MAGNETIC TAPE CASSETTE/CARTRIDGE CONTROLLER USERS' MANUAL

Five Milita Drive/Lexington, Massachusetts 02173

Telephone (617) 862-6410

Telex 92--3434 TWX 710-326-6520

NEC MICROCOMPUTERS, INC.

uPD371

MAGNETIC TAPE CASSETTE/CARTRIDGE

USERS' MANUAL

June 9, 1977

The NEC uPD371 is a high performance N-Channel LSI tape cassette/cartridge controller designed to interface between most cassette or cartridge tape drives and most microprocessors or minicomputers.

FEATURES - Compatible with ANSI, ECMA and ISO standards

- Also compatible with most other standards
- Hardware CRC generation and verification
- Read after write capability
- High speed file search
- Multiple drive capability
- May read or write on one drive while rewinding or file searching on another
- Maximum Data Transfer rate of 375K bits/sec equivalent to 468 IPS at 800 BPI

INTRODUCTION	4
INPUT/OUTPUT SIGNALS	7
INTRODUCTION	7
PROCESSOR INTERFACE	7
TAPE DRIVE INTERFACE	14
ADDRESSABLE INTERNAL REGISTERS	17
INTRODUCTION	17
WRITE REGISTERS	17
READ REGISTERS	27
TAPE CASSETTE/CARTRIDGE CONTROLLER EXAMPLES	32
PROCESSOR INTERFACE	32
TIMING	32
TAPE DRIVE INTERFACE	35
Single Drive	35
Multiple Drive Systems	36
SOFTWARE	39
Introduction	39
Other Formats	39
High Speed File Search	40
Parameters and Conventions	40
Listings of Drive Handling Routines	42
uPD371 SPECIFICATIONS	52

3

INTRODUCTION

The uPD371 uses the ANSI, ECMA and ISO* standard recording technique of "bi-phase-level encoding". The name is usually shortened to "phase encoding".

In phase encoding a logic one is encoded as a positive transition. A logic zero is encoded as a negative transition. These data transitions are made to occur at intervals with a constant period. Halfway between data transitions, a "phase" transition may be required to establish the proper polarity for the succeeding data transition. An example of phase encoded data is shown in Line 1 of Figure 4.

Data is usually recorded on magnetic tape in blocks called "records". Records are separated from each other by regions of erased tape called "inter record gaps" or just "gaps". The lengths of both records and gaps depend on the recording standard used. The uPD371 can adapt to any record or gap length.

ANSI, ECMA and ISO records are made up of 8-bit bytes in which the least significant bit is recorded first. The first byte of a record (the "preamble") is an AA hex. The preamble is followed by 1-256 "data" bytes. The data bytes are followed by two "CRC" (Cyclic Redundancy Character) bytes. The CRC bytes are followed by the last byte of the record (the "postamble") which is also an AA hex. The postamble is followed by an inter record gap. The uPD371 can write records which are completely compatible with the ANSI, ECMA and ISO standard, but it is not limited to this standard. See <u>Other Formats</u> in the SOFTWARE section.

- * ANSI = American National Standards Institute 1430 Broadway, New York, NY 10018 USA Document Number ANSI X3.48-1977

All three documents are identical except for some minor differences in describing physical dimension tolerances.

Most tape drive manuals contain amplified discussions of encoding techniques and recording formats. The interested reader is referred to these sources for further information.

Figure 1 shows a uPD371 based tape controller in block diagram form. The workload of operating the tape drive (or tape drives) is shared between the uPD371 hardware and the processor software. The uPD371 hardware encodes and decodes data for the processor program, calculates the CRC during write operations, verifies the CRC during read operations, informs the processor program when to send data bytes during write operation and when to read bytes during read operations, converts tape drive status signals into register bit levels which may be read by the processor program and converts software commands into signals which may be understood by the tape drive(s).

The software responsibility is usually divided between two sets of programs -- the Drive Handling Routines and the Operating System. The Drive Handling Routines must transfer read or write data when requested to do so by the uPD371, monitor drive performance and issue tape motion commands. The Operating System determines the areas of memory from which write data is taken and into which read data is stored and what use is made of the data.

A discussion of Cassette/Cartridge Operating Systems is beyond the scope of this manual. Drive Handling Routines are described in the SOFTWARE section. Complete listings are included for a uPD8080A microprocessor as an example of typical Drive Handling Routines. The uPD371 hardware is described in the INPUT/OUTPUT SIGNALS and ADDRESSABLE INTERNAL REGISTERS sections. Schematics and discussions of typical controllers are given in the TAPE CASSETTE/CARTRIDGE CONTROLLER EXAMPLES section.

5

FIGURE 1 uPD371 CASSETTE/CARTRIDGE CONTROLLER

INTRODUCTION

Figure 2 shows the input/output signals of the uPD371 grouped according to function.

These signals are described below in the functional sequence of Figure 2 rather than in numerical sequence.

PROCESSOR INTERFACE

Reset

Pin 40 RST (Reset)

A logic one at pin 40 causes a general reset of the uPD371. The effect is the same as a logic one at RST-bit 7 of Write Register 0 (WR0). For a list of signals and registers affected, see bit 7, WR0 in the ADDRESSABLE INTERNAL REGISTERS section.

Register Select Commands and Data Bus

Pin ll	W/R	(Register Write/Read Select)
Pin 12	DS	(Register Data Strobe)
Pins 13-15	RSØ-RS2	(Register Address)
Pins 3-10	DBØ-DB7	(Data Bus)

W/R, DS and RSØ-RS2 control Data Bus transfers between the uPD371 and the processor as follows:

Writing into a uPD371 register

When W/R is a logic one, information the processor places on DBØ-DB7 is written into the uPD371 WRITE REGISTER selected by RSØ-RS2. The information is written at the time of the trailing edge of each \emptyset 2 which occurs while DS is a logic one.

Reading from a uPD371 register

When W/R is a logic zero, information from the uPD371 READ REGISTER selected by $RS\emptyset-RS2$ is placed on $DB\emptyset-DB7$ to be read by the processor. The information remains on $DB\emptyset-DB7$ as long as DS is a logic one. See uPD371 SIGNAL TIMING DIAGRAM, Figure 12 for exact timing.

PROCESSOR INTERFACE

TAPE DRIVE INTERFACE

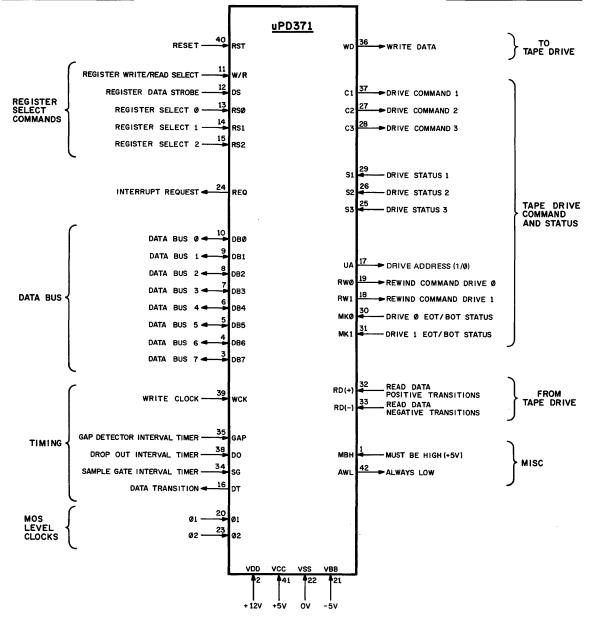


FIGURE 2 INPUT/OUTPUT SIGNALS

Interrupt Request

Pin 24 REQ (Interrupt Request)

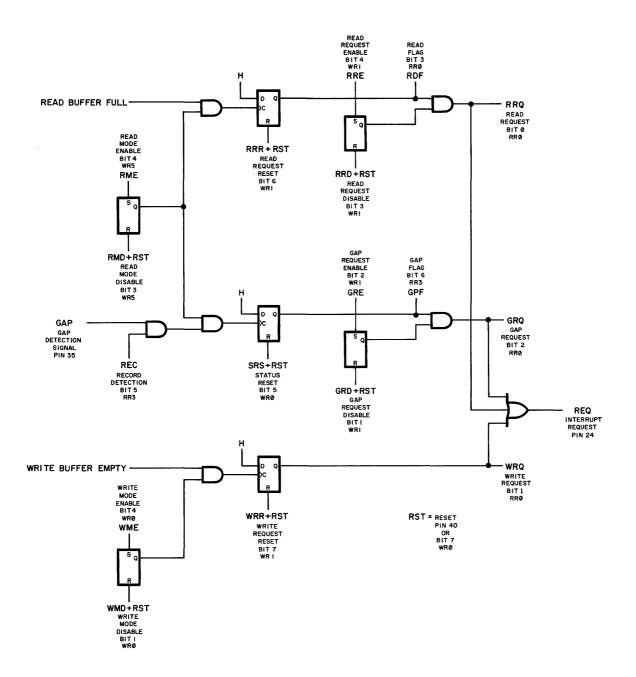
The uPD371 may be operated with either interrupt or polling techniques. If the interrupt technique is chosen, REQ should be connected to the interrupt request input of the processor.

As shown in Figure 3, there are three sources of interrupt: READ BUFFER FULL, WRITE BUFFER EMPTY and GAP DETECTION.

READ BUFFER FULL indicates that an 8-bit byte has been read from tape, assembled in the READ SHIFT REGISTER and transferred to the READ BUFFER REGISTER (RR2) where it may be read by the processor program.

WRITE BUFFER EMPTY indicates that the processor program may transmit a new data byte to the WRITE BUFFER REGISTER (WR2) to be written on tape. WRITE BUFFER EMPTY becomes true when the previous data byte has been transferred from the WRITE BUFFER REGISTER to the WRITE SHIFT REGISTER from which the data is removed one bit at a time to be written on tape.

GAP DETECTION (GAP, pin 35) indicates that the beginning of an inter record gap has passed the tape drive read head.


The relationship between the various enabling, resetting, flag and request signals in the interrupt request logic is shown in Figure 3. Each of these signals is either controlled or indicated by a bit in one of the uPD371 ADDRESSABLE INTERNAL REGISTERS and each is described in the ADDRESSABLE INTERNAL REGISTER section.

Timing Signals

The user must provide four timing signals to the uPD371--one for write operations and three for read operations. Each is defined in terms of T, where T is the period between successive data transitions in the phase encoded data written onto or read from the tape drive. For instance, if the tape speed is 10 IPS and the density is 800 BPI, then T=1/8000sec or 125usec.

Pin 39 WCK (Write Clock)

WCK determines the WRITE DATA (WD, pin 36) transfer rate. WCK should have a period of Ø.5T. Any duty cycle is allowed as long as WCK remains in each logic state for at least two Øl clock periods.

Pin 16 DT (Data Transition)

DT is a pulse provided by the uPD371 to be used in the generation of the three read timing signals -- SG, pin 34; DO, pin 38; and GAP, pin 35. DT occurs at each data transition in the data read from tape. DT is not generated at phase transitions, so DT has a period equal to T. DT is one Øl cycle in width and occurs during the first Øl cycle time following each data transition.

Pin 34 SG (Sample Gate)

Phase encoded data consists of both data and phase transitions. See Line 1 of Figure 4. The phase transitions are artifacts of the encoding process. Only the data transitions contain useful information. The phase transition information is removed from the read data stream by placing a suitable timing signal at the SG (Sample Gate) input, pin 34.

Read data as received by the uPD371 consists of RD(+) pulses at each positive transition (both phase and data transitions) and RD(-) pulses at each negative transition of the phase encoded data from the tape. See Lines 2 and 3 of Figure 4. Note that RD(+) or RD(-) pulses due to phase transitions occur .5Tusec after DT, Line 4 of Figure 4, and data transitions occur Tusec after DT.

The internal sample gate, Line 6 of Figure 4, is "closed" by each DT. As long as the sample gate is closed, all RD(+) or RD(-) pulses are ignored. The internal sample gate is "opened" by a positive transition at the SG input. If SG is made to go positive .75Tusec after DT, the sample gate is closed long enough to gate out a phase (RD(+) or RD(-) pulse at .5T and open in time to receive the next data pulse at T. The gated RD(+) and RD(-) signals are shown in Lines 7 and 8 of Figure 4.

Note that the sample gate is opened by a positive transition at SG. The time of the negative transition is immaterial so long as SG remains in each logic state for at least two Øl cycles.

SG may be generated by a one-shot (as in Figure 8), a digital interval timer (as in Figure 9), or in unusually critical applications, by a phase-locked loop.

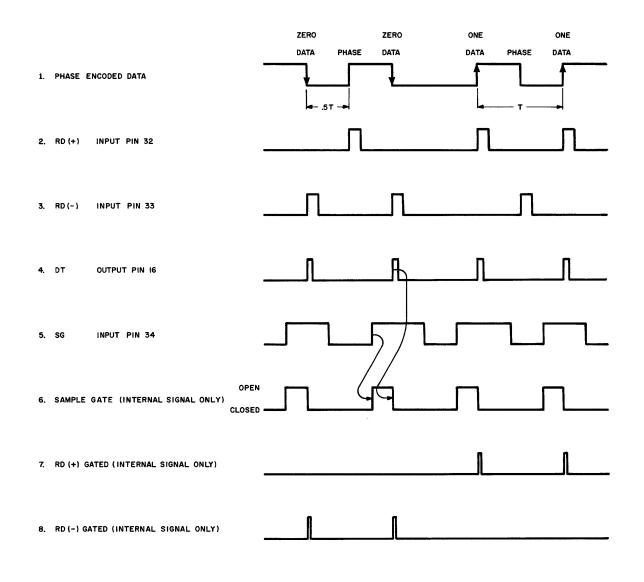


FIGURE 4 SG (SAMPLE GATE) TIMING

Pin 38 DO (Drop Out)

Pin 35 GAP (Gap Detection)

A positive transition should be made at DO whenever a DT pulse stream ceases for a period of 1.5Tusec. A positive transition should be made at GAP whenever a DT pulse stream ceases for a period of 4Tusec.

A positive transition at DO followed by further DT pulses indicates a Drop Out Error (at least one DT missing from the data stream). See DOE, Drop Out Error, bit 3 of RR3.

A positive transition at GAP indicates that the beginning of an inter record gap has passed the tape drive read head. See GPF, Gap Flag, bit 6 of RR3 and GRQ, Gap Request, bit 2 of RRØ.

DO and GAP may be generated by retriggerable one-shots (as in Figure 8) or by their digital analogies (as in Figure 9).

Pin 20 01

Pin 23 Ø2

Øl and Ø2 are MOS level (12V) clock pulses. The timing of Øl and Ø2 is shown in Figure 12. The Øl and Ø2 clock pulses of an 8080A microprocessor are suitable for the uPD371; and if the 8080A and uPD371 are on the same board and located near each other, they may share the Øl and Ø2 outputs of an 8224 clock generator chip. If the 8080A and uPD371 are located far apart or on separate cards, the 8224 clock outputs should be converted to TTL levels, transmitted to the uPD371 vicinity and reconverted to MOS level by a 75361A or equivalent chip.

Øl and Ø2 may be generated by TTL one-shot or digital logic triggered by the clock(s) of other microprocessors such as the 8085, Z80, 6800, etc., and then converted to MOS level. Øl and Ø2 need not by synchronized with the processor clock(s), but controller design and debugging are much easier when they are.

TAPE DRIVE INTERFACE

Write Data

Pin 36 WD (Write Data)

Phase encoded data to be written on tape leaves the uPD371 at pin 36.

Tape Drive Commands and Status

Pin 37 Cl (Tape Drive Command 1)
Pin 27 C2 (Tape Drive Command 2)
Pin 28 C3 (Tape Drive Command 3)

Cl, C2 and C3 are general purpose tape drive commands. Cl, C2 and C3 are set and reset by the software manipulation of bits 5, 6 and 7, respectively, in WR3. Since Cl, C2 and C3 are defined by software, they may be configured for any purpose. Typical uses for Cl, C2 and C3 are WRITE ENABLE, FORWARD and REVERSE; but the commands required by tape drives differ considerably from manufacturer to manufacturer. An equally typical set of commands might be WRITE ENABLE, FORWARD/REVERSE and GO/STOP. The uPD371 can adapt to any cassette or cartridge drive command set by a slight modification of software. For drives or multiple drive systems requiring more than three commands, see Figure 10.

Pin 29 S1 (Tape Drive Status 1)
Pin 26 S2 (Tape Drive Status 2)
Pin 25 S3 (Tape Drive status 3)

S1, S2 and S3 are general purpose tape drive status inputs. Their logic levels are indicated by bits 3, 4 and 7 of RR1, respectively. Typical tape drive status signals are WRITE PERMIT, CASSETTE IN PLACE and SIDE, but tape drive status signals also vary considerably from manufacturer to manufacturer. The uPD371 can adapt to any tape drive status signal set with a slight change in software. For drives or multiple drive systems requiring more than three status inputs, see Figure 10. Pin17 UA(Unit Address)See WR6, bit ØPin19 RWØ(Rewind Command for Drive Ø)See WR3, bit 3Pin18 RW1(Rewind Command for Drive 1)See WR3, bit 3Pin30 MKØ(Drive Ø EOT/BOT Status)See RR1, bits 5,6Pin31 MK1(Drive 1 EOT/BOT Status)See RR1, bits 5,6

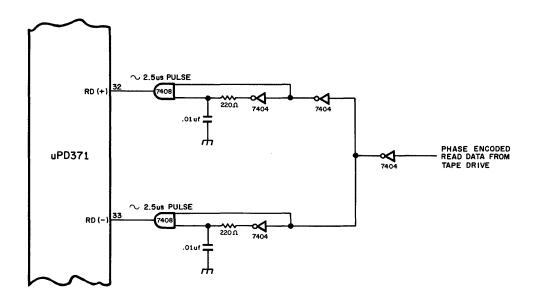
Read Data

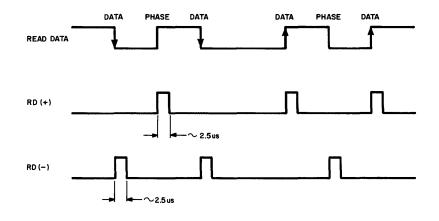
Pin 32 RD(+) Read Data Positive Transitions

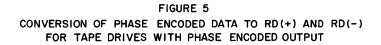
Pin 33 RD(-) Read Data Negative Transitions

The read logic of some tape drives completely reconstitutes the phase encoded data read from tape and transmits the read data from a single output. This type of read data signal is similar to that shown in Line 1 of Figure 4.

The read logic of other tape drives, transmits read data from two outputs. These output signals are similar to those labled RD(+) and RD(-), Lines 2 and 3 of Figure 4.


The uPD371 directly accepts the RD(+) and RD(-) type of read data signals at pins 32 and 33. Tape drives with a single phase encoded output signal require a simple conversion circuit such as the one in Figure 5.


Miscellaneous


Pin 1 MBH (Must Be High)

Pin 42 AWL (Always Low)

MBH must be tied to the VCC (+5V) supply. AWL is a logic low output under all normal operating conditions of the uPD371.

ADDRESSABLE INTERNAL REGISTERS

INTRODUCTION

From the point of view of the processor program, the uPD371 makes the tape drive (or multiple drive system) appear as ten addressable registers. The program controls the drive(s) and transmits data to be written on tape by manipulating bits in the six uPD371 Write Registers. The program senses the status of the drive(s) and reads data stored on tape by reading bits from the four uPD371 Read Registers.

Data transfers to and from the uPD371 addressable internal registers are controlled by the signals W/R, DS and RSØ-RS2. These signals are discussed in the INPUT/OUTPUT SIGNALS section.

The address of each register and a mnemonic abbreviation for each register bit are shown in Figure 6. The function initiated, controlled or sensed by each register bit is described below.

WRITE REGISTERS

Write Register Ø (WRØ)

WRØ-Bit Ø GNT (Gap Noise Tolerance)

When GNT is set to a logic one, the uPD371 read logic ignores inter record gap noise bursts less than 8 bits long. When GNT is set to a logic zero, the uPD371 ignores noise bursts less than 16 bits longs.

Gap noise originates during the writing process as follows: After writing the last record of a write operation, the tape is braked to a halt. When tape motion is completely stopped, the write current is turned off. At some later time, the write current may be turned on again and the tape moved forward to write more records. If the tape position shifts forward, even a very small distance, while the write current is off, a noise burst will be left in the gap. Some drives leave noise at the write-current-off position even when no tape position shift occurs.

REGISTER ADDRESS											
W/R	RS2	RS1	RSØ								

1 1

1 1

BIT NUMBERS											
7	6	5	4	3	2	1					

WRITE REGISTERS

REGISTER NAME

1	Ø	0	Ø	WRØ	RST	MBL	SRS	WME	WCR	x	WMD	GNT
1	Ø	Ø	1	WRI	WRR	RRR	x	RRE	RRD	GRE	GRD	x
1	0	1	0	WR2	WD7	WD6	WD5	WD4	WD3	WD2	WD1	WDØ
1	Ø	1	1	WR3	С3	C2	C1	RRI	RW	x	x	x

Ø	1	WR5	x	x	x	RME	RMD	x	×	×	
1	0	WR6	×	x	x	×	x	x	x	UA	

READ REGISTERS

Ø	0	0	Ø	RRØ	AWH	AWL	C2	С3	RDF	GRQ	WRQ	RRQ
0	0	0	1	RR1	53	мк	MKF	S2	S1	RW	C1	UA
0	Ø	1	0	RR2	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RDØ
0	Ø	1	1	RR3	WD	GPF	REC	CRE	DOE	COR	NBR	NAR
								X = NOT				

FIGURE 6 ADDRESSABLE INTERNAL REGISTERS

It is more difficult to control the write process in such a way as to completely eliminate gap noise than it is to ignore the noise while reading. So, most cassette and cartridge format specifications allow noise to be left in inter record gaps and require that the controller read logic tolerate the noise.

The most common method used to ignore gap noise is to disable the read logic during the time when noise is expected. In many controllers this is the only technique used, but it is effective only if the position of the noise is known.

The uPD371 allows the user to disable the read logic for any desired period; but in addition, counts the number of bits in each group of flux transitions encountered while the read logic is enabled. If the number of bits in the group is less than 8 or 16 (depending on the state of GNT), the group is considered a noise burst and no data is transferred. If the noise occurs in the gap before a record is encountered, NBR (Noise Before Record, bit 1 of RR3) is set to a one. If the noise occurs in the gap after the record is read, NAR (Noise After Record, bit Ø of RR3) is set to a one. When 8 or 16 bits have been counted (depending on the state of GNT), the group of flux transitions is assumed to be a legitimate data record. The uPD371 signals this event by setting REC (Record Detect, bit 5 of RR3) to a one.

WRØ-Bit 1 WMD (Write Mode Disable)

See bit 4 of WRØ (WME-Write Mode Enable)

WRØ-Bit 2 Not used.

WRØ-Bit 3 WCR (Write CRC)

In order to write the two CRC bytes, WCR must be set high while the last data byte of a record is being written. At the completion of that byte, information to be written on tape is taken from the Write CRC Generator rather than from the Write Shift Register. See Figure 7.

Write data will continue to be taken from the Write CRC Generator as long as WCR remains high. So, WCR must be set low again during the writing of the second CRC byte. Then, at the completion of that byte, write data is again taken from the Write Shift Register.

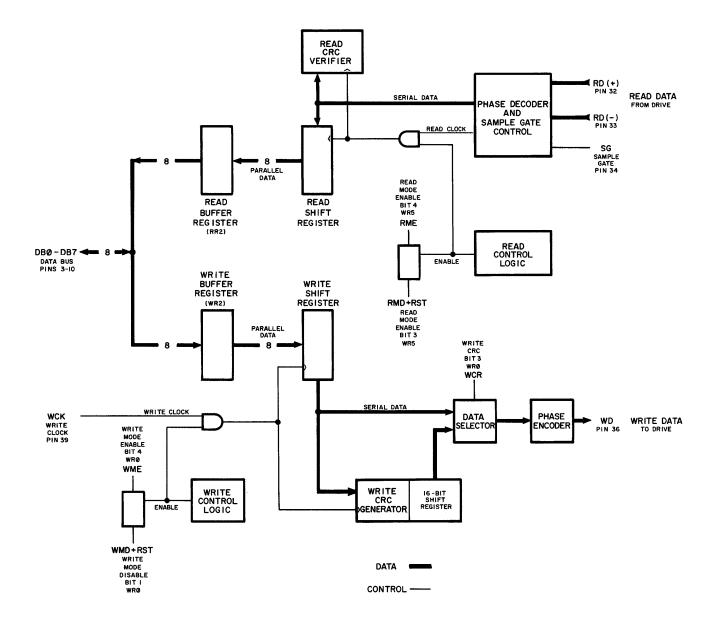


FIGURE 7 uPD371 READ AND WRITE DATA PATHS

WRØ-Bit 4 WME (Write Mode Enable)

WME enables and WMD (bit 1-WRØ) disables the write mode. While the write mode is enabled, the write data path logic (See Figure 7) and the write request logic (see Figure 3) are activated. When the write mode is enabled, the contents of WR2 are transferred into the Write Shift Register and WRQ (Write Request, bit 1 of RRØ) becomes true. The data is shifted one bit at a time from the Write Shift Register, through the Phase Encoder Logic and is written on tape.

When 8 bits have been clocked from the Write Shift Register, the new contents of WR2 are transferred to the Write Shift register and WRQ again becomes true.

This process repeats itself until the write mode is disabled.

WRØ-Bit 5 SRS (Status Reset)

A logic one at SRS resets the following:

The read error status bits -- NAR, NBR, COR, DOE and CRE (bits Ø-4 of RR3);

REC (Record Detection -- bit 5 of RR3);

GPF (Gap Flag -- bit 6 of RR3);

GRQ (Gap Request -- bit 2 of RRØ);

The contents of the Read Shift Register.

SRS may be used to reset the above status signals and data bits while reading or writing "on the fly", that is, without stopping between records. The more powerful General Reset, RST (bit 7 of WRØ) used in the software listings in this manual cannot be used "on the fly", since it would also reset the motion commands.

WRØ-Bit 6 MBL (Must Be Low)

Bit 6 must be low during each transfer into WRØ.

WRØ-Bit 7 RST (Reset)

A logic one at RST, bit 7 of WRØ, causes a general reset of the uPD371. The effect is exactly the same as that of a positive pulse at RST, pin 1.

The following register bits are affected:

- WRØ GNT is set to zero (16 bit noise tolerance) the Write Mode is disabled and WCR is reset.
- WR1 Gap Request and Read Request are disabled.
- WR2 All write data bits are set to zero.
- WR3 RW is not changed (see RW-bit 3 of WR3); RRI is reset; Cl, C2 and C3 are reset.
- WR5 The Read Mode is disabled.
- WR6 UA is set to zero.
- RRØ All bits, except AWH, are set to zero.
- RR1 UA, Cl and MKF are set to zero (RW, S1, S2, MK and S3 are unaffected).
- RR2 All Read Data bits are set to zero.
- RR3 All bits are set to zero.

The following output signals are set to zero:

WD, pin 36

- Cl, pin 37
- C2, pin 27
- C3, pin 28
- UA, pin 17
- REQ, pin 24

The commands, RWØ and RWl are unchanged. See RW-bit 3 of WR3.

Write Register 1 (WR1)

WR1-Bit Ø Not used.

WR1-Bit 1 GRD (Gap Request Disable)

WR1-Bit 2 GRE (Gap Request Enable)

GRE enables and GRD disables the gap interrupt request. While the gap interrupt request is enabled, a positive transition at GAP, pin 35 (if a legitimate record has been detected -- see GNT, bit Ø of WRØ), sets both the Gap Request (GRQ, bit 2 of RRØ) and the Interrupt Request (REQ-pin 24) to a true level. See Figure 3.

WR1-Bit 3 RRD (Read Request Disable)

WR1-Bit 4 RRE (Read Request Enable)

RRE enables and RRD disables the read interrupt request. While the read interrupt request is enabled, the Read Request (RRQ, bit Ø of RRØ) and the Interrupt Request (REQ-pin 24) are set true each time a complete byte is read, assembled in the read shift register and transferred to the Read Buffer Register, RR2. See Figures 3 and 7.

WR1-Bit 5 Not used.

WR1-Bit 6 RRR (Read Request Reset)

A logic one at RRR resets the Read Request, RRQ (bit \emptyset -RR \emptyset). See Figure 3.

WR1-Bit 7 WRR (Write Request Reset)

A logic one at WRR resets the Write Request, WRQ (bit $1-RR\emptyset$). See Figure 3.

Write Register 2 (WR2)

WR2-Bits Ø-7 WDØ-WD7 (Write Buffer Register)

A data byte to be written on tape should be transferred into WR2 each time WRQ (Write Request -- bit 1 of RRØ) becomes true. See Figure 7.

The preamble code should be transferred into WR2 before the Write Mode is enabled (WRE-bit 4 of WRØ).

If the processor does not update the data pattern in WR2 while writing, the previously existing data pattern is not cleared, but is repeatedly written on tape.

Write Register 3 (WR3)

WR3-Bit Ø Not used.

- WR3-Bit 1 Not used.
- WR3-Bit 2 Not used.
- WR3-Bit 3 RW (Rewind)

WR3-Bit 4 RRI (Rewind Reset Inhibit)

If UA (Unit Address -- bit \emptyset of WR6) has previously been set to a logic zero when a logic one is transmitted to RW, the logic level at RW \emptyset , pin 19, goes high and stays high.

If UA has previously been set to a logic one when a logic one is transmitted to RW, the logic level at RW1, pin 18, goes high and stays high.

RWØ and RWl may be used as rewind commands for two separate tape drives. The drive affected is determined by the setting of UA.

RWØ and RWl are not reset by transmitting a zero to RW, nor are they reset by RST (Reset -- bit 7 of WRØ) or SRS (Status Reset -- bit 5 of WRØ). In fact, if RRI is set to a logic one, they cannot be reset at all. If RRI is set to a logic zero, RWØ is reset by a positive transition at MKØ (Marker Zero, pin 30), and RWl is reset by a positive transition at MK1 (Marker One, pin 31). MKØ and MK1 should be connected to the EOT/BOT output of drive zero and drive one respectively. The intention of this scheme is to allow rewinding to be initiated on either drive under program control; but once initiated, rewinding continues to the load point without program intervention. Consequently, one drive may be rewinding automatically while the other is reading or writing. When RRI is set to a logic one, rewinding proceeds to the hub instead of to the load point.

Of course, this technique requires a drive with a REWIND command input. Drives which require a REVERSE and HIGH SPEED command to rewind must be rewound under program control. Both types of drives are discussed in the TAPE CASSETTE/CARTRIDGE CONTROLLER EXAMPLES section.

WR3-Bit 5 Cl (Command One)

WR3-Bit 6 C2 (Command Two)

WR3-Bit 7 C3 (Command Three)

If Cl, bit 5 of WR3, is set to a logic one, the signal level at Cl, pin 37, goes high. The signal level at pin 37 remains high until a subsequent data transfer to WR3 resets bit 5 to a logic zero.

Similarly, C2 (bit 6) and C3 (bit 7) control the signal levels at C2 (pin 27) and C3 (pin 28) respectively.

Cl, C2 and C3 may be used as tape drive command signals, for instance: FWD/STOP, REV/STOP, FWD/REV, RUN/STOP, HIGH SPEED, DRIVE SELECT and so on.

Write Register 4 Not used.

Write Register 5 (WR5)

WR5-Bit Ø Not used.

WR5-Bit 1 Not used.

WR5-Bit 2 Not used.

WR5-Bit 3 RMD (Read Mode Disable)

WR5-Bit 4 RME (Read Mode Enable)

RME enables and RMD disables the read mode. While the read mode is enabled, data serially read from tape is assembled into 8-bit bytes in the Read Shift Register. See Figure 7.

When a complete 8-bit byte has been assembled, the byte is transferred into the Read Buffer Register, RR2, and RRQ (Read Request -- bit \emptyset of RR \emptyset) is set true. See Figure 3. The processor program should read RR2 each time that RRQ becomes true.

WR5-Bit 5 Not used.

WR5-Bit 6 Not used.

WR5-Bit 7 Not used.

Write Register 6 (WR6)

WR6-Bit Ø UA (Unit Address)

A logic one transmitted to bit Ø sets UA, pin 17, high. The logic level at pin 17 remains high until a subsequent data transfer to WR6 includes a logic zero in bit Ø.

In a two drive system, the UA signal at pin 17 may be used uninverted, to address drive one and inverted to address drive zero.

The logic level of UA determines which pin issues rewind commands (see RW, bit 3 of WR3) and from which pin, MKØ or MK1, the EOT/BOT signal is read (see MK and MKF, bits 5 and 6 of RR1).

When controlling a single drive or a multiple drive system in which RWØ and RWl are not used, UA may be used as an additional general purpose command in the same way Cl, C2 and C3 are used. In this case, the drive's EOT/BOT signal should be connected to both MKØ and MKl. See Figure 8.

WR6-Bits 1-7 Not used.

READ REGISTERS

Read Register Ø (RRØ)

RRØ-Bit Ø RRQ (Read Request)

RRQ indicates that eight bits of data have been read from the tape, assembled in the READ SHIFT REGISTER and transferred to the READ BUFFER REGISTER (RR2) where they may be read by the processor program. See Figure 7.

RRQ causes an Interrupt Request, REQ, at pin 24. See Figure 3.

In order for RRQ to become true, the Read Mode must be enabled (RME-bit 4, WR5) and the Read Request must be enabled (RRE-bit 4, WR1).

RRQ is reset by RRR (Read Request Reset -- bit 6 of WR1).

RRØ-Bit 1 WRQ (Write Request)

WRQ indicates that the WRITE BUFFER REGISTER (WR2) is empty and that the processor program may transfer into it the next data byte to be written onto the tape. The WRITE BUFFER REGISTER becomes empty when its contents are transferred to the WRITE SHIFT REGISTER. See Figure 7. The data is shifted serially from the WRITE SHIFT REGISTER and phase encoded before leaving the uPD371 at WD, pin 36.

WRQ causes an Interrupt Request, REQ, at pin 24. See Figure 3.

In order for WRQ to become true, the Write Mode must be enabled (WME-bit 4, WR \emptyset).

WRQ is reset by WRR (Write Request Reset -- bit 7 of WR1).

RRØ-Bit 2 GRQ (Gap Request)

GRQ indicates that an inter record gap has been detected. GRQ is set by a positive transition of the gap detection signal, GAP, pin 35. See GAP, pin 35, in the INPUT/OUTPUT SIGNAL section for a discussion of the gap detection signal.

GRQ causes an interrupt request, REQ, at pin 24.

GRQ can become true only if:

- A legitimate record (not a gap noise burst) preceded the positive transition at GAP. The record is declared to be legitimate when REC, bit 5 of RR3, becomes true. See Gap Noise Tolerance, bit Ø of WRØ.
- 2. The Read Mode has been enabled by RME, bit 4 of WR5.
- 3. Gap Request has been enabled by GRE, bit 2 of WR1.

RRØ-Bit 3 RDF (Read Flag)

RDF is equivalent to RRQ, bit Ø of RRØ, as long as the Read Request is enabled (RRE-bit 4, WR1). But, RDF continues to indicate the state of the Read Request flip-flop even when the Read Request is disabled. See Figure 3.

RRØ-Bit 4 C3 (Command 3)

RRØ-Bit 5 C2 (Command 2)

Bits 4 and 5 of RRØ indicate the status of C3 and C2 at pins 28 and 27 and at bits 7 and 6 of WR3. (The status of Cl is indicated by bit 1 of RR1.)

RRØ-Bit 6 AWL (Always Low)

RRØ-Bit 7 AWH (Always High)

AWL is always a logic zero and AWH is always a logic one.

Read Register 1 (RR1)

RR1-Bit Ø UA (Unit Address)

Bit Ø indicates the status of UA at pin 17 and at bit Ø of WR6.

RR1-Bit 1 Cl (Command 1)

Bit 1 indicates the status of C1 at pin 37 and at bit 5 of WR3. (The status of C2 and C3 are indicated by bits 5 and 4 of RR0.)

RR1-Bit 2 RW (Rewind)

Bit 2 indicates the status of RWØ, pin 19, if UA is zero; or RW1, pin 18, if UA is a one.

RR1-Bit 3 S1 (Status 1)

RR1-Bit 4 S2 (Status 2)

S1 and S2 indicate the logic states at pins 29 and 26 respectively.

RR1-Bit 5 MKF (Marker Flag)

RR1-Bit 6 MK (Marker)

MK indicates the logic state of MKØ, pin 3Ø, if UA is a zero; or MKl, pin 3l, if UA is a one.

MKF is the output of a flip-flop which is set by a positive transition at MKØ if UA is zero or by a positive transition at MKl if UA is a one. MKF is reset by any code transmitted to WR3. MKF is also reset by RST-bit 7 of WRØ or pin 40.

MK is true only while the EOT or BOT marks or the clear leader of the selected drive is adjacent to the sensor. MKF, on the other hand, "remembers" that the EOT or BOT has passed the sensor. MKF may be polled at the convenience of the processor program. The most common action taken by the program after an EOT/BOT mark is sensed, is to stop tape motion. To stop tape motion, the program must modify a motion command which is normally Cl, C2 or C3. Cl, C2 and C3 are in WR3 and any code transmitted to WR3 resets MKF.

RR1-Bit 7 S3 (Status 3)

S3 indicates the logic state at pin 25.

Read Register 2 (RR2)

RR2-Bits Ø-7 RDØ-RD7 (Read Buffer Register)

Data read serially from tape is assembled into 8-bit bytes in the READ SHIFT REGISTER and then transferred to RR2, the READ BUFFER REGISTER, where it is available to the processor program. See Figure 7.

Read Register 3 (RR3)

RR3-Bit Ø NAR (Noise After Record)

RR3-Bit 1 NBR (Noise Before Record)

Both NAR and NBR are error flags which indicate that noise was encountered in an inter record gap while reading a record. A read operation (data read or read-after-write) begins with the read head in the gap preceding a record and ends with the read head in the gap following the record. If noise is found in the gap before the record, NBR is set. If noise is found in the gap following the record, NAR is set.

Exact definitions of NAR and NBR are given below:

NBR is set if a positive transition occurs at DO (Drop Out-pin 38) after the Read Mode is enabled (RME-bit 4, WR5); but before a record is detected. Record detection is signaled by REC-bit 5, RR3.

NAR is set if the Read Mode is enabled and there is a pulse at either of the read data inputs, RD(+) pin 32 or RD(-) pin 33, after the gap has been detected (i.e., while the Gap Flag -- GPF, bit 6 of RR3 is true).

RR3-Bit 2 COR (Command Overrun)

COR is an error flag which indicates that the processor program did not respond to a Write request or a Read Request in time to prevent a loss of data. The program must service a Read or Write request within the time it takes to read or write 8 bits.

COR is set in the Read Mode if the READ SHIFT REGISTER becomes full and data is transferred to the READ BUFFER REGISTER while the Read Request, RRQ, is still set from the previous byte.

COR is set in the Write Mode if the WRITE SHIFT REGISTER becomes empty and data is transferred from the WRITE BUFFER REGISTER while the Write Request, WRQ, is still set from the previous byte.

RR3-Bit 3 DOE (Drop Out Error)

DOE is an error flag which indicates that at least one byte was missing while reading a record or during read-after-write. DOE is set while the Read Mode is enabled if a positive transition occurs at DO, pin 38, after record detection (REC-bit 5, RR3) if DO is followed by at least one RD(+), pin 32, or RD(-), pin 33 before a positive transition at GAP, pin 35.

RR3-Bit 4 CRE (CRC Error)

CRE is an error flag which indicates that the CRC read at the end of a record does not agree with the CRC calculated from the read data.

RR3-Bit 5 REC (Record Detection)

REC indicates that 8 bits (if GNT, bit Ø of WRØ, is set to a logic one) or 16 bits (if GNT is set to a logic zero) have been counted without a drop out since the beginning of the current record. Having counted that number of bits without a drop out virtually guarantees that the current record is a legitimate data record and not noise left in the inter record gap.

See READ A RECORD routine listing for example of how to use REC.

RR3-Bit 6 GPF (Gap Flag)

GPF is equivalent to the Gap Request (GRQ, bit 2 of RRØ) as long as the Gap Request is enabled (GRE, bit 2 of WR1), but GPF continues to indicate the state of the Gap Request flip-flop even when the Gap Request is disabled. See Figure 3.

RR3-Bit 7 WD (Write Data)

Bit 7 indicates the logic level of the phase encoded Write Data output -- WD, pin 36.

PROCESSOR INTERFACE

Figure 8 shows a 6 chip tape controller which has hardware CRC generation and checking, read-after-write and high speed file search.

This particular configuration is designed for an 8080A processor. The 8080A addresses the controller with Input/Output instructions in which A3 is true. The drive handling routines in the SOFTWARE section are written for this circuit.

Slight changes in the processor interface logic would allow almost any other microprocessor or minicomputer to drive the controller.

TIMING

The timing logic shown in Figure 8 consists of 5 one-shots on three 74123 chips. One-shot timing is the simplest conceptually and is suitable for many applications. However, objections can be made against the use of one-shots. For instance:

- 1. The period of 74123's varies with temperature, with VCC and from one chip to another.
- 2. This circuit includes 15 discrete components.
- 3. Four of these discrete components are potentiometers, the most unreliable component of all.
- 4. The potentiometers require initial adjustment during check out and must be rechecked periodically.

There are a number of digital circuits which may be used in place of the one-shot circuit of Figure 8. All require more chips, but are free from discrete components and from adjustments. They operate with their designed time periods, unless they fail completely. An example is shown in Figure 9.

Ul through U5 in Figure 9 are scalers that count $\emptyset 2$ (TTL) pulses. $\emptyset 2$ is normally crystal controlled so its period is stable and accurate. Each of the 8 preset inputs of Ul and U2 and also of U3 and U4 are wired either to ground or through a resistor to +5V. The 8-bit binary number encoded in this manner should be the 2's compliment of the number of $\emptyset 2$ cycles in .25T. Where T is the period between successive data transitions read from or recorded on tape.

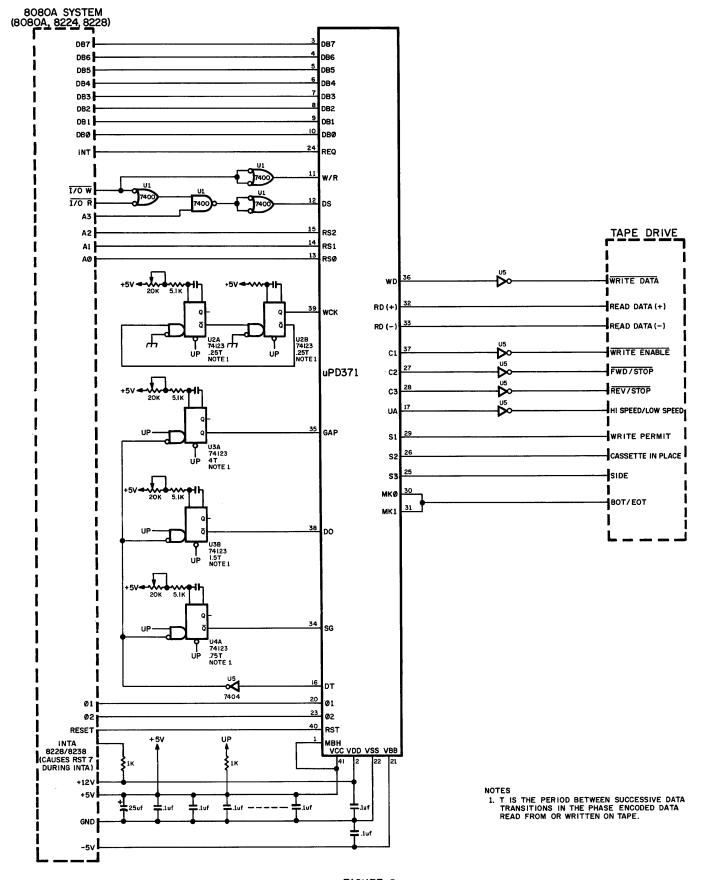


FIGURE 8 uPD371 TAPE CASSETTE/CARTRIDGE CONTROLLER EXAMPLE

FIGURE 9 DIGITAL TIMING EXAMPLE

.

Ul and U2 count from the preset code to overflow in .25Tusec. The carry output of U2 reloads the present count so the carry output occurs every .25Tusec as long as power is on. The carry output also toggles a flip-flop, the Q output of which forms a WCK with a period of .5T as required.

U3, U4 and U5 form an interval timer which is reset and started by each DT pulse. The first DT pulse in a record loads the present code into U3 and U4, resets U5 and enables U3, U4 and U5. .25Tusec later U4 overflows. The carry output of U4 reloads the preset code so that the carry output of U4 will occur at every multiple of .25T following DT. The U4 carry output pulses are counted by U5. When 3 carry output pulses have been counted (3 X .25T=.75T), a positive transition is made at SG, as required.

The second DT pulse in a record occurs about Tusec after the first. This DT, and each succeeding DT, resets U5 and reloads the preset code into U3 and U4. So, as long as no bits are missing from the record, the U3, U4 and U5 interval timer is reset and restarted by each DT around the time four U4 carry outputs have been counted. But if one or more bits are missing, U5 continues counting beyond four. When six U4 carry outputs have been counted (6 X .25T=1.5T), a positive transition is made at DO as required.

At the end of a record, U5 counts to 16 (16 X .25T=4T) at which time it overflows. The U5 carry output causes a positive transition at GAP, as required; and disables the U3, U4 and U5 interval timer, ending its operation.

TAPE DRIVE INTERFACE

Single Drive

Since the commands and status signals of tape cassette and cartridge drives vary from manufacturer to manufacturer, nearly all applications will differ in some respects from Figure 8. Adapting to a particular drive is not difficult if the following design practices are followed.

Write Data and the tape drive commands must be buffered since the uPD371 outputs are limited to 1.7mA drive capability.

Some tape drives require Write Data and commands to be inverted, as in Figure 8, while others require them to be uninverted. Unfortunately, many drives mix the two, requiring some signals to be inverted and others not. The uPD371 general reset, RST, sets Cl, C2, C3 and UA to the low level. This level should cause commands such as WRITE ENABLE and motion commands to be unasserted whether the drive uses negative or positive logic. When four commands are needed, UA may be used as the fourth command, as in Figure 8, if the drive EOT/BOT sense signal is connected to both MKØ and MK1. Then regardless of the state of UA, the EOT/BOT sense signal will correctly affect MK and MKF, bits 6 and 5 of RR1. (MK and MKF are described in the ADDRESSABLE INTERNAL REGISTER section under RR1).

If the tape drive status outputs are expressed in negative logic, it is not necessary to invert them to the true state. They may be tied directly to S1, S2 and S3 since the program can easily test for either logic state. The EOT/BOT sense signal, however, must be asserted in the true sense at MKØ or MKl if MKF is to be affected properly.

If more than four commands and/or four status inputs are required for a single or multiple drive system, they may be added with a simple circuit such as the one shown in Figure 10.

Multiple Drive Systems

Figure 11 shows a particular type of dual drive system for which the uPD371 is especially suited. The drives must each have SELECT and REWIND inputs. UA is used inverted for the SELECT input of drive 1 and uninverted for the SELECT input of drive Ø. RWØ and RW1 are the REWIND inputs of drive Ø and 1 respectively. MKØ and MK1 receive the EOT/BOT sensor output of drives Ø and 1 respectively.

In this configuration, the uPD371 controls part of the rewind operation in hardware which facilitates the rewinding of one drive while reading or writing on the other. For a complete description of this technique, see RW and RRI, bits 4 and 3 of WR3 in the ADDRESSABLE INTERNAL REGISTER section.

Multiple drive systems for other types of drives are easily designed. They generally require additional commands and status signals, as in Figure 10 and they may also require multiplexing of commands and status signals.

Cassette/cartridge drive transfer rates are slow enough to allow reading and writing on one drive of a system while rewinding or high speed file searching on other drives. Reading and/or writing simultaneously on more than one drive with a single uPD371 is not possible.

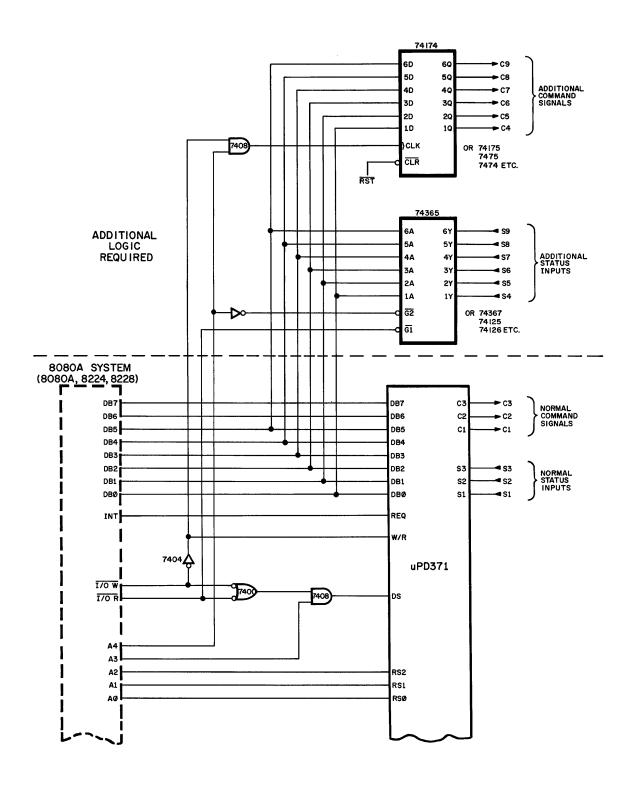


FIGURE 10 ADDITIONAL COMMAND SIGNALS AND STATUS INPUTS FOR COMPLEX DRIVES OR MULTIPLE DRIVE SYSTEMS

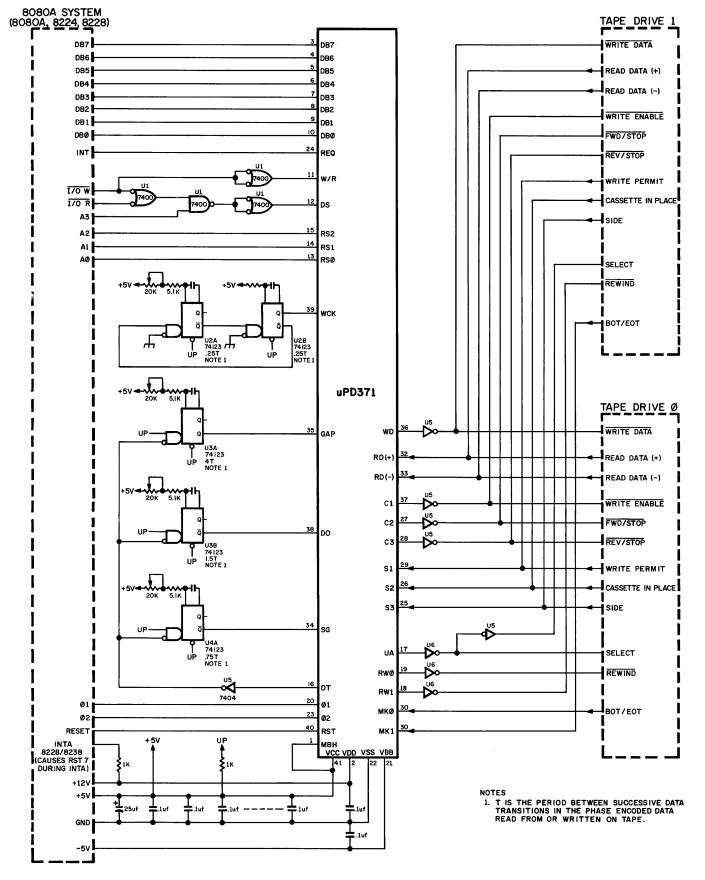


FIGURE 11 uPD371 DUAL TAPE CASSETTE/CARTRIDGE CONTROLLER EXAMPLE

SOFTWARE

Introduction

The software listing which follows is written for a uPD8080A, but can easily be adapted to run on almost any other processor. These routines will read or write ANSI, ECMA or ISO standard records with the controller shown in Figure 8. A routine to rewind tape to either the load point or to the hub is also included. A high-speed file search routine is not included but the algorithm is described. Although the routines are specifically intended for the controller shown in Figure 8, the command sequence is typical of any cassette/cartridge controller design based on the uPD371.

The routines listed are interrupt driven to allow for multiprogramming. However, no attempt is made here to actually do multiprogramming. Instead, the processor is simply halted after each uPD371 servicing to wait for the next interrupt. In any true multiprogramming application, of course, control would be transferred to the mainline program rather than halting.

If the programmer wishes to use polling rather than interrupt, he may replace the HALT instructions with instruction loops which branch when the expected request flag becomes true.

These routines assume the existence of a 5msec interrupt clock, but timing can be done by other types of system clocks or by software delay routines.

Other Formats

The routines listed produce ANSI, ECMA or ISO standard records with preamble and postamble equal to AA hex and with two CRC bytes generated by the polynomial:

X to the 16th + X to the 15th + X squared + 1.

The uPD371 is not limited to this format, however. The preamble and postamble bytes are completely programmable. The CRC, although always calculated, need not be written on tape (WCR, bit 3 of WRØ causes the CRC to be written), nor does the CRC error flag (CRE, bit 4 of RR3) need to be checked while reading. A CRC generated in software by another polynomial or a check sum or nothing at all may be written on tape in place of the hardware calculated CRC.

High Speed File Search

The ANSI, ECMA or ISO standard EOF "mark" is really a five byte record -- preamble, zero data byte, CRC 1, CRC 2 and postamble. Most data records are much longer -- typically 128 or 256 data bytes. Because of the difference in size between EOF marks and most data records, a search for an EOF mark may be made at high speed, without data transfer, by measuring the time between the first Read Request and the Gap Request of each record. When a record is encountered with a passage time less than a certain amount (calculated below), it should be read at low speed to verify that it is an EOF mark and not an unusually short data record.

The length of time used to distinguish between data records and suspected EOF marks depends on the high tape speed of the drive. The drive used in Figure 8, for example, has a high speed of 80 IPS. At this speed, the time between bits (at 800 BPI) is 15.625usec. The time between the first read request (end of the preamble) and the end of the postamble is $32 \times 15.625=500$ usec. The time between the end of the postamble and the gap request is 4T, where T is the low speed data transfer period -- 10 IPS in this example. $4T = 4 \times 125$ us=500us. So, the total time between the first read request and the gap request is 500usec + 500usec=lmsec for an EOF mark read at high speed on the drive used in this example.

Any record encountered in a high speed file search (at 80 IPS) which has a passage time of less than about 2msec (5msec would work) should then be read at low speed to verify that it is, in fact, an EOF mark.

Parameters and Conventions

The tape drive for which these routines are written, Figure 8, has the following parameters:

Low Speed	lØ IPS
High Speed	80 IPS
Start Distance at 10 IPS	.5 in.
Start Time at 10 IPS	5Ømsec
Stop Distance at 10 IPS	.15 in.
Stop Time at 10 IPS	3Ømsec
Distance between read and write heads	.15 in.

The controller in Figure 8 causes a RST7 during interrupt acknowledge which vectors the uPD8080A processor to location 38H at each controller interrupt.

The 5ms clock in this 8080A system causes a RST6 during interrupt acknowledge which vectors the uPD8080A to location 30H at each clock interrupt. An OUT 11H instruction starts the 5ms timer and OUT 12H clears the interrupt request.

The uPD371 is addressed as shown in Figure 8. The table below gives the addresses of each uPD371 register.

WRØ	OUT Ø8H
WR1	OUT Ø9H
WR2	OUT ØAH
WR3	OUT ØBH
WR5	OUT ØDH
WR6	OUT ØEH
RRØ	IN Ø8H
RR1	IN Ø9H
RR2	IN ØAH
RR3	IN ØBH

- Cl, C2, C3, UA, S1, S2 and S3 are defined as in Figure 8.
 - C1 = WRITE ENABLE
 - C2 = FWD/STOP
 - C3 = REV/STOP
 - UA = HI SPEED/LO SPEED
 - S1 = WRITE PERMIT
 - S2 = CASSETTE IN PLACE

S3 = SIDE

41

;NEC UPD371 CASSETTE/CARTRIDGE CONTROLLER PROGRAM

;READ, REWIND AND WRITE Ø6/Ø3/77 1600 (AEO)

	;READ,	REWIND A	ND WRITE 00/03/	// 1000 (ALC)
Ø Ø Ø Ø		ORG	ЗØН	
ØØ3Ø C9	LOC3Ø:	RET		;5 MSEC CLOCK INTERRUPT ;ADDRESS
ØØ31		ORG	38H	
ØØ38 C9	LOC38:	RET		;371 INTERRUPT ADDRESS
ØØ39		ORG	1000H	
	;REWIND	TO LOAD	POINT ROUTINE	
1000 1600 1002 C30710	RWLPT:	MVI JMP	•	;INDICATE REWIND TO ;LOADPOINT
	;REWIND	TO HUB	ROUTINE	
1005 1601	RWHUB:	MVI	D,ØlH	;INDICATE REWIND TO HUB
1007 1E00 1009 CD6811	RW1:	MVI CALL	E,Ø READY	;INDICATE NONWRITE OPERATION ;CLEAR FLAGS, RESET 371 AND ;CHECK FOR CASSETTE IN PLACE
100C AF 100D 322212		XRA STA	A EOT	;RESET EOT
1010 3E01 1012 D30E		MVI OUT	A,01H ØEH	;SET HI SPEED
1014 3E80 1016 D30B		MVI OUT	А,80Н 0ВН	;SET REVERSE
1018 3E96 101A CD0D12		MVI CALL	A,150 DELAY	;DELAY 750 MSEC TO MAKE SURE ;SENSOR IS NOT ON EOT OR ;EOT CLEAR LEADER
101D CD7C10		CALL	MARK	;WAIT FOR BOT INDICATION
1020 3E01 1022 CD0D12		MVI CALL	A,1 DELAY	;DELAY 5 MSEC TO GUARANTEE ;THAT NEXT MARK INDICATION ;IS BOT CLEAR LEADER
1025 CD7C10 1028 AF		CALL XRA	MARK A	;WAIT FOR BOT CLEAR LEADER ;RESET REVERSE
1029 D30B 102B 3E3C		OUT MVI	ЙВН А,60	;WAIT 300 MSEC FOR TAPE
102D CD0D12		CALL	DELAY	;TO STOP

1030 7A 1031 B7 1032 CA3F10 1035 3E80 1037 D30B 1039 3E64 103B CD0D12 103E C9		MOV ORA JZ MVI OUT MVI CALL RET	A,D A RW2 A,80H ØBH A,100 DELAY	;TO HUB? ;NO: CONTINUE
103F 3E40 1041 D30B 1043 3E01 1045 CD0D12 1048 DB09 104A E640 104C C24310	RW2: RW3:	MVI OUT MVI CALL IN ANI JNZ	A,40H ØBH A,1 DELAY Ø9H 40H RW3	;SET FWD ;DELAY 5 MSEC ;HAS TAPE MOVED FWD TO END OF ;BOT CLEAR LEADER? ;NO: WAIT 5 MSEC THEN RECHECK
104F 3E1E 1051 CD0D12 1054 AF 1055 D30B 1057 D30E 1059 3E28 105B CD0D12		MVI CALL XRA OUT OUT MVI CALL	A,30 DELAY A ØBH ØEH A,40 DELAY	;YES: CONTINUE MOVING TAPE ;FWD AT HI SPEED FOR 150 MSEC ;RESET FWD TO STOP TAPE ;RESET HI SPEED ;WAIT 200 MSEC FOR TAPE ;TO STOP
105E 3E40 1060 D30B 1062 3E00 1064 CD0D12 1067 DB09 1069 E620 106B CA6210	MKF:	MVI OUT MVI CALL IN ANI JZ	A,40H ØBH A,0 DELAY 09H 20H MKF	;SET FWD ;DELAY 5 MSEC ;HAS TAPE MOVED FWD TO BOT? ;NO: WAIT 5 MSEC THEN RECHECK
106E AF 106F D30B 1071 3E06 1073 CD0D12 1076 3E01 1078 322112 107B C9		XRA OUT MVI CALL MVI STA RET	A ØBH A,6 DELAY A,Ø1H BOT	;YES: RESET FWD TO STOP TAPE ;WAIT 30 MSEC FOR TAPE ;TO STOP ;SET SOFTWARE BOT FLAG ;RETURN FROM REWIND TO ;LOADPOINT
107C DB09 107E E640 1080 C0 1081 3E01 1083 CD0D12	MARK:	IN ANI RNZ MVI CALL	Ø9H 4ØH A,1 DELAY	;EOT/BOT? ;YES: RETURN ;NO: WAIT 5 MSEC THEN RECHECK

		;WRITE A	A RECORD	ROUTINE	
	1EØ1 CD6811			E,Ø1H READY	;INDICATE WRITE OPERATION ;CLEAR FLAGS,RESET 371,CHECK ;FOR CASSETTE IN PLACE AND ;WRITE PERMIT
1091 1092 1095	CA9B1Ø 3EØ1 321912		LDA ORA JZ MVI STA RET	EOT A Wl A,ØlH ERF	;HAS THE EOT PASSED? ;NO: CONTINUE ;YES: STORE Ø1 IN ERF ;RETURN
1Ø9B	CD9611	Wl:	CALL	MOVEF	;SET WRITE ENABLE AND FWD ;WAIT 50 MSEC FOR TAPE TO ;REACH FULL SPEED. ;ENABLE READ TO MAKE READ- ;AFTER-WRITE CRC CHECK
10A1 10A2 10A5 10A7 10AA 10AB 10AE 10B1	CAB11Ø 3E3C CDØD12 AF 322112 C3B61Ø	W2:	LDA ORA JZ MVI CALL XRA STA JMP MVI CALL	BOT A W2 A,6Ø DELAY A BOT W3 A,6 DELAY	<pre>;WAS TAPE AT LOADPOINT? ;NO: USE NORMAL DELAY ;YES: DELAY 300 MSEC TO WRITE ;3.3 INCH BOT GAP ;CLEAR SOFTWARE BOT FLAG ;DELAY 30 MSEC TO WRITE 0.8 ;INCH INTER RECORD GAP</pre>
	D3ØA 3E1Ø	W3:	MVI OUT MVI OUT	А,ØААН ØАН А,1ØН Ø8Н	;LOAD PREAMBLE IN WR2 ;ENABLE WRITE MODE ;WRITING BEGINS AT NEXT ;WCK. CRC CALCULATION ;BEGINS AFTER PREAMBLE IS ;WRITEN.
1ØBE 1ØBF		WLP: ; ; ;INTERR ;	EI HLT UPT		;WAIT FOR WRITE REQUEST ;INTERRUPT

1086 C37C10

JMP

MARK

	;		
10C0 3E80	MVI	А,80Н	;RESET WRITE REQUEST
10C2 D309	OUT	Ø9H	
1ØC4 7E	MOV	А,М	;GET NEXT BYTE
10C5 D30A	OUT	ØAH	;PUT IN WR2
1ØC7 23	INX	Н	;INCREMENT ADDRESS POINTER
1ØC8 Ø5	DCR	В	;DECREMENT WORDCOUNT
			;IS WORDCOUNT ZERO?
10C9 C2BE10	JNZ	WLP	;NO: WRITE ANOTHER BYTE
10CC FB	EI		;YES: WAIT FOR LAST DATA
10CC 76	HLT		BYTE TO BE TRANSFERRED
1000 /0			FROM WR2 TO WRITE SHIFT
			; REGISTER
	;		,
	;		
	; INTERRUPT		
	;		
	;		
1000 2000	M777	3 0 G II	;LAST DATA BYTE BEING WRITTEN
10CE 3E80 10D0 D309	MVI OUT	А,80Н 09Н	RESET WRITE REQUEST
10D0 D309 10D2 3E08	MVI	A,Ø8H	;SET WCR - STOPS WRITING DATA
10D2 5100 10D4 D308	OUT	Ø8H	FROM WR2 AT NEXT WRITE
			REQUEST AND BEGINS WRITING
			;DATA FROM CRC SHIFT REGISTER
10D6 FB	EI		
10D7 76	HLT		
	;		
	; INTERRUPT		
	; •		
	1		;1ST CRC BYTE BEING WRITTEN
10D8 3E80	MVI	А,80Н	; RESET WRITE REQUEST
10D0 5100 10DA D309	OUT	Ø9H	, REDEL WRITE REQUEST
10DC FB	EI		
10DD 76	HLT		
	;		
	;		
	;INTERRUPT		
	;		
	;		
10DE 3E80	N# T 7 T	V O QU	; 2ND CRC BYTE BEING WRITTEN
10DE 3E80 10E0 D309	MVI OUT	А,8ØН Ø9Н	;RESET WRITE REQUEST
10E0 D309 10E2 3EAA	MVI	A,ØAAH	; PUT POSTAMBLE CODE IN WR2
10E2 JEAA 10E4 D30A	OUT	ØAH	, IOI IODIMIDEE CODE IN WIZ
1054 550M 10E6 AF	XRA	A	;RESET WCR - STOP WRITING
10E7 D308	OUT	Ø8H	;DATA FROM CRC SHIFT REGISTER
			AT NEXT WRITE REQUEST AND
			;RETURN TO WRITING DATA FROM
			;WR2

10E9 FB 10EA 76	EI HLT		
	; ;INTERRUPT ; ;		
10EB 3E84 10ED D309 10EF 3E02 10F1 D308 10F3 FB 10F4 76	MVI OUT MVI OUT EI HLT	A,84H Ø9H A,Ø2H Ø8H	;POSTAMBLE BEING WRITTEN ;RESET WRITE REQUEST AND ;ENABLE GAP REQUEST ;DISABLE WRITE MODE ;WAIT FOR GAP DETECTION
	; ; ;INTERRUPT ;		
10F5 CDB211	; CALL	GAP	;BEGINING OF GAP HAS PASSED ;READ HEAD ;RESET GAP REQUEST. STOP TAPE ;MOTION. CHECK FOR EOF,EOT ;AND ERRORS
10F8 AF 10F9 D30B 10FB C9	XRA OUT RET	A ØBH	;RESET WRITE ENABLE ;RETURN
	;READ A RECORD	ROUTINE	
lØFC lEØØ lØFE CD6811	READ: MVI CALL	E,Ø READY	;INDICATE NONWRITE OPERATION ;CLEAR FLAGS, RESET 371 AND ;CHECK FOR CASSETTE IN PLACE
1101 3E14 1103 D309 1105 CD9611	MVI OUT CALL	A,14H Ø9H MOVEF	;ENABLE READ AND GAP ;INTERRUPT REQUESTS ;SET FWD. WAIT 50 MSEC FOR ;TAPE TO REACH FULL SPEED. ;ENABLE READ REQUEST
1108 AF 1109 322112 110C 57 110D FB 110E 76	XRA STA MOV EI HLT ; ; ; INTERRUPT	A BOT D,A	;CLEAR SOFTWARE BOT FLAG ;CLEAR INTERRUPT COUNTER ;WAIT FOR READ REQUEST ;INTERRUPT
	; ;		

				;PREAMBLE IN RR2
11ØF CD5511		CALL	RDINT	RESET READ REQUEST AND CHECK
1112 DBØA		IN	ØAH	;FOR GAP ;READ DATA
1114 D6AA		SUI	ØAAH	;IS IT A PREAMBLE?
1116 321C12		STA	PRERR	;STORE RESULT IN PRERR
1119 CA2111 111C 3EØ1		JZ MVI	Rl A,ØlH	;YES: CONTINUE ;NO: STORE Øl IN ERF
111E 321912		STA	ERF	,NO. STORE OF IN ERF
1121 FB	Rl:	EI		;WAIT FOR READ REQUEST
1122 76		HLT		;INTERRUPT
	; ;			
	; INTERR	RUPT		
	; ;			
	,			;1ST DATA BYTE IN RR2
1123 CD5511		CALL	RDINT	; RESET READ REQUEST AND CHECK
1126 DBØB		IN	ØBH	;FOR GAP ;CHECK FOR RECORD DETECTION
1128 E62Ø		ANI	2ØH	
112A D62Ø		SUI		;WAS A RECORD DETECTED?
112C 321D12 112F CA3711		STA JZ		;STORE RESULT IN RCERR ;YES: CONTINUE
1132 3EØ1		MVI	A,Ø1H	NO: STORE Ø1 IN ERF THEN
1134 321912 1137 DBØA	R2:	STA IN	ERF ØAH	;CONTINUE ;SAVE 1ST DATA BYTE FOR LATER
1137 DB0A 1139 322612	RZ:	STA		;INSPECTION BY EOF DETECTOR
				;DURING GAP ROUTINE
113C DBØA	RLP1:	IN	ØAH	;READ DATA FROM RR2
113E 77 113F 23		MOV INX	М,А Н	;STORE IN MEMORY ;INCREMENT ADDRESS POINTER
1140 05		DCR	В	DECREMENT WORDCOUNTER
				;IS IT ZERO?
1141 CA4C11		JZ	RLP2	;YES: EXIT READ LOOP. NO MORE ;DATA STORAGE DESIRED
1144 FB		EI		;NO: CONTINUE READING DATA
1145 76		HLT		
	;			
	; INTERF	RUPT		
	;			
	,			;A DATA BYTE IN RR2
1146 CD5511		CALL	RDINT	RESET READ REQUEST AND CHECK
11 49 C33C11		JMP	RLP1	;FOR GAP ;CONTINUE READING DATA
114C FB	RLP2:	EI		
114D 76		HLT		· · · ·
	;			

	; ;INTERR ;	UPT		
	,			;WORDCOUNT EXCEEDED. NO ;STORAGE DESIRED
114E CD5511		CALL	RDINT	;RESET READ REQUEST AND CHECK ;FOR GAP
1151 Ø5 1152 C34C11		DCR JMP	B RLP2	;DECREMENT WORDCOUNTER ;CONTINUE NON DATA STORAGE ;LOOP UNTIL GAP DETECTED
1155 DBØ8 1157 E6Ø4 1159 C26211	RDINT:	IN ANI JNZ		;READ INTERRUPT FLAGS ;WAS IT A GAP REQUEST? ;YES: END OF RECORD ;JUMP TO ENDRD
115C 3E4Ø 115E D3Ø9 116Ø 14 1161 C9		MVI OUT INR RET	А ,4 ØН Ø9H D	;NO: MUST BE READ REQUEST ;RESET READ REQUEST ;INCREMENT INTERRUPT COUNTER ;RETURN
1162 CDB211	ENDRD:	CALL	GAP	;RESET READ REQUEST.STOP TAPE ;MOTION.CHECK FOR EOF,EOT ;AND ERRORS.
1165 33 1166 33 1167 C9		INX INX RET	SP SP	;NORMAL EXIT FROM READ

; READY SUBROUTINE

1168 211912 116B Ø6Ø8 116D AF 116E 77 116F 23 117Ø Ø5 1171 C26E11	READY: RDYLP:	LXI MVI XRA MOV INX DCR JNZ	H,ERF B,8 A M,A H B RDYLP	;CLEAR FLAGS
1174 3E80 1176 D308 1178 7B 1179 B7 117A DB09 117C C28611 117F E610		MVI OUT MOV ORA IN JNZ ANI	A,80H 08H A,E A 09H RD1 10H	RESET 371 READ OR WRITE OPERATION CALLING READY? READ RR1 WRITE: GO TO RD1 READ: CHECK FOR CASSETTE IN

48

1181 D61Ø 1183 C38A11 1186 E618 1188 D618	RD1:	SUI JMP ANI SUI	10H RD2 18H 18H	;PLACE ONLY ;WRITE: CHECK FOR CASSETTE IN ;PLACE AND WRITE PERMIT
118A 321A12	RD2:	STA	ERRl	;STORE RESULT IN ERR1 ;WAS THERE AN ERROR?
118D C8		RZ		;NO: NORMAL RETURN
118E 3EØ1		MVI	A,ØlH	;YES: STORE Ø1 IN ERF
1190 321912		STA	ERF	
1193 33		INX	SP	
1194 33		INX	SP	
1195 C9		RET		;EXIT FROM ROUTINE WHICH
				;CALLED READY

; MOVE SUBROUTINE

1196 7B 1197 B7 1198 3E6Ø 119A C29F11	MOVEF:	MOV ORA MVI JNZ	A,E A A,6ØH MOV1	;READ OR WRITE OPERATION ;CALLING MOVEF? ;WRITE: SET FWD AND WRITE ;ENABLE
119D 3E40 119F D30B 11A1 3E0A 11A3 CD0D12	MOV1:	MVI OUT MVI CALL	A,4ØH ØBH A,1Ø DELAY	;READ: SET FWD ONLY ;WAIT 50 MSEC FOR TAPE TO ;REACH FULL SPEED
11A6 3E1Ø 11A8 D3ØD 11AA 2A2312 11AD 3A2512 11BØ 47 11B1 C9	-	MVI ØDH LHLD LDA MOV RET	A,1ØH STADD WDCNT B,A	;ENABLE READ MODE ;LOAD START ADDRESS IN HL ;LOAD WORDCOUNT IN B

;GAP SUBROUTINE

	3EØ2 D3Ø9	GAP:	MVI OUT	A,Ø2H Ø9H	;DISABLE GAP REQUEST
11B9 11BC 11BF 11CØ	FEØ5 C2C811 3A2612		MOV CPI JNZ LDA ORA JNZ MVI	A,D 5 Gl FSTBY A Gl A,ØlH	;READ INTERRUPT COUNTER ;DID RECORD CONTAIN 5 BYTES? ;NO: CONTINUE ;YES: WAS THE DATA BYTE ZERO? ;NO: CONTINUE ;YES SET EOF FLAG

11C5 321F12		STA	EOF	
11C8 78 11C9 D6FD	G1:	MOV SUI	A,B -Ø3	;READ WORDCOUNTER FINAL VALUE ;IS IT -3? ;(POSTAMBLE, CRC1 AND CRC2)
11CB 322Ø12		STA	WCDIF	STORE RESULT IN WCDIF
11CE 3EØ8 11DØ D3ØD 11D2 CDØ412		MVI OUT CALL	A,Ø8H ØDH EOTCK	;DISABLE READ MODE ;IF EOT WAS PASSED STORE
11D2 000412 11D5 7B 11D6 B7		MOV ORA	A,E A	;01 IN EOT ;READ OR WRITE OPERATION ;CALLING GAP?
11D7 3E20 11D9 C2DD11		MVI JNZ	А,20H G2	;WRITE: RESET FWD LEAVING ;WRITE ENABLED
llDC AF llDD D3ØB llDF 3EØ6	G2:	XRA OUT MVI	A ØBH A,6	;READ: RESET FWD ONLY ;WAIT 30 MSEC FOR TAPE TO STOP
11E1 CDØD12 11E4 CDØ412		CALL CALL	DELAY EOTCK	; IF EOT WAS PASSED STORE ; Ø1 IN EOT
llE7 DBØB llE9 E6lF		IN ANI	ØBH 1FH	;STORE ERROR BITS IN ERR2
llEB 321B12 llEE CAF611		STA JZ	ERR2 G3	;WERE THERE ANY ERRORS? ;NO: CONTINUE
11F1 3EØ1 11F3 321912		MVI STA	A,ØlH ERF	;YES: STORE Ø1 IN ERF
llF6 DBØA llF8 D6AA	G3:	IN SUI	ØАН ØААН	;WAS LAST BYTE A POSTAMBLE?
llFA 32lEl2 llFD C8		STA RZ	POERR	;STORE RESULT IN POERR ;YES: RETURN
11FE 3EØ1 1200 321912 1203 C9		MVI STA RET	A,Ø1H ERF	NO: PUT Ø1 IN ERF AND RETURN

;CHECK FOR EOT SUBROUTINE

1204 DB09	EOTCK:	IN	Ø9H	;WAS EOT PASSED?
1206 E620		ANI	2ØH	
12Ø8 C8		RZ		;NO: RETURN - EOT UNMODIFIED
1209 322212		STA	EOT	;YES: STORE 20H IN EOT AND
12ØC C9		RET		;RETURN

;DELAY SUBROUTINE

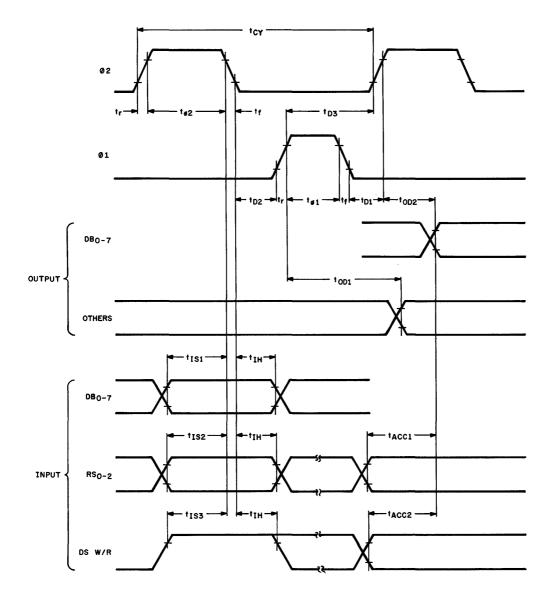
120D 4F	DELAY:	MOV	C,A	;STORE NUMBER OF 5 MSEC ;DELAYS DESIRED IN C
120E D313 1210 FB 1211 76	DELLP: ; ; ;INTERR ; ;	OUT EI HLT UPT	13Н	;FIRE 5 MSEC ONE SHOT ;ENABLE INTERRUPTS ;WAIT 5 MSEC FOR INTERRUPT
1212 D312 1214 ØD 1215 C2ØE12 1218 C9	,	OUT DCR JNZ RET	12H C DELLP	;CLOCK INTERRUPT ;CLEAR INTERRUPT FLAG ;DECREMENT DELAY COUNTER ;NO: DELAY 5 MSEC MORE ;YES: RETURN
1219 ØØ	ERF:	DB	Ø	;MASTER ERROR FLAG
121A 00 121B 00 121C 00 121D 00 121E 00	ERR1: ERR2: PRERR: RCERR: POERR:	DB DB DB DB DB	Ø Ø Ø Ø	
121F ØØ 122Ø ØØ	EOF: WCDIF:	DB DB	Ø Ø	
1221 ØØ 1222 ØØ	BOT: EOT:	DB DB	Ø Ø	
1223 ØØØØ 1225 ØØ	STADD: WDCNT:	DW DB	Ø Ø	
1226 ØØ	FSTBY:	DB	Ø	
0000		END		

ABSOLUTE MAXIMUM RATINGS

	Ta = 25 C All voltages	measured with re	espect to VSS
Symbol	Parameter	Min Max U	Unit Conditions
VDD	VDD Supply Voltage	-1 +16	V VBB=-5V <u>+</u> 5%
VCC	VCC Supply Voltage	-1 +8	V VBB=-5V <u>+</u> 5%
VBB	VBB Supply Voltage	-10 0	V
VI	Input Voltage	-1 +8	V VBB=-5V <u>+</u> 5%
VO	Output Voltage	-1 +8	V VBB=-5V <u>+</u> 5%
VO	Clock Voltage	-1 +16	V VBB=-5V <u>+</u> 5%
Topt	Operating Free-Air Temp.Ra	nge Ø +7Ø	C
Tstg	Storage Temperature	-40 +125	C I

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

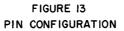
CAPACITANCE

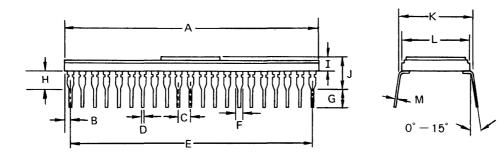

	Ta = 25 C, $VDD = VCC = VSS =$	ØV, VI	3B = -	-5V		
Symbol	Parameter	Min	Тур	Max	Unit	Conditions
CØ	Clock Capacitance					fc=1MHz. All pins except
CIN	Input Capacitance		1	10	pF	measuring pin are
COUT	Output Capacitance					grounded

DC CHARACTERISTICS

Ta = 0	1-70 C VDD = $+12V+5%$ VCC	= +5V <u>+</u>	58	VBB =	-5V <u>+</u> 5%	$VSS = \emptyset V$
Symbol	Parameter	Min	Тур	Max	Unit	Conditions
VIH	Input High Voltage	+3.0		Įvcc	V	1
VIL	Input Low Voltage	Ø		+Ø.8	V	1
VOH	Output High Voltage	+3.5			V	IOH = -1mA
VOL	Output Low Voltage			+Ø.4	V	IOL = +1.7mA
VØH	Clock Input High Voltage	+9		VDD	V	
VØL	Clock Input Low Voltage	I Ø		+0.65	V	
ILIH	Input Leakage Current			+10	uA	VI = +3.ØV
	Input DBØ-DB7 Leakage			-10	uA	VI = +Ø.8V
	Current All Except DBØ-DB7 (~25K Internal Pull-ups)	 	 	-1.0 	mA 	VI = +Ø.4V
ILØH	Clock Input Leakage Current			+2Ø	uA	$ V\emptyset = +9.0V$
ILØL	Clock Input Leakage Current			-20	uA	$ V\emptyset = +\emptyset.65V$
ILOH	Output Leakage Current			+10	uA	VO = +3.5V
ILOL	Output Leakage Current			-10	uA	$ VO = +\emptyset.4V$
IDD	Power Supply Current(VDD)		+2Ø		mA	
ICC	Power Supply Current(VCC)	1	+3Ø		mA	
IBB	Power Supply Current (VBB)	1		-2	mA	

AC CHARACTERISTICS


Та	$= \emptyset - 7\emptyset$ C VDD $= +12V + 5\%$	VCC =	= +5V	<u>+</u> 5%	VB	B = -	-5V <u>+</u>	<u>.</u> 5% \	785	= CU
Symbol	Parameter	1	Min	 Ty	p M	ax 1	Unit	Condi	lti	ons
tcy	Clock Period		480		5	000	ns	Ι		
tr,tf	Clock Rise & Fall Times		Ø			50	ns	I		
tØ1	Øl Pulse Width		6Ø		1		ns			
tØ2	02 Pulse Width		220				ns			
tDl	Øl to Ø2 Delay		Ø				ns			
 tD2	02 to 01 Delay		7Ø		Ι		ns			
t D3	Delay Øl to Ø2 Lead.Edges		8Ø				ns	1		
tOD1	Data Out Delay from Øl					480	ns	lTTL	&	CL=30pF
±0D2	Data Out Delay from Øl					260	ns	lTTL	&	CL=30pF
tACC1	RSØ-RS2 to Output Delay					3001	ns	lTTL	&	CL=30pF
tACC2	DS, W/R to Output Delay		,			200	ns	lTTL	&	CL=30pF
tisl	DBØ-DB7 to Ø2 Setup Time		250	1			ns			
tIS2	RSØ-RS2 to Ø2 Setup Time		350				ns			
tIS3	DS, W/R to Ø2 Setup Time		150				ns			
 tIH	Input Hold Time from Ø2		3Ø				ns			



Note: Timing Measurement Levels: Clack High/Low Voltage = 9.0V/0.65V Input High/Low Voltage = 3.0V/0.8V Output High/Low Voltage = 2.0V/0.8V

> FIGURE 12 uPD371 TIMING DIAGRAM

_			
мвн 🗖	1	\neg	42 🗌 AWL
ᄢ	2		41 🗍 Vcc
DB7 🗖	3		40 🗋 RST
DB6 🗖	4		39 🗖 WCK
D85 🕅	5		38 🗖 DO
D84 🗌	6		37 🗋 C1
DB3 🗌	7		36 🗋 WD
D82 🗌	8		35 🗍 GAP
DB1 🗖	9		34 🗖 SG
DBØ 🗌	10		33 🗍 RD (-)
W/R 🗌	11	uPD371	32 🗖 RD (+)
DS 🗌	12		31 🗍 MK1
RSØ 🗌	13		30 🗍 мкø
RS1 🗌	14		29 🗖 S1
RS2 🗌	15		28 🗋 C3
DT [16		27 🗋 C2
UA 🗖	17		26 🗋 S2
RW1 🗌	18		25 🗋 53
RWØ 🗖	19		24 🗋 REQ
Ø1 🗖	20		23 🗍 Ø2
∨вв 🗆	21		22 🗆 V _{SS}

		1
ITEM	MILLIMETERS	INCHES
А	53.5 Max.	2.1 Max.
В	1.35	0.05
С	2.54	0.10
D	0.5	0.02
E	50.80	2.0
F	1.27	0.05
G	2.54 Max.	0.10 Min.
н	1.0 Min.	0.04 Min.
I	4.2 Max.	0.17 Max.
J	5.2 Max.	0.21 Max.
к	15.24	0.60
L	13.50	0.53
М	0.3	0.012

FIGURE 14 PACKAGE OUTLINE

The information presented in this document is believed to be accurate and reliable. The information is subject to change without notice.

NEC microcomputers, inc.

Five Milita Drive Lexington, Massachusetts 02173 Telephone (617) 862-6410 Telex 92-3434 TWX 710-326-6520