μ PD72120 Advanced Graphics Display Controller

User's Manual

The information contained in this documemt is being issued in advance of the production cycie for the device. The parameters for the device may change before final production or NEC Electronics Inc..- at its own discretion, may withdraw the device prior to production.

The information in this document is aubject to change without notice. NEC Electronics inc. assumes no responsibility for any errors or omissions that may appear in this document. Devices sold by NEC Electronics Inc. are covered by the warranty and patent indemnification provisions appearing in NEC Electronics inc. Terms and Conditions of Sale only. NEC Electronics Inc. makes no warranty, express, statutory, implied, or by description. regarding the information set forth heroin or regarding the freedom of the described devices from patent infringement. NEC Electronics inc. makes no warranty of merchantability or fitness for any purpose. NEC Electronics inc. makes no commitment to update or to keep current the information contained in this document. No part of this docurnent may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics inc.

Advanced Graphic Display Controller

Preliminary Product Information

Teble of Contents

1. Overview 1-1
Features 1-1
Pin Configurations 1-2
Pin Configuration (Flat package) 1-3
Pin Configuration (PLCC package) 1-4
Block Diagram 1-5
Pin Functions 1-6
Clock Pins 1-6
System Bus Control Pins 1-6
Display Memory Control Pins 1-8
Video Timing Signal Related Pins 1-9
Display Signal Related Pins 1-9
Power Supply and Ground Pins 1-9
Summary 1-10
2. Function Description 2-1
2.1 Features 2-1
High Speed Graphics Drawing 2-1
Video Timing Signal Generation 2-3
Large Capacity Display Memory Control 2-3
CPU Interface 2-3
2.2 Command/Parameter Exchange Between the CPU and AGDC 2-5
2.3 Reset and Abort Operation 2-9
3. AGDC Operation 3-1
3.1 How to Use the Internal Register 3-1
3.2 AGDC Control Registers 3-3
SIATUS (Status) 3-3
BANR (Bank) 3-5
CTRL (Control) 3-6
3.3 Display Related Registers 3-7
DISPLAY FIAGS (Display Flags) 3-6
DISPLAT PITCH (Display Pitch) 3-14
AC (Address Control) 3-15
DAD (Display Address) 3-16
WC (Word Count) 3-17
GCSRX (Graphics Cursor X Coordinate) 3-18
CRS (Cursor Out Select) 3-19
CE (Cursor Display Enable) 3-20
GCSRYS (Graphics Cursor Y Coordinate Start) 3-21
GCRSYE (Graphics Cursor Y Coordinate End) 3-22
ES, EBP, HH, ED, EFPP 3-23
VS, VBP, L/F, VFP 3-24
3.4 Internal Pegister Table 3-25
4. Drawing Operations 4-1
4.1 Drawing Functions 4-1
4.2 Types of DRAW Commands 4-1
Sumary of Operation Flags 4-4
4.3 Detailed Description of DRAW Commands 4-9
4.3.1 Register Operation Commands 4-9
4.3.2 Graphics Drawing Cormands 4-10
4.3.3 Paint Commands 4-20
4.3.4 COPY Commands 4-25
4.3.5 PUT/GET Commands 4-30
4.4 How to Use the Flag Bits 4-32
4.5 Painting Pattern Reference Examples 4-43
4.6 Inter-plane Data Transfers 4-46
4.7 Drawing Related Registers 4-47
4.8 Parameters Corresponding to DRASH Commands 4-55

Section 1

Overview

The uPD72120 Advanced Graphic Display Controller (AEDC) displays characters and graphics on a raster scan CRIT according to commands and parameters received from a host processor or CPU. It has high speed graphic drawing capabilities, video timing signal generation, large capacity display memory control
(including Video RAMs) and a versatile CPU interface. These are some of the features that allow the AGDC to control graphics drawing and display of bit mapped systens.

Features

* High speed graphics drawing functions
- Graphics drawing

Dot, straight line, rectangle, circle, arc, sector, ellipse, ellipse arc and ellipse sector
Maximum drawing speed: $500 \mathrm{~ns} /$ pixel (8 MHz , pixel mode) $500 \mathrm{~ns} /$ dot (8 MHz , plane mode)
0 Painting (High speed processing in word units)
Non-arbitrary enclosed area painting (Fill): triangle, trapezoid and circle.
Arbitrary enclosed area painting (Paint): boundary dot retrieval

- Data transfers in display merory

Multiplane transfers
Data transformation ($90^{\circ} / 180^{\circ} / 270^{\circ}$ rotation and reversal)
Transfer speed: $500 \mathrm{~ns} /$ word max.

- Image Processing

Slant, arbitrary angle rotation, $16 / \mathrm{N}$ enlargement, $\mathrm{N} / 16$ shrinkage (N any integer from 1 to 16)

- position specification by X-Y coordinates
- Logic operations between planes
* Video timing signal generation

O High speed processing by two system clocks: display (for video sync signal generator) and graphics drawing clocks

- Extemal synchronization
* Large capacity display mernory control
- Display menory bus interface (24-bit address and 16 -bit data bus for addressing up to 16 Mwords, 16 bits/word)
- Video RAM (VRAM) control
- Display memory bus arbitration

```
* Host Processor (CPU) Interface
    O System bus interface - 20-bit address bus, 8 or 16 bit data bus
    O System memory }\longrightarrow\mathrm{ display memory data transfer with extemal DMA
        Controller
            From system memory to display memory (PUT)
            From display memory to system memory (GET)
    O Bigh speed pipeline processing with preprocessor before drawing processor
    0 CPU memory or I/O mapping of internal registers and display memory -
        efficient system interface
* 8 MHz System Clock
* CMOS Technology
* Single +5 V Power Supply
* 80-pin flat package (uPD72120G) or 84-pin PLCC (uPD72120L)
```


Pin Configurations

```
\begin{tabular}{|c|c|c|c|}
\hline DMARQ: & DMA Request & DA23-16: & Display Memory Address Bus \\
\hline DMAAK: & DMA Acknowledge & DAD15-0: & Display Memory Data Bus \\
\hline INT: & Interrupt Request & DASIB: & Display Memory Address Strobe \\
\hline PEADY: & Ready & DRD: & Display Merory Read \\
\hline RESET: & Reset & DWD: & Display Memory Write \\
\hline \(\overline{\text { CSIR: }}\) & Internal Register & HIDAR: & Bold Acknowledge \\
\hline & Chip Select & [HIDRQ: & Hold Request \\
\hline \(\overline{\mathrm{CSDN}}\) : & Display Memory Chip Select & DT/DISP: & Data Transfer/Display Timing \\
\hline \(\overline{\mathrm{ED}}\) : & Read & BLANK: & Blanking Signal \\
\hline \(\overline{W R}\) & Write & HS/EXHS: & Borimontrol Synd \\
\hline ASIB: & Address Strobe & & Extemal Horiz. Symc \\
\hline MA19-16: & Main Address Bus & VS/EXVS: & Vertical Sync/External \\
\hline MAD15-0: & Nain Data Bus & & Verticl Sync \\
\hline NC: & No connection & GCSR: & Graphics Cursor \\
\hline \(\overline{\text { UBE }}\) & Upper Byte Enable & SCLR: & Sync Generator Clock \\
\hline CLK: & Clock & GNAIT: & Graphics Wait \\
\hline DLBE: & Display Mermory Lower Byte Enable & & \\
\hline \(\overline{\text { DUBE }}\) & Display Memory Upper Byte Enable & & \\
\hline
\end{tabular}
```

Rin Configuration (Elat)

Rin Configuration (PICC)

```
SGVHBDTHEDODODODO
CCSSLTLLERAA AAAAA
LS//ALDOROSI 22221
KREENDRA TT 32109
            XXKIQK B
            \(\begin{array}{lll}V & H & S \\ S S & P\end{array}\)
            SS P
```


AGDC BLOCK DIAGRAM

Advanced Graphic Display Controller

Pin Eunctions
Clock Pins

System Bus Control Pins

| \| Terminal | I/O | Active | Function |
| :---: | :---: |
| 1 Name 1 \| level | |

System Bus Control Pins (continued)

Display Memory Control Pins

Video Timing Signal Related Pins

Display Signal Related Pins

Power Supply and Ground Pins

Summary

The AGDC is an LSI device that can be used to control a raster scan CRT connected to a personal computer, word processor, or various kinds of work stations. The ACDC not only generates the video timing signals needed by the CRT, but can draw various kinds of characters and graphics at high speed. The AGDC also has abundant functions required by many advanced system.

The figure below shows the basic configuration of a system employing the AGDC.

Section 2

Punctional Description

2.1 Features

High Speed Graphics Drawing

- Graphics Drawing

The AGDC has graphic drawing Commands to draw dots, straight lines, rectangles, circles and arcs, all of which are indispensable for CAD/CAM, office automation, document processing and printing. In addition, the AGDC supports the drawing of sectors, ellipses, ellipse arcs and ellipse sectors as advanced graphic primitives. These high speed graphics are drawn at maximum rate of $500 \mathrm{~ns} / \mathrm{pixel}$ (8 MHz clock) for a straigh line, 1 us/pixel for a curved line (arc, etc.).

${ }^{-}$Painting

The ACDC can paint or fill in a triangle, rectangle, trapezoid or circle as well as any enclosed area. This powerful feature is useful not only for document processing but advanced three dimensional graphics as well. Since the tiling pattem for painting can be freely set in the display memory, the areas to be painted can be drawn with any of a wide assortment of colors.
In the past, painting was performed by software on the host CPU which is time consuming. For this reason, painting was used in only limited applications. The AGDC can upgrade the performance for painting speed by as much as several hundred times compared to painting done by a host CPU. This enables painting to be applied more extensively through the use of the AGDC.

- Transfer of Data in Display Memory (COPY)

The 'COPY' commands refers to bit-block transfers (also known as bilbit). This conmands transfer a rectangular area of any size and bit position to another similarly sized rectangle. The 'CoPY' cammand performs powerful character drawing and window control functions. In the past, a character could be displayed only with a fixed size and at a set position (word boundary) on the screen. The word processing applications of today require more flexibility in the display of characters. As a result, it is necessary to display characters of different fonts, styles and sizes and to proportionally space characters. The 'COPY' function of the AGDC can satisfy all of these demands and at high speed - $500 \mathrm{~ns} / 16$ bits.
personal computers are making use of multiple windows on display screens. The 'COPY' command allows the user to easily specify the
number, shape and size of multiple windows. Further, the 'COPY' command of the $A G D C$ can perform various logical operations between source and destination planes.

- Image Processing

The AGDC is able to do more than just copy data. It can slant copy, arbitrary angle rotation copy, $16 / \mathrm{n}$ enlargenent copy or $\mathrm{n} / 16$ shrink ∞ py (n any integer from 1 to 16). These copies transfer data from a rectangular source area to a non-rectangular destination.
The slant copy can be used for drawing italic characters. The arbitrary angle rotation copy is useful for document preparation because it can rotate characters, graphics, images, etc. The enlarge and shrink copies are effective for editing and patching documents.
These AGDC Commands relieve the host CPU of what was a software intensive function. The AGDC can quickly accomplish these image processing tasks and for a lower cost.

- position Specification by X-Y Coordinates

The graphics drawing and copy parameters can be given as X-Y coordinates thereby relieving the host CPU of the address calculation requirements.

- Hardware Clipping

Clipping is used to draw either inside or outside a rectangular window defined by the user. For example, a command to draw a straight line from the outside to the inside of a window will only be seen inside (or outside) of the window when clipping is used.
The AGDC implements clipping in hardware so that the user need only specify the coordinates of the rectangular window and the mode to indicate whether to clip inside or outside of the window.

Inside drawing mode
outside drawing mode
(- - Invisible line)

Video Timing Signal Generation

- High Speed Processing by Dual System Clocks

Dual system clocks can be input to the AGDC - the drawing clock and the display clock. In a graphics system, the display rate depends on the resolution of the CRI; the clock frequency of the display controller depends on the display rate. In the past, only a single clock was used for the display controller. It was often necessary to limit the clock to 5 MHz even though the capacity of the display controller was 8 MHz . Therefore, the ACDC was designed to have the display clock independent of the drawing clock so that drawing can be performed at the highest possible speed.
O Extemal Sync Input
In systems that incorporate a separate circuit to generate the video timing signals and use an AGDC only to draw graphics, or in systems that use multiple AcDCs to achieve higher perfomance, it is necessary to synchronize the AGDC with the extemal circuitry or the AGDC with other ACDCs. Therefore, the AGDC has extemal sync input capability to synchronize its operations with other AGDCs or with extemal circuitry.

Large Capacity Display Memory Control

O Display Merory Bus Interface
With its 24-bit addressing and 16 -bit data, 16 Mwords of 16 bits/word display memory can be configured with the AGDC. This means that up to 64 planes of 2048×2048 dots can be connected.

- Video RAM (VRAM) Control

VRAMs are dual-ported DRAMs with intemal line buffer shift registers (i.e., upD41264). The VRAMS provide a separate port for display data so that when drawing, memory access time is greatly reduced. As a result, most of the entire memory cycle can be used as the drawing cycle to improve system throughput. The AGDC supplies the signals needed to control VRAMs.

- Display Memory Bus Arbitration

In a basic system, the display memory is accessed by the AGDC only. However, in a more advanced system, the display memory may be accessed by other processors. In other words, a local bus is established between the display memory and the AGDC or other processors. In this case, it is necessary for the AGDC to periodically provide refresh and display control and thus act as the local bus master. Other processors on the display memory bus (i.e., an image processor) are slaves and must request use of the bus from the AGDC. The ACDC controls the display memory bus and can grant the use of the bus to other processors. The AGDC incorporates display merory bus arbitration logic enabling higher performance systems to be constructed for a lower cost.

Interface

- System Memory Bus Interface
- CPU Mapping of Intemal Registers and Display Memory The AGDC system memory bus interface to the host CPO is independent of the display memory bus. The width of the address which the CPU can input to the $A G D C$ is 20 bits and the data width is 8 or 16 bits. The 20 -bit address is used when the display parameters, drawing parameters and commands are set and the CPU accesses the display memory directly. The intemal AGDC registers and the display memory can be mapped in the CPU memory or I/O space. This allows the CPO to efficiently execute special drawing processing directly in the display memory. The mapping of ACDC registers in the CPU memory space provides for quick access of information to and from the ACDC.
0 System Memory \longrightarrow Display Memory Data Transfer As described above, it is possible to map the display memory in the CPU memory space. It is also possible to execute PUT/GET commands - to transfer the data between the system memory and the display memory at high speed through the use of an extemal DMA controller. PUT is the command to transfer data from the system memory to the display memory. GET is the command to transfer data from the display memory to the system memory.
- High Speed Pipeline Drawing Processing The parameters given by the CPU to the ACDC are greatly reduced by using $X-Y$ coordinates. However, it is necessary for the ACDC to calculate physical memory addresses for the drawing processor. The process to convert the $X-Y$ coordinates from the CPU into physical addresses is done by the drawing preprocessor. The drawing processor executes the actual drawing commands independent of the preprocessor. Therefore the drawing processor and preprocessor can operate concurrently. As shown in the figure below, the throughput of the system is improved by the use of the drawing preprocessor and the drawing processor in a pipeline.

Parameter Input

(CPU Interface)

Drawing Processor

time

2.2 Command/Parameter Exchange Between the crel and ACDC

It is necessary for the CPU to set various parametems and commands to operate the drawing and display control functions of the AGDC. To set these parameters and commands, the CPU writes them directly to the ACDC intemal registers.

The internal registers of the AGDC can be classified into registers the CPU can read and write directly and registers in which reading or writing is prohibited. The registers which can be read and written are assigned unique addresses. They are mapped in the CPU memory or I/O spece and referred to as the 'command/parameter table'. These registers are selected by the lower 8 bits (00 H - FFH) of the address input on MADO - MAD7 to the ACDC when CSIR is low. The data to be read or written can be sent through the data bus in the same address cycle providing high speed command or parameter exchange.

The AGDC incorporates a preprocessor for drawing preprocessing and a drawing processor for the actual drawing. The drawing preprocessor calculates the effective (physical) address from $X-Y$ coordinates (logical address) given by the CPU and generates the parameters of the micro-level codes interpreted by the drawing processor. The drawing preprocessor decodes commands and performs the drawing preprocessing necessary to execute commands in the command/ parameter table. It is not necessary to write all the parameters in the command/parameter table. Only the required parameters for the particular command need be written.

Of the addresses 00 H - FFH in the intemal register space, 80 H - FFH are not presently used. These are reserved for future use. The register addresses $00 H-7 \mathrm{FH}$ can be grouped into four categories as shown in the following table.

Advanced Graphic Display Controller

\| Classification	1 Pegister Name 1	Address	CPU Access	
(1) AGDC control	1 SIATUS (Read)	\| 3CH - 3DH	Read - at any time	
1	\| CIRL, BANR (Write)		3CH - 3DH	Write - at any time
(12) Display	\| DISPLAY FLAGS	708-7FE	Pead - inhibited	
1 related	\| DISPLAY PITCH			Write at any time
\| registers	\| DAD, WC, AC			
1	\| GCSRX,GCSRYS,GCSRVE			
1	\mid CRS, CE \|			
1	$\mid \mathrm{BS}, \mathrm{HBP}, \mathrm{HH}, \mathrm{HD}, \mathrm{HFP}$ \|	I		
1	$\mid \mathrm{V}, \mathrm{VBP}, \mathrm{L} / \mathrm{F}, \mathrm{VFP}$ \|			
(13) Drawing	\| EADORG, dADORG	100H - 1FH	Read at any time	
1 related	\| EAD1, dADI		40H-6FH	Write - 3 types of
1 registers	\| EAD2, dAD2			handshaking selectable
1	\mid PDISPS, PDISPD	I	A. status flag	
1	1 PITCHS, PITCHD	I	B. ready signal	
1	\| PMAX,MODI,MODO	I	C. INI signal	
1	\mid planes \|	I		
1	1 PINP, PINCNT \|	I		
1	1 STACR, SIMAX \|	1		
1	\mid CuIP 1	I		
1	\mid XCIMIN, XCIMAX \|	I		
1	\mid YCIMIN, YCLMAX	1		
1	\| MACH,MAGV	1		
1	$\|\mathrm{X}, \mathrm{DX}, \mathrm{XS}, \mathrm{XE}, \mathrm{XC} \mathrm{DH}$,	1		
1	\| Y,DY,YS,YE,YC,DV		I	
1	1 COMMAND	1	1	
(14) Data port	\| DMAPORT (during		\| $3 E H-3 F H$	
1	\| PUT/GET execution)			
1	\| DX (during PEAD		$144 \mathrm{H}-45 \mathrm{H}$	1
1	1 DP/READ COL		1	
1	1 execution)	1	1	

Note: The DX register is used as the logical address (coordinate) setting register and at the same time as the data port during execution of the READ DP/READ COL Command.

The registers in the first classification - SIATUS, CIRL and BANR - are assigned address $3 \mathrm{CH}-3 \mathrm{DH}$. The contents of the STATUS register can be read at any time. The CTRL and BANR registers can be written to by the CPU at any time.

The registers in the second group - display related registeas - are assigned addresses in the range 70日 - 7FB. The ontents of these registers cannot be read. Data can be written to these registers at any time. Bowever, writing to these registers can disturb the CRr display. To prevent this, the display can be blanked while writing to these registers. First set the SD bit in the DISPLAY FLAGS register (address 70世-71B) to ' 1 '. Second, write the data into the display related register group. Third, set the $S D$ bit from ' 1 ' back to ' 0 '.

Follow these procedures to write data (SYNC parameters) such as HS, HBP, $\mathrm{HH}, \mathrm{HD}, \mathrm{HFP}, \mathrm{VS}, \mathrm{VBP}$ and L / F on the registers at address $7 \mathrm{EH}-7 \mathrm{FH}$:

1. Set the SYNC bit in the DISPIAY FLAGS register ($70 \mathrm{H}-71 \mathrm{H}$) to ' 1 '
2. Write, in the order listed, HS, HBP, HH, $H D, H F P, ~ V S$, VBP, L/F AND VEP (address 7EH - 7FH).
3. Set the SYNC bit to ' 0 '

The registers in the drawing related group are assigned addresses from 00 H to 1 FH and 40 H to 6 FH . The preprocessor resides in this register group. The read/write option of these registers are:

- Pead

The CPU can read the contents of these registers at any time. The preprocessor stops for one clock while the contents of a register are read.

- Write

One of three writing procedures can be used:

1. Check the STATUS register PPBSY flag (address 3CH)
2. Use the READY signal
3. Use the INI pin to signal an intermpt to the CPU

The method described by (1) is the general method. The contents of the status flag are read to check that the preprocessor is not in operation. If the preprocessor is not busy, then data can be written to the command/parameter table.

In the method described by (2), the CPU is tied to the AGDC's READY line. If the preprocessor is busy, the CPU cannot write the data until the preprocessor is finished and the READY line goes high. This procedure enables the command/parameter data to be sent at a higher speed.

In the method described by (3), the CPU is interrupted by the ACDC when the preprocessor is available. The AGDC, through its INI line, informs the CPU to send command/parameter data. The CPU interrupt routine should send a conmand and parameters to the ACDC. The 'INT' line is enabled or disabled by a flag in the CIRL register (address 3DH).

The three write methods are illustrated below.

Procedure (C) .. Handshake by the
Main routine

The drawing preprocessing end is informed.

1
Mart routine

The data port register, DMAPORT, is at address 3ER - 3FH. The drawing processor uses this register during execution of the drawing preprocessing. Therefore, to read/write this register, follow the method for reading or writing the drawing preprocessor.

2.3 Reset and Abont operation

The ACDC resets or aborts processing by any of the following procedures:

- Reset Operation

1. Set the RESET input signal (pin 5) to a high level (hardware reset)
2. Set the RESET flag in the CRII register to ' I ' (software reset).

- Abort Operation

3. Set the ABORI flag in the CTRL register to 'l'.

\| Reset/Abort Operation	Operation
(1) Hardware Reset	1 - sets the display stop flag SD in the DISPLAY
1	1 FLAGS register ($70 \mathrm{H}-71 \mathrm{H}$) to ' 1 '
1	1 - sets all bits in the CTRL register (3DH) to ' ${ }^{\prime}$ '
1	1- all other registers maintain the same status
1	1 - stops the preprocessor and the drawing processor
1	1- initializes the video timing signals
1	1-stops the image memory direct access
(12) Software Reset	1 - same as the hardware reset but does not set the
1	1 display stop flag in the DISPLAY FLAGS register
1	1 (70H-71H) to ' 1 ' and does not initialize the
1	1 video timing signals
1(3) Abort	1-all registers maintain their status
1	1 - stops the preprocessor and drawing processor

Advanced Graphic Display Controller

Section 3
ACDC Operation

3.1 How to Use the Intemal Registers

The intemal registers of the AGDC are classified as shown in the table below:

1 Classification	1 Application 1	(Pegister Name	\| Address (bex)	
1 ACDC control	\| Status		S SIATUS	3 C
registers	\mid Control \mid	CITRL	3D	
1	\| Higher 8 bits of		\| BANK	3 C
1	\| address in display		I	1
1	\| memory direct access			1
1 Display related	\| Display status	\| DISPLAY FLAGS	70-71	
\| registers	1 setting	I	1	
1	\| Display area		\| DISPLAY PITCH,	72-77
1	\| setting		1 DAD, HC	1
1	\mid Cursor setting \|	\| CRS, CE, GCSEX,	78-7D	
1	11	1 GCSEYS, GCSRVE	1	
1	\| Horizontal sync		\| BS , HBP, HH,	7E-7E
1	1 signal setting \|	1 HD, HFP	1	
1	1 Vertical sync	\| VS, VBP, L/F,	7E-7F	
1	1 signal setting	1 VFP	1	
1 Drawing related	\| Logical address	I EADORG, dADORG	00-03	
1 registers	\mid zero point setting \|		1	
1	\| Logical address		\| PITCHS, PITCHD	$158-5 B$
1	1 setting	1	,	
1	\| Plane setting		1 PMAX, PDISPS,	OC-15
1	1 \|	1 PDISPD	1	
1	\| Inter-plane logical		I MODO, MOOL,	\| 16, 5E-5F
1	1 operation setting 1	1 PLANES	1 (
1	\| Clipping setting	\| CLIP, XCIMIN,	\| 6D, 62-69	
1	1	1 XCIMAX, YCIMIN,	1	
1	1	1 YCLMAX	1	
1	\| Enlarge/Shrink	I MAGH, MAGV	16 C	
1	\| coefficient setting			1

*: The DX register is used as the logical address (X cordinate) value setting register and at the same time as the data port during the execution of a READ DP/READ COL command.

3.2 AGDC Control Registers

sming (Status)
No. of bits: 16
Address:
3CH - 3DH (Read)
Application: The status of the intemal operation of the AGDC. The format is as follows:

Advanced Graphic Display Controller

Status (ontinued)

| \| Bit | Flag Name | \| Abbrev. | I AGDC status when flag is '1' |
| :---: | :---: | :---: |
| 17 \| PUT/GET BUSY | 1 PGBSY | I Indicates that data can be |
| 11 | 1 | \| transferred during a PUT/GET |
| 11 | 1 | 1 command |
| 181 CHIPPING | 1 CITP | \| Picking or object detected |
| 19-1 | 1 | I Reserved for future use |
| 1151 | 1 | 1 |

BAN (Bank)

No. of bits: 8
Address: 3CB (Write)
Application: The CPU interface on the ACDC accomodates 20-bit addresses. The AGDC can address 32 Moytes of display memory (24 bits). When the CPU addresses display memory directly, the lower 16 bits provided by the CPO (bits $0-15$) is combined with the upper 8 bits (bits 16-23) of the BANK register to form the 24-bit display memory address.

CHIL (Ontrol)
No. of bits: 8
Address: 3DH (Write)
Application:

3.3 Display Related Reqister

DISFLAY FLACS (Display Flags)
No. of bits: 16
Address: 70日 - 71日 (Write)
Application: To select the operation of the display processor and the video timing signal generator.

Bit 0: VS (Vertical Sync)

The AGDC incorporates a horimontal/vertical counter to keep track of the current position of the display by the scanning line number counted from the top of the screen or by the word number counted from the left side. When the AGDC is used in the slave mode, the VS defines the timing of the horizontal/ vertical counter by the extemal sync signal, EXVS. When the ACDC is used in the master mode, the VS is ignored.

DISPLAY FLAGS (continued)

Bit 1: SXNC (Sync Parameter Setting)
This bit permits the writing of data in the registers (ES, BBP, BH, BFP, VS, VBP, LF and VFP) assigned to the address 7ER - 7FB.

Bit 2: LEO (Display Lines per Frame in Interlace Mode)
This bit defines the total number of display lines per frame (the first and second fields) in the interlace mode (IN $=1$ in DISPLAY FLAGS). For noninterlace mode ($I N=0$), LEO is ignored.

Bit 3: SD (Stop Display)
This bit defines the output status of the BLANK pin. This bit is set to 'l' when the RESET pin is high.

DISPRAY FLAGS (continued)

Bit 4: M/S (Master/Slave)

This bit defines the master/slave mode of the ACDC

Bit 5: MASR (Mask)

This bit defines the VSYNC output pin timing in the master mode (MS $=0$ in DISPIAY FLAGS). It also defines the validity/invalidity of the EXHS and EXVS input pins in the slave mode (MS = 1 in DISPIAY FIAGS).

dIsphar flags (continued)
Bit 6: TOCL (Timing Counter Clear)
The AGDC display the data by using two cycles of D1 and D2 as one unit. Therefore, the AGDC incorporates the display cycle counter to recognize the DI cycle and the D2 cycle during display. This bit defines the initializing timing of the display cycle counter by the EXVS external sync input signal. In the master mode (MS = 0 in DISPIAY FLACS), TCCI is ignored.

Bit 7: FCCL (Field Counter Clear)

The AGDC incorporates the field counter to recognize the first field and the second field in the interlace display mode. This bit defines the initializing timing of this field counter by the EXVS extemal sync input signal. In the master mode ($M S=0$ in DISPLAY FLAGS) or in the non-interlaced display mode (IN $=0$ in DISPLAY FLAGS), FCCL is ignored.

msphar flacs (ontinued)

Bit 8: SC (Steal Count)

This bit defines the relationship between CTX and SCIX in the dual port DRAM (VRAM) drive mode (SE/DI = $1 x$ in DISPLAY FLAGS). In the cycle steal mode ($S E / D T=0 x$ in DISPLAY FLACS), $S C$ is ignored.

Bit 9: RE (Refresh Enable)
This bit defines the DRAM refresh address output.

Bit 10: IN (Interlace)
This bit sets the display screen mode.

display flacs (ontinued)
Bits 11 - 13: DAD+ (Display Address Proceedings)
These bits define the progressive form of display addressing.

DISPLAY FHES (continued)

Bits 14-15: SE/DT (Steal Enable/Data Transfer Mode)
These bits indicate whether VRAMs or DRAMs are used for the display memory. When DRAMs are used, drawing is accomplished by memory cycle stealing. When VRAMS are used, the timing mode of the data transfer signal DT is defined.

SE/DT1	1 Function
\| $0 x$ \| The cycle steal mode (the DISP signal indicating the display $1 \quad \mid$ period output) is used	
110	\| The DT signal is generated at the timing which satisfies at least
1	I one of the following three conditions:
11	\| 1. At the start of the display on the screen
1	1 2. At the start of the display of each scan line on the screen
1	1 3. When all the lower 8 bits of the 24 bits of display address
11	1 are 0
11 \| The DT signal is generated at the timing which satisfies at least I one of the following two conditions: \| 1. At the start of the display on the screen \| 2. When all the lower 8 bits of the 24 bits of the display address are 0	

DISPRIF PIICH (Display pitch)

Nb . of bits: 12
Address: 72日 - 73日 (Write)
Application: Sets the number of addresses in the horirontal direction of the image memory plane.

AC (Address Control)
No. of bits: 3
Address: 73日 (Write)
Application: These bits define the output of the 9 bit refresh address to the display address lines DA23 - DA16 and DAD15 - DADO. The table below shows the change in the lower 8 bits of the display address which is used to set the output timing signal DT in the VRAM drive mode (SE/DT = 11 in DISFIAY FLACS) according to the AC value.

$1 A C$	\| Refresh address I output pins	\| The condition to activate the DT signal in the I dual port DRAM drive mode
1000	DADB - DADO	1 When DAD7 - DADO are 0
001	1 -	1 prohibited
010	1 -	1 prohibited
1011	1 -	1 prohibited
1100	DAD9 - DAD1	\| When DADB - DADl are 0
1101	DAD10 - DAD2	\| When DAD9 - DAD2 are 0
\| 110	DAD11 - DAD3	1 When DAD10 - DAD3 are 0
1111	DAD12 - DAD4	1 When DADII - DAD4 are 0

DAD (Display Address)
No. of bits: 24
Address: 74日 - 76日 (Write)
Application: These bits set the display starting physical address in the memory.

WC. (Hord Count)
No. of bits: 8
Address: 77H (Write)
Application: These bits set the number of address in the display period for one scanning period.

GCsFe (Graphics Cursor X Coordinate)
No. of bits: 12
Address: 78日 - 79 (Write)
Application: These bits set the starting display address of the graphics cursor using the upper left comer of the screen as the origin. The graphics cursor display signal generation period in the borimontal direction is fixed to one display cycle period.

CRS (Cursor Out Select)
No. Of bits: 1
Address: 79日 (Write)
Application: This bit selects the logical OR or the logical AND of the horizontal coincidence signal with the vertical coincidence signal to be output at the GCSR pin.

CE (Cursor Display Enable)
No. of bits: 1
Address: 79日 (Write)
Application: Enables the graphics cursor output signal (GCSR)

Cosies (Graphics Cursor Y Coordinate Start)
No. of bits: 12
Address: 7AB - 7BE (Write)
Application: These bits set the Y coordinate of the graphics cursor display start on the screen using the upper left comer of the screen as the origin.

Ccrsis (Graphics Cursor y Coordinate End)

No. of bits: 12
Address: 7CH - 7DA (Write)
Application: These bits set the Y coordinate of the graphics cursor display end on the screen using the upper left comer as the origin.

< Graphics Cursor Output Form >

When the value of GCSRYS < GCSRXE is not set, the graphics Cursor output from the display line indicated by GCSRYS to the last display line is activated. When GCSRYS = GCSRYE, only one display line indicated by GCSRYS is displayed.

Advanced Graphic Display Controller

ES, E:P, EB, ED, EP

BS (Borimontal Sync Signal)
EBP (Borimontal Back Porch; non-displayed period on the left of the Cris screen)
HR (Period from the GBP end to the center of one horimontal period)
ED (Borimontal display period)
EFP (Borimontal front porch; non-displayed period on the right of the Crir 8creen)

No. of bits: 12 each
Address: 7EH - 7FH (Write)
Application: These registers set the horimntal video timing parameters.

VS, VEP, L/T, VEP
vs (Vertical Sync signal)
VBP (Vertical Back Porch; non-displayed period on the upper part of the CrT screen)
I/F (Display period in the vertical direction)
VFP (Vertical Front Porch; non-displayed period on the lower part of the Crr screen)

No. of bits: 12 each
Address: 7EH - 7FH
Application: These registers set the vertical video timing parameters.

< Sync Signal Generation Diagram >

3.4 Intemal Pegister Trable

MSB LSB	OOH
$\xrightarrow{\square 1}$	
	O2H N
$\xrightarrow[\sim 1-1]{\sim}$	OAM EX
	084 N
$\xrightarrow[L 1]{1}$	O8K NW
	OUH NW
$\xrightarrow[1]{\sim}$	OCH R N
	OEM R
\qquad	103 N ${ }^{1}$
\qquad	12H. R N
	14 HN
	18H RW
PTN.P (M,L)	18H NW
园	LAM R ${ }^{\text {d }}$
	ICN RW
$\text { STACX }(H) \longrightarrow$	1EH ${ }^{\text {NK }}$

$$
2 O H-3 B H: A G D C \text { working registers }
$$

Internal Pegister Table (oontinued)

6AH - 6BH : AGDC working registers

Internal Register Table (ontinued)

$$
\begin{aligned}
& \text { RW }: \text { Read/Write } \\
& \text { W : Write only } \\
& \text { R }: \text { Read only }
\end{aligned}
$$

H: Higher 8 bits of 24-bit word
M: Middle 8 bits of 24-نit word
L: Lower 8 bits of 24-bit word

80H - FFH : Reserved

Advanced Graphic Display Controller

Section 4

Draing Operations

4.1 Draving Functions

The AGDC is an LSI device that can perform graphics drawing and copying at high speed. The host system specifies the drawing parameters and commands by writing to specific intemal ACDC registers. Only the parameters that are needed to perform the drawing cammand are written. When the DRAW command is written, the AGDC starts the drawing process.

This section describes the variations of the DRAW command and the parameters required for each command.

4.2 Types of DRAW cormands

The DRAW COmmand is set in the COMMAND register at address 6EH - 6FH. The type of drawing is selected according to the operation code written to 6FH. various combinations are selected by the flags set in the register at 6 EH .

The DRAW commands can roughly be classified as follows:

1. Data read command
2. Graphics drawing commands

- Dot drawing
- Straight line drawing
- Curve drawing

3. Paint commands

- Non-arbitrary area paint
- Arbitrary area paint

4. Copy commands

- Simple copy
- 900 rotation copy
- Arbitrary angle rotation ∞ py
- Enlarge/Shrink ©py

5. PUT/GET commands

- PUT
- GET
- 900 rotation GET

List of DRAK cormands:

1	1×1	\| Absolute	\| Relative	
1	1	\| Coordinate system	\| Coordinate system	
1 Data read	I Coordinate value	1 READ DP	11	
1 commands	1 read	1	1	
1	\| Color information	1 READ OL	$1 \quad 1$	
1	1 read	1	1	
\| Graphics	1 Dot	1 DOT D	1 1	
1 Drawing	1	I A DOTM	\| R DOTM	
1	\| Straight Line	1 A LINE MO	\| R LINE MO \mid	
1	1	\| A LINE Ml	$\mid \mathrm{RLINE}$ MI \mid	
1	,	\| A LINE MR	$\mid \mathrm{RLINE}$ M2 \mid	
1	1	\| A LINE DO	$\mid \mathrm{R}$ LINE DO 1	
1	1	\| A LINE D1	$\mid \mathrm{R}$ LINE D1 1	
1	1	\| A LINE D2	$\mid \mathrm{RLINE}$ D2 \mid	
1	1 1	1 A LINE D3	1×1	
1				
1	\| Rectangle	IA PEC	I R REC	
1				
1	\| Circle	1 CRL	1	
1	\| Arc	1 ARC	$1 \quad 1$	
1	1 Sector	1 SEC	$1 \cdots$	
1	\| Circle Bow	1 crow	1	
1				
1	\| Ellipse	1 ELPS	1	
1	\| Ellipse arc	1 EARC	$1 \quad 1$	
1	\| Ellipse sector	1 ESEC	1	
1	\| Ellipse bow	1 EBOW	1	
1 Paint Commands	\| Triangular area	1 A TRI FILU	1 1	
1	\| Rectangular area	\| A REC FIIL	\| R REC FIIL	
1	\| Trapezoidal area	1 A TRA FILU	\| R TRA FILI	
1	\| Circular area	1 CRL EIIL	$1 \quad 1$	
1	\| Elliptic	\| EIPS FILU	1	
1			+	
1	\| Arditrary	1 PAINT	1	
1	1 enclosed area	1	$1 \cdots 1$	

List of DRAW commands (continued):

1	1	\| Absolute	\| Relative
1	1	1 Coordinate system	Coordinate system
1 Copy Commands	\| Physical address-	\| A COPY AA	1
,	1 physical address		1
1	\| Logical address-	I A COPY CA	1
1	1 phsical address	1	1
1	\| Physical address-	I A COPY AC	1
1	1 logical address	1	1
1	\| Logical address	\| A CPY CC	1
1	1 logical address	1	1
\| PUT/GET	1	1 PUT	1
1 Commands	1	1 GET	1

Sumary of Operation Flags:

(1). Data read commands - there is no variation in these operation flags
(2). Graphics drawing commands - the operation flags are shown in the figures below:

- Dot drawing commands

PXEN: Pixel mode specification
BPPX: No. of bits in one pixel

- Straight line drawing commands

Command

ES: Enlarge/shrink or original size
IP: Specification of initialization of the type of line to be dram
ED: Specification of thickening direction of line width in enlarge drawing
PXEN: Pixel mode specification
BPPX: Specification of the number of bits in one pixel
ESH: Enlarge or shrink specification (kind of line to be drawn)

- Curve drawing commands

CF: Clockwise or counterclockwise drawing
IP: Specification of initialization of type of line to be dram PXEN: Pixel mode specification
BPPX: Specification of the number of bits in one pixel
(3). Paint Commands - the operation flags are shown in the figures below:

- Non-arbitrary area paint commands

TIL: Paint by tiling specification
SS: Color of monochromatic tiling specification
WL: Left boundary dot paint specification
WR: Right boundary dot paint specification

- Arbitrary area paint commands

TL: Paint by tiling specification
SS: Color or monochromatic specification
PMOD: Boundary color specification
(4). Copy Commands - the operation flags are shown in following figures:

- General

- Simple copy commands

ESE: Source data reverse read specification
REV: Reverse specification
ROT: \quad Rotation: $0=$ no rotation; $1=1800$ rotation

- 900 Rotation Copy Commands

ESE: Source data reverse read specification
PEV: Reverse specification
ROT: Potation: $0=90^{\circ}$ rotation; $1=270^{\circ}$ rotation

- Slant Copy Conmands

ESE: Source data reverse read specificaţion
REV: Reverse specification
ROT: Rotation: $0=$ no rotation; $1=1800$ rotation

- Acbitrary Angle Rotation Enlarge/Shrink Copy Commands

ES: Enlarge/shrink or original size specification
SF: Specification of a point not to be dram
ESE: Enlarge/shrink specification in horizontal direction
ESV: Enlarge/shrink specification in vertical direction

- Enlarge/Shrink Copy Cormands

ESH: Enlarge/shrink specification in the horizontal direction
REV: Reversal specification
ROT: Rotation specificaton: $0=$ no rotation; $1=1800$ rotation
ESV: Enlarge/shrink specification in the vertical direction
(5). PUT/GET Commands - the operation flags are shown in the following figures:

- PUT

REV: Reversal specification
ROT: Fotation: $0=$ no rotation; $1=1800$ rotation
SD SEI: COpY plane specification

- GET

REV: Reversal specification
ROT: Fotation: $0=$ no rotation; $1=1800$ rotation
SD SEL: COPY plane specification

- 900 Rotation GET

REV: Reversal specification
ROT: Potation: $0=90^{\circ}$ rotation; $1=270^{\circ}$ rotation
SD SEL: COPY plane specification

4.3 Detailed Description of DRAW Commands

4.3.1 Register Operation Commands

(1) READ DP (Read Drawing Pointer)

By this command, the drawing pointer ($\mathrm{X} \neq \mathrm{y}, \mathrm{Y}$) held in the AGDC is read in the register (X, Y)
(2) READ OL (Read COlor)

By this command, the color information regarding the display memory location indicated by (X, Y) is read in the register

4.3.2 Graphics Drawing Conmands

(1) DOT D (Dot Direct)

PXIPN: Pixel mode specification
BPPX: Number of bits in one pixel
One dot is drawn at the drawing pointer ($\mathrm{X} \#, \mathrm{Y} \#$) beld in the AGDC. In this case, it is not necessary to set (X, Y) again.
(2) A DOT M (Absolute Dot with Move)

PXEN: Pixel mode specification
BPPX: Number of bits in one pixel
One dot is drawn at the coordinate indicated by (X, Y). The drawing pointer ($X \#, Y$) is converted into (X, Y). The dot which is enlarged by any magnification can be drawn by giving the horizontal magnification 'MAGH' and the vertical magnificaton 'MAGV'.
(3) R DOT M (Relative Dot with Move)

PXEN: Pixel mode specification
BPPX: Number of bits in one pixel
One dot is drawn at the coordinate point ($X+D X, Y+D Y$) generated by (X, Y) and ($D X, D Y$). The drawing pointer ($X \neq Y \neq$) changes to ($X+D X, Y+D Y$).
(4) A LINE MO, A LINE MI, A LINE MR (Absolute Line with Move 0 , 1 or 2)

ES: Original size or enlargement specification
IP: Initialization of the type of line to draw
ED: Specification of thickening direction of line width in enlarge drawing
PXEN: Pixel mode specification
BPPX: Number of bits in one pixel
ESH: Specification of the thickness of a line to draw
A straight line is drawn from (X, Y) as the drawing start coordinates to the coordinates indicated by (XE, YE). However, the coordinates (XE, YE) are not drawn. The drawing pointer ($\mathrm{X} \#, \mathrm{Y} \#$) changes to (XE, YE).

A straight line can be enlarged/shrunk in the drawing direction and enlarged in thickness by giving the horizontal magnification 'MAGH', the vertical magnification 'MAGV' and the thickening parameters. The differences among these three commands are as follows:

A LINE MO: (X, Y) changes to (XE, YE)
A LINE MI: Both (X, Y) and ($X S, Y S$) do not change
A LINE M2: ($X S, Y S$) changes to (X, Y) and (X, Y) changes to ($X E, Y E$)
(5) A LINE D0, A LINE D1, A LINE D2, A LINE D3 (Absolute Line Direct 0 - 3)

ES: Original size or enlargement specification
IP: Initialization of the type of line to draw
ED: Specification of thickening direction of line width in enlarge drawing
PXEN: Pixel mode specification
BPPX: Number of bits in one pixel
ESH: Specification of the thickness of the line to draw
A straight line is drawn from (X, Y) as the drawing start coordinates to the coordinates indicated by (XE, YE). However, the coordinates (XE, YE) are not drawn. The drawing pointer ($\mathrm{X} \#, \mathrm{Y}$) changes to (XE, YE). It is not necessary to set (X, Y) again.

A straight line can be enlarged/shrunk in the drawing direction and enlarged in thickness by giving the horizontal magnification 'MAGH', the vertical magnification 'MAGV' and the thickening parameters. The differences among these four commands are as follows:

A LINE DO: (X, Y) changes to (XE, YE)
A LINE DI: Both (X, Y) and ($X S, Y S$) do not change
A LINE D2: ($X S, Y S$) changes to (X, Y) and (X, Y) changes to ($X E, Y E$)
A LINE D3: The command is executed after changing (XE, YE) to (XS, YS). It is not necessary to set (XE, YE) again.
(6) R LINE MO, R INTE MI, R LINE MR (Eelative Line with Move 0 - 2)

ES: Original size or enlargement specification
IP: Initialization of the type of line to draw
ED: Specification of thickening direction of line width in enlarge drawing
PXEN: Pixel mode specification
BPPX: Number of bits in one pixel
ESH: Specification of the thickness of the line to draw

A straight line is drawn from (X, Y) as the drawing start point to the cordinates ($X+D X, Y+D Y$) generated by ($D X, D Y$). However, the coordinates ($X+D X, Y+D Y$) are not drawn. The drawing pointer ($X \neq Y$, Y) changes to ($X+D X, Y+D Y$).

A straight line can be enlarged/shrunk in the drawing direction and enlarged in thickness by giving the horimontal magnification 'MAGH', the vertical magnification 'MAGV' and the thickening parameters.

The differences among these three comands are as follows:

R LINE MO: (X, Y) changes to ($X+D X, Y+D Y$)
R LINE MI: Both (X, Y) and ($X S, Y S$) do not change
R LINE M2: ($X S, Y S$) changes to (X, Y) and (X, Y) changes to $(X+D X, Y+D Y)$
(7) R LINE DO, R LINE D1, R LINE D2 (Relative Line Direct 0 - 2)

ES: Original size or enlargement specification
IP: Initialization of the type of line to draw
$E D$: Specification of thickening direction of line width in enlarge drawing
PXEN: Pixel mode specification
BPFX: Number of bits in one pixel
ESH: Specification of the thickness of the line to draw

A straight line is drawn from (X, Y) as the drawing start point to the coordinate ($X+D X, Y+D Y$). The point ($X+D X, Y+D Y$) is not drawn. The drawing pointer ($X \neq Y$) changes to ($X+D X, Y+D Y$). It is not necessary to set (X, Y) again.

A straight line can be enlarged/shrunk in the drawing direction and enlarged in thickness by giving the horizontal magnification 'MAGH', the vertical magnification 'MAGV' and the thickening parameters.

The differences among these three commands are as follows:
R LINE MO: (X, Y) changes to ($X+D X, Y+D Y$)
R LINE Ml: Both (X, Y) and ($X S, Y S$) do not change
R LINE MR: ($X S, Y$) changes to (X, Y) and $(X, Y$) changes to ($X+D X, Y+D Y$)
(8) A FBC (Abeolute Rectangle)

ES: Original size or enlargement specification
IP: Initialization of the type of line to draw
PXEN: Pixel mode specification
BPPX: Nuber of bits in one pixel
ESH: Specification of the thickness of the line to draw
A rectangle defined by (X, Y) as the drawing start coordinates and the diagonal coordinates (XS, YS) is drawn. A straight line enlarge/shrink in the drawing direction (by so doing, (XS, YS) does not change but the diagonal coordinates change) and enlarged in thickness can be drawn by giving the horizontal magnification 'MAcH' and the vertical magnification 'MAGV'.
(9) R REC (Relative Rectangle)

ES: Original size or enlargement specification
IP: Initialization of the type of line to draw
PXEN: Pixel mode specification
BPPX: Number of bits in one pixel
ESH: Specification of the thickness of the line to draw
A rectangle defined by (X, Y) as the drawing start coordinates and the diagonal coordinates ($X+D X, Y+D Y$) generated by ($D X, D Y$) is drawn. A rectangle enlarge/shrink in the drawing direction (by so doing, ($X+D X$, $\mathrm{Y}+\mathrm{DY}$) does not change, but the diagonal coordinates change) and enlarged in the thickness direction can be drawn by giving the borizontal magnification 'MAGH' and the vertical magnification 'MAGV'.
(10) CRL (Circle)

CF: Clockwise or counterclockwise drawing specification
IP: Initialization of the type of line to draw
PXEN: Pixel mode specification
BPYX: Number of bits in one pixel
A circle defined by the center coordinates (XC, YC) and the radius (DX) is drawn.
(11) ARC (Circle Arc)

CF: Clockwise or counterclockwise drawing specification
IP: Initialization of the type of line to draw
PXEN: Pixel mode specification
BPPX: Number of bits in one pixel

A circle arc defined by the center coordinates (XC, YC), the radius (DX), the drawing start ∞ oordinates (XS, YS) and the drawing end coordinates (XE, YE) is drawn.
(12) CSEC (Circle Sector)

CF: Clockwise or counterclockwise drawing specification
IP: Initialization of the type of line to draw
PXEN: Pixel mode specification
BPPX: Number of bits in one pixel
A sector defined by the center coordinates (XC, YC), the radius (DX), the circle arc drawing start ∞ ordinates (XC, YC) and the circle arc drawing end 00 rdinates ($X E, Y E$) is drawn.
(13) CBOW (Circle Bow)

CF: Clockwise or counterclockwise drawing specification
IP: Initialization of the type of line to draw
PXEN: Pixel mode specification
BPPX: Number of bits in one pixel
A circle bow defined by the center coordinates (XC, YC), the radius (DX), the circle arc drawing start coordinates (XC, YC) and the circle arc drawing end coordinates (XE, YE) is drawn.
(14) ETPS (Ellipse)

CP: Clockwise or counterclockwise draving specification
IP: Initialization of the type of line to draw
EXEN: Pixel mode specification
BPPX: Nuber of bits in one pixel
An ellipse defined by the center coordinates ($X C, Y C$), the radius in the X axis direction (DX), the radius in the Y axis direction ($D Y$), the square ration of the radius in the X axis and the square ratio of the radius in the Y axis direction is drawn ($\mathrm{DH}: \mathrm{DV}=\mathrm{DX} \mathrm{X}^{2}: \mathrm{DY}$).
(15) EARC (Ellipse Arc)

CF: Clockwise or counterclockwise drawing specification
IP: Initialization of the kind of line to draw
PXEN: Pixel mode specification
BPPX: Number of bits in one pixel
An ellipse arc defined by the center coordinates (XC, YC), the radius in the X direction ($D X$), the radius in the Y direction ($D Y$), the square ratio of the radius in the X axis ($D H$), the square ratio of the radius in the Y axis direction (DY), the drawing start coordinates (XS, YS) and the drawing end coordinates (XE, YE) is drawn ($D H: D V=D X^{2}: D Y^{2}$).

ESEC (Ellipse Sector)

CF: Clockwise or counterclockwise drawing specification
IP: Initialization of the kind of line to draw
PXEN: Pixel mode specification
BPPX: Nuber of bits in one pixel
An ellipee sector defined by the center coordinates (XC, YC), the radius in the X axis direction ($D X$), the radius in the Y axis direction (DY), the square of the radius in the X axis direction (DH), the square of the radius in the Y axis direction (DV), the ellipse arc drawing start coordinates ($X S, Y S$) and the ellipse arc drawing coordinates ($X E, Y E$) is drawn ($D E: D V=D X^{2}: D Y^{2}$).
(17) EBOW (Ellipse Bow)

CF: Clockwise or counterclockwise drawing specification
IP: Initialization of the kind of line to draw
PXEN: Pixel mode specification
BPPX: Number of bits in one pixel
An ellipse bow defined by the center coordinates (XC, YC), the radius in the X direction ($D X$), the radius in the Y direction ($D Y$), the square ratio of the radius in the X axis (DH), the square ratio of the radius in the Y axis direction (DY), the ellipse arc start coordinates (XS, YS) and the ellipse arc end coordinates (XE, YE) is dram ($\mathrm{DH}: \mathrm{DV}=\mathrm{DX} \mathrm{X}^{2}: D Y^{2}$).

4.3.3 Paint Commands

(1) PAINI (Actitrary Paint within Enclosed Pattem)

TI: Specification of painting by tiling
SS: Color or monochromatic tiling specification
PWDD: Boundary color specification
An enclosed area between the boundary points is painted starting from the coordinates (X, Y). The boundary color is specified by DX (the DX specification is not required for painting with the color different from the boundary ∞ lor).
(2) A REC FIIU (Absolute Rectangle Fill)

IL: Specification of painting by tiling
SS: Color or monochromatic tiling specification
WL: Specification of whether to paint on left edge
WR: Specification of whether to paint on right edge
FAST: Specification of normal or fast fill speed
A rectangle defined by the screen upper left coordinates (X, Y) as the drawing start coordinates and the screen lower right coordinates (XS, YS) as the diagonal coordinates is painted.
(3) R REC FINL (Relative Rectangle Fill)

TH: Specification of painting by tiling
SS: Color or monochromatic tiling specification
WL: Specification of whether to paint on left edge
WR: Specification of whether to paint on right edge
FAST: Specification of normal or fast fill speed
A rectangle defined by the screen upper left coordinates (X, Y) as the drawing start coordinates and the screen lower right coordinates generated by ($D X, D Y$) as the diagonal coordinates ($X+D X, Y+D Y$) is painted.
(4) CRL FIHL (Circle Fill)

TL: Specification of painting by tiling
SS: Color or monochromatic tiling specification
WL: Specification of whether to paint on left edge WR: Specification of whether to paint on right edge

A circle defined by the center coordinates (XC, YC) and the radius (DX) is painted.
(5) ELPS FILL (Ellipse Fill)

W: Specification of painting by tiling
SS: Color or monochromatic tiling specification
WL: Specification of whether to paint on left eage
WR: Specification of whether to paint on right edge
An ellipee defined by the center coordinates (XC, YC), the radius in the X axis direction (DX), the radius in the Y axis direction (DY), the square ratio of the radius in the X axis direction ($D H$) and the square ratio of the radius in the Y axis direction ($D V$) is painted ($D H: D V=D X^{2}: D Y^{2}$).
(6) A TRI FIIL (Absolute Triangle Fill)

II: Specification of painting by tiling
SS: Color or monochromatic tiling specification
WI: specification of whether to paint on left edge
WR: Specification of whether to paint on right edge
A triangle defined by the three coordinates (X, Y), ($X S, Y S$) and ($X C, Y C$) is painted.
(7) A TRA FIUL (Absolute Trapezoid Fill)

TIL: Specification of painting by tiling
SS: Color or monochromatic tiling specification
WL: Specification of whether to paint on left edge
WR: Specification of whether to paint on right edge
A trapezoid defined by 6 kinds of parameters showing four coordinates (X , $\mathrm{Y}),(\mathrm{XS}, \mathrm{Y}),(\mathrm{XC}, \mathrm{YE})$ and (XE, YE) is painted.
(8) R TRA FIIL (Relative Trapezoid Fill)

TH: Specification of painting by tiling
SS: Color or monochromatic tiling specification
WL: Specification of whether to paint on left edge
WR: Specification of whether to paint on right edge
A trapezoid defined by the screen upper left coordinates (X, Y), the screen upper right coordinates ($X S, Y$), the height ($D Y$), the distance from the screen lower left point to the X axis (DX) and the distance from the screen lower right point to XS (XC) is painted.

4.3.4 COPY Commands

(1) A COPY AA (Absolute Copy Address to Address)

SD SEL: Transfer plane specfication

The data in a rectangular area defined by the address (EAD2) of the transfer start word of the display merory, the address (dAD2) of the transfer start dot in the word, the number of the dots in the horizontal direction 'DA' and the number of the dots in the vertical direction ' $D V$ ' is transferred to a rectangular area defined by the address (EADI) of other transfer start word, the address 'dADI' of the transfer start dot in the word, 'DH' and 'DV'.
(2) A COPY CA (Absolute Copy Coordinate to Address)

SD SEL: Transfer plane specfication
The data in a rectangular area defined by the transfer start coordinates (XS, YS) on the display memory, the number of dots in the horizontal direction 'DH' and the number of dots in the vertical direction 'DV' is transferred to another rectangular area defined by the address 'EADI' of the transfer start word, the address 'dADI' of the transfer start dot in the word, 'DH' and 'DV'.
(3) A COPY AC (Abeolute Copy Address to Coordinates)

SD SEI: Transfer plane specfication
The data in a rectangular area defined by the transfer start coordinates (XS, YS) in the display memory, the number of dots in the horizontal direction 'DH' and the number of dots in the vertical direction 'DV' is transferred to a rectangular area defined by the other transfer start coordinates (X, Y), 'DH' and 'DV'.
(4) A COPY \propto (Absolute Copy Coordinate to Coordinate)

SD SEL: • Transfer plane specfication
The data in a rectangular area defined by the transfer start coordinates (XS, YS) in the display memory, the number of dots in the horizontal direction 'DH' and the number of dots in the vertical direction 'DV' is transferred to a rectangular area defined by the other transfer start ©ordinates (X, Y), 'DH' and 'DV'.
(5) R COPY CC (Relative Copy Coordinate to Coordinate)

SO SEI: Transfer plane specfication
The data in a rectangular area defined by the transfer start coordinates (XS, YS) in the display memory, the number of dots in the horizontal direction 'DA' and the number of dots in the rertical direction 'DV' is transferred to a rectangular area defined by the other start coordinates ($X S+X C, Y S+Y C$) generated by ($X S, Y S$), ($X C, Y C$), and 'DA' and 'DV'.
(6) Copy function extensions

The function of each COPY command can be extended by changing the lower 2 bits of the command code. This extension is defined in the lower byte (6EH) of the command register.
(a) 900 OPPY (900 Potation COpy)

ESE: Reverse data read specification
REV: Reversal specification
ROT: Rotation angle specification
SD SEH: Transfer plane specfication
The transfer area is rotated by 90°.
(b) SL COPY (Slant Copy)

ESE: Reverse data read specification
REV: Reversal specification
ROT: Botation angle specification
SD SEL: Transfer plane specfication
The data in a rectangular area in the display memory is slanted by 'DX' in the X axis direction according to the change in the Y axis direction to transfer it into a parallogram area.
(c) ES COPY (Enlarge/Shrink Copy)

ESH: Enlarge/shrink specification (horizontal direction)
REV: . Reversal specification
ROT: Rotation angle specification
ESV: Enlarge/shrink specification (vertical direction)
SD SEL: Transfer plane specfication
The transfer area is enlarged/shrunk by any magnification by giving the horizontal magnification 'MAGH' and the vertical magnification 'MAGV' factors.
(d) FR ES COPY (Free Angle Rotation Enlarge and Shrink Copy)

ESH: Enlarge/shrink specification in torimontal direction

ESV:
SF:
SD SEM: Enlarge/shrink specification in vertical direction Specification of point not to be dram
Transfer plane specfication
The transfer area is rotated by any angle are enlarged/shrunk by giving the horizontal magnification 'MAGB', the vertical magnification 'MAGV', and the angle defined by DX and DY.

4.3.5 PUI/GET Commands

(1) POT A (Put Data to Address Field)

EEV: Reversal Specification
ROT: Potation Specification
SD SEL: Transfer plane specfication
The data from the host system is transferred to a rectangular area defined by the address 'EADI' of the transfer start word in the display memory, the address 'dADI' of the transfer start dot in the word, the number of dots in the horizontal direction 'DE' and the number of dots in the vertical direction 'DV'.
(2) PUT C (Put Data to Coordinate Field)

$$
\begin{array}{ll}
\text { REV: } & \text { Reversai Specification } \\
\text { ROT: } & \text { Rotation Specification } \\
\text { SD SEL: } & \text { Transfer plane specfication }
\end{array}
$$

The data from the host system is transferred to a rectangular area defined by the transfer start coordinates (X, Y) of the display memory, the number of dots in the horizontal directions 'DH' and the number of dots in the vertical direction 'DV'.
(3) GET A (Get Data from Address Field)

$\begin{array}{ll}\text { REV: } & \text { Reversal Specification } \\ \text { EOT: } & \text { Potation Specification }\end{array}$
SD SEL: Transfer plane specfication
The data from the host system is transferred to a rectangular area defined by the address 'EADI' of the transfer start word in the display memory, the address 'dADI' of the transfer start dot in the word, the number of dots in the horizontal direction 'DH' and the number of dots in the vertical direction 'DV'.
(4) GET C (Get Data from Coordinate Field)

REV: Reversal Specification
ROT: Fotation Specification
SD SEL: Transfer plane specfication
The data from the display memory is transferred to the host system from a rectangular area defined by the transfer start coordinates (X, Y) of the display memory, the number of dots in the horizontal directions ' DH ' and the number of dots in the vertical direction 'DV'.

4.4 How to Use the Elag Bits

(1) PXEN: Pixel Drawing Enable
(2) BPPX: Bits per Pixel

Sixteen pixels are assigned to one 16 -bit word in the display memory controlled by the AGDC principally to construct the plane onfiguration. The number of bits per pixel can easily be extended by increasing the number of planes in the display memory. In the packed configuration, in which each pixel is assigned to one word, straight lines, rectangles, circles, circle arcs, circle bows, arc sectors, ellipses, ellipse arcs, ellipse bows and ellipse arc sectors can still be drawn.

The plane or the pixel configuration is selected by PXEN and the number of bits in one pixel is defined by BPPX.

(3) ES: Enlarge/Shrink
(4) ESH: Enlarge/Shrink Horizontal
(5) ESV: Enlarge/Shrink Vertical

Whether or not the enlarge/shrink function by any magnification ($16 / \mathrm{N}$ or $\mathrm{N} 16, \mathrm{~N}$ an integer between 1 and 16) is enabled is determined by ES. The enlarge/shrink in the horizontal direction is selected by ESH. The enlarge/shrink in the vertical direction is selected by ESV. The horimontal magnification and the vertical magnification are set by the MAGH and MAGV registers, respectively.

When enlarging straight lines or rectangles, the enlarge/shrink magnification of $16 / \mathrm{N}$ or $\mathrm{N} / 16$ of the line pattem is defined by MAGH. The integral magnification of the line width is defined by MAGV.

(6) ED: Enlargement Direction
$E D$ selects the widening direction of a straight line drawing, as shown in the following table:

SP Quadrant Definition

XF Quadrant Definition
(7) IP: Initial Pattern Pointer

This bit selects the initialization/non-initialization of the pointer which specifies the drawing of a specific bit in the register storing the type of line (dotted, altemate long and short dashed, etc). In the case of drawing a folded line graph, etc., an altemate long and short dashed line is still drawn after passing the end point if this pointer is not initialized.

(8) CF: Clockwise Flag

This bit selects the drawing direction of a circle, ellipse, etc.

(9) TL: Tiling Patterm
(10) SS: Single Source Pattern

This bit selects the pattem in painting. The following three selections are possible:

To clear all the planes to ' 0 ', set $T L=0$ and $S S=1$, then it is not necessary to frequently read the pattern to be painted. This will allow the planes to be cleared quicker. When it is necessary to paint with a different color for each bit, set $\pi=1$ and $S S=0$.
(11) PMOD: Paint Mode

This bit selects one of the two types of arbitrary enclosed areas shown in the following table:

\| PMOD	1 Type of area
10	\| The boundary color is retrieved according to the
1	\| type of boundary color preliminarily given and
1	I the space between the boundary points is painted
11	\| The color information at the start point of the
1	\| boundary point retrieval. The boundary point is
1	I retrieved for all the colors other than the color
I	I of the boundary and the space between the
1	I boundary points is painted

(12) WL: Write Left
(13) WR: Write Right

These bits specify the drawing of points on the boundary line in a quadrangle, circle, ellipse, triangle and trapezoid fill.

$W L=0, W R=0$

$$
W L=0, W R=1
$$

$W L=1, W R=0$

$W L=1, W R=1$
(14) ESE: Exchange Start with End

This bit defines the reading order of the source data in the copy operation.

(15) REV: Reverse

This bit defines the use of the reverse drawing in the copy operation.

Advanced Graphic Display Controller
(16) ROT: Potation

This bit defines the use of the 1800 rotation drawing in the copy operation.

(17) SD SEL: Source Destination Mode Select

This bit selects the data transfer mode between the planes as shown in the table below (please refer to the section on inter-plane data transfer):

(18) FS: Fill Shortage

When the coordinate conversion is made during the ambitrary angle rotation copy, some points may not be drawn. This bit specifies whether to draw these points or not.

: The points

(19) PUT: Put

This bit specifies the transfer by the PUT Command or transfer by the GET command.

(20) FAST: Fast

This bit specifies the normal or fast mode for drawing.

However, the FAST mode cannot be used for all drawing operations:
REC FIIL: The FAST mode cannot be used if clipping or painting with a tiling pattern. It can only be used for replacing data.

CPY: The FAST mode can be used only for ordinary COPY with replace. It cannot be used with other CPY operations or with multiple sources.

4.5 Painting Pattem Reference Examoles

(1) $\mathbb{T}=0, S S=1$

In this case, the contents of the 16 -bit register, PINCNT, in the ACDC is referred to as the painting pattern. When painting two or more planes is specified, painting is made in the same pattem.

Parameters to be set:
(A) Plane to be selected in drawing ... PLANES
(B) Maximum number of planes to be selected in drawing ... PMAX
(C) Painting pattem to be referred to ... PINCNr

Drawing Example:
PLANES $=7$, PMAX $=4$, PINCNT $=5555 \mathrm{H}$

10101010101010101010	10101010101010101010	10101010101010101010
10101010101010101010	10101010101010101010	10101010101010101010
10101010101010101010	10101010101010101010	10101010101010101010
10101010101010101010	10101010101010101010	10101010101010101010
10101010101010101010	10101010101010101010	10101010101010101010
First plane	Second plane	Third plane

(2) $\pi=1, S S=1$

In this case, multiple painting pattems previously stored in the display memory are referred to. The painting pattern is automatically updated according to the move of the Y coordinate. When painting covering two or more planes is specified and when the Y coordinates are the same, the same pattern is referred to.

Parameters to be set:
(A) Plane to be selected in drawing ... PLANES
(B) Maximum number of planes to be selected in drawing ... PMAX
(C) The first address of the display memory containing the pattern...

PINP
(D) The number of words to be repeated for the painting pattern...

PINCNT

Drawing Example:
PIANES $=7$, PMAX $=4$, PINCNT $=4$

$$
\begin{aligned}
& 10011001100110011001 \\
& 01100110011001101100 \\
& 00110011001100110011 \\
& 10011001100110011001 \\
& 10011001100110011001
\end{aligned}
$$

$$
\begin{aligned}
& 10011001100110011001 \\
& 01100110011001101100 \\
& 00110011001100110011 \\
& 10011001100110011001 \\
& 10011001100110011001
\end{aligned}
$$

$$
\begin{aligned}
& 10011001100110011001 \\
& 01100110011001101100 \\
& 00110011001100110011 \\
& 10011001100110011001 \\
& 10011001100110011001
\end{aligned}
$$

First plane
Second plane
Third plane
(3) $\mathrm{TL}=1,5 S=0$

The multiple painting pattems previously stored in the display memory are referred to. The painting pattern is automatically updated according to the move of the Y coordinate. When painting covering two or more planes is specified, the painting pattern corresponding to each plane is referred to.

Parameters to be set:
(A) Plane to be selected in drawing ... PLANES
(B) Maximum number of planes to be selected in drawing ... PYAX
(C) The first address of the display memory containing the pattern ... PINP
(D) The number of words to be repeated for the painting pattem ...

PINCNT
(E) The address displacement between the painting pattem prepared for each plane ...

PDISPS

Drawing Exartples:

PLANES $=7$, PMAX $=4$, PINCNI $=4$, PDISPS $=4$

10011001100110011001 11001100110011001100 01100110011001100110 00110011001100110011 10011001100110011001
First plane
:---
11000011110000111100
1110000111000011110
100001111100001111000
:---:
10101010101010101010
01010101010101010101
00101010101010001010
1010101010100010101

PTN-P $\rightarrow\left[\begin{array}{|l|l|}\hline 1001100110011001 \\ 110010011001100 \\ 0110011001100110 \\ 0011001100110011 \\ \hline 1000011110000111 \\ 1100001111000011 \\ 111000111100001 \\ 1111000011110000 \\ \hline 1010101010101010 \\ 0101010101010101 \\ 0010101010101010 \\ 0001010101010101 \\ \hline\end{array}\right]$

Advanced Graphic Display Controller

4.6 Inter-plane Data Transfers

4.7 Drawing Related Pegisters

The internal registers in which the parameters required for drawing are stored are described in this section.
(1) ENDOPG (Execution Address Origin)

No. of Bits: 24
Address: $\quad 00 \mathrm{~B}-02 \mathrm{H}$
Application: This register sets the physical address (effective address) in the display memory corresponding to the origin $(0,0)$ on the logical plane (the X-Y coordinate plane).
(2) dADOFG (Dot Address Origin)

No. of Bits: 4
Address: 03H
Application: This register sets the dot position in the physical address (effective address) in the display memory corresponding to the origin (0,0) on the logical plane (the $X-Y$ coordinate plane).
(3) EADl (Execution Address 1)

No. of Bits: 24
Address: $\quad 04 \mathrm{H}-06 \mathrm{H}$
Application: This register sets the drawing start physical address value in the drawing processing when the drawing start position is given by the physical address (effective address).
(4) danl (Dot Address 1)

No. of Bits: 4
Address: 07H
Application: This register sets the dot position in the display memory when the drawing start position is given by the physical address (effective address).
(5) Ende (Execution Address 2)

No. of Bits: 24
Address: 08B - QAB
Application: This register sets the drawing start physical address in the drawing processor when the drawing start position is given by the physical address (effective address).
(6) dND (Dot Address 2)

No. Of Bits: 4
Address: OBH
Application: This register sets the dot position in the display memory when the drawing start position is given by the physical address (effective address).
(7) FDISPS (Plane Displacement Source)

No. of Bits: 24
Address: $\quad \mathrm{OCH}$ - OEH
Application: This register sets the number of words which occupy one memory plane in the case of display memory configured with two or more planes. In the case of execution of the COPY command, the number of words per source plane is set. In the case of execution of the PAINI command, the number of words per plane containing the painting pattern (tiling pattern) is set.
(8) PDISPD (Plane Displacement Destination)

No. of Bits: 24
Ad̃dress: $\quad 10 \mathrm{H}-12 \mathrm{H}$
Application: This register sets the number of words which occupy one memory plane in the case of display memory configured with two or more planes. In the case of execution of drawing commands, the number of words per plane for graphics drawing is set. In the case of execution of COPY commands, the number of words per destination plane is set. In the case of execution of painting commands, the number of words per painting plane is set.
(9) EMXX (Plane Maximum)

No. of Bits: 16
Address:
Application: 14 $\mathrm{H}-15 \mathrm{H}$
This register sets selects the number of planes (up to 16) in the display memory to be drawn, as shown in the following table:

(10) 1000 (Drawing Mode 0)

No. of Bits: 4
Address: 16 H
Application: This registers defines the type of logical operation performed during drawing processing. When the bit in PLANES corresponding to the memory plane is 0 during drawing processing, the logical operation defined by m000 is executed.
(11) MCOI (Drawing Mode 1)

No. Of Bits: 4
Address: 16H
Application: This registers defines the type of logical operation performed during drawing processing. When the bit in PLANES corresponding to the memory plane is 1 during drawing processing, the logical operation defined by $M 000$ is executed.
(12) PLP (Pattem Pointer)

No. of Bits: 24
Address: 18H-1AB
Application: This registers sets the first physical address in the display memory area containing the painting (tiling) pattern.
(13) suat (Stack Pointer)

No. of Bits: 24
Address: 1CH - 1EH
Application: This registers sets the first physical address in the display memory area to save data such as coordinates, etc., during the retrieval of the boundary point in the arbitrary enclosed area painting. It may be considered as the working area of the AGDC in the execution of the PAINT command.
(14) X, Y, $D X, D Y, X S, Y S, X B, Y B, X C, Y C, D B, D V$

No. of Bits: 16 each
Address: $40 \mathrm{H}-57 \mathrm{H}$, respectively
Application: This is the group of registers used to set the parameters required for the execution of various drawing cormands. However, the DX registers is also used as the data port to output data read by the AGDC during execution of the READ OOL command.
(15) PITCBS (Pitch Source)

No. Of Bits: 26
Address: \quad 58H - 59H
Application: This register sets the number of addresses in the horizontal direction of the source plane in the display memory during execution of the COPY command.
(16) PIIC:D (Pitch Destination)

No. of Bits: 16
Address: 5AB - 5BB
Application: This registers set the number of addresses in the horizontal direction of the drawing plane in the display memory during execution of paint commands.
(17) SIRAX (Store Maximum)

No. of Bits: 16
Address: $\quad 5 \mathrm{CH}$ - 5DH
Application: This register set the size of the display memory area used to save data such as coordinates, etc., during retrieval of the boundary point in the arbitrary enclosed area painting. It may be considered as the working area size of the AGDC during execution of the PAINI command.
(18) PLANBS (Plane Select)

No. of Bits: 16
Address: 5EH - 5FH
Application: This register selects the type of logical operation in the drawing processing. Each bit in the PLANES registers directly corresponds to a plane. For the plane in which the logical operation defined by register MODO is to be executed, the corresponding bit in PIANES must be 0 . For the plane in which the logical operation defined by register MODl is to be executed, the corresponding bit in PIANES must be 1.
(19) Pricir (Pattem Count)

No. of Bits: 16
Address: 60H - 61H
Application: This register is set in the two ways listed below according to the painting pattem in the execution of the painting comnand:

1. In the case of painting by using the painting pattem previously generated in the display memory ($T=1$), the range of words from the address specified by the register PINP to be referred to as the painting pattern is defined by the number of words.
2. When the 16 -bit data in the register PINCNI is used as the painting pattern ($I L=0$), the actual painting pattem is defined.
(20) XCHMN, YCIMN, XCIAX, YCHMX (X/Y Clipping Minimun/Maximun)

No. of Bits: 16 each
Address: $62 \mathrm{H}-69 \mathrm{H}$, respectively
Application: These registers define the rectangular clipping area to be referred to during the drawing processing.

XCIMIN XCIMAX
(21) MAc: (Borizontal Magnification)

No. of Bits: 4
Address: 6CH
Application: This register sets the enlargement/shrink magnification in the borizontal direction during execution of enlarge/shrink drawing. In the case of enlargement drawing, the magnifcation is 16/(MAGH+1). In the case of shrink drawing, the magnification if (MAGIH+1)/16.
(22) MAGV (Vertical Magnification)

No. of Bits: 4
Address: $\quad 6 \mathrm{CB}$
Application: This register sets the enlargement/shrink magnification in the vertical direction during execution of enjarge/shrink drawing. In the case of enlarge drawing, the magnification is 16/(MAGV+1). In the case of shrink drawing, the magnification is (MAGV+1)/16.
(23) CWIP (Clipping Mode)

No. of Bits: 2
Address: 6DH
Application: This register selects the clipping operation as shown in the following table:

(24) FLACS, COMAND (Flags, Command)

No. of Bits: 16
Address: 6EH - 6FB
Application: This is the register used to write the command to be executed by the ACDC. It consists of the operation code (6 FH) and the operation flags (6EH). When the operation code is written to the cormand register, AGDC begins processing.

4.8 Parameters Corresponding to DRAW Commands

The parameters required for DRAN commands are illustrated in this eection.
$[\boxplus O T]$
(X, Y)
$\left[A_{-} \mathrm{VOT}\right]$

\qquad
[CIRCLE]

[CRL]

Advanced Graphic Display Controller

[ELIPSE FILL]
[ELPS_FILL]

$$
\left[-51=\left[H^{2}:\left[H^{2}\right.\right.\right.
$$

Advanced Graphic Display Controller

Advanced Graphic Display Controller

Advanced Graphic Display Controller

Advanced Graphic Display Controller

```
[ENLARGE/SHRINK COPY]
        [ES_COPY)
\(\therefore \quad\) SOURCE
```


$F E:=1 . F T=0$

EST=1, ESKi=:

$E S H=1, E S 1=0$

$5 \subseteq \cup=1, E S!=0$

Advanced Graphic Display Controller

－raster operation mo日e（i）

《n00＝1001》

（H0O＝1101）
$[0 \leftarrow 0+\bar{S}]$
$(100=1100)$
$[D \sim 0+S]$

$《 400=1111\rangle$ （ $\mathrm{HOO}=1110\rangle$

0	$-\infty-\infty-$
n	$0-0-$
0	$0-0-\infty$

Advanced Graphic Display Controller

