3}}$		$\mathrm{V}_{\text {IL }}=0 \mathrm{~V}$	-	-	-2	$\mu \mathrm{A}$

AC Characteristics

$\mathrm{f}_{\text {OSC }}=3.579545 \mathrm{MHz}, 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 6.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20 \sim+75^{\circ} \mathrm{C}$							
Parameter	Symbol	Condition		Min	Typ	Max	Unit
Key Input Time	TKIN			33	-	-	mS
Tone Output	VOUT	ROW side only$R_{\mathrm{L}}=1 \mathrm{~K} \Omega$	$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$	150	250	350	$\begin{gathered} \mathrm{mV} \\ \mathrm{rms} \end{gathered}$
			$\mathrm{V}_{\mathrm{DD}}=4.0 \mathrm{~V}$	200	340	570	
High/Low Level Ratio	$\mathrm{dB}^{\text {CR }}$			1.0	2.0	3.0	dB
Distortion	\%Dis			-	5	10	\%

Tone Output Frequency
fosc $=3.579545 \mathrm{MHz}$

Key Input	Nominal Frequency   $(\mathrm{Hz})$	Output Frequency   $(\mathrm{Hz})$	Distortion   $(\%)$
$\mathrm{R}_{1}$	697	699.1	+0.30
$\mathrm{R}_{2}$	770	766.2	-0.49
$\mathrm{R}_{3}$	852	847.4	-0.54
$\mathrm{R}_{4}$	941	948.0	+0.74
$\mathrm{C}_{1}$	1209	1215.9	+0.57
$\mathrm{C}_{2}$	1336	1331.7	-0.32
$\mathrm{C}_{3}$	1477	1471.9	-0.35

Signal Output Timing
fosc $=3.579545 \mathrm{MHz}$

Parameter	Symbol	Condition	Typ	Unit
Tone Output Time	$\mathrm{T}_{\text {tone }}$	Tone auto dial	100	mS
Inter Digit Pause	TIDP ${ }_{1}$	Tone auto dial	100	mS
	$\mathrm{TIDP}_{2}$	Pulse auto dial (10 pps)	800	mS
	TIDP3	Pulse auto dial (20 pps) MSM6052-01RS	450	mS
	TIDP3	Pulse auto dial (20 pps) MSM6052-20RS	500	mS

## TIMING CHART

DP MODE TIMING CHART

1) Normal dialing


## 2) Mode change-over by Tone key



## 3) Repertory dialing



DTMF MODE TIMING CHART

1) Normal dialing

2) Repertory dialing, Last number re-dial


## OKXI

## MSM6052-05GS/10RS/11RS

## TONE/PULSE SWITCHABLE REPERTORY DIALER

## GENERAL DESCRIPTION

The MSM6052-05GS, MSM6052-10RS and MSM6052-11RS are Tone/Pulse switchable repertory dialer which are fabricated by OKI's low power consumption CMOS silicon gate technology. All of these LSIs can generate either DTMF (Dual Tone Multi Frequency) signal or DP (Dial Pulse) signal.

The repertory memory has a capacity of 500 digits. Maximum $54^{*}$ telephone numbers of 32 digits maximum per telephone number can be stored in it, so far as the total number of stored digits does not exceed 500 digits.

All of these LSIs operate on $2.5 \mathrm{~V} \sim 6.0 \mathrm{~V}$ single supply voltage. Stand-by current is $0.2 \mu \mathrm{~A}$ maximum and the memory retention voltage is 1.2 V .

## FEATURES

- Either DTMF or DP signal can be generated.
- 500 digits repertory memory ( $54^{*}$ numbers maximum, 32 digits maximum/number).
- 24 telephone numbers which can be recalled by single key operation and additional $30^{*}$ telephone numbers which can be recalled by 2 -digits abbreviated code.
- Mixed dialing, Mixed storing (Repertory memory can be stored as a part of another repertory memory).
- Last number redial (32 digits maximum)
- Auto pause 4 sec.
- Pulse rate $10 / 20$ pps pin selectable.
- Make/Break ratio 34/66 or 40/60 pin selectable.
- Alarm output for wrong operations.
- 3.58 MHz for ceramic resonator oscillation circuit on-chip.
- Supply voltage range $2.5 \mathrm{~V} \sim 6 \mathrm{~V}$.
- Low stand-by current $0.2 \mu \mathrm{~A}$ maximum.

	MSM6052-05GS	MSM6052-10RS	MSM6052-11RS
Memory Storing/   Clearing	Both of On-Hook memory storing/clearing and   Off-Hook memory storing/clearing   or   On-Hook memory storing/clearing only   selectable	On-Hook memory   storing/clearing only	
Keyboard Interface	Matrix keyboard input or   4-bit parallel data input or   selectable		Matrix keyboard input
Package	44 pin plastic FLAT   package	40 pin plastic DIP   package	28 pin plastic DIP   package

* In case of MSM6052-05GS and MSM6052-10RS, "Senbl" pin has to be set at " $\mathrm{H}^{\prime \prime}$ level to enable 30 numbers stored into 2-digits abbreviated code.


## PIN CONFIGURATION



## - TELEPHONE•MSM6052-05/10/11

## KEYBOARD INTERFACE

Both of MSM6052-05GS and MSM6052-10RS have an option to choose either keyboard input or 4-bit parallel data input. This option is selected by the status of KEYenble pin.

As for MSM6052-11RS, data is only input from the keyboard. The interface of MSM605205GS and MSM6052-10RS with the keyboard and 4-bit parallel data input is described in the Figure 1, while the interface of MSM6052-11RS with the keyboard is described in the Figure 2.


Either single contact matrix keyboard input or 4-bit parallel data input is selected by the status of KEYenbl pin.
When Keyenbl pin is at " H " level: Single contact keyboard Input.
When KEYenbl pin is at "L" level: 4-bit parallel data input.
Figure 1 MSM6052-05GS, MSM6052-10RS keyboard interface.
(Interface with single contact matrix keyboard and 4-bit parallel data input)


Interface with a single contact matrix keyboard

Output pin	C 1	C 2	C 3	C 4
Rnput pin	1	2	3	RECALL
R2	4	5	6	STORE
R3	7	8	9	PAUSE/REDIAL
R4	$*$	0	$\#$	TONE
R5	L1/L13	L2/L14	L3/L15	L4/L16
R6	L5/L17	L6/L16	L7/L17	L8/L19
R7	L9/L21	L10/L22	L11/L23	L13/L24



A $7 \times 4$ matrix single contact keyboard shall be used. L1/L13~L12/L24 are single key dialing keys. By connecting or disconnecting LSEL to/from VDD, two telephone numbers can be assigned for each key.

So, the 24 numbers in total can be recalled by single key operation. * In addition to it, maximum 30 numbers can be abbreviated into 2 -digit address code ( $00 \sim 29$ ).

[^2]
## - TELEPHONE•MSM6052-05/10/11

4-bit parallel data input (Only MSM6052-05GS and MSM6052-10RS)
When 4-bit parallel data input is selected by setting KEYenbl pin at " $L$ " level, operation is executed by 4 -bit data and strobe signals.

In this case, however, dialing by single key operation cannot be used.
Figure 3 shows an 4-bit parallel data input timing, while Figure 4 shows the 4 -bit data and its corresponding data input from the keyboard.


Figure 3 4-bit parallel data input timing

HEX Data	0	1	2	3	4	5	6	7	8	9	A	B	c	D	E	F
KEY Data	$\begin{aligned} & \text { S } \\ & \text { O} \\ & \text { R } \end{aligned}$	1	2	3	4	5	6	7	8	9	0	*	\#	T O N E	Rrer	R E C A L L

Note: $C_{1} \sim C_{4}$ shall be set at " $L$ " level when OFF-Hooked in the stand-by mode. Oscillation will stop when key input or 4-bit parallel data input is stopped.

Figure 4 4-bit parallel data and its corresponding key data

PIN DESCRIPTION

Pin Name	Pin No.			Function	

- TELEPHONE•MSM6052-05/10/11

Pin Name	Pin No.			Function
	-05	-10	-11	
DP OUT	27	30	20	Dial pulse output pin.   This pin is at " H " level for "Make", and at " L " level for "Break". A "L" level output is also obtained when $\overline{\mathrm{HS}}=$ " H " or open (On-hook).
$\overline{\text { XMIT MUTE }}$	28	31	21	Transmitter mute output pin.   When $\overline{\mathrm{HS}}=$ " $\mathrm{H}^{\prime}$ ' or open (On-hook) : XMIT MUTE = "'L"   When $\overline{H S}=$ "L" (Off-hook)   i. While DP signal or DTMF signal is being output: $\overline{\text { XMIT MUTE }}=$ "'L"   ii. All other times : $\overline{\text { XMIT MUTE }}=$ " $H^{\prime \prime}$
$\overline{\text { MUTE }}$	30	32	22	Mute output pin.   When $\overline{\mathrm{HS}}=$ " H " or open (On-hook) : $\overline{\text { MUTE }}=$ " $L$ "   When $\overline{H S}=$ "L" (Off-hook)   i. While DP signal is being output: $\overline{\text { MUTE }}=$ " $L$ "   ii. All other times   $: \overline{\text { MUTE }}=$ " $\mathrm{H}^{\prime \prime}$
DP MODE OUT	31	33	23	Dial pulse mode output pin.   When $\overline{\mathrm{HS}}$ status is changed from " H " or (On-hook) to "L" (Off-hook), either "H" level or "L" level signal is output from this pin by following conditions.   MODE SEL = "L" :   DP MODE OUT = " H " level output   MODE SEL = "L" level output   DP MODE OUT = "L" level output   A " $L$ " level signal is output from DP MODE OUT pin even when MODE SEL = " $L$ " and $\overline{H S}=$ "'L",   if TONE key is pressed.
$\mathbf{X T}, \overline{\mathrm{XT}}$	12, 13	16, 17	12, 13	Ceramic resonator connection pin. Since MSM6052 is provided with an on-chip oscillation inverter and feed-back resistor, a 3.58 MHz ceramic resonator and capacitors are to be connected to $X T$ and $\overline{X T}$.
AC	19	22	16	Internal initialization pin. When this IC is powered on, a reset signal (" H " level). has to be applid to this pin.
$\mathrm{V}_{\text {DD }}, \mathrm{V}_{\text {SS }}$	18, 21	21, 24	15, 18	$V_{\text {DD }}$ : Positive power supply pin ( $2.5 \mathrm{~V} \sim 6.0 \mathrm{~V}$ )   $\mathrm{V}_{\mathrm{SS}}$ : Negative power supply pin (Ground)
TEST	16	20	14	Test pin. This pin should be left open.
BD	20	23	17	Buzzer output pin.


Pin Name	Pin No.			Function
	-05	-10	-11	
KEYenbl	22	25	-	(Only MSM6052-05GS and MSM6052-10RS)   Either matrix keyboard input or 4-bit parallel data input is selected according to the status of this pin.   KEYenbl = "H" : matrix keyboard input operation.   KEYenbl = "L" : 4-bit parallel data input
OHSenbl	24	27	-	(Only MSM6052-05GS and MSM6052-10RS)   Memory storage method is determined by the status of this pin.   OHSenbl $=$ " $\mathrm{H}^{\prime \prime}$ : Both of On-hook memory storing and Off-hook memory storing are possible.   OSHenbl = "L" : Only On-hook memory storing is possible.
Senbl	23	26	-	(Only MSM6052-05GS and MSM6052-10RS)   Memory storing into 2 -digits abbreviated code is enabled/disabled by the status of this pin.   Senbl = " H " : Memory storage into 2-digits abbreviated code is enabled.   Senbl = "L" : Memory storage into 2-digits abbreviated code is disabled.
Penbl	25	28	-	(Only MSM6052-05GS and MSM6052-10RS)   Manual pause cancel function is enabled/disabled by the status of this pin. $\begin{array}{ll} \text { Penbl }=" H^{\prime \prime}: & \text { Manual pause cancel function } \\ & \text { is enabled. } \\ \text { Penbl = " } L \prime \text { ": } & \text { Manual pause cancel function } \\ & \text { is disabled. } \end{array}$   When manual pause cancel function is disabled, PAUSE key is only used to establish the pause.
LEDs	32	34	-	(Only MSM6052-05GS and MSM6052-10RS) A " H " level signal is output during the memory store/clear operation. All other times, a "L' level signal is output.
LEDp	38	40	-	(Only MSM6052-GS and MSM6052-10RS)   A " H " level signal is output when a pause is established, while a " $L$ " level signal is output at all other times.
32 kHz	14	18	-	(Only MSM6052-056S and MSM6052-10RS) Output terminal of 32 kHz lock.

## FUNCTIONAL DESCRIPTION

## Dialing Function

(1) Normal Dialing

Off-Hook	$D_{1}$	$D_{2}$	$D_{3}$	$\cdots$	$-\cdots$	$D_{n}$

( $D_{n}$ designates for $0 \sim 9, ~ \#, \#, ~ P / R$ or TONE keys)

* P/R : PAUSE/REDIAL

The maximum number of digits which can be dialed out at a time in the DP mode is 32 digits. Any additional digit is dialed out only after the first 32 digits are dialed out.

Before the first 32-digits are dialed out, any key input from the keyboard is inhibited.

If more than 32-digits are dialed out either in DTMF or DP mode, redialing of that number is disabled.
Note: In the DP mode, $\forall$ and \# key inputs are invalid.
(2) Redialing

Off-Hook $\quad P / R$
When $P / R$ key is firstly pressed once after the telephone is On-hooked, the last dialedout telephone number is dialed out.

## $P / R$ : PAUSE/REDIAL

If the redial function is inhibited, an alarm tone is generated and normal dialing can be executed after that.
(3) Repertory Dialing

Off-Hook $R$ R $A_{1}$ A $A_{2}$------ 2 -digits abbreviated code dialing or
Off-Hook $L_{n}$
--.---- Single key dialing


In case of 2-digits abbreviated code dialing, an alarm tone is generated if any key other than 0 , 1 or 2 key is pressed after $R$ key.
In this case, however, if $R$ key is pressed again after the alarm tone and 2-digits abbreviated code is addressed after $R$ key, the memory contents of that 2-digits abbreviated code will be dialed out. In this case, if any key other than $R$ key is firstly pressed after the alarm tone, an alarm tone will be generated again.

An alarm tone is also generated if the specified repertory memory has no contents, or if anotehr repertory has been specified within the selected repertory.

## (4) Mixed Dialing



Consecutive dialing of redialing, normal dialing, 2-digits abbreviated code dialing and single key dialing is possible. In case of mixed dialing, however, redialing of the last dialed number can be executed only once and it must come to the first part of the mixed dialing.
If the digits of the mixed dialed number do not exceed 32 , that mixed dialed number can be redialed. (In this case, both of 2-digits abbreviated code memory contents and single key memory contents are counted as 3 -digits. The digits of the redialing, however, depends on the contents of the redialing.)

## (5) Pause

When the PAUSE key is pressed, transmission of DTMF/DP signal will temporarily be suspended after that digit. This pause is automatically released 4 seconds later. In addition to this automatic pause releasing, manual pause cancelling by pressing the PAUSE key during the 4 -seconds pause is available for MSM6052-11RS. As for MSM6052-05GS and MSM6052-10RS, this manual pause cancelling function is enabled/ disabled by the status of Penbl pin. (Refer to the Note below.)

By this manual pause canceling function by pressing PAUSE key during the 4 -seconds pause, multi digits pause can also be cancelled by a single pause cancel operation.

Note: As for MSM6052-05GS and MSM6052-10RS, the status of Penbl pin enables/ disables the manual pause cancel function.
Penbl = " $H$ ": Pause can be manually cancelled by pressing PAUSE key.
Penbl = "L" : Pause cannot be cancelled manually.

## (6) Switching to DTMF mode

When TONE key is pressed in the DP mode, the mode is switched to DTMF mode from that digit.

When TONE key is pressed during the DP signal is being transmitted out, a pause will automatically be inserted after the transmission of DP signal has been completed. DTMF mode is established and signals are transmitted after this pause has been released.
This pause can also be cancelled manually. (Refer to (5) Pause.)

## (7) Key input confirmation tone

As for MSM6052-11RS, an operation confirmation tone is generated for the input by $0 \sim 9$, RECALL, STORE, PAUSE/REDIAL and TONE keys in the DP mode and input by RECALL, STORE, PAUSE/REDIAL and TONE keys in the DTMF mode.

As for MSM6052-05GS and MSM6052-10RS, no operation confirmation tone is generated for the input by these keys. An operation confirmation tone, however, will be generated for memory storing/clearing operation.

## Memory Storing/Clearing Function

As for MSM6052-05GS and MSM6052-10RS, two different types of memory storing/ clearing operations are available and these are determined by the status of OHSenbl pin.

As for MSM6052-11RS, only On-Hook memory storing/clearing is available.

MSM6052-05GS	MSM6052-10RS	MSM6052-11RS
OHSenbl pin $=$ " H " level:	Memory storing/clearing is possible both in On-Hook and *Off-Hook condition	Only On-Hook condition
OHSenbl pin = "L' level:	Only On-Hook condition	

Memory storing/clearing operation condition

* When Off-Hook memory storing/clearing is available, memory storing/clearing operation can be done even after the dialing operation.

Memory storing/clearing operation is commenced by pressing STORE key and is stopped when any of following conditons is established.
i. When the memory storing/clearing operation has completed.
ii. When the interval between any two key inputs exceeds 20 seconds.
iii. When the number of digits exceeds 32.
iv. When total number of digits stored in the memory exceeds 500.

An alarm tone is generated for above iii. and iv.
A key input confirmation tone is generated for all key inputs.

## (1) Storing of telephone number

Memory storing operation can be done by following operations.


In case of storing telephone number into 2-digits abbreviated code address, $A_{1}$ shall be any of 0,1 or 2 and $A_{2}$ shall be any of $0 \sim 9$. For any input other than these keys, an alarm tone is generated.
In this case, however, by pressing STORE key again enables to select the 2-digits abbreviated code address again.
If any key other than STORE key is pressed, an alarm tone is generated.
If the empty space of the repertory memory is less than 16 digits, an alarm tone is generated at the first STORE key input. In other words, if an alarm is not generated at the first STORE key input, minimum 16 digits can be newly stored.

An alarm tone is generated at the 500th digit input showing the memory has no more capacity. That 500th input digit can be stored in the memory, however. if the 501st digit is input, an alarm tone is generated again and memory storing operation is cancelled.

Maximum digits of a telephone number to be stored is 32. TONE key input and pause information by PAUSE/REDIAL key input are counted as one digit respectively.
If the 33 rd digit is input, an alarm sound is generated and memory storing operation is cancelled.

24 telephone numbers can be abbreviated to single key dialing address, which are $L_{1} \sim L_{24}$. Other than those single key dialing address, maximum 30 telephone numbers can be abbreviated to ${ }^{*} 2$-digit address codes, which are $00 \sim 29$, so far as total stored digits in the repertory memory do not exceed 500.

* In this case, Senbl pin of MSM6052-05GS and MSM6052-10RS has to be set to " H " level.
(2) Mixed Storing

----- Store into 2-digits abbreviated code address

.-.-- Store into single key address


The telephone number once stored in the repertory memory can be used as a part of the newly stored telephone number in the form of abbreviated code. The last dialed telephone number can also be used as a part of newly stored telephone number, but in this case the last dialed telephone number should come to the first part of the newly stored telephone number. Otherewise, input by PAUSE/REDIAL key is regarded as a pause information.
Maximum 32 digits can be mixed stored. Either $L_{n}$ or RECALL $A_{1}$ is counted as 3 digits, while number of the digit of the last dialed out telephone number depends on the contents of redialing.
If $L_{n}$ key or RECALL key is pressed at the 31st or 32nd digit, an alarm sound is generated and storing is disabled.
Abbreviated code used for the newly stored number must not include abbreviated code of the other telephone number.
(3) Clearing of telephone number

| $S$ | S | $\mathrm{~A}_{1}$ | $\mathrm{~A}_{2}$ | $\cdots--$ | Clear the 2-digits abbreviated code address |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S | S | $\mathrm{L}_{n}$ |  | $\cdots--$ | Clear the single key address |

Pressing STORE key twice followed by $L_{n}$ or $A_{1}$ A $A_{2}$ clears the stored number in that address.

## (4) Redial Inhibition

Redialing is disabled by one of following conditions has been established.
i. When more than 32 digits are dialed out in a single dialing operation.
ii. In the memory storing/clearing operation, STORE is pressed followed by any valid key input.
iii. When the telephone is On-hooked, PAUSE/REDIAL key is pressed twice prior to any key.

## BUZZER OUTPUT WAVEFORM

## Key Input Confirmation Tone

It is output for the following key input.

Operation	MSM6052-05GS	MSM6052-10RS	MSM6052-11RS	
Normal operation	-		DP mode	$0 \sim 9, \text { All }$   Function keys
			DTMF mode	All Function keys
Memory storing/ Clearing operation	Valid key inputs		Valid key inputs	



## Memory Storing/Clearing Confirmation Tone

It is output when storing/clearing of telephone number has been completed.


## Alarm Sound

i. It is output for the followings.

- Wrong key input
- 33rd digit input for storing
- STORE key input when the empty capacity of repertory memory is less than 16 digits

ii. It is output when the repertory number, using other telephone number's abbreviated code as a part of it, is used as a part of newly stored number.

iii. It is output when there is no data in the accessed memory address. It is also output when redial is prohibited.



## TIMING CHART

## DP mode Timing chart

1) Normal dialing

2) Repertory dialing

3) Mode change-over by TONE key


## DTMF mode timing chart

## 1) Normal dialing



## 2) Repertory dialing, Redialing



## Signal output timing

Parameter	Symbol	Condition	Typical	Unit
Tone Output Time	T tone	Tone auto-dial	100	ms
Inter Digit Pause	TIDP 1	Tone auto-dial	100	ms
	TIDP 2	Pulse auto-dial (10 pps)	800	ms
	TIDP 3	Pulse auto-dial (20 pps)	500	ms

[^3]- TELEPHONE•MSM6052-05/10/11


## ELECTRICAL CHARACTERISTICS

## Absolute Maximum Ratings

Parameter	Symbol	Conditions	Ratings	Unit
Power Supply Voltage	$\mathrm{V}_{\mathrm{DD}}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	$-0.3 \sim 7$	V
Input Voltage	$\mathrm{V}_{\text {I }}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	$-0.3 \sim \mathrm{~V}_{\mathrm{DD}}+0.3$	V
Output Voltage	$\mathrm{V}_{\mathrm{O}}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	$-0.3 \sim \mathrm{~V}_{\mathrm{DD}}+0.3$	V
Power Dissipation	$\mathrm{P}_{\mathrm{D}}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	$200 \max$	mW
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-	$-55 \sim+125$	${ }^{\circ} \mathrm{C}$

## Operating Ranges

Parameter	Symbol	Conditions	Ratings	Unit
Power Supply Voltage	$\mathrm{V}_{\text {DD }}$	$\mathrm{f}_{\text {OsC }}=3.58 \mathrm{MHz}$	$2.5 \sim 6$	V
Memory Retention Voltage	$\mathrm{V}_{\text {DDM }}$	-	$1.2 \sim 6$	V
Operating Temperature	TOP	-	$-20 \sim 75$	${ }^{\circ} \mathrm{C}$

DC Characteristics
III

Parameter	Symbol	Conditions		VDD	Min	Typ	Max	Unit
"H" output current (1)	$\mathrm{IOH}_{1}$	$\frac{\overline{\text { MUTE }}}{\substack{\text { XMIT MUTE } \\ \text { DP OUT }}}$	$\mathrm{V}_{\mathrm{OH}}=2.6 \mathrm{~V}$	3.0 V	-0.2	-	-	mA
"L' output current (1)	'OL1		$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	3.0 V	0.5	-	-	mA
"H" output current (2)	${ }^{1} \mathrm{OH}_{2}$	$\mathrm{C}_{1} \sim \mathrm{C}_{4}$	$\mathrm{V}_{\mathrm{OH}}=2.6 \mathrm{~V}$	3.0 V	-1.0	-	-	mA
"L' output current (2)	$\mathrm{IOL}_{2}$		$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	3.0 V	10	-	-	$\mu \mathrm{A}$
"H" output current (3)	$\mathrm{IOL}_{3}$	$\begin{gathered} \text { DP MODE OUT } \\ \text { LEDs } \\ \text { BD } \end{gathered}$	$\mathrm{V}_{\mathrm{OH}}=2.6 \mathrm{~V}$	3.0 V	-20	-	-	$\mu \mathrm{A}$
"L' output current (3)	${ }^{1} \mathrm{OL} 3$		$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	3.0 V	10	-	-	$\mu \mathrm{A}$
"H" output current (4)	$\mathrm{IOH}_{4}$	LEDp	$\mathrm{V}_{\mathrm{OH}}=2.6 \mathrm{~V}$	3.0 V	-150	-	-	$\mu \mathrm{A}$
"L' output current (4)	${ }^{1} \mathrm{OL} 4$		$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	3.0 V	300	-	-	$\mu \mathrm{A}$
"H" output current (5)	$\mathrm{IOH}_{5}$	32 KHz	$\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{~V}$	3.0 V	-40	-	-	$\mu \mathrm{A}$
"L' output current (5)	${ }^{1} \mathrm{OH} 5$		$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	3.0 V	25	-	-	$\mu \mathrm{A}$
" H " input voltage	$\mathrm{V}_{\text {IH }}$	-		3.0 V	2.2	-	-	
				6.0 V	4.4	-	-	$v$
"L" input voltage	$V_{\text {IL }}$	-		3.0 V	-	-	0.8	V
				6.0 V	-	-	1.6	


Parameter	Symbol	Conditions		$V_{\text {DD }}$	Min	Typ	Max	Unit
" H "' input current (1)	$\mathrm{I}_{1} \mathrm{H}_{1}$	$\overline{H S}$	$\mathrm{V}_{\text {IH }}=6.0 \mathrm{~V}$	6.0 V	-	-	2	$\mu \mathrm{A}$
"'L" input current (1)	$I_{1} L_{1}$		$V_{\text {IL }}=0 \mathrm{~V}$	3.0 V	-20	-	-180	$\mu \mathrm{A}$
				6.0 V	-40	-	-360	
" $\mathrm{H}^{\prime \prime}$ input current (2)	${ }_{1} \mathrm{H}_{2}$	$\mathrm{R}_{1} \sim \mathrm{R}_{8}$	$\mathrm{V}_{\text {IH }}=6.0 \mathrm{~V}$	6.0 V	20	-	180	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {IH }}=3.0 \mathrm{~V}$	3.0 V	10	-	90	
"L' input current (2)	$I_{1} L_{2}$		$\mathrm{V}_{\text {IL }}=0 \mathrm{~V}$	6.0 V	-	-	-2	$\mu \mathrm{A}$
" H " input current (3)	$\mathrm{I}_{1 \mathrm{H}_{3}}$	MBDRSLSELMODESELACTEST	$\mathrm{V}_{\text {IH }}=6.0 \mathrm{~V}$	6.0 V	60	-	600	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {IH }}=3.0 \mathrm{~V}$	3.0 V	30	-	300	
"L'" input current (3)	$\mathrm{I}_{1} \mathrm{~L}_{3}$		$V_{\text {IL }}=0 \mathrm{~V}$	6.0 V	-	-	-2	$\mu \mathrm{A}$
"'H" input current (4)	$\mathrm{I}_{1 \mathrm{H}_{4}}$	KEYenbl Senbl   OHSenbl Penbl	$\mathrm{V}_{\text {IH }}=6.0 \mathrm{~V}$	6.0 V	-	-	2	$\mu \mathrm{A}$
"L'" input current (4)	$1 / L_{4}$		$\mathrm{V}_{\text {IL }}=0 \mathrm{~V}$	6.0 V	-	-	-2	$\mu \mathrm{A}$
Power supply current (1)	IDDP	Pulse mode, No load		3.0 V	-	0.3	0.6	mA
				6.0 V	-	1.2	2.4	
Power supply current (2)	IDDT	Tone mode, No load		3.0 V	-	1.2	2.4	mA
				6.0 V	-	3.5	7.0	
Power supply current (3)	IDDM	When on-hook mode No load ( $\mathrm{Ta}=25^{\circ} \mathrm{C}$ )		2.5 V	-	-	0.2	$\mu \mathrm{A}$

AC Characteristics
$\mathrm{f}_{\mathrm{OSC}}=3.579545 \mathrm{MHz}, 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 6.0 \mathrm{~V}, \mathrm{Ta}=-20 \sim+75^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	$\mathrm{V}_{\text {DD }}$	Min	Typ	Max	Unit
Cycle time	${ }^{\text {t }} \mathrm{C} Y$	$\mathrm{f}=3.579545 \mathrm{MHz}$	3.0 V	-	17.9	-	$\mu \mathrm{s}$
Tone output	Vout	For row only$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	2.5 V	-	250	-	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{rms} \end{aligned}$
			4.0 V	-	350	-	
			6.0 V	-	480	-	
High/low level ratio	${ }^{\text {dB }}{ }_{\text {CR }}$	-	3.0 V	1	2	3	dB
			6.0 V	1	2	3	
Distortion	\% dis	$R_{L}=1 \mathrm{k} \Omega$	3.0 V	-	1	5	\%
			6.0 V	-	1	5	
Switch input time	TKIN	-	-	33	-	-	ms

## DTMF Tone Output Frequency

	Nominal frequency (Hz)	Output frequency (Hz)	Distortion (\%)
$R_{1}$	697	699.1	+0.30
$R_{2}$	770	766.2	-0.49
$R_{3}$	852	847.4	-0.54
$R_{4}$	941	948.0	+0.74
$C_{1}$	1209	1215.9	+0.57
$C_{2}$	1436	1331.7	-0.32
$C_{3}$	1471.9	-0.35	

$\mathrm{f}_{\mathrm{osc}}=3.579545 \mathrm{MHz}$

## OIII semiconductor

MSM6052-25RS
TONE/PULSE SWITCHABLE REPERTORY DIALER

## GENERAL DESCRIPTION

The MSM6052-25RS is a repertory tone/pulse switchable dialer which is fabricated by OKI's low power consumption CMOS silicon gate technology. This LSI can generate either DTMF (Dual Tone Multi Frequency) signal or DP (Dial Pulse) signal.

The repertory memory has a capacity of 505 digits. Maximum 52 telephone numbers of 32 digits maximum/number can be stored in it, so far as total number of stored digits does not exceed 505 .

It operates on $2.5 \mathrm{~V} \sim 6 \mathrm{~V}$ single supply. Standby current is $0.2 \mu \mathrm{~A}$ maximum $\left(\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$ and memory retention voltage is 1.2 V .

## FEATURES

- Either DTMF signal or DP signal generation.
- DP/TONE output starts 100 msec after keying in normal dialing
- 505 digits repertory memory.
(52 numbers maximum, 32 digits maximum/number).
- 22 numbers repertory dialing by single key dialing plus maximum 30 numbers repertory dialing by 2 -digit abbreviated code dialing.
- Last number redial ( 32 digits maximum).
- Mixed dialing/storing.
- Auto insersion of 4 seconds access pause.
- Pulse rate $10 / 20$ pps pin selectable.
- Make/Break ratio $34 / 66$ or $40 / 60$ pin selectable.
- Tone output for valid key input ( 2 kHz , 32 msec ).
- Alarm tone for wrong operations.
- Single contact matrix keyboard to be used.
- 3.58 MHz oscillation circuit on chip for ceramic resonator.
- Supply voltage range $2.5 \mathrm{~V} \sim 6 \mathrm{~V}$.
- Low standby current $0.2 \mu \mathrm{~A}$ maximum. $\left(\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$
- 28-pin plastic DIP Package.


## PIN CONFIGURATION

$\mathrm{R}_{1} 1$		28	$\mathrm{C}_{1}$
$\mathrm{R}_{2} \mathrm{~L}^{2}$		27	$\mathrm{C}_{2}$
$\mathrm{R}_{3} \quad 3$		26	$\mathrm{C}_{3}$
$\mathrm{R}_{4} 4$		25	$c_{4}$
$\mathrm{R}_{5} 5$		24	LSEL
R6 6		23	DP MODE OUT
R 7		22	$\overline{\text { MUTE }}$
$\overline{\mathrm{HS}} 8$		21	$\overline{\text { XMIT MUTE }}$
MODE SEL 9		20	DIALPULSE
MB 10		19	DTMF OUT
DRS 11		18	$V_{D D}$
XT 12		17	BD
$\overline{X T} 13$		16	$A C$
TEST 14		15	$\mathrm{v}_{\text {SS }}$

## KEYBOARD INTERFACE



A $7 \times 4$ single contact keyboard shall be used. $L_{1} / L_{12} \sim L_{11} / L_{22}$ are one touch memory recall keys. By connecting or disconnecting LSEL to/from VDD, two telephone numbers can be assigned for each key. So, the 22 numbers in total can be recalled by single key operation.

In addition to it, maximum 30 numbers can be abbreviated into 2-digit address code ( $00 \sim 29$ ) .

## PIN DESCRIPTION

Pin Name	Pin No.	Function
$\begin{aligned} & \mathrm{R}_{1} \sim \mathrm{R}_{7} \\ & \mathrm{C}_{1} \sim \mathrm{C}_{4} \end{aligned}$	$\begin{gathered} 1 \sim 7 \\ 25 \sim 28 \end{gathered}$	Key input pins.   $\mathrm{C}_{1} \sim \mathrm{C}_{4}$ are set to low level in on-hook mode, while they are set to high level in off-hook standby mode. When the key input is off, key scanning and oscillation stop. Single contact keyboard shall be connected.
$\overline{\mathrm{HS}}$	8	Hook switch input pin. $\begin{array}{rlrl} \overline{\mathrm{HS}} & =\text { High: } & & \text { On-hook } \\ \overline{\mathrm{HS}}=\text { Low: } & & \text { Off-hook } \end{array}$
LSEL	24	Selection pin for $L_{1} \sim L_{11}$ or $L_{12} \sim L_{22}$ for single-key dialing.   LSEL $=$ Low: $L_{1} \sim L_{11}$ LSEL $=$ High: $L_{12} \sim L_{22}$
MB	10	Make/Break ratio selection pin. $\begin{array}{ll} \text { MB = Low: } & 40 / 60 \\ M B=\text { High: } & 34 / 66 \end{array}$   This input is sensed during the transition stage from On-hook to Off-hook.
DRS	11	Dial rate selection pin. $\begin{array}{ll} \text { DRS }=\text { Low: } & 10 \mathrm{pps} \\ \text { DRS }=\text { High: } & 20 \mathrm{pps} \end{array}$   This input is sensed during the transition stage from On-hook to Off-hook.
MODE SEL	9	DP/DTMF mode selection pin.   MODE SEL = Low: DP mode   MODE SEL = High: DTMF mode   The status at off-hook is maintained.   If TONE key is pressed when this pin is being set to low level, the DTMF mode is established.
$\mathrm{XT}, \overline{\mathrm{XT}}$	12, 13	Ceramic resonator connection pins. Since this LSI is provided with oscillation inverter and feed-back resistor, 3.58 MHz ceramic resonator and capacitors are connected to $X T$ and $\overline{X T}$ pin.
$\mathrm{V}_{\text {DD }}, \mathrm{V}_{\text {SS }}$	18, 15	$V_{D D}$ : Positive power supply pin. $2.5 \mathrm{~V} \sim 6 \mathrm{~V}$.   $\mathrm{V}_{\mathrm{SS}}$ : Negative power supply pin (Ground).
AC	16	IC initial pin. When IC is powered on, " H " level reset signal has to be applied to this pin.
TEST	14	Test pin.


Pin Name	Pin No.	Function
BD	17	Buzzer output pin.   It outputs key tone for valid key input. It also outputs various alarm/confirming tone. Refer to "Sound output waveforms" for details.
DTMF OUT	19	DTMF output pin.   In case of double keying or pressing some key without releasing a previous key, DTMF output is disabled.
DIAL PULSE	20	Dial pulse output pin.   Make: High   Break: Low   $\overline{\mathrm{HS}}=\mathrm{High}$ (On hook): Low
$\overline{\text { XMIT MUTE }}$	21	Transmit mute output pin.   When $\overline{\mathrm{HS}}=$ High (On-hook): Low   When $\overline{\mathrm{HS}}=$ Low (Off-hook)   (1) While DP signal or DTMF signal is being sent out: Low   (2) All other times: High
$\overline{\text { MUTE }}$	22	Mute output pin.   When $\overline{\mathrm{HS}}=$ High (On-hook): Low   When $\overline{\mathrm{HS}}=$ Low (Off-hook)   (1) While DP is being sent out: Low   (2) All other times: High
DP MODE OUT	23	Dial Pulse Mode output pin.   MODE SEL = High: Low   MODE SEL = Low: High   When mode is changed to DTMF mode by TONE key input: Low

## FUNCTIONAL DESCRIPTION

## Dialing Function

## (1) Normal Dialing

$$
\text { Off-Hook } \mathrm{D}_{1} \ldots . . \mathrm{DN}
$$

Maximum 32 digits can be sent out at a time. Further key inputs are effective only after the first 32 digits have been sent out to the line. If more than 32 digits are dialed, redialing of that number is disabled. Pressing PAUSE key causes 4 seconds access pause. The access pause is released automatically 4 seconds later or manually by pressing PAUSE, RECALL, STORE or TONE key again.

Switching from DP dialing to DTMF dialing can be done during the course of dialing. By pressing TONE key during DP mode, the mode is changed to DTMF mode. When TONE key is pressed, if DP signal is being sent out, the mode will be changed after sending out all DP signal and an access pause of 4 seconds is automatically inserted. An access pause can be released earlier by pressing PAUSE, RECALL, STORE or TONE key, if so desired.

## (2) Redialing

$$
\begin{array}{ll}
\text { Off-Hook } & \text { Redial } \\
\hline
\end{array}
$$

The last dialed number can be redialed by pressing Redial key. The functions of TONE and PAUSE signals included in the redialed number are same as in the repertory dialing. When the redialing is being prohibited, an alarm sound is generated at the Redial key input. The normal dialing can follow after that leaving the telephone off hook.

## (3) Repertory Dialing



The telephone numbers abbreviated to $\mathrm{L}_{n}$ code can be dialed by single key operation ( $L_{1} \sim L_{22}$ ), while those abbreviated to 2-digit can be dialed by pressing RECALL key followed by 2-digit code.

If a wrong address code is input, an alarm sound is generated.
If a stored number has an access pause, dialing halts for 4 seconds or until PAUSE , RECALL, STORE or TONE key is pressed. If a stored number has a TONE signal, the dialing mode is changed from DP mode to DTMF mode, and dialing halts for 4 seconds or until PAUSE, RECALL, STORE or TONE key is pressed.
(4) Mixed Dialing


Mixed dialing of normal dialing, redialing and repertory dialing can be done. In that case, however, redialing must come to the first part. If the digits of the mixed dialed number is up to 32 , that number can be redialed.

## Memory Storing/Clearing Function

## (1) Storing of telephone number



Storing operation can be continued leaving the telephone off hook. When the storing of a telephone number has been completed, a sound is generated to indicate that the next. number's storing is allowed. The first STORE key input can be omitted from the second number.

If the empty space of the repertory memory is less than 16 digits, an alarm sound is generated at the first STORE key input. In other words, if an alarm is not generated at the first STORE key input, minimum 16 digits can be newly stored.

An alarm sound is generated at the 505th digit input showing the memory has no more capacity. That 505 th input digit can be stored in the memory, however, if the 506th digit is input, an alarm sound is generated again. That input digit is neglected and the entire key operation is disabled until the telephone is hooked on.

Maximum digits of a telephone number to be stored is 32. TONE signal and PAUSE signal are counted as one digit respectively.

If the 33 rd digit is input, an alarm sound is generated and the entire key operation is disabled until the telephone is hooked on.

24 telephone numbers can be abbreviated to single key address codes, which are $L_{1} \sim L_{22}$. Other than those single key address codes, maximum 30 telephone numbers can be abbreviated to 2 -digit address codes, which are $00 \sim 29$, so fas as total stored digits in the repertory memory do not exceed 505.
$0 \sim 2$ can be used for the first digit $A_{1}$, and $0 \sim 9$ can be used for the second digit $A_{2}$. If a wrong number is used, an alarm sound is generated and that input is neglected.

## (2) Mixed Storing



Store into 2-digit abbreviated code address

......... Store into single key address

The telephone number once stored in the repertory memory can be used as a part of the newly stored telephone number in the form of abbreviated code ( $L_{n}$ or $R \quad A \quad A_{1} \quad A_{2}$ ). Maximum 32 digits can be mixed-stored. Either $L_{n}$ or $R$ A $A_{1}$ A $A_{2}$ is counted as 3 digits.

Therefore, if $L_{n}$ key or $R$ key is pressed at 31 st or 32 nd digit, an alarm sound is generated and storing is disabled.

Abbreviated code used for the newly stored number must not include abbreviated code of the other telephone number.
(3) Clearing of Telephone Number


Clearing operation can be continued leaving the telephone off hook. Pressing STORE key twice followed by $L_{n}$ key or 2-digit code clears the stored number in that address. Clearing operation and storing operation can be done alternately leaving the telephone off-hook.

If a wrong address code is input after pressing STORE key twice, an alarm sound is generated and that key input is neglected.

## Redial Inhibition

| Off-Hook | $R$ | $A_{1}$ | $A_{2}$ | (After signals sent out) | $S$ | $S$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Off-Hook | $D_{1}$ | $\cdots$ | $D_{n}$ | (After signals sent out) | $S$ | $S$ |
|  |  |  |  |  |  |  |

Pressing STORE key twice after all signals have been sent out to the line disables the redialing of that telephone number. It is applicable to any of normal dialing, repertory dialing and mixed dialing. Redialing is also disabled when more than 32 digits are dialed or after telephone number's clearing/storing operation.

## Others

When there is no data in the specified memory address, an alarm sound is generated and that key input is neglected.

## SOUND OUTPUT WAVEFORM

## Operation Confirmation Sound

It is output for valid key input.


## Storing Confirmation Sound

It is output when storing or clearing of telephone number has been completed.


## Alarm Sound (a)

It is output for the followings.

- Wrong key input.
- 33rd digit input for storing.
- STORE key input when the empty capacity of repertory memory is less than 16 digits.



## Alarm Sound (b)

It is used when the repertory number using other telephone number's abbreviated code as a part of it is used as a part of newly stored number.


## Alarm Sound (c)

It is output when there is no data in the accessed memory address.


## Alarm Sound (d)

It is output when redial is prohibited.


## ELECTRICAL CHARACTERISTICS

## Absolute Maximum Ratings

Parameter	Symbol	Condition	Limits	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{DD}}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	$-0.3 \sim+7.0$	V
Input/Output Voltage	$\mathrm{V}_{\text {IO }}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{SS}}-0.3 \sim \mathrm{~V}_{\mathrm{DD}}+0.3$	V
Power Dissipation	$\mathrm{P}_{\mathrm{D}}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	200	mW
Operating Temperature	Topr	-	$-20 \sim+75$	${ }^{\circ} \mathrm{C}$
Storage Temperature	Tstg	-	$-55 \sim+125$	${ }^{\circ} \mathrm{C}$

DC Characteristics

$$
\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{f}_{\mathrm{OSC}}=3.579545 \mathrm{MHz}, \mathrm{~T}_{\mathrm{a}}=-20 \sim+75^{\circ} \mathrm{C}
$$

Parameter	Symbol	Condition		Min	Typ	Max	Unit
Operating Voltage	$V_{\text {DD }}$			2.5	-	6.0	v
Memory Retention Voltage	$V_{\text {DDM }}$	Standby mode		1.2	-	6.0	v
Current Consumption (1)	'DDP	Pulse Mode, No load		-	300	600	$\mu \mathrm{A}$
Current Consumption (2)	'DDT	Tone Mode, No load		-	1.2	2.4	mA
Memory Retention Current	'DDM	ON HOOK,	$\begin{aligned} & \mathrm{VDD}=2.5 \mathrm{~V} \\ & \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$	-	-	0.2	$\mu \mathrm{A}$
Output Current	${ }^{1} \mathrm{OH}_{1}$	$\overline{\text { MUTE }}$   XMIT MUTE, DP	$\mathrm{V}_{\mathrm{OH}}=2.6 \mathrm{~V}$	-200	-	-	$\mu \mathrm{A}$
	$\mathrm{lOL}_{1}$		$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	500	-	-	$\mu \mathrm{A}$
Output Current	${ }^{1} \mathrm{OH}_{2}$	$\mathrm{C}_{1} \sim \mathrm{C}_{4}$	$\mathrm{V}_{\mathrm{OH}}=2.6 \mathrm{~V}$	-1	-	-	$m A$
	${ }^{\prime} \mathrm{OL} 2$		$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	10	-	-	$\mu \mathrm{A}$
Output Current	${ }^{1} \mathrm{OH}_{3}$	DP MODE OUT BD	$\mathrm{V}_{\mathrm{OH}}=2.6 \mathrm{~V}$	-20	-	-	$\mu \mathrm{A}$
	$\mathrm{IOL}_{3}$		$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	10	-	-	$\mu \mathrm{A}$
Input Current	$\mathrm{I}_{1} \mathrm{H}_{1}$	$\overline{\mathrm{HS}}$	$\mathrm{V}_{1 \mathrm{H}}=3.0 \mathrm{~V}$	-	-	2	$\mu \mathrm{A}$
	$\mathrm{I}_{1} \mathrm{~L}_{1}$		$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	-20	-	-180	$\mu \mathrm{A}$
Input Current	$\mathrm{I}_{1 \mathrm{H}_{2}}$	$\mathrm{R}_{1} \sim \mathrm{R}_{7}$	$\mathrm{V}_{\text {IH }}=3.0 \mathrm{~V}$	10	-	90	$\mu \mathrm{A}$
	$\mathrm{I}_{1 \mathrm{~L}_{2}}$		$V_{\text {IL }}=0 \mathrm{~V}$	-	-	-2	$\mu \mathrm{A}$
Input Current	$\mathrm{I}_{1 \mathrm{H}_{3}}$	LSEL, MB, DRS MODE SEL AC, TEST	$\mathrm{V}_{1 \mathrm{H}}=3.0 \mathrm{~V}$	30	-	300	$\mu \mathrm{A}$
	${ }_{1 / 1 L_{3}}$		$V_{\text {IL }}=0 \mathrm{~V}$	-	-	-2	$\mu \mathrm{A}$

AC Characteristics
${ }^{\prime} \mathrm{OSC}=3.579545 \mathrm{MHz}, 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 6.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20 \sim+75^{\circ} \mathrm{C}$

Parameter	Symbol	Condition		Min	Typ	Max	Unit
Key Input Time	TKIN			33	-	-	mS
Tone Output	V OUT	ROW side only $R_{L}=1 \mathrm{~K} \Omega$	$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$	150	250	350	$\begin{gathered} \mathrm{mV} \\ \mathrm{rms} \end{gathered}$
			$\mathrm{V}_{\text {DD }}=4.0 \mathrm{~V}$	200	340	570	
High/Low Level Ratio	$\mathrm{dB}_{\mathrm{CR}}$			1.0	2.0	3.0	dB
Distortion	\% Dis			-	5	10	\%

Tone Output Frequency
foSC $=3.579545 \mathrm{MHz}$

Key Input	Nominal Frequency   $(\mathrm{Hz})$	Output Frequency   $(\mathrm{Hz})$	Distortion   $(\%)$
$\mathrm{R}_{1}$	697	699.1	+0.30
$\mathrm{R}_{2}$	770	766.2	-0.49
$\mathrm{R}_{3}$	852	847.4	-0.54
$\mathrm{R}_{4}$	941	948.0	+0.74
$\mathrm{C}_{1}$	1209	1215.9	+0.57
$\mathrm{C}_{2}$	1336	1331.7	-0.32
$\mathrm{C}_{3}$	1477	1471.9	-0.35

## Signal Output Timing

fosc $=3.579545 \mathrm{MHz}$

Parameter	Symbol	Condition	Typ	Unit
Tone Output Time	$T_{\text {tone }}$	Tone auto dial	100	mS
Inter Digit Pause	$\mathrm{TIDP}_{1}$	Tone auto dial	100	mS
	$\mathrm{TIDP}_{2}$	Pulse auto dial (10 pps)	800	mS
	TIDP 3	Pulse auto dial (20 pps)	500	mS

## TIMING CHART

DP MODE TIMING CHART

1) Normal dialing

2) Mode change-over by Tone key


## 3) Repertory dialing



## DTMF MODE TIMING CHART

1) Normal dialing


- TELEPHONE•MSM6052-25

2) Repertory dialing, Last number re-dial


## OKXI semiconductor <br> MSM5070RS/MSM5071RS

## TONE/PULSE SWITCHABLE DIALER WITH REDIAL

## GENERAL DESCRIPTION

The MSM5070RS and the MSM5071RS are TONE/PULSE switchable dialers, with a redial function, which are fabricated by low power consumption CMOS metal gate technology.

The only difference between the MSM5070RS and MSM5071RS is Make/Break Ratio.
The MSM5070RS has 33/67\% Make/Break Ratio, while MSM5071RS has 40/60\% Make/ Break Ratio.

These LSI can generate either DTMF or DP signal.
The maximum number of digits which can be dialed out are 31 digits. If the last dialed telephone number exceeds 32 digits, this redial memory area is used as a FIFO momory.

The operating voltage of these LSIs are $2.5 \mathrm{~V}-5 \mathrm{~V}$, while the minimum voltage required for memory retention is 1.2 V .

## FEATURES

- Auto switching of DTMF/DP signal for redial function
- Last number redial, 31 digits maximum (If the dialed out telephone number exceeds 32 digits, this redial memory area is used as a FIFO memory.)
- Manual pause (By pressing either PAUSE or TONE key)
- Pulse rate selectable, 10 pps/20 pps
- Either single contact keyboard or standard 2 of 8 keyboard can be used
- Operating voltage, $2.5 \mathrm{~V}-5 \mathrm{~V}$
- Memory retention voltage, 1.2 V minimum
- 3.58 MHz crystal oscillation
- MUTE/XMIT MUTE output
- 18 pin plastic DIP package

Make/Break Ratio	Type No.
$33 / 67 \%$	MSM5070RS
$40 / 60 \%$	MSM5071RS

## FUNCTIONAL BLOCK DIAGRAM



PIN CONFIGURATION

$4 \times 4$ matrix keyboard as shown above shall be used. Either single contact keyboard or standard 2 of 8 keyboard can be used.

## PIN DESCRIPTION

Pin Name	Pin No.	Function
$\begin{aligned} & \mathrm{R}_{1} \sim \mathrm{R}_{4} \\ & \mathrm{C}_{0} \sim \mathrm{C}_{3} \end{aligned}$	$\begin{gathered} 13 \sim 16 \\ 2 \sim 5 \end{gathered}$	Key input pins scanned at 500 Hz .   Single contact keyboard or 2 of 8 keyboard shall be connected.
HS	12	HOOK SWITCH input pin, pulled up to $V_{D D}$.   $\overline{\mathrm{HS}}=$ Open: "ON HOOK"   HS = VSS : "OFF HOOK"
DTMF OUT	18	DTMF output pin. Open emitter output.
DP	17	Dial pulse output pin.   MAKE : High level   BREAK: Low level   "ON HOOK": Low level CMOS Output
$\overline{\text { MUTE }}$	11	MUTE output pin.   "ON HOOK" : Low level   During DP output: Low level   All other time (When $\overline{\mathrm{HS}}=$ Low level): High level CMOS output
$\overline{\text { XMIT MUTE }}$	7	MUTE output pin for transmitter.   ( $\overline{\mathrm{HS}}=$ Open) "ON HOOK" : Low level   During DP or DTMF output: Low level   All other time (When $\overline{\mathrm{HS}}=$ Low level): High level
MODE	10	Mode selection pin.   MODE = "VDD": DTMF mode   MODE = "Open": DP mode, 10 pps   MODE $=$ " $\mathrm{VSS}^{\prime}$ " : DP mode, 20 pps
XT, XT	8,9	3.58 MHz crystal connection pin.   Since both MSM5070RS and MSM5071RS are provided with on-chip CG, CD and Rfb, no external components are required for the connection except a crystal oscillator.

## FUNCTIONAL DESCRIPTION

## Redial

The maximum number of digits which can be stored in the redial memory area is 31 digits. As for the number which exceeds 32 digits, this memory area is used as a FIFO memory, in this case the redial function is prohibited.

By pressing RR key, the redial function is disabled. If $R R$ key is pressed or the telephone is ON HOOKed during DTMF/DP signal is being output, signal output is stopped and the redial is disabled.

Note: RR: RD

## Mode Selection

Signal output mode is selected by the condition of MODE pin (pin 10) as described in PIN DESCRIPTION.

## Mode change from DP mode to DTMF mode

DTMF mode can be established automatically by connecting MODE pin to VDD or pressing TONE key during DP mode. The mode cannot be changed from DTMF mode to DP mode by the input from the keyboard.

If the mode is changed from DP mode to DTMF mode by pressing the TONE key, a pause is automatically inserted and the output of signal is disabled until the pause is manually released.

## Pause

A pause is inserted by pressing the PAUSE key or TONE key. This pause is manually released by pressing any key. At that time, PAUSE, REDIAL and TONE keys function only to release a pause, and their original functions are suppressed. In case of other keys, however, they provide not only a pause release function but also their original function.

If a pause is used during the course of dialing, this 'pause' information is automatically inseterd. In case of redial, however, the pause condition has to be released manually.

## Mixed Dialing

After the stored number has been redialed, normal dialing can be added. In that case, the repertory number plus added number is stored in the memory for the next redialing, if the total digits are within 31 . If the total digits are more than 31 , redialing is disabled.

## DP MODE TIMING CHART

## - Normal Dialing



- TELEPHONE•MSM5070/71


## DTMF MODE TIMING CHART

- Normal Dialing



## - Redial



## AC CHARACTERISTICS

1) Key Operation Time	$\mathrm{f}_{\mathrm{X}-\mathrm{TAL}}=3.579545 \mathrm{MHz}$				
$2.5 \geqq \mathrm{~V}_{\mathrm{DD}} \leqq 5.0 \mathrm{~V}$					
Parameter	Symbol	Min	Typ	Max	Unit
Effective key input time	tKD	35	-	-	ms
Key scanning frequency	fKEY	-	500	-	Hz
Key input time	tKIN	32.7	34.7	36.7	ms
On-Hook confirming time	tONH	2	-	-	ms

2) DTMF Output Frequency
$\mathrm{f}_{\mathrm{X}-\mathrm{TAL}}=3.579545 \mathrm{MHz}$

Key input	Nominal frequency   $(\mathrm{Hz})$	Output frequency   $(\mathrm{Hz})$	Distortion   $(\%)$
$\mathrm{R}_{1}$	697	699.1	+0.30
$\mathrm{R}_{2}$	770	766.2	-0.49
$\mathrm{R}_{3}$	852	847.4	-0.54
$\mathrm{R}_{4}$	941	948.0	+0.74
$\mathrm{C}_{1}$	1209	1215.9	+0.57
$\mathrm{C}_{2}$	1336	1331.7	-0.32
$\mathrm{C}_{3}$	1477	1471.9	-0.35

3) DTMF Signal
$\mathrm{f}_{\mathrm{X}-\mathrm{TAL}}=3.579545 \mathrm{MHz}$

Parameter	Symbol	Min	Typ	Max	Unit
Tone output time	tTONE	-	100	-	ms
Predigit pause	tPDP	63.3	65.3	67.3	ms
Interdigit pause	tIDP	-	100	-	ms
Mute time after DP	tMOT	-	100	-	ms

4) DP Signal
$\mathrm{f}_{\mathrm{X}-\mathrm{TAL}}=3.579545 \mathrm{MHz}$

Type No.	Make   $\%$	Dial pulse   PPS	Break   ms	tPDP   ms	tIDP   ms	tMOP   ms
MSM5070RS	33	10	67	$98.3 \pm 2$	$831.3 \pm 2$	800
		33.5	$31.8 \pm 2$	$465.3 \pm 2$	450	
MSM5071RS	40	10	60	$105.3 \pm 2$	$905.3 \pm 2$	800
		20	30	$35.3 \pm 2$	$485.3 \pm 2$	450

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Rating	Unit
Supply   voltage	V DD	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	$-0.3 \sim 6.0$	V
Input   voltage	V IN	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {SS }}-0.3 \sim \mathrm{~V}_{\mathrm{DD}}+0.3$	V
Output   voltage	V OUT	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{SS}}-0.3 \sim \mathrm{~V}_{\mathrm{DD}}+0.3$	V
Power   dissipation	PD	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	200	mW
Operating   temperature	TOP	-	$-20 \sim+75$	${ }^{\circ} \mathrm{C}$
Storage   temperature	$\mathrm{T}_{\text {Stg }}$	-	$-55 \sim+125$	${ }^{\circ} \mathrm{C}$

## ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Condition		Rating			Unit
				Min	Typ	Max	
Operating voltage	$V_{\text {DD }}$	-		2.5	-	5.0	V
$\begin{aligned} & \text { Power } \\ & \text { consumption (1) } \\ & \hline \end{aligned}$	IDD	No load, during tone output, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		-	3	6	mA
Power consumption (2)	${ }^{\prime} \mathrm{DD}_{2}$	No load, key input off, operation halt, $V_{D D}=5 \mathrm{~V}$		-	-	100	$\mu \mathrm{A}$
Memory retention voltage	VDDH	On hook, operation halt		1.2	-	5.0	V
Memory retention current	IDDH	On hook, operation halt, $V_{D D}=2.5 \mathrm{~V}$		-	-	0.2	$\mu \mathrm{A}$
Input voltage (1)$\frac{\left(C_{0} \sim C_{3}, R_{1} \sim R_{4}\right)}{}$	$\mathrm{V}_{1 \mathrm{H}_{1}}$	$\mathrm{V}_{\mathrm{DD}}=2.5 \sim 5 \mathrm{~V}$		$0.8 \mathrm{~V}_{\text {DD }}$	-	$\mathrm{V}_{\mathrm{DD}}$	V
	$\mathrm{V}_{1 L_{1}}$			V ${ }_{\text {SS }}$	-	$0.2 \mathrm{~V}_{\mathrm{DD}}$	
Input voltage (2) (MODE)	$\mathrm{V}_{1 \mathrm{H}_{2}}$	$\mathrm{V}_{\mathrm{DD}}=2.5 \sim 5 \mathrm{~V}$		$0.9 \mathrm{~V}_{\text {DD }}$	-	$V_{\text {DD }}$	V
	$\mathrm{V}_{1 \mathrm{M}_{2}}$			$0.4 \mathrm{~V}_{\text {DD }}$	0.5 V DD	0.6 V DD	
	$V_{1 L_{2}}$			VSS	-	$0.1 \mathrm{~V}_{\mathrm{DD}}$	
$\begin{aligned} & \text { Input current (1) } \\ & \text { (HS) } \end{aligned}$	${ }_{1} \mathrm{IH}_{1}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	$\mathrm{V}_{\text {IH }}=5.0 \mathrm{~V}$	-	-	-1	$\mu \mathrm{A}$
	$1 / L_{1}$		$\mathrm{V}_{\mathrm{IL}}=0.0 \mathrm{~V}$	-60	-120	-240	
Input current (2)$\left(\mathrm{C}_{0} \sim \mathrm{C}_{3}, \mathrm{R}_{4} \sim \mathrm{R}_{4}\right)$ $\left(C_{0} \sim C_{3}, R_{1} \sim R_{4}\right)$	$\mathrm{I}_{1} \mathrm{H}_{2}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{IH}}=1.2 \mathrm{~V}$	-20	-30	-50	$\mu \mathrm{A}$
	$1 / L_{2}$		$\mathrm{V}_{\text {IL }}=1.2 \mathrm{~V}$	120	180	275	
$\begin{aligned} & \text { Input current (3) } \\ & \text { (MODE) } \end{aligned}$	${ }_{1 \mathrm{IH}_{3}}$	$V_{D D}=5 \mathrm{~V}$	$\mathrm{V}_{\text {IH }}=4.5 \mathrm{~V}$	110	160	250	$\mu \mathrm{A}$
	$\mathrm{I}_{1 \mathrm{M}_{3}}$		$\mathrm{V}_{\text {IM }}=2.5 \mathrm{~V}$	-20	0	20	
	$\mathrm{I}_{\mathrm{LL}}$		$\mathrm{V}_{1 \mathrm{IL}}=0.5 \mathrm{~V}$	-110	-160	-250	
Output voltage (1) (MODE)	VOM	$\mathrm{V}_{\mathrm{DD}}=2.5 \sim 5 \mathrm{~V}$ Open		$0.45 \mathrm{~V}_{\mathrm{DD}}$	$0.5 \mathrm{~V}_{\text {DD }}$	$0.55 \mathrm{~V}_{\mathrm{DD}}$	V
Output current (MMITMUTE, MUTE, DP	$\mathrm{IOH}_{1}$	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$	$\mathrm{VOH}=2.6 \mathrm{~V}$	-0.2	-	-	mA
	${ }^{\prime} \mathrm{OL}_{1}$		$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	0.5	-	-	
Oscillation rise time	trise	$\mathrm{V}_{\mathrm{DD}}=2.5 \sim 5 \mathrm{~V}$		-	3.0	10	mS
Tone output voltage	Vout	$V_{D D}=3 \mathrm{~V} R_{L}=1 \mathrm{k} \Omega$		-	300	-	$\underset{\text { RMS }}{\mathrm{mV}}$
High/Low ratio	dBCR	$\mathrm{V}_{\text {DD }}=2.5 \sim 5 \mathrm{~V}$		1.5	2.0	2.5	dB
Distortion	\% Dis	$\mathrm{V}_{\text {DD }}=2.5 \sim 5 \mathrm{~V}$		-	-	10	\%
Internal capacitance	CD, CG	$\mathrm{V}_{\text {DD }}=2.5 \sim 5 \mathrm{~V}$		-	12	-	pF



## OIII semiconductor

MSM6224RS

## DTMF TONE DIALER LSI

## GENERAL DESCRIPTION

The MSM6224RS is a TONE dialer LSI which is fabricated by OKI's low power consumption CMOS silicon gate technology.

The MSM6224RS can generate 16 kinds of DTMF (Dual Tone Multi Frequency) signals each of which consists of 4 higher group frequency and 4 lower group frequency.

## FEATURES

- Either the standard 2 of 8 keyboard or the calculator type keyboard can be used.
- Low power consumption by use of the CMOS silicon gate technology.
- Supply voltage $2.5 \mathrm{~V} \sim 8.5 \mathrm{~V}$.
- Either the single tone or the dual tone ouptut.
- 3.579545 MHz crystal oscillation.


## FUNCTIONAL BLOCK DIAGRAM



## PIN CONFIGURATION

16 Lead Plastic DIP (TOP View)


## PIN DESCRIPTION



The Table 1 shows the relation between the nominal frequency and the tone output frequency while the Table 2 shows the input conditions of $\overline{\mathrm{R} 1} \sim \overline{\mathrm{R4}}$ and $\overline{\mathrm{C} 1} \sim \overline{\mathrm{C} 4}$.

- Refer to the note.

The MUTE pin drives the external bipolar transistor by the CMOS output. This pin is low level when the key input is off, while it becomes high level when the key input is on. The MUTE is used for the mute of the receiver.


Pin Name	Pin No.	Function
XMIT	2	The XMIT pin drives the external bipolar transistor by the NPN open emitter output. This pin is high level when the key input is off, while it becomes open when the key input is on. The XMIT pin is used for the mute of the transmitter.
SINGLE TONE INHIBIT	15	When more than two columns are selected against only one row, or when more than two rows are selected against only one column, the single tone is output from the TONE OUT pin. The SINGLE TONE INHIBIT pin is the negative logic input pin to control the output of the TONE OUT pin in those cases. Refer to the Table 2.   When the input to this pin is high level, both of the single tone and dual tone are output from the TONE OUT pin. When the input to this pin is low level, however, the single tone is prohibited to output from the TONE OUT pin and becomes DC level. This pin is provided with the pull up resistance of 20K ~ 150K ohms.
TONE OUT	16	The low group frequency and the high group frequency selected by the keyboard are synthesized and output from this TONE OUT pin. Because the output form is the NPN open emitter style, the load resistance must be connected externally. It is same for the case of the single tone output. The output amplitude of the high group is $1 \sim 2 \mathrm{~dB}$ bigger than that of the low group. The distortion of the dual tone is maximum $10 \%$.
$\mathrm{v}_{\text {DD }}, \mathrm{v}_{\text {SS }}$	1,6	$V_{D D}$ is a power supply pin.   $\mathrm{V}_{\mathrm{SS}}$ is a ground pin.

## Note:

## Table 1

Effective input		Nominal frequency	Tone output frequency	Accuracy	Remarks
(ROW)	R1	697 Hz	699.1 Hz	+0.30 \%	Low group
	R2	770 Hz	766.2 Hz	-0.49 \%	
	R3	852 Hz	847.4 Hz	-0.54 \%	
	$\overline{\mathrm{R} 4}$	941 Hz	948.0 Hz	+0.74 \%	
(COLUMN)	$\overline{\mathrm{C} 1}$	1209 Hz	1215.9 Hz	+0.57 \%	High group
	$\overline{\mathrm{C} 2}$	1336 Hz	1331.7 Hz	-0.32 \%	
	$\overline{\mathrm{C}}$	1477 Hz	1471.9 Hz	-0.35 \%	
	$\overline{\mathrm{C}}$	1633 Hz	1645.0 Hz	+0.73 \%	

Table 2

Row input	Column input	Tone output*	Note
No	No	0 V	
1	1	$\mathrm{f}_{\mathrm{L}}+\mathrm{f}_{\mathrm{H}}$	Dual tone
No	1	$\mathrm{f}_{\mathrm{H}}$	Single tone   (Only column)
1	No	0 V	
More than 2	No	0 V	
More than 2	1	$\mathrm{f}_{\mathrm{H}}$	Single tone
No	More than 2	0 V	
1	More than 2	$\mathrm{f}_{\mathrm{L}}$	Single tone
More than 2	More than 2		

* The tone output shown is in the case when the load resistance is connected between the TONE OUT pin and the $V_{S S}$.
$f_{L}$ : Low group $\quad f_{H}$ : High group


## ELECTRICAL CHARACTERISTICS

## Absolute Maximum Ratings

Parameter	Symbol	Condition	Limit	Unit
Supply voltage	VDD	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	$-0.3 \sim 9.5$	V
Storage temperature	Tstg		$-55 \sim+150$	$\mathrm{C}^{\circ}$
Input voltage	$\mathrm{V}_{\text {I }}$		$\mathrm{V}_{\mathrm{SS}}-0.3 \sim \mathrm{~V}_{\mathrm{DD}}+0.3$	V
Output voltage	$\mathrm{VO}_{\mathrm{O}}$		$\mathrm{V}_{\mathrm{SS}}-0.3 \sim \mathrm{~V}_{\mathrm{DD}}+0.3$	V
Maximum current power   dissipation	PD	$\mathrm{Ta}=70^{\circ} \mathrm{C}$	500	mW

Operating Range

Parameter	Symbol	Condition	Limit	Unit
Supply voltage	VDD	-	$2.5 \sim 8.5$	V
Operating temperature	TOP	-	$-30 \sim+70$	$\mathrm{C}^{\circ}$

DC Characteristics

Parameter	Symbol	Conditions	Limit			Unit	Applicable pin
			Min	Typ	Max		
" ${ }^{\prime}$ " output voltage	$\mathrm{V}_{\mathrm{OH}}$	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ IOH $=15 \mathrm{~mA}$	1.5			v	XMIT
		$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$ I $\mathrm{OH}=50 \mathrm{~mA}$	7.0				
"OFF" leak current	Ioff	$\mathrm{V}_{\mathrm{DD}}=8.5 \mathrm{~V} \mathrm{~V}_{\mathrm{OF}}=0 \mathrm{~V}$			100	$\mu \mathrm{A}$	XMIT
"H" output current	IOH	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \mathrm{~V}_{\mathrm{OH}}=2.5 \mathrm{~V}$	0.17			mA	MUTE
		$\mathrm{V}_{\mathrm{DD}}=8.5 \mathrm{~V} \mathrm{~V}_{\mathrm{OH}}=8.0 \mathrm{~V}$	0.57				
"L" output voltage	IoL	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \mathrm{~V}_{\mathrm{OL}}=0.5 \mathrm{~V}$	0.53			mA	MUTE
		$\mathrm{V}_{\mathrm{DD}}=8.5 \mathrm{~V} \mathrm{~V}_{\mathrm{OL}}=0.5 \mathrm{~V}$	2.0				
" H " input voltage	$\mathrm{V}_{\text {IH }}$		$0.7 \mathrm{~V}_{\text {DD }}$		$V_{\text {DD }}$		$\begin{aligned} & \overline{\mathrm{C} 1} \sim \overline{\mathrm{C4}}, \\ & \overline{\mathrm{R} 1} \sim \overline{\mathrm{R} 4} \end{aligned}$
"L" input voltage	$V_{\text {IL }}$		$\mathrm{V}_{\text {SS }}$		0.3 V ${ }_{\text {DD }}$		"
"L" input current	IIL	$\mathrm{V}_{\mathrm{DD}}=8.5 \mathrm{~V} \mathrm{~V}_{\text {IL }}=0 \mathrm{~V}$	0.0567		0.425	mA	"
"H" input current	IIH	$\mathrm{V}_{\mathrm{DD}}=8.5 \mathrm{~V} \mathrm{~V}_{1 \mathrm{H}}=8.5 \mathrm{~V}$			10	$\mu \mathrm{A}$	"
"TONE OUT" output voltage (Single tone)	Vout	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \text { RL=1 } \mathrm{K} \Omega \\ \text { (Row tone) } \end{gathered}$	235		437	$\underset{\mathrm{rms}}{ }$	TONE OUT
Difference of high/ low band level	dB CR	$V_{\text {DD }}=3.0 \sim 8.5 \mathrm{~V}$	1	1.5	2	dB	"
Distortion	\% DIS	$\mathrm{V}_{\mathrm{DD}}=3.0 \sim 8.5 \mathrm{~V}$			10	\%	"
"H" input current	Ith	$\mathrm{V}_{\mathrm{DD}}=8.5 \mathrm{~V} \quad \mathrm{~V}_{1}=8.5 \mathrm{~V}$			1	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\text { SINGLE }} \\ & \text { TONE } \\ & \hline \text { INHIBIT } \end{aligned}$
"L' input current	IIL	$\mathrm{V}_{\mathrm{DD}}=8.5 \mathrm{~V} \quad \mathrm{~V}_{1}=0 \mathrm{~V}$	0.0567		0.425	mA	"
"H" input voltage	$\mathrm{V}_{\text {IH }}$		$0.7 \mathrm{~V}_{\text {DD }}$		$V_{\text {DD }}$	V	"
" L " input voltage	$V_{\text {IL }}$		$\mathrm{V}_{\text {SS }}$		$0.3 V_{D D}$	V	"
Power consumption (Stand-by)	IDDS	No load $\qquad$ Key-OFF			200	$\mu \mathrm{A}$	"
Power consumption (Operating)	IDD	$\text { No load } \begin{aligned} & \mathrm{V} \mathrm{DD}=8.5 \mathrm{~V} \\ & \text { Key-ON } \end{aligned}$			25	mA	
"L' output voltage	VOL	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$ IOL $=0.2 \mathrm{~mA}$	0.4			V	$\begin{aligned} & \text { C1~C4, } \\ & \text { R1~R4 } \end{aligned}$
TONE OUT Rise Time	tRise	$V_{D D}=3.0 \sim 8.5 \mathrm{~V}$			5	mS	TONE OUT

## Sample Waveform of The Single Tone



Tone Amplitude (mV rms)


## OIKI semiconductor

## MSM6234RS

## DTMF TONE DIALER LSI

## GENERAL DESCRIPTION

The MSM6234RS is a TONE dialer LSI which is fabricated by OKI's low power consumption CMOS silicon gate technology.

The MSM6234RS can generate 16 kinds of DTMF (Dual Tone Multi Frequency) signals each of which consists of 4 higher group frequency and 4 lower group frequency.

## FEATURES

- The standard 2 of 8 keyboard can be used.
- The low power consumption by use of CMOS silicon gate technology.
- Supply voltage $2.5 \mathrm{~V} \sim 8.5 \mathrm{~V}$.
- Either single tone or dual tone output.
- 3.579545 MHz crystal oscillation.
- Interface with microcomputer.


## FUNCTIONAL BLOCK DIAGRAM



## PIN CONFIGURATION

16 Lead Plastic DIP (Top View)


## PIN DESCRIPTION


$\overline{\mathrm{R} 1} \sim \overline{\mathrm{R} 4}$ are the input pins of thr row side, while $\overline{\mathrm{C} 1} \sim \overline{\mathrm{C} 4}$ are the input pins of the column side. All of those pins are provided with the pull up resistor of $40 \mathrm{~K} \sim 100 \mathrm{~K}$ ohms internally.
The dual tone is output from the TONE OUT pin, by setting both of a row input and a column input to the ground voltage.

The Table 1 (See Note) shows the relation between the nominal frequency and the tone output frequency, while the Table 2 (See Note) shows the input condition of $\overline{\mathrm{R} 1} \sim \overline{\mathrm{R} 4}$ pins and $\overline{\mathrm{C} 1} \sim \overline{\mathrm{C}} 4$ pins.

- Refer to the Note.
$\overline{\mathrm{AKD}}$ pins drives the external bipolar transistor by its N -channel open drain output. This pin is open when the key input is off, while it becomes low when the key input is on. $\overline{A K D}$ is used for the mute of the transmitter/receiver.

$\overline{\text { AKD }} \overline{\text { Open }} \quad \begin{aligned} & \text { Open }\end{aligned}$

Pin Name	Pin No.	Function
TONE DISABLE	2	This is an input pin to control the output of the TONE OUT pin. When the input to this pin is high level, the TONE OUT pin normally operates. When the input to this pin is low level, however, the output from the TONE OUT pin is prohibited even if the key input is on.   AKD is effective at that time. This pin is provided with the pull up resistance of $20 \mathrm{~K} \sim 150 \mathrm{~K}$ ohms internally.
SYNGLE TONE INHIBIT	15	When more than two columns are selected against only one row, or when more than 2 rows are selected against only one column; the single tone is output from the TONE OUT pin. This SINGLE TONE INHIBIT pin is a negative logic input pin to control the output of the TONE OUT pin in those cases. Refer to the Table 4.   When the input to this pin is high level, both of the single tone and dual tone are output from the TONE OUT pin. When the input to this pin is low level, however, the single tone is prohibited to output from the TONE OUT pin and becomes DC level.   This pin is provided with the pull up resistance of $20 \mathrm{~K} \sim 150 \mathrm{~K}$ ohms.
TONE OUT	16	The low group frequency and the high group frequency selected by the keyboard are synthesized and output from this TONE OUT pin. Because the output form is the NPN open emitter style, the load resistance must be connected externally. It is same for the case of the single tone output. The output amplitude of the high group is bigger than that of the low group by $1 \sim 2 \mathrm{~dB}$.   The distortion of the dual tone is maximum $10 \%$.
$\mathrm{V}_{\text {DD }}, \mathrm{V}_{\text {SS }}$	1, 6	$V_{D D}$ is a power supply pin.   $\mathrm{V}_{\mathrm{SS}}$ is a ground pin.

## Note:

Table 1

Effective input		Nominal frequency	Tone output frequency	Accuracy	Remarks
(ROW)	$\overline{\mathrm{R} 1}$	697 Hz	699.1 Hz	+0.30 \%	Low group
	$\overline{\mathrm{R} 2}$	770 Hz	766.2 Hz	-0.49 \%	
	$\overline{\mathrm{R} 3}$	852 Hz	847.4 Hz	-0.54\%	
	$\overline{\mathrm{R} 4}$	941 Hz	948.0 Hz	+0.74\%	
	$\overline{\mathrm{C} 1}$	1209 Hz	1215.9 Hz	+0.57\%	High group
(COLUMN)	C2	1336 Hz	1331.7 Hz	-0.32\%	
	$\overline{\mathrm{C}}$	1477 Hz	1471.9 Hz	-0.35\%	
	$\overline{\mathrm{C}}$	1633 Hz	1645.0 Hz	+0.73\%	

## Table 2

Row input	Column input	Tone output*	Note
No	No	0 V	
1	1	$\mathrm{f}_{\mathrm{L}}+\mathrm{f}_{\mathrm{H}}$	Dual tone
No	1	$\mathrm{f}_{\mathrm{H}}$	Single tone   (Only column)
1	No	0 V	
More than 2	No	0 V	
More than 2	1	$\mathrm{f}_{\mathrm{H}}$	Single tone
No	More than 2	0 V	
1	More than 2	$\mathrm{f}_{\mathrm{L}}$	Single tone
More than 2	More than 2	0 V	

* The tone output shown is in the case when the load resistance is connected between the TONE OUT pin and the $V_{S S}$.
$\mathrm{f}_{\mathrm{L}}$ : Low group
${ }^{f} \mathrm{H}$ : High group


## Sample interface circuit with microcomputer



## ELECTRICAL CHARACTERISTICS

## Absolute Maximum Ratings

Parameter	Symbol	Condition	Limit	Unit
Supply voltage	VDD	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	$-0.3 \sim 9.5$	V
Storage temperature	Tstg		$-55 \sim+150$	${ }^{\circ} \mathrm{C}$
Input voltage	$\mathrm{V}_{\mathrm{I}}$		GND-0.3 $\sim \mathrm{VDD}^{\circ}+0.3$	V
Output voltage	$\mathrm{VO}_{\mathrm{O}}$		GND-0.3 $\sim \mathrm{VDD}+0.3$	V

## Operating Range

Parameter	Symbol	Condition	Limit	Unit
Supply voltage	VDD	-	$2.5 \sim 8.5$	V
Operating temperature	TOP	-	$-30 \sim+70$	${ }^{\circ} \mathrm{C}$

## DC Characteristics

Parameter	Symbol	Conditions	Limit			Unit	Applicable pin
			Min	Typ	Max		
" H " input voltage	$\mathrm{V}_{\text {IH }}$		0.7 V DD		VDD	V	$\begin{aligned} & \overline{\overline{\mathrm{C} 1} \sim \overline{\mathrm{C} 4}}, \\ & \overline{\mathrm{R} 1} \sim \overline{\mathrm{R} 4} \end{aligned}$
"L' input voltage	$V_{\text {IL }}$		$\mathrm{V}_{\text {SS }}$		0.3 V ${ }_{\text {DD }}$	V	"
"L' input current	1 IL	$\mathrm{V}_{\mathrm{DD}}=8.5 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	0.0567		0.425	mA	''
"H" input current	$\mathrm{I}_{\mathrm{IH}}$	$\mathrm{V}_{\text {DD }}=8.5 \mathrm{~V} \mathrm{~V}_{\text {IH }}=10 \mathrm{~V}$			10	$\mu \mathrm{A}$	"
"TONE OUT" output current	VOUT	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega$	235		437	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{rms} \end{aligned}$	TONE OUT
Difference of high/ low band level	dB CR	$V_{D D}=3.0 \sim 8.5 \mathrm{~V}$	1	1.5	2	dB	"
Distortion	\% DIS	$\mathrm{V}_{\mathrm{DD}}=3.0 \sim 8.5 \mathrm{~V}$			10	\%	"
"H' input current	${ }^{1 / H}$	$V_{D D}=8.5 \mathrm{~V} \quad \mathrm{~V}_{1 \mathrm{H}}=8.5 \mathrm{~V}$			1	$\mu \mathrm{A}$	$\begin{aligned} & \hline \text { TONE } \\ & \hline \text { DISABLE } \\ & \text { SIT }^{*} \end{aligned}$
"L" input current	IIL	$\mathrm{V}_{\mathrm{DD}}=8.5 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	0.0567		0.425	mA	"
"H" input voltage	$\mathrm{V}_{\text {IH }}$		0.7 V DD		V ${ }_{\text {DD }}$	V	"
"L" input voltage	VIL		$\mathrm{V}_{\text {SS }}$		$0.3 \mathrm{~V}_{\text {DD }}$	V	"
Power consumption (Stand-by)	IDDS	$\text { No load } \begin{aligned} & \mathrm{VDD}=8.5 \mathrm{~V} \\ & \text { Key-OFF } \end{aligned}$			200	$\mu \mathrm{A}$	"
Power consumption (Operating)	IDD	$\text { No load } \begin{aligned} & \mathrm{VDD=8.5V} \\ & \mathrm{Key-ON} \end{aligned}$			25	mA	
"L" output current	${ }^{\text {IOL }}$	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{OL}}=0.5 \mathrm{~V}$	0.53	1.3		mA	$\overline{\text { AKD }}$
		$\mathrm{V}_{\mathrm{DD}}=8.5 \mathrm{~V} \mathrm{~V}_{\mathrm{OL}}=0.5 \mathrm{~V}$	2.0	5.3			
"OFF" leak current	IOFF				10	$\mu \mathrm{A}$	$\overline{\text { AKD }}$
TONE OUT Rise Time	tRise	$V_{D D}=3.0 \sim 8.5 \mathrm{~V}$		3.0	5.0	mA	TONE OUT

* $\overline{\text { SIT }}=\overline{\text { SINGLE TONE INHIBIT }}$


## Sample Output Waveform of the Single Tone



Tone Amplitude (mV rms)


II


## OIEI semiconductor

## MSM6932 ( $\mu$-Law)/MSM6933 (A-Law)

SINGLE CHIP CODEC WITH FILTER (COMBO)

## GENERAL DESCRIPTION

MSM6932 and MSM6933 are CMOS devices containing a companding CODEC and PCM filters on a single chip. It converts voice signals to PCM signals ( $\mu$-law or A-law) and vice versa. It contains analog pre-filter, transmit switched capacitor filter (SCF), receive SCF, analog post-filter and CODEC.

The transmit section and the receive section are designed to operate in both synchronous and asychronous applications.

Each section requires sampling clock ( 8 kHz ) and data clock (from 64 kHz to 2048 kHz ) respectively.

## FEATURES

- Pre-channel Single Chip CODEC with Filters.
- $\pm 5 \mathrm{~V}$ Power Supplies.
- Low Power Dissipation.

65 mW operating (TYP)
7 mW standby (TYP)

- Follows the $\mu$-companding Law. (MSM6932)
- Follows the A-companding Law. (MSM6933)
- Synchronous or Asynchronous Operation.
- Serial Data Rate of 64 KBPS to 2048 KBPS.
- On-chip Full Auto-ZERO Circuit.
- On-chip Analog Pre-Filter and PostFilter.
- Excellent Power Supply Rejection Ratio 25 dB (from 300 Hz to 300 kHz )
- On-chip Precision Voltage reference.


## BLOCK DIAGRAM



## PIN CONFIGURATION


※ only MSM6932

## ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{DD}}$	$-0.3 \sim+7$	V
	$\mathrm{V}_{\text {SS }}$	$+0.3 \sim-7$	V
Analog Input Voltage	$\mathrm{V}_{\text {REF }}$	$0 \sim \mathrm{~V}_{\mathrm{DD}}$	V
Digital Input Voltage	$\mathrm{V}_{\text {AIN }}$	$\mathrm{V}_{\text {SS }}-0.3 \sim \mathrm{~V}_{\mathrm{DD}}+0.3$	V
Operating Temperature	$\mathrm{V}_{\text {DIN }}$	$-0.3 \sim \mathrm{~V}_{\mathrm{DD}}+0.3$	V
Storage Temperature	$\mathrm{T}_{\mathrm{OP}}$	$0 \sim 70$	${ }^{\circ} \mathrm{C}$

## Recommended Operating Conditions

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Supply Voltage	VDD		4.75	5	5.25	V
	$\mathrm{V}_{\text {SS }}$		-5.25	-5	-4.75	V
Reference Voltage	$V_{\text {REF }}$		-	2.5	-	V
Analog Input Voltage	$V_{\text {AIN }}$		$-V_{\text {REF }}$	-	$+\mathrm{V}_{\text {REF }}$	V
Input High Voltage	$\mathrm{V}_{\text {IH }}$	XSYNC, XCLOCK, PCM IN, RSYNC, RCLOCK, TMC, BS	2.0	-	VDD	V
Input Low Voltage	VIL		0	-	0.8	V
Clock Frequency	$\mathrm{f}_{\mathrm{c}}$	XCLOCK, RCLOCK	64	-	2048	kHz
Sync Pulse Frequency	$\mathrm{f}_{5}$	XCLOCK, RSYNC	-	8	-	kHz
Clock Duty Ratio	$\mathrm{D}_{\mathrm{R}}$	XCLOCK, RCLOCK	-	50	-	\%
Digital Input Rise Time	${ }^{\text {I }} \mathrm{r}$	XSYNC, XCLOCK, PCM IN RSYNC, RCLOCK (Fig. 2)	-	-	50	ns
Digital Input Fall Time	${ }^{t} \mathrm{Ir}$	XSYNC, XCLOCK, PCM IN RSYNC, RCLOCK (Fig. 2)	-	-	50	ns
XMIT. Sync Timing	${ }^{t} \times \mathrm{S}$	XCLOCK $\rightarrow$ XSYNC (Fig. 3)	50	-	-	ns
	${ }^{\text {t }} \mathrm{S} \times$	XSYNC $\rightarrow$ XCLOCK (Fig. 3)	150	-	-	ns
RCV. Sync Timing	${ }^{\text {t } R S ~}$	RCLOCK $\rightarrow$ RSYNC (Fig. 3)	50	-	-	ns
	${ }^{\text {t }}$ SR	RSYNC $\rightarrow$ RCLOCK (Fig. 3)	100	-	-	ns
XMIT. Sync Pulse Width	twx	(Fig. 3)	1/fc	-	117	$\mu \mathrm{s}$
RCV. Sync Pulse Width	tWR	(Fig. 3)	1/fc	-	117	$\mu \mathrm{s}$
PCM IN Set-up Time	${ }^{t}$ DS	(Fig. 3)	100	-	-	ns
PCM IN Hold Time	${ }^{t} \mathrm{DH}$	(Fig. 3)	100	-	-	ns
Analog Output Allowable Load	$\mathrm{R}_{\mathrm{AL}}$		10	-	-	$k \Omega$
	$\mathrm{C}_{\text {AL }}$		-	-	100	PF
Digital Output Allowable Load	$\mathrm{R}_{\mathrm{DL}}$		1	-	-	k $\Omega$
	$C_{\text {DL }}$		-	-	100	PF
Operating Temperature	TOP		0	-	70	${ }^{\circ} \mathrm{C}$

## DC Characteristics

Parameter	Symbol	Condition		Min	Typ	Max	Unit
Supply Current (Operating)	${ }^{\prime} \mathrm{DD}_{1}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{SS}}=-5.25 \mathrm{~V} \end{aligned}$		-	-	11	mA
	${ }^{\prime} \mathrm{SS}_{1}$			-	-	11	mA
Supply Current (Stand-by)	${ }^{\prime} \mathrm{DD}_{2}$			-	1.0	3	mA
	$\mathrm{ISS}_{2}$			-	0.3	1.5	mA
Reference Current	IREF			-	--	100	$\mu \mathrm{A}$
Input High Voltage	$\mathrm{V}_{1 \mathrm{H}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{SS}}=-5.25 \mathrm{~V} \end{aligned}$		2.0	-	-	V
Input Low Voltage	VIL	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+4.75 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{SS}}=-4.75 \mathrm{~V} \end{aligned}$		-	-	0.8	V
Input Leakage Current	$1 / \mathrm{H}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{SS}}=-5.25 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{1}=5 \mathrm{~V}$	-	-	2.0	$\mu \mathrm{A}$
	IIL		$\mathrm{V}_{1}=0 \mathrm{~V}$	-	-	0.5	$\mu \mathrm{A}$
Output Low Voltage	VOL	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+4.75 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{SS}}=-4.75 \mathrm{~V} \end{aligned}$		-	-	0.4	V
Output Leakage Current	${ }^{\mathrm{I}} \mathrm{OH}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{SS}}=-5.25 \mathrm{~V} \end{aligned}$		-	-	10	$\mu \mathrm{A}$
Input Capacitance	$\mathrm{Cin}_{\text {IN }}$	Except for AIN		-	5	-	PF
		AIN		-	5	-	PF
Analog Input Resistance	$\mathrm{R}_{\mathrm{IN}}$	$\mathrm{fiN}<3.4 \mathrm{kHz}$		-	1	-	$\mathrm{M} \Omega$

## AC Characteristics



[^4]| Parameter | Symbol | Condition |  |  | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} f \\ (H z) \end{gathered}$ | Level (dBmo) |  |  |  |  |  |
| Gain Tracking | GT1 | 1020 | 3 | $\begin{gathered} V_{D D}= \\ +5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{SS}}= \\ -5 \mathrm{~V} \end{gathered}$ | -0.4 | - | 0.4 | dB |
|  | GT2 | 1020 | -10 |  | Reference Gain Value |  |  |  |
|  | GT3 | 1020 | -40 |  | -0.4 | - | 0.4 | dB |
|  | GT4 | 1020 | -50 |  | -0.9 | - | 0.9 | dB |
|  | GT5 | 1020 | -55 |  | -2.9 | - | 2.9 | dB |
| Idle Channel Noise *2 | NIDL |  |  |  | - | - | -71 | dBmOP |
| Absolute Delay Time |  |  |  |  | - | - | 0.52 | ms |
| Group Delay Time Frequency Response | ${ }^{\text {tGD1 }}$ | 500 | 0 |  | - | - | 1.5 | ms |
|  | ${ }^{\mathrm{t}} \mathrm{GD} 2$ | 600 | 0 |  | - | - | 0.75 | ms |
|  | ${ }^{\text {tGD3 }}$ | 1000 | 0 |  | - | - | 0.25 | ms |
|  | ${ }^{\text {tGD4 }}$ | 2600 | 0 |  | - | - | 0.25 | ms |
|  | ${ }^{\text {tGD5 }}$ | 2800 | 0 |  | - | - | 1.5 | ms |
| Single Frequency <br> Leakage Level | N1 | 8K |  |  | - | - | -50 | dBmO |
|  | N2 | 128K |  |  | - | - | -50 | dBmO |
| Cross Talk Attenuation | $\mathrm{C}_{\mathrm{R}}$ | 810 | 0 |  | 66 | - | - | dB |
| Digital Output Delay Time | ${ }^{\text {t }}$ SD |  |  | $\begin{gathered} \mathrm{V}_{\mathrm{DD}}= \\ +5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{SS}}= \\ -5 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}= \\ 2 \mathrm{k} \Omega \\ \mathrm{C}_{\mathrm{L}}= \\ 100 \mathrm{PF} \end{gathered}$ | 50 | - | 300 | ns |
|  | t $\times$ D1 |  |  |  | 50 | - | 300 | ns |
|  | ${ }^{t} \times$ D2 |  |  |  | 50 | - | 300 | ns |
|  | ${ }^{t} \times$ D3 |  |  |  | 50 | - | 300 | ns |
| Output Fall Time | to ${ }^{\text {d }}$ |  |  |  | - | - | 100 | ns |
| Absolute Gain *3 | AVS | 810 | 0 | $\begin{aligned} & V_{D D}= \\ & +5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{SS}}= \\ & -5 \mathrm{~V} \end{aligned}$ | -0.5 | 0 | 0.5 | dB |
|  | AVR | 810 | 0 |  | -0.5 | 0 | 0.5 | dB |

[^5]
## PIN DESCRIPTION

Pin Name	Pin No.	Function			
VSS	1	$\mathrm{V}_{\text {SS }}$ is a negative supply pin. The voltage supplied to this pin should be $-5 \vee \pm 5 \%$.			
TMC	2	Test mode control input pin.   TMC is a control input for operating mode selection, such as normal operating mode and analog loop-back mode.   The operating modes are listed in the following table.			
		"TMC"	Mode	"AOUT"	"AIN"
		$\begin{gathered} \mathrm{V}_{\text {IH }} \\ \left(2.0 \mathrm{~V} \mathrm{~V}_{\mathrm{DD}}\right) \end{gathered}$	Operating	Receive Signal Output Connected to RCVFIL Output	Xmit Signal Input
		$\begin{gathered} V_{I L} \\ (0 \sim 0.8 \mathrm{~V}) \end{gathered}$	Analog   Loop Back   (Refer to Fig. 1)	0 V	Disconnected
AIN	3	AIN is an analog signal input pin and is normally connected to the transmit filter input. The input analog signal is bandwidth-limited to 3.4 kHz and is converted to the 8 bits PCM signal.   The input analog signal must remain between $+V_{\text {REF }}$ and $-V_{\text {REF }}$ for accurate conversion.   In the analog loop-back mode, this pin is disconnected from any other circuits.			
AG	4	Analog ground pin.   AG is connected to the analog system ground.			
AOUT	5	AOUT is an analog signal output pin and is connected to the receive filter output. The output voltage range is $\pm 2.5 \mathrm{~V}$.			
(NC)	6				
$V_{\text {REF }}$	7	$V_{\text {REF }}$ is an input of the external voltage reference. This pin is left in open or connected to AG to activate the internal voltage reference.			
$V_{\text {DD }}$	8	$V_{D D}$ is a positive supply pin. The voltage supplied to this pin should be $+5 \mathrm{~V} \pm 5 \%$.			
$\mathrm{PCM}_{1 /}$	9	PCM IN is an input pin of the PCM signal. This signal is serial data and is converted to the analog signal under control of R SYNC and RCLOCK. The input PCM data rates range from 64 KBPS to 2048 KBPS .			
$\mathrm{R}_{\text {ClOCK }}$	10	$\mathrm{R}_{\text {CLOCK }}$ is an input pin of the clock that provides the basic timing and control signals required for the input of the PCM signal.   The frequency of this clock must be coincident with the input PCM data rate.			


Pin Name	Pin No.	Function
RSYNC	11	R SYNC is an input pin of the pulse signal that is synchronized with R CLOCK and is used for taking out the required signal from the input serial PCM data. This signal makes the whole operation in the receive section synchronized. When RSYNC is connetected continuously low or continuously high, the receive section is powered down.   The frequency of this signal is $8 \mathrm{kHz} \pm 50 \mathrm{ppm}$.
BS	12	7 bits control input pin.   In the normal mode and the analog loop back mode, a positive or negative transient of BS signsl provides a 7 bits decode operation with MSM6932. (Refer to Fig. 4)
DG	13	Digital ground pin.   DG is connected to the digital system ground.
$\mathrm{X}_{\text {SYNC }}$	14	$X_{\text {SYNC }}$ is an input pin of the pulse signal that is synchrorized with $X_{\text {CLOCK }}$ and makes the operation in the transmit section synchronized.   The output signal from the PCMOUT pin is naturally synchronized with this signal. When $X_{\text {SYNC }}$ is connected continuously low or continuously high, the transmit section is powered down. The frequency of this signal is $8 \mathrm{kHz} \pm 50 \mathrm{ppm}$.
$\mathrm{X}_{\text {CLOCK }}$	15	$\mathrm{X}_{\text {CLOCK }}$ is an input pin of the clock that provides the basic timing and control signals required for the output of PCM signal. Clock rates of $64 \mathrm{kHz} \sim 2048 \mathrm{kHz}$ can be used for $\mathrm{X}_{\text {CLOCK }}$.
PCMOUT	16	PCMOUT is an output pin of the PCM signal. The result of conversion from analog to digital is output from this pin as 8 bits serial data. This data is shifted out under control of $X_{\text {SYNC }}$ and $X_{\text {CLOCK }}$.   Because of an open-drain output, wired-OR connections are easily performed.



Note: A positive or negative transient of BS signal provides a 7 bits decode operation.
(Refer to Fig. 4)
This pin is not connected to internal circuits with MSM6933.

## TEST CIRCUIT



Note 1: $\overline{\text { SYNC }}$ and $\overline{C L O C K}$ timing.


Note 2: Make the connection wire between No. 4 pin and No. 13 pin as short as possible.
Note 3: Use a test socket with short leads.


Figure 2 Definitions of Rise Time and Fall Time


Figure 3 Basic Time Chart


Figure 4 Time Chart for 7 Bits Decode

# OKI semiconductor <br> MSM6962/6982( $\mu$-Law) MSM6963/6983(A-Law) 

SINGLE CHIP CODEC WITH FILTER (COMBO)

## GENERAL DESCRIPTION

MSM6962, MSM6982, MSM6963 and MSM6983 are CMOS devices containing a companding CODEC and PCM filters on a single chip. It converts voice signals to PCM signals ( $\mu$-law or A-law) and vice versa. It contains analog pre-filter, transmit switched capacitor filter (SCF), receive SCF, analog post-filter and CODEC.

The transmit section and the receive section are designed to operate in both synchronous and asychronous applications.

Each section requires sampling clock ( 8 kHz ) and data clock ( $512 \mathrm{kHz}, 1024 \mathrm{kHz}$, $1536 \mathrm{kHz}, 1544 \mathrm{kHz}$ or 2048 kHz ) respectively.

## FEATURES

- Per-channel Single Chip CODEC with Filters.
- $\pm 5$ V Power Supplies
- Low Power Dissipatoin

55 mW operating (TYP)
4 mW standby (TYP)

- Follows the $\mu$-companding Law. (MSM6962 and MSM6982)
- Follows the A-companding Law. (MSM6963 and MSM6983)
- Synchronous or Asynchronous Operation.
- Serial Data Rate of 512KBPS, 1024KBPS, 1536 KBPS, 1544 KBPS or 2048KBPS.
- On-chip Full Auto-ZERO Circuit.
- On-chip Analog Pre-Filter and PostFilter.
- Excellent Power Supply Rejection Ratio 30 dB (from 300 Hz to 300 kHz )
- On-chip Precision Voltage reference.


## PACKAGE VARIETY

$\mu$-Law	A-Law	Package	No. of Pin
MSM6962RS	MSM6963RS	Plastic DIP	16
MSM6982JS	MSM6983JS	PLCC	28
MSM6982ES	MSM6983ES	LCC	28

## BLOCK DIAGRAM



## PIN CONFIGURATION



## ELECTRICAL CHARACTERISTICS

## Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply Voltage	VDD	$-0.3 \sim+7$	V
	$\mathrm{V}_{\text {SS }}$	$+0.3 \sim-7$	V
Reference Voltage	$V_{\text {REF }}$	$0 \sim V_{\text {DD }}$	V
Analog Input Voltage	$V_{\text {AIN }}$	$\mathrm{V}_{\text {SS }}-0.3 \sim \mathrm{~V}_{\text {DD }}+0.3$	V
Digital Input Voltage	VDIN	$-0.3 \sim V_{D D}+0.3$	V
Operating Temperature	TOP	$-10 \sim 80$	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55~150	${ }^{\circ} \mathrm{C}$

## Recommended Operating Conditions

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{DD}}$		4.75	5	5.25	v
	$\mathrm{V}_{\text {SS }}$		-5.25	-5	-4.75	V
Reference Voltage	$V_{\text {REF }}$		-	2.5	-	V
Analog Input Voltage	$V_{\text {AIN }}$		- $\mathrm{V}_{\text {REF }}$	-	+ $\mathrm{V}_{\text {REF }}$	$\checkmark$
Input High Voitage	$\mathrm{V}_{\text {IH }}$	XSYNC, XCLOCK, PCM IN RSYNC, RCLOCK, TMC, BS	2.0	-	$V_{\text {DD }}$	$\checkmark$
Input Low Voltage	$V_{\text {IL }}$		0	-	0.8	V
Clock Frequency	${ }^{\mathrm{f}} \mathrm{c}$	XCLOCK, RCLOCK	$\begin{gathered} 512,1024 \\ 1536,1544,2048 \end{gathered}$			kHz
Sync Pulse Frequency	$\mathrm{f}_{\mathrm{s}}$	XCLOCK, RSYNC	-	8	-	kHz
Clock Duty Ratio	$\mathrm{D}_{\mathrm{R}}$	XCLOCK, RCLOCK	40	50	60	\%
Digital Input Rise Time	${ }^{\text {t/r }}$	XSYNC, XCLOCK, PCM IN RSYNC, RCLOCK (Fig. 2)	-	-	50	ns
Digital Input Fall Time	${ }^{\text {I }}$ r	XSYNC, XCLOCK, PCM IN RSYNC, RCLOCK (Fig. 2)	-	-	50	ns
XMIT. Sync Timing	${ }^{\text {txs }}$	XCLOCK $\rightarrow$ XSYNC (Fig. 3)	50	-	-	ns
	${ }^{\text {t }} \mathrm{S} X$	XSYNC $\rightarrow$ XCLOCK (Fig. 3)	150	-	-	ns
RCV. Sync Timing	trs	RCLOCK $\rightarrow$ RSYNC (Fig. 3)	50	-	-	ns
	${ }^{\text {t }}$ SR	RSYNC $\rightarrow$ RCLOCK (Fig. 3)	100	-	-	ns
XMIT. Sync Pulse Width	twx	(Fig. 3)	1/fc	-	117	$\mu \mathrm{s}$
RCV. Sync Pulse Width	twr	(Fig. 3)	1/fc	-	117	$\mu \mathrm{s}$
PCM IN Set-up Time	${ }^{\text {t }}$ S	(Fig. 3)	100	-	-	ns
PCM IN Hold Time	${ }^{\text {t }} \mathrm{DH}$	(Fig. 3)	100	-	-	ns
Analog Output Allowable Load	$\mathrm{R}_{\text {AL }}$		10	-	-	k $\Omega$
	$\mathrm{C}_{\mathrm{AL}}$		-	-	100	PF
Digital Output Allowable Load	R ${ }_{\text {DL }}$		1	-	-	k $\Omega$
	$C_{\text {DL }}$		-	-	100	PF
Operating Temperature	TOP		0	-	70	${ }^{\circ} \mathrm{C}$

DC Characteristics

Parameter	Symbol	Condition		Min	Typ	Max	Unit
Supply Current (Operating)	${ }^{\prime} \mathrm{DD}_{1}$	$\begin{aligned} & V_{D D}=+5.25 \mathrm{~V} \\ & V_{S S}=-5.25 \mathrm{~V} \end{aligned}$		-	5.5	11	mA
	${ }^{\prime} \mathrm{SS}_{1}$			-	5.0	11	mA
Supply Current (Stand-by)	${ }^{\prime} \mathrm{DD}_{2}$			-	1.0	3	mA
	${ }^{\prime} \mathrm{SS}_{2}$			-	0.3	1.5	mA
Reference Current	IREF			-	5	100	$\mu \mathrm{A}$
Input High Voltage	$\mathrm{V}_{\text {IH }}$	$\begin{aligned} & V_{D D}=+5.25 \mathrm{~V} \\ & V_{S S}=-5.25 \mathrm{~V} \end{aligned}$		2.0	1.7	-	V
Input Low Voltage	VIL	$\begin{aligned} & V_{D D}=+4.75 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{SS}}=-4.75 \mathrm{~V} \end{aligned}$		-	1.6	0.8	V
Input Leakage Current	1/H	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{SS}}=-5.25 \mathrm{~V} \end{aligned}$	$V_{1}=5 \mathrm{~V}$	-	< 0.5	2.0	$\mu \mathrm{A}$
	IIL		$\mathrm{V}_{1}=0 \mathrm{~V}$	-	< 0.5	0.5	$\mu \mathrm{A}$
Output Low Voltage	$\mathrm{V}_{\mathrm{OL}}$	$\begin{aligned} & V_{D D}=+4.75 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{SS}}=-4.75 \mathrm{~V} \end{aligned}$		-	$<0.2$	0.4	V
Output Leakage Current	${ }^{\mathrm{I}} \mathrm{OH}$	$\begin{aligned} & V_{D D}=+5.25 \mathrm{~V} \\ & V_{S S}=-5.25 \mathrm{~V} \end{aligned}$		-	$<5$	10	$\mu \mathrm{A}$
Input Capacitance	$\mathrm{CIN}_{\text {IN }}$	Except for AIN		-	5	-	PF
		AIN		-	5	-	PF
Analog Input Resistance	$\mathrm{R}_{\mathrm{IN}}$	$\mathrm{f}_{\mathrm{IN}}<3.4 \mathrm{kHz}$		-	1	-	$\mathrm{M} \Omega$

AC Characteristics

*1 : The measurement is taken with P-message filter.


Parameter		Symbol	Condition		Min	Typ	Max	Unit	
		$\begin{gathered} f \\ (\mathrm{~Hz}) \end{gathered}$	Level (dBmO)						
Transmit Gain Tracking			GT T1	1020	3	-0.2	-0.01	0.2	dB
		GT T2	-10		Reference Value				
		GT T3	-40		-0.2	0.05	0.2		
		GT T4	-50		-0.4	0.25	0.4		
		GT T5	-55		-0.8	0.10	0.8		
Receive Gain Tracking		GT R1	1020	3	-0.2	0.02	0.2		
		GT R2		-10	Reference Value				
		GT R3		-40	-0.2	-0.05	0.2		
		GT R4		-50	-0.4	-0.16	0.4		
		GT R5		-55	-0.8	-0.13	0.8		
Idle Channel Noise *3	Transmit	NIDL ${ }^{\text {T }}$		-	-	-89	-75	dBmOp	
	Receive	NIDL R	-	-	-	-89	-75		
Analog Input Level		VIN	1020	0	1,182	1,252	1,326	Vrms	
Analog Output Level		$\mathrm{V}_{\text {OUT }}$	1020	0	1,182	1,252	1,326	Vrms	
Absolute Delay Time		${ }^{\text {t }}$ D	-	-	-	0.47	0.5	ms	
Transmit Group Delay Time		${ }^{\text {tGD }}$ T1	500	0	-	0.2	0.75	ms	
		${ }^{\text {tGD }}$ T2	600		-	0.1	0.35		
		${ }^{\text {tGD }}$ T3	1000		-	0	0.125		
		${ }^{\mathrm{t}} \mathrm{GD}$ T4	1800		Reference Value				
		$\mathrm{t}_{\mathrm{GD}}$ T5	2600		-	0.05	0.125		
		$\mathrm{t}_{\mathrm{GD}}$ T6	2800		-	0.07	0.75		
Receive Group Delay Time		${ }^{\text {tGD R1 }}$	500	0	-	-0.02	0.75	ms	
		${ }_{\text {t GD }}$ R2	600		-	-0.02	0.35		
		${ }^{\text {tGD }}$ R3	1000		-	0.03	0.125		
		${ }^{\text {tGD }}$ R4	1800		Reference Value				
		$\mathrm{tGD}^{\text {R5 }}$	2600		-	0.07	0.125		
		${ }^{\text {t GD }}$ R6	2800		-	0.10	0.75		

[^6]| Parameter |  | Symbol | Condition |  | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | f | Level |  |  |  |  |
| Crosstalk | T to R |  | $\mathrm{C}_{R}{ }^{\text {T }}$ | 1020 | 0 | - | -90 | -66 | dBmO |
|  | R to T | $C_{R} R$ | 1020 | - |  | -78 | -66 |  |  |
| Discrimination Against Out-of-Band Input Signals |  | DIS | $\begin{gathered} 4.6 \mathrm{~K} \\ 72 \mathrm{~K} \end{gathered}$ | -25 | 30 | 32 | - | dB |  |
| Spurious Out-of-band Signals at the Output |  | SO | $\begin{aligned} & 300 \sim \\ & 3400 \end{aligned}$ | 0 | - | -33 | -30 | dBmO |  |
| Intermodulation |  | IMD 1 | $\begin{array}{r} \mathrm{fa}=470 \\ \mathrm{fb}=320 \end{array}$ | -4 | - | -40 | -38 | dB |  |
| Spurious In-band Signals at the Output |  | SI | 1020 | 0 | - | -45 | -40 | dBmO |  |
| Single Frequency Noise |  | $\mathrm{N}_{\text {S }}$ | - | - | - | -60 | -50 | dBmO |  |
| VDD PSRR | Transmit | PPSR T | $\begin{gathered} 0 \sim \\ 300 K \end{gathered}$ | $\begin{gathered} 200 \\ \mathrm{mVp}-\mathrm{p} \end{gathered}$ | - | 30 | - | dB |  |
|  | Receive | PPSR R |  |  | - | 30 | - |  |  |
| VSS PSRR | Transmit | NPSR T |  |  | - | 30 | - | dB |  |
|  | Receive | NPSR R |  |  | - | 30 | - |  |  |
| Digital Output Delay Time |  | ${ }^{\text {t }}$ SD | $\begin{aligned} & R \text { pull }=1 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \end{aligned}$ |  | 50 | 150 | 200 | ns |  |
|  |  | ${ }^{t} \times \mathrm{D}_{1}$ |  |  | 50 | 100 | 200 |  |  |
|  |  | ${ }^{t} \times \mathrm{D}_{2}$ |  |  | 50 | 100 | 200 |  |  |
|  |  | ${ }^{t} \times \mathrm{D}_{3}$ |  |  | 50 | 180 | 200 |  |  |
| Digital Output Fall Time |  | ${ }^{t}$ DDf |  |  | - | 20 | 100 | ns |  |

PIN DESCRIPTION

Pin Name	Pin No.		Function			
	RS	Es, JS				
$\mathrm{V}_{\text {SS }}$	1	1	$\mathrm{V}_{\text {SS }}$ is a negative supply pin. The voltage supplied to this pin should be $-5 \mathrm{~V} \pm 5 \%$.			
TMC	2	2	Test mode control input pin.   TMC is a control input for operating mode selection, such as normal operating mode and analog loop-back mode.   The operating modes are listed in the following table.			
			"TMC	Mode	"AOUT"	AIN"
			$\begin{gathered} \mathrm{V}_{I H} \\ \left(2.0 \mathrm{~V} \mathrm{~V}_{\mathrm{DD}}\right) \end{gathered}$	Operating	Receive signal output Connected to to RCVFLI output	Xmit signal input
			$\begin{gathered} V_{\text {IL }} \\ (0 \sim 0.8 \mathrm{~V}) \end{gathered}$	Analog Loop back (Refer to Fig. 1)	ov	Disconnected
AIN	3	3	AIN is a analog signal input pin and is normally connected to the transmit filter input. The input analog signal is bandwidth-limited to 3.4 kHz and is converted to the 8 bits PCM signal.   The input analog signal must remain between + VREF and - VREF for accurate conversion.   In the analog loop-back mode, this pin is disconnected from any other circuits.			
AG	4	4,5	Analog ground pin.   AG is connected to the analog system ground.			
Aout	5	11	AOUT is a analog signal output pin and is connected to the receive filter output.   The output voltage range is $\pm 2.5 \mathrm{~V}$.			
$V_{\text {REF }}$	7	13	$V_{\text {REF }}$ is an input pin of the external voltage reference. This pin is left in open or connected to $A G$ to activate the internal voltage reference.			
VDD	8	14,15	$V_{D D}$ is a positive supply pin. The voltage supplied to this pin should be +5 $\pm 5 \%$.			
PCM ${ }_{\text {IN }}$	9	16	$\mathrm{PCM}_{I N}$ is an input pin of the PCM signal. This signal is serial data and is converted to the analog signal under control of $\mathrm{R}_{\text {SYNC }}$ and $\mathrm{R}_{\text {CLOCK }}$. The input PCM data rates are 512 KBPS , $1024 \mathrm{KBPS}, 1536 \mathrm{KBPS}, 1544 \mathrm{KBPS}$ or 2048 KBPS .			


Pin Name	Pin No.		Function
	RS	ES, JS	
$\mathrm{R}_{\text {CLOCK }}$	10	17	$\mathrm{R}_{\text {CLOCK }}$ is an input pin of the clock that provides the basic timing and control signals required for the input of the PCM signal.   The frequency of this clock must be coincident with the input PCM data rate.
RSYNC	11	18	$R_{\text {SYNC }}$ is an input pin of the pulse signal that is synchronized with R CLOCK and is used for taking out the required signal from the input serial PCM data. This signal makes the whole operation in the receive section synchronized. When RSYNC is connected continuously low or continuously high, the receive section is powered down.   The frequency of this signal is $8 \mathrm{kHz} \pm 50 \mathrm{ppm}$.
BS	12	19	7 bits control input pin.   In the normal mode and the analog loop back mode, a positive or negative transient of BS signal provides a 7 bits. decode operation with MSM6962 and MSM6982. (Refer to Fig. 4)
DG	13	25	Digital ground pin.   DG is connected to the digital system ground.
XSYNC	14	26	$X_{\text {SYNC }}$ is an input pin of the pulse signal that is synchronized with $X_{\text {CLOCK }}$ and makes the whole operation in the transmit section synchronized.   The output signal from the PCMOUT pin is naturally synchronized with this signal. When $X_{\text {SYNC }}$ is connected continuously low or continuously high, the transmit section is powered down. The frequency of this signal is $8 \mathrm{kHz} \pm 50 \mathrm{ppm}$.
XCLOCK	15	27	$\mathrm{X}_{\text {CLOCK }}$ is an input pin of the clock that provides the basic timing and control signals required for the output of PCM signal. Clock rates of 512 KBPS, 1024 KBPS, 1536 KBPS, 1544 KBPS or 2048 KBPS can be used for $\mathrm{X}_{\mathrm{CLOCK}}$.
PCMOUT	16	28	PCM OUT is an output pin of the PCM signal. The result of conversion from analog to digital is output from this pin as 8 bits serial data. This data is shifted out under control of $X_{\text {SYNC }}$ and X CLOCK.   Because of an open-drain output, wired-OR connections are easily performed.



Figure 1


GAIN TRACKING CHARACTERISTICS


## TEST CIRCUIT FOR MSM6962 AND MSM6963



Note 1: SYNC and CLOCK timing.


Note 2: Make the connection wire between AG and DG as short as possible.
Note 3: Use a test socket with short leads.


Figure 2 Definitions of Rise Time and Fall Time


Figure 3 Basic Time Chart


■

## OKXI semiconductor

# MSM6996H/6996V/6998(A-Law) MSM6997H/6997V/6999( $\mu$-Law) 

SINGLE CHIP CODEC WITH FILTER (COMBO)

## GENERAL DESCRIPTION

MSM6996, MSM6997, MSM6998, MSM6999 are CMOS devices containing a companding CODEC and PCM filters on a single chip. It converts voice signals to PCM signals ( $\mu$-law or A-law) and vice versa. It contains analog pre-filter, transmit switched capacitor filter (SCF), receive SCF, analog post-filter and CODEC.

The transmit section and the receive section are designed to operate in both synchronous and asynchronous applications.

Each section requires sampling clock ( 8 kHz ) and data clock ( $64 \sim 2048 \mathrm{kHz}$ ) respectively.

## FEATURES

- Per-channel Single Chip CODEC with Filters.
- $\pm 5 \mathrm{~V}$ Power Supplies.
- Low Power Dissipation.

70 mW operating (TYP)
5 mW standby (TYP)

- Follows the A-companding Law (MSM6996, MSM6998)
- Follows the $\mu$-companding Law (MSM6997, MSM6999)
- Synchronous or Asynchronous Operation.
- $600 \Omega$ drive (MSM6996, MSM6997)
- $600 \Omega$ push-pull drive (MSM6998, MSM6999)
- Serial Data Rate Range: 64K BPS ~ 2048 K BPS.
- On-chip Full Auto-ZERO Circuits and PLLs.
- On-chip Analog Pre-Filter and PostFilter.
- Excellent Power Supply Rejection Ratio 30 dB (from 300 Hz to 300 kHz )
- On-chip Precision Voltage reference.
- Transmit level adjust.
- Standard 16 pin Package (ceramic or plastic)

BLOCK DIAGRAM (MSM6996H/MSM6996V/MSM6997H/MSM6997V)


## BLOCK DIAGRAM (MSM6998/MSM6999)



## PIN CONFIGURATION



## ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply Voltage	$V_{\text {DD }}$	$-0.3 \sim+7$	V
	$\mathrm{~V}_{\text {SS }}$	$+0.3 \sim-7$	V
Analog Input Voltage	$\mathrm{V}_{\text {AIN }}$	$\mathrm{V}_{\text {SS }}-0.3 \sim \mathrm{~V}_{\text {DD }}+0.3$	V
Digital Input Voltage	$\mathrm{V}_{\text {DIN }}$	$-0.3 \sim \mathrm{~V}_{\text {DD }}+0.3$	V
Operating Temperature	TOP	$-10 \sim+80$	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	$-55 \sim 150$	${ }^{\circ} \mathrm{C}$

## Recommended Operating Conditions

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Supply Voltage	$V_{\text {DD }}$	-	4.75	5	5.25	V
	$\mathrm{V}_{\text {SS }}$	-	-5.25	-5	-4.75	V
Analog Input Voltage	$V_{\text {AIN }}$	-	-2.5	-	+2.5	V
Input High Voltage	$\mathrm{V}_{\text {IH }}$	XSYNC, XCLOCK, PCM IN, RSYNC, RCLOCK, TMC, BS	2.0	-	VDD	V
Input Low Voltage	VIL		0	-	0.8	V
Clock Frequency	$\mathrm{f}_{\mathrm{c}}$	XCLOCK, RCLOCK	64	-	2048	kHz
Sync Pulse Frequency	$\mathrm{f}_{\mathrm{s}}$	XSYNC, RSYNC	-	8	-	kHz
Clock Duty Ratio	$\mathrm{D}_{\mathrm{R}}$	XCLOCK, RCLOCK	40	50	60	\%
Digital Input Rise Time	$\mathrm{t}_{1 \mathrm{r}}$	XSYNC, XCLOCK, PCM IN RSYNC, RCLOCK (Fig. 2)	-	-	50	ns
Digital Input Fall Time	${ }^{\text {Iff }}$	XSYNC, XCLOCK, PCM IN RSYNC, RCLOCK (Fig. 2)	-	-	50	ns
XMIT. Sync Timing	${ }^{t} \times \mathrm{S}$	XCLOCK $\rightarrow$ XSYNC (Fig. 3)	50	-	-	ns
	${ }^{\text {t }} \mathrm{S} \times$	XSYNC $\rightarrow$ XCLOCK (Fig. 3)	150	-	-	ns
RCV. Sync Timing	${ }^{\text {t R S }}$	RCLOCK $\rightarrow$ RSYNC (Fig. 3)	50	-	-	ns
	${ }^{t} S^{R}$	RSYNC $\rightarrow$ RCLOCK (Fig.3)	100	-	-	ns
XMIT. Sync Pulse Width	${ }^{\text {t }} \mathrm{W}$ X	(Fig. 3)	1/fc	-	117	$\mu \mathrm{s}$
PCV. Sync Pulse Width	tWR	(Fig. 3)	1/fc	-	117	$\mu \mathrm{s}$
PCM IN Set-up Time	${ }^{t}$ DS	(Fig. 3)	100	-	-	ns
PCM IN Hold Time	${ }^{t} \mathrm{DH}$	(Fig. 3)	100	-	-	ns
Analog Output Allowable Load	$\mathrm{R}_{\text {AL }}$	-	600	-	-	$\Omega$
	CAL	-	-	-	100	pF
Digital Output Allowable Load	RDL	-	1	-	-	$k \Omega$
	$C_{\text {DL }}$	-	-	-	100	pF
Operating Temperature	TOP	-	0	-	70	${ }^{\circ} \mathrm{C}$

DC Characteristics

Parameter	Symbol	Condition		Min	Typ	Max	Unit
Supply Current (Operating)	$\mathrm{I}_{\mathrm{DD}}$	$\begin{aligned} & V_{D D}=+5.25 \mathrm{~V} \\ & V_{S S}=-5.25 \mathrm{~V} \end{aligned}$		-	-	11	mA
	${ }^{\prime} \mathrm{SS}_{1}$			-	-	11	mA
Supply Current (Stand-by)	${ }^{\prime} \mathrm{DD}_{2}$			-	1.3	3	mA
	${ }^{\prime} \mathrm{SS}_{2}$			-	0.3	1.5	mA
Input High Voltage	$\mathrm{V}_{\text {IH }}$	$\begin{aligned} & V_{D D}=+5.25 \mathrm{~V} \\ & V_{S S}=-5.25 \mathrm{~V} \end{aligned}$		2.0	-	-	V
Input Low Voltage	$V_{\text {IL }}$	$\begin{aligned} & V_{D D}=+4.75 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{SS}}=-4.75 \mathrm{~V} \end{aligned}$		-	-	0.8	V
Input Leakage Current	${ }_{1 / H}$	$\begin{aligned} & V_{D D}=+5.25 \mathrm{~V} \\ & V_{S S}=-5.25 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{I}}=5 \mathrm{~V}$	-	-	2.0	$\mu \mathrm{A}$
	IIL		$\mathrm{V}_{1}=0 \mathrm{~V}$	-	-	0.5	$\mu \mathrm{A}$
Output Low Voltage	$\mathrm{V}_{\mathrm{OL}}$	$\begin{aligned} & V_{D D}=+4.75 \mathrm{~V} \\ & V_{S S}=-4.75 \mathrm{~V} \end{aligned}$		-	-	0.4	V
Output Leakage Current	${ }^{\mathrm{I} O H}$	$\begin{aligned} & V_{D D}=+5.25 \mathrm{~V} \\ & V_{S S}=-5.25 \mathrm{~V} \end{aligned}$		-	-	10	$\mu \mathrm{A}$
Input Capacitance	$\mathrm{CIN}_{\text {IN }}$	Except for AIN		-	5	-	pF
		AIN		-	5	-	$\rho F$
Analog Input Resistance	RIN	-		-	1	-	MS2

AC Characteristics

Parameter	Symbol	Condition		Min	Typ	Max	Unit
		$\begin{gathered} \mathrm{f} \\ (\mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \text { Level } \\ (\mathrm{dBmO}) \end{gathered}$				
Transmit Frequency Response	Loss $\mathrm{T}_{1}$	60	0	20	-	-	dB
	Loss $\mathrm{T}_{2}$	300		-0.1	-	0.2	
	Loss $\mathrm{T}_{3}$	820		Reference Value			
	Loss $\mathrm{T}_{4}$	2020		-0.1	-	0.2	
	Loss $\mathrm{T}_{5}$	3000		-0.1	-	0.2	
	Loss $\mathrm{T}_{6}$	3400		0	-	0.8	
	Loss $\mathrm{T}_{7}$	3980		14	-	-	
Receive Frequency Response	Loss $\mathrm{R}_{1}$	300	0	-0.1	-	0.2	dB
	Loss $\mathrm{R}_{2}$	820		Reference Value			
	Loss $\mathrm{R}_{3}$	2020		-0.1	-	0.2	
	Loss $\mathrm{R}_{4}$	3000		-0.1	-	0.2	
	Loss $\mathrm{R}_{5}$	3400		0	-	0.8	
	Loss $\mathrm{R}_{6}$	3980		14	-	-	
Transmit Signal to Distortion Ratio (*1)	SD T ${ }_{1}$	1020	3	36	-	-	dB
	SD $\mathrm{T}_{2}$		0	36	-	-	
	$\mathrm{SD} \mathrm{T}_{3}$		-30	36	-	-	
	SD T ${ }_{4}$		-40	31	-	-	
	SD T ${ }_{5}$		-45	26	-	-	
Receive Signal to Distortion Ratio (*1)	SD R ${ }_{1}$	1020	3	36	-	-	dB
	SD $\mathrm{R}_{2}$		0	36	-	-	
	$\mathrm{SD} \mathrm{R}_{3}$		-30	36	-	-	
	SD R 4		-40	31	-	-	
	SD $\mathrm{R}_{5}$		-45	26	-	-	

*1 : The measurement is taken with P-message filter.

Parameter		Symbol	Condition		Min	Typ	Max	Unit	
		$\begin{gathered} \mathbf{f} \\ (\mathrm{Hz}) \end{gathered}$	$\begin{gathered} \text { Level } \\ (\mathrm{dBmO}) \end{gathered}$						
Transmit Gain Tracking			GT T ${ }_{1}$	1020	3	-0.2	-	0.2	dB
		GT T ${ }_{2}$	-10		Reference Value				
		GT T3	-40		-0.2	-	0.2		
		GT T 4	-50		-0.4	-	0.4		
		GT T ${ }_{5}$	-55		-0.8	-	0.8		
Receive Gain Tracking		GT R ${ }_{1}$	1020	3	-0.2	-	0.2	dB	
		GT R ${ }_{2}$		-10	Reference Value				
		GT R ${ }_{3}$		-40	-0.2	-	0.2		
		GTR ${ }_{4}$		-50	-0.4	-	0.4		
		GT R ${ }_{5}$		-55	-0.8	-	0.8		
Idle Channel Noise *2	Transmit	NIDL ${ }^{\text {T }}$	-	-	-	-	-75	dBmOp	
	Receive	$\mathrm{N}_{\text {IDL }} \mathrm{R}$	-	-	-	-	-75		
Analog Input Level *3		VIN	1020	0	1 1,189	1 1,231	$\begin{aligned} & 1,274 \\ & 1,270 \end{aligned}$	Vrms	
Analog Output Level *3		VOUT	1020	0	$\sqrt{1,185} 1$			Vrms	
Absolute Delay Time		tD	-	-	-	-	0.5	ms	
Transmit Group Delay Time		tGD $\mathrm{T}_{1}$	500	0	-	-	0.75	ms	
		tGD ${ }_{2}$	600		-	-	0.35		
		tGD $\mathrm{T}_{3}$	1000		-	-	0.125		
		tGD $\mathrm{T}_{4}$	1800			erence V	alue		
		tGD $\mathrm{T}_{5}$	2600		-	-	0.125		
		tGD $\mathrm{T}_{6}$	2800		-	-	0.75		
Receive Group Delay Time		tGD R ${ }_{1}$	500	0	-	-	0.75	ms	
		tGD R ${ }_{2}$	600		-	-	0.35		
		tGD R ${ }_{3}$	1000		-	-	0.125		
		$\mathrm{tGD} \mathrm{R}_{4}$	1800		Reference Value				
		tGD R 5	2600		-	-	0.125		
		tGD R 6	2800		-	-	0.75		

*2: The measurement is taken with P -message filter.


Parameter		Symbol	Condition		Min	Typ	Max	Unit	
		$\mathrm{f}$	Level						
Crosstalk	T to R		$\mathrm{C}_{\mathrm{R}} \mathrm{T}$	1020	0	-	-	-66	dBmO
	R to T	$\mathrm{C}_{\mathrm{R}} \mathrm{R}$	1020	-		-	-66		
Discrimination Against Out-of-band Input Signals		DIS	$4.6 \mathrm{~K} \sim$	-25	30	-	-	dB	
Spurious Out-of-band Signals at the Output		so	$\begin{aligned} & 300 \sim \\ & 3400 \end{aligned}$	0	-	-	-30	dBmO	
Intermodulation		IMD 1	$\begin{aligned} & \mathrm{fa}=470 \\ & \mathrm{fb}=320 \end{aligned}$	-4	-	-	-38	dB	
Spurious In-band Signals at the Output		SI	1020	0	-	-	-40	dBmO	
Single Frequency Noise		Ns	-	-	-	-	-50	dBmO	
VDD PSRR	Transmit	PPSR T	$\begin{gathered} 0 \sim \\ 300 \mathrm{~K} \end{gathered}$	$\stackrel{200}{m V_{p-p}}$	-	30	-	dB	
	Receive	PPSR R			-	30	-		
VSS PSRR	Transmit	NPSR T			-	30	-	dB	
	Receive	NPSR R			-	30	-		
Digital Output Delay Time		${ }^{\text {t }}$ S	$\begin{aligned} & \text { R pull }=1 \mathrm{~K} \mathrm{\ell} \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \end{aligned}$		50	-	200	ns	
		${ }^{\mathrm{t}} \times \mathrm{D}_{1}$			50	-	200		
		${ }^{\mathrm{t}} \mathrm{XD}_{2}$			50	-	200		
		${ }^{1} \times \mathrm{DD}_{3}$			50	-	200		
Digital Output Fall Time		todf			-	-	100	ns	

## PIN DESCRIPTION

Pin Name	Pin No.	Function			
AIN +	1	These three pins are used for the transmit level adjustment. AIN+ is a Non-inverting Analog Input pin which is connected to the non-inverting input of a transmit amplifier.   AIN- is a Inverting Analog Input pin which is connected to the inverting input of the transmit amplifier.   GSX is a Tramsmit Amplifier Output Pin.			
AIN -	2				
GSX	3				
AG	4	AG is a analog ground pin.   AG is connected to the analog system ground.			
AOUT	5	AOUT is the analog signal output pin and is connected to the receive filter output. The output voltage range is $\pm 2.5 \mathrm{~V}$. This output can drive the impedance of $600 \Omega$.			
TMC-$\left(\begin{array}{c} \text { MSM6996V } \\ \text { MSM6997V } \\ \text { only } \end{array}\right)$	6	Test mode control input pin.   This is a control input pin for operating mode selection, such as normal operating mode and analog loop-back mode.   The operating modes are as follows.			
		"TMC"	Mode	"AOUT'	"AIN"
		$\begin{gathered} \mathrm{V}_{\text {IH }} \\ \left(2.0 \mathrm{~V} \sim \mathrm{~V}_{\mathrm{DD}}\right) \end{gathered}$	Operating	Receive Signal Output Connected to RCV FIL Output	Xmit Signal Input
		$\begin{gathered} V_{I L} \\ (0 \sim 0.8 \mathrm{~V}) \end{gathered}$	Analog Loop Back (Refer to Fig. 1)	0 V	Disconnected
$\begin{gathered} \text { AOUT- } \\ \left(\begin{array}{c} \text { MSM6998 } \\ \text { MSM6999 } \\ \text { only } \end{array}\right) \end{gathered}$	6	This is the inverting analog output pin. This output can drive the impedance of $600 \Omega$.			
$\begin{gathered} \text { NC } \\ \left(\begin{array}{c} \text { MSM6996H } \\ \text { MSM6997H } \\ \text { only } \end{array}\right) \end{gathered}$	6	As for MSM6996H and MSM6997H, this pin should be left open.			
VDD	7	VDD is the positive power supply pin. The voltage supplied to this pin should be $+5 \mathrm{~V} \pm 5 \%$.			
PCMIN	8	PCM signal input pin. This signal is serial data and is converted to the analog signal under control of RSYNC and RCLOCk. The input PCM data rate range is from 64 KBPS to 2048 KBPS .			


Pin Name	Pin No.	Function																
RCLOCK	9	Receive Clock Input pin. The clock that provides the basic timing and control signals required for the input of the PCM signal is input to this pin. The frequency of this clock must be coincident with the input PCM data rate.																
XCLOCK	10	Transmit Clock Input pin. The clock that provides the basic timing and control required for the output of the PCM signal is input to this pin. The clock frequencies are from 64 kHz to 2048 kHz .																
RSYNC	11	Receive Synchronous Signal Input pin. The pulse signal that is synchronized with RCLOCK and is used for taking out the required signal from the input serial PCM data is input to this pin. The signal makes the whole operation in the receive section synchronized. When RSYNC is connected continuously low or continuously high, the receive section is powered down.   The frequency of this signal is $8 \mathrm{kHz} \pm 50 \mathrm{ppm}$.																
XSYNC	12	Transmit Synchronous Signal Input pin. The pulse signal that is synchronized with XCLOCK and makes the whole operation in the transmit section synchronized, is input to this pin.   The output signal from the PCMOUT pin is naturally synchronized with this signal. When XSYNC is connected continuously low or continuously high, the transmit section is powered down. The frequency of this signal is $8 \mathrm{kHz} \pm 50 \mathrm{ppm}$.																
DG	13	Digital Ground level pin.   DG is connected to the digital system ground.																
PDN/BS	14	Power Down Signal Input pin.   This is an input of the power-down control signal. When this input is held at low level more than 1 ms , the chip is put into the power-down mode. For the $\mu$-law devices (MSM6997 and MSM6999), this pin also provides the half-bit decoder shift for the 7 bit decode operation according to alternating the state of the pin. Refer to Fig. 4.																
PCMOUT	15	PCM Signal Output pin. Open-drain output of the PCM signal is output from this pin. The result of conversion from analog to digital is output from this pin as 8 bit serial data is shifted out under control of XSYNC and XCLOCK.   ENCODING FORMAT																
		MSM6996, MSM6998									MSM6997, MSM6999							
			B1	B2	B3	B4	B5	B6	B7	B8	B1	B2	B3	B4	B5	B6	B7	B8
		VIN $=+$ Full Scale	1	0	1	0	1	0	1	0	1	0	0	0	0	0	0	0
		VIN $=+0$	1	1	0	1	0	1	0	1	1	1	1	1	1	1	1	1
		VIN $=-0$	0	1	0	1	0	1	0	1	0	1	1	1	1	1	1	1
		VIN $=-$ Full Scale	0	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0
VSS	16	This is the negative power supply pin. The voltage supplied to this pin should' be $-5 \mathrm{~V} \pm 5 \%$.																



Figure 1

## TEST CIRCUIT



Note 1: Make the connection wire between No. 4 pin and No. 13 pin as short as possible.
Note 2 : Use a test socket with shor leads.


Figure 2 Definitions of Rise Time and Fall Time


Figure 3 Basic Time Chart


Signal to Distortion Ratio


Gain Tracking Characteristics


## QIEI semiconductor

## MSM6814 ( $\mu$-Law) MSM6815 (A-Law)

## SINGLE CHIP COMBO CODEC WITH TIME SLOT ASSIGNMENT

## GENERAL DESCRIPTION

The MSM6814 and MSM6815 are single chip COMBO CODEC with time slot assignment (TACODEC) which are fabricated by OKI's low power consumption CMOS silicon gate technology.

The MSM6814 and MSM6815 can control the time slot of the PCM data externally. It consists of analog pre-filters, A/D converter, D/A converter, transmit time slot assignment circuit and receive time slot assignment circuit.

## FEATURES

- Independant transmit and receive time slot assignment
- 32 time slot per frame maximum
- Clock rate selectable ( $512 \mathrm{KHz}, 1024 \mathrm{KHz}$, 1536 KHz, 1544 KHz, 2048 KHz)
- Time slot control by serial interface
- Follows the $\mu$-companding Law (MSM6814)
- Follows the A-companding Law (MSM6815)
- On-chip voltage reference
- On-chip full auto zero circuit
- $\pm 5 \mathrm{~V}$ power supplies
- Low power dissipation 60 mW operating (TYP) 5 mW standby (TYP)
- 22 pin plastic DIP package


## BLOCK DIAGRAM



## PIN CONFIGURATION



II

## ELECTRICAL CHARACTERISTICS

## Absolute Maximum Ratings

Parameter	Symbol	Condition	Ratings	Unit
Supply voltage	$\mathrm{V}_{\mathrm{DD}}$		$-0.3 \sim+7$	
	$\mathrm{~V}_{\mathrm{SS}}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	V	
	$\mathrm{V}_{\mathrm{IA}}$		$-7 \sim+0.3$	
Digital input   voltage	$\mathrm{V}_{\mathrm{ID}}$		$\mathrm{V}_{\mathrm{SS}}-0.3 \sim \mathrm{~V}_{\mathrm{DD}}+0.3$	
Operating   temperature	TOP	-	$-0.3 \sim \mathrm{~V}_{\mathrm{DD}}+0.3$	
Storage   temperature	$\mathrm{T}_{\text {Stg }}$	-	${ }^{\circ} \mathrm{C}$	

Recommended Operating Conditions

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Supply voltage	$V_{\text {DD }}$		4.75	5.0	5.25	V
	VSS		-5.25	-5.0	-4.75	
Analog input voltage	VAIN		-	-	5	VP-P
High input voltage	$\mathrm{V}_{\mathrm{IH}}$	XSYNC, RSYNC, BCLK, $\mathrm{D}_{\mathrm{R}}, \mathrm{DCLK}, \mathrm{DC}, \overline{\mathrm{CS}}, \mathrm{TMC}$	2.0	2.4	$V_{\text {DD }}$	V
Low input voltage	VIL	XSYNC, RSYNC,BCLK, $\mathrm{D}_{\mathrm{R}}, \mathrm{DCLK}, \mathrm{DC}, \overline{C S}, \mathrm{TMC}$	0	0	0.8	V
Clock frequency	fc	BCLK	-	$\begin{array}{r} 512 \\ 1024 \\ 1536 \\ 1544 \\ 2048 \end{array}$	-	KHz
Synclonizing signal frequency	fs	XSYNC, RSYNC	-	8	-	KHz
Clock duty cycle	$\mathrm{D}_{\mathrm{L}}$	BCLK	40	50	60	\%
Digital input rise time	tr	XSYNC, RSYNC, BCLK, $\mathrm{D}_{\mathrm{R}}, \mathrm{DCLK}, \mathrm{DC}, \mathrm{CS}$ (Refer to Figure 1)	-	-	50	ns
Digital input fall time	tf	XSYNC, RSYNC, BCLK, $\mathrm{D}_{\mathrm{R}}, \mathrm{DCLK}, \mathrm{DC}, \mathrm{CS}$ (Refer to Figure 1)	-	-	50	ns
Synclonize signal timing	$\mathrm{T}_{B S}$	BCLK to SYNC (Refer to Figure 2)	0			ns
	TSB	SYNC to BCLK   (Refer to Figure 2)	50			

## Recommended Operating Conditions (Cont.)

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Synclonize signal width	TWS	XSYNC, RSYNC   (Refer to Figure 2)	400			ns
$\mathrm{D}_{\mathrm{R}}$ set-up time	TDRS	(Refer to Figure 4)	100			ns
D $\mathrm{R}^{\text {hold time }}$	TDRH	(Refer to Figure 4)	100			ns
Data clock width	TWCH	DCLK (Refer to Figure 5)	244			ns
	TWCL	DCLK (Refer to Figure 5)	244			ns
$\overline{\mathrm{CS}}$ signal timing	TCS1	DCLK to $\overline{\mathrm{CS}}$   (Refer to Figure 5)	50			ns
	TCS2	$\overline{\mathrm{CS}} \text { to DCLK } \begin{aligned} & \text { (Refer to Figure 5) } \end{aligned}$	100			ns
	TCS3	(Refer to Figure 5)	50			ns
	TCS4	(Refer to Figure 5)	50			ns
DC set-up time	TDCS	(Refer to Figure 5)	100			ns
DC hold time	TDCH	(Refer to Figure 5)	100			ns

## TIMING CHART



Figure 1 Definition of Rise Time and Fall Time


Figure 2 Synclonizing Signal Time Chart


Figure 3 Transmit Signal Basic Time Chart (Time Slot 1 is selected)


Figure 4 Receive Signal Basic Time Chart (Time Slot 1 is selected)


Figure 5 Time Slot Data Timing

Both of above operations are controlled by XSYNC signal


Figure 6

When the time slot is fixed, data on $D_{x}$ is output on the 1 st time slot 4 frames' after the internal power-on reset has been reset. Time required for power on reset is max 1 ms .


Figure 7

## DC Characteristics

Parameter	Symbol	Condition		Min	Typ	Max	Unit
Supply current (Operating)	IDD1	$\begin{aligned} & \mathrm{VDD}=+5.25 \mathrm{~V} \\ & \mathrm{Vss}=-5.25 \mathrm{~V} \end{aligned}$		-	-	14	mA
	Iss1			-	-	14	mA
Supply current (Stand-by)	IDD2			-	1.0	3	mA
	Iss2			-	0.3	1.5	mA
Input high voltage	VIH	$\begin{aligned} & \mathrm{VDD}=+5.25 \mathrm{~V} \\ & \mathrm{VSS}=-5.25 \mathrm{~V} \end{aligned}$		2.0	1.7	-	V
Input low voltage	VIL	$\begin{aligned} & V D D=+4.75 \mathrm{~V} \\ & \mathrm{VSS}=-4.75 \mathrm{~V} \end{aligned}$		-	1.6	0.8	V
Input leakage current	lin	$\begin{aligned} & \mathrm{VDD}=+5.25 \mathrm{~V} \\ & \mathrm{VSS}=-5.25 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{1}=5 \mathrm{~V}$	-	$<0.5$	2.0	$\mu \mathrm{A}$
	IIL		$\mathrm{V}_{1}=0 \mathrm{~V}$	-	$<0.5$	0.5	$\mu \mathrm{A}$
Output low voltage	Vol	$\begin{aligned} & \mathrm{VDD}=+4.75 \mathrm{~V} \\ & \mathrm{VSS}=-4.75 \mathrm{~V} \end{aligned}$		-	<0.2	0.4	V
Output leakage current	IOH	$\begin{aligned} & \mathrm{VDD}=+5.25 \mathrm{~V} \\ & \mathrm{VSS}=-5.25 \mathrm{~V} \end{aligned}$		-	$<5$	10	$\mu \mathrm{A}$
Input capacitance	Cin			-	5	-	PF

TRANSMIT Analog Interface

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Input resistance	RinX	AIN+, AIN-	1	-	-	$\mathrm{M} \Omega$
Load resistance	RLGX	GSX	10	-	-	$\mathrm{K} \Omega$
Load capacitance	CLGX	GSX	-	-	100	PF
Output level	VoGX	GSX, RL $=10 \mathrm{~K} \Omega$	-2.5	-	2.5	V
Offset voltage	VosGX	Gain $=10$	-20	-	20	mV

## RECEIVE Analog Interface

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Input resistance	Rinpw	PWI	1	-	-	$\mathrm{M} \Omega$
Load resistance	Rlvf	VFRO	10	-	-	$\mathrm{K} \Omega$
	Rlao	AOUT+, AOUT-	600	-	-	$\Omega$
Load capacitance	Clvf	VFRO	-	-	100	PF
	Clao	AOUT+, AOUT-	-	-	100	PF
Output level	Vovf	$\mathrm{VFRO}, \mathrm{RL}=10 \mathrm{~K} \Omega$	-2.5	-	2.5	V
	Voao	$\begin{aligned} & \text { AOUT }+, \text { AOUT-, } \\ & \text { RL }=600 \Omega \end{aligned}$	-2.5	-	2.5	V
Offset voltage	Vosvf	VFRO	-150	-	150	mV
	Vosao	$\begin{aligned} & \text { AOUT+, AOUT-, } \\ & \text { PWI =0'V } \end{aligned}$	-20	-	20	mV

## A.C. Characteristics


*1: The measurement is taken with $P$-message filter.
*2:


Parameter		Symbol	Condition			Min	Typ	Max	Unit	
		$\stackrel{f}{(H z)}$	Level (dBmO)							
Transmit gain tracking			GT T1	1020	3		-0.2	-0.01	0.2	dB
		GT T2	-10			Reference Value				
		GT T3	-40			-0.2	0.05	0.2		
		GT T4	-50			-0.4	0.25	0.4		
		GT T5	-55			-0.8	0.10	0.8		
Receive gain tracking		GT R1	1020	3		-0.2	0.02	0.2		
		GT R2		-10		Reference Value				
		GT R3		-40		-0.2	-0.5	0.2		
		GT R4		-50		-0.4	-0.16	0.4		
		GT R5		-55		-0.8	-0.13	0.8		
Idle channel noise *3	Transmit	NIDL T	-	-		-	-89	-75	dBmOp	
	Receive	NidLR	-	-		-	-89	-75		
Analog input level		Vin	1020	0	* 4	$\begin{array}{\|r\|} \hline 1.185 \\ 1.189 \end{array}$	$1.227 / 1.231$	$1.270 / 1.274$	Vrms	
Analog output level		Vout	1020	0	*4	$\frac{1.185}{1.189}$	1.227/1.231	$1.270 / 1.274$	Vrms	
Absolute delay time		tD	-	-		-	0.47	0.5	ms	
Transmit   Group delay time		tGD T1	500	0		-	0.2	0.75	ms	
		tGD T2	600			-	0.1	0.35		
		tGD T3	1000			-	0	0.125		
		tGD T4	1800			Reference Value				
		tGD T5	2600			-	0.05	0.125		
		tGD T6	2800			-	0.07	0.75		
Receive Group delay time		tGD R1	500	0		-	-0.02	0.75	ms	
		tGD R2	600			-	-0.02	0.35		
		tGD R3	1000			-	0.03	0.125		
		tGD R4	1800			Reference Value				
		tGD R5	2600			-	0.07	0.125		
		tGD R6	2800			-	0.10	0.75		

*3: The measurement is taken with P -message filter.
*4:


Parameter		Symbol	Condition		Min	Typ	Max	Unit	
		$\underset{(\mathrm{Hz})}{\mathrm{f}}$	Level (dBmO)						
Crosstalk	T to R		Cr T	1020	0	-	-90	-66	dBmO
	R to T	CRR	1020	-		-78	-66		
Discrimination against out-of-band input signals		DIS	4.6K	-25	30	32	-	dB	
Spurious out-of-band signals at the output		SO	$\begin{aligned} & 300 \sim \\ & 3400 \end{aligned}$	0	-	-33	-30	dBmO	
Intermodulation		IMD 1	$\begin{aligned} & \mathrm{fa}=470 \\ & \mathrm{fb}=320 \end{aligned}$	-4	-	-40	-38	dB	
Spurious in-band signals at the output		S1	1020	0	-	-45	-40	dBmO	
Single frequency noise		Ns	-	-	-	-60	-50	dBmO	
Vdd PSRR	Transmit	PPSR T	$300$	$\begin{gathered} 200 \\ m V p-p \end{gathered}$	-	30	-	dB	
	Receive	PPSR R			-	30	-		
Vss PSRR	Transmit	NPSR T			-	30	-	dB	
	Receive	NPSR R			-	30	-		
Digital output delay time		TDX1	$\begin{gathered} \mathrm{R} \text { pull }=1 \mathrm{k} \Omega \\ \mathrm{CL}=100 \mathrm{pF} \\ \text { Refer to Figure } 3 \end{gathered}$		50	-	200	ns	
		TDX2			50	-	200		
		Tts1			50	-	300		
		Tts2			50	-	300		
Digital output fall time		tDDf			-	20	100	ns	

## PIN DESCRIPTION



## PIN DESCRIPTION (CONT.)



Time slot can be specified out of $1 \sim 32$. When the frequency of BCLK is lower than 2048 KHz , maximum number of the time slot is specified as follows. In this use, however, no time slot is chosen when 17 th time slot is specified when BCLK is operated at 1024 KHz .

BCLK	Variable time slot
512 KHz	$1 \sim 8$
1024 KHz	$1 \sim 16$
1536 KHz	$1 \sim 24$
1544 KHz	$1 \sim 24$
2048 KHz	$1 \sim 32$

In the variable time slot mode, the relation between the time slot data input and output data $D_{x}$ is described in figure 6 below.
(The specified time slot appears from the Nth frame followed by the falling edge of 8th bit of DCLK.)
To have the time slot assignment function reset, disable the $D_{x}$ output in the first frame followed by the falling edge of 8th bit of DCLK.
In this case, AOUT is also fixed at GND level.

## PIN DESCRIPTION (CONT.)



## PIN DESCRIPTION (CONT.)

Pin No.	Pin Name	Function
17	$\overline{\text { TSX }}$	Output pin for transmit time slot signal.   The selected time slot is output when this signal is at " $L$ " level. This pin has to be pulled-up by a resistor with more than $2 \mathrm{~K} \Omega$ as it is open drain output.
18	TMC	Mode switching signal input pin. Operation mode or analog loop-back mode can be selected.
19   20   21	GSX   AIN-   AIN+	These three pins are used for the transmit level adjustment. AIN+ is a non-inverting analog input pin which is connected to the non-inverting input of a transmit amplifier.   AIN- is a inverting analog input pin which is connected to the inverting input of the transmit amplifier.   GSx is a transmit amplifier output pin. Adjustment can be done by following method.   Note: 1. $\mathrm{R}_{2}+\mathrm{R} 3>10 \mathrm{~K} \Omega$   2. When the DC off-set voltage of analog input is more than $20 \mathrm{mV}, \mathrm{C}_{1}$ and $\mathrm{R}_{1}$ should provide for DC blocking. In this case, cut-off frequency of HPF, composed by R1 and $\mathrm{C}_{1}$, should be less than 30 Hz   3. R1 should be less than $20 \mathrm{~K} \Omega$.
22	vss	Negative power supply pin. $-5 \mathrm{~V} \pm 5 \%$ has to be applied.

## APPLICATION

$\square$

## OIKI

## GENERAL DESCRIPTION

The MSA4710 is designed to provide BSH functions and to meet PABX transmission performance requirements.

This device can replace the hybrid transformer circuit.

## FEATURES

- B (Batteryfeed), S (Supervision), and H (Hybrid) functions integrated on chip
- Design to meet Central Office and PABX quality transmission requirements
- All transmission performance parameters can be externally programable
- Free from parastic SCR's using dielectric isolation technology
- Size and weight reduction over conventional approaches
- 28 pin plastic DIP package, 28 pin PLCC package


## BLOCK DIAGRAM



Figure 1 OKI SLIC functional block diagram

## PIN CONFIGURATION

## Top View

28 pin Plastic Dip Package


MSA4710RS

28 pin Plastic Leaded Chip Carrier Package。


MSA4710JS

## PIN DESCRIPTION

Name	Pin No.	Function
VBB	1	Battery supply, 48 V input.
A	2	The Ring voltage sensing input. This input is high impedance (apr. $38 \mathrm{k} \Omega$ ), and is connected to the built-in over voltage protection circuit.
NE	3	The Ring current sensing input and is connected to the emitter of NPN Darlington transister and the power resistor REA.
NB	4	The base drive output for the NPN Darlington transister.
N. C.	5	No connection
CN	6	Battery noise rejection capacitor input. This capacitor value is 60 V $1 \mu \mathrm{~F}$.
RY	7	AC performance adjusting resistor Ry input.
CDC	8	AC high impedance providing capacitor Cdc input and constant current feed at the short line adjusting zener diode input. This capacitor value is $15 \mathrm{~V} 4.7 \mu \mathrm{~F}$.
VEE	9	-5 V input.
4WR	10	Receive input and is connected to the positive input of the built-in buffer operational amplifier.
N. C.	11	No connection
PAD	12	Pad control input. A logic level " H " makes the transmission level of 4WR to 2 Wire be 4 dB lower.
BNO	13	The balancing network drive output.
BN1	14	2 wire terminating impedance compornent $Z x$ input, transhybrid impedance Zt or Zb input and 2 wire to XMIT transmission gain adjusting resistor Rs input. This input sumes the current from the BNO through $\mathrm{Zb}, \mathrm{Zt}$, the ZX through Zx and the 4WS through Rs.
4WS	15	Transmit output.
ZX	16	2 wire terminating impedance compornent $Z x$ input. This pin has a low input impedance.
RNG	17	Ringing mode control input. A logic level " H " enables either the Tip or Ring power Darlington transister to source the half of return current of the Ringing signal, changes the threshold of the fault current detector and inhibits the loop current detector from operating.
$\overline{B F}$	18	Battery-feed mode control input. A logic level " $H$ " switches off both the Ring and Tip current drive amp. and presents a high impedance to the line. (apr. $80 \mathrm{k} \Omega$ ).
N. C.	19	No connection
E	20	Should be connected to G.


Name	Pin No.	Function
$\overline{\text { SCN }}$	21	Output of both the fault current detector and loop current detector.   A logic level "H" indicates Off-hook or line fault condition. This   output is open-collector with a built-in pull-up resistor. (apr. $10 \mathrm{k} \Omega$
VCC	22	+5 V input.

## ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply voltage	$V_{\text {BB }}$	$-60 \sim+0.3$	V
	$\mathrm{V}_{\text {CC }}$	$-0.3 \sim+7.0$	
	$V_{\text {EE }}$	$-7.0 \sim+0.3$	
Tip and Ring voltage sensing terminals $A$ and $B$ input current	${ }^{\prime} A, I_{B}$	$\pm 200$	mA
Receive signal input voltage	V4WR	$\mathrm{V}_{\mathrm{EE}}-0.5 \sim \mathrm{~V}_{\mathrm{CC}}+0.5$	V
Operating junction temperature	$\mathrm{T}_{\mathrm{j}}$	125	${ }^{\circ} \mathrm{C}$
Storage temperature range	$\mathrm{T}_{\text {stg }}$	$-55 \sim 150$	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Rating	Symbol	Min.	Typ.	Max.	Unit
Supply voltage	$\mathrm{V}_{\mathrm{BB}}$	-53	-48	-43	$\mathrm{~V}_{\mathrm{dc}}$
	$\mathrm{V}_{\mathrm{CC}}$	+4.75	+5	+5.25	
	$\mathrm{~V}_{\mathrm{EE}}$	-5.25	-5	-4.75	
Operating ambient   temperature	$\mathrm{T}_{\mathrm{a}}$	0	-	70	${ }^{\circ} \mathrm{C}$
Loop current	$\mathrm{I}_{\mathrm{L}}$	20	-	80	mA
Longitudinal   induced current	$\mathrm{I}_{\mathrm{AC}}$	-	-	10	mArms

## ELECTRICAL CHARACTERISTICS

$$
\begin{aligned}
& \mathrm{Ta}=0^{\circ} \mathrm{C} \sim 70^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{BB}}=-48 \mathrm{~V} \pm 5 \mathrm{~V}, \\
& \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \% \\
& \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V} \pm 5 \%
\end{aligned}
$$

- $\operatorname{REA}=\mathrm{REB}=45 \Omega, \mathrm{Ry}=4.7 \mathrm{~K} \Omega$
- 2 wire terminating impedance $=900 \Omega+2.16 \mu \mathrm{~F}$
- Balancing network $=800 \Omega / /(100 \Omega+50 \mu \mathrm{~F})$

Parameters		Symbol		Conditions	Min.	Max.	Unit	
Minimum battery feed current		ILM	$\begin{aligned} & V_{B B}=-48 \mathrm{~V} \\ & R_{L}=1900 \Omega \end{aligned}$		20	-	mA	
Power dissipation	ON-Hook	$\mathrm{P}_{\text {S0 }}$	$\begin{aligned} & V_{B B}=-53 \mathrm{~V} \\ & R_{\mathrm{L}}=\text { open } \\ & V_{C C}=+5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.25 \mathrm{~V} \end{aligned}$		-	170	mW	
	OFF-Hook	$\mathrm{P}_{\text {S1 }}$	$\begin{aligned} & V_{B B}=-53 \mathrm{~V} \\ & R_{\mathrm{L}}=50 \Omega \\ & V_{C C}=+5.25 \mathrm{~V}, V_{E E}=-5.25 \mathrm{~V} \end{aligned}$		-	700	mW	
ON-Hook supply current		${ }^{\prime} \mathrm{BB}$	$\begin{aligned} & V_{B B}=-53 \mathrm{~V} \\ & R L=\text { open } \\ & V_{C C}=+5.25 \mathrm{~V} \\ & V_{E E}=-5.25 \mathrm{~V} \end{aligned}$		-	2.4	mA	
		ICC			-	7.8		
		IEE			-	5.4		
2-wire leak current		I LEAK	$\begin{aligned} & V_{B B}=-53 \mathrm{~V} \\ & R_{1}=0 \Omega \\ & \overline{B F}=H \end{aligned}$		-	1.0	mA	
2-wire return loss		$\mathrm{R}_{\mathrm{L}}$	Fig. 3	$0.2 \mathrm{KHz} \sim 0.5 \mathrm{KHz}$	23	-	dB	
		$0.5 \mathrm{KHz} \sim 3.4 \mathrm{KHz}$		29	-			
Frequency response			$\mathrm{F}_{\mathrm{R}}$	Fig. 2	$f=0.3 \mathrm{KHz} \sim 3.4 \mathrm{KHz}$	-0.1	+0.1	dB
Insertion loss variety		$\Delta L_{l}$	Fig. 2	$\begin{aligned} & \mathrm{f}=1004 \mathrm{~Hz} \\ & \mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA} \sim 80 \mathrm{~mA} \end{aligned}$	-0.1	+0.1	dB	
Idle channel noise		$N_{1}$	C-message Fig. 5		-	10	dBrnc	
Transhybrid loss		THL	Fig. 4	$0.2 \mathrm{KHz} \sim 0.5 \mathrm{KHz}$	23	-	dB	
		$0.5 \mathrm{KHz} \sim 2.5 \mathrm{KHz}$		28	-			
		$2.5 \mathrm{KHz} \sim 3.4 \mathrm{KHz}$		23	-			
Longitudinal balance			$L_{B}$	Fig. $6 \quad 0.2 \mathrm{KHz} \sim 3.4 \mathrm{KHz}$   The matchig of REA and REB is $\pm 0.1 \%$		46	-	dB
Power supply noise rejection ratio			$\mathrm{P}_{\text {SR }}$	Fig. 7	$\begin{aligned} & 0.2 \mathrm{KHz} \sim 3.4 \mathrm{KHz} \\ & \mathrm{~V}_{\text {in }}=100 \mathrm{mVp}-\mathrm{p} \end{aligned}$	30	-	dB

$$
\begin{aligned}
& G_{24}=20 \log \left|\frac{V_{X}}{V_{L}}\right| @ V_{R}=0 V \\
& G_{42}=20 \log \left|\frac{V_{L}}{V_{R}}\right| @ V_{T}=0 V
\end{aligned}
$$



$$
Z_{\text {to }}=900 \Omega+2.16 \mu \mathrm{~F}
$$

- Battery feed resistance, RDC $=2 \times 200 \Omega$
- Transmit and receive gain, $\mathrm{G}_{24}=\mathrm{G}_{42}=0 \mathrm{~dB}$
- Balancing network, $Z_{L}=800 \Omega /(100 \Omega+50 n F)$

Figure 2 Transmit \& Receive Gain Test Circuit
$R_{L}=20 \log \left|\frac{V_{T}}{V_{L}}\right|-6 d B$


- 2-wire terminating impedance,
$Z_{\text {to }}=900 \Omega+2.16 \mu \mathrm{~F}$
- Battery feed resistance, RDC $=2 \times 200 \Omega$
- Transmit and receive gain, $\mathrm{G}_{24}=\mathrm{G}_{42}=0 \mathrm{~dB}$
- Balancing network, $Z_{L}=800 \Omega /(100 \Omega+50 n F)$ (See APPLICATIONS INFORMATION)

$$
T_{H L}=20 \log \left|\frac{V_{R}}{V_{X}}\right|
$$



- 2-wire terminating impedance,
$Z_{\text {to }}=900 \Omega+2.16 \mu \mathrm{~F}$
- Battery feed resistance, RDC $=2 \times 200 \Omega$
- Transmit and receive gain, $\mathrm{G}_{24}=\mathrm{G}_{42}=0 \mathrm{~dB}$
- Balancing network, $Z_{L}=800 \Omega / /(100 \Omega+50 n F)$

Figure 4 Transhybrid Loss Test Circuit

- 2-wire terminating impedance,
$Z_{\text {to }}=900 \Omega+2.16 \mu \mathrm{~F}$
- Battery feed resistance, RDC $=2 \times 200 \Omega$
- Transmit and receive gain, $\mathrm{G}_{24}=\mathrm{G}_{42}=0 \mathrm{~dB}$
- Balancing network, $\mathrm{Z}_{\mathrm{L}}=800 \Omega / /(100 \Omega+50 n \mathrm{n})$ (See APPLICATIONS INFORMATION)

$$
L_{B}=20 \log \left|\frac{V_{T}}{V_{L}}\right|
$$

## APPLICATIONS INFORMATION

The OKI SLIC is comprised of a bipolar dielectric isolated integrated circuit. MSA4710, two comprementary Darlinton power transisters, a 2 -wire terminating compornents, $Z_{X}$, two transhybrid rejection impedances $Z_{t}, Z_{b}$ nine resistors and three capacitors as shown in Figure 1.
The circuit of Figure 1 will provide:
Adjustable resistive battery feed
Adjustable maximum loop current at the short line
Adjustable 2-wire terminating impedance
Adjustable transmit and receive gain
2 -wire balancing to 4 -wire single ended conversion
Adjustable balancing network
Hook-state output
Line fault current limiting (apr. 50 mA )
Rejection of longitudinal induced current ( $10 \mathrm{mArms} /$ conductor)
Adjustable longitudinal balance.

## 1) DC CHARACTERISTICS

a) Battery feed

In the Off-hook state the equivalent battery feed resistance RDC is given by

$$
\begin{equation*}
R D C=(R E A+R E B) \times 4.44 \tag{1}
\end{equation*}
$$

## Examples

$$
\begin{array}{ll}
\text { RDC }=2 \times 200 \Omega & \text { REA }=\text { REB }=45 \Omega \\
\text { RDC }=2 \times 220 \Omega & \text { REA }=\text { REB }=50 \Omega
\end{array}
$$

The matching of REA and REB is critical to a number of AC performance parameters.
b) Maximum loop current limiting

The constant current feed at the short line is acheived by connecting a zener diode between the terminal CDC and VBB.

The constant current value is given by:
$\mathrm{Ic}=0.9 \times\left(\mathrm{V}_{\mathrm{Z}}-2\right) /$ REA
(2) $V_{Z}$ : Zener voltage

Typical Battery feed characteristics is shown in Figure 8.


Figure 8 Typical Batteryfeed Characteristic

## 2) SUPERVISION

The OKI SLIC has two comparators, Comp0 and Comp1, to supervise the subscriber line conditions. The CompO can detect the sum current of the Ring and Tip through the power resistors REA, REB, and the Comp1 can detect the absolute differential current between the Ring and Tip through REA and REB. Thereby, the subscriber's On-hook or Off-hook and Dialing pulses can be detected by Comp0, and subscriber line's troubles such as Ring-toground or Tip-to-battery fault can be detected by Comp1.

The Current-limit-circuit can make the fault current limiting at apr. 50 mA when the Comp1 detects the fault current.

Functional circuit diagram of supervision is shown in Figure 9, and the threshold current value is shown in table 1.

The RNG function can be used to send the Ringing signal. (see Figure 11)
When RNG is logic level " H ", to prevent the two comparators from detecting the ringing signal current which flowes into the short line in the On-hook state, the detecting threshold of Comp1 is become higher than that of the detecting line fault, and output of the Comp0 is inhibited from making the $\overline{\mathrm{SCN}}$ low, and at the same time, to prevent the Current-limitcircuit which causes the Ringing signal current to distort from operting, the output of the Comp 1 is inhibited from driving the Current-limit-circuit.


Table 1

VREF VOLTAGE$\left(V_{E E}=5 \mathrm{~V}\right)$	$\begin{aligned} & \text { (IA }+\mid B) \text { OR\|\|A }-\|B\| \\ & \text { CURRENT DETECTION }- \text { THRESHOLD } \\ & {[\mathrm{mA}]} \end{aligned}$			
	$\mathrm{REA}=\mathrm{REB}=45 \Omega$		$\mathrm{REA}=\mathrm{REB}=50 \Omega$	
	$t_{A}+I_{B}$	$\|I A-\|B\|$	$I_{A}+I_{B}$	$\left\|I_{A}-I_{B}\right\|$
$\mathrm{V}_{\text {REFO }}=1.395 \mathrm{~V}$	$2 \times 15.5$	, -	$2 \times 14.0$	-
$\mathrm{V}_{\text {REF1 }}=1.310 \mathrm{~V}$	$2 \times 14.6$	-	$2 \times 13.1$	-
$\mathrm{V}_{\text {REF2 }}=2.855 \mathrm{~V}$	-	71.2	-	64.2
$\mathrm{V}_{\text {REF3 }}=0.640 \mathrm{~V}$	-	16.0	-	14.4
$\mathrm{V}_{\text {REF4 }}=3.335 \mathrm{~V}$	-	83.4	-	75.1

## 3) AC CHARACTERISTICS

The AC functional circuit diagram of the OKI SLIC is shown in Figure 10.

## a) 2-wire terminating impedance

2-wire terminating impedance $Z_{\text {to }}$ is given by eq. (3)

$$
\begin{equation*}
Z_{t o}=\left(V_{L} / I_{L}\right)=Z_{X} /\left(K_{i} \times K_{V O}\right) \tag{3}
\end{equation*}
$$

The value of $Z_{x}$ can be derived from eq. (3) to provide the desired 2-wire terminating impedance.

$$
\begin{equation*}
Z_{x}=Z_{\text {to }} \times\left(K_{i} \times K_{V}\right) \tag{4}
\end{equation*}
$$

Both the value of the current gain Ki and the voltage gain KVO are given by table 2.
b) Transmit and receive gain

2-wire to XMIT and REC to 2-wire transmission gain $\mathrm{G}_{24}, \mathrm{G}_{42}$ are given by eq. (5) and eq. (6) respectively.

$$
\begin{align*}
& \mathrm{G}_{24}=\left|\mathrm{V}_{\mathrm{X}} / \mathrm{V}_{\mathrm{L}}\right|=\left|\mathrm{R}_{\mathrm{S}} \times K_{V_{0}} / Z_{\mathrm{X}}\right| \ldots \ldots(5) \\
& \mathrm{G}_{42}=\left|\mathrm{V}_{\mathrm{L}} / \mathrm{V}_{\mathrm{R}}\right|=\left\lvert\, \frac{K_{V_{1}} \times K_{V} \times Z_{I}}{K_{V 0}} /\left[Z_{I}+Z_{x} /\left(K_{V} \times K_{i}\right)\right]\right. \tag{6}
\end{align*}
$$

The impedance Zl may be chosen a general transmission impedance $600 \Omega$ or $900 \Omega$. The value of $R_{S}$ may be calculated to provide the disired $G_{24}$ for given $Z_{X}$ by eq. (4) and $\mathrm{K}_{\mathrm{v} 0}$ by table 2.

$$
\begin{equation*}
R_{S}=\left|Z X \times G_{24} / K V O\right| \tag{7}
\end{equation*}
$$

The value of the receive attnuator KV3 may be desired from eq. (6) and (4) once Zl is known.

$$
\begin{equation*}
K_{V} 3=G_{24} \times\left|\left(Z_{1}+Z_{t o}\right) /\left(Z_{1} \times K_{V 1} / K_{V}\right)\right| \tag{8}
\end{equation*}
$$



Figure 10 AC Functional Circuit Diagram

## c) Transhybrid rejection

Transhybrid rejection is acheived with OKI SLIC by taking advantage of the $180^{\circ}$ phase reversal of the current ix at the negative input of OPS amp with respect to receive signal $\mathrm{V}_{\mathrm{R}}$. When the receive signal $V_{R}$ transmits to 2-wire, the return current ix from 2-wire and the cancel current is apear at the negative input of OPS amp.

These ix and ib are given by eq. (9) and (10).

$$
\begin{equation*}
i x=\frac{V R \times K_{V 1} \times K V 3}{\left(K_{i} \times K_{V 0}\right)} \times \frac{1}{\left(Z_{I}+\frac{Z_{x}}{K_{i} \times K_{V 0}}\right)} \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
i b=-V_{R} \times K_{V_{1}} \times K_{V} \times K_{V_{3}} /\left(Z_{b}+Z_{t}\right) \ldots \tag{10}
\end{equation*}
$$

The value of the impedance $Z_{b}$ and $Z_{t}$ are selected to exactly cancel out the return current ix and are determined by eq. (11) and (12).

$$
\begin{align*}
& Z_{b}=K_{i} \times K_{V} \times K_{V} \times Z \ell \ldots  \tag{11}\\
& Z_{t}=K_{V} 2 \times Z X=K_{i} \times K V V_{0} \times K V_{2} \times Z_{t o} . \tag{12}
\end{align*}
$$

The impedance $Z \ell$ may be an actual subscriber line loop impedance, including phone set. The value of KV2 is shown table 2.

## d) Longitudinal balance

The longitudinal balance is determined by the matching both the gain of the Tip and Ring current drive amp.

The longitudinal balance may be improved by making a little adjustment of either power resistor REA and REB because the gain of the Tip and Ring current drive amp are determined by the ratio of the power resistors and the built-in resistors respectively.

Table 2

Symbol of gain	Actual gain of OKI SLIC	Example gain   @ Ry=4.7 K   $@ R_{E A}=R_{E B}=45 \Omega$
$\mathrm{K}_{\mathrm{i}}$	$\frac{R y}{R_{E A}+R_{E B}} \cdot 3.858$	201
Kvo	0.167	0.167
KV1	1.60	1.60
KV2	1.517	1.517
$K_{i} \cdot K_{V 0}$	$0.644 \cdot \frac{R y}{\left(R_{E A}+R_{E B}\right)}$	33.6
$\mathrm{K}_{\mathrm{i}} \cdot \mathrm{K}_{\mathrm{V}}{ }^{\prime} \cdot \mathrm{K}_{\mathrm{V} 2}$	$0.977 \cdot \frac{R_{y}}{R_{E A}+R_{E B}}$	51.0

## DESIGN EXAMPLES

Table 3 and Table 4 are shown the design examples of the 2 wire terminating impedance component Zx and the two transhybrid rejection impedances $\mathrm{Zt}, \mathrm{Zb}$, in the case of REA $=$ $R_{E B}=45 \Omega$ and $R y=4.7 \mathrm{~K} \Omega$.
(1) 2-wire terminating impedance $\mathbf{Z x}$.

Table 3

No.	Required 2 wire terminating impedance Zto	Determined impedance from table 2 Zx. (Rx. Cx)	Remark
1	$\underset{900 \Omega}{\sim}$		Apply to North America (AT\&T)   (See CCITT rec. Q517)
2	$\underbrace{1 \longmapsto-1}_{600 \Omega}$	$\underbrace{\mathrm{R}_{\mathrm{X}} \quad \mathrm{C}_{\mathrm{X}}}_{20.2 \mathrm{~K}}$	Apply to NTT   (See CCITT rec. Q517)
3			Apply to BT   (See CCITT rec. Q517)

Note (1) $C_{x x}$ : needed to be provided to block the $D C(\simeq 0.68 \mu F \pm 50 \%)$
(2) When a required 2 -wire return loss cannot be obtained even when an externaly impedance $Z_{X}$ is selected, it is possible to improve the characteristic merely by adjusting the externally resistor $\mathrm{R}_{\mathrm{y}}$.
(2) Transhybrid rejection impedances $\mathrm{Zt}_{\mathrm{t}}$ and $\mathbf{Z b}$.

Table 4

No.	2-wire terminating impdeance Zto   (1)	2-wire subscriber line loop impedance   (1)	Determined impedances from table 2	Remark
			Zt ${ }_{\text {l }} \quad \mathbf{Z b}$	
1				North America nonloaded line
2				North America loaded line
3			$\overbrace{91.8 \mathrm{~K}}^{\text {( } \left.Z_{t}+Z_{b}\right)}$	North America special service line
4				NTT
5				BT

Note (1): See LSSGR and CCITT redbook Rec. 0517.

RINGING SIGNAL INSERTION


Figure 11 Signal Insertion Circuit Diagram

## QIEI semiconductor

## MSA4722-1

## SOLID-STATE RELAYS FOR SLIC IN THE PABX

## GENERAL DESCRIPTION

The MSA4722-1 is a solid-state relay function LSI for SLIC in the PABX and it consists of eight high-voltage PNPN Switches. The MSA4722-1 is designed to provide R.T functions for SLIC.

This device can replace conventional electromagnetic relays.

## FEATURES

- R (Ringing signal sending \& Ring trip interface), T (Network test switch) and Cutoff (Separate the Battery-Feed circuit from subscriber line) functions on chip.
- High voltage functions integrated in dielectric isolation technology.
- Low ON-Resistance \& High OFFResistance.
- Size and Weight reduction over electromagnetic relays.
- 22 pin plastic DIP package.


## FUNCTIONAL BLOCK DIAGRAM



Figure 1 MSA4722-1 Functional Block Diagram

## PIN CONFIGURATION



## PIN DESCRIPTION

Name	Pin No.	Function
RB	1	Ringing signal sending power resistor RG1 input and connected to Ring line through the switch S 1 . The resistor value is $510 \Omega, 1 \mathrm{~W}$.
A	2	Connected to Ring line.
AA	3	Connected to the poled negative terminal of the Battery-feed circuit.
NT1	4	Connected to the Network test equipment.
BB	5	Connected to the poled positive terminal of the Battery-feed circuit.
NTO	6	Connected to the Network test equipment.
B	7	Connected to Tip line.
N.C.	8	Unused.
RA	9	Connected to the power resistor RG2 which supply the battery for Tip line in order to feed the DC current for detecting the customer's off-hook. The value of the resistor RG2 is $220 \Omega, 0.25 \mathrm{~W}$.
N.C.	10	Unused.
E	11	Connected to ground.
NTC	12	Network test switches S5, S6 control input. A logic level " $\mathrm{H}^{\prime}$ ' connects the Battery-feed circuit to the Network test equipment through S5 and S6.
PLP	13	Superimposing VBB switches S2B control input. A logic level " H " superimposes VBB during the Ringing signal is sent.
NOR	14	Line cutoff switches S3, S4 control input. A logic level " H " turns on both S3 and S4.
GT0	15	The gate turn-off function of the PNPN switches S3, S4 control input. A logic level "H" gets the loop current interrupted by these switches.
RNG	16	Ringing signal sending switches S1, S2A control input. A logic level " H " sends ringing signal to the customer.
TRP	17	The ringing voltage output. This voltage is proportional to the voltage between the terminals RC and CR. The output impedance is apr. $10 \mathrm{k} \Omega$.
VEE	18	-5 V input.
CR	19	Ringing signal generator input and connected to the ringing signal feed resistor RGO.   The resistor value is $220 \Omega, 0.5 \mathrm{~W}$.
N.C.	20	Unused.
RC	21	Ringing signal feed resistors RG0 and RG1 input. The voltage between RC and CR applies to the Ring trip interface circuit (IF).
VCC	22	+5V input.

## ABSOLUTE MAXIMUM RATING



## RECOMMENDED OPERATING CONDITIONS

Rating	Symbol	Value	Unit
Supply Voltage	$V_{C C}$	$+4.75 \sim+5.25$	V
	$\mathrm{~V}_{\text {EE }}$	$-5.25 \sim-4.75$	
Ringing Signal Voltage	$\mathrm{V}_{\mathrm{CR}}$	$69 \sim 83$	$\mathrm{~V}_{\text {rms }}$

## ELECTRICAL CHARACTERISTICS

(Unless otherwise noted $\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$ )

Parameters		Symbol	Conditions		Min	Max	Unit
Supply current - OFF Hook		IVCC	Figure 2		-	15	mA
Logic input voltage	High level	VIH	-	$\begin{aligned} & \text { NOR } \\ & \\ & \text { GTO } \\ & \text { PLP } \\ & \text { RNG } \\ & \text { NTC } \end{aligned}$	2.0	-	V
	Low level	$V_{\text {IL }}$			-	0.5	
Logic input current per one fan-in	High level	$\mathrm{I}_{\mathrm{IH}}$	$V_{\text {IH }}=V_{\text {CC }}$		-	0.1	mA
	Low level	IIL	$V_{\text {IL }}=0 \mathrm{~V}$		-1.2	-	
Cross point ON drive current	P-Gate	IPG	Figure 3	$S_{1} \sim S_{6}$	-	1.2	mA
	N-Gate	ING		$\mathrm{S}_{1}$	-	1.5	
Crosspoint off drive current		IGOFF	Figure 3	$S_{3}, S_{4}$	-	3	mA
Breakdown voltage		$\mathrm{V}_{\mathrm{BO}}$	-	$\begin{gathered} S_{1} \\ S_{2} \sim S_{6} \end{gathered}$	$\begin{aligned} & -320 \\ & -260 \end{aligned}$	$\begin{aligned} & 320 \\ & 260 \end{aligned}$	V
Minimum voltage ramp Which could fire the SCR under transient conditions		$\mathrm{dv} / \mathrm{dt}$			200/0.8	-	$\mathrm{V} / \mu \mathrm{s}$
Interrupt DC current capability		IOFF	GTO = "H"	$S_{3}, S_{4}$	5	-	mA
Holding current		$I_{H}$		$\mathrm{S}_{5}, \mathrm{~S}_{6}$	0.1	-	mA
ON voltage		$V_{F}$	$\mathrm{I}_{\mathrm{F}}=30 \mathrm{~mA}$	$S_{1} \sim S_{6}$	-	1.4	V
Dynamic ON resistance		$\mathrm{R}_{\mathrm{ON}}$	Center current $I_{F}=30 \mathrm{~mA}$	$S_{3}, S_{4}$	-	10	$\Omega$
Relative ON resistance error		$\Delta \mathrm{R}_{\text {ON }}$	$\mathrm{S}_{3} \sim \mathrm{~S}_{4}$		-	1	$\Omega$
OFF state resistance		R OFF	$\mathrm{V}_{\text {AK }}=50 \mathrm{~V}$		150	-	$\mathrm{M} \Omega$
Ringtrip interface circuit transfer ratio		K	Figure $4 \quad V_{\text {in }}= \pm 8 \mathrm{~V}$		0.305	0.439	-
TRP output resistance		$\mathrm{R}_{\text {out }}$			6.2	13.8	k $\Omega$

Note (1) The fan-in of GTO, RNG and PLP is two, respectively. Other logic fan-in is one.


Figure 2 Supply Current Test Circuit


Figure 3 Switch Drive Current Test Circuit


Figure 4 Ring Trip Interface Circuit Transfer Ratio Test Circuit

## APPLICATIONS INFORMATION

## 1) Overvoltage Protection

The MSM4722-1 consists of 8 high voltage withstanding PNPN switches.
But overvoltage protection circuit is required and it must keep the voltage at the line interface terminals $A$ and $B$ the value indicated eq. (1) during lightning or transient high voltage strikes.

$$
\begin{align*}
\text { Vclp }= & \text { Vbo }-\sqrt{2} \times \text { Vcr } \ldots \ldots \ldots(1)  \tag{1}\\
& \text { Vclp }: 2 \text { nd arrestor clamping voltage. } \\
& \text { Vcr }: \text { Ringing signal voltage }[r . m . s] . \\
& \text { Vbo }: \text { Breakdown voltage of S1. }
\end{align*}
$$



## 2) Ringing Signal Sending Time Chart

The OKI RT-LSI can send the ringing and silent signal to the customer and these signal sending method is shown below and in Figure 6.

The ringing signal can be sent to the customer through the switches $\mathrm{S} 1, \mathrm{~S} 2_{\mathrm{A}}, \mathrm{S} 2_{\mathrm{B}}$, during the RNG and PLP are logic level " H ".

The silent signal can be sent by the Battery-feed circuit through the Cutoff switches $\mathrm{S}_{3}, \mathrm{~S}_{4}$ during NOR is a logic level " H ".
Some guard timing are required when ringing and silent signal are sent, because RT consists of the self-holding PNPN switches and the holding-current of these switches is very small.

The ringing and silent signal sending time chart is shown in Figure 7.


Figure 6 Ringing Signal Sending Diagram

$t_{g} 1$ : prevents the switches $S_{3}$ and $S_{4}$ from holding by flowing current through a line leakage resistance. ( $\geqq 1 \mathrm{~ms}$ )
$\mathrm{t}_{\mathrm{g}} 2$ : needs to be not shorter than the half cycle time of ringing signal frequency. (ex. $\geqq \frac{1}{2 \times 16 \mathrm{~Hz}}=32 \mathrm{~ms}$ )

Figure 7 Ringing/Silent Signal Sending Time Chart

## 3) Cut-off from the Battery-feed Circuit Method

As the gate turn-off capability of the battery polarity reverse switches $S_{3}, S_{4}$ is not greater than the loop current, line cut-off from the SLIC must be performed by the following sequence.
a) The Battery-feed circuit is turned off in order to reduce the loop current to be interrupted by gate turn-off function of the switches $S_{3}$ and $\mathrm{S}_{4}$.
b) The logic input NOR is turned " L " and the GTO is turned " H " in order to interrupt the leakage current flowing from the Battery-feed circuit to the line.
c) GTO input is turned " H " 1 ms after the cutoff swithes $\mathrm{S}_{3}, \mathrm{~S}_{4}$ are completely turned off, in order to prevent the GTO driving current from flowing in the line.
The line cut-off time chart is shown in Figure 8.


Figure 8 Line Cut-off Time Chart

## 4) Ring Trip Interface Circuit Characteristics

The Ring trip interface circuit (IF) attenuates the voltage generated on between terminals $C R$ and RC, and transmits to the TRP terminal.

The IF circuit diagram is shown in Figure 9.
As the level shift transistors' collectors are connected to the ground through the output resistor, the phase difference between ringing generator voltage and ringing signal current distorts the output wave-form of the TRP.

Figure 10 shows this case. The IF transmission characteristics is shown in Figure 10 and Figure 11. The ring trip detection may be possible by connecting an appropriate low-pass filter and comparator to the TRP terminal.


Figure 9 Ring Trip Interface Circuit Diagram


Figure 10 Ring Trip Interface Dynamic Characteristic


Figure 11 Ring Trip Interface Static Characteristic

## QIEI semiconductor

## MSM6912

## PCM CHANNEL FILTER

## GENERAL DESCRIPTION

The MSM6912 is a PCM channel filter LSI which is fabricated by OKI's low power consumption CMOS silicon gate technology.

It consists of pre-filter, HPF, post filter and two LPF's.

## FEATURES

- CCITT G. 712 standard
- $50 / 60 \mathrm{~Hz}$ rejection filter on-chip
- SIN x/x compensation filter on-chip
- External gain adjustment, both transmit and receive filters
- Power-down mode available
- 128 KHz or 2048 KHz external clock for operation
- Power supply, $\pm 5 \mathrm{~V}$
- 16-pin ceramic DIP package


## BLOCK DIAGRAM



## PIN CONFIGURATION

$\mathrm{v}_{\mathrm{XGI}}{ }^{+}$	$\bigcirc$	16	$\mathrm{V}_{\mathrm{XO}}$
$\mathrm{vxGI}^{-} 2$		15	AG
$\mathrm{V}_{\mathrm{XGO}} 3$		14	CLKs
$\mathrm{V}_{\mathrm{RO}} \quad 4$		13	PDWN
$\mathrm{VRGI}^{+} 5$		12	CLK
$\mathrm{V}_{\mathrm{RGI}}{ }^{-} 6$		11	DG
VRGO 7		10	$\mathrm{V}_{\mathrm{RI}}$
$\mathrm{v}_{\text {SS }} 8$		9	$V_{D D}$

## PIN DESCRIPTION

Pin No.	Pin Name	Function
1	$\mathrm{VXGI}^{+}$	$\mathrm{V}_{\mathrm{XGI}}+$ is the non-inverting input of the gain-setting Op Amp in the transmit filter section.   The input analog signal is typically applied to this pin.
2	$\mathrm{V}_{\mathrm{XGI}}{ }^{-}$	$\mathrm{V}_{\mathrm{XGI}}$ - is the inverting input of the gain-setting Op Amp in the transmit filter section.
3	$\mathrm{V}_{\mathrm{XGO}}$	$\mathrm{V}_{\mathrm{XGO}}$ is connected to the output of the gain-setting Op Amp in the transmit filter section.   An appropriate voltage gain can be set as shown in Figure 1 below.   Figure 1   As the transmit filter section has a gain of approx. +3 dB excluding this amplifier, a suitable level diagram has to be selected.   The DC offset voltage of $\mathrm{V}_{\mathrm{XGO}}$ becomes $50 \cdot \mathrm{Gv}(\mathrm{mV})$ in the worst case. The load resistance connected to $\mathrm{V}_{\mathrm{XGO}}$ should be greater than $10 \mathrm{~K} \Omega$.
4	$\mathrm{V}_{\mathrm{RO}}$	$\mathrm{V}_{\mathrm{RO}}$ is the analog output of the receive filter. Because the output impedance is not so low, it is better to use the gain setting OP Amp as a output buffer. The resistive loads connected to $\mathrm{V}_{\mathrm{RO}}$ should be greater than $10 \mathrm{~K} \Omega$.
5	$\mathrm{V}_{\mathrm{RGI}}{ }^{+}$	$\mathrm{V}_{\mathrm{RGI}}+$ is the non-inverting input of the gain setting Op Amp in the receive filter section.
6	$\mathrm{V}_{\text {RGI }}{ }^{-}$	$\mathrm{V}_{\text {RGI }}$ - is the inverting input of the gain setting Op Amp in the receive filter section.



Figure 3

Use Figure 2 for amplification and Figure 3 for attenuation. As the receive filter section has a gain of approx. 0 dB excluding this amplifier, a suitable level diagram has to be calculated.
The DC offset voltage of $V_{\text {RGO }}$ becomes as follows in the worst case;

Figure $2 \ldots(200+50) \cdot \mathrm{Gv}=250 \cdot \mathrm{Gv}(\mathrm{mV})$
Figure 3 ... $200 \cdot \mathrm{Gv}+50$ (mv')
The resistive loads connected to $\mathrm{V}_{\mathrm{RGO}}$ should be greater than 10 $\mathrm{K} \Omega$.

Pin No.	Pin Name	Function
8	$\mathrm{V}_{\text {SS }}$	$V_{S S}$ is the negative supply pin. The voltage supplied to this pin should be $-5 \mathrm{~V} \pm 5 \%$.
9	$\mathrm{V}_{\mathrm{DD}}$	$V_{D D}$ is the positive supply pin. The voltage supplied to this pin should be $+5 \mathrm{~V} \pm 5 \%$.
10	$\mathrm{V}_{\mathrm{RI}}$	$\mathrm{V}_{\mathrm{R} \mid}$ is the analog input to the receive filter. The receive signal is typically generated by the decoder section of a companding CODEC (ex. MSM6917AS).   The receive filter provides the $\sin \mathrm{x} / \mathrm{x}$ correction over the passband.
11	DG	This pin is connected to the digital system ground.
12	CLK	CLK is the digital clock signal input. Two clock frequency (128 $\mathrm{KHz}, 2,048 \mathrm{KHz}$ ) can be applied.   The desired clock frequency is selected by the CLKS input.   For proper operation, this clock should be tied to the receive clock of the CODEC.
13	PDWN	This control input enables MSM6912AS in the powerdown mode. Power down occurs when the signal of this input is pulled high.
14	CLKS	This control pin is used to select the desired clock frequency.
		CLK (Pin 12) $\quad$ CLKS (Pin 14)
		128 KHz Digital "L"
		2,048 KHz ${ }^{\text {digital " } \mathrm{H} \text { " }}$
15	AG	This pin is connected to the analog system ground.
16	vxo	$\mathrm{V}_{\mathrm{XO}}$ is the analog output of the transmit filter. The output voltage range is $\pm 2.5 \mathrm{~V}$ and the output DC offset voltage is less than 200 mV . This output should be AC-coupled to the encoder section of the CODEC. The resistive load connected to $\mathrm{V}_{\mathrm{XO}}$ should be greater than $5 \mathrm{~K} \Omega$.

## ELECTRICAL CHARACTERISTICS

## Absolute Maximum Ratings

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	$V_{\text {DD }}$	$\begin{gathered} \mathrm{Ta}=25^{\circ} \mathrm{C} \text { with } \\ \text { respect to } \\ \text { DG and AG } \end{gathered}$	$-0.3 \sim 7$	V
	$\mathrm{V}_{\text {SS }}$		$+0.3 \sim-7$	
Digital input voltage	$V_{\text {DIN }}$		$-0.3 \sim V_{D D}+0.3$	V
Analog input voltage	$\mathrm{V}_{\text {AIN }}$		$\mathrm{VSS}^{-0.3} \sim \mathrm{~V}_{\mathrm{DD}}+0.3$	V
Operating temperature	TOP		$0 \sim 70$	${ }^{\circ} \mathrm{C}$
Storage temperature	TST		$-55 \sim 150$	${ }^{\circ} \mathrm{C}$

## Recommended Operating Conditions

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Supply voltage	$\mathrm{V}_{\mathrm{DD}}$	With respect to   DG and AG	4.75	5	5.25	V
	VSS		-4.75	-5	-5.25	V
Operating   temperature	TOP		0		70	${ }^{\circ} \mathrm{C}$

DC and Digital Interface Characteristics

$\left(\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\text {SS }}=-5 \mathrm{~V} \pm 5 \%, \mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}\right)$						
Parameter	Symbol	Conditions	Limits			Unit
			Min	Typ	Max	
Standby supply current	IDDS	PDWN $=\mathrm{V}_{\mathbf{I H}}$	-	0.01	1	mA
	Isss		-	0.01	1	mA
Operating supply current	IDDO	PDWN $=\mathrm{V}_{\text {IL }}$	-	5	10	mA
	Isso		-	5	10	mA
Input leakage current	ILL	$\mathrm{V}_{1}=0 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
	IIH	$\mathrm{V}_{1}=5 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
Input voltage	$\mathrm{V}_{\mathrm{IL}}$	With respect to DG	-	-	0.8	V
	$\mathrm{V}_{\mathrm{IH}}$		2.4	-	-	V

Analog Interface, Gain Setting Amplifier and Transmit Filter

$$
\left(V_{D D}=+5 \mathrm{~V} \pm 5 \%, V_{S S}=-5 \mathrm{~V} \pm 5 \%, \mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}\right)
$$

Parameter		Symbol	Conditions	Limits			Unit	
		Min		Typ	Max			
	Input leakage current $\begin{aligned} & \mathrm{VXGI}^{+} \\ & \mathrm{V}_{\mathrm{XGI}} \end{aligned}$		$\mathrm{I}_{\mathrm{BX}}$	$-3.2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq+3.2 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
	Input resistance $\mathrm{V}_{\mathrm{XGI}}{ }^{+}$ $\mathrm{V}_{\mathrm{XGI}}{ }^{-}$	RIX		2	-	-	$\mathrm{M} \Omega$	
	Input offset voltage	VOSXI	$-3.2 \mathrm{~V} \leq \mathrm{V}_{1 \mathrm{~N}} \leq+3.2 \mathrm{~V}$	-	-	50	mV	
	DC open loop voltage gain	Avx		66	-	-	dB	
	Open loop unity gain bandwidth	fcx		-	2	-	MHz	
	Load capacitance	CLX1		-	-	200	PF	
	Load resistance	RLX1		10	-	-	K $\Omega$	
	Output voltage swing	VOX1	$R \mathrm{LL} \geq 10 \mathrm{~K} \Omega$	$\pm 2.5$	-	-	V	
	Output resistance	Rox1		-	-	100	$\Omega$	
	Output offset voltage	$\mathrm{v}_{\text {OSX }}$	$\mathrm{V}_{\mathrm{XGI}}+=\mathrm{AG}$ Input OP Amp at Unity gain	-	-	200	mV	
	Load capacitance	CLX2		-	-	200	PF	
	Load resistance	RLX2		5	-	-	K $\Omega$	
	Output voltage swing	VOX2	$\mathrm{R}_{\mathrm{L}} \geq 5 \mathrm{~K} \Omega$	$\pm 2.5$	-	-	V	

- PABX•MSM6912

Analog Interface, Receive Filter and Gain Setting Amplifier

Parameter		Symbol	Conditions	Limits			Unit	
		Min		Typ	Max			
$\frac{\stackrel{y}{\Phi}}{\stackrel{\rightharpoonup}{i}}$	Input leakage current		IBR1	$-3.2 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq+3.2 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
	Input resistance	RIR1		2	-	-	$\mathrm{M} \Omega$	
	Output resistance	ROR1		-	-	200	$\Omega$	
	Output offset voltage	VOSR	$\mathrm{V}_{\mathrm{RI}}=\mathrm{AG}$	-	-	200	mV	
	Load capacitance	CLR1		-	-	200	PF	
	Load resistance	RLR1		10	-	-	K $\Omega$	
	Output voltage swing	VOR1	$\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{~K} \Omega$	$\pm 2.5$	-	-	V	
	Input leakage current   $\mathrm{V}_{\mathrm{RGI}}{ }^{+}, \mathrm{V}_{\mathrm{RGI}}{ }^{-}$	IBR2	$-3.2 \mathrm{~V} \leq \mathrm{V}_{1 \mathrm{~N}} \leq+3.2 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$	
	Input resistance $\mathrm{V}_{\mathrm{RGI}}{ }^{+}, \mathrm{V}_{\mathrm{RGI}}{ }^{-}$	RIR2		2	-	-	$\mathrm{M} \Omega$	
	Input offset voltage	VOSRI	$-3.2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq+3.2 \mathrm{~V}$	-	-	50	mV	
	DC open loop voltage gain	AvR		66	-	-	dB	
	Open loop unity gain bandwidth	${ }^{\mathrm{f}} \mathrm{CR}$		-	2	-	MHz	
	Output resistance	ROR2	At unity gain	-	-	20	$\Omega$	
	Load capacitance	CLR2		-	-	200	PF	
	Load resistance	RLR2		10	-	-	$\mathrm{K} \Omega$	
	Output voltage swing	VOR2	$\mathrm{RL} \geq 10 \mathrm{~K} \Omega$	$\pm 2.5$	-	-	V	

Transmit Filter Transfer Characteristics

Parameter		$\left(V_{\text {DD }}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\text {SS }}=-5 \mathrm{~V} \pm 5 \%, \mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}\right)$							
		Symbol	Conditions	Limits				Unit	
		Amp		Min	Typ	Max			
Absolute passband gain ( 900 Hz )			$\mathrm{G}_{\text {AX }}$	$\begin{aligned} & \text { Input }=0 \mathrm{dBmo} \\ & =1.25 \mathrm{Vrms} \\ & \text { Output } \\ & =+3 \mathrm{dBmo} \\ & =1.77 \mathrm{Vrms} \end{aligned}$	-	2.8	3.0	3.2	dB
	Below 60 Hz	$\mathrm{G}_{\mathrm{RX}}$	-			-20			
	$300 \sim 3000 \mathrm{~Hz}$		-0.25			-	+0.1		
	3300 Hz		-0.35			-	+0.1		
	3400 Hz		0 dB		-0.85	-	+0.1		
	4000 Hz				-	-	-14		
	4600 Hz and above				-	-	-28		
Gain variation with temperature		$\mathrm{G}_{\text {AXT }}$	$\begin{gathered} \text { Input }=0 \mathrm{dBmo} \\ 900 \mathrm{~Hz} \end{gathered}$		-	0.0005	-	$\mathrm{dB} /{ }^{\circ} \mathrm{C}$	
Gain variation with supplies		$\mathrm{G}_{\text {AXS }}$	Input $=0 \mathrm{dBmo}$ 900 Hz   Supplies: $\pm 5 \%$		-	0.05	-	dB/V	
Crosstalk, Receive to Transmit		${ }^{\text {CTRX }}$	*1		-	-	-60	dB	
Total C message noise at output		NCX1			-	8	-	dBrnco	
Total C message noise at output		$\mathrm{N}_{\mathrm{CX} 2}$		20 dB	-	10	-		
Differential envelope delay		DDX	$0.9 \sim 2.6 \mathrm{KHz}$	OdB	-	-	60	$\mu \mathrm{S}$	
Absolute delay		$\mathrm{D}_{\text {AX }}$	900 Hz		-	200	-		
Single frequency distortion products		Dpx	$\begin{gathered} \mathrm{v}_{\mathrm{XO}}=+3 \mathrm{dBmo} \\ 900 \mathrm{~Hz} \end{gathered}$	20 dB	-	-	-45		
Positive power supply rejection ratio		PSRR1	$\underset{V_{D D}}{\mathrm{~V}_{\mathrm{XO}}, 900 \mathrm{~Hz}}$	0 dB	25	30	-	dB	
Negative power supply rejection ratio		PSRR2	$\begin{gathered} \mathrm{VXO}_{\mathrm{XS}}, 900 \mathrm{~Hz} \\ \mathrm{~V}_{\mathrm{SS}} \end{gathered}$		23	28	-		

*1 $\quad \mathrm{V}_{\mathrm{RI}}=0 \mathrm{dBmo}, 900 \mathrm{~Hz}$


Receive Filter Transfer Characteristics

Parameter		Symbol	Conditions	Limits				Unit	
		Amp		Min	Typ	Max			
Absolute passband gain ( 900 Hz )			$\mathrm{GAR}^{\text {a }}$	$\begin{aligned} & \text { Input = } 0 \mathrm{dBmo} \\ & =1.25 \mathrm{Vrms} \\ & \text { Output } \\ & =+3 \mathrm{dBmo} \\ & =1.77 \mathrm{Vrms} \end{aligned}$   With $\sin \mathrm{x} / \mathrm{x}$   correction   where x   $=\pi \mathrm{f} / 8000$	0 dB	-0.25	-0.1	0	dB
	Below 300 Hz	GRR	-0.25			-	+0.1		
	$300 \sim 3000 \mathrm{~Hz}$		-0.25			-	+0.1		
	3300 Hz		-0.35			-	+0.1		
	3400 Hz		-0.85			-	+0.1		
	4000 Hz		-			-	-14		
	4600 Hz and above		-			-	-28		
Gain variation with temperature		GART	$\begin{gathered} \text { Input }=0 \mathrm{dBmo} \\ 900 \mathrm{~Hz} \end{gathered}$	-		0.0005	-	$\mathrm{dB} /{ }^{\circ} \mathrm{C}$	
Gain variation with supplies		$\mathrm{G}_{\text {AXS }}$	$\begin{aligned} & \text { Input }=0 \mathrm{dBmo} \\ & 900 \mathrm{~Hz} \\ & \text { Supplies: } \pm 5 \% \end{aligned}$	-		0.05	-	dB/V	
Crosstalk, transmit to receive		CTXR	*1	-		-	-60	dB	
Total C message noise at output		$\mathrm{N}_{\text {CR }}$		-		7	-	dBrnco	
Differential envelope delay		DDR	$0.9 \sim 2.6 \mathrm{KHz}$	-		-	120	$\mu \mathrm{s}$	
Absolute delay		$\mathrm{D}_{\text {AR }}$	900 Hz	-		120	-		
Single frequency distortion products		DPR	$\begin{gathered} \mathrm{V}_{\mathrm{RGO}}=+3 \mathrm{dBmo} \\ 900 \mathrm{~Hz}{ }^{2} 2 \end{gathered}$	-		-	-50	dB	
Positive power supply rejection ratio		PsRR3	$\begin{gathered} \mathrm{V}_{\mathrm{RGO}}, 900 \mathrm{~Hz} \\ \mathrm{~V}_{\mathrm{DD}} \end{gathered}$	30		35	-		
Negative power supply rejection ratio		PSRR4	$\begin{gathered} \text { VRGO }_{\text {VSS }} 900 \mathrm{~Hz} \\ \end{gathered}$	30		35	-		

*1 $\mathrm{V}_{\mathrm{XO}}=+3 \mathrm{dBmo}, 900 \mathrm{~Hz}$
$V_{R I}=A G$
*2 Removing the component of 128 KHz

## OIII semiconductor

## MSM6913

## SERIAL PARALLEL CONVERTER

## GENERAL DESCRIPTION

The MSM6913 is a serial-parallel converter LSI which is fabricated by OKl's low power consumption CMOS silicon gate technology. The MSM6913 has 8 data signal input pins and 8 data signal output pins, and also has the row-column converting function to replace rows with columns on a matrix with 8 rows and 8 columns considering the 8 data signal pins as the row and the 8 bits, the depth of data, as the column. This function realizes the parallel-serial conversion to convert the input data with 8 cycles of 8 -bit parallel data into 8 output data of 8 -bit serial data, and the serial-parallel conversion to convert 8 input data of 8 -bit serial data into the output data with 8 cycles of 8 -bit parallel data.

The MSM6913 is also provided with functions to perform the parity check for 8-bit data input signal + parity bit and the parity generation for 8-bit data output signal.

All data except that on the $\overline{\mathrm{DG}}$ pin are synchronized with the clock. 9 MHz clock can be used for its operation.

## FEATURES

- Serial conversion for 8-bit parallel signal and parallel conversion for 8-bit serial signal
- 9 MHz high-speed switching
- Built-in parity-check circuit for data input signal
- Built-in parity-generation circuit for data output signal
- 5 V single power supply
- 24-pin plastic DIP package, 24-pin ceramic DIP package


## BLOCK DIAGRAM



PIN CONFIGURATION
(Top View)


## PIN DESCRIPTION

Pin Name	Pin No.	Function
$\mathrm{IN}_{0} \sim \mathrm{IN}_{8}$	$1 \sim 9$	1)Octet interleave serial HW input pin   In this case, 8-bit data + parity (serial-parallel conversion)   2)   8-bit data + parity parallel HW input pin   Has the parity check function for input data and the output is   the octet interleave serial (parallel-serial conversion).   $\mathrm{OUT}_{0} \sim \mathrm{OUT}_{8}$ $23 \sim 15$
Corresponding to Items 1) and 2) of INx above.   1) 8-bit data + parity parallel HW output pin   In this case, the input is the octet interleave serial HW   (serial-parallel conversion).   2)		
Ontet tinterleave serial HW output pin		
In this case, the input is the octet interleave parallel HW		
(parallel-serial conversion).		

## ELECTRICAL CHARACTERISTICS

## Absolute Maximum Ratings

Parameter	Symbol	Condition	Ratings	Unit
Supply voltage	$\mathrm{V}_{\mathrm{DD}}$	$\mathrm{Ta}=25^{\circ} \mathrm{C} \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$	$-0.3 \sim+7$	V
Input voltage	$\mathrm{V}_{\text {IN MAX }}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{DD}}+0.5$	V
	$\mathrm{~V}_{\text {IN MIN }}$		$\mathrm{V}_{\mathrm{SS}}-0.5$	V
Operation   temperature	TOP		$0 \sim+70$	${ }^{\circ} \mathrm{C}$
Storage   Temperature	TSTR		$-65 \sim 150$	${ }^{\circ} \mathrm{C}$

## Recomended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit	Remark
Supply voltage	$\mathrm{V}_{\mathrm{DD}}$	4.75	5	5.25	V	$5 \mathrm{~V} \pm 5 \%$
	$\mathrm{~V}_{\mathrm{SS}}$	0	0	0		
Operational   temperature	$\mathrm{T}_{\mathrm{OP}}$	0	-	70	${ }^{\circ} \mathrm{C}$	
Clock duty	$\mathrm{D} \phi$	-	50	-	$\%$	
Input transit   time	$\mathrm{t}_{\mathrm{INr}}$	-	10	-	nS	
	$\mathrm{t}_{\mathrm{INf}}$	-	10	-		
Input voltage	$\mathrm{V}_{\mathrm{IH}}$	2.2	-	$\mathrm{V}_{\mathrm{DD}}$	V	
	$\mathrm{V}_{\mathrm{IL}}$	0	-	0.8		

## D.C. Characteristics

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Input current	$\mathrm{I}_{\mathrm{IL}}$	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	-10	-	-	A
	$\mathrm{I}_{\mathrm{IH}}$	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}$	-	-	10	
	$\mathrm{V}_{\mathrm{OL}}$	$\mathrm{I}_{\mathrm{O}}=1.6 \mathrm{~mA}$	-	-	0.4	V
	$\mathrm{~V}_{\mathrm{OH}}$	$\mathrm{I}_{\mathrm{O}}=-400 \mu \mathrm{~A}$	2.4	-	-	

## A.C. Characteristics

$\left(V_{D D}=5 \mathrm{~V} \pm 5 \% \mathrm{Ta}=0^{\circ} \mathrm{C} \sim 70^{\circ} \mathrm{C}\right)$

Parameter		Symbol	Condition	Min	Typ	Max	Unit
Maximum clock frequency		fcmax	$\begin{gathered} \mathrm{V}_{\mathrm{IH}}=3.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{gathered}$	9	-	-	MHz
Power supply current		IDD	$f \mathrm{c}=9 \mathrm{MHz}$	-	-	50	mA
Propagation delay time	OUT $_{\text {x }}$	${ }^{\text {tPHL }}$	$\begin{gathered} \mathrm{CL}=35 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{IH}}=3.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{gathered}$	-	-	45	nS
	PER			-	-	65	
	OUT $^{\text {x }}$	tpLH		-	-	45	
	PER			-	-	65	
Data setup time	INX	${ }^{\text {t SET }}$	$\begin{gathered} \mathrm{V}_{\mathrm{IH}}=3.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{gathered}$	10	-	-	
	$\overline{\mathrm{DG}}$			25	-	-	nS
	$\overline{\text { CLR }}$			10	-	-	-
Data hold time	INX	${ }^{\text {thold }}$		30	-	-	
	$\overline{\mathrm{DG}}$			20	-	-	nS
	$\overline{\text { CLR }}$			30	-	-	
Output transit time		$\mathrm{tr}_{r}$	$\begin{gathered} \mathrm{CL}=35 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{IH}}=3.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{gathered}$	-	-	25	ns
		$t_{f}$		-	-	25	
Minimum pulse width of clock		${ }^{\text {t CWL }}$	$\begin{gathered} \mathrm{V}_{\mathrm{IH}}=3.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{gathered}$	38	-	-	nS
		${ }^{\text {t }} \mathrm{CWH}$		38	-	-	

## FUNCTION TABLE

Input										Output									
$\mathrm{IN}_{0}$	$\mathrm{IN}_{1}$	$\mathrm{IN}_{2}$	$\mathrm{IN}_{3}$	$\mathrm{IN}_{4}$	$\mathrm{IN}_{5}$	$\mathrm{IN}_{6}$	$\mathrm{iN}_{7}$	$\mathbb{N}_{8}$	$\overline{\mathrm{DG}}$	OUT0	OUT ${ }_{1}$	$\mathrm{OUT}_{2}$	$\mathrm{OUT}_{3}$	$\mathrm{OUT}_{4}$	$\mathrm{OUT}_{5}$	$\mathrm{OUT}_{6}$	$\mathrm{OUT}_{7}$	$\mathrm{OUT}_{8}$	PER
$\mathrm{D}_{00}$	$\mathrm{D}_{10}$	$\mathrm{D}_{20}$	$\mathrm{D}_{30}$	$\mathrm{D}_{40}$	$\mathrm{D}_{50}$	$\mathrm{D}_{60}$	$\mathrm{D}_{70}$	$\mathrm{D}_{80}$	DGo	$\mathrm{D}_{00}$	$D_{01}$	$\mathrm{D}_{02}$	$\mathrm{D}_{03}$	$\mathrm{D}_{04}$	$\mathrm{D}_{05}$	$\mathrm{D}_{06}$	$\mathrm{D}_{07}$		
$\mathrm{D}_{01}$	$\mathrm{D}_{11}$	$\mathrm{D}_{21}$	$\mathrm{D}_{31}$	$\mathrm{D}_{41}$	$\mathrm{D}_{51}$	$\mathrm{D}_{61}$	$\mathrm{D}_{71}$	$\mathrm{D}_{81}$	$\mathrm{DG}_{1}$	$\mathrm{D}_{10}$	$\mathrm{D}_{11}$	$\mathrm{D}_{12}$	$\mathrm{D}_{13}$	$\mathrm{D}_{14}$	$\mathrm{D}_{15}$	$\mathrm{D}_{16}$	$\mathrm{D}_{17}$		
$\mathrm{D}_{02}$	$\mathrm{D}_{12}$	$\mathrm{D}_{22}$	$\mathrm{D}_{32}$	$\mathrm{D}_{42}$	$\mathrm{D}_{52}$	$\mathrm{D}_{62}$	$\mathrm{D}_{72}$	$\mathrm{D}_{82}$	$\mathrm{DG}_{2}$	$\mathrm{D}_{20}$	$\mathrm{D}_{21}$	$\mathrm{D}_{22}$	$\mathrm{D}_{23}$	$\mathrm{D}_{24}$	$\mathrm{D}_{25}$	$\mathrm{D}_{26}$	$\mathrm{D}_{27}$	-	$\cdots$
$\mathrm{D}_{03}$	$\mathrm{D}_{13}$	$\mathrm{D}_{23}$	$\mathrm{D}_{33}$	$\mathrm{D}_{43}$	$\mathrm{D}_{53}$	$\mathrm{D}_{63}$	$\mathrm{D}_{73}$	$\mathrm{D}_{83}$	$\mathrm{DG}_{3}$	$\mathrm{D}_{30}$	$\mathrm{D}_{31}$	$\mathrm{D}_{32}$	$\mathrm{D}_{3}$	$\mathrm{D}_{34}$	$\mathrm{D}_{35}$	$\mathrm{D}_{36}$	$\mathrm{D}_{37}$	$\stackrel{2}{0}$	$\begin{array}{r} 0 \\ -0.0 \\ \hline \end{array}$
$\mathrm{D}_{04}$	$\mathrm{D}_{14}$	$\mathrm{D}_{24}$	$\mathrm{D}_{34}$	$\mathrm{D}_{44}$	$\mathrm{D}_{54}$	$\mathrm{D}_{64}$	$\mathrm{D}_{74}$	$\mathrm{D}_{84}$	$\mathrm{DG}_{4}$	$\mathrm{D}_{40}$	$\mathrm{D}_{41}$	$\mathrm{D}_{42}$	$\mathrm{D}_{43}$	$\mathrm{D}_{44}$	$\mathrm{D}_{45}$	$\mathrm{D}_{46}$	$\mathrm{D}_{47}$	Z	
$\mathrm{D}_{05}$	$\mathrm{D}_{15}$	$\mathrm{D}_{25}$	$\mathrm{D}_{35}$	$\mathrm{D}_{45}$	$\mathrm{D}_{55}$	$\mathrm{D}_{65}$	$\mathrm{D}_{75}$	$\mathrm{D}_{85}$	$\mathrm{DG}_{5}$	$\mathrm{D}_{50}$	$\mathrm{D}_{51}$	$\mathrm{D}_{52}$	$\mathrm{D}_{53}$	$\mathrm{D}_{54}$	$\mathrm{D}_{55}$	$\mathrm{D}_{56}$	$\mathrm{D}_{57}$		
$\mathrm{D}_{06}$	$\mathrm{D}_{16}$	$\mathrm{D}_{26}$	$\mathrm{D}_{36}$	$\mathrm{D}_{46}$	$\mathrm{D}_{56}$	$\mathrm{D}_{66}$	$\mathrm{D}_{76}$	$\mathrm{D}_{86}$	$\mathrm{DG}_{6}$	$\mathrm{D}_{60}$	$\mathrm{D}_{61}$	$\mathrm{D}_{62}$	$\mathrm{D}_{63}$	$\mathrm{D}_{64}$	$\mathrm{D}_{65}$	$\mathrm{D}_{66}$	$\mathrm{D}_{67}$		
$\mathrm{D}_{07}$	$\mathrm{D}_{17}$	$\mathrm{D}_{27}$	$\mathrm{D}_{37}$	$\mathrm{D}_{47}$	$\mathrm{D}_{57}$	$\mathrm{D}_{67}$	$\mathrm{D}_{77}$	$\mathrm{D}_{87}$	$\mathrm{DG}_{7}$	$\mathrm{D}_{70}$	$\mathrm{D}_{71}$	$\mathrm{D}_{72}$	$\mathrm{D}_{73}$	$\mathrm{D}_{74}$	$\mathrm{D}_{75}$	$\mathrm{D}_{76}$	$\mathrm{D}_{77}$	$\downarrow$	

Note 1: The Xth bit of $\mathrm{OUT}_{8}$ depends on the number of " H " s at the Xth bit of $\mathrm{D}_{\mathrm{x} 0}$ through $\mathrm{D}_{\mathrm{x} 7}$ and the DG.

The number of " H " at the   X bit of $\mathrm{D}_{\mathrm{x0}} \sim \mathrm{D}_{\mathrm{x} 7} \& \mathrm{DG}$	The X bit of $\mathrm{OUT}_{8}$
$0,2,4,6,8$	0
$1,3,5,7,9$	1

Note 2: The Xth bit of PER depends on the number of " H " s of $\mathrm{D}_{0 \mathrm{x}}$ through $\mathrm{D}_{8 \mathrm{x}}$.

The number of " H "   of $\mathrm{D}_{0 \mathrm{x}} \sim \mathrm{D}_{8 \mathrm{x}} \& \mathrm{DG}$	The X bit of PER
$0,2,4,6,8$	1
$1,3,5,7,9$	0



## OIEI semiconductor

## MSM6914

## HIGHWAY SWITCH CIRCUIT

## GENERAL DESCRIPTION

The MSM6914 is a highway switch circuit LSI which is fabricated by OKI's low power consumption CMOS silicon gate technology.

The MSM6914 has 3 bits, in parallel, of 16 pins for digital data input lines and 4 pins for digital data output lines to be connected with any one of those input lines, forming the digital data switch matrix with 16 input lines $\times 4$ output lines $\times 3$ bits. The selection of output lines is performed by 4 bits of input control signals.

All data perform clock-synchronized operations and the number of delay clocks between input and output can be set to any one of clocks 1,3, and 4. It also has the function to expand the lattice size of switch matrix. In addition, it has functions to perform the parity check for ouput line control signals and the parity generation for output data and allows the $9-\mathrm{MHz}$ operation.

## FEATURES

- $16 \times 4 \times 3$ bits switch matrix
- Built-in parity-check circuit for input control signal
- Built-in parity-generation for data output signal
- Built-in multi-input circuit for expanding lattice size
- 5-V single power supply
- 120-pin ceramic PGA package


## BLOCK DIAGRAM



## PIN CONFIGURATION AND CONNECTION



Pin No.	Symbol	Pin   No.	Symbol	Pin   No.	Symbol	Pin   No.	Symbol	Pin No.	Symbol	Pin No.	Symbol
1	D010	21	N.C	41	PER2	61	N.C.	81	D209	101	$\mathrm{CK}_{2}$
2	D012	22	D211	42	PERo	62	D005	82	N.C	102	P1
3	D014	23	D213	43	Po	63	D007	83	D212	103	P3
4	D100	24	D215	44	P2	64	Doo9	84	D214	104	VDD
5	GND	25	N.C	45	VDD	65	D011	85	CKO	105	E1
6	D101	26	SEL1	46	Eo	66	Do13	86	SELo	106	E3
7	D103	27	MINo1	47	E2	67	D015	87	MINoo	107	S31
8	D105	28	MIN 11	48	S33	68	GND	88	MIN10	108	S23
9	D107	29	N.C	49	S32	69	D102	89	MIN20	109	S21
10	D109	30	MIN21	50	S30	70	D104	90	N.C	110	MSEL
11	D111	31	PTY2	51	S22	71	D106	91	$\mathrm{PTY}_{3}$	111	S12
12	D113	32	PTYo	52	S20	72	D108	92	PTY 1	112	S10
13	VDD	33	Y23	53	MSEL	73	D110	93	Y22	113	So2
14	D115	34	Y21	54	S13	74	D112	94	Y20	114	Soo
15	D201	35	Y13	55	$\mathrm{S}_{11}$	75	D114	95	Y12	115	Dooo
16	D203	36	Y 11	56	S03	76	Vdd	96	GND	116	Do02
17	D204	37	GND	57	S01	77	D200	97	Yоз	117	Do04
18	D206	38	Y 10	58	CK1	78	D202	98	Y01	118	N.C
19	D208	39	Y02	59	Do01	79	D205	99	PER3	119	Do06
20	D210	40	Yoo	60	Doo3	80	D207	100	PER1	120	Doo8

## ELECTRICAL CHARACTERISTICS

## Absolute Maximum Ratings

Parameter	Symbol	Condition	Ratings	Unit
Supply voltage	$\mathrm{V}_{\mathrm{DD}}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {Ss }}=0 \mathrm{~V}$	$-0.3 \sim+7.0$	V
Input voltage	$\mathrm{V}_{\text {IN }} \mathrm{MAX}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{DD}}+0.5$	V
	$\mathrm{~V}_{\text {IN MIN }}$		$\mathrm{V}_{\mathrm{SS}}-0.5$	
	$\mathrm{T}_{\mathrm{OP}}$		$0 \sim+70$	${ }^{\circ} \mathrm{C}$
Storage temp.	$\mathrm{T}_{\mathrm{STR}}$			$-65 \sim+150$

Recomended Operating Conditions

Parameter	Symbol	Max	Typ	Min	Unit	Remark
Supply voltage	$V_{\text {DD }}$	4.75	5	5.25	V	$5 \mathrm{~V} \pm 5 \%$
	$V_{S S}$	0	0	0		
Operational temp.	TOP	0	-	70	${ }^{\circ} \mathrm{C}$	
Clock duty	D $\phi$	-	50	-	\%	
Input transit time	${ }_{\text {t }} \mathrm{Nr}$	-	10	-	nS	
	$\mathrm{t}_{\text {IN }}$ S	-	10	-		
Input voltage	$\mathrm{V}_{\text {IH }}$	2.2	-	$V_{D D}$	V	
	$\mathrm{V}_{\text {IL }}$	0	-	0.8		

D.C. Characteristics

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Input current	IIL	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	-10	-	-	$\mu \mathrm{A}$
	IIH	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}$	-	-	10	
Output voltage	$\mathrm{V}_{\mathrm{OL}}$	$\mathrm{lOL}=1.6 \mathrm{~mA}$	-	-	0.4	V
	$\mathrm{V}_{\mathrm{OH}}$	$\mathrm{IOH}^{\prime}=-400 \mu \mathrm{~A}$	2.4	-	-	

## A.C. Characteristics

Parameter		$\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 5 \% \mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}\right)$					
		Symbol	Condition	Min	Typ	Max	Unit
Maximum clock frequency		${ }^{\text {f }}$ C MAX	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{aligned}$	9	-	-	MHz
Power supply current		IDD	$\mathrm{fc}=9 \mathrm{MHz}$	-	-	130	mA
Propagation delay time	Yxx	${ }^{\text {tPHL }}$	$\begin{gathered} \mathrm{CL}=35 \mathrm{pF} \\ \mathrm{~V}_{1 \mathrm{H}}=3.0 \mathrm{~V} \\ \mathrm{~V}_{1 \mathrm{H}}=0 \mathrm{~V} \end{gathered}$	-	-	55	$n \mathrm{~S}$
	PERX			-	-	50	
	PTYx			-	-	85	
	Yxx	tpLH		-	-	55	
	PERx		$\mathrm{V}_{\mathrm{IH}}=0 \mathrm{~V}$	-	-	50	
	PTYx			-	-	85	
Data setup time	Dxxx	${ }^{\text {tSET }}$	$\begin{gathered} \mathrm{V}_{\mathrm{IH}}=3.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{gathered}$	10	-	-	nS
	Sx, Ex, Px			10	-	-	
	MINX			10	-	-	
Data hold time	Dxxx	${ }^{\text {thLD }}$	$\begin{gathered} V_{\mathrm{IH}}=3.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{gathered}$	30	-	-	nS
	Sx, Ex, Px			30	-	-	
	MINx			30	-	-	
Output transit time		tr	$\begin{gathered} \mathrm{CL}=35 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{IH}}=3.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{gathered}$	-	-	25	nS
		tf		-	-	25	
Clock skew	$\xrightarrow[\rightarrow \mathrm{CK}_{1}]{ }$	tskw01		-5	-	$\begin{gathered} \text { tcyc } \\ -8 \end{gathered}$	nS
	$\xrightarrow{\mathrm{CKo}_{0}}$	tskw02		-2	-	tcyc -40	

Notes: $Y x x: \quad Y 00 \sim Y 03, Y 10 \sim Y 13, Y 20 \sim Y 23$
PERx: PERO~PER3
PTYX: PTYO ~ PTY3
Dxxx: D000~D015, D100~D115, D200~D215
Sx: $\quad$ SOO~SO3,S $10 \sim$ S13,S $20 \sim S 23, S 30 \sim S 33$
Ex: EO ~E3
Px: $\quad \mathrm{PO} \sim \mathrm{P} 3$
MINx: MINOO ~MINO1, MIN10 ~MIN11, MIN2O ~MIN21

## PIN DESCRIPTION

Pin Name	Function
Dxxx	Input pin of 16-highway (3 bits/1 highway) data   After the latch at the CKo fall, output is made to any output data Yxx according to the   control data.
MINxx	Input pin for multidata when expanding lattice size
Yxx	Output pin of 4-highway (3 bits/1 highway) data
Sxxx	Input pin for path select data of $16 \times 4$ switch matrix (Capable of performing the   9-MHz operation)
Ex	Input pin of valid and invalid data in path select data
Px	Input pin of parity (odd number side) to be added to Sxx and Ex
PTYx	Parity check (odd number side) output pin for 3 bits/1 highway of Dxxx
PERx	Parity check (odd number side) output pin of Sxx, Ex, and Px
CKo	Latch clock of input highway data Dxxx
CK1	Latch clock of Sxx, Ex, and Px
CK2	Latch clock of MINxx input data
SELx	Time lag setting pin from Dxxx input data to Yxx output data
MSEL	Data to specify which Yxx output data is multiplied by MINxx input data

## FUNCTION TABLE (1)

Note 1$\left[\begin{array}{l} 1 \\ (2) \\ (3) \\ (4) \end{array}\right.$	Input											Output					Remark
	S03	S02	S01	Soo	Eo	PO	Selo	SEL1	MSEL	MIN001MIN20	$\begin{gathered} \mathrm{MIN} \\ 01 \\ 1 \\ \mathrm{MIN} \\ 21 \end{gathered}$	Yoo	Y10	Y20	PERo	PTYO	
	S13	S12	S11	S10	E1	P1						Y01	Y11	Y21	PER1	PTY1	
	S23	S22	S21	S20	E2	P2						Y02	Y12	Y22	PER2	PTY2	
	S33	S32	S31	S30	E3	P3						Y03	Y13	Y23	PER3	PTY3	
	X	X	X	X	1	$x$	0	0	X	1	1	1	1	1	Note 2	$4$	$\begin{aligned} & \text { 1-clock } \\ & \text { delay } \\ & \text { inside } \\ & \text { of LSI } \end{aligned}$
	0	0	0	0	0	0	0	0	X	1	1	Dooo	D100	D200	1		
	0	0	0	0	0	1	0	0	X	1	1	Dooo	D100	D200	0		
	0	0	0	1	0	0	0	0	X	1	1	D001	D101	D201	0		
	0	0	0	1	0	1	0	0	X	1	1	D001	D101	D201	1		
	0	0	1	0	0	0	0	0	X	1	1	D002	D102	D202	0		
	0	0	1	0	0	1	0	0	X	1	1	D002	D102	D202	1		
	0	0	1	1	0	0	0	0	X	1	1	D003	D103	D203	1		
	0	0	1	1	0	1	0	0	X	1	1	D003	D103	D203	0		
	0	1	0	0	0	0	0	0	X	1	1	D004	D104	D204	0		
	0	1	0	0	0	1	0	0	X	1	1	D004	D104	D204	1		
	0	1	0	1	0	0	0	0	X	1	1	D005	D105	D205	1		
	0	1	0	1	0	1	0	0	X	1	1	D005	D105	D205	0		
	0	1	1	0	0	0	0	0	X	1	1	D006	D106	D206	1		
	0	1	1	0	0	1	0	0	X	1	1	D006	D106	D206	0		
	0	1	1	1	0	0	0	0	X	1	1	D007	D107	D207	0		
	0	1	1	1	0	1	0	0	X	1	1	D007	D107	D207	1		
	1	0	0	0	0	0	0	0	X	1	1	D008	D108	D208	0		
	1	0	0	0	0	1	0	0	X	1	1	D008	D108	D208	1		
	1	0	0	1	0	0	0	0	X	1	1	D009	D109	D209	1		
	1	0	0	1	0	1	0	0	X	1	1	D009	D109	D209	0	Note 3	
	1	0	1	0	0	0	0	0	X	1	1	D010	D110	D210	1		
	1	0	1	0	0	1	0	0	X	1	1	D010	D110	D210	0		
	1	0	1	1	0	0	0	0	X	1	1	D011	D111	D211	0		
	1	0	1	1	0	1	0	0	X	1	1	D011	D111	D211	1		
	1	1	0	0	0	0	0	0	X	1	1	D012	D112	D212	1		
	1	1	0	0	0	1	0	0	X	1	1	D012	D112	D212	0		
	1	1	0	1	0	0	0	0	X	1	1	D013	D113	D213	0		
	1	1	0	1	0	1	0	0	X	1	1	D013	D113	D213	1		


Input											Output					Remark
S03	S02	S01	Soo	Eo	PO	Selo	SEL1	MSEL	$\begin{gathered} \mathrm{MIN} \\ 00 \\ 1 \\ \mathrm{MIN} \\ 20 \end{gathered}$	MIN01$\vdots$MIN21	Yoo	Y10	Y20	PERo	PTYO	
S13	S12	S11	S10	E1	P1						Y01	Y 11	Y21	PER1	PTY1	
S23	S22	S21	S20	E2	P2						Y02	Y12	Y22	PER2	PTY2	
S33	S32	S31	S30	E3	P3						Y03	Y13	Y23	PER3	PTY3	
1	1	1	0	0	0	0	0	X	1	1	D014	D114	D214	0		$\begin{aligned} & \text { 1-clock } \\ & \text { dielay } \\ & \text { inside } \\ & \text { of LSI } \end{aligned}$
1	1	1	0	0	1	0	0	X	1	1	D014	D114	D214	1		
1	1	1	1	0	0	0	0	X	1	1	D015	D115	D215	1	Note 3	
1	1	1	1	0	1	0	0	X	1	1	D015	D115	D215	0		
X	X	X	X	1	X	1	0	X	1	1	1	1	1	Note 2		$\left\{\begin{array}{l} \text { 3-clock } \\ \text { inslay } \\ \text { inside } \\ \text { of LSI } \end{array}\right.$
0	0	0	0	0	0	1	0	X	1	1	Dooo	D100	D200	1		
0	0	0	0	0	1	1	0	X	1	1	Dooo	D100	D200	0		
						$\begin{array}{rr} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ \hline \end{array}$						$\begin{array}{r}1 \\ 1 \\ \hline\end{array}$		$i$		
1	1	1	1	0	0	1	0	X	1	1	D015	D115	D215	1		
1	1	1	1	0	1	1	0	X	1	1	D015	D115	D215	0		
X	X	X	X	1	X	0	1	X	1	1	1	1	1	Note 2		
0	0	0	0	0	0	0	1	X	1	1	D000	D100	D200	1		
0	0	0	0	0	1	0	1	X	1	1	D000	D100	D200	0		4-clock
1   1   1   1	!	$1$	1	1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$		1	1	i	1		$\begin{array}{r} 1 \\ 1 \\ \hline \end{array}$	$\begin{array}{r} 1 \\ \hline \end{array}$	1		$\begin{aligned} & \text { delay } \\ & \text { inside } \\ & \text { of LSI } \end{aligned}$
1	1	1	1	0	0	0	1	X	1	1	D015	D115	D215	1		
1	1	1	1	0	1	0	1	X	1	1	D015	D115	D215	0	$\cdots$	

X : don't care Irrespective of $1 / 0$ condition

Note 1: Function Table (1) shows the case of selection of these input pins.
Note 2: Numbers of "1" on Sxo $\sim S_{x 3}$, Ex and Fx determines PERx

The number of "1"s   $S \times 0 \sim S \times 3$, Ex and Fx	PERx
$0,2,4,6$	$" 1 "$
$1,3,5$	$" 0$ "

Note 3: Numbers of "1" on Doxx, D1xx and D2xx determines PTY

The number of "1" on   Doxx, D $1 \times x$ and D2xx	PERx
0,2	$" 0 "$
1,3	$" 1 "$

## FUNCTION TABLE (2)

Input											Output					Remark
Soo S03	S10 ~ S13	$\begin{gathered} \mathrm{S} 20 \\ \sim \\ \mathrm{~S} 23 \end{gathered}$	$\left\lvert\, \begin{gathered} \text { S30 } \\ \sim \\ \text { S33 } \end{gathered}\right.$	$\begin{aligned} & \text { Eо } \\ & \sim \\ & \text { Ез } \end{aligned}$	$\begin{aligned} & \text { Po } \\ & \sim \\ & \text { P3 } \end{aligned}$	SELo	SEL1	MSEL	MINoo	MIN01	Yoo	Y01	Y02	Yоз	PTYO	
									MIN10	MIN11	Y10	$\mathrm{Y}_{11}$	Y12	Y13	$\sim$	
									MIN2O	MIN21	Y20	Y21	Y22	Y23	PTY3	
X	X	X	X	1	X	X	X	X	1	1	1	1	1	1	1	
x	X	X	X	1	X	X	X	0	0	1	0	1	1	1		
X	X	X	X	1	X	X	X	0	1	0	1	0	1	1		
x	X	X	X	1	X	X	X	0	0	0	0	0	1	1	Note 4	
x	X	X	X	1	X	X	X	1	0	1	1	1	0	1		
X	X	X	X	1	X	X	X	1	1	0	1	1	1	0		
X	X	x	X	1	x	X	X	1	0	0	1	1	0	0		

[^7]Note 4: These are determined as follows.

1) In case of MSEL $=$ " 0 ".

PTYo is determined by the numbers of " 1 " on MINoo~MIN20, while PTY 1 is determined by the numbers of " 1 " on $\mathrm{MIN} \mathrm{N}_{1} \sim \mathrm{MIN} 21$.
$\mathrm{PTY}_{2}$ and $\mathrm{PTY}_{3}$ are constantly " 1 ".

Numbers on "1" of   MINoo $\sim$ MIN21	PTYo
0,2	$" 0$ "
1,3	$" 1 "$


Numbers on "1" of   MINo1 ~MIN21	PTY 1
0,2	$" 0 "$
1,3	$" 1 "$

2) In case of MSEL = " 1 ".

PTYo and PTY 1 are constantly " 1 ".
PTY 2 is determined by the numbers of " 1 " on $\mathrm{MINoo}^{2}$ - MIN20, while PTY 3 is determined by the numbers of " 1 " on MINo1 $\sim \mathrm{MIN} 21$.

## TIMING CHART

(1) In case of SELO = " 1 " and $S E L_{1}=" 1 "$


Note 1: Axsn is the value when $D x x x$ is selected at $S x x=S n$.
(2) In case of SELO $=" 1$ " and SEL $1=" 0$ "


Note 1: Axsn is the value when $D x x x$ is selected at $S x x=S n$.
(3) In case of SELO $=$ " 0 " and SEL $1=" 1$ "


Note 1: Axsn is the value when $D x x x$ is selected at $S x x=S n$.

## E. DIGITAL SIGNAL PROCESSOR

II
$\qquad$

## OIEI semiconductor

## MSM77C20

## DIGITAL SIGNAL PROCESSOR

## GENERAL DESCRIPTION

The MSM77C20 is an LSI designed for the purpose of digital signal processing in the field of speech processing and telecommunications.

Since this LSI is the one-chip microcomputer contained the ROM, RAM, ALU, and multiplier, it is applicable to different systems by re-writing contents of the program MASK ROM.

## FEATURES

- Instruction cycle
- Instruction ROM
- Data ROM
- Data RAM
- Multiplier

250 ns
512 words $\times 23$ bits
512 words $\times 13$ bits
128 words $\times 16$ bits
16 bits $\times 16$ bits
$=31$ bits

- Input/Output

Parallel Port
Serial Ports
DMA transfer

- CPU interface 8080 series
- 5 V single power supply
- 3-micron CMOS
- 28-pin ceramic DIP
- 28-pin plastic DIP


## FUNCTIONAL BLOCK DIAGRAM



## PIN CONFIGURATION



## PIN DESCRIPTION

Symbol	Description	Type	Function
Do ~D7	Data bus	1/0	Bi-directional port used to transfer data between the DR or SR register and the external data bus.
$\overline{\mathrm{RD}}$	Read	1	Control signal to read out the data stored in the DR or SR register. When this signal and the $\overline{\mathrm{CS}}$ or $\overline{\mathrm{DACK}}$ signal become active-low, the Do to D7 are put into the output state.
$\overline{W R}$	Write	1	Control signal to write external data into the $D R$ register. When this signal and the $\overline{C S}$ or $\overline{D A C K}$ signal become active-low, the Do to D7 are put into the input/output enable state.
$\overline{\mathrm{CS}}$	Chip select	1	Used along with the $\overline{\mathrm{RD}}$ or $\overline{W R}$ signal. When this signal becomes active-low, the Do to D7 are put into the input/output enable state.
A0	DR/SR register select signal	1	Signal to select the DR or SR register when reading out the data. When this signal is set to " 1 " and the SR register to " 0 ", the DR register is selected.
RST	Reset	1	When this signal is set to " 1 " (at least 4 clocks should be input), the internal program counter, etc. are initialized.
$\overline{\text { DACK }}$	DMA acknowledge	1	Control signal to transfer data between the DR register and external units in the DMA mode, and input the signal indicating that the DMA cycle is permitted.
DRQ	DMA request	0	Signal to request the DMA transfer to external units when data is transferred in the DMA mode.
Po, P1	Ports 0 and 1	0	General-purpose port output assigned to the SR register.

## PIN DESCRIPTION (CONT.)

Symbol	Description	Type	Function
INT	Interrupt	1	When this signal is changed from " 0 " to " 1 " (at least 8 clocks   should be input) during the interruptible state (specified by   the SR register), the program jumps to the interrupt address   and the interrupt processing is executed.
SI	Serial input	1	The serial data is input by being synchronized with the SCK   clock rising edge.
$\overline{\text { SIEN }}$	Serial input enable	I	Signal to control whether or not to input the serial data. When   this signal is set to "1", the serial data is not stored.
SO	Serial output	Tri-   state	The serial data is output by being synchronized with the SCK   clock falling edge.
$\overline{\text { SOEN }}$	Serial output enable	I	Signal to control whether or not to output the serial data.   When this signal is set to " 1 ", the SO is put into the   high-impedance state.
SORQ	Serial output request	O	When data is set to the serial output register (SO register),   this signal is put into "1". When data with the specified   number of bits (specified by the SR register) is output, this   signal is put into " "0".
SCK	Serial clock	I	Clock to synchronize the serial data. The serial data is input   or output by being synchronized with this clock.
CLK	Clock	I	Clock to operate this chip.

## INSTRUCTION

## INSTRUCTION FORMAT

Instruction	Instruction Register																				
	$\begin{gathered} 1 \\ 22 \end{gathered}$	1 21	$\begin{gathered} 1 \\ 20 \end{gathered}$	$\begin{gathered} 1 \\ 19 \end{gathered}$	$\begin{gathered} 1 \\ 18 \end{gathered}$	$\begin{gathered} 1 \\ 17 \end{gathered}$	$\begin{gathered} 1 \\ 16 \end{gathered}$	$\begin{gathered} 1 \\ 15 \end{gathered}$	$\begin{gathered} 1 \\ 14 \end{gathered}$	$\begin{gathered} 1 \\ 13 \end{gathered}$	1 12	11	$\begin{gathered} 1 \\ 10 \end{gathered}$	$\begin{aligned} & 1 \\ & 9 \end{aligned}$	1 8	1	1	1 4	1	1	1
OP (Operation and Move)	00		P S L				U		A S E L		P		DPH.M		R P D E C		SRC			DST	
RET (Return)	01		P S L				U		A S E L		PL		DPH.M		R P D E C		SRC			DST	
JUMP   (Jump)	10						NC														
LDI   (Immediate   Data Load)	11										ID									DS	

## INSTRUCTION FIELD

- ALU P-Port Selection Field (OP, RET)

Mnemonic	PSEL		Description		
	1    20 1    20				
RAM	0	0	RAM		
IDB	0	1	Internal data bus (*1)		
M	1	0	M register	$\quad$ *1	Indicates the contents of
:---					
registers specified in					
SRC field.					

Note: These fields are effective only when ALU instructions are OR, AND, XOR, SUB, ADD, SBB, and ADC.

## - ALU Operation Field (OP, RET)

Mnemonic	ALU				Description
	$\begin{gathered} 1 \\ 18 \end{gathered}$	$\begin{gathered} 1 \\ 17 \end{gathered}$	$\begin{gathered} 1 \\ 16 \end{gathered}$	$\begin{gathered} 1 \\ 15 \end{gathered}$	
NOP	0	0	0	0	No operation
OR	0	0	0	1	$(\mathrm{ACC}) \vee(\mathrm{P}) \rightarrow(\mathrm{ACC})$
AND	0	0	1	0	$(\mathrm{ACC}) \wedge(\mathrm{P}) \rightarrow(\mathrm{ACC})$
XOR	0	0	1	1	$(\mathrm{ACC}) \forall(\mathrm{P}) \rightarrow(\mathrm{ACC})$
SUB	0	1	0	0	$(\mathrm{ACC})-(\mathrm{P}) \rightarrow(\mathrm{ACC})$
ADD	0	1	0	1	$(\mathrm{ACC})+(\mathrm{P}) \rightarrow(\mathrm{ACC})$
SBB	0	1	1	0	$(\mathrm{ACC})-(\mathrm{P})-(\mathrm{C}) \rightarrow(\mathrm{ACC})$
ADC	0	1	1	1	$(\mathrm{ACC})+(\mathrm{P})+(\mathrm{C}) \rightarrow(\mathrm{ACC})$
DEC	1	0	0	0	$(A C C)-1 \rightarrow(A C C)$
INC	1	0	0	1	$(\mathrm{ACC})+1 \rightarrow(\mathrm{ACC})$
CMP	1	0	1	0	$(\overline{A C C}) \rightarrow(A C C)$
SHR1	1	0	1	1	
SHL1	1	1	0	0	
SHL2	1	1	0	1	
SHL4	1	1	1	0	
XCHG	1	1	1	1	

Note: P: ALU P-port input selected by PSEL fields
C: Carry flag of FLAG register that is not selected by ASEL bit.
V: OR.
A: AND
$\forall$ : Exclusive OR
III-E-6

## - Accumulator Selection Field (OP, RET)

Mnemonic	ASEL	
	1	
	14	
ACCB	0	Description

- DP Operation and Modify Field (OP, RET)

Mnemonic	DPL		Description
	1	1	
	0	12	
DPINC	0	1	Nooperation
DPDEC	1	0	Decrement DP ${ }_{L}$
DPCLR	1	1	Clear DP $P_{L}$


Mnemonic	DPH.M			Description
	$\begin{gathered} 1 \\ 11 \end{gathered}$	$\begin{gathered} 1 \\ 10 \end{gathered}$	$\begin{aligned} & 1 \\ & 9 \end{aligned}$	
MO	0	0	0	$(\mathrm{DP6}$ DP5 DP4) $\forall(000)$
M1	0	0	1	(DP6 DP5 DP4) $\forall(0001)$
M2	0	1	0	(DP6 DP5 DP4) $\forall(010)$
M3	0	1	1	$(\mathrm{DP} 6 \mathrm{DP} 5 \mathrm{DP} 4) \forall(011)$
M4	1	0	0	$(\mathrm{DP6}$ DP5 DP4) $\forall(100)$
M5	1	0	1	$(\mathrm{DP} 6 \mathrm{DP} 5 \mathrm{DP} 4) \forall(1001)$
M6	1	1	0	$(\mathrm{DP} 6 \mathrm{DP} 5 \mathrm{DP} 4) \forall(110)$
M7	1	1	1	(DP6 DP5 DP4) $\forall\left(\begin{array}{l}1 \\ 1\end{array} 1\right)$

- RP Decrement Field (OP, RET)

Mnemonic	RPDEC	
	1	
RPNOP	8	
RPDEC	0	No operation

- Source Register Field (OP, RET)

Mnemonic	SRC				Description
	1	1 6	1 5	1 4	
NON	0	0	0	0	No register
A	0	0	0	1	Accumulator A
B	0	0	1	0	Accumulator B
TR	0	0	1	1	TR register
DP	0	1	0	0	DP register
RP	0	1	0	1	RP register
RO	0	1	1	0	RO register
SGN	0	1	1	1	SGN register
DR	1	0	0	0	DR register
DRNF	1	0	0	1	DR register (*1)
SR	1	0	1	0	SR register
SIM	1	0	1	1	SI register ( 1 st $\rightarrow$ MSB) (*2)
SIL	1	1	0	0	SI register (1st $\rightarrow$ MSB) (*3)
K	1	1	0	1	K register
L	1	1	1	0	L register
MEM	1	1	1	1	RAM

*1 The contents of DR register are output to the internal bus, however in the case of NON DMA mode, RQM flag is not set, and in the case of DMA mode, DRQ flag is not set.
*2 The first bit of serial data (ex. 16 bit data) is output to the bit " 15 " of the internal bus, and the last bit to the bit " 0 ".
*3 The first bit of serial data (ex. 16 bit data) is output to the bit " 0 " of the internal bus, and the last bit to the bit "15".

## - Destination Register Field (OP, RET, LDI)

Mnemonic	DST				Description
	$\begin{aligned} & 1 \\ & 3 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	
@ NON	0	0	0	0	No register
© A	0	0	0	1	Accumulator A
(1) B	0	0	1	0	Accumulator B
(1) TR	0	0	1	1	TR register
(1) DP	0	1	0	0	DP register
© RP	0	1	0	1	RP register
(1) DR	0	1	1	0	DR register
© ${ }^{\text {S }}$ SR	0	1	1	1	SR register
@ SOL	1	0	0	0	SO register
@ SOM	1	0	0	1	SO register (LSB $\rightarrow$ 1st) (*1)
© K	1	0	1	0	K register
(1) KLR	1	0	1	1	KLR (*3)
© KLM	1	0	1	0	KLM (*4)
(1) L	1	1	0	1	L register
(a) NON	1	1	1	0	No register
© MEM	1	1	1	1	RAM

*1 The serial data is output successively starting from the bit " 0 " of internal bus.
*2 The serial data is output successively starting from the bit " 15 " of internal bus.
*3 The data on internal data bus is set to $K$ register, and the output of $R O$ register to $L$ register.
*4 The contents in the RAM address, specified by DP6 $=1$ that is ( $1, D P_{5}, D P_{4}, D P_{3}, D P 2, D P 1$, DPo), set to $K$ register, and the data on internal data bus to $L$ register.

## SIGNAL PROCESSOR•MSM77C20

- BRANCH Field (JUMP)

Mnemonic	BRANCH								Description
	$\begin{gathered} 1 \\ 20 \end{gathered}$	$\begin{gathered} 1 \\ 19 \end{gathered}$	$\begin{gathered} 1 \\ 18 \end{gathered}$	$\begin{gathered} 1 \\ 17 \end{gathered}$	$\begin{gathered} 1 \\ 16 \end{gathered}$	$\begin{gathered} 1 \\ 15 \end{gathered}$	$\begin{gathered} 1 \\ 14 \end{gathered}$	$\begin{gathered} 1 \\ 13 \end{gathered}$	
JMP	1	0	0	0	0	0	0	0	Unconditional
CALL	1	0	1	0	0	0	0	0	Unconditional
JNCA	0	1	0	0	0	0	0	0	$C A=0$
JCA	0	1	0	0	0	0	0	1	$C A=1$
JNCB	0	1	0	0	0	0	1	0	$C B=0$
JCB	0	1	0	0	0	0	1	1	$C B=1$
JNZA	0	1	0	0	0	1	0	0	$\mathrm{ZA}=0$
JZA	0	1	0	0	0	1	0	1	$\mathrm{ZA}=1$
JNZB	0	1	0	0	0	1	1	0	$\mathrm{ZB}=0$
JZB	0	1	0	0	0	1	1	1	$\mathrm{ZB}=1$
JNOVAO	0	1	0	0	1	0	0	0	$O V A O=0$
JoVAO	0	1	0	0	1	0	0	1	$O V A O=1$
JNOVBO	0	1	0	0	1	0	1	0	OVBO $=0$
JOVB0	0	1	0	0	1	0	1	1	$\mathrm{OVBO}=1$
JNOVA1	0	1	0	0	1	1	0	0	OVA1 $=0$
JOVA1	0	1	0	0	1	1	0	1	OVA1 $=1$
JNOVB1	0	1	0	0	1	1	1	0	OVB1 $=0$
JOVB1	0	1	0	0	1	1	1	1	OVB1 $=1$
JNSAO	0	1	0	1.	0	0	0	0	$S A O=0$
JSAO	0	1	0	1	0	0	0	1	$\mathrm{SAO}=1$
JNSB0	0	1	0	1	0	0	1	0	SB0 $=0$
JSBO	0	1	0	1	0	0	1	1	SB0=1
JNSA1	0	1	0	1	0	1	0	0	$S A 1=0$
JSA1	0	1	0	1	0	1	0	1	$S A 1=1$
JNSB1	0	1	0	1	0	1	1	0	SB1 $=0$
JSB1	0	1	0	1	0	1	1	1	SB1 =1
JDPLO	0	1	0	1	1	0	0	0	$D P_{L}=0$
JDPLF	0	1	0	1	1	0	0	1	$D P_{L}=\mathrm{F}(\mathrm{HEX})$
-JNSIAK	0	1	0	1	1	0	1	0	SI ACK=0


Mnemonic	BRANCH								
	1	1	1	1	1	1	1	1	
	20	19	18	17	16	15	14	13	
JSIAK	0	1	0	1	1	0	1	1	Description
JNSOAK	0	1	0	1	1	1	0	0	SO ACK $=0$
JSOAK	0	1	0	1	1	1	0	1	SO ACK $=1$
JNRQM	0	1	0	1	1	1	1	0	RQM $=0$
JRQM	0	1	0	1	1	1	1	1	RQM $=1$

Note: The values of BRANCH field except the ones listed in the Table shall be unusable.

## - JMPA Field (JUMP)

JMPA field									Jump address
$\begin{gathered} 1 \\ 12 \end{gathered}$	$\begin{gathered} 1 \\ 11 \end{gathered}$	$\begin{gathered} 1 \\ 10 \end{gathered}$	$\begin{aligned} & 1 \\ & 9 \end{aligned}$	$\begin{aligned} & 1 \\ & 8 \end{aligned}$	$\begin{aligned} & 1 \\ & 7 \end{aligned}$	$\begin{aligned} & 1 \\ & 6 \end{aligned}$	$\begin{aligned} & 1 \\ & 5 \end{aligned}$	$\begin{aligned} & 1 \\ & 4 \end{aligned}$	
0	0	0	0	0	0	0	0	0	"0" address is specified as the jump address.
0	0	0	0	0	0	0	0	1	" 1 " address is specified as the jump address.
0	0	0	0	0	0	0	1	0	" 2 " address is specified as the jump address.
				2					2
1	1	1	1	1	1	1	1	1	" 511 " address is specified as the jump address.

## - ID Field (LDI)

| 1010 | ID field |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | HEX |
| 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 |  |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0000 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0001 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0002 |
|  |  |  |  |  |  |  |  | 2 |  |  |  |  |  |  |  | 2 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | FFFF |

- SIGNAL PROCESSOR•MSM77C20

ELECTRICAL CHARACTERISTICS
ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Conditions	Limits	Unit
Supply Voltage	Vcc	GND Basis	$-0.5 \sim+7.0$	V
Input Voltage	$\mathrm{V}_{\mathrm{IN}}$		$-0.5 \sim \mathrm{Vcc}+0.5$	V
Output Voltage	V OUT		$-0.5 \sim \mathrm{Vcc}+0.5$	V
Storage Temperature	Tstg		$-65 \sim+150$	${ }^{\circ} \mathrm{C}$
Power Dissipation	Pd	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	1.0	W

OPERATING RANGE

Parameter	Symbol	Min	Typ	Max	Unit	Remark
Supply Voltage	Vcc	4.75	5	5.25	V	
Operating Temperature	Top	-10	25	70	${ }^{\circ} \mathrm{C}$	
High Input Voltage	$\mathrm{V}_{\mathrm{H}}$	2.2	-	Vcc+0.3	V	CLK
		3.5	-	Vcc+0.3		
Low Input Voltage	$\mathrm{V}_{\mathrm{IL}}$	-0.3	-	0.80	V	CLK
		-0.3	-	0.45		

DC CHARACTERISTICS
$\left(V_{C C}=5 \mathrm{~V} \pm 5 \%, \mathrm{Ta}=-10 \sim 70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Low Output Voltage	$\mathrm{V}_{\mathrm{OL}}$	$\mathrm{I}^{\prime}=2 \mathrm{~mA}$	-	-	0.45	V
High Output Voltage	$\mathrm{V}_{\mathrm{OH}}$	$\mathrm{IOH}^{\prime}=-400 \mu \mathrm{~A}$	2.4	-	-	V
Input Leak Current	'LI	$0 \leqq \mathrm{~V}_{\mathrm{IN}} \leqq$ Vcc	-10	-	10	$\mu \mathrm{A}$
Output Leak Current	lo	$0 \leqq \mathrm{~V}_{\text {OUT }} \leqq$ Vcc	-10	-	10	$\mu \mathrm{A}$
CLK, SCK Capacitance	C ${ }^{\text {b }}$	$\mathrm{fc}=1 \mathrm{MHz}$	-	-	20	pF
Input Capacitance	$\mathrm{C}_{\text {IN }}$		-	-	10	pF
Output Capacitance	$\mathrm{C}_{\text {OUT }}$		-	-	20	pF
Current Consumption	Icc	Tcyc $=122 \mathrm{nS}$	-	24	40	mA

AC CHARACTERISTICS
( $\mathrm{Vcc}=5 \mathrm{~V} \pm 5 \%, \mathrm{Ta}=-10 \sim 70^{\circ} \mathrm{C}$ )

Parameter	Symbol	Condition	Min	Typ	Max	Unit
CLK cycle time	$\phi \mathrm{CY}$		122	-	2000	ns
CLK pulse width	$\phi \mathrm{D}$		60	-	-	ns
CLK rise time	$\phi r$	Voltage at timing		-	10	ns
CLK fall time	$\phi$	$\begin{aligned} & \text { point = } \\ & 1.0 \mathrm{~V} \& 3.0 \mathrm{~V} \end{aligned}$	-	-	10	ns
Ao, $\overline{C S}$, and $\overline{\text { DACK }}$ setup to RD $\downarrow$	${ }^{\text {t }}$ AR		0	-	-	ns
Ao, $\overline{\mathrm{CS}}$ and $\overline{\mathrm{DACK}}$ hold after RD $\dagger$	${ }^{\text {tra }}$		0	-	-	ns
$\overline{\mathrm{RD}}$ pulse width	$t_{\text {RR }}$		250	-	-	ns
Data access from $\overline{\mathrm{RD}} \downarrow$	${ }^{\text {tr }}$ D	$C_{L}=100 \mathrm{pF}$	-	-	150	ns
Data bus float after $\overline{\mathrm{RD}}\rceil$	${ }^{\text {t }}$ DF	$C_{L}=100 \mathrm{pF}$	10	-	100	ns
Ao, $\overline{\mathrm{CS}}$, and $\overline{\mathrm{DACK}}$ setup to $\overline{\mathrm{WR}} \downarrow$	${ }^{t}$ AW		0	-	-	ns
Ao, $\overline{\mathrm{CS}}$, and $\overline{\text { DACK }}$ hold after $\overline{W R} \uparrow$	tWA		0	-	-	ns
$\overline{\text { WR pulse width }}$	tww		250	-	-	ns
Data setup to $\overline{\mathrm{WR}} \uparrow$	${ }^{\text {t DW }}$		150	-	-	ns
Data hold after $\overline{W R 1}$	${ }^{\text {tw }}$		0	-	-	ns
$\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ recovery time between controis	$t_{\text {R }} \mathrm{V}$		250	-	-	ns
DRQ output delay	${ }^{\text {t }}$ M	$C_{L}=100 \mathrm{pF}$	-	-	150	ns
$\overline{\text { DACK }}$ input delay	tDACK		1	-	-	$\phi \mathrm{D}$
$\overline{\text { DACK }}$ pulse width	tDD	16 bit transfer	250	-	50000	ns
SCK cycle time	${ }^{\text {tscy }}$		480	-	DC	ns
SCK pulse width	${ }^{\text {tSCK}}$		230	-	-	ns
SCK rise time	$t_{r S C}$		-	-	20	ns
SCK fall time	$t_{f S C}$		-	-	20	ns
SORQ output delay	${ }^{\text {t DRQ }}$	$C_{L}=100 \mathrm{pF}$	30	-	150	ns
$\overline{\text { SOEN }}$ setup to SCK $\downarrow$	${ }^{\text {tsoc }}$		50	-	-	ns
$\overline{\text { SOEN }}$ hold after SCK $\downarrow$	${ }^{\text {t }} \mathrm{CSO}$		30	-	-	ns
SO output delay	${ }^{\text {t }}$ DCK		-	-	150	ns
SO active after SCK $\uparrow$ (controlled by SORQ)	tDZRQ		20	-	300	ns
SO active after SCK $\uparrow$	${ }^{\text {t }}$ DZSC		20	-	300	ns


Parameter	Symbol	Condition	Min	Typ	Max	Unit
SO active after SOEN 1	${ }^{\text {t }}$ DZE		20	-	180	ns
SO float after SOEN $\uparrow$	${ }^{\text {t HZE }}$		20	-	200	ns
SO float after SCK $\dagger$	thzsc		20	-	300	ns
SO float after SCK $\dagger$ (controlled by SORQ)	$t_{\text {t }}$ ZRQ		70	-	300	ns
SIEN and SI setup to SCK $\uparrow$	${ }^{t} \mathrm{DC}$		55	-	-	ns
SIEN and SI hold after SCK $\uparrow$	${ }^{t} \mathrm{CD}$		30	-	-	ns
Port output delay	tDP		-	-	$\begin{gathered} \phi \mathrm{CY}+ \\ 150 \end{gathered}$	ns
RST pulse width	$\mathrm{t}_{\text {RST }}$		4	-	-	$\phi C Y$
INT pulse width	IINT		8	-	-	$\phi C Y$

Note 1: Yoltage at AC timing measurement point

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{IL}}=\mathrm{v}_{\mathrm{OL}}=0.8 \mathrm{~V} \\
& \mathrm{v}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{OH}}=2.2 \mathrm{~V}
\end{aligned}
$$

Note 2: AC test input waveform


Note 3: Output HZ and DZ test load circuit


Note 4: Voltages at HZ and DZ timing measurement points


## TIMING DIAGRAM

## CLOCK



## READ OPERATION



## WRITE OPERATION




## SERIAL INPUT/OUTPUT TIMING



## PORT OUTPUT TIMING



RESET


INTERRUPT

INT


READ/WRITE CYCLE TIMING


## OIEI semiconductor

MSM6992
HIGH PERFORMANCE DIGITAL SIGNAL PROCESSOR

## GENERAL DESCRIPTION

The MSM6992 is a very high performance general purpose 22-bit floating-point digital signal processor (DSP). The MSM6992 is fabricated by using OKI's low power consumption CMOS silicon gate technology.
The MSM6992 is capable of high-speed execution of floating-point arithmetic operations (16-bit mantissa and 6 -bit exponent part) and 16 -bit fixed-point arithmetic operations. Devices will be available with 125 nS \& 100 nS machine cycle time.
The MSM6992 incorporates a 1 K -word $\times 32$-bit programmable ROM and two 128 -word $\times 22$ bit data RAMs that can alos be used as a single page of 256 words.
The program and data memories can both be expanded externally up to 64 K words via dedicated data and address lines.
The MSM6992 is capable of functioning in the master mode as a multiprocessor or in the slave mode as a microcomputer I/O processor, hence this device can be readily incorporated into large scale systems with highly flexible system configurations.
Major MSM6992 applications include analysis for speech recognition and speech analysis/synthesis in speech processing equipment, high speed modems, codec, and echo cancellers in communication equipment. This device can also be effectively used for meter control, robotics and in audio equipment.

## FEATURES

- Instruction cycle 100nS/125nS
- Arithmetic formats Floating-point arithmetic 16E6 Fixed-point arithmetic 16-bit Logical arithmetic 22-bit
- Built-in 1 K-word $\times 32$-bit instruction RAM (Also usable as data ROM)
- Built-in 1 K -word $\times 32$-bit instruction ROM
- 32-bit wide horizontal microinstruction
- 64K-word program memory area
- 64K-word data memory area
- Multiprocessor interface
- Microcomputer interface (8-bit \& 16 -bit)
- DMA controller connection capability
- Maximum 15-bit shift function (left or right)
- Double loop function
- +5 V power supply
- Low power consumption, 400 mW
- 132-pin ceramic PGA package
- $2 \mu \mathrm{~m}$ silicon gate CMOS

BLOCK DIAGRAM


## PIN CONFIGURATION



Note: Pins marked by an * must be connected to ground.

## PIN DESCRIPTION

Pin symbol	1/0	Function				
$P A_{15} \sim P^{\prime}$	0	Program memory address output pins   - These pins address external program memory.   - On reset this address goes to zero.				
$\mathrm{PD}_{31} \sim \mathrm{PD}{ }_{0}$	1	Program memory data input pins   - Input to external program memory data.				
IM	1	Internal ROM selector inpuit pin   - This signal is used to select between internal or external program memory.   for internal program mode $\mathrm{IM}=$ " 1 "   for external program mode $I M=" 0$ "				
$A_{15} \sim A_{0}$	$\stackrel{\mathrm{O}}{\text { (3-state) }}$	Data memory address output pins   - Designates the external data memory and external I/C addresses.				
$\mathrm{D}_{21} \sim \mathrm{D}_{0}$	$\begin{gathered} \text { I/O } \\ \text { (3-state) } \end{gathered}$	Data memory data input/output pins   - Parallel input and output of external data memory, microprocessor, or I/O bus data.				
$\overline{\mathrm{PTT}_{2,1,0}}$	1	3-level interrupt input pins (active low)   - Interrupts accepted during the "sequence" operations.   - Interrupts are accepted if interrupt level is greater than interrupt priority set in control register and fixed address corresponding to interrupt level is passed to program memory address bus. $\qquad$				
$\mathrm{FF}_{1} \sim \mathrm{IF}$	I	Universal input flag pins   - Inputs to set flag in IFR register.				
$\mathrm{OF}_{1} \sim \mathrm{OF}_{0}$	1	Universal output flag pins   - Output of OFR latch.				
$\overline{\mathrm{RD}}$	$\begin{gathered} \mathrm{I} / \mathrm{O} \\ \text { (3-state) } \end{gathered}$	Read control input/output pin (active low)   - Output of external data memory and I/O device read control signals when in master mode.   - Input of read control signals from the host MPU and other DSPs when in slave mode.				
$\overline{W R}$	$\begin{gathered} \text { I/O } \\ \text { (3-state) } \end{gathered}$	Write control input/output pin (active low)   - Output of external data memory and I/O device write control signals when in master mode.   - Input of write control signals from the host MPU and other DSPs when in slave mode.				
$\overline{\text { CS }}$	1	Chip select input pin (active low)   - MSM6992 is in slave mode when this signal is active and the input/output data. Port ( $D_{21}$ — $D_{0}$ ) is enabled.				
PSA ${ }_{1} \sim$ PSA ${ }_{0}$	1	Port select address input pin   - INR/OUTR ports connected to data input/output pins are selected according to the host MPU data bit length when MSM6992 is in slave mode.				
		PSA1	PSAO		Host CPU	
				8-bit	16-bit	MSM6992
		0	0	INR 21~16 OUTR 21~16 $-D_{5} \sim D_{0}$	INR 21~16 OUTR 21~16	$\begin{aligned} & \text { INR } 21 \sim 0 \rightarrow D_{21} \sim D_{0} \\ & \text { OUTR } 21 \sim 0 \end{aligned}$
		0	1	INR 15~8 $+D_{1} \sim D_{0}$	INR 15~0 $\qquad$	INR 21~0 OUTR 21~0 $\rightarrow \mathrm{D}_{21} \sim \mathrm{D}_{0}$
		1	0	$\begin{aligned} & \text { INR } 7 \sim 0-D_{7} \sim D_{0} \\ & \text { OUTR } 7 \sim 8-8 \end{aligned}$	NOP	INR 21~0 OUTR $21 \sim 0 \rightarrow D_{21} \sim D_{0}$
		1	1	NOP	NOP	INR 21~0 NR $21 \sim 0-D_{21} \sim D_{0}$

## PIN DESCRIPTION (CONT.)

Pin symbol	1/O	Function
IORQ	$\underset{\text { (3-state) }}{0}$	I/O request output pin   - This signal indicates whether the write or read operation is with respect to external data memory or I/O device.   I/O request when IORQ $=$ " 1 "   Data memory request when IORQ $=$ " 0 "
$\overline{\text { BREQ }}$	0	Bus request output pin (active low)   - Signal to request external data bus.   - Access requests passed to external devices are invalid when this DSP is accessed by external MPU ( $\mathrm{CS}=$ " 0 ").
$\overline{\text { BACK }}$	1	Bus acknowledge input pin (active low)   - Signal to indicate that external data bus is available.   - The DSP has access to bus if request signal is sent to external device ( $\overline{\mathrm{BREQ}}=$ " 0 ") and the BACK signal is active, that is, a full "hand shake" must take place.
$\overline{\text { DREQ }}$	0	DMA request output pin (active low)   - Data transfer request signal for data transfer between external memory and the DSP when in DMA mode.   - DREQ is reset after transfer of one word of data has been completed to maximize utilization of system bus.
$\overline{\text { DACK }}$	1	DMA acknowledge input pin (active low)   - Input signal indicating DMA cycle is enabled by external DMA control.
TA	0	Table data access indicator   - TA = " 1 " when data is read from the program memory.
$\overline{\mathrm{RST}}$	I	Reset input pin (active low)   - This signal initializes all internal states of DSP.   - The reset signal must be applied for a period greater than one machine cycle.   - If reset input signal is applied for more than five machine cycles, internal clock synchronization is effected in addition to internal initialization.
MCLKO, 1	1	Master clock input pin   - Master clock obtained by input of external clock ( $50 \pm 10 \%$ duty) with frequency four times the machine cycle
CLKO	0	Internal system clock output pin
$\mathrm{V}_{\text {CC }}$	-	+5 V power supply pin
GND	-	Ground pin

## ELECTRICAL CHARACTERISTICS

## Absolute Maximum Ratings

Parameter	Symbol	Conditions	Limit	Unit
Supply voltage	$\mathrm{V}_{\mathrm{Cc}}$	GND Basis	$-0.5 \sim+7.0$	V
Input voltage	$V_{\text {IN }}$		$-0.5 \sim \mathrm{v}_{\mathrm{CC}}+0.5$	V
Output voltage	V OUT		$-0.5 \sim v_{\mathrm{CC}}+0.5$	$\checkmark$
Storage temperature	$\mathrm{T}_{\text {stg }}$		$-65 \sim+150$	${ }^{\circ} \mathrm{C}$
Power dissipation	Pd	$\mathrm{Ta}=25^{\circ} \mathrm{C}$		W

## Operating Range

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	$\mathrm{V}_{\mathrm{CC}}$	4.75	5.00	5.25	V
Operating temperature	$\mathrm{T}_{\mathrm{OP}}$	0	25	70	${ }^{\circ} \mathrm{C}$
"H" input voltage	$\mathrm{V}_{\mathrm{IH}}$	2.2		$\mathrm{~V}_{\mathrm{CC}}+0.3$	V
"L" input voltage	$\mathrm{V}_{\mathrm{IL}}$	-0.3		0.8	V

DC Characteristics

	$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}\right)$					
Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Input leak current	ILI	$\mathrm{O} \leqq \mathrm{V}_{\mathrm{IN}} \leqq \mathrm{V}_{\mathrm{CC}}$	-10		10	$\mu \mathrm{~A}$
Output leak current	ILO	$0 \leqq \mathrm{~V}_{\mathrm{OUT}} \leqq \mathrm{V}_{\mathrm{CC}}$	-10		10	$\mu \mathrm{~A}$
"H" output current	$\mathrm{V}_{\mathrm{OH}}$	$\mathrm{IOH}=-400 \mu \mathrm{~A}$	2.4			V
"L" output current	$\mathrm{V}_{\mathrm{OL}}$	$\mathrm{IOL}=2.0 \mathrm{~mA}$			0.4	V
Stand-by supply   current	Iccs	$\mathrm{O} \leqq \mathrm{V}_{\mathrm{I}} \leqq \mathrm{V}_{\mathrm{CC}}$		15		mA
Operation supply   current	Icco	$\mathrm{t} \phi \mathrm{MC}=31.25 \mathrm{nS}$		80		mA

## Capacitance

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Input capacitance	$\mathrm{C}_{\mathrm{IN}}$	$\mathrm{f}=1 \mathrm{MHz}$			10	pF
				20	pF	

## AC Characteristics

- Clock Timing
$\left(\mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 5 \%\right)$

Symbol	Parameter	Condition	Min	Typ	Max	Unit
$\mathrm{t}_{\phi} \mathrm{MC}$	MCLK cycle time		31.25	-	DC	ns
$\mathrm{t}_{\phi} \mathrm{MH}$	MCLK high level pulse width		13	-	-	ns
$\mathrm{t}_{\phi} \mathrm{ML}$	MCLK low level pulse width		13	-	-	ns
${ }^{\text {t }}$ ¢ Mr	MCLK rise time	Voltage at timing measurement point $=0.8 \mathrm{~V} \& 2.2 \mathrm{~V}$	-	-	5	ns
${ }^{\text {t }}$ ¢ Mf	MCLK fall time		-	-	5	ns
$\mathrm{t}_{\phi} \mathrm{C}$	CLKO cycle time		125	-	-	ns
$\mathrm{t}_{\phi} \mathrm{H}$	CLKO high level pulse width		T-10	-	-	ns
$\mathrm{t}_{\phi} \mathrm{L}$	CLKO low level pulse width		3T-20	-	-	ns
${ }_{t}{ }_{\text {r }}$	CLKO rise time	Voltage at timing measurement point $=0.8 \mathrm{~V} \& 2.2 \mathrm{~V}$	-	-	10	ns
${ }^{\text {t }}{ }_{\text {f }}$	CLKO fall time		-	-	10	ns
$t_{\text {RSTS }}$	$\overline{\text { RST }}$ set-up to MCLK $\downarrow$		10	-	-	ns
$t_{\text {RSTH }}$	$\overline{\text { RST }}$ hold after MCLK $\downarrow$		10	-	-	ns
trstw	$\overline{\text { RST }}$ pulse width		$2 t \phi \mathrm{MC}^{*}$   $4 t \phi \mathrm{MC}$	-	-	ns

Note 1: AC test input waveform


Note 2: Voltage at AC timing measurement point


## External Instruction Operation

Symbol	Parameter	Condition	Min	Typ	Max	Unit
tPAD	PA ${ }_{15}$ ~ PAo output delay		-	-	55	ns
${ }^{\text {tPAH }}$	PA $15 \sim$ PAo hold after CLKO $\downarrow$		-5	-	-	ns
tPDS	PD $3_{1} \sim$ PDoset-up to CLKO $\downarrow$		24	-	-	ns
tPDH*	PD $3_{1}$ ~ PDohold after CLKO $\downarrow$		T	-	-	ns
${ }^{\text {t }}$ TAD	TA Output delay		-	-	60	ns
${ }^{\text {T }}$ A ${ }^{\text {H }}$	TA hold after CLKO $\downarrow$		-	-	40	ns

* When using MSM6992 at low speed, it is necessary to !atch memory output once to satisfy hold time.


## Write/Read Operation (Master mode)

Symbol	Parameter	Condition	Min	Typ	Max	Unit
$t_{\text {AD }}$	$\mathrm{A}_{15} \sim \mathrm{~A}_{0}$ delay		-	-	50	ns
${ }^{\text {taH }}$	$\mathrm{A}_{15} \sim$ Ao hold after CLKO 1		-5	-	-	ns
twa	$\mathrm{A}_{15} \sim$ Ao hold after WR $\uparrow$		-15	-	-	ns
twrd	$\overline{\text { WR output delay }}$		-	-	T+20	ns
tWRH	$\overline{\text { WR }}$ hold after CLKO $\downarrow$		-	-	20	ns
tww	$\overline{\text { WR }}$ pulse width		3T-20	-	-	ns
${ }_{\text {t }}$	$\mathrm{D}_{21} \sim$ Dooutput delay	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	-	-	T+40	ns
${ }^{\text {to }}$ (	D $21 \sim$ Do hold after CLKO	$C_{L}=100 \mathrm{pF}$	0	-	-	ns
$t_{\text {RDD }}$	$\overline{\mathrm{RD}}$ output delay CLKO!		-	-	T+20	ns
$\mathrm{t}_{\text {RDH }}$	$\overline{\mathrm{RD}}$ hold after CLKO $\downarrow$		-	-	20	ns
$t_{\text {RR }}$	$\overline{\mathrm{RD}}$ pulse width		3T-20	-	-	ns
tois	D ${ }^{1}$ ~ Doset-up to CLKO	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	35	-	-	ns
t ${ }_{\text {diH }}$	$\mathrm{D}_{21} \sim$ Do hold after CLKO 1	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	0	-	-	ns
tIOQD	IORQ output delay		-	-	60	ns
$\mathrm{tIOQH}^{\text {l }}$	IORQ hold after CLKO ।		-	-	40	ns

- SIGNAL PROCESSOR•MSM6992

Read/Write Operation (Slave mode)

Symbol	Parameter	Condition	Min	Typ	Max	Unit
$\mathrm{t}_{\text {AR }}$	$\overline{\mathrm{CS}}, \mathrm{PSA} 0,1$ setup to $\overline{\mathrm{RD}} \downarrow$		0	-	-	ns
$t_{\text {RA }}$	$\overline{\mathrm{CS}}, \mathrm{PSA} 0,1$ hold after $\overline{\mathrm{RD}} \uparrow$		20	-	-	ns
$\mathrm{t}_{\mathrm{RR}}$	$\overline{\mathrm{RD}}$ pulse width		50	-	-	ns
$t_{\text {RD }}$	$\mathrm{D}_{21} \sim \mathrm{D}_{0}$ access from $\overline{\mathrm{RD}} \downarrow$	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	-	-	60	ns
$t_{\text {dF }}$	$\mathrm{D}_{21} \sim \mathrm{Dof}_{0}$ float after $\overline{\mathrm{RD}} \uparrow$	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	10	-	100	ns
${ }^{\text {t }}$ AW	$\overline{\mathrm{CS}}, \mathrm{PSA}{ }_{0}$, setup to $\overline{\mathrm{WR}} \downarrow$		20	-	-	ns
twA	$\overline{\mathrm{CS}}, \mathrm{PSA}{ }_{0}$, h hold after $\overline{W R} \uparrow$		20	-	-	ns
tww	$\overline{\text { WR pulse width }}$		50	-	-	ns
tDW	$\mathrm{D}_{21} \sim \mathrm{D}_{0}$ setup to $\overline{\mathrm{WR}} \uparrow$	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	20	-	-	ns
twD	$\mathrm{D}_{21} \sim$ Do hold after $\overline{\mathrm{WR}} \uparrow$	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	30	-	-	ns
${ }^{\text {t CS }}$	$\overline{\mathrm{CS}}$ setup to CLKO $\downarrow$		40	-	-	ns
${ }^{\text {t }} \mathrm{CH}$	$\overline{\text { CS }}$ hold after CLKO $\downarrow$		0	-	-	ns
${ }^{\text {t }}$ S	$\mathrm{D}_{21} \sim \mathrm{D}_{0}$ setup to CLKO	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	40	-	-	ns
${ }^{\text {t }}$ H	D $21 \sim$ Do hold after CLKO 1	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	0	-	-	ns

DMA Write/Read Operation

Symbol	Parameter	Condition	Min	Typ	Max	Unit
tDRQ			-	-	30	ns
${ }^{\text {takQ }}$	$\overline{\text { DREQ output delay ( } \overline{\text { DACK }} \text { ) }}$		-	-	$8 \mathrm{~T}+30$	ns
${ }_{\text {taks }}$	$\overline{\text { DACK }}$ setup to CLKO		30	-	-	ns
${ }^{\text {taKH }}$	$\overline{\text { DACK }}$ hold after CLKO।		10	-	-	ns
${ }^{\text {taKC }}$	$\overline{\text { DACK }}$ setup to $\overline{\mathrm{RD}} / \overline{\mathrm{WR}}$		0	-	-	ns
${ }^{\text {t CaK }}$	$\overline{\text { DACK }}$ hold after $\overline{\mathrm{RD}} / \overline{\mathrm{WR}}$		20	-	-	ns
${ }^{\text {t }}$ WW	$\overline{\mathrm{RD}} / \overline{\mathrm{WR}}$ pulse width		50	-	-	ns
${ }^{t}{ }^{\text {c }}$	$\mathrm{D}_{21} \sim$ Do setup to $\overline{W R \dagger}$	CL=100pF	20	-	-	ns
${ }^{t} \mathrm{CD}$	$\mathrm{D}_{21} \sim$ Do hold after $\overline{W R} \downarrow$	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	30	-	-	ns
$t_{\text {RD }}$	$\mathrm{D}_{21} \sim \mathrm{D}_{0}$ access from $\overline{\mathrm{RD}} \downarrow$	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	-	-	60	ns
${ }^{\text {t }}$ F	$\mathrm{D}_{21} \sim$ Do float after $\overline{\mathrm{RD}} \uparrow$	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	10	-	100	ns

## BREQ \& BACK Timing

Symbol	Parameter	Condition	Min	Typ	Max	Unit
$t_{B R Q}$			-	-	50	ns
$t_{\text {BQK }}$	$\overline{\text { BREQ output delay ( } \overline{\text { BACK }} \downarrow \text { ) }{ }^{\text {a }} \text { ( }{ }^{\text {a }} \text { ( }}$		-	-	$8 T+50$	ns
${ }^{\text {tBKS }}$	$\overline{\text { BACK }}$ setup to CLKO\}		30	-	-	ns
$\mathrm{t}_{\mathrm{BKH}}$	$\overline{\text { BACK }}$ hold after CLKO $\downarrow$		10	-	-	ns
tzDA	Address enable delay ( $\overline{\mathrm{BACK}} \downarrow$ )		-	-	$4 \mathrm{~T}+60$	ns
tDZA	Address disable delay ( $\overline{\mathrm{BACK}} \uparrow$ )		-	-	$4 \mathrm{~T}+60$	ns
tZDB	Data Bus enable delay ( $\overline{\text { BACK } \downarrow \text { ) }}$	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	-	-	$5 \mathrm{~T}+60$	ns
tDZB	Data Bus disable delay ( $\overline{\text { BACK }} \uparrow$ )	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	-	-	$4 \mathrm{~T}+60$	ns

## Interrupt \& Port Timing

Symbol	Parameter	Condition	Min	Typ	Max	Unit
tIPS	$\overline{\mathrm{ITP}}_{0} \sim \overline{\mathrm{ITP}}_{2}$ setup to CLKO $\downarrow$		40	-	-	ns
tIPH	$\overline{\mathrm{TPP}}_{0} \sim \overline{\mathrm{TPP}}_{2}$ hold after CLKO $\downarrow$		10	-	-	ns
$t_{\text {IFS }}$	IFo ~IF 1 setup to CLKO $\downarrow$		40	-	-	ns
tIFH	$\mathrm{IF} 0 \sim \mathrm{IF}_{1}$ hold after CLKO $\downarrow$		10	-	-	ns
toFD	$\mathrm{OF}_{0} \sim \mathrm{OF}_{1}$ output delay		-	-	50	ns

Note 3: Output HZ and DZ test load circuit


Note 4: Voltages at HZ and DZ timing measurement points


## TIMING CHARTS



## External Instruction Operation



## Write/Read Operation (Master mode)




8, 16 bits Write Optation (Slave mode)


22 bits Write Operation (Slave mode)


## DMA Write/Read Operation BREQ \& BACK Timing


$\overline{B R E Q} \& \overline{B A C K}$ Timing




## MOB. CELLULAR PHONE <br> II

 (
## MSM6807/6817

BASEBAND FILTER LSI FOR CELLULAR MOBILE TELEPHONE

## GENERAL DESCRIPTION

The MSM6807 and MSM6817 perform the baseband filtering function for PM transmitter/receiver in the cellular mobile telephone.

Each of MSM6807 and MSM6817 consists of a voice band-pass filter, pre-emphasis and de-emphasis circuits, a deviation limitter, a splatter filter, a receiver volume control attenuator, and a muting circuit and is fabricated by OKI's low power consumption CMOS silicon gate technology.

MSM6807 realizes the baseband filtering function for AMPS (Advanced Mobile Phone Service) system, while MSM6817 can realize the baseband filtering function for TACS (Total Access Communications System) system.

## FEATURES

- Built-in mixing amplifier for transmitting MODEM data and DTMF signals.
- Built-in anti-aliasing filter and smoothing filter.
- Pre-emphasis, de-emphasis circuit on chip.
- Microcomputer interface serial control data.
- CMOS sillicon gate process.
- Power supply: +5 V .
- Low power consumption: 30 mW .
- 32 pin plastic FLAT package.


## $\square$



BLOCK DIAGRAM


## PIN CONFIGURATION



## PIN DESCRIPTIONS

Pin Name	Pin No.	I/O	Function
VDDA	1	Power	Power supply pin for the analog circuit.   +5V shall be applied.
SGC	2	O	This is the voltage reference for SG and is obtained by   two-equal resistors division between VDDA and AG.   It is necessary to be AC grounded for AG via a bypass   capacitor of more than 2.2 $\mu$ F so as to keep SG silent.
SG	4	O	SG is built-in analog ground.   This voltage is nearly VDDA
DEMO V.			


Pin Name	Pin No.	I/O	Function
STB	13	I	Strobe signal.   STB, CDAT and CCLK control the status of internal   switches, and attenuation of output level through   ALT, SPK.   See Table 1 for an explanation of how these control   signals shall be set at.
CDAT	14	I	Control Data.   Refer to the description of pin 13 for details.
CCLK	15	I	Control Clock.   Refer to the description of pin 13 for details.
MCK	16	I	Master Clock.   The MCK pin must be injected with a 1 MHz ( $\pm 0.01 \%)$   input signal.
AG	18	Power	Analog Ground.   This pin should be common with DG at the point   which is as close as possible to the system ground.
MOD	19	O	Transmitting Modulated analog signals output.   When the B1 bit of CDAT is logical 1, the input of   SUM is connected to SG.
CLMP	20	I	LIM input.   This pin should be connected to EMP through   a capacitor.
DTMF	21	I	These are inputs to SUM in the transmitting line.



These pins shall be connected with SG when these are not used.

The value of $R$ is about $70 \mathrm{k} \Omega$.
CCL
24
This is an input pin for Deviation Limitter cramp level (low level). When any reference voltage is not supplied to this pin, a built-in reference voltage ( -.375 V with respect to SG) will be supplied to the Limitter.
In this case, it is necessary to be AC grounded for AG via a bypass capacitor.
In addition, the cramp level can be adjusted by supplying an external reference voltage. See Figure 5.

Pin Name	Pin No.	I/O	Function
CCH	25	1	This is an input pin for Deviation Limitter cramp level   (high level). A built-in reference shows +.375V with   respect to SG.   Refer to the description about CCL.
CO	26	I	Compressor Output.   When the control data B0 (refer to Table 1) is logical 0,   the receive circuit shall include the compressor portion   of a 2:1 compandor. For every 2 dB change in input   level to a 2:1 compressor, the change in output level is   1 dB.   See Figure 6.
CI	27	O	Compressor Input.   Refer to the description about pin 26 for details.
TEXT	28	I	Tone External.   Transmit baseband signals input.   As TEXT is biased internally to SG with a resistor (200 k $\Omega$ ),   the interface must be implemented by AC-coupling.
EMP	29	O	Emphasis Output.   Refer to the description about pin 20.
VOIC	30	I	Transmitting baseband signals input.   Refer to the description about pin 28 for detials.
DG	31	Power	Digital Ground.   This pin should be common with AG at the point   which is as close as possible to the system ground.
VDD	32	Power	Power supply pin for the digital circuit.   +5 V shall be supplied to this pin.

## ELECTRICAL CHARACTERISTICS

## Absolute Maximum Ratings

Parameter	Symbol	Condition	Min	Type	Max	Unit
Power Supply Voltage	$V_{D D}$   VDDA	$\mathrm{T}_{a}=+25^{\circ} \mathrm{C}$   With respect to AG or DG	--0.3	-	7	V
Analog Input Voltage* ${ }^{1}$	$V_{\text {IA }}$		-0.3	-	$\begin{gathered} \text { VDDA } \\ +0.3 \end{gathered}$	
Digital Input Voltage*2	$V_{\text {ID }}$		-0.3	-	$\begin{aligned} & V_{D D} \\ & +0.3 \end{aligned}$	
Operating Temperature	Top	-	-40	-	85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$		-55	-	125	

*1 TEXT, VOIC, DEMO, TONE, CLMP, TXS, TXD, DTMF
*2 CCLK, STB, CDAT, MCK, PD

## Recommended Operating Conditions

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Power supply   Voltage	VDD   VDDA	With respect to   AG or DG	4.75	5.0	5.25	$V^{\prime}$
Operating   Temperature	$\mathrm{T}_{\mathrm{Op}}$		-30	-	70	${ }^{\circ} \mathrm{C}$
Master Clock   Frequency	$\mathrm{f}_{\mathrm{MCK}}$		0.9999	1	1.0001	MHz

DC AND DIGITAL INTERFACE CHARACTERISTICS

$V_{\text {DDA }}, V_{\text {DD }}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{a}}=-30 \sim 70^{\circ} \mathrm{C}$							
Parameter	Symbol	Condition	Min	Typ	Max	Unit	Note
Power Dissipation (standby)	IDD	-	-	7	14	mA	-
	IDDS		-	0.2	0.5		
Input Leak Current	IIL	$\mathrm{V}_{1}=0 \mathrm{~V}$	-10	-	10	$\mu \mathrm{A}$	$\begin{aligned} & \text { CCLK } \\ & \text { CDAT } \\ & \text { STB } \\ & \text { MCK } \\ & \text { PD } \end{aligned}$
	$\mathrm{I}_{\mathrm{IH}}$	$v_{1}=v_{\text {DD }}$	-10	-	10		
Input Voltage	$V_{\text {IL }}$	-	0	-	$0.3 V_{D D}$	v	
	$\mathrm{V}_{\mathrm{IH}}$		$0.7 \mathrm{~V}_{\text {DD }}$	-	$\mathrm{V}_{\mathrm{DD}}$		

## ANALOG INTERFACE CHARACTERISTICS

$\mathrm{V}_{\text {DDA }}, \mathrm{V}_{\text {DD }}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{a}}=-30 \sim 70^{\circ} \mathrm{C}$							
Parameter	Symbol	Condition	Min	Typ	Max	Unit	Note
Input Impedance	$\mathrm{R}_{1}$	$\mathrm{f} \leqq 4 \mathrm{KHz}$	100	-	-	k $\Omega$	*1
Deviation Limitter Cramp Level	$\mathrm{V}_{\text {cCL }}$	$V_{\text {DDA }}=5 \mathrm{~V}$ With respect to SG	-	+0.375	-	V	CCL
	$\mathrm{V}_{\mathrm{CCH}}$		-	-0.375	-		CCH

*1 TEXT, VOIC, DEMO, EO, CO, TONE, CLMP

## Definitions of Units

dBV rms : $20 * \log V$, where $V$ denotes the root mean square value of the signal voltage.

$\mathrm{dBVp}: 20 * \log V$, where $V$ denotes the peak value of the signal voltage.


Vp-p : Peak-peak value of the signal voltage.


TRANSMIT CHARACTERISTICS (MOD)

$V_{\text {DDA }}, V_{\text {DD }}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{a}}=-30 \sim 70^{\circ} \mathrm{C}$							
Parameter	Symbol	Condition	Min	Typ	Max	Unit	Note
VOIC/TEXT   Standard Deviation Input Level	$V_{\text {ITX }}$	$\begin{aligned} & \mathrm{Vo}(\mathrm{MOD}) \\ & =-8.2 \mathrm{dBVp} \\ & \mathrm{fi}=1 \mathrm{kHz} \end{aligned}$	-	-11.2	-	dBVrms	
MOD   Standard Deviation Distortion	DMOD		-	-	-24	dB	SW2="1"
MOD   MAX Deviation Output Level	V OTX	$\begin{aligned} & \text { Vi (VOIC) } \\ & =0 \mathrm{dBVrms} \\ & \mathrm{fi}=1 \mathrm{kHz} \end{aligned}$	-	-	-6	dBVp	SW3 ${ }^{\prime \prime} 0^{\prime \prime}$
MOD   Output Signal Peak Ratio*1	$V_{\text {SYM }}$		-5	-	-5	\%	
TX-AUDIO Muting Attenuation	LTXM	$\begin{aligned} & \text { Vi (VOIC) } \\ & =-11.2 \mathrm{dBVrms} \\ & \mathrm{fi}=1 \mathrm{kHz} \end{aligned}$	40	-	-	dB	$\underset{\rightarrow}{\mathrm{SW} 3=’ 1^{\prime \prime} 0^{\prime \prime}}$
TX-AUDIO BPF Characteristics	-	-	-	Figure 1	-	-	Cl
TX-AUDIO Overall Response	-	-	-	Figure 2	-	-	$\begin{array}{\|l} \text { MOD } \\ \text { SW2='‘1'" } \\ \text { SW3='0'" } \end{array}$
MOD   In-band Noise Level	-	$0.3 \sim 3 \mathrm{kHz}$ CMESS filter	-	-	-62	dBVrms	
MOD   Out-band Noise Level	-	VOIC/TEXT silent	-	Figure 4	-	-	SW2='"1'

*1 MOD output signal (after DC cutting)

$$
100 *(A / B-1) ;(\%)
$$



## RECEIVE CHARACTERISTICS (ALT/SPK/REXT)

$V_{\text {DDA }}, V_{\text {DD }}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{a}}=-30 \sim 70^{\circ} \mathrm{C}$							
Parameter	Symbol	Condition	Min	Typ	Max	Unit	Note
ALT/SPK/REXT   Standard Demodulation Output Level	VORX	$\begin{aligned} & \text { Vi (DEMO) } \\ & =-11.2 \mathrm{dBVrms} \\ & \mathrm{fi}=1 \mathrm{kHz} \\ & \mathrm{ATT}=0 \mathrm{~dB} \end{aligned}$	-	-11.2	-	dBVrms	SW5="1"
ALT/SPK/REXT Output Distortion	$\mathrm{D}_{\mathrm{R}}$		-	-	-40	dB	
$\begin{aligned} & \text { ATT } \\ & \text { Attenuation Step } \end{aligned}$	$\mathrm{G}_{\text {ATT }}$	-	-	2.5	-	dB	
RX-AUDIO Overall Response	-	-	-	Figure 3	-	-	
ALT/SPK/REXT   In-band Noise Level	-	CMESS filter $0.3 \sim 3.0 \mathrm{kHz}$	-	-	-62	dBVrms	
ALT/SPK/REXT Out-band Noise Level	-	-	-	Figure 4	-	-	

Frequency (kHz)


Figure 1 BPF Frequency Characteristics


Upper limits:	1	200 to 3000 Hz	$: 6 \mathrm{~dB} /$ oct
	2	3000 to 3500 Hz	$:$ Flat
Lower limits:	1	400 to 2250 Hz	$: 2 \mathrm{~dB}$ below the upper limit line
	2	300 Hz	$\mathbf{0} .5 \mathrm{~dB}$ below 400 Hz
	3	2250 to 2500 Hz	$:$ Flat
	4	3000 Hz	$: 3 \mathrm{~dB}$ below 2500 Hz

Figure 2 TX-AUDIO Overall Response


Upper limits:	1	240 to 3800 Hz	$:-6 \mathrm{~dB} /$ oct
	2	200 to 240 Hz	$:$ Flat
Lower limits:	1	400 to 2250 Hz	$: 2 \mathrm{~dB}$ below the upper limit line
	2	360 to 400 Hz	$:$ Flat
	3	300 Hz	$: 3 \mathrm{~dB}$ below 360 Hz
	4	3000 Hz	$: 4.5 \mathrm{~dB}$ below 2250 Hz

Figure 3 RX-AUDIO Overall Response
$\boxminus$


Figure 4 Out-band Noise Output Level

## Control Pin Specifications



The CONT CLK (CCLK) is edge triggered.

Symbol	Name	Switch Status
B0	COMPANDOR selection	$\begin{aligned} H: & S W 2=" ' 1 ", & L: S W 2=" 0{ }^{\prime \prime} \\ & S W 5=" 1 ", & S W 5=" 0 " \end{aligned}$
B1	TX-AUDIO mute	$H: S W 3=$ "1'", L: SW3 = '0'
B2	RX-AUDIO mute	H: SW4 = "1'", L: SW4 = '0'
B6	TEXT/VOIC selection	$H: S W 1=$ '11', L: SW1 = '0'
B6, B7	ALT/SPK/REXT selection	B6 ${ }^{\text {B7 }}$ B output
		$1 \times$ REXT
	,	0 0 SPK
		0 1 ALT
		X: Irrespective of $1 / 0$.


ATT CONT			Attenuation   $(\mathrm{dB})$
B5	B4	B3	
0	0	0	2.5
0	0	1	5
0	1	0	7.5
0	1	1	10
1	0	0	12.5
1	0	1	15
1	1	0	17.5
1	1	1	

## Internal Reference Voltage



$$
\begin{aligned}
& C C L=V D D A / 2-0.375(\mathrm{~V}) \\
& \mathrm{CCH}=\mathrm{VDDA} / 2+0.375(\mathrm{~V})
\end{aligned}
$$

## External Reference Voltage



Figure 5 Deviation Limitter


Figure 6 Compandor

Symbol	Value	Symbol	Value
C 1	0.1	$\mu \mathrm{~F}$	C 13
C 2	0.1	$\mu \mathrm{~F}$	C 14
C 3	$0.022 \mu \mathrm{~F}$		
C 4	$0.022 \mu \mathrm{~F}$	C 15	$0.022 \mu \mathrm{~F}$
C 5	$0.022 \mu \mathrm{~F}$	C 16	$0.022 \mu \mathrm{~F}$
C 6	$2.2 \mu \mathrm{~F}$	C 18	$0.022 \mu \mathrm{~F}$
C 7	$0.01 \mu \mathrm{~F}$	C 19	$0.022 \mu \mathrm{~F}$
C 8	$0.01 \mu \mathrm{~F}$	C 20	$0.1 \mu \mathrm{~F}$
C 9	10	$\mu \mathrm{~F}$	C 21
C 10	$0.022 \mu \mathrm{~F}$		$2.2 \mu \mathrm{~F}$
C 11	$0.022 \mu \mathrm{~F}$		
C 12	$0.022 \mu \mathrm{~F}$		

Figure 7 Application

## MSM6808/6818

SPLIT FILTER LSI FOR MODEM FUNCTION IN THE CELLULAR MOBILE PHONE

## GENERAL DESCRIPTION

The MSM6808 and MSM6818 perform the split filtering functions in the modem part of the cellular mobile phone.

Each of the MSM6808 and MSM6818 consists of a Received Wide Band Data (RWBD) detecter, a MODEM DATA Signal (MODEM DATA) transmitter, a Supervisary Audio Tone (SAT) receiver, a SAT transmitter, and a DTMF signal transmitter and is fabricated by OKI's low power consumption CMOS silicon gate technology.

In combination with the MSM74017, MSM6808 can realize a 10K bps SPL modem for AMPS (Advanced Mobile Phone Service) system. MSM6818 can realize a 8K bps SPL modem for TACS (Total Access Communications System) system in combination with MSM74017.

## FEATURES

- Built-in timing re-generating circuit for received data.
- Built-in Switched Capaciter Filters for SAT and MODEM data.
- Built-in Anti-Aliasing filters and Smoothing Filters.
- DTMF generator circuit on chip.
- Received signal level comparator for diversity system.
- Microcomputer interface serial control data.
- Power supply: +5 V.
- Low power consumption: 40 mW (typ).
- 44-pin plastic FLAT package.


## BLOCK DIAGRAM



## PIN CONFIGURATION

44 PIN Plastic Flat PKG


## PIN DESCRIPTION

Pin Name	Pin No.	I/O	Function
RSIO	1	0	Received signal Strength Output.   The larger DC level applied to RSIA and RSIB is put out of RSIO.
RSIB	2	1	Received signal Strength Input (B). DC levels are applied to RSIA and RSIB pins.
LOCK	3	0	SAT (Supervisory Audio Tone) Lock.   The LOCK determines whether RSAT (Received SAT) and TSAT (Transmitting SAT) are synchronized or not. The LOCK is set at logical 1 , when the phase of DSAT exceeds $+270^{\circ}$ compared with that of the RSAT signal.
C3	4	1	Form LPF by connecting a resistor and a capacitor between R3 and C3.   See Figure 7.
DEMB	5	1	Demodulated signal input (B).   The DEMB pin is enabled if RSIC $<$ RSID.
DEMA	6	1	Demodulated signal input (A).   The DEMA pin is enabled if RSIC $>$ RSID.
DEMO	7	0	Demodulated signal output (0).   Connect this pin to DEM0 of MSM6807 or MSM6817.
DEM1	8	0	Demodulated signal output (1). Connect this pin to RWBD.
TSAT	9	1	Transmitting SAT signal.   The phase of TSAT should be more than $+270^{\circ}$ compared with that of the RSAT output signal. The TSAT signal is same as the DSAT signal.
METD	10	1	Transmitting Manchester Encoded Data. See Figure 5.
TONE	11	0	DTMF SIDETONE output.   Connect this pin to TONE of MSM6807 or MSM6817.
TXD	12	0	Transmitting Data.   Digital data applied to METD becomes sinusoidal wave signals coming through filters.
DTMF	13	0	Dual Tone Multi Frequency.   Each DTMF signal consists of two sinusoidal waves, one from a low group ( $697,770,852,941 \mathrm{~Hz}$ ) and the other from a high group (1209, 1336, 1477, 1633, 2016 Hz ).


Pin Name	Pin No.	I/O	Function
DTMF	13	0	The level has $+6 \mathrm{~dB} /$ oct. pre-emphasis characteristics. CCLK, STB2 and CDAT control the frequency, selection of dual tone or single tone. See Table 2.
TXS	14	0	Transmitting SAT.   The digital signal input to TSAT becomes sinusoidal wave through a band limited filter.
AG	15	-	Analog Ground.   This pin should be common with the DG at the point which is as close as possible to the system ground.
MCK	16	1	Master Clock.   Use a $1 \mathrm{MHz}( \pm 0.01 \%)$ MCK.
VDD	17	-	Power supply pin for the digital circuit. +5 V shall be applied.
PD	18	1	Power Down function enable pin.   The PD signal selects power on or off; logical 0 enables the power down mode.   In the power down mode, transmitting function, SAT function and DTMF output function are suspended.
MRI	19	0	Output for the Manchester Encoded data derived from RWBD input data.   See Figure 5.
$\overline{C D}$	20	0	Carrier Detection.   The carrier detector detects dotting pattern (1010101010) input to the RWBD.   When the frequency of input signal to MSM6808 is approx. 5 kHz , the $\overline{\mathrm{CD}}$ of MSM6808 becomes logical 0 , while $\overline{C D}$ is logical 1 for any other frequencies. When the frequency of input signal to MSM6818 is approx. 4 kHz , the $\overline{\mathrm{CD}}$ of MSM6818 becomes logical 0 , while $\overline{C D}$ is logical 1 for any other frequencies.
DTS	21	0	Derived Timing Signal.   Output for the timing clock derived from the RWBD input data.   When a 5 kHz data is input to the RWBD of MSM6808, a 10 kHz signal is obtained.   When a 4 kHz data is input to the RWBD of MSM6818, a 8 kHz signal is obtained.
R4	22	-	DTS sensitivity adjustment.   An external resistor R9 shall be connected between R4 and SG2.


Pin Name	Pin No.	I/O	Function					
R1	23	-	DTS phase adjustment.   An external resistor R8 shall be connected between R1 and SG2.					
C4	24	-	DTS phase adjustment.   If phase cannot be sufficiently adjusted, connect an external capacitor between C4 and R1. C4 pin shall be left open when it is not used.					
RWBD	25	1	Received Wide Band Data input pin. Received data and SAT signal are input to this pin. This pin shall be connected to DEM1 directly.					
CCH	26	-	An external resistor and capacitor shall be connected between CCL and CCH.   See Figure 7.					
CCL	27	-						
60K	28	1	The 60K signal controls the center frequency of the BPF (RWBD block).   According to the SAT frequency input to RWBD, the frequency of control signal input to the 60 K pin changes as below.					
			SAT (WRBD)		RS10		Center Frequency (BPF)	
			5970	Hz	59.7	kHz	5970	Hz
			6000		60.0		6000	
			6030		60.3		6030	

Normally the 60K control signal is made by the digital PLL.

RSAT	29	O	Received SAT.   The RSAT output signal is applied to the external   digital PLL.   The phase of RSAT through the PLL exceeds $+270^{\circ}$.
R2	30	-	Received SAT signal phase adjustment.   An external resistor R7 shall be connected between   R2 and SG2.
C5	31	-	Received SAT signal phase adjustment.   An external capacitor C22 shall be connected between   C5 and R2.
DSAT	32	I	Data SAT.   The "PHASE COMP2"" judges the difference of the   phase between RSAT and DSAT.   The phase of DSAT (equals to TSAT) should be exceeded   +270 compared with RSAT.   In other cases, RSAT and TSAT is not locked.   See "BLOCK DIAGRAM".


Pin Name	Pin No.	I/O	Function
R3	33	-	Refer to the description of pin 4.
STB1	34	1	Strobe 1.   Refer to the description of CDAT.
CDAT	35	1	Serial Control Data.   The CDAT and STB1 signal control the internal switches. DTMF frequency is selected by CDAT and STB2. See Table 1.
CCLK	36	1	Control timing clock. See Table 1.
STB2	37	1	Strobe 2.   Refer to the description of CDAT.
DG	38	-	Digital Ground.   This pin should be common with the AG at the point which is as close as possible to the system ground.
VDDA	39	-	Power supply pin for the analog circuit. +5 V shall be applied.
SG2	40	Power	SG2 is built-in analog ground.   This voltage is nearly $\frac{\text { VDDA }}{2} \mathrm{~V}$, so the analog line interface must be implemented by AC-coupling except in the case of connecting with MSM6807 (in case of MSM6808) or MSM6817 (in case of MSM6818).   To make its impedance lower, it is necessary to be AC grounded for AG via a bypass capacitor of more than $2.2 \mu \mathrm{~F}$.
SGC2	41	Power	This is voltage reference for SG and is obtained by two-equal resistors division among VDDA and AG. It is necessary to be AC grounded for AG via a bypass capacitor of more than $2.2 \mu \mathrm{~F}$ so as to keep SG2 silent.
RSIC	42	1	Received signal Strength input (C).   The rectified signal of the RSIA input signal is applied to this pin through external LPF.   See "APPLICATION".
RSID	43	1	Received signal Strength input (D).   Same as RSIC, the rectified signal of the RSIB is applied to this pin through LPF.   The DC levels of RSIC and RSID determine the status of SW1, SW2.   See Table 1.
RSIA	44	1	Received signal Strength input (A). DC levels are applied to RSIA and RSIB.

## ELECTRICAL CHARACTERISTICS

## Absolute Maximum Ratings

Parameter	Symbol	Condition	Min	Type	Max	Unit
Power Supply Voltage	$V_{D D}$   VDDA	$\mathrm{T}_{\mathrm{a}}=+25^{\circ} \mathrm{C}$ With respect to AG or DG	-0.3	-	7	V
Analog Input Voltage*1	$V_{\text {IA }}$		-0.3	-	$\begin{gathered} \text { VDDA } \\ +0.3 \end{gathered}$	
Digital Input Voltage*2	$V_{\text {ID }}$		-0.3	-	$\begin{gathered} \mathrm{VDD}_{\mathrm{DD}} \\ +0.3 \end{gathered}$	
Operating Temperature	Top		-40	-	85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$		-55	-	125	

${ }^{* 1}$ DEMA, DEMB, RSIA, RSIB, RWBD
*2 RSIC, RSID, RS10, DSAT, METD, TSAT, STB1, STB2, CDAT, MCK, CCLK

## Recommended Operating Conditions

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Power supply   Voltage	VDD   VDDA	With respect to   AG or DG	4.75	5.0	5.25	V
Operating   Temperature	Top $_{\text {Op }}$		-30	-	70	${ }^{\circ} \mathrm{C}$
Master Clock   Frequency	fMCK		0.9999	1	1.0001	MHz

DC AND DIGITAL INTERFACE CHARACTERISTICS

$\mathrm{V}_{\text {DDA }}, \mathrm{V}_{\text {DD }}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{a}}=-30 \sim 70^{\circ} \mathrm{C}$							
Parameter	Symbol	Condition	Min	Typ	Max	Unit	Note
Power Dissipation (standby)	IdD	-	-	10	15	mA	-
	IDDS		-	6	9		
Input Leak Current	IIL	$V_{1}=0 \mathrm{~V}$	-10	-	10	$\mu \mathrm{A}$	$\begin{gathered} \text { MCK } \\ \text { STB1 STB2 } \\ \text { CCLK CDAT } \end{gathered}$
	IIH	$v_{1}=v_{\text {DD }}$	-10	-	10		
Input Voltage	$V_{\text {IL }}$	-	0	-	0.3 V DD		
	$\mathrm{V}_{\text {IH }}$		$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	$\mathrm{V}_{\mathrm{DD}}$		
Output Voltage	$\mathrm{V}_{\mathrm{OL}}$	$\mathrm{IOL}^{\prime}=-1.6 \mathrm{~mA}$	-	-	0.3 VDD	-	DTS MRI CD RSAT
	VOH	$\mathrm{I}^{\mathrm{OH}}=400 \mu \mathrm{~A}$	$0.7 \mathrm{~V}_{\text {DD }}$	-	-		

## ANALOG INTERFACE CHARACTERISTICS

$V_{\text {DDA }}, V_{\text {DD }}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{a}}=-30 \sim 70^{\circ} \mathrm{C}$							
Parameter	Symbol	Condition	Min	Typ	Max	Unit	Note
Input Impedance* ${ }^{1}$	RAIN	-	100	-	-	k $\Omega$	-

*1 RSIC, RSID, RWBD, METD, TSAT, DSAT

## Definition of Units

$d B V_{r m s}: 20 * \log V$, where $V$ denotes the root mean square value of the signal voltage.

dBVp : 20* $\log V$, where $V$ denotes the peak value of of the signal voltage.


Vp-p : Peak-peak value of the signal voltage.


DEM, RSSI CHARACTERISTICS

Parameter	Symbol	Condition		Min	Typ	Max	Unit	Note
DEMO   Output Level	VODEMO	$\begin{aligned} & V i(D E M) \\ &=-14.2 \mathrm{dBVrms} \\ & \mathrm{fi}=1 \mathrm{kHz} \end{aligned}$		-	-11.2	-	dBVrms	+3dB
DEM1   Output Level	VODEM1			-	2.2	-	Vp-p	+12dB
Rsio Output Level	Vorsil	$V_{1}=0 \mathrm{~V}$	$R L \geqq 100 \mathrm{~K}$	-	0	-	v	-
	VORSIH	$V_{1}=3.15 \mathrm{~V}$		-	3.15	-		
RSSI Hysteresis	$\mathrm{V}_{\mathrm{HYS}}$		-	-	30	-	mV	RSIC RSID
DEM1 LPF Cut-off frequency	${ }^{\text {f CDEM }}$	At the point 2dB lower		20	-	-	kHz	-
DEM1   Undesired Wave Leakage	-	$\underset{\text { DEMA, DEMB }}{\text { silent }}$		-	-	-50	dBV rms	-

## RWBD SAT

$V_{\text {DDA }}, V_{\text {DD }}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{a}}=-30 \sim 70^{\circ} \mathrm{C}$									
Parameter	Symbol	Condition			Min	Typ	Max	Unit	Note
DTS Output Duty Ratio	DRDTS	$\begin{aligned} & \mathrm{Vi}(R W B D)=2.3 \mathrm{Vp}-\mathrm{p} \\ & \mathrm{fi}=5 \mathrm{kHz} \end{aligned}$			-	50	-	\%	$\begin{aligned} & \text { fDTS } \\ & =\mathrm{kHz} \end{aligned}$
$\overline{C D} \left\lvert\, \begin{aligned} & \text { Sensitivity } \\ & \end{aligned}\right.$		$\begin{aligned} & V i(R W B D) \\ & =2.3 \vee p-p \end{aligned}$	MSM6808	MSM6818				V	-
	FSCD1		$\begin{aligned} & \mathrm{fi}= \\ & 3.5 \mathrm{k} \pm 100 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & \mathrm{fi}= \\ & 2.8 \mathrm{k} \pm 100 \mathrm{~Hz} \end{aligned}$	-	$V_{\text {DD }}$	-		
	FSCD2		$5 \mathrm{k} \pm 100 \mathrm{~Hz}$	$4 \mathrm{k} \pm 100 \mathrm{~Hz}$	-	DG	-		
	$\mathrm{FS}_{\mathrm{CD}}$		$6.5 \mathrm{k} \pm 100 \mathrm{~Hz}$	$5.2 \mathrm{k} \pm 100 \mathrm{~Hz}$	-	$V_{D D}$	-		
Response	t 11	Figure 5			-	-	2	ms	
	${ }^{t} \mathrm{D} 2$				2	-	-		
MRI/DTS Delay Time	${ }^{\text {t }}$ d	$\begin{aligned} & R 9=10 \\ & R 8=175 \\ & C 4 \text { open } \end{aligned}$	$\Omega$ $\mathrm{k} \Omega$		-	21	-	$\mu \mathrm{s}$	Figure 6
RSAT   Sensitivity	VRSAT	$\begin{aligned} & \mathrm{fi}= 5970 \\ & 6000 \\ & 6030 \end{aligned}$	$\mathrm{Hz}$		-20	-	-	$\begin{gathered} \mathrm{dBV}- \\ \mathrm{rms} \end{gathered}$	

II

TX-AUDIO (TXD/TXS/DTMF) CHARACTERISTICS

$V_{\text {DDA }}, V_{\text {DD }}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{a}}=-30 \sim 70^{\circ} \mathrm{C}$							
Parameter	Symbol	Condition	Min	Typ	Max	Unit	Note
METD   Output Level	VOTXD	$\begin{aligned} & V_{I L}=0 \mathrm{~V}, V_{I H}=V_{D D} \\ & \mathrm{fi}_{\mathrm{I}}=10 \mathrm{kHz}(\mathrm{MSM} 6808) \\ & \mathrm{fi}=8 \mathrm{kHz}(\mathrm{MSM} 6818) \\ & \text { square wave (50\%) } \end{aligned}$	-	-8.2	-	dBVp	SW3 = "1"
METD Frequency Characteristics	-	$V_{I L}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}$ square wave (50\%)	Figure 1			-	-
TXS   Output Level	Votxs	$\begin{aligned} & V_{I L}=0 \mathrm{~V}, V_{I H}=V_{D D} \\ & \text { square wave }(50 \%) \\ & \mathrm{fi}=6 \mathrm{kHz} \end{aligned}$	-	-23.2	-	dBVrms	SW4='1'
TSAT Frequency Characteristics	-	$\begin{aligned} & V_{I L}=0 \mathrm{~V}, V_{I H}=V_{D D} \\ & \text { square wave }(50 \%) \end{aligned}$	Figure 2			-	-
DTMF   Output Level	$\mathrm{V}_{\text {OL1 }}$	$\mathrm{f0}=697 \mathrm{~Hz}$	-	-19.3	-	dBVrms	Emphasis (6dB/oct) Figure 3 $M C K=1 M H z$
	VOL2	770	-	-18.4	-		
	VOL3	852	-	-17.6	-		
	VOL4	941	-	-16.7	-		
	$\mathrm{V}_{\mathrm{OH} 1}$	$\mathrm{fO}=1209 \mathrm{~Hz}$	-	-14.5	-		
	$\mathrm{V}_{\mathrm{OH} 2}$	1336	-	-13.6	-		
	VOH3	1477	-	-12.8	-		
	$\mathrm{V}_{\mathrm{OH} 4}$	1633	-	-11.9	-		
Sounder   Output Level	Votone	$f 0=2016 \mathrm{~Hz}$	-	-25	-	dBVrms	SW6="1"
DTMF Side Tone Output Level	VODST	$\text { 697, } 1633 \mathrm{~Hz}$	-	-22	-	dBVrms	
DTMF Distortion	DDTMF	-	-	-	10	\%	-
DTMF Output   Frequency Error	$\triangle F_{\text {DTMF }}$	$\mathrm{MCK}=1 \mathrm{MHz}$	-1.5	-	+1.5	\%	-
TONE   Undesired Wave Leakage	-	TXD/TXS/DTMF	-	-	-61	dBVrms	
Out-band Noise Level	-	TX-AUDIO RX-AUDIO		Figure 4		-	-



Figure 1


Figure 2 TSAT Frequency Characteristic


Figure 3 DTMF Emphasis Characteristic

-CELLULAR PHONE •MSM6808/18 *


Figure 5 CD


Figure 6 MRI/DTS

## CONTROL PIN SPECIFICATIONS



Symbol	Name	Switch Status				
$\mathrm{A}_{0}$	(DEMA, DEMB) (RSIA, RSIB) selection switch	RSIC, RSID Input DC Level	Control Data		Switch Status	
			A0	A1	SW1	SW2
		RSIC > RSID	L	L	0	0
			L	H	1	1
			H	L	1	1
			H	H	1	1
$\mathrm{A}_{1}$	(DEMA, DEMB) (RSIA, RSIB) selection switch enable	RSIC < RSID	L	L	0	0
			L	H	0	0
			H	L	1	1
			H	H	0	0
		Control data $\mathrm{L}:$ Logic Low Level   Logic High Level   Switch status " $\mathrm{O}^{\prime \prime},{ }^{\prime \prime} 1^{\prime \prime}:$ Refer to the block   diagram				
$\mathrm{A}_{2}$	Data transmission enable	$H: S W 3=" 1$ ', L: SW3 = '0'				
$\mathrm{A}_{3}$	SAT transponder enable	$H: S W 4=" 1$ ', L: SW4 = '"0'				
$\mathrm{A}_{4}$	DTMF transmission enable	$H: S W 5=" 1$ ', L: SW5 = '"0''				
$\mathrm{A}_{5}$	Side tone enable	$H: S W 6=" 1$ ', L: SW6 = '"0''				

## Table 1

See the block diagram



Table 2


## MSM74017

## MODULATOR/DEMODULATOR FOR MODEM FUNCTION IN THE CELLULAR MOBILE PHONE

## GENERAL DESCRIPTION

The MSM74017 performs the modulator/demodulator functions in the modem part of the cellular mobile phone.

The MSM74017 consists of digital PLL for Data Timing Signal (DTS), Received Audio Tone (RSAT) and shift register and is fabricated by OKI's low power consumption CMOS silicon gate technology.

The MSM74017 can configurate a 10K bps SPL modem for AMPS system in combination with MSM6808. A 8K bps SPL modem for TACS system can be configurated in combination with MSM6818.

## FEATURES

- Built-in DATA PLL to derive a phase from DTS.
- Built-in SAT PLL to derive a phase from RSAT.
- Built-in Detector for MRI demodulation.
- Built-in Manchester Encoder.
- TTL compatible digital interface.
- Low power consumption: 20 mW (typ).
- 56-pin plastic package.


## BLOCK DIAGRAM



## PIN CONFIGURATION

MSM74017GS-VK


## PIN DESCRIPTION




Pin Name	Pin No.	I/O	Function
SELA	43	1	This pin is used for selecting the center frequency of built-in Digital PLL for DTS and used for selecting Transmitting Data Rate. $\begin{aligned} & \text { SELA = "1": } 10 \mathrm{kHz} \text { (AMPS) } \\ & \text { SELA = "0"": } 8 \mathrm{kHz} \text { (TACS) } \end{aligned}$
METD	48	0	Manchester Encoded Data output. See Figure 2.
TXCK	50	0	This is a clock output using for Transmitting Data. Refer to the description of SELA and Figure 2.
TNRD	51	1	Transmit NRZ Data. This input signale is modulated by an internal TXCK and is output as METD.   See Figure 2.
TXMK	52	1	This pin should be connected to CLKT.
CLKT	53	0	The double frequency of TXCK is output. CLKT should be connected with TXMK.
PD	54	1	Power down function enable pin. Logical " 0 " enables the power down mode.
MK6	55	1	Main Clock Input. One of MK6 and MK12 should be input. When this pin is not used, it should be set to digital "0".
MK12	56	1	Main Clock Input. See the description of MK6. When this pin is not used, it should be set at digital " 0 ".
GND	7		Ground level: 0 V
	35		
VDD	21		Power Supply: +5 V
	49		
RST	1	1	These pins are used for various tests. These pins should be usually connected to GND.
TST4	3	1	
TST3	8	1	
TST1	9	1	
TST6	36	1	
TST5	38	1	


Pin Name	Pin No.	I/O	Function
TST7	44	1	These pins are used for various tests. These pins should be usually connected to GND.
TST8	45	1	
OUT1	6	0	These pins are output pins for test.
RT9B	12	0	
OUT2	13	0	
RD	14	0	
QD7	16	0	
DATA	19	0	
OUT3	37	0	
CHKA	46	0	

## ELECTRICAL CHARACTERISTICS

## ABSOLUTE MAXIMUM RATING

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Power Supply Voltage	$\mathrm{V}_{\mathrm{DD}}$	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	-0.5	-	+7	V
Input/Output Voltage	$\mathrm{V}_{1}, \mathrm{~V}_{\mathrm{O}}$	with reset to GND	-0.5	-	$\mathrm{V}_{\mathrm{DD}}+0.5$	V
Input/Output Current	$\mathrm{I}_{1}, \mathrm{I}_{\mathrm{O}}$	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	-10	-	+10	mA
Storage Temperature	$\mathrm{T}_{\mathrm{st}}$	-	-55	-	+150	${ }^{\circ} \mathrm{C}$
Power Dissipation	Pd	-	-	1	-	W

OPERATING RANGE

Parameter	Symbol	Min	Typ	Max	Unit
Power Supply Voltage	VDD	3	-	6	V
Operating Temperature	Topr	-40	-	85	${ }^{\circ} \mathrm{C}$

## RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Condition			Unit
		Min	Typ	Max	
Power Supply Voltage	$V_{\text {DD }}$	4.25	5	5.25	V
Operating Temperature	Topr	-40	25	85	${ }^{\circ} \mathrm{C}$
"1' Input Voltage	$\mathrm{V}_{\text {IH }}$	2.2	-	$V_{D D}+0.3$	V
'0' 0 Input Voltage	$V_{\text {IL }}$	-0.3	-	0.8	V

## MASTER CLOCK

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Frequency	Fi	$\begin{aligned} & \text { MK6 }=6 \mathrm{MHz} \\ & \text { or MK } 12=12 \mathrm{MHz} \end{aligned}$	-0.01	0	+0.01	\%
Duty Ratio	Fd	$\mathrm{MK6}=6 \mathrm{MHz}$	45	50	55	\%
		$\mathrm{MK} 12=12 \mathrm{MHz}$	20	50	80	

DC CHARACTERISTICS

$$
\left(V_{D D}=5 V+5 \%, T_{a}=-40+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Condition	Min	Typ	Max	Unit
'11' Input Current	I/H	$V_{i}=V_{D D} \quad V_{D D}=5.25 V$	-	-	10	$\mu \mathrm{A}$
"0' Input Current	IIL	$\mathrm{V}_{\mathrm{i}}=\mathrm{GND}$	-10	-	-	
"1" Output Voltage	VOH	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=-40 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{O}}=-400 \mu \mathrm{~A} \end{aligned} \quad \mathrm{~V}_{D D}=4.75 \mathrm{~V}$	$\begin{aligned} & 4.2 \\ & 2.4 \end{aligned}$	-	-	V
" 0 ' Output Voltage	$\mathrm{V}_{\mathrm{OL}}$	$\begin{aligned} & I_{0}=2 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA} \end{aligned} \quad\left({ }^{* 1}\right)$	-	-	$\begin{aligned} & 0.4 \\ & 0.5 \end{aligned}$	V
Standby Current	ICCS	$\mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\mathrm{DD}} / \mathrm{GND} \mathrm{V}_{\text {DD }}=5.25 \mathrm{~V}$	-	1	0.5	mA
Operation Power Supply Cullent	${ }^{1} \mathrm{CCO}$	$\mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\mathrm{DD}} / \mathrm{GND}$ Output pin open	-	4	6	mA

(*1) $\mathrm{VOH}_{\mathrm{OH}}$ : upper/CMOS4000
lower/TTL74, 74LS
VOL: upper/CMOS4000, TTL74LS
lower/TTL74

AC CHARACTERISTICS

Parameter	Symbol	Condition		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}+5 \%, \mathrm{~T}_{\mathrm{a}}=-40+85^{\circ} \mathrm{C}$			
				Min	Typ	Max	Unit
Output   Frequency	RT	$\begin{aligned} & \text { f RT1 } \\ & \text { f RTO } \end{aligned}$	$\begin{aligned} & \text { DTS }=10 \mathrm{kHz}, \text { SELA }=" 1 " \\ & \text { DTS }=8 \mathrm{kHz}, \text { SELA }=" 0 " \end{aligned}$	-	$\begin{gathered} 10 \\ 8 \end{gathered}$	-	kHz
	RTBR	f RTBR1 fRTBR0	$\begin{aligned} & \text { DTS }=10 \mathrm{kHz}, \text { SELA }=" 1 " \\ & \text { DTS }=8 \mathrm{kHz}, \text { SELA }=" 0^{\prime \prime} \end{aligned}$	-	$\begin{gathered} \hline 10 \\ 8 \end{gathered}$	-	kHz
	RS10   SAT2   SATO   CLK4   CLK6	f RS10	RSAT $=6 \mathrm{kHz}$	-	60	-	kHz
		$\begin{aligned} & \text { f SAT2 } \\ & \text { f SATO } \end{aligned}$	SCCO $=\times 1{ }^{\prime \prime}, \mathrm{SCC}=\times{ }^{\prime \prime}$	-	12 6	-	kHz
		$\begin{aligned} & \text { f CLK4 } \\ & \text { f CLK6 } \end{aligned}$		-	$\begin{gathered} 1.5 \\ 1 \end{gathered}$	-	MHz
	CLKT	f CLKT1	$\begin{aligned} & \text { SELA }=" 1 " \\ & \text { SELA }=\times{ }^{\prime \prime} \end{aligned}$	-	$\begin{aligned} & 20 \\ & 16 \end{aligned}$	-	kHz
	TXCK	f TXCK	$\begin{aligned} & \text { TXMK }=20 \mathrm{kHz} \\ & \text { TXMK }=16 \mathrm{kHz} \end{aligned}$	-	$\begin{gathered} 10 \\ 8 \end{gathered}$	-	kHz
PLL Capture Range	DTS-RT	f LDN. 1   f HDN1	SELA $=$ ' 1 " ${ }^{\prime}$, WCBR $=$ " 1 "	9.993	-	10.007	kHz
		f LDW1   f HDW1	SELA $=$ ' 1 " ${ }^{\prime}$, WCBR $=$ ' 0 "	9.939	-	10.061	kHz
		$\begin{aligned} & \text { f LDNO } \\ & \text { f HDNO } \end{aligned}$	SELA $=$ ' $00 \times$, WCBR $=$ " 1 "	7.993	-	8.007	kHz
		f LDW0   f HDWO	SELA = '00', WCBR = '0' ${ }^{\prime \prime}$	7.961	-	8.040	kHz
		$\begin{aligned} & \text { f LSO } \\ & \text { f HSO } \end{aligned}$	$\mathrm{SCCO}=\mathrm{SCC} 1={ }^{\prime} 0^{\prime \prime}$	5952.4	-	5988.0	Hz
	RSAT-STO	$\begin{aligned} & \text { f LS1 } \\ & \text { f HS1 } \end{aligned}$	SCC0 = "1", SCC 1 = "0'	5982.1	-	6018:1	Hz
		$\begin{aligned} & \text { f LS2 } \\ & \text { f HS2 } \end{aligned}$	SCCO $=\times 0 \times$, SCC1 $=\times 1{ }^{\prime \prime}$	6012.0	-	6048.4	Hz



Figure 1 MRI - NRZD Timing Chart


## DIII semiconductor

## MSM6960

## PLL FREQUENCY SYNTHESIZER LSI

## GENERAL DESCRIPTION

The MSM6960 is a PLL frequency synthesizer LSI which is fabricated by OKI's low power consumption CMOS silicon gate technology. The MSM6960 consists of a 10 -bit programmable counter, 7-bit swallow counter, a reference frequency divider, phase detectors and charge pump.

The MSM6960 can be combined with a 1 GHz band prescaler to configurate a directly divided frequency synthesizer.

## FEATURES

- Frequency synthesizer operating on a pulse swallow method.
- Built-in reference frequency division factor selector.
- Serial interface counter data.
- Two types of phase comparator output: Tristate (EO) and double end (EOU, EOD).
- Unlocked phase detection output.
- 24-pin mini-mold flat package.


## BLOCK DIAGRAM



## PIN CONFIGURATION

(Top View) 24 lead plastic flat


## ELECTRICAL CHARACTERISTICS

## ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Power Supply   Voltage	$\mathrm{V}_{\mathrm{DD}}$	$\mathrm{T}_{\mathrm{a}}=+25^{\circ} \mathrm{C}$	-0.3	-	+7	V
Input   Voltage	$\mathrm{VIN}_{\text {IN }}$	$\mathrm{T}_{\mathrm{a}}=+25^{\circ} \mathrm{C}$	-0.5	-	$\mathrm{V}_{\mathrm{DD}}+0.5$	V
Output   Voltage	$\mathrm{V}_{\text {OUT }}$	$\mathrm{T}_{\mathrm{a}}=+25^{\circ} \mathrm{C}$	-0.5	-	$\mathrm{V}_{\mathrm{DD}}+0.5$	V
Operating   Temperature	T OP	-	-40	-	+85	${ }^{\circ} \mathrm{C}$
Storage   Temperature	$\mathrm{T}_{\text {STG }}$	-	-55	-	+150	${ }^{\circ}{ }^{\circ} \mathrm{C}$
Output   Voltage	$\mathrm{V}_{\text {OUT }}$	EOD $\mathrm{T}_{\mathrm{a}}=+25^{\circ} \mathrm{C}$	-0.5	-	$\mathrm{V}_{\mathrm{DD}}+3$	V

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Input Rise Time	tir	STB, DATA, CLK,   V,R,SEL	-	20	500	ns
Input Fall Time	tif	STB, DATA, CLK,   V,R,SEL	-	20	500	ns

DC CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{a}}=-40 \sim+85^{\circ} \mathrm{C}$						
Parameter	Symbol	Condition	Min	Typ	Max	Unit
Low-level Input Voltage	VIL	$\begin{aligned} & \text { STB, DATA, CLK, } \\ & \text { V, R, SEL } \end{aligned}$	-	-	$0.3 \times V_{\text {DD }}$	V
High-level Input Voltage	$\mathrm{V}_{\mathrm{IH}}$	$\begin{aligned} & \text { STB, DATA, CLK, } \\ & \text { V, R, SEL } \end{aligned}$	$0.7 \times V_{\text {DD }}$	-	-	V
Low-level Ouput Voltage	VOL	$\mathrm{I}_{\text {OL }}=3 \mathrm{~mA}$	-	0.2	0.4	v
High-level Output Voltage	$\mathrm{V}_{\mathrm{OH}}$	$\mathrm{IOH}=-1 \mathrm{~mA}$	4.0	4.9	-	V
Input Leak Current	${ }^{\prime} \mathrm{Li}$	R-IN, P-IN	-	$\pm 7$	$\pm 40$	$\mu \mathrm{A}$
Output Leak Current	'LO	EO	-	$\pm 0.05$	$\pm 1$	$\mu \mathrm{A}$

AC CHARACTERISTICS

$\left(V_{D D}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{a}}=-40 \sim+85^{\circ} \mathrm{C}\right)$						
Parameter	Symbol	Condition	Min	Typ	Max	Unit
Maximum Operating Frequency	fin (R)	$\begin{aligned} & \text { R-IN Vin }=1 \mathrm{Vp-p} \\ & \text { sine wave } \end{aligned}$	16	130	-	MHz
	fin (P)	$\begin{aligned} & \text { P-IN Vin = } 1 \text { Vp-p } \\ & \text { sine wave } \end{aligned}$	10	45	-	MHz
Output Delay Time	tpd	$\begin{aligned} & \mathrm{P}-\mathrm{IN} \rightarrow \mathrm{PSC} \\ & \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF} \end{aligned}$	-	12	80	ns
Supply Current	IDD	$\begin{aligned} & \mathrm{R}-\mathrm{IN}= 16 \mathrm{MHz}, \\ & 1 \mathrm{Vp-p} \\ & \mathrm{P}-\mathrm{IN}= 10 \mathrm{MHz}, \\ & 1 \mathrm{Vp}-\mathrm{p} \end{aligned}$	-	4	10	mA
Input Amplitude	Vin	R-IN, P-IN	1.0	-	$V_{\text {DD }}$	Vp-p

## PIN DESCRIPTION

Pin Name	Pin No.	Function
P-IN	1	Programmable divider input pin.
PO	2	Programmable divider output pin.
DATA	3	17-bit shift register data input pin.
LD	5	Unlocked phase detection pin (lock detector); high when locked, pulse output when unlocked.
EO	6	Phase detector output (tristate).
V	7	Phase detector variable input; connected to PO when the LPF is of inverted type.
R	8	Phase detector reference input; a reference signal is input when the LPF is of inverted type.
EOD	10	Phase detector output (for external charge pump installation), N -ch open drain.
EOU	11	Phase detector output (for external charge pump installation, CMOS output.
GND	12	System ground.
CLK	13	17-bit shift register clock input pin.
STB	14	17-bit latch strobe input pin to specify the N -value.
R-IN	15	Reference frequency divider input.
SEL	17	Reference frequency division factor selector; division by 1,024 when high, division by 512 when low.
Q9/Q10	18	Reference frequency divider output.
PSC	23	Prescaler control output; high: $\div \mathrm{P}, \mathrm{Lo}: \div(\mathrm{P}+1)$
VDD	24	Power supply pin ( +5 V )

## APPLICATION NOTE

## Data Input Method:

As the $N$-value for the programmable divider, 17-bit binary data is input to the shift register, starting with the most significant bit (MSB), which is finally latched by a strobe signal.

The input data has positive logic. It is shifted on the leading edge of each clock pulse, is through when the strobe goes high, is latched on its trailing edge, and is held when it goes low. With the prescaler being set to $\div 128 / \div 129$ ( 7 -bit), the input data is directly acceptable if the total N -value is converted to binary. With a lower divider ratio, such as $\div 64 / \div 65$ or $\div 32 / \div 33$, the addition of dummy bytes is necessary.

## Input Timing



Dummy Bit Handling: $N_{16} \sim N_{0}$ represent a calculated $N$-value ( $N_{16}$ : MSB). $D_{16} \sim D_{0}$ represent input data ( $D_{16}: M S B$ ) to the MSM6960.


## Prescaler Connection



- The prescaler output and the programmable divider input (pin 1) are connected to each other by cutting the current flow with a capacitor.
- Connect the prescaler modulus input pin and the MSM6960GS PSC output pin directly to each other, as they require DC coupling.


## PLL Polarity

- With an inverted low-pass filter LPF, connect phase detector input R (pin 8) to the reference signal and V ( pin 7 ) to the programmable divider output if a mixer with a higher level of local oscillation than VCO is not available in the PLL loop or if direct division is desired.
- With a non-inverted LPF (such as a passive filter), interchange the R and V connections.


## External Charge Pump Installation

- CMOS output (pin 11) and N-ch open drain (pin 10) are available to allow external installation of a charge pump.
- The charge pump supply voltage can be raised 3 V above MSM6960GS VDD.
- An example of a circuit setup in which an external charge pump is configured by using P -ch and N -ch transistors (enhancement type) is shown at as follow.




## AVAILABLE SYSTEM FREQUENCY

Channel Spacing ${ }^{f} \mathrm{CH}$	TCXO Frequency	Ref. Divider SEL Input	VCO Frequency Range	
			Prescaler P/P+1	
			$\div 128 / \div 129$	$\div 64 / \div 65$
30 KHz System	15.36 MHz	L	$491.520 \sim 1300 \mathrm{MHz}$	$122.880 \sim 640 \mathrm{MHz}$
25 KHz System	12.8 MHz		$409.600 \sim 1300 \mathrm{MHz}$	$102.400 \sim 640 \mathrm{MHz}$
12.5 KHz System		H	$204.800 \sim 1300 \mathrm{MHz}$	$51.200 \sim 640 \mathrm{MHz}$

$\square$
$\square$

64 WORDS $\times 4$-BITS FIRST IN FIRST OUT MEMORY

## GENERAL DESCRIPTION

The MSM6252RS is a 64 -word $\times 4$-bit first-in first-out memory using silicon gate CMOS technology. This memory is compatible with Fairchild 3341 MOS FIFO.
Data input (shift in) and data output (shift out) operations may be executed asynchronously, and the memory can be easily extended in both bit and word directions.

## FEATURES

- Silicon gate CMOS technology
- 5V single power supply
- 6 MHz shift out/shift in rates
- Low power consumption (150 mW max. when operating at 6 MHz )
- Fairchild F3341 MOS FIFO compatibility (No data reset function)
- TTL compatible input/output
- 16-pin plastic DIP


## CIRCUIT CONFIGURATION



## PIN CONFIGURATION



Pin No.	Symbol	Name	Pin No.	Symbol	Name
1	-	(N. C.)	9	$\overline{\text { MR }}$	$\overline{\text { MASTER RESET }}$
2	IR	INPUT READY	10	$\mathrm{O}_{3}$	Data output
3	SI	SHIFT IN	11	$\mathrm{O}_{2}$	Data output
4	$\mathrm{Do}_{0}$	Data input	12	$\mathrm{O}_{1}$	Data output
5	$\mathrm{D}_{1}$	Data input	13	$\mathrm{O}_{0}$	Data output
6	$\mathrm{D}_{2}$	Data input	14	OR	OUTPUT READY
7	$\mathrm{D}_{3}$	Data input	15	SO	SHIFT OUT
8	GND	Power supply (OV)	16	$\mathrm{~V}_{\mathrm{CC}}$	Power supply (5V)

An abbreviated format (M6252) is used to indicate the type name.

## ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

Parameter	Symbol	Conditions	Ratings	Unit
Power Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	Respect to GND		$-0.5 \sim+7.0$
			$-0.5 \sim \mathrm{~V}_{\mathrm{CC}}+0.5$	V
Input voltage	$\mathrm{V}_{\mathrm{IN}}$		$-0.5 \sim \mathrm{~V}_{\mathrm{CC}}+0.5$	V
Output voltage	$\mathrm{V}_{\mathrm{OUT}}$		$-55 \sim+150$	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-	0.8
Power dissipation	Pd	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	W	

## Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	4.5	5.0	5.5	V
Operating temperature	$\mathrm{V}_{\mathrm{OP}}$	-40	+25	+85	${ }^{\circ} \mathrm{C}$
"L" input voltage	$\mathrm{V}_{\mathrm{IL}}$	-0.3	-	+0.8	V
"H" input voltage	$\mathrm{V}_{\mathrm{IH}}$	2.2	-	$\mathrm{V}_{\mathrm{CC}}+0.3$	V

## DC Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \sim 5.5 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
"L" output voltage	$\mathrm{V}_{\mathrm{OL}}$	$\mathrm{IOL}=2 \mathrm{~mA}$	-	-	0.45	V
"H" output voltage	$\mathrm{V}_{\mathrm{OH}}$	$\mathrm{IOH}=-400 \mu \mathrm{~A}$	2.4	-	-	V
	$\mathrm{IOH}=-40 \mu \mathrm{~A}$	4.2	-	-	10	
Input leak current	ILI	$\mathrm{OV} \leqq \mathrm{V}_{\mathrm{IN}} \leqq \mathrm{V}_{\mathrm{CC}}$	-10	-	10	mA
Operating   supply current	ICCO	Load capacity $\mathrm{CL}=0$   when operating at 6   MHz	-	16	30	my

## - OTHERS•MSM6252

## AC Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \sim 5.5 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}\right.$ )

Parameter	Symbol	Figure No.	Min	Max	Unit
SI "H" time	${ }_{\text {tSIH }}$	1	30	-	ns
SI "L" time	tSIL	1	120	-	ns
Data set-up time in respect to SI leading edge	tIDS	1	10	-	ns
Data hold time in respect to SI leading edge	tIDH	1	120	-	ns
SO "H" time	$\mathrm{tSOH}^{\text {S }}$	5	30	-	ns
SO "L" time	tSOL	5	120	-	ns
$\overline{\mathrm{MR}}$ pulse width	$t_{\text {MRW }}$	9	80	-	ns
Interval from $\overline{\mathrm{MR}}$ leading edge to SI leading edge	$t_{\text {MRS }}$	9	80	-	ns
SI rate	$\mathrm{f}_{1}$	1	-	6	MHz
Delay time from SI leading edge to IR trailing edge	$t_{\text {IRL }}$	1	-	110	ns
Delay time from SI trailing edge to IR leading edge	tIRH	1	-	120	ns
SO rate	fout	5	-	6	MHz
Delay time from SO leading edge to OR trailing edge	torL	5	-	110	ns
Delay time from SO trailing edge to OR leading edge	torn	5	-	120	ns
Delay time from SO trailing edge up to next data output	tod	5	10	120	ns
Data throughput time (fall through time)	tpT	3, 7	-	5	$\mu \mathrm{S}$
Delay time from $\overline{M R}$ trailing edge to OR trailing edge	tMRORL	9	-	100	ns
Delay time from $\overline{M R}$ trailing edge to IR leading edge	tMRIRH	9	-	100	ns
IR "H" pulse width	tIPH	3	18	-	ns
OR "H" pulse width	tOPH	7	18	-	ns

Note: Load during measurement is $\mathrm{CL}=20 \mathrm{pF}$

## DESCRIPTION OF OPERATION

## Data input

The data input pins are Do thru $D_{3}$. When Input Ready (IR) is " H ", the first word (word 0 ) is ready to accept data.

Data then present at the data inputs is entered into the first word when the SHIFT IN (SI) is brought " H ". This causes IR to go " L ". That data remains in word 0 until SI is brought " $L$ ", and IR is kept at " $L$ ". If no data is stored in word 1 , and $S I$ is brought " $L$ ", the word 0 data is transferred to word 1 and IR will go "H" indicating that the device is ready to accept new data.

If the FIFO is full, IR is kept at " $L$ ".

## Data transfer

Once data is entered into the word 1, the transfer of any full word to the adjacent (preceding) empty word is automatic, activated by an internal FIFO control.

That is, while an empty word exists, data is filled up sequentially on the FIFO output side.
tpT defines the time required for the first data to travel from the input to the output of a previously empty device.

## Data output

The data output pins are Qo thru $Q_{3}$. When data is shifted through to word 63, OUTPUT READY (OR) goes " H ", indicating the presence of valid data. When SHIFT OUT (SO) is brought " H ", OR goes " L ", and $\mathrm{O}_{0}$ thru $\mathrm{O}_{3}$ maintains the previous data.

When SO is brought " $L$ ", new data (stored in word 62) is shifted into word 63, then OUTPUT to Qothru $Q_{3}$, and OR goes " $H$ ".

If the FIFO is empty, OR is kept at " L ", and Qo thru $Q_{3}$ are kept at the previous status.

IR and OR may also be used as status signals indicating that the FIFO is completely full (IR stays " $L$ " for at least tPT) or completely empty (OR stays " $L$ " for at least $t_{p T}$ ).

## Master reset

When Master Reset ( $\overline{M R}$ ) goes " $L$ ", the control logic is cleared. When $\overline{M R}$ returns " $H$ ", OR is kept at " $L$ " and IR is kept at " $H$ " if SI is " $L$ ". Since output data (Qo thru $Q_{3}$ ) is unaffected by $\overline{M R}$, data on $Q_{0}$ thru $Q_{3}$ should be considered valid only while OR is " H ".

## TIMING CHARTS



Fig. 1 Input timing


Fig. 2 Input timing descripion diagram
(1) IR at " H " level indicates that data can be stored by the SI pulse.
(2) Data is stored in the first word.
(3) First word is full.
(4) Data is transferred from first to second word.
(5in) First word reverted to ready status since data has been transferred from first to second word.
(58) IR remains at " $L$ " since second word is full.

Note: SI pulse is disregarded while IR is " $L$ ". (See Figure 4.)


Fig. 3 tPT and tIPH specifications
(1) FIFO is already full.
(2) SI is kept at " H ".


Fig. 4 Operation when SI and IR are both "H"
(1) FIFO is already full.
(2) Vacancy is formed in the FIFO due to output of last word data by SO pulse.
(3) SI is kept at " H ".
(4) INPUT DATA is entered into first word immediately when IR goes " H ".
(5) First word data is transferred to second word when SI is brought " $L$ ".


Fig. 5 Output timing
(1) The $A-, B-$, and C-DATA data denotes the data in words 63,62 , and 61 in this timing.


Fig. 6 Output timing description diagram
(1) SO at " H " level indicates that data output is possible by SO pulse.
(2) Proceed to next step when SI becomes " H ".
(3) OR goes " L ".
(4) Word 62 data $(B)$ is transferred to word 63.
(54) OR goes " H ", and new data ( B ) is output by the FIFO.
(58) If only a single item of data is stored in the FIFO, OR remains at " L ", and no change occurs in the output (A-data).

SHIFT IN


Fig. 7 tpT and tOPH specifications
(1) FIFO is already empty.
(2) SO is kept at " H ".

SHIFT OUT


Fig. 8 Operation when SO and OR are both " H "
(1) Word 63 is empty.
(2) New data (A) reaches the output (word 63).
(3) OR goes " H " to indicate that new data has arrived.
(4) OR goes " $L$ " immediately if SO remains at " H ".
(5) When OR goes " $L$ ", the output is changed immediately by the status of the OR dash line.


Fig. 9 Master reset timing
(1) FIFO is full.

## CIRCUIT EXAMPLES (FIFO EXPANSION)



## OKXI

## MSM6920RS/6945RS

## SINGLE CHIP DTMF DECODER

## GENERAL DESCRIPTION

The MSM6920RS/6945RS are DTMF decoder LSIs which can decode 16 kinds of DTMF signals which consist of the combination of 4 high group frequency signals and 4 low group frequency signals.

The MSM6920RS is suitable for the application for End-to-Center equipment or PABX because it has filter characteristics to reduce the mistake in decoding.

The MSM6945RS is suitable for the application for End-to-End equipment because it has a wide detective range.

The MSM6920RS/6945RS provide all necessary filtering, detector, timer and miscellaneous logics required to implement the system.

The MSM6920RS/6945RS are fabricated by OKl's advanced CMOS technology which realizes high reliability and low power consumption.

## FEATURES

- Power supply: +12 V and +5 V
- Low power consumption: 80 mV (TYP)
- Input signal level MSM6920RS: $-5 \sim-32 \mathrm{dBm} 600 \Omega$ /each tone MSM6945RS: $-5 \sim-48 \mathrm{dBm} 600 \Omega /$ each tone
- Built-in RC active pre-LPF
- 3 kHz emphasizing for prevention of the voice error (MSM6920RS only)
- Built-in echo control circuit (MSM6945RS only)
- 3.58 MHz crystal oscillation circuit on chip
- TTL compatible digital interface
- Signal present (SP) output capability
- Tri-state output
- CMOS silicon gate process
- 28-pin plastic DIP package

BLOCK DIAGRAM


## PIN CONFIGURATION (Top View)

## 28-pin Plastic Package



## ELECTRICAL CHゥRACTERISTICS

## Absolute Maximum Ratings

Parameter	Symbol	Conditions	Rating	Unit
Power Supply Voltage	$\mathrm{V}_{\text {A }}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$   With respect to AG or DG	$--0.3 \sim 15$	V
	$V_{D}$		$-0.3 \sim 7$	
Analog Input Voltage *1	$\mathrm{V}_{1} \mathrm{~A}$		$-0.3-V_{A}+0.3$	
Digital Input Voltage *2	$V_{\text {ID }}$		$-0.3 \sim V_{D}+0.3$	
Operating Temperature	TOP	-	$-30 \sim 70$	
Storage Temperature	Tstg	-	$-55 \sim 150$	

*1 BW, AIN
*2 MUTE, $\overline{\mathrm{RS}}, \mathrm{CS}$, EXCLK, X1, OC

## Recommended Operating Conditions

Parameter		Symbol	Conditions	Min	Typ	Max	Unit
Power Supply Voltage		$\mathrm{V}_{\text {A }}$	With respect to AG or DG	10.8	12.0	13.2	V
		$V_{D}$		4.75	5.00	5.25	
Operating Temperature		TOP	-	-30	-	70	${ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{L}}$		-	$\mathrm{R}_{\mathrm{T}}=600 \Omega$	-	600	-	$\Omega$
		-	$\mathrm{R}_{\mathrm{T}}=10 \mathrm{k} \Omega$	-	10	-	$k \Omega$
	$\mathrm{R}_{1}$	-	-	-	2.4	-	
	$\mathrm{R}_{2}$	-	-	-	100	-	
	$\mathrm{C}_{1}$	-	-	-	0.03	-	$\mu \mathrm{F}$
	$\mathrm{C}_{2}$	-	-	1	-	-	
	$\mathrm{C}_{3}$	-	-	0.01	-	-	
	$\mathrm{C}_{4}$	-	-	-	10	-	
	$\mathrm{C}_{5}$	-	-	-	10	-	
	CRYSTAL	-	-	-	3.579545	-	MHz

Refer to Application circuit (Figure 4) for external attached parts.

## DC and Digital Interface Characteristics

$\left(\mathrm{V}_{\mathrm{A}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{D}}=5 \mathrm{~V} \pm 5 \%, \mathrm{Ta}=-30 \sim 70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions		Min	Typ	Max	Unit
Power Supply Current	${ }^{\prime}$ A	-		-	7	14	mA
	ID	-		-	0.2	1.0	
Input Leakage Current *1	IL	$\mathrm{V}_{1}=0 \mathrm{~V}$		-10	-	10	$\mu \mathrm{A}$
	IIH	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{D}}$		-10	-	10	
Input Voltage *1	$\mathrm{V}_{\mathrm{IL}}$	-		0	-	0.8	V
	$\mathrm{V}_{\mathrm{IH}}$	-		$\left(0.7{ }^{2.2}\right.$	-	VD	
Output Voltage *2	$\mathrm{V}_{\mathrm{OL}}$	$\mathrm{I}_{\mathrm{O}}=0.36 \mathrm{~mA}$		0	-	0.4	
	$\mathrm{V}_{\mathrm{OH}}$	$\mathrm{IOH}^{\prime}=-20 \mu \mathrm{~A}$		0.8 VD	-	VD	
Output Leakage Current *2	IOLL	MUTE ="H"	To $\mathrm{D}_{\mathrm{G}}$	-10	-	10	$\mu \mathrm{A}$
	IOLH		To $V_{D}$	-10	-	10	

*1 MUTE, $\overline{R S}, \mathrm{CS}, \mathrm{OC}, ~(E X C L K)$
*2 SP, Do, D $1, D_{2}, D_{3}$

## Analog Interface Characteristics

$\left(\mathrm{V}_{\mathrm{A}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{D}}=5 \mathrm{~V} \pm 5 \%, \mathrm{Ta}=-30 \sim 70^{\circ} \mathrm{C}\right)$

Parameter		Symbol	Conditions	Min	Typ	Max	Unit
Input (AIN)   Resistance		RIN	$\begin{aligned} & \mathrm{f}_{\mathrm{IN}} \leq 5 \mathrm{kHz} \\ & \mathrm{vIN} \leq+1 \mathrm{dBm} \end{aligned}$	2	-	-	M $\Omega$
Input Leakage Current	AIN	'LA1	$\underset{(\mathrm{AG})}{\mathrm{OV}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{VA}$	-10	-	10	$\mu \mathrm{A}$
	BW	LLA2	$\mathrm{V}_{\mathrm{IN}}=\mathrm{OV}(\mathrm{AG})$	-100	-	10	
Input (AIN) Signal Detection Level		VIN1	For each tone	$-48$	-		dBm
Input (AIN) Signal Non-detection Level		$\mathrm{V}_{\text {IN2 }}$		-	-	$-40 /-56$	
Tone   Frequency   Deviation   Accept	Low Group	BWLD1	BW is not connected	-	-	2.4	\%
	High Group	BWHD1		-	-	2.1	
Tone   Frequency   Deviation   Reject	Low Group	BWLR1		3.8	-	-	
	High Group	BWHR1		3.6	-	-	
Tone Frequency Deviation Accept	Low Group	BWLD2	$B W=O V(A G)$	-	-		
	High Group	BWHD2		-	-		
Tone   Frequency   Deviation   Reject	Low Group	BWLR2		$3.3$	-	-	
	High Group	BWHR2			-	--	
Level Twist		$V_{\text {TW }}$	Between two tones	-	-	6	dB
Signal echo level ratio		S/E	Vsignal/Vecho	$-18.2$	-	-	dB
Signal Groud (SG2) Voltage		VSG2	-	$\frac{V A}{2}-0.1$	$\frac{\mathrm{VA}}{2}$	$\frac{V A}{2}+0.1$	V
	20					$\mathrm{dBm}=0.7$	5 Vrm

## Band Split Filter Characteristics

(VA $=12 \mathrm{~V} \pm 10 \%, \mathrm{VD}=5 \mathrm{~V} \pm 5 \%, \mathrm{Ta}=-30 \sim 70^{\circ} \mathrm{C}$ )

| Parameter |  | Symbol | Conditions |  | Min | Typ | Max |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Unit

Above values can be defined and measured at the pin of BEL or BEH.

## MSM6920



Figure 1 Low Group Signal (BEL)


Figure 2 High Group Signal (BEH)

## Signal Timing Characteristics

$\left(\mathrm{V}_{\mathrm{A}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{D}}=5 \mathrm{~V} \pm 5 \%, \mathrm{Ta}=-30 \sim 70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions		Min	Typ	Max	Unit
Signal Repetition Time	${ }^{T} \mathrm{C}$			120	-	-	ms
Time to Receive	Ts			49	-	-	
Invalid Tone Duration	TI			-	-	24	
Output Delay Time	$T_{G}$			24	-	49	
Interdigit Pause	$T_{p}$			30	-	-	
Acceptable Drop Out	$\mathrm{T}_{\mathrm{B}}$			-	-	2	
SP Delay Time	TSP			6	-	10	
Output Continuation Time	To	OC	"Low"	40	-	45	
Output Trailing Edge Delay	TD		"High"	21	-	35	



Figure 3 Timing Diagram

Hexa-Decimal Digital Output Truth Table

Combinations of Input DTMF Signals									Digital Output			
L/H	Low-Group				High-Group							
Key	L 1	$\mathrm{L}_{2}$	L3	$\mathrm{L}_{4}$	$\mathrm{H}_{1}$	$\mathrm{H}_{2}$	$\mathrm{H}_{3}$	$\mathrm{H}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	Do
0				$\bigcirc$		O			0	0	0	0
1	$\bigcirc$				$\bigcirc$				0	0	0	1
2	$\bigcirc$					O			0	0	1	0
3	$\bigcirc$						O		0	0	1	1
4		$\bigcirc$			$\bigcirc$				0	1	0	0
5		$\bigcirc$				$\bigcirc$			0	1	0	1
6		$\bigcirc$					$\bigcirc$		0	1	1	0
7			$\bigcirc$		O				0	1	1	1
8			$\bigcirc$			O			1	0	0	0
9			$\bigcirc$				$\bigcirc$		1	0	0	1
A	$\bigcirc$							$\bigcirc$	1	0	1	0
B		O						$\bigcirc$	1	0	1	1
C			$\bigcirc$					$\bigcirc$	1	1	0	0
D				$\bigcirc$				$\bigcirc$	1	1	0	1.
*				$\bigcirc$	O				1	1	1	0
\#				$\bigcirc$			0		1.	1	1	1

1 ...... Digital High Level
0 ...... Digital Low Level

## PIN DESCRIPTIONS

Pin Name	Pin   No.	Function
MUTE	1	3-state output control input. If MUTE $=$ digital "High", the outputs $D_{0}, D_{1}, D_{2}$, $\mathrm{D}_{3}$ and SP are put in a high impedance state. If MUTE = digital "Low", these outputs are activated.
$\overline{\mathrm{RS}}$	2	Power-ON Reset control input. If $\overline{\mathrm{RS}}=$ digital "Low", the outputs $\mathrm{D}_{0}, \mathrm{D}_{1}, \mathrm{D}_{2}$, $D_{3}$ and SP are put in a high impedance state whether Mute = digital "Low" or "High".   Applying of this function is drawn in the following Application, Figure 5,6.
VD 2	3	This is used for "Power-ON Reset" function. Refer to Figure 5, 6.
NC	4	Non-Connection
NC	5	Non-Connection
BW	6	If BW is connected to AG, "Tone Frequency Deviation Accept and Reject" range are set to te fit for the PABX application. If BW is left opened, this device shows the characteristics that is fit for the End-to-Center application. In PABX application, the analog line interface circuit must be arranged according to Figure 8 to adjust the input DTMF signal level.
NC	7	Non-Connection
AG	8	Ground reference of VA. (Analog Ground)   This pin should be common with DG at the System Ground point as close as possible.
NC	9	Non-Connection
NC	10	Non-Connection
SG 2	11	SG2 is built-in analog signal ground.   This voltage is nearly VA/2 volts, so the analog line inteface of AIN must be implemented by AC-coupling as shown in Figure 4.   To make its impedance lower over wide frequency range, it is necessary to be AC grounded for AG via a bypass capacitor of more than $1 \mu \mathrm{~F}$.
SG 1	12	This is voltage reference for SG2 and is obtained by two-equal resistors devision among VA and AG. If VA has some noise and ripples, it is necessary to be AC grounded for AG via a bypass capacitor of more than $0.01 \mu \mathrm{~F}$ so as to keep SG2 silent.   If the bypass capacitor is $0.01 \mu \mathrm{~F}$, the rejection ratio at 500 Hz is kept more than 9 dB because of a high resistive impedance of SG1.
AIN	13	A DTMF signal input. For the interface with phone line, refer to Figure 4.


Pin Name	Pin No.	Function
VA	14	Power supply pin for the analog circuit. $A+12 V$ supply is recommended.
BEH	15	A High group signal output picked out from a DTMF signal by Band split filter. This pin is used for IC-Test only.
BEL	16	A Low group signal output picked out from a DTMF signal by Band split filter. This pin is also used for IC-Test only.
cs	17	If an external 3.58 MHz clock is required to use, CS must be connected to digital "Low" in order to input the clock to EXCLK.   When crystal controlled oscillator on chip is required, this pin must be connected to digital "High".
EXCLK	18	If required to use an external 3.58 MHz clock, CS must be connected to EXCLK.   When crystal controlled oscillator on chip is required, this pin should be connected to digital "Low" or "High". The interface condition of EXCLK is different from other digital inputs. Refer to Figure 7.
X 1	19	Crystal Sense. $X_{1}$ and $X_{2}$ connect to a 3.579545 MHz crystal to generate a crystal locked clock for the chip.   If required to use a external clock, $\mathrm{X}_{1}$ should be connected to digital "Low" or "High" and $\mathrm{X}_{2}$ should be left opened.
$\mathrm{X}_{2}$	20	Crystal Drive. Refer to pin 19 for details.
OC	21	The time length of digital outputs control input. If OC = digital "High", the digital outputs DO, D1, D2, D3 and SP follow the DTMF signal in the time length.   If OC = digital "Low", D0, D1, D2, D3 and SP output the constant time length data regardless of the DTMF signal length. Refer to Figure 3.
SP	22	DTMF signal present output. SP is used for scanning detection of the data outputs D0, D1, D2 and D3, and so on.
DG	23	Ground reference of VD1. (Digital Ground)   This pin should be common with AG at the system Ground point as close as possible.
Do	24	
$\mathrm{D}_{1}$	25	Digital outputs with Hexa-decimal code.
$\mathrm{D}_{2}$	26	Refer to "Digital Output Truth Table".
$\mathrm{D}_{3}$	27	
VD 1	28	Power supply pin for the digital circuit. $A+5 V$ supply is recommended.

## APPLICATION NOTE



Figure 4 Application Circuit

	CONT ${ }_{1}$		$\mathrm{CONT}_{2}$	
	"H"	"L"	"H"	"L"
DIGITAL OUTPUT IMPEDANCE	Hi	Lo	-	-
DIGITAL OUTPUT LENGTH	-		Following AIN signal	Constant length

NOTICE 1. The crystal should be wired at a close physical proximity to the device.
2. High level signals should be avoided to route next to low level signals.
3. Bypass capacitors put on VA, SG1 and SG2 should be as close to the device as possible.
4. AG and DG should be connected at the point that is as close to the system ground as possible.
5. As for an application for PABX , refer to Figure 8.

## - Power ON Reset Function

If required "Power ON Reset" function that is used for neglecting the invalid output data immediately after Power ON, the following circuit may be of use.


Figure 5

II


Figure 6

After Power ON, SP is hold at digital "Low" by the existence of resistor RS during " T " seconds. Normal values of $\mathrm{R}_{\mathrm{S}}, \mathrm{RP}_{\mathrm{P}}$ and $\mathrm{C}_{\mathrm{P}}$ are $100 \mathrm{k} \Omega, 5 \mathrm{M} \Omega$ and $0.47 \mu \mathrm{~F}$ respectively. In this case, " T " will be 1.6 second approximately. In this case, the gate which receives output should be CMOS.

Be careful to the fact that SP has not perfect Hi-output impedance by the existence of R even though MUTE is connected to digital "High" and other outputs are in the state of Hi-output impedance.

## - External Oscillator Connection

In case of using an external clock as a oscillation source, following circuit can be applied.


Figure 7

* TTL or High-Speed CMOS Gate with less than 50 pF load capacitance
- Application for PABX (MSM6920RS)

In PABX system, DTMF signal level is relatively high in comparison with the level of "End to Center". In case of Application for PABX, the signal detection level range should be $0 \sim-20 \mathrm{dBm}$ and the Non-detection level must be less than -35 dBm . So, the application circuit in Figure 4 cannot be applied. In this case following circuit can be applied. BW and OC should be connected to AG and DG respectively. Be careful to the position of R1.


## MSM6980-03

## 32K-BIT/SEC ADPCM CODEC

## GENERAL DESCRIPTION

The MSM6980-03 is a 32 K -bit/sec ADPCM CODEC which is fabricated by OKI's low power consumption CMOS silicon gate technology.

The MSM6980-03 is used for highly efficient digital-to-digital converting of PCM voice data with the transmission rate of 32 K -bit $/ \mathrm{sec}$.

When MSM6980-03 is applied as the transcoder together with the common 64 K -bit/sec PCM voice CODEC, the transmission line come to have double data transmission data capability as MSM6980-03 can code the 64 K -bit/sec PCM code into the 32 K -bit/sec ADPCM code or can decode the ADPCM data into the PCM data without losing the quality of the voice.

MSM6980-03 can be applied into various applications, like high speed data multiplexer used on a digital line, in the digital PBX or in the digital data terminal equipment.

## FEATURES

- 9600 bps modem signal (CCITT V.29) transmission* capability by OKI's original coding algorism.
Asynchronous tandem connection; capability within 2-link.
Synchronous tandem connection; capability regardless of link number.
- Voice or tone signal transmission can be performed conforming to CCITT G. 721 (ADPCM) recommendation.
- Lower data transmission rate $\quad(24 \mathrm{~K}$ $\mathrm{bit} / \mathrm{sec}$ ) is capable in voice signal transmission.
- $\mu$-law and A-law selectable.
- ADPCM coding or decoding selectable.
- Parallel and serial I/O terminals.
- Serial data output is possible to be Wired-OR connection within 32 channel for multiplexing.
- Serial I/O can interface with wide range of clock rate: $32 \sim 2048 \mathrm{~K}$ bit/sec.
- Stabilized operation to the asynchronous interfacing timing signal and its jitter.
- Low power consumption; 70 mW (TYP).
- Extenally clock for operation; 20 MHz
- 42 pin plastic DIP package.
* : ADPCM system standard was recommended in 1984 as CCITT G.721. In this standard, 9600 pbs modem transmission is not guaranteed.


## FUNCTIONS

The ADPCM CODEC LSI (MSM6980-03) can be used as a coder (conversion from PCM code to ADPCM code) or a decoder (conversion from ADPCM code to PCM code) by pin selection.

## Coder Function

This function makes linear conversion to a PCM signal ( 8 -bit code of 8 kHz sample) and then converts it to a 4-bit or 3-bit code signal by ADPCM coding.

Refer to the coder function in the BLOCK DIAGRAM.
(1) A serial ( $2 \mathrm{MHz}-64 \mathrm{kHz}$ ) or parallel input signal is selected as a PCM input signal according to the IS/P pin setting.
(2) An input signal of $\mu$-law or A-law PCM code is coded by ADPCM method according to the $A / \mu$ pin setting.
(3) 4-bit or 3-bit ADPCM coding is performed according to the 3BIT pin setting.
(4) Serial ( $2 \mathrm{MHz}-64 \mathrm{kHz}$ in bit rate) or parallel ADPCM signal is output according to the C/D and 3BIT pin setting.
(5) Input/output is made on receipt of an external input/output request signal. Input/ output is also made without fail on receipt of an input/output request signal which is pseudo-synchronized.
(6) Output is multiplied by wired OR.

## Decoder Function

This function performs ADPCM decoding process to a 4-bit or 3-bit ADPCM input signal and then converts the decoded signal to a PCM code signal.

Refer to the decoder function in the BLOCK DIAGRAM.
(1) A serial ( $2 \mathrm{MHz}-32 \mathrm{kHz}$ in bit rate) or parallel ADPCM input signal is selected according to the IS/P pin setting.
(2) Decoding into PCM code is conducted by setting the 3BIT pin according to the selection of the type of and ADPCM input, either 4-bit or 3-bit.
(3) $\mu$-law or A-law is selected for PCM code by the $A / \mu$ pin setting.
(4) Serial ( $2 \mathrm{MHz}-64 \mathrm{kHz}$ ) or parallel PCM output signal is selected according to the C/D and 3BIT pin setting
(5) Input/output is made on receipt of an external input/output request signal. Input/ output is also made without fail on receipt of an input/output request signal which is psuedo-synchronized.

## PIN CONFIGURATION (TOP VIEW)



## ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

Parameter	Symbol	Condition	Rating	Unit
Supply Voltage	VDD	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-0.3~+7	V
Input Voltage	VIN		$-0.3 \sim \mathrm{~V}_{\mathrm{DD}}+0.3$	V
Power Dissipation	$P_{\text {D }}$		1	Watt
Storage Temperature	Tstg	-	$-65 \sim+150$	${ }^{\circ} \mathrm{C}$
Storage Humidity	Hstg	-	$5 \sim 95$	\%RH

## Operating Conditions

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Ambient Temperature	Ta	-	0	-	70	${ }^{\circ} \mathrm{C}$
Supply Voltage	VDD	-	+4.75	+5.00	+5.25	V
Ground	GND	-	-	0	-	V
Clock Frequency	Fc	-	19.998	20	20.002	MHz
InPut Rise or Fall Time	$\mathrm{T}_{\mathrm{R}}, \mathrm{T}_{\mathrm{F}}$	-	-	-	-	ns

DC Electrical Characteristics

$\mathrm{V}_{\text {DD }}=+5 \mathrm{~V} \pm 5 \%, \mathrm{Ta}=0 \sim 70^{\circ} \mathrm{C}$						
Parameter	Symbol	Condition	Min	Typ	Max	Unit
Quiescent Current	$\mathrm{IDD}_{1}$	Clock is not input to work.	-	1.0	2.0	mA
Operating Supply Current	$\mathrm{IDD}_{2}$	$\mathrm{Fc}=20 \mathrm{MHz}$	-	14	20	mA
Low Level Input Voltage	$\mathrm{V}_{\text {IL }}$	-	-	-	0.8	V
High Level Input Voltage	$\mathrm{V}_{\mathrm{IH}_{1}}$	MCK, SICK, SOCK	2.4	-	-	V
	$\mathrm{V}_{1 \mathrm{H}_{2}}$	Other Input pins	2.0	-	-	
Low Level Output Voltage	$\mathrm{V}_{\mathrm{OL}}$	SOD, $\mathrm{IOL}=6.0 \mathrm{~mA}$	-	-	0.4	v
	$\mathrm{V}_{\mathrm{OL}}$	Other Output pins $I_{\mathrm{OL}}=1.6 \mathrm{~mA}$	-	-	0.4	
Low Level Output Voitage	$\mathrm{V}_{\mathrm{OL}}$	$\mathrm{IOL}^{\prime}=1.6 \mathrm{~mA}$	-	-	0.4	v
High Level Output Voltage	$\mathrm{V}_{\mathrm{OH}}$	$\mathrm{IOH}^{\prime}=40 \mu \mathrm{~A}$	4.2	-	-	V
Input Current	1	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$ or GND	-10	-	+10	$\mu \mathrm{A}$
Input Capacitance	$C_{1}$	-	-	-	10	PF
Output Load Capacitance	Gload	-	-	-	100	PF

PIN DESCRIPTION

Pin Name	Pin No.	Function
PD0 ~ PD15	$\begin{gathered} 1 \sim 10 \\ 36 \sim 41 \end{gathered}$	These are bi-directional bus interface pins. PD15 is the MSB. Refer the specification to Table 1 and 2, and refer the timing in the Figure 1 and 3. During RST or OSYNC is being held on digital '"0'", all of PD0 $\sim$ PD15 become at digital " 1 " state with output impedance of more than $100 \mathrm{k} \Omega$.
SID	11	Serial data input pin. The bit length should be 4 or 8. Refer to Figure 2.
SICK	12	Input pin of a clock signal for serial input data. The maximum clock rate is 2048 Kbps and should be more than total data bit number. Refer to Figure 2.
ISYNC	13	8 kHz synchronizing pulse signal input pin. This is used for reading the parallel or serial input data.
MCK	14	System clock input pin. The clock frequency should be $\mathbf{2 0 ~ M H z}$.
PBS	15	Chip test pin. Normally, PBS should be connected to digital "0'.
$\overline{\text { RST }}$	16	Reset signal input pin. When MSM6980-03 is powered on "'L" level reset signal has to be applied to this pin. In the case of data comparison test, $\overline{\text { RST }}$ should be input according to Figure 6 RST Timing Chart in order to make the first output data valid. During RST is held on digital '" 0 '", all of PDO through 15 become digital " 1 "' state with output impedance of more than $100 \mathrm{k} \Omega$ and SOD has a high output impedance.
DATD	17	Chip test pin. Normally, DATD should be open.
POWD	18	Chip test pin. Normally, POWD should be open.
WDT	19	Supervisory signal output on internal function, i.e., Watch Dog Timer. When MSM6980-03 is operating normally, WDT synchronized with ISYNC is output. Refer to Figure 5.
$\overline{\text { EXTI }}$	20	Chip test pin. In normal operating modes, $\overline{\text { EXTI }}$ should be constantly set at digital "1".
GND	21	Ground pin.
CKOUT	22	Chip test pin. The clock pulse, the frequency of which is divided by 4 of MCK, is output. Normally, it is 5 MHz .
IS/P	23	Data input format select pin. By inputting digital " 1 " or " 0 " to IS/P, parallel or serial data input format is determined.   Digital "1": Serial input   Digital "0": Parallel input   Refer to Table 1.
$\overline{\text { CKRST }}$	24	Chip test pin. Normally, $\overline{\text { CKRST }}$ should be connected to digital "1".
C/D	25	Operating mode select pin. The condition of C/D determines the operation of MSM6980-03, coding operation or decoding operation.   Digital "1": Coding operation   Digital "0': Decoding operation   Refer to Table 1.


Pin Name	Pin No.	Function
SIG I/O	26	Chip test I/O pin. Normally, SIG I/O should be open.
CODLB	27	Chip test pin. Normally, CODLB should be connected to digital "0".
3 BIT	28	ADPCM data bit length select pin.   Digital " 1 " ": 3 bits   Digital "0": 4 bits Refer to Table 2.
15/16 LV	29	ADPCM data format select pin.   Digital " 1 ": 15 levels without " 0000 "   Digital " 0 ": 16 levels
SADJ	30	Chip test pin. Normally, SADJ should constantly set at digital " 0 ".
A/ $\mu$	31	PCM code select pin.   Digital " 1 ": A-aw   Digital "0": $\mu$-law
OSYNC	32	8 kHz synchronizing signal input pin to control the parallel or serial outputs. Refer to Figure 3 and 4.
$\overline{\text { BTST }}$	33	Chip test pin. Normally, $\overline{\text { BTST }}$ should be connected to digital " 1 ".
SOCK	34	Clock signal input pin to control the serial data output. Maximum data rate is 2.048 Mbps. Refer to Figure 4.
SOD	35	Serial data output pin. The bit length can be 4 or 8. After the determined bit number has been output, SOD becomes the high output impedance terminal. Refer to Figure 4.
VDD	42	+5 V power supply.

Table 1 Input/Output Setting Status Table

Operating Mode	Input		Output		Control Pins	
	Bit Length	P/S	$\begin{gathered} \text { Bit } \\ \text { Length } \end{gathered}$	P/S	C/D	I S/P
ADPCM Decoder	$\begin{gathered} 4 \\ (3) \end{gathered}$	P	8	$\begin{gathered} \mathrm{P}^{* 2} \\ \text { and } \\ \mathrm{S} \end{gathered}$	0	0
		S				1
ADPCM Coder	8	P	$\begin{gathered} 4 \\ (3) \end{gathered}$	$\begin{gathered} \mathbf{P} \\ \text { and } \\ \mathbf{S} \end{gathered}$	1	0
		S				1

*1P: Parallel Format
*2: Both P and S are output
S: Serial Format

Table 2 Parallel I/O Application Table


## TIMING CHART



Figure 1 Parallel Input


Figure 2 Serial Input


Figure 3 Parallel Output


Figure 4 Serial Output
(1) Parallel Input

(2) Serial Input Coder Function


SICK

WDT
WDT

(3) Serial Input Decoder Function


Figure 5 WDT




ㅂ

APPLCATION HOTE FOF SINCLE CHIP MODEM

## APPLICATION NOTE

## 1. AN INTRODUCTION TO THE MODEM

These days reflect our so-called communication era, and the data processing industry has been growing at a tremendous rate, particularly in the area using the existing telephone networks. The modems are playing an important role as an interface to computer systems which communicate by a public or dedicated data transmission networks. Taking early notice of the significance of data communications, OKI has been engaged since many decades in the development and manufacturing of data communication-related equipments. This application note introduces and explains OKI's latest development in this field, the CMOS Single-chip modem series, MSM6926, MSM6927, MSM6946, and MSM6947. Before entering details of this new series, let us first see what a modem is all about.

1) What is a modem?
2) Modem communication systems
3) Modem types and modulation/demodulation methods

## 1) What is a modem?

Figure 1-1 shows a typical data communication system using modems. The basic role of a modem is to convert digital logic signals " 1 " and " 0 " into analog equivalent that can be passed through a telephone line, and vice versa.

A data signal (digital signal) from a data terminal is once converted into an analog audio signal, and transmitted to the modem of a receiving terminal utilizing the public telephone network. At the receiving end, the analog audio signal thus received is then converted by its modem into a corresponding digital signal and conveyed to the receiving data terminal.

In this way, two distant data terminals can communicate for the exchange of data by means of modems.

The telephone line allows transmission of analog audio signals exclusively, but the digital data signal, as such, cannot be passed through. For this reason, modems are required as interface to existing analog transmission lines.

Referring to Figure 1-1, modulation and demodulation means the conversion of digital signals into analog and vice-versa, and will be detailed in the chapter "MODES TYPES AND MODULATION/DEMODULATION METHODS'. The duplexer transmits a signal to the telephone line or receives it from the telephone line, and is not designed to receive a previously transmitted signal. Usually, it uses a hybrid transformer or hybrid resistor circuit consisting of two operational amplifiers, resistors and a line transformer.

## 2) Modem communication systems

The modem communication systems are largely divided into modes of operation. One is called the full duplex system, and the other the half-duplex system. The telephone line is a balanced two-wire circuit, and usually is called the 2 -Wire (2W) line. The full-duplex and half-duplex are terms which conform to the common use of this 2-Wire line.

## a) 4-Wire full-duplex communication

The 4-Wire full-duplex communication is another widely practiced method in which two dedicated telephone lines are used for transmission and reception, respectively. This method provides transmission and reception simultaneously, but requires two telephone lines.
b) 2-Wire half-duplex communication

The 2-Wire half-duplex communication is a method which links two terminals in either direction, but only one direction at a time. Namely, when one terminal is transmitting, the other must operate in the receiving mode. This limitation may be a drawback for certain applications.

## c) 2-Wire full-duplex communication

The 2-Wire full-duplex communication is a method in which duplexers or the like are used to permit two distant termnals to work in both directions simultaneously through a 2-Wire line. This method is more economical compared with 2-Wire half duplex.

The above three methods are schematically shown in Figure 1-2.

## 3) MODEM types and modulation/demodulation methods

Table 1-1 shows a classification of modems.
The modems can also be classified by transmission speeds. Within 300 bps to 9600 bps , low-speed modems usually employ FSK (frequency shift keying) method, medium-speed modems PSK (phase shift keying), and high-speed modems QAM (phase quadrature amplitude modulation).

The CCITT and BELL in the table stand for European and U.S. standards, respectively.
What are FSK, PSK and QAM, then?
Figure 1-3 shows the operating principles of FSK and PSK. In the FSK system, logic data signals " 1 " and " 0 " are modulated with frequencies; for example, " 1 " is modulated with a lower frequency ( fL ), while " 0 " is modulated with a higher frequency ( f H ).

In the PSK system, the frequency is constant, and the modulation is carried out by assigning phase $0^{\circ}$ to say " $~_{\text {" }}$ and phase $-180^{\circ}$ to " 0 ". (Two-phase phase shift keying) The QAM system is a complex one in which PSK and AM are combined. By way of example, frequencies and phase angles assigned in FSK and PSK are shown in Table 1-2.

When referring to the modem modulation systems, we must speak of two important terms. One is the modulation rate (baud rate) and the carrier frequency. In the FSK system, the transmission speed and modulation rate are equal. This is because carrier frequencies are in one to one correspondence to logic values " 1 " and " 0 ".

Where four phase angles are assigned to two data digits (that is, four 2-bit values) as in the 4-phase PSK system, the modulation rate becomes half of the transmission speed.

In the 4-phase PSK system (1200 bps), for example, the modulation rate is 600 bauds. In the FSK system ( 300 bps ), on the other hand, the modulation rate is 300 bauds.

You remember that the 2-Wire full-duplex communication is subject to limitations in its implementation. This is because a group-wise communication system using the originate mode and answer mode as shown in Table 1-2 must be employed. In any modulation system, whether FSK or PSK, a number of harmonics are produced by modulation.

In case of FSK, for example, if logic states " 1 " and " 0 " - these are called mark and space, respectively - are modulated in the originate mode specified in CCITT V.21, one is easily tempted to consider that 980 Hz and 1180 Hz alone appear. In actuality, however, there can appear many other frequency components, and their range is called the frequency band. The bandwidth of signal allowed to pass through a public telephone line is limited to a range of 0.3 kHz to 3.4 kHz .

This bandwidth is called the voice band. In the group-wise communication system, this voice band is divided into two bands: the lower frequency band which is assigned to the originate mode channel and the higher frequency band which is assigned to the answer mode channel. These two bands can be used independently each other. For each of these bands, a modulation rate and a carrier frequency are selected so that the resultant frequency components will be included in its frequency band.

In the FSK system, the maximum allowable modulation rate is ordinarily 300 baud. Should it be set at 1200 baud, the frequencies developed will occupy too wide a band to be accommodated in the voice band.

Namely, the 1200 baud FSK system cannot be realized in the full-duplex transmission form.

All these are summed up in Figure 1-4.
Full-duplex transmission cannot be made if bands are overlapped as shown in Figure 1-4(b). As shown in Figure 1-4(c), the 1200-baud FSK system is allowed to have only one channel.

As explained above, the 2-Wire full-duplex communication system is one in which the bi-directional data transmission between two terminals is carried out simultaneously by using channels assigned to transmission and reception previously.

Figure 1-5 shows a typical group-wise full-duplex communication system, which is common to both FSK and PSK systems. In the QAM system, frequency components are spread over a wide range, and the group-wise full-duplex communication system cannot be used. At present, efforts are being made to implement the QAM full-duplex communication system by the echo cancelling technique.


Figure 1-1 Typical Modem System


Figure 1-2 Modem Communication System


Figure 1-3 Modulated Waveforms
(a)

FSK/300bps
Full-Duplex
Power
(b)
Power
(c)


Figure 1-4 Division of Voice Frequency Band


Figure 1-5 Group-wise Full-Duplex Communication System

Table 1-1 Transmission speeds and modulation systems (Voice-band modem according to CCITT Recommendations)

Data Rate	Modulation	Baud Rate	Carrier Frequency	Bandwidth	Synchronization	Equalizer	CCITT   V-series	Similar BELL Standard
300 bps	FSK	300 baud	$\begin{aligned} & 1080 \pm 100 \mathrm{~Hz} \\ & 1750 \pm 100 \mathrm{~Hz} \end{aligned}$	300 Hz	Asynchronous (Full Duplex)	Fixed	V. 21	103
1200	4-phase PSK	600	$\begin{aligned} & 1200 \mathrm{~Hz} \\ & 2400 \mathrm{~Hz} \end{aligned}$	1200 Hz	Synchronous/ Asynchronous (Full Duplex)		V. 22	212
1200	FSK	1200	$1700 \pm 400 \mathrm{~Hz}$	1200 Hz	Asynchronous   (Half Duplex)		V. 23	202
2400	4-phase PSK	1200	1800 Hz	$\begin{gathered} 1200 \mathrm{~Hz} \\ \text { (3dB down) } \end{gathered}$	Synchrouns (Half Duplex)		$\begin{gathered} V .26 \\ V .26 \text { bis } \end{gathered}$	201
4800	8-phase PSK	1600	1800 Hz	$\begin{gathered} 1600 \mathrm{~Hz} \\ \text { (3dB down) } \end{gathered}$		Automatic	$\begin{gathered} V .27 \\ V .27 \text { bis } \\ V .27 \text { ter } \end{gathered}$	208
9600	16-phase QAM	2400	1700 Hz	$\begin{gathered} 2400 \mathrm{~Hz} \\ \text { (3dB down) } \end{gathered}$			V. 29	209

Note: In practice, the occupied bondwidth for 2400-9600 bps are as follows to improve the receiving performances.

$$
\begin{array}{ll}
2400 \mathrm{bps}--2400 \mathrm{~Hz} & (100 \% \text { Roll-off }) \\
4800 \mathrm{bps}-2400 \mathrm{~Hz} & (50 \% \text { Roll-off }) \\
9600 \mathrm{bps}-2640 \mathrm{~Hz} & (10 \% \text { Roll-off })
\end{array}
$$

Table 1-2 Correspondence of Digital Data to Analog Value

FSK (300 bps)				4-phase PSK (1200 bps)				
MODE	Transmit Data bit	$\begin{gathered} \text { CCITT } \\ \text { V. } 21 \end{gathered}$	$\begin{aligned} & \text { Bell } \\ & 103 \end{aligned}$	Carrier Frequency	Data bit pair	CCITT V. 22		$\begin{gathered} \text { Bell } \\ 212 A \end{gathered}$
						MODES 1-4	MODE 5	
ORIGI-   NATE	Mark "1"	980 Hz	1270 Hz	$\begin{aligned} & 2400 \mathrm{~Hz} \\ & 1200 \mathrm{~Hz} \end{aligned}$	00	$90^{\circ}$	$270^{\circ}$	$90^{\circ}$
	Space "0'	1180 Hz	1070 Hz		01	$0^{\circ}$	$180^{\circ}$	$0^{\circ}$
ANSWER	Mark "1"	1650 Hz	2225 Hz		10	$180^{\circ}$	$0^{\circ}$	$180^{\circ}$
	Space "0"	1850 Hz	2025 Hz		11	$270^{\circ}$	$90^{\circ}$	$270^{\circ}$

## - APPLICATION NOTE

## 2. MODEM DESIGN AND OPERATION

## 1) Modem design

Illustrated here is a modem designed with MSM6946.
A block diagram of modem is shown in Figure 2-1.
It is provided with an automatic answering function in addition to basic functions. The automatic answering function performs ringing signal detection, control logic operation, and dc loop current control.

Figure 2-2 shows an elementary circuit design using MSM6946, and Table 2-1 is a parts list.

U2 is a dual operational amplifier, and provides an interface circuit with the telephone line.

U3 and U4 are level converters. They perform mutual conversions of the TTL level to and from the $\pm 12 \mathrm{~V}$ level required for RS-232C.

U5 is used to drive indicators showing four statuses (power ON, carrier detect, received data, transmit data).

There are five switches in the circuit. SW1 is a power switch; SW2 is an originate (calling) mode/answer (called) mode selector switch; SW3 is used to turn the modem into a (remote) digital loopback mode, in which the transmit data (XD) and the request to send ( $\overline{\mathrm{RS} 1}$ ) are looped back to the received data (RD) and the clear to send ( $\overline{\mathrm{CS}}$ ) respectively, and at the same time the serial data obtained by demodulating of the received FSK signal is input to the transmitter as a transmit data within the chip, subjected to FSK modulation and sent back to the telephone line; SW4 is used to switch the telephone line to either the telephone handset or the transformer for modem operation; and SW5 is used to enable the automatic answering mode.

LED comes alight when both the established call connection and off-hook states are detected.

U6 is a photo coupler used to detect a ringing signal, and protects the modem circuit from surge voltages which may appear in the telephone line.

U7 is used for dc loop current control.
U8 is a dual D type flip-flop; one half is used to latch the dc loop current control signal, and another half to latch the data for which the off-state of the received carrier is detected.

U9 is a dual one-shot multivibrator, which is used to squelch the modem output for about 2 seconds (billing delay) necessary in the automatic answering and call connecting sequence and also to provide a sequence to turn off DSR (off-hook) and cut off the dc loop when the received carrier is not detected in about 10 seconds after connection of the modem to the telephone line.

U10 is a quad two input AND gate used in the automatic answering control circuit.
U 11 is a dual one-shot multivibrators, one half is a 0.1 -sec retriggerable one-shot that is part of the ring detect circuit, while the other half is a $0.1-\mathrm{sec}$ one-shot that is used to clear the latch to disconnect the telephone line.

Figure 2-2 shows a modem directly connected to a telephone line. Note that the illustrated scheme is not approved by the authority for the purpose of test or development. A typical direct connection scheme (called DAA - direct access arrangement) is shown in Figure 2-3.

## 2) Modem operation

In case of manual calling, the modem is placed in the originate and voice mode (telephone line connected to the telephone handset), and a call is made using the telephone handset.

When an answer is detected (i.e. an answer mark tone is heard), the modem is placed in the data mode (the telephone line connected to the modem), and the indicator will light up showning that a carrier signal from the answering modem is received.

In the automatic answering mode, the modem is required to follow the procedures before starting transmission and reception. The following shows a call establishment sequence. See Figure 2-4.
(1) A call is placed to remote modem.
(2) Ringing is detected at answering end.
(3) Answering modem enables DSR and goes off-hook upon completion of ringing.
(4) Answering modem waits two seconds for billing delay.
(5) Then, the transmitter is turned on, and an answer mode mark tone ( 2225 Hz ) is sent forward toward the originating modem.
(6) The mark answer tone is received by the originating modem and the originating modem is placed in a data mode where DSR is enabled.
(7) At the originating modem, CD (carrier detect) is turned on after a carrier detect on-delay time.
(8) Then, the originating modem releases the squelch for the transmitter, initiates the transmission of mark tone in the originate mode, and starts counting CS (clear to send) delay time. (Data transmit state is not yet achieved here).
(9) Upon reception of the mark tone ( 1270 Hz ) from the originating modem, the answering modem turns on CD after a carrier detect on-delay time.
(10) Then, CS is turned on, enabling the answering modem to start data communication.
(11) The originating modem enters into a data communication state after a CS delay time.

In the automatic answering mode, the call connection is aborted when no response is obtained within a specified time or when the received carrier is lost for more than a specified time.

A power supply for the modem is easily available with an AC adaptor for stepping down 100 Vac to 12 Vac .
In Figure 2-2, three power supplies ( $+12 \mathrm{~V},-12 \mathrm{~V}$ and +5 V ) are used. The -12 V power supply is used for the level converter only, and can be dispensed with if the modem is to be connected to a computer via UART.

One of the most important performances of the modem is the bit error rate, which represents the ratio of number of error bit to the total number of data bit. The bit error rate is measured using the test circuit illustrated in Figure 2-5 and the $\mathrm{S} / \mathrm{N}$ ratio as a parameter defined at the receiver input.

A transmit data in a 511 bit pseudo-random bit pattern is applied to the transmitter to generate an FSK signal. The signal is added with noise from a white noise source via attenuators, and is connected to the received signal input terminal of the modem to be measured.

The noise level ( $N$ ) is usually measured through a voice frequency band-pass filter (BPF) to determine an $\mathrm{S} / \mathrm{N}$ ratio.

The bit error rate is determined by comparing transmitted data and received data with each other and by counting the error bit in the serial received data stream.

An example of measured bit error rate characteristics is shown in Figure 2-6.


Table 2-1 Parts Table for Figure 2-2

$\mathrm{U}_{1}$	MSM6946RS	$U_{6}$	4N25	$\mathrm{V}_{1,2}$	V39Z
$\mathrm{U}_{2}$	$\begin{aligned} & \text { LM747CN } \\ & \text { HA17458PS } \end{aligned}$	$\mathrm{U}_{7}$	RRD51A05(D)	T	TAMURA SEISAKUSHO DP101
$\mathrm{U}_{3}$	$\begin{aligned} & \text { DS1488N } \\ & \text { SN75188 } \\ & \text { HD75188 } \end{aligned}$	$\mathrm{U}_{8}$	MM74C74	$Z_{1} \sim_{4}$	IN5242
$\mathrm{U}_{4}$	DS1489N   SN75189   HD75189	$\mathrm{U}_{9,11}$	CD4538BC MSM4538RS	$Z_{5}$	IN5231
$U_{5}$	CD4049C MSM4049RS	$\mathrm{U}_{10}$	MM74C08 MSM4081RS	CRYSTAL	KINSEKI $\mathrm{HC}-43 / \mathrm{U}$



Figure 2-2 An Circuit Design Using Single-Chip Modem (with Automatic Answer)


Figure 2-3 A Schematic Diagram of a Typical DAA


Figure 2-4 Call Establishment Sequence with Automatic Answer


Figure 2-5 Modem Test Set


Figure 2-6 Measured Bit Error Rate Characteristics

## APPENDIX

<Standard interface, and the control of modems used for public switched network>
Table 2-2 shows typical interface circuit for usual low speed asynchronous full-duplex modem.
The clear-to-send signal is slightly different in meaning from modem to modem. In BELL 103, this signal means that a carrier signal from a remote modem is received; namely, that the transmission channel is in good working order. It is used synonymous with CD (carrier detect). On the other hand, when a half-duplex modem like a 1200 bps FSK modem is used on a public switched network at which the full-duplex communication is capable, the clear-to-send signal serves just as a delayed signal of the request-to-send.

In this case, the clear-to-send signal remains to be an indication that the data communication is likely to be capable. When applying a modem on a public switched network, interface circuits - data terminal ready (DTR) and ringing indicator (RI) - are necessary.

These two circuits plus carrier detect circuit (CD) are a minumum requisite to the control of public switched network by a modem.

These functions will be well understood when compared with the operating sequence of a usual telephone.

Usual telephone	Low-speed asynchronous full-duplex modem	
Ringing	(RI)	Ringing Indicator
Going off-hook	$\rightarrow$ (DTR)	Data Terminal Ready ON
Response by far-end calling party	(CD)	Received Carrier Detect ON

The data terminal ready (DTR) shows a state that the modem is powered on, connected to the data transmission line, and is not in the test mode, and that it is ready to operate.

DTR is rarely used for asynchronous transmission in North America, but is used widely in Europe.

- Except from "Technical Aspects of Data Communication", written by John E. McNamara, the copyright is under Digital Equipment Corporation.

Interface Circuit		Function	
EIA	CCIT		Symbol In   Fig. 2-2
AA	101	Protective Ground	PG
AB	102	Signal Ground	SG
BA	103	Transmitted Data	TD
BB	104	Received DATA	RD
CA	105	Request to Send	RTS
CB	106	Clear to Send	CTS
CC	107	Data Set Ready	DSR
CD	$108 / 1$	Connect Data Set to Line	DTR
CF	$108 / 2$	Data Terminal Ready	CD
CE	109	Received Line Signal Detector	RI

Note 1: In the case of full-duplex modem used for public switched network, the request-to-send (RTS) circuit is usually unnecessary.
Note 2: Unless otherwise specified by the Post, Telephone and Telegraph Authority (PTT), the low speed asynchronous modem interface is enough with either CD or CTS circuit, whichever is available.
Note 3: Unless otherwise specified by the PTT, the modem interface with the minimum equipped functions need not to be provided with DSR circuit.

Table 2-2. Typical Interface Circuits for Low Speed Modem

## 3. HINTS AND PRECAUTIONS ON USE

Unlike to general-purpose memories and logical gates, the single-chip modem LSI is hard to use. For example ...

- Handling of analog quantity over a wide range of signal levels.
- Use of functions which defy standardization or common applications.
- Full use of the technology for switched capacitor whose characteristics are highly susceptible to deterioration due to power noise.

Accordingly, its use is accompanied by limitations and at the same time special know-how.
These are explained hereunder, and additional information will be published in due course.
Whenever designers look at an IC, most of them are too readily tempted to associate it with digital operations. As a result, they are liable to set its operating conditions in a rough manner. However, the LSI for this modem series has highly delicate functions which in the past have been implemented with discrete components or hybrid-ICs provided with adjust circuits or trimmers, and utmost attention should be paid to its using conditions so as to elicit its maximum performance.

1) Pin connections for MSM6926/6946/6927/6947

The following shows the terminals with different functions.

Device	Pin 22	Pin 27	Pin 28
MSM6926		$\begin{gathered} \text { TS1 } \\ \text { (Timer Selection) } \end{gathered}$	$\begin{gathered} \text { TS2 } \\ \text { (Timer Selection) } \end{gathered}$
6946	(Answer/Originate)		
6927	$\begin{gathered} \overline{S Q} \\ \text { (2-Wire/4-Wire) } \end{gathered}$		
6947		TS (Timer Selection)	$\overline{\text { ATE }}$   (Answer Tone)

Table 3-1. Different Pin Functions for 4-kind of Modem LSIs.

## - APPLICATION NOTE

The operating conditions are assumed as follows.

- Use of internal timers.
- 2-Wire use (as in the public switched network)

In this case, the differences in connection between the devices are as follows.


For other pins, the devices are used in the same manner.

## 2) MSM6926 and MSM6927 for 2-speed operation

Figure 3-2 introduces a circuit employing a 6926 and a 6927 for 2 -speed operation.


Figure 3-2

## - APPLICATION NOTE

## 3) Setting of the carrier detect level

In an single-chip modem LSI, the receive carrier detect ON and OFF levels can be set within the range of -43 to -48 dBm by adjusting the ratio of the external resistors $R_{8}$ and $R_{9}$.


Figure 3-3

After adjustment, the voltage between Pin 16 (CDR1) and Pin 18 (SG2) will be about 3V. Since the input signal level refers to LSI Pin 21 (AIN) of the LSI, it may have to be amplified when attenuated by a line transformer, etc.


Figure 3-5 is a simplified drawing of Figure 3-4.


Figure 3-5

Accordingly, if the loss across the line transformer is 0 dB , the following equation applies;

$$
\begin{aligned}
& V_{R_{4}}=V_{R_{1}} \cdot G_{R} \cdot A R=V_{R_{1}} \\
& V_{T_{4}}=V_{T_{1}} \cdot G_{T} \cdot 1 / 2=V_{T_{1}}-6 d B
\end{aligned}
$$

If the maximum received signal level is -6 dBm , the level at AIN terminal is -6 dBm . The transmit level will be 0 dBm because it is attenuated by 6 dB by $\mathrm{R}_{1}$ and the transformer impedance $R_{L}$ (both 600 ohm).

If the line transformer produces a loss of 2 dB in both directions, it is required to reduce $R_{6}$ (from the typical value of 51 kohm to about 30 kohm ) to compensate the received level at AIN.

Additionally in order to keep the transmit signal level at the typical value of 0 dBm , it is required to increase $R_{5}$ (from the typical value of 51 kohm to approx. 64 kohm).

## - APPLICATION NOTE

## Note:

$$
\begin{aligned}
& 20 \log \frac{R_{7}}{R_{6}{ }^{\prime}+R_{7}}=20 \log \frac{51}{30+51} \simeq-4.0 \mathrm{~dB}=(-6)+2 \mathrm{~dB} \\
& 20 \log \frac{R_{5}^{\prime}}{R_{4}}=20 \log \frac{64}{51}=2.0 \mathrm{~dB}=(0)+2 \mathrm{~dB}
\end{aligned}
$$

If $R_{6}$ is fixed at the typical value of 51 kohm , and if the line transformer causes a 2 dB loss, the received signal level of -6 to -48 dBm is shifted by 2 dB to -8 to -50 dBm at AIN terminal. It is therefore only required to lower the carrier detection level (by increasing $\mathrm{R}_{8}$ from the typical value of 33 kohm to 51 kohm ) by 2 dB .

In this case, the maximum received signal level at AIN is -8 dBm , and the carrier detect ON/OFF level is within the range of -45 to -50 dBm . This method, however is not recommendable because the $\mathrm{S} / \mathrm{N}$ ratio will be slightly deteriorated. Anyway, operation is possible, although hysteresis width, etc. cannot be warranted. It should also be noted that the carrier detect ON delay time becomes longer and the OFF delay time shorter.

## 4) Transmission and reception timing

The operation timing is shown below.

(Only 6927 and 6947)
$\overline{\mathrm{RS} 1}$

Figure 3-6 Timing Waveform Chart

Note 1: From the time when $\overline{\mathrm{RS1}}$ has become " $L$ ", a modulated waveform is generated at $\overline{\mathrm{AO}}$ in accordance with " H " or " L " at XD.

Note 2: Even when $\overline{\mathrm{RS} 1}$ has attained " H ", the modulated waveform maintains at $\overline{\mathrm{AO}}$ during the soft turn-off period (TST) in accordance with " $H$ " or " $L$ " at XD, while its amplitude gradually attenuates.

Note 3: $\overline{\mathrm{CD1}}$ is the terminal where the carrier detect signal is output without logical delay.
The ON and OFF delay times at $\overline{\mathrm{CD1}}$ change depending on the received signal level (AIN) and the differential voltage of the comparator in the detection circuit (VR =CDR1 terminal voltage - SG2 terminal voltage), etc. This is the reason for which the response characteristics of analog reception filter, limiter and carrier detector are significant factors. Typical characteristics are shown in Figure 3-7 through 3-10.

Note 4: $\overline{\mathrm{CD} 2}$ is the terminal where the output carrier detect signal is logically delayed by the internal delay circuit. The delay time provided by the internal delay circuit depends on the clock frequency, and is stable. Typical delay times are shown in Table 3-3.
TCDON and TCDOFF values are indicated in Figure 3-7 through 3-10 and Table 3-3.

Note 5: When $\overline{\mathrm{CD} 2}$ is " H ", RD is hold at " H " level (Mark hold).
Note 6: When the input level decreases after $\overline{\mathrm{CD} 1}$ goes " H " and the carrier detect circuit turned off, the demodulator will stop its operation.
During the period from the suspension of demodulation to the point of time when $\overline{\mathrm{CD} 2}$ becomes " H ", the RD output becomes " H " in case of MSM6926, 6927 and 6947, and " $L$ " in case of MSM6946 respectively.

Note 7: MSM6927 and MSM6947 has a built-in receive squelch delay timer, which is enabled by setting SQ terminal to " $L$ ". (It is used for the 2 -Wire communication).
During transmission in the half-duplex mode ( $\overline{\mathrm{RS} 1}=$ " $L$ ") , RD and $\overline{\mathrm{CD} 2}$ are fixed at " H ", and even after $\overline{\mathrm{RS} 1}$ changes to " H ", RD and $\overline{\mathrm{CD} 2}$ are kept at " H " during the squelch time (TSQ) to avoid data errors in the demodulated data stream due to transient response at the time of sudden cut-off transmit signal. Table 3-4 shows the actual measurements.

MSM6926

TS2	TS1	The $_{\text {RC }}$ ON	$\mathrm{T}_{\text {RC }}$ OFF
0	0	402 ms	$0.2 \mu \mathrm{~s}$
0	1	30 ms	$0.2 \mu \mathrm{~s}$
1	0	350 ms	$0.2 \mu \mathrm{~s}$
1	1	External	External


TS2	TS1	TRC ON	T $_{\text {RC }}$ OFF
0	0	201 ms	$0.3 \mu \mathrm{~s}$
0	1	29 ms	$0.3 \mu \mathrm{~s}$
1	0	73 ms	$0.2 \mu \mathrm{~s}$
1	1	External	External

MSM6946
MSM6947

| TS2 | TS1 | $\mathrm{T}_{\mathrm{RC}}$ ON | $\mathrm{T}_{\mathrm{RC}}$ OFF |  | $\mathrm{T}_{\mathrm{RC}}$ ON | $\mathrm{T}_{\mathrm{RC}}$ OFF |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0}$ | 198 ms | $0.2 \mu \mathrm{~s}$ |  | 0 | 180 ms | $0.2 \mu \mathrm{~s}$ |
| 1 | External | External |  | 1 | External | External |

$\overline{\text { Table 3-2. RS/CS Timing Measurement by Devices }} \overline{(\overline{\mathrm{RS} 1} \rightarrow \overline{\mathrm{CS}})}$

MSM6926				MSM6927			
TS2	TS1	$\overline{\mathrm{CD} 2} / \mathrm{ON}$	CD2/OFF	TS2	TS1	$\overline{\mathrm{CD} 2} / \mathrm{ON}$	$\overline{\text { CD2/OFF }}$
0	0	301 ms	21 ms	0	0	7.5 ms	5.2 ms
0	1	4 ms	21 ms	0	1	7.5 ms	5.2 ms
1	0	152 ms	4 ms	1	0	7.5 ms	5.2 ms
1	1	External	External	1	1	External	External
MSM6946				MSM6947			
TS2	TS1	$\overline{\mathrm{CD} 2} / \mathrm{ON}$	$\overline{\text { CD2 } / \mathrm{OFF}}$			$\overline{\mathrm{CD} 2 / \mathrm{ON}}$	CD2/OFF
0		102 ms	8 ms			14.5 ms	9.9 ms
1		External	External			External	External

MSM6926

MSM6946

Table 3-3. CD Timing Measurements by Devices ( $\overline{\mathrm{CD} 1} \rightarrow \overline{\mathrm{CD2}}$ )

MSM6927			
$\overline{\mathrm{SQ}}$	TS2	TS1	TSQ
0	0	0	150 ms
0	0	1	150 ms
0	1	0	40 ms

Table 3-4. MSM6927/6947 Received Data Squelch Delay Timing Measurements


Figure 3-7 MSM6926 $\overline{C D 1}$ Delay Time Characteristics


Figure 3-8 MSM6946 $\overline{\text { CD1 }}$ Delay Time Characteristics


Figure 3-9 MSM6927 CD1 Delay Time Characteristics


Figure 3-10 MSM6947 CD1 Delay Time Characteristics

## 5) A simple configuration example of external timer

The external timers shown in the data sheet have many gates. For a simple configuration of a timer circuit, refer to Figures 3-11 and 3-12. When using MSM6926, 6946 or 6927, apply an " H " level to TS1 (Pin 27) and TS2 (Pin 28). When using MSM6947, apply an " H " level to TS (Pin 27). In this mode, external timer circuits can be added.
a) 300 BPS (MSM6926/6946)


Figure 3-11
b) 1200 PBS (MSM6927/6947) - 2-Wire circuit


Note: Same as (a) in case of 4-Wire circuit
Figure 3-12
c) MSM6926/6946 Timing Chart


NOTE 1: Transmission and reception are perfectly independent from each other.
NOTE 2: $T_{R C} O N \propto R_{1} \cdot C_{1}$, depends also on $\overline{R S 2}$ input threshold voltage.
$T_{\text {RC OFF }} \simeq 0$
$T_{D_{1}}, T_{D_{2}}$ : depend on the transient response of analog circuits such as reception filter, especially on the received signal level.
$T_{D_{3}} \propto R_{2} \cdot C_{2}, T_{D_{4}} \propto R_{3} \cdot C_{2}$, both depend on the threshold voltage at Gate1 input.
$T_{C D O N}=T_{D_{1}}+T_{D_{3}}, T_{C D O F F}=T_{D_{2}}+T_{D_{4}}$

Figure 3-13
d) MSM6927/6947 Timing Chart (2-Wire facilities)


Figure 3-14

## 6) Circuit to prevent latch-up due to power supply noise

The LSIs for single chip modem series have a high immunity against latch-up, but are vulnerable against severe noise in the power supply.

Add a diode as illustrated in Figure 3-15.
For best protection, provide a zener diode ( $\sim 15 \mathrm{~V}$ ) and a choke coil.
There is no restriction in whether to apply the 12 V source or 5 V source first.


Figure 3-15

## 7) How to apply clock pulses

a) Clock circuit when two one-chip modems are used


Figure 3-16
b) How to use an external clock circuit


I

Figure 3-17
8) Line equalization circuit for 1200 bps FSK modem


Figure 3-18 An Example of Line Equalization Circuit


The line equalization circuit shown in Figure $3-18$ has a gain of +9.8 dB at 1.5 kHz . The input level at AIN terminal is adjusted by varying $R_{6}$ and $R 7$, which have a typical value of 51 kohms. $R_{6}$ is set at 91 kohms, and $R_{7}$ at 15 kohms respectively. $\left.\left(R_{7} / R_{6}+R_{7}\right)=1 / 7\right)$

This line equalization circuit can also be used on the transmitting side, but its frequency characteristics should be selected case by case.

## 9) Circuit interfacing using a variable analog attenuator

a) In case of hybrid transformer.


NOTE 1: AIN signal level should not exceed -6 dBm .
NOTE 2: The value of resistors and capacitors are recommended values.
Figure 3-20 Circuit Using an Attenuator (No. 1)
b) In case of a line transformer plus hybrid circuit consisting of resistors and OP amps.


## - APPLICATION NOTE

c) 1200 bps 2 -Wire half-duplex communication

In this case, transmission and reception are not carried out simultaneously, the circuit becomes simpler than that compared with a) and b).


Figure 3-22 Circuit Using an Attenuator (No. 3)

In 2-Wire operation, $\overline{\mathrm{SO}}(\operatorname{Pin} 22)$ is set to digital " $L$ ".
Under this condition, when sending the transmission carrier ( $\overline{\mathrm{RS} 1}=$ digital " 0 "), the carrier detection is disabled and the received data is held in the "mark" state, independent of the signal entering AIN (received analog signal input).

## Reference

In the half-duplex oepration, the preceding hybrid circuit is unnecessary. The circuit using a variable analog attenuator has been shown in Figure 3-22, and a circuit without an attenuator is shown in Figure 3-23.


Figure 3-23 Line Interface Circuit for Half-duplex Operation

## 10) Deterioration of characteristics due to power supply noise

If both power supplies and particularly the VA supply contain noise, degraded characteristics are as follows.

1 Narrowing in the range of received signal levels
2 Narrowing of the hysteresis width of the carrier detect level
3 Increased bit error rate
There are two major reasons for these phenomena.
a) The internal signal ground is provided as a VA/2 potential.

Accordingly, half of the noise amplitude $V_{N}$, superimposed on VA, appears on the signal ground, and IC internal analog signal processing is carried out with reference to SG1 (Pin 20) containing this $\mathrm{V}_{\mathrm{N} / 2}$ noise.

Both the transmit and received signals are connected to the telephone line via a transformer. Usually, the transformer operates with reference to $0 V$, which is euqal to the potential of AG. Please refer to the circuit in figure 3-24.

b) Deterioration of characteristics due to crosstalk noise voltage from VA into the operational amplifier output, etc. via the power line of the operational amplifier and capacitor switches on the chip.
The problems do not only result in increase in noise level, but also the noise level in the voice band may be increased significantly because of the aliasing effect inherent in the switched capacitor method that plays a key role in the modem chip. The degree of deterioration in characteristics due to the combined appearance of noise and aliasing effect depends on the noise frequency, as demonstrated by the frequency characteristics in Figure 3-25 measured on MSM6926. In Figure 3-25, a sinusoidal noise voltage was superimposed on VA, and its levels (Vp-p) at which erroneous operations came up were measured and plotted. At around 1.5 to 2 kHz deterioration occurred, because that noise frequency band interfaces with the received carrier frequency band. The modem chip uses 56 kHz as a sampling clock signal for the switched capacitor filter, and it is found that the aliasing effect makes it liable for the erroneous operations caused with respect to the superimposed signals represented by nearly all multiples of the clock frequency.

It is therefore necessary to minimize VA noise through a bypass capacitor, etc. Noise superimposed on the digital circuit power supply, $\mathrm{V}_{\mathrm{D}}(+5 \mathrm{~V})$, does not lead directly to this kind of deterioration. In the modem chip, however, analog and digital circuits are resident together, and noise on VD may enter into the analog circuit via the reverse bias junction.

Accordingly, it is also important to reduce the noise level at $V_{D}$.

## 11) Tone dialer connection circuit

Connect the tone dialer MK5089 (Mostek), MSM6234 (OKI), etc. as illustrated in Figure 3-26.


Figure 3-26 Tone Dialer Connection Circuit

The operational amplifier operates with SG1 potential (approx. +6 V ) as a signal ground, therefore requires an AC coupling. If our-of-voice band noise in the tone dialer output is so serious as to require its elimination, a circuit as illustrated in Figure 3-27 works effectively.
$\mathrm{C}_{\mathrm{T}}$ must be selected to obtain a proper time constant.


Figure 3-27 Circuit for Eliminating Noise Outside of Dual Tone Band

## 12) Considerations for duplexer (Line Hybrid Circuit)

In case of full-duplex systems, a duplexer plays a important role. Its purpose is to help reject transmit signal energy from the receive signal.

Theoretically, a duplexer can be adjusted to achieve infinite rejection (no existence of cross-talk) - where the phase and amplitude of the inverting and non-inverting signals cancel through the duplexer OP-Amps. In practice, however, telephone line impedances vary enough such that only about $10 \sim 15 \mathrm{~dB}$ of rejection can be expected. To attain this rejection, it is recommended that the duplexer components $\left(R_{1}, R_{2}, R_{3}\right.$ and $C_{1}$ in Figure 3-28) be tuned for the impedance and loss characteristics of the particular type of transformer being used. This will minimize the impedance variation of the line.

Once these component values have been determined for a particular transformer type, further trimming is usally unnecessary on a board-to-board basis. A recommended procedure for balancing the duplexer which was used in finding the values in Figure 3-28, is as follows.
a) A recommended procedure for balancing the duplexer
(1) First, put the $\overline{\mathrm{RS1}}$ input to VD (transmit squech). Next, connect a 600 ohm signal source to points $A$ and $B$ (in case of MSM6926, 0 dBm and 980 Hz .) Tune $\mathrm{R}_{1}$ until the loss at point $A$ and $B$ is exactly 6 dB . This allows maximum power transfer through the transformer.
(2) With $R_{1}$ at this new value, replace the signal source with a 600 ohm resistor at point $A$ and $B$. Now output the transmit signal from $A_{0}\left(V_{0}\right)$ via OPA1 at the same frequency.
(3) Now tune $\mathrm{R}_{3}$ until the signal out of $\mathrm{A}_{0}$ reaches a minimum at OPA2 output terminal $\left(V_{2}\right)$. Then tune $C_{1}$ until a new, lower minimum is reached which should be around 30 dB .
The phase and amplitude of the two signal components have now been matched for the best rejection over the spread of telephone lines.

A crosstalk characteristic of the duplexer adjusted in steps (1) through (3) is shown in Figure 3-29. It was obtained by measuring the $\mathrm{V}_{0}-\mathrm{to}-\mathrm{V}_{2}$ transfer characteristic with the modem chip and the duplexer disconnected from each other.

The duplexer has the attenuation pole at about 1420 Hz when a line impedance is ideal 600 ohm.
b) Characteristics on a practical line

Figure 3-29 also shows the practical characteristics of the duplexer connected to existing telephone lines.

These are represented by $\mathrm{V}_{0}-$ to $-\mathrm{V}_{2}$ transfer characteristics; it should be noticed that the receive signal level at AIN terminal $\left(V_{3}\right)$ will be lower than $V_{2}$ by about 6 dB typically because of the existence of $R_{6}$ and $R_{7}$.


Figure 3-28 Deplexer (Line Hybrid Circuit) Considerations


Figure 3-29 Experimental Cross-Talk Characteristics
c) Allowable crosstalk level

We investigated how the receiver characteristics would be affected by crosstalk. The measuring circuit used is shown in Figure 3-30, and the characteristics obtained are shown in Figures 3-31 and 32. For example, if MSM6946 (Bell 103) is to operate in originate mode $(M=1)$ with a bit error rate (BER) of $10^{-4}$ or less for a receive signal level of -43 dBm or greater, these figures argue that the crosstalk level should be held down below -3 dBm .

Next, it should be noticed that not only the AC signal crosstalk, but also the DC voltage on AIN terminal deteriorate the performance, because the DC voltage makes the receiver's dynamic range to be narrow.

This is the reason for which capacitor $\mathrm{C}_{0}$ shown in Figure 3-28 is necessary. Capacitor $\mathrm{C}_{0}$ prevents the DC offset voltage on $\mathrm{A}_{0}$ from being conveyed to AIN terminal.




Low frequency channel received signal level

Figure 3-31 Deterioration of Bit Error Rate by Cross-Talk (MSM6926)



Low frequency channel cross-talk level

Figure 3-32 Deterioration of Bit Error Rate by Cross-Talk (MSM6946)
d) Consideration
(1) With reference to the circuit shown in Figure 3-28, if no transformer loss is present, the receive signal will be amplified twice ( +6 dB ) at the output of OPA2. Accordingly, it is reduced to a half ( -6 dB ) through $\mathrm{R}_{6}$ and $\mathrm{R}_{7}$ before input to AIN terminal. Assuming that the $V_{0}-$ to $-V_{2}$ transfer ratio is -8 dB (See Figure 3-29), the crosstalk level at AIN terminal is calculated as follows, because $V_{0}$ is +6 dBm .

```
\(+6 \mathrm{dBm}^{* 1}-8 \mathrm{~dB}^{* 2}-6 \mathrm{~dB}^{* 3}=-8 \mathrm{dBm}{ }^{* 4}\)
\({ }^{* 1}\) : transmit level at \(\mathrm{A}_{0}\) terminal, \(\mathrm{V}_{0}\)
*2 \({ }^{2} \mathrm{~V}_{0}\)-to \(-\mathrm{V}_{2}\) transfer ratio
\({ }^{* 3}\) : attenuation by \(\mathrm{R}_{6}\) and \(\mathrm{R}_{7}\)
*4 : crosstalk signal level at AIN terminal
```

According to Figure 3-32, it can be seen that the cross-talk of -8 dBm is not a problem for the system performance.
(2) In case a series resistance or other detrimental impedance in the telephone line causes a signal transmission loss through the transformer, the performance will be degraded as compared with the case discussed in (1) above.

For example, if a both-way transmission loss is 4 dB and $\mathrm{V}_{0}-$ to $-\mathrm{V}_{2}$ transfer ratio remains to be -8 dB , the crosstalk level at AIN terminal is calculated as follows.
$\left(+6 d B m+4 d B^{* 1}\right)-8 d B-6 d B+4 d B^{* 2}=0 d B m$
*1: compensation for loss through transformer in the transmit direction (an additional gain of 4 dB to be given to OPA1)
*2: compensation for loss through transformer in the receive direction (loss through the $R_{6}-R_{7}$ attenuator to be reduced by 4 dB )
When MSM6946 (Bell 103) is operated in the high-frequency channel receiving mode ( $M=1$ ), Figure 3-32 tells that if the crosstalk level is 0 dBm , the bit error rate will run in excess of $10^{-4}$ unless the receive signal level is greater than -33 dBm .
(3) The greater the ratio of the transmit signal level to the maximum receive signal level is, the more will be aggravated the degradation of the system performance due to crosstalk.

## 4. CHECK POINTS FOR TROUBLE SHOOTINGS

## 1) Basic Examinations

- $V$ pin $15, \mathrm{~V}$ pin $19=0$ volt
- $V$ pin $24=+12 \mathrm{~V} \pm 10 \%$
- Are there any noise on pin 24? If the noise is not negligible; modem performances are easy to be deteriorated.
- V pin $26=+5 \mathrm{~V} \pm 5 \%$
- $V \operatorname{pin} 20=1 / 2 \cdot(V \operatorname{pin} 24)$

The load resistance connected to pin 20 must be more than 50 Kohms and any other voltage potentials must not input to this pin.

- V pin $18=\mathrm{V}$ pin $20+0.7$
- $V$ pin $16=V$ pin $18+3.0$
- $\operatorname{VDC}(\operatorname{pin} 21)=\mathrm{V}$ pin 20
- Any external components should not be connected to pin 1 and pin 2 except a 3.58 MHz crystal resonator.
- Pin 3 outputs a pulse train of which frequency is about 874 Hz .
- Pin 13 should be connected to pin 14.
- Pin 23 should be connected to digital " 0 " level.
- The analog transmit signal on pin 25 swings keeping its DC potential at about half of VA (pin 24).
The load resistance connected to pin 25 must be more than 50 Kohms.
- The fun-out number of digital output pins are less than two.

NOTE) Checks should be performed with direct touching to pins.
2) Checks for Signal Transmiting

2-1. Common checks

- Pin 4 and Pin 7 should be connected to digital " 0 " level.
- Pin 6 outputs digital " 0 " level.
- Transmit data is input to the chip through pin 9 (XD).


## 2-2. MSM6926 and MSM6946

- Operating mode is determined using pin 22-originate or answer r.ode.
- Pin 27 and Pin 28 should be connected to digital " 0 " level.


## 2-3. MSM6927

- Pin 27 and Pin 28 should be connected to digital " 0 " level.


## 2-4. MSM6947

- Pin 27 should be connected to digital " 0 " level.
- Pin 28 should be connected to digital " 1 " level.

Signal transmiting ought to be performed after checks shown above if the chip is not out of order.

## 3) Checks for Signal Receiving

## 3-1. Common checks

- Pin 4 and Pin 27 should be connected to digital " 0 " level.
- The receive signal level should be within -6 and -43 dBm at the point of Pin 21 (AIN).
- Pin 11 and Pin 12 output the digital " 0 " state during the chip operates as a receiver.
- Pin 10, Pin 13 and Pin 14 show the same digital output data.


## 3-2. MSM6926 and MSM6946

- Confirm the carrier frequencies transmited through Pin 25 according to the operating modes.


## 3-3. MSM6927 and MSM6947

- Pin 7 should be connected to digital " 1 " level.
- Pin 22 should be connected to digital " 0 " level.
- Pin $22(\overline{\mathrm{SQ}})$ is connected to digital " 1 " level when the operation on 4 -wire facilities or the self test is required.

Signal receiving ought to be performed after checks shown above if the chip is not out of order.

Note: Product data and specification information herein are subject to change without advance notice for the sake of technical improvements in performance and reliability since OKI is permanently endeavoring to supply the best products possible. The manufacturer does not assume responsibility for customer product designs and for the fitness to any particular application, nor for patent rights or other rights of third parties and infringements thereof resulting from the use of his products. This publication does not commit immediate availability of the products(s) described by it. If in doubt, please contact your nearest OKI representative. The information furnished by OKI is believed to be accurate and reliable. However, no responsibility is assumed for inaccuracies that may not have been detected prior to printing, and for those which occur beyond our contral. This issue substitutes and supersedes ail publications previously supplied by OKI for the captioned product(s). This document may not, in whole or part, be copied, photocopied, reproduced, translated, or converted to any machine readable form, without prior written consent from OKI.

## OKI Semiconductor

650 North Mary Avenue, Sunnyvale, CA $\# 94086$, U.S.A.
Tel: (408)720-1900 Fax: (408)720-1918 Telex: 296687 OK! SNTA
FOR FURTHER INFORMATION PLEASE CONTACT:

OKI ELectric Industry Co., Ltd,
Head Office Annex
10-3, Shibaura, 4-chome, Minato-ku, Tokyo 108, Japan
Tel: 3-454-2111
Fax: 3-798-7643
Telex: J22627
Electronic Devices Group
Overseas Marketing Dept.

## OKi Semiconductor

650 North Mary Avenue, Sunnyvale, CA \#94086, U.S.A.
Tel : (408) 720-1900
Fax: (408) 720-1918
Telex: 296687 OKI SNTA

OKI Electric Europe GmbH Niederkasseler Lohweg 8, D-4000 Düsseldorf 11, Fed. Rep. of Germany Tel: 0211-59550
Fax: 0211-591669
Telex: 858-4312

OKI Electronics (Hong Kong) Ltd.
16th Floor, Fairmont House,
8 Cotton Tree Drive, Hong Kong
Tel : 5-263111
Fax: 5-200102
Telex: 62459 OKIHK HX


[^0]:    ${ }^{*} \mathrm{G}_{\mathrm{T}}=20 \log \left(\mathrm{~V}_{\text {AOUT }} / \mathrm{V}_{\mathrm{XIN}}\right)$

[^1]:    * When $V_{A G C I}$ is within this range, the signal level output from AGC circuit should be about -6 dBm with digitally controlling by the demodulating DSP.

[^2]:    * In this case, Senbl pin of MSM6052-05GS and MSM6052-10RS shall be set to "H" level.

[^3]:    fosc $=3.579545 \mathrm{MHz}$

[^4]:    ${ }^{* 1}$ : The measurement is taken with P-message filter.

[^5]:    *2 : The measurement is taken with P -message filter.
    ${ }^{* 3}$ : $\emptyset \mathrm{dB}=1.251 \mathrm{Vrms}$

[^6]:    *3: The measurement is taken with P -message filter.

[^7]:    X : Irrespective of $1 / 0$ condition

