K-SERIES MICROCONTROLLERS

1994
 K-SERIES MICROCONTROLLERS DATA BOOK

Document No. 50053-1
©1994 NEC Electronics Inc. All rights reserved.
Printed in the United States of America.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics Inc. (NECEL). The information in this document is subject to change without notice. Devices sold by NECEL are covered by the warranty and patent indemnification provisions appearing in NECEL Terms and Conditions of Sale only. NECEL makes no warranty, express, statutory, implied, or by description, regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. NECEL makes no warranty of merchantability or fitness for any purpose. NECEL assumes no responsibility for any errors that may appear in this document. NECEL makes no commitment to update or to keep current information contained in this document. The devices listed in this document are not suitable for use in applications such as, but not limited to, aircraft, aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices in these applications or they intend to use "standard" quality grade NEC devices in applications not intended by NECEL, please contact our sales people in advance. "Standard" quality grade devices are recommended for computers, office equipment, communication equipment, test and measurement equipment, machine tools, industrial robots, audio and visual equipment, and other consumer products. "Special" quality grade devices are recommended for automotive and transportation equipment, traffic control systems, anti-disaster and anti-crime systems, etc.

Reliability and Quality Control

NEC

Contents

Section 1 Reliability and Quality Control	
Section 2 μ PD78C00 Product Line 8-Bit, Single-Chip Microcontrollers	
μ PD78C14 Family (μ PD78C10A/C11A/C12A/C14/C14A/CP14) 8-Bit, Single-Chip Microcontrollers With A/D Converter	2-a
μ PD78C18 Family (μ PD78C17/C18/CP18) 8-Bit, Single-Chip Microcontrollers With A/D Converter	2-b
μ PD78C00 Product Line Programming Reference	2-C
Section 3 μ PD78K0 Product Line 8-Bit, K-Series Microcontrollers	
μ PD78002 Family (μ PD78001B/002B/P014) 8-Bit, K-Series Microcontrollers General Purpose	3-a
μ PD78002Y Family (μ PD78001BY/002BY/P014Y) 8-Bit, K-Series Microcontrollers General Purpose with ${ }^{2} \mathrm{C}$ Bus	3-b
μ PD78014 Family (μ PD78011B/012B/013/014/P014) 8-Bit, K-Series Microcontrollers General Purpose with A/D Converter	3-C
μ PD78014Y Family ($\mu \mathrm{PD} 78011 \mathrm{BY} / 012 \mathrm{BY} / 013 \mathrm{Y} / 014 \mathrm{Y} / \mathrm{P} 014 \mathrm{Y}$) 8-Bit, K-Series Microcontrollers General Purpose with A/D Converter and I2C Bus	3-d
μ PD78044 Family (μ PD78042/043/044/P044) 8-Bit, K-Series Microcontrollers With FIP (VP) Controller/Driver and A/D Converter	3-e
μ PD78054 Family (μ PD78052/053/054/P054) 8-Bit, K-Series Microcontrollers With UART, A/D and D/A Converters	3-f

Section 3 (cont)	
μ PD78K0 Product Line	
8-Bit, K-Series Microcontrollers	
μ PD78064 Family	$3-\mathrm{g}$
$(\mu$ PD78062/063/064/P064)	
8-Bit, K-Series Microcontrollers	
With LCD Controller/Driver, UART, and A/D Converter	
μ PD78K0 Product Line	3-h
Programming Reference	

Section 4
μ PD78K2 Product Line
8-Bit, K-Series Microcontrollers
μ PD78214 Family 4-a
(μ PD78212/213/214/P214)
8-Bit, K-Series Microcontrollers
With A/D Converter, Real-Time Output Ports
μ PD78218A Family
4-b
(μ PD78217A/218A/P218A)
8-Bit, K-Series Microcontrollers
With A/D Converter, Real-Time Output Ports

μ PD78224 Family	4-c
(μ PD78220/224/P224)	
8-Bit, K-Series Microcontrollers	
With Analog Comparators, Real-Time Output	
Ports	

μ PD78238 Family 4-d
(μ PD78233/234/237/238/P238)
8-Bit, K-Series Microcontrollers
With A/D and D/A Converters, Real-Time
Output Ports

μ PD78244 Family
(μ PD78243/244)
8-Bit, K-Series Microcontrollers
With A/D Converter, EEPROM, Real-Time
Output Ports

μ PD78K2 Product Line
Programming Reference

Section 7 Soldering	
μ PD78C00 Product Line; Soldering and Packaging Information	7-1
μ PD78K0 Product Line; Soldering and Packaging Information	7-3
μ PD78K2 Product Line; Soldering and Packaging Information	7-5
μ PD78K3 Product Line; Soldering and Packaging Information	7-7
Soldering Conditions	7-9
Section 8 Package Drawings	
64-Pin Plastic Shrink DIP (P64C-70-750A, C)	8-1
64-Pin Ceramic Shrink DIP (P64DW-70-750A)	8-2
64-Pin Ceramic Shrink DIP (P64DW-70-750A1)	8-3
64-Pin Ceramic LCC w/window (X80KW-80B)	8-4
64-Pin Ceramic LCC w/window (X64KW-100A-1)	8-5
64-Pin Plastic QFP (P64G-100-12, 1B-1)	8-6
64-Pin Plastic QFP (P64GC-80-AB8-2)	8-7
64-Pin Plastic QFP (P64GF-100-3B8, 3BE-1)	8-8
64-Pin Plastic QFP (3.0-mm height) (P64GC-80-3BE)	8-9

Section 8 (cont) Package Drawings	$\mathbf{8 - 1 0}$
64-Pin Plastic QFP (1.7-mm height)	
(P64G-80-22-1)	

Contents

Section 1 Reliability and Quality Control	
Introduction	1-1
Built-In TQC	1-2
Approaches to TQC	1-2
Zero Defects Program	1-2
Statistical Approach	1-3
Implementation of Quality Control	1-3
Product Development	1-4
Incoming Material Inspection	1-4
In-Process Quality Inspection	1-4
Electrical Testing and Screening	1-4
Outgoing Inspection	1-4
Reliability Assurance Test	1-5
Process/Product Changes	1-5
Reliability Theory	1-5
Life Distribution	1-5
Failure Distribution at NECEL	1-6
Infant Mortality Failure Screening	1-6
Accelerated Reliability Testing	1-7
Reliability Assurance Tests	1-7
Failure Rate Calculation/Prediction	1-8
Failure Rate Calculation Example	1-9
Failure Rate Goals	1-9
Failure Analysis	1-10
Summary	1-10

> NECEL Electronics Inc. is dedicated to the QCD principle of providing the highest quality product at the lowest possible cost with on-time delivery to our customers.

As large-scale integrated (LSI) circuits increase in density, the reliability of individual devices imposes a more profound impact on system reliability. As a result, great emphasis has been placed by LSI circuit manufacturers on assuring device reliability.

Conventionally, performing reliability tests and using feedback from the field have been the only methods of monitoring and measuring reliability. As LSI density increases, however, internal device circuit elements have become more difficult to activate from external terminals and to detect their degradation. Testing and feedback alone cannot provide enough information to ensure today's demanding reliability requirements.

To guarantee and improve the reliability of LSI circuits, a new philosophy and methodology are needed for reliability assurance. Quality and reliability must not only be monitored and measured but, most importantly, must be built into the product.

BUILT-IN TQC

NECEL introduced the concept of total quality control (TQC) across its entire semiconductor product line to implement this philosophy. Quality control is now an integral part of each process step and requires production, engineering, quality control staffs, and all management personnel to participate in TQC activities. Figure 1 is a flowchart that shows how these activities form a comprehensive quality control system at NECEL.

In addition to TQC, NECEL introduced a pre-screening method into the production line that eliminates potentially defective units. This combination of building in quality and screening out projected early failures has resulted in superior quality and reliability.

Most LSI circuits use high-density MOS technology. Their state-of-the-art high performance improved fineline generation techniques. When physical parameters are reduced, circuit density and performance increase and active circuit power dissipation decreases.The information presented here will show that this ad-
vanced technology combined with the practice of TQC yields products as reliable as those from previous technologies.

APPROACHES TO TQC

TQC activities are geared toward total customer satisfaction. The success of these activities depends on management's commitment to enhancing employee development, maintaining a customer-first attitude, and fulfilling community responsibilities.

TQC is implemented in the following steps. First, quality control is embedded into each process, allowing early detection of possible failure mechanisms and immediate feedback. Second, the reliability and quality assurance policy is upheld through company-wide quality control activities. Third, emphasis is placed on research and development efforts to achieve even higher standards of device quality and reliability. Fourth, extensive failure analysis is performed periodically, and appropriate corrective actions are taken as preventative measures.

Process control limits are based on statistical data gathered from this analysis and used to determine the effectiveness of the in-process quality control steps.

New standards are continuously upgraded, and the iterative process continues. The goal is to maintain the superior product quality and reliability that has become synonymous with the NEC name.

Zero Defects Program

One of the quality control activities that involves every staff level is the "Zero Defects" (ZD) program. The purpose of the ZD program is to minimize, if not prevent, defects due to controllable causes. These activities are organized by groups of workers around these four premises.

- A group must have a target or purpose to pursue.
- Several groups can be organized to pursue a common target.
- Each group must have a responsible leader.
- Each group is well supported by management.

Figure 1. NECEL's Quality Control System

The group's target is selected from items relating to specifications, inspections, operation standards, etc. When past data is available, a Pareto diagram is created and reviewed to select an item most in need of quality improvement. Target defects related to this item are clearly defined. Records are analyzed to compute numerical equivalents of the defects. Then, action is taken to control these defects.

Statistical Approach

Another approach to quality control is statistical analysis. NECEL uses statistical analysis at each stage of LSI product development, trial runs, and mass production. These are some implementations of this statistical approach:

- Process comparisons
- Control charts
- Data analysis
- Correlation, regression, multivariance, etc.
- Cp/Cpk studies
- Variables and attributes data (performed monthly)

Process control sheets and other QC tools are used to monitor important parameters such as $\mathrm{Cp}, \mathrm{Cpk}, \mathrm{X}, \mathrm{X}-\mathrm{R}$, electrical parameters, pattern dimensions, bond strength, test percentage defects, etc. The results of these studies are monitored by the production staff, QC engineers, and other associated engineers. If any out-of-control or out-of-specification limit is observed, corrective procedures are quickly taken.

IMPLEMENTATION OF QUALITY CONTROL

Building quality into a product requires early detection of possible failure mechanisms and immediate feedback to remove such problems. A fixed quality inspection station often cannot provide prompt and accurate feedback about the process steps prior to the inspection. Quality control functions have therefore been distributed into each process step including the conceptual stage. These are the most significant areas where quality control has been placed:

- Product development
- Incoming material inspection
- Wafer processing
- Chip mounting and packaging
- Electrical testing and infant mortality screening
- Outgoing material inspection
- Reliability assurance tests
- Process/product changes

Figure 2. New Product Development

Product Development

New product development includes the product concept, device proposal review, physical element design and organization, engineering evaluation, and, finally, product transfer to manufacturing. Quality and reliability are considered at every step. The new product development flow at NECEL is shown in figure 2.

Design is the first and most important step in new product development. NECEL believes that the foundation of device quality is determined at the design stage. The four steps involved are circuit design, mask pattern layout, package design, and the setting of process and product manufacturing conditions. Design standards have been established at NECEL to maximize quality and reliability.

After completion of the design, a design review is performed to check for conformity to design standards and to consider other factors influencing reliability and quality. At this stage, modification or re-design may be necessary. NECEL believes that design reviews are essential for product modifications as well as for newly designed products.
Once a design successfully passes its review, a trial run takes place in which the product's electrical and mechanical characteristics, quality, and reliability are evaluated.
Additional runs are performed in which process conditions are varied deliberately, causing characteristic factors to change in mass production. These samples are evaluated to determine the best combination of process conditions. Reliability tests are then conducted to check the new product's electrical and mechanical stress resistance. If no problems are found at this stage, the product is approved for mass production.
Mass production begins after the product design department prepares a schedule that includes reliability and quality control steps. The standards for production and control steps are continuously re-examined for possible improvement, even after mass production has started.

Incoming Material Inspection

NECEL has the following programs to control incoming materials:

- Vendor/material qualification system
- Purchasing specifications for materials
- Incoming materials inspection
- Inspection data feedback
- Meetings with vendors concerning quality
- Vendor audits

If any parts or materials are rejected at incoming inspection, they are returned to the vendor with a rejection notification form specifying the failure items and modes. The results of these inspections are used to rate the vendors for future purchasing.

In-Process Quality Inspection

Typical in-process quality inspections performed at wafer fabrication, chip mounting and packaging, and device testing stages are listed in appendix 1A and appendix 1 B .

Electrical Testing and Screening

At the first electrical test, dc parameters are tested according to electrical specifications on 100% of each lot. This is a prescreening prior to any infant mortality test. At the second electrical test, ac functional tests as well as dc parameter tests are performed on 100% of each lot. If the percentage of defective units in a lot is unacceptably high in this test, the lot is subjected to an infant mortality rescreen. During this time, any defective units undergo extensive failure analysis. The results of these analyses are fed back into the process through corrective actions.

Figure 3 is a flowchart of the typical infant mortality screening and electrical testing.

Outgoing Inspection

Prior to warehouse storage or shipment, lots are subjected to an outgoing inspection according to the following sampling plan:

- Electrical
- Dc parameters, lot tolerance parts defective (LTPD) 3\%
-Ac functional LTPD 3\%
- Appearance
- Major LTPD 3\%
—Minor LTPD 7\%

Figure 3. Electrical Testing and Screening

Reliability Assurance Tests

Prior to shipment, representative samples from each process family are taken on a regular basis and subjected to monitoring reliability tests. This testing is performed to confirm that NECEL's products continually meet their field reliability targets.

Process/Product Changes

As mentioned previously, a design review occurs for product changes as well as for new products. Once a design is approved and processes are altered for maximum quality, qualification testing is performed to check reliability. If the test results are acceptable, the product is internally qualified for mass production.

The typical reliability qualification tests performed at NECEL are listed in appendix 3.

RELIABILITY THEORY

Reliability is defined as a characteristic of an item expressed by the probability that it will perform a required function, under specific conditions, for a cer-
tain period of time. The concept of probability, the definition of required function, and the knowledge of how time affects the item of concern are therefore necessary tools for the study of reliability.
Definition of a required function, by implication, treats the definition of a failure. Failure of a device is defined as the termination of a device's ability to perform its required function. A device has failed if it is unable to meet guaranteed values given in its electrical specifications.

Failures are categorized by the period of time in which they occur. The critical times used in the discussion of device reliability and failure are the periods of early, random, and wearout failures. Probability is used to quantitatively estimate reliability levels during these periods as well as overall reliability. The relevant theories and methods of calculation will be discussed later.

Regarding individual devices, specific failure mechanisms seen in life tests and in infant mortality screening tests are the parameters of concern in the determination of overall device failure rates, thus reliability levels.
Regarding systems, the sum of individual device failure rates is the expected failure rate of the system hardware.

Life Distribution

The fundamental principles of reliability engineering predict that the failure rate of a group of devices will follow the well-known bathtub curve in figure 4.

Figure 4. Reliability Life (Bathtub) Curve

The curve is divided into three regions: infant mortality, random failures, and wearout failures.

The infant mortality section of the curve, where the failure rate is declining rapidly, represents the early-life device failures. These failures are usually associated with one or more manufacturing defects.
After a period of time, the failure rate reaches a low value. This random failure area of the curve represents the useful portion of a device's life. During this random failure period, a slight decline is observed due to the depletion of potential random failures from the general population.
Wearout failures occur at the end of useful device life. These failures are observed in the rapidly rising failure rate portion of the curve; devices are wearing out both physically and electrically.
Therefore, for a device that has a very long life expectancy compared to the system that contains it, the areas of concern will be the infant mortality and random failure portions of the bathtub curve.

Failure Distribution at NECEL

To eliminate infant mortality failures, NECEL subjects its products to production burn-in whenever necessary. This burn-in is performed at an elevated temperature on 100% of the devices involved and is designed to remove potentially defective units.
After elimination of early device failures, a system will be left to the random failures of its components. To make proper projections of the failure rate of a system in the operating environment, random failure rates must be predicted for the system's components.

To qualitatively study random failures, integrated circuits returned from the field, as well as in-house life testing failures, undergo extensive failure analyses at respective NEC manufacturing divisions. Failure mechanisms are identified and resulting data is fed back to appropriate production and engineering groups. Longterm failure rates are determined from this data to quantitatively study this random failure population.

Infant Mortality Failure Screening

Establishing infant mortality screening requires knowledge of likely failure mechanisms and their associated activation energies.

Typical problems associated with infant mortality failures are manufacturing defects and process anomalies, which consist of contamination, cracked chips, wire bond shorts, or bad wire bonds. Since these problems can result from a number of possible failure mechanisms, the activation energy for infant mortality can vary considerably. Correspondingly, the effectiveness of an infant mortality screening condition (preferably at some stress level to shorten the screening time) varies greatly with the failure mechanism.

For example, failures due to ionic contamination have an activation energy of approximately 1.0 eV . Therefore, a 15 -hour stress at $125^{\circ} \mathrm{C}$ junction temperature would be the equivalent of approximately 314 days of operation at a junction temperature of $55^{\circ} \mathrm{C}$. On the other hand, failures due to oxide defects have an activation energy of approximately 0.3 eV . A $15-$ hour stress at $125^{\circ} \mathrm{C}$ junction temperature in this case would be the equivalent of approximately 4 days of operation at $55^{\circ} \mathrm{C}$ junction temperature. The condition and duration of infant mortality screening is determined by the economic factors involved in the screening and by the allowable rate of component failure. A component failure causes a system failure.
Empirical data gathered at NECEL indicates that any early failures generally occur after less than 4 hours of stress at $125^{\circ} \mathrm{C}$ ambient temperature. This fact is supported by the bathtub curve created from actual life test results. The failure rate after 4 hours of such stress testing shows random distribution as opposed to the rapidly decreasing failure rate observed in the early life portion of the curve.
Whenever necessary, NECEL has adopted this infant mortality burn-in at $125^{\circ} \mathrm{C}$ as a standard production screening procedure. NECEL believes it is imperative that failure modes associated with such infant mortality screens be understood and fixed at the manufacturing level. Failure analysis is performed on all infant mortality failures for this purpose. This in-line data coupled with data accumulated from the field is used to introduce corrective actions and quality improvement measures. If the early-life failures of a device can be minimized or eliminated and countermeasures appropriately monitored, then such screens can be eliminated. The result of such practices is that field reliability of NECEL devices is an order of magnitude higher than NECEL's long-term failure rate goals.

Table 1. Typical Reliability Test Results

Name	Type	HTB (1000H)	T/H (1000H)	PCT (192H)	T/C (300)
Micro (Note 1)	NMOS	$\begin{aligned} & 9 / 26169 \\ & (13 \mathrm{FIT}) \end{aligned}$	3/15977	0/16928	0/3542
	cMOS	$\begin{aligned} & 7 / 29829 \\ & (4.3 \mathrm{FIT}) \end{aligned}$	7/23123	0/23275	0/12238
Memory (HTOL)	1 Meg DRAM (Note 2)	$\begin{aligned} & 44 / 38217 \\ & (43 \mathrm{FIT}) \end{aligned}$	0/18210	0/6320	0/11300
	4 Meg DRAM (Note 3)	$\begin{aligned} & 12 / 8085 \\ & (2.2 \mathrm{FIT}) \end{aligned}$	1/2866	0/2100	0/2020
	256K SRAM (Note 4)	$\begin{aligned} & 1 / 2812 \\ & (22 \mathrm{FIT}) \end{aligned}$	1/2562	0/1900	0/3232
	1 Meg SRAM (Note 4)	$\begin{aligned} & 0 / 2136 \\ & (1.25 \mathrm{FIT}) \\ & \hline \end{aligned}$	2/1959	0/1080	0/1375
ASIC (Note 5)	CMOS	$\begin{aligned} & 7 / 8787 \\ & (21 \mathrm{FIT}) \end{aligned}$	0/3577	5/13971	6/9693
	Bicmos	$\begin{aligned} & 3 / 2801 \\ & (29 \mathrm{FIT}) \\ & \hline \end{aligned}$	0/3601	0/4535	0/5825

Note:

Information in the table above has been extracted from NECEL report
numbers:
(1) IRQ-3Q-24163
(4) TRQ-93-07-0165
(2) TRQ-93-01-0142
(5) TRQ-93-07-0163
(3) TRQ-93-01-0141

Accelerated Reliability Testing

NECEL performs extensive reliability testing at both pre-production and post-production levels to ensure that all products meet NECEL's minimum expectations and those of the field.
Assume an electronic system contains 1000 integrated circuits and that 1% system failures per month can be tolerated by this system. The allowable failure rate per component is then calculated as follows:

$$
\begin{aligned}
\frac{1 \% \text { failures }}{720 \text { hours } \times 1000 \text { pieces }} & =(0.0014) \frac{\% \text { failures }}{1000 \text { hours }} \\
& =14 \text { FITs }
\end{aligned}
$$

The rate of 14 FITs corresponds to one failure in 85 devices during an operating test of approximately 10,000 hours. To demonstrate this reliability level in a reasonable amount of time, a test condition is apparently required to accelerate the time-to-failure in a predictable and understandable way.
The most common method for decreasing time-tofailure is the use of high temperature to accelerate
physiochemical reactions that can lead to device failure. Other stressful environmental conditions are voltage, current, humidity, vibration, or some combination of these. Appendix 2 lists typical accelerated reliability assurance tests performed at NECEL on molded integrated circuits. Table 1 shows the results of some of these tests for various process types.

Reliability Assurance Tests

NECEL's life tests consist of the high-temperature operating/bias life (HTOL/HTB), the high-humidity storage life (HHSL), the high-temperature, high-humidity ($\mathrm{T} / \mathrm{H}=\mathrm{HHSL}+$ bias), and the high-temperature storage life (HTSL). Additionally, NECEL performs various environmental and mechanical tests.

HTOL/HTB Test. These tests are used to accelerate failure mechanisms by operating devices in a dynamic (operating life) or static (bias) condition at an elevated temperature of $125^{\circ} \mathrm{C}$. The data obtained is translated to a lower temperature to estimate device life expectancy using the Arrhenius relationship explained later.

HHSL and T/H Tests. Integrated circuits are extremely sensitive to the effects of humidity such as electrolytic corrosion between biased lines. The high-temperature and high-humidity tests are performed to detect failure mechanisms accelerated by temperature and humidity, such as leakage related problems and drifts in device parameters due to process instability.
HTSL Test. Another common test is the high-temperature storage life test in which devices are subjected to elevated temperatures with no applied bias. This test is used to detect process instability and stress migration problems.
Environmental Tests. Other environmental tests such as the pressure cooker test (PCT) or the temperature cycling test (T / C) detect problems related to the package and/or interactions between materials as well as the degradation of environmentally sensitive device characteristics.

Failure Rate Calculation/Prediction

To predict the device failure rate from accelerated life test data, the activation energies of the failure mechanisms involved should be considered. In some cases, an average activation energy is assumed to accomplish a quick first-order approximation. NECEL assumes an average activation energy of 0.7 eV or 0.45 eV for most products (0.3 eV for high-density memory devices). These values have been assessed from extensive reliability test results and yield conservative failure rates.

Since most semiconductor failures are temperature dependent, the Arrhenius relationship is used to normalize failure rate predictions at a system operation temperature of $55^{\circ} \mathrm{C}$. It assumes that temperature dependence is an exponential function that defines the probability of failure occurrence, and that degradation of a performance parameter is linear with time. The Arrhenius model includes the effects of temperature and activation energies of the failure mechanisms in the following Arrhenius equation:

$$
A=\exp \frac{-E_{A}\left(T_{J 1}-T_{J 2}\right)}{k\left(T_{J 1}\right)\left(T_{J 2}\right)}
$$

Where:
$A(T)=$ Acceleration factor
$\mathrm{E}_{\mathrm{A}}=$ Activation energy
$\mathrm{T}_{\mathrm{J} 1}=$ Junction temperature (in K) at $\mathrm{T}_{\mathrm{A} 1}=55^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{J} 2}=$ Junction temperature (in K) at $\mathrm{T}_{\mathrm{A} 2}=125^{\circ} \mathrm{C}$
$\mathrm{k}=$ Boltzmann's constant $=8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K}$

Because the thermal resistance and power dissipation of a particular device type cannot be ignored, junction temperatures ($T_{J_{1}}$ and $T_{J_{2}}$) are used instead of ambient temperatures ($T_{A 1}$ and $T_{A 2}$). We calculate junction temperatures using the following formula:
$T_{J}=T_{A}+$ (thermal resistance)(power diss. at T_{A})
With this information, a temperature acceleration factor can be calculated.
In some cases, the effect of voltage acceleration on failure rate must also be considered. Voltage acceleration can be characterized by the following equation: $A(V)=\exp [-\beta(V d-V s)]$
Where:
$\mathrm{Vd}=$ Operating voltage (5.5 V)
$\mathrm{Vs}=$ Life test stress voltage (7 V)
$\beta=$ Empirically determined constant (dependent on electric field constant and oxide thickness)
The constant β has been given the value ≈ 1, which is a conservative figure. Therefore, the overall acceleration factor will be determined as the product:
$A(T, V)=A(T) * A(V)$
To estimate long-term failure rate, the acceleration factor must be multiplied by the actual time to determine the simulated test time. From the hightemperature operating or bias life test results, failure rates can then be predicted at a 60% confidence level using the following equation:

$$
L=\frac{\left(X^{2}\right) 10^{5}}{2 T}
$$

Where:
$\mathrm{L}=$ Failure rate in \%/1000 hours
$\mathrm{X}^{2}=$ The tabular value of chi-squared distribution at a given confidence level and calculated degrees of freedom ($2 f+2$, where $f=$ number of failures) See note below.
$\mathrm{T}=\#$ of equivalent device hours $=(\#$ of devices $) \times(\#$ of test hours) \times (acceleration factor)
Note: Since the failures of concern here are the long-term failures, not the infant mortality failures (that is, the end of the downward slope and the middle constant section of the bathtub curve in figure 4), X^{2} is determined by assuming a one-sided, fixed time test.
Another method of expressing failures is in FITs (failures in time). One FIT is equal to one failure in 109 hours. Since L is already expressed as \%/1000 hours (10^{-5} failure/hr), an easy conversion from $\% / 1000$ hours to FIT would be to multiply the value of L by 10^{4}.

To accurately determine this failure rate, a statistically large sample size must be accumulated. Depending on the accuracy needed, the following conditions should be imposed:

- A minimum of 1.2 million device hours (equal to sample size multiplied by test period) at $125^{\circ} \mathrm{C}$ should be accumulated to accurately predict a failure rate of 0.02% per 1000 hours at $55^{\circ} \mathrm{C}$, with a 60% confidence level.
- A minimum of 3 million device hours at $125^{\circ} \mathrm{C}$ should be accumulated to accurately predict a failure rate of 0.01% per 1000 hours at $55^{\circ} \mathrm{C}$, with a 60% confidence level.
Failure Rate Calculation Example. As an example of how this failure rate is calculated, assume a sample of 960 pieces was subjected to 1000 hours at $125^{\circ} \mathrm{C}$ burnin. One reject was observed. Given that the acceleration factor was calculated to be 34.6 using the Arrhenius equation, what is the failure rate normalized to $55^{\circ} \mathrm{C}$ using a confidence level of 60%. Express the failure rate in FITs.

Solution:
For $n=2 f+2=2(1)+2=4, X^{2}=4.046$

$$
\begin{aligned}
& \text { Then } L=\frac{\left(X^{2}\right) 10^{5}}{2 T} \quad(\% / 1000 \text { hours }) \\
& =\frac{\left(X^{2}\right) 10^{5}(\% / 1000 \text { hours })}{2(\# \text { devices })(\# \text { test hours)(accel. factor) }} \\
& =\frac{(4.046) 10^{5}}{2(960)(1000)(34.6)}=0.0061(\% / 1000 \text { hours }) \\
& \text { Therefore, FIT }=(0.0061)\left(10^{4}\right)=61
\end{aligned}
$$

Failure Rate Goals

Outgoing electrical and mechanical quality levels, as well as mortality and long-term failure rates, are monitored and checked against quality and reliability targets. Long-term failure rate goals are based on mask and process designs. NECEL's quality and reliability targets are listed in tables 2 and 3.

Table 2. NECEL Quality Targets

	Outgoing Electrical (PPM)							Outgoing Mechanical (PPM)						
						BiPo							BiPo	
Year	Memory	Micro	System Micro	$\begin{aligned} & \text { CMOS } \\ & \text { ASIC } \end{aligned}$	RAM	$\begin{aligned} & \mathrm{ECL} \\ & \mathrm{G} / \mathrm{A} \end{aligned}$	$\begin{gathered} \text { BiCMOS } \\ \text { G/A } \end{gathered}$	Memory	Micro	System Micro	$\begin{aligned} & \text { CMOS } \\ & \text { ASIC } \end{aligned}$	RAM	$\begin{aligned} & \mathrm{ECL} \\ & \mathrm{G} / \mathrm{A} \end{aligned}$	$\underset{\mathrm{G} / \mathrm{A}}{\mathrm{BiCMOS}}$
1993	10	60	50	50	80	300	80	10	60	50	50	80	300	80
1994	3.4	40	40	10	80	300	80	3.4	40	40	10	80	300	80
1995	3.4	40	30	5	80	150	50	3.4	40	30	5	80	150	50

Table 3. NECEL Reliability Targets

	Infant Mortality (FIT)							Long-Term Reliability (FIT)						
						BiPo							BiPo	
Year	Memory	Micro	System Micro	$\begin{aligned} & \text { CMOS } \\ & \text { ASIC } \end{aligned}$	RAM	$\begin{aligned} & \mathrm{ECL} \\ & \mathrm{G} / \mathrm{A} \end{aligned}$	$\begin{gathered} \text { BiCMOS } \\ \mathbf{G} / \mathrm{A} \end{gathered}$	Memory	Micro	System Micro	$\begin{aligned} & \text { CMOS } \\ & \text { ASIC } \end{aligned}$	RAM	$\begin{aligned} & \mathrm{ECL} \\ & \mathrm{G} / \mathrm{A} \end{aligned}$	BiCMOS G/A
1993	10	40	50	100	50	300	80	10	30	100	50	30	300	80
1994	3.4	30	40	50	50	300	80	3.4	20	100	10	30	300	80
1995	3.4	30	30	10	50	150	50	3.4	20	100	5	30	150	50

FAILURE ANALYSIS

At NECEL, failure analysis is performed not only on reliability testing and field failures, but also on products that exhibit defects during production. This data is closely checked for correlation process quality information, inspection results, and reliability test data. Information derived from these failure analyses is fed back into the process.
Since many failure mechanisms can be exhibited by LSI devices, highly advanced analytical tools and methodologies are required to investigate such LSI failures in detail. The standard failure analysis flowchart relating to the returned products from customers is shown in appendix 4.

Special Grade Devices

Some applications require a wider temperature range and/or higher reliability than most, such as medical or safety equipment, transportation control systems, etc. For these requirements, NEC offers special grade devices based on a mutual quality agreement. The typical differences between special and standard grade devices are shown in table 4. NEC's quality and reliability targets for grade (A) microprocessor/controller products are shown in table 5.

SUMMARY

Building quality and reliability into products by forming a total quality control system is the most efficient way to ensure product success.
The combination of building quality into products, effective prescreening of potential failures, and monitoring of reliability through extensive testing has established a singularly high standard for NECEL's largescale integrated circuits.
The company's quality control program supports research and development activities, failure analyses, and process improvements. With this extensive program, NECEL continuously sets and maintains higher standards of quality and reliability.

Table 4. Standard Grade and Special Grade Differences

Item	Standard Grade	Special Grade
Reliability	Evaluation	
HTB, TTH HTS	>1000 hours	>2000 hours
T/C	>100 cy	>300 cy
PCT	>96 hours	>192 hous
Quality	Standard quality control steps	Special control when necessary
Screening Standard burn-in Increased burn-in time Electrical testing Standard Addition of high temperature testing (if not performed already) Storage 3 years 5 years life		

Table 5. Grade (A) Micro Reliability and Quality Targets

Quality/Rel. Item	1993	1994	1995
Outgoing electrical (PPM)	10	3.4	3.4
Outgoing mechanical (PPM)	10	3.4	3.4
Infant mortality (FIT)	10	5	5
Long term rel. (FIT)	10	5	5

Appendix 1A. Typical QC Flow for CMOS Fabrication

Appendix 1B. Typical QC Flow for PLCC Assembly/Test

Process/Materials		Inspection of Manufacturing Conditions				Inspection of Manufacturing Quallities			
		Inspection Item	Frequency	Instrument	Inspected by	Inspection Item	Frequency	Instrument	Inspected by
	Sorted Wafers								
	Wafer VIsual					Wafer Visual	100\%	Naked Eye	Operator
	Dlcing	Table Speed DI Water Blade Height	Every Shift	Indicators Gauges	P.C.	Sawing Dimensions	Before Running	Microscope With Fliter Eyeplece	Operator
	Break and Expand	Wafer Break Conditions Wafer Expand Conditions	Every Shilf	Indicators Gauges	P.C.	Wafer Visual	100\%	Naked Eye	Operator
	Dle Visual Inspection					Die Visual	Every Lot Sampling (Or 100\%)	Microscope	Operator
	Lead Frames Die Attached	Dle Attached Conditions Temperature	Every Shift	Indicators Thermocouple, Potentiometer	P.C.	Die Visual Epoxy Coverage	Every Magazine Every Shift	Naked Eye Microscope	Operator
	Epoxy Cure (Not Done for Gold Dle Attached product)	Heat Temperature N_{2} Flow	Every Shift	Indicators Gauges	P.C.	Shear Strength	Every Shift	Dynamometer	Operator
$\angle 9$	Fine Wire	Bonding Conditions	Every Shift	Indicators	P.C.	Visual	Every Magazine	Microscope	
(10)	Wire Bonding	Temperature	Every Week	Thermocouple and Potentiometer	P.C.	Wire Pull Test		Tension Gauge	Operator
11	Pre-Seal Visual Inspection					Dle Visual	Every Lot Sampling (Or 100\%)	Microscope	Inspector
	Molding Compound Molding	Temperature of Pellet, Expiration Date Temperature Proflle of Dle Set Preheat Temperature Pressure Cure Time	Every Shlft Every Shift	Thermocouple Thermocouple, Potentlometer	P.C. P.C.	Visual	100\%	Naked Eye	Operator
14	Mold Aging	Temperature	Every Shilt	Indicator	P.C.				
	Deflashing	Deflashing Conditions Concentration Density Water Jet Pressure	Every Shilt Every Week Every Week Every Day	Indicators Titration Density Meter Gauge	P.C. Tech. Tech. Tech.	Visual	Every Lot	Naked Eye	Operator
	Plating	Plating Conditions Concentration	Every Day Every Week	Indicators Titration	P.C. Tech.				

Appendix 1B. Typical QC Flow for PLCC Assembly/Test (cont)

Appendix 2. Typical Reliability Assurance Tests

Test	Symbol	MIL-STD-883C Method	Test Conditions
High-temperature operating/bias life (Note 1)	HTOL/HTB	1005	$T_{A}=125^{\circ} \mathrm{C} ; \mathrm{V}_{\text {DD }}$ specified per device type
High-temperature storage life (Note 1)	HTSL	1008	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}\left(175^{\circ}\right.$ or $200^{\circ} \mathrm{C}$ in some cases)
High-temperature/high-humidity (Note 1)	T/H		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C} ; \mathrm{RH}=85 \% ; \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$
High-humidity storage life (Note 1)	HHSL		$T_{A}=85^{\circ} \mathrm{C} ; \mathrm{RH}=85 \%$
Pressure cooker (Note 1)	PCT		$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C} ; \mathrm{P}=2.3 \mathrm{~atm} ; \mathrm{RH}=100 \%$
Temperature cycling (Note 1)	T/C	1010	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C} ; 1$ hour/cycle
Lead fatigue (Note 2)	C3	2004	90 -degree bends; 3 bends without breaking
Solderability (Note 3)	C4	2003	$230^{\circ} \mathrm{C} ; 5 \mathrm{sec}$; rosin base flux
Soldering heat/temperature cycle/ thermal shock (Note 1)	C6	$\begin{aligned} & 1010 \\ & 1011 \end{aligned}$ (Note 4)	10 sec @ $230^{\circ} \mathrm{C}$; rosin base flux Ten 1-hour cycles@ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Fifteen 10 -minute cycles @ $0^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$

Notes:

(1) Electrical test per data sheet is performed. Devices that exceed the data sheet limits are considered rejects.
(2) Broken lead is considered a reject.
(3) Less than 95% coverage is considered a reject.
(4) MIL-STD-750A, method 2031.

Appendix 3. New Product/Process Change Tests

Test	Sample Size	Newly Developed Product	Shrink Die	New Package	Wafer	Assembly	Test Conditions
High-temperature operating/bias life	$\begin{aligned} & 20-50 \text { pieces; } \\ & 1 \text {-lots } \end{aligned}$	0	0	0	0	0	See appendix 2; $1000 \mathrm{H}$
High-temperature storage life	10-20 pieces; 1-3 lots	0	0	0	0	0	$\begin{aligned} & \mathrm{T}=150^{\circ} \mathrm{C} \text { (plastic) } \\ & \mathrm{T}=175^{\circ} \mathrm{C} \text { (ceramic); } \\ & 1000 \mathrm{H} \end{aligned}$
High-temperature/ high-humidity bias life (plastic package)	20-50 pieces; 1-3 lots	0	0	0	0	0	See appendix 2; 1000 H
Pressure cooker (plastic package)	10-20 pieces; 1-3 lots	0	0	0	0	0	See appendix 2; 288H
Thermal environmental	10-20 pieces; 1-3 lots	0	X	0	X	0	See appendix 2
Mechanical environmental (ceramic package)	10-20 pieces; 1-3 lots	0	X	0	X	0	$\begin{aligned} & 20 \mathrm{G}, 10-2000 \mathrm{~Hz} ; \\ & 1500 \mathrm{G}, 0.5 \mathrm{~ms} ; \\ & 20000 \mathrm{G}, 1 \mathrm{~min} \end{aligned}$
Lead fatigue	5 pieces; 1-3 lots	X	-	X	-	X	See appendix 2
Solderability	5 pieces; 1-3 lots	X	-	X	-	X	See appendix 2
ESD	20 pieces; 1-3 lots	0	0		0	X	(1) $\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0$ (2) $\mathrm{C}=100 \mathrm{pF}$, $R=1.5 \mathrm{k}$
Long term T/C	10-50 pieces; 1-3 lots	0	0	0	0	0	$\begin{aligned} & \text { See appendix } 2 \text {; } \\ & 1000 \mathrm{cy} \end{aligned}$

Notes:

0: Performed. X: Perform if necessary. -: Not performed.

Appendix 4. Failure Analysis Flowchart

Section 2μ PD78C00 Product Line8-Bit, Single-Chip Microcontrollers
μ PD78C14 Family 2-a
(μ PD78C10A/C11A/C12A/C14/C14A/CP14)
8-Bit, Single-Chip Microcontrollers
With A/D Converter
μ PD78C18 Family 2-b
(μ PD78C17/C18/CP18)
8-Bit, Single-Chip Microcontrollers
With A/D Converter
μ PD78C00 Product Line 2-c
Programming Reference

8-Bit, Single-Chip Microcontrollers With A/D Converter

Description

This family of microcontrollers integrates sophisticated on-chip peripheral functions normally provided by external components. Their internal 16-bit ALU and data paths, combined with a powerful instruction set and addressing, make the devices appropriate in data processing as well as control applications.
The devices integrate a 16 -bit ALU, $4 \mathrm{~K}, 8 \mathrm{~K}$, or 16K-byte ROM, 256-byte RAM, an eight-channel A/D converter, a multifunction 16-bit timer/event counter, two 8 -bit timers, a USART, and two zero-cross detect inputs on a single die, allowing their use in fast, high-end processing applications. This involves analog signal interface and processing.
The μ PD78C14 family includes: $4 \mathrm{~K}, 8 \mathrm{~K}$, and 16K-byte mask ROM devices, embedded with a custom customer program; ROMless devices for use with up to 64K-bytes of external memory; and 16K-byte EPROM or OTP ROM devices for prototyping and low-volume production. The μ PD78C11A/C12A/C14A also have mask optional pullup resistors available on ports A, B, and C .

Features

- CMOS technology
- 25 mA operating current (78C10A/C11A/C12A)
-30 mA operating current (78C14/C14A)
- Complete single-chip microcontroller
- 16-bit ALU
$-4 \mathrm{~K}, 8 \mathrm{~K}$, or $16 \mathrm{~K} \times 8$ ROM
-256-byte RAM
- 44 I/O lines
- Mask optional pullup resistors
—Ports A, B, and C (μ PD78C11A/C12A/C14A only)
- Two zero-cross detect inputs
- Two 8-bit timers
- Expansion capabilities
-8085A-like bus
-60K-byte external memory address range
- Eight-channel, 8-bit A/D converter
- Autoscan mode
-Channel select mode
- Full-duplex USART
- Synchronous and asynchronous
- 159 instructions
- 16-bit arithmetic, multiply, and divide
- HALT and STOP instructions
- $0.8-\mu \mathrm{s}$ instruction cycle time ($15-\mathrm{MHz}$ operation)
- Prioritized interrupt structure
- Three external
- Eight internal
- Standby function
- On-chip clock generator

Part Number (Note 1)	Package	Package Drawing	Quality Grade (Note 3)
ROMIess			
μ PD78C10ACW	64-pin SDIP	P64C-70-750A, C	Standard
AGF-3BE	64-pin QFP (Note 2)	P64GF-100-3B8, 3BE-1	Standard
AGF(A)-3BE			Special
AGQ-36	64-pin QUIP	P64GQ-100-36	Standard
AGQ(A)-36			Special
AL	68-pin PLCC	P68L-50A1-1	Standard
AL(A)			Special
4K Mask ROM			
μ PD78C11ACW-xxx	64-pin SDIP	P64C-70-750A, C	Standard
AGF-xxx-3BE	64-pin QFP (Note 2)	P64GF-100-3B8, 3BE-1	Standard
AGF(A)-xxx-3BE			Special
AGQ-xxx-36	64-pin QUIP	P64GQ-100-36	Standard
AGQ(A)-xxx-36			Special
AGQ-xxx-37	64-pin QUIP (straight)	P64GQ-100-37	Standard
AL-xxx	68-pin PLCC	P68L-50A1-1	Standard
AL (A)-xxx			Special
8K Mask ROM			
μ PD78C12ACW-xxx	64-pin SDIP	P64C-70-750A, C	Standard
AG-xxx-37	64-pin QUIP (straight)	P64GQ-100-37	Standard
AG-xxx-36	64-pin QUIP	P64GQ-100-36	Standard
AG(A)-xxx-36			Special
AGF-xxx-3BE	64-pin QFP (Note 2)	P64GF-100-3B8, 3BE-1	Standard
AL-xxx	68-pin PLCC	P68L-50A1-1	Standard
AL(A)-xxx			Special
16K Mask ROM			
μ PD78C14AG-xxx-AB8	64-pin QFP	P64GC-80-AB8-2	Standard
CW-xxx	64-pin SDIP	P64C-70-750A, C	
G-xxx-36	64-pin QUIP	P64GQ-100-36	
G-xxx-37	64-pin QUIP (straight)	P64GQ-100-37	
G-xxx-1B	64-pin QFP (Note 2)	P64G-100-12, 1B-1	
GF-xxx-3BE	64-pin QFP (Note 2)	P64GF-100-3B8, 3BE-1	
L-xxx	68-pin PLCC	P68L-50A1-1	
16K OTP ROM			
μ PD78CP14CW	64-pin SDIP	P64C-70-750A, C	Standard
G-36	64-pin QUIP	P64GQ-100-36	
G-37	64-pin QUIP (straight)	P64GQ-100-37	
GF-3BE	64-pin QFP (Note 2)	P64GF-100-3B8, 3BE-1	
L	68-pin PLCC	P68L-50A1-1	

μ PD78C14 Family

Ordering Information (cont)

Part Number (Note 1)	Package	Package Drawing	Quality Grade (Note 3)
16K UV EPROM			
μ PD78CP14DW	64-pin CER SDIP w/window	P64DW-70-750A	Standard
R	64-pin CER QUIP w/window	P64RQ-100-A	
16K OTP ROM			
μ PD78CP14G(A)-36	$64-$ pin QUIP	P64GQ-100-36	Special

Notes:

(1) $x x x$ indicates ROM code suffix
(2) Engineering samples supplied in a ceramic QFP package
(3) Special grade devices have the symbol (A) embedded in the part number

Pin Configurations

64-Pin QUIP or SDIP (Plastic or Ceramic)

Pin Configurations (cont)
64-Pin QFP ($20 \mathrm{~mm} \times 14 \mathrm{~mm}$)

Pin Configurations (cont)
64-Pin QFP (14mm x 14mm)

Pin Configurations (cont)

68-Pin PLCC

Pin Identification

Symbol	Function
ALE	Address latch enable output
ANO-AN7	A/D converter analog inputs 0-7
INT1	Interrupt request 1 input
MODEO	Mode 0 input; 1/O memory output
MODE1	Mode 1 input
$\overline{\mathrm{NMI}}$	Nonmaskable interrupt input
$\mathrm{PA}_{0}-\mathrm{PA}_{7}$	Port A I/O
$\mathrm{PB}_{0}-\mathrm{PB}_{7}$	Port B I/O
$\mathrm{PC}_{0} / \mathrm{TxD}$	Port C I/O line 0; transmit data output
$\mathrm{PC}_{1} / \mathrm{RxD}$	Port C I/O line 1; receive data input
$\mathrm{PC}_{2} / \overline{\mathrm{SCK}}$	Port C 1/O line 2; serial clock 1/O
$\mathrm{PC}_{3} / \mathrm{TI} / \overline{\mathrm{NTT} 2}$	Port C I/O line 3; timer input; interrupt request 2 input
$\mathrm{PC}_{4} / \mathrm{TO}$	Port C I/O line 4; timer output
$\mathrm{PC}_{5} / \mathrm{Cl}$	Port C I/O line 5; counter input
$\begin{aligned} & \mathrm{PC}_{6}, \mathrm{PC}_{7} / \\ & \mathrm{CO}_{0}, \mathrm{CO}_{1} \\ & \hline \end{aligned}$	Port C l/O lines 6, 7; counter outputs 0, 1
$\mathrm{PD}_{0}-\mathrm{PD}_{7}$	Port D I/O; expansion memory address, data bus (bits $A D_{0}-A D_{7}$)
$\mathrm{PF}_{0}-\mathrm{PF}_{7}$	Port F I/O; expansion memory address, (bits $A B_{8}-A B_{15}$)
$\overline{\mathrm{RD}}$	Read strobe output
RESET	Reset input
$\overline{\text { STOP }}$	Stop mode control input
$\mathrm{V}_{\text {AREF }}$	A/D converter reference voltage
$\overline{W R}$	Write strobe output
X1, X2	Crystal connections 1, 2
$A V_{D D}$	A/D converter power supply voltage
$\mathrm{AV}_{S S}$	A/D converter power supply ground
$V_{\text {DD }}$	5 V power supply
$\mathrm{V}_{\text {SS }}$	Ground
1 C	Internal connection

PIN FUNCTIONS

ALE (Address Latch Enable). The ALE output is used to latch the address of $P D_{0}-\mathrm{PD}_{7}$ into an external latch.
ANO-AN7 (Analog Inputs). These are the eight analog inputs to the A/D converter. AN4-AN7 can also be used as a digital input for falling edge detection.

Cl (Counter Input). External pulse input to timer/ event counter.
$\mathrm{CO}_{0}, \mathrm{CO}_{1}$ (Counter Outputs). Programmable waveform outputs based on timer/event counter.

INT1 (Interrupt Request 1). INT1 is a rising edge triggered, maskable interrupt input. It is also an acinput, zero-cross detection terminal.
If the optional pullup resistor is specified for this pin on the $\mu \mathrm{PD} 78 \mathrm{C} 11 \mathrm{~A} / \mathrm{C} 12 \mathrm{~A} / \mathrm{C} 14 \mathrm{~A}$, the zero-cross detection circuitry will not function.
$\overline{\text { INT2 }}$ (Interrupt Request 2). $\overline{\mathrm{NTT2}}$ is a falling edge triggered, maskable interrupt input. It is also an acinput, zero-cross detection terminal.
MODEO, MODE1 (Mode 0, 1). The MODEO and MODE1 inputs select the amount of external memory. MODEO outputs the $\overline{\mathrm{O}}$ signal and MODE1 outputs the $\overline{\mathrm{M} 1}$ signal. An external pullup resistor to V_{DD} is required if the input is to be a logic high.
The value of this pullup resistor, R , is dependent on $\mathrm{t}_{\mathrm{CYC}}$ and is calculated as follows: R in $\mathrm{K} \Omega$ is $4 \leq \mathrm{R} \leq 0.4$ $\mathrm{t}_{\mathrm{CYC}}$ where $\mathrm{t}_{\mathrm{CYC}}$ is in ns units.
$\overline{\text { NMI }}$ (Nonmaskable Interrupt). Falling edge, Schmitt-triggered nonmaskable interrupt input.
$\mathrm{PA}_{0}-\mathrm{PA}_{7}$ (Port A). Port A is an 8 -bit three-state port. Each bit is independently programmable as either input or output. Reset makes all lines of port A inputs. Mask optional pullup resistors are available on the μ PD78C11A/C12A/C14A.
$\mathrm{PB}_{0}-\mathrm{PB}_{7}$ (Port B). Port B is an 8 -bit three-state port. Each bit is independently programmable as either input or output. Reset makes all lines of port B inputs. Mask optional pullup resistors are available on the μ PD78C11A/C12A/C14A.
$\mathrm{PC}_{0}-\mathrm{PC}_{7}$ (Port C). Port C is an 8 -bit three-state port. Each bit is independently programmable as either input or output. Alternatively, the lines of port C can be used as control lines for the USART, interrupts, and timer. Reset makes all lines of port C inputs. Mask optional pullup resistors are available on the μ PD78C11A/C12A/C14A.
$\mathrm{PD}_{0}-\mathrm{PD}_{7}$ (Port D). Port D is an 8 -bit three-state port. It can be programmed as either 8 bits of input or 8 bits of output. When external expansion memory is used, port D acts as the multiplexed address/data bus.
$\mathrm{PF}_{0}-\mathrm{PF}_{7}$ (Port F). Port F is an 8 -bit three-state port. Each bit is independently programmable as either input or output. When external expansion memory is used, port F outputs the high-order address bits.
$\overline{\mathrm{RD}}$ (Read Strobe). The three-state $\overline{\mathrm{RD}}$ output goes low to gate data from external devices onto the data bus. $\overline{\mathrm{RD}}$ goes high during reset.
$\overline{\text { RESET }}$ (Reset). When the Schmitt-triggered RESET input is brought low, it initializes the device.
RxD (Receive Data). Serial data input terminal.
$\overline{\text { SCK }}$ (Serial Clock). Output for the serial clock when internal clock is used. Input for serial clock when external clock is used.
$\overline{\text { STOP }}$ (STOP Mode Control Input). A low-level input on STOP (Schmitt-triggered input) stops the system clock oscillator.

TI (Timer Input). Timer input terminal.
TO (Timer Output). The output of TO is a square wave with a frequency determined by the timer/counter.
TxD (Transmit Data). Serial data output terminal.
$V_{\text {AREF }}$ (A/D Converter Reference). Varef sets the upper limit for the A/D conversion range.
$\overline{\text { WR }}$ (Write Strobe). The three-state $\overline{\mathrm{WR}}$ output goes low to indicate that the data bus holds valid data. It is a strobe signal for external memory or I/O write operations. WR goes high during reset.
X1, X2 (Crystal Connections). X1 and X2 are the system clock crystal oscillator terminals. X 1 is the input for an external clock.
AV DD (A/D Converter Power). This is the power supply voltage for the A/D converter.
$A V_{S S}$ (A / D Converter Power Ground). $A V_{S S}$ is the ground potential for the A/D converter power supply.
$V_{D D}$ (Power Supply). $\quad V_{D D}$ is the +5 -volt power supply.
VSS (Ground). Ground potential.

Block Diagram

Note:

1. On-Chip ROM

78C10A : 0
78C11A : 4096 Bytes
78C12A : 8192 Bytes
78C14/C14A: 16384 Bytes
78CP14 : 16384 Bytes EPROM/OTP ROM

Figure 1. Memory Map

FUNCTIONAL DESCRIPTION

Memory Map
The μ PD78C14 family can directly address up to 64 K bytes of memory. Except for the on-chip ROM (or PROM) and RAM (FFOOH-FFFFH), any memory location can be used as ROM or RAM. The memory map, figure 1 , defines the 0 to 64 K -byte memory space for the μ PD78C14 family.

The μ PD78CP14 can be programmed in software to have $4 \mathrm{~K}, 8 \mathrm{~K}$, or 16K-bytes of internal program memory. This programming is transparent to the ROM-based device, allowing easy transfer of code to a ROM-based device.

Input/Output

The μ PD78C14 family has 44 digital I/O lines, five 8-bit ports (ports A, B, C, D, F), and four digital input lines (AN4-AN7).
Analog Input Lines. ANO-AN7 are configured as analog input lines for the on-chip A / D converter. Lines AN4-AN7 can be used as digital input lines for fallingedge detection.

Port A, Port B, Port C, Port F. Each line of these ports can be individually programmed as an input or output. When used as I/O ports, all have latched outputs and high-impedance inputs. On the μ PD78C11A/ C12A/C14A, mask optional pullup resistors are available for ports A, B, and C.
Port D. Port D can be programmed as a byte input or a byte output.
Control Lines. Under software control, each line of port C can be configured individually as a control line for the serial interface, timer, and timer/counter or as an I/O port.
Memory Expansion. In addition to the single-chip operation mode, the μ PD78C14 family has four memory expansion modes. Under software control, port D can provide a multiplexed low-order address and data bus; port F can provide a high-order address bus. Table 1 shows the relation between memory expansion modes and the pin configurations of port D and port F.

Table 1. Memory Expansion Modes and Port Configurations

Memory Expansion	Port	Port Configuration
None	Port D	I/O port
	Port F	I/O port
256 bytes	Port D	Multiplexed address/ data bus
	Port F	I/O port
4 K bytes	Port D	Multiplexed address/ data bus
	Port $\mathrm{F}\left(\mathrm{PF}_{0}-\mathrm{PF}_{3}\right)$	Address bus
	Port $\mathrm{F}\left(\mathrm{PF}_{4}-\mathrm{PF}_{7}\right)$	I/O port
16 K bytes	Port D	Multiplexed address/ data bus
	Port $\mathrm{F}\left(\mathrm{PF}_{0}-\mathrm{PF}_{5}\right)$	Address bus
	Port $\mathrm{F}\left(\mathrm{PF}_{6}-\mathrm{PF}_{7}\right)$	I/O port
60 K bytes	Port D	Multiplexed address/ data bus
	Port F	Address bus

Timers

The two 8-bit timers may be programmed independently or cascaded as a 16-bit timer. The timer can be software set to increment at intervals of four machine cycles ($0.8 \mu \mathrm{~s}$ at $15-\mathrm{MHz}$ operation) or 128 machine cycles ($25.6 \mu \mathrm{~s}$ at 15 MHz), or to increment on receipt of a pulse at TI. Figure 2 is the block diagram for the timer.

Timer/Event Counter

The 16-bit multifunctional timer/event counter (figure 3) can be used for the following operations:

- Interval timer
- External event counter
- Frequency measurement
- Pulse-width measurement
- Programmable frequency and duty cycle waveform output
- Single-pulse output

8-Bit A/D Converter

- Eight input channels
- Four conversion result registers
- Two powerful operation modes
- Autoscan mode
-Channel select mode
- Successive approximation technique
- Absolute accuracy: 0.6% FSR $\pm 1 / 2$ LSB
- Conversion range: 0 to 5 V
- Conversion time: $38.4 \mu \mathrm{~s}$
- Interrupt generation

Figure 2. Timer Block Diagram

Figure 3. Block Diagram for the Timer/Event Counter

Analog/Digital Converter

The μ PD78C14 family features an 8-bit, high-speed, high accuracy A / D converter. The A / D converter is made up of a 256 -resistor ladder and a successive approximation register (SAR). There are four conversion result registers (CRO-CR3).

The eight-channel analog input may be operated in either of two modes. In the select mode, the conversion value of one analog input is sequentially stored in CRO-CR3. In the scan mode, either the upper four channels or the lower four channels may be specified. Then those four channels will be consecutively selected and the conversion results stored sequentially in the four conversion result registers.
Figure 4 is the block diagram for the A/D converter. To stop the operation of the A / D converter and thus reduce power consumption, set $\mathrm{V}_{\text {AREF }}=0 \mathrm{~V}$.

Interrupt Structure

There are 12 interrupt sources in the μ PD78C14 family of chips. Three are external interrupts and nine are internal. Table 2 shows 11 interrupt sources divided into seven priority levels where IRQO is the highest and IRQ6 is the lowest. See figure 5.

Figure 4. A/D Converter Block Diagram

Table 2. Interrupt Sources

Interrupt Request	Interrupt Address	Type of Interrupt	Internal/External
IRQO	4	$\overline{\text { NMI (}}$ (Nonmaskable interrupt)	External
IRQ1	8	INTTO, INTT1 (Coincidence signals from timers $0,1)$	Internal
IRQ2	16	INT1, $\overline{\text { NT2 }}$ (Maskable interrupts)	External
IRQ3	24	INTEO, INTE1 (Coincidence signals from timer/ event counter)	Internal
IRQ4	32	INTEIN (Falling signal of Cl or TO into the timer/ event counter)	Internal or External
		INTAD (A/D converter interrupt)	Internal
IRQ5	40	INTSR (Serial receive interrupt)	Internal
		INST (Serial send interrupt)	
IRQ6	96	SOFTI instruction	Internal

Figure 5. Interrupt Structure Block Diagram

Standby Functions

The μ PD78C14 family has two standby modes: HALT and STOP. The HALT mode reduces power consumption to 50% of normal operating requirements, while maintaining the contents of on-chip registers, RAM, and control status. The system clock and on-board peripherals continue to operate, but the CPU stops executing instructions. The HALT mode is initiated by executing the HLT instruction. The HALT mode can be released by any nonmasked interrupt or by RESET.
The STOP mode reduces power consumption to less than 0.1% of normal operating requirements. There are two STOP modes: type A and type B.
Type A is initiated by executing a STOP instruction. If $V_{D D}$ is held above 2.5 V , the on-board RAM is saved. The oscillator is stopped. The STOP mode can be released by an input on NMI or RESET. The user can program oscillator stabilization time up to 52.4 ms via timer 1. By checking the standby flag (SB), the user can determine whether the processor has been in the standby mode or has been powered up.

Type B is initiated by inputting a low level on the $\overline{S T O P}$ input. The RAM contents are saved if $V_{D D}$ is held above 2.5 V . The oscillator is stopped. The STOP mode is released by raising STOP to a high level. The oscillator stabilization time is fixed at 52.4 ms ; 52.4 ms after STOP is raised, instruction execution will automatically begin at location 0 . The stabilization time can be increased by holding RESET low for the required time period.

Universal Serial Interface

The serial interface can operate in one of three modes: synchronous, asynchronous, and I/O interface. The I/O interface mode transfers data MSB first, for easy interfacing to certain NEC peripheral devices. Synchronous and asynchronous modes transfer data LSB first. Synchronous operation offers two modes of data reception: search and nonsearch. In the search mode, data is transferred one bit at a time from the serial register to the receive buffer. This allows a software search for a sync character. In the nonsearch mode, data transfer from the serial register to the transmit buffer occurs eight bits at a time. Figure 6 shows the universal serial interface block diagram.

Figure 6. Universal Serial Interface Block Diagram

Zero-Crossing Detector

The INT1 and $\overline{\mathrm{INT}}$ terminals (used common to Tl and PC_{3}) can detect the zero-crossing point of lowfrequency $A C$ signals. When driven directly, these pins respond as a normal digital input. Figure 7 shows the zero-crossing detection circuitry.

Figure 7. Zero-Crossing Detection Circuit

The zero-crossing detection capability allows you to make the $50-60 \mathrm{~Hz}$ power signal the basis for system timing and to control voltage phase-sensitive devices.

To use the zero-cross detection mode, an AC signal of 1.0 to 1.8 V (peak-to-peak) and a maximum frequency of 1 kHz is coupled through an external capacitor to the INT1 and $\overline{\mathrm{N} T 2}$ pins.
For the INT1 pin, the internal digital state is sensed as a 0 until the rising edge crosses the average DC level, when it becomes a 1 and an INT1 interrupt is generated.
For the $\overline{\mathrm{NT} 2} \mathrm{pin}$, the state is sensed as a 1 until the falling edge crosses the average DC level, when it becomes a 0 and $\overline{\mathrm{NT} 2}$ is generated.
μ PD78C14 Family

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings $T_{A}=25^{\circ} \mathrm{C}$	
Power supply voltage, V_{DD}	-0.5 to +7.0 V
Power supply voltage, $A V_{D D}$	$\mathrm{AV}_{S S}$ to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Power supply voltage, $\mathrm{AV}_{\text {SS }}$	-0.5 to +0.5 V
Power supply voltage, VPp (μ PD78CP14 only)	-0.5 to +13.5 V
Input voltage, V_{1}	-0.5 to $\mathrm{V}_{\mathrm{DD}}+.5 \mathrm{~V}$
STOP pin (μ PD78CP14 only)	-0.5 to +13.5 V
Output voltage, V_{O}	-0.5 to $\mathrm{V}_{\mathrm{DD}}+.5 \mathrm{~V}$
Output current, low; loL Each output pin Total	$\begin{array}{r} 4.0 \mathrm{~mA} \\ 100 \mathrm{~mA} \end{array}$
Output current, high; I_{OH} Each output pin Total	$\begin{aligned} & -2.0 \mathrm{~mA} \\ & -50 \mathrm{~mA} \end{aligned}$
Reference input voltage, VA ${ }_{\text {REF }}$	-0.5 to $\mathrm{AV}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Operating temperature, TOPR ${ }^{\text {fXTAL }} \leq 15 \mathrm{MHz}$	-40 to $+85^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\text {STG }}$	-65 to $+150^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Capacitance

$T_{A}=25^{\circ} \mathrm{C} ; V_{D D}=V_{S S}=0 \mathrm{~V}$

Parameter	Symbol	Max	Unit	Conditions
Input capacitance	C_{l}	10	pF	
$\mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz} ;$ unmeasured pins				
Output capacitance	C_{O}	20	pF	
returned to 0 V				

Oscillation Characteristics

Resonator	Recommended Circuit	Parameter	Min	Typ	Max	Unit	Conditions
Ceramic resonator (Note 1) or crystal oscillator (XTAL)(Note 4)	(Note 2)	Oscillation frequency (fxx)	4		15	MHz	A/D converter not used
			5.8		15	MHz	A/D converter used
			6		15	MHz	μ PD78CP14 only
External clock	(Note 3)	X1 input frequency (f_{x})	4		15	MHz	A/D converter not used
			5.8		15	MHz	A/D converter used
			6		15	MHz	μ PD78CP14 only
		X1 input, rise, fall time ($\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$)	0		20	ns	
		X_{1} input low- and high-level width ($\mathrm{t} \phi \mathrm{L}, \mathrm{t} \phi \mathrm{H}$)	20		250	ns	
			20		167	ns	μ PD78CP14

Notes:

(1) Refer to the Resonator and Capacitance Requirements table for the recommended ceramic resonators.
(2) For XTAL, see the Recommended XTAL or Ceramic Resonator Oscillation Circuit Diagram.
(3) See the following recommended external clock diagram.
(4) When using a crystal oscillator, it should be a parallel-resonant, fundamental mode, "AT cut" crystal. Capacitors C1 and C2 are required for frequency stability. The values of C 1 and $\mathrm{C} 2(\mathrm{C} 1=$ C 2) can be calculated from the load capacitance (C_{L}), specified by the crystal manufacturer:

$$
C_{L}=\frac{C_{1} \times C_{2}}{C 1+C 2}+C_{S}
$$

Where C_{S} is any stray capacitance in parallel with the crystal such as the μ PD78C10A, μ PD78C11A, or μ PD78C14/14A input capacitance between X1 and X2.

Recommended XTAL or Ceramic Resonator Oscillation Circuit Diagram

Recommended External Clock Diagram

Extemal oscillation clrcult should be as close to the X1 and X2 plns as possible.
Do not place other slgnal lines in the shaded area.

Resonator and Capacitance Requirements
$T_{A}=-40$ to $+85^{\circ} \mathrm{C}$

Manufacturer	Product Number	C1, C2 (pF)	Conditions
Murata	CSA15.0MX3	22	μ PD78C14/C14A
	CSA10.0MT	30	
	CST10.0MT	Not required	
	CSA6.00MG	30	
	CST6.00MG	Not required	
	CSA12.0MT	30	$\mu \mathrm{PD} 78 \mathrm{C} 10 \mathrm{~A} / \mathrm{C} 11 \mathrm{~A} / \mathrm{C} 12 \mathrm{~A} / \mathrm{C} 14 / \mathrm{C} 14 \mathrm{~A}$
	CST12.0MT	Not required	
	CSA15.00MX001	15	$\mu \mathrm{PD} 78 \mathrm{C} 10 \mathrm{~A} / \mathrm{C} 11 \mathrm{~A} / \mathrm{C} 12 \mathrm{~A}$
	CSA7.37MT	30	
	CST7.37MT	Not required	
TDK	FCR12.9MC	Not required	μ PD787C14/C14A

DC Characteristics

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Input voltage, low	$\mathrm{V}_{\mathrm{IL} 1}$	0		0.8	V	All except Note 1 inputs
	$\mathrm{V}_{\text {IL } 2}$	0		$0.2 \mathrm{~V}_{\mathrm{DD}}$	V	Note 1 inputs
Input voltage, high	$\mathrm{V}_{\mathrm{HH} 1}$	2.2		$V_{D D}$	V	All except $\mathrm{X1} 1, \mathrm{X} 2$, and Note 1 inputs
	$\mathrm{V}_{\mathrm{IH} 2}$	$0.8 \mathrm{~V}_{\mathrm{DD}}$		$V_{D D}$	v	X1, X2, and Note 1 inputs
Output voltage, low	V_{OL}			0.45	V	$1 \mathrm{OL}=2.0 \mathrm{~mA}$
Output voltage, high	V_{OH}	$V_{D D}-1.0$			v	$\mathrm{I}_{\mathrm{OH}}=1.0 \mathrm{~mA}$
		$\mathrm{V}_{\mathrm{DD}}-0.5$			V	$\mathrm{IOH}^{\prime}=-100 \mu \mathrm{~A}$
Data retention voltage	$V_{\text {DDDR }}$	2.5			V	STOP mode
Input current	I_{11}			± 200	$\mu \mathrm{A}$	INT1 (Note 2); $\mathrm{TI}\left(\mathrm{PC}_{3}\right)$ (Note 3); $0 \mathrm{~V} \leq \mathrm{V}_{1} \leq$ $V_{D D}$
Input current (μ PD78C14 only)	112			± 200	$\mu \mathrm{A}$	INT1 (Note 2); $\mathrm{Tl}\left(\mathrm{PC}_{3}\right)$ (Note 3); $0 \mathrm{~V} \leq \mathrm{V}_{1} \leq$ VD
Input current (μ PD78C14 only)	I_{13}			-300	$\mu \mathrm{A}$	$\mathrm{I}_{0}-17$ (upper input pin); $\mathrm{V}_{1}=0$
Input leakage current	l_{L}			± 10	$\mu \mathrm{A}$	All except INT1, $\mathrm{TI}\left(\mathrm{PC}_{3}\right), 0 \mathrm{~V} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DD}}$
				± 1	$\mu \mathrm{A}$	AN7-O, $O V \leq V_{1} \leq V_{D D}$ (μ PDC10A(A)/C11A(A)/C12A(A)/CP14A(A) only)
Output leakage current	Lo			± 10	$\mu \mathrm{A}$	$O V \leq V_{O} \leq V_{D D}$
$\mathrm{AV}_{\mathrm{DD}}$ supply current	$\mathrm{Al}_{\text {DD1 }}$		0.5	1.3	mA	$f=15 \mathrm{MHz}$
	$\mathrm{Al}_{\text {DD2 }}$		10	20	$\mu \mathrm{A}$	STOP mode
V_{DD} supply current	IDD1		13	25	mA	Normal operation; f $=15 \mathrm{MHz}$; (μ PD78C10A/C11A/C12A only)
	IDD2		7	13	mA	HALT mode; $f=15 \mathrm{MHz}$; (μ PD78C10A/C11A/C12A only)
	${ }^{\text {d D 3 }}$		16	30	mA	Normal operation; $f=15 \mathrm{MHz}$ (μ PD78C14/C14A)
	$\mathrm{I}_{\text {DD4 }}$			32	mA	Normal operation; f=15 MHz; (μ PD78CP14 only)
	IDD5		8	15	mA	HALT mode; $\mathrm{f}=15 \mathrm{MHz}$; (μ PD78C14/C14A/CP14 only)
Data retention current	IDDDR		1	15	$\mu \mathrm{A}$	$\mathrm{V}_{\text {DDDR }}=2.5 \mathrm{~V}$ (Note 4)
				300		(μ PD78CP14 only-Note 4)
			10	50	$\mu \mathrm{A}$	$\mathrm{V}_{\text {DDDR }}=5.0 \mathrm{~V} \pm 10 \%$ (Note 4)
				1	mA	(μ PD78CP14 only-Note 4)
Pullup resistor	R_{L}	17	27	75	$\mathrm{K} \Omega$	Ports A, B, C; $3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V} ; \mathrm{V}_{1}=0 \mathrm{~V}$ (μ PD78C11A/C12A/C14A only)

Notes:

(1) Inputs $\overline{\text { RESET }}, \overline{\text { STOP }}, \overline{\text { NMI }}, \overline{\text { SCK }}$, INTP1, TI, and AN4-AN7.
(2) Assuming ZCM register is set to self-bias.
(3) Assuming ZCM register is set to self-bias and the MCC register is set to control mode.
(4) Hardware/software STOP mode and assuming ZCM register is set to self-bias not selected.

AC Characteristics

$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{S S}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=+5.0 \mathrm{~V} \pm 10 \%(\mu \mathrm{PD} 78 \mathrm{C} 10 \mathrm{~A} / \mathrm{C} 11 \mathrm{~A} / \mathrm{C} 12 \mathrm{~A} / \mathrm{C} 14 / \mathrm{C} 19 \mathrm{~A}) ; \mathrm{V}_{\mathrm{DD}}=+5.0 \mathrm{~V} \pm 5 \%$ ($\mu \mathrm{PD} 78 \mathrm{CP} 14$ only)

Parameter	Symbol	Min	Max	Unit	Conditions
RESET pulse width high, low	$t_{\text {RSH }}, t_{\text {RSL }}$	10		$\mu \mathrm{s}$	
$\overline{\mathrm{NMI}}$ pulse width high, low	$t_{\text {NIH }}{ }^{\text {t }}$ NIH	10		$\mu \mathrm{s}$	
X 1 input cycle time	${ }^{\text {t }} \mathrm{CYC}$	66	250	ns	
			167	ns	(Note 1)
Address setup to ALE \downarrow	$t_{\text {AL }}$	30		ns	(Notes 2, 3)
Address hold to ALE \downarrow	$t_{\text {LA }}$	35		ns	(Notes 2, 3)
Address to $\overline{\mathrm{RD}} \downarrow$ delay time	$t_{\text {AR }}$	100		ns	(Notes 2, 3)
$\overline{\mathrm{RD}} \downarrow$ to address floating	$t_{\text {AFR }}$		20	ns	(Note 2)
Address to data input	$t^{\text {AD }}$		250	ns	(Notes 2, 3)
ALE \downarrow to data input	$\mathrm{t}_{\text {LDR }}$		135	ns	(Notes 2, 3)
$\overline{\text { RD }} \downarrow$ to data input	$t_{\text {RD }}$		120	ns	(Notes 2, 3)
ALE \downarrow to $\overline{R D} \downarrow$ delay time	$t_{\text {LR }}$	15		ns	(Notes 2, 3)
Data hold time $\overline{\mathrm{RD}} \uparrow$	$t_{\text {RDH }}$	0		ns	(Note 2)
$\overline{\mathrm{RD}} \uparrow$ to ALE \uparrow delay time	$t_{\text {RL }}$	80		ns	(Notes 2, 3)
$\overline{\mathrm{RD}}$ width low	$t_{\text {RR }}$	215		ns	Data read (Notes 2, 3)
		415		ns	Opcode fetch (Notes 2, 3)
ALE width high	t_{LL}	90		ns	(Notes 2, 3)
$\overline{\overline{M 1}}$ setup time to ALE \downarrow	${ }^{\text {m ML }}$	30		ns	(Note 3)
$\overline{\text { M1 }}$ hold time after ALE \downarrow	$t_{\text {LM }}$	35		ns	(Note 3)
	$t_{\text {IL }}$	30		ns	(Note 3)
	tl	35		ns	(Note 3)
Address to $\overline{\mathrm{WR}} \downarrow$ delay	$t_{\text {aW }}$	100		ns	(Notes 2, 3)
ALE \downarrow to data output	tLDW		180	ns	(Notes 2, 3)
$\overline{\text { WR }} \downarrow$ to data output	two		100	ns	(Note 2)
ALE \downarrow to $\overline{\text { WR }} \downarrow$ delay time	${ }_{\text {t }}$ W	15		ns	(Notes 2, 3)
Data setup time to $\overline{W R} \uparrow$	${ }^{\text {t }}$ W	165		ns	(Notes 2, 3)
Data hold time to $\overline{W R} \uparrow$	${ }^{\text {W WDH }}$	60		ns	(Notes 2, 3)
	${ }^{\text {twi }}$	80		ns	(Notes 2, 3)
WR width low	tww	215		ns	(Notes 2, 3)
Address to data input	${ }^{t} A C C$		250	ns	(Notes 2, 3)
Data hold time from address	${ }^{\text {t }} \mathrm{H}$	0		ns	(Note 2)

Notes:

(1) Applies to μ PD78CP14 only.
(3) Values are for $15-\mathrm{MHz}$ operation. For operation at other frequen-
(2) Load capacitance $C_{L}=150 \mathrm{pF}$. cies, refer to the Bus Timing Dependent on $\mathrm{t}_{\mathrm{CYK}}$ table.

Serial Operation

Parameter	Symbol	Min	Max	Unit	Conditions
$\overline{\text { SCK }}$ cycle time	${ }^{\text {t Cry }}$	0.8		$\mu \mathrm{s}$	$\overline{\text { SCK input (Notes 1, 3) }}$
		0.4		$\mu \mathrm{s}$	$\overline{\text { SCK }}$ input (Note 2)
		1.6		$\mu \mathrm{s}$	$\overline{\text { SCK output (Note 3) }}$

μ PD78C14 Family

Serial Operation (cont)

Parameter	Symbol	Min	Max	Unit	Conditions
$\overline{\text { SCK }}$ width low	${ }^{\text {t KKL }}$	335		ns	$\overline{\text { SCK input (Notes 1, 3) }}$
		160		ns	$\overline{\text { SCK }}$ input (Note 2)
		700		ns	$\overline{\text { SCK }}$ output (Note 3)
$\overline{\text { SCK }}$ width high	$\mathrm{t}_{\text {KKH }}$	335		ns	$\overline{\text { SCK }}$ input (Notes 1, 3)
		160		ns	$\overline{\text { SCK }}$ input (Note 2)
		700		ns	$\overline{\text { SCK output (Note 3) }}$
RxD setup time to $\widehat{\operatorname{SCK}} \uparrow$	$\mathrm{t}_{\text {RXK }}$	80		ns	(Note 1)
RxD hold time after $\overline{\text { SCK }} \uparrow$	${ }_{\text {t }}^{\text {KRX }}$	80		ns	(Note 1)
$\overline{S C K} \downarrow$ TxD delay time	${ }^{\text {K }}$ KX		210	ns	(Note 1)

Notes:

(1) $1 \times$ baud rate in synchronous or $1 / O$ interface mode.
(3) ${ }^{\text {f TTAL }}=15 \mathrm{MHz}$.
(2) $16 \times$ baud rate or $64 \times$ baud rate in asynchronous mode.

Zero-Cross Characteristics

Parameter	Symbol	Min	Max	Unit	Condition
Zero-cross detection input	$\mathrm{V}_{Z X}$	1	1.8	VAC $_{p-\mathrm{p}}$	AC-coupled 60-Hz sine wave
Zero-cross accuracy	$\mathrm{A}_{Z X}$		± 135	mV	
Zero-cross detection input frequency	f_{ZX}	0.05	1	kHz	

A/D Converter Characteristics

$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=+5.0 \mathrm{~V} \pm 10 \%$ ($\pm 5 \%$ on $\mu \mathrm{PD} 78 \mathrm{CP} 14$); $\mathrm{V}_{\mathrm{SS}}=A \mathrm{~V}_{\mathrm{SS}} 0 \mathrm{~V}$;
$\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V} \leq A V_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{DD}} ; 3.4 \mathrm{~V} \leq \mathrm{V}_{\text {AREF }} \leq \mathrm{AV} \mathrm{V}_{\mathrm{DD}}$

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Resolution		8			bits	
Absolute accuracy (Note 1)				± 0.4	\%FSR	$\begin{aligned} & T_{A}=-10 \mathrm{to}_{0}+70^{\circ} \mathrm{C} ; 66 \mathrm{~ns} \leq \mathrm{t}_{\mathrm{CYC}} \leq 170 \mathrm{~ns} ; \\ & 4.0 \mathrm{~V} \leq \mathrm{V}_{\text {AREF }} \leq A V_{\mathrm{DD}} \end{aligned}$
				± 0.6	\%FSR	$66 \mathrm{~ns} \leq \mathrm{t}_{\mathrm{CYC}} \leq 170 \mathrm{~ns} ; 4.0 \mathrm{~V} \leq \mathrm{V}_{\text {AREF }} \leq \mathrm{AV}_{\mathrm{DD}}$
				± 0.8	\%FSR	$66 \mathrm{~ns} \leq \mathrm{t}_{\mathrm{CYC}} \leq 170 \mathrm{~ns} ; 3.4 \mathrm{~V} \leq \mathrm{V}_{\text {AREF }} \leq \mathrm{AV}_{\mathrm{DD}}$
Conversion time	${ }^{\text {t CONV }}$	576			${ }^{\text {t }} \mathrm{CYC}$	$66 \mathrm{~ns} \leq \mathrm{t}_{\mathrm{cYC}} \leq 110 \mathrm{~ns}$
		432			${ }^{\text {t }}$ CYC	$110 \mathrm{~ns} \leq \mathrm{t}_{\mathrm{CYC}} \leq 170 \mathrm{~ns}$
Sampling time	$\mathrm{t}_{\text {SAMP }}$	96			${ }^{\text {t }} \mathrm{CYC}$	$66 \mathrm{~ns} \leq \mathrm{t}_{\mathrm{CYO}} \leq 110 \mathrm{~ns}$
		72			${ }^{\text {t }} \mathrm{CYC}$	$110 \mathrm{~ns} \leq \mathrm{t}_{\mathrm{CYC}} \leq 170 \mathrm{~ns}$
Analog input voltage	$V_{\text {IAN }}$	0		$\mathrm{V}_{\text {AREF }}$	V	
Analog input impedance	$\mathrm{R}_{\text {AN }}$		1000		$\mathrm{M} \Omega$	
Reference voltage	$V_{\text {AREF }}$	3.4		$A V_{\text {DD }}$	V	
$\mathrm{V}_{\text {AREF }}$ current	${ }_{\text {AREF } 1}$		1.5	3.0	mA	Operation mode
	${ }_{\text {AREF2 }}$		0.7	1.5	mA	STOP mode
$\mathrm{AV}_{\mathrm{DD}}$ supply current	$A_{\text {dod }}$		0.5	1.3	mA	Operation mode
	$\mathrm{Al}_{\text {DD2 }}$		10	20	$\mu \mathrm{A}$	STOP mode

Notes:

(1) Quantizing error ($\pm 1 / 2$ LSB) is not included.
(2) $\mathrm{FSR}=$ Full-scale resolution.

Bus Timing Dependent on tcyk

Symbol	Min/Max (ns)	Calculation Formula
	Min	6 T (TI input - PC_{3})
$\mathrm{t}_{\mathrm{Cl1H}}, \mathrm{t}_{\mathrm{ClHL}}$ (Note 2)	Min	6 T (TI input - PC_{5})
$\mathrm{t}_{\mathrm{Cl} \mathrm{ClH}^{2}, \mathrm{t}_{\mathrm{Cl}}}$ (Note 3)	Min	48T (TI input - PC_{5})
$\mathrm{t}_{11 \mathrm{H}, \mathrm{t}_{11 \mathrm{~L}}}$	Min	36 T (INT1)
$\mathrm{t}_{12 \mathrm{H},} \mathrm{t}_{12 \mathrm{~L}}$	Min	36 T (INT2)
$\mathrm{t}_{\text {ANH, }} \mathrm{t}_{\text {ANL }}$	Min	$36 T$ (AN4-AN7)
${ }_{\text {t }}$ L	Min	2T-100
tha	Min	T-30
${ }^{t_{A R}}$	Min	3T-100
${ }^{t} A D$	Max	7T-220
tidR	Max	5T-200
t_{RD}	Max	4T-150
tLR	Min	T-50
${ }^{t_{R L}}$	Min	2T-50
$t_{\text {RR }}$	Min	4T-50 (Data read)
	Min	7T-50 (Opcode fetch)
tLL	Min	2T-40
${ }^{t}$ ML	Min	2T-100
t LM	Min	T-30
$t_{\text {IL }}$	Min	2T-100

Symbol	Min/Max (ns)	Calculation Formula
t_{LI}	Min	T-30
${ }^{\text {t }}$ AW	Min	3T-100
tLDW	Max	T + 110
$\mathrm{t}_{\text {LW }}$	Min	T-50
${ }^{t}{ }_{\text {DW }}$	Min	4T-100
${ }^{\text {twDH }}$	Min	2T-70
${ }^{\text {twL }}$	Min	2T-50
${ }^{\text {tww }}$	Min	4T-50
${ }^{\text {t Cry }}$	Min	12 T (SCK input) (Note 1)
	Min	24 T ($\overline{\text { SCK }}$ output)
${ }_{\text {tKKL }}$	Min	$5 \mathrm{~T}+5$ (SCK input) (Note 1)
	Min	12T-100 (SCK output)
$\mathrm{t}_{\text {KKH }}$	Min	$5 \mathrm{~T}+5$ ($\overline{\mathrm{SCK}}$ input) (Note 1)
	Min	12T-100($\overline{\text { SCK }}$ output)

Notes:

(1) $1 \times$ baud rate in synchronous or I / O interface mode; $T=t_{\mathrm{CYC}}=$ $1 /$ fxtal .
The items not included in this list are independent of oscillator frequency.
(2) Event counter mode.
(3) Pulse-width measurement mode.

Data Memory STOP Mode Data Retention Characteristics

$T_{A}=-40$ to $85^{\circ} \mathrm{C}$

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Data retention power supply voltage	V ${ }_{\text {DDDR }}$	2.5		5.5	V	
Data retention power supply current	I DDDR		1	15	$\mu \mathrm{A}$	$\mathrm{V}_{\text {DDDR }}=2.5 \mathrm{~V}$
			15	50	$\mu \mathrm{A}$	$V_{\text {DDDR }}=5.0 \mathrm{~V} \pm 10 \%$
				300	$\mu \mathrm{A}$	$\mathrm{V}_{\text {DDDR }}=2.4 \mathrm{~V}(\mu \mathrm{PD} 78 \mathrm{CP} 14)$
				1	mA	$\mathrm{V}_{\text {DDDR }}=5.0 \mathrm{~V} \pm 5 \%(\mu \mathrm{PD} 78 \mathrm{CP} 14)$
V_{DD} rise, fall time	$\mathrm{t}_{\text {RVD }}, \mathrm{t}_{\text {FVD }}$	200			$\mu \mathrm{s}$	
STOP setup time to V_{DD}	tssTVD	$12 T+0.5$			$\mu \mathrm{s}$	
$\overline{\text { STOP }}$ hold time from $V_{D D}$	$\mathrm{t}_{\text {HVDST }}$	$12 \mathrm{~T}+0.5$			$\mu \mathrm{s}$	

Timing Waveforms

Data Retention

Read Operation

Note:

[1] $\overline{\text { O }}$ signal is output to the MODEO pin [ff MODEO is pulled up to $V_{D D}$] during a read or witte of special registers sr-sr2 or a write to register MM or MF. Refer to description of Port Emulation Mode [PEM] in the User's Manual for further explanation. This signal is not output on the μ PD78CP14.

Timing Waveforms (cont)

Write Operation

Note:

[1] $\overline{1}$ signal is output to the MODEO pin [f MODEO is pulled up to $V_{\text {DDD }}$ d during a read or wrte of special registers sr-sr2 or a write to register MM or MF. Refer to description of Port Emulation Mode [PEM] in the User's Manual for further explanation. This slgnal is not output on the μ PD78CP14.

Timing Waveforms (cont)

Opcode Fetch Operation

Note:
[1] M1 slgnal ls output to the MODE1 pin during every Opcode Fetch If MODE1 pin is pulled up to $V_{D D}$. This slgnal is not output on the μ PD78CP14.

Timing Waveforms (cont)

Serial Operation Transmit/Receive

Timer Input

Timer/Event Counter Input:

Event Counter Mode

Timer/Event Counter Input:

Pulse-Width Measurement Mode

Interrupt Input

Timing Waveforms (cont)

RESET Input

External Clock

AC Timing Test Points

AN4-AN7 Edge Detection

μ PD78CP14 PROGRAMMING

In the μ PD78CP14, the mask ROM of the μ PD78C14 family is replaced by a one-time programmable ROM (OTP ROM) or a reprogrammable, ultraviolet erasable ROM (UV EPROM). The ROM is 16,384 by 8 bits and can be programmed using a general-purpose PROM writer with a μ PD27C256A programming mode. Refer to tables 3 through 5 and the DC and AC Programming Characteristics tables for specific information applicable to programming the μ PD78CP14.

Table 3. Pin Functions during EPROM Programming

Pin	Function	Description
$\mathrm{PA}_{0}-\mathrm{PA}_{7}$	$\mathrm{~A}_{0}-\mathrm{A}_{7}$	Low-order 8-bit address
PF	A_{8}	High-order 7-bit address
$\overline{\overline{\mathrm{NMI}}}$	A_{9}	
$\mathrm{PF}_{2}-\mathrm{PF}_{6}$	$\mathrm{~A}_{10}-\mathrm{A}_{14}$	
$\mathrm{PD}_{0}-\mathrm{PD}_{7}$	$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data input/output
PB_{6}	$\overline{\mathrm{CE}}$	Chip enable input
PB_{7}	$\overline{\mathrm{OE}}$	Output enable input $\overline{\mathrm{RESET}}$ $\overline{R E S E T}$
PROM programming mode requires a low voltage on this pin		
Mode 0	Mode 0	Enter PROM programming mode by applying a high voltage to this pin
Mode 1	Mode 1	Enter PROM programming mode by applying a low voltage to this pin
STOP	$V_{\text {PP }}$	High-voltage input (write/verify) high level (read)

Table 4. Summary of Operation Modes for EPROM Programming

Operation Mode	$\overline{\mathrm{CE}}$	$\overline{\mathrm{OE}}$	V_{PP}	V_{DD}	$\overline{\mathrm{RESET}}$	MODE0	MODE1	A_{14}
Program write	L	H	+12.5 V	+6 V	L	H	L	L
Program verify	H	L	+12.5 V	+6 V	L	H	L	
Program inhibit	H	H	+12.5 V	+6 V	L	H	L	
Read	L	L	+5 V	+5 V	L	H	L	
Output disable	L	H	+5 V	+5 V	L	H	L	
Standby	H	L / H	+5 V	+5 V	L	H	L	

Notes:

(1) The $\overline{C E}, \overline{O E}, V_{p p}$, and $V_{D D}$ pins are all compatible with the μ PD27C256A pins.

Caution: When Vpp is set to +12.5 V and V_{DD} is set to +6 V , you cannot set both $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ to low level (L).

Table 5. Recommended Connections for Unused Pins (EPROM Programming Mode)

Pin	Recommended Connection Method
INT1	Connect to $V_{S S}$
X1	Connect to $V_{S S}$
X2	Leave this pin disconnected
ANO-AN7	Connect to $V_{S S}$
VA $_{\text {REF }}$	Connect to $V_{S S}$
AV $V_{\text {DD }}$	Connect to $V_{S S}$
AV $V_{S S}$	Connect to $V_{S S}$
Remaining pins	Connect each pin via a resistor to $V_{S S}$

PROM Write Procedure

(1) Connect the $\overline{\operatorname{RESET}}$ pin, the MODE1 pin, and A_{14} pin to a low level and connect the MODE0 pin to a high level. Connect all unused pins as recommended in Table 5.
(2) Apply +6 V to the V_{DD} pin and +12.5 V to the V_{pp} pin.
(3) Provide the initial address.
(4) Provide write data.
(5) Provide 1-ms program pulse (active low) to the $\overline{\mathrm{CE}}$ pin.
(6) This bit is now verified with a pulse (active low) to the $\overline{O E}$ pin. If the data has been written, proceed to step 8; if not, repeat steps 4 to 6 . If the data cannot be correctly written after 25 attempts, go to step 7 .
(7) Classify as defective and stop write operation.
(8) Provide write data and supply program pulse (for additional writing) for 3 ms times the number of repeats performed between steps 4 to 6 .
(9) Increment the address.
(10) Repeat steps 4 to 9 until the end address.

PROM Read Procedure

(1) Connect the $\overline{\operatorname{RESET}}$ pin, the MODE1 pin, and A_{14} pin to a low level and connect the MODE0 pin to a high level.
(2) Apply +5 V to the V_{DD} and V_{pp} pins.
(3) Input the address of the data to be read to pins $A_{0}-A_{14}$.
(4) Read mode is entered with a pulse (active low) on both the $\overline{C E}$ and $\overline{O E}$ pins.
(5) Data is output to the $D_{0}-D_{7}$ pins.

EPROM Erasure

Data in an EPROM is erased by exposing the quartz window in the ceramic package to light having a wavelength shorter than 400 nm , including ultraviolet rays, direct sunlight, and fluorescent light. To prevent unintentional erasure, mask the window.

Typically, data is erased by $254-\mathrm{nm}$ ultraviolet rays. A minimum lighting level of $15 \mathrm{~W}-\mathrm{s} / \mathrm{cm}^{2}$ (ultraviolet ray intensity x exposure time) is required to completely erase written data. Erasure by an ultraviolet lamp rated at $12 \mathrm{~mW} / \mathrm{cm}^{2}$ takes approximately 15 to 20 minutes. Remove any filter on the lamp and place the device within 2.5 cm of the lamp tubes.
μ PD78CP14 DC Programming Characteristics
$\mathrm{T}_{\mathrm{A}}=25 \pm 5^{\circ} \mathrm{C} ;$ MODE1 $=\mathrm{V}_{\mathrm{IL}} ;$ MODEO $=\mathrm{V}_{\mathrm{IH}} ; \mathrm{V}_{\text {SS }}=0 \mathrm{~V}$

Parameter	Symbol	Symbol*	Min	Typ	Max	Unit	Condition
$\underline{\text { High-level input voltage }}$	V_{IH}	V_{1}	2.2		$\mathrm{V}_{\mathrm{DDP}}+0.3$	V	
Low-level input voltage	V_{IL}	$\mathrm{V}_{\text {IL }}$	-0.3		0.8	V	
Input leakage current	LIIP	ILI			± 10	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DDP}}$
High-level output voltage	V_{OH}	V_{OH}	$V_{D D}-1.0$			V	$\mathrm{l}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$
Low-level output voltage	V_{OL}	V_{OL}			0.45	V	$1 \mathrm{OL}=2.0 \mathrm{~mA}$
Output leakage current	Lo				± 10	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{DDP}} ; \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$
$V_{\text {DDP }}$ power voltage	$\mathrm{V}_{\text {DDP }}$	V_{Cc}	5.75	6.0	6.25	V	Program memory write mode
			4.5	5.0	5.5	V	Program memory read mode
$V_{P P}$ power voltage	V_{PP}	V_{PP}	12.2	12.5	12.8	V	Program memory write mode
				$=\mathrm{V}$		V	Program memory read mode
$V_{\text {DDP }}$ power current	IDD	ICC			30	mA	Program memory write mode
					30	mA	Program memory read mode; $\overline{C E}=V_{\mathrm{IL}} ; V_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$
V_{PP} power current	Ipp	IPP			30	mA	Program memory read mode; $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}} ; \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$
				1	100	$\mu \mathrm{A}$	Program memory write mode

* Corresponding symbols of the μ PD27C256A.
μ PD78CP14 AC Programming Characteristics
$T_{A}=25 \pm 5^{\circ} \mathrm{C} ;$ MODE $=V_{\text {LL }} ; V_{S S}=0 \mathrm{~V}$

Parameter	Symbol	Symbol*	Min	Typ	Max	Unit	Condition
Address setup time to $\overline{\mathrm{CE}} \downarrow$	${ }^{\text {t }}$ SAC	$t_{\text {AS }}$	2			$\mu \mathrm{s}$	
Data to $\overline{\mathrm{OE}} \downarrow$ delay time	${ }^{\text {t }}$ DDOO	toes	2			$\mu \mathrm{s}$	
Input data setup time to $\overline{C E} \downarrow$	$\mathrm{t}_{\text {SIDC }}$	$t_{\text {DS }}$	2			$\mu \mathrm{s}$	
Address hold time from $\overline{\mathrm{CE}} \uparrow$	$t_{\text {HCA }}$	${ }^{\text {t }}$ AH	2			$\mu \mathrm{s}$	
Input data hold time from $\overline{\mathrm{CE}} \uparrow$	$t_{\text {HCID }}$	${ }^{\text {thH }}$	2			$\mu \mathrm{s}$	
Output data hold time from $\overline{O E} \uparrow$	${ }^{\text {thood }}$	$t_{\text {dF }}$	0		130	ns	
$\mathrm{V}_{\text {pp }}$ setup time to $\overline{\mathrm{CE}} \downarrow$	$\mathrm{t}_{\text {SVPC }}$	tvPS	2			$\mu \mathrm{s}$	
$V_{\text {DDP }}$ setup time to $\overline{C E} \downarrow$	$\mathrm{t}_{\text {SVDC }}$	tvDS	2			$\mu \mathrm{s}$	
Initial program pulse width	${ }^{\text {twL1 }}$	$t_{\text {PW }}$	0.95	1.0	1.05	ms	
Additional program pulse width	${ }^{\text {twL2 }}$	topw	2.85		78.75	ms	
MODEO/MODE1 setup time vs. $\overline{\text { CE }} \downarrow$	$t_{\text {SMC }}$		2			$\mu \mathrm{s}$	MODE1 $=\mathrm{V}_{\mathrm{IL}}$ and MODEO $=\mathrm{V}_{\mathrm{IH}}$
Address to data output time	$t_{\text {DAOD }}$	$t_{A C C}$			2	$\mu \mathrm{s}$	$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$
$\overline{C E} \downarrow$ to data output time	$t_{\text {DCOD }}$	${ }^{\text {t }}$ CE			1	$\mu \mathrm{s}$	
$\overline{\mathrm{OE}} \downarrow$ to data output time	t ${ }_{\text {DOOD }}$	t_{OE}			1	$\mu \mathrm{s}$	
Data hold time from $\overline{O E} \uparrow$ or $\overline{C E} \uparrow$	$\mathrm{t}_{\text {HCOD }}$	$t_{\text {DF }}$	0		130	ns	
Data hold time from address	${ }^{\text {thaOD }}$	${ }^{\text {t }} \mathrm{OH}$	0			ns	$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$

[^0]
PROM Timing Diagrams

${ }_{\mu}$ PD78CP14 PROM Write Mode

PROM Timing Diagrams (cont)

μ PD78CP14 PROM Read Mode

Notes:
(1) To read PROM within the $t_{D A O D}$ range, the delay of $\overline{O E} \downarrow$ from $\overline{C E} \downarrow$ must be within $t_{\text {DAOD }}{ }^{t}$ DOOD-
(2) $\mathrm{t}_{\mathrm{HCOD}}$ is the time from the state in which elther $\overline{\mathrm{OE}}$ or $\overline{\mathrm{CE}}$ first becomes V_{IH}.

Description

The μ PD78C18 family is an expanded memory version of the μ PD78C14 family of 8 -bit CMOS single-chip microcontrollers.
These microcontrollers integrate sophisticated onchip peripheral functions normally provided by external components. Their internal 16 -bit ALU and data paths, combined with a powerful instruction set and addressing capability, make the devices appropriate in data processing as well as control applications.
The devices integrate a 16 -bit ALU, 32 K -byte ROM, 1024-byte RAM, an eight-channel A/D converter, a multifunction 16-bit timer/event counter, two 8-bit timers, a USART, and two zero-crossing detect inputs on a single die, allowing their use in fast, high-end processing applications.
The μ PD78C18 family includes a 32K-byte mask ROM device, embedded with a customer program, a ROMless device for use with up to 64 K bytes of external memory, and a 32K-byte EPROM or OTP ROM device for prototyping and low-volume production. The μ PD78C18 may also be ordered with pullup resistors that are available as a mask option for ports A, B, and C .

Features

- CMOS technology
- 30 mA operating current (μ PD78C17/C18)
- Complete single-chip microcontroller
- 16-bit ALU
-32K-byte ROM
- 1024-byte RAM
- $40 \mathrm{I} / \mathrm{O}$ lines
- Pullup resistors for the mask option
- Ports A, B, and C
$-\mu$ PD78C18 device only
- Two zero-crossing detect inputs
- Two 8-bit timers
- Four edge-detection inputs (AN4-AN7)
- Expansion capabilities
-8085A-like bus
-64K-byte external memory address range
- Eight-channel, 8-bit A/D converter
- Autoscan mode
-Channel select mode
- Full-duplex USART (synchronous and asynchronous)
- 159 instructions
- 16-bit arithmetic, multiply, and divide
- HALT and STOP instructions
- $0.8 \mu \mathrm{~s}$ instruction cycle time (15 MHz operation)
- Prioritized interrupt structure
- Three external
- Eight internal
- Standby function
- On-chip clock generator

Ordering Information

Part Number (Note 1)	Package	Package Drawing	Quality Grade (Note 3)
ROMless			
μ PD78C17CW	64-pin SDIP	P64C-70-750A, C	Standard
GF-3BE	64-pin QFP (Note 2)	P64GF-100-3B8, 3BE-1	Standard
GF(A)-3BE			Special
GQ-36	64-pin QUIP	P64GQ-100-36	Standard
GQ(A)-36			Special
32K Mask R OM			
$\mu \mathrm{PD} 78 \mathrm{C} 18 \mathrm{CW}$-xxx	64-pin SDIP	P64C-70-750A, C	Standard
GF-xxx-3BE	64-pin QFP (Note 2)	P64GF-100-3B8, 3BE-1	Standard
GF(A)-xxx-3BE			Special
GQ-xxx-36	64-pin QUIP	P64GQ-100-36	Standard
GQ(A)-xxx-36			Special
32K OTP ROM			
μ PD78CP18CW	64-pin SDIP	P64C-70-750A, C	Standard
GF-3BE	64-pin QFP (Note 2)	P64GF-100-3B8, 3BE-1	Standard
GF(A)-3BE			Special
GQ-36	64-pin QUIP	P64GQ-100-36	Standard
GQ(A)-36			Special
32K UV EPROM			
μ PD78CP18DW	64-pin SDIP w/window	P64C-70-750A, C	Standard
KB	64-pin ceramic LCC w/window	X64KW-100A-1	

Note:

(1) $x x x$ indicates ROM code suffix.
(2) Engineering samples supplied in a ceramic QFP package
(3) Special grade devices have the symbol (A) embedded in the part number

Pin Configurations

64-Pin Plastic QUIP or Plastic Shrink DIP

64-Pin Plastic QFP or Ceramic LCC

Pin Identification

Symbol	Function
ALE	Address latch enable output
ANO-AN7	A/D converter analog inputs 0-7
INT1	Interrupt request 1 input
MODEO	Mode 0 input; 1/O memory output
MODE1	Mode 1 input
$\overline{\text { NMI }}$	Nonmaskable interrupt input
$\mathrm{PA}_{0}-\mathrm{PA}_{7}$	Port A I/O lines 0-7
$\mathrm{PB}_{0}-\mathrm{PB}_{7}$	Port B $1 / \mathrm{O}$ lines 0-7
$\mathrm{PC}_{0} / \mathrm{TxD}$	Port C I/O line 0; transmit data output
$\mathrm{PC}_{1} / \mathrm{RxD}$	Port C l/O line 1; receive data input
$\mathrm{PC}_{2} / \overline{\mathrm{SCK}}$	Port C I/O line 2; serial clock 1/O
$\mathrm{PC}_{3} / \mathrm{Tl///NT2}$	Port C I/O line 3; timer input; interrupt request 2 input
$\mathrm{PC}_{4} / \mathrm{TO}$	Port C I/O line 4; timer output
$\mathrm{PC}_{5} / \mathrm{Cl}$	Port C I/O line 5; counter input
PC_{6} and $\mathrm{PC}_{7} /$ CO_{0} and CO_{1}	Port C l/O lines 6 and 7; counter outputs 0 and 1
$\mathrm{PD}_{0}-\mathrm{PD}_{7}$	Port D I/O; expansion memory address, data bus (bits $A D_{0}-\mathrm{AD}_{7}$)
$\mathrm{PF}_{0}-\mathrm{PF}_{7}$	Port F I/O; expansion memory address, (bits $\mathrm{AB}_{8}-\mathrm{AB}_{15}$)
$\overline{\mathrm{RD}}$	Read strobe output
RESET	Reset input
STOP	Stop mode control input
$\mathrm{V}_{\text {AREF }}$	A/D converter reference voltage
$\overline{\text { WR }}$	Write strobe output
X1 and X 2	Crystal connections 1 and 2
$\underline{A V}$	A/D converter power supply voltage
$\mathrm{AV}_{\text {SS }}$	A/D converter power supply ground
$V_{\text {DD }}$	+5 V power supply
$\mathrm{V}_{\text {SS }}$	Ground
IC	Internal connection

Pin Functions

ALE (Address Latch Enable). The ALE output is used to strobe the address of $\mathrm{PD}_{0}-\mathrm{PD}_{7}$ into an external latch.
ANO-AN7 (Analog Inputs). ANO-AN7 are the eight analog inputs to the A/D converter. AN4-AN7 can also be used as digital inputs for falling edge detection.
Cl (Counter Input). Cl is the external pulse input to the timer/event counter.
CO_{0} and CO_{1} (Counter Outputs). CO_{0} and CO_{1} are programmable waveform outputs from the timer/event counter.

INT1 (Interrupt Request 1). INT1 is a rising edgetriggered, maskable interrupt input, as well as an acinput, zero-crossing detection terminal.
$\overline{\text { INT2 }}$ (Interrupt Request 2). $\overline{\mathrm{NT} 2}$ is a falling edgetriggered, maskable interrupt input, as well as an acinput, zero-crossing detection terminal. .

If the optional pullup resistor is specified for this pin on the μ PD78C18, the zero-crossing detection circuitry will not function.
MODE0 and MODE1 (Mode). For the μ PD78C17, the size of the externally installed memory can be selected as $4 \mathrm{~K}, 16 \mathrm{~K}$, or 63 K bytes by setting the MODEO and MODE1 pins.
For the μ PD78C 18, the MODE0 pin is set to 0 (logic low). The MODE1 pin is pulled high with a pullup resistor.
For the μ PD78C17/C18, an external pullup resistor to $V_{D D}$ is required, if the mode pin is to be a logic high. The value of this pullup resistor, R, is dependent on t_{CyC} and is calculated as follows: R in $k \Omega$ is $4 \leq R \leq 0.4$ $\mathrm{t}_{\mathrm{CYC}}$, where $\mathrm{t}_{\mathrm{CYC}}$ is in ns units.
$\overline{\text { NMI }}$ (Nonmaskable Interrupt). NMI is a falling edģe. Schmitt-triggered nonmaskable interrupt input.
$\mathrm{PA}_{0}-\mathrm{PA}_{7}$ (Port A). Port A is an 8 -bit three-state port. Each bit is independently programmable as either input or output. The reset signal causes all lines of port A to be inputs. Pullup resistors are available as a mask option on the μ PD78C18.
$\mathrm{PB}_{0}-\mathrm{PB}_{7}$ (Port B). Port B is an 8 -bit three-state port. Each bit is independently programmable as either input or output. The reset signal causes all lines of port B to be inputs. Pullup resistors are available as a mask option on the μ PD78C18.
$\mathrm{PC}_{0}-\mathrm{PC}_{7}$ (Port C). Port C is an 8 -bit three-state port. Each bit is independently programmable as either input or output. Alternatively, the lines of port C can be used as control lines for the USART, interrupts, and timer. The reset signal causes all lines of port C to be inputs. Pullup resistors are available as a mask option on the μ PD78C18.
$\mathrm{PD}_{0}-\mathrm{PD}_{7}$ (Port D). Port D is an 8-bit three-state port. It can be programmed as either 8 bits of input or 8 bits of output. When external expansion memory is used, port D functions as the multiplexed address/data bus.
$\mathrm{PF}_{0}-\mathrm{PF}_{7}$ (Port F). Port F is an 8-bit three-state port. Each bit is independently programmable as either input or output. When external expansion memory is used, port F outputs the high-order address bits.
$\overline{\mathrm{RD}}$ (Read Strobe). The strobe signal, when output for read operation of external memory, operates as follows. The signal is high, except during a data read machine cycle. It becomes a high output impedance when the RESET signal is low or when the device is in hardware stop mode.
$\overline{\operatorname{RESET}}$ (Reset). When the Schmitt-triggered $\overline{\text { RESET }}$ input goes low, it initializes the device.
$\mathbf{R x D}$ (Receive Data). RxD is the serial data input terminal.
$\overline{\text { SCK }}$ (Serial Clock). $\overline{\text { SCK }}$ is the serial clock output when the internal clock is used. SCK is the input for the serial clock when the external clock is used.

STOP (Stop Mode Control Input). A low-level input on STOP (Schmitt-triggered input) stops the system clock oscillator.

TI (Timer Input). TI is the timer input terminal.

TO (Timer Output). The output of TO is a square wave with a frequency determined by the timer/counter.
TxD (Transmit Data). TxD is the serial data output terminal.
$\mathrm{V}_{\text {AREF }}$ (A/D Converter Reference) . $\mathrm{V}_{\text {AREF }}$ functions as an input pin for the A/D converter reference voltage and as the control pin for A / D converter operation.
$\overline{W R}$ (Write Strobe). The strobe signal, when output for the write operation of external memory, operates as follows. The signal is high, except during a data write machine cycle. It becomes a high output impedance when the RESET signal is low or when the device is in hardware stop mode.
X1 and X2 (Crystal Connections). X1 and X2 are the system clock crystal oscillator terminals. X1 is also the input for an external clock.

AV ${ }^{D D}$ (A/D Converter Power). This is the power supply voltage for the A / D converter.
$\mathrm{AV}_{\text {SS }}$ (A / D Converter Ground). $\mathrm{AV}_{\text {SS }}$ is the ground potential for the A/D converter power supply.
$V_{D D}$ (Power Supply). $V_{D D}$ is the +5 -volt power supply.
$\mathbf{V}_{\text {SS }}$ (Ground). $\mathrm{V}_{\text {SS }}$ is the ground potential for the +5 volt device power supply.

Block Diagram

FUNCTIONAL DESCRIPTION

Memory Map

The μ PD78C18 family can directly address up to 64 K bytes of memory. Except for the on-chip ROM (or PROM) and RAM (FCOOH-FFFFH), any memory location can be used as ROM or RAM. The memory maps, shown in figures 1 through 3, define the 0 to 64K-byte memory space for the μ PD78C18 family.

The μ PD78CP18 can be programmed by software to have $4 \mathrm{~K}, 8 \mathrm{~K}, 16 \mathrm{~K}$, or 32 K bytes of internal program memory. This programming is transparent to a ROMbased device, allowing easy transfer of code.

Figure 1. Memory Map (μ PD78C17)

Figure 2. Memory Map (μ PD78C18)

Figure 3. Memory Map (μ PD78CP18)

Input/Output

The $\mu \mathrm{PD} 78 \mathrm{C} 18$ family has 40 digital I/O lines, consisting of five 8 -bit ports (ports A, B, C, D, and F), and four digital input lines (AN4-AN7).

Analog Input Lines. ANO-AN7 are configured as analog input lines for the on-chip A/D converter. Lines AN4-AN7 can be used as digital input lines for falling edge detection.
Port A, Port B, Port C, and Port F. Each line of these ports can be individually programmed as an input or output. When used as I/O ports, all have latched outputs and high impedance inputs. On the μ PD78C18, pullup resistors are available as a mask option for ports A, B, and C.

Port D. Port D can be programmed as a byte input or a byte output.
Control Lines. Under software control, each line of port C can be configured individually as a control line for the serial interface, timer, and timer/counter or as an I/O port.

Memory Expansion. In addition to the single-chip operation mode, the μ PD78C18 family has four memory expansion modes. Under software control, port D can provide a multiplexed low-order address and data bus; port F can provide a high-order address bus. Table 1 shows the relationship between the memory expansion modes and the pin configurations of port D and port F.

Table 1. Memory Expansion Modes and Port Configurations

Memory Expansion	Port	Port Configuration
None	Port D	I/O port
	Port F	I/O port
256 bytes	Port D	Multiplexed address/ data bus
	Port F	I/O port
4 K bytes	Port D	Multiplexed address/ data bus
	Port F $\left(\mathrm{PF}_{0}-\mathrm{PF}_{3}\right)$	Address bus
	Port F $\left(\mathrm{PF}_{4}-\mathrm{PF}_{7}\right)$	I/O port
16 K bytes	Port D	Multiplexed address/ data bus
	Port F $\left(\mathrm{PF}_{0}-\mathrm{PF}_{5}\right)$	Address bus
	Port F $\left(\mathrm{PF}_{6}-\mathrm{PF}_{7}\right)$	I/O port
$32 \mathrm{~K} / 48 \mathrm{~K} / 56 \mathrm{~K} / 60 \mathrm{~K}$ bytes	Port D	Multiplexed address/ data bus
Note 1)	Port F	Address bus

Note:

(1) Set according to bits MM7 to MM5

Timers

The two 8-bit timers can be programmed independently or cascaded as a 16-bit timer. The timer can be set by software to increment at intervals of four machine cycles ($0.8 \mu \mathrm{~s}$ at 15 MHz operation) or 128 ma chine cycles ($25.6 \mu \mathrm{~s}$ at 15 MHz), or to increment on receipt of a pulse at TI . Figure 4 is the block diagram for the timer.

Timer/Event Counter

The 16-bit multifunctional timer/event counter, shown in figure 5, can be used for the following operations:

- Interval timing
- External event counting
- Frequency measurement
- Pulse-width measurement
- Programmable frequency and duty cycle waveform output
- Single-pulse output

8-Bit A/D Converter

The 8-bit A/D converter provides the following:

- Eight input channels
- Four conversion result registers
- Two powerful operation modes
- Autoscan
- Channel select
- Successive approximation technique
- Absolute accuracy: 0.6% FSR $\pm 1 / 2$ LSB
- Conversion range: 0 to 5 V
- Conversion time: $38.4 \mu \mathrm{~s}$
- Interrupt generation

Figure 4. Timer Block Diagram

Figure 5. Block Diagram for the Timer/Event Counter

Analog/Digital Converter

The μ PD78C18 family features an 8-bit, high-speed, high accuracy A / D converter. The A / D converter is comprised of a 256 -resistor ladder and a successive approximation register (SAR). There are four conversion result registers (CRO-CR3).

The eight-channel analog input can be operated in two different modes. In the select mode, the conversion value of one analog input is sequentially stored in CRO-CR3. In the scan mode, either the upper four channels or the lower four channels may be specified. The four channels specified will be consecutively selected and the conversion results stored sequentially in the four conversion result registers.

Figure 6 is the block diagram for the A/D converter. To stop the operation of the A/D converter and reduce the power consumption, set $\mathrm{V}_{\text {AREF }}=0 \mathrm{~V}$.

Interrupt Structure

There are 12 interrupt sources in the $\mu \mathrm{PD} 78 \mathrm{C} 18$ family. Three are external and nine are internal interrupt sources. Table 2 shows 11 interrupt sources divided into seven priority levels, where IRQO is the highest and IRQ6 is the lowest. See figure 7.

Figure 6. A/D Converter Block Diagram

Figure 7. Interrupt Structure Block Diagram

Table 2. Interrupt Sources

Interrupt Request	Interrupt Address	Type of Interrupt	Internal/External
IRQO	4	$\overline{\mathrm{NMII}}$ (nonmaskable interrupt)	External
IRQ1	8	INTTO, INTT1 (coincidence signals from timers 0, 1)	Internal
IRQ2	16	INT1, $\overline{\text { NTT2 }}$ (maskable interrupts)	External
IRQ3	24	INTEO, INTE1 (coincidence signals from timer/event counter)	Internal
IRQ4	32	INTEIN (falling signal of Cl or TO into the timer/event counter)	Internal or External
		INTAD (A/D converter interrupt)	Internal
IRQ5	40	INTSR (serial receive interrupt)	Internal
		INST (serial send interrupt)	
IRQ6	96	SOFTI instruction	Internal

Standby Modes

The μ PD78C18 family has two standby modes: HALT and STOP.

HALT Mode. The HALT mode reduces power consumption to 50% of normal operating requirements, while maintaining the contents of on-chip registers, RAM, and control status. The system clock and on-board peripherals continue to operate, but the CPU stops executing instructions. The HALT mode is initiated by executing the HLT instruction and can be released by any nonmasked interrupt or by RESET.
STOP Mode. The STOP mode reduces power consumption to less than 0.1% of normal operating requirements. There are two stop modes: type A and type B.

Type A is initiated by executing a STOP instruction. If $V_{D D}$ is held above 2.5 V , the contents of the on-board RAM are saved. The oscillator is stopped. The stop mode can be released by an input on NMI or RESET. The user can program oscillator stabilization time up to 52.4 ms via timer 1 . By checking the standby flag (SB), the user can determine whether the processor has been in the standby mode or has been powered up.
Type B is initiated by inputting a low level on the $\overline{\text { STOP }}$ input. The RAM contents are saved if $V_{D D}$ is held above 2.5 V . The oscillator is stopped. The stop mode is released by raising STOP to a high level. The oscillator stabilization time is fixed at 52.4 ms ; instructions will automatically begin executing at location $0,52.4 \mathrm{~ms}$ after $\overline{S T O P}$ is raised. You can increase the stabilization time by holding $\overline{\text { RESET }}$ low for the required time period.

Universal Serial Interface

The serial interface can operate in one of three modes: synchronous, asynchronous, and I/O interface. I/O interface mode transfers data most significant bit (MSB)
first, for ease of interfacing to certain NEC peripheral devices. Synchronous and asynchronous modes transfer data least significant bit (LSB) first. Synchronous operation offers two modes of data reception: search and nonsearch. In the search mode, data is transferred one bit at a time from the serial register to the receive buffer. This allows a software search for a synchronous character. In the nonsearch mode, data going from the serial register to the transmit buffer is transferred eight bits at a time. Figure 8 shows the universal serial interface block diagram.

Zero-Crossing Detector

The INT1 and $\overline{\mathrm{NT} 2}$ (common to Tl and PC_{3}) terminals can detect the zero-crossing point of low-frequency $A C$ signals. When driven directly, these pins respond as a normal digital input. Figure 9 shows the zero-crossing detection circuitry.
The zero-crossing detection capability allows you to make the $50-60 \mathrm{~Hz}$ power signal the basis for system timing and to control voltage phase-sensitive devices.
To use the zero-crossing detection mode, an AC signal of 1.0 to 1.8 V (peak to peak) and a maximum frequency of 1 kHz is coupled through an external capacitor to the INT1 and $\overline{\text { NTT }}$ pins.
For the INT1 pin, the internal digital state is sensed as a 0 until the rising edge crosses the average $D C$ level. It then becomes a 1 and an INT1 interrupt is generated.
For the $\overline{\mathrm{NTT} 2}$ pin, the state is sensed as a 1 until the falling edge crosses the average DC level. It then becomes a 0 and $\operatorname{INT} 2$ is generated.

Figure 8. Universal Serial Interface Block Diagram

Figure 9. Zero-Crossing Detection Circuit

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings, μ PD78C17/C18

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Power supply voltage, $V_{D D}$ $A V_{D D}$ $A V_{S S}$ $V_{P P}(\mu$ PD78CP18 only $)$	$\begin{array}{r} -0.5 \text { to }+7.0 \mathrm{~V} \\ \mathrm{AV}_{\mathrm{SS}} \text { to } \mathrm{V} \text { DD }+0.5 \mathrm{~V} \\ -0.5 \text { to }+0.5 \mathrm{~V} \\ -0.5 \text { to }+13.5 \mathrm{~V} \end{array}$
Input voltage, V_{1}	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Output voltage, V_{0}	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Output current, low; loL Each output pin Total	$\begin{gathered} 4.0 \mathrm{~mA} \\ 100 \mathrm{~mA} \end{gathered}$
Output current, high; ${ }^{\mathrm{I} O H}$ Each output pin Total	$\begin{aligned} & -2.0 \mathrm{~mA} \\ & -50 \mathrm{~mA} \end{aligned}$
Reference input voltage, VA ${ }_{\text {REF }}$	-0.5 to $\mathrm{AV}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Operating temperature, TOPR $\left({ }^{(} \text {XTAL } \leq 15 \mathrm{MHz}\right)$	-40 to $+85^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\text {STG }}$	-65 to $+150^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Capacitance

$T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Max	Unit	Conditions
Input capacitance	C_{1}	10	pF	$\mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz} ;$ unmeasured pins
Output capacitance	C_{O}	20	pF	
returned to 0 V				

Oscillation Characteristics

$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=A V_{D D}=5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{S S}=A V_{S S}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}-0.8 \mathrm{~V} \leq A V_{D D} \leq V_{D D} ; 3.4 \mathrm{~V} \leq V_{A R E F} \leq A V_{D D}$

Resonator	Recommended Circuit	Parameter	Min	Typ	Max	Unit	Conditions
Ceramic resonator (Note 1) or crystal oscillator (XTAL) (Note 2)	(Note 3)	Oscillation frequency ($f x x$)	4		15	MHz	A/D converter not used
			5.8		15	MHz	A/D converter used
External clock	(Note 4)	X 1 input frequency (fx)	4		15	MHz	A/D converter not used
			5.8		15	MHz	A/D converter used
		X1 input, rise, fall time (t_{r}, t_{f})	0		20	ns	
		X_{1} input low- and high-level width ($\mathrm{t}_{\mathrm{L}} \mathrm{L}, \mathrm{t}_{\mathrm{t}} \mathrm{H}$)	20		250	ns	

Notes:

(1) Refer to the Resonator and Capacitance Requirements table for the recommended ceramic resonators.
(2) When using a crystal oscillator, it should be a parallel-resonant, fundamental mode, "AT cut" crystal. Capacitors C1 and C2 are required for frequency stability. The values of C1 and C2 (C1 = $C 2$) can be calculated from the load capacitance $\left(C_{L}\right)$, specified by the crystal manufacturer:
$C_{L}=\frac{C_{1} \times C_{2}}{C 1+C_{2}}+C_{S}$
Where C_{S} is any stray capacitance in parallel with the crystal.
(3) For XTAL, see the Recommended XTAL or Ceramic Resonator Oscillation Circuit Diagram.
(4) See the Recommended External Clock Diagram.

Recommended XTAL or Ceramic Resonator Oscillation Circuit Diagram

Recommended External Clock Diagram

Resonator and Capacitance Requirements
$T_{A}=-40$ to $+85^{\circ} \mathrm{C}$

Manufacturer	Product Number	C1, C2 (pF)
Murata	CSA15.00MX001	22
	CST15.00MXW001	None required
	CSA10.0MT	30
	CST10.0MTW	None required
	CSA8.00MT	30
CST8.00MTW	None required	
TDK	FCR15.0MC	None required
	FCR10.0	None required
	FCR8.0	None required

DC Characteristics

$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=A V_{D D}=+5.0 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=A \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Input voltage, low	$\mathrm{V}_{\text {IL. }}$	0		0.8	V	All except the Note 1 inputs
	$\mathrm{V}_{\text {IL } 2}$	0		$0.2 V_{D D}$	V	Note 1 inputs
Input voltage, high	$\mathrm{V}_{\mathrm{H} 1}$	2.2		$V_{D D}$	V	All except $\mathrm{X} 1, \mathrm{X} 2$, and the Note 1 inputs
	$\mathrm{V}_{\mathrm{H} 2}$	$0.8 \mathrm{~V}_{\mathrm{DD}}$		$V_{D D}$	v	$\mathrm{X}_{1}, \mathrm{X} 2$, and the Note 1 inputs
Output voltage, low	V_{OL}			0.45	V	$\mathrm{l}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
Output voltage, high	V_{OH}	$V_{D D}-1.0$			V	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$
		$V_{D D}-0.5$			V	$\mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$
Input current	l_{11}			± 200	$\mu \mathrm{A}$	$\begin{aligned} & \text { INT1 (Note 2); } \mathrm{TI}\left(\mathrm{PC}_{3}\right) \text { (Note 3); } 0 \mathrm{~V} \leq \mathrm{V}_{1} \\ & \leq \mathrm{V}_{\mathrm{DD}} \end{aligned}$
Input leakage current	LLI^{\prime}			± 10	$\mu \mathrm{A}$	All except INT1; $\mathrm{TI}\left(\mathrm{PC}_{3}\right) ; 0 \mathrm{~V} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DD}}$
				± 1	$\mu \mathrm{A}$	AN7-0; $0 \mathrm{~V} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DD}}$ ($\mu \mathrm{PD78C17(A)/}$ C18(A)/CP18(A) only)
Output leakage current	Lo			± 10	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{0} \leq \mathrm{V}_{\mathrm{DD}}$
$\mathrm{AV}_{\mathrm{DD}}$ supply current	$\mathrm{Al}_{\mathrm{DD} 1}$		0.5	1.3	mA	$\mathrm{f}=15 \mathrm{MHz}$
	AldD2		10	20	$\mu \mathrm{A}$	Stop mode
$V_{\text {DD }}$ supply current	IDD1		16	30	mA	Normal operation; $f=15 \mathrm{MHz}$
	IDD2		7	13	mA	Halt mode; $f=15 \mathrm{MHz}$
Data retention voltage	$V_{\text {DDDR }}$	2.5			V	Stop mode
Data retention current	${ }^{\text {I DDDR }}$		1	15	$\mu \mathrm{A}$	$\mathrm{V}_{\text {DDDR }}=2.5 \mathrm{~V}$ (Note 4)
			10	50	$\mu \mathrm{A}$	$\mathrm{V}_{\text {DDDR }}=5.0 \mathrm{~V} \pm 10 \%$ (Noto 4)
Pullup resistor	R_{L}	17	27	75	k Ω	$\text { Ports } \mathrm{A}, \mathrm{~B}, \mathrm{C} ; 3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$ $V_{1}=0 V \text { (} \mu \mathrm{PD} 78 \mathrm{C} 18 / \mathrm{C} 18(\mathrm{~A}) \text { only) }$

Notes:

(1) Inputs $\overline{\operatorname{RESET}}, \overline{\mathrm{STOP}}, \overline{\mathrm{NMI}}, \overline{\mathrm{SCK}}, \operatorname{INT1}, \mathrm{TI}$, and AN4-AN7.
(2) Assuming ZCM register is set to self-bias.
(3) Assuming ZCM register is set to self-bias and the MCC register is set to the control mode.
(4) Hardware/software stop mode and assuming ZCM register is set so that self-bias is not selected.

AC Characteristics

Parameter	Symbol	Min	Max	Unit	Conditions
RESET pulse width high, low	$t_{\text {RSH }}, \mathrm{t}_{\text {RSL }}$	10		$\mu \mathrm{s}$	
$\overline{\mathrm{NMI}}$ pulse width high, low	${ }^{\text {tiHe }}$, $\mathrm{t}_{\text {NIH }}$	10		$\mu \mathrm{s}$	
X1 input cycle time	$\mathrm{t}_{\mathrm{CrO}}$	66	250	ns	
		,	167	ns	(Note 1)
Address setup to ALE \downarrow	$t_{\text {AL }}$	30		ns	(Notes 2, 3)
Address hold from ALE \downarrow	$t_{\text {LA }}$	35		ns	(Notes 2, 3)
Address to $\overline{\mathrm{RD}} \downarrow$ delay time	$t_{A R}$	100		ns	(Notes 2, 3)
$\overline{\mathrm{RD}} \downarrow$ to address floating	$t_{\text {AFR }}$		20	ns	(Note 3)
Address to data input	$t_{A D}$		250	ns	(Notes 2, 3)
ALE \downarrow to data input	tidR		135	ns	(Notes 2, 3)
$\overline{R D} \downarrow$ to data input	$t_{\text {RD }}$		120	ns	(Notes 2, 3)
ALE \downarrow to $\overline{\mathrm{RD}} \downarrow$ delay time	th	15		ns	(Notes 2, 3)
Data hold time from $\overline{R D} \uparrow$	$t_{\text {RDH }}$	0		ns	(Note 3)
$\overline{\mathrm{RD}} \uparrow$ to $\mathrm{ALE} \uparrow$ delay time	$t_{\text {RL }}$	80		ns	(Notes 2, 3)
$\overline{\mathrm{RD}}$ width low	$t_{\text {RR }}$	215		ns	Data read (Notes 2, 3)
		415		ns	Opcode fetch (Notes 2, 3)
ALE width high	$t_{\text {LL }}$	90		ns	(Notes 2, 3)
$\overline{\text { M1 }}$ setup time to ALE \downarrow	$t_{M L}$	30		ns	(Note 3)
$\overline{\text { M1 }}$ hold time after ALE \downarrow	$t_{L M}$	35		ns	(Note 3)
	$t_{\text {IL }}$	30		ns	(Note 3)
$\overline{\mathrm{O} / \mathrm{M}}$ hold time after ALE \downarrow	t_{LI}	35		ns	(Note 3)
Address to $\overline{W R} \downarrow$ delay	$t_{\text {AW }}$	100		ns	(Notes 2, 3)
ALE \downarrow to data output	t LDW		180	ns	(Notes 2, 3)
$\overline{\text { WR }} \downarrow$ to data output	$t_{\text {wo }}$		100	ns	(Note 3)
ALE \downarrow to $\overline{W R} \downarrow$ delay time	tLW	15		ns	(Notes 2, 3)
Data setup time to $\overline{\mathrm{WR}} \uparrow$	${ }^{\text {t }}$ W	165		ns	(Notes 2, 3)
		127		ns	(Note 1)
Data hold time from $\overline{W R} \uparrow$	${ }_{\text {WWDH }}$	60		ns	(Notes 2, 3)
$\overline{W R} \uparrow$ to ALE \uparrow delay time	${ }^{\text {twL }}$	80		ns	(Notes 2, 3)
WR width low	$t_{\text {w }}$ w	215		ns	(Notes 2, 3)

Notes:

(1) μ PD78CP18 only.
(2) Load capacitance $C_{L}=100 \mathrm{pF}$.
(3) Values are for 15 MHz operation. For operation at other frequencies, refer to the table labeled Bus Timing Dependent on toyc.
μ PD78C18 Family

Serial Operation

Parameter	Symbol	Min	Max	Unit	Conditions
$\overline{\mathrm{SCK}}$ cycle time	${ }^{\text {t }}$ CYK	0.8		$\mu \mathrm{s}$	$\overline{\text { SCK }}$ input (Notes 1, 3)
		0.4		$\mu \mathrm{s}$	$\overline{\text { SCK }}$ input (Note 2)
		1.6		$\mu \mathrm{s}$	$\overline{\text { SCK }}$ output (Note 3)
$\overline{\text { SCK width low }}$	${ }^{\text {K KKL }}$	335		ns	$\overline{\text { SCK input (Notes 1, 3) }}$
		160		ns	SCK input (Note 2)
		700		ns	$\overline{\text { SCK output (Note 3) }}$
$\overline{\overline{S C K}}$ width high	${ }^{\text {K KKH }}$	335		ns	$\overline{\text { SCK input (Notes 1, 3) }}$
		160		ns	$\overline{\text { SCK }}$ input (Note 2)
		700		ns	$\overline{\text { SCK output (Note 3) }}$
RxD setup time to $\overline{S C K} \uparrow$	$\mathrm{t}_{\mathrm{RXK}}$	80		ns	(Note 1)
RXD hold time after $\overline{\text { SCK }} \uparrow$	$t_{\text {KRX }}$	80		ns	(Note 1)
$\overline{\text { SCK }} \downarrow$ TxD delay time	${ }_{\text {t }}$ TX		210	ns	(Note 1)

Notes:

(1) $1 \times$ baud rate in asynchronous, synchronous, and I/O interface modes.
(2) $16 \times$ baud rate or $64 \times$ baud rate in asynchronous mode.
(3) $f_{X T A L}=15 \mathrm{MHz}$.

Zero-Crossing Characteristics

Parameter	Symbol	Min	Max	Unit	Condition
Zero-crossing detection input	$\mathrm{V}_{Z X}$	1	1.8	VAC_{p-p}	AC couplod fon Hz aino wave
Zero-crossing accuracy	$\mathrm{A}_{Z X}$		± 135	mV	
Zero-crossing detection input frequency	f_{ZX}	0.05	1	kHz	

A/D Converter Characteristics

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Resolution		8			bits	
Absolute accuracy (Note 1)				± 0.4	\%FSR	$\begin{aligned} & T_{A}=-10 \text { to }+70^{\circ} \mathrm{C} ; 66 \mathrm{~ns} \leq \mathrm{t}_{\mathrm{CYC}} \leq 170 \mathrm{~ns} ; \\ & 4.0 \mathrm{~V} \leq \mathrm{V}_{\text {AREF }} \leq A V_{\text {DD }} \end{aligned}$
				± 0.6	\%FSR	$66 \mathrm{~ns} \leq \mathrm{t}_{\mathrm{CYC}} \leq 170 \mathrm{~ns} ; 4.0 \mathrm{~V} \leq \mathrm{V}_{\text {AREF }} \leq A V_{\text {DD }}$
				± 0.8	\%FSR	$66 \mathrm{~ns} \leq \mathrm{t}_{\mathrm{CYC}} \leq 170 \mathrm{~ns} ; 3.4 \mathrm{~V} \leq \mathrm{V}_{\text {AREF }} \leq \mathrm{AV}_{\text {DD }}$
Conversion time	${ }^{\text {t CONV }}$	576			${ }^{t} \mathrm{CYC}$	$66 \mathrm{~ns} \leq \mathrm{t}_{\mathrm{CYC}} \leq 110 \mathrm{~ns}$
		432			${ }^{\text {t cre }}$	$110 \mathrm{~ns} \leq \mathrm{t}_{\mathrm{CYC}} \leq 170 \mathrm{~ns}$
Sampling time	$\mathrm{t}_{\text {SAMP }}$	96			${ }^{\text {t }}$ ¢ CO	$66 \mathrm{~ns} \leq \mathrm{t}_{\mathrm{cYC}} \leq 110 \mathrm{~ns}$
		72			${ }^{t} \mathrm{CYC}$	$110 \mathrm{~ns} \leq \mathrm{t}_{\mathrm{CYC}} \leq 170 \mathrm{~ns}$
Analog input voltage	$V_{\text {IAN }}$	0		$\mathrm{V}_{\text {AREF }}$	V	
Analog input impedance	$\mathrm{R}_{\text {AN }}$		1000		$\mathrm{M} \Omega$	
Reference voltage	$V_{\text {AREF }}$	3.4		$\mathrm{AV}_{\mathrm{DD}}$	\checkmark	
$\mathrm{V}_{\text {AREF }}$ current	$\mathrm{I}_{\text {AREF } 1}$		1.5	3.0	mA	Operation mode
	$\mathrm{I}_{\text {AREF2 }}$		0.7	1.5	mA	Stop mode

A/D Converter Characteristics (cont)

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
$\mathrm{AV}_{\mathrm{DD}}$ supply current	$\mathrm{Al}_{\mathrm{DD} 1}$		0.5	1.3	mA	Operation mode; fXTAL $=15 \mathrm{MHz}$
	$\mathrm{Al}_{\mathrm{DD} 2}$		10	20	$\mu \mathrm{~A}$	Stop mode

Notes:

(1) Quantizing error $(\pm 1 / 2$ LSB) is not included.
(2) $\mathrm{FSR}=$ full-scale resolution.

Bus Timing Dependent on tcyc

Symbol	Min/Max (ns)	Calculation Formula
${ }^{\text {TIH, }}$, $\mathrm{t}_{\text {TIL }}$	Min	6 T (TI input - PC_{3})
${ }^{\mathrm{t}} \mathrm{ClHH}{ }^{\mathrm{t}} \mathrm{t}_{\mathrm{CHL}}$ (Note 2)	Min	6 T (T i input - PC_{5})
${ }^{\mathrm{t}} \mathrm{Cl}_{12 \mathrm{H}}, \mathrm{t}_{\mathrm{Cl}}{ }^{2}$ (Note 3)	Min	48 T (TI input - PC5)
$\mathrm{t}_{11 \mathrm{H}, \mathrm{t}_{11 \mathrm{~L}}}$	Min	$36 T$ (INT1)
$\mathrm{t}_{12 \mathrm{H}, \mathrm{t}_{12 \mathrm{~L}}}$	Min	36 T ($\overline{\mathrm{NT} 2}$)
$\mathrm{t}_{\text {ANH }}, \mathrm{t}_{\text {ANL }}$	Min	36 T (AN4-AN7)
${ }^{t_{A L}}$	Min	2T-100
${ }_{\text {tha }}$	Min	T-30
${ }^{t_{A R}}$	Min	3T-100
${ }^{t_{A D}}$	Max	7T-220
${ }_{\text {t LDR }}$	Max	5T-200
${ }^{\text {t }} \mathrm{DD}$	Max	4T-150
${ }^{\text {L L }}$	Min	T-50
$t_{\text {thL }}$	Min	2T-50
$t_{\text {RR }}$	Min	4T-50 (Data read)
	Min	7T-50 (Opcode fetch)
${ }_{\text {tLL }}$	Min	2T-40
${ }^{t_{M L}}$	Min	2T-100
${ }_{\text {t }}^{\text {L M }}$	Min	T-30
t_{ll}	Min	2T-100
t LI	Min	T-30
${ }^{\text {A }}$ W	Min	$3 \mathrm{~T}-100$
tLDW	Max	T + 110
		T+130 (Note 7)

Symbol	Min/Max (ns)	Calculation Formula
${ }_{\text {t }} \mathrm{W}$	Min	T-50
$t_{\text {tw }}$	Min	4T-100/4T-140 (Note 7)
${ }^{\text {t WDH }}$	Min	2T-70
${ }^{\text {twL }}$	Min	2T-50
${ }^{t}$ ww	Min	4T-50
${ }^{t_{\text {CYK }}}$	Min	24 T (SCK output)
	Min	12 T (SCK input) (Note 1)
	Min	6 T (Note 6)
${ }_{\text {tKKL }}$	Min	12T-100 ($\overline{\text { SCK }}$ output)
	Min	$5 \mathrm{~T}+5$ (SCK input) (Note 1)
	Min	$2.5 T+5$ (Note 6)
$t_{\text {KKH }}$	Min	12T-100(SCK output)
	Min	$5 \mathrm{~T}+5$ (SCK input) (Note 1)
	Min	$2.5 \mathrm{~T}+5$ (Note 6)

(1) $1 \times$ baud rate in asynchronous, synchronous, and I/O interface modes.
(2) Event counter mode.
(3) Pulse width measurement mode.
(4) $T=t_{C Y C}=1 / \mathrm{f}_{\mathrm{XTAL}}$.
(5) The items not included in this list are independent of oscillator frequency (fxtal).
(6) $16 \times$ baud rate or $64 \times$ baud rate in asynchronous mode
(7) μ PD78CP18/CP18(A) only.

Data Memory Stop Mode Data Retention Characteristics
$T_{A}=-40$ to $+85^{\circ} \mathrm{C}$

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Data retention power supply voltage	$V_{\text {DDDR }}$	2.5		5.5	V	
Data retention power supply current	IDDDR		1	15	$\mu \mathrm{A}$	$V_{\text {DDDR }}=2.5 \mathrm{~V}$
			15	50	$\mu \mathrm{A}$	$\mathrm{V}_{\text {DDDR }}=5.0 \mathrm{~V} \pm 10 \%$
V_{DD} rise, fall time	$\mathrm{t}_{\text {RVD }} \mathrm{t}_{\text {FVD }}$	200			$\mu \mathrm{s}$	
$\overline{\text { STOP }}$ setup time to $V_{D D}$	tsstvo	$12 \mathrm{~T}+0.5$			$\mu \mathrm{s}$	
STOP hold time from V_{DD}	${ }^{\text {thVDST }}$	$12 \mathrm{~T}+0.5$			$\mu \mathrm{s}$	

Timing Waveforms
Data Retention

Data Read Operation

Timing Waveforms (cont)

Data Write Operation

Note:
[1] $\overline{10}$ slgnal is output to the MODEO pin [ff MODEO is pulled up to $V_{D D}$ d during a read or witte of special registers sr-sr2.

Timing Waveforms (cont)

Opcode Fetch Operation

Note:
[1] $\overline{\text { M1 }}$ signal is output to the MODE1 pin during every Opcode Fetch If MODE1 pin is pulled up to V_{DD}. This slgnal is not output on the μ PD78CP14.

Timer/Event Counter Input:
 Event Counter Mode

Timer/Event Counter Input:
Pulse Width Measurement Mode

Timing Waveforms (cont)

Serial Operation Transmit/Receive

Timer Input

AC Timing Test Points

AN4-AN7 Edge Detection

RESET Input

External Clock

Interrupt Input

μ PD78CP18 PROGRAMMING

In the μ PD78CP18, the mask ROM of the μ PD78C18 family is replaced by a one-time programmable ROM (OTP ROM) or a reprogrammable, ultraviolet erasable ROM (UV EPROM). The ROM is 32,768 by 8 bits and can be programmed using a general-purpose PROM writer with a μ PD27C256A programming mode. Refer to tables 3 through 5 and the DC and AC Programming Characteristics tables for specific information applicable to programming the $\mu \mathrm{PD} 78 \mathrm{CP} 18$.

Table 3. Pin Functions during EPROM Programming

Pin	Function	Description
$\mathrm{PA}_{0}-\mathrm{PA}_{7}$	$\mathrm{~A}_{0}-\mathrm{A}_{7}$	Low-order 8-bit address
PF_{0}	$\mathrm{~A}_{8}$	High-order 7-bit address
$\overline{\overline{\mathrm{NMI}}}$	A_{9}	
$\mathrm{PF}_{2}-\mathrm{PF}_{6}$	$\mathrm{~A}_{10}-\mathrm{A}_{14}$	
$\mathrm{PD}_{0}-\mathrm{PD}_{7}$	$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data input/output
PB_{6}	$\overline{\mathrm{CE}}$	Chip enable input
PB_{7}	$\overline{\mathrm{OE}}$	Output enable input
$\overline{\mathrm{RESET}}$	$\overline{\mathrm{RESET}}$	PROM programming mode requires a low voltage on this pin
$\overline{\text { Mode 0 }}$	$\overline{\text { Mode 0 }}$	Enter PROM programming mode by applying a high voltage to this pin
Mode 1	Mode 1	Enter PROM programming mode by applying a low voltage to this pin
$\overline{\mathrm{STOP}}$	VPP	High-voltage input (write/verify) high level (read)

Table 4. Summary of Operation Modes for EPROM Programming

Operation Mode	$\overline{\mathbf{C E}}$	$\overline{\mathrm{OE}}$	$\mathrm{V}_{\mathbf{P P}}$	$\overline{V_{D D}}$	$\overline{\mathrm{RESET}}$	$\overline{\text { MODEO }}$	MODE1
Program write	L	H	+12.5 V	+6 V	L	H	L
Program verify	H	L	+12.5 V	+6 V	L	H	
Program inhibit	H	H	+12.5 V	+6 V	L	L	
Read	L	L	+5 V	+5 V	L	H	L
Output disable	L	H	+5 V	+5 V	L	H	H
Standby	H	L / H	+5 V	+5 V	L	H	L

Notes:
(1) The $\overline{C E}, \overline{O E}, V_{p p}$, and $V_{D D}$ pins are all compatible with the μ PD27C256A pins.

Caution: When Vpp is set to +12.5 V and V_{DD} is set to +6 V , you cannot set both $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ to low level (L).

Table 5. Recommended Connections for Unused Pins (EPROM Programming Mode)

Pin	Recommended Connection Method
INT1	Connect to $\mathrm{V}_{S S}$
X 1	Connect to V_{SS}
X 2	Leave this pin disconnected
ANO-AN7	Connect to V_{SS}
$\mathrm{VA}_{\text {REF }}$	Connect to V_{SS}
AV $V_{\text {DD }}$	Connect to $\mathrm{V}_{S S}$
AV $\mathrm{V}_{S S}$	Connect to $\mathrm{V}_{S S}$
Remaining pins	Connect each pin via a resistor to V_{SS}

PROM Write Procedure

(1) Connect the $\overline{\text { RESET }}$ pin, the MODE1 pin, and A_{14} pin to a low level and connect the MODEO pin to a high level. Connect all unused pins as recommended in Table 5.
(2) Apply +6 V to the V_{DD} pin and +12.5 V to the V_{pp} pin.
(3) Provide the initial address.
(4) Provide write data.
(5) Provide 1-ms program pulse (active low) to the $\overline{\mathrm{CE}}$ pin.
(6) This bit is now verified with a pulse (active low) to the $\overline{O E}$ pin. If the data has been written, proceed to step 8; if not, repeat steps 4 to 6 . If the data cannot be correctly written after 25 attempts, go to step 7.
(7) Classify as defective and stop write operation.
(8) Provide write data and supply program pulse (for additional writing) for 3 ms times the number of repeats performed between steps 4 to 6 .
(9) Increment the address.
(10) Repeat steps 4 to 9 until the end address.

PROM Read Procedure

(1) Connect the $\overline{\text { RESET }}$ pin and the MODE1 pin to a low level and connect the MODEO pin to a high level.
(2) Apply +5 V to the V_{DD} and V_{pp} pins.
(3) Input the address of the data to be read to pins $\mathrm{A}_{0}-\mathrm{A}_{14}$.
(4) Read mode is entered with a pulse (active low) on both the CE and OE pins.
(5) Data is output to the $D_{0}-D_{7}$ pins.

EPROM Erasure

Data in an EPROM is erased by exposing the quartz length shorter than 400 nm , including ultraviolet rays, direct sunlight, and fluorescent light. To prevent unintentional erasure, mask the window.
Typically, data is erased by $254-\mathrm{nm}$ ultraviolet rays. A minimum lighting level of $15 \mathrm{~W}-\mathrm{s} / \mathrm{cm}^{2}$ (ultraviolet ray intensity x exposure time) is required to completely erase written data. Erasure by an ultraviolet lamp rated at $12 \mathrm{~mW} / \mathrm{cm}^{2}$ takes approximately 15 to 20 minutes. Remove any filter on the lamp and place the device within 2.5 cm of the lamp tubes.
μ PD78CP18 DC Programming Characteristics
$\mathrm{T}_{\mathrm{A}}=25 \pm 5^{\circ} \mathrm{C} ;$ MODE1 $=\mathrm{V}_{\mathrm{IL}} ;$ MODEO $=\mathrm{V}_{\mathrm{IH}} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Symbol*	Min	Typ	Max	Unit	Condition
High-level input voltage	V_{1}	$\mathrm{V}_{\text {IH }}$	2.2		$\mathrm{V}_{\text {DDP }}+0.3$	V	
Low-level input voltage	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	-0.3		0.8	V	
Input leakage current	$\mathrm{l}_{\text {LIP }}$	LI			± 10	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DDP}}$
High-level output voltage	V_{OH}	V_{OH}	$V_{D D}-1.0$			V	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$
Low-level output voltage	V_{OL}	V_{OL}			0.45	V	$\mathrm{l}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
Output leakage current	Lo				± 10	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{DDP}} ; \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$
$V_{\text {DDP }}$ power voltage	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {cc }}$	5.75	6.0	6.25	V	Program memory write mode
			4.5	5.0	5.5	V	Program memory read mode
$\mathrm{V}_{\text {PP }}$ power voltage	V_{PP}	$V_{P P}$	12.2	12.5	12.8	V	Program memory write mode
				$V_{P P}=V_{\text {DDP }}$		V	Program memory read mode
$\mathrm{V}_{\text {DDP }}$ power current	I_{DD}	Icc		5.0	50	mA	Program memory write mode
				5.0	50	mA	Program memory read mode; $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{1}=\mathrm{V}_{\mathrm{IH}}$
$\mathrm{V}_{\text {PP }}$ power current	Ipp	lpp			30	mA	Program memory read mode; $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}} ; \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$
				1	100	$\mu \mathrm{A}$	Program memory write mode

* Corresponding symbols of the $\mu \mathrm{PD} 27 \mathrm{C} 256 \mathrm{~A}$.
μ PD78CP18 AC Programming Characteristics
$T_{A}=25 \pm 5^{\circ} \mathrm{C} ;$ MODE1 $=\mathrm{V}_{\mathrm{LL}} ; \mathrm{V}_{\text {SS }}=0 \mathrm{~V}$

Parameter	Symbol	Symbol*	Min	Typ	Max	Unit	Condition
Address setup time to $\overline{\mathrm{CE}} \downarrow$	$t_{S A C}$	$t_{\text {AS }}$	2			$\mu \mathrm{s}$	
Data to $\overline{O E} \downarrow$ delay time	${ }^{\text {t }}$ DDOO	toes	2			$\mu \mathrm{s}$	
Input data setup time to $\overline{\mathrm{CE}} \downarrow$	$\mathrm{t}_{\text {SIDC }}$	$t_{\text {d }}$	2			$\mu \mathrm{s}$	
Address hold time from $\overline{\mathrm{CE}} \uparrow$	${ }^{\text {thCA }}$	$t_{\text {AH }}$	2			$\mu \mathrm{s}$	
Input data hold time from $\overline{\mathrm{CE}} \uparrow$	$t_{\text {HCID }}$	${ }^{\text {t }}$ D	2			$\mu \mathrm{s}$	
Output data hold time from $\overline{O E} \uparrow$	$\mathrm{t}_{\mathrm{HOOD}}$	$t_{\text {DF }}$	0		130	ns	
V_{pp} setup time to $\overline{\mathrm{CE}} \downarrow$	$t_{\text {SVPC }}$	tVPS	2			$\mu \mathrm{s}$	
$V_{\text {DDP }}$ setup time to $\overline{C E} \downarrow$	$t_{\text {svde }}$	tvos	2			$\mu \mathrm{s}$	
Initial program pulse width	${ }_{\text {twL1 }}$	$t_{\text {pw }}$	0.95	1.0	1.05	ms	
Additional program pulse width	${ }^{\text {t }}$ L ${ }^{\text {L2 }}$	topw	2.85		78.75	ms	
MODEO/MODE1 setup time vs. $\overline{\mathrm{CE}} \downarrow$	tsmC		2			$\mu \mathrm{s}$	MODE1 $=\mathrm{V}_{\mathrm{IL}}$ and MODE0 $=\mathrm{V}_{\mathrm{IH}}$
Address to data output time	$t_{\text {DAOD }}$	$t_{A C C}$			2	$\mu \mathrm{s}$	$\overline{O E}=V_{\text {IL }}$
$\overline{\mathrm{CE}} \downarrow$ to data output time	${ }^{\text {t }}$ COOD	${ }^{\text {t }}$ CE			1	$\mu \mathrm{s}$	
$\overline{\mathrm{OE}} \downarrow$ to data output time	$t_{\text {DOOD }}$	t_{OE}			1	$\mu \mathrm{s}$	
Data hold time from $\overline{O E} \uparrow$ or $\overline{\mathrm{CE}} \uparrow$	$\mathrm{t}_{\mathrm{HCOD}}$	$t_{\text {dF }}$	0		130	ns	
Data hold time from address	$\mathrm{t}_{\text {HAOD }}$	${ }^{\text {toh }}$	0			ns	$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$

[^1]
PROM Timing Diagrams

μ PD78CP18 PROM Write Mode

PROM Timing Diagrams (cont)
μ PD78CP18 PROM Read Mode

Notes:
(1) To read PROM within the $t_{\text {DAOD }}$ range, the delay of $\overline{\mathrm{OE}} \downarrow$ from $\overline{\mathrm{CE}} \downarrow$ must be within $\mathrm{t}_{\mathrm{DAOD}}{ }^{-1} \mathrm{DOOD}$.
(2) $t_{H C O D}$ is the time from the state in which elther $\overline{\mathrm{OE}}$ or $\overline{\mathrm{CE}}$ first becomes $\mathrm{V}_{\mathbf{H}}$.

INSTRUCTION SET
 Operand Symbols

Symbol	Allowable Operands
Registers	
\mathbf{r}	V, A, B, C, D, E, H, L
1	EAH, EAL, B, C, D, E, H, L
r2	A, B, C
Special Registers	
sr	PA, PB, PC, PD, PF, MKH, MKL, ANM,
	SMH, SML, EOM, ETMM, TMM, MM,
	MCC, MA, MB, MC, MF, TXB, TMO,
sr1	TM1, ZCM
	PA, PB, PC, PD, PF, MKH, MKL, ANM,
	SMH, EOM, TMM, RXB, CRO, CR1,
sr2	CR2, CR3
sr3	PA, PB, PC, PD, PF, MKH, ANM, MKL,
ss4	SMH, EOM, TMM

Register Pairs

$r p$	$S P, B, D, H$
$r p 1$	$V, B, D, H, E A$
$r p 2$	$S P, B, D, H, E A$
$r p 3$	B, D, H

Register Pair Addressing

rpa rpa1	$\begin{aligned} & B, D, H, D+, H+, D-H- \\ & B, D, H \end{aligned}$
rpa2	$\begin{aligned} & B, D, H, D+, H+, D-, H-, D+\text { byte, } \\ & H+A, H+B, H+E A, H+\text { byte } \end{aligned}$
rpa3	$\begin{aligned} & \mathrm{D}, \mathrm{H}, \mathrm{D}++, \mathrm{H}++, \mathrm{D}+\text { byte, } \mathrm{H}+\mathrm{A}, \\ & \mathrm{H}+\mathrm{B}, \mathrm{H}+\mathrm{EA}, \mathrm{H}+\text { byte } \end{aligned}$
Flags	
f	CY, HC, Z
Interrupt Flags	
irf	INTFNMI, INTFTO, INTFT1, INTF1, INTF2, INTFEO, INTFE1, INTFEIN, INTFAD, INTFSR, INTFST, ER, OV, AN4, AN5, AN6, AN7, SB
Immediate Data	
wa	8-bit immediate data (low byte of working register address)
word	16-bit immediate data
byte	8 -bit immediate data
bit	3 -bit immediate data (b_{2}, b_{1}, b_{0})

Operand Definitions

$\mathrm{PA}=\mathrm{Port} \mathrm{A}$	ECNT $=$ Timer/event counter
$\mathrm{PB}=$ Port B	upcounter
$\mathrm{PC}=$ Port C	ECPT = Timer/event counter capture
$P D=P$ ort D	ETMM $=$ Timer/event counter mode
$\mathrm{PF}=\mathrm{PortF}$	
$M A=$ Mode A	
$M B=$ Mode B	
MC = Mode C	EOM $=$ Timer/event counter output
MCC = Mode control C	mode
MF = Mode F	
	TXB $=$ Transmit buffer
MM = Memory mapping	RXB $=$ Receive buffer
TMO $=$ Timer register 0	SMH = Serial mode high
TM1 = Timer register 1	SML = Serial mode low
TMM $=$ Timing mode	MKH = Mask high
ETMO $=$ Timer/ event counter register 0	MKL = Mask low ANM $=A / D$ channel mode
ETM1 = Timer/event counter register 1	$\begin{aligned} & \text { CRO to CR3 }=A / D \text { conversion result } \\ & 0-3 \end{aligned}$
$\begin{aligned} & \text { ZCM }=\text { Zero-cross mode } \\ & \text { control register } \end{aligned}$	

$S P=S$ tack pointer	$H=H L$
$B=B C$	$V=V A$
$D=D E$	$E A=E x t e n d e d$ accumulator

Register Pair Addressing (rpa-rpa3)

$B=(B C)$	$\mathrm{D}++=(\mathrm{DE})++$
$\mathrm{D}=$ (DE)	$\mathrm{H}++=(\mathrm{HL})++$
$\mathrm{H}=(\mathrm{HL})$	$\mathrm{D}+$ byte $=(\mathrm{DE}+$ byte $)$
$\mathrm{D}+=$ (DE) +	$\mathrm{H}+$ byte $=(\mathrm{HL}+$ byte $)$
$\mathrm{H}_{+}=(\mathrm{HL})+$	$H+A=(H L+A)$
$\mathrm{D}-=$ (DE)-	$\mathrm{H}+\mathrm{B}=(\mathrm{HL}+\mathrm{B})$
$\mathrm{H}-\mathrm{=}(\mathrm{HL})-$	$H+E A=(H L+E A)$
Flags (f)	
$\mathrm{CY}=$ Carry	HC = Half-carry $\quad Z=$ Zero
Interrupt Flags (Irf)	
$\begin{aligned} & \text { INTFNMI = NMI interrupt } \\ & \text { flag } \end{aligned}$	$\begin{aligned} & \text { INTFEIN }=\text { FEIN } \\ & \text { INTFAD }=\text { FAD } \\ & \text { INTFSR }=\text { FSR } \end{aligned}$
INTFTO $=$ FTO	INTFST $=$ FST
INTFT1 = FT1	$E R=$ Error
INTF1 = F1	OV = Overflow
INTF2 = F2	AN4 to AN7 = Analog input 4-7
INTFEO = FEO	$\mathrm{SB}=$ Standby
INTFE1 = FE1	

Operand Codes

Registers (r, r2)

$\mathbf{R}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{0}}$	Reg	Applicable to
0	0	0	V	r
0	0	1	A	r, r2
0	1	0	B	
0	1	1	C	
1	0	0	D	r
1	0	1	E	
1	1	0	H	
1	1	1	L	

Register (r1)

$\mathbf{T}_{\mathbf{2}}$	$\mathbf{T}_{\mathbf{1}}$	$\mathbf{T}_{\mathbf{0}}$	Reg
0	0	0	EAH
0	0	1	EAL
0	1	0	B
0	1	1	C
1	0	0	D
1	0	1	E
1	1	0	H
1	1	1	L

Special Registers (sr, sr1, sr2)

$\mathbf{S}_{\mathbf{5}}$	$\mathbf{S}_{\mathbf{4}}$	$\mathbf{S}_{\mathbf{3}}$	$\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{0}}$	Special Reg	Applicable to
0	0	0	0	0	0	PA	sr, sr1, sr2
0	0	0	0	0	1	PB	
0	0	0	0	1	0	PC	
0	0	0	0	1	1	PD	
0	0	0	1	0	1	PF	
0	0	0	1	1	0	MKH	
0	0	0	1	1	1	MKL	
0	0	1	0	0	0	ANM	
0	0	1	0	0	1	SMH	
0	0	1	0	1	0	SML	sr
0	0	1	0	1	1	EOM	sr, sr1, sr2
0	0	1	1	0	0	ETMM	sr
0	0	1	1	0	1	TMM	sr, sr1, sr2
0	1	0	0	0	0	MM	sr
0	1	0	0	0	1	MCC	
0	1	0	0	1	0	MA	
0	1	0	0	1	1	MB	
0	1	0	1	0	0	MC	
0	1	0	1	1	1	MF	
0	1	1	0	0	0	TXB	
0	1	1	0	0	1	RXB	sr1
0	1	1	0	1	0	TMO	sr
0	1	1	0	1	1	TM1	
1	0	0	0	0	0	CRO	sr1
1	0	0	0	0	1	CR1	
1	0	0	0	1	0	CR2	
1	0	0	0	1	1	CR3	
1	0	1	0	0	0	ZCM	sr

Special Registers (sr4)

Register Pairs (rp, rp2, rp3)

Register Pairs (rp1)

Register Pair Addressing (rpa, rpa1, rpa2)

Register Pair Addressing (rpa3)

Operand Codes (cont)

Flags (f)					
F_{2}	F_{1}	F_{0}	Flag		
0	0	0	-		
0	1	0	CY		
0	1	1	HC		
1	0	0	Z		
Interrupt Flags (irf)					
I_{4}	13	I_{2}	11	I_{0}	Flag
0	0	0	0	0	NMI
0	0	0	0	1	FTO
0	0	0	1	0	FT1
0	0	0	1	1	F1
0	0	1	0	0	F2
0	0	1	0	1	FEO
0	0	1	1	0	FE1
0	0	1	1	1	FEIN
0	1	0	0	0	FAD
0	1	0	0	1	FSR
0	1	0	1	0	FST
0	1	0	1	1	ER
0	1	1	0	0	OV
1	0	0	0	0	AN4
1	0	0	0	1	AN5
1	0	0	1	0	AN6
1	0	0	1	1	AN7
1	0	1	0	0	SB

Graphic Symbols	
Symbol	Description
\leftarrow	Transfer direction, result
\wedge	Logical product (logical AND)
\vee	Logical sum (logical OR)
\forall	Exclusive-OR
-	Complement
-	Concatenation

Instruction Set

Mnemonic	Operand	Operation	Bytes	States (Note 1)	Skip Conditions	Operation Code							
						7	6	5	4	3	2	1	0
8-Bit Data Transfer													
MOV	r1, A	$\mathrm{r} 1 \leftarrow \mathrm{~A}$	1	4		0	0	0	1	1	T_{2}	T_{1}	T_{0}
	A, r1	$A \leftarrow r 1$	1	4		0	0	0	0	1	T_{2}	T_{1}	T_{0}
	*sr, A	sr $\leftarrow A$	2	10		0	1	0	0	1	1	0	1
						1	1	S_{5}	S_{4}	S_{3}	S_{2}	S_{1}	S_{0}
	*A, sr1	$\mathrm{A} \leftarrow \mathrm{sr} 1$	2	10		0	1	0	0	1	1	0	0
						1	1	S_{5}	S_{4}	S_{3}	S_{2}	s_{1}	S_{0}
	r, word	$r \leftarrow$ (word)	4	17		0	1	1	1	0	0	0	0
						0	1	1	0	1	R_{2}	R_{1}	R_{0}
						Low addr							
						High addr							
	word, r	(word) $\leftarrow \mathrm{r}$	4	17		0	1	1	1	0	0	0	0
						0	1	1	1	1	R_{2}	R_{1}	R_{0}
									Low	addr			
									High	addr			
MVI	*r, byte	$r \leftarrow$ byte	2	7		0	1	1	0	1	R_{2}	R_{1}	R_{0}
						Data							
	sr2, byte	sr2 \leftarrow byte	3	14		0	1	1	0	0	1	0	0
						S_{3}	0	0	0	0	S_{2}	s_{1}	S_{0}
										ta			
MVIW	*wa, byte	(Nowa) \leftarrow byte	3	13		0	1	1	1	0	0	0	1
						Offset							
						Data							
MVIX	*rpa1, byte	(rpa1) \leftarrow byte	2	10		0	1	0	0	1	0	A_{1}	A_{0}
						Data							
STAW	*wa	$(V \cdot$ wa $) \leftarrow A$	2	10		0	1	1	0	0	0	1	1
						Offset							
LDAW	*wa	$A \leftarrow(V \cdot w a)$	2	10		0	0	0	0	0	0	0	1
						Offset							
STAX	*rpa2	$(\mathrm{rpa} 2) \leftarrow \mathrm{A}$	2	$7 / 13$ (Note 3)		A_{3}	0	1				A_{1}	A_{0}
						Data (Note 2)							
LDAX	*rpa2	$A \leftarrow(\mathrm{rpa} 2)$	2	$7 / 13$ (Note 3)		A_{3}	0	1	0			A_{1}	A_{0}
						Data (Note 2)							
EXX		$\begin{aligned} & B \leftrightarrow B^{\prime}, C \leftrightarrow C^{\prime}, D \leftrightarrow D^{\prime} \\ & E \leftrightarrow E^{\prime}, H \leftrightarrow H^{\prime}, L \leftrightarrow L^{\prime} \end{aligned}$	1	4		0	0	0	1	0	0	0	1
EXA		$V \leftrightarrow V^{\prime}, A \leftrightarrow A^{\prime}, E A \leftrightarrow E A^{\prime}$	1	4		0	0	0	1	0	0	0	0
EXH		$H \leftrightarrow H^{\prime}, L \leftrightarrow L^{\prime}$	1	4		0	1	0	1	0	0	0	0
BLOCK		$\begin{aligned} & \text { (DE) } \leftarrow(\mathrm{HL}), \mathrm{DE} \leftarrow \mathrm{DE}+1, \mathrm{HL} \leftarrow \mathrm{HL} \\ & +1, C \leftarrow C-1 \\ & \text { End if borrow } \end{aligned}$	1	$\begin{gathered} 13 x \\ (C+1) \end{gathered}$		0	0	1	1	0	0	0	1

Instruction Set (cont)

Mnemonic	Operand	Operation	Bytes	States (Note 1)	Skip Conditions	Operation Code							
						7	6	5	4	3	2	1	0
16-Bit Data Transfer													
DMOV	rp3, EA	$r p 3_{L} \leftarrow E A L, r p 3_{H} \leftarrow E A H$	1	4		1	0	1	1	0	1	P_{1}	P_{0}
	EA, rp3	$E A L \leftarrow r p 3_{L}, E A H \leftarrow r p 3_{H}$	1	4		1	0	1	0	0	1	P_{1}	P_{0}
	sr3, EA	sr3 $\leftarrow E A$	2	14		0	1	0	0	1	0	0	0
						1	1	0	1	0	0	1	U_{0}
	EA, sr4	$\mathrm{EA} \leftarrow \mathrm{sr} 4$	2	14		0	1	0	0	1	0	0	0
						1	1	0	0	0	0	0	V_{0}
SBCD	word	(word) $\leftarrow C$, (word +1$) \leftarrow B$	4	20		0	1	1	1	0	0	0	0
						0	0	0	1	1	1	1	0
						Low addr							
						High addr							
SDED	word	(word) $\leftarrow E$, (word +1$) \leftarrow D$	4	20		0	1	1	1	0	0	0	0
						0	0	1	0	1	1	1	0
						Low addr							
				\cdots		High addr							
SHLD	word	$($ word $) \leftarrow L,($ word +1$) \leftarrow H$	4	20		0	1	1	1	0	0	0	0
						0	0	1	1	1	1	1	0
						Low addr							
						High addr							
$\overline{\text { SSPD }}$	word	(word) $\leftarrow \mathrm{SP}_{\mathrm{L}},($ word +1$) \leftarrow \mathrm{SP}_{\mathrm{H}}$	4	20		0	1	1	1	0	0	0	0
						0	0	0	0	1	1	1	0
						Low addr							
						High addr							
STEAX	rpa3	$($ rpa3 $) \leftarrow E A L L,(r p a 3+1) \leftarrow E A H$	3	14/20		0	1	0	0	1	0	0	0
				(Note 3)		1	0	0	1		c_{2}	C_{1}	C_{0}
						Data (Note 4)							
$\overline{\text { LBCD }}$	word	$C \leftarrow$ (word), $\mathrm{B} \leftarrow$ (word +1)	4	20		0	1	1	1	0	0	0	0
						0	0	0	1	1	1	1	1
						Low addr							
						High addr							
LDED	word	$E \leftarrow$ (word), $\mathrm{D} \leftarrow$ (word + 1)	4	20		0	1	1	1	0	0	0	0
						0	0	1	0	1	1	1	1
						Low addr							
						High addr							
LHLD	word	$L \leftarrow$ (word), $H \leftarrow$ (word +1)	4	20		0	1	1	1	0	0	0	0
						0	0	1	1	1	1	1	1
						Low addr							
						High addr							

Instruction Set (cont)

				Sta					ra	C			
Mnemonic	Operand	Operation	Bytes	(Note 1)	Conditions	7	6	5	4	3	2	1	0
16-Bit Data Transfer (cont)													
LSPD	word	$S P_{L} \leftarrow$ (word),$S P_{H} \leftarrow($ word +1$)$	4	20		0	1	1	1	0	0	0	0
						0	0	0	0	1	1	1	1
									Low	ddr			
									High	addr			
LDEAX	rpa3	$\begin{aligned} & E A L \leftarrow(r p a 3), \\ & E A H \leftarrow(r p a 3+1) \end{aligned}$	3	14/20 (Note 3)		0	1	0	0	1	0	0	0
						1	0	0	0	C_{3}	C_{2}	C_{1}	C_{0}
						Data (Note 4)							
PUSH	rp1	$\begin{aligned} & (S P-1) \leftarrow r P^{1} H_{1} \\ & (S P-2) \leftarrow r 1_{L}, S P \leftarrow S P-2 \end{aligned}$	1	13		1	0	1	1	0	Q_{2}	Q_{1}	Q_{0}
POP	rp1	$\begin{aligned} & r p 1_{L} \leftarrow(S P), r 1_{H} \leftarrow(S P+1) \\ & S P \leftarrow S P+2 \end{aligned}$	1	10		1	0	1	0	0	Q_{2}	Q_{1}	Q_{0}
LXI	*rp2, word	rp2 \leftarrow word	3	10		0	P_{2}	P_{1}	P_{0}	0	1	0	0
										bte			
									Hig	byte			
TABLE	$\begin{aligned} & C \leftarrow(P C+3+A), \\ & B \leftarrow(P C+3+A+1) \end{aligned}$		2	17		0	1	0	0	1	0	0	0
					1	0	1	0	1	0	0	0	

8-Bit Arithmetic (Register)

ADD	A, r	$A \leftarrow A+r$	2	8		0	1	1	0	0	0	0	0
						1	1	0	0	0	R_{2}	R_{1}	R_{0}
	r, A	$r \leftarrow r+A$	2	8		0	1	1	0	0	0	0	0
						0	1	0	0	0	R_{2}	R_{1}	R_{0}
ADC	A, r	$A \leftarrow A+r+C Y$	2	8		0	1	1	0	0	0	0	0
						1	1	0	1	0	R_{2}	R_{1}	R_{0}
	r, A	$r \leftarrow r+A+C Y$	2	8		0	1	1	0	0	0	0	0
						0	1	0	1	0	R_{2}	R_{1}	R_{0}
ADDDNC	A, r	$A \leftarrow A+r$	2	8	No carry	0	1	1	0	0	0	0	0
						1	0	1	0	0	R_{2}	R_{1}	R_{0}
	r, A	$r \leftarrow r+A$	2	8	No carry	0	1	1	0	0	0	0	0
						0	0	1	0	0	R_{2}	R_{1}	R_{0}
SUB	A, r	$A \leftarrow A-r$	2	8		0	1	1	0	0	0	0	0
						1	1	1	0	0	R_{2}	R_{1}	R_{0}
	r, A	$r \leftarrow r-A$	2	8		0	1	1	0	0	0	0	0
						0	1	1	0	0	R_{2}	R_{1}	R_{0}
SBB	A, r	$A \leftarrow A-r-C Y$	2	8		0	1	1	0	0	0	0	0
						1	1	1	1	0	R_{2}	R_{1}	R_{0}
	r. A	$r \leftarrow r-A-C Y$	2	8		0	1	1	0	0	0	0	0
						0	1	1	1	0	R_{2}	R_{1}	R_{0}

Instruction Set (cont)

Mnemonic	Operand	Operation	Bytes	States (Note 1)	Skip Conditions	Operation Code							
						7	6	5	4	3	2	1	0
8-Bit Arithmetic (Register) (cont)													
SUBNB	A, r	$A \leftarrow A-r$	2	8	No	0	1	1	0	0	0	0	0
						1	0	1	1	0	R_{2}	R_{1}	R_{0}
	r, A	$r \leftarrow r-A$	2	8	No	0	1	1	0	0	0	0	0
						0	0	1	1	0	R_{2}	R_{1}	R_{0}
ANA	A, r	$A \leftarrow A \wedge r$	2	8		0	1	1	0	0	0	0	0
						1	0	0	0	1	R_{2}	R_{1}	R_{0}
	r, A	$r \leftarrow r \wedge A$	2	8		0	1	1	0	0	0	0	0
						0	0	0	0	1	R_{2}	R_{1}	R_{0}
ORA	A, r	$A \leftarrow A \vee r$	2	8		0	1	1	0	0	0	0	0
						1	0	0	1	1	R_{2}	R_{1}	R_{0}
	r, A	$r \leftarrow r \vee A$	2	8		0	1	1	0	0	0	0	0
						0	0	0	1	1	R_{2}	R_{1}	R_{0}
XRA	A, r	$A \leftarrow A \forall r$	2	8		0	1	1	0	0	0	0	0
						1	0	0	1	0	R_{2}	R_{1}	R_{0}
	r, A	$r \leftarrow r \forall A$	2	8		0	1	1	0	0	0	0	0
						0	0	0	1	0	R_{2}	R_{1}	R_{0}
GTA	A, r	A-r-1	2	8	No	0	1	1	0	0	0	0	0
						1	0	1	0	1	R_{2}	R_{1}	R_{0}
	r, A	$r-A-1$	2	8	No	0	1	1	0	0	0	0	0
					borrow	0	0	1	0	1	R_{2}	R_{1}	R_{0}
LTA	A, r	A-r	2	8	Borrow	0	1	1	0	0	0	0	0
						1	0	1	1	1	R_{2}	R_{1}	R_{0}
	r, A	r-A	2	8	Borrow	0	1	1	0	0	0	0	0
						0	0	1	1	1	R_{2}	R_{1}	R_{0}
NEA	A, r	A-r	2	8	No zero	0	1	1	0	0	0	0	0
						1	1	1	0	1	R_{2}	R_{1}	R_{0}
	r, A	$r-A$	2	8	No zero	0	1	1	0	0	0	0	0
						0	1	1	0	1	R_{2}	R_{1}	R_{0}
EQA	A, r	A-r	2	8	Zero	0	1	1	0	0	0	0	0
						1	1	1	1	1	R_{2}	R_{1}	R_{0}
	r, A	r-A	2	8	Zero	0	1	1	0	0	0	0	0
						0	1	1	1	1	R_{2}	R_{1}	R_{0}
ONA	A, r	$A \wedge r$	2	8	No zero	0	1	1	0	0	0	0	0
						1	1	0	0	1	R_{2}	R_{1}	R_{0}
OFFA	A, r	$A \wedge r$	2	8	Zero	0	1	1	0	0	0	0	0
						1	1	0	1	1	R_{2}	R_{1}	R_{0}

Instruction Set (cont)

									rat	C	ode		
Mnemonic	Operand	Operation	Bytes	(Note 1)	Conditions	7	6	5	4	3	2	1	0
8-Bit Arithmetic (Memory)													
ADDX	rpa	$A \leftarrow A+($ rpa $)$	2	11		0	1	1	1	0	0	0	0
						1	1	0	0	0	A_{2}	A_{1}	A_{0}
$\overline{\text { ADCX }}$	rpa	$A \leftarrow A+(r p a)+C Y$	2	11		0	1	1	1	0	0	0	0
						1	1	0	1	0	A_{2}	A_{1}	A_{0}
ADDNCX	rpa	$A \leftarrow A+(r p a)$	2	11	No carry	0	1	1	1	0	0	0	0
						1	0	1	0	0	A_{2}	A_{1}	A_{0}
SUBX	rpa	$A \leftarrow A-(r p a)$	2	11		0	1	1	1	0	0	0	0
						1	1	1	0	0	A_{2}	A_{1}	A_{0}
SBBX	rpa	$A \leftarrow A-(r p a)-C Y$	2	11		0	1	1	1	0	0	0	0
						1	1	1	1	0	A_{2}	A_{1}	A_{0}
SUBNBX	rpa	$A \leftarrow A-(r p a)$	2	11	No	0	1	1	1	0	0	0	0
						1	0	1	1	0	A_{2}	A_{1}	A_{0}
ANAX	rpa	$A \leftarrow A \wedge(r p a)$	2	11		0	1	1	1	0	0	0	0
						1	0	0	0	1	A_{2}	A_{1}	A_{0}
ORAX	rpa	$A \leftarrow A \vee(r p a)$	2	11		0	1	1	1	0	0	0	0
						1	0	0	1	1	A_{2}	A_{1}	A_{0}
XRAX	rpa	$A \leftarrow A \forall$ (rpa)	2	11		0	1	1	1	0	0	0	0
						1	0	0	1	0	A_{2}	A_{1}	A_{0}
GTAX	rpa	A-(rpa) - 1	2	11	No	0	1	1	1	0	0	0	0
					borrow	1	0	1	0	1	A_{2}	A_{1}	A_{0}
LTAX	rpa	A - (rpa)	2	11	Borrow	0	1	1	1	0	0	0	0
						1	0	1	1	1	A_{2}	A_{1}	A_{0}
NEAX	rpa	A - (rpa)	2	11	No zero	0	1	1	1	0	0	0	0
						1	1	1	0	1	A_{2}	A_{1}	A_{0}
EQAX	rpa	A - (rpa)	2	11	Zero	0	1	1	1	0	0	0	0
						1	1	1	1	1	A_{2}	A_{1}	A_{0}
ONAX	rpa	$A \wedge(\mathrm{rpa})$	2	11	No zero	0	1	1	1	0	0	0	0
						1	1	0	0	1	A_{2}	A_{1}	A_{0}
OFFAX	rpa	$A \wedge(\mathrm{rpa})$	2	11	Zero	0	1	1	1	0	0	0	0
						1	1	0	1	1	A_{2}	A_{1}	A_{0}

Instruction Set (cont)

Mnemonic	Operand	Operation	Bytes	States (Note 1)	Skip Conditions	Operation Code							
						7	6	5	4	3	2	1	0
Immediate Data													
ADI	*A, byte	$A \leftarrow A+$ byte	2	7		0	1	0	0	0	1	1	0
	r, byte	$r \leftarrow r+$ byte	3	11		0	1	1	1	0	1	0	0
						0	1	0	0	0	R_{2}	R_{1}	R_{0}
	sr2, byte	$\mathrm{sr} 2 \leftarrow \mathrm{sr2}+$ byte	3	20		0	1	1	0	0	1	0	0
						S_{3}	1	0	0	0	S_{2}	S_{1}	S_{0}
$\overline{A C I}$	*A, byte	$A \leftarrow A+$ byte $+C Y$	2	7		0	1	0	1	0	1	1	0
	r, byte	$r \leftarrow r+$ byte + C Y	3	11		0	1	1	1	0	1	0	0
						0	1	0	1	0	R_{2}	R_{1}	R_{0}
	sr2, byte	sr2 \leftarrow sr2 + byte +CY	3	20		0	1	1	0	0	1	0	0
						S_{3}	1	0	1	0	S_{2}	S_{1}	s_{0}
ADINC	*A, byte	$A \leftarrow A+$ byte	2	7	No carry	0	0	1	0	0	1	1	0
	r , byte	$r \leftarrow r+$ byte	3	11	No carry	0	1	1	1	0	1	0	0
						0	0	1	0	0	R_{2}	R_{1}	R_{0}
	sr2, byte	$s r^{2} \leftarrow \mathrm{sr2}+$ byte	3	20	No carry	0	1	1	0	0	1	0	0
						S_{3}	0	1	0	0	S_{2}	S_{1}	S_{0}
SUI	*A, byte	$A \leftarrow A$ - byte	2	7		0	1	1	0	0	1	1	0
	r, byte	$r \leftarrow r-$ byte	3	11		0	1	1	1	0	1	0	0
						0	1	1	0	0	R_{2}	R_{1}	R_{0}
	sr2, byte	st2 \leftarrow sr2-byte	3	20		0	1	1	0	0	1	0	0
						S_{3}	1	1	0	0	S_{2}	S_{1}	S_{0}

Instruction Set (cont)

μ PD78C00 Product Line

Instruction Set (cont)

Mnemonic	Operand	Operation	Bytes	States (Note 1)	Skip Conditions	7	Operation Code						
							6	5	4	3	2	1	0
Immediate Data (cont)													
XRI	*A, byte	$A \leftarrow A \forall$ byte	2	7		0	0	0	1	0	1	1	0
						Data							
	r, byte	$r \leftarrow r \forall$ byte	3	11		0	1	1	1	0	1	0	0
						0	0	0	1	0	R_{2}	R_{1}	R_{0}
						Data							
	sr2, byte	$s r 2 \leftarrow s r 2 \forall$ byte	3	20		0	1	1	0	0	1	0	0
						S_{3}	0	0	1	0	S_{2}	S_{1}	S_{0}
GTI	*A, byte	A-byte-1	2	7	No	0	0	1	0	0	1	1	1
	r, byte	r - byte - 1	3	11	No	0	1	1	1	0	1	0	0
					orrow	0	0	1	0	1	R_{2}	R_{1}	R_{0}
						Data							
	sr2, byte	sr2-byte - 1	3	14	No	0	1	1	0	0	1	0	0
					borrow	S_{3}	0	1	0	1	S_{2}	S_{1}	
LTI	*A, byte	A - byte	2	7	Borrow	0	0	1	1	0	1	1	1
						Data							
	r, byte	r-byte	3	11	Borrow	0	1	1	1	0	1	0	0
						0	0	1	1	1	R_{2}	R_{1}	R_{0}
						Data							
	sr2, byte	sr2 - byte	3	14	Borrow	0	1	1	0	0	1	0	0
						S_{3}	0	1	1	1	S_{2}	S_{1}	S_{0}
NEI	*A, byte	A - byte	2	7	No zero	0	1	1	0	0	1	1	1
						Data							
	r, byte	r-byte	3	11	No zero	0	1	1	1	0	1	0	0
						0	1	1	0	1	R_{2}	R_{1}	R_{0}
						Data							
	sr2, byte	sr2 - byte	3	14	No zero	0	1	1	0	0	1	0	0
						S_{3}	1	1	0	1	S_{2}	S_{1}	S_{0}
						Data							

Instruction Set (cont)

Working Register

ADDW	wa	$A \leftarrow A+(V * w a)$	3	14		0	1	1	1	0	1	0	0
						1	1	0	0	0	0	0	0
						Offset							
ADCW	wa	$A \leftarrow A+(V * w a)+C Y$	3	14		0	1	1	1	0	1	0	0
						1	1	0	1	0	0	0	0
						Offset							
ADDNCW	wa	$A \leftarrow A+(V \cdot w a)$	3	14	No carry	0	1	1	1	0	1	0	0
						1	0	1	0	0	0	0	0
						Offset							
SUBW	wa	$A \leftarrow A-(V * w a)$	3	14		0	1	1	1	0	1	0	0
						1	1	1	0	0	0	0	0

Instruction Set (cont)

Mnemonic	Operand	Operation	Bytes	States (Note 1)	Skip Conditions	7	Operation Code						
							6	5	4	3	2	1	0
Working Register (cont)													
SBBW	wa	$A \leftarrow A-(V * w a)-C Y$	3	14		0	1	1	1	0	1	0	0
						1	1	1	1	0	0	0	0
						Offset							
SUBNBW	wa	$A \leftarrow A-(V \cdot w a)$	3	14	No borrow	0	1	1	1	0	1	0	0
						1	0	1	1	0	0	0	0
ANAW	wa	$A \leftarrow A \wedge(N * w a)$	3	14		0	1	1	1	0	1	0	0
						1	0	0	0	1	0	0	0
ORAW	wa	$A \leftarrow A \vee(V \cdot w a)$	3	14		0	1	1	1	0	1	0	0
						1	0	0	1	1	0	0	0
XRAW	wa	$A \leftarrow A \forall(V * w a)$	3	14		0	1	1	1	0	1	0	0
						1	0	0	1	0	0	0	0
GTAW	wa	$A-(V \cdot w a)-1$	3	14	No borrow	0	1	1	1	0	1	0	0
						1	0	1	0	1	0	0	0
LTAW	wa	$A-(V \times w a)$	3	14	Borrow	0	1	1	1	0	1	0	0
						1	0	1	1	1	0	0	0
NEAW	wa	$A-(V \cdot w a)$	3	14	No Zero	0	1	1	1	0	1	0	0
						1	1	1	0	1	0	0	0
EQAW	wa	$A-(V \cdot w a)$	3	14	Zero	0	1	1	1	*	1	0	0
						1	1	1	1	1	0	0	0
ONAW	wa	$A \wedge(V \cdot w a)$	3	14	No zero	0	1	1	1	0	1	0	0
						1	1	0	0	1	0	0	0
OFFAW	wa	$A \wedge(V \cdot w a)$	3	14	Zero	0	1	1	1	0	1	0	0
						1	1	0	1	1	0	0	0
ANIW	*wa, byte	$(V *$ wa $) \leftarrow(V *$ wa $) \wedge$ byte	3	19		0	0	0	0	0	1	0	1
						Offset							
						Data							
ORIW	*wa, byte	$(V \cdot w a) \leftarrow(V \times w a) V$ byte	3	19		0	0	0	1	0	1	0	1

Instruction Set (cont)

									ra	C				
Mnemonic	Operand	Operation	Bytes	(Note 1)	Conditions	7	6	5	4	3	2	1	0	
Working Register (cont)														
GTIW	*wa, byte	(V*wa) - byte - 1	3	13	No borrow	0	0	1	0	0	1	0	1	
										Offset				
LTIW	*wa, byte	(V*wa) - byte	3	13	Borrow	0	0	1	1	0	1	0	1	
						Offset								
NEIW	*wa, byte	(V*wa) - byte	3	13	No zero	0	1	1	0	0	1	$0 \quad 1$		
						Offset								
						Data								
EQIW	*wa, byte	(**a) - byte	3	13	Zero	0	1	1		1	0	1	$0 \quad 1$	
						Offset								
						Data								
ONIW	*wa, byte	$(V *$ wa) \wedge byte	3	13	No zero	0	1	0	0	0	1	$0 \quad 1$		
						Offset							1	
						Data								
OFFIW	*wa, byte	$(V *$ wa) \wedge byte	3	13	Zero	0	1	0	1	0	1	0	1	
									Offset					
							Data							

16-Bit Arithmetic

EADD	EA, 12	$E A \leftarrow E A+r 2$	2	11		0	1	1	1	0	0	0	0
						0	1	0	0	0	0	R_{1}	R_{0}
DADD	EA, rp3	$E A \leftarrow E A+r p 3$	2	11		0	1	1	1	0	1	0	0
						1	1	0	0	0	1	P_{1}	P_{0}
DADC	EA, rp3	$E A \leftarrow E A+r p 3+C Y$	2	11		0	1	1	1	0	1	0	0
						1	1	0	1	0	1	P_{1}	P_{0}
DADDNC	EA, rp3	$E A \leftarrow E A+r p 3$	2	11	No carry	0	1	1	1	0	1	0	0
						1	0	1	0	0	1	P_{1}	P_{0}
ESUB	EA, r2	$E A \leftarrow E A-r 2$	2	11		0	1	1	1	0	0	0	0
						0	1	1	0	0	0	R_{1}	R_{0}
$\overline{\text { DSUB }}$	EA, rp3	$E A \leftarrow E A-r p 3$	2	11		0	1	1	1	0	1	0	0
						1	1	1	0	0	1	P_{1}	P_{0}
DSBB	EA, rp3	$E A \leftarrow E A-r p 3-C Y$	2	11		0	1	1	1	0	1	0	0
						1	1	1	1	0	1	P_{1}	P_{0}
DSUBNB	EA, rp3	$E A \leftarrow E A-r p 3$	2	11	No	0	1	1	1	0	1	0	0
					borrow	1	0	1	1	0	1	P_{1}	P_{0}
DAN	EA, rp3	$\mathrm{EA} \leftarrow \mathrm{EA} \wedge \mathrm{rp3}$	2	11		0	1	1	1	0	1	0	0
						1	0	0	0	1	1	P_{1}	P_{0}
DOR	EA, rp3	$E A \leftarrow E A \vee r p 3$	2	11		0	1	1	1	0	1	0	0
						1	0	0	1	1	1	P_{1}	P_{0}

Instruction Set (cont)

				States					rat	C	de		
Mnemonic	Operand	Operation	Bytes	(Note 1)	Conditions	7	6	5	4	3	2	1	0
16-Bit Arithmetic (cont)													
DXR	EA, rp3	$E A \leftarrow E A \forall r p 3$	2	11		0	1	1	1	0	1	0	0
						1	0	0	1	0	1	P_{1}	P_{0}
$\overline{\text { DGT }}$	EA, rp3	EA - rp3-1	2	11	No	0	1	1	1	0	1	0	0
					borrow	1	0	1	0	1	1	P_{1}	P_{0}
$\overline{\text { DLT }}$	EA, rp3	EA - rp3	2	11	Borrow	0	1	1	1	0	1	0	0
						1	0	1	1	1	1	P_{1}	P_{0}
DNE	EA, rp3	EA - rp3	2	11	No zero	0	1	1	1	0	1	0	0
						1	1	1	0	1	1	P_{1}	P_{0}
$\overline{\mathrm{DEQ}}$	EA, rp3	EA - rp3	2	11	Zero	0	1	1	1	0	1	0	0
						1	1	1	1	1	1	P_{1}	P_{0}
DON	EA, rp3	$\mathrm{EA} \wedge \mathrm{rp3}$	2	11	No zero	0	1	1	1	0	1	0	0
						1	1	0	0	1	1	P_{1}	P_{0}
$\overline{\text { DOFF }}$	EA, rp3	$\mathrm{EA} \wedge$ rp3	2	11	Zero	0	1	1	1	0	1	0	0
						1	1	0	1	1	1	P_{1}	P_{0}

Multiply/Divide

MUL	12	$\mathrm{EA} \leftarrow \mathrm{A} \times 12$	2	32	0	1	0	0	1	0	0	0
					0	0	1	0	1	1	R_{1}	R_{0}
DIV	12	$E A \leftarrow E A \div r 2, r 2 \leftarrow$ Remainder	2	59	0	1	0	0	1	0	0	0
					0	0	1	1	1	1	R_{1}	R_{0}

Increment/Decrement

INR	12	$R \leftarrow R 2+1$	1	4	Carry	0	1	0	0	0	0	R_{1}	R_{0}
INRW	*wa	$(V * w a) \leftarrow(V \cdot w a)+1$	2	16	Carry	0	0	1	0	0	0	0	0
						Offset							
INX	rp	$r p \leftarrow r p+1$	1	7		0	0	P_{1}	P_{0}	0	0	1	0
	EA	$E A \leftarrow E A+1$	1	7		1	0	1	0	1	0	0	0
DCR	12	R ¢ $\leftarrow \mathrm{R}$ - 1	1	4	Borrow	0	1	0	1	0	0	R_{1}	R_{0}
DCRW	*wa	$\left(V^{*}\right.$ wa) $\leftarrow\left({ }^{*} \times\right.$ a $)-1$	2	16	Borrow	0	0	1	1	0	0	0	0
						Offset							
DCX	rp	$r p \leftarrow r p-1$	1	7		0	0	P_{1}	P_{0}	0	0	1	1
	EA	$E A \leftarrow E A-1$	1	7		1	0	1	0	1	0	0	1

Others

DAA	Decimal Adjust Accumulator	1	4	0	1	1	0	0	0	0	1
STC	$\mathrm{CY} \leftarrow 1$	2	8	0	1	0	0	1	0	0	0
				0	0	1	0	1	0	1	1
CLC	$\mathrm{CY} \leftarrow 0$	2	8	0	1	0	0	1	0	0	0
				0	0	1	0	1	0	1	0
NEGA	$A \leftarrow \bar{A}+1$	2	8	0	1	0	0	1	0	0	0
				0	0	1	1	1	0	1	0

Instruction Set (cont)

									rat	C			
Mnemonic	Operand	Operation	Bytes	(Note 1)	Conditions	7	6	5	4	3	2	1	0
Rotate and Shift													
RLD		Rotate left digit $\mathrm{A}_{3-0} \leftarrow(\mathrm{HL})_{7-4}$,$(\mathrm{HL})_{7-4} \leftarrow(\mathrm{HL})_{3-0},(H L)_{3-0} \leftarrow A_{3-0}$	2	17		0	1	0	0	1	0	0	0
						0	0	1	1	1	0	0	0
$\overline{\text { RRD }}$		Rotate right digit $(H L)_{7-4} \leftarrow A_{3-0}$, $\left(\mathrm{HL}_{3-0} \leftarrow(\mathrm{HL})_{7-4}, \mathrm{~A}_{3-0} \leftarrow(\mathrm{HL})_{3-0}\right.$	2	17		0	1	0	0	1	0	0	0
						0	0	1	1	1	0	0	1
RLL	r 2	$\mathrm{R}_{\mathrm{m}}+1 \leftarrow \mathrm{R} \mathrm{m}_{\mathrm{m}}, \mathrm{R}_{0} \leftarrow \mathrm{CY}, \mathrm{CY} \leftarrow \mathrm{r} 2_{7}$	2	8		0	1	0	0	1	0	0	0
						0	0	1	1	0	1		R_{0}
RLR	r2	$\mathrm{r} \mathrm{m}_{\mathrm{m}-1} \leftarrow \mathrm{r} 2_{\mathrm{m}}, \mathrm{r} 2_{7} \leftarrow \mathrm{CY}, \mathrm{CY} \leftarrow \mathrm{r} 2_{0}$	2	8		0	1	0	0	1	0	0	0
						0	0	1	1	0	0	R_{1}	R_{0}
$\overline{\text { SLL }}$	r2	$r 2_{m}+1 \leftarrow r 2_{m}, r_{0} \leftarrow 0, C Y \leftarrow r 2_{7}$	2	8		0	1	0	0	1	0	0	0
						0	0	1	0	0	1	R_{1}	R_{0}
SLR	12	$\mathrm{R} \mathrm{m}_{\mathrm{m}-1} \leftarrow \mathrm{r} 2_{\mathrm{m}}, \mathrm{r}_{7} \leftarrow 0, \mathrm{CY} \leftarrow \mathrm{r} 2_{0}$	2	8		0	1	0	0	1	0	0	0
						0	0	1	0	0	0	R_{1}	R_{0}
SLLC	12	$\mathrm{R}_{\mathrm{m}}+\mathrm{T}^{\text {¢ }} \leftarrow \mathrm{R}_{\mathrm{m}}, \mathrm{r} 2_{0} \leftarrow 0, \mathrm{CY} \leftarrow \mathrm{r} 2_{7}$	2	8	Carry	0	1	0	0	1	0	0	0
						0	0	0	0	0	1	R_{1}	R_{0}
SLRC	12	$\begin{aligned} & \mathrm{r} 2_{m}-1 \leftarrow r 2_{m}, \mathrm{r} 2_{7} \leftarrow 0, \\ & C Y \leftarrow r 2_{0} \end{aligned}$	2	8	Carry	0	1	0	0	1	0	0	0
						0	0	0	0	0	0	R_{1}	R_{0}
DRLL	EA	$\begin{aligned} & E A_{n}+1 \leftarrow E A_{n}, E A_{0} \leftarrow C Y, \\ & C Y \leftarrow E A_{15} \end{aligned}$	2	8		0	1	0	0	1	0	0	0
						1	0	1	1	0	1	0	0
DRLR	EA	$\begin{aligned} & E A_{n-1} \leftarrow E A_{n}, E A_{15} \leftarrow C Y, \\ & C Y \leftarrow E A_{0} \end{aligned}$	2	8		0	1	0	0	1	0	0	0
						1	0	1	1	0	0	0	0
$\overline{\text { DSLL }}$	EA	$\begin{aligned} & E A_{n}+1 \leftarrow E A_{n}, E A_{0} \leftarrow 0, \\ & C Y \leftarrow E A_{15} \end{aligned}$	2	8		0	1	0	0	1	0	0	0
						1	0	1	0	0	1	0	0
DSLR	EA	$\begin{aligned} & E A_{n}-1 \leftarrow E A_{n}, E A_{15} \leftarrow 0, \\ & C Y \leftarrow E A_{0} \end{aligned}$	2	8		0	1	0	0	1	0	0	0
						1	0	1	0	0	0	0	

Jump												
JMP	*word	$\mathrm{PC} \leftarrow$ word	3	10	0	1	0	1	0	1	0	0
					Low addr							
					High addr							
JB		$\mathrm{PC}_{H} \leftarrow \mathrm{~B}, \mathrm{PC}_{L} \leftarrow \mathrm{C}$	1	4	0	0	1	0	0	0	0	1
JR	word	$\mathrm{PC} \leftarrow \mathrm{PC}+1+$ jdisp1	1	10	1	1			jdis			
JRE	*word	$\mathrm{PC} \leftarrow \mathrm{PC}+2+$ jdisp	2	10	0	1	0	0	1	1	1	
					jdisp							
JEA		$P C \leftarrow E A$	2	8	0	1	0	0	1	0	0	0
					0	0	1	0	1	0	0	0

μ PD78C00 Product Line

Instruction Set (cont)

Mnemonic	Operand	Operation	Bytes	States (Note 1)	Skip Conditions	Operation Code							
						7	6	5	4	3	2	1	0
Call													
CALL	*word	$\begin{aligned} & (S P-1) \leftarrow(P C+3)_{H}, \\ & (S P-2) \leftarrow(P C+3)_{L-} \\ & P C \leftarrow \text { word, } S P \leftarrow S P-2 \end{aligned}$	3	16		0	1	0	0	0	0	0	0
									Low	ddr			
									High	Addr			
CALB		$(S P-1) \leftarrow(P C+2)_{\mathrm{H}}$,	2	17		0	1	0	0	1	0	0	0
		$\begin{aligned} & (S P-2) \leftarrow(P C+2)_{L}, P_{C} H \leftarrow B, \\ & P_{L} \leftarrow C, S P \leftarrow S P-2 \end{aligned}$				0	0	1	0	1	0	0	1
CALF	*word	$\begin{aligned} & (S P-1) \leftarrow(P C+2)_{H}, \\ & (S P-2) \leftarrow(P C+2)_{L}, \end{aligned}$	2	13		0	1	1	1	1		fa_{H}	
		$\begin{aligned} & \mathrm{PC}_{15-11} \leftarrow 00001, \\ & \mathrm{PC}_{10-0} \leftarrow \mathrm{fa}, \mathrm{SP} \leftarrow \mathrm{SP}-2 \end{aligned}$											
CALT	word	$\begin{aligned} & (S P-1) \leftarrow(P C+1)_{H}, \\ & (S P-2) \leftarrow(P C+1)_{L}, \\ & P C_{L} \leftarrow(128+2 \text { ta }), \\ & P C_{H} \leftarrow(129+2 \text { ta }), S P \leftarrow S P-2 \end{aligned}$	1	16		1	0	0			ta		
SOFTI	word	$\begin{aligned} & (S P-1) \leftarrow P S W, \\ & (S P-2) \leftarrow(P C+1)_{H}, \\ & (S P-3) \leftarrow(P C+1)_{L}, P C \leftarrow 0060 H, \\ & S P \leftarrow S P-3 \end{aligned}$	1	16		0	1	1	1	0	0	1	0

Return													
RET		$\begin{aligned} & \mathrm{PC}_{\mathrm{L}} \leftarrow(\mathrm{SP}), \mathrm{PC}_{H} \leftarrow(\mathrm{SP}+1), \\ & \mathrm{SP} \leftarrow \mathrm{SP}+2 \end{aligned}$	1	10		1	0	1	1	1	0	0	0
RETS		$\begin{aligned} & \mathrm{PC}_{L} \leftarrow(\mathrm{SP}), P C_{H} \leftarrow(\mathrm{SP}+1), \\ & \mathrm{SP} \leftarrow \mathrm{SP}+2, \mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{n} \end{aligned}$	1	10	Unconditional Skip	1	0	1	1	1	0	0	1
RETI		$\begin{aligned} & \mathrm{PC}_{\mathrm{L}} \leftarrow(\mathrm{SP}), \\ & \mathrm{PC}_{\mathrm{H}} \leftarrow(\mathrm{SP}+1), \mathrm{PSW} \leftarrow \mathrm{SP}+2, \\ & \mathrm{SP} \leftarrow \mathrm{SP}+3 \end{aligned}$	1	13		0	1	1	0	0	0	1	0
Skip													
BIT	*bit, wa	Skip if $(V \times w a)$ bit $=1$	2	10	Bit Test	0	1	0	1	1	B_{2}	B_{1}	B_{0}
SK	\dagger	Skip if $f=1$	2	8	$f=1$	0	1	0	0	1	0	0	0
						0	0	0	0	1	F_{2}	F_{1}	F_{0}
SKN	\dagger	Skip if $f=0$	2	8	$f=0$	0	1	0	0	1	0	0	0
						0	0	0	1	1	F_{2}	F_{1}	F_{0}
SKIT	irf	Skip if irf $=1$, then reset irf	2	8	$\mathrm{iff}=1$	0	1	0	0	1	0	0	0
						0	1	0	${ }_{4}$	${ }_{3}$	I_{2}	I_{1}	I_{0}
SKNIT	irf	Skip if irf $=0$; Reset irf if irf $=1$ and don't skip	2	8	irf $=0$	0	1	0	0	1	0	0	0
						0	1	1	${ }_{4}$	I_{3}	l_{2}	I_{1}	10

Instruction Set (cont)

Mnemonic	Operand	Operation	Bytes	States (Note 1)	Skip Conditions	Operation Code							
						7	6	5	4	3	2	1	0
CPU Control													
NOP		No operation	1	4		0	0	0	0	0	0	0	0
El		Enable interrupt	1	4		1	0	1	0	1	0	1	0
DI		Disable interrupt	1	4		1	0	1	1	1	0	1	0
HLT		Set HALT mode	2	12		0	1	0	0	1	0	0	0
						0	0	1	1	1	0	1	1
STOP		Set STOP mode	2	12		0	1	0	0	1	0	0	0
						1	0	1	1	1	0	1	1

Notes:

(1) For the skip condition, the idle states are as follows:

1-byte instructions: 4 states
2-byte instructions: 8 states
3-byte instructions: 11 states
2-byte instructions with*: 7 states
3-byte instructions with*: 10 states
4-byte instructions: 14 states
(2) B2 (Data): rpa2 $=\mathrm{D}+$ byte or $\mathrm{H}+$ byte.
(3) Right side of slash () in states indicates the case when rpa2 or rpa3 $=\mathrm{D}+$ byte, $\mathrm{H}+\mathrm{A}, \mathrm{H}+\mathrm{B}, \mathrm{H}+\mathrm{EA}$, or $\mathrm{H}+$ byte.
(4) B3 (Data): rpa3 $=\mathrm{D}+$ byte or $\mathrm{H}+$ byte.

NEC

Reliabillity and Quallity Control

॥PD7 8 :

MPD78K3
Section 3 μ PD78K0 Product Line 8-Bit, K-Series Microcontrollers

$\mu \mathrm{PD} 78002$ Family	3-a	$\mu \mathrm{PD} 78044$ Family	3-e
(μ PD78001B/002B/P014)		(μ PD78042/043/044/P044)	
8-Bit, K-Series Microcontrollers		8-Bit, K-Series Microcontrollers	
General Purpose		With FIP (VP) Controller/Driver and A/D	
μ PD78002Y Family	3-b	Converter	
(μ PD78001BY/002BY/P014Y)		μ PD78054 Family	3-f
8-Bit, K-Series Microcontrollers		(μ PD78052/053/054/P054)	
General Purpose with 12C Bus		8-Bit, K-Series Microcontrollers	
μ PD78014 Family	3-C	With UART, A/D and D/A Converters	
(μ PD78011B/012B/013/014/P014)		μ PD78064 Family	3-g
8-Bit, K-Series Microcontrollers		(μ PD78062/063/064/P064)	
General Purpose with A/D Converter		8-Bit, K-Series Microcontrollers	
μ PD78014Y Family (μ PD78011BY/012BY/013Y/014Y/P014Y)	3-d	With LCD Controller/Driver, UART, and A/D Converter	
8-Bit, K-Series Microcontrollers		μ PD78K0 Product Line	3-h
General Purpose with A/D Converter and I2C		Programming Reference	

(μ PD78001B/002B/P014) 8-Bit, K-Series Microcontrollers General Purpose

Description

The μ PD78001B, μ PD78002B, and μ PD78P014* are members of the K-Series ${ }^{\text {® }}$ of microcontrollers. The μ PD78P014 is used for prototyping since the μ PD78014 family is pin and function compatible with, and the features are a superset of, the μ PD78002 family. The features of the μ PD 78002 family include bit manipulation instructions, four banks of main registers, an advanced interrupt handling facility, and a powerful set of memory-mapped on-chip peripherals. On-board data memory includes 256,384 , or 1024 bytes of internal high-speed RAM. Program memory options include 8 K or 16 K bytes of mask ROM, or 32 K bytes of internal UV EPROM or one-time programmable (OTP) ROM.
The μ PD78002 family operates over a wide voltage range: 2.7 to 6.0 volts. Timing is generated by two built-in oscillators. A main oscillator normally drives the CPU and most peripherals and at 10 MHz provides a minimum instruction time of $0.4 \mu \mathrm{~s}$. A subsystem oscillator at 32.768 kHz provides time keeping, and optionally a slow clock for the CPU. Since CMOS power dissipation is directly proportional to clock rate, the μ PD78002 family provides a software variable CPU clock. The HALT and STOP modes are two additional power saving features that turn off parts of the microcontroller to reduce power consumption. A data retention mode permits RAM contents to be saved down to 2 volts.

The range of peripherals, including timers and a serial port, makes these devices ideal for applications in portable battery-powered equipment, office automation, communications, consumer electronics, home appliances, and fitness equipment.

Features

- One-channel serial communication interface
- 8-bit clock synchronous interface 0
-Full-duplex, three-wire mode
- NEC serial bus interface (SBI) mode
- Half-duplex, two-wire mode

[^2]- Timers
- Watchdog timer
- Two 8-bit timer/event counters usable as one 16-bit timer/event counter
- Clock (watch) timer (time of day tick from either oscillator)
- $53 \mathrm{I} / \mathrm{O}$ lines
- Two CMOS input-only lines
- 47 CMOS I/O lines
- Four n-channel, open-drain I/O lines at 15 V maximum
- I/O port pullup resistors
-Software controllable on 47 lines
-Mask option on four lines on ROM versions
- Program memory
$-\mu$ PD78001B: 8K bytes ROM
$-\mu$ PD78002B: 16 K bytes ROM
$-\mu$ PD78P014: 32K bytes EPROM/OTP
- Internal high-speed data memory
$-\mu$ PD78001B: 256 bytes RAM
$-\mu \mathrm{PD} 78002 \mathrm{~B}: 384$ bytes RAM
- μ PD78P014: 1024 bytes RAM
- External memory expansion
- 64 K byte total memory space
- Powerful instruction set
- 16-bit arithmetic and data transfer instructions
-1-bit and 8-bit logic instructions
- Minimum instruction execution times:
$-0.4 / 0.8 / 1.6 / 3.2 / 6.4 \mu \mathrm{~s}$ program selectable using $10-\mathrm{MHz}$ main system clock
-122μ s selectable using $32.768-\mathrm{kHz}$ subsystem clock
- Memory-mapped on-chip peripherals (special function registers)
- Programmable priority, vectored-interrupt controller (two levels)
- Buzzer and clock outputs
- Power saving and battery operation features
- Variable CPU clock rate
- HALT mode
- STOP mode
- 2-V data retention mode
- CMOS operation; $V_{D D}$ from 2.7 to 6.0 V

Ordering Information

Part Number	ROM	Package (Package Dwg.)
μ PD78001BCW-xxx	8K mask ROM	64-pin plastic shrink DIP (P64C-70-750 A, C)
$\mu \mathrm{PD} 780028 \mathrm{CW}$-xxx	16K mask ROM	
μ PD78001BGC-xxx-AB8	8K mask ROM	64-pin plastic QFP (P64GC-80-AB8-2)
μ PD78002BGC-xxx-AB8	16 K mask ROM	
μ PD78P014GC-AB8 (Note 3)	32 K OTP ROM	
μ PD78P014DW (Note 3)	32 K UV EPROM	64-pin ceramic shrink DIP w/window (P64DW-70-750A)

Notes:

(1) $x x x$ indicates ROM code suffix
(2) All devices listed are standard quality grade
(3) See the μ PD78014 family data sheet for the μ PD78P014 electrical and functional specifications

Pin Configurations

64-Pin Plastic Shrink DIP

$\mathrm{P}_{2}-1$	1 64	$\square \mathrm{IC3}$
$\mathrm{P} 21^{1} 2$	263	曰IC2
$\mathrm{P} 22 \mathrm{C}_{3}$	$3 \quad 62$	${ }^{-1} \mathrm{P}_{7}$
$\mathrm{P}_{2} \mathrm{C}_{4} 4$	461	$\square^{\mathrm{P} 1_{6}}$
$\mathrm{P} 2445^{5}$	$5 \quad 60$	Pl_{5}
$\mathrm{P} 25^{2}$ SIO/SB0 46	659	$\square \mathrm{P1}_{4}$
$\mathrm{P}_{6} / \mathrm{SOO} / \mathrm{SB1} \square_{7}$	$7 \quad 58$	Pr_{3}
$\mathrm{P} 27^{\text {7 }}$ SCKO \square_{8}	8 - 57	$\square \mathrm{Pl}_{2}$
$\mathrm{P}_{3} \square^{-1}$	956	$\square \mathrm{P} 1_{1}$
$\mathrm{P}_{1} /$ TO1 -10	$10 \quad 55$	$\square \mathrm{P} 1_{0}$
$\mathrm{P}_{3} /$ TO2 ${ }^{\text {- }} 11$	1154	曰IC1
$\mathrm{P}_{3} / \mathrm{T} 11$-12	1253	$\square \mathrm{PO}_{4} / \mathrm{XT1}$
$\mathrm{P}_{34} / \mathrm{T} 12-13$	$13 \quad 52$	$\square \mathrm{XT} 2$
$\mathrm{P}_{3} / \mathrm{PCL}$ ㄷ- 14	$14 \quad 51$	ICO
$\mathrm{P}_{36} / \mathrm{BUZ}$-15	$15 \quad 50$	$\square \mathrm{X1}$
$\mathrm{P}_{7} \mathrm{C}_{1} 16$	$16 \quad 49$	X2
$\mathrm{V}_{\text {SS }} \square_{17}$	$17 \quad 48$	$\square \mathrm{V}_{\mathrm{DD}}$
$\mathrm{P}_{4} / \mathrm{AD}_{0} \square 18$	18 47	$\square \mathrm{PO}_{3} / \mathrm{INTP}$
$\mathrm{P}_{4} / \mathrm{AD}_{1}-19$	1946	$\square \mathrm{PO}_{2} / \mathrm{INTP2}$
$\mathrm{P}_{42} / \mathrm{AD}_{2}$ - 20	$20 \quad 45$	$\square \mathrm{PO}_{1} / \mathrm{INTP}_{1}$
$\mathrm{P}_{4} / \mathrm{AD}_{3} \square 21$	2144	$\square \mathrm{PO}$ /INTPO
$\mathrm{P}_{4} / \mathrm{AD}_{4}$ - 22	22 43	$\square \overline{\text { RESET }}$
$\mathrm{P}_{5} / \mathrm{AD}_{5}$ - 23	$23 \quad 42$	$\square \mathrm{P6} / \mathrm{A} / \mathrm{ASTB}$
$\mathrm{P}_{46} / \mathrm{AD}_{6}$ - 24	$24 \quad 41$	$\square \mathrm{P6} 6$ (WAIT
$\mathrm{P}_{4} / \mathrm{AD}_{7} \square 25$	2540	$\square \mathrm{P}_{6} \overline{\text { WR }}$
$\mathrm{P}_{5} / \mathrm{A}_{8} \triangle 26$	26 39	$\square \mathrm{P} 64 / \overline{\mathrm{RD}}$
$\mathrm{P} 51 / \mathrm{Ag}_{9} \square 27$	$27 \quad 38$	$\square \mathrm{P6}_{3}$
$\mathrm{P}_{5} / \mathrm{A}_{10} \square 28$	$28 \quad 37$	$\square \mathrm{P}_{6}$
$\mathrm{P}_{5} / \mathrm{A}_{11}$ - 29	2936	P P61
$\mathrm{P}_{5} / \mathrm{A}_{12} \square 30$	$30 \quad 35$	$\square \mathrm{P6} 0$
$\mathrm{P}_{5} / \mathrm{A}_{13} \square 31$	$31 \quad 34$	$\square \mathrm{P}_{7} / \mathrm{A}_{15}$
$\mathrm{v}_{S S}{ }^{32}$	$32 \quad 33$	$\square \mathrm{P5}_{6} / \mathrm{A}_{14}$

Notes:
(1) Connect ICO, IC1, and IC3 (Internally connected) pins to $\mathrm{V}_{\text {SS }}$.
(2) Connect IC2 to $V_{D D}$ -
μ PD78002 Family

Pin Configurations (cont)

64-Pin Plastic QFP

Notes:
(1) Connect ICO, IC1, and IC3 (intemally connected)
pins to $V_{S S}$.
(2) Connect IC2 to $V_{D D}$.

Pin Functions; Normal Operating Mode

Symbol	First Function	Symbol	Alternate Function
$\begin{aligned} & \mathrm{PO}_{0} \\ & \mathrm{PO}_{1} \\ & \mathrm{PO}_{2} \\ & \mathrm{PO}_{3} \\ & \hline \end{aligned}$	Port 0; 5-bit, bit selectable I/O port (Bits 0 and 4 are input only)	INTPO INTP1 INTP2 INTP3	External maskable interrupt
PO_{4}		XT1	Crystal oscillator or external clock input for subsystem clock
$\mathrm{P1}_{10}-\mathrm{Pr}_{7}$	Port 1; 8-bit, bit-selectable I/O port	-	
$\underline{P 2} 2_{0}-\mathrm{P}_{4}$	Port 2; 8-bit, bit-selectable I/O port	-	
$\mathrm{P}_{2} 5$		$\begin{aligned} & \text { SIO } \\ & \text { SBO } \end{aligned}$	Serial data input 3-wire serial I/O mode 2/3-wire serial I/O mode
$\mathrm{P}_{2} 6$		$\begin{aligned} & \text { SOO } \\ & \text { SB1 } \end{aligned}$	Serial data output 3-wire serial I/O mode 2/3-wire serial I/O mode
P_{7}		SCKO	Serial clock I/O for serial interface 0
P_{3}	Port 3; 8-bit, bit-selectable I/O port	-	
$\mathrm{P3}_{1}$		TO1	Timer output from timer 1
$\mathrm{P3}_{2}$		TO2	Timer output from timer 2
$\mathrm{P3}_{3}$		T11	External count clock input to timer 1
$\mathrm{P3}_{4}$		T12	External count clock input to timer 2
P_{5}		PCL	Programmable clock output
P_{6}		BUZ	Programmable buzzer output
$\mathrm{P3}_{7}$		-	
$\mathrm{P} 40-\mathrm{P} 47$	Port 4; 8-bit I/O port	$A D_{0}-A D_{7}$	Low-order 8-bit multiplexed address/data bus for external memory
$\mathrm{P5} 0-\mathrm{P} 5_{7}$	Port 5; 8-bit, bit selectable I/O port	$A_{8}-A_{15}$	High-order 8-bit address bus for external memory
$\mathrm{PG}_{0}-\mathrm{PG}_{3}$	Port 6; 8-bit, bit selectable ($\mathrm{P6}_{0}$ to $\mathrm{P6}_{3} \mathrm{n}$-channel	-	
PG_{4}	open-drain I/O with mask option pullup resistors; Pb_{4} - $\mathrm{P}_{7} / / \mathrm{O}$). See note.	$\overline{\mathrm{RD}}$	External memory read strobe
$\mathrm{P6}_{5}$		WR	External memory write strobe
PG_{6}		$\overline{\text { WAIT }}$	External memory wait signal input
$\mathrm{P6}_{7}$		ASTB	Address strobe used to latch address for external memory
RESET	External system reset input		
X1	Crystal/ceramic resonator connection or external clock input for main system clock		
X2	Crystal/ceramic resonator connection or inverse of external clock for main system clock		
XT2	Crystal oscillator or left open when using external clock for subsystem clock		
$\underline{V_{D D}}$	Power supply input		
$\mathrm{V}_{\text {Ss }}$	Power supply ground		
ICO to IC3	Internal connection		

Note: See table 3 and figure 4 for details.

Block Diagram

Notes:

(1) The intemal ROM and PAM size dependent on the device.

μ PD78002 and μ PD78014 Family Differences

The μ PD78002 family is pin compatible with the μ PD78014 family and shares the same programmable device, the μ PD78P014. The μ PD78002 family offers a reduced set of features. Table 1 lists only the differences between the two families. All other features not listed are identical for both.

Table 1. Differences Between μ PD78002 and μ PD78014 Families

Item	μ PD78002 Family	μ PD78014 Family
Maximum internal ROM	16K bytes	32 K bytes
Maximum internal high- speed RAM	384 bytes	1024 bytes
Buffer RAM	None	32 bytes
Multiply/divide instructions	None	Available
16-bit timer/event counter	None	One
Serial interface 1 (3-wire and 3-wire with automatic transmit/receive)	None	One
Vectored internal interrupts	7	10
A/D converter	None	8 -bit, 8 channels

FUNCTIONAL DESCRIPTION

Central Processing Unit

The central processing unit (CPU) of the μ PD78002 family features 8 - and 16 -bit arithmetic.
A CALLT vector table and a CALLF area decrease the number of bytes in the call instructions for commonly used subroutines. A 1-byte call instruction can access up to 32 subroutines through their addresses contained in the CALLT vector table (40 H to 7FH). A 2-byte call instruction can access any routine beginning in a specific CALLF area (0800 H to OFFFH).

Internal System Clock Generator

The internal system clocks of the μ PD78002 family are derived from either the main system or the subsystem oscillator. See figure 1. The clocks for the watch timer and programmable clock output are derived from either the subsystem clock ($\mathrm{fxT}_{\mathrm{K}}$) or the main system clock. The clocks for all other peripheral hardware are derived from the main system clock.
The CPU clock (ϕ) can be supplied from either the main system clock (fx) or the subsystem clock (fxT). Using the processor clock control register (PCC), a CPU clock frequency equal to $\mathrm{f}_{\mathrm{X}}, \mathrm{f}_{\mathrm{X}} / 2, \mathrm{f}_{\mathrm{X}} / 4, \mathrm{f}_{\mathrm{X}} / 8, \mathrm{f}_{\mathrm{X}} / 16$ or the subsystem clock f_{XT} can be selected. The CPU clock selected should be based on the power supply voltage available and the desired power consumption. On power up, the CPU clock defaults to the lowest speed from the main system clock and can be changed while the microcontroller is running.

Since the shortest instruction takes four CPU clocks to execute, the fastest minimum instruction execution time (t_{cy}) of $0.4 \mu \mathrm{~s}$ is achieved when using a main system clock at 10 MHz (V_{DD} equals 4.5 to 6.0 V). However, if the clock timer must generate an interrupt every 0.5 or 0.25 seconds, t_{Cy} is $0.48 \mu \mathrm{~s}$ at 8.38 MHz . The fastest minimum instruction execution time available across the full voltage range of 2.7 to 6.0 V is 0.96 $\mu \mathrm{s}$ when using a main system clock of 8.38 MHz . For the lowest power consumption, the CPU can be operated from the subsystem clock and the minimum instruction execution time is $122 \mu \mathrm{~s}$ at 32.768 kHz .

Figure 1. Internal System Clock Generator

Memory Space

The μ PD78002 family has a 64 K -byte address space. Some of this address space ($0000 \mathrm{H}-\mathrm{FFFFH}$) can be used as both program and data memory as shown in figure 2.

Figure 2. Memory Map

Notes:

(1) 1FFFH on μ PD78001 3FFFH on μ PD78002
(2) FDFFH on μ PD78001

FD7FH on μ PD78002

Internal Program Memory

All devices in the μ PD78002 family have internal program memory. The μ PD78001B contains 8 K bytes while the μ PD78002B contains 16 K bytes of internal ROM. The μ PD78P014 contains 32K bytes of UV EPROM or one time programmable ROM. To allow the $\mu \mathrm{PD} 78 \mathrm{P} 014$ to emulate the mask ROM devices, the amount of internal program memory available in the μ PD78P014 can be selected using the memory size switching register (IMS).

Internal RAM

The μ PD78001B contains 256 bytes (FE00H to FEFFH) while the μ PD78002B contains 384 bytes (FD80H to FEFFH) of high-speed Internal RAM. The high-speed Internal RAM contains the general register banks and the stack. The remainder of the high-speed Internal RAM and any unused register bank locations are available for general storage.
To allow the μ PD78P014 to emulate the mask ROM devices, the amount of high-speed Internal RAM in the μ PD78P014 can also be selected using the IMS.

External Memory

The μ PD 78002 family can access $0,256,4 \mathrm{~K}, 16 \mathrm{~K}$ or all available bytes of external memory. The μ PD78002 family has an 8 -bit wide external data bus and a 16 -bit wide external address bus. The low-order 8 bits of the address bus are multiplexed and also provide the 8 -bit data bus and are supplied by port 4. The high-order address bits of the 16 -bit address bus are taken from port 5 as required. The address latch, read, and write strobes, and the external WAIT signal are supplied by port 6.
The memory expansion mode register (MM) controls the size of external memory. It can be programmed to use $0,4,6$, or 8 bits from port 5 for the high-order address. Any remaining port 5 bits can be used for I/O. The MM register also can be used to specify one additional wait state or the use of the external WAIT signal for low-speed external memory or external peripheral devices.
When only internal ROM and RAM are used and no external memory is required, ports 4,5 and 6 are available as general purpose I/O ports.

CPU Control Registers

Program Counter. The program counter is a 16 -bit binary counter register that holds the address of the next instruction to be executed. During reset, the program counter is loaded with the address stored in locations 0000 H and 0001 H .

Stack Pointer. The stack pointer is a 16 -bit register that holds the address of the last item pushed onto the stack. It is decremented before new data is pushed onto the stack and incremented after data is popped off the stack.
Program Status Word. The program status word (PSW) is an 8 -bit register that contains flags that are set or reset depending on the results obtained during the execution of an instruction. This register can be written to or read from 1 bit or 8 bits at a time. The assignment of PSW bits follows.

7
IE
I

CY
Carry flag
ISP In-service (interrupt) priority flag
RBSO, RBS1
AC
Register bank selection flags
Z Zero flag
IE Interrupt request enable flag

General Registers

The general-purpose registers (figure 3) consist of four banks of registers located at addresses FEEOH to FEFFH in Internal RAM. Each bank consists of eight 8 -bit general registers that can also be used in pairs to function as four 16-bit registers. Two bits in the PSW (RBSO and RSB1) specify which of the register banks is active at any time and are set under program control.
Registers have both functional names A, X, B, C, D, E, H or L for 8 -bit registers and $A X, B C, D E$, and $H L$ for 16 -bit registers) and absolute names (like R1, R0, R3, R2, R5, R4, R7, or R6 for 8-bit registers and RP0, RP1, RP2 or RP3 for 16-bit registers). Either the functional or absolute register names can be used in instructions that use the operand identifiers r and $r p$.

Figure 3. General Registers

Addressing

The program memory addressing (ROM) modes provided are relative, immediate, table indirect, and register addressing. The operand addressing modes provided are implied, register, direct, short direct (saddr), special function (SFR), register indirect, based, based indexed, and stack addressing.

The 'SFR addressing' and 'saddr addressing' modes use direct addressing and require only 1 byte in the instruction to address RAM. Normally a 65 K byte address space requires 2 bytes to address it. One-byte addressing results in faster access times, since the instructions are shorter. SFR addressing addresses the entire 256 -byte SFR address space from FFOOH to FFFFH. Saddr addressing (see figure 2) addresses the 256 -byte address space FE2OH to FF1FH. FE20H to FEFFH are composed of 224 bytes of internal high speed RAM; FFOOH to FF1FH contain the first 32 bytes in the special function register area.
One-byte addressing is accomplished by using the first byte of the instruction for the opcode (and one operand if register A or AX is used) and the second byte of the instruction as an address (offset) into the 256-byte area. If register A or AX is used, the instructions are 2 bytes long, thereby providing fast access times. If immediate data is used, the instruction will be 3 or 4 bytes long depending upon whether the immediate data is a byte or a word. Many 16 -bit SFRs are in the space FFOOH to FF 1 FH . Using AX as an operand to these SFRs will provide fast access, since the instructions will be only 2 bytes long.

Special Function Registers

The input/output ports, timers, capture and compare registers, and mode and control registers for both the peripherals and CPU are collectively known as special function registers. They are all memory-mapped between FFOOH and FFFFH and can be accessed either by main memory addressing or by SFR addressing. FFOOH to FF1FH can also be accessed using saddr addressing. They are either 8 or 16 bits as required, and many of the 8 -bit registers are bit addressable.
Locations FFDOH through FFDFH are known as the external access SFR area. Registers in external circuitry interfaced and mapped to these addresses can only be addressed by main memory addressing. Table 2 lists the special function registers.

Table 2. Special Function Registers

Address	Register (SFR)	Symbol	R/W	Access Units (Bits)			State After Reset
				1	8	16	
FFOOH	Port 0	PO	R/W	x	x	-	OOH
FF01H	Port 1	P1	R/W	x	x	-	OOH
FF02H	Port 2	P2	R/W	x	X	-	OOH
FF03H	Port 3	P3	R/W	x	x	-	OOH
FF04H	Port 4	P4	R/W	x	X	-	Undefined
FF05H	Port 5	P5	R/W	x	x	-	Undefined
FF06H	Port 6	P6	R/W	x	x	-	Undefined
FF16H	Compare register 10	CR10	R/W	-	x	-	Undefined
FF17H	Compare register 20	CR20	R/W	-	x	-	Undefined
FF18H	8 -bit timer register 1	TM1	R	x	x	-	OOH
FF19H	8-bit timer register 2	TM2	R	\times	x	-	OOH
FF18H-FF19H	16-bit timer register	TMS	R	-	-	\times	0000H
FF1AH	Serial I/O shift register 0	SIOO	R/W	-	x	-	Undefined
FF2OH	Port mode register 0	PMO	R/W	X	X	-	1FH
FF21H	Port mode register 1	PM1	R/W	x	X	-	FFH
FF22H	Port mode register 2	PM2	R/W	x	x	-	FFH
FF23H	Port mode register 3	PM3	R/W	x	x	-	FFH
FF25H	Port mode register 5	PM5	R/W	X	x	-	FFH
FF26H	Port mode register 6	PM6	R/W	x	x	-	FFH
FF40H	Timer clock select register 0	TCLO	R/W	x	x	-	00 H
FF41H	Timer clock select register 1	TCL1	R/W	-	X	-	OOH
FF42H	Timer clock select register 2	TCL2	R/W	-	x	-	OOH
FF43H	Timer clock select register 3	TCL3	R/W	-	X	-	88 H
FF47H	Sampling clock select register	SCS	R/W	-	X	-	OOH
FF49H	8-bit timer mode control register	TMC1	R/N	X	X	-	OOH
FF4AH	Watch timer mode control register	TMC2	R/W	x	x	-	00 H
FF4FH	8-bit timer output control register	TOC1	R/W	x	x	-	OOH
FF60H	Serial operating mode register 0	CSIMO	R/W	x	x	-	00 H
FF61H	Serial bus interface control register	SBIC	R/W	x	x		OOH
FF62H	Slave address register	SVA	R/W	-	x	-	Undefined
FF63H	Interrupt timing specify register	SINT	R/W	x	X	-	OOH
FFDOH-FFDFH	External SFR access area(Note 1)	-	R/W	x	x	-	Undefined
FFEOH	Interrupt flag register L	IFOL	R/W	x	X	-	OOH
FFE1H	Interrupt flag register H	IFOH	R/W	x	x	-	OOH
FFEOH-FFE1H	Interrupt flag register	IFO	R/W	-	-	x	0000H
FFE4H	Interrupt mask flag register L	MKOL	R/W	x	X	-	FFH
FFE5H	Interrupt mask flag register H	MKOH	R/W	x	X	-	FFH
FFE4H-FFE5H	Interrrupt mask flag register	MKO	R/W	-	-	X	FFFFH
FFE8H	Priority order specify flag register L	PROL	R/W	x	x	-	FFH
FFE9H	Priority order specify flag register H	PROH	R/W	X	X	-	FFH

Table 2. Special Function Registers (cont)

Address	Register (SFR)	Symbol	R/W	Access Units (Bits)			State After Reset
				1	8	16	
FFE8H-FFE9H	Priority order specify flag register	PRO	R/W	-	-	\times	FFFFH
FFECH	External interrupt mode register	INTMO	R/W	-	x	-	OOH
FFF6H	Key return mode register	KRM	R/W	x	x	-	02H
FFF7H	Pullup resistor option register	PUO	R/W	x	x	-	OOH
FFF8H	Memory expanded mode register	MM	R/W	x	x	-	10 H
FFF9H	Watchdog timer mode register	WDTM	R/W	x	x	-	OOH
FFFAH	Oscillation stabilization time select register	OSTS	R/W	-	x	-	04H
FFFBH	Processor clock control register	PCC	R/W	X	x	-	04H

Note: The external access area cannot be accessed using SFR addressing. It can only be accessed using main memory addressing.

Input/Output Ports

The μ PD78002 family has up to 53 port lines. Table 3 lists the features of each port and figure 4 shows the structure of each port pin.

Table 3. Digital Port Functions

Port	Operational Features	Configuration	Direct Drive Capability	Software Pullup Resistor Connection (Note 1)
Port 0 (Note 2)	5-bit input or output	Bit selectable		Byte selectable, input bits only
Port 1	8 -bit input or output	Bit selectable		Byte selectable, input bits only
Port 2	8 -bit input or output	Bit selectable		Byte selectable, input bits only
Port 3	8 -bit input or output	Bit selectable		Byte selectable, input bits only
Port 4	8 -bit input or output	Byte selectable		Byte selectable, input bits only
Port 5	8 -bit input or output	Bit selectable	LED	Byte selectable, input bits only
Port 6	8 -bit input or output (Pb_{0} - $\mathrm{Pb}_{3} \mathrm{n}$-channel)	Bit selectable	15 V max $\left(\mathrm{P6}_{0}-\mathrm{P6}_{3}\right)$	Byte selectable, input bits only P60-P63 - mask option only (Note 3) $\mathrm{P6}_{4}$ - Pb_{7} - software

Notes:

(1) Software pullup resistors can be internally connected (only on a port-by-port basis) to port bits set to input mode. Pullup resistors are not connected to port bits set to output mode.
(2) PO_{0} and PO_{4} are input only and do not have a software pullup resistor.
(3) All devices except μ PD78P014.
μ PD78002 Family

Figure 4. Pin Input/Output Circuits

Type $1\left(\mathrm{PO}_{4}\right)$	Type 8-A ($\left.\mathrm{PO}_{1}-\mathrm{PO}_{3}, \mathrm{P3}_{3}-\mathrm{P3}_{4}\right)$
Type 2 ($\left.\mathrm{PO}_{0}, \overline{\text { RESET }}\right)$ Schmilt tidgger Input with hysteresis characteristics	
	Type 10-A ($\mathrm{P2}_{5}-\mathrm{P2}{ }_{7}$)
Type 5-B (P40-P47)	Type 13-B ($\mathbf{P 6}_{0}-\mathrm{P6}_{3}$)
	Middle-High Voltage Input Buffer

Serial Interface

The μ PD78002 family has one serial interface. Serial interface 0 is an 8 -bit clock synchronous serial interface (figure 5). It can be operated in either a three-wire serial I/O mode, NEC serial bus interface (SBI) mode, or two-wire serial I/O mode. The serial clock can be provided from one of eight internal clocks, the output of 8 -bit timer register 2, or the external clock line SCKO.

Figure 5. Serial Interface 0

In the three-wire serial I/O mode, the 8-bit shift register (SIOO) is loaded with a byte of data and eight clock pulses are generated. The falling edge of these eight pulses shifts the byte of data out of the SOO line (either MSB or LSB first) while the rising edge of these pulses shifts the data in from the SIO line providing full-duplex operation. The INTCSIO interrupt is generated after each 8-bit transfer.

The NEC SBI mode is a two-wire high-speed proprietary serial interface available on most devices in the NEC μ PD75xxx and μ PD78xxx product lines. Devices are connected in a master/slave configuration (see figure 6). There is only one master device at a time; all others are slaves. The master sends addresses, commands, and data over one of the serial bus lines (SBO or SB1) using a fixed hardware protocol synchronized with the SCKO line. Each slave device of the μ PD78002 family can be programmed to respond in hardware to any one of 256 addresses set in its slave address register (SVA). There are also 256 commands and 256 data types. Since all commands are user definable, many software protocols, simple or complex, can be defined. It is even possible to develop commands to change a slave into a master and the previous master into a slave.

Figure 6. SBI Mode Master/Slave Configuration

The two-wire serial I/O mode provides half-duplex operation using either the SBO or SB1 line and the SCKO line. Communication format and handshaking can be handled in software by controlling the output levels of the data and clock lines between transfers. For data transmission, the 8 -bit shift register (SIOO) is loaded with a byte of data and eight clock pulses are generated. The falling edge of these eight pulses shifts the byte of data out of either the SB0 or SB1 line MSB first. In addition, this byte of data is also shifted back into SIOO on the rising edge of these pulses providing a way of verifying that the transmission was correct.

For data reception, the SIOO register is preloaded with the value FFH . As this data value is shifted out on the falling edge of the serial clock, it disables the n-channel open-drain driver. This allows the receive data to be driven on to the serial line and shifted into the SIOO register on the rising edge of the serial clock. The INTCSIO interrupt is generated after each 8-bit transfer.

Timers

The μ PD78002 family has two 8 -bit timer/event counters that can be combined for use as a 16 -bit timer/event counter, a watch timer, and a watchdog timer. All of these can be programmed to count a number of prescaled values of the main system clock. In addition, the watch timer can also count the subsystem clock. The two timer/event counters can count external events.

8-Bit Timer/Event Counters 1 and 2.Timer/event counters 1 and 2 (figure 7) each consist of an 8 -bit timer (TM1 or TM2), an 8-bit compare register (CR10 or CR20), and a timer output control logic (TO1 or TO2). The timers are controlled by registers TCL1, TMC1, and TOC1 via five seletors. Timer/event counters 1 and 2 can each be used as an 8 -bit interval timer, to count external events on the timer input pins (Tl 1 or $\mathrm{T} \mid 2$), or to output a programmable square wave. In addition, timers 1 and 2 also can be combined as a 16-bit timer/ event counter and used as a 16-bit interval timer, to count external events on TI1, or to output a programmable square wave on TO2.

Figure 7. 8-Bit Timer/Event Counters 1 and 2

Watch Timer. The watch timer (figure 8) is a 5 -bit timer that can be used as a time source to keep track of time of day, to release the STOP or HALT modes at regular intervals, or to initiate any other task that must be performed at regular intervals. When driven by the subsystem clock, the watch timer continues to operate in the STOP mode.

The watch timer can function as both a watch timer and an interval timer simultaneously. When used as a watch timer, interrupt request INTWT (not a vectored interrupt) can be generated using a main system clock or a subsystem clock every 0.5 or 0.25 seconds.
When used as an interval timer, vectored interrupt request INTTM 3 is generated at preselected time intervals. With a main system clock of 8.38 MHz or a subsystem clock of 32.768 kHz , the following time intervals can be selected: $489 \mu \mathrm{~s}, 978 \mu \mathrm{~s}, 1.96 \mathrm{~ms}, 3.91$ $\mathrm{ms}, 7.82 \mathrm{~ms}$ or 15.6 ms .

Figure 8. Watch Timer

Watchdog Timer. The watchdog timer (figure 9) can be used as either a watchdog timer or an interval timer. When used as a watchdog timer, it protects against program run-away. It can be selected to generate a nonmaskable interrupt (INTWDT), which vectors to address 0004 H , or to generate an internal reset signal, which vectors to the restart address 0000 H if the timer is not cleared by the program before it overflows. Eight program-selectable intervals based on the main system clock are available. With a main system clock of 8.38 MHz , the program selectable intervals are 0.489 , $0.978,1.96,3.91,7.82,15.6,31.3$, and 125 ms . Once the watchdog timer is initialized and started, the timer's mode cannot be changed and the timer can only be stopped by an external reset.
When used as an interval timer, maskable interrupts (INTWDT), which vector to address 0004H, are generated repeatedly at a preset interval. The time intervals available are the same as in the watchdog timer mode.

Figure 9. Watchdog Timer

Programmable Clock Output

The μ PD 78002 family has a programmable clock output (PCL) that can be used for carrier output for remote controlled transmissions or as a clock output for peripheral devices. The main system clock (fx) divided by $8,16,32,64,128$, or 256 or the subsystem clock (fxT) can be output on the PCL pin. Frequencies of 1050, 524, 262, 131, 65.5 and 32.7 kHz are available with a main system clock of 8.38 MHz . See figure 10.

Buzzer Output

The μ PD78002 family also has a programmable buzzer output (BUZ). The buzzer output frequency can be programmed to be equal to the main system clock (fx) divided by 1024,2048 , or 4096 . With a main system clock of 8.38 MHz , the buzzer can be set to $8.2,4.1$ or 2.0 kHz . See figure 11.

Figure 10. Programmable Clock Output

Figure 11. Buzzer Output

Interrupts

The μ PD78002 family has 11 maskable hardware interrupt sources (5 external and 6 internal). Of these 11 interrupt sources, 9 cause a vectored interrupt while the 2 testable inputs only generate an interrupt request. All of the 11 maskable interrupts can be used to release the HALT mode except INTPO. INTPO cannot be used to release the STOP mode and cannot release the

HALT mode when register SCS $=0$. In addition, there is one nonmaskable interrupt from the watchdog timer, one software interrupt, and a RESET interrupt. The watchdog timer overflow interrupt (interrupt vector table address 0004 H) can be initialized to be a nonmaskable interrupt or the highest default priority maskable interrupt. The software interrupt, generated by the BRK instruction, is not maskable. See table 4 and figure 12.

Table 4. Interrupt Sources and Vector Addresses

Type of Request	Default Priority	Signal Name	Interupt Source	Location	Vector Address	Interrupt Configuration
Restart	-	RESET	RESET input pin	External	0000 H	-
	-	INTWDT	Watchdog timer overflow (when reset mode selected)	Internal		
Nonmaskable	-	INTWDT	Watchdog timer overflow (when nonmaskable interrupt selected)	Internal	0004H	A
Maskable	0	INTWDT	Watchdog timer overflow (when interval timer selected)	Internal	0004H	B
	1	INTPO	External interrupt edge detection	External	0006H	C
	2	INTP1	External interrupt edge detection	External	0008H	D
	3	INTP2	External interrupt edge detection	External	000AH	D
	4	INTP3	External interrupt edge detection	External	000 CH	D
	5	INTCSIO	End of clocked serial interface 0 transfer	Internal	000EH	B
	6	INTTM3	Watch timer reference time interval signal	Internal	0012H	B
	7	INTTM1	8 -bit timer/event counter 1 coincidence signal	Internal	0016H	B
	8	INTTM2	8 -bit timer/event counter 2 coincidence signal	Internal	0018 H	B
Software	-	-	BRK instruction	Internal	003EH	E
Test input	-	INTWT	Watch timer overflow	Internal	-	F
	-	INTPT4	Port 4 falling edge detection	External	-	F

Interrupt Servicing. The μ PD78002 family provides two levels of programmable hardware priority control and services all interrupt requests, except the two testable interrupts (INTWT and INTPT4). Using vectored interrupts, the programmer can choose the priority of servicing each maskable interrupt by using the interrupt control registers.
Interrupt Control Registers. The μ PD78002 family has three 16-bit interrupt control registers. The interrupt request flag register (IFO) contains an interrupt request flag for each interrupt except INTPT4. The interrupt mask register (MKO) is used to enable or disable any interrupt except INTPT4. The priority flag register (PRO) can be used to specify a high or a low priority level for each interrupt except the two testable interrupts.

Four other 8 -bit registers are associated with interrupt processing. The key return mode register (KRM) contains the KRIF interrupt request flag associated with
falling-edge detection on port 4 and the KRMK mask flag used to enable or disable clearing of the standby mode if a falling edge is detected on port 4. The external interrupt mode register (INTMO) is used to select a rising, falling, or both edges as the valid edge for each of the external interrupts INTPO to INTP2 (INTP3 is always falling edge). The sampling clock select register (SCS) is used to select a sampling clock for the noise eliminator circuit on external interrupt INTPO.

The IE and the ISP bit of the program status word are also used to control interrupts. If the IE bit is 0 , all maskable interrupts are disabled. The IE bit can be set or cleared using the El and DI instructions, respectively, or by directly writing to the PSW. The IE bit is cleared each time an interrupt is accepted. The ISP bit is used by hardware to hold the priority level flag of the interrupt being serviced.

Figure 12. Interrupt Configurations

Figure 12. Interrupt Configurations (cont)
Type D: External maskable Interrupt (except INTPO)

Type E: Software Interrupt

Type F: Test Input

Abbreviations:

IF: Interrupt request flag
IE: Interrupt enable flag
ISP: In-service priority flag
MK: Interrupt mask flag
PR: Priority specify flag

Interrupt Priority. If the watchdog timer overflow interrupt (INTWDT) has been initialized to be a nonmaskable interrupt, it has priority over all other interrupts. Two hardware-controlled priority levels are available for all maskable interrupts that generate a vectored interrupt (i.e., all except the two testable interrupts). Either a high or a low priority level can be assigned by software to each of the maskable interrupts. Interrupt requests of the same priority or a priority higher than the processor's current priority level are held pending until interrupts in the current service routine are enabled by software or until one instruction has been executed after returning from the current service routine. Interrupt requests of a lower priority are always held pending until one instruction has been executed after returning from the current service routine.
The default priorities listed in table 4 are fixed by hardware and are effective only when it is necessary to choose between two interrupt requests of the same software-assigned priority. For example, the default priorities would be used after the completion of a high-priority routine, if two interrupts of the same software priority were pending.

The software interrupt, initiated by the BRK instruction, is executed regardless of the processor's priority level and the state of the IE bit. It does not alter the processor's priority level.
Vectored Interrupt Servicing. When a vectored interrupt is acknowledged, the program status word and the program counter are saved on the stack, the processor's priority is set to that specified for the interrupt, the IE bit in the PSW is set to zero, and the routine whose address is in the interrupt vector table is entered. At the completion of the service routine, the RETI instruction (RETB instruction for the software interrupt) reverses the process and the μ PD78002 family microcontroller resumes the interrupted routine.

Standby Modes

HALT, STOP, and data retention modes are provided to reduce power consumption when CPU action is not required.
The HALT mode is entered by executing a HALT instruction while the CPU is operating from the main system or subsystem clock. In HALT mode, the CPU clock is stopped while the main system and the subsystem clock continue to run. The HALT mode is released by any unmasked interrupt request (except INTPO if register $S C S=0$), a nonmaskable interrupt request, an unmasked test input, or an external reset pulse.

Power consumption may be further reduced by using the STOP mode. The STOP mode is entered by executing a STOP instruction while operating from the main system clock. In STOP mode, the main system clock input pin X1 is internally grounded stopping both the CPU and the peripheral hardware clock. The STOP mode is released by any unmasked interrupt request except INTPO, a nonmaskable interrupt request, an unmasked test input, or an external reset pulse. Any peripheral using the main oscillator as a clock source will also be disabled in the STOP mode and interrupts from such a peripheral cannot be used to exit the STOP mode. Table 5 summarizes both the HALT and STOP standby modes.

Table 5. Standby Mode Operation Status

Item	HALT Mode	STOP Mode
Setting instruction	HALT instruction	STOP instruction
System clock when setting	Main system or subsystem clock	Main system clock
Clock oscillator	Main system and subsystem clocks can oscillate; CPU clock is stopped.	Subsystem clock can oscillate; CPU clock and main system clock are stopped.
CPU	Operation stopped	Operation stopped
Ports	Maintain previous state	Maintain previous state
8-bit timer/ event counters	Operational from main system clock	Operational only with TI1 and TI2 as count clock
Watch timer	Operational from main system clock or with f_{XT} as count clock	Operational only with ${ }^{\mathrm{f}} \mathrm{XT}$ as count clock
Watchdog timer	Operational from main system clock	Operation stopped
Serial interface 0	Operational from main system clock	Operational only with external clock
External interrupts	Operational except for INTPO when its sampling clock is based on the CPU clock	INTPO not operational; INTP1 to INTP3 operational

When exiting the STOP mode, a wait time occurs before the CPU begins execution to allow the main system clock oscillator circuit to stabilize. The oscillator stabilization time is selected by programming the OSTS register with one of five values before entering the STOP mode. The values range from 0.98 msec to 31.3 msec at $\mathrm{f}_{\mathrm{x}}=8.38 \mathrm{MHz}$.

Once in the STOP mode, power consumption can be further minimized by lowering the power supply voltage V_{DD} to as little as 2 V . This places the device in the data retention mode. The contents of Internal RAM and the registers are retained. This mode is released by first raising $V_{D D}$ to the proper operating range and then releasing the STOP mode.

External Reset

The μ PD78002 family is reset by taking the $\overline{\text { RESET }}$ pin low or by an overflow of the watchdog timer (if enabled). The RESET input pin is a schmitt-trigger input with hysteresis characteristics to protect against spurious system resets caused by noise. On power-up, the RESET pin must remain low for a minimum of $10 \mu \mathrm{~s}$ after the power supply reaches its operating voltage.
There is no functional difference between an external reset and an internal reset caused by the overflow of the watchdog timer. In both cases, the main system clock oscillation is stopped and the subsystem clock oscillation continues. During reset, the program counter is loaded with the address contained in the reset vector (addresses $0000 \mathrm{H}, 0001 \mathrm{H}$). Once the reset is cleared and the oscillation stabilization time of $218 / f_{X}$ has elapsed, program execution starts at that address.

ELECTRICAL SPECIFICATIONS

The following specifications are for the μ PD78001B/ 002B devices only. Refer to the μ PD78014 data sheet for μ PD78P014 device specifications.

Absolute Maximum Ratings
 $T_{A}=+25^{\circ} \mathrm{C}$

Supply voltage, V_{DD}	-0.3 to +7.0 V
Input voltage, V_{11} (except $\mathrm{P6}_{0}$ to $\left.\mathrm{P6}_{3}\right)$	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Input voltage, $\mathrm{V}_{12}\left(\mathrm{P}_{0}\right.$ to P_{3}; open	-0.3 to +16 V

drain)	
Output voltage, V_{O}	-0.3 to $V_{D D}+0.3 \mathrm{~V}$

Output current, high; I_{OH}
Each output pin $\quad-10 \mathrm{~mA}$
Total: ports 1 to $3 \quad-15 \mathrm{~mA}$
Total: ports 0 and ports 4 to $6 \quad-15 \mathrm{~mA}$

Output current, low, loL \dagger	
Each output pin	30 mA peak, 15 mA rms
Total: P_{4} to P_{7} and	100 mA peak, 70 mA rms
$\mathrm{P5}_{0}$ to $\mathrm{P5}_{5}$	
Total: PO_{1} to $\mathrm{PO}_{3}, \mathrm{P5}_{6}, \mathrm{P5}_{7}$, and Pb_{0} to P_{7}	100 mA peak, 70 mA rms
Total: PO_{1} to PO_{3} and $\mathrm{P6}_{4}$ to $\mathrm{P6}_{7}$	50 mA peak, 20 mA rms
Total: ports 1 to 3	50 mA peak, 20 mA rms
Operating temperature, TOPT	-40 to $+85^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{TSTG}_{\text {S }}$	-65 to $+150^{\circ} \mathrm{C}$

$\dagger \mathrm{rms}$ value $=$ peak value $\times(\text { duty cycle })^{1 / 2}$
Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC characteristics.

Capacitance

$T_{A}=+25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Max	Unit	Conditions	
Input capacitance	$\mathrm{C}_{\mathbf{I N}}$	15	pF	Except Pb_{0} to $\mathrm{P6}_{3}$	$f=1 \mathrm{MHz}$ unmeasured pins returned to ground
		20	pF	$P 6_{0}$ to $P 6_{3}$	
Output capacitance	COUT	15	pF	Except Pb_{0} to $\mathrm{P6}_{3}$	
		20	pF	$\mathrm{P6}_{0}$ to $\mathrm{P6}_{3}$	
Input/output capacitance	C_{10}	15	pF	Except $\mathrm{P6}_{0}$ to $\mathrm{P6}_{3}$	
		20	pF	$\mathrm{P6}_{0}$ to $\mathrm{P6}_{3}$	

Main System Clock Oscillator
$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.7$ to 6.0 V ; refer to figure 13.

Type	Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Ceramic resonator (Figure 13A)	Oscillation frequency (Note 1)	${ }^{\prime} \mathrm{X}$	1.0		10.0	MHz	$\mathrm{V}_{\mathrm{DD}}=$ oscillator voltage range
	Oscillation stabilization time (Note 2)				4.0	ms	After $V_{D D}$ reaches oscillator operating voltage
Crystal resonator (Figure 13A)	Oscillation frequency (Note 1)	${ }^{\prime} \mathrm{X}$	1.0	8.38	10.0	MHz	
	Oscillation stabilization time (Note 2)				10	ms	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
					30	ms	
External clock (Figure 13B)	X1 input frequency (Note 1)	${ }^{\prime} \mathrm{X}$	1.0		10.0	MHz	
	X 1 input high/low-level width	${ }^{\text {txH, }}$, XL	50		500	ns	

Notes:

(1) Oscillator and $X 1$ input frequencies are included only to show the oscillator characteristics. Refer to the AC Characteristics table for actual instruction execution times.
(2) Time required for the oscillator to stabilize after reset or STOP mode is released. The values shown are for the recommended resonators. Values for resonators not shown in this data sheet should be obtained from the manufacturer's specification sheets.

Subsystem Clock Oscillator

$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.7$ to 6.0 V ; refer to figure 14.

Type	Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Crystal resonator (Figure 14A)	Oscillation frequency (Note 1)	f_{XT}	32	32.768	35	kHz	
	Oscillation stabilization time (Note 2)			1.2	2	s	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
					10	s	
External clock (Figure 14B)	XT1 input frequency (Note 1)	${ }^{\text {X }}$ T	32		100	kHz	
	XT1 input high/low-level width		5		15	$\mu \mathrm{s}$	

Notes:
(1) The oscillator and XT1 input frequencies are included only to show the oscillator characteristics. Refer to the AC Characteristics table for actual instruction execution times.
(2) Time required for the oscillator to stabilize after reset or STOP mode is released. The values shown are for the recommended resonators. Values for resonators not shown in this data sheet should be obtained from the manufacturer's specification sheets.

Figure 13. Main System Clock Configurations
A. Ceramic/Crystal Resonator

B. External Clock

Note: When the input is an external clock, the STOP mode can not be set because the X1 pin is connected to system ground (V_{SS}).

Figure 14. Subsystem Clock Configurations
A. Crystal Resonator

B. External Clock

Recommended Main System Clock Ceramic Resonators

$T_{A}=-40$ to $+85^{\circ} \mathrm{C}$; refer to figure 13 A

Part Number (Notes 1 and 2)	Recommended Circuit Constant			Oscillator Voltage Range		$\begin{gathered} \text { Frequency } \\ (\mathrm{MHz}) \end{gathered}$
	C1 (pF)	C2 (pF)	R1 (kR)	Min (V)	Max (V)	
CSB1000J	100	100	6.8	2.7	6.0	1.00
CSBxxxxJ	100	100	4.7	2.7	6.0	1.01 to 1.25
CSAx.xxxMK	100	100	0	2.7	6.0	1.26 to 1.79
CSAx.xxMG	100	100	0	2.7	6.0	1.80 to 2.44
CSTx.xxMG	(Note 3)	(Note 3)	0	2.7	6.0	1.80 to 2.44
CSAx.xxMG	30	30	0	2.7	6.0	2.45 to 4.18
CSTx.xxMGW	(Note 3)	(Note 3)	0	2.7	6.0	2.45 to 4.18
CSAx.xxMG	30	30	0	2.7	6.0	4.19 to 6.00
CSTx.xxMGW	(Note 3)	(Note 3)	0	2.7	6.0	4.19 to 6.00
CSAx.xxMT	30	30	0	2.7	6.0	6.01 to 10.0
CSTx.xxMTW	(Note 3)	(Note 3)	0	2.7	6.0	6.01 to 10.0

Notes:

(1) Manufactured by Murata Mfg. Co., Ltd.
(3) C 1 and C 2 are contained in the ceramic resonators.
(2) $x . x x$ indicates frequency

Recommended Subsystem Clock Crystal Resonators
$T_{A}=-40$ to $+60^{\circ} \mathrm{C}$; refer to figure 14 A

Part Number \dagger	Frequency (kHz)	Recommended Circuit Constant			Oscillator Voltage Range	
		C3 (pF)	C4 (pF)	R2 (kR)	Min (V)	$\operatorname{Max}(\mathrm{V})$
DT-38 (1TA252 E00, load capacitance 6.3 pF)	32.768	12	12	100	2.7	6.0

\dagger Manufactured by Daishinku

DC Characteristics
$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=+2.7$ to 6.0 V ; refer to figures $15-20$

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
High-level input voltage	$\mathrm{V}_{\mathrm{HH} 1}$	$0.7 \mathrm{~V}_{\mathrm{DD}}$		$V_{D D}$	V	Other than below
	$\mathrm{V}_{\mathrm{IH} 2}$	$0.8 \mathrm{~V}_{\text {DD }}$		$V_{D D}$	V	$\begin{aligned} & \mathrm{PO}_{0} \text { to } \mathrm{PO}_{4}, \mathrm{P}_{0}, \mathrm{P}_{2}, \mathrm{P}_{4} \text { to } \mathrm{P}_{7}, \\ & \mathrm{P}_{3}, \mathrm{P3}_{4}, \mathrm{RESET} \end{aligned}$
	$\mathrm{V}_{1 \mathrm{H} 3}$	$0.7 \mathrm{~V}_{\text {DD }}$		15	v	$\mathrm{P6}_{0}$ to $\mathrm{P6}_{3}$; open-drain
	$\mathrm{V}_{1 \mathrm{H} 4}$	$V_{D D}-0.5$		$V_{D D}$	v	X1, X2
	$\mathrm{V}_{\mathrm{IH} 5}$	$\mathrm{V}_{\mathrm{DD}}-0.5$		$V_{D D}$	V	$\mathrm{V}_{\mathrm{DD}}=4.5$ to $6.0 \mathrm{~V} ; \mathrm{XT1}, \mathrm{XT} 2$
Low-level input voltage	$\mathrm{V}_{\text {IL } 1}$	0		$0.3 V_{D D}$	V	Other than below
	$\mathrm{V}_{\text {IL2 }}$	0		$0.2 \mathrm{~V}_{\mathrm{DD}}$	V	$\begin{aligned} & \mathrm{PO}_{0} \text { to } \mathrm{PO}_{4}, \mathrm{P}_{0}, \mathrm{P}_{2}, \mathrm{P}_{4} \text { to } \mathrm{P}_{7}, \\ & \mathrm{P}_{3}, \mathrm{P}_{4}, \mathrm{RESET} \end{aligned}$
	$\mathrm{V}_{\text {IL } 3}$	0		$0.3 \mathrm{~V}_{\mathrm{DD}}$	v	$\mathrm{P6}_{0}$ to $\mathrm{P6}_{3} ; \mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		0		$0.2 \mathrm{~V}_{\mathrm{DD}}$	V	$\mathrm{P6}_{0}$ to $\mathrm{P6}_{3}$
	$\mathrm{V}_{\text {IL } 4}$	0		0.4	V	X1, X2
	$\mathrm{V}_{\text {IL } 5}$	0		0.4	V	$\mathrm{XT1}, \mathrm{XT2} ; \mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		0		0.3	V	$\mathrm{XT1}, \mathrm{XT} 2$
High-level output voltage	$\mathrm{V}_{\mathrm{OH} 1}$	$V_{D D}-1.0$			V	$\mathrm{V}_{\mathrm{DD}}=4.5$ to $6.0 \mathrm{~V}, \mathrm{l}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$
		$V_{D D}-0.5$			V	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$
Low-level output voltage	$\mathrm{V}_{\text {OL1 }}$		0.4	2.0	V	$\begin{aligned} & \mathrm{P5}_{0} \text { to } \mathrm{P}_{7}, \mathrm{~Pb}_{0} \text { to } \mathrm{P}_{3} ; \\ & \mathrm{V}_{\mathrm{DD}}=4.5 \text { to } 6.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=15 \mathrm{~mA} \end{aligned}$
				0.4	V	Other than above; $\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V , $\mathrm{OL}=1.6 \mathrm{~mA}$
	$\mathrm{V}_{\text {OL2 }}$			$0.2 \mathrm{~V}_{\mathrm{DD}}$	V	$\begin{aligned} & \mathrm{SBO}, \mathrm{SB1}, \overline{\mathrm{SCKO}} ; \mathrm{V}_{\mathrm{DD}}=4.5 \text { to } 6.0 \mathrm{~V}, \\ & \text { open-drain, pullup resistance }=1 \mathrm{k} \Omega \end{aligned}$
	$\mathrm{V}_{\text {OL3 }}$			0.5	V	$\mathrm{bL}_{\mathrm{L}}=400 \mu \mathrm{~A}$
High-level input leakage current	ILH_{1}			3	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$; except $\mathrm{X} 1, \mathrm{X} 2, \mathrm{XT1}, \mathrm{XT2}$
	ILH 2			20	$\mu \mathrm{A}$	$\mathrm{V}_{1 N}=\mathrm{V}_{\mathrm{DD}} ; \mathrm{X} 1, \mathrm{X} 2, \mathrm{XT} 1, \mathrm{XT} 2$
	$\mathrm{ILIH3}$			80	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V} ; \mathrm{P6}_{0}$ to $\mathrm{P6}_{3}$
Low-level input leakage current	LliL1			-3	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}$; except $\mathrm{X} 1, \mathrm{X} 2, \mathrm{XT1}, \mathrm{XT2}$
	LIL2			-20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbb{N}}=0 \mathrm{~V} ; \mathrm{X} 1, \mathrm{X} 2, \mathrm{XT} 1, \mathrm{XT} 2$
	lill3			-3	$\mu \mathrm{A}$	$V_{1 N}=0 \mathrm{~V} ; \mathrm{PG}_{0}$ to PG_{3} (Note 1)
Output leakage current high	$\mathrm{L}_{\mathrm{LOH}}$			3	$\mu \mathrm{A}$	$V_{\text {OUT }}=V_{\text {DD }}$
Output leakage current low	LOL			-3	$\mu \mathrm{A}$	$V_{\text {OUT }}=0 \mathrm{~V}$
Mask option pullup resistor	R_{1}	20	40	90	$\mathrm{k} \Omega$	$V_{I N}=0 \mathrm{~V} ; P 6_{0}$ to $P 6_{3}$
Software pullup resistor	R_{2}	15	40	90	k Ω	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.5 \text { to } 6.0 \mathrm{~V} ; \mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}, \mathrm{PO}_{1} \text { to } \mathrm{PO}_{3}, \\ & \text { ports } 1 \text { to } 5, \mathrm{PG}_{4} \text { to } \mathrm{P6}_{7} \end{aligned}$
		20		500	k Ω	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.7 \text { to } 4.5 \mathrm{~V} ; \mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}, \mathrm{PO}_{1} \text { to } \mathrm{PO}_{3}, \\ & \text { ports } 1 \text { to } 5, \mathrm{PG}_{4} \text { to } \mathrm{P6}_{7} \end{aligned}$

DC Characteristics (cont)

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Power supply current	IDD1		7.5	22.5	mA	8.38 MHz crystal oscillation operating mode; $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \% \text { (Note 2) }$
			0.8	2.4	mA	8.38 MHz crystal oscillation operating mode; $V_{D D}=3.0 \mathrm{~V} \pm 10 \% \text { (Note 3) }$
	${ }^{\text {DDD2 }}$		1.4	4.2	mA	8.38 MHz crystal oscillation HALT mode; $V_{D D}=5.0 \mathrm{~V} \pm 10 \%$
			550	1650	$\mu \mathrm{A}$	8.38 MHz crystal oscillation HALT mode; $V_{D D}=3.0 \mathrm{~V} \pm 10 \%$
	${ }^{\text {DD }} 3$		60	120	$\mu \mathrm{A}$	32.768 kHz crystal oscillation operating mode; $V_{D D}=5.0 \mathrm{~V} \pm 10 \%, X 1$ STOP mode, CPU operating from subsystem clock
			35	70	$\mu \mathrm{A}$	32.768 kHz crystal oscillation operating mode; $V_{D D}=3.0 \mathrm{~V} \pm 10 \%, \mathrm{X} 1$ STOP mode, CPU operating from subsystem clock
	${ }^{\text {D D 4 }}$		25	50	$\mu \mathrm{A}$	32.768 kHz crystal oscillation HALT mode; $V_{D D}=5.0 \mathrm{~V} \pm 10 \%$, X 1 STOP mode
			5	10	$\mu \mathrm{A}$	32.768 kHz crystal oscillation HALT mode; $V_{D D}=3.0 \mathrm{~V} \pm 10 \%$, X1 STOP mode
	${ }^{\text {DD5 }}$		1	20	$\mu \mathrm{A}$	XT1 $=0 \mathrm{~V}$ STOP mode when feedback resistor is connected; $V_{D D}=5.0 \mathrm{~V} \pm 10 \%$
			0.5	10	$\mu \mathrm{A}$	$\mathrm{XT1}=0 \mathrm{~V}$ STOP mode when feedback resistor is connected; $V_{D D}=3.0 \mathrm{~V} \pm 10 \%$
	${ }^{\text {DDE }}$		0.1	20	$\mu \mathrm{A}$	$\mathrm{XT1}=0 \mathrm{~V}$ STOP mode when feedback resistor is disconnected; $V_{D D}=5.0 \mathrm{~V} \pm 10 \%$
			0.05	10	$\mu \mathrm{A}$	$\mathrm{XT} 1=0 \mathrm{~V}$ STOP mode when feedback resistor is disconnected; $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$

Notes:

(1) P_{0} to P_{3} become $-200 \mu \mathrm{~A}$ (max.) for only 1 clock cycle during input instruction execution (no wait) and $-3 \mu \mathrm{~A}$ (max.) during instruction other than input.
(2) When operated in the high-speed mode with the processor clock control register set to 00 H .
(3) When operated in low-speed mode with the processor clock control register set to 04 H .

Figure 15. $I_{D D}$ vs $V_{D D}\left(f_{X}=8.38 \mathrm{MHz}\right)$

Figure 16. $I_{D D}$ vs $V_{D D}\left(f_{X}=4.19 \mathrm{MHz}\right)$

Figure 17. IOL vs VOL (Ports 0, 2-5, P64 - P67)

Figure 18. Iol vs Vol (Port 1)

Figure 19. $I_{O L}$ vs $V_{O L}\left(\mathrm{~Pb}_{0}-\mathrm{Pb}_{3}\right)$

Figure 20. IOH vs VDD VOH $_{\text {(Ports 0-5, }} \mathrm{P6}_{4}$ - Pb_{7})

AC Characteristics

$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{D D}=2.7$ to 6 V ; refer to figures 21 through 26

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Cycle time (Min. instruction execution time)	${ }^{t} \mathrm{CY}$	0.4		64	$\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V ; operating on main system clock
		0.96		64	$\mu \mathrm{s}$	Operating on main system clock
		114	122	125	$\mu \mathrm{s}$	Operating on subsystem clock
Tl input frequency	f_{T}	0		4	MHz	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		0		275	kHz	
TI input high/ low-level width	${ }_{\text {toin, }}$ till	100			ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		1.8			$\mu \mathrm{s}$	
Interrupt input high/low-level width	$\mathrm{t}_{\text {INTH }} \mathrm{t}_{\text {INTL }}$	$8 /{ }_{\text {sam }}$ (Note 1)			$\mu \mathrm{s}$	INTPO
		10			$\mu \mathrm{s}$	INTP1 to INTP3
		10			$\mu \mathrm{s}$	KRO to KR7 (Note 2)
RESET low-level width	$t_{\text {RST }}$	10			$\mu \mathrm{s}$	

Notes:

(1) By using bits 0 and 1 of the sampling clock select (SCS) register in conjunction with bits 0 to 2 of the processor clock control (PCC) register, $\mathrm{f}_{\text {sam }}$ can be set to $\mathrm{f}_{\mathrm{x}} / 2^{\mathrm{N}+1}$ (where $\mathrm{N}=0$ to 4), $\mathrm{f}_{\mathrm{x}} / 64$, or $\mathrm{f}_{\mathrm{x}} / 128$.
(2) Port 4 falling-edge detection input.

Figure 21. Main System Clock Operation; $t_{C Y} v^{\prime} V_{D D}$

Figure 24. 71 Timing

Figure 25. Interrupt Input Timing

Figure 26. $\overline{R E S E T}$ Input Timing

Figure 22. AC Timing Measurements Points (except X1 and XT1)

Figure 23. Clock AC Timing Points X1 and XT1

Read/Write Operation
$T_{A}=-40$ to $+85^{\circ} \mathrm{C}, V_{D D}=2.7$ to 6.0 V ; refer to figures 27 through 30

Parameter	Symbol	Min	Max	Unit	Conditions
ASTB high-level width	${ }^{\text {ASTH }}$	$0.5 \mathrm{t}_{\mathrm{CY}}$		ns	
Address setup time to ASTB \downarrow	$t_{\text {ADS }}$	$0.5 \mathrm{t}_{\mathrm{CY}}-30$		ns	
Address hold time from ASTB \downarrow	$t_{\text {ADH }}$	10		ns	Load resistor $\geq 5 \mathrm{k} \Omega$
Data input time from address	$t_{\text {ADD1 }}$		$(2+2 n) t c y-50$	ns	Instruction fetch
	${ }^{\text {t }}$ ADD2	5	$(3+2 n) t_{C Y}-100$	ns	Data access
$\overline{\text { Data input time from } \overline{\mathrm{RD}} \downarrow}$	$t_{\text {RDD1 }}$		$(1+2 n) t_{C Y}-25$	ns	Instruction fetch
	$\mathrm{t}_{\text {RDD2 }}$		$(2.5+2 n) \mathrm{t}_{\mathrm{CY}}-100$	ns	Data access
Read data hold time	${ }^{\text {tr }}$ (${ }^{\text {d }}$	0		ns	
$\overline{\overline{R D}}$ low-level width	$t_{\text {RDL1 }}$	$(1.5+2 n) t_{C Y}-20$		ns	Instruction fetch
	$\mathrm{t}_{\mathrm{RDL} 2}$	$(2.5+2 n) t_{c Y}-20$		ns	Data access
$\overline{\overline{\text { WAIT }} \downarrow \text { input time from } \overline{\mathrm{RD}} \downarrow}$	$t_{\text {RDWT1 }}$		$0.5 \mathrm{t}_{\mathrm{CY}}$	ns	Instruction fetch
	$t_{\text {RDWT2 }}$		$1.5 \mathrm{t}_{\mathrm{CY}}$	ns	Data access
	tWRWT		$0.5 \mathrm{t}_{\mathrm{CY}}$	ns	
WAIT low-level width	${ }^{\text {tWTL }}$	$(0.5+2 n) t_{c Y}+10$	$(2+2 n) t_{C Y}$	ns	
Write data setup time to $\overline{W R} \uparrow$	${ }^{\text {twDS }}$	100		ns	
Write data hold time from $\overline{W R} \uparrow$	tWDH	5		ns	
$\overline{\text { WR low-level width }}$	twRL1	$(2.5+2 n) t^{\text {c }}$ Y - 20		ns	
$\overline{\mathrm{RD}} \downarrow$ delay time from ASTB \downarrow	$t_{\text {ASTRD }}$	$0.5 \mathrm{t}_{\mathrm{CY}}-30$		ns	
$\overline{W R} \downarrow$ delay time from ASTB \downarrow	$t_{\text {ASTWR }}$	$1.5 \mathrm{t}_{\mathrm{CY}}-30$		ns	
ASTB \uparrow delay time from $\overline{\mathrm{RD}} \uparrow$ (external fetch)	$t_{\text {RDAST }}$	$t_{C Y}-10$	$t_{C Y}+40$	ns	
Address hold time from $\overline{\mathrm{RD}} \uparrow$ (external fetch)	$t_{\text {RDADH }}$	${ }^{t_{C Y}}$	$t_{C Y}+50$	ns	
Write data output time from $\overline{\mathrm{RD}} \uparrow$	$t_{\text {RDWD }}$	10		ns	
WR \downarrow delay time from write data	${ }^{\text {tWDWR }}$	$0.5 \mathrm{t}_{\mathrm{CY}}-120$	$0.5 \mathrm{t}_{\mathrm{CY}}$	ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		$0.5 \mathrm{t}_{\mathrm{CY}}-170$	$0.5 \mathrm{t}_{\mathrm{CY}}$	ns	
Address hold time from $\overline{W R} \uparrow$	twradh	${ }_{t}{ }_{C Y}$	$t_{C Y}+60$	ns	$V_{D D}=4.5$ to 6.0 V
		${ }^{t_{C Y}}$	$\mathrm{t}_{\mathrm{CY}}+100$	ns	
$\overline{\mathrm{RD}} \uparrow$ delay time from $\overline{\text { WAIT } \uparrow}$	tWTRD	$0.5 \mathrm{t}_{\mathrm{CY}}$	$2.5 \mathrm{t}_{\mathrm{CY}}+80$	ns	
	tWTWR	$0.5 \mathrm{t}_{\mathrm{C}} \mathrm{Y}$	$2.5 \mathrm{t}_{\mathrm{CY}}+80$	ns	

Notes:

(1) $t_{C Y}=t_{C Y} / 4$
(2) n indicates number of waits.
(3) $C_{L}=100 \mathrm{pF}$

Figure 27. Read Operation; External Fetch (No Wait)

Figure 28. Read Operation; External Fetch (Wait Insertion)

Figure 29. Read/Write Operation; External Data Access (No Wait)

Figure 30. Read/Write Operation; External Data Access (Wait Insertion)

Serial Interface, 3-Wire, I/O Mode; Internal $\overline{\text { SCK Output }}$
$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.7$ to 6.0 V ; refer to figure 31

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
$\overline{\overline{\mathrm{SCK}}}$ cycle time	$\mathrm{t}_{\mathrm{KCY} 1}$	800			ns	$V_{D D}=4.5$ to 6.0 V
		3200			ns	
$\overline{\overline{S C K}}$ high- and low-level width	$\mathrm{t}_{\mathrm{KH} 1}, \mathrm{t}_{\mathrm{KL} 1}$	$\mathrm{t}_{\mathrm{KCY} 1} / 2-50$			ns	$V_{D D}=4.5$ to 6.0 V
		$\mathrm{t}_{\text {KCY } 1 / 2-150}$			ns	
SI setup time to $\overline{\text { SCK }} \uparrow$	$\mathrm{t}_{\text {SIK1 }}$	100			ns	
SI hold time from $\overline{\text { SCK }} \uparrow$	${ }_{\text {t KS }}$ /	400			ns	
SO output delay time from $\overline{\text { SCK }} \downarrow$	$\mathrm{t}_{\text {KSO1 }}$			300	ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to $6.0 \mathrm{~V} ; \mathrm{C}=100 \mathrm{pF}$ (Note 1)
				1000	ns	$\mathrm{C}=100 \mathrm{pF}$ (Note 1)

Note 1: C is the load capacitance of the SO output line.
Serial Interface, 3-Wire I/O Mode; External $\overline{\text { SCK }}$ Input
$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{D D}=2.7$ to 6.0 V ; refer to figure 31

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
$\overline{\text { SCK }}$ cycle time	$\mathrm{t}_{\mathrm{KCY} 2}$	800			ns	$V_{D D}=4.5$ to 6.0 V
		3200			ns	
$\overline{\overline{S C K}}$ high- and low-level width	${ }^{+}{ }_{K H 2}, t_{\text {KL } 2}$	400			ns	$V_{D D}=4.5$ to 6.0 V
		1600			ns	
SI setup time to $\overline{S C K} \uparrow$	$\mathrm{t}_{\text {SIK2 }}$	100			ns	
SI hold time from $\overline{\text { SCK }} \uparrow$.	$\mathrm{t}_{\mathrm{KSI}}{ }^{2}$	400			ns	
SO output delay time from $\overline{\mathrm{SCK}} \downarrow$	$\mathrm{t}_{\mathrm{KSO} 2}$			300	ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to $6.0 \mathrm{~V} ; \mathrm{C}=100 \mathrm{pF}$ (Note 1)
				1000	ns	$C=100 \mathrm{pF}$ (Note 1)

Note 1: C is the load capacitance of the SO output line.
Serial Interface, SBI Mode; Internal $\overline{\text { SCK }}$ Output
$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; V_{D D}=2.7$ to 6.0 V ; refer to figure 32

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
$\overline{\text { SCK }}$ cycle time	${ }_{\text {tKCY3 }}$	800			ns	$V_{D D}=4.5$ to 6.0 V
		3200			ns	
$\overline{\text { SCK }}$ high- and low-level width	${ }_{\text {K }}{ }^{\text {H }}$, $\mathrm{t}_{\text {KL3 }}$	$\mathrm{t}_{\mathrm{KCY3}} / 2-50$			ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		$\mathrm{t}_{\mathrm{KCY}} / 2 \mathrm{l}$-150			ns	
$\overline{\mathrm{SBO}}$, SB1 setup time to $\overline{\mathrm{SCK}} \uparrow$	${ }^{\text {s }}$ IK3	100			ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		300			ns	
SBO, SB1 hold time from $\overline{\text { SCK }} \uparrow$	$\mathrm{t}_{\mathrm{KS13}}$	$\mathrm{t}_{\mathrm{KCY} 3} / 2$			ns	
SB0,SB1 output delay time from $\overline{\text { SCK }} \downarrow$	tKso3 $^{\text {H }}$	0		250	ns	$\begin{aligned} & V_{D D}=4.5 \text { to } 6.0 \mathrm{~V} ; R=1 \mathrm{k} \Omega \\ & C=100 \mathrm{pF}(\text { Note } 1) \end{aligned}$
		0		1000	ns	$R=1 \mathrm{k} \Omega \mathrm{C}=100 \mathrm{pF}$ (Note 1)
SB0, SB1 \downarrow from $\overline{\text { SCK }} \uparrow$	${ }^{\text {tKSB }}$	${ }_{\text {tKCY3 }}$			ns	
$\overline{\text { SCK }} \downarrow$ from SB0, SB1 \downarrow	${ }^{\text {t }}$ SBK	$\mathrm{t}_{\text {KCY3 }}$			ns	
SB0, SB1 high-level width	${ }^{\text {tSBH }}$				ns	
SBO, SB1 low-level width	${ }_{\text {t }}$ SBL	${ }_{\text {t }}{ }_{\text {KCY }}$			ns	

Note 1: R and C are the load resistance and load capacitance of the SBO and SB1 output lines.

Serial Interface, SBI Mode; External $\overline{\text { SCK }}$ Input

$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.7$ to 6.0 V ; refer to figure 32

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
$\overline{\text { SCK }}$ cycle time	${ }^{\text {K K CY }} 4$	800			ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		3200			ns	
$\overline{\overline{S C K}}$ high- and low-level width	${ }^{\text {K KH4, }}$, ${ }_{\text {KL4 }}$	400			ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		1600			ns	
$\overline{\text { SB0, SB1 setup time to } \overline{\mathrm{SCK}} \uparrow}$	${ }^{\text {tSIK4 }}$	100			ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		300			ns	
SB0, SB1 hold time from $\overline{\text { SCK }} \uparrow$	$\mathrm{t}_{\mathrm{KSI} 14}$	$\mathrm{t}_{\mathrm{KCY} 4} / 2$			ns	
SB0, SB1 output delay time from $\overline{\text { SCK }} \downarrow$	${ }_{\text {tKSO4 }}$	0		300	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.5 \text { to } 6.0 \mathrm{~V} ; \mathrm{R}=1 \mathrm{k} \Omega, \mathrm{C}=100 \mathrm{pF} . \\ & \text { (Note 1) } \end{aligned}$
		0		1000	ns	$\mathrm{R}=1 \mathrm{k} \Omega, \mathrm{C}=100 \mathrm{pF}$ (Note 1)
SB0, SB1 \downarrow from $\overline{\text { SCK }} \uparrow$	${ }^{\text {t }}$ KSB	$\mathrm{t}_{\mathrm{KCY} 4}$			ns	
	${ }^{\text {t }}$ SBK	$\mathrm{t}_{\mathrm{KCY}}{ }^{\text {c }}$			ns	
SB0, SB1 high-level width	${ }^{\text {t }}$ SBH	$\mathrm{t}_{\mathrm{KCY}}{ }^{\text {¢ }}$			ns	
SB0, SB1 low-level width	${ }^{\text {t }}$ SBL	$\mathrm{t}_{\mathrm{KCY} 4}$			ns	

Note 1: R and C are the load resistance and load capacitance of the SB0 and SB1 output lines.

Serial Interface, 2-Wire, I/O Mode; Internal $\overline{\text { SCK Output }}$
$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.7$ to 6.0 V ; refer to figure 33

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
$\overline{\overline{S C K}}$ cycle time	$\mathrm{t}_{\text {KCY5 }}$	1600			ns	$V_{D D}=4.5$ to 6.0 V
		3800			ns	
$\overline{\text { SCK }}$ high-level width	$\mathrm{t}_{\mathrm{KH} 5}$	$\mathrm{t}_{\mathrm{KCY5}} / 2-50$			ns	
$\overline{\text { SCK }}$ low-level width	$\mathrm{t}_{\mathrm{KLL} 5}$	$t_{\text {KCY5 }} / 2-50$			ns	
SB0, SB1 setup time to $\overline{\text { SCK }} \uparrow$	${ }_{\text {tSIK5 }}$	300			ns	
SB0, SB1 hold time from $\overline{\text { SCK }} \uparrow$	$t_{K S 15}$	600			ns	
	${ }_{\text {t }}^{\text {KSO5 }}$	0		250	ns	$\begin{aligned} & V_{D D}=4.5 \text { to } 6.0 \mathrm{~V} \\ & \mathrm{R}=1 \mathrm{k} \Omega \mathrm{C}=100 \mathrm{pF} \text { (Note 1) } \end{aligned}$
		0		1000	ns	$R=1 \mathrm{k} \Omega \mathrm{C}=100 \mathrm{pF}$ (Note 1)

Note 1: R and C are load resistance and load capacitance of the $\overline{\text { SCKO }}$, SBO, and SB1 output lines.

Serial Interface, 2-Wire, I/O Mode; External SCK Input
$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.7$ to 6.0 V ; refer to figure 33

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
$\overline{\overline{S C K}}$ cycle time	$t_{\text {KCY6 }}$	1600			ns	$V_{D D}=4.5$ to 6.0 V
		3800			ns	
$\overline{\overline{S C K}}$ high-level width	$\mathrm{t}_{\mathrm{KH} 6}$	650			ns	
SCK low-level width	$\mathrm{t}_{\mathrm{KLL}}$	800			ns	
SB0, SB1 setup time (to $\overline{S C K} \uparrow$)	$\mathrm{t}_{\text {SIK }}$	100			ns	-
SB0, SB1 hold time (from $\overline{\text { SCK }} \uparrow$)	$t_{\text {KSI6 }}$	$\mathrm{t}_{\mathrm{KCY} 6} / 2$			ns	
	$\mathrm{t}_{\text {KSO6 }}$	0		300	ns	$\begin{aligned} & V_{D D}=4.5 \text { to } 6.0 \mathrm{~V} \\ & R=1 \mathrm{k} \Omega \mathrm{C}=100 \mathrm{pF} \text { (Note } 1 \text {) } \end{aligned}$
		0		1000	ns	$R=1 \mathrm{k} \Omega \mathrm{C}=100 \mathrm{pF}$ (Note 1)

Note 1: R and C are load resistance and load capacitance of the $\overline{\text { SCKO, SBO, and SB1 output lines. }}$

Figure 31. Serial Interface Timing; 3-Wire Serial I/O Mode

Figure 32. Serial Interface Timing; SBI Mode

SBI Bus Command Signal Transfer Timing

Figure 33. Serial Interface Timing; 2-Wire Serial I/O Mode

Data Memory STOP Mode; Low-Voltage Data Retention
$T_{A}=-40$ to $+85^{\circ} \mathrm{C}$; refer to figure 34

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Data retention supply voltage	$\mathrm{V}_{\text {DDDR }}$	2.0		6.0	V	
Data retention power supply current	IDDDR		0.1	10	$\mu \mathrm{A}$	$V_{D D D R}=2.0 \mathrm{~V}$; subsystem clock stop and feedback resistor disconnected
Release signal set time	$\mathrm{t}_{\text {SREL }}$	0			$\mu \mathrm{s}$	
Oscillation stabilization wait time	$t_{\text {WAIT }}$		$2^{18 / 7 x}$		ms	Release by $\overline{\text { RESET }}$
			(Note 1)		ms	Release by interrupt

Note: $2^{13 / f x, ~} 2^{15} / f x, 2^{16} / f x, 2^{17} / f x$ or $2^{18 / f x}$ can be chosen by using bits 0 to 2 of the oscillation stabilization time select (OSTS) register.

Figure 34. Data Retention Timing
A. STOP mode is released by $\overline{\text { RESET input }}$

B. STOP mode is released by interrupt signal

Description

The μ PD78001BY, μ PD78002BY, and μ PD78P014Y* are members of the K-Series ${ }^{\oplus}$ of microcontrollers. The μ PD78002Y family is a variation of the μ PD78002 family with the addition of an ${ }^{2} \mathrm{C}$ bus mode in serial interface 0 . The $\mu \mathrm{PD} 78 \mathrm{P} 014 \mathrm{Y}$ is used for prototyping since the μ PD78014Y family is pin and function compatible with, and the features are a superset of, the μ PD78002Y family. The μ PD78002Y features include bit manipulation instructions, four banks of main registers, an advanced interrupt handling facility, and a powerful set of memory-mapped on-chip peripherals. On-board data memory includes 256,384 , or 1024 bytes of internal high-speed RAM. Program memory options include 8 K or 16 K bytes of mask ROM, or 32 K bytes of internal UV EPROM or one-time programmable (OTP) ROM.
The μ PD78002Y family operates over a wide voltage range: 2.7 to 6.0 volts. Timing is generated by two built-in oscillators. A main oscillator normally drives the CPU and most peripherals and at 10 MHz provides a minimum instruction time of $0.4 \mu \mathrm{~s}$. A subsystem oscillator at 32.768 kHz provides time keeping, and optionally a slow clock for the CPU. Since CMOS power dissipation is directly proportional to clock rate, the μ PD78002Y family provides a software variable CPU clock. The HALT and STOP modes are two additional power saving features that turn off parts of the microcontroller for additional power saving. A data retention mode permits RAM contents to be saved down to 2 volts.

The range of peripherals, including timers and a serial port, makes these devices ideal for applications in portable battery-powered equipment, office automation, communications, consumer electronics, home appliances, and fitness equipment.

[^3]
Features

- One-channel serial communication interface
-8-bit clock synchronous interface 0
- I2C bus mode
-Full-duplex, three-wire mode
- NEC serial bus interface (SBI) mode
-Half-duplex, two-wire mode
- Timers
- Watchdog timer
- Two 8-bit timer/event counters usable as one 16-bit timer/event counter
- Clock (watch) timer (time of day tick from either oscillator)
- 53 I/O lines
- Two CMOS input-only lines
- 47 CMOS I/O lines
-Four n-channel, open-drain I/O lines at 15 V maximum
- I/O port pullup resistors
- Software controllable on 47 lines
-Mask option on four lines on ROM versions
- Program memory
$-\mu$ PD78001BY: 8K bytes ROM
$-\mu$ PD78002BY: 16K bytes ROM
— μ PD78P014Y: 32K bytes EPROM/OTP
\square Internal high-speed data memory
$-\mu$ PD78001BY: 256 bytes RAM
$-\mu$ PD78002BY: 384 bytes RAM
- μ PD78P014Y: 1024 bytes RAM
- External memory expansion
-64K byte total memory space
- Powerful instruction set
- 16-bit arithmetic and data transfer instructions
- 1-bit and 8-bit logic instructions
- Minimum instruction execution times:
$-0.4 / 0.8 / 1.6 / 3.2 / 6.4 \mu$ s program selectable using $10-\mathrm{MHz}$ main system clock
-122μ s selectable using $32.768-\mathrm{kHz}$ subsystem clock
- Memory-mapped on-chip peripherals (special function registers)
- Programmable priority, vectored-interrupt controller (two levels) .

Features (cont)

- Buzzer and clock outputs
- Power saving and battery operation features
- Variable CPU clock rate
- HALT mode
- STOP mode
-2-V data retention mode
- CMOS operation; $V_{D D}$ from 2.7 to 6.0 V

Ordering Information

| Part Number | ROM | Package
 (Package Dwg.) |
| :--- | :--- | :--- | :--- |
| μ PD78001BYCW-xxx | 8K mask ROM | 64-pin plastic
 shrink DIP |
| μ PD78002BYCW-xxx | 16K mask ROM | |
| (P64C-70-750 A, C) | | |

Notes:

(1) $x x x$ indicates ROM code suffix
(2) All devices listed are standard quality grade
(3) See the μ PD78014Y family data sheet for the μ PD78P014Y electrical and functional specifications

Pin Configurations

64-Pin Plastic Shrink DIP

Notes:
(1) Connect ICO, IC1, and IC3 (internally connected) pins to $\mathrm{V}_{\text {SS }}$.
(2) Connect IC2 to $V_{D D}$.

Pin Configurations (cont)

64-Pin Plastic QFP

Notes:

(1) Connect ICO, IC1, and IC3 (Internally connected) pins to $\mathrm{V}_{\text {SS }}$.
(2) Connect IC2 to $V_{D D}$ -

Pin Functions; Normal Operating Mode

Symbol	First Function	Symbol	Alternate Function
$\begin{aligned} & \mathrm{PO}_{0} \\ & \mathrm{PO}_{1} \\ & \mathrm{PO}_{2} \\ & \mathrm{PO}_{3} \\ & \hline \end{aligned}$	Port 0; 5-bit, bit selectable I/O port (Bits 0 and 4 are input only)	INTPO INTP1 INTP2 INTP3	External maskable interrupt
PO_{4}		XT1	Crystal oscillator or external clock input for subsystem clock
$\mathrm{P1}_{0}-\mathrm{P1}_{7}$	Port 1; 8-bit, bit-selectable I/O port	-	
$\underline{\mathrm{P} 2} \mathrm{O}_{0}-\mathrm{P} 2_{4}$	Port 2; 8-bit, bit-selectable I/O port	-	
P_{25}		$\begin{aligned} & \text { SIO } \\ & \text { SBO } \\ & \text { SDAO } \end{aligned}$	Serial data input 3-wire serial I/O mode 2/3-wire serial I/O mode Serial data bus 0 for ${ }^{2} \mathrm{C}$ bus mode
$\mathrm{P}_{2} 6$		$\begin{aligned} & \text { SOO } \\ & \text { SB1 } \\ & \text { SDA1 } \end{aligned}$	Serial data output 3-wire serial I/O mode 2/3-wire serial I/O mode Serial data bus 1 for ${ }^{2} \mathrm{C}$ bus mode
P_{7}		$\begin{aligned} & \overline{\mathrm{SCKO}} \\ & \mathrm{SCL} \end{aligned}$	Serial clock I/O for serial interface 0 Serial clock I/O for ${ }^{2} \mathrm{C}$ bus mode
P_{3}	Port 3; 8-bit, bit-selectable I/O port	-	
$\mathrm{P3}_{1}$		TO1	Timer output from timer 1
$\mathrm{P3}_{2}$		TO2	Timer output from timer 2
$\mathrm{P3}_{3}$		TI1	External count clock input to timer 1
$\mathrm{P3}_{4}$		T12	External count clock input to timer 2
$\mathrm{P3}_{5}$		PCL	Programmable clock output
$\mathrm{P3}_{6}$		BUZ	Programmable buzzer output
$\mathrm{P3}_{7}$		-	
$\mathrm{P4}_{0}-\mathrm{P4} 7_{7}$	Port 4; 8-bit l/O port	$A D_{0}-A D_{7}$	Low-order 8-bit multiplexed address/data bus for external memory
$\mathrm{P5}_{0}-\mathrm{P5}_{7}$	Port 5; 8-bit, bit selectable I/O port	$A_{8}-A_{15}$	High-order 8-bit address bus for external memory
$\underline{P 6}{ }_{0}-P 6_{3}$	Port 6; 8-bit, bit selectable ($\mathrm{P6}_{0}$ to $\mathrm{P6}_{3} \mathrm{n}$ -	-	
$\mathrm{P6}_{4}$	channel open-drain I/O with mask option pullup resistors; $\mathrm{P6}_{4}-\mathrm{P} 6_{7} \mathrm{I} / \mathrm{O}$). See note.	$\overline{\mathrm{RD}}$	External memory read strobe
$\mathrm{P6}_{5}$		$\overline{W R}$	External memory write strobe
$\mathrm{P6}_{6}$		$\overline{\text { WAIT }}$	External memory wait signal input
$\mathrm{P6}_{7}$		ASTB	Address strobe used to latch address for external memory
RESET	External system reset input		
X1	Crystal/ceramic resonator connection or external clock input for main system clock		
X2	Crystal/ceramic resonator connection or inverse of external clock for main system clock		
XT2	Crystal oscillator or left open when using external clock for subsystem clock		
$\underline{V_{D D}}$	Power supply input		
$\mathrm{V}_{\text {ss }}$	Power supply ground		
ICO to IC3	Internal connection		

Note: See table 3 and figure 4 for details

Block Diagram

Notes:
(1) The intemal ROM and RAM size dependent on the device.

μ PD78002Y and μ PD78014Y Family Differences

The μ PD78002Y family is pin compatible with the $\mu \mathrm{PD} 78014 \mathrm{Y}$ family and shares the same programmable device, the μ PD78P014Y. The μ PD78002Y family offers a reduced set of features. Table 1 lists only the differences between the two families. All other features not listed are identical for both families.

Table 1. Differences Between μ PD78002Y and μ PD78014Y Families

Item	μ PD78002Y Family	μ PD78014Y Family
Maximum internal ROM	16K bytes	32 K bytes
Maximum internal high- speed RAM	384 bytes	1024 bytes
Buffer RAM	None	None bytes
Multiply/divide instructions	Available	
16-bit timer/event counter	None	One
Serial interface 1 (3-wire and 3-wire with automatic transmit/receive)	None	One
Vectored internal interrupts	7	10
A/D converter	None	$8-$ bit, 8 channels

FUNCTIONAL DESCRIPTION

Central Processing Unit
The central processing unit (CPU) of the μ PD78002Y family features 8 - and 16 -bit arithmetic.
A CALLT vector table and a CALLF area decrease the number of bytes in the call instructions for commonly used subroutines. A 1-byte call instruction can access up to 32 subroutines through their addresses contained in the CALLT vector table (40 H to 7FH). A 2-byte call instruction can access any routine beginning in a specific CALLF area (0800 H to 0 FFFH).

Internal System Clock Generator

The internal system clocks of the μ PD78002Y family are derived from either the main system or the subsystem oscillator. See figure 1. The clocks for the watch timer and programmable clock output are derived from either the subsystem clock ($\mathrm{fXT}_{\mathrm{X}}$) or the main system clock. The clocks for all other peripheral hardware are derived from the main system clock.

The CPU clock (ϕ) can be supplied from either the main system clock (fx_{x}) or the subsystem clock ($\mathrm{fxT}_{\mathrm{x}}$). Using the processor clock control register (PCC), a CPU clock frequency equal to $f_{\mathrm{X}}, \mathrm{f}_{\mathrm{X}} / 2, \mathrm{f}_{\mathrm{X}} / 4, \mathrm{f}_{\mathrm{X}} / 8, \mathrm{f}_{\mathrm{X}} / 16$ or the subsystem clock fXT can be selected. The CPU clock selected should be based on the power supply voltage available and the desired power consumption. On power up, the CPU clock defaults to the lowest speed from the main system clock and can be changed while the microcontroller is running.

Since the shortest instruction takes four CPU clocks to execute, the fastest minimum instruction execution time (t_{c}) of $0.4 \mu \mathrm{~s}$ is achieved when using a main system clock at 10 MHz (V_{DD} equals 4.5 to 6.0 V). However, if the clock timer must generate an interrupt every 0.5 or 0.25 seconds, t_{Cr} is $0.48 \mu \mathrm{~s}$ at 8.38 MHz . The fastest minimum instruction execution time available across the full voltage range of 2.7 to 6.0 V is 0.96 $\mu \mathrm{s}$ when using a main system clock of 8.38 MHz . For the lowest power consumption, the CPU can be operated from the subsystem clock and the minimum instruction execution time is $122 \mu \mathrm{~s}$ at 32.768 kHz .

Figure 1. Internal System Clock Generator

Memory Space

The μ PD78002Y family has a 64K-byte address space. Some of this address space ($0000 \mathrm{H}-\mathrm{FFFFH}$) can be used as both program and data memory as shown in figure 2.

Figure 2. Memory Map

Notes:

(1) 1FFFH on μ PD78001Y 3FFFH on μ PD78002Y
(2) FDFFH on μ PD78001Y FD7FH on μ PD78002Y

Internal Program Memory

All devices in the μ PD78002Y family have internal program memory. The μ PD78001BY contains 8K bytes while the μ PD78002BY contains 16K bytes of internal ROM. The μ PD78P014Y contains 32 K bytes of UV EPROM or one time programmable ROM. To allow the μ PD78P014Y to emulate the mask ROM devices, the amount of internal program memory available in the μ PD78P014Y can be selected using the memory size switching register (IMS).

Internal RAM

The μ PD78001BY contains 256 bytes (FEOOH to FEFFH) while the μ PD78002BY contains 384 bytes (FD80H to FEFFH) of high-speed Internal RAM. The high-speed Internal RAM contains the general register banks and the stack. The remainder of the high-speed Internal RAM and any unused register bank locations are available for general storage.

To allow the μ PD78P014Y to emulate the mask ROM devices, the amount of high-speed Internal RAM in the μ PD78P014Y can also be selected using the IMS.

External Memory

The μ PD78002Y family can access $0,256,4 \mathrm{~K}, 16 \mathrm{~K}$ or all available bytes of external memory. The μ PD78002Y family has an 8 -bit wide external data bus and a 16 -bit wide external address bus. The low-order 8 bits of the address bus are multiplexed and also provide the 8 -bit data bus and are supplied by port 4. The high-order address bits of the 16 -bit address bus are taken from port 5 as required. The address latch, read, and write strobes, and the external WAIT signal are supplied by port 6.
The memory expansion mode register (MM) controls the size of external memory. It can be programmed to use $0,4,6$, or 8 bits from port 5 for the high-order address. Any remaining port 5 bits can be used for I/O. The MM register also can be used to specify one additional wait state or the use of the external WAIT signal for low-speed external memory or external peripheral devices.
When only internal ROM and RAM are used and no external memory is required, ports 4, 5 and 6 are available as general purpose I/O ports.

CPU Control Registers

Program Counter. The program counter is a 16 -bit binary counter register that holds the address of the next instruction to be executed. During reset, the
program counter is loaded with the address stored in locations 0000 H and 0001 H .
Stack Pointer. The stack pointer is a 16 -bit register that holds the address of the last item pushed onto the stack. It is decremented before new data is pushed onto the stack and incremented after data is popped off the stack.

Program Status Word. The program status word (PSW) is an 8-bit register that contains flags that are set or reset depending on the results obtained during the execution of an instruction. This register can be written to or read from 1 bit or 8 bits at a time. The assignment of PSW bits follows.

7											
											0
IE											

CY
ISP
RBS0, RBS 1
AC
Z
IE

Carry flag

In-service (interrupt) priority flag
Register bank selection flags
Auxiliary carry flag
Zero flag
Interrupt request enable flag

General Registers

The general-purpose registers (figure 3) consist of four banks of registers located at addresses FEEOH to FEFFH in Internal RAM. Each bank consists of eight 8 -bit general registers that can also be used in pairs to function as four 16 -bit registers. Two bits in the PSW (RBSO and RSB1) specify which of the register banks is active at any time and are set under program control.

Registers have both functional names (A, X, B, C, D, E, H or L for 8 -bit registers and $A X, B C, D E$ and $H L$ for 16 -bit registers) and absolute names (R1, RO, R3, R2, R5, R4, R7, or R6 for 8-bit registers and RP0, RP1, RP2, or RP3 for 16-bit registers). Either the functional or absolute register names can be used in instructions that use the operand identifiers r and $r p$.

Addressing

The program memory addressing (ROM) modes provided are relative, imediate, table indirect and register addressing. The operand addressing modes provided are implied, register, direct, short direct (saddr), special-function (SFR), register indirect, based, based indexed, and stack addressing.
The 'SFR addressing' and 'saddr addressing' modes use direct addressing, and require only 1 byte in the instruction to address RAM. Normally a 65 K byte ad-

Figure 3. General Registers

dress space requires 2 bytes to address it. One-byte addressing results in faster access times, since the instructions are shorter. SFR addressing addresses the entire 256 -byte SFR address space from FFOOH to FFFFH. Saddr addressing (see figure 2) addresses the 256 byte address space FE2OH to FF1FH. FE2OH to FEFFH are composed of 224 bytes of internal high speed RAM; FFOOH to FF1FH contain the first 32 bytes in the special function register area.
One byte addressing is accomplished by using the first byte of the instruction for the opcode (and one operand if register A or AX is used) and the second byte of the instruction as an address (offset) into the 256 -byte area. If register A or AX is used, the instructions are 2 bytes long, thereby providing fast access times. If immediate data is used, the instruction will be 3 or 4 bytes long depending upon whether the immediate data is a byte or a word. Many 16 -bit SFRs are in the space FFOOH to FF 1 FH . Using $A X$ as an operand to these SFRs will provide fast access, since the instructions will be only 2 bytes long.

Special Function Registers

The input/output ports, timers, capture and compare registers, and mode and control registers for both the peripherals and CPU are collectively known as special function registers. They are all memory-mapped between FFOOH and FFFFH and can be accessed either by main memory addressing or by SFR addressing. FFOOH to FF1FH can also be accessed using saddr addressing. They are either 8 or 16 bits as required, and many of the 8 -bit registers are bit addressable.
Locations FFDOH through FFDFH are known as the external access SFR area. Registers in external circuitry interfaced and mapped to these addresses can only be addressed by main memory addressing. Table 2 lists the special function registers.

Table 2. Special Function Registers

Address	Register (SFR)	Symbol	R/W	Access Units (Bits)			State After Reset
				1	8	16	
FFOOH	Port 0	PO	R/W	x	x	-	OOH
FF01H	Port 1	P1	RNW	X	x	-	OOH
FF02H	Port 2	P2	R/W	x	x	-	OOH
FF03H	Port 3	P3	R/W	X	X	-	OOH
FF04H	Port 4	P4	R/W	X	x	-	Undefined
FF05H	Port 5	P5	R/W	x	x	-	Undefined
FF06H	Port 6	P6	R/W	x	x	-	Undefined
FF16H	Compare register 10	CR10	R/W	-	x	-	Undefined
FF17H	Compare register 20	CR20	R/W	-	x	-	Undefined
FF18H	8 -bit timer register 1	TM1	R	x	x	-	OOH
FF19H	8-bit timer register 2	TM2	R	X	x	-	00 H
FF18H-FF19H	16-bit timer register	TMS	R	-	-	X	0000 H
FF1AH	Serial I/O shift register 0	SIOO	R/W	-	x	-	Undefined
FF20H	Port mode register 0	PMO	R/W	x	X	-	1FH
FF21H	Port mode register 1	PM1	R/W	x	x	-	FFH
FF22H	Port mode register 2	PM2	R/W	x	x	-	FFH
FF23H	Port mode register 3	PM3	R/W	x	x	-	FFH
FF25H	Port mode register 5	PM5	R/W	x	x	-	FFH
FF26H	Port mode register 6	PM6	R/W	x	x	-	FFH
FF40H	Timer clock select register 0	TCLO	R/W	X	x	-	OOH
FF41H	Timer clock select register 1	TCL1	R/W	-	x	-	OOH
FF42H	Timer clock select register 2	TCL2	R/W	-	X	-	OOH
FF43H	Timer clock select register 3	TCL3	R/W	-	X	-	88 H
FF47H	Sampling clock select register	SCS	R/W	-	X	-	OOH
FF49H	8-bit timer mode control register	TMC1	R/W	X	X	-	OOH
FF4AH	Watch timer mode control register	TMC2	R/W	x	x	-	OOH
FF4FH	8-bit timer output control register	TOC1	R/W	X	X	-	OOH
FF60H	Serial operating mode register 0	CSIMO	R/W	x	x	-	OOH
FF61H	Serial bus interface control register	SBIC	R/W	x	X	-	OOH
FF62H	Slave address register	SVA	R/W	-	x	-	Undefined
FF63H	Interrupt timing specify register	SINT	R/W	X	X	-	OOH
FFDOH-FFDFH	External SFR access area(Note 1)	-	R/W	X	X	-	Undefined
FFEOH	Interrupt flag register L	IFOL	R/W	x	X	-	OOH
FFE1H	Interrupt flag register H	IFOH	R/W	X	X	-	OOH
FFEOH-FFE1H	Interrupt flag register	IFO	R/W	-	-	X	0000 H
FFE4H	Interrupt mask flag register L	MKOL	R/W	X	x	-	FFH
FFE5H	Interrupt mask flag register H	MKOH	R/W	X	X	-	FFH
FFE4H-FFE5H	Interrrupt mask flag register	MKO	R/W	-	-	x	FFFFH
FFE8H	Priority order specify flag register L	PROL	R/W	X	X	-	FFH
FFE9H	Priority order specify flag register H	PROH	R/W	X	X	-	FFH

Table 2. Special Function Registers (cont)

Address	Register (SFR)	Symbol	R/W	Access Units (Bits)			State After Reset
				1	8	16	
FFE8H-FFE9H	Priority order specify flag register	PRO	R/W	-	-	x	FFFFH
FFECH	External interrupt mode register	INTMO	R/W	-	x	-	OOH
FFF6H	Key return mode register	KRM	RNW	x	x	-	02H
FFF7H	Pullup resistor option register	PUO	R/W	x	x	-	OOH
FFF8H	Memory expanded mode register	MM	R/W	x	x	-	10 H
FFF9H	Watchdog timer mode register	WDTM	R/W	x	x	-	OOH
FFFAH	Oscillation stabilization time select register	OSTS	R/W	-	x	-	04H
FFFBH	Processor clock control register	PCC	R/W	x	\times	-	04H

Note: The external access area cannot be accessed using SFR addressing. It can only be accessed using main memory addressing.

Input/Output Ports

The μ PD78002Y family has up to 53 port lines. Table 3 lists the features of each port and figure 4 shows the structure of each port pin.

Table 3. Digital Port Functions

| Port | Operational Features | Configuration | Direct Drive Capability |
| :--- | :--- | :--- | :--- | | Software Pullup Resistor Connection
 (Note 1) |
| :--- |
| Port 0 (Note 2) |
| 5-bit input or output |
| Port 1 |
| Port 2 |
| 8-bit input or output |
| 8-bit input or output 3 |

Notes:

(1) Software pullup resistors can be internally connected (only on a port-by-port basis) to port bits set to input mode. Pullup resistors are not connected to port bits set to output mode.
(2) PO_{0} and PO_{4} are input only and do not have a software pullup resistor.
(3) All devices except μ PD78P014Y.

Figure 4. Pin Input/Output Circuits
(

Serial Interface

The μ PD 78002 Y family has one serial interface. Serial interface 0 is an 8 -bit clock synchronous serial interface (figure 5). It can be operated in either a three-wire serial I/O mode, NEC serial bus interface (SBI) mode, two-wire serial I/O mode, or I2C bus mode. The serial clock can be provided from one of eight internal clocks, the output of 8 -bit timer register 2 , or the external clock line $\overline{\text { SCKO }}$ (SCL for I2C bus mode).

In the three-wire serial I/O mode, the 8 -bit shift register (SIOO) is loaded with a byte of data and eight clock pulses are generated. The falling edge of these eight pulses shifts the byte of data out of the SOO line (either MSB or LSB first) while the rising edge of these pulses shifts the data in from the SIO line providing full-duplex operation. The INTCSIO interrupt is generated after each 8-bit transfer.

Figure 5. Serial Interface 0

The NEC SBI mode is a two-wire high-speed proprietary serial interface available on most devices in the NEC μ PD75xxx and μ PD78xxx product lines. Devices are connected in a master/slave configuration (see figure 6). There is only one master device at a time; all others are slaves. The master sends addresses, commands, and data over one of the serial bus lines (SB0 or SB1) using a fixed hardware protocol synchronized with the SCKO line. Each slave device of the μ PD78002Y family can be programmed to respond in hardware to any one of 256 addresses set in its slave address register (SVA). There are also 256 commands and 256 data types. Since all commands are user definable, many software protocols, simple or complex, can be defined. It is even possible to develop commands to change a slave into a master and the previous master into a slave.

Figure 6. SBI Mode Master/Slave Configuration

The two-wire serial I/O mode provides half-duplex operation using either the SB0 or SB1 line and the $\overline{\text { SCK0 }}$ line. Communication format and handshaking can be handled in software by controlling the output levels of the data and clock lines between transfers. For data transmission, the 8-bit shift register (SIOO) is loaded with a byte of data and eight clock pulses are generated. The falling edge of these eight pulses shifts the byte of data out of either the SB0 or SB1 line MSB first. In addition, this byte of data is also shifted back into SIOO on the rising edge of these pulses providing a way of verifying that the transmission was correct.

For data reception, the SIOO register is preloaded with the value FFH. As this data value is shifted out on the falling edge of the serial clock, it disables the n-channel open-drain driver. This allows the receive data to be driven on to the serial line and shifted into the SIOO register on the rising edge of the serial clock. The INTCSIO interrupt is generated after each 8-bit transfer.
The $I^{2} \mathrm{C}$ bus is a two-wire, high-speed serial bus developed by Philips. The I2C bus configuration has a single master and up to 128 slave devices (see figure 7). The master sends the start condition, 7-bit slave address, one bit indicating the direction of the upcoming data transfer, and the stop condition over one of the serial bus lines (SDAO or SDA1) using a fixed hardware protocol synchronized with the serial clock line (SCL).
Each slave device of the μ PD78002Y family can be programmed to respond in hardware to any one of 128 addresses set in its slave address register (SVA). Depending on the state of the transfer direction bit, either the master or the slave device places additional data on the $I^{2} C$ bus. The device receiving the data returns an acknowledge signal each time it receives 8 bits of data. The slave device can also notify the master device when it is busy by holding SCL low.

Figure 7. I2C Bus Master/Slave Configuration

Timers

The μ PD78002Y family has two 8-bit timer/event counters that can be combined for use as a 16 -bit timer/event counter, a watch timer, and a watchdog timer. All of these can be programmed to count a number of prescaled values of the main system clock. In addition, the watch timer can also count the subsystem clock. The two timer/event counters can count external events.
8-Bit Timer/Event Counters 1 and 2. Timer/event counters 1 and 2 (figure 8) each consist of an 8 -bit
timer (TM1 or TM2), an 8-bit compare register (CR10 or CR20), and a timer output control logic (TO1 or TO2). The timers are controlled by registers TCL1, TMC1, and TOC1 via five selectors. Timer/event counters 1 and 2 can each be used as an 8 -bit interval timer, to count external events on the timer input pins (TI1 or T12), or to output a programmable square wave. In addition, timers 1 and 2 also can be combined as a 16-bit timer/ event counter and used as a 16-bit interval timer, to count external events on TI1, or to output a programmable square wave on TO2.

Figure 8. 8-Bit Timer/Event Counters 1 and 2

Watch Timer. The watch timer 3 (figure 9) is a 5 -bit timer that can be used as a time source to keep track of time of day, to release the STOP or HALT modes at regular intervals, or to initiate any other task that must be performed at regular intervals. When driven by the subsystem clock, the watch timer continues to operate in the STOP mode.

The watch timer can function as both watch timer and an interval timer simultaneously.
When used as a watch timer, interrupt requests INTWT (not a vectored interrupt) can be generated using the main system or subsystem clock every 0.5 or 0.25 seconds. When used as an interval timer, vectored interrupt request INTTM3 is generated at preselected time intervals. With a main system clock of 8.38 MHz or a subsystem clock of 32.768 kHz , the following time intervals can be selected: $489 \mu \mathrm{~s}, 978 \mu \mathrm{~s}, 1.96 \mathrm{~ms}, 3.91$ $\mathrm{ms}, 7.82 \mathrm{~ms}$ or 15.6 ms .

Figure 9. Watch Timer

Watchdog Timer. The watchdog timer (figure 10) can be used as either a watchdog timer or an interval timer. When used as a watchdog timer, it protects against program run-away. It can be selected to generate a nonmaskable interrupt (INTWDT), which vectors to address 0004 H , or to generate an internal reset signal, which vectors to the restart address 0000 H if the timer is not cleared by the program before it overflows. Eight program-selectable intervals based on the main system clock are available. With a main system clock of 8.38 MHz , the program selectable intervals are 0.489 , $0.978,1.96,3.91,7.82,15.6,31.3$, and 125 ms . Once the watchdog timer is initialized and started, the timer's mode cannot be changed and the timer can only be stopped by an external reset.
When used as an interval timer, maskable interrupts (INTWDT), which vector to address 0004 H , are generated repeatedly at a preset interval. The time intervals available are the same as in the watchdog timer mode.

Figure 10. Watchdog Timer

Programmable Clock Output

The μ PD78002Y family has a programmable clock output (PCL) that can be used for carrier output for remote controlled transmissions or as a clock output for peripheral devices. The main system clock (fx) divided by $8,16,32,64,128$, or 256 or the subsystem clock (f_{XT}) can be output on the PCL pin. Frequencies of 1050, 524, 262, 131, 65.5 and 32.7 kHz are available with a main system clock of 8.38 MHz . See figure 11 .

Buzzer Output

The μ PD78002Y family also has a programmable buzzer output (BUZ). The buzzer output frequency can be programmed to be equal to the main system clock (f_{X}) divided by 1024, 2048, or 4096 . With a main system clock of 8.38 MHz , the buzzer can be set to $8.2,4.1$ or 2.0 kHz. See figure 12.

Figure 11. Programmable Clock Output

83YL-93538
Figure 12. Buzzer Output

Interrupts

The μ PD78002Y family has 11 maskable hardware interrupt sources (5 external and 6 internal). Of these 11 interrupt sources, 9 cause a vectored interrupt while the 2 testable inputs only generate an interrupt request. All of the 11 maskable interrupts can be used to release the HALT mode except INTPO. INTPO cannot be used to release the STOP mode and cannot release the HALT mode when regiser SCS $=0$. In addition, there is
one nonmaskable interrupt from the watchdog timer, one software interrupt, and a RESET interrupt. The watchdog timer overflow interrupt (interrupt vector table address 0004 H) can be initialized to be a nonmaskable interrupt or the highest default priority maskable interrupt. The software interrupt, generated by the BRK instruction, is not maskable. See table 4 and figure 13.

Table 4. Interrupt Sources and Vector Addresses

Type of Request	Default Priority	Signal Name	Interupt Source	Location	Vector Address	Interrupt Configuration
Restart	-	RESET INTWDT	RESET Input Pin Watchdog timer overflow (when reset mode selected)	External Internal	0000H	-
Nonmaskable	-	INTWDT	Watchdog timer overflow (when nonmaskable interrupt selected)	Internal	0004H	A
Maskable	0	INTWDT	Watchdog timer overflow (when interval timer selected)	Internal	0004H	B
	1	INTPO	External interrupt edge detection	External	0006 H	C
	2	INTP1	External interrupt edge detection	External	0008H	D
	3	INTP2	External interrupt edge detection	External	000AH	D
	4	INTP3	External interrupt edge detection	External	000 CH	D
	5	INTCSIO	End of clocked serial interface 0 transfer	Internal	000EH	B
	6	INTTM3	Watch timer reference time interval signal	Internal	0012H	B
	7	INTTM1	8 -bit timer/event counter 1 coincidence signal	Internal	0016 H	B
	8	INTTM2	8 -bit timer/event counter 2 coincidence signal	Internal	0018 H	B
Software	-	-	BRK instruction	Internal	003EH	E
Test input	-	INTWT	Watch timer overflow	Internal	-	F
	-	INTPT4	Port 4 falling edge detection	External	-	F

Interrupt Servicing. The μ PD78002Y family provides two levels of programmable hardware priority control and services all interrupt requests, except the two testable interrupts (INTWT and INTPT4). Using vectored interrupts, the programmer can choose the priority of servicing each maskable interrupt by using the interrupt control registers.
Interrupt Control Registers. The μ PD78002Y family has three 16-bit interrupt control registers. The interrupt request flag register (IFO) contains an interrupt request flag for each interrupt except INTPT4. The interrupt mask register (MKO) is used to enable or disable any interrupt except INTPT4. The priority flag register (PRO) can be used to specify a high or a low priority level for each interrupt except the two testable interrupts.

Four other 8-bit registers are associated with interrupt processing. The key return mode register (KRM) contains the KRIF interrupt request flag associated with falling-edge detection on port 4 and the KRMK mask flag used to enable or disable clearing of the standby mode if a falling edge is detected on port 4. The external interrupt mode register (INTMO) is used to select a rising, falling, or both edges as the valid edge for each of the external interrupts INTPO to INTP2 (INTP3 is always falling edge). The sampling clock select register (SCS) is used to select a sampling clock for the noise eliminator circuit on external interrupt INTPO.

The IE and the ISP bit of the program status word are also used to control interrupts. If the IE bit is 0 , all maskable interrupts are disabled. The IE bit can be set or cleared using the El and DI instructions, respectively, or by directly writing to the PSW. The IE bit is
cleared each time an interrupt is accepted. The ISP bit is used by hardware to hold the priority level flag of the interrupt being serviced.

Figure 13. Interrupt Configurations

Type A: Internal nonmaskable interrupt

Type B: Internal maskable interrupt

Type C: External maskable interrupt (INTPO)

Figure 13. Interrupt Configurations (cont)
Type D: External maskable interrupt (except INTPO)

Type E: Software interrupt

Type F: Test Input

Abbreviations:

IF: Interrupt request flag
IE: Interrupt enable flag
ISP: In-service priority flag
MK: Interrupt mask flag
PR: Priority specily flag

Interrupt Priority. If the watchdog timer overflow interrupt (INTWDT) has been initialized to be a nonmaskable interrupt, it has priority over all other interrupts. Two hardware-controlled priority levels are available for all maskable interrupts that generate a vectored interrupt (i.e., all except the two testable interrupts). Either a high or a low priority level can be assigned by software to each of the maskable interrupts. Interrupt requests of the same priority or a priority higher than the processor's current priority level are held pending until interrupts in the current service routine are enabled by software or until one instruction has been executed after returning from the current service routine. Interrupt requests of a lower priority are always held pending until one instruction has been executed after returning from the current service routine.

The default priorities listed in table 4 are fixed by hardware and are effective only when it is necessary to choose between two interrupt requests of the same software-assigned priority. For example, the default priorities would be used after the completion of a high-priority routine, if two interrupts of the same software priority were pending.

The software interrupt, initiated by the BRK instruction, is executed regardless of the processor's priority level and the state of the IE bit. It does not alter the processor's priority level.
Vectored Interrupt Servicing. When a vectored interrupt is acknowledged, the program status word and the program counter are saved on the stack, the processor's priority is set to that specified for the interrupt, the IE bit in the PSW is set to zero, and the routine whose address is in the interrupt vector table is entered. At the completion of the service routine, the RETI instruction (RETB instruction for the software interrupt) reverses the process and the μ PD78002Y family microcontroller resumes the interrupted routine.

Standby Modes

HALT, STOP, and data retention modes are provided to reduce power consumption when CPU action is not required.

The HALT mode is entered by executing a HALT instruction while the CPU is operating from the main system or subsystem clock. In HALT mode, the CPU clock is stopped while the main system and the subsystem clock continue to run. The HALT mode is released by any unmasked interrupt request (except INTPO if register SCS $=0$), a nonmaskable interrupt request, an unmasked test input, or an external reset pulse.

Power consumption may be further reduced by using the STOP mode. The STOP mode is entered by executing a STOP instruction while operating from the main system clock. In STOP mode, the main system clock input pin X1 is internally grounded stopping both the CPU and the peripheral hardware clock. The STOP mode is released by any unmasked interrupt request except INTPO, a nonmaskable interrupt request, an unmasked test input, or an external reset pulse. Any peripheral using the main oscillator as a clock source will also be disabled in the STOP mode and interrupts from such a peripheral cannot be used to exit the STOP mode. Table 5 summarizes both the HALT and STOP standby modes.

Item	HALT Mode	STOP Mode
Setting instruction	HALT instruction	STOP instruction
System clock when setting	Main system or subsystem clock	Main system clock
Clock oscillator	Main system and subsystem clocks can oscillate; CPU clock is stopped.	Subsystem clock can oscillate; CPU clock and main system clock are stopped.
CPU	Operation stopped	Operation stopped
Ports	Maintain previous state	Maintain previous state
8-bit timer/ event counters	Operational from main system clock	Operational only with T11 and TI2 as count clock
Watch timer	Operational from main system clock or with ${ }^{\mathrm{f}} \mathrm{XT}$ as count clock	Operational only with ${ }^{\mathrm{f} X T}$ as count clock
Watchdog timer	Operational from main system clock	Operation stopped
Serial interface 0	Operational from main system clock	Operational only with external clock
External interrupts	Operational except for INTPO when its sampling clock is based on the CPU clock	INTPO not operational; INTP1 to INTP3 operational

When exiting the STOP mode, a wait time occurs before the CPU begins execution to allow the main system clock oscillator circuit to stabilize. The oscillator stabilization time is selected by programming the OSTS register with one of five values before entering the STOP mode. The values range from 0.98 msec to 31.3 msec at $\mathrm{f}_{\mathrm{x}}=8.38 \mathrm{MHZ}$.

Once in the STOP mode, power consumption can be further minimized by lowering the power supply voltage V_{DD} to as little as 2 V . This places the device in the data retention mode. The contents of Internal RAM and the registers are retained. This mode is released by first raising $V_{D D}$ to the proper operating range and then releasing the STOP mode.

External Reset

The μ PD78002Y family is reset by taking the $\overline{\text { RESET }}$ pin low or by an overflow of the watchdog timer (if enabled). The RESET input pin is a schmitt-trigger input with hysteresis characteristics to protect against spurious system resets caused by noise. On power-up, the RESET pin must remain low for a minimum of $10 \mu \mathrm{~s}$ after the power supply reaches its operating voltage.

There is no functional difference between an external reset and an internal reset caused by the overflow of the watchdog timer. In both cases, the main system clock oscillation is stopped and the subsystem clock oscillation continues. During reset, the program counter is loaded with the address contained in the reset vector (addresses $0000 \mathrm{H}, 0001 \mathrm{H}$). Once the reset is cleared and the oscillation stabilization time of $218 / f_{x}$ has elapsed, program execution starts at that address.

ELECTRICAL SPECIFICATIONS

The following specifications are for the $\mu \mathrm{PD} 78001 \mathrm{BY} /$ 002BY devices only. Refer to the μ PD78014Y data sheet for μ PD78P014Y device specifications.

Absolute Maximum Ratings

Supply voltage, $\mathrm{V}_{\text {DD }}$	-0.3 to +7.0 V
Input voltage, V_{11} (except $P 6_{0}$ to $P 6_{3}$)	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Input voltage, $\mathrm{V}_{12}\left(\mathrm{P6}_{0}\right.$ to P_{3}; open drain)	-0.3 to +16 V
Output voltage, V_{0}	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Output current, high; I_{OH}	
Each output pin	-10 mA
Total: ports 1 to 3	-15 mA
Total: port 0 and ports 4 to 6	-15 mA
Output current, low, $\mathrm{loL} \dagger$	
Each output pin	30 mA peak, 15 mA rms
Total: P_{0} to P_{7} and $\mathrm{P5}_{0}$ to $\mathrm{P5}_{5}$	100 mA peak, 70 mA rms
Total: PO_{1} to $\mathrm{PO}_{3}, \mathrm{P5}_{6}, \mathrm{P} 5_{7}$, and $\mathrm{P6}_{0}$ to P_{7}	100 mA peak, 70 mA rms
Total: PO_{1} to PO_{3} and $\mathrm{P6}_{4}$ to $\mathrm{P6}_{7}$	50 mA peak, 20 mA rms
Total: ports 1 to 3	50 mA peak, 20 mA rms
Operating temperature, TOPT	-40 to $+85^{\circ} \mathrm{C}$
Storage temperature, TSTG	-65 to $+150^{\circ} \mathrm{C}$
\dagger rms value $=$ peak value \times (duty cycle) ${ }^{1 / 2}$	

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC characteristics.

Capacitance

Parameter	Symbol	Max	Unit	Conditions	
Input capacitance	$\mathrm{C}_{\text {IN }}$	15	pF	$\begin{aligned} & \text { Except } \mathrm{P} 6_{0} \\ & \text { to } \mathrm{PG}_{3} \end{aligned}$	$f=1 \mathrm{MHz}$ unmeasured pins returned to ground
		20	pF	$\mathrm{P6}_{0}$ to $\mathrm{P6}_{3}$	
Output capacitance	COUT	15	pF	$\begin{aligned} & \text { Except } P 6_{0} \\ & \text { to } \mathrm{PG}_{3} \end{aligned}$	
		20	pF	Pb_{0} to $\mathrm{P6}_{3}$	
Input/output capacitance	C_{10}	15	pF	$\begin{aligned} & \text { Except } P 6_{0} \\ & \text { to } \mathrm{P6}_{3} \end{aligned}$	
		20	pF	P_{6} to $\mathrm{P6}_{3}$	

Main System Clock Oscillator

$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.7$ to 6.0 V ; refer to figure 14.

Type	Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Ceramic resonator (Figure 14A)	Oscillation frequency (Note 1)	${ }^{\prime} \mathrm{X}$	1.0		10.0	MHz	$V_{D D}=$ oscillator voltage range
	Oscillation stabilization time (Note 2)				4.0	ms	After $V_{D D}$ reaches oscillator operating voltage
Crystal resonator (Figure 14A)	Oscillation frequency (Note 1)	${ }^{\prime} \mathrm{X}$	1.0	8.38	10.0	MHz	
	Oscillation stabilization time (Note 2)				10	ms	$V_{D D}=4.5$ to 6.0 V
					30	ms	
External clock (Figure 14B)	X1 input frequency (Note 1)	${ }^{\prime} \mathrm{X}$	1.0		10.0	MHz	
	X1 input high/low-level width	${ }^{\text {¢ }}$ ¢ ${ }^{\text {, }}$ XL	50		500	ns	

Notes:

(1) Oscillator and X1 input frequencies are included only to show the oscillator characteristics. Refer to the AC Characteristics table for actual instruction execution times.
(2) Time required for the oscillator to stabilize after reset or STOP mode is released. The values shown are for the recommended resonators. Values for resonators not shown in this data sheet should be obtained from the manufacturer's specification sheets.

Subsystem Clock Oscillator

$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.7$ to 6.0 V ; refer to figure 15.

Type	Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Crystal resonator (Figure 15A)	Oscillation frequency (Note 1)	${ }_{\text {fXT }}$	32	32.768	35	kHz	
	Oscillation stabilization time (Note 2)			1.2	2	s	$V_{D D}=4.5$ to 6.0 V
					10	s	
External clock (Figure 15B)	XT1 input frequency (Note 1)	$f_{\text {XT }}$	32		100	kHz	
	XT1 input high/low-level width		5		15	$\mu \mathrm{s}$	

Notes:
(1) The oscillator and XT1 input frequencies are included only to show the oscillator characteristics. Refer to the AC Characteristics table for actual instruction execution times.

Figure 14. Main System Clock Configurations
A. Ceramic/Crystal Resonator

B. External Clock

Note: When the input is an external clock, the STOP mode can not be set because the X1 pin is connected to system ground (V_{SS}).
(2) Time required for the oscillator to stabilize after reset or STOP mode is released. The values shown are for the recommended resonators. Values for resonators not shown in this data sheet should be obtained from the manufacturer's specification sheets.

Figure 15. Subsystem Clock Configurations
A. Crystal Resonator

B. External Clock

Recommended Main System Clock Ceramic Resonators
$T_{A}=-40$ to $+85^{\circ} \mathrm{C}$; refer to figure 14 A .

Part Number (Notes 1 and 2)	Recommended Circuit Constant			Oscillator Voltage Range		Frequency (MHz)
	C1 (pF)	C2 (pF)	R1 (kQ)	Min (V)	Max (V)	
CSB1000J	100	100	6.8	2.7	6.0	1.00
CSBxxxxJ	100	100	4.7	2.7	6.0	1.01 to 1.25
CSAx.xxxMK	100	100	0	2.7	6.0	1.26 to 1.79
CSAx.xxMG	100	100	0	2.7	6.0	1.80 to 2.44
CSTx.xxMG	(Note 3)	(Note 3)	0	2.7	6.0	1.80 to 2.44
CSAx.xxMG	30	30	0	2.7	6.0	2.45 to 4.18
CSTx.xxMGW	(Note 3)	(Note 3)	0	2.7	6.0	2.45 to 4.18
CSAx.xxMG	30	30	0	2.7	6.0	4.19 to 6.00
CSTx.xxMGW	(Note 3)	(Note 3)	0	2.7	6.0	4.19 to 6.00
CSAx.xxMT	30	30	0	2.7	6.0	6.01 to 10.0
CSTx.xxMTW	(Note 3)	(Note 3)	0	2.7	6.0	6.01 to 10.0

Notes:
(1) Manufactured by Murata Mfg. Co., Ltd.
(3) C 1 and C 2 are contained in the ceramic resonators.
(2) $x . x x$ indicates frequency

Recommended Subsystem Clock Crystal Resonators
$T_{A}=-40$ to $+60^{\circ} \mathrm{C}$; refer to figure 15 A .

Part Number \dagger	Frequency (kHz)	Recommended Circuit Constant			Oscillator Voltage Range	
		C3 (pF)	C4 (pF)	R2 (k)	Min (V)	$\operatorname{Max}(\mathrm{V})$
DT-38 (1TA252 E00, load capacitance 6.3 pF)	32.768	12	12	100	2.7	6.0

\dagger Manufactured by Daishinku

DC Characteristics

$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=+2.7$ to 6.0 V ; refer to figures $16-21$

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
High-level input voltage	$\mathrm{V}_{\mathrm{HH} 1}$	$0.7 \mathrm{~V}_{\mathrm{DD}}$		$V_{\text {DD }}$	V	Other than below
	$\mathrm{V}_{\mathrm{IH} 2}$	$0.8 \mathrm{~V}_{\mathrm{DD}}$		$V_{D D}$	V	$\begin{aligned} & \mathrm{PO}_{0} \text { to } \mathrm{PO}_{4}, \mathrm{P}_{0}, \mathrm{P}_{2}, \mathrm{P}_{4} \text { to } \mathrm{P}_{7}, \\ & \mathrm{P3}_{3}, \mathrm{P3}_{4}, \mathrm{RESET} \end{aligned}$
	$\mathrm{V}_{\mathrm{IH} 3}$	$0.7 V_{D D}$		15	V	$\mathrm{P6}_{0}$ to $\mathrm{P6}_{3}$; open-drain
	$\mathrm{V}_{\mathrm{IH} 4}$	$V_{D D}-0.5$		V_{DD}	v	X1, X2
	$\mathrm{V}_{\mathrm{IH} 5}$	$V_{D D}-0.5$		$V_{D D}$	V	$\mathrm{V}_{\mathrm{DD}}=4.5$ to $6.0 \mathrm{~V} ; \mathrm{XT1}, \mathrm{XT} 2$
Low-level input voltage	$\mathrm{V}_{\text {IL } 1}$	0		$0.3 V_{D D}$	v	Other than below
	$\mathrm{V}_{\text {IL } 2}$	0		$0.2 V_{D D}$	v	$\begin{aligned} & \mathrm{PO}_{0} \text { to } \mathrm{PO}_{4}, \mathrm{P}_{0}, \mathrm{P}_{2}, \mathrm{P}_{4} \text { to } \mathrm{P}_{7}, \\ & \mathrm{P3}_{3}, \mathrm{P3}_{4}, \frac{\mathrm{RESET}}{} \end{aligned}$
	$V_{\text {IL3 }}$	0		$0.3 \mathrm{~V}_{\mathrm{DD}}$	V	PG_{0} to $\mathrm{PG}_{3} ; \mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		0		$0.2 V_{D D}$	V	Pb_{0} to $\mathrm{P6}_{3}$
	$V_{\text {IL } 4}$	0		0.4	V	X1, X2
	$\mathrm{V}_{\text {IL5 }}$	0		0.4	V	$\mathrm{XT1}, \mathrm{XT2} ; \mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		0		0.3	V	XT1, XT2
High-level output voltage	$\mathrm{V}_{\mathrm{OH} 1}$	$V_{D D}-1.0$			V	$\mathrm{V}_{\mathrm{DD}}=4.5$ to $6.0 \mathrm{~V}, \mathrm{l}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$
		$V_{D D}-0.5$			V	$\mathrm{IOH}=-100 \mu \mathrm{~A}$
Low-level output voltage	VOL1		0.4	2.0	v	P 50 to $\mathrm{P} 5_{7}, \mathrm{P} 6_{0}$ to Pb_{3}; $\mathrm{V}_{\mathrm{DD}}=4.5 \text { to } 6.0 \mathrm{~V}, \mathrm{l}_{\mathrm{OL}}=15 \mathrm{~mA}$
			-	0.4	v	Other than above; $\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V , $\mathrm{OL}=1.6 \mathrm{~mA}$
	$V_{\text {OL2 }}$			$0.2 \mathrm{~V}_{\mathrm{DD}}$	V	$\mathrm{SBO}, \mathrm{SB1}, \overline{\mathrm{SCKO}} ; \mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V , open-drain, pullup resistance $=1 \mathrm{k} \Omega$
	$\mathrm{V}_{\text {OL3 }}$			0.5	v	$\mathrm{bL}^{\prime}=400 \mu \mathrm{~A}$
High-level input leakage current	${ }_{\text {LIH1 }}$			3	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$; except $\mathrm{X} 1, \mathrm{X} 2, \mathrm{XT1}, \mathrm{XT2}$
	ILHH 2			20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{DD}} ; \mathrm{X} 1, \mathrm{X} 2, \mathrm{XT1}, \mathrm{XT} 2$
	$\mathrm{ILIH3}$			80	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbb{N}}=15 \mathrm{~V} ; P 6_{0}$ to $\mathrm{P6}_{3}$
Low-level input leakage current	LILL1			-3	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}$; except $\mathrm{X} 1, \mathrm{X} 2, \mathrm{XT1}, \mathrm{XT2}$
	LILL2			-20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} ; \mathrm{X}_{1}, \mathrm{X} 2, \mathrm{XT1}, \mathrm{XT} 2$
	LliL3			-3	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbb{N}}=0 \mathrm{~V} ; \mathrm{P6}_{0}$ to $\mathrm{P6}_{3}$ (Note 1)
Output leakage current high	LLOH_{1}			3	$\mu \mathrm{A}$	$V_{\text {OUT }}=V_{\text {DD }}$
Output leakage current low	LoL			-3	$\mu \mathrm{A}$	$V_{\text {OUT }}=O V$
Mask option pullup resistor	R_{1}	20	40	90	$\mathrm{k} \Omega$	$\mathrm{V}_{1 N}=0 \mathrm{~V} ; \mathrm{PG}_{0}$ to PG_{3}
Software pullup resistor	R_{2}	15	40	90	$\mathrm{k} \Omega$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.5 \text { to } 6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{PO}_{1} \text { to } \mathrm{PO}_{3}, \\ & \text { ports } 1 \text { to } 5, \mathrm{PG}_{4} \text { to } \mathrm{PG}_{7} \end{aligned}$
		20		500	k Ω	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.7 \text { to } 4.5 \mathrm{~V} ; \mathrm{V}_{I N}=0 \mathrm{~V}, \mathrm{PO}_{1} \text { to } \mathrm{PO}_{3}, \\ & \text { ports } 1 \text { to } 5, \mathrm{P6}_{4} \text { to } \mathrm{P6}_{7} \end{aligned}$

DC Characteristics (cont)

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Power supply current	IDD1		7.5	22.5	mA	8.38 MHz crystal oscillation operating mode; $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$ (Note 2)
			0.8	2.4	mA	8.38 MHz crystal oscillation operating mode; $V_{D D}=3.0 \mathrm{~V} \pm 10 \%$ (Note 3)
	IDD2		1.4	4.2	mA	8.38 MHz crystal oscillation HALT mode; $V_{D D}=5.0 \mathrm{~V} \pm 10 \%$
			550	1650	$\mu \mathrm{A}$	8.38 MHz crystal oscillation HALT mode; $V_{D D}=3.0 \mathrm{~V} \pm 10 \%$
	${ }^{\text {dD }} 3$		60	120	$\mu \mathrm{A}$	32.768 kHz crystal oscillation operating mode; $V_{D D}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{X} 1$ STOP mode, CPU operating from subsystem clock
			35	70	$\mu \mathrm{A}$	32.768 kHz crystal oscillation operating mode; $V_{D D}=3.0 \mathrm{~V} \pm 10 \%$, X1 STOP mode, CPU operating from subsystem clock
	${ }^{\text {DD } 4}$		25	50	$\mu \mathrm{A}$	32.768 kHz crystal oscillation HALT mode; $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$, X 1 STOP mode
			5	10	$\mu \mathrm{A}$	32.768 kHz crystal oscillation HALT mode; $V_{D D}=3.0 \mathrm{~V} \pm 10 \%$, X 1 STOP mode
	${ }^{\text {d D 5 }}$		1	20	$\mu \mathrm{A}$	$\mathrm{XT} 1=0 \mathrm{~V}$ STOP mode when feedback resistor is connected; $V_{D D}=5.0 \mathrm{~V} \pm 10 \%$
			0.5	10	$\mu \mathrm{A}$	$\mathrm{XT} 1=\mathrm{OV}$ STOP mode when feedback resistor is connected; $V_{D D}=3.0 \mathrm{~V} \pm 10 \%$
	${ }^{\text {DD } 6}$		0.1	20	$\mu \mathrm{A}$	$\mathrm{XT1}=0 \mathrm{~V}$ STOP mode when feedback resistor is disconnected; $V_{D D}=5.0 \mathrm{~V} \pm 10 \%$
			0.05	10	$\mu \mathrm{A}$	$\mathrm{XT1}=0 \mathrm{~V}$ STOP mode when feedback resistor is disconnected; $V_{D D}=3.0 \mathrm{~V} \pm 10 \%$

Notes:

(1) P_{0} to P_{3} become $-200 \mu \mathrm{~A}$ (max.) for only 1 clock cycle during input instruction execution (no wait) and $-3 \mu \mathrm{~A}$ (max.) during instruction other than input.
(2) When operated in the high-speed mode with the processor clock control register set to 00 H .
(3) When operated in low-speed mode with the processor clock control register set to 04H.

Figure 16. $I_{D D}$ vs $V_{D D}\left(f_{X}=8.38 \mathrm{MHz}\right)$

Figure 17. $I_{D D}$ vs $V_{D D}\left(f_{X}=4.19 \mathrm{MHz}\right)$

Figure 18. lol vs Vol (Ports 0, 2-5, P64-P67)

Figure 19. Iol vs Vol (Port 1)

Figure 21. IOH vs $V_{D D}-V_{O H}$ (Ports 0-5, P6 $_{4}-P 6_{7}$)

AC Characteristics

$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.7$ to 6 V ; refer to figures 22 through 27

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Cycle time (Min. instruction execution time)	${ }^{t} \mathrm{CY}$	0.4		64	$\mu \mathrm{s}$	$V_{D D}=4.5$ to 6.0 V ; operating on main system clock
		0.96		64	$\mu \mathrm{s}$	Operating on main system clock
		114	122	125	$\mu \mathrm{s}$	Operating on subsystem clock
Tl input frequency	f_{T}	0		4	MHz	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		0		275	kHz	
Tl input high/ low-level width	${ }_{\text {t IIH, }}$ tTIL	100			ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		1.8			$\mu \mathrm{s}$	
Interrupt input high/low-level width	$\mathrm{t}_{\text {INTH, }}$ LINTL	$8 / \mathrm{f}_{\text {sam }}$ (Note 1)			$\mu \mathrm{s}$	INTPO
		10			$\mu \mathrm{s}$	INTP1 to INTP3
		10			$\mu \mathrm{s}$	KRO to KR7 (Note 2)
RESET low-level width	$t_{\text {RST }}$	10			$\mu \mathrm{s}$	

Notes:

(1) By using bits 0 and 1 of the sampling clock select (SCS) register in conjunction with bits 0 to 2 of the processor clock control (PCC) register, $f_{\text {sam }}$ can be set to $f_{x} / 2^{N+1}$ (where $N=0$ to 4), $f_{x} / 64$, or $f_{x} / 128$.
(2) Port 4 falling-edge detection input.

Figure 22. Main System Clock Operation $t_{C r}$ vs $V_{D D}$

Figure 23. AC Timing Measurement Points (except X1 and XT1)

Figure 24. Clock AC Timing Points X1 and XT1

Figure 25. TI Timing

Figure 26. Interrupt Input Timing

Figure 27. $\overline{R E S E T}$ Input Timing

Read/Write Operation
$T_{A}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{D D}=2.7$ to 6.0 V ; refer to figures 28 through 31

Parameter	Symbol	Min	Max	Unit	Conditions
ASTB high-level width	$t_{\text {ASTH }}$	$0.5 \mathrm{t}_{\mathrm{CY}}$		ns	
Address setup time to ASTB \downarrow	$t_{\text {ADS }}$	$0.5 \mathrm{t}_{\mathrm{CY}}-30$		ns	
Address hold time from ASTB \downarrow	$t_{\text {ADH }}$	10		ns	Load resistor $\geq 5 \mathrm{k} \Omega$
Data input time from address	$t_{\text {ADD1 }}$		$(2+2 n) t_{C Y}-50$	ns	Instruction fetch
	$\mathrm{t}_{\text {ADD2 }}$	5	$(3+2 n) t \mathrm{CY}-100$	ns	Data access
Data input time from $\overline{\mathrm{RD}} \downarrow$	$\mathrm{t}_{\text {RDD1 }}$		$(1+2 n) t_{C Y}-25$	ns	Instruction fetch
	trDD2		$(2.5+2 n) \mathrm{t}_{\mathrm{CY}}-100$	ns	Data access
Read data hold time	$\mathrm{t}_{\text {RDH }}$	0		ns	
$\overline{\overline{\mathrm{RD}} \text { low-level width }}$	$\mathrm{t}_{\text {RDL1 }}$	$(1.5+2 n) t_{C Y}-20$		ns	Instruction fetch
	$\mathrm{t}_{\mathrm{RDL} 2}$	$(2.5+2 n) t_{C Y}-20$		ns	Data access
$\overline{\overline{\text { WAIT }} \downarrow \text { input time from } \overline{\mathrm{RD}} \downarrow}$	$\mathrm{t}_{\text {RDWT1 }}$		$0.5 \mathrm{t}_{\mathrm{CY}}$	ns	Instruction fetch
	$t_{\text {RDWT2 }}$		$1.5 \mathrm{t}_{\mathrm{CY}}$	ns	Data access
	tWRWT		$0.5 \mathrm{t}_{\mathrm{CY}}$	ns	
WAIT low-level width	tWTL	$(0.5+2 n) t_{C Y}+10$	$(2+2 n) t_{C Y}$	ns	,
Write data setup time to $\overline{W R} \uparrow$	$t_{\text {WDS }}$	100		ns	
Write data hold time from $\overline{W R} \uparrow$	$t_{\text {WDH }}$	5		ns	
$\overline{\text { WR }}$ low-level width	$t_{\text {WRL1 }}$	$(2.5+2 n) t_{C Y-20}$		ns	
$\overline{\mathrm{RD}} \downarrow$ delay time from ASTB \downarrow	$t_{\text {ASTRD }}$	$0.5 \mathrm{t}_{\mathrm{CY}}-30$		ns	
$\overline{\text { WR }} \downarrow$ delay time from ASTB \downarrow	$t_{\text {ASTWR }}$	$1.5 \mathrm{t}_{\mathrm{CY}}-30$		ns	
ASTB \uparrow delay time from $\overline{\mathrm{RD}} \uparrow$ (external fetch)	$t_{\text {RDAST }}$	${ }^{t_{C Y}-10}$	$t_{C Y}+40$	ns	
Address hold time from $\overline{\mathrm{RD}} \uparrow$ (external fetch)	$t_{\text {RDADH }}$	${ }^{t_{C Y}}$	$t_{C Y}+50$	ns	- :
Write data output time from $\overline{\mathrm{RD}} \uparrow$	$t_{\text {RDWD }}$	10		ns	. \cdot
WR \downarrow delay time from write data	${ }^{\text {W WDWR }}$	$0.5 \mathrm{t}_{\mathrm{CY}}-120$	$0.5 t_{\text {cY }}$	ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		$0.5 \mathrm{t}_{\mathrm{CY}}-170$	$0.5 \mathrm{t}_{\mathrm{CY}}$	ns	
Address hold time from $\overline{W R} \uparrow$	tWRADH	$\mathrm{t}_{\mathrm{C} Y}$	$t_{C Y}+60$	ns	$V_{D D}=4.5$ to 6.0 V
		$\mathrm{t}_{\mathrm{C}} \mathrm{Y}$	$t_{C Y}+100$	ns	
	tWTRD	$0.5 \mathrm{t}_{\mathrm{CY}}$	$2.5 \mathrm{t}_{\mathrm{CY}}+80$	ns	
	tWTWR	$0.5 \mathrm{t}_{\mathrm{CY}}$	$2.5 \mathrm{t}_{\mathrm{CY}}+80$	ns	

Notes:

(1) $t_{C Y}=t_{C Y} / 4$
(2) n indicates number of waits.
(3) $C_{L}=100 \mathrm{pF}$

Figure 28. Read Operation; External Fetch (No Wait)

Figure 29. Read Operation; External Fetch (Wait Insertion)

Figure 30. Read/Write Operation; External Data Access (No Wait)

Figure 31. Read/Write Operation; External Data Access (Wait Insertion)

Serial Interface, 3-Wire, I/O Mode; Internal $\overline{\text { SCK Output }}$
$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{D D}=2.7$ to 6.0 V ; refer to figure 32

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
$\overline{\overline{\text { SCK }} \text { cycle time }}$	$\mathrm{t}_{\mathrm{KcY} 1}$	800			ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		3200		.	ns	
$\overline{\overline{S C K}}$ high- and low-level width	${ }_{t_{K H 1}}, t_{\text {KL1 }}$	${ }_{\text {t }}^{\text {KCY }} 1 / 2-50$			ns	$V_{D D}=4.5$ to 6.0 V
		$t_{\text {KCY } 1 / 2-150 ~}^{\text {d }}$			ns	
SI setup time to $\overline{\text { SCK }} \uparrow$	$\mathrm{t}_{\text {SIK } 1}$	100			ns	
SI hold time from $\overline{\text { SCK } \uparrow}$	$\mathrm{t}_{\mathrm{KSIL}}$	400			ns	
SO output delay time from $\overline{\text { SCK }} \downarrow$	$\mathrm{t}_{\text {KSO1 }}$			300	ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to $6.0 \mathrm{~V} ; \mathrm{C}=100 \mathrm{pF}$ (Note 1)
				1000	ns	$C=100 \mathrm{pF}$ (Note 1)

Note 1: C is the load capacitance of the SO output line.
Serial Interface, 3-Wire, I/O Mode; External $\overline{\text { SCK }}$ Input
$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.7$ to 6.0 V ; refer to figure 32

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
$\overline{\overline{S C K}}$ cycle time	${ }^{\text {K KCY2 }}$	800			ns	$V_{D D}=4.5$ to 6.0 V
		3200			ns	
$\overline{\overline{S C K}}$ high- and low-level width	$t_{K H 2}, t_{\text {KL2 }}$	400			ns	$V_{\text {DD }}=4.5$ to 6.0 V
		1600			ns	
SI setup time to $\overline{\text { SCK }} \uparrow$	${ }^{t}{ }_{\text {SIK }}{ }^{\text {d }}$	100			ns	
SI hold time from $\overline{\text { SCK } \uparrow}$	${ }_{\text {t }}^{\text {KS } 12}$	400			ns	
SO output delay time from $\overline{\text { SCK }} \downarrow$	${ }^{\text {t }} \mathrm{KSO2}$			300	ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to $6.0 \mathrm{~V} ; \mathrm{C}=100 \mathrm{pF}$ (Note 1)
				1000	ns	$C=100 \mathrm{pF}$ (Note 1)

Note 1: C is the load capacitance of the SO output line.
Serial Interface, SBI Mode; Internal $\overline{\text { SCK }}$ Output
$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.7$ to 6.0 V ; refer to figure 33

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
$\overline{\overline{S C K}}$ cycle time	$\mathrm{t}_{\mathrm{KCY}}$	800			ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		3200			ns	
$\overline{\text { SCK }}$ high- and low-level width	$t_{\text {KH3 }}, t_{\text {KL3 }}$	$\mathrm{t}_{\mathrm{KCY} 3} / 2-50$			ns	$V_{D D}=4.5$ to 6.0 V
		$\mathrm{t}_{\mathrm{KCY} 3} / 2-150$			ns	
$\overline{S B 0, ~ S B 1 ~ s e t u p ~ t i m e ~ t o ~} \overline{\text { SCK }} \uparrow$	${ }^{\text {tSIK3 }}$	100			ns	$V_{D D}=4.5$ to 6.0 V
		300			ns	
SB0, SB1 hold time from $\overline{\text { SCK }} \uparrow$	$t_{K S 13}$	${ }^{\mathrm{K}_{\mathrm{KCY3}} / 2}$			ns	
SB0,SB1 output delay time from $\overline{S C K} \downarrow$	$\mathrm{t}_{\mathrm{KSO}}$	0		250	ns	$\begin{aligned} & V_{D D}=4.5 \text { to } 6.0 \mathrm{~V} ; \mathrm{R}=1 \mathrm{k} \Omega, \\ & \mathrm{C}=100 \mathrm{pF}(\text { Note } 1) \end{aligned}$
		0		1000	ns	$\mathrm{R}=1 \mathrm{k} \Omega \mathrm{C}=100 \mathrm{pF}$ (Note 1)
SB0, SB1 \downarrow from $\overline{\text { SCK } \uparrow}$	$t_{\text {KSB }}$	$t_{\text {KCY3 }}$			ns	
	$t_{\text {tSBK }}$	$\mathrm{t}_{\text {KCY3 }}$			ns	
SB0, SB1 high-level width	${ }^{\text {tsBH }}$	${ }^{\text {t }}$ KCY3			ns	
SB0, SB1 low-level width	${ }^{\text {tSBL }}$	${ }_{\text {t }}^{\text {KCY }}$ 3			ns	

Note 1: R and C are the load resistance and load capacitance of the SB0 and SB1 output lines.

Serial Interface, SBI Mode; External $\overline{\text { SCK }}$ Input
$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{D D}=2.7$ to 6.0 V ; refer to figure 33

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
$\overline{\text { SCK }}$ cycle time	tKCY_{4}	800			ns	$V_{D D}=4.5$ to 6.0 V
		3200			ns	
$\overline{\text { SCK }}$ high- and low-level width	${ }^{\text {K }}$ H4, ${ }^{\text {t KL4 }}$	400			ns	$V_{D D}=4.5$ to 6.0 V
		1600			ns	
SBO, SB1 setup time to $\overline{S C K} \uparrow$	${ }^{\text {t }}$ IK4	100			ns	$V_{D D}=4.5$ to 6.0 V
		300			ns	
SB0, SB1 hold time from $\overline{\text { SCK }} \uparrow$	$\mathrm{t}_{\mathrm{KSI} 14}$	$t_{\mathrm{KCY} 4} / 2$			ns	
SB0, SB1 output delay time from $\overline{\text { SCK }} \downarrow$	$\mathrm{t}_{\mathrm{KSO}}$	0		300	ns	$V_{D D}=4.5$ to $6.0 \mathrm{~V} ; R=1 \mathrm{k} \Omega, C=100 \mathrm{pF}$. (Note 1)
		0		1000	ns	$R=1 \mathrm{k} \Omega, \mathrm{C}=100 \mathrm{pF}$ (Note 1)
SB0, SB1 \downarrow from $\overline{\text { SCK }} \uparrow$	$t_{\text {KSB }}$	$\mathrm{t}_{\mathrm{KCY} 4}$			ns	
$\overline{\text { SCK }} \downarrow$ from SB0, SB1 \downarrow	$t_{\text {SBK }}$	$\mathrm{t}_{\mathrm{KCY} 4}$			ns	
SB0, SB1 high-level width	$t_{\text {tSBH }}$	$t_{\text {KCY4 }}$			ns	
SB0, SB1 low-level width	${ }^{\text {tSBL }}$	$\mathrm{t}_{\mathrm{KCY} 4}$			ns	

Note 1: R and C are the load resistance and load capacitance of the
SB0 and SB1 output lines.
Serial Interface, 2-Wire, I/O Mode; Internal $\overline{\text { SCK Output }}$
$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.7$ to 6.0 V ; refer to figure 34

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
$\overline{\text { SCK }}$ cycle time	$t_{\text {KCY5 }}$	1600			ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		3800			ns	
$\overline{\text { SCK }}$ high-level width	$t_{\text {KH5 }}$	$t_{\text {KCY5 }} / 2-50$			ns	
$\overline{\text { SCK }}$ low-level width	${ }^{\text {K KL5 }}$	$t_{\text {KCY5 }} / 2-50$			ns	
SB0, SB1 setup time to $\overline{\text { SCK } \uparrow}$	${ }_{\text {t }}^{\text {IKK }}$	300			ns	
SB0, SB1 hold time from $\overline{\text { SCK } \uparrow}$	$t_{K S 15}$	600			ns	
SB0, SB1 output delay time from $\overline{\text { SCK }} \downarrow$	$t_{\text {KSO5 }}$	0		250	ns	$\begin{aligned} & V_{D D}=4.5 \text { to } 6.0 \mathrm{~V} \\ & R=1 \mathrm{k} \Omega \mathrm{C}=100 \mathrm{pF} \text { (Note 1) } \end{aligned}$
		0		1000	ns	$R=1 \mathrm{k} \Omega, \mathrm{C}=100 \mathrm{pF}$ (Note 1)

Note 1: R and C are load resistance and load capacitance of the $\overline{\text { SCKO }}$, SBO, and SB1 output lines.

Serial Interface, 2-Wire, I/O Mode; External $\overline{\text { SCK }}$ Input
$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{D D}=2.7$ to 6.0 V ; refer to figure 34

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
$\overline{\text { SCK }}$ cycle time	${ }^{\text {t KCY }} 6$	1600			ns	$V_{D D}=4.5$ to 6.0 V
		3800			ns	
$\overline{\text { SCK }}$ high-level width	$\mathrm{t}_{\mathrm{KH6}}$	650			ns	
$\overline{\text { SCK }}$ low-level width	$t_{\text {KL6 }}$	800			ns	
SB0, SB1 setup time (to $\overline{\text { SCK } \uparrow \text {) }}$	${ }^{\text {tsik6 }}$	100			ns	
SB0, SB1 hold time (from $\overline{\text { SCK } \uparrow \text {) }}$	$\mathrm{t}_{\mathrm{KS} 16}$	${ }^{\text {K }}$ KCY6 $6 / 2$			ns	
SB0, SB1 output delay time from $\overline{\text { SCK }} \downarrow$	trsob $^{\text {¢ }}$	0		300	ns	$\begin{aligned} & V_{D D}=4.5 \text { to } 6.0 \mathrm{~V} \\ & R=1 \mathrm{k} \Omega, C=100 \mathrm{pF} \text { (Note 1) } \end{aligned}$
		0		1000	ns	$R=1 \mathrm{k} \Omega, \mathrm{C}=100 \mathrm{pF}$ (Note 1)

Note 1: R and C are load resistance and load capacitance of the SCKO, SB0, and SB1 output lines.

Figure 32. Serial Interface Timing;

3-Wire Serial I/O Mode

Figure 33. Serial Interface Timing; SBI Mode

SBI Bus Command Signal Transfer Timing

Figure 34. Serial Interface Timing; 2-Wire Serial I/O Mode

Serial Interface, I2C Bus
Refer to figure 35

Parameter	Symbol	Min	typ	Max	Unit	Conditions
SCL input clock frequency	${ }_{\text {f SCL }}$	0		100	kHz	
Bus release time before start of transfer	$t_{\text {buF }}$	4.7			$\mu \mathrm{s}$	
Start condition hold time	$t_{\text {HDSTA }}$	4.0			$\mu \mathrm{s}$	
SCL low-level time	tow	4.7			$\mu \mathrm{s}$	
SCL high-level time	$\mathrm{t}_{\text {High }}$	4.0			$\mu \mathrm{s}$	
Start condition setup time	$\mathrm{t}_{\text {SUSTA }}$	4.7			$\mu \mathrm{s}$	
Data hold time	$\mathrm{t}_{\text {HDDAT }}$	0			$\mu \mathrm{s}$	SCL fall time: data retention
Data setup time	tsudat	250			ns	
SDA, SDAO, SDA1, SCL signal rise time	t_{R}			1	$\mu \mathrm{s}$	
SDA, SDA0, SDA1, SCL signal fall time	t_{F}			300	ns	
Stop condition setup time	tsusto	4.7			$\mu \mathrm{s}$	

Figure 35. Serial Interface Timing; 12C Bus Mode

Data Memory STOP Mode; Low-Voltage Data Retention

$T_{A}=-40$ to $+85^{\circ} \mathrm{C}$; refer to figure 36

Note: $2^{13 / f x, 2^{15} / f x, 2^{16} / f x, 2^{17} / f x \text { or } 2^{18 / f} x \text { can be chosen by using }}$ bits 0 to 2 of the oscillation stabilization time select (OSTS) register.

Figure 36. Data Retention Timing
A. STOP mode is released by $\overline{\operatorname{RESET}}$ input

B. STOP mode is released by interrupt signal

Description

The μ PD78011B, μ PD78012B, μ PD78013, μ PD78014, and μ PD78P014 are members of the K-Series ${ }^{\circledR}$ of microcontrollers. These 8-bit, single-chip microcontrollers have an A/D converter, two serial interface ports, 8-bit hardware multiply and divide instructions, bit manipulation instructions, four banks of main registers, an advanced interrupt handling facility, and a powerful set of memory-mapped on-chip peripherals.
On-board data memory includes 512 or 1024 bytes of internal high-speed RAM plus 32 bytes of serial buffer RAM. Program memory options include $8 \mathrm{~K}, 16 \mathrm{~K}, 24 \mathrm{~K}$, or 32 K bytes of mask ROM, or 32K bytes of UV EPROM or one-time programmable (OTP) ROM.
The μ PD78014 family operates over a wide voltage range: 2.7 to 6.0 volts. Timing is generated by two built-in oscillators. A main oscillator normally drives the CPU and most peripherals and at 10 MHz provides a minimum instruction time of $0.4 \mu \mathrm{sec}$. A subsystem oscillator at 32.768 kHz provides time keeping, and optionally a slow clock for the CPU. Since CMOS power dissipation is directly proportional to clock rate, the μ PD78014 family provides a software variable CPU clock. The HALT and STOP modes are two additional power saving features that turn off parts of the microcontroller to reduce power consumption. A data retention mode permits RAM contents to be saved down to 2 volts.

The range of peripherals, including an A / D converter, timers, and two serial ports makes these devices ideal for applications in portable battery-powered equipment, office automation, comunications, consumer electronics, home appliances, and fitness equipment.

Features

- Eight-channel 8-bit A/D converter
- Operates from 2.7 to 6.0 V
- Two-channel serial communication interface
- 8-bit clock-synchronous interface 0 Full-duplex, three-wire mode NEC serial bus interface (SBI) mode Half-duplex, two-wire mode
-8-bit clock-synchronous interface 1 Full-duplex, three-wire mode with automatic transmit/receive
Half-duplex, two-wire mode
K-Series is a registered trademark of NEC Electronics, Inc.
\square Timers
- Watchdog timer
- 16-bit timer/event counter
- Two 8-bit timer/event counters usable as one 16-bit timer event/counter
- Clock (watch) timer (time of day tick from either oscillator)
- 53 I/O lines
- Two CMOS input-only lines
- 47 CMOS I/O lines
-Four n-channel, open-drain I/O lines at 15 V maximum
- I/O port pullup resistors
- Software controllable on 47 lines
- Mask option on four lines on ROM version
- Program memory
$-\mu$ PD78011B: 8K bytes ROM
$-\mu$ PD78012B: 16K bytes ROM
$-\mu$ PD78013: 24K bytes ROM
$-\mu$ PD78014: 32K bytes ROM
- μ PD78P014: 32K bytes EPROM/OTP
- Internal high-speed data memory RAM
$-\mu \mathrm{PD} 78011 \mathrm{~B} / 012 \mathrm{~B}: 512$ bytes
- μ PD78013/014/P014: 1024 bytes
\square Specialized memory
—Serial buffer RAM: 32 bytes
- External memory expansion
- 64K bytes total memory space
- Powerful instruction set
- 8-bit unsigned multiply and divide
- 16-bit arithmetic and data transfer instructions
-1-bit and 8-bit logic instructions
- Minimum instruction times:
- 0.4/0.8/1.6/3.2/6.4 μ s program selectable using 10 MHz main system clock
-122μ s selectable using $32.768-\mathrm{kHz}$ subsystem clock
- Memory-mapped on-chip peripherals (special function registers)
- Programmable priority, vectored-interrupt controller (two levels)
- Buzzer and clock outputs

Features (cont)

- Power saving and battery operation features
- Variable CPU clock rate
- HALT mode
- STOP mode
- 2-V data retention mode
- CMOS operation; $V_{D D}$ from 2.7 to 6.0 V

Part Number	ROM	Package	Package Drawing
μ PD78011BCW-xxx	8 K mask ROM	64-pin plastic shrink DIP	P64C-70-750A, C
$\mu \mathrm{PD78012BCW-xxx}$	16K mask ROM		
$\mu \mathrm{PD78013CW-xxx}$	24K mask ROM		
$\mu \mathrm{PD78014CW-xxx}$	32 K mask ROM		
μ PD78P014CW	32 K OTP ROM		
μ PD78011BGC-xxx-AB8	8 K mask ROM	64-pin plastic QFP	P64GC-80-AB8-2
μ PD78012BGC-xxx-AB8	16K mask ROM		
μ PD78013GC-xxx-AB8	24 K mask ROM		
μ PD78014GC-xxx-AB8	32 K mask ROM		
μ PD78P014GC-AB8	32 K OTP ROM		
μ PD78P014DW	32 K UV EPROM	64-pin ceramic shrink DIP w/window	P64DW-70-750A

xxx indicates ROM code suffix

Pin Configurations

64-Pin Plastic or Ceramic Shrink DIP

Pin Configurations (cont)

64-Pin Plastic QFP

Notes:
Connect IC (Intemally connected) pin (VPp on μ PD78P014) to $\mathbf{V}_{\text {SS }}$.
μ PD78014 Family

Pin Functions; Normal Operating Mode

Symbol	First Function	Symbol	Alternate Function
PO_{0}	Port 0; 5-bit, bit selectable I/O port (Bits 0 and 4 are input only)	$\begin{aligned} & \text { INTPO } \\ & \text { TIO } \end{aligned}$	External maskable interrupt External count clock input to timer 0
$\begin{aligned} & \hline \mathrm{PO}_{1} \\ & \mathrm{PO}_{2} \\ & \mathrm{PO}_{3} \\ & \hline \end{aligned}$		INTP1 INTP2 INTP3	External maskable interrupt
PO_{4}		XT1	Crystal oscillator or external clock input for subsystem clock
$\underline{\mathrm{P} 1_{0}-\mathrm{P1}_{7}}$	Port 1; 8-bit, bit-selectable I/O port	ANIO-ANI7	Analog input to A/D converter
P_{2}	Port 2; 8-bit, bit-selectable I/O port	SI1	Serial data input three-wire serial I/O mode
Pr_{1}		SO1	Serial data output three-wire serial I/O mode
Pr_{2}		$\overline{\text { SCK1 }}$	Serial clock I/O for serial interface 1
P_{2}		STB	Serial interface automatic transmit/receive strobe output
P2 4_{4}		BUSY	Serial interface automatic transmit/receive busy input
$\mathrm{P}_{2} 5$		$\begin{aligned} & \text { SIO } \\ & \text { SRO } \end{aligned}$	Serial data input three-wire serial I/O mode 2/3-wire serial I/O mode
P_{2}		$\begin{aligned} & \mathrm{SOO} \\ & \mathrm{SB1} \end{aligned}$	Serial data output three-wire serial I/O mode 2/3-wire serial I/O mode
P_{7}		$\overline{\text { SCKO }}$	Serial clock l/O for serial interface 0
$\mathrm{P3}_{0}$	Port 3; 8-bit, bit-selectable I/O port	TOO	Timer output from timer 0
$\mathrm{P3}_{1}$		TO1	Timer output from timer 1
$\mathrm{P3}_{2}$		TO2	Timer output from timer 2
$\mathrm{P3}_{3}$		T/1	External count clock input to timer 1
$\mathrm{P3}_{4}$		T12	External count clock input to timer 2
$\mathrm{P3}_{5}$		PCL	Programmable clock output
P_{3}		BUZ	Programmable buzzer output
$\mathrm{P3}_{7}$		-	
$\mathrm{P}_{4}-\mathrm{P} 47$	Port 4; 8-bit I/O port	$A D_{0}-A D_{7}$	Low-order 8-bit multiplexed address/data bus for external memory
$P 5_{0}-\mathrm{P}_{7}$	Port 5; 8-bit, bit selectable //O port	$A_{8}-\mathrm{A}_{15}$	High-order 8-bit address bus for external memory
$\mathrm{P6}_{0}-\mathrm{P6}_{3}$	Port 6; 8-bit, bit selectable ($\mathrm{P6}_{0}$ to $\mathrm{Pb}_{3} \mathrm{n}$ channel open-drain I/O with mask option pullup resistors; $\mathrm{P6}_{4}-\mathrm{P6}{ }_{7} \mathrm{I} / \mathrm{O}$). See note.	-	
$\mathrm{P6}_{4}$		$\overline{\mathrm{RD}}$	External memory read strobe
$\mathrm{P6}_{5}$		$\overline{W R}$	External memory write strobe
$\mathrm{P6}_{6}$		$\overline{\text { WAIT }}$	External memory wait signal input
$\mathrm{P6}_{7}$		ASTB	Address strobe used to latch address for external memory

Pin Functions; Normal Operating Mode (cont)

Symbol	First Function	Symbol	Alternate Function
RESET	External system reset input		
X1	Crystal/ceramic reaonator connection or external clock input for main system clock		
X2	Crystal/ceramic resonator connection or inverse of external clock for main system clock		
XT2	Crystal oscillator or left open when using external clock for subsystem clock		
$\mathrm{AV}_{\text {REF }}$	A/D converter reference voltage		
$\mathrm{AV}_{\text {DD }}$	A/D converter power supply input		
$\mathrm{AV}_{\text {SS }}$	A/D converter ground		
$\mathrm{V}_{\text {DD }}$	Power-supply input		
$V_{\text {PP }}$	μ PD78P014 PROM programming power-supply input		
$\mathrm{V}_{\text {SS }}$	Power-supply ground		
IC	Internal connection		

Note: See table 2 and figure 4 for details

Block Diagram

FUNCTIONAL DESCRIPTION

Central Processing Unit

The central processing unit (CPU) of the μ PD78014 family features 8 - and 16 -bit arithmetic including an 8 x 8 -bit unsigned multiply and 16×8-bit unsigned divide (producing a 16 -bit quotient and an 8 -bit remainder). The multiply executes in $3.2 \mu \mathrm{~s}$ and the divide in $5 \mu \mathrm{~s}$ using the fastest clock cycle with a main system clock of 10 MHz .

A CALLT vector table and a CALLF area decrease the number of bytes in the call instructions for commonly used subroutines. A 1-byte call instruction can access up to 32 subroutines through their addresses contained in the CALLT vector table (40 H to 7FH). A 2-byte call instruction can access any routine beginning in a specific CALLF area (0800 H to OFFFH).

Internal System Clock Generator

The internal system clocks of the μ PD78014 family are derived from either the main system or the subsystem oscillator. See figure 1. The clocks for the clock timer and programmable clock output are derived from either the subsystem clock (f_{XT}) or the main system clock. The clocks for all other peripheral hardware are derived from the main system clock.
The CPU clock (ϕ) can be supplied from either the main system clock (fx_{X}) or the subsystem clock ($\mathrm{fxT}_{\mathrm{X}}$). Using the processor clock control register (PCC), a CPU clock frequency equal to $f_{X}, f_{X} / 2, f_{x} / 4, f_{X} / 8, f_{X} / 16$ or the subsystem clock f_{XT} can be selected. The CPU clock selected should be based on the power supply voltage available and the desired power consumption. On power up, the CPU clock defaults to the lowest speed from the main system clock and can be changed while the microcontroller is running.

Figure 1. Internal System Clock Generator

Since the shortest instruction takes four CPU clocks to execute, the fastest minimum instruction execution time (t_{CY}) of $0.4 \mu \mathrm{~s}$ is achieved when using a main system clock at 10 MHz ($V_{D D}$ equals 4.5 to 6.0 V). However, if the clock timer must generate an interrupt every 0.5 or 0.25 seconds, t_{CY} is $0.48 \mu \mathrm{~s}$ at 8.38 MHz . The fastest minimum instruction execution time available across the full voltage range of 2.7 to 6.0 V is 0.96 $\mu \mathrm{s}$ when using a main system clock of 8.38 MHz . For the lowest power consumption, the CPU can be operated from the subsystem clock and the minimum instruction execution time is $122 \mu \mathrm{~s}$ at 32.768 kHz .

Memory Space

The μ PD78014 family has a 64 K -byte address space. Some of this address space ($0000 \mathrm{H}-\mathrm{FFFFH}$) can be used as both program and data memory as shown in figure 2.

Figure 2. Memory Map

Notes:

(1) 1FFFH on μ PD78011

3FFFH on μ PD78012 5FFFH on μ PD78013 7FFFH on μ PD78014/P014
(2) FCFFH on μ PD78011/012

FAFFH on μ PD78013/014/P014

Internal Program Memory

All devices in the μ PD78014 family have internal program memory. The μ PD78011B/012B/013/014 contain $8 \mathrm{~K}, 16 \mathrm{~K}, 24 \mathrm{~K}$, and 32 K bytes of internal ROM, respectively. The μ PD78P014 contains 32 K bytes of UV EPROM or one time programmable ROM. To allow the μ PD78P014 to emulate the mask ROM devices, the amount of internal program memory available in the μ PD78P014 can be selected using the memory size switching register (IMS).

Internal RAM

The $\mu \mathrm{PD} 78011 \mathrm{~B} / 012 \mathrm{~B}$ have 544 bytes and the μ PD78013/014/P014 have 1056 bytes of Internal RAM. This Internal RAM consists of two types: high-speed Internal RAM and buffer RAM.

The $\mu \mathrm{PD} 78011 \mathrm{~B} / 012 \mathrm{~B}$ contain 512 bytes (FD00H to FEFFH) while the μ PD78013/014/P014 contain 1024 bytes (FBOOH to FEFFH) of high-speed Internal RAM. The high-speed Internal RAM contains the general register banks and the stack. The remainder of the high-speed Internal RAM and any unused register bank locations are available for general storage.

All devices also contain 32 bytes of buffer RAM (FACOH to FADFH). The buffer RAM is accessed at the same speed as external memory and is used as the buffer area for the automatic transfer mode of serial interface 1 or for general storage.

To allow the μ PD78P014 to emulate the mask ROM devices, the amount of high-speed Internal RAM available in the μ PD78P014 can also be selected using the IMS.

External Memory

The μ PD78014 family can access $0,256,4 \mathrm{~K}, 16 \mathrm{~K}$ or all available bytes of external memory. The μ PD78014 family has an 8-bit wide external data bus and a 16-bit wide external address bus. The low-order 8 bits of the address bus are multiplexed to provide the 8-bit data bus and are supplied by port 4. The high-order address bits of the 16-bit address bus are taken from port 5 as required. The address latch, read, and write strobes, and the external WAIT signal are supplied by port 6.

The memory expansion mode register (MM) controls the size of external memory. It can be programmed to use $0,4,6$, or 8 bits from port 5 for the high-order address. Any remaining port 5 bits can be used for I/O. The MM register also can be used to specify one
additional wait state or the use of the external WAIT signal for low-speed external memory or external peripheral devices.
When only internal ROM and RAM are used and no external memory is required, ports 4,5 and 6 are available as general purpose I/O ports.

CPU Control Registers

Program Counter. The program counter is a 16-bit binary counter register that holds the address of the next instruction to be executed. During reset, the program counter is loaded with the address stored in locations 0000 H and 0001 H .

Stack Pointer. The stack pointer is a 16-bit register that holds the address of the last item pushed onto the stack. It is decremented before new data is pushed onto the stack and incremented after data is popped off the stack.

Program Status Word. The program status word (PSW) is an 8-bit register that contains flags that are set or reset depending on the results of an instruction. This register can be written to or read from 8 bits at a time. The individual flags can also be manipulated on a bit-by-bit basis. The assignment of PSW bits follows.

| 7 |
| :--- | | IE | Z | RBS1 | AC | RBSO | 0 | ISP | CY |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

CY	Carry flag
ISP	In-service (interrupt) priority flag
RBS0, RBS1	Register bank selection flags
AC	Auxiliary carry flag
Z	Zero flag
IE	Interrupt request enable flag

General Registers

The general-purpose registers (figure 3) consist of four banks of registers located at addresses FEEOH to FEFFH in Internal RAM. Each bank consists of eight 8-bit general registers that can also be used in pairs to function as four 16-bit registers. Two bits in the PSW (RBS0 and RBS1) specify which of the register banks is active at any time and are set under program control.

Registers have both functional names (like A, X, B, C, D, E, H or L for 8-bit registers and $A X, B C, D E$ and $H L$ for 16-bit registers) and absolute names (like R1, R0, R3, R2, R5, R4, R7 or R6 for 8-bit registers and RP0, RP1, RP2 or RP3 for 16-bit registers). Either the functional or absolute register names can be used in instructions that use the operand identifiers r and rp .

Figure 3. General Registers

Addressing

The program memory addressing (ROM) modes provided are relative, immediate, table indirect and register addressing. The operand addressing modes provided are relative, immediate, table indirect and register addressing. The operand addressing modes provided are implied, register, direct, short direct (saddr), special function (SFR), register indirect, based, based indexed, and stack addressing.
The 'SFR addressing' and 'saddr addressing' modes use direct addressing, and require only 1 byte in the instruction to address RAM. Normally, a 65 K byte address space requires 2 bytes to address it. One-byte addressing results in faster access times, since the instructions are shorter. SFR addressing addresses the entire 256-byte SFR address space from FFOOH to FFFFH. Saddr addressing (see figure 2) addresses the 256 -byte address space FE20H to FF1FH. FE20H to FEFFH are composed of 224 bytes of internal high speed RAM; FFOOH to FF1FH contain the first 32 bytes in the special function register area.

One-byte addressing is accomplished by using the first byte of the instruction for the opcode (and one operand if register A or AX is used) and the second byte of
the instruction as an address (offset) into the 256 -byte area. If register A or AX is used, the instructions are 2 bytes long, thereby providing fast access times. If immediate data is used, the instruction will be 3 or 4 bytes long depending upon whether the immediate data is a byte or a word. Many 16 -bit SFRs are in the space FFOOH to FF 1 FH . Using AX as an operand to these SFRs will provide fast access, since the instructions will be only 2 bytes long.

Special Function Registers

The input/output ports, timers, capture and compare registers, and mode and control registers for both the peripherals and CPU are collectively known as special function registers. They are all memory-mapped between FFOOH and FFFFH and can be accessed either by main memory addressing or by SFR addressing. FFOOH to FF1H can also be accessed using saddr addressing. They are either 8 or 16 bits as required, and many of the 8-bit registers are bit addressable.
Locations FFDOH through FFDFH are known as the external SFR area. Registers in external circuitry interfaced and mapped to these addresses can only be addressed by main memory addressing. Table 1 lists the special function registers.

Table 1. Special Function Registers

Address	Register (SFR)	Symbol	R/W	Access Units (Bits)			State After Reset
				1	8	16	
FFOOH	Port 0	PO	R/W	x	x	-	OOH
FF01H	Port 1	P1	R/W	x	x	-	OOH
FF02H	Port 2	P2	R/W	x	x	-	OOH
FF03H	Port 3	P3	R/W	x	x	-	OOH
FF04H	Port 4	P4	R/W	x	x	-	Undefined
FF05H	Port 5	P5	R/W	x	x	-	Undefined
FF06H	Port 6	P6	R/W	x	x	-	Undefined

Table 1. Special Function Registers (cont)

Address	Register (SFR)	Symbol	R/W	Access Units (Bits)			State After Reset
				1	8	16	
FF10H-FF11H	Compare register 00	CROO	R/W	-	-	X	Undefined
FF12H-FF13H	Compare register 01	CR01	R	-	-	X	Undefined
FF14H-FF15H	16-bit timer register	TMO	R	-	-	x	OOH
FF16H	Compare register 10	CR10	R/W	-	X	-	Undefined
FF17H	Compare register 20	CR20	R/W	-	x	-	Undefined
FF18H	8 -bit timer register 1	TM1	R	x	x	-	OOH
FF19H	8-bit timer register 2	TM2	R	x	x	-	OOH
FF18H-FF19H	16-bit timer register 1	TMS	R	-	-	x	0000H
FF1AH	Serial l/O shift register 0	SIOO	R/W	-	X	-	Undefined
FF1BH	Serial I/O shift register 1	SIO1	R/W	-	X	-	Undefined
FF1FH	A/D conversion result register	ADCR	R	-	x	-	Undefined
FF20H	Port mode register 0	PMO	R/W	x	x	-	1 FH
FF21H	Port mode register 1	PM1	R/W	x	x	-	FFH
FF22H	Port mode register 2	PM2	R/W	x	x	-	FFH
FF23H	Port mode register 3	PM3	R/W	x	x	-	FFH
FF25H	Port mode register 5	PM5	R/W	x	x	-	FFH
FF26H	Port mode register 6	PM6	R/W	x	X	-	FFH
FF40H	Timer clock select register 0	TCLO	R/W	X	X	-	OOH
FF41H	Timer clock select register 1	TCL1	R/W	-	X	-	OOH
FF42H	Timer clock select register 2	TCL2	R/W	-	x	-	OOH
FF43H	Timer clock select register 3	TCL3	R/W	-	x	-	88H
FF47H	Sampling clock select register	SCS	R/W	-	X	-	OOH
FF48H	16-bit timer mode control register	TMCO	R/W	x	X	-	OOH
FF49H	8-bit timer mode control register	TMC1	R/W	x	X	-	OOH
FF4AH	Watch (clock) timer mode control register	TMC2	R/W	x	x	-	OOH
FF4EH	16-bit timer output control register	TOC0	R/W	X	X	-	OOH
FF4FH	8 -bit timer output control register	TOC1	R/W	x	x	-	OOH
FF60H	Serial operating mode register 0	CSIMO	R/W	X	x	-	OOH
FF61H	Serial bus interface control register	SBIC	R/W	X	X	-	OOH
FF62H	Slave address register	SVA	R/W	-	X	-	Undefined
FF63H	Interrupt timing specify register	SINT	R/W	X	X	-	OOH
FF68H	Serial operation mode register 1	CSIM1	R/W	X	x	-	OOH
FF69H	Automatic data transmit/receive control register	ADTC	R/W	X	X	-	OOH
FF6AH	Automatic data transmit/receive address pointer register	ADTP	R/W	-	X	-	OOH
FF80H	A/D converter mode register	ADM	R/W	X	x	-	01H
FF84H	A/D converter input select register	ADIS	R/W	-	x	-	OOH
FFDOH-FFDFH	External SFR access area(Note 1)	-	R/W	x	x	-	Undefined
FFEOH	Interrupt flag register L	IFOL	R/W	X	X	-	OOH
FFE1H	Interrupt flag register H	IFOH	R/W	X	X	-	OOH

μ PD78014 Family

Table 1. Special Function Registers (cont)

Address	Register (SFR)	Symbol	R/W	Access Units (Bits)			State After Reset
				1	8	16	
FFEOH-FFE1H	Interrupt flag register	IFO	R/W	-	-	x	0000H
FFE4H	Interrupt mask flag register L	MKOL	R/W	x	x	-	FFH
FFE5H	Interrupt mask flag register H	MKOH	RW	x	x	-	FFH
FFE4H-FFE5H	Interrrupt mask flag register	MKO	R/W	-	-	x	FFFFH
FFE8H	Priority order specify flag register L	PROL	R/W	x	x	-	FFH
FFE9H	Priority order specify flag register H	PROH	R/W	x	x	-	FFH
FFE8H-FFE9H	Priority order specify flag register	PRO	R/W	-	-	x	FFFFFH
FFECH	External interrupt mode register	INTMO	R/W	-	x	-	OOH
FFFOH	Memory size switch register (Note 2)	IMS	W	-	x	-	C 8 H
FFF6H	Key return mode register	KRM	RW	x	x	-	O2H
FFF7H	Pullup resistor option register	PUO	R/W	x	x	-	0 OH
FFF8H	Memory expanded mode register	MM	R/W	x	x	-	10 H
FFF9H	Watchdog timer mode register	WDTM	R/W	x	x	-	OOH
FFFAH	Oscillation stabilization time select register	OSTS	R/W	-	x	-	04H
FFFBH	Processor clock control register	PCC	R/W	x	x	-	04H

Notes:
(1) The external access area cannot be accessed using SFR addressing. It can only be accessed using main memory addressing.
(2) μ PD78P014 only.

Input/Output Ports

The μ PD78014 family has up to 53 port lines. Table 2 lists the features of each port and figure 4 shows the structure of each port pin.

Table 2. Digital Port Functions

| Port | Operational Features | Configuration | Direct Drive Capability |
| :--- | :--- | :--- | :--- | | Software Pullup Resistor Connection
 (Note 1) |
| :--- |
| Port 0 (Note 2) |
| Port 1 |
| 5-bit input or output |
| Port 2 |
| 8ort 3 |

Notes:

(1) Software pullup resistors can be internally connected (only on a port-by-port basis) to port bits set to input mode. Pullup resistors are not connected to port bits set to output mode.
(2) PO_{0} and PO_{4} are input only and do not have a software pullup resistor.
(3) All devices except μ PD78P014

Figure 4. Pin Input/Output Circuits

Figure 4. Pin Input/Output Circuits (cont)

Analog-to-Digital (A/D) Converter

The μ PD78014 family A/D converter (see figure 5) uses the successive-approximation method for converting one of eight multiplexed analog inputs into 8-bit digital data. The conversion time per input is $19.1 \mu \mathrm{~s}$ at 8.38 MHz operation.
The A/D converter input select register (ADIS) selects the number of inputs that are used in A/D conversion. The remaining inputs are used as ports. The A/D input to be converted is selected by programming the A/D
converter mode register (ADM). A/D conversion is started by external interrupt INTP3, or by writing to ADM. When the conversion is completed, the results are stored in the A / D conversion result register (ADCR) and an INTAD interrupt is generated.
If the A / D converter was started by an external interrupt, the A/D converter stops after the interrupt is generated. If the A / D converter was started by software, the A/D converter repeats the conversion until new data is written to the ADM register.

Figure 5. A/D Converter

Notes:

(1) Selects number of port 1 inputs to be used for AVD conversion.
(2) Selects the channel for A / D conversion.

Serial Interfaces

The μ PD78014 family has two independent serial interfaces: serial interface 0 and serial interface 1.

Serial Interface 0. Serial interface 0 is an 8 -bit clock synchronous serial interface (figure 6). It can be operated in either a three-wire serial I/O mode, NEC serial bus interface (SBI) mode, or two-wire serial I/O mode. The serial clock can be provided from one of eight internal clocks, the output of 8 -bit timer register 2, or the external clock line SCKO.

In the three-wire serial I/O mode, the 8-bit shift register (SIOO) is loaded with a byte of data and eight clock pulses are generated. The falling edge of these eight pulses shifts the byte of data out of the SOO line (either MSB or LSB first) while the rising edge of these pulses shifts the data in from the SIO line providing full-duplex operation. The INTCSIO interrupt is generated after each 8-bit transfer.

Figure 6. Serial Interface 0

The NEC SBI mode is a two-wire high-speed proprietary serial interface available on most devices in the NEC μ PD75xxx and μ PD78xxx product lines. Devices are connected in a master/slave configuration (see figure 7). There is only one master device at a time; all others are slaves. The master sends addresses, commands, and data over one of the serial bus lines (SB0 or SB1) using a fixed hardware protocol synchronized with the SCKO line. Each slave device of the μ PD 78014 family can be programmed to respond in hardware to any one of 256 addresses set in its slave address register (SVA). There are also 256 commands and 256 data types. Since all commands are user definable, many software protocols, simple or complex, can be defined. It is even possible to develop commands to change a slave into a master and the previous master into a slave.

Figure 7. SBI Mode Master/Slave Configuration

The two-wire serial I/O mode provides half-duplex operation using either the SB0 or SB1 line and the SCKO line. Communication format and handshaking can be handled in software by controlling the output levels of the data and clock lines between transfers. For data transmission, the 8 -bit shift register (SIOO) is loaded with a byte of data and eight clock pulses are generated. The falling edge of these eight pulses shifts the byte of data out of either the SB0 or SB1 line (MSB first). In addition, this byte of data is also shifted back into SIOO on the rising edge of these pulses providing a way of verifying that the transmission was correct.

For data reception, the SIO register is preloaded with the value FFH. As this data value is shifted out on the
falling edge of the serial clock, it disables the n-channel open-drain driver. This allows the receive data to be driven on to the serial line and shifted into the SIOO register on the rising edge of the serial clock. The INTCSIO interrupt is generated after each 8-bit transfer.
Serial Interface 1. Serial interface 1 is also an 8 -bit clock synchronous serial interface (figure 8). It can be operated in either a three-wire serial I/O mode, or three-wire serial I/O mode with automatic transmit/ receive. The serial clock can also be provided from one of eight internal clocks (common clock for both interfaces), the output of 8 -bit timer register 2, or the external clock line SCK1.

In the three-wire serial I/O mode, the 8-bit shift register (SIO1) is loaded with a byte of data and eight clock pulses are generated. The falling edge of these eight pulses shifts the byte of data out of the SO1 line (either MSB or LSB first) while the rising edge of these pulses shifts the data in from the SII line providing full-duplex operation. The INTCSI1 interrupt is generated after each 8-bit transfer.
In the three-wire serial $1 / 0$ mode with automatic transmit/receive, up to 32 bytes of data can be transferred with minimal CPU overhead. The data to be transmitted and received is stored in the buffer RAM. Handshaking using either the BUSY input line, the strobe (STB) output line, or both, can be selected by the program. Error detection of bit drift due to noise is available for each byte transferred when using the BUSY input line. This automatic transmit/receive mode is ideally suited for transferring data to/from external peripheral devices such as onscreen display (OSD) and LCD controller/driver devices.

While in three-wire serial interface mode with automatic data transfer, the interface can be operated as either a full-duplex interface or a transmit-only interface in single or repetitive operation mode. In the fullduplex mode, a byte of data is transferred from the first location in the buffer RAM and shifted out of the SO1 line (either MSB or LSB first) while the received data is shifted into the SI1 line and stored back in the first buffer location. After the preset number of bytes has been transferred, the INTCSI1 interrupt is generated.

In single-operation transmit mode, the preset number of bytes from the buffer RAM are transmitted out of the SO1 line (either MSB or LSB first) and the INTCSI1 interrupt is generated after all bytes are transferred. In the repetitive operation transmit mode, data in the buffer is transmitted repeatedly.

Figure 8. Serial Interface 1

Timers

The μ PD78014 family has one 16 -bit timer/event counter, two 8 -bit timer/event counters that can be combined for use as a 16 -bit timer/event counter, a clock timer, and a watchdog timer. All of these can be programmed to count a number of prescaled values of the main system clock. In addition, the clock timer can also count the subsystem clock. All of the timer/event counters can count external events.

16-Bit Timer/Event Counter 0. Timer/event counter 0 (figure 9) consists of a 16-bit counter (TMO), a 16-bit compare register (CROO), a 16 -bit capture register (CRO1), and a timer output (TOO). Timer 0 can be used as an interval timer, to count external events on the timer input (TIO) pin, to output a programmable square wave, a 14-bit pulse width modulated output, or to measure pulse widths.

Figure 9. 16-Bit Timer/Event Counter 0

8-Bit Timer/Event Counters 1 and 2. Timer/event counters 1 and 2 (figure 10) each consist of an 8 -bit timer (TM1 or TM2), an 8-bit compare register (CR10 or CR20), and timer output control logic (TO1 or TO2). The timers are controlled by registers TCL1, TMC1, and TOC1 via five selectors. Timer/event counters 1 and 2 can each be used as an 8 -bit interval timer, to count external events on the timer input pins (T11 or TI2), or to output a programmable square wave. In addition, timers 1 and 2 also can be combined as a 16-bit timer/ event counter and used as a 16-bit interval timer, to count external events on TI1, or to output a programmable square wave on TO2.

Figure 10. 8-Bit Timer/Event Counters 1 and 2

Clock Timer 3. Clock timer 3 (figure 11) is a 5-bit timer that can be used as a time source to keep track of time of day, to release the STOP or HALT modes at regular intervals, or to initiate any other task that must be performed at regular intervals. When driven by the subsystem clock, the clock timer continues to operate in the STOP mode.

The clock timer can function as both an interval timer and a clock timer simultaneously. When used as a clock timer, interrupt request INTWT (not a vectored interrupts) can be generated using the main system or subsystem clock every 0.5 or 0.25 seconds. When used as an interval timer, vectored interrupt request INTTM3 is generated at preselected time intervals. With a main system clock of 8.38 MHz or a subsystem clock of 32.768 kHz , the following time intervals can be selected: $489 \mu \mathrm{~s}, 978 \mu \mathrm{~s}, 1.96 \mathrm{~ms}, 3.91 \mathrm{~ms}, 7.82 \mathrm{~ms}$ or 15.6 ms.

Watchdog Timer. The watchdog timer (figure 12) can be used as either a watchdog timer or an interval timer. When used as a watchdog timer, it protects against inadvertent program run-away. It can be selected to generate a nonmaskable interrupt (INTWDT), which vectors to address 0004 H , or to generate an internal reset signal, which vectors to the restart address 0000 H if the timer is not cleared by the program before it overflows. Eight program-selectable intervals based on the main system clock are available. With a main system clock of 8.38 MHz , the program selectable intervals are $0.489,0.978,1.96,3.91,7.82,15.6,31.3$, and 125 ms . Once the watchdog timer is initialized and started, the timer's mode cannot be changed and the timer can only be stopped by an external reset.

When used as an interval timer, maskable interrupts (INTWDT), which vector to address 0004 H , are generated repeatedly at a preset interval. The time intervals available are the same as in the watchdog timer mode.

Figure 11. Clock Timer 3

Figure 12. Watchdog Timer

Programmable Clock Output

The μ PD78014 family has a programmable clock output (PCL) that can be used for carrier output for remote controlled transmissions or as a clock output for peripheral devices. The main system clock (f_{x}) divided by $8,16,32,64,128$, or 256 or the subsystem clock (fxT^{2}) can be output on the PCL pin. Frequencies of 1050, 524, 262, 131, 65.5 and 32.7 kHz are available with a main system clock of 8.38 MHz . See figure 13.

Buzzer Output

The μ PD78014 family also has a programmable buzzer output (BUZ). The buzzer output frequency can be programmed to be equal to the main system clock (fx) divided by 1024, 2048, or 4096 . With a main system clock of 8.38 MHz , the buzzer can be set to $8.2,4.1$ or 2.0 kHz . See figure 14.

Figure 13. Programmable Clock Output

Figure 14. Buzzer Output

Interrupts

The μ PD78014 family has 14 maskable hardware interrupt sources (5 external and 9 internal). Of these 14 interrupt sources, 12 cause a vectored interrupt while the 2 testable inputs only generate an interrupt request. All of the 14 maskable interrupts can be used to release the HALT mode except INTPO. INTPO cannot be used to release the STOP mode and cannot release the HALT mode when register SCS $=0$. In addition, there is
one nonmaskable interrupt from the watchdog timer, one software interrupt, and a reset interrupt. The watchdog timer overflow interrupt (interrupt vector table address 0004 H) can be initialized to be a nonmaskable interrupt or the highest default priority maskable interrupt. The software interrupt, generated by the BRK instruction, is not maskable. See table 3 and figure 15.

Table 3. Interrupt Sources and Vector Addresses

Type of Request	Default Priority	Signal Name	Interupt Source	Location	Vector Address	Interrupt Configuration
Restart	-	RESET	RESET input pin	External	0000 H	-
	-	INTWDT	Watchdog timer overflow (when reset mode selected)	Internal		
Nonmaskable	-	INTWDT	Watchdog timer overflow (when nonmaskable interrupt selected)	Internal	0004H	A
Maskable	0	INTWDT	Watchdog timer overflow (when interval timer selected)	Internal	0004H	B
	1	INTPO	External interrupt edge detection	External	0006H	C
	2	INTP1	External interrupt edge detection	External	0008 H	D
	3	INTP2	External interrupt edge detection	External	000AH	D
	4	INTP3	External interrupt edge detection	External	000 CH	D
	5	INTCSIO	End of clocked serial interface 0 transfer	Internal	000EH	B
	6	INTCSI1	End of clocked serial interface 1 transfer	Internal	0010H	B
	7	INTTM3	Clock timer reference time interval signal	Internal	0012H	B
	8	INTTMO	16-bit timer/event counter coincidence signal	Internal	0014H	B
	9	INTTM1	8 -bit timer/event counter 1 coincidence signal	Internal	0016H	B
	10	INTTM2	8 -bit timer/event counter 2 coincidence signal	Internal	0018H	B
	11	INTAD	End of A/D Conversion	Internal	001AH	B
Software	-	-	BRK instruction	Internal	003EH	E
Test input	-	INTWT	Clock timer overflow	Internal	-	F
	-	INTPT4	Port 4 falling edge detection	External	-	F

Interrupt Servicing. The μ PD78014 family provides two levels of programmable hardware priority control and services all interrupt requests, except the two testable interrupts (INTWT and INTPT4) using vectored interrupts. The programmer can choose the priority of servicing each maskable interrupt by using the interrupt control registers.
Interrupt Control Registers. The μ PD78014 family has three 16 -bit interrupt control registers. The interrupt request flag register (IFO) contains an interrupt request flag for each interrupt except INTPT4. The interrupt mask register (MKO) is used to enable or disable any interrupt except INTPT4. The priority flag
register (PRO) can be used to specify a high or a low priority level for each interrupt except the two testable interrupts.
Four other 8-bit registers are associated with interrupt processing. The key return mode register (KRM) contains the KRIF interrupt request flag associated with falling-edge detection on port 4 and the KRMK mask flag used to enable or disable clearing of the standby mode if a falling edge is detected on port 4. The external interrupt mode register (INTM0) is used to select a rising, falling, or both edges as the valid edge for each of the external interrupts INTPO to INTP2 (INTP3 is always falling edge). The sampling clock
select register (SCS) is used to select a sampling clock for the noise eliminator circuit on external interrupt INTPO.

The IE and the ISP bit of the program status word are also used to control interrupts. If the IE bit is 0 , all maskable interrupts are disabled. The IE bit can be set
or cleared using the El and DI instructions, respectively, or by directly writing to the PSW. The IE bit is cleared each time an interrupt is accepted. The ISP bit is used by hardware to hold the priority level flag of the interrupt being serviced.

Figure 15. Interrupt Configurations
Type A: Internal nonmaskable Interrupt

Type B: Internal maskable interrupt

Type C: External maskable interrupt (INTPO)

Figure 15. Interrupt Configurations (cont)
Type D: External maskable Interrupt (except INTPO)

Type E: Software interrupt

Type F: Test Input

Abbrevlations:

IF: Interrupt request flag
IE: Interupt enable flag
ISP: In-service priority flag
MK: Interupt mask flag
PR: Prortty specily flag

Interrupt Priority. If the watchdog timer overflow interrupt (INTWDT) has been initialized to be a nonmaskable interrupt, it has priority over all other interrupts. Two hardware-controlled priority levels are available for all maskable interrupts that generate a vectored interrupt (i.e., all except the two testable interrupts). Either a high or a low priority level can be assigned by software to each of the maskable interrupts. Interrupt requests of the same priority or a priority higher than the processor's current priority level are held pending until interrupts in the current service routine are enabled by software or until one instruction has been executed after returning from the current service routine. Interrupt requests of a lower priority are always held pending until one instruction has been executed after returning from the current service routine.

The default priorities listed in table 3 are fixed by hardware and are effective only when it is necessary to choose between two interrupt requests of the same software-assigned priority. For example, the default priorities would be used after the completion of a high-priority routine, if two interrupts of the same software priority were pending.
The software interrupt, initiated by the BRK instruction, is executed regardless of the processor's priority level and the state of the IE bit. It does not alter the processor's priority level.
Vectored Interrupt Servicing. When a vectored interrupt is acknowledged, the program status word and the program counter are saved on the stack, the processor's priority is set to that specified for the interrupt, the IE bit in the PSW is set to zero, and the routine whose address is in the interrupt vector table is entered. At the completion of the service routine, the RETI instruction (RETB instruction for the software interrupt) reverses the process and the μ PD78014 family microcontroller resumes the interrupted routine.

Standby Modes

HALT, STOP, and data retention modes are provided to reduce power consumption when CPU action is not required.
The HALT mode is entered by executing a HALT instruction while the CPU is operating from the main system or subsystem clock. In HALT mode, the CPU clock is stopped while the main system and the subsystem clock continue to run. The HALT mode is released by any unmasked interrupt request (except

INTPO if register SCS $=0$), a nonmaskable interrupt request, an unmasked test input, or an external reset pulse.
Power consumption may be further reduced by using the STOP mode. The STOP mode is entered by executing a STOP instruction while operating from the main system clock. In STOP mode, the main system clock input pin X1 is internally grounded stopping both the CPU and the peripheral hardware clock. The STOP mode is released by any unmasked interrupt request except INTPO, a nonmaskable interrupt request, an unmasked test input, or an external reset pulse. Any peripheral using the main oscillator as a clock source will also be disabled in the STOP mode and interrupts from such a peripheral cannot be used to exit the STOP mode. Table 4 summarizes both the HALT and STOP standby modes.

Table 4. Standby Mode Operation Status

Item	HALT Mode	STOP Mode
Setting instruction	HALT instruction	STOP instruction
System clock when setting	Main system or subsystem clock	Main system clock
Clock oscillator	Main system and subsystem clocks can oscillate; CPU clock is stopped.	Subsystem clock can oscillate; CPU clock and main system clock are stopped.
CPU	Operation stopped	Operation stopped
Ports	Maintain previous state	Maintain previous state
16-bit timer/event counter	Operational from main system clock	Operation stopped
8-bit timer/event counters	Operational from main system clock	Operational only with TI1 and T12 as count clock
Clock timer	Operational from main system clock and with ${ }^{\mathrm{f}} \mathrm{XT}$ as count clock	Operational only with ${ }^{\mathrm{f}} \mathrm{XT}$ as count clock
Watchdog timer	Operational from main system clock	Operation stopped
Serial interface 0	Operational from main system clock	Operational only with external clock
Serial interface 1	Operational from main system clock; no automatic transmit/ receive mode	Operational only with external clock; no automatic transmit/ receive mode
A/D converter	Operational from main system clock	Operation stopped
External interrupts	Operational except for INTPO when its sampling clock is based on the CPU clock	INTPO not operational; INTP1 to INTP3 operational

When exiting the STOP mode, a wait time occurs before the CPU begins execution to allow the main system clock oscillator circuit to stabilize. The oscillator stabilization time is selected by programming the OSTS register with one of five values before entering the STOP mode. The values range from 0.98 msec to 31.3 msec at $\mathrm{f}_{\mathrm{x}}=8.38 \mathrm{MHz}$. Once in the STOP mode, power consumption can be further minimized by lowering the power supply voltage $\mathrm{V}_{D D}$ to 2 V . This places the device in the data retention mode. The contents of internal RAM and the registers are retained. This mode is released by first raising $V_{D D}$ to the proper operating range and then releasing the STOP mode.

External Reset

The μ PD78014 family is reset by taking the RESET pin low or by an overflow of the watchdog timer (if enabled). The RESET input pin is a schmitt-trigger input with hysteresis characteristics to protect against spurious system resets caused by noise. On power-up, the RESET pin must remain low for a minimum of $10 \mu \mathrm{~s}$ after the power supply reaches its operating voltage.
There is no functional difference between an external reset and an internal reset caused by the overflow of the watchdog timer. In both cases, the main system clock oscillation is stopped and the subsystem clock oscillation continues. During reset, the program counter is loaded with the address contained in the reset vector (addresses $0000 \mathrm{H}, 0001 \mathrm{H}$). Once the reset is cleared and the oscillation stabilization time of $2^{18} / \mathrm{fx}$ has elapsed, program execution starts at that address.

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

Supply voltage, V_{DD}	-0.3 to +7.0 V
Supply voltage, $\mathrm{V}_{\text {PP }}$	-0.3 to +13.5 V
Supply voltage, $\mathrm{AV}_{\mathrm{DD}}$	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Supply voltage, $\mathrm{AV}_{\text {REF }}$	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Supply voltage, $\mathrm{AV}_{\text {SS }}$	-0.3 to +0.3 V
Input voltage, V_{11} (except $\mathrm{P6}_{0}$ to $\mathrm{P6}_{3}$)	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Input voltage, $\mathrm{V}_{12}\left(\mathrm{PG}_{0}\right.$ to P_{3}; open drain)	-0.3 to +16 V
Output voltage, V_{0}	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Analog input voltage, V_{AN} (port 1; analog input pin)	$\mathrm{AV}_{\text {SS }}-0.3$ to $\mathrm{AV}_{\text {REF }}+0.3 \mathrm{~V}$
Output current, high; I_{OH}	
Each output pin	-10 mA
Total: ports 2 and 3	-15 mA
Total: port 0 and ports 4 to 6	-15 mA

Output current, low, lol \dagger	
Each output pin	30 mA peak, 15 mA rms
Total: P_{4} to P_{4} and	100 mA peak, 70 mA rms
$\mathrm{P5}_{0}$ to $\mathrm{P5}_{5}$	
Total: PO_{1} to $\mathrm{PO}_{3}, \mathrm{P5}_{6}, \mathrm{P} 5_{7}$, and $\mathrm{P6}_{0}$ to P_{7}	100 mA peak, 70 mA rms
Total: PO_{1} to PO_{3} and $\mathrm{P6}_{4}$ to $\mathrm{P6}_{7}$	50 mA peak, 20 mA rms
Total: ports 2 and 3	50 mA peak, 20 mA rms
Operating temperature, TOPT	-40 to $+85^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\text {STG }}$	-65 to $+150^{\circ} \mathrm{C}$

\dagger rms value $=$ peak value \times (duty cycle) ${ }^{1 / 2}$
Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC characteristics.

Capacitance

$T_{A}=+25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{S S}=0 \mathrm{~V}$

Parameter	Symbol	Max	Unit	Conditions	
Input capacitance	$\mathrm{C}_{\text {IN }}$	15	pF	$\begin{aligned} & \text { Except } \mathrm{P}_{0} \\ & \text { to } \mathrm{PG}_{3} \end{aligned}$	$\mathrm{f}=1 \mathrm{MHz}$ unmeasured pins returned to ground
		20	pF	$\mathrm{P6}_{0}$ to $\mathrm{P6}_{3}$	
Output capacitance	COUT	15	pF	$\begin{aligned} & \text { Except } P 6_{0} \\ & \text { to } \mathrm{PG}_{3} \end{aligned}$	
		20	pF	$\mathrm{P6}_{0}$ to $\mathrm{P6}_{3}$	
Input/output capacitance	C_{10}	15	pF	$\begin{aligned} & \text { Except } \mathrm{P6}_{0} \\ & \text { to } \mathrm{P6}_{3} \end{aligned}$	
		20	pF	$\mathrm{P6}_{0}$ to $\mathrm{P6}_{3}$	

Main System Clock Oscillator

$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.7$ to 6.0 V ; refer to figure 16.

Type	Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Ceramic resonator (Figure 16A)	Oscillation frequency (Note 1)	${ }^{\text {f }}$ X	1.0		10.0	MHz	$V_{D D}=$ oscillator voltage range
	Oscillation stabilization time (Note 2)				4.0	ms	After V_{DD} reaches oscillator operating voltage
Crystal resonator (Figure 16A)	Oscillation frequency (Note 1)	${ }^{\prime} \mathrm{X}$	1.0	8.38	10.0	MHz	
	Oscillation stabilization time (Note 2)				10	ms	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
					30	ms	
External clock (Figure 16B)	X1 input frequency (Note 1)	${ }^{\prime} \mathrm{X}$	1.0		10.0	MHz	
	X1 input high/low-level width	${ }^{\text {XHH}}$, $\mathrm{t}_{\text {XL }}$	50		500	ns	

Notes:

(1) Oscillator and X1 input frequencies are included only to show the oscillator characteristics. Refer to the AC Characteristics table for actual instruction execution times.
(2) Time required for the oscillator to stabilize after reset or STOP mode is released. The values shown are for the recommended resonators. Values for resonators not shown in this data sheet should be obtained from the manufacturer's specification sheets.

Subsystem Clock Oscillator

$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.7$ to 6.0 V ; refer to figure 17.

Type	Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Crystal resonator (Figure 17A)	Oscillation frequency (Note 1)	${ }^{\text {fXT }}$	32	32.768	35	kHz	
	Oscillation stabilization time (Note 2)			1.2	2	s	$V_{D D}=4.5$ to 6.0 V
					10	s	
External clock (Figure 17B)	XT1 input frequency (Note 1)	$f_{X T}$	32		100	kHz	
	XT1 input high/low-level width	${ }^{\text {t }}$ XTH, ${ }^{\text {t }}$ XTL	5		15	$\mu \mathrm{s}$	

Notes:

(1) The oscillator and XT1 input frequencies are included only to show the oscillator characteristics. Refer to the AC Characteristics table for actual instruction execution times.
(2) Time required for the oscillator to stabilize after reset or STOP mode is released. The values shown are for the recommended resonators. Values for resonators not shown in this data sheet should be obtained from the manufacturer's specification sheets.

Figure 16. Main System Clock Configurations
A. Ceramic/Crystal Resonator

B. External Clock

Note: When the input is an external clock, the STOP mode can not be set because the X1 pin is connected to system ground (V_{SS}).

Figure 17. Subsystem Clock Configurations
A. Crystal Resonator

B. External Clock

μ PD78014 Family

Recommended Main System Clock Ceramic Resonators

$T_{A}=-40$ to $+85^{\circ} \mathrm{C}$, refer to figure 16 a

Part Number (Notes 1 and 2)	Recommended Circuit Constant			Oscillator Voltage Range		$\begin{aligned} & \text { Frequency } \\ & (\mathrm{MHz}) \\ & \hline \end{aligned}$
	C1 (pF)	C2 (pF)	R1 (k8)	Min (V)	Max (V)	
CSB1000J	100	100	6.8	$\begin{aligned} & 2.7 \text { (Note 3) } \\ & 2.8 \text { (Note 4) } \\ & \hline \end{aligned}$	6.0	1.00
CSBxxxxJ	100	100	4.7	2.7 (Note 3) 2.8 (Note 4)	6.0	1.01 to 1.25
CSAx.xxxMK	100	100	0	$\begin{aligned} & 2.7 \text { (Note 3) } \\ & 2.8 \text { (Note 4) } \end{aligned}$	6.0	1.26 to 1.79
CSAx.xxMG (Note 3) CSAx.xxMGO93(Note 4) CSTx.xxMG (Note 3) CSTx.xxMGO93 (Note 4)	$\begin{gathered} 100 \\ 100 \\ (\text { Note 5) } \\ 0(\text { Note 5) } \end{gathered}$	$\begin{gathered} 100 \\ 100 \\ \text { (Note 5) } \\ 0 \text { (Note 5) } \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 2.7 \\ & 2.7 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \\ & 6.0 \\ & 6.0 \end{aligned}$	1.8 to 2.44
CSAx.xxMG CSTx.xxMGW	$\begin{gathered} 30 \\ \text { (Note 5) } \end{gathered}$	$\begin{gathered} 30 \\ (\text { Note } 5) \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	2.45 to 4.18
CSAx.xxMG (Note 3) CSAx.xxMGU(Note 4) CSTx.xxMGW (Note 3) CSTx.xxMGWU (Note 4)	30 30 (Note 5) 0 (Note 5)	30 30 (Note 5) 0 (Note 5)	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 2.7 \\ & 2.7 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \\ & 6.0 \\ & 6.0 \end{aligned}$	4.19 to 6.00
CSAx.xxMT	30	30	0	2.7 (Note 3) 3.0 (Note 4)	6.0	6.01 to 10.0
CSTx.xxMTW	(Note 5)	(Note 5)	0	2.7 (Note 3) 3.0 (Note 4)	6.0	

Notes:

(1) Manufactured by Murata Mfg. Co., Ltd.
(4) μ PD78P014 only
(2) $x . x x$ indicates frequency
(5) C 1 and C 2 are contained in the ceramic resonators.
(3) μ PD7801x only

Recommended Subsystem Clock Crystal Resonators (μ PD7801x)

$T_{A}=-40$ to $+60^{\circ} \mathrm{C}$, refer to figure 17a

	F	Recommended Circuit Constant			Oscillator Voltage Range	
Part Number \dagger	(kHz)	C3 (pF)	C4 (pF)	R2 (kS)	Min (V)	$\operatorname{Max}(\mathrm{V})$
DT-38 (1TA252 E00, load capacitance 6.3 pF)	32.768	12	12	100	2.7	6.0

\dagger Manufactured by Daishinku

DC Characteristics

$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=+2.7$ to 6.0 V ; refer to figures $18-23$

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
High-level input voltage	$\mathrm{V}_{\mathrm{HH} 1}$	$0.7 \mathrm{~V}_{\mathrm{DD}}$		$V_{D D}$	V	Other than below
	$\mathrm{V}_{1 \mathrm{H} 2}$	0.8 V DD		$V_{D D}$	V	$\begin{aligned} & \mathrm{PO}_{0} \text { to } \mathrm{PO}_{4}, \mathrm{P}_{0}, \mathrm{P}_{2}, \mathrm{P}_{4} \text { to } \mathrm{P}_{7}, \\ & \mathrm{P}_{3}, \mathrm{P3}_{4}, \overline{\mathrm{RESET}} \end{aligned}$
	$\mathrm{V}_{1 \mathrm{H} 3}$	$0.7 \mathrm{~V}_{\mathrm{DD}}$		15	V	$\mathrm{P6}_{0}$ to $\mathrm{P6}_{3}$; open-drain
	$\mathrm{V}_{1 \mathrm{H} 4}$	$V_{D D}-0.5$		$V_{D D}$	V	X1, X2
	$\mathrm{V}_{\mathrm{HH5}}$	$V_{D D}-0.5$		$V_{D D}$	V	$\mathrm{V}_{\mathrm{DD}}=4.5$ to $6.0 \mathrm{~V} ; \mathrm{XT1}, \mathrm{XT2}$
		$V_{D D}-0.3$		$V_{D D}$	V	μ PD7801x; XT1, XT2
		$V_{D D}-0.2$		$V_{D D}$	V	μ PD78P014

DC Characteristics (cont)

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Low-level input voltage	$\mathrm{V}_{\text {IL, }}$	0		$0.3 \mathrm{~V}_{\text {DD }}$	V	Other than below
	$\mathrm{V}_{\text {IL2 }}$	0		$0.2 V_{D D}$	V	$\begin{aligned} & \mathrm{PO}_{0} \text { to } \mathrm{PO}_{4}, \mathrm{P}_{2}, \mathrm{P}_{2}, \mathrm{P}_{4} \text { to } \mathrm{P}_{7}, \\ & \mathrm{P}_{3}, \mathrm{P3}_{4}, \mathrm{RESET} \end{aligned}$
	VIL3	0		$0.3 \mathrm{~V}_{\text {DD }}$	V	$\mathrm{P6}_{0}$ to $\mathrm{PG}_{3} ; \mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		0		$0.2 V_{D D}$	V	$\mathrm{P6}_{0}$ to $\mathrm{P6}_{3}$
	$\mathrm{V}_{\text {IL } 4}$	0		0.4	V	X1, X2
	$\mathrm{V}_{\text {IL5 }}$	0		0.4	V	$\mathrm{XT1}, \mathrm{XT2}$; $\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		0		0.3	V	XT1, XT2
High-level output voltage	$\mathrm{V}_{\mathrm{OH} 1}$	$V_{D D}-1.0$			V	$\mathrm{V}_{\mathrm{DD}}=4.5$ to $6.0 \mathrm{~V}, \mathrm{l}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$
		$V_{D D}-0.5$			V	$\mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$
Low-level output voltage	$V_{\text {OL1 }}$		0.4	2.0	v	P_{0} to $\mathrm{P5}_{7}, \mathrm{P} 6_{0}$ to $\mathrm{P6}_{3}$; $\mathrm{V}_{\mathrm{DD}}=4.5$ to $6.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=15 \mathrm{~mA}$
				0.4	V	Other than above; $\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V , $\mathrm{OL}=1.6 \mathrm{~mA}$
	$\mathrm{V}_{\text {OL2 }}$			$0.2 \mathrm{~V}_{\text {D }}$	v	$\begin{aligned} & \mathrm{SBO}, \mathrm{SB1}, \overline{\mathrm{SCKO}} ; \mathrm{V}_{\mathrm{DD}}=4.5 \text { to } 6.0 \mathrm{~V}, \\ & \text { open-drain, pullup resistance }=1 \mathrm{k} \Omega \end{aligned}$
	$\mathrm{V}_{\text {OL3 }}$			0.5	V	$\mathrm{bL}=400 \mu \mathrm{~A}$
High-level input leakage current	LIH1			3	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$; except $\mathrm{X} 1, \mathrm{X} 2, \mathrm{XT} 1, \mathrm{XT} 2$
	LLIH 2			20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}} ; \mathrm{X} 1, \mathrm{X} 2, \mathrm{XT1}, \mathrm{XT2}$
	LIH 3			80	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V} ; \mathrm{Pb}_{0}$ to $\mathrm{P6}_{3}$
Low-level input leakage current	LILL 1			-3	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}$; except $\mathrm{X} 1, \mathrm{X} 2, \mathrm{XT} 1, \mathrm{XT2}$
	LILL2			-20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} ; \mathrm{X} 1, \mathrm{X} 2, \mathrm{XT1}, \mathrm{XT2}$
	LILL3			-3	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} ; \mathrm{P6}_{0}$ to PG_{3} (Note 1)
Output leakage current high	LLOH_{1}			3	$\mu \mathrm{A}$	$V_{\text {OUT }}=V_{\text {DD }}$
Output leakage current low	Lol			-3	$\mu \mathrm{A}$	$V_{\text {OUT }}=O \mathrm{~V}$
Mask option pullup resistor	R_{1}	20	40	90	$\mathrm{k} \Omega$	$\mathrm{VIN}=0 \mathrm{~V} ; \mathrm{P6}_{0} \mathrm{TO} \mathrm{P6}_{3}, \mu \mathrm{PD7801x}$ only
Software pullup resistor	R_{2}	15	40	90	k Ω	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.5 \text { to } 6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{PO}_{1} \text { to } \mathrm{PO}_{3}, \\ & \text { ports } 1 \text { to } 5, \mathrm{PG}_{4} \text { to } \mathrm{P6}_{7} \end{aligned}$
		20		500	k Ω	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}==2.7 \text { to } 4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{PO}_{1} \text { to } \mathrm{PO}_{3}, \\ & \text { ports } 1 \text { to } 5, \mathrm{P6}_{4} \text { to } \mathrm{PG}_{7} \end{aligned}$
Power supply current (μ PD7801x)	${ }^{\text {dD1 }}$		7.5	22.5	mA	8.38 MHz crystal oscillation operating mode; $V_{D D}=5.0 \mathrm{~V} \pm 10 \%$ (Note 2)
			0.8	2.4	mA	8.38 MHz crystal oscillation operating mode; $V_{D D}=3.0 \mathrm{~V} \pm 10 \% \text { (Note 3) }$
	${ }^{\text {DD2 }}$		1.4	4.2	mA	8.38 MHz crystal oscillation HALT mode; $V_{D D}=5.0 \mathrm{~V} \pm 10 \%$
			550	1650	$\mu \mathrm{A}$	8.38 MHz crystal oscillation HALT mode; $V_{D D}=3.0 \mathrm{~V} \pm 10 \%$
	${ }^{\text {DD }} 3$		60	120	$\mu \mathrm{A}$	32.768 kHz crystal oscillation operating mode; $V_{D D}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{X} 1$ STOP mode, CPU operating from subsystem clock
			35	70	$\mu \mathrm{A}$	32.768 kHz crystal oscillation operating mode; $V_{D D}=3.0 \mathrm{~V} \pm 10 \%$, X1 STOP mode, CPU operating from subsystem clock

μ PD78014 Family

DC Characteristics (cont)

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Power supply current (μ PD7801x) (cont)	IDD4		25	50	$\mu \mathrm{A}$	32.768 kHz crystal oscillation HALT mode; $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$, X 1 STOP mode
			5	10	$\mu \mathrm{A}$	32.768 kHz crystal oscillation HALT mode; $V_{D D}=3.0 \mathrm{~V} \pm 10 \%$, X 1 STOP mode
	IDD5		1	20	$\mu \mathrm{A}$	XT1 $=0 \mathrm{~V}$ STOP mode when feedback resistor is connected; $V_{D D}=5.0 \mathrm{~V} \pm 10 \%$
			0.5	10	$\mu \mathrm{A}$	$\mathrm{XT1}=0 \mathrm{~V}$ STOP mode when feedback resistor is connected; $V_{D D}=3.0 \mathrm{~V} \pm 10 \%$
	${ }^{\text {IDD6 }}$		0.1	20	$\mu \mathrm{A}$	XT1 $=0 \mathrm{~V}$ STOP mode when feedback resistor is disconnected; $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$
			0.05	10	$\mu \mathrm{A}$	$\mathrm{XT} 1=0 \mathrm{~V}$ STOP mode when feedback resistor is disconnected; $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$
Power supply current (μ PD78P014)	IDD1		9	27	mA	8.38 MHz crystal oscillation operating mode; $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \% \text { (Note 2) }$
			1	3	mA	8.38 MHz crystal oscillation operating mode; $V_{D D}=3.0 \mathrm{~V} \pm 10 \% \text { (Note 3) }$
	${ }^{\text {DD } 2}$		1.4	4.2	mA	8.38 MHz crystal os cillation HALT mode; $\mathrm{V}_{\mathrm{DD}}=$ $5.0 \mathrm{~V} \pm 10 \%$
			550	1650	$\mu \mathrm{A}$	8.38 MHz crystal oscillation HALT mode; $\mathrm{V}_{\mathrm{DD}}=$ $3.0 \mathrm{~V} \pm 10 \%$
	${ }^{\text {DD } 3}$		90	180	$\mu \mathrm{A}$	32.768 kHz crystal oscillation operating mode; $V_{D D}=5.0 \mathrm{~V} \pm 10 \%$, X 1 STOP mode, CPU operating from subsystem clock
			50	100	$\mu \mathrm{A}$	32.768 kHz crystal oscillation operating mode; $V_{D D}=3.0 \mathrm{~V} \pm 10 \%$, X 1 STOP mode, CPU operating from subsystem clock
	${ }^{\text {DD4 }}$		25	50	$\mu \mathrm{A}$	32.768 kHz crystal oscillation HALT mode; $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$, X 1 STOP mode
			5	10	$\mu \mathrm{A}$	32.768 kHz crystal oscillation HALT mode; $V_{D D}=3.0 \mathrm{~V} \pm 10 \%, X 1$ STOP mode
	${ }^{\text {DD5 }}$		1	30	$\mu \mathrm{A}$	$\mathrm{XT} 1=0 \mathrm{~V}$ STOP mode when feedback resistor is connected; $V_{D D}=5.0 \mathrm{~V} \pm 10 \%$
			0.5	10	$\mu \mathrm{A}$	$\mathrm{XT} 1=0 \mathrm{~V}$ STOP mode when feedback resistor is connected; $V_{D D}=3.0 \mathrm{~V} \pm 10 \%$
	${ }^{\text {DDD }}$		0.1	30	$\mu \mathrm{A}$	$\mathrm{XT} 1=0 \mathrm{~V}$ STOP mode when feedback resistor is disconnected; $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$
			0.05	10	$\mu \mathrm{A}$	$\mathrm{XT} 1=0 \mathrm{~V}$ STOP mode when feedback resistor is disconnected; $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$

Notes:

(1) P_{0} to $\mathrm{P6}_{3}$ become $-200 \mu \mathrm{~A}$ (max.) for only 1 clock cycle during input instruction execution (no wait) and $-3 \mu \mathrm{~A}$ (max.) during instruction other than input.
(2) When operated in the high-speed mode with the processor clock control register set to 00 H .
(3) When operated in low-speed mode with the processor clock control register set to 04 H .

Figure 18. IDD vs VD (μ PD7801x)

Figure 19. IDD vs VDD (μ PD78P014)

Figure 20. IoL vs $V_{O L}$ (Ports 0, 2-5, $\mathrm{P6}_{\mathbf{4}}-P 6_{7}$)

Figure 21. Iol vs Vol (Port 1)

Figure 22. Iol vs $\mathrm{V}_{\mathrm{oL}}\left(\mathrm{PG}_{6}-\mathrm{Pb}_{3}\right)$

Figure 23. $I_{O H}$ vs $V_{D D}-V_{O H}$ (Ports 0-5, P64-P67)

AC Characteristics

$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; V_{D D}=2.7$ to 6 V ; refer to figures 24 through 30

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Cycle time (Min. instruction execution time)	${ }^{\text {t }} \mathrm{CY}$	0.4		64	$\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V ; operating on main system clock (μ PD7801x)
		0.96		64	$\mu \mathrm{s}$	Operating on main system clock (μ PD7801x)
		0.48		64	$\mu \mathrm{s}$	$V_{D D}=4.5$ to 6.0 V ; operating on main system clock (μ PD78P014)
		1.91		64	$\mu \mathrm{s}$	Operating on main system clock (4 PD78P014)
		0.4		64	$\mu \mathrm{s}$	$\begin{aligned} & T_{\mathrm{A}}=-40 \text { to }+40^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{DD}}=4.75 \text { to } 6.0 \mathrm{~V} ; \\ & \text { operating on main system clock (} \mu \mathrm{PD} 78 \mathrm{P} 014 \text {) } \end{aligned}$
		0.96		64	$\mu \mathrm{s}$	$T_{A}=-40$ to $+40^{\circ} \mathrm{C}$; operating on main system clock (μ PD78P014)
		114	122	125	$\mu \mathrm{s}$	Operating on subsystem clock
TI input frequency	${ }^{+}{ }^{\prime}$	0		4	MHz	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		0		275	kHz	
Tl input high/ low-level width	$\mathrm{t}_{\text {TIH, }}$ t ${ }_{\text {TIL }}$	100			ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		1.8			$\mu \mathrm{s}$	
Interrupt input high/low-level width	${ }_{\text {I }}$ NTH, $\mathrm{t}_{\text {INTL }}$	$8 / \mathrm{fsam}_{\text {sam }}$ (Note 1)			$\mu \mathrm{s}$	INTPO
		10			$\mu \mathrm{s}$	INTP1 to INTP3
		10			$\mu \mathrm{s}$	KRO to KR7 (Note 2)
RESET low-level width	$t_{\text {RST }}$	10			$\mu \mathrm{s}$	

Notes:

(1) By using bits 0 and 1 of the sampling clock select (SCS) register in conjunction with bits 0 to 2 of the processor clock control (PCC) register, $f_{\text {sam }}$ can be set to $f_{x} / 2^{N+1}$ (where $N=0$ to 4), $\mathrm{f}_{\mathrm{x}} / 64$, or $\mathrm{f}_{\mathrm{x}} / 128$.
(2) Port 4 falling-edge detection input.

Figure 24. Main System Clock Operation tcy vs $V_{D D}$ (μ PD7801x)

Figure 25. Main System Clock Operation tcr vs $V_{D D}$ (μ PD78P014)

Note:
When $T_{A}=-40$ to $+40^{\circ} \mathrm{C}$, guaranteed operating range is extended to the dotted line.

Figure 26. AC Timing Measurements Points (except X1 and XT1)

Figure 27. Clock AC Timing Points X1 and XT1

Figure 28. 71 Timing

Figure 29. Interrupt Input Timing

Figure 30. $\overline{\operatorname{RESET}}$ Input Timing

μ PD78014 Family

Read/Write Operation

$T_{A}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7$ to 6.0 V ; refer to figures 31 through 34

Parameter	Symbol	Min	Max	Unit	Conditions
ASTB high-level width	$t_{\text {ASTH }}$	$0.5 \mathrm{t}_{\mathrm{CY}}$		ns	
Address setup time to ASTB \downarrow	$t_{\text {ADS }}$	0.5 tcy-30		ns	
Address hold time from ASTB \downarrow	$t_{\text {ADH }}$	10		ns	Load resistor $\geq 5 \mathrm{k} \Omega$
Data input time from address	${ }^{\text {t }}$ ADD1		$(2+2 n) t \mathrm{CY}-50$	ns	Instruction fetch
	$t_{\text {ADD2 }}$	5	$(3+2 n) \mathrm{t}_{\mathrm{CY}}-100$	ns	Data access
Data input time from $\overline{\mathrm{RD}} \downarrow$	$t_{\text {RDD1 }}$		$(1+2 n) t_{C Y}-25$	ns	Instruction fetch
	$t_{\text {RDD2 }}$		$(2.5+2 n) t_{C Y}-100$	ns	Data access
Read data hold time	$t_{\text {RDH }}$	0		ns	
$\overline{\mathrm{RD}}$ low-level width	$\mathrm{t}_{\mathrm{RDL} 1}$	$(1.5+2 n) t_{C Y}-20$		ns	Instruction fetch
	$\mathrm{t}_{\mathrm{RDL} 2}$	$(2.5+2 n) \mathrm{t}_{\mathrm{CY}}-20$		ns	Data access
$\overline{\text { WAIT }} \downarrow$ input time from $\overline{\mathrm{RD}} \downarrow$	$t_{\text {RDWT1 }}$		$0.5 \mathrm{t}_{\mathrm{CY}}$	ns	Instruction fetch
	$t_{\text {RDWT2 }}$		$1.5 \mathrm{t}_{\mathrm{CY}}$	ns	Data access
	tWRWT		$0.5 \mathrm{t}_{\mathrm{CY}}$	ns	
$\overline{\text { WAIT low-level width }}$	tWTL	$(0.5+2 n) t_{C Y}+10$	$(2+2 n) t_{C Y}$	ns	
Write data setup time to WR \uparrow	twDS	100		ns	
Write data hold time from $\overline{W R} \uparrow$	tWDH	5		ns	
$\overline{\overline{W R}}$ low-level width	${ }^{\text {tWRLI }}$	$(2.5+2 n) t_{C Y}-20$		ns	
	$t_{\text {ASTRD }}$	$0.5 \mathrm{t}_{\mathrm{CY}}-30$		ns	
	$t_{\text {ASTWR }}$	$1.5 \mathrm{t}_{\mathrm{CY}}-30$		ns	
ASTB \uparrow delay time from $\overline{R D} \uparrow$ (external fetch)	$t_{\text {RDAST }}$	$\mathrm{t}_{C Y}-10$	${ }^{t_{C Y}}+40$	ns	
Address hold time from $\overline{\mathrm{RD}} \uparrow$ (external fetch)	$t_{\text {RDADH }}$	t_{CY}	$t_{C Y}+50$	ns	
Write data output time from $\overline{\mathrm{RD}} \uparrow$	$t_{\text {RDWD }}$	10		ns	
WR \downarrow delay time from write data	tWDWR	$0.5 \mathrm{t}_{\mathrm{CY}}-120$	$0.5 \mathrm{t}_{\mathrm{CY}}$	ns	$V_{D D}=4.5$ to 6.0 V
		$0.5 \mathrm{t}_{\mathrm{CY}}-170$	$0.5 \mathrm{tcy}^{\text {ch }}$	ns	
Address hold time from $\overline{W R} \uparrow$	twradh	$t_{C Y}$	$t_{C Y}+60$	ns	$V_{D D}=4.5$ to 6.0 V
		$t_{C Y}$	$t_{C Y}+100$	ns	
$\overline{\mathrm{RD}} \uparrow$ delay time from $\overline{\text { WAIT }} \uparrow$	twTRD	$0.5 \mathrm{t}_{\mathrm{CY}}$	$2.5 \mathrm{t}_{\mathrm{CY}}+80$	ns	
	tWTWR	$0.5 \mathrm{t}_{\mathrm{cY}}$	$2.5 \mathrm{t}_{\mathrm{CY}}+80$	ns	

Notes:

(1) $t_{C Y}=t_{C Y} / 4$
(2) n indicates number of waits.
(3) $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$

Figure 31. Read Operation; External Fetch (No Wait)

Figure 32. Read Operation; External Fetch (Wait Insertion)

Figure 33. Read/Write Operation; External Data Access (No Wait)

Figure 34. Read/Write Operation; External Data Access (Wait Insertion)

μ PD78014 Family

Serial Interface, 3-Wire, I/O Mode; Internal $\overline{\text { SCK Output }}$

$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.7$ to 6.0 V ; refer to figure 35

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
$\overline{\text { SCK }}$ cycle time	${ }^{\text {K }}$ K ${ }^{\text {Y } 1}$	800			ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		3200			ns	
$\overline{\text { SCK }}$ high- and low-level width	${ }^{\text {K }}$ H $1, t_{\text {KL1 }}$	${ }_{\mathrm{t}_{\mathrm{KCY}}{ }_{1} / 2-50}$			ns	$V_{D D}=4.5$ to 6.0 V
		${ }_{\text {K }}^{\text {KCY } 1 / 2-150 ~}$			ns	
SI setup time to $\overline{\text { SCK }} \uparrow$	${ }^{\text {t }}$ IKK1	100			ns	
SI hold time from $\overline{\text { SCK }} \uparrow$	$\mathrm{t}_{\mathrm{KSI} 11}$	400			ns	
SO output delay time from $\overline{\text { SCK }} \downarrow$	${ }^{\text {tKSO1 }}$			300	ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to $6.0 \mathrm{~V} ; \mathrm{C}=100 \mathrm{pF}$ (Note 1)
				1000	ns	$C=100 \mathrm{pF}$ (Note 1)

Note 1: C is the load capacitance of the SO output line.
Serial Interface, 3-Wire, I/O Mode; External $\overline{\text { SCK }}$ Input
$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.7$ to 6.0 V ; refer to figure 35

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
$\overline{\overline{S C K}}$ cycle time	${ }^{\text {tKCY2 }}$	800			ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		3200			ns	
$\overline{\overline{S C K}}$ high- and low-level width	$t_{K H 2}, t_{K L 2}$	400			ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		1600			ns	
SI setup time to $\overline{\text { SCK }} \uparrow$	${ }^{\text {tSIK2 }}$	100			ns	
SI hold time from $\overline{\text { SCK } \uparrow}$	$t_{\text {KS } 12}$	400			ns	
SO output delay time from $\overline{\text { SCK }} \downarrow$	$\mathrm{t}_{\mathrm{KSO} 2}$			300	ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to $6.0 \mathrm{~V} ; \mathrm{C}=100 \mathrm{pF}$ (Note 1)
				1000	ns	$\mathrm{C}=100 \mathrm{pF}$ (Note 1)

Note 1: C is the load capacitance of the SO output line.

Serial Interface, SBI Mode; Internal $\overline{\text { SCK Output }}$
$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{D D}=2.7$ to 6.0 V ; refer to figure 36

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
$\overline{\text { SCK }}$ cycle time	${ }^{\text {K KCY3 }}$	800			ns	$V_{D D}=4.5$ to 6.0 V
		3200			ns	
$\overline{\overline{S C K}}$ high- and low-level width	${ }_{\mathrm{t}_{\mathrm{KH}}, \mathrm{t}_{\text {KL3 }}}$	$t_{\text {KCY3 }} / 2-50$			ns	$V_{D D}=4.5$ to 6.0 V
		$\mathrm{t}_{\mathrm{KCY} 3} / 2-150$			ns	
$\overline{\mathrm{SB}}$, SB1 setup time to $\overline{\mathrm{SCK}} \uparrow$	${ }_{\text {tsik3 }}$	100			ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		300			ns	
SB0, SB1 hold time from $\overline{\text { SCK }} \uparrow$	$\mathrm{t}_{\mathrm{KSI}}$	$\mathrm{t}_{\mathrm{KCY} 3 / 2}$			ns	
SB0,SB1 output delay time from $\overline{\text { SCK }} \downarrow$	$\mathrm{t}_{\mathrm{KSO}}$	0		250	ns	$\begin{aligned} & V_{D D}=4.5 \text { to } 6.0 \mathrm{~V} ; R=1 \mathrm{k} \Omega, \\ & C=100 \mathrm{pF}(\text { Note } 1) \end{aligned}$
		0		1000	ns	$R=1 \mathrm{k} \Omega \mathrm{C}=100 \mathrm{pF}$ (Note 1)
$\widehat{\text { SB0, SB1 } \downarrow \text { from } \overline{\text { SCK }} \uparrow}$	${ }^{\text {tKSB }}$	$\mathrm{t}_{\text {KCY3 }}$			ns	\cdots.
	${ }_{\text {t }}{ }_{\text {SBK }}$	${ }_{\text {t }}{ }_{\text {K }} \mathrm{CH}_{3}$			ns	*
SB0, SB1 high-level width	${ }_{\text {tSBH }}$,		ns	
SB0, SB1 low-level width	${ }^{\text {t }}$ SBL	$\mathrm{t}_{\mathrm{KCY}}$			ns	

Note 1: R and C are the load resistance and load capacitance of the SB0 and SB1 output lines.

Serial Interface, SBI Mode; External $\overline{\text { SCK }}$ Input
$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.7$ to 6.0 V ; refer to figure 36

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
$\overline{\overline{S C K}}$ cycle time	$\mathrm{t}_{\mathrm{KCY}} 4$	800			ns	$V_{D D}=4.5$ to 6.0 V
		3200			ns	
$\overline{\overline{S C K}}$ high- and low-level width	$\mathrm{t}_{\mathrm{KH} 4}, \mathrm{t}_{\mathrm{KL} 4}$	400			ns	$V_{D D}=4.5$ to 6.0 V
		1600			ns	
	$t_{\text {SIK }}$	100			ns	$V_{D D}=4.5$ to 6.0 V
		300			ns	
SB0, SB1 hold time from $\overline{\text { SCK }} \uparrow$	$t_{\text {KS } 14}$	$\mathrm{t}_{\mathrm{KCY} 4} / 2$			ns	
$\overline{\text { SB0, SB1 output delay time from } \overline{S C K} \downarrow}$	$\mathrm{t}_{\text {KSO4 }}$	0		300	ns	$V_{D D}=4.5 \text { to } 6.0 \mathrm{~V} ; \mathrm{R}=1 \mathrm{k} \Omega, \mathrm{C}=100 \mathrm{pF} .$ (Note 1)
		0		1000	ns	$R=1 \mathrm{k} \Omega, \mathrm{C}=100 \mathrm{pF}$
SB0, SB1 \downarrow from $\overline{\text { SCK } \uparrow}$	$t_{\text {KSB }}$	$\mathrm{t}_{\mathrm{KCY} 4}$			ns	
	$t_{\text {SBK }}$	${ }_{\text {t }}^{\text {KCY4 }}$			ns	
SB0, SB1 high-level width	$t_{\text {SBH }}$	$\mathrm{t}_{\mathrm{KCY} 4}$			ns	
SB0, SB1 low-level width	$t_{\text {SBL }}$	$\mathrm{t}_{\text {KCY4 }}$			ns	

Note 1: R and C are the load resistance and load capacitance of the SB0 and SB1 output lines.

Serial Interface, 2-Wire, I/O Mode; Internal $\overline{\text { SCK }}$ Output

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
$\overline{\overline{S C K}}$ cycle time	$\mathrm{t}_{\mathrm{KCY} 5}$	1600			ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		3800			ns	
$\overline{\text { SCK }}$ high-level width	$t_{\text {KH5 }}$	$t_{\text {KCY5 }} / 2-50$			ns	
$\overline{\text { SCK }}$ low-level width	${ }_{\text {t }}^{\text {KL5 }}$	$\mathrm{t}_{\mathrm{KCY5}} / 2-50$			ns	
SB0, SB1 setup time to $\overline{S C K} \uparrow$	${ }_{\text {t }}^{\text {SIK1 }}$	300			ns	
SB0, SB1 hold time from $\overline{\text { SCK }} \uparrow$	$t_{\text {KSI5 }}$	600			ns	
$\overline{\text { SB0, SB1 }}$ output delay time from $\overline{\text { SCK }} \downarrow$	$\mathrm{t}_{\text {KSO5 }}$	0		250	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.5 \text { to } 6.0 \mathrm{~V} \\ & \mathrm{R}=1 \mathrm{k} \Omega \mathrm{C}=100 \mathrm{pF} \text { (Note } 1 \text {) } \end{aligned}$
		0		1000	ns	$R=1 \mathrm{k} \Omega \mathrm{C}=100 \mathrm{pF}$ (Note 1)

Note 1: R and C are load resistance and load capacitance of the $\overline{\text { SCKO }}, \mathrm{SBO}$, and SB1 output lines.

Serial Interface, 2-Wire, I/O Mode; External $\overline{\text { SCK }}$ Input
$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.7$ to 6.0 V ; refer to figure 37

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
$\overline{\overline{S C K}}$ cycle time	$t_{\text {KCY6 }}$	1600			ns	$V_{D D}=4.5$ to 6.0 V
		3800			ns	
$\overline{\overline{S C K}}$ high-level width	${ }^{\text {t }}$ KH6	650			ns	
SCK low-level width	$\mathrm{t}_{\text {KL6 }}$	800			ns	
SB0, SB1 setup time to $\overline{S C K} \uparrow$	${ }^{\text {t SIK6 }}$	100			ns	
SB0, SB1 hold time from $\overline{\text { SCK }} \uparrow$	$t_{\text {KS } 16}$	$\mathrm{t}_{\mathrm{KCY}_{6} / 2}$			ns	
SB0, SB1 output delay time from $\overline{\text { SCK }} \downarrow$	$\mathrm{t}_{\text {KSO6 }}$	0		300	ns	$\begin{aligned} & V_{D D}=4.5 \text { to } 6.0 \mathrm{~V} \\ & R=1 \mathrm{k} \Omega, C=100 \mathrm{pF} \text { (Note } 1 \text {) } \end{aligned}$
		0		1000	ns	

Note 1: R and C are load resistance and load capacitance of the SCKO, SB0, and SB1 output lines.

Serial Interface, 3-Wire, I/O Mode with Automatic Transmit/Receive Function; Internal $\overline{\text { SCK Output }}$
$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{D D}=2.7$ to 6.0 V ; refer to figure 38

Parameter	Symbol	Min	Typ	Max	Unit	Conditions $\cdots \cdots$
$\overline{\text { SCK cycle time }}$	$\mathrm{t}_{\mathrm{KCY7}}$	800			ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		3200			ns	
$\overline{\overline{S C K}}$ high- and low-level width	${ }_{\text {t }}^{\text {KH7, }}$, $\mathrm{t}_{\text {KL7 }}$	$\mathrm{t}_{\mathrm{KCY7}} / 2-50$			ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		${ }^{\text {K }}$ KCY7 $/ 2-150$			ns	
SI setup time to $\overline{\text { SCK }} \uparrow$	${ }_{\text {t }}^{\text {IKK7 }}$	100			ns	
SI hold time from $\overline{\text { SCK } \uparrow}$	$\mathrm{t}_{\mathrm{KS17}}$	400			ns	
$\overline{\overline{\text { SCK }} \downarrow \text { to SO output delay time }}$	$t_{\text {KSO7 }}$			300	ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to $6.0 \mathrm{~V} ; \mathrm{C}=100 \mathrm{pF}$ (Note 1)
				1000	ns	$C=100 \mathrm{pF}$ (Note 1)
STB \uparrow from $\overline{\text { SCK }} \uparrow$	${ }^{\text {t }}$ SBD	400		$\mathrm{t}_{\mathrm{KCY7}}$	ns	
Strobe signal high-level width	$t_{\text {SBW }}$	$\mathrm{tKCY7}^{-30}$		${ }_{\mathrm{K}}^{\mathrm{KCY7}} \mathrm{+}$ + 30	ns	
Busy signal set-up time (to busy signal detection timing)	${ }^{\text {t }}$ BYS	100			ns	
Busy signal hold time (from busy signal detection timing)	$\mathrm{t}_{\mathrm{BYH}}$	100			ns	. . .
$\widehat{\text { SCK } \downarrow \text { from busy inactive }}$	$\mathrm{t}_{\text {SPS }}$			$2 \mathrm{t}_{\mathrm{KCY}}$	ns	

Note 1: C is the load capacitance for the SO output line.
Serial Interface, 3-Wire, I/O Mode with Automatic Transmit/Receive Function; External $\overline{\text { SCK }}$ Input $T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{D D}=2.7$ to 6.0 V ; refer to figure 38

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
$\overline{\overline{S C K}}$ cycle time	${ }_{\text {tKCY8 }}$	800			ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		3200			ns	
$\overline{\text { SCK }}$ high- and low-level width	${ }^{\text {KHB8, }}$, $\mathrm{K}_{\text {L }}$	400			ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		1600			ns	
SI setup time to $\overline{S C K} \uparrow$	$\mathrm{t}_{\text {SIK8 }}$	100			ns	
SI hold time from $\overline{\text { SCK }} \uparrow$	$\mathrm{t}_{\mathrm{KS} 18}$	400			ns	
$\overline{\text { SCK }} \downarrow$ to SO output delay time	$\mathrm{t}_{\mathrm{KSO}}$			300	ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to $6.0 \mathrm{~V} ; \mathrm{C}=100 \mathrm{pF}$ (Note 1)
				1000	ns	$\mathrm{C}=100 \mathrm{pF}$ (Note 1)
	tsps 1	$2 t_{\text {KCY8 }}$			ns	

Note 1: C is the load capacitance for the SO output line.

Figure 35. Serial Interface Timing; 3-Wire Serial I/O Mode

Figure 36. Serial Interface Timing; SBI Mode

SBI Bus Command Signal Transfer Timing

Figure 37. Serial Interface Timing; 2-Wire Serial I/O Mode

Figure 38. Serial Interface Timing; 3-Wire Serial I/O Mode with Automatic Transmit/Receive Function

μ PD78014 Family

A/D Converter

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Resolution		8	8	8	bit	
Absolute accuracy (Note 1)				± 1.5	LSB	
Conversion time	tconv	160/fx			$\mu \mathrm{s}$	$\mathrm{f}_{\mathrm{X}}=4.19$ to 8.38 MHz
		80/7x			$\mu \mathrm{s}$	$\mathrm{f}_{\mathrm{X}}=1$ to 4.19 MHz
Sampling time	$\mathrm{t}_{\text {SAMP }}$	24/fx			$\mu \mathrm{s}$	
Analog input voltage	$V_{\text {IAN }}$	$\mathrm{AV}_{\text {SS }}$		$\mathrm{AV}_{\text {REF }}$	V	
Reference voltage	$\mathrm{AV}_{\text {REF }}$	2.7		$\mathrm{AV}_{\mathrm{DD}}$	V	
$\mathrm{AV}_{\text {REF }}$ current	M REF		0.5	1.5	mA	

Note 1: Absolute accuracy does not include the quantization error ($\pm 1 / 2 \mathrm{LSB}$).

Data Memory STOP Mode; Low-Voltage Data Retention
$T_{A}=-40$ to $+85^{\circ} \mathrm{C}$; refer to figure 39

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Data retention supply voltage	$V_{\text {DDDR }}$	2.0		6.0	V	
Data retention power supply current	IdDDR		0.1	10	$\mu \mathrm{A}$	$V_{D D D R}=2.0 \mathrm{~V}$; subsystem clock stop and feedback resistor disconnected
Release signal set time	$t_{\text {SREL }}$	0			$\mu \mathrm{s}$	
Oscillation stabilization wait time	twat		$2^{18} / \mathrm{f} x$		ms	Release by $\overline{\text { RESET }}$
			(Note 1)		ms	Release by interrupt

Note:
(1) $2^{13} / f x, 2^{15} / f x, 2^{16} / f x, 2^{17 / f} x$ or $2^{18 / f} x$ can be chosen by using bits 0 to 2 of the oscillation stabilization time select (OSTS) register.

Figure 39. Data Retention Timing
A. STOP mode is released by RESET input

B. STOP mode is released by interrupt signal

PROM PROGRAMMING

The PROM in the μ PD78P014 is an OTP or UV EPROM. The $32,768 \times 8$-bit PROM has the programming characteristics of an NEC μ PD27C256A. Table 5 shows the functions of the μ PD78P014 pins in both normal operating and PROM programming mode.

Table 5.	Pin Functions During PROM Programming	
Function	Normal Operating Mode	Programming Mode
Address input	$\mathrm{P}_{0}-\mathrm{P}_{7}, \mathrm{P5}_{0}, \mathrm{PO}_{0}$, $\mathrm{P5}_{2}-\mathrm{P5}_{6}$	$\mathrm{~A}_{0}-\mathrm{A}_{14}$
Data input	$\mathrm{P}_{0}-\mathrm{P3}_{7}$	$\mathrm{D}_{0}-\mathrm{D}_{7}$
Chip enable/ program pulse	$\mathrm{P6}_{5} \overline{\mathrm{NR}}$	$\overline{\mathrm{CE}}$
Output enable	$\mathrm{P6}_{4} / \overline{\mathrm{RD}}$	$\overline{\mathrm{OE}}$
Program voltage	IC	V_{PP}
Mode voltage	$\overline{\mathrm{RESET}}$	Logical O

PROM Programming Modes

When the RESET pin is set low and V_{PP} is set to +5 V or +12.5 V , the μ PD78P014 enters the programming mode of operation. Operation in this mode is determined by the setting of the $\overline{C E}, \overline{O E}, V_{P P}$ and $V_{D D}$ pins as indicated in Table 6.

Table 6. Programming Operation Modes

Mode	$\overline{R E S E T}$	$\mathrm{~V}_{\mathbf{P P}}$	V_{DD}	$\overline{\mathrm{CE}}$	$\overline{\mathrm{OE}}$	D_{0} to D_{7}
Program write	L	+12.5 V	+6 V	L	H	Data input
Program verify	L	+12.5 V	+6 V	H	L	Data output
Program inhibit	L	+12.5 V	+6 V	H	H	High impedance
Read	L	+5 V	+5 V	L	L	Data output
Output disble	L	+5 V	+5 V	L	H	High impedance
Standby	L	+5 V	+5 V	H	L / H	High impedance

Figure 40. PROM Programming Mode Pin Function; 64-Pin Plastic or Ceramic Shrink DIP

μ PD78P014CW/DW		
(1	64	SS
\square		
4^{2}	63	$V_{D D}$
4^{3}		$\square)$
¢ 4	61	\square
$\square 5$	60	
46	59	\square
$\boxed{4}$	58	\square
-8	57	\square
$\mathrm{D}_{0}-9$	56	\square
$\mathrm{D}_{1}-10$	55	\square
$\mathrm{D}_{2}{ }_{11}$	54	$\mathrm{V}_{\text {SS }}$
$\mathrm{D}_{3} \square 12$	53	曰L
$\mathrm{D}_{4} \square 13$	52	\square Open
$\mathrm{D}_{5} \square 14$	51	$\square \mathrm{Vpp}$
$\mathrm{D}_{6} \mathrm{~S}_{15}$	50	-L
$\mathrm{D}_{7} \square 16$	49	\square Open
$V_{S S} \square 17$	48	$V_{D D}$
$A_{0} \square_{18}$	47	-
$A_{1} \square 19$	46] $\}$
$A_{2} \square_{20}$	45	$\square)$
$\mathrm{A}_{3} \mathrm{C}_{21}$	44	$\square \mathrm{Ag}_{9}$
$\mathrm{A}_{4} \square_{22}$	43	$\square \overline{\text { RESET }}$
$\mathrm{A}_{5} \mathrm{C}_{23}$	42	\square
$A_{6} \mathrm{C}_{24}$	41	$\square\}$
$A_{7} \square_{25}$	40	$\square \overline{C E}$
$\mathrm{A}_{8} \square_{26}$	39	$\square \overline{O E}$
ᄂ 27	38	$\square)$
$\mathrm{A}_{10}-28$	37	\square
$\mathrm{A}_{11} \mathrm{C}_{29}$	36	$\square\}$
$A_{12} \square \mathbf{}$	35	\square
$\mathrm{A}_{13} \mathrm{C}_{31}$	34	\square
$\mathrm{V}_{S S}{ }^{\text {d2 }}$	33	A_{14}

Notes:
(1) L: Connect these pins separately to V_{SS} through reslstors (10 kS).
(2) V_{SS} : Connect to the ground.
(3) $\overline{\text { RESET: }}$ Set to the low level.
(4) Open: Do not connect these pins.

Figure 41. PROM Programming Mode Pin Functions; 64-pin Plastic QFP

Notes:

(1) L: Connect these pins separately to V_{SS} through resistors ($10 \mathrm{k} \Omega$).
(2) V_{SS} : Connect to the ground.
(3) $\overline{\text { RESET: }}$ Set to the low level.
(4) Open: Do not connect these pins.

PROM Write Procedure

Data can be written to the PROM by using the following procedure.
(1) Set the pins not used for programming as indicated in figures 40 and 41 . Set the RESET pin low and the $V_{D D}$ and $V_{P P}$ pins to +5 V . The $\overline{C E}$ and $\overline{O E}$ pins should be high.
(2) Supply +6.0 V to the V_{DD} pin and +12.5 V to the Vpp pin.
(3) Provide the initial address to the $A_{0}-A_{14}$ pins.
(4) Provide the write data.
(5) Provide a 1-ms program pulse (active low) to the $\overline{C E}$ pin.
(6) Use the verify mode (pulse $\overline{\mathrm{OE}}$ low) to test the data. If data is written correctly, proceed to step 8 ; if data is not written correctly, repeat steps 4 to 6 up to 25 times. If data is still incorrect, go to step 7.
(7) Classify the PROM as defective and cease write operation.
(8) Perform one additional write with a program pulse width (in ms) equal to three times the number of writes performed in step 5.
(9) Increment the address.
(10) Repeat steps 4-9 until the last adress is programmed.

PROM Read Procedure

The contents of the PROM can be read out of the external data bus $\left(D_{0}-D_{7}\right)$ by using the following procedure.
(1) Set the pins not used for programming as indicated in figures 40 and 41 . Set the RESET pin low and the $V_{P P}$ pin and $V_{D D}$ pin to +5 V . The $C E$ and $\overline{O E}$ pins should be high.
(2) Input the address of the data to be read to the $A_{0}-A_{14}$ pins.
(3) Put an active-low pulse on $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ pins.
(4) Data is output to pins $D_{0}-D_{7}$.

Program Erasure

The UV EPROM can be erased (all locations FFH) by exposing the window to light having a wavelength shorter than 400 nm , including ultraviolet, direct sunlight, and fluorescent light. To prevent unintentional erasure, mask the window.

Typically, data is erased by $254-\mathrm{nm}$ ultraviolet rays. A minimum lighting level of $15 \mathrm{~W} \mathrm{~s} / \mathrm{cm}^{2}$ (ultraviolet ray intensity x exposure time) is required to completely erase the written data. Erasure by an ultraviolet lamp rated at $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ takes approximately 15 to 20 minutes. Remove any filter on the lamp and place the device within 2.5 cm of the lamp tubes.

DC Programming Characteristics

$T_{A}=25 \pm 5^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$.

*Corresponding symbols of the $\mu \mathrm{PD} 27 \mathrm{C} 256 \mathrm{~A}$.
AC Programming Characteristics (Write Mode)

Parameter	Symbol	Symbol*	Min	Typ	Max	Unit	Conditions
Address setup time to $\overline{\mathrm{CE}} \downarrow$	$\mathrm{t}_{\text {SAC }}$	$t_{\text {AS }}$	2			$\mu \mathrm{s}$	
Data input to $\overline{O E} \downarrow$ delay time	${ }^{\text {t }}$ DOO	toes	2			$\mu \mathrm{s}$	
Input data setup time to $\overline{\mathrm{CE}} \downarrow$	$\mathrm{ts}_{\text {IDC }}$	$t_{\text {d }}$	2			$\mu \mathrm{s}$	
Address hold time from $\overline{\mathrm{CE}} \uparrow$	thica	${ }^{\text {t }}$ H	2			$\mu \mathrm{s}$	
Input data hold time from $\overline{\mathrm{CE}} \uparrow$	${ }^{\text {H }} \mathrm{HCID}$	${ }_{\text {t }}{ }^{\text {H }}$	2			$\mu \mathrm{s}$	
Output data hold time from $\overline{O E} \uparrow$	$\mathrm{t}_{\mathrm{HOOD}}$	tDF	0		130	ns	
$V_{\text {Pp }}$ setup time to $\overline{\mathrm{CE}} \downarrow$	tsVPC	tvps	1			ms	
$V_{\text {DDP }}$ setup time to $\overline{C E} \downarrow$	tsvde	tvas	1			ms	
Initial program pulse width	twL1	tpw	0.95	1.0	1.05	ms	
Additional program pulse width	twL2	topw	2.85		78.75	ms	
$\overline{\mathrm{OE}} \downarrow$ to data output time	tDOOD	$\mathrm{t}_{\text {OE }}$			150	ns	

[^4]AC Programming Characteristics (Read Mode)

Parameter	Symbol	Symbol*	Min	Typ	Max	Unit	Condition
Address to data output time	${ }_{\text {t }}$ DAOD	$t_{\text {ACC }}$			200	ns	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$
$\overline{\overline{C E}} \downarrow$ to data output time	${ }^{\text {t }}$ DCOD	${ }^{\text {cte }}$			200	ns	$\overline{O E}=V_{I L}$
$\overline{\mathrm{OE}} \downarrow$ to data output time	${ }^{\text {t }}$ DOOD	toe			75	ns	$\overline{C E}=V_{\text {IL }}$
Data hold time from $\overline{O E} \uparrow$	$t_{\text {HCOD }}$	$t_{\text {bF }}$	0		60	ns	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$
Data hold time from address	thaod $^{\text {d }}$	${ }^{\text {tor }}$	0			ns	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\text {IL }}$

* Corresponding symbols of the μ PD27C256A.

AC Programming Characteristics (PROM Mode)
$T_{A}=25 \pm 5^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Min	Typ	Max	Unit	Condition
PROM mode setup time	tSMA			10	$\mu \mathrm{~s}$	

μ PD78014 Family

PROM Timing Diagrams
PROM Write/Verify Mode

PROM Timing Diagrams (cont)
PROM Read Mode

PROM Mode Setting

Preliminary

Description

The μ PD78011BY, μ PD78012BY, μ PD78013Y, μ PD78014Y, and μ PD78P014Y are members of NEC's K-Series ${ }^{\circledR}$ of microcontrollers. The $\mu \mathrm{PD} 78014 \mathrm{Y}$ family is a variation of the μ PD78014 family with the addition of an I2C bus mode in serial interface 0 . These 8 -bit, single-chip microcontrollers feature an A/D converter, two serial interface ports, 8 -bit hardware multiply and divide instructions, bit manipulation instructions, four banks of main registers, an advanced interrupt handling facility, and a powerful set of memory-mapped on-chip peripherals.

On-board data memory includes 512 or 1024 bytes of internal high-speed RAM plus 32 bytes of serial buffer RAM. Program memory options include $8 \mathrm{~K}, 16 \mathrm{~K}, 24 \mathrm{~K}$, or 32 K bytes of mask ROM, or 32 K bytes of UV EPROM or one-time programmable (OTP) ROM.
The μ PD78014Y family operates over a wide voltage range: 2.7 to 6.0 volts. Timing is generated by two built-in oscillators. A main oscillator normally drives the CPU and most peripherals and at 10 MHz provides a minimum instruction time of $0.4 \mu \mathrm{sec}$. A subsystem oscillator at 32.768 kHz provides time keeping, and optionally a slow clock for the CPU. Since CMOS power dissipation is directly proportional to clock rate, the μ PD78014Y family provides a software variable CPU clock. The HALT and STOP modes are two additional power saving features that turn off parts of the microcontroller to reduce power consumption. A data retention mode permits RAM contents to be saved down to 2 volts.
The range of peripherals, including an A/D converter, timers, and two serial ports (one with an IC ${ }^{2}$ bus interface) makes these devices ideal for applications in portable battery-powered equipment, office automation, comunications, consumer electronics, home appliances, and fitness equipment.

[^5]
Features

- Eight-channel 8-bit A/D converter
-Operates from 2.7 to 6.0 V
- Two-channel serial communication interface
-8-bit clock-synchronous interface 0
${ }^{12} \mathrm{C}$ bus mode
Full-duplex, three-wire mode
NEC serial bus interface (SBI) mode
Half-duplex, two-wire mode
-8-bit clock-synchronous interface 1
Full-duplex, three-wire mode with automatic transmit/receive
Half-duplex, two-wire mode
- Timers
- Watchdog timer
- 16-bit timer/event counter
- Two 8-bit timer/event counters usable as one 16-bit timer event/counter
- Clock (watch) timer (time of day tick from either oscillator)
- 53 I/O lines
- Two CMOS input-only lines
- 47 CMOS I/O lines
- Four n-channel, open-drain I/O lines at 15 V maximum
- I/O port pullup resistors
-Software controllable on 47 lines
-Mask option on four lines on ROM version
- Program memory
$-\mu$ PD78011BY: 8 K bytes ROM
$-\mu$ PD78012BY: 16K bytes ROM
- μ PD78013Y: 24K bytes ROM
- μ PD78014Y: 32K bytes ROM
- μ PD78P014Y: 32K bytes EPROM/OTP
- Internal high-speed data memory (RAM)
- μ PD78011BY/012BY: 512 bytes
- μ PD78013Y/014Y/P014Y: 1024 bytes
- Specialized memory
-Serial buffer RAM: 32 bytes
- External memory expansion
-64K bytes total memory space
- Powerful instruction set
- 8-bit unsigned multiply and divide
- 16-bit arithmetic and data transfer instructions
- 1 -bit and 8 -bit logic instructions

Features (cont)

- Minimum instruction times:
- 0.4/0.8/1.6/3.2/6.4 $\mu \mathrm{s}$ program selectable using $10-\mathrm{MHz}$ main system clock
-122μ s selectable using $32.768-\mathrm{kHz}$ subsystem clock
- Memory-mapped on-chip peripherals (special function registers)
- Programmable priority, vectored-interrupt controller (two levels)
- Buzzer and clock outputs
- Power saving and battery operation features
- Variable CPU clock rate
- HALT mode
- STOP mode
- 2-V data retention mode
- CMOS operation; $V_{D D}$ from 2.7 to 6.0 V

Ordering Information

Part Number	ROM	Package	Package Drawing
$\mu \mathrm{PD} 78011 \mathrm{BYCW}-\mathrm{xxx}$	8K mask ROM	64-pin plastic shrink DIP	P64C-70-750 A, C
μ PD78012BYCW-xxx	16 K mask ROM		
$\mu \mathrm{PD} 78013 \mathrm{YCW-xxx}$	24K mask ROM		
μ PD78014YCW-xxx	32 K mask ROM		
$\mu \mathrm{PD} 78 \mathrm{P} 014 \mathrm{YCW}$	32 K OTP ROM		
μ PD78011BYGC-xxx-AB8	8K mask ROM	64-pin plastic QFP	P64GC-80-AB8-2
$\mu \mathrm{PD} 78012 \mathrm{BYGC-xxx-AB8}$	16 K mask ROM		
$\mu \mathrm{PD} 78013 \mathrm{YGC-xxx-AB8}$	24K mask ROM		
$\mu \mathrm{PD} 78014 \mathrm{YGC-xxx-AB8}$	32 K mask ROM		
μ PD78P014YGC-AB8	32 K OTP ROM		
μ PD78P014YDW	32 K UV EPROM	64-pin ceramic shrink DIP w/window	P64DW-70-750 A

Notes:

(1) $x \times x$ indicates ROM code suffix
(2) All devices listed are standard quality grade

Pin Configurations

64-Pin Plastic or Ceramic Shrink DIP

Note:
Connect IC (Intemally Connected) Pin
($\mathrm{VPP}_{\text {P }}$ on $\mu \mathrm{PD} 7 \mathrm{P} 014 \mathrm{Y}$) to V_{SS}.

Pin Configurations (cont)

64-Pin Plastic QFP

Note:
Connect IC (Internally Connected) Pin
($\mathrm{VPP}^{\text {on }} \mu$ PD78P014Y) to V_{SS}.
μ PD78014Y Family

Pin Functions; Normal Operating Mode

Symbol	First Function	Symbol	Alternate Function
PO_{0}	Port 0; 5-bit, bit selectable I/O port (Bits 0 and 4 are input only)	INTPO TIO	External maskable interrupt External count clock input to timer 0
$\begin{aligned} & \mathrm{PO}_{1} \\ & \mathrm{PO}_{2} \\ & \mathrm{PO}_{3} \end{aligned}$		INTP1 INTP2 INTP3	External maskable interrupt
PO_{4}		XT1	Crystal oscillator or external clock input for subsystem clock
$\mathrm{P1}_{0}-\mathrm{P} 1_{7}$	Port 1; 8-bit, bit-selectable 1/O port	ANIO-ANI7	Analog input to A/D converter
$\mathrm{P} 20^{0}$	Port 2; 8-bit, bit-selectable 1/O port	Sl1	Serial data input three-wire serial I/O mode
$\mathrm{P} 21^{1}$		SO1	Serial data output three-wire serial 1/O mode
$\mathrm{P} 22^{2}$		$\overline{\text { SCK1 }}$	Serial clock I/O for serial interface 1
P_{2}		STB	Serial interface automatic transmit/receive strobe output
P 24		BUSY	Serial interface automatic transmit/receive busy input
P 25		$\begin{aligned} & \text { SIO } \\ & \text { SBO } \\ & \text { SDAO } \end{aligned}$	Serial data input three-wire serial I/O mode 2/3-wire serial I/O mode Serial data bus 0 for $\mathrm{R}^{2} \mathrm{C}$ bus mode
$\mathrm{P} 2_{6}$		$\begin{aligned} & \text { SO0 } \\ & \text { SB1 } \\ & \text { SDA1 } \end{aligned}$	Serial data output three-wire serial I/O mode 2/3-wire serial I/O mode Serial data bus 1 for ${ }^{2} \mathrm{C}$ bus mode
P 27		$\begin{aligned} & \overline{\mathrm{SCKO}} \\ & \mathrm{SCL} \end{aligned}$	Serial clock I/O for serial interface 0 Serial clock I/O for I² ${ }^{2}$ bus mode
P_{3}	Port 3; 8-bit, bit-selectable I/O port	TOO	Timer output from timer 0
P_{1}		TO1	Timer output from timer 1
P_{2}		TO2	Timer output from timer 2
P_{3}		T14	External count clock input to timer 1
P_{3}		Tl2	External count clock input to timer 2
P_{3}		PCL	Programmable clock output
P_{3}		BUZ	Programmable buzzer output
P 37		-	
$\mathrm{P}_{0}-\mathrm{P} 4_{7}$	Port 4; 8-bit I/O port	$A D_{0}-A D_{7}$	Low-order 8-bit multiplexed address/data bus for external memory
$P 5_{0}-\mathrm{P} 57$	Port 5; 8-bit, bit selectable I/O port	$A_{8}-A_{15}$	High-order 8-bit address bus for external memory
$\mathrm{P6}_{0}-\mathrm{Pb}_{3}$	Port 6; 8-bit, bit selectable (Pb_{0} to $\mathrm{Pb}_{3} \mathrm{n}$ channel open-drain I/O with mask option pullup resistors ($\mathrm{P6}_{4}-\mathrm{P6}_{7} \mathrm{I} / \mathrm{O}$). See note.	-	
$\mathrm{P6}_{4}$		$\overline{\mathrm{RD}}$	External memory read strobe
$\mathrm{P6}_{5}$		$\overline{W R}$	External memory write strobe
$\mathrm{P6}_{6}$		WAIT	External memory wait signal input
P67		ASTB	Address strobe used to latch address for external memory

Pin Functions; Normal Operating Mode (cont)

Symbol	First Function	Symbol	Alternate Function
RESET	External system reset input		
X1	Crystal/ceramic reaonator connection or external clock input for main system clock		
X2	Crystal/ceramic resonator connection or inverse of external clock for main system clock		
XT2	Crystal oscillator or left open when using external clock for subsystem clock		
$\mathrm{AV}_{\text {REF }}$	A/D converter reference voltage		
$\mathrm{AV}_{\mathrm{DD}}$	A/D converter power supply input		
$\mathrm{AV}_{\text {SS }}$	A/D converter ground		
V_{DD}	Power-supply input		
$V_{\text {PP }}$	μ PD78P014Y PROM programming powersupply input		
$V_{\text {SS }}$	Power-supply ground		
IC	Internal connection		

Note: See table 2 and figure 4 for details

Block Diagram

Notes:

(1) The intemal ROM and RAM size depends on the device.
(2) Pin name in parentheses for the μ PD78P014Y only.

FUNCTIONAL DESCRIPTION

Central Processing Unit

The central processing unit (CPU) of the μ PD78014Y family features 8 - and 16-bit arithmetic including an $8 x$ 8 -bit unsigned multiply and 16×8-bit unsigned divide (producing a 16-bit quotient and an 8-bit remainder). The multiply executes in $3.2 \mu \mathrm{~s}$ and the divide in $5 \mu \mathrm{~s}$ using the fastest clock cycle with a main system clock of 10 MHz .

A CALLT vector table and a CALLF area decrease the number of bytes in the call instructions for commonly used subroutines. A 1-byte call instruction can access up to 32 subroutines through their addresses contained in the CALLT vector table (40H to 7FH). A 2-byte call instruction can access any routine beginning in a specific CALLF area (0800 H to OFFFH).

Internal System Clock Generator

The internal system clocks of the μ PD78014Y family are derived from either the main system or the subsystem oscillator. See figure 1. The clocks for the clock timer and programmable clock output are derived from either the subsystem clock (f_{XT}) or the main system clock. The clocks for all other peripheral hardware are derived from the main system clock.
The CPU clock (ϕ) can be supplied from either the main system clock (fX_{X}) or the subsystem clock (fXT). Using the processor clock control register (PCC), a CPU clock frequency equal to $\mathrm{f}_{\mathrm{X}}, \mathrm{f}_{\mathrm{X}} / 2, \mathrm{f}_{\mathrm{X}} / 4, \mathrm{f}_{\mathrm{X}} / 8, \mathrm{f}_{\mathrm{X}} / 16$ or the subsystem clock f_{XT} can be selected. The CPU clock selected should be based on the power supply voltage available and the desired power consumption. On power up, the CPU clock defaults to the lowest speed from the main system clock and can be changed while the microcontroller is running.

Figure 1. Internal System Clock Generator

Since the shortest instruction takes four CPU clocks to execute, the fastest minimum instruction execution time (t_{Cy}) of $0.4 \mu \mathrm{~s}$ is achieved when using a main system clock at 10 MHz ($V_{D D}$ equals 4.5 to 6.0 V). However, if the clock timer must generate an interrupt every 0.5 or 0.25 seconds, t_{CY} is $0.48 \mu \mathrm{~s}$ at 8.38 MHz . The fastest minimum instruction execution time available across the full voltage range of 2.7 to 6.0 V is 0.96 $\mu \mathrm{s}$ when using a main system clock of 8.38 MHz . For the lowest power consumption, the CPU can be operated
from the subsystem clock and the minimum instruction execution time is $122 \mu \mathrm{~s}$ at 32.768 kHz .

Memory Space

The μ PD78014Y family has a 64K-byte address space. Some of this address space ($0000 \mathrm{H}-\mathrm{FFFFH}$) can be used as both program and data memory as shown in figure 2.

Figure 2. Memory Map

Notes:
(1) 1FFFH on μ PD78011BY

3FFFH on μ PD78012BY
5FFFH on μ PD78013Y
7FFFH on μ PD78014Y/P014Y
(2) FCFFH on μ PD78011Y/012Y FAFFH on μ PD78013Y/014Y/P014Y

Internal Program Memory

All devices in the μ PD78014Y family have internal program memory. The μ PD78011Y/012Y/013Y/014Y contain $8 \mathrm{~K}, 16 \mathrm{~K}, 24 \mathrm{~K}$, and 32 K bytes of internal ROM, respectively. The μ PD78P014Y contains 32 K bytes of UV EPROM or one time programmable ROM. To allow the μ PD78P014Y to emulate the mask ROM devices, the amount of internal program memory available in the μ PD78P014Y can be selected using the memory size switching register (IMS).

Internal RAM

The μ PD78011Y/012Y have 544 bytes and the μ PD78013Y/014Y/P014Y have 1056 bytes of Internal RAM. This Internal RAM consists of two types: highspeed Internal RAM and buffer RAM.

The $\mu \mathrm{PD} 78011 \mathrm{Y} / 012 \mathrm{Y}$ contain 512 bytes (FD00H to FEFFH) while the μ PD78013Y/014Y/P014Y contain 1024 bytes (FBOOH to FEFFH) of high-speed Internal RAM. The high-speed Internal RAM contains the general register banks and the stack. The remainder of the high-speed Internal RAM and any unused register bank locations are available for general storage.

All devices also contain 32 bytes of buffer RAM (FACOH to FADFH). The buffer RAM is accessed at the same speed as external memory and is used as the buffer area for the automatic transfer mode of serial interface 1 or for general storage.

To allow the μ PD78P014Y to emulate the mask ROM devices, the amount of high-speed Internal RAM available in the μ PD78P014Y can also be selected using the IMS.

External Memory

The μ PD 78014 Y family can access $0,256,4 \mathrm{~K}, 16 \mathrm{~K}$ or all available bytes of external memory. The μ PD78014Y family has an 8-bit wide external data bus and a 16-bit wide external address bus. The low-order 8 bits of the address bus are multiplexed and also provide the 8-bit data bus and are supplied by port 4. The high-order address bits of the 16-bit address bus are taken from port 5 as required. The address latch, read, and write strobes, and the external WAIT signal are supplied by port 6.

The memory expansion mode register (MM) controls the size of external memory. It can be programmed to use $0,4,6$, or 8 bits from port 5 for the high-order address. Any remaining port 5 bits can be used for I/O. The MM register also can be used to specify one
additional wait state or the use of the external WAIT signal for low-speed external memory or external peripheral devices.

When only internal ROM and RAM are used and no external memory is required, ports 4,5 and 6 are available as general purpose I/O ports.

CPU Control Registers

Program Counter. The program counter is a 16-bit binary counter register that holds the address of the next instruction to be executed. During reset, the program counter is loaded with the address stored in locations 0000 H and 0001 H .

Stack Pointer. The stack pointer is a 16-bit register that holds the address of the last item pushed onto the stack. It is decremented before new data is pushed onto the stack and incremented after data is popped off the stack.

Program Status Word. The program status word (PSW) is an 8-bit register that contains flags that are set or reset depending on the results of an instruction. This register can be written to or read from 8 bits at a time. The individual flags can also be manipulated on a bit-by-bit basis. The assignment of PSW bits follows.

7							
IE	Z	RBS1	AC	RBSO	0	ISP	CY

CY	Carry flag
ISP	In-service (interrupt) priority flag
RBS0, RBS1	Register bank selection flags
AC	Auxiliary carry flag
Z	Zero flag
IE	Interrupt request enable flag

General Registers

The general-purpose registers (figure 3) consist of four banks of registers located at addresses FEEOH to FEFFH in Internal RAM. Each bank consists of eight 8-bit general registers that can also be used in pairs to function as four 16-bit registers. Two bits in the PSW (RBS0 and RSB1) specify which of the register banks is active at any time and are set under program control.

Registers have both functional names (like A, X, B, C, D, E, H or L for 8-bit registers and $A X, B C, D E$, and $H L$ for 16-bit registers) and absolute names (like R1, R0, R3, R2, R5, R4, R7, or R6 for 8-bit registers and RP0, RP1 RP2, or RP3 for 16-bit registers). Either the functional or absolute register names can be used in instructions that use the operand identifiers r and $r p$.

Figure 3. General Registers

Addressing

The program memory addressing (ROM) modes provided are relative, immediate, table indirect and register addressing. The operand addressing modes provided are implied, register, direct, short direct (saddr), special function (SFR), register indirect, based, based indexed, and stack addressing.

The 'SFR addressing' and 'saddr addressing' modes use direct addressing, and require only 1 byte in the instruction to address RAM. Normally, a 65K byte address space requires 2 bytes to address it. One-byte addressing results in faster access times, since the instructions are shorter. SFR addressing addresses the entire 256-byte SFR address space from FFOOH to FFFFH. Saddr addressing (see figure 2) addresses the 256 -byte address space FE20H to FF1FH. FE20H to FEFFH are composed of 224 bytes of internal high speed RAM; FFOOH to FF1FH contain the first 32 bytes in the special function register area.
One-byte addressing is accomplished by using the first byte of the instruction for the opcode (and one operand if register A or AX is used) and the second byte of the instruction as an address (offset) into the 256-byte area. If register A or AX is used, the instructions are 2 bytes long, thereby providing fast access times. If
immediate data is used, the instruction will be 3 or 4 bytes long depending upon whether the immediate data is a byte or a word. Many 16 -bit SFRs are in the space FFOOH to FF1FH. Using AX as an operand to these SFRs will provide fast access, since the instructions will be only 2 bytes long.

Special Function Registers

The input/output ports, timers, capture and compare registers, and mode and control registers for both the peripherals and CPU are collectively known as special function registers. They are all memory-mapped between FFOOH and FFFFH and can be accessed either by main memory addressing or by SFR addressing. FFOOH to FF 1 H can also be accessed using saddr addressing. They are either 8 or 16 bits as required, and many of the 8-bit registers are bit addressable.
Locations FFDOH through FFDFH are known as the external SFR area. Registers in external circuitry interfaced and mapped to these addresses can only be addressed by main memory addressing. Table 1 lists the special function registers.

Table 1. Special Function Registers

Address	Register (SFR)	Symbol	R/W	Access Units (Bits)			State After Reset
				1	8	16	
FFOOH	Port 0	PO	R/W	X	X	-	OOH
FF01H	Port 1	P1	R/W	x	X	-	OOH
FF02H	Port 2	P2	R/W	X	X	-	OOH
FF03H	Port 3	P3	RM	x	x	-	OOH
FF04H	Port 4	P4	R/W	x	x	-	Undefined
FF05H	Port 5	P5	R/W	x	x	-	Undefined
FF06H	Port 6	P6	R/W	x	x	-	Undefined
FF10H-FF11H	Compare register 00	CROO	R/W	-	-	x	Undefined
FF12H-FF13H	Capture register 01	CR01	R	-	-	x	Undefined
FF14H-FF15H	16-bit timer register	TMO	R	-	-	x	OOH
FF16H	Compare register 10	CR10	R/W	-	x	-	Undefined
FF17H	Compare register 20	CR20	R/W	-	x	-	Undefined
FF18H	8-bit timer register 1	TM1	R	X	x	-	OOH
FF19H	8-bit timer register 2	TM2	R	X	x	-	OOH
FF18H-FF19H	8 -bit timer registers 1 and 2	TMS	R	-	-	x	0000 H
FF1AH	Serial I/O shift register 0	SIOO	R/W	-	X	-	Undefined
FF1BH	Seriall/O shift register 1	SIO1	R/W	-	X	-	Undefined
FF1FH	A/D conversion result register	ADCR	R	-	x	-	Undefined
FF 20 H	Port mode register 0	PMO	R/W	x	x	-	1 FH
FF21H	Port mode register 1	PM1	R/W	x	x	-	FFH
FF22H	Port mode register 2	PM2	R/W	x	X	-	FFH
FF23H	Port mode register 3	PM3	R/W	X	X	-	FFH
FF25H	Port mode register 5	PM5	R/W	x	x	-	FFH
FF26H	Port mode register 6	PM6	R/W	X	x	-	FFH
FF40H	Timer clock select register 0	TCLO	R/W	x	X	-	00 H
FF41H	Timer clock select register 1	TCL1	R/W	-	X	-	OOH
FF42H	Timer clock select register 2	TCL2	R/W	-	x	-	OOH
FF43H	Timer clock select register 3	TCL3	R/W	-	X	-	88 H
FF47H	Sampling clock select register	SCS	R/W	-	X	-	00H
FF48H	16-bit timer mode control register	TMCO	R/W	x	X	-	OOH
FF49H	8 -bit timer mode control register	TMC1	RNW	X	X	-	OOH
FF4AH	Watch (clock) timer mode control register	TMC2	R/W	x	X	-	OOH
FF4EH	16-bit timer output control register	TOCO	R/W	X	X	-	OOH
FF4FH	8 -bit timer output control register	TOC1	R/W	X	x	-	OOH
FF60H	Serial operating mode register 0	CSIMO	R/W	x	x	-	OOH
FF61H	Serial bus interface control register	SBIC	R/W	X	x	-	OOH
FF62H	Slave address register	SVA	R/W	-	X	-	Undefined
FF63H	Interrupt timing specify register	SINT	R/W	x	x	-	OOH
FF68H	Serial operation mode register 1	CSIM1	R/W	x	x	-	OOH
FF69H	Automatic data transmit/receive control register	ADTC	R/W	X	X	-	OOH

Table 1. Special Function Registers (cont)

Address	Register (SFR)	Symbol	R/W	Access Units (Bits)			State After Reset
				1	8	16	
FF6AH	Automatic data transmit/receive address pointer register	ADTP	R/W	-	X	-	OOH
FF80H	A/D converter mode register	ADM	R/W	x	x	-	01H
FF84H	A/D converter input select register	ADIS	R/W	-	X	-	OOH
FFDOH- FFDFH	External SFR access area(Note 1)	-	R/W	x	x	-	Undefined
FFEOH	Interrupt request flag register L	IFOL	R/W	x	x	-	OOH
FFE1H	Interrupt request flag register H	IFOH	R/W	X	X	-	OOH
FFEOHFFE1H	Interrupt request flag register	IFO	R/W	-	-	x	0000 H
FFE4H	Interrupt mask flag register L	MKOL	R/W	x	x	-	FFH
FFE5H	Interrupt mask flag register H	MKOH	R/W	x	x	-	FFH
FFE4HFFE5H	Interrrupt mask flag register	MKO	R/W	-	-	X	FFFFH
FFE8H	Priority order specify flag register L	PROL	R/W	X	x	-	FFH
FFE9H	Priority order specify flag register H	PROH	R/W	X	X	-	FFH
FFE8HFFE9H	Priority order specify flag register	PRO	R/W	-	-	X	FFFFH
FFECH	External interrupt mode register	INTMO	R/W	-	x	-	OOH
FFFOH	Memory size switch register (Note 2)	IMS	W	-	x	-	C 8 H
FFF6H	Key return mode register	KRM	R/W	x	x	-	02H
FFF7H	Pullup resistor option register	PUO	R/W	x	x	-	OOH
FFF8H	Memory expanded mode register	MM	R/W	X	X	-	10 H
FFF9H	Watchdog timer mode register	WDTM	R/W	x	X	-	OOH
FFFAH	Oscillation stabilization time select register	OSTS	R/W	-	x	-	04 H
FFFBH	Processor clock control register	PCC	R/W	x	X	-	04H

Notes:

(1) The external access area cannot be accessed using SFR addressing. It can only be accessed using main memory addressing.
(2) $\mu \mathrm{PD} 78 \mathrm{P} 014 \mathrm{Y}$ only.

Input/Output Ports

The μ PD78014Y family has up to 53 port lines. Table 2 lists the features of each port and figure 4 shows the structure of each port pin.

Table 2. Digital Port Functions

Port	Operational Features	Configuration	Direct Drive Capability	Software Pullup Resistor Connection (Note 1)
Port 0 (Note 2)	5 -bit input or output	Bit selectable		Byte selectable, input bits only
Port 1	8 -bit input or output	Bit selectable		Byte selectable, input bits only
Port 2	8 -bit input or output	Bit selectable		Byte selectable, input bits only
Port 3	8 -bit input or output	Bit selectable		Byte selectable, input bits only
Port 4	8 -bit input or output	Byte selectable		Byte selectable, input bits only
Port 5	8 -bit input or output	Bit selectable	LED	Byte selectable, input bits only
Port 6	8 -bit input or output ($\mathrm{Pb}_{0}-\mathrm{Pb}_{3} \mathrm{n}$-channel)	Bit selectable	15 V max $\left(\mathrm{P6}_{0}-\mathrm{P} 6_{3}\right)$	Byte selectable, input bits only $\mathrm{Pb}_{0}-\mathrm{Pb}_{3}$ - mask option only (Note 3) $\mathrm{P6}_{4}$ - $\mathrm{P6}_{7}$ - software

Notes:
(1) Software pullup resistors can be internally connected only (on a port-by-port basis) to port bits set to input mode. Pullup resistors are not connected to port bits set to output mode.
(2) PO_{0} and PO_{4} are input only and do not have a software pullup resistor.
(3) All devices except μ PD78P014Y.

Figure 4. Pin Input/Output Circuits
Type ($\mathrm{PO} \mathrm{O}_{4}$

Figure 4. Pin Input/Output Circuits (cont)
Type 10-A ($\mathrm{P}_{5}-\mathrm{P} 27$)

Analog-to-Digital (A/D) Converter

The μ PD78014Y family A/D converter (see figure 5) uses the successive-approximation method for converting one of eight multiplexed analog inputs into 8-bit digital data. The conversion time per input is 19.1μ s at 8.38 MHz operation.
The A/D converter input select register (ADIS) selects the number of inputs that are used in A / D conversion. The remaining inputs are used as ports. The A/D input to be converted is selected by programming the A / D
converter mode register (ADM). A/D conversion is started by external interrupt INTP3, or by writing to the ADM. When the conversion is completed, the results are stored in the A/D conversion result register (ADCR) and an INTAD interrupt is generated.
If the A / D converter was started by an external interrupt, the A / D converter stops after the interrupt is generated. If the A / D converter was started by software, the A / D converter repeats the conversion until new data is written to the ADM register.

Figure 5. A/D Converter

Notes:
(1) Selects number of port 1 inputs to be used for AVD conversion.
(2) Selects the channel for ADD conversion.

Serial Interfaces

The μ PD78014Y family has two independent serial interfaces: serial interface 0 and serial interface 1.
Serial Interface 0. Serial interface 0 is an 8 -bit clock synchronous serial interface (figure 6). It can be operated in either a three-wire serial I/O mode, NEC serial bus interface (SBI) mode, two-wire serial I/O mode, or ${ }^{2} \mathrm{C}$ bus mode. The serial clock can be provided from one of eight internal clocks, the output of 8 -bit timer register 2, or the external clock line SCKO (SCL for I2C bus mode).

In the three-wire serial I/O mode, the 8 -bit shift register (SIOO) is loaded with a byte of data and eight clock pulses are generated. The falling edge of these eight pulses shifts the byte of data out of the SOO line (either MSB or LSB first) while the rising edge of these pulses shifts the data in from the SIO line providing full-duplex operation. The INTCSIO interrupt is generated after each 8-bit transfer.

The NEC SBI mode is atwo-wire high-speed proprietary serial interface available on most devices in the NEC μ PD75xxx and μ PD78xxx product lines. Devices are

Figure 6. Serial Interface 0

connected in a master/slave configuration (see figure 7). There is only one master device at a time; all others are slaves. The master sends addresses, commands, and data over one of the serial bus lines (SBO or SB1) using a fixed hardware protocol synchronized with the SCKO line. Each slave device of the μ PD78014Y family can be programmed to respond in hardware to any one of 256 addresses set in its slave address register (SVA). There are also 256 commands and 256 data types. Since all commands are user definable, many software protocols, simple or complex, can be defined. It is even possible to develop commands to change a slave into a master and the previous master into a slave.

Figure 7. SBI Mode Master/Slave Configuration

The two-wire serial I/O mode provides half-duplex operation using either the SB0 or SB1 line and the SCK0 line. Communication format and handshaking can be handled in software by controlling the output levels of the data and clock lines between transfers. When the 8 -bit shift register (SIOO) is loaded with a byte of data, eight clock pulses are generated. The falling edge of these eight pulses shifts the byte of data out of either the SB0 or SB1 line MSB first. In addition, this byte of data is also shifted back into SIOO on the rising edge of these pulses providing a way of verifying that the transmission was correct.

For data reception, the SIOO register is preloaded with the value FFH. As this data value is shifted out on the falling edge of the serial clock, it disables the n-channel open-drain driver. This allows the receive data to be
driven on to the serial line and shifted into the SIOO register on the rising edge of the serial clock. The INTCSIO interrupt is generated after each 8-bit transfer.
The I2C bus is a two-wire, high-speed serial bus developed by Philips. The ${ }^{2} \mathrm{C}$ bus configuration has a single master and up to 128 slave devices (see figure 8). The master sends the start condition, 7 -bit slave address, one bit indicating the direction of the upcoming data transfer, and the stop condition over one of the serial bus lines (SDAO or SDA1) using a fixed hardware protocol synchronized with the output of the serial clock line (SCL).
Each slave device of the μ PD78014Y family can be programmed to respond in hardware to any of 128 addresses set in its SVA. Depending on the state of the transfer direction bit, either the master or the slave device places additional data on the 12 C bus. The device receiving the data returns an acknowledge signal each time it receives 8 bits of data. The slave device can also notify the master device when it is busy by holding SCL low.

Figure 8. ${ }^{2}$ C Bus Master/Slave Configuration

Serial Interface 1. Serial interface 1 is also an 8 -bit clock synchronous serial interface (figure 9). It can be operated in either a three-wire serial I/O mode, or three-wire serial I/O mode with automatic transmit/ receive. The serial clock can also be provided from one of eight internal clocks (common clock for both interfaces), the output of 8 -bit timer register 2, or the external clock line $\overline{\text { SCK1 }}$.

Figure 9. Serial Interface 1

In the three-wire serial I/O mode, the 8 -bit shift register (SIO1) is loaded with a byte of data and eight clock pulses are generated. The falling edge of these eight pulses shifts the byte of data out of the SO1 line (either MSB or LSB first) while the rising edge of these pulses shifts the data in from the SI1 line providing full-duplex operation. The INTCSI1 interrupt is generated after each 8-bit transfer.

In the three-wire serial I/O mode with automatic transmit/receive, up to 32 bytes of data can be transferred with minimal CPU overhead. The data to be transmitted and received is stored in the buffer RAM. Handshaking using either the BUSY input line, the strobe (STB) output line, or both, can be selected by the program. Error detection of bit drift due to noise is available for each byte transferred when using the BUSY input line. This automatic transmit/receive mode is ideally suited for transferring data to/from external peripheral devices such as onscreen display (OSD) and LCD controller/driver devices.

While in three-wire serial interface mode with automatic data transfer, the interface can be operated as either a full-duplex interface or a transmit-only interface in single or repetitive operation mode. In the fullduplex mode, a byte of data is transferred from the first location in the buffer RAM and shifted out of the SO1 line (either MSB or LSB first) while the received data is shifted into the Sl1 line and stored back in the first buffer location. After the preset number of bytes has been transferred, the INTCSI1 interrupt is generated.

In single-operation transmit mode, the preset number of bytes from the buffer RAM are transmitted out of the SO1 line (either MSB or LSB first) and the INTCSI1 interrupt is generated after all bytes are transferred. In the repetitive operation transmit mode, data in the buffer is transmitted repeatedly.

Timers

The μ PD78014Y family has one 16-bit timer/event counter, two 8-bit timer/event counters that can be combined for use as a 16-bit timer/event counter, a clock timer, and a watchdog timer. All of these can be programmed to count a number of prescaled values of the main system clock. In addition, the clock timer can also count the subsystem clock. All of the timer/event counters can count external events.

16-Bit Timer/Event Counter 0. Timer/event counter 0 (figure 10) consists of a 16-bit counter (TM0), a 16-bit compare register (CRO0), a 16-bit capture register (CR01), and a timer output (TOO). Timer 0 can be used as an interval timer, to count external events on the timer input (TIO) pin, to output a programmable square wave, a 14-bit pulse width modulated output, or to measure pulse widths.

Figure 10. 16-Bit Timer/Event Counter 0

8-Bit Timer/Event Counters 1 and 2. Timer/event counters 1 and 2 (figure 11) each consist of an 8-bit timer (TM1 or TM2), an 8-bit compare register (CR10 or CR20), and timer output control logic (TO1 or TO2). The timers are controlled by registers TCL1, TMC1, and TOC1 via five selectors. Timer/event counters 1 and 2 can each be used as an 8-bit interval timer, to count external events on the timer input pins (Tl 1 or Tl 2), or to output a programmable square wave. In addition, timers 1 and 2 also can be combined as a 16-bit timer/ event counter and used as a 16-bit interval timer, to count external events on TI1, or to output a programmable square wave on TO 2 .

Figure 11. 8-Bit Timer/Event Counters 1 and 2

Clock Timer 3. Clock timer 3 (figure 12) is a 5-bit timer that can be used as a time source to keep track of time of day, to release the STOP or HALT modes at regular intervals, or to initiate any other task that must be performed at regular intervals. When driven by the subsystem clock, the clock timer continues to operate in the STOP mode. The clock timer can function as both an interval timer and a clock timer simultaneously. When used as an interval timer, vectored interrupt request INTTM3 is generated at preselected time intervals. With a main system clock of 8.38 MHz or a subsystem clock of 32.768 kHz , the following time intervals can be selected: $489 \mu \mathrm{~s}, 978 \mu \mathrm{~s}, 1.96 \mathrm{~ms}, 3.91$ $\mathrm{ms}, 7.82 \mathrm{~ms}$ or 15.6 ms .

When used as a clock timer, interrupt request INTWT (not a vectored interrupt) can be generated using the main system clock or subsystem clock every 0.5 or 0.25 seconds.
Watchdog Timer. The watchdog timer (figure 13) can be used as either a watchdog timer or an interval timer. When used as a watchdog timer, it protects against inadvertent program run-away. It can be selected to generate a nonmaskable interupt (INTWDT), which vectors to address 0004 H , or to generate an internal reset
signal, which vectors to the restart address 0000 H if the timer is not cleared by the program before it overflows. Eight program-selectable intervals based on the main system clock are available. With a main system clock of 8.38 MHz , the program selectable intervals are 0.489 , $0.978,1.96,3.91,7.82,15.6,31.3$, and 125 ms . Once the watchdog timer is initialized and started, the timer's mode cannot be changed and the timer can only be stopped by an external reset. When used as an interval timer, maskable interrupts (INTWDT), which vector to address 0004 H , are generated repeatedly at a preset interval. The time intervals available are the same as in the watchdog timer mode.

Programmable Clock Output

The μ PD78014Y family has a programmable clock output (PCL) that can be used for carrier output for remote controlled transmissions or as a clock output for peripheral devices. The main system clock (fx) divided by $8,16,32,64,128$, or 256 or the subsystem clock (fxT) can be output on the PCL pin. Frequencies of 1050, 524, 262, 131, 65.5 and 32.7 kHz are available with a main system clock of 8.38 MHz . See figure 14.

Figure 12. Clock Timer 3

Figure 13. Watchdog Timer

Figure 14. Programmable Clock Output

Buzzer Output

The μ PD78014Y family also has a programmable buzzer output (BUZ). The buzzer output frequency can be programmed to be equal to the main system clock (fx_{x}) divided by 1024, 2048, or 4096. With a main system clock of 8.38 MHz , the buzzer can be set to $8.2,4.1$ or 2.0 kHz . See figure 15.

Figure 15. Buzzer Output

Interrupts

The μ PD78014Y family has 14 maskable hardware interrupt sources (5 external and 9 internal). Of these 14 interrupt sources, 12 cause a vectored interrupt while the 2 testable inputs only generate an interrupt request. All of the 14 maskable interrupts can be used to release the HALT mode except INTPO. INTPO cannot be used to release the STOP mode and cannot release the HALT mode when register SCS $=0$. In addition, there is one nonmaskable interrupt from the watchdog timer, one software interrupt, and a reset interrupt. The watchdog timer overflow interrupt (interrupt vector table address 0004 H) can be initialized to be a nonmaskable interrupt or the highest default priority maskable interrupt. The software interrupt, generated by the BRK instruction, is not maskable. See table 3 and figure 16.

Table 3. Interrupt Sources and Vector Addresses

Type of Request	Default Priority	Signal Name	Interupt Source	Location	Vector Address	Interrupt Configuration
Restart	-	RESET	RESET input pin	External	0000 H	-
	-	INTWDT	Watchdog timer overflow (when reset mode selected)	Internal		
Nonmaskable	-	INTWDT	Watchdog timer overflow (when nonmaskable interrupt selected)	Internal	0004 H	A
Maskable	0	INTWDT	Watchdog timer overflow (when interval timer selected)	Internal	0004H	B
	1	INTPO	External interrupt edge detection	External	0006 H	C
	2	INTP1	External interrupt edge detection	External	0008 H	D
	3	INTP2	External interrupt edge detection	External	000AH	D
	4	INTP3	External interrupt edge detection	External	000 CH	D
	5	INTCSIO	End of clocked serial interface 0 transfer	Internal	000EH	B
	6	INTCSI1	End of clocked serial interface 1 transfer	Internal	0010 H	B
	7	INTTM3	Clock timer reference time interval signal	Internal	0012 H	B
	8	INTTMO	16-bit timer/event counter coincidence signal	Internal	0014H	B
	9	INTTM1	8 -bit timer/event counter 1 coincidence signal	Internal	0016H	B
	10	INTTM2	8 -bit timer/event counter 2 coincidence signal	Internal	0018H	B
	11	INTAD	End of A/D Conversion	Internal	001 AH	B
Software	-	-	BRK instruction	Internal	003EH	E
Test input	-	INTWT	Clock timer overflow	Internal	-	F
	-	INTPT4	Port 4 falling edge detection	External	-	F

Interrupt Servicing. The μ PD78014Y family provides two levels of programmable hardware priority control and services all interrupt requests, except the two testable interrupts (INTWT and INTPT4), using vectored interrupts. The programmer can choose the priority of servicing each maskable interrupt by using the interrupt control registers.

Interrupt Control Registers. The μ PD78014Y family has three 16 -bit interrupt control registers. The interrupt request flag register (IFO) contains an interrupt request flag for each interrupt except INTPT4. The interrupt mask register (MKO) is used to enable or disable any interrupt except INTPT4. The priority flag register (PRO) can be used to specify a high or a low priority level for each interrupt except the two testable interrupts.

Four other 8-bit registers are associated with interrupt processing. The key return mode register (KRM) contains the KRIF interrupt request flag associated with
falling-edge detection on port 4 and the KRMK mask flag used to enable or disable clearing of the standby mode if a falling edge is detected on port 4. The external interrupt mode register (INTMO) is used to select a rising, falling, or both edges as the valid edge for each of the external interrupts INTPO to INTP2 (INTP3 is always falling edge). The sampling clock select register (SCS) is used to select a sampling clock for the noise eliminator circuit on external interrupt INTPO.
The IE and the ISP bit of the program status word are also used to control interrupts. If the IE bit is 0 , all maskable interrupts are disabled. The IE bit can be set or cleared using the EI and DI instructions, respectively, or by directly writing to the PSW. The IE bit is cleared each time an interrupt is accepted. The ISP bit is used by hardware to hold the priority level flag of the interrupt being serviced.

Figure 16. Interrupt Configurations
Type A: Internal nonmaskable interrupt

Type B: Internal maskable Interrupt

Type C: External maskable Interrupt (INTPO)

Figure 16. Interrupt Configurations (cont)
Type D: External maskable interrupt (except INTPO)

Type E: Software Interrupt

Type F: Test Input

Abbreviations:

IF: Interrupt request flag
IE: Internupt enable flag
ISP: in-service priority flag
MK: Interrupt mask flag
PR: Priorty specify flag

Interrupt Priority. If the watchdog timer overflow interrupt (INTWDT) has been initialized to be a nonmaskable interrupt, it has priority over all other interrupts. Two hardware-controlled priority levels are available for all maskable interrupts that generate a vectored interrupt (i.e., all except the two testable interrupts). Either a high or a low priority level can be assigned by software to each of the maskable interrupts. Interrupt requests of the same priority or a priority higher than the processor's current priority level are held pending until interrupts in the current service routine are enabled by software or until one instruction has been executed after returning from the current service routine. Interrupt requests of a lower priority are always held pending until one instruction has been executed after returning from the current service routine.

The default priorities listed in table 3 are fixed by hardware and are effective only when it is necessary to choose between two interrupt requests of the same software-assigned priority. For example, the default priorities would be used after the completion of a high-priority routine, if two interrupts of the same software priority were pending.
The software interrupt, initiated by the BRK instruction, is executed regardless of the processor's priority level and the state of the IE bit. It does not alter the processor's priority level.

Vectored Interrupt Servicing. When a vectored interrupt is acknowledged, the program status word and the program counter are saved on the stack, the processor's priority is set to that specified for the interrupt, the IE bit in the PSW is set to zero, and the routine whose address is in the interrupt vector table is entered. At the completion of the service routine, the RETI instruction (RETB instruction for the software interrupt) reverses the process and the μ PD78014Y family microcontroller resumes the interrupted routine.

Standby Modes

HALT, STOP, and data retention modes are provided to reduce power consumption when CPU action is not required.

The HALT mode is entered by executing a HALT instruction while the CPU is operating from the main system or subsystem clock. In HALT mode, the CPU clock is stopped while the main system and the subsystem clock continue to run. The HALT mode is released by any unmasked interrupt request (except INTPO if register SCS $=0$), a nonmaskable interrupt request, an unmasked test input, or an external reset pulse.

Power consumption may be further reduced by using the STOP mode. The STOP mode is entered by executing a STOP instruction while operating from the main system clock. In STOP mode, the main system clock input pin X 1 is internally grounded stopping both the CPU and the peripheral hardware clock. The STOP mode is released by any unmasked interrupt request except INTPO, a nonmaskable interrupt request, an unmasked test input, or an external reset pulse. Any peripheral using the main oscillator as a clock source will also be disabled in the STOP mode and interrupts from such a peripheral cannot be used to exit the STOP mode. Table 4 summarizes both the HALT and STOP standby modes.

Table 4. Standby Mode Operation Status

Item	HALT Mode	STOP Mode
Setting instruction	HALT instruction	STOP instruction
System clock when setting	Main system or subsystem clock	Main system clock
Clock oscillator	Main system and subsystem clocks can oscillate; CPU clock is stopped.	Subsystem clock can oscillate; CPU clock and main system clock are stopped.
CPU	Operation stopped Maintain previous state	Operation stopped Ports
State		

When exiting the STOP mode, a wait time occurs before the CPU begins execution to allow the main system clock oscillator circuit to stabilize. The oscillator stabilization time is selected by programming the OSTS register with one of the five values before entering the STOP mode. The values range from 0.98 msec to 31.3 msec at $\mathrm{f}_{\mathrm{X}}=8.38 \mathrm{MHz}$.
Once in the STOP mode, power consumption can be further minimized by lowering the power supply voltage $V_{D D}$ to as little as 2 V . This places the device in the data retention mode. The contents of Internal RAM and the registers are retained. This mode is released by first raising $V_{D D}$ to the proper operating range and then releasing the STOP mode.

External Reset

The μ PD78014Y family is reset by taking the RESET pin low or by an overflow of the watchdog timer (if enabled). The RESET input pin is a schmitt-trigger input with hysteresis characteristics to protect against spurious system resets caused by noise. On power-up, the RESET pin must remain low for a minimum of $10 \mu \mathrm{~s}$ after the power supply reaches its operating voltage.

There is no functional difference between an external reset and an internal reset caused by the overflow of the watchdog timer. In both cases, the main system clock oscillation is stopped and the subsystem clock oscillation continues. During reset, the program counter is loaded with the address contained in the reset vector (addresses $0000 \mathrm{H}, 0001 \mathrm{H}$). Once the reset is cleared and the oscillation stabilization time of $2^{18} / f_{x}$ has elapsed, program execution starts at that address.

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Supply voltage, V_{DD}	-0.3 to +7.0 V
Supply voltage, V_{PP}	-0.3 to +13.5 V
Supply voltage, AV	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Supply voltage, $\mathrm{AV}_{\mathrm{REF}}$	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Supply voltage, $\mathrm{AV} \mathrm{VS}_{\mathrm{SS}}$	-0.3 to +0.3 V
Input voltage, V_{11} (except P_{0} to	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$

Input voltage, $\mathrm{V}_{12}\left(\mathrm{P6}_{0}\right.$ to P_{3}; open drain)	-0.3 to +16 V
Output voltage, V_{O}	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Analog input voltage, V_{AN} (port 1; analog input pin)	$\mathrm{AV}_{\text {SS }}-0.3$ to $\mathrm{AV}_{\text {REF }}+0.3 \mathrm{~V}$
Output current, high; l_{OH} Each output pin Total: ports 2 and 3 Total: port 0 and ports 4 to 6	- 10 mA - 15 mA - 15 mA
Output current, low, loL \dagger Each output pin Total: P_{0} to P_{7} and $\mathrm{P5}_{0}$ to $\mathrm{P5}_{5}$ Total: PO_{1} to $\mathrm{PO}_{3}, \mathrm{P5}_{6}, \mathrm{P5}_{7}$, and Pb_{0} to P_{7} Total: PO_{1} to PO_{3} and $\mathrm{P6}_{4}$ to P_{7} Total: ports 2 and 3	30 mA peak, 15 mA rms 100 mA peak, 70 mA rms 100 mA peak, 70 mA rms 50 mA peak, 20 mA rms 50 mA peak, 20 mA rms
Operating temperature, TOPT	-40 to $+85^{\circ} \mathrm{C}$
Storage temperature, STGG $^{\text {S }}$	-65 to $+150^{\circ} \mathrm{C}$

\dagger rms value $=$ peak value $\times(\text { duty cycle) })^{1 / 2}$
Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC characteristics.

Capacitance

$$
T_{A}=+25^{\circ} \mathrm{C} ; V_{D D}=V_{S S}=0 \mathrm{~V}
$$

Parameter	Symbol	Max	Unit	Conditions	
Input capacitance	$C_{\text {IN }}$	15	pF	$\begin{aligned} & \text { Except } \mathrm{P}_{0} \\ & \text { to } \mathrm{P6}_{3} \end{aligned}$	$f=1 \mathrm{MHz}$ unmeasured pins returned to ground
		20	pF	PG_{0} to PG_{3}	
Output capacitance	COUT	15	pF	$\begin{aligned} & \text { Except } \mathrm{P6}_{0} \\ & \text { to } \mathrm{P6}_{3} \end{aligned}$	
		20	pF	Pb_{0} to $\mathrm{P6}_{3}$	
Input/output capacitance	C_{10}	15	pF	$\begin{aligned} & \text { Except } \mathrm{P}_{0} \\ & \text { to } \mathrm{PG}_{3} \end{aligned}$	
		20	pF	$\mathrm{P6}_{0}$ to $\mathrm{P6}_{3}$	

Main System Clock Oscillator

$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{D D}=2.7$ to 6.0 V ; refer to figure 17.

Type	Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Ceramic resonator (Figure 17A)	Oscillation frequency (Note 1)	${ }^{\prime} \mathrm{X}$	1.0		10.0	MHz	$\mathrm{V}_{\mathrm{DD}}=$ oscillator voltage range
	Oscillation stabilization time (Note 2)				4.0	ms	After $V_{\text {DD }}$ reaches oscillator operating voltage
Crystal resonator (Figure 17A)	Oscillation frequency (Note 1)	${ }^{\prime} \mathrm{X}$	1.0	8.38	10.0	MHz	
	Oscillation stabilization time (Note 2)				10	ms	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
					30	ms	
External clock (Figure 17B)	X1 input frequency (Note 1)	${ }^{4} \mathrm{x}$	1.0		10.0	MHz	
	X 1 input high/low-level width	${ }_{\text {t }}^{\text {XH, }}$, ${ }_{\text {KLL }}$	50		500	ns	

Notes:

(1) Oscillator and X1 input frequencies are included only to show the oscillator characteristics. Refer to the AC Characteristics table for actual instruction execution times.
(2) Time required for the oscillator to stabilize after reset or STOP mode is released. The values shown are for the recommended resonators. Values for resonators not shown in this data sheet should be obtained from the manufacturer's specification sheets.

Subsystem Clock Oscillator

$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; V_{D D}=2.7$ to 6.0 V ; refer to figure 18.

Type	Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Crystal resonator (Figure 18A)	Oscillation frequency (Note 1)	${ }^{\text {f }}$ T	32	32.768	35	kHz	
	Oscillation stabilization time (Note 2)			1.2	2	s	$V_{D D}=4.5$ to 6.0 V
					10	s	
External clock (Figure 18B)	XT1 input frequency (Note 1)	${ }_{\text {f }}$ T	32		100	kHz	
	XT1 input high/low-level width		5		15	$\mu \mathrm{s}$	

Notes:
(1) The oscillator and XT1 input frequencies are included only to show the oscillator characteristics. Refer to the AC Characteristics table for actual instruction execution times.

Figure 17. Main System Clock Configurations
A. Ceramic/Crystal Resonator

B. External Clock

Note: When the Input is an external clock, the STOP mode can not be set because the X1 pin is connected to system ground (V_{SS}).
(2) Time required for the oscillator to stabilize after reset or STOP mode is released. The values shown are for the recommended resonators. Values for resonators not shown in this data sheet should be obtained from the manufacturer's specification sheets.

Figure 18. Subsystem Clock Configurations
A. Crystal Resonator

B. External Clock

Recommended Main System Clock Ceramic Resonators
$T_{A}=-40$ to $+85^{\circ} \mathrm{C}$, refer to figure 17A

Part Number (Notes 1 and 2)	Recommended Circuit Constant			Oscillator Voltage Range		$\begin{gathered} \text { Frequency } \\ (\mathrm{MHz}) \end{gathered}$
	C1 (pF)	C2 (pF)	R1 (k2)	Min (V)	Max (V)	
CSB1000J	100	100	6.8	2.7 (Note 3) 2.8 (Note 4)	6.0	1.00
CSBxxxxJ	100	100	4.7	2.7 (Note 3) 2.8 (Note 4)	6.0	1.01 to 1.25
CSAx.xxxMK	100	100	0	2.7 (Note 3) 2.8 (Note 4)	6.0	1.26 to 1.79
CSAx.xxMG (Note 3)	100	100	0	2.7	6.0	1.8 to 2.44
CSAX.xxMGO93 (Note 4)	100	100	0	2.7	6.0	
CSTx.xxMG (Note 3)	0 (Note 5)	0 (Note 5)		2.7	6.0	
CSTx.xxMG093 (Note 4)	0 (Note 5)	0 (Note 5)		2.7	6.0	
CSAx.xxMG	30	30	0	2.7	6.0	2.45 to 4.18
CSTx.xxMGW	0 (Note 5)	0 (Note 5)	0	2.7	6.0	
CSAx.xxMG (Note 3)	30	30	0	2.7	6.0	4.19 to 6.00
CSAx.xxMGU (Note 4)	30	30	0	2.7	6.0	
CSTx.xxMGW (Note 3)	0 (Note 5)	0 (Note 5)	0	2.7	6.0	
CSTx.xxMGWU (Note 4)	0 (Note 5)	0 (Note 5)	0	2.7	6.0	
CSAx.xxMT	30	30	0	2.7 (Note 3) 3.0 (Note 4)	6.0	6.01 to 10.0
CSTx.xxMTW	0 (Note 5)	0 (Note 5)	0	2.7 (Note 3)	6.0	
				$3.0 \text { (Note 4) }$		

Notes:

(1) Manufactured by Murata Mfg. Co., Ltd.
(4) μ PD78P014Y only
(2) $x . x x$ indicates frequency
(5) C1 and C2 are contained in the ceramic resonators.
(3) $\mu \mathrm{PD} 7801 \mathrm{xY}$ only.

Recommended Subsystem Clock Crystal Resonators (μ PD7801xY)
$T_{A}=-40$ to $+60^{\circ} \mathrm{C}$, refer to figure 18 A

Part Number \dagger	$\begin{gathered} \text { Frequency } \\ (\mathbf{k H z}) \end{gathered}$	Recommended Circuit constant			Oscillator Voltage Range	
		C3 (pF)	C4 (pF)	R2 (kR)	Min (V)	Max (V)
DT-38 (1TA252 E00, load capacitance 6.3 pF)	32.768	12	12	100	2.7	6.0

\dagger Manufactured by Daishinku
μ PD78014Y Family

DC Characteristics

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
High-level input voltage	$\mathrm{V}_{\mathrm{IH} 1}$	$0.7 \mathrm{~V}_{\mathrm{DD}}$		V_{DD}	V	Other than below
	$\mathrm{V}_{\mathrm{H} 2}$	0.8 V DD		$V_{D D}$	V	$\begin{aligned} & \mathrm{PO}_{0} \text { to } \mathrm{PO}_{4}, \mathrm{P}_{0}, \mathrm{P}_{2}, \mathrm{P}_{4} \text { to } \mathrm{P}_{7}, \\ & \mathrm{P3}_{3}, \mathrm{P3}_{4}, \mathrm{RESET} \end{aligned}$
	$\mathrm{V}_{1 \mathrm{H} 3}$	$0.7 \mathrm{~V}_{\text {DD }}$		15	v	Pb_{0} to $\mathrm{P6}_{3}$; open-drain
	$\mathrm{V}_{1 \mathrm{H} 4}$	$V_{D D}-0.5$		V_{DD}	v	$\mathrm{X} 1, \mathrm{X} 2$
	$\mathrm{V}_{\mathrm{HH5}}$	$V_{D D}-0.5$		V_{DD}	v	$\mathrm{V}_{\mathrm{DD}}=4.5$ to $6.0 \mathrm{~V} ; \mathrm{XT1}, \mathrm{XT2}$
		$V_{D D}-0.3$		$V_{D D}$	V	$\mu \mathrm{PD7801xY} ; \mathrm{XT1}$, XT2
		$V_{D D}-0.2$		$V_{D D}$	V	$\mu \mathrm{PD78P014Y} ; \mathrm{XT1}$, XT2
Low-level input voltage	$\mathrm{V}_{\text {IL1 }}$	0		$0.3 \mathrm{~V}_{\mathrm{DD}}$	V	Other than below
	$\mathrm{V}_{\text {IL2 }}$	0		$0.2 V_{D D}$	V	$\begin{aligned} & \mathrm{PO}_{0} \text { to } \mathrm{PO}_{4}, \mathrm{P}_{0}, \mathrm{P}_{2}, \mathrm{P}_{4} \text { to } \mathrm{P}_{7}, \\ & \mathrm{P3}_{3}, \mathrm{P3}_{4}, \mathrm{RESET} \end{aligned}$
	$\mathrm{V}_{\text {IL3 }}$	0		$0.3 V_{D D}$	V	$\mathrm{P6}_{0}$ to $\mathrm{P6}_{3} ; \mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		0		$0.2 V_{\text {DD }}$	V	$\mathrm{P6}_{0}$ to $\mathrm{P6}_{3}$
	$\mathrm{V}_{\text {IL4 }}$	0		0.4	V	$\mathrm{X} 1, \mathrm{X} 2$
	$\mathrm{V}_{\text {IL5 }}$	0		0.4	v	$\mathrm{XT1}, \mathrm{XT2} ; \mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		0		0.3	V	XT1, XT2
High-level output voltage	$\mathrm{V}_{\mathrm{OH} 1}$	$V_{D D}-1.0$			V	$\mathrm{V}_{\mathrm{DD}}=4.5$ to $6.0 \mathrm{~V}, \mathrm{l}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$
		$\mathrm{V}_{\mathrm{DD}}-0.5$			V	$\mathrm{l}^{\mathrm{OH}}=-100 \mu \mathrm{~A}$
Low-level output voltage	$\mathrm{V}_{\text {OL1 }}$		0.4	2.0	V	$\begin{aligned} & \mathrm{P5}_{0} \text { to } \mathrm{P5}_{7}, \mathrm{P6}_{0} \text { to } \mathrm{Pb}_{3} ; \\ & \mathrm{V}_{\mathrm{DD}}=4.5 \text { to } 6.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=15 \mathrm{~mA} \end{aligned}$
				0.4	V	Other than above; $\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V , $\mathrm{OLL}^{\mathrm{OL}}=1.6 \mathrm{~mA}$
	$\mathrm{V}_{\text {OL2 }}$			$0.2 \mathrm{~V}_{\mathrm{DD}}$	V	$\begin{aligned} & \mathrm{SBO}, \mathrm{SB1}, \overline{\mathrm{SCKO}} ; \mathrm{V}_{\mathrm{DD}}=4.5 \text { to } 6.0 \mathrm{~V}, \\ & \text { open-drain, pullup resistance }=1 \mathrm{k} \Omega \end{aligned}$
	$\mathrm{V}_{\mathrm{OL} 3}$			0.5	V	$\mathrm{bL}=400 \mu \mathrm{~A}$
High-level input leakage current	ILIH1			3	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$; except $\mathrm{X} 1, \mathrm{X} 2, \mathrm{XT1}, \mathrm{XT} 2$
	ILHH 2			20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}} ; \mathrm{X} 1, \mathrm{X} 2, \mathrm{XT1}, \mathrm{XT2}$
	${ }_{\text {LIH3 }}$			80	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V} ; \mathrm{P6} 6_{0}$ to $\mathrm{P} 6_{3}$
Low-level input leakage current	LILL 1			-3	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}$; except $\mathrm{X} 1, \mathrm{X} 2, \mathrm{XT1}, \mathrm{XT2}$
	LILL2			-20	$\mu \mathrm{A}$	$V_{I N}=0 V_{;} X_{1}, X 2, X T 1, X T 2$
	LLIL3			-3	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} ; \mathrm{PG}_{0}$ to PG_{3} (Note 1)
Output leakage current high	${ }_{\text {LOH1 }}$			3	$\mu \mathrm{A}$	$V_{\text {OUT }}=V_{\text {DD }}$
Output leakage current low	LOL			-3	$\mu \mathrm{A}$	$V_{\text {OUT }}=O V$
Mask option pullup resistor	R_{1}	20	40	90	k Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} ; \mathrm{P6}_{0} \mathrm{TO} \mathrm{P6}_{3}, \mu \mathrm{PD7801xY}$ only
Software pullup resistor	R_{2}	15	40	90	k Ω	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.5 \text { to } 6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{PO}_{1} \text { to } \mathrm{PO}_{3}, \\ & \text { ports } 1 \text { to } 5, \mathrm{PG}_{4} \text { to } \mathrm{PG}_{7} \end{aligned}$
		20		500	k Ω	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.7 \text { to } 4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{PO}_{1} \text { to } \mathrm{PO}_{3}, \\ & \text { ports } 1 \text { to } 5, \mathrm{PG}_{4} \text { to } \mathrm{P}_{7} \end{aligned}$

DC Characteristics (cont)

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Power supply current (μ PD7801xY)	IDD1		7.5	22.5	mA	8.38 MHz crystal oscillation operating mode; $V_{D D}=5.0 \mathrm{~V} \pm 10 \% \text { (Note 2) }$
			0.8	2.4	mA	8.38 MHz crystal oscillation operating mode; $V_{D D}=3.0 \mathrm{~V} \pm 10 \% \text { (Note 3) }$
	IDD2		1.4	4.2	mA	8.38 MHz crystal oscillation HALT mode; $V_{D D}=5.0 V \pm 10 \%$
			550	1650	$\mu \mathrm{A}$	8.38 MHz crystal oscillation HALT mode; $V_{D D}=3.0 \mathrm{~V} \pm 10 \%$
	${ }^{\text {IDD3 }}$		60	120	$\mu \mathrm{A}$	32.768 kHz crystal oscillation operating mode; $V_{D D}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{X} 1$ STOP mode, CPU operating from subsystem clock.
			35	70	$\mu \mathrm{A}$	32.768 kHz crystal oscillation operating mode; $V_{D D}=3.0 \mathrm{~V} \pm 10 \%, \mathrm{X} 1 \mathrm{STOP}$ mode, CPU operating from subsystem clock.
	IDD4		25	50	$\mu \mathrm{A}$	32.768 kHz crystal oscillation HALT mode; V_{DD} $=5.0 \mathrm{~V} \pm 10 \%$, X 1 STOP mode
			5	10	$\mu \mathrm{A}$	32.768 kHz crystal oscillation HALT mode; V_{DD} $=3.0 \mathrm{~V} \pm 10 \%$, X 1 STOP mode
	${ }^{\text {DD5 }}$		1	20	$\mu \mathrm{A}$	$\mathrm{XT1}=0 \mathrm{~V}$ STOP mode when feedback resistor is connected; $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$
			0.5	10	$\mu \mathrm{A}$	$\mathrm{XT} 1=0 \mathrm{~V}$ STOP mode when feedback resistor is connected; $V_{D D}=3.0 \mathrm{~V} \pm 10 \%$
	${ }^{\text {ID6 }}$		0.1	20	$\mu \mathrm{A}$	$\mathrm{XT1}=0 \mathrm{~V}$ STOP mode when feedback resistor is disconnected; $V_{D D}=5.0 \mathrm{~V} \pm 10 \%$
			0.05	10	$\mu \mathrm{A}$	$\mathrm{XT1}=0 \mathrm{~V}$ STOP mode when feedback resistor is disconnected; $V_{D D}=3.0 \mathrm{~V} \pm 10 \%$
Power suppiy current (μ PD78P014)	$\mathrm{I}_{\text {DD1 }}$		9	27	mA	8.38 MHz crystal oscillation operating mode; $V_{D D}=5.0 \mathrm{~V} \pm 10 \%$ (Note 2)
			1	3	mA	8.38 MHz crystal oscillation operating mode; $V_{D D}=3.0 \mathrm{~V} \pm 10 \% \text { (Note 3) }$
	IDD2		1.4	4.2	mA	8.38 MHz crystal oscillation HALT mode; $\mathrm{V}_{\mathrm{DD}}=$ $5.0 \mathrm{~V} \pm 10 \%$
			550	1650	$\mu \mathrm{A}$	8.38 MHz crystal oscillation HALT mode; $\mathrm{V}_{\mathrm{DD}}=$ $3.0 \mathrm{~V} \pm 10 \%$
	IDD3		90	180	$\mu \mathrm{A}$	32.768 kHz crystal oscillation operating mode; $V_{D D}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{X} 1$ STOP mode, CPU operating from subsystem clock.
			50	100	$\mu \mathrm{A}$	32.768 kHz crystal oscillation operating mode; $V_{D D}=3.0 \mathrm{~V} \pm 10 \%, \mathrm{X} 1$ STOP mode, CPU operating from subsystem clock.
	IDD4		25	50	$\mu \mathrm{A}$	32.768 kHz crystal oscillation HALT mode; $V_{D D}=5.0 \mathrm{~V} \pm 10 \%$, X 1 STOP mode
			5	10	$\mu \mathrm{A}$	32.768 kHz crystal oscillation HALT mode; $V_{D D}=3.0 \mathrm{~V} \pm 10 \%$, X 1 STOP mode
	${ }^{\text {DD5 }}$		1	30	$\mu \mathrm{A}$	$\mathrm{XT1}=\mathrm{OV}$ STOP mode when feedback resistor is connected; $V_{D D}=5.0 \mathrm{~V} \pm 10 \%$
			0.5	10	$\mu \mathrm{A}$	$\mathrm{XT} 1=\mathrm{OV}$ STOP mode when feedback resistor is connected; $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$

DC Characteristics (cont)

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Power supply current (μ PD78P014Y) (cont)	loD6		0.1	30	$\mu \mathrm{~A}$	XT1 $=0 \mathrm{~V}$ STOP mode when feedback resistor is disconnected; $V_{D D}=5.0 \mathrm{~V} \pm 10 \%$
		0.05	10	$\mu \mathrm{~A}$	XT1 $=0 \mathrm{~V}$ STOP mode when feedback resistor is disconnected; $V_{D D}=3.0 \mathrm{~V} \pm 10 \%$	

Notes:

(1) $\mathrm{P} 6_{0}$ to $\mathrm{P} 6_{3}$ become $-200 \mu \mathrm{~A}$ (max.) for only 1 clock cycle during input instruction execution (no wait) and $-3 \mu \mathrm{~A}$ (max.) during instruction other than input.

Figure 19. $I_{D D}$ vs $V_{D D}, f_{x}=8.38 \mathrm{MHz}(\mu \mathrm{PD7801x})$

(2) When operated in the high-speed mode with the processor clock control register set to 00 H .
(3) When operated in low-speed mode with the processor clock control register set to 04 H .

Figure 20. $I_{D D}$ vs $V_{D D,} f_{x}=4.19 \mathrm{MHz}$ (μ PD7801x \boldsymbol{y})

Figure 21. IDD vs VDD (μ PD78P014V)

Figure 22. IOL vs VOL (Ports 0, Ports 2-5, P6 $\boldsymbol{4}_{\mathbf{4}}-\mathrm{Pb}_{7}$)

Figure 23. Iol vs Vol (Port 1)

Figure 24. Iol vs Vol (P6o-P63)

Figure 25. IOH vs $V_{D D}-V_{O H}$ (Ports 0-5, P6 $_{4}-P 6_{7}$)

μ PD78014Y Family

AC Characteristics

$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.7$ to 6 V ; refer to figures 26 through 32

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Cycle time (Min. instruction execution time)	${ }^{t} \mathrm{CY}$	0.4		64	$\mu \mathrm{s}$	$V_{D D}=4.5$ to 6.0 V ; operating on main system clock (μ PD7801xY)
		0.96		64	$\mu \mathrm{s}$	Operating on main system clock (μ PD7801xY)
		0.48		64	$\mu \mathrm{s}$	$V_{D D}=4.5$ to 6.0 V ; operating on main system clock (μ PD78P014Y)
		1.91		64	$\mu \mathrm{s}$	Operating on main system clock (μ PD78P014Y)
		0.4		64	$\mu \mathrm{s}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40 \text { to }+40^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{DD}}=4.75 \text { to } 6.0 \mathrm{~V} ; \\ & \text { operating on main system clock (} \mu \mathrm{PD} 78 \mathrm{P} 014 \mathrm{~V} \text {) } \end{aligned}$
		0.96		64	$\mu \mathrm{s}$	$T_{A}=-40$ to $+40^{\circ} \mathrm{C}$; operating on main system clock (μ PD78P014Y)
		114	122	125	$\mu \mathrm{s}$	Operating on subsystem clock
TI input frequency	f_{T}	0		4	MHz	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		0		275	kHz	
TI input high/ low-level width		100			ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		1.8			$\mu \mathrm{s}$	
Interrupt input high/low-level width	$\mathrm{t}_{\mathrm{NTH}}, \mathrm{t}_{\mathrm{INTL}}$	$8 /$ sam (Note 1)			$\mu \mathrm{s}$	INTPO
		10			$\mu \mathrm{s}$	INTP1 to INTP3
		10			$\mu \mathrm{s}$	KRO to KR7 (Note 2)
$\overline{\text { RESET low-level width }}$	$t_{\text {RST }}$	10			$\mu \mathrm{s}$	

Notes:

(1) By using bits 0 and 1 of the sampling clock select (SCS) register in conjunction with bits 0 to 2 of the processor clock control (PCC) register, $\mathrm{f}_{\text {sam }}$ can be set to $\mathrm{f}_{\mathrm{x}} / 2^{\mathrm{N}+1}$ (where $\mathrm{N}=0$ to 4), $\mathrm{f}_{\mathrm{x}} / 64$, or $\mathrm{f}_{\mathrm{x}} / 128$.
(2) Port 4 falling-edge detection input.

Figure 26. Main System Clock Operation tcy vs $V_{D D}$ (4PD7801xY)

Figure 27. Main System Clock Operation tcy vs VDd (uPD78P014Y)

Note:
When $T_{A}=-40$ to $+40^{\circ} C$, guaranteed operating range Is extended to the dotted line.

Figure 28. AC Timing Measurements Points (except X1 and XT1)

Figure 29. Clock AC Timing Points X1 and XT1

Figure 30. 71 Timing

Figure 31. Interrupt Input Timing

Figure 32. RESET Input Timing

Read/Write Operation

$T_{A}=-40$ to $+85^{\circ} \mathrm{C}, V_{D D}=2.7$ to 6.0 V ; refer to figures 33 through 36

Parameter	Symbol	Min	Max	Unit	Conditions
ASTB high-level width	$t_{\text {ASTH }}$	$0.5 \mathrm{t}_{\mathrm{CY}}$		ns	
Address setup time to ASTB \downarrow	${ }^{\text {tadS }}$	$0.5 \mathrm{tcy}^{-30}$		ns	
Address hold time from ASTB \downarrow	$t_{\text {ADH }}$	10		ns	Load resistor $\geq 5 \mathrm{k} \Omega$
Data input time from address	$t_{\text {ADD1 }}$		$(2+2 n) t_{C Y}-50$	ns	Instruction fetch
	$t_{\text {ADD2 }}$	5	$(3+2 n) t_{C Y}-100$	ns	Data access
Data input time from $\overline{\mathrm{RD}} \downarrow$	$t_{\text {RDD1 }}$		$(1+2 n) t_{C Y}-25$	ns	Instruction fetch
	$\mathrm{t}_{\text {RDD2 }}$		$(2.5+2 n) \mathrm{tcy}^{-100}$	ns	Data access
Read data hold time	$t_{\text {RDH }}$	0		ns	
$\overline{\mathrm{RD}}$ low-level width	$\mathrm{t}_{\text {RDL } 1}$	$(1.5+2 n) t^{\text {cr }}-20$		ns	Instruction fetch
	$t_{\text {RDL2 }}$	$(2.5+2 n) t_{C Y}-20$		ns	Data access
$\overline{\text { WAIT }} \downarrow$ input time from $\overline{\mathrm{RD}} \downarrow$	$t_{\text {RDWT1 }}$		0.5 tcy	ns	Instruction fetch
	$t_{\text {RDWT2 }}$		$1.5 \mathrm{t}_{\mathrm{CY}}$	ns	Data access
$\overline{\text { WAIT } ~} \downarrow$ input time from $\overline{\text { WR }} \downarrow$	${ }^{\text {tWRWT }}$		$0.5 \mathrm{t}_{\mathrm{CY}}$	ns	
$\overline{\text { WAIT low-level width }}$	${ }^{\text {twTL }}$	$(0.5+2 n) t_{c y}+10$	$(2+2 n) t_{C Y}$	ns	
Write data setup time to $\overline{\mathrm{WR}} \uparrow$	${ }^{\text {tw }}$ (${ }^{\text {d }}$	100		ns	
Write data hold time from $\overline{W R} \uparrow$	twDH	5		ns	
WR low-level width	${ }^{\text {twRL1 }}$	(2.5+2n) ${ }_{\text {cY }}-20$		ns	
$\overline{R D} \downarrow$ delay time from ASTB \downarrow	${ }^{\text {t }}$ ASTRD	$0.5 \mathrm{t}_{\mathrm{Cr}}-30$		ns	
$\overline{W R} \downarrow$ delay time from ASTB \downarrow	$t_{\text {ASTWR }}$	$1.5 \mathrm{t}_{\mathrm{cr}}-30$		ns	
ASTB \uparrow delay time from $\overline{\mathrm{RD}} \uparrow$ (external fetch)	$t_{\text {RDAST }}$	${ }^{\text {t }}$ CY -10	${ }^{\text {try }}+40$	ns	
Address hold time from $\overline{\mathrm{RD}} \uparrow$ (external fetch)	$t_{\text {RDADH }}$	${ }_{\text {tcr }}$	$\mathrm{t}_{\mathrm{Cr}}+50$	ns	
Write data output time from $\overline{\mathrm{RD}} \uparrow$	$t_{\text {RDWD }}$	10		ns	
WR \downarrow delay time from write data	twDWR	$0.5 \mathrm{t}_{\mathrm{Cr}}-120$	$0.5 \mathrm{t}_{\mathrm{CY}}$	ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		$0.5 \mathrm{tcr}^{\text {- }} 170$	$0.5 \mathrm{t}_{\mathrm{CY}}$	ns	
Address hold time from $\overline{W R} \uparrow$	twradh	t_{Cr}	$\mathrm{t}_{\mathrm{CY}}+60$	ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		${ }^{t} \mathrm{CY}$	$\mathrm{t}_{\mathrm{CY}}+100$	ns	
$\overline{\mathrm{RD}} \uparrow$ delay time from $\overline{\text { WAIT }} \uparrow$	twTRD	$0.5 \mathrm{t}_{\mathrm{cr}}$	$2.5 \mathrm{t}_{\mathrm{CY}}+80$	ns	
	tWTWR	0.5 tcy	$2.5 \mathrm{t}_{\mathrm{CY}}+80$	ns	

Notes:

(1) $t_{C Y}=t_{C Y} / 4$
(2) n indicates number of waits.
(3) $C_{L}=100 \mathrm{pF}$

Figure 33. Read Operation; External Fetch (No Wait)

Figure 34. Read Operation; External Fetch (Wait Insertion)

Figure 35. Read/Write Operation; External Data Access (No Wait)

Figure 36. Read/Write Operation; External Data Access (Wait Insertion)

Serial Interface, 3-Wire, I/O Mode; Internal $\overline{\text { SCK Output }}$

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
$\overline{\text { SCK }}$ cycle time	$\mathrm{t}_{\mathrm{KCY} 1}$	800			ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		3200			ns	
$\overline{\overline{S C K}}$ high- and low-level width	${ }^{\text {KHH1 }}$, $\mathrm{t}_{\text {KL } 1}$	${ }_{\mathrm{t}_{\mathrm{KCY}} 1 / 2-50}$			ns	$V_{D D}=4.5$ to 6.0 V
		$t_{\mathrm{KCY}_{1} / 2-150}$			ns	
SI setup time to $\overline{\text { SCK }} \uparrow$	$\mathrm{t}_{\text {SIK1 }}$	100			ns	
SI hold time from $\overline{\text { SCK }} \uparrow$	$\mathrm{t}_{\mathrm{KSI}}$	400			ns	
SO output delay time from $\overline{\text { SCK } \downarrow}$	$\mathrm{t}_{\mathrm{KSO}}$			300	ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to $6.0 \mathrm{~V} ; \mathrm{C}=100 \mathrm{pF}$ (See note)
				1000	ns	$C=100 \mathrm{pF}$ (See note)

Note: C is the load capacitance of the SO output line.

Serial Interface, 3-Wire, I/O Mode; External $\overline{\text { SCK }}$ Input

$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.7$ to 6.0 V ; refer to figure 37

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
$\overline{\text { SCK }}$ cycle time	$\mathrm{t}_{\mathrm{KCY} 2}$	800			ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		3200			ns	
$\overline{\text { SCK }}$ high- and low-level width	$\mathrm{t}_{\mathrm{KH} 2}, \mathrm{t}_{\mathrm{KL} 2}$	400			ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		. 1600			ns	
SI setup time to $\overline{\text { SCK }} \uparrow$	${ }^{\text {tSIK2 }}$	100			ns	
SI hold time from $\overline{\text { SCK } \uparrow}$	$\mathrm{t}_{\mathrm{KSI} 12}$	400			ns	
SO output delay time from $\overline{\text { SCK }} \downarrow$	$\mathrm{t}_{\mathrm{KSO} 2}$			300	ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to $6.0 \mathrm{~V} ; \mathrm{C}=100 \mathrm{pF}$ (See note)
				1000	ns	$C=100 \mathrm{pF}$ (See note)

Note: C is the load capacitance of the SO output line.
μ PD78014Y Family

Serial Interface, SBI Mode; Internal $\overline{\text { SCK Output }}$

$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{D D}=2.7$ to 6.0 V ; refer to figure 38

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
$\overline{\text { SCK }}$ cycle time	${ }^{\text {HKCY3 }}$	800			ns	$V_{D D}=4.5$ to 6.0 V
		3200			ns	
$\overline{\text { SCK }}$ high- and low-level width	$\mathrm{t}_{\mathrm{KH} 3}, \mathrm{t}_{\text {KL3 }}$	t'cy3 $^{\text {/ }}$ - 50			ns	$V_{D D}=4.5$ to 6.0 V
		${ }_{4}{ }_{\text {KCY3 }} / 2-150$			ns	
SB0, SB1 setup time to $\overline{S C K} \uparrow$	${ }^{\text {t }}$ SIK3	100			ns	$V_{D D}=4.5$ to 6.0 V
		300			ns	
SB0, SB1 hold time from $\overline{\text { SCK }} \uparrow$	$\mathrm{t}_{\mathrm{KS} 13}$	${ }_{\text {t }}^{\text {KCY3 }}$ / 2			ns	
SB0,SB1 output delay time from $\overline{\text { SCK }} \downarrow$	${ }^{\text {tKSO3 }}$	0		250	ns	$\begin{aligned} & V_{D D}=4.5 \text { to } 6.0 \mathrm{~V} ; R=1 \mathrm{k} \Omega \\ & C=100 \mathrm{pF} \text { (See note) } \end{aligned}$
		0		1000	ns	$R=1 \mathrm{k} \Omega \mathrm{C}=100 \mathrm{pF}$ (See note)
SB0, SB1 \downarrow from $\overline{S C K} \uparrow$	$t_{K S B}$	$t_{\text {KCY3 }}$			ns	
	${ }_{\text {t }}{ }_{\text {SBK }}$	$t_{\text {KCY3 }}$			ns	
SB0, SB1 high-level width	${ }_{\text {tsBH }}$	${ }_{\text {tKCY3 }}$			ns	
SB0, SB1 low-level width	${ }^{\text {tSBL }}$	${ }_{\text {tKCY3 }}$			ns	

Note: R and C are the load resistance and load capacitance of the SBO and SB1 output lines.

Serial Interface, SBI Mode; External $\overline{\text { SCK }}$ Input

$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.7$ to 6.0 V ; refer to figure 38

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
$\overline{\overline{S C K}}$ cycle time	$\mathrm{t}_{\mathrm{KCY}}{ }^{\text {a }}$	800			ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		3200			ns	
$\overline{\text { SCK }}$ high- and low-level width	${ }^{\text {t }}$ KH4 ${ }^{\text {t }}$ KL4	400			ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		1600			ns	
SBO, SB1 setup time to $\overline{\text { SCK }} \uparrow$	${ }^{\text {tsIK4 }}$	100			ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		300			ns	
SBO, SB1 hold time from $\overline{\text { SCK }} \uparrow$	$\mathrm{t}_{\mathrm{KS} 14}$	$\mathrm{t}_{\mathrm{KCY} 4 / 2}$			ns	
SB0, SB1 output delay time from $\overline{\text { SCK }} \downarrow$	$\mathrm{t}_{\mathrm{KSO}}{ }^{\text {4 }}$	0		300	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.5 \text { to } 6.0 \mathrm{~V} ; \mathrm{R}=1 \mathrm{k} \Omega \mathrm{C}=100 \mathrm{pF} . \\ & \text { (See note) } \end{aligned}$
		0		1000	ns	$\mathrm{R}=1 \mathrm{k} \Omega \mathrm{C}=100 \mathrm{pF}$
SBO, SB1 \downarrow from $\overline{\text { SCK }} \uparrow$	$t_{\text {KSB }}$	tKCY_{4}			ns	
	${ }_{\text {t }}{ }_{\text {SBK }}$	tKCY_{4}			ns	
SB0, SB1 high-level width	$t_{\text {SBH }}$	$\mathrm{t}_{\mathrm{KCY}}{ }_{\text {K }}$			ns	
SB0, SB1 low-level width	${ }_{\text {t }}$ SBL	$\mathrm{t}_{\mathrm{KCY}}{ }_{4}$			ns	

Note: R and C are the load resistance and load capacitance of the
SB0 and SB1 output lines.

Serial Interface, 2-Wire, I/O Mode; Internal SCK Output

$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.7$ to 6.0 V ; refer to figure 39

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
$\overline{\text { SCK cycle time }}$	${ }^{\text {t }}$ KCY5	1600			ns	$V_{D D}=4.5$ to 6.0 V
		3800			ns	
SCK high-level width	${ }^{\text {t }}$ KH5				ns	
$\overline{\text { SCK }}$ low-level width	$\mathrm{t}_{\text {KL. } 5}$	$\mathrm{t}_{\mathrm{KCY5}} / 2-50$			ns	
SB0, SB1 setup time to $\overline{\text { SCK }} \uparrow$	$\mathrm{t}_{\text {SIK5 }}$	300			ns	
SB0, SB1 hold time from $\overline{\text { SCK } \uparrow}$	$\mathrm{t}_{\mathrm{KS15}}$	600			ns	
	$\mathrm{t}_{\text {KSO5 }}$	0		250	ns	$\begin{aligned} & V_{D D}=4.5 \text { to } 6.0 \mathrm{~V} \\ & R=1 \mathrm{k} \Omega \mathrm{C}=100 \mathrm{pF} \text { (See note) } \end{aligned}$
		0		1000	ns	$R=1 \mathrm{k} \Omega \mathrm{C}=100 \mathrm{pF}$ (See note)

Note: R and C are load resistance and load capacitance of the $\overline{\text { SCKO }}$,
SB0, and SB1 output lines.
Serial Interface, 2-Wire, I/O Mode; External $\overline{\text { SCK }}$ Input
$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{D D}=2.7$ to 6.0 V ; refer to figure 39

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
$\overline{\text { SCK }}$ cycle time		1600			ns	$V_{D D}=4.5$ to 6.0 V
		3800			ns	
$\overline{\overline{\text { SCK }} \text { high-level width }}$	${ }_{\text {t }}{ }^{\text {H }} \mathbf{6}$	650			ns	
SCK low-level width	${ }_{\text {tKL6 }}$	800			ns	
SB0, SB1 setup time to $\overline{\text { SCK }} \uparrow$	${ }^{\text {t }}$ SIK6	100			ns	
SB0, SB1 hold time from $\overline{\text { SCK } \uparrow}$	$t_{\text {KSI6 }}$	${ }_{\text {thCy }}$ / 2			ns	
SBO, SB1 output delay time from $\overline{\text { SCK }} \downarrow$	${ }_{\text {tKSO6 }}$	0		300	ns	$\begin{aligned} & V_{D D}=4.5 \text { to } 6.0 \mathrm{~V} \\ & R=1 \mathrm{k} \Omega \mathrm{C}=100 \mathrm{pF} \text { (See note) } \end{aligned}$
		0		1000	ns	

Note: R and C are load resistance and load capacitance of the $\overline{\text { SCKO }}$, SB0, and SB1 output lines.

Serial Interface, I2C Bus

$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{D D}=2.7$ to 6.0 V ; refer to figure 40

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
SCL input clock frequency	${ }_{\text {f }}$ SL	0		100	kHz	
Bus release time before start of transfer	$t_{\text {buF }}$	4.7			$\mu \mathrm{s}$	
Start condition hold time	$t_{\text {HDSTA }}$	4.0			$\mu \mathrm{s}$	
SCL low-level time	tLow	4.7			$\mu \mathrm{s}$	
SCL high-level time	$\mathrm{t}_{\text {HIGH }}$	4.0			$\mu \mathrm{s}$	
Start condition setup time	tsusta	4.7			$\mu \mathrm{s}$	
Data hold time	thDDAT	0			$\mu \mathrm{s}$	SCL fall time: data retention
Data setup time	$t_{\text {SUDAT }}$	250			ns	
SDA, SDA0, SDA1, SCL signal rise time	t_{R}			1	$\mu \mathrm{s}$	
SDA, SDA0, SDA1, SCL signal fall time	t_{F}			300	ns	
Stop condition setup time	tsusto	4.7			$\mu \mathrm{s}$	

Serial Interface, 3-Wire, I/O Mode with Automatic Transmit/Receive Function; Internal $\overline{\text { SCK }}$ Output

$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{D D}=2.7$ to 6.0 V ; refer to figure 41

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
$\overline{\text { SCK }}$ cycle time	$t_{\text {KCY7 }}$	800			ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		3200			ns	
$\overline{\text { SCK }}$ high- and low-level width		${ }_{4} \mathrm{KCY7}^{\prime} 2-50$			ns	$V_{D D}=4.5$ to 6.0 V
		$\mathrm{t}_{\mathrm{KCY7}} / 2-150$			ns	
SI setup time to $\overline{\text { SCK }} \uparrow$	${ }_{\text {t }}^{\text {S }}$ (7	100			ns	
SI hold time from SCK \uparrow	$\mathrm{t}_{\mathrm{KSI}}{ }^{\text {\% }}$	400			ns	
$\overline{\overline{S C K}} \downarrow$ to SO output delay time	${ }^{\text {t KSO7 }}$			300	ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to $6.0 \mathrm{~V} ; \mathrm{C}=100 \mathrm{pF}$ (See note)
				1000	ns	$C=100 \mathrm{pF}$ (See note)
$\overline{\text { STB } \uparrow \text { from } \overline{S C K} \uparrow}$	$\mathrm{t}_{\text {SBD }}$	400		${ }_{\text {t }}^{\text {KCY7 }}$	ns	
Strobe signal high-level width	${ }^{\text {t }}$ SBW	${ }_{4} \mathrm{KCY7}^{-30}$		${ }_{\text {tKCY7 }}+30$	ns	
Busy signal set-up time (to busy signal detection timing)	${ }^{\text {t }}$ SYS	100			ns	
Busy signal hold time (from busy signal	$t_{\text {tYH }}$	100			ns	

$\overline{\overline{S C K} \downarrow \text { from busy inactive }} \quad$ tSPS $\quad 2 t_{\text {KCY7 }} \quad$ ns \quad ner

Note: C is the load capacitance for the SO output line.
Serial Interface, 3-Wire, I/O Mode with Automatic Transmit/Receive Function; External $\overline{\mathbf{S C K}}$ Input
$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{D D}=2.7$ to 6.0 V ; refer to figure 41

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
$\overline{\text { SCK }}$ cycle time	${ }_{\text {t }}^{\text {KCY8 }}$	800			ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		3200			ns	
$\overline{\text { SCK }}$ high- and low-level width	${ }_{\text {K }}{ }_{\text {KH8, }} \mathrm{t}_{\text {KL8 }}$	400			ns	$V_{D D}=4.5$ to 6.0 V
		1600			ns	
SI setup time to SCK \uparrow	${ }^{\text {t }}$ SIK8	100			ns	
SI hold time from $\overline{\text { SCK }} \uparrow$	${ }_{\text {t }}^{\text {KSI }}$ I	400			ns	
$\overline{\text { SCK }} \downarrow$ to SO output delay time	${ }^{\text {K KSO8 }}$			300	ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to $6.0 \mathrm{~V} ; \mathrm{C}=100 \mathrm{pF}$ (See note)
				1000	ns	$C=100 \mathrm{pF}$ (See note)
$\overline{\overline{\text { SCK }} \downarrow \text { (after STB) from } \overline{\text { SCK }} \uparrow}$	${ }^{\text {tsPS }} 1$	${ }^{2+}{ }_{\text {KCY }}$			ns	

Note: C is the load capacitance for the SO output line.

Figure 37. Serial Interface Timing; 3-Wire Serial I/O Mode

Figure 38. Serial Interface Timing; SBI Mode

SBI Bus Release Signal Transfer Timing

SBI Bus Command Signal Transfer Timing

Figure 39. Serial Interface Timing; 2-Wire Serial I/O Mode

Figure 40. Serial Transfer Timing; 12C Bus Mode

Figure 41. Serial Interface Timing; 3-Wire Serial I/O Mode with Automatic Transmit/Receive Function

A/D Converter

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Resolution		8	8	8	bit	
Absolute accuracy (See note)				± 1.5	LSB	
Conversion time	tconv	160/fx			$\mu \mathrm{s}$	$\mathrm{f}_{\mathrm{X}}=4.19$ to 8.38 MHz
		80/7x			$\mu \mathrm{s}$	$\mathrm{f}_{\mathrm{X}}=1$ to 4.19 MHz
Sampling time	$\mathrm{t}_{\text {SAMP }}$	24/fx			$\mu \mathrm{s}$	
Analog input voltage	$V_{\text {IAN }}$	$\mathrm{AV}_{\text {SS }}$		$\mathrm{AV}_{\text {REF }}$	V	
Reference voltage	$\mathrm{AV}_{\text {REF }}$	2.7		$\mathrm{AV}_{\mathrm{DD}}$	V	
$\mathrm{AV}_{\text {REF }}$ current	$\mathrm{I}_{\text {REF }}$		0.5	1.5	mA	

Note: Absolute accuracy does not include the quantization error ($\pm 1 / 2$ LSB).

Data Memory STOP Mode; Low-Voltage Data Retention

$T_{A}=-40$ to $+85^{\circ} \mathrm{C}$; refer to figure 42

Note:

(1) $2^{13} / f_{X}, 2^{15} / f_{X}, 2^{16} / f_{X}, 2^{17} / f_{X}$ or $2^{18 / f} \mathrm{X}$ can be chosen by using bits 0 to 2 of the oscillation stabilization time select (OSTS) register.

Figure 42. Data Retention Timing

A. STOP mode is released by $\overline{\text { RESET }}$ input

B. STOP mode is released by interrupt signal

PROM PROGRAMMING

The PROM in the μ PD78P014Y is an OTP or UV EPROM. The 32,768 x 8-bit PROM has the programming characteristics of an NEC μ PD27C256A. Table 5 shows the functions of the μ PD78P014Y pins in both normal operating and PROM programming mode.

Table 5. Pin Functions During PROM Programming

Function	Normal Operating Mode	Programming Mode
Address input	$\mathrm{P4}_{0}-\mathrm{P4}_{7}, \mathrm{P5}_{0}, \mathrm{PO}_{0}$, $\mathrm{P5}_{2}-\mathrm{P5}_{6}$	$\mathrm{~A}_{0}-\mathrm{A}_{14}$
Data input	$\mathrm{P}_{0}-\mathrm{P}_{7}$	$\mathrm{D}_{0}-\mathrm{D}_{7}$
Chip enable/ program pulse	$\mathrm{P6}_{5} \overline{\mathrm{WR}}$	$\overline{\mathrm{CE}}$
Output enable	$\mathrm{P6}_{4} / \overline{\mathrm{RD}}$	$\overline{\mathrm{OE}}$
Program voltage	IC	V_{PP}
Mode voltage	$\overline{\mathrm{RESET}}$	Logical 0

PROM Programming Modes

When the RESET pin is set low and $V_{P P}$ is set to +5 V or +12.5 V , the $\mu \mathrm{PD} 78 \mathrm{P} 014 \mathrm{Y}$ enters the programming mode of operation. Operation in this mode is determined by the setting of the $\overline{C E}, \overline{O E}, V_{P P}$ and $V_{D D}$ pins as indicated in Table 6.

Table 6. Programming Operation Modes

Mode	RESET	Vpp	V_{DD}	$\overline{\mathrm{CE}}$	$\overline{O E}$	D_{0} to D_{7}
Program write	L	+12.5 V	+6V	L	H	Data input
Program verify	L	+12.5 V	+6V	H	L	Data output
Program inhibit	L	+12.5 V	+6V	H	H	High impedance
Read	L	+5V	$+5 \mathrm{~V}$	L	L	Data output
Output disble	L	$+5 \mathrm{~V}$	$+5 \mathrm{~V}$	L	H	High impedance
Standby	L	$+5 \mathrm{~V}$	$+5 \mathrm{~V}$	H	L/H	High impedance

Figure 43. PROM Programming Mode Pin Function; 64-Pin plastic or Ceramic Shrink DIP

Notes:
(1) L: Connect these pins separately to $\mathrm{V}_{S S}$ through reslstors ($10 \mathrm{k} \Omega$).
(2) V_{SS} : Connect to the ground.
(3) $\overline{\text { RESET: Set to the low level. }}$
(4) Open: Do not connect these pins.

Figure 44. PROM Programming Mode Pin Functions; 64-Pin Plastic QFP

Noteo:

(1) L: Connect these pins separately to V_{SS} through resistors ($10 \mathrm{k} \Omega$).
(2) VSS: Connect to the ground.
(3) $\overline{\text { RESET: Set to the low level. }}$
(4) Open: Do not connect these pins.

PROM Write Procedure

Data can be written to the PROM by using the following procedure.
(1) Set the pins not used for programming as indicated in figures 43 and 44 . Set the RESET pin low and the $V_{D D}$ and $V_{P P}$ pins to +5 V . The $\overline{C E}$ and $\overline{O E}$ pins should be high.
(2) Supply +6.0 V to the V_{DD} pin and +12.5 V to the Vpp pin.
(3) Provide the initial address to the $A_{0}-A_{14}$ pins.
(4) Provide the write data.
(5) Provide a 1 -ms program pulse (active low) to the $\overline{C E}$ pin.
(6) Use the verify mode (pulse $\overline{\mathrm{OE}}$ low) to test the data. If data is written correctly, proceed to step 8 ; if data is not written correctly, repeat steps 4 to 6 up to 25 times. If data is still incorrect, go to step 7.
(7) Classify the PROM as defective and cease write operation.
(8) Perform one additional write with a program pulse width (in ms) equal to three times the number of writes performed in step 5.
(9) Increment the address.
(10) Repeat steps $4-9$ until the last adress is programmed.

PROM Read Procedure

The contents of the PROM can be read out of the external data bus ($D_{0}-D_{7}$) by using the following procedure.
(1) Set the pins not used for programming as indicated in Figures 43 and 44 . Set the RESET pin low and the $V_{P P}$ pin and $V_{D D}$ pin to +5 V . The CE and $\overline{O E}$ pins should be high.
(2) Input the address of the data to be read to the $\mathrm{A}_{0}-\mathrm{A}_{14}$ pins.
(3) Put an active-low pulse on $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ pins.
(4) Data is output to pins $D_{0}-D_{7}$.

Program Erasure

The UV EPROM can be erased (all locations FFH) by exposing the window to light having a wavelength shorter than 400 nm , including ultraviolet, direct sunlight, and fluorescent light. To prevent unintentional erasure, mask the window.
Typically, data is erased by $254-\mathrm{nm}$ ultraviolet rays. A minimum lighting level of $15 \mathrm{~W} \mathrm{~s} / \mathrm{cm}^{2}$ (ultraviolet ray intensity x exposure time) is required to completely erase the written data. Erasure by an ultraviolet lamp rated at $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ takes approximately 15 to 20 minutes. Remove any filter on the lamp and place the device within 2.5 cm of the lamp tubes.

DC Programming Characteristics

$T_{A}=25 \pm 5^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$.

Parameter	Symbol	Symbol*	Min	Typ	Max	Unit	Condition
High-level input voltage	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	$0.7 \mathrm{~V}_{\text {DDP }}$		$\mathrm{V}_{\text {DDP }}$	V	
Low-level input voltage	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	0		$0.3 \mathrm{~V}_{\text {DDP }}$	V	
Input leakage current	LIP	LII			10	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{1} \leq \mathrm{V}_{\text {DDP }}$
High-level output voltage	$\mathrm{V}_{\mathrm{OH} 1}$	$\mathrm{V}_{\mathrm{OH} 1}$	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
	$\mathrm{V}_{\mathrm{OH} 2}$	$\mathrm{V}_{\mathrm{OH} 2}$	$\mathrm{V}_{\mathrm{DD}}-0.7$			V	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$
Low-level output voltage	V_{OL}	V_{OL}			0.45	V	$\mathrm{l}_{\mathrm{OL}}=2.1 \mathrm{~mA}$
Output leakage current	Lo				10	$\mu \mathrm{A}$	$0 \leq V_{O} \leq V_{D D P}, \overline{O E}=V_{I H}$
$\mathrm{V}_{\text {DDP }}$ power voltage	$\mathrm{V}_{\text {DDP }}$	$V_{C C}$	5.75	6.0	6.25	V	Program memory write mode
			4.5	5.0	5.5	V	Program memory read mode
$\mathrm{V}_{\text {PP }}$ power voltage	V_{PP}	$V_{P P}$	12.2	12.5	12.8	V	Program memory write mode
				$V_{P P}=V_{D D P}$		V	Program memory read mode
VDDP power current	${ }^{\text {DD }}$	Icc		5	30	mA	Program memory write mode
				5	30	mA	Program memory read mode $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$
$\mathrm{V}_{\text {PP }}$ power current	lpp	IPP		5	30	mA	Program memory write mode $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$
				1	100	$\mu \mathrm{A}$	Program memory read mode

*Corresponding symbols of the $\mu \mathrm{PD} 27 \mathrm{C} 256 \mathrm{~A}$.

AC Programming Characteristics (Write Mode)

$\mathrm{T}_{\mathrm{A}}=25 \pm 5^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=6 \pm 0.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=12.5 \pm 0.3 \mathrm{~V}$.

Parameter	Symbol	Symbol*	Min	Typ	Max	Unit	Conditions
Address setup time to $\overline{\mathrm{CE}} \downarrow$	$\mathrm{t}_{\text {SAC }}$	$t_{\text {AS }}$	2			$\mu \mathrm{s}$	
Data input to $\overline{\mathrm{OE}} \downarrow$ delay time	${ }^{\text {t DDOO }}$	toes	2			$\mu \mathrm{s}$	
Input data setup time to $\overline{\mathrm{CE}} \downarrow$	$\mathrm{t}_{\text {SIDC }}$	${ }^{\text {t }}$ D	2			$\mu \mathrm{s}$	
Address hold time from $\overline{\mathrm{CE}} \uparrow$	${ }_{\text {t }}^{\text {HCA }}$	${ }^{\text {taH }}$	2			μs	
Input data hold time from $\overline{\mathrm{CE}} \uparrow$	${ }^{\text {t } \mathrm{HCID}}$	$t_{\text {DH }}$	2			$\mu \mathrm{s}$	
Output data hold time from $\overline{O E} \uparrow$	$\mathrm{t}_{\mathrm{HOOD}}$	$t_{\text {DF }}$	0		130	ns	
$\mathrm{V}_{\text {PP }}$ setup time to $\overline{\mathrm{CE}} \downarrow$	$t_{\text {sVPC }}$	$t_{\text {VPS }}$	1			ms	
$V_{\text {DDP }}$ setup time to $\overline{C E} \downarrow$	tsvDC	tves	1			ms	
Initial program pulse width	twL1	tpw	0.95	1.0	1.05	ms	
Additional program pulse width	twL2	topw	2.85		78.75	ms	
$\overline{\mathrm{OE}} \downarrow$ to data output time	tDOOD	toe			150	ns	

[^6]AC Programming Characteristics (Read Mode)
$T_{A}=25 \pm 5^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \pm 0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{DD}}$.

Parameter	Symbol	Symbol*	Min	Typ	Max	Unit	Condition
Address to data output time	$t_{\text {DAOD }}$	$\mathrm{t}_{\text {AcC }}$			200	ns	$\overline{C E}=\overline{O E}=V_{\text {IL }}$
$\overline{\mathrm{CE}} \downarrow$ to data output time	${ }^{\text {t }}$ DCOD	t_{CE}			200	ns	$\overline{O E}=V_{I L}$
$\overline{\mathrm{OE}} \downarrow$ to data output time	$t_{\text {DOOD }}$	toe			75	ns	$\overline{C E}=V_{\text {IL }}$
Data hold time from $\overline{O E} \uparrow$	$t_{\text {HCOD }}$	$t_{\text {DF }}$	0		60	ns	$\overline{C E}=V_{\text {IL }}$
Data hold time from address	$t_{\text {HAOD }}$	t_{OH}	0			ns	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$

* Corresponding symbols of the μ PD27C256A.

AC Programming Characteristics (PROM Mode)
$T_{A}=25 \pm 5^{\circ} \mathrm{C}, \mathrm{V}_{S S}=0 \mathrm{~V}$

Parameter	Symbol	Min	Typ	Max	Unit	Condition
PROM mode setup time	tSMA		10	$\mu \mathrm{~s}$		

PROM Timing Diagrams

PROM Write/Verify Mode

Notes:

(1) $\mathrm{V}_{\mathrm{DDP}}$ must be applied before applying V_{pp}. It should be removed before removing V_{pp}.
(2) V_{pp} must not exceed +13 V , including overshoot.

PROM Timing Diagrams (cont)

PROM Read Mode

PROM Mode Setting

8-Bit, K-Series Microcontrollers
 With FIP Controller/Driver and A/D Converter

Preliminary

Description

The μ PD78042, μ PD78043, μ PD78044, and μ PD78P044 are members of the K-Series ${ }^{\circledR}$ of microcontrollers featuring a FIP® (VF) controller/driver, A/D converter, 8-bit hardware multiply and divide instructions, bit manipulation instructions, four banks of main registers, an advanced interrupt handling facility, and a powerful set of memory-mapped on-chip peripherals.

Timing is generated by two oscillators. The main oscillator normally drives the CPU and most peripherals. The $32.768-\mathrm{kHz}$ subsystem oscillator provides time keeping when the main oscillator is turned off. Since CMOS power dissipation is proportional to clock rate, the μ PD78044 family provides a software selectable instruction cycle time from $0.48 \mu \mathrm{~s}$ to $122 \mu \mathrm{~s}$. The STOP and HALT modes turn off parts of the microcontroller for additional savings. The data retention mode keeps RAM contents valid down to 2.0 V .

These devices are ideally suited for applications in portable battery-powered equipment, office automation, communications, automotive and consumer electronics, home appliances, and PC peripherals.
K-Series and FIP are registered trademarks of NEC Electronics Inc.

Features

- FIP controller/driver
- Up to 34 lines of direct-drive, high-voltage output
—Eight software-controller intensity levels
- 48 bytes of display RAM
- Refresh of display without CPU intervention
- Key scan capability
- Eight-channel, 8-bit A/D converter
- Two-channel serial communications interface
-8-bit clock-synchronous interface 0 Full-duplex, three-wire mode NEC serial bus interface (SBI) mode Half-duplex, two-wire mode
-8-bit clock-synchronous interface 1 Full-duplex, three-wire mode Automatic transfer, full-duplex three-wire mode
- Timers; six channels
- Watchdog timer
- 16-bit timer/event counter
- Two 8-bit timer/event counters usable as one 16-bit timer/event counter
-6-bit up/down counter for external events
- Watch (clock) timer
- 68 I/O and bidirectional I/O lines, including high voltage lines for FIP drive
- Two CMOS input-only lines
- 27 CMOS bidirectional I/O lines
- Five n-channel, open-drain I/O lines at 15 V maximum
- 16 p-channel, open-drain I/O lines at 35 V maximum
- 18 p-channel, open-drain output lines at 35 V maximum
— Software or mask selectable pullup or pulldown resistors available on many port lines
- Powerful instruction set
-8-bit unsigned multiply and divide
- 16-bit arithmetic and data transfer instructions
-1-bit and 8-bit logic instructions
- Minimum instruction execution times
- 0.48/0.95/1.91/3.81/7.63 μ s using $4.19-\mathrm{MHz}$ main system clock
- 122μ s using $32.768-\mathrm{kHz}$ subsystem clock
- Memory-mapped on-chip peripherals
- Special function registers
- Programmable priority, vectored-interrupt controller (two levels)
- Programmable buzzer and clock outputs
- Power-saving and battery back up
- Variable CPU clock rate
— STOP mode
- HALT mode
- 2-V data retention mode
\square CMOS operation; $V_{D D}$ from 2.7 to 6.0 V
Internal High-Capacity ROM and RAM

	78042	78043	78044	$78 \mathrm{P044}$
ROM	16 K bytes	24 K bytes	32 K bytes	-
PROM	-	-	-	32 K bytes
High-speed RAM	512 bytes	1024 bytes	1024 bytes	1024 bytes
Serial buffer RAM	64 bytes	64 bytes	64 bytes	64 bytes
FIP display RAM	48 bytes	48 bytes	48 bytes	48 bytes

Part Number	ROM	Package (Package Dwg)
μ PD78042GF-xxx-3B9	16K mask ROM	80-pin plastic QFP (P80GF-80-3B9-1)
μ PD78043GF-xxx-3B9	24K mask ROM	
$\mu \mathrm{PD} 78044 \mathrm{GF-xxx}$-3B9	32K mask ROM	
μ PD78P044GF-3B9	32 K OTP ROM	
$\mu \mathrm{PD} 78 \mathrm{P} 044 \mathrm{KL}$-S	32 K UV EPROM	80-pin ceramic LCC with window (X80KW-80A)

Notes:

(1) $x x x$ indicates ROM code suffix
(2) All devices listed are Standard Quality Grade.

Pin Configurations

80-Pin Plastic QFP or Ceramic LCC With Window

Notes:
(1) Connect IC (internally connected) pin ($V_{\text {PP }}$ on μ PD78P044) to $V_{S S}$.
(2) $A V_{D D}$ should be connected to $V_{D D}$
(3) $A V_{S S}$ should be connected to $V_{S S}$.

Pin Functions; Normal Operating Mode

Symbol	First Function	Symbol	Alternate Functions
PO_{0}	Port 0; 5-bit, bit-selectable I/O. (Bits 0 and 4 are input only)	$\begin{aligned} & \text { INTPO } \\ & \text { TIO } \end{aligned}$	External maskable interrupt External count clock input to timer 0
PO_{1}		INTP1	External maskable interrupt
PO_{2}		INTP2	External maskable interrupt
PO_{3}		$\begin{aligned} & \text { INTP3 } \\ & \text { ClO } \end{aligned}$	External maskable interrupt Up/down counter clock input
PO_{4}		XT1	Crystal oscillator or external clock input for subsystem clock
$\mathrm{P}_{10}-\mathrm{P} 1_{7}$	Port 1; 8-bit, bit-selectable I/O port.	ANIO - ANI7	Analog input to A/D converter
Pr_{0}	Port 2; 8-bit, bit-selectable I/O port.	SI1	Serial data input; three-wire serial I/O mode
Pr_{1}		SO1	Serial data output; three-wire serial I/O mode
Pr_{2}		$\overline{\text { SCK1 }}$	Serial clock I/O for serial interface 1
P_{2}		STB	Serial interface; automatic transmit/receive strobe output
$\mathrm{P2}_{4}$		BUSY	Serial interface; automatic transmit/receive busy input
$\mathrm{P}_{2} 5$		$\begin{aligned} & \text { SIO } \\ & \text { SBO } \end{aligned}$	Serial data input; three-wire serial I/O mode Two- or three-wire serial I/O mode
$\mathrm{P}_{2}{ }_{6}$		$\begin{aligned} & \text { SOO } \\ & \text { SB1 } \end{aligned}$	Serial data output; three-wire serial I/O mode Two- or three-wire serial I/O mode
P_{7}		SCKO	Serial clock 1/O for serial interface 0
P_{3}	Port 3; 8-bit, bit-selectable 1/O port.	TOO	Timer output from timer 0
$\mathrm{P3}_{1}$		TO1	Timer output from timer 1
$\mathrm{P3}_{2}$		TO2	Timer output from timer 2
P_{3}		TI1	External count clock input to timer 1
P_{4}		T12	External count clock input to timer 2
$\mathrm{P3}_{5}$		PCL	Programmable clock output
P_{3}		BUZ	Programmable buzzer output
P_{7}		-	
$\mathrm{P7}_{0}-\mathrm{P} 7_{4}$	Port 7; 5-bit,bit selectable I/O port. N-channel, open drain.	-	
$\mathrm{P} 8_{0}-\mathrm{P8} 8_{1}$	Port 8; 2-bit, output port. P-channel, open drain.	FIPO, FIP1	FIP digit select outputs
$\mathrm{P9}_{0}-\mathrm{P9}_{7}$	Port 9; 8-bit, output port. P-channel, open drain.	FIP2 - FIP9	FIP digit select outputs
${\mathrm{P} 10_{0}-\mathrm{P} 10_{5}}^{\text {cen }}$	Port 10; 8-bit, output port. P-channel, open	FIP10-FIP15	FIP digit select or segment outputs
${\mathrm{P} 10_{6}-\mathrm{P} 10_{7}}$	drain.	FIP16-FIP17	FIP segment outputs
$\mathrm{P} 110-\mathrm{P} 117$	Port 11; 8-bit, bit selectable I/O port. P-channel open drain.	FIP18 - FIP25	FIP digit select outputs
$\mathrm{P}_{12} \mathrm{O}_{-\mathrm{P} 127}$	Port 12; 8-bit, bit selectable I/O port. P-channel open drain.	FIP26-FIP33	FIP digit select outputs
$V_{\text {LOAD }}$	FIP controller/driver; pulldown resistor connection.		
RESET	External system reset input		
X1	Crystal/ceramic resonator connection or external clock input for main system clock		

Pin Functions; Normal Operating Mode (cont)

Symbol	First Function	Symbol	Alternate Functions
X2	Crystal/ceramic resonator connection or inverse of external clock for main system clock		
XT2	Crystal oscillator or left open when not using the subsystem clock		
$\mathrm{AV}_{\text {REF }}$	A/D converter reference voltage		
$\mathrm{AV}_{\mathrm{DD}}$	A/D converter power supply input		
$\mathrm{AV}_{\text {SS }}$	A/D converter ground		
$V_{\text {DD }}$	Power supply input		
$V_{\text {PP }}$	μ PD78P044 PROM programming power supply input		
$\mathrm{V}_{S S}$	Power supply ground		
IC	Internal connection		

Block Diagram, μ PD78044 Family

FUNCTIONAL DESCRIPTION

Central Processing Unit

The central processing unit (CPU) of the μ PD78044 family features 8 - and 16 -bit arithmetic including an 8 by 8 -bit unsigned multiply and a 16 - by 8 -bit unsigned divide (producing a 16 -bit quotient and an 8 -bit remainder). The multiply executes in 3.82μ s and the divide in 5.97μ s using the fastest clock cycle with a $4.19-\mathrm{MHz}$ main system clock.
A CALLT vector table and a CALLF area decrease the number of bytes in the call instructions for commonly used subroutines. A one-byte call instruction can access up to 32 subroutines through their addresses contained in the CALLT vector table (40 H to 7 FH). A two-byte call instruction can access any routine beginning in a specific CALLF area (0800 H to OFFFH).

Internal System Clock Generator

The internal system clocks of the μ PD78044 family are derived from the main system or subsystem clock oscillator. See figure 1. The clocks for the watch timer and programmable clock output are derived from the subsystem clock ($\mathrm{fxT}_{\mathrm{X}}$) or main system clock (fx_{X}). The clocks for all other peripheral hardware are derived from the main system clock.
The CPU clock (ϕ) can be supplied from the main system clock (f_{x}) or subsystem clock ($\mathrm{f}_{\mathrm{X} T}$). Using the processor clock control register (PCC), a CPU clock frequency equal to $\mathrm{f}_{\mathrm{X}}, \mathrm{f}_{\mathrm{X}} / 2, \mathrm{f}_{\mathrm{X}} / 4, \mathrm{f}_{\mathrm{X}} / 8, \mathrm{f}_{\mathrm{X}} / 16$ or the subsystem clock $f_{X T}$ can be selected. The CPU clock selected should be based on the power supply voltage available and the desired power consumption. On power up, the CPU clock defaults to the lowest speed from the main system clock and can be changed while the microcomputer is running.
Since the shortest instruction takes two CPU clocks to execute, the fastest instruction execution time (t_{CY}) of $0.48 \mu \mathrm{~s}$ is achieved with a $4.19-\mathrm{MHz}$ main system clock and a $V_{D D}$ of 4.5 to 6.0 volts. The fastest instruction execution time available across the full voltage range of 2.7 to 6.0 volts is $0.96 \mu \mathrm{~s}$ with a $4.19-\mathrm{MHz}$ main system clock. For the lowest power consumption, the CPU can be operated from the subsystem clock and the fastest instruction execution time is $122 \mu \mathrm{~s}$ at 32.768 kHz .

Memory Space

Program and data memory are mapped into the 64 K byte address space ($0000 \mathrm{H}-\mathrm{FFFFH}$). See figure 2. The μ PD78044 family is optimized for single-chip operation and does not permit external memory.

Internal Program Memory

All devices in the μ PD78044 family have internal program memory. The μ PD78042, μ PD78043, and μ PD78044 contain 16K, 24K, and 32K bytes of internal ROM, respectively. The μ PD78P044 contains 32K bytes of UV EPROM or one-time programmable ROM. To allow the μ PD78P044 to emulate the mask ROM devices, the amount of internal program memory available in the μ PD78P044 can be selected using the memory size switching register (IMS).

Internal RAM

Internal RAM comprises three types: high-speed, buffer, and FIP display. The μ PD78042 has 624 bytes of internal RAM and the μ PD78043/044/P044 have 1136 bytes.
High-speed RAM contains the general register banks and the stack. Unused portions of RAM and unused register bank locations are available for general storage. The μ PD78042 has 512 bytes (FD00H-FEFFH) of high-speed RAM; the μ PD78043/044/P044 has 1024 bytes (FBOOH-FEFFH).
All devices contain 64 bytes (FA8OH-FAFFH) of buffer RAM and 48 bytes (FA50H-FA7FH) of FIP display RAM. The buffer area is used for the automatic transfer mode of serial interface 1 or for general storage. The FIP display area is for display data; unused portions are available for general storage.

CPU Control Registers

Program Counter. The program counter is a 16 -bit binary counter register that holds the address of the next instruction to be executed. During reset, the program counter is loaded with the address stored in locations 0000 H and 0001 H .
Stack Pointer. The stack pointer is a 16 -bit register that holds the address of the last item pushed onto the stack. It is decremented before new data is pushed onto the stack and incremented after data is popped off the stack.

Figure 1. Internal System Clock Generator

Figure 2. Memory Map

Notes:

(1) 3FFFH on 78042

5FFFH on 78043
7FFFH on 78044/P044
(2) FCFFH on 78042 FAFFH on 78043/044/P044

Program Status Word. The program status word (PSW) is an 8-bit register containing flags that are set or reset according to the results of an instruction execution. This register can be written to or read from 8 bits at a time. The individual flags can also be manipulated on bit-by-bit basis. The assignment of PSW bits follows:

$$
\mathrm{CY}
$$

ISP
RBSO, RBS1
AC
Z
IE

Carry flag
Inservice (interrupt) priority flag Register bank selection flags Auxiliary carry flag Zero flag Interrupt enable flag

General-Purpose Registers

The general-purpose registers (figure 3) are in four banks at addresses FEEOH to FEFFH in high-speed internal RAM. Each bank comprises eight 8 -bit registers, which can be paired as four 16 -bit registers. Bits RBS0 and RBS1 in the PSW, set under program control, identify the active register banks at any time.
Eight-bit registers have functional names A, X, B, C, D, E, H, L, and absolute names RO thru R7; the four 16-bit registers have functional names $A X, B C, D E, H L$ and absolute names RPO thru RP3. Either the functional or absolute name is acceptable for the operand identifier " r " or " r " in an instruction.

Figure 3. General-Purpose Registers

μ PD78044 Family

Addressing

The program memory addressing (ROM) modes provided are relative, immediate, table indirect, and register addressing. The operand addressing modes provided are implied, register, direct, short direct (saddr), special-function (SFR), register indirect, based, based indexed, and stack addressing.
The SFR addressing and saddr addressing modes use direct addressing and require only 1 byte in the instruction to address RAM. Normally a 65K byte address space requires 2 bytes to address it. One-byte addressing results in faster access times, since the instructions are shorter. SFR addressing addresses the entire 256byte SFR address space from FFOOH to FFFFH. Saddr addressing (see figure 2) addresses the 256 -byte address space FE20H to FF1FH. FE2OH to FEFFH are composed of 224 bytes of internal high speed RAM; FFOOH to FF1FH contain the first 32 bytes in the special function register area.

One-byte addressing is accomplished by using the first byte of the instruction for the opcode (and one operand if register A or AX is used) and the second byte of the instruction as an address (offset) into the 256 -byte area. If register A or AX is used, the instructions are 2 bytes long thereby providing fast access times. If immediate data is used, the instruction will be 3 or 4 bytes long depending upon whether the immediate data is a byte or a word. Many 16 -bit SFRs are in the space FFOOH to FF1FH. Using AX as an operand to these SFRs will provide fast access, since the instructions will only 2 bytes long.

Special Function Registers

The input/output ports, timers, capture and compare registers, and the mode and control registers for the peripherals and the CPU are collectively known as special function registers (table 1). They are all memory-mapped between FFOOH and FFFFH and can be accessed either by main memory addressing or by one-byte SFR addressing. FFOOH to FF1H can also be accessed using saddr addressing. They are 8 or 16 bits, as required; many of the 8 -bit registers are capable of single-bit access as well.

Table 1. Special Function Registers

Address	Register (SFR)	Symbol	R/W	Access Units (Bits)			State After Reset
				1	8	16	
FFOOH	Port 0	PO	R/W	x	x	-	OOH
FF01H	Port 1	P1	R/W	x	x	-	OOH
FF02H	Port 2	P2	RW	x	x	-	OOH
FF03H	Port 3	P3	R/W	x	x	-	OOH
FF07H	Port 7	P7	R/W	x	x	-	OOH
FF08H	Port 8	P8	w	x	x	-	OOH
FF09H	Port 9	P9	W	x	x	-	OOH
FFOAH	Port 10	P10	W	x	x	-	OOH
FFOBH	Port 11	P11	R/W	x	x	-	OOH
FFOCH	Port 12	P12	R/W	\times	x	-	OOH
FF10H-FF11H	Compare register 00	CROO	R/W	-	-	x	Undefined
FF12H-FF13H	Capture register 01	CRO1	R	-	-	x	Undefined
FF14H-FF15H	16-bit timer register	TMO	R	-	-	\times	OOH
FF16H	Compare register 10	CR10	R/W	-	x	-	Undefined
FF17H	Compare register 20	CR20	R/W	-	x	-	Undefined
FF18H	8 -bit timer register 1	TM1	R	x	x	-	OOH
FF19H	8 -bit timer register 2	TM2	R	x	\times	-	OOH
FF18H-FF19H	16-bit timer register	TMS	R	-	-	\times	0000 H
FF1AH	Serial I/O shift register 0	S100	R/W	-	x	-	Undefined
FF1BH	Serial I/O shift register 1	SIO1	R/W	-	x	-	Undefined
FF1FH	A/D conversion result register	ADCR	R	-	x	-	Undefined
FF20H	Port mode register 0	PMO	R/W	\times	x	-	1 FH
FF21H	Port mode register 1	PM1	RNW	x	x	-	FFH
FF22H	Port mode register 2	PM2	RNW	x	x	-	FFH
FF23H	Port mode register 3	PM3	RW	x	x	-	FFH
FF27H	Port mode register 7	PM7	RNW	\times	x	-	1 FH
FF2BH	Port mode register 11	PM11	R/W	x	x	-	FFH
FF2CH	Port mode register 12	PM12	RW	x	x	-	FFH
FF40H	Timer clock select register 0	TCLO	R/W	\times	\times	-	OOH
FF41H	Timer clock select register 1	TCL1	R/W	-	x	-	OOH
FF42H	Timer clock select register 2	TCL2	R/W	-	x	-	OOH
FF43H	Timer clock select register 3	TCL3	RNW	-	x	-	88 H
FF47H	Sampling clock select register	SCS	R/W	-	x	-	OOH
FF48H	16-bit timer mode control register	TMCO	R/W	x	x	-	OOH
FF49H	8 -bit timer mode control register	TMC1	R/W	x	x	-	OOH
FF4AH	Watch timer mode control register	TMC2	R/W	x	x	-	OOH
FF4EH	16-bit timer output control register	TOCO	R/W	x	x	-	OOH
FF4FH	8 -bit timer output control register	TOC1	R/W	x	x	-	OOH
FF60H	Serial operating mode register 0	CSIM0	R/W	x	x	-	OOH
FF61H	Serial bus interface control register	SBIC	R/W	x	x	-	OOH

Table 1. Special Function Registers (cont)

Address	Register (SFR)	Symbol	R/W	Access Units (Bits)			State After Reset
				1	8	16	
FF62H	Slave address register	SVA	RN	-	x	-	Undefined
FF63H	Interrupt timing specify register	SINT	RNW	x	x	-	OOH
FF68H	Serial operation mode register 1	CSIM1	RNW	x	x	-	OOH
FF69H	Automatic data transmit/receive control register	ADTC	R/W	x	x	-	OOH
FF6AH	Automatic data transmit/receive address pointer register	ADTP	RNW	-	x	-	OOH
FF6BH	Automatic data transmission/reception interval specification register	ADTI	RNW	x	x	-	OOH
FF80H	A/D converter mode register	ADM	RNW	x	x	-	01H
FF84H	A/D converter input select register	ADIS	R/W	-	x	-	OOH
FFAOH	Display mode register 0	DSPMO	R/W	(Note 1)	x	-	OOH
FFA1H	Display mode register 1	DSPM1	R/W	-	x	-	OOH
FFA8H	6-bit up/down counter mode register	UDM	R/W	x	x	-	OOH
FFA9H	6 -bit up/down counter	UDC	R/W	-	x	-	OOH
FFAAH	6 -bit up/down counter compare register	UDCC	R/W	-	x	-	OOH
FFEOH	Interrupt flag register L	IFOL	R/W	x	x	-	OOH
FFE1H	Interrupt flag register H	IFOH	R/W	x	\times	-	OOH
FFEOH-FFE1H	Interrupt flag register	IFO	RNW	-	-	x	0000H
FFE4H	Interrupt mask flag register L	MKOL	R/W	x	x	-	FFH
FFE5H	Interrupt mask flag register H	MKOH	R/W	x	\times	-	FFH
FFE4H-FFE5H	Interrrupt mask flag register	MKO	RNW	-	-	x	FFFFH
FFE8H	Priority order specify flag register L	PROL	R/W	x	x	-	FFH
FFE9H	Priority order specify flag register H	PROH	R/W	x	x	-	FFH
FFE8H-FFE9H	Priority order specify flag register	PRO	R/W	-	-	x	FFFFH
FFECH	External interrupt mode register	INTMO	R/W	-	x	-	OOH
FFFOH	Memory size switch register (Note 2)	IMS	w	-	x	-	$\mathrm{C8H}$
FFF7H	Pullup resistor option register	PUO	R/W	x	x	-	OOH
FFF9H	Watchdog timer mode register	WDTM	RNW	x	x	-	OOH
FFFAH	Oscillation stabilization time select register	OSTS	R/W	-	x	-	04H
FFFBH	Processor clock control register	PCC	RW	x	\times	-	04H

Notes:

(1) Bits 0-6 are read/write and bit 7 is read only.
(2) μ PD78P044 only.

Input/Output Ports

There are 68 port lines on each device in the μ PD78044 family. Table 2 lists the port features and figure 4 shows the circuits at the I/O interfaces.

Table 2. Digital Port Features

Port	Input/Output	Notes	Conflguration	Direct Drive	Software Pullup Resistors (Note 1)	
0	5-bit I/O	2	Bit selectable	-		Byte selectable, input bits only
1	8 -bit I/O	-				
2	8 -bit I/O	-				
3	8 -bit I/O	3	Bit selectable	LED	Not available	
7	5-bit, n-channel I/O	4	Bit selectable	-		
8	2-bit, p-channel output	5,6	N/A	LED, FIP		
9	8 -bit, p-channel output	6,7	NA	LED, FIP		
10	8 -bit, p-channel output	$6,7,8$	N/A	LED, FIP		
11	8 -bit, p-channel I/O	7	Bit selectable	FIP		
12	8 -bit, p-channel I/O	7	Bit selectable	FIP		

Notes:

(1) Software pullup resistors can be internally connected (only on a port basis) to port bits set to input mode.
(2) PO_{0} and PO_{4} are input only and do not have a software pullup resistor.
(3) Mask ROM products: pulldown resistors are selectable per bit with a mask option. Not available on the μ PD78P044.
(4) Mask ROM products: pullup resistors are selectable per bit with a mask option. Not available on the μ PD78P044.
(5) Mask ROM products: pulldown resistors are selectable per bit with a mask option (connection to $V_{\text {LOAD }}$ or $V_{S S}$ specifiable as a 2-bit unit).
(6) μ PD78P044: pulldown resistors incorporated for all bits (connection to $\mathrm{V}_{\text {LOAD }}$).
(7) Mask ROM products: pulldown resistors are selectable per bit with a mask option (connection to $V_{\text {LOAD }}$ or $V_{S S}$ specifiable as 4-bit units).
(8) $\mathrm{P} 10_{0}-\mathrm{P} 10_{5}$; LED, FIP direct drive. $\mathrm{P} 10_{6}-\mathrm{P} 10_{7}$: FIP direct drive.

Figure 4. Pin Input/Output Circuits

Figure 4. Pin Input/Output Circuits (cont)

A/D Converter

The μ PD 78044 family's analog-to-digital converter (figure 5) uses the successive-approximation method for converting one of eight multiplexed analog inputs into 8 -bit digital data. The minimum conversion time per input is $38.1 \mu \mathrm{~s}$ at $4.19-\mathrm{MHz}$ operation.

The A/D converter input select register (ADIS) selects the number of inputs that are used in A / D conversion. The remaining inputs are used as ports. The analog input to be converted is selected by programming the

A/D converter mode register (ADM). Conversion is started by external interrupt INTP3, or by writing to the ADM register. When conversion is completed, the results are stored in the A/D conversion result register (ADCR) and an INTAD interrupt is generated.

If the A / D converter was started by an external interrupt, it stops after the interrupt is generated. If the A / D converter was started by software, it repeats the conversion until new data is written to the ADM register.

Figure 5. A/D Converter

Notes:
(1) Selects number of port 1 inputs to be used for A/D conversion.
(2) Selects the channel for AVD conversion.

Serial Interface 0

Serial interface 0 is an 8 -bit, clock-synchronous interface. It can be operated in three-wire serial I/O mode, NEC serial bus interface (SBI) mode, or two-wire serial I/O mode. The serial clock can be provided from one of eight internal clocks, the output of 8 -bit timer register 2, or external clock line SCKO. See figure 6.

Figure 6. Serial Interface 0

Three-Wire Interface. In the three-wire serial I/O mode, the 8 -bit shift register (SIOO) is loaded with a data byte and eight clock pulses are generated. The clock pulse falling edges shift the data byte out to the SOO line (either MSB or LSB first), while the rising edges shift data in from the SIO line, providing full-duplex operation. The INTCSIO interrupt is generated after each 8-bit transfer.
SBI Interface. The NEC SBI mode is a two-wire, highspeed, proprietary serial interface available on most devices in the NEC μ PD75xxx and μ PD78xxx families. Devices are connected in a master/slave configuration. See figure 7. There is only one master device at a time; all others are slaves. The master sends addresses, commands, and data over one of the serial bus lines (SB0 or SB1) using a fixed hardware protocol synchronized with the $\overline{\text { SCKO }}$ line.
Each slave device of the μ PD78044 family can be programmed to respond in hardware to any one of 256 addresses set in its slave address register (SVA). There are also 256 commands and 256 data types. Since all commands are user definable, many software protocols, simple or complex, can be defined. It is even possible to develop commands that change a slave into a master and the previous master into a slave.

Figure 7. SBI Mode Master/Slave Configurtion

Two-Wire Interface. The two-wire serial I/O mode provides half-duplex operation using either the SB0 or SB1 line and the SCKO line. Communication format and handshaking can be handled in software by controlling the output levels of the data and clock lines between transfers. For data transmission, when 8 -bit shift register (SIOO) is loaded with a data byte and eight clock pulses are generated. The falling edges shift the data byte out either the SB0 or SB1 line, MSB first. In addition, this data byte is also shifted back into SIOO on the rising pulse edges providing a means of verifying that the transmission was correct.
For data reception, the SIOO register is preloaded with the value FFH. As this data value is shifted out on the falling edge of the serial clock, it disables the n-channel open-drain driver. This allows the receive data to be driven onto the serial line and shifted into the SIOO register on the rising edge of the serial clock. The INTCSIO interrupt is generated after each 8-bit transfer.

Serial Interface 1

Serial interface 1 is also an 8 -bit, clock-synchronous interface (figure 8). It can be operated in either a three-wire serial I/O mode or a three-wire serial I/O mode with automatic transmit/receive. The serial clock can also be provided from one of eight internal clocks (common clock for both interfaces), the output of 8 -bit timer register 2, or the external clock line SCK1.
Three-Wire. In the three-wire serial I/O mode, the 8 -bit shift register (SIO1) is loaded with a data byte and eight clock pulses are generated. The clock pulse falling edges shift the data byte out of the SO1 line (MSB or LSB first) while the rising edges shift the data in from the SI1 line, providing full-duplex operation. The IN TCSI1 interrupt is generated after each 8-bit transfer.

Three-Wire With Auto Xmt/Rcv. In the three-wire serial I/O mode with automatic transmit/receive, up to 64 data bytes can be transferred with minimal CPU overhead. The data to be transmitted and received is stored in the buffer RAM. Handshaking over the BUSY input line or the strobe (STB) output line, or both, can be selected by the program. Error detection of bit drift due to noise is available for each byte transferred when using the BUSY input line. This automatic transmit/receive mode is ideally suited for transferring data to/from external peripheral devices such as on-screen display (OSD) and LSC controller/driver devices.

Figure 8. Serial Interface 1

While in three-wire serial I/O mode with automatic data transfer, the interface can be operated full duplex or transmit only in single or repetitive operation. In full duplex, a data byte is transferred from the first location in the buffer RAM and shifted out the SO1 line (MSB or LSB first) while the received data is shifted in the SII line and stored back in the first buffer location. After the preset number of bytes have been transferred, the INTCSI1 interrupt is generated.

In single-operation transmit mode, the preset number of bytes from the buffer RAM are transmitted out the SO1 line (MSB or LSB first) and the INTCSI1 interrupt is generated after all bytes have been transferred. In repetitive-operation transmit mode, data in the buffer is transmitted repeatedly.

Timers

The μ PD78044 family has a 16 -bit timer/event counter, two 8 -bit timer/event counters (combinable for 16 -bit operation), a 6 -bit up/down counter, a watch timer, and a watchdog timer. All except the up/down counter can be programmed to count a number of prescaled values of the main system clock. The watch timer can also count the subsystem clock. All timer/event counters and the up/down counter can count external events.

16-Bit Timer/Event Counter 0. Timer/event counter 0 (figure 9) includes a 16-bit counter (TMO), a 16-bit compare register (CROO), a 16-bit capture register (CR01), and a timer output (TOO). Timer 0 can be used (1) as an interval timer, (2) to count external events on the timer input (TIO) pin, (3) to output a programmable square wave or a 14 -bit pulse-width modulated output, or (4) to measure pulse widths.

Figure 9. 16-Bit Timer/Event Counter 0

8-Bit Timer/Event Counters 1 and 2. Timer/event

 counters 1 and 2 (figure 10) each consists of an 8-bit timer register (TM1 or TM2), an 8-bit compare register (CR10 or CR20), and a timer output control logic (TO1 or TO2). The timers are controlled by registers TCL1, TMC1, and TOC1 via five selectors. Timer/event counters 1 and 2 each can be used as an 8-bit interval timer, to count external events on timer input pin Tl 1 or Ti2, or to output a programmable square wave. Also, timers 1 and 2 can be combined as a 16-bit timer/event counter and used as a 16-bit interval timer, to count external events on TI1, or to output a programmable square wave on TO 2.Figure 10. 8-Bit Timer/Event Counters 1 and 2

μ PD78044 Family

6-Bit Up/Down Counter. The up/down counter (figure 11) includes counter UDC and compare register UDCC. It counts external events (up or down) on the counter input pin (CIO) and generates an interrupt (INTUD) when the count matches the compare register. The counter is loaded with -1 (down-count mode) or cleared (up-count mode) upon interrupt generation.

Figure 11. 6-Bit Up/Down Counter

Watch Timer 3. Watch timer 3 (figure 12) is a 5 -bit timer that can be used as a time source to keep track of time of day, to release the STOP or HALT mode at regular intervals, or to initiate any other task that must be performed at regular intervals. When driven by the subsystem clock, the watch timer continues to operate in the STOP mode.

The watch timer can function as both a watch timer and an interval timer simultaneously. In watch timing, interrupt request INTWT (not a vectored interrupt) can be generated using the main system clock every 0.5 or 1.0 second or by using the subsystem clock every 0.5 or 0.25 second.

In interval timing, vectored interrupt request INTTM3 is generated at preselected time intervals. With a 4.19MHz main system clock, the following time intervals can be selected: $978 \mu \mathrm{~s}$; 1.96, 3.91, 7.82, 15.6, or 31.3 ms . With a $32.768-\mathrm{kHz}$ subsystem clock, the following time intervals can be selected: 488 or $978 \mu \mathrm{~s}$; 1.96, 3.91, 7.82, or 15.6 ms .
Watchdog Timer. The watchdog timer (figure 13) can also perform interval timing. As a watchdog timer, it protects against inadvertent program run-away. It can be selected to generate a nonmaskable interrupt (INTWDT), which vectors to address 0004 H , or to generate an internal reset signal, which vectors to the restart address 0000 H if the timer is not cleared by the program before it overflows. Eight program-selectable intervals based on the main system clock are available. With a $4.19-\mathrm{MHz}$ main system clock, they are 0.489 , $0.978,1.96,3.91,7.82,15.6,31.3$, and 125 ms . Once initialized and started, the timer cannot change modes and can be stopped only by an external reset.

In interval timing, maskable interrupts (INTWDT), which vector to address 0004 H , are generated repeatedly at a preset interval. The time intervals available are the same as in the watchdog timer mode.

Programmable Clock Output

The μ PD78044 family has a programmable clock output (PCL) that can be used as carrier output for remote controlled transmissions or as clock output for peripheral devices. The main system clock (fx) divided by 8 , $16,32,64,128$, or 256 or the subsystem clock ($\mathrm{f} \times \mathrm{T}$) can be output on the PCL pin. With a $4.19-\mathrm{MHz}$ main system clock, the following frequencies are available: 524, 262, $131,65.5,32.7$, and 16.4 kHz . With a $32.768-\mathrm{kHz}$ subsystem clock, 32.768 kHz is also available. See figure 14.

Buzzer Output

The μ PD78044 family also has a programmable buzzer output (BUZ). The buzzer output frequency can be programmed to equal the main system clock ($\mathrm{f} x$) divided by 1024, 2048, or 4096. With a $4.19-\mathrm{MHz}$ main system clock, the buzzer can be set to 4.1, 2.0, or 1.0 kHz . See figure 15.

FIP Controller/Driver

The μ PD78044 family can directly drive up to 34 FIP (fluorescent indicator panel) display output lines of which 9 to 24 segments and 2 to 16 digits can be selected through software. The number of digits is selected by display mode register 0 (DSPM0) and the number of segments by display mode register 1 (DSPM1). If an attempt is made to select a total of more than 34 digit and segment outputs, the digit selection will take priority. Any unused pins can be used as outputs or I/O depending on the type.
There are 48 bytes of display data RAM mapped from FA50H to FA7FH. Each display memory bit corresponds to a specific display element. Any bits not used for FIP display can be used for general purpose.
Segment and digit signal output is automatically controlled by a DMA operation from the FIP controller to the display data RAM. The display cycle period is 1024/fx or 2048/fx. Register DSPM1 selects the display cycle and one of eight intensity levels. The on-chip circuitry controls the intensity level by varying the driving signal pulse width.
The on-chip circuitry has been designed to allow easy interface to a keyboard. At the end of the display cycle, vectored interrupt INTKS is generated and the controller outputs key scan data (ports 11 and 12) on segment output pins FIP18 to FIP33. Flag KSF indicates key scan or display timing to the key scan software routine.
Pulldown resistors for all FIP lines are mask-selected and can be connected to VLOAD or $\mathrm{V}_{\text {SS }}$. Pulldown resistors for FIP0 to FIP17 lines are incorporated in the μ PD78P044 and are connected to V LOAD.
μ PD78044 Family

Figure 12. Watch Timer 3

Figure 13. Watchdog Timer

Figure 14. Programmable Clock Output

Figure 15. Buzzer Output

Figure 16. FIP Controller/Driver

Interrupts

The μ PD78044 family has 14 maskable hardware interrupt sources: four are external, nine are internal, and one (INTP3/INTUD) can be set for either external or internal. Thirteen of them cause a vectored interrupt; one testable input-only generates an interrupt request. All 14 maskable interrupts can be used to release the HALT mode except INTPO (when SCS $=0$) and INTKS; all except INTKS and INTPO can release the STOP mode.

In addition, there is one nonmaskable interrupt from the watchdog timer, one software interrrupt, and a RESET interrupt. The watchdog timer overflow interrupt (interrupt vector table address 0004 H) can be initialized to be a nonmaskable interrupt or the highest default priority maskable interrupt. The software interrupt generated by the BRK instruction is not maskable. See table 3 and figure 17.

Table 3. Interrupt Sources and Vector Addresses

Type of Request	Default Priority	Signal Name	Interupt Source	Location	Vector Address	Interrupt Configuration
Restart	-	RESET	RESET input pin	External	0000H	-
		INTWDT	Watchdog timer overflow (when reset mode selected)	Internal		
Nonmaskable		INTWDT	Watchdog timer overflow (when nonmaskable interrupt selected)	Internal	0004H	A
Maskable	0	INTWDT	Watchdog timer overflow (when interval timer selected)	Internal	0004H	B
	1	INTPO	External interrupt edge detection	External	0006H	c
	2	INTP1	External interrupt edge detection	External	0008H	D
	3	INTP2	External interrupt edge detection	External	OOOAH	D
	4	INTP3	External interrupt edge detection	External	000CH	D
		INTUD	Up/down counter coincidence signal	Internal		B
	5	INTCSIO	End of clocked serial interface 0 transfer	Internal	OOOEH	B
	6	INTCSI1	End of clocked serial interface 1 transfer	Internal	0010 H	B
	7	INTTM3	Watch timer reference time interval signal	Internal	0012H	B
	8	INTTMO	16-bit timer/event counter coincidence signal	Internal	0014H	B
	9	INTTM1	8 -bit timer/event counter 1 coincidence signal	Internal	0016H	B
	10	INTTM2	8 -bit timer/event counter 2 coincidence signal	Internal	0018H	B
	11	INTAD	End of A/D conversion	Internal	001AH	B
	12	INTKS	Key scan interrupt generated by FIP controller	Internal	001 CH	B
Software		-	BRK instruction	Internal	O03EH	E
Test input		INTWT	Clock timer overflow	Internal	-	F

μ PD78044 Family

Figure 17. Interrupt Configuration
Type A: Internal nonmaskable interrupt

Type B: Internal maskable interrupt

Type C: External maskable interrupt (INTPO)

Figure 17. Interrupt Configuration (cont)
Type D: External maskable Interrupt (except INTPO)

Type E: Software interrupt

Type F: Test input

Abbreviations:

IF: Interrupt request flag
IE: Interupt enable flag
ISP: In-service priorty flag
MK: Interrupt mask flag
PR: Priority specify flag

Interrupt Servicing. The μ PD78044 family provides two levels of programmable hardware priority control and services all interrupt requests except the testable interrupt (INTWT) using vectored interrupts. The programmer can choose the priority of servicing each maskable interrupt by the interrupt control registers.
Interrupt Control Registers. The μ PD78044 family has three 16-bit interrupt control registers. The interrupt request flag register (IFO) contains an interrupt request flag for each interrupt. The interrupt mask register (MKO) is used to enable or disable any individual interrupt. The priority flag register (PRO) can specify a high or a low priority level for each interrupt except the testable interrupt (INTWT).

Three other 8-bit registers are associated with interrupt processing. The external interrupt mode register (INTMO) selects a rising or falling edge (or both) as the valid edge for external interrupts INTPO, INTP1, and INTP2 (INTP3 is always falling edge). The sampling clock select register (SCS) selects a sampling clock for the noise eliminator circuit on external interrupt INTPO.
The IE and ISP bits of the program status word also control interrrupts. If the IE bit is zero, all maskable interrupts are disabled. The IE bit can be set or cleared by the El or DI instruction, respectively, or by directly writing to the PSW. The IE bit is cleared each time an interrupt is accepted. The ISP bit is used by hardware to hold the priority level flag of the interrupt being serviced.
Interrupt Priority. If the watchdog timer overflow interrupt (INTWDT) has been initialized to be a nonmaskable interrupt, it has priority over all other interrupts. Two hardware-controlled priority levels are available for all maskable interrupts that generate a vectored interrupt (that is, all except the testable interrupt). Either a high or a low priority level can be assigned by software to each of the maskable interrupts.
Interrupt requests of the same priority or a priority higher than the processor's current priority level are held pending until interrupts in the current service routine are enabled by software or until one instruction has been executed after returning from the current service routine. Interrupt requests of a lower priority are always held pending until one instruction has been executed after returning from the current service routine.
The default priorities in table 3 are fixed by hardware; they are effective only when necessary to choose between two interrupt requests of the same softwareassigned priority. For example, after the completion of
a high-priority routine, if two interrupts of the same software priority were pending.
The software interrupt, initiated by the BRK instruction, is executed regardless of the procesor's priority and the state of the IE bit. It does not alter the processor's priority.
Vectored Interrupt Servicing. When a vectored interrupt is acknowledged, the program status word and the program counter are saved on the stack, the processor's priority is set to that specified for the interrupt, the IE bit in the PSW is set to zero, and the routine whose address is in the interrupt vector table is entered. At the completion of the service routine, the RETI instruction (RETB instruction for the software interrupt) reverses the process and the μ PD78044 family microcomputer resumes the interrupted routine.

Standby Modes

The HALT, STOP, and data retention modes reduce power consumption when CPU action is not required.
The HALT mode is entered by executing a HALT instruction while the CPU is operating from the main system or subsystem clock. In HALT mode, the CPU clock is stopped while the main system and the subsystem clock continue to run. The HALT mode is released by any unmasked interrupt request (except INTPO if register SCS $=0$ and INTKS), a nonmaskable interrupt request, an unmasked test input, or an external reset pulse.

Power consumption may be further reduced by the STOP mode. The STOP mode is entered by executing a STOP instruction while operating from the main system clock. In STOP mode, the main system clock input pin X1 is internally grounded, stopping both the CPU and the peripheral hardware clock. The STOP mode is released by any unmasked interrupt request except INTPO and INTKS, a nonmaskable interrupt request, an unmasked test input, or an external reset pulse.
Any peripheral using the main oscillator as a clock source will also be disabled in the STOP mode and interrupts from such a peripheral cannot be used to exit the STOP mode. Table 4 summarizes the HALT and STOP standby modes.
When exiting the STOP mode, a wait time occurs before the CPU begins code execution to allow the main system clock oscillator circuit to stabilize. The oscillation stabilization time is selected by programming the OSTS register with one of five values before entering the STOP mode and ranges from $2^{12 / f x}$ to $2^{17 / f x}$ seconds.

Table 4. Standby Mode Operation Status

Item	HALT Mode	STOP Mode
Setting instruction	HALT instruction	STOP instruction
System clock when setting	Main system or subsystem clock	Main system clock
Clock oscillator	Main system and subsystem clocks can oscillate; CPU clock is stopped.	Subsystem clock can oscillate; CPU and main system clocks are stopped.
CPU	Operation stopped	Operation stopped
Ports	Maintain previous state	Maintain previous state
16-bit timer/event counter	Operational from main system clock	Operation stopped
8-bit timer/event counters	Operational from main system clock or with TI1 and T12 selected as the count clock	Operational only with TII and TI2 as count clock
6-bit up/down counter	Operable	Operable
FIP controller/driver	Inoperable	Inoperable
Watch timer	Operational from main system clock or with fXT as count clock	Operational only with fXT as count clock
Watchdog timer	Operational from main system clock	Operation stopped
Serial interface 0	Operational from main system clock or with external clock	Operational only with external clock
Serial interface 1	Operational from main system clock or with external clock; no automatic transmit/receive mode	Operational only with external clock; no automatic transmit/receive mode
Operational from main system clock	Operation stopped	
External interrupts	Operational except for INTPO when its sampling clock is based on the CPU clock	INTPO not operational; INTP1 to INTP3 operational

Once in the STOP mode, power consumption can be further minimized by lowering the power supply voltage $V_{D D}$ to 2 volts. This places the device in the data retention mode. The contents of internal RAM and the registers are retained. This mode is released by first raising $V_{D D}$ to the proper operating range and then releasing the STOP mode.

External Reset

The μ PD 78044 family is reset by taking the $\overline{\text { RESET }}$ pin low or by an overflow of the watchdog timer (if enabled). The RESET input pin is a Schmitt trigger input with hysteresis characteristics to protect against spurious system resets by noise. On power-up, the RESET pin must remain low for $10 \mu \mathrm{~s}$ minimum after the power supply reaches its operating voltage.
There is no functional difference between an external reset and an internal reset caused by watchdog timer overflow. In both cases, the main system clock oscillation is stopped and the subsystem clock oscillation continues. During reset, the program counter is loaded with the address in the reset vector (addresses 0000 H , $0001 \mathrm{H})$. Once the reset is cleared and the oscillation stabilization time of $2^{17} / f_{x}$ has elapsed, program execution starts at that address.

Description

The μ PD78052, μ PD78053, μ PD78054, and μ PD78P054 are members of the K-Series ${ }^{\circledR}$ of microcontrollers featuring an A/D and a D/A converter, UART, 8-bit hardware multiply and divide instructions, bit manipulation instructions, four banks of main registers, an advanced interrupt handling facility, and a powerful set of memory-mapped on-chip peripherals.

Timing is generated by two oscillators. The main oscillator normally drives the CPU amd most peripherals. The $32.768-\mathrm{kHz}$ subsystem oscillator provides time keeping when the main oscillator is turned off. Since CMOS power dissipation is proportional to clock rate, the 78054 family provides a software selectable instruction cycle time from $0.40 \mu \mathrm{~s}$ to122 $\mu \mathrm{s}$. The STOP and HALT modes turn off parts of the microcontroller for additional power savings. The data retention mode keeps RAM contents valid down to 2.0 volts.
These devices are ideally suited for applications in portable battery-powered equipment, office automation, communications, consumer electronics, home appliances, and fitness equipment.

K-Series is a registered trademark of NEC Electronics, Inc.

Features

- Eight-channel 8-bit A/D converter
- Two-channel 8-bit D/A converter
- Real-time output capability
- Three-channel serial communication interface
-8-bit clock-synchronous interface 0
Full-duplex, three-wire mode
Half-duplex, two-wire mode
NEC serial bus interface (SBI) mode
-8-bit clock-synchronous interface 1
Full-duplex, three-wire mode
Automatic transfer, full-duplex, three-wire mode
-Serial interface 2
Full-duplex, three-wire mode
UART mode
- Timers: five channels
- Watchdog timer
- 16-bit timer/event counter
- Two 8-bit timer/event counters usable as one 16-bit timer/event counter
- Watch (clock) timer
- 69 I/O lines
- Two CMOS input-only lines
- 63 CMOS bidirectional I/O lines
- One real-time output port operable in one 8-bit or two 4-bit units
- Four n-channel, open-drain I/O lines at 15 V maximum
-Software selectable pullup resistors on 63 lines
- Mask option pullup resistors on four lines available on ROM versions
- External memory expansion
-64K bytes total memory space
- Powerful instruction set
-8 -bit unsigned multiply and divide
- 16-bit arithmetic and data transfer instructions
- 1 -bit and 8 -bit logic instructions
- Minimum instruction execution times:
$-0.4 / 0.8 / 1.6 / 3.2 / 6.4 \mu$ s program selectable using $5-\mathrm{MHz}$ main system clock
-122μ s using $32.768-\mathrm{kHz}$ subsystem clock
- Memory-mapped on-chip peripherals
-Special function registers
- Programmable priority, vectored-interrupt controller (two levels)
- Programmable buzzer and clock outputs
- Power saving and battery back up
- Variable CPU clock rate
- STOP mode
- HALT mode
- 2-V data retention mode
- CMOS operation; $V_{D D}$ from 2.7 to 6.0 V

Internal High-Capacity ROM and RAM

	$\mathbf{7 8 0 5 2}$	$\mathbf{7 8 0 5 3}$	$\mathbf{7 8 0 5 4}$	$\mathbf{7 8 P 0 5 4}$
ROM	16 K bytes	24 K bytes	32 K bytes	-
PROM	-	-	-	32 K bytes
High-speed RAM	512 bytes	1024 bytes	1024 bytes	1024 bytes
Serial buffer RAM	32 bytes	32 bytes	32 bytes	32 bytes

Ordering Information

Part Number	ROM	Package	Package Drawing
μ PD78052GC-xxx-3B9	16K mask ROM	80-pin plastic QFP	S80GC-65-3B9-1
μ PD78053GC-xxx-3B9	24K mask ROM		
μ PD78054GC-xxx-3B9	32K mask ROM		
μ PD78P054GC-3B9	32K OTP ROM		
μ PD78052GK-xxx-BE9	16 K mask ROM	80-pin plastic TQFP	P80GK-50-BE9-1
$\mu \mathrm{PD78053GK-xxx-BE9}$	24K mask ROM		
μ PD78054GK-xxx-BE9	32 K mask ROM		
μ PD78P054GK-BE9	32 K OTP ROM		
μ PD78P054KK-T	32 K UV EPROM	80 -pin ceramic LCC w/window	X80KW-65A

Notes:

(1) $x x x$ indicates ROM code suffix
(2) All devices listed are standard quality grade

Pin Configurations

80-Pin Plastic QFP, Plastic TQFP, or Ceramic LCC

Pin Functions; Normal Operating Mode

Symbol	First Function	Symbol	Alternate Function
PO_{0}	Port 0; 8-bit, bit selectable I/O port (Bits 0 and 7 are input only)	$\begin{aligned} & \text { INTPO } \\ & \text { TIO } \end{aligned}$	External maskable interrupt External count clock input to timer 0 or timer 0 capture trigger to capture registers CR00 and CRO1
PO_{1}		$\begin{aligned} & \text { INTP1 } \\ & \text { TI01 } \end{aligned}$	External maskable interrupt Timer 0 capture trigger to capture register CROO
$\begin{aligned} & \mathrm{PO}_{2} \\ & \mathrm{PO}_{3} \\ & \mathrm{PO}_{4} \\ & \mathrm{PO}_{5} \\ & \mathrm{PO}_{6} \\ & \hline \end{aligned}$		INTP2 INTP3 INTP4 INTP5 INTP6	External maskable interrupt
PO_{7}		XT1	Crystal oscillator or external clock input for subsystem clock
$\mathrm{P} 1_{0}-\mathrm{P} 1_{7}$	Port 1; 8-bit, bit-selectable I/O port	ANIO-ANI7	Analog input to A/D converter
P_{2}	Port 2; 8-bit, bit-selectable I/O port	SI1	Serial data input three-wire serial I/O mode
P_{1}		SO1	Serial data output three-wire serial I/O mode
Pr_{2}		$\overline{\text { SCK1 }}$	Serial clock I/O for serial interface 1
P_{2}		STB	Serial interface automatic transmit/receive strobe output
$\mathrm{P2}_{4}$		BUSY	Serial interface automatic transmit/receive busy input
$\mathrm{P}_{2} 5$		$\begin{aligned} & \text { SIO } \\ & \text { SBO } \end{aligned}$	Serial data input three-wire serial I/O mode 2/3-wire serial I/O mode
$\mathrm{P}_{2} 6$		$\begin{aligned} & \text { SOO } \\ & \text { SB1 } \end{aligned}$	Serial data output three-wire serial I/O mode 2/3-wire serial I/O mode
P_{7}		SCKO	Serial clock I/O for serial interface 0
$\mathrm{P3}_{0}$	Port 3; 8-bit, bit-selectable I/O port	TOO	Timer output from timer 0
$\mathrm{P3}_{1}$		TO1	Timer output from timer 1
P_{2}		TO2	Timer output from timer 2
$\mathrm{P3}_{3}$		T11	External count clock input to timer 1
$\mathrm{P3}_{4}$		T12	External count clock input to timer 2
$\mathrm{P3}_{5}$		PCL	Programmable clock output
$\mathrm{P3}_{6}$		BUZ	Programmable buzzer output
$\mathrm{P3}_{7}$		-	
$\mathrm{P} 4_{0}-\mathrm{P} 4_{7}$	Port 4; 8-bit I/O port	$A D_{0}-A D_{7}$	Low-order 8-bit multiplexed address/data bus for external memory
$\mathrm{P5}_{0}-\mathrm{P5}_{7}$	Port 5; 8-bit, bit selectable I/O port	$A_{8}-A_{15}$	High-order 8-bit address bus for external memory
$\mathrm{P6}_{0}-\mathrm{P6}_{3}$	Port 6; 8-bit, bit selectable ($\mathrm{P6}_{0}$ to $\mathrm{P6}_{3}$	-	
$\mathrm{P6}_{4}$	n-channel, open-drain I/O with mask option pullup resistors; $\mathrm{P6}_{4}-\mathrm{P} 6_{7}$ I/O). See note.	$\overline{\mathrm{RD}}$	External memory read strobe
$\mathrm{P6}_{5}$		$\overline{W R}$	External memory write strobe
$\mathrm{P6}_{6}$		WAIT	External memory wait signal input
P67		ASTB	Address strobe used to latch address for external memory

μ PD78054 Family

Pin Functions; Normal Operating Mode (cont)

Symbol	First Function	Symbol	Alternate Function
P_{7}	Port 7; 3-bit, bit-selectable I/O port	$\begin{aligned} & \mathrm{S} 12 \\ & \mathrm{RxD} \end{aligned}$	Serial data input three-wire serial I/O mode Asynchronous serial data input
P7 ${ }_{1}$		$\begin{aligned} & \mathrm{SO2} \\ & \mathrm{TXD} \end{aligned}$	Serial data output three-wire serial I/O mode Asynchronous serial data output
P 72		$\begin{aligned} & \overline{\text { SCK2 }} \\ & \text { ASCK } \end{aligned}$	Serial clock I/O for serial interface 2 Asynchronous serial clock input
$\begin{aligned} & \mathrm{P} 12_{0} \\ & \mathrm{P} 12_{7} \\ & \hline \end{aligned}$	Port 12; 8-bit selectable I/O port	RTPO- RTP7	Real-time port
$\begin{aligned} & {\mathrm{P} 13_{0}} \\ & \mathrm{P} 13_{1} \\ & \hline \end{aligned}$	Port 13; 2-bit selectable I/O port	ANOO, ANO1	Analog output for D/A converter
RESET	External system reset input		
X1	Crystal/ceramic resonator connection or external clock input for main system clock		
X2	Crystal/ceramic resonator connection or inverse of external clock for main system clock		
XT2	Crystal oscillator or left open when not using the subsystem clock		
$\mathrm{AV}_{\text {REFO }}$	A/D converter reference voltage		
$\mathrm{AV}_{\text {REF } 1}$	D/A converter reference voltage		
$\mathrm{AV}_{\mathrm{DD}}$	A/D converter power supply input		
$\mathrm{AV}_{S S}$	A/D and D/A converter ground		
$V_{\text {DD }}$	Power-supply input		
$V_{\text {PP }}$	μ PD78P054 PROM programming powersupply input		
$\mathrm{V}_{S S}$	Power-supply ground		
IC	Internal connection		

Note: See table 2 and figure 4 for details.

Block Diagram

Notes:
(1) Internal ROM and RAM size dependent on the device.
(2) Pin name in parentheses for the μ PD78P054 only.
μ PD78054 Family

FUNCTIONAL DESCRIPTION

Central Processing Unit

The central processing unit (CPU) of the μ PD78054 family features 8 - and 16-bit arithmetic including an $8 x$ 8 -bit unsigned multiply and 16×8-bit unsigned divide (producing a 16-bit quotient and an 8 -bit remainder). The multiply executes in $3.2 \mu \mathrm{~s}$ and the divide in $5 \mu \mathrm{~s}$ using the fastest clock cycle with a main system clock of 5.0 MHz .

A CALLT vector table and a CALLF area decrease the number of bytes in the call instructions for commonly used subroutines. A 1-byte call instruction can access
up to 32 subroutines through their addresses contained in the CALLT vector table (40 H to 7 FH). A 2-byte call instruction can access any routine beginning in a specific CALLF area (0800H to OFFFH).

Internal System Clock Generator

The internal system clocks of the μ PD78054 family are derived from either the main system or the subsystem oscillator. See figure 1. The clocks for the watch timer and programmable clock output are derived from either the subsystem clock ($\mathrm{fXT}_{\mathrm{X}}$) or the main system clock. The clocks for all other peripheral hardware are derived from the main system clock.

Figure 1. Internal System Clock Generator

The CPU clock (ϕ) can be supplied from either the main system clock (f_{x}) or the subsystem clock ($\mathrm{f}_{\mathrm{X} T}$). A selector, which is controlled by the oscillation mode selection register (OSMS), determines whether the main system clock (f_{X}) or the scaled main system clock ($\mathrm{f}_{\mathrm{x}} / 2$) is provided to the prescalar ($f_{x x}$). Using the processor clock control register (PCC), a CPU clock frequency equal to $f_{X X}, f_{X X} / 2, f_{X X} / 4, f_{X X} / 8, f_{X X} / 16$ or the subsystem clock $f_{X T}$ can be selected. The CPU clock selected should be based on the power supply voltage available and the desired power consumption. On power up, the CPU clock defaults to the lowest speed from the main system clock ($\mathrm{fxx}_{\mathrm{x}} / 16$ with $\mathrm{f}_{\mathrm{XX}}=\mathrm{f}_{\mathrm{x}} / 2$) and can be changed while the microcomputer is running.

Since the shortest instruction takes two CPU clocks to execute, the fastest minimum instruction execution time (t_{CY}) of $0.4 \mu \mathrm{~s}$ is achieved with a main system clock at $5.0 \mathrm{MHz}\left(f_{X X}=f_{X}\right)$ and a $V_{D D}$ of 4.5 to 6.0 volts. However, if the watch timer must generate an interrupt every 0.5 or 0.25 seconds, t_{CY} is $0.48 \mu \mathrm{~s}$ at 4.19 MHz with $f_{x x}=f_{x}$. The fastest minimum instruction execution time available across the full voltage range of 2.7 to 6.0 volts is $0.96 \mu \mathrm{~s}$ with a 4.19 MHz main system clock ($\mathrm{f}_{\mathrm{xx}}=\mathrm{f}_{\mathrm{X}}$). For the lowest power consumption, the CPU can be operated from the subsystem clock and the minimum instruction executiontime is $122 \mu \mathrm{~s}$ at 32.768 kHz .

Memory Space

The μ PD78054 family has a 64K-byte address space (see figure 2). This address space ($0000 \mathrm{H}-\mathrm{FFFFH}$) can be used as both program and data memory.

Internal Program Memory

All devices in the μ PD78054 family have internal program memory. The μ PD78052/053/054 contain 16K, 24K, and 32 K bytes of internal ROM, respectively. The μ PD78P054 contains 32 K bytes of UV EPROM or one time programmable ROM. To allow the $\mu \mathrm{PD} 78 \mathrm{P} 054$ to emulate the mask ROM devices, the amount of internal program memory available in the μ PD78P054 can be selected using the memory size switching register (IMS).

Internal RAM

The μ PD78052 has 544 bytes and the μ PD78053/054/ P054 have 1056 bytes of Internal RAM. This Internal RAM consists of two types: high-speed Internal RAM and buffer RAM.
The μ PD 78052 contains 512 bytes (FDOOH to FEFFH) while the μ PD78053/054/P054 contain 1024 bytes
(FBOOH to FEFFH) of high-speed Internal RAM. The high-speed Internal RAM contains the general register banks and the stack. The remainder of the high-speed Internal RAM and any unused register bank locations are available for general storage.
All devices also contain 32 bytes of buffer RAM (FACOH to FADFH). The buffer RAM is used for the automatic transfer mode of serial interface 1 or for general storage.
To allow the μ PD78P054 to emulate the mask ROM devices, the amount of high-speed Internal RAM available in the μ PD78P054 can also be selected using the IMS.

External Memory

The μ PD 78054 family can access $0,256,4 \mathrm{~K}, 16 \mathrm{~K}$ or all available bytes of external memory. The μ PD78054 family has an 8 -bit wide external data bus and a 16-bit wide external address bus. The low-order 8 bits of the address bus are multiplexed and also provide the 8 -bit data bus and are supplied by port 4. The high-order address bits of the 16 -bit address bus are taken from port 5 as required. The address latch, read, and write strobes, and the external WAIT signal are supplied by port 6.
The memory expansion mode register (MM) controls the size of external memory. It can be programmed to use $0,4,6$, or 8 bits from port 5 for the high-order address. Any remaining port 5 bits can be used for I/O. The MM register also can be used to specify one additional wait state or the use of the external WAIT signal for low-speed external memory or external peripheral devices.
When only internal ROM and RAM are used and no external memory is required, ports 4,5 and 6 are available as general purpose I/O ports.

CPU Control Registers

Program Counter. The program counter is a 16 -bit binary counter register that holds the address of the next instruction to be executed. During reset, the program counter is loaded with the address stored in locations 0000 H and 0001 H .
Stack Pointer. The stack pointer is a 16 -bit register that holds the address of the last item pushed onto the stack. It is decremented before new data is pushed onto the stack and incremented after data is popped off the stack.

Program Status Word. The program status word (PSW) is an 8-bit register that contains flags that are set or reset depending on the results of an instruction. This register can be written to or read from 8 bits at a time. The individual flags can also be manipulated on a bit-by-bit basis. The assignment of PSW bits follows.

| 7 |
| :--- | | IE | Z | RBS 1 | AC | RBSO | 0 | ISP | CY |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

CY	Carry flag
ISP	In-service (interrupt) priority flag
RBS0, RBS1	Register bank selection flags
AC	Auxiliary carry flag
Z	Zero flag
IE	Interrupt request enable flag

Figure 2. Memory Map

Noter:
(1) 3FFFH on μ PD78052

5FFFH on μ PD78053
7FFFH on μ PD78054/P054
(2) FCFFH on μ PD78052

FAFFH on μ PD78053/054/P054

General Registers

Figure 3. General Registers

The general-purpose registers (figure 3) consist of four banks of registers located at addresses FEEOH to FEFFH in Internal RAM. Each bank consists of eight 8 -bit general registers that can also be used in pairs to function as four 16-bit registers. Two bits in the PSW (RBSO and RBS1) specify which of the register banks is active at any time and are set under program control.
Registers have both functional names (A, X, B, C, D, E, H, or L for 8 -bit registers and $A X, B C, D E$, and $H L$ for 16 -bit registers) and absolute names ($\mathrm{R} 1, \mathrm{RO}, \mathrm{R} 3, \mathrm{R} 2$, R5, R4, R7, or R6 for 8-bit registers and RP0, RP1, RP2, or RP3 for 16 -bit registers). Either the functional or absolute register names can be used in instructions that use the operand identifiers r and $r p$.

Addressing

The program memory addressing (ROM) modes provided are relative, immediate, table indirect and register addressing. The operand addressing modes provided are implied, register, direct, short direct (saddr), special function (SFR), register indirect, based, based indexed, and stack addressing.
The SFR addressing and saddr addressing modes use direct addressing and require only 1 byte in the instruction to address RAM. Normally a 65 K byte address space requires 2 bytes to address it. One-byte addressing results infaster access times, since the instructions are shorter. SFR addressing addresses the entire 256byte SFR address space from FFOOH to FFFFH. Saddr addressing (see figure 2) addresses the 256 -byte address space FE20H to FF1FH. FE20H to FEFFH are composed of 224 bytes of internal high speed RAM; FFOOH to FF1FH contain the first 32 bytes in the special function register area.

One-byte addressing is accomplished by using the first byte of the instruction for the opcode (and one operand if register A or AX is used) and the second byte of the instruction as an address (offset) into the 256-byte area. If register A or AX is used, the instructions are 2 bytes long, thereby providing fast access times. If immediate data is used, the instruction will be 3 or 4 bytes long depending upon whether the immediate data is a byte or a word. Many 16 -bit SFRs are in the space FFOOH to FF 1 FH . Using AX as an operand to these SFRs will provide fast access, since the instructions will be only 2 bytes long.

Special Function Registers

The input/output ports, timers, capture and compare registers, and mode and control registers for both the peripherals and CPU are collectively known as special function registers. They are all memory-mapped between FFOOH and FFFFH and can be accessed either by main memory addressing or by SFR addressing. FFOOH to FF1H can also be accessed using saddr addressing. They are either 8 or 16 bits as required, and many of the 8 -bit registers are bit addressable. Table 1 lists the special function registers.

Input/Output Ports

Each device in the μ PD78054 family has 69 port lines. Table 2 lists the features of each port and figure 4 shows the structure of each port pin.
μ PD78054 Family

Table 1. Special Function Registers

Address	Register (SFR)	Symbol	R/W	Access Units (Bits)			State After Reset
				1	8	16	
FFOOH	Port 0	PO	R/W	x	x	-	OOH
FFO1H	Port 1	P1	RNW	x	x	-	OOH
FF02H	Port 2	P2	RNW	x	x	-	OOH
FFO3H	Port 3	P3	RNW	x	x	-	OOH
FF04H	Port 4	P4	RNW	x	x	-	Undefined
FF05H	Port 5	P5	R/W	x	x	-	Undefined
FF06H	Port 6	P6	R/W	x	x	-	Undefined
FF07H	Port 7	P7	R/W	x	x	-	OOH
FFOCH	Port 12	P12	RNW	x	x	-	OOH
FFODH	Port 13	P13	R/W	x	x	-	OOH
FF10H-FF11H	Capture/compare register 00	CROO	RNW	-	-	x	Undefined
FF12H-FF13H	Capture/compare register 01	CRO1	RNW	-	-	x	Undefined
FF14H-FF15H	16-bit timer register	тмо	R	-	-	x	OOH
FF16H	Compare register 10	CR10	R/W	-	x	-	Undefined
FF17H	Compare register 20	CR20	R/W	-	x	-	Undefined
FF18H	8 -bit timer register 1	TM1	R	x	x	-	OOH
FF19H	8 -bit timer register 2	TM2	R	\times	x	-	OOH
FF18H-FF19H	16-bit timer register	TMS	R	-	-	x	0000H
FF1AH	Serial I/O shift register 0	5100	R/W	-	x	-	Undefined
FF1BH	Serial I/O shift register 1	S1O1	RNW	-	x	-	Undefined
FF1FH	A/D conversion result register	ADCR	R	-	x	-	Undefined
FF20H	Port mode register 0	PMO	RNW	x	x	-	FFH
FF21H	Port mode register 1	PM1	R/W	x	x	-	FFH
FF22H	Port mode register 2	PM2	RNW	x	x	-	FFH
FF23H	Port mode register 3	PM3	RNW	x	x	-	FFH
FF25H	Port mode register 5	PM5	R/W	x	x	-	FFH
FF26H	Port mode register 6	PM6	R/W	x	x	-	FFH
FF27H	Port mode register 7	PM7	RNW	x	x	-	FFH
FF2CH	Port mode register 12	PM12	RNW	x	x	-	FFH
FF2DH	Port mode register 13	PM13	RNW	x	x	-	FFH
FF30H	Real-time output port buffer register L	RTBL	RNW	-	x	-	OOH
FF31H	Real-time output port buffer register H	RTBH	R/W	-	x	-	OOH
FF34H	Real-time output port mode register	RTPM	RNW	x	x	-	OOH
FF36H	Real-time output port control register	RTPC	R/W	x	x	-	OOH
FF40H	Timer clock select register 0	TCLO	RNW	x	x	-	OOH
FF41H	Timer clock select register 1	TCL1	R/W	-	x	-	OOH
FF42H	Timer clock select register 2	TCL2	R/W	-	x	-	OOH
FF43H	Timer clock select register 3	TCL3	RNW	-	x	-	88 H
FF47H	Sampling clock select register	SCS	RNW	-	x	-	OOH
FF48H	16-bit timer mode control register	TMCO	RNW	x	x	-	OOH

Table 1. Special Function Registers (cont)

Address	Register (SFR)	Symbol	R/W	Access Units (Bits)			State After Reset
				1	8	16	
FF49H	8-bit timer mode control register	TMC1	R/W	x	x	-	OOH
FF4AH	Watch timer mode control register	TMC2	R/W	x	X	-	OOH
FF4CH	Capture/compare control regiter 0	CRCO	R/W	x	x	-	04H
FF4EH	16-bit timer output control register	TOCO	R/W	x	x	-	OOH
FF4FH	8-bit timer output control register	TOC1	R/W	x	x	-	OOH
FF60H	Serial operating mode register 0	CSIMO	RWW	x	x	-	OOH
FF61H	Serial bus interface control register	SBIC	R/W	x	x	-	OOH
FF62H	Slave address register	SVA	R/W	-	x	-	Undefined
FF63H	Interrupt timing specify register	SINT	R/W	x	X	-	OOH
FF68H	Serial operation mode register 1	CSIM1	R/W	x	x	-	OOH
FF69H	Automatic data transmit/receive control register	ADTC	R/W	x	X	-	OOH
FF6AH	Automatic data transmit/receive address pointer register	ADTP	R/W	-	X	-	OOH
FF6BH	Automatic data transmission/reception interval specification register	ADT1	R/W	x	X	-	OOH
FF70H	Asynchronous serial interface mode register	ASIM	R/W	x	x	-	OOH
FF71H	Asynchronous serial interface status register	ASIS	R	X	X	-	OOH
FF72H	Serial interface operating mode register 2	CSIM2	R/W	\times	x	-	OOH
FF73H	Baud rate generator control register	BRGC	R/W	-	x	-	OOH
FF74H (Note 1)	Transmit shift register Serial I/O shift register Receive buffer register	TXS SIO2 RXB	W R/W R	-	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	-	FFH FFH FFH
FF80H	A/D converter mode register	ADM	R/W	x	x	-	01H
FF84H	A/D converter input select register	ADIS	R/W	-	x	-	OOH
FF90H	D/A converter data register 0	DACSO	R/W	-	x	-	OOH
FF91H	D/A converter data register 1	DACS1	R/W	-	x	-	OOH
FF98H	D/A converter mode register	DAM	R/W	x	x	-	OOH
FFDOH-FFDFH	External SFR access area (Note 2)	-	R/W	x	x	-	Undefined
FFEOH	Interrupt flag register L	IFOL	RMW	X	x	-	OOH
FFE1H	Interrupt flag register H	IFOH	R/W	x	X	-	OOH
FFEOH-FFE1H	Interrupt flag register	IFO	R/W	-	-	x	0000 H
FFE2H	Interrupt flag register 1L	IF1L	RW	X	X	-	OOH
FFE4H	Interrupt mask flag register L	MKOL	R/W	x	X	-	FFH
FFE5H	Interrupt mask flag register H	MKOH	R/W	X	X	-	FFH
FFE4H-FFE5H	Interrrupt mask flag register	MKO	R/W	-	-	X	FFFFH
FFE6H	Interrupt mask flag register 1L	MK1L	R/W	X	X	-	FFH
FFE8H	Priority order specify flag register L	PROL	R/W	x	X	-	FFH
FFE9H	Priority order specify flag register H	PROH	R/W	X	X	-	FFH
FFE8H-FFE9H	Priority order specify flag register	PRO	R/W	-	-	X	FFFFH
FFEAH	Priority order specify flag register 1L	PR1L	R/W	X	X	-	FFH

Table 1. Special Function Registers (cont)

Address	Register (SFR)	Symbol	R/W	Access Units (Bits)			State After Reset
				1	8	16	
FFECH	External interrupt mode register 0	INTMO	R/W	-	x	-	OOH
FFEDH	External interrupt mode register 1	INTM1	R/W	-	x	-	OOH
FFFOH	Memory size switch register	IMS	W	-	x	-	(Note 3)
FFF2H	Oscillation mode select register	OSMS	RNW	x	x	-	OOH
FFF3H	Pullup resistor option register H	PUOH	R/W	x	x	-	OOH
FFF6H	Key return mode register	KRM	R/W	x	x	-	02H
FFF7H	Pullup resistor option register L	PUOL	R/W	x	x	-	OOH
FFF8H	Memory expanded mode register	MM	RM	x	x	-	10 H
FFF9H	Watchdog timer mode register	WDTM	R/W	x	x	-	OOH
FFFAH	Oscillation stabilization time select register	OSTS	R/W	-	x	-	04H
FFFBH	Processor clock control register	PCC	R/W	x	x	-	04H

Notes:

(1) SIO 2 can be used instead of TXS and RXB. SIO 2 is not a register; it is another symbol which can be used to reference the TXS and RXB registers. A write to SIO 2 causes the CPU to write to the TXS register, and a read from SIO 2 causes the CPU to read the RXB register.
(2) The external access area cannot be accessed using SFR addressing. It can only be accessed using main memory addressing.
(3) Value after reset depends on device
μ PD78052: 44 H
μ PD78053: C 6 H
μ PD78054: C8H
μ PD78P054: C8H.

Table 2. Digital Port Functions

Port	Operational Features	Configuration	Direct Drive Capability	Software Pullup Resistor Connection (Note 1)
Port 0 (Note 3)	8-bit input or output	Bit selectable		Byte selectable, input bits only
Port 1 (Note 2)	8-bit input or output	Bit selectable		Byte selectable, input bits only
Port 2	8 -bit input or output	Bit selectable		Byte selectable, input bits only
Port 3	8-bit input or output	Bit selectable		Byte selectable, input bits only
Port 4	8 -bit input or output	Byte selectable		Byte selectable, input bits only
Port 5	8-bit input or output	Bit selectable	LED	Byte selectable, input bits only
Port 6	8 -bit input or output ($\mathrm{Pb}_{0}-\mathrm{P} 6_{3} \mathrm{n}$-channel)	Bit selectable	LED ($\mathrm{P6}_{0}-\mathrm{P} 6_{3}$)	Byte selectable, input bits only P6 ${ }^{0}$ - $\mathrm{P6}_{3}$ - mask option only (Note 4) $\mathrm{P6}_{4}$ - $\mathrm{P} 6_{7}$ - software
Port 7	3-bit input or output	Bit selectable		Byte selectable, input bits only
Port 12	8-bit input or output	Bit selectable		Byte selectable, input bits only
Port 13	2-bit input or output	Bit selectable		Byte selectable, input bits only

Notes:

(1) Software pullup resistors can be internally connected (only on a port-by-port basis) to port bits set to input mode. Pullup resistors are not connected to port bits set to output mode.
(2) Pullup resistors are automatically disconnected on pins used for A/D converter analog inputs.
(3) PO_{0} and PO_{7} are input only and do not have a software pullup resistor. When using PO_{7} as an input, the feedback resistor for the subsystem clock should be disconnected with bit 6 (FRC) of the processor control register (PCC).
(4) All devices except μ PD78P054

Figure 4. Pin Input/Output Circuits
Type 2 ($\mathrm{PO}_{0}, \mathrm{RESET}^{\prime}$

Figure 4. Pin Input/Output Circuits (cont)
Type 12-A (P_{13} - $\mathrm{P1}_{1}$)

A/D Converter

The μ PD78054 family analog-to-digital (A/D) converter (see figure 5) uses the successive-approximation method for converting one of eight multiplexed analog inputs into 8 -bit digital data. The conversion time per input is $19.1 \mu \mathrm{~s}$.

The A/D converter input select register (ADIS) selects the number of inputs that are used in A/D conversion. The remaining inputs are used as ports. The analog input to be converted is selected by programming the A/D converter mode register (ADM). Also, the ADM register is used to select the A/D conversion time. A/D
conversion is started by external interrupt INTP3, or by writing to the ADM register. When the conversion is completed, the results are stored in the A/D conversion result register (ADCR) and an INTAD interrupt is generated.

If the A / D converter was started by an external interrupt, the A/D converter stops after the interrupt is generated. If the A/D converter was started by software, the A / D converter repeats the conversion until new data is written to the ADM register.

Figure 5. A/D Converter

D/A Converter

The μ PD78054 family digital-to-analog (D/A) converter (see figure 6) uses an R-2R resistor ladder method for converting the 8 -bit digital data to an analog voltage for each of the two independent D/A channels.
The D/A converter mode register (DAM) is used to start and stop D/A conversion as well as selecting "normal mode" or "real-time output mode" for each channel. The 8 -bit data to be converted to an analog voltage is written into one of the two D/A conversion value set registers (DACSO or DACS1). Before D/A conversion is enabled, the respective channel output is in a highimpedance state. The analog output voltage is determined by the following expression where n is 0 or 1 for the respective channel:

$$
\text { ANOn (output voltage) }=A V_{\text {REF } 1} \times \frac{\text { DACSn }}{256} \text { (volts) }
$$

In the normal mode with D/A conversion enabled, the D/A circuit continuously outputs the analog voltage on the ANOn pin representative of the 8 -bit value in the DACSn register. When a different 8 -bit value is written
to the DACSn register, the D/A circuit immediately adjusts the voltage on the ANOn pin to represent the new value. When the D/A conversion operation stops, the output for the respective channel goes to high impedance.
In the real-time output mode when D/A conversion is enabled for a respective channel, the D/A circuit output remains in a high-impedance state. After the interrupt (INTTMx, $x=1$ and 2 for D/A channels 0 and 1, respectively) occurs, the D/A circuit outputs the analog voltage on the ANOn pin representative of the 8 -bit value in the DACSn register.
When a different 8 -bit value is written to the DACSn register, the D/A circuit will adjust the voltage on the ANOn pin to represent the new value after the next interrupt (INTTMx) occurs.

If the data is changed in the DACSn register and the register is read before the next interrupt occurs, the data read will be data previously written before the last interrupt occurred. When the D/A conversion operation stops, the output for the respective channel goes to a high-impedance state.

Figure 6. D/A Converter

Serial Interfaces

The μ PD78054 family has three independent serial interfaces: serial interface 0 , serial interface 1 , and serial interface 2.
Serial Interface 0 . Serial interface 0 is an 8 -bit clock synchronous serial interface (figure 7). It can be operated in either a three-wire serial I/O mode, NEC serial bus interface (SBI) mode, or two-wire serial I/O mode. The serial clock can be provided from one of eight internal clocks, the output of 8 -bit timer register 2, or the external clock line SCKO.

Figure 7. Serial Interface 0

In the three-wire serial I/O mode, the 8 -bit shift register (SIOO) is loaded with a byte of data and eight clock pulses are generated. The falling edge of these eight pulses shifts the byte of data out of the SOO line (either MSB or LSB first) while the rising edge of these pulses shifts the data in from the SIO line providing full-duplex operation. The INTCSIO interrupt is generated after each 8-bit transfer.
The NECSBI mode is a two-wire high-speed proprietary serial interface available on most devices in the NEC μ PD75xxx and μ PD78xxx product lines. Devices are connected in a master/slave configuration (see figure 8). There is only one master device at a time; all others are slaves. The master sends addresses, commands, and data over one of the serial bus lines (SBO or SB1) using a fixed hardware protocol synchronized with the SCKO line. Each slave device of the μ PD78054 family can be programmed to respond in hardware to any one of 256 addresses set in its slave address register (SVA). There are also 256 commands and 256 data types. Since all commands are user definable, many software protocols, simple or complex, can be defined. It is even possible to develop commands to change a slave into a master and the previous master into a slave.
The two-wire serial I/O mode provides half-duplex operation using either the SBO or SB1 line and the SCKO line. Communication format and handshaking can be handled in software by controlling the output levels of the data and clock lines between transfers. For data transmission, the 8 -bit shift register (SIOO) is loaded with a byte of data and eight clock pulses are generated. The falling edge of these eight pulses shifts the byte of data out of either the SB0 or SB1 line (MSB first). In addition, this byte of data is also shifted back into SIOO on the rising edge of these pulses providing a way of verifying that the transmission was correct.

For data reception, the SIOO register is preloaded with the value FFH . As this data value is shifted out on the falling edge of the serial clock, it disables the n-channel open-drain driver. This allows the receive data to be driven on to the serial line and shifted into the SIOO register on the rising edge of the serial clock. The INTCSIO interrupt is generated after each 8-bit transfer.

Serial Interface 1. Serial interface 1 is also an 8 -bit clock synchronous serial interface (figure 9). It can be operated in either a three-wire serial I/O mode, or three-wire serial I/O mode with automatic transmit/ receive. The serial clock can also be provided from one of eight internal clocks (common clock for both interfaces), the output of 8 -bit timer register 2 , or the external clock line SCK1.

In the three-wire serial I/O mode, the 8 -bit shift register (SIO1) is loaded with a byte of data and eight clock pulses are generated. The falling edge of these eight pulses shifts the byte of data out of the SO1 line (either MSB or LSB first) while the rising edge of these pulses shifts the data in from the SI1 line providing full-duplex operation. The INTCSI1 interrupt is generated after each 8-bit transfer.
In the three-wire serial $1 / 0$ mode with automatic transmit/receive, up to 32 bytes of data can be transferred with minimal CPU overhead. The data to be transmitted and received is stored in the buffer RAM. Handshaking using either the BUSY input line, the strobe (STB) output line, or both, can be selected by the program. Error detection of bit drift due to noise is available for each byte transferred when using the BUSY input line. This automatic transmit/receive mode is ideally suited for transferring data to/from external peripheral devices such as onscreen display (OSD) and LCD controller/driver devices.
While in three-wire serial interface mode with automatic data transfer, the interface can be operated as either a full-duplex interface or a transmit-only interface in single or repetitive operation mode. In the fullduplex mode, a byte of data is transferred from the first location in the buffer RAM and shifted out of the SO1 line (either MSB or LSB first) while the received data is shifted into the SI1 line and stored back in the first buffer location. After the preset number of bytes has been transferred, the INTCSII interrupt is generated.

Figure 8. SBI Mode Master/Slave Configuration

Figure 9. Serial Interface 1

In single-operation transmit mode, the preset number of bytes from the buffer RAM are transmitted out of the SO1 line (either MSB or LSB first) and the INTCSI1 interrupt is generated after all bytes are transferred. In the repetitive operation transmit mode, data in the buffer is transmitted repeatedly.
Serial Interface 2. Serial interface 2 is an 8 -bit serial interface (figure 10) that can be operated in either a UART mode or a three-wire serial I/O mode. The internal baud rate generator circuit (figure 11) scales an internal clock to provide standard baud rates from 75 to 38400 bps. For non-standard baud rates, the internal baud rate generator circuit scales an external clock input on the ASCK pin. The output of the baud rate generator circuit is used as the data transmission and sampling clock in the UART mode or the data clock in the three-wire serial I/O mode.

In the UART mode, half or full-duplex operation with various protocols is programmable. The asynchronous serial interface mode register (ASIM) is used to specify the number of stop bits (1 or 2), data character length (7 or 8 bits), parity (none, even, odd, or 0), receive operation control (enable or disable), and transmit operation control (enable or disable). The ASIM register is also used to enable or disable the generation of an interrupt when a reception error occurs and whether an internal or external clock will be supplied to the baud rate generator circuit.

A transmit operation is started by writing a data character to the transmit shift register (TXS) register. The start bit, parity bit, and stop bit(s) are automatically added by the hardware to the data character in the TXS register. The data in the TXS register is shifted out of the TXD line and when the TXS register is empty, a transmission complete interrupt (INTST) is generated.

When the receive operation control is enabled, the RxD line is sampled using the clock specified by the ASIM register. When the RxD line is detected low, sampling starts at the midpoint of each bit. If the first sample yields a low, it is identified as a start bit. The RxD line continues to be sampled at the midpoint of each bit. Reception of one frame of data is complete when the data character bits, parity bit (if being transmitted), and one stop bit are detected after the start bit. Even if the protocol is set for two stop bits, only one stop bit is used for the end of reception detection.

When one frame of data has been received, the received data in the shift register is transferred to the receive buffer (RXB) and a reception complete vectored interrupt (INTSR) is generated even if an error (parity
and/or framing) is detected. The data must be read from the RXB register before another frame is received or an overrun error will be generated. If an error occurs, the appropriate flag is set in the asynchronous serial interface status register (ASIS) and a receive error interrupt (INTSER) is generated.
In the three-wire I/O mode, the TXS register is loaded with a byte of data and eight clock pulses are generated. The falling edge of these eight pulses shifts the byte of data out of the SO2 line (either MSB or LSB first) while the rising edge of these pulses shifts the data in from the $\mathrm{S} I 2$ into the RXS register line providing fullduplex operation. The INTCSI2 interrupt is generated after each 8-bit transfer.

Timers

The μ PD78054 family has one 16 -bit timer/event counter, two 8 -bit timer/event counters that can be combined for use as a 16 -bit timer/event counter, a watch timer and a watchdog timer. All of these can be
the main system clock. In addition, the watch timer can also count the subsystem clock. All of the timer/event counters can count external events.

16-Bit Timer/Event Counter 0. Timer/event counter 0 (figure 12) consists of a 16 -bit counter (TMO), two 16-bit capture registers (CROO, CRO1), control registers TMCO, TOCO, and CRCO, clock select register CLCO, and a timer output (TOO). Timer 0 can be used as an interval timer, to count external events on the timer input (T100) pin, to output a programmable square wave, a 14 -bit pulse-width modulated output, a oneshot pulse, or to measure pulse widths.

Figure 10. Serial Interface 2

Figure 11. Internal Baud Rate Generator

Figure 12. 16-Bit Timer/Event Counter 0

8-Bit Timer/Event Counters 1 and 2. Timer/event counters 1 and 2 (figure 13) each consist of an 8-bit timer (TM1 or TM2), an 8-bit compare register (CR10 or CR20), and a timer output (TO1 or TO2). The timers are controlled by registers TCL1, TMC1, TOC1 via five selectors. Timer/event counters 1 and 2 can each be
used as an 8-bit interval timer, to count external events on the timer input pins (TI1 or Tl 2), or to output a programmable square wave. In addition, timers 1 and 2 also can be combined as a 16-bit timer/event counter and used as a 16-bit interval timer, to count external events on Tl1, or to output a programmable square wave on TO2.

Figure 13. 8-Bit Timer/Event Counters 1 and 2

Watch Timer 3. Watch timer 3 (figure 14) is a 5 -bit timer that can be used as a time source to keep track of time of day, to release the STOP or HALT modes at regular intervals, or to initiate any other task that must be performed at regular intervals. When driven by the subsystem clock, the watch timer continues to operate in the STOP mode.

The watch timer can function as both a watch timer and an interval timer simultaneously. When used as a watch timer, interrupt request INTWT can be generated using
the main or subsystem clock of 0.5 or 0.25 seconds. When used as an interval timer, vectored interrupt request INTTM3 is generated at preselected time intervals. With a main system clock of 4.19 MHz and $\mathrm{f}_{\mathrm{xx}}=\mathrm{f}_{\mathrm{X}}$ or if using the subsystem clock of 32.768 kHz , the following time intervals can be selected: $489 \mu \mathrm{~s}, 978 \mu \mathrm{~s}$, $1.96 \mathrm{~ms}, 3.91 \mathrm{~ms}, 7.82 \mathrm{~ms}$ or 15.6 ms .

Figure 14. Watch Timer 3

Watchdog Timer. The watchdog timer (figure 15) can be used as either a watchdog timer or an interval timer. When used as a watchdog timer it protects against program runaway. It can be selected to generate a nonmaskable interrupt (INTWDT), which vectors to address 0004 H , or to generate an internal reset signal, which vectors to the restart address 0000 H if the timer is not cleared by the program before it overflows. Eight program-selectable intervals based on the main system clock are available. With a main system clock of 4.19 MHz and $f_{\mathrm{xx}}=\mathrm{f}_{\mathrm{X}}$, they are $0.489,0.978,1.96,3.91$, $7.82,15.6,31.3$, and 125 ms . With a main system clock of 4.19 MHz and $f_{x x}=f_{x} / 2$, they are $0.978,1.96,3.91,7.82$, $15.6,31.3,62.6$, and 250 ms . Once the watchdog timer is initialized and started, the timer's mode cannot be changed and the timer can only be stopped by a reset.

When used as an interval timer, maskable interrupts (INTWDT) which vector to address 0004 H are generated repeatedly at a preset interval. The time intervals available are the same as in the watchdog timer mode.

Programmable Clock Output

The $\mu \mathrm{PD} 78054$ family has a programmable clock output (PCL) that can be used for carrier output for remote controlled transmissions or as a clock output for peripheral devices. The main system clock (fxx) divided by $1,2,4,8,16,32,64$, or 128 or the subsystem clock ($\mathrm{fxT}_{\mathrm{K}}$) can be output on the PCL pin. See figure 16. If the main system clock is 4.19 MHz and $f_{x x}=f_{x}$, the following frequencies are available: $4.19 \mathrm{MHz}, 2.1 \mathrm{MHz}$, $1.05 \mathrm{MHz}, 524 \mathrm{kHz}, 262 \mathrm{kHz}, 131 \mathrm{kHz}, 65.5 \mathrm{kHz}$, and 32.7 kHz . With a main system clock of 4.19 MHz and $\mathrm{f}_{\mathrm{Xx}}=$ $f_{x} / 2$, the following frequencies are available: 2.1 MHz , $1.05 \mathrm{MHz}, 524 \mathrm{kHz}, 262 \mathrm{kHz}, 131 \mathrm{kHz}, 65.5 \mathrm{kHz}, 32.7 \mathrm{kHz}$ and 16.4 kHz . With a subsystem clock of 32.768 kHz , 32.768 kHz is also available.

Figure 15. Watchdog Timer

Figure 16. Programmable Clock Output

Figure 17. Buzzer Output

Figure 18. Real-Time Output Port

Buzzer Output

The μ PD78054 family also has a programmable buzzer output (BUZ). The buzzer output frequency can be programmed to be equal to the main system clock (fxx) divided by 512,1024 , or 2048 . With a main system clock of 4.19 MHz and $f_{\mathrm{Xx}}=\mathrm{f}_{\mathrm{x}}$, the buzzer can be set to 8.2 , 4.1 or 2.0 kHz . With a main system clock of 4.19 MHz and $f_{X X}=f_{X} / 2$, the buzzer can be set to 4.1, 2.0, or 1.0 kHz . See figure 17.

Real-Time Output Port

The real-time output port (figure 18) shares pins with port 12. Each bit of port 12 is specified by the real-time output port mode register (RTPM) to be used in the port mode or real-time output port mode. If the real-time output port mode is selected, the real-time output port control register (RTPC) is used to specify the high and low nibbles to be treated separately or together. In the real-time output port mode, the previously written data in the real-time output buffer registers (RTBH, RTBL) is transferred to the output latch simultaneously with the
generation of either a timer interrupt (INTTM1, IN TTM2) or external interrupt (INTP2).

Interrupts

The μ PD78054 family has 21 maskable hardware interrupt sources; 8 are external and 13 are internal. Of these 21 interrupt sources, 19 cause a vectored interrupt while the 2 testable inputs only generate an interrupt request. All of the 21 maskable interrupts can be used to release the HALT mode except INTPO. INTPO cannot be used to release the STOP mode and cannot release the HALT mode when SCS $=0$. In addition, there is one nonmaskable interrupt from the watchdog timer, one software interrupt, and a reset interrupt. The watchdog timer overflow interrupt (interrupt vector table address 0004 H) can be initialized to be a nonmaskable interrupt or the highest default priority maskable interrupt. The software interrupt, generated by the BRK instruction, is not maskable. See table 3 and figure 19.

Table 3. Interrupt Sources and Vector Addresses

Type of Request	Default Priority	Signal Name	Interrupt Source	Location	Vector Address	Interrupt* Configuration
Restart	-	RESET	$\overline{\text { RESET input pin }}$	External	0000H	-
		INTWDT	Watchdog timer overflow (when reset mode selected)	Internal		
Nonmaskable	-	INTWDT	Watchdog timer overflow (when nonmaskable interrupt selected)	Internal	0004H	A
Maskable	0	INTWDT	Watchdog timer overflow (when interval timer selected)	Internal	0004H	B
	1	INTPO	External interrupt edge detection	External	0006H	C
	2	INTP1	External interrupt edge detection	External	0008H	D
	3	INTP2	External interrupt edge detection	External	000AH	D
	4	INTP3	External interrupt edge detection	External	000 CH	D
	5	INTP4	External interrupt edge detection	External	OOOEH	D
	6	INTP5	External interrupt edge detection	External	0010 H	D
	7	INTP6	External interrupt edge detection	External	0012H	D
	8	INTCSIO	End of clocked serial interface 0 transfer	Internal	0014H	B
	9	INTCSI1	End of clocked serial interface 1 transfer	Internal	0016H	B
	10	INTSER	Serial interface 2 UART reception error	Internal	0018H	B
	11	INTSR	End of serial interface 2 UART reception	Internal	001AH	B
		INTCS12	End of serial interface 2 three-wire transfer			
	12	INTST	End of serial interface 2 UART transmission	Internal	001 CH	B
	13	INTTM3	Watch timer reference time interval signal	Internal	001 EH	B
	14	INTTM00	16-bit timer/event counter capture/compare (CROO) coincidence signal	Internal	0020H	B

Table 3. Interrupt Sources and Vector Addresses (cont)

Type of Request	Default Priority	Signal Name	Interrupt Source	Location	Vector Address	Interrupt* Configuration
Maskable	15	INTTM01	16-bit timer/event counter capture/compare (CRO1) coincidence signal	Internal	0022H	B
	16	INTTM1	8-bit timer/event counter 1 coincidence signal	Internal	0024H	B
	17	INTTM2	8 -bit timer/event counter 2 coincidence signal	Internal	0026H	B
	18	INTAD	End of A/D conversion	Internal	0028H	B
Scftware	-	-	BRK instruction	Internal	003EH	E
Test input	-	INTWT	Watch timer overflow	Internal	-	F
	-	INTPT4	Port 4 falling edge detection	External	-	F

* See figure 19

Interrupt Servicing. The μ PD78054 family provides two levels of programmable hardware priority control and services all interrupt requests, except the two testable interrupts (INTWT and INTPT4) using vectored interrupts. The programmer can choose the priority of servicing each maskable interrupt by using the interrupt control registers.

Interrupt Control Registers. The μ PD78054 family has three 3 -byte interrupt control registers. The interrupt request flag registers (IFOL, IFOH, and IF1L) contain an interrupt request flag for each interrupt. The interrupt mask registers (MKOL, MKOH, and MK1L) are used to enable or disable any individual interrupt. The priority flag registers (PROL, PROH, and PR1L) can be used to specify a high or a low priority level for each interrupt except the two testable interrupts (INTWT and INTPT4).

Five other 8-bit registers are associated with interrupt processing. The key return mode register (KRM) contains the KRIF interrupt request flag associated with falling-edge detection on port 4 and the KRMK mask flag used to enable or disable clearing of the standby mode if a falling edge is detected on port 4. The external interrupt mode registers (INTMO and INTM1) are used to select a rising, falling, or both edges as the valid edge for each of the external interrupts INTPO to INTP6. The sampling clock select register (SCS) is used to select a sampling clock for the noise eliminator circuit on external interrupt INTPO.

The IE and the ISP bit of the program status word are also used to control interrupts. If the IE bit is 0 , all maskable interrupts are disabled. The IE bit can be set or cleared using the EI and DI instructions, respectively, or by directly writing to the PSW. The IE bit is cleared each time an interrupt is accepted. The ISP bit is used by hardware to hold the priority level flag of the interrupt being serviced.

Interrupt Priority. If the watchdog timer overflow interrupt (INTWDT) has been initialized to be a nonmask-
able interrupt, it has priority over all other interrupts. Two hardware-controlled priority levels are available for all maskable interrupts that generate a vectored interrupt (i.e., all except the two testable interrupts). Either a high or a low priority level can be assigned by software to each of the maskable interrupts.

Interrupt requests of the same priority or a priority higher than the processor's current priority level are held pending until interrupts in the current service routine are enabled by software or until one instruction has been executed after returning from the current service routine. Interrupt requests of a lower priority are always held pending until one instruction has been executed after returning from the current service routine.

The default priorities listed in table 3 are fixed by hardware and are effective only when it is necessary to choose between two interrupt requests of the same software-assigned priority. For example, the default priorities would be used after the completion of a high-priority routine, if two interrupts of the same software priority were pending.
The software interrupt, initiated by the BRK instruction, is executed regardless of the processor's priority level and the state of the IE bit. It does not alter the processor's priority level.
Vectored Interrupt Servicing. When a vectored interrupt is acknowledged, the program status word and the program counter are saved on the stack, the processor's priority is set to that specified for the interrupt, the IE bit in the PSW is set to zero, and the routine whose address is in the interrupt vector table is entered. At the completion of the service routine, the RETI instruction (RETB instruction for the software interrupt) reverses the process and the μ PD78054 family microcomputer resumes the interrupted routine.

Figure 19. Interrupt Configurations
Type A: Internal nonmaskable interrupt

Type B: Internal maskable interrupt

Type C: External maskable interrupt (INTPO)

Figure 19. Interrupt Configurations (cont)
Type D: External maskable Interrupt (except INTPO)

Type E: Software Interrupt

Type F: Test input

Abbreviations:

IF: Interrupt request flag
IE: Interrupt enable flag
ISP: In-service prlority flag
MK: Internupt mask flag
PR: Priorty specify flag

Standby Modes

HALT, STOP, and data retention modes are provided to reduce power consumption when CPU action is not required.

The HALT mode is entered by executing a HALT instruction while the CPU is operating from the main system or subsystem clock. In HALT mode, the CPU clock is stopped while the main system and the subsystem clock continue to run. The HALT mode is released by any unmasked interrupt request, a nonmaskable interrupt request, an unmasked test input, or an external reset pulse.

Power consumption may be further reduced by using the STOP mode. The STOP mode is entered by executing a STOP instruction while operating from the main system clock. In STOP mode, the main system clock input pin $\mathrm{X1}$ is internally grounded stopping both the CPU and the peripheral hardware clock. The STOP mode is released by any unmasked interrupt request (except INTPO if register SCS $=0$), a nonmaskable interrupt request, an unmasked test input, or an external reset pulse. Any peripheral using the main oscillator as a clock source will also be disabled in the STOP mode and interrupts from such a peripheral can not be used to exit the STOP mode. Table 4 summarizes both the HALT and STOP standby modes.
When exiting the STOP mode, a wait time occurs before the CPU begins code execution to allow the main system clock oscillator circuit to stabilize. The oscillation stabilization time is selected by programming the OSTS register with one of five values before entering the STOP mode; the values range from 0.8 msec to 52.4 msec at $\mathrm{f}_{\mathrm{x}}=5 \mathrm{MHz}$.

Table 4. Standby Mode Operation Status

Item	HALT Mode	STOP Mode
Setting instruction	HALT instruction	STOP instruction
System clock when setting	Main system or subsystem clock	Main system clock
Clock oscillator	Main system and subsystem clocks can oscillate; CPU clock is stopped.	Subsystem clock can oscillate; CPU clock and main system clock are stopped.
CPU	Operation stopped	Operation stopped
Ports	Maintain previous state	Maintain previous state
16-bit timer/event counter	Operational from main system clock, or with watch timer output, or TIOO selected as the count clock	Operational only with watch timer output or TIOO selected as count clock.
8-bit timer/event counters	Operational from main system clock or with T11 and T12 selected as the count clock	Operational only with TI1 and TI2 selected as count clock
Watch timer	Operational from main system clock or with ${ }^{\mathrm{X}} \mathrm{XT}$ as count clock	Operational only with ${ }^{\mathrm{f}} \mathrm{XT}$ as count clock
Watchdog timer	Operational from main system clock	Operation stopped
Serial interface 0	Operational from main system clock or with external clock	Operational only with external clock
Serial interface 1	Operational from main system clock; no automatic transmit/ receive mode	Operational only with external clock; no automatic transmit/ receive mode
Serial interface 2	Operational from main system clock or with external clock	Operation stopped
A/D converter	Operational from main system clock	Operation stopped
D/A converter	Operational	Operational
Real-time output port	Operational	Operational with external trigger or when TI1 and TI2 count clocks are selected
External interrupts	Operational except for INTPO when its sampling clock is based on the CPU clock	INTPO not operational; INTP1 to INTP6 operational

Once in the STOP mode, power consumption can be further minimized by lowering the power supply voltage $V_{D D}$ to 2 volts. This places the device in the data retention mode. The contents of Internal RAM and the registers are retained. This mode is released by first raising $V_{D D}$ to the proper operating range and then releasing the STOP mode.

External Reset

The μ PD78054 family is reset by taking the RESET pin low or by an overflow of the watchdog timer (if enabled). The RESET input pin is a schmitt-trigger input with hysteresis characteristics to protect against spurious system resets caused by noise. On power-up, the RESET pin must remain low for a minimum of $10 \mu \mathrm{~s}$ after the power supply reaches its operating voltage.
There is no functional difference between an external reset and an internal reset caused by the overflow of the watchdog timer. In both cases, the main system clock oscillation is stopped and the subsystem clock oscillation continues. During reset, the program counter is loaded with the address contained in the reset vector (addresses $0000 \mathrm{H}, 0001 \mathrm{H}$). Once the reset is cleared and the oscillation stabilization time of $216 / f \mathrm{fx}$ has elapsed, program execution starts at that address.

8-Bit, K-Series Microcontrollers With LCD Controller/Driver, UART, and A/D Converter

Preliminary
 September 1993

Description

The μ PD78062, μ PD78063, μ PD78064, and μ PD78P064 are members of the K-Series® of microcontrollers featuring an LCD controller/driver, A/D converter, UART, 8 -bit hardware multiply and divide instructions, bit manipulation instructions, four banks of main registers, an advanced interrupt handling facility, and a powerful set of memory-mapped on-chip peripherals.
Timing is generated by two oscillators. The main oscillator normally drives the CPU and most peripherals. The $32.768-\mathrm{kHz}$ subsystem oscillator provides time keeping when the main oscillator is turned off. Since CMOS power dissipation is proportional to clock rate, the 78064 provides a software selectable instruction cycle time from 0.40μ s to $122 \mu \mathrm{~s}$. The STOP and HALT modes turn off parts of the microcontroller for additional power saving. The data retention mode permits RAM contents valid down to 2 volts.
These devices are ideally suited for applications in portable battery-power equipment, office automation, communications, consumer electronics, home appliances, exercise and fitness equipment.

K-Series is a registered trademark of NEC Electronics, Inc.

Features

- LCD controller/driver for up to 160 segments
- 40 segment lines
- 4 common lines
-Static, $1 / 2$ or $1 / 3$ bias
- LCD resistor ladder available on ROM version
- Eight-channel 8-bit A/D converter
- Two-channel serial communication interface
- 8 -bit clock synchronous interface 0 Full duplex, three-wire mode NEC serial bus interface (SBI) mode Half-duplex, two-wire mode
-Serial interface 2 Full-duplex, three-wire mode UART mode
- Timers: five channels
- Watchdog timer
- 16-bit timer/event counter with two 16-bit capture and compare registers
- Two 8-bit timer/event counters usable as one 16-bit timer/event counter
-Watch (clock) timer
- 57 I/O lines
- Two CMOS input-only lines
- 55 CMOS bidirectional I/O lines with software selectable pullup resistors
- Powerful instruction set
-8 -bit unsigned multiply and divide
- 16-bit arithmetic and data transfer instructions
-1 -bit and 8 -bit logic instructions
- Minimum instruction execution times:
$-0.4 / 0.8 / 1.6 / 3.2 / 6.4 / 12.8 \mu \mathrm{~s}$ using $5-\mathrm{MHz}$ main system clock
-122μ s selectable using $32.768-\mathrm{kHz}$ subsystem clock
- Memory-mapped on-chip peripherals
- Programmable priority, vectored-interrupt controller (two levels)
- Programmable buzzer and clock outputs
- Power saving and battery back up
- Variable CPU clock rate
- HALT mode
- STOP mode
-2-V data retention mode
- CMOS operation; $V_{D D}$ from 2.7 to 6.0 V

Internal High-Capacity ROM and RAM

	78062	78063	78064	78 P 064
ROM	16 K bytes	24 K bytes	32 K bytes	-
PROM	-	-	-	32 K bytes
High-speed RAM	512 bytes	1024 bytes	1024 bytes	1024 bytes
LCD display RAM	40 nibbles	40 nibbles	40 nibbles	40 nibbles

Ordering Information

Part Number	ROM	Package	Package Drawing
μ PD78062GC-xxx-7EA	16K mask ROM	100-pin plastic QFP ($14 \times 14 \mathrm{~mm}$)	P100GC-65-7EA
μ PD78063GC-xxx-7EA	24K mask ROM		
μ PD78064GC-xxx-7EA	32K mask ROM		
μ PD78P064GC-7EA	32K OTP ROM		
μ PD78062GF-xxx-3BA	16 K mask ROM	100-pin plastic QFP ($14 \times 20 \mathrm{~mm}$)	P100GF-65-3BA
μ PD78063GF-xxx-3BA	24K mask ROM		
μ PD78064GF-xxx-3BA	32K mask ROM		
μ PD78P064GF-3BA	32K OTP ROM		
μ PD78P064KL-T (Note 3)	32 K UV EPROM	100-pin ceramic LCC w/window ($14 \times 20 \mathrm{~mm}$)	

Notes:

(1) $x x x$ indicates ROM code suffix
(2) All devices listed are standard quality grade
(3) Under development

Pin Configurations

100-Pin Plastic QFP (14 x 14 mm)

Notes:
(1) Connect IC (internally connected) pin (V_{PP} on $\mu \mathrm{PD} 78 \mathrm{P} 064$) to V_{SS}
(2) $A V_{D D}$ should be connected to $V_{D D}$
(3) $\mathrm{AV}_{S S}$ should be connected to V_{SS}

Pin Configurations (cont)

100-Pin Plastic QFP or Ceramic LCC With Window (14 x 20 mm)

Notes:
(1) Connect IC (internally connected) pin (V_{PP} on $\mu \mathrm{PD} 78 \mathrm{P} 064$) to $\mathrm{V}_{S S}$
(2) $A V_{D D}$ should be connected to $V_{D D}$
(3) $A V_{S S}$ should be connected to $V_{S S}$

Pin Functions; Normal Operating Mode

Symbol	First Function	Symbol	Alternate Function
PO_{0}	Port 0; 7-bit, bit selectable I/O port (Bits 0 and 7 are input only)	$\begin{aligned} & \text { INTPO } \\ & \text { TIO } \end{aligned}$	External maskable interrupt External count clock input to timer 0 or timer 0 capture trigger to capture registers CROO and CRO1
PO_{1}		$\begin{aligned} & \text { INTP1 } \\ & \text { Tlo1 } \\ & \hline \end{aligned}$	External maskable interrupt Timer 0 capture trigger to capture register CROO
$\begin{aligned} & \hline \mathrm{PO}_{2} \\ & \mathrm{PO}_{3} \\ & \mathrm{PO}_{4} \\ & \mathrm{PO}_{5} \end{aligned}$		INTP2 INTP3 INTP4 INTP5	External maskable interrupt
PO_{7}		XT1	Crystal oscillator or external clock input for subsystem clock
${\mathrm{P} 1_{0}-\mathrm{P} 1_{7}}$	Port 1; 8-bit, bit-selectable 1/O port	ANIO - ANI7	Analog input to A/D converter
P_{2}	Port 2; 3-bit, bit-selectable 1/O port	$\begin{aligned} & \text { SIO } \\ & \text { SBO } \end{aligned}$	Serial data input, three-wire serial I/O mode 2/3-wire serial I/O mode
$\mathrm{P}_{2} 6$		$\begin{aligned} & \text { SOO } \\ & \text { SB1 } \end{aligned}$	Serial data output, three-wire serial $1 / \mathrm{O}$ mode 2/3-wire serial I/O mode

P 27		$\overline{\text { SCKO }}$	Serial clock I/O for serial interface 0
P_{3}	Port 3; 8-bit, bit-selectable I/O port	TOO	Timer output from timer 0
$\mathrm{P3}_{1}$		TO1	Timer output from timer 1
$\mathrm{P3}_{2}$		TO2	Timer output from timer 2
$\mathrm{P3}_{3}$		TI1	External count clock input to timer 1
$\mathrm{P3}_{4}$		TI2	External count clock input to timer 2
$\mathrm{P3}_{5}$		PCL	Programmable clock output
P_{36}		BUZ	Programmable buzzer output
$\mathrm{P3}_{7}$		-	
$\mathrm{P}_{7} 0$	Port 7; 3-bit, bit-selectable I/O port	$\begin{aligned} & \mathrm{S} 12 \\ & \mathrm{RxD} \\ & \hline \end{aligned}$	Serial data input, three-wire serial I/O mode Asynchronous serial data input
P7 ${ }_{1}$		$\begin{aligned} & \mathrm{SO} 2 \\ & \mathrm{TxD} \end{aligned}$	Serial data output, three-wire serial I/O mode Asynchronous serial data output
$\mathrm{P}_{7}{ }_{2}$		$\begin{aligned} & \hline \overline{\text { SCK2 }} \\ & \text { ASCK } \end{aligned}$	Serial clock I/O for serial interface 2 Asynchronous serial clock input
$\mathrm{P8}_{0}-\mathrm{P} 8_{7}$	Port 8; 8-bit, bit-selectable 1/O port	S39-S32	LCD controller/driver segment signal output
P9 ${ }_{0}-\mathrm{P9}_{7}$	Port 9; 8-bit, bit-selectable 1/O port	S31-S24	LCD controller/driver segment signal output

${\mathrm{P} 10_{0}-\mathrm{PrO}_{3}}^{\text {cer }}$	Port 10; 4-bit, bit-selectable I/O port
$\mathrm{Pl1}_{0}-\mathrm{P} 11_{7}$	Port 11; 8-bit, bit-selectable 1/O port
S0-S23	LCD controller/driver segment signal output
COMO-COM3	LCD controller/driver common signal output
$\mathrm{V}_{\mathrm{LC}}-\mathrm{V}_{\text {LC2 }}$	LCD drive voltage input pins
BIAS	LCD drive power supply output
RESET	External system reset input
X1	Crystal/ceramic reaonator connection or external clock input for main system clock
X2	Crystal/ceramic resonator connection or inverse of external clock for main system clock
XT2	Crystal oscillator or left open when not using the subsystem clock

Pin Functions; Normal Operating Mode (cont)

Symbol	First Function	Symbol
$A V_{\text {REF }}$	A / D converter reference voltage	
$A V_{D D}$	A / D converter power supply input	
$A V_{S S}$	A / D converter ground	
$V_{D D}$	Power-supply input	
$V_{P P}$	$\mu P D 78 P 064$ PROM programming power-supply input	
$V_{S S}$	Power-supply ground	
IC	Internal connection	

Note: See table 2 and figure 4 for details.

Block Diagram

FUNCTIONAL DESCRIPTION

Central Processing Unit

The central processing unit (CPU) of the μ PD78064 family features 8 - and 16-bit arithmetic including an $8 x$ 8 -bit unsigned multiply and 16×8-bit unsigned divide (producing a 16 -bit quotient and an 8-bit remainder). The multiply executes in 3.2μ s and the divide in $5 \mu \mathrm{~s}$ using the fastest clock cycle with a main system clock of 5.0 MHz .

A CALLT vector table and a CALLF area decrease the number of bytes in the call instructions for commonly used subroutines. A 1-byte call instruction can access up to 32 subroutines through their addresses contained in the CALLT vector table (40 H to 7 FH). A 2-byte call instruction can access any routine beginning in a specific CALLF area (0800 H to OFFFH).

Internal System Clock Generator

The internal system clocks of the μ PD78064 family are derived from either the main system or the subsystem oscillator. See figure 1. The clocks for the clock timer and programmable clock output are derived from either the subsystem clock (f_{XT}) or the main system clock. The clocks for all other peripheral hardware are derived from the main system clock.

The CPU clock (ϕ) can be supplied from either the main system clock (f_{X}) or the subsystem clock (f_{XT}). A selector, which is controlled by the oscillation mode selection register (OSMS), determines whether the main system clock (fx_{x}) or the scaled main system clock ($\mathrm{f}_{\mathrm{x}} / 2$) is provided to the prescalar ($f_{X X}$). Using the processor clock control register (PCC), a CPU clock frequency equal to $f_{X X}, f_{X X} / 2, f_{X X} / 4, f_{X X} / 8, f_{X X} / 16$ or the subsystem

Figure 1. Internal System Clock Generator

clock $f_{X T}$ can be selected. The CPU clock selected should be based on the power supply voltage available and the desired power consumption. On power up, the CPU clock defaults to the lowest speed from the main system clock ($\mathrm{fxx}_{\mathrm{X}} / 16$ with $\mathrm{f}_{\mathrm{XX}}=\mathrm{f}_{\mathrm{x}} / 2$) and can be changed while the microcomputer is running.
Since the shortest instruction takes two CPU clocks to execute, the fastest minimum instruction execution time (t_{CY}) of $0.4 \mu \mathrm{~s}$ is achieved with a main system clock at $5.0 \mathrm{MHz}\left(\mathrm{f}_{\mathrm{XX}}=\mathrm{f}_{\mathrm{X}}\right.$) and a V_{DD} of 4.5 to 6.0 volts. However, if the clock timer must generate an interrupt every 0.5 or 0.25 seconds, t_{CY} is $0.48 \mu \mathrm{~s}$ at 4.19 MHz with $f_{x x}=f_{x}$. The fastest minimum instruction execution time available across the full voltage range of 2.7 to 6.0 volts is $0.96 \mu \mathrm{~s}$ with a $4.19-\mathrm{MHz}$ main system clock
($f_{X X}=f_{X}$). For the lowest power consumption, the CPU can be operated from the subsystem clock and the minimum instruction execution time is 122μ st 32.768 kHz .

Memory Space

The μ PD78064 family's program and data memory are mapped into the 64 K byte address space $(0000 \mathrm{H}-$ FFFFH). See figure 2 . The μ PD78064 family is optimized for single-chip operation and does not permit external memory.

Figure 2. Memory Map

Notes:
(1) 3FFFH on μ PD78062 5FFFH on μ PD78063 7FFFH on μ PD78064/P064
(2) FCFFH on μ PD78062 FAFFH on μ PD78063/064/P064

Internal Program Memory

All devices in the μ PD78064 family have internal program memory. The μ PD78062/063/064 contain 16K, 24 K , and 32 K bytes of internal ROM, respectively. The μ PD78P064 contains 32K bytes of UV EPROM or one time programmable ROM. To allow the μ PD78P064 to emulate the mask ROM devices, the amount of internal program memory available in the μ PD78P064 can be selected using the memory size switching register (IMS).

Internal RAM

The μ PD78062 has 512 bytes and the μ PD78063/064/ P064 have 1024 bytes of Internal RAM. This Internal RAM consists of two types: high-speed Internal RAM and LCD data RAM.
The μ PD78062 contains 512 bytes (FDOOH to FEFFH) while the μ PD78063/064/P064 contain 1024 bytes (FBOOH to FEFFH) of high-speed Internal RAM. The high-speed Internal RAM contains the general register banks and the stack. The remainder of the high-speed Internal RAM and any unused register bank locations are available for general storage.
All devices also contain 40×4 bits of LCD data RAM (FA58H to FA7FH). The LCD data RAM is used for the display data and/or the unused portion for general storage.
To allow the μ PD78P064 to emulate the mask ROM devices, the amount of ROM and high-speed Internal RAM available in the μ PD78P064 can also be selected using the IMS.

CPU Control Registers

Program Counter. The program counter is a 16 -bit binary counter register that holds the address of the next instruction to be executed. During reset, the program counter is loaded with the address stored in locations 0000 H and 0001 H .

Stack Pointer. The stack pointer is a 16 -bit register that holds the address of the last item pushed onto the stack. It is decremented before new data is pushed onto the stack and incremented after data is popped off the stack.
Program Status Word. The program status word (PSW) is an 8-bit register that contains flags that are set or reset depending on the results of an instruction. This register can be written to or read from 8 bits at a time. The individual flags can also be manipulated on a bit-by-bit basis. The assignment of PSW bits follows.

$$
\begin{array}{ll}
7 & 0
\end{array}
$$

IE	Z	RBS1	AC	RBSO	0	ISP	CY

CY	Carry flag
ISP	In-service (interrupt) priority flag
RBSO, RBS1	Register bank selection flags
AC	Auxiliary carry flag
Z	Zero flag
IE	Interrupt request enable flag

General Registers

The general-purpose registers (figure 3) consist of four banks of registers located at addresses FEEOH to FEFFH in Internal RAM. Each bank consists of eight 8 -bit general registers that can also be used in pairs to function as four 16 -bit registers. Two bits in the PSW (RBSO and RBS1) specify which of the register banks is active at any time and are set under program control.
Registers have both functional names (like A, X, B, C, D, E, H, or L for 8 -bit registers and $A X, B C, D E$, and $H L$ for 16-bit registers) and absolute names (like R1, R0, R3, R2, R5, R4, R6, or R7 for 8 -bit registers and RP0, RP1, RP2, or RP3 for 16 -bit registers). Either the functional or absolute register names can be used in instructions that use the operand identifiers r and $r p$.
posed of 224 bytes of internal high speed RAM; FFOOH to FF1FH contain the first 32 bytes in the special function register area.

One-byte addressing is accomplished by using the first byte of the instruction for the opcode (and one operand if register A or AX is used) and the second byte of the instruction as an address (offset) into the 256 -byte area. If register A or AX is used, the instructions are 2 bytes long thereby providing fast access times. If immediate data is used, the instruction will be 3 or 4 bytes long depending upon whether the immediate data is a byte or a word. Many 16 -bit SFRs are in the space FFOOH to FF1FH. Using AX as an operand to these SFRs will provide fast access, since the instruction will be only 2 bytes long.

Figure 3. General Registers

Addressing

The program memory addressing (ROM) modes provided are relative, immediate, table indirect, and register addressing. The operand addressing modes provided are implied, register, direct, short direct (saddr), special-function (SFR), register indirect, based, based indexed, and stack addressing.

The SFR addressing and saddr addressing modes use direct addressing and require only 1 byte in the instruction to address RAM. Normally a 65 K byte address space requires 2 bytes to address it. One-byte addressing results in faster access times, since the instructions are shorter. SFR addressing addresses the entire 256byte SFR address space FFOOH to FFFFH. Saddr addressing (see figure 2) addresses the 256 -byte address space FE20H to FF1FH. FE20H to FEFFH are com-

Special Function Registers

The input/output ports, timers, capture and compare registers, and mode and control registers for both the peripherals and CPU are collectively known as special function registers. They are all memory-mapped between FFOOH and FFFFH and can be accessed either by main memory addressing or by SFR addressing. FFOOH to FF1FH can also be accessed using saddr addressing. They are either 8 or 16 bits as required, and many of the 8 -bit registers are bit addressable. Table 1 lists the special function registers.

Input/Output Ports

Each device in the μ PD78064 family has 57 port lines. Table 2 lists the features of each port and figure 4 shows the structure of each port pin.

Table 1. Special Function Registers

Address	Register (SFR)	Symbol	R/W	Access Units (Bits)			State After Reset
				1	8	16	
FFOOH	Port 0	PO	R/W	x	x	-	OOH
FF01H	Port 1	P1	R/W	X	X	-	OOH
FF02H	Port 2	P2	R/W	x	x	-	OOH
FF03H	Port 3	P3	R/W	x	x	-	OOH
FF07H	Port 7	P7	R/W	X	X	-	OOH
FF08H	Port 8	P8	R/W	x	x	-	OOH
FF09H	Port 9	P9	R/W	x	x	-	OOH
FFOAH	Port 10	P10	R/W	x	x	-	OOH
FFOBH	Port 11	P11	R/W	x	x	-	OOH
FF10H-FF11H	Capture/compare register 00	CROO	R/W	-	-	x	Undefined
FF12H-FF13H	Capture/compare register 01	CR01	R/W	-	-	x	Undefined
FF14H-FF15H	16-bit timer register	TMO	R	-	-	x	OOH
FF16H	Compare register 10	CR10	R/W	-	x	-	Undefined
FF17H	Compare register 20	CR20	R/W	-	x	-	Undefined
FF18H	8 -bit timer register 1	TM1	R	x	x	-	OOH
FF19H	8 -bit timer register 2	TM2	R	x	x	-	OOH
FF18H-FF19H	16-bit timer register	TMS	R	-	-	x	0000 H
FF1AH	Serial I/O shift register 0	SIOO	R/W	-	x	-	Undefined
FF1FH	A/D conversion result register	ADCR	R	-	x	-	Undefined
FF2OH	Port mode register 0	PMO	R/W	x	x	-	FFH
FF21H	Port mode register 1	PM1	R/W	x	x	-	FFH
FF22H	Port mode register 2	PM2	R/W	x	x	-	FFH
FF23H	Port mode register 3	PM3	R/W	X	X	-	FFH
FF27H	Port mode register 7	PM7	R/W	x	x	-	FFH
FF28H	Port mode register 8	PM8	R/W	x	x	-	FFH
FF29H	Port mode register 9	PM9	R/W	x	x	-	FFH
FF2AH	Port mode register 10	PM10	R/W	x	x	-	FFH
FF2BH	Port mode register 11	PM11	R/W	x	x	-	FFH
FF40H	Timer clock select register 0	TCLO	R/W	x	x	-	OOH
FF41H	Timer clock select register 1	TCL1	R/W	-	x	-	OOH
FF42H	Timer clock select register 2	TCL2	R/W	-	x	-	OOH
FF43H	Timer clock select register 3	TCL3	R/W	-	x	-	88H
FF47H	Sampling clock select register .	SCS	R/W	-	x	-	OOH
FF48H	16-bit timer mode control register	TMCO	R/W	x	x	-	OOH
FF49H	8-bit timer mode control register	TMC1	R/W	X	x	-	OOH
FF4AH	Clock timer mode control register	TMC2	R/W	x	x	-	OOH
FF4CH	Capture/compare control register 0	CRCO	R/W	x	X	-	04H
FF4EH	16-bit timer output control register	TOCO	R/W	X	x	-	OOH
FF4FH	8 -bit timer output control register	TOC1	R/W	X	x	-	OOH
FF60H	Serial operating mode register 0	CSIMO	R/W	x	X	-	OOH

Table 1. Special Function Registers (cont)

Address	Register (SFR)	Symbol	R/W	Access Units (Bits)			State After Reset
				1	8	16	
FF61H	Serial bus interface control register	SBIC	R/W	X	X	-	OOH
FF62H	Slave address register	SVA	R/W	-	x	-	Undefined
FF63H	Interrupt timing specify register	SINT	R/W	x	x	-	OOH
FF70H	Asynchronous serial interface mode register	ASIM	R/W	X	x	-	OOH
FF71H	Asynchronous serial interface status register	ASIS	R	x	x	-	OOH
FF72H	Serial interface operating mode register 2	CSIM2	R/W	x	x	-	OOH
FF73H	Baud rate generator control register	BRGC	RNW	-	X	-	OOH
FF74H (Note 1)	Transmit shift register Serial I/O shift register Receive buffer register	$\begin{aligned} & \text { TXS } \\ & \text { SI02 } \\ & \text { RXB } \end{aligned}$	W R/W R	-	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	-	$\begin{aligned} & \mathrm{FFH} \\ & \mathrm{FFH} \\ & \mathrm{FFH} \end{aligned}$
FF80H	A/D converter mode register	ADM	R/W	x	x	-	01H
FF84H	A/D converter input select register	ADIS	R/W	-	x	-	OOH
FFBOH	LCD display mode register	LCDM	R/W	x	X	-	OOH
FFB2H	LCD display control register	LCDC	R/W	x	X	-	OOH
FFB8H	Key return mode register	KRM	R/W	X	X	-	02H
FFEOH	Interrupt flag register L	IFOL	R/W	x	X	-	OOH
FFE1H	Interrupt flag register H	IFOH	R/W	x	X	-	OOH
FFEOH-FFE1H	Interrupt flag register	IFO	R/W	-	-	X	0000 H
FFE2H	Interrupt request flag register 1L	IF1L	R/W	x	x	-	OOH
FFE4H	Interrupt mask flag register L	MKOL	R/W	x	x	-	FFH
FFE5H	Interrupt mask flag register H	MKOH	R/W	x	x	-	FFH
FFE4H-FFE5H	Interrrupt mask flag register	MKO	R/W	-	-	x	FFFFH
FFE6H	Interrupt mask flag register 1L	MK1L	R/W	x	x	-	FFH
FFE8H	Priority order specify flag register L	PROL	R/W	X	X	-	FFH
FFE9H	Priority order specify flag register H	PROH	R/W	X	X	-	FFH
FFE8H-FFE9H	Priority order specify flag register	PRO	R/W	-	-	x	FFFFH
FFEAH	Priority order specify flag register 1L	PR1L	R/W	X	X	-	FFH
FFECH	External interrupt mode register 0	INTMO	RNW	-	X	-	OOH
FFEDH	External interrupt mode register 1	INTM1	R/W	-	X	-	OOH
FFFOH	Memory size switch register	IMS	W	-	X	-	(Note 2)
FFF2H	Oscillation mode select register	OSMS	W	x	X	-	OOH
FFF3H	Pullup resistor option register H	PUOH	R/W	x	x	-	OOH
FFF7H	Pullup resistor option register L	PUOL	R/W	x	x	-	OOH
FFF9H	Watchdog timer mode register	WDTM	R/W	X	x	-	OOH

Table 1. Special Function Registers (cont)

Address	Register (SFR)	Symbol	R/W	Access Units (Bits)			State After Reset
				1	8	16	
FFFAH	Oscillation stabilization time select register	OSTS	R/W	-	X	-	04H
FFFBH	Processor clock control register	PCC	R/W	x	x	-	04H

Notes:

(1) S102 can be used instead of TXS and RXB. Sl02 is not a register; it is another symbol that can be used to reference the TXS and RXB registers. A write to $S 102$ causes the CPU to write to the TXS register, and a read from SIO2 causes the CPU to read the RXB register.

Table 2. Digital Port Functions

Port	Operational Features	Configuration	Direct Drive Capability	Software Pullup Resistor Connection (Note 1)
Port 0 (Note 2)	7-bit input or output	Bit selectable		Byte selectable, input bits only
Port 1 (Note 3)	8 -bit input or output	Bit selectable		Byte selectable, input bits only
Port 2	3 -bit input or output	Bit selectable		Byte selectable, input bits only
Port 3	8 -bit input or output	Bit selectable		Byte selectable, input bits only
Port 7	3 -bit input or output	Bit selectable		Byte selectable, input bits only
Port 8 (Note 4)	8 -bit input or output	Bit selectable	LCD	Byte selectable, input bits only
Port 9 (Note 4)	8 -bit input or output	Bit selectable	LCD	Byte selectable, input bits only
Port 10	4-bit input or output	Bit selectable	LED	Byte selectable, input bits only
Port 11	8 -bit input or output	Bit selectable		Byte selectable, input bits only

Notes:

(1) Software pullup resistors can be internally connected (only on a port-by-port basis) to port bits set to input mode. Pullup resistors are not connected to port bits set to output mode.
(2) PO_{0} and PO_{7} are input only and do not have a software pullup resistor. When using PO_{7} as an input, the feedback resistor for the subsystem clock should be disconnected with bit 6 (FRC) of the processor control register (PCC).
(3) Pullup resistors are automatically disconnected on pins used for A/D converter analog inputs.
(4) Specified in units of two as either port pins or segment pins.

Figure 4. Pin Input/Output Circuits
(Type 2 ($\mathrm{PO}_{0}, \mathrm{RESET}^{\prime}$)

Figure 4. Pin Input/Output Circuits (cont)
Type 16 (PO 7 OT)

A/D Converter

The μ PD78064 family analog-to-digital (A/D) converter (see figure 5) uses the successive-approximation method for converting one of eight multiplexed analog inputs into 8 -bit digital data. The minimum conversion time per input is $19.1 \mu \mathrm{~s}$.

The A/D converter input select register (ADIS) selects the number of inputs that are used in A/D conversion. The remaining inputs are used as ports. The analog input to be converted is selected by programming the

A/D converter mode register (ADM). A/D conversion is started by external interrupt INTP3 or by writing to the ADM. When the conversion is completed, the results are stored in the A/D conversion result register (ADCR) and an INTAD interrupt is generated.
If the A / D converter was started by an external interrupt, the A / D converter stops after the interrupt is generated. If the A / D converter was started by software, the A / D converter repeats the conversion until new data is written to the ADM register.

Figure 5. A/D Converter

Notes:

(1) Selects number of Port 1 inputs to be used for AVD conversion.
(2) Selects the channel for ADD conversion.

Serial Interfaces

The μ PD78064 family has two independent serial interfaces: serial interface 0 and serial interface 2.

Serial Interface $\mathbf{0}$. Serial interface 0 is an 8 -bit clock synchronous serial interface (figure 6). It can be operated in either a three-wire serial I/O mode, NEC serial bus interface (SBI) mode, or two-wire serial I/O mode. The serial clock can be provided from one of eight internal clocks, the output of 8-bit timer register 2, or the external clock line SCKO.

Figure 6. Serial Interface 0

In the three-wire serial I/O mode, the 8 -bit shift register (SIOO) is loaded with a byte of data and eight clock pulses are generated. The falling edge of these eight pulses shifts the byte of data out of the SOO line (either MSB or LSB first) while the rising edge of these pulses shifts the data in from the SIO line providing full-duplex operation. The INTCSIO interrupt is generated after each 8-bit transfer.

The NEC SBI mode is a two-wire high-speed proprietary serial interface available on most devices in the NEC μ PD75xxx and μ PD78xxx product lines. Devices are connected in a master/slave configuration (see figure 7). There is only one master device at a time; all others are slaves. The master sends addresses, commands, and data over one of the serial bus lines (SBO or SB1) using a fixed hardware protocol synchronized with the SCKO line. Each slave device of the μ PD78064 family can be programmed to respond in hardware to any one of 256 addresses set in its slave address register (SVA). There are also 256 commands and 256 data types. Since all commands are user definable, many software protocols, simple or complex, can be defined. It is even possible to develop commands to change a slave into a master and the previous master into a slave.

Figure 7. SBI Mode Master/Slave Configuration

The two-wire serial I/O mode provides half-duplex operation using either the SB0 or SB1 line and the SCKO line. Communication format and handshaking can be handled in software by controlling the output levels of the data and clock lines between transfers. For data transmission, when the 8 -bit shift register (SIOO) is
loaded with a byte of data, eight clock pulses are generated. The falling edge of these eight pulses shifts the byte of data out of either the SB0 or SB1 line (MSB first). In addition, this byte of data is also shifted back into SIOO on the rising edge of these pulses providing a means of verifying that the transmission was correct.

For data reception, the SIOO register is preloaded with the value FFH. As this data value is shifted out on the falling edge of the serial clock, it disables the n-channel open-drain driver. This allows the receive data to be driven on to the serial line and shifted into the SIOO register on the rising edge of the serial clock. The INTCSIO interrupt is generated after each 8-bit transfer.
Serial Interface 2. Serial interface 2 is an 8 -bit serial interface (figure 8) that can be operated in either a UART mode or a three-wire serial I/O mode. The internal baud rate generator circuit (figure 9) scales an internal clock to provide standard baud rates from 75 to 38400 bps. For non-standard baud rates, the internal baud rate generator circuit scales an external clock input on the ASCK pin. The output of the baud rate generator circuit is used as the data transmission and sampling clock in the UART mode or the data clock in the three-wire serial I/O mode.
In the UART mode, half or full-duplex operation with various protocols is programmable. The asynchronous serial interface mode register (ASIM) is used to specify the number of stop bits (1 or 2), data character length (7 or 8 bits), parity (none, even, or odd), receive operation control (enable or disable), and transmit operation control (enable or disable). The ASIM register is also used to enable or disable the generation of an interrupt when a reception error occurs and if an internal or external clock will be supplied to the baud rate generator circuit.

A transmit operation is started by writing a data character to the transmit shift register (TXS) register. The start bit, parity bit, and stop bits are automatically added by the hardware to the data character in the TXS register. The data in the TXS register is shifted out of the TXD line and when the TXS register is empty, a transmission complete interrupt (INTST) is generated.
When the receive operation control is enabled, the RXD line is sampled using the clock specified by the ASIM register. When the RxD line is detected low, sampling starts at the midpoint of each bit. If the first sample yields a low, it is identified as a start bit. The RxD line continues to be sampled at the midpoint of each bit. Reception of one frame of data is complete when the data character bits, parity bit (if being transmitted), and one stop bit are detected after the start bit. Even if

Figure 8. Serial Interface 2

the protocol is set for two stop bits, only one stop bit is used for the end of reception detection.
When one frame of data has been received, the received data in the shift register is transferred to the receive buffer (RXB) and a reception complete vectored interrupt (INTSR) is generated even if an error (parity and/or framing) is detected. The data must be read
from the RXB register before another frame is received or an overrun error will be generated. If an error occurs, the appropriate flag is set in the asynchronous serial interface status register (ASIS) and a receive error interrupt (INTSER) is generated.

In the three-wire serial I/O mode, the TXS register is loaded with a byte of data and eight clock pulses are

Figure 9. Internal Baud Rate Generator

generated. The falling edge of these eight pulses shifts the byte of data out of the SO2 line (either MSB or LSB first) while the rising edge of these pulses shifts the data in from the SI2 line providing full-duplex operation. The INTCSI2 interrupt is generated after each 8 -bit transfer.

Timers

The μ PD78064 family has one 16 -bit timer/event counter, two 8 -bit timer/event counters that can be combined for use as a 16 -bit timer/event counter, a clock timer, and a watchdog timer. All of these can be programmed to count a number of prescaled values of the main system clock. In addition, the clock timer can also count the subsystem clock. All of the timer/event counters can count external events.

16-Bit Timer/Event Counter 0. Timer/event counter 0 (figure 10) consists of a 16 -bit counter (TMO), two 16-bit capture/compare registers (CR00, CRO1), control registers (TMCO, TOCO, and CRCO), clock select register (CLCO), and a timer output control circuit (TOO). Timer 0 can be used as an interval timer, to count external events on the timer input (TIOO) pin, to output a programmable square wave, a 14-bit pulse-width modulated output, a one-shot pulse output, or to measure pulse widths.

Figure 10. 16-Bit Timer/Event Counter 0

8-Bit Timer/Event Counters 1 and 2. Timer/event counters 1 and 2 (figure 11) each consist of an 8 -bit timer (TM1 or TM2), an 8-bit compare register (CR10 or CR20), and timer output control logic (TO1 or TO2). The timers are controlled by registers TCL1, TMC1, and TOC1 via five selectors. Timer/event counters 1 and 2 can each be used as an 8 -bit interval timer, to count external events on the timer input pins (TI1 or TI2), or to output a programmable square wave. In addition, timers 1 and 2 also can be combined as a 16-bit timer/ event counter and used as a 16-bit interval timer, to count external events on TI1, or to output a programmable square wave on TO2.

Figure 11. 8-Bit Timer/Event Counters 1 and 2

Clock Timer 3. Clock timer 3 (figure 12) is a 5 -bit timer that can be used as a time source to keep track of time of day, to release the STOP or HALT modes at regular intervals, or to initiate any other task that must be performed at regular intervals. When driven by the subsystem clock, the clock timer continues to operate in the STOP mode.
The clock timer can function as both a clock timer and interval timer simultaneously. When used as a clock timer, interrupt request INTWT (not a vectored interrupt) can be generated using a main or subsystem clock every 0.5 or 0.25 seconds. When used as an interval timer, vectored interrupt request INTTM3 is generated at preselected time intervals. With a main system clock of 4.19 MHz and $\mathrm{f}_{\mathrm{Xx}}=\mathrm{f}_{\mathrm{X}}$ or if using the subsystem clock of 32.768 kHz , the following time intervals can be selected: $489 \mu \mathrm{~s}, 978 \mu \mathrm{~s}, 1.96 \mathrm{~ms}, 3.91$ $\mathrm{ms}, 7.82 \mathrm{~ms}$ or 15.6 ms .

Figure 12. Clock Timer 3

Watchdog Timer. The watchdog timer (figure 13) can be used as either a watchdog timer or an interval timer. When used as a watchdog timer it protects against program run-away. It can be selected to generate a nonmaskable interrupt (INTWDT), which vectors to address 0004 H , or to generate an internal reset signal, which vectors to the restart address 0000 H if the timer is not cleared by the program before it overflows. Eight program-selectable intervals based on the main system clock are available. With a main system clock of 4.19 MHz and $f_{x X}=f_{X}$, they are $0.489,0.978,1.96,3.91$, $7.82,15.6,31.3$, and 125 ms . With a main system clock of 4.19 MHz and $f_{\mathrm{fx}}=\mathrm{f}_{\mathrm{X}} / 2$, they are $0.978,1.96,3.91,7.82$, $15.6,31.3,62.6$, and 250 ms . Once the watchdog timer is initialized and started, the timer's mode cannot be changed and the timer can only be stopped by reset.

When used as an interval timer, maskable interrupts (INTWDT), which vector to address 0004 H , are generated repeatedly at a preset interval. The time intervals available are the same as in the watchdog timer mode.

Programmable Clock Output

The μ PD78064 family has a programmable clock output (PCL) that can be used for carrier output for remotecontrolled transmissions or as a clock output for peripheral devices. The main system clock ($f_{X x}$) divided by $1,2,4,8,16,32,64$, or 128 or the subsystem clock ($\mathrm{fXT}_{\mathrm{T}}$) can be output on the PCL pin. If the main system clock is 4.19 MHz and $f_{\mathrm{XX}}=\mathrm{f}_{\mathrm{x}}$, the following frequencies are available: $4.19 \mathrm{MHz}, 2.1 \mathrm{MHz}, 1.05 \mathrm{MHz}, 524 \mathrm{kHz}, 262$ $\mathrm{kHz}, 131 \mathrm{kHz}, 65.5 \mathrm{kHz}$, and 32.7 kHz . With a main system clock of 4.19 MHz and $f_{x x}=f_{x} / 2$, the following frequencies are available: $2.1 \mathrm{MHz}, 1.05 \mathrm{MHz}, 524 \mathrm{kHz}$, $262 \mathrm{kHz}, 131 \mathrm{kHz}, 65.5 \mathrm{kHz}, 32.7 \mathrm{kHz}$ and 16.4 kHz . With a subsystem clock of $32.768 \mathrm{kHz}, 32.768 \mathrm{kHz}$ is also available. See figure 14.

Figure 13. Watchdog Timer

Figure 14. Programmable Clock Output

Buzzer Output

The μ PD78064 family also has a programmable buzzer output (BUZ). The buzzer output frequency can be programmed to be equal to the main system clock (fxx) divided by 512,1024 , or 2048. With a main system clock of 4.19 MHz and $\mathrm{f}_{\mathrm{XX}}=\mathrm{f}_{\mathrm{X}}$, the buzzer can be set to 8.2 , 4.1 , or 2.0 kHz . With a main system clock of 4.19 MHz and $f_{X X}=f_{X} / 2$, the buzzer can be set to $4.1,2.0$, or 1.0 kHz . See figure 15.

Figure 15. Buzzer Output

LCD Controller/Driver

The liquid crystal display (LCD) controller/driver (figure 16) has 4 common plus 40 segment lines and can be programmed to operate in any of four modes. It can operate in the static mode (drive 40 segments), the duplexed mode (drive 80 segments), the triplexed mode (drive 120 segments), or quadruplexed mode (drive 160 segments). The duplexed mode uses $1 / 2$ bias, the triplexed mode can use either $1 / 2$ or $1 / 3$ bias, and the quadruplexed mode uses $1 / 3$ bias.

The LCD controller automatically refreshes the LCD by taking data from the LCD data RAM and uses display data multiplexers, segment drivers $\mathrm{S0}$-S39, and common drivers СОМО-СОM3 to drive the LCD. The clock timer provides a clock signal ($\mathrm{f}_{\mathrm{LCD}}$) that is derived from the clock timer (figure 17). Using the LCD display mode register (LCDM), the main LCD clock (LCDCL) is selected as $\mathrm{f}_{\mathrm{LCD}}$ (or prescaled values $\mathrm{f}_{\mathrm{LCD}} / 2, \mathrm{f}_{\mathrm{LCD}} / 4$, or $\mathrm{f}_{\mathrm{LCD}} / 8$) yielding frame frequencies of $64,128,256$, or 512 Hz with a main system clock of 4.19 MHz or a subsystem clock of 32.768 kHz .

Figure 16. LCD Controller/Driver

Figure 17. LCD Clock Selection Circuit

The LCDON bit in the LCDM register is used to enable or disable (blank) the display. The LCDM0-LCDM2 bits in the LCDM register are used to select the bias method and LCDM4-LCDM6 are used to set the frame frequency. The LCD controller/driver can operate in the STOP mode as long as the clock timer is driven by the subsystem clock.

Drive levels can be set internally by ordering the resistor ladder mask option on the μ PD7806x mask ROM devices; otherwise, external resistors can be connected to pins $V_{L C O}-V_{L C 2}$ and the BIAS pin. The BIAS pin can be used to control the contrast of the LCD.

The LCDC register is used to select $\mathrm{P} 8_{0} / \mathrm{S} 39$ to $\mathrm{P9}_{7} / \mathrm{S} 24$ pin functions and the LCD power supply. The pins $\mathrm{P} 8_{0} / \mathrm{S} 39$ to $\mathrm{P} 9_{7} / \mathrm{S} 24$ are selected in groups of two to be port pins or segment pins S24 to S39. The LCD power supply selections are: (a) LCD power not supplied by the μ PD78064 device, (b) LCD drive power supplied from $V_{D D}$, or (c) LCD drive power supplied from the BIAS pin.

Interrupts

The μ PD78064 family has 19 maskable hardware interrupt sources; 7 are external and 12 are internal. Of these 19 interrupt sources, 17 cause a vectored interrupt while the 2 testable inputs only generate an interrupt request. All 19 maskable interrupts can be used to release the HALT mode except INTPO. INTPO cannot be used to release the STOP mode and cannot release the HALT mode when register SCS $=0$. In
addition, there is one nonmaskable interrupt from the watchdog timer, one software interrupt, and a reset interrupt. The watchdog timer overflow interrupt (interrupt vector table address 0004 H) can be initialized to be a nonmaskable interrupt or the highest default priority maskable interrupt. The software interrupt, generated by the BRK instruction, is not maskable. See table 3 and figure 18.

Table 3. Interrupt Sources and Vector Addresses

Type of Request	Default Priority	Signal Name	Interrupt Source	Location	Vector Address	Interrupt* Configuration
Restart	-	RESET	RESET input pin	External	0000 H	
	-	INTWDT	Watchdog timer overflow (when reset mode selected)	Internal	-	
Nonmaskable	-	INTWDT	Watchdog timer overflow (when nonmaskable interrupt selected)	Internal	0004 H	A
Maskable	0	INTWDT	Watchdog timer overflow (when interval timer selected)	Internal	0004H	B
	1	INTPO	External interrupt edge detection	External	0006H	C
	2	INTP1	External interrupt edge detection	External	0008 H	D
	3	INTP2	External interrupt edge detection	External	000AH	D
	4	INTP3	External interrupt edge detection	External	000 CH	D
	5	INTP4	External interrupt edge detection	External	000EH	D
	6	INTP5	External interrupt edge detection	External	0010 H	D
	7	INTCSIO	End of clocked serial interface 0 transfer	Internal	0014 H	B
	8	INTSER	Serial interface 2 UART reception error	internal	0018 H	B
	9	INTSR	End of serial interface 2 UART reception	Internal	001 AH	B
		INTCSI2	End of serial interface 2 three-wire transfer			
	10	INTST	End of serial interface 2 UART transmission	Internal	001 CH	B
	11	INTTM3	Clock timer reference time interval signal	Internal	001 EH	B
	12	INTTM00	16-bit timer/event counter capture/compare (CROO) coincidence signal	Internal	0020H	B
	13	INTTM01	16-bit timer/event counter capture/compare (CR01) coincidence signal	Internal	0022H	B
	14	INTTM1	8-bit timer/event counter 1 coincidence signal	Internal	0024H	B
	15	INTTM2	8-bit timer/event counter 2 coincidence signal	Internal	0026H	B
	16	INTAD	End of A/D conversion	Internal	0028 H	B
Software	-	-	BRK instruction	Internal	003EH	E
Test input	-	INTWT	Clock timer overflow	Internal	-	F
	-	INTPT11	Port 11 falling edge detection	External	-	F

[^7]Figure 18. Interrupt Configurations
Type A: Internal nonmaskable interrupt

Type B: Internal maskable interrupt

Type C: External maskable Interrupt (INTPO)

Figure 18. Interrupt Configurations (cont)
Type D: External maskable Interrupt (except INTPO)

Type F: Test Input

Abbreviations:
IF: Interrupt request flag
IE: Interrupt enable flag
ISP: In-service prority flag
MK: Interrupt mask flag
PR: Priority specify flag

Interrupt Servicing. The μ PD78064 family provides two levels of programmable hardware priority control and services all interrupt requests except the two testable interrupts (INTWT and INTPT11) using vectrored interrupts. The programmer can choose the priority of servicing each maskable interrupt by using the interrupt control registers.
Interrupt Control Registers. The μ PD78064 family has three 3-byte interrupt control registers. The interrupt request flag registers (IFOL, IFOH, and IF1L) contain an interrupt request flag for each interrupt. The interrupt mask registers (MKOL, MKOH, and MK1L) are used to enable or disable any individual interrupt. The priority flag registers (PROL, PROH, and PR1L) can be used to specify a high or a low priority level for each interrupt except the two testable interrupts (INTWT and INTPT11).
Five other 8-bit registers are associated with interrupt processing. The key return mode register (KRM) contains the KRIF interrupt request flag associated with falling-edge detection on port 11 and the KRMK mask flag used to enable or disable clearing of the standby mode if a falling edge is detected on 8 ($\mathrm{P} 11_{0}-\mathrm{P} 11_{7}$), $6\left(\mathrm{P} 11_{2}-\mathrm{P} 11_{7}\right), 4\left(\mathrm{P} 11_{4}-\mathrm{P} 11_{7}\right)$, or $1\left(\mathrm{P} 11_{7}\right)$ bit (s) of port 11 as determined by the KRM2 and KRM3 bits. The external interrupt mode registers (INTM0 and INTM1) are used to select a rising, falling, or both edges as the valid edge for each of the external interrupts INTPO to INTP5. The sampling clock select register (SCS) is used to select a sampling clock for the noise eliminator circuit on external interrupt INTPO.
The IE and the ISP bit of the program status word are also used to control interrupts. If the IE bit is 0 , all maskable interrupts are disabled. The IE bit can be set or cleared using the El and DI instructions, respectively, or by directly writing to the PSW. The IE bit is cleared each time an interrupt is accepted. The ISP bit is used by hardware to hold the priority level flag of the interrupt being serviced.
Interrupt Priority. If the watchdog timer overflow interrupt (INTWDT) has been initialized to be a nonmaskable interrupt, it has priority over all other interrupts. Two hardware-controlled priority levels are available for all maskable interrupts that generate a vectored interrupt (i.e., all except the testable interrupt). Either a high or a low priority level can be assigned by software to each of the maskable interrupts. Interrupt requests of the same priority or a priority higher than the processor's current priority level are held pending until interrupts in the current service routine are enabled by software or until one instruction has been executed after returning from the current service routine. Inter-
rupt requests of a lower priority are always held pending until one instruction has been executed after returning from the current service routine.

The default priorities listed in table 3 are fixed by hardware and are effective only when it is necessary to choose between two interrupt requests of the same software-assigned priority. For example, the default priorities would be used after the completion of a high-priority routine, if two interrupts of the same software priority were pending.
The software interrupt, initiated by the BRK instruction, is executed regardless of the processor's priority level and the state of the IE bit. It does not alter the processor's priority level.
Vectored Interrupt Servicing. When a vectored interrupt is acknowledged, the program status word and the program counter are saved on the stack, the processor's priority is set to that specified for the interrupt, the IE bit in the PSW is set to zero, and the routine whose address is in the interrupt vector table is entered. At the completion of the service routine, the RETI instruction (RETB instruction for the software interrupt) reverses the process and the μ PD78064 family microcomputer resumes the interrupted routine.

Standby Modes

HALT, STOP, and data retention modes are provided to reduce power consumption when CPU action is not required.

The HALT mode is entered by executing a HALT instruction while the CPU is operating from the main system or subsystem clock. In HALT mode, the CPU clock is stopped while the main system and the subsystem clock continue to run. The HALT mode is released by any unmasked interrupt request (except INTPO if register SCS = 0), a nonmaskable interrupt request, an unmasked test input, or an external reset pulse.
Power consumption may be further reduced by using the STOP mode. The STOP mode is entered by executing a STOP instruction while operating from the main system clock. In STOP mode, the main system clock input pin X1 is internally grounded stopping both the CPU and the peripheral hardware clock. The STOP mode is released by any unmasked interrupt request except INTPO, a nonmaskable interrupt request, an unmasked test input, or an external reset pulse. Any peripheral using the main oscillator as a clock source will also be disabled in the STOP mode and interrupts
from such a peripheral can not be used to exit the STOP mode. Table 4 summarizes both the HALT and STOP standby modes.

When exiting the STOP mode, a wait time occurs before the CPU begins code execution to allow the main system clock oscillator circuit to stabilize. The oscillation stabilization time is selected by programming the OSTS register with one of five values before entering the STOP mode; the values range from 0.8 msec to 52.4 msec at $\mathrm{f}_{\mathrm{X}}=5 \mathrm{MHz}$.

Once in the STOP mode, power consumption can be further minimized by lowering the power supply voltage $V_{D D}$ to 2 volts. This places the device in the data retention mode. The contents of Internal RAM and the registers are retained. This mode is released by first raising $V_{D D}$ to the proper operating range and then releasing the STOP mode.

External Reset

The μ PD78064 family is reset by taking the $\overline{\text { RESET }}$ pin low or by an overflow of the watchdog timer (if enabled). The $\overline{\text { RESET }}$ input pin is a schmitt-trigger input with hysteresis characteristics to protect against spurious system resets caused by noise.

There is no functional difference between an external reset and an internal reset caused by the overflow of the watchdog timer. In both cases, the main system clock oscillation is stopped and the subsystem clock oscillation continues. During reset, the program counter is loaded with the address contained in the reset vector (addresses $0000 \mathrm{H}, 0001 \mathrm{H}$). Once the reset is cleared and the oscillation stabilization time of $2^{16} / \mathrm{f}_{\mathrm{X}}$ has elapsed, program execution starts at that address.

Table 4. Standby Mode Operation Status

Item	HALT Mode	STOP Mode		
Setting instruction	HALT instruction	STOP instruction		
System clock when setting	Main system or subsystem clock	Main system clock		
Clock oscillator	Main system and subsystem clocks can oscillate; CPU clock is stopped.	Subsystem clock can oscillate; CPU clock and main system clock are stopped.		
CPU	Operation stopped	Operation stopped		
Ports	Maintain previous state	Maintain previous		
Operational from main				
system clock, or with timer/event	Operational only with			
counter	clock timer output or			
Tloo selected as the				
count clock			\quad	TlOO selected as count
:---				
clock.				

μ PD78K0 Product Line
 Programming Reference

September 1993

μ PD78K0 Product Line

The μ PD78K0 product line's instruction set features both 8 - and 16-bit data transfer and arithmetic instructions, 8 -bit logic instructions, and single-bit manipulation instructions. Multiply and divide instructions are also included except as noted in the μ PD78K0 Instruction Set table. Branch instructions exist to test individual bits in the program status word, the 8-bit accumulator, the special function registers, and in the short address (saddr) portion of memory. Instructions range in length from 1 to 4 bytes, depending on the instruction and addressing mode.

This programming reference contains the following three tables for the μ PD78K0 product line: (1) instruction set, (2) special function registers, and (3) interrupt vectors and test inputs.

Operands and Operations

Refer to the following tables for the definitions of symbols in the operand and operation columns of the Instruction Set table.

Specify operands in accordance with the rules of operand representation; for details, refer to the assembler specifications. If two or more items are available in the description method, select one.

Uppercase letters, such as "A" or "PSW," are key symbols and must be written as shown in the Registers, Flags, and Symbols table. See the Registers, Flags and Symbols table for the list of key symbols. Lowercase letters, such as "sfr" or "mem" are not key symbols and an absolute value or label must be substituted by the user when writing the instruction. For example, 'MOV A, sfr" may be written as "MOV A, PO." When the symbols $+,-, \#,!, \$$, and [] are used as a prefix of a word, the symbol remains while lower case letters are replaced by a value. For example, "ADD A, \#byte" may be written as "ADD A, \#OAFH," or "BR \$addr16" may be written as "BR \$LOOP1."

Symbols r and $r p$ can be described using the functional name or absolute name.

Symbol	Definitions
\#	Immediate data
$!$	Absolute address
\$	Relative address
[]	Indirect addressing
r	Register Functional name: X, A, C, B, E, D, L, H Absolute name: RO to R7
rp	Register pair Functional name: $A X, B C, D E, H L$ Absolute name: RPO to RP3
sfr	Special Function Registers (8-bit). See the table "Special Function Registers (μ PD78K0 Product Line)." This table shows the SFRs included in each device family, access units usable with each SFR, and the reserved symbol and address of each SFR.
sfrp	Special Function Register Pair (16-bit). See the table "Special Function Registers μ PD78KO Product Line)." This table shows the SFRs included in each device family, access units usable with each SFR, and the reserved symbol and address of each SFR.
saddr	Memory address addressed by means of short direct addressing: FE20H-FF1FH immediate data or label.
saddrp	Memory address addressed by means of short direct addressing pair: FE20H-FF1EH immediate data or label (even address only)
addr16	16-bit address: 0000 H -FFFFH immediate data or label (even address only)
addr11	11-bit address: $0800 \mathrm{H}-0 \mathrm{FFFH}$ immediate data or label
addr5	5-bit address: 40H-7EH immediate data or label (even address only)
word	16-bit data: 16-bit immediate data or label
byte	8 -bit data: 8 -bit immediate data or label
bit	3 -bit immediate data (bit position in byte) or label
RBn	Register bank: RB0-RB3

Registers, Flags, and Symbols

Symbol	Definitions
A	A register; 8-bit accumulator
X	X register
B	B register
C	C register
D	D register
E	E register
H	H register
L	L register
RO-R7	Registers 0 to 7 (absolute names)

Registers, Flags, and Symbols (cont)

Symbol	Definitions
AX	Register pair (AX); 16-bit accumulator
BC	Register pair (BC)
DE	Register pair (DE)
HL	Register pair (HL)
RPO-	Register pairs 0 to 3 (absolute names)
RP3	

PC	Program counter
SP	Stack pointer
PSW	Program status word
CY	Carry flag
AC	Auxiliary carry flag
Z	Zero flag
RBS1-	Register bank select flags
RBSO	

IE	Interrupt enable flag
jdisp8	Signed 2's complement data (8 bits) indicating relative address distance between first address of next instruction and branch destination address
()	Memory contents indicated by address or register contents in ()
$\times x H$	Hexadecimal number
x_{H}, x_{L}	Higher 8 bits and lower 8 bits of 16-bit register pair
Λ	Logical product (AND)
V	Logical SUM (OR)
\forall	Exclusive logical sum (exclusive OR)
Z	Inverted data

Flag Column Indicators

Symbol	Action
Blank	No change
0	Cleared to 0
1	Set to 1
x	Set or cleared depending on the result
R	Value previously saved is restored

Instruction Set (μ PD78K0 Product Line)

Mnemonic	Operand	Operation	Bytes	Flags		
				Z	AC	CY
8-Bit Data Transfer						
MOV	r , \#byte	$r \leftarrow$ byte	2			
	saddr, \#byte	(saddr) \leftarrow byte	3			
	sfr, \#byte	sfr \leftarrow byte	3			
	A, r (Note 1)	$A \leftarrow r$	1			
	r, A (Note 1)	$r \leftarrow A$	1			
	A, saddr	$A \leftarrow$ (saddr)	2			
	saddr, A	(saddr) $\leftarrow A$	2			
	A, sfr	$\mathrm{A} \leftarrow \mathrm{sfr}$	2			
	sfr, A	$\mathrm{sfr} \leftarrow \mathrm{A}$	2			
	A, !addr16	$A \leftarrow$ (addr16)	3			
	!addr16, A	(addr16) $\leftarrow \mathrm{A}$	3			
	PSW, \#byte	PSW \leftarrow byte	3	x	x	x
	A, PSW	A \leftarrow PSW	2			
	PSW, A	$\mathrm{PSW} \leftarrow \mathrm{A}$	2	x	x	x
	A, [DE]	$A \leftarrow(D E)$	1			
	[DE], A	$(\mathrm{DE}) \leftarrow \mathrm{A}$	1			
	A, [HL]	$A \leftarrow(H L)$	1			
	[HL], A	$(\mathrm{HL}) \leftarrow \mathrm{A}$	1			
	A, [HL + byte]	$A \leftarrow(H L+$ byte $)$	2			
	[HL + byte], A	$(\mathrm{HL}+$ byte $) \leftarrow \mathrm{A}$	2			
	A, [HL + B]	$A \leftarrow(H L+B)$	1			
	[HL + B], A	$(\mathrm{HL}+\mathrm{B}) \leftarrow \mathrm{A}$	1			
	A, [$\mathrm{HL}+\mathrm{C}]$	$A \leftarrow(H L+C)$	1			
	[$\mathrm{HL}+\mathrm{C}$], A	$(\mathrm{HL}+\mathrm{C}) \leftarrow \mathrm{A}$	1			
XCH	A, r (Note 1)	$A \leftrightarrow r$	1			
	A, saddr	$A \leftrightarrow$ (saddr)	2			
	A, sfr	$A \leftrightarrow s f r$	2			
	A, !addr16	A \leftrightarrow (addr16)	3			
	A, [DE]	$A \leftrightarrow(D E)$	1			
	A, [HL]	$A \leftrightarrow(H L)$	1			
	A, [HL + byte]	$A \leftrightarrow(H L+$ byte $)$	2			
	A, [HL + B]	$A \leftrightarrow(H L+B)$	2			
	A, $[\mathrm{HL}+\mathrm{C}]$	$A \leftrightarrow(H L+C)$	2			

Instruction Set (μ PD78K0 Product Line) (cont)

Mnemonic	Operand	Operation	Bytes	Flags		
				Z	AC	CY
16-Bit Data Transíer						
MOVW	rp, \#word	$\mathrm{rp} \leftarrow$ word	3			
	saddrp, \#word	(saddrp) \leftarrow word	4			
	sfrp, \#word	sfrp \leftarrow word	4			
	AX, saddrp	$A X \leftarrow$ (saddrp)	2			
	saddrp, AX	(saddrp) $\leftarrow \mathrm{AX}$	2			
	AX, sfrp	$\mathrm{AX} \leftarrow \operatorname{sfrp}$	2			
	sfrp, AX	sfrp $\leftarrow A X$	2			
	AX, rp (Note 2)	$A X \leftarrow r p$	1			
	rp, AX (Note 2)	$r p \leftarrow A X$	1			
	AX, !addr16	$A X \leftarrow$ (addr16)	3			
	!addr16, AX	(addr16) $\leftarrow A X$	3			
XCHW	AX, rp (Note 2)	$A X \leftrightarrow p p$	1			
8-Bit Operations						
ADD	A, \#byte	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+$ byte	2	x	x	x
	saddr, \#byte	(saddr), $\mathrm{CY} \leftarrow$ (saddr) + byte	3	x	x	x
	A, r (Note 3)	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+\mathrm{r}$	2	\times	x	x
	r, A (Note 3)	$r, C Y \leftarrow r+A$	2	x	x	x
	A, saddr	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+$ (saddr)	2	x	x	x
	A, !addr16	A, $\mathrm{CY} \leftarrow \mathrm{A}+$ (addr16)	3	x	x	x
	A, [HL]	$A, C Y \leftarrow A+(H L)$	1	x	x	x
	A, [HL + byte]	$A, C Y \leftarrow A+(H L+$ byte $)$	2	x	x	x
	A, [HL + B]	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+(\mathrm{HL}+\mathrm{B})$	2	x	x	x
	A, $[\mathrm{HL}+\mathrm{C}]$	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+(\mathrm{HL}+\mathrm{C})$	2	x	x	x
ADDC	A, \#byte	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+$ byte + CY	2	x	x	x
	saddr, \#byte	(saddr), $\mathrm{CY} \leftarrow$ (saddr) + byte +CY	3	x	x	x
	A, r (Note 3)	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+\mathrm{r}+\mathrm{CY}$	2	\times	x	x
	r, A (Note 3)	$r, C Y \leftarrow r+A+C Y$	2	x	x	x
	A, saddr	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+$ (saddr) +CY	2	x	x	x
	A, !addr16	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+($ addr16) +CY	3	x	x	x
	A, [HL]	A, CY $\leftarrow A+(H L)+C Y$	1	x	x	x
	A, [HL + byte]	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+(\mathrm{HL}+$ byte $)+\mathrm{CY}$	2	x	x	x
	A, [HL + B]	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+(\mathrm{HL}+\mathrm{B})+\mathrm{CY}$	2	x	x	x
	A, $[\mathrm{HL}+\mathrm{C}]$	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+(\mathrm{HL}+\mathrm{C})+\mathrm{CY}$	2	X	x	x

Instruction Set (μ PD78K0 Product Line) (cont)

Mnemonic	Operand	Operation	Bytes	Flags		
				Z	AC	CY
8-Bit Operations (cont)						
SUB	A, \#byte	A, CY $\leftarrow \mathrm{A}$ - byte	2	x	X	x
	saddr, \#byte	(saddr), CY \leftarrow (saddr) - byte	3	X	x	x
	A, r (Note 3)	$A, C Y \leftarrow A-r$	2	x	x	x
	r, A (Note 3)	r, $C Y \leftarrow r-A$	2	x	x	x
	A, saddr	A, CY $\leftarrow A-$ (saddr)	2	x	X	x
	A, !addr16	A, CY $\leftarrow A-($ addr 16$)$	3	x	x	x
	A, [HL]	$A, C Y \leftarrow A-(H L)$	1	x	x	x
	A, [HL + byte]	$A, C Y \leftarrow A-(H L+$ byte $)$	2	x	x	x
	A, $[\mathrm{HL}+\mathrm{B}]$	$A, C Y \leftarrow A-(H L+B)$	2	x	x	x
	A, $[\mathrm{HL}+\mathrm{C}]$	$A, C Y \leftarrow A-(H L+C)$	2	x	x	x
SUBC	A, \#byte	A, CY $\leftarrow \mathrm{A}$ - byte - CY	2	x	x	x
	saddr, \#byte	(saddr), CY - (saddr) - byte - CY	3	x	x	x
	A, r (Note 3)	$A, C Y \leftarrow A-r-C Y$	2	x	X	x
	r, A (Note 3)	$r, C Y \leftarrow r-A-C Y$	2	X	X	x
	A, saddr	$A, C Y \leftarrow A-$ (saddr) $-C Y$	2	x	x	x
	A, !addr16	$A, C Y \leftarrow A-($ addr16 $)-C Y$	3	X	x	X
	A, [HL]	$A, C Y \leftarrow A-(H L)-C Y$	1	x	x	X
	A, [HL + byte]	$A, C Y \leftarrow A-(H L+$ byte $)-C Y$	2	x	X	x
	$A_{1}[\mathrm{HL}+\mathrm{B}]$	$A, C Y \leftarrow A-(H L+B)-C Y$	2	x	x	x
	A, [HL + C]	$A, C Y \leftarrow A-(H L+C)-C Y$	2	x	X	X
AND	A, \#byte	$A \leftarrow A \wedge$ byte	2	x		
	saddr, \#byte	(saddr) $\leftarrow($ saddr $) \wedge$ byte	3	x		
	A, r (Note 3)	$A \leftarrow A \wedge r$	2	x		
	r, A (Note 3)	$r \leftarrow r \wedge A$	2	X		
	A, saddr	$A \leftarrow A \wedge$ (saddr)	2	x		
	A, laddr16	$A \leftarrow A \wedge$ (addr16)	3	X		
	A, [HL]	$A \leftarrow A \wedge(H L)$	1	\times		
	A, [HL + byte]	$A \leftarrow A \wedge$ (HL + byte)	2	X		
	A, [HL + B]	$A \leftarrow A \wedge(H L+B)$	2	X		
	A, $[\mathrm{HL}+\mathrm{C}]$	$A \leftarrow A \wedge(H L+C)$	2	X		

Instruction Set (μ PD78K0 Product Line) (cont)

Mnemonic	Operand	Operation	Bytes	Flags		
				Z	AC	CY
8-Bit Operations (cont)						
OR	A, \#byte	$A \leftarrow A \vee$ byte	2	x		
	saddr, \#byte	(saddr) \leftarrow (saddr) \vee byte	3	x		
	A, r (Note 3)	$A \leftarrow A \vee r$	2	x		
	r, A (Note 3)	$r \leftarrow r \vee A$	2	x		
	A, saddr	$A \leftarrow A \vee$ (saddr)	2	x		
	A, !addr16	$A \leftarrow A \vee$ (addr16)	3	x		
	A, [HL]	$A \leftarrow A \vee(H L)$	1	x		
	A, [HL + byte]	$A \leftarrow A \vee(H L+$ byte $)$	2	x		
	A, [HL + B]	$A \leftarrow A \vee(H L+B)$	2	x		
	A, $[\mathrm{HL}+\mathrm{C}]$	$A \leftarrow A \vee(H L+C)$	2	x		
XOR	A, \#byte	$A \leftarrow A \forall$ byte	2	x		
	saddr, \#byte	(saddr) \leftarrow (saddr) \forall byte	3	x		
	A, r (Note 3)	$A \leftarrow A \forall r$	2	x		
	r, A (Note 3)	$r \leftarrow r \forall A$	2	x		
	A, saddr	$A \leftarrow A \forall$ (saddr)	2	x		
	A, laddr16	$A \leftarrow A \forall$ (addr16)	3	x		
	A, [HL]	$A \leftarrow A \forall(H L)$	1	x		
	A, [HL + byte]	$A \leftarrow A \forall(H L+$ byte $)$	2	x		
	A, [HL + B]	$A \leftarrow A \forall(H L+B)$	2	x		
	$A_{,}[\mathrm{HL}+\mathrm{C}]$	$A \leftarrow A \forall(H L+C)$	2	x		
CMP	A, \#byte	A - byte	2	x	x	x
	saddr, \#byte	(saddr) - byte	3	x	x	x
	A, r (Note 3)	A - r	2	x	x	x
	r, A (Note 3)	$r-A$	2	x	x	x
	A, saddr	A - (saddr)	2	x	x	x
	A, !addr16	A - (addr16)	3	x	x	x
	A, [HL]	A - (HL)	1	x	x	x
	A, [HL + byte]	A - (HL + byte)	2	x	x	x
	A, [HL + B]	A - (HL + B)	2	x	x	x
	A, [HL + C]	A - $(H L+C)$	2	x	x	x
16-Bit Operations						
ADDW	AX, \#word	$\mathrm{AX}, \mathrm{CY} \leftarrow \mathrm{AX}+$ word	3	x	x	x
SUBW	AX, \#word	$A X, C Y \leftarrow A X$ - word	3	x	x	x
CMPW	AX, \#word	AX - word	3	\times	x	\times
Multiplication/Division (Note 4)						
MULU	X	$A X \leftarrow A \times X$ (Note 4)	2			
DIVUW	c	$A X$ (quotient), C (remainder) $\leftarrow A X \div C$ (Note 4)	2			

μ PD78K0 Product Line

Instruction Set (μ PD78K0 Product Line) (cont)

Mnemonic	Operand	Operation	Bytes	Flags		
				Z	AC	CY
Increment/Decrement						
INC	r	$r \leftarrow r+1$	1	x	x	
	saddr	(saddr) \leftarrow (saddr) +1	2	x	x	
DEC	r	$r \leftarrow r-1$	1	x	x	
	saddr	(saddr) \leftarrow (saddr) -1	2	x	\times	
INCW	rp	$r p \leftarrow r p+1$	1			
DECW	rp	$r p \leftarrow r p-1$	1			
Rotate						
ROR	A, 1	$\left(C Y, A_{7} \leftarrow A_{0}, A_{m-1} \leftarrow A_{m}\right) \times 1$	1			x
ROL	A, 1	$\left(C Y, A_{0} \leftarrow A_{7}, A_{m+1} \leftarrow A_{m}\right) \times 1$	1			x
RORC	A, 1	$\left(C Y \leftarrow A_{0}, A_{7} \leftarrow C Y, A_{m-1} \leftarrow A_{m}\right) \times 1$	1			x
ROLC	A, 1	$\left(C Y \leftarrow A_{7}, A_{0} \leftarrow C Y, A_{m+1} \leftarrow A_{m}\right) \times 1$	1			x
ROR4	[HL]	$A_{3-0} \leftarrow(\mathrm{HL})_{3-0},(\mathrm{HL})_{7-4} \leftarrow \mathrm{~A}_{3-0},(\mathrm{HL})_{3-0} \leftarrow(\mathrm{HL})_{7-4}$	2			
ROL4	[HL]	$\mathrm{A}_{3-0} \leftarrow(\mathrm{HL})_{7-4},(\mathrm{HL})_{3-0} \leftarrow \mathrm{~A}_{3-0},(\mathrm{HL})_{7-4} \leftarrow(\mathrm{HL})_{3-0}$	2			
BCD Adjustment						
ADJBA		Decimal adjust accumulator after addition	2	x	x	x
ADJBS		Decimal adjust acccumulator after subtraction	2	x	x	x
Bit Manipulation						
MOV1	CY, saddr.bit	$\mathrm{CY} \leftarrow$ (saddr.bit)	3			x
	CY, sfr.bit	CY \leftarrow sfr.bit	3			x
	CY, A.bit	$\mathrm{CY} \leftarrow$ A.bit	2			x
	CY, PSW.bit	$\mathrm{CY} \leftarrow$ PSW.bit	3			x
	CY, [HL].bit	$\mathrm{CY} \leftarrow(\mathrm{HL})$. bit	2			x
	saddr.bit, CY	(saddr.bit) $\leftarrow C Y$	3			
	sfr.bit, CY	sfr.bit $\leftarrow C Y$	3			
	A.bit, CY	A.bit $\leftarrow C Y$	2			
	PSW.bit, CY	PSW.bit $\leftarrow C$ CY	3	x	x	
	[HL].bit, CY	(HL). bit $\leftarrow \mathrm{CY}$	2			
AND1	CY, saddr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ (saddr.bit)	3			x
	CY, sfr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ sfr.bit	3			x
	CY, A.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ A.bit	2			x
	CY, PSW.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ PSW.bit	3			x
	CY, [HL].bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge(\mathrm{HL})$.bit	2			x
OR1	CY, saddr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee$ (saddr.bit)	3			x
	CY, sfr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee$ sfr.bit	3			x
	CY, A.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee$ A.bit	2			x
	CY, PSW.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee$ PSW.bit	3			x
	CY, [HL].bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee$ (HL).bit	2			x

Instruction Set (μ PD78KO Product Line) (cont)

Mnemonic	Operand	Operation	Bytes	Flags		
				Z	AC	CY
Bit Manipulation (cont)						
XOR1	CY, saddr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \forall$ (saddr.bit)	3			x
	CY, sfr.bit	$C Y \leftarrow C Y \forall$ sfr.bit	3			x
	CY, A.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \forall \mathrm{A} . \mathrm{bit}$	2			x
	CY, PSW.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \forall$ PSW.bit	3			x
	CY, [HL].bit	$\mathrm{CY} \leftarrow \mathrm{CY} \forall(\mathrm{HL})$.bit	2			x
SET1	saddr.bit	(saddr.bit) $\leftarrow 1$	2			
	sfr.bit	sfr.bit $\leftarrow 1$	3			
	A.bit	A.bit $\leftarrow 1$	2			
	PSW.bit	PSW.bit $\leftarrow 1$	2	x	x	x
	[HL].bit	(HL). bit $\leftarrow 1$	2			
	CY	$\mathrm{CY} \leftarrow 1$	1			1
CLR1	saddr.bit	(saddr.bit) $\leftarrow 0$	2			
	sfr.bit	sfr.bit $\leftarrow 0$	3			
	A.bit	A.bit $\leftarrow 0$	2			
	PSW.bit	PSW.bit $\leftarrow 0$	2	x	x	x
	[HL]. bit	(HL). bit $\leftarrow 0$	2			
	CY	$\mathrm{CY} \leftarrow 0$	1			0
NOT1	CY	$\mathrm{CY} \leftarrow \overline{\mathrm{CY}}$	1			x
Call/Return						
CALL	!addr16	$\begin{aligned} & (S P-1) \leftarrow(P C+3)_{H}, \\ & (S P-2) \leftarrow(P C+3)^{L}, \\ & P C \leftarrow \text { addr1 } 6, S P \leftarrow S P-2 \end{aligned}$	3			
CALLF	!addr11	$\begin{aligned} & (S P-1) \leftarrow(P C+2)_{H},(S P-2) \leftarrow(P C+2)_{L}, \\ & \mathrm{PC}_{15-11} \leftarrow 00001, \mathrm{PC}_{10-0} \leftarrow \text { addr11, }, S P \leftarrow S P-2 \end{aligned}$	2			
CALLT	[addr5]	$\begin{aligned} & (S P-1) \leftarrow(P C+1)_{H},(S P-2) \leftarrow(P C+1)_{L}, \\ & P C_{H} \leftarrow(00000000, \text { addr5 }+1), \\ & P C_{L} \leftarrow(00000000, \text { addr5 }), \\ & S P \leftarrow S P-2 \end{aligned}$	1			
BRK		$\begin{aligned} & (S P-1) \leftarrow P S W,(S P-2) \leftarrow(P C+1)_{H}, \\ & (S P-3) \leftarrow(P C+1), ~ P C_{H} \leftarrow(003 F H), \\ & P C_{L} \leftarrow(003 E H), S P \leftarrow S P-3, I E \leftarrow 0 \end{aligned}$	1			
RET		$P C_{L} \leftarrow(S P), P C_{H} \leftarrow(S P+1), S P \leftarrow S P+2$	1			
RET1		$\begin{aligned} & P C_{L} \leftarrow(S P), P C_{H} \leftarrow(S P+1), P S W \leftarrow(S P+2), \\ & S P \leftarrow S P+3 \end{aligned}$	1	R	R	R
RETB		$\begin{aligned} & P C_{L} \leftarrow(S P), P C_{H} \leftarrow(S P+1), \\ & P S W \leftarrow(S P+2), S P \leftarrow S P+3 \end{aligned}$	1	R	R	R
Stack Manipulation						
PUSH	PSW	$(\mathrm{SP}-1) \leftarrow \mathrm{PSW}, \mathrm{SP} \leftarrow \mathrm{SP}-1$	1			
	rp	$(\mathrm{SP}-1) \leftarrow \mathrm{rPH},(\mathrm{SP}-2) \leftarrow r \mathrm{rLL}^{\prime}, \mathrm{SP} \leftarrow \mathrm{SP}-2$	1			
POP	PSW	$P S W \leftarrow(S P), S P \leftarrow S P+1$	1	R	R	R
	rp	$r P_{L} \leftarrow(S P), r p_{H} \leftarrow(S P+1), S P \leftarrow S P+2$	1			

μ PD78K0 Product Line

Instruction Set (μ PD78K0 Product Line) (cont)

Mnemonic	Operand	Operation	Bytes	Flags	
				Z	AC CY
CPU Control					
SEL	RBn	RBS1-0 $\leftarrow n, n=0-3$	2		
NOP		No Operation	1		
El		$\mathrm{IE} \leftarrow 1$ (Enable interrupt)	2		
DI		$\mathrm{IE} \leftarrow 0$ (Disable Interrupt)	2		
HALT		Set HALT mode	2		
STOP		Set STOP mode	2		

Notes:
(1) Except $r=A$. The chip will not operate normally with $r=A$.
(2) Only for $\mathrm{rp}=\mathrm{BC}, \mathrm{DE}$, or HL
(3) When $r=A$ and the operand A, A is assembled, the operand format r, A is selected by the assembler and generates an operand A, A. The operand A, A will execute correctly in the chip.
(4) These instructions not available in μ PD78002 and μ PD78002Y families.

Special Function Registers (μ PD78K0 Product Line)

Address	Register (SFR)	Symbol	R/W	Access Units (Bits)			State After Reset	Family						
				1	8	16		02	02Y	14	14Y	44	54	64
FFOOH	Port 0	PO	R/W	x	x	-	OOH	x	x	x	x	x	\times	x
FF01H	Port 1	P1	R/W	x	x	-	OOH	x	x	\times	\times	x	x	x
FFO2H	Port 2	P2	R/W	x	x	-	OOH	x	x	x	x	x	x	x
FFO3H	Port 3	P3	R/W	x	x	-	OOH	x	x	x	x	x	x	x
FF04H	Port 4	P4	R/W	x	x	-	Undefined	x	x	x	x		x	
FF05H	Port 5	P5	R/W	x	x	-	Undefined	x	x	x	x		x	
FF06H	Port 6	P6	R/W	x	x	-	Undefined	x	x	x	\times		x	
FF07H	Port 7	P7	R/W	x	x	-	OOH					x	x	x
FFO8H	Port 8 (78044) Port 8 (78064)	P8	$\begin{aligned} & \text { W } \\ & \text { R/W } \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	-	$\begin{aligned} & \mathrm{OOH} \\ & \mathrm{OOH} \end{aligned}$					\times		x
FF09H	$\begin{aligned} & \text { Port } 9 \text { (78044) } \\ & \text { Port } 9(78064) \\ & \hline \end{aligned}$	P9	$\begin{aligned} & \text { W } \\ & \text { RN } \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	-	$\begin{aligned} & \mathrm{OOH} \\ & \mathrm{OOH} \end{aligned}$					x		x
FFOAH	Port 10 (78044) Port 10 (78064)	P10	$\begin{aligned} & \text { W } \\ & \text { RN } \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	-	$\begin{aligned} & \mathrm{OOH} \\ & \mathrm{OOH} \end{aligned}$					x		x
FFOBH	Port 11	P11	R/W	x	x	-	OOH					x		x
FFOCH	Port 12	P12	R/W	x	x	-	OOH					x	x	
FFODH	Port 13	P13	R/W	x	x	-	OOH						x	
$\mathrm{FF} 10 \mathrm{H}$ FF11H	Compare reg 00 (78014, 14Y, 44) Capture/compare register 00 $(78054,64)$	$\begin{aligned} & \text { CROO } \\ & \text { CROO } \end{aligned}$	R/W R/W	$-$	$-$	x \times	Undefined Undefined			x	x	x	x	x
FF12H FF13H	Compare reg 01 (014, 014Y, 044) Capture/compare register 01 (78054,064)	$\begin{aligned} & \text { CRO1 } \\ & \text { CRO1 } \end{aligned}$	R R/W	$-$	$-$	x	Undefined Undefined			x	x	x	x	x
$\begin{aligned} & \text { FF14H } \\ & \text { FF15H } \\ & \hline \end{aligned}$	16-bit timer register	TMO	R	-	-	x	OOH			x	x	x	\times	x
FF16H	Compare register 10	CR10	R/W	-	x	-	Undefined	x	x	x	x	x	x	x
FF17H	Compare register 20	CR20	R/W	-	x	-	Undefined	x	x	x	x	x	x	x
FF18H FF19H FF18H FF19H	8 -bit timer register 1 8 -bit timer register 2 16-bit timer register	$\begin{aligned} & \text { TM1 } \\ & \text { TM2 } \\ & \text { TMS } \end{aligned}$	$\begin{aligned} & R \\ & R \\ & R \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & - \end{aligned}$	$\begin{gathered} x \\ x \\ \hline \end{gathered}$	-	OOH OOH 0000 H	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	x x x x	x x x x	x x x
FF1AH	Serial I/O shift register 0	SIOO	R/W	-	x	-	Undefined	x.	x	x	x	x	x	x
FF1BH	Serial I/O shift register 1	SIO1	RW	-	x	-	Undefined			x	x	x	x	
FF1FH	A/D conversion result register	ADCR	R	-	x	-	Undefined			x	x	x	x	x
FF20H	Port mode register 0	PMO	R/W	x	x	-	$\begin{aligned} & 1 \mathrm{FH} \\ & \text { FFH } \end{aligned}$	x	x	x	x	x	x	x
FF21H	Port mode register 1	PM1	R/W	x	x	-	FFH	x	x	x	x	x	x	x
FF22H	Port mode register 2	PM2	RW	x	x	-	FFH	x	x	x	x	x	x	x
FF23H	Port mode register 3	PM3	R/W	x	x	-	FFH	x	x	x	x	x	x	x
FF25H	Port mode register 5	PM5	R/W	x	x	-	FFH	x	x	x	x		x	
FF26H	Port mode register 6	PM6	RW	x	x	-	FFH	x	x	x	x		x	

Special Function Registers (μ PD78K0 Product Line) (cont)

Address	Register (SFR)	Symbol	R/W	Access Units (Bits)			State After Reset	Family						
				1	8	16		02	02Y	14	14Y	44	54	64
FF27H	Port mode register 7	PM7	R/W	x	x	-	$\begin{aligned} & \hline \text { 1FH (44) } \\ & \text { FFH }(54 / 64) \end{aligned}$					x	x	\underline{x}
FF28H	Port mode register 8	PM8	R/W	x	x	-	FFH							x
FF29H	Port mode register 9	PM9	R/W	x	x	-	FFH							x
FF2AH	Port mode register 10	PM10	R/W	x	x	-	FFH							x
FF2BH	Port mode register 11	PM11	RW	x	x	-	FFH					x		x
FF2CH	Port mode register 12	PM12	R/W	x	x	-	FFH					x	x	
FF2DH	Port mode register 13	PM13	R/W	x	x	-	FFH						x	
FF30H	Real-time buffer register L	RTBL	R/W	-	x	-	OOH						x	
FF31H	Real-time buffer register H	RTBH	R/W	-	x	-	OOH						x	
FF34H	Real-time output port mode register	RTPM	RW	x	x	-	OOH						x	
FF36H	Real-time output port control register	RTPC	R/W	x	x	-	OOH						x	
FF40H	Timer clock select register 0	TCLO	R/W	x	x	-	OOH	x	x	x	x	x	x	x
FF41H	Timer clock select register 1	TCL1	R/W	-	x	-	OOH	x	x	x	x	x	x	x
FF42H	Timer clock select register 2	TCL2	R/W	-	x	-	OOH	x	x	x	x	x	x	x
FF43H	Timer clock select register 3	TCL3	R/W	-	x	-	88 H	x	x	x	x	x	x	x
FF47H	Sampling clock select register	scs	R/W	-	\times	-	OOH	x	x	\times	\times	x	x	x
FF48H	16-bit timer mode control register	TMCO	R/W	x	x	-	00H			x	x	x	x	x
FF49H	8-bit timer mode control register	TMC1	R/W	x	x	-	OOH	x	x	x	x	x	x	x
FF4AH	Watch (clock) timer mode control register	TMC2	R/W	x	x	-	OOH	x	x	x	x	x	x	x
FF4CH	Capture/compare control register 0	CRCO	R/W	x	x	-	04H				\cdot		x	x
FF4EH	16-bit timer output control register	TOC0	R/W	x	x	-	OOH			x	x	x	x	x
FF4FH	8-bit timer output control register	TOC1	R/W	x	x	-	OOH	x	x	x	x	x	x	x
FF60H	Serial operating mode register 0	CSIMO	R/W	x	x	-	OOH	x	x	x	x	x	x	x
FF61H	Serial bus interface control register	SBIC	R/W	x	x	-	OOH	x	x	x	x	x	x	x
FF62H	Slave address register	SVA	RW	-	x	-	Undefined	x	x	x	x	x	x	x
FF63H	Interrupt timing specify register	SINT	R/W	x	x	-	OOH	x	x	x	x	x	x	x
FF68H	Serial operation mode register 1	CSIM1	R/W	x	x	-	OOH			x	x	x	x	
FF69H	Automatic data transmit/ receive control register	ADTC	R/W	x	x	-	OOH			x	x	x	x	
FF6AH	Automatic data transmit/ receive address pointer register	ADTP	R/W	-	x	-	OOH			x	x	x	x	

Special Function Registers (μ PD78K0 Product Line) (cont)

Address	Register (SFR)	Symbol	R/W	Access Units (Bits)			State After Reset	Family						
				1	8	16		02	02Y	14	14Y	44	54	64
FF6BH	Automatic data transmit/ receive interval specification register	ADTI	R/W	x	x	-	OOH					x	x	
FF70H	Asynchronous serial interface mode register	ASIM	R/W	x	x	-	OOH						x	x
FF71H	Asynchronous serial interface status register	ASIS	R	x	x	-	OOH						x	x
FF72H	Serial operating mode register 2	CSIM2	R/W	x	x	-	OOH						x	x
FF73H	Baud rate generator control register	BRGC	R/W	-	x	-	OOH						x	x
FF74H	Transmit shift register Receive buffer register Serial I/O shift register	$\begin{aligned} & \text { TXS } \\ & \text { RXB } \\ & \text { SIO2 } \\ & \text { (Note } \\ & \text { 1) } \end{aligned}$	$\begin{gathered} \text { W } \\ R \\ R W \end{gathered}$	-	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	-	$\begin{aligned} & \text { FFH } \\ & \text { FFH } \\ & \text { FFH } \end{aligned}$						x	x x x
FF80H	A/D converter mode register	ADM	R/W	x	x	-	01H			x	x	x	x	x
FF84H	A/D converter input select register	ADIS	R/W	-	x	-	OOH			x	x	x	x	x
FF90H	D/A conversion value register 0	DACSO	R/W	-	x	-	OOH						x	
FF91H	D/A conversion value register 1	DACS1	R/W	-	x	-	OOH						x	
FF98H	D/A converter mode register	DAM	R/W	x	x	-	OOH						x	
FFAOH	Display mode register 0	DSPMO	R/W	(Note 2)	(Note 2)	-	OOH					x		
FFA1H	Display mode register 1	DSPM1	R/W	-	x	-	OOH					x		
FFA8H	6-bit up/down counter mode register	UDM	R/W	x	x	-	OOH					x		
FFA9H	6-bit up/down counter	UDC	R/W	-	x	-	OOH					x		
FFAAH	6-bit up/down counter compare register	UDCC	R/W	-	x	-	OOH					x		
FFBOH	LCD display mode register	LCDM	R/W	x	x	-	OOH							$\frac{x}{x}$
FFB2H	LCD display control register	LCDC	R/W	x	x	-	OOH							x
FFB8H	Key return mode register	KRM	R/W	x	x	-	02H							x
$\begin{aligned} & \text { FFDOH } \\ & \text { FFDFH } \end{aligned}$	External SFR access area (Note 3)	-	R/W	x	x	-	Undefined	x	x	x	x		x	
FFEOH FFE1H FFEOH FFE1H	Interrupt flag register L Interrupt flag register H Interrupt flag register	$\begin{aligned} & \mathrm{IFOL} \\ & \mathrm{IFOH} \\ & \mathrm{IFO} \end{aligned}$	$\begin{aligned} & \text { R/W } \\ & \text { R/W } \\ & \text { R/W } \end{aligned}$	$\begin{aligned} & x \\ & x \\ & \hline \end{aligned}$	$\begin{aligned} & x \\ & x \\ & \hline \end{aligned}$	$\frac{-}{\mathrm{x}}$	OOH 00H 0000 H	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	X x x 	x x x
FFE2H	Interrupt request flag register 1L	IF1L	R/W	x	x	-	OOH						x	x

Special Function Registers (μ PD78K0 Product Line) (cont)

Address	Register (SFR)	Symbol	R/W	Access Units (Bits)			State After Reset	Family						
				1	8	16		02	02Y	14	14Y	44	54	64
FFE4H	Interrupt mask flag register L	MKOL	R/W	x	x	-		x	x	x	x	x	x	x
FFE5H	Interrupt mask flag register H	MKOH	R/W	x	x	-	FFH	x	x	x	x	x	x	x
FFE4H FFE5H	Interrupt mask flag register	MKO	R/W	-	-	x	FFFFH	x	x	x	x	x	x	x
FFE6H	Interrupt mask flag register 1L	MK1L	R/W	x	x	-	FFH						x	x
FFE8H	Priority order specify flag register L	PROL	R/W	x	x	-	FFH						x	x
FFE9H	Priority order specify flag register H	PROH	R/W	x	x	-	FFH	x	x	x	x	x	x	x
$\begin{aligned} & \text { FFE8H } \\ & \text { FFE9H } \end{aligned}$	Priority order specify flag register	PRO	R/W	-	-	x	FFFFH	x	x	x	x	x	x	x
FFEAH	Priority specification flag register 1L	PR1L	R/W	x	x	-	FFH						x	x
FFECH	External interrupt mode register	INTMO	R/W	-	x	-	OOH	x	x	x	x	x	x	x
FFEDH	External interrupt mode register 1	INTM1	R/W	-	x	-	OOH						x	x
FFFOH	Memory size switch register	IMS	W	-	x	-	(Note 4)			\times	x	x	x	x
FFF2H	Oscillation mode select register	OSMS	W	\times	\times	-	OOH						x	x
FFF3H	Pullup resistor option register H	PUOH	R/W	x	x	-	OOH						x	x
FFF6H	Key return mode register	KRM	R/W	x	x	-	02H	x	x	x	x		x	
FFF7H	Pullup resistor option register	$\begin{aligned} & \text { PUO } \\ & \text { PUOL } \end{aligned}$	$\begin{aligned} & \text { RW } \\ & \text { R } W \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	-	$\begin{aligned} & \mathrm{OOH} \\ & \mathrm{OOH} \end{aligned}$	\times	x	\times	x	\times	x	x
FFF8H	Memory expanded mode register	MM	R/W	x	x	-	10 H	x	x	\times	x		x	
FFF9H	Watchdog timer mode register	WDTM	R/W	x	x	-	OOH	x	x	x	x	x	x	x
FFFAH	Oscillation stabilization time select register	OSTS	R/W	-	x	-	04H	x	x	x	x	x	x	x
FFFBH	Processor clock control register	PCC	R/W	x	x	-	04H	x	x	x	x	x	x	x

Notes:

(1) SIO 2 can be used instead of TXS and RXB. SIO 2 is not a register; it is another symbol that can be used to reference the TXS and RXB registers. A write to $S I O 2$ causes the CPU to write to the TXS register, and a read from SIO 2 causes the CPU to read the RXB register.
(2) Bit 7 only can be manipulated as a read only bit.
(3) The external access area cannot be accessed using SFR addressing. It can only be accessed using main memory addressing.
(4) The value in the memory size switch register (IMS) after reset depends upon the ROM size. See User's Manual for the value. This register is available in all mask ROM, OTP, and EPROM devices.

Interrupt Vectors and Test Inputs (μ PD78K0 Product Line)

Type of Request	Interrupt Source	Signal Name	Request Flag	Mask Flag	Priority Flag	Location	Interrupt Vector Address for Listed Functions				
							$\begin{gathered} 78002 \\ 78002 Y \end{gathered}$	$\begin{gathered} 78014 \\ 78014 \mathrm{Y} \end{gathered}$	78044	78054	78064
Restart	RESET input or watchdog timer overflow when reset mode selected	RESET INTWDT	-	-	-	External Internal	$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$				
Non maskable	Watchdog timer overflow when NMI mode selected	INTWDT	TMIF4	-	-	Internal	0004	0004	0004	0004	0004
Maskable (Note 1)	Watchdog timer overflow when interval timer mode selected	INTWDT	TMIF4	TMMK4	TMPR4	Internal	0004	0004	0004	0004	0004
	External interrupt edge detection	INTPO	PIFO	PMKO	PPRO	External	0006	0006	0006	0006	0006
	External interrupt edge detection	INTP1	PIF1	PMK1	PPR1	External	0008	0008	0008	0008	0008
	External interrupt edge detection	INTP2	PIF2	PMK2	PPR2	External	000A	000A	000A	000A	000A
	External interrupt edge detection or up/down coincidence signal	INTP3 INTUD	PIF3 PIF3	PMK3 PMK3	$\begin{aligned} & \text { PPR3 } \\ & \text { PPR3 } \end{aligned}$	External Internal	$000 \mathrm{C}$	$000 \mathrm{C}$	$\begin{aligned} & 000 \mathrm{C} \\ & 000 \mathrm{C} \end{aligned}$	$000 \mathrm{C}$	$000 \mathrm{C}$
	External interrupt edge detection	INTP4	PIF4	PMK4	PPR4	External	-	-	-	O00E	000E
	External interrupt edge detection	INTP5	PIF5	PMK5	PPR5	External	-	-	-	0010	0010
	External interrupt edge detection	INTP6	PIF6	PMK6	PPR6	External	-	-	-	0012	-
	End of clocked serial interface 0 transfer	INTCSIO	CSIIFO	CSIMKO	CSIPRO	Internal	000E	O00E	O00E	0014	0014
	End of clocked serial interface 1 transfer	INTCS 11	CSIIF1	CSIMK1	CSIPR1	Internal	-	0010	0010	0016	-
	Serial interface 2 UART reception	INTSER	SERIF	SERMK	SERPR	Internal	-	-	-	0018	0018
	End of serial interface 2 UART reception	INTSR	SRIF	SRMK	SRPR	Internal	-	-	-	001A	001A
	End of serial interface 2 threewire transfer	INTCS 12	SRIF	SRMK	SRPR	Internal	-	-	-	001A	001A
	End of serial interface 2 UART transmission	INTST	STIF	STMK	STPR	Internal	-	-	-	001 C	001 C
	Watch (Clock) timer reference time interval signal	INTTM3	TMIF3	TMMK3	TMPR3	Internal	0012	0012	0012	001 E	001E

Interrupt Vectors and Test Inputs (μ PD78K0 Product Line) (cont)

Type of Request	Interrupt Source	Signal Name	Request Flag	Mask Flag	Priority Flag	Location	Interrupt Vector Address for Listed Functions				
							$\begin{gathered} 78002 \\ 78002 Y \end{gathered}$	$\begin{gathered} 78014 \\ 78014 \mathrm{Y} \end{gathered}$	78044	78054	78064
Maskable (Note 1) (cont)	16-bit timer/event counter coincidence signal	INTTMO	TMIFO	TMMKO	TMPRO	Internal	-	0014	0014	-	-
	16-bit timer/event counter capture/ compare (CROO)	INTTM00	TMIFOO	TMMK00	TMPR00	Internal	-	-	-	0020	0020
	16-bit timer/event counter capture/ compare (CRO1)	INTTM01	TMIF01	TMMK01	TMPR01	Internal	-	-	-	0022	0022
	8-bit timer/event counter 1 coincidence signal	INTTM1	TMIF1	TMMK1	TMPR1	Internal	0016	0016	0016	0024	0024
	8-bit timer/event counter 2 coincidence signal	INTTM2	TMIF2	TMMK2	TMPR2	Internal	0018	0018	0018	0026	0026
	End of A/D conversion	INTAD	ADIF	ADMK	ADPR	Internal	-	001A	001A	0028	0028
	Key scan interrupt generated by FIP controller	INTKS	KSIF	KSMK	KSPR	Internal	-	-	001C	-	-
Software	BRK instruction	-	-	-	-	Internal	003E	003E	003E	003E	003E
Test signals (Note 2)	Watch (Clock) timer overflow	INTWT	WTIF	WTMK	-	Internal	test	test	test	test	test
	Port 4 falling edge detect	INTPT4	KRIF	KRMK	-	External	test	test	-	test	-
	Port 11 falling edge detect	INTPT11	KRIF	KRMK	-	External	-	-	-	-	test

Notes:
(1) Maskable interrupts are shown in order of descending default priority.
(2) Test signals do not generate vectored interrupts but may release standby modes. Code following a STOP or HALT operation should perform a test on the flag to determine if a test input released the standby mode.
Section 4μ PD78K2 Product Line8-Bit, K-Series Microcontrollers
μ PD78214 Family 4-a
(μ PD78212/213/214/P214)
8-Bit, K-Series MicrocontrollersWith A/D Converter, Real-Time Output Ports
μ PD78218A Family 4-b
(μ PD78217A/218A/P218A)
8-Bit, K-Series Microcontrollers
With A/D Converter, Real-Time Output Ports
μ PD78224 Family 4-c
(μ PD78220/224/P224)
8-Bit, K-Series Microcontrollers
With Analog Comparators, Real-Time Output
Ports
μ PD78238 Family 4-d
(μ PD78233/234/237/238/P238)
8-Bit, K-Series Microcontrollers
With A / D and D / A Converters, Real-Time
Output Ports
μ PD78244 Family 4-e(μ PD78243/244)8-Bit, K-Series MicrocontrollersWith A/D Converter, EEPROM, Real-TimeOutput Ports
μ PD78K2 Product Line 4-fProgramming Reference

Description

The μ PD78212, μ PD78213, μ PD78214, and μ PD78P214 are members of the K-Series ${ }^{\circledR}$ of microcontrollers and are designed for real-time embedded control applications. These 8-bit, single-chip microcontrollers have a minimum instruction time of 333 ns at 12 MHz (500 ns for the μ PD78213). They feature 8 -bit hardware multiply and divide instructions, four banks of main registers, an advanced interrupt handling facility, a powerful set of memory mapped on-chip peripherals, and the ability to address up to 1 M bytes of external data memory. On-board memory includes 384 or 512 bytes of RAM, 8 K or 16 K bytes of mask ROM, or 16K bytes of UV EPROM or one-time programmable (OTP) ROM.
The advanced interrupt handling facility provides two levels of programmable hardware priority control and two separate methods of servicing interrupt requests: vectored and macro service. The macro service facility reduces the overhead involved in servicing peripheral interrupts by transferring data between the memorymapped special function registers (SFRs) and memory without the use of time consuming interrupt service routines. In addition, the macro service facility can be initialized to automatically alter timer compare register values or to repeatedly output a prespecified pattern at a fixed or variable rate. By using macro service to control the real-time output ports, the μ PD78214 family can easily and accurately drive two independent stepper motors.

The combination of the macro service facility, four banks of main registers, extended data memory address space, and powerful on-chip peripherals makes these devices ideal for applications in office automation, communication, HVAC, and industrial control.

Features

- Complete single-chip microcontroller
-8-bit ALU
- Program memory (ROM) μ PD78213: ROMIess μ PD78212: 8K bytes μ PD78214/P214: 16K bytes
- Data memory (RAM) μ PD78212: 384 bytes μ PD78213/214/P214: 512 bytes
- Powerful instruction set
-8-bit unsigned multiply and divide
- 16-bit arithmetic instructions
-1-bit and 8-bit logic instructions
- Minimum instruction time
-333 ns at 12 MHz (μ PD78212/214/P214)
-500 ns at $12 \mathrm{MHz}(\mu$ PD78213)
- Memory expansion
- 8085 bus-compatible
-64K program address space
- 1M data address space
- Large I/O capacity
- Up to 54 I/O port lines on μ PD78212/214/P214
- Up to 36 I/O port lines on μ PD78213
- Software programmable pullup resistors
- Memory-mapped on-chip peripherals (special function registers)
- Timer/counter unit
- 16-bit timer 0:

Two 16-bit compare registers
One 16-bit capture register
One external interrupt/capture line
-8-bit timer 1 :
One 8-bit compare register
One 8-bit capture/compare register
One external interrupt/capture line
-8-bit timer/counter 2:
Two 8-bit compare registers
One 8-bit capture register
One external interrupt/capture line
One external event counter line
-8-bit timer 3:
One 8-bit compare register

- Four 8 -bit precision timer-controlled pulse-width modulated (PWM) output lines
- Two 4-bit (or one 8-bit) real-time output ports
- Eight-channel 8-bit A/D converter
- Programmable priority interrupt controller (two levels)
- Two methods of interrupt service
- Vectored interrupts
- Macro service mode with choice of three different types

Features (cont)

- Two-channel serial communication interface
- Asynchronous serial interface (UART) Dedicated baud rate generator
- Clock-synchronized interface

Full-duplex, three-wire mode
NEC serial bus interface (SBI) mode

- Refresh output for pseudostatic RAM
- STOP and HALT standby functions
- 5-volt CMOS technology

Ordering Information

Part Number	ROM	Package	Package Drawing
$\mu \mathrm{PD} 78212 \mathrm{CW}$-xxx	8K mask ROM	64-pin plastic shrink DIP	P64C-70-750A, C
$\mu \mathrm{PD} 78213 \mathrm{CW}$	ROMless		
$\mu \mathrm{PD} 78214 \mathrm{CW}-\mathrm{xxx}$	16K mask ROM		
μ PD78P214CW	16K OTP ROM		
$\mu \mathrm{PD} 78212 \mathrm{GC}-\mathrm{xxx}$	8K mask ROM	64-pin plastic QFP	P64GC-80-AB8-2
μ PD78213GC	ROMless		
$\mu \mathrm{PD} 78214 \mathrm{GC-xxx}$	16K mask ROM		
$\mu \mathrm{PD} 78 \mathrm{P} 214 \mathrm{GC}$	16K OTP ROM		
μ PD78212GJ-xxx	8K mask ROM	74-pin plastic QFP	S74GJ-100-5BJ-1
$\mu \mathrm{PD} 78213 \mathrm{GJ}$	ROMless		
μ PD78214GJ-xxx	16K mask ROM		
μ PD78P214GJ	16K OTP ROM		
μ PD78213G36	ROMless	64-pin plastic QUIP	P64GQ-100-36
$\mu \mathrm{PD} 78214 \mathrm{Gxxx} 36$	16K mask ROM		
$\mu \mathrm{PD} 78 \mathrm{P} 214 \mathrm{GQ}$	16K OTP ROM		
$\mu \mathrm{PD} 78213 \mathrm{~L}$	ROMless	68-pin PLCC	P68L-50A1-1
$\mu \mathrm{PD} 78214 \mathrm{~L}-\mathrm{xxx}$	16K mask ROM		
$\mu \mathrm{PD} 78 \mathrm{P} 214 \mathrm{~L}$	16K OTP ROM		
μ PD78P214DW	16K UV EPROM	64-pin shrink cerdip w/window	P64DW-70-750A1

xxx indicates ROM code suffix

Pin Configurations

64-Pin Shrink DIP (Plastic or Ceramic) or 64-Pin Plastic QUIP

Pin Configurations (cont)
64-Pin Plastic QFP

μ PD78214 Family

Pin Configurations (cont)

68-Pin PLCC

Pin Configurations (cont)
74-Pin Plastic QFP

Pin Functions; Normal Operating Mode

Symbol	First Function	Symbol	Second Function
$\mathrm{PO}_{0}-\mathrm{PO}_{7}$	Port 0; 8-bit tristate output port/real time output port		
P_{2}	Port 2; 8-bit input port	NMI	External nonmaskable interrupt
$\begin{aligned} & \mathrm{P} 2_{1} \\ & \mathrm{P} 2_{2} \\ & \hline \end{aligned}$		INTPO INTP1	Maskable external interrupts
P 23		INTP2 Cl	Maskable external interrupt External clock input to timer/counter 2
$\mathrm{P}_{2} 4$		INTP3	Maskable external interrupt
P_{2}		INTP4	Maskable external interrupt
		ASCK	Asynchronous serial clock input
P 26		INTP5	Maskable external interrupt
$\mathrm{P} 27^{7}$		SI	Serial data input for three-wire serial I/O mode
P_{0}	Port 3; 8-bit, bit-selectable tristate input/output port	RxD	Asynchronous serial receive data input
$\mathrm{P3}_{1}$		TxD	Asynchronous serial transmit data output
P_{3}		$\overline{\text { SCK }}$	Serial shift clock input/output
P_{3}		So	Serial data output for three-wire serial I/O mode
		SBO	I/O bus for NEC serial bus interface (SBI)
$\mathrm{P3}_{4}-\mathrm{P} 3_{7}$		TOO-TO3	Timers TO to T3 outputs
$\mathrm{P}_{4}-\mathrm{P} 4_{7}$	Port 4; 8-bit tristate input/output port	$A D_{0}-A D_{7}$	Low-order 8-bit multiplexed address/data bus
$\mathrm{P5}_{0}-\mathrm{P}_{5}$	Port 5; 8-bit, bit-selectable tristate input/output port	$A_{8}-A_{15}$	High-order 8-bit address bus
$\underline{P 6} 0_{0}-6_{3}$	Port 6; 4-bit output port	$A_{16}-A_{19}$	Extended memory address bus
$\mathrm{P6}_{4}$	Port 6; 4-bit, bit-selectable tristate input/output port	$\overline{\mathrm{RD}}$	External memory read strobe output
$\mathrm{P6}_{5}$		$\overline{W R}$	External memory write strobe output
$\mathrm{P6}_{6}$		$\overline{\text { WAIT }}$	External memory wait signal input
		AN6	Analog voltage input to A/D converter
P67		$\overline{\text { REFRQ }}$	Refresh pulse output used by external pseudostatic memory
		AN7	Analog voltage input to A/D converter
$P 7_{0}-P 7_{5}$	Port 7; 6-bit input port	ANO - AN5	Analog voltage inputs to A/D converter
ASTB	Address strobe output used to latch the low-order 8 address for external memory		
RESET	External system reset input		
$\overline{E A}$	Internal ROM or external memory control signal input. Lowlevel input selects external memory. High-level input selects internal ROM. A low-level input on a μ PD78214 places the device in ROMless mode and external memory is accessed.		
X1	Crystal/ceramic resonator connection or external clock input		
X2	Crystal/ceramic resonator connection or inverse of external clock		
$\mathrm{AV}_{\text {REF }}$	A/D converter reference voltage		
$\mathrm{AV}_{\text {SS }}$	A/D converter ground		
$\underline{V_{\text {DD }}}$	+5 volt power supply input		
$V_{\text {SS }}$	Power supply ground		
NC	No connection		

Block Diagram

FUNCTIONAL DESCRIPTION

Central Processing Unit (CPU)

The μ PD78214 family CPU features 8 - and 16 -bit arithmetic including an 8×8-bit unsigned multiply and $16 \times$ 8 -bit unsigned divide (producing a 16 -bit quotient and an 8 -bit remainder). The multiply executes in $3.67 \mu \mathrm{~s}$ and the divide in $12.36 \mu \mathrm{~s}$ at $12 \mathrm{MHz}(4.00$ and $12.69 \mu \mathrm{~s}$ respectively for μ PD78213).
A CALLT vector table and a CALLF program area decrease the number of bytes in the call instructions for commonly used subroutines. A 1-byte call instruction (CALLT) can access up to 32 subroutines through the addresses contained in the CALLT vector table. A 2-byte call instruction (CALLF) can access any routine beginning at a specific address in the CALLF area.

The internal system clock (fclk) is generated by dividing the oscillator frequency by two. Therefore, at the maximum oscillator frequency of 12 MHz , the internal
system clock is 6 MHz . The minimum instruction execution time for an instruction fetched from internal ROM is 333 ns (500 ns when fetched from external memory).

Memory Space

The μ PD78214 family has a 1 M byte address space (see figure 1). The first 64 K bytes of this address space ($00000 \mathrm{H}-0 \mathrm{FFFFH}$) can be used as both program and data memory. The remaining 960 K bytes of this address space ($10000 \mathrm{H}-\mathrm{FFFFFH}$) can only be used as data memory and is known as expanded memory.

External Memory

The μ PD78214 family has an 8-bit wide external data bus and a 16 -bit wide external address bus (20 -bit wide if expanded memory is enabled). The low-order 8 bits of the address bus are multiplexed to provide the 8 -bit data bus and are supplied by $1 / O$ port 4 . The high-order

Figure 1. Memory Map

Notes:

(1) 01FFFH on μ PD78212 03FFFH on μ PD78214/P214
(2) OFD 80 H on μ PD78212 OFDOOH on μ PD78214/P214
address bits of the 16-bit address bus are taken from port 5 . If expanded memory is enabled, the expanded address nibble is provided by P_{0} to P_{3}. Address latch, read, and write strobes are also provided.

The memory expansion mode register (MM) is used to enable external memory, to specify up to two additional wait states or the use of the WAIT input pinfor the first 64 K bytes of memory, and to enable the high-speed internal ROM fetch. Ports 4, 5, and 6 are available as general purpose I/O ports when only internal ROM is used and no external program or data space is required.

Expanded Data Memory

The MM register is also used to enable the external expanded data memory space, addresses 10000 H to FFFFFH. When the expanded data memory is enabled, the entire 1 M byte address space is divided into 16 banks of 64 K bytes each. The low-order 4 -bits of the P6 or the PM6 registers are used as bank selection registers to supply the address information to A_{16} to A_{19}. Data can easily be transferred from one memory bank to another by using the appropriate instructions. Address lines A_{16} to A_{19} are only active when an instruction that uses expanded addressing is being executed. A programmable wait control register (PW) allows the programmer to specify up to two additional wait states or the use of the WAIT input pin for expanded data memory space.

On-Chip RAM

The μ PD78213/214/P214 have a total of 512 bytes of on-chip RAM (384 bytes in the μ PD78212). The upper 256-byte area (FEOOH-FEFFH) features high-speed access and is known as "Internal RAM." The remainder (FD00H-FDFFH and FD8OH-FDFFH in the μ PD78212) is accessed at the same speed as external memory and is known as "Peripheral RAM." The general register banks and the macro service control words are stored in Internal RAM. The remainder of Internal RAM and any unused register bank locations are available for general storage.

On-Chip Program Memory

The μ PD78212 and μ PD78214 contain 8K and 16K bytes of internal ROM respectively. The μ PD78P214 contains 16K bytes of UV EPROM or one-time programmable ROM. Instructions from on-chip program memory can be fetched at high speed or at the same rate as from external memory. The μ PD78213 does not have on-chip program memory.

CPU Control Registers

Program Counter. The program counter is a 16 -bit binary counter register that holds the address of the next instruction to be executed. During reset, the program counter is loaded with the address stored in locations 0000 H and 00001 H .

Stack Pointer. The stack pointer is a 16 -bit register that holds the address of the last item pushed onto the stack. It is decremented before new data is pushed onto the stack and incremented after data is popped off the stack.

Program Status Word. The program status word (PSW) is an 8-bit register that contains flags that are set or reset depending on the results of an instruction. This register can be written to or read from 8 bits at a time. The individual flags can also be manipulated on a bit-by-bit basis. The assignment of PSW bits follows.

$$
\begin{array}{ll}
7 & 0
\end{array}
$$

IE	Z	RBS1	AC	RBSO	0	ISP	CY

CY	Carry flag
ISP	Interrupt priority status flag
RBSO, RBS1	Register bank selection flags
AC	Auxiliary carry flag
Z	Zero flag
IE	Interrupt request enable flag

General Registers

The general-purpose registers (figure 2) consist of four banks of registers located at addresses FEEOH to FEFFH in Internal RAM. Each bank consists of eight 8 -bit general registers that can also be used in pairs to function as four 16-bit registers. Two bits in the PSW (RBSO and RBS1) specify which of the register banks is active. The bits are set under program control. Registers have both functional names (like A, X, B, C for 8-bit registers and $A X, B C$ for 16 -bit registers) and absolute names (like R1, R0, R3, R2 for 8 -bit registers and RPO, RP1, etc. for 16 -bit registers). Each instruction determines whether a register is referred to by its functional or absolute name and whether it is 8 or 16 bits.

Figure 2. General Registers

Addressing

The μ PD78214 family features 1 -byte addressing of both the special function registers and the portion of on-chip RAM from FE2OH to FEFFH. The 1-byte sfr addressing accesses the entire SFR area, while the 1-byte saddr addressing access the first 32 bytes of the SFR area and 224 bytes of Internal RAM. The 16-bit SFRs and words of memory in these areas can be addressed by 1 -byte saddrp addressing, which is valid for even addresses only. Since many instructions use 1-byte addressing, access to these locations is almost as fast and versatile as access to the general registers. There are seven addressing modes for data in main memory: direct, register, register indirect with autoincrement and decrement, saddr, SFR, based, and indexed. There are also both 8 -bit and 16 -bit immediate operands.

Special Function Registers

The input/output ports, timers, capture and compare registers, and mode and control registers for both the peripherals and the CPU are collectively known as special function registers. They are all memorymapped between FFOOH and FFFFH and can be accessed either by main memory addressing or by 1 -byte sfr addressing. They are either 8 or 16 bits as required, and many of the 8 -bit registers are capable of single-bit access as well. Locations FFDOH through FFDFH are known as the external SFR area. Registers in external circuitry interfaced and mapped to these addresses can be addressed with sfr addressing. Table 1 is a list of the special function registers.

Table 1. Special Function Registers

Address	Register (SFR)	Symbol	R/W	Access Units (Bits)			State After Reset
				1	8	16	
OFFOOH	Port 0	PO	R/W	x	x	-	Undefined
OFFO2H	Port 2	P2	R	x	x	-	Undefined
OFFO3H	Port 3	P3	R/W	x	x	-	Undefined
OFFO4H	Port 4	P4	R/W	x	x	-	Undefined
OFFO5H	Port 5	P5	R/W	x	x	-	Undefined
OFF06H	Port 6	P6	R/W	x	x	-	xOH
OFFO7H	Port 7	P7	R	x	x	-	Undefined
OFFOAH	Port 0 buffer register (low)	POL	R/W	x	x	-	Undefined
OFFOBH	Port 0 buffer register (high)	POH	R/W	x	x	-	Undefined
OFFOCH	Real-time output port control register	RTPC	R/W	x	x	-	OOH
OFF10H-0FF 11 H	16-bit compare register 0 (16-bit timer 0)	CROO	R/W	-	-	x	Undefined
OFF12H-OFF13H	16-bit compare register (16 -bit timer 0)	CRO1	R/W	-	-	x	Undefined
OFF14H	8 -bit compare register (8-bit timer 1)	CR10	R/W	-	x	-	Undefined
OFF15H	8 -bit compare register (8-bit timer/counter 2)	CR20	R/W	-	\times	-	Undefined
OFF16H	8 -bit compare register (8-bit timer/counter 2)	CR21	R/W	-	x	-	Undefined
OFF17H	8 -bit compare register (8-bit timer 3)	CR30	R/W	-	x	-	Undefined
OFF18H-OFF 19H	16-bit capture register (16-bit timer 0)	CR02	R	-	-	x	Undefined
OFF1AH	8 -bit capture register (8-bit timer/counter 2)	CR22	R	-	x	-	Undefined
OFF1CH	8 -bit capture/compare register (8-bit timer 1)	CR11	R/W	-	x	-	Undefined
OFF2OH	Port 0 mode register	PMO	w	-	x	-	FFH
OFF23H	Port 3 mode register	PM3	W	-	x	-	FFH
OFF25H	Port 5 mode register	PM5	W	-	x	-	FFH
OFF26H	Port 6 mode register	PM6	R/W	\times	x	-	FxH
OFF30H	Capture/compare control register 0	CRCO	W	-	x	-	10 H
OFF31H	Timer output control register	TOC	W	-	x	-	OOH
OFF32H	Capture/compare control register 1	CRC1	W	-	x	-	OOH
OFF34H	Capture/compare control register 2	CRC2	W	-	x	-	OOH
OFF4OH	Pullup resistor option register	PUO	R/W	x	x	-	OOH
OFF43H	Port 3 mode control register	PMC3	R/W	x	x	-	OOH
OFF50H-OFF51 H	16-bit timer register 0	TMO	R	-	-	x	0000H
OFF52H	8 -bit timer register 1	TM1	R	-	x	-	OOH
OFF54H	8 -bit timer register 2	TM2	R	-	x	-	OOH
OFF56H	8 -bit timer register 3	TM3	R	-	x	-	OOH
OFF5CH	Prescaler mode register 0	PRMO	W	-	x	-	OOH
OFF5DH	Timer control register 0	TMCO	R/W	-	x	-	OOH
OFF5EH	Prescaler mode register 1	PRM1	W	-	x	-	OOH
OFF5FH	Timer control register 1	TMC1	R/W	-	x	-	OOH
OFF68H	A/D converter mode register	ADM	R/W	x	x	-	OOH
OFF6AH	A/D conversion result register	ADCR	R	-	x	-	Undefined
OFF8OH	Clocked serial interface mode register	CSIM	R/W	x	x	-	OOH

μ PD78214 Family

Table 1. Special Function Registers (cont)

Address	Register (SFR)	Symbol	R/W	Access Units (Bits)			State After Reset
				1	8	16	
OFF82H	Serial bus interface control register	SBIC	R/W	X	X	-	OOH
OFF86H	Serial shift register	SIO	R/W	-	x	-	Undefined
OFF88H	Asynchronous serial interface mode register	ASIM	R/W	x	x	-	80 H
OFF8AH	Asynchronous serial interface status register	ASIS	R	X	X	-	OOH
OFF8CH	Serial receive buffer: UART	$R \times B$	R	-	X	-	Undefined
OFF8EH	Serial transmit shift register: UART	TxS	W	-	x	-	Undefined
OFF90H	Baud rate generator control register	BRGC	W	-	x	-	OOH
OFFCOH	Standby control register	STBC	R/W	-	x	-	0000x000B
OFFC4H	Memory expansion mode register	MM	R/W	X	x	-	2 H
OFFC5H	Programmable wait control register	PW	R/W	x	X	-	80 H
OFFC6H	Refresh mode register	RFM	R/W	x	x	-	OOH
OFFDOH-OFFDFH	External SFR area	-	R/W	x	x	-	Undefined
OFFEOH	Interrupt request flag register L	IFOL	R/W	x	x	-	OOH
OFFE1H	Interrupt request flag register H	1 FOH	R/W	X	X	-	OOH
OFFEOH-OFFE1H	Interrupt request flag register	IFO	R/W	-	-	x	0000 H
OFFE4H	Interrupt mask flag register L	MKOL	R/W	X	X	-	FFH
OFFE5H	Interrupt mask flag register H	MKOH	R/W	X	X	-	FFH
OFFE4H-0FFE5H	Interrupt mask flag register	MKO	R/W	-	-	x	FFFFH
OFFE8H	Priority specification flag register L	PROL	R/W	x	X	-	FFH
OFFE9H	Priority specification flag register H	PROH	R/W	X	X	-	FFH
OFFE8H-OFFE9H	Priority specification flag register	PRO	R/W	-	-	X	FFFFH
OFFECH	Interrupt service mode specification flag register L	ISMOL	R/W	X	X	-	OOH
OFFEDH	Interrupt service mode specification flag register H	ISMOH	R/W	X	X	-	OOH
OFFECH-OFFEDH	Interrupt service mode specification flag register	ISMO	R/W	-	-	X	OOH
OFFF4H	External interrupt mode register 0	INTMO	R/W	x	x	-	OOH
OFFF5 5	External interrupt mode register 1	INTM1	R/W	x	X	-	OOH
OFFF8H	Interrupt status register	IST	R/W	x	x	-	OOH

\qquad
Figure 3. Pin I/O Circuits

Input/Output Ports

There are up to 54 port lines on the μ PD78212/214/P214 and up to 36 port lines on the μ PD78213. (Ports 4,5 , and two bits of port 6 are not available on the μ PD78213 since the μ PD78213 must always use external memory.) Table 2 lists the features of each port and figure 3 shows the structure of each port pin. The pin levels of all port 2, 3, and 7 pins can always be read or tested regardless of the dual pin function.

Table 2. Digital Port Functions

Port	Operational Features	Configuration	Direct Drive Capability
Port 0	8-bit high impedance output	Software Pullup Resistor Connection	
Port 2	8-bit Schmitt trigger input	Transistor	
Port 3	8-bit input or output	Bit selectable	In 6-bit unit (P2 $\left.2-\mathrm{P} 2 \mathbf{7}_{7}\right)$
Port 4	8-bit input or output	Byte selectable	LED
Port 5	8-bit input or output	Byte selectable	LED
Port 6	4-bit output (bits 0 to 3)		Byte selectable, input bits only
4-bit input or output (bits 4 to 7)	Bit selectable	Byte selectable, input bits only	

Note: Software pullup resistors can be internally connected only on a port-by-port basis to port bits set to input mode. Pullup resistors are not connected to port bits set to output mode.

Real-time Output Port

The real-time output port (RTPC) shares pins with port 0 . It can be used as two independent 4-bit real-time output ports or one 8 -bit real-time output port. In the real-time output mode, data stored beforehand in the buffer registers, POH and POL, is transferred immediately to the output latch of PO on the occurrence of a timer 1 interrupt (INTC10 or INTC11) or external interrupt (INTPO) (see figure 4). By using the real-time output port with the macro service function, port 0 can be used to output preprogrammed patterns at preprogrammed variable time intervals. In this mode, two independent stepper motors can accurately be driven at a fixed or variable rate.

Figure 4. Real-Time Output Port

Analog-to-Digital (A/D) Converter

The μ PD78214 family A/D converter (see figure 5) uses the successive-approximation method for converting up to eight multiplexed analog inputs into 8 -bit digital data. The conversion time per input is $30 \mu \mathrm{~s}$ at 12 MHz operation. A/D conversion can be started by an external interrupt, INTP5, or under software control.
The A/D converter can operate in either scan mode or select mode. In scan mode, from one to eight sequential inputs can be programmed for conversion. The A/D data, stores it in the A/D conversion result (ADCR)
register, and generates an interrupt (INTAD). This converted data can be easily transferred to memory by using the macro service function.

In select mode, only one of the eight A / D inputs can be selected for conversion. The ADCR register is continually updated and can be read at any time. If the A/D converter is started by an external interrupt, an INTAD interrupt occurs at the completion of each conversion. If the A / D converter is started by software, no interrupts are generated.

Figure 5. A/D Converter

Serial Interface

The μ PD78214 family has two independent serial interfaces. The first is a standard UART. The UART (figure 6) permits full-duplex operation and can be programmed for 7 - or 8-bits of data after the start bit, followed by one or two stop bits. Odd, even, zero or no parity can also be selected. The serial clock for the UART can be provided by an on-chip baud rate generator or timer 3.

By using either the internal system clock or an external clock input into the ASCK pin, the baud rate generator is capable of generating all of the commonly used baud rates. The UART generates three interrupts: INTST (transmission complete), INTSR (reception complete), and INTSER (reception error).

Figure 6. Asynchronous Serial Interface

The second interface is an 8-bit clock-synchronized serial interface (figure 7). It can be operated in either a three-wire serial I/O mode or NEC serial bus interface (SBI) mode.

In the three-wire serial I/O mode, the 8-bit shift register (SIO) is loaded with a byte of data and eight clock pulses are generated. These eight pulses shift the byte
of data out of the SO line (MSB first) and in from the SI line providing full-duplex operation. This interface can also be set to receive or to transmit data only. The INTCSI interrupt is generated after each 8-bit transfer. One of three internal clocks or an external clock clocks the data.

Figure 7. Clock-Synchronized Serial Interface

The NEC SBI mode is a two-wire high-speed proprietary serial interface available on most devices in the NEC μ PD75xxx and μ PD78xxx product lines. Devices are connected in a master/slave configuration (see figure 8). There is only one master device at a time; all others are slaves. The master sends addresses, commands, and data over the serial bus line (SBO) using a fixed hardware protocol synchronized with the SCK line. Each slave μ PD78214 family device can be programmed in software to respond to any one of 256 addresses. There are also 256 commands and 256 data types. Since all commands are user definable, any software protocol, simple or complex, can be defined. It is even possible to develop commands to change a slave into a master and the previous master into a slave.

Figure 8. SBI Mode Master/Slave Configuration

Timers

The μ PD78214 family has one 16 -bit timer and three 8 -bit timers. The 16 -bit timer counts the internal system clock ($f_{\text {clK }} / 8$) while the three 8 -bit timers can be programmed to count a number of prescaled values of the internal system clock. One of the 8 -bit timers can also count external events.

Timer 0 consists of a 16-bit timer (TMO), two 16-bit compare registers (CROO and CR01), and a 16-bit capture register (CRO2). Timer 0 can be used as two interval timers, to output a programmable square wave or two pulse-width modulated signals, or to measure pulse widths (see figure 9).

Timer 1 consists of an 8 -bit timer (TM1), 8 -bit compare register (CR10), and 8 -bit capture/compare register (CR11). Timer 1 can be used as two interval timers or to measure pulse widths. In addition, it can be used to generate the output trigger for the real-time output port (see figure 10).
Timer/counter 2 consists of an 8-bit timer (TM2), two 8 -bit compare registers (CR20 and CR21), and an 8-bit capture register (CR22). Timer/counter 2 can also be used as two interval timers, to output a programmable square wave or two pulse-width modulated signals, or to measure pulse widths. In addition, it can be used to count external events sensed on the Cl line or as a one-shot timer (see figure 11).
Timer 3 consists of an 8-bit timer (TM3) and an 8-bit compare register (CR30). Timer 3 can be used as an interval timer or as a clock for the clock-synchronized serial interface (see figure 12).

Figure 9. 16-Bit Timer 0

Figure 10. 8-Bit Timer 1

Figure 11. 8-Bit Timer/Counter 2

Figure 12. 8-Bit Timer 3

Interrupts

The μ PD78214 family has 18 maskable hardware interrupt sources; 6 are external and 12 are internal. Since there are only 16 interrupt vectors and sets of control flags, 2 of the 6 external maskable interrupts, INTP4 and INTP5, share interrupt vectors and control flags
with INTC30 and INTAD respectively. The active interrupt source for each shared vector must be chosen by the program. In addition, there is one nonmaskable interrupt and one software interrupt. The software interrupt, generated by the BRK instruction, is not maskable (see table 3).

Table 3. Interrupt Sources and Vector Addresses

Interrupt Request Type	Default Priority	Interrupt Request Generation Source	Macro Service Type	Vector Table Address
Software	None	BRK instruction execution	-	003EH
Nonmaskable	None	NMI (pin input edge detection)	-	0002H
Maskable	0	INTPO (pin input edge detection)	A, B	0006H
	1	INTP1 (pin input edge detection)	A, B	0008H
	2	INTP2 (pin input edge detection)	A, B	000AH
	3	INTP3 (pin input edge detection)	B	000 CH
	4	INTC00 (TMO-CROO coincidence signal generation)	B	0014H
	5	INTC01 (TMO-CR01 coincidence signal generation)	B	0016H
	6	INTC10 (TM1-CR10 coincidence signal generation)	A, B, C	0018 H
	7	INTC11 (TM1-CR11 coincidence signal generation)	A, B, C	001AH
	8	INTC21 (TM2-CR21 coincidence signal generation)	A, B	001 CH
	9	INTP4 (pin input edge detection)	B	000EH
		INTC30 (TM3-CR30 coincidence signal generation)	A, B	
	10	INTP5 (pin input edge detection)	B	0010H
		INTAD (end of A/D conversion)	A, B	
	11	INTC20 (TM2-CR20 coincidence signal generation)	A, B	0012H
	12	INTSER (generation of asynchronous serial interface receive error)	-	0020H
	13	INTSR (end of asynchronous serial interface reception)	A, B	0022H
	14	INTST (end of asynchronous serial interface transmission)	A, B	0024H
	15	INTCSI (end of clocked serial interface transmission)	A, B	0026H

Interrupt Servicing. The μ PD78214 family provides two levels of programmable hardware priority control and two different methods of handling maskable interrupt requests: standard vectoring and macro service. The programmer can choose the priority and mode of servicing each maskable interrupt by using the interrupt control registers.
Interrupt Control Registers. The μ PD78214 family has four 16-bit interrupt control registers. Each bit in each register is dedicated to one of the 16 active maskable interrupt sources. The interrupt request flag register (IFO) contains an interrupt request flag for each interrupt. The interrupt mask register (MKO) is used to enable or disable any interrupt. The interrupt service mode register (ISMO) specifies whether an interrupt is processed by vectoring or macro service. The priority
flag register (PRO) can be used to specify a high or a low priority level for each interrupt.

Two other 8-bit registers are associated with interrupt processing. The interrupt status register (IST) indicates if a nonmaskable interrupt request on the NMI pin is being processed and can be used to allow nesting of nonmaskable interrupt requests. The IE and the ISP bits of the program status word are also used to control interrupts. If the IE bit is zero, all maskable interrupts, but not macro service, are disabled. The IE bit can be set or cleared using the El and DI instructions, respectively, or by directly writing to the PSW. The IE bit is cleared each time an interrupt is accepted. The ISP bit is used by hardware to hold the priority level flag of the interrupt being serviced.

Interrupt Priority. The nonmaskable interrupt (NMI) has priority over all other interrupts. Two hardware controlled priority levels are available for the maskable interrupts. Either a high or a low priority level can be assigned by software to each of the maskable interrupts. Interrupt requests of a priority higher than the processor's current priority level are accepted; requests of the same or lower priority are held pending until the processor's priority state is lowered by program control within the current service routine or by a return instruction from the current service routine.
Interrupt requests programmed to be handled by macro service have priority over all vectored interrupt service regardless of the assigned priority level, and macro service requests are accepted even when the interrupt enable bit in the PSW is set to the disable state (see figure 13).
The default priorities listed in table 3 are fixed by hardware and are effective only when it is necessary to choose between two interrupt requests of the same software-assigned priority. For example, the default priorities would be used after the completion of a high priority routine if two interrupts of the same priority routine were pending.
The software interrupt, initiated by the BRK instruction, is executed regardless of the processor's priority level and the state of the IE bit. It does not alter the processor's priority level.

Figure 13. Interrupt Service Sequence

Vectored Interrupt. When vectored interrupt is specified for a given interrupt request, (1) the program status word and the program counter are saved on the stack, (2) the processor's priority is set to that specified for the interrupt, (3) the IE bit in the PSW is set to zero, and (4) the routine whose address is in the interrupt vector table is entered. At the completion of the service routine, the RETI instruction (RETB instruction for the software interrupt) reverses the process and the μ PD78214 family device resumes the interrupted routine.

Macro Service

When macro service is specified for a given interrupt, the macro service hardware temporarily stops the executing program and begins to transfer data between the special function register area and the memory space. One byte is transferred each interrupt. When the data transfer is complete, control is returned to the executing program, providing a completely transparent method of interrupt service. Macro service significantly improves response time and makes it unnecessary to save any registers.
For each request on the interrupt line, one operation is performed, and an 8 -bit counter is decremented. When the counter reaches zero, a vectored interrupt service routine is entered according to the specified priority.
Macro service is provided for all of the maskable interrupt requests except INTSER, the asynchronous serial interface receive error interrupt request. Each interrupt request has a dedicated macro service control word stored in Internal RAM (see figure 14). The function to be performed is specified in the control word.
The μ PD78214 family provides three different types of macro service transfers.

Figure 14. Macro Service Control Word Map

OFEDFH Channel Pointer		INTSR
OFEDEH	Mode Register	NTS
OFEDDH	Channel Pointer	INTST
OFEDCH	Mode Register	
OFEDBH	Channel Pointer	INTCSI
OFEDAH	Mode Register	
OFED9H	Channel Pointer	INTC10
OFED8H	Mode Peglster	NTC10
OFED7H	Channel Pointer	INTC11
OFED6H	Mode Register	
OFED5H	Channel Pointer	INTP4/INTC30
OFED4H	Mode Register	INTP5/INTAD
OFED3H	Channel Pointer	
OFED2H	Mode Register	
OFED1H	Channel Pointer	INTCOO
OFEDOH	Mode Register	
OFECFH	Channel Polnter	INTCO1
OFECEH	Mode Reglster	
OFECDH	Channel Pointer	INTC20
OFECCH	Mode Register	
OFECBH	Channel Pointer	\} INTC21
OFECAH	Mode Reglster	
OFEC9H	Channel Pointer	NTPO
OFEC8H	Mode Register	
OFEC7H	Channel Pointer	INTP1
OFEC6H	Mode Reglster	
OFEC5H	Channel Pointer	
OFEC4H	Mode Reglster	
OFEC3H	Channel Pointer	
OFEC2H	Mode Reglster)
$83128222 A$		

Macro Service Type A. A byte of data is transferred in either direction between a special function register, preassigned for each interrupt request, and a buffer in Internal RAM (FExx). The preassigned SFRs for the 12 interrupt requests that support macro service Type A transfers are listed in table 4.

Table 4. Macro Service Type A Interrupts and Assigned SFRs
\(\left.$$
\begin{array}{ll}\hline \text { Interrupt Request } & \text { Source/Destination SFR } \\
\hline \text { INTC10: TM1-CR10 coincidence } & \text { CR10: } \begin{array}{l}\text { Timer } 1 \text { 8-bit compare } \\
\text { register }\end{array}
$$

\hline INTC11: TM1-CR11 coincidence \& CR11: Timer 1 8-bit capture/

compare register\end{array}\right]\)| INTC20: TM2-CR20 coincidence | CR20: Timer 2 8-bit compare |
| :--- | :--- |
| register | |

Macro Service Type B. A byte of data is transferred in either direction between any specified special function register and a buffer anywhere in the 64 K byte address space. Macro service Type B transfers can be initiated by any maskable interrupt except INTSER.
Macro Service Type C. A byte of data is transferred from a buffer anywhere in the 64 K byte address space to one of the 8 -bit compare registers of timer 1 . At the same time, a second byte of data is transferred from a buffer anywhere in the 64K byte address space to the real-time output port buffer. Macro service Type C transfers can be initiated by INTC10 with data transferred to CR10 and POL or POH, or by INTC11 with data transferred to CR11 and POL or POH .

In addition, the macro service Type C transfer can be initialized to automatically alter timer compare register values or to repeatedly output a prespecified pattern at a fixed or variable rate. By using macro service Type C transfers to control the real-time output ports, the μ PD78214 family can easily and accurately drive two independent stepper motors.

Refresh

The refresh signal is used with any pseudostatic RAM equivalent of the NEC μ PD428128. The refresh cycle can be set to one of four intervals: $16,32,64$, or $128 /$ fclk (2.6, 5.3, 10.7, and $21.3 \mu \mathrm{~s}$ at 12 MHz). The refresh cycle is timed to follow a read or write operation to avoid interference with external memory access cycles.

Standby Modes

HALT and STOP modes are provided to reduce power consumption when CPU action is not required. In HALT mode, the CPU is stopped but the system clock continues to run. The HALT mode is released by any unmasked interrupt, an external NMI, or an external reset pulse. In STOP mode, both the CPU and the system clock are stopped, further minimizing the power consumption. The STOP mode is released by either an external reset pulse or an external NMI. The HALT and STOP modes are entered by programming the standby control register (STBC). This register is a protected location and can be written to only by a special instruction. If the third and fourth bytes of the instruction are not complements of each other, the data is not written and the next instruction is executed.

External Reset

The μ PD78214 family is reset by taking the $\overline{\text { RESET }}$ pin low. The RESET input pin contains a noise filter to protect against spurious system resets caused by noise. On power-up, the RESET pin must remain low until the power supply reaches its operating voltage and the oscillator has stabilized. During reset, the program counter is loaded with the address contained in the reset vector table (address $0000 \mathrm{H}, 0001 \mathrm{H}$); program execution starts at that address upon the RESET pin going high. While RESET is low, all external lines except $V_{S S}, V_{D D}, A V_{S S}, A V_{R E F}, X 1$, and $X 2$ are in the high impedance state.

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings
$T_{A}=+25^{\circ} \mathrm{C}$

Operating voltage, V_{DD} $A V_{\text {REF }}$ $\mathrm{AV}_{\mathrm{SS}}$	$\begin{aligned} & -0.5 \text { to }+7.0 \mathrm{~V} \\ & -0.5 \text { to } \mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V} \\ & -0.5 \text { to }+0.5 \mathrm{~V} \end{aligned}$
```Input voltage, Vi1 V12 (Note 1) V 13 (Note 2 for }\mu\mathrm{ PD78P214)```	$\begin{aligned} & -0.5 \text { to } V_{D D}+0.5 \mathrm{~V} \\ & -0.5 \text { to } \mathrm{AV} \text { REF }+0.5 \mathrm{~V} \\ & -0.5 \text { to }+13.5 \mathrm{~V} \end{aligned}$
Output voltage, $\mathrm{V}_{0}$	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Low-level output current, loL per pin total, all output pins	$\begin{aligned} & 15 \mathrm{~mA} \\ & 100 \mathrm{~mA} \end{aligned}$


High-level output current, $\mathrm{I}_{\mathrm{OH}}$   per pin   total, all output pins	-10 mA
Operating temperature, $\mathrm{T}_{\text {OPT }}$	-50 mA
Storage temperature, $\mathrm{T}_{\text {STG }}$	-40 to $+85^{\circ} \mathrm{C}$

## Notes:

(1) Pins $\mathrm{P} 7_{0} / \mathrm{ANO}-\mathrm{P} 7_{5} / \mathrm{AN5}, \mathrm{P6}_{6} \overline{\text { WAIT } / \mathrm{AN6}}$, and $\mathrm{P} 6_{7} / \overline{\mathrm{REFRQ}} / \mathrm{AN} 7$ when the pin is used as the A/D converter input or is selected by bits AN10-AN12 of the ADM register when the A/D converter is not in operation. However, $\mathrm{V}_{11}$ absolute maximum ratings should also be satisfied.
(2) $\mathrm{P}_{0} / \mathrm{NMII}, \overline{\mathrm{EA}} / \mathrm{V}_{\mathrm{PP}}$, and $\mathrm{PZ}_{1} / \mathrm{INTPO} / \mathrm{A}_{9}$ pins in the PROM programming mode

Exposure to absolute maximum ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC characteristics.

## Operating Conditions

Oscillation Frequency	$T_{A}$	$V_{D D}$
$\mathrm{f}_{\mathrm{XX}}=4$ to 12 MHz	-40 to $+85^{\circ} \mathrm{C}$	$+5 \mathrm{~V} \pm 10 \%$

## Capacitance

$T_{A}=+25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{S S}=0 \mathrm{~V}$

Item	Symbol	Max	Unit	Conditions
Input capacitance	$\mathrm{C}_{\mathrm{I}}$	20	pF	$\mathrm{f}=1 \mathrm{MHz} ;$   pins not
Output capacitance	$\mathrm{C}_{\mathrm{O}}$	20	pF	used for   measurement   are at 0 V
Input/output capacitance	$\mathrm{C}_{10}$	20	pF	and

## DC Characteristics

Item	Symbol	Min	Typ	Max	Unit	Conditions
Low-level input voltage	$\mathrm{V}_{\text {IL }}$	0		0.8	V	
High-level input voltage	$\mathrm{V}_{\mathrm{HH} 1}$	2.2		$\mathrm{V}_{\mathrm{DD}}$	V	Except the specified pins (Notes 1, 2)
	$\mathrm{V}_{1 \mathrm{H} 2}$	2.2		$\mathrm{AV}_{\text {REF }}$	V	Specified pins (Note 1)
	$\mathrm{V}_{\mathrm{H} 3}$	$0.8 V_{D D}$		$V_{\text {D }}$	v	Specified pins (Note 2)
Low-level output voltage	$\mathrm{V}_{\mathrm{OL} 1}$			0.45	v	$1 \mathrm{OL}=2.0 \mathrm{~mA}$
	$\mathrm{V}_{\mathrm{OL} 2}$			1.0	V	$1 \mathrm{OL}=8.0 \mathrm{~mA}$ (Note 3)
High-level output voltage	$\mathrm{V}_{\mathrm{OH} 1}$	$V_{D D}-1.0$			V	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$
	$\mathrm{V}_{\mathrm{OH} 2}$	$V_{D D}-0.5$			V	$\mathrm{IOH}^{\text {a }}=-100 \mu \mathrm{~A}$
	$\mathrm{V}_{\mathrm{OH} 3}$	2.0			V	$\mathrm{I}_{\mathrm{OH}}=-5.0 \mathrm{~mA}($ Note 4)
X1 low-level input current	IIL			-100	$\mu \mathrm{A}$	$0 \leq V_{1} \leq V_{\text {IL }}$
X1 high-level input current	$\mathrm{IIH}^{\text {H }}$			100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IH} 3} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DD}}$
Input leakage current	$\mathrm{l}_{1}$			$\pm 10$	$\mu \mathrm{A}$	$\mathrm{OV} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DD}}$
Output leakage current	Lo			$\pm 10$	$\mu \mathrm{A}$	$O V \leq V_{O} \leq V_{D D}$
AVEF current	$\mathrm{Al}_{\text {REF }}$		1.5	5.0	mA	Operating mode, $\mathrm{f}_{\mathrm{XX}}=12 \mathrm{MHz}$
$V_{\text {DD }}$ power supply current	$\mathrm{I}_{\mathrm{DD} 1}$		20	40	mA	Operating mode, $f_{x X}=12 \mathrm{MHz}$
	IDD2		7	20	mA	HALT mode, $\mathrm{f}_{\mathrm{XX}}=12 \mathrm{MHz}$
Data retention voltage	$\mathrm{V}_{\text {DDDR }}$	2.5		5.5	V	STOP mode
Data retention current	${ }^{\text {I DDDR }}$		2	20	$\mu \mathrm{A}$	STOP mode; $\mathrm{V}_{\text {DDDR }}=2.5 \mathrm{~V}$
			5	50	$\mu \mathrm{A}$	STOP mode; $V_{\text {DDDR }}=5 \mathrm{~V} \pm 10 \%$
Pullup resistor	$\mathrm{R}_{\mathrm{L}}$	15	40	80	$\mathrm{k} \Omega$	$\mathrm{V}_{1}=0 \mathrm{~V}$

## Notes:

(1) Pins $\mathrm{P} 7_{0} / \mathrm{ANO}-\mathrm{P} 7_{5} / \mathrm{AN5}, \mathrm{~Pb}_{6} \overline{\text { WAIT }} / \mathrm{AN6}$, and $\mathrm{P} 6_{7} / \overline{\mathrm{REFRQ}} / \mathrm{AN} 7$ when the pin is used as the $A / D$ converter input or is selected by bits AN10-AN12 of the ADM register when the A/D converter is not in operation.
(2) $\mathrm{X} 1, \mathrm{X} 2, \overline{\mathrm{RESET}}, \mathrm{P} 2_{0} / \mathrm{NMI}, \mathrm{P} 2_{1} / \mathrm{INTPO}, \mathrm{P} 2_{2} / \mathrm{INTP}_{1}, \mathrm{P} 2_{3} / \mathrm{INTP} 2 / \mathrm{CI}$, $\mathrm{P}_{4} /$ INTP3, $\mathrm{P}_{2} /$ INTP4/ASCK, $\mathrm{P}_{6} /$ INTP5, $\mathrm{P}_{2} / \mathrm{SI}$, $\mathrm{P}_{2} /{ }_{2} / \mathrm{SCK}, \mathrm{P}_{3} /$ SO/SBO, and EA pins.
(3) Pins $P 4_{0} / A D_{0}-P 4_{7} / A D_{7}$, and $P 5_{0} / A_{8}-P 5_{7} / A_{15}$.
(4) Pins $\mathrm{PO}_{0}-\mathrm{PO}_{7}$.

## AC Characteristics-Read/Write Operation

$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{f}_{\mathrm{XX}}=12 \mathrm{MHz} ; \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$

Item	Symbol	Calculation Formula (2, 3)	Min	Max	Unit	Conditions
X1 input clock cycle time	${ }^{\text {cher }}$	-	82	250	ns	
Address setup time to ASTB $\downarrow$	$\mathrm{t}_{\text {SAST }}$	${ }_{\text {tcy }}$	52		ns	
Address hold time from ASTB $\downarrow$ (Note 1)	$t_{\text {HSTA }}$	-	25		ns	
Address hold time from $\overline{\mathrm{RD}} \uparrow$	$t_{\text {HRA }}$	-	30		ns	
Address hold time from $\overline{W R} \uparrow$	$\mathrm{t}_{\text {HWA }}$	-	30		ns	
Address to $\overline{\mathrm{RD}} \downarrow$ delay time	$t_{\text {DAR }}$	${ }^{2 t} \mathrm{CrXX}^{\text {- }} 35$	129		ns	
Address float time to $\overline{\mathrm{RD}} \downarrow$	$t_{\text {faR }}$	$\mathrm{t}_{\text {cyx }} / 2-30$	11		ns	
Address to data input time	${ }^{\text {t }}$ DAID	$(4+2 n) \operatorname{tcrex}^{-100}$		228	ns	No wait states
ASTB $\downarrow$ to data input time	${ }^{\text {t }}$ DSTID	$(3+2 n) \mathrm{t}_{\text {crx }}-65$		181	ns	No wait states
$\overline{\mathrm{RD}} \downarrow$ to data input time	${ }_{\text {t }{ }_{\text {DRID }}}$	$(2+2 n) t_{\text {crex }}-64$		100	ns	No wait states
ASTB $\downarrow$ to $\overline{\mathrm{RD}} \downarrow$ delay time	$t_{\text {DSTR }}$	$\mathrm{t}_{\mathrm{Cl}} \mathrm{X}-30$	52		ns	
Data hold time from $\overline{\mathrm{RD}} \uparrow$	${ }_{\text {thRID }}$	-	0		ns	
$\overline{\overline{R D} \uparrow \text { to address active time }}$	${ }^{\text {t }}$ DRA	$2 \mathrm{ccyx}-40$	124		ns	
$\overline{R D} \uparrow$ to ASTB $\uparrow$ delay time	$\mathrm{t}_{\text {DRST }}$	${ }_{2} \mathrm{C}_{\mathrm{CrX}}-40$	124		ns	
$\overline{\mathrm{RD}}$ low-level width	${ }^{\text {t WRL }}$	$(2+2 n) t_{c r x}-40$	124		ns	No wait states
ASTB high-level width	${ }^{\text {twSTH }}$	$\mathrm{t}_{\text {crux }} \mathbf{3 0}$	52		ns	
Address to $\overline{\mathrm{WR}} \downarrow$ delay time	${ }^{\text {t }}$ DAW	${ }^{2} \mathrm{C}_{\mathrm{CrX}} \mathbf{- 3 5}$	129		ns	
$\overline{\text { ASTB }} \downarrow$ to data output time	${ }^{\text {t }}$ DSTOD	$t_{\text {cry }}+60$		142	ns	
$\overline{\text { WR } \downarrow \text { to data output time }}$	t ${ }_{\text {DWOD }}$	-		60	ns	
	${ }^{\text {t }}$ STW1	$\mathrm{t}_{\text {crx }}-30$	52		ns	
	tDSTW2	${ }^{21} \mathrm{Crx}-35$	129		ns	Refresh mode
Data setup time to $\overline{W R} \uparrow$	tsodwr	$(3+2 n) \mathrm{t}_{\mathrm{CrX}}-100$	146		ns	No wait states
Data setup time to $\overline{W R} \downarrow$	$\mathrm{t}_{\text {SODWF }}$	$\mathrm{t}_{\mathrm{CrX}}-60$	22		ns	Refresh mode
Data hold time from $\overline{\mathrm{WR}} \uparrow$ (Note 1)	thwod	-	20		ns	
$\overline{W R} \uparrow$ to ASTB $\uparrow$ delay time	${ }^{\text {t }}$ DWST	$\mathrm{t}_{\text {Crx }}-40$	42		ns	
$\overline{\overline{W R}}$ low-level width	tWWL1	$(3+2 n) t_{c r} \mathrm{X}-50$	196		ns	No wait states
	tWWL2	$(2+2 n) t_{C Y X}-50$	114		ns	Refresh mode; No wait states
Address to $\overline{\text { WAIT }} \downarrow$ input time	$t_{\text {DAWT }}$	$3 \mathrm{ctcrx}^{\text {- }} 100$		146	ns	
ASTB $\downarrow$ to $\overline{\text { WAIT } \downarrow \text { input time }}$	$t_{\text {DSTWT }}$	${ }^{2} \mathrm{C}$ CYX -80		84	ns	
WAIT hold time from ASTB $\downarrow$	${ }^{\text {thSTWT }}$	$2 \mathrm{Xt}_{\mathrm{CY}}{ }^{\text {a }}+10$	174		ns	One external wait state
ASTB $\downarrow$ to $\overline{\text { WAIT } \uparrow \text { delay time }}$	$t_{\text {DSTWTH }}$	$2(1+X) t_{\text {crx }}-55$		273	ns	One external wait state
$\overline{\mathrm{RD}} \downarrow$ to $\overline{\text { WAIT }}$ input time	${ }_{\text {t }}$ DRWTL	$\mathrm{t}_{\mathrm{c}} \mathrm{y} \mathrm{x}-60$		22	ns	
$\overline{\text { WAIT }}$ hold time from $\overline{\mathrm{RD}} \downarrow$	$\mathrm{t}_{\text {HRWT }}$	$(2 x-1) \operatorname{tcr~} \mathrm{X}+5$	87		ns	One external wait state
$\overline{\text { RD } \downarrow \text { to } \overline{\text { WAIT }} \uparrow \text { delay time }}$	$t_{\text {DRWTH }}$	$(2 X+1) t_{\text {cr }} \mathrm{X}-60$		186	ns	One external wait state
WAIT $\uparrow$ to data input time	t DWTID	$\mathrm{t}_{\mathrm{Cl}} \mathrm{X}-20$		62	ns	
$\overline{\overline{\text { WAIT }} \uparrow \text { to } \overline{\text { WR }} \uparrow \text { delay time }}$	${ }_{\text {t }}$ DWTW	${ }^{2} \mathrm{tcyx}^{\text {c }} 10$	154		ns	
	$t_{\text {DWTR }}$	$t_{\text {cry }}-10$	72		ns	
$\overline{\text { WR } \downarrow \text { to } \overline{\text { WAIT }} \text { input time }}$	$\mathrm{t}_{\text {DWWTL }}$	$\mathrm{t}_{\text {crx }}-60$		22	ns	Refresh disabled

AC Characteristics-Read/Write Operation (cont)

Item	Symbol	Calculation Formula ( 2,3 )	Min	Max	Unit	Conditions
$\overline{\text { WAIT }}$ hold time from WR $\downarrow$	${ }^{\text {tHWWT1 }}$	$(2 X-1) t \mathrm{crx}+5$	87		ns	One external wait state; refresh disabled
	$t_{\text {HWWT2 }}$	$2(x-1)$ ter $x+5$	5		ns	One external wait state; refresh enabled
$\overline{\overline{W R}} \downarrow$ to $\overline{\text { WAIT }} \uparrow$ delay time	$t_{\text {DWWTH1 }}$	$(2 X+1) t \mathrm{crx}-60$		186	ns	One external wait state; refresh disabled
	${ }^{\text {t WWWTH2 }}$	$2 X_{\text {cher }}-60$		104	ns	One external wait state; refresh enabled
$\overline{R D} \uparrow$ to $\overline{R E F R Q} \downarrow$ delay time	t ${ }^{\text {drafa }}$	$2 \mathrm{tcyx}^{\text {che }} 10$	154		ns	
$\overline{W R} \uparrow$ to $\overline{R E F R Q} \downarrow$ delay time	$t_{\text {DWRFQ }}$	$\operatorname{tcrx}^{\text {- }} 10$	72		ns	
$\overline{R E F R Q}$ low-level width	${ }_{\text {t WRFQL }}$	${ }^{2} \mathrm{C}_{\text {cyx }}-44$	120		ns	
$\overline{\text { REFRQ } \uparrow \text { to ASTB } \uparrow \text { delay time }}$	${ }_{\text {t DRFQST }}$	${ }^{4 t} \mathrm{CyX}^{\text {- }} 48$	280		ns	

## Notes:

(1) The hold time includes the time during which $\mathrm{V}_{\mathrm{OH}}$ and $\mathrm{V}_{\mathrm{OL}}$ are retained under the following load conditions: $C_{L}=100 \mathrm{pF}$ and $R_{L}=2 \mathrm{k} \Omega$
(2) $n$ indicates the number of internal wait states.
(3) $x$ indicates the number of external wait states $(1,2,3, \ldots)$

## Serial Port Operation

$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{f}_{\mathrm{XX}}=12 \mathrm{MHz} ; \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$

Item	Symbol	Min	Max	Unit	Conditions
Serial clock cycle time	$t_{\text {crsk }}$	1.0		$\mu \mathrm{s}$	External clock input
		1.3		$\mu \mathrm{s}$	Internal clock/16 output
		5.3		$\mu \mathrm{s}$	Internal clock/64 output
Serial clock low-level width	$t_{\text {WSKL }}$	420		ns	External clock input
		556		ns	Internal clock/16 output
		2.5		$\mu \mathrm{s}$	Internal clock/64 output
Serial clock high-level width	${ }^{\text {t WSKH }}$	420		ns	External clock input
		556		ns	Internal clock/16 output
		2.5		$\mu \mathrm{s}$	Internal clock/64 output
SI, SBO setup time to $\overline{\text { SCK }} \uparrow$	tsssk	150		ns	
SI, SBO hold time from $\overline{\text { SCK }} \uparrow$	thssk	400		ns	
SO/SBO output delay time from $\overline{\text { SCK }} \downarrow$	tDSBSK1	0	300	ns	CMOS push-pull output   (3-line serial I/O mode)
	tosBSK2	0	800	ns	Open-drain output ( SBI mode), $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$
SBO high, hold time from $\overline{\text { SCK }} \uparrow$	$t_{\text {HSBSK }}$	4		${ }^{t} \mathrm{CyX}$	SBI mode
SBO low, setup time to $\overline{\text { SCK }} \downarrow$	${ }^{\dagger}$ SSBSK	4		${ }^{t} \mathrm{CYX}$	SBI mode
SBO low-level width	${ }^{\text {t }}$ WSBL	4		${ }^{t} \mathrm{CrX}$	
SBO high-level width	${ }^{\text {t WSBH }}$	4		${ }^{\text {t }} \mathrm{Cr} \times$	

## A/D Converter Operation

Item	Symbol	Min	Typ	Max	Unit	Conditions
Resolution		8			Bit	
Full-scale error (Note 1)				0.4	\%	$\mathrm{AV}_{\text {REF }}=4.0 \mathrm{~V}$ to $\mathrm{V}_{\text {DD }} ; \mathrm{T}_{\mathrm{A}}=-10$ to $+70^{\circ} \mathrm{C}$
				0.8	\%	$\mathrm{AV}_{\text {REF }}=3.4 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}} ; \mathrm{T}_{\mathrm{A}}=-10$ to $+70^{\circ} \mathrm{C}$
				0.8	\%	$\mathrm{AV}_{\text {REF }}=4.0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}$
Quantization error				$\pm 1 / 2$	LSB	
Conversion time	${ }^{\text {t CONV }}$	360			${ }^{\text {t }} \mathrm{CrX}$	$83 \mathrm{~ns} \leq \mathrm{t}_{\mathrm{crx}} \leq 125 \mathrm{~ns} \mathrm{(Note} \mathrm{2)}$
		240			$\mathrm{t}_{\text {crx }}$	$125 \mathrm{~ns} \leq \mathrm{t}_{\mathrm{crX}} \leq 250 \mathrm{~ns}$ (Note 3)
Sampling time	$t_{\text {SAMP }}$	72			${ }_{\text {t }}^{\text {crex }}$	$83 \mathrm{~ns} \leq \mathrm{t}_{\mathrm{Crx}} \leq 125 \mathrm{~ns}$ (Note 2)
		48			${ }_{\text {t }}^{\text {cr }}$ (	$125 \mathrm{~ns} \leq \mathrm{t}_{\mathrm{cyx}} \leq 250 \mathrm{~ns}$ (Note 3)
Analog input voltage	$\mathrm{V}_{\text {IAN }}$	-0.3		$\mathrm{AV}_{\text {REF }}+0.3$	V	
Analog input impedance	$\mathrm{R}_{\text {AN }}$		1000		$\mathrm{M} \Omega$	
Analog reference voltage	$\mathrm{AV}_{\text {REF }}$	3.4		$\mathrm{V}_{\mathrm{DD}}$	V	
AV $\mathrm{REF}^{\text {current }}$	$\mathrm{Al}_{\text {REF }}$		1.5	5.0	mA	Operating mode, $\mathrm{f}_{\mathrm{XX}}=12 \mathrm{MHz}$
			0.2	1.5	mA	STOP mode

## Note:

(1) Quantization errror is not included. Unit is defined as percent of full-scale value.
(2) FR bit of ADM register is 0 .
(3) FR bit of ADM registers is 1.

## Interrupt Timing Operation

$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{D D}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{S S}=0 \mathrm{~V}$

Item	Symbol	Min	Max	Unit	Conditions
NMI low-level width	${ }^{\text {t WNIL }}$	10		$\mu \mathrm{s}$	
NMI high-level width	${ }^{\text {twNIH }}$	10		$\mu \mathrm{s}$	
INTPO-INTP5 low-level width	${ }^{\text {twriL }}$	24		${ }_{\text {tcr }}$	
INTPO-INTP5 high-level width	twrin	24		$t_{\text {crix }}$	
RESET low-level width	${ }^{\text {WWRSL }}$	10		$\mu \mathrm{s}$	
RESET high-level width	tWRSH	10		$\mu \mathrm{s}$	

$\mu$ PD78214 Family

## Data Retention Characteristics

$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$

Item	Symbol	Min	Typ	Max	Unit	Conditions
Data retention voltage	$V_{\text {DDDR }}$	2.5		5.5	V	STOP mode
Data retention current	IdDDR		2	20	$\mu \mathrm{A}$	$V_{\text {DDDR }}=2.5 \mathrm{~V}$
			5	50	$\mu \mathrm{A}$	$V_{\text {DDDR }}=5 \mathrm{~V} \pm 10 \%$
$V_{D D}$ rise time	$\mathrm{t}_{\mathrm{RVD}}$	200			$\mu \mathrm{s}$	
$\mathrm{V}_{\mathrm{DD}}$ fall time	$\mathrm{t}_{\mathrm{FVD}}$	200			$\mu \mathrm{s}$	
$V_{D D}$ retention time (from STOP mode setting)	$t_{\text {HVD }}$	0			ms	
STOP release signal input time	$t_{\text {DREL }}$	0			ms	
Oscillation stabilization wait time	twart	30			ms	Crystal resonator
		5			ms	Ceramic resonator
Low-level input voltage	$\mathrm{V}_{\text {IL }}$	0		$0.1 \mathrm{~V}_{\text {DDDR }}$	V	Specified pins (Note 1)
High-level input voltage	$\mathrm{V}_{\text {IH }}$	$0.9 \mathrm{~V}_{\text {DD }}$		$V_{\text {DDDR }}$	V	Specified pins (Note 1)

Note: $\overline{\mathrm{RESET}}, \mathrm{P}_{2} / \mathrm{NMI}, \mathrm{P}_{2} / / \mathrm{NTPO}, \mathrm{P}_{2} / / \mathrm{NTP} 1, \mathrm{P}_{3} / \mathrm{INTP} 2 / \mathrm{Cl}, \mathrm{P}_{2} /$ INTP3, $\mathrm{P}_{5} /$ INTP4/ASCK, $\mathrm{P}_{6} /$ INTP5, $\mathrm{P}_{2} / \mathrm{SI}, \mathrm{P}_{2} / \mathrm{SCK}_{2}, \mathrm{P}_{3} / \mathrm{SO} /$ SBO, and EA pins.

## Recommended Resonator Circuit



Ceramic or crystal resonator frequency $f_{x x}=4$ to 12 MHz
External oscillation circuit should be as close to the X1 and X2 pins as possible
Do not place other signal lines in the shaded area

## Recommended External Clock Circuit



## External Clock Operation

$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Item	Symbol	Min	Max	Unit	Conditions
X1 input low-level width	$t_{W X L}$	30	130	ns	
X1 input high-level width	$t_{W X H}$	30	130	ns	
X1 input rise time	${ }^{t_{X R}}$	0	30	ns	
X1 input fall time	$t_{X F}$	0	30	ns	
X1 input clock cycle time	$t_{C Y X}$	82	250	ns	

Recommended Ceramic Resonators

	Frequency   Manufacturer   $(\mathrm{MHz})$	Part Number	C1 $(\mathrm{pF})$	C2 (pF)
Murata Mfg.	12	CSA12.0MT	30	30
		CST12.0MTW (1)	None (2)	None (2)
	4	CSA4.00MG040	100	100
		CST4.00MG040	None (2)	None (2)
Kyocera Corp.	12	KBR12.0M	33	33

Notes:
(1) Recommended for $\mu$ PD78212/213/214 only.
(2) C 1 and C 2 are contained in the resonator.

Recommended Crystal Resonators

Manufacturer	Frequency   $(\mathrm{MHz})$	Part   Number	$\mathrm{C}_{1}(\mathrm{pF})$	$\mathrm{C} 2(\mathrm{pF})$
Kinseki	12	$\mathrm{HC}-49 / \mathrm{U}$	18	18

## Timing Waveforms

## Voltage Thresholds for AC Timing Measurements



## Read Operation


$\mu$ PD78214 Family

Timing Waveforms (cont)

## Write Operation



Timing Waveforms (cont)

## External $\overline{\text { WAIT }}$ Signal Input (Read Operation)



## Timing Waveforms (cont)

## External WAIT Signal Input (Write Operation)



Timing Waveforms (cont)

## Refresh After Read



## Refresh After Write



## Timing Waveforms (cont)

## Serial Operation



## SBI Mode

Bus Release Signal Transfer Timing


Command Signal Transfer Timing


Timing Waveforms (cont)

## Interrupt Input



## Reset Input



## Data Retention Characteristics


$\mu$ PD78214 Family

## $\mu$ PD78P214 PROGRAMMING

In the $\mu$ PD78P214, the mask ROM of $\mu$ PD78214 is replaced by a one-time programmable ROM (OTP ROM) or a reprogrammable, ultraviolet erasable ROM (UV EPROM). The ROM is $16,384 \times 8$ bits and can be programmed using a general-purpose PROM writer with a $\mu$ PD27C256A programming mode.

The PA-78P214CW/GC/GJ/GQ/L are the socket adaptors used for configuring the $\mu$ PD78P214 to fit a standard PROM socket.

Refer to tables 5 and 6 and figures 15 through 18 for special information applicable to PROM programming.

Table 5. Pin Functions During PROM Programming

Pin	Pin*	Function
$\mathrm{PO}_{0}-\mathrm{PO}_{7}$	$\mathrm{A}_{0}-\mathrm{A}_{7}$	Address input pins for PROM operations
$P 5_{0} / A_{8}$	$\mathrm{A}_{8}$	Address input pin for PROM operations
P2 $1^{\prime} / \mathrm{INTPO}$	$\mathrm{A}_{9}$	Address input pin for PROM operations
$\mathrm{P5} / \mathrm{A} \mathrm{A}_{10}-\mathrm{P} 5_{6} / \mathrm{A}_{14}$	$A_{10}-A_{14}$	Address input pins for PROM operations
$\mathrm{P}_{4} / \mathrm{AD} \mathrm{D}_{0}-\mathrm{P}_{4} / \mathrm{AD} \mathrm{D}_{7}$	$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data pins for PROM operations
$\mathrm{P}_{6} \overline{\mathrm{WRR}}$	$\overline{\mathrm{CE}}$	Strobes data into the PROM
$\mathrm{P6}_{4} / \overline{\mathrm{RD}}$	$\overline{\mathrm{OE}}$	Enables a data read from the PROM
$\mathrm{P}_{0} / \mathrm{NMI}$	NMI	PROM programming mode is entered by applying +12.5 volts to this pin
RESET	RESET	PROM programming mode requires applying a low voltage to this pin
$\overline{\mathrm{EA}}$	$V_{P P}$	High voltage applied to this pin for program write/verify
$\mathrm{V}_{\mathrm{DD}}$	$\mathrm{V}_{\mathrm{DD}}$	Positive power supply pin
$\mathrm{V}_{S S}$	$V_{S S}$	Ground

* Pin name in PROM programming mode.

Table 6. Summary of Operation Modes for PROM Programming

Mode	NMI	$\overline{\text { RESET }}$	$\overline{\mathrm{CE}}$	$\overline{\mathrm{OE}}$	$\mathrm{V}_{\mathrm{PP}}$	$\mathrm{V}_{\mathrm{DD}}$	$\mathrm{D}_{0}-\mathrm{D}_{7}$
Program write	+12.5 V	L	L	H	+12.5 V	+6 V	Data input
Program verify	+12.5 V	L	H	L	+12.5 V	+6 V	Data output
Program inhibit	+12.5 V	L	H	H	+12.5 V	+6 V	High Z
Read out	+12.5 V	L	L	L	+5 V	+5 V	Data output
Output disable	+12.5 V	L	L	H	+5 V	+5 V	High Z
Standby	+12.5 V	L	H	$\mathrm{L} / \mathrm{H}$	+5 V	+5 V	High Z

Note: When +12.5 V is applied to $\mathrm{V}_{\mathrm{PP}}$ and +6 V to $\mathrm{V}_{\mathrm{DD}}$, both $\overline{\mathrm{CE}}$ and
$\overline{\mathrm{OE}}$ cannot be set to low level ( L ) simultaneously.

## Pin Functions in $\mu$ PD78P214 PROM Programming Mode

Figure 15. 64-Pin Plastic and Ceramic Shrink DIP 64-Pin Plastic QUIP


Pin Functions in $\mu$ PD78P214 PROM Programming Mode (cont)
Figure 16. 64-Pin Plastic QFP


## Notes:

(1) L: Connect these pins separately to $\mathrm{V}_{S S}$ through resistors.
(2) G: Connect these pins to $\mathrm{V}_{\mathrm{SS}}$.
(3) Open: Do not connect these pins.

Pin Functions in $\mu$ PD78P214 PROM Programming Mode (cont)
Figure 17. 68-Pin PLCC


## Notes:

(1) L: Connect these pins separately to $\mathrm{V}_{\mathrm{SS}}$ through resistors.
(2) G: Connect these pins to $\mathrm{V}_{\mathrm{SS}}$.
(3) Open: Do not connect these pins.

## Pin Functions in $\mu$ PD78P214 PROM Programming Mode (cont)

Figure 18. 74-Pin Plastic QFP


Notes:
(1) L: Connect these pins separately to $\mathrm{V}_{\text {SS }}$ through reslstors.
(2) G : Connect these pins to $\mathrm{V}_{\mathrm{SS}}$.
(3) Open: Do not connect these pins.

## PROM Write Procedure

(1) Set the pins not used for programming as indicated in figures 15 through 18. Connect the $\overline{R E}$ $\overline{S E T}$ pin to a low level, the $V_{D D}$ and $V_{P P}$ pins to +5 V , and apply +12.5 V to the NMI pin. The $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ pins should be high.
(2) Apply +6 V to the $\mathrm{V}_{\mathrm{DD}}$ pin and +12.5 V to the $\mathrm{V}_{\mathrm{PP}}$ pin.
(3) Provide the initial address to the $A_{0}$ to $A_{14}$ pins.
(4) Provide write data.
(5) Provide 1-ms program pulse (active low) to the CE pin.
(6) This data is now verified with a pulse (active low) to the $\overline{O E}$ pin. If the data has been written, proceed to step 8 ; if not, repeat steps 4 to 6 . If the data cannot be correctly written after 25 attempts, go to step 7.
(7) Classify as defective and stop write operation.
(8) Provide write data and supply program pulse (for additional writing) for 3 ms times the number of writes performed in step 5.
(9) Increment the address.
(10) Repeat steps 4 to 9 until the end address. NEC reserves address 4000 H for future functional extension. If a PROM writer cannot specify a final programming address, FFH must be written in address 4000 H .

## PROM Read Procedure

(1) Set the pins not used for programming as indicated in figures 15 through 18. Fix the RESET pin to a low level, the $V_{D D}$ and $V_{P P}$ pins to +5 V , and apply +12.5 V to the NMI pin. The $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ pins should be high.
(2) Input the address of the data to be read to pins $A_{0}-A_{14}$.
(3) Read mode is entered with a pulse (active low) on both the $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ pins.
(4) Data is output to the $D_{0}$ to $D_{7}$ pins.

## EPROM Erasure

Data in an EPROM is erased by exposing the quartz window in the ceramic package to light having a wavelength shorter than 400 nm , including ultraviolet rays, direct sunlight, and fluorescent light. To prevent unintentional erasure, mask the window.
Typically, data is erased by $254-\mathrm{nm}$ ultraviolet rays. A minimum lighting level of $15 \mathrm{Ws} / \mathrm{cm}^{2}$ (ultraviolet ray intensity $x$ exposure time) is required to completely erase written data. Erasure by an ultraviolet lamp rated at $12 \mathrm{~mW} / \mathrm{cm}^{2}$ takes approximately 15 to 20 minutes. Remove any filter on the lamp and place the device within 2.5 cm of the lamp tubes.
$\mu$ PD78214 Family

DC Programming Characteristics
$\mathrm{T}_{\mathrm{A}}=25 \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{IP}}=12.5 \pm 0.5 \mathrm{~V}$ applied to NMI pin; $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$


* Corresponding symbols of the $\mu \mathrm{PD} 27 \mathrm{C} 256 \mathrm{~A}$.


## AC Programming Characteristics (Write Mode)

Parameter	Symbol	Symbol*	Min	Typ	Max	Unit	Conditions
Address setup time to $\overline{\mathrm{CE}} \downarrow$	$t_{\text {SAC }}$	$\mathrm{t}_{\text {AS }}$	2			$\mu \mathrm{s}$	
Data input to $\overline{O E} \downarrow$ delay time	$t_{\text {DDOO }}$	toes	2			$\mu \mathrm{s}$	
Input data setup time to $\overline{C E} \downarrow$	${ }^{\text {tsidC }}$	$t_{\text {DS }}$	2			$\mu \mathrm{s}$	
Address hold time from $\overline{\mathrm{CE}} \uparrow$	$t_{\text {HCA }}$	${ }^{\text {taH }}$	2			$\mu \mathrm{s}$	
Input data hold time from $\overline{\mathrm{CE}} \uparrow$	$t_{\text {HCID }}$	${ }^{\text {t }}$ D	2			$\mu \mathrm{s}$	
Output data hold time from $\overline{O E} \uparrow$	$\mathrm{t}_{\mathrm{HOOD}}$	$t_{\text {dF }}$	0		130	ns	
$\mathrm{V}_{\mathrm{PP}}$ setup time to $\overline{\mathrm{CE}} \downarrow$	$t_{\text {SVPC }}$	tVPS	1			ms	
$\mathrm{V}_{\text {DDP }}$ setup time to $\overline{C E} \downarrow$	tsvoc	tves	1			ms	
Initial program pulse width	${ }^{\text {twL }}$	${ }^{\text {tpw }}$	0.95	1.0	1.05	ms	
Additional program pulse width	twL2	topw	2.85		78.75	ms	
NMI high-voltage input setup time to $\overline{\mathrm{CE}} \downarrow$	$t_{\text {SPC }}$		2			$\mu \mathrm{s}$	
$\overline{\mathrm{OE}} \downarrow$ to data output time	${ }^{\text {D }}$ OOD	$\mathrm{t}_{\mathrm{OE}}$			150	ns	

[^8]AC Programming Characteristics (Read Mode)
$T_{A}=25 \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathbb{P}}=12.5 \pm 0.5 \mathrm{~V}$ applied to NMI pin; $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \pm 0.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{DDP}}$

Parameter	Symbol	Symbol*	Min	Typ	Max	Unit	Condition
Address to data output time	${ }^{\text {DAOD }}$	$t_{A C C}$			200	ns	$\overline{C E}=\overline{O E}=V_{\text {IL }}$
$\overline{\mathrm{CE}} \downarrow$ to data output time	${ }^{\text {t }}$ COD	$\mathrm{t}_{\mathrm{CE}}$			200	ns	$\overline{O E}=V_{\text {IL }}$
$\overline{\mathrm{OE}} \downarrow$ to data output time	tDOOD	toe			75	ns	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$
Data hold time from $\overline{\mathrm{OE}} \uparrow$	${ }_{\text {HCOD }}$	$\mathrm{t}_{\mathrm{DF}}$	0		60	ns	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$
Data hold time from address	$\mathrm{t}_{\text {HAOD }}$	tor	0			ns	$\overline{C E}=\overline{O E}=V_{\text {IL }}$

* Corresponding symbols of the $\mu \mathrm{PD} 27 \mathrm{C} 256 \mathrm{~A}$.


## PROM Timing Diagrams

## PROM Write/Verify Mode



PROM Timing Diagrams (cont)
PROM Read Mode


## 8-Bit, K-Series Microcontrollers With A/D Converter, Real-Time Output Ports

## Description

The $\mu$ PD78217A, $\mu$ PD78218A, and $\mu$ PD78P218A are members of the K-Series ${ }^{\circledR}$ of microcontrollers and are designed for real-time embedded control applications. The $\mu$ PD78218A family is pin compatible with the $\mu$ PD78214 family and offers increased internal memory with enhanced timer and macro service facilities. These 8-bit, single-chip microcontrollers have a minimum instruction time of 333 ns at 12 MHz ( 500 ns for the $\mu$ PD78217A). They feature 8 -bit hardware multiply and divide instructions, four banks of main registers, an advanced interrupt handling facility, a powerful set of memory mapped on-chip peripherals, and the ability to address up to 1M bytes of external data memory. On board memory includes 1024 bytes of RAM, 32K bytes of mask ROM, or 32 K bytes of UV EPROM or one-time programmable (OTP) ROM.

The advanced interrupt handling facility provides two levels of programmable hardware priority control and two separate methods of servicing interrupt requests: vectored and macro service. The macro service facility reduces the overhead involved in servicing peripheral interrupts by transferring data between the memorymapped special function registers (SFRs) and memory without the use of time consuming interrupt service routines. In addition, the macro service facility can be initialized to automatically alter timer compare register values or to repeatedly output a prespecified pattern at a fixed or variable rate. By using macro service to control the real-time output ports, the $\mu$ PD78218A family can easily and accurately drive two independent stepper motors.
The combination of the macro service facility, four banks of main registers, extended data memory address space, and powerful on-chip peripherals makes these devices ideal for applications in office automation, communication, HVAC, and industrial control.

## Features

[^9]- Pin compatible with $\mu$ PD78214 family
- Powerful instruction set
- 8-bit unsigned multiply and divide
-16 -bit arithmetic instructions
- 1-bit and 8 -bit logic instructions
- Minimum instruction time
-333 ns at 12 MHz ( $\mu$ PD78218A/P218A)
-500 ns at 12 MHz ( $\mu \mathrm{PD} 78217 \mathrm{~A}$ )
- Memory expansion
- 8085 bus-compatible
-64K program address space
- 1M data address space
- Large I/O capacity
-Up to 54 I/O port lines on $\mu$ PD78218A/P218A
-Up to 36 I/O port lines on $\mu$ PD78217A
- Software programmable pullup resistors
- Memory-mapped on-chip peripherals (special function registers)
- Timer/counter unit
- 16-bit timer 0:

Two 16-bit compare registers
One 16-bit capture register

- 8-bit timer 1:

One 8-bit compare register
One 8-bit capture/compare register
One external interrupt/capture line
-8-bit timer/counter 2:
Two 8-bit compare registers
One 8-bit capture register
One external interrupt/capture line
One external event counter line
-8-bit timer 3:
One 8-bit compare register

- Four 8-bit precision timer-controlled pulse-width modulated (PWM) output lines
- Two 4-bit (or one 8-bit) real-time output ports
- Eight-channel 8-bit A/D converter
- Programmable priority interrupt controller (two levels)
- Two methods of interrupt service
- Vectored interrupts
- Macro service mode with choice of three different types


## Features (cont)

$\square$ Two-channel serial communication interface

- Asynchronous serial interface (UART) Dedicated baud rate generator
- Clock-synchronized interface

Full-duplex, three-wire mode
NEC serial bus interface (SBI) mode

- Refresh output for pseudostatic RAM
- STOP and HALT standby functions
- 5-volt CMOS technology

Ordering Information

Part Number	Package	Package Drawing	ROM
$\mu$ PD78217ACW	64-pin plastic   shrink DIP	(P64C-70-750A, C)	ROMless
$\mu$ PD78217AGC	64-pin plastic   QFP	(P64GC-80-AB8-2)	
$\mu$ PD78218ACW-xxx	64-pin plastic   shrink DIP	(P64C-70-750A, C)	32K mask   ROM
$\mu$ PD78218AGC-xxx	64-pin plastic   QFP	(P64GC-80-AB8-2)	
$\mu$ PD78P218ACW	64-pin plastic   shrink DIP	(P64C-70-750A, C)	32K OTP   ROM
$\mu$ PD78P218AGC	64-pin plastic   QFP	(P64GC-80-AB8-2)	
$\mu$ PD78P218ADW	64-pin shrink   cerdip w/   window	(P64DW-70-750A1)	

Note: xxx indicates ROM code suffix

Pin Configurations
64-Pin Shrink DIP (Plastic or Ceramic)


Pin Configurations (cont)

## 64-Pin Plastic QFP



Pin Functions; Normal Operating Mode

Symbol	First Function	Symbol	Second Function
$\mathrm{PO}_{0}-\mathrm{PO}_{7}$	Port 0; 8-bit tristate output port/real time output port		
$\mathrm{Pr}_{0}$	Port 2; 8-bit input port	NMI	External nonmaskable interrupt
$\begin{aligned} & \mathrm{P} 2_{1} \\ & \mathrm{P} 2_{2} \\ & \hline \end{aligned}$		INTPO INTP1	Maskable external interrupts
$\mathrm{P}_{3}$		INTP2	Maskable external interrupt
		Cl	External clock input to timer/counter 2
$\mathrm{P}_{4}$		INTP3	Maskable external interrupt
P25		INTP4	Maskable external interrupt
		ASCK	Asynchronous serial clock input
$\underline{\mathrm{P}_{6}}$		INTP5	Maskable external interrupt
$\mathrm{P} 27^{7}$		SI	Serial data input for three-wire serial l/O mode
$\mathrm{P}_{3}$	Port 3; 8-bit, bit-selectable tristate input/output port	RxD	Asynchronous serial receive data input
$\mathrm{P}_{3}$		TxD	Asynchronous serial transmit data output
$\mathrm{P3}_{2}$		$\overline{\text { SCK }}$	Serial shift clock input/output
$\mathrm{P}_{3}$		So	Serial data output for three-wire serial I/O mode
		SBO	I/O bus for NEC serial bus interface (SBI)
$\mathrm{P3}_{4}-\mathrm{P3}_{7}$		TO0-TO3	Timers TO to T3 outputs
$\mathrm{P4}_{0}-\mathrm{P}_{4}$	Port 4; 8-bit tristate input/output port	$A D_{0}-A D_{7}$	Low-order 8-bit multiplexed address/data bus
$\mathrm{P5}_{0}-\mathrm{P5}_{7}$	Port 5; 8-bit, bit-selectable tristate input/output port	$A_{8}-A_{15}$	High-order 8-bit address bus
$\underline{P 6} 0_{0}-\mathrm{P6}_{3}$	Port 6; 4-bit output port	$\mathrm{A}_{16}-\mathrm{A}_{19}$	Extended memory address bus
$\mathrm{PG}_{4}$	Port 6; 4-bit, bit-selectable tristate input/output port	$\overline{\mathrm{RD}}$	External memory read strobe
$\mathrm{P6}_{5}$		$\overline{W R}$	External memory write strobe
$\mathrm{P}_{6}$		WAIT	External memory wait signal input
		AN6	Analog voltage input to $A / D$ converter
$\mathrm{P}_{7}$		$\overline{\text { REFRQ }}$	Refresh pulse output used by external pseudostatic memory
		AN7	Analog voltage input to $A / D$ converter
$\underline{P 7}{ }_{0}-\mathrm{P} 7_{5}$	Port 7; 6-bit input port	ANO-AN5	Analog voltage inputs to $A / D$ converter
ASTB	Address strobe output used to latch the low-order 8 address for external memory		
RESET	External system reset input		
$\overline{\overline{E A}}$	Internal ROM or external memory control signal input. Low-level input selects external memory. High-level input selects internal ROM. A low-level input on a $\mu$ PD78218A or $\mu$ PD78P218A places the device in ROMless mode and external memory is accessed.		
X1	Crystal/ceramic resonator connection or external clock input		
X2	Crystal/ceramic resonator connection or inverse of external clock		
$\underline{A V_{\text {REF }}}$	A/D converter reference voltage		
$\mathrm{AV}_{\text {SS }}$	A/D converter ground		
$V_{\text {DD }}$	+5 volt power supply input		
$V_{\text {SS }}$	Power supply ground		
NC	No connection		



## $\mu$ PD78218A and $\mu$ PD78214 Differences

The $\mu$ PD78218A family is a pin compatible enhanced version of the $\mu$ PD78214 family. Some of the enhancements include a larger internal program ROM and data RAM memory space, an improved 16 -bit timer 0 , and an enhanced macro service facility. Table 1 highlights the differences between the $\mu$ PD78218A and $\mu$ PD78214 families.

Table 1. Differences Between the $\mu$ PD78218A and MPD78214 Families

Item	$\mu$ PD78218A Family	$\mu$ PD78214 Family
Maximum on-chip ROM	32K bytes	16K bytes
Maximum on-chip RAM	1024 bytes	512 bytes
16-bit timer	Software-triggered one-shot pulse output	Not available
Macro service counter	8/16-bit selectable (except Type A transfers)	8-bit only
Type C macro service pointer, MPT and MPD	Increments full 16 bits	Increments only lower 8 bits
Macro service execution times	Execution times differ; refer to hardware user's manual	Execution times differ; refer to hardware user's manual
PUSH PSW instruction	Execution times differ; refer to software user's manual	Execution times differ; refer to software user's manual
Oscillation stabilization time when exiting STOP mode	Time equivalent to NMI active pulse width plus 16 bits of dedicated counter or 15 bits of dedicated counter	Time equivalent to NMI active pulse width plus 16 bits of dedicated counter
A/D converter reference voltage	3.6 V to $\mathrm{V}_{\mathrm{DD}}$	3.4 V to $\mathrm{V}_{\mathrm{DD}}$
Programmable device operating voltage	$5 \mathrm{~V} \pm 0.3 \mathrm{~V}$	$5 \mathrm{~V} \pm 10 \%$
Package	64-pin plastic shrink DIP	64-pin plastic shrink DIP
	64-pin plastic QFP	64-pin plastic QFP
	64-pin shrink cerdip w/window	64-pin shrink cerdip w/window
		64-pin plastic QUIP
		68-pin PLCC
		74-pin plastic QFP

## FUNCTIONAL DESCRIPTION

## Central Processing Unit (CPU)

The $\mu$ PD78218A family CPU features 8 - and 16 -bit arithmetic including an $8 \times 8$-bit unsigned multiply and $16 \times$ 8 -bit unsigned divide (producing a 16 -bit quotient and an 8 -bit remainder). The multiply executes in $3.67 \mu \mathrm{~s}$ and the divide in $12.36 \mu \mathrm{~s}$ at $12 \mathrm{MHz}(4.00$ and $12.69 \mu \mathrm{~s}$ respectively for $\mu$ PD78217A).

A CALLT vector table and a CALLF program area decrease the number of bytes in the call instructions for commonly used subroutines. A 1-byte call instruction (CALLT) can access up to 32 subroutines through the addresses contained in the CALLT vector table. A 2-byte call instruction (CALLF) can access any routine beginning at a specific address in the CALLF area.
The internal system clock (folk) is generated by dividing the oscillator frequency by two. Therefore, at the maximum oscillator frequency of 12 MHz , the internal system clock is 6 MHz . The minimum instruction execution time for an instruction fetched from internal ROM is 333 ns ( 500 ns when fetched from external memory).

## Memory Space

The $\mu$ PD78218A family has a 1 M byte address space (see figure 1). The first 64 K bytes of this address space ( $00000 \mathrm{H}-0 \mathrm{OFFFH}$ ) can be used as both program and data memory. The remaining 960K bytes of this address space ( $10000 \mathrm{H}-\mathrm{FFFFFH}$ ) can only be used as data memory and is known as expanded memory.

## External Memory

The $\mu$ PD78218A family has an 8 -bit wide external data bus and a 16 -bit wide external address bus (20-bit wide if expanded memory is enabled). The low-order 8 bits of the address bus are multiplexed to provide the 8 -bit data bus and are supplied by I/O port 4 . The high-order address bits of the 16 -bit address bus are taken from port 5. If expanded memory is enabled, the expanded address nibble is provided by $\mathrm{P} 6_{0}$ to $\mathrm{P} 6_{3}$. Address latch, read, and write strobes are also provided.

The memory expansion mode register (MM) is used to enable external memory, to specify up to two additional wait states or the use of the WAIT input pinfor the first 64 K bytes of memory, and to enable the high-speed internal ROM fetch. Ports 4,5, and 6 are available as general purpose I/O ports when only internal ROM is used and no external program or data space is required.

Figure 1. Memory Map


## Expanded Data Memory

The MM register is also used to enable the external expanded data memory space, addresses 10000 H to FFFFFH. When the expanded data memory is enabled, the entire 1M byte address space is divided into 16 banks of 64 K bytes each. The low-order 4 -bits of the P6 or the PM6 registers are used as bank selection registers to supply the address information to $A_{16}$ to $A_{19}$. Data can easily be transferred from one memory bank to another by using the appropriate instructions. Address lines $A_{16}$ to $A_{19}$ are only active when an instruction that uses expanded addressing is being executed. A programmable wait control register (PW) allows the programmer to specify up to two additional wait states or the use of the WAIT input pin for expanded data memory space.

## On-Chip RAM

The $\mu$ PD78218A family has a total of 1024 bytes of on-chip RAM. The upper 256 -byte area (FEOOH-FEFFH) features high-speed access and is known as "Internal RAM." The remaining 768 bytes (FB0OH-FDFFH) are accessed at the same speed as external memory and are known as "Peripheral RAM." The general register
banks and the macro service control words are stored in Internal RAM. The remainder of Internal RAM and any unused register bank locations are available for general storage.

## On-Chip Program Memory

The $\mu$ PD78218A contains 32K bytes of internal ROM respectively. The $\mu$ PD78P218A contains 32K bytes of UV EPROM or one-time programmable ROM. Instructions from on-chip program memory can be fetched at high speed or at the same rate as from external memory. The $\mu$ PD78217A does not have on-chip program memory.

## CPU Control Registers

Program Counter. The program counter is a 16 -bit binary counter register that holds the address of the next instruction to be executed. During reset, the program counter is loaded with the address stored in locations 0000 H and 00001 H .
Stack Pointer. The stack pointer is a 16 -bit register that holds the address of the last item pushed onto the
stack. It is decremented before new data is pushed onto the stack and incremented after data is popped off the stack.

Program Status Word. The program status word (PSW) is an 8-bit register that contains flags that are set or reset depending on the results of an instruction. This register can be written to or read from 8 bits at a time. The individual flags can also be manipulated on a bit-by-bit basis. The assignment of PSW bits follows.

7
7
IE

```
CY Carry flag
ISP Interrupt priority status flag
RBS0, RBS1 Register bank selection flags
AC Auxiliary carry flag
Z Zero flag
IE Interrupt request enable flag
```


## General Registers

The general-purpose registers (figure 2) consist of four banks of registers located at addresses $\operatorname{FEEOH}$ to FEFFH in Internal RAM. Each bank consists of eight 8 -bit general registers that can also be used in pairs to function as four 16-bit registers. Two bits in the PSW (RBS0 and RBS1) specify which of the register banks is active. The bits are set under program control. Registers have both functional names (like A, X, B, C for 8 -bit registers and $A X, B C$ for 16 -bit registers) and absolute names (like R1, RO, R3, R2 for 8 -bit registers and RP0, RP1 for 16-bit registers). Each instruction determines whether a register is referred to by its functional or absolute name and whether it is 8 or 16 bits.

## Addressing

The $\mu$ PD78218A family features 1 -byte addressing of both the special function registers and the portion of on-chip RAM from FE2OH to FEFFH. The 1-byte sfr addressing accesses the entire SFR area, while the 1-byte saddr addressing accesses the first 32 bytes of the SFR area and 224 bytes of Internal RAM. The 16 -bit SFRs and words of memory in these areas can be addressed by 1 -byte saddrp addressing, which is valid for even addresses only. Since many instructions use 1 -byte addressing, access to these locations is almost as fast and versatile as access to the general registers. There are seven addressing modes for data in main memory: direct, register, register indirect with autoincrement and decrement, saddr, SFR, based, and indexed. There are also both 8 -bit and 16 -bit immediate operands.

## Special Function Registers

The input/output ports, timers, capture and compare registers, and mode and control registers for both the peripherals and the CPU are collectively known as special function registers. They are all memorymapped between FFOOH and FFFFH and can be accessed either by main memory addressing or by 1 -byte sfr addressing. They are either 8 or 16 bits as required, and many of the 8 -bit registers are capable of single-bit access as well. Locations FFDOH through FFDFH are known as the external SFR area. Registers in external circuitry interfaced and mapped to these addresses can be addressed with sfr addressing. Table 2 is a list of the special function registers.

Figure 2. General Registers


83YL-9170B

## Table 2. Special Function Registers

Address	Register (SFR)	Symbol	R/W	Access Units (Bits)			State After Reset
				1	8	16	
OFFOOH	Port 0	PO	R/W	x	x	-	Undefined
OFFO2H	Port 2	P2	R	$x$	x	-	Undefined
OFFO3H	Port 3	P3	R/W	x	x	-	Undefined
OFFO4H	Port 4	P4	R/W	x	x	-	Undefined
OFF05H	Port 5	P5	R/W	x	$\times$	-	Undefined
OFF06H	Port 6	P6	R/W	x	x	-	$\times \mathrm{OH}$
OFF07H	Port 7	P7	R	x	x	-	Undefined
OFFOAH	Port 0 buffer register (low)	POL	R/W	$\times$	x	-	Undefined
OFFOBH	Port 0 buffer register (high)	POH	R/W	$x$	$x$	-	Undefined
OFFOCH	Real-time output port control register	RTPC	R/W	x	$\times$	-	OOH
OFF10H-0FF11H	16-bit compare register 0 (16-bit timer 0)	CROO	R/W	-	-	$x$	Undefined
OFF12H-OFF13H	16-bit compare register ( 16 -bit timer 0 )	CRO1	R/W	-	-	x	Undefined
OFF14H	8 -bit compare register (8-bit timer 1 )	CR10	R/W	-	$\times$	-	Undefined
OFF15H	8 -bit compare register (8-bit timer/counter 2)	CR20	R/W	-	x	-	Undefined
OFF16H	8 -bit compare register (8-bit timer/counter 2)	CR21	R/W	-	x	-	Undefined
OFF17H	8 -bit compare register (8-bit timer 3)	CR30	R/W	-	$\times$	-	Undefined
OFF18H-OFF19H	16 -bit capture register ( 16 -bit timer 0 )	CRO2	R	-	-	x	Undefined
OFF1AH	8 -bit capture register (8-bit timer/counter 2)	CR22	R	-	x	-	Undefined
OFF1CH	8 -bit capture/compare register (8-bit timer 1 )	CR11	R/W	-	$\times$	-	Undefined
OFF2OH	Port 0 mode register	PMO	w	-	$x$	-	FFH
OFF23H	Port 3 mode register	PM3	W	-	x	-	FFH
OFF25H	Port 5 mode register	PM5	W	-	x	-	FFH
OFF26H	Port 6 mode register	PM6	R/W	x	$x$	-	FxH
OFF30H	Capture/compare control register 0	CRCO	W	-	x	-	10 H
OFF31H	Timer output control register	TOC	W	-	x	-	OOH
OFF32H	Capture/compare control register 1	CRC1	W	-	x	-	OOH
OFF34H	Capture/compare control register 2	CRC2	W	-	x	-	OOH
OFF40H	Pullup resistor option register	PUO	R/W	x	x	-	OOH
OFF43H	Port 3 mode control register	PMC3	R/W	x	x	-	OOH
OFF50H-OFF51H	16 -bit timer register 0	TMO	R	-	-	x	0000 H
OFF52H	8 -bit timer register 1	TM1	R	-	$x$	-	OOH
OFF54H	8 -bit timer register 2	TM2	R	-	$\times$	-	OOH
OFF56H	8 -bit timer register 3	TM3	R	-	x	-	OOH
OFF5CH	Prescaler mode register 0	PRMO	W	-	x	-	OOH
OFF5DH	Timer control register 0	TMCO	R/W	-	$x$	-	OOH
OFF5EH	Prescaler mode register 1	PRM1	W	-	x	-	OOH
OFF5FH	Timer control register 1	TMC1	R/W	-	x	-	OOH
OFF68H	A/D converter mode register	ADM	R/W	$\times$	$x$	-	OOH
OFF6AH	A/D conversion result register	ADCR	R	-	x	-	Undefined
OFF7DH	One-shot pulse output control register	OSPC	R/W	x	x	-	OOH

Table 2. Special Function Registers (cont)

Address	Register (SFR)	Symbol	R/W	Access Units (Bits)			State After Reset
				1	8	16	
0FF80H	Clocked serial interface mode register	CSIM	R/W	x	x	-	OOH
0FF82H	Serial bus interface control register	SBIC	R/W	X	x	-	OOH
0FF86H	Serial shift register	SIO	R/W	-	x	-	Undefined
OFF88H	Asynchronous serial interface mode register	ASIM	R/W	x	x	-	80 H
OFF8AH	Asynchronous serial interface status register	ASIS	$R$	x	X	-	OOH
OFF8CH	Serial receive buffer: UART	RxB	R	-	x	-	Undefined
OFF8EH	Serial transmit shift register: UART	TxS	W	-	x	-	Undefined
OFF90H	Baud rate generator control register	BRGC	W	-	X	-	OOH
0 FFCOH	Standby control register	STBC	R/W	-	x	-	0000x000B
OFFC4H	Memory expansion mode register	MM	R/W	$x$	X	-	20 H
0FFC5H	Programmable wait control register	PW	R/W	x	x	-	80 H
OFFC6H	Refresh mode register	RFM	R/W	x	x	-	OOH
OFFDOH-OFFDFH	External SFR area	-	R/W	x	x	-	Undefined
OFFEOH	Interrupt request flag register L	IFOL	R/W	x	x	-	OOH
OFFE1H	Interrupt request flag register H	IFOH	R/W	x	x	-	OOH
OFFEOH-OFFE1H	Interrupt request flag register	IFO	R/W	-	-	x	000 H
OFFE4H	Interrupt mask flag register L	MKOL	R/W	x	X	-	FFH
OFFE5H	Interrupt mask flag register H	MKOH	R/W	x	x	-	FFH
OFFE4H-OFFE5H	Interrupt mask flag register	MKO	R/W	-	-	X	FFFH
OFFE8H	Priority specification flag register L	PROL	R/W	X	X	-	FFH
OFFE9H	Priority specification flag register H	PROH	R/W	X	X	-	FFH
OFFE8H-OFFE9H	Priority specification flag register	PRO	R/W	-	-	X	FFFH
OFFECH	Interrupt service mode specification flag register L	ISMOL	R/W	X	X	-	OOH
OFFEDH	Interrupt service mode specification flag register H	ISMOH	R/W	X	X	-	OOH
OFFECH-OFFEDH	Interrupt service mode specification flag register	ISMO	R/W	-	-	x	OOOH
OFFF4H	External interrupt mode register 0	INTMO	R/W	x	x	-	OOH
OFFF5H	External interrupt mode register 1	INTM1	R/W	x	x	-	00 H
OFFF8H	Interrupt status register	IST	R/W	x	x	-	OOH

Figure 3. Pin I/O Circuits


## Input/Output Ports

There are up to 54 port lines on the $\mu$ PD78218A/P218A and up to 36 port lines on the $\mu$ PD78217A. (Ports 4, 5, and two bits of port 6 are not available on the $\mu$ PD78217A since the $\mu$ PD78217A must always use external memory.) Table 3 lists the features of each port and figure 3 shows the structure of each port pin. The pin levels of all port 2, 3, and 7 pins can always be read or tested regardless of the dual pin function.

## Real-time Output Port

The real-time output port (RTPC) shares pins with port 0 . It can be used as two independent 4-bit real-time output ports or one 8-bit real-time output port. In the
real-time output mode, data stored beforehand in the buffer registers, POH and POL, is transferred immediately to the output latch of PO on the occurrence of a timer 1 interrupt (INTC10 or INTC11) or external interrupt (INTPO) (see figure 4). By using the real-time output port with the macro service function, port 0 can be used to output preprogrammed patterns at preprogrammed variable time intervals. In this mode, two independent stepper motors can accurately be driven at a fixed or variable rate.

Table 3. Digital Port Functions

Port	Operational Features	Configuration	Direct Drive   Capability	Software Pullup   Resistor Connection
Port 0	8-bit high impedance output		Transistor	
Port 2	8-bit Schmitt trigger input			In 6-bit units $\left(\mathrm{P2}_{2}-\mathrm{P}_{2}\right)$
Port 3	8-bit input or output	Bit selectable		Byte selectable, input bits only
Port 4	8-bit input or output	Byte selectable	LED	Byte selectable
Port 5	8-bit input or output	Byte selectable	LED	Byte selectable, input bits only
Port 6	4-bit output (bits 0 to 3)   4-bit input or output (bits 4 to 7)	Bit selectable		In 4-bit unit, input bits only
Port 7	6-bit input			

Note: Software pullup resistors can be internally connected only on a port-by-port basis to port bits set to input mode. Pullup resistors are not connected to port bits set to output mode.

Figure 4. Real-Time Output Port


## Analog-to-Digital (A/D) Converter

The $\mu$ PD78218A family A/D converter (see figure 5) uses the successive-approximation method for converting up to eight multiplexed analog inputs into 8 -bit digital data. The conversion time per input is $30 \mu \mathrm{~s}$ at 12 MHz operation. $A / D$ conversion can be started by an external interrupt, INTP5, or under software control.

The A/D converter can operate in either scan mode or select mode. In scan mode, from one to eight sequential inputs can be programmed for conversion. The A/D converter selects each input in order, converts the data, stores it in the A/D conversion result (ADCR)
register, and generates an interrupt (INTAD). This converted data can be easily transferred to memory by using the macro service function.
In select mode, only one of the eight $A / D$ inputs can be selected for conversion. The ADCR register is continually updated and can be read at any time. If the $A / D$ converter is started by an external interrupt, an INTAD interrupt occurs at the completion of each conversion. If the $A / D$ converter is started by software, no interrupts are generated.

Figure 5. A/D Converter


## Serial Interface

The $\mu$ PD78218A family has two independent serial interfaces. The first is a standard UART. The UART (figure 6) permits full-duplex operation and can be programmed for 7 - or 8 -bits of data after the start bit, followed by one or two stop bits. Odd, even, zero or no parity can also be selected. The serial clock for the UART can be provided by an on-chip baud rate generator or timer 3. By using either the internal system clock or an external clock input into the ASCK pin, the baud rate generator is capable of generating all of the commonly used baud rates. The UART generates three interrupts: INTST (transmission complete), INTSR (reception complete), and INTSER (reception error).

The second interface is an 8 -bit clock-synchronized serial interface (figure 7). It can be operated in either a three-wire serial I/O mode or NEC serial bus interface (SBI) mode.

In the three-wire serial I/O mode, the 8 -bit shift register (SIO) is loaded with a byte of data and eight clock pulses are generated. These eight pulses shift the byte of data out of the SO line (MSB first) and in from the SI line providing full-duplex operation. This interface can also be set to receive or to transmit data only. The INTCSI interrupt is generated after each 8-bit transfer. One of three internal clocks or an external clock clocks the data.

Figure 6. Asynchronous Serial Interface


Figure 7. Clock-Synchronized Serial Interface


Figure 8. SBI Mode Master/Slave Configuration


The NEC SBI mode is a two-wire high-speed proprietary serial interface available on most devices in the NEC $\mu$ PD75xxx and $\mu$ PD78xxx product lines. Devices are connected in a master/slave configuration (see figure 8). There is only one master device at a time; all others
are slaves. The master sends addresses, commands, and data over the serial bus line (SBO) using a fixed hardware protocol synchronized with the SCK line. Each slave $\mu$ PD78218A family device can be programmed in software to respond to any one of 256 addresses. There are also 256 commands and 256 data types. Since all commands are user definable, any software protocol, simple or complex, can be defined. It is even possible to develop commands to change a slave into a master and the previous master into a slave.

## Timers

The $\mu$ PD78218A family has one 16-bit timer and three 8 -bit timers. The 16 -bit timer counts the internal system clock ( $\mathrm{f}_{\mathrm{CLK}} / 8$ ) while the three 8 -bit timers can be programmed to count a number of prescaled values of the internal system clock. One of the 8 -bit timers can also count external events.
Timer 0 consists of a 16 -bit timer (TMO), two 16 -bit compare registers (CROO and CRO1), and a 16 -bit capture register (CRO2). Timer 0 can be used as two interval timers, to output a programmable square wave or two pulse-width modulated signals, to measure pulse widths, or to generate a software-triggered one-shot output pulse (see figure 9).

Figure 9. 16-Bit Timer 0


Timer 1 consists of an 8-bit timer (TM1), 8-bit compare register (CR10), and 8-bit capture/compare register (CR11). Timer 1 can be used as two interval timers or to measure pulse widths. In addition, it can be used to generate the output trigger for the real-time output port (see figure 10).

Timer/counter 2 consists of an 8-bit timer (TM2), two 8-bit compare registers (CR20 and CR21), and an 8-bit capture register (CR22). Timer/counter 2 can also be
used as two interval timers, to output a programmable square wave or two pulse-width modulated signals, or to measure pulse widths. In addition, it can be used to count external events sensed on the Cl line or as a one-shot timer (see figure 11).

Timer 3 consists of an 8-bit timer (TM3) and an 8-bit compare register (CR30). Timer 3 can be used as an interval timer or as a clock for the clock-synchronized serial interface (see figure 12).

Figure 10. 8-Bit Timer 1


Figure 11. 8-Bit Timer/Counter 2


Figure 12. 8-Bit Timer 3


## Interrupts

The $\mu$ PD78218A family has 18 maskable hardware interrupt sources; 6 are external and 12 are internal. Since there are only 16 interrupt vectors and sets of control flags, 2 of the 6 external maskable interrupts, INTP4
and INTP5, share interrupt vectors and control flags with INTC30 and INTAD respectively. The active interrupt source for each shared vector must be chosen by the program. In addition, there is one nonmaskable interrupt and one software interrupt. The software interrupt, generated by the BRK instruction, is not maskable (see table 4).

Table 4. Interrupt Sources and Vector Addresses

Interrupt Request Type	Default   Priority	Interrupt Request Generation Source	Macro Service Type	Vector Table Address
Software	None	BRK instruction execution	-	O03EH
Nonmaskable	None	NMI (pin input edge detection)	-	0002H
Maskable	0	INTPO (pin input edge detection)	A, B	0006 H
	1	INTP1 (pin input edge detection)	A, B	0008H
	2	INTP2 (pin input edge detection)	A, B	000AH
	3	INTP3 (pin input edge detection)	B	000 CH
	4	INTCOO (TMO-CR00 coincidence signal generation)	B	0014 H
	5	INTC01 (TMO-CR01 coincidence signal generation)	B	0016H
	6	INTC10 (TM1-CR10 coincidence signal generation)	A, B, C	0018 H
	7	INTC11 (TM1-CR11 coincidence signal generation)	A, B, C	001 AH
	8	INTC21 (TM2-CR21 coincidence signal generation)	A, B	001 CH
	9	INTP4 (pin input edge detection)	B	000EH
		INTC30 (TM3-CR30 coincidence signal generation)	A, B	
	10	INTP5 (pin input edge detection)	B	0010H
		INTAD (end of A/D conversion)	A, B	
	11	INTC20 (TM2-CR20 coincidence signal generation)	A, B	0012H
	12	INTSER (generation of asynchronous serial interface receive error)	-	0020H
	13	INTSR (end of asynchronous serial interface reception)	A, B	0022H
	14	INTST (end of asynchronous serial interface transmission)	A, B	0024H
	15	INTCSI (end of clocked serial interface transmission)	A, B	0026H

Interrupt Servicing. The $\mu$ PD78218A family provides two levels of programmable hardware priority control and two different methods of handling maskable interrupt requests: standard vectoring and macro service. The programmer can choose the priority and mode of servicing each maskable interrupt by using the interrupt control registers.
Interrupt Control Registers. The $\mu$ PD78218A family has four 16-bit interrupt control registers. Each bit in each register is dedicated to one of the 16 active maskable interrupt sources. The interrupt request flag register (IFO) contains an interrupt request flag for each interrupt. The interrupt mask register (MKO) is used to enable or disable any interrupt. The interrupt service mode register (ISMO) specifies whether an interrupt is processed by vectoring or macro service. The priority flag register (PRO) can be used to specify a high or a low priority level for each interrupt.
Two other 8-bit registers are associated with interrupt processing. The interrupt status register (IST) indicates if a nonmaskable interrupt request on the NMI pin is being processed and can be used to allow nesting of nonmaskable interrupt requests. The IE and the ISP bits of the program status word are also used to control interrupts. If the IE bit is zero, all maskable interrupts, but not macro service, are disabled. The IE bit can be set or cleared using the El and DI instructions, respectively, or by directly writing to the PSW. The IE bit is cleared each time an interrupt is accepted. The ISP bit is used by hardware to hold the priority level flag of the interrupt being serviced.

Interrupt Priority. The nonmaskable interrupt (NMI) has priority over all other interrupts. Two hardware controlled priority levels are available for the maskable interrupts. Either a high or a low priority level can be assigned by software to each of the maskable interrupts. Interrupt requests of a priority higher than the processor's current priority level are accepted; requests of the same or lower priority are held pending until the processor's priority state is lowered by program control within the current service routine or by a return instruction from the current service routine.

Interrupt requests programmed to be handled by macro service have priority over all vectored interrupt service regardless of the assigned priority level, and macro service requests are accepted even when the interrupt enable bit in the PSW is set to the disable state (see figure 13).

The default priorities listed in table 4 are fixed by hardware and are effective only when it is necessary to choose between two interrupt requests of the same
software assigned priority. For example, the default priorities would be used after the completion of a high priority routine, if two interrupts of the same priority routine were pending.

The software interrupt, initiated by the BRK instruction, is executed regardless of the processor's priority level and the state of the IE bit. It does not alter the processor's priority level.

Figure 13. Interrupt Service Sequence


Vectored Interrupt. When vectored interrupt is specified for a given interrupt request, (1) the program status word and the program counter are saved on the stack, (2) the processor's priority is set to that specified for the interrupt, (3) the IE bit in the PSW is set to zero, and (4) the routine whose address is in the interrupt vector table is entered. At the completion of the service routine, the RETI instruction (RETB instruction for the software interrupt) reverses the process and the $\mu$ PD78218A family device resumes the interrupted routine.

## Macro Service

When macro service is specified for a given interrupt, the macro service hardware temporarily stops the executing program and begins to transfer data between the special function register area and the memory space. One byte is transferred each interrupt. When the data transfer is complete, control is returned to the executing program, providing a completely transparent method of interrupt service. Macro service significantly improves response time and makes it unnecessary to save any registers.
For each request on the interrupt line, one operation is performed, and an 8 - or 16-bit counter is decremented. When the counter reaches zero, a vectored interrupt service routine is entered according to the specified priority.

Macro service is provided for all of the maskable interrupt requests except INTSER, the asynchronous serial interface receive error interrupt request. Each interrupt request has a dedicated macro service control word stored in Internal RAM (see figure 14). The function to be performed is specified in the control word.

Figure 14. Macro Service Control Word Map


The $\mu$ PD78218A family provides three different types of macro service transfers:

Macro Service Type A. A byte of data is transferred in either direction between a special function register, preassigned for each interrupt request, and a buffer in Internal RAM (FExx). Only the 8 -bit macro service counter is available for Type A transfers. The preassigned SFRs for the 12 interrupt requests that support macro service Type A transfers are listed in table 5.

## Table 5. Macro Service Type A Interrupts and

 Assigned SFRs| Interrupt Request | Source/Destination SFR |
| :---: | :---: |
| INTC10: TM1-CR10 coincidence | CR10: Timer 18 -bit compare register |
| INTC11: TM1-CR11 coincidence | CR11: Timer 18 -bit capture/ compare register |
| INTC20: TM2-CR20 coincidence | CR20: Timer 28 -bit compare register |
| INTC21: TM2-CR21 coincidence | CR21: Timer 2 8-bit compare register |
| INTC30: TM3-CR30 coincidence | CR30: Timer 3 8-bit compare register |
| INTSR: End of asynchronous serial interface reception | RxB: Serial receive buffer |
| INTST: End of asynchronous serial interface transmission | TXS: Serial transmit shift register |
| INTCSI: End of clocked serial interface transmission | SIO: Serial shift register |
| INTAD: End of A/D conversion | ADCR: A/D conversion result register |
| INTPO: External interrupt pin $\mathrm{PO}_{1}$ | CR11: Timer 18 -bit capture/ compare register |
| INTP1: External interrupt pin $\mathrm{PO}_{2}$ | CR22: Timer 2 8-bit capture register |
| INTP2: External interrupt pin $\mathrm{PO}_{3}$ | TM2: Timer 2 8-bit timer register |

Macro Service Type B. A byte of data is transferred in either direction between any specified special function register and a buffer anywhere in the 64 K byte address space. The macro service counter can be programmed either to be an 8 - or 16 -bit counter. Macro service Type B transfers can be initiated by any maskable interrupt except INTSER.

Macro Service Type C. A byte of data is transferred from a buffer anywhere in the 64 K byte address space to one of the 8 -bit compare registers of timer 1. At the same time, a second byte of data is transferred from a buffer anywhere in the 64K byte address space to the real-time output port buffer. The macro service counter can be programmed either to be an 8 - or 16 -bit counter. Macro service Type C transfers can be initiated by INTC10 with data transferred to CR10 and POL or POH, or by INTC11 with data transferred to CR11 and POL or POH .
In addition, the macro service Type C transfer can be initialized to automatically alter timer compare register values or to repeatedly output a prespecified pattern at a fixed or variable rate. By using macro service Type C transfers to control the real-time output ports,
the $\mu$ PD78218A family can easily and accurately drive two independent stepper motors.

## Refresh

The refresh signal is used with any pseudostatic RAM equivalent of the NEC $\mu$ PD428128. The refresh cycle can be set to one of four intervals: 16, 32, 64, or $128 /$ fclk $^{\text {cl }}$ (2.6, 5.3, 10.7, and $21.3 \mu \mathrm{~s}$ at 12 MHz ). The refresh cycle is timed to follow a read or write operation to avoid interference with external memory access cycles.

## Standby Modes

HALT and STOP modes are provided to reduce power consumption when CPU action is not required. In HALT mode, the CPU is stopped but the system clock continues to run. The HALT mode is released by any unmasked interrupt, an external NMI, or an external reset pulse. In STOP mode, both the CPU and the system clock are stopped, further minimizing the power consumption. The STOP mode is released by either an external reset pulse or an external NMI. The

HALT and STOP modes are entered by programming the standby control register (STBC). This register is a protected location and can be written to only by a special instruction. If the third and fourth bytes of the instruction are not complements of each other, the data is not written and the next instruction is executed.

## External Reset

The $\mu$ PD78218A family is reset by taking the RESET pin low. The RESET input pin contains a noise filter to protect against spurious system resets caused by noise. On power-up, the RESET pin must remain low until the power supply reaches its operating voltage and the oscillator has stabilized. During reset the program counter is loaded with the address contained in the reset vector table (address $0000 \mathrm{H}, 0001 \mathrm{H}$ ); program execution starts at that address upon the RESET pin going high. While RESET is low, all external lines except $\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{DD}}, \mathrm{AV}_{\mathrm{SS}}, \mathrm{AV}_{\mathrm{REF}}, \mathrm{X} 1$, and X 2 are in the high impedance state.

## ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings
$T_{A}=+25^{\circ} \mathrm{C}$

Operating voltage, $\mathrm{V}_{\mathrm{DD}}$ $\mathrm{AV}_{\text {REF }}$ $\mathrm{AV}_{\mathrm{SS}}$	$\begin{aligned} & -0.5 \text { to }+7.0 \mathrm{~V} \\ & -0.5 \text { to } \mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V} \\ & -0.5 \text { to }+0.5 \mathrm{~V} \end{aligned}$
```Input voltage, V }\mp@subsup{V}{11}{ V12 (Note 1) V 13 (Note 2 for }\mu\mathrm{ PD78P218A)```	$\begin{aligned} & -0.5 \text { to } V_{\mathrm{DD}}+0.5 \mathrm{~V} \\ & -0.5 \text { to } \mathrm{AV} \text { REF }+0.5 \mathrm{~V} \\ & -0.5 \text { to }+13.5 \mathrm{~V} \end{aligned}$
Output voltage, V_{0}	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Low-level output current, loL per pin total, all output pins	$\begin{aligned} & 15 \mathrm{~mA} \\ & 100 \mathrm{~mA} \end{aligned}$
High-level output current, IOH per pin total, all output pins	$\begin{aligned} & -10 \mathrm{~mA} \\ & -50 \mathrm{~mA} \end{aligned}$
Operating temperature, TOPT	-40 to $+85^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\text {STG }}$	-65 to $+150^{\circ} \mathrm{C}$

Notes:

(1) Pins $\mathrm{P7}_{0} / \mathrm{ANO}-\mathrm{P7}_{5} / \mathrm{AN5}, \mathrm{~Pb}_{6} \overline{\mathrm{WAIT}} / \mathrm{AN6}$, and $\mathrm{P} 67 / \overline{\mathrm{REFRQ}} / \mathrm{AN} 7$ when used as the A / D converter input pins. However, the absolute maximum rating of V_{11} must also be satisfied.
(2) $\mathrm{P}_{2} / \mathrm{NMI}, \overline{\mathrm{EA}} / \mathrm{V}_{\mathrm{PP}}$, and $\mathrm{P}_{2} / \mathrm{INTPO} / \mathrm{A}_{9}$ pins in the PROM programming mode
Exposure to absolute maximum ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC characteristics.

Operating Conditions

Oscillation Frequency, $f_{X X}$	T_{A}	$V_{D D}$
4 to 12 MHz	-40 to $+85^{\circ} \mathrm{C}$	$+5 \mathrm{~V} \pm 10 \%(\mu \mathrm{PD} 78217 \mathrm{~A} / 218 \mathrm{~A}) ;$
		$+5 \mathrm{~V} \pm 0.3 \mathrm{~V}(\mu \mathrm{PD} 78 \mathrm{P} 218 \mathrm{~A})$

Capacitance
$T_{A}=+25^{\circ} C^{\prime} V_{D D}=V_{S S}=0 \mathrm{~V}$

Item	Symbol	Max	Unit	Conditions
Input capacitance	C_{I}	20	pF	$\mathrm{f}=1 \mathrm{MHz} ;$ pins not used
Output capacitance C_{O} 20 pF				
Input/output for capacitance	C_{10}	20	pF	measurement are at 0 V

DC Characteristics
$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; V_{S S}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%\left(V_{D D}=+5 \mathrm{~V} \pm 0.3 \mathrm{~V}\right.$ for $\left.\mu \mathrm{PD} 78 \mathrm{P} 218 \mathrm{~A}\right)$

Item	Symbol	Min	Typ	Max	Unit	Conditions
Low-level input voltage	$\mathrm{V}_{\text {IL }}$	0		0.8	V	
High-level input voltage	$\mathrm{V}_{1 \mathrm{H} 1}$	2.2		$V_{D D}$	V	Except the specified pins (Notes 1, 2)
	$\mathrm{V}_{\mathrm{IH} 2}$	2.2		$\mathrm{AV}_{\text {REF }}$	V	Specified pins (Note 1)
	$\mathrm{V}_{1 \mathrm{H} 3}$	$0.8 \mathrm{~V}_{\mathrm{DD}}$		$V_{D D}$	V	Specified pins (Note 2)
Low-level output voltage	$\mathrm{V}_{\text {OL1 }}$			0.45	V	$\mathrm{l}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
	$\mathrm{V}_{\mathrm{OL} 2}$			1.0	V	$\mathrm{l}_{\mathrm{OL}}=8.0 \mathrm{~mA}($ Note 3)
High-level output voltage	$\mathrm{V}_{\mathrm{OH} 1}$	$V_{D D}-1.0$			V	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$
	$\mathrm{V}_{\mathrm{OH} 2}$	$\mathrm{V}_{\mathrm{DD}}-0.5$			V	$\mathrm{IOH}^{\text {O }}=-100 \mu \mathrm{~A}$
	$\mathrm{V}_{\mathrm{OH} 3}$	2.0			V	$\mathrm{I}_{\mathrm{OH}}=-5.0 \mathrm{~mA}$ (Note 4)
X1 low-level input current	IIL			-100	$\mu \mathrm{A}$	$\mathrm{OV} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{IL}}$
X1 high-level input current	$\mathrm{IH}^{\text {H }}$			100	$\mu \mathrm{A}$	$\mathrm{V}_{1 \mathrm{H} 3} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DD}}$
Input leakage current	l_{LI}			± 10	$\mu \mathrm{A}$	$\mathrm{OV} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DD}}$
Output leakage current	Lo			± 10	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{DD}}$
$\mathrm{AV}_{\text {REF }}$ current	$\mathrm{Al}_{\text {REF }}$		1.5	5.0	mA	Operating mode, $\mathrm{f}_{\mathrm{XX}}=12 \mathrm{MHz}$
$V_{\text {DD }}$ power supply current	${ }^{\text {DD1 }}$		20	40	mA	Operating mode, $\mathrm{f}_{\mathrm{XX}}=12 \mathrm{MHz}$
	IDD2		7	20	mA	HALT mode, $\mathrm{f}_{\mathrm{XX}}=12 \mathrm{MHz}$

DC Characteristics (cont)

Item	Symbol	Min	Typ	Max	Unit	Conditions
Data retention voltage	$V_{\text {DDDR }}$	2.5		5.5	V	STOP mode
Data retention current	IDDDR		2	20	$\mu \mathrm{A}$	STOP mode; $\mathrm{V}_{\text {DDDR }}=2.5 \mathrm{~V}$
			5	50	$\mu \mathrm{A}$	STOP mode; $\mathrm{V}_{\text {DDDR }}=5 \mathrm{~V} \pm 10 \%$
Pullup resistor	R_{L}	15	40	80	$\mathrm{k} \Omega$	$V_{1}=0 \mathrm{~V}$

Notes:

(1) Pins $\mathrm{P} 7_{0} / \mathrm{ANO}-\mathrm{P7}_{5} / \mathrm{AN5}, \mathrm{~Pb}_{6} \overline{\text { WAIT }}$ AN6, and $\mathrm{P} 6_{7} / \overline{\mathrm{REFRQ}} / \mathrm{AN} 7$ when the pin is used as an A / D converter input pin.
(2) $\mathrm{X} 1, \mathrm{X} 2, \overline{\mathrm{RESET}}, \mathrm{P} 2_{0} / \mathrm{NMI}, \mathrm{P} 2_{1} / \mathrm{NTPO}, \mathrm{P}_{2} / \mathrm{INTP} 1, \mathrm{P} 2_{3} / \mathrm{NTP} 2 / \mathrm{Cl}$, $\mathrm{P}_{2} /$ INTP3, $\mathrm{P}_{5} /$ INTP4/ASCK, $\mathrm{P}_{6} /$ INTP5, $\mathrm{P}_{7} / \mathrm{SI}, \mathrm{P}_{2} / \mathrm{SCK}, \mathrm{P}_{3} /$ SO/SBO, and EA pins.
(3) Pins $P 4_{0} / A D_{0}-P 4_{7} / A D_{7}$, and $P 5_{0} / A_{8}-P 5_{7} / A_{15}$.
(4) Pins $\mathrm{PO}_{0}-\mathrm{PO}_{7}$.

AC Characteristics-Read/Write Operation

$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{S S}=0 \mathrm{~V} ; \mathrm{f}_{\mathrm{XX}}=12 \mathrm{MHz} ; \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} ; \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%\left(\mathrm{~V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 0.3 \mathrm{~V}\right.$ for $\left.\mu \mathrm{PD} 78 \mathrm{P} 218 \mathrm{~A}\right)$

Item	Symbol	Calculation Formula (2, 3)	Min	Max	Unit	Conditions
X1 input clock cycle time	${ }^{t} \mathrm{CYX}$	-	82	250	ns	
Address setup time to ASTB \downarrow	$t_{\text {SAST }}$	${ }_{t C Y X}-30$	52		ns	
Address hold time from ASTB \downarrow (Note 1)	$t_{\text {HSTA }}$	-	25		ns	
Address hold time from $\overline{\mathrm{RD}} \uparrow$	$t_{\text {HRA }}$	-	30		ns	,
Address hold time from $\overline{W R} \uparrow$	$t_{\text {HWA }}$	-	30		ns	
Address to $\overline{\mathrm{RD}} \downarrow$ delay time	${ }^{\text {t DAR }}$	${ }^{21}{ }_{C Y X}{ }^{\text {c }} 35$	129		ns	
Address float time to $\overline{\mathrm{RD}} \downarrow$	$t_{\text {FAR }}$	$t_{C Y X} / 2-30$	11		ns	
Address to data input time	tDAID	$(4+2 n) t_{C Y X}-100$		228	ns	No wait states
ASTB \downarrow to data input time	${ }^{\text {t DSTID }}$	$(3+2 n) t_{c y x}-65$		181	ns	No wait states
$\overline{\mathrm{RD}} \downarrow$ to data input time	${ }^{\text {t DRID }}$	$(2+2 n) t_{c y x}-64$		100	ns	No wait states
ASTB \downarrow to $\overline{R D} \downarrow$ delay time	$t_{\text {DSTR }}$	${ }^{t_{C Y X}}$-30	52		ns	
Data hold time from $\overline{\mathrm{RD}} \uparrow$	$t_{\text {HRID }}$	-	0		ns	
$\overline{\mathrm{RD}} \uparrow$ to address active time	${ }^{\text {t DRA }}$	$2 t_{c r y}-40$	124		ns	
$\overline{\mathrm{RD}} \uparrow$ to ASTB \uparrow delay time	${ }^{\text {t DRST }}$	${ }^{2 t} \mathrm{Crx}-40$	124		ns	
$\overline{\overline{R D}}$ low-level width	${ }^{\text {twRL }}$	$(2+2 n) t_{c y x}-40$	124		ns	No wait states
ASTB high-level width	tWSTH	${ }^{t_{C Y Y}}-30$	52		ns	
Address to $\overline{\mathrm{WR}} \downarrow$ delay time	${ }^{\text {t }}$ DAW	${ }^{2} t_{C Y X}-35$	129		ns	
$\overline{\text { ASTB }} \downarrow$ to data output time	tostod	${ }^{t_{C Y X}}+60$		142	ns	
$\overline{W R} \downarrow$ to data output time	${ }^{\text {t }}$ DWOD	-		60	ns	
ASTB \downarrow to $\overline{W R} \downarrow$ delay time	tDSTW1	${ }^{\text {t }}$ CYX -30	52		ns	
	${ }^{\text {t }}$ ISTW2	2tcyx-35	129		ns	Refresh mode
Data setup time to $\overline{W R} \uparrow$	tSODWR	$(3+2 n) t_{C Y X}-100$	146		ns	No wait states
Data setup time to $\overline{W R} \downarrow$	tsodw	$t_{C Y X}-60$	22		ns	Refresh mode
Data hold time from $\overline{W R} \uparrow$ (Note 1)	thwod	-	20		ns	
$\overline{W R} \uparrow$ to ASTB \uparrow delay time	t DWST	$t_{C Y X}-40$	42		ns	
$\overline{\overline{W R}}$ low-level width	tWWL1	$(3+2 n) t \mathrm{tcy}-50$	196		ns	No wait states
	tWWL2	$(2+2 n) t_{C Y X}-50$	114		ns	Refresh mode; No wait states
Address to $\overline{\text { WAIT } ~} \downarrow$ input time	${ }^{\text {t }}$ DAWT	$3{ }^{\text {ctcyx }}-100$		146	ns	

μ PD78218A Family

AC Characteristics-Read/Write Operation (cont)

Item	Symbol	Calculation Formula (2, 3)	Min	Max	Unit	Conditions
ASTB \downarrow to $\overline{\text { WAIT }} \downarrow$ input time	${ }^{\text {t DSTWT }}$	${ }^{21} \mathrm{c}_{\mathrm{CYx}}-80$		84	ns	
$\overline{\text { WAIT }}$ hold time from ASTB \downarrow	$t_{\text {HSTWT }}$	$2 \mathrm{Xt}_{\mathrm{Cr}} \mathrm{X}+10$	174		ns	One external wait state
ASTB \downarrow to $\overline{\text { WAIT } \uparrow \text { delay time }}$	${ }^{\text {t DSTWTH }}$	$2(1+X) t_{C Y X}-55$		273	ns	One external wait state
$\overline{\text { RD }} \downarrow$ to $\overline{\text { WAIT }} \downarrow$ input time	${ }^{\text {t DRWTL }}$	${ }^{\text {c }}$ crx -60		22	ns	
$\overline{\text { WAIT }}$ hold time from $\overline{R D} \downarrow$	${ }^{\text {thrwT }}$	$(2 X-1) t_{C Y X}+5$	87		ns	One external wait state
$\overline{\mathrm{RD}} \downarrow$ to $\overline{\text { WAIT }} \uparrow$ delay time	$t_{\text {DRWTH }}$	$(2 X+1) t_{c} Y x-60$		186	ns	One external wait state
	tDWTID	${ }^{\text {t }}$ cyx -20		62	ns	
	${ }^{\text {t DWTW }}$	$2 t_{C Y X}-10$	154		ns	
	${ }^{\text {t DWTR }}$	$t_{\text {cry }}-10$	72		ns	
	${ }^{\text {t DWWTL }}$	$t_{C Y x}-60$		22	ns	Refresh disabled
$\overline{\overline{W A I T}}$ hold time from $\overline{W R} \downarrow$	${ }_{\text {tHWWT1 }}$	$(2 X-1) t_{c y}+5$	87		ns	One external wait state; refresh disabled
	${ }^{\text {tHWWT2 }}$	$2(X-1) t_{C Y}+5$	5		ns	One external wait state; refresh enabled
$\overline{\overline{W R}} \downarrow$ to $\overline{\text { WAIT }} \uparrow$ delay time	${ }^{\text {D DWWTH1 }}$	$(2 X+1) t_{c y X}-60$		186	ns	One external wait state; refresh disabled
	${ }^{\text {t DWWTH2 }}$	$2 \mathrm{Xt} \mathrm{cyX}^{-60}$		104	ns	One external wait state; refresh enabled
$\overline{\overline{R D} \uparrow \text { to } \overline{\mathrm{REFRRQ}} \downarrow \text { delay time }}$	${ }^{\text {t DRRFQ }}$	${ }^{24} \mathrm{Cyx}-10$	154		ns	
$\overline{W R} \uparrow$ to $\overline{R E F R Q} \downarrow$ delay time	${ }^{\text {t }}$ WWRFQ	${ }^{\text {t }}$ crx -10	72		ns	
$\overline{\text { REFRQ }}$ low-level width	tWRFQL	${ }^{21} \mathrm{c}_{\mathrm{cyx}}-44$	120		ns	
$\overline{\mathrm{REFRQ}} \uparrow$ to ASTB \uparrow delay time	${ }^{\text {t }}$ 'RFQST	${ }^{4 t} \mathrm{CYX}-48$	280		ns	

Notes:

(1) The hold time includes the time during which V_{OH} and V_{OL} are retained under the following load conditions: $C_{L}=100 \mathrm{pF}$ and $R_{L}=2 \mathrm{k} \Omega$
(2) n indicates the number of internal wait states.
(3) X indicates the number of external wait states $(1,2,3, \ldots)$

Serial Port Operation

Item	Symbol	Min	Max	Unit	Conditions
Serial clock cycle time	$\mathrm{t}_{\text {CYSK }}$	1.0		$\mu \mathrm{s}$	External clock input
		1.3		$\mu \mathrm{s}$	Internal clock/16 output
		5.3		$\mu \mathrm{s}$	Internal clock/64 output
Serial clock low-level width	twSKL	420		ns	External clock input
		556		ns	Internal clock/16 output
		2.5		$\mu \mathrm{s}$	Internal clock/64 output
Serial clock high-level width	tWSKH	420		ns	External clock input
		556		ns	Internal clock/16 output
		2.5		$\mu \mathrm{s}$	Internal clock/64 output
SI, SB0 setup time to $\overline{\text { SCK }} \uparrow$	tsssk	150		ns	
SI, SBO hold time from $\overline{\text { SCK }} \uparrow$	$\mathrm{t}_{\text {HSSK }}$	400		ns	

Serial Port Operation (cont)

Item	Symbol	Min	Max	Unit	Conditions
SO/SBO output delay time from SCK \downarrow	t ${ }_{\text {DSBSK1 }}$	0	300	ns	CMOS push-pull output (3-line serial I/O mode)
	${ }^{\text {t }}$ DSBSK2	0	800	ns	Open-drain output (SBI mode), $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$
SBO high, hold time from $\overline{\text { SCK }} \uparrow$	$t_{\text {HSBSK }}$	4		$t_{\text {crex }}$	SBI mode
SBO low, setup time to $\overline{\text { SCK }} \downarrow$	${ }^{\text {t }}$ SSBSK	4		${ }_{\text {t }}^{\text {crx }}$	SBI mode
SBO low-level width	$t_{\text {WSBL }}$	4		${ }_{\text {t }}^{\text {cr }} \mathrm{X}$	
SBO high-level width	twSBH	4		$\mathrm{t}_{\mathrm{Cr} x}$	

A/D Converter Operation

Item	Symbol	Min	Typ	Max	Unit	Conditions
Resolution		8			Bit	
Full-scale error*				0.4	\%	$A V_{\text {REF }}=4.0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}} ; \mathrm{T}_{\mathrm{A}}=-10$ to $+70^{\circ} \mathrm{C}$
				0.8	\%	$A V_{\text {REF }}=3.6 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}} ; \mathrm{T}_{\mathrm{A}}=-10$ to $+70^{\circ} \mathrm{C}$
				0.8	\%	$\mathrm{AV}_{\text {REF }}=4.0 \mathrm{~V}$ to V_{DD}
Quantization error				$\pm 1 / 2$	LSB	
Conversion time	tconv	360			${ }_{t c y}$	82 ns $\leq \mathrm{t}_{\mathrm{CYX}}<125$ ns (FR bit of ADM register is 0)
		240			${ }_{\text {t }}^{\text {cr }}$ X	$125 \mathrm{~ns} \leq \mathrm{t}_{\mathrm{CYX}}<250 \mathrm{~ns}$ (FR bit of ADM register is 1)
Sampling time	tSAMP	72			$t_{\text {crex }}$	$82 \mathrm{~ns} \leq \mathrm{t}_{\mathrm{CYX}}<125 \mathrm{~ns}$ (FR bit of ADM register is 0)
		48			$\mathrm{t}_{\text {CYX }}$	$\begin{aligned} & 125 \mathrm{~ns} \leq \mathrm{t}_{\mathrm{CYx}}<250 \mathrm{~ns} \\ & \text { (FR bit of ADM register is 1) } \end{aligned}$
Analog input voltage	$V_{\text {IAN }}$	-0.3		$\mathrm{AV}_{\text {REF }}+0.3$	V	
Analog input impedance	$\mathrm{R}_{\text {AN }}$		1000		M Ω	
Analog reference voltage	$\mathrm{AV}_{\text {REF }}$	3.6		V_{DD}	\checkmark	
$\mathrm{AV}_{\text {REF }}$ current	Al ${ }_{\text {REF }}$		1.5	5.0	mA	Operating mode, $\mathrm{f}_{\mathrm{XX}}=12 \mathrm{MHz}$
			0.2	1.5	mA	STOP mode

* Quantization errror is not included. Unit is defined as percent of full-scale value.

Interrupt Timing Operation
$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%\left(\mathrm{~V}_{\mathrm{DD}}=+5 \mathrm{~V}\right.$ $\pm 0.3 \mathrm{~V}$ for $\mu \mathrm{PD} 78 \mathrm{P} 218 \mathrm{~A}$)

Item	Symbol	Min	Max	Unit	Conditions
NMI low-level width	tWNIL	10		$\mu \mathrm{s}$	
NMI high-level width	${ }^{\text {twNIH }}$	10		$\mu \mathrm{s}$	
INTPO-INTP5 low-level width	twit	24		${ }_{\text {try }}$	
INTPO-INTP5 high-level width	${ }_{\text {twru }}$	24		${ }^{\text {c }}$ Crx	
RESET low-level width	tWRSL	10		$\mu \mathrm{s}$	
$\overline{\text { RESET }}$ high-level width	${ }^{\text {t WRSH }}$	10		$\mu \mathrm{s}$	

μ PD78218A Family

Data Retention Characteristics

$T_{A}=-40$ to $+85^{\circ} \mathrm{C}$

Item	Symbol	Min	Typ	Max	Unit	Conditions
Data retention voltage	$V_{\text {DDDR }}$	2.5		5.5	V	STOP mode
Data retention current	IDDDR		2	20	$\mu \mathrm{A}$	$V_{\text {DDDR }}=2.5 \mathrm{~V}$
			5	50	$\mu \mathrm{A}$	$V_{\text {DDDR }}=5 \mathrm{~V} \pm 10 \%$
$\mathrm{V}_{\text {DD }}$ rise time	$\mathrm{t}_{\mathrm{RVD}}$	200			$\mu \mathrm{s}$	
V_{DD} fall time	$t_{\text {fVD }}$	200			$\mu \mathrm{s}$	
$V_{D D}$ retention time (from STOP mode setting)	$t_{\text {HVD }}$	0			ms	
STOP release signal input time	tDREL	0			ms	
Oscillation stabilization wait time	twait	30			ms	Crystal resonator
		5			ms	Ceramic resonator
Low-level input voltage	$\mathrm{V}_{\text {IL }}$	0		$0.1 \mathrm{~V}_{\text {DDDR }}$	V	Specified pins *
High-level input voltage	V_{1}	$0.9 \mathrm{~V}_{\text {DDDR }}$		$V_{\text {DDDR }}$	V	Specified pins *

* $\overline{R E S E T}, \mathrm{P}_{2} /$ NMI, $\mathrm{P} 2_{1} /$ INTPO, $\mathrm{P}_{2} /$ /NTP1, $\mathrm{P}_{2} /$ /NTP2 $/ \mathrm{Cl} 1, \mathrm{P} 2_{4} /$ INTP3, $\mathrm{P}_{5} /$ INTP4/ASCK, $\mathrm{P}_{6} / \mathrm{ASCK}^{2}, \mathrm{P}_{6} / \mathrm{INTP} 5, \mathrm{P} 2_{7} / \mathrm{SI}, \mathrm{P} 3_{2} / \overline{\mathrm{SCK}}, \mathrm{P} 3_{3} / \mathrm{SO} /$
SBO, and $\overline{E A}$ pins.

Recommended Resonator Circuit

Ceramic or crystal resonator frequency $f_{x x}=4$ to 12 MHz
External oscillation circult should be as close to the X1 and X2 pins as possible
Do not place other signal lines in the shaded area

Recommended Ceramic Resonators (μ PD78217A/218A only)

| Manufacturer | Frequency
 (MHz) | Part Number | C1 (pF) | C2 (pF) |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Murata Mfg. | 12 | CSA12.0MTZ | 30 | 30 |
| | | CST12.0MTW | None * | None * |

[^10]Recommended External Clock Circuit

External Clock Operation

Item	Symbol	Min	Max	Unit	Conditions
X1 input low-level width	${ }_{\text {t WXL }}$	30	130	ns	
X 1 input high-level width	${ }_{\text {t WXH }}$	30	130	ns	
X 1 input rise time	${ }^{\text {t }}$ XR	0	30	ns	
X1 input fall time	$t_{X F}$	0	30	ns	
X1 input clock cycle time	${ }^{t} \mathrm{CYX}$	82	250	ns	

Timing Waveforms

Voltage Thresholds for AC Timing Measurements

	83 yL -92234

Read Operation

Timing Waveforms (cont)

Write Operation

μ PD78218A Family

Timing Waveforms (cont)
External WAIT Signal Input (Read Operation)

μ PD78218A Family

Timing Waveforms (cont)
External WAIT Signal Input (Write Operation)

Timing Waveforms (cont)
Refresh After Read

Refresh After Write

Timing Waveforms (cont)

Serial Operation

Timing Waveforms (cont)

Interrupt Input

External Clock

Reset Input

Data Retention Characteristics

μ PD78P218A PROGRAMMING

In the μ PD78P218A, the mask ROM of μ PD78218A is replaced by a one-time programmable ROM (OTP ROM) or a reprogrammable, ultraviolet erasable ROM (UV EPROM). The ROM is $32,768 \times 8$ bits and can be programmed using a general-purpose PROM writer with a $\mu \mathrm{PD} 27 \mathrm{C} 256 \mathrm{~A}$ programming mode.

The PA-78P214CW/GC are the socket adaptors used for configuring the μ PD78P218A to fit a standard PROM socket.

Refer to tables 6 and 7 and figures 15 and 16 for special information applicable to PROM programming.

Table 6. Pin Functions During PROM Programming

Pin	Pin*	Function
$\mathrm{PO}_{0}-\mathrm{PO}_{7}$	$\mathrm{~A}_{0}-\mathrm{A}_{7}$	Address input pins for PROM operations
$\mathrm{P5}_{0} / \mathrm{A}_{8}$	$\mathrm{~A}_{8}$	Address input pin for PROM operations
$\mathrm{P}_{2} / \mathrm{INTPO}$	A_{9}	Address input pin for PROM operations
$\mathrm{P5}_{2} / \mathrm{A}_{10}-\mathrm{P5}_{6} / \mathrm{A}_{14}$	$\mathrm{~A}_{10}-\mathrm{A}_{14}$	Address input pins for PROM operations

Table 6. Pin Functions During PROM Programming (cont)

Pin	Pin*	Function
$\begin{aligned} & \mathrm{P4}_{0} / \mathrm{AD}_{0}-\mathrm{P} 4_{7} / \\ & A D_{7} \end{aligned}$	$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data pins for PROM operations
$\mathrm{P6}_{5} \overline{\mathrm{WR}}$	$\overline{C E}$	Strobes data into the PROM
$\mathrm{P6}_{4} / \overline{\mathrm{RD}}$	$\overline{O E}$	Enables a data read from the PROM
$\mathrm{P} 2_{0} / \mathrm{NMI}$	NMI	PROM programming mode is entered by applying +12.5 volts to this pin
RESET	$\overline{\text { RESET }}$	PROM programming mode requires applying a low voltage to this pin
$\overline{E A}$	$V_{P P}$	High voltage applied to this pin for program write/verify
$\underline{V_{D D}}$	$V_{D D}$	Positive power supply pin
$\mathrm{V}_{\text {SS }}$	$V_{S S}$	Ground

*Pin name in PROM programming mode.

Table 7. Summary of Operation Modes for PROM Programming

Mode	NMI	RESET	$\overline{\mathrm{CE}}$	$\overline{\mathrm{OE}}$	$\mathrm{V}_{\text {PP }}$	V_{DD}	$\mathrm{D}_{0}-\mathrm{D}_{7}$
Program write	+12.5V	L	L	H	$+12.5 \mathrm{~V}$	+6V	Data input
Program verify	+12.5V	L	H	L	$+12.5 \mathrm{~V}$	$+6 \mathrm{~V}$	Data output
Program inhibit	$+12.5 \mathrm{~V}$	L	H	H	$+12.5 \mathrm{~V}$	$+6 \mathrm{~V}$	High Z
Read out	$+12.5 \mathrm{~V}$	L	L	L	$+5 \mathrm{~V}$	$+5 \mathrm{~V}$	Data output
Output disable	$+12.5 \mathrm{~V}$	L	L	H	$+5 \mathrm{~V}$	$+5 \mathrm{~V}$	High Z
Standby	+12.5V	L	H	L/H	$+5 \mathrm{~V}$	$+5 \mathrm{~V}$	High Z

Note: When +12.5 V is applied to V_{Pp} and +6 V to V_{DD}, both $\overline{\mathrm{CE}}$ and
$\overline{O E}$ cannot be set to low level (L) simultaneously.

Figure 15. Pin Functions in μ PD78P218A PROM Programming Mode; 64-Pin Plastic and Ceramic Shrink DIP, 64-Pin Plastic QUIP

Notes:
(1) L: Connect these pins separately to V_{SS} through resistors.
(2) G: Connect these pins to $\mathrm{V}_{\text {SS }}$.
(3) Open: Do not connect these pins.

PROM Write Procedure

(1) Set the pins not used for programming as indicated in figures 15 and 16. Connect the RESET pin to a low level, the $V_{D D}$ and $V_{P P}$ pins to +5 V , and apply +12.5 V to the NMI pin. The $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ pins should be high.
(2) Apply +6 V to the V_{DD} pin and +12.5 V to the V_{PP} pin.
(3) Provide the initial address to the A_{0} to A_{14} pins.
(4) Provide write data.
(5) Provide 1-ms program pulse (active low) to the $\overline{\mathrm{CE}}$ pin.
(6) This data is now verified with a pulse (active low) to the $\overline{O E}$ pin. If the data has been written, proceed to step 8 ; if not, repeat steps 4 to 6 . If the data cannot be correctly written after 25 attempts, go to step 7.
(7) Classify as defective and stop write operation.
(8) Provide write data and supply program pulse (for additional writing) for 3 ms times the number of writes performed in step 5.
(9) Increment the address.
(10) Repeat steps 4 to 9 until the end address.

PROM Read Procedure

(1) Set the pins not used for programming as indicated in figures 15 and 16. Fix the RESET pin to a low level, the $V_{D D}$ and $V_{P P}$ pins to $+\underline{5 V}$, and apply +12.5 V to the NMI pin. The $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ pins should be high.
(2) Input the address of the data to be read to pins $\mathrm{A}_{0}-\mathrm{A}_{14}$.
(3) Read mode is entered with a pulse (active low) on both the $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ pins.
(4) Data is output to the D_{0} to D_{7} Pins.

EPROM Erasure

Data in an EPROM is erased by exposing the quartz window in the ceramic package to light having a wavelength shorter than 400 nm , including ultraviolet rays, direct sunlight, and fluorescent light. To prevent unintentional erasure, mask the window.
Typically, data is erased by $254-\mathrm{nm}$ ultraviolet rays. A minimum lighting level of $15 \mathrm{Ws} / \mathrm{cm}^{2}$ (ultraviolet ray intensity x exposure time) is required to completely erase written data. Erasure by an ultraviolet lamp rated at $12 \mathrm{~mW} / \mathrm{cm}^{2}$ takes approximately 15 to 20 minutes. Remove any filter on the lamp and place the devicewithin 2.5 cm of the lamp tubes.

Figure 16. Pin Functions in μ PD78P218A PROM Programming Mode; 64-Pin Plastic QFP

Notes:
(1) L: Connect these pins separately to $\mathrm{V}_{S S}$ through resistors.
(2) G : Connect these pins to V_{SS}.
(3) Open: Do not connect these pins.

DC Programming Characteristics
$T_{A}=25 \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{IP}}=12.5 \pm 0.5 \mathrm{~V}$ applied to NMI pin; $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Symbol*	Min	Typ	Max	Unit	Condition
High-level input voltage	$\mathrm{V}_{\text {IH }}$	V_{IH}	2.4		$\mathrm{V}_{\text {DDP }}+0.3$	V	
Low-level input voltage	$V_{\text {IL }}$	$V_{\text {IL }}$	-0.3		0.8	V	
Input leakage current	LIP	ILI			10	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{1} \leq \mathrm{V}_{\text {DDP }}$
High-level output voltage	$\mathrm{V}_{\mathrm{OH} 1}$	VOH_{1}	2.4			V	$\mathrm{l}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
	$\mathrm{V}_{\mathrm{OH} 2}$	$\mathrm{V}_{\mathrm{OH} 2}$	$\mathrm{V}_{\text {DD }}-0.7$			V	$\mathrm{IOH}^{\prime}=-100 \mu \mathrm{~A}$
Low-level output voltage	V_{OL}	V_{OL}			0.45	V	$\mathrm{IOL}^{\prime}=2.1 \mathrm{~mA}$
Output leakage current	lo				10	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{DDP}}, \overline{\mathrm{OE}}=\mathrm{V}_{1 H}$
NMI pin high-voltage input current	$1 / 1 P$				± 10	$\mu \mathrm{A}$	
VDDP power voltage	$V_{\text {DDP }}$	$V_{C c}$	5.75	6.0	6.25	V	Program memory write mode
			4.5	5.0	5.5	V	Program memory read mode
VPP power voltage	$V_{P P}$	$V_{\text {PP }}$	12.2	12.5	12.8	V	Program memory write mode
				$=V_{D}$		V	Program memory read mode

DC Programming Characteristics (cont)

Parameter	Symbol	Symbol*	Min	Typ	Max	Unit	Condition
$V_{\text {DDP }}$ power current	IDDP	Icc		5	30	mA	Program memory write mode
				5	30	mA	Program memory read mode $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}, V_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$
$V_{\text {PP }}$ power current	lpp	Ipp		5	30	mA	Program memory write mode $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$
				1	100	$\mu \mathrm{A}$	Program memory read mode

*Corresponding symbols of the μ PD27C256A.

AC Programming Characteristics (Write Mode)

$T_{A}=25 \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{IP}}=12.5 \pm 0.5 \mathrm{~V}$ applied to NMI pin; $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=6 \pm 0.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{PP}}=12.5 \pm 0.3 \mathrm{~V}$

Parameter	Symbol	Symbol*	Min	Typ	Max	Unit	Conditions
Address setup time to $\overline{\mathrm{CE}} \downarrow$	$t_{S A C}$	$t_{\text {AS }}$	2			$\mu \mathrm{s}$	
Data input to $\overline{\mathrm{OE}} \downarrow$ delay time	${ }^{\text {t DDO }}$	toes	2			$\mu \mathrm{s}$	
Input data setup time to $\overline{\mathrm{CE}} \downarrow$	$t_{\text {SIDC }}$	${ }^{\text {t }}$ S	2			$\mu \mathrm{s}$	
Address hold time from $\overline{\mathrm{CE}} \uparrow$	$t_{\text {HCA }}$	${ }^{\text {t }}$ H	2			$\mu \mathrm{s}$	
Input data hold time from $\overline{\mathrm{CE}} \uparrow$	$t_{\text {HCID }}$	${ }^{\text {t }} \mathrm{DH}$	2			$\mu \mathrm{s}$	
Output data hold time from $\overline{O E} \uparrow$	$\mathrm{t}_{\mathrm{HOOD}}$	$t_{\text {DF }}$	0		130	ns	
$V_{\text {PP }}$ setup time to $\overline{C E} \downarrow$	tsVPC	tVPS	1			ms	
$\mathrm{V}_{\text {DDP }}$ setup time to $\overline{\mathrm{CE}} \downarrow$	${ }^{\text {t SVDC }}$	tves	1			ms	
Initial program pulse width	tWL1	tpw	0.95	1.0	1.05	ms	
Additional program pulse width	${ }^{\text {tWL2 }}$	topW	2.85		78.75	ms	
NMI high-voltage input setup time to $\overline{C E} \downarrow$	${ }^{\text {tSPC }}$		2			$\mu \mathrm{s}$	
$\overline{\overline{O E} \downarrow \text { to data output time }}$	${ }^{\text {t DOOD }}$	toe			150	ns	

*Corresponding symbols of the μ PD27C256A.
AC Programming Characteristics (Read Mode)

Parameter	Symbol	Symbol*	Min	Typ	Max	Unit	Condition
Address to data output time.	tDAOD	$t_{A C C}$			200	ns	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$
$\overline{C E} \downarrow$ to data output time	${ }^{\text {t }}$ DCOD	${ }_{\text {t }}^{\text {ce }}$			200	ns	$\overline{O E}=V_{\text {IL }}$
$\overline{O E} \downarrow$ to data output time	${ }^{\text {t }}$ OOOD	${ }^{\text {toE }}$			75	ns	$\overline{C E}=V_{\text {IL }}$
Data hold time from $\overline{O E} \uparrow$	$t_{H C O D}$	$t_{\text {dF }}$	0		60	ns	$\overline{C E}=V_{\text {IL }}$
Data hold time from address	thaod	${ }^{\text {tor }}$	0			ns	$\overline{C E}=\overline{O E}=V_{I L}$

[^11]
PROM Timing Diagrams

PROM Write/Verifying Mode

PROM Read Mode

8-Bit, K-Series Microcontrollers With Analog Comparators, Real-Time Output Ports

Description

The μ PD78220, μ PD78224, and μ PD78P224 are members of the K-Series ${ }^{\oplus}$ of microcontrollers. These 8 -bit, single-chip microcontrollers contain extended addressing capabilities for up to 1 M byte of external memory. The devices also integrate sophisticated analog and digital peripherals as well as two low-power standby modes that make them ideal for low-power/ battery backup applications.
The μ PD78224 family focuses on embedded control with features such as hardware multiply and divide, two levels of interrupt response, four banks of main registers for multitasking, and macro service for processorindependent peripheral and memory DMA. Augmenting this high-performance core are advanced components; for example, eight analog voltage comparators, two independent serial interfaces, several counter/timers for PWM outputs, and a real-time output port. On board memory includes 640 bytes of RAM and 16K bytes of mask ROM or OTP ROM.

The macro service routine allows data to be transferred between any combination of memory and peripherals independent of the current program execution. The four banks of processor registers allow simplified context switching to be performed. Both features, combined with powerful on-chip peripherals, make the μ PD78224 family ideal for a wide variety of embedded control applications.

Features

- Complete single-chip microcontroller
-8-bit ALU
- 16K ROM
-640 bytes RAM
- Both 1-bit and 8-bit logic
- Instruction prefetch queue
- Hardware multiply and divide
- Memory expansion
- 8085 bus-compatible
-64K program address space
- 1M data address space
- Large I/O capacity: up to 71 I/O port lines
- Extensive timer/counter functions
- One 16-bit timer/counter/event counter
- Two 8-bit timer/counter/event counters

K-Series is a registered trademark of NEC Electronics,Inc.

- Four timer-controlled PWM channels
- Two 4-bit real-time output ports
- Extensive interrupt handler
- Vectored interrupt handling
- Programmable priority
- Macro service mode
- Two independent serial ports
- Refresh output for pseudostatic RAM
- On-chip clock generator
$-12-\mathrm{MHz}$ maximum CPU clock frequency
$-0.33-\mu \mathrm{s}$ instruction cycle
- CMOS silicon gate technology
- 5-volt power supply

Ordering Information

Part Number	ROM	Package (Dwg)	
μ PD78220L	ROMless	84-pin PLCC (P84L-50A3-1)	
μ PD78224L-xxx	16K mask ROM		
μ PD78P224L	16K OTP ROM		
μ PD78220GJ-5BG	ROMless	94-pin plastic QFP μ PD78224GJ-xxx-5BG	16K mask ROM
	(S94GJ-80-5BG-1)		
μ PD78P224GJ-5BG	16K OTP ROM		

Pin Identification

Symbol	Function
$\mathrm{PO}_{0}-\mathrm{PO}_{7}$	Output port 0
$\underline{\mathrm{P}_{0}-\mathrm{P1}_{7}}$	I/O port 1
$\mathrm{P} 20 / \mathrm{NMI}$	Input port 2/Nonmaskable interrupt input
$\mathrm{P} 2_{1}-\mathrm{P} 2_{2} /$ INTPO - INTP1	Input port 2/Ext interrupt input/timer trigger
$\mathrm{P} 23^{2} / \mathrm{NTP} 2 / \mathrm{Cl}$	Input port 2/Ext interrupt input/Clock input
$\mathrm{P} 24^{4} / \mathrm{NTP} 3$	Input port 2/Ext interrupt input/timer trigger
$\mathrm{P}_{5} /$ /NTP4	Input port 2/Ext interrupt input
$\mathrm{P} 26^{6} / \mathrm{NTP5}$	Input port 2/Ext interrupt input
P27/INTP6/SI	Input port 2/Ext interrupt input/Serial input
$\underline{P 3} /{ }_{0} \times \mathrm{D}$	1/O port 3/Serial receive input
$\mathrm{P} 31 / \mathrm{TxD}^{\text {/ }}$	1/O port 3/Serial transmit output
$\mathrm{P} 32^{/} \overline{\mathrm{SCK}}$	1/O port 3/Serial clock input/output
$\mathrm{P3}_{3} / \mathrm{SO} / \mathrm{SBO}$	I/O port 3/Serial output/Serial bus 1/O
$\mathrm{P3}_{4}-\mathrm{P} 3_{7} / \mathrm{TOO}-\mathrm{TO}$	1/O port 3/Timer output
$P 4_{0}-P 4_{7} / A D_{0}-A D_{7}$	1/O port 4/Lower address byte/data bus
$\underline{P 5}{ }^{0}-\mathrm{P} 5_{7} / A_{8}-A_{15}$	1/O port 5/Upper address byte

Pin Identification

Symbol	Function
$\mathrm{P} 6_{0}-\mathrm{P} 6_{3} / \mathrm{A}_{16}-\mathrm{A}_{19}$	Output port 6/Extended address nibble
$\mathrm{P} 6_{4} / \overline{\mathrm{RD}}$	I/O port 6/Read strobe output
$\mathrm{P} 6_{5} \overline{\mathrm{WR}}$	I/O port $6 /$ Write strobe output
$\mathrm{P} 6_{6} \overline{\text { WAIT }}$	I/O port $6 /$ Wait input
$\mathrm{P} 6_{7} / \overline{\text { REFREQ }}$	I/O port $6 /$ Rerresh output
$\mathrm{P} 7_{0}-\mathrm{P} 7_{6}$	I/O port 7
$\mathrm{PTO}-\mathrm{PT7}$	Port T analog inputs to voltage comparators

Symbol	Function
$\overline{A S T B}$	Address strobe output
$\overline{\overline{R E S E T}}$	External reset input
$\overline{\overline{E A}}$	External memory access control input
$\mathrm{X} 1, \mathrm{X} 2$	External crystal or external clock input
V_{DD}	Positive power supply input
V_{SS}	Power return; normally ground
NC	No connection
IC	Internal connection; connect to $V_{S S}$

Pin Configurations

84-Pin PLCC

Pin Functions

$\mathrm{PO}_{0}-\mathrm{PO}_{7}$. Port 0 is an 8 -bit, tristate output port. Port 0 can also be configured as two 4-bit, real-time (timercontrolled) output ports.
$\mathrm{P1}_{0}-\mathrm{P1}_{7}$. Port 1 is an 8 -bit bidirectional tristate port. Bits are individually programmable as input/output. Each pin is capable of driving an LED directly (8 mA).
$\mathrm{P}_{\mathbf{0}} \mathbf{- P} \mathbf{2}_{7}$. Port 2 is an 8 -bit input port.
NMI. Nonmaskable interrupt input.
INTP0 - INTP6. External interrupt inputs. INTPO, INTP1, and INTP3 are timer capture trigger inputs.
CI. External clock input to the timer.

SI. Serial data input for three-line serial I/O mode.
$\mathrm{P}_{3}-\mathrm{P}_{3}$. Port 3 is an 8 -bit tristate $1 / \mathrm{O}$ port, each bit programmable as input/output.

RxD. Receive serial data input.
TxD. Transmit serial data output.
$\overline{\text { SCK. Serial shift clock output/input. }}$
SO. Serial data output for three-line serial I/O mode.
SBO. I/O bus for the clocked serial interface.
TOO - TO3. Timer flip-flop outputs
$\mathrm{P4}_{\mathbf{0}}$ - $\mathbf{P 4}_{\mathbf{7}}$. Port 4 is an 8-bit, bidirectional tristate port.
$A D_{0}-A D_{7}$. Multiplexed address/data bus used with external memory or expanded I / O.
P5 $5_{0}-\mathrm{P}_{7}$. Port 5 is an 8-bit, tristate output port.
$A_{\mathbf{8}}$ - $\mathbf{A}_{\mathbf{1 5}}$. Upper-order address bus used with external memory or expanded I/O.
$\mathrm{P} 6_{0}-\mathrm{P} 6_{3}$. Pins $\mathrm{P} 6_{0}-\mathrm{P} 6_{3}$ of port 6 are outputs.
A_{16} - A_{19}. Extended-order address bus used with external memory.
$\mathrm{P6}_{4}-\mathrm{P} 6_{7}$. Pins $\mathrm{P6}_{4}-\mathrm{P} 6_{7}$ of port 6 are individually programmable tristate input/output pins.
$\overline{\mathrm{RD}}$. Read strobe output used by external memory (or data registers) to place data on the I/O bus during a read operation.
$\overline{\text { WR. Write strobe output used by external memory (or }}$ data registers) to latch data from the I/O bus during a write operation.

WAIT. Wait signal input.
REFRQ. Refresh pulse output used by external pseudostatic memory.
$\mathrm{P} 7_{0}-\mathrm{P} 7_{6}$. Port 7 has seven individually programmable tristate I/O pins.
PTO - PT7. Port T is an eight-line input port. The analog voltage on each line is compared continuously with a programmable threshold voltage.

ASTB. Address strobe output used by external circuitry to latch the low-order 8 address bits during the first part of a read or write cycle.
RESET. A low level on this external reset input sets all registers to their specified reset values. This pin, together with $\mathrm{P} 2_{0} / \mathrm{NMI}$, sets the $\mu \mathrm{PD} 78 \mathrm{P} 224$ in the PROM programming mode.
$\overline{E A}$. Control signal input that selects external memory or internal ROM as the program memory. When EA is low, ROMless mode is initiated and external memory is accessed.

X1, X2. For frequency control of the internal clock oscillator, a crystal is connected to X 1 and X 2 . If the clock is supplied by an external source, the clock signal is connected to X 1 and the inverted clock signal is connected to X2.

Block Diagram

FUNCTIONAL DESCRIPTION

Timing

The maximum clock frequency is 12 MHz . The clock is derived from an external crystal or an external oscillator. The internal processor clock is two-phase and the machine states are executed at a rate of 6 MHz . The shortest instructions require two states (333 ns). The CPU contains a one-byte instruction prefetch. This allows a subsequent instruction to be fetched during the execution of an instruction that does not reference memory.

Memory Map

The μ PD78224 family has 1 M bytes of address space. This address space is partitioned into 64 K bytes of program memory starting at address 00000 H . (See figure 1). The remainder of the 1 M bytes can be accessed as data memory space.

Figure 1. Memory Map

External memory is supported by $1 / O$ port 4, an 8 -bit multiplexed address/data bus. The memory mapping register controls the size of external memory as well as the number of added wait states. The upper address byte is derived from port 5 , and the extended address nibble is derived from port 6 .

The μ PD78224 has on-chip mask ROM occupying the space from 00000 H to 03FFFH. When the ROM is used and no other program or data space is required, ports 4,5 , and 6 are available as additional I/O ports.

General-Purpose Registers

The general-purpose registers are mapped into specific addresses in data memory. They are made up of four banks, each bank consisting of eight 8 -bit or four 16 -bit registers. The register bank used is specified by a CPU instruction. This can be checked by reading RBS0 and RBS1 in the program status word (PSW). The general-purpose register configuration is shown in figure 2.

Special Registers

There are three different special registers. The first is a 16-bit binary counter that holds the next program address to be executed and is named the program counter. The stack pointer is the second special 16 -bit register. The stack pointer holds the address of the stack area (a last in, first out system). The third special register is an 8 -bit program status word. This register contains various flags that are set or preset depending on the results of instruction execution. The program status word format is as follows:

$$
\begin{array}{ll}
7 & 0
\end{array}
$$

IE	Z	RBS1	AC	RBSO	0	ISP	CY

CY	Carry flag
ISP	Interrupt priority status flag
RBS0, RBS1	Register bank selection flags
AC	Auxiliary carry flag
Z	Zero flag
IE	Interrupt request enable flag

Special Function Registers

These registers are assigned to special functions such as the mode and control registers for on-chip peripheral hardware. They are mapped into the 256 -byte memory space from OFFOOH to OFFFFH. Table 1 is a list of special function registers.

Figure 2. Register Mapping

() =Absolute Name

Table 1. Special Function Registers

Address	Register (SFR)	Symbol	R/W	Access Units (Bits)			State After Reset
				1	8	16	
OFFOOH	Port 0	PO	R/W	x	X	-	Undefined
OFF01H	Port 1	P1	R/W	x	x	-	Undefined
OFFO2H	Port 2	P2	R	x	x	-	Undefined
OFFO3H	Port 3	P3	R/W	x	x	-	Undefined
OFFO4H	Port 4	P4	R/W	x	x	-	Undefined
OFFO5H	Port 5	P5	R/W	x	x	-	Undefined
OFFO6H	Port 6	P6	R/W	x	x	-	xOH
OFF07H	Port 7	P7	R/W	x	x	-	Undefined
OFFOAH	Port 0 buffer register (low)	POL	R/W	x	x	-	Undefined
OFFOBH	Port 0 buffer register (high)	POH	R/W	x	x	-	Undefined
OFFOCH	Real-time output port control register	RTPC	R/W	X	X	-	OOH
OFF10H- FF11H	16-bit compare register 0 (16-bit timer/counter)	CROO	R/W	-	-	X	Undefined
OFF12HFF13H	16-bit compare register 1 (16-bit timer/counter)	CR01	R/W	-	-	X	Undefined
OFF14H	8 -bit compare register (8-bit timer/counter 1)	CR10	R/W	-	x	-	Undefined
OFF15H	8 -bit compare register (8-bit timer/counter 2)	CR20	R/W	-	X	-	Undefined
OFF16H	8 -bit compare register (8-bit timer/counter 2)	CR21	R/W	-	x	-	Undefined
OFF17H	BRG 8-bit compare register	CR30	R/W	-	x	-	Undefined
0FF18HFF19H	16-bit capture register (16-bit timer/counter)	CR02	R	-	-	x	Undefined
OFF1AH	8 -bit capture register (8-bit timer/counter 2)	CR22	R	-	x	-	Undefined
OFF1CH	8 -bit capture/compare register (8-bit timer/counter 1)	CR11	R/W	-	x	-	Undefined
OFF20H	Port 0 mode register	PMO	W	-	X	-	FFH
OFF21H	Port 1 mode register	PM1	W	-	X	-	FFH
OFF23H	Port 3 mode register	PM3	W	-	X	-	FFH
OFF25H	Port 5 mode register	PM5	W	-	X	-	FFH
OFF26H	Port 6 mode register	PM6	R/W	-	x	-	FFH
OFF27H	Port 7 mode register	PM7	W	-	X	-	7FH
OFF30H	Capture/compare control register 0	CRCO	W	-	x	-	10 H
OFF31H	Timer output control register	TOC	W	-	X	-	OOH
OFF32H	Capture/compare control register 1	CRC1	W	-	x	-	OOH
OFF34H	Capture/compare control register 2	CRC2	W	-	x	-	OOH
OFF43H	Port 3 mode control register	PMC3	R/W	X	X	-	OOH
OFF50H- FF51H	16-bit timer register 0	TMO	R	-	-	X	0000 H
OFF52H	8-bit timer register 1: $\mathrm{CH}-1$	TM1	R	-	x	-	OOH
OFF54H	8-bit timer register 2: $\mathrm{CH}-2$	TM2	R	-	x	-	OOH
OFF56H	BRG 8-bit timer register	TM3	R	-	x	-	OOH
OFF5CH	Prescaler mode register 0	PRMO	W	-	X	-	OOH
OFF5DH	Timer control register 0	TMCO	R/W	-	X	-	OOH

Table 1. Special Function Registers (cont)

Address	Register (SFR)	Symbol		R/W	Access Units (Bits)			State After Reset
					1	8	16	
OFF5EH	Prescaler mode register 1	PRM1		W	-	x	-	OOH
OFF5FH	Timer control register 1	TMC1		R/W	-	X	-	OOH
OFF6EH	Port T mode register	PMT		R/W	x	X	-	OOH
OFF6FH	Port T	PT		R	x	X	-	Undefined
OFF8OH	Clocked serial interface mode register	CSIM		R/W	x	X	-	OOH
OFF82H	Serial bus interface control register	SBIC		R/W	x	X	-	OOH
OFF86H	Serial shift register	SIO		R/W	-	X	-	Undefined
OFF88H	Asynchronous serial interface mode register	ASIM		R/W	x	x	-	80 H
OFF8AH	Asynchronous serial interface status register	ASIS		R	x	X	-	OOH
OFF8CH	Serial receive buffer: UART	RxB		R	-	x	-	Undefined
OFF8EH	Serial transmit shift register: UART	TxS		W	-	x	-	Undefined
OFFCOH	Standby control register	STBC		R/W	-	x	-	0000x000B
OFFC4H	Memory expansion mode register	MM		R/W	x	x	-	2 H
OFFC5H	Programmable wait control register	PW		R/W	x	x	-	80 H
OFFC6H	Refresh mode register	RFM		R/W	x	X	-	00 H
OFFEOH	Interrupt request flag register L	IFOL	IFO	R/W	x	x	x	Undefined
OFFE1H	Interrupt request flag register H	IFOH		R/W	x	x	-	Undefined
OFFE4H	Interrupt mask flag register L	MKOL	MKO	R/W	x	x	x	FFFFH
OFFE5H	Interrupt mask flag register H	MKOH		R/W	x	X	-	FFFFH
OFFE8H	Priority specification flag register L	PROL	PRO	R/W	x	x	x	FFFFH
OFFE9H	Priority specification flag register H	PROH		R/W	x	x	-	FFFFH
OFFECH	Interrupt service mode speification flag register L	ISMOL	ISMO	R/W	x	X	X	0000 H
OFFEDH	Interrupt service mode specification flag register H	ISMOH		R/W	x	X	-	0000 H
OFFF4H	External interrupt mode register 0	INTMO		R/W	x	X	-	OOH
OFFF5H	External interrupt mode register 1	INTM1		R/W	x	X	-	OOH
OFFF8H	Interrupt status register	IST		R/W	x	X	-	OOH

Input/Output Ports

Functions of ports PO-P7 and port PT are explained below. All ports are 8 bits wide except $P 7$, which is 7 bits wide.

Port	Function
P0	8-bit output port or two 4-bit real time output ports
P1	Bit programmable for input or output; large current capacity
P2	Input
P3	Bit programmable for input or output
P4	Input or output
$P 6_{0}-P 6_{3}$	Output
$P 6_{4}-P 6_{7}$	Output
$P 7$	Bit programmable for input or output
$P T$	Inputs to eight voltage comparators

Real-time Output Port

The real-time output port (figure 3) shares pins with port 0 . The high and low nibbles may be treated separately or together. In the real-time output function, data stored beforehand in the buffer register is transferred to the output latch simultaneously with the generation of either a timer interrupt or external interrupt. Using the real-time output function in conjunction with the macro service function enables port 0 to output preprogrammed patterns at preprogrammed variable time intervals.

Port T

As shown in figure 4, the analog input voltage on each line of port T is compared with a programmable threshold voltage. The comparator output is 1 if the input voltage is higher than the threshold, or 0 if it is lower.
Four bits from the PTM regster are decoded to set the threshold voltage at one of 15 steps: $V_{D D} \times 1 / 16$ through $V_{D D} \times 15 / 16$. Each comparator operates continously as follows.

Figure 3. Real-Time Output Port

(1) Threshold voltage is set by writing the PTM register.
(2) As each comparison is completed, the result is latched in port T and the next comparison begins.
(3) Unless the PTM regiser is written, the threshold voltage is not changed.
Two bits from the PTM register specify the connection of pullup resistors in 4 -bit units. When PTM is set to 00 H , the resistor ladder is released and threshold voltage is not supplied to the comparators. This can be done in the standby mode to eliminate unnecessary current drain.

Serial Interface

The μ PD78224 family has two independent serial interfaces.

- Asynchronous serial interface (UART) (figure 5)
- Clock-synchronized serial interface (figure 6)

A universal asynchronous receiver transmitter (UART) is used as an asynchronous serial interface. This interface transfers one byte of data following a start bit. The μ PD78224 contains a baud rate generator. This allows data to be transferred over a wide range of transfer rates.

The clock-synchronized serial interface has two different modes of operation:

- Three-line serial I/O mode.

In this mode, data 8 bits long is transferred along three lines: a serial clock (SCK) line and two serial bus lines lines (SO and SI). This mode is convenient when a μ PD78224 device is connected to peripheral I/Os and display controllers that have the conventional clock-synchronized serial interface.

- Serial bus interface mode (SBI) In this mode, the μ PD78224 family can communicate data with several devices using the serial clock (SCK) and the serial data bus (SBO) lines. This mode conforms to NEC's serial bus format. In SBI mode, addresses that select a device to communicate with, commands that direct the device, and actual data are output to the serial data bus. A handshake line, which was required for connecting several devices in the conventional clock-synchronized serial interface, is not needed.

Figure 4. Comparator Port T

Figure 5. Asynchronous Serial Interface

Figure 6. Clock-Synchronized Serial Interface

Timer/Counters

The μ PD78224 family has three timer/counters: one 16 -bit and two 8 -bit. The 16 -bit timer/counter (figure 7) has the basic functionality of an interval timer, a programmable square wave output, and a pulse-width measurer. These functions can provide a digital delayed one-shot output, a pulse-width modulated output, and a cycle measurer.

The two 8-bit timer/counters can provide the basic functions of an interval timer and a pulse-width measurer. Timer/counter 1 can also be used as a timer for output trigger generation for the real-time output port. Timer/counter 2 can also provide an external event counter, a one-shot timer, a programmable squarewave output, a pulse-width modulated output, and a cycle measurer. See figures 8 and 9 .

Figure 7. 16-Bit Timer/Counter

Figure 8. 8-Bit Timer/Counter 1

Figure 9. 8-Bit Timer/Counter 2

Interrupts

There are 18 interrupt request sources; each source is allocated a location in the vector table. (See table 2). There is one software interrupt request and one of the remaining 17 interrupts is nonmaskable. The software interrupt and the nonmaskable interrupt are unconditionally received even in the DI state. These two interrupts possess the maximum priority. The maskable interrupt requests are subject to mask control by the setting of the interrupt mask flag.
There are default priorities associated with each maskable interrupt and these can be assigned to either of two programmable priority levels. Interrupts may be serviced by the vectored interrupt method where a branch to a desired service program is executed. Interrupts may also be handled by the macro service function where a preassigned process is performed without program intervention.
μ PD78224 Family

Table 2. Interrupt Sources and Vector Addresses

Interrupt Request Type	Default Priority	Interrupt Request Source	Macro Service Handling	Vector Table Address
Software	None	BRK instruction execution	-	003EH
Nonmaskable	None	NMI (pin input edge detection)	-	0002H
Maskable	0	INTPO (pin input edge detection)	-	0006H
	1	INTP1 (pin input edge detection)	-	0008 H
	2	INTP2 (pin input edge detection)	-	000AH
	3	INTP3 (pin input edge detection)	-	000 CH
	4	INTCOO (TMO-CROO coincidence signal generation)	-	0014 H
	5	INTC01 (TMO-CR01 coincidence signal generation)	-	0016 H
	6	INTC10 (TM1-CR10 coincidence signal generation)	Yes	0018 H
	7	INTC11 (TM1-CR11 coincidence signal generation)	Yes	001 AH
	8	INTC21 (TM2-CR21 coincidence signal generation)	-	001 CH
	9	INTP4 (pin input edge detection)	Yes	000EH
	10	INTP5 (pin input edge detection)	-	0010 H
	11	INTP6 (pin input edge detection)	-	0012 H
	12	INTSER (generation of asynchronous serial interface receive error)	-	0020 H
	13	INTSR (end of asynchronous serial interface reception)	Yes	0022H
	14	INTST (end of asynchronous serial interface transmission)	Yes	0024H
	15	INTCSI (end of clocked serial interface transfer)	Yes	OO26H

Macro Service

When macro service function can be programmed to transfer data from a special function register to memory or from memory to a special function register. Transfer events are triggered by interrupt requests and take place without software intervention. There are six interrupt requests where macro servicing can be executed. The macro service function is controlled by the macro service mode register and the macro service channel pointer. The macro service mode register assigns the macro servicing mode and the macro service channel pointer indicates the address of the memory location pointers. The location of each register and its corresponding interrupt is shown in figure 10.

Refresh

The refresh signal is used with a pseudostatic RAM. The refresh cycle can be set to one of four intervals ranging from 2.6 to $21.3 \mu \mathrm{~s}$. The refresh is timed to follow a read or write operation to avoid interference.

Standby Modes

HALT and STOP functions reduce system power consumption. In HALT mode, the CPU stops and the system clock continues to run. A release of the HALT mode
is initiated by an unmasked interrupt request, an NMI, or a RESET input. In the STOP mode, the CPU and system clock are both stopped, reducing the power consumption even further. The STOP mode is released by an NMI input or a RESET input.

Figure 10. Macro Service Control Word Map

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

$T_{A}=+25^{\circ} \mathrm{C}$

Operating voltage, V_{DD}	-0.5 to +7.0 V
Input voltage, V_{1}	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Output voltage, V_{O}	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Low-level output current, IOL	30 mA (peak), 15 mA (mean)
per pin	150 mA (peak), 100 mA (mean)
total, all output pins	-2 mA
High-level output current, I_{OH}	-50 mA
per pin	-40 to $+85^{\circ} \mathrm{C}$
total, all output pins	-65 to $+150^{\circ} \mathrm{C}$
Operating temperature,	
Storage temperature, $\mathrm{T}_{\mathrm{STG}}$	

Exposure to absolute maximum ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC characteristics.

Operating Conditions

Oscillation Frequency	T_{A}	V_{DD}
$\mathrm{f}_{\mathrm{XX}}=4$ to 12 MHz	-40 to $+85^{\circ} \mathrm{C}$	$+5 \mathrm{~V} \pm 5 \%$
	-10 to $+70^{\circ} \mathrm{C}$	$+5 \mathrm{~V} \pm 10 \%$

Capacitance
$T_{A}=+25^{\circ} \mathrm{C} ; V_{D D}=V_{S S}=0 \mathrm{~V}$

Item	Symbol	Max	Unit	Conditions
Input capacitance	C_{1}	20	pF	$\mathrm{f}=1 \mathrm{MHz} ;$ pins not
Output capacitance C_{0} 20 pF	used for measurement are at 0 V			
Input/output capacitance	C_{10}	20	pF	

DC Characteristics

$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{S S}=0 \mathrm{~V}$

Item	Symbol	Min	Typ	Max	Unit	Conditions
Low-level input voltage	$\mathrm{V}_{\text {IL }}$	0		0.8	V	Except PT pins
High-level input voltage	$\mathrm{V}_{1 \mathrm{H} 1}$	2.2		$V_{D D}$	V	Except PT pins and pins in Note 1
	$\mathrm{V}_{\mathrm{HH} 2}$	$0.8 \mathrm{~V}_{\text {DD }}$		$V_{\text {DD }}$	V	Pins in Note 1
Low-level output voltage	$\mathrm{V}_{\text {OL } 1}$			0.45	V	$\mathrm{l}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
	$\mathrm{V}_{\mathrm{OL} 2}$			1.0	V	$\mathrm{OL}=8.0 \mathrm{~mA}$ (Port PI pins)
High-level output voltage	$\mathrm{V}_{\mathrm{OH} 1}$	$V_{D D}-1.0$			V	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$
	$\mathrm{V}_{\mathrm{OH} 2}$	$V_{D D}-0.5$			V	$\mathrm{IOH}=-100 \mu \mathrm{~A}$
Input leakage current	l_{LI}			± 10	$\mu \mathrm{A}$	$V_{1}=0$ to $V_{D D}$
Output leakage current	Lo			± 10	$\mu \mathrm{A}$	$V_{O}=0$ to $V_{D D}$
Pullup current	IIPT		-150	-400	$\mu \mathrm{A}$	$V_{1}=0 \mathrm{~V}$; PT pins
V_{DD} power supply current	${ }^{\text {DD1 }}$		16	40	mA	Operating mode, $f_{X X}=12 \mathrm{MHz}$
	$\mathrm{I}_{\mathrm{DD} 2}$		7	20	mA	HALT mode, $\mathrm{f}_{\mathrm{XX}}=12 \mathrm{MHz}$
Data retention voltage	$V_{\text {DDDR }}$	2.5		5.5	V	STOP mode
Data retention current	IDDDR		2	20	$\mu \mathrm{A}$	STOP mode; $\mathrm{V}_{\text {DDDR }}=2.5 \mathrm{~V}$
			5	50	$\mu \mathrm{A}$	STOP mode; $\mathrm{V}_{\text {DDDR }}=5 \mathrm{~V} \pm 10 \%$

Notes:

(1) $\mathrm{X} 1, \mathrm{X} 2, \overline{\mathrm{RESET}}, \mathrm{P} 2_{0} / \mathrm{NMI}, \mathrm{P}_{1} / \mathrm{INTPO}, \mathrm{P}_{2} / \mathrm{INTP} 1, \mathrm{P} 2_{3} / \mathrm{INTP} 2 / \mathrm{Cl}$, $\mathrm{P}_{2} /$ /NTP3, $\mathrm{P}_{5} /$ INTP4, $\mathrm{P}_{6} /$ INTP5, $\mathrm{P} 2_{7} /$ INTP6/SI, $\mathrm{P3}_{2} / \mathrm{SCK}, \mathrm{P3}_{3} /$ SO/SBO, and EA pins.

Read/Write Operation

Item	Symbol	Min	Max	Unit	Conditions
X1 input clock cycle time	${ }^{\text {t }}$ Y Y (82	250	ns	
Address setup time to ASTB \downarrow	$\mathrm{t}_{\text {SAST }}$	52		ns	
Address hold time from ASTB \downarrow (Note 2)	$t_{\text {HSTA }}$	25		ns	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
Address to $\overline{\mathrm{RD}} \downarrow$ delay time	${ }_{\text {t }}^{\text {DAR }}$	129		ns	
Address float time from $\overline{\mathrm{RD}} \downarrow$	${ }_{\text {t }}^{\text {far }}$	11		ns	
Address to data input time	${ }_{\text {DAAID }}$		228	ns	
ASTB \downarrow to data input time	${ }^{\text {t }}$ DSTID		181	ns	
$\overline{R D} \downarrow$ to data input time	${ }^{\text {t DRID }}$		99	ns	
ASTB \downarrow to $\overline{\mathrm{RD}} \downarrow$ delay time	$t_{\text {DSTR }}$	52		ns	
Data hold time from $\overline{\mathrm{RD}} \uparrow$	$t_{\text {HRID }}$	0		ns	
	${ }^{\text {t }}$ DRA	124		ns	
		124		ns	
$\overline{\overline{R D}}$ low-level width	${ }^{\text {t WRL }}$	124		ns	No wait states
ASTB high-level width	twsth	52		ns	
Address to $\overline{\mathrm{WR}} \downarrow$ delay time	${ }^{\text {t }}$ AAW	129		ns	
$\overline{\text { ASTB }} \downarrow$ to data output time	tostod		142	ns	
$\overline{W R} \downarrow$ to data output time	t ${ }_{\text {DWOD }}$		60	ns	
	tDSTW1	52		ns	
	$t_{\text {t }}$	129		ns	Refresh mode
Data setup time to $\overline{\mathrm{WR}} \uparrow$	tsodwn	146		ns	
Data setup time to $\overline{W R} \downarrow$ (Note 1)	tsodwf	22		ns	Refresh mode
Data hold time from $\overline{W R} \uparrow$ (Note 2)	$t_{\text {HWOD }}$	20		ns	
	${ }^{\text {t DWST }}$	42		ns	
$\overline{\overline{W R}}$ low-level width	twWL1	196		ns	
	twWL2	114		ns	Refresh mode
Address to $\overline{\text { WAIT } ~} \downarrow$ input time	$t_{\text {DAWT }}$		146	ns	
ASTB \downarrow to WAIT \downarrow input time	$t_{\text {DSTWT }}$		84	ns	
WAIT hold time from X1 \downarrow	$t_{\text {HWTX }}$	0		ns	
$\overline{\text { WAIT }}$ setup time to $\mathrm{X} 1 \uparrow$	${ }^{\text {t }}$ SWTX*	0		ns	

Notes:

(1) When accessing a pseudostatic RAM (μ PD4168, etc.) that clocks in data at the falling edge of $\overline{W R}$, use tsoDWF instead of tsoDWR as the data setup time.
(2) The hold time includes the time during which V_{OH} and V_{OL} are retained under the following load conditions: $C_{L}=100 \mathrm{pF}$ and $R_{L}=2 \mathrm{k} \Omega$

Serial Port Operation

Item	Symbol	Min	Max	Unit	Conditions
Serial clock cycle time	${ }^{\text {t CYSK }}$	1.0		$\mu \mathrm{s}$	External clock input
		1.3		$\mu \mathrm{s}$	Internal clock/16 output
		5.3		$\mu \mathrm{s}$	Internal clock/64 output
Serial clock low-level width	${ }^{\text {twskL }}$	420		ns	External clock input
		556		ns	Internal clock/16 output
		2.5		$\mu \mathrm{s}$	Internal clock/64 output
Serial clock high-level width	${ }^{\text {t WSKH }}$	420		ns	External clock input
		556		ns	Internal clock/16 output
		2.5		$\mu \mathrm{s}$	Internal clock/64 output
$\overline{\text { SI, SBO setup time to } \overline{\text { SCK }} \uparrow\}}$	tsssk	150		ns	
SI, SBO hold time from $\overline{\text { SCK }} \downarrow$	$t_{\text {HSSK }}$	400		ns	
SO/SBO output delay time from $\overline{\text { SCK }} \downarrow$	${ }^{\text {t }}$ DSBSK1	0	300	ns	CMOS push-pull output (3-line serial I/O mode)
	${ }^{\text {t }}$ SSBSK2	0	800	ns	Open-drain output (SBI mode), $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$
	$t_{\text {HSBSK }}$	4		$t_{0} \mathrm{CX}$	SBI mode
SBO low, setup time to $\overline{\text { SCK }} \downarrow$	${ }_{\text {t }}$ SSBSK	4		${ }_{\text {tcr }}$	SBI mode
SBO low-level width	$t_{\text {WSBL }}$	4		${ }^{\text {t }} \mathrm{CYX}$	
SBO high-level width	${ }^{\text {t WSBH }}$	4		${ }^{\text {cher }}$	
RxD setup time to $\overline{S C K} \uparrow$	${ }_{\text {t }}^{\text {SRXSK }}$	80		ns	
RxD hold time after $\overline{\text { SCK }} \uparrow$	$t_{\text {HSKRX }}$	80		ns	
$\overline{\overline{S C K}} \downarrow$ to TxD delay time	toskTX		210	ns	

Comparator Port Operation

Item	Symbol	Min	Max	Unit	Conditions
Comparison accuracy	$\mathrm{V}_{\text {ACOMP }}$		100	mV	-
			100	mV	μ PD78P224
Comparison time	$\mathrm{t}_{\text {COMP }}$	128	256	$\mathrm{t}_{\text {CYX }}$	
Sampling time	$\mathrm{t}_{\text {SAMP }}$	62		$\mathrm{t}_{\text {CYX }}$	
PT input voltage	$\mathrm{V}_{\text {IPT }}$	0	$\mathrm{~V}_{\mathrm{DD}}$	V	

Interrupt Timing Operation

Item	Symbol	Min	Max	Unit	Conditions
NMI low-level width	${ }^{\text {t WNIL }}$	10		$\mu \mathrm{s}$	
NMI high-level width	${ }^{\text {t WNIH }}$	10		$\mu \mathrm{s}$	
INTPO-INTP6 low-level width	twrit	24		$t_{\text {cry }}$	
INTPO-INTP6 highlevel width	twith	24		${ }_{\text {t }}^{\text {cr }}$ X	
RESET low-level width	$t_{\text {WRSL }}$	10		$\mu \mathrm{s}$	
RESET high-level width	${ }^{\text {tWRSH }}$	10		$\mu \mathrm{s}$	

Data Retention Characteristics

Item	Symbol	Min	Typ	Max	Unit	Conditions
Data retention voltage	$\mathrm{V}_{\text {DDDR }}$	2.5		5.5	V	STOP mode
Data retention current	${ }^{\text {I DDDR }}$		2	20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {DDDR }}=2.5 \mathrm{~V}$
			5	50	$\mu \mathrm{A}$	$\mathrm{V}_{\text {DDDR }}=5 \mathrm{~V} \pm 10 \%$
$V_{\text {DD }}$ rise time	trivD	200			$\mu \mathrm{s}$	
V_{DD} fall time	$\mathrm{t}_{\mathrm{FVD}}$	200			$\mu \mathrm{s}$	

μ PD78224 Family

Data Retention Characteristics (cont)

Item	Symbol	Min	Typ	Max	Unit	Conditions
$V_{D D}$ retention time (from STOP mode setting)	$t_{\text {HVD }}$	0			ms	
STOP release signal input time	$t_{\text {DREL }}$	0			ms	
Oscillation stabilization wait time	twat	30			ms	Crystal resonator
		5			ms	Ceramic resonator
Low-level input voltage	$\mathrm{V}_{\text {IL }}$	0		$\begin{gathered} 0.1 \\ \mathrm{~V}_{\mathrm{DDDR}} \\ \hline \end{gathered}$	V	Specified pins (Note)
High-level input voltage	$\mathrm{V}_{1 \mathrm{H}}$	$\begin{gathered} 0.9 \\ \mathrm{~V}_{\text {DDDR }} \end{gathered}$		$V_{\text {DDDR }}$	V	Specified pins (Note)

Note: $\overline{\text { RESET, }} \mathrm{P2}_{0} / \mathrm{NMI}, \mathrm{P}_{1} / / \mathrm{NTPO}, \mathrm{P}_{2} / \mathrm{INTP} 1, \mathrm{P}_{3} / \mathrm{INTP} 2 / \mathrm{Cl}, \mathrm{P2}_{4} /$ INTP3, $\mathrm{P}_{5} /$ INTP4, $\mathrm{P}_{6} /$ /NTP5, $\mathrm{P} 2_{7} /{ }^{\prime} / \mathrm{NTP} / \mathrm{SI}, \mathrm{P}_{2} / \mathrm{SCK}, \mathrm{P3}_{3} / \mathrm{SO} /$ SBO, and EA pins.

Timing Dependent on tcyx

Item	Symbol	Calculation Formula (1, 2)	Min/Max	12 MHz	Unit
X1 input clock cycle time	${ }^{\text {cher }}$		Min	82	ns
Address setup time to ASTB \downarrow	$t_{\text {SAST }}$	$\mathrm{tcrx}_{\text {- }} \mathbf{3 0}$	Min	52	ns
Address to $\overline{\mathrm{RD}} \downarrow$ delay time	${ }^{\text {t }}$ DAR	$2 \mathrm{Ccyx}^{-35}$	Min	129	ns
Address float time from $\overline{\mathrm{RD}} \downarrow$	$\mathrm{t}_{\text {FAR }}$	$t_{\text {crx }} / 2-30$	Min	11	ns
Address to data input time	$t_{\text {DAID }}$	$(4+2 n) \mathrm{t}_{\mathrm{CYX}}-100$	Max	228	ns
ASTB \downarrow to data input time	$t_{\text {DSTID }}$	$(3+2 n) \mathrm{t}_{\mathrm{CrX}}-65$	Max	181	ns
$\overline{R D} \downarrow$ to data input time	$t_{\text {DRID }}$	$(2+2 n) t_{\text {cru }}-65$	Max	99	ns
$\overline{\text { ASTB } \downarrow \text { to } \overline{\mathrm{RD}} \downarrow \text { delay time }}$	$t_{\text {DSTR }}$	$\mathrm{t}_{\mathrm{CrX}}-30$	Min	52	ns
$\overline{\mathrm{RD}} \uparrow$ to address active time	$t_{\text {DRA }}$	${ }^{2} \mathrm{C}$ CYX -40	Min	124	ns
$\overline{\mathrm{RD}} \uparrow$ to ASTB \uparrow delay time	$t_{\text {DRST }}$	$2 \mathrm{t}_{\mathrm{Crx}}-40$	Min	124	ns
$\overline{\mathrm{RD}}$ low-level width	twRL	$(2+2 n) t_{C Y X}-40$	Min	124	ns
ASTB high-level width	twSTH	$\mathrm{t}_{\text {crx }}-30$	Min	52	ns
Address to $\overline{\mathrm{WR}} \downarrow$ delay time	${ }^{\text {t }}$ AAW	${ }^{2} \mathrm{C}_{\mathrm{CYX}}-35$	Min	129	ns
$\overline{\text { ASTB }} \downarrow$ to data output time	${ }^{\text {t }}$ SSTOU	$t_{\text {crx }}+60$	Max	142	ns
ASTB \downarrow to $\overline{W R} \downarrow$ delay time	${ }^{\text {t }}$ SSTW1	${ }_{\mathrm{c}}^{\text {crx }}$-30	Min	52	ns
	${ }^{\text {t }}$ DSTW2	$2 \mathrm{t}_{\text {crx }}-35$ (refresh mode)	Min	129	ns
Data setup time to $\overline{\mathrm{WR}} \uparrow$	tsodwr	$(3+2 n) t_{c r} \mathrm{x}-100$	Min	146	ns
Data setup time to $\overline{W R} \downarrow$	tsodwf	${ }^{\text {t }}$ YX -60 (refresh mode)	Min	22	ns
$\overline{\text { WR }} \uparrow$ to $\mathrm{ASTB} \uparrow$ delay time	${ }^{\text {t }}$ DWST	${ }^{\text {cherx }}$ - 40	Min	42	ns
$\overline{\text { WR low-level width }}$	twWL1	$(3+2 n) t_{c r x}-50$	Min	196	ns
	${ }^{\text {twWL2 }}$	$(2+2 n) t_{c y x}-50$ (refresh mode)	Min	114	ns
Address to $\overline{\text { WAIT } ~} \downarrow$ input time	${ }^{\text {D DAWT }}$	$3^{\text {cter }}$ - 100	Max	146	ns
ASTB \downarrow to $\overline{\text { WAIT }} \downarrow$ input time	${ }_{\text {t DSTWT }}$	$2 \mathrm{Ccyx}-80$	Max	84	ns

Note:

(1) n indicates the number of internal wait states.

Recommended Oscillator Circuit

Recommended External Clock Circuit
Clock

External Clock Operation

Item	Symbol	Min	Max	Unit	Conditions
X 1 input low-level width	${ }_{\text {twXL }}$	30	130	ns	
X 1 input high-level width	$t_{W X H}$	30	130	ns	
$X 1$ input rise time	$t_{\text {XR }}$	0	30	ns	
X 1 input fall time	${ }^{\text {t }}$ ¢F	0	30	ns	
X1 input clock cycle time	${ }_{\text {t }}^{\text {CYX }}$	82	250	ns	

Timing Waveforms

Voltage Thresholds for Timing Measurements

0.45 V

External Clock

Read Operation

Write Operation

External WAIT Input

Clock-Synchronized Serial Interface; Three-Line I/O Mode

Clock-Synchronized Serial Interface; SBI Mode

Bus Release Signal Transfer Timing

Command Signal Transfer Timing

Asynchronous Mode

Interrupt Input

Reset Input

μ PD78224 Family

Data Retention Characteristics

4c

μ PD78P224 PROGRAMMING

In the μ PD78P224, the mask ROM of μ PD78224 is replaced by a one-time programmable ROM (OTP ROM). The ROM is $16,384 \times 8$ bits and can be programmed using a general-purpose PROM writer with a μ PD27C256A programming mode.

The PA-78P224GJ/L are the socket adaptors used for configuring the μ PD78P224 to fit a standard PROM socket.

Refer to tables 3 through 6 and the PROM timing diagrams for special information applicable to PROM programming.

Table 3. Pin Functions During PROM Programming

Pin	Pin*	Function
$\mathrm{PO}_{0}-\mathrm{PO}_{7}$	$\mathrm{~A}_{0}-\mathrm{A}_{7}$	Input pins for PROM write/verify operations
$\mathrm{P}_{0} / \mathrm{A}_{8}$	$\mathrm{~A}_{8}$	Input pin for PROM write/verify operations
$\mathrm{P}_{1} / \mathrm{INTPO}$	A_{9}	Input pin for PROM write/verify operations

Table 3. Pin Functions During PROM Programming (cont)

Pin	Pin*	Function
$\begin{aligned} & { }^{P 5}{ }_{2} / \mathrm{A}_{10^{-}} \\ & P 5_{6} / \mathrm{A}_{14} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{A}_{10}- \\ & \mathrm{A}_{14} \\ & \hline \end{aligned}$	Input pins for PROM write/verify operations
$\begin{aligned} & \mathrm{P}_{0} / \mathrm{AD}_{0}- \\ & \mathrm{P}_{4} / \mathrm{AD}_{7} \end{aligned}$	$\begin{aligned} & \mathrm{D}_{0} \\ & \mathrm{D}_{7} \end{aligned}$	Data pins for PROM operations
$\mathrm{P6}_{5} / \overline{\mathrm{WR}}$	$\overline{C E}$	Strobes data into the PROM
$\mathrm{P6}_{4} / \overline{\mathrm{RD}}$	$\overline{\mathrm{OE}}$	Enables a data read from the PROM
$\mathrm{P} 2_{0} / \mathrm{NMI}$	NMI	PROM programming mode is entered by applying a high voltage to this pin
RESET	$\overline{\text { RESET }}$	PROM programming mode requires applying a low voltage to this pin
$\overline{E A}$	$V_{P P}$	High voltage applied to this pin for program write/verify
$\mathrm{V}_{\text {DD }}$	$V_{D D}$	Positive power supply pin
$V_{S S}$	$V_{S S}$	Ground

* Pin name in PROM programming mode.

Table 4. Summary of Operation Modes for PROM Programming

Mode	NMI	$\overline{\text { RESET }}$	$\overline{\mathrm{CE}}$	$\overline{\mathrm{OE}}$	$\mathrm{V}_{\mathbf{P P}}$	V_{DD}	$\mathrm{D}_{0}-\mathrm{D}_{7}$
Program write	+12.5 V	L	L	H	+12.5 V	+6 V	Data input
Program verify	+12.5 V	L	H	L	+12.5 V	+6 V	Data output
Program inhibit	+12.5 V	L	H	H	+12.5 V	+6 V	High Z
Read out	+12.5 V	L	L	L	+5 V	+5 V	Data output
Output disable	+12.5 V	L	L	H	+5 V	+5 V	High Z
Standby	+12.5 V	L	H	L / H	+5 V	+5 V	High Z

Note: When +12.5 V is applied to V_{PP} and +6 V to V_{DD}, both $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ cannot be set to low level (L) simultaneously.

DC Programming Characteristics
$\mathrm{T}_{\mathrm{A}}=25 \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{IP}}=12.5 \pm 0.5 \mathrm{~V}$ applied to NMI pin; $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Symbol*	Min	Typ	Max	Unit	Condition
High-level input voltage	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	2.4		$V_{\text {DDP }}+0.3$	V	
Low-level input voltage	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	-0.3		0.8	v	
Input leakage current	$\mathrm{I}_{\text {LIP }}$	${ }_{L}$			10	$\mu \mathrm{A}$	$0 \leq V_{1} \leq V_{\text {DDP }}$
High-level output voltage	$\mathrm{V}_{\mathrm{OH} 1}$	$\mathrm{V}_{\mathrm{OH} 1}$	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
	$\mathrm{V}_{\mathrm{OH} 2}$	$\mathrm{V}_{\mathrm{OH} 2}$	$\mathrm{V}_{\mathrm{DD}}-0.7$			V	$\mathrm{IOH}^{\prime}=-100 \mu \mathrm{~A}$
Low-level output voltage	V_{OL}	V_{OL}			0.45	v	$\mathrm{l}_{\mathrm{OL}}=2.1 \mathrm{~mA}$
Output leakage current	Lo				10	$\mu \mathrm{A}$	$0 \leq V_{O} \leq V_{\text {DDP }}, \overline{O E}=V_{I H}$
NMI pin high-voltage input current	1 IP				± 10	$\mu \mathrm{A}$	
$\mathrm{V}_{\text {DDP }}$ power voltage	$V_{\text {DDP }}$	$\mathrm{V}_{C C}$	5.75	6.0	6.25	V	Program memory write mode
			4.5	5.0	5.5	V	Program memory read mode
$\mathrm{V}_{\text {PP }}$ power voltage	$V_{\text {PP }}$	$V_{\text {PP }}$	12.2	12.5	12.8	V	Program memory write mode
				$V_{P P}=V_{\text {DDP }}$		V	Program memory read mode
$\mathrm{V}_{\text {DDP }}$ power current	$1 l_{\text {d }}$	Icc		5	30	mA	Program memory write mode
				5	30	mA	Program memory read mode $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$
$\mathrm{V}_{\text {PP power current }}$	Ipp	1 lpp		5	30	mA	Program memory write mode $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$
				1	100	$\mu \mathrm{A}$	Program memory read mode

* Corresponding symbols of the $\mu \mathrm{PD} 27 \mathrm{C} 256 \mathrm{~A}$.

AC Programming Characteristics (Write Mode)

$\mathrm{T}_{\mathrm{A}}=25 \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathbb{I P}}=12.5 \pm 0.5 \mathrm{~V}$ applied to NMI pin; $\mathrm{V}_{S S}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=6 \pm 0.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{PP}}=12.5 \pm 0.3 \mathrm{~V}$

Parameter	Symbol	Symbol*	Min	Typ	Max	Unit	Conditions
Address setup time to $\overline{C E} \downarrow$	${ }^{\text {t }}$ SAC	$t_{\text {AS }}$	2			$\mu \mathrm{s}$	
Data input to $\overline{O E} \downarrow$ delay time	$t_{\text {DDOO }}$	toes	2			$\mu \mathrm{s}$	
Input data setup time to $\overline{\mathrm{CE}} \downarrow$	$\mathrm{t}_{\text {SIDC }}$	$t_{\text {DS }}$	2			$\mu \mathrm{s}$	
Address hold time from $\overline{\mathrm{CE}} \uparrow$	$\mathrm{t}_{\mathrm{HCA}}$	$t_{\text {AH }}$	2			$\mu \mathrm{s}$	
Input data hold time from $\overline{\mathrm{CE}} \uparrow$	$t_{\text {HCID }}$	$t_{\text {DH }}$	2			$\mu \mathrm{s}$	
Output data hold time from $\overline{O E} \uparrow$	$\mathrm{t}_{\mathrm{HOOD}}$	t_{DF}	0		130	ns	
$V_{\text {PP }}$ setup time to $\overline{\mathrm{CE}} \downarrow$	${ }^{\text {t SVPC }}$	tVPS	1			ms	
$V_{\text {DDP }}$ setup time to $\overline{C E} \downarrow$	tsvoc	tves	1			ms	
Initial program pulse width	${ }^{\text {t }}$ WL1	$t_{\text {pw }}$	0.95	1.0	1.05	ms	
Additional program pulse width	tWL2	topw	2.85		78.75	ms	
NMI high-voltage input setup time to $\overline{\mathrm{CE}} \downarrow$	$\mathrm{t}_{\text {SPC }}$		2			$\mu \mathrm{s}$	
Address to data output time	$t_{\text {DAOD }}$	$t_{A C C}$			200	ns	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$
$\overline{\mathrm{CE}} \downarrow$ to data output time	${ }^{\text {t }}$ DCOD	$t_{\text {ce }}$			200	ns	$\overline{O E}=V_{I L}$
$\overline{\mathrm{OE}} \downarrow$ to data output time	${ }^{\text {t }}$ OOD	${ }_{\text {toe }}$			75	ns	$\overline{C E}=V_{\text {IL }}$
Data hold time from $\overline{O E} \uparrow$	$t_{\text {HCOD }}$	$t_{\text {bF }}$	0		60	ns	$\overline{C E}=V_{\text {IL }}$
Data hold time from address	$\mathrm{t}_{\text {HAOD }}$	${ }^{\text {tor }}$	0			ns	$\overline{C E}=\overline{O E}=V_{\text {IL }}$

[^12]
PROM Write Procedure

(1) Connect the RESET pin to a low level, and apply +12.5 V to the NMI pin.
(2) Apply +6 V to the $V_{D D}$ pin and +12.5 V to the $\mathrm{V}_{P P}$ pin.
(3) Provide the initial address.
(4) Provide write data.
(5) Provide 1-ms program pulse (active low) to the CE pin.
(6) This data is now verified with a pulse (active low) to the $\overline{O E}$ pin. If the data has been written, proceed to step 8; if not, repeat steps 4 to 6 . If the data cannot be correctly written after 25 attempts, go to step 7.
(7) Classify as defective and stop write operation.
(8) Provide write data and supply program pulse (for additional writing) for 3 ms times the number of writes performed in steps 5 .
(9) Increment the address.
(10) Repeat steps 4 to 9 until the end address.

PROM Read Procedure

(1) Fix the RESET pin to a low level, and apply +12.5 V to the NMI pin.
(2) Input the address of the data to be read to pins $A_{0}-A_{14}$.
(3) Read mode is entered with a pulse (active low) on both the $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ pins.
(4) Data is output to the D_{0} to D_{7} Pins.

PROM Timing Diagrams

PROM Write Mode

Notes:
(1) V_{DD} must be applled before applying V_{Pp}. It should be removed after removing V_{PP}.
(2) $V_{P P}$ must not exceed +13 V , Including overshoot.

PROM Timing Diagrams
PROM Read Mode

8-Bit, K-Series Microcontrollers With A/D and D/A Converters, Real-Time Output Ports

June 1993

Description

The μ PD78233, μ PD78234, μ PD78237, μ PD78238, and μ PD78P238 are members of the K-Series ${ }^{\oplus}$ of microcontrollers and are designed for real-time embedded control applications. These 8-bit, single-chip microcontrollers have a minimum instruction time of 333 ns at 12 MHz (500 ns for the μ PD78233/237). They feature 8-bit hardware multiply and divide instructions, four banks of main registers, an advanced interrupt handling facility, a powerful set of memory mapped on-chip peripherals, and the ability to address up to 1 M bytes of external data memory. On board memory includes 640 or 1024 bytes of RAM, 16 K or 32 K bytes of mask ROM, or 32K bytes of UV EPROM or one-time programmable (OTP) ROM.
The advanced interrupt handling facility provides two levels of programmable hardware priority control and two separate methods of servicing interrupt requests: vectored and macro service. The macro service facility reduces the overhead involved in servicing peripheral interrupts by transferring data between the memorymapped special function registers (SFRs) and memory without the use of time consuming interrupt service routines. In addition, the macro service facility can be initialized to automatically alter timer compare register values or to repeatedly output a prespecified pattern at a fixed or variable rate. By using macro service to control the real-time output ports, the $\mu \mathrm{PD} 78238$ family can easily and accurately drive two independent stepper motors.
The combination of the macro service facility, four banks of main registers, extended data memory address space, and powerful on-chip peripherals makes these devices ideal for applications in office automation, communication, HVAC, and industrial control.

Features

[^13]- Powerful instruction set
-8-bit unsigned multiply and divide
- 16-bit arithmetic instructions
-1 -bit and 8 -bit logic instructions
- Minimum instruction time
-333 ns at 12 MHz (μ PD78234/238/P238)
-500 ns at 12 MHz (μ PD78233/237)
- Memory expansion
- 8085 bus-compatible
-64K program address space
- 1M data address space
- Large I/O capacity
- Up to 64 I/O port lines on μ PD78234/238/P238
-Up to 46 I/O port lines on μ PD78233/237
-Software programmable pullup resistors
- Memory-mapped on-chip peripherals (special function registers)
- Timer/counter unit
- 16-bit timer 0 :

Two 16-bit compare registers One 16-bit capture register One external interrupt/capture line
-8-bit timer 1 :
One 8 -bit compare register One 8-bit capture/compare register One external interrupt/capture line
-8-bit timer/counter 2:
Two 8-bit compare registers One 8 -bit capture register One external interrupt/capture line One external event counter line
-8-bit timer 3:
One 8-bit compare register

- Pulse-width modulated (PWM) outputs
- Two 12-bit precision hardware controlled
-Four 8-bit precision timer controlled
- Two 4-bit (or one 8-bit) real-time output ports
- Eight-channel 8-bit A/D converter
- Two-channel 8-bit D/A converter
- Programmable priority interrupt controller (two levels)
- Two methods of interrupt service
- Vectored interrupts
- Macro service mode with choice of three different types

[^14]
Features (cont)

- Two-channel serial communication interface
- Asynchronous serial interface (UART) Dedicated baud rate generator
- Clock-synchronized interface

Full-duplex, three-wire mode NEC serial bus interface (SBI) mode

- Refresh output for pseudostatic RAM
- STOP and HALT standby functions
- 5-volt CMOS technology

Ordering Information

Part Number	ROM	Package	Package Drawing
μ PD78233GC	ROMless	80-pin plastic QFP	S80GC-65-3B9-1
μ PD78234GC-xxx	16K mask ROM		
$\mu \mathrm{PD} 78237 \mathrm{GC}$	ROMless		
μ PD78238GC-xxx	32 K mask ROM		
μ PD78P238GC	32 K OTP ROM		
μ PD78233GJ	ROMless	94-pin plastic QFP	S94GJ-80-5BG-1
μ PD78234GJ-xxx	16K mask ROM		
$\mu \mathrm{PD} 78237 \mathrm{GJ}$	ROMless	.	
μ PD78238GJ-xxx	32 K mask ROM		
μ PD78P238GJ	32 K OTP ROM		
$\mu \mathrm{PD} 78233 \mathrm{LQ}$	ROMless	84-pin PLCC	P84L-50A3-1
$\mu \mathrm{PD} 78234 \mathrm{LQ}-\mathrm{xxx}$	16 K mask ROM		
$\mu \mathrm{PD} 78237 \mathrm{LQ}$	ROMless		
$\mu \mathrm{PD} 78238 \mathrm{LQ}-\mathrm{xxx}$	32 K mask ROM		
$\mu \mathrm{PD} 78 \mathrm{P} 238 \mathrm{LQ}$	32 K OTP ROM		
$\mu \mathrm{PD} 78 \mathrm{P} 238 \mathrm{KF}$	32 K UV EPROM	94-pin ceramic LCC with window	X94KW-80A

Note: xxx indicates ROM code suffix.

$\mathrm{P}_{3} / \mathrm{A}_{19} \mathrm{Cl}_{24} \quad 77 \mathrm{P}_{6} / \mathrm{NTTP5}^{24}$
$\mathrm{P}_{2} / \mathrm{A}_{18} \mathrm{Cl}_{25} \quad 76 \mathrm{P}_{5}$ /NTP4/ASCK
$\mathrm{P}_{6} / \mathrm{A}_{17} \mathrm{Cl}_{26} \quad 75 \mathrm{P}_{4} / \mathrm{NTP}^{26}$
$\mathrm{P}_{6} / \mathrm{A}_{16} \mathrm{H}_{2} 27 \quad 74 \mathrm{P}_{3} / \mathrm{NTP} 2 / \mathrm{Cl}$
$\mathrm{P}_{5} / \mathrm{A}_{15}$ Q 28 73 P2 $/ \mathrm{INTP}_{1}$
$\mathrm{P5}_{6} / \mathrm{A}_{14}$ - $29 \quad 72 \square \mathrm{P}_{1}$ תNTPO
$\mathrm{P}_{5} / \mathrm{A}_{13}$ 万30 $\quad 71 \square \mathrm{P}_{2} / \mathrm{NMI}$
$\mathrm{P}_{4} / \mathrm{A}_{12}$ [31 $70 \square \mathrm{AV}_{\mathrm{REF}}$
$\mathrm{P5}_{3} / \mathrm{A}_{11}$ - 32 69 $\mathrm{AV}_{\text {REF2 }}$
$\left.\mathrm{PF}_{2} / \mathrm{A}_{10} \mathrm{O}_{33} \quad 68\right]$ ANO1
$\mathrm{P}_{5} / \mathrm{Ag}_{9} \mathrm{~A}_{3}$
$\mathrm{P}_{5} / \mathrm{A}_{8}$ - 35
$\mathrm{P}_{7} / \mathrm{AD}_{7} \mathrm{D}_{3} 36$
$\mathrm{P}_{6} / \mathrm{AD}_{6}-37$
$\mathrm{P}_{4} / \mathrm{AD}_{5} \mathrm{O}_{38}$
$\mathrm{P}_{5} / \mathrm{AD}_{5}{ }^{38}$
$\mathrm{P}_{4} / \mathrm{AD}_{4}$ - $39 \quad{ }^{39} \mathrm{Pr}_{6} / \mathrm{ANIN}^{2}$

Pin Configurations (cont)

84-Pin PLCC (Plastic Leaded Chip Carrier)

Pin Configurations (cont)

94-Pin Plastic QFP and Ceramic LCC with Window

Pin Functions; Normal Operating Mode

Symbol	First Function	Symbol	Second Function
$\mathrm{PO}_{0}-\mathrm{PO}_{7}$	Port 0; 8-bit tristate output port/real time output port		
$\begin{aligned} & \mathrm{P1}_{0} \\ & \mathrm{P}_{1} \\ & \hline \end{aligned}$	Port 1; 8-bit, bit-selectable tristate input/output port	PWMO PWM1	Pulse-width modulated outputs
$\mathrm{P1}_{2}-\mathrm{P} 1_{7}$		-	
Pr_{0}	Port 2; 8-bit input port	NMI	External nonmaskable interrupt
$\begin{aligned} & \mathrm{P}_{1} \\ & \mathrm{P} 2_{2} \\ & \hline \end{aligned}$		INTPO INTP1	Maskable external interrupts
P_{2}		$\begin{aligned} & \text { INTP2 } \\ & \mathrm{Cl} \end{aligned}$	Maskable external interrupt External clock input to timer/counter 2
$\mathrm{P2}_{4}$		INTP3	Maskable external interrupt
P_{2}		$\begin{aligned} & \text { INTP4 } \\ & \text { ASCK } \end{aligned}$	Maskable external interrupt Asynchronous serial clock input
Pr_{6}		INTP5	Maskable external interrupt
P_{7}		SI	Serial data input for three-wire serial I/O mode
$\mathrm{P3}_{0}$	Port 3; 8-bit, bit-selectable tristate input/output port	RxD	Asynchronous serial receive data input
$\mathrm{P3}_{1}$		TxD	Asynchronous serial transmit data input
$\mathrm{P3}_{2}$		$\overline{\text { SCK }}$	Serial shift clock input/output
P_{3}		$\begin{aligned} & \text { SO } \\ & \text { SBO } \end{aligned}$	Serial data output for three-wire serial I/O mode I/O bus for NEC serial bus interface (SBI)
$\mathrm{P3}_{4}-\mathrm{P3}_{7}$		TOO- TO3	Timers TO to T3 outputs
$\mathrm{P4}_{0}-\mathrm{P}_{7}$	Port 4; 8-bit tristate input/output port	$A D_{0}-\mathrm{AD}_{7}$	Low-order 8-bit multiplexed address/data bus
$\mathrm{P5}_{0}-\mathrm{P5}_{7}$	Port 5; 8-bit, bit-selectable tristate input/output port	$A_{8}-A_{15}$	High-order 8-bit address bus
$\mathrm{P6}_{0}-\mathrm{PG}_{3}$	Port 6; 4-bit output port	$\mathrm{A}_{16}-\mathrm{A}_{19}$	Extended memory address bus
$\mathrm{P6}_{4}$	Port 6; 4-bit, bit-selectable tristate input/output port	$\overline{\mathrm{RD}}$	External memory read strobe
$\mathrm{P6}_{5}$		$\overline{W R}$	External memory write strobe
Pb_{6}		WAIT	External memory wait signal input
P67		$\overline{\text { REFRQ }}$	Refresh pulse output used by external pseudostatic memory
$\mathrm{P7}_{0}-\mathrm{P7} 7$	Port 7; 8-bit input port	ANIO-ANI7	Analog voltage input to A / D converter
ANOO, ANO1	Analog voltage output from D/A converter		
ASTB	Address strobe output used to latch the low-order 8 address for external memory		
RESET	External system reset input		
MODE	Internal ROM or external memory control signal input. A low-level input selects internal ROM. A high-level input selects external memory. The μ PD78234/238 can be used in ROMless mode by setting the MODE pin high. However, the μ PD78P238 cannot be used in ROMless mode and its MODE pin must only be set low.		
X1	Crystal/ceramic resonator connection or external clock input	.	
X2	Crystal/ceramic resonator connection or inverse of external clock		
$\mathrm{AV}_{\text {REF } 1}$	A / D converter reference voltage		

Pin Functions; Normal Operating Mode (cont)

Symbol	First Function	Symbol
$A V_{\text {REF2 }}$,	D / A converter reference voltages	
$A V_{R E F 3}$		
$A V_{D D}$	A / D converter power supply	
$A V_{S S}$	A / D converter ground	
$V_{D D}$	+5 volt power supply input	
$V_{S S}$	Power supply ground	
$N C$	No connection	

FUNCTIONAL DESCRIPTION

Central Processing Unit (CPU)

The μ PD78238 family CPU features 8 - and 16 -bit arithmetic including an 8×8-bit unsigned multiply and $16 \times$ 8 -bit unsigned divide (producing a 16-bit quotient and an 8-bit remainder). The multiply executes in $3.67 \mu \mathrm{~s}$ and the divide in $12.36 \mu \mathrm{~s}$ at $12 \mathrm{MHz}(4.00$ and $12.69 \mu \mathrm{~s}$ respectively for μ PD78233/237).

A CALLT vector table and a CALLF program area decrease the number of bytes in the call instructions for commonly used subroutines. A 1-byte call instruction (CALLT) can access up to 32 subroutines through the addresses contained in the CALLT vector table. A 2-byte call instruction (CALLF) can access any routine beginning at a specific address in the CALLF area.

The internal system clock (f CLK) is generated by dividing the oscillator frequency by two. Therefore, at the maximum oscillator frequency of 12 MHz , the internal system clock is 6 MHz . The minimum instruction execution time for an instruction fetched from internal ROM is 333 ns (500 ns when fetched from external memory).

Memory Space

The μ PD78238 family has a 1 M byte address space (see figure 1). The first 64 K bytes of this address space ($00000 \mathrm{H}-0 \mathrm{FFFFH}$) can be used as both program and data memory. The remaining 960K bytes of this address space (10000H-FFFFFH) can only be used as data memory and is known as expanded memory.

Block Diagram

Figure 1. Memory Map

Notes:

(1) 03FFFH on μ PD78234

07FFFH on μ PD78238/P238
(2) 0 FC80H on μ PD78233/234 OFB00H on μ PD78238/P238

External Memory

The μ PD78238 family has an 8 -bit wide external data bus and a 16 -bit wide external address bus (20-bit wide if expanded memory is enabled). The low-order 8 bits of the address bus are multiplexed to provide the 8 -bit data bus and are supplied by I/O port 4. The high-order address bits of the 16-bit address bus are taken from port 5 . If expanded memory is enabled, the expanded address nibble is provided by P_{0} to P_{3}. Address latch, read, and write strobes are also provided.
The memory expansion mode register (MM) is used to enable external memory, to specify up to two additional wait states or the use of the WAIT input pin for the first 64 K bytes of memory, and to enable the high-speed internal ROM fetch. Ports 4, 5, and 6 are available as general purpose $1 / O$ ports when only internal ROM is used and no external program or data space is required.

Expanded Data Memory

The MM register is also used to enable the external expanded data memory space, addresses 10000 H to FFFFFH. When the expanded data memory is enabled, the entire 1 M byte address space is divided into 16 banks of 64 K bytes each. The low-order 4-bits of the P6 or the PM6 registers are used as bank selection registers to supply the address information to A_{16} to A_{19}. Data can easily be transferred from one memory bank to another by using the appropriate instructions. Address lines A_{16} to A_{19} are only active when an instruction that uses expanded addressing is being executed. A programmable wait control register (PW) allows the programmer to specify up to two additional wait states or the use of the WAIT input pin for expanded data memory space.

On-Chip RAM

The μ PD78237/238 have a total of 1024 bytes of on-chip RAM (640 bytes in the μ PD78233/234).

The μ PD78P238 also contains 1024 bytes of on-chip RAM. By using the memory size select (IMS) register, the μ PD78P238 can be programmed to emulate either a μ PD78234 device with 640 bytes of on-chip RAM or a μ PD78238 with 1024 bytes. The programming of this register is transparent to the ROM-based device, allowing easy transfer of code to a ROM-based device.

The upper 256-byte area (FE00H-FEFFH) features highspeed access and is known as "Internal RAM." The remainder (FBOOH-FDFFH and FC80H-FDFFH in the μ PD78233/234) is accessed at the same speed as external memory and is known as "Peripheral RAM." The general register banks and the macro service control words are stored in Internal RAM. The remainder of Internal RAM and any unused register bank locations are available for general storage.

On-Chip Program Memory

The $\mu \mathrm{PD} 78234 / 238$ contain 16 K and 32 K bytes of internal ROM respectively. The $\mu \mathrm{PD} 78 \mathrm{P} 238$ contains 32 K bytes of UV EPROM or one-time programmable ROM. By using the IMS register, the μ PD78P238 can be programmed to emulate a μ PD78234 device with 16 K bytes of internal PROM or a μ PD78238 with 32 K bytes. This programming is transparent to the ROM-based device, allowing easy transfer of code to a ROM-based device. Instructions from on-chip program memory can be fetched at high speed or at the same rate as from external memory. The μ PD78233 and the μ PD78237 do not have on-chip program memory.

CPU Control Registers

Program Counter. The program counter is a 16-bit binary counter register that holds the address of the next instruction to be executed. During reset, the program counter is loaded with the address stored in locations 0000 H and 0001 H .

Stack Pointer. The stack pointer is a 16-bit register that holds the address of the last item pushed onto the stack. It is decremented before new data is pushed onto the stack and incremented after data is popped off the stack.

Program Status Word. The program status word (PSW) is an 8-bit register that contains flags that are set or reset depending on the results of an instruction.

This register can be written to or read from 8 bits at a time. The individual flags can also be manipulated on a bit-by-bit basis. The assignment of PSW bits follows.

7	RES		0				
IE	Z	RBS1	AC	RBSO	0	ISP	CY

CY	Carry flag
ISP	Interrupt priority status flag
RBS0, RBS1	Register bank selection flags
AC	Auxiliary carry flag
Z	Zero flag
IE	Interrupt request enable flag

General Registers

The general-purpose registers (figure 2) consist of four banks of registers located at addresses FEEOH to FEFFH in Internal RAM. Each bank consists of eight 8-bit general registers that can also be used in pairs to function as four 16 -bit registers. Two bits in the PSW (RBS0 and RBS1) specify which of the register banks is active. The bits are set under program control. Registers have both functional names (like A, X, B, C for 8-bit registers and $A X, B C$ for 16-bit registers) and absolute names (like R1, R0, R3, R2 for 8-bit registers and RPO, RP1 for 16-bit registers). Each instruction determines whether a register is referred to by its functional or absolute name and whether it is 8 or 16 bits.

Addressing

The μ PD78238 family features 1-byte addressing of both the special function registers and the portion of on-chip RAM from FE2OH to FEFFH. The 1-byte sfr addressing accesses the entire SFR area, while the 1-byte saddr addressing accesses the first 32 bytes of the SFR area and 224 bytes of internal RAM. Sixteen-bit SFRs and words of memory in these areas can be addressed by 1-byte saddrp addressing, which is valid for even addresses only. Since many instructions use 1-byte addressing, access to these locations is almost as fast and versatile as access to the general registers. There are seven addressing modes for data in main memory: direct, register, register indirect with autoincrement and decrement, saddr, SFR, based, and indexed. There are also both 8 -bit and 16-bit immediate operands.
μ PD78238 Family

Figure 2. General Registers

Special Function Registers

The input/output ports, timers, capture and compare registers, and mode and control registers for both the peripherals and the CPU are collectively known as special function registers. They are all memorymapped between FFOOH and FFFFH and can be ac-
cessed either by main memory addressing or by 1-byte sfr addressing. They are either 8 or 16 bits as required, and many of the 8 -bit registers are capable of single-bit access as well. Locations FFDOH through FFDFH are known as the external SFR area. Registers in external circuitry interfaced and mapped to these addresses can be addressed with SFR addressing. Table 1 is a list of the special function registers.

Table 1. Special Function Registers

Address	Register (SFR)	Symbol	R/W	Access Units (Bits)			State After Reset
				1	8	16	
OFFOOH	Port 0	PO	R/W	x	x	-	Undefined
OFF01H	Port 1	P1	R/W	x	x	-	Undefined
OFFO2H	Port 2	P2	R	x	x	-	Undefined
OFFO3H	Port 3	P3	R/W	x	x	-	Undefined
OFFO4H	Port 4	P4	RNW	x	x	-	Undefined
OFFO5H	Port 5	P5	R/W	x	x	-	Undefined
$\bigcirc \mathrm{OFFO6H}$	Port 6	P6	RNW	x	x	-	xOH
OFF07H	Port 7	P7	R	x	x	-	Undefined
OFFOAH	Port 0 buffer register (low)	POL	R/W	x	\times	-	Undefined
OFFOBH	Port 0 buffer register (high)	POH	RNW	x	x	-	Undefined
OFFOCH	Real-time output port control register	RTPC	RNW	\times	x	-	OOH
OFF10H-OFF11H	16-bit compare register 0 (16-bit timer 0)	CROO	R/W	-	-	x	Undefined
OFF12H-OFF13H	16-bit compare register (16 -bit timer 0)	CR01	R/W	-	-	x	Undefined
OFF14H	8 -bit compare register (8-bit timer 1)	CR10	R/W	-	x	-	Undefined
OFF15H	8 -bit compare register (8-bit timer/counter 2)	CR20	R/W	-	x	-	Undefined
OFF16H	8 -bit compare register (8-bit timer/counter 2)	CR21	R/W	-	x	-	Undefined
OFF17H	8 -bit compare register (8-bit timer 3)	CR30	R/W	-	x	-	Undefined
OFF18H-OFF19H	16-bit capture register (16-bit timer 0)	CRO2	R	-	-	x	Undefined
OFF1AH	8 -bit capture register (8-bit timer/counter 2)	CR22	R	-	x	-	Undefined
OFF1CH	8 -bit capture/compare register (8-bit timer 1)	CR11	R/W	-	x	-	Undefined
OFF2OH	Port 0 mode register	PMO	W	-	x	-	FFH
OFF21H	Port 1 mode register	PM1	W	-	x	-	FFH
OFF23H	Port 3 mode register	PM3	W	-	x	-	FFH
OFF25H	Port 5 mode register	PM5	W	-	x	-	FFH
OFF26H	Port 6 mode register	PM6	R/W	x	x	-	FxH
OFF30H	Capture/compare control register 0	CRCO	W	-	x	-	10 H
OFF31H	Timer output control register	TOC	W	-	x	-	OOH
OFF32H	Capture/compare control register 1	CRC1	W	-	x	-	OOH
OFF34H	Capture/compare control register 2	CRC2	W	-	x	-	OOH
OFF40H	Pullup resistor option register	PUO	R/W	x	x	-	00H
OFF43H	Port 3 mode control register	PMC3	R/W	x	x	-	OOH
OFF50H-OFF51H	16-bit timer register 0	TMO	R	-	-	\times	0000 H
OFF52H	8 -bit timer register 1	TM1	R	-	x	-	00 H
OFF54H	8 -bit timer register 2	TM2	R	-	x	-	OOH
OFF56H	8 -bit timer register 3	TM3	R	-	x	-	OOH
OFF5CH	Prescaler mode register 0	PRMO	W	-	x	-	OOH
OFF5DH	Timer control register 0	TMCO	R/W	-	x	-	OOH
OFF5EH	Prescaler mode register 1	PRM1	W	-	x	-	OOH
OFF5FH	Timer control register 1	TMC1	R/W	-	x	-	OOH
OFF60H	D/A converter value setting register 0	DACSO	R/W	-	x	-	OOH

μ PD78238 Family

Table 1. Special Function Registers (cont)

Address	Register (SFR)	Symbol	R/W	Access Units (Bits)			State After Reset
				1	8	16	
OFF61H	D/A converter value setting register 1	DACS1	R/W	-	x	-	OOH
0FF68H	A/D converter mode register	ADM	R/W	x	x	-	OOH
OFF6AH	A/D conversion result register	ADCR	R	-	x	-	Undefined
OFF70H	PWM control register	PWMC	R/W	-	x	-	05H
OFF72H-0FF73H	PWM modulo register 0	PWMO	W	-	-	x	Undefined
OFF74H-0FF75H	PWM modulo register 1	PWM1	W	-	-	x	Undefined
OFF7DH	One-shot pulse output control register	OSPC	R/W	x	x	-	OOH
OFF80H	Clocked serial interface mode register	CSIM	R/W	x	x	-	OOH
OFF82H	Serial bus interface control register	SBIC	R/W	x	x	-	OOH
OFF86H	Serial shift register	SIO	R/W	-	x	-	Undefined
OFF88H	Asynchronous serial interface mode register	ASIM	R/W	x	x	-	80 H
OFF8AH	Asynchronous serial interface status register	ASIS	R	x	x	-	OOH
OFF8CH	Serial receive buffer: UART	RxB	R	-	x	-	Undefined
OFF8EH	Serial transmit shift register: UART	TxS	W	-	x	-	Undefined
OFF90H	Baud rate generator control register	BRGC	W	-	x	-	OOH
OFFCOH	Standby control register	STBC	R/W	-	x	-	0000x000B
OFFC4H	Memory expansion mode register	MM	R/W	x	x	-	20 H
OFFC5H	Programmable wait control register	PW	R/W	x	x	-	80 H
OFFC6H	Refresh mode register	RFM	R/W	x	x	-	OOH
OFFCFH	Memory size select register	IMS	W	-	x	-	Undefined
OFFDOH-OFFDFH	External SFR area	-	R/W	x	x	-	Undefined
OFFEOH	Interrupt request flag register L	IFOL	R/W	x	x	-	OOH
OFFE1H	Interrupt request flag register H	FFOH	R/W	x	x	-	OOH
OFFEOH-OFFE1H	Interrupt request flag register H	IFO	R/W	-	-	x	0000H
OFFE4H	Interrupt mask flag register L	MKOL	R/W	x	x	-	FFH
OFFE5H	Interrupt mask flag register H	MKOH	R/W	\times	x	-	FFH
OFFE4H-OFFE5H	Interrupt mask flag register H	MKOH	R/W	-	-	x	FFFH
OFFE8H	Priority specification flag register L	PROL	R/W	x	x	-	FFH
OFFE9H	Priority specification flag register H	PROH	R/W	x	x	-	FFH
OFFE8H-OFFE9H	Priority specification flag register H	IFO	R/W	-	-	x	FFFH
OFFECH	Interrupt service mode specification flag register L	ISMOL	R/W	x	x	-	OOH
OFFEDH	Interrupt service mode specification flag register H	ISMOH	R/W	x	x	-	OOH
OFFECH-OFFEDH	Interrupt service mode specification flag register	ISMO	R/W	-	-	X	00 H
OFFF4H	External interrupt mode register 0	INTMO	R/W	x	x	-	OOH
OFFF5 ${ }^{\text {H }}$	External interrupt mode register 1	INTM1	R/W	x	x	-	OOH
OFFF8H	Interrupt status register	IST	R/W	x	\times	-	OOH

\qquad
Figure 3. Pin I/O Circuits

Input/Output Ports

There are up to 64 port lines on the μ PD78234/238/P238 and up to 46 port lines on the μ PD78233/37. (Ports 4, 5, and two bits of port 6 are not available on the μ PD78233/237 since the μ PD78233/237 must always
use external memory.) Table 2 lists the features of each port and figure 3 shows the structure of each port pin. The pin levels of all port 2,3 , and 7 pins can always be read or tested regardless of the dual pin function.

Table 2. Digital Port Functions

Port	Operational Features	Configuration	Direct Drive Capability	Software Pullup Resistor Connection
Port 0	8-bit high impedance output		Transistor	
Port 1	8-bit input or output	Bit selectable	LED	Byte selectable, input bits only
Port 2	8-bit Schmitt trigger input			In 6-bit unit ($\mathrm{P}_{2}-\mathrm{P} 27$)
Port 3	8 -bit input or output	Bit selectable		Byte selectable, input bits only
Port 4	8-bit input or output	Byte selectable	LED	Byte selectable
Port 5	8 -bit input or output	Byte selectable	LED	Byte selectable, input bits only
Port 6	4-bit output (bits 0 to 3) 4-bit input or output (bits 4 to 7)	Bit selectable		In 4-bit unit, input bits only
Port 7	8-bit input			

Note:
(1) Software pullup resistors can be internally connected only on a port-by-port bits to port bits set to input mode. Pullup resistors are not connected to port bits set to output mode.

Real-time Output Port

The real-time output port (RTPC) shares pins with port 0 . It can be used as two independent 4 -bit real-time output ports or one 8 -bit real-time output port. In the real-time output mode, data stored beforehand in the buffer registers, POH and POL, is transferred immediately to the output latch of PO on the occurrence of a timer 1 interrupt (INTC10 or INTC11) or external interrupt (INTPO) (see figure 4). By using the real-time output port with the macro service function, port 0 can be used to output preprogrammed patterns at preprogrammed variable time intervals. In this mode, two independent stepper motors can accurately be driven at a fixed or variable rate.

Figure 4. Real-time Output Port

Analog-to-Digital (A/D) Converter

The μ PD78238 family A/D converter (see figure 5) uses the successive-approximation method for converting up to eight multiplexed analog inputs into 8-bit digital data. The conversion time per input is $30 \mu \mathrm{~s}$ at 12 MHz operation. A/D conversion can be started by an external interrupt, INTP5, or under software control.
The A/D converter can operate in either scan mode or select mode. In scan mode, from one to eight sequential inputs can be programmed for conversion. The A/D converter selects each input in order, converts the
data, stores it in the A / D conversion result (ADCR) register, and generates an interrupt (INTAD). This converted data can be easily transferred to memory by using the macro service function.

In select mode, only one of the eight A / D inputs can be selected for conversion. The ADCR register is continually updated and can be read at any time. If the A/D converter is started by an external interrupt, an INTAD interrupt occurs at the completion of each conversion. If the A/D converter is started by software, no interrupts are generated.

Figure 5. A/D Converter

Digital-to-Analog (D/A) Converter

The μ PD78238 family has two D/A converters as shown in figure 6 . The 8 -bit digital data, written to the DACSn register ($n=0,1$), selects one of the 256 taps on a resistor ladder between $A V_{\text {REF2 }}$ and $A V_{\text {REF3 }}$. The selected voltage becomes the analog output at the ANOn pin. The ANOn is a high-impedance output and requires an external buffer to drive a low-impedance load.

Figure 6. D/A Converter

Hardware Pulse-Width Modulated Outputs

The μ PD78238 family has two 12 -bit resolution pulsewidth modulated (PWM) outputs (see figure 7) with a repetition rate of 23.4 kHz at 12 MHz (fclk $=6 \mathrm{MHz}$). The polarity of each output can be selected under program control. The two PWM outputs, PWMO and PWM1, share pins with port 1 , bits 0 and 1 respectively. These outputs are designed for controlling DC motors.

Figure 7. Hardware Pulse-Width Modulator

Serial Interface

The μ PD78238/P238 have two independent serial interfaces. The first is a standard UART. The UART (figure 8) permits full-duplex operation and can be programmed for 7 - or 8 -bits of data after the start bit, followed by one or two stop bits. Odd, even, zero or no parity can also be selected. The serial clock for the UART can be provided by an on-chip baud rate generator or timer 3. By using either the internal system clock or an external clock input into the ASCK pin, the baud rate generator is capable of generating all of the commonly used baud rates. The UART generates three interrupts: IN TST (transmission complete), INTSR (reception complete), and INTSER (reception error).

Figure 8. Asynchronous Serial Interface

The second interface is an 8-bit clock-synchronized serial interface (figure 9). It can be operated in either a three-wire serial I/O mode or NEC serial bus interface (SBI) mode.

Figure 9. Clock-Synchronized Serial Interface

In the three-wire serial I/O mode, the 8-bit shift register (SIO) is loaded with a byte of data and eight clock pulses are generated. These eight pulses shift the byte of data out of the SO line (MSB first) and in from the SI line providing full-duplex operation. This interface can also be set to receive or to transmit data only. The INTCSI interrupt is generated after each 8-bit transfer. One of three internal clocks or an external clock clocks the data.

The NEC SBI mode is a two-wire high-speed proprietary serial interface available on most devices in the NEC μ PD75xxx and μ PD78xxx product lines. Devices are connected in a master/slave configuration (see figure 10). There is only one master device at a time; all others are slaves. The master sends addresses, commands, and data over the serial bus line (SBO) using a fixed hardware protocol synchronized with the SCK line. Each slave μ PD78238 family device can be programmed in software to respond to any one of 256 addresses. There are also 256 commands and 256 data types. Since all commands are user definable, any software protocol, simple or complex, can be defined. It is even possible to develop commands to change a slave into a master and the previous master into a slave.

Figure 10. SBI Mode Master/Slave Configuration

Timers

The μ PD78238 family has one 16 -bit timer and three 8 -bit timers. The 16-bit timer counts the internal system clock ($\mathrm{f}_{\mathrm{CLK}} / 8$) while the three 8-bit timers can be programmed to count a number of prescaled values of the internal system clock. One of the 8-bit timers can also count external events.

Timer 0 consists of a 16-bit timer (TMO), two 16-bit compare registers (CR00 and CR01), and a 16-bit capture register (CR02). Timer 0 can be used as two interval timers, to output a programmable square wave or two pulse-width modulated signals, to measure pulse widths, or to generate a software-triggered one-shot pulse. (see figure 11).

Timer 1 consists of an 8-bit timer (TM1), 8-bit compare register (CR10), and 8-bit capture/compare register (CR11). Timer 1 can be used as two interval timers or to measure pulse widths. In addition, it can be used to generate the output trigger for the real-time output port (see figure 12).

Timer/counter 2 consists of an 8-bit timer (TM2), two 8 -bit compare registers (CR20 and CR21), and an 8-bit capture register (CR22). Timer/counter 2 can also be used as two interval timers, to output a programmable square wave or two pulse-width modulated signals, or count external events sensed on the Cl line or as a one-shot timer (see figure 13).

Timer 3 consists of an 8-bit timer (TM3) and an 8-bit compare register (CR30). Timer 3 can be used as an interval timer or as a clock for the clock-synchronized serial interface (see figure 14).

Figure 11. 16-Bit Timer 0

Figure 12. 8-Bit Timer 1

Figure 13. 8-Bit Timer/Counter 2

Figure 14. 8-Bit Timer 3

Interrupts

The μ PD78238 family has 18 maskable hardware interrupt sources; 6 are external and 12 are internal. Since there are only 16 interrupt vectors and sets of control flags, 2 of the 6 external maskable interrupts, INTP4 and INTP5, share interrupt vectors and control flags with INTC30 and INTAD respectively. The active interrupt source for each shared vector must be chosen by the program. In addition, there is one nonmaskable interrupt and one software interrupt. The software interrupt, generated by the BRK instruction, is not maskable (see table 3).

Interrupt Servicing. The μ PD78238 family provides two levels of programmable hardware priority control and two different methods of handling maskable interrupt requests: standard vectoring and macro service. The programmer can choose the priority and mode of servicing each maskable interrupt by using the interrupt control registers.

Interrupt Control Registers. The μ PD78238 family has four 16-bit interrupt control registers. Each bit in each register is dedicated to one of the 16 active maskable interrupt sources. The interrupt request flag register (IFO) contains an interrupt request flag for each interrupt. The interrupt mask register (MKO) is used to enable or disable any interrupt. The interrupt service mode register (ISMO) specifies whether an interrupt is processed by vectoring or macro service. The priority flag register (PRO) can be used to specify a high or a low priority level for each interrupt.
Two other 8-bit registers are associated with interrupt processing. The interrupt status register (IST) indicates if a nonmaskable interrupt request on the NMI pin is being processed and can be used to allow nesting of nonmaskable interrupt requests. The IE and the ISP bits of the program status word are also used to control interrupts. If the IE bit is zero, all maskable interrupts, but not macro service, are disabled. The IE bit can be set or cleared using the El and DI instructions, respectively, or by directly writing to the PSW. The IE bit is cleared each time an interrupt is accepted. The ISP bit is used by hardware to hold the priority level flag of the interrupt being serviced.

Interrupt Priority. The nonmaskable interrupt (NMI) has priority over all other interrupts. Two hardware controlled priority levels are available for the maskable interrupts. Either a high or a low priority level can be assigned by software to each of the maskable interrupts. Interrupt requests of a priority higher than the processor's current priority level are accepted; requests of the same or lower priority are held pending until the processor's priority state is lowered by program control within the current service routine or by a return instruction from the current service routine.

Interrupt requests programmed to be handled by macro service have priority over all vectored interrupt service regardless of the assigned priority level, and macro service requests are accepted even when the interrupt enable bit in the PSW is set to the disable state (see figure 15).

Figure 15. Interrupt Service Sequence

The default priorities listed in table 3 are fixed by hardware and are effective only when it is necessary to choose between two interrupt requests of the same software assigned priority. For example, the default priorities would be used after the completion of a high priority routine if two interrupts of the same priority routine were pending.
The software interrupt, initiated by the BRK instruction, is executed regardless of the processor's priority level and the state of the IE bit. It does not alter the processor's priority level.

Table 3. Interrupt Sources and Vector Addresses

| Interrupt
 Request
 Type | Default
 Priority | Interrupt Request Generation Source | Vector
 Table
 Address |
| :--- | :---: | :--- | :---: | :---: |
| Software | None | BRK instruction execution | Macro Service |
| Type | | | |

Vectored Interrupt. When vectored interrupt is specified for a given interrupt request, (1) the program status word and the program counter are saved on the stack, (2) the processor's priority is set to that specified for the interrupt, (3) the IE bit in the PSW is set to zero, and (4) the routine whose address is in the interrupt vector table is entered. At the completion of the service routine, the RETI instruction (RETB instruction for the software interrupt) reverses the process and the μ PD78238 family device resumes the interrupted routine.

Macro Service

When macro service is specified for a given interrupt, the macro service hardware temporarily stops the executing program and begins to transfer data between the special function register area and the memory space. One byte is transferred each interrupt. When the data transfer is complete, control is returned to the executing program, providing a completely transparent method of interrupt service. Macro service significantly improves response time and makes it unnecessary to save any registers.

For each request on the interrupt line, one operation is performed, and an 8 -or 16 -bit counter is decremented. When the counter reaches zero, a vectored interrupt service routine is entered according to the specified priority.
Macro service is provided for all of the maskable interrupt requests except INTSER, the asynchronous serial interface receive error interrupt request. Each interrupt request has a dedicated macro service control word stored in Internal RAM (see figure 16). The function to be performed is specified in the control word.

The μ PD78238 family provides three different types of macro service transfers:
Macro Service Type A. A byte of data is transferred in either direction between a special function register, preassigned for each interrupt request, and a buffer in internal RAM (FExx). Only the 8 -bit macro service counter is available for Type A transfers. The preassigned SFRs for the 12 interrupt requests that support macro service Type A transfers are listed in table 4.

Figure 16. Macro Service Control Word Map

Table 4. Macro Service Type A Interrupts and Assigned SFRs

Interrupt Request	Source/Destination SFR
INTC10: TM1-CR10 coincidence	CR10: Timer 18 -bit compare register
INTC11: TM1-CR11 coincidence	CR11: Timer 18 -bit capture/ compare register
INTC20: TM2-CR20 coincidence	CR20: Timer 28 -bit compare register
INTC21: TM2-CR21 coincidence	CR21: Timer 28 -bit compare register
INTC30: TM3-CR30 coincidence	CR30: Timer 3 8-bit compare register
INTSR: End of asynchronous serial interface reception	RxB: Serial receive buffer
INTST: End of asynchronous serial interface transmission	TxS: Serial transmit shift register
INTCSI: End of clocked serial interface transmission	SIO: Serial shift register
INTAD: End of A/D conversion	ADCR: A/D conversion result register
INTPO: External interrupt pin PO_{1}	CR11: Timer 18 -bit capture/ compare register
INTP1: External interrupt pin PO_{2}	CR22: Timer 28 -bit capture register
INTP2: External interrupt pin PO_{3}	TM2: Timer 28 -bit timer register

Macro Service Type B. A byte of data is transferred in either direction between any specified special function register and a buffer anywhere in the 64 K byte address space. Macro service Type B transfers can be initiated by any maskable interrupt except INTSER.

Macro Service Type C. A byte of data is transferred from a buffer anywhere in the 64 K byte address space to one of the 8 -bit compare registers of timer 1. At the same time, a second byte of data is transferred from a buffer anywhere in the 64K byte address space to the real-time output port buffer. The macro service counter can be programmed either to be an 8 - or 16-bit counter. Macro service Type C transfers can be initiated by INTC10 with data transferred to CR10 and POL or POH, or by INTC11 with data transferred to CR11 and POL or POH.

In addition, the macro service Type C transfer can be initialized to automatically alter timer compare register values or to repeatedly output a prespecified pattern at a fixed or variable rate. By using macro service Type C transfers to control the real-time output ports, the μ PD78238 family device can easily and accurately drive two independent stepper motors.

Refresh

The refresh signal is used with any pseudostatic RAM equivalent of the NEC μ PD428128. The refresh cycle can be set to one of four intervals: $16,32,64$, or $128 / f_{\text {CLK }}$ ($2.6,5.3,10.7$, and $21.3 \mu \mathrm{~s}$ at 12 MHz). The refresh cycle is timed to follow a read or write operation to avoid interference with external memory access cycles.

Standby Modes

HALT and STOP modes are provided to reduce power consumption when CPU action is not required. In HALT mode, the CPU is stopped but the system clock continues to run. The HALT mode is released by any unmasked interrupt, an external NMI, or an external reset pulse. In STOP mode, both the CPU and the system clock are stopped, further minimizing the power consumption. The STOP mode is released by either an external reset pulse or an external NMI. The HALT and STOP modes are entered by programming the standby control register (STBC). This register is a protected location and can be written to only by a special instruction. If the third and fourth bytes of the instruction are not complements of each other, the data is not written and the next instruction is executed.

External Reset

The μ PD78238 family is reset by taking the RESET pin low. The RESET input pin contains a noise filter to protect against spurious system resets caused by noise. On power-up, the RESET pin must remain low until the power supply reaches its operating voltage and the oscillator has stabilized. During reset, the program counter is loaded with the address contained in the reset vector table (address $0000 \mathrm{H}-0001 \mathrm{H}$); program execution starts at that address upon the RESET pin going high. While RESET is low, all external lines except $\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{DD}}, \mathrm{AV}_{\mathrm{SS}}, \mathrm{AV}_{\text {REF1 }}, \mathrm{AV}_{\text {REF2 }}, \mathrm{AV}_{\text {REF } 3}, \mathrm{X} 1$, and X 2 are in the high impedance state.

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

$T_{A}=+25^{\circ} \mathrm{C}$

$\begin{array}{r} \text { Operating voltage, } V_{\mathrm{DD}} \\ \mathrm{AV}_{\mathrm{DD}} \\ \mathrm{AV}_{\mathrm{SS}} \end{array}$	$\begin{aligned} & -0.5 \text { to }+7.0 \mathrm{~V} \\ & \mathrm{AV} \text { SS to } \mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V} \\ & -0.5 \text { to }+0.5 \mathrm{~V} \end{aligned}$
Input voltage, V_{11} V_{12} (Note 1 for μ PD78P238)	$\begin{aligned} & -0.5 \text { to } V_{D D}+0.5 \mathrm{~V} \\ & -0.5 \text { to }+13.5 \mathrm{~V} \end{aligned}$
Output voltage, V_{O}	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Low-level output current, loL Per pin Total, all output pins	$\begin{aligned} & 15 \mathrm{~mA} \\ & 100 \mathrm{~mA} \end{aligned}$
High-level output current, I_{OH} Per pin Total, all output pins	$\begin{aligned} & -10 \mathrm{~mA} \\ & -50 \mathrm{~mA} \end{aligned}$
A/D converter reference input voltage, $A V_{\text {REF } 1}$	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
D/A converter reference input voltage, $\mathrm{AV}_{\text {REF2 }}$ $A V_{\text {REF }}$	$\begin{aligned} & -0.5 \text { to } V_{D D}+0.3 V \\ & -0.5 \text { to } V_{D D}+0.3 V \end{aligned}$
Operating temperature, $\mathrm{T}_{\text {OPT }}$	-40 to $+85^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{TSTG}^{\text {S }}$	-65 to $+150^{\circ} \mathrm{C}$

Note:
(1) MODE/V $V_{P P}$ and $P 2_{1} / I N T P O / A_{g}$ in programming mode

Exposure to absolute maximum ratings for extended periods may affect device reliability; exceeding the rating could cause permanent damage. The device should be operated within the limits specified under $D C$ and $A C$ chracteristics.

Operating Conditions

Oscillation Frequency	T_{A}	V_{DD}
$\mathrm{f}_{\mathrm{XX}}=4$ to 12 MHz	-40 to $+85^{\circ} \mathrm{C}$	$+5 \mathrm{~V} \pm 10 \%$

Capacitance

$T_{A}=+25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$.

Item	Symbol	Max	Unit	Conditions
Input capacitance	C_{I}	20	pF	$\mathrm{f}=1 \mathrm{MHz}$; pins not used for measurement are at 0 V
Output Capacitance	C_{0}	20	pF	
Input/output (apacitance	$\mathrm{C}_{1 O}$	20	pF	

External Clock Operation

$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Item	Symbol	Min	Max	Unit	Conditions
X 1 input low-level width	${ }^{t_{W X L}}$	30	130	ns	
X 1 input high-level width	${ }^{t_{W X H}}$	30	130	ns	
X 1 input rise time	t_{XR}	0	30	ns	
X 1 input fall time	t_{XF}	0	30	ns	
X 1 input clock cycle time	$\mathrm{t}_{\mathrm{CYX}}$	82	250	ns	

DC Characteristics

$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=A \mathrm{~V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{S S}=A V_{S S}=0 \mathrm{~V}$

Item	Symbol	Min	Typ	Max	Unit	Conditions
Low-level input voltage	$V_{\text {IL }}$	0		0.8	V	
High-level input voltage	$\mathrm{V}_{1 \mathrm{H} 1}$	2.2		V_{DD}	V	Except the specified pins (Note 1)
	$\mathrm{V}_{\mathrm{IH} 2}$	0.8 V D		V_{DD}	V	Specified pins (Note 1)
Low-level output voltage	$\mathrm{V}_{\text {OL1 }}$			0.45	V	$\mathrm{l}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
	$\mathrm{V}_{\text {OL2 }}$			1.0	V	$\mathrm{lOL}^{2}=8.0 \mathrm{~mA}$ (Note 2)
High-level output voltage	$\mathrm{V}_{\mathrm{OH} 1}$	$V_{D D}-1.0$			v	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$
	$\mathrm{V}_{\mathrm{OH} 2}$	$\mathrm{V}_{\mathrm{DD}}-0.5$			V	$\mathrm{IOH}^{\text {O }}=-100 \mu \mathrm{~A}$
	$\mathrm{V}^{\text {OH3 }}$	2.0			V	$\mathrm{I}_{\mathrm{OH}}=-5.0 \mathrm{~mA}$ (Note 3)
X1 low-level input current	$\mathrm{I}_{\text {IL }}$			-100	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{1} \leq \mathrm{V}_{1 \mathrm{ll}}$
X1 high-level input current	$\mathrm{IIH}_{\mathrm{H}}$			100	$\mu \mathrm{A}$	$\mathrm{V}_{1 H 2} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DD}}$
Input leakage current	l_{LI}			± 10	$\mu \mathrm{A}$	$O V \leq V_{1} \leq V_{D D}$
Output leakage current	Lo			± 10	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{0} \leq \mathrm{V}_{\mathrm{DD}}$
$V_{\text {DD }}$ power supply current	IDD1		20	40	mA	Operating mode, $\mathrm{f}_{\mathrm{XX}}=12 \mathrm{MHz}$
	IDD2		7	20	mA	HALT mode, $\mathrm{f}_{\mathrm{XX}}=12 \mathrm{MHz}$
Data retention voltage	$\mathrm{V}_{\text {DDDR }}$	2.5		5.5	V	STOP mode

μ PD78238 Family

DC Characteristics (cont)

Item	Symbol	Min	Typ	Max	Unit	Conditions
Data retention current	lodDR			10	$\mu \mathrm{~A}$	STOP mode; $\mathrm{V}_{\text {DDDR }}=2.5 \mathrm{~V}$
				20	$\mu \mathrm{~A}$	STOP mode; $\mathrm{V}_{\text {DDDR }}=5 \mathrm{~V} \pm 10 \%$
Pullup resistor	R_{L}	15	40	80	$\mathrm{k} \Omega$	$\mathrm{V}_{1}=0 \mathrm{~V}$

Notes:

(1) $\mathrm{X} 1, \mathrm{X} 2, \overline{\mathrm{RESET}}, \mathrm{P}_{2} / \mathrm{NMI}, \mathrm{P}_{1} / \mathrm{INTPO}, \mathrm{P} 2_{2} / \mathrm{INTP} 1, \mathrm{P} 2_{3} / \mathrm{INTP} 2 / \mathrm{Cl}$,
(2) Pins $\mathrm{P1}_{0}-\mathrm{P} 1_{7}, \mathrm{P} 4_{0} / A D_{0}-\mathrm{P}_{7} / \mathrm{AD}_{7}$, and $\mathrm{P} 5_{0} / \mathrm{A}_{8}-\mathrm{P} 5_{7} / \mathrm{A}_{15}$. P_{2} /INTP3, $\mathrm{P}_{5} /$ /NTP4/ASCK, $\mathrm{P}_{2} /$ /NTP5, $\mathrm{P}_{2} /$ /SI, $\mathrm{P}_{2} / \mathrm{SCK}_{2}, \mathrm{P}_{3} /$
(3) Pins $\mathrm{PO}_{0}-\mathrm{PO}_{7}$. SO/SBO, and MODE pins.

AC Characteristics-Read/Write Operation

Item	Symbol	Calculation Formula (Note 2, 3)	Min	Max	Unit	Conditions
X1 input clock cycle time	${ }^{\text {t }}$ CYX	-	82	250	ns	
Address setup time to ASTB \downarrow	$\mathrm{t}_{\text {SAST }}$	$\mathrm{tcyx}^{\text {- }} 30$	52		ns	
Address hold time from ASTB \downarrow (Note 1)	$t_{\text {HSTA }}$	-	25		ns	
Address hold time from $\overline{\mathrm{RD}} \uparrow$	${ }^{\text {thra }}$	-	30		ns	
Address hold time from $\overline{W R} \uparrow$	$t_{\text {HWA }}$	-	30		ns	
Address to $\overline{\mathrm{RD}} \downarrow$ delay time	${ }^{\text {t }}$ DAR	${ }^{2} \mathrm{C}_{\text {crx }}-35$	129		ns	
Address float time to $\overline{\mathrm{RD}} \downarrow$	$t_{\text {FAR }}$	$t_{\text {crx }} / 2-30$	11		ns	
Address to data input time	${ }^{\text {t }}$ DAID	$(4+2 n) t_{\text {cry }}-100$		228	ns	No wait states
ASTB \downarrow to data input time	${ }^{\text {t }}$ DSTID	$(3+2 n) t_{c r x}-65$		181	ns	No wait states
$\overline{\mathrm{RD}} \downarrow$ to data input time	${ }^{\text {t }}$ DRID	$(2+2 n) t_{c Y}-64$		100	ns	No wait states
ASTB \downarrow to $\overline{\mathrm{RD}} \downarrow$ delay time	tDSTR	$\mathrm{t}_{\mathrm{Cl}} \mathrm{X}-30$	52		ns	
Data hold time from $\overline{\mathrm{RD}} \uparrow$	$t_{\text {HRID }}$	-	0		ns	
	${ }^{\text {t }}$ DRA	${ }^{2} \mathrm{CHX}-40$	124		ns	
$\overline{\mathrm{RD}} \uparrow$ to ASTB \uparrow delay time	${ }^{\text {t }}$ DRST	${ }^{2} \mathrm{Cryx}-40$	124		ns	
$\overline{\text { RD low-level width }}$	${ }^{\text {t WRL }}$	$(2+2 n) t_{c r x}-40$	124		ns	No wait states
ASTB high-level width	${ }^{\text {t WSTH }}$	$\mathrm{t}_{\text {cry }}-30$	52		ns	
Address to $\overline{\mathrm{WR}} \downarrow$ delay time	${ }^{\text {t }}$ DAW	${ }^{2}{ }_{\text {che }}$	129		ns	
$\overline{\text { ASTB }} \downarrow$ to data output time	$\mathrm{t}_{\text {DSTOD }}$	$t_{\text {cr }} \mathrm{x}+60$		142	ns	
$\overline{\text { WR }} \downarrow$ to data output time	${ }^{\text {t }}$ WOD	-		60	ns	
$\overline{\text { ASTB } \downarrow \text { to } \overline{\mathrm{WR}} \downarrow \text { delay time }}$	$t_{\text {DSTW1 }}$	${ }^{\text {t }} \mathrm{Y} \mathrm{X}-30$	52		ns	
	tostw2	${ }_{2 t} \mathrm{Crx}-35$	129		ns	Refresh mode
Data setup time to $\overline{\mathrm{WR}} \uparrow$	tsodwr	$(3+2 n) \mathrm{t}_{\mathrm{CYX}}-100$	146		ns	No wait states
Data setup time to $\overline{W R} \downarrow$	$\mathrm{t}_{\text {SODWF }}$	$\mathrm{t}_{\mathrm{CrX}}-60$	22		ns	Refresh mode
Data hold time from $\overline{\mathrm{WR}} \uparrow$ (Note 1)	$\mathrm{t}_{\text {HWOD }}$	-	20		ns	
$\overline{\mathrm{WR}} \uparrow$ to ASTB \uparrow delay time	$t_{\text {dWST }}$	${ }_{\text {tarx }}-40$	42		ns	
$\overline{\mathrm{WR}}$ low-level width	tWWL1	$(3+2 n) t_{c r x}-50$	196		ns	No wait states
	tWWL2	$(2+2 n) \mathrm{t}_{\mathrm{Cr}} \mathrm{X}-50$	114		ns	Refresh mode; No wait states
Address to $\overline{\text { WAIT }} \downarrow$ input time	$t_{\text {DAWT }}$	$3 \mathrm{ctcrx}-100$		146	ns	
ASTB \downarrow to $\overline{\text { WAIT }} \downarrow$ input time	$t_{\text {DSTWT }}$	${ }^{2 t} \mathrm{Cyx}-80$		84	ns	
$\overline{\text { WAIT }}$ hold time from ASTB \downarrow	$\mathrm{t}_{\text {HSTWT }}$	$2 \mathrm{Xt}_{\mathrm{CYX}}+10$	174		ns	One external wait state
ASTB \downarrow to $\overline{\text { WAIT } \uparrow \text { delay time }}$	$t_{\text {DSTWTH }}$	$2(1+X) t_{c r x}-55$		273	ns	One external wait state

AC Characteristics-Read/Write Operation (cont)

Item	Symbol	Calculation Formula (Note 2, 3)	Min	Max	Unit	Conditions
	${ }^{\text {t }}$ DRWTL	$t_{\text {crex }}-60$		22	ns	
$\overline{\text { WAIT }}$ hold time from $\overline{\text { RD }} \downarrow$	$\mathrm{t}_{\text {HRWT }}$	$(2 x-1) t_{\text {cr }}(2 x+5$	87		ns	One external wait state
$\overline{\overline{R D} \downarrow \text { to } \overline{\text { WAIT }} \uparrow \text { delay time }}$	${ }^{\text {t }}$ DRWTH	$(2 x+1) \mathrm{tcrex}^{-60}$		186	ns	One external wait state
WAIT \uparrow to data input time	t ${ }_{\text {DWTID }}$	$t_{\text {crix }}-20$		62	ns	
	${ }^{\text {d }}$ DWTW	${ }^{2} \mathrm{Cyx}-10$	154		ns	
	${ }^{\text {t }}$ DWTR	$t_{\text {crex }}-10$	72		ns	
$\overline{\text { WR }} \downarrow$ to $\overline{\text { WAIT }} \downarrow$ input time	${ }^{\text {t }}$ DWWTL	$t_{\text {crex }}-60$		22	ns	Refresh disabled
$\overline{\text { WAIT }}$ hold time from $\overline{\text { WR }} \downarrow$	$t_{\text {HWWT1 }}$	$(2 \mathrm{X}-1) \mathrm{t}_{\text {crx }}+5$	87		ns	One external wait state; refresh disabled
	${ }^{\text {tHWWT2 }}$	$2(X-1) t_{\text {cru }}+5$	5		ns	One external wait state; refresh enabled
$\overline{\overline{W R}} \downarrow$ to $\overline{\text { WAIT }} \uparrow$ delay time	${ }^{\text {t }}$ WWWTH1	$(2 X+1) t \mathrm{crx}-60$		186	ns	One external wait state; refresh disabled
	towWTH2	$2 X_{\text {cterx }}-60$		104	ns	One external wait state; refresh enabled
$\overline{\overline{R D} \uparrow \text { to } \overline{\operatorname{REFRQ}} \downarrow \text { delay time }}$	$t_{\text {d }}$	${ }^{2} \mathrm{t}_{\mathrm{CYX}}-10$	154		ns	
$\overline{\mathrm{WR}} \uparrow$ to $\overline{\mathrm{REFR} Q} \downarrow$ delay time	${ }^{\text {t }}$ DWRFQ	${ }^{\text {c }} \mathrm{CYX}$ - 10	72		ns	
$\overline{R E F R Q}$ low-level width	${ }^{\text {twRFQL }}$	${ }^{2} \mathrm{tcrx}-44$	120		ns	
$\overline{\text { REFRQ } \uparrow \text { to ASTB } \uparrow \text { delay time }}$	${ }^{\text {t }}$ DRFQST	${ }^{4} \mathrm{c}_{\mathrm{CrX}}-48$	280		ns	

Notes:

(1) The hold time includes the time during which V_{OH} and V_{OL} are retained under the following load conditions: $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ and $R_{L}=2 \mathrm{k} \Omega$
(2) n indicates the number of internal wait states.
(3) X indicates the number of external wait states $(1,2,3, \ldots)$

Serial Port Operation

Item	Symbol	Min	Max	Unit	Conditions
Serial clock cycle time	${ }^{\text {t }}$ CYSK	1.0		$\mu \mathrm{s}$	External clock input
		1.3		$\mu \mathrm{s}$	Internal clock/16 output
		5.3		$\mu \mathrm{s}$	Internal clock/64 output
Serial clock low-level width	${ }^{\text {twSKL }}$	420		ns	External clock input
		556		ns	Internal clock/16 output
		2.5		$\mu \mathrm{s}$	Internal clock/64 output
Serial clock high-level width	${ }^{\text {t WSKH }}$	420		ns	External clock input
		556		ns	Internal clock/16 output
		2.5		$\mu \mathrm{s}$	Internal clock/64 output
SI, SBO setup time to $\overline{\text { SCK }} \uparrow$	tsssk	150		ns	
SI, SBO hold time from $\overline{\text { SCK } \uparrow}$	$t_{\text {HSSK }}$	400		ns	
	${ }^{\text {t }}$ DSBSK1	0	300	ns	CMOS push-pull output (3-line serial I/O mode)
	${ }^{\text {t }}$ DSBSK2	0	800	ns	Open-drain output (SBI mode), $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$
SBO high, hold time from $\overline{\text { SCK } \uparrow}$	$t_{\text {HSBSK }}$	4		${ }^{\text {t }}$ CYX	SBI mode
SBO low, setup time to $\overline{\text { SCK }} \downarrow$	${ }^{\text {t SSBSK }}$	4		$t_{C Y X}$	SBI mode
SBO low-level width	${ }^{\text {t WSBL }}$	4		${ }^{t} \mathrm{CYX}$	
SBO high-level width	${ }^{\text {t WSBH }}$	4		${ }^{t_{C Y X}}$	

A/D Converter Operation

Item	Symbol	Min	Typ	Max	Unit	Conditions
Resolution		8			Bit	
Full-scale error (Note 1)				0.4	\%	$\mathrm{AV}_{\text {REF } 1}=4.0 \mathrm{~V}$ to $\mathrm{AV}_{\mathrm{DD}} ; \mathrm{T}_{\mathrm{A}}=-10$ to $+70^{\circ} \mathrm{C}$
				0.8	\%	$\mathrm{AV}_{\text {REF } 1}=3.4 \mathrm{~V}$ to $\mathrm{AV}_{\mathrm{DD}}$
				0.6	\%	$\mathrm{AV}_{\text {REF } 1}=4.0 \mathrm{~V}$ to $\mathrm{AV}_{\mathrm{DD}}$
Quantization error				$\pm 1 / 2$	LSB	
Conversion time	tconv	240			${ }^{\text {t }}$ CrX	$82 \mathrm{~ns} \leq \mathrm{t}_{\mathrm{CYX}} \leq 250 \mathrm{~ns}$
Sampling time	$t_{\text {SAMP }}$	48			${ }^{t} \mathrm{CrX}$	$82 \mathrm{~ns} \leq \mathrm{t}_{\mathrm{CYX}} \leq 250 \mathrm{~ns}$
Analog input voltage	$\mathrm{V}_{\text {IAN }}$	-0.3		$\mathrm{AV}_{\text {REF } 1}+0.3$	V	
Analog input impedance	$\mathrm{R}_{\text {AN }}$		1000		$\mathrm{M} \Omega$	
Analog reference voltage	$\mathrm{AV}_{\text {REF } 1}$	3.4		$\mathrm{AV}_{\mathrm{DD}}$	V	
$\mathrm{AV}_{\text {REF } 1}$ current	$\mathrm{Al}_{\text {REF } 1}$		1.5	3.0	$m A$	$\mathrm{f}_{\mathrm{XX}}=12 \mathrm{MHz}$
			0.7	1.5	mA	Note 2
$\overline{A V_{D D} \text { current }}$	$\mathrm{Al}_{\text {DD1 }}$		1.4	3.0	mA	${ }_{\mathrm{fxX}}=12 \mathrm{MHz}$
	$\mathrm{Al}_{\text {DD2 }}$		10	20	$\mu \mathrm{A}$	Note 3

Notes:

(1) Quantization errror is not included. Unit is defined as percent of full-scale value.
(2) When CS bit of the ADM register is set to 0 .
(3) When CS bit of the ADM register is set to 0 in the STOP mode.

D/A Converter Operation

Item	Symbol	Min	Typ	Max	Unit	Conditions
Resolution		8			Bit	
Overall Error				0.4	\%	Load conditions: $4 \mathrm{M} \Omega 30 \mathrm{pF}$
				0.6	\%	Load conditions: $2 \mathrm{M} \Omega 30 \mathrm{pF}$
				0.6	\%	$\begin{aligned} & A V_{\text {REF2 }}=0.75 \mathrm{~V}_{\mathrm{DD}} \\ & A V_{\text {REF3 }}=0.25 \mathrm{~V}_{\mathrm{DD}} \\ & \text { Load conditions: } 4 \mathrm{M}, 30 \mathrm{pF} \end{aligned}$
				0.8	\%	$\begin{aligned} & \mathrm{AV}_{\mathrm{REF2}}=0.75 \mathrm{~V} \mathrm{DD} ; \\ & \mathrm{AV}_{\mathrm{REF3}}=0.25 \mathrm{~V}_{\mathrm{DD}} ; \\ & \text { Load conditions: } 2 \mathrm{M} \Omega, 30 \mathrm{pF} \end{aligned}$
Setting time	Undefined			10	$\mu \mathrm{s}$	Load conditions: $2 \mathrm{M} \Omega 30 \mathrm{pF}$
Analog reference voltage 2	$V_{\text {AVREF2 }}$	$0.75 \mathrm{~V}_{\mathrm{DD}}$		V_{DD}	V	
Analog reference voltage 3	$\mathrm{V}_{\text {AVREF3 }}$	0	$0.25 V_{D D}$	V		
Reference power input current 2	$\mathrm{Al}_{\text {REF2 }}$	0	5	mA		
Reference power input current 3	Al ${ }_{\text {REF } 3}$	-5.0	0	mA		
Output resistance	R_{0}		20		$k \Omega$	DACSO, DACS1 set to 7FH

Interrupt Timing Operation

$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Item	Symbol	Min	Max Unit	Conditions
NMI low-level width	${ }_{\text {twNIL }}$	10	$\mu \mathrm{s}$	
NMI high-level width	${ }^{\text {W WNIH }}$	10	$\mu \mathrm{s}$	
INTPO-INTP5 low-level width	tWITL	24	${ }^{\text {torx }}$	
INTPO-INTP5 high-level width	$t_{\text {WITH }}$	24	${ }^{\text {c }}$ CYX	
RESET low-level width	tWRSL	10	$\mu \mathrm{s}$	
RESET high-level width	${ }^{\text {tWRSH }}$	10	$\mu \mathrm{s}$	

Data Retention Characteristics

$T_{A}=-40$ to $+85^{\circ} \mathrm{C}$

Item	Symbol	Min	Typ	Max	Unit	Conditions
Data retention voltage	$V_{\text {DDDR }}$	2.5		5.5	V	STOP mode
Data retention current	IDDDR		2	10	$\mu \mathrm{A}$	$V_{\text {DDDR }}=2.5 \mathrm{~V}$
			5	20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {DDDR }}=5 \mathrm{~V} \pm 10 \%$
$\mathrm{V}_{\text {DD }}$ rise time	$\mathrm{t}_{\text {RVD }}$	200			$\mu \mathrm{s}$	
$V_{\text {DD }}$ fall time	trvo	200			$\mu \mathrm{s}$	
$V_{D D}$ retention time (from STOP mode setting)	thVo	0			ms	
STOP release signal input time	$t_{\text {DREL }}$	0			ms	
Oscillation stabilization wait time	twat	30			ms	Crystal resonator
		5			ms	Ceramic resonator
Low-level input voltage	$\mathrm{V}_{\text {IL }}$	0		$0.1 \mathrm{~V}_{\text {DDDR }}$	V	Specified pins (Note 1)
High-level input voltage	$\mathrm{V}_{\text {IH }}$	$0.9 \mathrm{~V}_{\text {DDDR }}$		$V_{\text {DDDR }}$	V	Specified pins (Note 1)

Note:
(1) $\overline{\mathrm{RESET}}, \mathrm{P} 2_{0} / \mathrm{NMI}, \mathrm{P} 2_{1} / \mathrm{INTPO}, \mathrm{P} 2_{2} / \mathrm{INTP} 1, \mathrm{P}_{3} / \mathrm{NTP} / 2 \mathrm{Cl}, \mathrm{P}_{4} /$ INTP3, $\mathrm{P2}_{5} / \mathrm{NTP} 4 / \mathrm{ASCK}^{2}, \mathrm{P2}_{6} / \mathrm{NTP5}, \mathrm{P}_{7} / \mathrm{SI}, \mathrm{P3}_{2} / \mathrm{SCK}, \mathrm{P}_{3} / \mathrm{SO} /$ SBO, and MODE pins.

Recommended Crystal Resonators
(μ PD78233/234 only)

Manufacturer	Frequency (MHz)	Part Number	C1 (pF)	C2 (pF)
Kinseki	12	$\mathrm{HC}-49 / \mathrm{U}$	18	18

Recommended Resonator Circuit

Ceramic or crystal resonator frequency $f_{x x}=4$ to 12 MHz External osclilation circult should be as close to the X1 and X2 plns as possible
Do not place other signal lines in the shaded area

Recommended Ceramic Resonators (μ PD78233/234 only)

	Frequency Manufacturer	MHz)	Part Number	C1 (pF)	C2 (pF)
Murata mfg.	12	CSA12.0MT	30	30	
		CST12.0MTW	None (1)	None (1)	
Kyocera Corp.	12	KBR12.0M	33	33	

Notes:
(1) C 1 and C 2 are contained in the resonator.

Recommended External Clock Circuit

Timing Waveforms

Voltage Thresholds for AC Timing Measurements

$\left.\mathrm{V}_{\mathrm{DD}}-1 \longrightarrow \begin{array}{c}0.8 \mathrm{~V}_{\mathrm{DD}} \text { or } 2.2 \mathrm{~V} \\ 0.8 \mathrm{~V}\end{array}\right)$$0.45 \mathrm{~V} \longrightarrow \quad 1$	
	83YL-9223A

Read Operation

Timing Waveforms (cont)

Write Operation

Timing Waveforms (cont)

External $\overline{\text { WAIT }}$ Signal Input (Read Operation)

Timing Waveforms (cont)
External WAIT Signal Input (Write Operation)

Timing Waveforms (cont)
Refresh After Read

Refresh After Write

Timing Waveforms (cont)

Serial Operation

SBI Mode

Bus Release Signal Transfer Timing

Command Signal Transfer Timing

Interrupt Input

Reset Input

External Clock

Data Retention Characteristics

μ PD78238 Family

μ PD78P238 PROGRAMMING

In the μ PD78P238, the mask ROM of μ PD78234 is replaced by a one-time programmable ROM (OTP ROM) or a reprogrammable, ultraviolet erasable ROM (UV EPROM). The ROM is $32 \mathrm{~K} \times 8$ bits and can be programmed using a general-purpose PROM writer with a μ PD27C256A programming mode.

The PA-78P238GC/GJ/LQ/KF are the socket adaptors used for configuring the μ PD78P238 to fit a standard PROM socket.

Refer to tables 5 and 6 and figures 17 through 19 for special information applicable to PROM programming.

Table 5. Pin Functions During PROM Programming

Pin	Pin*	Function
$\mathrm{PO}_{0}-\mathrm{PO}_{7}$	$\mathrm{~A}_{0}-\mathrm{A}_{7}$	Address input pins for PROM operations
$\mathrm{P5}_{0} / \mathrm{A}_{8}$	$\mathrm{~A}_{8}$	Address input pin for PROM operations
$\mathrm{P2}_{1} / \mathrm{INTPO}^{2}$	$\mathrm{~A}_{9}$	Address input pin for PROM operations
Pin	Pin^{\star}	Function

Table 5. Pin Functions During PROM
Programming (cont)

Pin	Pin	Function

Table 5. Pin Functions During PROM Programming

Pin	Pin*	Function
$\begin{aligned} & \mathrm{P5}_{2} / \mathrm{A}_{10}- \\ & \mathrm{P5}_{6} / \mathrm{A}_{14} \end{aligned}$	$\begin{aligned} & \mathrm{A}_{10}- \\ & \mathrm{A}_{14} \end{aligned}$	Address input pins for PROM operations
$\begin{aligned} & \mathrm{P}_{0} / \mathrm{AD}_{0} \\ & \mathrm{P}_{7} / \mathrm{AD}_{7} \end{aligned}$	$\begin{aligned} & \mathrm{D}_{0} \\ & \mathrm{D}_{7} \end{aligned}$	Data pins for PROM operations
$\mathrm{P6}_{5} \overline{\mathrm{WR}}$	$\overline{C E}$	Strobes data into the PROM
$\mathrm{P}_{6} / \overline{\mathrm{RD}}$	$\overline{O E}$	Enables a data read from the PROM
$\overline{\text { RESET }}$	RESET	PROM programming mode requires applying a low voltage to this pin
MODE	$V_{\text {PP }}$	High voltage applied to this pin for program write/verify
V_{DD}	$V_{D D}$	Positive power supply pin
$V_{S S}$	$V_{S S}$	Ground

* Pin name in PROM programming mode.

Table 6. Summary of Operation Modes for PROM Programming

Mode	RESET	$\overline{\text { CE }}$	$\overline{O E}$	$\mathrm{V}_{\text {PP }}$	V_{DD}	$\mathrm{D}_{0}-\mathrm{D}_{7}$
Program write	L	L	H	$+12.5 \mathrm{~V}$	$+6 \mathrm{~V}$	Data input
Program verify	L	H	L	+12.5 V	$+6 \mathrm{~V}$	Data output
Program inhibit	L	H	H	+12.5 V	$+6 \mathrm{~V}$	High Z
Read out	L	L	L	$+5 \mathrm{~V}$	$+5 \mathrm{~V}$	Data output
Output disable	L	L	H	$+5 \mathrm{~V}$	$+5 \mathrm{~V}$	High Z
Standby	L	H	L/H	$+5 \mathrm{~V}$	$+5 \mathrm{~V}$	High Z

Note: When +12.5 V is applied to $\mathrm{V}_{P P}$ and +6 V to V_{DD}, both $\overline{\mathrm{CE}}$ and
$\overline{\mathrm{OE}}$ cannot be set to low level (L) simultaneously.

Pin Functions in μ PD78P238 PROM Programming Mode
Figure 17. 80-Pin Plastic QFP

Notes:

(1) L: Connect these pins separately to $\mathrm{V}_{\text {SS }}$ through resistors.
(2) $V_{S S}$: Connect these pins to $V_{S S}$.
(3) Open: Do not connect these pins.
(4) $\overline{\text { RESET: }}$ Set to a low level.

Pin Functions in μ PD78P238 PROM Programming Mode (cont)
Figure 18. 84-Pin PLCC

Notes:
(1) L: Connect these pins separately to $\mathrm{V}_{\text {SS }}$ through resistors.
(2) $V_{S S}$: Connect these pins to $V_{S S}$ -
(3) Open: Do not connect these pins.
(4) RESET: Set to a low level.

Pin Functions in μ PD78P238 PROM Programming Mode (cont)

Figure 19. 94-Pin Plastic QFP 94-Pin Ceramic LCC with Window

Notes:

(1) L: Connect these pins separately to $\mathrm{V}_{S S}$ through resistors.
(2) $\mathrm{V}_{S S}$: Connect these pins to $\mathrm{V}_{S S}$.
(3) Open: Do not connect these pins.
(4) $\overline{\text { RESET: }}$ Set to a low level.

PROM Write Procedure

(1) Set the pins not used for programming as indicated in figures 17 through 19. Connect the RESET pinto a low level and apply +5 V to the $\mathrm{V}_{D D}$ and $\mathrm{V}_{P P}$ pin. The $\overline{C E}$ and $\overline{O E}$ pins should be high.
(2) Apply +6 V to the $\mathrm{V}_{D D}$ pin and +12.5 V to the $\mathrm{V}_{P P}$ pin.
(3) Provide the initial address to the A_{0} to A_{14} pins.
(4) Provide write data.
(5) Provide 1-ms program pulse (active low) to the $\overline{\mathrm{CE}}$ pin.
(6) This data is now verified with a pulse (active low) to the $\overline{O E}$ pin. If the data has been written, proceed to step 8; if not, repeat steps 4 to 6 . If the data cannot be correctly written after 25 attempts, go to step 7.
(7) Classify as defective and stop write operation.
(8) Provide write data and supply program pulse (for additional writing) for 3 ms times the number of writes performed in step 5.
(9) Increment the address.
(10) Repeat steps 4 to 9 until the end address.

PROM Read Procedure

(1) Set the pins not used for programming as indicated in figures 17 through 19. Fix the RESET pin to a low level and apply +5 V to the V_{DD} and V_{PP} pin. The $\overline{\mathrm{CE}}$ and $\overline{O E}$ pins should be high.
(2) Input the address of the data to be read to pins $A_{0}-A_{14}$.
(3) Read mode is entered with a pulse (active low) on both the $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ pins.
(4) Data is output to the D_{0} to D_{7} Pins.

EPROM Erasure

Data in an EPROM is erased by exposing the quartz window in the ceramic package to light having a wavelength shorter than 400 nm , including ultraviolet rays, direct sunlight, and fluorescent light. To prevent unintentional erasure, mask the window.

Typically, data is erased by $254-\mathrm{nm}$ ultraviolet rays. A minimum lighting level of $15 \mathrm{Ws} / \mathrm{cm}^{2}$ (ultraviolet ray intensity x exposure time) is required to completely erase written data. Erasure by an ultraviolet lamp rated at $12 \mathrm{~mW} / \mathrm{cm}^{2}$ takes approximately 15 to 20 minutes. Remove any filter on the lamp and place the device within 2.5 cm of the lamp tubes.

DC Programming Characteristics
$T_{A}=25 \pm 5^{\circ} \mathrm{C} ; V_{P P} \geq 4.5 \mathrm{~V} ; \mathrm{V}_{S S}=0 \mathrm{~V}$

[^15]
AC Programming Characteristics (Write Mode)

$T_{A}=25 \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{PP}} \geq 4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=6 \pm 0.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{PP}}=12.5 \pm 0.3 \mathrm{~V}$

Parameter	Symbol	Symbol*	Min	Typ	Max	Unit	Conditions
Address setup time to $\overline{C E} \downarrow$	${ }^{\text {t }}$ SAC	$t_{\text {AS }}$	2			$\mu \mathrm{s}$	
Data input to $\overline{O E} \downarrow$ delay time	$\mathrm{t}_{\mathrm{HOID}}$	toes	2			$\mu \mathrm{s}$	
Input data setup time to $\overline{\mathrm{CE}} \downarrow$	${ }_{\text {tside }}$	${ }^{\text {t }}$ S	2			$\mu \mathrm{s}$	
Address hold time from $\overline{\mathrm{CE}} \uparrow$	$t_{\text {HCA }}$	${ }^{\text {t }}$ A	2			$\mu \mathrm{s}$	
Input data hold time from $\overline{\mathrm{CE}} \uparrow$	$t_{\text {HCID }}$	${ }^{\text {t }}$ D	2			$\mu \mathrm{s}$	
Output data hold time from $\overline{O E} \uparrow$	${ }^{\text {thood }}$	t_{DF}	0		130	ns	
V_{PP} setup time to $\overline{\mathrm{CE}} \downarrow$	tsvpe	tvps	1			ms	
$\mathrm{V}_{\text {DDP }}$ setup time to $\overline{\mathrm{CE}} \downarrow$	tsVDC	tves	1			ms	
Initial program pulse width	${ }_{\text {twL } 1}$	$t_{\text {pw }}$	0.95	1.0	1.05	ms	
Additional program pulse width	tWL2	topw	2.85		78.75	ms	
$\overline{\mathrm{OE}} \downarrow$ to data output time	${ }^{\text {to }}$ OOD	t_{OE}			150	ns	

* Corresponding symbols of the μ PD27C256A.

AC Programming Characteristics (Read Mode)
$T_{A}=25 \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{PP}} \geq 4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{PP}}=5 \pm 0.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{DDP}} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Symbol*	Min	Typ	Max	Unit	Conditions
Address to data output time	$t_{\text {DAOD }}$	$t_{A C C}$			200	ns	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$
$\overline{\overline{C E} ~} \downarrow$ to data output time	$t_{\text {dCOD }}$	$t_{\text {ce }}$			200	ns	$\overline{\mathrm{OE}}=\mathrm{V}_{\text {IL }}$
$\overline{\mathrm{OE}} \downarrow$ to data output time	${ }^{\text {t }}$ (${ }^{\text {cood }}$	toe			75	ns	$\overline{C E}=V_{\text {IL }}$
Data hold time from $\overline{O E} \uparrow$	$t_{\text {HCOD }}$	$t_{\text {DF }}$	0		60	ns	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}$
Data hold time from address	$\mathrm{t}_{\text {HAOD }}$	${ }^{\text {toH }}$	0			ns	$\overline{C E}=\overline{O E}=V_{\text {II }}$

[^16]
PROM Timing Diagrams

PROM Write/Verify Mode

PROM Timing Diagrams (cont)
PROM Read Mode

8-Bit, K-Series Microcontrollers With A/D Converter, EEPROM, Real-Time Output Ports

Description

The μ PD78243 and μ PD78244 are members of the K-Series ${ }^{\circledR}$ of microcontrollers and are designed for real-time embedded control applications. The μ PD78244 family is pin compatible with the μ PD78214 and μ PD78218A families and offers 512 bytes of EEPROM (electrically erasable programmable readonly memory) with enhanced timer and macro service facilities. These 8 -bit, single-chip microcontrollers have a minimum instruction time of 333 ns at 12 MHz (500 ns for the μ PD78243). They feature 8-bit hardware multiply and divide instructions, four banks of main registers, an advanced interrupt handling facility, a powerful set of memory mapped on-chip peripherals, and the ability to address up to 1 M bytes of external data memory. On-board memory includes 512 bytes of RAM, 512 bytes of EEPROM, and 16K bytes of mask ROM.

The advanced interrupt handling facility provides two levels of programmable hardware priority control and two separate methods of servicing interrupt requests: vectored and macro service. The macro service facility reduces the overhead involved in servicing peripheral interrupts by transferring data between the memorymapped special function registers (SFRs) and memory without the use of time consuming interrupt service routines. In addition, the macro service facility can be initialized to automatically alter timer compare register values or to repeatedly output a prespecified pattern at a fixed or variable rate. By using macro service to control the real-time output ports, the μ PD78244 can easily and accurately drive two independent stepper motors.

The combination of the macro service facility, four banks of main registers, EEPROM, extended data memory address space, and powerful on-chip peripherals makes these devices ideal for applications in office automation, communication, HVAC, and industrial control.

K-Series is a registered trademark of NEC Electronics, Inc. NEC is manufacturing and selling this product (with on-chip EEPROM) under microcomputer patent license with BULL CP8. This product should not be used in IC cards (SMART CARD).

Features

- Complete single-chip microcontroller
-8-bit ALU
- Program memory (ROM)
μ PD78243: ROMless
μ PD78244: 16K bytes
- Data memory (RAM)

RAM: 512 bytes
EEPROM: 512 bytes
\square Pin compatible with μ PD78214 and μ PD78218A families

- Powerful instruction set
-8-bit unsigned multiply and divide
- 16-bit arithmetic instructions
-1-bit and 8-bit logic instructions
- Minimum instruction time
-333 ns at 12 MHz (μ PD78244)
-500 ns at $12 \mathrm{MHz}(\mu \mathrm{PD} 78243)$
- Memory expansion
- 8085 bus-compatible
-64K program address space
- 1M data address space
- Large I/O capacity
- Up to 54 I/O port lines on μ PD78244
- Up to 36 I/O port lines on μ PD78243
- Software programmable pullup resistors
- Memory-mapped on-chip peripherals (special function registers)
- Timer/counter unit
- 16-bit timer 0:

Two 16-bit compare registers One 16-bit capture register One external interrupt/capture line
-8-bit timer 1:
One 8-bit compare register
One 8-bit capture/compare register
One external interrupt/capture line
-8-bit timer/counter 2:
Two 8-bit compare registers
One 8-bit capture register
One external interrupt/capture line
One external event counter line
-8-bit timer 3:
One 8-bit compare register

- Four 8-bit precision timer-controlled pulse-width
modulated (PWM) output lines

Features (cont)

- Two 4-bit (or one 8-bit) real-time output ports
- Eight-channel 8-bit A/D converter
- Programmable priority interrupt controller (two levels)
- Two methods of interrupt service
- Vectored interrupts
- Macro service mode with choice of three different types
- Two-channel serial communication interface
- Asynchronous serial interface (UART) Dedicated baud rate generator
- Clock-synchronized interface Full-duplex, three-wire mode NEC serial bus interface (SBI) mode
- Refresh output for pseudostatic RAM
- STOP and HALT standby functions
- 5-volt CMOS technology

Ordering Information

Part Number	Package (Package Dwg.)	ROM
μ PD78243CW	64-pin plastic shrink DIP (P64C-70-750A,C)	ROMless
μ PD78243GC-AB8	64-pin plastic QFP (P64GC-80-AB8-2)	
μ PD78244CW-xxx	64-pin plastic shrink DIP (P64C-70-750A,C)	16K mask ROM
μ PD78244GC-xxx	64-pin plastic QFP (P64GC-80-AB8-2)	

xxx indicates ROM code suffix

Pin Configurations

64-Pin Shrink DIP (Plastic)

$\mathrm{PO}_{3}-1$	1	64	$\square \mathrm{PO}_{2}$
PO_{4}-2	2	63	$\square \mathrm{PO}_{1}$
PO_{5} - 3	3	62	$\square \mathrm{PO}_{0}$
$\mathrm{PO}_{6} \mathrm{Cl}_{4}$	4	61	$\mathrm{P}_{3} / \mathrm{TO3}$
$\mathrm{PO}_{7} \mathrm{C}_{5}$	5	60	$\square \mathrm{P}_{6} / \mathrm{TO} 2$
$\mathrm{P}_{7} /$ /REFRQ/AN7 \square^{6}	6	59	$\square \mathrm{P}_{5} / \mathrm{TO1}$
	7	58	$\square \mathrm{P}_{4} / \mathrm{TOO}$
$\mathrm{P}_{6}{ }_{5}$ WR - 8	8	57	$\square \mathrm{P}_{\mathrm{O}} / \mathrm{ANO}$
$\mathrm{P6}_{4} / \overline{\mathrm{RD}}$ - 9	9	56	$\square \mathrm{P} 7_{1} / \mathrm{AN} 1$
$\mathrm{P6}_{3} / \mathrm{A}_{19}{ }^{-1}$	10	55	$\square \mathrm{P7}_{2} / \mathrm{AN} 2$
$\mathrm{P}_{2} / \mathrm{A}_{18}{ }_{1}$	11	54	$\square \mathrm{P7}_{3} /$ AN3
$\mathrm{P}_{61} / \mathrm{A}_{17}-1$	12	53	$\mathrm{P7}_{4} / \mathrm{AN4}$
$\mathrm{P}_{6} / \mathrm{A}_{16}$-1	13	52	$\mathrm{P}_{75} / \mathrm{AN5}$
RESET $\square 1$	14	51	$\square \mathrm{AV}_{\text {REF }}$
x2 \square^{1}	15	50	$\square \mathrm{AV}_{S S}$
X1 ${ }^{1}$	16	49	$\square \mathrm{V}_{\text {D }}$
$\mathrm{V}_{\text {SS }}{ }_{1}$	17	48	$\square \overline{\mathrm{EA}}$
$\mathrm{P}_{5} / \mathrm{A}_{15}$-1	18	47	$\mathrm{P}_{3} / \mathrm{SO} / \mathrm{SBO}$
$\mathrm{P5}_{6} / \mathrm{A}_{14}$ - 1	19	46	$\square \mathrm{P} 3_{2} / \overline{\text { SCK }}$
$\mathrm{P5}_{5} / \mathrm{A}_{13} \square 20$	20	45	$\square \mathrm{P} 3_{1} / \mathrm{TxD}$
$\mathrm{P5}_{4} / \mathrm{A}_{12} \square_{2}$	21	44	$\square \mathrm{P} 30 / \mathrm{RxD}$
$\mathrm{P5}_{3} / \mathrm{A}_{11} \mathrm{C}$	22	43	$\mathrm{P}_{27} / \mathrm{SI}$
$\mathrm{P5}_{2} / \mathrm{A}_{10} \square$	23	42	$\square \mathrm{P}_{6} / \mathrm{INTP5}$
$\mathrm{P5}_{1} / \mathrm{A}_{9} \square$	24	41	$\square \mathrm{P} 2_{5} / \mathrm{INTP4/ASCK}$
$\mathrm{P5}_{5} / \mathrm{A}_{8} \square$	25	40	$\square \mathrm{P} 24 / \mathrm{INTP} 3$
$\mathrm{P}_{7} / \mathrm{AD}_{7} \mathrm{C}_{2}$	26	39	$\mathrm{P}_{2} / \mathrm{INTP} 2 / \mathrm{Cl}$
$\mathrm{P}_{4}{ }_{6} / \mathrm{AD}_{6} \square_{2}$	27	38	$\square \mathrm{P} 2_{2} / \mathrm{INTP}^{1}$
$\mathrm{P}_{5}{ }_{5} / \mathrm{AD}_{5} \mathrm{H}_{2}$	28	37	$\square \mathrm{P} 2_{1} / \mathrm{INTP0}$
$\mathrm{P}_{4}{ }_{4} / \mathrm{AD}_{4} \mathrm{H}$	29	36	$\square \mathrm{P} 20 / \mathrm{NMI}$
$\mathrm{P}_{3} / \mathrm{AD}_{3} \square$	30	35	$\square \mathrm{ASTB}$
$\mathrm{P}_{4}{ }_{2} / \mathrm{AD}_{2} \square$	31	34	$\square \mathrm{P} 0_{0} / \mathrm{AD} 0$
$\mathrm{vSS}^{\text {S }}$	32	33	$\square \mathrm{P}_{1} / \mathrm{AD}_{1}$

83YL-9221A

Pin Configurations (cont)
64-Pin Plastic QFP

Pin Functions; Normal Operating Mode

Symbol	First Function	Symbol	Second Function
$\mathrm{PO}_{0}-\mathrm{PO}_{7}$	Port 0; 8-bit tristate output port/real time output port		
$\xrightarrow{\mathrm{P}_{0}}$	Port 2; 8-bit input port	NMI	External nonmaskable interrupt
$\begin{aligned} & \mathrm{P} 2_{1} \\ & \mathrm{P} \mathbf{N}_{2} \end{aligned}$		INTPO INTP1	Maskable external interrupt
P_{3}		$\begin{aligned} & \text { INTP2 } \\ & \mathrm{Cl} \end{aligned}$	Maskable external interrupt External clock input to timer/counter 2
$\mathrm{P2}_{4}$		INTP3	Maskable external interrupt
P25		$\begin{aligned} & \text { INTP4 } \\ & \text { ASCK } \end{aligned}$	Maskable external interrupt Asynchronous serial clock input
Pr_{6}		INTP5	Maskable external interrupt
P_{7}		SI	Serial data input for three-wire serial I/O mode
P_{3}	Port 3; 8-bit, bit-selectable tristate input/output port	RxD	Asynchronous serial receive data input
$\mathrm{P3}_{1}$		TxD	Asynchronous serial transmit data output
$\mathrm{P3}_{2}$		$\overline{\text { SCK }}$	Serial shift clock input/output
$\mathrm{P3}_{3}$		$\begin{aligned} & \text { SO } \\ & \text { SBO } \end{aligned}$	Serial data output for three-wire serial I/O mode I/O bus for NEC serial bus interface (SBI)
$\mathrm{P3}_{4}-\mathrm{P3}_{7}$		TOO-TO3	Timers TO to T3 outputs
$\mathrm{P4}_{4}-\mathrm{P}_{7}$	Port 4; 8-bit tristate input/output port	$A D_{0}-A D_{7}$	Low-order 8-bit multiplexed address/data bus
$\mathrm{P5}_{0}-\mathrm{P} 5_{7}$	Port 5; 8-bit, bit-selectable tristate input/output port	$A_{8}-A_{15}$	High-order 8-bit address bus
$\underline{P 6}{ }^{-P 6_{3}}$	Port 6; 4-bit output port	$\mathrm{A}_{16}-\mathrm{A}_{19}$	Extended memory address bus
$\mathrm{P6}_{4}$	Port 6; 4-bit, bit-selectable tristate input/output port	$\overline{\mathrm{RD}}$	External memory read strobe output
PG_{5}		$\overline{W R}$	External memory write strobe output
Pb_{6}		$\begin{aligned} & \hline \overline{\text { WAIT }} \\ & \text { AN6 } \end{aligned}$	External memory wait signal input Analog voltage input to A / D converter
P67		$\overline{\operatorname{REFRQ}}$ AN7	Refresh pulse output used by external pseudostatic memory Analog voltage input to A / D converter
$\underline{P 7}{ }^{-P 7} 7_{5}$	Port 7; 6-bit input port	ANO - AN5	Analog voltage inputs to A / D converter
ASTB	Address strobe output used to latch the low-order 8 address for external memory		
RESET	External system reset input		
$\overline{E A}$	Internal ROM or external memory control signal input. Lowlevel input selects external memory. High-level input selects internal ROM. A low-level input on a μ PD78244 places the device in ROMless mode and external memory is accessed.		
X1	Crystal/ceramic resonator connection or external clock input		
X2	Crystal/ceramic resonator connection or inverse of external clock		
$\mathrm{AV}_{\text {REF }}$	A/D converter reference voltage		
$\mathrm{AV}_{\text {SS }}$	A/D converter ground		
$V_{\text {D }}$	+5 volt power supply input		
$V_{S S}$	Power supply ground		
NC	No connection		

Block Diagram

Differences Among the μ PD78244, μ PD78218A, and μ PD78214

The μ PD78244 family is a pin compatible enhanced version of the μ PD78218A and μ PD78214 families. Table 1 highlights the differences.

Table 1. Differences Among the μ PD78244, μ PD78218A and μ PD78214 Families

Item	μ PD78244 Family	μ PD78218A Family	μ PD78214 Family
Maximum on-chip ROM	16K bytes	32 K bytes	16K bytes
Maximum on-chip RAM	512 bytes	1024 bytes	512 bytes
On-chip EEPROM	512 bytes	None	None
16-bit timer	Software-triggered one-shot pulse output	Software-triggered one-shot pulse output	Not available
Internal interrupt sources	14	12	12
Macro service counter	8/16 bit selectable (except Type A transfers)	8/16 bit selectable (except Type A transfers)	8-bit only
Type C macro service pointers, MPT and MPD	Increments full 16 bits	Increments full 16 bits	Increments only lower 8 bits
Macro service execution times	Same	Same	Different; refer to hardware user's manual
PUSH PSW instruction execution times	Same	Same	Different; refer to software user's manual
Oscillation stabilization time when exiting STOP mode	Time equivalent to NMI active pulse width plus 16 bits of dedicated counter or 15 bits of dedicated counter	Time equivalent to NMI active pulse width plus 16 bits of dedicated counter or 15 bits of dedicated counter	Time equivalent to NMI active pulse width plus 16 bits of dedicated counter
A/D converter reference voltage	3.6 V to V_{DD}	3.6 V to V_{DD}	3.4 V to V_{DD}
Operating temperature	-10 to $+70^{\circ} \mathrm{C}$	-40 to $+85^{\circ} \mathrm{C}$	-40 to $+85^{\circ} \mathrm{C}$
Programmable device operating voltage	No programmable device	$5 \mathrm{~V} \pm 0.3 \mathrm{~V}$	$5 \mathrm{~V} \pm 10 \%$
Package	64-pin plastic shrink DIP	64-pin plastic shrink DIP	64-pin plastic shrink DIP
	64-pin plastic QFP	64-pin plastic QFP	64-pin plastic QFP
		64-pin shrink cerdip w/window	64-pin shrink cerdip w/window
			64-pin plastic QUIP
			68-pin PLCC
			74-pin plastic QFP

FUNCTIONAL DESCRIPTION

Central Processing Unit (CPU)

The μ PD78244 CPU features 8 - and 16 -bit arithmetic including an 8×8-bit unsigned multiply and 16×8-bit unsigned divide (producing a 16-bit quotient and an 8 -bit remainder). The multiply executes in $3.67 \mu \mathrm{~s}$ and the divide in $12.36 \mu \mathrm{~s}$ at 12 MHz (4.00 and $12.69 \mu \mathrm{~s}$ respectively for μ PD78243).

A CALLT vector table and a CALLF program area decrease the number of bytes in the call instructions for commonly used subroutines. A 1-byte call instruction (CALLT) can access up to 32 subroutines through the addresses contained in the CALLT vector table. A 2-byte call instruction (CALLF) can access any routine beginning at a specific address in the CALLF area.

The internal system clock (foLk) is generated by dividing the oscillator frequency by two. Therefore, at the maximum oscillator frequency of 12 MHz , the internal system clock is 6 MHz . The minimum instruction exe-

Figure 1. Memory Map

cution time for an instruction fetched from internal ROM is 333 ns (500 ns when fetched from external memory).

Memory Space

The μ PD78244 family has a 1 M byte address space (see figure 1). The first 64 K bytes of this address space ($00000 \mathrm{H}-0 \mathrm{FFFFH}$) can be used as both program and data memory. The remaining 960 K bytes of this address space ($10000 \mathrm{H}-\mathrm{FFFFFH}$) can only be used as data memory and is known as expanded memory.

External Memory

The μ PD78244 family has an 8 -bit wide external data bus and a 16 -bit wide external address bus (20-bit wide if expanded memory is enabled). The low-order 8 bits of the address bus are multiplexed to provide the 8 -bit data bus and are supplied by $1 / O$ port 4 . The high-order address bits of the 16-bit address bus are taken from port 5. If expanded memory is enabled, the expanded address nibble is provided by P_{0} to P_{3}. Address latch, read, and write strobes are also provided.

The memory expansion mode register (MM) is used to enable external memory, to specify up to two addi-
tional wait states or the use of the WAIT input pinfor the first 64 K bytes of memory, and to enable the high-speed internal ROM fetch. Ports 4, 5, and 6 are available as general purpose I/O ports when only internal ROM is used and no external program or data space is required.

Expanded Data Memory

The MM register is also used to enable the external expanded data memory space, addresses 10000 H to FFFFFH. When the expanded data memory is enabled, the entire 1 M byte address space is divided into 16 banks of 64 K bytes each. The low-order 4-bits of the P6 or the PM6 registers are used as bank selection registers to supply the address information to A_{16} to A_{19}. Data can easily be transferred from one memory bank to another by using the appropriate instructions. Address lines A_{16} to A_{19} are only active when an instruction that uses expanded addressing is being executed. A programmable wait control register (PW) allows the programmer to specify up to two additional wait states or the use of the WAIT input pin for expanded data memory space.

On-Chip RAM

The μ PD78244 family has a total of 512 bytes of on-chip RAM. The upper 256 -byte area (FEOOH -FEFFH) features high-speed access and is known as "Internal RAM." The remaining 256 bytes (FDOOH-FDFFH) are accessed at the same speed as external memory and is known as "Peripheral RAM." The general register banks and the macro service control words are stored in internal RAM. The remainder of Internal RAM and any unused register bank locations are available for general storage.

On-Chip EEPROM

The μ PD78244 family has 512 bytes of on-chip EEPROM (FBOOH-FCFFH) usable as internal data memory. A user program can read from it or write to it using most of the same instructions available for use with internal RAM. Any address of the EEPROM can be read at any time even during a write cycle at the same address. Data is read from EEPROM at the same speed as from peripheral RAM and the EEPROM is guaranteed for 100,000 repetitive rewrites.
Each write cycle, consisting of an auto erase cycle followed by an auto write cycle, takes approximately 10 ms to complete. On completion of a write cycle, an EEPROM write termination interrupt (INTEPW) is generated. If another write cycle is started before the previous cycle is finished, an EEPROM write error interrupt (INTEER) will be generated. Two status flags are also available to indicate whether a write operation is currently in progress and whether a write error has occurred.

The EEPROM can be write protected in 128-byte blocks. The area to be protected can be assigned and enabled only once following reset. It cannot be changed once it has been set by the program.

On-Chip Program Memory

The μ PD78244 contains 16K bytes of internal ROM. Instructions from on-chip program memory can be fetched at high speed or at the same rate as from external memory. The μ PD78243 does not have on-chip program memory.

CPU Control Registers

Program Counter. The program counter is a 16 -bit binary counter register that holds the address of the next instruction to be executed. During reset, the program counter is loaded with the address stored in locations 0000 H and 0001 H .
Stack Pointer. The stack pointer is a 16 -bit register that holds the address of the last item pushed onto the stack. It is decremented before new data is pushed onto the stack and incremented after data is popped off the stack.
Program Status Word. The program status word (PSW) is an 8 -bit register that contains flags that are set or reset depending on the results of an instruction. This register can be written to or read from 8 bits at a time. The individual flags can also be manipulated on a bit-by-bit basis. The assignment of PSW bits follows.

$$
7 \text { 0 }
$$

$I E$	Z	RBS1	AC	RBSO	0	ISP	CY

CY	Carry flag
ISP	Interrupt priority status flag
RBSO, RBS1	Register bank selection flags
AC	Auxiliary carry flag
Z	Zero flag
IE	Interrupt request enable flag

General Registers

The general-purpose registers (figure 2) consist of four banks of registers located at addresses FEEOH to FEFFH in Internal RAM. Each bank consists of eight 8 -bit general registers that can also be used in pairs to function as four 16-bit registers. Two bits in the PSW (RBS0 and RBS1) specify which of the register banks is active. The bits are set under program control. Registers have both functional names (like A, X, B, C for 8-bit registers and $A X, B C$ for 16-bit registers) and absolute names (like R1, R0, R3, R2 for 8 -bit registers and RPO, RP1 for 16 -bit registers). Each instruction determines whether a register is referred to by its functional or absolute name and whether it is 8 or 16 bits.

Figure 2. General Registers

Addressing

The μ PD78244 family features 1 -byte addressing of both the special function registers and the portion of on-chip RAM from FE2OH to FEFFH. The 1-byte sfr addressing accesses the entire SFR area, while the 1-byte saddr addressing accesses the first 32 bytes of the SFR area and 224 bytes of Internal RAM. The 16 -bit SFRs and words of memory in these areas can be addressed by 1 -byte saddrp addressing, which is valid for even addresses only. Since many instructions use 1-byte addressing, access to these locations is almost as fast and versatile as access to the general registers. There are seven addressing modes for data in main memory: direct, register, register indirect with autoincrement and decrement, saddr, SFR, based, and indexed. There are also both 8 -bit and 16 -bit immediate operands.

Special Function Registers

The input/output ports, timers, capture and compare registers, and mode and control registers for both the peripherals and the CPU are collectively known as special function registers. They are all memorymapped between FFOOH and FFFFH and can be accessed either by main memory addressing or by 1-byte sfr addressing. They are either 8 or 16 bits as required, and many of the 8 -bit registers are capable of single-bit access as well. Locations FFDOH through FFDFH are known as the external SFR area. Registers in external circuitry interfaced and mapped to these addresses can be addressed with SFR addressing. Table 2 is a list of the special function registers.

Table 2. Special Function Registers

Address	Register (SFR)	Symbol	R/W	Access Units (Bits)			State After Reset
				1	8	16	
OFFOOH	Port 0	PO	R/W	x	x	-	Undefined
OFFO2H	Port 2	P2	R	x	x	-	Undefined
OFFO3H	Port 3	P3	R/W	X	X	-	Undefined
OFF04H	Port 4	P4	R/W	X	x	-	Undefined
OFF05H	Port 5	P5	R/W	x	x	-	Undefined
OFF06H	Port 6	P6	R/W	x	x	-	xOH
OFF07H	Port 7	P7	R	x	x	-	Undefined
OFFOAH	Port 0 buffer register (low)	POL	R/W	x	x	-	Undefined
OFFOBH	Port 0 buffer register (high)	POH	R/W	x	x	-	Undefined
OFFOCH	Real-time output port control register	RTPC	R/W	x	x	-	OOH
OFF10H-OFF11H	16-bit compare register 0 (16-bit timer 0)	CROO	R/W	-	-	x	Undefined
OFF12H-0FF13H	16-bit compare register (16-bit timer 0)	CR01	R/W	-	-	X	Undefined
OFF14H	8 -bit compare register (8-bit timer 1)	CR10	R/W	-	x	-	Undefined
OFF15H	8 -bit compare register (8-bit timer/counter 2)	CR20	R/W	-	X	-	Undefined
OFF16H	8 -bit compare register (8-bit timer/counter 2)	CR21	R/W	-	x	-	Undefined
OFF17H	8 -bit compare register (8-bit timer 3)	CR30	R/W	-	X	-	Undefined
OFF18H-OFF19H	16-bit capture register (16 -bit timer 0)	CR02	R	-	-	X	Undefined
OFF1AH	8 -bit capture register (8-bit timer/counter 2)	CR22	R	-	X	-	Undefined
OFF1CH	8 -bit capture/compare register (8-bit timer 1)	CR11	R/W	-	X	-	Undefined
OFF2OH	Port 0 mode register	PMO	W	-	x	-	FFH
OFF23H	Port 3 mode register	PM3	W	-	x	-	FFH
OFF25H	Port 5 mode register	PM5	W	-	x	-	FFH
OFF26H	Port 6 mode register	PM6	R/W	x	x	-	FxH
OFF30H	Capture/compare control register 0	CRCO	W	-	x	-	10 H
0FF31H	Timer output control register	TOC	W	-	x	-	OOH
OFF32H	Capture/compare control register 1	CRC1	W	-	x	-	OOH
OFF34H	Capture/compare control register 2	CRC2	W	-	x	-	OOH
OFF40H	Pullup resistor option register	PUO	R/W	X	x	-	OOH
OFF43H	Port 3 mode control register	PMC3	R/W	X	X	-	OOH
OFF50H-0FF51H	16-bit timer register 0	TMO	R	-	-	X	0000 H
OFF52H	8 -bit timer register 1	TM1	R	-	X	-	OOH
OFF54H	8-bit timer register 2	TM2	R	-	X	-	OOH
OFF56H	8-bit timer register 3	TM3	R	-	X	-	OOH
OFF5CH	Prescaler mode register 0	PRMO	W	-	X	-	OOH
OFF5DH	Timer control register 0	TMCO	R/W	-	x	-	OOH
OFF5EH	Prescaler mode register 1	PRM1	W	-	x	-	OOH
OFF5FH	Timer control register 1	TMC1	R/W	-	x	-	OOH
OFF68H	A/D converter mode register	ADM	R/W	X	x	-	OOH
OFF6AH	A / D conversion result register	ADCR	R	-	x	-	Undefined
OFF78H	EEPROM write control register	EWC	R/W	X	X	-	00110100B

Table 2. Special Function Registers (cont)

Address	Register (SFR)	Symbol	R/W	Access Units (Bits)			State After Reset
				1	8	16	
0FF7DH	One-shot pulse output control register	OSPC	R/W	x	X	-	OOH
OFF80H	Clocked serial interface mode register	CSIM	R/W	X	X	-	OOH
OFF82H	Serial bus interface control register	SBIC	R/W	X	x	-	OOH
OFF86H	Serial shift register	SIO	R/W	-	X	-	Undefined
0FF88H	Asynchronous serial interface mode register	ASIM	R/W	x	X	-	8 OH
OFF8AH	Asynchronous serial interface status register	ASIS	R	x	x	-	OOH
OFF8CH	Serial receive buffer: UART	RxB	R	-	X	-	Undefined
OFF8EH	Serial transmit shift register: UART	TxS	W	-	x	-	Undefined
OFF9OH	Baud rate generator control register	BRGC	W	-	x	-	OOH
OFFCOH	Standby control register	STBC	R/W	-	X	-	OOH
OFFC4H	Memory expansion mode register	MM	R/W	x	x	-	2 H
OFFC5H	Programmable wait control register	PW	R/W	x	X	-	80 H
OFFC6H	Refresh mode register	RFM	R/W	x	x	-	OOH
OFFDOH-OFFDFH	External SFR area	-	R/W	x	x	-	Undefined
OFFEOH	Interrupt request flag register OL	IFOL	R/W	x	x	-	OOH
OFFE1H	Interrupt request flag register OH	IFOH	R/W	x	x	-	OOH
OFFEOH-OFFE1H	Interrupt request flag register 0	IFO	R/W	-	-	X	0000 H
OFFE2H	Interrupt request flag register 1L	IF1L	R/W	X	X	-	xxxxxx00B
OFFE4H	Interrupt mask flag register OL	MKOL	R/W	X	X	-	FFH
OFFE5H	Interrupt mask flag register OH	MKOH	R/W	X	X	-	FFH
OFFE4H-OFFE5H	Interrupt mask flag register 0	MKO	R/W	-	-	X	FFFFH
OFFE6H	Interrupt mask flag register 1L	MK1L	R/W	X	X	-	xxxxxx11B
OFFE8H	Priority specification flag register OL	PROL	R/W	x	X	-	FFH
OFFE9H	Priority specification flag register OH	PROH	R/W	x	x	-	FFH
OFFE8H-OFFE9H	Priority specification flag register 0	PRO	R/W	-	-	X	FFFFH
OFFEAH	Priority specification flag register 1L	PR1L	R/W	X	X	-	xxxxxx11B
OFFECH	Interrupt service mode specification flag register OL	ISMOL	R/W	x	x	-	OOH
OFFEDH	Interrupt service mode specification flag register OH	ISMOH	R/W	X	X	-	OOH
OFFECHOFFEDH	Interrupt service mode specification flag register 0	ISMO	R/W	-	-	X	0000H
OFFEEH	Interrupt service mode specification flag register 1L	ISM1L	R/W	x	x	-	xxxxxx00B
OFFF4H	External interrupt mode register 0	INTMO	R/W	X	X	-	00H
OFFF5H	External interrupt mode register 1	INTM1	R/W	X	X	-	OOH
OFFF8H	Interrupt status register	IST	R/W	X	X	-	OOH

Input/Output Ports

There are up to 54 port lines on the μ PD 78244 and up to 36 port lines on the μ PD78243. (Ports 4,5 , and two bits of port 6 are not available on the μ PD 78243 since the μ PD78243 must always use external memory.) Table 3
lists the features of each port and figure 3 shows the structure of each port pin. The pin levels of all port 2, 3, and 7 pins can always be read or tested regardless of the dual pin function.

Figure 3. Pin I/O Circuits
(

Table 3. Digital Port Functions

Port	Operational Features	Configuration	Direct Drive Capability	Software Pullup Resistor Connection
Port 0	8-bit high impedance output		Transistor	
Port 2	8-bit Schmitt trigger input			In 6-bit units ($\mathrm{P2}_{2}$ - P^{2} 7 $)$
Port 3	8-bit input or output	Bit selectable		Byte selectable, input bits only
Port 4	8-bit input or output	Byte selectable	LED	Byte selectable
Port 5	8-bit input or output	Byte selectable	LED	Byte selectable, input bits only
Port 6	4-bit output (bits 0 to 3) 4-bit input or output (bits 4 to 7)	Bit selectable		In 4-bit unit, input bits only
Port 7	6-bit input			

Note: Software pullup resistors can be internally connected only on a port-by-port basis to port bits set to input mode. Pullup resistors are not connected to port bits set to output mode.

Real-time Output Port

The real-time output port (RTPC) shares pins with port 0 . It can be used as two independent 4 -bit real-time output ports or one 8 -bit real-time output port. In the real-time output mode, data stored beforehand in the buffer registers, POH and POL, is transferred immediately to the output latch of PO on the occurrence of a
timer 1 interrupt (INTC10 or INTC11) or external interrupt (INTPO) (see figure 4). By using the real-time output port with the macro service function, port 0 can be used to output preprogrammed patterns at preprogrammed variable time intervals. In this mode, two independent stepper motors can accurately be driven at a fixed or variable rate.

Figure 4. Real-time Output Port

Figure 5. A/D Converter

Analog-to-Digital (A/D) Converter

The μ PD78244 family A/D converter (see figure 5) uses the successive-approximation method for converting up to eight multiplexed analog inputs into 8 -bit digital data. The conversion time per input is $30 \mu \mathrm{~s}$ at 12 MHz operation. A/D conversion can be started by an external interrupt, INTP5, or under software control.
The A/D converter can operate in either scan mode or select mode. In scan mode, from one to eight sequential inputs can be programmed for conversion. The A/D converter selects each input in order, converts the data, stores it in the A/D conversion result (ADCR) register, and generates an interrupt (INTAD). This converted data can be easily transferred to memory by using the macro service function.
In select mode, only one of the eight A/D inputs can be selected for conversion. The ADCR register is continually updated and can be read at any time. If the A/D converter is started by an external interrupt, an INTAD
interrupt occurs at the completion of each conversion. If the A / D converter is started by software, no interrupts are generated.

Serial Interface

The μ PD78244 family has two independent serial interfaces. The first is a standard UART. The UART (figure 6) permits full-duplex operation and can be programmed for 7 - or 8 -bits of data after the start bit, followed by one or two stop bits. Odd, even, zero or no parity can also be selected. The serial clock for the UART can be provided by an on-chip baud rate generator or timer 3. By using either the internal system clock or an external clock input into the ASCK pin, the baud rate generator is capable of generating all of the commonly used baud rates. The UART generates three interrupts: IN TST (transmission complete), INTSR (reception complete), and INTSER (reception error).

Figure 6. Asynchronous Serial Interface

The second interface is an 8 -bit clock-synchronized serial interface (figure 7). It can be operated in either a three-wire serial I/O mode or NEC serial bus interface (SBI) mode.

In the three-wire serial I/O mode, the 8-bit shift register (SIO) is loaded with a byte of data and eight clock pulses are generated. These eight pulses shift the byte of data out of the SO line (MSB first) and in from the SI line providing full-duplex operation. This interface can also be set to receive or to transmit data only. The INTCSI interrupt is generated after each 8-bit transfer. One of three internal clocks or an external clock clocks the data.

The NEC SBI mode is a two-wire high-speed proprietary serial interface available on most devices in the NEC μ PD75xxx and μ PD78xxx product lines. Devices are connected in a master/slave configuration (see figure 8). There is only one master device at a time; all others are slaves. The master sends addresses, commands,
and data over the serial bus line (SBO) using a fixed hardware protocol synchronized with the $\overline{\text { SCK }}$ line. Each slave μ PD78244 family device can be programmed in software to respond to any one of 256 addresses. There are also 256 commands and 256 data types. Since all commands are user definable, any software protocol, simple or complex, can be defined. It is even possible to develop commands to change a slave into a master and the previous master into a slave.

Timers

The μ PD78244 family has one 16 -bit timer and three 8 -bit timers. The 16 -bit timer counts the internal system clock (folk/8) while the three 8 -bit timers can be programmed to count a number of prescaled values of the internal system clock. One of the 8 -bit timers can also count external events.

Figure 7. Clock-Synchronized Serial Interface

Figure 8. SBI Mode Master/Slave Configuration

Timer 0 consists of a 16 -bit timer (TMO), two 16-bit compare registers (CROO and CRO1), and a 16 -bit capture register (CRO2). Timer 0 can be used as two interval timers, to output a programmable square wave or two pulse-width modulated signals, to measure pulse widths, or to generate a software-triggered one-shot output pulse (see figure 9).

Figure 9. 16-Bit Timer 0

Timer 1 consists of an 8-bit timer (TM1), 8-bit compare register (CR10), and 8-bit capture/compare register (CR11). Timer 1 can be used as two interval timers or to measure pulse widths. In addition, it can be used to generate the output trigger for the real-time output port (see figure 10).

Timer/counter 2 consists of an 8-bit timer (TM2), two 8-bit compare registers (CR20 and CR21), and an 8-bit capture register (CR22). Timer/counter 2 can also be
used as two interval timers, to output a programmable square wave or two pulse-width modulated signals, or to measure pulse widths. In addition, it can be used to count external events sensed on the Cl line or as a one-shot timer (see figure 11).

Timer 3 consists of an 8-bit timer (TM3) and an 8-bit compare register (CR30). Timer 3 can be used as an interval timer or as a clock for the clockedsynchronized serial interface (see figure 12).

Figure 10. 8-Bit Timer 1

Figure 11. 8-Bit Timer/Counter 2

Figure 12. 8-Bit Timer 3

83YL-91808

Interrupts

The μ PD78244 family has 20 maskable hardware interrupt sources; 6 are external and 14 are internal. Since there are only 18 interrupt vectors and sets of control flags, 2 of the 6 external maskable interrupts, INTP4 and INTP5, share interrupt vectors and control flags with INTC30 and INTAD respectively. The active interrupt source for each shared vector must be chosen by the program. In addition, there is one nonmaskable interrupt and one software interrupt. The software interrupt, generated by the BRK instruction, is not maskable (see table 4).

Interrupt Servicing. The μ PD78244 family provides two levels of programmable hardware priority control and two different methods of handling maskable interrupt requests: standard vectoring and macro service. The programmer can choose the priority and mode of servicing each maskable interrupt by using the interrupt control registers.
Interrupt Control Registers. The μ PD78244 family has four 16 -bit and four 8 -bit interrupt control registers. In order to maintain software compatibility with the μ PD78214 and μ PD78218A families, the four 16-bit registers are identical to the μ PD78214 and μ PD78218A families and the two additional EEPROM interrupts are handled by the four additional 8 -bit registers.
Each bit in each 16-bit register is dedicated to one of the 16 active maskable interrupt sources (excluding the two EEPROM interrupts). The interrupt request flag register (IFO) contains an interrupt request flag for each interrupt. The interrupt mask register (MKO) is used to enable or disable any interrupt. The interrupt service mode register (ISMO) specifies whether an interrupt is processed by vectoring or macro service. The priority
flag register (PRO) can be used to specify a high or a low priority level for each interrupt. The 8-bit registers IF1L, MK1L, ISM1L, and PR1L provide similar functions for the two EEPROM interrupt sources.

Two other 8-bit registers are associated with interrupt processing. The interrupt status register (IST) indicates if a nonmaskable interrupt request on the NMI pin is being processed and can be used to allow nesting of nonmaskable interrupt requests. The IE and the ISP bits of the program status word are also used to control interrupts. If the IE bit is zero, all maskable interrupts, but not macro service, are disabled. The IE bit can be set or cleared using the El and DI instructions, respectively, or by directly writing to the PSW. The IE bit is cleared each time an interrupt is accepted. The ISP bit is used by hardware to hold the priority level flag of the interrupt being serviced.
Interrupt Priority. The nonmaskable interrupt (NMI) has priority over all other interrupts. Two hardware controlled priority levels are available for the maskable interrupts. Either a high or a low priority level can be assigned by software to each of the maskable interrupts. Interrupt requests of a priority higher than the processor's current priority level are accepted; requests of the same or lower priority are held pending until the processor's priority state is lowered by program control within the current service routine or by a return instruction from the current service routine.

Interrupt requests programmed to be handled by macro service have priority over all vectored interrupt service regardless of the assigned priority level, and macro service requests are accepted even when the interrupt enable bit in the PSW is set to the disable state (see figure 13).

Figure 13. Interrupt Service Sequence

The default priorities listed in table 4 are fixed by hardware and are effective only when it is necessary to choose between two interrupt requests of the same software-assigned priority. For example, the default priorities would be used after the completion of a high priority routine if two interrupts of the same priority routine were pending.
The software interrupt, initiated by the BRK instruction, is executed regardless of the processor's priority level and the state of the IE bit. It does not alter the processor's priority level.

Table 4. Interrupt Sources and Vector Addresses

Interrupt Request Type	Default Priority	Interrupt Request Generation Source	Macro Service Type	Vector Table Address
Software	None	BRK instruction execution	-	003EH
Nonmaskable	None	NMI (pin input edge detection)	-	0002H
Maskable	0	INTPO (pin input edge detection)	A, B	0006H
	1	INTP1 (pin input edge detection)	A, B	0008 H
	2	INTP2 (pin input edge detection)	A, B	000AH
	3	INTP3 (pin input edge detection)	B	000 CH
	4	INTCOO (TMO-CR00 coincidence signal generation)	B	0014 H
	5	INTC01 (TMO-CR01 coincidence signal generation)	B	0016H
	6	INTC10 (TM1-CR10 coincidence signal generation)	A, B, C	0018 H
	7	INTC11 (TM1-CR11 coincidence signal generation)	A, B, C	001AH
	8	INTC21 (TM2-CR21 coincidence signal generation)	A, B	001 CH
	9	INTP4 (pin input edge detection)	B	000EH
		INTC30 (TM3-CR30 coincidence signal generation)	A, B	
	10	INTP5 (pin input edge detection)	B	0010H
		INTAD (end of A/D conversion)	A, B	
	11	INTC20 (TM2-CR20 coincidence signal generation)	A, B	0012H
Maskable	12	INTSER (generation of asynchronous serial interface receive error)	-	0020 H
	13	INTSR (end of asynchronous serial interface reception)	A, B	0022H
	14	INTST (end of asynchronous serial interface transmission)	A, B	0024H
	15	INTCSI (end of clocked serial interface transmission)	A, B	0026 H
	16	INTEER (EEPROM write error)	-	0028H
	17	INTEPW (EEPROM write completion)	-	002AH

Vectored Interrupt. When vectored interrupt is specified for a given interrupt request, (1) the program status word and the program counter are saved on the stack, (2) the processor's priority is set to that specified for the interrupt, (3) the IE bit in the PSW is set to zero, and (4) the routine whose address is in the interrupt vector table is entered. At the completion of the service routine, the RETI instruction (RETB instruction for the software interrupt) reverses the process and the μ PD78244 family device resumes the interrupted routine.

Macro Service

When macro service is specified for a given interrupt, the macro service hardware temporarily stops the executing program and begins to transfer data between the special function register area and the memory space. One byte is transferred each interrupt. When the data transfer is complete, control is returned to the executing program, providing a completely transparent method of interrupt service. Macro service significantly improves response time and makes it unnecessary to save any registers.

For each request on the interrupt line, one operation is performed, and an 8 - or 16 -bit counter is decremented. When the counter reaches zero, a vectored interrupt service routine is entered according to the specified priority.
Macro service is provided for all of the maskable interrupt requests except the following: INTSER, the asynchronous serial interface receive error interrupt request; INTEER, the EEPROM write error interrupt request; and INTEPW, the EEPROM write termination interrupt request. Each interrupt request has a dedicated macro service control word stored in Internal RAM (see figure 14). The function to be performed is specified in the control word.
The μ PD78244 family provides three different types of macro service transfers:

Macro Service Type A. A byte of data is transferred in either direction between a special function register, preassigned for each interrupt request, and a buffer in internal RAM (FExx). Only the 8 -bit macro service counter is available for Type A transfers. The preassigned SFRs for the 12 interrupt requests that support macro service Type A transfers are listed in table 5.

Figure 14. Macro Service Control Word Map

Interrupt Request	Source/Destination SFR
INTC10: TM1-CR10 coincidence	CR10: Timer 18 -bit compare register
INTC11: TM1-CR11 coincidence	CR11: Timer 18 -bit capture/ compare register
INTC20: TM2-CR20 coincidence	CR20: Timer 28 -bit compare register
INTC21: TM2-CR21 coincidence	CR21: Timer 28 -bit compare register
INTC30: TM3-CR30 coincidence	CR30: Timer 3 8-bit compare register
INTSR: End of asynchronous serial interface reception	RxB: Serial receive buffer
INTST: End of asynchronous serial interface transmission	TXS: Serial transmit shift register
INTCSI: End of clocked serial interface transmission	SIO: Serial shift register
INTAD: End of A/D conversion	ADCR: A/D conversion result register
INTPO: External interrupt pin PO_{1}	CR11: Timer 1 8-bit capture/ compare register
INTP1: External interrupt pin PO_{2}	CR22: Timer 2 8-bit capture register
INTP2: External interrupt pin PO_{3}	TM2: Timer 28 -bit timer register

Macro Service Type B. A byte of data is transferred in either direction between any specified special function register and a buffer anywhere in the 64K byte address space. The macro service counter can be programmed either to be an 8 - or 16 -bit counter. Macro service Type B transfers can be initiated by any maskable interrupt except INTSER, INTEER, and INTEPW.

Macro Service Type C. A byte of data is transferred from a buffer anywhere in the 64K byte address space to one of the 8 -bit compare registers of timer 1. At the same time, a second byte of data is transferred from a buffer anywhere in the 64K byte address space to the real-time output port buffer. The macro service counter can be programmed either to be an 8 - or 16 -bit counter. Macro service Type C transfers can be initiated by INTC10 with data transferred to CR10 and POL or POH, or by INTC11 with data transferred to CR11 and POL or POH .

In addition, the macro service Type C transfer can be initialized to automatically alter timer compare register values or to repeatedly output a prespecified pattern at a fixed or variable rate. By using macro service Type C transfers to control the real-time output ports, the μ PD78244 family can easily and accurately drive two independent stepper motors.

Refresh

The refresh signal is used with any pseudostatic RAM equivalent of the NEC μ PD428128. The refresh cycle can be set to one of four intervals: 16, 32, 64, or $128 / \mathrm{f}_{\mathrm{CLK}}$ (2.6, 5.3, 10.7, and 21.3μ s at 12 MHz). The refresh cycle is timed to follow a read or write operation to avoid interference with external memory access cycles.

Standby Modes

HALT and STOP modes are provided to reduce power consumption when CPU action is not required. In HALT mode, the CPU is stopped but the system clock continues to run. The HALT mode is released by any unmasked interrupt, an external NMI, or an external reset pulse. In STOP mode, both the CPU and the system clock are stopped, further minimizing the power consumption. The STOP mode is released by either an external reset pulse or an external NMI. The HALT and STOP modes are entered by programming the standby control register (STBC). This register is a protected location and can be written to only by a special instruction. If the third and fourth bytes of the instruction are not complements of each other, the data is not written and the next instruction is executed.

External Reset

The μ PD78244 family is reset by taking the RESET pin low. The RESET input pin contains a noise filter to protect against spurious system resets caused by noise. On power-up, the RESET pin must remain low until the power supply reaches its operating voltage and the oscillator has stabilized. During reset, the program counter is loaded with the address contained in the reset vector table (address $0000 \mathrm{H}, 0001 \mathrm{H}$) and program execution starts at that address upon the RESET pin going high. While RESET is low, all external lines except $\mathrm{V}_{S S}, \mathrm{~V}_{\mathrm{DD}}, A V_{S S}, A V_{\text {REF }}, \mathrm{X} 1$, and X 2 are in the high impedance state.
μ PD78244 Family

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

$T_{A}=+25^{\circ} \mathrm{C}$

Operating voltage, V_{DD}	-0.5 to +7.0 V
$\mathrm{AV}_{\mathrm{REF}}$	
$\mathrm{AV}_{\mathrm{SS}}$	

Notes:

(1) Pins $\mathrm{P} 7_{0} / \mathrm{ANO}-\mathrm{P} 7_{5} / \mathrm{AN5}, \mathrm{P} 6_{6} / \overline{\mathrm{NAIT} / A N 6}$, and $\mathrm{P} 6_{7} / \overline{\mathrm{REFRQ}} / \mathrm{AN} 7$ when used as the A / D converter input. However, V_{11} absolute maximum ratings should also be satisfied.
Exposure to absolute maximum ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC characteristics.

Operating Conditions

Oscillation Frequency	T_{A}	$V_{D D}$
$f_{X X}=4$ to 12 MHz	-10 to $+70^{\circ} \mathrm{C}$	$+5 \mathrm{~V} \pm 10 \%$

Capacitance

Item	Symbol	Max	Unit	Conditions
Input capacitance	C_{1}	20	pF	$f=1 \mathrm{MHz} ;$ pins not used for measurement are at 0 V
Output capacitance	C_{0}	20	pF	
Input/output capacitance	ClO_{10}	20	pF	

External Clock Operation

Item	Symbol	Min	Max	Unit	Conditions
$X 1$ input low-level width	${ }^{\text {twXL }}$	30	130	ns	
X1 input high-level width	${ }_{\text {twXH }}$	30	130	ns	
$\mathrm{X1}$ input rise time	${ }^{\text {t }}$ XR	0	30	ns	
X1 input fall time	$t_{\text {XF }}$	0	30	ns	
X1 input clock cycle time	${ }^{t} \mathrm{CYX}$	82	250	ns	

DC Characteristics

$\mathrm{T}_{\mathrm{A}}=-10$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$.

Item	Symbol	Min	Typ	Max	Unit	Conditions
Low-level input voltage	$\mathrm{V}_{\text {IL }}$	0		0.8	V	
High-level input voltage	$\mathrm{V}_{1 \mathrm{H} 1}$	2.2		$V_{D D}$	V	Except the specified pins (Notes 1, 2)
	$\mathrm{V}_{\mathrm{HH} 2}$	2.2		$\mathrm{AV}_{\text {REF }}$	V	Specified pins (Note 1)
	$\mathrm{V}_{1 \mathrm{H} 3}$	0.8 V DD		$V_{D D}$	V	Specified pins (Note 2)
Low-level output voltage	$\mathrm{V}_{\mathrm{OL} 1}$			0.45	V	$1 \mathrm{OL}=2.0 \mathrm{~mA}$
	$\mathrm{V}_{\text {OL2 }}$			1.0	V	$\mathrm{l}_{\mathrm{OL}}=8.0 \mathrm{~mA}($ Note 3)
High-level output voltage	VOH^{1}	$V_{D D}-1.0$			V	$\mathrm{IOH}=-1.0 \mathrm{~mA}$
	$\mathrm{V}_{\mathrm{OH} 2}$	$\mathrm{V}_{\mathrm{DD}}-0.5$			V	$\mathrm{IOH}=-100 \mu \mathrm{~A}$
	$\mathrm{V}_{\mathrm{OH} 3}$	2.0			V	$\mathrm{IOH}^{\text {O }}=-5.0 \mathrm{~mA}$ (Note 4)
X1 low-level input current	IIL			-100	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{IL}}$
X1 high-level input current	$\mathrm{IIH}^{\text {I }}$			100	$\mu \mathrm{A}$	$\mathrm{V}_{1 H 3} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DD}}$
Input leakage current	l_{LI}			± 10	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DD}}$
Output leakage current	Lo			± 10	$\mu \mathrm{A}$	$0 V \leq V_{O} \leq V_{D D}$
AV $V_{\text {REF }}$ current	$\mathrm{Al}_{\text {REF }}$		1.5	5.0	mA	Operating mode, $\mathrm{f}_{\mathrm{XX}}=12 \mathrm{MHz}$
$V_{\text {DD }}$ power supply current	IDD1		20	40	mA	Operating mode, $\mathrm{f}_{\mathrm{XX}}=12 \mathrm{MHz}$
	IDD2		7	20	mA	HALT mode, $\mathrm{f}_{\mathrm{XX}}=12 \mathrm{MHz}$
Data retention voltage	$V_{\text {DDDR }}$	2.5		5.5	V	STOP mode

DC Characteristics (cont)

Item	Symbol	Min	Typ	Max	Unit	Conditions
Data retention current	I DDDR 2		2	20	$\mu \mathrm{~A}$	STOP mode; $\mathrm{V}_{\text {DDDR }}=2.5 \mathrm{~V}$
			5	50	$\mu \mathrm{~A}$	STOP mode; $\mathrm{V}_{\text {DDDR }}=5 \mathrm{~V} \pm 10 \%$
Pullup resistor	R_{L}	15	40	80	$\mathrm{k} \Omega$	$\mathrm{V}_{1}=0 \mathrm{~V}$
EEPROM write voltage		4.5		5.5	V	$\mathrm{f}_{\mathrm{xx}}=4$ to 12 MHz

Notes:

(1) Pins $\mathrm{P} 7_{0} /$ ANO $-\mathrm{P} 7_{5} / \mathrm{AN5}, ~ \mathrm{P} 6_{6} \overline{\text { WAITT/AN6, and } \mathrm{P} 6_{7} / \overline{\mathrm{REFRQ}} / \mathrm{AN7}}$
(3) Pins $P 4_{0} / A D_{0}-P 4_{7} / A D_{7}$, and $P 5_{0} / A_{8}-P 5_{7} / A_{15}$. when the pin is used as the A / D converter input.
(2) $\mathrm{X} 1, \mathrm{X} 2, \overline{\mathrm{RESET}}, \mathrm{P}_{2} / \mathrm{NMI}, \mathrm{P}_{1} / / \mathrm{INTPO}, \mathrm{P}_{2} / \mathrm{INTP}_{1}, \mathrm{P}_{3} / \mathrm{INTP} 2 / \mathrm{Cl}$, $\mathrm{P}_{2} / \mathrm{INTP} 3, \mathrm{P}_{5} / \mathrm{INTP} 4 / \mathrm{ASCK}, \mathrm{P2}_{6} / \mathrm{INTP5}, \mathrm{P}_{7} / \mathrm{SI}, \mathrm{P3}_{2} / \mathrm{SCK}, \mathrm{P3}_{3} /$ SO/SBO, and EA pins.

AC Characteristics-Read/Write Operation

$\mathrm{T}_{\mathrm{A}}=-10$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{f}_{\mathrm{XX}}=12 \mathrm{MHz} ; \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$

Item	Symbol	Calculation Formula (Note 2, 3)	Min	Max	Unit	Conditions
X1 input clock cycle time	${ }^{\text {cher }}$	-	82	250	ns	
Address setup time to ASTB \downarrow	$t_{\text {SAST }}$	$t_{\text {chx }}-30$	52		ns	
Address hold time from ASTB \downarrow (Note 1)	$t_{\text {HSTA }}$	-	25		ns	
Address hold time from $\overline{\mathrm{RD}} \uparrow$	$\mathrm{t}_{\text {HRA }}$	-	30		ns	
Address hold time from $\overline{W R} \uparrow$	$t_{\text {HWA }}$	-	30		ns	
Address to $\overline{\mathrm{RD}} \downarrow$ delay time	$t_{\text {DAR }}$	${ }^{2 t}{ }_{\text {crix }}-35$	129		ns	
Address float time to $\overline{\mathrm{RD}} \downarrow$	$t_{\text {FAR }}$	$t_{\text {crx }} / 2-30$	11		ns	
Address to data input time	$t_{\text {DAID }}$	$(4+2 n) \mathrm{t}_{\text {cyx }}-100$		228	ns	No wait states
ASTB \downarrow to data input time	${ }^{\text {D }}$ DSTID	$(3+2 n) t_{c r} \mathrm{X}-65$		181	ns	No wait states
$\overline{\mathrm{RD}} \downarrow$ to data input time	$t_{\text {DRID }}$	$(2+2 n) t_{c r x}-64$		100	ns	No wait states
ASTB \downarrow to $\overline{\mathrm{RD}} \downarrow$ delay time	$t_{\text {DSTR }}$	$\mathrm{t}_{\mathrm{CrX}}-30$	52		ns	
Data hold time from $\overline{\mathrm{RD}} \uparrow$	$t_{\text {HRID }}$	-	0		ns	
$\overline{\mathrm{RD}} \uparrow$ to address active time	$t_{\text {DRA }}$	${ }^{2} \mathrm{C}_{\mathrm{CrX}}-40$	124		ns	
$\overline{R D} \uparrow$ to ASTB \uparrow delay time	$t_{\text {DRST }}$	${ }^{21} \mathrm{Crx}-40$	124		ns	
$\overline{\overline{R D}}$ low-level width	${ }^{\text {t WRL }}$	$(2+2 n) t_{\text {crx }}-40$	124		ns	No wait states
ASTB high-level width	twsth	$t_{\text {crex }}-30$	52		ns	
Address to $\overline{\mathrm{WR}} \downarrow$ delay time	$t_{\text {daw }}$	$2 \mathrm{t}_{\mathrm{CrX}}-35$	129		ns	
$\overline{\text { ASTB } ~} \downarrow$ to data output time	tostod	$\mathrm{t}_{\mathrm{CrPx}}+60$		142	ns	
$\overline{\overline{W R}} \downarrow$ to data output time	t ${ }_{\text {DWOD }}$	-		60	ns	
$\overline{\text { ASTB } \downarrow \text { to } \overline{\mathrm{WR}} \downarrow \text { delay time }}$	$t_{\text {DSTW1 }}$	${ }^{\text {cher }}$ - 30	52		ns	
	$t_{\text {DSTW2 }}$	${ }^{2} \mathrm{t}_{\mathrm{CrX}}-35$	129		ns	Refresh mode
Data setup time to $\overline{W R} \uparrow$	tsodw	$(3+2 n) t \mathrm{tcr} x-100$	146		ns	No wait states
Data setup time to $\overline{W R} \downarrow$	tsodw	$\operatorname{tcrx} \mathbf{- 6 0}$	22		ns	Refresh mode
Data hold time from $\overline{W R} \uparrow$ (Note 1)	$t_{\text {HWOD }}$	-	20		ns	
$\overline{\text { WR }} \uparrow$ to ASTB \uparrow delay time	$t_{\text {DWST }}$	$t_{\text {crex }}-40$	42		ns	
$\overline{\overline{W R}}$ low-level width	tWWL1	$(3+2 n) \mathrm{t}_{\mathrm{cr}} \mathrm{x}-50$	196		ns	No wait states
	twWL2	$(2+2 n) t_{\text {cre }}-50$	114		ns	Refresh mode; No wait states
Address to $\overline{\text { WAIT } ~} \downarrow$ input time	${ }^{\text {t Dawt }}$	$3^{\text {cterx }}$ - 100		146	ns	

AC Characteristics-Read/Write Operation (cont)

Item	Symbol	Calculation Formula (Note 2, 3)	Min	Max	Unit	Conditions
ASTB \downarrow to $\overline{\text { WAIT }} \downarrow$ input time	t ${ }_{\text {DSTWT }}$	$2 \mathrm{tcrx}^{-80}$		84	ns	
WAIT hold time from ASTB \downarrow	$t_{\text {HSTWT }}$	$2 \mathrm{Xt}_{\mathrm{C} Y \mathrm{Y}}+10$	174		ns	One external wait state
ASTB \downarrow to $\overline{\text { WAIT }} \uparrow$ delay time	$t_{\text {DSTWTH }}$	$2(1+X) \mathrm{t}_{\mathrm{Cr}}{ }^{-55}$		273	ns	One external wait state
$\overline{\mathrm{RD}} \downarrow$ to $\overline{\text { WAIT }}$ input time	$t_{\text {DRWTL }}$	$\mathrm{t}_{\mathrm{CrX}} \mathbf{- 6 0}$		22	ns	
$\overline{\text { WAIT }}$ hold time from $\overline{\mathrm{RD}} \downarrow$	$\mathrm{t}_{\text {HRWT }}$	$(2 X-1) t_{c y x}+5$	87		ns	One external wait state
$\overline{\mathrm{RD}} \downarrow$ to $\overline{\text { WAIT }} \uparrow$ delay time	${ }^{\text {t }}$ DRWTH	($2 \mathrm{X}+1$) $\mathrm{t}_{\mathrm{CrX}}-60$		186	ns	One external wait state
WAIT \uparrow to data input time	tDWTID	$\mathrm{t}_{\mathrm{Cr}} \mathrm{x}-20$		62	ns	
	${ }^{\text {t }}$ WTW	${ }^{2} \mathrm{CHx}-10$	154		ns	
	${ }^{\text {t }}$ DWTR	$\operatorname{tcyx}^{\text {c }} 10$	72		ns	
$\overline{\text { WR }} \downarrow$ to $\overline{\text { WAIT input time }}$	t DWWTL	$t_{\text {cry }}-60$		22	ns	Refresh disabled
$\overline{\text { WAIT }}$ hold time from $\overline{\text { WR }} \downarrow$	${ }^{\text {tHWWT1 }}$	$(2 X-1) t_{c r Y}+5$	87		ns	One external wait state; refresh disabled
	$t_{\text {HWWT2 }}$	$2(X-1) t_{c Y X}+5$	5		ns	One external wait state; refresh enabled
$\overline{\overline{\text { WR }} \downarrow \text { to } \overline{\text { WAIT }} \uparrow \text { delay time }}$	${ }^{\text {D }}$ DWWTH1	$(2 X+1) t_{c r} \mathrm{X}-60$		186	ns	One external wait state; refresh disabled
	${ }^{\text {t }}$ WWWTH2	$2 \mathrm{Xt}_{\mathrm{CYX}}-60$		104	ns	One external wait state; refresh enabled
$\overline{\mathrm{RD}} \uparrow$ to $\overline{\mathrm{REF} R \mathrm{RQ}} \downarrow$ delay time	$t_{\text {DRRFQ }}$	${ }^{24} \mathrm{Cryx}^{\text {- }} 10$	154		ns	
	$t_{\text {DWRFQ }}$	${ }_{\mathrm{tcyx}}-10$	72		ns	
REFRQ low-level width	tWRFQL	${ }^{2} \mathrm{CHX}-44$	120		ns	
$\overline{\mathrm{REFRRQ} \uparrow \text { to ASTB } \uparrow \text { delay time }}$	${ }^{\text {t }}$ (${ }^{\text {PFOST }}$	${ }^{4} \mathrm{C}_{\mathrm{CYX}}-48$	280		ns	

Notes:

(1) The hold time includes the time during which V_{OH} and V_{OL} are retained under the following load conditions: $C_{L}=100 \mathrm{pF}$ and $R_{L}=2 \mathrm{k} \Omega$
(2) n indicates the number of internal wait states.
(3) X indicates the number of external wait states $(1,2,3, \ldots)$

Serial Port Operation

$\mathrm{T}_{\mathrm{A}}=-10$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{f}_{\mathrm{XX}}=12 \mathrm{MHz} ; \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$.

Item	Symbol	Min	Max	Unit	Conditions
Serial clock cycle time	$\mathrm{t}_{\mathrm{CYSK}}$	1.0		$\mu \mathrm{s}$	External clock input
		1.3		$\mu \mathrm{s}$	Internal clock/16 output
		5.3		$\mu \mathrm{s}$	Internal clock/64 output
Serial clock low-level width	tWSKL	420		ns	External clock input
		556		ns	Internal clock/16 output
		2.5		$\mu \mathrm{s}$	Internal clock/64 output
Serial clock high-level width	twSKH	420		ns	External clock input
		556		ns	Internal clock/16 output
		2.5		$\mu \mathrm{s}$	Internal clock/64 output
SI, SB0 setup time to $\overline{\text { SCK } \uparrow}$	tsssk	150		ns	
SI, SBO hold time from $\overline{\text { SCK }} \uparrow$	thssk	400		ns	

Serial Port Operation (cont)

Item	Symbol	Min	Max	Unit	Conditions
SO/SBO output delay time from $\overline{\text { SCK }} \downarrow$	${ }^{\text {t }}$ SSBSK1	0	300	ns	CMOS push-pull output (3-line serial I/O mode)
	${ }^{\text {t }}$ SSBSK2	0	800	ns	Open-drain output (SBI mode), $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$
SBO high, hold time from $\overline{S C K} \uparrow$	${ }^{\text {thasssk }}$	4		${ }^{\text {t }} \mathrm{CYX}$	SBI mode
SBO low, setup time to $\overline{\text { SCK }} \downarrow$	${ }^{\text {t }}$ SSBSK	4		${ }^{\text {c }} \mathrm{CrX}$	SBI mode
SBO low-level width	twSBL	4		$t_{\text {crix }}$	
SBO high-level width	${ }^{\text {tWSBH }}$	4		${ }_{\text {t }}^{\text {cr }}$ (

A/D Converter Operation

Item	Symbol	Min	Typ	Max	Unit	Conditions
Resolution		8			Bit	
Full-scale error (Note 1)				0.4	\%	$\mathrm{AV}_{\mathrm{REF}}=4.0 \mathrm{~V}$ to V_{DD}
				0.8	\%	$\mathrm{AV}_{\text {REF }}=3.6 \mathrm{~V}$ to V_{DD}
Quantization error				$\pm 1 / 2$	LSB	
Conversion time	$\mathrm{t}_{\text {CONV }}$	360			$\mathrm{t}_{\mathrm{Cl}} \mathrm{X}$	$83 \mathrm{~ns} \leq \mathrm{t}_{\mathrm{CYX}} \leq 125 \mathrm{~ns}$
		240				$125 \mathrm{~ns} \leq \mathrm{t}_{\mathrm{CYX}} \leq 250 \mathrm{~ns}$
Sampling time	$t_{\text {SAMP }}$	72			${ }^{\text {t }} \mathrm{CYX}$	$83 \mathrm{~ns} \leq \mathrm{t}_{\mathrm{CYX}} \leq 125 \mathrm{~ns}$
		48			$\mathrm{t}_{\mathrm{Cr}} \mathrm{X}$	$125 \mathrm{~ns} \leq \mathrm{t}_{\mathrm{CYX}} \leq 250 \mathrm{~ns}$
Analog input voltage	$V_{\text {IAN }}$	-0.3		$\mathrm{AV}_{\text {REF }}+0.3$	V	
Analog input impedance	$\mathrm{R}_{\text {AN }}$		1000		$\mathrm{M} \Omega$	
Analog reference voltage	$\mathrm{AV}_{\text {REF }}$	3.6		V_{DD}	V	
AV $\mathrm{REF}^{\text {current }}$	$\mathrm{Al}_{\text {REF }}$		1.5	5.0	mA	Operating mode, $\mathrm{f}_{\mathrm{XX}}=12 \mathrm{MHz}$
			0.2	1.5	mA	(Note 2)

Notes:

(1) Quantization errror is not included. Unit is defined as percent of full-scale value.
(2) When CS bit of the ADM register is set to 0

Interrupt Timing Operation

Item	Symbol	Min	Max	Unit	Conditions
NMI low-level width	tWNIL	10		$\mu \mathrm{s}$	
NMI high-level width	$t_{\text {WNIH }}$	10		$\mu \mathrm{s}$	
INTPO-INTP5 low-level width	twil	24		${ }^{t} \mathrm{CrX}$	
INTPO-INTP5 high-level width	twith	24		${ }_{\text {t }}^{\text {cr }}$ X	
RESET low-level width	$t_{\text {WRSL }}$	10		$\mu \mathrm{s}$	
RESET high-level width	tWRSH	10		$\mu \mathrm{s}$	

Data Retention Characteristics

$T_{A}=-10$ to $+70^{\circ} \mathrm{C}$.

Item	Symbol	Min	Typ	Max	Unit	Conditions
Data retention voltage	$V_{\text {DDDR }}$	2.5		5.5	V	STOP mode
Data retention current	IDDDR		2	20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {DDDR }}=2.5 \mathrm{~V}$
			5	50	$\mu \mathrm{A}$	$V_{\text {DDDR }}=5 \mathrm{~V} \pm 10 \%$
$\mathrm{V}_{\text {DD }}$ rise time	${ }^{\text {t }}$ RVD	200			$\mu \mathrm{s}$	
$\mathrm{V}_{\text {DD }}$ fall time	$t_{\text {fri }}$	200			$\mu \mathrm{s}$	
$V_{D D}$ retention time (from STOP mode setting)	$t_{\text {HVD }}$	0			ms	
STOP release signal input time	t DREL	0			ms	
Oscillation stabilization wait time	twart	30			ms	Crystal resonator
		5			ms	Ceramic resonator
Low-level input voltage	$V_{\text {IL }}$	0		$0.1 \mathrm{~V}_{\text {DDDR }}$	V	Specified pins (Note 1)
High-level input voltage	$\mathrm{V}_{\text {IH }}$	$0.9 \mathrm{~V}_{\text {DD }}$		$\mathrm{V}_{\text {DDDR }}$	V	Specified pins (Note 1)

Note: $\overline{\text { RESET, }} \mathrm{P}_{2} / \mathrm{NMI}, \mathrm{P}_{2} / \mathrm{INTPO}, \mathrm{P}_{2} / / \mathrm{INTP}_{1}, \mathrm{P}_{3} / \mathrm{INTP} 2 / \mathrm{Cl}, \mathrm{P}_{2} /$ INTP3, $\mathrm{P}_{2} /$ INTP4/ASCK, $\mathrm{P}_{6} /$ INTP5, $\mathrm{P}_{7} / \mathrm{SI}, \mathrm{P3}_{2} / \overline{\mathrm{SCK}}$, and $\mathrm{P}_{3} / \mathrm{SO} / \mathrm{SBO}$

Recommended Resonator Circuit

Ceramic or crystal resonator frequency $f_{x x}=4$ to 12 MHz External oscillation circult should be as close to the X1 and X2 pins as possible
Do not place other signal llines in the shaded area

Recommended External Clock Circuit

Clock frequency $f_{x x}=4$ to 12 MHz
In STOP mode, X1 is intemally shorted to $\mathrm{V}_{\text {SS }}$ to prevent leakage current. Therefore, STOP mode is not avallable when using this extemal clock circult.

Timing Waveforms

Voltage Thresholds for AC Timing Measurements

	$83 Y \mathrm{Y}-82238$

Read Operation

Timing Waveforms (cont)

Write Operation

Timing Waveforms (cont)
External $\overline{\text { WAIT }}$ Signal Input (Read Operation)

Timing Waveforms (cont)
External WAIT Signal Input (Write Operation)

Timing Waveforms (cont)
Refresh After Read

Refresh After Write

Timing Waveforms (cont)

Serial Operation

Three-Line Serial VO Timing

SBI Mode

Bus Release Signal Transfer Timing

Command Signal Transfer Timing

Timing Waveforms (cont)

Interrupt Input

External Clock

Reset Input

Data Retention Characteristics

NEC Electronics Inc.

μ PD78K2 Product Line Programming Reference

μ PD78K2 Product Line

This programming reference contains the instruction set and the interrupt vector tables for the μ PD78K2 product line.
The instruction set features both 8 - and 16 -bit data transfer and arithmetic instructions, 8 -bit logic instructions, and single-bit manipulation instructions. Branch instructions exist to test individual bits in the program status word, the 16 -bit accumulator, the special function registers and in the saddr portion of Internal RAM. Instructions range in length from 1 to 5 bytes, depending on the instruction and addressing mode.

Operands and Operations

Refer to the following tables for the definitions of symbols in the operand and operation columns of the Instruction Set table.

Uppercase letters, such as " A " or "PSW," are key symbols and must be written as shown in the Registers and Flags table. See the Registers and Flags table for the list of key symbols. Lowercase letters, such as "sfr" or "mem" are not key symbols and an absolute value or label must be substituted by the user when writing the instruction. For example, "MOV A, sfr" may be written as "MOV A, PO." When the symbols + , -, \#, !, \$, /, [], and \& are used as a prefix of a word, the symbol remains while lower case letters are replaced by a value. For example, "ADD A, \#byte" may be written as "ADD A, \#OAFH," or "BR \$addr16" may be written as "BR \$LOOP1."

Symbols r and $r p$ can be described using the functional name or absolute name.

Operands

Symbol	Definitions
$+$	Autoincrement
-	Autodecrement
\#	Immediate data
!	Absolute address
\$	Relative address
1	Bit inversion
[]	Indirect addressing
\&	Subbank
r, r'	Register Functional name: X, A, C, B, E, D, L, H Absolute name: R0 to R7
r1	Register group 1: C, B
rp, rp'	Register pair Functional name: AX, BC, DE, HL Absolute name: RPO to RP3
sfr	Special function register (8-bit): See individual data sheets for specific sfr names.
sfrp	Special function register pair (16-bit): See individual data sheets for specific sfrp names.
mem	Memory address indirectly addressed Register indirect mode: [DE], [HL], [DE+], [HL+], [DE-], [HL-] Base mode: [DE+ byte], [HL+ byte], [SP + byte] Indexed mode: word[A], word[B], word [DE], word[HL]
mem1	Group 1 memory address indirectly addressed: [DE], [HL]
saddr, saddr'	Memory address addressed by means of short direct addressing: FE20H-FF1FH immediate data or label
saddrp	Memory address addressed by means of short direct addressing pair: FE20H-FF1EH immediate data(LSB = 0 ; even address) or label
addr16	16-bit address: $0000 \mathrm{H}-\mathrm{FEFFH}$ immediate data or label
addr11	11-bit address: $800 \mathrm{H}-\mathrm{FFFH}$ immediate data or label
addr5	5-bit address: 40H-7EH immediate data or label (even address only)
word	16-bit data: 16-bit immediate data or label
byte	8-bit data: 8 -bit immediate data or label
bit	3-bit data: 3-bit immediate data or label
\underline{n}	Number of shift bits: 3-bit immediate data (0-7)
RBn	Register bank: RB0-RB3

Registers and Flags

Symbol	Definitions
A	A register; 8-bit accumulator
X	X register
B	B register
C	C register
D	D register
E	E register
H	H register
L	L register
RO-R7	Registers 0 to 7 (absolute names)
AX	Register pair (AX); 16-bit accumulator
BC	Register pair (BC)
DE	Register pair (DE)
HL	Register pair (HL)
RPO-RP3	Register pairs 0 to 3 (absolute names)
PC	Program counter
SP	Stack pointer
Registers and Flags	
Symbol	Definitions
PSW	Program status word
CY	Carry flag
AC	Auxiliary carry flag
\underline{Z}	Zero flag
RBS1-RBS0	Register bank select flags
IE	Interrupt enable flag
STBC	Standby control register
jdisp8	Signed 2's complement data (8 bits) indicating relative address distance between first address of next instruction and branch destination address
()	Memory contents indicated by address or register contents in ()
$x \times H$	Hexadecimal number
$\mathrm{X}_{\mathrm{H}}, \mathrm{X}_{\mathrm{L}}$	Higher 8 bits and lower 8 bits of 16-bit register pair
\triangle	Logical product (AND)
V	Logical sump (OR)
\forall	Exclusive logical sum (exclusive OR)
-	Inverted data

Flag Column Indicators

Blank	No change
0	Cleared to 0
1	Set to 1
X	Set or cleared depending on the result
R	Value previously saved is restored

Bytes

The number of bytes for instructions with a mem or \&mem operand depends on the particular instruction and the memory addressing mode (register indirect, base, and or indexed).
A MOV instruction with register indirect mode specified for mem is a special 1-byte instruction. When base mode or indexed mode is specified for mem, the 8 -bit or 16 -bit offset data corresponding to byte and word, respectively, is added from the third byte onward.

Bytes for Instructions With "mem" and "\&mem" Operands

Instruction Set

Mnemonic	Operand	Operation	Bytes	Flags		
				Z		CY
8-Bit Data Transfer						
MOV	r, \#byte	$r \leftarrow$ byte	2			
	saddr, \#byte	(saddr) \leftarrow byte	3			
	sfr, \#byte	sfr \leftarrow byte	3			
	r, r^{\prime}	$r \leftarrow r^{\prime}$	2			
	A, r	$A \leftarrow r$	1			
	A, saddr	$A \leftarrow($ saddr $)$	2			
	saddr, A	(saddr) $\leftarrow \mathrm{A}$	2			
	saddr, saddr'	(saddr) \leftarrow (saddr')	3			
	A, sfr	$\mathrm{A} \leftarrow \mathrm{sfr}$	2			
	sfr, A	$\mathrm{sfr} \leftarrow \mathrm{A}$	2			
	A, mem*	$A \leftarrow(\mathrm{mem})$	1-4			
	A, \&mem*	$A \leftarrow(\& m e m)$	2-5			
	mem, A^{*}	$($ mem $) \leftarrow A$	1-4			
	\&mem, A^{*}	$($ \&mem $) \leftarrow A$	2-5			
	A, laddr16	$A \leftarrow$ (!addr16)	4			
	A, \&!addr16	$A \leftarrow($ ($!$ addr16 $)$	5			
	!addr16, A	(!addr16) $\leftarrow A$	4			
	\&!addr16, A	(\&!addr16) $\leftarrow \mathrm{A}$	5			
	PSW, \#byte	PSW \leftarrow byte	3	x	x	x
	PSW, A	$\mathrm{PSW} \leftarrow \mathrm{A}$	2	x	x	x
	A, PSW	$\mathrm{A} \leftarrow \mathrm{PSW}$	2			
$\overline{\mathrm{XCH}}$	A, r	$A \leftrightarrow r$	1			
	r, r^{\prime}	$r \leftrightarrow r^{\prime}$	2			
	A, mem	$A \leftrightarrow(\mathrm{mem})$	2-4			
	A, \&mem	$A \leftrightarrow$ (\&mem)	3-5			
	A, saddr	$A \leftrightarrow$ (saddr)	2			
	A, sfr	$\mathrm{A} \leftrightarrow \mathrm{sfr}$	3			
	saddr, saddr'	(saddr) \leftrightarrow (saddr')	3			
* If [DE], [HL], [DE+], [DE-], [HL+] or [HL-] is described as mem, these instructions are used as dedicated 1-byte codes. If the register name is described as \&mem, the instructions are used as dedicated 2-bytes codes.						

μ PD78K2 Product Line

Instruction Set (cont)

Mnemonic	Operand	Operation	Bytes	Flags		
				Z	AC	CY
16-Bit Data Transfer						
MOVW	rp, \#word	$\mathrm{rp} \leftarrow$ word	3			
	saddrp, \#word	(saddrp) \leftarrow word	4			
	sfrp, \#word	sfrp \leftarrow word	4			
	rp, rp'	$\mathrm{rp} \leftarrow \mathrm{rp}{ }^{\prime}$	2			
	AX, saddrp	$A X \leftarrow$ (saddrp)	2			
	saddrp, AX	(saddrp) $\leftarrow \mathrm{AX}$	2			
	AX, sfrp	$A X \leftarrow \operatorname{sfrp}$	2			
	sfrp, AX	sfrp $\leftarrow A X$	2			
	AX, mem1	$A X \leftarrow($ mem 1$)$	2			
	AX, \&mem1	$A X \leftarrow(\& m e m 1)$	3			
	mem1, $A X$	$(\mathrm{mem} 1) \leftarrow A X$	2			
	\&mem1, AX	$($ \&mem 1) $\leftarrow A X$	3			
8-Bit Operations						
ADD	A, \#byte	A,CY $\leftarrow \mathrm{A}+$ byte	2	x	x	x
	saddr, \#byte	(saddr), CY \leftarrow (saddr) + byte	3	x	x	x
	sfr, \#byte	$\mathrm{sfr}, \mathrm{CY} \leftarrow \mathrm{sfr}+$ byte	4	x	x	x
	r, r^{\prime}	$\mathrm{r}, \mathrm{CY} \leftarrow \mathrm{r}+\mathrm{r}$ '	2	x	x	x
	A, saddr	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+$ (saddr)	2	x	x	x
	A, sfr	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+\mathrm{sfr}$	3	x	x	x
	saddr, saddr'	(saddr), CY \leftarrow (saddr) + (saddr')	3	x	x	x
	A, mem	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+(\mathrm{mem})$	2-4	x	x	x
	A, \&mem	$A, C Y \leftarrow A+($ \&mem $)$	3-5	x	x	x
$\overline{\text { ADDC }}$	A, \#byte	A,CY $\leftarrow \mathrm{A}+$ byte +CY	2	x	x	x
	saddr, \#byte	(saddr), $\mathrm{CY} \leftarrow$ (saddr) + byte +CY	3	x	x	x
	sfr, \#byte	sfr,CY $\leftarrow \mathrm{sfr}+$ byte +CY	4	x	x	x
	r, r^{\prime}	$\mathrm{r}, \mathrm{CY} \leftarrow \mathrm{r}+\mathrm{r}^{\prime}+\mathrm{CY}$	2	x	x	x
	A, saddr	$A, C Y \leftarrow A+($ saddr $)+C Y$	2	x	x	x
	A, sfr	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+\mathrm{sfr}+\mathrm{CY}$	3	x	x	x
	saddr, saddr'	(saddr), $\mathrm{CY} \leftarrow$ (saddr) + (saddr') +CY	3	x	x	x
	A, mem	$A, C Y \leftarrow A+$ (mem) $+C Y$	2-4	x	x	x
	A, \&mem	$A, C Y \leftarrow A+($ \&mem $)+C Y$	3-5	x	x	x

Instruction Set (cont)

Mnemonic	Operand	Operation	Bytes	Flags		
				Z	AC	CY
8-Bit Operations (cont)						
SUB	A, \#byte	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}$ - byte	2	x	x	x
	saddr, \#byte	(saddr), CY \leftarrow (saddr) - byte	3	x	x	x
	sfr, \#byte	sfr,CY \leftarrow sfr - byte	4	x	x	x
	r, r '	$r, C Y \leftarrow r-r^{\prime}$	2	x	x	x
	A, saddr	$A, C Y \leftarrow A-$ (saddr)	2	\times	x	x
	A, sfr	A,CY $\leftarrow A-\operatorname{sir}$	3	x	x	x
	saddr, saddr'	(saddr), CY \leftarrow (saddr) - (saddr')	3	x	x	x
	A, mem	$A, C Y \leftarrow A-($ mem $)$	2-4	x	x	x
	A, \&mem	$A, C Y \leftarrow A-(\& m e m)$	3-5	x	x	x
SUBC	A, \#byte	A,CY $\leftarrow \mathrm{A}$ - byte - CY	2	x	x	x
	saddr, \#byte	(saddr), $\mathrm{CY} \leftarrow$ (saddr) - byte - CY	3	x	x	x
	sfr, \#byte	sfr,CY \leftarrow sfr - byte - CY	4	\times	x	x
	r, r^{\prime}	$r, C Y \leftarrow r-r^{\prime}-C Y$	2	x	x	x
	A, saddr	$A, C Y \leftarrow A-$ (saddr) - $C Y$	2	x	x	x
	A, sfr	$A, C Y \leftarrow A-s f r-C Y$	3	x	x	x
	saddr, saddr'	(saddr), $\mathrm{CY} \leftarrow$ (saddr) - (saddr') - CY	3	x	x	x
	A, mem	$A, C Y \leftarrow A-($ mem $)-C Y$	2-4	x	x	x
	A, \&mem	$A, C Y \leftarrow A-(\& m e m)-C Y$	3-5	x	x	x
AND	A, \#byte	$A \leftarrow A \wedge$ byte	2	x		
	saddr, \#byte	(saddr) \leftarrow (saddr) \wedge byte	3	x		
	sfr, \#byte	$\mathrm{sfr} \leftarrow \mathrm{sfr} \wedge$ byte	4	x		
	r, r^{\prime}	$r \leftarrow r \wedge r^{\prime}$	2	x		
	A, saddr	$A \leftarrow A \wedge$ (saddr)	2	x		
	A, sfr	$A \leftarrow A \wedge$ sfr	3	x		
	saddr, saddr'	(saddr) $\leftarrow($ saddr $) \wedge$ (saddr')	3	x		
	A, mem	$A \leftarrow A \wedge$ (mem)	2-4	x		
	A, \&mem	$A \leftarrow A \wedge$ (\&mem)	3-5	x		
OR	A, \#byte	$A \leftarrow A \vee$ byte	2	x		
	saddr, \#byte	(saddr) \leftarrow (saddr) \vee byte	3	x		
	sfr, \#byte	$\mathrm{sfr} \leftarrow \mathrm{sfr} \vee$ byte	4	x		
	r, r r	$r \leftarrow r \vee r$	2	x		
	A, saddr	$A \leftarrow A \vee$ (saddr)	2	x		
	A, sfr	$A \leftarrow A \vee s f r$	3	x		
	saddr, saddr'	(saddr) \leftarrow (saddr) \vee (saddr')	3	x		
	A, mem	$A \leftarrow A \vee$ (mem)	2-4	x		
	A, \&mem	$A \leftarrow A \vee($ \&mem $)$	3-5	x		

Instruction Set (cont)

Mnemonic	Operand	Operation	Bytes	Flags		
				Z	AC	CY
8-Bit Operations (cont)						
XOR	A, \#byte	$A \leftarrow A \forall$ byte	2	x		
	saddr, \#byte	(saddr) \leftarrow (saddr) \forall byte	3	x		
	sfr, \#byte	sfr \leftarrow sfr \forall byte	4	x		
	r r r^{\prime}	$r \leftarrow r \forall r \prime$	2	x		
	A, saddr	$A \leftarrow A \forall$ (saddr)	2	x		
	A, sfr	$A \leftarrow A \forall \mathrm{sfr}$	3	x		
	saddr, saddr'	(saddr) \leftarrow (saddr) \forall (saddr')	3	x		
	A, mem	$A \leftarrow A \forall$ (mem)	2-4	x		
	A, \&mem	$A \leftarrow A \forall$ (\&mem)	3-5	x		
CMP	A, \#byte	A - byte	2	x	x	x
	saddr, \#byte	(saddr) - byte	3	x	x	x
	sfr, \#byte	sfr - byte	4	x	x	x
	r r, r^{\prime}	$r-r$ '	2	x	x	x
	A, saddr	A - (saddr)	2	x	x	x
	A, sfr	A - sfr	3	x	x	x
	saddr, saddr'	(saddr) - (saddr')	3	x	x	x
	A, mem	A - (mem)	2-4	x	x	x
	A, \&mem	A - (\&mem)	3-5	x	x	x
16-Bit Operations						
ADDW	AX, \#word	$A X, C Y \leftarrow A X+$ word	3	x	x	x
	AX, rp	$A X, C Y \leftarrow A X+r p$	2	x	x	x
	AX, saddrp	$A X, C Y \leftarrow A X+$ (saddrp)	2	x	x	x
	AX, sfrp	$A X, C Y \leftarrow A X+$ sfrp	3	x	x	x
SUBW	AX, \#word	$A X, C Y \leftarrow A X$ - word	3	x	x	x
	AX, rp	$A X, C Y \leftarrow A X-r p$	2	x	x	x
	AX, saddrp	$A X, C Y \leftarrow A X-$ (saddrp)	2	x	x	x
	AX, sfrp	$A X, C Y \leftarrow A X-$ sfrp	3	x	x	x
CMPW	AX, \#word	$A X$ - word	3	x	x	x
	AX, rp	AX - rp	2	x	x	x
	AX, saddrp	AX - (saddrp)	2	x	x	x
	AX, sfrp	AX - sfrp	3	x	x	x
Multiplication/Division						
MULU	r	$A X \leftarrow A \times r$	2			
DIVUW	r	$A X$ (quotient), r (remainder) $\leftarrow A X \div r$	2			

Instruction Set (cont)

Mnemonic	Operand	Operation	Bytes	Flags		
				Z	AC	CY
Increment/Decrement						
INC	r	$r \leftarrow r+1$	1	x	x	
	saddr	(saddr) \leftarrow (saddr) +1	2	x	x	
DEC	r	$r \leftarrow r-1$	1	x	x	
	saddr	(saddr) \leftarrow (saddr) -1	2	x	x	
INCW	rp	$r p \leftarrow r p+1$	1			
DECW	rp	$r p \leftarrow r p-1$	1			
Shift/Rotate						
ROR	r, n	$\left(\mathrm{CY}, \mathrm{r}_{7} \leftarrow \mathrm{r}_{0}, \mathrm{r}_{\mathrm{m}-1} \leftarrow \mathrm{r}_{\mathrm{m}}\right) \times \mathrm{n}$ times, $\mathrm{n}=0.7$	2			x
ROL	r, n	$\left(\mathrm{CY}, \mathrm{r}_{0} \leftarrow \mathrm{r}_{7}, \mathrm{r}_{\mathrm{m}+1} \leftarrow \mathrm{r}_{\mathrm{m}}\right) \times \mathrm{n}$ times, $\mathrm{n}=0.7$	2			x
RORC	r, n	$\left(C Y \leftarrow r_{0}, r_{7} \leftarrow C Y, r_{m-1} \leftarrow r_{m}\right) \times n$ times, $n=0.7$	2			x
ROLC	r, n	$\left(\mathrm{CY} \leftarrow \mathrm{r}_{7}, \mathrm{r}_{0} \leftarrow \mathrm{CY}, \mathrm{r}_{\mathrm{m}+1} \leftarrow \mathrm{r}_{\mathrm{m}}\right) \times \mathrm{n}$ times, $\mathrm{n}=0.7$	2			x
SHR	r, n	$\left(C Y \leftarrow r_{0}, r_{7} \leftarrow 0, r_{m-1} \leftarrow r_{m}\right) \times n$ times, $n=0-7$	2	x	0	x
SHL	r, n	$\left(C Y \leftarrow r_{7}, r_{0} \leftarrow 0, r_{m+1} \leftarrow r_{m}\right) \times n$ times, $n=0.7$	2	x	0	x
SHRW	rp, n	$\left(\mathrm{CY} \leftarrow \mathrm{rp} \mathrm{p}_{0}, r \mathrm{p}_{15} \leftarrow 0, r \mathrm{p}_{\mathrm{m}-1} \leftarrow r \mathrm{p}_{\mathrm{m}}\right) \times n$ times, $\mathrm{n}=0-7$	2	x	0	x
SHLW	rp, n	$\left(\mathrm{CY} \leftarrow \mathrm{r} \mathrm{p}_{15}, r \mathrm{p}_{0} \leftarrow 0, r \mathrm{p}_{\mathrm{m}+1} \leftarrow r \mathrm{p}_{\mathrm{m}}\right) \times n$ times, $\mathrm{n}=0.7$	2	x	0	x
ROR4	mem1	$\mathrm{A}_{3-0} \leftarrow(\mathrm{mem} 1)_{3-0},(\mathrm{mem} 1)_{7-4} \leftarrow \mathrm{~A}_{3-0}$, $(\mathrm{mem} 1)_{3-0} \leftarrow(\mathrm{mem} 1)_{7-4}$	2			
	\&mem1	$\begin{aligned} & \mathrm{A}_{3-0} \leftarrow\left(\text { \&mem 1 }_{3-0},(\& \mathrm{mem} 1)_{7-4} \leftarrow \mathrm{~A}_{3-0},\right. \\ & (\text { \&mem1 })_{3-0} \leftarrow(\text { \&mem1 })_{7-4} \end{aligned}$	3			
ROL4	mem1	$\begin{aligned} & \mathrm{A}_{3-0} \leftarrow(\text { mem1 })_{7-4},(\text { mem1 })_{3-0} \leftarrow \mathrm{~A}_{3-0}, \\ & (\text { mem1 })_{7-4} \leftarrow(\text { mem1 })_{3-0} \end{aligned}$	2			
	\&mem1	$\begin{aligned} & \mathrm{A}_{3-0} \leftarrow\left({\text { \&mem } 1)_{7-4},(\text { \&mem } 1)_{3-0} \leftarrow \mathrm{~A}_{3-0},}^{(\text {\&mem } 1)_{7-4} \leftarrow(\text { \&mem } 1)_{3-0}}\right. \end{aligned}$	3			
BCD Adjustment						
ADJBA		Decimal adjust accumulator after addition	1	x	x	x
ADJBS		Decimal adjust acccumulator after subtraction	1	x	x	x
Bit Manipulation						
MOV1	CY, saddr.bit	$\mathrm{CY} \leftarrow$ (saddr.bit)	3			x
	CY, sfr.bit	$\mathrm{CY} \leftarrow$ sfr.bit	3			x
	CY, A.bit	$\mathrm{CY} \leftarrow$ A.bit	2			x
	CY, X.bit	$\mathrm{CY} \leftarrow \mathrm{X}$. bit	2			x
	CY, PSW.bit	$\mathrm{CY} \leftarrow \mathrm{PSW}$. bit	2			x
	saddr.bit, CY	(saddr.bit) $\leftarrow C$ CY	3			
	sfrbit, CY	sfr.bit $\leftarrow C Y$	3			
	A.bit, CY	A.bit $\leftarrow C \mathrm{CY}$	2			
	X.bit, CY	X. bit $\leftarrow C Y$	2			
	PSW.bit, CY	PSW.bit $\leftarrow C Y$	2	x	\times	

μ PD78K2 Product Line

Instruction Set (cont)

Mnemonic	Operand	Operation	Bytes	Flags		
				Z	AC	CY
Bit Manipulation (cont)						
AND1	CY, saddr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ (saddr.bit)	3			x
	CY, /saddr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ (saddr.bit)	3			x
	CY, sfr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ sfr.bit	3			x
	CY, /sfr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge \overline{\text { sfr.bit }}$	3			x
	CY, A.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ A.bit	2			x
	CY, /A.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge \overline{\mathrm{A} . \mathrm{bit}}$	2			x
	CY, X.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge \mathrm{X}$.bit	2			x
	CY, X.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge \overline{\mathrm{X} . \mathrm{bit}}$	2			x
	CY, PSW.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ PSW.bit	2			x
	CY, /PSW.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge \overline{\text { PSW.bit }}$	2			x
OR1	CY, saddr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee$ (saddr.bit)	3			x
	CY, /saddr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee$ (saddr.bit)	3			x
	CY, sfr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee$ sfr.bit	3			x
	CY, /sfr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee \overline{\text { sfr.bit }}$	3			x
	CY, A.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee$ A.bit	2			x
	CY, /A.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee \overline{\mathrm{A} . \mathrm{bit}}$	2			x
	CY, X.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee \mathrm{X}$.bit	2			x
	CY, X.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee \overline{\mathrm{X} . \mathrm{bit}}$	2			x
	CY, PSW.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee$ PSW.bit	2			x
	CY, /PSW.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee \overline{\text { PSW.bit }}$	2			x
XOR1	CY, saddr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \forall$ (saddr.bit)	3			x
	CY, sfr.bit	$C Y \leftarrow C Y \forall$ sfr.bit	3			x
	CY, A.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \forall$ A.bit	2			\underline{x}
	CY, X.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \forall \mathrm{X}$.bit	2			x
	CY, PSW.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \forall$ PSW.bit	2			x
SET1	saddr.bit	(saddr.bit) $\leftarrow 1$	2			
	sfr.bit	sfr.bit $\leftarrow 1$	3			
	A.bit	A.bit $\leftarrow 1$	2			
	X.bit	X. bit $\leftarrow 1$	2			
	PSW.bit	PSW.bit $\leftarrow 1$	2	x	x	x
	CY	$C Y \leftarrow 1$	1			1
CLR1	saddr.bit	(saddr.bit) $\leftarrow 0$	2			
	sfr.bit	sfr.bit $\leftarrow 0$	3			
	A.bit	A.bit $\leftarrow 0$	2			
	X.bit	X. bit $\leftarrow 0$	2			
	PSW.bit	PSW.bit $\leftarrow 0$	2	x	x	x
	CY	$\mathrm{CY} \leftarrow 0$	1			0

Instruction Set (cont)

Mnemonic	Operand	Operation	Bytes	Flags		
				Z		CY
Bit Manipulation (cont)						
NOT1	saddr.bit	(saddr.bit) $\leftarrow \overline{\text { (saddr.bit) }}$	3			
	sfr.bit	sfr.bit $\leftarrow \overline{\text { sfr.bit }}$	3			
	A.bit	A.bit $\leftarrow \overline{\text { A.bit }}$	2			
	X.bit	X.bit $\leftarrow \overline{\text { X.bit }}$	2			
	PSW.bit	PSW.bit $\leftarrow \overline{\text { PSW.bit }}$	2	x	x	x
	CY	$\mathrm{CY} \leftarrow \overline{\mathrm{CY}}$	1			x
Call/Return						
CALL	!addr16	$\begin{aligned} & (S P-1) \leftarrow(P C+3)_{H}, \\ & (S P-2) \leftarrow(P C+3)_{L \prime} \\ & P C \leftarrow \text { addr16, SP } \leftarrow S P-2 \end{aligned}$	3			
	rp	$\begin{aligned} & (S P-1) \leftarrow(P C+2)_{H}, \\ & (S P-2) \leftarrow(P C+2)_{L}, \\ & P C_{H} \leftarrow r P_{H}, P C_{L} \leftarrow r P_{L}, S P \leftarrow S P-2 \end{aligned}$	2			
CALLF	laddr11	$\begin{aligned} & (S P-1) \leftarrow(P C+2)_{H},(S P-2) \leftarrow(P C+2) L_{1} \\ & \mathrm{PC}_{15-11} \leftarrow 00001, \mathrm{PC}_{10-0} \leftarrow \text { addr11 }, S P \leftarrow S P-2 \end{aligned}$	2			
CALLT	[addr5]	$\begin{aligned} & (S P-1) \leftarrow(P C+1)_{H},(S P-2) \leftarrow(P C+1)_{L}, \\ & \mathrm{PC}_{H} \leftarrow(2 \times \text { addr } 5+41 H), \mathrm{PC}_{\mathrm{L}} \leftarrow(2 \times \text { addr5 }+40 H), \\ & S P \leftarrow \mathrm{SP}-2 \end{aligned}$	1			
BRK		$\begin{aligned} & (S P-1) \leftarrow P S W,(S P-2) \leftarrow(P C+1)_{H}, \\ & (S P-3) \leftarrow(P C+1)_{L}, \\ & P C_{L} \leftarrow(003 E H), \\ & P C_{H} \leftarrow(003 F H), S P \leftarrow S P-3, I E \leftarrow 0 \end{aligned}$	1			
RET		$P C_{L} \leftarrow(S P), P C_{H} \leftarrow(S P+1), S P \leftarrow S P+2$	1			
RET1		$\begin{aligned} & P C_{L} \leftarrow(S P), P C_{H} \leftarrow(S P+1), P S W \leftarrow(S P+2), \\ & S P \leftarrow S P+3, N M I S \leftarrow 0 \end{aligned}$	1	R	R	R
RETB		$\begin{aligned} & \mathrm{PC}_{\mathrm{L}} \leftarrow(\mathrm{SP}), \mathrm{PC}_{\mathrm{H}} \leftarrow(\mathrm{SP}+1), \\ & \mathrm{PSW} \leftarrow(\mathrm{SP}+2), \mathrm{SP} \leftarrow \mathrm{SP}+3 \\ & \hline \end{aligned}$	1	R	R	R
Stack Manipulation						
PUSH	PSW	$(\mathrm{SP}-1) \leftarrow \mathrm{PSW}, \mathrm{SP} \leftarrow \mathrm{SP}-1$	1			
	sfr	$(S P-1) \leftarrow s t r, S P \leftarrow S P-1$	2			
	rp	$(S P-1) \leftarrow r P_{H},(S P-2) \leftarrow r P_{L}, S P \leftarrow S P-2$	1			
POP	PSW	$\mathrm{PSW} \leftarrow(\mathrm{SP}), \mathrm{SP} \leftarrow \mathrm{SP}+1$	1	R	R	R
	sfr	$\mathrm{sfr} \leftarrow(\mathrm{SP}), \mathrm{SP} \leftarrow \mathrm{SP}+1$	2			
	rp	$r P_{L} \leftarrow(S P), r P_{H} \leftarrow(S P+1), S P \leftarrow S P+2$	1			
MOVW	SP, \#word	$\mathrm{SP} \leftarrow$ word	4			
	SP, AX	$\mathrm{SP} \leftarrow \mathrm{AX}$	2			
	AX, SP	$A X \leftarrow S P$	2			
INCW	SP	$\mathrm{SP} \leftarrow \mathrm{SP}+1$	2			
DECW	SP	$\mathrm{SP} \leftarrow \mathrm{SP}-1$	2			

Instruction Set (cont)

Mnemonic	Operand	Operation	Bytes	Flags	
				Z	AC CY
Unconditional Branch					
BR	!addr16	$\mathrm{PC} \leftarrow$ addr16	3		
	rp	$P C_{H} \leftarrow r p_{H}, P C_{L} \leftarrow r p_{L}$	2		
	\$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+2+$ jdisp8	2		
Conditional Branch					
BC	\$addr16	$P C \leftarrow P C+2+j d i s p 8$ if $C Y=1$	2		
BL					
BNC	\$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+2+\mathrm{jdisp} 8$ if $\mathrm{CY}=0$	2		
BNL					
BZ	\$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+2+\mathrm{jdisp8}$ if $\mathrm{CZ}=1$	2		
BE					
BNZ	\$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+2+\mathrm{jdisp} 8$ if $\mathrm{CZ}=0$	2		
BNE					
BT	saddr.bit, \$addr16	$P C \leftarrow P C+3+$ jdisp8 if (saddr.bit) $=1$	3		
	sfr.bit, \$addr16	$P C \leftarrow P C+4+$ jdisp8 if sfr.bit $=1$	4		
	A.bit, \$addr16	$P C \leftarrow P C+3+$ jdisp8 if $\mathrm{A} . \mathrm{bit}=1$	3		
	X.bit, \$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+3+\mathrm{jdisp} 8$ if $\mathrm{X} . \mathrm{bit}=1$	3		
	PSW.bit, \$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+3+$ jdisp8 if PSW.bit $=1$	3		
$\overline{\mathrm{BF}}$	saddr.bit, \$addr16	$P C \leftarrow P C+4+$ jdisp8 if (saddr.bit) $=0$	4		
	sfr.bit, \$addr16	$P C \leftarrow P C+4+$ jdisp8 if sfr.bit $=0$	4		
	A.bit, \$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+3+$ jdisp8 if A.bit $=0$	3		
	X.bit, \$addr16	$P C \leftarrow P C+3+$ jdisp8 if X . bit $=0$	3		
	PSW.bit, \$addr16	$P C \leftarrow P C+3+$ jdisp8 if PSW.bit $=0$	3		
BTCLR	saddr.bit, \$addr16	$P C \leftarrow P C+4+\mathrm{jdisp8}$ if (saddr.bit) $=1$ then reset (saddr.bit)	4		
	sfr.bit, \$addr16	$P C \leftarrow P C+4+$ jdisp8 if str.bit $=1$ then reset sfrbit	4		
	A.bit, \$addr16	$P C \leftarrow P C+3+j d i s p 8$ if A.bit $=1$ then reset A.bit	3		
	X.bit, \$addr16	$P C \leftarrow P C+3+j$ disp8 if X. bit $=1$ then reset X.bit	3		
	PSW.bit, \$addr16	$P C \leftarrow P C+3+$ jdisp8 if PSW.bit $=1$ then reset PSW.bit	3	x	$x \quad \mathrm{x}$
DBNZ	r1, \$addr16	$r 1 \leftarrow r 1-1$, then $P C \leftarrow P C+2+$ jdisp8 if $\mathrm{r} 1 \neq 0$	2		
	saddr, \$addr16	(saddr) \leftarrow (saddr) -1 , then PC $\leftarrow P C+3+$ jdisp8 if (saddr) $\neq 0$	3		
CPU Control					
MOV	STBC, \#byte	STBC \leftarrow byte	4		
SEL	RBn	RBS $1-0 \leftarrow \mathrm{n}, \mathrm{n}=0.3$	2		
NOP		No Operation	1		
El		$1 E \leftarrow 1$ (Enable Interrupt)	1		
DI		$\mathrm{E} \leftarrow \mathrm{O}$ (Disable Interrupt)	1		

Interrupt Vectors: (μ PD78214, μ PD78218, μ PD78238, and μ PD78244 Families)

Default Priority Level (Note 1)	Signal Name	Interrupt Source	Register Flag	Mask Flag	Service Mode	Priority Flag	Vector Table Address	Macro Service Type	Macro Service Mode Reg. Address

Software

None	BRK instruction	Software	-	-	-	-	OO3EH	None	None

Nonmaskable

None	NMI (pin input edge)	External signal	-	-	-	-	002 H	None	None

Maskable

0	INTPO (pin input edge)	External signal	PIFO	PMKO	PISMO	PPRO	0006H	A, B	FEC8H
1	INTP1 (pin input edge)		PIF1	PMK1	PISM1	PPR1	0008H	A, B	FEC6H
2	INTP2 (pin input edge)		PIF2	PMK2	PISM2	PPR2	000AH	A, B	FEC4H
3	INTP3 (pin input edge)		PIF3	PMK3	PISM3	PPR3	000 CH	B	FEC2H
4	INTCOO (TMO-CROO match signal)	16-bit timer 0	CIFOO	CMKOO	CISMOO	CPROO	0014H	B	FEDOH
5	INTC01 (TMO-CRO1 match signal)		CIF01	CMK01	CISM01	CPRO1	0016H	B	FECEH
6	INTC10 (TM1-CR10 match signal)	8 -bit timer 1	CIF10	CMK10	CISM10	CPR10	0018H	A, B, C	FED8H
7	INTC11 (TM1-CR11 match signal)		CIF11	CMK11	CISM11	CPR11	001AH	A, B, C	FED6H
8	INTC21 (TM2-CR21 match signal)	8-bit timer/counter 2	CIF21	CMK21	CISM21	CPR21	001CH	A, B	FECAH
9	INTP4 (pin input edge)	External signal	PIF4	PMK4	PISM4	PPR4	000EH	B	FED4H
	INTC30 (TM3-CR30 match signal)	8-bit timer 3						A, B	
10	INTP5 (pin input edge)	External signal	PIF5	PMK5	PISM5	PPR5	0010H	B	FED2H
	INTAD (A/D conversion complete)	A/D converter						A, B	
11	INTC20 (TM2-CR2O match signal)	8-bit timer/counter 2	CIF20	CMK20	CISM20	CPR20	0012H	A, B	FECDH
12	INTSER (asynchronous serial receive error)	$\begin{gathered} \text { Asynchronous } \\ \text { serial } \\ \text { interface } \end{gathered}$	SERIF	SERMK	-	SERPR	0020H	None	None
13	INTSR (asynchronous serial receive complete)		SRIF	SRMK	SRISM	SRPR	0022H	A, B	FEDEH
14	INTST (asynchronous serial transmit complete)		STIF	STMK	STISM	STPR	0024H	A, B	FEDCH
15	INTCSI (clocked serial interface transfer complete)	Clocked serial interface	CSIIF	CSIMK	CSIISM	CSIPR	0026H	A, B	FEDAH

μ PD78K2 Product Line

Interrupt Vectors: (μ PD78214, μ PD78218, μ PD78238, and μ PD78244 Families) (cont)

Default Priority Level (Note 1)	Signal Name	Interrupt Source	Register Flag	Mask Flag	Service Mode	Priority Flag	Vector Table Address	Macro Service Type	Macro Service Mode Reg. Address
16	INTEER (EEPROM error) (μ PD78244 family Only)	EEPROM	EERIF	EERMK	-	EERPR	0028 H	None	None
17	INTEPW(EEPROM write) (μ PD78244 family only)	EEPROM	EPWIF	EPWMK	-	EPWPR	$002 A H$	None	None

Notes:
(1) The default priority is a fixed numeric value indicating which
the same priority has simultaneously occurred. interrupt takes precedence when more than one interrupt with

Interrupt Vectors: (μ PD78224 Family)

Default Priority Level (Note 1)	Signal Name	Interrupt Source	Register Flag	Mask Flag	Service Mode	Priority Flag	Vector Table Address	Macro Service Type	Macro Service Mode Reg Address

Soft ware

None	BRK instruction	Software	-	-	-	-	003EH	None	None

Nonmaskable

None	NMI (pin input edge)	External signal	-	-	-	-	002EH	None	None

Maskable

0	INTPO (pin input edge)	External signal	PIFO	PMKO	-	PPRO	0006H		None
1	INTP1 (pin input edge)		PIF1	PMK1	-	PPR1	0008H	None	None
2	INTP2 (pin input edge)		PIF2	PMK2	-	PPR2	000AH	None	None
3	INTP3 (pin input edge)		PIF3	РMK3	-	PPR3	000 CH	None	None
4	INTCOO (TMO-CROO match signal)	16-bit timer 0	CIFOO	CMK00	-	CPROO	0014H	None	None
5	INTC01 (TMO-CR01 match signal)		CIFO1	CMK01	-	CPRO1	0016H	None	None
6	INTC10 (TM1-CR10 match signal)	8-bit timer 1	CIF10	CMK10	CISM10	CPR10	0018H	A, B, C	FED8H
7	INTC11 (TM1-CR11 match signal)		CIF11	CMK11	CISM11	CPR11	001 AH	A, B, C	FED6H
8	INTC21 (TM2-CR21 match signal)	8-bit timer/counter 2	CIF21	CMK21	-	CPR21	001 CH	None	None
9	INTP4 (pin input edge)	External signal	PIF4	PMK4	PISM4	PPR4	000EH	B	FED4H
10	INTP5 (pin input edge)		PIF5	PMK5	-	PPR5	0010H	None	None
11	INTP6 (pin input edge)		CIF20	CMK20	-	CPR20	0012H	None	None

Interrupt Vectors: (μ PD78224 Family) (cont)

Default Priority Level (Note 1)	Signal Name	Interrupt Source	Register Flag	Mask Flag	Service Mode	Priority Flag	$\begin{aligned} & \text { Vector } \\ & \text { Table } \\ & \text { Address } \end{aligned}$	Macro Service Type	Macro Service Mode Reg. Address
12	INTSER (asynchronous serial receive error)	Asynchronous serial interface	SERIF	SERMK	-	SERPR	0020H	None	None
13	INTSR (asynchronous serial receive complete)		SRIF	SRMK	SRISM	SRPR	0022H	A, B	FEDEH
14	INTST (asynchronous serial transmit complete)		STIF	STMK	STISM	STPR	0024H	A, B	FEDCH
15	INTCSI (clocked serial interface transfer complete)	Clocked serial interface	CSIIF	CSIMK	CSIISM	CSIPR	0026H	A, B	FEDAH

Notes:
(1) The default priority is a fixed numeric value indicating which interrupt takes precedence when more than one interrupt with the same priority has simultaneously occurred.
Section 5
μ PD78K3 Product Line16-/8-Bit, K-Series Microcontrollers
μ PD78312A Family 5-a
(μ PD78310A/312A/P312A)16-/8-Bit, K-Series MicrocontrollersWith Real-Time Output Ports
μ PD78322 Family 5-b
(4 PD78320/322/P322)
16-/8-Bit, K-Series Microcontrollers
With A/D Converter, Real-Time Output Ports
μ PD78352 Family 5-c
(μ PD78350/352A/P352)16-/8-Bit, K-Series MicrocontrollersWith Real-Time Output Ports
μ PD78356 Family 5-d(μ PD78355/356/P356)16-/8-Bit, K-Series Microcontrollers
With A/D Converter and ConvolutionCapability

μ PD78312A Family
 (μ PD78310A/312A/P312A)
 16-/8-Bit, K-Series Microcontrollers With Real-Time Output Ports

Description

The μ PD78310A, μ PD78312A, and μ PD78P312A are members of the K-Series ${ }^{\circledR}$ of microcontrollers and are designed for use in process control. They perform all the usual process control functions and are particularly well-suited for driving stepping motors and dc motors in servo loops. The processors include on-chip memory, timers, input/output registers, and a powerful interrupt handling facility. The μ PD78310A/312A is constructed of high-speed CMOS circuitry and operates from a single +5 -volt power supply.
The input frequency (maximum 12 MHz) is derived from an external crystal or an external oscillator. The internal processor clock is two-phase, and thus machine states are executed at a rate of 6 MHz . The shortest instructions require three states, making the minimum time 500 ns . The CPU contains a three-byte instruction prefetch queue, which allows a subsequent instruction to be fetched during execution of an instruction that does not reference memory.

Program memory is 8 K bytes of mask-programmable ROM (μ PD78312A only), and data memory is 256 bytes of static RAM. The μ PD78310A is the ROMless version. μ PD78P312A is a prototyping chip for μ PD78312A. It has an on-chip 8K EPROM instead of a mask ROM.

Features

- Complete single-chip microcontroller
- 16-bit ALU
-8K ROM (μ PD78312A only)
- 256 bytes RAM
- 1 -bit and 8 -bit logic

Instruction prefetch queue
\square 16-bit unsigned multiply and divide

- String instructions
- Memory expansion
- 8085A bus-compatible
- Total 64K address space
- Large I/O capacity: up to 32 I/O port lines
- Extensive timer/counter system
-Two 16-bit up/down counters
- Quadrature counting
- Two 16-bit timers
- Free-running counter with two 16-bit capture registers
- Pulse-width modulated outputs
- Timebase counter
- Four-channel 8-bit A/D converter
- Two 4-bit real-time output ports
- Two nonmaskable interrupts
- Eight hardware priority interrupt levels
- Macro service facility for interrupts gives the effect of eight DMA channels
- Bidirectional serial port
- Either UART or interface mode
- Dedicated baud rate generator
- Watchdog timer
- Refresh output for pseudostatic RAM
- Programmable HALT and STOP modes
- One-byte call instruction
- On-chip clock generator
- CMOS silicon gate technology
- +5 -volt power supply

Ordering Information

Part Number	ROM	Package	Package Drawing
μ PD78310ACW μ PD78312ACW-xxx μ PD78P312ACW	ROMless 8K mask ROM 8K OTP ROM	64-pin plastic shrink DIP	P64C-70-750 A,C
μ PD78310AGF-3BE μ PD78312AGF-xxx-3BE μ PD78P312AGF-3BE	ROMless 8 K mask ROM 8K mask ROM	64-pin plastic QFP	P64GF-100-3B8, 3BE-1
μ PD78310AGQ-36 μ PD78312AGQ-xxx-36 μ PD78P312AGQ-36	ROMless 8K Mask ROM 8K OTP ROM	64-pin plastic QUIP	P64GQ-100-36
μ PD78310AL μ PD78312AL-xxx μ PD78P312AL	ROMless 8K Mask ROM 8K OTP ROM	68-pin plastic PLCC	P68L-50A1-1
μ PD78P312ADW	EPROM	64-pin ceramic shrink DIP with window (350 mil)	P64DW-70-750A
μ PD78P312AR	EPROM	64-pin ceramic QUIP with window	P64RQ-100-A

$x x x$ is the ROM code number.

Pin Configurations

64-Pin Shrink DIP and QUIP, Plastic and Ceramic

Pin Configurations (cont)

64-Pin Plastic QFP

Pin Configurations (cont)

68-Pin PLCC (Plastic Leaded Chip Carrier)

Pin Identification

Symbol	Function
ANO-AN3	A/D converter inputs
ALE	Address latch enable output
$\overline{E A} / V_{P P}$	External access control input; programming voltage
$\mathrm{PO}_{7}-\mathrm{PO}_{0}$	1/O port 0
$\mathrm{P}_{7}-\mathrm{P} 1_{0}$	I/O port 1
$\mathrm{P} 20^{2} / \mathrm{NMI}$	Nonmaskable interrupt input
$\begin{aligned} & \mathrm{P}_{1}-\mathrm{P}_{3} / \\ & \text { INTEO - INTE2 } \end{aligned}$	Maskable interrupt inputs
$\underline{\mathrm{P} 2_{4} / \mathrm{TxD}}$	1/O port 2; serial transmit output
$\mathrm{P2}_{5} / \mathrm{RxD}$	1/O port 2; serial receive input
$\mathrm{P} 2_{6} / \overline{\mathrm{SCK}}$	I/O port 2; serial clock output
$\mathrm{P} 27^{\text {/ }} \overline{\mathrm{CTS}}$	1/O port 2; clear to send input
$\mathrm{P}_{0} / \mathrm{Cl0}$	Up/down counter 0 input
$\mathrm{P}_{1} /$ CTRLO	Up/down counter 0 control input
$\mathrm{P} 32^{2} \mathrm{Cl1}$	Up/down counter 1 input
$\mathrm{P3}_{3} /$ CTRL 1	Up/down counter 1 control input
$\mathrm{P3}_{4} / \mathrm{PWMO}$	I/O port 3; pulse width modulated output 0
$\mathrm{P}_{5} /$ /PWM1	I/O port 3; pulse width modulated output 1
$\mathrm{P3}_{6} /$ CLRO/TO0	I/O port 3; counter 0 clear input timer 0 output
$\mathrm{P} 37^{7} / \mathrm{CLR} 1 / \mathrm{TO} 1$	I/O port 3; counter 1 clear input; timer 1 output
$P 4_{7}-P 4_{0} / A D_{7}-A D_{0}$	1/O port 4; external address/data bus
$\mathrm{P5}_{7}-\mathrm{P} 5_{0} / \mathrm{A}_{15}-\mathrm{A}_{8}$	I/O port 5; high address byte output
$\overline{R D}$	Read strobe output
RESET/PROG	External reset input; PROM programming mode
$\overline{\text { RFSH }}$	Refresh output
$\overline{\text { WR }}$	Write strobe output
X 1	External crystal or external clock input
X2	External crystal
$\mathrm{AV}_{\text {REF }}$	A/D reference voltage
$\mathrm{AV}_{\text {SS }}$	Analog ground
$\mathrm{V}_{\text {DD }}$	Power supply
$\mathrm{V}_{S S}$	Power return

Pin Functions

AN0 - AN3 (A/D Converter Inputs). ANO - AN3 are the four program selectable input channels for the A/D converter.
ALE (Address Latch Enable). ALE is the address latch enable. It is to be used by external circuitry to latch the low-order 8 address bits during the first part of a read or write cycle.
$\overline{\mathrm{EA}} / \mathbf{V}_{\text {Pp }}$. On $\mu \mathrm{PD} 78312 \mathrm{~A}$, a low on $\overline{\mathrm{EA}}$ enables use of external memory in place of on-chip ROM. The EA pin must be low on μ PD78310A. On the μ PD78P312A, this pin is used for programming voltage. In normal operation, it must be connected to $V_{D D}$.
$\mathrm{PO}_{7}-\mathrm{PO}_{0}$ (Port 0). Port 0 consists of 8 bits, individually programmable for input/output or two 4-bit real-time (timer controlled) output ports.
$\mathrm{P1}_{7}-\mathrm{P} 1_{0}$ (Port 1). Port 1 consists of 8 bits, individually programmable for input/output.
$\mathrm{P}_{2} / \mathbf{N M I}$ (Port 2; Nonmaskable Interrupt). Port P_{2} is dedicated to NMI, the nonmaskable external interrupt request.

P2 ${ }_{1}$ - $\mathbf{P 2}_{3}$ /INTE0-INTE2 (Port 2; Maskable

Interrupts). Ports $\mathrm{P}_{1}-\mathrm{P}_{3}$ are dedicated to INTEO, INTE1, and INTE2, the maskable external interrupt requests.
$\mathrm{P}_{2} / \mathrm{TxD}$ (Port 2; Serial Transmit). P_{4} is an I/O port bit
$\mathrm{P2}_{5} / \mathrm{RxD}$ (Port 2; Serial Receive). $\mathrm{P} 2_{5}$ is an I/O port bit or the received serial data input.
$\mathrm{P}_{6} / \overline{\text { SCK }}$ (Port 2; Serial Clock). P_{2} is an I/O port bit or the serial shift clock output.
$\mathrm{P}_{7} / \overline{\mathrm{CTS}}$ (Port 2; Clear to Send). P_{7} is an I/O port bit or clear-to-send input (external serial transmission control) in the asynchronous communication mode. In the serial I/O interface mode, it becomes the serial receive clock $1 / O$ pin.
$\mathrm{P3}_{0} / \mathrm{ClO}$ (Port 3; Counter 0). Port P_{3} is dedicated to Cl 0 , the external count input for up/down counter 0.
$\mathrm{P3}_{1} /$ CTRLO (Port 3; Counter 0 Control). Port P_{0} is dedicated to CTRLO, the external control input for up/down counter 0 .
$\mathrm{P3}_{2} / \mathrm{Cl} 11$ (Port 3; Counter 1). Port $\mathrm{P3}_{2}$ is dedicated to $\mathrm{Cl1}$, the external count input for up/down counter 1.
$\mathrm{P3}_{3}$ CTRL1 (Port 3; Counter 1 Control). Port P_{3} is dedicated to CTRL1, the external control input for up/down counter 1.
$\mathrm{P3}_{4}$ /PWM0 (Port 3; Pulse Width 0). P_{4} is an I/O port bit or the pulse-width modulated output 0.
$\mathrm{P3}_{5} /$ PWM1 (Port 3; Pulse Width 1). $\mathrm{P3}_{5}$ is an I / O port bit or the pulse-width modulated output 1.
$\mathrm{P3}_{6}$ /CLRO/TO0 (Port 3; Counter 0 Clear; Timer 0). P_{6} is an I/O port bit, or the clear input for up/down counter 0 , or the timer 0 flip-flop output.
P3 ${ }_{7}$ CLR1/TO1 (Port 3; Counter 1 Clear; Timer 1). P_{7} is an $1 / O$ port bit, or the clear input for up/down counter 1, or the timer 1 flip-flop output.
$\mathrm{P4}_{0}-\mathrm{P4}_{7} / \mathrm{AD}_{0}-\mathrm{AD}_{7}$ (Port 4; External Address/Data Bus). Port 4 consists of 8 bits, programmable as a unit for input or output, or as the multiplexed address/data bus if external memory or external interface circuitry is used. The port is controlled by the memory mapping register. If the $\overline{E A}$ pin is low, port 4 is always an address/data bus.
P5 $5_{0}-\mathrm{P}_{7} / \mathrm{A}_{8}-\mathrm{A}_{15}$ (Port 5; High-Address Byte). Port 5 consists of 8 bits, individually programmable for input or output, or the high-order address bits for external memory. Under control of the memory mask register, bits $\mathrm{P5}_{3}-\mathrm{P} 5_{0}$ are used for 4 K memory expansion, bits $P 5_{5}-\mathrm{P} 5_{0}$ for 16 K memory expansion, or bits $\mathrm{P} 5_{7}-\mathrm{P} 5_{0}$ for 56 K memory expansion. If the $\overline{E A}$ pin is low, port 5 is always the high-order address bus.
$\overline{\mathrm{RD}}$ (Read Strobe). $\overline{\mathrm{RD}}$ is the read strobe output. It is to be used by external memory (or data registers) to place data on the I/O bus during a read operation.
$\overline{\operatorname{RESET}} / \mathrm{PROG}$. This pin is used for the external reset input. A low level sets all registers to their specified reset values. During programming of the μ PD78P312A, this pin is used to place the device into PROM programming mode.
$\overline{\text { RFSH }}$ (Refresh). $\overline{\mathrm{RFSH}}$ is the refresh pulse output to be used for external pseudostatic RAM.
$\overline{W R}$ (Write Strobe). $\overline{W R}$ is the write strobe output. It is to be used by external memory (or data registers) to latch data from the I/O bus during a write operation.
X1, X2 (External Crystal or Clock Input). X1 and X2 are the external oscillator inputs or the connections for an external crystal. If an external clock is used, it is connected to X 1 and its inverse is connected to X 2 . The system clock frequency is half the input frequency.
$\mathrm{AV}_{\text {REF }}$ (A/D Reference Voltage). $\mathrm{AV}_{\text {REF }}$ is the reference voltage input for the A/D converter.
$A V_{S S}$ (Analog Ground). $A V_{S S}$ is the analog ground pin.
$\mathbf{V}_{D D}$ (Power Supply). $V_{D D}$ is the positive power supply input.
$\mathrm{V}_{\text {SS }}$ (Power Return). $\mathrm{V}_{\text {SS }}$ is the power supply return, normally ground.

Block Diagram

FUNCTIONAL DESCRIPTION

On-chip features designed to facilitate process control include two 16 -bit timers, quadrature counting, two 16-bit up/down counters, two pulse-width modulated outputs, a free-running counter with two capture registers, two 4-bit real-time (timer-controlled) output ports, an 8 -bit A / D converter with four input channels, a timebase counter to generate widely spaced interrupts, and a watchdog timer to guard against infinite program loops.
In addition, a serial I/O port can be used in either an interface mode or an asynchronous communication mode. HALT and STOP modes are provided to conserve power at times when CPU action is not required.
All I/O, timer, and control registers are defined as special function registers and assigned addresses in the top 256 bytes of memory. The special function registers may be operated on directly by many of the arithmetic, logic, and move instructions of the CPU. Table 1 describes the registers.

Addressing

The μ PD78312A family features 1 -byte addressing of the special function registers and 1-byte addressing of the internal RAM. There are nine modes of addressing main memory, including autoincrement, autodecrement, indexing, and double indexing. There are 8 - and 16 -bit immediate operands.

External Memory

External memory (figure 1) is supported by I/O port 4, an 8 -bit multiplexed address/data bus. The memory mapping register controls the size of external memory as well as the number of additional wait states. Highorder address bits are taken from I/O port 5 as required. No bits are required for 256 bytes of external memory; bits $\mathrm{P5}_{3}-\mathrm{P} 5_{0}$ are used for 4 K bytes, $\mathrm{P} 5_{5}-\mathrm{P} 5_{0}$ for 16 K bytes, and $\mathrm{P}_{5}-\mathrm{P} 5_{0}$ for 56 K bytes. Any remaining port 5 bits are available for $1 / \mathrm{O}$.

Refresh

The μ PD78312A has a refresh signal for use with the pseudostatic RAM. The refresh cycle can be set to one of four intervals ranging from 2.67 to $21.3 \mu \mathrm{~s}$. The refresh is timed to follow a read or write operation so that there is no interference.

Figure 1. Memory Map

General Registers

The CPU has sixteen 8 -bit registers (figure 2) that can also be used in pairs to function as 16 -bit registers. A complete set of 16 general registers is mapped into each of 8 program-selectable register banks stored in RAM. Three bits in the PSW specify which of the register banks is active at any given time. Each register bank has two program-selectable accumulators.

The general registers of the μ PD78312A have both absolute and functional names. AX is the functional name for the accumulator. Setting the RSS bit in the PSW to 1 transfers the AX and BC registers from their normal RP0 and RP1 positions to RP2 and RP3 as shown in figure 2. This adds considerable programming flexibility.

Figure 2. Register Designation and Storage

Program Status Word

Following is the program status word format.

0	RB_{2}	RB_{1}	RB_{0}	0	0	IE	0
15							
S Z RSS AC UF P/V SUB CY 7							

$\mathrm{RB}_{2}-\mathrm{RB}_{0}$	Active register bank number
IE	Interrupt enable
S	Sign (1 if last result was negative)
Z	Zero (1 if last result was zero)
RSS	Register set select
AC	Auxiliary carry (carry out of 3rd bit)
UF	User flag
PN	Parity or arithmetic overflow
SUB	Subtract (1 if last operation was
	subtract)
CY	Carry

Input/Output

All ports may be used for either latched output or highimpedance input. All ports except port 4 are bitprogrammable for input or output. Port 0 is used for real-time or normal I/O. Port 1 is used for normal I/O. The low nibble of ports 2 and 3 is always used for control and the high nibble for control or normal I/O. Port 4 is used for the external address/data bus or byte-programmable I/O. Port 5 is used for the high bits of the external address or for normal I/O.

Real-Time Output Port

The real-time output port shares pins with I/O port 0. The high and low nibbles are treated separately or together. Data is transferred from a buffer to the port latches on either a timer or software command.

Serial Port

The serial port can operate in UART or interface mode with the baud rate and byte format under program control. The serial port also includes a dedicated baud rate generator.

Pulse-Width Modulated Outputs

The two independent pulse-width modulated outputs are controlled by two 16 -bit modulus registers and counters. There are four programmable repetition rates ranging from 91.6 Hz to 23.4 MHz . Figure 3 shows one of

Timers

The μ PD78312A has two 16-bit timers. The inputs to these timers may be the internal clock divided by 6 ; 12(TMO) or 128. Each timer has an associated modulus register to store the timer count. The timer counts down to zero, sets a flag, reloads from the modulus register, and then counts down again. The timer flags can be used under program control to generate interrupt requests and/or a square-wave output. TMO also functions optionally as two one-shot timers.
Figure 4 is a diagram of the interval timers.
There is a free-running counter that counts the internal clock divided by 4 or by 16 . The counter has two 16 -bit capture registers. Capture is triggered by an external interrupt request or by the up/down counter clock.
The timebase counter generates a signal at one of four intervals ranging from $170 \mu \mathrm{~s}$ to 175 ms . The signal can be used to generate an interrupt request and/or an up/down counter capture.

Figure 3. Pulse-Width Modulated Output

Figure 4. Timer Block Diagram

Up/Down Counters

The μ PD78312A has two 16-bit up/down counters, each of which has two capture/compare registers. There are three modes of operation: compare and interrupt, capture on external command, and capture on timebase counter command. There are five sources of counts: the internal clock divided by 3 , the external clock, external independent up and down inputs, external clock with direction control, and external clock with automatic up/down discrimination. Figure 5 shows an up/down counter.

Figure 5. Up/Down Counter Block Diagram

Quadrature Counting

The two up/down counters, UDCO and UDC1, have an optional quadrature counting mode, which is activated by specifying mode 4 in the counter unit input mode register, CUIM. It is designed to count the output of a two-phase pulsed optical shaft angle encoder. The input for phase A is the ClO (or Cl1) pin, and the input for phase B is the CTRLO (or CTRL1) pin. The counter UDCO (or UDC1) is incremented or decremented at both positive and negative transitions of both input signals. Whether it is incremented or decremented is dependent upon the relative phase of the two signals as illustrated in figure 6.

Figure 6. Counter Operation (Mode 4)

Standby Modes

HALT and STOP modes conserve power when CPU action is not required. In HALT mode, the CPU stops and the clock continues to run. Maskable interrupts can restart the CPU.
In STOP mode, the CPU and clock are both stopped. A $\overline{\text { RESET }}$ pulse or the nonmaskable external interrupt is required to restart them. There is also the option of slowing the system clock by a factor of four. The standby control register controls the standby modes and is a protected location written to only by a special instruction.

Watchdog Timer

The watchdog timer protects against inadvertent program loops. A nonmaskable interrupt occurs if the timer is not reset before a timeout occurs. There are four program-selectable intervals ranging from 5.5 to 349.3 ms . The watchdog timer can be disabled by software. The watchdog timer mode register controls the watchdog timer and is a protected location written to only by a special instruction.

A/D Converter

The A/D converter has four input channels and can operate in either scan or select mode. The A/D converter performs 8 -bit successive approximation conversions, has a $30-\mu \mathrm{s}$ conversion time, and is triggered either internally or externally. The A/D converter includes an on-chip sample and hold amplifier.

Interrupts

There are two nonmaskable interrupt sources: the external nonmaskable interrupt and the watchdog timer. Their relative priorities are software selectable.
There are eight hardware priority interrupt levels, level 0 having the highest priority and level 7 the lowest. The 15 maskable interrupt sources (table 2) are divided into five groups, and each group can, under program control, be assigned to any one of the priority levels.

Interrupts may be serviced by routines entered either by vectoring or by context switching. Context switching automatically saves all the general registers, the
μ PD78312A Family
program status word, and the program counter. Figure 7 illustrates the mechanism of context switching.
Finally, an optional macro service function transfers data between any one special function register and memory without program intervention.

Figure 7. Hardware Context Switching

Macro Service

The macro service controller can be programmed to perform word or byte transfers. It can transfer data from a special function register to memory or from memory to a special function register. Transfer events are triggered by interrupt requests and take place without software intervention.

There are eight macro service channels; channel control information is stored in RAM. This information (figure 8) consists of a 16-bit memory address (optionally incremented at each transfer), and 8 -bit special function register designator, and an 8 -bit transfer counter (decremented at each transfer). When the count equals 0 , a context switch or vectored interrupt occurs.

Figure 8. Macroservice Pointer Addresses

Table 1. Special Function Registers

Address	Register (SFR)	Symbol		R/W	16-Bit Transfer	State After Reset
FFOOH	I/O port 0	PO		RNW	No	Undefined
FF01H	I/O port 1	P1		R/W	No	Undefined
FF02H	I/O port 2	P2		R/W (Note 1)	No	Undefined
FF03H	I/O port 3	P3		R/W (Note 1)	No	Undefined
FF04H	I/O port 4	P4		R/W	No	Undefined
FF05H	1/O port 5	P5		RW	No	Undefined
$\begin{aligned} & \text { FFO8H } \\ & \text { FF09H } \end{aligned}$	Capture/compare register 00	CROOL CROOH	CROO	R/W	Yes	Undefined
$\begin{aligned} & \text { FFOAH } \\ & \text { FFO8H } \end{aligned}$	Capture/compare register 01	CRO1L CRO1H	CRO1	R/W	Yes	Undefined
$\begin{aligned} & \text { FFOCH } \\ & \text { FFODH } \end{aligned}$	Capture/compare register 10	CR10L CR10H	CR10	R/W	Yes	Undefined
$\begin{aligned} & \text { FFOEH } \\ & \text { FFOFH } \end{aligned}$	Capture/compare register 11	$\begin{aligned} & \text { CR11L } \\ & \text { CR11H } \end{aligned}$	CR11	R/W	Yes	Undefined
$\begin{aligned} & \mathrm{FF} 10 \mathrm{H} \\ & \mathrm{~F} 11 \mathrm{H} \end{aligned}$	Capture register 0 (from FRC)	CPTOL CPTOH	CPTO	R/W	Yes	Undefined
$\begin{aligned} & \text { FF12H } \\ & \text { FF13H } \end{aligned}$	Capture register 1 (from FRC)	CPT1L CPT1H	CPT1	R/W	Yes	Undefined
$\begin{aligned} & \text { FF14H } \\ & \text { FF15H } \end{aligned}$	PWM register 0 (duration)	PWMOL PWMOH	PWMO	R/W	Yes	Undefined
$\begin{aligned} & \text { FF16H } \\ & \text { FF17H } \end{aligned}$	PWM register 1 (duration)	PWM1L PWM1H	PWM1	R/W	Yes	Undefined
FF1CH FF1DH	Presettable up/down counter 0	UDCOL UDCOH	UDCO	R/W	Yes	Undefined
FF1EH FF1FH	Presettable up/down counter 1	UDC1L UDC1H	UDC1	R/W	Yes	Undefined
FF20H	Port 0 mode register	PMO		R/W	No	FFH
FF21H	Port 1 mode register	PM1		R/W	No	FFH
FF22H	Port 2 mode register	PM2		R/W (Note 1)	No	FFH
FF23H	Port 3 mode register	PM3		R/W (Note 1)	No	FFH
FF25H	Port 5 mode register	PM5		R/W	No	FFH
FF32H	Port 2 mode control register	PMC2		R/W	No	OFH
FF33H	Port 3 mode control register	PMC3		R/W	No	OFH
FF38H	Real-time output port control register	RTPC		R/W	No	08H
FF3AH	Port 0 buffer register (Note 2)	POL POH		RNW	No	Undefined
FF40H	Memory expansion mode register	MM		R/W	No	30 H
FF41H	Refresh mode register	RFM		R/W	No	10 H
FF42H	Watchdog timer mode register	WDM		R/W	No	OOH
FF44H	Standby control register	STBC		R/W	No	$\begin{gathered} 2 \mathrm{nH} \\ (\text { Note 3) } \\ \hline \end{gathered}$
FF46H	Timebase mode register	TBM		R/W	No	OOH
FF48H	External interrupt mode register	INTM		R/W	No	OOH
FF4AH	In-service priority register	ISPR		R	No	OOH
FF4EH	CPU control word	CCW		R/W	No	OOH

Table 1. Special Function Registers (cont)

Address	Register (SFR)	Symbol		R/W	16-Bit Transfer	State After Reset
FF50H	Serial communication mode register	SCM		R/W	No	OOH
FF52H	Serial communication control register	SCC		RNW	No	OOH
FF53H	Baud rate generator	BRG		R/W	No	OOH
FF56H	Serial communication receive buffer	RXB		R	No	Undefined
FF57H	Serial communication transmit buffer	TXB		W	No	Undefined
FF60H	Free-running counter control register	FRCC		R/W	No	OOH
FF64H	Capture mode register	CPTM		RW	No	OOH
FF66H	PWM mode register	PWMM		RW	No	OOH
FF68H	A/D converter mode register	ADM		RNW	No	OOH
FF6AH	A/D converter result register	ADCR		R	No	Undefined
FF70H	Count unit input mode register	CUIM		RNW	No	OOH
FF72H	Up/down counter control register 0	UDCCO		RW	No	OOH
FF74H	Capture/compare control register	CRC		R/W	No	OOH
FF7AH	Up/down counter control register 1	UDCC1		RNW	No	OOH
FF80H	Timer 0 control register	TMCO		R/W	No	OOH
FF82H	Timer 1 control register	TMC1		RW	No	OOH
$\begin{aligned} & \text { FF88H } \\ & \text { FF89H } \end{aligned}$	Timer 0	TMOL TMOH	TMO	RNW	Yes	Undefined
FF8AH FF8BH	Modulus/timer register 0	MDOL MDOH	MDO	R/W	Yes	Undefined
$\begin{aligned} & \mathrm{FF8CH} \\ & \text { FF8DH } \end{aligned}$	Timer 1	TM1L TM1H	TM1	RNW	Yes	Undefined
FF8EH FF8FH	Modulus register 1	MD1L TM1H	MD1	RNW	Yes	Undefined
FFBOH to FFBFH	External area (Note 4)					
FFCOH	CRFOO interrupt control Up/down counter 0	CRICOO		R/W	No	47H
FFC1H	CRFOO macro service control Up/down counter 0	CRMSOO		R/W	No	Undefined
FFC2H	CRF01 interrupt control Up/down counter 0	CRIC01		RNW	No	47H
FFC4H	CRF 10 Interrupt control Up/down counter 1	CRIC10		R/W	No	47H
FFC5H	CRF10 macro service control Up/down counter 1	CRMS10		R/W	No	Undefined
FFC6H	CRF11 interrupt control Up/down counter 1	CRIC11		R/W	No	47H
FFC8H	EXIFO interrupt control External interrupt INTEO	EXICO		RNW	No	47H
FFC9H	EXIFO macro service control External interrupt INTEO	EXMSO		RW	No	Undefined
FFCAH	EXIF1 interrupt control External interrupt INTE1	EXIC1		RNW	No	47H

Table 1. Special Function Registers (cont)

Address	Register (SFR)	Symbol	R/W	16-Bit Transfer	State After Reset
FFCBH	EXIF1 macro service control External interrupt INTE1	EXMS1	R/W	No	Undefined
FFCCH	EXIF2 interrupt control External interrupt INTE2	EXIC2	R/W	No	47H
FFCDH	EXIF2 macro service control External interrupt INTE2	EXMS2	R/W	No	Undefined
FFCEH	TMFO interrupt control Timer flag	TMICO	R/W	No	47H
FFCFH	TMFO macro service control Timer flag	TMMSO	R/W	No	Undefined
FFDOH	TMF1 interrupt control Timer flag	TMIC1	R/W	No	47H
FFD1H	TMF1 macro service control Timer flag	TMMS1	R/W	No	Undefined
FFD2H	TMF2 interrupt control Timer flag	TMIC2	R/W	No	47H
FFD3H	TMF2 macro service control Timer flag	TMMS2	R/W	No	Undefined
FFDAH	Receive error interrupt control Serial port	SEIC	R/W	No	47H
FFDCH	Receive interrupt control Serial port	SRIC	R/W	No	47H
FFDDH	Receive macro service control Serial port	SRMS	R/W	No	Undefined
FFDEH	Transmit interrupt control Serial port	STIC	R/W	No	47H
FFDFH	Transmit macro service control Serial port	STMS	R/W	No	Undefined
FFEOH	A/D converter interrupt control	ADIC	R/W	No	47H
FFE1H	A/D converter macro service control	ADMS	R/W	No	Undefined
FFE2H	Timebase counter interrupt control	TBIC	R/W	No	47H

Notes:

(1) Bits $0-3$ of port 2 and of port 3 are read-only.
(2) POH and POL are 4-bit buffer registers used to store data to be loaded into the high and low nibbles of the real-time output (PO). The high order 4 bits of POH and the low order 4 bits of POL are used.

(4) External registers interfaced with these addresses can be accessed by special function register addressing.

Table 2. Interrupt Sources and Vector Addresses

	Default Priority	Mnemonic	Interrupt Source	Macroservice	Vector
Software	-	BRK	Break instruction	No	O03EH
Nonmaskable Interrupts		NMI	External nonmaskable interrupt	No	0002H
	-	WDT	Watchdog timer	No	000AH
Maskable interrupts	0	CRFOO	Up/down counter 0	Yes	001AH
	1	CRFO1	Up/down counter 0	No	001 CH
	2	CRF10	Up/down counter 1	Yes	001 EH
	3	CRF11	Up/down counter 1	No	0020H
	4	EXIFO	External interrupt 0	Yes	0004H
	5	EXIF1	External interrupt 1	Yes	0006H
	6	EXIF2	External interrupt 2	Yes	0008H
	7	TMFO	Timer flag 0	Yes	O00EH
	8	TMF1	Timer flag 1	Yes	0010H
	9	TMF2	Timer flag 2	Yes	0012H
	10	SEF	Serial port error	No	0022H
	11	SRF	Serial port receive buffer	Yes	0024H
	12	STF	Serial port transmit buffer	Yes	0026H
	13	ADF	A/D converter done flag	Yes	0028H
	14	TBF	Timebase counter flag	No	000 CH
Reset	-	RESET	External reset line	-	0000 H

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

$T_{A}=+25^{\circ} \mathrm{C}$

Power supply voltage V_{DD}	-0.5 to +7.0 V
Reference voltage, $\mathrm{AV}_{\text {REF }}$	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Power supply return, $\mathrm{AV}_{\mathrm{SS}}$	-0.5 to +0.5 V
Input voltage, V_{11} (except RESET of μ PD78P312A)	-0.5 to $+\mathrm{V}_{\mathrm{DD}}+0.5$
Input voltage, V_{12}	-0.5 to +13.5 V
RESET of $\mu \mathrm{PD} 78 \mathrm{P} 312 \mathrm{~A}$ only)	

(RESET of μ PD78P312A only)
Output voltage, $\mathrm{V}_{\mathrm{O}} \quad-0.5$ to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Output current, low; loL 4 mA
(single pin)

Output current, low; loL; total, all output pins (μ PD783312/310A)	100 mA
Output current, low; loL; total, all output pins (μ PD78P312A)	60 mA
Output current, high; loH (single pin)	-1 mA
Output current, high; loH; total, all output pins (μ PD78312/310A)	-25 mA

DC Characteristics

$T_{A}=-10$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=+5.0 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Input low voltage	$\mathrm{V}_{\text {IL } 1}$	0		0.8	V	Except $\overline{\mathrm{EA}}$ on $\mu \mathrm{PD} 78310 \mathrm{~A} / 312 \mathrm{~A}$
	$V_{\text {IL2 }}$	0		0.5	V	$\overline{\text { EA }}$ on (μ PD78310A/312A only)
Input high voltage	$\mathrm{V}_{\mathrm{HH} 1}$	2.2		$V_{D D}$	V	Except P2/NM1, X1, X2, $\overline{\text { RESET }}$
	$\mathrm{V}_{\mathrm{HH} 2}$	3.8		$V_{D D}$	V	P2 ${ }_{0} / \mathrm{NMIIX1}, \mathrm{X} 2, \overline{\mathrm{RESET}}$
Output low voltage	V_{OL}			0.45	V	$\mathrm{l}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
Output high voltage	V_{OH}	$V_{D D}{ }^{-1}$			V	$\mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA}$
Input current	1			± 10	$\mu \mathrm{A}$	$\mathrm{P} 2_{0} / \mathrm{NM} 1, \overline{\mathrm{RESET}} \mathrm{V}_{1}=0.45 \mathrm{~V}$ to V_{DD}
Input leakage current	l_{LI}			± 10	$\mu \mathrm{A}$	
Input/output leakage current	Lo			± 10	$\mu \mathrm{A}$	
$\mathrm{AV}_{\text {REF }}$ current	Alpef		1.5	5	mA	$\mathrm{f}_{\text {CLK }}=6 \mathrm{MHz}$
V_{DD} supply current	IDD1		30	60	mA	Operating mode; $\mathrm{f}_{\text {cLK }}=6 \mathrm{MHz}$
	IDD2		5	15	mA	Halt mode; $\mathrm{f}_{\text {CLK }}=6 \mathrm{MHz}$
Data retention voltage	$V_{\text {DDDR }}$	2.5			V	Stop mode
Stop mode supply current	IDDDA		3	15	$\mu \mathrm{A}$	Stop mode; $\mathrm{V}_{\text {DDDR }}=2.5 \mathrm{~V}$
			10	50	$\mu \mathrm{A}$	Stop mode; $\mathrm{V}_{\text {DDDR }}=5.0 \mathrm{~V} \pm 10 \%$

AC Characteristics

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Read/Write Operation						
System clock cycle time	${ }_{\text {t }}^{\text {CYK }}$	166		1000	ns	(Note 1)
Address setup time to ALE \downarrow	${ }^{\text {t }}$ SAL	150			ns	
Address hold time after ALE \downarrow	thLA	30			ns	(Note 4)
Address to $\overline{\mathrm{RD}} \downarrow$ delay time	${ }^{\text {t DAR }}$	230			ns	
$\overline{\mathrm{RD}} \downarrow$ to address floating	${ }^{\text {t }}$ FRA			0	ns	
Address to data input	$t_{\text {DAID }}$			410	ns	
ALE \downarrow to data input	${ }^{\text {D DLID }}$			230	ns	
$\overline{\overline{R D}} \downarrow$ to data input	${ }^{\text {t DRID }}$			180	ns	
ALE \downarrow to $\overline{\mathrm{RD}} \downarrow$ delay time	${ }^{t}$ DLR	60			ns	
Data hold time after $\overline{\mathrm{RD}} \uparrow$	$t_{\text {HRID }}$	0			ns	
$\overline{\overline{R D} \uparrow \text { to address active }}$	tDRA	50			ns	
$\overline{\overline{R D}} \uparrow$ to ALE \uparrow delay time	$t_{\text {DRL }}$	100			ns	
$\overline{\overline{R D}}$ width low	$t_{\text {WRL }}$	200			ns	
ALE width high	tWLH	120			ns	
Address to $\overline{W R} \downarrow$ delay time	tDAW	300			ns	
ALE \downarrow to data output	${ }^{\text {t DLOD }}$			190	ns	
$\overline{W R} \downarrow$ to data output	$t_{\text {DWOD }}$			100	ns	
ALE \downarrow to $\overline{W R} \downarrow$ delay time (Note 2)	tow	30			ns	
		110			ns	During refresh mode
Data setup time to $\overline{W R} \uparrow$	tsodwr	150			ns	
Data setup time to $\overline{W R} \downarrow$ (Note 3)	tSODWF	30			ns	During refresh mode
Data hold time to $\overline{\mathrm{WR}} \uparrow$	$t_{\text {HWOD }}$	20			ns	(Note 4)
$\overline{W R} \uparrow$ to ALE \uparrow delay time	t DWL	110			ns	
WR width low	*WWL	200			ns	
Serial Port						
Serial clock cycle time	${ }^{\text {t }}$ CYSK	1.33			$\mu \mathrm{s}$	$\overline{\text { SCK }}$ output (Note 5)
		1.33			$\mu \mathrm{s}$	$\overline{\text { CTS output (Note 6) }}$
		1			μs	$\overline{\text { CTS }}$ input (Note 7)
Serial clock low-level width	tWSKL	580			ns	$\overline{\text { SCK output (Note 5) }}$
		580			ns	$\overline{\mathrm{CTS}}$ output (Note 6)
		420			ns	$\overline{\text { CTS }}$ input (Note 7)
Serial clock high-level width	twSKH	580			ns	$\overline{\text { SCK output (Note 5) }}$
		580			ns	$\overline{\text { CTS output (Note 6) }}$
		420			ns	$\overline{\mathrm{CTS}}$ input (Note 7)
$\overline{\text { CTS }}$ high, low level	tWCSH, WCSL	3			$t_{\text {chk }}$	Asynchronous mode
RxD setup time to $\overline{C T S} \uparrow$	tsRXSK	80			ns	
RxD hold time after $\overline{C T S} \uparrow$	$t_{\text {HSKRX }}$	80			ns	
$\overline{\text { SCK } \downarrow \text { to TxD delay time }}$	$t_{\text {DSKTX }}$			210	ns	

AC Characteristics (cont)

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
A/D Converter						
Resolution		8			Bit	
Full scale error				0.4	\%	$\mathrm{t}_{\mathrm{CYK}}=166$ to 500 ns
Quantization error				$\pm 1 / 2$	LSB	
Conversion time	${ }^{\text {t CONV }}$	180			$\mathrm{t}_{\mathrm{CYK}}$	$t_{\text {CYK }}=166$ to 250 ns
		120			$\mathrm{t}_{\text {chk }}$	$t_{\text {crk }}=250$ to 500 ns
Sampling time	$t_{\text {SAMP }}$	36			$\mathrm{t}_{\text {CYK }}$	$t_{\text {CYK }}=166$ to 250 ns
		24			$\mathrm{t}_{\mathrm{CYK}}$	$\mathrm{t}_{\text {CYK }}=250$ to 500 ns
Analog input voltage	$V_{\text {IAN }}$	0		$\mathrm{AV}_{\text {REF }}$	V	
Input impedance	$\mathrm{R}_{\text {AN }}$		1000		$\mathrm{M} \Omega$	
Analog reference voltage	$\mathrm{AV}_{\text {REF }}$	4.0		$V_{D D}$	\checkmark	
AV REF current	$\mathrm{Al}_{\text {REF }}$		1.5	5.0	mA	$\mathrm{f}_{\mathrm{CLK}}=6 \mathrm{MHz}$

Counter Operation

ClO, Cl1 high, low levels	${ }^{\text {WWCIH, }}$ t WCH	3	$\mathrm{t}_{\text {CYK }}$	
CTRLO, CRTL1 high, low levels	WhCTh, twCTL	3	${ }^{\text {t }}$ CYK	
CTRLO, CTRL1 setup time to $\mathrm{Cl} \uparrow$	${ }^{\text {tSCTCI }}$	2	${ }^{\text {t }}$ CYK	Operating mode of count unit is set to mode $3 . \mathrm{Cl}$ input is set to rising edge active.

CTRLO, CTRL1 hold time after $\mathrm{Cl} \uparrow$	${ }^{\text {HCICT }}$	5		${ }_{\text {t }}^{\text {CYK }}$	
CLRO. CLR1 high, low-level width	$t_{\text {WCRH }}$, ${ }_{\text {WCRL }}$	3		${ }^{\text {t }}$ CYK	
Clo, Cl 1 setup time to CTRL	$\mathrm{t}_{54}{ }_{\text {STCI }}$	6		${ }_{\text {t }}^{\text {cruk }}$	Counter mode 4
CTRLO, CTRL1 setup time to Cl	${ }_{\mathrm{H} 44 \mathrm{CTCl}}$	6		$t_{\text {chk }}$	Counter mode 4
CIO/CI1, CTRLO/CTRL1 cycle time	${ }^{\text {t }}$ ¢YC4		250	kHz	Counter mode 4

External Interrupts and Reset

NMI high, low-level width	${ }^{\text {twNIH, }}$ TWNIL	10	$\mu \mathrm{s}$
INTEO high, low-level width	${ }^{\text {W WIOH, }}$, WIOL	3	$\mathrm{t}_{\text {CYK }}$
INTE1 high, low-level width	${ }^{\text {W WIIH, }}$, WIIL	3	${ }_{\text {t }}{ }_{\text {CYK }}$
INTE2 high, low-level width	${ }^{\text {W }}$ WI2H, ${ }^{\text {W WI2L }}$	3	$t_{\text {CYK }}$
RESET high, low-level width	${ }^{\text {twRSH, }}$ tWRSL	10	$\mu \mathrm{s}$
$\mathrm{V}_{\text {DD }}$ rise, fall time	$\mathrm{t}_{\text {RVD }}$, tFVD	200	$\mu \mathrm{s}$

Notes:

(1) The internal clock (fCLK) equals the oscillation clock ($\mathrm{fxx}_{\mathrm{x}}$) divided by 2 or 8 as determined by bit 5 of the STBC. In this table, $\mathrm{f}_{\mathrm{XX}}=$ 12 MHz and $\mathrm{f}_{\mathrm{CLK}}=\mathrm{fxx}^{\prime} / 2$.
(2) During refresh operation, the $\overline{\mathrm{WR}}$ signal falls to low level $1 / 2$ clock cycle later than if there is no refresh.
(3) When accessing data from pseudostatic RAMs (e.g. μ PD4168) with the falling edge of the WR signal, the data setup time is tsodwf instead of tsodwr.
(4) Hold time is measured with $C_{L}=100 \mathrm{pF}$ and $R_{L}=2 \mathrm{k} \Omega$ load, and includes the period necessary to guarantee V_{OH} and V_{OL}.
(5) I/O interface mode transmit data at a data rate of $750 \mathrm{~kb} / \mathrm{s}$.
(6) $1 / O$ interface mode receive data, internal clock, at a data rate of $750 \mathrm{~kb} / \mathrm{s}$.
(7) In the I/O interface mode this is the optional external clock for received data at a maximum rate of $1 \mathrm{MB} / \mathrm{s}$.

Oscillator Characteristics

Oscillator	Parameter	Symbol	Min	Max	Unit
Ceramic resonator or crystal resonator	Oscillation frequency	f_{Xx}	4	12	MHz
External clock	X1 input frequency	${ }^{\prime} \mathrm{X}$	4	12	MHz
	X1 input rise, fall time	${ }_{\text {tXR }}$, X $_{\text {XF }}$	0	30	ns
	X1 input high-low-level width	${ }_{\text {twxh }}{ }^{\text {twxL }}$	30	130	ns

Recommended Ceramic Resonators
(μ PD78310/312A)

			External Frequency (MHz)		
Capacitance (pF)					

Recommended Circuits

Timing Dependent on tcyk

Symbol	Formula	Min/Max	Unit
${ }_{\text {t }}^{\text {SaL }}$	1.5T-100	Min	ns
${ }_{\text {t }}$ DAR	$2 \mathrm{~T}-100$		
${ }^{\text {taid }}$	$(3.5+n) T-170$	Max	ns
${ }^{\text {tDLID }}$	$(2+n) T-100$		
${ }^{\text {t DRID }}$	$(1.5+n) T-70$		
tbLR	0.5T-20	Min	ns
${ }^{\text {t DRL }}$	T-50		
${ }_{\text {t DRA }}$	0.5T-30		
${ }^{\text {twRL }}$	$(1.5+\mathrm{n}) \mathrm{T}-50$		
tWLH	T-40		
${ }^{\text {D }}$ DW	2T-100		
${ }^{\text {t }}$ LOD	$0.5 \mathrm{~T}+110$	Max	ns
$t_{\text {tLW }}$	0.5T-20 (normal operation)	Min	ns
	T-50 (during refresh mode)		
tsodwn	$(1.5+n) T-100$		
tsodwF	0.5T-50		
${ }^{\text {t DWL }}$	T-50		
tWWL	$(1.5+n)-50$		

Notes:

(1) n is the number of additional wait cycles specified by the MM register.
(2) $T=t_{C Y K}=1 / \mathrm{f}_{\mathrm{CLK}}=2 / \mathrm{f}_{\mathrm{XX}} \cdot \mathrm{f}_{\mathrm{CLK}}$ is the internal sytem clock frequency.
(3) Any parameter not included in this table is not dependent on folk.

Timing Waveforms

AC Timing Test Points

Read Operation

Timing Waveforms (cont)

Write Operation

Timing Waveforms (cont)

Serial Port, I/O Interface Mode

Timing Waveforms (cont)

Serial Port, Asynchronous Mode Send Enable Input Timing

Counter Operation (Mode 3)

Count Timing Specification (Mode 4)

External Interrupts

External Reset

External Clock

Data Retention Timing

PROM PROGRAMMING

The PROM in the μ PD78P312A is an OTP or UVE EPROM with an $8,192 \times 8$-bit configuration. The pins listed in the table below are used to program the PROM.
When used in the normal operation mode, $5 \mathrm{~V} \pm 10 \%$ is applied to the $V_{D D}$ and $V_{P P}$ pins. A voltage higher than $V_{D D}$ should not be applied to other pins.
The programming characteristics of the μ PD78P312A are identical to those of the $\mu \mathrm{PD} 27 \mathrm{C} 256 \mathrm{~A}$.

Pin	Function
$V_{P P}$	High voltage input (write/verify mode), high-level input (read mode)
PROG	High voltage input (write/verify mode, read mode)
$A_{0}-A_{7}$	Address input (lower 8 bits)
$A_{8}-A_{12}$	Address input (upper 8 bits)
$D_{0}-D_{7}$	Data input (write mode), data output (verify mode)
$\overline{\mathrm{CE}}$	Program pulse input
$\overline{\mathrm{OE}}$	Output enable input
$V_{D D}$	Power supply pin

Notes:

(1) Mask the window of the UVE EPROM version to protect the PROM from being erased accidentally.
(2) The OTP EPROM version cannot be erased by ultraviolet rays because it does not have a window.

Programming Setup

Programming socket adaptors PA-78P312CW/GF/GQ/L are used to configure the μ PD78P312A to fit a standard PROM socket. Set the PROM programmer to program the 27C256A. If the PROM programmer is an older model, check that the programming voltage does not exceed 12.5 volts.

Pin Functions, PROM Programming Mode

64-Pin Shrink DIP and QUIP, Plastic and Ceramic

Notes:

[1] V_{SS} : Ground this pin.
[2] Open: Do not connect this pin.
83YL-6841A

Pin Functions, PROM Programming Mode (cont)

64-Pin Plastic QFP (bent leads)

Notes:

Pin Functions, PROM Programming Mode (cont)
68-Pin PLCC

Notes:
[1] V_{SS} : Ground thls pin.
[2] Open: Do not connect this pin.

PROM Programming Mode

When +6 V is applied to the $\mathrm{V}_{D D}$ pin and +12.5 V is applied to the PROG pin and VPP pin, the μ PD78P312A enters the program write/verify mode. Operation in this mode is determined by the setting of $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ pins as indicated in the table below.

Mode	$\overline{\mathrm{CE}}$	$\overline{\mathrm{OE}}$	VPP	V $_{\text {DD }}$	PROG
Write	L	H	+12.5 V	+6 V	+12.5 V
Verify	H	L			
Program inhibit	H	H			
Read (Note 2)	L / H	L	+5 V	+5 V	+12.5 V
Read (Note 3)	L / H	H			

Notes:

(1) When +12.5 V is applied to V_{Pp} and +6 V is applied to V_{DD}, both $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ must not be set to the low level (L) simultaneously.
(2) Data is output from the $D_{0}-D_{7}$ pins.
(3) $D_{0}-D_{7}$ are high impedance.

Recommended Conditions for Unused Pins

Table 3 describes how to set unused pins when programming the PROM.

Table 3. Recommended Conditions for Unused Pins

Pin	Recommended Connection
$\mathrm{PO}_{0}-\mathrm{PO}_{3}$	Connect to $\mathrm{V}_{\text {SS }}$
$\mathrm{PO}_{4}, \mathrm{PO}_{5}$	Open
$\mathrm{P} 2_{0}-\mathrm{P} 2_{3}$	Connect to $V_{\text {SS }}$
$\mathrm{P}_{2}-\mathrm{P}_{2}, \overline{\mathrm{RFSH}}$	Open
$\mathrm{P}_{3}-\mathrm{P}_{3}, \mathrm{X}_{1}$	Connect to $V_{S S}$
X2	Open
ANO-AN3, AV ${ }_{\text {REF }}, A V_{\text {SS }}$	Connect to $\mathrm{V}_{\text {SS }}$
$\underline{\mathrm{P3}}{ }_{4}-\mathrm{P}_{3}, \mathrm{P5}_{5}-\mathrm{P} 5_{7}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{ALE}$	Open

PROM Write Procedure

Data can be written to the PROM by using the following procedure.
(1) Set the pins not used for programming as indicated in table 3 , and supply +6 V to the V_{DD} pin, and +12.5 V to the V_{PP} and PROG pins.
(2) Provide the initial address.
(3) Provide write data.
(4) Provide a 1 ms program pulse (active low) to the $\overline{\mathrm{CE}}$ pin.
(5) Use the verify mode to test the data. If the data has been written, proceed to (7), if not, repeat steps (3) to (5). If the data cannot be correctly written in 25 attempts, go to step (6).
(6) Classify the PROM as defective and cease write operation.
(7) Provide write data and supply program pulse (for additional writing) for 3 ms times the number of repeats performed between steps (3) to (5).
(8) Increment the address.
(9) Repeat steps (3) to (8) until the last address is reached.

PROM Read Procedure

The contents of the PROM can be read out to the external data bus $D_{0}-D_{7}$ by using the following procedure.
(1) Set the unused pins as indicated in table 3.
(2) Supply +5 V to the V_{DD} pin and V_{PP} pin, and +12.5 V to the PROG pin.
(3) Input the address of the data to be read to the A_{0} to A_{12} pins.
(4) Put an active low pulse of at least $1 \mu \mathrm{~s}$ on the $\overline{\mathrm{OE}}$ pin.
(5) Data is output to the D_{0} to D_{7} pins.

Erasure

The UVE EPROM can be erased by exposing the window to light having a wavelength shorter than 400 nm , including ultraviolet rays, direct sunlight, and fluorescent light. To prevent unintentional erasure, mask the window.

Typically, data is erased by $254-\mathrm{nm}$ ultraviolet rays. A minimum lighting level of $15 \mathrm{~W} \mathrm{~s} / \mathrm{cm}^{2}$ (ultraviolet ray intensity x exposure time) is required to completely erase written data. Erasure by an ultraviolet lamp rated at $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ takes approximately 15 to 20 minutes. Remove any filter on the lamp and place the device within 2.5 cm of the lamp tubes.

DC Programming Characteristics
$T_{A}=25 \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathbb{I}}=12.0 \pm 0.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Symbol (Note)	Min	Typ	Max	Unit	Condition
High-level input voltage	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	2.2		$V_{\text {DDP }}+0.3$	V	
Low-level input voltage	$V_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	-0.3		0.8	V	
Input leakage current	$\mathrm{V}_{\text {LIP }}$	V_{LI}			10	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{1} \leq \mathrm{V}_{\text {DDP }}$
High-level output voltage	V_{OH}	V_{OH}	$\mathrm{V}_{D D^{-1}}$			v	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$
Low-level output voltage	V_{OL}	V_{OL}			0.45	V	$\mathrm{l}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
Output leakage current	Lo	-			10	$\mu \mathrm{A}$	$0 \leq V_{0} \leq V_{\text {DDP }}, \overline{O E}=V_{1 H}$
PROG pin high voltage input current	IIP	-			± 10	$\mu \mathrm{A}$	
$V_{\text {DDP }}$ power supply voltage	$V_{\text {DDP }}$	$V_{D D}$	5.75	6.0	6.25	V	Program memory write mode
			4.5	5.0	5.5	V	Program memory read mode
$V_{\text {pp }}$ power supply voltage	V_{PP}	$V_{\text {PP }}$	12.2	12.5	12.8	V	Program memory write mode
				$\mathrm{V}_{\mathrm{PP}}=$		V	Program memory read mode
$V_{\text {DDP power supply }}$ current	IDD	IDD		10	30	mA	Program memory write mode
				10	30	mA	Program memory read mode $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$
$\mathrm{V}_{\text {PP }}$ power supply current	$\mathrm{I}_{\text {PP }}$	Ipp		10	30	mA	Program memory write mode $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$
				1	100	$\mu \mathrm{A}$	Program memory read mode

Notes:

(1) Corresponding symbols for the $\mu \mathrm{PD} 27 \mathrm{C} 256 \mathrm{~A}$

AC Programming Characteristics

$T_{A}=25 \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathbb{P}}=12.0 \pm 0.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Symbol (Note)	Min	Typ	Max	Unit	Condition
Address setup time to $\overline{\mathrm{CE}} \downarrow$	${ }^{\text {t }}$ SAC	$t_{\text {AS }}$	2	.		$\mu \mathrm{s}$	
Data to $\overline{O E} \downarrow$ delay time	${ }^{\text {tDDOO }}$	toes	2			$\mu \mathrm{s}$	
Input data setup time to $\overline{\mathrm{CE}} \downarrow$	tside	$t_{\text {ds }}$	2			$\mu \mathrm{s}$	
Address hold time after $\overline{\mathrm{CE}} \uparrow$	${ }_{H} \mathrm{HCA}$	${ }^{\text {AH }}$	2			$\mu \mathrm{s}$	
Input data hold time after $\overline{\mathrm{CE}} \uparrow$	$t_{\text {HCID }}$	$t_{\text {DH }}$	2			$\mu \mathrm{s}$	
Output data hold time after $\overline{O E} \uparrow$	$\mathrm{t}_{\mathrm{HOOD}}$	t_{DF}	0		130	ns	
$\mathrm{V}_{\text {pp }}$ setup time before $\overline{\mathrm{CE}} \downarrow$	${ }^{\text {t SVPC }}$	tVPS	2			$\mu \mathrm{s}$	
$V_{\text {DDP }}$ setup time before $\overline{C E} \downarrow$	tsvDC	tvDS	2			$\mu \mathrm{s}$	
Initial program pulse width	${ }^{\text {twLi }}$	$t_{\text {PW }}$	0.95	1.0	1.05	ms	
Additional program pulse width	twL2	topw	2.85		78.75	ms	
PROG high-voltage input setup time before $\overline{C E} \downarrow$	${ }^{\text {t SPP }}$		2			$\mu \mathrm{s}$	
Address to data output time	${ }^{\text {t }}$ DAOD	${ }^{\text {tacc }}$			2	$\mu \mathrm{s}$	$\overline{\mathrm{OE}}=\mathrm{V}_{\text {IL }}$
$\overline{O E} \downarrow$ to data output time	tood	toe			1	$\mu \mathrm{s}$	
Data hold time after $\overline{O E} \uparrow$	$\mathrm{t}_{\mathrm{HCOD}}$	$t_{\text {DF }}$	0		130	ns	
Data hold time after address not valid	thaod	${ }^{\text {toh }}$	0			ns	$\overline{O E}=V_{\text {IL }}$

Notes:

(1) Corresponding symbols for the $\mu \mathrm{PD} 27 \mathrm{C} 256 \mathrm{~A}$

PROM Write Mode Timing

Notes:
[1] $V_{\text {DDP }}$ must be applied before $V_{\text {PP }}$ is applied and must be removed after $V_{p p}$ is removed.
[2] V_{Pp} must not exceed +13 V including overshoot voltage.

PROM Read Mode Timing

INSTRUCTION SET

The μ PD78312A family instruction set features 8- and 16-bit data transfer, arithmetic, and logic instructions and single-bit manipulation instructions. String manipulation instructions are also included. Branch instructions exist to test individual bits in the program status word, the 16-bit accumulator, the special function registers, and the saddr portion of on-chip RAM. Instructions range in length from 1 to 6 bytes depending on the instruction and addressing mode.

Flag Column Indicators

Symbol	Action
(blank)	No change
0	Set to 0
1	Set to 1
X	Set or cleared according to result
P	P/V indicates parity of result
V	P/V indicates arithmetic overflow
R	Restored from saved PSW

Instruction Set Symbols

Symbol	Definition
r	Ro, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15
r1	R0, R1, R2, R3, R4, R5, R6, R7
12	C, B
rp	RPO, RP1, RP2, RP3, RP4, RP5, RP6, RP7*
rp1	RPO, RP1, RP2, RP3, RP4, RP5, RP6, RP7*
rp2	DE, HL, VP, UP
sfr	Special function register, 8 bits
sfrp	Special function register, 16 bits
post	RPO, RP1, RP2, RP3, RP4, RP5/PSW, RP6, RP7. Bits set to 1 indicate register pairs to be pushed/ popped to/from stack; RP5 pushed/popped by PUSH/POP, SP is stack pointer; PSW pushed/ popped by PUSHU/POPU, RP5 is stack pointer.
mem	$\begin{gathered} \text { Register indirect: }[\mathrm{DE}],[\mathrm{HL}],[\mathrm{DE}+],[\mathrm{HL}+],[\mathrm{DE}-], \\ {[\mathrm{HL-}-],[V P],[\mathrm{UP}]} \end{gathered}$
	$\begin{aligned} \text { Base Index Mode: } & {[D E+A],[H L+A],[D E+B], } \\ & {[H L+B],[V P+D E],[V P+H L] } \end{aligned}$
	$\begin{gathered} \text { Base Mode: }[\mathrm{DE}+\text { byte], [HL+ byte], [VP+ byte], } \\ {[\mathrm{UP}+\text { byte], }[\mathrm{SP}+\text { byte] }} \end{gathered}$
	Index Mode: word [A], word [B], word [DE], word [HL]
saddr	FE20-FF1FH: Immediate byte addresses one byte in RAM, or label
saddrp	FE20-FF1FH: Immediate byte (bit $0=0$) addresses one word in RAM, or label

Instruction Set Symbols (cont)

Symbol	Definition
word	16 bits of immediate data or label
byte	8 bits of immediate data or label
jdisp8	8 -bit two's complement displacement (immediate data displacement value -128 to +127)
bit	3 bits of immediate data (bit position in byte), or label
n	3 bits of immediate data
!addr16	16-bit absolute address specified by an immediate address or label
\$addr16	Relative branch address or label
addr16	16-bit address
!addr11	11-bit immediate address or label
addr11	0800H-OFFFH: $0800 \mathrm{H}+$ (11-bit immediate address), or label
addr5	$0040 \mathrm{H}-007 \mathrm{EH}: 0040 \mathrm{H}+2 \mathrm{X}$ (5-bit immediate address), or label
A	A register (8-bit accumulator)
X	X register
B	B register
C	C register
D	D register
E	E register
H	H register
L	L register
R0-R15	Register 0 to register 15
AX	Register pair AX (16-bit accumulator)
BC	Register pair BC
DE	Register pair DE
HL	Register pair HL
RPORP7	Register pair 0 to register pair 7
PC	Program counter
SP	Stack pointer
UP	User stack pointer (RP5)
PSW	Program status word
PSWH	High-order 8 bits of PSW
PSWL	Low-order 8 bits of PSW
CY	Carry flag
AC	Auxiliary carry flag
Z	Zero flag
P/V	Parity/overflow flag
S	Sign flag
TPF	Table position flag

Instruction Set Symbols (cont)

Symbol	Definition
RBS	Register bank select flag
RSS	Register set select flag
IE	Interrupt enable flag
STBC	Standby control register
WDM	Watchdog timer mode register
()	Contents of the location whose address is within parentheses; (+) and (-) indicate that the address is incremented after or decremented after it is used
(())	Contents of the memory location defined by the quantity within the sets of parentheses
$x \mathrm{xH}$	Hexadecimal quantity
$\mathrm{X}_{\mathrm{H}, \mathrm{X}_{\mathrm{L}}}$	High-order 8 bits and low-order 8 bits of X

Instruction Set

Mnemonic	Operand	Operation	Flags						
			Bytes	S	z	AC	P/N	CY	SUB
8-Bit Data Transfer									
MOV	r1, \#byte	$\mathrm{r} 1 \leftarrow$ byte	2						
	saddr, \#byte	(saddr) \leftarrow byte	3						
	sfr, \#byte	sfr \leftarrow byte	3						
	$\mathrm{r}, \mathrm{r} 1$	$r \leftarrow r 1$	2						
	A, r1	$\mathrm{A} \leftarrow \mathrm{r} 1$	1						
	A, saddr	$A \leftarrow$ (saddr)	2						
	saddr, A	(saddr) $\leftarrow \mathrm{A}$	2						
	saddr, saddr	(saddr) \leftarrow (saddr)	3						
	A, sfr	$A \leftarrow s f r$	2						
	sfr, A	sfr $\leftarrow A$	2						
	A, mem (Note 1)	$A \leftarrow($ mem $)$	1						
	A, mem	$A \leftarrow(\mathrm{mem})$	2-4						
	mem, A (Note 1)	(mem) $\leftarrow A$	1						
	mem, A	$($ mem $) \leftarrow A$	2-4						
	A, [saddrp]	$A \leftarrow($ (saddrp $))$	2						
	[saddrp], A	((saddrp)) $\leftarrow \mathrm{A}$	2						
	A, !addr16	$A \leftarrow$ (addr16)	4						
	!addr16, A	(addr16) $\leftarrow \mathrm{A}$	4						
	PSWL, \#byte	PSWL \leftarrow byte	3	X	X	X	X	X	X
	PSWH, \#byte	PSWH \leftarrow byte	3						
	PSWL, A	PSWL $\leftarrow \mathrm{A}$	2	X	X	X	X	x	X
	PSWH, A	PSWH $\leftarrow A$	2						
	A, PSWL	$A \leftarrow P S W W$	2						
	A, PSWH	$\mathrm{A} \leftarrow \mathrm{PSWH}$	2						
$\overline{\mathrm{XCH}}$	A, r1	$A \leftrightarrow r 1$	1						
	r, r1	$r \leftrightarrow r 1$	2						
	A, mem	$A \leftrightarrow$ (mem)	2-4						
	A, saddr	$A \leftrightarrow$ (saddr)	2						
	A, sfr	$\mathrm{A} \leftrightarrow \mathrm{sfr}$	3						
	A, [saddrp]	$\mathrm{A} \leftrightarrow$ ((saddrp) $)$	2						
	saddr, saddr	(saddr) \leftrightarrow (saddr)	3						

16-Bit Data Transfer			
MOVW	rp1, \#word	rp1 \leftarrow word	3
	saddrp, \#word	(saddrp) \leftarrow word	4
	sfrp, \#word	sfrp \leftarrow word	4
	rp, rp1	$r p \leftarrow r p 1$	2
	AX, saddrp	$\mathrm{AX} \leftarrow$ (saddrp)	2
	saddrp, AX	(saddrp) $\leftarrow \mathrm{AX}$	2
	saddrp, saddrp	(saddrp) \leftarrow (saddrp)	3

μ PD78312A Family

Instruction Set (cont)

Mnemonic	Operand	Operation	Flags						
			Bytes	S	z	AC	P/V	CY	SUB
16-Bit Data Transfer (cont)									
MOVW (cont)	AX, sfrp	$A X \leftarrow$ sfrp	2						
	sfrp, AX	sfrp $\leftarrow A X$	2						
	rp1, !addr16	rp1 $\leftarrow($ addr16 $)$	4						
	!addr16, rp1	(addr16) \leftarrow rp1	4						
XCHW	AX, saddrp	$A X \leftrightarrow$ (saddrp)	2						
	AX, sfrp	$\mathrm{AX} \leftrightarrow$ sfrp	3						
	saddrp, saddrp	(saddrp) \leftrightarrow (saddrp)	3						
	rp, rp1	$\mathrm{rp} \leftrightarrow \mathrm{rp} 1$	2						
8-Bit Arithmetic									
$\overline{\text { ADD }}$	A, \#byte	$A, C Y \leftarrow A+$ byte	2	X	X	X	V	X	0
	saddr, \#byte	(saddr), CY \leftarrow (saddr) + byte	3	X	X	X	V	X	0
	sfr, \#byte	sfr, $\mathrm{CY} \leftarrow \mathrm{sfr}+$ byte	4	X	X	X	V	X	0
	r r, r1	r, $C Y \leftarrow r+r 1$	2	X	X	X	V	x	0
	A, saddr	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+$ (saddr)	2	X	X	X	V	X	0
	A, sfr	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+\mathrm{sfr}$	3	X	X	X	V	X	0
	saddr, saddr	(saddr), $\mathrm{CY} \leftarrow$ (saddr) + (saddr)	3	X	X	X	V	x	0
	A, mem	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+($ mem $)$	$2-4$	X	X	X	V	X	0
	mem, A	(mem) , CY ¢ (mem) +A	2.4	X	X	X	V	x	0
ADDC	A, \#byte	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+$ byte +CY	2	X	X	X	V	x	0
	saddr, \#byte	(saddr), $\mathrm{CY} \leftarrow$ (saddr) + byte +CY	3	X	X	X	V	X	0
	sfr, \#byte	sfr, $\mathrm{CY} \leftarrow \mathrm{sfr}+$ byte +CY	4	X	X	X	V	X	0
	r, r1	$r, C Y \leftarrow r+r 1+C Y$	2	X	X	X	V	x	0
	A, saddr	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+$ (saddr) +CY	2	X	X	X	V	X	0
	A, sfr	$A, C Y \leftarrow A+s f r+C Y$	3	X	X	X	V	x	0
	saddr, saddr	(saddr), $\mathrm{CY} \leftarrow$ (saddr) + (saddr) +CY	3	X	X	X	V	X	0
	A, mem	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+($ mem $)+\mathrm{CY}$	2-4	X	X	X	V	X	0
	mem, A	(mem) , $\mathrm{CY} \leftarrow(\mathrm{mem})+\mathrm{A}+\mathrm{CY}$	2-4	X	X	X	V	X	0
SUB	A, \#byte	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}$ - byte	2	X	X	X	V	X	1
	saddr, \#byte	(saddr), CY \leftarrow (saddr) - byte	3	X	X	X	V	X	1
	sfr, \#byte	sfr, CY \leftarrow sfr - byte	4	X	X	X	V	X	1
	$\underline{\mathrm{r}, \mathrm{r} 1}$	$r, \mathrm{CY} \leftarrow \mathrm{r}-\mathrm{r} 1$	2	X	X	X	V	X	1
	A, saddr	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}-$ (saddr)	2	X	X	X	V	X	1
	A, sfr	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}-\mathrm{sfr}$	3	X	X	X	V	X	1
	saddr, saddr	(saddr), $\mathrm{CY} \leftarrow$ (saddr) - (saddr)	3	X	X	X	V	X	1
	A, mem	A, CY \leftarrow A - (mem)	2-4	X	X	X	V	X	1
	mem, A	(mem) , CY ¢ (mem) - A	2.4	X	X	X	V	X	1

Instruction Set (cont)

Mnemonic	Operand	Operation	Flags						
			Bytes	S	z	AC	P/V	CY	SUB
8-Bit Arithmetic (cont)									
SUBC	A, \#byte	A, CY $\leftarrow \mathrm{A}$ - byte - CY	2	X	X	X	V	X	1
	saddr, \#byte	(saddr), CY \leftarrow (saddr) - byte - CY	3	X	x	X	v	x	1
	sfr, \#byte	sfr, CY \leftarrow sfr - byte - CY	4	X	X	X	V	X	1
	r r, r1	$r, C Y \leftarrow r-r 1-C Y$	2	X	X	X	V	X	1
	A, saddr	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}-$ (saddr) -CY	2	X	X	X	V	X	1
	A, sfr	$A, C Y \leftarrow A-s f r-C Y$	3	X	X	X	V	X	1
	saddr, saddr	(saddr), $\mathrm{CY} \leftarrow$ (saddr) - (saddr) - CY	3	X	X	X	V	X	1
	A, mem	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}-($ mem $)-\mathrm{CY}$	2-4	X	X	X	V	X	1
	mem, A	(mem), $\mathrm{CY} \leftarrow$ (mem) $-\mathrm{A}-\mathrm{CY}$	2-4	X	X	X	V	X	1
8-Bit Logic									
AND	A, \#byte	$\mathrm{A} \leftarrow \mathrm{A} \wedge$ byte	2	X	X		P		0
	saddr, \#byte	$($ saddr $) \leftarrow($ saddr $) \wedge$ byte	3	X	X		P		0
	sfr, \#byte	$s \mathrm{fr} \leftarrow \operatorname{sfr} \wedge$ byte	4	X	X		P		0
	r r, r1	$r \leftarrow r \wedge r 1$	2	X	X		P		0
	A, saddr	$A \leftarrow A \wedge$ (saddr)	2	X	X		P		0
	A, sfr	$A \leftarrow A \wedge$ sfr	3	X	x		P		0
	saddr, saddr	(saddr) \leftarrow (saddr) \wedge (saddr)	3	X	X		P		0
	A, mem	$A \leftarrow A \wedge$ (mem)	2-4	X	X		P		0
	mem, A	$($ mem $) \leftarrow(\mathrm{mem}) \wedge A$	2-4	X	X		P		0
OR	A, \#byte	$A \leftarrow A \vee$ byte	2	X	X		P		0
	saddr, \#byte	(saddr) \leftarrow (saddr) \vee byte	3	X	X		P		0
	sfr, \#byte	sfr $\leftarrow \operatorname{sfr} V$ byte	4	X	X		P		0
	r r, r1	$r \leftarrow r \vee r 1$	2	X	X		P		0
	A, saddr	$A \leftarrow A \vee$ (saddr)	2	X	X		P		0
	A, sfr	$A \leftarrow A \vee$ sfr	3	X	X		P		0
	saddr, saddr	(saddr) \leftarrow (saddr) V (saddr)	3	X	X		P		0
	A, mem	$A \leftarrow A \vee$ (mem)	2-4	X	X		P		0
	mem, A	$($ mem $) \leftarrow($ mem $) \vee A$	2-4	X	X		P		0
XOR	A, \#byte	$A \leftarrow A \forall$ byte	2	X	X		P		0
	saddr, \#byte	(saddr) \leftarrow (saddr) \forall byte	3	X	X		P		0
	sfr, \#byte	sfr $\leftarrow \operatorname{sfr} \forall$ byte	4	X	X		P		0
	r r, r1	$r \leftarrow r \forall r 1$	2	X	X		P		0
	A, saddr	$A \leftarrow A \forall$ (saddr)	2	X	X		P		0
	A, sfr	$A \leftarrow A \forall s f r$	3	X	X		P		0
	saddr, saddr	(saddr) \leftarrow (saddr) \forall (saddr)	3	x	X		P		0
	A, mem	$A \leftarrow A \forall$ (mem)	2-4	X	X		P		0
	mem, A	$($ mem $) \leftarrow($ mem $) \forall A$	2-4	X	X		P		0

μ PD78312A Family

Instruction Set (cont)

Mnemonic	Operand	Operation	Flags						
			Bytes	S	z	AC	P/V	CY	SUB
8-Bit Logic (cont)									
CMP	A, \#byte	A - byte	2	X	X	X	V	X	1
	saddr, \#byte	(saddr) - byte	3	X	X	X	V	X	1
	sfr, \#byte	sfr-byte	4	X	X	X	V	X	1
	r, r1	r-r1	2	X	X	X	V	X	1
	A, saddr	A - (saddr)	2	X	X	X	V	X	1
	A, sfr	A - sfr	3	X	X	X	V	X	1
	saddr, saddr	(saddr) - (saddr)	3	X	X	X	V	X	1
	A, mem	A - (mem)	2-4	X	X	X	V	X	1
	mem, A	(mem) - A	2-4	X	X	X	V	X	1
16-Bit Arithmetic									
ADDW	AX, \#word	$\mathrm{AX}, \mathrm{CY} \leftarrow \mathrm{AX}+$ word	3	x	X	X	V	x	0
	saddrp, \#word	(saddrp), $\mathrm{CY} \leftarrow$ (saddrp) + word	4	X	x	X	v	x	0
	sfrp, \#word	sfrp, CY \leftarrow sfrp + word	5	X	x	X	V	x	0
	rp, rp1	$r p, C Y \leftarrow r p+r p 1$	2	X	X	X	V	x	0
	AX, saddrp	$\mathrm{AX}, \mathrm{CY} \leftarrow \mathrm{AX}+$ (saddrp)	2	X	X	X	V	x	0
	AX, sfrp	$A X, C Y \leftarrow A X+$ sfr P	3	X	X	X	V	X	0
	saddrp, saddrp	(saddrp), $\mathrm{CY} \leftarrow$ (saddrp) + (saddrp)	3	X	X	X	V	X	0
SUBW	AX, \#word	$A X, O Y \leftarrow A X$ - word	3	X	X	X	V	X	1
	saddrp, \#word	(saddrp), $\mathrm{CY} \leftarrow$ (saddrp) - word	4	X	X	X	V	X	1
	sfrp, \#word	sfrp, $\mathrm{CY} \leftarrow \mathrm{sfrp}$ - word	5	X	X	X	V	X	1
	rp, rp1	$r p, C Y \leftarrow r p-r p 1$	2	X	X	X	V	x	1
	AX, saddrp	$A X, C Y \leftarrow A X-$ (saddrp)	2	X	X	X	V	x	1
	AX, sfrp	$A X, C Y \leftarrow A X-\operatorname{sfrp}$	3	X	X	X	V	X	1
	saddrp, saddrp	(saddrp), $\mathrm{CY} \leftarrow$ (saddrp) - (saddrp)	3	X	X	X	V	X	1
CMPW	AX, \#word	AX - word	3	X	X	X	V	X	1
	saddrp, \#word	(saddrp) - word	4	x	X	X	V	X	1
	sfrp, \#word	sfrp-word	5	X	X	X	V	X	1
	rp, rp1	rp - rp1	2	X	X	X	V	X	1
	AX, saddrp	AX - (saddrp)	2	X	X	X	V	x	1
	AX, sfrp	AX - sfrp	3	X	X	X	V	X	1
	saddrp, saddrp	(saddrp) - (saddrp)	3	X	X	X	v	x	1
Multiplication/Division									
MULU	r1	$A X \leftarrow A \times r 1$	2						
DIVUW	11	$A X$ (quotient), $r 1$ (remainder) $\leftarrow A X \div r 1$	2						
MULUW	rp1	AX (high-order 16 bits), rp1 (low-order 16 bits) $\leftarrow A X \times r p 1$	2						
DIVUX	rp1	$A X D E$ (quotient), rp1 (remainder) $\leftarrow A X D E \div$ ¢p1	2						

Instruction Set (cont)

Mnemonic	Operand	Operation	Flags						
			Bytes	S	z	AC	P/N	CY	SUB
Increment/Decrement									
INC	r 1	$\mathrm{r} 1 \leftarrow \mathrm{r} 1+1$	1	X	X	X	V		0
	saddr	(saddr) \leftarrow (saddr) +1	2	X	X	X	V		0
$\overline{\mathrm{DEC}}$	$r 1$	$\mathrm{r} 1 \leftarrow \mathrm{r} 1-1$	1	X	X	X	V		1
	saddr	(saddr) \leftarrow (saddr) -1	2	X	X	X	v		1
INCW	rp2	$\mathrm{rp2} \leftarrow \mathrm{rp} 2+1$	1						
	saddrp	(saddrp) \leftarrow (saddrp) +1	3						
DECW	rp2	$\mathrm{rp} 2 \leftarrow \mathrm{rp} 2-1$	1						
	saddrp	(saddrp) \leftarrow (saddrp) - 1	3						
Shift/Rotate									
ROR	rl, n	$\left(\mathrm{CY}, \mathrm{r} 1_{7} \leftarrow \mathrm{r1} 1_{0}, \mathrm{r} 1_{\mathrm{m}-1} \leftarrow \mathrm{r} 1_{\mathrm{m}}\right) \times \mathrm{n}$ times	2				P	X	0
ROL	$\mathrm{r} 1, \mathrm{n}$	$\left(\mathrm{CY}, \mathrm{r1} 0_{0} \leftarrow \mathrm{r1} 1_{7}, \mathrm{r1}_{\mathrm{m}+1} \leftarrow \mathrm{r} 1_{\mathrm{m}}\right) \times \mathrm{n}$ times	2				P	X	0
RORC	$\mathrm{r} 1, \mathrm{n}$	$\left(\mathrm{CY} \leftarrow \mathrm{rl}_{0}, \mathrm{r1}_{7} \leftarrow \mathrm{CY}, \mathrm{r1} \mathrm{~m}_{-1} \leftarrow \mathrm{r1} 1_{\mathrm{m}}\right) \times \mathrm{n}$ times	2				P	X	0
ROLC	$\mathrm{r1}, \mathrm{n}$	$\left(\mathrm{CY} \leftarrow \mathrm{r} 1_{7}, \mathrm{r} 1_{0} \leftarrow \mathrm{CY}, \mathrm{r} 1_{\mathrm{m}+1} \leftarrow \mathrm{r} 1_{\mathrm{m}}\right) \times \mathrm{n}$ times	2				P	X	0
SHR	$\mathrm{r1}, \mathrm{n}$	$\left(\mathrm{CY} \leftarrow \mathrm{r} 1_{0}, \mathrm{r} 1_{7} \leftarrow 0, \mathrm{r} 1_{\mathrm{m}-1} \leftarrow \mathrm{r} 1_{\mathrm{m}}\right) \times \mathrm{n}$ times	2	X	X	0	P	X	0
SHL	$\mathrm{r1}, \mathrm{n}$	$\left(\mathrm{CY} \leftarrow \mathrm{r1} 7_{7}, \mathrm{r}_{0} \leftarrow 0, \mathrm{r} 1_{\mathrm{m}+1} \leftarrow \mathrm{r1} 1_{\mathrm{m}}\right) \times \mathrm{n}$ times	2	X	X	0	P	X	0
SHRW	rp1, n	$\left(\mathrm{CY} \leftarrow \mathrm{rp} 1_{0}, \mathrm{rp1} 1_{15} \leftarrow 0, \mathrm{rp1} 1_{m-1} \leftarrow \mathrm{rp} 1_{m}\right) \times \mathrm{n}$ times	2	X	X	0	P	X	0
SHLW	rp1, n	$\left(C Y \leftarrow r p 1_{15}, r p 1_{0} \leftarrow 0, r p 1_{m+1} \leftarrow \mathrm{rp1} 1_{m}\right) \times n$ times	2	X	X	0	P	X	0
ROR4	[rp1]	$\begin{aligned} & \mathrm{A}_{3-0} \leftarrow(\mathrm{rp} 1)_{3-0}(\mathrm{rp} 1)_{7-4} \leftarrow \mathrm{~A}_{3-0} \\ & (\mathrm{rp} 1)_{3-0} \leftarrow(\mathrm{rp} 1)_{7-4} \end{aligned}$	2						
ROL4	[rp1]	$\begin{aligned} & A_{3-0} \leftarrow(r p 1)_{7-4},(r p 1)_{3-0} \leftarrow A_{3-0} \\ & (\mathrm{rp1})_{7-4} \leftarrow(\mathrm{rp})_{3-0} \end{aligned}$	2						
BCD Adjustment									
ADJ4		Decimal adjust accumulator	1	X	X	X	P	X	
Bit Manipulation									
MOV1	CY, saddrbit	CY \leftarrow (saddr bit)	3					X	
	CY, sfrbit	$\mathrm{CY} \leftarrow$ sfr.bit	3					X	
	CY, A.bit	$\mathrm{CY} \leftarrow$ A.bit	2					X	
	CY, X.bit	$\mathrm{CY} \leftarrow \mathrm{X}$. bit	2					X	
	CY, PSWH.bit	$\mathrm{CY} \leftarrow$ PSWH.bit	2					X	
	CY, PSWL.bit	CY ¢PSWL.bit	2					X	
	saddr.bit, CY	(saddr.bit) $\leftarrow C Y$	3						
	sfr.bit, CY	sfr.bit $\leftarrow \mathrm{CY}$	3						
	A.bit, CY	A.bit $\leftarrow C \mathrm{CY}$	2						
	X.bit, CY	X.bit $\leftarrow \mathrm{CY}$	2						
	PSWH.bit, CY	PSWH.bit \leftarrow CY	2						
	PSWL.bit, CY	PSWL.bit $\leftarrow C$ CY	2	X	X	X	X		X

Instruction Set (cont)

Mnemonic	Operand	Operation	Flags						
			Bytes	S	z	AC	P/V	CY	SUB
Bit Manipulation (cont)									
AND1	CY, saddr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ (saddr.bit)	3					X	
	CY, /saddr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ (saddr.bit)	3					X	
	CY, sfr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ sfrbit	3					X	
	CY, /sfr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge \overline{\text { sfrbit }}$	3					X	
	CY, A.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ A.bit	2					X	
	CY, IA.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge \overline{\mathrm{A} . \mathrm{bit}}$	2					X	
	CY, X.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge \mathrm{X}$.bit	2					X	
	CY, X. Bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge \overline{\mathrm{X} . \mathrm{bit}}$	2					X	
	CY, PSWH.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ PSWH.bit	2					X	
	CY, /PSWH.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge \overline{\text { PSWH.bit }}$	2					X	
	CY, PSWL.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ PSWL.bit	2					X	
	CY, /PSWL.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge \overline{\text { PSWL.bit }}$	2					X	
OR1	CY, saddr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} V$ (saddr.bit)	3					X	
	CY, /saddr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee$ (saddr.bit)	3					X	
	CY, sfr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee$ sfrbit	3					X	
	CY, /sfr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee \overline{\text { sfrbit }}$	3					x	
	CY, A.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee$ A.bit	2					X	
	CY, /A.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee \overline{\mathrm{A} . \mathrm{bit}}$	2					X	
	CY, X.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee \mathrm{X}$.bit	2					X	
	CY, X.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee \overline{\mathrm{X} . \mathrm{bit}}$	2					X	
	CY, PSWH.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee$ PSWH.bit	2					X	
	CY, /PSWH.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee$ PSWH.bit	2					X	
	CY, PSWL.bit	$\mathrm{CY} \leftarrow \mathrm{CY} V$ PSWL.bit	2					X	
	CY, /PSWL.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee \overline{\text { PSWL.bit }}$	2					X	
XOR1	CY, saddr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \forall$ (saddr.bit)	3					X	
	CY, sfr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \forall$ sfr.bit	3					X	
	CY, A.bit	$C Y \leftarrow C Y \forall A . b i t$	2					X	
	CY, X.bit	$C Y \leftarrow C Y \forall X$.bit	2					X	
	CY, PSWH.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \forall$ PSWH.bit	2					X	
	CY, PSWL.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \forall$ PSWL.bit	2					X	
SET1	saddr.bit	(saddr.bit) $\leftarrow 1$	2						
	sfrbit	sfr.bit $\leftarrow 1$	3						
	A.bit	A.bit $\leftarrow 1$	2						
	X.bit	X.bit $\leftarrow 1$	2						
	PSWH.bit	PSWH.bit $\leftarrow 1$	2						
	PSWL.bit	PSWL.bit $\leftarrow 1$	2	X	X	X	X	X	

Instruction Set (cont)

Mnemonic	Operand	Operation	Flags						
			Bytes	S	z	AC	P/V	CY	SUB
Bit Manipulation (cont)									
CLR1	saddr.bit	(saddr.bit) $\leftarrow 0$	2						
	sfrbit	sfr.bit $\leftarrow 0$	3						
	A.bit	A.bit $\leftarrow 0$	2						
	X.bit	X . $\mathrm{bit} \leftarrow \sim 0$	2						
	PSWH.bit	PSWH.bit $\leftarrow 0$	2						
	PSWL.bit	PSWL.bit $\leftarrow 0$	2	X	X	X	X	X	X
NOT1	saddr.bit	(saddr.bit) $\leftarrow \overline{\text { (saddr.bit) }}$	3						
	sfr.bit	sfr.bit $\leftarrow \overline{\text { sfr.bit }}$	3						
	A.bit	A.bit $\leftarrow \overline{\text { A.bit }}$	2						
	X.bit	X.bit $\leftarrow \overline{\text { X.bit }}$	2						
	PSWH.bit	PSWH.bit $\leftarrow \overline{\text { PSWH.bit }}$	2						
	PSWL.bit	PSWL.bit $\leftarrow \overline{\text { PSWL.bit }}$	2	X	X	X	X	X	X
SET1	CY	$\mathrm{CY} \leftarrow 1$	1					1	
CLR1	CY	$\mathrm{CY} \leftarrow 0$	1					0	
NOT1	CY	$\mathrm{CY} \leftarrow \overline{\mathrm{CY}}$	1					X	
Call/Return									
CALL	!addr16	$\begin{aligned} & (S P-1) \leftarrow(P C+3)_{H},(S P-2) \leftarrow(P C+3)_{L}, \\ & P C \leftarrow \text { addr16, SP } \leftarrow S P-2 \end{aligned}$	3						
	rp1	$\begin{aligned} & (S P-1) \leftarrow(P C+2)_{H},(S P-2) \leftarrow(P C+2)_{L}, \\ & P C_{H} \leftarrow r 1_{H}, P C_{L} \leftarrow r 1_{L}, S P \leftarrow S P-2 \end{aligned}$	2						
	[rp1]	$\begin{aligned} & (S P-1) \leftarrow(P C+2)_{H},(S P-2) \leftarrow(P C+2)_{L}, \\ & P C_{H} \leftarrow(r p 1+1), P C_{L} \leftarrow(r p 1), S P \leftarrow S P-2 \end{aligned}$	2						
CALLF	!addr11	$\begin{aligned} & (S P-1) \leftarrow(P C+2)_{H},(S P-2) \leftarrow(P C+2)_{L}, \\ & \mathrm{PC}_{15-11} \leftarrow 00001, \mathrm{PC}_{10-0} \text { !addr11, } \mathrm{SP} \leftarrow \mathrm{SP}_{-2} \end{aligned}$	2						
CALLT	[addr5]	$\begin{aligned} & (\mathrm{SP}-1) \leftarrow(\mathrm{PC}+1)_{H},(S P-2) \leftarrow(\mathrm{PC}+1)_{L}, \\ & \mathrm{PC}_{H} \leftarrow(\mathrm{TPF} \times 8000 \mathrm{H}+\text { addr5 }+1), \\ & \mathrm{PC}_{\mathrm{L}} \leftarrow(\mathrm{TPF} \times 8000 \mathrm{H}+\text { addr } 5), \mathrm{SP} \leftarrow \\ & \mathrm{SP}-2 \end{aligned}$	1						
BRK		$\begin{aligned} & (S P-1) \leftarrow P S W H,(S P-2) \leftarrow P S W L,(S P- \\ & 3) \leftarrow(P C+1)_{H},(S P-4) \leftarrow(P C+1)_{L}, \\ & P C_{L} \leftarrow(003 E H), P C_{H} \leftarrow(003 F H), S P \leftarrow S P-4, \\ & I E \leftarrow 0 \end{aligned}$	1						
RET		$\mathrm{PC}_{L} \leftarrow(\mathrm{SP}), \mathrm{PC}_{H} \leftarrow(\mathrm{SP}+1), \mathrm{SP} \leftarrow \mathrm{SP}+2$	1						
RETI		$\begin{aligned} & \mathrm{PC}_{\mathrm{L}} \leftarrow(\mathrm{SP}), \mathrm{PC}_{H} \leftarrow(\mathrm{SP}+1), \mathrm{PSWL} \leftarrow(\mathrm{SP}+2), \\ & \mathrm{PSWH} \leftarrow(\mathrm{SP}+3), \mathrm{SP} \leftarrow \mathrm{SP}+4, \mathrm{EOS} \leftarrow 0 \\ & \hline \end{aligned}$	1	R	R	R	R	R	R
Stack Manipulation									
PUSH	post	$\begin{aligned} & \left\{(S P-1) \leftarrow r p p_{H},(S P-2) \leftarrow r p p_{L}, S P \leftarrow S P-2\right\} x \\ & n(\text { Note 2) } \end{aligned}$	2						
	PSW	$(S P-1) \leftarrow P S W H$, (SP - 2) ¢PSWL, SP $\leftarrow S P-2$	1						

Instruction Set (cont)

Stack Manipulation (cont)

PUSHU	post	$\begin{aligned} & \left\{(U P-1) \leftarrow r p P_{H},(U P-2) \leftarrow r p P_{L}, U P \leftarrow U P-2\right\} \times \\ & n(\text { Note 2) } \end{aligned}$	2						
POP	post	$\begin{aligned} & \left\{r P P_{L} \leftarrow(S P), r P P_{H} \leftarrow(S P+1), S P \leftarrow S P+2\right\} \times n \\ & \text { (Note 2) } \end{aligned}$	2						
	PSW	PSWL $\leftarrow(S P), \mathrm{PSWH} \leftarrow(\mathrm{SP}+1), \mathrm{SP} \leftarrow \mathrm{SP}+2$	1	R	R	R	R	R	R
POPU	post	$\begin{aligned} & \left\{\text { rpp }_{L} \leftarrow(U P), r p P H^{\leftarrow} \leftarrow(U P+1), U P \leftarrow U P+2\right\} \times n \\ & \text { (Note 2) } \end{aligned}$	2						
MOVW	SP, \#word	$S P \leftarrow$ word	4						
	SP, AX	$S P \leftarrow A X$	2						
	AX, SP	$A X \leftarrow S P$	2						
INCW	SP	$S P \leftarrow S P+1$	2						
DECW	SP	$S P \leftarrow S P-1$	2						

Unconditional Branch

BR	!addr16	PC ¢ ! addr16	3
	rp1	$\mathrm{PC}_{H} \leftarrow \mathrm{rp} 1_{H}, \mathrm{PC}_{L} \leftarrow \mathrm{rp} 1_{L}$	2
	[rp1]	$P C_{H} \leftarrow(\mathrm{rp1})_{H}, \mathrm{PC}_{L} \leftarrow(\mathrm{rp1})_{L}$	2
	\$addr16	$\mathrm{PC} \leftarrow \operatorname{addr} 16$	2

Conditional Branch

$\begin{aligned} & \mathrm{BC} \text { or BL } \\ & \text { (Note 3) } \end{aligned}$	\$addr16	$\mathrm{PC} \leftarrow$ \$ addr 16 if $\mathrm{CY}=1$	2
BNC or BNL (Note 3)	\$addr16	$\mathrm{PC} \leftarrow$ \$ addr 16 if $\mathrm{CY}=0$	2
BZ or BE (Note 3)	\$addr16	$P C \leftarrow \$$ addr 16 if $\mathrm{Z}=1$	2
BNZ or BNE (Note 3)	\$addr16	$\mathrm{PC} \leftarrow$ \$addr 16 if $\mathrm{Z}=1$	2
BV or BPE (Note 3)	\$addr16	$\mathrm{PC} \leftarrow$ \$addr 16 if $\mathrm{P} / \mathrm{V}=1$	2
BNV or BPO (Note 3)	\$addr16	$\mathrm{PC} \leftarrow$ \$addr 16 if $\mathrm{P} / \mathrm{V}=0$	2
BN	\$addr16	$\mathrm{PC} \leftarrow$ \$addr 16 if $\mathrm{S}=1$	2
BP	\$addr16	$\mathrm{PC} \leftarrow$ \$addr 16 if $\mathrm{S}=0$	2
BGT	\$addr16	$\mathrm{PC} \leftarrow$ \$addr 16 if (P/V $\forall \mathrm{S}) \vee \mathrm{Z}=0$	3
BGE	\$addr16	$\mathrm{PC} \leftarrow$ \$addr 16 if P/V $\forall \mathrm{S}=0$	3
BLT	\$addr16	$P C \leftarrow$ \$addr 16 if P/V $\forall \mathrm{S}=1$	3
BLE	\$addr16	$\mathrm{PC} \leftarrow$ \$addr 16 if (P/V $\forall \mathrm{S}) \vee \mathrm{Z}=1$	3
BH	\$addr16	$\mathrm{PC} \leftarrow$ \$ ${ }^{\text {addr }} 16$ if $\mathrm{Z} \vee \mathrm{CY}=0$	3
BNH	\$addr16	$\mathrm{PC} \leftarrow$ \$ addr 16 if $Z \vee \mathrm{CY}=1$	3

Instruction Set (cont)

Mnemonic	Operand	Operation	Flags						
			Bytes	S	Z	AC	P/N	CY	SUB
Conditional Branch (cont)									
BT	saddr.bit, \$addr16	$\mathrm{PC} \leftarrow$ \$addr 16 if (saddr.bit) $=1$	3						
	sfr.bit, \$addr16	$\mathrm{PC} \leftarrow$ \$ \$addr 16 if sfr.bit = 1	4						
	A.bit, \$addr16	PC \leftarrow \$ \$addr 16 if A.bit $=1$	3						
	X.bit, \$addr16	$\mathrm{PC} \leftarrow$ \$addr 16 if X . bit $=1$	3						
	PSWH.bit, \$addr16	PC \leftarrow \$addr 16 if PSWH.bit $=1$	3						
	PSWL.bit, \$addr16	PC \leftarrow \$addr 16 if PSWL.bit $=1$	3						
$\overline{B F}$	saddr.bit, \$addr16	PC \leftarrow \$addr 16 if (saddr.bit) $=0$	4						
	sfr.bit, \$addr16	$\mathrm{PC} \leftarrow$ \$addr 16 if str.bit $=0$	4						
	A.bit, \$addr16	$\mathrm{PC} \leftarrow$ \$addr 16 if $\mathrm{A} . \mathrm{bit}=0$	3						
	X.bit, \$addr16	$\mathrm{PC} \leftarrow$ \$addr 16 if X . $\mathrm{bit}=0$	3						
	PSWH.bit, \$addr16	PC \leftarrow \$ addr 16 if PSWH. bit $=0$	3						
	PSWL.bit, \$addr16	$\mathrm{PC} \leftarrow$ \$addr 16 if PSWL.bit $=0$	3						
BTCLR	saddr.bit, \$addr16	$\begin{aligned} & \text { PC } \leftarrow \text { \$addr } 16 \text { if (saddr.bit) }=1 \text { then reset } \\ & \text { (saddr.bit) } \end{aligned}$	4						
	sfrbit, \$addr16	$P C \leftarrow \$$ addr 16 if sfr.bit $=1$ then reset sfr.bit	4						
	A.bit, \$addr16	$\mathrm{PC} \leftarrow$ \$addr 16 if A .bit $=1$ then reset A.bit	3						
	X.bit, \$addr16	$\mathrm{PC} \leftarrow$ \$addr 16 if X . bit $=1$ then reset X . bit	3						
	PSWH.bit, \$addr16	PC \leftarrow \$addr 16 if PSWH.bit = 1 then reset PSWH.bit	3						
	PSWL.bit, \$addr16	PC \leftarrow \$addr 16 if PSWL.bit $=1$ then reset PSWL.bit	3	X	X	X	X	X	X
BFSET	saddr.bit, \$addr16	PC \leftarrow \$addr 16 if (saddr.bit) $=0$ then set (saddr.bit)	4						
	sfrbit, \$addr16	$\mathrm{PC} \leftarrow$ \$addr 16 if sfr.bit $=0$ then set sfr.bit	4						
	A.bit, \$addr16	PC \leftarrow \$addr 16 if A.bit $=0$ then set A.bit	3						
	X.bit, \$addr16	PC \leftarrow \$addr 16 if X.bit $=0$ then set X. bit	3						
	PSWH.bit, \$addr16	PC \leftarrow \$addr 16 if PSWH.bit $=0$ then set PSWH.bit	3						
	PSWL.bit, \$addr16	PC \leftarrow \$addr 16 if PSWL.bit $=0$ then set PSWL.bit	3	X	X	X	X	X	X
$\overline{\text { DBNZ }}$	r2, \$addr16	$\mathrm{r} 2 \leftarrow \mathrm{r} 2-1$, then $\mathrm{PC} \leftarrow$ \$addr 16 if $(\mathrm{r} 2) \neq 0$	2						
	saddr, \$addr16	$\begin{aligned} & \text { (saddr) } \leftarrow \text { (saddr) }-1, \text { then PC } \leftarrow \$ \text { addr } 16 \text { if (saddr) } \\ & \neq 0 \end{aligned}$	3						
Context Switching									
BRKCS	RBn	$\begin{aligned} & R B S_{2-0} \leftarrow \mathrm{n}, \mathrm{PC}_{H} \leftrightarrow R 5, \mathrm{PC}_{\mathrm{L}} \leftrightarrow \mathrm{R} 4, \mathrm{R} 7 \leftarrow \mathrm{PSWH}, \\ & \mathrm{R} 6 \leftarrow \mathrm{PSWL}, \mathrm{RSS} \leftarrow 0, I \mathrm{E} \leftarrow 0 \end{aligned}$	2						
RETCS	laddr16	```PC R4}\leftarrow\mathrm{ laddr16L, PSWH }\leftarrow\mathrm{ R7, PSWL }\leftarrowR6, EOS \leftarrow < O```	3	R	R	R	R	R	R

μ PD78312A Family

Instruction Set (cont)

			Flags						
Mnemonic	Operand	Operation	Bytes	S	z	AC	P/V	CY	SUB

String Manipulation

MOVM	[DE+], A	$(\mathrm{DE}+) \leftarrow \mathrm{A}, \mathrm{C} \leftarrow \mathrm{C-1}$ End if $\mathrm{C}=0$	2						
	[DE-], A	$(D E-) \leftarrow A, C \leftarrow C-1$ End if $C=0$	2						
MOVBK	[DE+], [HL+]	$(\mathrm{DE}+) \leftarrow(\mathrm{HL}+$), $\mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$	2						
	[DE-], [HL-]	$(\mathrm{DE}-) \leftarrow(\mathrm{HL}-), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$	2						
XCHM	[DE+], A	$(\mathrm{DE}+) \leftrightarrow \mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$	2						
	[DE-], A	(DE-) $\leftrightarrow \mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$	2						
XCHBK	[DE+], [HL+]	$(\mathrm{DE}+) \leftrightarrow(\mathrm{HL}+$), $\mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$	2						
	[DE-], [HL-]	$(\mathrm{DE}-) \leftrightarrow(\mathrm{HL-}), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$	2						
CMPME	[DE+], A	$(\mathrm{DE}+$) $-\mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{Z}=0$	2	X	X	X	V	X	1
	[DE-], A	($\mathrm{DE}-$) $-\mathrm{A}, \mathrm{C} \leftarrow \mathrm{C-1}$ End if $\mathrm{C}=0$ or $\mathrm{Z}=0$	2	X	X	X	V	X	1
CMPBKE	[DE+], [HL+1]	$(\mathrm{DE}+)-(\mathrm{HL}+), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{Z}=0$	2	X	X	X	V	X	1
	[DE-], [HL-]	$(\mathrm{DE}-)-(\mathrm{HL}-$), $\mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{Z}=0$	2	X	X	X	V	X	1
CMPMNE	[DE+], A	$(\mathrm{DE}+$) $-\mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $Z=1$	2	X	X	X	V	X	1
	[DE-], A	($\mathrm{DE}-)-\mathrm{A}, \mathrm{C} \leftarrow \mathrm{C-1}$ End if $\mathrm{C}=0$ or $\mathrm{Z}=1$	2	X	X	X	V	X	1
CMPBKNE	[DE+], [HL+]	$(\mathrm{DE}+)-(\mathrm{HL}+), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{Z}=1$	2	X	X	X	V	X	1
	[DE-], [HL-]	(DE-) $-(\mathrm{HL}-), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $Z=1$	2	X	X	X	V	X	1
CMPMC	[DE+], A	$(\mathrm{DE}+)-\mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{CY}=0$	2	X	X	X	V	X	1
	[DE-], A	(DE-) - $\mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{CY}=0$	2	X	X	X	V	X	1
CMPBKC	[DE+], [HL+1]	$(\mathrm{DE}+)-(\mathrm{HL}+), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{CY}=0$	2	X	X	X	V	X	1
	[DE-], [HL-]	($\mathrm{DE}-)-(\mathrm{HL}-), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{CY}=0$	2	X	X	X	V	X	1
CMPMNC	[DE+], A	$(\mathrm{DE}+)-\mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{CY}=1$	2	X	X	X	V	X	1
	[DE-], A	(DE-) $-\mathrm{A}, \mathrm{C} \leftarrow \mathrm{C-1}$ End if $\mathrm{C}=0$ or $\mathrm{CY}=1$	2	X	X	X	V	X	1
CMPBKNC	$[D E+],[H L+]$	$(\mathrm{DE}+)-(\mathrm{HL}+), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{CY}=1$	2	X	X	X	V	X	1
	[DE-], [HL-]	(DE-) - (HL-), $\mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{CY}=1$	2	X	X	X	V	X	1

CPU Control

MOV	STBC, \#byte	STBC \leftarrow byte	4
	WDM, \#byte	WDM \leftarrow byte	4
SWRS		RSS $\leftarrow \overline{\text { RSS }}$	1
SEL	RBn	RBS $_{2 \cdot 0} \leftarrow \mathrm{n}$, RSS $\leftarrow 0$	2
	RBn, ALT	RBS $_{2 \cdot 0} \leftarrow \mathrm{n}, \mathrm{RSS} \leftarrow 1$	2
NOP		No operation	1
EI		$I E \leftarrow 1$ (Enable interrupt)	1
DI		$I E \leftarrow 0$ (Disable interrupt)	1

Notes:

(1) One byte move instruction when $[\mathrm{DE}],[\mathrm{HL}],[\mathrm{DE}+$], [DE-], [$\mathrm{HL}+\mathrm{]}$, or [HL-] is specified for mem.
(2) rpp refers to register pairs specified in post byte. " n " is the number of register pairs specified in post byte.
(3) Either of the two mnemonics may be used.

μ PD78322 Family
(μ PD78320/322/P322)
16/8-Bit, K-Series Microcontrollers With A/D Converter, Real-Time Output Ports

July 1993

Description

The μ PD78320, μ PD78322, and μ PD78P322 are members of the K-Series ${ }^{\circledR}$ of microcontrollers. These $16 / 8$-bit microcontrollers-with a minimum instruction time of 250 ns at 16 MHz -are designed for high-speed, realtime process control. They feature a 16 -bit CPU, an 8 -bit external data bus, eight banks of main registers, an advanced interrupt handling facility, and a powerful set of memory-mapped on-chip peripherals.

On-board memory includes 640 bytes of RAM and 16K bytes of mask ROM, UV EPROM, or one-time programmable (OTP) ROM. A ROMless version is also available.
The advanced interrupt handling facility has three levels of programmable hardware priority control and three methods of servicing interrupt requests, including vectoring, hardware context switching, and macro service.

The macro service facility reduces the CPU overhead involved in servicing peripheral interrupts by transferring data between the memory-mapped special function registers (SFRs) and memory without the use of time consuming interrupt service routines. In addition, the macro service facility can be used to perform certain CPU functions, such as event counting, mathoriented data alterations, data comparisons, or A/D converter buffering.
The combination of context switching, eight register banks, and the macro service facility makes these devices ideal for applications in the hard-disk drive and tape drive markets.
K-Series is a registered trademark of NEC Electronics Inc.

Features

- Complete single-chip microcontroller
- 16-bit ALU
- 640 bytes of RAM
-16K bytes of ROM (μ PD78322)
- Powerful instruction set
- 16-bit multiply and divide
- 1-bit and 8 -bit logic instructions
-String instructions
- Minimum instruction time: 250 ns at 16 MHz
- 3-byte instruction prefetch queue
- Memory expansion
- 8085 bus-compatible
-64K-byte address space
- Large I/O capacity
- Up to 55 I/O port lines (μ PD78322/P322)
- Up to 37 I/O port lines (μ PD78320)
- Memory-mapped on-chip peripherals (special function registers)
- Real-time pulse unit
- 16/18-bit free-running timer
- 16-bit timer/event counter
-Six 16-bit compare registers
- Four 18-bit capture registers
- Six external interrupt/capture lines
- One external event counter/interrupt line
- Six timer-controlled output lines
- 10-bit, eight-channel A/D converter; on-chip sample and hold amplifier
- Two-channel serial communications interface
- Asynchronous serial interface (UART)
- Clock-synchronized interface
- Full-duplex, three-wire mode
- NEC serial bus interface (SBI) mode
-Dedicated baud-rate generator
- Programmable priority interrupt controller (three levels)
- Three methods of interrupt service
- Vectored interrupts
- Context switching with hardware save of all general registers
- Macro service mode with choice of nine different functions
- Watchdog timer with dedicated output
- STOP and HALT standby functions
- 5-volt CMOS technology

Ordering Information

Part Number	Operating Temperature Range	External Clock	Package	Package Drawing	ROM
μ PD78320GF	-10 to $+70^{\circ} \mathrm{C}$	8 to 16 MHz	80-pin plastic QFP	P80GF-80-3B9-1	ROMless
GF(A)	-40 to $+85^{\circ} \mathrm{C}$				
GF(A1)	-40 to $+110^{\circ} \mathrm{C}$	8 to 12 MHz			
GF(A2)	-40 to $+125^{\circ} \mathrm{C}$				
$\mu \mathrm{PD} 78320 \mathrm{~L}$	-10 to $+70^{\circ} \mathrm{C}$	8 to 16 MHz	68-pin PLCC	P68L-50A1-1	
L(A)	-40 to $+85^{\circ} \mathrm{C}$				
L(A1)	-40 to $+110^{\circ} \mathrm{C}$	8 to 12 MHz			
L(A2)	-40 to $+125^{\circ} \mathrm{C}$				
μ PD78322GF-xxx	-10 to $+70^{\circ} \mathrm{C}$	8 to 16 MHz	80-pin plastic QFP	P80GF-80-3B9-1	16K mask ROM
GF(A)-xxx	-40 to $+85^{\circ} \mathrm{C}$				
GF(A1)-xxx	-40 to $+110^{\circ} \mathrm{C}$	8 to 12 MHz			
GF(A2)-xxx	-40 to $+125^{\circ} \mathrm{C}$				
$\mu \mathrm{PD} 78322 \mathrm{~L}$-xxx	-10 to $+70^{\circ} \mathrm{C}$	8 to 16 MHz	68-pin PLCC	P68L-50A1-1	
$\underline{L(A)-x x x}$	-40 to $+85^{\circ} \mathrm{C}$				
$\underline{L(A 1)-x x x}$	-40 to $+110^{\circ} \mathrm{C}$	8 to 12 MHz			
L(A2)-xxx	-40 to $+125^{\circ} \mathrm{C}$				
$\mu \mathrm{PD} 78 \mathrm{P} 322 \mathrm{GF}$	-10 to $+70^{\circ} \mathrm{C}$	8 to 16 MHz	80-pin plastic QFP	P80GF-80-3B9-1	16K OTP ROM
L	-10 to $+70^{\circ} \mathrm{C}$	8 to 16 MHz	68-pin PLCC	P68L-50A1-1	
$\mu \mathrm{PD78P322KE}$	-10 to $+70^{\circ} \mathrm{C}$	8 to 16 MHz	80 -pin ceramic LCC $\mathrm{w} /$ window	X80KW-80A	16K UV EPROM
KC	-10 to $+70^{\circ} \mathrm{C}$	8 to 16 MHz	68-pin ceramic LCC w/ window	X68KW-50A	

$x x x$ indicates ROM code suffix

Pin Configurations
68-Pin PLCC or Ceramic LCC

Pin Configurations (cont)

80-Pin Plastic QFP or Ceramic LCC

NC No connection; may be connected to V SS to prevent nolse.

* Vpp on μ PD78P322.
μ PD78322 Family

Pin Functions

Symbol	First Function	Symbol	Second Function
$\mathrm{PO}_{0}-\mathrm{PO}_{7}$	Port 0; 8-bit, bit-selectable 1/O port	RTP $_{0}-$ RTP $_{7}$	Bit-selectable, timer-controlled, real-time output port
$\begin{aligned} & \mathrm{P} 2_{0} \\ & \mathrm{P} 2_{1}-\mathrm{P} 2_{6} \\ & \mathrm{P} 2_{7} \end{aligned}$	Port 2; 8-bit input port	NMI INTPO - INTP5 INTP6/TI	External nonmaskable interrupt Maskable external interrupts; edge-selectable Maskable external interrupt or timer input
$\begin{aligned} & P 3_{0} \\ & P 3_{1} \end{aligned}$	Port 3; 5-bit, bit selectable I/O port	$\begin{aligned} & \text { TXD } \\ & R \times D \end{aligned}$	Asynchronous serial transmit Asysnchronous serial receive
$\mathrm{P3}_{2}$		SO/SB0	SO: serial data output for 3-wire serial I/O mode. SBO: I/O bus for NEC serial bus interface (SBI).
P_{3}		SI/SB1	SI: serial data input for 3-wire serial I/O mode. SB1: I/O bus for NEC serial bus interface (SBI).
$\mathrm{P3}_{4}$		SCK	Serial clock input or output
$\mathrm{P4}_{0}-\mathrm{P}_{7}$	Port 4; 8-bit, byte-selectable 1/O port	$A D_{0}-A D_{7}$	Low-order byte of external address/data bus
$\mathrm{P5}_{0}-\mathrm{P5} 7$	Port 5; 8-bit, bit-selectable 1/O port	$A_{8}-A_{15}$	High-order byte of external address bus
$\mathrm{P7}_{0}-\mathrm{P} 7_{7}$	Port 7; 8-bit input port	ANO - AN7	Inputs for A/D converter
P 80 P81 P_{2} P_{3} P_{4} P_{5}	Port 8; 6-bit, bit-selectable 1/O port	$\begin{aligned} & \text { TOOO } \\ & \text { TOO1 } \\ & \text { TO02 } \\ & \text { TO03 } \\ & \text { TO10 } \\ & \text { TO11 } \end{aligned}$	Timer (RPU) output lines
$\begin{aligned} & \mathrm{P} 9_{0} \\ & \mathrm{Pg} \\ & \hline \end{aligned}$	Port 9; 4-bit, bit-selectable I/O port	$\frac{\overline{\mathrm{RD}}}{\overline{\mathrm{WR}}}$	External read strobe External write strobe
$\mathrm{Pg}_{2}-\mathrm{Pg}_{3}$			
ASTB	External address latch strobe		
$\overline{\overline{E A}}$	External access control on μ PD78320/ 322; a high level enables access to onchip ROM; a low level is applied if all program memory is external. Must be tied low for the μ PD78320.		
RESET	External system reset input		
WDTO	Watchdog timer output		
X1	Crystal connection or external clock input.		
X2	Crystal connection; not necessary to connect with external clock input.		
$\mathrm{AV}_{\text {REF }}$	A/D converter reference voltage input		
$\mathrm{AV}_{\text {DD }}$	A/D converter +5 -volt power input		
$\mathrm{AV}_{\text {SS }}$	A/D converter ground		
$V_{\text {DD }}$	+5-volt power input		
$V_{\text {SS }}$	Ground		
$V_{\text {PP }}$	PROM write-verify power input on μ PD78P322 only. Must be tied to $V_{D D}$ for normal operation		
NC	Not connected internally. May be connected to $V_{S S}$		

μ PD78322 Family Block Diagram

FUNCTIONAL DESCRIPTION

Central Processing Unit

The central processing unit (CPU) of the μ PD78322 family features 16 -bit arithmetic including 16-by-16-bit multiply, both unsigned and signed, and 32-by-16-bit unsigned divide (producing a 32 -bit quotient and a 16-bit remainder). The signed multiply executes in 3.5 $\mu \mathrm{s}$ and the divide in $5.38 \mu \mathrm{~s}$ at 16 MHz .
A CALLT vector table and a CALLF area decrease the number of bytes in the call instructions for commonly used subroutines. A 1-byte call instruction can access up to 32 subroutines through their addresses in the CALLT vector table. A 2-byte call instruction can access any routine beginning in a specific CALLF area.
The internal system clock ($\mathrm{f}_{\mathrm{CLK}}$) is generated by dividing the oscillator frequency by 2 . Therefore, at the maximum oscillator frequency of 16 MHz , the clock is 8 MHz . Since some instructions execute in two cycles, the minimum instruction time is 250 ns .

On-Chip RAM

The μ PD78322 family has a total of 640 bytes of on-chip RAM. The upper 256 -byte area ($\mathrm{FEOOH}-\mathrm{FEFFH}$) features high-speed access of one word of data per internal system clock and is known as "main RAM." The remainder (FC8OH-FDFFH) is accessed at the same speed as external memory (1 byte per three internal system clocks) and is known as "peripheral RAM." The general register banks and the macro service control words are stored in main RAM. The remainder of main RAM and any unused register bank locations are available for general storage.

On-Chip PROM

The μ PD78322 contains 16 K bytes of internal ROM; the μ PD78P322 contains 16K bytes of UV EPROM or onetime programmable ROM. Instructions are fetched from this on-chip memory at a maximum rate of 1 byte every internal system clock through the high-speed fetch mode. The μ PD78320 does not have on-chip PROM.

External Memory

The μ PD78322 family has a 64K-byte address space. The μ PD78322/P322 can access $0,256,4 \mathrm{~K}, 16 \mathrm{~K}$, or 48 K bytes of external memory in the area from 4000 H to FFFFH. External memory can be either ROM or RAM (or both) as required. The μ PD78322/P322 have an 8 -bit wide external data bus and a 16 -bit wide external
address bus. The low-order 8 bits of the address bus are multiplexed to provide the 8 -bit data bus and are supplied by I / O port 4.
High-order address bits are taken from port 5 as required. Address latch, read, and write strobes are also provided. The memory mode register (MM) controls the size of the external memory. It can be programmed for $0,4,6$, or 8 bits from port 5 for the high-order address. Any remaining port 5 bits can be used for $1 / 0$.
The μ PD78320 does not have ports 4 and 5. It has eight dedicated high-order address lines and eight dedicated address/data lines. All memory below address FC 80 H must be external.

The programmable wait control register (PWC) allows the programmer to specify one or two additional wait states if they are required for low-speed memory or external peripheral devices. These wait states for internal and external mernory are specified independently.

Program Fetch

The μ PD78322 family allows opcode fetch in the area between 0000 H and FFFFH under the following constraints: from FC8OH to FDFFH, opcodes will be fetched from the peripheral RAM; from FFEOOH to FFFFH, opcodes will be fetched from external memory only. The μ PD78322 family contains a 3-byte instruction prefetch queue. The bus control unit can fetch an instruction byte from memory during cycles in which the execution unit is not using the memory bus.
Instruction bytes can be fetched from on-chip memory in either high-speed or ordinary fetch cycle mode. The fetch cycle control register (FCC) is used to select the mode. In high-speed fetch cycle mode, one internal system clock is required to fetch each instruction byte from on-chip memory. In ordinary fetch cycle mode, each byte to be fetched requires three, four, or five internal system clocks depending on the setting of the PWC register.
Each instruction byte fetched from external memory requires three, four, or five internal system clocks depending on the setting of the PWC register.

CPU Control Registers

Program Counter. The program counter is a 16 -bit register that holds the address of the next instruction to be executed. During reset, the program counter is loaded with the address stored in locations 0000 H and 0001 H .

Stack Pointer. The stack pointer is a 16-bit register that holds the address of the last item pushed onto the stack. It is decremented before new data is pushed onto the stack and incremented after data is popped off the stack.
CPU Control Word. The CPU control word (CCW) selects the origin of the interrupt vector and CALLT tables. If the TPF bit (bit 1) is zero, the origin is 0000 H ; if the TPF bit is one, the origin is 8000 H . The CCW is a special function register located at address FFC1H. The addresses of the vectors for the RESET input, operation-code trap, and BRK instruction are fixed at $0000 \mathrm{H}, 0003 \mathrm{CH}$, and 003 EH , respectively, and are not altered by the TPF bit.
Program Status Word. The program status word (PSW) is a 16-bit register containing flags that are set or reset depending on the results of an instruction. This register can be written to or read from 8 bits at a time. The high-order 8 bits are called the PSWH and the low-order 8 bits are called the PSWL. The individual flags can also be manipulated on a bit-by-bit basis. The assignment of PSW bits follows.

PSWH	7	6	5	4	3	2	1	0
	UF	RBS2	RBS1	RBSO	0	0	0	0
	7	6	5	4	3	2	1	0
PSWL	S	z	RSS	AC	IE	P/V	LT	CY

UF	User flag
RBS2-RBS0	Active register bank number
S	Sign flag (1 if last result was negative)
Z	Zero flag (1 if last result was zero)
RSS	Register set selection flag
AC	Auxiliary carry flag (carry out of 3 bit)
IE	Interrupt enable flag
PN	Parity or arithmetic overflow flag
LT	Interrupt priority level transition flag
CY	Carry bit (or 1-bit accumulator for logic)

RBS2-RBS0 Active register bank number
$\mathrm{S} \quad$ Sign flag (1 if last result was negative)
zero)

AC Auxiliary carry flag (carry out of 3 bit)
IE Interrupt enable flag
P/N Parity or arithmetic overflow flag
CY Carry bit (or 1-bit accumulator for logic)

General Registers

There are sixteen 8-bit general registers, which can also be paired to function as 16 -bit registers. A complete set of 16 registers is mapped into each of eight program-selectable register banks stored in main RAM. Three bits in the PSW identify active register banks.
Registers have functional names (like A, X, B, C for 8-bit registers and $A X, B C$ for 16-bit registers) and absolute names (like R1, R0, R3, R2 for 8-bit registers and RPO, RP1 for 16-bit registers). Each instruction determines whether a register is referred to by functional or absolute name and whether it is 8 or 16 bits.

Two possible relationships may exist between the absolute and functional names of the first four register pairs. The RSS bit in the PSW determines which of these is active at any time. The effect is that the accumulator and counter registers can be saved, and a new set can be specified by toggling the RSS bit. Figure 1 illustrates the general register configuration.

Figure 1. General Registers
RE80H

Addressing

The μ PD78322 family features 1 -byte addressing of both the special function registers and the portion of on-chip RAM from FE2OH to FEFFH. The 1-byte sfr addressing accesses the entire SFR area, whereas the 1-byte saddr addressing accesses the first 32 bytes of the SFR area and 224 bytes of the main RAM.

The 16 -bit SFRs and words of memory in these areas can be addressed by 1 -byte saddrp addressing, which is valid for even addresses only. Since many instructions use 1-byte addressing, access to these locations is almost as fast and as versatile as access to the general registers.
There are nine addressing modes for data in main memory: direct, register, register indirect with autoincrement or decrement, saddr, saddr indirect, SFR, based, indexed, and based indexed. There are also 8 -bit and 16 -bit immediate operands. Figure 3 is the memory map of the μ PD78322 family.

Figure 2. Memory Map

Special Function Registers

The input/output ports, timers, capture and compare registers, and mode and control registers for both the peripherals and the CPU are collectively known as special function registers. They are all memorymapped between FFOOH and FFFFH and can be accessed either by main memory addressing or by 1-byte SFR addressing. All except the port mode registers and the asynchronous serial transmission shift register can
be read under program control, and most can also be written. They are either 8 or 16 bits, as required, and many of the 8 -bit registers are capable of single-bit access as well.

Locations FFDOH through FFDFH are known as the external access area. Registers in external circuitry, interfaced and mapped to these addresses, can be addressed with SFR addressing. Table 1 lists the special function registers.

Table 1. Special Function Registers

Address	Register	Symbol	R/W	Access Unit (Bits)			State After Reset
				1	8	16	
FFOOH	Port 0	PO	R/W	X	X	-	Undefined
FF02H	Port 2	P2	R	-	X	-	Undefined
FF03H	Port 3	P3	RNW	X	X	-	Undefined
FF04H	Port 4	P4	R/W	X	X	-	Undefined
FF05H	Port 5	P5	R/W	X	X	-	Undefined
FF07H	Port 7	P7	R	-	X	-	Undefined
FF08H	Port 8	P8	RNW	X	X	-	Undefined
FFO9H	Port 9	P9	RNW	X	X	-	Undefined
FFOAH-FFOBH	Free-running counter (lower 16 bits)*	TMOLW	R	-	-	X	0000H
FF10H-FF11H	Capture register XO (lower 16 bits)*	CTXOLW	R	-	-	X	Undefined
FF12H-FF13H	Capture register 01 (lower 16 bits)*	CT01LW	R	-	-	X	Undefined
FF14H-FF15H	Capture register 02 (lower 16 bits)*	CT02LW	R	-	-	X	Undefined
FF16H-FF17H	Capture register 03 (lower 16 bits)*	CT03LW	R	-	-	X	Undefined
FF18H-FF19H	Capture/compare register X0 (lower 16 bits)*	CCXOLW	R/W	-	-	X	Undefined
FF1AH-FF1BH	Capture/compare register 01 (lower 16 bits)*	CC01LW	R/W	-	-	X	Undefined
FF20H	Port 0 mode register	PMO	W	-	X	-	FFH
FF23H	Port 3 mode register	PM3	W	-	X	-	xxx1 1111B
FF25H	Port 5 mode register	PM5	W	-	X	-	FFH
FF28H	Port 8 mode register	PM8	W	-	X	-	xx11 1111B
FF29H	Port 9 mode register	PM9	W	-	X	-	xxxx 1111B
FF2AH-FF2BH	Free running counter (high 16 bits)*	TMOUW	R	-	-	X	0000 H
FF2CH-FF2DH	Timer register 1	TM1	R	-	-	X	0000 H
FF30H-FF31H	Capture register X0 (high 16 bits)*	CTXOUW	R	-	-	X	Undefined
FF32H-FF33H	Capture register 01 (high 16 bits)*	cto1uw	R	-	-	X	Undefined
FF34H-FF35H	Capture register 02 (high 16 bits)*	ctozUw	R	-	-	X	Undefined
FF36H-FF 37H	Capture register 03 (high 16 bits)*	ctozuw	R	-	-	X	Undefined
FF38H-FF39H	Capture/compare register XO (high 16 bits)*	ccxouw	R/W	-	-	X	Undefined
FF3AH-FF3BH	Capture/compare register 01 (high 16 bits)*	ccouluw	R/W	-	-	X	Undefined
FF40H	Port 0 mode control register	PMCO	W	-	X	-	OOH
FF41H	Real-time output port set register	RTPS	R/W	X	X	-	OOH

Table 1. Special Function Registers (cont)

Address	Register	Symbol	R/W	Access Unit (Bits)			State After Reset
				1	8	16	
FF43H	Port 3 mode control register	PMC3	W	-	X	-	xxx0 0000B
FF48H	Port 8 mode control register	PMC8	W	-	X	-	xx00 0000B
FF4CH-FF4DH	Baud rate generator	BRG	R/W	-	-	X	Undefined
FF60H	Real-time output port register	RTP	R/W	X	X	-	Undefined
FF61H	Real-time output port reset register	RTPR	R/W	X	X	-	OOH
FF62H	Port read control register	PRDC	R/W	X	X	-	OOH
FF68H	A/D converter mode register	ADM	R/W	X	X	-	OOH
FF6AH	A/D converter result register (16-bit access)	ADCR	R	-	-	X	Undefined
FF6BH	A/D converter result register (high 8 bits)	ADCRH	R	-	X	-	Undefined
FF70H-FF71H	Compare register 00	CM00	R/W	-	-	X	Undefined
FF72H-FF73H	Compare register 01	CM01	R/W	-	-	X	Undefined
FF74H-FF75H	Compare register 02	CM02	R/W	-	-	X	Undefined
FF76H-FF77H	Compare register 03	CM03	R/W	-	-	X	Undefined
FF7CH-FF7DH	Compare register 10	CM10	R/W	-	-	X	Undefined
FF7EH-FF7FH	Compare register 11	CM11	R/W	-	-	X	Undefined
$\overline{\mathrm{FF} 80 \mathrm{H}}$	Clock synchronized serial interface mode register	CSIM	R/W	X	X	-	OOH
FF82H	Serial bus interface control register	SBIC	R/W	X	X	-	OOH
FF86H	Serial l/O shift register	SIO	R/W	X	X	-	Undefined
FF88H	Asynchronous serial interface mode register	ASIM	R/W	X	X	-	80 H
FF8AH	Asynchronous serial interface status register	ASIS	R	-	X	-	OOH
FF8CH	Serial receive buffer: UART	RXB	R	-	X	-	Undefined
FF8EH	Serial transmit shift register: UART	TXS	W	-	X	-	Undefined
FFBOH	Timer control register	TMC	R/W	X	X	-	OOH
FFB1H	Baud rate generator mode register	BRGM	R/W	X	X	-	OOH
FFB2H	Prescalar mode register	PRM	R/W	X	X	-	OOH
FFB8H	Timer output control register 0	TOC0	R/W	X	X	-	00H
FFB9H	Timer output control register 1	TOC1	R/W	X	X	-	OOH
FFBFH	Real-time pulse unit mode register	RPUM	R/W	X	X	-	OOH
FFCOH	Standby control register	STBC	R/W**	X	X	-	0000 X000B
FFC1H	CPU control word	CCW	R/W	X	X	-	OOH
FFC2H	Watchdog timer mode register	WDM	R/W**	X	X	-	OOH
FFC4H	Memory extension mode register	MM	R/W	X	X	-	OOH
FFC6H	Programmable wait control register	PWC	R/W	X	X	-	22 H
FFC9H	Fetch cycle control register	FCC	R/W	X	X	-	OOH
FFDOH-FFDFH	External access area		R/W	X	X	-	Undefined
FFEOH	Interrupt request flag register OL	IFOL/IFO	R/W	X	X	X	OOH
FFE1H	Interrupt request flag register OH	IFOH	R/W	X	X	-	OOH
FFE2H	Interrupt request flag register 1L	IF1L/IF1	R/W	X	X	X	OOH

Table 1. Special Function Registers (cont)

Address	Register	Symbol	R/W	Access Unit (Bits)			State After Reset
				1	8	16	
FFE4H	Interrupt mask flag register OL	MKOL/ MKO	R/W	X	X	X	FFH
FFE5H	Interrupt mask flag register OH	MKOH	R/W	X	X	-	FFH
FFE6H	Interrupt mask flag register 1L	MK1L/ MK1	R/W	X	X	X	xxxx x 111 B
FFE8H	Priority selection buffer register OL	$\begin{aligned} & \text { PBOL/ } \\ & \text { PBO } \end{aligned}$	R/W	X	X	X	OOH
FFE9H	Priority selection buffer register OH	PBOH	R/W	X	X	-	OOH
FFEAH	Priority selection buffer register 1L	$\begin{aligned} & \text { PB1L/ } \\ & \text { PB1 } \end{aligned}$	RNW	X	X	X	OOH
FFECH	Interrupt service mode selection register OL	$\begin{aligned} & \text { ISMOL/ } \\ & \text { ISMO } \end{aligned}$	R/W	x	X	X	OOH
FFEDH	Interrupt service mode selection register OH	ISMOH	R/W	X	X	-	OOH
FFEEH	Interrupt service mode selection register 1L	$\begin{aligned} & \text { ISM1L/ } \\ & \text { ISM1 } \end{aligned}$	R/W	x	X	X	OOH
FFFOH	Context switch enable register OL	$\begin{aligned} & \text { CSEOL/ } \\ & \text { CSEO } \end{aligned}$	R/W	x	X	X	OOH
FFF1H	Context switch enable register OH	CSEOH	R/W	X	X	-	OOH
FFF2H	Context switch enable register 1L	$\begin{aligned} & \text { CSE1L/ } \\ & \text { CSE1 } \end{aligned}$	R/W	X	X	X	OOH
FFF4H	External interrupt mode register 0	INTMO	R/W	X	X	-	OOH
FFF5H	External interrupt mode register 1	INTM1	RNW	X	X	-	OOH
FFF8H	In-service priority register	ISPR	R	-	X	-	OOH
FFF9H	Priority selection register	PRSL	R/W	X	X	-	OOH

* Lower or upper 16 bits of an 18 -bit register.
** Protected location: special instruction required for write.

Input/Output Ports

The μ PD78322 family has six ports providing a total of 37 I/O lines. P0, P3, P8, and P9 are tri-state input/output ports of $8,5,6$, and 2 bits, respectively; each bit can be individually selected for input or output. P2 and P7 are 8 -bit input ports.

P2 functions only in the control mode as input pins for the NMI signal, the INTPO to INTP5 interrupt signals, and the INTP6/TI interrupt signal or external count clock for timer 1 (TI). However, any masked interrupt automatically becomes an input line and the state of all the pins can be read by the program using a read instruction to port 2. Each pin of P2 can be programmed for rising, falling, or both rising and falling edge detection.
The output level of the PO, P3, P8, and P9 I/O pins can be tested to determine whether they agree with the contents of the output latch. When the low-order bit of port read control register PRDC is set to 1 , the output
level of the I/O pins can be read with the port still in the output mode. These data values can be compared with the data known to be in the output latch to determine if the port is functioning correctly. Figure 3 shows the structure of each port pin.

The μ PD78322/P322 have two additional input/output ports, P4 and P5, and two additional I/O pins in P9. All these I/O lines are available if external memory or memory-mapped external circuitry is not being used. Port 4 is shared with the low-order address/data bus ($A D_{0}$ to $A D_{7}$) and is byte-selectable for input or output. Port 5 is shared with the high-order address bus (A_{8} to A_{15}). Depending on the amount of external memory used, either 8, 6, 4, or 0 bits are available for bitselectable I/O. Port 9 is a 4-bit, bit-selectable I/O port; two of its pins are shared with the read and write strobes.

Figure 3. I/O Circuits
Type 2. P2, RESET

Real-Time Output Port

Port 0 can function on a bit-selectable basis as a real-time output port. Selected bits can be directly written under program control, or they can be set or cleared under control of timing signals generated by the real-time pulse unit. Timing by the latter method is independent of interrupt latency.

A/D Converter

The analog-to-digital (A/D) converter (figure 4) uses the successive-approximation method for converting up to eight multiplexed analog inputs into 10-bit digital data. The conversion time per input is $18 \mu \mathrm{~s}$ at $16-\mathrm{MHz}$ operation. A/D conversion can be started by an external interrupt, INTP5, or under software control.

The A/D converter can operate in scan mode or select mode. In scan mode, inputs ANO - AN3 or AN4 - AN7 can be programmed for conversion. The A/D converter selects each of the four inputs in order, converts the data, stores it in the A/D conversion result (ADCR) register, and generates an interrupt (INTAD). This converted data can be easily transferred to memory by the macro service function. In select mode, any one of the eight A / D inputs can be selected for conversion.

Once the A/D converter is started by INTP5 or software, conversion continues until it is disabled by software. The ADCR register is continually updated and either the full 10 bits or only the upper 8 bits of the conversion can be read at any time.

Figure 4. A/D Converter

Serial Interface

The μ PD78322 family has two independent serial interfaces with a dedicated baud-rate generator. The first is a standard universal asynchronous receiver transmitter (UART). The UART (figure 5) permits full-duplex operation and can be programmed for 7 or 8 bits of data after the start bit, followed by one or two stop bits. Odd, even, zero, or no parity can also be selected.

Figure 5. Asynchronous Serial Interface

The source of the serial clock for the UART is the internal system clock (divided by 4) or the on-chip baud-rate generator. The UART generates three interrupts: INTST (transmission complete), INTSR (reception complete), and INTSER (reception error).
The second interface is an 8 -bit clock-synchronized serial interface (figure 6). It can be operated in either three-wire serial I/O mode or NEC serial bus interface (SBI) mode.

Figure 6. Clock-Synchronized Serial Interface

In the three-wire serial I/O mode, the 8 -bit shift register (SIO) is loaded with a byte of data and eight clock pulses are generated. These eight pulses shift the byte of data out on the SO line (either MSB or LSB first) and in on the SI line, providing full-duplex operation. This interface can also be set to receive only or to transmit only. The INTCSI interrupt is generated after each 8 -bit transfer. One of two internal clocks, an external clock, or the internal baud-rate generator clocks the data.
The NEC SBI mode is a two-wire, high-speed proprietary serial interface available on most devices in the NEC μ PD75xxx and μ PD78xxx product lines. Devices are connected in a master/slave configuration (figure 7). There is only one master device at a time; all others are slaves. The master sends addresses, commands, and data over one of the serial bus lines (SBO or SB1)using a fixed hardware protocol sysnchronized with the SCK line.

Figure 7. SBI Mode Master/Slave Configuration

Each slave μ PD78322 family can be programmed in software to respond to any one of 256 addresses. There are also 256 commands and 256 data types. Since all commands are user-definable, any software protocol, simple or complex, can be defined. It is even possible to develop commands to change a slave into a master and the previous master into a slave.
A dedicated baud-rate generator can be programmed to provide the serial clock to both asynchronous and clock-synchronized serial interfaces. By choosing the correct oscillator frequency, the baud-rate generator is capable of generating all of the commonly used baud rates from 75 to $19,200 \mathrm{~b} / \mathrm{s}$.

Real-Time Pulse Unit

The real-time pulse unit (RPU, figure 8) can function as an interval timer to measure pulse widths and frequencies, generate pulse-width modulated outputs, count external events, and control the real-time output port. It consists of 18 -bit free-running timer TMO, 16-bit timer/ counter TM1, six 16 -bit compare registers, four 18 -bit capture registers, two 18 -bit registers (capture or compare), and six timed output latches.
TM0 always counts the internal system clock (divided by 4 or 8) and can be reset by an external reset pulse only. TM1 can count either the internal system clock (divided by 8 or 16) or external events. TM1 can be reset by a compare event (a match between a timer and an associated compare register) or by an external signal in INTPO.

Capture events can be triggered by external maskable interrupts INTPO - INTP5, and compare events can generate interrupts, control timed output pins, or both. In addition, interrupts INTCM03 and INTCCXO can control the real-time output port
The timed output latches share the six pins of port P8. Four latches can be toggled or set and reset by compare events, and the remaining two can be toggled. These latches, with the macro service facility, can generate up to four pulse-width modulated outputs.

Figure 8. Real-Time Pulse Unit

Interrupts

The μ PD78322 family has 19 maskable hardware interrupt sources: 7 external and 12 internal. The external maskable interrupts share pins with port P2. Six of them, INTPO to INTP5, can also be used to trigger
capture events in the real-time pulse unit. In addition, there are two nonmaskable interrupts, two software interrupts, and RESET. The software interrupts, generated by the BRK or BRKCS instruction and the operation code trap, are not maskable. See table 2.

Table 2. Interrupt Sources

Type of Request	Default Priority	Signal Name	Source	Location	Macro Service Control Word	Vector Address	
						TPF $=0$	TPF = 1
Software	-	-	Operation code trap	CPU	-	003CH	
	-	-	Break instruction	CPU	-	003EH	
Nonmaskable	-	NMI	NMI input pin	External	-	0002H	8002H
	-	INTWDT	Watchdog timer overflow	Internal	-	0004H	8004H
Maskable	0	INTOV	Timer 0 overflow	Internal	FE06H	0006H	8006H
	1	INTPO	INTPO pin	External	FEO8H	0008 H	8008 H
	2	INTP1	INTP1 pin	External	FEOAH	000AH	800AH
	3	INTP2	INTP2 pin	External	FEOCH	000 CH	800 CH
	4	INTP3	INTP3 pin	External	FEOEH	000EH	800EH
	5	INTP4 INTCCXO	INTP4 pin CCXO coincidence	External Internal	FE10H	0010H	8010 H
	6	INTP5 INTCC01	INTP5 pin CC01 coincidence	External Internal	FE12H	0012H	8012 H
	7	INTP6	INTP6 pin	External	FE14H	0014H	8014H
	8	INTCM00	CM00 coincidence	Internal	FE16H	0016H	8016H
	9	INTCM01	CM01 coincidence	Internal	FE18H	0018H	8018H
	10	INTCM02	CM02 coincidence	Internal	FE1AH	001 AH	801 AH
	11	INTCM03	CM03 coincidence	Internal	FE1CH	001 CH	801 CH
	12	INTCM10	CM10 coincidence	Internal	FE1EH	001 EH	801 EH
	13	INTCM11	CM11 coincidence	Internal	FE2OH	0020H	8020 H
	14	INTSER	Asynchronous serial Interface reception error	Internal	-	0022H	8022H
	15	INTSR	End of asynchronous serial Interface reception	Internal	FE24H	0024H	8024H
	16	INTST	End of asynchronous serial Interface transmission	Internal	FE26H	0026H	8026 H
	17	INTCSI	End of clocked serial Interface transmission/reception	Internal	FE28H	0028H	8028 H
	18	INTAD	End of A/D conversion	Internal	FE2AH	002AH	802AH
Reset	-	$\overline{\text { RESET }}$	$\overline{\text { RESET }}$ pin	External	-	0000H	

Interrupt Servicing

The μ PD78322 family provides three levels of programmable hardware priority control and three different methods of handling maskable interrupt requests: standard vectoring, context switching, and macro service. The programmer can choose the priority and mode of servicing each maskable interrupt by using the interrupt control registers.

Interrupt Control Registers

The μ PD78322 family has ten 16-bit interrupt control registers. Each bit in each register is dedicated to one of the 19 maskable interrupt sources. The interrupt request flag registers (IFO, IF1) contain an interrupt request flag for each interrupt. The interrupt mask registers (MKO, MK1) are used to enable or disable any interrupt. The interrupt service mode registers (ISMO,

ISM1) specify whether an interrupt is processed by vectoring or macro service.
The priority specification buffer registers (PB0, PB1), in conjunction with the 8 -bit priority specification register (PRSL), can be used to specify one of three priority levels for each interrupt. The context switching enable flag registers (CSEO, CSE1) specify whether an interrupt is processed by vectoring or context switching.

Two other 8-bit registers are associated with interrupt processing. The in-service priority register (ISPR) is used by the hardware to hold the priority level of the interrupt request currently being serviced. It is manipulated by hardware only, but it can be read by software.
The IE and LT bits of the program status word (PSW) are also used to control interrupts. If the IE bit is zero, all maskable interrupts, but not macro service, are disabled. The IE bit can be set or cleared using the EI and DI instructions, respectively, or by directly writing to the PSW. The IE bit is cleared each time an interrupt is accepted. The LT bit is set by hardware when a newly accepted maskable interrupt request is assigned a priority higher than the interrupt currently being serviced. The LT flag is used to control resetting the ISPR register when a return instruction from an interrupt service routine is executed.

Interrupt Priority

The two nonmaskable interrupts, NMI and WDT, have priority over all others. Their priority relative to each other is under program control.
Three hardware-controlled priority levels are available for the maskable interrupts. Any one of the three levels can be assigned by software to each of the maskable interrupt lines. Interrupt requests of a priority equal to or higher than the processor's current priority level are accepted; lower priority requests are held pending until the processor's priority state is lowered by a return instruction from the current service routine.

Interrupt requests programmed to be handled by macro service have priority over all software interrupt service regardless of the assigned priority level, and macro service requests are accepted even when the interrupt enable bit in the PSW is set to the disable state. See figure 9.

The "Default Priorities" listed in table 2 are fixed by hardware; they are effective only when it is necessary to choose between two interrupt requests of the same software-assigned priority. For example, the default priorities would be used after the completion of a high-priority routine if two interrupts of the same lower priority were pending.
Software interrupts, the BRK and BRKCS instructions, and the operation code trap are executed regardless of the processor's priority level and the state of the IE bit. They do not alter the processor's priority level.

Figure 9. Interrupt Service Sequence

Vectored Interrupt

When vectored interrupt is specified for a given interrupt request, the program status word and the program counter are saved on the stack. The processor's priority is raised to that specified for the interrupt, the IE bit in the PSW is set to zero, and the routine whose address is in the interrupt vector table is entered.
At completion of the service routine, the RETI instruction (or RETB instruction for software interrupts) reverses the process, and the μ PD78322 family resumes the interrupted routine.

Context Switch

When context switching (figure 10) is specified for a given interrupt, the active register bank is changed to the register bank specified by the three low-order bits of the word in the interrupt vector table. The program counter is loaded from RP2 of the new register bank, the old program counter and program status word are saved in RP2 and RP3 of the new register bank, and the IE bit in the PSW is set to zero.
At completion of the service routine, the RETCS instruction for routines entered from hardware requests, or the RETCSB instruction for routines entered from the BRKCS instruction, reverse the process. The old program counter and program status word are restored from RP2 and RP3 of the new register bank. The entry address of the service routine, which must be specified in the 16 -bit immediate operand of these return instructions, is stored again in RP2.

Macro Service

When macro service is specified for a given interrupt, the macro service hardware temporarily stops the executing program and transfers data between the
special function register area and the memory space. Control is then returned to the executing program, providing a completely transparent method of interrupt service. Macro Service significantly improves response time and makes it unnecessary to save any registers.

For each request on the interrupt line, one operation is performed, and an 8 -bit counter is decremented. When the counter reaches 0 (or when some other completion condition is met), a software service routine is entered. Either vectored interrupt or context switch can be specified for entry to this routine, which is known as the macro service completion routine, and the routine is entered according to the specified priority.

Macro service is provided for all of the maskable interrupt requests except INTSER, the asynchronous serial interface receive error interrupt request. Each request has a dedicated macro service control word stored in on-chip main RAM. The function to be performed is specified in the control word. See table 3.

Figure 10. Context Switching and Return

Table 3. Macro Service Functions

Control Word	Function
EVTCNT	Event counter. Counts up to 256 events by incrementing or decrementing the macro service counter. When the counter reaches 00 H , the software service routine is entered.
DTACMP	Data compare. If the value of the specialfunction register requesting macro service matches a byte of data, the software service routine is entered. This mode can be used to detect an address match in SBI mode.
BITSHT	Data shift. Shifts the contents of a specified special function register one bit to the right (toward the LSB). The software service routine is entered when a data bit of 1 has been shifted out from the LSB. This mode can be used to control the real-time output port by shifting the values of the real-time output port set or reset registers.
BITLOG	Bit logic. Performs the logical AND or OR of a data byte and the contents of the specified special function register, stores the result back in the SFR, and enters the software service routine.
ADCBUF	A/D converter buffering. Stores the contents of the A / D conversion result register in a byte or word buffer in main RAM (FExxH). When the macro service counter reaches $0, A / D$ conversion is stopped but no software service routine is entered
BLKTRS	Block transfer. Transfers a byte or word of data in either direction between a specified specialfunction register and a buffer anywhere in the 64 K -byte address space.
DTADIF	Data difference. Stores the difference between the current value of a specified 16 -bit specialfunction register and its previous value in a byte or word buffer in main RAM (FExxH).
DTADIF-P	Data difference with memory pointer. Stores the difference between the current value of a specified special function register and its previous value in a byte or word buffer anywhere in the 64 K -byte address space.
DTAADD	Data addition. Stores the sum of a byte or word of data and a specified special function register in the same or another specified specialfunction register.

Standby Modes

The standby modes, HALT and STOP, reduce power consumption when CPU action is not required. In HALT mode, the CPU is stopped but the system clock continues to run. The HALT mode is released by any
nonmaskable interrupt request, unmasked maskable interrupt request, or an external reset pulse. In STOP mode, both the CPU and the system clock are stopped, further minimizing power consumption. The STOP mode is released by either an external reset pulse or an external NMI.

The HALT and STOP modes are entered by programming standby control register STBC. This register is a protected location and can be written to only by a special instruction. If the third and fourth bytes of the instruction are not complements of each other, the data is not written and an operation code trap interrupt occurs.

Watchdog Timer

The watchdog timer protects against inadvertent program loops. A nonmaskable interrupt occurs if the timer is not reset by the program before it overflows. At the same time, watchdog timer output pin WDTO goes active low for a period of 32 system clocks. The WDTO can be connected to the RESET pin or used to control external circuitry. Three program-selectable intervals are available: $8.19,32.7$, and 131.0 ms at 16 MHz .
Once started, the timer can be stopped only by an external reset. Watchdog timer mode register WDM is used to select the time interval, to set the relative priority of the watchdog timer interrupt and NMI, and to clear the timer. This register is a protected location and can be written to only by a special instruction. If the third and fourth bytes of the instruction are not complements of each other, the data is not written and an operation code trap interrupt occurs.

External Reset

The μ PD78322 family is reset by taking the RESET pin low. The reset circuit contains a noise filter to protect against spurious system resets caused by noise. On power-up, the RESET pin must remain low until the power supply reaches its operating voltage and the oscillator has stabilized. During reset, the program counter is loaded with the address contained in the reset vector table (addresses $0000 \mathrm{H}, 0001 \mathrm{H}$); program execution starts at that address upon the RESET pin going high. While RESET is low, all external lines except $\overline{W D T O}, \mathrm{AV}_{\mathrm{REF}}, \mathrm{AV}_{\mathrm{DD}}, \mathrm{AV}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{DD}}, \mathrm{X} 1$, and X 2 are in the high-impedance state.

ELECTRICAL SPECIFICATIONS

Note: Unless otherwise noted, these specifications apply to the entire μ PD78322 family. Exceptions for extended temperature range devices may be singled out in the tables by the symbols below. The applicable symbol is also included in the device part number $\frac{\text { Symbol }}{\text { ()* }} \quad \frac{\text { Operating Temperature Range }}{-10 \text { to }+70^{\circ} \mathrm{C} \text { (standard) }}$
() *
-10 to $+70^{\circ} \mathrm{C}$ (standard)
(A)

$$
-40 \text { to }+85^{\circ} \mathrm{C} \text { (extended) }
$$

(A1) $\quad-40$ to $+110^{\circ} \mathrm{C}$ (extended)
(A2) $\quad-40$ to $+125^{\circ} \mathrm{C}$ (extended)

* () $=$ no suffix

Absolute Maximum Ratings
 $T_{A}=25^{\circ} \mathrm{C}$

Supply voitage, V_{DD}	-0.5 to +7.0 V
Supply voltage, $\mathrm{AV}_{\mathrm{DD}}$	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Supply voltage, $\mathrm{AV}_{\text {SS }}$	-0.5 to +0.5 V
Supply voltage, $\mathrm{V}_{\text {PP }}$	-0.5 to +13.5 V
Input voltage, V_{1} Except $\mathrm{P}_{2} / \mathrm{NMMI}^{2}$ of $\mu \mathrm{PD} 78 \mathrm{P} 322$ P2/ $/$ NMI of μ PD78P322	$\begin{array}{r} -0.5 \text { to } V_{D D}+0.5 \mathrm{~V} \\ -0.5 \text { to }+13.5 \mathrm{~V} \\ \hline \end{array}$
Output voltage, V_{0}	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Reference intput voltage, $\mathrm{AV}_{\text {REF }}$ ($\mathrm{fxX} \leq 16 \mathrm{MHz}$)	-0.5 to $\mathrm{AV}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Output current, low; lol Each output pin Total	$\begin{aligned} & 4.0 \mathrm{~mA} \\ & 90 \mathrm{~mA} \end{aligned}$
Output current, high; l_{OH} Each output pin Total	$\underline{-20 \mathrm{~mA}}$ (A) ${ }^{-1.0 \mathrm{~mA}}$ devices

Operating temperature, TOPT

() devices	-10 to $+70^{\circ} \mathrm{C}$
(A) devices	-40 to $+85^{\circ} \mathrm{C}$
(A1) devices	-40 to $+110^{\circ} \mathrm{C}$
(A2) devices	-40 to $+125^{\circ} \mathrm{C}$
Storage temperature, TSTG	-65 to $+150^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC characteristics.

Recommended Operating Conditions

Device	$\mathbf{T}_{\mathbf{A}}$	$\mathbf{V}_{\mathbf{D D}}$	Oscillator Freq, $\mathrm{f}_{\mathbf{X X}}$
μ PD78320/322	-10 to $+70^{\circ} \mathrm{C}$	$+5.0 \mathrm{~V} \pm 10 \%$	8 to 16 MHz
μ PD78P322	-10 to $+70^{\circ} \mathrm{C}$	$+5.0 \mathrm{~V} \pm 5 \%$	
(A) devices	-40 to $+85^{\circ} \mathrm{C}$	$+5.0 \mathrm{~V} \pm 10 \%$	
(A1) devices	-40 to $+110^{\circ} \mathrm{C}$	$+5.0 \mathrm{~V} \pm 10 \%$	8 to 12 MHz
(A2) devices	-40 to $+125^{\circ} \mathrm{C}$		

Capacitance

$T_{A}=25^{\circ} \mathrm{C} ; V_{D D}=V_{S S}=0 \mathrm{~V}$

Parameter	Symbol	Max	Unit	Conditions
Input pin capacitance	C_{1}	$20 \dagger$	pF	$\mathrm{f}=1 \mathrm{MHz} ;$ unmeasured pins returned to O V
Output pin capacitance	c_{0}	20	pF	
I/O pin capacitance	ClO_{10}	20	pF	

$\dagger C_{1}=10 \mathrm{pF}$ on (A), (A1), and (A2) devices.
μ PD78322 Family

Oscillator Characteristics

$V_{D D}=+5 \mathrm{~V} \pm 10 \%$ ($\pm 5 \%$ for μ PD78P322); $V_{S S}=0 \mathrm{~V}$
Devices and their T_{A} ratings are defined earlier by symbols (), (A), (A1), and (A2)

Oscillator	Parameter	Symbol	Min	Max	Unit	Conditions
Ceramic or cystal resonator	Oscillation frequency	f_{XX}	8	$\begin{gathered} 16 \\ 12 \dagger \end{gathered}$	MHz	
External clock input at X1	Frequency	${ }^{\prime} \mathrm{X}$	8	$\begin{gathered} 16 \\ 12 \dagger \end{gathered}$	MHz	
	Rise time, fall time	${ }^{\text {t }}$, ${ }^{\text {, }}$ XF	0	20	ns	
	Low-level, high-level width	${ }_{\text {twxL }}{ }^{\text {twXH }}$	$\begin{gathered} 25 \\ 46 \dagger \end{gathered}$	$\begin{gathered} 80 \\ 100+ \end{gathered}$	ns	

\dagger Applicable to (A1) and (A2) devices.

Recommended Oscillator Circuits

A. Resonator Circuit

Crystal Resonator

Mount resonator as close as possible to pins X1 and X2. Do not place other signal lines in shaded area.
B. External Clock Circult

DC Characteristics

$\mathrm{V}_{\mathrm{DD}}=+5.0 \mathrm{~V} \pm 10 \%$ ($\pm 5 \%$ for μ PD78P322); $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$
Devices and their T_{A} ratings are defined earlier by symbols (), (A), (A1), and (A2)

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Input voltage, low	$\mathrm{V}_{\text {IL }}$	0		0.8	V	
Input voltage, high	$\mathrm{V}_{\mathrm{IH} 1}$	2.2			V	(Note 1)
	$\mathrm{V}_{1 \mathrm{H} 2}$	0.8 V DD			V	(Note 2)
Output voltage, low	V_{OL}			0.45	V	$\mathrm{l}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
Output voltage, high	VOH	$V_{D D}-1.0$			V	$\mathrm{l}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
Input leakage current	l_{LI}			± 10	$\mu \mathrm{A}$	$V_{1}=0$ to $V_{D D}$
Output leakage current	Lo			± 10	$\mu \mathrm{A}$	$V_{O}=0$ to $V_{D D}$
$V_{\text {DD }}$ supply current	IDD1		40	65	mA	Operating mode
	IDD2		20	$\begin{gathered} 35 \\ 45 \text { (Note 3) } \end{gathered}$	mA	HALT mode
Data retention voltage	$\mathrm{V}_{\text {DDDR }}$	2.5			V	STOP mode
Data retention current	${ }^{\text {d }}$ DDR		2	$\begin{gathered} 10 \\ 100 \text { (Note 3) } \end{gathered}$	$\mu \mathrm{A}$	STOP mode; $\mathrm{V}_{\mathrm{DDDR}}=2.5 \mathrm{~V}$
			10	$\begin{gathered} 50 \\ 1000 \text { (Note 3) } \end{gathered}$	$\mu \mathrm{A}$	STOP mode; $V_{D D D R}=5.0 \mathrm{~V} \pm 10 \% ~(\pm 5 \%$ for μ PD78P322)

Notes:

(1) All except pins in Note 2.
(3) Applicable to (A1) and (A2) devices.
(2) Pins $\overline{\text { RESET }} \mathrm{X} 1, \mathrm{X} 2, \mathrm{P}_{\mathrm{n}}, \mathrm{INTPn}, \mathrm{NMI}, \mathrm{TI}, \mathrm{P}_{2} / \mathrm{SBO} / \mathrm{SO}, \mathrm{P}_{3} / \mathrm{SB} 1 /$ $\mathrm{SI}, \mathrm{P3}_{4} / \mathrm{SCK}$.

AC Characteristics

$\mathrm{V}_{\mathrm{DD}}=+5.0 \mathrm{~V} \pm 10 \%$ ($\pm 5 \%$ for μ PD78P322); $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$
Devices and their T_{A} ratings are defined earlier by symbols (), (A), (A1), and (A2)

Parameter	Symbol	() and (A)		(A1) and (A2)		Unit	Conditions
		Min	Max	Min	Max		
External Memory Read/Write Operation							
System clock cycle time	${ }^{\text {t Crk }}$	125	250	166	250	ns	$t_{\text {tryk }}$ equals twice the period of the crystal or external clock input.
Address setup time to ASTB \downarrow	$t_{\text {SAST }}$	32		43		ns	$\mathrm{t}_{\mathrm{CYK}}=125 \mathrm{~ns}$
Address hold time after ASTB \downarrow	${ }^{\text {thSTA }}$	32		53		ns	
Address to $\overline{\mathrm{RD}} \downarrow$ delay time	${ }^{\text {t }}$ DAR	85		126		ns	
$\overline{\overline{R D}} \downarrow$ to address floating	$t_{\text {FRA }}$		0		0	ns	
Address to data input	$t_{\text {DAID }}$		222		326	ns	
$\overline{\mathrm{RD}} \downarrow$ to data input	$t_{\text {DRID1 }}$		112		174	ns	
ASTB \downarrow to $\overline{\mathrm{RD}} \downarrow$ delay time	$\mathrm{t}_{\text {DSTR }}$	42		63		ns	
Data hold time from $\overline{\mathrm{RD}} \uparrow$	$t_{\text {HRID }}$	0		0		ns	
$\overline{\mathrm{RD}} \uparrow$ to address active	${ }^{\text {t }}$ DRA	$\begin{aligned} & 50() \\ & 37(A) \\ & \hline \end{aligned}$		58		ns	
$\overline{\overline{R D}}$ width low	${ }^{\text {t }}$ WRL	157		$\begin{aligned} & 219 \text { (A1) } \\ & 209 \text { (A2) } \\ & \hline \end{aligned}$		ns	
ASTB width, high	${ }^{\text {W WSTH }}$	37		58		ns	
Address to $\overline{W R} \downarrow$ delay time	${ }^{\text {t }}$ DAW	85		126		ns	
ASTB \downarrow to data output	${ }_{\text {t }}$ DSTOD		102		123	ns	

AC Characteristics (cont)

Parameter	Symbol	() and (A)		(A1) and (A2)		Unit	Conditions
		Min	Max	Min	Max		
External Memory Read/Write Operation (cont)							
$\overline{W R} \downarrow$ to data output	towod		40		40	ns	${ }^{\text {t }}$ YKK $=125 \mathrm{~ns}$
ASTB \downarrow to $\overline{W R} \downarrow$ delay	${ }^{\text {t }}$ DSTW	42		63		ns	
Data setup time to $\overline{\mathrm{WR}} \uparrow$	tsodw	147		204		ns	
Data hold time after $\overline{\mathrm{WR}} \uparrow$	$t_{\text {HWOD }}$	32		53		ns	
$\overline{\text { WR }}$ width, low	$t_{\text {WWL }}$	157		209		ns	
$\overline{\text { WR } \uparrow \text { to } \overline{\text { ASTB }} \text { delay time }}$	$t_{\text {DWST }}$	42		63		ns	
Serial Port Operation							
$\overline{\overline{\text { SCK }} \text { cycle time }}$	tcysk	1000		1328		ns	$\overline{\text { SCK output }}$
		1000		1328		ns	$\overline{\text { SCK }}$ input
$\overline{\overline{S C K}}$ width low	${ }^{\text {twSKL }}$	420		584		ns	$\overline{\text { SCK output }}$
		420		584		ns	$\overline{\text { SCK input }}$
$\overline{\overline{S C K}}$ width high	tWSKH	420		584		ns	$\overline{\text { SCK output }}$
		420		584		ns	$\overline{\text { SCK input }}$
SI setup time to $\overline{\text { SCK }}$	${ }_{\text {t SRXSK }}$	80		80		ns	
SI hold time after $\overline{\text { SCK }} \uparrow$	$t_{\text {HSKRX }}$	80		80		ns	
$\overline{\text { SCK } \downarrow \text { to SO delay time }}$	${ }_{\text {t }}$ DSKTX		210		210	ns	$R=1 \mathrm{k} \Omega ; \mathrm{C}=100 \mathrm{pF}$
Other Operations							
NMI high/low-level width	${ }^{\text {twNIH, }}$ TWNIL	5				$\mu \mathrm{s}$	
INTPO high/low-level width	${ }^{\text {WWIOH, }}$ tWIOL	8				${ }^{\text {t CYK }}$	
INTP1 high/low-level width	${ }^{\text {W WIH. }}$, WHIL	8				${ }^{\text {t }}$ CYK	
INTP2 high/low-level width	${ }^{\text {W WI2H, }}$, ${ }_{\text {WI2L }}$	8				${ }^{\text {t }}$ CYK	
INTP3 high/low-level width	${ }^{\text {W WI3H, }}$ t WI3L	8				${ }^{\text {t }}$ CYK	
INTP4 high/low-level width	${ }^{\text {W WIUH, }}$, WIAL	8				${ }^{\text {t }}$ CYK	
INTP5 high/low-level width	${ }^{\text {WWISH, }}$ WWI5L	8				$\mathrm{t}_{\text {çk }}$	
INTP6 high/low-level width	${ }^{\text {W }}$ WI6H, ${ }^{\text {W WIGL }}$	8				$\mathrm{t}_{\mathrm{CYK}}$	
RESET high/low-level width	${ }^{\text {twRSH, }}$, ${ }^{\text {WhRSL }}$	5				$\mu \mathrm{s}$	
TI high/low-level width	twTIH, TWTIL	8				${ }^{\text {t }}$ CYK	During TM1 even-counter mode

Timing Dependent on $\mathrm{t}_{\mathrm{CYK}}$

Symbol	Calculation Formula	Min/Max	Unit
${ }^{\text {t }}$ AID	$(2.5+\mathrm{n}) \mathrm{T}-90$	Max	ns
${ }_{\text {t }}^{\text {DAR }}$	T-40	Min	ns
${ }^{\text {t }}$ AW	T-40	Min	ns
$t_{\text {dra }}$	$\begin{aligned} & 0.5 T-12() \\ & 0.5 T-25(A) \text { (A1) (A2) } \end{aligned}$	Min	ns
$t_{\text {t }}$	$(1.5+n) T-75$	Max	ns
tDSTOD	$0.5 T+40$	Max	ns
tDSTR	0.5T-20	Min	ns
${ }^{\text {t }}$ DSTw	0.5T-20	Min	ns
${ }^{\text {t }}$ DWST	0.5T-20	Min	ns
towod	$0.5 \mathrm{~T}-11$	Min	ns
${ }^{\text {thesta }}$	0.5T-30	Min	ns
${ }_{\text {thwod }}$	0.5T-30	Min	ns
$\mathrm{t}_{\text {SAST }}$	$\begin{aligned} & 0.5 T-30() \text { (A) } \\ & 0.5 T-40 \text { (A1) (A2) } \end{aligned}$	Min	ns
tsodw	$\begin{aligned} & 1.5 T-40()(A) \\ & 0.5 T-45(\mathrm{~A} 1) \text { (A2) } \end{aligned}$	Max	ns
${ }^{\text {twRL }}$	$(1.5+n) T-30$	Min	ns

Timing Dependent on $t_{\text {CYK }}$ (cont)

Symbol	Calculation Formula	Min/Max	Unit
${ }^{\text {WSSTH }}$	0.5T-25	Min	ns
${ }^{\text {tWWL }}$	$\begin{aligned} & (1.5+n) T-30()(A) \\ & (1.5+n) T-40(A 1) \\ & \text { (A2) } \end{aligned}$	Min	ns
${ }^{\text {twIOH, }}$ WIOL	8 T	Min	ns
tWIH, twill	8 T	Min	ns
${ }^{\mathrm{T}_{\text {WI2H, }}{ }^{\text {t }} \text { WI2L }}$	8T	Min	ns
${ }^{\text {twI3H, }}$ WWI3L	8T	Min	ns
${ }^{\text {twIHH, }}$ WWI4L	8 T	Min	ns
${ }^{\text {twI5H, }}$ twi5L	8 T	Min	ns
${ }^{\text {twi6H, }}$ WWI6L	8 T	Min	ns
${ }^{\text {WWTIH, }}$, WTIL	8 T	Min	ns

Notes:

(1) n is the number of wait cycles specified by the PWC register.
(2) $T=t_{C Y K}$ (ns)
(3) Devices and their T_{A} ratings are defined earlier by symbols (), (A), (A1), and (A2)

A/D Converter Characteristics

$V_{D D}=+5 \mathrm{~V} \pm 10 \%\left(\pm 5 \%\right.$ for μ PD78P322); $A V_{S S}=V_{S S}=0 \mathrm{~V} ; A V_{D D}=\left(V_{D D}-0.5 \mathrm{~V}\right)$ to $V_{D D}$
Devices and their T_{A} ratings are defined earlier by symbols (), (A), (A1), and (A2)

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Resolution		10			Bit	
Relative accuracy*				$\begin{aligned} & \pm 0.4() \\ & \pm 0.3 \text { (A) (A1) (A2) } \end{aligned}$	\% t	$\mathrm{AV}_{\mathrm{REF}}=4.5 \mathrm{~V}$ to $\mathrm{AV}^{\text {DD }}$
				$\begin{aligned} & \pm 0.7() \\ & \pm 0.3(\mathrm{~A})(\mathrm{A} 1) \quad(\mathrm{A} 2) \end{aligned}$	\% \dagger	$\mathrm{AV}_{\mathrm{REF}}=3.4 \mathrm{~V}$ to $\mathrm{AV}_{\mathrm{DD}}$
Quantization error				$\pm 1 / 2$	LSB	
Conversion time	tCONV	144			$t_{\text {crok }}$	
Sampling time	tSAMP	24			$\mathrm{t}_{\text {CYK }}$	
Zero-scale error*			± 1.5	± 2.5	LSB	$\mathrm{AV}_{\text {REF }}=4.5 \mathrm{~V}$ to $\mathrm{AV}_{\text {DD }}$
			± 1.5	± 4.5	LSB	$\mathrm{AV}_{\text {REF }}=3.4 \mathrm{~V}$ to $\mathrm{AV}_{\text {DD }}$
Full-scale error*			± 1.5	± 2.5	LSB	$\mathrm{AV}_{\text {REF }}=4.5 \mathrm{~V}$ to $\mathrm{AV}_{\text {DD }}$
			± 1.5	± 4.5	LSB	$\mathrm{AV}_{\text {REF }}=3.4 \mathrm{~V}$ to $\mathrm{AV}_{\text {DD }}$
Nonlinearity error*			± 1.5	± 2.5	LSB	$\mathrm{AV}_{\text {REF }}=4.5 \mathrm{~V}$ to $\mathrm{AV}_{\mathrm{DD}}$
			± 1.5	± 4.5	LSB	$A V_{\text {REF }}=3.4 \mathrm{~V}$ to $\mathrm{AV}_{\text {DD }}$
Analog input voltage	$V_{\text {IAN }}$	-0.3		$\mathrm{AV}_{\text {REF }}+0.3$	V	
Reference voltage	$A V_{\text {REF }}$	3.4 or 4.5		$\mathrm{AV}_{\mathrm{DD}}$	V	
AV $\mathrm{REF}_{\text {current }}$	$\mathrm{Al}_{\text {REF }}$		1.0	3.0	mA	
$\underline{A V_{D D} \text { power current }}$	$A l_{\text {D }}$		2.0	6.0	mA	

A/D Converter Characteristics (cont)

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
A/D converter data retention current	AldDR		2	$\begin{gathered} 10()(\mathrm{A}) \\ 100(\mathrm{~A} 1)(\mathrm{A} 2) \end{gathered}$	$\mu \mathrm{A}$	$\begin{aligned} & \text { STOP mode; } A V_{D D R}= \\ & 2.5 \mathrm{~V} \end{aligned}$
			10	$\begin{gathered} 50()(A) \\ 1000(\mathrm{~A} 1) \text { (A2) } \end{gathered}$	$\mu \mathrm{A}$	STOP mode; $A V_{D D R}=$ $5 \mathrm{~V} \pm 10 \%$ ($\pm 5 \%$ for μ PD78P322)
Analog input impedance	$\mathrm{R}_{\text {AN }}$		10		$\mathrm{M} \Omega$	Nonsampling
						Sampling

* Does not include quantization error
\dagger Unit is percent of full-scale range (FSR)

A/D Converter Input Circuit

Timing Waveforms

AC Timing Test Points

Read Operation

Timing Waveforms (cont)

Write Operation

Interrupt Input

Timing Waveforms (cont)

Serial Port Operation

Reset Input

TI Input

PROM PROGRAMMING

The PROM in the μ PD78P322 is one-time programmable (OTP) or ultraviolet erasable (UV EPROM). The 16,384 x 8 -bit PROM has the programming characteristics of an NEC μ PD27C256A. Table 3 shows the functions of the μ PD78P322 pins in normal operating mode and PROM programming mode.

PROM Programming Mode

When the RESET pin is set high and $A V_{D D}$ is set low, the μ PD78P322 enters the PROM programming mode. Operation in this mode is determined by the setting of the $\overline{C E}, \overline{O E}, V_{P P}$, and $V_{D D}$ pins as indicated in table 4.

Table 3. Pin Functions During PROM Programming

Function	Normal Operating Mode	Programming Mode
Address input	$\begin{aligned} & \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P} 8_{0}, \mathrm{P}_{0}, \\ & \mathrm{P8}_{1}-\mathrm{P} 8_{7} \end{aligned}$	$\mathrm{A}_{0}-\mathrm{A}_{14}$
Data input	$\mathrm{P} 4_{0}-\mathrm{P} 4_{7}$	$\mathrm{D}_{0}-\mathrm{D}_{7}$
Chip enable/ program pulse	P_{1}	$\overline{C E}$
Output enable	P_{0}	$\overline{O E}$
Program voltage	V_{PP}	V_{PP}
Mode voltage	RESET, AV ${ }_{\text {DD }}$	$\overline{\text { RESET, }}$ AV ${ }_{\text {DD }}$

Table 4. Operation Modes For Programming

Mode	$\overline{R E S E T}$	$\mathbf{A V}_{\mathbf{D D}}$	$\overline{\mathrm{CE}}$	$\overline{\mathbf{O E}}$	$\mathbf{V}_{\mathbf{P P}}$	$\mathbf{V}_{\mathbf{D D}}$	$\mathrm{D}_{0}-\mathrm{D}_{\mathbf{7}}$
Program write	H	L	L	H	+12.5 V	+6.0 V	Data input
Program verify	H	L	H	L	+12.5 V	+6.0 V	Data output
Program inhibit	H	L	H	H	+12.5 V	+6.0 V	High impedance
Read	H	L	L	L	+5.0 V	+5.0 V	Data output
Ouput disable	H	L	L	H	+5.0 V	+5.0 V	High impedance
Standby	H	L	H	L / H	+5.0 V	+5.0 V	High impedance

Figure 11. Pin Functions in μ PD78P322 PROM Programming Mode; 68-Pin PLCC or LCC

Figure 12. Pin Functions in μ PD78P322 PROM Programming Mode; 80-Pin QFP or LCC

PROM Write Procedure

Data can be written to the PROM by the following procedure.
(1) Set the pins not used for programming as indicated in figure 11 or 12 . Set RESET high and $A V_{D D}$ low. $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ should be high.
(2) Supply +6.0 V to V_{DD} pin and +12.5 V to V_{PP} pin.
(3) Provide initial address to pins $A_{0}-A_{14}$.
(4) Provide write data.
(5) Input a 1-ms program pulse (active low) to $\overline{\mathrm{CE}}$ pin.
(6) Use verify mode (pulse $\overline{\mathrm{OE}}$ low) to test data. If data has been written, proceed to step 8; if not, repeat steps 4-6. If data cannot be written in 25 attempts, go to step 7.
(7) Classify PROM as defective and cease write operation.
(8) Perform one additional write with a program pulse width (in ms) equal to 3 times the number of writes performed in step 5.
(9) Increment address.
(10) Repeat steps 4-9 until last address is programmed.

PROM Read Procedure

The contents of the PROM can be read out to the external data bus $\left(D_{0}-D_{7}\right)$ by the following procedure.
(1) Set the pins not used for programming as indicated in figure 11 or 12 . Set $\overline{R E S E T}$ high and $A V_{D D}$ low. $\overline{C E}$ and $\overline{O E}$ should be active high.
(2) Supply +5 V to V_{DD} pin and V_{PP} pin.
(3) Input address of data to be read to pins $A_{0}-A_{14}$.
(4) Put an active-low pulse on $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ pins.
(5) Data is output to pins $D_{0}-D_{7}$.

Program Erasure

The UV EPROM can be erased by exposing the window to light having a wavelength shorter than 400 nm , including ultraviolet, direct sunlight, and fluorescent light. To prevent unintentional erasure, mask the window.

Typically, data is erased by $254-\mathrm{nm}$ ultraviolet rays. A minimum lighting level of $15 \mathrm{Ws} / \mathrm{cm}^{2}$ (ultraviolet ray intensity x exposure time) is required to completely erase the written data. Erasure by an ultraviolet lamp rated at $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ takes 15 to 20 minutes. Remove any filter on the lamp and place the device within 2.5 cm of the lamp tubes.

DC Programming Characteristics

$T_{A}=25 \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Symbol (Note 1)	Min	Typ	Max	Unit	Condition
High-level input voltage	$\mathrm{V}_{\text {IH }}$	V_{IH}	2.2		$\mathrm{V}_{\text {DDP }}+0.3$	V	
Low-level input voltage	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	-0.3		0.8	V	
Input leakage current	LIP	LII			± 10	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{1} \leq \mathrm{V}_{\text {DDP }}$ (Note 2)
High-level output voltage	V_{OH}	VOH	2.4			V	$\mathrm{IOH}=-400 \mu \mathrm{~A}$
Low-level output voltage	V_{OL}	V_{OL}			0.45	V	$\mathrm{l} \mathrm{OL}=2.0 \mathrm{~mA}$
A9 pin input current	$l_{\text {A9 }}$	-			± 10	$\mu \mathrm{A}$	A9 ($\mathrm{P}_{2} / \mathrm{NMI}$)
Output leakage current	Lo	-			10	$\mu \mathrm{A}$	$0 \leq V_{O} \leq V_{D D P}, \overline{O E}=V_{I H}$
PROG pin high-voltage input current	IfP	-			± 10	$\mu \mathrm{A}$	
$V_{\text {DDP }}$ power supply voltage	$\mathrm{V}_{\text {DDP }}$	$V_{D D}$	5.75	6.0	6.25	V	Program memory write mode
			4.5	5.0	5.5	V	
VPP power supply voltage	V_{PP}	V_{PP}	12.2	12.5	12.8	V	
				$\mathrm{V}_{\mathrm{PP}}=$		V	
$V_{\text {DDP }}$ power supply current	1 DD	$I_{\text {DD }}$		10	30	mA	
				10	30	mA	Program memory read mode $\overline{C E}=V_{I L}, V_{I}=V_{I H}$
Vpp power supply current	1 lpp	IPP		10	30	mA	Program memory write mode $\overline{C E}=V_{I L}, \overline{O E}=V_{I H}$
				1	100	$\mu \mathrm{A}$	Program memory read mode

Notes:

(1) Corresponding symbols for the μ PD27C256A
(2) $V_{D D P}$ is the $V_{D D}$ pin during programming

AC Programming Characteristics

$\mathrm{T}_{\mathrm{A}}=25 \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Symbol (Note 1)	Min	Typ	Max	Unit	Condition
Address setup time to $\overline{\mathrm{CE}} \downarrow$	$\mathrm{t}_{\text {SAC }}$	$t_{\text {AS }}$	2			$\mu \mathrm{s}$	
Data to to $\overline{O E} \downarrow$ delay time	todoo	toes	2			$\mu \mathrm{s}$	
Input data setup time to $\overline{\mathrm{CE}} \downarrow$	$\mathrm{t}_{\text {SIDC }}$	${ }^{\text {t }}$ S	2			$\mu \mathrm{s}$	
Address hold time after $\overline{\mathrm{CE}} \uparrow$	$\mathrm{t}_{\mathrm{HCA}}$	$t_{\text {AH }}$	2			$\mu \mathrm{s}$	
Input data hold time after $\overline{\mathrm{CE}} \uparrow$	$t_{\text {HCID }}$	$t_{\text {DH }}$	2			$\mu \mathrm{s}$	
Output data hold time after $\overline{O E} \uparrow$	${ }_{\text {thood }}$	${ }_{\text {t }}$ DF	0		130	ns	
$V_{\text {PP }}$ setup time before $\overline{\mathrm{CE}} \downarrow$	tsVPC	tVPS	2			$\mu \mathrm{s}$	
V DDP setup time before $\overline{\mathrm{CE}} \downarrow$	$t_{\text {tsVD }}$	tvds	2			$\mu \mathrm{s}$	
Initial program pulse width	twL1	$t_{\text {pw }}$	0.95	1.0	1.05	ms	
Additional program pulse width	twL2	topw	2.85		78.75	ms	
Address to data output time	t ${ }_{\text {daod }}$	$t_{\text {ACC }}$			2	$\mu \mathrm{s}$	$\overline{O E}=V_{\text {IL }}$
$\overline{O E} \downarrow$ to data output time	$t_{\text {DOOD }}$	$\mathrm{t}_{\text {OE }}$			1	$\mu \mathrm{s}$	
Data hold time after $\overline{\mathrm{OE}} \downarrow$	$t_{\text {HCOD }}$	$t_{\text {DF }}$	0		130	ns	
Data hold time after address not valid	$\mathrm{t}_{\text {HAOD }}$	${ }^{\text {toh }}$	0			ns	$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$

Notes:

(1) Corresponding symbols for the μ PD27C256A.

PROM Timing Diagrams

Write Mode

Notes:
[1] VDDP must be applied before $V_{\text {PP }}$ is applied and must be removed after $V_{P p}$ is removed.
[2] V_{PP} must not exceed +13 V including overshoot voltage.

PROM Timing Diagrams (cont)
Read Mode

83YL-6845B

INSTRUCTION SET

The μ PD78322 family instruction set features 8 - and 16-bit data transfer, arithmetic, and logic instructions and single-bit manipulation instructions. String manipulation instructions are also included. Branch instructions exist to test individual bits in the program status word, the 16-bit accumulator, the special function registers, and the saddr portion of on-chip RAM. Instructions range in length from 1 to 6 bytes depending on the instruction and addressing mode.

Flag Column Indicators

Symbol	Action
(blank)	No change
0	Set to 0
1	Set to 1
X	Set or cleared according to result
P	P/V indicates parity of result
V	P/V indicates arithmetic overflow
R	Restored from saved PSW

Instruction Set Symbols

Symbol	Definition
r	R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15
r1	R0, R1, R2, R3, R4, R5, R6, R7
12	C, B
rp	RPO, RP1, RP2, RP3, RP4, RP5, RP6, RP7*
rp1	RPO, RP1, RP2, RP3, RP4, RP5, RP6, RP7*
rp2	DE, HL, VP, UP
sfr	Special function register, 8 bits
sfrp	Special function register, 16 bits
post	RPO, RP1, RP2, RP3, RP4, RP5/PSW, RP6, RP7. Bits set to 1 indicate register pairs to be pushed/ popped to/from stack; RP5 pushed/popped by PUSH/POP, SP is stack pointer; PSW pushed/ popped by PUSHU/POPU, RP5 is stack pointer.
mem	$\begin{gathered} \text { Register indirect: }[\mathrm{DE}],[\mathrm{HL}],[\mathrm{DE}+],[\mathrm{HL+}+[\mathrm{DE}-], \\ {[\mathrm{HL-}],[\mathrm{VP}],[\mathrm{UP}]} \end{gathered}$
	Base Index Mode: $\begin{aligned} & {[D E+A],[H L+A],[D E+B],} \\ & {[H L+B],[V P+D E],[V P+H L]} \end{aligned}$
	$\begin{gathered} \text { Base Mode: }[\mathrm{DE}+\text { byte], }[\mathrm{HL}+\text { byte }],[\mathrm{VP}+\text { byte }, \\ {[\mathrm{UP}+\text { byte], }[\mathrm{SP}+\text { byte }]} \end{gathered}$
	Index Mode: word [A], word [B], word [DE], word [HL]
saddr	FE20-FF1FH: Immediate byte addresses one byte in RAM, or label
saddrp	FE20-FF1FH: Immediate byte (bit $0=0$) addresses one word in RAM, or label

Instruction Set Symbols (cont)

Symbol	Definition
word	16 bits of immediate data or label
byte	8 bits of immediate data or label
jdisp8	8-bit two's complement displacement (immediate data displacement value -128 to +127)
bit	3 bits of immediate data (bit position in byte), or label
n	3 bits of immediate data
laddr16	16-bit absolute address specified by an immediate address or label
\$addr16	Relative branch address or label
addr16	16-bit address
!addr11	11-bit immediate address or label
addr11	0800H-OFFFH: $0800 \mathrm{H}+$ (11-bit immediate address), or label
addr5	$0040 \mathrm{H}-007 \mathrm{EH}: 0040 \mathrm{H}+2 \mathrm{X}$ (5-bit immediate address), or label
A	A register (8-bit accumulator)
X	X register
B	B register
C	C register
D	D register
E	E register
H	H register
L	L register
R0-R15	Register 0 to register 15
AX	Register pair AX (16-bit accumulator)
$B C$	Register pair BC
DE	Register pair DE
HL	Register pair HL
RPORP7	Register pair 0 to register pair 7

PC	Program counter
SP	Stack pointer
UP	User stack pointer (RP5)
PSW	Program status word
PSWH	High-order 8 bits of PSW
PSWL	Low-order 8 bits of PSW
CY	Carry flag
AC	Auxiliary carry flag
Z	Zero flag
P/V	Parity/overflow flag
S	Sign flag
TPF	Table position flag

Instruction Set Symbols (cont)

Symbol	Definition
RBS	Register bank select flag
RSS	Register set select flag
IE	Interrupt enable flag
STBC	Standby control register
WDM	Watchdog timer mode register
()	Contents of the location whose address is within parentheses; $(+)$ and $(-)$ indicate that the address is incremented after or decremented after it is used
$(())$	Contents of the memory location defined by the quantity within the sets of parentheses
\timesHexadecimal quantity	
$\mathrm{X}_{\mathrm{H},}, \mathrm{X}_{\mathrm{L}}$	High-order 8 bits and low-order 8 bits of X

* rp and rp1 describe the same registers but generate different machine code.

Instruction Set

Mnemonic	Operand	Operation	Bytes	Flags				
				S	z	AC	P/V	CY
8-Bit Data Transfer								
MOV	r1, \#byte	$\mathrm{r} 1 \leftarrow$ byte	2					
	saddr, \#byte	(saddr) \leftarrow byte	3					
	sfr, \#byte (Note 1)	sfr \leftarrow byte	3					
	r, r1	$r \leftarrow r 1$	2					
	A, r1	$A \leftarrow r 1$	1					
	A, saddr	$A \leftarrow($ saddr $)$	2					
	saddr, A	(saddr) $\leftarrow A$	2					
	saddr, saddr	(saddr) \leftarrow (saddr)	3					
	A, sfr	$A \leftarrow s f r$	2					
	sfr, A	sfr $\leftarrow A$	2					
	A, mem (Note 2)	$A \leftarrow($ mem $)$	1					
	A, mem	$A \leftarrow(\mathrm{mem})$	2-4					
	mem, A (Note 2)	$($ mem $) \leftarrow A$	1					
	mem, A	$($ mem $) \leftarrow A$	2-4					
	A, [saddrp]	$A \leftarrow($ (saddrp $)$)	2					
	[saddrp], A	$(($ saddrp) $) \leftarrow A$	2					
	A, !addr16	$A \leftarrow$ (addr16)	4					
	!addr16, A	(addr16) $\leftarrow A$	4					
	PSWL, \#byte	PSWL \leftarrow byte	3	X	X	X	X	X
	PSWH, \#byte	PSWH \leftarrow byte	3					
	PSWL, A	PSWL $\leftarrow A$	2	X	X	X	X	X
	PSWH, A	PSWH $\leftarrow A$	2					
	A, PSWL	$A \leftarrow P S W L$	2					
	A, PSWH	$\mathrm{A} \leftarrow \mathrm{PSWH}$	2					
$\overline{\mathrm{XCH}}$	A, r1	$A \leftrightarrow r 1$	1					
	$\mathrm{r}, \mathrm{r} 1$	$r \leftrightarrow r 1$	2					
	A, mem	$A \leftrightarrow$ (mem)	2-4					
	A, saddr	$A \leftrightarrow$ (saddr)	2					
	A, sfr	$A \leftrightarrow s f r$	3					
	A, [saddrp]	$\mathrm{A} \leftrightarrow($ (saddrp) $)$	2					
	saddr, saddr	(saddr) \leftrightarrow (saddr)	3					
16-Bit Data Transfer								
MOVW	rp1, \#word	rp1 \leftarrow word	3					
	saddrp, \#word	(saddrp) \leftarrow word	4					
	sfrp, \#word	$\operatorname{sfrp} \leftarrow$ word	4					
	rp, rp1	$\mathrm{rp} \leftarrow \mathrm{rp1}$	2					
	AX, saddrp	$A X \leftarrow$ (saddrp)	2					
	saddrp, AX	(saddrp) $\leftarrow A X$	2					
	saddrp, saddrp	(saddrp) \leftarrow (saddrp)	3					

Instruction Set (cont)

				Flags				
Mnemonic	Operand	Operation	Bytes	S	z	AC	P/N	CY

16-Bit Data Transfer (cont)

MOVW (cont)	AX, sfrp	$A X \leftarrow \operatorname{sfrp}$	2
	sfrp, AX	sfrp $\leftarrow A X$	2
	rp1, !addr16	rp1 $\leftarrow($ addr 16$)$	4
	!addr16, rp1	(addr16) $\leftarrow \mathrm{rp1}$	4
	$A X$, mem	$A X \leftarrow$ (mem)	2-4
	mem, AX	$($ mem $) \leftarrow A X$	2-4
XCHW	AX, saddrp	$A X \leftrightarrow$ (saddrp)	2
	AX, sfrp	AX \leftrightarrow sfrp	3
	saddrp, saddrp	(saddrp) \leftrightarrow (saddrp)	3
	rp, rp1	$r p \leftrightarrow r p 1$	2
	AX, mem	$A X \leftrightarrow$ (mem)	2-4

8-Bit Arithmetic

ADD	A, \#byte	A, CY $\leftarrow A+$ byte	2	X	X	X	V	X
	saddr, \#byte	(saddr), $\mathrm{CY} \leftarrow$ (saddr) + byte	3	X	X	X	V	x
	sfr, \#byte	sfr, $\mathrm{CY} \leftarrow \mathrm{sfr}+$ byte	4	X	X	X	V	X
	$r, r 1$	$r, \mathrm{CY} \leftarrow \mathrm{r}+\mathrm{r} 1$	2	X	X	X	V	x
	A, saddr	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+$ (saddr)	2	X	X	X	V	X
	A, sfr	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+\mathrm{sfr}$	3	X	X	X	V	x
	saddr, saddr	(saddr), $\mathrm{CY} \leftarrow$ (saddr) + (saddr)	3	X	X	X	V	x
	A, mem	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+($ mem $)$	2-4	X	X	X	V	x
	mem, A	(mem), $\mathrm{CY} \leftarrow$ (mem) +A	2-4	x	X	x	V	x
$\overline{\text { ADDC }}$	A, \#byte	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+$ byte +CY	2	X	X	X	V	x
	saddr, \#byte	(saddr), $\mathrm{CY} \leftarrow$ (saddr) + byte + CY	3	X	X	X	V	x
	sfr, \#byte	sfr, $\mathrm{CY} \leftarrow \mathrm{sfr}+$ byte +CY	4	X	X	X	V	x
	r, r1	$r, C Y \leftarrow r+r 1+C Y$	2	X	X	X	V	x
	A, saddr	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+$ (saddr) +CY	2	X	X	X	V	x
	A, sfr	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+\mathrm{sfr}+\mathrm{CY}$	3	X	X	X	V	X
	saddr, saddr	(saddr), $\mathrm{CY} \leftarrow$ (saddr) + (saddr) +CY	3	X	X	X	V	X
	A, mem	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+($ mem $)+\mathrm{CY}$	2-4	X	X	X	V	X
	mem, A	(mem) , CY \leftarrow (mem) + A + CY	2-4	X	X	X	V	x
SUB	A, \#byte	A, CY $\leftarrow \mathrm{A}$ - byte	2	X	X	X	V	x
	saddr, \#byte	(saddr), CY \leftarrow (saddr) - byte	3	X	X	X	V	x
	sfr, \#byte	sfr, CY \leftarrow sfr - byte	4	X	X	X	V	X
	$\mathrm{r}, \mathrm{r} 1$	$\mathrm{r}, \mathrm{CY} \leftarrow \mathrm{r}-\mathrm{r} 1$	2	X	X	X	V	X
	A, saddr	$A, C Y \leftarrow A-$ (saddr)	2	X	X	X	V	X
	A, sfr	A, CY $\leftarrow A-s f r$	3	X	X	X	V	X
	saddr, saddr	(saddr), $\mathrm{CY} \leftarrow$ (saddr) - (saddr)	3	X	X	X	V	X
	A, mem	$A, C Y \leftarrow A-($ mem $)$	2-4	X	X	X	V	X
	mem, A	$(\mathrm{mem}), \mathrm{CY} \leftarrow(\mathrm{mem})-\mathrm{A}$	$2-4$	X	X	X	V	X

Instruction Set (cont)

Mnemonic	Operand	Operation	Bytes	Flags				
				S	Z	AC	P/V	CY
8-Bit Arithmetic (cont)								
SUBC	A, \#byte	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}$ - byte - CY	2	X	X	X	V	X
	saddr, \#byte	(saddr), CY \leftarrow (saddr) - byte - CY	3	X	X	X	V	X
	sfr, \#byte	sfr, $\mathrm{CY} \leftarrow$ sfr - byte - CY	4	X	X	X	V	X
	r, r1	r r, $\mathrm{CY} \leftarrow \mathrm{r}-\mathrm{r} 1-\mathrm{CY}$	2	X	X	X	V	x
	A, saddr	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}-$ (saddr) - CY	2	X	X	X	V	X
	A, sfr	$A, C Y \leftarrow A-s f r-C Y$	3	X	X	X	V	X
	saddr, saddr	(saddr), $\mathrm{CY} \leftarrow$ (saddr) - (saddr) - CY	3	X	X	X	V	X
	A, mem	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}-(\mathrm{mem})-\mathrm{CY}$	2-4	X	X	X	V	X
	mem, A	(mem), $\mathrm{CY} \leftarrow$ (mem) - A - CY	2-4	X	X	X	V	X
8-Bit Logic								
AND	A, \#byte	$A \leftarrow A \wedge$ byte	2	X	X		P	
	saddr, \#byte	(saddr) \leftarrow (saddr) \wedge byte	3	X	X		P	
	sfr, \#byte	$\operatorname{sfr} \leftarrow \operatorname{sfr} \wedge$ byte	4	X	X		P	
	r, r1	$r \leftarrow r \wedge r 1$	2	X	X		P	
	A, saddr	$A \leftarrow A \wedge$ (saddr)	2	X	X		P	
	A, sfr	$A \leftarrow A \wedge$ sfr	3	X	X		P	
	saddr, saddr	(saddr) \leftarrow (saddr) \wedge (saddr)	3	X	X		P	
	A, mem	$A \leftarrow A \wedge$ (mem)	2-4	X	X		P	
	mem, A	$($ mem $) \leftarrow(\mathrm{mem}) \wedge A$	2-4	X	X		P	
$\overline{O R}$	A, \#byte	$A \leftarrow A \vee$ byte	2	X	X		P	
	saddr, \#byte	(saddr) \leftarrow (saddr) \vee byte	3	X	X		P	
	sfr, \#byte	$\mathrm{sfr} \leftarrow \mathrm{sfr} \vee$ byte	4	X	X		P	
	$\mathrm{r}, \mathrm{r} 1$	$r \leftarrow r \vee r 1$	2	X	X		P	
	A, saddr	$A \leftarrow A \vee$ (saddr)	2	X	X		P	
	A, sfr	$A \leftarrow A \vee s f r$	3	X	X		P	
	saddr, saddr	(saddr) \leftarrow (saddr) \vee (saddr)	3	X	X		P	
	A, mem	$A \leftarrow A \vee$ (mem)	2-4	X	X		P	
	mem, A	$($ mem $) \leftarrow($ mem $) \vee A$	2-4	X	X		P	
XOR	A, \#byte	$A \leftarrow A \forall$ byte	2	X	X		P	
	saddr, \#byte	(saddr) \leftarrow (saddr) \forall byte	3	X	X		P	
	sfr, \#byte	sfr $\leftarrow \operatorname{sfr} \forall$ byte	4	X	X		P	
	r, r1	$r \leftarrow r \forall r 1$	2	X	X		P	
	A, saddr	$A \leftarrow A \forall$ (saddr)	2	X	X		P	
	A, sfr	$A \leftarrow A \forall s f r$	3	X	X		P	
	saddr, saddr	(saddr) \leftarrow (saddr) \forall (saddr)	3	X	X		P	
	A, mem	$A \leftarrow A \forall$ (mem)	2-4	X	X		P	
	mem, A	$($ mem $) \leftarrow($ mem $) \forall A$	2-4	X	X		P	

Instruction Set (cont)

Mnemonic	Operand	Operation	Bytes	Flags				
				S	Z	AC	P/V	CY
8-Bit Logic (cont)								
CMP	A, \#byte	A - byte	2	x	X	X	V	X
	saddr, \#byte	(saddr) - byte	3	X	X	X	V	X
	sfr, \#byte	sfr-byte	4	X	X	X	V	X
	r, r1	$\mathrm{r}-\mathrm{r} 1$	2	X	X	X	V	X
	A, saddr	A - (saddr)	2	X	X	X	V	X
	A, sfr	A - sfr	3	X	x	X	V	X
	saddr, saddr	(saddr) - (saddr)	3	x	x	X	V	x
	A, mem	A - (mem)	2-4	X	X	X	V	X
	mem, A	(mem) - A	2-4	X	X	X	V	x
16-Bit Arithmetic								
ADDW	AX, \#word	$\mathrm{AX}, \mathrm{CY} \leftarrow \mathrm{AX}+$ word	3	x	x	X	V	X
	saddrp, \#word	(saddrp), CY ¢ (saddrp) + word	4	X	X	X	V	X
	sfrp, \#word	sfrp, CY \leftarrow sfrp + word	5	X	X	X	V	x
	rp, rp1	$r p, C Y \leftarrow r p+r p 1$	2	X	X	X	V	x
	AX, saddrp	$A X, C Y \leftarrow A X+$ (saddrp)	2	X	X	X	V	X
	AX, sfrp	$A X, C Y \leftarrow A X+$ sfrp	3	X	X	X	V	X
	saddrp, saddrp	(saddrp), $\mathrm{CY} \leftarrow$ (saddrp) + (saddrp)	3	X	X	X	V	X
SUBW	AX, \#word	$A X, C Y \leftarrow A X$ - word	3	X	X	X	V	X
	saddrp, \#word	(saddrp), $\mathrm{CY} \leftarrow$ (saddrp) - word	4	X	X	X	V	x
	sfrp, \#word	sfrp, CY \leftarrow sfrp - word	5	X	X	X	V	x
	rp, rp1	$r p, C Y \leftarrow r p-r p 1$	2	X	X	x	V	x
	AX, saddrp	$A X, C Y \leftarrow A X-$ (saddrp)	2	X	X	X	V	X
	AX, strp	$A X, C Y \leftarrow A X-$ sfrp	3	X	X	x	V	x
	saddrp, saddrp	(saddrp), CY \leftarrow (saddrp) - (saddrp)	3	X	X	X	V	X
CMPW	AX, \#word	AX - word	3	X	X	X	V	X
	saddrp, \#word	(saddrp) - word	4	X	X	X	V	X
	sfrp, \#word	sfrp - word	5	X	X	X	V	X
	rp, rp1	rp - rp1	2	X	X	X	V	X
	AX, saddrp	AX - (saddrp)	2	x	X	X	V	x
	AX, sfrp	AX - sfrp	3	x	X	X	V	x
	saddrp, saddrp	(saddrp) - (saddrp)	3	X	X	X	V	X
Multiplication/Division								
MULU	$r 1$	$A X \leftarrow A \times r 1$	2					
DIVUW	r1	AX (quotient), $\mathrm{r1}$ (remainder) $\leftarrow \mathrm{AX} \div \mathrm{r} 1$	2					
MULUW	rp1	AX (high-order 16 bits), rp1 (low-order 16 bits) $\leftarrow \mathrm{AX} \times \mathrm{rp} 1$	2					
DIVUX	rp1	AXDE (quotient), rp1 (remainder) $\leftarrow A X D E \div r p 1$	2					
MULW (Note 3)	rp1	AX (high-order 16 bits), rp1 (low-order 16 bits) $\leftarrow A X x$ rp1	2					

Instruction Set (cont)

Mnemonic	Operand	Operation	Bytes	Flags				
				5	z	AC	P/V	CY
Increment/Decrement								
INC	r 1	$r 1 \leftarrow r 1+1$	1	X	X	X	V	
	saddr	(saddr) \leftarrow (saddr) +1	2	X	X	X	V	
$\overline{\text { DEC }}$	r1	r ¢ $\leftarrow 1-1$	1	X	X	X	V	
	saddr	(saddr) \leftarrow (saddr) - 1	2	X	X	X	V	
INCW	rp2	$\mathrm{rp} 2 \leftarrow \mathrm{rp} 2+1$	1					
	saddrp	(saddrp) \leftarrow (saddrp) +1	3					
DECW	rp2	$\mathrm{rp} 2 \leftarrow \mathrm{rp} 2-1$	1					
	saddrp	(saddrp) \leftarrow (saddrp) -1	3					
Shift/Rotate								
ROR	$\mathrm{r} 1, \mathrm{n}$	(CY, $\left.\mathrm{r} 1_{7} \leftarrow \mathrm{r1}_{0}, \mathrm{r1} \mathrm{~m}_{\mathrm{m}-1} \leftarrow \mathrm{r} 1_{\mathrm{m}}\right) \times \mathrm{n}$ times	2				P	X
ROL	$\mathrm{r1}, \mathrm{n}$	$\left(\mathrm{CY}, \mathrm{r} 1_{0} \leftarrow \mathrm{r} 1_{7}, \mathrm{r} 1_{\mathrm{m}+1} \leftarrow \mathrm{r} 1_{\mathrm{m}}\right) \times \mathrm{n}$ times	2				P	X
RORC	$\mathrm{r} 1, \mathrm{n}$	$\left(\mathrm{CY} \leftarrow \mathrm{r1}_{0}, \mathrm{r} 1_{7} \leftarrow \mathrm{CY}, \mathrm{r} 1_{\mathrm{m}-1} \leftarrow \mathrm{r} 1_{\mathrm{m}}\right) \times \mathrm{n}$ times	2				P	X
ROLC	$\mathrm{r} 1, \mathrm{n}$	$\left(\mathrm{CY} \leftarrow \mathrm{r} 1_{7}, \mathrm{r} 1_{0} \leftarrow \mathrm{CY}, \mathrm{r} 1_{\mathrm{m}+1} \leftarrow \mathrm{r} 1_{\mathrm{m}}\right) \times \mathrm{n}$ times	2				P	X
SHR	$\mathrm{r} 1, \mathrm{n}$	$\left(\mathrm{CY} \leftarrow \mathrm{r} 1_{0}, \mathrm{r} 1_{7} \leftarrow 0, \mathrm{r} 1_{\mathrm{m}-1} \leftarrow \mathrm{r} 1_{\mathrm{m}}\right) \times \mathrm{n}$ times	2	X	X	0	P	X
SHL	$\mathrm{r} 1, \mathrm{n}$	$\left(\mathrm{CY} \leftarrow \mathrm{r1} 1_{7} \mathrm{r1}_{0} \leftarrow 0, \mathrm{r} 1_{\mathrm{m}+1} \leftarrow \mathrm{r1}_{\mathrm{m}}\right) \times \mathrm{n}$ times	2	X	X	0	P	X
SHRW	rp1, n	$\left(C Y \leftarrow r p 1_{0}, r p 1_{15} \leftarrow 0, r p 1_{m-1} \leftarrow r p 1_{m}\right) \times n$ times	2	X	X	0	P	X
SHLW	rp1, n	$\left(C Y \leftarrow r p 1_{15}, r p 1_{0} \leftarrow 0, r p 1_{m+1} \leftarrow \mathrm{rp} 1_{\mathrm{m}}\right) \times n$ times	2	X	X	0	P	X
ROR4	[rp1]	$\begin{aligned} & A_{3-0} \leftarrow(\mathrm{rp} 1)_{3-0},(\mathrm{rp} 1)_{7-4} \leftarrow \mathrm{~A}_{3-0}, \\ & (\mathrm{rp} 1)_{3-0} \leftarrow(\mathrm{rp} 1)_{7-4} \end{aligned}$	2					
ROL4	[rp1]	$\begin{aligned} & \mathrm{A}_{3-0} \leftarrow(\mathrm{rp})_{7-4},(\mathrm{rp} 1)_{3-0} \leftarrow \mathrm{~A}_{3-0}, \\ & (\mathrm{rp} 1)_{7-4} \leftarrow(\mathrm{rp})_{3-0} \end{aligned}$	2					
BCD Adjustment								
ADJBA		Decimal adjust accumulator after add	2	X	X	X	P	x
ADJBS		Decimal adjust accumulator after subtract	2	X	X	X	P	x
Data Expansion								
CVTBW		$X \leftarrow A, A_{6-0} \leftarrow A_{7}$	1					
Bit Manipulation								
MOV1	CY, saddr.bit	$\mathrm{CY} \leftarrow$ (saddr.bit)	3					x
	CY, sfr.bit	$\mathrm{CY} \leftarrow$ sfr.bit	3					x
	CY, A.bit	$\mathrm{CY} \leftarrow$ A.bit	2					x
	CY, X.bit	$C Y \leftarrow X$. bit	2					X
	CY, PSWH.bit	CY \leftarrow PSWH.bit	2					X
	CY, PSWL.bit	CY ¢PSWL.bit	2					X
	saddr.bit, CY	(saddr.bit) $\leftarrow C Y$	3					
	sfr.bit, CY	sfr.bit $\leftarrow \mathrm{CY}$	3					
	A.bit, CY	A.bit $\leftarrow C Y$	2					
	X.bit, CY	X.bit $\leftarrow C Y$	2					
	PSWH.bit, CY	PSWH.bit $\leftarrow C Y$	2					
	PSWL.bit, CY	PSWL.bit $\leftarrow C Y$	2	X	X	X	x	

Instruction Set (cont)

Mnemonic	Operand	Operation	Bytes	Flags				
				S	Z	AC	P/N	CY
Bit Manipulation (cont)								
AND1	CY, saddr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ (saddr.bit)	3					X
	CY, /saddr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ (saddr.bit)	3					X
	CY, sfr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ sfr.bit	3					X
	CY, /sfr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge \overline{\text { sfr.bit }}$	3					X
	CY, A.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ A.bit	2					X
	CY, /A.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge \overline{\mathrm{A} . \mathrm{bit}}$	2					X
	CY, X.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge \mathrm{X}$. bit	2					x
	CY, X.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge \overline{\mathrm{X} . \mathrm{bit}}$	2					x
	CY, PSWH.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ PSWH.bit	2					x
	CY, /PSWH.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge \overline{\text { PSWH.bit }}$	2					x
	CY, PSWL.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ PSWL.bit	2					X
	CY, /PSWL.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge \overline{\text { PSWL.bit }}$	2					X
OR1	CY, saddr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} V$ (saddr.bit)	3					X
	CY, /saddr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} V$ (saddr.bit)	3					x
	CY, sfr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee$ sfr.bit	3					x
	CY, /sfr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee \overline{\text { sfr.bit }}$	3					X
	CY, A.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee$ A.bit	2					x
	CY, /A.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee \overline{\mathrm{A} . \mathrm{bit}}$	2					x
	CY, X,bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee \mathrm{X}$.bit	2					X
	CY, X.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee \overline{\mathrm{X} . \mathrm{bit}}$	2					X
	CY, PSWH.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee$ PSWH.bit	2					x
	CY, /PSWH.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee$ PSWH.bit	2					X
	CY, PSWL.bit	$\mathrm{CY} \leftarrow \mathrm{CY} V$ PSWL.bit	2					X
	CY, /PSWL.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee \overline{\text { PSWL.bit }}$	2					X
XOR1	CY, saddrbit	$\mathrm{CY} \leftarrow \mathrm{CY} \forall$ (saddr.bit)	3					X
	CY, sfr.bit	$C Y \leftarrow C Y \forall$ sfr.bit	3					x
	CY, A.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \forall$ A.bit	2					X
	CY, X.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \forall \mathrm{X}$.bit	2					X
	CY, PSWH.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \forall \mathrm{PSWH} . \mathrm{bit}$	2					X
	CY, PSWL.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \forall$ PSWL.bit	2					X
SET1	saddr.bit	(saddr.bit) $\leftarrow 1$	2					
	sfr.bit	sfr.bit $\leftarrow 1$	3					
	A.bit	A.bit $\leftarrow 1$	2					
	X.bit	X.bit $\leftarrow 1$	2					
	PSWH.bit	PSWH.bit $\leftarrow 1$	2					
	PSWL.bit	PSWL.bit $\leftarrow 1$	2	X	X	X	X	X

Instruction Set (cont)

Mnemonic	Operand	Operation	Bytes	Flags				
				S	z	AC	P/V	CY
Bit Manipulation (cont)								
CLR1	saddr.bit	(saddr.bit) $\leftarrow 0$	2					
	sfr.bit	sfr.bit $\leftarrow 0$	3					
	A.bit	A.bit $\leftarrow 0$	2					
	X.bit	X.bit $\leftarrow 0$	2					
	PSWH.bit	PSWH.bit $\leftarrow 0$	2					
	PSWL.bit	PSWL.bit $\leftarrow 0$	2	X	X	X	x	x
NOT1	saddr.bit	(saddr.bit) \leftarrow (saddr.bit)	3					
	sfr.bit	sfr.bit $\leftarrow \overline{\text { sfr.bit }}$	3					
	A.bit	A.bit $\leftarrow \overline{\text { A.bit }}$	2					
	X.bit	X.bit $\leftarrow \overline{\text { X.bit }}$	2					
	PSWH.bit	PSWH.bit $\leftarrow \overline{\text { PSWH.bit }}$	2					
	PSWL.bit	PSWL.bit $\leftarrow \overline{\text { PSWL.bit }}$	2	X	X	X	X	X
SET1	CY	$\mathrm{CY} \leftarrow 1$	1					1
CLR1	CY	$\mathrm{CY} \leftarrow 0$	1					0
NOT1	CY	$\mathrm{CY} \leftarrow \overline{\mathrm{CY}}$	1					X
Subroutine Linkage								
CALL	!addr16	$\begin{aligned} & (S P-1) \leftarrow(P C+3)_{H},(S P-2) \leftarrow(P C+3)_{L}, \\ & P C \leftarrow \text { addr16, SP SP }-2 \end{aligned}$	3					
	rp1	$\begin{aligned} & (S P-1) \leftarrow(P C+2)_{H},(S P-2) \leftarrow(P C+2)_{L}, \\ & P C_{H} \leftarrow r 1_{H}, P C_{L} \leftarrow r p 1_{L}, S P \leftarrow S P-2 \\ & \hline \end{aligned}$	2					
	[rp1]	$\begin{aligned} & (S P-1) \leftarrow(P C+2)_{H},(S P-2) \leftarrow(P C+2) L \\ & P C_{H} \leftarrow(r p 1+1), P C_{L} \leftarrow(r p 1), S P \leftarrow S P-2 \end{aligned}$	2					
CALLF	!addr11	$\begin{aligned} & (S P-1) \leftarrow(P C+2)_{H},(S P-2) \leftarrow(P C+2) L \\ & \mathrm{PC}_{15-11} \leftarrow 00001, \mathrm{PC}_{10-0} \leftarrow \text { addr11, } S P \leftarrow S P-2 \\ & \hline \end{aligned}$	2					
CALLT	[addr5]	$\begin{aligned} & (S P-1) \leftarrow(P C+1)_{H},(S P-2) \leftarrow(P C+1) L, \\ & \mathrm{PC}_{H} \leftarrow(T P F \times 8000 H+2 \times \text { addr5 }+41 H), \\ & \mathrm{PC}_{\mathrm{L}} \leftarrow(\mathrm{TPF} \times 8000 \mathrm{H}+2 \times \text { addr5 }+40 \mathrm{H}), \mathrm{SP} \leftarrow \\ & \mathrm{SP}-2 \end{aligned}$	1					
BRK		$\begin{aligned} & (S P-1) \leftarrow P S W H,(S P-2) \leftarrow P S W L,(S P- \\ & 3) \leftarrow(P C+1)_{H},(S P-4) \leftarrow(P C+1)_{L} \\ & P C_{L} \leftarrow(003 E H), P C_{H} \leftarrow(003 F H), S P \leftarrow S P-4, \\ & I E \leftarrow 0 \end{aligned}$	1					
RET		$P C_{L} \leftarrow(S P), P C_{H} \leftarrow(S P+1), S P \leftarrow S P+2$	1					
RETB		$\begin{aligned} & \mathrm{PC}_{\mathrm{L}} \leftarrow(\mathrm{SP}), \mathrm{PC}_{H} \leftarrow(S P+1), \mathrm{PSWL} \leftarrow(S P+2), \\ & \mathrm{PSWH} \leftarrow(\mathrm{SP}+3), \mathrm{SP} \leftarrow \mathrm{PP}+4 \end{aligned}$	1	R	R	R	R	R
RETI		$\begin{aligned} & \mathrm{PC}_{\mathrm{L}} \leftarrow(\mathrm{SP}), \mathrm{PC}_{H} \leftarrow(\mathrm{SP}+1), \mathrm{PSWL} \leftarrow(\mathrm{SP}+2), \\ & \mathrm{PSWH} \leftarrow(\mathrm{SP}+3), \mathrm{SP} \leftarrow \mathrm{SP}+4 \end{aligned}$	1	R	R	R	R	R
Stack Manipulation								
PUSH	sfrp	$(S P-1) \leftarrow \operatorname{sfr}_{H},(S P-2) \leftarrow \operatorname{sfr}_{L}, S P \leftarrow S P-2$	3					
	post	$\begin{aligned} & \left\{(S P-1) \leftarrow r p_{H},(S P-2) \leftarrow r p P_{L}, S P \leftarrow S P-2\right\} x \\ & n(\text { Note } 5) \end{aligned}$	2					
	PSW	$(S P-1) \leftarrow \mathrm{PSWH},(\mathrm{SP}-2) \leftarrow \mathrm{PSWL}, \mathrm{SP} \leftarrow \mathrm{SP}-2$	1					

μ PD78322 Family

Instruction Set (cont)

Mnemonic	Operand	Operation	Bytes	Flags				
				S	z	AC	P/V	CY
Stack Manipulation (cont)								
PUSHU	post	$\begin{aligned} & \left\{(U P-1) \leftarrow r p p_{H},(U P-2) \leftarrow r p p_{L}, U P \leftarrow U P-2\right\} x \\ & n(\text { Note 5) } \end{aligned}$	2					
POP	sfrp	sfr $\leftarrow \leftarrow(\mathrm{SP}), \mathrm{sfr}_{\mathrm{H}} \leftarrow(\mathrm{SP}+1), \mathrm{SP} \leftarrow \mathrm{SP}+2$	3					
	post	$\begin{aligned} & \left\{\mathrm{rpp}_{L} \leftarrow(\mathrm{SP}), \mathrm{rpp}_{H} \leftarrow(\mathrm{SP}+1), \mathrm{SP} \leftarrow \mathrm{SP}+2\right\} \times n \\ & \text { (Note 5) } \end{aligned}$	2					
	PSW	$P S W L \leftarrow(S P), P S W H \leftarrow(S P+1), S P \leftarrow S P+2$	1	R	R	R	R	R
POPU	post	$\begin{aligned} & \left\{\mathrm{rpp}_{L} \leftarrow(\mathrm{UP}), \mathrm{rpp}_{H} \leftarrow(\mathrm{UP}+1), \mathrm{UP} \leftarrow \mathrm{UP}+2\right\} \times n \\ & (\text { Note } 5) \end{aligned}$	2					
MOVW	SP, \#word	$\mathrm{SP} \leftarrow$ word	4					
	SP, AX	$\mathrm{SP} \leftarrow \mathrm{AX}$	2					
	AX, SP	$A X \leftarrow S P$	2					
INCW	SP	$S P \leftarrow S P+1$	2					
DECW	SP	$S P \leftarrow S P-1$	2					

Pin Level Test

| CHKL | sfr | (Pin level) \forall (internal signal level) | 3 | X | X | P | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CHKLA | sfr | $\mathrm{A} \leftarrow($ Pin level) \forall (internal signal level) | 3 | X | X | | P |

Unconditional Branch

BR	!addr16	PC \leftarrow addr16	3
	rp1	$P C_{H} \leftarrow r p 1_{H}, \mathrm{PC}_{L} \leftarrow \mathrm{rp} 1_{L}$	2
	[rp1]	$P C_{H} \leftarrow(\mathrm{rp1} 1+1), \mathrm{PC}_{\mathrm{L}} \leftarrow(\mathrm{rp1})$	2
	\$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+2+\mathrm{jdisp} 8$	2
Conditional Branch			
BC, BL	\$addr16	$P C \leftarrow P C+2+$ jdisp8 if $\mathrm{CY}=1$	2
BNC, BNL	\$addr16	$P C \leftarrow P C+2+$ jdisp8 if $C Y=0$	2
BZ, BE	\$addr16	$P C \leftarrow P C+2+$ jdisp8 if $Z=1$	2
BNZ, BNE	\$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+2+$ jdisp8 if $Z=0$	2
BV, BPE	\$addr16	$P C \leftarrow P C+2+$ jdisp8 if $P / V=1$	2
BNV, BPO	\$addr16	$P C \leftarrow P C+2+$ jdisp8 if $P / V=0$	2
BN	\$addr16	$P C \leftarrow P C+2+$ jdisp8 if $S=1$	2
BP	\$addr16	$P C \leftarrow P C+2+$ jdisp8 if $S=0$	2
BGT	\$addr16	$P C \leftarrow P C+3+j d i s p 8$ if (P/V $\forall \mathrm{S}) \vee \mathrm{Z}=0$	3
BGE	\$addr16	$P C \leftarrow P C+3+$ jdisp8 if $P / V \forall S=0$	3
BLT	\$addr16	$P C \leftarrow P C+3+$ jdisp8 if $P / V \forall S=1$	3
BLE	\$addr16	$P C \leftarrow P C+3+j d i s p 8$ if $(P / V \forall S) \vee Z=1$	3
BH	\$addr16	$P C \leftarrow P C+3+j d i s p 8$ if $Z \vee C Y=0$	3
BNH	\$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+3+$ jdisp8 if $Z \vee C Y=1$	3

Instruction Set (cont)

Mnemonic	Operand	Operation	Bytes	Flags				
				S	z	AC	P/V	CY
Conditional Branch (cont)								
BT	saddr.bit, \$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+3+\mathrm{jdisp8}$ if (saddr.bit) $=1$	3					
	sfr.bit, \$addr16	$P C \leftarrow P C+4+j d i s p 8$ if sfr.bit $=1$	4					
	A.bit, \$addr16	$P \mathrm{PC} \leftarrow \mathrm{PC}+3+$ jdisp8 if $\mathrm{A} . \mathrm{bit}=1$	3					
	X.bit, \$addr16	$P C \leftarrow P C+3+$ jdisp8 if $\mathrm{X} . \mathrm{bit}=1$	3					
	PSWH.bit, \$addr16	$P C \leftarrow P C+3+$ jdisp8 if PSWH.bit $=1$	3					
	PSWL.bit, \$addr16	$P C \leftarrow P C+3+$ jdisp8 if PSWL.bit $=1$	3					
BF	saddr.bit, \$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+4+$ jdisp8 if (saddr.bit) $=0$	4					
	sfr.bit, \$addr16	$P C \leftarrow P C+4+$ jdisp8 if sfr.bit $=0$	4					
	A.bit, \$addr16	$P C \leftarrow P C+3+$ jdisp8 if A.bit $=0$	3					
	X.bit, \$addr16	$P C \leftarrow P C+3+$ jdisp8 if X . bit $=0$	3					
	PSWH.bit, \$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+3+$ jdisp8 if PSWH.bit $=0$	3					
	PSWL.bit, \$addr16	$P C \leftarrow P C+3+j d i s p 8$ if PSWL.bit $=0$	3					
BTCLR	saddr.bit, \$addr16	$P C \leftarrow P C+4+j d i s p 8$ if (saddr.bit) $=1$ then reset (saddr.bit)	4					
	sfr.bit, \$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+4+$ jdisp8 if sfr.bit $=1$ then reset sfr.bit	4					
	A.bit, \$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+3+$ jdisp8 if A.bit $=1$ then reset A.bit	3					
	X.bit, \$addr16	$P C \leftarrow P C+3+$ jdisp8 if $\mathrm{X} . \mathrm{bit}=1$ then reset $\mathrm{X} . \mathrm{bit}$	3					
	PSWH.bit, \$addr16	$P C \leftarrow P C+3+j d i s p 8$ if PSWH.bit $=1$ then reset PSWH.bit	3					
	PSWL.bit, \$addr16	PC $\leftarrow P C+3+$ jdisp8 if PSWL.bit $=1$ then reset PSWL.bit	3	X	X	X	X	X
BFSET	saddr.bit, \$addr16	$\begin{aligned} & \mathrm{PC} \leftarrow \mathrm{PC}+4+\text { jdisp8 if (saddr.bit) }=0 \text { then set } \\ & \text { (saddr.bit) } \end{aligned}$	4					
	sfr.bit, \$addr16	$P C \leftarrow P C+4+$ jdisp8 if sfr.bit $=0$ then set sfr.bit	4					
	A.bit, \$addr16	$P C \leftarrow P C+3+$ jdisp8 if A.bit $=0$ then set A.bit	3					
	X.bit, \$addr16	$P C \leftarrow P C+3+$ jdisp8 if X.bit $=0$ then set X.bit	3					
	PSWH.bit, \$addr16	$P C \leftarrow P C+3+j d i s p 8$ if PSWH.bit $=0$ then set PSWH.bit	3					
	PSWL.bit, \$addr16	$P C \leftarrow P C+3+j d i s p 8$ if PSWL.bit $=0$ then set PSWL.bit	3	X	X	X	X	X
$\overline{\text { DBNZ }}$	r2, \$addr16	$\mathrm{r} \leftarrow \leftarrow \mathrm{r} 2-1$, then $\mathrm{PC} \leftarrow \mathrm{PC}+2+$ jdisp8 if $(\mathrm{r} 2) \neq 0$	2					
	saddr, \$addr16	$\begin{aligned} & \text { (saddr) } \leftarrow \text { (saddr) }-1 \text {, then PC } \leftarrow P C+3+\text { jdisp8 } \\ & \text { if (saddr) } \neq 0 \end{aligned}$	3					
Context Switching								
BRKCS	RBn	$\begin{aligned} & \mathrm{RBS}_{2-0} \leftarrow n, \mathrm{PC}_{H} \leftrightarrow R 5, P C_{L} \leftrightarrow R 4, R 7 \leftarrow P S W H, \\ & R 6 \leftarrow P S W L, R S S \leftarrow 0, I E \leftarrow 0 \end{aligned}$	2					
RETCS	!addr16	$P C_{H} \leftarrow R 5, P C_{L} \leftarrow R 4, R 5 \leftarrow \operatorname{addr}^{16} \epsilon_{H},$ R4 \leftarrow addr16 L, PSWH \leftarrow R7, PSWL \leftarrow R6 (priority change)	3	R	R	R	R	R
RETCSB	!addr16	$\mathrm{PC}_{\mathrm{H}} \leftarrow \mathrm{R} 5, \mathrm{PC} \mathrm{L}_{\mathrm{L}} \leftarrow \mathrm{R} 4, \mathrm{R} 5 \leftarrow$ addr16 H_{H}, R4 \leftarrow addr16 6 , PSWH \leftarrow R7, PSWL \leftarrow R6 (no priority change)	4	R	R	R	R	R

Instruction Set (cont)

			Flags					
Mnemonic	Operand	Operation	Bytes	S	z	AC	P / V	CY

String Manipulation

MOVM	[DE+], A	$(\mathrm{DE}+) \leftarrow \mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$	2					
	[DE-], A	(DE-) $\leftarrow \mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$	2					
MOVBK	[DE+], [HL+]	$(\mathrm{DE}+) \leftarrow(\mathrm{HL}+), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$	2					
	[DE-], [HL-]	$(\mathrm{DE}-) \leftarrow(\mathrm{HL}-), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$	2					
XCHM	[DE+], A	$(\mathrm{DE}+) \leftrightarrow \mathrm{A}, \mathrm{C} \leftarrow \mathrm{C-1}$ End if $\mathrm{C}=0$	2					
	[DE-], A	(DE-) $\leftrightarrow A, C \leftarrow C-1$ End if $C=0$	2					
XCHBK	$[D E+],[H L+]$	$(\mathrm{DE}+) \leftrightarrow(\mathrm{HL}+), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$	2					
	[DE-], [HL-]	$(\mathrm{DE}-) \leftrightarrow(\mathrm{HL}-), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$	2					
CMPME	[DE+], A	$(\mathrm{DE}+)-\mathrm{A}, \mathrm{C} \leftarrow \mathrm{C-1}$ End if $\mathrm{C}=0$ or $\mathrm{Z}=0$	2	X	X	X	V	X
	[DE-], A	(DE-) - A, $\mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{Z}=0$	2	X	X	X	V	X
CMPBKE	[DE+], [HL+1]	$(\mathrm{DE}+)-(\mathrm{HL}+), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{Z}=0$	2	x	x	x	V	x
	[DE-], [HL-]	(DE-) - (HL-), $\mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{Z}=0$	2	x	x	x	V	x
CMPMNE	[DE+], A	$(\mathrm{DE}+)-\mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $Z=1$	2	X	X	X	V	X
	[DE-], A	(DE-) - A, $C \leftarrow C-1$ End if $C=0$ or $Z=1$	2	X	X	x	V	x
CMPBKNE	[DE+], [HL+]	($\mathrm{DE}+$) - ($\mathrm{HL}+$), $\mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $Z=1$	2	X	X	X	V	x
	[DE-], [HL-]	(DE-) $-(\mathrm{HL}-$), $\mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{Z}=1$	2	X	X	X	V	X
CMPMC	[DE+], A	($\mathrm{DE}+$) $-\mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{CY}=0$	2	X	X	X	\checkmark	x
	[DE-], A	(DE-) - $\mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{CY}=0$	2	X	X	X	v	X
CMPBKC	[DE+], [HL+1]	$(\mathrm{DE}+)-(\mathrm{HL}+), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{CY}=0$	2	X	X	X	V	X
	[DE-], [HL-]	(DE-) - (HL-), $\mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{CY}=0$	2	X	X	X	V	X
CMPMNC	[DE+], A	$(\mathrm{DE}+)-\mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{CY}=1$	2	X	X	X	V	X
	[DE-], A	$(\mathrm{DE}-)-\mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{CY}=1$	2	X	X	X	V	X
CMPBKNC	$[\mathrm{DE}+],[\mathrm{HL}+]$	$(\mathrm{DE}+)-(\mathrm{HL}+), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{CY}=1$	2	X	X	X	V	X
	[DE-], [HL-]	(DE-) $-(\mathrm{HL}-), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{CY}=1$	2	X	X	X	V	X

CPU Control

MOV	STBC, \#byte	STBC \leftarrow byte (Note 6)	4
	WDM, \#byte	WDM \leftarrow byte (Note 6)	4
SWRS		RSS $\leftarrow \overline{\text { RSS }}$	1
SEL	RBn	$R B S_{2-0} \leftarrow \mathrm{n}$, RSS $\leftarrow 0$	2
	RBn, ALT	$\mathrm{RBS}_{2-0} \leftarrow \mathrm{n}$, RSS $\leftarrow 1$	2
NOP		No operation	1
EI	IE $\leftarrow 1$ (Enable interrupt)	1	
DI	IE $\leftarrow 0$ (Disable interrupt)	1	

Instruction Set (cont)

Notes:

(1) A special instruction is used to write to STBC and WDM.
(2) One byte move instruction when [DE], [HL], [DE+], [DE-], [HL+], or [HL-] is specified for mem.
(3) 16-bit signed multiply instruction
(4) Addressing range is OFEOOH to OFEFFH.
(5) rpp refers to register pairs specified in post byte. " n " is the number of register pairs specified in post byte.
(6) Trap if data bytes in operation code are not one's complement. If trap, then:
$(\mathrm{SP}-1) \leftarrow \mathrm{PSWH},(\mathrm{SP}-2) \leftarrow \mathrm{PSWL},(\mathrm{SP}-3) \leftarrow(\mathrm{PC}-4)_{\mathrm{H}}$, $(\mathrm{SP}-4) \leftarrow(\mathrm{PC}-4)_{L}, \mathrm{PC}_{\mathrm{L}} \leftarrow(003 \mathrm{CH}), \mathrm{PC}_{H} \leftarrow(003 \mathrm{DH})$.
$S P \leftarrow S P-4, I E \leftarrow 0$.

Description

The μ PD78350, μ PD78352A, and μ PD78P352 are members of the K-Series ${ }^{\circledR}$ of microcontrollers. These 16-/8bit microcontrollers-with a minimum instruction time of 125 ns at 32 MHz (160 ns at 25 MHz for the μ PD78350)-are designed for high-speed, real-time process control. They feature a 16-bit CPU, an 8-bit external data bus, eight banks of main registers, an advanced interrupt handling facility, and a powerful set of memory-mapped on-chip peripherals. A 16-bit multiply and accumulate instruction provides hardware convolution capability. On-board memory includes 640 bytes of RAM, 32 K bytes of mask ROM in the μ PD78352A, and 32K bytes of UV EPROM or one-time programmable (OTP) ROM in the μ PD78P352.
The advanced interrupt handling facility has four levels of programmable hardware-priority control and three methods of servicing interrupt requests, including vectoring, hardware context switching, and macro service. The macro service facility reduces the CPU overhead involved in servicing peripheral interrupts by transferring data between the memory-mapped special function registers (SFRs) and memory without the use of time consuming interrupt service routines. In addition, the macro service facility can be used to perform certain CPU functions, such as event counting and math-oriented data alterations.

The combination of high-speed hardware convolution capability and context switching, eight register banks, and the macro service facility makes these devices ideal for applications in the hard-disk drive and tape drive markets as well as the automotive and industrial control/robotics markets.
K-Series is a registered trademark of NEC Electronics Inc.

Features

- Complete single-chip microcontroller
- 16-bit ALU
- 640 bytes of RAM
- 32 K bytes of mask ROM (μ PD78352A)
- 32 K bytes of UV EPROM or OTP ROM (μ PD78P352)
- Powerful instruction set
- 16-bit unsigned and signed multiply
- 16-bit unsigned divide
- 16-bit multiply and accumulate instruction
-1-bit and 8-bit logic instructions
—String instructions
- Minimum instruction time
-160 ns at 25 MHz ($\mu \mathrm{PD} 78350$)
-125 ns at 32 MHz (μ PD78352A/P352)
- 5-byte instruction prefetch queue
- Memory expansion
- 8085 bus-compatible
- 64K-byte address space
- Large I/O capacity
_Up to 30 I/O port lines (μ PD78350)
- Up to 50 I/O port lines (μ PD78352A/P352)
- Memory-mapped, on-chip peripherals (special function registers)
- Timer/counter unit
- 16-bit free-running timer:

Two 16-bit capture registers;
Two external interrupt/capture lines

- 16-bit timer/event counter:

One 16-bit compare register;
One external event counter line

- 16-bit interval timer:

One 16-bit compare register

- Two 8-bit precision pulse-width modulated (PWM) output lines
- Programmable priority interrupt controller (four levels)
- Three methods of interrupt service
- Vectored interrupts
- Context switching with hardware register bank switch
- Macro service mode with choice of five different functions
- Watchdog timer with dedicated output
- STOP and HALT standby functions
- Single 5 -volt power supply

Ordering Information

Part Number	ROM	Package	Package Drawing	
μ PD78350GC-3BE	ROMless	64-pin plastic QFP (3.0-mm height)	P64GC-80-3BE	
μ PD78352AG-xxx-22	32K mask ROM	64-pin plastic QFP (1.7-mm height)	P64G-80-22-1	
μ PD78P352G-22	32K OTP ROM		64-pin ceramic LCC with window	X80KW-80B
μ PD78P352KK	32K UV EPROM			

$x x x$ indicates ROM code suffix.

Pin Configurations

64-Pin Plastic QFP (uPD78350)

Pin Configurations (cont)

64-Pin Plastic QFP and Ceramic LCC (μ PD78352A/P352)

Pin Functions; Normal Operating Mode

Symbol	Function	Alternate Symbol	Alternate Function
$\mathrm{PO}_{0}-\mathrm{PO}_{7}$	Port 0; 8-bit, bit-selectable I/O port		..
$\mathrm{P1}_{0}-\mathrm{P1}_{7}$	Port 1; 8-bit, bit-selectable 1/O port		
$\mathrm{P} 2_{0}$	Port 2; 6-bit input port	NMI	External nonmaskable interrupt
$\begin{aligned} & \mathrm{P} 2_{1} \\ & \mathrm{P} 2_{2} \\ & \mathrm{P} 2_{3} \\ & \mathrm{P} 2_{4} \end{aligned}$		INTPO INTP1 INTP2 INTP3	Maskable external interrupts
P_{2}		TI	External input for timer 1
$\begin{aligned} & \mathrm{P} 3_{0} \\ & \mathrm{P} 3_{1} \end{aligned}$	Port 3; 8-bit, bit-selectable 1/O port	PWMO PWM1	Pulse-width modulated outputs
$\mathrm{P3}_{2}-\mathrm{P}_{7}$			
$\mathrm{P} 4_{0}-\mathrm{P} 4_{7}$	Port 4; byte-selectable I/O port (μ PD78352A/ P352)	$A D_{0}-A D_{7}$	Low-order 8 bits of the multiplexed external address/data bus
$\mathrm{P5}_{0}-\mathrm{P} 57$	Port 5; bit-selectable I/O port (μ PD78352A/P352)	$A_{8}-A_{15}$	High-order 8 bits of the external address bus
$\mathrm{P9}_{0}$	Port 9; 4-bit, bit-selectable I/O port (μ PD78352A/P352). For 78350, $\mathrm{P9}_{0}$ functions as $\overline{\mathrm{RD}}$ and Pg_{1} functions as $\overline{\mathrm{WR}}$ signals only. $\mathrm{P9}_{2}$ and $\mathrm{P9}_{3}$ are not provided for 78350 .	$\overline{\mathrm{RD}}$	External read strobe output
$\mathrm{P9}_{1}$		$\overline{W R}$	External write strobe output
$\begin{aligned} & \mathrm{P9}_{2} \\ & \mathrm{P} 9_{3} \end{aligned}$		$\begin{aligned} & \text { IC } \\ & \text { IC } \end{aligned}$	Internally connected; must be left open (μ PD78350).
ASTB	Address strobe output; used to latch address for external memory.		
CLKOUT	Output of the system clock		
IC	Internally connected; must be left open.		
MODEO	Connect to $V_{D D}$ for μ PD78350 and μ PD78P352 in programing mode. Connect to $V_{S S}$ for normal operation of μ PD78352A/P352. The level of this pin cannot be changed during normal operation.	.	
MODE1	Always connect to V_{SS}. The level of this pin cannot be changed during normal operation.		
RESET	External system reset input		
$\overline{\overline{\text { WAIT }}}$	A low-level input adds wait states to the external bus cycle; used by very-slow memory and/or peripherals (only for 78352A/P352).		
$\overline{\text { WDTO }}$	Open-drain output from the watchdog timer		
X1	Crystal connection or external clock input		
X2	Crystal connection or open for external clock		
$\mathrm{V}_{\text {DD }}$	+5-volt power input		
$\mathrm{V}_{\text {SS }}$	Ground		

Block Diagram

* 32K bytes mask ROM on μ PD78352A;

32 K bytes UV EPROM or OTP ROM on μ PD78P352.

FUNCTIONAL DESCRIPTION

Central Processing Unit

The central processing unit (CPU) of the μ PD78352 family features 16 -bit arithmetic including 16×16-bit multiply, both unsigned and signed, and 32×16-bit unsigned divide (producing a 32 -bit quotient and a 16 -bit remainder). The signed multiply executes in 1.12 $\mu \mathrm{s}$ and the divide in $3.44 \mu \mathrm{~s}$ at 25 MHz (0.875 and 2.69 $\mu \mathrm{s}$, respectively, for $\mu \mathrm{PD} 78352 \mathrm{~A} / \mathrm{P} 352$ at 32 MHz).

Also, a multiply-and-accumulate instruction, "MACW n ," performs a signed multiply on factors from a pair of tables and sums the results in the 32-bit register AXDE. The total execution time for 10 terms is $17.2 \mu \mathrm{~s}$ at 25 MHz for the $\mu \mathrm{PD} 78350$ and $13.44 \mu \mathrm{~s}$ at 32 MHz for the μ PD78352A/P352.

A CALLT vector table and a CALLF area decrease the number of bytes in the call instructions for commonly used subroutines. A 1-byte call instruction can access up to 32 subroutines through their addresses in the CALLT vector table. A 2-byte call instruction can access any routine beginning in a specific CALLF area.
The internal system clock ($\mathrm{f}_{\mathrm{CLK}}$) is generated by dividing the oscillator frequency by 2. Therefore, at the maximum oscillator frequency of 25 MHz for the μ PD78350, the clock is 12.5 MHz . Since instructions execute in two or more cycles, the minimum instruction time is 160 ns . For the μ PD78352A/P352 running at 32 MHz , the clock is 16 MHz and the minimum instruction time is 125 ns .

Internal RAM

The μ PD78352 family has total of 640 bytes of internal RAM. The upper 256 -byte area (FEOOH-FEFFH) features high-speed access of one or two internal system clocks per word of data depending on the addressing mode and is known as "Main RAM." The remainder (FC 80 H FDFFH) is accessed at the same speed as external memory (1 byte per three internal system clocks) and is known as "Peripheral RAM." The general register banks and the macro service control words are stored in Main RAM. The remainder of Main RAM and any unused register bank locations are available for general storage.

Main RAM Access Speed

Access Mode	Internal System Clocks (fCLK)
Memory access	2
Saddr access	1
Register access	1

Internal Program Memory

The μ PD78352A contains 32K bytes of mask ROM; μ PD78P352 contains 32K bytes of UV EPROM or onetime programmable ROM. Instructions are fetched from this program memory at a maximum rate of 1 byte every two internal system clocks. The μ PD78350 does not have internal program memory.

External Memory

The $\mu \mathrm{PD} 78352$ family has a 64 K -byte address space. The μ PD78352A/P352 can access $0,256,4 \mathrm{~K}, 16 \mathrm{~K}$, or 32 K bytes of external memory in the area from 8000 H to FDFFH. External memory can be either ROM, RAM, or peripheral as required. The μ PD78352A/P352 has an 8 -bit wide external data bus and a 16 -bit wide external address bus. The low-order 8 bits of the address bus are multiplexed to provide the 8 -bit data bus at I/O port 4.

High-order address bits are taken from port 5 as required. Address latch, read, and write strobes are also provided. In the μ PD78352A/P352, the memory mode register (MM) controls the size of the external memory It can be programmed to use $0,4,6$, or 8 bits from port 5 for the high-order address. Any remaining port 5 bits can be used for $1 / O$.
The μ PD78350 does not have ports 4 and 5 . It has eight dedicated high-order address lines and eight dedicated address/data lines. All memory below address FC80H must be external, and the MM register is not used.

The programmable wait control register (PWC) allows the programmer to specify one or two additional wait states if they are required for slow-speed memory or external peripheral devices. These wait states for internal and external memory are specified independently in 16K-blocks. If additional wait states are required, an external WAIT pin is provided.

In addition, by using the AWO and AW1 bits of the PWC register, the width of the ASTB signal can be increased by one cycle to allow more precharge time for dynamic RAMs or more address decoding time. This address wait signal can be enabled in 32K-byte blocks. See figure 1 .

Figure 1. Programmed Wait Control Register

* Data in the SFR external access area, FFDOH-FFDFH, cannot be fetched.

32K Memory Block	Wait Control Register Bits	Address Wait	
$0000 \mathrm{H}-7 \mathrm{FFFH}$	AW0	0	Disabled
		1	Enabled
$8000 \mathrm{H}-\mathrm{FC} 7 \mathrm{FH}$	AW1	0	Disabled

Program Fetch

The μ PD78352 family devices allow opcode fetch in the area between 0000 H and FDFFH; they contain a 5-byte instruction prefetch queue. The bus control unit can fetch an instruction byte from memory during cycles in which the execution unit is not using the memory bus. If the instruction byte is fetched from on-chip memory, two internal system clocks are required for each byte, and the queue can hold 5 bytes. If the instruction is fetched from external memory, three internal system clocks are required for each byte, and the queue can hold 3 bytes. For programs located in internal memory, the PWC register also can be programmed to allow 1 byte to be fetched every two, three, four, or five internal system clocks.

CPU Control Registers

Program Counter. The program counter is a 16-bit register that holds the address of the next instruction to be executed. After reset line goes high, the program counter is loaded with the address stored in locations 0000 H and 0001 H .

Stack Pointer. The stack pointer is a 16 -bit register that holds the address of the last item pushed onto the stack. It is decremented before new data is pushed onto the stack and incremented after data is popped off the stack.

CPU Control Word. The CPU control word (CCW) selects the origin of the interrupt vector and CALLT tables. If the TPF bit (bit 1) is zero, the origin is 0000 H ; if the TPF bit is one, the origin is 8000 H . The CCW is a special function register located at address FFC1H. The addresses of the vectors for the $\overline{\text { RESET input, }}$ operation-code trap, and BRK instruction are fixed at $0000 \mathrm{H}, 003 \mathrm{CH}$, and 003 EH , respectively, and are not altered by the TPF bit.

Program Status Word. The program status word (PSW) is a 16-bit register containing flags that are set or reset depending on the results of an instruction. This register can be written to or read from 8 bits at a time. The high-order 8 bits are called the PSWH and the low-order 8 bits are called the PSWL. The individual flags can also be manipulated on a bit-by-bit basis. The assignment of PSW bits follows.

PSWH	7	6	5	4	3	2	1	0
	UF	RBS2	RBS1	RBSO	0	0	0	0
	7	6	5	4	3	2	1	0
PSWL	S	z	RSS	AC	IE	P/V	0	CY

UF User flag

RBS2-RBS0 Active register bank number
$S \quad$ Sign flag (1 if last result was negative)
Z
RSS
AC
IE
P/V
CY
Zero flag (1 if last result was zero)
Register set selection flag Auxiliary carry flag (carry out of 3 bit) Interrupt enable flag
Parity or arithmetic overflow flag
Carry bit (or 1-bit accumulator for logic)

General Registers

There are sixteen 8-bit general registers, which can also be paired to function as 16 -bit registers. A complete set of 16 registers is mapped into each of eight program-selectable register banks stored in Main RAM. Three bits in the PSW specify the active register bank.

Registers have functional names (like A, X, B, C for 8-bit registers and $A X, B C$ for 16-bit registers) and absolute names (like R1, R0, R3, R2 for 8-bit registers and RP0, RP1 for 16-bit registers). Each instruction determines whether a register is referred to by functional or absolute name and whether it is 8 or 16 bits.

Two possible relationships may exist between the absolute and functional names of the first four register pairs. The RSS bit in the PSW determines which of these is active at any time. The effect is that the accumulator and counter registers can be saved, and a new set can be specified by toggling the RSS bit. Figure 2 illustrates the general register configuration.

Figure 2. General Registers

Addressing

The μ PD78352 family features 1 -byte addressing of both the special function registers and the portion of on-chip RAM from FE2OH to FEFFH. The 1-byte sfr addressing accesses the entire SFR area, while the 1-byte saddr addressing accesses the first 32 bytes of the SFR area and 224 bytes of the Main RAM.
The 16-bit SFRs and words of memory in these areas can be addressed by 1 -byte saddrp addressing, which is valid for even addresses only. Since many instructions use 1-byte addressing, access to these locations is almost as fast and as versatile as access to the general registers.

There are nine addressing modes for data in main memory: direct, register, register indirect with autoincrement or autodecrement, saddr, saddr indirect, SFR, based, indexed, and based indexed. There are also 8 -bit and 16 -bit immediate operands. Figure 3 is the memory map of the μ PD78352 family.

Figure 3. Memory Map

Special Function Registers

The input/output ports, timers, capture and compare registers, and mode and control registers for both the peripherals and the CPU are collectively known as special function registers. They are all memorymapped between FFOOH and FFFFH and can be accessed either by main memory addressing or by 1 -byte SFR addressing. All can be read under program control, and most can also be written. They are either 8 or

16 bits, as required, and many of the 8-bit registers are capable of single-bit access as well.

Locations FFDOH through FFDFH are known as the external access area. Registers in external circuitry, interfaced and mapped to these addresses, can be addressed with SFR addressing. Table 1 lists the special function registers.

Table 1. Special Function Registers

Address	Register (SFR)	Symbol	R/W	Access Units (Bits)			State After Reset
				1	8	16	
FFOOH	Port 0	PO	R/W	x	x	-	Undefined
FF01H	Port 1	P1	R/W	x	x	-	Undefined
FF02H	Port 2	P2	R	x	x	-	Undefined
FF03H	Port 3	P3	R/W	x	X	-	Undefined
FF04H	Port 4 (Note 1)	P4	R/W	x	x	-	Undefined
FF05H	Port 5 (Note 1)	P5	RNW	x	x	-	Undefined
FF09H	Port 9 (Note 1)	P9	R/W	x	x	-	Undefined
FF10H-FF11H	Compare register 00	СT00	R/W	-	-	x	Undefined
FF12H-FF13H	Compare register 01	CT01	R/W	-	-	x	Undefined
FF14H-FF15H	Compare register 10	CM10	R/W	-	-	x	Undefined
FF1EH-FF1FH	Compare register 20	CM20	R/W	-	-	x	Undefined
FF20H	Port 0 mode register	PMO	R/W	x	x	-	FFH
FF21H	Port 1 mode register	PM1	R/W	x	x	-	FFH
FF23H	Port 3 mode register	PM3	R/W	x	x	-	FFH
FF25H	Port 5 mode register (Note 1)	PM5	R/W	x	x	-	FFH
FF29H	Port 9 mode register (Note 1)	PM9	R/W	x	x	-	xFH
FF30H-FF31H	Timer register 0	TMO	R	-	-	x	OOH
FF32H-FF 33H	Timer register 1	TM1	R	-	-	x	OOH
FF34H-FF35H	Timer register 2	TM2	R	-	-	x	OOH
FF38H	Timer control register 0	TMCO	R/W	x	x	-	OOH
FF39H	Timer control register 1	TMC1	R/W	x	x	-	OOH
FF3CH	External interrupt mode register 0	INTMO	R/W	x	x	-	OOH
FF3DH	External interrupt mode register 1	INTM1	RNW	x	x	-	OOH
FF43H	Port 3 mode control register 0	PMC3	R/W	x	x	-	OOH
FF62H	Port read control register	PRDC	R/W	x	x	-	OOH
FF64H	PWM control register	PWMC	RNW	x	x	-	OOH
FF66H	PWM buffer register 0	PWM0	R/W	x	x	-	Undefined
FF6EH	PWM buffer register 1	PWM1	R/W	x	x	-	Undefined
FFA8H	In -service priority register	ISPR	R	x	x	-	OOH
FFAAH	Interrupt mode control register	IMC	R/W	x	x	-	80 H
FFACH	Interrupt mask flag register	MKL	R/W	x	\times	-	7FH

Table 1. Special Function Registers (cont)

Address	Register (SFR)	Symbol	R/W	Access Units (Bits)			State After Reset
				1	8	16	
FFACH-FFADH	Interrupt mask flag register (Note 2)	MK	R/W	-	-	x	xx7FH
FFCOH	Standby control register (Note 3)	STBC	R/W	-	x	-	$0000 \times 000 \mathrm{~B}$
FFC1H	CPU control word	CCW	R/W	x	x	-	0 OH
FFC2H	Watchdog timer mode register (Note 3)	WDM	R/W	-	x	-	OOH
FFC4H	Memory expansion mode register	MM	R/W	x	x	-	OOH
FFC6H-FFC7H	Programmable wait control register	PWC	R/W	-	-	x	COAAH
FFDOH-FFDFH	External access area	-	R/W	x	x	-	Undefined
FFEOH	Interrupt control register (INTOV)	OVIC	R/W	x	x	-	43 H
FFE1H	Interrupt control register (INTPO)	PICO	R/W	x	x	-	43 H
FFE2H	Interrupt control register (INTP1)	PIC1	R/W	x	x	-	43 H
FFE3H	Interrupt control register (INTCM10)	CMIC10	R/W	x	x	-	43 H
FFE4H	Interrupt control register (INTCM20)	CMIC20	R/W	x	x	-	43 H
FFE5H	Interrupt control register (INTP2)	PIC2	R/W	x	x	-	43 H
FFE6H	Interrupt control register (INTP3)	PIC3	R/W	x	x	-	43 H

Notes:

(1) μ PD78352A/P352 only.
(2) Used only when a word is accessed by an instruction with the sfrp operand.

Input/Output Ports

The μ PD78350 has four I/O ports providing a total of 30 I/O lines. The μ PD78352A/P352 have an additional three $1 / O$ ports for a total of $501 / O$ lines.
Ports P0, P1, and P3 are 8-bit input/output ports and P2 is a 6 -bit input port. All the bits in P0, P1, and P3 can be individually selected for either input or output using port mode registers PMO, PM1, and PM3. Bits $\mathrm{P} 3_{0}$ and P_{1} can also be programmed for use as PWM outputs PWM0 and PWM1 by using port 3 mode control register РMC3.

Port P2 functions only in the control mode as input pins for the NMI signal, the INTPO to INTP3 interrupt signals, and the external count clock for timer 1 (TI). However, any masked interrupt automatically becomes an input
(3) These are protected registers, which can be written by a special instruction only.
line and the state of all the pins can be read by the program using a read instruction to port 2. Each pin of P2 can be programmed for rising, falling, or both rising and falling edge detection.
The output level of the P0, P1, and P3 I/O pins can be tested to determine whether they agree with the contents of the output latch. When the low-order bit of port read control register PRDC is set to 1 , the output level of the I/O pins can be read with the port still in the output mode. These data values can be compared with the data known to be in the output latch to determine if the port is functioning correctly. Figure 4 shows the structure of each port pin.
μ PD78352 Family

Figure 4. I/O Circuits
Type 1. WATT, MODEO, MODE1

The three additional input/output ports in the μ PD78352A/P352 are ports P4, P5, and P9. These ports are available if external memory or memory-mapped external circuitry is not being used. Port 4 is shared with the low-order address/data bus $\left(A D_{0}\right.$ to $\left.A D_{7}\right)$ and is byte-selectable for input or output. Port 5 is shared with the high-order address bus (A_{8} to A_{15}). Depending on the amount of external memory used, either $8,6,4$, or 0 bits are available for bit-selectablel/O. Port 9 is a 4-bit, bit-selectable I/O port. Two of its pins are shared with the read and write strobes.

Timers

The μ PD78352 family has three 16 -bit timers. Two of them count only the internal system clock; the third counts either the internal system clock or external events. Refer to the block diagram, figure 5.

Timer 0 is a 16 -bit, free-running counter that counts the internal system clock (fCLK/8) and generates an interrupt request (INTOV) when it overflows. It also has two associated capture registers, CT00 and CT01. The timer value can be captured in synchronization with external interrupt lines INTPO and INTP1, respectively. These lines can be programmed to trigger interrupts as well.

Timer 1 is a 16-bit counter serving as an interval timer or an event counter. It can count either the internal system clock ($\mathrm{f}_{\mathrm{CLK}} / 8$) or external events sensed on the Tl line. It has an associated comparator register, CM10. When the counter contents match the CM10 contents, the counter is cleared to 0 , and an interrupt request (INTCM10) is generated. The counter continues to count until disabled by software.

Timer 2 is a 16 -bit counter that serves as an interval timer. It can be programmed to count the internal system clock ($\mathrm{f}_{\mathrm{CLK}} / 4$ or $\mathrm{f}_{\mathrm{CLK}} / 8$). It also has an associated comparator register, CM20. When the counter contents match the CM20 contents, the counter is cleared to 0 and an interrupt request (INTCM20) is generated. The counter continues to count until disabled by software.

Figure 5. Timers Block Diagram

Pulse-Width Modulated Outputs

The μ PD78352 family has two high-speed, pulse-width modulated (PWM) outputs. A single 8-bit, free-running counter counts the internal system clock $\mathrm{f}_{\mathrm{CLK}} / 2$ and serves both outputs. For the μ PD78350 running at 25 MHz ($\mathrm{f}_{\mathrm{cLK}}=12.5 \mathrm{MHz}$), the resolution is 160 ns and the repetition rate is 24.4 kHz . For the μ PD78352A/P352 running at 32 MHz ($\mathrm{f}_{\mathrm{CLK}}=16 \mathrm{MHz}$), the resolution is 125 ns and the repetition rate is 31.25 kHz .
The polarity of each output can be selected under program control. Whenever the counter overflows, the CMPO and CMP1 registers are loaded from their respective PWM buffer registers and each output becomes active. When the counter value matches the value in the associated compare register, that output goes inactive. The two PWM outputs, PWM0 and PWM1, share pins with port 3 bits 0 and 1, respectively.

Figure 6. Pulse-Width Modulated Outputs

Interrupts

The μ PD78352 family has seven maskable hardware interrupt sources: four external and three internal. The four external maskable interrupts share pins with port 2. Two of them, INTPO and INTP1, can also be used to trigger capture events in registers CT00 and CT01
associated with timer 0 . In addition, there are two nonmaskable interrupts, three software interrupts, and reset. The software interrupts, generated by the BRK or BRKCS instruction and the operation code trap, are not maskable. See table 2.

Table 2. Interrupt Sources

Type of						
Request	Default	Signal			Macro Service	
Priority	Name	Source	Vector Address			
Software	-	-	Operation code trap	CPU	-	Control Word

Note:
(1) Initiates context switch

Interrupt Servicing

The μ PD78352 family provides four levels of programmable hardware priority control and three different methods of handling maskable interrupt requests: standard vectoring, context switching, and macro service. The programmer can choose the priority and mode of servicing each maskable interrupt by using the interrupt control registers.

Interrupt Control Registers

The μ PD78352 family has 10 interrupt control registers. Each maskable interrupt request has its own control register, which includes bits to specify interrupt request, interrupt mask, macro service enable, context switch enable, and priority. Priorities range from 0 (highest) to 3 . See figure 7.
There is also a mask flag register, MKL, with a bit for each maskable interrupt. Since each interrupt has two mask bits, the masking of the interrupt is the "or" function of those two bits.

Interrupt mode control register IMC can be used to enable or disable nesting of interrupts set to the lowest priority level (level 3). Inservice priority register ISPR is used by the hardware to hold the priority level of the interrupt request currently being serviced. It is manipulated by hardware only, but it can be read by software.
Finally, the IE bit of the program status word also is used to control the interrupts. If the IE bit is 0 , all maskable interrupts, but not macro service, are disabled. The IE bit can be set or cleared by the El or DI instruction, respectively, or by direct writing to the PSW. The IE bit is cleared each time an interrupt is accepted.

Figure 7. Interrupt Control Register (xxICx)

7	6	5	4
xxIFxx	xxMKxx	xxISMxx	xxCSExx
3	2	1	0
0	0	xxPRx1	xxPRx0
xxIFxx	Inter rupt Request Flag		
$\begin{aligned} & 0 \\ & 1 \end{aligned}$	No interrupt request Interrupt request received		
xxMKxx	Interrupt Mask Flag		
$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Interrupt request enabled Interrupt will be pending		
xxISMxx	Macro Service Enable		
$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Software service Macro service		
xxCSExx	Context Switch Enable		
$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Vector service Context switch		
xxPR $\times 1$	xxPRx0 Priority Specification		
0	$0 \quad$ Priority 0 (highest)		
0	1 Priority 1		
1	$0 \quad$ Priority 2		
1	1 Priority 3		

Interrupt Priority

The two nonmaskable interrupts, NMI and INTWDT, have priority over all others. Their priority relative to each other is under program control.
Four hardware-controlled priority levels are available for the maskable interrupts. Any one of the four levels can be assigned by software to each of the maskable interrupt lines. Interrupt requests of a priority higher that the processor's current priority level are accepted; requests of the same or lower priority are held pending until the processor's priority state is lowered by a return instruction from the current service routine.

By setting the PRSL bit of the IMC register to zero, it is possible to specify in software that level 3 interrupts (the lowest level) can be accepted when the processor is operating at level 3 . This nesting within a level applies to level 3 only.
Interrupt requests programmed to be handled by macro service have priority over all software interrupt service regardless of the assigned priority level, and
macro service requests are accepted even when the interrupt enable bit in the PSW is set to the disable state. See figure 8.
The "Default Priorities" listed in table 2 are fixed by hardware; they are effective only when it is necessary to choose between two interrupt requests of the same software-assigned priority. For example, the default priorities would be used after the completion of a high-priority routine if two interrupts of the same lower priority were pending.

Software interrupts, the BRK and BRKCS instructions, and the operation code trap are executed regardless of the processor's priority level and the state of the IE bit. They do not alter the processor's priority level.

Figure 8. Interrupt Service Sequence

Vectored Interrupt

When vectored interrupt is specified for a given interrupt request, (1) the program status word and the program counter are saved on the stack, (2) the processor's priority is raised to that specified for the interrupt, (3) the IE bit in the PSW is set to zero, and (4) the routine whose address is in the interrupt vector table is entered. At completion of the service routine, the RETI instruction (or RETB instruction for software interrupts) reverses the process, and the μ PD78352 family device resumes the interrupted routine.

Context Switch

When context switching (figure 9) is specified for a given interrupt, the active register bank is changed to the register bank specified by the three low-order bits of the word in the interrupt vector table. The program counter is loaded from RP2 of the new register bank,
the old program counter and program status word are saved in RP2 and RP3 of the new register bank, and the IE bit in the PSW is set to zero.

At completion of the service routine, the RETCS instruction for routines entered from hardware requests, or the RETCSB instruction for routines entered from the BRKCS instruction, reverse the process. The old program counter and program status word are restored from RP2 and RP3 of the new register bank. The entry address of the service routine, which must be specified in the 16 -bit immediate operand of these return instructions, is stored again in RP2.

Figure 9. Context Switching and Return

Macro Service

When macro service is specified for a given interrupt, the macro service hardware temporarily stops the executing program and transfers data between the special function register area and the memory space. Control is then returned to the executing program, providing a completely transparent method of interrupt service. Macro service significantly improves response time and makes it unnecessary to save any registers.

For each request on the interrupt line, one operation is performed, and an 8-bit counter is decremented. When
the counter reaches 0 , a software service routine is entered according to its specified priority. Either vectored interrupt or context switch can be specified for entry to this routine, which is known as the macro service completion routine.

Macro service is provided for all of the maskable interrupt requests, and each has a specific macro service control word stored in Main RAM. The function to be performed is specified in the control word.

The μ PD78352 family provides five different macro service functions.

Function	Description
EVTCNT	Event counter. Counts up to 256 events by incrementing or decrementing the macro service counter. When the counter reaches 00 H , the software service routine is entered.
BLKTRS	Block transfer. Transfers a byte or word of data in either direction between a specified special function register and a buffer in Main RAM (FExx).
BLKTRS-P	Block transfer with memory pointer. Transfers a byte or word of data in either direction between a specified special function register and a buffer anywhere in the 64K-byte address space.
DTADIF	Data difference. Stores the difference between the current value of a specified 16 -bit special function register and its previous value in a word buffer in Main RAM (FExx).
DTADIF-P	Data difference with memory pointer. Stores the difference between the current value of a specified 16-bit special function register and its previous value in a word buffer anywhere in the 64K-byte address space.

Standby Modes

The standby modes, HALT and STOP, reduce power consumption when CPU action is not required. In HALT mode, the CPU is stopped but the system clock continues to run. The HALT mode is released by any unmasked interrupt, an external NMI, or an external reset pulse. In STOP mode, both the CPU and the system clock are stopped, further minimizing power consumption. The STOP mode is released by either an external reset pulse or an external NMI.

The HALT and STOP modes are entered by programming the standby control register STBC. This register is a protected location and can be written to only by a special instruction. If the third and fourth bytes of the instruction are not complements of each other, the data is not written and an operation code trap interrupt occurs.

Watchdog Timer

The watchdog timer protects against inadvertent program loops. A nonmaskable interrupt occurs if the timer is not reset by the program before it overflows. At the same time, the watchdog timer output pin, $\overline{\text { WDTO, }}$ goes active low for a period of 32 system clocks. The WDTO can be connected to the RESET pin or used to control external circuitry. Three program-selectable intervals are available: $10.5,41.9$, and 167.8 ms at 25 $\mathrm{MHz} ; 8.2,32.8$, and 131.1 ms at 32 MHz .
Once started, the timer can be stopped only by an external reset. Watchdog timer mode register WDM is used to select the time interval, to set the relative priority of the watchdog timer interrupt and NMI , and to clear the timer. This register is a protected location and can be written to only by a special instruction. If the third and fourth bytes of the instruction are not complements of each other, the data is not written and an operation code trap interrupt occurs.

External Reset

The μ PD78352 family is reset by taking the RESET pin low. The reset circuit contains a noise filter to protect against spurious system resets caused by noise. On power-up, the RESET pin must remain low until the power supply reaches its operating voltage and the oscillator has stabilized. During reset, the program counter is loaded with the address contained in the reset vector table (addresses $0000 \mathrm{H}, 0001 \mathrm{H}$); program execution starts at that address upon the RESET pin going high. While RESET is low, all external lines except WDTO, CLKOUT, $V_{S S}, V_{D D}, X 1$, and X 2 are in the high-impedance state.

ELECTRICAL SPECIFICATIONS

Note: Specifications are preliminary for μ PD78352A and final for μ PD78350/P352.

Absolute Maximum Ratings

$T_{A}=25^{\circ} \mathrm{C}$

Supply voltage, V_{DD}	-0.5 to +7.0 V
Supply voltage, $\mathrm{V}_{\text {PP }}$	-0.5 to +13.5 V
Input voltage, V_{1} Except P2 $2_{0} / \mathrm{NMI}$ (A9) of μ PD78P352 $\mathrm{P}_{0} / \mathrm{NMI}(\mathrm{A} 9)$ of $\mu \mathrm{PD} 78 \mathrm{P} 352$	$\begin{array}{r} -0.5 \text { to } V_{D D}+0.5 V \\ -0.5 \text { to }+13.5 \mathrm{~V} \end{array}$
Output voltage, Vo	-0.5 to $V_{D D}+0.5 \mathrm{~V}$
Output current, low; IOL Each output pin Total	$\begin{gathered} 4.0 \mathrm{~mA} \\ 100 \mathrm{~mA} \end{gathered}$
Output current, high; I_{OH} Each output pin Total	$\begin{aligned} & -1.0 \mathrm{~mA} \\ & -20 \mathrm{~mA} \end{aligned}$
Operating temperature, TOPT $^{\text {a }}$	-10 to $+70^{\circ} \mathrm{C}$
Storage temperature, S $_{\text {STG }}$	-65 to $+150^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under $D C$ and $A C$ characteristics.

Capacitance

$T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Max	Unit	Conditions
Input pin capacitance	C_{1}	20	pF	$f=1 \mathrm{MHz}$; unmeasured pins returned to 0 V
Output pin capacitance	C_{0}	20	pF	
//O pin capacitance	ClO_{10}	20	pF	

Oscillator Conditions

$T_{A}=-10$ to $70^{\circ} \mathrm{C} ; V_{D D}=+5 \mathrm{~V} \pm 10 \%$

Oscillator	Parameter	Symbol	$\mu \mathrm{PD} 78350$		μ PD78352A/P352		Unit
			Min	Max	Min	Max	
Ceramic resonator or crystal	Oscillation frequency	f_{XX}	8	25	8	32	MHz
External clock	X 1 input frequency	${ }^{\prime} X$	8	25	8	32	MHz
	X1 clock cycle time	${ }^{t} \mathrm{CYX}$	40	125	31.25	125	ns
	X1 input rise/fall time		0	10	0	10	ns
	X 1 input high/low level width	${ }^{\text {t }}$ WXH, ${ }^{\text {W WXL }}$	15	60	10	60	ns

External Clock

DC Characteristics

$T_{A}=-10$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=+5.0 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Input voltage, low	$V_{\text {IL }}$	0		0.8	V	
Input voltage, high	$\mathrm{V}_{\mathrm{H} 1}$	2.2			V	(Note 1)
	$\mathrm{V}_{\mathrm{H} 2}$	$0.8 \mathrm{~V}_{\mathrm{DD}}$			V	(Note 2)
Output voltage, low	V_{OL}			0.45	V	$\mathrm{l}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
Output voltage, high	V_{OH}	$V_{D D}-1.0$			V	$\mathrm{l}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
Input leakage current	l_{LI}			± 10	$\mu \mathrm{A}$	$V_{1}=0$ to $V_{D D}$
Output leakage current	LO			± 10	$\mu \mathrm{A}$	$V_{O}=0$ to $V_{D D}$
$\mathrm{V}_{\text {DD }}$ supply current	IDD1		50	90	mA	Operating mode, μ PD78350
			60	87	mA	Operating mode, μ PD78352A; $\mathrm{f}_{\mathrm{XX}}=32 \mathrm{MHz}$
			80	120	mA	Operating mode, μ PD78P352; $\mathrm{f}_{\mathrm{XX}}=32 \mathrm{MHz}$
	${ }^{\text {I DD2 }}$		25	40	mA	HALT mode, $\mu \mathrm{PD} 78350$; $\mathrm{f}_{\mathrm{XX}}=25 \mathrm{MHz}$
			20	30	mA	HALT mode, μ PD78352A; $\mathrm{f}_{\mathrm{XX}}=32 \mathrm{MHz}$
			35	50	mA	HALT mode, μ PD78P352; $\mathrm{f}_{X X}=32 \mathrm{MHz}$
Data retention voltage	V ${ }_{\text {DDDR }}$	2.5			V	STOP mode
Data retention current	IDDDR		2	10	$\mu \mathrm{A}$	STOP mode; $V_{\text {DDDR }}=2.5 \mathrm{~V}$
			10	50	$\mu \mathrm{A}$	STOP mode; $\mathrm{V}_{\text {DDDR }}=5.0 \mathrm{~V} \pm 10 \%$

Notes:
(1) All except pins in Note 2.
(2) Pins $\overline{\mathrm{RESET}}, \mathrm{X} 1, \mathrm{X} 2$, INTPn, NMI, and TI.

Power Consumption, 78352A

AC Characteristics

$T_{A}=-10$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{D D}=+5.0 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{S S}=0 \mathrm{~V}$

Parameter	Symbol	$\begin{gathered} \mu \mathrm{PD} 78350 \\ \mathrm{f}_{\mathrm{XX}}=25 \mathrm{MHz} \end{gathered}$		$\begin{gathered} \mu \mathrm{PD} 78352 \mathrm{~A} / \mathrm{P} 352 \\ \mathbf{f}_{\mathrm{XX}}=32 \mathrm{MHz} \end{gathered}$		Unit	Conditions
		Min	Max	Min	Max		
External Memory Read/Write Operation							
System clock cycle time (Note 1)	${ }^{\text {t }}$ CYK	80	250	62.5	250	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
Address setup time to ASTB \downarrow	$\mathrm{t}_{\text {SAST }}$	16		7		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Note 2)
Address hold after ASTB \downarrow	$\mathrm{t}_{\text {HSTA }}$	26		11		ns	$C_{L}=100 \mathrm{pF}$
$\overline{\mathrm{RD}} \downarrow$ to address floating	$t_{\text {FRA }}$		0		0	ns	$C_{L}=100 \mathrm{pF}$
Address to data input valid	${ }^{\text {D DAID }}$		144		100	ns	$C_{L}=100 \mathrm{pF}($ Notes 2, 3)
$\overline{\mathrm{RD}} \downarrow$ to data input valid	${ }^{\text {t DRID }}$		76		49	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Note 3)
ASTB \downarrow to $\overline{\mathrm{RD}} \downarrow$ delay time	${ }^{\text {t }}$ DSTR	24		15		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
Data hold time from $\overline{R D} \uparrow$	$t_{\text {HRID }}$	0		0		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
$\overline{R D} \uparrow$ to address active	t DRA	26		25		ns	$C_{L}=100 \mathrm{pF}$
$\overline{\mathrm{RD}}$ width low	${ }^{\text {t WRL }}$	90		63		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Note 3)
ASTB width, high	${ }^{\text {t WSTH }}$	23		14		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Note 2)
$\overline{W R}$ to data output	${ }^{\text {t DWOD }}$		29		21	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
ASTB \downarrow to $\overline{W R} \downarrow$ delay	${ }^{\text {t DSTW }}$	24		15		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
Data setup time to $\overline{W R} \uparrow$	tsodw	75		57		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Note 3)
Data hold time after $\overline{W R} \uparrow$	$t_{\text {HWOD }}$	8		8		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
WR width, low	${ }^{\text {twWL }}$	90		57		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Note 3)
$\overline{\text { WAIT }}$ setup time from address	tsawt		-		107	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Note 2, 4)
$\overline{\text { WAIT }}$ setup time from $\overline{\text { RD }} \downarrow$ or $\overline{W R} \downarrow$	$\mathrm{t}_{\text {SRWR }}$		-		37	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Note 4)
$\overline{\text { WAIT }}$ hold time from address	$t_{\text {HAWT }}$	-		149		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}($ Note 2, 4)
$\overline{\text { WAIT }}$ hold time from $\overline{\text { RD }} \downarrow$ or $\overline{W R} \downarrow$	$t_{\text {HRWRY }}$	-		80		ns	$C_{L}=100 \mathrm{pF}$ (Note 4)
ASTB \uparrow delay time from $\overline{W R} \uparrow$	${ }^{\text {t DWST }}$	110		78		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
Address to $\overline{\mathrm{RD}} \downarrow$ or $\overline{W R} \downarrow$ delay	t DARW	89			69	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
Other Operations							
NMI high/low level width	twNIH, tWNIL	2.5		2.0		$\mu \mathrm{s}$	
INTPO high/low level width	${ }^{\text {WWIOH, }}$, WIOL	640		500		ns	
INTP1 high/low level width	$t_{\text {WILH, }}$ WIHL	640		500		ns	
INTP2 high/low level width		640		500		ns	
INTP3 high/low level width	${ }_{\text {WWI3H, }}{ }^{\text {tw }}$ W13L	640		500		ns	
RESET high/low level width	tWRSH, tWRSL	2.5		2.0		$\mu \mathrm{s}$	
TI high/low level width	${ }^{\text {WWTIH, }}$, WTIL	640		500		ns	

Notes:

(1) $t_{C Y K}$ equals twice the period of the crystal or external clock input.
(3) No wait states
(2) No address wait
(4) One external wait state and one internal wait state

Timing Dependent on tcyk

Symbol	Calculation Formula	Min/Max	Unit
${ }^{\text {tSAST }}$	(0.5 + a) T-24	Min	ns
$t_{\text {HSTA }}$	$\begin{aligned} & 0.5 \mathrm{~T}-14 \\ & 0.5 \mathrm{~T}-20(\text { Note } 1) \end{aligned}$	Min	ns
${ }^{\text {t WSTH }}$	(0.5 + a) T-17	Min	ns
${ }^{\text {t }}$ DSTR	0.5T-16	Min	ns
${ }^{\text {t }}$ WRL	$(1.5+n) T-30$	Min	ns
${ }^{\text {t }}$ DAID	$(2.5+a+n) T-56$	Max	ns
${ }^{\text {t }{ }^{\text {DRID }}}$	$(1.5+n) T-44$	Max	ns
${ }^{\text {t }}$ DRA	$\begin{aligned} & 0.5 \mathrm{~T}-14 \\ & 0.5 \mathrm{~T}-6 \text { (Note } 1) \\ & \hline \end{aligned}$	Min	ns
${ }_{\text {t }}$ DSTW	0.5T-16	Min	ns
${ }^{\text {W WWL }}$	$\begin{aligned} & (1.5+n) T-30 \\ & (1.5+n) T-36(\text { Note } 1) \end{aligned}$	Min	ns
${ }_{\text {t }}$ (${ }^{\text {a }}$	0.5T-10	Max	ns
${ }^{\text {t SODW }}$	$(1+n) T-5$	Min	ns
${ }^{\text {t }}$ SAWT	$(a+n) T-18$ (Note 1)	Max	ns
${ }^{\text {thawt }}$	(0.5+a+n)T-7 (Note 1)	Min	ns
$\mathrm{t}_{\text {SRWRY }}$	$(\mathrm{n}-1) \mathrm{T}-25$ (Note 1)	Max	ns
${ }_{\text {t HRWRY }}$	($\mathrm{n}-0.5$) T-14 (Note 1)	Min	ns
$t_{\text {DARW }}$	$\begin{aligned} & (a+1) T+9 \\ & (a+1) T+7(\text { Note } 1) \end{aligned}$	Max	ns
${ }^{\text {t }}$ WST	$\begin{aligned} & 1.5 \mathrm{~T}-10 \\ & 1.5 \mathrm{~T}-15 \text { (Note 1) } \end{aligned}$	Min	ns
${ }^{\text {t }}$ WIOH	8 T	Min	ns
${ }^{\text {twIOL }}$	8 T	Min	ns
${ }^{\text {twin }}$	8 T	Min	ns
${ }^{\text {t WIAL }}$	8 T	Min	ns
${ }^{\text {twin }}$	8T	Min	ns
${ }^{\text {twi2L }}$	8 T	Min	ns
${ }^{\text {t }}$ WI3H	8 T	Min	ns
${ }^{\text {t WIBL }}$	8 T	Min	ns
${ }^{\text {twTIH }}$	8 T	Min	ns
${ }^{\text {t WTIL }}$	8 T	Min	ns

Notes:

(1) $78352 \mathrm{~A} / \mathrm{P} 352$ only
(2) $\mathrm{T}=\mathrm{t}_{\mathrm{CYK}}$ (ns)
(3) When an address wait is inserted, the value of letter " a " is 1. Otherwise, it is 0.
(4) Letter " n " is the number of wait cycles specified by the external wait pin WAIT and the PWC register.

AC Timing Test Points

Timing Waveforms

Read Operation

Timing Waveforms (cont)

Write Operation

Timing Waveforms (cont)

Interrupt Input

Reset Input

TI Input

PROM PROGRAMMING

The PROM in the μ PD78P352 is one-time programmable (OTP) or ultraviolet erasable (UV EPROM). The 32,758x 8 -bit PROM has the programming characteristics of an NEC μ PD27C1001A, including both page and byte programming modes. The MODEO/VPP, MODE1, P_{1}, and RESET pins are used to place the μ PD78P352 into the PROM programmming mode. Table 3 shows the functions of the μ PD78P352 pins in normal operating mode and PROM programming mode.

Table 3. Pin Functions During PROM Programming

Function	Normal Operating Mode	Programming Mode
Address input	$\begin{aligned} & \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P5}_{0}, \mathrm{P}_{0} \\ & \mathrm{P5}_{1}-\mathrm{P5}_{7} \end{aligned}$	$\mathrm{A}_{0}-\mathrm{A}_{16}$
Data input	$\mathrm{P}_{4}-\mathrm{P}_{7}$	$\mathrm{D}_{0}-\mathrm{D}_{7}$
Program pulse	P_{1}	$\overline{\text { PGM }}$
Chip enable	$\mathrm{P} 1_{1}$	$\overline{C E}$
Output enable	$\mathrm{P} 1_{0}$	$\overline{O E}$
Program voltage	MODEO/VPP	MODEO/VPP
Mode voltage	$\frac{\text { MODE1, }}{\text { RESET }}{ }_{1}$	$\frac{\text { MODE } 1, ~ P 2 ~}{\text { RESET }}$

PROM Programming Mode

When +6.5 V is applied to the V_{DD} pin and +12.5 V to the MODEO $N_{\text {PP }}$ pin, the μ PD78P352 enters the PROM programming mode. Operation in this mode is determined by the setting of $\overline{\mathrm{CE}}, \overline{\mathrm{OE}}$, and $\overline{\mathrm{PGM}}$ pins as indicated in table 4.

Table 4. Operation Modes For Programming

Mode	MODE1	P2 ${ }_{1}$	RESET	$\overline{C E}$	$\overline{O E}$	$\overline{\text { PGM }}$	MODEO $/ \mathrm{V}_{\text {PP }}$	V_{DD}	$\mathrm{D}_{0}-\mathrm{D}_{7}$
Page data latch	L	L	L	H	L	H	+12.5 V	+6.5 V	Data input
Page program	L	L	L	H	H	L	$+12.5 \mathrm{~V}$	$+6.5 \mathrm{~V}$	High impedance
Byte program	L	L	L	L	H	L	+12.5 V	$+6.5 \mathrm{~V}$	Data input
Program verify	L	L	L	L	L	H	+12.5 V	$+6.5 \mathrm{~V}$	Data output
Program inhibit	L	L	L	$\begin{aligned} & \mathrm{X} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	+12.5 V	$+6.5 \mathrm{~V}$	High impedance
Read	L	L	L	L	L	H	$+5.0 \mathrm{~V}$	$+5.0 \mathrm{~V}$	Data output
Ouput disable	L	L	L	L	H	X	$+5.0 \mathrm{~V}$	$+5.0 \mathrm{~V}$	High impedance
Standby	L	L	L	H	X	X	$+5.0 \mathrm{~V}$	$+5.0 \mathrm{~V}$	High impedance

[^17]Figure 10. Pin Functions in μ PD78P352 PROM Programming Mode

[^18]
PROM Byte Programming Procedure

Data can be written to the PROM one byte at a time by the following procedure.
(1) Set the pins not used for programming as indicated in figure 10. Set MODEO $N_{P P}$ and $V_{D D}$ pins to +5 V and MODE1, P_{1}, and RESET pins to 0 V . The CE , $\overline{\mathrm{OE}}$, and $\overline{\mathrm{PGM}}$ pins should be high.
(2) Supply +6.5 V to V_{DD} pin and +12.5 V to MODEO/ $V_{P P}$ pin. Set $\overline{C E}$ pin low and $\overline{O E}$ pin high.
(3) Provide initial address to pins $A_{0}-A_{16}$.
(4) Provide write data.
(5) Input a 0.1-ms program pulse (active low) to $\overline{\text { PGM }}$ pin.
(6) Use verify mode (pulse $\overline{\mathrm{OE}}$ low) to test data. If data has been written, proceed to step 8; if not, repeat steps 4-6. If data cannot be written in 10 attempts, go to step 7.
(7) Classify PROM as defective and cease write operation.
(8) Increment address.
(9) Repeat steps 4-8 until last address is programmed.

PROM Page Programming Procedure

Data can be written to the PROM four bytes at a time (page programming) by the following procedure.
(1) Set the pins not used for programming as indicated in figure 10. Set MODEO/ $V_{P P}$ and $V_{D D}$ pins to +5 V and MODE1, P_{1}, and RESET pins to 0 V . The CE, $\overline{\mathrm{OE}}$, and $\overline{\mathrm{PGM}}$ pins should be high.
(2) Supply +6.5 V to V_{DD} pin and +12.5 V to MODEO/ $V_{P P}$ pin. Set $\overline{C E}$ pin low.
(3) Provide initial page address to pins $A_{0}-A_{16}$.
(4) Provide first byte of data and latch it into PROM by pulsing $\overline{\mathrm{OE}}$ low. Continue incrementing address and latching in data until four bytes have been loaded.
(5) Input a 0.1 -ms program pulse (active low) to $\overline{\mathrm{PGM}}$ pin. Data bus $D_{0}-D_{7}$ is in a high-impedance state.
(6) Use verify mode (pulse $\overline{\mathrm{OE}}$ low four times) to test four bytes of data. If all four bytes of data have been written, proceed to step 8; if not, repeat steps 4-6. If data cannot be written in 10 attempts, go to step 7.
(7) Classify PROM as defective and cease write operation.
(8) Increment address.
(9) Repeat steps 4-8 untill last address is programmed.

PROM Read Procedure

The contents of the PROM can be read out to the external data bus ($D_{0}-D_{7}$) by the following procedure.
(1) Set the pins not used for programming as indicated in figure 10. Set MODEO $/ V_{P P}$ and $V_{D D}$ pins to +5 V and MODE1, P_{1}, and RESET pins to 0 V . The CE, $\overline{\mathrm{OE}}$, and $\overline{\mathrm{PGM}}$ pins should be high.
(2) Supply +5 V to V_{DD} pin and MODEO $N_{\text {PP }}$ pin.
(3) Input address of data to be read to pins $A_{0}-A_{16}$.
(4) Put an active-low pulse on $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ pins.
(5) Data is output to pins $D_{0}-D_{7}$.

Program Erasure

The UV EPROM can be erased by exposing the window to light having a wavelength shorter than 400 nm , including ultraviolet, direct sunlight, and fluoresecent light. To prevent unintentional erasure, mask the window.

Typically, data is erased by $254-\mathrm{nm}$ ultraviolet rays. A minimum lighting level of $15 \mathrm{Ws} / \mathrm{cm}^{2}$ (ultraviolet ray intensity x exposure time) is required to completely erase the written data. Erasure by an ultraviolet lamp rated at $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ takes 15 to 20 minutes. Remove any filter on the lamp and place the device within 2.5 cm of the lamp tubes.

DC Programming Characteristics
$T_{A}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\text {SS }}=0 \mathrm{~V}$

Parameter	Symbol	Min	Typ	Max	Unit	Condition
High-level input voltage	$\mathrm{V}_{\mathrm{H} 1}$	2.2		$V_{\text {DD }}$	V	(Note 1)
	$\mathrm{V}_{\mathrm{HH} 2}$	$0.8 \mathrm{~V}_{\mathrm{DD}}$		$V_{\text {DD }}$	V	(Note 2)
$V_{\text {DDP }}$ power supply voltage	$\mathrm{V}_{\text {DDP }}$	6.25	6.5	6.75	V	Memory program mode
		4.5	5.0	5.5	V	Memory read mode
$\mathrm{V}_{\text {PP }}$ power supply voltage	$V_{P P}$	12.2	12.5	12.8	V	Memory program mode
			$=\mathrm{V}_{\mathrm{DDP}}$		V	Memory read mode
VDDP power supply current	${ }^{\text {IDDP }}$			30	mA	Memory program mode
				100	mA	Memory read mode
$\mathrm{V}_{\text {PP }}$ power supply current	lpp			50	mA	Memory program mode
			1	100	$\mu \mathrm{A}$	Memory read mode

Notes:

(1) All except pins in Note 2.
(2) Pins $\overline{\text { RESET }}, \mathrm{X} 1, \mathrm{X} 2, \mathrm{P} 2_{n}, \operatorname{INTPn}, \mathrm{NMI}$, and TI .

AC Programming Characteristics

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Byte Programming Mode						
Address setup time to $\overline{\text { PGM }} \downarrow$	$t_{\text {AS }}$	2			$\mu \mathrm{s}$	
	${ }^{\text {t CES }}$	2			$\mu \mathrm{s}$	
Input data setup time to $\overline{\text { PGM }} \downarrow$	${ }^{\text {t }}$ D	2			$\mu \mathrm{s}$	
Address hold time after $\overline{O E} \uparrow$	${ }^{\text {taH }}$	2			$\mu \mathrm{s}$	
Input data hold time after $\overline{\text { PGM }} \uparrow$	${ }_{\text {t }}{ }_{\text {d }}$	2			$\mu \mathrm{s}$	
Output data hold time after $\overline{\mathrm{OE}} \uparrow$	$t_{\text {DF }}$	0		130	ns	
V_{PP} setup time before $\overline{\text { PGM }} \downarrow$	$t_{\text {VPS }}$	2			$\mu \mathrm{s}$	
$\underline{V_{\text {DD }} \text { setup time before } \overline{\text { PGM }} \downarrow}$	tvds	2			$\mu \mathrm{s}$	
Program pulse width	$t_{\text {pW }}$	0.095	0.1	0.105	ms	
Data to $\overline{\mathrm{OE}} \downarrow$ delay time	toes	2			$\mu \mathrm{s}$	
$\overline{\mathrm{OE}} \downarrow$ to data output time	${ }_{\text {toe }}$			150	ns	

Page Programming Mode

Address setup time to $\overline{O E} \downarrow$	$t_{\text {AS }}$	2		$\mu \mathrm{s}$
$\overline{\mathrm{CE}}$ setup time to $\overline{\mathrm{OE}} \downarrow$	$\mathrm{t}_{\text {CES }}$	2		$\mu \mathrm{s}$
Input data setup time to $\overline{\mathrm{OE}} \downarrow$	$t_{\text {DS }}$	2		$\mu \mathrm{s}$
Address hold time from $\overline{O E} \uparrow$	${ }^{\text {t }}{ }_{\text {H }}$	2		$\mu \mathrm{s}$
	${ }^{\text {taHL }}$	2		$\mu \mathrm{s}$
	${ }^{\text {t }}$ HHV	0		$\mu \mathrm{s}$
Input data hold time after $\overline{O E} \uparrow$	${ }^{\text {t }}$ DH	2		$\mu \mathrm{s}$
Output data hold time after $\overline{O E} \uparrow$	${ }_{t}{ }_{\text {DF }}$	0	130	ns
$V_{\text {PP }}$ setup time to $\overline{O E} \downarrow$	tVPS	2		$\mu \mathrm{s}$
$V_{\text {DD }}$ setup time to $\overline{O E} \downarrow$	tvDS	2		$\mu \mathrm{s}$
Program pulse width	$t_{\text {PW }}$	0.095	0.150 .105	ms
Address to $\overline{O E} \downarrow$ delay time	toes	2		$\mu \mathrm{s}$
$\overline{O E} \downarrow$ to data output time	t_{O}		150	ns
$\overline{\mathrm{OE}}$ pulse width during data latch	$t_{\text {LW }}$	1		$\mu \mathrm{s}$
Data to $\overline{\text { PGM }} \downarrow$ delay time	tpgMs	2		$\mu \mathrm{s}$
$\overline{\mathrm{CE}}$ hold time from $\overline{\mathrm{PGM}} \uparrow$	$\mathrm{t}_{\text {CEH }}$	2		$\mu \mathrm{s}$
$\overline{\mathrm{CE}}$ hold time from $\overline{\mathrm{OE}} \uparrow$	$\mathrm{t}_{\text {OEH }}$	2		$\mu \mathrm{s}$

Read Mode

Address to data output time	$t_{A C C}$		200	ns	$\overline{C E}=\overline{O E}=V_{\text {IL }}$
$\overline{\mathrm{CE}} \downarrow$ to data output time	$\mathrm{t}_{\text {CE }}$		200	ns	$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$
$\overline{\mathrm{OE}} \downarrow$ to data output time	t_{OE}		75	ns	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}$
Data hold time from $\overline{\mathrm{OE}} \uparrow$	$t_{\text {DF }}$	0	60	ns	$\overline{\mathrm{CE}}=\mathrm{V}_{1 \mathrm{~L}}$
Data hold time from address	$\mathrm{tOH}^{\text {}}$	0		ns	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$

PROM Timing Diagrams

Byte Programming Mode

Nofes:
[1] V_{DD} must be applled before V_{PP} and removed after V_{Pp}.
[2] VPP must not be greater than +13.5 V , Including overshoot.
[3] Removing and reinserting the device while a voltage of +12.5 V
is applied to pin VPp may affect device rellability.

PROM Timing Diagrams (cont)

Page Programming Mode; Page Data Latch \rightarrow Page Program

Notes:
[1] $V_{D D}$ must be applled before $V_{P P}$ and removed after $V_{\text {PP }}$
[2] $V_{P P}$ must not be greater than +13.5 V , Including overshoot.
[3] Removing and relnserting the device while a voltage of +12.5 V Is applled to pin $V_{\text {PP }}$ may affect device rellabillity.

PROM Timing Diagrams (cont)

Page Programming Mode; Page Program \rightarrow Program Verify

Notes:

[1] V_{DD} must be appled before V_{PP} and removed after V_{PP}.
[2] VPP must not be greater than +13.5 V , Including overshoot.
[3] Removing and reinserting the device while a voltage of +12.5 V Is applied to pin $V_{\text {PP }}$ may affect device reliability.

PROM Timing Diagrams (cont)

Read Mode

INSTRUCTION SET

The instruction set of the μ PD78350/P352 is upward compatible with the μ PD78322 and μ PD78312A families. Two instructions have been added to facilitate digital signal processing. The convolution instruction, MACW, calculates the sum of the products of " n " pairs of terms stored in Main RAM. The value of " n " is limited only by the amount of Main RAM available. The MOVTBL instruction displaces a data table by one 16 -bit word to make room for a new data word.

The instruction set features both 8- and 16-bit data transfer, arithmetic, and logic instructions and singlebit manipulation instructions. String manipulation instructions are also included. Branch instructions exist to test individual bits in the program status word, the 16-bit accumulator, the special function registers, and the saddr portion of on-chip RAM. Instructions range in length from 1 to 6 bytes depending on the instruction and addressing mode.

Flag Column Indicators

Symbol	Action
(blank)	No change
0	Set to 0
\mathbf{X}	Set to 1
X	Set or cleared according to result
P	P/V indicates parity of result
V	P/V indicates arithmetic overflow
R	Restored from saved PSW

Instruction Set Symbols

Symbol	Definition
r	R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15
$r 1$	R0, R1, R2, R3, R4, R5, R6, R7
$r 2$	C, B
$r p$	RP0, RP1, RP2, RP3, RP4, RP5, RP6, RP7*
$r p 1$	RP0, RP1, RP2, RP3, RP4, RP5, RP6, RP7*
$r p 2$	DE, HL, VP, UP
sfr	Special function register, 8 bits
sfrp	Special function register, 16 bits postRPO, RP1, RP2, RP3, RP4, RP5/PSW, RP6, RP7, Bits set to 1 indicate register pairs to be pushed/ popped to/from stack; RP5 pushed/popped by PUSH/POP, SP is stack pointer; PSW pushed/ popped by PUSHU/POPU, RP5 is stack pointer.

Instruction Set Symbols (cont)

Symbol	Definition
mem	Register indirect: [DE], [HL], [DE+], [HL+], [DE-], [HL-], [VP], [UP]
	$\begin{aligned} & \text { Base Index Mode: }[D E+A],[H L+A],[D E+B], \\ & {[H L+B],[V P+D E],[V P+H L] } \end{aligned}$
	$\begin{gathered} \text { Base Mode: [DE+ byte], [HL+ byte], [VP+ byte], } \\ {[\mathrm{UP}+\text { byte], }[\mathrm{SP}+\text { byte }]} \end{gathered}$
	Index Mode: word $[A]$, word $[B]$, word [DE], word [HL]
saddr	FE20-FF1FH: Immediate byte addresses one byte in RAM, or label
saddrp	FE20-FF1FH: Immediate byte (bit $0=0$) addresses one word in RAM, or label
word	16 bits of immediate data, or label
byte	8 bits of immediate data, or label
jdisp8	8 -bit two's complement displacement (immediate data, displacement value -128 to +127)
bit	3 bits of immediate data (bit position in byte), or label
n	3 bits of immediate data
!addr16	16-bit absolute address specified by an immediate address or label
\$addr16	Relative branch address or label
addr16	16-bit address
!addr11	11-bit immediate address or label
addr11	0800H-OFFFH: $0800 \mathrm{H}+$ (11-bit immediate address), or label
addr5	0040H-007EH: $0040 \mathrm{H}+2 \times$ (5-bit immediate address), or label
A	A register (8-bit accumulator)
X	X register
B	B register
C	C register
D	D register
E	E register
H	H register
L	L register
RO-R15	Register 0 to register 15
AX	Register pair $A X$ (16-bit accumulator)
$B C$	Register pair BC
DE	Register pair DE
HL	Register pair HL

Instruction Set Symbols (cont)

Symbol	Definition
RPO-RP7	Register pair 0 to register pair 7
PC	Program counter
SP	Stack pointer
UP	User stack pointer (RP5)
PSW	Program status word
PSWH	High-order 8 bits of PSW
PSWL	Low-order 8 bits of PSW
CY	Carry flag
AC	Auxiliary carry flag
Z	Zero flag
P/V	Parity/overflow flag
S	Sign flag
TPF	Table position flag
RBS	Register bank select flag
RSS	Register set select flag
IE	Interrupt enable flag
STBC	Standby control register
WDM	Watchdog timer mode register
()	Contents of the location whose address is within parentheses; (+) and (-) indicate that the address is incremented after or decremented after it is used
Contents of the memory location defined by the	
(())	quantity within the sets of parentheses
Hex	Hexadecimal quantity
High-order 8 bits and low-order 8 bits of X	
Logical product (AND)	
	Logical sum (OR)
	Inverted data

* rp and rp1 describe the same registers but generate different machine code.

Instruction Set

Mnemonic	Operand	Operation	Bytes	Flags				
				S	Z	AC	P/V	CY
8-Bit Data Transfer								
MOV	r1, \#byte	$\mathrm{r} 1 \leftarrow$ byte	2					
	saddr, \#byte	(saddr) \leftarrow byte	3					
	sfr, \#byte (Note 1)	$\mathrm{sfr} \leftarrow$ byte	3					
	r, r1	$r \leftarrow r 1$	2					
	A, r1	$\mathrm{A} \leftarrow \mathrm{r} 1$	1					
	A, saddr	$A \leftarrow$ (saddr)	2					
	saddr, A	(saddr) $\leftarrow A$	2					
	saddr, saddr	(saddr) \leftarrow (saddr)	3					
	A, sfr	$\mathrm{A} \leftarrow \mathrm{sfr}$	2					
	sfr, A	$\mathrm{sfr} \leftarrow \mathrm{A}$	2					
	A, mem (Note 2)	$A \leftarrow(\mathrm{mem})$	1					
	A, mem	$A \leftarrow(\mathrm{mem})$	2-4					
	mem, A (Note 2)	$($ mem $) \leftarrow A$	1					
	mem, A	$($ mem $) \leftarrow A$	2-4					
	A, [saddrp]	$A \leftarrow($ (saddrp $))$	2					
	[saddrp], A	$(($ saddrp) $) \leftarrow A$	2					
	A, laddr16	$A \leftarrow$ (addr16)	4					
	!addr16, A	(addr16) $\leftarrow A$	4					
	PSWL, \#byte	PSWL \leftarrow byte	3	X	X	X	X	x
	PSWH, \#byte	PSWH \leftarrow byte	3					
	PSWL, A	PSWL $\leftarrow A$	2	X	X	X	X	X
	PSWH, A	PSWH $\leftarrow A$	2					
	A, PSWL	$A \leftarrow P S W L$	2					
	A, PSWH	$A \leftarrow P S W H$	2					
$\overline{X C H}$	A, r1	$A \leftrightarrow r 1$	1					
	r r, r1	$r \leftrightarrow r 1$	2					
	A, mem	$A \leftrightarrow$ (mem)	2-4					
	A, saddr	$A \leftrightarrow$ (saddr)	2					
	A, sfr	$\mathrm{A} \leftrightarrow \mathrm{sfr}$	3					
	A, [saddrp]	$A \leftrightarrow($ (saddrp) $)$	2					
	saddr, saddr	(saddr) \leftrightarrow (saddr)	3					
16-Bit Data Transfer								
MOVW	rp1, \#word	$\mathrm{rp1} \leftarrow$ word	3					
	saddrp, \#word	(saddrp) \leftarrow word	4					
	sfrp, \#word	sfrp \leftarrow word	4					
	rp, rp1	$r p \leftarrow r p 1$	2					
	AX, saddrp	$A X \leftarrow$ (saddrp)	2					
	saddrp, AX	(saddrp) $\leftarrow A X$	2					
	saddrp, saddrp	(saddrp) \leftarrow (saddrp)	3					

Instruction Set (cont)

				Flags				
Mnemonic	Operand	Operation	Bytes	S	z	AC	P/V	CY

16-Bit Data Transfer (cont)

MOVW (cont)	AX, sfrp	$A X \leftarrow \operatorname{sfrp}$	2
	sfrp, AX	$\operatorname{sfrp} \leftarrow \mathrm{AX}$	2
	rp1, !addr16	$\mathrm{rp1} \leftarrow$ (addr16)	4
	!addr16, rp1	(addr16) $\leftarrow \mathrm{rp1}$	4
	AX, mem	$\mathrm{AX} \leftarrow$ (mem)	2-4
	mem, AX	(mem) $\leftarrow A X$	2-4
XCHW	AX, saddrp	$A X \leftrightarrow$ (saddrp)	2
	AX, sfrp	AX \leftrightarrow sfrp	3
	saddrp, saddrp	(saddrp) \leftrightarrow (saddrp)	3
	rp, rp1	$\mathrm{rp} \leftrightarrow \mathrm{rp1}$	2
	AX, mem	$\mathrm{AX} \leftrightarrow$ (mem)	$2-4$

8-Bit Arithmetic

ADD	A, \#byte	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+$ byte	2	X	X	X	V	X
	saddr, \#byte	(saddr), CY \leftarrow (saddr) + byte	3	X	X	X	V	X
	sfr, \#byte	sfr, $\mathrm{CY} \leftarrow \mathrm{sfr}+$ byte	4	X	X	X	V	x
	r, r1	$r, C Y \leftarrow r+r 1$	2	X	X	X	V	x
	A, saddr	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+$ (saddr)	2	X	X	X	V	x
	A, sfr	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+\mathrm{sfr}$	3	X	X	X	V	X
	saddr, saddr	(saddr), $\mathrm{CY} \leftarrow$ (saddr) + (saddr)	3	X	X	X	V	x
	A, mem	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+($ mem $)$	2-4	X	X	X	V	x
	mem, A	(mem), $\mathrm{CY} \leftarrow($ mem $)+\mathrm{A}$	2-4	X	X	X	V	X
ADDC	A, \#byte	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+$ byte +CY	2	x	x	x	v	X
	saddr, \#byte	(saddr), $\mathrm{CY} \leftarrow$ (saddr) + byte + CY	3	X	X	x	V	x
	sfr, \#byte	sfr, $\mathrm{CY} \leftarrow \mathrm{sfr}+$ byte +CY	4	X	x	x	V	X
	r, r1	r r, $\mathrm{CY} \leftarrow \mathrm{r}+\mathrm{r} 1+\mathrm{CY}$	2	x	X	X	V	x
	A, saddr	$A, C Y \leftarrow A+$ (saddr) $+C Y$	2	X	x	x	V	x
	A, sfr	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+\mathrm{sfr}+\mathrm{CY}$	3	X	X	X	V	x
	saddr, saddr	(saddr), $\mathrm{CY} \leftarrow$ (saddr) + (saddr) +CY	3	X	X	X	V	x
	A, mem	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+(\mathrm{mem})+\mathrm{CY}$	2-4	X	X	X	V	X
	mem, A	(mem) , CY ¢(mem) $+\mathrm{A}+\mathrm{CY}$	2-4	X	X	X	V	X
SUB	A, \#byte	A, CY $\leftarrow \mathrm{A}$ - byte	2	X	X	X	V	X
	saddr, \#byte	(saddr), CY \leftarrow (saddr) - byte	3	X	X	x	V	x
	sfr, \#byte	sfr, $\mathrm{CY} \leftarrow \mathrm{sfr}$ - byte	4	X	X	X	V	X
	r, r1	$\mathrm{r}, \mathrm{CY} \leftarrow \mathrm{r}-\mathrm{r} 1$	2	X	X	X	V	x
	A, saddr	A, CY $\leftarrow A-$ (saddr)	2	X	X	X	V	X
	A, sfr	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}-\mathrm{sfr}$	3	X	X	X	V	x
	saddr, saddr	(saddr), $\mathrm{CY} \leftarrow$ (saddr) - (saddr)	3	X	X	X	V	x
	A, mem	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}-(\mathrm{mem})$	2-4	X	X	X	V	x
	mem, A	(mem) , $\mathrm{CY} \leftarrow$ (mem) -A	2-4	X	X	X	V	X

Instruction Set (cont)

				Flags				
Mnemonic	Operand	Operation	Bytes	S	z	AC	P/V	CY
8-Bit Arithmetic (cont)								
SUBC	A, \#byte	A, CY $\leftarrow \mathrm{A}$ - byte - CY	2	X	X	X	V	x
	saddr, \#byte	(saddr), $\mathrm{CY} \leftarrow$ (saddr) - byte - CY	3	X	X	X	V	X
	sfr, \#byte	sfr, $\mathrm{CY} \leftarrow \mathrm{sfr}$ - byte - CY	4	X	X	X	V	x
	r, r1	$r, C Y \leftarrow r-r 1-C Y$	2	X	X	X	V	x
	A, saddr	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}-$ (saddr) -CY	2	X	X	X	V	x
	A, sfr	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}-\mathrm{sfr}-\mathrm{CY}$	3	X	X	X	V	X
	saddr, saddr	(saddr), CY \leftarrow (saddr) - (saddr) - CY	3	X	X	X	V	x
	A, mem	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}-(\mathrm{mem})-\mathrm{CY}$	2-4	X	X	X	V	x
	mem, A	(mem), $\mathrm{CY} \leftarrow$ (mem) - $\mathrm{A}-\mathrm{CY}$	2-4	X	X	X	V	X

8-Bit Logic

AND	A, \#byte	$A \leftarrow A \wedge$ byte	2	X	X	P
	saddr, \#byte	(saddr) $\leftarrow($ saddr $) \wedge$ byte	3	X	X	P
	sfr, \#byte	$\mathrm{sfr} \leftarrow \mathrm{sfr} \wedge$ byte	4	X	X	P
	r, r1	$r \leftarrow r \wedge r 1$	2	X	X	P
	A, saddr	$A \leftarrow A \wedge$ (saddr)	2	X	X	P
	A, sfr	$A \leftarrow A \wedge s f r$	3	X	X	P
	saddr, saddr	$($ saddr $) \leftarrow($ saddr $) \wedge($ saddr $)$	3	X	X	P
	A, mem	$A \leftarrow A \wedge$ (mem)	2-4	X	X	P
	mem, A	$($ mem $) \leftarrow($ mem $) \wedge A$	2-4	X	X	P
OR	A, \#byte	$A \leftarrow A \vee$ byte	2	X	X	P
	saddr, \#byte	(saddr) \leftarrow (saddr) \vee byte	3	X	X	P
	sfr, \#byte	sfr $\leftarrow \operatorname{sfr} \vee$ byte	4	x	X	P
	r, r1	$r \leftarrow r \vee r 1$	2	X	X	P
	A, saddr	$A \leftarrow A \vee$ (saddr)	2	X	X	P
	A, sfr	$A \leftarrow A \vee$ sfr	3	X	X	P
	saddr, saddr	(saddr) \leftarrow (saddr) \vee (saddr)	3	X	X	P
	A, mem	$A \leftarrow A \vee$ (mem)	2.4	X	X	P
	mem, A	$($ mem $) \leftarrow($ mem $) \vee A$	2-4	x	X	P
XOR	A, \#byte	$A \leftarrow A \forall$ byte	2	X	X	P
	saddr, \#byte	(saddr) \leftarrow (saddr) \forall byte	3	X	X	P
	sfr, \#byte	sfr \leftarrow sfr \forall byte	4	X	X	P
	r, r1	$r \leftarrow r \forall r 1$	2	X	X	P
	A, saddr	$A \leftarrow A \forall$ (saddr)	2	X	X	P
	A, sfr	$A \leftarrow A \forall s f r$	3	X	X	P
	saddr, saddr	(saddr) \leftarrow (saddr) \forall (saddr)	3	X	X	P
	A, mem	$A \leftarrow A \forall$ (mem)	2-4	X	X	P
	mem, A	$($ mem $) \leftarrow($ mem $) \forall A$	2-4	X	X	P

μ PD78352 Family

Instruction Set (cont)

Mnemonic	Operand	Operation	Bytes	Flags				
				S	z	AC	P/V	CY
8-Bit Logic (cont)								
CMP	A, \#byte	A - byte	2	X	X	X	V	x
	saddr, \#byte	(saddr) - byte	3	X	X	X	V	X
	sfr, \#byte	sfr-byte	4	X	X	X	V	X
	r, r1	r-r1	2	X	X	X	V	X
	A, saddr	A - (saddr)	2	X	X	X	V	X
	A, sfr	A - sfr	3	X	X	X	v	X
	saddr, saddr	(saddr) - (saddr)	3	X	x	X	V	x
	A, mem	A - (mem)	2-4	X	X	X	V	X
	mem, A	(mem) - A	2-4	X	X	X	V	X
16-Bit Arithmetic								
ADDW	AX, \#word	$\mathrm{AX}, \mathrm{CY} \leftarrow \mathrm{AX}+$ word	3	X	X	X	v	X
	saddrp, \#word	(saddrp), CY (saddrp) + word	4	X	X	X	V	x
	sfrp, \#word	sfrp, $\mathrm{CY} \leftarrow \operatorname{sfrp}+$ word	5	X	X	X	V	x
	rp, rp1	$\mathrm{rp}, \mathrm{CY} \leftarrow \mathrm{rp}+\mathrm{rp} 1$	2	X	X	X	V	X
	AX, saddrp	$A X, C Y \leftarrow A X+$ (saddrp)	2	X	X	X	V	X
	AX, sfrp	$A X, C Y \leftarrow A X+$ sfrp	3	X	X	X	V	x
	saddrp, saddrp	(saddrp), $\mathrm{CY} \leftarrow$ (saddrp) + (saddrp)	3	X	X	X	V	X
SUBW	AX, \#word	$A X, C Y \leftarrow A X$ - word	3	X	X	X	V	X
	saddrp, \#word	(saddrp), $\mathrm{CY} \leftarrow$ (saddrp) - word	4	X	X	X	V	X
	sfrp, \#word	sfrp, $\mathrm{CY} \leftarrow \mathrm{sfrp}$ - word	5	X	X	X	V	X
	rp, rp1	$r p, C Y \leftarrow r p-r p 1$	2	X	X	X	V	x
	AX, saddrp	$\mathrm{AX}, \mathrm{CY} \leftarrow \mathrm{AX}$ - (saddrp)	2	X	X	X	v	X
	AX, sfrp	$A X, C Y \leftarrow A X-\operatorname{sfrp}$	3	X	X	X	V	X
	saddrp, saddrp	(saddrp), $\mathrm{CY} \leftarrow$ (saddrp) - (saddrp)	3	X	X	X	V	X
CMPW	AX, \#word	AX - word	3	X	X	X	V	x
	saddrp, \#word	(saddrp) - word	4	X	X	X	V	x
	sfrp, \#word	sfrp-word	5	X	X	X	V	x
	rp, rp1	rp - rp1	2	X	X	x	V	x
	AX, saddrp	AX - (saddrp)	2	X	X	x	V	X
	AX, sfrp	AX - sfrp	3	x	X	X	V	X
	saddrp, saddrp	(saddrp) - (saddrp)	3	X	X	X	V	x
Multiplication/Division								
MULU	r1	$A X \leftarrow A X \times r 1$	2					
DIVUW	r 1	$A X$ (quotient), rl (remainder) $\leftarrow \mathrm{AX} \div \mathrm{r1}$	2					
MULUW	rp1	AX (high-order 16 bits), rp1 (low-order 16 bits) \leftarrow AX \times rp1	2					
DIVUX	rp1	AXDE (quotient), rp1 (remainder) $\leftarrow \mathrm{AXDE} \div \mathrm{rp1}$	2					
MULW (Note 3)	rp1	AX (high-order 16 bits), rp1 (low-order 16 bits) $\leftarrow A X \times r p 1$	2					

Instruction Set (cont)

Mnemonic	Operand	Operation	Bytes	Flags				
				S	Z	AC	P/V	CY
Sum-of-Products								
MACW	n	AXDE \leftarrow (B) $\times(C)+A X D E, B \leftarrow B+2, C \leftarrow C+$ $2, n \leftarrow n-1$. End if $n=0$ or $P / V=1$	3	X	X	X	V	X
Table Shift								
MOVTBLW	!addr 16, n (Note 4)	```(addr16 + 2) \leftarrow(addr16), n\leftarrown-1, addr16 }\leftarrow\mathrm{ addr16 -2. End if n=0```	4					
Incrememt/Decrement								
INC	r1	$\mathrm{r} 1 \leftarrow \mathrm{r} 1+1$	1	X	X	X	V	
	saddr	$($ saddr $) \leftarrow$ (saddr) +1	2	X	X	X	V	
DEC	$r 1$	$\mathrm{r} 1 \leftarrow \mathrm{r} 1-1$	1	X	X	X	V	
	saddr	(saddr) \leftarrow (saddr) -1	2	X	X	X	V	
INCW	rp2	$\mathrm{rp} 2 \leftarrow \mathrm{rp} 2+1$	1					
	saddrp	$($ saddrp) $\leftarrow($ saddrp) +1	3					
DECW	rp2	$\mathrm{rp} 2 \leftarrow \mathrm{rp} 2-1$	1					
	saddrp	(saddrp) $\leftarrow($ saddrp $)-1$	3					
Shift/Rotate								
ROR	$\mathrm{r1}, \mathrm{n}$	(CY, $\left.\mathrm{r} 1_{7} \leftarrow \mathrm{r} 1_{0}, \mathrm{r} 1_{\mathrm{m}-1} \leftarrow \mathrm{r} 1_{\mathrm{m}}\right) \times \mathrm{n}$ times	2				P	x
ROL	r1, n	$\left(\mathrm{CY}, \mathrm{r1} 0_{0} \leftarrow \mathrm{r1} 1_{7}, \mathrm{r}_{\mathrm{m}+1} \leftarrow \mathrm{r} 1_{\mathrm{m}}\right) \times \mathrm{n}$ times	2				P	X
RORC	r1, n	$\left(\mathrm{CY} \leftarrow \mathrm{r} 1_{0}, \mathrm{r1} 1_{7} \leftarrow \mathrm{CY}, \mathrm{r} 1_{\mathrm{m}-1} \leftarrow \mathrm{r} 1_{\mathrm{m}}\right) \times \mathrm{n}$ times	2				P	X
ROLC	$\mathrm{r} 1, \mathrm{n}$	$\left(\mathrm{CY} \leftarrow \mathrm{r} 1_{7}, \mathrm{r1}_{0} \leftarrow \mathrm{CY}, \mathrm{r} 1_{\mathrm{m}+1} \leftarrow \mathrm{r} 1_{\mathrm{m}}\right) \times \mathrm{n}$ times	2				P	X
SHR	r1, n	$\left(\mathrm{CY} \leftarrow \mathrm{r1} 1_{0}, \mathrm{r1}_{7} \leftarrow 0, \mathrm{r} 1_{\mathrm{m}-1} \leftarrow \mathrm{r} 1_{\mathrm{m}}\right) \times \mathrm{n}$ times	2	X	X	0	P	X
SHL	r1, n	$\left(\mathrm{CY} \leftarrow \mathrm{r1} 7_{7}, \mathrm{r}_{0} \leftarrow 0, \mathrm{r} 1_{\mathrm{m}+1} \leftarrow \mathrm{r} 1_{\mathrm{m}}\right) \times \mathrm{n}$ times	2	X	X	0	P	x
SHRW	rp1, n	$\left(\mathrm{CY} \leftarrow \mathrm{rp} 1_{0}, \mathrm{rp} 1_{15} \leftarrow 0, \mathrm{rp} 1_{\mathrm{m}-1} \leftarrow \mathrm{rp} 1_{\mathrm{m}}\right) \times \mathrm{n}$ times	2	X	X	0	P	X
SHLW	rp1, n	$\left(C Y \leftarrow r p 1_{15}, r p 1_{0} \leftarrow 0, r p 1_{m+1} \leftarrow r p 1_{m}\right) \times n$ times	2	X	X	0	P	X
ROR4	[rp1]	$\begin{aligned} & \mathrm{A}_{3-0} \leftarrow(\mathrm{rp1})_{3-0},(\mathrm{rp} 1)_{7-4} \leftarrow \mathrm{~A}_{3-0}, \\ & (\mathrm{rp} 1)_{3-0} \leftarrow(\mathrm{rp} 1)_{7-4} \\ & \hline \end{aligned}$	2					
ROL4	[rp1]	$\begin{aligned} & \mathrm{A}_{3-0} \leftarrow(\mathrm{rp} 1)_{7-4},(\mathrm{rp} 1)_{3-0} \leftarrow \mathrm{~A}_{3-0}, \\ & (\mathrm{rp} 1)_{7-4} \leftarrow(\mathrm{rp} 1)_{3-0} \end{aligned}$	2					
BCD Adjustment								
ADJBA		Decimal adjust accumulator after add	2	X	X	X	P	X
ADJBS		Decimal adjust accumulator after subtract	2	X	X	X	P	X
Data Expansion								
CVTBW		$X \leftarrow A, A_{6-0} \leftarrow A_{7}$	1					
Bit Manipulation								
MOV1	CY, saddr.bit	$\mathrm{CY} \leftarrow$ (saddr.bit)	3					X
	CY, sfr.bit	$\mathrm{CY} \leftarrow$ sfr.bit	3					x
	CY, A.bit	$\mathrm{CY} \leftarrow$ A.bit	2					x
	CY, X.bit	$C Y \leftarrow$ X.bit	2					x
	CY, PSWH.bit	CY \leftarrow PSWH.bit	2					x

Instruction Set (cont)

Mnemonic	Operand	Operation	Bytes	Flags				
				S	z	AC	P/V	CY
Bit Manipulation (cont)								
MOV1 (cont)	CY, PSWL.bit	$\mathrm{CY} \leftarrow$ PSWL.bit	2					X
	saddr.bit, CY	(saddr.bit) $\leftarrow \mathrm{CY}$	3					
	sfr.bit, CY	sfr.bit $\leftarrow C Y$	3					
	A.bit, CY	A.bit $\leftarrow C Y$	2					
	X.bit, CY	X. bit $\leftarrow C{ }^{\text {C }}$	2					
	PSWH.bit, CY	PSWH.bit \leftarrow CY	2					
	PSWL.bit, CY	PSWL.bit \leftarrow CY	2	X	X	X	X	
AND1	CY, saddr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ (saddr.bit)	3					X
	CY, /saddr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ (saddr.bit)	3					x
	CY, sfr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ sfr.bit	3					X
	CY, /sfr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge \overline{\text { sfr.bit }}$	3					X
	CY, A.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ A.bit	2					x
	CY, /A.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge \overline{\mathrm{A} . \mathrm{bit}}$	2					X
	CY, X.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge \mathrm{X} . \mathrm{bit}$	2					X
	CY, /X.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge \overline{\mathrm{X} . \mathrm{bit}}$	2					x
	CY, PSWH.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ PSWH.bit	2					x
	CY, /PSWH.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ PSWH.bit	2					X
	CY, PSWL.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ PSWL.bit	2					x
	CY, /PSWL.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge \overline{\text { PSWL.bit }}$	2					x
OR1	CY, saddr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee$ (saddr.bit)	3					x
	CY, /saddr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee$ (saddr.bit)	3					X
	CY, sfr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} V$ sfr.bit	3					X
	CY, /sfr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee \overline{\text { sfrbit }}$	3					X
	CY, A.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee$ A.bit	2					X
	CY, /A.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee \overline{\overline{\mathrm{A} . \mathrm{bit}}}$	2					X
	CY, X.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee \mathrm{X}$.bit	2					x
	CY, X.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee \overline{\mathrm{X} . \mathrm{bit}}$	2					X
	CY, PSWH.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee$ PSWH.bit	2					X
	CY, /PSWH.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee$ PSWH.bit	2					x
	CY, PSWL.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee$ PSWL.bit	2					X
	CY, /PSWL.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee \overline{\text { PSWL.bit }}$	2					X
XOR1	CY, saddr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \forall$ (saddr.bit)	3					x
	CY, sfr.bit	$C Y \leftarrow C Y \forall$ sfrbit	3					X
	CY, A.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \forall$ A.bit	2					X
	CY, X.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \forall \mathrm{X}$.bit	2					X
	CY, PSWH.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \forall$ PSWH.bit	2					X
	CY, PSWL.bit	$C Y \leftarrow C Y \forall P S W L . b i t$	2					x

Instruction Set (cont)

Mnemonic	Operand	Operation	Bytes	Flags				
				S	Z	AC	P/V	CY
Bit Manipulation (cont)								
SET1	saddr.bit	(saddr.bit) $\leftarrow 1$	2					
	sfr.bit	sfr.bit $\leftarrow 1$	3					
	A.bit	A.bit $\leftarrow 1$	2					
	X.bit	X.bit $\leftarrow 1$	2					
	PSWH.bit	PSWH.bit $\leftarrow 1$	2					
	PSWL.bit	PSWL.bit $\leftarrow 1$	2	X	X	X	X	X
CLR1	saddr.bit	(saddr.bit) $\leftarrow 0$	2					
	sfr.bit	sfr.bit $\leftarrow 0$	3					
	A.bit	A.bit $\leftarrow 0$	2					
	X.bit	X.bit $\leftarrow 0$	2					
	PSWH.bit	PSWH.bit $\leftarrow 0$	2					
	PSWL.bit	PSWL.bit $\leftarrow 0$	2	X	X	X	X	X
NOT1	saddr.bit	(saddr.bit) $\leftarrow(\overline{\text { saddr.bit) }}$	3					
	sfr.bit	sfr.bit $\leftarrow \overline{\text { sfr.bit }}$	3					
	A.bit	A.bit $\leftarrow \overline{\text { A.bit }}$	2					
	X.bit	X.bit $\leftarrow \overline{\text { X.bit }}$	2					
	PSWH.bit	PSWH.bit $\leftarrow \overline{\text { PSWH.bit }}$	2					
	PSWL.bit	PSWL.bit $\leftarrow \overline{\text { PSWL.bit }}$	2	X	X	X	X	X
SET1	CY	$\mathrm{CY} \leftarrow 1$	1					1
CLR1	CY	$\mathrm{CY} \leftarrow 0$	1					0
NOT1	CY	$\mathrm{CY} \leftarrow \overline{\mathrm{CY}}$	1					X
Subroutine Linkage								
CALL	!addr16	$\begin{aligned} & (S P-1) \leftarrow(P C+3)_{H},(S P-2) \leftarrow(P C+3)_{L} \\ & P C \leftarrow \text { addr16, } S P \leftarrow S P-2 \end{aligned}$	3					
	rp1	$\begin{aligned} & (S P-1) \leftarrow(P C+2)_{H},(S P-2) \leftarrow(P C+2)_{L}, \\ & P C_{H} \leftarrow r 1_{H}, P C_{L} \leftarrow r 1_{L}, S P \leftarrow S P-2 \end{aligned}$	2					
	[rp1]	$\begin{aligned} & (S P-1) \leftarrow(P C+2)_{H}(S P-2) \leftarrow(P C+2)_{L} \\ & P C_{H} \leftarrow(r p 1+1), P C_{L} \leftarrow(r p 1), S P \leftarrow S P-2 \end{aligned}$	2					
CALLF	!addr11	$\begin{aligned} & (S P-1) \leftarrow(P C+2) H,(S P-2) \leftarrow(P C+2) L_{1} \\ & \mathrm{PC}_{15-11} \leftarrow 00001, \mathrm{PC}_{10-0} \leftarrow \text { addr11, } S P \leftarrow S P-2 \end{aligned}$	2					
CALLT	[addr5]	$\begin{aligned} & (S P-1) \leftarrow(P C+1)_{H},(S P-2) \leftarrow(P C+1)_{L}, \\ & P C_{H} \leftarrow(T P F \times 8000 H+2 \times \text { addr5 }+41 H), \\ & P C_{L} \leftarrow(T P F \times 8000 H+2 \times \text { addr5 }+40 H), S P \leftarrow \\ & S P-2 \end{aligned}$	1					
BRK		$\begin{aligned} & (S P-1)^{2} \leftarrow P S W H,(S P-2) \leftarrow P S W L,(S P- \\ & \left.3) \leftarrow(P C+1)_{H},(S P-4) \leftarrow(P C+1)_{L}\right) \\ & P C_{L} \leftarrow(003 E H), P C_{H} \leftarrow(003 F H), S P \leftarrow S P-4, \\ & I E \leftarrow 0 \end{aligned}$	1					
RET		$P C_{L} \leftarrow(\mathrm{SP}), \mathrm{PC} \mathrm{H}_{\mathrm{H}} \leftarrow(\mathrm{SP}+1), \mathrm{SP} \leftarrow \mathrm{SP}+2$	1					
RETB		$\begin{aligned} & \mathrm{PC}_{L} \leftarrow(S P), \mathrm{PC}_{H} \leftarrow(S P+1), P S W L \leftarrow(S P+2), \\ & \mathrm{PSWH} \leftarrow(S P+3), S P \leftarrow S P+4 \end{aligned}$	1	R	R	R	R	R
RETI		$\begin{aligned} & P C_{L} \leftarrow(S P), P C_{H} \leftarrow(S P+1), P S W L \leftarrow(S P+2), \\ & P S W H \leftarrow(S P+3), S P \leftarrow S P+4 \end{aligned}$	1	R	R	R	R	R

Instruction Set (cont)

Mnemonic	Operand	Operation	Bytes	Flags				
				S	Z	AC	P/V	CY
Stack Manipulation								
PUSH	sfrp	$(\mathrm{SP}-1) \leftarrow \mathrm{sfr}_{\mathrm{H}},(\mathrm{SP}-2) \leftarrow \mathrm{sfr}_{\mathrm{L}}, \mathrm{SP} \leftarrow \mathrm{SP}-2$	3					
	post	$\begin{aligned} & \left\{(S P-1) \leftarrow \mathrm{rPP}_{\mathrm{H}},(\mathrm{SP}-2) \leftarrow \mathrm{rpP} \mathrm{~L}, \mathrm{SP} \leftarrow \mathrm{SP}-2\right\} \mathrm{x} \\ & \mathrm{n}(\text { Note 5) } \end{aligned}$	2					
	PSW	$(S P-1) \leftarrow P S W H,(S P-2) \leftarrow P S W L, S P \leftarrow S P-2$	1					
PUSHU	post	$\begin{aligned} & \{(\mathrm{UP}-1) \leftarrow \mathrm{rpPH},(\mathrm{UP}-2) \leftarrow \mathrm{rppL}, \mathrm{UP} \leftarrow \mathrm{UP}-2\} \times \\ & \mathrm{n}(\text { Note } 5) \end{aligned}$	2					
POP	sfrp	sfr $\leftarrow \leftarrow(\mathrm{SP}), \mathrm{sfr}_{H} \leftarrow(\mathrm{SP}+1), \mathrm{SP} \leftarrow \mathrm{SP}+2$	3					
	post	$\begin{aligned} & \left\{\mathrm{rpp}_{\mathrm{L}} \leftarrow(\mathrm{SP}), \mathrm{rpp}_{\mathrm{H}} \leftarrow(\mathrm{SP}+1), \mathrm{SP} \leftarrow \mathrm{SP}+2\right\} \times n \\ & \text { (Note 5) } \end{aligned}$	2					
	PSW	$P S W L \leftarrow(S P), P S W H \leftarrow(S P+1), S P \leftarrow S P+2$	1	R	R	R	R	R
POPU	post	$\begin{aligned} & \left\{\mathrm{rpp}_{L} \leftarrow(\mathrm{UP}), \mathrm{rpp}_{\mathrm{H}} \leftarrow(\mathrm{UP}+1), \mathrm{UP} \leftarrow \mathrm{UP}+2\right\} \times n \\ & \text { (Note 5) } \end{aligned}$	2					
MOVW	SP, \#word	$\mathrm{SP} \leftarrow$ word	4					
	SP, AX	$\mathrm{SP} \leftarrow \mathrm{AX}$	2					
	$A X, S P$	$A X \leftarrow S P$	2					
INCW	SP	$S P \leftarrow S P+1$	2					
DECW	SP	$S P \leftarrow S P-1$	2					

Pin Level Test

| CHKL | sfr | (Pin level) \forall (internal signal level) | 3 | X | X | P |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CHKLA | sfr | $\mathrm{A} \leftarrow$ (Pin level) \forall (internal signal level) | 3 | X | X | P |

Unconditional Branch

BR	!addr16	PC \leftarrow addr16	3
	rp1	$\mathrm{PC}_{\mathrm{H}} \leftarrow \mathrm{rp} 1_{H}, \mathrm{PC}_{\mathrm{L}} \leftarrow \mathrm{rp} 1_{\mathrm{L}}$	2
	[rp1]	$P C_{H} \leftarrow(r p 1+1), P C_{L} \leftarrow(r p 1)$	2
	\$addr16	$P C \leftarrow P C+2+j d i s p 8$	2
Conditional Branch			
BC, BL	\$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+2+$ jdisp8 if $\mathrm{CY}=1$	2
BNC, BNL	\$addr16	$P C \leftarrow P C+2+$ jdisp8 if $C Y=0$	2
BZ, BE	\$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+2+$ jdisp8 if $Z=1$	2
BNZ, BNE	\$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+2+$ jdisp8 if $\mathrm{Z}=0$	2
BV, BPE	\$addr16	$P C \leftarrow P C+2+$ jdisp8 if $P / V=1$	2
BNV, BPO	\$addr16	$P C \leftarrow P C+2+$ jdisp8 if $P / V=0$	2
BN	\$addr16	$P C \leftarrow P C+2+$ jdisp8 if $S=1$	2
BP	\$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+2+$ jdisp8 if $\mathrm{S}=0$	2
BGT	\$addr16	$P C \leftarrow P C+3+$ jdisp8 if (P/V $\forall \mathrm{S}) \vee \mathrm{Z}=0$	3
BGE	\$addr16	$P C \leftarrow P C+3+$ jdisp8 if $P / V \forall S=0$	3
BLT	\$addr16	$P C \leftarrow P C+3+$ jdisp8 if $P / V \forall S=1$	3
BLE	\$addr16	$P C \leftarrow P C+3+j d i s p 8$ if (P/V $\forall \mathrm{S}$) $\vee Z=1$	3
BH	\$addr16	$P C \leftarrow P C+3+j d i s p 8$ if $Z \vee C Y=0$	3
BNH	\$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+3+$ jdisp8 if $Z \vee \mathrm{CY}=1$	3

Instruction Set (cont)

Mnemonic	Operand	Operation	Bytes	Flags				
				S	z	AC	P/V	CY
Conditional Branch								
BT	saddr.bit, \$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+3+\mathrm{jdisp8}$ if (saddr.bit) $=1$	3					
	sfr.bit, \$addr16	$P C \leftarrow P C+4+$ jdisp8 if str.bit $=1$	4					
	A.bit, \$addr16	$P C \leftarrow P C+3+$ jdisp8 if A.bit $=1$	3					
	X.bit, \$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+3+$ jdisp8 if $\mathrm{X} . \mathrm{bit}=1$	3					
	PSWH.bit, \$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+3+$ jdisp8 if PSWH. $\mathrm{bit}=1$	3					
	PSWL.bit, \$addr16	$P C \leftarrow P C+3+j d i s p 8$ if PSWL.bit $=1$	3					
$\overline{B F}$	saddr.bit, \$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+4+$ jdisp8 if (saddr.bit) $=0$	4					
	sfr.bit, \$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+4+$ jdisp8 if sfr.bit $=0$	4					
	A.bit, \$addr16	$P C \leftarrow P C+3+$ jdisp8 if A.bit $=0$	3					
	X.bit, \$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+3+$ jdisp8 if $\mathrm{X} . \mathrm{bit}=0$	3					
	PSWH.bit, \$addr16	$P C \leftarrow P C+3+$ jdisp8 if PSWH.bit $=0$	3					
	PSWL.bit, \$addr16	$P C \leftarrow P C+3+j$ jisp8 if PSWL.bit $=0$	3					
BTCLR	saddr.bit, \$addr16	```PC}\leftarrowPC+4+jdisp8 if (saddr.bit) = 1 then rese (saddr.bit)```	4					
	sfr.bit, \$addr16	$P C \leftarrow P C+4+j d i s p 8$ if sfr.bit $=1$ then reset sfr.bit	4					
	A.bit, \$addr16	$P C \leftarrow P C+3+$ jdisp8 if A.bit $=1$ then reset A. bit	3					
	X.bit, \$addr16	$P C \leftarrow P C+3+$ jdisp8 if X. bit $=1$ then reset X.bit	3					
	PSWH.bit, \$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+3+\mathrm{jdisp8}$ if PSWH.bit $=1$ then reset PSWH.bit	3					
	PSWL.bit, \$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+3+$ jdisp8 if PSWL.bit $=1$ then reset PSWL.bit	3	X	X	X	X	X
BFSET	saddr.bit, \$addr16	```PC}\leftarrowPC+4+jdisp8 if (saddr.bit)=0 then set (saddr.bit)```	4					
	sfr.bit, \$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+4+$ jdisp8 if sfr.bit $=0$ then set sfr.bit	4					
	A.bit, \$addr16	$P C \leftarrow P C+3+$ jdisp8 if A.bit $=0$ then set A.bit	3					
	X.bit, \$addr16	$P C \leftarrow P C+3+$ jdisp8 if $\mathrm{X} . \mathrm{bit}=0$ then set X.bit	3					
	PSWH.bit, \$addr16	$P C \leftarrow P C+3+j d i s p 8$ if PSWH.bit $=0$ then set PSWH.bit	3					
	PSWL.bit, \$addr16	$P C \leftarrow P C+3+j d i s p 8$ if PSWL.bit $=0$ then set PSWL.bit	3	X	X	X	X	x
DBNZ	r2, \$addr16	$\mathrm{R} 2 \leftarrow \mathrm{R} 2-1$, then $\mathrm{PC} \leftarrow \mathrm{PC}+2+$ jdisp8 if $\mathrm{R} 2=0$	2					
	saddr, \$addr16	```(saddr) }\leftarrow\mathrm{ (saddr) - 1, then PC }\leftarrowPC+3+ jdisp8 if (saddr) = 0```	3					
Context Switching								
BRKCS	RBn	$\begin{aligned} & \mathrm{RBS}_{2-0} \leftarrow \mathrm{n}, \mathrm{PC}_{H} \leftrightarrow R 5, P C_{L} \leftrightarrow R 4, R 7 \leftarrow P S W H, \\ & R 6 \leftarrow P S W L, R S S \leftarrow 0, I E \leftarrow 0 \end{aligned}$	2					
RETCS	!addr16	$\begin{aligned} & \mathrm{PC}_{H} \leftarrow \mathrm{R} 5, \mathrm{PC}_{\mathrm{L}} \leftarrow \mathrm{R} 4, \mathrm{R} 5 \leftarrow \text { addr16 } 6_{\mathrm{H}}, \\ & \mathrm{R} 4 \leftarrow \text { addr16 } \mathrm{L} \\ & \mathrm{PSWH} \leftarrow \mathrm{R}, \mathrm{PSWL} \leftarrow \mathrm{R} 6 \end{aligned}$	3	R	R	R	R	R
RETCSB	!addr16	$\begin{aligned} & \mathrm{PC}_{\mathrm{H}} \leftarrow \mathrm{R} 5, \mathrm{PC}_{\mathrm{L}} \leftarrow \mathrm{R} 4, \mathrm{R} 5 \leftarrow \text { addr16 } 6_{H}, \\ & \mathrm{R} 4 \leftarrow \operatorname{addr16_{L}}, \\ & \mathrm{PSWH} \leftarrow \mathrm{R}, \mathrm{PSWL} \leftarrow \mathrm{R} 6 \end{aligned}$	4	R	R	R	R	R

μ PD78352 Family

Instruction Set (cont)

Mnemonic	Operand	Operation	Bytes	Flags				
				S	z	AC	P/V	CY
String Manipulation								
MOVM	[DE+], A	$(\mathrm{DE}+) \leftarrow \mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$	2					
	[DE-], A	($\mathrm{DE}-$) $\leftarrow \mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$	2					
MOVBK	[$\mathrm{DE}+\mathrm{]},[\mathrm{HL}+]$	$(\mathrm{DE}+) \leftarrow(\mathrm{HL}+), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$	2					
	[$\mathrm{DE}-\mathrm{]}$, [HL-]	$(\mathrm{DE}-) \leftarrow(\mathrm{HL}-), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$	2					
XCHM	[DE+], A	$(\mathrm{DE}+) \leftrightarrow \mathrm{A}, \mathrm{C} \leftarrow \mathrm{C-1}$ End if $\mathrm{C}=0$	2					
	[DE-], A	$(\mathrm{DE}-) \leftrightarrow \mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$	2					
XCHBK	[DE+], [HL+]	$(\mathrm{DE}+) \leftrightarrow(\mathrm{HL}+$), $\mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$	2					
	[DE-], [HL-]	$(\mathrm{DE}-) \leftrightarrow(\mathrm{HL}-$), $\mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$	2					
CMPME	[DE+], A	(DE+) - A, $\mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{Z}=0$	2	X	X	X	V	X
	[DE-], A	(DE-) - A, $\mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{Z}=0$	2	X	X	X	V	x
CMPBKE	[DE+], [HL+]	$(\mathrm{DE}+)-(\mathrm{HL}+), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{Z}=0$	2	X	X	X	V	x
	[$\mathrm{DE}-\mathrm{]}$, [HL-]	$(\mathrm{DE}-)-(\mathrm{HL}-), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{Z}=0$	2	X	X	X	V	X
CMPMNE	[DE+], A	(DE +) $-\mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{Z}=1$	2	X	X	X	V	x
	[DE-], A	(DE-) $-\mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{Z}=1$	2	X	X	X	V	X
CMPBKNE	[DE+], [HL+]	$(\mathrm{DE}+)-(\mathrm{HL}+), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{Z}=1$	2	X	X	X	V	x
	[DE-], [HL-]	$(\mathrm{DE}-)-(\mathrm{HL}-), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{Z}=1$	2	X	X	X	V	X
CMPMC	[DE+], A	$(\mathrm{DE}+)-\mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{CY}=0$	2	X	X	X	V	X
	[DE-], A	($\mathrm{DE}-)-\mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{CY}=0$	2	X	X	X	V	x
CMPBKC	[DE+], [HL+]	$(\mathrm{DE}+)-(\mathrm{HL}+), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{CY}=0$	2	X	X	X	V	x
	[DE-], [HL-]	($\mathrm{DE}-)-(\mathrm{HL}-), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{CY}=0$	2	X	X	X	V	X
CMPMNC	[DE+], A	$(\mathrm{DE}+)-\mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{CY}=1$	2	X	X	X	V	x
	[DE-], A	(DE-) - A, $\mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{CY}=1$	2	X	X	X	V	x
CMPBKNC	[DE+], [HL+]	$(\mathrm{DE}+)-(\mathrm{HL}+), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{CY}=1$	2	X	X	X	V	X
	[DE-], [HL-]	(DE-) - (HL-), $\mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{CY}=1$	2	X	X	X	V	x
CPU Control								
MOV	STBC, \#byte	STBC \leftarrow byte (Note 6)	4					
	WDM, \#byte	WDM \leftarrow byte (Note 6)	4					
SWRS		$\mathrm{RSS} \leftarrow \overline{\mathrm{RSS}}$	1					
SEL	RBn	$\mathrm{RBS}_{2-0} \leftarrow \mathrm{n}, \mathrm{RSS} \leftarrow 0$	2					
	RBn, ALT	$\mathrm{RBS}_{2-0} \leftarrow \mathrm{n}, \mathrm{RSS} \leftarrow 1$	2					
NOP		No operation	1					
El		$1 E \leftarrow 1$ (Enable interrupt)	1					
DI		$\mathrm{IE} \leftarrow 0$ (Disable interrupt)	1					

Instruction Set (cont)

Notes:

(1) A special instruction is used to write to STBC and WDM.
(2) One byte move instruction when [DE], [HL], [DE+], [DE-], [$\mathrm{HL}+\mathrm{]}$, or $[\mathrm{HL}-]$ is specified for mem.
(3) 16 -bit signed multiply instruction
(4) Addressing range is $O F E O O H$ to OFEFFH.
(5) rpp refers to register pairs specified in post byte. " n " is the number of register pairs specified in post byte.
(6) Trap if data bytes in operation code are not one's complement. If trap, then:
$(\mathrm{SP}-1) \leftarrow \mathrm{PSWH},(\mathrm{SP}-2) \leftarrow \mathrm{PSWL},(\mathrm{SP}-3) \leftarrow(\mathrm{PC}-4)_{\mathrm{H}}$,
$(S P-4) \leftarrow(P C-4)_{L}, P C_{L} \leftarrow(003 C H), P_{H} \leftarrow(003 D H)$.
$S P \leftarrow S P-4, I E \leftarrow 0$.

Preliminary

Description

The μ PD78355, μ PD78356, and μ PD78P356 are K-Series ${ }^{\circledR}$ microcontrollers. These 16-/8-bit devices -with a minimum instruction time of 125 ns at 32 MHz -are designed for high-speed, real-time process control. They feature a 16-bit CPU, a 16-/8-bit external data bus, eight banks of main registers, an advanced interrupt handling facility, and a powerful set of memory-mapped on-chip peripherals. A 16-bit multiply and accumulate instruction with or without a saturation word provides hardware convolution capability; a 16-bit subtract and accumulate absolute value instruction provides correlation capability.
On-board memory includes 2048 bytes of RAM and 48K bytes of mask ROM, UV EPROM, or one-time programmable (OTP) ROM. A ROMless version is also available. The UV EPROM and OTP ROM versions feature a PROM error correction function capable of correcting one 1-bit error per four bytes of code. This achieves a significant improvement in reliability over devices without error correction and is suited for applications that require high reliability under rigorous conditions.
The advanced interrupt handling facility has four levels of programmable hardware-priority control and three methods of servicing interrupt requests, including vectoring, hardware context switching, and macro service. The macro service facility reduces the CPU overhead involved in servicing peripheral interrupts by transferring data between the memory-mapped special function registers (SFRs) and memory without the use of time consuming interrupt service routines. In addition, the macro service facility can perform certain CPU functions, such as event counting and mathoriented data alterations.

The combination of high-speed hardware convolution capability and context switching, eight register banks, and the macro service facility makes these devices ideal for applications in the hard-disk drive and tape drive markets as well as the automotive, office automation, and industrial control/robotics markets.

[^19]
Features

- Complete single-chip microcontroller
- 16-bit ALU
- 2048 bytes of RAM
- 48K bytes of ROM (μ PD78356) or PROM (μ PD78P356)
\square Powerful instruction set
- 16-bit unsigned and signed multiply
- 16-bit unsigned divide
- 16-bit multiply and accumulate instruction with or without saturation word
- 16-bit subtraction and accumulate absolute value instructions
-1-bit and 8-bit logic instructions
-String instructions
- Minimum instruction time: 125 ns at 32 MHz
- 5-byte instruction prefetch queue
- Memory expansion
-8- or 16-bit external data bus
-64K-byte address space
- Large I/O capacity
- Up to 57 I/O port lines (μ PD78355)
- Up to 76 I/O port lines (μ PD78356/P356)
- Memory-mapped, on-chip peripherals
(special function registers)
- Real-time pulse unit (RPU)
- Two 16-bit interval timers
- Two 16-bit timer/event counters
- One 10-bit interval timer
-One 16-bit up/down counter
- Ten 16-bit capture/compare registers
- Five external interrupt/capture lines
- Three external event counter inputs
- Three external timer clear inputs
- Ten timer outputs
\square Two pulse-width modulated (PWM) output lines with 8-, 10-, or 12-bit precision
- One 8-bit real-time output port
- Eight-channel, high-speed 10-bit A/D converter; conversion time: $2 \mu \mathrm{~s}$ at 32 MHz
- Two-channel, 8-bit D/A converter

Features (cont)

- Three-channel serial communications interface
- Asynchronous serial interface (UART)
- Clock synchronous serial interface 0

Full-duplex, three-wire mode NEC serial bus interface (SBI) mode

- Clock synchronous serial interface 1

Full-duplex three-wire mode
Pin switching function

- Programmable priority interrupt controller (four levels)
- Three methods of interrupt service
- Vectored interrupts
- Context switching with hardware register bank switch
- Macro service mode with choice of five different functions
- Watchdog timer with dedicated output
- STOP and HALT standby functions
- Single 5-volt power supply

Ordering Information

Part Number	Package	ROM
μ PD78355GC-7EA	100-pin plastic QFP (Dwg P100GC-50-7EA)	ROMless
μ PD78356GC-xxx-7EA	100-pin plastic QFP (Dwg P100GC-50-7EA)	48 K mask μ RD7
μ PD78P356GC-7EA	100-pin plastic QFP (Dwg P100GC-50-7EA)	48 K OTP
	ROM	

xxx indicates ROM code suffix.

Pin Configurations

100-Pin Plastic QFP

Pin Configurations (cont)

120-Pin Ceramic LCC

μ PD78356 Family

Pin Functions; Normal Operating Mode

Pin Name	Function	Alternate Pin Name	Alternate Function
PO_{0}	Port 0; 8-bit, bit-selectable I/O port	RTP 0 ADTRGO	Real-time output port External trigger input for A / D converter
PO_{1}		$\begin{aligned} & \text { RTP }_{1} \\ & \text { ADTRG1 } \end{aligned}$	Real-time output port External trigger input for A/D converter
PO_{2}		RTP $_{2}$ ADTRG2	Real-time output port External trigger input for A / D converter
PO_{3}		RTP $_{3}$ ADTRG3	Real-time output port External trigger input for A/D converter
$\mathrm{PO}_{4}-\mathrm{PO}_{7}$		RTP $_{4}-$ RTP $_{7}$	Real-time output port
$\mathrm{P1}_{0}-\mathrm{P1}_{7}$	Port 1; 8-bit, bit selectable I/O port		
P_{2}	Port 2; 8-bit, bit-selectable I/O port	NMI	External nonmaskable interrupt
P_{1}		$\begin{aligned} & \text { INTPO } \\ & \text { TOO4 } \end{aligned}$	External maskable interrupt Timer output from real-time pulse unit
P_{2}		$\begin{aligned} & \text { INTP1 } \\ & \text { TO05 } \end{aligned}$	External maskable interrupt Timer output from real-time pulse unit
$\mathrm{P2}_{3}$		INTP2	External maskable interrupt
Pr_{4}		INTP3	External maskable interrupt
P 25		INTP4	External maskable interrupt
$\mathrm{P}_{2} 6$		$\begin{aligned} & \text { TCLR2 } \\ & \text { TO21 } \end{aligned}$	Clear input to real-time pulse unit Timer output from real-time pulse unit
P_{2}		TO20	Timer output from real-time pulse unit
P_{3}	Port 3; 8-bit, bit-selectable //O port	TxD	Asynchronous serial transmit data output
$\mathrm{P3}_{1}$		RxD	Asynchronous serial receive data input
P_{2}		$\begin{aligned} & \text { SOOO } \\ & \text { SBO } \end{aligned}$	Serial data output; three-wire serial I/O mode I/O bus for NEC serial bus interface mode
P_{3}		$\begin{aligned} & \text { S100 } \\ & \text { SB1 } \end{aligned}$	Serial data input; three-wire serial I/O mode I/O bus for NEC serial bus interface mode
$\mathrm{P3}_{4}$		$\overline{\text { SCKOO }}$	Serial clock I/O for synchronous serial interface
$\mathrm{P3}_{5}$		TCLR1	Clear input to real-time pulse unit
P_{6}		$\begin{aligned} & \text { Tl1 } \\ & \text { TO11 } \end{aligned}$	External clock to timer 1 Timer output from real-time pulse unit
$\mathrm{P3}_{7}$		TO10	Timer output from real-time pulse unit
$\mathrm{P}_{4}-\mathrm{P4}_{7}$	Port 4; 8-bit, byte-selectable I/O port (78356/P356)	$A D_{0}-A D_{7}$	Low-order 8 bits of external multiplexed address/data bus
$P 5_{0}-\mathrm{P5}_{7}$	Port 5; 8-bit, bit-selectable I/O port (78356/P356)	$A D_{8}-A D_{15}$	High-order 8 bits of external multiplexed address/data bus
$\underline{P 7}{ }_{0}-\mathrm{P} 7_{7}$	Port 7; 8-bit input port	ANIO - ANI7	Analog inputs to A/D converter

Pin Functions; Normal Operating Mode (cont)

Pin Name	Function	Alternate Pin Name	Alternate Function
$\mathrm{P8}_{0}$	Port 8; 8-bit, bit-selectable 1/O port	TCLRO	Clear input to real-time pulse unit
P8 ${ }_{1}$		$\begin{aligned} & \text { T10 } \\ & \text { TOO3 } \end{aligned}$	External count clock to timer 0 Timer output from real-time pulse unit
$\mathrm{P8}_{2}$		TOOO	Timer output from real-time pulse unit
$\mathrm{P8}_{3}$		TO01	Timer output from real-time pulse unit
$\mathrm{P8}_{4}$		TO02	Timer output from real-time pulse unit
$\mathrm{P8}_{5}$		TCLRUD	Clear input to real-time pulse unit
$\mathrm{P8}_{6}$		PWM0	Pulse-width modulated output
$\mathrm{P8}_{7}$		PWM1	Pulse-width modulated output
$\mathrm{P9}_{0}$	Port 9; 4-bit, bit-selectable I/O port ($\mathrm{P9}_{0}$ to $\mathrm{P9}_{2}$ on $78356 / \mathrm{P} 356$)	$\overline{\mathrm{RD}}$	External memory read strobe output
P91		$\overline{\text { LWR }}$	External memory write strobe output to low-order 8bits in memory
$\mathrm{P9}_{2}$		$\overline{H W R}$	External memory write strobe output to high-order 8 -bits in memory
Pg_{3}			
$\mathrm{P} 10_{0}$	Port 10; 8-bit, bit-selectable I/O port	SO10	Serial data output; three-wire serial I/O mode
$\mathrm{P} 10^{1}$		Sl10	Serial data input; three-wire serial I/O mode
${\mathrm{P} 1 \mathrm{O}_{2}}^{2}$		$\overline{\text { SCK10 }}$	Serial clock I/O for synchronous serial interface
$\mathrm{P1O}_{3}$		SO11	Serial data output; three-wire serial I/O mode
$\mathrm{P1O}_{4}$		S 111	Serial data input; three-wire serial I/O mode
$\mathrm{P10}_{5}$		$\overline{\text { SCK11 }}$	Serial clock I/O for synchronous serial interface
$\mathrm{P} 10_{6}$		TIUD	External clock for up/down counter
$\mathrm{P} 10^{7}$		TCUD	Up/down counter count direction control signal
ANOO, ANO1	Analog outputs from D/A converter		
ASTB	Address strobe output; used to latch address for external memory		
CLKOUT	Output of the system clock		
MODEO, MODE1	Set MODEO and MODE1 to $V_{S S}$ to access internal program memory on $78356 /$ P356. If all program memory is external, set MODEO to $V_{D D}$ and MODE1 to to $V_{S S}$ for an 8-bit data bus. Or set both to $V_{D D}$ for a 16-bit data bus.		\because
	To place 78P356 in programming mode, set MODEO to $V_{D D}$ and MODE1 to V_{SS}. The level of this pin cannot be changed during normal operation.	
NC	Pins labeled NC are not internally connected and may be connected to $V_{S S}$		
RESET	External system reset input		
$\overline{\text { WAIT }}$	A low-level input adds wait states to the external bus cycle		
$\overline{\text { WDTO }}$	Open-drain output from the watchdog timer		

Pin Functions; Normal Operating Mode (cont)

Pin Name	Function	Alternate Pin Name	Alternate Function
X1	Crystal connection or external clock input		
X2	Crystal connection or open for external clock		
$\mathrm{AV}_{\mathrm{DD}}$	A/D converter power input		
$\mathrm{AV}_{\text {REF1 }}$	A/D converter reference voltage high		
$\mathrm{AV}_{\text {REF2 }}$	D/A converter reference voltage high		
$\mathrm{AV}_{\text {REF3 }}$	D/A converter reference voltage low		
$\mathrm{AV}_{\text {SS }}$	A/D converter ground		
$V_{\text {DD }}$	+5 volt power input		
$\mathrm{V}_{S S}$	Ground		

Block Diagram; μ PD78356 Family

FUNCTIONAL DESCRIPTION

Central Processing Unit

The central processing unit (CPU) of the μ PD78356 family features 16 -bit arithmetic including 16×16-bit multiply, both unsigned and signed, and 32×16-bit unsigned divide (producing a 32 -bit quotient and a 16 -bit remainder). The signed multiply executes in $0.875 \mu \mathrm{~s}$ and the divide in $2.69 \mu \mathrm{~s}$ at 32 MHz .
Also, a multiply-and-accumulate instruction, MACW n, performs a signed multiply on factors from a pair of tables and sums the results in the 32-bit register AXDE. The total execution time for 10 terms is $13.44 \mu \mathrm{~s}$ at 32 MHz .

A subtract and accumulate absolute values instruction, SACW [DE+], [HL+], subtracts corresponding factors of two tables and calculates the sum of the absolute values of these subtractions. The total execution time for two tables of 10 terms each is $17.125 \mu \mathrm{~s}$ at 32 MHz .

A CALLT vector table and a CALLF area decrease the number of bytes in the call instructions for commonly used subroutines. A 1-byte call instruction can access up to 32 subroutines through their addresses in the CALLT vector table. A 2-byte call instruction can access any routine beginning in a specific CALLF area.

The internal system clock (fclk) is generated by dividing the oscillator frequency by 2 . Therefore, at the maximum oscillator frequency of 32 MHz , the clock is 16 MHz with a 62.5 ns clock cycle. Since instructions execute in two or more cycles, the minimum instruction time is 125 ns .

Internal RAM

The μ PD78356 family has a maximum of 2048 bytes of internal RAM. The upper 256 -byte area (FEOOH-FEFFH) features high-speed data access of one data word per two internal system clocks and is known as "main RAM." The remainder ($F 700 \mathrm{H}-\mathrm{FDFFH}$) is accessed at the same speed as external memory (one word per three internal system clocks) and is known as "peripheral RAM." The μ PD78356 family can be programmed to have 1 K or 2 K bytes of internal RAM. The general register banks and the macro service control words are stored in main RAM. The remainder of main RAM and any unused register bank locations are available for general storage.

Internal Program Memory

The 78356 contains up to 48 K bytes of mask ROM and the 78P356 up to 48K bytes of UV EPROM or OTP ROM. The 78356/P356 can be programmed to have $16 \mathrm{~K}, 24 \mathrm{~K}$, 32 K , or 48 K bytes of internal program memory by using the memory expansion mode register (MM). Instructions are fetched from this internal memory at a maximum rate of one word every two internal system clocks. The 78355 does not have internal program memory.

External Memory

The μ PD78356 family has a 64K-byte address space. The 78356/P356 can access $0,256,4 \mathrm{~K}$, or 16 K bytes of external memory in the area from C 000 H to F 6 FFH . External memory can be either ROM, RAM, or peripheral devices as required. The 78356/P356 can have an 8or 16 -bit wide external data bus with a 16 -bit wide external address bus. The data bus size is specified on 16K-byte boundaries by the programmable wait control register (PWC). The upper 16K-block includes only external memory addresses COOOH to $\mathrm{F6FFH}$ and the external SFR area, FFDOH to FFDFH.
For 8 -bit data bus operation of the $78356 /$ P356, data bits are multiplexed with low-order address bits at port 4. The high-order address bits are taken from port 5 as required. The memory mode register (MM) controls the size of the external memory. It can be programmed to use $0,4,6$, or 8 bits from port 5 for the high-order address. Any remaining port 5 bits can be used for I/O. The address latch (ASTB), read ($\overline{\mathrm{RD}}$), and write ($\overline{\mathrm{LWR})}$ strobes are provided from port 9.
For 16 -bit data bus operation of the $78356 / \mathrm{P} 356$, loworder data bits are multiplexed with low-order address bits at port 4. High-order data bits are multiplexed with high-order address bits at port 5. The address latch, read, and two write strobes (LWR and HWR) are provided from port 9 .
The 78355 does not have ports 4 and 5 . The MODEO and MODE1 pins specify whether the ROMless 78355 has an 8 - or 16 -bit data bus. When set for an 8 -bit data bus, it has eight dedicated high-order address lines and eight multiplexed low-order address and data lines. When set for a 16 -bit bus, it has 16 dedicated address/data lines. All memory below address F 700 H must be external.
Table 1 summarizes the operation of the μ PD78356 family during word and byte accesses (on even or odd addresses) to external memory and the external SFR access area in 16-bit data bus mode.

Table 1. 16-Bit Bus Access Cycles

Addr	Operation	$\overline{\mathrm{RD}} \dagger$	$\overline{\mathrm{LWR}} \dagger$	$\overline{\mathrm{HWR}} \dagger$	Data
Word Access					
Even	Write	1	0	0	$A D_{0}-A D_{15}$
	Read	0	1	1	$A D_{0}-A D_{15}$
Odd*	Write				
	1st byte	1	1	0	$A D_{8}-A D_{15}$
	2nd byte	1	0	1	$A D_{0}-A D_{7}$
	Read				
	1st byte	0	1	1	$A D_{8}-A D_{15}$
	2nd byte	0	1	1	$A D_{0}-A D_{7}$
Byte Access					
Even	Write	1	0	1	$A D_{0}-A D_{7}$
	Read	0	1	1	$A D_{0}-A D_{7}$
Odd	Write	1	1	0	$A D_{8}-A D_{15}$
	Read	0	1	1	$A D_{8}-A D_{15}$

* Word access to an odd address is accomplished by two byte accesses: 1st byte from odd address; 2nd byte from odd address plus 1.
$\dagger 1=\ln$ active, $0=$ Active
The programmable wait control register (PWC) also allows the programmer to specify one or two additional wait states if they are required for low-speed memory or external peripheral devices. These wait states are specified independently in 16 K blocks and are applicable to internal ROM, external memory, and the external SFR access area. If additional wait states are required, an external WAIT pin is provided.

In addition, the width of the ASTB signal can be increased by one internal clock cycle to allow more precharge time for dynamic RAMs or more decoding time for addresses. This address wait can be enabled in 32K-byte blocks by using the PWC register and is also applicable to internal ROM, external memory, and the external SFR access area.

Program Fetch

The μ PD78356 family allows opcode fetch in the area between 0000 H and FDFFH; fetches from addresses F700H to FDFFH are always from the peripheral RAM. The μ PD78356 family contains a 5 -byte instruction prefetch queue. The bus control unit can fetch an instruction byte from memory during cycles in which the execution unit is not using the memory bus. If the instruction byte is fetched from internal memory, a minimum of two internal system clocks are required for each byte, and the queue can hold 5 bytes. If the instruction is fetched from external memory, a minimum of three internal system clocks are required from each byte, and the queue can hold 3 bytes.

Instructions can be fetched from internal memory in either high-speed or normal fetch cycle mode using the 16 -bit bus. The PWC register is used to select the mode for each 16 K block. In high-speed fetch cycle mode, two internal system clocks are required to fetch an instruction word from internal ROM/PROM or the peripheral RAM. In normal fetch cycle mode, each word fetched from internal ROM/PROM requires three, four, or five internal system clocks (address wait can also be included) depending on the setting of the PWC register.
Instructions can be fetched from external memory using either an 8 - or 16 -bit bus. Only normal fetch cycle mode is available and each byte or word fetched requires three, four, or five internal system clocks. One address wait state can also be included depending on the setting of the PWC register.

CPU Control Registers

Program Counter. The program counter is a 16 -bit register that holds the address of the next instruction to be executed. After reset line goes high, the program counter is loaded with the address stored in locations 0000 H and 0001 H .
Stack Pointer. The stack pointer is a 16 -bit register that holds the address of the last item pushed onto the stack. It is decremented before new data is pushed onto the stack and incremented after data is popped off the stack.

CPU Control Word. The CPU control word (CCW) selects the origin of the interrupt vector and CALLT tables. If the TPF bit (bit 1) is zero, the origin is 0000 H ; if the TPF bit is one, the origin is 8000 H . The CCW is a special function register located at address FFC1H. The addresses of the vectors for the RESET input, operation-code trap, and BRK instruction are fixed at $0000 \mathrm{H}, 003 \mathrm{CH}$, and 003 EH , respectively, and are not altered by the TPF bit.

Program Status Word. The program status word (PSW) is a 16 -bit register containing flags that are set or reset depending on the results of an instruction. This register can be written to or read from 8 bits at a time. The high-order 8 bits are called the PSWH and the low-order 8 bits are called the PSWL. The individual flags can also be manipulated on a bit-by-bit basis. The assignment of PSW bits follows.
μ PD78356 Family

	7	6	5	4	3	2	1	0
PSWH	UF	RBS2	RBS1	RBSO	0	0	0	0
	7	6	5	4	3	2	1	0
PSWL	S	Z	RSS	AC	IE	P/V	0	CY

UF User flag
RBS2-RBSO Active register bank number
S \quad Sign flag (1 if last result was negative)
Z Zero flag (1 if last result was zero)
RSS Register set selection flag
AC Auxiliary carry flag (carry out of 3 bit)
IE Interrupt enable flag
PN Parity or arithmetic overflow flag
CY Carry bit (or 1-bit accumulator for logic)

General Registers

There are sixteen 8-bit general registers, which can also be paired to function as 16 -bit registers. A complete set of 16 registers is mapped into each of eight program-selectable register banks stored in main RAM. Three bits in the PSW specify the active register bank.
Registers have functional names (like A, X, B, C for 8-bit registers and $A X, B C$ for 16-bit registers) and absolute names (like R1, R0, R3, R2 for 8-bit registers and RPO, RP1 for 16-bit registers). Each instruction determines whether a register is referred to by functional or absolute name and whether it is 8 or 16 bits.

Two possible relationships may exist between the absolute and functional names of the first four register pairs. The RSS bit in the PSW determines which of these is active at any time. The effect is that the accumulator and counter registers can be saved, and a new set can be specified by toggling the RSS bit. Figure 1 illustrates the general register configuration.

Figure 1. General Registers

Addressing

The μ PD78356 family features 1-byte addressing of both the special function registers and the portion of on-chip RAM from FE2OH to FEFFH. The 1-byte sfr addressing accesses the entire SFR area, while the 1-byte saddr addressing accesses the first 32 bytes of the SFR area and 224 bytes of the main RAM.

The 16-bit SFRs and words of memory in these areas can be addressed by 1-byte saddrp addressing, which is valid for even addresses only. Since many instructions use 1-byte addressing, access to these locations is almost as fast and as versatile as access to the general registers.
There are nine addressing modes for data in main memory: direct, register, register indirect with autoincrement or autodecrement, saddr, saddr indirect, SFR, based, indexed, and based indexed. There are also 8 -bit and 16 -bit immediate operands. Figure 2 is the memory map of the μ PD78356 family.

Figure 2. Memory Map

Special Function Registers

The input/output ports, timers, capture and compare registers, and mode and control registers for both the peripherals and the CPU are collectively known as special function registers. They are all memorymapped between FFOOH and FFFFH and can be accessed either by main memory addressing or by 1-byte SFR addressing. All can be read under program control, and most can also be written. They are either 8 or

16 bits, as required, and many of the 8-bit registers are capable of single-bit access as well.

Locations FFDOH through FFDFH are known as the external access area. Registers in external circuitry, interfaced and mapped to these addresses, can be addressed with SFR addressing. Table 2 lists the special function registers.

Table 2. Special Function Registers

Address	Register (SFR)	Symbol	R/W	Access Units (Bits)			State After Reset
				1	8	16	
FFOOH	Port 0	PO	R/W	x	x	-	Undefined
FF01H	Port 1	P1	R/W	x	x	-	Undefined
FFO2H	Port 2 (Note 1)	P2	R/W	x	x	-	Undefined
FFO3H	Port 3	P3	R/W	x	x	-	Undefined
FF04H	Port 4	P4	R/W	x	x	-	Undefined
FF05H	Port 5	P5	R/W	x	x	-	Undefined
FF07H	Port 7	P7	R	x	x	-	Undefined
FF08H	Port 8	P8	R/W	x	x	-	Undefined
FF09H	Port 9	P9	R/W	x	\times	-	Undefined
FFOAH	Port 10	P10	R W	x	x	-	Undefined
FF10H-FF11H	Capture/compare register 00	CCOO	R/W	-	-	x	Undefined
FF12H-FF13H	Capture/compare register 01	CC01	R/W	-	-	x	Undefined
FF14H-FF15H	Capture/compare register 02	CC02	R/W	-	-	x	Undefined
FF16H-FF17H	Capture/compare register 30	CC30	R/W	-	-	x	Undefined
FF18H-FF19H	Capture/compare register 31	CC31	R/W	-	-	x	Undefined
FF1AH-FF1BH	Compare register 00	CM00	RNW	-	-	x	Undefined
FF1CH-FF1DH	Compare register 01	CM01	R/W	-	-	x	Undefined
FF1EH-FF1FH	Compare register 02	CM02	R/W	-	-	x	Undefined
FF20H	Port 0 mode register	PMO	R/W	x	x	-	FFH
FF21H	Port 1 mode register	PM1	R/W	x	x	-	FFH
FF22H	Port 1 mode register (Note 2)	PM2	R/W	x	x	-	FFH
FF23H	Port 3 mode register	PM3	R/W	x	x	-	FFH
FF25H	Port 5 mode register	PM5	R/W	x	x	-	FFH
FF28H	Port 8 mode register	PM8	R/W	x	x	-	FFH
FF29H	Port 9 mode register	PM9	R/W	x	x	-	OFH
FF2AH	Port 10 mode register	PM10	R/W	x	x	-	FFH
FF30H-FF31H	Timer register 0	TMO	R	-	-	x	OOH
FF32H-FF33H	Timer register 1	TM1	R	-	-	x	OOH
FF34H-FF35H	Timer register 2	TM2	R	-	-	x	OOH
FF36H-FF37H	Timer register 3	TM3	R	-	-	x	OOH
FF38H-FF39H	Timer register 4	TM4	R	-	-	x	OOH

Table 2. Special Function Registers (cont)

Address	Register (SFR)	Symbol	R/W	Access Units (Bits)			State After Reset
				1	8	16	
FF3AH-FF3BH	Presettable up/down counter register	UDC	R/W	-	-	X	OOH
FF3CH	External interrupt mode register 0	INTMO	R/W	x	x	-	OOH
FF3DH	External interrupt mode register 1	INTM1	R/W	x	x	-	OOH
FF40H	Port 0 mode control register	PMCO	R/W	x	X	-	OOH
FF42H	Port 2 mode control register (Note 3)	PMC2	R/W	x	x	-	01H
FF43H	Port 3 mode control register	PMC3	R/W	x	x	-	OOH
FF44H	Pullup resistor option register L	PUOL	R/W	x	x	-	OOH
FF45H	Pullup resistor option register H	PUOH	R/W	x	X	-	OOH
FF48H	Port 8 mode control register	PMC8	R/W	x	x	-	OOH
FF4AH	Port 10 mode control register	PMC10	R/W	x	x	-	0 OH
FF50H-FF51H	Compare register 03	CM03	R/W	-	-	x	Undefined
FF52H-FF53H	Compare register 10	CM10	R/W	-	-	x	Undefined
FF54H-FF55H	Compare register 11	CM11	R/W	-	-	x	Undefined
FF56H-FF57H	Compare register 20	CM20	R/W	-	-	x	Undefined
FF58H-FF59H	Compare register 21	CM21	R/W	-	-	X	Undefined
FF5AH-FF5BH	Compare register 40	CM40	R/W	-	-	X	Undefined
FF5CH-FF5DH	Up/down counter compare register 0	CMUDO	R/W	-	-	X	Undefined
FF5EH-FF5FH	Up/down counter compare register 1	CMUD1	R/W	-	-	x	Undefined
FF60H	Real-time output port register L	RTPL	R/W	x	x	-	Undefined
FF61H	Real-time output port register H	RTPH	R/W	x	x	-	Undefined
FF62H	Port read control register	PRDC	R/W	x	x	-	OOH
FF63H	Real-time output port mode register	RTPM	R/W	x	x	-	OOH
FF68H	A/D converter mode register 0	ADMO	R/W	x	x	-	OOH
FF69H	A/D converter mode register 1	ADM1	R/W	x	x	-	07H
FF6AH	D/A conversion setup register 0	DACSO	R/W	x	x	-	OOH
FF6BH	D/A conversion setup register 1	DACS1	R/W	X	X	-	OOH
FF6AH-FF6BH	D/A conversion setup register	DACS	R/W	-	-	x	0000H
FF70H	Timer unit mode register 0	TUMO	R/W	x	X	-	OOH
FF71H	Timer unit mode register 1	TUM1	R/W	x	x	-	OOH
FF72H	Timer unit mode register 2	TUM2	R/W	x	X	-	OOH
FF73H	Timer unit mode register 3	TUM3	R/W	x	x	-	OOH
FF74H	Timer control register 0	TMCO	R/W	x	x	-	OOH
FF75H	Timer control register 1	TMC1	R/W	x	x	-	OOH
FF76H	Timer control register 2	TMC2	R/W	x	x	-	04H
FF77H	Up/down counter control register	UDCC	R/W	x	x	-	OOH
FF78H	Timer output control register 0	TOCO	R/W	x	x	-	OOH
FF79H	Timer output control register 1	TOC1	R/W	x	x	-	OOH
FF7AH	Timer output control register 2	TOC2	R/W	x	x	-	OOH
FF7BH	Timer overflow status register (Note 4)	TOVS	R/W	x	X	-	OOH
FF7CH	Noise protection control register	NPC	R/W	x	x	-	OOH

Table 2. Special Function Registers (cont)

Address	Register (SFR)	Symbol	R/W	Access Units (Bits)			State After Reset
				1	8	16	
FF80H	Clock synchronous serial interface mode register 0	CSIMO	R/W	X	X	-	00 H
FF82H	Serial bus interface control register (Note 5)	SBIC	R/W	x	X	-	OOH
FF86H	Serial I/O shift register 0	SIOO	R/W	\times	X	-	Undefined
FF88H	Asynchronous serial interface mode register	ASIM	R/W	X	x	-	80 H
FF8AH	Asynchronous serial interface status register	ASIS	R	x	x	-	00 H
FF8CH	Serial reception buffer: UART	RxB	R	-	x	-	Undefined
FF8EH	Serial transmission shift register: UART	TxS	W	-	x	-	Undefined
FF90H	Clock synchronous serial interface mode register 1	CSIM1	R/W	x	X	-	00 H
FF96H	Serial I/O shift register 1	SIO1	R/W	x	x	-	Undefined
FFAOH	PWM control register	PWMC	R/W	X	x	-	OOH
FFA2H	PWM register OL	PWMOL	R/W	x	x	-	Undefined
FFA2H-FFA3H	PWM register 0	PWMO	R/W	-	-	x	Undefined
FFA4H	PWM register 1L	PWM1L	R/W	x	x	-	Undefined
FFA4H-FFA5H	PWM register 1	PWM1	R/W	-	-	X	Undefined
FFA8H	Inservice priority register	ISPR	R	x	x	-	00 H
FFAAH	Interrupt mode control register	IMC	R/W	x	x	-	80 H
FFACH	Interrupt mask register OL	MKOL	R/W	x	x	-	FFH
FFACH-FFADH	Interrupt mask register 0	MKO	R/W	-	-	x	FFFFH
FFADH	Interrupt mask register OH	MKOH	R/W	x	X	-	FFH
FFAEH	Interrupt mask register 1L	MK1L	R/W	x	x	-	FFH
FFAEH-FFAFH	Interrupt mask register 1	MK1	R/W	-	-	x	00FFH
FFB0H-FFB1H	A/D conversion result register 0	ADCRO	R	-	-	x	Undefined
FFB1H	A/D conversion result register OH	ADCROH	R	-	X	-	Undefined
FFB2H-FFB3H	A/D conversion result register 1	ADCR1	R	-	-	X	Undefined
FFB3H	A/D conversion result register 1 H	ADCR1H	R	-	x	-	Undefined
FFB4H-FFB5H	A/D conversion result register 2	ADCR2	R	-	-	x	Undefined
FFB5H	A/D conversion result register 2 H	ADCR2H	R	-	x	-	Undefined
FFB6H-FFB7H	A/D conversion result register 3	ADCR3	R	-	-	X	Undefined
FFB7H	A/D conversion result register 3 H	ADCR3H	R	-	X	-	Undefined
FFB8H-FFB9H	A/D conversion result register 4	ADCR4	R	-	-	x	Undefined
FFB9H	A/D conversion result register 4 H	ADCR4H	R	-	X	-	Undefined
FFBAH-FFBBH	A/D conversion result register 5	ADCR5	R	-	-	x	Undefined
FFBBH	A/D conversion result register 5 H	ADCR5 H	R	-	\times	-	Undefined
FFBCH-FFBDH	A/D conversion result register 6	ADCR6	R	-	-	X	Undefined
FFBDH	A/D conversion result register 6 H	ADCR6H	R	-	x	-	Undefined
FFBEH-FFBFH	A/D conversion result register 7	ADCR7	R	-	-	x	Undefined
FFBFH	A/D conversion result register 7 H	ADCR7H	R	-	x	-	Undefined
FFCOH	Standby control register (Note 6)	STBC	R/W	-	X	-	$0000 \times 000 \mathrm{~B}$
FFC1H	CPU control word	CCW	R/W	X	X	-	00 H

Table 2. Special Function Registers (cont)

Address	Register (SFR)	Symbol	R/W	Access Units (Bits)			State After Reset
				1	8	16	
FFC2H	Watchdog timer mode register (Note 6)	WDM	R/W	-	X	-	OOH
FFC4H	Memory expansion mode register	MM	R/W	x	X	-	OOH
FFC6H-FFC7H	Programmable wait control register	PWC	R/W	-	-	x	COAAH
FFDOH-FFDFH	External SFR area	-	R/W	x	X	-	Undefined
FFEOH	Interrupt control register (INTOVO)	OVICO	R/W	x	x	-	43 H
FFE1H	Interrupt control register (INTOV3)	OVIC3	R/W	x	x	-	43 H
FFE2H	Interrupt control register (INTPO/INTCCOO)	PICO	R/W	x	x	-	43 H
FFE3H	Interrupt control register (INTP1/INTCC01)	PIC1	R/W	x	x	-	43 H
FFE4H	Interrupt control register (INTP2/INTCC02)	PIC2	R/W	x	x	-	43 H
FFE5H	Interrupt control register (INTP3/INTCC30)	PIC3	R/W	x	x	-	43 H
FFE6H	Interrupt control register (INTP4/INTCC31)	PIC4	R/W	x	x	-	43 H
FFE7H	Interrupt control register (INTCMOO)	CMICOO	R/W	x	x	-	43 H
FFE8H	Interrupt control register (INTCM01)	CMIC01	R/W	x	x	-	43 H
FFE9H	Interrupt control register (INTCM02)	CMICO2	R/W	x	x	-	43H
FFEAH	Interrupt control register (INTCM03)	CMICO3	R/W	X	X	-	43H
FFEBH	Interrupt control register (INTCM10)	CMIC10	R/W	X	X	-	43 H
FFECH	Interrupt control register (INTCM11)	CMIC11	R/W	x	X	-	43 H
FFEDH	Interrupt control register (INTCM20)	CMIC20	R/W	X	X	-	43 H
FFEEH	Interrupt control register (INTCM21)	CMIC21	R/W	x	x	-	43 H
FFEFH	Interrupt control register (INTCM40)	CMIC40	R/W	x	x	-	43 H
FFFOH	Interrupt control register (INTCMUDO)	CMICUDO	R/W	x	x	-	43 H
FFF1H	Interrupt control register (INTCMUD1)	CMICUD1	R/W	x	x	-	43 H
FFF2H	Interrupt control register (INTSER)	SERIC	R/W	x	x	-	43 H
FFF3H	Interrupt control register (INTSR)	SRIC	R/W	x	x	-	43 H
FFF4H	Interrupt control register (INTST)	STIC	R/W	X	X	-	43 H
FFF5H	Interrupt control register (INTCSIO)	CSIICO	R/W	X	x	-	43 H
FFF6H	Interrupt control register (INTCSI1)	CSIIC1	R/W	x	x	-	43 H
FFF7H	Interrupt control register (INTAD)	ADIC	R/W	X	X	-	43 H

Notes:

(1) P2 bit 0 is read only
(2) PM2 bit 0 is always 1 .
(3) PMC2 bit 0 is always 1 .
(4) TOVS bits 6 and 7 are always 0 ; bits $1,2,4$, and 5 are read/write; bits 0 and 3 are read only.
(5) SBIC bits 5 and 7 are read/write; bits 2,3 , and 6 are read only; bits 0,1 , and 4 are write only.
(6) Protected register that can be written by a special instruction only.

Input/Output Ports

The 78355 has a total of 57 I/O lines. The 78356/P356 have an additional 19 for a total of $76 \mathrm{I} / \mathrm{O}$ lines. Ports PO, P1, P3, P8, and P10 are tri-state, 8-bit input/output ports and $P 7$ is an 8 -bit input port. Port $P 2$ is an 8 -bit I / O port with pin $\mathrm{P} 2_{0}$ always an input. Bit 3 of port 9 is available as an I/O line at all times. All the I/O bits in PO to P3 and P8 to P10 can be individually selected for either input or output.
Each pin of P2 can be programmed for rising or falling edge detection; pins 1 to 7 can also be programmed for both rising and falling edge detection.

Software programmable internal pullup resistors are available at each pin of ports P0 to P3 and P8 to P10 except $\mathrm{P} 2_{0}$. These resistors are enabled on a port basis for all I/O pins set to input mode.

The output level of the P0 to P3 and P8 to P10 I/O pins can be tested to determine whether they agree with the contents of the output latch. When the low-order bit of port read control register PRDC is set to 1 , the output level of the l/O pins can be read with the port still in the output mode. These data values can be compared with the data known to be in the output latch to determine if the port is functioning correctly. Figure 3 shows the structure of each port pin.
The 19 additional I/O lines in the 78356/P356 are P4, P5, and bits 0 to 2 of P9. These ports are available if external memory or memory-mapped external circuitry is not being used. Port 4 is shared with the low-order address/data bus ($A D_{0}$ to $A D_{7}$) and is byteselectable for input or output. Port 5 is shared with the high-order address bus in 8-bit bus mode or the highorder address/data bus in 16-bit bus mode. Depending on the amount of external memory used, either $8,4,2$, or 0 bits of port 5 are available for bit-selectable I/O. Port 9 is a 4-bit, bit-selectable I/O port. One of its pins is shared with the read strobe and two others with the high and low write strobes. Internal pullup resistors are available at each pin of port 4 and 5 when they are set to input mode.

Figure 3. I/O Circuits
Type 1. $\mathrm{WAIT}, \mathrm{MODEO}$, MODE1

Pulse-Width Modulated Outputs

The μ PD78356 family has two high-speed, pulse-width modulated (PWM) outputs. A single 12-bit, free-running counter counts the internal system clock $f_{C L K} / 2$ and serves both outputs. The resolution is 125 ns per bit at 32 MHz . By setting the counter and comparator to either 8,10 , or 12 bits, repetition rates of $31.2,7.8$, and 1.9 kHz , respectively, can be achieved.

The polarity of each output can be selected under program control. Whenever the counter overflows, the CMP0 and CMP1 registers are loaded from their respective PWM buffer registers and each output becomes active. When the counter value matches the value in the associated compare register, that output goes inactive. The two PWM outputs, PWM0 and PWM1, share pins with port 8 bits 6 and 7, respectively.

Figure 4. Pulse-Width Modulated Outputs

Real-Time Output Port

Port 0 can function on a bit-selectable basis as a real-time output port. See figure 5. Real-time port bits can be directly written under program control or they can be written under control of timing signals INTCM10, INTCM11, and INTCM20 generated by the real-time pulse unit. The latter method provides output timing that is independent of interrupt latency.

Figure 5. Real-Time Output Port

A/D Converter

The analog-to-digital (A/D) converter (see figure 6) uses the successive-approximation method for converting up to eight multiplexed analog inputs into 10 -bit digital data. The minimum conversion time per input is $2 \mu \mathrm{~s}$ at $32-\mathrm{MHz}$ operation. There are eight 16 -bit A/D conversion results registers (ADCRO to ADCR7). During word access, the low-order 10 -bits contain the result and the upper 6-bits are set to zero. During byte access, the high-order 8 -bits of the 10 -bit A/D conversion result are read. This converted data can be easily transferred to memory by the macro service function.

Figure 6. A/D Converter

The A/D converter of the $\mu \mathrm{PD} 78356$ family supports a wide variety of operating modes. See figure 7. A/D conversion can be started by one of three modes: A/D trigger mode, timer trigger mode, and external trigger mode. Analog inputs ANIO to ANI3 can be started by all three modes; ANI4 to ANI7 can be started only by the A/D trigger mode. In A/D trigger mode, conversion is started by writing data into the A/D converter mode register 0 (ADMO) and proceeds automatically.

Figure 7. A/D Converter Operating Modes

In timer trigger mode, coincidence signals from compare registers CMOO, CM01, CC00, and CC01 associated with timer 0 start the conversions. Either all four signals are used (four-trigger mode) or only the coincidence signal CMOO is used (one-trigger mode). The timing and sequence of the A / D conversions are controlled by these trigger signals. Conversions can be performed once or repeatedly.
In external trigger mode, four external signals ADTRGO to ADTRG3 start the conversions. Either all four signals (four-trigger mode) or one signal ADTRGO (one-trigger mode) starts the conversions. The timing and sequence of the A/D conversions are controlled by these trigger signals.
The A/D converter can operate in either scan mode or select mode. In scan mode, from one to eight analog inputs (ANIO to ANI7) can be programmed for conversion. The A/D converter selects each of the inputs (order and timing sequence are based on the trigger mode), converts the data, and stores it in its associated A/D conversion result register (ADCRO to ADCR7). An interrupt (INTAD) is generated when all inputs have been converted.
In select mode, only one of the eight A / D inputs can be selected for conversion. Data from this input can be stored in its associated ADCR register (one-buffer mode) or four values can be stored sequentially in registers ADCRO to ADCR3 (four-buffer mode). In onebuffer mode, an interrupt (INTAD) is generated after each conversion. In four-buffer mode, an interrupt is generated after four conversions. The timing of the conversions depends on the trigger mode selected.

D/A Converter

The μ PD78356 family has two digital-to-analog (D/A) converters as shown in figure 8. The 8-bit digital data, written to the D/A conversion setup registers (DASCn; $\mathrm{n}=0,1$), selects one of the 256 taps on a resistor ladder between $A V_{\text {REF2 }}$ and $A V_{\text {REF3 }}$. The selected voltage becomes the analog output at the ANOn pin. ANOn is a high-impedance output and requires an external buffer to drive a low-impedance load.

Figure 8. D/A Converter

μ PD78356 Family

Serial Interfaces

The μ PD78356 family has three independent serial interfaces: one asynchronous and two clock synchronous. All three share an internal baud-rate generator.

The asychrounous serial interface is a standard universal asynchronous receiver transmitter (UART). The UART (figure 9) permits full-duplex operation and can be programmed for 7 or 8 bits of data after the start bit, followed by one or two stop bits. Odd, even, zero, or no parity can also be selected. The serial clock for the UART is from the internal system clock divided by eight or from the internal baud-rate generator. The UART generates three interrupts: INTST (transmission complete), INTSR (reception complete), and INTSER (reception error).

Figure 9. Asynchronous Serial Interface

Clock synchronous serial interface 0 (figure 10) is an 8 -bit interface that operates in either a three-wire serial I/O mode or NEC serial bus interface (SBI) mode.
In the three-wire serial I/O mode, the 8 -bit shift register (SIO) is loaded with a byte of data and eight clock pulses are generated. These eight pulses shift the byte of data out the SO line (either MSB or LSB first) and in from the SI line, providing full-duplex operation. This interface can also be set to receive or transmit data only. The INTCSIO interrupt is generated after each 8 -bit transfer. One of two internal clocks, an external clock, or the internal baud-rate generator clocks the data.

The NEC SBI mode is a two-wire, high-speed proprietary serial interface available on most devices in the NEC μ PD75xxx and μ PD78xxx product lines. Devices are connected in a master/slave configuration. See figure 11. There is only one master device at a time; all others are slaves. The master sends addresses, commands, and data over one of the serial bus lines (SBO or SB1) using a fixed hardware protocol synchronized with the SCK line.

Figure 10. Clock Synchronous Serial Interface 0

Each slave 78355/356/P356 can be programmed in software to respond to any one of 256 addresses. There are also 256 commands and 256 data types. Since all commands are user-definable, any software protocol, simple or complex, can be defined. It is even possible to develop commands to change a slave into a master and the previous master into a slave.

Figure 11. SBI Mode Master/Slave Configuration

Clock synchronous serial interface 1 (figure 12) with a pin switching function is also an 8-bit interface that operates only in the three-wire serial I/O mode. It can be switched under program control between two sets of I/O pins: SCK10, SO10, and SI10 or SCK11, SO11, and SI11. With the exception of this pin switching function, its operation in three-wire serial I/O mode is identical to clock synchronous interface 0 .

Figure 12. Clock Synchronous Serial Interface 1 With Pin Switching

μ PD78356 Family

A dedicated baud-rate generator can be programmed to provide a common serial clock to the asynchronous and clock synchronous serial interfaces. The baud-rate generator uses timer 4 and compare register CM40 of the real-time pulse unit to generate a serial clock from one of four internal clocks. By choosing the correct oscillator frequency, the baud-rate generator is capable of generating all the commonly used baud rates from 2400 to $154 \mathrm{~K} \mathrm{~b} / \mathrm{s}$ for the UART and 150 to $2 \mathrm{M} \mathrm{b} / \mathrm{s}$ for the clock synchronous interfaces.

Real-Time Pulse Unit

The real-time pulse unit (RPU, figure 13) can be used as an interval timer, to measure pulse widths and frequencies, to generate puse-width modulated outputs, to count external events, to control the real-time output port and the A/D converter, and to generate the serial clock. It consists of two 16 -bit timer/counters (TMO and TM1), two 16 -bit timers (TM2 and TM3), one 10 -bit interval timer (TM4), one 16 -bit up/down counter (UDC), ten 16 -bit compare registers, five 16 -bit registers that can be used for either capture or compare, and ten timed output latches.
All the timers count various clocks derived from the internal system clock. Timers TM0 and TM1 also count external events on the TIO and TI1 pins, respectively. All timers are cleared by an external reset. Timers TMO to TM2 can also be cleared by either an external clear input or a coincidence interrupt from one of its compare registers. Timers TM3 and TM4 are cleared only by a coincidence interrupt from one of its associated compare registers. When any of timers TMO to TM4 overflow, an overflow bit is set; in the case of timers TM0 and TM3, an overflow interrupt is also generated. Timer TM4 can also be used as the baud-rate generator for the serial interfaces.

Capture events for TMO can be triggered by external maskable interrupts INTPO to INTP2; capture events for TM3 can be triggered by INTP3 and INTP4. Compare events associated with timers TMO to TM4 can be used to generate interrupts, control timed output pins, or both. In addition, three of them (INTCM10, INTCM11, INTCM20) can control the real-time output port and four of them (INTCM00, INTCM01, INTCC00, INTCC01) can control the A/D converter. The timed output latches share pins in ports P2, P3, and P8. Five of them can be toggled or set and reset by compare events, and the remaining five can be toggled. These latches can generate pulse-width modulated outputs.

Figure 13. Real-Time Pulse Unit (Sheet 1 of 3)

Figure 13. Real-Time Pulse Unit (Sheet 2 of 3)

Timer/Counter 1

Timer 2

Figure 13. Real-Time Pulse Unit (Sheet 3 of 3)

The 16-bit up/down counter (UDC) can count the internal system clock (divided by 4,8 , or 16) or count external events on the TIUD pin. When the counter overflows, an overflow bit is set. If the counter underflows, an underflow bit is set. The UDC can be cleared by an external clear input (TCLRUD) or by a coincidence signal from its compare register.

When counting external events, the UDC can be programmed to operate in four modes. See figure 14. In mode 1, the UDC counts external events on the TIUD pin. When direction control pin TCUD is high, the UDC counts down. When TCUD is low, the UDC counts up.

Figure 14. Up/Down Counter; Modes 1, 2, 3, 4

In mode2, when the preset edge (rising, falling, or both) is detected at the TIUD pin, the UDC counts up; when a rising edge is detected at the TCUD pin, the UDC counts down. If TIUD and TCUD are active simultaneously, they are not counted and the value in the UDC is held.

Modes 3 and 4 are designed to count the output of a two-phase shaft encoder on a servomotor. In mode 3, two signals having a 90-degree phase shift are entered into the TIUD and TCUD pins. When the preset edge (rising, falling, or both) is detected on the TIUD pin, the signal level on TCUD is sampled. If the level of TCUD is low, the UDC counts down; if the level is high, the UDC counts up.
When mode 4 is specified, quadrature counting is enabled. The UDC is incremented or decremented at positive and negative transitions of both input signals. Whether it is incremented or decremented is dependent upon the relative phase of the two signals as illustrated in figure 14.

The μ PD78356 family has programmable noise detection on the external clock inputs and external clear inputs to the RPU. The noise detection time can be set for each input at 4 or 16 internal system clocks by the noise protection control register (NPC).

Interrupts

The μ PD78356 family has 24 maskable hardware interrupt sources: 5 software selectable as external or internal and 19 internal. The four external maskable interrupts share pins with port 2. Any of them, INTPO and INTP4, can also be used to trigger capture events in the real-time pulse unit. In addition, there are two nonmaskable interrupts, three software interrupts, and reset. The software interrupts, generated by the BRK or BRKCS instruction and the operation code trap, are not maskable. See table 3.

Table 3. Interrupt Sources

Type of Request	Default* Priority	Signal Name	Source	Location	Macro Service Control Word	Vector Address	
						TPF $=0$	TPF $=1$
Software			Operation code trap	CPU		003CH	003 CH
			BRK instruction	CPU		003EH	003EH
			BRKCS instruction (Initiates context switch)	CPU			
Nonmaskable		NMI	NMI input pin	External		0002H	8002H
		INTWDT	Watchdog timer overflow	Internal		0004H	8004H
Maskable	0	INTOVO	Timer 0 overflow	Internal	FE06H	0006H	8006H
	1	INTOV3	Timer 3 overflow	Internal	FE06H	0006H	8006H
	2	INTPO INTCCOO	INTPO pin CCOO coincidence	External Internal	FEOAH	000AH	800AH
	3	INTP1 INTCC01	INTP1 pin CC01 coincidence	External Internal	FEOCH	000 CH	800CH
	4	INTP2 INTCC02	INTP2 pin CCO2 coincidence	External Internal	FEOEH	O00EH	800EH
	5	INTP3 INTCC30	INTP3 pin CC3O coincidence	External Internal	FE10H	0010H	8010 H
	6	INTP4 INTCC31	INTP4 pin CC31 coincidence	External Internal	FE12H	0012H	8012H
	7	INTCM00	CM00 coincidence	Internal	FE14H	0014H	8014H
	8	INTCM01	CM01 coincidence	Internal	FE16H	0016H	8016 H
	9	INTCM02	CM02 coincidence	Internal	FE18H	0018H	8018 H
	10	INTCM03	CM03 coincidence	Internal	FE1AH	001 AH	801AH
	11	INTCM10	CM10 coincidence	Internal	FE1CH	001 CH	801 CH
	12	INTCM11	CM11 coincidence	Internal	FE1EH	001 EH	801 EH
	13	INTCM20	CM20 coincidence	Internal	FE2OH	0020H	8020H
	14	INTCM21	CM21 coincidence	Internal	FE22H	0022H	8022H
	15	INTCM40	CM40 coincidence	Internal	FE24H	0024H	8024H
	16	INTCMUDO	CMUDO coincidence	Internal	FE26H	0026H	8026H
	17	INTCMUD1	CMUD1 coincidence	Internal	FE28H	0028H	8028H
	18	INTSER	Asynchronous serial interface reception error	Internal	FE2AH	002AH	802AH
	19	INTSR	End of asynchronous serial interface reception	Internal	FE2CH	002CH	802CH
	20	INTST	End of asynchronous serial interface transmission	Internal	FE2EH	002EH	802EH
	21	INTCSIO	End of clocked serial interface CSIO transmission/reception	Internal	FE30H	OO30H	8030H
	22	INTCSI1	End of clocked serial interface CSI1 transmission/reception	Internal	FE32H	0032H	8032H
	23	INTAD	End of A/D conversion	Internal	FE34H	0034H	8034H
Reset		RESET	RESET pin	External		0000H	0000H

[^20]
Interrupt Servicing

The μ PD78356 family provides four levels of programmable hardware priority control and three different methods of handling maskable interrupt requests: standard vectoring, context switching, and macro service. The programmer can choose the priority and mode of servicing each maskable interrupt by using the interrupt control registers.

Interrupt Control Registers

The μ PD78356 family has 24 interrupt control registers. Each maskable interrupt request has its own control register, which includes bits to specify interrupt request, interrupt mask, macro service enable, context switch enable, and priority. Priorities range from 0 (highest) to 3 . See figure 15.
There are also three mask flag register, MKOL, MKOH, and MK1L, with a bit for each maskable interrupt. Since each interrupt has two mask bits, the masking of the interrupt is the "or" function of those two bits.

Interrupt mode control register IMC can enable or disable nesting of interrupts set to the lowest priority level (level 3). Inservice priority register ISPR is used by the hardware to hold the priority level of the interrupt request currently being serviced. It is manipulated by hardware only, but it can be read by software.
Finally, the IE bit of the program status word also is used to control the interrupts. If the IE bit is 0 , all maskable interrupts, but not macro service, are disabled. The IE bit can be set or cleared by the EI or DI instruction, respectively, or by direct writing to the PSW. The IE bit is cleared each time an interrupt is accepted.

Figure 15. Interrupt Control Register (xx/Cx)

7	6	5	4
xxIFxx	xxMKxx	xxISMxx	xxCSExx
3	2	1	0
0	0	xxPRx1	xxPRx0
xxIFxx	Interrupt Request Flag		
$\begin{aligned} & 0 \\ & 1 \end{aligned}$	No interrupt request Interrupt request received		
xxMKxx	Interrrupt Mask Flag		
$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Interrupt request enabled Interrupt will be pending		
xxISMxx	Macro Service Enable		
$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Software interrrupt Macro service		
xxCSExx	Context Switch Enable		
$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Vector interrupt Context switch		
xxPR ${ }^{\text {c }}$	xxPRx0 Priority Specification		
0	$0 \quad$ Priority 0 (highest		
0	1 Priority 1		
1	$0 \quad$ Priority 2		
1	1 Priority 3		

Interrupt Priority

The two nonmaskable interrupts, NMI and INTWDT, have priority over all others. Their priority relative to each other is under program control.
Four hardware-controlled priority levels are available for the maskable interrupts. Any one of the four levels can be assigned by software to each of the maskable interrupt lines. Interrupt requests of a priority higher than the processor's current priority level are accepted; requests of the same or lower priority are held pending until the processor's priority state is lowered by a return instruction from the current service routine.
By setting the PRSL bit of the IMC register to zero, it is possible to specify in software that level 3 interrupts (the lowest level) can be accepted when the processor is operating at level 3 . This nesting within a level applies to level 3 only.

Interrupt requests programmed to be handled by macro service have priority over all software interrupt service regardless of the assigned priority level, and
macro service requests are accepted even when the interrupt enable bit in the PSW is set to the disable state. See figure 16.
The default priorities listed in table 3 are fixed by hardware; they are effective only when it is necessary to choose between two interrupt requests of the same software-assigned priority. For example, the default priorities would be used after the completion of a high-priority routine if two interrupts of the same lower priority were pending.

Software interrupts, the BRK and BRKCS instructions, and the operation code trap are executed regardless of the processor's priority level and the state of the IE bit. They do not alter the processor's priority level.

Figure 16. Interrupt Service Sequence

Vectored Interrupt

When vectored interrupt is specified for a given interrupt request, (1) the program status word and the program counter are saved on the stack, (2) the processor's priority is raised to that specified for the interrupt, (3) the IE bit in the PSW is set to zero, and (4) the routine whose address is in the interrupt vector table is entered. At completion of the service routine, the RETI instruction (or RETB instruction for software interrupts) reverses the process, and the μ PD78356 family device resumes the interrupted routine. The corresponding interrupt request flag is cleared before executing the interrupt service routine.

Context Switch

When context switching (figure 17) is specified for a given interrupt, the active register bank is changed to the register bank specified by the three low-order bits of the word in the interrupt vector table. The program counter is loaded from RP2 of the new register bank, the old program counter and program status word are saved in RP2 and RP3 of the new register bank, and the IE bit in the PSW is set to zero.

At completion of the service routine, the RETCS instruction for routines entered from hardware requests or the RETCSB instruction for routines entered from the BRKCS instruction reverses the process. The old program counter and program status word are restored from RP2 and RP3 of the new register bank. The entry address of the service routine, which must be specified in the 16 -bit immediate operand of these return instructions, is stored again in RP2.

Figure 17. Context Switching and Return

Macro Service

When macro service is specified for a given interrupt, the macro service hardware temporarily stops the executing program and transfers data between the special function register area and the memory space. Control is then returned to the executing program, providing a completely transparent method of interrupt service. Macro service significantly improves response time and makes it unnecessary to save any registers.

For each request on the interrupt line, one operation is performed, and an 8 -bit counter is decremented. When the counter reaches 0 , a software service routine is entered according to its specified priority. Either vectored interrupt or context switch can be specified for entry to this routine, which is known as the macro service completion routine.

Macro service is provided for all of the maskable interrupt requests, and each has a specific macro service control word stored in on-chip main RAM. The function to be performed is specified in the control word.

The μ PD78356 family provides five different macro service functions.

Function	Description EVTCNT
Event counter. Counts up to 256 events by incrementing or decrementing the macro service counter. When the counter reaches 00H, the software service routine is entered.	
BLKTRS \quadBlock transfer. Transfers a byte or word of data in either direction between a specified special function register and a buffer in main RAM (FExx).	
BLKTRS-PBlock transfer with memory pointer. Transfers a byte or word of data in either direction between a specified special function register and a buffer anywhere in the 64K-byte address space.	
DTADIFData difference. Stores the difference between the current value of a specified 16-bit special function register and its previous value in a word buffer in main RAM (FExx).	

DTADIF-P Data difference with memory pointer. Stores the difference between the current value of a specified 16-bit special function register and its previous value in a word buffer anywhere in the 64K-byte address space.

Standby Modes

The standby modes, HALT and STOP, reduce power consumption when CPU action is not required. In HALT mode, the CPU is stopped but the system clock continues to run. The HALT mode is released by any unmasked interrupt, any nonmaskable interrupt, or an external reset pulse. In STOP mode, both the CPU and the system clock are stopped, further minimizing power consumption. The STOP mode is released by either an external reset pulse or an external NMI.
The HALT and STOP modes are entered by programming standby control register STBC. This register is a protected location and can be written to only by a special instruction. If the third and fourth bytes of the instruction are not complements of each other, the data is not written and an operation code trap interrupt occurs.

Watchdog Timer

The watchdog timer protects against inadvertent program loops. A nonmaskable interrupt occurs if the timer is not reset by the program before it overflows. At the same time, watchdog timer output pin WDTO goes active low for a period of 32 system clocks. The WDT0 pin can be connected to the RESET pin or used to control external circuitry. Three program-selectable intervals are available: $8.2,32.8$, and 131.1 ms at 32 MHz .

Once started, the timer can be stopped only by an external reset. Watchdog timer mode register WDM is used to select the time interval, to set the relative priority of the watchdog timer interrupt and NMI , and to clear the timer. This register is a protected location and can be written to only by a special instruction. If the third and fourth bytes of the instruction are not complements of each other, the data is not written and an operation code trap interrupt occurs.

External Reset

The μ PD78356 family is reset by taking the $\overline{\text { RESET }}$ pin low. The reset circuit contains a noise filter to protect against spurious system resets caused by noise. On power-up, the $\overline{R E S E T}$ pin must remain low until the power supply reaches its operating voltage and the oscillator has stabilized. During reset, the program counter is loaded with the address contained in the reset vector table (addresses $0000 \mathrm{H}, 0001 \mathrm{H}$); program execution starts at that address upon the RESET pin going high. While RESET is low, all external lines except $\overline{\text { WDTO, CLKOUT, } V_{S S}, V_{D D}, A V_{S S}, A V_{D D}, A V_{R E F 1} \text {, }}$ $A V_{\text {REF2 }}, A V_{\text {REF } 3}, X 1$, and $X 2$ are in the high-impedance state.

ELECTRICAL SPECIFICATIONS (Preliminary)

Absolute Maximum Ratings
$T_{A}=25^{\circ} \mathrm{C}$

Supply voltage, $\mathrm{V}_{\text {DD }}$	-0.5 to +7.0 V
Supply voltage, $\mathrm{V}_{\text {PP }}$	-0.5 to +13.5 V
Input voltage, V_{1} Except $\mathrm{P}_{2} /$ NMI (A9) of 78P356 $\mathrm{P}_{2} / \mathrm{NMI}$ (A9) of 78P356	$\begin{array}{r} -0.5 \text { to } V_{D D}+0.5 \mathrm{~V} \\ -0.5 \text { to }+13.5 \mathrm{~V} \end{array}$
Output voltage, V_{O}	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Output current, low; loL Each output pin Total	$\begin{gathered} 4.0 \mathrm{~mA} \\ 140 \mathrm{~mA} \end{gathered}$
Output current, high; l_{OH} Each output pin Total	$\begin{array}{r} -1.0 \mathrm{~mA} \\ 30 \mathrm{~mA} \end{array}$
Operating temperature, TOPT	-10 to $+70^{\circ} \mathrm{C}$
Storage temperature, TSTG	-65 to $+150^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC characteristics.

Operating Conditions

Oscillator Frequency, f_{xx}	T_{A}	V_{DD}
8 to 32 MHz	-10 to $+70^{\circ} \mathrm{C}$	$+5.0 \mathrm{~V} \pm 10 \%$

Capacitance

Parameter	Symbol	Max	Unit	Conditions
Input pin capacitance	C_{1}	TBD	pF	$f=1 M H z ;$ unmeasured pins returned to 0 V
Output pin capacitance	c_{0}	TBD	pF	
1/O pin capacitance	C_{10}	TBD	pF	

AC Timing Test Points

μ PD78356 Family

DC Characteristics

$T_{A}=-10$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=+5.0 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Input voltage, low	V_{12}	0		0.8	V	
input voltage, high	$\mathrm{V}_{1 \mathrm{H} 1}$	2.2			V	(Note 1)
	V_{1+2}	0.8 V VD			V	(Note 2)
Output voltage, low	V_{OL}			0.45	V	$1 \mathrm{OL}=2.0 \mathrm{~mA}$
Output voltage, high	VOH	$V_{D D}-1.0$			V	$\mathrm{IOH}=-400 \mu \mathrm{~A}$
Input leakage current	l_{LI}			± 10	$\mu \mathrm{A}$	$\mathrm{V}_{1}=0$ to V_{DD}
Output leakage current	Lo			± 10	$\mu \mathrm{A}$	$V_{O}=0$ to $V_{D D}$
V_{DD} supply current	${ }^{\text {DDD1 }}$		75	107	mA	Operating mode; 78355/356
			86	125	mA	Operating mode; 78P356
	$I_{\text {DD2 }}$		40	60	mA	HALT mode; 78355/356
			40	60	mA	HALT mode; 78P356
Data retention voltage	$V_{\text {DDDR }}$	2.5			V	STOP mode
Data retention current	IDDDR		2	10	$\mu \mathrm{A}$	STOP mode; $\mathrm{V}_{\text {DDDR }}=2.5 \mathrm{~V}$
			10	50	$\mu \mathrm{A}$	STOP mode; $\mathrm{V}_{\text {DDDR }}=5.0 \mathrm{~V} \pm 10 \%$

Notes:

(1) All except pins in Note 2.
(2) Pins RESET, $\mathrm{X} 1, \mathrm{PO}_{0}-\mathrm{PO}_{3}, \mathrm{P} 2, \mathrm{P3}_{2}-\mathrm{P} 3_{6}, \mathrm{P} 8_{0}-\mathrm{P8}_{1}, \mathrm{P} 8_{5}, \mathrm{P} 10_{1}$, $\mathrm{P} 10^{2}, \mathrm{P} 10^{4}-\mathrm{P} 10_{7}$.

AC Characteristics

$T_{A}=-10$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=+5.0 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{f}_{\mathrm{XX}}=32 \mathrm{MHz}$

Parameter	Symbol	Calculation Formula	Min	Max	Unit	Conditions

External Memory Read/Write Operation

System clock cycle time (Note 1)	${ }_{\text {t }}^{\text {cro }}$	-	62.5	250	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
Address setup time to ASTB \downarrow	$\mathrm{t}_{\text {SAST }}$	(0.5+a) T-24	7		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Note 2)
Address hold after ASTB \downarrow	$\mathrm{t}_{\text {HSTA }}$	$0.5 \mathrm{~T}-16$	15		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
$\overline{\mathrm{RD}} \downarrow$ to address floating	${ }^{\text {t }}$ FRA	-		0	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
Address to data input valid	$t_{\text {DAID }}$	$(2.5+a+n) T-56$		100	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Note 2, 3)
$\overline{\mathrm{RD}} \downarrow$ to data input valid	${ }^{\text {t }}$ DRID	$(1.5+n) T-44$		49	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Note 3)
ASTB \downarrow to $\overline{\mathrm{RD}} \downarrow$ delay time	$t_{\text {DSTR }}$	0.5T-16	15		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
Data hold time from $\overline{\mathrm{RD}} \uparrow$	${ }^{\text {thRID }}$	-	0		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
$\overline{\mathrm{RD}} \uparrow$ to next address active	${ }^{\text {t DRA }}$	0.5T-14	17		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
$\overline{\text { RD }}$ width low	${ }^{\text {t }}$ WRL	$(1.5+n) T-30$	63		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Note 3)
ASTB width high	${ }^{\text {t WSTH }}$	$(0.5+\mathrm{a}) \mathrm{T}-17$	14		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Note 2)
$\overline{\text { LWR }}$ or $\overline{\text { WWR }}$ to data output	${ }^{\text {t }}$ DWOD	0.5T-10		21	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
$\overline{A S T B ~} \downarrow$ to $\overline{L W R} \downarrow$ or $\overline{\text { HWR }} \downarrow$ delay	${ }^{\text {t }}$ ISTW	$0.5 \mathrm{~T}-16$	15		ns	$C_{L}=100 \mathrm{pF}$
Data setup time to LWR \uparrow or $\overline{\text { HWR } \uparrow}$	tsodw	$(1+n) T-5$	57		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}($ Note 3)
	$t_{\text {HWOD }}$	-	8		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
LWR or $\overline{\text { HWR }}$ width, low	${ }^{\text {twWL }}$	$(1.5+n) T-30$	63		ns	$C_{L}=100 \mathrm{pF}($ Note 2, 3)
WAIT setup time from address	$t_{\text {SAWT }}$	$(a+n) T-15$		110	ns	$C_{L}=100 \mathrm{pF}($ Notes 2, 4)
WAIT hold time from address	$t_{\text {HaWT }}$	$(0.5+a+n) T$	156		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}($ Notes 2, 4)

Preliminary

AC Characteristics (cont)

Parameter	Symbol	Calculation Formula	Min	Max	Unit	Conditions
$\overline{\text { WAIT }}$ setup time from $\overline{\text { RD }} \downarrow$ or $\overline{\text { WR }} \downarrow$	tsRWRY	$(\mathrm{n}-1) \mathrm{T}-25$		37	ns	$C_{L}=100 \mathrm{pF}$ (Note 4)
$\overline{\text { WAIT }}$ hold time from $\overline{\mathrm{RD}} \downarrow$ or $\overline{\mathrm{WR}} \downarrow$	$t_{\text {HRWRY }}$	$(\mathrm{n}-0.5) \mathrm{T}-14$	79		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Note 4)
ASTB \uparrow delay time from $\overline{\text { WR } \uparrow}$	$t_{\text {DWST }}$	1.5T-15	TBD		ns	$C_{L}=100 \mathrm{pF}$
Serial Port Operation						
$\overline{\text { SCK cycle time }}$	$t_{\text {cYsk }}$	-	8 T		ns	$\overline{\text { SCK output }}$
			500		ns	$\overline{\text { SCK }}$ input
$\overline{\overline{S C K}}$ width, low	twskl	-	4T-40		ns	$\overline{\text { SCK output }}$
			210		ns	$\overline{\text { SCK input }}$
$\overline{\text { SCK }}$ width, high	${ }^{\text {twskh }}$	-	4T-40		ns	$\overline{\text { SCK output }}$
			210		ns	$\overline{\text { SCK }}$ input
SI setup time to $\overline{\text { SCK }} \uparrow$	$\mathrm{t}_{\text {SRXSK }}$	-	80		ns	
SI hold time after $\overline{\text { SCK }}$	$\mathrm{t}_{\text {HSKRX }}$	-	80		ns	
$\overline{\overline{S C K}} \downarrow$ to SO delay time	${ }^{\text {t }}$ SSKTX	-		110	ns	

Definitions:

(1) $T=t_{\mathrm{CYK}}$ (ns)
(2) $\mathrm{a}=$ address wait state: $\mathrm{a}=0$ or 1
(3) $n=$ number of wait states specified by the external wait pin $\overline{\text { WAIT }}$ and the PWC register

Notes:
(1) $t_{C Y K}$ equals twice the period of the crystal or external clock input.
(2) No address wait state
(3) No wait states
(4) One external wait state and one internal wait state.

A/D Converter Characteristics

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Resolution				10	Bit	
Total error*				1.2	\%	
Quantization error				$\pm 1 / 2$	LSB	
Conversion time	tCONV	32			${ }^{\text {t }}$ CYK	AD trigger mode
		37			${ }_{\text {t }}^{\text {cruk }}$	Timer/external trigger mode
Sampling time	$\mathrm{t}_{\text {SAMP }}$	7.5			$\mathrm{t}_{\text {CYK }}$	
Analog input voltage	$\mathrm{A}_{\text {IAN }}$	-0.3		$\mathrm{AV}_{\text {REF } 1}+0.3$	V	
Analog input impedance	$\mathrm{R}_{\text {AN }}$		TBD		$\mathrm{M} \Omega$	
Reference voltage	$\mathrm{AV}_{\text {REF } 1}$	TBD		$V_{D D}$	V	
$\mathrm{AV}_{\text {REF } 1}$ current	$\mathrm{Al}_{\text {REF } 1}$		3.0	9	mA	${ }^{\text {X }}$ X $=32 \mathrm{MHz}$
			TBD	TBD	mA	ADM0.7(CS) $=0$
$\mathrm{AV}_{\mathrm{DD}}$ supply current	Aldo		3.3	13	mA	Operational mode

[^21]
D/A Converter Characteristics

$\mathrm{T}_{\mathrm{A}}=-10$ to $+70^{\circ} \mathrm{C} ; \mathrm{AV}_{\text {REF2 }}=\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \% ; A V_{\text {REF3 }}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Resolution				8	Bit	
Overall error				TBD	\%	
Settling time				2	$\mu \mathrm{s}$	Load condition $2 \mathrm{M} \Omega 30 \mathrm{pF}$
Output resistance	R_{0}		20		k Ω	When DACS0 and DACS1 are set to 7FH
Analog reference voltage	$\mathrm{AV}_{\text {REF2 }}$	$0.75 \mathrm{~V}_{\mathrm{DD}}$		$V_{D D}$	V	
	$\mathrm{AV}_{\text {REF3 }}$	$V_{S S}$		$0.2 V_{D D}$	V	
Reference supply input current	$\mathrm{Al}_{\text {REF2 }}$	0		5	mA	
	$\mathrm{Al}_{\text {REF3 }}$	-5		0	mA	

Up/Down Counter Operation

Parameter	Symbol	Min	Max	Unit	Conditions
TIUD high-, low-level width	twTIUH, twTiul	aT		ns	Except mode 4
		bT		ns	Mode 4
TCUD high-, low-level width	tWTCUH, 'WTCUL	aT		ns	Except mode 4
		bT		ns	Mode 4
TCLRUD high-, low-level width	${ }^{\text {t WCLUH, }}$ WCLUL	aT		ns	
TCUD setup time to TIUD	${ }_{\text {tstcu }}$	0		ns	Mode 3, rise
TCUD hold time from TIUD \uparrow	$\mathrm{t}_{\text {HTCU }}$	$2 T$		ns	Mode 3, rise
TIUD setup time to TCUD	$\mathrm{t}_{\text {S4TIU }}$	4 T		ns	Mode 4
TIUD hold time from TCUD	$\mathrm{t}_{\text {H4TIU }}$	4 T		ns	Mode 4
TIUD, TCUD cycle time	$\mathrm{t}_{\mathrm{CYC4}}$		1	MHz	

Note: a, b are defined by NPC register.
NPC.bit $=0$, then $a=4, b=8 ;$ NPC.bit $=1$, then $a=b=16$.

Other Operations

$T_{A}=-10$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}=\mathrm{t}_{\mathrm{CYK}}(\mathrm{ns})$

Parameter	Symbol	Min	Max	Unit	Conditions
NMI high-, low-level width	tWNIH, twNIL	2		$\mu \mathrm{s}$	
INTPO to INTP4 high-, low-level width	$t_{\text {WInH, }}$ twinL	4 T		ns	
RESET high-, low-level width	${ }^{\text {WhRSH, }}$, ${ }_{\text {WRSL }}$	2		$\mu \mathrm{s}$	
TIn high-, low-level width	${ }_{\text {t WTInH, }}$ t WTInL	aT		ns	
TCLRn high-, low-level width	${ }^{\text {t }}$ WCLnH, ${ }^{\text {W WCLnL }}$	aT		ns	
ADTRGn high-, low-level width	${ }^{\text {tWADnH, }}$ WADnL	4 T		ns	
ADC external trigger inputs ADTRGn to ADTRGm (valid edge to valid edge)	${ }^{\text {tadCININ }}$	37 T		ns	

Note: a is defined by NPC register ($\mathrm{a}=4$ or 16).

Preliminary

Timing Waveforms
Read Operation (8-Bit Bus)

Timing Waveforms (cont)

Read Operation (16-Bit Bus)

Timing Waveforms (cont)

Write Operation (8-Bit Bus)

Timing Waveforms (cont)

Write Operation (16-Bit Bus)

Timing Waveforms (cont)

Serial Port Operation, Clock Synchronous Mode

Up/Down Counter Input

Timing Waveforms (cont)

Interrupt Input

Reset Input

Timer Input

A/D Converter Trigger Input

PROM PROGRAMMING

The PROM in the μ PD78P356 is one-time programmable (OTP) or ultraviolet erasable (UV EPROM). The 49,152x 8-bit PROM has the programming characteristics of an NEC μ PD27C1001A, including both page and byte programming modes. Table 4 shows the functions of the μ PD78P356 pins in normal operating mode and PROM programming mode.

Table 4. Pin Functions During PROM Programming

Function	Normal Operating Mode	Programming Mode
Address input	$\begin{aligned} & \mathrm{PO}_{0}-\mathrm{PO}_{7}, \mathrm{P}_{0}, \mathrm{P} 2_{0} \\ & \mathrm{P5}_{1}-\mathrm{P5}_{7} \end{aligned}$	$\mathrm{A}_{0}-\mathrm{A}_{16}$
Data input	$\mathrm{P} 4_{0}-\mathrm{P} 4_{7}$	$\mathrm{D}_{0}-\mathrm{D}_{7}$
Program pulse	P_{1}	$\overline{\text { PGM }}$
Chip enable	P 10	$\overline{C E}$
Output enable	$\mathrm{P} 1_{1}$	$\overline{\mathrm{OE}}$
Program voltage	MODEO/VPP	MODEO/V ${ }_{\text {PP }}$
Mode voltage	MODE1, $\mathrm{P}_{1}, \overline{\mathrm{RESET}}$	MODE1, $\mathrm{P}_{1}, \overline{\mathrm{RESET}}$

The μ PD78P356 also includes a PROM error correction function capable of correcting one 1-bit error per four bytes of code. Each device contains 49,152 bytes of PROM for program storage (0000 H to BFFFH) and 12,288 bytes of PROM for error correction code (COOOH
to EFFFH). A four-byte ECC Control Word (ECW) is located at addresses FOOOH to $\mathrm{FOO3H}$ and controls the ECC circuitry. For additional protection, four bytes of ECC data for the ECW are located at addresses F004H to F 007 H . The error correction code and information to be stored in the ECW are automatically generated and added to your HEX file by the ECCGEN program supplied with the RA78K3 Relocatable Assembler Package.

PROM Programming Mode

When MODE1, $\mathrm{P} 2_{1}$, and RESET pins are set low, the μ PD78P356 enters the PROM programming mode. Operation in this mode is determined by the setting of $\overline{C E}$, $\overline{O E}, \overline{P G M}, M O D E O N_{P P}$, and $V_{D D}$ pins as indicated in table 5.

Table 5. Operation Modes for Programming

Mode	MODE1	$\mathrm{P} 2_{1}$	RESET	$\overline{\mathrm{CE}}$	$\overline{O E}$	$\overline{\text { PGM }}$	MODE0/Vpp	$\mathrm{V}_{\text {DD }}$	$\mathrm{D}_{0}-\mathrm{D}_{7}$
Page data latch	L	L	L	H	L	H	$+12.5 \mathrm{~V}$	$+6.5 \mathrm{~V}$	Data input
Page program	L	L	L	H	H	L	+12.5 V	$+6.5 \mathrm{~V}$	High impedance
Byte program	L	L	L	L	H	L	$+12.5 \mathrm{~V}$	$+6.5 \mathrm{~V}$	Data input
Program verify	L	L	L	L	L	H	+12.5V	$+6.5 \mathrm{~V}$	Data output
Program inhibit	L	L	L	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	+12.5 V	$+6.5 \mathrm{~V}$	High impedance
Read	L	L	L	L	L	H	$+5.0 \mathrm{~V}$	+5.0 V	Data output
Ouput disable	L	L	L	L	H	X	$+5.0 \mathrm{~V}$	$+5.0 \mathrm{~V}$	High impedance
Standby	L	L	L	H	X	X	$+5.0 \mathrm{~V}$	$+5.0 \mathrm{~V}$	High impedance

X can be either H or L.

Figure 18. Pin Functions in μ PD78P356 PROM Programming Mode; 100-Pin Plastic QFP

Notes:

Recommended connections for pins not used during
PROM programming:
(L) Connect each pin through a resistor to $V_{S S}$.
(G) Connect to $V_{S S}$.
(Open) No connection.

Figure 19. Pin Functions in μ PD78P356 PROM Programming Mode; 120-Pin Ceramic LCC

PROM Byte Programming Procedure

Data can be written to the PROM one byte at a time by the following procedure.
(1) Set the pins not used for programming as indicated in figures 18 and 19. Set MODEO $N_{P P}$ and $V_{D D}$ pins to +5 V and MODE1, P_{1}, and RESET pins to 0 V . The $\overline{\mathrm{CE}}, \overline{\mathrm{OE}}$, and $\overline{\mathrm{PGM}}$ pins should be high.
(2) Supply +6.5 V to V_{DD} pin and +12.5 V to MODEO/ $V_{P P}$ pin. Set $\overline{C E}$ pin low and $\overline{O E}$ pin high.
(3) Provide initial address to pins $\mathrm{A}_{0}-\mathrm{A}_{16}$.
(4) Provide write data.
(5) Input a 0.1 -ms program pulse (active low) to $\overline{\text { PGM }}$ pin.
(6) Use verify mode (pulse $\overline{\mathrm{OE}}$ low) to test data. If data has been written, proceed to step 8; if not, repeat steps 4-6. If data cannot be written in 10 attempts, go to step 7.
(7) Classify PROM as defective and cease write operation.
(8) Increment address.
(9) Repeat steps 4-8 until last address is programmed.

PROM Page Programming Procedure

Data can be written to the PROM four bytes at a time (page programming) by the following procedure.
(1) Set the pins not used for programming as indicated in figures 18 and 19. Set MODEON $N_{P P}$ and $V_{D D}$ pins to +5 V and MODE1, $\mathrm{P} 2_{1}$, and RESET pins to 0 V . The $\overline{\mathrm{CE}}, \overline{\mathrm{OE}}$, and $\overline{\mathrm{PGM}}$ pins should be high.
(2) Supply +6.5 V to V_{DD} pin and +12.5 V to MODEO/ $V_{P P}$ pin. Set $\overline{C E}$ pin low.
(3) Provide initial page address to pins $\mathrm{A}_{0}-\mathrm{A}_{16}$.
(4) Provide first byte of data and latch it into PROM by pulsing $\overline{\mathrm{OE}}$ low. Continue incrementing address and latching in data until four bytes have been loaded.
(5) Input a 0.1-ms program pulse (active low) to $\overline{\text { PGM }}$ pin. Data bus $D_{0}-D_{7}$ is in a high-impedance state.
(6) Use verify mode (pulse $\overline{\mathrm{OE}}$ low four times) to test four bytes of data. If all four bytes of data have been written, proceed to step 8; if not, repeat steps 4-6. If data cannot be written in 10 attempts, go to step 7.
(7) Classify PROM as defective and cease write operation.
(8) Increment address.
(9) Repeat steps 4-8 until last address is programmed.

PROM Read Procedure

The contents of the PROM can be read out to the external data bus ($D_{0}-D_{7}$) by the following procedure.
(1) Set the pins not used for programming as indicated in figures 18 and 19. Set MODEO $N_{P P}$ and $V_{D D}$ pins to +5 V and MODE1, P_{1}, and RESET pins to 0 V . The $\overline{C E}, \overline{O E}$, and PGM pins should be high.
(2) Supply +5 V to V_{DD} pin and MODEO N_{PP} pin.
(3) Input address of data to be read to pins $A_{0}-A_{16}$.
(4) Put an active-low pulse on $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ pins.
(5) Data is output to pins $D_{0}-D_{7}$.

Program Erasure

The UV EPROM can be erased by exposing the window to light having a wavelength shorter than 400 nm , including ultraviolet, direct sunlight, and fluorescent light. To prevent unintentional erasure, mask the window.

Typically, data is erased by $254-\mathrm{nm}$ ultraviolet rays. A minimum lighting level of $15 \mathrm{Ws} / \mathrm{cm}^{2}$ (ultraviolet ray intensity x exposure time) is required to completely erase the written data. Erasure by an ultraviolet lamp rated at $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ takes 15 to 20 minutes. Remove any filter on the lamp and place the device within 2.5 cm of the lamp tubes.

DC Programming Characteristics
$T_{A}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Min	Typ	Max	Unit	Condition
High-level input voltage	$\mathrm{V}_{\mathrm{HH} 1}$	2.2		$V_{D D}$	V	(Note 1)
	$\mathrm{V}_{1 \mathrm{H} 2}$	$0.8 \mathrm{~V}_{\text {DD }}$		$V_{D D}$	V	(Note 2)
$\mathrm{V}_{\text {DDP }}$ power supply voltage	$\mathrm{V}_{\text {DDP }}$	6.25	6.5	6.75	V	Memory program mode
		4.5	5.0	5.5	V	Memory read mode
V_{PP} power supply voltage	V_{PP}	12.2	12.5	12.8	V	Memory program mode
			V_{DD}		V	Memory read mode
$V_{\text {DDP }}$ power supply current	${ }^{\text {IDDP }}$			30	mA	Memory program mode
				100	mA	Memory read mode
$\mathrm{V}_{\text {PP }}$ power supply current	IPP			50	mA	Memory program mode
			1	100	$\mu \mathrm{A}$	Memory read mode

Notes:

(1) All except pins in Note 2.
(2) Pins $\overline{\operatorname{RESET}}, \mathrm{X} 1, \mathrm{PO}_{0}-\mathrm{PO}_{3}, \mathrm{P} 2, \mathrm{P3}_{2}-\mathrm{P}_{6}, \mathrm{P} 8_{0}-\mathrm{P} 8_{1}, \mathrm{P} 8_{5}$, $\mathrm{P} 10_{1}-\mathrm{P} 10_{2}, \mathrm{P} 10_{4}-\mathrm{P} 10_{7}$.

AC Programming Characteristics

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Byte Programming Mode						
Address setup time to $\overline{\mathrm{PGM}} \downarrow$	$t_{\text {AS }}$	2			$\mu \mathrm{s}$	
	${ }^{\text {c CeS }}$	2			$\mu \mathrm{s}$	
Input data setup time to $\overline{\text { PGM }} \downarrow$	${ }_{\text {t }}$ S	2			$\mu \mathrm{s}$	
Address hold time after $\overline{\mathrm{OE}} \uparrow$	$t_{\text {AH }}$	2			$\mu \mathrm{s}$	
Input data hold time after $\overline{\text { PGM }} \uparrow$	${ }^{\text {t }}$ D	2			$\mu \mathrm{s}$	
Output data hold time after $\overline{\mathrm{OE}} \uparrow$	$t_{\text {DF }}$	0		130	ns	
$\mathrm{V}_{\text {PP }}$ setup time before $\overline{\text { PGM }} \downarrow$	tVPs	2			$\mu \mathrm{s}$	
V_{DD} setup time before $\overline{\mathrm{PGM}} \downarrow$	tvDs	2			$\mu \mathrm{s}$	
Program pulse width	$t_{\text {pw }}$	0.095	0.1	0.105	ms	
Data to $\overline{O E} \downarrow$ delay time	toes	2			$\mu \mathrm{s}$	
$\overline{\mathrm{OE}} \downarrow$ to data output time	t_{OE}			150	ns	

Page Programming Mode

Address setup time to $\overline{O E} \downarrow$	$t_{\text {AS }}$	2			$\mu \mathrm{s}$
$\overline{\mathrm{CE}}$ setup time to $\overline{O E} \downarrow$	${ }^{\text {tCES }}$	2			$\mu \mathrm{s}$
Input data setup time to $\overline{O E} \downarrow$	$t_{\text {DS }}$	2			$\mu \mathrm{s}$
Address hold time from $\overline{O E} \uparrow$	${ }^{\text {t }}{ }_{\text {A }}$	2			$\mu \mathrm{s}$
	${ }_{\text {t }}^{\text {AHL }}$	2			$\mu \mathrm{s}$
	${ }_{\text {taHV }}$	0			$\mu \mathrm{s}$
Input data hold time after $\overline{O E} \uparrow$	$t_{\text {DH }}$	2			$\mu \mathrm{s}$
Output data hold time after $\overline{O E} \uparrow$	t_{DF}	0		130	ns
V_{PP} setup time to $\overline{O E} \downarrow$	tvPs	2			$\mu \mathrm{s}$
$V_{D D}$ setup time to $\overline{O E} \downarrow$	tvos	2			$\mu \mathrm{s}$
Program pulse width	$t_{\text {pw }}$	0.095	0.1	0.105	ms
Address to $\overline{O E} \downarrow$ delay time	toes	2			$\mu \mathrm{s}$
$\overline{O E} \downarrow$ to data output time	t_{OE}			150	ns
$\overline{\text { OE pulse width during data latch }}$	tLW	1			$\mu \mathrm{s}$
Data to $\overline{\text { PGM }} \downarrow$ delay time	tpGMS	2			$\mu \mathrm{s}$
$\overline{\mathrm{CE}}$ hold time from $\overline{\mathrm{PGM}} \uparrow$	${ }^{\text {t CEH }}$	2			$\mu \mathrm{s}$
$\overline{\mathrm{CE}}$ hold time from $\overline{O E} \uparrow$	$\mathrm{t}_{\mathrm{OEH}}$	2			$\mu \mathrm{s}$

Address to data output time	$t_{A C C}$		200	ns	$\overline{C E}=\overline{O E}=V_{I L}$
$\overline{C E} \downarrow$ to data output time	${ }^{\text {t Ce }}$		200	ns	$\overline{O E}=V_{\text {IL }}$
$\overline{\mathrm{OE}} \downarrow$ to data output time	${ }^{\text {t }}$ OE		75	ns	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$
Data hold time from $\overline{\mathrm{OE}} \uparrow$	$t_{\text {DF }}$	0	60	ns	$\overline{C E}=V_{\text {IL }}$
Data hold time from address	t_{OH}	0		ns	$\overline{C E}=\overline{O E}=V_{\text {IL }}$

PROM Timing Diagrams

Byte Programming Mode

PROM Timing Diagrams (cont)

Page Programming Mode; Page Data Latch \rightarrow Page Program

Notes:

[1] $V_{D D}$ must be applied before $V_{P P}$ and removed after $V_{\text {PP }}$.
[2] $V_{\text {PP }}$ must not be greater than +13.5 V , Including overshoot.
[3] Removing and reinserting the device while a voltage of +12.5 V is applled to pin $V_{\text {Pp }}$ may affect device rellability.

PROM Timing Diagrams (cont)

Page Programming Mode; Page Program \rightarrow Program Verify

Notes:
[1] V_{DD} must be applled before V_{PP} and removed after V_{PP}.
[2] VPP must not be greater than +13.5 V , Including overshoot.
[3] Removing and reinserting the device while a voltage of +12.5 V Is applled to pin $V_{p p}$ may affect device rellabillty.

PROM Timing Diagrams (cont)

Read Mode

INSTRUCTION SET

The instruction set of the μ PD78356 family is upward compatible with the μ PD78322, and μ PD78352 families. Four new instructions (MACW, MACSW, SACW, and MOVTBL) have been added to the μ PD78322 and two (MACSW and SACW) to the μ PD78352. These additional instructions facilitate digital signal processing.

Convolution instruction MACW calculates the sum of the products of " n " pairs of terms stored in main RAM. The value of " n " is limited only by the amount of main RAM available. The operation of the convolution instruction with saturation word MACSW is identical to instruction MACW except when the instuction terminates with the PN flag set. In this case, the AXDE register will be set to 7FFFFFFFFH by an overflow or 80000000 H by an underflow.

Correlation instruction SACW subtracts corresponding factors of two tables and calculates the sum of the absolute values of these subtractions. Instruction MOVTBL displaces a data table by one 16-bit word to make room for a new data word.

The instruction set features both 8 - and 16-bit data transfer, arithmetic, and logic instructions and singlebit manipulation instructions. String manipulation instructions are also included. Branch instructions exist to test individual bits in the program status word, the 16-bit accumulator, the special function registers, and the saddr portion of on-chip RAM. Instructions range in length from 1 to 6 bytes depending on the instruction and addressing mode.

Flag Column Indicators

Symbol	Action
(blank)	No change
0	Set to 0
1	Set to 1
X	Set or cleared according to result
P	P/V indicates parity of result
V	P/V indicates arithmetic overflow
R	Restored from saved PSW

Instruction Set Symbols

Symbol	Definition
r	R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15
11	R0, R1, R2, R3, R4, R5, R6, R7
12	C, B
rp	RP0, RP1, RP2, RP3, RP4, RP5, RP6, RP7*
rp1	RP0, RP1, RP2, RP3, RP4, RP5, RP6, RP7*
rp2	DE, HL, VP, UP
sfr	Special function register, 8 bits
sfrp	Special function register, 16 bits
post	RP0, RP1, RP2, RP3, RP4, RP5/PSW, RP6, RP7. Bits set to 1 indicate register pairs to be pushed/ popped to/from stack; RP5 pushed/popped by PUSH/POP, SP is stack pointer; PSW pushed/ popped by PUSHU/POPU, RP5 is stack pointer.
mem	Register indirect: [DE], [HL], [DE+], [HL+], [DE-], [HL-], [VP], [UP]
	Base Index Mode: $\begin{aligned} & {[D E+A],[H L+A],[D E+B],} \\ & {[H L+B],[V P+D E],[V P+H L]} \end{aligned}$
	$\begin{gathered} \text { Base Mode: }[\mathrm{DE}+\text { byte], }[\mathrm{HL}+\text { byte }],[\mathrm{VP}+\text { byte }, \\ {[\mathrm{UP}+\text { byte], }[\mathrm{SP}+\text { byte] }} \end{gathered}$
	Index Mode: word [A], word [B], word [DE], word [HL]
saddr	FE20-FF1FH: Immediate byte addresses one byte in RAM, or label
saddrp	FE20-FF1FH: Immediate byte (bit $0=0$) addresses one word in RAM, or label
word	16 bits of immediate data, or label
byte	8 bits of immediate data, or label
jdisp8	8 -bit two's complement displacement (immediate data, displacement value -128 to +127)
bit	3 bits of immediate data (bit position in byte), or label
n	3 bits of immediate data
!addr16	16-bit absolute address specified by an immediate address or label
\$addr16	Relative branch address or label
addr16	16-bit address
!addr11	11-bit immediate address or label
addr11	0800H-OFFFH: $0800 \mathrm{H}+$ (11-bit immediate address), or label
addr5	0040H-007EH: $0040 \mathrm{H}+2 \times$ (5-bit immediate address), or label
A	A register (8-bit accumulator)
X	X register
B	B register
C	C register
D	D register

Instruction Set Symbols (cont)

Symbol	Definition
E	E register
H	H register
L	L register
R0-R15	Register 0 to register 15
AX	Register pair AX (16-bit accumulator)
BC	Register pair BC
DE	Register pair DE
HL	Register pair HL
$\begin{aligned} & \text { RPO- } \\ & \text { RP7 } \end{aligned}$	Register pair 0 to register pair 7
PC	Program counter
SP	Stack pointer
UP	User stack pointer (RP5)
PSW	Program status word
PSWH	High-order 8 bits of PSW
PSWL	Low-order 8 bits of PSW
CY	Carry flag
AC	Auxiliary carry flag
Z	Zero flag
P/V	Parity/overflow flag
S	Sign flag
TPF	Table position flag
RBS	Register bank select flag
RSS	Register set select flag
IE	Interrupt enable flag
STBC	Standby control register
WDM	Watchdog timer mode register
()	Contents of the location whose address is within parentheses; $(+)$ and $(-)$ indicate that the address is incremented after or decremented after it is used
(())	Contents of the memory location defined by the quantity within the sets of parentheses
$x \times H$	Hexadecimal quantity
$\mathrm{X}_{\mathrm{H}, \mathrm{X}_{\mathrm{L}}}$	High-order 8 bits and low-order 8 bits of X
\wedge	Logical product (AND)
\checkmark	Logical sum (OR)
\forall	Exclusive logical sum (exclusive OR)
-	Inverted data

[^22]
Instruction Set

Mnemonic	Operand	Operation	Bytes	Flags				
				S	Z	AC	P/V	CY
8-Bit Data Transfer								
MOV	r1, \#byte	$\mathrm{r} 1 \leftarrow$ byte	2					
	saddr, \#byte	(saddr) \leftarrow byte	3					
	sfr, \#byte (Note 1)	sfr \leftarrow byte	3					
	r r, r1	$r \leftarrow r 1$	2					
	A, r1	$A \leftarrow r 1$	1					
	A, saddr	$A \leftarrow$ (saddr)	2					
	saddr, A	(saddr) $\leftarrow A$	2					
	saddr, saddr	(saddr) \leftarrow (saddr)	3					
	A, sfr	$\mathrm{A} \leftarrow \mathrm{sfr}$	2					
	sfr, A	sfr $\leftarrow A$	2					
	A, mem (Note 2)	$A \leftarrow($ mem $)$	1					
	A, mem	$A \leftarrow(\mathrm{mem})$	2-4					
	mem, A (Note 2)	$($ mem $) \leftarrow A$	1					
	mem, A	$($ mem $) \leftarrow A$	2-4					
	A, [saddrp]	$A \leftarrow($ (saddrp $))$	2					
	[saddrp], A	((saddrp)) $\leftarrow A$	2					
	A, !addr16	$A \leftarrow$ (addr16)	4					
	!addr16, A	(addr16) $\leftarrow \mathrm{A}$	4					
	PSWL, \#byte	PSWL \leftarrow byte	3	X	X	X	X	X
	PSWH, \#byte	PSWH \leftarrow byte	3					
	PSWL, A	PSWL $\leftarrow A$	2	X	X	X	X	X
	PSWH, A	PSWH $\leftarrow \mathrm{A}$	2					
	A, PSWL	$A \leftarrow P S W L$	2					
	A, PSWH	$\mathrm{A} \leftarrow \mathrm{PSWH}$	2					
$\overline{\mathrm{XCH}}$	A, r1	$\mathrm{A} \leftrightarrow \mathrm{r1}$	1					
	$\mathrm{r}, \mathrm{r} 1$	$r \leftrightarrow r 1$	2					
	A, mem	$A \leftrightarrow$ (mem)	2-4					
	A, saddr	$A \leftrightarrow$ (saddr)	2					
	A, sfr	$A \leftrightarrow s f r$	3					
	A, [saddrp]	$\mathrm{A} \leftrightarrow$ ((saddrp))	2					
	saddr, saddr	(saddr) \leftrightarrow (saddr)	3					

16-Bit Data Transfer

MOVW	rp1, \#word	rp1 \leftarrow word	3
	saddrp, \#word	$($ saddrp $) \leftarrow$ word	4
	sfrp, \#word	sfrp \leftarrow word	4
	$r p, r p 1$	$r p \leftarrow r p 1$	2
	$A X$, saddrp	$A X \leftarrow($ saddrp $)$	2
	saddrp, AX	$($ saddrp $) \leftarrow A X$	2
	saddrp, saddrp	$($ saddrp $\leftarrow($ saddrp $)$	3

Instruction Set (cont)

Mnemonic	Operand	Operation	Bytes	Flags				
				S	Z	AC	P/N	CY
16-Bit Data Transfer (cont)								
MOVW (cont)	AX, sfrp	AX \leftarrow sfrp	2					
	sfrp, AX	sfrp $\leftarrow \mathrm{AX}$	2					
	rp1, !addr16	rp1 $\leftarrow($ addr16 $)$	4					
	!addr16, rp1	(addr16) $\leftarrow \mathrm{rp} 1$	4					
	AX, mem	$A X \leftarrow$ (mem)	2-4					
	mem, AX	$($ mem $) \leftarrow A X$	2-4					
XCHW	AX, saddrp	$A X \leftrightarrow$ (saddrp)	2					
	AX, sfrp	AX \leftrightarrow sfrp	3					
	saddrp, saddrp	(saddrp) \leftrightarrow (saddrp)	3					
	rp, rp1	$\mathrm{rp} \leftrightarrow \mathrm{rp} 1$	2					
	AX, mem	AX \leftrightarrow (mem)	2-4					
8-Bit Arithmetic								
ADD	A, \#byte	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+$ byte	2	X	X	X	V	X
	saddr, \#byte	(saddr), $\mathrm{CY} \leftarrow$ (saddr) + byte	3	X	X	X	V	X
	sfr, \#byte	$\mathrm{sfr}, \mathrm{CY} \leftarrow \mathrm{sfr}+$ byte	4	X	X	X	V	X
	r, r1	$r, C Y \leftarrow r+r 1$	2	X	X	X	V	X
	A, saddr	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+$ (saddr)	2	X	X	X	V	X
	A, sfr	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+\mathrm{sfr}$	3	X	X	X	V	X
	saddr, saddr	(saddr), $\mathrm{CY} \leftarrow$ (saddr) + (saddr)	3	X	X	X	V	X
	A, mem	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+(\mathrm{mem})$	2-4	X	X	X	V	X
	mem, A	(mem) , $\mathrm{CY} \leftarrow($ mem $)+\mathrm{A}$	2-4	X	X	X	V	X
ADDC	A, \#byte	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+$ byte +CY	2	X	X	X	V	x
	saddr, \#byte	(saddr), $\mathrm{CY} \leftarrow$ (saddr) + byte + CY	3	X	X	X	V	X
	sfr, \#byte	sfr, $\mathrm{CY} \leftarrow \mathrm{sfr}+$ byte +CY	4	X	X	X	V	X
	r, r1	$r, C Y \leftarrow r+r 1+C Y$	2	X	X	X	V	X
	A, saddr	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+$ (saddr) +CY	2	X	x	x	V	x
	A, sfr	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+\mathrm{sfr}+\mathrm{CY}$	3	X	X	X	V	x
	saddr, saddr	(saddr), $\mathrm{CY} \leftarrow$ (saddr) + (saddr) +CY	3	X	X	X	V	X
	A, mem	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+($ mem $)+\mathrm{CY}$	2-4	X	X	X	V	X
	mem, A	(mem), $\mathrm{CY} \leftarrow(\mathrm{mem})+\mathrm{A}+\mathrm{CY}$	2-4	X	X	X	V	X
SUB	A, \#byte	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}$ - byte	2	X	X	X	V	x
	saddr, \#byte	(saddr), $\mathrm{CY} \leftarrow$ (saddr) - byte	3	X	X	X	V	X
	sfr, \#byte	sfr, $\mathrm{CY} \leftarrow \mathrm{sfr}$ - byte	4	X	X	X	V	X
	r, r1	$r, \mathrm{CY} \leftarrow \mathrm{r}-\mathrm{r} 1$	2	X	X	X	V	X
	A, saddr	$A, C Y \leftarrow A-$ (saddr)	2	X	X	X	V	X
	A, sfr	$A, C Y \leftarrow A-s f r$	3	X	X	X	V	X
	saddr, saddr	(saddr), $\mathrm{CY} \leftarrow$ (saddr) - (saddr)	3	X	X	X	V	X
	A, mem	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}-$ (mem)	2-4	X	X	X	V	X
	mem, A	(mem), $\mathrm{CY} \leftarrow$ (mem) - A	2-4	X	X	X	V	X

Instruction Set (cont)

Mnemonic	Operand	Operation	Bytes	Flags				
				S	z	AC	P/V	CY
8-Bit Arithmetic (cont)								
SUBC	A, \#byte	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}$ - byte - CY	2	X	X	X	V	X
	saddr, \#byte	(saddr), $\mathrm{CY} \leftarrow$ (saddr) - byte - CY	3	X	X	X	V	X
	sfr, \#byte	sfr, CY ¢ sfr - byte - CY	4	X	X	X	V	X
	r, r1	$\mathrm{r}, \mathrm{CY} \leftarrow \mathrm{r}-\mathrm{rl}-\mathrm{CY}$	2	X	X	X	V	X
	A, saddr	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}-$ (saddr) -CY	2	X	X	X	V	X
	A, sfr	A, CY $\leftarrow \mathrm{A}-\mathrm{sfr}-\mathrm{CY}$	3	X	X	X	V	X
	saddr, saddr	(saddr), $\mathrm{CY} \leftarrow$ (saddr) - (saddr) - CY	3	X	X	X	V	X
	A, mem	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}-($ mem $)-\mathrm{CY}$	2-4	X	X	X	V	X
	mem, A	(mem) , $\mathrm{CY} \leftarrow$ (mem) $-\mathrm{A}-\mathrm{CY}$	2-4	X	X	X	V	X
8-Bit Logic								
AND	A, \#byte	$A \leftarrow A \wedge$ byte	2	X	X		P	
	saddr, \#byte	(saddr) \leftarrow (saddr) \wedge byte	3	X	X		P	
	sfr, \#byte	$\operatorname{sfr} \leftarrow \operatorname{sfr} \wedge$ byte	4	X	X		P	
	r, r1	$r \leftarrow r \wedge r 1$	2	X	X		P	
	A, saddr	$A \leftarrow A \wedge$ (saddr)	2	X	X		P	
	A, sfr	$A \leftarrow A \wedge$ sfr	3	X	X		P	
	saddr, saddr	(saddr) \leftarrow (saddr) \wedge (saddr)	3	X	X		P	
	A, mem	$A \leftarrow A \wedge$ (mem)	2-4	X	X		P	
	mem, A	$($ mem $) \leftarrow(\mathrm{mem}) \wedge A$	2-4	X	X		P	
$\overline{O R}$	A, \#byte	$A \leftarrow A \vee$ byte	2	X	X		P	
	saddr, \#byte	(saddr) \leftarrow (saddr) \vee byte	3	X	X		P	
	sfr, \#byte	$\mathrm{sfr} \leftarrow \mathrm{sfr} \vee$ byte	4	X	X		P	
	r, r1	$r \leftarrow r \vee r 1$	2	X	X		P	
	A, saddr	$A \leftarrow A \vee$ (saddr)	2	X	X		P	
	A, sfr	$A \leftarrow A \vee$ sfr	3	X	X		P	
	saddr, saddr	(saddr) \leftarrow (saddr) \vee (saddr)	3	X	X		P	
	A, mem	$A \leftarrow A \vee$ (mem)	2-4	X	X		P	
	mem, A	$($ mem $) \leftarrow($ mem $) \vee A$	2-4	X	X		P	
XOR	A, \#byte	$A \leftarrow A \forall$ byte	2	X	X		P	
	saddr, \#byte	(saddr) \leftarrow (saddr) \forall byte	3	X	X		P	
	sfr, \#byte	sfr $\leftarrow \operatorname{sfr} \forall$ byte	4	X	X		P	
	r, r1	$r \leftarrow r \forall r 1$	2	X	X		P	
	A, saddr	$A \leftarrow A \forall$ (saddr)	2	X	X		P	
	A, sfr	$A \leftarrow A \forall s f r$	3	X	X		P	
	saddr, saddr	(saddr) \leftarrow (saddr) \forall (saddr)	3	X	X		P	
	A, mem	$A \leftarrow A \forall$ (mem)	2-4	X	X		P	
	mem, A	$($ mem $) \leftarrow($ mem $) \forall A$	2-4	X	X		P	

Instruction Set (cont)

Mnemonic	Operand	Operation	Bytes	Flags				
				S	z	AC	P/V	CY
8-Bit Logic (cont)								
CMP	A, \#byte	A-byte	2	X	X	X	V	X
	saddr, \#byte	(saddr) - byte	3	X	X	X	V	X
	sfr, \#byte	sfr-byte	4	X	X	X	V	x
	r, r1	r-r1	2	X	X	x	V	x
	A, saddr	A - (saddr)	2	X	X	X	V	X
	A, sfr	A - sfr	3	X	x	X	V	X
	saddr, saddr	(saddr) - (saddr)	3	X	X	X	V	X
	A, mem	A - (mem)	2-4	X	X	X	V	X
	mem, A	(mem) - A	2-4	X	X	X	V	X
16-Bit Arithmetic								
ADDW	AX, \#word	$A X, C Y \leftarrow A X+$ word	3	X	X	X	V	X
	saddrp, \#word	(saddrp), $\mathrm{CY} \leftarrow$ (saddrp) + word	4	X	X	X	V	X
	sfrp, \#word	sfrp, $\mathrm{CY} \leftarrow \operatorname{sfrp}+$ word	5	X	X	X	V	X
	rp, rp1	$\mathrm{rp}, \mathrm{CY} \leftarrow \mathrm{rp}+\mathrm{rp1}$	2	X	X	X	V	X
	AX, saddrp	$\mathrm{AX}, \mathrm{CY} \leftarrow \mathrm{AX}+$ (saddrp)	2	X	X	X	V	X
	AX, sfrp	$A X, C Y \leftarrow A X+$ sfrp	3	X	x	X	V	X
	saddrp, saddrp	(saddrp), $\mathrm{CY} \leftarrow$ (saddrp) + (saddrp)	3	X	X	X	V	X
SUBW	AX, \#word	$A X, C Y \leftarrow A X$ - word	3	X	X	X	V	x
	saddrp, \#word	(saddrp), $\mathrm{CY} \leftarrow$ (saddrp) - word	4	X	X	X	V	x
	sfrp, \#word	sfrp, $\mathrm{CY} \leftarrow$ sfrp - word	5	X	X	X	V	X
	rp, rp1	$r p, C Y \leftarrow r p-r p 1$	2	X	X	X	V	X
	AX, saddrp	$A X, C Y \leftarrow A X-$ (saddrp)	2	X	X	X	V	X
	AX, sfrp	$A X, C Y \leftarrow A X-$ sfrp	3	X	X	X	V	X
	saddrp, saddrp	(saddrp), $\mathrm{CY} \leftarrow$ (saddrp) - (saddrp)	3	X	X	X	V	X
CMPW	AX, \#word	AX - word	3	X	X	X	V	X
	saddrp, \#word	(saddrp) - word	4	X	X	X	V	x
	sfrp, \#word	sfrp - word	5	X	X	X	V	x
	rp, rp1	rp-rp1	2	X	X	X	V	X
	AX, saddrp	AX - (saddrp)	2	X	X	X	v	X
	AX, sfrp	AX - sfrp	3	x	X	X	V	X
	saddrp, saddrp	(saddrp) - (saddrp)	3	X	X	X	V	X
Multiplication/Division								
MULU	r 1	$A X \leftarrow A \times r 1$	2					
DIVUW	r1	AX (quotient), r 1 (remainder) $\leftarrow \mathrm{AX} \div \mathrm{r} 1$	2					
MULUW	rp1	AX (high-order 16 bits), rp1 (low-order 16 bits) \leftarrow AX \times rp1	2					
DIVUX	rp1	AXDE (quotient), rp1 (remainder) $\leftarrow \mathrm{AXDE} \div \mathrm{rp1}$	2					
MULW (Note 3)	rp1	AX (high-order 16 bits), rp1 (low-order 16 bits) $\leftarrow A X \times r p 1$	2					

Instruction Set (cont)

Mnemonic	Operand	Operation	Bytes	Flags				
				S	Z	AC	P/V	CY
Sum-of-Products								
MACW	n	$A X D E \leftarrow(B) \times(C)+A X D E, B \leftarrow B+2, C \leftarrow C+$ $2, \mathrm{n} \leftarrow \mathrm{n}-1$. End if $\mathrm{n}=0$ or $\mathrm{P} / \mathrm{V}=1$	3	X	X	X	V	X
Sum-of-Products With Saturation								
MACSW	n	AXDE $\leftarrow(B) \times(C)+A X D E, B \leftarrow B+2, C \leftarrow C+2$, $n \leftarrow n-1$, if overflow ($\mathrm{P} / \mathrm{V}=1$) then $\mathrm{AXDE} \leftarrow$ 7FFFFFFFH, if underflow (P/V=1) then AXDE \leftarrow 80000000 H . End if $\mathrm{n}=0$ or $\mathrm{P} / \mathrm{V}=1$	3	x	x	x	x	x
Correlation Operation								
SACW	[$\mathrm{DE}+],[\mathrm{HL}+$]	$\begin{aligned} & A X \leftarrow A X+l(D E)-(H L) I, D E \leftarrow D E+2, H L \leftarrow H L+ \\ & 2, C \leftarrow C-1 \text {. End if } C=0 \text { or } C Y=1 \end{aligned}$	4	x	x	x	V	x
Table Shift		\cdots						
MOVTBLW	$\begin{aligned} & \text { !addr 16, n } \\ & \text { (Note 4) } \end{aligned}$	$\begin{aligned} & (\text { addr16 }+2) \leftarrow(\text { addr16), } n \leftarrow n-1 \text {, addr16 } \\ & \leftarrow \text { addr16 }-2 \text {. End if } n=0 \end{aligned}$	4					
Increment/Decrement								
INC	r 1	r ¢ $\leftarrow 1+1$	1	X	X	X	V	
	saddr	(saddr) \leftarrow (saddr) +1	2	X	X	X	V	
DEC	r1	$\mathrm{r} 1 \leftarrow \mathrm{r} 1-1$	1	X	X	X	V	
	saddr	(saddr) \leftarrow (saddr) -1	2	X	X	X	V	
INCW	rp2	$\mathrm{rp} 2 \leftarrow \mathrm{rp} 2+1$	1					
	saddrp	$($ saddrp $) \leftarrow($ saddrp $)+1$	3					
DECW	rp2	$\mathrm{rp} 2 \leftarrow \mathrm{rp2}-1$	1					
	saddrp	(saddrp) \leftarrow (saddrp) - 1	3					
Shift/Rotate								
ROR	r1, n	($\mathrm{CY}, \mathrm{r} 1_{7} \leftarrow \mathrm{r1} 1_{0}, \mathrm{r} 1_{\mathrm{m}-1} \leftarrow \mathrm{r} 1_{\mathrm{m}}$) $\times \mathrm{n}$ times	2				P	X
ROL	r1, n	$\left(\mathrm{CY}, \mathrm{r1} 0_{0} \leftarrow \mathrm{r} 1_{7}, \mathrm{r}_{\mathrm{m}}+1 \leftarrow \mathrm{r} 1_{\mathrm{m}}\right) \times \mathrm{n}$ times	2				P	X
RORC	$\mathrm{r} 1, \mathrm{n}$	$\left(\mathrm{CY} \leftarrow \mathrm{r1} 0_{0} \mathrm{r1}_{7} \leftarrow \mathrm{CY}, \mathrm{r} 1_{\mathrm{m}-1} \leftarrow \mathrm{r} 1_{\mathrm{m}}\right) \times \mathrm{n}$ times	2				P	X
ROLC	$\mathrm{r} 1, \mathrm{n}$	$\left(\mathrm{CY} \leftarrow \mathrm{r} 1_{7}, \mathrm{r} 1_{0} \leftarrow \mathrm{CY}, \mathrm{r} 1_{\mathrm{m}+1} \leftarrow \mathrm{r} 1_{\mathrm{m}}\right) \times \mathrm{n}$ times	2				P	x
SHR	r1, n	$\left(\mathrm{CY} \leftarrow \mathrm{rl}_{0}, \mathrm{r} 1_{7} \leftarrow 0, \mathrm{r} 1_{\mathrm{m}-1} \leftarrow \mathrm{r} 1_{\mathrm{m}}\right) \times \mathrm{n}$ times	2	X	X	0	P	X
SHL	r1, n	$\left(\mathrm{CY} \leftarrow \mathrm{r} 1_{7}, \mathrm{r1} 0_{0} \leftarrow 0, \mathrm{r} 1_{\mathrm{m}+1} \leftarrow \mathrm{r} 1_{\mathrm{m}}\right) \times \mathrm{n}$ times	2	X	X	0	P	X
SHRW	rp1, n	$\left(C Y \leftarrow r p 1_{0}, \mathrm{rp} 1_{15} \leftarrow 0, \mathrm{rp} 1_{\mathrm{m}-1} \leftarrow \mathrm{rp} 1_{\mathrm{m}}\right) \times \mathrm{n}$ times	2	X	X	0	P	X
SHLW	rp1, n	$\left(C Y \leftarrow r p 1_{15}, r p 1_{0} \leftarrow 0, r p 1_{m+1} \leftarrow \mathrm{rp} 1_{\mathrm{m}}\right) \times \mathrm{n}$ times	2	X	X	0	P	X
ROR4	[rp1]	$\begin{aligned} & A_{3-0} \leftarrow(\mathrm{rp} 1)_{3-0},(\mathrm{rp} 1)_{7-4} \leftarrow \mathrm{~A}_{3-0}, \\ & (\mathrm{rp} 1)_{3-0} \leftarrow(\mathrm{rp} 1)_{7-4} \\ & \hline \end{aligned}$	2					
ROL4	[rp1]	$\begin{aligned} & \mathrm{A}_{3-0} \leftarrow(\mathrm{rp} 1)_{7-4},(\mathrm{rp} 1)_{3-0} \leftarrow \mathrm{~A}_{3-0} \\ & (\mathrm{rp1})_{7-4} \leftarrow(\mathrm{rp1})_{3-0} \end{aligned}$	2					
BCD Adjustment								
ADJBA		Decimal adjust accumulator after add	2	X	X	X	P	x
ADJBS		Decimal adjust accumulator after subtract	2	X	X	X	P	x
Data Expansion								
CVTBW		$X \leftarrow A, A_{6-0} \leftarrow A_{7}$	1					

μ PD78356 Family

Instruction Set (cont)

Mnemonic	Operand	Operation	Bytes	Flags				
				S	z	AC	P/V	CY
Bit Manipulation								
MOV1	CY, saddr.bit	CY \leftarrow (saddr.bit)	3					x
	CY, sfrbit	$C Y \leftarrow$ sfr.bit	3					x
	CY, A.bit	$\mathrm{CY} \leftarrow \mathrm{A} . \mathrm{bit}$	2					x
	CY, X.bit	$\mathrm{CY} \leftarrow \mathrm{X}$. bit	2					x
	CY, PSWH.bit	CY ↔ PSWH.bit	2					X
	CY, PSWL.bit	CY \leftarrow PSWL.bit	2					X
	saddr.bit, CY	(saddr.bit) $\leftarrow C \mathrm{CY}$	3					
	sfr.bit, CY	sfr.bit \leftarrow CY	3					
	A.bit, CY	A.bit $\leftarrow C Y$	2					
	X.bit, CY	X.bit \leftarrow CY	2					
	PSWH.bit, CY	PSWH.bit $\leftarrow C Y$	2					
	PSWL.bit, CY	PSWL.bit \leftarrow CY	2	X	X	X	X	
AND1	CY, saddr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ (saddr.bit)	3					X
	CY , /saddr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ (saddr.bit)	3					X
	CY, sfr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ sfr.bit	3					X
	CY, /sfr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge \overline{\text { sfrbit }}$	3					x
	CY, A.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ A.bit	2					X
	CY, /A.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge \overline{\mathrm{A} . \mathrm{bit}}$	2					X
	CY, X.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge \mathrm{X}$. bit	2					x
	CY, X .bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge \overline{\mathrm{X} . \mathrm{bit}}$	2					x
	CY, PSWH.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ PSWH.bit	2					x
	CY, /PSWH.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge \overline{\text { PSWH.bit }}$	2					X
	CY, PSWL.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ PSWL.bit	2					X
	CY, /PSWL.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge \overline{\text { PSWL.bit }}$	2					X
OR1	CY, saddr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee$ (saddr.bit)	3					x
	CY, /saddr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee$ (saddr.bit)	3					X
	CY , sfrbit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee$ sfr.bit	3					X
	CY, /sfr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee \overline{\text { sfr.bit }}$	3					X
	CY, A.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee$ A.bit	2					X
	CY, /A.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee \overline{\mathrm{A} . \mathrm{bit}}$	2					X
	CY, X.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee \mathrm{X}$.bit	2					X
	CY, X.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee \overline{\mathrm{X} . \mathrm{bit}}$	2					X
	CY, PSWH.bit	$\mathrm{CY} \leftarrow \mathrm{CY} V$ PSWH.bit	2					x
	CY, /PSWH.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee \overline{\text { PSWH.bit }}$	2					x
	CY, PSWL.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee$ PSWL.bit	2					X
	CY, /PSWL.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee \overline{\text { PSWL.bit }}$	2					X

Instruction Set (cont)

Mnemonic	Operand	Operation	Bytes	Flags				
				S	z	AC	P/V	CY
Bit Manipulation (cont)								
XOR1	CY, saddr.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \forall$ (saddr.bit)	3					x
	CY, sfrbit	$\mathrm{CY} \leftarrow \mathrm{CY} \forall$ sfrbit	3					x
	CY, A.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \forall$ A.bit	2					X
	CY, X.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \forall \mathrm{X}$.bit	2					x
	CY, PSWH.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \forall$ PSWH.bit	2					x
	CY, PSWL.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \forall$ PSWL.bit	2					X
SET1	saddr.bit	(saddr.bit) $\leftarrow 1$	2					
	sfr.bit	sfr.bit $\leftarrow 1$	3					
	A.bit	A.bit $\leftarrow 1$	2					
	X.bit	X. bit $\leftarrow 1$	2					
	PSWH.bit	PSWH.bit $\leftarrow 1$	2					
	PSWL.bit	PSWL.bit $\leftarrow 1$	2	X	X	X	X	X
CLR1	saddr.bit	(saddr.bit) $\leftarrow 0$	2					
	sfr.bit	sfr.bit $\leftarrow 0$	3					
	A.bit	A.bit $\leftarrow 0$	2					
	X.bit	X.bit $\leftarrow 0$	2					
	PSWH.bit	PSWH.bit $\leftarrow 0$	2					
	PSWL.bit	PSWL.bit $\leftarrow 0$	2	X	X	X	X	X
NOT1	saddr.bit	(saddr.bit) \leftarrow (saddr.bit)	3					
	sfr.bit	sfr.bit $\leftarrow \overline{\text { sfr.bit }}$	3					
	A.bit	A.bit $\leftarrow \overline{\text { A.bit }}$	2					
	X.bit	X.bit $\leftarrow \overline{\text { X.bit }}$	2					
	PSWH.bit	PSWH.bit $\leftarrow \overline{\text { PSWH.bit }}$	2					
	PSWL.bit	PSWL.bit $\leftarrow \overline{\text { PSWL.bit }}$	2	X	X	X	X	X
SET1	CY	CY $\leftarrow 1$	1					1
CLR1	CY	$\mathrm{CY} \leftarrow 0$	1					0
NOT1	CY	$\mathrm{CY} \leftarrow \overline{\mathrm{CY}}$	1					X

Subroutine Linkage

CALL	laddr16	$\begin{aligned} & (S P-1) \leftarrow(P C+3)_{H}(S P-2) \leftarrow(P C+3)_{L} \\ & P C \leftarrow \text { addr16, } S P \leftarrow S P-2 \end{aligned}$	3
	rp1	$\begin{aligned} & (S P-1) \leftarrow(P C+2)_{H},(S P-2) \leftarrow(P C+2)_{L}, \\ & P C_{H} \leftarrow r p 1_{H}, P C_{L} \leftarrow r p 1_{L}, S P \leftarrow S P-2 \end{aligned}$	2
	[rp1]	$\begin{aligned} & (S P-1) \leftarrow(P C+2)_{H}(S P-2) \leftarrow(P C+2)_{L} \\ & P C_{H} \leftarrow(r p 1+1), P C_{L} \leftarrow(r p 1), S P \leftarrow S P-2 \end{aligned}$	2
CALLF	laddr11	$\begin{aligned} & (S P-1) \leftarrow(P C+2)_{H},(S P-2) \leftarrow(P C+2) L_{1} \\ & P_{15-11} \leftarrow 00001, P_{10-0} \leftarrow \text { addr11, } S P \leftarrow S P-2 \end{aligned}$	2
CALLT	[addr5]	$\begin{aligned} & (S P-1) \leftarrow(P C+1)_{H},(S P-2) \leftarrow(P C+1)_{L}, \\ & P C_{H} \leftarrow(T P F \times 8000 H+2 \times \text { addr5 }+41 H), \\ & P C_{L} \leftarrow(T P F \times 8000 H+2 \times \text { addr5 }+40 H), S P \leftarrow \\ & S P-2 \end{aligned}$	1

Instruction Set (cont)

Mnemonic	Operand	Operation	Bytes	Flags				
				S	z	AC	P/V	CY
Subroutine Linkage (cont)								
BRK		$\begin{aligned} & (S P-1) \leftarrow P S W H,(S P-2) \leftarrow P S W L,(S P- \\ & 3) \leftarrow(P C+1)_{H},(S P-4) \leftarrow(P C+1)_{L}, \\ & P C_{L} \leftarrow(003 E H), P C_{H} \leftarrow(003 F H), S P \leftarrow S P-4, \\ & I E \leftarrow 0 \end{aligned}$	1					
RET		$P C_{L} \leftarrow(S P), P C_{H} \leftarrow(S P+1), S P \leftarrow S P+2$	1					
RETB		$\begin{aligned} & P C_{L} \leftarrow(S P), P C_{H} \leftarrow(S P+1), P S W L \leftarrow(S P+2), \\ & P S W H \leftarrow(S P+3), S P \leftarrow S P+4 \end{aligned}$	1	R	R	R	R	R
RETI		$\begin{aligned} & P C_{L} \leftarrow(S P), P_{H} \leftarrow(S P+1), P S W L \leftarrow(S P+2), \\ & P S W H \leftarrow(S P+3), S P \leftarrow S P+4 \end{aligned}$	1	R	R	R	R	R
Stack Manipulation								
PUSH	sfrp	$(S P-1) \leftarrow \mathrm{sfr}_{\mathrm{H}},(S P-2) \leftarrow \mathrm{sfr}_{L}, S P \leftarrow S P-2$	3					
	post	$\begin{aligned} & \left\{(S P-1) \leftarrow r p P_{H},(S P-2) \leftarrow r P_{L}, S P \leftarrow S P-2\right\} x \\ & n(\text { Note 5) } \end{aligned}$	2					
	PSW	$(S P-1) \leftarrow P S W H$, (SP - 2) $\leftarrow P S W L, S P \leftarrow S P-2$	1					
PUSHU	post	$\begin{aligned} & \left\{(\mathrm{UP}-1) \leftarrow \mathrm{rpP}_{\mathrm{H}},(\mathrm{UP}-2) \leftarrow \mathrm{rpP}, \mathrm{UP} \leftarrow \mathrm{UP}-2\right\} \mathrm{x} \\ & \mathrm{n}(\text { Note } 5) \end{aligned}$	2					
POP	strp	sfr $\leftarrow \leftarrow(S P), \operatorname{sfr}_{H} \leftarrow(S P+1), S P \leftarrow S P+2$	3					
	post	$\begin{aligned} & \left\{\text { rpp }_{L} \leftarrow(S P), \mathrm{rpp}_{H} \leftarrow(S P+1), S P \leftarrow S P+2\right\} \times n \\ & \text { (Note } 5) \end{aligned}$	2					
	PSW	PSWL $\leftarrow(S P), P S W H \leftarrow(S P+1), S P \leftarrow S P+2$	1	R	R	R	R	R
POPU	post	$\begin{aligned} & \left\{\mathrm{rpp}_{L} \leftarrow(\mathrm{UP}), \mathrm{rpp}_{H} \leftarrow(\mathrm{UP}+1), \mathrm{UP} \leftarrow \mathrm{UP}+2\right\} \times n \\ & \text { (Note 5) } \end{aligned}$	2					
MOVW	SP, \#word	SP \leftarrow word	4					
	SP, AX	$S P \leftarrow A X$	2					
	$A X, S P$	$A X \leftarrow S P$	2					
INCW	SP	$S P \leftarrow S P+1$	2					
DECW	SP	$S P \leftarrow S P-1$	2					

Pin Level Test

| CHKL | sfr | (Pin level) \forall (internal signal level) | 3 | X | X | P |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CHKLA | sfr | $\mathrm{A} \leftarrow($ Pin level $) \forall$ (internal signal level) | 3 | X | X | P |

Unconditional Branch

BR	laddr16	PC \leftarrow addr16	3
	rp1	$\mathrm{PC}_{H} \leftarrow \mathrm{rp} 1_{H}, \mathrm{PC}_{\mathrm{L}} \leftarrow \mathrm{rp} 1_{L}$	2
	[rp1]	$P C_{H} \leftarrow(r p 1+1), P C_{L} \leftarrow(r p 1)$	2
	\$addr16	$P C \leftarrow P C+2+$ jdisp8	2
Conditional Branch			
BC, BL	\$addr16	$P C \leftarrow P C+2+j d i s p 8$ if $C Y=1$	2
BNC, BNL	\$addr16	$P C \leftarrow P C+2+j d i s p 8$ if $C Y=0$	2
BZ, BE	\$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+2+j$ disp8 if $Z=1$	2
BNZ, BNE	\$addr16	$P C \leftarrow P C+2+j d i s p 8$ if $Z=0$	2
BV, BPE	\$addr16	$P C \leftarrow P C+2+j d i s p 8$ if $P / V=1$	2

Instruction Set (cont)

Mnemonic	Operand	Operation	Bytes	Flags				
				S	z	AC	P/V	CY
Conditional Branch (cont)								
BNV, BPO	\$addr16	$P C \leftarrow P C+2+$ jdisp8 if $P / V=0$	2					
BN	\$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+2+\mathrm{jdisp8}$ if $\mathrm{S}=1$	2					
BP	\$addr16	$P C \leftarrow P C+2+$ jdisp8 if $S=0$	2					
BGT	\$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+3+\mathrm{jdisp8}$ if (P/V $\forall \mathrm{S}) \vee \mathrm{Z}=0$	3					
BGE	\$addr16	$P C \leftarrow P C+3+$ jdisp8 if $P / V \forall S=0$	3					
BLT	\$addr16	$P C \leftarrow P C+3+$ jdisp8 if $P / V \quad \forall S=1$	3					
BLE	\$addr16	$P C \leftarrow P C+3+$ jdisp8 if (P/V $\forall \mathrm{S}$) $\vee Z=1$	3					
BH	\$addr16	$P C \leftarrow P C+3+j d i s p 8$ if $Z \vee C Y=0$	3					
BNH	\$addr16	$P C \leftarrow P C+3+$ jdisp8 if $Z \vee C Y=1$	3					
BT	saddr.bit, \$addr16	$P C \leftarrow P C+3+$ jdisp8 if (saddr.bit) $=1$	3					
	sfr.bit, \$addr16	$P C \leftarrow P C+4+$ jdisp8 if sfr.bit $=1$	4					
	A.bit, \$addr16	$P C \leftarrow P C+3+$ jdisp8 if A.bit $=1$	3					
	X.bit, \$addr16	$P C \leftarrow P C+3+$ jdisp8 if $\mathrm{X} . \mathrm{bit}=1$	3					
	PSWH.bit, \$addr16	$P C \leftarrow P C+3+$ jdisp8 if PSWH.bit $=1$	3					
	PSWL.bit, \$addr16	$P C \leftarrow P C+3+$ jdisp8 if PSWL.bit $=1$	3					
BF	saddr.bit, \$addr16	$P C \leftarrow P C+4+$ jdisp8 if (saddr.bit) $=0$	4					
	sfr.bit, \$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+4+$ jdisp8 if sfr.bit $=0$	4					
	A.bit, \$addr16	$P C \leftarrow P C+3+$ jdisp8 if A.bit $=0$	3					
	X.bit, \$addr16	$P C \leftarrow P C+3+j d i s p 8$ if X. bit $=0$	3					
	PSWH.bit, \$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+3+$ jdisp8 if PSWH.bit $=0$	3					
	PSWL.bit, \$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+3+$ jdisp8 if PSWL.bit $=0$	3					
BTCLR	saddr.bit, \$addr16	$P C \leftarrow P C+4+j d i s p 8$ if (saddr.bit) $=1$ then reset (saddr.bit)	4					
	sfr.bit, \$addr16	$P C \leftarrow P C+4+$ jdisp8 if sfr.bit $=1$ then reset sfr.bit	4					
	A.bit, \$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+3+$ jdisp8 if A.bit $=1$ then reset A.bit	3					
	X.bit, \$addr16	$P C \leftarrow P C+3+$ jdisp8 if X.bit $=1$ then reset X . bit	3					
	PSWH.bit, \$addr16	$P C \leftarrow P C+3+j d i s p 8$ if PSWH.bit $=1$ then reset PSWH.bit	3					
	PSWL.bit, \$addr16	$P C \leftarrow P C+3+j d i s p 8$ if PSWL.bit $=1$ then reset PSWL.bit	3	X	X	X	X	X
BFSET	saddr.bit, \$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+4+\mathrm{jdisp8}$ if (saddr.bit) $=0$ then set (saddr.bit)	4					
	sfr.bit, \$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+4+$ jdisp8 if sfr.bit $=0$ then set sfr.bit	4					
	A.bit, \$addr16	$P C \leftarrow P C+3+$ jdisp8 if A.bit $=0$ then set A.bit	3					
	X.bit, \$addr16	$P C \leftarrow P C+3+$ jdisp8 if X.bit $=0$ then set X.bit	3					
	PSWH.bit, \$addr16	$P C \leftarrow P C+3+j d i s p 8$ if PSWH.bit $=0$ then set PSWH.bit	3					
	PSWL.bit, \$addr16	$P C \leftarrow P C+3+$ jdisp8 if PSWL.bit $=0$ then set PSWL.bit	3	X	X	X	X	X

Instruction Set (cont)

				Flags				
Mnemonic	Operand	Operation	Bytes	S	z	AC	P/V	CY

Conditional Branch (cont)

DBNZ	R, Saddr16	$\mathrm{r} 2 \leftarrow \mathrm{R}-1$, then $\mathrm{PC} \leftarrow \mathrm{PC}+2+$ jdisp8 if $\mathrm{R} 2=0$	2
	saddr, \$addr16	(saddr \leftarrow (saddr) -1, then $\mathrm{PC} \leftarrow \mathrm{PC}+3+$ jdisp8 if (saddr) $=0$	3

Context Switching

BRKCS	RBn	$\begin{aligned} & \mathrm{RBS}_{2-0} \leftarrow \mathrm{n}, \mathrm{PC}_{H} \leftrightarrow \mathrm{R} 5, \mathrm{PC}_{\mathrm{L}} \leftrightarrow \mathrm{R} 4, \mathrm{R} 7 \leftarrow \mathrm{PSWH}, \\ & \mathrm{R} 6 \leftarrow \mathrm{PSWL}, \mathrm{RSS} \leftarrow 0, \mathrm{IE} \leftarrow 0 \end{aligned}$	2					
RETCS	!addr16	$\begin{aligned} & \mathrm{PC}_{H} \leftarrow \mathrm{R} 5, \mathrm{PC}_{\mathrm{L}} \leftarrow \mathrm{R} 4, \mathrm{R} 5 \leftarrow \text { addr16 }{ }_{H}, \\ & \mathrm{R} 4 \leftarrow \text { addr16 } \mathrm{L}_{\mathrm{L}} \\ & \mathrm{PSWH} \leftarrow \mathrm{R}, \mathrm{PSWL} \leftarrow \mathrm{R} 6 \end{aligned}$	3	R	R	R	R	R
RETCSB	!addr16	$\mathrm{PC}_{H} \leftarrow \mathrm{R} 5, \mathrm{PC}_{\mathrm{L}} \leftarrow \mathrm{R} 4, \mathrm{R} 5 \leftarrow \text { addr16 } 6_{\mathrm{H}},$ $\text { R4 } \leftarrow \operatorname{addr} 16_{\mathrm{L}}, \mathrm{PSWH} \leftarrow \mathrm{R} 7, \mathrm{PSWL} \leftarrow \mathrm{R} 6$	4	R	R	R	R	R

String Manipulation

MOVM	[DE+], A	$(\mathrm{DE}+) \leftarrow \mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$	2					
	[DE-], A	(DE-) $\leftarrow \mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$	2					
MOVBK	[$\mathrm{DE}+\mathrm{]},[\mathrm{HL}+]$	$(\mathrm{DE}+) \leftarrow(\mathrm{HL}+), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$	2					
	[DE-], [HL-]	$(\mathrm{DE}-) \leftarrow(\mathrm{HL}-), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$	2					
XCHM	[DE+], A	$(\mathrm{DE}+) \leftrightarrow \mathrm{A}, \mathrm{C} \leftarrow \mathrm{C-1}$ End if $\mathrm{C}=0$	2					
	[DE-], A	(DE-) $\leftrightarrow A, C \leftarrow C-1$ End if $\mathrm{C}=0$	2					
XCHBK	[$\mathrm{DE}+\mathrm{]},[\mathrm{HL}+]$	$(\mathrm{DE}+) \leftrightarrow(\mathrm{HL}+), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$	2					
	[DE-], [HL-]	$(\mathrm{DE}-) \leftrightarrow(\mathrm{HL-}), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$	2					
CMPME	[DE+], A	$(\mathrm{DE}+)-\mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{Z}=0$	2	X	X	X	V	X
	[DE-], A	(DE-) - A, $C \leftarrow C-1$ End if $C=0$ or $Z=0$	2	X	X	X	V	X
CMPBKE	[DE+], [HL+]	$(\mathrm{DE}+)-(\mathrm{HL}+), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $Z=0$	2	X	X	X	V	x
	[DE-], [HL-]	(DE-) - (HL-), $\mathrm{C} \leftarrow \mathrm{C-1}$ End if $\mathrm{C}=0$ or $\mathrm{Z}=0$	2	X	X	X	V	X
CMPMNE	[DE+], A	(DE+) - A, $C \leftarrow C-1$ End if $C=0$ or $Z=1$	2	X	X	X	V	X
	[DE-], A	(DE-) - A, $C \leftarrow C-1$ End if $C=0$ or $Z=1$	2	X	X	X	V	X
CMPBKNE	[DE+], [HL+]	$(\mathrm{DE}+)-(\mathrm{HL}+), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $Z=1$	2	X	X	X	V	x
	[DE-], [HL-]	(DE-) - (HL-), $\mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{Z}=1$	2	X	X	X	V	x
CMPMC	[DE+], A	$(\mathrm{DE}+)-\mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{CY}=0$	2	X	X	X	V	X
	[DE-], A	(DE-) - $\mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{CY}=0$	2	X	X	X	V	X
CMPBKC	[DE+], [HL+]	$(\mathrm{DE}+)-(\mathrm{HL}+), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{CY}=0$	2	X	X	X	V	x
	[DE-], [HL-]	(DE-) - (HL-), $\mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{CY}=0$	2	X	X	X	V	x
CMPMNC	[DE+], A	$(\mathrm{DE}+)-\mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{CY}=1$	2	X	X	X	V	X
	[DE-], A	(DE-) - $\mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{CY}=1$	2	X	X	X	V	x
CMPBKNC	[DE+], [HL+]	$(\mathrm{DE}+)-(\mathrm{HL}+), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{CY}=1$	2	X	X	X	V	X
	[DE-], [HL-]	(DE-) - (HL-), $\mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{CY}=1$	2	X	X	X	V	X

Instruction Set (cont)

				Flags				
Mnemonic	Operand	Operation	Bytes	S	z	AC	P/V	CY
CPU Control								
MOV	STBC, \#byte	STBC \leftarrow byte (Note 6)	4					
	WDM, \#byte	WDM ¢ byte (Note 6)	4					
SWRS		RSS $\leftarrow \overline{\text { RSS }}$	1					
SEL	RBn	$\mathrm{RBS}_{2-0} \leftarrow \mathrm{n}$, RSS $\leftarrow 0$	2					
	RBn, ALT	RBS ${ }_{2-0} \leftarrow n, R S S \leftarrow 1$	2					
NOP		No operation	1					
El		$\mathrm{IE} \leftarrow 1$ (Enable interrupt)	1					
DI		$I E \leftarrow 0$ (Disable interrupt)	1					

Notes:

(1) A special instruction is used to write to STBC and WDM.
(2) One byte move instruction when [DE], [HL], [DE+], [DE-], $[H L+]$, or $[H L-]$ is specified for mem.
(3) 16-bit signed multiply instruction
(4) Addressing range is $O F E O O H$ to OFEFFH.
(5) rpp refers to register pairs specified in post byte. " n " is the number of register pairs specified in post byte.
(6) Trap if data bytes in operation code are not one's complement. If trap, then:
$(\mathrm{SP}-1) \leftarrow$ PSWH, $(\mathrm{SP}-2) \leftarrow \mathrm{PSWL},(\mathrm{SP}-3) \leftarrow(\mathrm{PC}-4)_{\mathrm{H}}$,
$(S P-4) \leftarrow(P C-4) L, P_{L} \leftarrow(003 C H), P_{H} \leftarrow(003 D H)$.
$S P \leftarrow S P-4, I E \leftarrow 0$.

NEC

Rellability mat onalluy Contru

॥PD78000

40078
yPD"8R2

4PD78K3
Section 6Development Tools

Development Tools Selection Guide	$6-\mathrm{a}$
ROM Code Submission Guide	$6-\mathrm{b}$
PG-1500 Series	$6-\mathrm{c}$
PROM Programmer	

μ PD78C00 Product Line: 8 -Bit Microcontrollers	
IE-78C11-M	$6-\mathrm{d}$
In-Circuit Emulator for the μ PD78C00 Product	
Line	
CC87	$6-\mathrm{e}$
Micro-Series C Compiler Package for the	
μ PD78C00 Product Line	

RA87 6-f

Relocatable Assembler Package for the
μ PD78C00 Product line

μ PD78Ko Product Line: 8-Bit Microcontrollers
IE-78000-R 6-g
In-Circuit Emulator for the μ PD78K0 Product
Line
CC78K0 6-h
C Compiler for the μ PD78K0 Product Line
RA78K0 6-i
Relocatable Assembler Package for the
μ PD78K0 Product Line
SD78K0 6-j
Screen Debugger for the μ PD78K0 Product Line
μ PD78K2 Product Line: 8-Bit Microcontrollers
IE-78230-R 6-k
In-Circuit Emulator for the μ PD78224/238
Families
IE-78240-R
In-Circuit Emulator for the μ PD78214/218A/244
Families

DDB-78K2 Evaluation Board for the μ PD78K2 Product Line	6-m
EB-78230-PC Evaluation Board for the μ PD78238 Family	6-n
EB-78240-PC Evaluation Board for the μ PD78214/218A/244 Families	6-0
CC78K2 C Compiler for the μ PD78K2 Product Line	6-p
RA78K2 Relocatable Assembler Package for the μ PD78K2 Product Line	6-q
^PD78833 Product Line: 16-/8-Bit Microcontrollers	
IE-78310A-R In-Circuit Emulator for the μ PD78312A Family	6-r
IE-78327-R In-Circuit Emulator for the μ PD78322 Family	6-s
IE-78350-R In-Circuit Emulator for the μ PD78352/356 Families	
EB-78320-PC Evaluation Board for the μ PD78322 Family	6-u
EB-78350-PC Evaluation Board for the μ PD78352 Family	6-v
CC78K3 C Compiler for the μ PD78K3 Product Line	6-w
RA78K3 Relocatable Assembler Package for the μ PD78K3 Product Line	6-x

Development Tools Selection Guide

NEC provides a variety of development support tools to enable effective program development and hardware development for various microcontrollers. The development tools are used for efficient software assembly/ compilation or debugging.

A debugger can be used alone in a debugging system. However, development time and cost can be reduced by using symbolic debugging, which is made available by connecting the debugger to a host machine.

NEC currently supports development environments that use an IBM-PC compatible personal computer.

Development Procedure

Typical Development Environment (μ PD78C00)

μ PD78C00 Product Line Development Tools

| Target Device | Package | In-Circuit
 Emulator | Conversion
 Socket |
| :--- | :---: | :---: | :---: | :---: |
| | | | |

Note: The 64-pin QFP package conversion adapter is manufactured
by San Hayato Co., Ltd. The QUIP to PLCC adapter
("AS-QIP-PCC-D78C1X") is manufactured by Emulation
Technology.

Typical Development Environment (μ PD78K0)

Development Tools
μ PD78K0 Product Line Development Tools

Target Device	Package	In-circuit Emulator	Emulation Board	Emulation Probe	Conversion Socket	Software Packages
				$\square \equiv \square$		
μ PD78001 CW μ PD78002CW	64-pin SDIP	IE-78000-R	(E-78014-R-EM (option)	$\begin{aligned} & \text { EP-78240CW-R } \\ & \text { (option) } \end{aligned}$	-	RA78KO-D52 (Relocatable Assembler) and CC78K0-D52 (C compiler) and CL78K0-D52 (C compiler library) and SD78K0-D52 (Screen debugger) and (GUBED due late 1993)
μ PD78001GC μ PD78002GC	64-pin QFP			$\begin{gathered} \text { EP-78240GC-R* } \\ \text { (option) } \\ \hline \end{gathered}$	EV-9200GC-64	
μ PD78011CW μ PD78012CW μ PD78013CW μ PD78014CW μ PD78P014CW μ PD78P014DW	64-pin SDIP			EP-78240CW-R (option)	-	
μ PD78011GC μ PD78012GC μ PD78013GC μ PD78014GC μ PD78P014GC	64-pin QFP			$\begin{aligned} & \text { EP-78240GC-R* } \\ & \text { (option) } \end{aligned}$	EV-9200GC-64	
μ PD78042GF μ PD78043GF $\mu \mathrm{PD78044GF}$ μ PD78P044GF μ PD78P044KL-S	80-pin QFP		$\begin{aligned} & \text { IE-78044-R-EM } \\ & \text { (option) } \end{aligned}$	$\begin{aligned} & \text { EP-78130GF-R* } \\ & \text { (option) } \end{aligned}$	EV-9200G-80	
μ PD78052GC μ PD78053GC μ PD78054GC μ PD78P054GC	$\begin{gathered} 80-\mathrm{pin} \text { QFP } \\ (14 \times 14 \mathrm{~mm}) \end{gathered}$		IE-78064-R-EM (option)	$\begin{aligned} & \text { EP-78230GC-R* } \\ & \text { (option) } \end{aligned}$	EV-9200GC-80	
μ PD78062GC μ PD78063GC μ PD78064GC μ PD78P064GC	$\begin{aligned} & \text { 100-pin QFP } \\ & (14 \times 14 \mathrm{~mm}) \end{aligned}$			$\begin{aligned} & \text { EP-78064GC-R* } \\ & \text { (option) } \end{aligned}$	EP-9500GC-100	
μ PD78062GF μ PD78063GF μ PD78064GF μ PD78P064GF μ PD78P064KL-T	$\begin{aligned} & \text { 100-pin QFP } \\ & (14 \times 20 \mathrm{~mm}) \end{aligned}$			$\begin{aligned} & \text { EP-78064GF-R* } \\ & \text { (option) } \end{aligned}$	EV-9200GF-100	

[^23]Typical Development Environment (μ PD78K2)

μ PD78K2 Product Line Development Tools

Target Device	Package	Design Development Board	Low-End Emulator	In-Circuit Emulator	Emulation Probe	Conversion Socket	Software Packages
					$\square \square \square$		
μ PD78212CW μ PD78213CW μ PD78214CW μ PD78P214CW μ PD78P214DW μ PD78217ACW μ PD78218ACW μ PD78P218ACW μ PD78P218ADW	64-Pin SDIP	DDB-78K2-21X \qquad -	EB-78210-PC or EB-78240-PC \qquad	IE-78240-R (Old device) or IE-78240-R-A (New device)	EP-78240CW-R (option)		CC78K2-D52 (C compiler) and CL78K2-D52 (C library) and RA78K2-D52 (Relocatable Assembler) and Avocet Tool chain from
μ PD78213GQ μ PD78214GQ μ PD78P214GQ \qquad μ PD78213L μ PD78214L μ PD78P214L	64-pin QUIP	DDB-78K2-21X	EB-78210-PC or EB-78240.PC		EP-78240GQ-R (option)	-	Avocet Systems, Inc. (207) 236-9055 (800) 448-8500 Consists of: C compiler, assembler, debugger, simulator.
μ PD78212GJ μ PD78213GJ μ PD78214GJ μ PD78P214GJ	74-pin QFP				$\begin{gathered} \text { EP-78240GJ-R* } \\ \text { or } \\ \text { EP-78210GJ } \\ \text { EP-78240LP-R } \end{gathered}$	EV-9200G-74	
μ PD78212GC μ PD78213GC μ PD78214GC μ PD78P214GC μ PD78217AGC μ PD78218AGC	64-pin QFP				$\begin{aligned} & \text { EP- } 78240 \mathrm{GC}-\mathrm{R}^{*} \\ & \text { (option) } \end{aligned}$	EV-9200GC-64	
μ PD78220L μ PD78224L μ PD78P224L	84-pin PLCC	DDB-78K2-22X	EB-78220-PC or EB-78230-PC	IE-78230-R (Old device) or	$\begin{aligned} & \text { EP-78230LQ-R } \\ & \text { (option) } \end{aligned}$	-	
μ PD78220GJ μ PD78224GJ μ PD78P224GJ	94-pin QFP			IE-78230-R-A (New device)	EP-78230GJ-R* or EP-78220GJ EP-78230LQ-R	EV-9200G-94	
μ PD78233GC μ PD78234GC μ PD78237GC $\mu \mathrm{PD} 78238 \mathrm{GC}$ μ PD78P238GC	80-pin QFP	DDB-78K2-23X	EB-78230-PC		$\begin{aligned} & \text { EP-78230GC-R* } \\ & \text { (option) } \end{aligned}$	EV-9200GC-80	
μ PD78233GJ μ PD78234GJ μ PD78237GJ $\mu \mathrm{PD78238GJ}$ μ PD78P238G. μ PD78P238KF	94-pin QFP				$\begin{aligned} & \text { EP-78230GJ-R^ } \\ & \text { (option) } \end{aligned}$	EV-9200G-94	

[^24]μ PD78K2 Product Line Development Tools (cont)

Target Device	Package	Design Development Board	Low-End Emulator	In-Circuit Emulator	Emulation Probe	Conversion Socket	Software Packages
					$\square=\square$		
μ PD78233LQ μ PD78234LQ μ PD78237LQ μ PD78238LQ μ PD78P238LQ	84-pin PLCC	DDB-78K2-23X	EB-78230-PC	IE-78230-R (Old device) or IE-78230-R-A (New device)	$\begin{aligned} & \text { EP-78230LQ-R } \\ & \text { (option) } \end{aligned}$	-	CC78K2-D52 (C compiler) and CL78K2-D52 (C library) and RA78K2-D52
μ PD78243CW μ PD78244CW	64-pin SDIP	-	EB-78240-PC	IE-78240-R (Old device) or IE-78240-R-A (New device)	$\begin{aligned} & \text { EP-78240CW-R } \\ & \text { (option) } \end{aligned}$	-	(Relocatable Assembler) and Avocet Tool chain from Avocet Systems, Inc. (207) 236-9055 (800) 448-8500
μ PD78243GC μ PD78244GC	64-pin QFP				EP-78240GC-R* (option)	EV-9200GC-64	Consists of: C compiler, assembler, debugger, simulator.

* Includes one required socket adapter shown at right.

Typical Development Environment (μ PD78K3)

μ PD78K3 Product Line Development Tools

Target Device	Package	Evaluation Board	In-Circuit Emulator	Emulation Probe	Conversion Socket	Software Packages
				\square		
μ PD78310ACW μ PD78312ACW μ PD78P312ACW μ PD78P312ADW	64-pin SDIP	DDK-78310A	IE-78310A-R	EP-78310GQ Supplied with IE	-	CC78K3-D52 (C compiler) and RA78K3-D52 (Relocatable Assembler) and GUBED (New Graphical Users binary evaluation display) due end 1993
μ PD78310AGQ μ PD78312AGQ μ PD78P312AGQ μ PD78P312AR	64-pin QUIP					
μ PD78310AGF μ PD78312AGF μ PD78P312AGF	64-pin QFP			$\begin{aligned} & \text { EP-78310GF* } \\ & \text { (option) } \end{aligned}$	EV-9200G-64	
μ PD78310AL μ PD78312AL μ PD78P312AL	68-pin PLCC			$\begin{aligned} & \text { EP-78310L } \\ & \text { (option) } \end{aligned}$	-	
μ PD78320GJ μ PD78322GJ μ PD78P322GJ μ PD78P322KD	74-pin QFP	EB-78320-PC	IE-78327-R	$\begin{aligned} & \text { EP-78320GJ-R* } \\ & \text { (option) } \end{aligned}$	EV-9200G-74	
μ PD78320L μ PD78322L μ PD78P322KC μ PD78P322L	68-pin PLCC			$\begin{aligned} & \text { EP-78320L-R } \\ & \text { (option) } \end{aligned}$	-	
μ PD78322GF μ PD78P322GF μ PD78P322K	80-pin QFP			$\begin{aligned} & \text { EP-78320GF-R* } \\ & \text { (option) } \end{aligned}$	EV-9200G-80	
μ PD78327GF μ PD78328GF μ PD78P328GF	64-pin QFP	EB-78327-PC	IE-78327-R	$\begin{aligned} & \text { EP-78327GF-R* } \\ & \text { (option) } \end{aligned}$	EV-9200G-64	
μ PD78327CW μ PD78328CW μ PD78P328DW	64-pin SDIP			EP-78327CW-R (option)	-	
μ PD78330LQ μ PD78334LQ μ PD78P334LQ	84-pin PLCC	EB-78330-PC	IE-78330-R	$\begin{aligned} & \text { EP-78330LQ-R } \\ & \text { (option) } \end{aligned}$	-	
μ PD78330G」 μ PD78334GJ μ PD78P334G」 μ PD78P334KE	94-pin QFP			$\begin{aligned} & \text { EP-78330GJ-R** } \\ & \text { (option) } \end{aligned}$	EV-9200G-94	

* Includes one required socket adapter shown at right.
μ PD78K3 Product Line Development Tools (cont)

Target Device	Package	Evaluation Board	In-Circuit Emulator	Emulation Probe	Conversion Socket	Software Packages
				$\square \square \square$		
μ PD78350GC μ PD78352G-22 μ PD78P352G-22 μ PD78P352KK	64-pin QFP	EB-78350-PC	$\begin{gathered} \text { IE-78350-R } \\ \text { IE-78350-R-EM1 } \end{gathered}$	$\begin{aligned} & \text { EP-78240GC-R* } \\ & \text { (option) } \end{aligned}$	EV-9200GC-64	CC78K3-D52 (C compiler) and RA78K3-D52 (Relocatable
μ PD78355GC $\mu \mathrm{PD} 78356 \mathrm{GC}$ μ PD78P356GC	100-pin QFP		$\begin{gathered} \text { IE-78350-R } \\ \text { IE-78355-R-EM1 } \end{gathered}$	$\begin{aligned} & \text { EP-78355GC-R* } \\ & \text { (option) } \end{aligned}$	EV-9500GC-100	Assembler) and GUBED (New Graphical
$\mu \mathrm{PD} 78 \mathrm{P} 356 \mathrm{KP}-\mathrm{S}$	120-pin LCC				$\begin{aligned} & \text { EV-9500GC-100 } \\ & \text { EV-9501GC-100 } \end{aligned}$	evaluation display) due end 1993

[^25]PROM Programmers (K-Series)

Target PROM	Programmer Adapter	PROM Programmer
μ PD78P014CW μ PD78P014DW	PA-78P014CW	PG-1500
μ PD78P014GC	PA-78P014GC	
$\mu \mathrm{PD78P044GF}$	PA-78P044GF	
μ PD78P044KL-S	PA-78P044KL-S	
μ PD78P054GC	PA-78P054GC	
$\mu \mathrm{PD78P054GK}$	PA-78P054GK	
μ PD78P054KK-S	PA-78P054KK-S	
$\mu \mathrm{PD78P064GC}$	PA-78P064GC	
μ PD78P064GF	PA-78P064GF	
$\mu \mathrm{PD78P064KL-T}$	PA-78P064KL-T	
μ PD78P214CW/DW μ PD78P218CW μ PD78P218ADW	PA-78P214CW	
μ PD78P214GC	PA-78P214GC	
μ PD78P214GJ	PA-78P214GJ	
$\mu \mathrm{PD78P214GQ}$	PA-78P214GQ	
$\mu \mathrm{PD78P} 214 \mathrm{~L}$	PA-78P214L	
$\mu \mathrm{PD78P224GJ}$	PA-78P224GJ	
$\mu \mathrm{PD} 78 \mathrm{P} 224 \mathrm{~L}$	PA-78P224L	
$\mu \mathrm{PD78P238GC}$	PA-78P238GC	
μ PD78P238GJ	PA-78P238GJ	
$\mu \mathrm{PD78P238KF}$	PA-78P238KF	
$\mu \mathrm{PD78P238LQ}$	PA-78P238LQ	
μ PD78P312ACW μ PD78P312ADW	PA-78P312CW	
$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{P} 312 \mathrm{AR} \\ & \mu \mathrm{PD} 78 \mathrm{P} 312 \mathrm{AGQ} \\ & \hline \end{aligned}$	PA-78P312GQ	
$\mu \mathrm{PD78P312AL}$	PA-78P312L	
μ PD78P312AGF	PA-78P312GF	
μ PD78P322L	PA-78P322L	
$\mu \mathrm{PD78P322GJ}$	PA-78P322GJ	
$\mu \mathrm{PD78P322GF}$	PA-78P322GF	
μ PD78P322KC	PA-78P322KC	
$\mu \mathrm{PD78P322KD}$	PA-78P322KD	
$\mu \mathrm{PD78P324LP}$	PA-78P324LP	

Development Tools

PROM Programmers (K-Series) (cont)

Target PROM	Programmer Adapter	PROM Programmer
μ PD78P324KC	PA-78P324KC	PG-1500
μ PD78P328GF	PA-78P328GF	
$\mu \mathrm{PD78P334LQ}$	PA-78P334LQ	
$\mu \mathrm{PD78P334GJ}$	PA-78P334GJ	
μ PD78P334KE	PA-78P334KE	
μ PD78P334KF	PA-78P334KF	
μ PD78P352GC	PA-78P352GC	
μ PD78P352KK	PA-78P352KG	
μ PD78P356GC	PA-78P356GC	
μ PD78P356KP-S	PA-78P356KP	

PROM Programmers (μ PD78C00)

Target PROM	Programmer Adapter	PROM Programmer
μ PD78CP14CW μ PD78CP14DW μ PD78CP18CW μ PD78CP18DW	PA-78CP14CW	PG-1500
μ PD78CP14R μ PD78CP14GQ μ PD78CP18GQ	PA-78CP14GQ	
μ PD78CP14GF μ PD78CP18GF	PA-78CP14GF	
μ PD78CP14L	PA-78CP14L	
μ PD78CP18KB	PA-78CP14KB	

Introduction

This guide provides direction for submitting the data files used by NEC to program semicustomized integrated circuits (a complete list of which appears in table 3).

Where to Send Files

Data files should be sent directly to Micro SBU, Customer Marketing, NEC Electronics, Mountain View, California, 94039.

Acceptable Media

NEC accepts data from the following:

- In programmable ICs such as NEC's μ PD27C2000 UV EPROM or μ PD75P308 programmable 4-bit microprocessor
- On floppy diskette in MS-DOS® or PC DOS ${ }^{\text {M }}$ formats
- 5-1/4 inch disk (either 360K or 1.2 Mbyte)
$-3-1 / 2$ inch disk (either 360K, 720K or 1.44 Mbyte)
\square Via modem over the telephone lines
- At 300 to 14,400 bps
- With 8 data bits, no parity, 1 stop bit
- Using XMODEM, YMODEM or KERMIT protocol
- Via InterNet at shin @ asic.mtv.nec.com
- When opting for modem transmittal, call Customer Marketing for the appropriate engineering contact, dial-up number, and hours of availability.

MS-DOS is a registered trademark of Microsoft.
PC DOS is a trademark of International Business Machines Corp. Intel is a trademark of Intel.
*This will ensure that NEC has two copies for file comparison at the NEC site, and that you will be able to perform a file comparison.

Minimum Requirements

Any one of the means described may be selected, but NEC requires multiple copies of every file, as well as device-specific information such as chip type, package type, and package lead type.

- A minimum of two copies of the chosen media must be submitted. Three copies are preferred, as this lessens the problems caused when one copy is flawed. Please note that for modem transfers, the file must be transmitted twice* to NEC and transmitted once from NEC back to you.
- Unless submitted by means of programmable ICs, data files must be in Intel ${ }^{T m}$ hexadecimal or extended hexadecimal format.
- Source code or the executable binary of a data file may be submitted but is not required.
- Files taken from or read from previously built ICs, even those produced for you by NEC, will not be accepted.

Taking Precautions

NEC assumes no responsibility for data bits within a target device's programmable area, and it is therefore imperative that you define all bits within the possible range of addresses. For example, if the programmable area is $128 \mathrm{~K} \times 8$ bits, and your data file defines only the first $64 \mathrm{~K} x 8$ bits, there is no way for NEC to know how to program the remaining 64 K .
Furthermore, if your programming equipment was left with random data in its memory from a previous operation, valid data would be built into the first half of the programmable area and garbage data into the second half-causing unforeseen and possibly very expensive problems in the final design. Blank space must be defined as either all Os or all 1s, or as binary NOP, in which case the binary code for an NOP instruction needs to be specified.

What You Can Expect from NEC

After the media or devices have been received by NEC, the copies will be compared to ensure they match (customers whose files don't match will be contacted by Customer Marketing). NEC will then duplicate the media and return the following for verification:

- One copy of the original media
- One copy of NEC's duplicate media
- A hard copy listing of the data files (for target devices with less than 512 K , i.e., $64 \mathrm{~K} \times 8$, of ROM)
- Two floppy diskettes containing those data files transmitted via modem, or InterNet
- A ROM Code Verification Form, which must be signed and returned before any devices can be built

Upon receipt of the signed verification form, NEC will produce ten engineering samples for testing and approval prior to building and shipping the entire order. Data files are kept in archival storage for two years (more than two years is not guaranteed) in one or more of the following formats:

- In one original IC and one NEC duplicate IC, if programmable ICs were initially submitted
- In a hard-copy listing of the hexadecimal file
- In electronic storage using either magnetic or optical media (Write Once Read Many, i.e., WORM, disk)
Please note that IC masks will be stored at NEC's manufacturing facility for only one year after the last order is received.

Peculiar Addressing

Although addresses are usually contiguous, e.g., from 0000_{16} to a maximum, these devices require special consideration.

ROMs with 16-Bit Data Buses. Data submitted for these ROMs in devices with 8-bit data buses should be organized this way.

Table 1. Sequence for 8-Bit Data Bus Devices

Sequence	Addresses	Outputs
Device \#1	$00000-$ OFFFF	$O_{0}-O_{7}$
Device \#2	$10000-1$ FFFF	$O_{0}-O_{7}$
Device \#3	$00000-$ OFFFF	$O_{8}-O_{15}$
Device \#4	$10000-1$ FFFF	$O_{8}-O_{15}$

Data submitted from a 16-bit data bus device would be handled similarly.

Table 2. Sequence for 16-Bit Data Bus Devices

Sequence	Addresses	Outputs
Device \#1	$00000-$ OFFFF	$\mathrm{O}_{0}-\mathrm{O}_{7}$
	$10000-1$ FFFF	$\mathrm{O}_{8}-\mathrm{O}_{15}$

In both cases, segments corresponding to the lower data outputs are submitted first, a pattern that should be followed for larger devices as well. Please be aware that NEC has no way of identifying the sequential order of individual segments if they're submitted in incorrect order.

Table 3. Applicable Device Types

Part Number(s)	Organization	Last Address
μ PD78C11A	$4,096 \times 8$ bits	OFFF ${ }_{16}$
C12A	$8,192 \times 8$ bits	$1 \mathrm{FFF}_{16}$
C14	$16,384 \times 8$ bits	$3 \mathrm{FFF}_{16}$
C14A	$16,384 \times 8$ bits	$3 \mathrm{FFF}_{16}$
C18	$32,768 \times 8$ bits	7FFF ${ }_{16}$
μ PD78001	$8,192 \times 8$ bits	$\mathrm{1FFF}_{16}$
002	$16,384 \times 8$ bits	$3 \mathrm{FFF}_{16}$
$\mu \mathrm{PD78001Y}$	$8,192 \times 8$ bits	$\mathrm{1FFF}_{16}$
002Y	$16,384 \times 8$ bits	$3 \mathrm{FFF}_{16}$
μ PD78011	$8,192 \times 8$ bits	$1 \mathrm{FFF}_{16}$
012	$16,384 \times 8$ bits	$3 \mathrm{FFF}_{16}$
013	$24,576 \times 8$ bits	$5 \mathrm{FFF}_{16}$
014	$32,768 \times 8$ bits	$7 \mathrm{FFF}_{16}$
$\mu \mathrm{PD78011Y}$	$8,192 \times 8$ bits	$1 \mathrm{FFF}_{16}$
012Y	$16,384 \times 8$ bits	$3 \mathrm{FFF}_{16}$
013 Y	$24,576 \times 8$ bits	$5 \mathrm{FFF}_{16}$
014Y	32,768 $\times 8$ bits	$7 \mathrm{FFF}_{16}$
μ PD78042	$16,384 \times 8$ bits	$3 \mathrm{FFF}_{16}$
043	$24,576 \times 8$ bits	$5 \mathrm{FFF}_{16}$
044	$32,768 \times 8$ bits	7FFF ${ }_{16}$
μ PD78052	$16,384 \times 8$ bits	$3 \mathrm{FFF}_{16}$
053	$24,576 \times 8$ bits	$5 \mathrm{FFF}_{16}$
054	$32,768 \times 8$ bits	$7 \mathrm{FFF}_{16}$
$\mu \mathrm{PD} 78062$	16,384 $\times 8$ bits	$3 \mathrm{FFF}_{16}$
063	$24,576 \times 8$ bits	$5 \mathrm{FFF}_{16}$
064	$32,768 \times 8$ bits	7FFF ${ }_{16}$
μ PD78212	$8,192 \times 8$ bits	$1 \mathrm{FFF}_{16}$
214	$16,384 \times 8$ bits	$3 \mathrm{FFF}_{16}$
$\mu \mathrm{PD78218A}$	$32,768 \times 8$ bits	7FFF ${ }_{16}$
μ PD78224	$16,384 \times 8$ bits	$3 \mathrm{FFF}_{16}$
μ PD78234	16,384 $\times 8$ bits	$3 \mathrm{FFF}_{16}$
238	$32,768 \times 8$ bits	$7 \mathrm{FFF}_{16}$
μ PD78312A	$8,192 \times 8$ bits	$1 \mathrm{FFF}_{16}$
μ PD78322	$16,384 \times 8$ bits	$3 \mathrm{FFF}_{16}$
$\mu \mathrm{PD78352A}$	$32,768 \times 8$ bits	$7 \mathrm{FFF}_{16}$
μ PD78356	$49,152 \times 8$ bits	BFFF_{16}

Using The Intel Hexadecimal Format

Intel's hexadecimal format allows addressing of up to 512 kbits of data, or $64 \mathrm{~K} \times 8$ bits $\left(0000_{16}\right.$ through FFFF_{16}). Data records larger than $64 \mathrm{~K} \times 8$ must be expressed in multiple segments, with each individually addressed segment equal to or smaller than $64 \mathrm{~K} \times 8$.
Each byte of data must be expressed as a printable ASCII character, and each line must contain these elements:

- A colon to begin each line
- A two-character data word count for the line
- A four-character address of the first word of data
- A two-character record type identifier, e.g., 00, 01, 02 for data, end of file, segment address
- The data words
- A two-character line checksum at the end of each line
For example, a line showing the "End of File" record would be formatted as :00000001FF, while a typical data line would be constructed this way:
:WWAAAATTDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDCC
Table 4. Description of Elements

Code	Description
\vdots	Beginning of line
WW	Data word count
AAAA	Address of the first data word
TT	Record type
D...D	Data words
CC	Checksum

Table 5. Description of Record Type

TT	Description
00	Data follows
01	End of file
02	Begin new $64 \mathrm{~K} \times 8$ data segment

Table 6 shows an address shift from one $32 \mathrm{~K} \times 8$ segment to the next segment in hexadecimal format.

Table 6. Sample Hexadecimal Addressing

Coded Segment	Instruction
$: 100000007 F$ 7F7F7F7F7F7E7D7B797878787A7D2C	Begin first segment
$: 10 F F F 000$ FFFFFFFFFFFFFFFFFFFFFFFFFFFF11	End first segment
$: 020000021000$ EC	Second segment record
$: 100000007$ F7F7F7F7F7E7E7D7B7A797877797B7F2C	Begin second segment
$: 10 F F F 000$ FFFFFFFFFFFFFFFFFFFFFFFFFFFF11	End second segment
$: 00000001$ FF	End of file record

PG-1500
 PROM Programmer

September 1993

Description

The PG-1500 series is a stand-alone PROM programmer for programming 256 -kilobit to 1 -megabit PROMs and PROM/OTP devices for NEC's 4/8/16-bit single-chip microcontrollers and digital signal processors. The system consists of the PG-1500 base programmer, two interchangeable programmer adapter modules, and a variety of programmer adapters to support the individual devices and package types. The PG-1500 can be controlled directly from either a remote terminal or host computer via an RS-232-C serial port or directly from the on-board keypad in stand-alone mode.

Features

- Interchangeable modules for programming:
- 256-kilobit to 1-megabit PROMs
- NEC μ PD75xx and μ PD75xxx 4-bit microcontrollers
- NEC K-series® microcontrollers
- NEC V-series ${ }^{\text {TM }}$ microcontrollers
- NEC μ PD77xxx digital signal processors
- 512K-bytes data RAM
- Silicon signature read function
- PROM insertion error detection circuitry

PG-1500 Series

- Memory edit function to change/confirm PG-1500 buffer
- Address/data/message display LCD
- RS-232-C serial interface
- Centronics compatible parallel interface
- Power-on diagnostics
- Supports three data transfer formats
- Intel Extended Hex (Note 1)
- Extended Tektronix Hex (Note 2)
- Motorola S (Note 3)
- Two modes of operation
- Remote controlled
-Stand-alone
- Host Controller Program for IBM PC® Series

IBM PC is a registered trademark of International Business Machines Corporation.
V-Series and V40 are trademarks of NEC Electronics, Inc.
K-series is a registered trademark of NEC Electronics, Inc.

Notes:

(1) Developed by Intel Corporation.
(2) Deveioped by Tektronix Corporation.
(3) Developed by Motorola Incorporated

Figure 1. PG-1500 System Block Diagram

Architecture

The PG-1500 base unit contains an NEC μ PD70208 ($\mathrm{V} 4 \mathrm{O}^{\mathrm{TM}}$) microprocessor with 128 K bytes of monitor ROM, 32 K bytes of working RAM, 512 K bytes of data memory, an RS-232-C serial port, a Centronics compatible parallel interface, an LCD display, and a 23 -key keypad. Figure 1 shows a block diagram of the PG-1500.

The PG-1500 has two interchangeable programmer adapter modules. These adapter modules plug directly into the top of the PG-1500 and can accept a wide variety of programmer socket adapters to support NEC's devices. Refer to the Development Tool Selection Guide for a list of all available adapters.

Operation

The PG-1500 operates in stand-alone mode from the on-board keypad, or in remote-control mode from an external terminal or a host computer via an RS-232-C serial port.

Host Controller Program

The PC-1500 can be controlled from an IBM PC series host computer using the PG-1500 controller program. The controller program has three modes of operation: control mode, auto mode, and terminal mode.

Silicon Signature

A silicon signature is stored in all NEC devices and contains information on the device type, start and stop addresses, and programming voltages. The PG-1500 can read the silicon signature of the particular device being programmed either manually or automatically, or the device code can be entered manually.

Basic Specifications

- Power requirements:
- 90 to 250 VAC, 50 to 60 Hz
- Environment conditions:
—Operating temperature range: 10 to $35^{\circ} \mathrm{C}$
_Operating humidity range: 20 to 80% relative humidity
- RS-232-C serial port:
—Baud rates: 1200, 2400, 4800, 9600, 19200
- Parity: none, even, odd
-X-ON/X-OFF: on, off
—Bit configuration: 7, 8
—Stop bits: 1, 2

Equipment Supplied

The PG-1500 package includes the following:

- PG-1500 PROM programmer base unit
- 027A socket board for 27xxx PROMS and μ PD27C256A-like devices
- 04A interface board for NEC μ PD75xx/ μ PD75xxx microcontrollers
- PG-1500 controller program disk for IBM PC
- Power cord
- Power ground plug adapter
- Spare fuses (2)

Documentation

For further information on the operation of the PG1500, NEC provides the following documentation:

- PG-1500 PROM Programmer User's Manual
- PG-1500 Controller User's Manual (IBM PC-based)

Description

The IE-78C11-M is an in-circuit emulator providing both hardware emulation and software debugging capabilities for the $\mathrm{NEC} \mu \mathrm{PD} 78 \mathrm{C} 00$ product line of 8 -bit, singlechip microcontrollers. Real-time and single-step emulation, coupled with sophisticated memory mapping features, breakpoints, and trace capabilities, create a powerful debugging environment. A line assembler and disassembler, full register and memory control, and complete upload/download capabilities simplify the task of debugging hardware and software. The IE-78C11-M is designed to operate as a stand-alone, in-circuit emulator controlled from either a user terminal or a host computer system.

Features

- Real-time and single-step emulation
- User-specified breakpoints:

Logical OR of up to four sets of break conditions
Opcode fetch count
External sense clips condition
Emulation time
Logical AND of addresses, data values,
CPU controls, and number of loops

- Sophisticated trace capabilities
- Instruction or machine cycle display
- 1,024 trace frames
- Address, control, data, and port trace

IE-78C11-M In-Circuit Emulator

- Powerful memory mapping: 64K bytes of RAM mappable in 256 -byte blocks
- Line assembler/disassembler
- Operating state LED indicators
- CMOS latch-up warning and protection
- Eight external sense probes
- Self-diagnostic command
- Stand-alone configuration
- User terminal controlled
- Host computer system controlled
- IE78C11 controller program for IBM PC@, PC/XT®, $\mathrm{PC} / \mathrm{AT}$, or compatibles
- Symbolic debugging
- Autoexecution of commands
- On-line help facility
-Debug session logging
Ordering Information

Part Number	Description
IE-78C11-M	In-circuit emulator for μ PD78C1x/C1xA series
EP-7811HGQ	Emulator probe for 64-pin QUIP package (shipped with IE-78C11)
EV-9001-64	Optional emulator probe adapter for 64-pin shrink DIP package (used with EP-7811HGQ)
EV-9200G-64	64-pin LCC socket used with the μ PD78CP18KB
AS-QIP-PCC-D781X	Optional QUIP to PLCC adapter (used with EP-7811HGQ)

IBM PC, PC/XT, and PC/AT are registered trademarks of International Business Machines Corporation.

Description

The CC87 Micro-Series ${ }^{T M}$ C compiler package for the NEC μ PD78C00 product line of microcontrollers consists of an ANSI C cross-compiler, relocatable macro assembler, linker, and librarian. Developed by IAR systems in Sweden for NEC, the Micro-Series C compiler package runs on an MS-DOS® system with a freestanding system as target (embedded system).

Ordering Information

Part Number	System	Description
CCMSD-I5DD-87	MS-DOS	5-1/4-inch double-density floppy diskette

Features

- ANSI standard C
- Const, volatile, signed, void, enum keywords
- Function prototyping
—Hex string constants
- Structure and union assignments
- Optimization for code size or execution speed
- Extended functions for μ PD78C00 product line code generation
- Saddr area usage for variables
- Non-initialized variable declaration
- Interrupt vector table generation
- Function execution with interrupts disabled
- Input byte/word from special register
- Output byte/word to special register
- Modify special register with a byte constant
— Disable/enable interrupts
—Halt CPU
— Check/reset interrupt flags
- IEEE 32-bit floating-point data representation
\square UNIX LINT functions (legal C code verification) integrated into the compiler
- Interface checking between modules performed by the linker XLINK
- ROMable object file creation
\square Generation of list and full cross-reference files
- Built-in help facility
- Extensive error reporting

Micro-Series is a trademark of IAR Systems AB.

MS-DOS is a registered trademark of Microsoft Corporation.

C Library Functions

The CC87 Micro-Series C compiler package includes most of the important C library functions that apply to PROM-based embedded systems. All library functions reside in the supplied library files. Header files that declare the set of library functions are also included.
The following library functions are available:
CHARACTER HANDLING < ctype.h> isalnum isalpha iscntrl isdigit islower isprint ispunct isspace isupper isxdigit tolower toupper

```
VARIABLE ARGUMENTS < stdarg.h>
    va_arg va_end va_start
NON-LOGICAL JUMPS < setjmp.h> longjmp setjmp
```

FORMATTED INPUT/OUTPUT < stdio.h> getchar gets printf putchar scanf, sscanf, sprintf
GENERAL UTILITIES < stdlib.h> atof atoi atol calloc exit free malloc ralloc

STRING HANDLING < string.h>
strcat stremp strcpy strlen strncat strncmp strncpy
MATHEMATICS < math.h>
atan atan2 cos exp log log10 modf pow sin sqrt tan

LOW-LEVEL ROUTINES < icclbutl.h> _formatted_write

Memory Allocation

The two memory allocation modes, static and reentrant, differ only in allocation of auto variables. In the reentrant mode, all local auto variables are allocated and deallocated dynamically; the auto variables reside on the stack, which is necessary if recursive or reentrant functions are needed. This option sometimes generates more code and slower code than the static mode. Inthe static mode, all function level variables are put into static memory, with the exception of function arguments, which are always placed on the stack.

C Cross-Compiler (ICC7800)

The C cross-compiler, which is the ICC7800 program, converts standard C source code into relocatable object modules in the IAR systems' proprietary universal binary relocatable object format (UBROF). This format is used for all relocatable object files in the Micro-

Series development system, whether generated by an assembler or compiler. During compilation, an optional optimizer can be invoked to optimize the object code for size or execution speed.
In addition, CC87 supports extended functions for $\mu \mathrm{PD} 78 \mathrm{C} 00$ product line code generation. These extended functions allow the C compiler to take advantage of many of the powerful features in the μ PD78C00 product line microcontrollers to decrease object code size and improve program execution speed.

Relocatable Macro Assembler (A7800)

The relocatable macro assembler (A7800) translates symbolic source code for the NEC μ PD78C00 product line of microcontrollers into relocatable object modules in the IAR systems proprietary UBROF format.
Features. The relocatable macro assembler features are as follows:

- Absolute or relocatable address object code output
- Directives
- List formatting
- Conditional assembly, separate assembly
- Memory allocation
- Macro definition and value assignments to symbol directives
- Generation of list files
- Generation of cross-reference and symbol tables
- Ability to include files in another source

Directives. Assembler directives give instructions to the program but are not translated into machine code during assembly. Basic directives include those for storage definition and memory allocation (DB, DD, DW, DS); symbol control and usability (PUBLIC, EXTERN, LOCSYM); and value assignments to symbols (SET, EQU, =, DEFINE).
Program control directives include those for module definition (NAME, MODULE, ENDMOD); segment definition and control (ASEG, RSEG, STACK, COMMON, ORG); conditional assembly (IF, ELSE, ENDIF); macro processing (MACRO, ENDMAC); and listings control (LSTOUT, LSTCND, LSTCOD, LSTEXP, LSTMAC, LSTWID, LSTFOR, LSTPAG, PAGSIZ, PAGE, TITL, STITL, PTITL, PSTITL, LSTXRF).

Linker (XLINK)

The universal linker, XLINK, combines relocatable object modules and absolute load modules and produces one absolute load module. The controls for XLINK may be specified either on the command line or in a parameter file. In addition to being able to generate several types of absolute load module formats, it is also possible to generate cross-reference lists with an index list; define segment allocation; force load and conditional load of files; bank segments; and define a symbol on a command line. The absolute load module can contain symbol information as well as absolute object code.

Librarian (XLIB)

The XLIB librarian creates and maintains files containing relocatable object modules. With XLIB, the user can merge object files from different assemblies/ compilations in order to create libraries; delete individual modules; change the order of modules and check the CRC in a module; and rename modules, segments, externals or entries. In addition, XLIB can change the properties of a module to be conditionally or unconditionally loaded. Use of XLIB reduces the number of files that need to be linked together by allowing several modules to be kept in a single file, providing an easy way to link frequently used modules into programs.

License Agreement

CC87 Micro-Series C Compiler package is sold under terms of a license agreement included with the compiler. The accompanying card must be completed and returned to NEC Electronics Inc. to register the license.

Documentation

For further information on source program format, compiler operation, assembler operation, linker, librarian, and converter programs, and actual program examples, refer to the following manual supplied with the CC87 package. Additional copies may be obtained from NEC Electronics Inc.

- CC87 μ PD7800 Series C Compiler, User's Manual

Description

The RA87 relocatable assembler package converts symbolic source code for the $\mu \mathrm{PD} 78 \mathrm{C} 00$ product line of microcontrollers into executable absolute address object code. The RA87 package consists of six separate programs: assembler (RA87), linker (LK87), hexadecimal format object converter (OC87), librarian (LB87), list converter (LCNV87), and macroprocessor (MP).
RA87 translates a symbolic source module into a relocatable object module. The assembler verifies that each instruction assembled is valid for the target microcontroller specified at assembly time.
LK87 combines relocatable object modules and absolute load modules and converts them into an absolute load module. OC87 converts an absolute object module or an absolute load module into an ASCII hexadecimal format object file.

LB87 allows commonly used relocatable object modules to be stored in one file and linked into multiple programs, greatly increasing programming efficiency. When a library file is included in the input to the linker, the linker extracts only those modules required to resolve external references from the file and relocates and links them into the absolute load module.

LCNV87 allows relocatable list files to be converted into absolute list files. MP expands macros contained in a source program prior to assembling.

Features

- Absolute address object code output
- Generic jump capability
- User-selectable and directable output files
- Extensive error reporting
- Macro capabilities
\square Runs under MS-DOS® operating system

MS-DOS is a registered trademark of Microsoft Corporation.

Ordering Information

Part Number	System	Description
RA87-D52	MS-DOS	$5-1 / 4$-inch, double-density floppy diskette

Program Syntax

An RA87 source module consists of a series of code, byte-oriented data, or bit-oriented data segments. Each segment consists of statements composed of up to four fields: symbol, mnemonic, operand, comment.
The symbol field may contain a label whose value is the instruction or data address or a name that represents an instruction address, data address, or constant. The mnemonic field may contain an instruction or an assembler directive. The operand field contains the data or expression for the specified instruction or directive. The comment field allows explanatory comments to be added to a program.
Character constants are translated into 7-bit ASCII codes. Numeric constants may be specified as binary, octal, decimal, or hexadecimal. Arithmetic expressions may include the operators $+,-, *, l$, NOT, AND, OR, XOR, EQ, NE, GT, GE, LT, LE, SHR, SHL, HIGH byte, LOW byte, MOD, and the - sign.

Assembler Directives

Assembler directives give instructions to the assembler but are not translated into machine code during assembly. Basic assembler directives include storage definition (DB, DW, DS, DBIT); symbol definition (EQU, SET, CODE, DATA, BIT); and program boundary definition (ORG, END). Program linkage directives are provided to NAME the module and to declare symbols as PUBLIC or external (EXTRN).
Segment definition directives define whether a segment is a code segment (CSEG), allocated to ROM; a data segment (DSEG) or a bit segment (BSEG), allocated to RAM; or a working register segment (VREG). The address boundary conditions for each segment directive are specified in its operand. These include UNIT, PAGE, INPAGE, FIXEDAREA, BYTE, CALLTABLE, AT, BITADDRESSABLE. The combination types of PUBLIC, COMMON, and COMPLETE specified in the operand define how to link segments with the same name and segment definition.

The μ PD78C00 product line instruction set contains three jump instructions with varying legal address ranges. To avoid calculating which jump instruction to use, the programmer can substitute the generic jump (GJMP) directive for any relative jump (JR), any extended relative jump (JRE), or any long jump (JMP) instruction in the source program. During assembly, a suitable jump instruction is chosen for each GJMP directive.

Assembler Controls

The RA87 assembler (figure 1) has two types of controls. The primary controls, which are specified in the assembler command line, a parameter file, or at the beginning of the source module, are as follows:

- Target microcomputer specification
- Output file selection and destination
- Listing format controls
- Date specification

Figure 1. $\begin{aligned} & \text { Relocatable Assembler Functional } \\ & \text { Diagram }\end{aligned}$

The general controls, specified in the assembler command line, a parameter file, or at any place in the source program, are as follows:

- Generation/suppression of listing
- Listing titles
- Inclusion of other source files
(in source program only)
- Page eject (in source program only)

The listing file may contain the complete assembly listing or only lines with errors, and a symbol table or a cross-reference table. The symbol table shows all de-
fined symbols in alphabetical order, their types, attributes, and the values initially assigned to them. The cross-reference table contains all defined symbols and the numbers of all statements that refer to them.
The object file contains the relocatable object module. The format of this module is an NEC proprietary relocatable object module format. This object file may also contain local symbol information for the symbolic debugger.

Linker

The LK87 linker (figure 2) combines several relocatable object modules or absolute load modules, resolving PUBLIC/EXTRN references between modules, to create an absolute load module. This load module contains both absolute object code and symbol information. The linker will also search library files for required modules to resolve external references. The linker controls for LK87 can be specified in either the command line or in a parameter file. The programmer can specify the date, module name, stack size and starting address, ROM/RAM segment allocation, starting address and order for code/data/bit relocatable segments, and the page address for the working register group. The programmer may also specify that a list file containing a link map, a local symbol table, or a public symbol table be created.

Figure 2. Linker Functional Diagram

Hexadecimal Format Object Converter

The OC87 object converter (figure 3) outputs the object code file in ASCII hexadecimal format, which can be downloaded to a PROM programmer or hardware debugger. The programmer can specify whether or not to generate a symbol file for a hardware debugger.

Figure 3. Hexadecimal Format Object Code Converter Functional Diagram

Librarian

The LB87 librarian (figure 4) creates and maintains library files containing relocatable object modules. This reduces the number of files to be linked together by allowing several modules to be stored in a single file. This provides an easy way to link frequently used modules into programs. Modules can be added to or deleted from, or the contents of the library file can be listed.

List Converter

Normally, listing files produced by a relocatable assembler do not show the final absolute address for instructions because their location is not decided until link time. The address shown in the listing is only the offset from the start of the code or data segment.
The LCNV87 list converter (figure 5) uses the assembly list and object module files from the assembler and the load module file from the linker to create an absolute address assembly listing. This absolute listing shows
the addresses of instructions as their final absolute address in memory and is useful in debugging or program documentation. The programmer can specify the load module (-L), assembly list (-A), and output assembly ($-O$) file names.

Figure 4. Librarian Functional Diagram

Figure 5. List Converter Functional Diagram

Macroprocessor

The MP macroprocessor (figure 6) interprets the macros described in a source program and expands them to create another source program, which can then be input to the assembler. It has the following three main functions:

- Expands macros by defining and referencing them
- Reads and expands include files
- Selects an assembler source based on a conditional macro instruction

Figure 6. Macroprocessor Functional Diagram

Emulator Controller Program

Absolute object files produced by the RA87 relocatable assembler package can be debugged using the appropriate NEC stand-alone in-circuit emulator. NEC emulator controller programs allow communication with the emulator through an RS-232C serial line. An emulator controller program can run on the IBM PC ${ }^{\oplus}, \mathrm{PC} / X T^{\oplus}$, and $\mathrm{PC} / \mathrm{AT}^{\circledR}$ under MS-DOS and is provided with the in-circuit emulator at no extra charge.

These emulator controller programs provide the following features:

- Uploading and downloading of object and symbol files
- Symbolic debugging
- Complete emulator control from host console
- On-line help facilities
- Macro command file capabilities
- Host system directory and file display
- Disk storage of debug session

License Agreement

RA87 is sold under terms of a license agreement included with the assembler. The accompanying card must be completed and returned to NEC Electronics Inc. to register the license. Software updates are provided free to registered users for one year.

Documentation

For further information on source program formats, assembler operation, and actual program examples, refer to the following manuals supplied with the RA87 package. Additional copies may be obtained from NEC Electronics Inc.

- RA87 μ PD78C00 Product Line Relocatable Assembler Package, User's Manual
- MP Macroprocessor, User's Manual

IBM PC, PC/XT, and PC/AT are registered trademarks of International Business Machines Corporation.

Description

The IE-78000-R is an in-circuit emulator providing both hardware emulation and software debugging capabilities for the NEC μ PD78KO product line of single-chip microcontrollers. The IE-78000-R, combined with a SD78KO screen debugger and IE-78000-R-BK break board, create a powerful debug environment.
The SD78K0 is screen debugger software included in an IE-78000-R package that will allow the user to debug a program through a host machine (IBM PC/IBM compatible) in a window-oriented environment. This screen debugger software is used by connecting it to the IE-78000-R.

Different target devices can be emulated by connecting a separately purchased emulation board, IE-780xx-R-EM to the IE-78000-R. The product selection guide shows the list of available emulation boards, emulation probes, socket adapters, and corresponding target devices.

Features

$10-\mathrm{MHz}$ maximum operating frequency
\square Real-time and non-real-time emulation

- Sophisticated break events
- Logical OR of up to four sets of events
- Logical AND of addresses, data values, CPU controls, and loop count
- Executed instruction count
- Parallel or sequential fetch addresses
- External sense clip condition
- Sophisticated trace capabilities
- Trace program fetch or data access
-2K x 49-bit trace buffer
- Address, control, data, and external signal trace
- Instruction or frame display
- Trace search capability
-Specify trigger point at beginning, middle, or end of trace buffer
- Supports debug activities during real-time emulation
-Displays trace buffer
-Modifies trace conditions
- Modifies trace event conditions
- Restarts trace
- Powerful memory mapping
-64K bytes of RAM for off-chip RAM/ROM emulation
- 200K bytes DRAM memory for symbols (192K byte) and programs (8 K byte)
-56 K bytes ROM
- 4K bytes of RAM for internal RAM emulation
- 14K trace RAM
- Line assembler/disassembler
- Symbolic debugging, 700/900 symbols
- CMOS latch-up warning and protection
- Eight external sense clips on emulator probe
- Two serial and two parallel interface channels
- Memory bank selector to select ROM, DRAM or trace RAM
- Host control program for IBM PC, PC/XT, PC/AT, or compatible

Equipment Supplied

The IE-78000-R package includes the following:

- IE-78000-R emulator chassis
- IE-78000-R-BK break board
- Control/trace board
- RS-232-C interface cable

IE-78000-R In-Circuit Emulator

Ordering Information (Also, see selection guide.)

Part Number	Description
IE-78000-R	In-circuit emulator for 78K0 product line
IE-78014-R-EM	Emulation board for 78014 family (optional)
IE-78044-R-EM	Emulation board for 78044 family (optional)
IE-78064-R-EM	Emulation board for 78064 family (optional)
EP-78240GC-R	(64-pin plastic QFP) emulator probe used with IE-78014-R-EM board
EP-78240CW-R	(64-pin shrink DIP) emulator probe used with IE-78014-R-EM board
EP-78130GF-R	(80-pin plastic QFP) emulator probe used with IE-78044-R-EM board (optional)
EP-78064GF-R	(100-pin QFP (14x20)) emulator probe for 78064GF family, used with IE-78064-R-EM board (optional)
RA78K0-D52	Relocatable assembler for 78K0 product line (optional)
(op-780-pin QFP (14x14)) emulator probe for	
(optional)	
IE-78000-R package	

IE-78000-R Block Diagram

CC78K0 C Compiler for the μ PD78K0 Product Line

Description

The CC78K0 C compiler is an ANSI standard C crosscompiler for the NEC μ PD78KO product line of microcontrollers. The CC78KO (figure 1) converts ANSI standard C source code into NEC format object module or assembly language source files. During compilation, an optional optimizer can be invoked to optimize the object code for size and/or execution speed.
In addition, CC78K0 supports extended functions for μ PD78K0 code generation. These extended functions allow the C compiler to take advantage of many powerful features in the μ PD78KO microcontrollers to decrease object code size and improve program execution speed.
The relocatable object file produced by the CC78KO can be converted into an absolute object file by the linker program and object converter program contained in the RA78K0 relocatable assembler package. The resulting ASCII hexadecimal format absolute object file then can be debugged using an NEC in-circuit emulator or evaluation board.

Features

- ANSI standard C compiler
- Extended functions for optimized μ PD78K0 code generation
- Various optimization options for code size and/or execution speed
- Legal C code verification
- Outputs NEC format object module or assembly source file
- Run-time error checking
- Outputs debug information
- ROMable object file creation
- User selectable and directable output files, list, and full cross-reference files
- Extensive error reporting
- Built-in help facility
- Runs under MS-DOS® operating system

Figure 1. CC78Ko Functional Diagram

Ordering Information

Part Number	System	Description
CC78KO-D52	MS-DOS	$5-1 / 4-$-inch, double-density floppy diskette

CC78K0 Extended Functions

- Register variables can be stored in the registers and Saddr area
- Saddr area usage for variables
- Direct peripherals access with SFR names
- Saddr area usage for function arguments and automatic variables
- Functions can be called using the CALLT table
- Functions can be stored in the CALLF area
- Bit data type
- In-line assembly language
- Interrupt functions
- Generate interrupt vector table
- Disable/enable interrupts

Compiler Options

The CC78KO C compiler supports the following options during compilation:

- Target chip selection
- Parameter file specification
- Macro name definition
- Include files search path specification
- Symbol length extension
- Symbol name conversion to uppercase
- Outputs debug information
- Generates
- Object file
- Assembler source file (with/without C source)
- Cross-reference list file
— Error list file (with/without C source)
- Preprocess list file
- Listing format control
- ROMable processing
- Optimization option selection
- Run-time error check selection
- Temporary directory specification
- Warning level selection
- Outputs compilation status information

C Library Functions

The CC78K0 C compiler library includes most of the important C library functions that apply to PROMbased embedded systems. All library functions reside in the library files supplied. Header files that declare the set of library functions are also included.
The following library functions are available:

I/O Functions

sprintf sscanf
Character Functions

isalpha isupper isalnum isxdigit	islower isspace	isdigit ispunct	
isprint	isgraph	iscntrl	isascii
toupper	tolower	_toupper	_tolower
toascii			
String	Functions		
strien	strcpy	strncpy	strcat
strncat	strcmp	strncmp	strchr
strrchr	strpbrk	strspn	strcspn
strstr	strtok	strtol	strtoul
atoi	atol	itoa	Itoa

ultoa
Memory Functions

malloc	calloc	realloc	free
brk	sbrk	memcpy	memmove
memomp	memchr	memset	

Program Control Functions
setjmp longjmp abort atexit
exit

Mathematical abs div	Functions labs Idiv	rand	srand
Special Functions			
qsort	bsearch	strerror	va_start
va_arg	va end		

License Agreement

CC78K0 is sold under terms of a license agreement included with the compiler. The accompanying card must be completed and returned to NEC Electronics Inc. to register the license. Software updates are provided free to registered users for one year.

Documentation

For further information on source program formats, C compiler, and actual program examples, refer to the following manuals supplied with the compiler. Additional copies may be obtained from NEC Electronics Inc.

- CC78K Series C Compiler for Language
- CC78K Series C Compiler for Operation

Description

The RA78KO relocatable assembler package converts symbolic source code for the μ PD78K0 product line of 8 -bit, single-chip microcontrollers into executable absolute address object code. The RA78KO package consists of six separate programs: assembler (RA78K0), linker (LK78K0), hexadecimal format object converter (OC78KO), librarian (LB78K0), list converter (LCNV78K0), and structured assembler (ST78K0).

RA78K0 translates a symbolic source module into a relocatable object module. The assembler verifies that each instruction assembled is valid for the target microcontroller specified at assembly time and produces a listing file and a relocatable object module.
LK78K0 combines multiple relocatable object modules and library modules and converts them into a load module. OC78KO converts a load module into an ASCII hexadecimal format absolute object code file.

LB78K0 allows commonly used relocatable object modules to be stored in one file and linked into multiple programs, greatly increasing programming efficiency. When a library file is included in the input of the linker, the linker extracts from the library file only those modules required to resolve external references and links them with the other modules.

LCNV78K0 allows relocatable list files to be converted into absolute list files.

The ST78K0 structured assembler preprocessor is a companion program to the RA78KO relocatable assembler for the NEC μ PD78K0 product line of microcontrollers. ST78KO converts a source code file containing C-like structured assembly statements into a pure assembly language source file, which then can be assembled with RA78KO.

Features

- Absolute address object code output
- User-selectable and directable output files
- Macro definitions
- Branch optimization
- Conditional assembly
- Extensive error reporting
- Powerful librarian
- C-like structured assembly statements
\square Runs under MS-DOS® operating system
Ordering Information

Part Number	System	Description
RA78KO-D52	MS-DOS	5-1/4-inch, double-density floppy diskette

Program Syntax

An RA78K0 source module consists of a series of code, data, or bit segments. Each segment consists of statements composed of up to four fields: symbol, mnemonic, operand, and comment.

The symbol field may contain a label, whose value is the instruction or data address, or a name that represents an instruction address, data address, or constant. The mnemonic field may contain an instruction or assembler directive. The operand field contains the data or expression for the specified instruction or directive. The comment field allows explanatory com-

Character constants are translated into 7-bit ASCII codes. Numeric constants may be specified as binary, octal, decimal, or hexadecimal. Arithmetic expressions may include the operators $+,-, *, /$, MOD, OR, AND, NOT, XOR, EQ, NE, LT, LE, GT, GE, SHR, SHL, LOW, HIGH, ., (), and character constants.

Macro Definition

RA78K0 allows the definition of macro code sequences with up to five parameters, LOCAL symbols, and special repeated code sequences. The macro code sequence differs from a subroutine call in that the invocation of a macro in the source code results in the direct replacement of the macro call with the defined code sequence.

Assembler Directives

Assembler directives give instructions to the assembler, but they are not translated into machine code during assembly. Basic assembler directives include storage definition and allocation directives (DB, DW, DS, DBIT); symbol directives (EQU, SET); and location counter control directive (ORG). Program control directives include segment directives (CSEG, DSEG, BSEG, ENDS); linkage directives (NAME, PUBLIC, EXTRN, EXTBIT); macro directives (MACRO, LOCAL, REPT, IRP, EXITM, ENDM); automatic BR instruction directive (BR); and assembly termination directive (END).

Assembler Controls

The RA78KO assembler (figure 1) has two types of controls. Primary controls, specified in the assembler command line or at the beginning of the source module, are as follows:

- Processor selection
- Output object creation selection
- Output list file selection
- Listing format controls
- Optimization selection
- Work file drive specification

General controls, specified in the source program, are as follows:

- Inclusion of other source files
- Page eject
- Generation/suppression of listing
- Listing titles
- Conditional assembly controls

Figure 1. Relocatable Assembler Functional Diagram

The listing file contains either the complete assembly listing or only the lines with errors, and a symbol or cross-reference table. The symbol table shows all defined symbols in alphabetical order with the types, attributes, and the values initially assigned to them.
The cross-reference table contains all defined symbols and the numbers of all statements referring to them. The object file contains the relocatable object module. This is an NEC proprietary relocatable object module format.
If the optimization option is chosen, the assembler will generate the most efficient code by converting, where possible, three-byte absolute branches into two-byte relative branches.

Linker

The LK78K0 linker (figure 2) combines several relocatable object modules, resolving PUBLIC/EXTRN references between modules, to create a load module. This output module contains both absolute object code and symbol information. The linker will also search library files for required modules to resolve external references. The linker controls for LK78K0 can be specified in either the command line or in a parameter file.

The programmer can specify the starting address and order for code/data/stack segments, and protect areas of memory from being assigned.

Figure 2. Linker Functional Diagram

Object Converter

The OC78KO object converter (figure 3) outputs two files: an absolute load file in ASCII hexadecimal format, which can be downloaded to a PROM programmer, and a symbol file for the symbolic debugger. The programmer can also specify an error list file for error logging.

Figure 3. Object Converter Functional Diagram

Librarian

The LB78KO librarian (figure 4) creates and maintains library files containing relocatable object modules. This reduces the number of files to be linked together by storing several modules in a single file. This provides an easy way to link frequently used modules into programs. Modules can be added to, deleted from, or replaced within a library file, or the contents of the library file can be listed.

List Converter

The LCNV78K0 list converter (figure 5) converts a relocatable assembly list file into an absolute assembly list file, which contains absolute addresses and symbol values.

Figure 5. List Converter Functional Diagram

Figure 4. Librarian Functional Diagram

Structured Assembler

The ST78K0 (figure 6) converts a structured assembly statement into one or more μ PD78K0 assembly language instructions that perform the desired operation. Because ST78KO converts only structured assembly statements and not μ PD78K0 assembly language instructions, a structured source program can include a combination of μ PD78K0 structured assembly statements and assembly language.

ST78K0 enables the assembly language programmer to use some of the structures and syntax of higher-level languages such as the C language. This improves program readability and reliability, and increases programmer productivity.

Features of the ST78KO

- Control structures for conditions, looping, and switch-case
- Preprocessor directives for conditional code generation
- C-like representation of comparison operations
- C-like representation of assignment/arithmetic operations
- Increment and decrement operators
\square Allows use of all μ PD78K0 mnemonics, registers, and features

Figure 6. Structured Assembler Preprocessor Functional Diagram

Summary Of Structured Language

A line of source code for ST78KO contains either a structured assembly statement or a μ PD78K0 assembly language statement. μ PD78K0 assembly language statements (μ PD78K0 instructions, RA78K0 directives, or RA78K0 controls) pass through ST78K0 without change.
Structured assembly statements consist of preprocessor directives, assignment statements, and control statements. These statements are entered one per line, and are terminated by a line feed character. An optional comment may follow a semicolon at the end of the statement; all text following a semicolon is ignored by ST78K0.

Preprocessor directives cause ST78K0 to include or omit portions of code. Assignment statements cause ST78K0 to generate one or more μ PD78K0 assembly language instructions to alter the contents of a register or variable. Control statements cause ST78KO to generate the necessary instructions to test conditions and change control flow based on those conditions.

Preprocessor Directives

ST78K0 preprocessor directives set and test variables, allowing conditional processing of code, include external files and map instructions to μ PD78K0 CALLT table reference instructions. Table 1 lists the preprocessor directives and their functions.

Table 1. Preprocessor Directives and Functions

Directive	Function
\#define NAME value	Defines the variable NAME, set to the supplied value.
\#ifdef ABC	If ABC has been defined as above, or on the command line with the -D option, the first
<statements>	set of statements is processed and the \#else
<statements>	
\#endif	defined, or defined as zerc, the first set of statements is ignored and the second set is processed.
\#include "filename"	The named file is read from disk and processed as if included in the source.
\#defcallt @LABEL	Whenever the instruction "CALL !label" is CALL !label
\#encountered in the source program, it is	
\#eplaced by "CALLT [@LABEL]". The label	
must be defined in the CALLT table.	

Assignment, Increment, and Decrement Statements

ST78K0 provides the ability to represent an assignment, or an assignment with an arithmetic operation, in C language syntax:
destination < assign-op> source
The assignment operators (table 2) allow either simple assignment or the combination of an assignment with an arithmetic operation on the source and destination.

Examples:

$A=B \quad$;Move contents of B register to A
$A+=[H L] ;$ Add contents of memory at HL to A , ;store in A

Where an assignment requires an intermediate register to hold the value being assigned, the register is designated by naming it in parentheses following the assignment operation.

Examples:

DATA1 $=\mathrm{B}(\mathrm{A}) \quad ;$ Store contents of B into memory at ;DATA1, using A as temporary storage
$B C \&=H L(X A)$;and $B C$ with $H L$, store in $B C$, ;use XA as temp

The increment and decrement operators (+ + and --) operate on a single operand.

Table 2. Assignment Operators With Examples and Functions

Operator	Example	Function
$=$	$A=B$	$\mathrm{A} \leftarrow \mathrm{B}$
<->	$A<->B$	Contents of A and B are exchanged
+=	$A+=B$	$A \leftarrow A+B$
- $=$	$A-=B$	$A \leftarrow A-B$
* $=$	$A X *=B$	$A X \leftarrow A X * B$
$1=$	$A X /=C$	$A X \leftarrow A X / C$
\& $=$	$A \&=B$	$A \leftarrow A \& B$ (logical AND)
I=	$A I=B$	$A \leftarrow A \mid B$ (logical $O R$)
$\stackrel{ }{ }=$	$A^{\wedge}=B$	$A \leftarrow A^{\wedge} B$ (logical XOR)
$\gg=$	$A \gg=B$	$\left(C Y \leftarrow A_{0}, A_{n-1} \leftarrow A_{n}, \ldots, A_{\text {max }} \leftarrow 0\right) \times B$ times
<< $=$	$\mathrm{A} \ll=\mathrm{B}$	$\left(C Y \leftarrow A_{\text {max }}, A_{n+1} \leftarrow A_{n}, \ldots, A_{0} \leftarrow 0\right) \times B$ times
++	A++	$A \leftarrow A+1$
--	A--	$A \leftarrow A-1$

Control Statements

Control statements (table 3) allow conditions to be tested. Based on the results of the test, blocks of code are allowed to be executed or skipped. Reserved words in the control statement define the start and end of blocks of code and expressions to be evaluated.

Example:

if $(A==[H L])$;The condition is tested.
$P 5=B(A)$;If A equals the content of memory
$A=[H L]$;at $H L$, this code is executed.

$A+=[H L] \quad$;Otherwise, this code is executed.
$A-=B$
$P 5=A$
endif

Table 3. Control Statement Directives

Control Statement	Function
if - elseif - else - endif	Test variable expressions
if_bit - elseif_bit - else - endif	Test bit expressions
switch - case - default - ends	Select based on variable
for - next	Loop, test variable
while - endw	Loop, test variable
repeat - until	Loop, test variable
while_bit - endw	Loop, test bit
repeat - until_bit	Loop, test bit
break	Exit control block
continue	Skip to top of block
goto LABEL	Branch to label

Variable and Bit Expressions

Variable expressions for tests consist of a single value, comparison between two variables, or a logical combination of comparisons. Bit expressions test individual bits. Table 4 shows examples of comparisons. The allowable expressions using variables are shown in table 5.

Table 4. Examples of Variable Expression Comparisons

Comparison	Meaning
if (A)	True if A is non-zero
if $(A<B)$	True if A is less than B
if $((A<B) \& \&(A>C))$	True if A is less than B and greater than C
if_bit $(P 3.2)$	True if bit 2 of P3 is 1
if_bit $(!P 3.2)$	True if bit 2 of P3 is 0

Table 5. Expressions and Examples

Expression	Example	
Primary	(A)	
Term	$(A<=B)$	
Term \&\& Term	$((A<B) \& \&(A>C))$ (logical AND)	
Term II Term	$((A==C) \\|(A==B))$ (logical OR)	

A primary value for a variable expression is a register name or defined symbol. A term consists of two primary values compared with a binary operator. Table 6 lists the supported binary operators and their meanings.

Table 6. Binary Operators

Binary Operator	Meaning
$==$	Equal
$!=$	Not equal
$>$	Greater than
$>=$	Greater than or equal to
\leq	Less than
$<=$	Less than or equal to

Bit expressions test individual bits of registers, ports, or memory locations. Table 7 shows the acceptable forms of bit expressions.

Table 7. Bit Expressions and Examples

Bit Expression	Example		
Bit_primary	(P2.1)		
IBit_primary	$(!\mathrm{CY})$		
Bit_primary \&\& Bit_primary	(A.0 \&\& CY)		
Bit_primary \\| Bit_primary	(P2.2 \\| CY)		

A Bit_primary can be either a reserved word bit identifier, such as a bit of a register or port (P2.1, CY), or a bit definition symbol (SBO EQU P2.2).

ST78K0 Operation and Controls

ST78K0 is invoked by specifying the name of the source file, followed by optional controls.

Example:
C>ST78KO ABC.SRC -DXYZ=3
ST78K0 reads the specified source file and produces an output assembly language file, which can be input to RA78KO. The output file contains all lines provided in the input source file, plus those generated by ST78KO. Lines containing no statements for the structured assembler are passed through unchanged. Lines with structured assembly statements are placed in the output preceded by a semicolon. RA78K0 treats these lines as comments. These commented lines are then followed by the code generated by ST78KO.

The controls for ST78KO (table 8) are specified in the preprocessor command line or in a parameter file invoked in the command line.

Table 8. ST78KO Preprocessor Controls

Control	Function
-Ofilename	Specify name of output assembly source file
-Ffilename	Specify name of parameter file to be read
-Efilename	Specify name of error listing file
-Dsymbol[= value]	Define a symbol (like \#define in code)
-I[d:][directory]	Define path for include file
-WTn1,n2,n3	Define TAB settings for generated code
-SCcharacter	Defines word symbol last character

The -O option allows the name of the output file to be specified. If not specified, the output file name defaults to the name of the input source file with the extension .ASM.

The -F option allows a parameter file to be specified, which will be read by ST78KO. This parameter file can contain a list of controls to be given to ST78K0 instead of or in addition to those specified on the command line.

The -E option specifies the name of the error listing file. The error file contains the file name, error number, description of error and the line containing the error. If the -E option is not specified, the error file name defaults to the name of the input source file with the extension.EST.

The -D control allows a symbol to be defined on the command line with an optional value provided. If a symbol is defined but no value is specified, the value defaults to 1. If the source file contains a \#define directive that specifies a variable with the same name as the -D control, the value on the command line will override the value in the \#define directive.

The -I control specifies a drive or directory other than the current drive and directory to search for include files.

The -WT control specifies the number of TAB characters to insert before labels, instruction mnemonics, and instruction operands generated by ST78KO. This allows clear separation of assembly language instructions coded in the source file from those generated by ST78K0.

The -SCcharacter control specifies the character used as the last character in a word symbol. The character must be a letter of the alphabet or the @, _ or ?. This allows ST78K0 to distinguish between word and byte operations. Symbols ending in this character are treated as word symbols and will generate a word
operation (e.g. MOVW). If the -SC option is not specified, ST78KO assumes that a symbol ending with the character " P " or " p " is a word symbol.

Emulator Controller Program

Absolute object files produced by the RA78K0 relocatable assembler package can be debugged with the appropriate NEC standalone in-circuit emulator. NEC emulator controller programs allow communication with the emulator through an RS-232C serial line. An emulator controller program can run on the IBM PC®, $\mathrm{PC} / \mathrm{XT}^{\oplus}$, or PC AT® under MS-DOS and is provided with the in-circuit emulator at no extra charge.
These emulator controller programs provide the following features:

- Uploading/downloading of object and symbol files
- Symbolic debugging capability
- Complete emulator control from host console
- On-line help facilities
- Macro command file capabilities
- Host system directory and file display
- Disk storage of debug session
- Storage of last 20 commands for recall

License Agreement

RA78K0 is sold under terms of a license agreement included with the assembler. The accompanying card must be completed and returned to NEC Electronics Inc. to register the license. Software updates are provided free to registered users for one year.

Documentation

For further information on source program formats, assembler operation, and actual program examples, refer to the following manuals supplied with the RA78K0 package. Additional copies may be obtained from NEC Electronics Inc.

- RA78K Series Assembler Package, Language Manual
- RA78K Series Assembler Package, Operation Manual
- RA78K Series Structured Assembler Preprocessor, User's Manual

[^26]RA78K0

Description

The SD78K0 screen debugger is a versatile software tool for debugging C and assembly language programs written for the μ PD78K0 product line of microcontrollers. SD78K0 has an easy-to-use, window-like user interface and can perform both source-level and symbolic debugging.
SD78K0 performs software debugging by monitoring and controlling program execution on an NEC incircuit emulator from a host computer. Program execution information is presented in an organized format on several windows.

The SD78K0 screen debugger is an integral component of the software development tool chain for the μ PD78K0 product line of microcontrollers. Its structured and user-friendly debugging environment can significantly improve software reliability as well as programmer productivity.

Features

- C and assembly language source-level debugging
- Extensive program debugging functions
- Window-like user interface
- Mouse support
- User-configurable windowing environment
- User-defined key macro
- Screen dump to a printer or a disk file
- On-line help facility
- Extensive error reporting
- Runs under MS-DOS® operating system

MS-DOS is a registered trademark of Microsoft Corporation

Ordering Information

Part Number	System	Description
SD78K0-D52	MS-DOS	5-1/4-inch, double-density floppy diskette

Development Tool Chain

C source programs can be compiled with the CC78K0 C compiler to generate relocatable object code as shown in figure 1. The RA78K0 relocatable assembler converts assembly language source programs into relocatable object code. The debug option must be specified during program compilation or assembly, which will embed debug information into the object code. The resulting object code can be linked using the LK78K0 linker, which is part of the RA78K0 relocatable assembler package, to generate a load module file. The SD78K0 screen debugger then takes this load module file as input for program debugging on the in-circuit emulator.

Figure 1. Development Tool Chain

Debugging Functions

- Program upload/download
- On-line program assembly/disassembly
- Separate display/working windows for:
- - Register banks
-Special function registers
- Memory
- Source code
-Symbols
- Variables
- Functions
-Stack
- Breakpoint/watchpoint setting
- Event conditions setting
- Program tracing
- Real-time step emulation
- Performance measurement
- PROM programmer control
- Command file execution
- Save debug session

License Agreement

SD78K0 is sold under terms of a license agreement included with purchased copies of the screen debugger. The accompanying card must be completed and returned to NEC Electronics Inc. to register the license. Software updates are provided free to registered users for one year.

Documentation

For further information on features, operations, and session examples, refer to the following manuals supplied with the SD78KO. Additional copies may be obtained from NEC Electronics Inc.

- SD78K/0 Screen Debugger, SD Primer
- SD78K/0 Screen Debugger, SD Reference

IE-78230-R
 In-Circuit Emulator
 for the μ PD78224/238 Families

September 1993

Description

The IE-78230-R is an in-circuit emulator providing both hardware emulation and software debugging capabilities for the NEC μ PD78224/238 families of single-chip microcontrollers. Real-time and single-step emulation, combined with sophisticated memory mapping features, breakpoint, and trace capabilities, create a powerful debugging environment. A line assembler/ disassembler, full register and memory control, symbolic debugging, and complete upload/download capabilities simplify the task of debugging hardware and software.

Features

- $12-\mathrm{MHz}$ maximum operating frequency
- Real-time and non-real-time emulation
- Sophisticated break events
- Logical OR of up to four sets of events Executed instruction count External sense clip condition Parallel or sequential fetch addresses Logical AND of addresses, data values, CPU controls, and loop count
- Sophisticated trace capabilities
- Traces program fetch or data access
$-2 \mathrm{~K} \times 44$ bit trace buffer
- Address, control, data, and external signal trace
- Instruction or frame display
- Trace search capability
- Specify trigger point at beginning, middle, or end of trace buffer
- Supports debug activities during real-time emulation
- Displays trace buffer
- Modifies trace conditions
- Modifies trace event conditions
- Restarts trace
- Powerful memory mapping
-32K bytes RAM for μ PD78224 or μ PD78238 ROM emulation
- 3840 bytes of RAM for internal RAM emulation
-64K bytes of RAM for off-chip RAM/ROM emulation
- Line assembler/disassembler
- Symbolic debugging: 7000 symbols maximum
- CMOS latch-up warning and protection
- Eight external sense clips on emulator probe
- Host control program for IBM PC®, PC/XT \oplus, PC/AT@, or compatible
- Centronics parallel interfaces for optional highspeed program download and printer

IBM PC, PC/XT, and PC/AT are registered trademarks of International Business Machines Corporation.

Equipment Supplied

The IE-78230-R package includes the following:

- IE-78230-R emulator frame
- Control/trace board
- Break board (IE-78200-R-EM)
- Emulation board (IE-78230-R-EM)
- Controller software program
- RS-232-C interface cable

Ordering Information (Also, see selection guide.)

Part Number	Description
IE-78230-R	In-circuit emulator for μ PD78224/238 families
IE-78230-R-EM	Emulation board included in IE-78230-R package (separately purchased to upgrade 75X or 78X product line emulators to have functions equivalent to IE-78230-R)
EP-78230GC-R	Emulator probe for 80-pin QFP (optional) (includes one EV-9200GC-80 socket adapter)
EP-78230GJ-R	Emulator probe for 94-pin QFP (optional) (includes one EV-9200G-94 socket adapter)

EP-78230LQ-R	Emulator probe for 84-pin PLCC package (optional)
EV-9200GC-80	Five socket adapters; converts $80-$ pin LCC probe tip to 80-pin plastic QFP (14x14) device footprint (optional)
EV-9200G-94	Five socket adapters; converts 94-pin LCC probe tip to 94-pin QFP device package (optional)

RA78K2-D52	Relocatable assembler for 78 K 2 product line
CC78K2-D52	C compiler for 78 K 2 product line
SD78K2-D52	Screen debugger for 78 K 2 product line*

[^27]
IE-78230-R In-Circuit Emulator

IE-78240-R
In-Circuit Emulator for the μ PD78214/218A/244 Families

Description

The IE-78240-R is an in-circuit emulator providing both hardware emulation and software debugging capabilities for the NEC μ PD78214/218A/244 families of singlechip microcontrollers. Real-time and single-step emulation capability, combined with sophisticated memory-mapping features, breakpoints, and trace capabilities, create a powerful debugging environment. A line assembler/disassembler, full register and memory control, symbolic debugging, and complete upload/ download capabilities simplify the task of debugging hardware and software.

The IE-78240-R-EM is an optional emulation board available to upgrade the 75 X or 78 K product lines of in-circuit emulators to have functions equivalent to the IE-78240-R.

Features

- $12-\mathrm{MHz}$ max operating frequency
- Real-time and non-real-time emulation
- Sophisticated break events
- Logical OR of up to four sets of events

Executed instruction count
External sense clip condition Parallel or sequential fetch addresses Logical AND of addresses, data values, CPU controls, and loop count

- Sophisticated trace capabilities
-Traces program fetch or data access
-2K x 44-bit trace buffer
- Address, control, data, and external signal trace
- Instruction or frame display
- Trace search capability
-Specify trigger point at beginning, middle, or end of trace buffer
- Supports debug activities during real-time emulation
- Displays trace buffer
- Modifies trace conditions
- Modifies trace event conditions
- Restarts trace
- Powerful memory mapping
-32K bytes RAM for μ PD7821x or μ PD7824x ROM emulation
- 3840 bytes of RAM for internal RAM emulation
- 3840 bytes of EEPROM for μ PD7824x EEPROM emulation
-64K bytes of RAM for off-chip RAM/ROM emulation
- Line assembler/disassembler
- Symbolic debugging: 7000 symbols maximum
- CMOS latch-up warning and protection
- Eight external sense clips on emulator probe

Host control program for IBM PC®, PC/XT®, PC/AT®, or compatible

- Centronics parallel interfaces for optional highspeed program download and printer
IBM PC, PC/XT, and PC/AT are registered trademarks of international Business Machines Corporation.

Equipment Supplied

The IE-78240-R package includes the following:

- IE-78240-R emulator frame
- Control/trace board
- Break board (IE-78200-R-EM)
- Emulation board (IE-78230-R-EM)
- Controller software program
- RS-232-C interface cable

Ordering Information (Also, see selection guide.)	
Part Number	Description
IE-78240-R	In-circuit emulator for μ PD78214/218A/244 families
IE-78240-R-EM	Separately sold emulation board to upgrade 75X or 78X product lines of in-circuit emulators to have functions equivalent to IE-78240-R
EP-78240CW-R	Emulator probe for 64-pin shrink DIP package (optional)
EP-78240GC-R	Emulator probe for 64-pin QFP (optional) (Includes one EV-9200GC-64 socket adapter)
EP-78240GJ-R	Emulator probe for 74-pin QFP (optional) (Includes one EV-9200G-74 socket adapter)
EP-78240GQ-R	Emulator probe for 64-pin QUIP (optional)
EP-78240LP-R	Emulator probe for 68-pin PLCC package (optional)
EV-9200GC-64	Five socket adapters; converts 64-pin LCC probe tip to 64-pin QFP device footprint. (Optional)
EV-9200G-74	Five socket adapters; converts 74-pin probe tip to 74-pin QFP device footprint. (Optional)
RA78K2-D52	Relocatable assembler for 78K2 product line
CC78K2-D52	C compiler for 78K2 product line
SD78K2-D52*	Screen debugger for 78K2 product line

*Under development

IE-78240-R In-Circuit Emulator

DDB-78K2
 Evaluation Board for the μ PD78K2 Product Line

Description

The DDB-78K2 are evaluation boards for the NEC μ PD78K2 product line of 8-bit, single-chip microcontrollers. The DDB-78K2 provides maximum flexibility when evaluating and designing with the μ PD78K2 product line. Every DDB-78K2 features a μ PD78213, μ PD78220, μ PD78233, or μ PD78343 microcontroller, 32 K bytes of ROM, 32K bytes of RAM, μ PD27C512 footprint for 64 K bytes of optional extended data memory, RS-232-C communication port, and a powerful monitor program. A playpen area is included for evaluating the μ PD78K2 product line with application specific hardware.

Features

- μ PD78213, μ PD78220, μ PD78233, or μ PD78243 evaluation board
- Convertible by changing microcontroller
- On-board memory
—ROM: 32K bytes
- RAM: 32K bytes
- μ PD27C512 footprint for 64K bytes of extended data memory
- Powerful on-board debug monitor
- Real-time and single-step operation
- Display/change memory and internal registers
- Multiple software breakpoints
- User program download capability
- RS-232-C serial interface for terminal or host computer
- Playpen area for user circuitry
- Includes AC/DC converter

Equipment and Documentation Supplied

The DDB-78K2-2xx package includes the following:

- DDB-78K2-2XX evaluation board for 78 K 2 product line
- RA78K2-D52 relocatable assembler for 78K2 product line
- AC/DC converter power supply
- Data book/user's manual

Ordering Information (Also, see selection guide.)

Part Number	Description
DDB-78K2-21x	Basic development board for μ PD78218A/ 214 families designs
DDB-78K2-22x	Basic development board for μ PD78224 family designs
DDB-78K2-23x	Basic development board for μ PD78238 family designs

DDB-78K2 Evaluation Board

DDB-78K2 Block Diagram

EB-78230-PC Evaluation Board for the μ PD78238 Family

Description

The EB-78230-PC is an evaluation board for the NEC μ PD78233 and μ PD78234. These devices are 8 -bit, single-chip microcontrollers. The EB-78230-PC provides a simple way to evaluate the capabilities of the μ PD78233 and μ PD78234 in an application without having to build a prototype. If it is necessary to connect the EB-78230-PC directly to a target system, the IE78230 emulator probes can be purchased separately.

The EB-78230-PC features 32K bytes of static RAM for evaluation programs, an RS-232-C communication port, and a powerful on-board monitor. Evaluation programs can be downloaded from a host computer or created directly on the board using the line assembler. Programs can be executed in real time with or without breakpoints or one instruction at a time. Commands are available to display or change memory, general registers or special function registers, and to disassemble your code.

A controller program controls the EB-78230-PC directly from the console of an IBM PC®, PC/XT®, PC/AT® or compatible host computer using an RS-232-C serial interface.

Features

- 12-MHz max operating frequency
- μ PD78233 evaluation board
- 32K bytes static RAM
- Real-time and single-step execution
- Four parallel or sequential breakpoints
- Display/change memory and general registers
- Display/change special function registers
- User program upload/download capability
- Symbolic debugging support
- Line assembler and disassembler
- RS-232-C serial interface for host computer
- Host control software for IBM PC, PC/XT, PC/AT or compatibles
- Connection to a target system using in-circuit emulator probes

[^28] Business Machines Corporation.

Equipment and Documentation Supplied

- EB-78230-PC evaluation board
- EB-78230-PC user's manual
- System disk for IBM PC
- AC/DC converter power supply
- Battery holder and mounting hardware

Ordering Information (Also, see selection guide.)

Part Number	Description
EB-78230-PC	μ PDD78233 Evaluation Board (IBM PC Based)
EP-78230GC-R	Emulator probe for 80-pin QFP (optional) (Includes one EV-9200GC-80 socket adapter)
EP-78230GJ-R	Emulator probe for 94-pin QFP (optional) (Includes one EV-9200G-94 socket adapter)
EP-78230LQ-R	Emulator probe for 84-pin PLCC package (optional)
EV-9200GC-80	Five socket adapters; converts 80-pin LCC probe tip to 80-pin plastic QFP (14x14) device footprint (optional).
EV-9200G-94	Five socket adapters; converts 94-pin LCC probe tip to 94-pin QFP device footprint (optional).

EB-78230-PC Evaluation Board

EB-78230-PC Block Diagram

EB-78240-PC Evaluation Board for the μ PD78214/218A/244 Families

Description

The EB-78240-PC is an evaluation board for the NEC μ PD78214/218A/244 families of 8-bit, single-chip microcontrollers. The EB-78240-PC provides a simple way to evaluate the capabilities of these devices in an application without having to build a prototype. If it is necessary to connect the EB-78240-PC directly to a target system, the IE-78240 emulator probes can be purchased separately.

The EB-78240-PC features 32 K bytes of static RAM for evaluation programs, an RS-232-C communication port, and a powerful on-board monitor. Evaluation programs can be downloaded from a host computer or created directly on the board using the line assembler. Programs can be executed in real time with or without breakpoints or one instruction at a time. Commands are available to display or change memory, general registers or special function registers, and to disassemble your code.

A controller program controls the EB-78240-PC directly from the console of an IBM PC®, PC/XT@, PC/AT® or compatible host computer using an RS-232-C serial interface.

Features

- $12-\mathrm{MHz}$ max operating frequency
- μ PD78243 evaluation board
- 32K bytes static RAM
- Real-time and single-step execution
\square Four parallel or sequential breakpoints
- Display/change memory and general registers
- Display/change special function registers
- User program upload/download capability
- Symbolic debugging support
- Line assembler and disassembler
\square RS-232-C serial interface for host computer
- Host control software for IBM PC, PC/XT, PC/AT, or compatibles
\square Connection to a target system using in-circuit emulator probes

Equipment and Documentation Supplied

- EB-78240-PC evaluation board
- EB-78240-PC user's manual
- System disk for IBM PC
- AC/DC converter power supply
- Battery holder and mounting hardware

Ordering Information (Also, see selection guide.)

Part Number	Description
EB-78240-PC	μ PD78243 evaluation board (IBM PC Based)
EP-78240CW-R	Emulator probe for 64-pin shrink DIP package (optional)
EP-78240GC-R	Emulator probe for 64-pin QFP (optional) (Includes one EV-9200GC-64 socket adapter)
EP-78240GJ-R	Emulator probe for 74-pin QFP (optional) (includes one EV-9200G-74 socket adapter)
EP-78240GQ-R	Emulator probe for 64-pin QUIP package (optional)
EP-78240LP-R	Emulator probe for 68-pin PLCC package (optional)
EV-9200GC-64	Five socket adapters; converts 64-pin LCC probe tip to 64-pin QFP device footprint (optional).
EV-9200G-74	Five socket adapters; converts 74-pin probe tip to 74-pin QFP device footprint (optional).

EB-78240-PC Evaluation Board

[^29]
EB-78240-PC Block Diagram

CC78K2 C Compiler for the μ PD78K2 Product Line

September 1993

Description

The CC78K2 C compiler is an ANSI standard C crosscompiler for the NEC μ PD78K2 product line of microcontrollers. The CC78K2 (figure 1) converts ANSI standard C source code into NEC format object module or assembly language source files. During compilation, an optional optimizer can be invoked to optimize the object code for size and/or execution speed.
In addition, CC78K2 supports extended functions for μ PD78K2 code generation. These extended functions allow the C compiler to take advantage of many powerful features in the μ PD78K2 microcontrollers to decrease object code size and improve program execution speed.

The relocatable object file produced by the CC78K2 can be converted into an absolute object file by the linker program and object converter program contained in the RA78K2 relocatable assembler package. The resulting ASCII hexadecimal format absolute object file then can be debugged using an NEC in-circuit emulator or evaluation board.

Features

- ANSI standard C compiler
- Extended functions for optimized μ PD78K2 code generation
- Various optimization options for code size and/or execution speed
- Legal C code verification
- Outputs NEC format object module or assembly source file
- Run-time error checking
- Outputs debug information
- ROMable object file creation
- User selectable and directable output files, list, and full cross-reference files
- Extensive error reporting
- Built-in help facility
- Runs under MS-DOS® operating system

Figure 1. CC78K2 Functional Diagram

Ordering Information

Part Number	System	Description
CC78K2-D52	MS-DOS	5-1/4-inch, double-density floppy diskette

CC78K2 Extended Functions

- Register variables can be stored in the registers and Saddr area
- Saddr area usage for variables
- Direct peripherals access with SFR names
- Saddr area usage for function arguments and automatic variables
- Functions can be called using the CALLT table
- Functions can be stored in the CALLF area
- Bit data type
- In-line assembly language
- Interrupt functions
- Generate interrupt vector table
- Disable/enable interrupts
- 1-megabyte extended data memory support

Compiler Options

The CC78K2 C compiler supports the following options during compilation:

- Target chip selection
- Parameter file specification
- Macro name definition
- Include files search path specification
- Symbol length extension
- Symbol name conversion to uppercase
- Outputs debug information
- Generates
- Object file
- Assembler source file (with/without C source)
- Cross-reference list file
- Error list file (with/without C source)
- Preprocess list file
- Listing format control
- ROMable processing
- Optimization option selection
- Run-time error check selection
- Temporary directory specification
- Warning level selection
- Outputs compilation status information

C Library Functions

The CC78K2 C compiler library includes most of the important C library functions that apply to PROMbased embedded systems. All library functions reside in the library files supplied. Header files that declare the set of library functions are also included.

The following library functions are available:

I/O Functions sprintf	sscanf		
Character Fu isalpha isalnum isprint toupper toascii	nctions isupper isxdigit isgraph tolower	islower isspace iscntrl toupper	isdigit ispunct isascii _tolower
String Functions			
strlen	strcpy	strncpy	strcat
strncat	stremp	strncmp	strchr
strrchr	strpbrk	strspn	strcspn
strstr	strtok	strtol	strtoul
atoi ultoa	atol	itoa	Itoa
Memory Functions			
malloc	calloc	realloc	
brk	sbrk	memcpy	memmove
memomp	memchr	memset	
Program Control Functions			
setjmp exit	longjmp	abort	atexit
Mathematical Functions			
abs	labs	rand	srand
div	Idiv		
Special Functions			
qsort	bsearch	strerror	va_start
va_arg	va_end		

License Agreement

CC78K2 is sold under terms of a license agreement included with the compiler. The accompanying card must be completed and returned to NEC Electronics Inc. to register the license. Software updates are provided free to registered users for one year.

Documentation

For further information on source program formats, C compiler, and actual program examples, refer to the following manuals supplied with the compiler. Additional copies may be obtained from NEC Electronics Inc.

- CC78K Series C Compiler for Language
- CC78K Series C Compiler for Operation

RA78K2
 Relocatable Assembler Package for the μ PD78K2 Product Line

Description

The RA78K2 relocatable assembler package converts symbolic source code for the μ PD78K2 product line of 8 -bit, single-chip microcontrollers into executable absolute address object code. The RA78K2 package consists of six separate programs: assembler (RA78K2), linker (LK78K2), hexadecimal format object converter (OC78K2), librarian (LB78K2), list converter (LCNV78K2), and structured assembler (ST78K2).

RA78K2 translates a symbolic source module into a relocatable object module. The assembler verifies that each instruction assembled is valid for the target microcontroller specified at assembly time and produces a listing file and a relocatable object module.

LK78K2 combines multiple relocatable object modules and library modules and converts them into a load module. OC78K2 converts a load module into an ASCII hexadecimal format absolute object code file.

LB78K2 allows commonly used relocatable object modules to be stored in one file and linked into multiple programs, greatly increasing programming efficiency. When a library file is included in the input of the linker, the linker extracts from the library file only those modules required to resolve external references and links them with the other modules.

LCNV78K2 allows relocatable list files to be converted into absolute list files.

The ST78K2 structured assembler preprocessor is a companion program to the RA78K2 relocatable assembler for the NEC μ PD78K2 product line of microcontrollers. ST78K2 converts a source code file containing C-like structured assembly statements into a pure assembly language source file, which then can be assembled with RA78K2.

Features

- Absolute address object code output
- User selectable and directable output files
- Macro definitions
- Branch optimization
- Conditional assembly
\square Extensive error reporting
- Powerful librarian
- C-like structured assembly statements
- Runs under MS-DOS® operating system

MS-DOS is a registered trademark of Microsoft Corporation.
Ordering Information

Part Number	System	Description
RA78K2-D52	MS-DOS	5-1/4-inch, double-density floppy diskette

Program Syntax

An RA78K2 source module consists of a series of code, data, or bit segments. Each segment consists of statements composed of up to four fields: symbol, mnemonic, operand, and comment.

The symbol field may contain a label whose value is the instruction or data address or a name that represents an instruction address, data address, or constant. The mnemonic field may contain an instruction or assembler directive. The operand field contains the data or expression for the specified instruction or directive. The comment field allows explanatory comments to be added to a program.

Character constants are translated into 7-bit ASCII codes. Numeric constants may be specified as binary, octal, decimal, or hexadecimal. Arithmetic expressions may include the operators,,+- *, /, MOD, OR, AND, NOT, XOR, EQ, NE, LT, LE, GT, GE, SHR, SHL, LOW, HIGH, ., (), and character constants.

Macro Definition

RA78K2 allows the definition of macro code sequences with up to five parameters, LOCAL symbols, and special repeated code sequences. The macro code sequence is different than a subroutine call in that the invocation of a macro in the source code results in the direct replacement of the macro call with the defined code sequence.

Assembler Directives

Assembler directives give instructions to the assembler, but they are not translated into machine code during assembly. Basic assembler directives include
storage definition and allocation directives (DB, DW, DS, DBIT); symbol directives (EQU, SET); and the location counter control directive ORG. Program control directives include segment directives (CSEG, DSEG, BSEG, ENDS); linkage directives (NAME, PUBLIC, EXTRN, EXTBIT); macro directives (MACRO, LOCAL, REPT, IRP, EXITM, ENDM); automatic BR instruction directive (BR); and assembly termination directive (END).

Assembler Controls

The RA78K2 assembler (figure 1) has two types of controls. The primary controls, which are specified in the assembler command line or at the beginning of the source module, are as follows:

- Processor selection
- Output object creation selection
- Output list file selection
- Listing format controls
- Optimization selection
- Work file drive specification

The general controls, specified in the source program, are as follows:

- Inclusion of other source files
- Page eject
- Generation/suppression of listing
- Listing titles
- Conditional assembly controls

The listing file may contain the complete assembly listing or only lines with errors, and a symbol or cross-reference table. The symbol table shows a!! defined symbols in alphabetical order, their types, attributes, and the values initially assigned to them.

The cross-reference table contains all defined symbols and the numbers of all statements that refer to them. The object file contains the relocatable object module. The format of this module is an NEC proprietary relocatable object module format.

If the optimization option is chosen, the assembler will generate the most efficient code by converting, where possible, three-byte absolute branches into two-byte relative branches.

Figure 1. Relocatable Assembler Functional Diagram

Figure 2. Linker Functional Diagram

Linker

The LK78K2 linker (figure 2) combines several relocatable object modules, resolving PUBLIC/EXTRN references between modules, to create a load module. This output module contains both absolute object code and symbol information. The linker will also search library files for required modules to resolve external references. The linker controls for LK78K2 can be specified in either the command line or in a parameter file.

The programmer can specify the starting address and order for code/data/stack segments, and protect areas of memory from being assigned.

Object Converter

The OC78K2 object converter (figure 3) outputs two files: an absolute load file in ASCII hexadecimal format, which can be downloaded to a PROM programmer, and a symbol file for the symbolic debugger. The programmer can also specify an error list file for error logging.

Librarian

The LB78K2 librarian (figure 4) creates and maintains library files containing relocatable object modules. This reduces the number of files to be linked together by storing several modules in a single file. This provides an easy way to link frequently used modules into programs. Modules can be added to, deleted from, or replaced within a library file, or the contents of the library file can be listed.

List Converter

The LCNV78K2 list converter (figure 5) converts a relocatable assembly list file into an absolute assembly list file, which contains absolute addresses and symbol values.

Figure 3. Object Converter Functional Diagram

Figure 4. Librarian Functional Diagram

Figure 5. List Converter Functional Diagram

Structured Assembler

The ST78K2 (figure 6) converts a structured assembly statement into one or more μ PD78K2 assembly language instructions that perform the desired operation. Since ST78K2 converts only structured assembly statements and not μ PD78K2 assembly language instructions, a structured source program can include a combination of μ PD78K2 structured assembly statements and assembly language.
ST78K2 enables the assembly language programmer to use some of the structures and syntax of higher-level languages such as the C language. This improves program readability and reliability, and increases programmer productivity.

Features of the ST78K2

- Control structures for conditions, looping, and switch-case
- Preprocessor directives for conditional code generation
- C-like representation of comparison operations
- C-like representation of assignment/arithmetic operations
- Increment and decrement operators
- Allows use of all μ PD78K2 mnemonics, registers, and features

Figure 6. Structured Assembler Preprocessor Functional Diagram

Summary of Structured Language

A line of source code for ST78K2 contains either a structured assembly statement or a μ PD78K2 assembly language statement. μ PD78K2 assembly language statements (μ PD78K2 instructions, RA78K2 directives, or RA78K2 controls) pass through ST78K2 without change.
Structured assembly statements consist of preprocessor directives, assignment statements, and control statements. These statements are entered one per line, and are terminated by a line feed character. An optional comment may follow a semicolon at the end of the statement; all text following a semicolon is ignored by ST78K2.

Preprocessor directives cause ST78K2 to include or omit portions of code. Assignment statements cause ST78K2 to generate one or more μ PD78K2 assembly language instructions to alter the contents of a register or variable. Control statements cause ST78K2 to generate the necessary instructions to test conditions and change control flow based on those conditions.

Preprocessor Directives

ST78K2 preprocessor directives set and test variables, allowing conditional processing of code; include external files; and map instructions to μ PD78K2 CALLT table reference instructions. Table 1 lists the preprocessor directives and their functions.

Table 1. Preprocessor Directives and Functions

Directive	Function
\#define NAME value	Defines the variable NAME, set to the supplied value.
\#ifdef ABC	If ABC has been defined as above, or on estatements> command line with the -D option, the \#else
first set of statements is processed and <statements> \#endif	the second set ignored; if ABC has not been defined, or defined as zero, the first set of statements is ignored and the second set is processed.
\#include "filename"	The named file is read from disk and processed as if included in the source.
\#defcallt @LABEL	Whenever the instruction "CALL !label" is Cencountered in the source program, it is replaced by "CALLT [@LABEL]". The label must be defined in the CALLT table.
\#endcallt	

Assignment, Increment, and Decrement Statements

ST78K2 provides the ability to represent an assignment, or an assignment with an arithmetic operation, in C language syntax:
destination < assign-op> source
The assignment operators (table 2) allow either simple assignment or the combination of an assignment with an arithmetic operation on the source and destination.

Examples:
$A=B \quad ;$ Move contents of B register to A
$A+=[H L]$;Add contents of memory at HL to A, ;store in A

Where an assignment requires an intermediate register to hold the value being assigned, the register is designated by naming it in parentheses following the assignment operation.
Examples:
DATA1 $=B(A) \quad ;$ Store contents of B into memory at ;DATA1, using A as temporary ;storage
$B C \&=H L(X A) \quad ;$ and $B C$ with $H L$, store in $B C$, ;use XA as temp

The increment and decrement operators (++ and --) operate on a single operand.

Table 2. Assignment Operators With Examples and Functions

Operator	Example	Function
=	$A=B$	$A \leftarrow B$
<->	A $<->B$	Contents of A and B are exchanged
+=	$\mathrm{A}+=\mathrm{B}$	$A \leftarrow A+B$
-=	A $=$ = B	$A \leftarrow A-B$
* $=$	$A X *=B$	$A X \leftarrow A X * B$
$1=$	$A X /=C$	$A X \leftarrow A X / C$
\& $=$	A \& $=\mathrm{B}$	$A \leftarrow A \& B$ (logical AND)
$1=$	$A I=B$	$A \leftarrow A \mid B$ (logical $O R$)
$\stackrel{ }{=}$	$A^{\wedge}=B$	$A \leftarrow A^{\wedge} B$ (logical XOR)
>> $=$	$A \gg=B$	$\left(C Y \leftarrow A_{0}, A_{n-1} \leftarrow A_{n}, \ldots, A_{\text {max }} \leftarrow 0\right) \times B$ times
<<=	$A \ll=B$	$\left(C Y \leftarrow A_{\text {max }}, A_{n+1} \leftarrow A_{n}, \ldots A_{0} \leftarrow 0\right) \times B$ times
++	A+ +	$A \leftarrow A+1$
--	A--	$A \leftarrow A-1$

Control Statements

Control statements (table 3) allow conditions to be tested. Based on the results of the test, blocks of code are allowed to be executed or skipped. Reserved words in the control statement define the start and end of blocks of code and expressions to be evaluated.
Example:
if $(A==[H L]) \quad ;$ The condition is tested P5 $=\mathrm{B}(\mathrm{A}) \quad$;If A equals the content of memory $A=[H L] \quad$;at HL, this code is executed
else

$$
\begin{aligned}
& A+=[H L] \quad \text { OOtherwise this code is executed } \\
& A-=B \\
& P 5=A
\end{aligned}
$$

endif
Table 3. Control Statement Directives

Control Statement	Function
if - elseif - else - endif	Test variable expressions
if_bit - elseif_bit - else - endif	Test bit expressions
switch - case - default - ends	Select based on variable
for - next	Loop, test variable
while - endw	Loop, test variable
repeat - until	Loop, test variable
while_bit - endw	Loop, test bit
repeat - until_bit	Loop, test bit
break	Exit control block
continue	Skip to top of block
goto LABEL	Branch to label

Variable and Bit Expressions

Variable expressions for tests consist of a single value, comparison between two variables, or a logical combination of comparisons. Bit expressions test individual bits. Table 4 shows examples of comparisons. The allowable expressions using variables are shown in table 5.

Table 4. Examples of Variable Expression Comparisons

Comparison	Meaning
if (A)	True if A is non-zero
if $(A<B)$	True if A is less than B
if $((A<B) \& \&(A>C))$	True if A is less than B and greater than C
if_bit ($P 3.2)$	True if bit 2 of P3 is 1
if_bit $(!P 3.2)$	True if bit 2 of P3 is 0

Table 5. Expressions and Examples

Expression	Example	
Primary	(A)	
Term	$(A<=B)$	
Term \&\& Term	$((A<B) \& \&(A>C))$ (logical AND)	
Term II Term	$((A==C) \\|(A==B))$ (logical OR)	

A primary value for a variable expression is a register name or defined symbol. A term consists of two primary values compared with a binary operator. Table 6 lists the supported binary operators and their meanings.

Table 6. Binary Operators

Binary Operator	Meaning
$==$	Equal
$!=$	Not equal
$>$	Greater than
$>=$	Greater than or equal to
$<$	Less than
$<=$	Less than or equal to

Bit expressions test individual bits of registers, ports, or memory locations. Table 7 shows the acceptable forms of bit expressions.

Table 7. Bit Expressions and Examples

Bit Expression	Example	
Bit_primary	(P2.1)	
!Bit_primary	(!CY)	
Bit_primary \&\& Bit_primary	(A.0 \&\& CY)	
Bit_primary II Bit_primary	(P2.2 \\|CY)	

A Bit_primary can be either a reserved word bit identifier, such as a bit of a register or port (P2.1, CY), or a bit definition symbol (SBO EQU P2.2).

ST78K2 Operation and Controls

ST78K2 is invoked by specifying the name of the source file, followed by optional controls.
Example:

$$
C>S T 78 K 2 \text { ABC.SRC -DXYZ }=3
$$

ST78K2 reads the specified source file and produces an output assembly language file, which can be input to RA78K2. The output file contains all lines provided in the input source file, plus those generated by ST78K2. Lines containing no statements for the structured assembler are passed through unchanged. Lines with structured assembly statements are placed in the output preceded by a semicolon. RA78K2 treats these lines as comments. These commented lines are then followed by the code generated by ST78K2.
The controls for ST78K2 are specified in the preprocessor command line or in a parameter file invoked in the command line. Table 8 lists the ST78K2 preprocessor controls and functions.

Table 8. ST78K2 Preprocessor Controls

Control	Function
-Ofilename	Specify name of output assembly source file
-Ffilename	Specify name of parameter file to be read
-Efilename	Specify name of error listing file
-Dsymbol[= value]	Define a symbol (like \#define in code)
-l[d:][directory]	Define path for include file
-WTn1,n2,n3	Define TAB settings for generated code
-SCcharacter	Defines word symbol last character

The -O option allows the name of the output file to be specified. If not specified, the output file name defaults to the name of the input source file with the extension .ASM.

The -F option allows a parameter file to be specified, which will be read by ST78K2. This parameter file can contain a list of controls to be given to ST78K2, instead of or in addition to those specified on the command line.

The -E option specifies the name of the error listing file. The error file contains the file name, error number, description of error and the line containing the error. If the $-E$ option is not specified, the error file name defaults to the name of the input source file with the extension .EST.

The -D control allows a symbol to be defined on the command line, with an optional value provided. If a symbol is defined but no value specified, the value defaults to 1 . If the source file contains a \#define
directive which specifies a variable with the same name as the -D control, the value on the command line will override the value in the \#define directive.

The -I control specifies a drive or directory other than the current drive and directory to search for include files.

The -WT control specifies the number of TAB characters to insert before labels, instruction mnemonics, and instruction operands generated by ST78K2. This allows clear separation of assembly language instructions coded in the source file from those generated by ST78K2.

The -SCcharacter control specifies the character used as the last character in a word symbol. The character must be a letter of the alphabet or the @, _ or ?. This allows ST78K2 to distingush between word and byte operations. Symbols ending in this character are treated as word symbols and will generate a word operation (e.g. MOVW). If the -SC option is not specifiec, ST78K2 assumes that a symbol ending with the character " P " or " p " is a word symbol.

Emulator Controller Program

Absolute object files produced by the RA78K2 relocatable assembler package can be debugged by using the appropriate NEC standalone in-circuit emulator. NEC emulator controller programs allow communication with the emulator through an RS-232C serial line. An emulator controller program can run on the IBM PC®, PC/XT®, or PC AT® under MS-DOS and is provided with the in-circuit emulator at no extra charge.
These emulator controller programs provide the following features:

License Agreement

RA78K2 is sold under terms of a license agreement included with the assembler. The accompanying card must be completed and returned to NEC Electronics Inc. to register the license. Software updates are provided free to registered users for one year.

Documentation

For further information on source program formats, assembler operation, and actual program examples, refer to the following manuals supplied with the RA78K2 package. Additional copies may be obtained from NEC Electronics Inc.

- RA78K Series Assembler Package, Language Manual
- RA78K Series Assembler Package, Operation Manual
- RA78K Series Structured Assembler Preprocessor, User's Manual

IBM PC, PC/XT, and PC AT are registered trademarks of International Business Machines Corporation.

- Uploading and downloading of object and symbol files
- Symbolic debugging capability
- Complete emulator control from host console
- On-line help facilities
- Macro command file capabilities
- Host system directory and file display
- Disk storage of debug session
- Storage of last 20 commands for recall

Description

The IE-78310A-R is an in-circuit emulator providing both hardware emulation and software debugging capabilities for the μ PD78312A family of single-chip microcontroller. Real-time and single-step emulation, combined with sophisticated memory mapping features, breakpoints, and trace capabilities, create a powerful debugging environment. A line assembler/disassembler, full register and memory control, symbolic debugging, and complete upload/download capabilities simplify the task of debugging hardware and software.

Features

- $12-\mathrm{MHz}$ operating frequency
- Real-time and single-step emulation capability
- User-specified breakpoints
- Logical OR of up to four sets of break conditions Opcode fetch count
External sense clips condition Emulation time Logical AND of addresses, data values, CPU controls, and loop count
- Sophisticated trace capabilities
- Instruction, frame, or macro service display
- $2 \mathrm{~K} \times 44$-bit trace buffer
- Address, control, data, and port trace features
- Powerful memory mapping feature
-64K bytes of RAM mappable in 256 -byte blocks
- Up to 16K bytes of high-speed internal RAM for μ PD78312A ROM emulation

IE-78310A-R with Emulator Probe

- Line assembler/disassembler
- Symbolic debugging
- 2000 symbols available
- IEEE-796 bus memory expansion slot for 32K additional symbols
- CMOS latch-up warning and protection
- Eight external sense clips
- Self-diagnostic command
- Stand-alone mode or system mode with host control program

Equipment Supplied

The IE-78310A-R package includes the following:

- IE-78310A-R emulator frame
- Self-check board
- Emulation board
- Break board
- Control/interface board
- Shrink DIP target probe
- VSP target probe
- External sense clip unit
- System diskette

Ordering Information (Also, see selection guide.)

Part Number	Description
IE-78310A-R	In-circuit emulator for μ PD78312A family
EP-78310CW	Emulator probe for 64-pin shrink DIP package(shipped with IE-78310A-R)
EP-78310GQ	Emulator probe for 64-pin QUIP package(shipped with IE-78310A-R)
EP-78310L	Emulator probe for 68-pin PLCC package (optional)
EP-78310GF	Emulator probe for 64-pin QFP package (optional)
RA78K3-D52	Relocatable assembler package for 78K3 product line of microcontrollers (optional)
CC78K3-D52	C compiler package for 78K3 product line of microcontrollers (optional)

NEC Electronics Inc.

September 1993

Description

The IE-78327-R is an in-circuit emulator providing both hardware emulation and software debugging capabilities for the μ PD78322 family of single-chip microcontrollers. Real-time and single-step emulation, combined with sophisticated memory-mapping features, breakpoints, and trace capabilities, create a powerful debugging environment. A line assembler/ disassembler, full register and memory control, symbolic debugging, and complete upload/download capabilities simplify the task of debugging hardware and software.

The IE-78327-R-EM is an optional emulation board available to upgrade the 75 X or 78 K product lines of in-circuit emulators to have functions equivalent to IE-78327-R.

Features

- $16-\mathrm{MHz}$ operating frequency
- Real-time and non-real-time emulation
- Sophisticated break events:
- Logical OR of up to six events with pass count Logical AND of addresses, data values, CPU status, and external sense clips five to eight data (four bus cycle events) External sense clips one to four data Executed instruction address (four addresses)
- Sequential enable for bus cycle events
- Sophisticated trace capabilities
- Three trace modes: unconditional, qualified, and sectional
- Traces main and internal CPU bus activity and external sense clip activity or time between trace frames
- Store specified memory/register/SFR contents in trace buffer
— 8K x 88-bit trace buffer
- Instruction or frame display
- Trace search capability
- Specify trigger point at beginning, middle, or end of trace buffer
- Internal data RAM sampling
- Up to 2000 three-word samples
—Sample frequency: $0.4,0.6,0.8$, or 1 to $10,000 \mu \mathrm{~s}$
- Program Coverage
-Display map of memory space containing object code
- Display map of object code that has been executed
-Display percentage of executed instructions to total instructions in an area
- Emulation timer and instruction counter
- Debug activities during real-time emulation
- Display trace buffer
—Display data sampled from internal RAM
- Modify trace conditions
- Modify trace event conditions
- Restart trace
- Powerful memory mapping:

56K bytes of RAM for internal ROM, turbo access manager memory, or off-chip memory emulation

- Line assembler/disassembler
- Symbolic debugging: 2000 symbols maximum
- Save/restore in-circuit emulator settings to/from disk
- CMOS latch-up warning and protection
\square Eight external sense clips on emulator probe
\square Host control program for IBM PC ${ }^{\circledR}, \mathrm{PC} / \mathrm{XT}^{\circledR}$, PC/AT® ${ }^{\circledR}$, or compatible
- Centronics parallel interfaces for optional highspeed program download and printer

IBM PC, PC/XT, and PC/AT are registered trademarks of International Business Machines Corporation.

Equipment Supplied

The IE-78327-R package includes the following:

- IE-78327-R emulator frame
- IE-78327-R-EM emulation board
- IE-78327-R-BK break board
- Control/trace board
- Controller software program

Ordering Information (Also, see selection guide.)

Part Number	Description
IE-78327-R	In-circuit emulator for μ PD78322 family
IE-78327-R-EM	Emulation board included in IE-78327 package (separately purchased to upgrade 75x or 78K product line emulators to have functions equivalent to IE-78327-R)
IE-78330-R-BK	Break board (separately purchased to upgrade $75 \times$ or 78K product line emulators to have functions equivalent to IE-78327-R)
EP-78320GF-R	Emulator probe for 80-pin LCC (optional)
EP-78320GJ-R	Emulator probe for 74-pin QFP (optional) (includes one EV-9200G-74 socket adapter)
EP-78320L-R	Emulator probe for 68-pin PLCC package (optional)
EP-78327CW-R	Emulator probe for 64-pin plastic shrink DIP (optional)
EP-78327GF-R	Emulator probe for 64-pin plastic QFP (optional)
EV-9200G-64	Five socket adapters; converts 64-pin LCC probe tip to 64-pin QFP device footprint.
EV-9200G-74	Five socket adapters; converts 74-pin probe tip to 74-pin QFP dovioc footprint (optionai).
EV-9200G-80	Five socket adapters; converts 80-pin LCC probe tip to 80-pin QFP (14x20) device footprint (optional).
RA78K3-D52	Relocatable assembler for K3 product line of microcontrollers (optional)
CC78K3-D52	C compiler for K3 product line of microcontrollers (optional)

IE-78327-R In-Circuit Emulator

NEC Electronics Inc.

September 1993

Description

The IE-78350-R is an in-circuit emulator providing both emulation and software debugging capabilities for the NEC μ PD78352 and μ PD78356 families of single-chip microcontrollers. Real-time and single-step emulation, combined with sophisticated memory-mapping features, break points, and trace capabilities, create a powerful debugging environment.
The IE-78350-R-EM1 is a separately sold, I/O emulation board used with the IE-78350-R development system for μ PD78350 or μ PD78352 16/8-bit single-chip microcontrollers.

The IE78355-R-EM1 is a separately sold, I/O emulation board used with the IE-78350-R development system for μ PD78355, μ PD78P355, and μ PD78356 16/8-bit single-chip microconputers.

Features

- $25-\mathrm{MHz}$ max operating frequency

- Real-time and non-real-time emulation
- Sophisticated break events:
- Logical OR of up to six events

Pass count
External sense clips (5-8) data (four bus cycle events)
External sense clips (1-4) data
Executed instruction address (four addresses) Logical AND of addresses, data values, and CPU status
-Sequential enable for bus cycle events

- Sophisticated trace capabilities
- Three trace modes: unconditional, qualified, and sectional
- Traces main and internal CPU bus activity and external sense clip activity or time between trace frames
- Store specified memory/register/SFR contents in trace buffer
$-8 \mathrm{~K} \times 88$-bit trace buffer
- Instruction or frame display
-Trace search capability
-Specify trigger point at beginning, middle, or end of trace buffer
- Internal data RAM sampling
-Up to 2000 three-word samples
-Sample frequency: $0.4,0.6,0.8$, or 1 to $10,000 \mu \mathrm{~s}$

- Program Coverage

-Display map of memory space containing object code
-Display map of object code that has been executed
-Display percentage of executed instructions to total instructions in an area

- Emulation timer and instruction counter
- Debug activities during real-time emulation
- Display trace buffer
- Display data sampled from internal RAM
- Modify trace conditions
- Modify trace event conditions
—Restart trace
- Powerful memory mapping:

56 K bytes of RAM for internal ROM, turbo access manager memory, or off-chip memory emulation

- Line assembler/disassembler
- Symbolic debugging: 2000 symbols maximum
- Save/restore in-circuit emulator settings to/from disk
- CMOS latch-up warning and protection
- Eight external sense clips on emulator probe
- Host control program for IBM PC®, PC/XT®, PC/AT®, or compatible
- Centronics parallel interfaces for optional highspeed program download and printer

IBM PC, PC/XT, and PC/AT are registered trademarks of International Business Machines Corporation.

Ordering Information (Also, see selection guide.)	
Part Number	Description
IE-78350-R	In-circuit emulator for μ PD78352/356 families
IE-78350-R-EM1	I/O emulation board for IE-78350-R (optional) combined with IE-78350-R to emulate μ PD78352 family
IE-78355-R-EM1	I/O emulation board for IE-78350-R (optional) combined with IE-78350-R to emulate μ PD78356 family
IE-78350-R-EM	Emulation board for IE-78350-R (included with IE-78350-R)
EP-78240GC-R	Emulator probe for 64-pin QFP (optional) (includes one EV-9200GC-64 socket adapter)
EP-78355GC-R	Emulation probe for 100-pin QFP (optional) (includes one EV-9500GC-100 socket adapter)
EV-9200GC-64	Five socket adapters; converts 64-pin LCC probe tip to 64-pin QFP device footprint (optional)
EV-9500GC-100	One socket adapter; 100-pin PGA to 100-pin QFP (optional)
EV-9501GC-100	One socket adapter; 120-pin LCC to 100-pin PGA receptacle (optional)
RA78K3-D52	Relocatable assembler for 78K3 product line (optional)
CC78K3-D52	C compiler for 78K3 product line

Equipment Supplied

The IE-78350-R package includes the following:

- IE-78350-R emulator frame
- IE-78350-R-EM emulation board
- Break board
- Control/trace board (fixed in the IE-78350-R)
- System diskette

IE-78350-R In-Circuit Emulator

NEC Electronics Inc.

Description

The EB-78320-PC is an evaluation board for the NEC μ PD78322 family of $8-/ 16$-bit, single-chip microcontrollers. The EB-78320-PC provides a simple way to evaluate the capabilities of the μ PD78322 family in an application without having to build a prototype.

The EB-78320 features 32K bytes of static RAM for evaluation programs, an RS-232C communication port, and a powerful on-board monitor. Evaluation programs can be downloaded from a host computer or created directly on the board using the line assembler. Programs can be executed in real-time with or without breakpoints or one instruction at a time. Commands are available to display or change memory, general or special function registers, and to disassembie code.
A controller program controls the EB-78320 directly from the console of an IBM PC@, PC/XT®, PC AT®, or compatible host computer using an RS-232C serial interface.

Features

- $16-\mathrm{MHz}$ maximum operating frequency
- μ PD78320 evaluation board
- 32K bytes of static RAM
- Real-time and single-step execution
- Four parallel or sequential breakpoints
- Display/change memory and general registers
- Display/change special function registers
- User program upload/download capability
- Symbolic debugging support

EB-78320-PC Evaluation Board

- Line assembler and disassembler
- RS-232C serial interface for host computer
- Host control software for IBM PC®, PC/XT®, PC A^{\top} ©, or compatibles

IBM PC, PC/XT and PC AT are registered trademarks of International Business Machines Corporation.

Ordering Information (Also, see selection guide.)	
Part Number	Description
EB-78320-PC	μ PD78320 evaluation board (IBM PC based)
EP-78320GF-R	Emulator probe for 80-pin QFP package (optional)
EP-78320GJ-R	Emulator probe for 74-pin QFP package (optional)
EP-78320L-R	Emulator probe for 68-pin PLCC package (optional)
EV-9200G-74	Five socket adapters; converts 74-pin probe tip to 74-pin QFP device footprint (optional).
EV-9200G-80	Five socket adapters; converts 80-pin to 80-pin QFP (14x20)device footprint (optional).

Equipment Supplied

The EB-78320-PC package consists of the following:

- EB-78320-PC evaluation board
- EB-78320-PC user's manual
- System disk for IBM PC
- $A C / D C$ converter power supply
- Battery holder and mounting hardware
- Warranty policy and registration card

Block Diagram

Description

The EB-78350-PC is an evaluation board for the NEC μ PD78352 family of 8-/16-bit, single-chip microcontrollers. The EB-78350-PC provides a simple way to evaluate the capabilities of the μ PD78352 family in an application without having to build a prototype.

The μ PD78350/352 can be emulated by connecting a separately purchased probe to the EB-78350-PC.
The EB-78350-PC features 32K bytes of static RAM for evaluation programs, an RS-232C communication port, and a powerful on-board monitor. Evaluation programs can be downloaded from a host computer or created directly on the board using an on-line assembler. Programs can be executed in real time with or without breakpoints or one instruction at a time. Commands are available to display or change memory, general or special function registers, and to disassemble code.

A controller program controls the EB-78350-PC directly from the console of an IBM PC®, PC/XT®, PC/AT®, or compatible host computer using an RS-232C serial interface.

Features

- $25-\mathrm{MHz}$ maximum operating frequency
- μ PD78350/352 evaluation board
- 32 K bytes of static RAM
- Real-time and single-step execution
- Four parallel or sequential breakpoints
- Display/change memory and general registers
- Display/change special function registers
- User program upload/download capability
- Symbolic debugging support
- Line assembler and disassembler
- RS-232C serial interface for host computer
\square Host control software for IBM PC, PC/XT, PC/AT or compatibles

[^30]
Equipment and Documentation Supplied

- EB-78350-PC evaluation board
- EB-78350-PC user's manual
- System disk for IBM PC
- AC/DC converter power supply
- Battery holder and mounting hardware
- Warranty policy and registration card

Ordering Information (Also, see selection guide.)

Part Number	Description
EB-78350-PC	μ PD78350/352 evaluation board
EP-78240GC-R	Emulator probe for 64-pin QFP (optional) (includes one EV-9200GC-64 socket adapter)
EV-9200GC-64	Five socket adapters; converts 64-pin LCC probe tip to 64-pin QFP device footprint (optional).

EB-78350-PC Evaluation Board

Description

The CC78K3 C compiler is an ANSI standard C crosscompiler for the NEC μ PD78K3 product line of microcontrollers. The CC78K3 (figure 1) converts ANSI standard C source code into NEC format object module or assembly language source files. During compilation, an optional optimizer can be invoked to optimize the object code for size and/or execution speed.

In addition, CC78K3 supports extended functions for μ PD78K3 code generation. These extended functions allow the C compiler to take advantage of many powerful features in the μ PD78K3 microcontrollers to decrease object code size and improve program execution speed.
The relocatable object file produced by the CC78K3 can be converted into an absolute object file by the linker program and object converter program contained in the RA78K3 relocatable assembler package. The resulting ASCII hexadecimal format absolute object file then can be debugged using an NEC in-circuit emulator or evaluation board.

Features

- ANSI standard C compiler
- Extended functions for optimized μ PD78K3 code generation
- Various optimization options for code size and/or execution speed
- Legal C code verification
- Outputs NEC format object module or assembly source file
- Run-time error checking
- Outputs debug information
- ROMable object file creation
- User selectable and directable output files, list, and full cross-reference files
- Extensive error reporting
- Built-in help facility
- Runs under MS-DOS® operating system

Figure 1. CC78K3 Functional Diagram

Ordering Information

Part Number	System	Description
CC78K3-D52	MS-DOS	5-1/4-inch, double-density floppy diskette

CC78K3 Extended Functions

- Register variables can be stored in the registers and Saddr area
- Saddr area usage for variables
- Direct peripherals access with SFR names
- Saddr area usage for function arguments and automatic variables
- Functions can be called using the CALLT table
- Functions can be stored in the CALLF area
- Bit data type
- In-line assembly language
- Interrupt functions
- Generate interrupt vector table
- Disable/enable interrupts
- Vector/CALLT table address change

Compiler Options

The CC78K3 C compiler supports the following options during compilation:

- Target chip selection
- Parameter file specification
- Macro name definition
- Include files search path specification
- Symbol length extension
- Symbol name conversion to uppercase
- Outputs debug information
- Generates
- Object file
- Assembler source file (with/without C source)
- Cross-reference list file
- Error list file (with/without C source)
- Preprocess list file
- Listing format control
- ROMable processing
- Optimization option selection
- Run-time error check selection
- Temporary directory specification
- Warning level selection
- Outputs compilation status information

C Library Functions

The CC78K3 C compiler library includes most of the important C library functions that apply to PROMbased embedded systems. All library functions reside in the library files supplied. Header files that declare the set of library functions are also included.
The following library functions are available:

I/O Functions sprintf	sscanf		
Character Functions			
isalpha	isupper	islower	isdigit
isalnum	isxdigit	isspace	ispunct
isprint	isgraph	iscntrl	isascii
toupper	tolower	_toupper	_tolower
String Functions			
strlen	strcpy	strncpy	strcat
strncat	strcmp	strncmp	strchr
strrchr	strpbrk	strspn	strcspn
strstr	strtok	strtol	strtoul
atoi ultoa	atol	itoa	Itoa
Memory Functions			
malloc	calloc	realloc	free
brk	sbrk	memcpy	memmove
memcmp	memchr	memset	
Program Control Functions			
setjmp	longjmp	abort	atexit
exit			
Mathematical Functions			
abs div	labs Idiv	rand	srand
Special Functions			
qsort	bsearch	strerror	va_start
va_arg	va_end		

License Agreement

CC78K3 is sold under terms of a license agreement included with the compiler. The accompanying card must be completed and returned to NEC Electronics Inc. to register the license. Software updates are provided free to registered users for one year.

Documentation

For further information on source program formats, C compiler, and actual program examples, refer to the following manuals supplied with the compiler. Additional copies may be obtained from NEC Electronics Inc.

- CC78K Series C Compiler for Language
- CC78K Series C Compiler for Operation

Description

The RA78K3 relocatable assembler package converts symbolic source code for the μ PD78K3 product line of 8/16-bit, single-chip microcontrollers into executable absolute address object code. The RA78K3 package consists of six separate programs: assembler (RA78K3), linker (LK78K3), hexadecimal format object converter (OC78K3), librarian (LB78K3), list converter (LCNV78K3), and structured assembler (ST78K3).

RA78K3 translates a symbolic source module into a relocatable object module. The assembler verifies that each instruction assembled is valid for the target microcontroller specified at assembly time and produces a listing file and a relocatable object module.

LK78K3 combines multiple relocatable object and library modules and converts them to a load module. OC78K3 converts a load module into an ASCII hexadecimal format absolute object code file.

LB78K3 allows commonly used relocatable object modules to be stored in one file and linked into multiple programs, greatly increasing programming efficiency. When a library file is included in the input of the linker, the linker extracts from the library file only those modules required to resolve external references and links them with the other modules.

LCNV78K3 allows relocatable list files to be converted into absolute list files.

The ST78K3 structured assembler preprocessor is a companion program to the RA78K3 relocatable assembler for the NEC μ PD78K3 product line of microcontrollers. ST78K3 converts a source code file containing C-like structured assembly statements into a pure assembly language source file, which then can be assembled with RA78K3.

The RA78K3 assembler package also includes an ECC generator program (ECCGEN), which generates and applies Error Correcting Code (ECC) to the hexadecimal object module file.

MS-DOS is a registered trademark of Microsoft Corporation.

Features

- Absolute address object code output
- User-selectable and directable output files
- Macro definitions
- Branch optimization
- Conditional assembly
- Extensive error reporting
- Powerful librarian
- C-like structured assembly statements
- Runs under MS-DOS® operating system

Ordering Information

Part Number	System	Description
RA78K3-D52	MS-DOS	5-1/4-inch, double-density floppy diskette

Program Syntax

An RA78K3 source module consists of a series of code, data, or bit segments. Each segment consists of statements composed of up to four fields: symbol, mnemonic, operand, and comment.

The symbol field may contain a label, whose value is the instruction or data address, or a name that represents an instruction address, data address, or constant. The mnemonic field may contain an instruction or assembler directive. The operand field contains the data or expression for the specified instruction or directive. The comment field allows explanatory comments to be added to a program.

Character constants are translated into 7-bit ASCII codes. Numeric constants may be specified as binary, octal, decimal, or hexadecimal. Arithmetic expressions may include the operators,+- , *, /, MOD, OR, AND, NOT, XOR, EQ, NE, LT, LE, GT, GE, SHR, SHL, LOW, HIGH, ., (), and character constants.

Macro Definition

RA78K3 allows the definition of macro code sequences with up to five parameters, LOCAL symbols, and special repeated code sequences. The macro code sequence differs from a subroutine call: the invocation of a macro in the source code results in the direct replacement of the macro call with the defined code sequence.

Assembler Directives

Assembler directives give instructions to the assembler. They are not translated into machine code during assembly. Basic assembler directives include storage definition and allocation directives (DB, DW, DS, DBIT); symbol directives (EQU, SET); and location counter control directive (ORG). Program control directives include segment directives (CSEG, DSEG, BSEG, ENDS); linkage directives (NAME, PUBLIC, EXTRN, EXTBIT); macro directives (MACRO, LOCAL, REPT, IRP, EXITM, ENDM); automatic BR instruction directive (BR); register assignment directive (RSS); and assembly termination directive (END).

Assembler Controls

The RA78K3 assembler (figure 1) has two types of controls. Primary controls are specified in the assembler command line or at the beginning of the source module as follows:

- Processor selection
- Output object creation selection
- Output list file selection
- Listing format controls
- Optimization selection
- Work file drive specification

General controls are specified in the source program as follows:

- Inclusion of other source files
- Page eject
- Generation/suppression of listing
- Listing titles
- Conditional assembly controls

The listing file contains either the complete assembly listing or only the lines with errors, and a symbol or cross-reference table. The symbol table shows all defined symbols in alphabetical order with the types, attributes, and the values initially assigned to them.
The cross-reference table contains all defined symbols and the numbers of all statements referring to them. The object file contains the relocatable object module. This is an NEC proprietary relocatable object module format.

If the optimization option is chosen, the assembler will generate the most efficient code by converting, where possible, three-byte absolute branches into two-byte relative branches.

Linker

The LK78K3 linker (figure 2) combines several relocatable object modules, resolving PUBLIC/EXTRN refer-

Figure 1. Relocatable Assembler Functional Diagram

ences between modules, to create a load module. This output module contains both absolute object code and symbol information. The linker will also search library files for required modules to resolve external references. The linker controls for LK78K3 can be specified in either the command line or in a parameter file.

Figure 2. Linker Functional Diagram

The programmer can specify the starting address and order for code/data/stack segments and protect areas of memory from being assigned.

Object Converter

The OC78K3 object converter (figure 3) outputs two files: an absolute load file in ASCII hexadecimal format, which can be downloaded to a PROM programmer, and a symbol file for the symbolic debugger. The programmer can also specify an error list file for error logging.

Figure 3. Object Converter Functional Diagram

Librarian

The LB78K3 librarian (figure 4) creates and maintains library files containing relocatable object modules. This reduces the number of files to be linked together by storing several modules in a single file. This provides an easy way to link frequently used modules into programs. Modules can be added to, deleted from, or replaced within a library file; or the contents of the library file can be listed.

List Converter

The LCNV78K3 list converter (figure 5) converts a relocatable assembly list file into an absolute assembly list file, which contains absolute addresses and symbol values.

Figure 4. Librarian Functional Diagram

Figure 5. List Converter Functional Diagram

Structured Assembler

The ST78K3 (figure 6) will convert a structured assembly statement into one or more μ PD78K3 assembly language instructions that perform the desired operation. Because ST78K3 converts only the structured assembly statements and not μ PD78K3 assembly language instructions, a structured source program can include a combination of μ PD78K3 structured assembly statements and assembly language.
ST78K3 enables the assembly language programmer to use some of the structures and syntax of higher-level languages such as the C language. This improves program readability and reliability, and increases programmer productivity.

Features of the ST78K3

\square Control structures for conditions, looping, and switch-case

- Preprocessor directives for conditional code generation
- C-like representation of comparison operations
\square C-like representation of assignment/arithmetic operations
\square Increment and decrement operators
\square Allows use of all μ PD78K3 mnemonics, registers, and features

Figure 6. Structured Assembler Preprocessor Functional Diagram

Summary Of Structured Language

A line of source code for ST78K3 contains either a structured assembly statement or a μ PD78K3 assembly language statement. μ PD78K3 assembly language statements (μ PD78K3 instructions, RA78K3 directives, or RA78K3 controls) pass through ST78K3 without change.

Structured assembly statements consist of preprocessor directives, assignment statements, and control statements. These statements are entered one per line, and are terminated by a line feed character. An optional comment may follow a semicolon at the end of the statement; all text following a semicolon is ignored by ST78K3.

Preprocessor directives cause ST78K3 to include or omit portions of code. Assignment statements cause ST78K3 to generate one or more μ PD78K3 assembly language instructions to alter the contents of a register or variable. Control statements cause ST78K3 to generate the necessary instructions to test conditions and change control flow based on those conditions.

Preprocessor Directives

ST78K3 preprocessor directives set and test variables, allowing conditional processing of code; include external files; and map instructions to μ PD78K3 CALLT table reference instructions. Table 1 lists the preprocessor directives and their functions.

Table 1. Preprocessor Directives and Functions

Directive	Function
\#define NAME value	Defines the variable NAME, set to the supplied value.
\#ifdef ABC	If ABC has been defined as above, or on the command line with the -D option, the first set of statements is processed and the \#else
second set ignored; if ABC has not been defatements> \#endif statements is ignored and the second set is processed.	
\#include "filename"	The named file is read from disk and processed as if included in the source.
\#defcallt @LABEL	Whenever the instruction "CALL !label" is CALL !label
\#encountered in the source program, it is	
\#eplaced by "CALLT [@LABEL]". The label	
must be defined in the CALLT table.	

Assignment, Increment, and Decrement Statements

ST78K3 provides the ability to represent an assignment, or an assignment with an arithmetic operation, in C language syntax:
destination <assign-op> source
The assignment operators (table 2) allow either simple assignment or the combination of an assignment with an arithmetic operation on the source and destination.

Examples:

$\mathrm{A}=\mathrm{B} \quad$;Move contents of B register to A
$A+=[H L] ; A d d$ contents of memory at HL to A , ;store in A
Where an assignment requires an intermediate register to hold the value being assigned, the register is designated by naming it in parentheses following the assignment operation.

Examples:

DATA1 $=\mathrm{B}(\mathrm{A}) \quad ;$ Store contents of B into memory at ;DATA1, using A as temporary storage
$B C \&=H L(X A) ;$ and $B C$ with $H L$, store in $B C$, ;use XA as temp

The increment and decrement operators (+ + and --) operate on a single operand.

Table 2. Assignment Operators with Examples and Functions

Operator	Example	Function
$=$	$A=B$	$A \leftarrow B$
< - >	A $<\cdot>B$	Contents of A and B are exchanged
+=	$A+=B$	$A \leftarrow A+B$
-=	$A=B$	$A \leftarrow A-B$
* $=$	$A X *=B$	$A X \leftarrow A X * B$
$1=$	$\mathrm{AX} /=\mathrm{C}$	$A X \leftarrow A X / C$
\& $=$	A $\&=B$	$A \leftarrow A \& B$ (logical AND)
I=	$A 1=B$	$A \leftarrow A \mid B$ (logical $O R$)
$\stackrel{ }{ }=$	$A^{\wedge}=B$	$A \leftarrow A^{\wedge} B$ (logical XOR)
>> $=$	$A \gg=B$	$\left(C Y \leftarrow A_{0}, A_{n-1} \leftarrow A_{n}, \ldots, A_{\text {max }} \leftarrow 0\right) \times B$ times
<< $=$	$A \ll=B$	$\left(C Y \leftarrow A_{\text {max }}, A_{n+1} \leftarrow A_{n}, \ldots, A_{0} \leftarrow 0\right) \times B$ times
+ +	A+ +	$A \leftarrow A+1$
--	A- -	$A \leftarrow A-1$

Control Statements

Control statements (table 3) allow conditions to be tested. Based on the results of the test, blocks of code are allowed to be executed or skipped. Reserved words in the control statement define the start and end of blocks of code and expressions to be evaluated.

Example:

$$
\begin{array}{cl}
\text { if }(A=[H L]) & \text {;The condition is tested. } \\
P 5=B(A) & \text {;If } A \text { equals the content of memory } \\
A=[H L] & \text {;at } H L, \text { this code is executed. }
\end{array}
$$

else
$A+=[H L] \quad$;Otherwise, this code is executed.
$A-=B$
$P 5=A$
endif

Table 3. Control Statements and Function

Control Statement	Function
if - elseif - else - endif	Test variable expressions
if_bit - elseif_bit - else - endif	Test bit expressions
switch - case - default - ends	Select based on variable
for - next	Loop, test variable
while - endw	Loop, test variable
repeat - until	Loop, test variable
while_bit - endw	Loop, test bit
repeat - until_bit	Loop, test bit
break	Exit control block
continue	Skip to top of block
goto LABEL	Branch to label

Variable and Bit Expressions

Variable expressions for tests consist of a single value, comparison between two variables, or a logical combination of comparisons. Bit expressions test individual bits. Table 4 shows examples of comparisons. The allowable expressions using variables are shown in table 5.

Table 4. Examples of Variable Expression Comparisons

Comparison	Meaning
if (A)	True if A is non-zero
if $(A<B)$	True if A is less than B
if $((A<B) \& \&(A>C))$	True if A is less than B and greater than C
if_bit $(P 1.2)$	True if bit 2 of $P 1$ is 1
if_bit $(!P 1.2)$	True if bit 2 of $P 1$ is 0

Table 5. Expressions and Examples

Expression	Example	
Primary	(A)	
Term	$(A<=B)$	
Term \&\& Term	$((A<B) \& \&(A>C))$ (logical AND)	
Term I Term	$((A==C) \\|(A==B))$ (logical OR)	

A primary value for a variable expression is a register name or defined symbol. A term consists of two primary values compared with a binary operator. Table 6 lists the supported binary operators and their meanings.

Table 6. Binary Operators

Binary Operator	Meaning
$==$	Equals
$!=$	Not equal
$>$	Greater than
$>=$	Greater than or equal
$<$	Less than
$<=$	Less than or equal

Bit expressions test individual bits of registers, ports, or memory locations. Table 7 shows the acceptable forms of bit expressions.

Table 7. Bit Expressions and Examples

Bit Expression	Example		
Bit_primary	$($ PO.1 $)$		
Bit_primary	$(!C Y)$		
Bit_primary \&\& Bit_primary	$(\mathrm{A} .0 \& \& \mathrm{CY})$		
Bit_primary $\\|$ Bit_primary	$(\mathrm{P} 0.2 \\| \mathrm{CY})$		

A Bit_primary can be either a reserved word bit identifier, such as a bit of a register or port (P0.1, CY), or a bit definition symbol (SBO EQU P0.2).

ST78K3 Operation and Controls

ST78K3 is invoked by specifying the name of the source file, followed by optional controls. For example:

C $>$ ST78K3 ABC.SRC -DXYZ=3
ST78K3 reads the specified source file and produces an output assembly language file, which can be input to RA78K3. The output file contains all lines provided in the input source file, plus those generated by ST78K3. Lines containing no statements for the structured assembler are passed through unchanged. Lines with structured assembly statements are placed in the output preceded by a semicolon. RA78K3 treats these lines as comments. These commented lines are then followed by the code generated by ST78K3.

RA78K3

The controls for ST78K3 are specified in the preprocessor command line or in a parameter file invoked in the command line. Table 8 lists the ST78K3 preprocessor controls and functions.

Table 8. ST78K3 Preprocessor Controls

Control	Function
-Ofilename	Specify name of output assembly source file
-Ffilename	Specify name of parameter file to be read
-Efilename	Specify name of error listing file
-Dsymbol[= value]	Define a symbol (like \#define in code)
$-\mathrm{I}[\mathrm{d}:][$ directory $]$	Define path for include file
-WTn1,n2,n3	Define TAB settings for generated code
-SCcharacter	Defines word symbol last character

The -O option allows the name of the output file to be specified. If not specified, the output file name defaults to the name of the input source file with the extension .ASM.

The -F option allows a parameter file to be specified, which will be read by ST78K3. This parameter file can contain a list of controls to be given to ST78K3, instead of or in addition to those specified on the command line.

The -E option specifies the name of the error listing file. The error file contains the file name, error number, description of error and the line containing the error. If the -E option is not specified, the error file name defaults to the name of the input source file with the extension.EST.

The -D control allows a symbol to be defined on the command line, with an optional value provided. If a symbol is defined but no value is specified, the value defaults to 1 . If the source file contains a \#define directive which specifies a variable with the same name as the -D control, the value on the command line will override the value in the \#define directive.

The - I control specifies a drive or directory other than the current drive and directory to search for include files.

The -WT control specifies the number of TAB characters to insert before labels, instruction mnemonics, and instruction operands generated by ST78K3. This allows clear separation of assembly language instructions coded in the source file from those generated by ST78K3.

The -SCcharacter control specifies the character used as the last character in a word symbol. The character must be a letter of the alphabet or the @, _ or?. This
allows ST78K3 to distinguish between word and byte operations. Symbols ending in this character are treated as word symbols and will generate a word operation (e.g. MOVW). If the -SC operation is not specified, ST78K3 assumes that a symbol ending with the character " P " or " p " is a word symbol.

Emulator Controller Program

Absolute object files produced by the RA78K3 relocatable assembler package can be debugged with the appropriate NEC standalone in-circuit emulator. NEC emulator controller programs allow communication with the emulator through an RS-232C serial line. An emulator controller program can run on the IBM PC®, $\mathrm{PC} / \mathrm{XT}^{\oplus}$, or PC AT® under MS-DOS and is provided with the in-circuit emulator at no extra charge.

These emulator controller programs provide the following features:

- Uploading/downloading of object and symbol files
- Symbolic debugging capability
- Complete emulator control from host console
- On-line help facilities
- Macro command file capabilities
- Host system directory and file display
- Disk storage of debug session
- Storage of last 20 commands for recall

License Agreement

RA78K3 is sold under terms of a license agreement included with the assembler. The accompanying card must be completed and returned to NEC Electronics Inc. to register the license. Software updates are provided free to registered users for one year.

Documentation

For further information on source program formats, assembler operation, and actual program examples, refer to the following manuals supplied with the RA78K3 package. Additional copies may be obtained from NEC Electronics Inc.

- RA78K Series Assembler Package, Language Manual
- RA78K Series Assembler Package, Operation Manual
- RA78K Series Structured Assembler Preprocessor, User's Manual
- ECC Generator, User's Manual

[^31]
Rellabullty and cuaxity conver

Section 7Soldering
μ PD78C00 Product Line; 7-1
Soldering and Packaging Information
μ PD78K0 Product Line; 7-3
Soldering and Packaging Information
μ PD78K2 Product Line; 7-5Soldering and Packaging Information
μ PD78K3 Product Line; 7-7
Soldering and Packaging Information
Soldering Conditions7-9
μ PD78C00 Product Line; Soldering and Packaging Information

Part Number	Package	Package Drawing	Recommended Soldering Code (Note 1)
μ PD78C14 Family			
78C10ACW	64-pin SDIP	P64C-70-750A, C	WS60-00-1
78C10AGF-3BE	64-pin QFP	P64GF-100-3B8, 3BE-1	IR30-00-1, VP15-00-1
78C10AGF(A)-3BE			
78C10AGQ-36	64-pin QUIP	P64GQ-100-36	WS60-00-1
78C10AGQ(A)-36			
78C10AL	68-pin PLCC	P68L-50A1-1	IR30-00-1, VP15-00-1
78C10AL(A)			
78C11ACW-xxx	64-pin SDIP	P64C-70-750A, C	WS60-00-1
78C11AGF-xxx-3BE	64-pin QFP	P64GF-100-3B8, 3BE-1	IR30-00-1, VP15-00-1, WS60-00-1
78C11AGF(A)-xxx-3BE			IR30-00-1, VP15-00-1
78C11AGQ-xxx-36	64-pin QUIP	P64GQ-100-36	WS60-00-1
78C11AGQ(A)-xxx-36			
78C11AGQ-xxx-37	64-pin QUIP (straight)	P64GQ-100-37	-
78C11AL-xxx	68-pin PLCC	P68L-50A1-1	IR30-00-1, VP15-00-1
78C11AL(A)-xxx			
78C12ACW-xxx	64-pin SDIP	P64C-70-750A, C	WS60-00-1
78C12AG-xxx-37	64-pin QUIP (straight)	P64GQ-100-37	-
78C12AG-xxx-36	64-pin QUIP	P64GQ-100-36	WS60-00-1
78C12AG(A)-xxx-36			
78C12AGF-xxx-3BE	64-pin QFP	P64GF-100-3B8, 3BE-1	IR30-00-1, VP15-00-1, WS60-00-1
78C12AL-xxx	68-pin PLCC	P68L-50A1-1	IR30-00-1, VP15-00-1
78C12AL(A)-xxx			
78C14AG-xxx-AB8	64-pin QFP	P64GC-80-AB8-2	IR30-107-1, VP15-107-1
78C14CW-xxx	64-pin SDIP	P64C-70-750A, C	WS60-00-1
78C14G-xxx-36	64-pin QUIP	P64GQ-100-36	WS60-00-1
78C14G-xxx-37	64-pin QUIP (straight)	P64GQ-100-37	-
78C14G-xxx-1B	64-pin QFP	P64G-100-12, 1B-1	IR30-107-1, VP15-107-1
78C14GF-xxx-3BE	64-pin QFP	P64GF-100-3B8, 3BE-1	$\begin{aligned} & \text { IR30-107-1, VP15-107-1, } \\ & \text { WS60-107-1 } \end{aligned}$
78C14L-xxx	68-pin PLCC	P68L-50A1-1	IR30-00-1, VP15-00-1

μ PD78C00 Product Line; Soldering and Packaging Information (cont)

Part Number	Package	Package Drawing	Recommended Soldering Code (Note 1)
μ PD78C14 Family (cont)			
78CP14CW	64-pin SDIP	P64C-70-750A, C	WS60-00-1
78CP14G-36	64-pin QUIP	P64GQ-100-36	WS60-00-1
78CP14G-37	64-pin QUIP (straight)	P64GQ-100-37	WS60-00-1
78CP14GF-3BE	64-pin QFP	P64GF-100-3B8, 3BE-1	-
$78 \mathrm{CP14L}$	68-pin PLCC	P68L-50A1-1	VP15-162-1
78CP14DW	64-pin CER SDIP w/window	P64DW-70-750A	WS60-00-1
78CP14R	64-pin CER QUIP w/window	P64RQ-100-A	WS60-00-1
78CP14G(A)-36	64-pin QUIP	P64GQ-100-36	WS60-00-1
μ PD78C18 Family			
78C17CW	64-pin SDIP	P64C-70-750A, C	WS60-00-1
78C17GF-3BE	64-pin QFP	P64GF-100-3B8, 3BE-1	IR30-107-1, VP15-107-1, WS60-00-1
78C17GF(A)-3BE			$\begin{aligned} & \text { IR30-207-1, VP15-207-1, } \\ & \text { WS60-207-1 } \end{aligned}$
78C17GQ-36	64-pin QUIP	P64GQ-100-36	WS60-00-1
78C17GQ(A)-36			
$\mu \mathrm{PD} 78 \mathrm{C} 18 \mathrm{CW}$-xxx	64-pin SDIP	P64C-70-750A, C	WS60-00-1
78C17GF-xxx-3BE	64-pin QFP	P64GF-100-3B8, 3BE-1	IR30-107-1, VP15-107-1,
78C17GF(A)-xxx-3BE			WS60-107-1
78C17GQ-xxx-36	64-pin QUIP	P64GQ-100-36	WS60-00-1
78C17GQ(A)-xxx-36			
78CP18CW	64-pin SDIP	P64C-70-750A, C	WS60-00-1
78CP18GF-3BE	64-pin QFP	P64GF-100-3B8, 3BE-1	IR30-107-1, VP15-107-1
78CP18GF(A)-3BE			
78CP18GQ-36	04-pini QUuip	P64GQ-100-36	WS60-00-1
78CP18GQ(A)-36			
78CP18DW	64-pin SDIP w/window	P64DW-70-750A	-
78CP18KB (Note 2)	64-pin ceramic LCC w/window	X64KW-100A-1	-

Notes:

(1) See soldering conditions table at the end of this section for further information on NEC's soldering codes.
(2) Not intended for soldering; if soldering code is not listed, contact NEC.
μ PD78K0 Product Line; Soldering and Packaging Information

Part Number	Package	Package Drawing	Recommended Soldering Code (Note 1)
μ PD78002 Family			
78001 BCW-xxx	64-pin plastic shrink DIP	P64C-70-750A, C	WS60-00-1
78002BCW-xxx			
78001 BGC-xxx-AB8	64-pin plastic QFP	P64GC-80-AB8-2	$\begin{aligned} & \text { IR30-107-1, VP15-107-1, } \\ & \text { WS60-107-1 } \end{aligned}$
78002BGC-xxx-AB8			
μ PD78002Y Family			
78001BYCW-xxx	64-pin plastic shrink DIP	P64C-70-750A, C	WS60-00-1
78002BYCW-xxx			
78001BYGC-xxx-AB8	64-pin plastic QFP	P64GC-80-AB8-2	$\begin{aligned} & \text { IR30-107-1, VP15-107-1, } \\ & \text { WS60-107-1 } \end{aligned}$
78002BYGC-xxx-AB8			
μ PD78014 Family			
78011 BCW-xxx	64-pin plastic shrink DIP	P64-70-750A, C	WS60-00-1
78012BCW-xxx			
78013CW-xxx			
78014CW-xxx			
78P014CW			
78011 BGC-xxx-AB8	64-pin plastic QFP	P64GC-80-AB8-2	$\begin{aligned} & \text { IR30-107-1, VP15-107-1, } \\ & \text { WS60-107-1 } \end{aligned}$
78012BGC-xxx-AB8			
78013GC-xxx-AB8			
78014GC-xxx-AB8			
78P014GC	64-pin plastic QFP	P64GC-80-AB8-2	IR30-162-1, VP15-162-1
78P014DW	64-pin ceramic shrink DIP w/ window	P64DW-70-750A	Pin partial heating
μ PD78014Y Family			
78011 BYCW-xxx	64-pin plastic shrink DIP	P64C-70-750A, C	WS60-00-1
78012BYCW-xxx			
78013YCW-xxx			
78014YCW-xxx			
78P014YCW			
78011 BYGC-xxx-AB8	64-pin plastic QFP	P64GC-80-AB8-2	$\begin{aligned} & \text { IR30-107-1, VP15-107-1, } \\ & \text { WS60-107-1 } \end{aligned}$
78012BYGC-xxx-AB8			
78013YGC-xxx-AB8			
78014YGC-xxx-AB8			
78P014YGC	64-pin plastic QFP	P64GC-80-AB8-2	IR30-162-1, VP15-162-1
78P014YDW	64-pin ceramic shrink DIP w/ window	P64DW-70-750A	Pin partial heating

Part Number	Package	Package Drawing	Recommended Soldering Code (Note 1)
μ PD78044 Family			
78042GF-xxx-3B9	80-pin plastic QFP	P80GF-80-3B9-1	$\begin{aligned} & \text { IR35-207-1, WS60-207-1, VP15- } \\ & \text { 207-1 } \end{aligned}$
78043GF-xxx-3B9			
78044GF-xxx-3B9			
78P044GF-3B9	80-pin plastic QFP	P80GF-80-3B9-1	(Note 2)
78P044KL-S	80-pin ceramic LCC w/window	X80KW-80A	Soldering not recommended
μ PD78054 Family			
78052GC-xxx-3B9	80 -pin plastic QFP	S80GC-65-SB9-1	Note 2
78053GC-xxx-3B9			
78054GC-xxx-3B9			
78P054GC-3B9			
78052GK-xxx-BE9	80 -pin plastic TQFP	P80GK-50-BE9-1	Note 2
78053GK-xxx-BE9			
78054GK-xxx-BE9			
78P054GK-BE9			
78P054KK-T	80 -pin ceramic LCC w/window	X80KW-65A	Note 2
μ PD78064 Family			
78062GC-xxx-7EA	100-pin plastic QFP (14×14 mm)	P100GC-50-7EA	Note 2
78063GC-xxx-7EA			
78064GC-xxx-7EA			
78P064GC-7EA			
78062GF-xxx-3BA	100-pin plastic QFP (14×20 mm)	P100GF-65-3BA	Note 2
78063GF-xxx-3BA			
78064GF-xxx-3BA			
78P064GF-3BA			
78P064KL-T	100-pin ceramic LCC w/window ($14 \times 20 \mathrm{~mm}$)	Note 3	Note 2

Notes:

(1) See soldering conditions table at the end of this section for further information on NEC's soldering codes.
(2) Please contact NEC Electronics.
(3) Under development

Soldering
μ PD78K2 Product Line; Soldering and Packaging Information

Part Number	Package	Package Drawing	Recommended Soldering Code (Note 1)
μ PD78214 Family			
78212CW-xxx	64-pin SDIP	P64C-70-750A, C	WS60-00-1
78213CW			
78214CW-xxx			
78P214CW			
78212GC-xxx	64-pin plastic QFP	P64GC-80-AB8-2	IR30-162-1, VP15-162-1
78213GC			
78214GC-xxx			
78P214GC	64-pin plastic QFP	P64GC-80-AB8-2	IR30-162-1, VP15-162-1 (Note 2)
78212GJ-xxx	74-pin plastic QFP	S74GJ-100-5BJ-1	IR30-00-1, VP15-00-1
78213GJ			
78214GJ-xxx			
78P214GJ	74-pin plastic QFP	S74GJ-100-5BJ-1	IR30-107-1, VP15-107-1
78213G36	64-pin plastic QUIP	P64GQ-100-36	WS60-00-1
78214Gxxx36			
782P14GQ			
78213L	68-pin PLCC	P68L-50A1-1	VP15-162-1
78214L-xxx			
78P214L	68-pin PLCC	P68L-50A1-1	VP15-107-1
78P214DW	64-pin ceramic shrink DIP w/ window	P64DW-70-750A1	Pin partial heating
μ PD78218A Family			
78217ACW	64-pin plastic SDIP	P64C-70-750A, C	WS60-00-1
78218ACW			
78P218ACW			
78217AGC	64-pin plastic QFP	P64C-80-AB8-2	IR30-162-1, VP15-162-1
78218AGC			
78P218AGC			
78P218ADW	64-pin ceramic SDIP w/window	P64DW-70-750A1	Pin partial heating
μ PD78224 Family			
78220 L	84-pin PLCC	P84L-50A3-1	VP15-162-1
78224L-xxx			
78 P 224 L			
78220GJ-5BG	94-pin plastic QFP	S94GJ-80-5BG-1	IR30-107-1, VP15-107-1
78224GJ-xxx-5BG			
78P224GJ-5BG			Pin partial heating

Soldering

μ PD78K2 Product Line; Soldering and Packaging Information

Part Number	Package	Package Drawing	Recommended Soldering Code (Note 1)
μ PD78238 Family			
78233GC	80-pin plastic QFP	S80GC-65-3B9-1	IR30-162-1, VP15-162-1
78234GC-xxx			
78237GC			
78238GC-xxx			
78P238GC			
78233GJ	94-pin plastic plastic QFP	S94GJ-80-5BG-1	IR30-107-1
78234GJ-xxx			
78237GJ			
78238GJ-xxx			
78P238GJ			
78233LQ	84-pin PLCC	P84L-50A3-1	VP15-107-1
78234LQ-xxx			
78237 LQ			
$78238 \mathrm{LQ}-\mathrm{xxx}$			
78P238LQ			
78 P 238 KF	94-pin ceramic LCC w/window	X94KW-80A	Pin partial heating
μ PD78244 Family			
78243CW	64-pin plastic SDIP	P64C-70-750A, C	WS60-00-1
78244CW-xxx			
78243GC-AB8	64-pin plastic QFP	P64GC-80-AB8-2	IR30-162-1, VP15-162-1
78244GC-xxx			

Notes:

(1) See soldering conditions table at the end of this section for further information on NEC's soldering codes.
(2) This soldering method is not applicable to the " K " specification product.

Soldering
μ PD78K3 Product Line; Soldering and Packaging Information

Part Number	Package	Package Drawing	Recommended Soldering Code (Note 1)
μ ¢PD78312A Family			
78310ACW	64-pin plastic shrink DIP	P64C-70-750A, C	-
78312ACW-xxx			
78P312ACW			
78310AGF-3BE	64-pin plastic QFP	P64GF-100-3B8, 3BE-1	IR30-162-1, VP15-162-1
78312AGF-xxx-3BE			
78P312AGF-3BE			
78310AGQ-36	64-pin plastic QUIP	P64GQ-100-36	IR30-162-1, VP15-162-1
78312AGQ-xxx-36			
78P312AGQ-36			
78310AL	68-pin plastic PLCC	P68L-50A1-1	IR30-00-1, VP15-162-1
78312AL-xXX			
78P312AL			VP15-00-1
78P312ADW	64-pin ceramic shrink DIP w/ window ($350-\mathrm{mil}$)	P64DW-70-750A	-
78P312AR	64-pin ceramic QUIP w/window	P64RQ-100-A	-
μ PD78322 Family			
78320GF	80-pin plastic QFP	P80GF-80-3B9-1	IR30-162-1
78320GF(A)			
78320GF(A1)			
78320GF(A2)			
78320 L	68-pin PLCC	P68L-50A1-1	IR30-00-1, VP15-00-1
$78320 \mathrm{~L}(\mathrm{~A})$			
78320 L (A1)			
78320 L (A2)			
78322GF-xxx	80-pin plastic QFP	P80GF-80-3B9-1	IR30-162-1
78322GF(A)-xxx			
78322GF(A1)-xxx			
78322GF(A2)-xxx			
78322L-xxx	68-pin PLCC	P68L-50A 1-1	IR30-00-1, VP15-00-1
$78322 \mathrm{~L}(\mathrm{~A})-\mathrm{xxx}$			VP15-00-1
78322L(A1)-xxx			VP15-00-1
78322L(A2)-xxx			VP15-00-1
78P322GF	80-pin plastic QFP	P80GF-80-3B9-1	-
78P322L	68-pin PLCC	P68L-50A1-1	-
78P322KE	80 -pin ceramic LCC with window	X80KW-80A	-
78P322KC	68-pin ceramic LCC with window	X68KW-50A	-

μ PD78K3 Product Line; Soldering and Packaging Information

Part Number	Package	Package Drawing	Recommended Soldering Code (Note 1)
μ PD78352 Family			
78350GC-3BE	64-pin plastic QFP ($3.0-\mathrm{mm}$ height)	P64GC-80-3BE	IR30-107-1 VP15-107-1 WS60-107-1
78P352AG-xxx-22	64-pin plastic QFP (1.7-mm	P64G-80-22-1	(Note 2)
78P352G-22			$\begin{aligned} & \text { IR30-107-2 } \\ & \text { VP15-107-2 } \end{aligned}$
78P352KK	64-pin ceramic LCC with window	X80KW-80B	Not intended for soldering
μ PD78356 Family			
$78355 \mathrm{GC}-7 \mathrm{EA}$	100 -pin plastic QFP	P100GC-50-7EA	(Note 2)
78356GC-xxx-7EA			
78P356GC-7EA			
78P356K	120-pin ceramic LCC with window	X120kW-80A	(Note 2)

Note:

(1) See soldering conditions table at the end of this section for further information on NEC's soldering codes.
(2) Please contact NEC Electronics.

Soldering

Soldering Conditions

Method (1)	Code (2)	Soldering Conditions	Exposure Limit (3)
Infrared reflow	IR30-00-1	Package peak temp: $230^{\circ} \mathrm{C}$ Time: 30 sec max $\left(210^{\circ} \mathrm{C} \mathrm{min}\right)$	No limit
	$\begin{aligned} & \text { IR } 30-107-1 \\ & \text { IR } 30-107-2 \end{aligned}$		Max no. of days: 7 (thereafter, 10 hours baking at $125^{\circ} \mathrm{C}$ is required)
	\|R30-162-1		Max no. of days: 2 (thereafter, 16 hours baking at $125^{\circ} \mathrm{C}$ is required)
	\|R30-207-1		Max no. of days: 7 (thereafter, 20 hours baking at $125^{\circ} \mathrm{C}$ is required)
	\|R35-207-1	Package peak temp: $235^{\circ} \mathrm{C}$ Time: 30 sec max ($210^{\circ} \mathrm{C} \mathrm{min}$)	Max no. of days: 7 (thereafter, 20 hours baking at $125^{\circ} \mathrm{C}$ is required)
Vapor phase	VP15-00-1	Package peak temp: $215^{\circ} \mathrm{C}$ Time: 40 sec max ($200^{\circ} \mathrm{C} \mathrm{min}$)	No limit
	$\begin{aligned} & \text { VP15-107-1 } \\ & \text { VP15-107-2 } \end{aligned}$		Max no. of days: 7 (thereafter, 10 hours baking at $125^{\circ} \mathrm{C}$ is required)
	VP15-162-1		Max no. of days: 2 (thereafter, 16 hours baking at $125^{\circ} \mathrm{C}$ is required)
	VP15-207-1		Max no. of days: 7 (thereafter, 20 hours baking at $125^{\circ} \mathrm{C}$ is required)
Wave soldering	WS60-00-1	Solder bath temp: $260^{\circ} \mathrm{C}$ max Time: 10 sec max	No limit
	WS60-107-1		Max no. of days: 7 (thereafter, 10 hours baking at $125^{\circ} \mathrm{C}$ is required)
	WS60-207-1		Max no. of days: 7 (thereafter, 20 hours baking at $125^{\circ} \mathrm{C}$ is required)
Pin partial heating (SDIP)		Temperature: $260^{\circ} \mathrm{C}$ max Time: 10 sec max (per device side)	
Pin partial heating (QFP)		Temperature: $300^{\circ} \mathrm{C}$ max Time: 3 sec max (per device side)	

Notes:

(1) Do not use different soldering methods together. However, on all devices the pin partial heating soldering method can be used alone or in combination with other soldering methods.
(2) The maximum number of soldering operations is one or two as indicated by the last digit of the soldering code: -1 or -2 .
(3) Maximum no. of days refers to the number of days after unpacking the dry pack. Storage conditions are $25^{\circ} \mathrm{C}$ and 65% RH max.

Section 8 Package Drawings		64-Pin Ceramic QUIP w/window (P64RQ-100-A)	8-14
64-Pin Plastic Shrink DIP (P64C-70-750A, C)	8-1		
64-Pin Ceramic Shrink DIP (P64DW-70-750A)	8-2		
		68-Pin PLCC (P68L-50A1-1)	8-15
64-Pin Ceramic Shrink DIP (P64DW-70-750A1)	8-3	68-Pin Ceramic LCC w/window (X68KW-50A)	8-16
64-Pin Ceramic LCC w/window (X80KW-80B)	8-4	74-Pin Plastic QFP (S74GJ-100-5BJ-1)	8-17
		80-Pin Ceramic LCC w/window	8-18
64-Pin Ceramic LCC w/window (X64KW-100A-1)	8-5	(X80KW-80A)	
		80-Pin Ceramic LCC w/window (X80KW-65A)	8-19
64-Pin Plastic QFP (P64G-100-12, 1B-1)	8-6		
64-Pin Plastic QFP (P64GC-80-AB8-2)	8-7	80-Pin Plastic QFP (P80GF-80-3B9-1)	8-20
64-Pin Plastic QFP (P64GF-100-3B8, 3BE-1)	8-8	80-Pin Plastic QFP (S80GC-65-3B9-1)	8-21
64-Pin Plastic QFP ($3.0-\mathrm{mm}$ height) (P64GC-80-3BE)	8-9	80-Pin Plastic TQFP (P80GK-50-BE9-1)	8-22
		84-Pin PLCC (P84L-50A3-1)	8-23
64-Pin Plastic QFP (1.7-mm height) (P64G-80-22-1)	8-10	94-Pin Plastic QFP (S94GJ-80-5BG-1)	8-24
64-Pin Ceramic QFP for Engineering Samples	8-11	94-Pin Ceramic LCC (X94KW-80A)	8-25
		100-Pin Plastic QFP (P100GC-50-7EA)	8-26
64-Pin Plastic QUIP (P64GQ-100-36)	8-12	100-Pin Plastic QFP (P100GF-65-3BA)	8-27
64-Pin Plastic QUIP (P64GQ-1*f0-37)	8-13	120-Pin Ceramic LCC (X120KW-80A)	8-28

64-Pin Plastic Shrink DIP (P64C-70-750A, C)

Package Drawings

64-Pin Ceramic Shrink DIP (P64DW-70-750A)

Item	Millimeters	Inches
A	58.68 max	2.310 max
B	1.78 max	.070 max
C	$1.778(\mathrm{TP})$	$.070(\mathrm{TP})$
D	0.46 ± 0.05	$.018 \pm .002$
F	0.8 min	.031 min
G	3.5 ± 0.3	$.138 \pm .012$
H	1.0 min	.039 min
I	3.0	.118
J	5.08 max	.200 max
K*	$19.05(\mathrm{TP})$	$.750(\mathrm{TP})$
L	18.8	.740
M	0.25 ± 0.05	$.010 \pm .002$
N	0.25	.010
S	8.89 dia	.350 dia

* Item K to center of leads when formed parallel.

64-Pin Ceramic Shrink DIP (P64DW-70-750A1)

64-Pin Ceramic LCC w/window (X80KW-80B)

64-Pin Ceramic LCC w/window (X64KW-100A-1)

Hem	Mililmeters	Inches
\mathbf{A}	20.0 ± 0.4	$.787 \pm .016$
B	19.0	.748
C	13.2	.520
D	14.0 ± 0.4	$.550 \pm .016$
E	1.64	.065
F	2.14	.084
G	3.556 max	.140 max
H	0.70 ± 0.10	$.028 \pm .004$
I	0.1	.004
J	$1.0(\mathrm{TP})$	$.039(\mathrm{TP})$
K	1.0 ± 0.2	$.039 \pm .008$
Q	0.25 cor	.010 cor
R	1.0	.039
S	1.0	.039
T	3.0 rad	.118 rad
U	12.0	.472
W	0.8 ± 0.2	$.031 \pm .008$

X84KW-100A-1

Package Drawings

64-Pin Plastic QFP (P64G-100-12, 1B-1)

Item	Millimeters	Inches
A	24.7 ± 0.4	$.972+.017$
B	20.0 ± 0.2	$\begin{array}{r} +.009 \\ . \\ \hline-.008 \end{array}$
C	14.0 ± 0.2	$\begin{array}{r} .551+.009 \\ -.008 \\ \hline \end{array}$
D	18.7 ± 0.4	. $736 \pm .016$
F	1.0	. 039
G	1.0	. 039
H	0.40 ± 0.10	$\begin{array}{r} +.004 \\ .016 \\ \hline \end{array}$
1	0.20	. 008
J	1.0 (TP)	. 039 (TP)
K	2.35 ± 0.2	$\begin{array}{r} +.008 \\ -.009 \\ \hline \end{array}$
L	1.2 ± 0.2	$\begin{array}{r} .047+.009 \\ -.008 \\ \hline \end{array}$
M	$\begin{array}{r} +0.10 \\ 0.15+0.05 \\ \hline \end{array}$	$\begin{array}{r} +.004 \\ .006+.003 \\ \hline \end{array}$
N	0.15	. 006
P	$\begin{array}{r} 2.05+0.2 \\ -0.1 \end{array}$	$\begin{array}{r} .081+.008 \\ -.005 \\ \hline \end{array}$
Q	0.1 ± 0.1	. $004 \pm .004$
S	2.45 max	. 096 max

64-Pin Plastic QFP (P64GC-80-AB8-2)

Item	Millimeters	Inches
A	17.6 ± 0.4	$.693 \pm .016$
B	14.0 ± 0.2	$.551 \pm .009$
C	14.0 ± 0.2	$.551 \pm .009$
D	17.6 ± 0.4	$.693 \pm .016$
F	1.0	.039
G	1.0	.039
H	0.35 ± 0.10	$.014 \pm .004$
I	0.15	.006
J	$0.8(\mathrm{TP})$	$.031(\mathrm{TP})$
K	1.8 ± 0.2	$.071 \pm .008$
L	0.8 ± 0.2	$.031 \pm .009$
M	0.15 ± 0.10	$.006 \pm .004$
N	0.15	.006
P	2.55	.100
Q	0.1 ± 0.1	$.004 \pm .004$
S	$2.85 \max$	$.112 \max$

Note:
Each lead centeriline is located within 0.15 mm (. .006 Inch) of its true position (TP) at maximum material condition.

Enlarged detall of lead end

64-Pin Plastic QFP (P64GF-100-3B8, 3BE-1)

Item	Millimeters	Inches
A	23.6 ± 0.4	. $929 \pm .016$
B	20.0 ± 0.2	$\begin{array}{r} .795+.009 \\ -.008 \\ \hline \end{array}$
C	14.0 ± 0.2	$\begin{array}{r}.551 \\ \hline\end{array}$
D	17.6 ± 0.4	. $693 \pm .016$
F	1.0	. 039
G	1.0	. 039
H	0.40 ± 0.10	${ }^{.016}+.004$
1	0.20	. 008
J	1.0 (TP)	. 039 (TP)
K	1.8 ± 0.2	$.071+.008$ -.009
L	0.8 ± 0.2	$\begin{array}{r} +.009 \\ -.008 \\ \hline \end{array}$
M	$\begin{aligned} & +0.10 \\ & 0.15 \pm 0.05 \end{aligned}$	$\begin{aligned} & +.006 \\ & \hline . .003 \end{aligned}$
N	0.15	. 006
P	2.7	. 106
Q	0.1 ± 0.1	. $004 \pm .004$
A	0.1 ± 0.1	. $004 \pm .004$
S	3.0 max	. 119 max

Enlarged detall of lead end

64-Pin Plastic QFP (3.0-mm height) (P64GC-80-3BE)

Item	Millimeters	Inches
\mathbf{A}	17.6 ± 0.4	$.693 \pm .016$
B	14.0 ± 0.2	$.551 \pm .009$
C	14.0 ± 0.2	$.551 \pm .009$
D	17.6 ± 0.4	$.693 \pm .016$
F	1.0	.039
G	1.0	.039
H	0.35 ± 0.10	$.014 \pm .004$
I	0.15	.006
J	$0.8(\mathrm{TP})$	$.031(\mathrm{TP})$
K	1.8 ± 0.2	$.071 \pm .008$
L	0.8 ± 0.2	$.031 \pm .009$
M	0.15 ± 0.10	$.006 \pm .004$
N	0.15	.006
P	2.7	.106
Q	0.1 ± 0.1	$.004 \pm .004$
R	0.1 ± 0.1	$.004 \pm .004$
S	$3.0 ~ \max$.118 max

64-Pin Plastic QFP (1.7-mm height) (P64G-80-22-1)

Hem	Millimeters	Inches
A	18.4 ± 0.4	$\begin{array}{r} .724+.017 \\ -.016 \\ \hline \end{array}$
B	14.0 ± 0.2	$\begin{array}{r} .551 \pm .009 \\ -.008 \end{array}$
C	14.0 ± 0.2	$\begin{array}{r} .551+.009 \\ -.008 \\ \hline \end{array}$
D	18.4 ± 0.4	$\begin{array}{r} .724+.017 \\ -.016 \\ \hline \end{array}$
F	1.0	. 039
G	1.0	. 039
H	0.35 ± 0.10	$\begin{array}{r} .014+.004 \\ -.005 \\ \hline \end{array}$
1	0.15	. 006
J	0.8 (TP)	. 031 (TP)
K	2.2 ± 0.2	$\begin{array}{r} .087 \pm .008 \\ -.009 \\ \hline \end{array}$
L	1.0 ± 0.2	$\begin{array}{r} .039+.009 \\ -.008 \\ \hline \end{array}$
M	$\begin{array}{r} +0.10 \\ 0.15+0.05 \end{array}$	$.006+.004$
N	0.15	. 006
P	1.5 ± 0.1	. $059 \pm .004$
Q	0.0 ± 0.1	. $000 \pm .004$
S	1.7 max	. 067 max

Enlarged detail of lead end

64-Pin Ceramic QFP for Engineering Samples

64-Pin Plastic QUIP (P64GQ-100-36)

64-Pin Plastic QUIP (P64GQ-100-37)

flem	Mililimeters	Inches
A	$41.5{ }_{-0.2}^{+0.3}$	$1.634{ }_{-}^{+.012}$-. 008
C	16.5	. 650
D	30.0 ± 0.4	$1.181 \pm .016$
E	35.1 ± 0.4	$1.382 \pm .016$
H	0.50 ± 0.10	$.020+.004$ -.005
1	0.25	. 010
J	2.54 (TP)	. 100 (TP)
K	1.27 (TP)	. 050 (TP)
M	$1.1+\begin{array}{r} +0.25 \\ -0.15 \end{array}$.043 +.011 -.006
N	$0.25 \begin{gathered} +0.10 \\ -0.05 \end{gathered}$.010 +.004 -.003
P	9.3 ± 0.2	$\begin{array}{r}.366+.009 \\ -.008 \\ \hline\end{array}$
Q	6.75 ± 0.2	$\begin{array}{r}.266 \begin{array}{r}+.009 \\ -.008\end{array} \\ \hline\end{array}$
S	3.6 ± 0.1	$\begin{array}{r} +.004 \\ . .005 \end{array}$
T	1.8 ± 0.1	$\begin{array}{r} .071+.004 \\ -.005 \end{array}$
U	1.55 ± 0.1	. $061 \pm .004$

Note:
Each lead centerline is located within 0.25 mm (0.010 Inch) of its true position (TP) at maximum material condition.

64-Pin Ceramic QUIP w/window (P64RQ-100-A)

68-Pin PLCC (P68L-50A1-1)

Package Drawings

68-Pin Ceramic LCC w/window (X68KW-50A)

Item	Millimeters	Inches
A	24.13 ± 0.40	$.95 \pm .016$
B	21.5	.846
C	21.5	.846
D	24.13 ± 0.40	$.95 \pm .016$
E	1.65	.065
F	2.03	.08
G	3.50 max	.138 max
H	0.64 ± 0.10	$.025 \pm .004$
I	0.12	.005
J	1.27	.05
K	2.16 ± 0.20	$.085 \pm .008$
L	1.27 ± 0.20	$.05 \pm .008$
M	C0.50	C.02
N	C1.02	C.04
P	R0.20	R.008
R	1.905	.075
S	1.905	.075
T	R3.0	R.118
U	12.0	.472

74-Pin Plastic QFP (Dwg No. S74GJ-100-5BJ-1)

Item	Millimeters	Inches
A	23.2 ± 0.4	$.913+.017$
B	20.0 ± 0.2	$\begin{array}{r} .787+.009 \\ -.008 \end{array}$
C	20.0 ± 0.2	$\begin{array}{r} +.009 \\ .787-.008 \\ \hline \end{array}$
D	23.2 ± 0.4	$\begin{array}{r} +.017 \\ .913+.016 \\ \hline \end{array}$
F1	2.0	. 079
F2	1.0	. 039
G1	2.0	. 079
G2	1.0	. 039
H	0.40 ± 0.10	$\begin{array}{r} .016+.004 \\ \hline \end{array}$
1	0.20	. 008
J	1.0 (TP)	. 039 (TP)
K	1.6 ± 0.2	. $063 \pm .002$
L	0.8 ± 0.2	$\begin{array}{r} .031+.009 \\ -.008 \\ \hline \end{array}$
M	$\begin{array}{r} +0.10 \\ 0.15 \\ -0.05 \\ \hline \end{array}$	$\begin{array}{r} .006+.004 \\ -.005 \\ \hline \end{array}$
N	0.15	. 006
P	3.7	. 146
Q	0.1 ± 0.1	. $004 \pm .004$
A	0.1 ± 0.1	. $004 \pm .004$
S	4.0 max	. 158 max

S74Gㄴ-100-5Bl-1

80-Pin Ceramic LCC w/window (X80KW-80A)

80-Pin Ceramic LCC w/window (X80KW-65A)

Item	Millimeters	Inches
A	14.0 ± 0.2	$.551 \pm .008$
B	13.6	.535
C	13.6	.535
D	14.0 ± 0.2	$.551 \pm .008$
F	1.84	.072
G	3.6 max	.142 max
H	0.45 ± 0.10	$.018 \pm 0.004$
I	0.06	.003
J	$0.65(\mathrm{TP})$	$.024(\mathrm{TP})$
K	1.0 ± 0.15	$.039 \pm 0.007$
N	0.1	.004
Q	0.3 cor	.012 cor
R	.825	.032
S	.825	.032
T	2.0 rad	.079 rad
U	9.0	.354
V	2.1	.083
W	0.75 ± 0.15	$.030 \pm 0.006$

80-Pin Plastic QFP (P80GF-80-3B9-1)

Item	Millimeters	Inches
A	23.6 ± 0.4	. $929 \pm .016$
B	20.0 ± 0.2	$.787 \begin{array}{r} +.009 \\ -.008 \end{array}$
C	14.0 ± 0.2	$\begin{array}{r} .551+.009 \\ -.008 \end{array}$
D	17.6 ± 0.4	. $693 \pm .016$
F	1.0	. 039
G	0.8	. 031
H	0.35 ± 0.10	$\begin{array}{ll} .014+.004 \\ -.005 \\ \hline \end{array}$
1	0.15	. 006
J	0.8 (TP)	. 031 (IP)
K	1.8 ± 0.2	$.071 \begin{aligned} & +.009 \\ & -.008 \end{aligned}$
L	0.8 ± 0.2	$\begin{array}{r} .031+.009 \\ -.008 \\ \hline \end{array}$
M	$\begin{array}{r} 0.15+0.10 \\ -0.05 \\ \hline \end{array}$	$\begin{array}{r} .006+.004 \\ -.002 \\ \hline \end{array}$
N	0.15	. 006
P	2.7	. 106
Q	0.1 ± 0.1	. $004 \pm .004$
R	0.1 ± 0.1	. $004 \pm .004$
S	3.0 max	. 118 max

P80GF-80-3B9-1

Package Drawings

80-Pin Plastic QFP (S80GC-65-3B9-1)

Item	Millimeters	Inches
\mathbf{A}	17.2 ± 0.4	$.677 \pm .016$
B	14.0 ± 0.2	$.551 \pm .009$
C	14.0 ± 0.2	$.551 \pm .009$
D	17.2 ± 0.4	$.677 \pm .016$
F	0.8	.031
G	0.8	.031
H	0.30 ± 0.10	$.012 \pm .004$
I	0.13	.005
J	$0.65(T P)$	$.026(T P)$
K	1.6 ± 0.2	$.063 \pm .008$
L	0.8 ± 0.2	$.031 \pm .009$
M	0.15 ± 0.10	$.006 \pm .004$
N	0.12	0.005
P	2.7	.106
Q	0.1 ± 0.1	$.004 \pm .004$
R	0.1 ± 0.1	$.004 \pm .004$
S	$3.0 \max$.119 max

80-Pin Plastic TQFP (P80GK-50-BE9-1)

84-Pin PLCC (P84L-50A3-1)

Item	Millilmeters	Inches
A	30.2 ± 0.2	$1.189 \pm .008$
B	29.28	1.153
C	29.28	1.153
D	30.2 ± 0.2	$1.189 \pm .008$
E	1.94 ± 0.15	. $076 \pm .008$
F	0.6	. 024
G	4.4 ± 0.2	. $173 \pm .008$
H	2.8 ± 0.2	. $110 \pm .008$
1	0.9 mln	. 035 min
J	3.4	. 134
K	1.27 (TP)	. 050 (TP)
M	0.40 ± 0.10	. $016 \pm .004$
N	0.12	. 005
P	28.20 ± 0.20	$1.110 \pm .008$
0	0.15	. 006
T	0.8 radlus	. 031 radlus
U	$\begin{aligned} & 0.20+0.10 \\ & -0.05 \end{aligned}$	$\begin{gathered} .008+.004 \\ \hline \end{gathered}$

94-Pin Plastic QFP (S94GJ-80-5BG-1)

94-Pin Ceramic LCC (X94KW-80A)

Hem	Millimeters	Inches
A	20.0 ± 0.4	$.787 \pm .017$
B	18.0	.709
C	18.0	.709
D	20.0 ± 0.4	$.787 \pm .017$
E	1.94	.076
F	2.14	.084
G	4.064 max	.160 max
H	0.51 ± 0.10	$.020 \pm .004$
I	0.08	.003
J	$0.8(\mathrm{TP})$	$.031 \mathrm{TP})$
K	1.0 ± 0.2	$.039 \pm .008$
Q	0.3 cor	.012 cor
R	1.6	.063
S	1.6	.063
T	1.75 rad	.069 rad
U	11.5	.453
W	0.75 ± 0.2	$.030 \pm .008$
Y	1.0 cor	.039 cor

Package Drawings

100-Pin Plastic QFP (P100GC-50-7EA)

100-Pin Plastic QFP (P100GF-65-3BA)

120-Pin Ceramic LCC (X120KW-80A)

Item	Millimeters	Inches
\mathbf{A}	27.3 ± 0.27	$1.075 \pm .011$
B	24.5	.965
C	24.5	.965
D	27.3 ± 0.27	$1.075 \pm .011$
E	1.94	.076
F	2.14	.084
G	3.57 max	.141 max
H	0.51 ± 0.10	$.020 \pm .004$
I	0.08	.003
J	0.8 (TP)	.031 (TP)
K	1.0 ± 0.15	$.039 \pm .006$
N	0.10	.004
Q	0.3 cor	.012 cor
R	2.05	.081
S	2.05	.081
T	3.0 rad	.118 rad
U	12.0	.472
V	1.5	.060
W	1.0	.039
Y	1.0 cor	.039 cor

NEC Electronics Inc.
Corporate Headquarters
475 Ellis Street
Mountain View, CA 94043
Telephone: 415-960-6000
Fax: 415-965-6130

For literature, call toll-free 8 a.m. to 4 p.m., Pacific time: 1-800-366-9782

[^0]: * Corresponding symbols of the μ PD27C256A.

[^1]: * Corresponding symbols of the $\mu \mathrm{PD} 27 \mathrm{C} 256 \mathrm{~A}$.

[^2]: * See the μ PD78014 family data sheet for the μ PD78P014 electrical and functional specifications.
 K-Series is a registered trademark of NEC Electronics, Inc.

[^3]: * See the μ PD78014Y family data sheet for the $\mu \mathrm{PD} 78 \mathrm{P} 014 \mathrm{Y}$ electrical and functional specifications.
 K-Series is a registered trademark of NEC Electronics, Inc.
 Purchase of NEC ${ }^{2} \mathrm{C}$ components conveys a license under the Philips ${ }^{2} \mathrm{C}$ P Patents Right to use these components in an ${ }^{2} \mathrm{C}$ system, provided that the system conforms to the ${ }^{2} \mathrm{C}$ specification as defined by Philips.

[^4]: * Corresponding symbols of the $\mu \mathrm{PD} 27 \mathrm{C} 256 \mathrm{~A}$.

[^5]: K-Series is a registered trademark of NEC Electronics, Inc.
 Purchase of NEC ${ }^{2}$ C components conveys a license under the Philips ${ }^{2} \mathrm{C}$ Patents Rights to use these components in an $1^{2} \mathrm{C}$ system, provided that the system conforms to the $\mathrm{R}^{2} \mathrm{C}$ standard specification as defined by Philips.

[^6]: * Corresponding symbols of the μ PD27C256A.

[^7]: * See figure 18.

[^8]: * Corresponding symbols of the μ PD27C256A

[^9]: - Complete single-chip microcontroller
 - 8-bit ALU
 - Program memory (ROM)
 μ PD78217A: ROMIess
 μ PD78218A/P218A: 32K bytes
 —Data memory (RAM): 1024 bytes

[^10]: ${ }^{*} \mathrm{C} 1$ and C 2 are contained in the resonator.

[^11]: * Corresponding symbols of the μ PD27C256A.

[^12]: * Corresponding symbols of the μ PD27C256A.

[^13]: - Complete single-chip microcontroller
 -8-bit ALU
 - Program memory (ROM) μ PD78233/237: ROMless μ PD78234: 16K bytes μ PD78238/P238: 32K bytes
 - Data memory (RAM) μ PD78233/234: 640 bytes μ PD78237/238/P238: 1024 bytes

[^14]: K-series is a registered trademark of NEC Electronics, Inc.

[^15]: * Corresponding symbols of the μ PD27C256A.

[^16]: * Corresponding symbols of the μ PD27C256A.

[^17]: X can be either H or L.

[^18]: L Connect these pins separately to $\mathrm{V}_{\text {SS }}$ through resistors.
 G Connect this pin to V_{SS}.
 OPEN Do not connect these pins.

[^19]: K-Series is a registered trademark of NEC Electronics Inc.

[^20]: * 0 is the highest priority.

[^21]: * Does not include quantization error. Percentage of full-scale value is shown.

[^22]: * rp and rp1 describe the same registers but generate different machine code.

[^23]: * Includes one required socket adapter shown at right.

[^24]: * Includes one required socket adapter shown at right.

[^25]: * Includes one required socket adapter shown at right.

[^26]: IBM PC, PC/XT, and PC AT are registered trademarks of international Business Machines Corporation.

[^27]: *Under development

[^28]: IBM PC, PC/XT, and PC/AT are registered trademarks of International

[^29]: IBM PC, PC/XT, and PC/AT are registered trademarks of International Business Machines Corporation.

[^30]: IBM PC, PC/XT and PC/AT are registered trademarks of international Business Machines Corporation.

[^31]: IBM PC, PC/XT, and PC AT are registered trademarks of International Business Machines Corporation.

