NEC

User’'s Manual

Vr10000 Series™

64-/32-bit Microprocessor

LPD30700 (Vr10000™)
LPD30700L (Vr10000L ™)
LPD30710 (Vr12000™)
LPD30710A (VR12000A ™)
LPD30710L (Vr12000L ™)

Document No. U10278EJ4VOUMOO (4th edition)
Date Published March 2001 N CP(K)

© NEC Corporation 1995, 2001
© MIPS Technologies, Inc. 1994
Printed in Japan



[MEMO]

2 User'sManual U10278EJ4V0UM



NOTES FOR CMOS DEVICES

@ PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using
insulators that easily build static electricity. Semiconductor devices must be stored and transported
in an anti-static container, static shielding bag or conductive material. All test and measurement
tools including work bench and floor should be grounded. The operator should be grounded using
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need
to be taken for PW boards with semiconductor devices on it.

@ HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided
to the input pins, itis possible that an internal input level may be generated due to noise, etc., hence
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Inputlevels
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused
pin should be connected to Voo or GND with a resistor, if it is considered to have a possibility of
being an output pin. All handling related to the unused pins must be judged device by device and
related specifications governing the devices.

@ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS
does not define the initial operation status of the device. Immediately after the power source is
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does
not guarantee out-pin levels, 1/0 settings or contents of registers. Device is not initialized until the
reset signal is received. Reset operation must be executed immediately after power-on for devices
having reset function.

Vr3000, Vr4400, VrR5000, VrR10000, VrR10000L, VR10000 Series, VrR12000, VrR12000A, and Vr12000L are
trademarks of NEC Corporation.

R2000, R3000, and R6000 are trademarks of MIPS Computer Systems Inc.

MIPS is aregistered trademark of MIPS Technologies, Inc. in the United States.

R4400, R8000, R10000, and R12000 are trademarks of MIPS Technologies, Inc.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through
X/Open Company, Ltd.
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Exporting this product or equipment that includes this product may require a governmental license from the U.S.A. for some
countries because this product utilizes technologies limited by the export control regulations of the U.S.A.

The information in this document is current as of January, 2001. The information is subject to
change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or
data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all
products and/or types are available in every country. Please check with an NEC sales representative
for availability and additional information.

No part of this document may be copied or reproduced in any form or by any means without prior

written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.

NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of

third parties by or arising from the use of NEC semiconductor products listed in this document or any other
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
patents, copyrights or other intellectual property rights of NEC or others.

Descriptions of circuits, software and other related information in this document are provided for illustrative

purposes in semiconductor product operation and application examples. The incorporation of these

circuits, software and information in the design of customer's equipment shall be done under the full
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
parties arising from the use of these circuits, software and information.

While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
risks of damage to property or injury (including death) to persons arising from defects in NEC
semiconductor products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment, and anti-failure features.

NEC semiconductor products are classified into the following three quality grades:

"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products

developed based on a customer-designated "quality assurance program" for a specific application. The
recommended applications of a semiconductor product depend on its quality grade, as indicated below.

Customers must check the quality grade of each semiconductor product before using it in a particular

application.

"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's

data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not

intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness
to support a given application.

(Note)

(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.

(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for

NEC (as defined above).
MSE 00.4
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Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

- Device availability
+ Ordering information

+ Product release schedule

- Availability of related technical literature

- Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)

+ Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary

from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California

Tel: 408-588-6000
800-366-9782

Fax: 408-588-6130
800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany

Tel: 0211-65 03 02

Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK

Tel: 01908-691-133

Fax: 01908-670-290

NEC Electronics Italiana s.r.l.
Milano, Italy

Tel: 02-66 75 41

Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH
Benelux Office

Eindhoven, The Netherlands

Tel: 040-2445845

Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France

Tel: 01-3067-5800

Fax: 01-3067-5899

NEC Electronics (France) S.A.
Madrid Office

Madrid, Spain

Tel: 091-504-2787

Fax: 091-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office

Taeby, Sweden

Tel: 08-63 80 820

Fax: 08-63 80 388
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PREFACE

Readers This manual targets users who intends to understand the functions of the Vr10000 and Vr12000,
and to design application systems using this microprocessor.

Purpose This manual introduces the architecture and hardware functions of the VrR10000, Vr12000 to users,
following the organization described below.

Organization This manual consists of the following contents:
* Introduction
* Cache
* Hardware

e Coprocessor 0

* Floating-point unit

* Memory management system
»  Exception processing

e Ingtruction set details

How to read this manual It is assumed that the reader of this manua has general knowledge in the fields of electric
engineering, logic circuits, and microcomputers.

The R3000™ in this manual represents the VR3000™,
The R4400™ in this manual represents the Vr4400™,
The R10000™ in this manual represents the VrR10000 and Vr10000L .
The R12000™ in this manual represents the VrR12000, Vr12000A, and Vr12000L.
To learn about detailed function of a specific instruction.
— Read Chapter 12 Floating-Point Unit, Chapter 14 CPU Exceptions, or refer
to VR5000™ Vr10000 INSTRUCTION User’s Manual which is separately available.

To learn about the overall functions of the Vr10000 and Vr12000
- Read thismanual in sequential order.

To learn about electrical specifications,
- Refer to Data Sheet which is separately available.

Unless otherwise specified, the R10000 is treated as the representative model throughout
this document.

Legend Data significance: Higher on left and lower on right
Active low: XXX*
Numeric representation: binary ... XXXX or XXXX,
decimal ... XXXX
hexadecimal ... OXXXXX
Important information Underlined

Related Documents The related documents indicated here may include preliminary version. However, preliminary
versions are not marked as such.

¢ Data Sheet
uPD30700, 30700L, 30710 (Vr10000, Vr12000) Data Sheet U12703E

¢ User'sManua
VRr5000, VR10000 INSTRUCTION User's Manual U12754E
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1.

| ntroduction to the R10000 Processor

This user's manual describes the R10000 superscalar microprocessor for the system

designer, paying special attention to the external interface and the transfer protocols.

This chapter describes the following:
MIPS™ [SA
» what makes a generic superscalar microprocessor

»  gpecifics of the R10000 superscalar microprocessor
* implementation-specific CPU instructions
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Chapter 1 Introduction to the R10000 Processor

1.1 MIPSInstruction Set Architecture (1SA)
MIPS has defined an instruction set architecture (1SA), implemented in the following sets
of CPU designs:
e« MIPS I, implemented in the R2000™ and R3000
MIPS II, implemented in the R6000™
e MIPSIII, implemented in the R4400
*  MIPS 1V, implemented in the R8000™ and R10000
The original MIPS | CPU I SA has been extended forward three times, as shown in Figure

1-1; each extension is backward compatible. The ISA extensions are inclusive; each new
architecture level (or version) includes the former level st

MIPSII
MIPS 111

MIPS IV

Figure1-1 MIPSISA with Extensions

The practical result isthat a processor implementing MIPS IV isaso ableto run MIPSI,
MIPS 1, or MIPS 111 binary programs without change.

T For more | SA information, please refer to the MIPSIV Instruction Set Architecture, published
by MIPS Technologies, and written by Charles Price. Contact information is provided both
in the Preface, and inside the front cover, of this manual.
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Chapter 1 Introduction to the R10000 Processor

1.2 What isa Superscalar Processor ?
A superscalar processor is one that can fetch, execute and complete more than one

instruction in parallel.

Pipeline and Super pipeline Architecture

Previous MIPS processors had linear pipeline architectures, an example of such alinear
pipeline is the R4400 superpipeline, shown in Figure 1-2. In the R4400 superpipeline
architecture, an instruction is executed each cycle of the pipeline clock (PCycle), or each
pipe stage.

1 Pipe

e
Instruction 4|  |F IS| RF| EX| DF | DS | TC WB'

Instruction 3 IF IS| RF| EX| DF | DS | TC WB'
Instruction 2 IF IS| RF| EX| DF | DS | TC WB'

Instruction 1 | IF IS| RF| EX| DF| DS | TC | WB

Figure 1-2 R4400 Pipeline

Superscalar Architecture

The structure of 4-way superscalar pipelineis shown in Figure 1-3. At each stage, four
instructions are handled in parallel. Note that there is only one EX stage for integers.

Instruction 1 IF ID IS EX WB IF = instruction fetch
Instruction 2 IF D IS EX WB ID = instruction decode and dependency
IS = instruction issue

Instruction 3 IF ID IS EX WB
; ; ; ; EX = execution (1 only)
Instruction 4 IF ID IS EX WB WB = write back

Instruction 5 IF ID IS EX wB
Instruction 6 IF ID IS EX wB
Instruction 7 IF ID IS EX WB
Instruction 8 IF ID IS EX WB

Figure1-3  4-Way Superscalar Pipeline
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Chapter 1 Introduction to the R10000 Processor

1.3 What isan R10000 Microprocessor ?

The R10000 processor is a single-chip superscalar RISC microprocessor that is afollow-
on to the MIPS RISC processor family that includes, chronologically, the R2000, R3000,
R6000, R4400, and R8000.

20

The R10000 processor uses the MIPS ANDES architecture, or Architecture with Non-
seguential Dynamic Execution Scheduling.

The R10000 processor has the following major features (termsin bold are defined in the
Glossary):

it implements the 64-bit MIPS IV instruction set architecture (ISA)

it can decode four instructions each pipeline cycle, appending them to one of
three instruction queues

it has five execution pipelines connected to separate internal integer and
floating-point execution (or functional) units

it uses dynamic instruction scheduling and out-of-order execution
it uses speculative instruction issue (also termed “speculative branching”)

it uses a precise exception model (exceptions can be traced back to the
instruction that caused them)

it uses non-blocking caches

it has separate on-chip 32-Kbyte primary instruction and data caches

it has individually-optimized secondary cache and System interface ports
it has an internal controller for the external secondary cache

it has an internal System interface controller with multiprocessor support
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Chapter 1 Introduction to the R10000 Processor

R10000 Super scalar Pipeline

The R10000 superscalar processor fetches and decodes four instructionsin parallel each
cycle (or pipeline stage). Each pipelineincludes stagesfor fetching (stage 1 in Figure 1-4),
decoding (stage 2) issuing instructions (stage 3), reading register operands (stage 3),
executing instructions (stages 4 through 6), and storing results (stage 7).

7 Pipeline Stages

Stage 1
Fetch

B

5
Execution <
Pipelines

\

Primary
Instruction
Cache

Integer ALU Pipeline

Integer ALU Pipeline

Instruction Fetch Pipeline

Stage 2
Decode

FP Add Pipeline
(FP Queue)

FP Multiply Pipeline
(FP Queue)

(Integer Queue)

(Integer Queue)

Load/Store Pipeline
(Address Queue)

Stage 3 Stage 4 Stage 5 Stage 6 Stage 7
Issue Execute Execute Execute Store
N
Issue | RF FAdd - 1 FAdd - 2 FAdd - 3 Result
Floating-Point Queue
Issue | RF FMpy -1 FMpy - 2 FMpy -3 |Result and Registers
N\
Issue | RF ALU1 Result
Issue | RF ALU2 Result > Integer Register Operands
Issue | RF | Addr.Calc: | Data Cache |Result

Decode

Branch Unit

2-way Interleaved Cache

Read operands from Floating-Point Translation-Lookaside Buffer

or Integer Register Files

Branch Address (one branch can be handled each cycle)

4 Instruction/Cycle Fetch and Decode

Functional Units (Execute Instruction)

Figure 1-4 Superscalar Pipeline Architecture in the R10000
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Chapter 1 Introduction to the R10000 Processor

I nstruction Queues

Execution Pipelines

Asshown in Figure 1-4, each instruction decoded in stage 2 is appended to one of three
instruction queues:

* integer queue
* address queue
» floating-point queue

The three instruction queues can issue (see the Glossary for a definition of issue) one new
instruction per cycle to each of the five execution pipelines:

» theinteger queue issues instructions to the two integer ALU pipelines

» the address queue issues one instruction to the Load/Store Unit pipeline

» the floating-point queue issues instructions to the floating-point adder and
multiplier pipelines

A sixth pipeline, the fetch pipeline, reads and decodes instructions from the instruction
cache.

L oad/store dependency is speculatively ignored (R12000)

When aload follows a store in program-order, and the address of the load is known to the
Address Queue (AQ) before the address of the store, then the AQ may speculatively issue
the load to tag-check and data access. When the address of the storeis determined, the AQ
can undo the effects of the load through the use of the “ soft-exception” mechanism. Since
almost all loads which are actually dependent on previous stores use the same registersto
form their addresses, normally either the two instructions are independent, or their

addresses are resolved in program order, so the soft-exception should occur rarely.

64-bit Integer ALU Pipeline

22

The 64-bit integer pipeline has the following characteristics:
* it has a 16-entry integer instruction queue that dynamically issues instructions

e it has a 64-hit 64-location integer physical register file, with seven read and
three write ports (32 logical registers; see register renaming in the Glossary)

e it has two 64-bit arithmetic logic units:

- ALUL1 contains an arithmetic-logic unit, shifter, and integer branch
comparator

- ALU2 contains an arithmetic-logic unit, integer multiplier, and divider
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Chapter 1 Introduction to the R10000 Processor

L oad/Store Pipeline

The load/store pipeline has the following characteristics:

64-bit Floating-Point Pipeline

it has a 16-entry address queue that dynamically issues instructions, and uses
the integer register file for base and index registers

it has a 16-entry address stack for use by non-blocking loads and stores
it has a 44-bit virtual address calculation unit

it has a 64-entry fully associative Translation-L ookaside Buffer (TLB),
which converts virtual addresses to physical addresses, using a 40-bit physical
address. Each entry maps two pages, with sizes ranging from 4 Kbytes to 16
Mbytes, in powers of 4.

The 64-bit floating-point pipeline has the following characteristics:

it has a 16-entry instruction queue, with dynamic issue

it has a 64-bit 64-location floating-point physical register file, with five read
and three write ports (32 logical registers)

it has a 64-bit parallel multiply unit (3-cycle pipeline with 2-cycle latency)
which also performs move instructions

it has a 64-bit add unit (3-cycle pipeline with 2-cycle latency) which handles
addition, subtraction, and miscellaneous floating-point operations

it has separate 64-bit divide and square-root units which can operate
concurrently (these units share their issue and completion logic with the
floating-point multiplier)

A block diagram of the processor and its interfacesis shown in Figure 1-5, followed by a
description of its major logical blocks.
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Chapter 1 Introduction to the R10000 Processor

24

Edge of Known World

External Agent
or Cluster Coordinator

v

Up to 4 R10000 Microprocessors may be directly connected.

v

A

System Bus: 64-bit data, 8-bit check, 12-bit command

System Interface

Secondary Cache Ctlr

Secondary Cache

128-bit refill
Instruction Cache
32 Khytes
2-way Set Associative

16-word blocks
Unaligned access

128-bit refill or writeback
Data Cache
32 Kbytes
2-way Set Associative

2 Banks
8-word blocks

Addr__Four 32-bit instr. fetch Addr___ 64-bit load or store
Y Switch |
= _,' Address|« TLB
) | Queue |
=1, |l > 1
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S
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s
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R10000

Figure1-5 Block Diagram of the R10000 Processor
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Chapter 1 Introduction to the R10000 Processor

Functional Units

The five execution pipelines allow overlapped instruction execution by issuing instructions
to the following five functional units:

* twointeger ALUs (ALU1 and ALU2)
» the Load/Store unit (address calculate)
» the floating-point adder

» the floating-point multiplier

There are also three “iterative” units to compute more complex results:

* Integer multiply and divide operations are performed by an Integer Multiply/
Divide execution unit; these instructions are issued to ALU2. ALU2 remains
busy for the duration of the divide.

» Floating-point divides are performed by the Divide execution unit; these
instructions are issued to the floating-point multiplier.

* Floating-point square root are performed by the Square-root execution unit;
these instructions are issued to the floating-point multiplier.

Increase in pre-decode buffering (R12000)

Up to 12 instruction may be buffered before being decoded. This should normally be
invisibleto the end user, but can be important when debugging systemsin uncached-mode,
since fetch and decode are now further de-coupled.

Primary Instruction Cache (I-cache)

The primary instruction cache has the following characteristics:

» it contains 32 Kbytes, organized into 16-word blocks, is 2-way set associative,
using a least-recently used (LRU) replacement algorithm

» it reads four consecutive instructions per cycle, beginning on any word
boundary within a cache block, but cannot fetch across a block boundary.

* itsinstructions are predecoded, its fields are rearranged, and a 4-bit unit select
code is appended

» it checks parity on each word
e it permits non-blocking instruction fetch

Primary Data Cache (D-cache)

The primary data cache has the following characteristics:
* it hastwo interleaved arrays (two 16 Kbyte ways)

e it contains 32 Khytes, organized into 8-word blocks, is 2-way set associative,
using an LRU replacement algorithm.

e it handles 64-bit load/store operations

e it handles 128-hit refill or write-back operations
* it permits non-blocking loads and stores

» it checks parity on each byte
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Chapter 1 Introduction to the R10000 Processor

Branch Target Address Cache (R12000)

This 32-entry two-way set-associative cache holdsthe target addresses of previously-taken
branches. When a branch is executed a hit in the BTAC eliminates the one-cycle fetch
bubble with the R10000 experiences for every taken branch. However, if abranch which
hitsinthe BTAC isactually predicted not-taken, then aone cyclefetch bubbleisintroduced
where none was present before. Performance simulations indicate that the BTAC is a net
win, but because of its*mixed-blessing” nature, amechanism has been provided to disable
it via software. (See description of changes to diag register).

I nstruction Decode And Rename Unit

Branch Unit

26

Theinstruction decode and rename unit has the following characteristics:

it processes 4 instructions in parallel

it replaces logical register numbers with physical register numbers (register
renaming)

- it maps integer registers into a 33-word-by-6-bit mapping table that has
4 write and 12 read ports

- it maps floating-point registers into a 32-word-by-6-bit mapping table
that has 4 write and 16 read ports

it has a 32-entry active list of al instructions within the pipeline.

The branch unit has the following characteristics:

it allows one branch per cycle
conditional branches can be executed speculatively, up to 4-deep
it has a 44-bit adder to compute branch addresses

it has a 4-quadword branch-resume buffer, used for reversing mispredicted
specul atively-taken branches

the Branch Return Cache contains four instructions following a subroutine
call, for rapid use when returning from leaf subroutines

it has program trace RAM that stores the program counter for each instruction
in the pipeline
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Chapter 1 Introduction to the R10000 Processor

External Interfaces

The external interfaces have the following characteristics:

* ab4-bit System interface allows direct-connection for 2-way to
4-way multiprocessor systems. 8-bit ECC Error Check and Correction is
made on address and data transfers.

» asecondary cache interface with 128-bit data path and tag fields. 9-bit ECC
Error Check and Correction is made on data quadwords, 7-bit ECC is made on
tag words. It allows connection to an external secondary cache that can range
from 512 Kbytes to 16 Mbytes, using external static RAMs. The secondary
cache can be organized into either 16- or 32-word blocks, and is 2-way set
associative.

Bit definitions are given in Chapter 3.

Additional cyclesfor System Interface transactions (R12000)

All transactions which go through the system interface unit (in particular, SCache refills
and writebacks) have one additional CPU-clock of latency added to them.
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Chapter 1 Introduction to the R10000 Processor

1.4 Instruction Queues

The processor keeps decoded instructions in three instruction queues, which dynamically
issue instructions to the execution units. The queues allow the processor to fetch
instructions at its maximum rate, without stalling because of instruction conflicts or
dependencies.

Each queue uses instruction tags to keep track of theinstruction in each execution pipeline
stage. These tags set a Done bit in the active list as each instruction is compl eted.

FP and I nteger-Queue I ssue Policy (R12000)

Integer Queue

Theinteger and floating-point queues are altered so that they are now composed of two 8-
entry banks. Instructions are issued into the two banksin an aternating fashion. Each bank
independently nominates instructions for the functional units. For each FU, the banks
nominate the oldest instruction they contain which is ready to execute. If both banks
nominate an instruction for agiven FU, awinner is chosen by apriority bit which alternates
between the two banks on each cycle.

Theinteger queue issuesinstructionsto the two integer arithmetic units: ALU1 and ALUZ2.

Theinteger queue contains 16 instruction entries. Up to four instructions may be written
during each cycle; newly-decoded integer instructions are written into empty entriesin no
particular order. Instructions remain in this queue only until they have been issued to an
ALU.

Branch and shift instructions can be issued only to ALU1. Integer multiply and divide
instructions can beissued only to ALU2. Other integer instructions can beissued to either
ALU.

Theinteger queue controls six dedicated portsto the integer register file: two operand read
ports and a destination write port for each ALU.

Address calculation for load/storeinstructions usesinteger queue (R12000)

28

When load, store, cacheop, or prefetch instructions are decoded, they are sent to both the
AQ and I1Q units. The 1Q treats the address-calculate unit as athird “ALU” and issues
instructions to it. When an instruction compl etes address cal culation, the results are
forwarded to the AQ. Unlike previously, if an address instruction must be retried for any
reason, address calculation is not redone. If the address queueisfull, but the integer queue
has free entries at the time aload/store instruction is decoded, the load/store is sent only to
the integer queue. When the address queue has an available entry the calculated addressis
forwarded to that entry and the remainder of the |oad/store execution continues.
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Floating-Point Queue

Address Queue

The floating-point queueissuesinstructionsto the floating-point multiplier and the floating-
point adder.

The floating-point queue contains 16 instruction entries. Up to four instructions may be
written during each cycle; newly-decoded floating-point instructions are written into empty
entriesin random order. Instructions remain in this queue only until they have been issued
to afloating-point execution unit.

The floating-point queue controls six dedicated portsto the floating-point register file: two
operand read ports and a destination port for each execution unit.

The floating-point queue uses the multiplier's issue port to issue instructions to the square-
root and divide units. These instructions also share the multiplier’s register ports.

The floating-point queue contains simple sequencing logic for multiple-pass instructions
such asMultiply-Add. Theseinstructions require one pass through the multiplier, then one
pass through the adder.

The address queue issues instructions to the load/store unit.

The address queue contains 16 instruction entries. Unlikethe other two queues, the address
gueue is organized asacircular First-In First-Out (FIFO) buffer. A newly decoded |oad/
store instruction is written into the next available sequential empty entry; up to four
instructions may be written during each cycle.

The FIFO order maintains the program’s original instruction sequence so that memory
address dependencies may be easily computed.

Instructions remain in this queue until they have graduated; they cannot be deleted
immediately after being issued, since the load/store unit may not be able to complete the
operation immediately.

The address queue contains more complex control logic than the other queues. An issued
instruction may fail to compl ete because of a memory dependency, a cache miss, or a
resource conflict; in these cases, the queue must continue to reissue the instruction until it
is completed.

The address queue has three issue ports:

» First, it issues each instruction once to the address calculation unit. This unit
uses a 2-stage pipeline to compute the instruction’s memory address and to
trandlate it in the TLB. Addresses are stored in the address stack and in the
gueue's dependency logic. This port controls two dedicated read ports to the
integer register file. If the cacheis available, it is accessed at the same time as
the TLB. A tag check can be performed even if the data array is busy.
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»  Second, the address queue can re-issue accesses to the data cache. The queue
allocates usage of the four sections of the cache, which consist of the tag and
data sections of the two cache banks. Load and store instructions begin with
atag check cycle, which checks to see if the desired address is already in
cache. If itisnot, arefill operation isinitiated, and this instruction waits until
it has completed. Load instructions also read and align a doubleword value
from the data array. This access may be either concurrent to or subsequent to
the tag check. If the datais present and no dependencies exist, the instruction
is marked done in the queue.

» Third, the address queue can issue store instructions to the data cache. A store
instruction may not modify the data cache until it graduates. Only one store
can graduate per cycle, but it may be anywhere within the four oldest
instructions, if all previous instructions are already completed.

The access and store ports share four register file ports (integer read and write, floating-
point read and write). These shared ports are also used for Jump and Link and Jump
Register instructions, and for move instructions between the integer and register files.
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1.5 Program Order and Dependencies

Instruction Dependencies

From a programmer’s perspective, instructions appear to execute sequentially, since they
are fetched and graduated in program order (the order they are presented to the processor
by software). When an instruction stores a new value in its destination register, that new
valueisimmediately available for use by subsequent instructions.

Internal to the processor, however, instructions are executed dynamically, and some results
may not be available for many cycles; yet the hardware must behave as if each instruction
is executed sequentially.

This section describes various conditions and dependencies that can arise from themin
pipeline operation, including:

e instruction dependencies

e execution order and stalling

e branch prediction and speculative execution
» resolving operand dependencies

» resolving exception dependencies

Each instruction depends on all previousinstructionswhich produced its operands, because
it cannot begin execution until those operands become valid. These dependencies
determine the order in which instructions can be executed.

Execution Order and Stalling

The actual execution order depends on the processor’s organization; in atypical pipelined
processor, instructions are executed only in program order. That is, the next sequential
instruction may begin execution during the next cycle, if all of its operands are valid.
Otherwise, the pipeline stalls until the operands do become valid.

Since instructions execute in order, stalls usually delay all subsequent instructions.

A clever compiler can improve performance by re-arranging instructions to reduce the
frequency of these stall cycles.

* Inanin-order superscalar processor, several consecutive instructions may
begin execution simultaneously, if all their operands are valid, but the
processor stalls at any instruction whose operands are still busy.

* Inan out-of-order superscalar processor, such as the R10000, instructions are
decoded and stored in queues. Each instruction is eligible to begin execution
as soon as its operands become valid, independent of the original instruction
sequence. In effect, the hardware rearranges instructions to keep its execution
units busy. This process is called dynamic issuing.
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Branch Prediction and Speculative Execution

Although one or moreinstructions may begin execution during each cycle, each instruction
takes several (or many) cyclesto complete. Thus, when abranch instruction isdecoded, its
branch condition may not yet be known. However, the R10000 processor can predict
whether the branch is taken, and then continue decoding and executing subsequent
instructions along the predicted path.

When abranch prediction iswrong, the processor must back up to the original branch and
takethe other path. Thistechniqueiscalled speculative execution. Whenever the processor
discovers amispredicted branch, it aborts all speculatively-executed instructions and
restoresthe processor’ s state to the state it held before the branch. However, the cache state
is not restored (see the section titled “ Side Effects of Speculative Execution”).

Branch prediction can be controlled by the CPO Diagnostic register. Branch Likely
instructions are always predicted astaken, which also meanstheinstruction in the delay slot
of the Branch Likely instruction will always be speculatively executed. Since the branch
predictor isneither used nor updated by branch-likely instructions, theseinstructionsdo not
affect the prediction of “normal” conditional branches.

Resolving Operand Dependencies

32

Operands include registers, memory, and condition bits. Each operand type hasits own
dependency logic. Inthe R10000 processor, dependencies are resolved in the following
manner:

* register dependencies are resolved by using register renaming and the
associative comparator circuitry in the queues

* memory dependencies are resolved in the Load/Store Unit

» condition bit dependencies are resolved in the active list and instruction
queues
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Resolving Exception Dependencies

Strong Ordering

In addition to operand dependencies, each instruction isimplicitly dependent upon any
previous instruction that generates an exception. Exceptions are caused whenever an
instruction cannot be properly completed, and are usually due to either an untransl ated
virtual address or an erroneous operand.

The processor design implements precise exceptions, by:
* identifying the instruction which caused the exception
e preventing the exception-causing instruction from graduating
» aborting all subsequent instructions

Thus, all register values remain the same as if instructions were executed singly.
Effectively, al previous instructions are completed, but the faulting instruction and all
subsequent instructions do not modify any values.

A multiprocessor system that exhibits the same behavior as a uniprocessor systemin a
multiprogramming environment is said to be strongly ordered.

The R10000 processor behaves as if strong ordering isimplemented, although it does not
actually execute all memory operations in strict program order.

In the R10000 processor, store operationsremain pending until the storeinstruction isready
to graduate. Thus, stores are executed in program order, and memory values are precise
following any exception.

For improved performance however, cached |oad operations my occur in any order, subject
to memory dependencies on pending store instructions. To maintain the appearance of
strong ordering, the processor detects whenever the reordering of acached |oad might alter
the operation of the program, backs up, and then re-executes the affected |oad instructions.
Specifically, whenever a primary data cache block isinvalidated due to an external
coherency request, itsindex is compared with all outstanding load instructions. If thereis
amatch and the load has been completed, the load is prevented from graduating. When it
isready to graduate, the entire pipelineisflushed, and the processor is restored to the state
it had before the load was decoded.

An uncached or uncached accelerated load or store instruction is executed when the
instruction is ready to graduate. This guarantees strong ordering for uncached accesses.

Since the R10000 processor behaves asif it implemented strong ordering, asuitable system
design allows the processor to be used to create a shared-memory multiprocessor system
with strong ordering.
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An Example of Strong Ordering

Given that locations X and Y have no particular relationship—that is, they are not in the
same cache block—an example of strong ordering is as follows:

*  Processor A performs a store to location X and later executes a load from
location Y.

* Processor B performs a store to location Y and later executes a load from
location X.

The two processors are running asynchronously, and the order of the above two sequences
is unknown.

For the system to be strongly ordered, either processor A must load the new value of Y, or
processor B must load the new value of X, or both processors A and B must load the new
valuesof Y and X, respectively, under all conditions.

If processors A and B both load old values of Y and X, respectively, under any conditions,
the system is not strongly ordered.

New Value Strongly
Processor A Processor B Ordered
No No No
Yes No Yes
No Yes Yes
Yes Yes Yes
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1.6 R10000 Pip€elines

Stage 1

Stage 2

This section describes the stages of the superscalar pipeline.

Instructions are processed in six partially-independent pipelines, as shown in Figure 1-4.
The Fetch pipeline reads instructions from the instruction cache', decodes them, renames
their registers, and placesthem in three instruction queues. The instruction queues contain
integer, address cal culate, and floating-point instructions. From these queues, instructions
are dynamically issued to the five pipelined execution units.

In stage 1, the processor fetches four instructions each cycle, independent of their
alignment in the instruction cache — except that the processor cannot fetch across a 16-
word cache block boundary. These words are then aligned in the 4-word Instruction
register.

If any instructions were left from the previous decode cycle, they are merged with new
words from the instruction cache to fill the Instruction register.

In stage 2, the four instructions in the Instruction register are decoded and renamed.
(Renaming determines any dependencies between instructions and provides precise
exception handling.) When renamed, the logical registers referenced in an instruction are
mapped to physical registers. Integer and floating-point registers are renamed
independently.

A logical register ismapped to anew physical register whenever that logical register isthe
destination of an instruction. Thus, when an instruction places anew value in alogical
register, that logical register is renamed (mapped) to a new physical register, whileits
previous value is retained in the old physical register.

As each instruction is renamed, its logical register numbers are compared to determine if
any dependencies exist between the four instructions decoded during thiscycle. After the
physical register numbers become known, the Physical Register Busy table indicates
whether or not each operand isvalid. The renamed instructions are loaded into integer or
floating-point instruction queues.

Only one branch instruction can be executed during stage 2. If the instruction register
contains a second branch instruction, this branch is not decoded until the next cycle.

The branch unit determines the next address for the Program Counter; if abranch istaken
and then reversed, the branch resume cache provides the instructions to be decoded during
the next cycle.

T The processor checks only the instruction cache during an instruction fetch; it does not check
the data cache.
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Stage 3

In stage 3, decoded instructions are written into the queues. Stage 3isalso the start of each
of the five execution pipelines.

Stages 4-6

36

In stages 4 through 6, instructions are executed in the various functional units. These units
and their execution process are described below.

Floating-Point Multiplier (3-stage Pipeline)

Single- or double-precision multiply and conditional move operations are executed in this
unit with a2-cyclelatency and a1l-cyclerepeat rate. The multiplicationiscompleted during
the first two cycles; the third cycle is used to pack and transfer the result.

Floating-Point Divide and Square-Root Units

Single- or double-precision division and sguare-root operations can be executed in parallel
by separate units. These units sharetheir issue and compl etion logic with the fl oating-point
multiplier.

Floating-Point Adder (3-stage Pipeline)

Single- or double-precision add, subtract, compare, or convert operations are executed with
a2-cyclelatency and al-cyclerepeat rate. Although afinal resultisnot calculated until the
third pipeline stage, internal bypass paths set a 2-cycle latency for dependent add or
multiply instructions.

Integer ALU1L (1-stage Pipeline)

Integer add, subtract, shift, and logic operations are executed with a 1-cycle latency and a
1-cyclerepeat rate. ThisALU also verifies predictions made for branches that are
conditional on integer register values.

Integer ALU2 (1-stage Pipeline)

Integer add, subtract, and logic operations are executed with a1-cyclelatency and al-cycle
repeat rate. Integer multiply and divide operations take more than one cycle.
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Address Calculation and Trandglation in the TLB

A single memory address can be calculated every cycle for use by either an integer or
floating-point load or store instruction. Address calculation and load operations can be
calculated out of program order.

The calculated address is translated from a 44-bit virtual address into a 40-bit physical
address using atrandlation-lookaside buffer. The TLB contains 64 entries, each of which
can translate two pages. Each entry can select a page size ranging from 4 Kbytesto 16
Mbytes, inclusive, in powers of 4, as shown in Figure 1-6.

Exponent 212 214 216 018 220 222 024
Page Size | 4 Kbytes || 16 Kbytes I 64 Kbytes I 256 KbytesI 1 Mbyte I 4 Mbytes I 16 Mbytesl
Virtual address ~ VA(11) VA(13) VA(15) VA(L7) VA(19) VA(21) VA(23)
Figure1-6 TLB Page Szes

Load instructions have a 2-cycle latency if the addressed data is already within the data
cache.

Store instructions do not modify the data cache or memory until they graduate.
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1.7 Implications of R10000 Microar chitecture on Software
The R10000 processor implements the MIPS architecture by using the following
techniques to improve throughput:
e superscalar instruction issue
»  speculative execution
» non-blocking caches

These microarchitectural techniques have specia implications for compilation and code
scheduling.

Superscalar Instruction I'ssue

The R10000 processor has parallel functional units, allowing up to four instructions to be
fetched and up to five instructions to be issued or completed each cycle. Anideal code
stream would match the fetch bandwidth of the processor with amix of independent
instructions to keep the functional units as busy as possible.

To create thisideal mix, every cycle the hardware would select one instruction from each
of the columns below. (Floating-point divide, floating-point square root, integer multiply
and integer divide cannot be started on each cycle.) The processor can look ahead in the

code, so the mix should be kept close to the ideal described below.

38

ColumnA | Column B ColumnC Column D Column E
FPadd FP mul FPload add/sub add/sub
FPdiv FPstore shift mul
FPsqrt load branch div
store logica logical

Data dependencies are detected in hardware, but limit the degree of parallelism that can be

achieved. Compilers can intermix instructions from independent code streams.
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Speculative Execution

Speculative execution increases parallelism by fetching, issuing, and completing
instructions even in the presence of unresolved conditional branches and possible
exceptions. Following are some suggestions for increasing program efficiency:

e Compilers should reduce the number of branches as much as possible
e “Jump Register” instructions should be avoided.

* Aggressive use of the new integer and floating-point conditional move
instructions is recommended.

*  Branch prediction rates may be improved by organizing code so that each
branch goes the same direction most of the time, since a branch that is taken
50% of the time has higher average cost than one taken 90% of the time. The
MIPS IV conditional move instructions may be effective in improving
performance by replacing unpredictable branches.

Side Effects of Speculative Execution

To improve performance, R10000 instructions can be speculatively fetched and executed.
Side-effects are harmless in cached coherent operations; however there are potential side-
effects with non-coherent cached operations. These side-effects are described in the
sections that follow.

Speculatively fetched instructions and speculatively executed loads or stores to a cached
addressinitiate a Processor Block Read Request to the external interface if it missesin the
cache. The speculative operation may modify the cache state and/or data, and this
modification may not be reversed even if the speculation turns out to be incorrect and the
instruction is aborted.

Speculative Processor Block Read Request to an |/O Address

Accesses to /0 addresses often cause side-effects. Typically, such 1/0 addresses are
mapped to an uncached region and uncached reads and writes are made as double/single/
partial-word reads and writes (non-block reads and writes) in R10000. Uncached readsand
writes are guaranteed to be non-speculative.

However, if R10000 hasa“ garbage” valuein aregister, a speculative block read request to
an unpredictable physical address can occur, if it speculatively fetches data due to a Load
or Jump Register instruction specifying thisregister. Therefore, speculative block accesses
to load-sensitive 1/O areas can present an unwanted side-effect.
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Unexpected Write Back Due to Speculative Store Instruction

When a Store instruction is speculated and the target address of the speculative Store
instruction is missing in the cache, the cache lineisrefilled and the state is marked to be
Dirty. However the refilled data may not be actually changed in the cache if this store
instruction is later aborted. This could present a side-effect in cases such as the one
described below:

»  The processor is storing data sequentially to memory area A, using a code-loop
that includes Store and Cond.branch instructions.

A DMA write operation is performed to memory area B.
 DMA areaB is contiguous to the sequential storage area A.
* The DMA operation is noncoherent.

»  The processor does not cache any lines of DMA area B.

If the processor and the DMA operations are performed in sequence, the following could
occur:

1. Dueto speculative execution at the exit of the code-loop, the line of data beyond the
end of the memory area A — that is, the starting line of memory area B — is refilled
to the cache. This cache lineisthen marked Dirty.

The DMA operation starts writing noncoherent data into memory area B.

3. A cacheline replacement is caused by later activities of the processor, in which the
cache lineiswritten back to the top of area B. Thus, the first line of the DMA area B
is overwritten by old cache data, resulting in incorrect DMA operation and data.

The OS can restrict the writable pages for each user process and so can prevent a user
process from interfering with an active DMA space. The kernel, on the other hand, retains
xkphys and kseg0 addressesin registers. Thereisno write protection against the speculative
use of the address values in these registers. User processes which have pages mapped to
physical spacesnot in RAM may a so have side-effects. These side-effects can be avoided
if DMA is coherent.

Speculative Instruction Fetch

Thechangein acacheline's state due to a speculative instruction fetch is not reversed if the
speculation is aborted. This does not cause any problems visible to the program except
during a noncoherent memory operation. Then the following side-effect exists: if a
noncoherent lineis changed to Clean Exclusive and thislineis also present in noncoherent
space, the noncoherent data could be modified by an external component and the processor
would then have stale data.
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Workarounds for Noncoherent Cached Systems

The suggestions presented bel ow are not exhaustive; the solutions and trade-offsare system
dependent. Any one or more of the items listed below might be suitable in a particular
system, and testing and simulations should be used to verify their efficacy.

1

The external agent can reject a processor block read request to any /O location in
which a speculative load would cause an undesired affect. Rejection is made by
returning an external NACK completion response.

A serializing instruction such as a cache barrier or a CPO instruction can be used to
prevent speculation beyond the point where speculative stores are allowed to occur.
This could be at the beginning of abasic block that includesinstructionsthat can cause
a store with an unsafe pointer. (Stores to addresses like stack-relative, global-pointer-
relative and pointers to non-1/0 memory might be safe.) Speculative loads can also
cause a side-effect. To make sure there is no stale data in the cache as a result of
undesired speculative loads, portions of the cache referred by the address of the DMA
read buffers could be flushed after every DMA transfer from the 1/0 devices.

Make references to appropriate 1/O spaces uncached by changing the cache coherency
attribute in the TLB.

Generally, arbitrary accesses can be controlled by mapping sel ected addressesthrough
the TLB. However, references to an unmapped cached xkphys region could have
hazardous affects on 1/0O. A solution for thisis given below:

First of all, notethat the xkphysregion is hard-wired into cached and uncached regions,
however the cache attributes for the ksegO region are programmed through the Config
register. Therefore, clear the KX bit (to a zero) and set (to ones) the SX and UX hitsin
the Satusregister. Thisdisablesaccessto the xkphys region and restricts accessto only
the User and Supervisor portions of the 64-bit address space.

In general, the system needs either a coherent or a noncoherent protocol — but not
both. Therefore these cache attributes can be used by the external hardware to filter
accesses to certain parts of the ksegO region. For instance, the cache attributes for the
kseg0 address space might be defined in the Config register to be cache coherent while
the cache attributes in the TLB for the rest of virtual space are defined to be cached-
noncoherent or uncached. The external hardware could be designed to reject all cache
coherent mode references to the memory except to that prior-defined safe spacein
ksegO within which there is no possibility of an I/O DMA transfer. Then before the
DMA read process and before the cacheisflushed for the DM A read buffers, the cache
attributesin the TLB for the I/O buffer address space are changed from noncoherent
to uncached. After the DMA read, the access modes are returned to the cached-
noncoherent mode.

Just beforeload/storeinstruction, use aconditional moveinstruction whichtestsfor the
reverse condition in the specul ated branch, and make all aborted branch assignments
safe. An example is given below:
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bne rl, r0, label

movn  ra, ro, r1 # test to see if rl != 0; if r1 != 0 then branch
# is mispredicted; move safe address (r0)
#into ra

Id r4, 0 (ra) # Without the previous movn, this Iid

# could create damaging read.

In the above example, without the MOV N the read to the address in register ra could
be speculatively executed and later aborted. It is possible that this load could be
premature and thus damaging. The MOV N guaranteesthat if thereis amisprediction
(rlisnot equal to 0) ra will be loaded with an address to which aread will not be
damaging.

6. Thefollowingissimilar to the conditional-move example given above, in that it
protects speculation only for a single branch, but in some instances it may be more
efficient than either the conditional move or the cache barrier workarounds.

This workaround uses the fact that branch-likely instructions are always predicted as
taken by the R10000. Thus, any incorrect speculation by the R10000 on a branch-
likely always occurs on ataken path. Sample codeiis:

beq| rx, rl, label
nop
sw r2, 0x0(r1)

The storeto r1 will never beto an address referred to by the content of rx, because the
storewill never be executed speculatively. Thus, the addressreferred to by the content
of rx is protected from any spurious write-backs.
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Nonblocking Caches

Thisworkaround is most useful when the branch is often taken, or when there are few
instructions in the protected block that are not memory operations. Note that no
instructionsin ablock following abranch-likely will beinitiated by speculation on that
branch; however, in the case of a serial instruction workaround, only memory
operations are prevented from speculative initiation. In the case of the conditional-
move workaround, speculativeinitiation of all instructions continues unimpeded. Also,
similar to the conditional -move workaround, this workaround only protects fall-
through blocks from speculation on the immediately preceding branch. Other
mechanisms must be used to ensure that no other branches speculate into the protected
block. However, if ablock that dominates' the fall-through block can be shown to be
protected, this may be sufficient. Thus, if block (a) dominates block (b), and block (b)
isthefall-through block shown above, and block (a) istheimmediately previous block
inthe program (i.e., only the single conditional branch that isbeing replaced intervenes
between (a) and (b)), then ensuring that (a) is protected by serial instruction means a
branch-likely can safely be used as protection for (b).

As processor speed increases, the processor’sdata latency and bandwidth requirementsrise
more rapidly than the latency and bandwidth of cost-effective main memory systems. The
memory hierarchy of the R10000 processor tries to minimize this effect by using large set-
associative caches and higher bandwidth cacherefillsto reduce the cost of oads, stores, and
instruction fetches. Unlike the R4400, the R10000 processor does not stall on data cache
misses, instead defers execution of any dependent instructions until the data has been
returned and continues to execute independent instructions (including other memory
operations that may missin the cache). Although the R10000 allows a number of
outstanding primary and secondary cache misses, compilers should organize code and data
to reduce cache misses. When cache misses are inevitable, the data reference should be
scheduled as early aspossible so that the data can befetched in parallel with other unrelated
operations.

As afurther antidote to cache miss stalls, the R10000 processor supports prefetch
instructions, which serve as hints to the processor to move data from memory into the
secondary and primary cacheswhen possible. Because prefetches do not cause dependency
stallsor memory management exceptions, they can be schedul ed as soon asthe dataaddress
can be computed, without affecting exception semantics. Indiscriminate use of prefetch
instructions can slow program execution because of the instruction-issue overhead, but
selective use of prefetches based on compiler miss prediction can yield significant
performance improvement for dense matrix computations.

T In compiler parlance, block (a) dominates block (b) if and only if every time block (b) is
executed, block (@) isexecuted first. Note that block (&) does not haveto immediately precede
block (b) in execution order; some other block may intervene.
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1.8 Performance

Asit executes programs, the R10000 superscalar processor performs many operationsin
paralel. Instructions can also be executed out of order. Together, these two facts greatly
improve performance, but they also make it difficult to predict the time required to execute
any section of a program, since it often depends on the instruction mix and the critical
dependencies between instructions.

The processor has five largely independent execution units, each of which are
individualized for a specific class of instructions. Any one of these units may limit
processor performance, even as the other unitssitidle. If this occurs, instructions which
use the idle units can be added to the program without adding any appreciable delay.
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User Instruction Latency and Repeat Rate

Table 1-1 shows the latencies and repeat rates for all user instructions executed in ALU1,
ALU2, Load/Store, Floating-Point Add and Floating-Point Multiply functiona units
(definitions of latency and repeat rate are given in the Glossary). Kernel instructions are
not included, nor are control instructions not issued to these execution units.

Table1-1 Latencies and Repeat Rates for User Instructions

Instruction Type Execution Unit | Latency ngte:t Comment

Integer Instructions
Add/Sub/Logical/Set ALU 12 1 1
MF/MT HI/LO ALU 12 1 1
Shift/LUI ALU1 1 1
Cond. Branch Evaluation ALU1 1 1
Cond. Move ALU1 1 1
MULT ALU 2 5/6 6 Latency relative to Lo/Hi
MULTU ALU 2 6/7 7 Latency relative to Lo/Hi
DMULT ALU 2 9/10 10 Latency relative to Lo/Hi
DMULTU ALU 2 10/11 11 Latency relative to Lo/Hi
DIV/DIVU ALU 2 34/35 35 Latency relative to Lo/Hi
DDIV/DDIVU ALU 2 66/67 67 Latency relative to Lo/Hi
Load (not include loads to CP1) Load/Store 2 1 Assuming cache hit
Store Load/Store - 1 Assuming cache hit

Floating-Point I nstructions
MTCL/DMTC1 ALU1 3 1
Add/Sub/Abs/Neg/Round/Trunc/
Ceil/Floor/C.cond FADD 2 !
CVT.SW/CVT.SL FADD 4 2 Repest rate is on average
CVT (others) FADD 2 1
Mul FMPY 2 1
MFCLUDMFC1 FMPY 2 1
Cond. Move/Move FMPY 2 1
DIV.S/RECIP.S FMPY 12 14
DIV.D/RECIP.D FMPY 19 21
SQRT.S FMPY 18 20
SQRT.D FMPY 33 35
RSQRT.S FMPY 30 20
RSQRT.D FMPY 52 35
Latency is 2 only if the result is used asthe

MADD FADD+FMPY 24 L operand specified by fr of another MADD
LWCL/LDC1/LWXC1/LDXC1 LoadStore 3 1 Assuming cache hit
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Please note the following about Table 1-1:

«  For integer instructions, conditional trap evaluation takes a single cycle,
like conditional branches.

e Branches and conditional moves are not conditionally issued.

* The repeat rate above for Load/Store does not include Load Link and
Store Conditional.

*  Prefetch instruction is not included here.

* Thelatency for multiplication and division depends upon the next
instruction.

* Aniinstruction using register Lo can be issued one cycle earlier than one
using Hi.

»  For floating-point instructions, CP1 branches are evaluated in the
Graduation Unit.

e CTC1 and CFC1 are not included in this table.

e The repeat pattern for the CVT.S.(W/L) is“l I x x | | x x ...”; the repeat
rate given here, 2, is the average.

e Thelatency for MADD instructions is 2 cycles if the result is used as the
operand specified by fr of the second MADD instruction.

e Load Linked and Store Conditional instructions (LL, LLD, SC, and SCD)
do not implicitly perform SYNC operations in the R10000. Any of the
following events that occur between a Load Linked and a Store
Conditional will cause the Store Conditional to fail: an exception;
execution of an ERET, aload, a store, a SYNC, a CacheOp, a prefetch, or
an external intervention/invalidation on the block containing the linked
address. Instruction cache misses do not cause the Store Conditional to
fail.

e Up to four branches can be evaluated at one cycl el

For moreinformation about implementationsof the LL, SC, and SYNC instructions, please
see the section titled, R10000-Specific CPU Instructions, in this chapter.

T Only one branch can be decoded at any particular cycle. Since each conditional branch is
predicted, the real direction of each branch must be “evaluated.” For example,

beq r2,r3,L1
nop

A comparison of r2 and r3 is made to determine whether the branch is taken or not. If the
branch prediction is correct, the branch instruction is graduated. Otherwise, the processor
must back out of the instruction stream decoded after this branch, and inform the |Fetch to
fetch the correct instructions. The evaluation ismadein the ALU for integer branchesand in
the Graduation Unit for floating-point branches. A single integer branch can be evaluated
during any cycle, but there may be up to 4 condition codeswaiting to be eval uated for floating-
point branches. Once the condition code is evaluated, all dependant FP branches can be
evaluated during the same cycle.
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Other Performance | ssues

Cache Performance

Table 1-1 shows execution times within the functional units only. Performance may aso
be affected by instruction fetch times, and especially by the execution of conditional
branches.

In an effort to keep the execution units busy, the processor predicts branches and
speculatively executes instructions along the predicted path. When the branch is predicted
correctly, this significantly improves performance: for typical programs, branch prediction
is 85% to 90% correct. When a branch is mispredicted, the processor must discard
instructions which were speculatively fetched and executed. Usually, this effort uses
resources which otherwise would have been idle, however in some cases specul ative
instructions can delay previous instructions.

The execution of load and store instructions can greatly affect performance. These
instructions are executed quickly if the required memory block is contained in the primary
datacache, otherwisethere are significant delaysfor accessing the secondary cache or main
memory. Out-of-order execution and non-blocking cachesreducethe performancelossdue
to these delays, however.

Thelatency and repeat rates for accessing the secondary cache are summarized in Table 1-
2. Theserates depend on the ratio of the secondary cache's clock to the processor’sinternal
pipeline clock. The best performance is achieved when the clock rates are equal; slower
external clocks add to latency and repeat times.

The primary data cache contains 8-word blocks, which are refilled using 2-cycle transfers
from the quadword-wide secondary cache. Latency runsto thetimein which the processor
can use the addressed data.

The primary instruction cache contains 16-word blocks, which are refilled using 4-cycle
transfers.

Table1-2 Latency and Repeat Rates for Secondary Cache Reads

SCCIKDiv Latency* e
Mode (PClk Cycles) (PCIk Cycles)
) 5 2 (data cache)
4 (instruction cache)
it 3 (data cache)
15 8-10 6 (instruction cache)
ot 4 (data cache)
2 9-12 8 (instruction cache)

+ Assumes the cache way was correctly predicted, and there are no conflicting requests.

* Repeat rate = PClk cycles needed to transfer 2 quadwords (data cache) or 4 quadwords (instruction
cache). Rateisvalid for burstsof 2 to 3 cache misses; if more than three cache missesin arow, there can
be a 1-cycle “bubble.”

T Clock synchronization causes variability.
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The processor mitigates access delays to the secondary cache in the following ways:

The processor can execute up to 16 load and store instructions speculatively
and out-of-order, using non-blocking primary and secondary caches. That is,
it looks ahead in its instruction stream to find load and store instructions
which can be executed early; if the addressed data blocks are not in the
primary cache, the processor initiates cache refills as soon as possible.

If a speculatively executed load initiates a cache refill, the refill is completed
even if the load instruction is aborted. It is likely the data will be referenced
again.

The data cache is interleaved between two banks, each of which contains
independent tag and data arrays. These four sections can be allocated
separately to achieve high utilization. Five separate circuits compete for
cache bandwidth (address calculate, tag check, load unit, store unit, external
interface.)

The external interface gives priority to its refill and interrogate operations.
The processor can execute tag checks, data reads for load instructions, or data
writes for store instructions. When the primary cache is refilled, any required
data can be streamed directly to waiting load instructions.

The external interface can handle up to four non-blocking memory accesses to
secondary cache and main memory.

Main memory typically has much longer latencies and lower bandwidth than the secondary
cache, which makeit difficult for the processor to mitigate their effect. Since main memory
accesses are hon-blocking, delays can be reduced by overlapping the latency of several
operations. However, although thefirst part of the latency may be concealed, the processor
cannot look far enough ahead to hide the entire latency.

Programmers may use pre-fetch instructionsto load datainto the cachesbeforeit is needed,
greatly reducing main memory delays for programs which access memory in a predictable
sequence.
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2.

System Configurations

The R10000 processor provides the capability for awide range of computer systems; this
chapter describes some of the uni- and multiprocessor alternatives.
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2.1 Uniprocessor Systems

Inatypical uniprocessor system, the System interface of the R10000 processor connectsin
apoint-to-point fashion with an external agent. Such asystemisshowninFigure2-1. The
external agent istypically an ASIC that provides a gateway to the memory and 1/0
subsystems; in fact, thisASIC may incorporate the memory controller itself.

If hardware I/O coherency is desired, the externa agent may use the multiprocessor
primitives provided by the processor to maintain cache coherency for interventions and
invalidations. External duplicate tags can be used by the external agent to filter external
coherency requests.
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Secondary
Cache

Secondary Cache Interface

R10000

System Interface

Tags |

External |
Agent

To Other System Resources

Figure2-1 Uniprocessor System Organization
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2.2 Multiprocessor Systems

Two types of multiprocessor systems can be implemented with R10000 processor:

* adedicated externa agent interfaces with each R10000 processor

up to four R10000 processors and an external agent reside on a cluster bus

Multiprocessor Systems Using Dedicated External Agents

A multiprocessor system may be created with R10000 processors by providing adedicated
external agent for each processor; such asystemisshownin Figure 2-2. The external agent
provides a path between the processor System interface and some type of coherent
interconnect. In such asystem, the processor provides support for three coherency schemes:
*  snoopy-based
e snoopy-hased with external duplicate tags and control

directory-based with external directory structure and control

Secondary

Secondary
Cache

Cache

Secondary Cache Interface

Secondary Cache Interface

R10000 R10000

System Interface System Interface

_—_——— — — — — .

| Duplicate | ' Duplicate |
External . Tags External . Tags
Agent Agent
B Coherent Interconnect R
| Directory |
|
To Other System Resources lL Structure I

Figure2-2 Multiprocessor System Organization using Dedicated External Agents
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Multiprocessor Systems Using a Cluster Bus

52

A multiprocessor system may be created with R10000 processors by using a cluster bus
configuration. Such asystemisshownin Figure 2-3. A cluster busis created by attaching
the System interfaces of up to four R10000 processors with an external agent (the cluster
coordinator). The cluster coordinator is responsible for managing the flow of datawithin
the cluster.

This organization can reduce the number of ASICs and the pin count needed for a small
multiprocessor systems.

The cluster bus protocol supports three coherency schemes:
*  snoopy-based
*  snoopy-based with external duplicate tags and control
» directory-based with external directory structure and control

Secondary Secondary
Cache Cache

Secondary Cache Interface Secondary Cache Interface

R10000 R10000

System Interface System Interface

Cluster Bus
A

A
v

v

! Duplicate |

Cluster Tags |
Coordinator @ ~~ " °
| Directory |

: Structure !

To Other System Resources

Figure2-3 Multiprocessor System Organization Using the Cluster Bus
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3.

Interface Sgnal Descriptions

This chapter givesalist and description of the interface signals.
The R10000 interface signals may be divided into the following groups:
»  Power interface
»  Secondary Cache interface
»  System interface
* Test interface

Thefollowing sections present asummary of the external interface signalsfor each of these
groups. An asterisk (*) indicates signals that are asserted asalogical 0.
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3.1 Power Interface Signals

Table 3-1 presents the R10000 processor power interface signals.

Table3-1 Power Interface Sgnals

Signal Name Description Type

Vce Ve core Input
Vcc for the core circuits. P
Vcc output driver secondary cache

VeeRse Vcc for the secondary cache interface output drivers. Input
Vcc output driver system

VeeQSys Vcc for the System interface output drivers. Input
Voltage reference secondary cache

VrefSC Voltage reference for the secondary cache interface input receivers. Input
Voltage reference system

VrefSys Voltage reference for the System interface input receivers. Input
Voltage reference bypass

VrefByp Thispin must betied to Vss (preferably) or VrefSys, through at least a100 ohm | Input
resistor.

Vss Vss Input
Vssfor the core circuits and output drivers. b
Vce PLL analog

VecPa Vcc for the PLL analog circuits. Input

= VssPLL analog

v Vssfor the PLL analog circuits. Input
Vcc PLL digital

Veekd Vcc for the PLL digital circuits. Input
VssPLL digita

Vsshd Vssfor the PLL digita circuits. Input
DC voltages are OK

DCOk The external agent asserts these two signals when Vcc, Input

VceQ[SC,Syq], Vref[SC,Sys], Vec[Pa,Pd], and SysClk are stable.
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3.2 Secondary Cache Interface Signals

Table 3-2 presents the R10000 processor secondary cache interface signals.

Table3-2  Secondary Cache Interface Sgnals

Signal Name | Description Type
SSRAM* Clock Signals
SCCIk(5:0) Secondary cache clock Output
SCClk* (5:0) Duplicated complementary secondary cache clock outputs. P
SSRAM Address Signals
) Secondary cache address bus
i’éﬁgg:&gg; SCBAddr is complementary SCAAddr 19-bit bus, which specifiesthe set address of the | Output
’ secondary cache data and tag SSRAM that is to be accessed.

Secondary cache tag L SB address
SCTagLSBAddr | Signal that specifiesthe least significant bit of the address for the secondary cachetag | Output

SSRAM.

SSRAM Data Signals

SCADWay Secondary cache data way
SCBDWay Duplicated signal that indicates the way of the secondary cache data SSRAM that isto | Output

be accessed.

i Secondary cache data bus N

SChata(127.0) 128-hit bus to read/write cache data from/to secondary cache data SSRAM. Bidirectional

Secondary cache data check bus
SCDataChk(9:0) | A 10-bit bus used to read/write ECC and even parity from/to the secondary cache data | Bidirectional

SSRAM.
SCADOE* Secondary cache data output enable Output
SCBDOE* Duplicated signal that enables the outputs of the secondary cache data SSRAM. P
SCADWr* Secondary cache data write enable Output
SCBDWr* Duplicated signal that enables writing the secondary cache data SSRAM. P
SCADCS* Secondary cache data chip select Output
SCBDCS* Duplicated signal that enables the secondary cache data SSRAM. P

t All cache static RAM (SRAM) are synchronous SRAM (SSRAM).
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Table 3-2 (cont.) Secondary Cache Interface Sgnals

Signal Name _| Description | Type
SSRAM Tag Signals
SCTWey gegr?;cﬁ% g;? 23 Etfmge \vaz{/ of the secondary cache tag SSRAM to be accessed. Output
SCTag(25:0) iegg?g?guzagnh?eﬁvsﬁe cache tags from/to the secondary cache tag SSRAM. Bidirectional
SCTagChk(6:0) ieg?;?irzscl?i]de tts?e(;ré?\(/:\ll(ri?gzcc from/to the secondary cache tag SSRAM. Bidirectiond
SCTOE! ,ie;c;r;ila%gtacmhzglai?ﬁép:;tzﬁgl; the secondary cache tag SSRAM. Output
SeTwr iegi(;Zila%gtacezzkflaegsvv\(/rriiﬁt?negn?ﬁtlaesecondary cache tag SSRAM. Output
SCTes ie;c;r;ilarv)(lriﬁhzfnzglgitﬁlgd sgz:;ndary cache tag SSRAM. Output

56
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3.3 System Interface Signals

Table 3-3 presents the R10000 processor System interface signals.

Table3-3  SystemInterface Sgnals

Signal Name | Description Type
System Clock Signals
SysClk System clock Inout
SysClk* Complementary system clock input. P
SysClkRet System clock return
SysClkRet* Complementary system clock return output used for termination of the system | Output
clock.
System Arbitration Signals
System request
SysReg* The processor asserts this signal when it wantsto perform a processor request | Output
and it is not already master of the System interface.
System grant
SysGnt* The external agent assertsthissignal to grant mastership of the System interface | Input
to the processor.
System release
. The master of the System interface asserts this signal for one SysClk cycleto e
SysRel indicatethat it will relinquish mastership of the Systeminterfaceinthefollowing Bidirectional
SysClk cycle.
System Flow Control Signals
System read ready
SysRdRdy* The external agent assertsthissignal to indicate that it can accept processor read | Input
and upgrade requests.
System write ready
SysWrRdy* Theexternal agent assertsthissignal toindicatethat it can accept processor write | Input
and eliminate requests.
System Address/Data Bus Signals
System command
SysCmd(11:0) A 12-hit bus for transferring commands between processor and the external Bidirectional
agent.
System command bus parity —
SysCmdPar Odd parity for the system command bus. Bidirectional
System address/data bus
SysAD(63:0) A 64-bit bus for transferring addresses and data between R10000 and the Bidirectiona

external agent.
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Table 3-3 (cont.) System Interface Sgnals

Signal Name

Description

Type

System State Bus Signals

SysADChk(7:0)

System address/data check bus
An 8-hit ECC bus for the system address/data bus.

Bidirectional

Sysval*

System valid
The master of the System interface asserts this signal when it isdriving valid
information on the system command and system address/data buses.

Bidirectional

SysState(2:0)

System state bus
A 3-bit bus used for issuing processor coherency state responses and also
additional statusindications.

Output

SysStatePar

System state bus parity
Odd parity for the system state bus.

Output

SysStateVal*

System state bus valid
The processor asserts this signal for one SysClk cycle when issuing a processor
coherency state response on the system state bus.

Output

System Response Bus Signals

SysResp(4:0)

System response bus

A 5-bit bus used by the external agent for issuing external completion responses.

Input

SysRespPar

System response bus parity
Odd parity for the system response bus.

Input

SysRespVal*

System response bus valid
The external agent asserts this signal for one SysClk cycle when issuing an
external completion response on the system response bus.

Input

System Miscellaneous Signals

SysReset*

System reset
The external agent assertsthis signal to reset the processor.

Input

SysNMI*

System non-maskabl e interrupt
The external agent asserts this signal to indicate a non-maskable interrupt.

Input

SysCorErr*

System correctable error
The processor asserts this signal for one SysClk cycle when a correctable error
is detected and corrected.

Output

SysuncErr*

System uncorrectable error
The processor assertsthissignal for one SysClk cyclewhen an uncorrectabletag
error is detected.

Output

SysGbl Perf*

System globally performed
The external agent assertsthis signal to indicate that all processor requests have
been globally performed with respect to all external agents.

Input

SysCyc*

System cycle
The external agent may usethissignal to define avirtual System interface clock
in a hardware emulation environment.

Input

58
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3.4 Test Interface Signals

Table 3-4 presents the R10000 processor test interface signals.

Table 3-4 Test Interface Sgnals

Signal Name Description Type
JTAG Signals

JTAG seria datainput

JTDI Serial datainpu. Input
JTAG serid data output

JTbO Serial data output. Output
JTAG clock

JTeK Clock input. Input
JTAG mode select

JTMS Mode select input. Input
JTAG reset input (active low)

JIRST Asynchronous reset input (R12000A only) Input

Miscellaneous Test Signals

TCA Testability control A (for manufacturing test only) Inout
This signal must betied to Vss, through a 100 ohm resistor. b

TCB Testability control B (for manufacturing test only) Inout
This signal must betied to Vss, through a 100 ohm resistor. b

. PLL disable (for manufacturing test only)

PLLDIs This signal must be tied to Vss through a 100 ohm resistor. Input

PLLRC PLL Control Node (for manufacturing test only)
There must be no connection made to this signal.

PLL Spare(1:4) These four pins must be tied to V'ss.

Spare(l,B)Jr These two pins must be tied to V'ss, through a 100 ohm resistor.
3-state Control

TriState The system asserts this signal to 3-state all outputs and input/output | Input
pads except for SCClk, SCCIk*, and JTDO.

SdDVCO Select differential VCO (for manufacturing test only) Input

Thissignal must betied to Vcc.

T The Spare(1, 3) are used in R12000 for diagnostic purpose and thus for R12000 should not be connected to anything.
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Unused I nputs

60

Severa input pins are unused during normal system operation, and should be tied to Vcc
through resistors:

« JTDI
« JTCK
« JTMS

«  JTRST (for R12000A only)

Several input pins are unused during normal system operation, and should be tied to Vss
through 100 ohm resistors:

e TCA,TCB
e PLLDis
e Sparel, Spare3 (for R10000)

Several input pins are unused during normal system operation, and should be tied to Vss:
e PLLSparel, PLLSpare2, PLL Spare3, PLL Spared
» SaDVCO

The following input pins are unused during normal system operation, and should be left
open:

e Sparel, Spare3 (for R12000)

Thefollowing input pinsmay be unused in certain system configurations, and each of them
should be tied to VccQSys, preferably, through aresistor of 100 ohms or grester value:

. SysNM [ *

Thefollowing input pinsmay be unused in certain system configurations, and each of them
should be tied to Vss, preferably, through a resistor of 100 ohms or greater value:

. SysRdRdy*
. SysWrRdy*
. SysGblPer f*
. SysCyc*

Thefollowing input pinsmay be unused in certain system configurations, and each of them
should be tied (preferably) to Vss, or VccQSys, through aresistor of 100 ohms or greater
value:

. SysADChk(7:0)
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4.

Cache Organization and Coherency

The processor implements atwo-level cache structure consisting of separate primary
instruction and data caches and a joint secondary cache.

Each cache is two-way set associative and uses awrite back protocol; that is, two cache
blocks are assigned to each set (as shown in Figure 4-1), and a cache store writes datainto
the cache instead of writing it directly to memory. Sometime later thisdatais
independently written to memory.

A write-invalidate cache coherency protocol (described later in this chapter) is supported
through a set of cache states and external coherency requests.
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4.1 Primary Instruction Cache

The processor has an on-chip 32-Kbyte primary instruction cache (also referred to simply
as the instruction cache), which is a subset of the secondary cache. Organization of the
instruction cache is shown in Figure 4-1.

Theinstruction cache has afixed block size of 16 wordsand istwo-way set associative with
aleast-recently-used (LRU) replacement algorithm."

Theinstruction cache isindexed with avirtual address and tagged with aphysical address.

Way 0 16 Kbytes Way 1 16 Kbytes
Word Data 0 Word Word Data 1 Word
Tag 0 0 15 Tag 1 0 15
Set{ [T T T TTTTTTITITT] [T T T T T TITTITITITITI
block
Virtual
Index

Figure4-1 Organization of Primary Instruction Cache

Each instruction cache block isin one of the following two states:
e Invalid
e \alid

T The preciseimplementation of the LRU algorithm is affected by the specul ative execution of
instructions.
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Aninstruction cache block can be changed from one state to the other asaresult of any one
of the following events:

e aprimary instruction cache read miss
e subset property enforcement
» any of various CACHE instructions

» externa intervention exclusive and invalidate requests

These events areillustrated in Figure 4-2, which shows the primary instruction cache state
diagram.

Subset enforcement

CACHE Index Invalidate (I)

CACHE Index Store Tag (1)

CACHE Hit Invalidate (I, S) i

CACHE Index WriteBack Invalidate (S) Read miss

CACHE Index Store Tag (I)

Q‘ Read hit

Intervention exclusive hit
| Invalidate hit

Legend:

Internally initiated action:. ——
Externally initiated action: — — — —
() Instruction cache
(S) Secondary cache

Figure4-2 Primary Instruction Cache Sate Diagram
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4.2 Primary Data Cache

The processor has an on-chip 32-Kbyte primary data cache (also referred to simply asthe
data cache), which is a subset of the secondary cache. The data cache uses afixed block
sizeof 8wordsand istwo-way set associative (that is, two cache blocks are assigned to each
set, as shown in Figure 4-3) with an LRU replacement aIgorithm.Jr

Way 0 16 Kbytes Way 1 16 Kbytes

Word Data 0 Word Word Data 1 Word
Tag 0 0 7 Tag 1 0 7
[ T T T T T 7 I I I I

Set {

Virtual
Index

Figure4-3 Organization of Primary Data Cache

The data cache uses awrite back protocol, which means a cache store writes data into the
cache instead of writing it directly to memory. Sometime later this data is independently
written to memory, as shown in Figure 4-4.

Time o
> Primary write back= Secondary write back> Main
Processor Cache Cache Memory
T T

Figure4-4 Write Back Protocol

Write back from the primary data cache goes to the secondary cache, and write back from
the secondary cache goes to main memory, through the system interface. The primary data
cache iswritten back to the secondary cache before the secondary cache iswritten back to
the system interface.

T The preciseimplementation of the LRU algorithm is affected by the specul ative execution of
instructions.

64 User'sManual U10278EJ4V0UM



Chapter 4 Cache Organization and Coherency

The data cache isindexed with avirtual address and tagged with a physical address. Each
primary cache block isin one of the following four states:

e Invalid

» CleanExclusive
e DirtyExclusive
o Shared

A primary data cache block is said to be Inconsistent when the datain the primary cache
has been modified from the corresponding datain the secondary cache. The primary data
cacheis maintained as a subset of the secondary cache where the state of a block in the
primary data cache always matches the state of the corresponding block in the secondary
cache.

A data cache block can be changed from one state to another as aresult of any one of the
following events:

e primary data cache read/write miss
* primary data cache write hit

*  subset enforcement

* aCACHE instruction

e external intervention shared request
» intervention exclusive request

* invalidate request

These events areillustrated in Figure 4-5, which shows the primary data cache state
diagram.

DCache set locking relaxed (R12000)

In R10000, when an AQ entry accessesaDCacheline, that lineislocked into the cache until
the entry graduates, so that the entry will not be removed from the cache until the access
completes. If another entry which needs to access exactly the same line arrives in the AQ
before the first completes, the two may share the lock. In thisway, alineislocked in the
cache until all accessto it complete. In order to prevent adeadlock from arising, whenever
acachelineislocked in thisway, only the oldest AQ entry can obtain alock on the other
“way” of the same cache set, thus ensuring that forward progress can be made. This
algorithm can cause problems, because often the oldest entry in the AQ is the one which
already owns the lock on the first way - thus ensuring that no other entries can access the
second way of the cache for that set index. For some algorithms, most notably FFT's, this
can cause severe performance degradation. R12000 allows an entry to obtain the lock on
the second way of aset if it isthe oldest entry which does not already own alock. Thus, any
entries which have already acquired alock, including those locking the first way, will not
prevent another, younger, entry from accessing that second way.
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Subset enforcement

CACHE Index WriteBack Invalidate (D, S)
CACHE Index Store Tag (D)

CACHE Hit Invalidate (D, S)

CACHE Hit WriteBack Invalidate (D, S)

Read miss obtained CleanExclusive
CACHE Index Store Tag (D)

Clean

A Read hit
Exclusive

ya 7
/ . . . 7
, “Intervention exclusive hit %z
+Invalidate hit s
7 7
7/ 7/
‘ 7
s =
Vs =
/ B
7 =
’ =
7/
7
7
7 . .
» Intervention shared hit
7
7’ A 4

Intervention shared hit

Read hit

Dirty
Exclusive

Read hit

Shared Write hit

Intervention shared hit Write hit and Upgrade ACK
Subset enforcement

Write miss

Read miss obtained DirtyExclusive
CACHE Index Store Tag (D)

Read miss obtained Shared
CACHE Index Store Tag (D)

Legend:

Internally initiated action: ——
Externally initiated action: - — — — — — -
(S)  Secondary cache

(D) Data cache

Figure4-5 Primary Data Cache Sate Diagram
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4.3 Secondary Cache

The R10000 processor must have an external secondary cache, ranging in size from 512
Kbytesto 16 Mbytes, in powers of 2, as set by the SCSize mode bit. The SCBIkSize mode
bit selects ablock size of either 16 or 32 words.

The secondary cache is two-way set associative (that is, two cache blocks are assigned to
each set, as shown in Figure 4-6) with an LRU replacement algorithm."

The secondary cache usesawrite back protocol, which means a cache store writes datainto
the cache instead of writing it directly to memory. Sometime later thisdatais
independently written to memory.

The secondary cache isindexed with aphysical address and tagged with a physical address.

Way 0 256 Kbytes to 8 Mbytes Way 1 256 Kbytes to 8 Mbytes
Word Data 0 Word Word Data 1 Word
Tag 0 0 15/31 Tag 1 0 15/31

Figure4-6 Organization of Secondary Cache

Each secondary cache block isin one of the following four states:
e Invalid
» CleanExclusive
» DirtyExclusive
e  Shared

T The preciseimplementation of the LRU algorithm is affected by the specul ative execution of
instructions.
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A secondary cache block can be changed from one state to another as aresult of any of the
following events:

e primary cache read/write miss
e primary cache write hit to a Shared or CleanExclusive block
e secondary cache read miss
» secondary cache write hit to a Shared or CleanExclusive block
» aCACHE instruction
» external intervention shared request
e intervention exclusive request
e invalidate request
These events areillustrated in Figure 4-7, which shows the secondary cache state diagram.
S oo et

CACHE Hit Invalidate (S)
CACHE Hit WriteBack Invalidate (S)

Read miss obtained CleanExclusive
CACHE Index Store Tag (S)

Clean
Exclusive

Read hit

4 7/
s . . . s
+ Intervention exclusive hit s,
7 Invalidate hit 4
4 Ve
‘ s
7
s =
Vs <
4 2
7/ =
’ =
7/
7
7
7 . .
~Intervention shared hit
7
7’ A 4

Readhit\  /  \g - 2'&EROOSaled it . _

Read hit
Write hit

Dirty

Shared Exclusive

Intervention shared hit Write hit and Upgrade ACK

Write miss

Read miss obtained DirtyExclusive

Read miss obtained Shared CACHE Index Store Tag (S)

CACHE Index Store Tag (S)

Legend:

Internally initiated action:
Externally initiated action: - — — — — — -
(S) Secondary cache

Figure4-7 Secondary Cache Sate Diagram
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<R12000>

Pad-ring clock slowed

The clock used to drive datato/from SC around the pad-ring has been slowed to a2:3 clock
divisor, thus sometimes adding an additional cycle of latency to secondary-cache accesses.

SC refill blocking reduced

In R10000, during the time that an SCache line is being refilled from system interface via
the “incoming buffer (IB)”, no other accesses to the SCache are allowed. If the external
interface seesan ACK to alinethat isbeing refilled before the last words of the SCacheline
are received by R10000, this means that several cycles can elapse during which SCache
access is blocked. By breaking the SCache refill transaction into 64-byte blocks, and
allowing other requests to proceed during breaks between the blocks, this effect could be
reduced. R12000 pullsin SCache lines with two “ pause points.” This first occurs when
R12000 receivesthe ACK for arequest. If thefirst two quad-words are aready valid in the
Incoming Buffer at that time, then R12000 will proceed to refill the SCache with those two,
and forward the results to the DCache or | Cache at the same time as normal. The next two
quad-words will be refilled as they return, thus continuing to block any other accessto the
SCachejust astoday. If however, whentheinitial ACK isreceived, thefirst two arenot valid
(i.e., either 0 or 1 quad-words are valid at that time) then R12000 will “pause” the SCache
refill and wait for both of them to be brought in to the IB. Once the first half isfilled into
the SCache, R12000 will again check the IB to seeif an additional 3 quad-words arevalid
(thus 7 out of the 8 quad-words in the SCache line should have arrived into the IB).

Until that isthe case, R12000 will again “ pause” the SCacherefill and allow other accesses
to reach the SCache. These two pauses allow for other requeststo slip in during an SCache
refill. Using only two pauses both simplifies the logic and reduces bus turnarounds.

DCachewritebacks never piggyback

In R10000 when aDCache lineiswritten back to SCache, thefollowing linein the DCache
might be written back in a*“piggybacked” manner. In order for this to occur the following
line must have the same tag as the initially-written line, and must be in the “ dirty
inconsistent” state. Thisfeature is being dropped form R12000.

DCachewritebacks never bypass

In R10000 when a DCache line is written back to SCache, if the SCache interface is not
otherwise occupied when the writeback begins, the writeback is bypassed directly to the
SCache interface, avoiding the cycles required to write the data into the writeback buffer.
Thisfeature is being dropped form R12000.
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4.4 CacheAlgorithms

The behavior of the processor when executing load and store instructionsis determined by
the cache algorithm specified for the accessed address. The processor supportsfivedifferent
cache algorithms:

* uncached
»  cacheable noncoherent
» cacheable coherent exclusive
»  cacheable coherent exclusive on write
* uncached accelerated
Cache agorithms are specified in three separate places, depending upon the access:

» the cache algorithm for the mapped address space is specified on a per-page
basis by the 3-bit cache algorithm field in the TLB

» the cache algorithm for the ksegO address space is specified by the 3-bit KO
field of the CPO Config register

» the cache algorithm for the xkphys address space is specified by VA[61:59]

Table 4-1 presents the encoding of the 3-bit cache algorithm field used in the TLB;
EntryLo0 and EntryLo1 registers; CPO Config register KO field for the ksegO address space;
and VA[61:59] for the xkphys address space.

Table4-1 Cache Algorithm Field Encodings

Value CacheAlgorithm
0 Reserved

Reserved

Uncached

Cacheable noncoherent

Cacheable coherent exclusive

Cacheable coherent exclusive on write

Reserved
Uncached accelerated

N[O~ WIN|
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Descriptions of the Cache Algorithms
This section describes the cache algorithms listed in Table 4-1.

Uncached
L oads and stores under the Uncached cache algorithm bypass the primary and secondary
caches. They areissued directly to the System interface using processor double/single/
partial-word read or write requests.

Cacheable Noncoherent

Under the Cacheable noncoherent cache algorithm, load and store secondary cache misses
result in processor noncoherent block read requests. External agents containing caches
need not perform a coherency check for such processor requests.

Cacheable Coherent Exclusive

Under the Cacheable coherent exclusive cache algorithm, load and store secondary cache
misses result in processor coherent block read exclusive requests. Such processor requests
indicate to external agents containing cachesthat acoherency check must be performed and
that the cache block must be returned in an Exclusive state.

Cacheable Coherent Exclusive on Write

The Cacheable coherent exclusive on write cache algorithm is similar to the Cacheable
coherent exclusive cache algorithm except that |oad secondary cache misses result in
processor coherent block read shared requests. Such processor requestsindicateto external
agents containing caches that a coherency check must be performed and that the cache
block may be returned in either a Shared or Exclusive state.

Store hitsto a Shared block result in aprocessor upgrade request. Thisindicatesto external
agents containing caches that the block must be invalidated.
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Uncached Accelerated

The R10000 processor implements a new cache algorithm, Uncached accelerated. This
allowsthe kernel to mark the TLB entriesfor certain regions of the physical address space,
or certain blocks of data, as uncached while signalling to the hardware that data movement
optimizations are permissible. This permits the hardware implementation to gather a
number of uncached writes together, either a series of writes to the same address or
sequential writesto all addressesin the block, into an uncached accel erated buffer and then
issue them to the system interface as processor block write requests. The uncached
accelerated algorithm differs from the uncached algorithm in that block write gathering is
not performed.

There is no difference between an uncached accelerated |oad and an uncached load. Only
word or doubleword stores can take advantage of this mode.

Stores under the Uncached accel erated cache al gorithm bypass the primary and secondary
caches. Storesto identical or sequential addresses are gathered in the uncached buffer,
described in Chapter 6, the section titled “ Uncached Buffer.”

Completely gathered uncached accelerated blocks are issued to the System interface as
processor block write requests. Incompletely gathered uncached accelerated blocks are
issued to the System interface using processor double/single-word write requests; thisis
also described in Chapter 6, the section titled “ Uncached Buffer.”
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4.5 Relationship Between Cached and Uncached Operations

Uncached and uncached accelerated |oad and store instructions are executed in order, and
non-speculatively. Such accesses are buffered in the uncached buffer by the processor until

they can be issued to the System interface.

All uncached and uncached accel erated accesses retain program order within the uncached

buffer. The processor continuesissuing cached accesses while uncached accesses are

gueued in the uncached buffer.

NOTE: Cached accesses do not probe the uncached buffer for conflicts.

Buffered uncached stores prevent a SY NC instruction from graduating. However buffered

uncached accelerated stores do not prevent a SY NC instruction from graduating. The

processor continuesissuing cached accesses specul atively and out of order beyond aSYNC

instruction that is waiting to graduate.

An uncached load may be used to guarantee that the uncached buffer is flushed of all

uncached and uncached accelerated accesses.

A SYNC instruction and the SysGblPerf* signal may be used to guarantee that all cache
accesses and uncached stores have been globally performed as described in Chapter 6, the

section titled “ SysGblPerf* Signal”

An uncached load followed by a SY NC instruction may be used to guarantee that all cache

accesses, uncached accesses, and uncached accel erated accesses have been globally

performed.
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4.6 CacheAlgorithmsand Processor Requests

The cache algorithm determines the type of processor request generated for secondary
cache load misses, secondary cache store misses, and store hits.
Table 4-2 presents the relationship between the cache algorithm and processor requests.

Table4-2 Cache Algorithms and Processor Requests

CacheAlgorithm

Load Miss

Store Miss

Store Hit

Uncached

Double/single/partial-word read

Double/single/partial-word
write

NA

exclusive on write

Coherent block read shared

Coherent block read exclusive

Cacheable noncoherent Noncoherent block read Noncoherent block read Upgrade if Shared*
gxa(jt?\t,)ée coherent Coherent block read exclusive | Coherent block read exclusive | Upgrade if Shared*
Cacheable coherent

Upgrade if Shared

Uncached accelerated

Double/single/partial-word read

Gather identical or sequential
double/single-word storesinthe
uncached buffer. Block write
for completely gathered blocks.
Double/single-word write for
incompletely gathered blocks.
Partial-word write for partial-
word stores.

NA

$ Should not occur under normal circumstances. Most systems return the Exclusive state for a cacheable noncoherent line; therefore, the Shared state is not

normal.
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4.7 Cache Block Ownership

The processor requires cache blocks to have asingle owner at all times. The owner is
responsible for providing the current contents of the cache block to any requestor.

The processor uses the following ownership rules:

e The processor assumes ownership of a cache block if the state of the cache
block becomes DirtyExclusive. For a processor block read request, the
processor assumes ownership of the block after receiving the last doubleword
of a DirtyExclusive external block data response and an external ACK
completion response. For a processor upgrade request, the processor assumes
ownership of the block after receiving an external ACK completion response.

* The processor gives up ownership of a cache block if the state of the cache
block changes to Invalid, CleanExclusive, or Shared.

e CleanExclusive and Shared cache blocks are always considered to be owned
by memory.
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Secondary Cache Interface

The processor supports a mandatory secondary cache by providing an internal secondary
cache controller with a dedicated secondary cache port.

The cache's tag and data arrays each consist of an external bank of industry-standard
synchronous SRAM (SSRAM). This SSRAM must have registered inputs and outpults,
asynchronous output enables, and use the late write protocol (datais expected one cycle
after the address).
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Chapter 5 Secondary Cache Interface

5.1 Tag and DataArrays

The secondary cache consists of a 138-bit wide data array (128 data bits + 9 ECC bits+ 1
parity bit) and a 33-bit wide tag array (26 tag bits + 7 ECC hits), as shown in Figure 5-1.
ECC is supported for both the data and tag arrays to improve data integrity.

Data
Array

Tag
Array

10 Check Bits 128 Data Bits
137 136 127 0
\ii ECC : .
7 Check bits 26 Tag Bits
—_—
32 25 0
ECC ;

Figure5-1 Secondary Cache Data and Tag Array

The secondary cache isimplemented as a two-way set associative, combined instruction/
data cache, which is physically addressed and physically tagged, asdescribed in Chapter 4,
the section titled “ Cache Organization and Coherency.”

The SCSize mode bits specify the secondary cache size; minimum secondary cachesizeis
512 Kbytes and the maximum secondary cache sizeis 16 Mbytes, in power of 2 (512
Kbytes, 1 Mbyte, 2 Mbytes, etc.).

The SCBIkSize mode bit specifies the secondary cache block size. When negated, the
block sizeis 16 words, and when asserted, the block size is 32 words.
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5.2 Secondary Cache Interface Frequencies

78

The secondary cache interface operates at the frequency of SCCIk, which is derived from
PClk. The SCCIkDiv modebitsselect aPClk to SCCIk divisor of 1, 1.5, 2, 2.5, or 3, using
the formula described in Chapter 7, the section titled “ Secondary Cache Clock.”

Synchronization between the PClk and SCCIk is performed internally and isinvisible to
the system. The processor supplies six complementary copies of the secondary cache clock
on SCCIk(5:0) and SCCIk(5:0)*.

Theoutputsandinputsat thisinterface aretriggered by aninternal SCCIk. Therelationship
between the internal SCClk and the external SCCIk[5:0]/SCCIK[5:0]* can be
programmed during boot time by setting the SCCIK T ap mode bits (see the section titled
“Mode Bits’ in Chapter 8 for detail on mode hits).
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5.3 Secondary Cache Indexing

Indexing the Data Array

The secondary cache data array width is one quadword, and therefore PA(3:0), which
specify abyte within a quadword, are unused by the Secondary Cache interface.

Since the maximum secondary cache size is 16 Mbytes (8 Mbytes per way), each way
requires a maximum of 23 bitsto index a byte within a selected way, or 19 bitsto index a
guadword within away. Consequently, the processor supplies PA(22:4) on
SC(A,B)Addr(18:0) to index aquadword within away. The processor selects a secondary
cache data way with the SC(A,B)DWay signal.

Table 5-1 presents the secondary cache data array index for each secondary cache size; for
instance, a4 Mbyte cache uses the 17 address bits, PA(20:4) on SC(A,B)Addr (16:0),
concatenated with the way bit, SC(A,B)DWay, to index a quadword within a2 Mbyte way.

Table5-1 Secondary Cache Data Array Index

z .
Sl\%Bt?téjsee g:: ?:adgrzi Secondary Cache Data Array I ndex Phygﬁzlégec:jrees
0 512 Kbyte SC(A,B)DWay || SC(A,B)Addr(13:0) PA(17:4)
1 1 Mbyte SC(A,B)DWay || SC(A,B)Addr(14:0) PA(18:4)
2 2 Mbyte SC(A,B)DWay || SC(A,B)Addr(15:0) PA(19:4)
3 4 Mbyte SC(A,B)DWay || SC(A,B)Addr(16:0) PA(20:4)
4 8 Mbyte SC(A,B)DWay || SC(A,B)Addr(17:0) PA(21:4)
5 16 Mbyte SC(A,B)DWay || SC(A,B)Addr(18:0) PA(22:4)
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Indexing the Tag Array
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The processor supplies the secondary cache tag array’s least significant index bit on
SCTagL SBAddr to support two block sizeswithout system hardware changes. Thissignal
functions normally as aleast significant index bit when the secondary cache block size is
16 words. However, when the secondary cache block sizeis 32 words, thissignal isaways
negated, since only half as many tags are required. The processor supplies the secondary
cache tag way on SCTWay.

Table 5-2 presents the secondary cache tag array index for each secondary cache size; it
shows each index is composed of a physical address loaded onto SC(A,B)Addr (),
concatenated with SCTWay and SCTagL SBAddr.

Table5-2 Secondary Cache Tag Array Index

SCSize Secondar

Mode Ty Secondary Cache TagArray Index
. Cache Size

Bits

0 512 Kbyte SCTWay || SC(A,B)Addr(13:3) || SCTagL SBAddr
1 1 Mbyte SCTWay || SC(A,B)Addr(14:3) || SCTagL SBAddr
2 2 Mbyte SCTWay || SC(A,B)Addr(15:3) || SCTagL SBAddr
3 4 Mbyte SCTWay || SC(A,B)Addr(16:3) || SCTagL SBAddr
4 8 Mbyte SCTWay || SC(A,B)Addr(17:3) || SCTagL SBAddr
5 16 Mbyte SCTWay || SC(A,B)Addr(18:3) || SCTagL SBAddr

For a system design that only supports a secondary cache block size of 32 words, the
secondary cache tag array need not use SCTagL SBAddr as an index bit.
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5.4 Secondary CacheWay Prediction Table

The primary and secondary caches are two-way set associative. However, the
implementation of the secondary cache is different than the primary caches.

The primary caches read simultaneously from two separate tag arrays, corresponding to
each way in the cache, and then select the data based on the result of two parallel tag
compares.

The secondary cache does not use this implementation because it would either require too
many pinsto read in two full copies of the data and tags, or add latency to externally
multiplex two banks of memory. Instead, away prediction tableisused to determinewhich
way to read from first.

Theway prediction tableisinternal to the processor and has 8K one-bit entries, each entry
corresponding to apair of secondary cache blocks. The bit entry indicates which way of the
addressed set has been most-recently used (MRU). When the secondary cache is accessed,
this prediction bit is used as an address bit; thus the two ways in the secondary cache are
shared in the same SSRAM bank.

The secondary cache way prediction table is indexed with a subset of 11 to 13 bits of the
physical address, based on both the secondary cache block size, and the secondary cache
size, asshown in Table 5-3. “0|” indicates a zero bit concatenated to the address to pad
theindex out to afull 13-bits.

Table5-3  Secondary Cache Way Prediction Table Index

SCSize Secondary Cache SCBIkSize Secondary Cache Secondary Cache
M ode Bits Size M ode Bit Block Size Way Prediction Table Index

0 16-word 0| PA(17:6)

0 512 Kbyte
1 32-word 0|0 PA(L7:7)
0 16-word PA(18:6)

1 1 Mbyte
1 32-word 0] PA(18:7)
0 16-word PA(18:6)

2to5 2M to 16 Mbyte

1 32-word PA(19:7)
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Three states are possible in the way prediction table:
e thedesired data is in the predicted way
e thedesired data is in the non-predicted way
» thedesired datais not in the secondary cache

The tags for both ways are read “underneath” the data access cyclesin order to discern as
rapidly as possible which of these states are valid. Thisreading is possible because it takes
two accesses to read a primary data block (8 words) and 4 cyclesto read a primary
instruction block (16 words); thus the bandwidth needed to read the tag array twice exists
inal cases. Only an extra address pin to the tag array is needed to make this operation
parallel and thisisimplemented by the SCTWay pin.

The three possible states are handled in the following manner:

» |f, after reading the tags for both ways, it is discovered that the data exists in
the predicted way, the processor continues normally.

» |If the data exists in the non-predicted way, the processor accesses this non-
predicted way in the secondary cache and updates the way prediction table to
point to this way.

» |If the access misses in both ways of the secondary cache, the data is fetched
from the system interface. If the state of the predicted way is found to be
invalid, the fetched datais placed in it and the MRU is unchanged. However, if
the state of the predicted way is found to be valid then the fetched datais placed
into the non-predicted way, and the way prediction table is updated to point to
thisway since it is now the most-recently-used.

The way prediction table can cover up to a2 Mbyte secondary cache when the secondary
cache block sizeis 32 words. If the secondary cache exceeds this size, the accuracy of the
way prediction table diminishes dlightly. However, the extremely large performance gain
made by making the secondary cache larger far outstrips any performance loss in the way
prediction table.

Increased the Way Prediction Table (MRU table) to 16K single-bit entries

The size of the table has been increased to 16K entries, so that 4MB cacheswith 128B lines
or 2MB caches with 64B lines can be fully mapped.

Direct Cache Test M ode

Due to the increase size of the Way Prediction Table, Direct Cache Test Mode have been
modified for testing the Way Prediction Table.
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5.5 Secondary Cache Tag

SCTag(25:4), Physical Tag

The secondary cache tag, transferred on the SCTag(25:0) bus, is divided into three fields,
as shown in Figure 5-2 below.

25 4 3210
Physical Tag Pldx | State I
22 2 2

Figure5-2 Secondary Cache Tag Fields

The minimum secondary cache sizeis 512 Kbytes (256 Kbytes per way), so aminimum of
18 bitsarerequired to index adata byte within aselected way. Sincethe processor supports
40 physical bits, a maximum of 22 bits are required for the physical tag:

40 physical address bits - 18 minimumrequired = 22

Consequently, the processor supplies the 22 physical address bits, PA(39:18), on
SCTag(25:4) for the physical tag.

When the secondary cacheislarger than the minimum size, the secondary cache tag array
must still maintain the full physical tag supplied by the processor, even though some bits
are redundant.
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SCTag(3:2), Pldx

Bits SCTag(3:2) of the secondary cache tag contain the primary cache index, Pldx.

The Pldx field contains VA (13:12), which are the two lowest virtual address bits above the
minimum 4 Kbyte page size. Thisfield iswritten into the secondary cache tag during a
secondary cacherefill. For each processor-initiated secondary cache access, the virtual
address bits are compared with the Pldx field of the secondary cache tag. If a mismatch
occurs, avirtua coherency condition exists and the value of the Pldx field is used by
internal control logic to purge primary cache locations, so that all primary cache blocks
holding valid data have indices known to the secondary cache. Thismechanism, unlikethat
of the R4400 processor, isimplemented in hardware. It helps preserve the integrity of
cached accessesto aphysical addressusing different virtual addresses, an occurrence called
virtual aliasing. For each external coherency request, the Pldx field of the secondary cache
tag provides a mechanism to locate subset lines in the primary caches.

SCTag(1:0), Cache Block State

The lower two bits of the secondary cache tag, SCTag(1:0), contain the cache block state,
which can be Invalid, Shared, CleanExclusive, or DirtyExclusive as shown in Table 5-4.

Table5-4 Secondary Cache Tag State Field Encoding

SCTag(1:0) State
0 Invalid
1 Shared
2 CleanExclusive
3 DirtyExclusive

Since the secondary cache tags are updated immediately for stores to the primary data
cache, and al caches use awrite back protocol, the data in the secondary cache may not
always be consistent with data in the primary cache even though the tags always reflect the
correct state of a secondary cache block.
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5.6 Read Sequences

There are five basic read sequences:

* a4-word read

e an 8-word read

* al6-word read

e a32-word read

e atagread
The SCCIk referred in the secondary cache read and write timing diagramsis an internal
SCCIk. Therelationship between thisinternal SCCIk and the external SCCIk[5:0]/

SCCIK[5:0]* can be programmed during boot time by setting the SCCIkTap mode bits
(see the section titled “Mode Bits’ in Chapter 8 for detail on mode bits).
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4-Word Read Sequence

A 4-word read sequenceis performed by a CACHE Index L oad Data (S) instruction to read
a doubleword of data and 10 check bits from the secondary cache data array.

Figure 5-3 depicts a secondary cache 4-word read sequence. A quadword is read from the
index specified by PA(23:6), and the way specified by VA(0) of the CACHE instruction.

The doubleword specified by VA(3) isthen stored into the CPO TagHi and TagLo registers,
and the corresponding check bits are stored into the CPO ECC(9:0) register. The data may
be examined by copying the CPO TagHi, TagLo, and ECC registersto the general registers
with the MTCO instruction.

Cycle
SCClk

SCTagLSBAddr |
SC[A,B]DWay :
SCData(127:0)
SCDataChk(9:0)
SC[A,B]DOE*
SC[A,B]DWr*
SC[A,B]DCS*
SCTWay
SCTag(25:0)
SCTagChk(6:0)
SCTOE*
SCTWr*
SCTCS*

Figure5-3 4-Word Read Sequence
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8-Word Read Sequence

Cycle
SCClk

SC[A,B]Addr(18:0) |: . XAdro X Adri)
: : X . )

SCTagLSBAddr
SC[A,B]DWay
SCbData(127:0)
SCDataChk(9:0)
SC[A,B]DOE*
SC[A,B]DWr*
SC[A,B]DCS*
SCTWay
SCTag(25:0)
SCTagChk(6:0)
SCTOE*
SCTWr*
SCTCS*

An 8-word read sequence refills the primary data cache from the secondary cache after a
primary data cache miss.

Figure 5-4 depicts a secondary cache 8-word read sequence. Init, SC(A,B)DWay and

SCTWay aredriven with value X on thefirst address cycle, which is obtained from the way
prediction table.

Onthenext address cycle, SCT Way is complemented in order to read the tag from the non-
predicted way of the addressed set. SC(A,B)DWay isnot changed sinceit isassumed that

the way prediction tableis correct and the read is likely to hit in the predicted way.

The tag for the non-predicted way is returned to the processor in the same cycle asthe

second quadword of data. Readsthat missin the predicted way, but hit in the non-predicted
way, are noted by the internal control logic and reissued to the secondary cache as soon as

possible.

10

11

12

13

14

15

16

17

—
G S G R R S R
— g
e G G s S s S s s
S S G0 (0 S A S S A S

e
e e S e e s s s s s S

Figure5-4 8-Word Read Sequence
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16 or 32-Word Read Sequence

A 16-word read sequence refills the primary instruction cache from the secondary cache
after a primary instruction cache miss. A 16-word read sequence is aso performed when
the secondary cache block size is 16 words, and a DirtyExclusive secondary cache block
must be written back to the System interface.

A 32-word read sequence is performed when the secondary cache block sizeis 32 words,
and a DirtyExclusive secondary cache block must be written back to the System interface.

Figure 5-5 depicts a secondary cache 16 or 32-word read sequence. Thisissimilar to an 8-
word read sequence except that more addresses must be issued, in order to read the
appropriate number of quadwords.

Cycle K
scclk |
SCIA,BJAdr(18:0) ||
SCTagLSBAddr |
SC[A,B]DWay
SCData(127:0)
SCbDataChk(9:0)
SC[A,B]DOE*
SC[A,B]DWr*
SC[A,B]DCS*
SCTWay
SCTag(25:0)
SCTagChk(6:0)
SCTOE*
SCTWr*
SCTCS*

112131 4:!5 16! 7:819 11011121314 15! 16| 17 |

et B T I S PR
x

Figure5-5 16 or 32-Word Read Sequence
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Chapter 5 Secondary Cache Interface

Tag Read Sequence

Cycle
SCClk

A tag read sequenceis performed when the state of asecondary cache block isrequired, but
it is not necessary to access the data array. This sequenceis used for the CACHE Index
Load Tag (S) instruction.

Figure 5-6 depicts a secondary cache tag read sequence.

SCIAB]Addr(18:0) | XAdOX T T T T T T T T T T
SCTagLSBAddr |+ W ¥ + —+ &+ &+ &+
SC[A,B]DWay | : : : : - - - - - - - - - - - - - -
scomaor) |
SCDataChk(9:0) |— &+t ————
S N T T N N N O T
SCIABIDWr* |7 T .
SC[A,B]DCS* | ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! | |
sy I
SCTag(25:0) | —— —
SCTagChk(6:0) |
SCTOE* O S S S SN SN SN SN U S S SN S N SN S S
SCTWr* | : : : : : : : : : : : : : : : :
scTs: S TS S S S SN S S N S S S —

Figure5-6 Tag Read Sequence
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Chapter 5 Secondary Cache Interface

5.7 Write Sequences

90

There are five basic write sequences:

e ad-word write.

* an 8-word write

* al6-word write

e a32-word write

e atag write
The SCCIk referred in the secondary cache read and write timing diagramsis an internal
SCCIk. Therelationship between thisinternal SCCIk and the external SCCIk[5:0]/

SCCIK[5:0]* can be programmed during boot time by setting the SCCIkTap mode bits
(see the section titled “Mode Bits’ in Chapter 8 for detail on mode bits).
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Chapter 5 Secondary Cache Interface

4-Word Write Sequence

A 4-word write sequence is performed by a CACHE Index Store Data (S) instruction to
store a quadword of data and 10 check bits into the secondary cache data array.

Figure 5-7 depicts a secondary cache 4-word write sequence. A quadword iswritten to the
index specified by PA(23:6), and the way specified by VA(0) of the CACHE instruction.

A doubleword specified by VA(3) is obtained from the CPO TagHi and TagLo registers, and
the other half of the doubleword is padded to zeros. Normal ECC and parity generation is
bypassed and the check field of the data array is written with the contents of the CPO
ECC(9:0) register.

Cycle IE152535455565758595105115125135145155165175
scelk QU AV AWl AW AW AW AW AW AW AWAW AW AW W Wa W
SC[A,B]Addr(18:0) | XaAdox_
SCTagLsBAddr |+
sclABDWay || : 'x X b( N S S S S S S S S S S S S
SCData(127:0) |t >—<j DatO'/ : : : 5 5 5 i i : i i i i
scoatachk©:0) | D—C >—<C
SCIABIDOE* |\ /N o
scmepowre I\
SgRSSS 1 S S O O O O O O O B
SCTway [
scrgese |
SCTagChk(6:0) |+ —+ @ @&+
N O O B
sowe
S S S S S N N

Figure5-7 4-Word Write Sequence
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Chapter 5 Secondary Cache Interface

8-Word Write Sequence

An 8-word write sequence writes back a dirty block from the primary data cache to the
secondary cache.

Figure 5-8 depicts a secondary cache 8-word write sequence. SC(A,B)DWay are driven
with the way hit obtained from the primary data cache tag. The secondary cachetagis not
written since it was previously updated when the primary data cache block was modified.

Cycle 11231 4:5:6:7:8: 911011112113 14 15 16 : 17 |

SCClk FEANV AN SN AN SN AN AR A0 NV A UV A N AR N AR N A N A N A N AN AN
SC[A,B]Addr(18:0) |:

X Adro X Adr1 X

scragussader | o
SC[A,B]DWay 1
schata(l27:0) | >—Kpawmypaiy——< T
sepatachk(e:0) | D>—C C p— T e
SC[A,B]DOE* I ! ! : : : : ! ! ! ! ! ! ! ! ! ! !
swsiowre TN Ly
SC[A,B]DCS* HEE R T T T T T R R T T R R S R
SCTWay | S S S S S S S S S S S S S
serageesio) | T e
SCTagChk(6:0) | - - : : : : : : - - - - - -

SCTOE" N R e
scTwr T T S S B R S B T A R
scTest N S S S S S S N S S S S S S S S

Figure5-8 8-Word Write Sequence
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Chapter 5 Secondary Cache Interface

16 or 32-Word Write Sequence

A 16- or 32-word write sequence refills a secondary cache block from the System interface
after asecondary cache miss. A 16-word write sequenceis performed when the secondary
cache block sizeis 16 words, and a 32-word write sequence is performed when the
secondary cache block size is 32 words.

Figure 5-9 depicts a secondary cache 16 or 32-word write sequence.

Cycle |
scclk |
SC[A,B]Addr(18:0) |:
SCTagLSBAddr ||
SC[A,B]DWay
SCbData(127:0)
SCDataChk(9:0)
SC[A,B]DOE*
SC[A,B]DWr*
SCI[A,B]DCS*
SCTWay
SCTag(25:0)
SCTagChk(6:0)
SCTOE*
SCTWr*
SCTCS*

Figure5-9 16/ 32-Word Write Sequence
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Chapter 5 Secondary Cache Interface

Tag Write Sequence

A tag write sequence updatesthe secondary cachetag array without affecting the dataarray.

This sequenceis used for the following:

to reflect primary cache state changes in the secondary cache

for external coherency requests

for the CACHE Index Store Tag (S) instruction

Figure 5-10 depicts the secondary cache tag write protocol.

Y O R R [ A Y N R A [ R R’ D74 N A
©
A
DG N (R ) R O DY D A - G VI VAR D NS
(=)
3 < H u
<
- N> G N (R [ A S EDDRY D A JEUS> G N N (S B NS R,
S
g s ~ g 9
g A N TR S /) o
= < o =
S o= =030 S
L0209 282 5485 ..,
ekBmB,mms,B,B,mmgwmm
= (o] T ©
dCMTMDDMMMTTTTTT
S0 0000000000 o000 o0 o0
O o6 O 6 Oh O h O d o h O O O

Figure5-10 Tag Write Sequence
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6.

System Interface Operations

The R10000 System interface provides a gateway between processor, with its associated
secondary cache, and the remainder of the computer system.

For convenience, any device communicating with the processor through the System
interface is referred to as the external agent.
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Chapter 6 System Interface Operations

6.1 Request and Response Cycles

The System interface supports the following request and response cycles:

» Processor requests are generated by the processor, when it requires a system
resource.

» External responses are supplied by an external agent in response to a
processor request.

» External requests are generated by an external agent when it requires a
resource within the processor.

»  Processor responses are supplied by the processor in response to an external
request.

6.2 System Interface Frequencies

The System interface operates at SysClk frequency, supplied by the external agent. The
internal processor clock, PCIKk, is derived from this same SysCIk.

The SysClkDiv mode hits select a PClk to SysClk divisor using the formula described in
Chapter 7, the section titled “ System Interface Clock and Internal Processor Clock
Domains” The selectable divisorsare 1, 1.5, 2, 2.5, 3, 3.5, and 4 in the R10000, or 2, 2.5,
3,35,4,45,5,5.5, and 6 in the R12000 (7 is also selectable in the R12000A only).

6.3 Register-to-Register Operation
The System interface is designed to operate in the following register-to-register fashion
with the external agent:

« al System interface outputs are sourced directly from registers clocked on the
rising edge of SysClk

« al System interface inputs directly feed registers that are clocked on therising
edge of SysClk

This allows the System interface to run at the highest possible clock frequency.
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Chapter 6 System Interface Operations

6.4 System Interface Signals

The R10000 System interface is composed of:
* 3arbitration signals
» 2 flow-control input signals
* abidirectional 12-bit command bus
* abidirectional 64-bit multiplexed address/data bus
e a3-bit state output bus
e ab-hit response input bus

6.5 Master and Slave States

At any time, the System interface is either in master or slave state.

In master state, the processor drives the bidirectional System interface signalsand is
permitted to issue processor requests to the external agent.

In slave state, the processor tristates the bidirectional System interface signals and accepts
external requests from the external agent.

6.6 Connecting to an External Agent

In auni- or multiprocessor system using dedicated external agents, the System interface
connects to a single external agent.

In amultiprocessor system using the cluster bus (see below), the system can connect up to
four R10000 processors to an external agent. This external agent is referred to as the
cluster coordinator.
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Chapter 6 System Interface Operations

6.7 Cluster Bus

98

Processor Request

(Master)
R10000

System Interface

l

In amultiprocessor system using the cluster bus, the cluster coordinator performsthe
cluster bus arbitration and data flow management. The arbitration scheme assures that
either one of the processors or the cluster coordinator is master at any given time, whilethe
remaining devices are slave.

A processor request issued by the master processor is observed as an external request by all
dlave R10000 processors, as shown in Figure 6-1. Similarly, a processor coherency data
responseissued by amaster processor is observed as an external dataresponse by the slave
processors.

(Slave) (Slave) (Slave)
R10000 R10000 R10000
System Interface System Interface System Interface

External Request

Cluster Bus

v

A

A

Cluster
Coordinator

Figure6-1 Processor Request Master/Save Satus

In amultiprocessor system using the cluster bus, a mode bit specifies whether processor
coherent requests are to target the external agent only, or all processors and the external
agent. This allows systems with efficient snoopy, duplicate tag, or directory-based
coherency protocols to be created.
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Chapter 6 System Interface Operations

6.8 System Interface Connections

Uniprocessor System

Mem, /0 <P

The major System interface connections required for various system configurations are

presented in this section.

Figure 6-2 shows the major System interface connections required for atypical
uniprocessor system.

SysReqg*
External sysent
Ag ent SysRel*

SysRdRdy*
SysWrRdy*

SysCmd(11:0)
SysCmdPar
SysAD(63:0)
SysADChk(7:0)
SysVal*

SysState(2:0)
SysStatePar
SysStateVal*

SysResp(4:0)
SysRespPar
SysRespVal*

Figure 6-2

SysReq* SCTWr*
SysGnt* SCTCS*
SysRel* SCTOE*
R1