

MEMORY PRODUCTS DATA BOOK
Volume 2 of 2
SRAMs, ASMs, EEPROMs
NEC

1993 MEMORY PRODUCTS DATA BOOK

Volume 2 of 2
SRAMs, ASMs, EEPROMs

Document No. 60105-1-V2
©1993 NEC Electronics Inc. All rights reserved.
Printed in the United States of America.

Abstract

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics inc. (NECEL). The information in this document is subject to change without notice. Devices sold by NECEL are covered by the warranty and patent indemnification provisions appearing in NECEL Terms and Conditions of Sale only. NECEL makes no warranty, express, statutory, implied, or by description, regarding the information setforth herein or regarding the freedom of the described devices from patent infringement. NECEL makes no warranty of merchantability or fitness for any purpose. NECEL assumes no responsibility for any errors that may appear in this document. NECEL makes no commitment to update or to keep current information contained in this document. The devices listed in this document are not suitable for use in aircraft, aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance.

Volume 1

Section 1. General Information
Upcoming Products 1
Manufacturing in Roseville, California 3
Device Numbering Guide 4
Quick Reference Guide 5
Section 2. Reliability and Quality Control
Built-in Total Quality Control (TQC) 1
Approaches to TQC 1
Implementation of Quality Control 3
Reliability Theory 5
Failure Analysis 9
Summary 9
Figure 1. NEC's Quality Control System 2
Figure 2. New Product Development 3
Figure 3. Electrical Testing and Screening 5
Figure 4. Reliability Life (Bathtub) Curve 5
Appendix 1A. Typical QC Flow for CMOS Fabrication 10
Appendix 1B. Typical QC Flow for PLCC Assembly/Test 11
Appendix 2. Typical Reliability Assurance Tests 13
Appendix 3. New Product/Process Change Tests 13
Appendix 4. Failure Analysis Flowchart 14
Section 3. 256K DRAMs

μ PD	Organization	Features	
41256	$256 \mathrm{~K} \times 1$	Page; NMOS	3 a
41464	$64 \mathrm{~K} \times 4$	Page; NMOS	3 b

Volume 1 (cont)

Section 4. 1M DRAMs

$\mu \mathrm{PD}$	Organization	Features	
421000	$1 \mathrm{M} \times 1$	Fast-page (See App Note 53.)	4 a
424256	$256 \mathrm{~K} \times 4$	Fast-page	4 b

Section 5. 4M DRAMs (4M x 1 and $1 \mathrm{M} \times 4$)

$\mu \mathrm{PD}$	Organization	Features	
424100	4 M x 1	Fast-page	5
424100A	4 M x 1	Fast-page	
424100 L	4 M x 1	Fast-page; 3.3-volt	
42S4100A	4 M x 1	Fast-page; self-refresh	
42S4100L	4 M x 1	Fast-page; self-refresh; 3.3-volt	
424101	$4 \mathrm{M} \mathrm{\times} 1$	Nibble	5b
424102	4 M x 1	Static-column	5 c
424400	$1 \mathrm{M} \times 4$	Fast-page	5 d
424400A	$1 \mathrm{M} \times 4$	Fast-page	
424400 L	$1 \mathrm{M} \times 4$	Fast-page; 3.3-volt	
42S4400A	$1 \mathrm{M} \times 4$	Fast-page; self-refresh	
42 S 4400 L	$1 \mathrm{M} \times 4$	Fast-page; self-refresh; 3.3-volt	
424402	$1 \mathrm{M} \times 4$	Static-column	5
424410	$1 \mathrm{M} \times 4$	Fast-page; write-per-bit	5
424412	$1 \mathrm{M} \times 4$	Static-column; write-per-bit	5 g
424440	$1 \mathrm{M} \times 4$	Fast-page; 4 CAS	5 h
424440 L	$1 \mathrm{M} \times 4$	Fast-page; $4 \overline{\mathrm{CAS}}$; 3.3-volt	
4254440	$1 \mathrm{M} \times 4$	Fast-page; 4 CAS: self-refresh	
$42 S 4440 \mathrm{~L}$	$1 \mathrm{M} \times 4$	Fast-page; $4 \overline{\mathrm{CAS}}$; self-refresh; 3.3-volt	

Volume 1 (cont)

Section 6. 4M DRAMs (512K x 8/9)

μ PD	Organization	Features	
424800 A	$512 \mathrm{~K} \times 8$	Fast-page	6 a
424800 L	$512 \mathrm{~K} \times 8$	Fast-page; 3.3-volt	
42 S 4800 A	$512 \mathrm{~K} \times 8$	Fast-page; self-refresh	
42 S 4800 L	$512 \mathrm{~K} \times 8$	Fast-page; self-refresh; 3.3-volt	
424810 A	$512 \mathrm{~K} \times 8$	Fast-page; write-per-bit	6 b
424810 L	$512 \mathrm{~K} \times 8$	Fast-page; write-per-bit; 3.3-volt	
42 S 4810 A	$512 \mathrm{~K} \times 8$	Fast-page; write-per-bit; self-refresh	
42 S 4810 L	$512 \mathrm{~K} \times 8$	Fast-page; write-per-bit; self-refresh; 3.3-volt	
424900 A	$512 \mathrm{~K} \times 9$	Fast-page	6 C
424900 L	$512 \mathrm{~K} \times 9$	Fast-page; 3.3-volt	
42 S 4900 A	$512 \mathrm{~K} \times 9$	Fast-page; self-refresh	
42 S 4900 L	$512 \mathrm{~K} \times 9$	Fast-page; self-refresh; 3.3-volt	

Section 7. 4M DRAMs ($256 \mathrm{~K} \times 16 / 18$)

$\mu \mathrm{PD}$	Organization	Features	
424170A	256K x 16	Fast-page; $2 \overline{\mathrm{WE}}$; 1 K refresh	7 a
424170L	$256 \mathrm{~K} \times 16$	Fast-page; $2 \overline{\mathrm{WE}} ; 1 \mathrm{~K}$ refresh; 3.3-volt	
42S4170A	$256 \mathrm{~K} \times 16$	Fast-page; $2 \overline{\mathrm{WE}} ; 1 \mathrm{~K}$ refresh; self-refresh	
42S4170L	$256 \mathrm{~K} \times 16$	Fast-page; $2 \overline{\text { WE; }} 1 \mathrm{~K}$ refresh; self-refresh; 3.3-volt	
424190A	$256 \mathrm{~K} \times 18$	Fast-page; $2 \overline{\mathrm{WE}}$; 1 K refresh	7b
424190L	256K x 18	Fast-page; $2 \overline{\mathrm{WE}}$; 1 K refresh; 3.3-volt	
42S4190A	256K $\times 18$	Fast-page; $2 \overline{\mathrm{WE}}$; 1 K refresh; self-refresh	
42S4190L	$256 \mathrm{~K} \times 18$	Fast-page; $2 \overline{\mathrm{WE}}$; 1 K refresh; self-refresh; 3.3-volt	
424260A	256K x 16	Fast-page; $2 \overline{\mathrm{CAS}} ; 512$ refresh	76
424260 L	$256 \mathrm{~K} \times 16$	Fast-page; $2 \overline{\mathrm{CAS}} ; 512$ refresh; 3.3-volt	
42S4260A	$256 \mathrm{~K} \times 16$	Fast-page; $2 \overline{\mathrm{CAS}} ; 512$ refresh; self-refresh	
$42 \mathrm{S4260L}$	$256 \mathrm{~K} \times 16$	Fast-page; $2 \overline{\mathrm{CAS}}$; 512 refresh; self-refresh; 3.3-volt	
424263A	256K $\times 16$	Fast-page; $2 \overline{\text { CAS; }} 512$ refresh; write-per-bit	7 d
424263L	256K x 16	Fast-page; $2 \overline{\mathrm{CAS}} ; 512$ refresh; write-per-bit; 3.3volt	
42S4263A	256K x 16	Fast-page; $2 \overline{\mathrm{CAS}} ; 512$ refresh; write-per-bit; selfrefresh	
42S4263L	256K x 16	Fast-page; $2 \overline{\mathrm{CAS}} ; 512$ refresh; write-per-bit; selfrefresh; 3.3-volt	

Volume 1 (cont)

Section 7. 4M DRAMs ($256 \mathrm{~K} \times 16 / 18$) (cont)

μ PD	Organization	Features	
424280 A	$256 \mathrm{~K} \times 18$	Fast-page; $2 \overline{\mathrm{CAS} ; 512 \text { refresh }}$	7 e
424280 L	$256 \mathrm{~K} \times 18$	Fast-page; $2 \overline{\mathrm{CAS} ;} 512$ refresh; 3.3-volt	
42 S 4280 A	$256 \mathrm{~K} \times 18$	Fast-page; $2 \overline{\mathrm{CAS} ; 512 \text { refresh; self-refresh }}$	
$42 S 4280 \mathrm{~L}$	$256 \mathrm{~K} \times 18$	Fast-page; $2 \overline{\mathrm{CAS} ; 512 \text { refresh; self-refresh; 3.3-volt }}$	

Section 8. 16M DRAMs

$\mu \mathrm{PD}$	Organization	Features	
4216100	16M x 1	Fast-page; 4K refresh	8a
4217100	$16 \mathrm{M} \times 1$	Fast-page; 2 K refresh	
4216101	$16 \mathrm{M} \times 1$	Nibble; 4K refresh	8b
4217101	$16 \mathrm{M} \times 1$	Nibble; 2K refresh	
4216102	$16 \mathrm{M} \times 1$	Static-column; 4K refresh	8c
4217102	$16 \mathrm{M} \times 1$	Static-column; 2K refresh	
4216400	$4 \mathrm{M} \times 4$	Fast-page; 4K refresh	8d
4217400	$4 \mathrm{M} \times 4$	Fast-page; 2 K refresh	
4216402	$4 \mathrm{M} \times 4$	Static-column; 4K refresh	8 e
4217402	$4 \mathrm{M} \times 4$	Static-column; 2K refresh	
4216410	$4 \mathrm{M} \times 4$	Fast-page; 4K refresh; write-per-bit	8 f
4217410	$4 \mathrm{M} \times 4$	Fast-page; 2 K refresh; write-per-bit	
4216412	$4 \mathrm{M} \times 4$	Static-column; 4K refresh; write-per-bit	8 g
4217412	$4 \mathrm{M} \times 4$	Static-column; 2K refresh; write-per-bit	
4216800	$2 \mathrm{M} \times 8$	Fast-page; 4K refresh	8h
4216800 L	$2 \mathrm{M} \times 8$	Fast-page; 4K refresh; 3.3-volt	
42 S16800	$2 \mathrm{M} \times 8$	Fast-page; 4K refresh; self-refresh	
42S16800L	$2 \mathrm{M} \times 8$	Fast-page; 4K refresh; self-refresh; 3.3-volt	
4217800	$2 \mathrm{M} \times 8$	Fast-page; 2K refresh	
4217800 L	$2 \mathrm{M} \times 8$	Fast-page; 2K refresh; 3.3-volt	
42S17800	$2 \mathrm{M} \times 8$	Fast-page; 2 K refresh; self-refresh	
42 S 17800 L	$2 \mathrm{M} \times 8$	Fast-page; 2K refresh; self-refresh; 3.3-volt	
4216802	$2 \mathrm{M} \times 8$	Static-column	8 i

Volume 1 (cont)

Section 8. 16M DRAMs (cont)

$\mu \mathrm{PD}$	Organization	Features	
4216900	$2 \mathrm{M} \times 9$	Fast-page; 4K refresh	8 j
4216900 L	$2 \mathrm{M} \times 9$	Fast-page; 4K refresh; 3.3-volt	
42 S 16900	$2 \mathrm{M} \times 9$	Fast-page; 4K refresh; self-refresh	
42S16900L	$2 \mathrm{M} \times 9$	Fast-page; 4K refresh; self-refresh; 3.3-volt	
4217900	$2 \mathrm{M} \times 9$	Fast-page; 2 K refresh	
4217900 L	$2 \mathrm{M} \times 9$	Fast-page; 2K refresh; 3.3-volt	
$42 \mathrm{S17900}$	$2 \mathrm{M} \times 9$	Fast-page; 2K refresh; self-refresh	
42S17900L	$2 \mathrm{M} \times 9$	Fast-page; 2K refresh; self-refresh; 3.3-volt	
4216902	$2 \mathrm{M} \times 9$	Static-column	8 k
4216160	$1 \mathrm{M} \times 16$	Fast-page; 4K refresh	81
4216160 L	$1 \mathrm{M} \times 16$	Fast-page; 4K refresh; 3.3-volt	
$42 S 16160$	$1 \mathrm{M} \times 16$	Fast-page; 4K refresh; self-refresh	
$42 \mathrm{S16160L}$	$1 \mathrm{M} \times 16$	Fast-page; 4K refresh; self-refresh; 3.3-volt	
4217160	$1 \mathrm{M} \times 16$	Fast-page; 2K refresh	
4217160 L	$1 \mathrm{M} \times 16$	Fast-page; 2K refresh; 3.3-volt	
42 S 17160	$1 \mathrm{M} \times 16$	Fast-page; 2 K refresh; self-refresh	
42S17160L	$1 \mathrm{M} \times 16$	Fast-page; 2K refresh; self-refresh; 3.3-volt	
4218160	$1 \mathrm{M} \times 16$	Fast-page; 1K refresh	
4218160 L	$1 \mathrm{M} \times 16$	Fast-page; 1K refresh; 3.3-volt	
$42 \mathrm{S18160}$	$1 \mathrm{M} \times 16$	Fast-page; 1K refresh; self-refresh	
42S18160L	$1 \mathrm{M} \times 16$	Fast-page; 1K refresh; self-refresh; 3.3-volt	
4216180	$1 \mathrm{M} \times 18$	Fast-page; 4 K refresh	8 m
4216180 L	$1 \mathrm{M} \times 18$	Fast-page; 4K refresh; 3.3-volt	
42 S16180	$1 \mathrm{M} \times 18$	Fast-page; 4K refresh; self-refresh	
42S16180L	$1 \mathrm{M} \times 18$	Fast-page; 4K refresh; self-refresh; 3.3-volt	
4217180	$1 \mathrm{M} \times 18$	Fast-page; 2 K refresh	
4217180 L	$1 \mathrm{M} \times 18$	Fast-page; 2 K refresh; 3.3-volt	
42 S 17180	$1 \mathrm{M} \times 18$	Fast-page; 2 K refresh; self-refresh	
42S17180L	$1 \mathrm{M} \times 18$	Fast-page; 2K refresh; self-refresh; 3.3-volt	
4218180	$1 \mathrm{M} \times 18$	Fast-page; 1K refresh	
4218180 L	$1 \mathrm{M} \times 18$	Fast-page; 1K refresh; 3.3-volt	
42 S 18180	$1 \mathrm{M} \times 18$	Fast-page; 1 K refresh; self-refresh	
42S18180L	$1 \mathrm{M} \times 18$	Fast-page; 1K refresh; self-refresh; 3.3-volt	

Volume 1 (cont)

Section 9. DRAM Modules ($256 \mathrm{~K} / 512 \mathrm{~K} \times \mathrm{n}$)

MC	Organization	Features	
-42256 AB 8	$256 \mathrm{~K} \times 8$	Fast-page	9 a
-42256 AB 9	$256 \mathrm{~K} \times 9$	Fast-page	9 b
-42256 A 32	$256 \mathrm{~K} \times 32$	Fast-page	9 c
-42256 A 36	$256 \mathrm{~K} \times 36$	Fast-page	9 d
-42256 AA 40	$256 \mathrm{~K} \times 40$	Fast-page	9 e
-42512 A 32	$512 \mathrm{~K} \times 32$	Fast-page	9 f
-42512 A 36	$512 \mathrm{~K} \times 36$	Fast-page	9 g
-42512 AA 40,	$512 \mathrm{~K} \times 40$	Fast-page	9 h

Section 10. DRAM Modules (1 $M / 2 M \times n$)

MC	Organization	Features	
$-421000 A 8$	$1 \mathrm{M} \times 8$	Fast-page	10 a
-421000 A 9	$1 \mathrm{M} \times 9$	Fast-page	10 b
-421000 A 32	$1 \mathrm{M} \times 32$	Fast-page	10 c
-421000 A 36	$1 \mathrm{M} \times 36$	Fast-page	10 d
-421000 AA 40,	$1 \mathrm{M} \times 40$	Fast-page	10 e
$-421000 \mathrm{AB40}$			10 f
-422000 A 32	$2 \mathrm{M} \times 32$	Fast-page	10 g
-422000 A 36	$2 \mathrm{M} \times 36$	Fast-page	10 h
$-422000 \mathrm{AA40}$	$2 \mathrm{M} \times 40$	Fast-page	

Volume 1 (cont)

Section 11. DRAM Modules (4M/8M x n)

MC	Organization	Features	
-424000 A 8	$4 \mathrm{M} \times 8$	Fast-page	11 a
-424000 A 9	$4 \mathrm{M} \times 9$	Fast-page	11 b
-424000 A 32	$4 \mathrm{M} \times 32$	Fast-page	11 c
-424000 A 36	$4 \mathrm{M} \times 36$	Fast-page	11 d
-428000 A 32	$8 \mathrm{M} \times 32$	Fast-page	11 e
-428000 A 36	$8 \mathrm{M} \times 36$	Fast-page	11 f

Section 12. Video RAMs (See App Notes 89-15, 89-16, 90-01.)

μ PD	Organization	Features	12 a
41264	$64 \mathrm{~K} \times 4$	Page; NMOS	12 b
42264	$64 \mathrm{~K} \times 4$	Page; CMOS	12 c
42273	$256 \mathrm{~K} \times 4$		12 d
42274	$256 \mathrm{~K} \times 4$	Flash-write	12 e
$42274-80$	$256 \mathrm{~K} \times 4$	Flash-write; high-performance	12 f
42275	$128 \mathrm{~K} \times 8$		12 g
482234	$256 \mathrm{~K} \times 8$	Fast-page	
482235	$256 \mathrm{~K} \times 8$	Hyper-page (extended data out)	

Section 13. Synchronous DRAM

| μ PD | Organization | Features | |
| :--- | :--- | :--- | :--- | :--- |
| 42116420 | $4 \mathrm{M} \times 4$ | 3.3 -volt | 13 a |
| 42116820 | $2 \mathrm{M} \times 8$ | 3.3 -volt | |
| 42116920 | $2 \mathrm{M} \times 9$ | 3.3 -volt | |
| 42116162 | $1 \mathrm{M} \times 16$ | 3.3 -volt | |
| 42116182 | $1 \mathrm{M} \times 18$ | 3.3 -volt | |

Section 14. Rambus DRAM

$\mu \mathrm{PD}$	Organization	Features		14 a
488130	$2 \mathrm{M} \times 8$	3.3 -volt		
488170	$2 \mathrm{M} \times 9$	3.3 -volt		

Volume 1 (cont)

Section 15. Application Notes
App Note $53 \quad \mu$ PD421000/421001/421002 1-Megabit Dynamic RAMs 15a
App Note 89-15 Computer Graphics Overview 15b
App Note 89-16 Frame Buffer Architecture 15c
App Note 90-01 Realism in Computer Graphics 15d
Section 16. Package Drawings
Device/Package Cross-Reference 1
Package Drawings (in order by number of pins) 16

Volume 2

Volume 2 (cont)

Section 19. Fast Static RAMs (64K)

$\mu \mathrm{PD}$	Organization	Features	
4361 B	$64 \mathrm{~K} \times 1$	$12-\mathrm{ns}$	19 a
4362 B	16 K x 4	$12-\mathrm{ns}$	19 b
4363 B	$16 \mathrm{~K} \times 4$	$12-\mathrm{ns} ;$ Output enable	19 c
4368	$8 \mathrm{~K} \times 8$	$15-\mathrm{ns} ;$ Output enable, two chip enables	19 d
4369	8 K x 9	15-ns; Output enable, two chip enables	19 e

Section 20. Fast Static RAMs (256K)

$\mu \mathrm{PD}$	Organization	Features	
43251 B	$256 \mathrm{~K} \times 1$	$15-\mathrm{ns}$	20 a
43253 B	$64 \mathrm{~K} \times 4$	$15-\mathrm{ns} ;$ Output enable	20 b
43254 B	$64 \mathrm{~K} \times 4$	$15-\mathrm{ns}$	20 c
43258 A	$32 \mathrm{~K} \times 8$	$15-\mathrm{ns} ;$ Output enable	20 d
43259 A	32 K x 9	$15-\mathrm{ns} ;$ Output enable	20 e

Section 21. Fast Static RAMs (1M)

$\mu \mathrm{PD}$	Organization		
431001	1 M x 1	$20-\mathrm{ns}$	21 a
431004	$256 \mathrm{~K} \times 4$	$20-\mathrm{ns}$	21 b
431008	$128 \mathrm{~K} \times 8$	$15-\mathrm{ns} ;$ Output enable	21 c
431009	$128 \mathrm{~K} \times 9$	$15-\mathrm{ns} ;$ Output enable	21 d
431016	$64 \mathrm{~K} \times 16$	$15-\mathrm{ns} ;$ Output enable	21 e
431018	$64 \mathrm{~K} \times 18$	$15-\mathrm{ns} ;$ Output enable	21 f

Section 22. Fast Static RAMs (4M)

$\mu \mathrm{PD}$	Organization		
434001	4 M x 1	$20-\mathrm{ns}$	22 a
434004	1 M x 4	$20-\mathrm{ns} ;$ Output enable	22 b
434008	512 K x 8	$20-\mathrm{ns} ;$ Output enable	22 c

Section 23. Cache Data RAMs

$\mu \mathrm{PD}$	Organization	Features	
46710 A	$16 \mathrm{~K} \mathrm{x} \mathrm{10} \mathrm{bit} \times 2$	Cache data; 12-ns	23 a
46741 A	$8 \mathrm{~K} \times 20$ bit $\times 2$	Cache data; 12-ns	23 b

Volume 2 (cont)

Section 24. Standard Static RAMs (See App Notes 50, 90-04.)

μ PD	Organization		
43256 A	32 K x 8	$85-n s ;$ Output enable	24 a
43256 B	32 K x 8	$55-\mathrm{ns} ;$ Output enable	24 b
431000 A	128 K x 8	$70-\mathrm{ns} ;$ Output enable, two chip enables	24 c
434000	512 K x 8	$55-\mathrm{ns} ;$ Output enable	24 d
MC-434000	512 K x 8	Module; 85-ns; Output enable	24 e

Section 25. ECL RAMs (10K Interface)

$\mu \mathrm{PB}$	Organization	Features	
10422	256×4	$7-\mathrm{ns}$	25 a
10470	$4 \mathrm{~K} \times 1$	$10-\mathrm{ns}$	25 b
10474	$1 \mathrm{~K} \times 4$	$8-\mathrm{ns}$	25 c
10474 A	$1 \mathrm{~K} \times 4$	$5-\mathrm{ns}$	25 d
10474 E	$1 \mathrm{~K} \times 4$	$3-\mathrm{ns}$	25 e
10476 LL	$1 \mathrm{~K} \times 4$	$6-\mathrm{ns}$	25 f
10480	$16 \mathrm{~K} \times 1$	$10-\mathrm{ns}$	25 g
10484	$4 \mathrm{~K} \times 4$	$10-\mathrm{ns}$	25 h
10484 A	$4 \mathrm{~K} \times 4$	$5-\mathrm{ns}$	25 i
10 A 484	$4 \mathrm{~K} \times 4$	$5-\mathrm{ns}$	25 j
$\mu \mathrm{PD} 10500$	$256 \mathrm{~K} \times 1$	$15-\mathrm{ns} ;$ BiCMOS	25 k

Section 26. ECL RAMs (100K Interface)

$\mu \mathrm{PB}$	Organization	Features	
100422	256×4	7-ns	26a
100470	$4 \mathrm{~K} \times 1$	10-ns	26b
100474	$1 \mathrm{~K} \times 4$	4.5-ns	26c
100474A	$1 \mathrm{~K} \times 4$	5-ns	26d
100474E	$1 \mathrm{~K} \times 4$	3-ns	26 e
100476LL	$1 \mathrm{~K} \times 4$	6-ns	$26 f$
100480	16 Kx 1	10-ns	26g
100484	$4 \mathrm{~K} \times 4$	10-ns	26h
100484A	$4 \mathrm{~K} \times 4$	5-ns	26i
100A484	4K $\times 4$	5-ns	26j
μ PD100500	256K x 1	15-ns; BiCMOS	26k

Volume 2 (cont)

Section 27. EEPROMs

$\mu \mathrm{PD}$	Organization	
28 C 04	512×8	27 a
28 C 05	512×8	27 b
28 C 64	$8 \mathrm{~K} \times 8$	27 c
28 C 256	$32 \mathrm{~K} \times 8$	27 d

Section 28. Application Notes

App Note 90-03	Memory Systems Overview	28 a
App Note 54	μ PD42505 Line Buffer for Communications Systems	28 b
App Note 55	μ PD42101/42102 High-Speed Line Buffers	28 c
App Note 57	μ PD42101/42102/42505 High-Speed Line Buffers	28 d
App Note 58	Interlaced to Noninterlaced Scan Conversion Using the μ PD42101 High-Speed Line Buffer	28 e
App Note 56	μ PD42601 Silicon File	28 f
App Note 90-06	Silicon File System Architecture	28 g
App Note 90-02	High-Performance Memory Systems	28 h
App Note 50	Battery Backup Circuits for SRAMs	28 i
App Note $90-04$	Battery Backup Using NEC's Supercaps	28 j

Section 29. Package Drawings
Device/Package Cross-Reference 1
Package Drawings (in order by number of pins) 16

Part Number	Section
MC-421000A32.. 10c	
MC-421000A36	
MC-421000A8	
MC-421000A9	
MC-421000AA40	
MC-421000AB40	
MC-42256A32 ... 9c	
MC-42256A36	
MC-42256AA40	
MC-42256AB8	
MC-42256AB9 .. 9b	
MC-424000A32 .. 11c	
MC-424000A36 ... 11d	
MC-424000A8	
MC-424000A9 ... 11b	
MC-428000A32 ...	
$\mu \mathrm{PB100422} \mathrm{..}. \mathrm{26a}$	
μ PB100470	
¢PB100474 .. 26c	
$\mu \mathrm{PB} 100474 \mathrm{~A}$.. 26d	
μ PB100474E ... 26e	
μ PB100476LL	
μ PB100480 ... 26 g	
$\mu \mathrm{PB} 100484$	
μ PB100484A ... 26	
μ PB100A484 .. 26j	
$\mu \mathrm{PB} 10422$.. 25a	
μ PB10470	
μ PB10474 ... 25c	
$\mu \mathrm{PB10474A}$... 25d	
$\mu \mathrm{PB10474E}$... 25e	
μ PB10476LL	
μ PB10480 .. 25g	
μ PB10484 ... 25h	
μ PB10484A .. 25i	
μ PB10A484 .. 25j	

Part Number Section
μ PD100500 26k
μ PD10500 25k
μ PD28C04 27a
μ PD28C05 27b
μ PD28C256 27d
μ PD28C64 27c
μ PD41256 3а
μ PD41264 12a
μ PD41464 $3 b$
μ PD421000 4a
μ PD42101 18a
μ PD42102 18b
μ PD42116162 13a
μ PD42116182 13a
μ PD42116420 13a
μ PD42116820 13a
μ PD42116920 13a
μ PD4216100 8a
μ PD4216101 8b
μ PD4216102 8
μ PD4216160 8
μ PD4216160L 81
μ PD4216180 8m
μ PD4216180L 8m
μ PD4216400 8d
μ PD4216402 $8 e$
μ PD4216410 $8 f$
μ PD4216412 8 g
μ PD4216800 8h
μ PD4216800L 8h
μ PD4216802 $8 i$
μ PD4216900 $8 i$
μ PD4216900L 8j
μ PD4216902 8k
μ PD4217100 8a
μ PD4217101 8b
μ PD4217102 8 c
μ PD4217160 8
μ PD4217160L 81
μ PD4217180 8m
μ PD4217180L 8m
μ PD4217400 8d
μ PD4217402 8 e
μ PD4217410 $8 f$
Part Number Section
μ PD4217412 8 g
μ PD4217800 8h
μ PD4217800L 8h
μ PD4217900 $8 j$
μ PD4217900L 8j
μ PD42 18160 81
μ PD4218160L 81
μ PD42 18180 8m
$\mu \mathrm{PD} 4218180 \mathrm{~L}$ 8 m
μ PD42264 12b
μ PD42270 18c
μ PD42271 18d
μ PD42272 18d
μ PD42273 12c
μ PD42274 12d
μ PD42274-80 $12 e$
μ PD42275 12f
μ PD42280 18e
μ PD424100 5a
μ PD 424100 A 5a
μ PD 424100 L 5a
μ PD424101 5b
μ PD424102 5c
μ PD424170A 7a
μ PD424170L 7a
μ PD424190A 7b
μ PD424190L 7b
μ PD424256 4b
μ PD424260A 7c
μ PD424260L 7c
μ PD424263A 7d
μ PD424263L 7d
μ PD424280A 7 e
μ PD424280L 7 e
μ PD424400 5d
μ PD424400A 5d
μ PD 424400 L 5d
μ PD424402 5e
μ PD424410 $5 f$
μ PD424412 5 g
μ PD424440 5h
μ PD424440L 5h
μ PD424800A 6a
μ PD424800 6a
μ PD424810A 6b
μ PD424810L 6b
Part Number Section
μ PD424900A 6c
μ PD424900L 6c
μ PD42505 18f
μ PD42532 $18 i$
μ PD42601 18j
μ PD42641 18k
μ PD42644 181
μ PD42S16160 81
μ PD42S16160L 81
μ PD42S16180 8m
μ PD42S16180L 8 m
μ PD42S16800 8 h
μ PD42S16800 8h
μ PD42S16900 8j
μ PD42S16900L 8j
μ PD42S17160 81
μ PD42S17160L 8
μ PD42S17180 8m
μ PD42S17180L 8 m
μ PD42S17800 8h
μ PD 42 S17800L 8h
μ PD42S17900 8j
μ PD42S17900L 8j
μ PD42S18160 8)
μ PD42S18160L 81
μ PD42S18180 8m
μ PD42S18180L 8 m
μ PD42S4100A 5a
μ PD42S4100L 5 a
μ PD42S4170A 7a
μ PD42S4170L $7 a$
μ PD42S4190A 7b
μ PD42S4190L 7b
μ PD42S4260A 7c
μ PD42S4260L 7 C
μ PD42S4263A 7d
μ PD42S4263L 7d
μ PD42S4280A 7 e
μ PD42S4280L 7 e
μ PD 42 S4400A 5d
μ PD42S4400L 5d
μ PD42S4440 5h
μ PD42S4440L 5h
Part Number Section
μ PD42S4800A 6a
μ PD42S4800L 6a
μ PD42S4810A 6b
μ PD42S4810L 6b
μ PD42S4900A 6 c
μ PD42S4900L 6c
μ PD431000A 24c
μ PD431001 21a
μ PD431004 21b
μ PD431008 21c
μ PD431009 21d
μ PD431016 21e
μ PD431018 $21 f$
μ PD43251B 20a
μ PD43253B 20b
μ PD43254B 20c
μ PD43256A 24a
μ PD43256B 24b
μ PD43258A 20d
μ PD43259A $20 e$
μ PD434000 24d
μ PD434001 22a
μ PD434004 22b
μ PD434008 22c
Part Number Section
μ PD4361B 19a
μ PD4362B 19b
μ PD4363B 19c
μ PD4368 19d
μ PD4369 19e
μ PD46710A 23a
μ PD46741A 23b
μ PD481440 18 m
μ PD482234 12 g
μ PD482235 12 g
μ PD485505 18 g
μ PD485506 18h
μ PD488130 14a
μ PD488170 14a

General
17

Application Specific Devices

Fast Stiaic RaMls (64K)

Fast Static RaMs (256R)

Fask Stabic RAMM
(14)

Fast Static RAMMs (4MI)

Cache Data ranis

Standard Static RAMs
Section 17
General Information
Upcoming Products 1
Manufacturing in Roseville, California 3
Device Numbering Guide 4
Quick Reference Guide 5

The 1993 MEMORY DATA BOOK is for your reference. The most complete information available at printing is included; however, several new devices will be avail-
able soon. The table below gives you a preview. For further assistance, contact one of the sales offices.

Upcoming Products

Description Device Number Comments

DRAM SIMM Modules

$4 \mathrm{M} \times 8$ DRAM Module	MC-424000A8BB/FB	Uses 16 M devices
$4 \mathrm{M} \times 9$ DRAM Module	MC-424000A9BB/FB	Uses 16 M devices
$16 \mathrm{M} \times 8$ DRAM Module	MC-4216000A8BH/FA/AA	Uses 16 M devices
$16 \mathrm{M} \times 9$ DRAM Module	MC-4216000A9BH/FA/AA	Uses 16 M devices
4 M x 40 DRAM Module	MC-424000AA40BH/FH	Uses 16 M devices
8 M x 40 DRAM Module	MC-428000AA40BH/FH	Uses 16 M devices

Video RAMs

4M Video RAM	μ PD482445	$256 \mathrm{~K} \times 16$; RAM port access times to 60 ns ; serial port access times to 15 ns; 64-pin SSOP, 70-pin TSOP
Standard SRAMs		
$32 \mathrm{~K} \times 8$	$\mu \mathrm{PD} 43256 \mathrm{~A}-10 \mathrm{X}, 12 \mathrm{X}$	-25 to $+85^{\circ} \mathrm{C}$; speeds to 100 ns
$32 \mathrm{~K} \times 8$	$\mu \mathrm{PD} 43256 \mathrm{~A}-10 \mathrm{Y}, 12 \mathrm{Y}$	-40 to $+85^{\circ} \mathrm{C}$; speeds to 100 ns
$32 \mathrm{~K} \times 8$	$\mu \mathrm{PD} 43256 \mathrm{~B}-\mathrm{A12}$	3.0 to $5.5 \mathrm{~V} ; 120$-ns access time
$32 \mathrm{~K} \times 8$	$\mu \mathrm{PD} 43256 \mathrm{~B}-\mathrm{B} 12$	2.7 to $5.5 \mathrm{~V} ; 120-\mathrm{ns}$ access time
$128 \mathrm{~K} \times 8$	μ PD431000A-70X, 85X, 100X	-25 to $+85^{\circ} \mathrm{C}$; speeds to 70 ns
$128 \mathrm{~K} \times 8$	$\mu \mathrm{PD} 431000 \mathrm{~A}-70 \mathrm{Y}, 85 \mathrm{Y}, 100 \mathrm{Y}$	-40 to $+85^{\circ} \mathrm{C}$; speeds to 70 ns
$128 \mathrm{~K} \times 8$	μ PD431000B-55L/LL, 70L/LL, 85L/LL	Low power; speeds to 55 ns
$128 \mathrm{~K} \times 8$	μ PD431000B-B10, B12	2.7 to 5.5 V ; speeds to 100 ns
$128 \mathrm{~K} \times 9$	$\mu \mathrm{PD} 431003$	Low power; speeds to 55 ns ; two Chip Enables
$128 \mathrm{~K} \times 9$	$\mu \mathrm{PD} 431003-\mathrm{B} 10, \mathrm{~B} 12$	2.7 to 5.5 V ; speeds to 100 ns ; two Chip Enables
$512 \mathrm{~K} \times 8$	μ PD434000-B15	2.7 to 5.5 V ; 150-ns access time; two Chip Enables

BiCMOS Fast SRAMs

$32 \mathrm{~K} \times 8$	$\mu \mathrm{PD} 46258$	Speeds to $6 \mathrm{~ns} ; 3.3$ - and 5-V versions
$32 \mathrm{~K} \times 9$	$\mu \mathrm{PD} 46259$	Speeds to $6 \mathrm{~ns} ; 3.3$ - and 5-V versions
$128 \mathrm{~K} \times 8$	$\mu \mathrm{PD} 461008$	Speeds to $8 \mathrm{~ns} ; 3.3$ - and 5-V versions
$128 \mathrm{~K} \times 9$	$\mu \mathrm{PD} 461009$	Speeds to $8 \mathrm{~ns} ; 3.3$ - and 5-V versions
$64 \mathrm{~K} \times 16$	$\mu \mathrm{PD} 461016$	Speeds to $8 \mathrm{~ns} ; 3.3$ - and 5-V versions
$64 \mathrm{~K} \times 18$	$\mu \mathrm{PD} 461018$	Speeds to $8 \mathrm{~ns} ; 3.3$ - and $5-\mathrm{V}$ versions

Upcoming Products (cont)
Description Device Number Comments

ECL RAMs (10K Interface)

$16 \mathrm{~K} \times 4$	μ PD10494	$T_{\text {AA }}=6,7 \mathrm{~ns} ; 28$-pin PDIP/PFP	
$16 \mathrm{~K} \times 4$	μ PD10494LL	Tcycle $=10,12 \mathrm{~ns} ; 32$-pin PDIP/PFP	
$32 \mathrm{~K} \times 9$	$\mu \mathrm{PD} 10509$	Tcycle $=6, \mathrm{TDQ}=3$; registered $/ / O$, scannable; 52-pin PLCC	
$64 \mathrm{~K} \times 4$	$\mu \mathrm{PD} 10504$	$T_{\text {AA }}=8,10 \mathrm{~ns} ; 32$-pin PDIP/PFP	

ECL RAMs (101/100K Interface)

$16 \mathrm{~K} \times 4$	$\mu \mathrm{PD101/100494}$	$\mathrm{T}_{\text {AA }}=6,7 \mathrm{~ns} ;$ 28-pin PDIP/PFP
$16 \mathrm{~K} \times 4$	μ PD101/100494LL.	Tcycle $=10,12 \mathrm{~ns} ; 32$-pin PDIP/PFP
$32 \mathrm{~K} \times 9$	μ PD101/100509	Tcycle $=6, \mathrm{TDQ}=3$; registered I / O, scannable; 52-pin PLCC
$64 \mathrm{~K} \times 4$	μ PD101/100504	$\mathrm{T}_{\text {AA }}=8,10 \mathrm{~ns} ; 32-\mathrm{pin}$ PDIP/PFP

Manufacturing in Roseville, California

The planning was completed in 1981, ground was broken in 1982 and products were rolling off the line in 1984 at our semiconductor fabrication facility in Roseville, California. This milestone represented NEC's bold approach to "make products where the customer lives," and it was the first such venture by a Japanese semiconductor company in the United States. The foresight of this decision has paid off handsomely for NEC, its U.S. customers and for the community of greater Sacramento, the capital of California. The original facility has been manufacturing 256 K DRAMs and VRAMs, $32 \mathrm{~K} \times 8$ SRAMs, CMOS ASICs and single-chip microprocessors using 1.2-micron CMOS and NMOS technologies.

Now another milestone has been reached. In November 1991, production of the 4M DRAM began from a newly constructed 456,000-square-foot plant. Combined with the existing 220,000 square-foot facility, NEC Electronics (NECEL) in Roseville is one of the largest merchant fab lines in the world, according to industry source DataQuest.

In addition to the 4M DRAM, the new plant will be capable of producing advanced VLSI products including 16M DRAMs, 4M SRAMs as well as ASICs and microprocessors. The expanded facility will be able to produce 30,0006 -inch wafers per month using 0.55 -micron CMOS technology.

The fab has been designed with the most sophisticated technology available, incorporating state-of-the-art environmental controls and efficiencies. A considerable amount of money has been invested for this purpose, as NEC regards environmental conservation as one of the most important international issues.

When running at full capacity, equipment in place will allow up to 60-percent of the water used for the DI process to be recycled-an important benefit for
drought-ridden California. In addition, the new plant has eliminated the use of chlorofluorocarbons (CFC) in the manufacturing process. (The existing facility will eliminate all CFC usage by 1993.)

NECEL's manufacturing presence in Roseville is of significant benefit to the local community as well as the state of California. When running at full capacity, the plant will employ over 1,350 people, and nearly $\$ 5$ million in tax revenue will be generated for the city, county and state.

As one of the biggest employers in the area, NECEL views itself as a partner with the local community and takes seriously its role as a good corporate citizen. Through numerous community relations activities, employees volunteer their time to support worthwhile educational and charitable causes. The company also has a generous policy for contributions and donations of equipment and money to help maintain a high quality of life for the area's residents.

In addition to the manufacturing facility in Roseville, NECEL has headquarter offices in Mountain View, California, in the heart of Silicon Valley. Sales offices are located throughout the United States so that customers have immediate access to qualified personnel. These national presences, combined with on-shore manufacturing capabilities, allow NEC Electronics to respond quickly to customer demand and to work closely with customers to meet their changing requirements. The company considers quality customer service to be a number one priority, a trademark of all NEC operations worldwide.

The NECEL facility in Roseville is an outstanding example of successful cultural meshing, offering the best of both worlds. The results are production yields and quality standards that are among the highest obtained by any NEC semiconductor manufacturing facility anywhere.

Notes:

(1) The marking location and format may vary among package types.
(2) Regardless of the format, the device number does not change.
(3) The " $\mu \mathrm{P}$ " in NEC part numbers does not appear on the package.

Quick Reference Guide

DRAMs

Size	Organization	$\mu \mathrm{PD}$	Features	Row Access Time (ns)	Package and Pins				Sect.
					SOJ	TSOP	ZIP	Other	
256K	$256 \mathrm{~K} \times 1$	41256	Page	80, 85, 100				$\begin{aligned} & \text { 16-DIP, } \\ & \text { 18-PLCC } \end{aligned}$	3a
	$64 \mathrm{~K} \times 4$	41464	Page	80, 100, 120				$\begin{aligned} & \text { 16-DIP } \\ & \text { 18-PLCC } \end{aligned}$	3b
1M	1 Mx 1	421000	FP	60, 70, 80, 100	26/20	24/20	20	18-DIP	4a
	$256 \mathrm{~K} \times 4$	424256	FP	$60,70,80,100$	26/20	24/20	20	20-DIP	4b
4 M	$4 \mathrm{M} \times 1$	424100	FP	60, 70, 80, 100	26/20	26/20	20		5a
	$4 \mathrm{M} \times 1$	424100A	FP	50, 60, 70, 80	26/20	26/20	20		
	$4 \mathrm{M} \times 1$	424100L	FP; 3.3 V	70, 80	26/20	26/20	20		
	$4 \mathrm{M} \times 1$	42S4100A	FP; SR	50, 60, 70, 80	26/20	26/20	20		
	$4 \mathrm{M} \times 1$	42S4100L	FP; SR; 3.3 V	70, 80	26/20	26/20	20		
	$4 \mathrm{M} \times 1$	424101	Nibble	60, 70, 80, 100	26/20	26/20	20		5b
	$4 \mathrm{M} \times 1$	424102	SC	60, 70, 80, 100	26/20	26/20	20		5c
	1 Mx 4	424400	FP	60, 70, 80	26/20	26/20	20		5d
	$1 \mathrm{M} \times 4$	424400A	FP	50, 60, 70, 80	26/20	26/20	20		
	$1 \mathrm{M} \times 4$	424400L	FP; 3.3 V	70, 80	26/20	26/20	20		
	$1 \mathrm{M} \times 4$	42S4400A	FP; SR	50, 60, 70, 80	26/20	26/20	20		
	$1 \mathrm{M} \times 4$	42S4400L	FP; SR; 3.3 V	70,80	26/20	26/20	20		
	$1 \mathrm{M} \times 4$	424402	SC	60, 70, 80, 100	26/20	26/20	20		$5 e$
	$1 \mathrm{M} \times 4$	424410	FP; WPB	60, 70, 80, 100	26/20	26/20	20		$5 f$
	$1 \mathrm{M} \times 4$	424412	SC; WPB	60, 70, 80, 100	26/20	26/20	20		5 g
	$1 \mathrm{M} \times 4$	424440	FP; 4 CAS	$60,70,80$	26/24				5h
	$1 \mathrm{M} \times 4$	424440L	FP; 4 CAS; 3.3 V	60, 70, 80	26/24				
	1 Mx 4	$42 S 4440$	FP; $4 \overline{\mathrm{CAS}}$; SR	60, 70, 80	26/24				
	$1 \mathrm{M} \times 4$	42S4440L	FP; $4 \overline{\mathrm{CAS}}$; SR; 3.3 V	60, 70, 80	26/24				

[^0]
DRAMs (cont)

Size	Organization	$\mu \mathrm{PD}$	Features	Row Access Time (ns)	Package and Pins			Sect.
					SOJ	TSOP	ZIP	
4M (cont)	$512 \mathrm{~K} \times 8$	424800A	FP	60, 70, 80	28	28	28	6 a
	$512 \mathrm{~K} \times 8$	424800L	FP; 3.3V	60, 70, 80	28	28	28	
	$512 \mathrm{~K} \times 8$	42S4800A	FP; SR	60, 70, 80	28	28	28	
	$512 \mathrm{~K} \times 8$	42S4800L	FP; SR; 3.3 V	60, 70, 80	28	28	28	
	$512 \mathrm{~K} \times 8$	424810A	FP; WPB	60, 70, 80	28	28	28	6 b
	$512 \mathrm{~K} \times 8$	424810L	FP; WPB; 3.3 V	60, 70, 80	28	28	28	
	$512 \mathrm{~K} \times 8$	42S4810A	FP; WPB; SR	60, 70, 80	28	28	28	
	$512 \mathrm{~K} \times 8$	42S4810L	FP; WPB; SR; 3.3 V	60, 70, 80	28	28	28	
	$512 \mathrm{~K} \times 9$	424900A	FP	60, 70, 80	28	28	28	6 c
	$512 \mathrm{~K} \times 9$	424900 L	FP; 3.3 V	60, 70, 80	28	28	28	
	$512 \mathrm{~K} \times 9$	42S4900A	FP; SR	60, 70, 80	28	28	28	
	$512 \mathrm{~K} \times 9$	42S4900L	FP; SR; 3.3 V	60, 70, 80	28	28	28	
	$256 \mathrm{~K} \times 16$	424170A	FP; $2 \overline{W E}$; 1 K ref	60, 70, 80	40	44/40	40	7a
	$256 \mathrm{~K} \times 16$	424170L	FP; $2 \overline{W E}$; 1 K ref; 3.3 V	60, 70, 80	40	44/40	40	
	$256 \mathrm{~K} \times 16$	42S4170A	FP; $2 \overline{\text { WE; }} 1 \mathrm{~K}$ ref; SR	60, 70, 80	40	44/40	40	
	$256 \mathrm{~K} \times 16$	42S4170L	FP; $2 \overline{W E}$; 1 K ref; SR; 3.3 V	60, 70, 80	40	44/40	40	
	$256 \mathrm{~K} \times 18$	424190A	FP; $2 \overline{W E}$; 1 K ref	60, 70, 80	40	44/40	40	7b
	256K $\times 18$	424190L	FP; 2 WE; 1 K ref; 3.3 V	60, 70, 80	40	44/40	40	
	$256 \mathrm{~K} \times 18$	42S4190A	FP; 2 WE; 1K ref; SR	$60,70,80$	40	44/40	40	
	$256 \mathrm{~K} \times 18$	42S4190L	FP; $2 \overline{W E}$; 1 K ref; SR; 3.3 V	$60,70,80$	40	44/40	40	
	$256 \mathrm{~K} \times 16$	424260A	FP; 2 CAS; 512 ref	60, 70, 80	40	44/40	40	7 c
	$256 \mathrm{~K} \times 16$	424260L	FP; 2 CAS; 512 ref; 3.3 V	60, 70, 80	40	44/40	40	
	$256 \mathrm{~K} \times 16$	42S4260A	FP; $2 \overline{\text { CAS }} 512$ ref; SR	60, 70, 80	40	44/40	40	
	$256 \mathrm{~K} \times 16$	42S4260L	FP; 2 CAS; 512 ref; SR; 3.3 V	$60,70,80$	40	44/40	40	
	$256 \mathrm{~K} \times 16$	424263A	FP; 2 CAS; 512 ref; WPB	60, 70, 80	40	44/40	40	7d
	$256 \mathrm{~K} \times 16$	424263L	FP; $2 \overline{\mathrm{CAS}}$; 512 ref; WPB; 3.3 V	60, 70, 80	40	44/40	40	
	$256 \mathrm{~K} \times 16$	42S4263A	FP; 2 CAS; 512 ref; WPB; SR	60, 70, 80	40	44/40	40	
	$256 \mathrm{~K} \times 16$	42S4263L	FP; $2 \overline{\text { CAS }}$; 512 ref; WPB; SR; 3.3 V	60, 70, 80	40	44/40	40	
	$256 \mathrm{~K} \times 18$	424280A	FP; 2 CAS; 512 ref	60, 70, 80	40	44/40	40	$7 e$
	$256 \mathrm{~K} \times 18$	4242801.	FP; $2 \overline{\text { CAS; }} 512$ ref; 3.3 V	$60,70,80$	40	44/40	40	
	$256 \mathrm{~K} \times 18$	42S4280A	FP; 2 CAS; 512 ref; SR	60, 70, 80	40	44/40	40	
	$256 \mathrm{~K} \times 18$	42S4280L	FP; $2 \overline{\text { CAS }}$; 512 ref; SR; 3.3 V	60, 70, 80	40	44/40	40	

FP Fast page
SR Self-refresh
WPB Write-per-bit
ref Refresh
$\overline{W E}$ Write enable

DRAMs (cont)

Size	Organization	$\mu \mathrm{PD}$	Features	Row Access Time (ns)	Packages and Pins			Sect.
					SOJ	TSOP	ZIP	
16M	$16 \mathrm{M} \times 1$	4216100	FP; 4K ref	60, 70, 80, 100	28/24	28/24	24	8 a
	$16 \mathrm{M} \times 1$	4217100	FP; 2K ref	60, 70, 80, 100	28/24	28/24	24	
	$16 \mathrm{M} \times 1$	4216101	Nibble; 4K ref	60, 70, 80, 100	28/24	28/24	24	8b
	$16 \mathrm{M} \times 1$	4217101	Nibble; 2K ref	$60,70,80,100$	28/24	28/24	24	
	$16 \mathrm{M} \times 1$	4216102	SC; 4K ref	60, 70, 80, 100	28/24	28/24	24	8c
	$16 \mathrm{M} \times 1$	4217102	SC; 2K ref	$60,70,80,100$	28/24	28/24	24	
	$4 \mathrm{M} \times 4$	4216400	FP; 4K ref	60, 70, 80, 100	28/24	28/24	24	8d
	$4 \mathrm{M} \times 4$	4217400	FP; 2K ref	$60,70,80,100$	28/24	28/24	24	
	$4 \mathrm{M} \times 4$	4216402	SC; 4K ref	60, 70, 80, 100	28/24	28/24	24	8 e
	$4 \mathrm{M} \times 4$	4217402	SC; 2K ref	60, 70, 80, 100	28/24	28/24	24	
	$4 \mathrm{M} \times 4$	4216410	FP; 4K ref; WPB	$60,70,80,100$	28/24	28/24	24	8 f
	$4 \mathrm{M} \times 4$	4217410	FP; 2K ref; WPB	60, 70, 80, 100	28/24	28/24	24	
	$4 \mathrm{M} \times 4$	4216412	SC; 4K ref; WPB	$60,70,80,100$	28/24	28/24	24	8 g
	$4 \mathrm{M} \times 4$	4217412	SC; 2K ref; WPB	$60,70,80,100$	28/24	28/24	24	
	$2 \mathrm{M} \times 8$	4216800	FP; 4K ref	50, 60, 70, 80	28	28		8h
	$2 \mathrm{M} \times 8$	4216800 L	FP; 4K ref; 3.3 V	60, 70, 80	28	28		
	$2 \mathrm{M} \times 8$	$42 S 16800$	FP; 4K ref; SR	50, 60, 70, 80	28	28		
	$2 \mathrm{M} \times 8$	42S16800L	FP; 4K ref; SR; 3.3 V	60, 70, 80	28	28		
	$2 \mathrm{M} \times 8$	4217800	FP; 2K ref	50, 60, 70, 80	28	28		
	$2 \mathrm{M} \times 8$	4217800 L	FP; 2K ref; 3.3 V	60, 70, 80	28	28		
	$2 \mathrm{M} \times 8$	42S17800	FP; 2K ref; SR	$50,60,70,80$	28	28		
	$2 \mathrm{M} \times 8$	42S17800L	FP; 2K ref; SR; 3.3 V	60, 70, 80	28	28		
	$2 \mathrm{M} \times 8$	4216802	SC; 4K ref	$50,60,70,80$	28	28		81

DRAMs (cont)

Size	Organization	$\mu \mathrm{PD}$	Features	Row Access Time (ns)	Packages and Pins			Sect.
					SOJ	TSOP	ZIP	
16M (cont)	$2 \mathrm{M} \times 9$	4216900	FP; 4K ref	50, 60, 70, 80	32	32		8j ${ }^{\prime}$
	$2 \mathrm{M} \times 9$	4216900L.	FP; 4K ref; 3.3 V	60, 70, 80	32	32		
	$2 \mathrm{M} \times 9$	$42 S 16900$	FP; 4K ref; SR	50,60, 70, 80	32	32		
	$2 \mathrm{M} \times 9$	42S16900L	FP; 4K ref; SR; 3.3 V	60,70, 80	32	32		
	$2 \mathrm{M} \times 9$	4217900	FP; 2K ref	50, 60, 70, 80	32	32		
	$2 \mathrm{M} \times 9$	4217900L	FP; 2K ref; 3.3 V	60, 70, 80	32	32		
	$2 \mathrm{M} \times 9$	42S17900	FP; 2K ref; SP	$50,60,70,80$	32	32		
	$2 \mathrm{M} \times 9$	42S17900L	FP; 2K ref; SR; 3.3 V	60, 70, 80	32	32		
	$2 \mathrm{M} \times 9$	4216902	SC; 4K ref	50, 60, 70, 80	32	32		8k
	$1 \mathrm{M} \times 16$	4216160	FP; 4K ref	$50,60,70,80$	42	50/44	.	81
	$1 \mathrm{M} \times 16$	4216160L	FP; 4K ref; 3.3.V	$60,70,80$	42	50/44		
	$1 \mathrm{M} \times 16$	$42 S 16160$	FP; 4K ref; SR	$50,60,70,80$	42	50/44		
	$1 \mathrm{M} \times 16$	42S16160L.	FP; 4K ref; SR; 3.3 V	60, 70, 80	42	50/44		
	$1 \mathrm{M} \times 16$	4217160	FP; 2K ref	$50,60,70,80$	42	50/44		
	$1 \mathrm{M} \times 16$	4217160L	FP; 2K ref; 3.3 V	60, 70, 80	42	50/44		
	$1 \mathrm{M} \times 16$	$42 S 17160$	FP; 2K ref; SR	$50,60,70,80$	42	50/44		
	$1 \mathrm{M} \times 16$	42S17160L	FP; 2K ref; SR; 3.3 V	60,70, 80	42	50/44		
	$1 \mathrm{M} \times 16$	4218160	FP; 1K ref	50, 60, 70, 80	42	50/44		
	$1 \mathrm{M} \times 16$	4218160L	FP; 1K ref; 3.3 V	60, 70, 80	42	50/44		
	$1 \mathrm{M} \times 16$	42S18160	FP; 1K ref; SR	50, 60, 70, 80	42	50/44		
	$1 \mathrm{M} \times 16$	42S18160L	FP; 1K ref; SR; 3.3 V	60, 70, 80	42	50/44		
	$1 \mathrm{M} \times 18$	4216180	FP; 4K ref	$50,60,70,80$	42	50/44		8 m
	$1 \mathrm{M} \times 18$	4216180 L	FP; 4K ref; 3.3 V	$60,70,80$	42	50/44		
	$1 \mathrm{M} \times 18$	$42 S 16180$	FP; 4K ref; SR	$50,60,70,80$	42	50/44	\cdots	
	$1 \mathrm{M} \times 18$	42S16180L	FP; 4K ref; SR; 3.3 V	60, 70, 80	42	50/44		
	1 M x 18	4217180	FP; 2K ref	$50,60,70,80$	42	50/44		
	$1 \mathrm{M} \times 18$	4217180L	FP; 2K ref; 3.3 V	60, 70, 80	42	50/44		
	$1 \mathrm{M} \times 18$	$42 S 17180$	FP; 2K ref; SR	50, 60, 70, 80	42	50/44		
	$1 \mathrm{M} \times 18$	42S17180L	FP; 2K ref; SR; 3.3.V	60, 70, 80	42	50/44		
	$1 \mathrm{M} \times 18$	4218180	FP; 1K ref	50, 60, 70, 80	42	50/44		
	$1 \mathrm{M} \times 18$	4218180L	FP; 1K ref; 3.3 V	$60,70,80$	42	50/44		
	$1 \mathrm{M} \times 18$	$42 S 18180$	FP; 1K ref; SR	50, 60, 70, 80	42	50/44		
	$1 \mathrm{M} \times 18$	42S18180L	FP; 1K ref; SR: 3.3 V	60, 70, 80	42	50/44		

FP Fast page

SC Static column
ref Refresh

DRAM SIMM Modules

Organization	Pins	MC	Operation	Access Time (ns)	Module Size (inch)		DRAM Devices		Sect.
					Thickness	Height	Qty	$\mu \mathrm{PD}$	
$256 \mathrm{~K} \times 8$	30	-42256AB8	Fast page	60, 70, 80, 100	. 200	. 661	2	424256LA	9a
$256 \mathrm{~K} \times 9$	30	-42256AB9	Fast page	60, 70, 80, 100	. 200	. 661	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { 424256LA } \\ & 42256 \mathrm{~L} \end{aligned}$	9 b
$256 \mathrm{~K} \times 32$	72	-42256A32	Fast page	70, 80, 100	. 200	1.000	2	424260LE	9 c
$256 \mathrm{~K} \times 36$	72	-42256A36	Fast page	70,80, 100	. 200	1.000	2	424280LE	9d
256K $\times 40$	72	-42256AA40	Fast page	60, 70, 80, 100	. 200	1.000	10	424256LA	9 e
$512 \mathrm{~K} \times 32$	72	-42512A32	Fast page	70,80, 100	. 354	1.000	4	424260LE	9 9
$512 \mathrm{~K} \times 36$	72	-42512A36	Fast page	70,80, 100	. 366	1.000	4	424280LE	9 g
$512 \mathrm{~K} \times 40$	72	-42512AA40	Fast page	60, 70, 80, 100	. 366	1.000	20	424256LA	9 h
		-42512AB40	Fast page	70, 80, 100	. 200	1.000	5	424800LE	
$1 \mathrm{M} \times 8$	30	-421000A8	Fast page	60, 70, 80, 100	. 200	. 661	2	424400LA	10a
$1 \mathrm{M} \times 9$	30	-421000A9	Fast page	60, 70, 80, 100	. 200	. 661	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { 424400LA } \\ & \text { 421000LA } \end{aligned}$	10b
$1 \mathrm{M} \times 32$	72	-421000A32	Fast page	60, 70, 80, 100	. 200	1.000	8	424400LA	10c
					. 106	1.000	8	424400GS	
					. 200	1.250	8	424400LA	
$1 \mathrm{M} \times 36$	72	-421000A36	Fast page	60, 70, 80, 100	. 200	1.000	$\begin{aligned} & 8 \\ & 4 \end{aligned}$	$\begin{aligned} & \text { 424400LA } \\ & \text { 421000GX } \end{aligned}$	10d
					. 106	1.000	$\begin{aligned} & 8 \\ & 4 \end{aligned}$	$\begin{aligned} & \text { 424400GS } \\ & 421000 \mathrm{GX} \end{aligned}$	
					. 208	1.250	$\begin{aligned} & 8 \\ & 4 \end{aligned}$	$\begin{aligned} & \text { 424400LA } \\ & \text { 421000LA } \end{aligned}$	
			Fast page	60,70,80	. 366	1,000	$\begin{aligned} & 8 \\ & 4 \end{aligned}$	$\begin{aligned} & \text { 424400LA } \\ & \text { 421000LA } \end{aligned}$	
$1 \mathrm{M} \times 40$	72	-421000AA40	Fast page	60, 70, 80, 100	. 200	1.000	10	424400LA	10e
		-421000AB40	Fast page	$60,70,80,100$. 354	. 799	10	424800LE	
2 M x 32	72	-422000A32	Fast page	$60,70,80,100$. 354	1.000	16	424400LA	10 f
					. 161	1.000	16	424400GS	
					. 354	1.250	16	424400LA	

DRAM SIMM Modules (cont)

Organization	Pins	MC	Operation	Access Time (ns)	Module Size (inch)		DRAM Devices		Sect.
					Thickness	Height	Qty	$\mu \mathrm{PD}$	
$2 \mathrm{M} \times 36$	72	-422000A36	Fast page	60, 70, 80	. 366	1.000	$\begin{aligned} & 16 \\ & 8 \end{aligned}$	$\begin{aligned} & \text { 424400LA } \\ & 421000 \mathrm{GX} \end{aligned}$	10 g
					. 161	1.000	$\begin{aligned} & 16 \\ & 8 \end{aligned}$	$\begin{aligned} & \text { 424400GS } \\ & 421000 \mathrm{GX} \end{aligned}$	
					. 366	1.250	$\begin{aligned} & 16 \\ & 8 \end{aligned}$	$\begin{aligned} & \text { 424400LA } \\ & \text { 421000LA } \end{aligned}$	
$2 \mathrm{M} \times 40$	72	-422000AA40	Fast page	70, 80	. 354	1.000	20	424400LA	10h
$4 \mathrm{M} \times 8$	30	-424000A8	Fast page	60, 70, 80, 100	. 208	. 799	8	424100LA	11a
$4 \mathrm{M} \times 9$	30	-424000A9	Fast page	60, 70, 80, 100	. 200	. 799	9	424100LA	11b
$4 \mathrm{M} \times 32$	72	-424000A32	Fast page	60, 70, 80	. 200	1.250	8	4217400LE	11c
					. 366	1.000	8	4217400LE	
$4 \mathrm{M} \times 36$	72	-424000A36	Fast page	60, 70, 80	. 200	1.250	$\begin{aligned} & 8 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 4217400LE } \\ & \text { 424100LA } \end{aligned}$	11d
					. 366	1.000	$\begin{aligned} & 8 \\ & 4 \end{aligned}$	$\begin{aligned} & \text { 4217400LE } \\ & \text { 424100LA } \end{aligned}$	
$8 \mathrm{M} \times 32$	72	-428000A32	Fast page	60, 70, 80	. 366	1.250	16	4217400LE	11e
$8 \mathrm{M} \times 36$	72	-428000A36	Fast page	60, 70, 80	. 366	1.250	$\begin{aligned} & 16 \\ & 8 \end{aligned}$	$\begin{aligned} & \text { 4217400LE } \\ & \text { 424100LA } \end{aligned}$	11f

Video RAMs

Size	Organization	$\mu \mathrm{PD}$	Row Access Time (ns)	Serial Access Time (ns)	Mode	Packages and Pins				Sect.
						DIP	SOJ	TSOP	ZIP	
256K	$64 \mathrm{~K} \times 4$	41264	120, 150	40, 60		24			24	12a
	$64 \mathrm{~K} \times 4$	42264	100	25		24	24		24	12b
1M	$256 \mathrm{~K} \times 4$	42273	100, 120	30, 40	FP		28		28	12c
	$256 \mathrm{~K} \times 4$	42274	100, 120	30, 40	FP		28		28	12d
	$256 \mathrm{~K} \times 4$	42274-80	80	25	FP		28		28	12e
	$128 \mathrm{~K} \times 8$	42275	80, 100, 120	25, 40	FP		40			12f
2M	$256 \mathrm{~K} \times 8$	482234	70, 80	17, 20	FP		40	44	40	12g
		482235	70,80	17, 20	HP					

[^1]
Synchronous DRAM

Size	Organization	$\mu \mathrm{PD}$	Clock Rate (MHz)	Row Access Time (ns)	Burst Access Time (ns)	Packages and Pins				Sect.
						DIP	SOJ	TSOP	ZIP	
16 M	$4 \mathrm{M} \times 4$	42116420	$\begin{aligned} & 66 \\ & 100 \end{aligned}$	$\begin{aligned} & 70 \\ & 50 \end{aligned}$	$\begin{aligned} & 15 \\ & 10 \end{aligned}$			44		13a
	$2 \mathrm{M} \times 8$	42116820						44		
	$2 \mathrm{M} \times 9$	42116920						44		
	$1 \mathrm{M} \times 16$	42116162						50		
	$1 \mathrm{M} \times 18$	42116182						50		

RAMBUS DRAM

Size	Organization	$\mu \mathrm{PD}$	Read Hit Access Time (ns)	Burst Access Time ($n s$)	Packages and Pins				
					DIP	SOJ	TSOP	SVP	Sect.
16M	$2 \mathrm{M} \times 8$	488130	40	2				32	14a
	$2 \mathrm{M} \times 9$	488170	40	2				32	

Application Specific Devices

Fast Static RAMs

Size	Organization	$\mu \mathrm{PD}$	$\begin{aligned} & \text { Access } \\ & \text { Time (} \mathrm{ns} \text {) } \end{aligned}$	Packages and Pins						Sect
				DIP	SOJ	SOP	TSOP	ZIP	Other	
64 K	$64 \mathrm{~K} \times 1$	4361B	12, 15, 20	22	24					19a
	$16 \mathrm{~K} \times 4$	4362B	12, 15, 20	22	24					19b
	$16 \mathrm{~K} \times 4$	4363B	12, 15, 20	24	24					19c
	$8 \mathrm{~K} \times 8$	4368	15, 20	28	28					19d
	$8 \mathrm{~K} \times 9$	4369	15,20	28	28					19e
256K	$256 \mathrm{~K} \times 1$	43251B	15, 20, 25	24	24					20a
	$64 \mathrm{~K} \times 4$	43253B	15, 20, 25	28	28					20b
	$64 \mathrm{~K} \times 4$	43254B	15, 20, 25	24	24					20 c
	$32 \mathrm{~K} \times 8$	43258A	15, 20, 25	28	28					20d
	$32 \mathrm{~K} \times 9$	43259A	15, 20, 25	32	32					20e
1M	$1 \mathrm{M} \times 1$	431001	20, 25, 35		28					21a
	$256 \mathrm{~K} \times 4$	431004	20, 25, 35		28					21b
	$128 \mathrm{~K} \times 8$	431008	15, 17, 20		32					21c
	$128 \mathrm{~K} \times 9$	431009	15, 17, 20		36					21d
	$64 \mathrm{~K} \times 16$	431016	15, 17, 20		44		44			21e
	$64 \mathrm{~K} \times 18$	431018	15, 17, 20		44		44			21 f
4M	$4 \mathrm{M} \times 1$	434001	20, 25		32			*		22a
	$1 \mathrm{M} \times 4$	434004	20, 25		32					22b
	$512 \mathrm{~K} \times 8$	434008	20, 25		36					220

Cache Data RAMs

Size	Organization	$\mu \mathrm{PD}$	Access Time (ns)	Packages and Pins					Sect.
				DIP	SOJ	SOP	TSOP	PLCC	
256K	$16 \mathrm{~K} \times 10$ bit $\times 2$	46710A	12, 15					52	23a
	$8 \mathrm{~K} \times 20$ bit $\times 2$	46741A	12, 15					68	23b

Standard Static RAMs

Size	Organization	$\mu \mathrm{PD}$	Access Time (ns)	Packages and Pins					Sect.
				DIP	SOJ	SOP	TSOP	ZIP	
256K	$32 \mathrm{~K} \times 8$	43256A	85, 100, 120, 150	28		28	32		24a
	$32 \mathrm{~K} \times 8$	43256B	55, 70, 85	28		28			24b
1 M	$128 \mathrm{~K} \times 8$	431000A	70, 85, 100	32		32	32		24 c
4M	$512 \mathrm{~K} \times 8$	434000	55, 70, 85, 100	32		32	32		24d
	$512 \mathrm{~K} \times 8$	MC434000	85, 100	32					24 e

ECL RAMs (10K Interface)

Size	Organization	$\mu \mathrm{PB}$	Access Time (ns)	Packages and Pins			Sect.
				DIP	LCC	Flatpack	
1K	256×4	10422	7, 10	24			25a
4K	$4 \mathrm{~K} \times 1$	10470	10, 15	18			25b
	$1 \mathrm{~K} \times 4$	10474	8, 10, 15	24			25 c
	$1 \mathrm{~K} \times 4$	10474A	5,6	24			25d
	$1 \mathrm{~K} \times 4$	10474E	3, 4	24		24	25 e
	$1 \mathrm{~K} \times 4$	10476LL	6	28		28	$25 f$
16K	$16 \mathrm{~K} \times 1$	10480	10, 15	20		20	25 g
	$4 \mathrm{~K} \times 4$	10484	10, 15	28		28	25h
	$4 \mathrm{~K} \times 4$	10484A	5,7	28		28	$25 i$
	$4 \mathrm{~K} \times 4$	10A484	5,7	28		28	25j
256K	$256 \mathrm{~K} \times 1$	μ PD10500	15, 20	24			25k

ECL RAMs (100K Interface)

Size	Organization	$\mu \mathrm{PB}$	Access Time (ns)	Packages and Pins			Sect.
				DIP	LCC	Flatpack	
1K	256×4	100422	7, 10	24		24	26a
4K	$4 \mathrm{~K} \times 1$	100470	10, 15	18			26b
	$1 \mathrm{~K} \times 4$	100474	4.5, 6, 8, 10, 15	24	24	24	26c
	$1 \mathrm{~K} \times 4$	100474A	5,6	24		24	26d
	$1 \mathrm{~K} \times 4$	100474E	3, 4	24		24	26e
	$1 \mathrm{~K} \times 4$	100476LL	6	28		28	$26 f$
16K	$16 \mathrm{~K} \times 1$	100480	10, 15	20		20	26g
	$4 \mathrm{~K} \times 4$	100484	10, 15	28		28	26h
	$4 \mathrm{~K} \times 4$	100484A	5,7	28		28	$26 i$
	4K $\times 4$	100A484	5,7	28		28	26j
256K	$256 \mathrm{~K} \times 1$	$\mu \mathrm{PD} 100500$	15, 20	24			26k

EEPROMs

Size	Organization	$\mu \mathrm{PD}$	Access Time (ns)	Packages and Pins						Sect.
				DIP	SOJ	SOP	TSOP	ZIP	Other	
4K	512×8	28 CO 4	200, 250	24		24				27a
	512×8	$28 \mathrm{C05}$	200, 250	24		24				27b
64 K	$8 \mathrm{~K} \times 8$	28C64	200, 250	28						27 c
256 K	$32 \mathrm{~K} \times 8$	28 C 256	200, 250	28						27d

Application Specific Devices

Fast Static RAMMs (256K)

FRsw Static RAMs 11M)
 (4M)

Cache Data RAMs

Standard Static RAMI

Section 18

Application Specific Devices (See App Notes 54 thru 58, 90-03, 90-06.)		
$\mu \mathrm{PD}$	Description	
42101	910×8-bit line buffer for NTSC TV	18a
42102	1134×8-bit line buffer for PAL TV	18b
42270	263 lines of 910×4 bits NTSC field buffer	18c
42271	Picture-in-picture generator	18d
42272	Picture-in-picture generator with color border	
42280	$256 \mathrm{~K} \times 8$-bit field buffer	18 e
42505	5048×8-bit line buffer for communications systems	18f
485505	5048×8-bit line buffer	18 g
485506	5048×16 line buffer	18h
42532	$32 \mathrm{~K} \times 8$ bidirectional data buffer	18i
42601	$1 \mathrm{M} \times 1$ silicon file	18j
42641	$4 \mathrm{M} \times 1$ silicon file	18k
42644	$1 \mathrm{M} \times 4$ silicon file	181
481440	256K x 16 graphics DRAM; hyper-page	18m

Description

The μ PD42101 is a 910 -word by 8 -bit line buffer fabricated with a CMOS silicon-gate process. The device helps to create an NTSC flicker-free television picture (noninterlaced scan conversion) by providing intermediate storage and very high-speed read and write operation.

The μ PD42 101 can also be used as a digital delay line. The delay length is variable from 10 bits (at maximum clock speed) to 910 bits.

Features

- 910-word x 8-bit organization
- Line buffer for NTSC, 4fsc digital television systems
- Asynchronous, simultaneous read/write operation

ㅁ 1H (910-bit) delay line capability

- TTL-compatible inputs and outputs
- Three-state outputs
- Single +5 -volt power supply
- 24-pin plastic DIP and miniflat packaging

Part Number	Read Cycle Time (min)	Write Cycle Time (min)	Package
$\mu \mathrm{PD} 42101 \mathrm{C}-3$	34 ns	34 ns	24-pin plastic DIP
C-2	34 ns	69 ns	
C-1	69 ns	69 ns	
$\mu \mathrm{PD} 42101 \mathrm{G}-3$	34 ns	34 ns	24-pin plastic miniflat
G-2	34 ns	69 ns	
G-1	69 ns	69 ns	

Pin Configuration

24-Pin Plastic DIP or Miniflat

Pin Identification

Symbol	Function
$D_{\text {INO }}-D_{\text {IN7 }}$	Write data inputs
D OuTO - D $_{\text {OUT7 }}$	Read data outputs
$\overline{\text { RSTW }}$	Write address reset input
$\overline{\text { RSTR }}$	Read address reset input
$\overline{\text { WE }}$	Write enable input
$\overline{\text { RE }}$	Read enable input
WCK	Write clock input
RCK	Read clock input
$\overline{\text { GND }}$	Ground
$V_{\text {CC }}$	+5 -volt power supply

PIN FUNCTIONS

$D_{\text {INO }}$ - $D_{\text {IN7 }}$ (Data Inputs)

In a digital television application, the digital composite signal, luminance, chrominance, etc. information is written into these inputs.

Douto - Dout7 (Data Outputs)

The tri-state outputs are used to access the stored information. In a simple digital delay line application, a delay of one-half write clock cycle plus a maximum of 300 ns is required to move data from the data inputs to the data outputs.

$\overline{\text { RSTW }}$ (Write Address Reset Input)

Bringing this signal low when $\overline{\mathrm{WE}}$ is also low resets the internal write address to 0 . If $\overline{W E}$ is at a high level when the RSTW input is brought low, the internal write address is set to 909 . The state of this input is strobed by the rising edge of WCK.

RSTR (Read Address Reset Input)

This signal is strobed by the rising edge of RCK and resets the internal read address to 0 if $\overline{R E}$ is also low. If $\overline{R E}$ is at a high level when the RSTR input is brought low, the internal read address is set to 909.

WE (Write Enable Input)

This input controls write operation. If $\overline{W E}$ is low, all write cycles proceed. If $\overline{W E}$ is at a high level, no data is written to storage cells and the write address stops increasing. The state of $\overline{W E}$ is strobed by the rising edge of WCK.

$\overline{\text { RE }}$ (Read Enable Input)

This signal is similar to $\overline{W E}$ but controls read operation. If $\overline{R E}$ is at a high level, the data outpus become high impedance and the internal read address stops increasing. The state of $\overline{R E}$ is strobed by the rising edge of RCK.

WCK (Write Clock Input)

All write cycles are executed synchronously with WCK. The states of both $\overline{\text { RSTW }}$ and $\overline{\text { WE }}$ are strobed by the rising edge of WCK at the beginning of a cycle, and the data inputs are strobed by the rising edge of WCK at the end of a cycle. The internal write address increases with
each WCK cycle unless $\overline{W E}$ is at a high level to hold the write address constant. Unless inhibited by $\overline{\mathrm{WE}}$, the internal write address will automatically wrap around from 909 to 0 and begin increasing again.

RCK (Read Clock Input)

All read cycles are executed synchronously with RCK. The states of both $\overline{\text { RSTR }}$ and $\overline{\mathrm{RE}}$ are strobed by the rising edge of RCK at the beginning of a cycle. This same edge of RCK starts internal read operation, and access time is referenced to this edge. The internal read address increases with each RCK cycle unless $\overline{R E}$ is at a high level to hold the read address constant. Unless inhibited by $\overline{R E}$, the internal read address will automatically wrap around from 909 to 0 and begin increasing again.

Absolute Maximum Ratings

Supply voltage, V_{CC}	-1.5 to +7.0 V
Voltages on any input pin, V_{1}	-1.5 to +7.0 V
Voltage on any output pin, V_{O}	-1.5 to +7.0 V
Short-circuit output current, los	20 mA
Operating temperature, $\mathrm{T}_{\mathrm{OPR}}$	-20 to $+70^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\mathrm{STG}}$	-55 to $+125^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Input voltage, high	V_{IH}	2.4		5.5	V
Input voltage, low	V_{IL}	-1.5		0.8	V
Operating temperature	T_{A}	0		70	${ }^{\circ} \mathrm{C}$

Capacitance

$T_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% ; \mathrm{f}=1 \mathrm{MHz}$					
Parameter	Symbol	Min	Max	Unit	Pins Under Test
Input capacitance	C_{I}	5	pF	$\overline{\mathrm{WE}, \overline{\mathrm{RE}}, \mathrm{WCK}, \mathrm{RCK},}$	
Output capacitance	C_{O}		7	pFF	$\mathrm{D}_{\text {OUTO }}-\mathrm{D}_{\text {OUT7 }}$

μ PD42101

Block Diagram

DC Characteristics

$T_{A}=-20$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Input leakage current	I_{I}	-10		10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{CC} all other pins not under test $=0 \mathrm{~V}$
Output leakage current	I_{O}	-10		10	$\mu \mathrm{~A}$	$\mathrm{D}_{\text {OUT }}$ disabled; $\mathrm{V}_{\mathrm{O}}=0$ to 5.5 V
Output voltage, high	V_{OH}	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$
Output voltage, low	V_{OL}			0.4	V	$\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$

AC Characteristics

$\mathrm{T}_{\mathrm{A}}=-20$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	μ PD42101-3		μ PD42101-2		μ PD42101-1		Unit	Test Conditions
		min	Max	Min	Max	Min	Max		
Write/read cycle operating current	ICC		70		60		35	mA	$\begin{aligned} & t_{W C K}=t_{W C K} \\ & (\mathrm{~min}) ; t_{\text {RCK }}=t_{\text {RCK }} \\ & (\mathrm{min}) \end{aligned}$
Write clock cycle time	twCk	34	1090	69	1090	69	1090	ns	
WCK pulse width	twCw	14		25		25		ns	
WCK precharge time	${ }_{\text {t }}$ WCP	14		25		25		ns	
Read clock cycle time	${ }^{\text {t }}$ HCK	34	1090	34	1090	69	1090	ns	
RCK pulse width	$t_{\text {RCW }}$	14		14		25		ns	
RCK precharge time	$\mathrm{t}_{\mathrm{RCP}}$	14		14		25		ns	
Access time	tác		27		27		49	ns	

AC Characteristics (cont)

Parameter	Symbol	μ PD42101-3		μ PD42101-2		μ PD42101-1		Unit	Test Conditions
		min	Max	Min	Max	Min	Max		
Output hold time	t_{OH}	5		5		5		ns	
Output active time	tLz	5	27	5	27	5	49	ns	(Note 5)
Output disable time	t_{Hz}	5	27	5	27	5	49	ns	(Note 5)
Data-in setup time	$t_{\text {DS }}$	14		18		18		ns	
Data-in hold time	${ }_{\text {toh }}$	5		5		5		ns	
Reset active setup time	$t_{\text {HS }}$	14		14		20		ns	(Note 7)
Reset active hold time	${ }_{\text {trin }}$	5		5		5		ns	(Note 7)
Reset inactive hold time	$\mathrm{t}_{\text {RN1 }}$	5		5		5		ns	(Note 8)
Reset inactive setup time	$\mathrm{t}_{\mathrm{RN} 2}$	14		14		20		ns	(Note 8)
Write enable setup time	WES	14		20		20		ns	(Note 9)
Write enable hold time	TWEH	5		5		5		ns	(Note 9)
Write enable high delay from WCK	twent	5		5		5		ns	(Note 10)
Write enable low delay to WCK	twen2	14		20		20		ns	(Note 10)
Read enable setup time	$\mathrm{t}_{\text {RES }}$	14		14		20		ns	(Note 9)
Read enable hold time	$t_{\text {REH }}$	5		5		5		ns	(Note 9)
Read enable high delay from RCK	$t_{\text {REN }}$!	5		5		5		ns	(Note 10)
Read enable low delay to RCK	tren2	14		14		20		ns	(Note 10)
Write disable pulse width	twew	0		0		0		ns	(Note 6)
Read disable pulse width	$t_{\text {few }}$	0		0		0		ns	(Note 6)
Write reset time	$t_{\text {RSTW }}$	0		0		0		ns	(Note 6)
Read reset time	$t_{\text {RSTR }}$	0		0		0		ns	(Note 6)
Transition time	${ }_{T}$	3	35	3	35	3	35	ns	

Notes:

(1) All voltages are referenced to ground.
(2) After power-up, a read reset cycle and a write reset cycle must be executed before proper device operation is achieved.
(3) Input pulse rise and fall times assume $\boldsymbol{t}_{\mathbf{T}}=5 \mathrm{~ns}$. Input pulse levels $=$ GND to 3 V . Transition times are measured between 3 V and O V . See figure 1.
(4) Input timing reference levels $=1.5 \mathrm{~V}$. Output timing reference levels are 0.8 and 2.0 V . See figure 2.
(5) This delay is measured at 200 mV from the steady-state voltage with the load specified in figure 4 . Under any conditions, $\mathrm{t}_{\mathrm{L}} \geq$ ${ }_{\mathrm{H}}^{\mathrm{HZ}}$.
(6) ${ }^{\text {WEW }}$ (max) and $t_{\text {REW }}$ (max) must be satisfied by the following equations in 1-line cycle operation:
$t_{\text {WEW }}+t_{\text {HSTW }}+910$ (twCK) $\leq 1 \mathrm{~ms}$
$t_{\text {REW }}+t_{\text {RSTR }}+910\left(t_{\text {RCK }}\right) \leq 1 \mathrm{~ms}$
(7) If either $t_{R S}$ or $t_{R H}$ is less than the specified value, reset operations are not guaranteed.
(8) If either $t_{R N 1}$ or $t_{R N 2}$ is less than the specified value, internal reset operations may extend to cycles immediately preceding or following the period of desired reset operations.
(9) If either $t_{\text {WES }}$ or $t_{\text {WEH }}$ ($t_{\text {RES }}$ or $t_{\text {REH }}$) is less than the specified value, write (read) disable operations are not guaranteed.
(10) If either twent or twen2 (tren1 or tren2) is less than the specified value, internal write (read) disable operations may extend to cycles immediately preceding or following the period of desired disable operations.
(11) Data is guaranteed to remain valid for a minimum of 1 ms after it is written. After this time, the data stored may be discharged, since this device uses a dynamic storage element.

Figure 1. Input Timing

8314-67018

Figure 2. Output Timing

Figure 3. Output Load for $\boldsymbol{t}_{A C}$ and $\boldsymbol{t}_{\mathbf{O H}}$

Figure 4. Output Load for $t_{L Z}$ and $t_{H Z}$

Timing Waveforms

Read Cycle

Notes:
[1] $\overline{\text { RSTR }}=\mathrm{V}_{\mathrm{IH}}$.
[2] $V=$ valid data.

Write Cycle

Notes:

[1] $\overline{\text { RSTW }}=V_{I H}$.
[2] $V=$ valid data.

Timing Waveforms (cont)

Read Reset Cycle

Write Reset Cycle

Note:
[1] $\overline{W E}=V_{\text {IL }}$.
[2] $V=$ valid data.

Timing Waveforms (cont)

Write Disable Cycle

Note:
[1] $\mathbf{V}=$ Valid Data.

Read Disable Cycle

Note:
[1] $\mathbf{V}=$ Valid Data.
μ PD42101

Timing Waveforms (cont)

Re-Read Cycle

Timing Waveforms (cont)

910-Bit Delay Line Cycle

$\overline{W E}, \overline{\operatorname{RE}}$
$v_{1 L}$

Note:
[1] $\mathbf{V}=$ Valid Data.
[2] $\mathbf{1 H}=$ the first group of 910 bits. $\mathbf{2 H}=$ the second group of 910 bits.

Timing Waveforms (cont)

n-Bit Delay Line Cycle

[1] $\mathrm{V}=$ valid data
[2] $1 \mathrm{H}=$ the first group of bits. $2 \mathrm{H}=$ the second group of n^{\prime} bits.
[3] $\overline{\mathrm{RE}}=\overline{\mathrm{WE}}=\mathrm{V}_{\text {IL }}$.

Timing Waveforms (cont)

n-Bit Delay Line Timing Cycle (1)

Timing Waveforms (cont)

n-Bit Delay Line Timing Cycle (2)

Notes:
[1] $\overline{W E}=V_{\text {IL }}$
[2] $V=$ valid data.

Applications

1H (910-bit) Delay Line

Any one of the following methods may be used to configure a 1 H (910 -bit) delay line, or to vary the number of delay bits from a minimum of 5 (when operating at 4 fSC) to a maximum of 910 (figure 5).
(1) Execute a reset cycle proportionate to the desired delay length.
(2) Adjust the input timing of $\overline{\text { RSTW }}$ and $\overline{\text { RSTR }}$ to the desired delay length (see waveform for n-bit Delay Line Timing 1).
(3) Adjust the address by disabling $\overline{W E}$ or $\overline{R E}$ for a period proportionate to the desired delay length.

Figure 5. Connection of a 1H (910-bit) Delay Line

Applications (cont)

Noninterlaced Scan Conversion

It is also possible to use either one or two μ PD42 101s for noninterlaced scan conversion. If one device is used, the same data is read twice at 28.6 MHz (8 fsc) to prepare it for writing at $14.3 \mathrm{MHz}(4 \mathrm{fSC})$. If two devices are used as shown in figure 6, data input at 14.3 MHz is read alternately at 28.6 MHz with $\overline{\mathrm{RE}}$. Actual line signals and complement line signals are entered as input data. Complement signals can also be obtained using the μ PD42 101 if resetting is performed for each line. A single signal type is assumed in this case. In actual applications, noninterlaced scan conversion with brightness (Y) and color difference (C) and RGB signals will require as many as two or three times the number of μ PD42101 devices shown in this example.

Figure 6. Example of Noninterlaced Scan Conversion

Timing Waveforms (cont)

Application Timing for Noninterlaced Scan Conversion

Timing Waveforms (cont)

Basic Timing for Noninterlaced Scan Conversion

Note:
[1] $\overline{W E}=V_{I L}$.
[2] $\mathbf{V}=$ Valid Data.
(3] For compatibility with NTSC standards the WCK frequency is approximately 14.3 MHz . RCK cycles at twice this frequency, 28.6 MHz .

Description

The μ PD42 102 is a 1,135 -word by 8 -bit line buffer fabricated with a CMOS silicon-gate process. The device helps to create a PAL flicker-free television picture (noninterlaced scan conversion) by providing intermediate storage and very high-speed read and write operation.
The μ PD42102 can also be used as a digital delay line. The delay length is variable from 2 bits (at maximum clock speed) to 1,135 bits.

Features

- 1,135-word $\times 8$-bit organization
- Line buffer for PAL, 4fsc digital television systems
- Asynchronous, simultaneous read/write operation
- 1H (1,135 -bit) delay line capability
- TTL-compatible inputs and outputs
- Three-state outputs
- Single +5 -volt power supply
- 24-pin plastic DIP and miniflat packaging

Ordering Information

Part Number	Read Cycle Time (min)	Write Cycle Time (min)	Package
μ PD42 102C-5	25 ns	25 ns	24-pin plastic DIP
C-3	34 ns	34 ns	
C-2	34 ns	69 ns	
C-1	69 ns	69 ns	
μ PD42 102G-5	25 ns	25 ns	24-pin plastic miniflat
G-3	34 ns	34 ns	
G-2	34 ns	69 ns	
G-1	69 ns	69 ns	

Pin Configuration

24-Pin Plastic DIP or Miniflat

Pin Identification

Symbol	Function
$\mathrm{D}_{\text {INO }}-\mathrm{D}_{\text {IN7 }}$	Write data inputs
$\mathrm{D}_{\text {OUTO }}-$ D $_{\text {OUT7 }}$	Read data outputs
$\overline{\text { RSTW }}$	Write address reset input
$\overline{\overline{\text { SSTR }}}$	Read address reset input
$\overline{\overline{W E}}$	Write enable input
$\overline{\mathrm{RE}}$	Read enable input
WCK	Write clock input
RCK	Read clock input
$\overline{\text { GND }}$	Ground
$\overline{V_{\text {CC }}}$	+5 -volt power supply

PIN FUNCTIONS

$\mathrm{D}_{\text {INO }}$ - $\mathrm{D}_{\text {IN7 }}$ (Data Inputs)

In a digital television application, the digital composite signal, luminance, chrominance, etc. information is written into these inputs.

Douto - Dout7 (Data Outputs)

The tri-state outputs are used to access the stored information. In a simple digital delay line application, a delay of one-half write clock cycle plus a maximum of 300 ns is required to move data from the data inputs to the data outputs.

$\overline{\text { RSTW }}$ (Write Address Reset Input)

Bringing this signal low when $\overline{\mathrm{WE}}$ is also low resets the internal write address to 0 . If $\overline{W E}$ is at a high level when the RSTW input is brought low, the internal write address is set to 1,134 . The state of this input is strobed by the rising edge of WCK.

RSTR (Read Address Reset Input)

This signal is strobed by the rising edge of RCK and resets the internal read address to 0 if $\overline{R E}$ is also low. If $\overline{R E}$ is at a high level when the $\overline{R S T R}$ input is brought low, the internal read address is set to 1,134 .

WE (Write Enable Input)

This input controls write operation. If $\overline{\mathrm{WE}}$ is low, all write cycles proceed. If $\overline{W E}$ is at a high level, no data is written to storage cells and the write address stops increasing. The state of WE is strobed by the rising edge of WCK.

$\overline{\operatorname{RE}}$ (Read Enable Input)

This signal is similar to $\overline{W E}$ but controls read operation. If $\overline{R E}$ is at a high level, the data outpus become high impedance and the internal read address stops increasing. The state of $\overline{R E}$ is strobed by the rising edge of RCK.

WCK (Write Clock Input)

All write cycles are executed synchronously with WCK. The states of both $\overline{\text { RSTW }}$ and $\overline{\text { WE }}$ are strobed by the rising edge of WCK at the beginning of a cycle, and the data inputs are strobed by the rising edge of WCK at the end of a cycle. The internal write address increases with
each WCK cycle unless $\overline{W E}$ is at a high level to hold the write address constant. Unless inhibited by WE, the internal write address will automatically wrap around from 1,134 to 0 and begin increasing again.

RCK (Read Clock Input)

All read cycles are executed synchronously with RCK. The states of both $\overline{\text { RSTR }}$ and $\overline{\text { RE }}$ are strobed by the rising edge of RCK at the beginning of a cycle. This same edge of RCK starts internal read operation, and access time is referenced to this edge. The internal read address increases with each RCK cycle unless $\overline{R E}$ is at a high level to hold the read address constant. Unless inhibited by $\overline{R E}$, the internal read address will automatically wrap around from 1,134 to 0 and begin increasing again.

Absolute Maximum Ratings

Supply voltage, V_{CC}	-1.5 to +7.0 V
Voltages on any input pin, V_{l}	-1.5 to +7.0 V
Voltage on any output pin, V_{O}	-1.5 to +7.0 V
Short-circuit output current, los	20 mA
Operating temperature, $\mathrm{T}_{\mathrm{OPR}}$	-20 to $+70^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\mathrm{STG}}$	-55 to $+125^{\circ} \mathrm{C}$
Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.	

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Input voltage, high	V_{IH}	2.4		5.5	V
Input voltage, low	V_{IL}	-1.5		0.8	V
Operating temperature	T_{A}	-20		70	${ }^{\circ} \mathrm{C}$

Capacitance

Parameter	Symbol	Min	Max	Unit	Pins Under Test
Input capacitance	C_{1}		5	pF	$\overline{W E}, \overline{R E}, W C K$, RCK, ASTW, $\overline{\text { RSTR }}$, $\mathrm{D}_{\mathbb{I N O}}-\mathrm{D}_{\mathrm{IN} 7}$
Output capacitance	C_{0}		7	pF	$\mathrm{D}_{\text {OUTO }}$ - $\mathrm{D}_{\text {OUT7 }}$

Block Diagram

DC Characteristics

$T_{A}=-20$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Input leakage current	I_{1}	-10	10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{CC}; all other pins not under test $=0 \mathrm{~V}$	
Output leakage current	I_{O}	-10	10	$\mu \mathrm{~A}$	$\mathrm{D}_{\mathrm{OUT}}$ disabled; $\mathrm{V}_{\mathrm{O}}=0$ to 5.5 V	
Output voltage, high	V_{OH}	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	
Output voltage, low	V_{OL}		0.4	V	$\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$	

AC Characteristics

$T_{A}=-20$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	μ PD $42102-5$		μ PD 42102 -3		μ PD42102-2		μ PD42102-1		Unit	Test Conditions
		Min	Max	Min	Max	Min	Max	Min	Max		
Write/read cycle operating current	Icc		80		80		70		40	mA	$\begin{aligned} & t_{\text {WCK }}=t_{\text {WCK }}(\mathrm{min}) ; \\ & t_{\text {RCK }}=t_{\text {RCK }}(\mathrm{min}) \end{aligned}$
Write clock cycle time	twCK	25	880	28	880	56	880	56	880	ns	
WCK pulse width	twCW	10		12		20		20		ns	
WCK precharge time	twCP	10		12		20		20		ns	
Read clock cycle time	${ }_{\text {track }}$	25	880	28	880	28	880	56	880	ns	
RCK pulse width	tracw	10		12		12		20		ns	
RCK precharge time	$\mathrm{t}_{\mathrm{HCP}}$	10		12		12		20		ns	
Access time	${ }^{t}{ }_{A C}$		18		21		21		40	ns	
Output hold time	${ }^{\text {toh }}$	5		5		5		5		ns	

AC Characteristics (cont)

Parameter	Symbol	$\mu \mathrm{PD} 42102-5$		$\mu \mathrm{PD} 42102-3$		μ PD42102-2		$\mu \mathrm{PD} 42102-1$		Unit	Test Conditions
		Min	Max	Min	Max	Min	Max	Min	Max		
Access time after a reset cycle	$t_{\text {ACR }}$		18		21		21		40	ns	
Output hold time after a reset cycle	${ }^{\text {toHR }}$	5		5		5		5		ns	
Output active time		5	18	5	21	5	21	5	40	ns	(Note 4)
Output disable time	t_{HZ}	5	18	5	21	5	21	5	40	ns	(Note 4)
Data-in setup time	tDS	7		12		15		15		ns	
Data-in hold time	${ }_{\text {t }}$	3		5		5		5		ns	
Reset active setup time	$t_{\text {PS }}$	7		12		12		20		ns	(Note 7)
Reset active hold time	t_{RH}	3		5		5		5		ns	(Note 7)
Reset inactive hold time	$t_{\text {RN1 }}$	3		5		5		5		ns	(Note 8)
Reset inactive setup time	$t_{\text {RN2 }}$	7		12		12		20		ns	(Note 8)
Write enable setup time	twes	7		12		20		20		ns	(Note 9)
Write enable hold time	${ }^{\text {WWEH }}$	3		5		5		5		ns	(Note 9)
Write enable high delay from WCK	tWEN1	3		5		5		5		ns	(Note 10)
Write enable low delay to WCK	twEN2	7		12		20		20		ns	(Note 10)
Read enable setup time	$t_{\text {RES }}$	7		12		12		20		ns	(Note 9)
Read enable hold time	$t_{\text {REH }}$	3		5		5		5		ns	(Note 9)
Read enable high delay from RCK	${ }^{\text {t }}$ REN1	3		5		5		5		ns	(Note 10)
Read enable low delay to RCK	tren2	7		12		12		20		ns	(Note 10)
Write disable pulse width	twew	0		0		0		0		ns	(Note 5)
Read disable pulse width	$t_{\text {REW }}$	0		0		0		0		ns	(Note 5)
Write reset time	tRSTW	0		0		0		0		ns	(Note 5)
Read reset time	$t_{\text {RSTR }}$	0		0		0		0		ns	(Note 5)
Transition time	${ }_{\text {t }}$	3	35	3	35	3	35	3	35	ns	.

Notes:

(1) All voltages are referenced to ground.
(2) Input pulse rise and fall times assume $t_{T}=5 \mathrm{~ns}$. Input pulse levels $=$ GND to 3 V . Transition times are measured between 3 V and 0 V .
For the -5 version only, $t_{T}=3 \mathrm{~ns}$; input pulse levels $=0.4$ to 2.4 V ; transition times are measured between 0.4 and 2.4 V . See figures 1 and 2.
(3) Input timing reference levels $=1.5 \mathrm{~V}$. Output timing reference levels are 0.8 and 2.0 V . See figure 3.
(4) This delay is measured at 200 mV from the steady-state voltage with the load specified in figure 5 . Under any conditions, $t_{L Z} \geq$ ${ }_{\mathrm{H}}^{\mathrm{Hz}}$.
(5) twew (max) and trew (max) must be satisfied by the following equations in 1-line cycle operation:
$t_{\text {WEW }}+$ t $_{\text {RSTW }}+1,135$ (${ }_{\text {WCK }}$) $\leq 1 \mathrm{~ms}$ $t_{\text {REW }}+t_{\text {RSTR }}+1,135\left(\right.$ t $\left._{\text {RCK }}\right) \leq 1 \mathrm{~ms}$
(6) This parameter applies when $t_{A C K} \geq t_{A C R}$ (max).
(7) If either $t_{R S}$ or $t_{R H}$ is less than the specified value, reset operations are not guaranteed.
(8) If either $t_{R N 1}$ or $t_{R N 2}$ is less than the specified value, internal reset operations may extend to cycles immediately preceding or following the period of desired reset operations.
(9) If either $t_{\text {WES }}$ or $t_{\text {WEH }}\left(t_{\text {RES }}\right.$ or $\left.t_{\text {REH }}\right)$ is less than the specified value, write (read) disable operations are not guaranteed.
(10) If either tWEN1 or tWEN2 (tREN1 or tREN2) is less than the specified value, internal write (read) disable operations may extend to cycles immediately preceding or following the period of desired disable operations.
(11) Data is guaranteed to remain valid for a minimum of 1 ms after it is written. After this time, the data stored may be invalid, since this device uses a dynamic storage element.

Figure 1. Input Timing

Figure 2. Input Timing for μ PD42102-5

Figure 3. Output Timing

Figure 4. Output Load for $\boldsymbol{t}_{A C}, \boldsymbol{t}_{A C R}$, toh and $\boldsymbol{t}_{O H}$

Figure 5. Output Load for $\boldsymbol{t}_{\text {LZ }}$ and $\boldsymbol{t}_{H Z}$

Timing Waveforms

Read Cycle

Write Cycle

Notes:
[1] $\overline{\text { RSTW }}=\mathrm{V}_{\mathbb{H}}$.
[2] $\mathrm{V}=$ valid data.

Timing Waveforms (cont)

Read Reset Cycle

Write Reset Cycle

Timing Waveforms (cont)

Write Disable Cycle

Read Disable Cycle

Note:
[1] $\mathbf{v}=$ Valid Data.

Timing Waveforms (cont)

Re-Read Cycle

Description

The μ PD42270 is a field buffer designed for NTSC TV applications and for other applications where serial data is needed. Equipped with four planes of 263 -line by 910-bit storage, the μ PD42270 can execute serial write and read cycles on any of the 263 lines. Within a line, four planes of 910 bits each may be written or read at the NTSC sampling rate of 4 fsc .
Each of the four planes in the μ PD42270 is equipped with two ports, one each for the write and read data registers. Each of the registers is split into two 455-bit segments but functions as if it were organized as one scan line of 910 bits. Independent control of write and read operation makes it possible for the device to operate synchronously or asynchronously at a clock frequency of 14.3 MHz or higher.
The synchronous option simplifies interframe luminance (Y) and chrominance (C) separation and interfield noise reduction and makes it easy to obtain a one-field delay line for digital TV and VCR applications requiring NTSC $4 \mathrm{f}_{\mathrm{Sc}}$ sampling. To obtain a very long delay, field length can be configured from 260 to 263 lines and line length of the last line from 896 to 910 bits.

The asynchronous option is useful in applications such as frame synchronization and time base correction, where line jump, line hold, line reset and pointer clear functions are required to support special effects in TV field processing.
Regular refreshing of the device's dynamic storage cells is performed automatically by an internal circuit. All inputs and outputs, including clocks, are TTLcompatible. The μ PD42270 is packaged in a $400-\mathrm{mil}$, 28 -pin plastic DIP and is guaranteed for operation at -20 to $+70^{\circ} \mathrm{C}$.

Ordering Information

Part Number	Access Time (max)	Cycle Time (min)	Package
μ PD $42270 \mathrm{C}-60$	40 ns	60 ns	28-pin plastic DIP

Pin Configuration

28-Pin Plastic DIP

18c

Features

- Three functional blocks
-Four 263-line x 910-bit storage planes
-Four 910-bit write registers, one for each plane
-Four 910-bit read registers, one for each plane
- Two data ports: serial write and serial read
- Asynchronous operation
-Dual-port accessibility
- Carry-out feature to indicate position of scan line
-Line jump, line hold, line reset, and pointer clear functions
- Synchronous operation
-Variable field length: from 260 to 263 lines
- Variable last line length: from 896 to 910 bits
- Automatic refreshing
- CMOS technology
- Fully TTL-compatible inputs, outputs, and clocks
- Three-state outputs
- Single +5 -volt power supply
- On-chip substrate bias generator
- Standard 400 -mil, 28 -pin plastic DIP packaging

Pin Identification

Symbol	Function
$\mathrm{D}_{\text {INO }}-\mathrm{D}_{\text {IN3 }}$	Write data inputs
Douto - $\mathrm{D}_{\text {OUT3 }}$	Read data outputs
\bar{W}	Write enable
$\overline{\mathrm{OE}}$	Output enable
WCK	Write clock input
RCK	Read clock input
$\overline{\text { WCLR }}$	Write pointer clear
$\overline{\text { RCLR }}$	Read pointer clear
WLRST	Write line reset
RLRST	Read line reset
WLJ	Write line jump
RLJ	Read line jump
WLH	Write line hold
RLH	Read line hold
WCO	Write data register carry output
RCO	Read data register carry output
$L^{\text {L }}$ - LS_{1}	Line select inputs
$\mathrm{BS}_{0}-\mathrm{BS}_{3}$	Bit select inputs
MODE	Synchronous/asynchronous control
GND	Ground
$V_{C C}$	+5-volt power supply
TEST	Test pin (connect to GND in system)

Pin Functions

$\mathrm{D}_{\text {INO }}-\mathrm{D}_{\text {IN3. }}$. These pins function as write data inputs, e.g., for 4fsc composite color or brightness signals.

Douto - Dout3. These pins are three-state read data outputs.
\bar{W}. A low level on \bar{W} enables write operation. \bar{W} must be kept low throughout the entire scan line to ensure that data is stored serially; if \bar{W} goes high any time during the WCK clock sequencing for a line, write operation will be disabled for the half of the line (455 bits) being written. The write address pointer increments in synchronization with WCK, regardless of \bar{W}.
$\overline{\mathrm{OE}}$. This signal controls read data output. When $\overline{\mathrm{OE}}$ is low, read data is output on Douto-Dout3. When OE is high, Douto - Doutз are in a state of high impedance. The read address pointer is incremented by RCK, regardless of the signal level of $\overline{O E}$.
WCK The rising edge of WCK latches write data from $D_{\text {ino }}-D_{\text {in3. }}$. Each time this signal is activated, the write bit pointer increments sequentially and 4 bits of data
are sampled and loaded into the write register. Although the register functions as one scan line of 910 bits, data is moved into and out of it in blocks of 455×4 bits. While 455 serial write cycles are being executed in one-half of the register, the 455 addresses previously written to the other half are simultaneously transferred to storage. Writing continues in this manner, alternating between the two halves of the register. Automatic refreshing and data transfer timing decisions are made by the internal arbitration circuit after each block of 455 addresses has been written.

RCK. The rising edge of RCK initiates read operation. Each time this signal is activated, the bit pointer increments by 1 and serial read cycles are executed in the read register. Although the register functions as one scan line of 910 bits, data is moved into and out of it in blocks of 455×4 bits. While 455 serial read cycles are being executed in one-half of the register, the 455 addresses previously read out of the other half are replaced by data from the storage array. Reading continues in this manner, alternating between the two halves of the register. Automatic refreshing and data transfer timing decisions are made by the arbitration circuit after each block of 455 addresses has been read. In synchronous operation, WCK controls read cycles and RCK is not used.
 to clear the write pointers to address 0 of the data register and scan line 0 of the storage array. At least one rising edge of WCK must occur while WCLR is held low for a minimum of $3 \mu \mathrm{~s}$ to ensure clearing of both pointers. The clear function ends when WCLR goes high. If WLRST is still high, the next rising edge of WCK writes the data on $\mathrm{D}_{\text {INO }}-\mathrm{D}_{\text {IN3 }}$ into address 0 of the write register.
$\overline{\text { RCLR }}$. When $\overline{\text { RLRST }}$ is high, $\overline{\operatorname{RCLR}}$ can be brought low to clear the read pointers to address 0 of the data register and scan line 0 of the storage array (asynchronous operation only). At least one rising edge of RCK must occur while $\overline{\mathrm{RCLR}}$ is held low for a minimum of $3 \mu \mathrm{~s}$ to ensure clearing of both pointers. The clear function ends when $\overline{\text { RCLR }}$ goes high. If RLRST is still high, the data from address 0 is read out on Douto Douts and the next rising edge of RCK initiates data access from address 1 .
WLRST. This pin is used in synchronous or asynchronous operation to reset the bit pointer to address 0 of the line following the one to which the signal is applied. In standard write operation, the scan line pointer increments by 1 whenever the bit pointer reaches the last address of a line. If $\overline{\text { WCLR }}$ is high, $\overline{\text { WLRST }}$ can be brought low for a minimum of 3μ s to force an end-of-
line condition, whereby write cycles begin executing from address 0 of the next sequential scan line. When used in conjunction with WLH, WLRST resets the current scan line; when combined with WLJ, WLRST begins writing from address 0 of the line to which the scan line pointer is jumped.
RLRST. This pin is valid in asynchronous operation and can be used to reset the bit pointer to address 0 of the read line following the one to which the signal is applied. In standard read operation, the scan line pointer increments by 1 whenever the bit pointer reaches the last address of a line. If $\overline{\operatorname{RCLR}}$ is high, RLRST can be brought low for a minimum of $3 \mu \mathrm{~s}$ to force an end-of-line condition, whereby read cycles begin executing from address 0 of the next sequential scan line. When used in conjunction with RLH, RLRST resets the current scan line; when combined with RLJ, RLRST begins reading from address 0 of the line to which the scan line pointer is jumped.
WLJ. Each positive pulse of this signal increments the write scan line pointer by one line (asynchronous operation only). WLJ is sampled at the rising edge of WCK. If WLJ is high, a single jump is executed. If WLJ remains high, no further jumps occur. To jump again, WLJ must go low for at least one rising edge of WCK before going high again. It takes a minimum of two WCK cycles to complete a line jump. The first cycle senses the high level of WLJ and increments the scan line pointer. An additional WCK cycle with WLJ low is required to complete the function. If more than one line jump is needed, then the sequence must be repeated. A line jump occurs either when the current line has been completely filled or after WLRST has reset the write address. The new scan line can be calculated by $n+11+1 x$ (where " n " is the current line and " x " equals the number of positive WLJ pulses). Changes in the level of WLJ must be made when the bit pointer is between locations 229 and 909 of the current line and when $\overline{W C L R}$ and $\bar{W} L R S T$ are high and WLH is low.

RLJ. Each positive pulse of this signal increments the read scan line pointer by one line (asynchronous operation only). RLJ is sampled at the rising edge of RCK. If RLJ remains high, a single line jump is executed. To jump again, RLJ must go low for at least one rising edge of RCK before going high again. It takes a minimum of two RCK cycles to complete a line jump. The first cycle senses the high level of RLJ and increments the scan line pointer. An additional RCK cycle with RLJ low is required to complete the function.If more than one line jump is needed, then this sequence must be repeated.

A line jump occurs either when the current line has been completely read or after RLRST has reset the read
address. The new scan line can be calculated by $n+1+x$ (where " n " is the current line and " x " equals the number of positive RLJ pulses).
Changes in the level of RLJ must be made when the bit pointer is between locations 682 and 909 of the previous line, or between 0 and 452 of the current line, and when $\overline{\text { RCLR }}$ and $\overline{\text { RLRST }}$ are high and RLH is low.
WLH. Once this input is applied, the write scan line pointer will hold its position even if successive write clocks are applied. The level of WLH is sampled at the rising edge of WCK and must be applied between locations 229 and 909 of the line to be held. The held line is released after 910 addresses have been rewritten or after WLRST resets the write line address. WLH is multiplexed with BS_{2} and is valid in asynchronous operation only. WLH (high) must be input only when $\overline{\text { WCLR }}$ and WLRST are high and WLJ is low.
RLH. Once this input is applied, the read scan line pointer will hold its position even if successive read clocks are applied. The level of RLH is sampled at the rising edge of RCK and must be clocked between locations 682 and 909 of the line preceding the line to hold, or between locations 0 and 452 of the line to hold. The held line is released after 910 addresses have been read or after RLRST resets the read line address. RLH (high) must be input only when RCLR and RLRST are high and RLJ is low. RLH is multiplexed with BS_{3} and is valid in asynchronous operation only.
WCO. When the bit pointer reaches address 909 of the write data register, this signal goes high for one WCK cycle. WCO is multiplexed with $B S_{0}$ and is valid in asynchronous operation only.

RCO. When the bit pointer reaches address 909 of the read data register, this signal goes high for one RCK cycle. RCO is multiplexed with $B S_{1}$ and is valid in asynchronous operation only.
$\mathrm{BS}_{0}-\mathrm{BS}_{3}$. These pins control the number of bits in the last line of the field. The combined signals of $\mathrm{BS}_{0}-\mathrm{BS}_{3}$ set the line length from 896 to 910 bits in one-bit steps (table 1). The length of the last line can change for each field, but all four pins should not be set low. $\mathrm{BS}_{0}, \mathrm{BS}_{1}$, BS_{2} and BS_{3} are multiplexed with WCO, RCO, WLH and RLH, respectively, and are valid in synchronous operation only. In asynchronous operation, the line length is fixed at 910 bits.
$\mathbf{L S}_{\mathbf{0}}-\mathbf{L S}_{\mathbf{1}}$. These pins control the number of lines for one field in either synchronous or asynchronous operation. The combined signals of $L S_{0}$ and $L S_{1}$ set the number of lines to $260,261,262$, or 263 (table 2). The number of lines can be changed for each field.

MODE. This pin selects the operating mode. A low signal selects synchronous operation and a high signal selects asynchronous operation. If MODE is changed after power has been applied to the $\mu \mathrm{PD} 42270$, it is necessary to clear the address pointers by bringing $\overline{\text { WCLR }}$ and $\overline{\text { RCLR }}$ low. MODE can be changed at any time; however, data input in one mode may be unreliable in the other (see table 3 for valid pin functions).

Table 1. Line Length Adjustment

BS $_{\mathbf{3}}$	BS $_{\mathbf{2}}$	BS $_{\mathbf{1}}$	BS $_{\mathbf{0}}$	Number of Bits in the Last Line
L	L	L	L	Prohibited
L	L	L	H	896
L	L	H	L	897
L	H	H	H	898
L	H	L	L	899
L	H	H	L	900
H	H	H	H	901
H	L	L	L	902
H	L	H	H	903
H	L	H	H	904
H	H	L	L	905
H	H	L	H	906
H	H	H	L	907
H	H	H	H	908
H			H	909

Notes:

(1) $L S_{0}-L S_{1}$ and $B S_{0}-B S_{3}$ must be held at a stable high or low level to maintain the number of bits per scan line and the number of scan lines per field while the line pointer indicates the position between lines 258 and 262.

Table 2. Line Number Adjustment

S $_{\mathbf{1}}$	LS $_{\mathbf{0}}$	Number of Lines
L	L	260
L	H	261
H	L	262
H	H	263

Notes:
(1) $L S_{0}-L S_{1}$ and $B S_{0}-B S_{3}$ must be held at a stable high or low level to maintain the number of bits per scan line and the number of scan lines per field while the line pointer indicates a position between lines 258 and 262.

Table 3. Valid Pin Functions According to Mode

Pin Name	Synchronous Mode (Note 1)	Asynchronous Mode (Note 2)
MODE	0	1
BS_{0} WCO	BS_{0}	WCO
$\mathrm{BS}_{1} /$ RCO	BS_{1}	RCO
BS_{2} WLH	BS_{2}	WLH
$\mathrm{BS}_{3} / \mathrm{RLLH}$	BS_{3}	RLH
$\overline{\text { RCLR }}$	Invalid	Valid
RCK	Invalid	Valid
$\overline{\text { RLRST }}$	Invalid	Valid
$\overline{\text { WCLR }}$	Valid	Valid
WCK	Valid	Valid
$\overline{\text { WLRST }}$	Valid	Valid
WLJ	Invalid	Valid
RLJ	Invalid	Valid

Notes:

(1) Write and read cycles are controlled by WCLR,$~ W C K$, and $\overline{\text { WLRST }}$ in synchronous operation.
(2) In asynchronous operation, write and read cycles are controlled independently.

Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% ; \mathrm{GND}=0 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$

Parameter	Symbol	Min	Typ	Max	Unit	Pins Under Test
Input capacitance	C_{1}			5	pF	$\mathrm{D}_{\mathbb{N O}_{0}-\mathrm{D}_{\mathbb{N} 3}, \overline{\mathrm{~W}}, \overline{\mathrm{OE}}, \mathrm{WCK}, \mathrm{RCK}, \overline{\mathrm{WCLR}}, \overline{\mathrm{RCLR}}, \overline{\text { WLRST}}, ~ \overline{R L R S T}}$, WLJJ, RLJ, LS $\mathrm{S}_{0}-\mathrm{LS}_{1}, \mathrm{BS}_{2}$ WLH, $\mathrm{BS}_{3} /$ RLH, MODE
1/O capacitance	Cl_{10}			8	pF	$\mathrm{BS}_{0} / \mathrm{WCO}, \mathrm{BS}_{1} / \mathrm{RCO}$
Output capacitance	C_{0}			7	pF	Dout - Dout

DEVICE OPERATION

The μ PD42270 supports two operating modes to accommodate various NTSC TV applications. Depending on the logic level of the MODE pin, the device will execute either synchronous or asynchronous write and read cycles on the addresses specified by the internal address pointers. When selecting the mode after poweron, it is necessary to reset these pointers to starting address 0 using WCLR and RCLR. The level of MODE may be changed at any time.

Synchronous Mode

In synchronous mode, write and read cycles are executed simultaneously by $\overline{\text { WCLR }}, \overline{\text { WLRST, WCK, }} \overline{\mathrm{W}}$ and $\overline{O E}$ to create a delay line, which means that write and read addresses always coincide. After all lines within a field have been written, they then are read out as the device begins overwriting new data to the same addresses again. Field length may be configured from 260 to 263 lines and last line length from 896 to 910 bits by means of the LS and BS pins, respectively. Synchronous operation is useful in applications where a very long delay line is required and may be selected by setting MODE low.

Asynchronous Mode

In asynchronous mode, $\overline{\text { WCLR }}, \overline{\text { WLRST, }}$ WCK and \bar{W} control write cycles, while read cycles are controlled independently by $\overline{\operatorname{RCLR}}, \overline{\mathrm{RLRST}}, \mathrm{RCK}$ and $\overline{\mathrm{OE}}$. Field length may be configured from 260 to 263 lines using $L S_{0}-L S_{1}$. Line length remains fixed at 910 bits and $\mathrm{BS}_{0}-\mathrm{BS}_{3}$ are disabled to provide for the register carry out, line hold, and line jump functions. Asynchronous operation is useful for frame synchronization or time base correction and may be selected by setting MODE high.
Address Clear. Setting $\overline{\text { WCLR }}$ and $\overline{\mathrm{RCLR}}$ low for a minimum of 3μ s during successive WCK and RCK cycles initializes the internal pointers to starting address 0 of the first scan line ($\overline{\mathrm{RCLR}}$ is disabled in synchronous mode). Although address clear signals must meet the specifications for setup and hold times as measured from the rising edges of WCK and RCK, they are not dependent on the status of \bar{W} or $\overline{O E}$. An address clear cycle cannot occur in conjunction with $\overline{\text { WLRST or }} \overline{\text { RLRST }}$ line reset cycles.
Write Operation. Write cycles are executed in synchronization with WCK as \bar{W} is held low. Bits are input sequentially into one of the two halves of the data
register before being transferred to the storage array. Since data is transferred into the array in blocks of 455 x 4 bits, no data transfer occurs if \bar{W} goes high to disable write operation before all 455 bits are written. Despite write operation being disabled, the internal bit pointer continues to increment with each successive write clock.

Read Operation. Read cycles are executed in synchronization with RCK (asynchronous operation only) or WCK (synchronous operation only) as $\overline{O E}$ is held low. If $\overline{\mathrm{OE}}$ goes high any time during a cycle, the outputs are in a state of high impedance until $O E$ returns low. Since the internal bit pointer increments by 1 in spite of read operation being disabled, it is always important to reset the write and read pointers using WCLR and RCLR prior to beginning or resuming operation at the first address location in the array.

Special Functions

Line Reset. A line reset is similar to an address clear cycle, except that it only affects the bit pointers within a line. While WCLR and RCLR are held high, $\overline{\text { WLRST }}$ or RLRST can be brought low for a minimum of $3 \mu \mathrm{~s}$ during successive WCK or RCK cycles to reset the bit pointer to address 0 of the scan line. At the completion of the reset cycle, the next sequential scan line will be selected unless line hold (WL.H or RLH) or line jump (WLJ or RLJ) are also used. See WLRST and RLRST for more detail.

A combination of line reset and an address clear cycle must be separated by at least one serial clock cycle. The timing relationship of WCLR, WLRST and WCK (or RCLR, RLRST and RCK) is shown in figure 1.
In asynchronous operation, $\overline{\text { WLRST }}$ and RLRST independently reset the write and read bit pointers. During synchronous operation, WLRST resets both pointers.
Line Jump. With the line jump function, it is possible to advance the current write or read line position accord ing to the number of positive WLJ or RLJ pulses applied (see descriptions for the WLJ and RLJ pins). In this cycle, which is valid in asynchronous mode only, the scan line pointer resets to address 0 if the number of positive pulses causes the resulting line number ($n+11+1 x$, where " n " is the current line number and " x " is the number of positive WLJ or RLJ pulses) to exceed the maximum line number (number of lines minus 1) specified by the $L S_{0}$ and $L S_{1}$ pins (table 2).

Line Hold. The line hold feature is available in asynchronous mode only and can be used to prevent the internal scan line pointers from incrementing to the next sequential address. The read and write line pointers
may be held independently; however, restrictions pertaining to when this function can be initiated, detailed in the descriptions for the WLH and RLH pins, should be carefully followed.

Block Diagram

Figure 1. Separation of Clear and Reset Signals

Absolute Maximum Ratings

Supply voltage on any pin except V_{CC} relative to GND, $\mathrm{V}_{\mathrm{R} 1}$	-1.5 to +7.0 V
Supply voltage on V_{CC} relative to $\mathrm{GND}, \mathrm{V}_{\mathrm{R} 2}$	-1.5 to +7.0 V
Operating temperature, $\mathrm{T}_{\mathrm{OPR}}$	-20 to $+70^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\mathrm{STG}}$	-55 to $+125^{\circ} \mathrm{C}$
Short-circuit output current, los	50 mA
Power dissipation, PD_{D}	1.5 W

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Input voltage, high	V_{IH}	2.4		$\mathrm{~V}_{\mathrm{CC}}$	V
Input voltage, low	V_{IL}	-1.5		0.8	V
Ambient temperature	T_{A}	-20		70	${ }^{\circ} \mathrm{C}$

DC Characteristics
$\mathrm{T}_{\mathrm{A}}=-20$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% ; \mathrm{GND}=0 \mathrm{~V}$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Input leakage current	${ }^{\text {ILL }}$	-10		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbb{I}}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$; all other pins not under test $=0 \mathrm{~V}$
Output leakage current	${ }_{\mathrm{OL}}$	-10		10	$\mu \mathrm{A}$	Dout disabled; $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$
Output voltage, high	V_{OH}	2.4			V	$\mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA}$
Output voltage, low	V_{OL}			0.4	V	$\mathrm{l}_{\mathrm{OL}}=2 \mathrm{~mA}$
Standby current	$\mathrm{lCC1}$		6	20	mA	WCK, RCK $=\mathrm{V}_{\text {IL }}$
Operating current	lCC_{2}		40	80	mA	$t_{\text {WCK }}=t_{\text {WCK }}(\mathrm{min}) ; \mathrm{t}_{\text {RCK }}=\mathrm{t}_{\text {RCK }}(\mathrm{min})$

AC Characteristics

Parameter	Symbol	Min	Max	Unit	Test Conditions
Access time from RCK	$t_{A C}$		40	ns	
Write clock cycle time	${ }^{\text {twas }}$	60		ns	(Note 5)
Write clock active pulse width	$t_{\text {WCW }}$	20		ns	
Write clock precharge time	${ }^{\text {twCP }}$	20		ns	
Read clock cycle time	$t_{\text {RCK }}$	60		ns	(Note 5)
Read clock active pulse width	$t_{\text {RCW }}$	20		ns	
Read clock precharge time	$\mathrm{t}_{\text {RCP }}$	20		ns	
Output hold time	${ }^{\text {toh }}$	5		ns	
Output low impedance delay	$\mathrm{t}_{\text {LZ }}$	5	40	ns	(Note 6)
Data output buffer high impedance delay	t_{Hz}	5	40	ns	(Note 7)
Input data setup time	$t_{\text {DS }}$	15		ns	

AC Characteristics (cont)

Parameter	Symbol	Min	Max	Unit	Test Conditions
Input data hold time	${ }^{\text {D }}$ D	3		ns	
$\overline{\text { WCLR }}$ ($\overline{\mathrm{RCLR}})$ setup time before the rising edge of WCK (RCK)	${ }_{\text {tes }}$	20		ns	(Note 8)
$\overline{\text { WCLR }}$ ($\overline{\mathrm{RCLR}})$ hold time after the rising edge of WCK (RCK)	${ }^{\text {ch }}$	3		ns	(Note 8)
$\overline{\text { WCLR }}(\overline{\text { RCLR }}$) invalid hold time after the rising edge of WCK (RCK)	$\mathrm{t}_{\mathrm{CN1}}$	5		ns	(Note 8)
$\overline{\text { WCLR }}$ ($\overline{\mathrm{RCLR}}$) invalid setup time before the rising edge of WCK (RCK)	${ }_{\text {t }}^{\text {CN2 }}$	20		ns	(Note 8)
$\overline{\text { WCLR }}$ ($\overline{\mathrm{RCLR}}$) low level valid time	${ }_{\text {t CLR }}$	3		$\mu \mathrm{s}$	
$\overline{\text { WLRST (}}$ (LRST) setup time before the rising edge of WCK (RCK)	t LRS	20		ns	(Note 8)
$\overline{\text { WLRST (RLRST) hold time after the rising edge of WCK (RCK) }}$	tLRH	3		ns	(Note 8)
$\overline{\text { WLRST (}}$ (RLRST) invalid hold time after the rising edge of WCK (RCK)	tLRN	5		ns	(Note 8)
$\overline{\text { WLRST }}$ (RLRST) invalid setup time before the rising edge of WCK (RCK)	${ }^{\text {t LRN }}$	20		ns	(Note 8)
WLRST (RLRST) low level valid time	tLRST	3		$\mu \mathrm{s}$	
\bar{W} setup time before the rising edge of WCK	tws	20		ns	(Note 9)
\bar{W} hold time after the rising edge of WCK	$t_{\text {WH }}$	3		ns	(Note 9)
\bar{W} valid hold time after subline (1/2) switch	tWN1	5		ns	(Note 9)
\bar{W} valid setup time before subline (1/2) switch	${ }^{\text {twN2 }}$	20		ns	(Note 9)
WLH (RLH) setup time before the rising edge of WCK (RCK)	$t_{\text {LHS }}$	20		ns	
WLH (RLH) hold time after the rising edge of WCK (RCK)	$\mathrm{t}_{\mathrm{LHH}}$	3		ns	
WLH invalid hold time measured from the end of write cycle 227	twhNi	5		ns	,
WLH invalid setup time measured before write cycle 0	twHN2	20		ns	
RLH invalid hold time measured from the end of read cycle 681	$t_{\text {RHN1 }}$	5		ns	
RLH invalid setup time measured before read cycle 453	$t_{\text {RHN2 }}$	20	'	ns	
WLJ (RLJ) setup time before the rising edge of WCK (RCK)	t ${ }_{\text {LJS }}$	20		ns	
WLJ (RLJ) hold time after the rising edge of WCK (RCK)	tLJH	3		ns	
WLJ hold time measured from the end of write cycle 227	twJN1	5		ns	
WLJ setup time measured before write cycle 0	tWJN2	20		ns	
RLJ hold time measured from the end of read cycle 681	$t_{\text {RJN1 }}$	5		ns	
RLJ setup time measured before read cycle 453	$t_{\text {RJN2 }}$	20		ns	-
$\overline{\text { OE }}$ setup time before the rising edge of RCK (WCK)	toEs	20		ns	(Note 9)
$\overline{\overline{O E}}$ hold time after the rising edge of RCK (WCK)	$\mathrm{t}^{\text {OEH }}$	3		ns	(Note 9)
$\overline{\overline{O E}}$ valid hold time after the rising edge of RCK (WCK)	toen 1	5		ns	(Note 9)
OEv valid setup time before the rising edge of RCK (WCK)	$\mathrm{t}_{\text {OEN2 }}$	20		ns	(Note 9)
LS, BS setup time before WCK (RCK), line 258	$t_{\text {FSS }}$	0		ns	
LS, BS hold time after WCK (RCK), line 0	$t_{\text {FSH }}$	3		$\mu \mathrm{s}$	
Write carry output high level delay	twCLH	.	40	ns	-

AC Characteristics (cont)

Parameter	Symbol	Min	Max	Unit	Test Conditions
Write carry output low level delay	w $_{\text {WCHL }}$		40	ns	
Read carry output high level delay	t_{RCLH}		40	ns	
Read carry output low level delay	t_{RCHL}		40	ns	
Transition time	t_{T}	3	35	ns	(Note 4)

Notes:

(1) All voltages are referenced to GND
(2) Ac measurements assume $\boldsymbol{t}_{\mathbf{T}}=5 \mathrm{~ns}$.
(3) Input timing reference levels $=1.5 \mathrm{~V}$; input levels are measured between GND and 3.0 V ; output levels are measured between 0.8 and 2.0 V . See figures 2 and 3.
(4) V_{IH} (min) and V_{IL} (max) are reference levels for measuring the timing of input signals. Transition times are measured between V_{IH} and V_{IL}.
(5) The minimum specifications are used only to indicate the cycle time at which proper operation over the full temperature range $\left(T_{A}=-20\right.$ to $70^{\circ} \mathrm{C}$) is assured.
(6) This delay is measured at -200 mV from the steady-state voltage with the load specified in figure 5 .
(7) This delay is measured at the maximum steady-state output high voltage -200 mV or the minimum steady-state output low voltage +200 mV with the load specified in figure 5 .
(8) For proper execution of the pointer clear and line reset functions, specifications for $t_{C S}, t_{C H}, t_{C N 1}, t_{C N 2}, t_{\text {LRS }} t_{\text {LRH }}, t_{\text {LRN }}$ and tLRN2 must be met; otherwise, these functions may not affect the desired cycles or may affect adjacent cycles erroneously.
(9) If a \bar{W} (or $\overline{\mathrm{OE}}$) pulse does not satisfy the specifications for t_{Ws}, $\mathrm{t}_{\mathrm{WH}}, \mathrm{t}_{\text {WN } 1}$ and $\mathrm{t}_{\text {WN2 }}$ (or $\mathrm{t}_{\text {OES }}, \mathrm{t}_{\text {OEH }}, \mathrm{t}_{\text {OEN }}$ and toen), the write disable function (output high impedance) being executed may not affect the desired cycles or may affect adjacent cycles erroneously.
(10) For the μ PD42270 to read new data, read operation must be delayed from write operation by at least 920 cycles. In those cases where the delay is less than 920 cycles, read data will vary as shown below:

Source of Read Data	Delay Between Write and Read Operation
Old data	0 to 450 cycles
Indeterminate (either old or new data)	451 to 919 cycles
New data	920 or more cycles

Figure 2. Input Timing

Figure 3. Output Timing

Figure 4. Output Loading for $\boldsymbol{t}_{\text {AC }}, \boldsymbol{t}_{\mathrm{OH}}, \boldsymbol{t}_{\text {WCLH }}, \boldsymbol{t}_{\text {WCHL }}, \boldsymbol{t}_{\text {RCLH }}, \boldsymbol{t}_{\text {RCHL }}$

Figure 5. Output Loading for $\boldsymbol{t}_{\text {LZ }}$ and $\boldsymbol{t}_{H Z}$

Timing Waveforms

Synchronous Write/Read Cycle

Notes:
[1] In synchronous mode, output data is delayed by one field from the input data
[2] $\overline{\mathrm{WLRST}}=\overline{\mathrm{WCLR}}=\mathrm{V}_{\mathrm{IH}} \cdot \mathrm{MODE}=\mathrm{V}_{\mathrm{IL}} \cdot \mathrm{LS}_{0}$ and $\mathrm{LS}_{1}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} \cdot \overline{\mathrm{RLRST}}$, $\overline{\mathrm{RCLR}}$, and RCK are "don't care" inputs.
[3] $\mathrm{BS}_{0}-\mathrm{BS}_{3}=\mathrm{V}_{\text {IH }}$ or V_{IL}.
[4] Data is transferred into and out of the data registers in blocks of 455×4 bits. When \bar{W} goes high before all 455 words are input, write operation is disabled and none of the words are transferred to the storage array.

Timing Waveforms (cont)

Asynchronous Write and Read Cycles

Notes:
[1] $\overline{\mathrm{WCLR}}=\overline{\mathrm{RCLR}}=\mathrm{V}_{\mathrm{IH}} \cdot \overline{\mathrm{WLRST}}=\overline{\mathrm{RLRST}}=\mathrm{V}_{\mathrm{IH}} \cdot \mathrm{MODE}=\mathrm{V}_{\mathrm{IH}}$.
[2] RLJ, WLJ, WLH, and RLH $=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} \cdot \mathrm{LS}_{0}$ and $L S_{1}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}.
[3] Data is transferred into and out of the data registers in blocks of 455×4 bits. When \bar{W} goes high before all 455 words are input, write operation is disabled and none of the words are transferred to the storage array.

Timing Waveforms (cont)

Synchronous Pointer Clear Cycle

18c

Notes:
$[1] \bar{W}=\overline{O E}=V_{\text {IL }} \cdot M O D E=V_{\text {IL }}$.
[2] LS_{0} and $\mathrm{LS}_{1}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} \cdot \mathrm{BS}_{0}, \mathrm{BS}_{1}, \mathrm{BS}_{2}$ and $\mathrm{BS}_{3}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}.
[3] $\overline{\text { RLRST, }} \overline{\text { RCLR }}$, and RCK $=$ don't care.
[4] $\overline{\text { WLRST }}=V_{I H}$ during the clear cycle.

Timing Waveforms (cont)

Asynchronous Pointer Clear Cycle

Timing Waveforms (cont)

Synchronous Line Reset Cycle

Notes:

[1] $\overline{W C L R}=V_{I H} \cdot \bar{W}, \overline{O E}$ and $M O D E=V_{I L}$.
[2] LS_{0} and $\mathrm{LS}_{1}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} \cdot \mathrm{BS}_{0}-\mathrm{BS}_{3}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}.
[3] $\overline{\mathrm{RCLR}}, \overline{\mathrm{RLRST}}, \mathrm{RCK}, \mathrm{WLJ}, \mathrm{RLJ}=$ don't care.

Timing Waveforms (cont)

Asynchronous Line Reset Cycle

Timing Waveforms (cont)

Write Line Jump Cycle

mode
Notes:
[1] $\overline{\mathrm{RCLR}}, \overline{\mathrm{RLRST}}, \mathrm{RCK}, \mathrm{RLH}, \mathrm{RLJ}, \overline{\mathrm{W}}$, and $\overline{\mathrm{OE}}=$ don't care.
[2] K and $K^{\prime}=229$ to 909 of line n.
[3] $\overline{\text { WLRST }}$ and $\overline{W C L R}=V_{1 H}$.
[4] $L . S_{0}$ and $L S_{1}=V_{I H}$ or $V_{I L}$.

Read Line Jump Cycle

RLH $V_{\text {IL }}$
RCO

$$
\underline{\mathrm{V}_{\mathrm{IH}}}
$$

MODE

Notes:

[1] $\overline{\text { WCLR }}, \overline{\text { WLRST, WCK, WLH, WLJ, } \bar{W} \text {, and } \overline{\mathrm{OE}}=\text { don't care. }}$
[2] J and $\mathrm{J}^{\prime}=0$ to 452 of line n or 682 to 909 of line $n-1$.
[3] $\overline{\mathrm{RLLRS}}$ and $\overline{\mathrm{RCLR}}=\mathrm{V}_{\mathrm{IH}}$.
[4] LS_{0} and $\mathrm{LS}_{1}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}.

Timing Waveforms (cont)

Write Line Hold Cycle

Read Line Hold Cycle

[1] $\overline{\text { WLRST }}$, WLJ, \bar{W}, WLH, $\overline{O E}, \overline{W C L R}$, and WCK $=$ don't care.
[2] $J=682$ to 909 in $(n-1)^{\text {th }}$ or 0 to 452 in $n^{\text {th }}$ line.
[3] $\overline{\text { RLRST }}=V_{I H} \cdot R L J=V_{I L}$.
[4] LS_{0} and $\mathrm{LS} \mathrm{S}_{1}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}.

Timing Waveforms (cont)

Synchronous Field Buffer Size Adjustment

Notes:

[1] $\overline{\text { WLRST }}$ and $\overline{\text { WCLR }}=V_{1 H}$.
[2] $\mathrm{MODE}=\mathrm{V}_{\mathrm{IL}}$.
[3] $\overline{\mathrm{RLRST}}, \overline{\mathrm{W}}, \mathrm{RCK}, \overline{\mathrm{RCLR}}$, and $\overline{\mathrm{OE}}=$ don't care.

Asynchronous Field Buffer Size Adjustment

Timing Waveforms (cont)

Write Register Carry Out

Notes:
[1] MODE, $\overline{\text { WCLR }}, \overline{\text { RCLR }}, \overline{\text { WLRST }}, \overline{\text { RLRST }}=V_{1 H}$
[2] LS_{0} and $\mathrm{LS}_{1}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}

Read Register Carry Out

RCK

Notes:
[1] MODE, $\overline{\text { WCLR }}, \overline{\text { RCLR }}, \overline{\text { WLRST }}, \overline{\text { RLRST }}=V_{I H}$.
[2] $L S_{0}$ and $L S_{1}=V_{\text {IH }}$ or $V_{\text {IL }}$

APPLICATION EXAMPLES

Delay Line

The synchronous mode may be used to create a fullfield delay line with a fixed length (figures 6 and 7). Useful video applications include field interpolation, interframe noise reduction, and separation of luminance (Y) and chrominance (C) signals. In these applications, field buffer size is determined by the logic levels applied to pins $L S_{0}-L S_{1}$ and $B S_{0}-B S_{3}$. The former allows variation of the number of lines from 260 to 263 , while the latter controls the actual line length at 896 to 910 bits for the last line. The actual delay between data being written into $D_{\text {IN }}$ and read on Dout is controlled by the WCK clock period and the con figured size of the buffer.

Frame Synchronization or Time Base Correction

The μ PD42270 has the capability of executing asyn chronous write and read cycles by independently clocking WCK and RCK, respectively. The feature is
useful in applications requiring frame synchronization, time base correction or buffering, where WCK, RCK, $\overline{\text { WCLR }}$ and $\overline{\text { RCLR }}$ may all have variable time periods. In addition, the write carry out (WCO) and read carry out (RCO) options give a positive indication when the bit pointer reaches the end of the line.

Vertical or Horizontal Image Compression and Expansion

Vertical compression and expansion of the video image may be accomplished by means of the line jump or line hold functions. Compression occurs when WLJ or RLJ are used to jump over lines that are not to be displayed. Expansion occurs when the WLH or RLH line hold signals are used to display a line multiple times.

Horizontal compression and expansion can be achieved by modifying the cycle time of the WCK and RCK clocks, and by using the WLRST and RLRST line reset signals.

Figure 6. Example of Delay Line

Notes:
(1) $\bar{W}, \overline{O E}, M O D E$, WLJ, and RLH $=V / L$.
(2) $\mathrm{BS}_{0}-\mathrm{BS}_{3}$, LS $0-\mathrm{LS}_{1}, \overline{W C L R}$, and $\overline{W L R S T}=V_{I H}$.
(3) RCK, RCLR, and RLRST = don't care.

Figure 8. Example of Frame Synchronization/Time Base Correction

Notes:
(1) $\bar{W}, \overline{O E}, W L J, R L J, W L H$, and $R L H=V_{1 L}$.
(2) $\mathrm{LS}_{0}-\mathrm{LS}_{1}, \mathrm{MODE}, \overline{\mathrm{WLRST}}$, and $\overline{\mathrm{RLRST}}=\mathrm{V}_{\mathrm{IH}}$

Figure 9. Asynchronous Read/Write Timing for Frame Synchronization or Time Base Correction

Description

The $\mu \mathrm{PD} 4227 \mathrm{x}$ (42271 and 42272) is a picture-in-picture generator designed for use in NTSC and PAL broadcasting systems. Picture-in-picture describes the device's ability to combine multiple video signals into a single signal for display on a television monitor, for input to a VCR, or for use in any manner that a single video signal is used. The format may be selected so that one primary picture is displayed over the entire picture area. The other subpicture(s) can then be superimposed onto the primary one to allow multiple picture sources to be viewed simultaneously.
The picture-in-picture generator is available in two versions. The μ PD42272 is the full-featured version that can display a border in one of four colors around the subpicture. The $\mu \mathrm{PD} 42271$ has exactly the same features except that it is not able to display a border around the subpicture.
The μ PD4227x has an onboard controller, field storage, buffer storage, two line buffers, and two oscillators. The controller sets the timing, performs vertical filtering, and stores and retrieves subpicture signal(s) for insertion into the primary picture signal. A line of the subpicture signal is placed in buffer storage before being written into field storage, which contains that portion of the signal to be displayed. The line buffers store a weighted average of three lines of the subpicture signal to provide vertical filtering, while the onboard oscillators facilitate interfacing to the $\mu \mathrm{PD} 4227 \mathrm{x}$.
The level of integration provided by the μ PD4227x means that picture-in-picture can be achieved more quickly and easily than with standard video buffers and control circuitry.

Ordering Information

Part Number	Subpicture Frame Border	Package
μ PD42271AGF-3BE	No	64-pin plastic quad flatpack
μ PD42272AGF-3BE	Yes	

Pin Configuration

64-Pin Plastic QFP

Features

- NTSC and PAL compatibility
- Built-in vertical filter
- Selectable subpicture display size
- 134,676-bit field buffer and two line buffers
- Built-in input and output oscillators
- Four selectable screen positions
- Four-color selection of subpicture frame border (μ PD42272 only)
- Selectable freeze-frame display

ㅁ Automatic self-refreshing

- 6-bit resolution of Y, R-Y and B-Y signals
- Low power consumption of 75 mA max
- CMOS silicon-gate fabrication process
- Three-state outputs; TTL-compatible I/O
- Single +5 -volt power supply

Absolute Maximum Ratings	
$T_{A}=25^{\circ} \mathrm{C}$	
Pin voltage, V_{T}	-0.1 to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Supply voltage, V_{DD}	-0.1 to +7.0 V
Output current, I_{O}	50 mA
Operating temperature, $\mathrm{T}_{\mathrm{OPT}}$	-20 to $+70^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\mathrm{STG}}$	-55 to $+125^{\circ} \mathrm{C}$

Table 1. Description of Features

Feature	Description
Field memory capacity	7,568 words by 8 bits (86×88)
Quantization	6 bits
Frame colors	White, yellow, light blue, green $(\mu$ PD42272 only $)$
Screen positions	Top left, bottom left, top right, bottom right
Field-to-field line offset	Adjusts the starting location of the first line of a field to increase vertical sesolution
Line array correction	Adjusts lines between even and odd fields
Display ONOFF switching	Allows insertion or removal of subpicture
Still picture display	Freezes the subpicture display

Table 2. Subpicture Display Area

Video Standard	Full Screen Display (1/9)	80\% Screen Display (1/12)

Table 3. Sampling Rate

Signal	Input	Output
Y	3 MHz	9 MHz
$\mathrm{R}-\mathrm{Y}$	0.75 MHz	2.25 MHz
$\mathrm{B}-\mathrm{Y}$	0.75 MHz	2.25 MHz
Table 4. Sampling Sequence	\cdot	

$$
[(\mathrm{Y})-(\mathrm{R}-\mathrm{Y})-(\mathrm{Y})-(-)-(\mathrm{Y})-(\mathrm{B}-\mathrm{Y})-(\mathrm{Y})-(-)]
$$

Table 5. Average Vertical Filtering

Line Number	Coefficient
$n-1$	$1 / 4$
n	$1 / 2$
$n+1$	$1 / 4$

Notes:

(1) $n=$ line to be sampled.

Block Diagram

Pin Identification

Symbol	Function
ADCK	Analog/digital clock output
BDACK	Digital/analog clock for B-Y component signal output
BLANK	Main picture blanking output
BSW	$\mathrm{DI}_{0}-\mathrm{DI}_{5}$ output enable for $\mathrm{B}-\mathrm{Y}$ component signals
$\mathrm{DI}_{0}-\mathrm{Dl}_{5}$	Multiplexed B-Y, R-Y, and Y data inputs
DISP	Subpicture on/off input
$\mathrm{DOB}_{0}-\mathrm{DOB}_{5}$	$B-Y$ data outputs
$\mathrm{DOR}_{0}-\mathrm{DOY}_{5}$	R-Y data outputs
$\mathrm{DOY}_{0}-\mathrm{DOY}_{5}$	Y data outputs
FC_{0} and FC_{1}	Frame color selection input
FDE	Field distinction data enable input
HPS	Horizontal position input
MFC	Main picture field correction input
MFDIS	Main picture field distinction input
$\overline{\overline{\mathrm{MHS}}}$	Main picture horizontal synchronous input
MOSCI	Main picture oscillator input
MOSCO	Main picture oscillator output
$\overline{\text { MVS }}$	Main picture vertical synchronous input
N/P	NTSC/PAL switching input
RCK	Read clock output
RDACK	Digital/analog clock for R-Y component signal output
RSW	$\mathrm{Dl}_{0}-\mathrm{Dl}_{5}$ output enable for R-Y component signals
SFC	Subpicture field correction input
SFDIS	Subpicture field distinction input
$\overline{\mathrm{SHS}}$	Subpicture horizontal synchronous input
SIZE	Size selection input
SOSCI	Subpicture oscillator clock input
SOSCO	Subpicture oscillator clock output
STILL	Freeze frame input
SVS	Subpicture vertical synchronous input
TEST $_{0}-$ TEST $_{2}$	Test terminals
VPS	Vertical position input
YDACK	Digital/analog clock for Y component signal output
YSW	$D \mathrm{I}_{0}-\mathrm{DI}_{5}$ output enable for Y component signals
$V_{\text {DD }}$	+5 -volt power supply
GND	Ground

Pin Functions

ADCK. $\mathrm{Y}, \mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ component signals selected with the analog switch are converted from analog to digital data in synchronization with this 6 MHz sampling clock. Digitized component signals are sequentially input to the $\mathrm{Dl}_{0}-\mathrm{DI}_{5}$ pins, also in synchronization with this clock.

BDACK. Digitized B-Y component signals are output from the $\mathrm{DOB}_{0}-\mathrm{DOB}_{5}$ pins in synchronization with this 2.25 MHz sampling clock.

BLANK. When high, this output signal blanks the main picture, enabling the subpicture to be displayed.
BSW. A high logic level on BSW (while RSW and YSW are low) enables the $\mathrm{Dl}_{0}-\mathrm{Dl}_{5}$ pins to be used for receiving 6 -bit $B-Y$ data from the A / D converter.
DI_{0} through DI_{5}. These multiplexed pins are used for 6 -bit digitized subvideo input, either B-Y, R-Y or Y, depending on the levels of BSW, RSW and YSW. Dlo is the least significant bit and DI_{5} is the most significant bit.

DISP. This pin controls the BLANK signal. A high logic level enables BLANK, while DISP low inhibits it. The level of DISP has no effect on the $\mathrm{DOB}_{0}-\mathrm{DOB}_{5}, \mathrm{DOR}_{0}$ - DOR_{5}, and $\mathrm{DOY}_{0}-\mathrm{DOY}_{5}$ pins.
DOB_{0} through DOB_{5}. These pins are used for 6-bit B-Y color difference output and depend on the status of BDACK. When no $B-Y$ data is being output, the pins are in high impedance.
DOR $_{0}$ through DOR ${ }_{5}$. These pins are used for 6-bit R-Y color difference output and depend on the status of RDACK. When no R-Y data is being output, the pins are in high impedance.
DOY_{0} through DOY_{5}. These pins are used for 6-bit Y luminance output and depend on the status of YDACK. When no Y data is being output, the pins are in high impedance.
FC_{0} and FC_{1}. The combination of signals from these pins is used to specify subvideo frame color, as shown below:

Pin	White	Light Blue	Yellow	Green
FC_{0}	high	low	high	low
FC_{1}	high	high	low	low

FDE. This pin is used to select external or internal field distinction. FDE high enables external field distinction, while FDE low inhibits the MFDIS and SFDIS pins and causes field distinction to be executed internally.

HPS and VPS. These horizontal and vertical input pins specify positioning of the subpicture. One of the four corners on the main picture can be selected by combining the input levels on HPS and VPS, as shown below.

Pin	Top Left	Bottom Left	Top Right	Bottom Right
HPS	high	high	low	low
VPS	high	low	high	low

MFC. Fields of the main picture are distinguished by the μ PD 4227 x based on the phase relationship of the $\overline{\mathrm{MHS}}$ and $\overline{\mathrm{MVS}}$ signals. Field distinction may therefore be distorted if the signals are not in proper phase. In these cases, a high logic level on MFC can be used to reverse field distinction. MFC low has no effect on field distinction.

MFDIS. The even and odd fields of the main picture signal are distinguished based on the phase relationship of $\overline{M H S}$ and MVS. MFDIS can be used to provide an external signal indicating either an odd (high) or even (low) field.
$\overline{\text { MHS. }}$. This pin is used to input a horizontal synchronization signal for the main picture. The internal read clock oscillator is synchronized to the rising edge of $\overline{\mathrm{MHS}}$ and increments the field buffer's read address counter, which is used to determine the horizontal display size and position of the sub picture.

MOSCI. This pin is used as an oscillator input for the main picture read clock. To use the internal oscillator, an external coil and capacitor must be installed. Alternatively, an 18 MHz external clock may be input to MOSCI.
MOSCO. This pin is used as an output for the feedback circuit of the main picture's internal oscillator.
$\overline{\text { MVS. This pin is used to input a vertical synchroniza- }}$ tion signal for the main picture. The falling edge of MVS resets the field buffer's internal read address counter, which is used to determine the vertical display size and position of the subpicture.
$\mathrm{N} / \overline{\mathrm{P}}$. A high logic level on this pin selects NTSC compatibility and a low selects PAL.
RCK. This pin is used as an output for the subpicture read clock, which is derived from MOSCI and MOSCO.

RDACK. Digital R-Y component signals are output from the $\mathrm{DOR}_{0}-\mathrm{DOR}_{5}$ pins in synchronization with this 2.25 MHz sampling clock.

RSW. A high logic level on RSW (while BSW and YSW are low) enables the $\mathrm{Dl}_{0}-\mathrm{Dl}_{5}$ pins to be used for receiving 6-bit R-Y data from the A/D converter.
SFC. The μ PD4227x distinguishes subpicture fields based on the phase relationship of the SHS and SVS signals. Field distinction of the subpicture may therefore be distorted if the signals are not in phase. SFC high can be used to reverse field distinction. SFC low has no effect on field distinction.
SFDIS. The even and odd fields of the subpicture sig- ship of the $\overline{\mathrm{SHS}}$ and $\overline{\mathrm{SVS}}$ signals. This pin can be used to provide an external signal indicating either an odd (high) or even (low) field.
$\overline{\mathrm{SHS}}$. This pin is used to input the horizontal synchronization for the subpicture. The rising edge of this clock is used to synchronize the internal write clock oscillator which is then used to increment the write address counters for the line buffers and the field buffer.

SIZE. This input is used to specify size of the subpicture display area. SIZE high sets a full screen display and occupies $1 / 9$ of the main picture. SIZE low displays 80% of the subpicture and occupies $1 / 12$ of the main picture.
SOSCI. This pin is used as an oscillator input for the subpicture write clock. To use the internal oscillator, an external coil and capacitor must be installed. Alternatively, an 6 MHz external clock may be input to SOSCI.

SOSCO. This pin is used as an output for the feedback circuit of the subpicture's internal oscillator.
STILL. A high logic level selects a still picture, while STILL low selects a moving picture.
$\overline{\text { SVS. This pin is used to input the vertical synchroniza- }}$ tion signal for the subpicture. The falling edge of this signal resets the internal write address counters for the line buffers and the field buffer.
TEST $_{0}-$ TEST $_{2}$. These are test pins and must be open.
YDACK. Digital Y component signals are output from the DOY 0 - DOY 5 pins in synchronization with this 9 MHz sampling clock.
YSW. A high logic level on YSW (while BSW and RSW are low) enables the $\mathrm{Dl}_{0}-\mathrm{DI}_{5}$ pins to be used for receiving 6 -bit Y data from the A/D converter.

Application

The following block diagram illustrates one application for the μ PD4227x in an NTSC television system.
The video signals for the subpicture are separated into Y, B-Y, and R-Y component signals and horizontal and vertical synchronization signals by the μ PC1402 decoder. The Y, B-Y, and R-Y component signals are input in parallel to the $\mu \mathrm{PC} 661 \mathrm{~A} / \mathrm{D}$ converter, after which they are switched to the sequence $\mathrm{Y}, \mathrm{R}-\mathrm{Y}, \mathrm{Y},-, \mathrm{Y}, \mathrm{B}-\mathrm{Y}, \mathrm{Y}$, using time-division multiplexing and converted to digital signals. In this instance, timing for the $\mathrm{Y}, \mathrm{R}-\mathrm{Y}$, and $\mathrm{B}-\mathrm{Y}$ conversion process is regulated by the $\mu \mathrm{PD} 4227 \mathrm{x}$.

After the μ PD4227x receives the 6-bit digital data output by the $\mu \mathrm{PC} 661$, it compresses the subpicture data and stores one field. The output signals are sent by the μ PD4227x to the μ PC662, which contains three D/A converters assigned respectively to the Y, R-Y, and B-Y signals. If the analog component signals output by the D/A converters are to be used by the TV, they then are converted to an RGB signal by the $\mu \mathrm{PC} 1364$ matrix circuit. If they are to be used by the VCR, they are combined with the main picture signal after being converted into composite signals in the encoder circuit.

Application Example

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Supply voltage	$V_{D D}$	4.5	5.0	5.5	V	
Input voltage, high	V_{1}	2.4		$V_{D D}+0.5$	V	
input voltage, low	$V_{\text {IL }}$	-1.0		0.8	V	
Input oscillation frequency	fosc in		6		MHz	
Output oscillation frequency	fosc out		18		MHz	
Horizontal synchronizing pulse width	$\mathrm{f}_{\text {HSYNC }}$		4.8		$\mu \mathrm{s}$	$\overline{\mathrm{SHS}}$ and $\overline{\mathrm{MHS}}$ pins
Ambient temperature	T_{A}	-20		70	${ }^{\circ} \mathrm{C}$	

DC Characteristics

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Supply current	IDD			75	mA	${ }^{\text {fosc }} \mathbb{N} \mathbf{N}=6 \mathrm{MHz}$; fosc out $=18 \mathrm{MHz}$
Input leakage current	1	-10		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{DD}; all other pins not under test $=0 \mathrm{~V}$
Output leakage current	10	-10		10	$\mu \mathrm{A}$	Outputs disabled; $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to V_{DD}
Output voltage, high	V_{OH}	2.4			V	$\mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA}$
Output voltage, low	V_{OL}			0.4	V	$\mathrm{l}_{\mathrm{OL}}=2 \mathrm{~mA}$

Capacitance

Parameter	Symbol	Min	Typ	Max	Unit	Pins Under Test
Input capacitance	C_{1}			5	pF	All inputs except SOSCI and MOSCI
Output capacitance	C_{0}			7	pF	All outputs except SOSCO and MOSCO
Oscillator input capacitance	$\mathrm{C}_{\text {SOscl }}$		8		pF	SOSCI
	$\mathrm{C}_{\mathrm{MOSCI}}$		10		pF	MOSCI
	$\mathrm{C}_{\text {sosco }}$		8		pF	sosco
	$\mathrm{C}_{\text {MOSCO }}$		10		pF	MOSCO

AC Characteristics
$T_{A}=-20$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
ADCK pulse width, low	$t_{\text {ADL }}$	70			ns	
ADCK pulse width, high	$t_{\text {ADH }}$	70			ns	
YDACK pulse width, low	tyoal	50			ns	
YDACK pulse width, high	tydat	50			ns	
RDACK pulse width, low	$t_{\text {fDAL }}$	200			ns	(Note 7)
RDACK pulse width, high	$t_{\text {RDA }}$	200			ns	(Note 7)
BDACK pulse width, low	$t_{\text {b }}{ }^{\text {dal }}$	200			ns	(Note 7)
BDACK pulse width, high	t biah	200			ns	(Note 7)
RCK pulse width, low	${ }_{\text {trackL }}$	25			ns	
RCK pulse width, high	$\mathrm{t}_{\text {RCKH }}$	25			ns	
Data input setup time	${ }^{t} \mathrm{DS}$	25			ns	
Data input hold time	${ }^{\text {t }}$ D	30			ns	

AC Characteristics (cont)

Parameter :	Symbol	Min	Typ	Max	Unit	Conditions
Y data access time	$t_{A C Y}$.	5	ns	
Y data hold time	$\mathrm{t}_{\mathrm{OHY}}$	20		!	ns	
$\underline{R-Y ~ d a t a ~ a c c e s s ~ t i m e ~}$	$t_{A C R}$			7 (RCK) +25	ns	
R-Y data hold time	$\mathrm{t}_{\mathrm{OHR}}$	20		.	ns	
B-Y data access time	${ }_{\text {ACB }}$			7 (RCK) + 25	ns	
B-Y data hold time	$\mathrm{t}_{\mathrm{OHB}}$	20			ns	
Output low impedance time	$t_{\text {LZ }}$	5		100	ns	(Note 4)
Output high impedance time	$t_{H Z}$	5		100	ns	(Note 4)
YSW, RSW, BSW low hold time from ADCK	$\mathrm{t}_{\text {SW1 }}$	5		30	ns	
YSW, RSW, BSW high hold time from ADCK	${ }_{\text {t }}$ W2	5		30	ns	
Rise and fall transition time	t_{T}	3		35	ns	

Notes:

(1) All voltages are referenced to ground.
(2) Ac measurements assume $\mathrm{t}_{\mathrm{T}}=5 \mathrm{~ns}$.
(3) V_{IH} (min) and V_{IL} (max) are reference levels for measuring the timing of input signals. Transition times are measured between V_{IH} and V_{IL}.
(4) tOFF (max) defines the time at which the output becomes open-circuit and is not referenced to V_{OH} or V_{OL}.

Figure 1. Input Timing

Figure 2. Output Timing

(5) The input/output signal reference level is 1.5 V .
(6) fosc in equals 6 MHz ; fosc out is 18 MHz .
(7) The frame border output period is either 0.5 or 1.5 times as large as the standard value.
(8) $t_{L Z} \geq t_{H Z}$.

Figure 3. Output Load

Figure 4. Output Load $\left(t_{L Z}\right.$ and $\left.t_{H Z}\right)$

Description

Serial/Parallel Converter ($\mathbf{S \rightarrow P}$). Converts the serially input 6 -bit $Y, R-Y$, and $B-Y$ subpicture signals into 18-bit parallel $Y \bullet R-Y \bullet Y$ or $Y \bullet B-Y \bullet Y$ signals, and then outputs them.
Vertical Filter. Executes averaging cycles and consists of two sets of line memory and an arithmetic circuit. If any one of the three lines is extracted to compress the screen vertically, the lines may become distorted on the screen. By averaging the data of the appropriate line with the preceding and succeeding lines, the filter prevents distortion.

Buffer Memory. Stores subpicture signals input during read operation and has a one-line capacity of 86 words by 18 bits.

Field Memory. Stores one 7,568 -word by 18 -bit field of a subpicture. Data is written into field memory when no subpicture is being displayed.
Buffer Memory Write Address Counter. Supplies write addresses to the buffer memory.
Buffer Memory Read Address Counter. Supplies read addresses to buffer memory in synchronization with the field memory write address counter and remains in standby during a field memory read cycle.

Buffer Memory Address Selector. Alternately outputs write and read addresses to buffer memory.
Field Memory Write Address Counter. Supplies write addresses to field memory and consists of horizontal and vertical address counters, the former of which is synchronized with the buffer memory read address counter. The counter remains in standby during a memory read cycle. When the address reaches its maximum value, the counter stops counting.
Field Memory Read Address Counter. Supplies read addresses to field memory and consists of horizontal and vertical address counters. Data read from field memory always takes priority over data written to it. Thus, the counter never enters standby in normal operation. When the address reaches its maximum value, the counter stops counting.
Refresh Address Counter. Supplies refresh addresses to field memory. When write/read operation to field memory terminates, this counter refreshes the memory location corresponding to its current value. The 6 MHz input clock is frequency-divided and supplied to the counter. It remains in standby while data is being read from or written into field memory. When the address reaches its maximum value, this counter stops counting and the address returns to the initial address.

Field Memory Address Selector. Alternately supplies the write, read, and refresh addresses.
Output Data Selector. Switches the subpicture signal read from field memory with the frame color signal selected by FC_{0} and FC_{1} and outputs the signal. This selector also concurrently executes parallel/serial conversion (12 bits $\rightarrow 6$ bits) of the Y subpicture signal.
Input Controller and Oscillator. Controls the subpicture signal until it is written into field memory. This circuit oscillates the 6 MHz input clock synchronously with SHS. Using this clock as the reference, the circuit controls vertical filtering, i.e., buffer memory write/read operation, and field memory write operation. This circuit also generates the ADCK, YSW, RSW, and BSW control signals transmitted to the 6-bit A/D converter.
Output Controller and Oscillator. Controls the subpicture signal during the time in which the signal is read and then output from field memory. This circuit oscillates the 18 MHz output clock synchronously with $\overline{\mathrm{MHS}}$. Using this clock as the reference, the circuit controls field memory read operation and the data selector, and also generates the YDACK, RDACK and BDACK control signals transmitted to the 6-bit D/A converter. The BLANK and RCK signals are also generated by this circuit.

OPERATION

Writing the Subpicture Signals

Subpicture signals are converted by the 6-bit $\mu \mathrm{PC} 661$ A/D converter into digital data, and then input from DI. At this time, the subpicture signals are sequentially switched with the YSW, RSW, and BSW data switching signals and serially sampled as shown in table 4.
The (-) data is not actually transferred. Subpicture signals are converted by the serial/parallel converter into 18 -bit $Y \bullet R-Y \bullet Y$ or $Y \bullet B-Y \bullet Y$ data. They are then averaged by the vertical filter, whose configuration is shown in figure 5.
After being averaged by the vertical filter, the subpicture signals are extracted line by line from the three lines. They are then written into buffer memory. Once field memory read operation terminates, the subpicture signals are subsequently read from buffer memory and written into field memory at a rate of 1.5 MHz .
Two types of subpicture write areas, one for NTSC applications and the other for PAL, are shown in figures 6 and 7. The odd and even fields deviate by one line in the vertical write area to enable field-to-field line offset sampling and improve vertical resolution.

Figure 5. Vertical Filter Configuration

Figure 6. NTSC Subpicture Write Area

Reading the Subpicture Signals

After being written into field memory, subpicture signals are read synchronously with the signals from MHS and MVS. Reading of subpicture signals is executed for all data written (the 4.5 MHz reading rate is three times as high as the writing rate). Subpicture signals then pass the selector and are output through DOY, DOR, and DOB. In addition to switching and outputting the subpicture and frame signals, the selector executes 12 to 6 bit, parallel to serial conversion of the Y signal.

The playback area is determined by the blanking signal and not by the write area. The display position is controlled by changing the timing of the read address counter according to the state of the HPS and VPS input pins. The playback area and display position vary with the NTSC/PAL method and screen size (full versus 80% full) as shown in figures 8 through 15. Any value in the display position includes the frame signal, which has a 220 ns (horizontal) $\times 1$ line (vertical) area.

Figure 7. PAL Subpicture Write Area

Figure 8. Subpicture Playback Area in NTSC Applications with Full Screen Display

Figure 9. Subpicture Playback Area in NTSC Applications with 80\% Screen Display

Figure 10. Subpicture Playback Area in PAL Applications with Full Screen Display

Figure 11. Subpicture Playback Area in PAL Applications with 80\% Screen Display

Figure 12. Subpicture Display Position in NTSC Applications with Full Screen Display

Figure 13. Subpicture Display Position in NTSC Applications with 80\% Screen Display

Figure 14. Subpicture Display Position in PAL Applications with Full Screen Display

Figure 15. Subpicture Display Position with 80\% Screen Display

Line Array Correction

Subpicture processing executes screen compression, in which the output data rate of the field memory is three times as high as the input data rate. A read cycle will catch up to, and then pass, a write cycle about midway on the screen. Afterward, old fields are read, and a field seam is produced where the two fields meet.
This problem is corrected during an old field read cycle by advancing the vertical address counter to its regular value and then incrementing it by one. The correction cycle varies depending on whether a main picture or subpicture field (odd versus even) field is involved (tables 6 and 7).

Table 6. Outrunning When the Main Picture and Subpicture Have the Same Fields

	Subpicture	
Main Picture	Odd	Even
Odd	- (before outrunning)	(after outrunning)
Even	+1 (after outrunning)	(before outrunning)

Notes:

(1) $+=$ address counter is incremented to its normal value plus 1 .
(2) $-=$ no operation.

Table 7. Outrunning When the Main Picture and Subpicture Have Different Fields

	Subpicture	
Main Picture	Odd	Even
Odd	+1 (after outrunning)	(before outrunning)
Even	+1 (before outrunning)	$+1^{*}$ (after outrunning)

Notes:

(1) $+=$ address counter is incremented to its normal value plus 1 .
(2) $-=$ no operation.
(3) * indicates that the address counter holds its status and is not incremented.

Field Distinction

The μ PD4227x executes line offset sampling and line array correction. The former offsets write lines between the even and odd fields by one line. The latter advances the vertical read address counter to its normal value plus one by combining the main picture and subpicture fields. This prevents a seam line from appearing on the subpicture when part of it is displaying one field and the rest is displaying the other field.
In both cases, the μ PD4227x executes field distinction to learn the status (odd or even) of the main picture and subpicture signals. The result is determined by the phase differences between $\overline{M H S} / \overline{\mathrm{SHS}}$ and $\overline{\mathrm{MVS}} / \overline{\mathrm{SVS}}$ and by the state of MFC and SFC (figure 16).

Figure 16. Field Distinction

Frame Signal Generation

The μ PD42272 contains the data for four colors: white, yellow, light blue, and green. These colors are used for frame signals and are selected by the FC_{0} and FC_{1} frame color selection input signals. The data selector
switches the subpicture to the frame signal and then outputs it. The vertical width of the frame signal is one line; the horizontal width of 220 ns is determined by the YDACK, RDACK, and BDACK D/A clocks and the blanking signal (figure 17).

Table 8. Frame Signal Generation

Color	Signal																	
	Y						R-Y						B-Y					
	DO_{5}	DO_{4}	DO_{3}	DO_{2}	DO_{1}	DO	DO_{5}	DO_{4}	DO_{3}	DO_{2}	DO_{1}	DO	DO_{5}	DO_{4}	DO_{3}	DO_{2}	DO 1	DO_{0}
White	1	0	1	0	1	1	1	0	0	0	0	0	1	0	0	0	0	0
Yellow	1	0	0	1	1	0	1	0	0	0	1	1	0	0	1	1	0	1
Light blue	0	1	1	1	1	0	0	0	1	1	0	1	1	0	0	1	1	1
Green	0	1	1	0	1	0	0	1	0	0	0	0	0	1	0	0	1	1

The μ PD4227x writes the $\mathrm{Y}, \mathrm{R}-\mathrm{Y}, \mathrm{B}-\mathrm{Y}$ subpicture signals serially using the $\mu \mathrm{PC} 661$, a six-bit A / D converter with analog switching. For read operation, the $R-Y$ and $B-Y$ signal sampling phases are reversed. For the output signals, there is a 180° phase difference between the $R-Y$ and $B-Y$ signals. Frame signals containing phase
differences that are similarly output cause gradation because the frame signals deviate at the edges. To prevent this deviation, the μ PD42272 aligns the edges of the frame signal by adjusting RDACK and BDACK during the frame signal output period (figure 18).

Figure 17. Frame Signal

Data Output

Subpicture signals are compressed to the scale of 1:9 (horizontal $=1: 3$ and vertical $=1: 3$) and then output through the DOY, DOR, and DOB output pins. The output period is about one-ninth of one field period of the main picture, or 16.7 ms . DOY, DOR, and DOB are in high impedance for the remaining eight-ninths of the period and no data is output (figure 19).
The signal level of the high impedance period must meet the pedestal level, i.e., the level of the initial input signal. The signal level is determined by resistors that pull up or down the DOY, DOR, and DOB pins. In the μ PD4227x, the D/A converter clocks are output cyclically (every 2.25 MHz) during the no signal period. The μ PD6901 six-bit D/A converter converts into analog data the data determined by pull-up or pull-down resistors, enabling the signal to be at a constant level.
The input signal pedestal level is determined at clamp levels of the μ PC661 six-bit A/D converter. For the μ PD661, the Y signal clamp output is the $R-Y$ and $B-Y$ output. All Y outputs are thus pulled down. For $R-Y$ and $\mathrm{B}-\mathrm{Y}$ output, only DOR_{5} and DOB_{5} are pulled up, respectively, and the other outputs are pulled down (figures 20 and 21).

Outside Control

Specified Frame Color. The μ PD42272 can generate one of four frame colors (white, yellow, light blue, and green) depending on the levels of FC_{0} and FC_{1} (table 9).

Table 9. Frame Color Input Levels

Pin	White	Light Blue	Yellow	Green
FC0	H	L	H	L
FC1	H	H	L	L

Specified Subpicture Size. The μ PD4227x can select one of two subpicture sizes using the SIZE subpicture selection input. When its input level is high, the display area is set to one-ninth of the main picture (full screen display). A low level sets the display area to one-twelfth, or 80%, of the main picture.
Specified Subpicture Position. The μ PD4227x can select one of four subpicture display positions (one of the four corners on the main picture) using a combination of signals from the VPS and HPS position selection input pins (table 10).

Table 10. VPS and HPS Input Levels

Pin	Top Left	Bottom Left	Top Right	Bottom Right
VPS	H	L	H	L
HPS	H	H	L	L

Specified Still Picture. The μ PD4227x can display a still subpicture using the still picture request input. When the level of STILL is high, a freeze frame picture is displayed. When the input level is low, the moving picture is selected.

Figure 18. Frame Signal Alignment

Figure 19. Subpicture Data Output

Figure 20. Data Output Signal Adjustment

Figure 21. R-Y and B-Y Output Signal Adjustment

Timing Waveforms

Input Timing

Timing Waveforms (cont)

Output Timing

18d

Timing Waveforms (cont)

Output Timing 2

Timing Waveforms (cont)

Output Timing 3

Output Timing 4

Description

The μ PD42280 is a 262,224 -word by 8 -bit dual-port field buffer fabricated with a silicon-gate CMOS process. The device can execute synchronous and asynchronous serial write and serial read operation at a 33.3MHz clock frequency. In asynchronous mode, the device can be used as a data storage (communication) buffer, a time axis converter, and a digital delay line of up to 262,224 bits (200 bits minimum at any frequency). In synchronous mode, the minimum delay is 3 bits at any frequency when used as a fixed-length delay line.
Applications include NTSC/PAL TVNCR systems, video processing, digital plain paper copiers, and systems requiring serial data streams like printers, optical scanners, and local area networks.

The serial write and read function simplifies interframe luminance (Y) and chrominance (C) separation, interfield noise reduction, frame synchronization, and time base correction. Refreshing is performed automatically by an internal circuit, so the device operates like a static RAM.

All inputs and outputs, including clocks, are TTL compatible. The plastic package is a $28-\mathrm{pin}$ SOP ($450-\mathrm{mil}$) or ZIP ($400-\mathrm{mil}$), and operation is guaranteed in an ambient temperature range of -20 to $+70^{\circ} \mathrm{C}$.

Features

- 262,224-word x 8 -bit organization
- Dual-port operation
- Asynchronnus, simultaneous reading/writing
- Output enable function
- Variable field length
- 200 to 262,224 bits as an elastic (asynchronous) delay line
- 3 to 262,224 bits as a fixed-length (full synchronous) delay line
- One-cycle address pointer reset and immediate write/read access function
- Automatic refreshing (full static interface)
- Direct connection with NEC line buffers (μ PD42101/ 42102/42505)
- 4M-bit DRAM COMS technology
- Full TTL-compatible inputs, outputs, and clocks
- Three-state outputs
- Single +5 -volt power supply
- On-chip substrate bias generator
- 28-pin SOP (450-mil) and ZIP (400-mil) plastic packaging

Ordering Information

Part Number	Access Time (max)	Cycle Time (min)	Package
$\mu \mathrm{PD} 42280 \mathrm{GU}-30$	25 ns	30 ns	28-pin plastic SOP
GU-40	30 ns	40 ns	
GU-60	40 ns	60 ns	
$\mu \mathrm{PD} 42280 \mathrm{~V}-30$	25 ns	30 ns	28-pin plastic ZIP
V-40	30 ns	40 ns	
V-60	40 ns	60 ns	

Pin Configurations

28-Pin Plastic SOP

Pin Configurations

28-Pin Plastic ZIP

Pin Identification

Symbol	Function
$\mathrm{DI}_{0}-\mathrm{DI}_{7}$	Write data inputs
$\mathrm{DO}_{0}-\mathrm{DO}_{7}$	Read data outputs
$\overline{\mathrm{OE}}$	Output enable input
RCK	Read clock input
$\overline{\text { RE }}$	Read enable input
$\overline{\text { RRST }}$	Read address reset input
WCK	Write clock input
$\overline{\text { WE }}$	Write enable input
$\overline{\text { WRST }}$	Write address reset input
TEST	Test pin (connect to GND in system)
GND	Ground
VDD	+5 -volt power supply

PIN FUNCTIONS

$\mathrm{Dl}_{\mathbf{0}}-\mathrm{Dl}_{7}$ (Data Inputs)

These pins function as write data inputs; for example, for $4 f_{s c}$ composite color or brightness signals.

$\mathrm{DO}_{0}-\mathrm{DO}_{7}$ (Data Outputs)

These pins are three-state read outputs.

$\overline{O E}$ (Output Enable Input)

This signal controls read data output. When $\overline{\mathrm{OE}}$ is low, read data is output on $\mathrm{DO}_{0}-\mathrm{DO}_{7}$. When $\overline{\mathrm{OE}}$ is high, $D \mathrm{O}_{0}-\mathrm{DO}_{7}$ are in a state of high impedance. The read address pointer is incremented by RCK, regardless of the signal level of $\overline{\mathrm{OE}}$. The state of $\overline{\mathrm{OE}}$ is strobed by the rising edge of RCK.

RCK (Read Clock Input)

All read cycles are executed synchronously with RCK. The states of both RRST and $\overline{R E}$ are strobed by the rising edge of RCK at the beginning of a cycle. This same edge of RCK starts internal read operation, and access time is referenced to this edge. The internal read address increases with each RCK cycle unless $\overline{R E}$ is at a high level to hold the read address constant. Unless inhibited by $\overline{R E}$, the internal read address will automatically wrap around from 262,223 to 0 and begin increasing again.

$\overline{\operatorname{RE}}$ (Read Enable Input)

This signal is similar to WE but controls read operation. If $\overline{R E}$ is at a high level, the internal read address stops increasing. The state of $\overline{R E}$ is strobed by the rising edge of RCK.

$\overline{\text { RRST }}$ (Read Address Reset Input)

This signal is strobed by the rising edge of RCK and resets the internal read address to 0 .

WCK (Write Clock Input)

All write cycles are executed synchronously with WCK. The states of both WRST and WE are strobed by the rising edge of WCK at the beginning of a cycle, and the data inputs are strobed by the rising edge of WCK at the end of a cycle. The internal write address increases with each WCK cycle unless $\overline{W E}$ is at a high level to hold the write address constant. Unless inhibited by $\overline{W E}$, the internal write address will automatically wrap around from 262,223 to 0 and begin increasing again.

$\overline{\text { WE }}$ (Write Enable Input)

This input controls write operation. If WE is low, all write cycles proceed. If WE is at a high level, no data is written to the register and the write address stops increasing. The state of $\overline{W E}$ is strobed by the rising edge of WCK.

WRST (Write Address Reset Input)

Bringing this signal low resets the internal write address to 0 . The state of this input is strobed by the rising edge of WCK.

OPERATION

Reset

The μ PD42280 requires initialization of internal circuits using the WRST/RRST reset signals before starting operation (after power on). A reset cycle can be executed at any time and does not depend on the state of $\overline{W E}, \overline{R E}$, and $\overline{\mathrm{OE}}$. However, $\overline{\text { WRST }}$ and $\overline{\text { RRST }}$ must satisfy required setup and hold times as measured from the rising edges of WCK and RCK.
After the reset cycle, write and read operation can be started immediately.

Write

Write cycles are executed in synchronization with WCK as WE is held low. In the write cycle operation, the internal write address pointer is automatically incremented. When WE is high at the rising edge of WCK, write operation is disabled and the internal write address pointer does not increment with successive write clocks.

Write data must satisfy setup and hold times as specified from the rising edge of WCK.

After the reset operation, bits are input sequentially into an 80×8-bit SRAM buffer. Then, new bits are input sequentially into one of the two halves of the 128×8-bit data register before being transfered to the storage array. The register data is transferred into the array in blocks of 64×8 bits.

Read

Read cycles are executed in synchronization with RCK while $\overline{\mathrm{RE}}$ and $\overline{\mathrm{OE}}$ are held low.

In the read cycle operation, the internal read address pointer is automatically incremented as RE is held low. When $\overline{R E}$ is high at the rising edge of RCK, the internal read address pointer does not increment with successive read clocks.

The $\overline{\mathrm{OE}}$ input controls the output state of $\mathrm{DO}_{0}-\mathrm{DO}_{7}$ pins. When $\overline{O E}$ is low at the rising edge of RCK, the $\mathrm{DO}_{0}-\mathrm{DO}_{7}$ pins are low-impedance state. When $\overline{\mathrm{OE}}$ is high at the rising edge of RCK, the $\mathrm{DO}_{0}-\mathrm{DO}_{7}$ pins are high-impedance state with successive read clocks.
The access time of a read cycle is measured from the rising edge of RCK by $t_{A C}$ for an access of any internal read address. Stored data is read nondestructively; data can be read repeatedly at any time (cell data hold time is endless).
New data written to a particular internal address is available for reading after 200 write cycles maximum. This value depends on write cycle time and the write/ read operation control method.

DIGITAL DELAY LINE

The μ PD42280 can be easily used as a digital delay line of 262,224 bits or less. The two operating modes are elastic (asynchronous) and fixed-length (fullsynchronous).

Elastic (Asynchronous) Delay Line

Delay length of the elastic delay line is from 200 bits minimum (at any frequency) to 262,224 bits maximum. The minimum delay length does not depend on clock frequency.
Figures 1 and 2 show control timings for the elastic delay line. Write and read cycles are synchronized to
μ PD42280 Block Diagram

their respective WCK/RCK inputs and executed individually. The difference (n) between the internal write address pointer and the internal read address pointer must fall between 199 and 262,223 .

Fixed-Length (Full-Synchronous) Delay Line

The length of the delay line is specified as 3 to 262,224 bits. It does not depend on clock frequency

Flgure 3 shows control timing for the fixed-length delay line. The same signal is used for WCK and RCK so that $\overline{\mathrm{WRST}}$ and $\overline{\mathrm{RRST}}$ are controlled together. The data, written after a reset signal, is read out after the next reset signal in the order it was written. This interval determines the delay length. For example, if the reset signal is input every 239,330 (263×910) cycles, the delay length is 239,330 cycles.

Figure 1. Elastic Delay Line No. 1

Figure 2. Elastic Delay Line No. 2

Figure 3. Fixed-Length Delay Line

SPECIFICATIONS

Absolute Maximum Ratings

Supply voltage, V_{DD}	-1.0 to +7.0 V
Voltage on any input pin, V_{1}	$\begin{array}{r} -1.0 \text { to } V_{\mathrm{DD}}+ \\ 0.5 \mathrm{~V}^{\left(+7.0 \mathrm{~V}_{\text {max }}\right)} \end{array}$
Voltage on any output pin, V_{0}	$\begin{gathered} -1.0 \text { to } V_{\mathrm{DD}}+ \\ 0.5 \mathrm{~V}\left(+7.0 \mathrm{Vmax}^{(}\right) \end{gathered}$
Short-circuit output current, los	20 mA
Operating temperature, TOPR	-20 to $+70^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\text {STG }}$	-55 to $+125^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{DD}	4.5	5.0	5.5	V
Recommended	Operating Conditions				
Parameter	Symbol	Min	Typ	Max	Unit
Input voltage, high	V_{IH}	2.4		$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
Input voltage, low	V_{IL}	-1.0	0.8	V	
Ambient temperature	T_{A}	-20		+70	${ }^{\circ} \mathrm{C}$

Capacitance

$T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=+5.0 \mathrm{~V} \pm 10 \% ; \mathrm{f}=1 \mathrm{MHz}$

Parameter \dagger	Symbol	Min	Max	Unit	Pins Under Test
Input capacitance	Cl_{1}		5	pF	$\overline{\mathrm{WE}}, \overline{\mathrm{AE}}, \overline{\mathrm{OE}} \mathrm{WCK}$, RCK, WRST, RRST, $\mathrm{Dl}_{0}-\mathrm{Dl}_{7}$
Output capacitance	c_{0}		7	pF	$\mathrm{DO}_{0}-\mathrm{DO}_{7}$

\dagger Capacitance is sampled and not 100% tested.

DC Characteristics
$T_{A}=-20$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Operating current	I_{CC}		50	90	mA	t $_{\text {WCK }} \mathrm{t}_{\mathrm{RCK}}=30 \mathrm{~ns}$
Standby current	$\mathrm{I}_{\mathrm{CCS}}$		4	10	mA	WCK;RCK $=\mathrm{V}_{\mathrm{IL}}$
Input leakage current	I_{I}	-10		10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{I}}=0$ to V_{DD}; all other pins not under test $=0 \mathrm{~V}$
Output leakage current	I_{O}	-10		10	$\mu \mathrm{~A}$	D_{O} disabled; $\mathrm{V}_{\mathrm{O}}=0$ to V_{DD}
Output voltage, high	V_{OH}	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$
Output voltage, low	V_{OL}			0.4	V	$\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$

* Voltages are referenced to GND.

AC Characteristics

$T_{A}=-20$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	$\mu \mathrm{PD} 42280$-30		$\mu \mathrm{PD} 42280-40$		$\mu \mathrm{PD} 42280-60$		Unit	Test Conditions
		Min	Max	Min	Max	Min	Max		
Access time	$t_{A C}$		25		30		40	ns	
Data-in hold time	$t_{\text {DH }}$	3		3		3		ns	
Data-in setup time	$t_{\text {DS }}$	7		10		12		ns	
Output disable time	$t_{H Z}$	5	25	5	30	5	40	ns	(Note 4)
Output active time	$t_{L Z}$	5	25	5	30	5	40	ns	(Note 4)
Output enable hold time	$\mathrm{t}_{\mathrm{OEH}}$	3		3		3		ns	(Note 9)
Output enable high delay from RCK.	$\mathrm{t}_{\text {OEN1 }}$	3		3		3		ns	(Note 10)
Output enable low delay from RCK	$\mathrm{t}_{\text {OEN2 }}$	7		10		12		ns	(Note 10)
Output enable setup time	$t_{\text {OES }}$	7		10		12		ns	(Note 9)
Output hold time	${ }^{\text {t }} \mathrm{OH}$	5		5		5		ns	
Read clock cycle time	$t_{\text {RCK }}$	30		40		60		ns	
RCK precharge time	$\mathrm{t}_{\text {RCP }}$	12		14		20		ns	
RCK pulse width	$t_{\text {RCW }}$	12 ...		14		20		ns	
Read enable hold time	${ }_{\text {treh }}$	3		3	-	3		ns	(Note 7)
Read enable high delay from RCK	${ }^{\text {tREN1 }}$	3		3		3		ns	(Note 8)
Read enable low delay to RCK	$t_{\text {teN } 2}$	7		10		12		ns	(Note 8)
Read enable setup time	$t_{\text {RES }}$	7		10	*	12		ns	(Note 7)
Read disable pulse width	$t_{\text {REW }}$	0		0		0		ns	
Reset active hold time	$t_{\text {RH }}$	3		3		3		ns	(Note 5)
Reset inactive setup time	${ }_{\text {trN1 }}$	3		3		3		ns	(Note 6)
Reset inactive hold time	$t_{\text {RN2 }}$	7		10		12		ns	((Note 6)
Read reset time	$t_{\text {RRST }}$	0	- "'	0		0		ns	
Reset active setup time	$t_{\text {RS }}$	7	\cdots	10		12		ns	(Note 5)
Transition time	${ }_{T}$	3	35	3	35	3	35	ns	
Write clock cycle time	twck	30		40		60		ns	
WCK precharge time	tWCP	12		14		20		ns	
WCK pulse width	twCW	12		14		20		ns	
Write enable hold time	twer	3		3		3		ns	(Note 7)

AC Characteristics (cont)

Parameter	Symbol	$\underline{\mu \text { PD42280-30 }}$		μ PD42280-40		$\mu \mathrm{MPD42280-60}$		Unit	Test Conditions
		Min	Max	Min	Max	Min	Max		
Write enable high delay from WCK	tWEN1	3		3		3		ns	(Note 8)
Write enable low delay to WCK	tWEN2	7		10		12		ns	(Note 8)
Write enable setup time	twes	7		10		12		ns	(Note 7)
Write disable pulse width	twew	0		0		0		ns	
Write reset time	twRST	0		0		0		ns	

Notes:

(1) All voltages are referenced to ground.
(2) Input pulse rise and fall times assume $t_{T}=5$ ns. Input pulse levels $=0.4$ to 2.4 V . Transition times are measured between 2.4 and 0.4 V . See figure 4.
(3) Input timing reference levels $=1.5 \mathrm{~V}$. Output timing reference levels are 0.8 and 2.0 V . See figure 4.
(4) This delay is measured at 200 mV from the steady-state voltage with the load specified in figure 4 . Under any conditions, $\mathrm{t}_{\mathrm{LZ}} \geq$ t_{Hz}.
(5) If either $t_{R S}$ or $t_{R H}$ is less than the specified value, reset operations are not guaranteed.
(6) If either $t_{R N 1}$ or $t_{R N 2}$ is less than the specified value, internal reset operations may extend to cycles immediately preceding or following the period of desired reset operations.
(7) If either twES or twEH (tRES or $t_{\text {REH }}$) is less than the specified value, write (read) disable operations are not guaranteed.
(8) If either tWEN1 or WWEN2 $^{\left(t_{R E N} 1\right.}$ or $t_{\text {REN } 2}$) is less than the specified value, internal write (read) disable operations may extend to cycles immediately preceding or following the period of desired disable operations.
(9) If either toes or toen is less than the specified value, output disable operations are not guaranteed.
(10) If either toen 1 or toen 2 is less than the specified value, internal output disable operations may extend to cycles immediately preceding or following the period of desired disable operations.
(11) To read new data just written, the write address must precede the read address by at least 200 addresses.
(12) During a reset operation, the levels of $\overline{W E}$ and $\overline{R E}$ are "dont care."
(13) Addresses $0-79$ (80 words $\times 8$ bits) are stored in an SRAM buffer. Addresses $80-262,223$ are stored in dynamic cells and transferred in 64×8-bit increments. The " 143 " in the equation below comes from 79+64 $=143$.
When WRST goes low (active) at address n, the write data from address n to address m is not guaranteed because partial data stored in the write registers (< 64 bits) will not be transferred to the DRAM array.
(13 cont)
$m=143+\frac{n-80}{64} \times 64$
$\frac{n-80}{64}$ means the nearest whole number
For example, if $n=280$, then $\frac{n-80}{64}=3.125=3$
$m=143+(3 \times 64)$
$=143+192$
$=335$
So, data transfer from address 280 to address 335 is not guaranteed.

Figure 4. AC Test Conditions

Timing Waveforms

Write Cycle

Notes:
[1] $\overline{\text { WRST }}=\mathrm{Hlgh}$.
[2] $\mathrm{V}=$ valld data.

Read Cycle ($\overline{\operatorname{RE}}$ Control)

Timing Waveforms (cont)

Read Cycle ($\overline{O E}$ Control)

Write Reset Cycle

Timing Waveforms (cont)
Read Reset Cycle

Notes:
[1] $\overline{\mathrm{RE}}, \overline{\mathrm{OE}}=$ Low.
[2] $V=$ valld data.

Description

The μ PD 42505 is a 5048 -word by 8 -bit dual-port line buffer fabricated with a silicon-gate CMOS process. The device is capable of asynchronous read and write operation at high speed, and can be used as atime axis converter or a digital delay line of up to 5048 bits (10 bits minimum at maximum frequency).

Applications include image processing in facsimile machines, plain paper copiers, video systems, and other optical scanners; time base correction in video playback systems; and data communication buffering in multiprocessor systems and local area networks.

Features

- 5048-wordx 8 -bit organization
- Dual-port operation
- Image processing and data communications applications
- Asynchronous and simultaneous reading/writing
- 1H (5048-bit) delay line capability
- TTL-compatible inputs and outputs
- Three-state outputs
- Single +5 -volt power supply
- 24-pin plastic DIP and 28 -pin plastic ZIP packaging

Pin Identification

Symbol	Function
$D_{\text {INO }}-D_{\text {IN7 }}$	Write data inputs
$D_{\text {OUTO }}-D_{\text {OUT7 }}$	Read data outputs
RCK	Read clock input
$\overline{\overline{R E}}$	Read enable input
$\overline{\text { RSTR }}$	Read address reset input
$\overline{\overline{R S T W}}$	Write address reset input
WCK	Write clock input
$\overline{\text { WE }}$	Write enable input
GND	Ground
$V_{C C}$	+5 -volt power supply

Pin Configurations

24-Pin Plastic DIP

28-Pin Plastic ZIP

Block Diagram

Ordering Information

Device	Cycle Time (min)	Read Access Time (max)	Hold Time (min)	Package
μ PD42505C-50	50 ns	40 ns	5 ms	24-pin plastic DIP
$\mathrm{C}-75$	75 ns	55 ns		
$\mathrm{C}-50 \mathrm{H}$	50 ns	40 ns	20 ms	
$\mathrm{C}-75 \mathrm{H}$	75 ns	55 ns	5 ms	28 28-pin plastic ZIP
μ PD42505V-50	50 ns	40 ns		
$\mathrm{~V}-75$	75 ns	55 ns	20 ms	
$\mathrm{~V}-50 \mathrm{H}$	50 ns	50 ns		
$\mathrm{~V}-75 \mathrm{H}$	75 ns			

Pin Functions

$D_{\text {INO }}$ through $D_{\text {IN7 }}$ (Data Inputs). New data is entered on these pins.

Douto through Doutz (Data Outputs). These tri-state outputs are used to access stored information. In a simple digital delay line application, a minimum delay of 10 clock cycles is required to move data from the input pins to the output pins.
RCK (Read Clock Input). All read cycle are executed synchronously with RCK. The states of both RSTR and RE are strobed by the rising edge of RCK at the
beginning of a cycle. This same edge of RCK starts internal read operation, and access time is referenced to this edge. The internal read address increments with each RCK cycle, unless $\overline{R E}$ is high to hold the read address constant. Unless inhibited by $\overline{\mathrm{RE}}$, the internal read address will automatically wrap around from 5047 to 0 and begin incrementing again.
$\overline{\mathrm{RE}}$ (Read Enable Input). This signal controls read operation. If $\overline{R E}$ is low, all read cycles proceed. If $\overline{R E}$ is at a high level, the data outputs become high impedance and the internal read address stops incrementing. The state of $\overline{R E}$ is strobed by the rising edge of RCK.
$\overline{\text { RSTR }}$ (Read Address Reset Input). This signal is strobed by the rising edge of RCK and resets the internal read address to 0 .
$\overline{\text { RSTW }}$ (Write Address Reset Input). Bringing this signal low resets the internal write address to 0 . The state of this input is strobed by the rising edge of WCK.

WCK (Write Clock Input). All write cycles are executed synchronously with WCK. The states of both RSTW and WE are strobed by the rising edge of WCK at the beginning of a cycle, and the data inputs are strobed by the rising edge of WCK at the end of a cycle. The internal write address increments with each WCK cycle, unless $\overline{W E}$ is at a high level to hold the write address constant. Unless inhibited by $\overline{\mathrm{WE}}$, the internal write address will automatically wrap around from 5047 to 0 and begin incrementing again.
$\overline{\text { WE (Write Enable Input). This input is similar to } \overline{R E} \text { but }{ }^{\text {(}} \text {. }}$ controls write operation. If $\overline{W E}$ is at a high level, no data is written to storage cells and the write address does not increment. The state of $\overline{\mathrm{WE}}$ is strobed by the rising edge of WCK.

Operation

Reset Cycle. The μ PD42505 requires the initialization of internal circuits using the $\overline{\mathrm{RSTW}} / \overline{\mathrm{RSTR}}$ reset signals before starting operation as a time axis converter or a digital delay line.

A reset cycle can be executed at any time and does not depend on the state of $\overline{\text { RE }}$ or WE. However, $\overline{\text { RSTW }}$ and RSTR must satisfy required setup and hold times as measured from the rising edges of WCK and RCK.
Write/Read Cycles. Write and read cycles are synchronized to their respective WCK/RCK inputs and executed individually when WCK or RCK is high and $\overline{\text { WE }}$ or $\overline{\text { RE }}$ is low. Write data must satisfy setup and hold times as specified from the rising edge of WCK. New data written to a particular address is available for reading after $1 / 2$ write cycle +500 ns (maximum).
The access time of a read cycle is measured from the rising edge of RCK, either by $t_{A C R}$ for an access during the first cycle directly after a reset begins, or by $t_{A C}$ for an access under other conditions. Stored data is read nondestructively; data can be read repeatedly within a prescribed time of 5 ms maximum (20 ms maximum for - H versions).

Time Axis Conversion. To use the μ PD42505 as a time axis converter, write and read cycles must be controlled independently. Write and read ports must be initialized
separately using the reset signals. Write cycles can then be executed in synchronization with WCK and write data can be stored sequentially from address 0 of this device. Afterward, when a read cycle is executed in synchronization with RCK, stored data can be read sequentially from address 0 .
Since write and read cycles can be executed independently, data loaded at one arbitrary drive frequency can be read at another arbitrary drive frequency. In this sense, the μ PD42505 functions as a time axis converter.
Digital Delay Line. The μ PD42505 can be easily used as a digital delay line of 5,048 bits or less. After the internal circuits are initialized using simultaneous RSTW/RSTR signals, write/read cycles also may be executed simultaneously by supplying the same pulse to the write (WCK) and read (RCK) clocks. Write data is always read after the full 5,048 -bit delay if neither write nor read operation has been inhibited. This is the essential delay line function.
If either $\overline{W E}$ or $\overline{\mathrm{RE}}$ is set at a nonselected (high) level for several cycles while the other is maintained in a selected (low) level, the delay line length can differ from 5,048 bits.
For example, if only $\overline{W E}$ is a set to a high level (write disable) for a small number of cycles, read cycles are executed continuously and the delay line length is large (see the waveform for "($5048-\mathrm{m}$)-Bit Delay Line No. 2"). Alternatively, if only RE is set to a high level (read disable) for a small number of cycles, write cycles are executed continuously and the delay line length is small. Note that the minimum delay line length is 10 bits (for maximum frequency operation) and the maximum is 5,048 bits.
A data delay of 5,048 bits or less can also be obtained by applying the $\overline{\operatorname{RSTW}}$ and $\overline{\text { RSTR }}$ signals at different times. For example, data loaded for " m " cycles after $\overline{\text { RSTW }}$ can then be read after supplying $\overline{\text { RSTR. In this case, since }}$ write data can be read from the beginning after a delay of " m " cycles, the device can be used as an " m-bit" digital delay line.
The $\overline{\mathrm{RSTW}} / \overline{\mathrm{RSTR}}$ reset signals can also be simultaneously loaded at every 1 H (horizontal line) period. In this case, write data loaded in the previous line cycle is read out from the beginning as read data after the reset. Therefore, a delay line length ranging from 10 to 5,048 bits can be obtained according to the length of the reset signals supplied. Refer to the timing waveform for an " n -Bit Delay Line."

Absolute Maximum Ratings

Supply voltage, V_{CC}	-1.5 to +7.0 V
Voltage on any input pin, V_{1}	-1.5 to +7.0 V
Voltage on any output pin, V_{O}	-1.5 to +7.0 V
Short-circuit output current, l_{OS}	20 mA
Operating temperature, $\mathrm{T}_{\mathrm{OPR}}$	-20 to $+70^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\mathrm{STG}}$	-55 to $+125^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Input voltage, high	V_{IH}	2.4		$\mathrm{~V}_{\mathrm{CC}}$	V
Input voltage, low	V_{IL}	-1.5		0.8	V
Ambient temperature	T_{A}	-20		70	${ }^{\circ} \mathrm{C}$

Capacitance

Parameter	Symbol	Max	Unit	Test Conditions
Input capacitance	C_{1}	5	pF	$\overline{W E}, \overline{R E}, W C K, ~ R C K$, $\overline{R S T W}, \overline{R S T R}, \mathrm{D}_{\text {INO }}-\mathrm{D}_{\text {IN7 }}$
Output capacitance	C_{0}	7	pF	Douto - Doutt

Notes:

(1) These parameters are sampled and not 100% tested;

DC Characteristics

$T_{A}=-20$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Write/read cycle operating current	I_{CC}		60	mA		
Input leakage current	I_{I}	-10	10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}} ;$ all other pins not under test $=0 \mathrm{~V}$	
Output leakage current	I_{O}	-10	10	$\mu \mathrm{~A}$	$\mathrm{D}_{\mathrm{OUT}}$ disabled; $\mathrm{V}_{\mathrm{O}}=0$ to 5.5 V	
Output voltage, high	V_{OH}	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	
Output voltage, low	V_{OL}		0.4	V	$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$	

AC Characteristics

$T_{A}=-20$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	$\mu \mathrm{PD} 42505-50$		$\mu \mathrm{PD} 42505-75$		$\mu \mathrm{PD} 42505-50 \mathrm{H}$		$\underline{\mu \text { PD } 2505-75 H}$		Unit	Test Conditions
		Min	Max	Min	Max	Min	Max	Min	Max		
Write clock cycle time	tw $^{\text {WCK }}$	50	990	75	990	50	3960	75	3960	ns	
WCK pulse width	twCW	20		30		20		30		ns	
WCK precharge time	$t_{\text {WCP }}$	20		30		20		30		ns	
Read clock cycle time	$t_{\text {RCK }}$	50	990	75	990	50	3960	75	3960	ns	
RCK pulse width	$t_{\text {RCW }}$	20		30		20		30		ns	
RCK precharge time	$\mathrm{t}_{\mathrm{RCP}}$	20		30		20		30	.	ns	
Access time	$t_{A C}$		40		55		40		55	ns	
Access time after a reset cycle	$t_{A C R}$		40		55		40	;	55	ns	
Output hold time	t_{OH}	5		5		5		5		ns	
Output hold time after a reset cycle	$t_{\text {OHR }}$	5		5		5		5		ns	(Note 7)
Output active time	$t_{L Z}$	5	40	5	55	5	40	5	55	ns	(Note 4)
Output disable time	t_{HZ}	5	40	5	55	5	40	5	55	ns	(Note 4)
Data-in setup time	${ }^{\text {t }}$ DS	15		20		15		20		ns	

AC Characteristics

$T_{A}=-20$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	μ PD42505-50		$\mu \mathrm{PD} 42505-75$		$\mu \mathrm{PD} 42505-50 \mathrm{H}$		$\mu \mathrm{PD} 42505-75 \mathrm{H}$		Unit	Test Conditions
		Min	Max	Min	Max	Min	Max	Min	Max		
Data-in hold time	$t_{\text {DH }}$	5		5		5		5		ns	
Reset active setup time	$t_{\text {R }}$	15		20		15		20		ns	(Note 8)
Reset active hold time	$t_{\text {RH }}$	5		5		5		5		ns	(Note 8)
Reset inactive hold time	$\mathrm{t}_{\text {RN1 }}$	5		5		5		5		ns	(Note 9)
Reset inactive setup time	$\mathrm{t}_{\mathrm{RN} 2}$	15		20		15		20		ns	(Note 9)
Write enable setup time	${ }^{\text {t WES }}$	15		20		15		20		ns	(Note 10)
Write enable hold time	${ }^{\text {t WEH }}$	5		5		5		5		ns	(Note 10)
Write enable high delay from WCK	$t_{\text {WEN1 }}$	5		5		5		5		ns	(Note 11)
Write enable low delay to WCK	$t_{\text {WEN2 }}$	15		20		15		20		ns	(Note 11)
Read enable setup time	$t_{\text {RES }}$	15		20		15		20		ns	(Note 10)
Read enable hold time	$t_{\text {REH }}$	5		5		5		5		ns	(Note 10)
Read enable high delay from RCK	$t_{\text {REN1 }}$	5		5		5		5		ns	(Note 11)
Read enable low delay to RCK	$t_{\text {ten } 2}$	15		20		15		20		ns	(Note 11)
Write disable pulse width	${ }^{\text {twew }}$	0		0		0		0		ms	(Note 6)
Read disable pulse width	$t_{\text {REW }}$	0		0		0		0		ms	(Note 6)
Write reset time	$t_{\text {RSTW }}$	0		0		0		0		ms	(Note 6)
Read reset time	$t_{\text {RSTR }}$	0		0		0		0		ms	(Note 6)
Transition time	${ }_{T}$	3	35	3	35	3	35	3	35	ns	

Notes:

(1) All voltages are referenced to ground.
(2) Input pulse rise and fall times assume $\mathrm{t}_{\boldsymbol{T}}=\mathbf{5} \mathrm{ns}$.
(3) Input pulse levels $=$ GND to 3 V . Transition times are measured between 3 V and O V .
(4) This delay is measured at $\pm 200 \mathrm{mv}$ from the steady-state voltage with the load specified in figure 2 . Under any conditions, t LZ \geq t_{Hz}.
(5) Input timing reference levels $=1.5 \mathrm{~V}$.
(6) twew (max) and $t_{\text {Rew }}$ (max) must be satisfied by the next equations in one line cycle operation:
$t_{\text {WEW }}+t_{\text {RSTW }}+5048 \mathrm{t}_{\mathrm{WCK}} \leq 5 \mathrm{~ms}$ (20 ms for -H versions)
$t_{\text {REW }}+$ thetr $+5048 \mathrm{t}_{\text {RCK }} \leq 5 \mathrm{~ms}$ (20 ms for -H versions)
(7) This parameter applies when $t_{\text {RCK }} \geq t_{\text {ACR }}$ (max)
(8) If either $t_{R S}$ or $t_{R H}$ is less than the specified value, reset operations are not guaranteed.
(9) If either $\mathrm{t}_{\mathrm{RN} 1}$ or $\mathrm{t}_{\mathrm{RN} 2}$ is less than the specified value, internal reset operations may extend to cycles immediately preceding or following the period of desired reset operations.
(10) If either $\mathrm{t}_{\text {WES }}$ or $\mathrm{t}_{\text {WEH }}$ ($\mathrm{t}_{\text {RES }}$ or $\mathrm{t}_{\text {REH }}$) is less than the specified value, write (read) disable operations are not guaranteed.
(11) If either twen1 or twen2 (fREN1 or tren $)$ is less than the specified value, internal write (read) disable operations may extend to cycles immediately preceding or following the period of desired disable operations.

Figure 1. Output Load for $\boldsymbol{t}_{A C}, \boldsymbol{t}_{A C H}, \boldsymbol{t}_{\mathrm{OH}}$, and $\boldsymbol{t}_{\mathrm{OHR}}$

Figure 2. Output Load for $t_{L Z}$ and $t_{H Z}$

Figure 3. Input Timing

Figure 4. Output Timing

Timing Waveforms

Write Cycle

Notes:
[1] $\overline{\text { RSTW }}=V_{I H}$.
[2] $\mathrm{V}=$ valid data.

Read Cycle

Notes:
[1] $\overline{\text { RSTR }}=V_{1 H}$.
[2] $\mathrm{V}=$ valid data.

Timing Waveforms (cont)

Write Reset Cycle

Notes:
[1] $\overline{W E}=V_{\text {IL }}$.
[2] $\mathrm{V}=$ valid data.

Read Reset Cycle

Notes:
[1] $\overline{R E}=V_{\text {IL }}$.
[2] $\mathrm{V}=$ valid data.

Timing Waveforms (cont)

Time Axis Conversion Cycle

Notes:

[1] $\overline{W E}=\overline{R E}=V_{\text {IL }}$
[2] $V=$ valid data.
[3] Read cycles commence from the rising edge of RCK. For the first cycle in a group of reset cycles, the read access time is defined as $t_{A C R}$. In all other cycles, $t_{A C}$ defines the read access time.
[4] Write data is strobed into the device on the rising edge of WCK at the end of a cycle.

Timing Waveforms (cont)

5048-Bit Delay Line Cycle

$\overline{W E}, \overline{R E}$ \qquad
VIL

Notes:
[1] $V=$ valid data.
[2] $1 \mathrm{H}=$ the first group of 5048 bits.
$2 \mathrm{H}=$ the second group of 5048 bits.

Timing Waveforms (cont)

n-Bit Delay Line Cycle

Notes:

[1] $\mathrm{V}=$ valld data
[2] $1 \mathrm{H}=$ the first group of bits. $2 \mathrm{H}=$ the second group of n^{\prime} bits.
[3] $\overline{R E}=\overline{W E}=V_{\text {IL }}$.

Timing Waveforms (cont)

Re-Read Cycle

$\overline{\mathrm{WE}}$

Notes:
[1] $\overline{\mathrm{RE}}=\mathrm{V}_{\mathrm{lL}}$
[2] $\mathrm{V}=$ valid data.
[3] The data stored in any location can be re-read as many times as desired, within a period of 5 ms following the writing of data into that location, provided that a second write cycle has not rewritten new data into that location.

Timing Waveforms (cont)

Write Disable Cycle

[1] $V=$ valid data.

Read Disable Cycle

[1] $V=$ valid data .

Timing Waveforms (cont)
(5048-m)-Bit Delay Line No. 1

Timing Waveforms (cont)

(5048-m)-Bit Delay Line No. 2

Description

The μ PD485505 is a 5048 -word by 8 -bit dual-port line buffer fabricated with a silicon-gate CMOS process. The device is capable of asynchronous read and write operation at high speed and can be used as a time axis converter or a digital delay line of up to 5048 bits (21 bits minimum at maximum frequency).
Applications include image processing in facsimile machines, plain paper copiers, video systems, and other optical scanners; time base correction in video playback systems; and data communication buffering in multiprocessor systems and local area networks.

Features

- 5048-word x 8 -bit organization
- Fully static operation
- Dual-port operation
- Image processing and data communications applications
- Asynchronous and simultaneous reading/writing
- 1H (5048-bit) delay line capability
- TTL-compatible inputs and outputs
- Three-state outputs
- Single +5 -volt power supply
- 24-pin plastic SOP and 24-pin plastic ZIP packaging

Ordering Information

Part No.	Cycle Time (min)	Read Access Time (max)	Package
$\mu \mathrm{PD} 485505 \mathrm{GU}$-25	25 ns	18 ns	24-pin plastic SOP
GU-35	35 ns	25 ns	
$\mu \mathrm{PD} 485505 \mathrm{~V}$-25	25 ns	18 ns	24-pin plastic ZIP
V-35	35 ns	25 ns	

Pin Configurations

24-Pin Plastic SOP

24-Pin Plastic ZIP

Pin Identification

Symbol	Function
$D_{\text {INO }}-D_{\text {IN7 }}$	Write data inputs
$D_{\text {OUTO }}-D_{\text {OUT7 }}$	Read data outputs
RCK	Read clock input
$\overline{\overline{R E}}$	Read enable input
$\overline{\text { RSTR }}$	Read address reset input
$\overline{\text { RSTW }}$	Write address reset input
$\overline{\text { WCK }}$	Write clock input
$\overline{\text { WE }}$	Write enable input
GND	Ground
VCC	+5 -volt power supply

Block Diagram

Pin Functions

$D_{\text {INO }}$ - $D_{\text {IN7 }}$ (Data Inputs). New data is entered on these pins.
Douto - Dout7 (Data Outputs). These three-state outputs are used to access stored information. In a simple digital delay line application, a minimum delay of 21 clock cycles is required to move data from the input pins to the output pins.

RCK (Read Clock Input). All read cycle are executed synchronously with RCK. The states of both RSTR and RE are latched by the rising edge of RCK at the beginning of a cycle. This same edge of RCK starts internal read operation, and access time is referenced to this edge.
The internal read address increments with each RCK cycle unless $\overline{\mathrm{RE}}$ is high to hold the read address constant. Unless inhibited by $\overline{\mathrm{RE}}$, the internal read address will automatically wrap around from 5047 to 0 and begin incrementing again.
$\overline{\operatorname{RE}}$ (Read Enable Input). This signal controls read operation. If $\overline{\mathrm{RE}}$ is low, all read cycles proceed. If $\overline{\mathrm{RE}}$ is at a high level, the data outputs remain valid for that
address and the internal read address stops incrementing. The state of $\overline{R E}$ is strobed by the rising edge of RCK.
$\overline{\text { RSTR (Read Address Reset Input). This signal is }}$ strobed by the rising edge of RCK and resets the internal read address to 0 .
$\overline{\text { RSTW }}$ (Write Address Reset Input). Bringing this signal low resets the internal write address to 0 . The state of this input is strobed by the rising edge of WCK.
WCK (Write Clock Input). All write cycles are executed synchronously with WCK. The states of both $\overline{\text { RSTW }}$ and WE are strobed by the rising edge of WCK at the beginning of a cycle, and the data inputs are strobed by the rising edge of WCK at the end of a cycle.

The internal write address increments with each WCK cycle unless $\overline{W E}$ is at a high level to hold the write address constant. Unless inhibited by $\overline{\mathrm{WE}}$, the internal write address will automatically wrap around from 5047 to 0 and begin incrementing again.
$\overline{\text { WE (Write Enable Input). This input is similar to } \overline{\text { RE }} \text { but }}$ controls write operation. If $\overline{W E}$ is at a high level, no data is written to storage cells and the write address does not increment. The state of $\overline{W E}$ is strobed by the rising edge of WCK.

Operation

Reset Cycle. The $\mu \mathrm{PD} 485505$ requires the initialization of internal circuits using the $\overline{\text { RSTW} / R S T R ~ r e s e t ~ s i g n a l s ~}$ before starting operation as a time axis converter or a digital delay line.

A reset cycle can be executed at any time and does not depend on the state of $\overline{\text { RE }}$ or $\overline{W E}$. However, $\overline{\text { RSTW }}$ and RSTR must satisfy required setup and hold times as measured from the rising edges of WCK and RCK.
Write/Read Cycles. Write and read cycles are synchronized to their respective WCK/RCK inputs and executed individually when WCK or RCK is high and WE or $\overline{R E}$ is low. Write data must satisfy setup and hold times as specified from the rising edge of WCK. New data written to a particular address is available for reading after one-half write cycle plus 500 ns (maximum).
The access time of a read cycle is measured from the rising edge of RCK by $t_{A C}$. Stored data is read nondestructively; data can be read repeatedly because data hold time is infinite.

Time Axis Conversion. To use the μ PD485505 as a time axis converter, write and read cycles must be controlled independently. Write and read ports must be initialized separately using the reset signals. Write cycles can then be executed in synchronization with WCK and write data can be stored sequentially from address 0 of this device. Afterward, when a read cycle is executed in synchronization with RCK, stored data can be read sequentially from address 0 .
Since write and read cycles can be executed independently, data loaded at one arbitrary drive frequency can be read at another arbitrary drive frequency. In this sense, the μ PD485505 functions as a time axis converter.

Digital Delay Line. The μ PD485505 can be easily used as a digital delay line of 5048 bits or less. After the internal circuits are initialized using simultaneous $\overline{\text { RSTW/RSTR }}$ signals, write/read cycles also may be executed simultaneously by supplying the same pulse to the write (WCK) and read (RCK) clocks. Write data is always read after the full 5048 -bit delay if neither write nor read operation has been inhibited. This is the essential delay line function.
If either $\overline{W E}$ or $\overline{R E}$ is set at a nonselected (high) level for several cycles while the other is maintained in a selected (low) level, the delay line length can differ from 5048 bits.

For example, if only $\overline{\mathrm{WE}}$ is a set to a high level (write disable) for a small number of cycles, read cycles are executed continuously and the delay line length is large. Alternatively, if only $\overline{\text { RE }}$ is set to a high level (read disable) for a small number of cycles, write cycles are executed continuously and the delay line length is small. Note that the minimum delay line length is 21 bits (for maximum frequency operation) and the maximum is 5048 bits.

A data delay of 5048 bits or less can also be obtained by applying the RSTW and RSTR signals at different times. For example, data loaded for " m " cycles after RSTW can then be read after supplying RSTR. In this case, since write data can be read from the beginning after a delay of " m " cycles, the device can be used as an m-bit digital delay line.
The $\overline{\mathrm{RSTW}} / \overline{\mathrm{RSTR}}$ reset signals can also be simultaneously loaded at every 1 H (horizontal line) period. In this case, write data loaded in the previous line cycle is read out from the beginning as read data after the reset. Therefore, a delay line length ranging from 21 to 5048 bits (depending on cycle time) can be obtained according to the length of the reset signals supplied. Refer to the timing waveform for an " n-Bit Delay Line."

Absolute Maximum Ratings

Supply voltage, V_{CC}	-0.5 to +7.0 V
Voltage on any input pin, V_{1}	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Voltage on any output pin, V_{O}	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Short-circuit output current, los	20 mA
Operating temperature, $T_{O P R}$	0 to $+70^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\mathrm{STG}}$	-55 to $+125^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Input voltage, high	V_{IH}	2.4		$\mathrm{~V}_{\mathrm{CC}}+0.5$	V
Input voltage, low	V_{IL}	-0.3		0.8	V
Ambient temperature	T_{A}	0		70	${ }^{\circ} \mathrm{C}$

Capacitance

Parameter *	Symbol	Max	Unit	Pins Under Test
Input capacitance	C_{1}	5	pF	WE, $\overline{R E}$, WCK, RCK, RSTW, $\overline{R S T R}, D_{\text {INO }}-D_{\text {IN7 }}$
Output capacitance	C_{0}	7	pF	Douto - Dout7

* These parameters are sampled and not 100% tested.

DC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Write/read cycle operating current	I_{CC}		80	mA		
Input leakage current	I_{I}	-10	10	$\mu \mathrm{~A}$	$\mathrm{~V}_{1}=0 \mathrm{~V}$ to V_{CC}; all other pins not under test $=0 \mathrm{~V}$	
Output leakage current	I_{O}	-10	10	$\mu \mathrm{~A}$	$\mathrm{D}_{\mathrm{OUT}}$ disabled; $\mathrm{V}_{\mathrm{O}}=0$ to 5.5 V	
Output voltage, high	V_{OH}	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	
Output voltage, low	V_{OL}		0.4	V	$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$	

AC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	μ PD485505-25		μ PD485505-35		Unit	Test Conditions
		Min	Max	Min	Max		
Access time	$t_{A C}$		18		25	ns	
Data-in hold time	${ }^{\text {d }}$ H	3		3		ns	
Data-in setup time	${ }^{\text {t }}$ D	7		10		ns	
Output disable time	$t_{H Z}$	5	18	5	25	ns	(Note 4)
Output active time	${ }_{\text {t }}^{\text {L }}$	5	18	5	25	ns	(Note 4)
Output hold time	${ }^{\text {tor }}$	5		5		ns	
Read clock cycle time	$\mathrm{t}_{\mathrm{RCK}}$	25		35		ns	
RCK precharge time	$\mathrm{t}_{\mathrm{RCP}}$	9		12		ns	
RCK pulse width	$t_{\text {RCW }}$	9		12		ns	
Read enable hold time	$t_{\text {REH }}$	3		3		ns	(Note 8)
Read enable high delay from RCK	$t_{\text {REN1 }}$	3		3		ns	(Note 9)
Read enable low delay to RCK	$\mathrm{t}_{\text {REN2 }}$	7		10		ns	(Note 9)
Read enable setup time	$t_{\text {RES }}$	7		10		ns	(Note 8)
Read disable pulse width	$t_{\text {REW }}$	0		0		ns	
Reset active hold time	t_{RH}	3		3		ns	(Note 6)
Reset in active hold time	$\mathrm{t}_{\mathrm{RN} 1}$	3		3		ns	(Note 7)
Reset inactive setup time	$\mathrm{t}_{\mathrm{RN} 2}$	7		10		ns	(Note 7)
Reset active setup time	$t_{\text {RS }}$	7		10		ns	(Note 6)
Read reset time	$t_{\text {RSTR }}$	0		0		ns	
Write reset time	$\mathrm{t}_{\text {RSTW }}$	0		0		ns	
Transition time	${ }_{t}$	3	35	3	35	ns	
Write clock cycle time	${ }^{\text {twek }}$	25		35		ns	
WCK precharge time	${ }^{\text {tw }}$ W ${ }^{\text {w }}$	9		12		ns	
WCK pulse width	${ }^{\text {twCW }}$	9		12		ns	
Write enable hold time	${ }^{\text {t }}$ WEH	3		3		ns	(Note 8)
Write enable high delay from WCK	twen1	3		3		ns	(Note 9)
Write enable low delay to WCK	${ }^{\text {twen2 }}$	7		10		ns	(Note 9)
Write enable setup time	${ }^{\text {twES }}$	7		10		ns	(Note 8)
Write disable pulse width	${ }^{\text {t Wew }}$	0		0		ns	

Notes:

(1) All voltages are referenced to ground.
(2) Input pulse rise and fall times assume $\mathrm{t}_{\mathbf{T}}=5 \mathrm{~ns}$.
(3) Input pulse levels $=$ GND to 3 V . Transition times are measured between 3 V and OV .
(4) This delay is measured at $\pm 200 \mathrm{mV}$ from the steady-state voltage with the load specified in figure 1 . Under any conditions, $\mathrm{t}_{\mathrm{LZ}} \geq$ ${ }^{\mathrm{t}} \mathrm{HZ}$.
(5) Input timing reference levels $=1.5 \mathrm{~V}$.
(6) If either $t_{R S}$ or $t_{R H}$ is less than the specified value, reset operations are not guaranteed.
(7) If either $t_{R N 1}$ or $t_{R N 2}$ is less than the specified value, internal reset operations may extend to cycles immediately preceding or following the period of desired reset operations.
(8) If either $t_{\text {WES }}$ or $t_{\text {WEH }}\left(t_{\text {RES }}\right.$ or $\left.t_{\text {REH }}\right)$ is less than the specified value, write (read) output disable operations are not guaranteed.
(9) If either $t_{\text {WEN1 }}$ or $t_{\text {WEN2 }}$ ($t_{\text {REN }}$ or $t_{\text {REN2 }}$) is less than the specified value, internal write (read) output disable operations may extend to cycles immediately preceding or following the period of desired disable operations.

Figure 1. Output Loads for Timing Measurements

Figure 2. Voltage Thresholds for Timing Measurements

Timing Waveforms

Write Cycle

Notes:
[1] $\overline{\text { ASTW }}=V_{I H}$.
[2] $\mathbf{V}=$ valld data.

Read Cycle

Notee:

[1] $\overline{\mathrm{ASTR}}=\mathrm{V}_{1 \mathrm{H}}$.
[2] $\mathrm{V}=$ valld data.

Timing Waveforms (cont)

Write Reset Cycle

Notes:
[1] $\overline{W E}=V_{1 L}$.
[2] $\mathbf{V}=$ valld data.

Read Reset Cycle

Notes:
[1] $\overline{\mathrm{RE}}=\mathrm{V}_{\text {IL }}$.
[2] $V=$ valld data.

Timing Waveforms (cont)

5048-Bit Delay Line Cycle

Notes:
[1] $\mathrm{V}=$ valld data.
[2] $1 \mathrm{H}=$ the first group of 5048 bits.
$2 \mathrm{H}=$ the second group of 5048 bts.

Timing Waveforms (cont)
n-Bit Delay Line Cycle 3

Notes:

(1) $\overline{W E}=V_{I L}$.
(2) $\mathrm{V}=$ valld data.

Timing Waveforms (cont)

n-Bit Delay Line Cycle 2

Timing Waveforms (cont)

n-Bit Delay Line Cycle 1

Notes:

(1) $\overline{\mathrm{PE}}=\overline{\mathrm{WE}}=V_{\mathrm{IL}}$.
(2) $V=$ valld data.

Timing Waveforms (cont)
Time Axis Conversion Cycle

18 g

Notes:

(1) $\overline{W E}=\overline{R E}=V_{\text {IL }}$.
(2) $V=$ valid data.
(3) Witte data Is strobed into the device
on the ising edge of WCK at the end of a cycie.

Description

The μ PD485506 is a 5048 -word by 16 -bit dual-port line buffer fabricated with a silicon-gate CMOS process. The device is capable of asynchronous read and write operation at high speed, and can be used as atime axis converter or a digital delay line of up to 5048 bits (21 bits minimum at maximum frequency).

Applications include image processing in facsimile machines, plain paper copiers, video systems, and other optical scanners; time base correction in video playback systems; and data communication buffering in multiprocessor systems and local area networks.

Features

- 5048 -word x 16 -bit or 10,096 -word x 8 -bit organization
- Fully static operation; data hold time $=$ infinity
- Dual-port operation
- Image processing and data communications applications
- Asynchronous and simultaneous reading/writing
- 1 H (5048 -bit) delay line capability for 5048×16-bit mode
- 1H (10,096 -bit) delay line capability for $10,096 \times 8$ bit mode
- TTL-compatible inputs and outputs
- Three-state outputs
- Single +5 -volt power supply
- 44-pin plastic TSOP ($400-\mathrm{mil}$)

Ordering Information

Part No.	Cycle Time $(\mathbf{m i n})$	Read Access Time (max)	Package
μ PD485506G5-25	25 ns	18 ns	44-pin plastic G5-35 $\mathbf{3 5 \mathrm { ns }}$

Pin Configurations

44-Pin Plastic TSOP

μ PD485506	
Douto ${ }^{1} \mathrm{O}$	44 - Dino
DOUT1 ${ }^{2}$	$43 \square \mathrm{D}_{\text {IN1 }}$
Dout2 ${ }^{3}$	$42 \mathrm{PD} \mathrm{D}_{1}$
Douts ${ }^{4}$	$41 \sim \mathrm{D}_{\text {IN3 }}$
Douta 5	$40{ }^{\square} \mathrm{DIN4}$
Douts 6	39 D ${ }_{\text {IN5 }}$
Dout6 ${ }^{7}$	38 - ${ }_{\text {DiN6 }}$
Doutr 8	37 ロ的7
$\overline{\mathrm{OE}} 9$	36 WE
RE 10	35 MD
GND 11	$34 \sim \mathrm{GND}$
ASTR 12	$33-\overline{\text { ASTW }}$
RCK ${ }^{13}$	32 ток
Vcc ${ }^{14}$	${ }_{31} \mathrm{~V}_{\mathrm{cc}}$
Douts 15	$30 \square \mathrm{DINB}$
Douts 16	29 Din9
Doutio 17	28 صD ${ }^{\text {N10 }}$
Dout11 18	27 Q ${ }_{\text {IN11 }}$
Dout12 19	$26 \mathrm{D}_{1 \times 12}$
Douti3 20	25 PDin13
Dout14 21	$24 \sim D_{\text {IN14 }}$
DOUT15 [22	$23.1{ }^{\text {d }}$ (15

Pin Identification

Symbol	Function
$\mathrm{D}_{\text {IN0 }}$ - $\mathrm{D}_{\text {IN15 }}$	Write data inputs
D ${ }_{\text {OUT0 }}$ - Dout15 $^{\text {a }}$	Read data outputs
MD	Mode set input
$\overline{O E}$	Output enable
RCK	Read clock input
$\overline{\text { RE }}$	Read enable input
$\overline{\text { RSTR }}$	Read address reset input
RSTW	Write address reset input
WCK	Write clock input
WE	Write enable input
GND	Ground
$\mathrm{V}_{C C}$	+5-volt power supply

Block Diagram

Pin Functions

$\mathrm{D}_{\text {INO }}-\mathrm{D}_{\text {IN15 }}$ (Data Inputs). New data is entered on these pins.
Douto - Dout15 (Data Outputs). These three-state outputs are used to access stored information. In a simple digital delay line application, a minimum delay of 21 clock cycles is required to move data from the input pins to the output pins.
MD (Mode Set Input). The level of this signal gives the operation mode. A low level enables 5048 -word by 16-bit memory configuration with $\mathrm{D}_{\text {INO }}-\mathrm{D}_{\text {IN15 }}$ and Douto - Douti5. On the other hand, a high level enables 10,096 -word by 8 -bit memory configuration with $D_{\text {iNo }}$ $\mathrm{D}_{\text {IN7 }}$ and Douto-Doutr. This signal is latched by the rising edge of WCK (RCK) when $\overline{\text { RSTW }}(\overline{\mathrm{RSTR}}$) is low level. Mode setting can be done Write/Read separately.
$\overline{O E}$ (Output Enable Input). This signal controls output operation. The state of $\overline{O E}$ is latched by the rising edge of RCK. If $\overline{O E}$ is at a high level, the data outputs become high impedance.
RCK (Read Clock Input). All read cycle are executed synchronously with RCK. The states of $\overline{\text { RSTR }} \overline{\text { RE }}$, and $\overline{\mathrm{OE}}$ are latched by the rising edge of RCK at the
beginning of a cycle. This same edge of RCK starts internal read operation, and access time is referenced to this edge.
The internal read address increments with each RCK cycie unless $\overline{R E}$ is high to hold the read address constant. Unless inhibited by $\overline{R E}$, the internal read address will automatically wrap around from 5047 to 0 or 10,095 to 0 and begin incrementing again.
$\overline{\operatorname{RE}}$ (Read Enable Input). This signal controls read operation. If $\overline{R E}$ is low, all read cycles proceed. If $\overline{R E}$ is at a high level, the data outputs remain valid for that address and the internal read address stops incrementing. The state of $\overline{R E}$ is strobed by the rising edge of RCK.
$\overline{\text { RSTR }}$ (Read Address Reset Input). This signal is latched by the rising edge of RCK and resets the internal read address to 0 .
$\overline{\text { RSTW }}$ (Write Address Reset Input). Bringing this signal low resets the internal write address to 0 . The state of this input is latched by the rising edge of WCK.
WCK (Write Clock Input). All write cycles are executed synchronously with WCK. The states of both $\overline{\text { RSTW }}$ and WE are latched by the rising edge of WCK at the beginning of a cycle, and the data inputs are latched by the rising edge of WCK at the end of a cycle.

The internal write address increments with each WCK cycle unless $\overline{W E}$ is at a high level to hold the write address constant. Unless inhibited by $\overline{\mathrm{WE}}$, the internal write address will automatically wrap around from 5047 to 0 (5048 -word by 16 -bit mode) or 10,095 to 0 (10,096 -word by 8 -bit mode) and begin incrementing again.
$\overline{\text { WE }}$ (Write Enable Input). This signal controls write operation. If $\overline{W E}$ is at a high level, no data is written to storage cells and the write address does not increment. The state of $\overline{W E}$ is latched by the rising edge of WCK.

Operation

Reset Cycle. The μ PD485506 requires the initialization of internal circuits using the $\overline{\text { RSTW} / R S T R ~ r e s e t ~ s i g n a l s ~}$ before starting operation as a time axis converter or a digital delay line.
A reset cycle can be executed at any time and does not depend on the state of $\overline{O E}, \overline{R E}$, or WE. However, $\overline{\text { RSTW }}$ and $\overline{\text { RSTR }}$ must satisfy required setup and hold times as measured from the rising edges of WCK and RCK.
Write/Read Cycles. Write and read cycles are synchronized to their respective WCK/RCK inputs when WE or $\overline{R E}$ is low. Write data must satisfy setup and hold times as specified from the rising edge of WCK. New data written to a particular address is available for reading synchronously with the RCK clock after one-half write cycle plus 500 ns (maximum).
The access time of a read cycle is measured from the rising edge of RCK by $t_{A C}$. Stored data is read nondestructively; data can be read repeatedly because data hold time is infinite.
Time Axis Conversion. To use the μ PD485506 as a time axis converter, write and read cycles must be controlled independently. Write and read ports must be initialized separately using the reset signals. Write cycles can then be executed in synchronization with WCK and write data can be stored sequentially from address 0 of this device. Afterward, when a read cycle is executed in synchronization with RCK, stored data can be read sequentially from address 0 .
Since write and read cycles can be executed independently, data loaded at one arbitrary drive frequency can be read at another arbitrary drive frequency. In this sense, the μ PD485506 functions as a time axis converter.
Digital Delay Line. The μ PD485506 can be easily used as a digital delay line of 5048 bits in the case of 5048 -word by 16 -bit mode or 10,096 bits in the case of

10,096-word by 8 -bit mode. After the internal circuits are initialized using simultaneous $\overline{\operatorname{RSTW}} / \overline{\mathrm{RSTR}}$ signals, write/read cycles also may be executed simultaneously by supplying the same pulse to the write (WCK) and read (RCK) clocks. Write data is always read after the full 5048 -bit or 10,096-bit delay if neither write nor read operation has been inhibited. This is the essential delay line function.
If either $\overline{W E}$ or $\overline{R E}$ is set at a disabled (high) level for several cycles while the other is maintained in a selected (low) level, the delay line length can differ from 5048 bits or 10,096 bits. For example, if only $\overline{W E}$ is set to a high level (write disable) for a small number of cycles, read cycles are executed continuously and the delay line length is large. Alternatively, if only $\overline{R E}$ is set to a high level (read disable) for a small number of cycles, write cycles are executed continuously and the delay line length is small. Note that the minimum delay line length is 21 bits (for maximum frequency operation) and the maximum is 5048 bits or 10,096 bits.
A data delay of 5048 bits or less or 10,096 bits or less can also be obtained by applying the $\overline{\text { RSTW }}$ and RSTR signals at different times. For example, data loaded for " m " cycles after $\overline{R S T W}$ can then be read after supplying RSTR. In this case, since write data can be read from the beginning after a delay of " m " cycles, the device can be used as an m-bit digital delay line.
The $\overline{\text { RSTW/RSTR }}$ reset signals can also be simultaneously loaded at every 1 H (horizontal line) period. In this case, write data loaded in the previous line cycle is read out from the beginning as read data after the reset. Therefore, a delay line length ranging from 21 to 5048 bits (or 10,096 bits) in the case of 25 -ns cycle time and from 15 to 5048 bits (or 10,096 bits) in the case of 35 -ns cycle time can be obtained according to the length of the reset signals supplied. Refer to the timing waveform for an " n-Bit Delay Line."
Mode Set Cycle. The μ PD485506 has a capability of changing the memory configuration by judging the MD level latched by the rising edge of RCKWCK at the Reset cycle ($\overline{\mathrm{RSTR}} / \overline{\mathrm{RSTW}}$ is low). If MD level is low, the memory is set to the 5048 -word by 16 -bit configuration, and if MD level is high, it is set to the 10,096 -word by 8 -bit configuration. The write mode set and read mode set can be done separately.

Absolute Maximum Ratings

Supply voltage, V_{CC}	-0.5 to +7.0 V
Voltage on any input pin, V_{1}	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Voltage on any output pin, V_{O}	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Short-circult output current, los	20 mA
Operating temperature, $\mathrm{T}_{\mathrm{OPR}}$	0 to $+70^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\mathrm{STG}}$	-55 to $+125^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Input voltage, high	V_{HH}	2.4		$\mathrm{~V}_{\mathrm{CC}}+0.5$	V
Input voltage, low	V_{IL}	-0.3		0.8	V
Ambient temperature	T_{A}	0		70	${ }^{\circ} \mathrm{C}$

Capacitance

$T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% ; f=1 \mathrm{MHz}$

Parameter *	Symbol	Max	Unit	Pins Under Test
Input capacitance	C_{1}	7	pF	$\overline{W E}, \overline{R E}$, WCK, RCK, MD RSTW, $\overline{\text { RSTR, }}$, $\mathrm{D}_{\text {INO }}-$ $\mathrm{D}_{\text {IN15. }} \overline{\mathrm{OE}}$
Output capacitance	c_{0}	7	pF	Douto - Doutis

* These parameters are sampled and not 100% tested.

DC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Write/read cycle operating current	I_{CC}		140	mA		
input leakage current	I_{1}	-10	10	$\mu \mathrm{~A}$	$\mathrm{~V}_{1}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}} ;$ all other pins not under test $=0 \mathrm{~V}$	
Output leakage current	I_{O}	-10	10	$\mu \mathrm{~A}$	$\mathrm{D}_{\mathrm{OUT}}$ disabled; $\mathrm{V}_{\mathrm{O}}=0$ to 5.5 V	
Output voltage, high	V_{OH}	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	
Output voltage, low	V_{OL}		0.4	V	$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$	

AC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	$\mu \mathrm{PD} 485506$-25		$\mu \mathrm{PD} 485506$-35		Unit	Test Conditions
		Min	Max	Min	Max		
Access time	$t_{A C}$		18		25	ns	
Data-in hold time	${ }^{\text {t }}$ H	3		3		ns	
Data-in setup time	${ }_{\text {t }}$ S	7		10		ns	
Output disable time	${ }_{\text {thZ }}$	5	18	5	25	ns	(Note 4)
Output disable time at the mode change	$t_{\text {HZM }}$	5	18	5	25	ns	(Note 4)
Output active time	$t_{L Z}$	5	18	5	25	ns	(Note 4)
Output active time at the mode change	$t_{\text {LZM }}$	5	18	5	25	ns	(Note 4)
Mode set time	${ }^{\text {MD }}$	0		0		ns	(Note 10)
Mode set hold time	$t_{\text {MH }}$	10		10		ns	(Note 10)
Mode set setup time	$\mathrm{t}_{\text {MS }}$	20		20		ns	(Note 10)
Output enable hold time	tOEH	3		3		ns	(Note 8)
Output enable high delay from RCD	LOEN1	3		3		ns	(Note 9)

AC Characteristics (cont)

Parameter	Symbol	μ PD485506-25		μ PD485506-35		Unit	Test Conditions
		Min	Max	Min	Max		
Output enable low delay to RCK	$t_{\text {OEN2 }}$	7		10		ns	(Note 9)
Output enable setup time	toes	7		10		ns	(Note 8)
Output disable pulse width	toew	0		0		ns	
Output hold time	t_{OH}	5		5		ns	
Read clock cycle time	$\mathrm{t}_{\mathrm{RCK}}$	25		35		ns	
RCK precharge time	$t_{\text {RCP }}$	9		12		ns	
RCK pulse width	$t_{\text {RCW }}$	9		12		ns	
Read enable hold time	$t_{\text {REH }}$	3		3		ns	(Note 8)
Read enable high delay from RCK	$t_{\text {REN1 }}$	3		3		ns	(Note 9)
Read enable low delay to RCK	$\mathrm{t}_{\text {REN2 }}$	7		10		ns	(Note 9)
Read enable setup time	$\mathrm{t}_{\text {RES }}$	7		10		ns	(Note 8)
Read disable pulse width	$t_{\text {REW }}$	0		0		ns	
Reset active hold time	$\mathrm{t}_{\text {RH }}$	3		3		ns	(Note 6)
Reset inactive hold time	$\mathrm{t}_{\mathrm{RN} 1}$	3		3		ns	(Note 7)
Reset inactive setup time	$\mathrm{t}_{\mathrm{RN} 2}$	7		10		ns	(Note 7)
Reset active setup time	$t_{\text {RS }}$	7		10		ns	(Note 6)
Read reset time	$t_{\text {RSTR }}$	0		0		ns	
Write reset time	$\mathrm{t}_{\text {RSTW }}$	0		0		ns	
Transition time	${ }_{\text {t }}$	3	35	3	35	ns	
Write clock cycle time	$\mathrm{t}_{\text {WCK }}$	25		35		ns	
WCK precharge time	${ }^{\text {twCP }}$	9		12		ns	
WCK pulse width	${ }^{\text {tw }}$ W ${ }^{\text {w }}$	9		12		ns	
Write enable hold time	${ }^{\text {t WEH }}$	3		3		ns	(Note 8)
Write enable high delay from WCK	t WEN1	3		3		ns	(Note 9)
Write enable low delay to WCK	tWEN2	7		10		ns	(Note 9)
Write enable setup time	${ }^{\text {t WES }}$	7		10		ns	(Note 8)
Write disable pulse width	${ }^{\text {t WEW }}$	0		0		ns	

Notes:

(1) All voltages are referenced to ground.
(2) Input pulse rise and fall times assume $\mathrm{t}_{\mathrm{T}}=5 \mathrm{~ns}$.
(3) Input pulse levels $=$ GND to 3 V . Transition times are measured between 3 V and 0 V .
(4) This delay is measured at $\pm 200 \mathrm{mV}$ from the steady-state voltage with the load specified in figure 1 . Under any conditions, $t_{L Z} \geq t_{H Z}$ and $t_{L Z M} \geq t_{H Z M}$.
(5) Input timing reference levels $=1.5 \mathrm{~V}$.
(6) If either t_{RS} or t_{RH} is less than the specified value, reset operations are not guaranteed.
(7) If either $t_{R N 1}$ or $t_{R N 2}$ is less than the specified value, internal reset operations may extend to cycles immediately preceding or following the period of desired reset operations.
(8) If either $t_{\text {WES }}, t_{\text {WEH }}, t_{\text {OES }}$ or $t_{\text {OEH }}\left(t_{\text {RES }}\right.$ or $\left.t_{\text {REH }}\right)$ is less than the specified value, write (read) output disable operations are not guaranteed.
(9) If either $t_{\text {WEN }}$ or $t_{\text {WEN }}$ ($t_{\text {REN } 1}$ or $t_{\text {REN } 2}, t_{\text {OEN }}$ or $t_{\text {OEN }}$) is less than the specified value, internal write (read) output disable operations may extend to cycles immediately preceding or following the period of desired disable operations.
(10) Mode Set signal (MD) must be input synchronously with Write Reset signal (RASTW $^{\text {period) or Read Reset signal (thSTR Period). }}$

Figure 1. Output Loads for Timing Measurements

Figure 2. Voltage Thresholds for Timing Measurements

Timing Waveforms

Mode Set Cycle (Write) 1

Timing Waveforms (cont)

Mode Set Cycle (Write) 2

Timing Waveforms (cont)
Mode Set Cycle (Read) 3

Timing Waveforms (cont)

Mode Set Cycle (Read) 4

Notes:

(1) $\overline{\operatorname{RE}}=\overline{\mathrm{O}}=\mathrm{V}_{\mathrm{IL}}$
(2) $\mathrm{V}=$ valid data

Timing Waveforms (cont)

Write Cycle

Notes:
[1] $\overline{\mathrm{ASTW}}=\mathrm{V}_{\mathrm{IH}}$.
[2] $\mathbf{V}=$ valld data.

Read Cycle (Output Operation Control)

Timing Waveforms (cont)

Write Reset Cycle

Notes:
[1] $\overline{W E}=V_{\text {IL }}$.
[2] $\mathbf{V}=$ valld data.

Read Reset Cycle

Notes:
[1] $\overline{\mathrm{RE}}=\mathrm{V}_{\mathrm{IL}}$.
[2] $\mathrm{V}=$ valid data.

Timing Waveforms (cont)

Time Axis Conversion Cycle

Notes:
(1) $\overline{\mathrm{WE}}=\overline{\mathrm{RE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
(2) $V=$ valid data.
(3) Witte data Is strobed into the device on the rising edge of WCK at the end of a cycle.

Timing Waveforms (cont)

1H Delay Line Cycle

Noter:
(1) $\overline{W E}=\overline{\mathrm{RE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
(2) $V=$ valld data.
(3) $\mathrm{H}=5048$ bits (5048 -word by 16 -blt mode) or 10,096 bits (10,096-word by 8-blt mode)

Timing Waveforms (cont)
n-Bit Delay Line Cycle 1

Notes:

(1) $\overline{\mathrm{WE}}=\overline{\mathrm{AE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
(2) $\mathrm{V}=$ valid data.

Timing Waveforms (cont)

n-Bit Delay Line Cycle 2

Notes:
(1) $\overline{W E}=\overline{\operatorname{RE}}=\overline{O E}=V_{I L}$.
(2) $V=$ valid data.

Description

The μ PD42532 bidirectional data buffer features 32,768 -word by 8 -bit organization and CMOS dynamic circuitry that provides for high-speed, asynchronous, simultaneous write and read operation at a minimum cycle time of 100 ns . Two sets of write and read registers between the I/O pins and the storage cells enable all data to be parallel-transmitted as a single register group when the registers are either full or empty. The device's main application is data transmission between devices having different processing speeds, such as between a central processor and a disk.
mutomatic refreshing by means of an internal capability is performed regularly for the μ PD42532-without any influence on write and read operation. A built-in arbitration circuit performs each required read, write, or refresh operation sequentially (even if transparent refreshing overlaps with the transmission of data) to simplify the device's external timing requirements.

The μ PD42532 operates from a single +5 -volt power supply and is packaged in a $600-\mathrm{mil}, 40-\mathrm{pin}$ plastic DIP. Four FLAG pins, plus FULL and EMPTY pins, are provided to monitor the amount of data accumulated in storage.

The μ PD42532 is capable of bidirectional input/output by means of a port select function. Input and output pins are also supplied for cascade connection. Cascade connection allows any number of μ PD42532s to be linked together so as to expand word width and length without limit.

Features

$\square 32,768$-word by 8 -bit organization
\square CMOS technology
\square Single +5 -volt power supplyIndependent, asynchronous write/read operationBidirectional transmission of input and output data (exchange of port functions)Automatic, regular refreshingInternal addressingFlag pin monitoring of accumulated dataUnlimited expansion of word width and depth (cascade connection)
\square Retransmit (re-read) functionHigh-speed operation

- Access time: 50 ns maximum
- Cycle time: 100 ns minimum600-mil, 40-pin plastic DIP packaging

Pin Configuration

40-Pin Plastic DIP

Ordering Information

Part Number	Access Time [max]	Cycle Time (min)	Package
μ PD42532C-10	50 ns	100 ns	40 -pin plastic DIP

Pin Identification

Symbol	Function
$\mathrm{DB}_{0} \mathrm{~A}-\mathrm{DB}_{7} \mathrm{~A}$	Port A input/output data buses
$\mathrm{DB}_{0} \mathrm{~B}-\mathrm{DB}_{7} \mathrm{~B}$	Port B input/output data buses
RESET	Reset input
(REQUEST A/ REQUEST B	Port A/Port B request input
READY A/READY B	Port $A /$ Port B ready output
EMPTY	Empty output
FLAG_{1} - FLAG_{4}	Flag outputs
$\overline{\text { FULL }}$	Full output
PS	Write/read port select input
IR	Interrupt read request input
$\overline{\mathrm{F}, ~ / \overline{\mathrm{RT}}}$	First load/retransmit input
$\mathrm{ClN}^{\text {c }}$	Cascade connection input
Cout	Cascade connection output
TEST	Test pin (connect to GND in system)
GND	Ground
$\mathrm{V}_{\text {CC }}$	+5-volt power supply
NC	No connection

Pin Functions

$\mathrm{DB}_{0} \mathrm{~A}-\mathrm{DB}_{7} \mathrm{~A} / \mathrm{DB}_{0} \mathrm{~B}-\mathrm{DB}_{7} \mathrm{~B}$. These pins function as 8bit data buses for write input or read output depending on the status of the PS pin. The output drivers are three-state outputs.
RESET. This pin initializes the internal counters and pointers.
REQUEST A/REQUEST B. Depending on the status of PS, one pin corresponds to the read port and the other to the write port. To initiate a write or read cycle, the signal goes low for the respective port (if READY A or READY B is low, the corresponding REQUEST input is ignored internally). These pins can be connected to the WR and RD pins of a CPU.
READY A/READY B. Depending on the status of PS, one pin corresponds to the read port and the other to the write port. When a write or read cycle is possible, the READY signal is high for the respective port. These
pins can be connected to the READY pins of a CPU or DMA controller.

EMPTY. The signal from this pin is low whenever the amount of data accumulated is exactly 0 bytes, and high in all other cases.
FLAG $_{\mathbf{1}}$-FLAG $\mathbf{4}$. These pins reflect the amount of data accumulated in the storage array. By combining the output signals, it is possible to monitor (in 2K byte steps) data quantities of up to 32 K bytes.
FULL. The signal from this pin is low when the storage cells are full of accumulated data, and high in all other cases.

PS. This pin is used to specify the direction of data transfer. When PS is high, Port A serves as the write port and Port B as the read port. When PS is low, the functions of the two ports are reversed.
IR. If the data accumulated in storage is less than 64 bytes (i.e., one register's capacity), the READY signal for the read port goes low to inhibit reading. However, forcing IR high makes it possible to read all stored data.
Read cycles are normally executed so as to maintain the stored data volume at levels above 2 K bytes. If the data volume drops below 2K bytes for devices with process code K , all remaining data must be read using the interrupt read option.
FL/RT. This pin designates the lead device when multiple devices are cascade connected. It is high only for that device and low for all others. If the device is not cascaded, a low FL/RT controls the retransmit (reread) function; other than during retransmission, FL/RT must be high.
C_{IN}. This pin is used to expand word depth and is connected to the COUT pin of the device preceding it in cascade connections. If word depth is not expanded, C_{IN} is connected to $\mathrm{C}_{\text {OUt }}$ of the same device.
Cout. This pin is used to expand word depth and is connected to the C_{IN} pin of the device following it in cascade connections. If word depth is not expanded, $\mathrm{C}_{\text {OUt }}$ is connected to C_{IN} of the same device.
μ PD42532

Block Diagram

Operation

Reset Cycle

After power is applied to the $\mu \mathrm{PD} 42532$, it is necessary to clear the internal counters and initialize the write and read address pointers by executing a reset cycle. A reset cycle can be executed at any time by setting the RESET pin to a high logic level. However, once this cycle is initiated, RESET, REQUEST, and FL/RT must be kept high for a minimum time of t_{sw} before the RESET signal goes low again (see waveform for "Reset Cycle"). The RESET, REQUEST, and FL/RT signals are all high at the start of a reset, except in cascade connections, in which case a high FL/RT is required only in the first stage.
After a reset, the READY signal for the write port, READY (W), is driven high to prepare for a write cycle. Subsequently, the REQUEST signal for the write port, REQUEST (W), can be set low to commence writing.

A standard read cycle can be executed once data written to one of the 64-byte registers has filled that register and been transferred to the storage cells. The READY signal for the read port, READY (R), goes high to prepare for the cycle. Subsequently, the REQUEST signal for the read port, REQUEST (R), can be set low to commence reading.

Write Cycle

In a write cycle, data is written to one of two 64-byte write registers before being transferred to the storage cells. Whenever 64 bytes have been written into one register, write operation automatically shifts to the other and the contents of the first are transferred to storage. High-speed write cycles are thus executed continuously by alternating registers repeatedly. Write data must satisfy the requirements for setup and hold times as measured against the rising edge of REQUEST (W) [see waveform for "Write Cycle"].

A write cycle can be initiated any time READY (W) is high by setting REQUEST (W) low. To allow a write cycle to be executed in one port even while the other port may be executing a read cycle, READY (W) is always high after a reset, except in the following cases:

- Whenever the storage cells are full of accumulated data
- While the device is executing a forced read cycle (see Interrupt Read Cycle)
- When a retransmit operation is being performed (see Retransmit Cycle)

While READY (W) is off, the REQUEST (W) signal is ignored internally and no write cycle is executed.

Figure 1. Write Register Operation

Figure 2. Read Register Operation

Read Cycle

In a read cycle, data is not read directly from the storage cells but rather from one of two 64-byte read registers. After 64 bytes of data have been read from one register, read operation automatically shifts to the other and the contents of the first are subsequently replaced by data from the storage cells. High-speed read cycles are thus executed continuously by alternating registers repeatedly.
Data is output after a maximum access time of $t_{A C}$, measured from the falling edge of REQUEST (R). When REQUEST (R) is high or READY (R) is low, the outputs are in a state of high impedance (see waveform for "Read Cycle").

A standard read cycle can be initiated any time READY (R) is high by setting REQUEST (R) low. To allow a read cycle to be executed in one port even while the other port may be executing a write cycle, the READY (R) signal is always high, except in the following cases:

- Whenever the data accumulated is less than 64 bytes
- While a retransmit operation is being performed (see Retransmit Cycle).
While READY (R) is low, $\overline{\text { REQUEST }}(\mathrm{R})$ is ignored internally and no read cycle is executed.

Flags

The μ PD42532 supplies signals from the $\overline{\text { EMPTY }}$ pin, the FULL pin, and the four FLAG pins to indicate the amount of stored data in units of approximately 2 K bytes. Accumulated data is reflected as the difference between the write address counter and the read address counter. Thus, if a total of 16 K bytes have been read while 32K bytes have been written since the most recent reset, the amount of data in storage is 16 K bytes.
The $\overline{\text { FULL }}$ and EMPTY pins are used to prevent overwriting and overreading. To control write operation on data units of register length (64 bytes), the FULL pin outputs a low signal when stored data reaches the 32,705 - to 32,768 -byte range. Whenever write cycles are executed continuously and the storage cells become full, REQUEST (W) is ignored and the signals of FULL and READY (W) are driven low to inhibit writing. Meanwhile if read cycles are executed and the data decreases to 32,704 bytes or less, READY (W) goes high again to enable write operation.

The EMPTY pin goes low whenever stored data is exactly 0 bytes. Since standard read cycles cannot be executed if the quantity of data drops below 64 bytes, READY (R) goes low to inhibit read operation. Whenever write cycles are executed and stored data increases to 64 bytes or more, READY (R) goes high again to enable read operation.
The status of the FLAG pins depends on the internal status of the write and read address counters. These counters are incremented as data is transferred to or from the storage array. Since the logic levels of the FLAG pins reflect movement of blocks of data on a 64-byte-register basis rather than on a single-byte basis, the status indicated by these pins can be in error by a maximum of 255 bytes with respect to the actual amount of data accumulated [i.e., the sum of the write register (63 bytes), the read registers (128 bytes), and the 64 bytes currently being transferred]. This discrepancy means that two adjacent ranges of stored data, as indicated by the FLAGs, can overlap by up to 191 bytes.
The following table shows the combination of signals output from these pins.

Table 1. Stored Data as Indicated by Flag Pins

Amount of Stored Data (bytes)	FULL			FLAG			
	EMPTY	1	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$		
32705 to 32768	0	1	1	1	1	1	
30721 to 32767	1	1	1	1	1	1	
28673 to 30911	1	1	0	1	1	1	
26625 to 28863	1	1	1	0	1	1	
24577 to 26815	1	1	0	0	1	1	
22529 to 24767	1	1	1	1	0	1	
20481 to 22719	1	1	0	1	0	1	
18433 to 20671	1	1	1	0	0	1	
16385 to 18623	1	1	0	0	0	1	
14337 to 16575	1	1	1	1	1	0	
12289 to 14527	1	1	0	1	1	0	
10241 to 12479	1	1	1	0	1	0	
8193 to 10431	1	1	0	0	1	0	
6145 to 8383	1	1	1	1	0	0	
4097 to 6335	1	1	0	1	0	0	
2049 to 4287	1	1	1	0	0	0	
1 to 2239	1	1	0	0	0	0	
0	1	0	0	0	0	0	

Notes:

(1) $1=$ high level
(2) $0=$ low level

Interrupt Read Cycle

Whenever the amount of stored data drops below 64 bytes (i.e., one register's capacity), or 2 K bytes for devices with process code K, READY (R) is driven low to inhibit reading. Any data remaining in a write register can only be read by means of an interrupt (or forced) read cycle.
An interrupt read cycle can be executed by forcing the IR pin high. At this point, data is transferred from the write register to one of the read registers via the storage array, and write operation is disabled until all stored data has been read. If this cycle is initiated after READY (R) goes low, read operation will be delayed until all data has been transferred to one of the read registers.
Once the device completes reading of its last address, the EMPTY and READY (R) signals are driven low and READY (W) goes high to enable write operation again (unless a retransmit cycle has been requested). Read cycles will be executed only after 64 bytes or more have been written and transferred to storage.

Retransmit Cycle

The μ PD42532 will execute a retransmit cycle whenever a low-level pulse is applied to $\overline{\mathrm{RT}}$. A retransmit cycle initializes the read address counter to starting address 0 . Although retransmission can be executed at any time, REQUEST (W) and REQUEST (R) must be high before and after the low $\overline{\mathrm{RT}}$ signal is applied.
During this cycle, the READY signals are pulsed low to temporarily inhibit writing and reading, and the FLAG and EMPTY signals vary in accordance with the amount of data in storage. After READY (W) goes high again, the retransmit preparation cycle is complete. Write operation can resume after an extra delay to ensure stability of the FLAG and EMPTY pins. If an interrupt read signal is applied during retransmission, the interrupt read cycle is executed after termination of the retransmit cycle.
The retransmit function is only useful in systems where less than 32 K bytes of data are written between resets. If a retransmit cycle is executed after more than 32 K bytes are written, old data cannot be retransmitted.
Since the $\overline{\mathrm{RT}}$ pin is multiplexed as the first load (FL) pin in cascade connections, cascaded devices cannot be used for retransmission. In single-device configuration, this pin is always high except during a retransmit cycle.

Port Select Function

The μ PD42532 is able to change the direction of data transfer according to the logical level of the signal applied to the PS pin. When a high-level input is applied to PS, Port A becomes the write port and Port B the read port. When PS is low, the functions of the two ports are reversed. While port functions are being assigned, the REQUEST signals must be kept high.

Since register and storage cell data are preserved during port selection, data written to a particular port can also be read from that same port.

Cascade Connection

The μ PD42532 can be used in a single-device, 32K by 8 -bit configuration or it can be cascade connected by means of the $\mathrm{C}_{\text {IN }}$ and $\mathrm{C}_{\text {OUt }}$ pins to allow unlimited expansion of word width and length.
Single-Device Configuration. When using the μ PD42532 as a single 32K by 8-bit data buffer, connect $\mathrm{C}_{\text {OUt }}$ to $\mathrm{C}_{\text {IN }}$ and set the FL pin to a high logic level (see figure 3).

Expanded Word Width. When using multiple devices to expand word width, connect RESET, REQUEST, PS, and IR to the corresponding pins of each $\mu \mathrm{PD} 42532$ in parallel and apply common control signals. Each Cout pin should be connected to its own $\mathrm{C}_{\mathbb{N}}$ pin (as in the single-device configuration) and a high-level input applied to each FL. The flag pins of a single μ PD42532 can be used to represent the entire system (see figure 4).

Expanded Word Length. When using multiple devices to expand word length, set a high-level input to FL of the lead $\mu \mathrm{PD} 42532$ and a low-level input to FL of all the others. Each $\mathrm{C}_{\text {Out }}$ pin should be connected to $\mathrm{C}_{\text {IN }}$ of the device following it; Cout on the last device should be connected to $\mathrm{C}_{\mathbb{I N}}$ of the lead device. Connect RESET, $\overline{R E Q U E S T}$, PS, and IR to the corresponding pins of each μ PD42532 in parallel and apply common control signals.
The EMPTY, FULL, and READY pins of each device, respectively, can be ORed together by external logic. 'OR' outputs are composite EMPTY, FULL, and READY signals for all data buffers (see figure 5).
Operation. To enable operation of μ PD42532s in cascade connection, set the RESET signal(s) high to clear the internal counters and initialize the write and read address pointers. When the reset is complete, start
writing to the lead device. While data is being written to the first, all other devices output low READY signals and ignore the REQUEST signals. When write operation in the first μ PD42532 (n) reaches the last address, its Cout pin outputs a high-level signal and forces $\mathrm{C}_{\mathbf{I N}}$ of the next device high. Write operation shifts to the next device in succession $(n+1)$. The READY (W) signal of the first device (n) is driven low, and the READY (W) signal of the succeeding device $(n+1)$ goes high.

If only write cycles are being executed, each data buffer outputs a low FULL signal as writing is completed for that device. At the point where the last device finishes writing to its last address, all μ PD42532s output low-level FULL and READY (W) signals. The ORed composite of these signals should be used to inhibit write operation.
If write and read cycles are being executed simultaneously, and the storage cells in the lead device are not full of accumulated data when the last device completes writing to its last address, write operation shifts to the lead μ PD42532 again. Writing continues in this manner until every data buffer is full.
Read cycles also begin with the lead device (n) and shift to the next ($\mathrm{n}+1$) once the last address has been read. When all devices have been completely emptied of data, the ORed composite of the EMPTY signals is low. If the expanded word length configuration has less than 64 bytes of data in a write register, EMPTY will not be at a low level; READY (R) will be low to indicate that standard read operation may not proceed. Forced read or dummy write cycles will be required to continue reading any accumulated data of less than 64 bytes.

Figure 3. Single-Device Configuration Block Diagram

Figure 4. Expanded Word Width Block Diagram

Figure 5. Expanded Word Length Block Dlagram

Absolute Maximum Ratings

Terminal voltage, V_{T}	-1.5 to +7.0 V
Operating temperature, $\mathrm{T}_{\text {OPR }}$	0 to $+70^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\text {STG }}$	-55 to $+125^{\circ} \mathrm{C}$
Output current, I_{0}	50 mA
Power supply voltage, V_{CC}	-1.5 to +7.0 V

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Recommended DC Operating Conditions
$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Typ	Max	Unit
Input voltage, high	V_{IH}	2.4		$\mathrm{~V}_{\mathrm{CC}}$	V
Input voltage, low	V_{IL}	-1.0	0.8	V	

DC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Limits			
	Min Typ Max	Unit	Test Conditions		

Capacitance

Parameter	Symbol	Limits			Unit	Pins Under Test
		Min	Typ	Max		
Input capacitance	Cl_{1}			10	pF	REQUEST, RESET, PS, $\mathrm{C}_{\mathrm{IN}}, \mathrm{IR}, \mathrm{FL} /$ RT
Output capacitance	C_{0}			10	pF	READY, FLAG $_{1}{ }^{-}$ $\mathrm{FLAG}_{4}, \mathrm{C}_{\text {OUT }}$, FULL., EMPTY
Input/output capacitance	$C_{1 / 0}$			10	pF	$\mathrm{DB}_{0}-\mathrm{DB}_{7}$

AC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Limits		Unit	Test Conditions
		Min	Max		
Read cycle time	$\mathrm{t}_{\text {RC }}$	100		ns	
REQUEST (R) pulse width	$\mathrm{t}_{\text {ROW }}$	50	10000	ns	(Note 5)
REQUEST (R) precharge time	$\mathrm{t}_{\text {RQP }}$	30		ns	
REQUEST (R) low hold time after READY (R) high	$\mathrm{t}_{\text {RON }}$	50	10000	ns	(Note 6)
READY (R) low output time	$t_{\text {fRF }}$		30	ns	(Note 14)
Access time	$\mathrm{t}_{\text {AC }}$		50	ns	
Access time after READY (R) high	$\mathrm{t}_{\text {ACR }}$		50	ns	
Output data hold time	t_{OH}	10		ns	
Output data off time	$\mathrm{t}_{0 \mathrm{FF}}$		40	ns	
Low-impedance output delay	$t_{L Z}$	5		ns	
Low-impedance output delay after READY (R) high	t LZR $^{\text {L }}$	0		ns	
READY (R) low time when empty	$\mathrm{t}_{\text {SRR }}$		$4800+64$ twC	ns	(Note 8)
READY (R) low time when almost empty	temr	0	$4800+63$ twC	ns	(Note 8)
Write cycle time	$t_{\text {WC }}$	100		ns	
REQUEST (W) pulse width	twaw	50	10000	ns	(Note 5)
REQUEST (W) precharge time	$t_{\text {WOP }}$	30		ns	
REQUEST (W) low hold time atter READY (W) high	${ }^{\text {t Won }}$	50	10000	ns	(Note 6)
READY (W) low output time	${ }^{\text {twRF }}$		30	ns	
Write data setup time	$t_{\text {dw }}$	30		ns	
Write data hold time	t_{DH}	10		ns	
REQUEST high setup time	$\mathrm{t}_{\text {QRP }}$	$t_{T}+30$		ns	(Note 6)
READY (W) low time when full	$\mathrm{t}_{\text {FLW }}$	0	$3200+64$ tr $^{\text {R }}$	ns	
$\mathrm{FLAG}_{1}-\mathrm{FLAG}_{4}$ output times	$\mathrm{t}_{\text {FLO }}$		4800	ns	
$\overline{\text { EMPTY }}$ and FULL output valid times	$\mathrm{t}_{\text {EFO }}$		40	ns	
$\overline{\overline{\text { EMPTY }} \text { and FULL }}$ output hoid times	$\mathrm{t}_{\text {EFH }}$	0		ns	
FULL output off time	$\mathrm{t}_{\text {fOF }}$		3200	ns	(Note 9)
COUT output off time when read request is executed	$\mathrm{t}_{\mathrm{COR}}$		40	ns	
COUT output on time when write request is executed	$\mathrm{t}_{\mathrm{COW}}$		40	ns	
$\mathrm{C}_{\text {IN }}$ setup time for REQUEST (R)	${ }_{\text {t }}^{\text {CIR }}$	10		ns	
$\mathrm{C}_{\text {IN }}$ setup time for REQUEST (W)	$\mathrm{t}_{\text {cIW }}$	10		ns	
Reset pulse width	${ }_{\text {tsw }}$	100		ns	
READY, FULL, and EMPTY output times after reset	${ }_{\text {t }}^{\text {SWR }}$		80	ns	
$\mathrm{FLAG}_{1}-\mathrm{FLAG}_{4}$ output times after reset	${ }_{\text {tSSF }}$		100	ns	
REQUEST precharge hold time after reset	tswo	30		ns	
$\underline{\overline{R T}}$ disable hold time after reset	${ }_{\text {t }}$ SRT	800		ns	

μ PD42532

AC Characteristics (cont)

Parameter	Symbol	Limits		Unit	Test Conditions
		Min	Max		
COUT output low time after reset	tswc		100	ns	
READY (R) on time after interrupt read is executed	trRR	0	6400	ns	(Note 7)
READY (W) off time after interrupt read is executed	$\mathrm{t}_{\text {FWR }}$		50	ns	(Note 7)
READY (W) on time after interrupt read	$\mathrm{t}_{\text {IRW }}$		100	ns	(Note 11)
EREQUEST (W) hold time after IR input	$\mathrm{t}_{\text {FOA }}$	60		ns	(Note 13)
REQUEST (W) setup time before IR input	$\mathrm{t}_{\text {FQB }}$	60		ns	
IR pulse width	$\mathrm{t}_{\text {FW }}$	50	2000	ns	(Notes 4, 12, 13)
REQUEST hold time after PS input	tpaQ	100		ns	
REQUEST setup time before PS input	tPBQ	100		ns	
READY output time after port selection	tpSR		50	ns	
$\overline{\overline{R T}}$ pulse width	$t_{\text {RTW }}$	50	2000	ns	(Note 4)
$\overline{\text { REQUEST }}$ setup time before $\overline{\text { RT }}$ input	$\mathrm{t}_{\text {BRT }}$	60		ns	(Note 10)
REQUEST hold time after $\overline{R T T}$ input	$\mathrm{t}_{\text {RTQ }}$	60		ns	
READY (R) on time after retransmit is executed	triR		6400	ns	(Note 7)
READY (W) on time after retransmit is executed	${ }_{\text {t WRT }}$		4800	ns	(Note 7)
READY off time after retransmit is executed	trRT		50	ns	
$\overline{\overline{E M P T Y}}$ and $\overline{\text { FULL }}$ output hold times after retransmit is executed	$\mathrm{t}_{\text {FSRT }}$	0		ns	
$\overline{\overline{\text { EMPTY }} \text { reset time after retransmit is executed }}$	$t_{\text {RTE }}$		3200	ns	
$\mathrm{FLAG}_{1}-\mathrm{FLAG}_{4}$ output valid times after retransmit is executed	$t_{\text {RTF }}$		8000	ns	
Input transition time	${ }_{T}$	5	50	ns	

Notes:

(1) All voltages are referenced to GND.
(2) All ac measurements assume input pulse rise and fall times of 5 ns .
(3) The input voltage reference levels for timing ratings are $\mathrm{V}_{\mathrm{IH}}(\mathrm{min})$ and V_{IL} (max). Transition time t_{T} is defined between V_{IH} and V_{IL}.
(4) IR and $\overline{\mathrm{RT}}$ inputs cannot be applied simultaneously. A timing delay of at least 100 ns is required. See figures 6 and 7 for acceptable input methods.
(5) The maximum pulse width of $10,000 \mathrm{~ns}$ applies only when the READY signal is on.
(6) $\overline{\text { REQUEST }}$ cannot be raised to a high level during the torp $^{+}$ $t_{\text {RQN }}$ (or ${ }^{\text {WWQN }^{\prime}}$) interval.

Figure 6. Input Timing for IR and $\overline{\text { RT: }}$ Method 1

(7) If an $\overline{R T}$ (IR) pulse is applied during IR ($\overline{\mathrm{RT}}$) operation, the $\overline{\mathrm{RT}}$ (IR) operation is delayed until IR ($\overline{\mathrm{RT}}$) operation is released.
(8) "Empty" is defined as the state where the amount of stored data is zero, and "almost empty" is defined as the state where the amount of data is 1 to 63 bytes.
(9) $\mathrm{t}_{\text {FOF }}$ is defined from the rising edge of the $\overline{\text { REQUEST }}$ (R) signal when the amount of stored data reaches the prescribed value (that is, the value at which the FULL signal changes from a low level to a high level as defined in Table 1).
(10) $\mathrm{t}_{\mathrm{BRT}}=4800 \mathrm{~ns}$ minimum for the devices with process code K .

Figure 7. Input timing for IR and $\overline{\text { RT: }}$: Method 2

AC Characteristics (cont)

Notes [cont]:
(11) After all data has been read in an IR cycle for devices with process code K , always input a $\overline{\operatorname{RESET}}$ signal to initialize the internal circuitry before proceeding to the next operation. See figure 8.
(12) The IR signal is invalid whenever the EMPTY signal is low on devices with process code K.
(13) If an \mathbb{R} input signal is applied in a cascade connection for devices with process code K, the REQUEST (W) signal must stay at a high level until all data has been read.
(14) Read cycles are normally executed so as to maintain the stored data volume at levels above 2 K bytes. If the data volume drops below 2 K bytes for devices with process code K , read all of the remaining data using the interrupt read option.

Figure 8. Reset Pulse After IR Operation

Figure 9. Input Timing

Figure 10. Output Timing

Figure 11. Output Loads

Timing Waveforms

Reset Cycle

Timing Waveforms (cont)

Write Cycle

Timing Waveforms (cont)

Read Cycle

Timing Waveforms (cont)

Interrupt Read Cycle

Notes:
(1) PS $=$ high or low
(2) $\mathrm{FL} / \overline{\mathrm{RT}}=$ high
(3) RESET = low

Timing Waveforms (cont)

Retransmit Cycle
FULL $\xrightarrow{V_{O H}}$

Notes:

(1) PS $=$ high or low
(2) $\mathrm{IR}=$ low
(3) RESET = low

Timing Waveforms (cont)

Port Select Cycle

Timing Waveforms (cont)

Cascade Cycle

Description

The μ PD42601 silicon file is an economical mass storage device specifically designed to replace magnetic disk drives in silicon disk, solid-state recording, and system backup applications in a variety of computer systems. Organized as $1,048,576$ words by 1 bit, the μ PD42601 provides a battery backup feature for enhanced system performance and a substantial savings in power consumption.
The device is capable of executing standard access or page-mode write and read cycles. Refreshing is accomplished by means of $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ refresh cycles, $\overline{\text { RAS-only refresh cycles, self-refresh cycles, or }}$ by normal read or write cycles on the 512 address combinations of A_{0} through A_{8} during a 32-ms period.
The μ PD42601 is uniquely suitable for battery backup systems because it requires a very low power supply current for extended periods of self-refresh operation. If ambient temperature is limited to $50^{\circ} \mathrm{C}$ (max), as little as $30 \mu \mathrm{~A}$ (\max) is required to maintain all data.

The μ PD42601 is available in high-density 20 -pin plastic ZIPor 26/20-pin plastic SOJ packaging.

Features

$\square 1,048,576$-word by 1-bit organizationSingle +5 -volt $\pm 10 \%$ power supplyCMOS technologyLow operating power: 12 mA maximum$30 \mu \mathrm{~A}$ maximum self-refresh current at 0 to $50^{\circ} \mathrm{C}$Read or write cycle time: 1000 ns minimum Page-mode cycle time: 200 ns minimumCAS before RAS refreshing 512 refresh cycles during $32-\mathrm{ms}$ periodAutomatic self-refreshing by RAS input cycling

Ordering Information

	Page-Mode Cycle (min)	Self-Refresh Current (max, 50 Part Number	Package
μ PD42601LA-60	200 ns	$120 \mu \mathrm{~A}$	$26 / 20$-pin plastic S0J
LA-60L	200 ns	$30 \mu \mathrm{~A}$	
μ PD42601V-60	200 ns	$120 \mu \mathrm{~A}$	20-pin plastic ZIP
$\mathrm{V}-60 \mathrm{~L}$	200 ns	$30 \mu \mathrm{~A}$	

Pin Configurations

26/20-Pin Plastic SOJ

20-Pin Plastic ZIP

83-004634A

Pin Identification

Name	Function
$A_{0}-A_{9}$	Address inputs
$D_{I N}$	Data input
$D_{O U T}$	Data output
$\overline{\text { RAS }}$	Row address strobe
$\overline{\overline{C A S}}$	Column address strobe
$\overline{\overline{W E}}$	Write enable
$\overline{\overline{\text { FFSH}}}$	Self-refresh control
GND	Ground
VCC	+5 -volt power supply
NC	No connection

Absolute Maximum Ratings

Voltage on any pin relative to GND, V_{T}	-1.0 to +7.0 V
Operating temperature, $\mathrm{T}_{\text {OPR }}$	0 to $+70^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\mathrm{STG}}$	-55 to $+125^{\circ} \mathrm{C}$
Short-circuit output current, IOS	50 mA
Power dissipation, P_{D}	1.0 W
Supply voltage, V_{CC}	-1.0 to +7.0 V

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Block Diagram

Operation

Write and Read Operation

The μ PD42601 is capable of standard write and read operation as well as page-mode operation. The ten row address bits are set up on pins A_{0} through A_{g} and latched onto the chip by RAS. Subsequently, ten column address bits are set up on pins A_{0} through A_{g} and latched onto the chip by CAS. An appropriate write or read cycle is executed according to the logical level of $\overline{W E}$: a high $\overline{W E}$ initiates a read cycle and low $\overline{W E}$ initiates a write cycle.

Page-mode operation may be executed by pulsing $\overline{C A S}$ repeatedly while maintaining a low $\overline{\text { RAS. The first }}$ word is accessed in the same manner as in standard write and read operation, with row addresses latched onto the chip by RAS and column addresses latched by $\overline{\mathrm{CAS}}$. Subsequent column addresses are accessed for each CAS cycle, repeated during a period up to the maximum RAS pulse width.

Refresh Operation

$\overline{\text { CAS }}$ before $\overline{\text { RAS }}$ Refreshing. This cycle may be initiated by bringing $\overline{\mathrm{CAS}}$ low before $\overline{\mathrm{RAS}}$ and holding it low after $\overline{\mathrm{RAS}}$ falls. A built-in address counter makes external addressing unnecessary.
$\overline{\text { RAS }}$-Only Refreshing. $\overline{\text { RAS }}$-only refreshing is executed by holding CAS high as the row addresses are latched onto the chip by RAS. Using this cycle, all storage cells are refreshed by the 512 address combinations of A_{0} through A_{8} during a $32-\mathrm{ms}$ period.

Self-Refreshing. A self-refresh cycle is initiated for the addresses generated by the internal counter whenever $\overline{\text { RFSH }}$ is active low and the $\overline{\text { RAS }}$ input is cycling (see figure 1). Since the minimum required $\overline{\text { RAS }}$ cycling frequency depends on ambient temperature, power consumption will also vary with temperature as shown in the AC and DC Characteristics. For extended periods of self-refresh operation, a low supply current is required; e.g., if ambient temperature is limited to $50^{\circ} \mathrm{C}$ (max), as little as $30 \mu \mathrm{~A}$ (max) is required to maintain all data.

Recommended DC Operating Conditions
$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$; $\mathrm{GND}=0 \mathrm{~V}$

		Limits			
Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Input voltage, high	V_{IH}	2.4		5.5	V
Input voltage, low	V_{IL}	-1.0		0.8	V

Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

Parameter	Symbol	Max	Unit	Pins Under Test
Input capacitance	C_{11}	5	pF	Address, D_{IN}
	C_{12}	8	pF	$\overline{\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}}$
Output capacitance	C_{D}	7	pF	$\mathrm{D}_{0 \mathrm{OT}}$

DC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Limits			Test Conditions
		Min Typ	Max		
Operating current, average	$\mathrm{I}_{\mathrm{CC} 1}$		12		$\begin{aligned} & \overline{\mathrm{RAS}}, \overline{\mathrm{CAS}} \text { cycling; } \\ & \mathrm{I}_{0}=0 \mathrm{~mA} ; \\ & \mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}(\mathrm{~min}) \end{aligned}$
Standby current	ICC2		2.0		$\begin{aligned} & \overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\overline{\mathrm{RFSH}} \\ & =V_{\mathrm{IH}} \end{aligned}$
			0.5		$\begin{aligned} & \overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\overline{\mathrm{RFSH}} \\ & \geq V_{C C}-0.4 ; A_{0}-\mathrm{Ag}^{\prime} \\ & \mathrm{D}_{\text {IN }} \text { and } \overline{W E} \geq \mathrm{V}_{\mathrm{CC}} \\ & -0.4 \text { or } \leq 0.4 \mathrm{~V} \end{aligned}$
Operating current, RAS-only refresh, average	ICC3		10	mA	$\begin{aligned} & t_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}(\mathrm{~min}) ; \\ & \mathrm{I}_{0}=0 \mathrm{~mA} \end{aligned}$
Operating current, CAS before RAS refresh, average	ICC4		10	mA	$\begin{aligned} & t_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}(\mathrm{~min}) ; \\ & 1_{0}=0 \mathrm{~mA} \end{aligned}$
Operating current, self-refresh mode, average	ICC5		30	$\mu \mathrm{A}$	$\overline{\text { RAS }}$ cycling at 50 kHz (Notes 1, 2, 3, 4)
			60	$\mu \mathrm{A}$	$\overline{\mathrm{RAS}}$ cycling at 100 kHz (Notes 1, 2, 3, 4)
			120	$\mu \mathrm{A}$	$\overline{\mathrm{RAS}}$ cycling at 200 kHz (Notes 1, 2, 3)
Operating current, page mode, average	$\mathrm{I}_{\text {C66 }}$		12	mA	$\begin{aligned} & \mathrm{t}_{\mathrm{tP}}=\mathrm{tpC}(\mathrm{~min}) ; \\ & \mathrm{I}_{0}=0 \mathrm{~mA} \end{aligned}$
Input leakage current	IIL	-1	1	$\mu \mathrm{A}$	$V_{I N}=0$ to $V_{C C}$ all other pins not under test $=0 \mathrm{~V}$
Output leakage current	10 L	-1	1	$\mu \mathrm{A}$	Dout disabled; $V_{O U T}=0 \text { to } V_{C C}$
Output voltage, low	V_{0}		0.4	V	$1_{0}=4.2 \mathrm{~mA}$
Output voltage, high	V_{OH}	2.4		V	$\mathrm{I}_{0}=-5 \mathrm{~mA}$

Notes:

(1) When $t_{\text {fAS }} \leq 2.5 \mathrm{~ms}$, I CC5 does not depend on the $\overline{\mathrm{RAS}}$ clock; $\mathrm{I}_{\mathrm{CC}}(\max)=500 \mu \mathrm{~A}$. When $\mathrm{t}_{\text {FAS }} \geq 2.5 \mathrm{~ms}, \mathrm{I}_{\mathrm{CC} 5}(\max)=500 \mu \mathrm{~A}$ in the first 2.5 ms after $\overline{\text { RFSH }}$ falls (it does not depend on the RAS clock). Subsequently, ICC5 is $120 \mu \mathrm{~A}$ for the $\mu \mathrm{PD} 42601$ or is as shown in the following table for the μ PD42601-L.

Operating Temperature $\left[T_{A}\right]$	Clock Frequency $[\mathbf{m i n}]$	Self-Refresh Current $[\mathbf{m a x}]$
0 to $50^{\circ} \mathrm{C}$	50 kHz	$30 \mu \mathrm{~A}$ at 50 kHz
0 to $60^{\circ} \mathrm{C}$	100 kHz	$60 \mu \mathrm{~A}$ at 100 kHz
0 to $70^{\circ} \mathrm{C}$	200 kHz	$120 \mu \mathrm{~A}$ at 200 kHz

(2) $t_{\text {RCF }}$ depends on operating temperature as reflected in the table below (see figures 2 and 3).

Operating Temperature $\left[\mathrm{T}_{\mathrm{A}}\right]$	t RCF [max]	
	$\mu \mathrm{PD42601}$	
0 to $60^{\circ} \mathrm{C}$	$20 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$
0 to $70^{\circ} \mathrm{C}$	$10 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$

(3) Average power supply current required for self refreshing is measured according to the following conditions: $\overline{\text { RAS }}$ is cycling at 50,100 or $200 \mathrm{kHz} ; \mathrm{V}_{\text {IH }} \geq \mathrm{V}_{\mathrm{CC}}-0.4 \mathrm{~V} ; \mathrm{V}_{\text {IL }} \leq 0.4 \mathrm{~V} ; \mathrm{t}_{\mathrm{T}} \leq 50 \mathrm{~ns} ; \mathrm{A}_{0}$ to $A_{g}, D_{I N}, \overline{W E}$ and $\overline{C A S}=V_{C C}$ to $G N D ; ~ R F S H=V_{i L}$. When $\overline{\text { RFSH }}$ $=\mathrm{V}_{\mathrm{IL}}(\leq 0.4 \mathrm{~V})$, the $\overline{\mathrm{RAS}}$ input must be cycled at or exceeding the minimum frequency requirements.
(4) This specification applies to the μ PD42601-L only. For the non-L version, $\mathrm{I}_{\mathrm{CC5}}$ is $120 \mu \mathrm{~A}$, maximum, at all T_{A}.

AC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Limits		Unit	Test Conditions
		Min	Max		
Random read or write cycle time	t_{RC}	1000		ns	(Note 5)
Page-mode cycle time	$t_{P C}$	200		ns	(Notes 5, 15)
Access time from $\overline{\text { RAS }}$	$t_{\text {fac }}$		600	ns	(Notes 6, 7)
Access time from $\overline{\mathrm{CAS}}$ (falling edge)	${ }_{\text {t }}^{\text {cac }}$		100	ns	(Notes 6, 8)
Output buffer turnoff delay	$\mathrm{t}_{\text {OFF }}$	0	100	ns	(Note 9)
Transition time (rise and fail)	${ }^{\text {T }}$	3	50	ns	(Notes 3, 4)
$\overline{\text { RAS }}$ precharge time	$\mathrm{t}_{\text {RP }}$	390		ns	
RAS pulse width	$\mathrm{t}_{\text {RAS }}$	600	100000	ns	
$\overline{\text { RAS }}$ hold time	$\mathrm{t}_{\text {RSH }}$	100		ns	
$\overline{\overline{\text { CAS }} \text { pulse width }}$	$\mathrm{t}_{\text {CAS }}$	100	10000	ns	
$\overline{\overline{\mathrm{CAS}}}$ hold time	$\mathrm{t}_{\text {CSH }}$	600		ns	
$\overline{\overline{\mathrm{RAS}} \text { to } \overline{\mathrm{CAS}} \text { delay time }}$	$\mathrm{t}_{\mathrm{RCD}}$	150	500	ns	(Note 10)
$\overline{\overline{\mathrm{CAS}}}$ to $\overline{\mathrm{RAS}}$ precharge time	$\mathrm{t}_{\text {CRP }}$	30		ns	(Note 11)
$\overline{\overline{\text { CAS }}}$ precharge time (non-page cycle)	$\mathrm{t}_{\text {CPN }}$	90		ns	
$\overline{\overline{\mathrm{CAS}}}$ precharge time (page cycle)	t_{CP}	90		ns	(Note 15)
$\overline{\overline{\mathrm{RAS}}}$ precharge $\overline{\mathrm{CAS}}$ hold time	$\mathrm{t}_{\text {RPC }}$	0		ns	

AC Characteristics (cont)

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

		Limits		
	Symbol	Min	Max	Unit
Parameter Conditions				

Parameter	Symbol	Limits		Unit	Test Conditions
		Min	Max		
Self-Refresh Cycle (cont)					
$\overline{\overline{\mathrm{RAS}}}$ pulse width in self-refresh mode	$\mathrm{t}_{\text {RSF }}$	600		ns	
$\overline{\mathrm{RFSH}}$ to $\overline{\mathrm{RAS}}$ delay time	$t_{\text {frid }}$	100		ns	
$\overline{\mathrm{RAS}}$ hold time in selfrefresh mode	$t_{\text {fri }}$	200		ns	

Notes:

(1) All voltages are referenced to GND.
(2) An initial pause of $100 \mu \mathrm{~s}$ is required after power-up ($\mathrm{V}_{\mathrm{CC}}=$ $+5.0 \mathrm{~V} \pm 10 \%$), followed by any eight $\overline{\mathrm{RAS}}$ cycles, before proper device operation is achieved. $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$, and RFSH must equal V_{IH} during the initial pause.
(3) Ac measurements assume $t_{\top}=5 \mathrm{~ns}$.
(4) $\mathrm{V}_{\mathrm{IH}}(\mathrm{min})$ and V_{IL} (max) are reference leveis for measuring timing of input signals. Transition times are measured between V_{IH} and V_{IL}.
(5) The minimum specifications are used only to indicate the cycle time at which proper operation over the full temperature range ($\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$) is assured.
(6) Load $=2 \mathrm{TTL}$ loads and $100 \mathrm{pF}\left(\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}\right)$.
(7) Assumes that $\mathrm{t}_{\mathrm{RCD}} \leq \mathrm{t}_{\mathrm{RCD}}$ (max). If $\mathrm{t}_{\mathrm{RCD}}$ is greater than the maximum recommended value in this table, $\mathrm{t}_{\text {RAC }}$ increases by the amount that $t_{R C D}$ exceeds the value shown.
(8) Assumes that $t_{R C D} \geq t_{R C D}$ (max).
(9) toff (max) defines the time at which the output achieves the open-circuit condition and is not referenced to $V_{O H}$ or $V_{O L}$.
(10) Operation within the $t_{\text {RCD }}$ (max) limit assures that $t_{\text {RAC }}$ (max) can be met. $t_{R C D}$ (max) is specified as a reference point only; if $t_{R C D}$ is greater than $t_{R C D}$ (max), access time is controlled exclusively by $\mathrm{t}_{\mathrm{CAC}}$.
(11) The t ${ }_{C R P}$ requirement should be applicable for $\overline{\mathrm{RAS}} / \overline{\mathrm{CAS}}$ cycles preceded by any cycle.
(12) Either $t_{R R H}$ or $t_{R C H}$ must be satisfied for a read cycle.
(13) When $\mathrm{t}_{\text {FAS }} \leq 2.5 \mathrm{~ms}$, ICC5 does not depend on the $\overline{\operatorname{RAS}}$ clock; $I_{C C 5}($ max $)=500 \mu \mathrm{~A}$. When $\mathrm{t}_{\text {FAS }} \geq 2.5 \mathrm{~ms}, I_{\text {CC5 }}($ max $)=500 \mu \mathrm{~A}$ for the first 2.5 ms after $\overline{\text { RFSH }}$ falls (it does not depend on the $\overline{\text { RAS }}$ clock). Subsequently, I_{CC} is $120 \mu \mathrm{~A}$ for the $\mu \mathrm{PD} 42601$ or is as shown in the following table for the μ PD42601-L.

Operating Temperature $\left[T_{A}\right]$	Clock Frequency [min] $]$	Self-Refresh Current $[$ max $]$
0 to $50^{\circ} \mathrm{C}$	50 kHz	$30 \mu \mathrm{~A}$ at 50 kHz
0 to $60^{\circ} \mathrm{C}$	100 kHz	$60 \mu \mathrm{~A}$ at 100 kHz
0 to $70^{\circ} \mathrm{C}$	200 kHz	$120 \mu \mathrm{~A}$ at 200 kHz

Notes [cont]:
(14) These parameters are referenced to the falling edge of $\overline{\mathrm{CAS}}$ for early write cycles.
(15) This parameter is applicable to page-mode operation.
(16) $t_{\text {RCF }}$ depends on operating temperature as reflected in the table below (see figures 2 and 3).

Operating Temperature $\left[\mathrm{T}_{\mathrm{A}}\right]$	$\mathrm{t}_{\mathrm{RCF}}[\mathrm{max}]$	
	$20 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$
0 to $60^{\circ} \mathrm{C}$	$10 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$
0 to $70^{\circ} \mathrm{C}$	$5 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$

Figure 1. Internal Address Generation in Self-Refresh Operation

Figure 2. Special Requirement for $\boldsymbol{t}_{\text {RCF }}$ Near Periods of LImited Standard Refresh Cycles

Notes:
[1] The value for $t_{R C F}$ [\min] is specified in AC Characteristics. The value for tref $^{\text {[max] }}$] is dependent upon temperature and shown in the table below.

	tRCF [max]	
TA $^{\circ}$	μ PD42601-L	μ PD42601
$50^{\circ} \mathrm{C}$	$20 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$
$60^{\circ} \mathrm{C}$	$10 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$
$70^{\circ} \mathrm{C}$	$5 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$

[2] When exiting self-refresh to a period of read and write operation which includes CBR refresh cycles, tRCF is the delay between the last self-refresh pulse and the first CBR cycle. When entering self-refresh operation, tRCF is the delay between the last CBR cycle and the first self-refresh pulse.
[3] In this period of normal read/write operation, there are no CBR refresh cycles or less than $512 \overline{\mathrm{RAS}}$-only refresh cycles.
[4] The time delay between the last self-refresh pulse in one selfrefresh cycle, and the first self-refresh pulse in the next cycle, is defined by tRCF [max] when the intervening period of read and write operation meets the conditions in Note 3.
[5] The built-in counter generates the refresh address in selfrefresh and CBR refresh cycles. Since this address increments sequentially from the last cycle in either self-refresh or CBR operation to the first cycle in the alternate refresh mode, CBR refreshing should be used during normal read and write operation to refresh one address location every $62 \mu \mathrm{~s}$ or less. If some other means of refreshing is used, it is necessary to do a burst refresh of all storage cells just before changing to and just after exiting self-refresh operation.

Figure 3. Timing Restrictions for Entering and Exiting Self-Refresh Operation

$\overline{\text { RFSH }}$| Self-Refresh
 Operation |
| :---: | Normal Read/Write Operation \quad| Self-Refresh |
| :---: |
| Operation |

$\overline{\text { RAS }}$

Notes:
[1] The value for trCF [$\mathbf{m i n}$] is specified in AC Characteristics. The value for thCF $_{\text {[max] }}$] is dependent upon temperature and shown in the table below.

	tRCF [max]	
TA $^{\circ}$	μ PD42601-L	μ PD42601
$50^{\circ} \mathrm{C}$	$20 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$
$60^{\circ} \mathrm{C}$	$10 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$
$70^{\circ} \mathrm{C}$	$5 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$

[2] When exiting self-refresh to a period of read and write operation which includes CBR refresh cycles, tRCF is the delay between the last self-refresh pulse and the first CBR cycle. When entering self-refresh operation, tRCF is the delay between the last CBR cycle and the first self-refresh pulse.
[3] The built-in counter generates the refresh address in selfrefresh and CBR refresh cycles. Since this address increments sequentially from the last cycle in either self-refresh or CBR operation to the first cycle in the alternate refresh mode, CBR refreshing should be used during normal read and write operation to refresh one address location every $62 \mu \mathrm{~s}$ or less. If some other means of refreshing is used, it is necessary to do a burst refresh of all storage cells just before changing to and just after exiting self-refresh operation.

Timing Waveforms

Read Cycle

Timing Waveforms (cont)

Write Cycle (Early Write)

Timing Waveforms (cont)

Page-Mode Read Cycle

Timing Waveforms (cont)

Page-Mode Write Cycle (Early Write)

Note:
(1) $\overline{\mathrm{RFSH}}=\mathrm{V}_{I H}$.

Timing Waveforms (cont)

$\overline{\operatorname{RAS}}$-Only Refresh Cycle

$\overline{C A S}$ Before $\overline{R A S}$ Refresh Cycle

Self-Refresh Cycle

Note:
(1) CAS, $\overline{W E}, D_{I N}$, Address $=$ don't care.

Description

The μ PD42641 is a fast-page, low-power dynamic RAM organized as $4,194,304$ words by 1 bit and designed to operate from a single +5 -volt power supply. Advanced polycide technology minimizes silicon area and provides high storage cell capacity, high performance, and high reliability. A single-transistor dynamic storage cell and advanced CMOS circuitry throughout ensure minimum power dissipation, while an on-chip circuit internally generates the negative-voltage substrate bi-as-automatically and transparently.
The three-state output is controlled by $\overline{\mathrm{CAS}}$ independent of $\overline{R A S}$. After a valid read or read-modify-write cycle, data is held on the output by holding $\overline{\text { CAS }}$ low. The data output is returned to high impedance by returning CAS high. Fast-page read and write cycles can be executed by cycling CAS.
Refreshing may be accomplished by means of a $\overline{C A S}$ before $\overline{\text { RAS }}$ cycle that internally generates the refresh address. Refreshing can also be accomplished by $\overline{\text { RAS }}$ only refresh cycles or by normal read or write cycles on the 1024 address combinations of $A_{0}-A_{9}$ during a 16 -ms refresh period.
In automatic self-refresh mode, the μ PD42641 retains data for extended time periods with very-low power consumption ($30 \mu \mathrm{~A}$ at $50^{\circ} \mathrm{C}$). This feature is most useful in battery backup applications.

Features

- 4,194,304-word by 1 -bit organization
- Single +5 -volt power supply
- Fast-page option
- Low power dissipation
-Active: 90 mA
-Standby: 1.0 mA (CMOS interface)
-Self-refresh: $30 \mu \mathrm{~A}\left(\mathrm{t}_{\mathrm{BCE}}=3.2 \mu \mathrm{~s}, \mathrm{~T}_{\mathrm{A}}=50^{\circ} \mathrm{C}\right)$
- CAS before $\overline{\text { RAS }}$ refresh cycles
- Multiplexed address inputs
- On-chip substrate bias generator
- Nonlatched, three-state outputs
- Low input capacitance
- TTL-compatible inputs and outputs
- Automatic self-refreshing by $\overline{\text { RAS input cycling }}$
- 1024 refresh cycles every 16 ms
- 26/20-pin SOJ and TSOP plastic packages (300mil)

Pin Identification

Name	Function
$A_{0}-A_{10}$	Address inputs
$\overline{\text { CAS }}$	Column address strobe
$D_{\text {IN }}$	Data input
$D_{\text {OUT }}$	Data output
$\overline{\text { RAS }}$	Row address strobe
$\overline{\text { WE }}$	Write enable
GND	Ground
VCC	+5 -volt power supply
NC	No connection

Pin Configurations

26/20-Pin Plastic SOJ

μ PD42641			
$\mathrm{DiN}_{1} \mathrm{C}_{1}$	26	$\square \mathrm{GND}$	
WE \square^{2}	25	\square Dout	
RAS \square^{3}	24	$\square \overline{C A S}$	
NC \square_{4}	23	$\square \mathrm{NC}$	
$A_{10} \square_{5}$	22	$\square \mathrm{A}_{9}$	
$A_{0} \square^{9}$	18	$\square A_{8}$	
$A_{1}-10$	17	$\square A_{7}$	
$A_{2} \square_{11}$	16	$\square A_{6}$	
$A_{3} \square_{12}$	15	C_{5}	
Vcc \square_{13}	14	$]_{4}$	
			83CL-888EA

Pin Configurations (cont)

26/20-Pin Plastic TSOP (Normal Pinouts)

	μ PD42641	
$\mathrm{D}_{\text {IN }} 10$	T 26	\square GND
WE [2	25	\square DOUT
PAS 3	24	$\square \overline{\text { CAS }}$
NC \square_{4}	23	\square NC
$\mathrm{A}_{10} \square_{5}$	22	$\square \mathrm{A}_{9}$
	-9.JD	
$A_{0} C^{4}$	18	C_{8}
$A_{1} \square_{10}$	17	$\mathrm{V}^{A_{7}}$
$A_{2} \square_{11}$	16	$\square A_{6}$
$A_{3}-12$	15	$\square A_{5}$
VCc ${ }^{-13}$	014	$\mathrm{D}^{\text {A }}$

Suffix-9.JD in the package identfier denotes normal pinout sequence.

26/20-Pin Plastic TSOP (Reverse Pinouts)

Suffix -9KD in the package Identifier denotes reverse pinout sequence.

Block Diagram

Ordering Information

Part Number	$\overline{R A S}$ Access Time (max)	R/W Cycle Time (max)	Fast-Page Cycle (max)	Package
μ PD42641LA-80L	80 ns	160 ns	50 ns	$26 / 20$-pin plastic SOJ
μ PD42641GS-80L	80 ns	160 ns	50 ns	$26 / 20$-pin plastic TSOP (normal pinouts)
μ PD42641GSM-80L	80 ns	160 ns	50 ns	$26 / 20$-pin plastic TSOP (reverse pinouts)

Absolute Maximum Ratings

Voltage on any pin relative to GND	-1.0 to +7.0 V
Operating temperature, TOPR	0 to $+70^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\text {STG }}$	-55 to $+125^{\circ} \mathrm{C}$
Short-circuit output current, los	50 mA
Power dissipation, PD_{D}	1.0 W

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Input voltage, high	V_{IH}	2.4		$\mathrm{~V}_{\mathrm{CC}}+1.0$	$\dot{\mathrm{~V}}$
Input voltage, low	V_{IL}	-1.0		0.8	V
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Ambient temperature	T_{A}	0		+70	${ }^{\circ} \mathrm{C}$

Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

Parameter	Symbol	Max	Unit	Pins Under Test
Input capacitance	C_{11}	5	pF	Address
	C_{12}	8	pF	$\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}, \mathrm{D}_{1 \mathrm{~N}}$
Output capacitance	C_{O}	7	pF	$\mathrm{D}_{\mathrm{OUT}}$

DC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Max	Unit	Test Conditions
Standby current	lcc2		2.0	mA	$\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}} \geq \mathrm{V}_{\text {IH }}(\mathrm{min})$
			1.0	mA	$\begin{aligned} & \overline{\mathrm{AAS}}=\overline{\mathrm{CAS}} \geq \mathrm{V}_{C C}-0.2 \mathrm{~V} ; \text { Address, } \mathrm{D}_{\mathbb{N}}, \overline{\mathrm{WE}} \\ & \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \leq 0.2 \mathrm{~V} \end{aligned}$
Input leakage current	1 (L)	-10	10	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} ; \\ & \text { all other pins not under test }=0 \mathrm{~V} \end{aligned}$
Output leakage current	$\mathrm{O}(\mathrm{L})$	-10	10	$\mu \mathrm{A}$	DOUT disabled; $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$
Output voltage, low	V_{OL}		0.4	V	$1 \mathrm{OL}=4.2 \mathrm{~mA}$
Output voltage, high	V_{OH}	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA}$

AC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	μ PD42641-80		Unit	Test Conditions
		Min	Max		
Operating current, average	${ }^{\mathrm{CCO}}$		90	mA	$\overline{\text { RAS }}$ and $\overline{\mathrm{CAS}}$ cycling; $\mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}} \min ; \mathrm{l}_{\mathrm{O}}=0$ mA (Note 5)
Operating current, $\overline{\text { RAS-only refresh cycle, }}$ average	ICC3		90	mA	$\overline{\text { RAS }}$ cycling; $\overline{\mathrm{CAS}} \geq V_{I H} ; t_{R C}=t_{R C} \min ; \mathrm{I}_{\mathrm{O}}=$ 0 mA (Note 5)
Operating current, $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ refresh cycle, average	$\mathrm{ICC4}^{\text {c }}$		90	mA	$\overline{\text { RAS }}$ cycling; $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}} ; \mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}} \mathrm{min} ;$ $\mathrm{I}_{0}=0 \mathrm{~mA}$ (Note 5)
Operating current, fast-page cycle, average	ICC6		90	mA	$\overline{R A S} \leq V_{I L} ; \overline{C A S}$ cycling; $t_{P C}=t_{P C}$ min; $I_{O}=$ 0 mA (Note 5)
Access time from column address	${ }^{t} A A$		40	ns	(Notes 7, 9)
Access time from $\overline{\mathrm{CAS}}$ precharge (rising edge)	$t_{A C P}$		45	ns	(Notes 7, 9)
Column address setup time	$t_{\text {ASC }}$	0		ns	
Row address setup time	$t_{\text {ASR }}$	0		ns	
Column address to WE delay time	${ }^{\text {t }}$ AWD	40		ns	(Note 16)
Access time from $\overline{\mathrm{CAS}}$ (falling edge)	${ }^{\text {t }}$ CAC		20	ns	(Notes 7, 9)
Column address hold time	${ }^{\text {c }}$ CAH	15		ns	
$\overline{\text { CAS }}$ pulse width	${ }^{\text {t Cas }}$	20	10,000	ns	
$\overline{\text { CAS }}$ hold time for CAS before $\overline{\text { RAS }}$ refresh cycle	$t_{\text {chr }}$	15		ns	
$\overline{\text { CAS }}$ to output in low impedance	$\mathrm{t}_{\mathrm{CLZ}}$	0		ns	(Note 7)
$\overline{\text { CAS }}$ precharge time, fast-page cycle	$t_{\text {cP }}$	10		ns	
$\overline{\overline{C A S}}$ precharge time, nonpage cycle	${ }^{\text {t CPN }}$	10		ns	
$\overline{\mathrm{CAS}}$ to $\widehat{\mathrm{RAS}}$ precharge time, read-write mode	${ }^{\text {t }}$ CRP1	10		ns	(Note 12)
CAS hold time	$t_{\text {cSH }}$	80		ns	
$\overline{\overline{C A S}}$ setup time for $\overline{\text { CAS }}$ before $\overline{\mathrm{RAS}}$ refresh cycle	${ }^{\text {t CSR }}$	10		ns	
$\overline{\text { CAS to WE delay }}$	tcwo	20		ns	(Note 16)
Write command to $\overline{\text { CAS }}$ lead time	${ }_{\text {t }}$	15		ns	
Data-in hold time	${ }^{\text {t }}$ D ${ }_{\text {c }}$	15		ns	(Note 15)
Data-in setup time	$t_{\text {ds }}$	0		ns	(Note 15)
Output buffer turnoff delay	toff	0	20	ns	(Note 10)
Fast-page cycle time	$t_{\text {PC }}$	50		ns	(Note 6)
Fast-page read-modify-write cycle time	$t_{\text {PRWC }}$	80		ns	(Note 6)
Access time from $\overline{\mathrm{RAS}}$	$t_{\text {RAC }}$		80	ns	(Notes 7, 8)
$\overline{\mathrm{RAS}}$ to column address delay time	$t_{\text {RAD }}$	17	40	ns	(Note 9)
Row address hold time	$t_{\text {RAH }}$	12		ns	
Column address lead time referenced to $\overline{\text { RAS }}$ (rising edge)	$t_{\text {RAL }}$	40		ns	
RAS pulse width	$t_{\text {RAS }}$	80	10,000	ns	
$\overline{\mathrm{RAS}}$ pulse width, fast-page cycle	$t_{\text {RASP }}$	80	125,000	ns	
Random read or write cycle time	$t_{\text {RC }}$	160		ns	(Note 6)
$\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ delay time	${ }^{\text {t }}$ RCD	25	60	ns	(Note 11)
Read command hold time referenced to $\overline{C A S}$	$\mathrm{t}_{\mathrm{RCH}}$	0		ns	(Note 13)

AC Characteristics (cont)

Parameter	Symbol	μ PD42641-80		Unit	Test Conditions
		Min	Max		
Read command setup time	$t_{\text {RCS }}$	0		ns	
Refresh period	$t_{\text {REF }}$		32	ms	Addresses $\mathrm{A}_{0} \cdot \mathrm{~A}_{9}$
RAS hold time from $\overline{\text { CAS }}$ precharge	$\mathrm{t}_{\text {RHCP }}$	45		ns	
$\overline{\text { RAS }}$ precharge time	${ }^{1} \mathrm{RP}$	70		ns	
RAS precharge $\overline{\mathrm{CAS}}$ hold time	$t_{\text {RPC }}$	10		ns	
Read command hold time referenced to $\overline{\mathrm{RAS}}$	$t_{\text {RRH }}$	10		ns	(Note 13)
$\overline{\text { RAS }}$ hold time	$t_{\text {RSH }}$	20		ns	
Read-write cycle time	$t_{\text {RWC }}$	185		ns	(Note 6)
$\overline{\text { RAS }}$ to WE delay	${ }_{\text {t }}{ }_{\text {RWD }}$	80		ns	(Note 16)
Write command to $\overline{\text { RAS }}$ lead time	${ }_{\text {t }}{ }_{\text {RWL }}$	20		ns	
Rise and fall transition time	${ }_{T}$	3	50	ns	(Note 3)
Write command hold time	$\mathrm{t}_{\mathrm{WCH}}$	15		ns	
Write command setup time	$t_{\text {WCS }}$	0		ns	(Note 16)
$\overline{\text { WE hold time }}$	tWHR	15		ns	
Write command pulse width	$t_{\text {WP }}$	15		ns	(Note 14)
$\overline{\text { WE setup time }}$	tWSR	10		ns	

Notes:

(1) All voltages are referenced to GND.
(2) An initial pause of $100 \mu \mathrm{~s}$ is required after power-up, followed by any eight RAS cycles, before proper device operation is achieved. At the end of the initial power-up sequence, it is recommended that either a $\overline{\text { RAS-only refresh or a } \overline{\text { CAS }} \text { before }}$ $\overline{\text { RAS }}$ refresh cycle be executed while $\overline{W E} \geq \mathrm{V}_{1 H}$ to ensure normal operation.
(3) $A C$ measurements assume $t_{T}=5$ ns.
(4) V_{IH} (min) and V_{IL} (max) are reference levels for measuring the timing of input signals. Transition times are measured between V_{IH} and V_{IL}.
(5) I $\mathrm{ICC}_{1}, \mathrm{I}_{\mathrm{CC}}, \mathrm{I}_{\mathrm{CC} 4}$, and I_{CC} depend on output loading and cycle rates. Specified values are obtained with the output open. ICC3 is measured assuming that all column address inputs are held at either a high level or a low level during $\overline{\text { RAS }}$-only refresh cycles. ICC4 is measured assuming that all column address inputs are switched only once during each fast-page cycle.
(6) The minimum specifications are used only to indicate the cycle time at which proper operation over the full temperature range ($\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$) is assured.
(7) Load $=2 \mathrm{TTL}(-1 \mathrm{~mA},+4 \mathrm{~mA})$ loads and 100 pF .
(8) Assumes that $t_{R C D} \leq t_{R C D}$ (max) and $t_{R A D} \leq t_{R A D}$ (max). If $t_{\text {RCD }}$ or $t_{\text {RAD }}$ is greater than the maximum recommended value in this table, $t_{\text {RAC }}$ increases by the amount that $t_{\text {RCD }}$ or $t_{\text {RAD }}$ exceeds the value shown.
(9) If $t_{\text {RAD }} \geq t_{\text {RAD }}$ (max), then the access time is defined by $t_{A A}$.
(10) toff (max) defines the time at which the output achieves the open-circuit condition and is not referenced to V_{OH} or V_{OL}.
(11) Operation within the $t_{\text {RCD }}$ (max) limit assures that $\mathrm{t}_{\text {RAC }}$ (max) can be met. $t_{R C D}$ (max) is specified as a reference point only; if $t_{R C D}$ is greater than $t_{R C D}$ (max), then access time is controlled exclusively by $\mathrm{t}_{\mathrm{CAC}}$.
(12) The t CRP requirement should be applicable for $\overline{\mathrm{RAS}} / \overline{\mathrm{CAS}}$ cycles preceded by any cycle.
(13) Either $t_{\text {RRH }}$ or $t_{\text {RCH }}$ must be satisfied for a read cycle.
(14) Parameter $t_{W P}$ is applicable for a delayed write cycle such as a read-write/read-modify-write cycle. For early write operation, both $t_{W C S}$ and $t_{W C H}$ must be met.
(15) These parameters are referenced to the falling edge of $\overline{C A S}$ for early write cycles and to the falling edge of WE for delayed write or read-modify-write cycles.
(16) $t_{W C S}, t_{R W D}, t_{C W D}$, and $t_{A W D}$ are restrictive operating parameters in read-write/read-modify-write cycles only. If $t_{\text {wCs }} \geq t_{\text {WCS }}$ $(\mathbf{m i n})$, the cycle is an early write cycle and the data output will remain open-circuit throughout the entire cycle. If $\mathrm{t}_{\mathrm{CWD}} \geq \mathrm{t}_{\mathrm{CWD}}$ (min), $\mathrm{t}_{\mathrm{RWD}} \geq \mathrm{t}_{\mathrm{AWD}}(\mathrm{min})$, and $\mathrm{t}_{\mathrm{AWD}} \geq \mathrm{t}_{\mathrm{AWD}}$ (min), the cycle is a read-write cycle and the data output will contain data read from the selected cell. If neither of the above conditions is met, the condition of the data output pin (at access time and until $\overline{C A S}$ returns to $V_{I H}$) is indeterminate.
(17) A test mode may be initiated by executing a $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ refresh cycle with $\overline{W E}$ held at $V_{l l}$. This mode also may inadvertently be initiated during power-up because external control of the signal lines is very difficult during this period. It is therefore recommended that while $\overline{W E}$ is held at $V_{I H}$, either a $\overline{\text { RAS-only or }}$ $\overline{\text { CAS }}$ before $\overline{\mathrm{RAS}}$ refresh cycle should be executed at any time after the end of the initial power-up sequence to ensure normal device operation.

Self-Refresh Cycle

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Max	Unit	Test Conditions
Operating current, self-refresh mode (average)	lcc5		30,60 , or 90	$\mu \mathrm{A}$	$\overline{\text { RAS }}$ cycling (Note 1, 2, 3)
$\overline{\overline{C A S}}$ precharge time in CBR refresh mode	$t_{\text {CPC1 }}$	20		ns	
CAS precharge time from self-refresh mode to read-write mode	$\mathrm{t}_{\mathrm{CPC} 2}$	100		ns	
$\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ precharge time from self-refresh mode to normal read-write mode	$t_{\text {CRP2 }}$	200	,	ns	
$\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ precharge time in CBR refresh mode	${ }^{\text {cher }}$ 3	40		ns	
$\overline{\overline{C A S}}$ pulse width in self-refresh mode	tcsf	360		ns	(Note 1)
$\overline{\text { RAS }}$ cycle time in self-refresh mode	$t_{\text {RCF }}$	360		ns	(Note 2)
$\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ precharge time from self-refresh to normal read-write mode	${ }_{\text {trPC2 }}$	100		ns	- \quad.
$\overline{\text { RAS }}$ precharge time in self-refresh mode	$t_{\text {RPF }}$	200		ns	
$\overline{\text { RAS }}$ pulse width in self-refresh mode	$t_{\text {RSF }}$	150		ns	.

Notes:

(1) With $\overline{\mathrm{RAS}}$ cycling at 32 kHz , when $\mathrm{t}_{\mathrm{CSF}} \leq 35 \mathrm{~ms}$, $\mathrm{I}_{\mathrm{CC} 5}=1.0 \mathrm{~mA}$. When $\mathrm{t}_{\mathrm{CSF}} \geq 35 \mathrm{~ms}$, $\mathrm{l}_{\mathrm{CC}}=1.0 \mathrm{~mA}$ during the first 35 ms after the self-refresh mode set cycle is applied. Subsequently, the maximum value is as follows.

T_{A}	Clock (min)	${ }^{\text {ches }}$ (tCsF)	lccs (tcsp)
0 to $50^{\circ} \mathrm{C}$	32 kHz	1.5 mA (<35 ms)	$30 \mu \mathrm{~A}(>35 \mathrm{~ms})$
0 to $60^{\circ} \mathrm{C}$	64 kHz	$2 \mathrm{~mA}(<18 \mathrm{~ms})$	$60 \mu \mathrm{~A}$ ($>18 \mathrm{~ms}$)
0 to $70^{\circ} \mathrm{C}$	128 kHz	4 mA (<9 ms)	$120 \mu \mathrm{~A}$ (> 9 ms)

(2) The value of $t_{R C F}$ depends on operating temperature $\left(T_{A}\right)$.

$\frac{T_{A}}{}$	$\frac{t_{\text {RCF }}(\max)}{}$
0 to $50^{\circ} \mathrm{C}$	$32 \mu \mathrm{~s}$
0 to $60^{\circ} \mathrm{C}$	$16 \mu \mathrm{~s}$
0 to $70^{\circ} \mathrm{C}$	$8 \mu \mathrm{~s}$

(3) Average power supply current for self-refresh is measured according to the following conditions.

RAS cycling at 32,64 , or 128 kHz ;
$\overline{C A S} \leq 0.2 \mathrm{~V}$; $\mathrm{WE} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$;
$\mathrm{V}_{\mathrm{IH}}>\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{IL}}<0.2 \mathrm{~V}$;
$t_{T} \leq 50 \mathrm{~ns} ; A_{0}-A_{10}$ and $D_{I N}=V_{C C}$ to GND
During self-refresh operation, the RAS input must be cycled at or exceeding the minimum frequency requirement.
(4) When exiting self-refresh to a period of read and write operation that inlcudes CBR refresh cycles, $\mathrm{t}_{\text {RCF }}$ is the delay between the last self-refresh cycle pulse and the first CBR cycle. When entering the self-refresh operation, $t_{R C F}$ is the delay between the last CBR cycle and the first self-refresh pulse.
(5) In this period of normal read/write operation, there are no CBR refresh cycles less than 1024 RAS-only refresh cycles.
(6) The time delay between the last self-refresh pulse in one selfrefresh cycle and the first self-refresh pulse in the next cycle is defined by $t_{\text {RCF }}(\max)$ when the intervening period of read and write operation meets the conditions in note 4.
(7) The built-in counter generates the refresh address in self-refresh and CBR refresh cycles. Since this address increments sequentially from the last cycle in either self-refresh or CBR operation to the first cycle in the alternate refresh mode, CBR refreshing should be used during normal read and write operation to refresh one address location every $32 \mu \mathrm{~s}$ or less. If some other means of refreshing is used, a burst refresh of all storage cells is necessary just before changing to and just after exiting self-refresh operation.

Timing Waveforms

Read Cycle

18k

Timing Waveforms (cont)

Early Write Cycle

Timing Waveforms (cont)

Late Write Cycle

Timing Waveforms (cont)
Read-Write/Read-Modity-Write Cycle

Timing Waveforms (cont)

Fast-Page Read Cycle

Timing Waveforms (cont)

Fast-Page Early Write Cycle

Timing Waveforms (cont)

Fast-Page Read-Write/Read-Modify-Write Cycle

Timing Waveforms (cont)

Hidden Refresh Cycle

Timing Waveforms (cont)

RAS-Only Refresh Cycle

$\overline{\text { CAS }}$ Before $\overline{\operatorname{RAS}}$ Refresh Cycle

Timing Waveforms (cont)

Self-Refresh Cycle

Normal Refresh/Self-Refresh Timing

Timing Waveforms (cont)

Self-Refresh Mode Set Cycle

18k
μ PD42641

Timing Waveforms (cont)
Self-Refresh Mode Reset Cycle

Description

The μ PD42644 is a fast-page, low-power dynamic RAM organized as $1,048,576$ words by 4 bits and designed to operate from a single +5 -volt power supply. Advanced polycide technology minimizes silicon area and provides high storage cell capacity, high performance, and high reliability. A single-transistor dynamic storage cell and CMOS circuitry throughout ensure minimum power dissipation, while an on-chip circuit internally generates the negative-voltage substrate bias-automatically and transparently.

The three-state I/O pins are controlled by $\overline{\mathrm{CAS}}$ independent of $\overline{\text { RAS. After a valid read or read-modify-write }}$ cycle, data is held on the outputs by maintaining $\overline{\mathrm{CAS}}$ low. Data outputs return to high impedance when CAS goes high. Fast-page read and write cycles can be executed by cycling $\overline{\mathrm{CAS}}$.
Refreshing may be accomplished by means of a $\overline{\text { CAS }}$ before RAS cycle that internally generates the refresh address. Refreshing may also be accomplished by means of RAS-only refresh cycles or by normal read or write cycles on the 1,024 address combinations of A_{0} A_{9} during a 16-ms refresh period.

A low-power self-refresh cycle allows the μ PD42644 to retain data for extended periods of time with very low power consuption $\left(30 \mu \mathrm{~A}\right.$ at $\left.50^{\circ} \mathrm{C}\right)$. This feature allows the μ PD42644 to be used in battery backup applications with greater savings in power consumption.

Features

- 1,048,576 by 4-bit organization

ㅁ Single +5 -volt power supply

- Fast-page option
- Low power dissipation
-90 mA active
-1.0 mA standby (CMSO interface)
$-30 \mu \mathrm{~A}$ self-refresh ($\mathrm{t}_{\mathrm{RCF}}=32 \mu \mathrm{~s}, \mathrm{~T}_{\mathrm{A}}=50^{\circ} \mathrm{C}$)
- CAS before RAS refreshing
- Multiplexed address inputs
- On-chip substrate bias generator
- TTL-compatible inputs and outputs
- Automatic self-refreshing by RAS input cycling
- Nonlatched, three-state outputs
- Low input capacitance
- 1024 refresh cycles every 16 ms
- 26/20-pin plastic SOJ (300 miI), 20-pin plastic ZIP, and 26/20-pin plastic TSOP packaging

Pin Configurations

26/20-Pin Plastic SOJ

26/20-Pin Plastic TSOP (Normal Pinouts)

Suffix -9JD in the package identifier denotes nomal plnout sequence.

Pin Configurations (cont)
26/20-Pin Plastic TSOP (Reverse Pinouts)

Pin Identification

Name	Function
$\mathrm{A}_{0}-\mathrm{A}_{9}$	Address inputs
$\mathrm{I} / \mathrm{O}_{1}-\mathrm{I} / \mathrm{O}_{4}$	Data inputs and outputs
$\overline{\mathrm{CAS}}$	Column address strobe
$\overline{\overline{\mathrm{OE}}}$	Output enable
$\overline{\mathrm{RAS}}$	Row address strobe
$\overline{\mathrm{WE}}$	Write enable
GND	Ground
VCC	+5 -volt power supply

Absolute Maximum Ratings

Voltage on any pin relative to GND	-1.0 to +7.0 V
Operating temperature, ToPR	0 to $+70^{\circ} \mathrm{C}$
Storage temperature, $T_{\text {STG }}$	-55 to $+125^{\circ} \mathrm{C}$
Short-circuit output current, los	50 mA
Power dissipation, P_{D}	1.0 W

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage: The device should be operated within the limits specified under DC and AC Characteristics.

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Input voltage, high	V_{IH}	2.4		$\mathrm{~V}_{\mathrm{CC}}+1.0$	V
Input voltage, low	V_{IL}	-1.0		0.8	V
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Ambient temperature	T_{A}	0		70	${ }^{\circ} \mathrm{C}$

Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

Parameter	Symbol	Max	Unit	Pins Under Test
Input capacitance	C_{11}	5	pF	Addresses
	C_{12}	8	pF	$\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}, \overline{\mathrm{OE}}$
	C_{O}	7	pF	$\mathrm{IO} \mathrm{O}_{1}-\mathrm{I} / \mathrm{O}_{4}$

DC Characteristics
$T_{A}=0$ to $+70^{\circ} \mathrm{C}$; $V_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Standby current	${ }^{\text {cce2 }}$			2.0	mA	$\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}} \geq \mathrm{V}_{\mathrm{IH}}(\mathrm{min}) ; 1_{0}=0 \mathrm{~mA}$
				1.0	mA	$\begin{aligned} & \overline{\text { RAS }}=\overline{\mathrm{CAS}} \geq V_{C C}-0.2 \mathrm{~V} ; A_{0}-A_{9}, 1 / O \text { and } \overline{W E} \geq V_{C C}- \\ & 0.2 \text { or } \leq 0.2 \mathrm{~V} ; I_{1 / O}=0 \mathrm{~mA} \end{aligned}$
Input leakage current	H(L)	-10		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$; all other pins not under test $=0 \mathrm{~V}$
Output leakage current	$\mathrm{l}(\mathrm{L})$	-10		10	$\mu \mathrm{A}$	D OUT disabled; $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$
Output voltage, low	V_{OL}			0.4	V	$\mathrm{l}_{\mathrm{OL}}=4.2 \mathrm{~mA}$
Output voltage, high	V_{OH}	2.4			V	$\mathrm{l}_{\mathrm{OH}}=-5 \mathrm{~mA}$

Block Diagram

Ordering Information

Part Number	RAS Access Time (max)	R/W Cycle Time (max)	Fast-Page Cycle (max)	Power Option	Package
μ PD42644LA-80L	80 ns	160 ns	50 ns	Standard	$26 / 20$-pin plastic SOJ (300 mil)
μ PD42644GS-80L	80 ns	160 ns	50 ns	Standard	$26 / 20$-pin plastic TSOP (normal pinouts)
μ PD42644GSM-80L	80 ns	160 ns	50 ns	Standard	$26 / 20$-pin plastic TSOP (reverse pinouts)

AC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	-80		-10		Unit	Test Conditions
		Min	Max	Min	Max		
Operating current, average	ICCl		90		80	mA	$\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ cycling; $\mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}} \mathrm{min}$; $10=0 \mathrm{~mA}$ (Note5)
Operating current, $\overline{\text { RAS}}$-only refresh cycle, average	Icco		90		80	mA	$\overline{R A S}$ cycling; $\overline{C A S} \geq V_{I H} ; t_{R C}=t_{R C}$ min; l_{0} $=0 \mathrm{~mA}$ (Note 5)
Operating current, $\overline{C A S}$ before RAS refresh cycle, average	lcc 4		90		80	mA	$\overline{\text { RAS }}$ cycling; $\overline{\text { CAS }}$ before $\overline{\mathrm{RAS}} ; \mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}$ min; $\mathrm{l}_{\mathrm{O}}=0 \mathrm{~mA}$ (Note 5)
Operating current, self-refresh mode, average	$\mathrm{I}_{\text {cc5 }}$		30		30	$\mu \mathrm{A}$	$\overline{\mathrm{A} A S}$ cycling at 32 kHz (Notes 16, 17, 18)
			60		60	$\mu \mathrm{A}$	$\overline{\mathrm{RAS}}$ cycling at 64 kHz (Notes 16, 17, 18)
			120		120	$\mu \mathrm{A}$	$\overline{\mathrm{RAS}}$ cycling at 128 kHz (Notes 16, 17, 18)
Operating current, fast-page cycle, average	Icce		90		60	mA	$\overline{R A S} \leq V_{I L} ; \overline{C A S}$ cycling; $t_{P C}=t_{P C}$ min; l_{0} $=0 \mathrm{~mA}$ (Note 5)
Access time from column address	$t_{A A}$		40		50	ns	(Notes 3, 4, 7, 8)
Access time from $\overline{\text { CAS }}$ precharge (rising edge)	${ }^{\text {t }}$ ACP		45		55	ns	(Notes 3, 4, 7, 8)
Column address setup time	${ }_{\text {t }}$ ASC	0		0		ns	
Row address setup time	$t_{\text {ASP }}$	0		0		ns	
Column address to $\overline{W E}$ delay time	${ }^{\text {tawD }}$	65		80		ns	(Note 14)
Access time from $\overline{\mathrm{CAS}}$ (falling edge)	${ }^{t}$ CAC		20		25	ns	(Notes 3, 4, 7, 8)
Column address hold time	${ }^{\text {t }}$ CAH	15		20		ns	
CAS pulse width	${ }^{\text {t Cas }}$	20	10,000	25	10,000	ns	
$\overline{\text { CAS }}$ hold time for $\overline{\text { CAS }}$ before RAS refresh cycle	${ }^{\text {t }}$ CHR	15		20		ns	
$\overline{\text { CAS }}$ to output in low impedance	${ }_{\text {telz }}$	0		0		ns	(Notes 4, 7)
$\overline{\overline{C A S}}$ precharge time, fast-page cycle	${ }^{\text {c }}$ CP	10		15		ns	
$\overline{\overline{\mathrm{CAS}} \text { precharge time, nonpage }}$ cycle	${ }^{\text {t CPN }}$	10		10		ns	
$\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ precharge time	${ }^{\text {t }}$ CRP1	10		10		ns	(Note 10)
CAS hold time	$\mathrm{tcSH}^{\text {chen }}$	80		100		ns	
$\overline{\text { CAS }}$ setup time for $\overline{C A S}$ before RAS refresh cycle	${ }^{\text {t CSA }}$	10		10		ns	
$\overline{\mathrm{CAS}}$ to $\overline{\mathrm{WE}}$ delay	${ }^{\text {t }}$ CWD	45		55		ns	(Note 14)

AC Characteristics (cont)

AC Characteristics (cont)

Parameter	Symbol	-80		-10		Unit	Test Conditions
		Min	Max	Min	Max		
Write command pulse width	$t_{\text {WP }}$	15		20		ns	(Note 12)
$\overline{\text { WE setup time }}$	${ }_{\text {W WSR }}$	10		10		ns	

Notes:

(1) All voltages are referenced to GND.
(2) An initial pause of 100μ s is required after power-up, followed by any eight RAS cycles, before proper device operation is achieved. At the end of the initial power-up sequence, it is recommended that either a $\overline{\mathrm{RAS}}$-only or $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ refresh cycle be executed while $W E \geq V_{I H}$ to ensure normal operation.
(3) Ac measurements assume $t_{T}=5 \mathrm{~ns}$.
(4) V_{IH} (min) and V_{IL} (max) are reference levels for measuring the timing of input signals. Transition times are measured between $V_{I H}$ and $V_{I L}$.
(5) $\mathrm{I}_{\mathrm{CC}}, \mathrm{I}_{\mathrm{CC}}, \mathrm{I}_{\mathrm{CC} 4}$, and I_{CC} depend on output loading and cycle rates. Specified values are obtained with the output open. Icc3 is measured assuming that all column address inputs are held at either a high level or a low level during $\overline{R A S}$-only refresh cycles. I_{CC} is measured assuming that all column address inputs are switched only once during each fast-page cycle.
(6) The minimum specifications are used only to indicate the cycle time at which proper operation over the full temperature range ($T_{A}=0$ to $+70^{\circ} \mathrm{C}$) is assured.
(7) Load $=2 \mathrm{TTL}(-1 \mathrm{~mA},+4 \mathrm{~mA})$ loads and $100 \mathrm{pF}\left(\mathrm{NOH}_{\mathrm{O}}=2.0 \mathrm{~V}\right.$ and $\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$).
(8) If $t_{R C D} \leq t_{\text {RCS }}$ (max) and $t_{\text {RAD }} \leq t_{\text {RAD }}$ (max) access time is defined by $t_{R A C}$ (max). If $t_{R C D} \geq t_{R C D}$ (max) access time is defined by $\mathrm{t}_{\mathrm{CAC}}$ (max) and if $\mathrm{t}_{\mathrm{RAD}} \geq \mathrm{t}_{\text {RAD }}$ (max) access time is defined by $t_{A A}$ (max).
(9) toff (max) and toez (max) define the time at which the outputs become open-circuit and are not referenced to V_{OH} or V_{OL}.
(10) The $t_{\text {CRP }}$ requirement should be applicable for $\overline{\mathrm{RAS}} / \overline{\mathrm{CAS}}$ cycles preceded by any cycle.
(11) Either $\mathrm{t}_{\mathrm{RRH}}$ or $\mathrm{t}_{\mathrm{RCH}}$ must be satisfied for a read cycle.
(12) Parameter $t_{W P}$ is applicable for a delayed write cycle such as a read-write/read-modify-write cycle. For early write cycles, both ${ }^{\prime}$ WCS ${ }^{\text {and }} \mathrm{t}_{\mathrm{WCH}}$ must be met.
(13) These parameters are referenced to the falling edge of $\overline{\mathrm{CAS}}$ for early write cycles and to the falling edge of WE for delayed write or read-modify-write cycles.
(14) $t_{W C S}, t_{\text {RWD }}, t_{C W D}$, and $t_{A W D}$ are restrictive operating parameters in read-write/read-modify-write cycles only. If $t_{\text {wCs }} \geq t_{\text {wCs }}$ (min), the cycle is an early write cycle and the $1 / O$ pins will remain open-circuit throughout the entire cycle. If $\mathrm{t}_{\mathrm{CWD}} \geq \mathrm{t}_{\mathrm{CWD}}$ $(\mathrm{min}), \mathrm{t}_{\mathrm{RWD}} \geq \mathrm{t}_{\mathrm{RWD}}(\mathrm{min})$, and $\mathrm{t}_{\mathrm{AWD}} \geq \mathrm{t}_{\mathrm{AWD}}(\mathrm{min})$, then the cycle
is a read-write cycle and the data l/O pins will contain data read from the selected cells. If neither of the above conditions is met, the condition of the data I/O pins (at access time and until CAS returns to $\mathrm{V}_{(H)}$ is indeterminate.
(15) A test mode may be initiated by executing a $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ refresh cycle with $\overline{W E}$ held at V_{IL}. This mode also may inadvertantly be initiated during power-up because external control of the signal lines is very difficult during this period. It is therefore recommended that while WE is held at V_{IH}, either a RAS-only or $\overline{C A S}$ before $\overline{\mathrm{RAS}}$ refresh cycle should be executed at any time after the end of the initial power-up sequence to ensure normal device operation.
(16) When tCSF $\leq 35 \mathrm{~ms}$, ICC5 depends on the $\overline{\text { RAS }}$ clock; ICC5 (typ) $=1.5 \mathrm{~mA}$. When $\mathrm{t}_{\mathrm{CSF}} \geq 35 \mathrm{~ms}$, $\mathrm{I}_{\mathrm{cc}}(\mathrm{typ})=1.5 \mathrm{~mA}$ in the first 35 ms after a self-refresh set cycle is applied (depending on the status of $\overline{\text { RAS }}$). Subsequently, ICc5 is $120 \mu \mathrm{~A}$ or as shown in the following table for the $-L$ version.

Operating Temperature $\left(T_{A}\right)$	Clock Frequency (min)	Self-Refresh Current (max)
0 to $50^{\circ} \mathrm{C}$	32 kHz	$30 \mu \mathrm{~A}$ at 32 kHz
0 to $60^{\circ} \mathrm{C}$	64 kHz	$60 \mu \mathrm{~A}$ at 64 kHz
0 to $70^{\circ} \mathrm{C}$	128 kHz	$120 \mu \mathrm{~A}$ at 128 kHz

(17) $t_{\text {RCF }}$ depends on operating temperature as reflected in the table below:

Operating Temperature $\left(T_{A}\right)$	$\mathbf{t}_{\text {RCF }}$ (max)
0 to $50^{\circ} \mathrm{C}$	$32 \mu \mathrm{~s}$
0 to $60^{\circ} \mathrm{C}$	$16 \mu \mathrm{~s}$
0 to $70^{\circ} \mathrm{C}$	$8 \mu \mathrm{~s}$

(18) Average power supply current required for self-refreshing is measured according to the following conditions: RAS is cycling at 32,64 or $128 \mathrm{kHz} ; \overline{\mathrm{CAS}} \leq 0.2 \mathrm{~V}$; $\mathrm{WE} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{IH}}>\mathrm{V}_{\mathrm{CC}}$ $-0.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{IL}}<0.2 \mathrm{~V} ; \mathrm{t}_{\mathrm{T}} \leq 50 \mathrm{~ns} ; A_{0}-A_{9}$ and $I / O=V_{C C}$ to $G N D$. During self-refresh operation, the RAS input must be cycled at or exceeding the minimum frequency requirements.

Self-Refresh Cycle

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Max	Unit	Test Conditions
$\overline{\overline{C A S}}$ pulse width in self-refresh operation	${ }^{t} \mathrm{CSF}$	360		ns	(Note 1)
$\overline{\text { RAS }}$ cycle time in self-refresh operation	${ }^{\text {t }}$ RCF	360	(Note 2)	ns	
RAS precharge time in self-refresh operation	$t_{\text {RPF }}$	200		ns	
$\overline{\overline{R A S}}$ pulse width in self-refresh operation	$t_{\text {RSF }}$	150	1000	ns	
$\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ precharge time from self-refresh operation to normal read/write operation	${ }^{\text {t CRP2 }}$	200		ns	
$\overline{\overline{C A S}}$ setup time for self-refresh operation	${ }^{\text {t CSR2 }}$	10		ns	
$\overline{\text { CAS }}$ to $\overline{\text { RAS }}$ precharge time $\overline{\text { CAS }}$ before $\overline{\text { RAS }}$ refresh operation	${ }^{\text {t CRP3 }}$	40		ns	
$\overline{\mathrm{CAS}}$ precharge time in $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ refresh operation	${ }^{1} \mathrm{CPC}$	20		ns	
$\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ precharge time from self-refresh operation to normal read/write operation	$\mathrm{t}_{\mathrm{RPC} 2}$	100		ns	

Notes:

(1) When $\mathrm{t}_{\mathrm{CSF}} \leq 35 \mathrm{~ms}$, lcc5 depends on the RAS clock; lcc5 (typ) $=1.5 \mathrm{~mA}$. When $\mathrm{t}_{\mathrm{CSF}} \geq 35 \mathrm{~ms}, \mathrm{I}_{\mathrm{CC5}}(\mathrm{typ})=1.5 \mathrm{~mA}$ in the first 35 ms after a self-refresh set cycle is applied (depending on the status of RAS). Subsequently, ICC5 is $120 \mu \mathrm{~A}$ or as shown in the following table for the -L version.

Operating Temperature $\left(T_{A}\right)$	Clock Frequency (min)	Self-Refresh Current (max)
0 to $50^{\circ} \mathrm{C}$	32 kHz	$30 \mu \mathrm{~A}$ at 32 kHz
0 to $60^{\circ} \mathrm{C}$	64 kHz	$60 \mu \mathrm{~A}$ at 64 kHz
0 to $70^{\circ} \mathrm{C}$	128 kHz	$120 \mu \mathrm{~A}$ at 128 kHz

(2) The value for $t_{\text {RCF }}(\mathrm{min})$ is specified in AC Characteristics. The value for $t_{\text {RCF }}$ (max) is dependent upon temperature as shown in the table below:

Operating Temperature $\left(T_{A}\right)$	$t_{R C F}($ max $)$
0 to $50^{\circ} \mathrm{C}$	$32 \mu \mathrm{~s}$
0 to $60^{\circ} \mathrm{C}$	$16 \mu \mathrm{~s}$
0 to $70^{\circ} \mathrm{C}$	$8 \mu \mathrm{~s}$

(3) When exiting self-refresh to a period of read and write operation that includes CAS before RAS refresh cycles, $t_{\text {RCR }}$ is delayed between the last self-refresh cycle pulse and the first CAS before RAS cycle. When entering self-refresh operation, $t_{\text {RCF }}$ is the delay between the last CAS before $\overline{\mathrm{RAS}}$ cycle and the first self-refresh pulse.
(4) In this period of normal read/write operation, there are no $\overline{\text { CAS }}$ before RAS refresh cycles or less than $1024 \overline{\text { RAS-only refresh }}$ cycles.
(5) The time delay beetween the last self-refresh pulse in one selfrefresh cycle and the first self-refresh pulse in the next cycle is defined by tricF (max) when the intervening period of read and write operation meets the conditions in note 3.
(6) The bulit-in counter generates the refresh address in self-refresh and CAS before RAS refresh cycles. Since this address increments sequentialy from the last cycle in either self-refresh or $\overline{C A S}$ before RAS operation to the first cycle in the alternate refresh mode, $\overline{C A S}$ before $\overline{R A S}$ refreshing should be used during normal read and write operation to refresh one address location every 32 $\mu \mathrm{s}$ or less. If some other means of refreshing is used, it is necessary to execute a burst refresh of all storage cells just before changing to and just after exiting self-refresh operation.

Timing Waveforms

Read Cycle

Timing Waveforms (cont)

Early Write Cycle

Timing Waveforms (cont)
Late Write Cycle

Timing Waveforms (cont)

Read-Write/Read-Modify-Write Cycle

Timing Waveforms (cont)

Fast-Page Read Cycle

Timing Waveforms (cont)

Fast-Page Early Write Cycle

Timing Waveforms (cont)

Fast-Page Late Write Cycle

Timing Waveforms (cont)

Fast-Page Read-Write/Read-Modify-Write Cycle

Timing Waveforms (cont)
Hidden Refresh Cycle

Timing Waveforms (cont)

RAS-Only Refresh Cycle

$\overline{C A S}$ Before $\overline{\operatorname{RAS}}$ Refresh Cycle

Timing Waveforms (cont)

Self-Refresh Cycle Followed by Read/WriteCycle

Notes:

1. $\overline{\mathrm{WE}}=$ high and $\overline{O E}$, VO; and Adress $=$ don't care after four trCF cycles.

Self-Refresh Cycle with $\overline{R A S}$ Cycling

Timing Waveforms (cont)

$\overline{C A S}$ Before $\overline{R A S}$ Followed by Self-Refresh Cycle

Self-Refresh Set Cycle

Timing Waveforms (cont)

Self-Refresh Set Cycle

Description

The μ PD481440 is a fast-page memory with optional extended data output, organized as 262,144 words by 16 bits and designed to operate from a single +5 -volt power supply. This graphics memory also incorporates powerful functions useful in video sytems, including write-per-bit, flash write, and block write. Advanced polycide technology using stacked capacitors minimizes silicon area and provides high storage cell capacity, high performance, and high reliability. A singletransistor dynamic storage cell and CMOS circuitry throughout ensure minimum power dissipation, while an on-chip circuit internally generates the negativevoltage substrate bias-automatically and transparently.
The three-state I/O pins are controlled by $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$, and $\overline{O E}$. After a valid read, data is latched on the rising edge of $\overline{C A S}$ and remains valid until the next falling edge of CAS. Data out will transition to the highimpedance state when both $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ or $\overline{\mathrm{OE}}$ are inactive.

Word writing $\left(1 / O_{1}-I / O_{16}\right)$, upper byte writing $\left(I / O_{9}-\right.$ $\left.1 / O_{16}\right)$, and lower byte writing $\left(1 / O_{1}-I / O_{8}\right)$ are all possible using UWE and LWE. If either UWE or LWE goes low during an early write cycle, all data outputs remain in high impedance. UWE or LWE going low causes a byte write cycle, while bringing both UWE and LWE low at the same time will result in a word write cycle. UWE and LWE cannot be staggered within the same write cycle.
Refreshing may be accomplished by a $\overline{C A S}$ before $\overline{R A S}$ cycle that internally generates the refresh address. Refreshing may also be accomplished by $\overline{\mathrm{RAS}}$-only refresh cycles or by normal read or write cycles on the 512 address combinations of $A_{0}-A_{8}$ during an $8-\mathrm{ms}$ refresh period.

Features

- 262,144 by 16 -bit organization
- Single +5 -volt power supply
- Fast-page option with extended data output
- Byte write control with UWE and $\overline{\text { LWE }}$
- Persistent and nonpersistent write-per-bit option, which provides I/O masking for 16 I/O's
- Block write option with write-per-bit control and column mask function
- Flash write option with byte masking control
- Low power dissipation
- $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ refreshing
- TTL-compatible inputs and outputs
- Low input capacitance
- 512 refresh cycles every 8 ms
- 40-pin plastic SOJ package

Pin Configurations

40-Pin Plastic SOJ

Pin Identification

Name	Function
$A_{0}-A_{8}$	Address inputs
$\overline{C A S}$	Column address strobe
DSF	Special function pin
$1 / \mathrm{O}_{1}-1 / \mathrm{O}_{16}$	Data inputs and outputs
$\overline{\mathrm{LWE}, \mathrm{UWE}}$	Byte write enables
$\overline{\mathrm{OE}}$	Output enable
$\overline{\text { RAS }}$	Row address strobe
GND	Ground
VCC	+5 -volt power supply
NC	No connection

Ordering Information

Part Number	RAS Access Tlme (max)	R/W Cycle Time (max)	Fast-Page Cycle (max)	Package

Pin Functions

$A_{0}-A_{8}$ (Address Inputs). These pins are multiplexed as row and column address inputs. Each of 16 data bits in the random access port corresponds to 262,144 storage cells, which means that 9-bit row addresses and 9 -bit column addresses are required to decode one cell location. Row addresses are first used to select one of the 512 possible rows for a read, write, or refresh cycle.
$\mathrm{I} / \mathrm{O}_{1}-\mathrm{I} / \mathrm{O}_{16}$ (Common Data Inputs and Outputs). Each of the 16 mask bits can be individually latched at the falling edge of $\overline{\mathrm{RAS}}$ in any write cycle and then updated at the next falling edge of $\overline{\mathrm{RAS}}$. In a read cycle, these pins serve as outputs for the selected storage cells. In a write cycle, data input on these pins is latched by the falling edge of $\overline{C A S}, \overline{L W E}$, or UWE.
$\overline{\text { RAS }}$ (Row Address Strobe). This pin is functionally equivalent to a chip enable signal in that whenever it is activated, the 8192 storage cells of a selected row are sensed simultaneously and the sense amplifiers restore all data. The 9 row address bits are latched by this signal and must be stable on or before its falling edge. $\overline{C A S}, \overline{L W E} / \overline{U W E}$, and DSF are simultaneously latched to determine device operation.
$\overline{\text { CAS }}$ (Column Address Strobe). This pin serves as a chip selection signal to activate the column decoder and the input/output buffers. The 9 column address bits are latched at the falling edge of $\overline{C A S}$.
DSF (Special Function Control). At the leading edge of $\overline{R A S}$ and $\overline{C A S}$, the high or low level of DSF is latched to initiate one of the operations shown in table 1.
LWE/UWE (Write-Per-Bit or Masked Write Control). At the falling edge of $\overline{\text { RAS }}$, the $\overline{L W E / U W E ~ a n d ~ D S F ~ i n p u t s ~}$ must be low and CAS high to enable the write-per-bit option.
Either $\overline{\mathrm{LWE}}$ or $\overline{\text { UWE }}$ must be low to initiate the lower or upper byte mask function. If both are low, then a word masking operation is performed.
$\overline{\mathrm{OE}}$ (Output Enable). At the $\overline{\mathrm{RAS}}$ falling edge, $\overline{\mathrm{CAS}}$ and $\overline{\text { LWE }} \overline{\text { UWE }}$ high and $\overline{\mathrm{OE}}$ low initiate a data transfer. $\overline{\mathrm{OE}}$ high initiates conventional read or write cycles and ontrols the output buffer in the random access port.

Addressing

The storage array is arranged in a 512 -row by 512 column by 16 I/O matrix whereby each of 16 data bits in the random access port corresponds to 262,144 storage cells, and 18 address bits are required to decode one cell location. Nine row address bits are set up on pins $A_{0}-A_{8}$ and latched onto the chip by $\overline{\text { RAS. Nine }}$ column address bits then are set up on pins $A_{0}-A_{8}$ and latched onto the chip by CAS.
All addresses must be stable on or before the falling edges of $\overline{R A S}$ and $\overline{C A S}$. Whenever $\overline{\mathrm{RAS}}$ is activated, 8192 cells on the selected row are sensed simultaneously, and the sense amplifiers automatically restore the data. $\overline{\mathrm{CAS}}$ serves as a chip selection signal to activate the column decoder and the input and output buffers.

Random Access Port

An operation in the random access port begins with a negative transition of $\overline{\text { RAS. Both } \overline{R A S}}$ and $\overline{\mathrm{CAS}}$ have minimum pulse widths, as specified in the timing table, which must be maintained for proper device operation and data integrity. Once begun, a cycle must meet all specifications, including minimum cycle time. To reduce the number of pins, the following are multiplexed: $\overline{L W E}, \overline{U W E}, I / O_{n}(n=1$ through 16).
Read Cycle. A read cycle is executed by activating $\overline{\text { RAS }}, \overline{\mathrm{CAS}}$, and $\overline{\mathrm{OE}}$ and by maintaining $\overline{\text { LWE/UWE }}$ high (inactive) while $\overline{C A S}$ is active. The I / O_{n} pin remains in high impedance until valid data appears at the output at access time. Device access time $t_{A C C}$ will be the longest of the following four calculated intervals:

- $t_{\text {RAC }}$
- $\overline{\text { RAS }}$ to $\overline{\text { CAS }}$ delay ($\left.t_{\text {RCD }}\right)+t_{\text {CAC }}$
- $\overline{\text { RAS }}$ to column address delay ($\left.t_{\text {RAD }}\right)+t_{A A}$
- $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{OE}}$ delay + toeA

Access times from $\overline{\mathrm{RAS}}$ ($\mathrm{t}_{\mathrm{RAC}}$), from $\overline{\mathrm{CAS}}$ ($\mathrm{t}_{\mathrm{CAC}}$), from the column addresses (t_{AA}), and from $\overline{\mathrm{OE}}$ (tOEA) are device parameters. The RAS-to- $\overline{C A S}, \overline{\mathrm{RAS}}$-to-column address, and $\overline{\text { RAS-to- } \overline{O E} \text { delays are system-dependent }}$ timing parameters. Output becomes valid after the access time has elapsed and it remains valid while both $\overline{\mathrm{CAS}}$ and $\overline{\mathrm{OE}}$ are low. Either $\overline{\mathrm{CAS}}$ or $\overline{\mathrm{OE}}$ high returns the output pins to high impedance. See explanation of "Extended Data Output."
Write Cycle. A write cycle is executed by bringing $\overline{L W E} /$ UWE low during the $\overline{R A S} / \mathrm{CAS}$ cycle. The falling edge of $\overline{C A S}$ or $\overline{W W E} /$ UWE strobes the data on I / O_{n} into the on-chip data latch. To make use of the write-per-bit option, $\overline{L W E} / \overline{U W E}$ must be low as $\overline{\mathrm{RAS}}$ falls. In this case, write data bits can be specified by keeping I / O_{n} high, with setup and hold times referenced to the negative transition of $\overline{\text { RAS }}$.
Write-per-Bit-Cycle. A write-per-bit-cycle uses an I/O masking function to allow the system designer the flexibility of writing or not writing any combinations of $\mathrm{I} / \mathrm{O}_{1}-\mathrm{I} / \mathrm{O}_{16}$. Two types of masking are possible: (1) new mask or the non-persistent mask that requires the user to provide the mask data each cycle and (2) old mask or the persistent mask. With the persistent mask option, an LMR or load mask register cycle is performed and the mask data is used during write, block write, and flash write cycles.
Early Write Cycle. An early write cycle is executed by bringing $\overline{\mathrm{LWE}} / \overline{\mathrm{UWE}}$ low before CAS falls. Data is strobed by CAS, with setup and hold times referenced to this signal, and the output remains in high impedance for the entire cycle.
Read-Write/Read-Modify-Write Cycle. This cycle is executed by bringing $\overline{L W E} / \overline{U W E}$ low with the $\overline{R A S}$ and $\overline{\text { CAS }}$ signals low. I / O_{n} shows read data at access time. Afterward, in preparation for the upcoming write cycle, $\mathrm{I} / \mathrm{O}_{n}$ returns to high impedance when $\overline{\mathrm{OE}}$ goes high. The data to be written is strobed by $\overline{\text { LWE/UWE, with setup }}$ and hold times referenced to this signal.
Late Write Cycle. This cycle shows the timing flexibility of $\overline{O E}$, which can be activated just after LWE/UWE falls, even when $\overline{\text { LWE/UWE }}$ is brought low after $\overline{\text { CAS }}$.

Refresh Cycle. A cycle at each of the 512 row addresses $\left(A_{0}-A_{8}\right)$ will refresh all storage cells. Any cycle executed in the random access port (i.e., read, write, refresh, color register set, flash write, or block write) refreshes the 8192 bits selected by the RAS addresses or by the on-chip address counter.
$\overline{\text { RAS }}$-Only Refresh Cycle. A cycle having only $\overline{\text { RAS }}$ active refreshes all cells in one row of the storage array. A high CAS is maintained while $\overline{\text { RAS }}$ is active to keep I / O_{n} in high impedance. This method is preferred for refreshing, especially when the host system consists of multiple rows of random access devices. The data outputs may be OR-tied with no bus contention when RAS-only refresh cycles are executed.
$\overline{\text { CAS }}$ Before $\overline{R A S}$ Refresh Cycle (CBRN). This cycle executes internal refreshing using the on-chip control circuitry. Whenever CAS is low as $\overline{\mathrm{RAS}}$ falls, this circuitry automatically refreshes the row addresses specified by the internal counter. In this cycle, the circuit operation based on $\overline{\mathrm{CAS}}$ is maintained in a reset state. When internal refreshing is complete, the address counter automatically increments in preparation for the next $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ cycle. This CBR cycle has no effect on the mask mode.
$\overline{\text { CAS }}$ Before $\overline{R A S}$ Cycle (CBR). CBR has the same function as CBRN except the write-per-bit mask mode is changed to new mask mode.
Hidden Refresh Cycle. This cycle is executed after a read cycle without disturbing the read data output. Once valid, the data output is controlled by $\overline{\mathrm{CAS}}$ and $\overline{\mathrm{OE}}$. After the read cycle, CAS is held low while $\overline{\mathrm{RAS}}$ goes high for precharge. A $\overline{\text { RAS-only cycle is then executed }}$ (except that CAS is held at a low level instead of a high level) and the data output remains valid. Since hidden refreshing is the same as $\overline{\text { CAS }}$ before $\overline{\mathrm{RAS}}$ refreshing, the data output remains valid during either operation.

Glossary of Special Functions

Table 1 is a truth table for implementing the functions described below.

Load Mask Register Cycle (LMR). In this cycle, data on I/O O_{n} is written to a 16-bit write mask register, where it is retained and used by subsequent masked write and masked block write cycles.

Masked Write Cycle With New Mask (RWM new mask). When the write-per-bit function is enabled as shown below, mask data on the $1 / O_{n}$ pins is latched by $\overline{R A S}$ and loaded directly into the write mask register. A masked write cycle is then executed using $\overline{C A S}$ or $\overline{\text { LWE }} / \overline{\mathrm{UWE}}$ to strobe the I / O_{n} data into the on-chip data latch.

Mask Register Data	$\frac{\text { Action }}{\text { Write }}$
1	Do not write

Masked Write Cycle With Old Mask (RWM old mask). This write-per-bit cycle, commonly referred to as a persistent mask write cycle, uses the mask data previously set by the last load mask register cycle.

Load Color Register Cycle (LCR). This cycle is executed in the same fashion as a conventional read or write cycle, with a read or write cycle available to the color register under the control of LWE/UWE. In read operation, color register data is read on the common I / O_{n} pins. In write operation, common I / O_{n} data can be written into the color register. $\overline{R A S}-o n l y ~ r e f r e s h i n g ~ i s ~$ internally performed on the row selected by $A_{0}-A_{8}$. This setup cycle precedes the first flash write or block write cycle supplying the 16 write data bits.

Block Write Cycle (BW no mask). In a block write cycle, A_{1} and A_{0} are ignored. $1 / O_{1}-1 / O_{4}$ are used to select one or a combination of four column addresses for writing in an early lower-byte write, late lower-byte write, page early lower-byte write or page late lowerbyte write cycle. $I / O_{9}-I / O_{12}$ are used for column selection on the upper-byte write cycles.

Block write data is previously stored in the color register using a set color register cycle. Column select data is latched by the I / O_{n} pins at the falling edge of $\overline{\mathrm{CAS}}$ or $\overline{\text { LWE }} / \overline{\mathrm{UWE}}$. Block write cycles are useful for clearing windows and for accelerating polygon fill operations.

Table 1. μ PD481440 Function Truth Table

Mnemonic Code	RAS (Notes 1, 2)				CAS	Avallable Function
	$\overline{\text { CAS }}$	UWE	LWE	DSF	DSF	
RW	H	H	H	L	L	Read/write cycle
BW	H	H	H	L	H	Read/block write cycle
FW	H	L	L	H	X	Flash write cycle
FW	H	L	H	H	X	Flash write cycle (upper byte)
FW	H	H	L.	H	X	Flash write cycle (lower byte)
LCR	H	H	H	H	H	Color register set cycle
LMR	H	H	H	H	L	Load old mask register cycle
RWM	H	L	L	L	L	Read/masked write cycle
RWM	H	L	H	L	L	Read/masked write cycle (upper byte)
RWM	H	H	L	L	L	Read/masked write cycle (lower byte)
BWM	H	L	L	L	H	Read/masked block write cycle
BWM	H	L	H	L	H	Read/masked block write cycle (upper byte)
BWM	H	H	L	L	H	Read/masked block write cycle (lower byte)
CBR	L	H	H	L	X	CBR refresh with reset to new mask
CBRN	L	H	H	H	X	CBR refresh with no reset

Notes:

(1) An operation is started by the falling edge of $\overline{\mathrm{RAS}}$. The level of CAS, UWE/LWE, and DSF at this negative transition defines the memory operation according to this table.
(2) The UWE and LWE pins have the OR function. That is if either upper or lower write enable goes low, then depending on CAS and DSF, a byte-controlled FW, RW, or BW will be performed. The inactive write enable has no other function.
(3) $X=$ Don't care.

Block Write Cycle (BWM new mask). This cycle allows for $\mathrm{I} / \mathrm{O}_{1}-\mathrm{I} / \mathrm{O}_{16}$ masking during a block write cycle. The masking function is identical to a standard masked write cycle with new mask. The column mask data on the I / O_{n} pins is latched by $\overline{\text { CAS }}$. See table 2.
Block Write Cycle (BWM old mask). This cycle uses the masked data previously set by the last LMR cycle to write four consecutive columns. See table 2 for column masking description.

Table 2. Block Write Addresses

Byte	Column Select		$\begin{gathered} \text { Colu } \\ A_{1} \end{gathered}$	$\begin{aligned} & \text { ress } \\ & A_{0} \end{aligned}$	Write
Lower $\left(1 / \mathrm{O}_{8}-1 / \mathrm{O}_{5}\right.$ are Don't Care)	$1 / \mathrm{O}_{4}$	1	1	1	Yes
		0	1	1	No
	$1 / O_{3}$	1	1	0	Yes
		0	1	0	No
	$1 / \mathrm{O}_{2}$	1	0	1	Yes
		0	0	1	No
	$1 / O_{1}$	1	0	0	Yes
		0	0	0	No
Upper $\left(1 / O_{16}-I / O_{13}\right.$ are Don't Care)	$\mathrm{l} / \mathrm{O}_{12}$	1	1	1	Yes
		0	1	1	No
	$1 / O_{11}$	1	1	0	Yes
		0	1	0	No
	$1 / O_{10}$	1	0	1	Yes
		0	0	1	No
	I/O9	1	0	0	Yes
		0	0	0	No

Flash Write Cycle (FW.) A flash write cycle can clear or set each of the sixteen 512 -bit data sets on the selected one of 512 possible rows according to data stored in the previously set color register. Only the byte masking function is provided. This cycle is useful in graphics processing applications when the screen should be cleared or set to some uniform value as quickly as possible.
Fast-Page Mode With Extended Data Output. In operation, this mode is the same as standard fast-page mode. A faster data rate is possible by keeping the same row address while successive column addresses are strobed onto the chip. Maintaining $\overline{\text { RAS }}$ low while CAS cycles are executed causes data to be transferred at a faster rate because row addresses are maintained internally and do not have to be reapplied. During fast-page mode, read, write, and read-modify-write cycles may be executed. Additionally, the write-per-bit control specified in the entry write cycle is maintained throughout the succeeding fast-page write cycle.

Extended Data Output

The introduction of the extended data output feature causes the output data to remain valid even after $\overline{\mathrm{CAS}}$ goes high. This is made possible by the addition of a transparent latch to the data amplifier circuit. Extended data output eliminates the toff parameter. The resulting longer data valid time allows for the speedup of the fast-page cycle time. Fast-page mode applications that try to run at minimum cycle times find that timing skews and propagation delays make the data valid time so narrow that reliable sampling is impossible. Extended data output is intended to solve this problem and permit faster page-mode cycle times.

In this operation, data pins $I / O_{1}-I / O_{16}$ remain in the low-impedance state and the valid data appears after the device access time. Device access time, $\mathrm{t}_{\text {PAC }}$ (pagemode access time), is the longest of these intervals: $t_{A A}$, $t_{\text {ACP }, ~}$ tcac.

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Input voltage, high	V_{IH}	2.4		$\mathrm{~V}_{\mathrm{CC}}+1.0$	V
Input voltage, low	V_{IL}	-1.0		0.8	V
Supply voltage	V_{CC}	4.5	5.0	5.5	${ }^{\circ} \mathrm{V}$
Ambient temperature	T_{A}	0		70	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings	
Voltage on any pin relative to GND	-1.0 to +7.0 V
Operating temperature, ToPR	0 to $+70^{\circ} \mathrm{C}$
Storage temperature, TSTG	-55 to $+125^{\circ} \mathrm{C}$
Short-circuit output current, los	50 mA
Power dissipation, PD	1.0 W

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Capacitance

$T_{A}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

Parameter	Symbol	Max	Unit	Pins Under Test
Input capacitance	c_{11}	5	pF	Addresses
	c_{12}	7	pF	$\overline{\text { RAS, }} \overline{\text { UWE, }}$ LWE, $\overline{\mathrm{O}}, \mathrm{DSF}$
Input/output capacitance	c_{0}	7	pF	$1 / O_{1}-1 / O_{16}$

DC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Standby current	$\mathrm{ICC2}$			2.0	mA	$\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}} \geq \mathrm{V}_{1 H}(\mathrm{~min}) ; \mathrm{l}_{0}=0 \mathrm{~mA}$
				1.0	mA	$\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}} \geq \mathrm{V}_{C C}-0.2 \mathrm{~V} ; \mathrm{l}_{0}=0 \mathrm{~mA}$
Input leakage current	$1(L)$	-10		10	$\mu \mathrm{A}$	$\mathrm{V}_{I N}=0 \mathrm{~V}$ to V_{CC}; all other pins not under test $=0 \mathrm{~V}$
Output leakage current	${ }^{\mathrm{O}}$ (L)	-10		10	$\mu \mathrm{A}$	$\mathrm{D}_{\text {OUT }}$ disabled; $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$
Output voltage, low	V_{OL}			0.4	V	$\mathrm{l}_{\mathrm{OL}}=2.1 \mathrm{~mA}$
Output voltage, high	V_{OH}	2.4			V	$\mathrm{IOH}=-2.5 \mathrm{~mA}$

AC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	-70		-80		Unit	Test Conditions
		Min	Max	Min	Max		
Operating current, average	$\mathrm{l}_{\mathrm{CO} 1}$		170		155	mA	$\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$ cycling; $\mathrm{t}_{\text {RC }}=t_{\text {RC }} \min ($ Notes 3,4$)$
Operating current, $\overline{\text { RAS }}$-only refresh cycle, average	$\mathrm{laC3}$		170		155	mA	$\overline{\text { RAS }}$ cycling; $\overline{\mathrm{CAS}} \geq \mathrm{V}_{\mathrm{IH}} \mathrm{min} ; \mathrm{t}_{\mathrm{RC}}={ }^{t_{R C}}$ min (Notes 3, 4)
Operating current, fast-page cycle, average	$\mathrm{ICC4}$		170		155	mA	$\overline{R A S} \leq V_{I L} ; \overline{\mathrm{CAS}}$ cycling; $\mathrm{t}_{\mathrm{PC}}=\mathrm{t}_{\mathrm{PC}} \mathrm{min}$ (Notes 3, 4)
Operating current, $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ refresh cycle, average	$\mathrm{ICC5}^{\text {c }}$		170		155	mA	$\overline{\text { RAS }}$ cycling; $\overline{\mathrm{CAS}} \leq \mathrm{V}_{\mathrm{IL}} \max ; \mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}$ min (Notes 3, 4)
Operating current (register set mode)	$\mathrm{I}_{\mathrm{cc} 6}$		170		155	ns	$\overline{\text { RAS }}, \overline{C A S}$ cycling; $t_{R C}=t_{R C}$ min (Notes 3, 4)
Operating current (flash write mode)	$\mathrm{ICC7}^{\text {c }}$		170		155	ns	$\overline{\text { RAS }}$ cycling; $t_{R C}=t_{R C}$ min (Notes 3, 4)
Operating current (block write mode)	Iccs		185		170	ns	$\overline{\text { RAS }}, \overline{C A S}$ cycling; $t_{R C}=t_{R C}$ min (Notes 3, 4)
Operating current (fast page block write mode)	$l_{\text {cos }}$		170		155	ns	$\overline{\mathrm{RAS}} \leq \mathrm{V}_{\mathrm{LL}} ; \overline{\mathrm{CAS}}$ cycling; tpC $=$ tpC $\mathrm{min} ;$ (Notes 3, 4)
Access time from column address	$t_{\text {AA }}$		35		40	ns	(Notes 9, 15)
Access time from CAS precharge (rising edge)	$t_{\text {ACP }}$		40		45	ns	(Note 9)
Column address setup time	${ }^{\text {tasc }}$	0		0		ns	
Row address setup time	$t_{\text {ASR }}$	0		0		ns	
Column address to UWE delay time	${ }^{\text {taw }}$	55		65		ns	(Note 13)
Access time from $\overline{\mathrm{CAS}}$ (falling edge)	${ }^{\text {c }}$ CAC		20		20	ns	(Notes 9, 14)
Column address hold time	${ }^{\text {t }} \mathrm{CAH}$	15		15		ns	
$\overline{\text { CAS }}$ pulse width	${ }^{\text {t }}$ CAS	20	10,000	20	10,000	ns	
$\overline{\mathrm{CAS}}$ hold time for $\overline{\mathrm{CAS}}$ before $\overline{\text { RAS refreshing }}$	${ }^{\text {t }} \mathrm{CHR}$	15		15		ns	(Note 15)

AC Characteristics (cont)

Parameter	Symbol	-70		-80		Unit	Test Conditions
		Min	Max	Min	Max		
$\overline{\text { CAS }}$ to output in low-Z	${ }^{\text {t }}$ CLZ	0		0		ns	(Note 9)
Fast-page $\overline{\mathrm{CAS}}$ precharge time	t_{CP}	10		10		ns	
$\overline{\text { CAS }}$ precharge time	${ }^{\text {t }}$ CPN	10		10		ns	
Fast-page $\overline{\mathrm{CAS}}$ precharge to UWE delay time	${ }^{\text {t }}$ CPWD	60		70		ns	(Note 13)
$\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ precharge time	${ }^{\text {t }}$ CRP	10		10		ns	(Note 10)
$\overline{\text { CAS }}$ hold time	${ }^{t} \mathrm{CSH}$	70		80		ns	
$\overline{\overline{C A S}}$ setup time for $\overline{\mathrm{CAS}}$ before $\overline{\text { RAS }}$ refresh cycle	tCSR	10		10		ns	(Note 15)
$\overline{\text { CAS to UWE delay }}$	towo	40		45		ns	(Note 13)
Write command referenced to $\overline{C A S}$ lead time	${ }^{\text {t }}$ WWL	15		20		ns	
Data-in hold time	${ }^{\text {t }}$ DH	15		15		ns	(Note 12)
Output hold time from CAS	$\mathrm{t}_{\mathrm{DHC}}$	5		5		ns	
Data-in setup time	$t_{\text {DS }}$	0		0		ns	(Note 12)
DSF setup time from CAS	$t_{\text {fCS }}$	0		0		ns	
DSF hold timefrom $\overline{\text { CAS }}$	${ }_{\text {tFCH }}$	12		15		ns	
DSF hold time from $\overline{\text { RAS }}$	$\mathrm{t}_{\mathrm{FRH}}$	10		12		ns	
DSF setup time from $\overline{\text { RAS }}$	${ }_{\text {t }}$	0		0		ns	
Mask write hold time referenced to CAS precharge	${ }^{\text {m }}$ MCH	0		0		ns	
Mask write setup time	$t_{\text {MCS }}$	0		0		ns	
Masked byte hold time referenced to $\overline{\text { RAS }}$	$\mathrm{t}_{\text {MRH }}$	0		0		ns	
Access time from $\overline{O E}$	toea		20		20	ns	(Notes 3, 4, 7, 8)
$\overline{\mathrm{OE}}$ data delay time	$\mathrm{t}_{\text {OED }}$	15		20		ns	
$\overline{O E}$ command hold time	$t_{\text {OEH }}$	0		0		ns	
$\overline{\mathrm{OE}}$ to $\overline{\mathrm{RAS}}$ inactive setup time	toes	0		0		ns	
Output turnoff delay from $\overline{O E}$	toez	0	15	0	20	ns	(Note 10)
Output disable time from $\overline{\text { CAS }}$ high	tofe	0	15	0	20	ns	(Note 17)
Output disable time from $\overline{\mathrm{RAS}}$ high	tofr	0	15	0	20	ns	(Note 17)
OE to output in low-Z	$\mathrm{t}_{\mathrm{OLz}}$	0		0		ns	
Fast-page read or write cycle time	tpe	35		40		ns	
Fast-page read-modify-write cycle time	tppiwe	95		105		ns	
Access time from $\overline{\mathrm{RAS}}$	$t_{\text {RAC }}$		70		80	ns	(Notes 9, 14, 15)
$\overline{\text { RAS }}$ to column address delay time	$t_{\text {RAD }}$	15	35	15	40	ns	(Note 15)
Row address hold time	$t_{\text {RAH }}$	10		10		ns	

AC Characteristics (cont)

Parameter	Symbol	-70		-80		Unit	Test Conditions
		Min	Max	Min	Max		
Column address lead time referenced to $\overline{\mathrm{RAS}}$ (rising edge)	${ }^{\text {R }}$ RAL	35.		40		ns	
$\overrightarrow{\mathrm{RAS}}$ pulse width	$t_{\text {RAS }}$	70	10,000	80	10,000	ns	
Fast-page $\overline{\text { RAS }}$ pulse width	$t_{\text {RASP }}$	70	125,000	80	125,000	ns	
Random read or write cycle time	t_{RC}	130		150		ns	
$\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ delay time	$t_{\text {RCD }}$	20	50	20	60	ns	(Note 14)
Read command hold time referenced to $\overline{\mathrm{CAS}}$	${ }^{\text {t }}$ RCH	0		0		ns	(Note 11)
Read command setup time	$t_{\text {RCS }}$	0		0		ns	
Refresh period	$t_{\text {REF }}$		8		8	ms	Addresses A_{0} - A_{8}
$\overline{\text { RAS }}$ hold time referenced to $\overline{\mathrm{CAS}}$ precharge	$t_{\text {RHCP }}$	40		45		ns	
$\overline{\mathrm{RAS}}$ precharge time	t_{RP}	50		60		ns	
$\overline{\mathrm{RAS}}$ precharge $\overline{\mathrm{CAS}}$ hold time	$t_{\text {RPC }}$	5		5		ns	
Read command hold time referenced to $\overline{R A S}$	$t_{\text {RRH }}$	0		0		ns	
Access time from DSF	$t_{\text {RSA }}$		25		30	ns	(Note 9)
$\overline{\mathrm{RAS}}$ hold time	$t_{\text {RSH }}$	20		20		ns	
Read-modify-write cycle time	$\mathrm{t}_{\text {RWC }}$	175		200		ns	
$\overline{\text { RAS }}$ to UWE delay	$t_{\text {RWD }}$	90		105		ns	(Note 13)
Write command referenced to RAS lead time	$t_{\text {RWL }}$	20		25		ns	
Rise and fall transition time	${ }_{\text {t }}$ T	3	50	3	50	ns	(Note 8)
Write-per-bit hold time	$t_{\text {WBH }}$	10		12		ns	
Write-per-bit setup time	twBS	0		0		ns	
Write command hold time	${ }^{\text {W WCH }}$	15		15		ns	
Write command setup time	$t_{\text {WCS }}$	0		0		ns	(Note 13)
Output disable time from WE low	twEZ	0	15	0	20	ns	(Note 17)
Write bit selection hold time	tWH	10		12		ns	
Write command pulse width	${ }^{\text {twP }}$	15		15		ns	(Note 16)
Write command pulse width	WPPZ	15		15		ns	(Note 18)
Write bit selection set-up time	tws	0		0		ns	,

AC Characteristics (cont)

Notes:

(1) Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.
(2) All voltages are referenced to GND.
 cycle rate
(4) I ICC1, ICC4, ICC6, ICC8, and I ICc9 depend on output loading. Specified values are obtained with outputs open.
(5) Column Address can be changed once while $\overline{R A S}=V_{I L}$ and $\overline{C A S}$ $=V_{I H}$
(6) An initial pause of 200μ s is required after power-up followed by any 8 RAS cycles before proper device operation is achieved.
(7) Ac measurements assume $\mathrm{t}_{\mathrm{T}}=5 \mathrm{~ns}$.
(8) $\mathrm{V}_{\mathrm{IH}}(\mathrm{min})$ and V_{IL} (max) are reference levels for measuring the timing of input signals. Transition times are measured between V_{IH} and V_{IL}.
(9) Measured with a load equivalent to TTL load and 100 pF .
(10) tOFF (max) and tOEZ (max) define the time at which the outputs achieve the open circuit condition and are not referenced to output voltage levels.
(11) Either $t_{R C H}$ or $t_{R R H}$ must be satisfied for a read cycle.
(12) These parameters are referenced to $\overline{C A S}$ leading edge in early wirte cyles and to LWE UWE leading edge in late write cycles and in read-modify-write cycles.
(13) twCs, $t_{\text {RWD }}, t_{C W D}, t_{C P W D}$, and $t_{A W D}$ are restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If $t_{\text {WCS }} \geq t_{\text {WCS }}$ (min), the cycle is an early write cycle and the data l/O pins will remain open-circuit (high impedance) through the entire cycle. If $t_{\text {RWD }} \geq t_{\text {RWD }}(\mathrm{min}), t{ }_{C W D}$ $\geq t_{C W D}(\min), t_{A W D} \geq t_{A W D}(\min)$, and $t_{C P W D} \geq t_{C P W D}(m i n)$, the cycle is a read-modify-write cycle and the data out will contain data read from the selected cell. If neither set of conditions is satisfied, the condition of the data out (at access time) is indeterminate.
(14) Operation within the $t_{R C D}$ (max) limit insures $t_{\text {RAC }}$ (max) can be met. Delay time thCD (max) is specified as a reference point only. If $t_{R C D}$ is greater than the specified $t_{R C D}$ (max) limit, then access time is controlled by $t_{C A C}$.
(15) Operation within the $t_{R A D}$ (max) limit insures that $t_{R A C}$ (max) can be met. Delay time $\mathrm{t}_{\mathrm{BAD}}$ (max) is specified as a reference point only. If $t_{R A D}$ is longer than the specified $t_{R A D}$ (max) limits, then access time is controlled by $t_{A A}$.
(16) twP is applicable for late write cycle or read-modify-write cycle. In early write cycle, tWCH (min) should be satisfied.
(17) tWEZ, $t_{O F C}$, and $t_{O F R}$ define the time at which the outputs achieve the open circuit condition and output control dependence on OE becomes invalid. The effective time is "the earlier of tWEZ and the later of $t_{O F C}$ and $t_{O F R}$." In addition, to make tWEZ effective, tWPZ must be satisfied.

Timing Waveforms

Read Cycle (With exended output)

Timing Waveforms (cont)

Early-Write Cycle; Word and Word Block

Timing Waveforms (cont)

Early-Write Cycle; Upper-Byte and Upper-Byte Block

Timing Waveforms (cont)

Late-Write Cycle; Word and Word Block

18m

Timing Waveforms (cont)

Late-Write Cycle; Upper-Byte and Upper-Byte Block

Timing Waveforms (cont)

Read-Modity-Write Cycle; Word and Word Block

Read-Modify-Write Cycle; Upper-Byte and Upper-Byte Block

Timing Waveforms (cont)
Fast-Page, Early-Write Cycle; Word and Word Block

Timing Waveforms (cont)

Fast-Page, Early-Write Cycle; Upper-Byte and Upper-Byte Block

Timing Waveforms (cont)

Fast-Page, Late-Write Cycle; Word and Word Block

[7A H or L (nput); Invallid data (output)

Timing Waveforms (cont)

Fast-Page, Late-Write Cycle; Upper-Byte and Upper-Byte Block

Timing Waveforms (cont)

Fast-Page, Read-Modify-Write Cycle (With exended output); Upper-Byte and Upper-Byte Block (Sheet 1 of 2)

18m
D. H or L(input); Invalld data (output)

The waveforms above are repeated on sheet 2 but without the timing parameters.

Timing Waveforms (cont)

Fast-Page, Read-Modify-Write Cycle (With exended output); Upper-Byte and Upper-Byte Block (Sheet 2 of 2)

Timing Waveforms (cont)

Fast-Page, Read Cycle (With extended output); Word

Timing Waveforms (cont)

Load Old Mask Register Cycle (Early-write)

Timing Waveforms (cont)

Load Old Mask Register Cycle (Read with extended output)

Timing Waveforms (cont)

Load Old Mask Register Cycle (Upper-byte, early-write)

Timing Waveforms (cont)

Load Old Mask Register Cycle (Late-write)

Timing Waveforms (cont)
Load Old Mask Register Cycle (Upper-byte, late-write)

Timing Waveforms (cont)
Color Register Set Cycle (Read with extended output)

Timing Waveforms (cont)

Color Register Set Cycle (Early-write)

Timing Waveforms (cont)
Color Register Set Cycle (Upper-byte, early-write)

Timing Waveforms (cont)

Color Register Set Cycle (Late-write)

Timing Waveforms (cont)

Color Register Set Cycle (Upper-byte, late-write)

18 m

Timing Waveforms (cont)

Flash-Write Cycle

Timing Waveforms (cont)

Flash-Write Cycle (Upper-byte, flash-write)

Timing Waveforms (cont)

Hidden Refresh Cycle (With exended output)

Timing Waveforms (cont)

RAS-Only Refresh Cycle

$\overline{C A S}$ Before $\overline{R A S}$ Refresh Cycle

Fast Static RAMs (64K)

Amplication specific Davices

(350)

- M |1 1 M
 (解異)

Section 19

Fast Static RAMs (64K)

μ PD	Org	Features	
4361 B	$64 \mathrm{~K} \times 1$	$12-\mathrm{ns}$	19 a
4362 B	$16 \mathrm{~K} \times 4$	12 -ns	19 b
4363 B	$16 \mathrm{~K} \times 4$	12 -ns; Output enable	19 c
4368	$8 \mathrm{~K} \times 8$	15-ns; Output enable, two chip enables	19 d
4369	$8 \mathrm{~K} \times 9$	15-ns; Output enable, two chip enables	19 e

Description

The μ PD4361B is a 65,536 -word by 1 -bit static RAM fabricated with advanced silicon-gate technology. CMOS peripheral circuits and N -channel memory cells with polysilicon resistors make the μ PD4361B a highspeed device that requires very low power and no clock or refreshing.

The device is packaged in a 22 -pin plastic DIP and 24-pin plastic SOJ and has two types of access times, address and chip select.

Features

- $65,536 \times 1$-bit organization
- Single +5 -volt power supply
- Fully static operation-no clock or refreshing
- TTL-compatible inputs and outputs
- Separated data input and output
- Three-state outputs
- Standard 22 -pin plastic DIP and 24-pin plastic SOJ

Ordering Information

Part Number	Access Time (max)	Package
μ PD4361BCR-12	12 ns	22-pin plastic DIP
CR-15	15 ns	
CR-20	20 ns	
μ PD4361BLA-12	12 ns	24-pin plastic SOJ
LA-15	15 ns	
LA-20	20 ns	

Pin Configurations

22-Pin Plastic DIP

24-Pin Plastic SOJ

Pin Identification

Symbol	Function
$A_{0}-A_{15}$	Address inputs
$D_{I N}$	Data input
$D_{\text {OUT }}$	Data output
$\overline{\overline{C S}}$	Chip select
$\overline{W E}$	Write enable
GND	Ground
$V_{C C}$	+5 -volt power supply

Absolute Maximum Ratings

Supply voltage, V_{CC}	-0.5 to +7.0 V
Input voltage output voltage, $\mathrm{V}_{\mathbb{I N}}($ Note 1)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Operating temperature, $\mathrm{T}_{\mathrm{OPR}}$	0 to $+70^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\text {STG }}$	-55 to $+125^{\circ} \mathrm{C}$
Power dissipation, P_{D}	1.0 W

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Notes:

(1) $\mathrm{V}_{\mathbb{N}}=-3.0 \mathrm{~V}$ minimum for 10 ns maximum pulse.

Truth Table

Function	$\overline{\text { CS }}$	$\overline{\text { WE }}$	Input/Output	Icc
Not selected	H	X	High-Z	Standby
Read	L	H	DOUT	Active
Write	L	L.	High-Z	Active

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Input voltage, high	V_{IH}	2.2		$\mathrm{~V}_{\mathrm{CC}}+0.3$	V
Input voltage, low	V_{IL}	-0.5		0.8	V
Operating temperature	T_{A}	0		70	${ }^{\circ} \mathrm{C}$

Notes:

(1) $\mathrm{V}_{\mathrm{IL}}=-3.0 \mathrm{~V}$ minimum for 10 ns maximum pulse.

Capacitance

$T_{A}=25^{\circ} \mathrm{C} ; f=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{IN}}$ and $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ (Note 1)

Parameter	Symbol	Min	Typ	Max	Unit
Input capacitance	C_{IN}			6	pF
Output capacitance	$\mathrm{C}_{\text {DOUT }}$			8	pF

Notes:

(1) This parameter is sampled and not 100% tested.

Block Diagram

μ PD4361B

DC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Typ	Max	Unit
Input leakage current	I_{LI}	-2	2	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{CC}
Output leakage current	I_{LO}	-2	2	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}} ; \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IH}}$
Standby supply current	I_{SB}		20	mA	$\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IH}}$
	$\mathrm{I}_{\mathrm{SB} 1}$		2	mA	$\overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V}$ or $\geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$
Output voltage, low	V_{OL}		0.4	V	$\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$
Output voltage, high	V_{OH}	2.4	V	$\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	

AC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	μ PD4361B-12		μ PD43618-15		μ PD4361 B-20		Unit	Test Conditions
		Min	Max	Min	Max	Min	Max		

Read Operation

Operating supply current	I_{CC}		130	120		110	mA	$\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{lL}} ; \mathrm{I}_{\mathrm{DOUT}}=0 \mathrm{~mA}$	
Read cycle time	t_{RC}	12		15		20		ns	(Note 2)
Address access time	t_{AA}		12		15		20	ns	
Chip select access time	$\mathrm{t}_{\mathrm{ACS}}$		12		15		20	ns	
Output hold from address change	t_{OH}	2		3		3		ns	
Chip select to output in low-Z	t_{LZ}	2		3		3		ns	(Note 3)
Chip deselect to output in high-Z	t_{HZ}	0	7	0	7	0	8	ns	(Note 4)
Chip select to power-up time	t_{PU}	0		0		0		ns	
Chip deselect to power-down time	t_{PD}	0	7	0	8	0	15	ns	

Write Operation

Write cycle time	${ }^{\text {tw }}$ c	12		15		20		ns	(Note 2)
Chip select to end of write	${ }^{\text {t }}$ CW	11		13		15		ns	
Address valid to end of write	$t_{\text {AW }}$	11		13		15		ns	
Address setup time	$t_{\text {AS }}$	0		0		0		ns	
Write pulse width	${ }^{\text {t }}$ WP	10		12		14		ns	
Write recovery time	$t_{\text {WR }}$	0		0		0		ns	
Data valid to end of write	${ }^{\text {t }}$ W ${ }_{\text {w }}$	7		7		8		ns	
Data hold time	$t_{\text {DH }}$	0		0		0		ns	
Write enable to output in high-Z	$t_{\text {W }}{ }^{\text {d }}$	0	7	0	7	0	8	ns	(Note 4)
Output active from end of write	${ }^{\text {tow }}$	0		0		0		ns	(Note 3)

Notes:

(1) Input pulse levels $=G N D$ to 3.0 V ; input pulse rise and fall times $=5 \mathrm{~ns}$; timing reference levels $=1.5 \mathrm{~V}$; see figures 1 and 2 for output load.
(2) All read cycle timings are referenced from the last valid address to the first transitioning address.
(3) Transition is measured at $\pm 200 \mathrm{mV}$ from steady-state voltage with the loading shown in figure 2.
(4) Transition is measured at $\mathrm{V}_{\mathrm{OL}}+200 \mathrm{mV}$ and $\mathrm{V}_{\mathrm{OH}}-200 \mathrm{mV}$ with the loading shown in figure 2.

Figure 1. Output Load

Figure 2. Output Load for $t_{H Z}, t_{L Z}, t_{W Z}$, and $t_{o w}$

Timing Waveforms

Address Access Cycle

Notes:
[1] $\overline{W E}$ is held high for a read cycle.
[2] The device is continually selected, where $\overline{C S}=\mathrm{V}_{\mathrm{IL}}$.

Chip Select Access Cycle

Timing Waveforms (cont)

WE-Controlled Write Cycle

Timing Waveforms (cont)

$\overline{\text { CS-Controlled Write Cycle }}$

Description

The μ PD4362B is a 16,384 -word by 4-bit static RAM fabricated with advanced silicon-gate technology. A unique design using CMOS peripheral circuits and N -channel memory cells with polysilicon resistors makes the μ PD4362B a high-speed device that requires very low power and no clock or refreshing.

The μ PD4362B is packaged in a standard 22 -pin plastic DIP and 24-pin plastic SOJ.

Features

- Single +5 -volt power supply
- Fully static operation-no clock or refreshing
- TTL-compatible inputs and outputs
- Common I/O capability
- Standard 300-mil, 22-pin plastic DIP and 24-pin plastic SOJ packaging

Ordering Information

Part Number	Access Time (max)	Package
μ PD4362BCR-12	12 ns	22-pin plastic DIP
CR-15 15 ns CR-20 20 ns μ PD4362BLA-12 12 ns 24-pin plastic SOJ LA-15 15 ns LA-20 20 ns		

Pin Configuration

22-Pin Plastic DIP

24-Pin Plastic SOJ

Pin Identification

Symbol	Function
$A_{0}-A_{13}$	Address inputs
$/ O_{1}-I / O_{4}$	Data inputs and outputs
$\overline{C S}$	Chip select
$\overline{W E}$	Write enable
GND	Ground
$V_{C C}$	+5 -volt power supply
$N C$	No connection

Absolute Maximum Ratings	
Supply voltage, V_{CC}	-0.5 to +7.0 V
Input and output voltages, V_{IN} (Note 1)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Operating temperature, $\mathrm{T}_{\mathrm{OPR}}$	0 to $+70^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\text {STG }}$	-55 to $+125^{\circ} \mathrm{C}$
Power dissipation, P_{D}	1.0 W

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Notes:

(1) $\mathrm{V}_{\mathbb{N}}=-3.0 \mathrm{~V}$ for to ns pulse.

Truth Table

Function	$\overline{\text { CE }}$	$\overline{\text { WE }}$	Input/Output	ICc
Not selected	H	X	High-Z	Standby
Read	L	H	Dout	Active
Write	L	L	DIN	Active

Notes:

(1) $X=$ don't care.

Capacitance

$T_{A}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$ (Note 1); $\mathrm{V}_{\mathbb{N}}$ and $\mathrm{V}_{\text {DOUT }}=0 \mathrm{~V}$

Parameter	Symbol	Min	Typ	Max	Unit
Input capacitance	$\mathrm{C}_{\mathbb{N}}$			6	pF
Output capacitance	$\mathrm{C}_{\text {DOUT }}$			8	pF

Notes:

(1) This parameter is sampled and not 100% tested.

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Input voltage, high	V_{IH}	2.2	$\mathrm{~V}_{\mathrm{CC}}+0.3$	V	
Input voltage, low	V_{IL}	-0.5	0.8	V	
Operating temperature	T_{A}	0		70	${ }^{\circ} \mathrm{C}$

Notes:

(1) $\mathrm{V}_{\mathrm{IL}}=-3.0 \mathrm{~V}$ for 10 ns pulse.

Block Diagram

DC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Input leakage current	I_{LI}	-2	2	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ to $V_{\mathrm{CC}} ; V_{\mathrm{CC}}=\max$	
Output leakage current	I_{LO}	-2	2	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V}$ to $V_{\mathrm{CC}} ; \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IH}} ; \mathrm{V}_{\mathrm{CC}}=\max$	
Standby supply current	I_{SB}		20	mA	$\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IH}}$	
	$\mathrm{I}_{\mathrm{SB} 1}$		2	mA	$\overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V}$ or $\geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$	
Output voltage, low	V_{OL}		0.4	V	$\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$	
Output voltage, high	V_{OH}	2.4	V	$\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		

AC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	μ PD4362B-12		μ PD4362B-15		$\mu \mathrm{PD} 4362 \mathrm{~B}-20$		Unit	Test Conditions
		Min	Max	Min	Max	Min	Max		
Read Operation									
Operating supply current	lcc		130		120		110	mA	$\overline{C S}=V_{\text {IL }} \mathrm{I}_{\text {DOUT }}=0 \mathrm{~mA}$
Read cycle time	$t_{\text {R }}$	12		15		20		ns	(Note 2)
Address access time	$t_{\text {AA }}$		12		15		20	ns	
Chip selection access time	$t_{\text {Acs }}$		12		15		20	ns	
Output hold from address change	${ }^{\text {toH }}$	2		3		3		ns	
Chip selection to output to low-Z	t_{LZ}	2		3		3		ns	(Note 3)
Chip deselection to output to high-Z	${ }^{\text {t }} \mathrm{HZ}$	0	7	0	7	0	8	ns	(Note 4)
Chip selection to power-up time	$t_{\text {Pu }}$	0		0		0		ns	
Chip deselection to power-down time	$t_{P D}$	0	7	0	15	0	20	ns	

Write Operation

Write cycle time	$t_{\text {w }}$	12		15		20		ns	(Note 2)
Chip selection to end of write	${ }^{\text {t }}$ CW	11		13		15		ns	
Address valid to end of write	$t_{\text {AW }}$	11		13		15		ns	
Address setup time	$t_{\text {AS }}$	0		0		0		ns	
Write pulse width	twp	10		12		14		ns	
Write recovery time	${ }^{\text {twn }}$	0		0		0		ns	
Data valid to end of write	$t_{\text {DW }}$	7		7		8		ns	
Data hold time	$t_{\text {DH }}$	0		0		0		ns	
Write enable to output in high-Z	${ }^{\text {t }}$ WZ	0	7	0	7	0	8	ns	(Note 4)
Output active from end of write	tow	0		0		0		ns	(Note 3)

Notes:

(1) Input puise levels = GND to 3.0 V ; input pulse rise and fall times $=5 \mathrm{~ns}$; timing reference levels $=1.5 \mathrm{~V}$; see figures 1 and 2 for output load.
(2) All read cycle timings are referenced from the last valid address to the first transitioning address.
(3) Transition is measured at $\pm 200 \mathrm{mV}$ from steady-state voltage with the loading shown in figure 2.
(4) Transition is measured at $\mathrm{V}_{\mathrm{OL}}+200 \mathrm{mV}$ and $\mathrm{V}_{\mathrm{OH}}-200 \mathrm{mV}$ with the loading shown in figure 2.

Figure 1. Output Load

Figure 2. Output Load for $t_{H Z}, t_{L Z}, t_{W Z}$, and $t_{\text {ow }}$

Timing Waveforms

Address Access Cycle

Chip Select Access Cycle

Timing Waveforms (cont)
$\overline{W E}$-Controlled Write Cycle

Timing Waveforms (cont)

CS-Controlled Write Cycle

19b

Description

The μ PD4363B is a 16,384 -word by 4 -bit static RAM fabricated with advanced silicon-gate technology. A unique design using CMOS peripheral circuits and N -channel memory cells with polysilicon resistors makes the $\mu \mathrm{PD} 4363 \mathrm{~B}$ a high-speed device that requires very low power and no clock or refreshing.

The $\mu \mathrm{PD} 4363 \mathrm{~B}$ is packaged in a standard $300-\mathrm{mil}$, 24-pin plastic DIP and 24-pin plastic SOJ.

Features

- Single +5 -volt power supply
- Fully static operation-no clock or refreshing
- TTL-compatible inputs and outputs
- Common I/O capability
\square OE eliminates the need for external bus buffers
- Three-state outputs
- Low power dissipation
- 130 mA max (active)
-2 mA max (standby)
- Standard 300-mil, 24-pin plastic DIP and 24-pin plastic SOJ packaging

Ordering Information

Part Number	Access Time (max)	Package
μ PD4363BCR-12	12 ns	24-pin plastic DIP
CR-15	15 ns	
CR-20	20 ns	
μ PD4363BLA-12	12 ns	24-pin plastic SOJ
LA-15	15 ns	
LA-20	20 ns	

Pin Configuration
24-Pin Plastic DIP or SOJ

Pin Identification

Symbol	Function
$A_{0}-A_{13}$	Address inputs
$I / O_{1}-I / O_{4}$	Data inputs and outputs
$\overline{C S}$	Chip select
$\overline{O E}$	Output enable
$\overline{W E}$	Write enable
$G N D$	Ground
$V C C$	+5 -volt power supply
$N C$	No connection

Absolute Maximum Ratings

Supply voltage, V_{CC}	-0.5 to +7.0 V
Input and output voltages, V_{IN} (Note 1)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Operating temperature, $\mathrm{T}_{\mathrm{OPR}}$	0 to $+70^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\text {STG }}$	-55 to $+125^{\circ} \mathrm{C}$
Power dissipation, P_{D}	1.0 W

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Notes:

(1) $\mathrm{V}_{\mathbb{N}}(\mathrm{min})=-3.0 \mathrm{~V}$ for 10 ns pulse.

Capacitance

$T_{A}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathbb{N}}$ and $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}($ Note 1$)$					
Parameter	Symbol	Min	Typ	Max	Unit
Input capacitance	$\mathrm{C}_{\mathbb{N}}$			6	pF
Output capacitance	$\mathrm{C}_{\text {DOUT }}$			8	pF

Notes:

(1) This parameter is sampled and not 100% tested.

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Input voltage, high	$\mathrm{V}_{1 \mathrm{H}}$	2.2	$\mathrm{~V}_{\mathrm{CC}}+0.3$	V	
Input voltage, low	$\mathrm{V}_{1 \mathrm{~L}}$	-0.5	0.8	V	
Operating temperature	T_{A}	0		70	${ }^{\circ} \mathrm{C}$

Notes:
(2) $\mathrm{V}_{\mathrm{IL}}=-3.0 \mathrm{~V}$ for 10 ns pulse.

Truth Table

Function	$\overline{\mathbf{C S}}$	$\overline{\mathrm{WE}}$	$\overline{\mathrm{OE}}$	Input/Output	Icc
Not selected	H	X	X	High-Z	Standby
Read	L	H	L	Dout	Active
Dout disabled	L	H	H	High-Z	Active
Write	L	L	X	DIN	Active

Block Diagram

DC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Input leakage current	I_{LI}	-2	2	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ to $V_{C C} ; V_{\mathrm{CC}}=\max$	
Output leakage current	I_{LO}	-2	2	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V}$ to $V_{\mathrm{CC}} ; \overline{\mathrm{CS}}$ or $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}} ; V_{\mathrm{CC}}=\max$	
Standby supply current	I_{SB}		20	mA	$\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IH}}$	
	$\mathrm{I}_{\mathrm{SB} 1}$		2	mA	$\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V}$ or $\geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$	
Output voltage, low	V_{OL}		0.4	V	$\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$	
Output voltage, high	V_{OH}	2.4	V	$\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		

AC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	$\mu \mathrm{PD} 4363 \mathrm{~B}-12$		μ PD43638-15		μ PD4363B-20		Unit	Test Conditions
		Min	Max	Min	Max	Min	Max		
Read Operation									
Operating supply current	I_{cc}		130		120		110	mA	$\overline{\mathrm{CS}}=\mathrm{V}_{1 L} ; \mathrm{I}_{\text {DOUT }}=0 \mathrm{~mA}$
Read cycle time	$t_{\text {RC }}$	12		15		20		ns	(Note 2)
Address access time	$t_{\text {AA }}$		12		15		20	ns	
Chip select access time	$t_{\text {ACS }}$		12		15		20	ns	
Output hold from address change	${ }^{\text {toh }}$	2		3		3		ns	
Chip select to output in low-Z	tLZ	2		3		3		ns	(Note 3)
Chip deselect to output in high-Z	${ }_{t} \mathrm{HZ}$	0	7	0	7	0	8	ns	(Note 4)
Output enable access time	${ }^{\text {toE }}$		8		9		10	ns	
Output enable to output in low-Z	$\mathrm{t}_{\mathrm{OLZ}}$	0		0		0		ns	(Note 3)
Output disable to output in high-Z	${ }^{\text {tohz }}$	0	7	0	7	0	8	ns	(Note 4)
Chip select to power-up time	tpu	0		0		0		ns	
Chip deselect to power-down time	${ }^{\text {tPD }}$	0	7	0	10	0	12	ns	
Write Operation									
Write cycle time	twc	12		15		20		ns	(Note 2)
Chip select to end of write	${ }^{\text {t }}$ W ${ }_{\text {W }}$	11		13		15		ns	
Address valid to end of write	${ }^{\text {t }}$ W	11		13		15		ns	
Address setup time	${ }_{t}$ AS	0		0		0		ns	
Write pulse width	${ }^{\text {twp }}$	10		12		14		ns	
Write recovery time	$\mathrm{t}_{\text {WR }}$	1		1		1		ns	
Data valid to end of write	${ }^{\text {t }}$ W	7		7		8		ns	
Data hold time	${ }^{t}{ }_{\text {DH }}$	0		0		0		ns	
Write enable to output in high-Z	${ }^{\text {twz }}$	0	7	0	7	0	8	ns	(Note 4)
Output active from end of write	tow	0		0		0		ns	(Note 3)

Notes:

(1) Input pulse levels $=$ GND to 3.0 V ; input pulse rise and fall times $=5 \mathrm{~ns}$; timing reference levels $=1.5 \mathrm{~V}$; see figures 1 and 2 for output load.
(2) All read and write cycle timings are referenced from the last valid address to the first transitioning address.
(3) Transition is measured at $\pm 200 \mathrm{mV}$ from steady-state voltage with the loading shown in figure 2.
(4) Transition is measured at $\mathrm{V}_{\mathrm{OL}}+200 \mathrm{mV}$ and $\mathrm{VOH}_{\mathrm{OH}}-200 \mathrm{mV}$ with the loading shown in figure 2.

Figure 1. Output Load

Figure 2. Output Load for $t_{H Z}, t_{L Z}, t_{O H Z}, t_{O L Z}, t_{W Z}$, and $t_{o w}$ Induding Scope and Jig

Timing Waveforms (cont)

Address Access Cycle

Notes:
[1] $\overline{W E}$ is held high for a read cycle.
[2] The device is continually selected, where $\overline{C S}=\overline{O E}=V_{1 L}$.

Chip Select Access Cycle

Timing Waveforms (cont)

$\overline{O E}$-Controlled Access Cycle

WE-Controlled Write Cycle

Notes:
[1] $\overline{\mathrm{CS}}$ or $\overline{\mathrm{WE}}$ must be high during address transition.
[2] If $\overline{\mathrm{OE}}$ is high, the I/O pins remain in high impedance.
[3] During this period, the VO pins may be active ($\overline{\mathrm{OE}}$ low). Therefore, data input signals of opposite polarity to the outputs must not be applied.

Timing Waveforms (cont)

$\overline{C S}$-Controlled Write Cycle

19c

Description

The μ PD4368 is a high-speed 8,192 -word by 8 -bit static RAM designed with CMOS peripheral circuits and N -channel memory cells with polysilicon resistors. Two chip enable pins are provided for battery backup application, and an output enable pin is provided for easy interface.
The μ PD4368 is packaged in 28 -pin plastic DIP and 28-pin plastic SOJ packaging.

Features

- 8,192 by 8 -bit organization
- Single +5 -volt power supply
- Fully static operation-no clock or refreshing
- TTL-compatible inputs and outputs
- Common I/O using three-state outputs
- One $\overline{\mathrm{OE}}$ and two $\overline{\mathrm{CE}}$ pins for easy application
- Standard 28-pin plastic DIP, 28-pin plastic SOJ packaging

Ordering Information

Part Number	Access Time (max)	Package
μ PD4368CR-15	15 ns	28-pin plastic DIP
CR-20	20 ns	
μ PD4368LA-15	15 ns	28 -pin plastic SOJ
LA-20	20 ns	

Pin Configuration

28-Pin Plastic DIP or SOJ

Pin Identification

Symbol	Function
$\mathrm{A}_{0}-\mathrm{A}_{12}$	Address inputs
$\mathrm{I} / \mathrm{O}_{1}-\mathrm{I} / \mathrm{O}_{8}$	Data inputs/outputs
$\overline{\mathrm{CE}}$	Chip enable (active low)
$\overline{C E_{2}}$	Chip enable (active high)
$\overline{\mathrm{OE}}$	Output enable
$\overline{\mathrm{WE}}$	Write enable
GND	Ground
$V_{C C}$	+5 -volt power supply
$N C$	No connection

Block Diagram

Absolute Maximum Ratings

Supply voltage, V_{CC} (Note 1)	-0.5 to +7.0 V
Input voltage, V_{IN} (Note 1)	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Output voltage, $\mathrm{V}_{\text {OUT }}$ (Note 1)	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Operating temperature, $\mathrm{T}_{\text {OPR }}$	0 to $+70^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\text {STG }}$	-55 to $+125^{\circ} \mathrm{C}$
Power dissipation, P_{D}	1.0 W

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Notes:

(1) $-3.0 \mathrm{~V} \min$ for 10 ns maximum pulse.

Capacitance

$T_{A}=25^{\circ} \mathrm{C} ; f=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{IN}}$ and $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

Parameter	Symbol	Min	Typ	Max	Unit
Input capacitance	$\mathrm{C}_{\mathbb{N}}$			6	pF
Input/output capacitance	$\mathrm{C}_{\text {YO }}$			8	pF

Truth Table

Function	$\overline{\mathrm{CE}}_{\mathbf{1}}$	$\mathrm{CE}_{\mathbf{2}}$	$\overline{\mathrm{OE}}$	$\overline{\text { WE }}$	I/O	ICc
Not selected	H	X	X	X	High-Z	Standby
Not selected	X	L	X	X	High-Z	Standby
Dout disabled	L	H	H	H	High-Z	Active
Read	L	H	L	H	DOUT	Active
Write	L	H	X	L	DIN	Active

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unlt
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Input voltage, high	V_{IH}	2.2		$\mathrm{~V}_{\mathrm{CC}}+0.3$	V
Input voltage, low	V_{IL}	-0.5	0.8	V	
Operating	T_{A}	0		70	${ }^{\circ} \mathrm{C}$

temperature

Notes:

(1) $\mathrm{V}_{1 \mathrm{~L}}=-3.0 \mathrm{~V} \min$ for 10 ns maximum pulse.

DC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Input leakage current	l_{LI}	-2		2	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}$ to V_{CC}
Output leakage current	Lo	-2		2	$\mu \mathrm{A}$	$\begin{aligned} & V_{V O}=0 V \text { to } V_{C C ;} \overline{C E} E_{1}=V_{I H} \text { or } C E_{2}=V_{I L} \\ & \text { or } \overline{O E}=V_{I H} \text { or } W E=V_{I L} \end{aligned}$
Operating supply current	lcc			120	mA	$\overline{C E}_{1}=V_{1 L} ; C E_{2}=V_{1 H} ; l_{\text {VO }}=0 \mathrm{~mA}(\mathrm{~min}$ cycle $)$
Standby supply current	$\mathrm{I}_{\text {SB }}$			20	mA	$\overline{C E}_{1} \geq V_{1 H}$ or $C E_{2}=V_{\text {IL }}$
	$\mathrm{I}_{\text {SB1 }}$			2	mA	$\overline{C E}_{1} \geq V_{C C}-0.2 \mathrm{~V} ; \mathrm{CE}_{2} \geq V_{C C}-0.2 \mathrm{~V}$
Output voltage, low	V_{OL}			0.4	V	$\mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA}$
Output voltage, high	V OH	2.4			V	$\mathrm{IOH}=-4.0 \mathrm{~mA}$

AC Characteristics

Notes:

(1) Input pulse levels $=0.8$ to 2.4 V ; input pulse rise and fall times $=$ 5 ns ; timing reference level $=1.5 \mathrm{~V}$; see figures 1 and 2 for output load.

Figure 1. Output Load

Figure 2. Output Load ($\mathbf{t}_{\mathbf{H Z 1}}, \boldsymbol{t}_{\mathrm{HZZ}}, \boldsymbol{t}_{\mathrm{OHZ}}, \mathrm{t}_{\mathbf{W H Z}}$, $\boldsymbol{t}_{\text {LZ1 }}$, t $_{\text {LZ2 }}$, t $_{\text {OLZ }}$, t $\left._{\text {OW }}\right)$

Timing Waveforms

Address Access Cycle

Chip Enable Access Cycle

Notes:
[1] $\overline{W E}$ is high for a read cycle.
[2] Address valid prior to or coincident with the latter of the low transition of $\overline{\mathrm{CE}}_{1}$ or the high transition of CE_{2}.

Timing Waveforms (cont)

WE-Controlled Write Cycle

Timing Waveforms (cont)

$\overline{C_{1}}$-Controlled Write Cycle

Notes:

[1] A write cycle occurs during the overlap of a low $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{WE}}$ and a high CE_{2}.
[2] $\overline{\mathrm{CE}}_{1}$ or $\overline{W E}$ must be high or CE_{2} must be low during address transition.

Timing Waveforms (cont)

CE_{2}-Controlled Write Cycle

Description

The μ PD4369 is a high-speed 8,192-word by 9 -bit static RAM fabricated with CMOS peripheral circuits and N -channel memory cells with polysilicon resistors. Two chip enable pins are provided for battery backup application, and an output enable pin is provided for easy interface.

The μ PD4369 is packaged in standard 28 -pin plastic DIP and 28 -pin plastic SOJ packaging.

Features

- 8,192 by 9-bit organization
- Single +5 -volt power supply
- Fully static operation-no clock or refreshing
- TTL-compatible inputs and outputs
- Common I/O using three-state outputs
- One $\overline{\mathrm{OE}}$ and two $\overline{\mathrm{CE}}$ pins for easy application
- Standard 28-pin plastic DIP and 28-pin plastic SOJ packaging

Ordering Information

Part Number	Access Time (max)	Package
μ PD4369CR-15	15 ns	28-pin plastic DIP
CR-20	20 ns	
μ PD4369LA-15	15 ns	28-pin plastic SOJ
LA-20	20 ns	

Pin Configuration

28-Pin Plastic DIP or SOJ

Pin Identification

Symbol	Function
$\mathrm{A}_{0}-\mathrm{A}_{12}$	Address inputs
$/ / \mathrm{O}_{1}-/ / \mathrm{O}_{9}$	Data inputs/outputs
$\overline{\overline{C E}_{1}}$	Chip enable (active low)
CE_{2}	Chip enable (active high)
$\overline{\mathrm{OE}}$	Output enable
$\overline{\mathrm{WE}}$	Write enable
GND	Ground
VCC	+ -volt power supply
$N C$	No connection

Block Diagram

Absolute Maximum Ratings

Supply voltage, $\mathrm{V}_{\text {CC }}$ (Note 1)	-0.5 to +7.0 V
Input voltage, V_{IN} (Note 1)	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Output voltage, $\mathrm{V}_{\text {OUT }}$ (Note 1)	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Operating temperature, $\mathrm{T}_{\text {OPR }}$	0 to $+70^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\text {STG }}$	-55 to $+125^{\circ} \mathrm{C}$
Power dissipation, P_{D}	1.0 W

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Notes:

(1) -3.0 V min for 10 ns maximum pulse.

Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{IN}}$ and $\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}$					
Parameter	Symbol	Min	Typ	Max	Unit
Input capacitance	C_{IN}			6	pF
Input/output capacitance	$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$			8	pF

Truth Table

Function	$\overline{\mathrm{CE}}_{\mathbf{1}}$	$\mathrm{CE}_{\mathbf{2}}$	$\overline{\mathrm{OE}}$	$\overline{\mathrm{WE}}$	I/O	Icc
Not selected	H	X	X	X	High-Z	Standby
Not selected	X	L	X	X	High-Z	Standby
Dout disabled	L	H	H	H	High-Z	Active
Read	L	H	L	H	Dout	Active
Write	L	H	X	L	DIN	Active

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Input voltage, high	V_{IH}	2.2	$\mathrm{~V}_{\mathrm{CC}}+0.3$	V	
Input voltage, low	V_{IL}	-0.5	0.8	V	
Operating temperature	T_{A}	0	70	${ }^{\circ} \mathrm{C}$	

Notes:

(1) $\mathrm{V}_{\mathrm{IL}}=-3.0 \mathrm{~V}$ min for 10 ns maximum pulse.

DC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Input leakage current	lıI	-2		2	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{CC}
Output leakage current	Lo	-2		2	$\mu \mathrm{A}$	$\begin{aligned} & V_{V O}=0 V \text { to } V_{C C ;} \overline{C E}_{1}=V_{I H} \text { or } C E_{2}=V_{I L} \\ & \text { or } \overline{O E}=V_{I H} \text { or } \overline{W E}=V_{\mathrm{IL}} \end{aligned}$
Operating supply current	ICCA			120	mA	$\overline{C E}_{1}=V_{1 L} ; C E_{2}=V_{I H} ; I_{1 / O}=0 \mathrm{~mA}(\mathrm{~min}$ cycle)
Standby supply current	$\mathrm{I}_{\text {SB }}$			20	mA	$\overline{C E}_{1} \geq V_{\text {IH }}$ or $\mathrm{CE}_{2}=\mathrm{V}_{\mathrm{IL}}$
	$\mathrm{I}_{\text {SB1 }}$			2	mA	$\overline{C E}_{1} \geq V_{C C}-0.2 \mathrm{~V} ; \mathrm{CE}_{2} \geq \mathrm{V}_{C C}-0.2 \mathrm{~V}$
Output voltage, low	$\mathrm{V}_{\text {OL }}$			0.4	V	$\mathrm{IOL}=8 \mathrm{~mA}$
Output voltage, high	V_{OH}	2.4			V	$\mathrm{IOH}=-4.0 \mathrm{~mA}$

AC Characteristics

Parameter	Symbol	μ PD4369-15		μ PD4369-20		Unit	Test Conditions
		Min	Max	Min	Max		
Read Operation							
Read cycle time	$t_{\text {RC }}$	15		20		ns	
Address access time	$t_{\text {AA }}$		15		20	ns	
$\overline{C E}_{1}$ access time	${ }^{1} \mathrm{CO} 1$		15		20	ns	
$\underline{C E_{2} \text { access time }}$	${ }^{\text {c }} \mathrm{CO} 2$		15		20	ns	
Output enable to output valid	t_{OE}		9		10	ns	
Output hold from address change	${ }^{\text {tor }}$	3		3		ns	
$\overline{C E}_{1}$ to output in low-Z	$t_{L Z 1}$	3		3		ns	
$C E_{2}$ to output in low-Z	${ }_{\text {t LZ2 }}$	3		3		ns	
$\overline{O E}$ to output in low-Z	tolz	0		0		ns	
$\overline{\mathrm{CE}}_{1}$ to output in high-Z	${ }_{\text {t }}{ }^{\text {l }}$		8		9	ns	
$C E_{2}$ to output in high-Z	$\mathrm{t}_{\mathrm{HZ2}}$		8		9	ns	
OE to output in high-Z	${ }^{\text {t }} \mathrm{OHZ}$		7		8	ns	
Write Operation							
Write cycle time	$t_{\text {w }}$	15		20		ns	
Chip enable ($\overline{\mathrm{CE}}_{1}$) to end of write	${ }^{\text {t }}$ CW1	12		13		ns	
Chip enable (CE_{2}) to end of write	${ }^{\text {t }}$ CW2	12		13		ns	
Address valid to end of write	${ }^{\text {t }}$ AW	12		13		ns	,
Address setup time	$t_{A S}$	0		0		ns	
Write pulse width	${ }^{\text {W }}$ W	11		12		ns	
Write recovery time	${ }^{\text {twR }}$	2		2		ns	
Data valid to end of write	${ }^{\text {d }}$ D	9		10		ns	
Data hold time	${ }^{\text {t }}$ DH	0		0		ns	
Write enable to output in high-Z	${ }^{\text {t }}$ WHz		7		8	ns	
Output active from end of write	tow	0		0		ns	

Notes:

(1) Input pulse levels $=0.8$ to 2.4 V ; input pulse rise and fall times $=$ 5 ns ; see figures 1 and 2 for output load circuit.

Figure 1. Output Load ($\left.t_{R C}, t_{A A}, t_{C O 1}, t_{C O 2}, t_{O E}, t_{O H}\right)$

Figure 2. Output Load ($\boldsymbol{t}_{\mathrm{HZ1}}, \boldsymbol{t}_{\mathrm{HZ}}, \boldsymbol{t}_{\mathrm{OHZ}}, \mathrm{t}_{\mathrm{WHZ}}, \mathrm{t}_{\mathrm{LZ1}}$, t $_{\text {LZ2 }}$, t $_{\text {OLZ }}$, t $_{\text {OW) }}$)

Timing Waveforms

Address Access Cycle

(1) $\overline{W E}$ is high for a read cycle.
(2) The device is contnually selected, where $\overline{C E}_{1}=\overline{O E}=V_{I L}$ and $C E_{2}=V_{I H}$.
$831+5 \pi 53 \mathrm{~B}$
19e

Chip Enable Access Cycle

Notes:

[1] $\overline{W E}$ is high for a read cycle.
[2] Address valld prior to or coincident with the latter of the low transition of $\overline{\mathrm{CE}}_{1}$ or the high transition of CE_{2}.

Timing Waveforms (cont)

WE-Controlled Write Cycle

Notes:
[1] A write cycle occurs during the overlap of a low $\overline{\mathrm{CE}}_{1}$ and $\overline{W E}$ and a high CE_{2}. [2] $\overline{\mathrm{CE}}_{1}$ or $\overline{\mathrm{WE}}$ must be high or CE2 must be low during address transition.
[3] If $\overline{\mathrm{OE}}$ is high, the VO pins remain in high impedance.

Timing Waveforms (cont)

$\overline{C E}_{1}$-Controlled Write Cycle

Timing Waveforms (cont)
CE $_{2}$-Controlled Write Cycle

Section 20

Fast Static RAMs (256K)

$\mu \mathrm{PD}$	Organization	Features	
43251 B	$256 \mathrm{~K} \times 1$	$15-\mathrm{ns}$	20 a
43253 B	$64 \mathrm{~K} \times 4$	$15-\mathrm{ns} ;$ Output enable	20 b
43254 B	$64 \mathrm{~K} \times 4$	$15-\mathrm{ns}$	20 c
43258 A	$32 \mathrm{~K} \times 8$	$15-\mathrm{ns} ;$ Output enable	20 d
43259 A	$32 \mathrm{~K} \times 9$	$15-\mathrm{ns} ;$ Output enable	20 e

Upcoming Products

Description	Device Number	Comments
$32 \mathrm{~K} \times 8$	μ PD46258	Speeds to $6 \mathrm{~ns} ; 3.3$ - and $5-\mathrm{V}$ versions
$32 \mathrm{~K} \times 9$	μ PD46259	Speeds to $6 \mathrm{~ns} ; 3.3$ - and $5-\mathrm{V}$ versions

Description

The μ PD 43251 B is a 262,144 -word by 1 -bit static RAM fabricated with advanced silicon-gate technology. A unique design that uses CMOS peripheral circuits and N -channel memory cells with polysilicon resistors makes the μ PD43251B a high-speed device that requires no clock or refreshing.
The μ PD43251B is available in 24-pin plastic DIP or 24-pin plastic SOJ packaging.

Features

ㅁ 262,144-word x 1-bit organization

- Single +5 -volt power supply
- Fully static operation-no clock or refreshing
- TTL-compatible inputs and outputs
- Separated data input and output
- Three-state outputs
- Power dissipation
- 120 mA max (active)
-2 mA max (standby)
- Standard 300-mil, 24-pin plastic DIP or 24-pin plastic SOJ packaging

Ordering Information

Part Number	Access Time (max)	Package
μ PD43251BCR-15	15 ns	24-pin plastic DIP
CR-20	20 ns	
CR-25	25 ns	
μ PD43251BLA-15	15 ns	24-pin plastic SOJ
LA-20	20 ns	
LA-25	25 ns	

Pin Configuration

24-Pin Plastic DIP or SOJ

Pin Identification

Symbol	Function
$A_{0}-A_{17}$	Address inputs
$D_{\text {IN }}$	Data input
$D_{\text {OUT }}$	Data output
$\overline{\mathrm{CS}}$	Chip select
$\overline{\overline{W E}}$	Write enable
GND	Ground
$V_{\text {CC }}$	+5 -volt power supply

Absolute Maximum Ratings

Power supply voltage, $V_{C C}$	-0.5 to +7.0 V
Input voltage, V_{IN} (Note 1)	-0.5 to $+\mathrm{V}_{\mathrm{CC}}+0.3$
Output voltage, $\mathrm{V}_{\text {OUT }}$	-0.5 to $+\mathrm{V}_{\mathrm{CC}}+0.3$
Operating temperature, TOPR	0 to $+70^{\circ} \mathrm{C}$
Storage temperature, $T_{\text {STG }}$	-55 to $+125^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Notes:

(1) $\mathrm{V}_{\mathrm{IN}}=-3.0 \mathrm{~V}$ min for 10 ns maximum pulse.

Truth Table

Function	$\overline{\text { CS }}$	$\overline{\text { WE }}$	DOuT	Icc
Not selected	H	X	High-Z	Standby
Read	L	H	Output data	Active
Write	L	L	High-Z	Active

Capacitance
$T_{A}=+25^{\circ} \mathrm{C} ; f=1 \mathrm{MHz}$ (Note 1); $V_{\text {IN }}$ and $V_{\text {OUT }}=0 \mathrm{~V}$

Parameter	Symbol	Min	Typ	Max	Unit
Input capacitance	C_{l}			6	pF
Output capacitance	C_{O}			8	pF

Notes:

(1) This parameter is sampled and not 100% tested.

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Input voltage, low (Note 1)	V_{IL}	-0.5		0.8	V
Input voltage, high	V_{IH}	2.2	$\mathrm{~V}_{\mathrm{CC}}+0.3$	V	
Ambient temperature	T_{A}	0		70	${ }^{\circ} \mathrm{C}$

Notes:

(1) $\mathrm{V}_{\mathrm{IL}}=-3.0 \mathrm{~V}$ min for 10 ns maximum pulse.

Block Diagram

DC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Input leakage current	I_{LI}	-2	2	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{CC}	
Output leakage current	I_{LO}	-2	2	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}} ; \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IH}}$	
Standby supply current	I_{SB}		30	mA	$\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IH}} ; \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}	
	$\mathrm{I}_{\mathrm{SB} 1}$		2	mA	$\overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V}$ or $\geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$	
Output voltage, low	V_{OL}		0.4	V	$\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$	
Output voltage, high	V_{OH}	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	

AC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	$\mu \mathrm{PD} 43251 \mathrm{~B}-15$		$\mu \mathrm{PD} 43251 \mathrm{~B}$-20		μ PD43251B-25		Unit	Test Conditions (Note 1)
		Min	Max	Min	Max	Min	Max		
Read Operation									
Operating supply current	Icc		120		100		100	mA	$\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{LL}}(\mathrm{min}$ cycle$) ; \mathrm{l}_{\text {OUT }}=0 \mathrm{~mA}$
Read cycle time	$t_{\text {R }}$	15		20		25		ns	(Note 2)
Read access time	${ }^{\text {t }}$ AA		15		20		25	ns	
Chip select access time	$t_{\text {ACS }}$		15		20		25	ns	
Output hold from address change	t_{OH}	3		3		3		ns	
Chip select to output in low-Z	${ }^{\text {t }} \mathrm{CLz}$	3		3		3		ns	(Note 3)
Chip deselect to output in high-Z	${ }^{\text {t }} \mathrm{CHZ}$	0	6	0	8	0	10	ns	(Note 4)
Write Operation									
Write cycle time	twe	15		20		25		ns	(Note 2)
Chip select to end of write	${ }^{\mathrm{t}} \mathrm{CW}$	13		15		20		ns	
Address valid to end of write	${ }_{\text {t }}$ AW	13		15		20		ns	
Address setup time	$t_{\text {AS }}$	0		0		0		ns	
Write pulse width	$t_{\text {WP }}$	12		14		18		ns	
Write recovery time	$t_{\text {WR }}$	0		0		0		ns	
Data valid to end of write	tow	10		12		14		ns	
Data hold time	${ }_{\text {t }}{ }_{\text {d }}$	0		0		0		ns	
Write enable to output in high-Z	${ }^{\text {W WHz }}$	0	6	0	8	0	10	ns	(Note 4)
Output active from end of write	tow	0		0		0		ns	(Note 3)

Notes:

(1) Input pulse levels $=$ GND to 3.0 V ; input pulser rise and fall time $=$ 5 ns ; timing reference levels $=1.5 \mathrm{~V}$; see figures 1 and 2 for the output load.
(2) All read and write cycle timings are referenced from the last valid address to the first transitioning address.
(3) The transition is measured $\pm 200 \mathrm{mV}$ from steady-state voltage with the loading shown in figure 2 .
(4) The transition is measured at $\mathrm{V}_{\mathrm{OL}}+200 \mathrm{mV}$ and $\mathrm{V}_{\mathrm{OH}}-200 \mathrm{mV}$ with the loading shown in figure 2.

Figure 1. Output Load

Figure 2. Output Load for $\boldsymbol{t}_{\mathbf{C H Z}} \boldsymbol{t}_{\mathbf{C L Z}} \boldsymbol{t}_{\mathrm{OW}}$, and $\boldsymbol{t}_{\mathrm{WHZ}}$
.Induding Sope and Jig

Timing Waveforms

Address Access Cycle

Chip Select Access Cycle

Notes:
[1] $\overline{\mathrm{WE}}$ is held high for a read cycle.
[2] Address valid prior to or coincident with the low transition of $\overline{\mathrm{CS}}$.

Timing Waveforms (cont)

WE-Controlled Write Cycle

Timing Waveforms (cont)

CS-Controlled Write Cycle

20a

Notes:

[1] $\overline{\mathrm{CS}}$ or $\overline{\mathrm{WE}}$ must be high during address transition.
[2] A write cycle occurs during the overlap of a low CS and a low WE.
[3] twR is measured between $\overline{C S}$ or $\overline{W E}$, whichever rising edge occurs first, and the end of twC.

Description

The μ PD 43253 B is a 65,536 -word by 4 -bit static RAM fabricated with advanced silicon-gate technology. CMOS peripheral circuits and N -channel memory cells with polysilicon resistors make the μ PD43253B a highspeed device that requires very low power and no clock or refreshing.
The μ PD43253B is available in standard 28 -pin plastic DIP and SOJ packaging.

Features

ㅁ 65,536 -word $\times 4$-bit organization

- Single +5 -volt power supply
- Fully static operation-no clock or refreshing
- TTL-compatible inputs and outputs
- Common I/O capability
- Output enable (OE) control

ㅁ Low power dissipation
$-140 \mathrm{~mA} \max$ (active)
-2 mA max (standby)

- Standard 28 -pin, 300 -mil plastic DIP and SOJ packages

Ordering Information

Part Number	Access Time (max)	Package
μ PD43253BCR-15	15 ns	28-pin plastic DIP
CR-20	20 ns	
CR-25	25 ns	
$\mu \mathrm{PD} 43253 \mathrm{BLA}$-15	15 ns	28-pin plastic SOJ
LA-20	20 ns	
LA-25	25 ns	

Pin Configurations

28-Pin Plastic DIP

28-Pin Plastic SOJ

Pin Identification

Symbol	Function
$A_{0}-A_{15}$	Address inputs
$1 / O_{1}-I / O_{4}$	Data inputs and outputs
$\overline{\mathrm{CS}}$	Chip select
$\overline{\mathrm{OE}}$	Output enable
$\overline{\mathrm{WE}}$	Write enable
GND	Ground
$V_{C C}$	+5 -volt power supply

Absolute Maximum Ratings

Supply voltage, V_{CC}	-0.5 to +7.0 V
input and output voltages, V_{IN} (Note 1)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Operating temperature, $\mathrm{T}_{\text {OPR }}$	0 to $+70^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\text {STG }}$	-55 to $+125^{\circ} \mathrm{C}$
Power dissipation, P_{D}	1.0 W

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Notes:

(1) $\mathrm{V}_{\mathrm{IN}}(\mathrm{min})=-3.0 \mathrm{~V}$ for $10-$ ns puise.

Capacitance

$T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {DOUT }}=0 \mathrm{~V} ; f=1 \mathrm{MHz}$

Parameter	Symbol	Min	Max	Unit
Input capacitance	$\mathrm{C}_{\mathbb{N}}$		6	pF
Output capacitance	$\mathrm{C}_{\text {DOUT }}$		8	PF

Capacitance is sampled and not 100% tested.

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Input voltage, high	V_{IH}	2.2	$\mathrm{~V}_{\mathrm{CC}}+0.3$	V	
Input voltage, low	V_{IL}	-0.5		0.8	V
Operating temperature	T_{A}	0		70	${ }^{\circ} \mathrm{C}$

Notes:

(1) $\mathrm{V}_{\mathrm{IL}}=-3.0 \mathrm{~V}$ for $20-\mathrm{ns}$ pulse.

Truth Table

$\overline{\mathbf{C S}}$	$\overline{W E}$	$\overline{O E}$	Mode	Output	Icc
H	X	X	Not selected	High-Z	Standby
L	H	H	Output disable		Active
L	L	X	Write	$\mathrm{D}_{\text {IN }}$	Active
L	H	L	Read	Dout	

$X=$ don't care.

Block Diagram

DC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Input leakage current	I_{LI}	-2	2	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{CC}	
Output leakage current	I_{LO}	-2	2	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}} ; \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IH}}$	
Standby supply current	I_{SB}		30	mA	$\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IH}}$	
	$\mathrm{I}_{\mathrm{SB} 1}$		2	mA	$\overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V}$ or $\geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$	
Output voltage, low	V_{OL}		0.4	V	$\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$	
Output voltage, high	V_{OH}	2.4	V	$\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		

AC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	μ PD43253B-15		$\underline{\mu \text { PD }}$ (3253B-20		$\mu \mathrm{PD} 43253 \mathrm{~B}-25$		Unit	Test Conditions
		Min	Max	Min	Max	Min	Max		
Read Operation									
Operating supply current	Icc		140		120		120	mA	$\overline{C S}=V_{1 L} ; \mathrm{I}_{\text {DOUT }}=0 \mathrm{~mA}$
Address access time	$t_{\text {AA }}$		15		20		25	ns	
Chip select access time	${ }^{\text {t }}$ ACS		15		20		25	ns	
Chip deselection to output in high-Z	${ }^{\text {cherz }}$	0	6	0	8	0	10	ns	(Note 4)
Chip selection to output in low-Z	$\mathrm{t}_{\mathrm{CLZ}}$	3		3		3		ns	(Note 3)
Output enable access time	toe		8		10		12	ns	
Output hold from address change	${ }^{1} \mathrm{OH}$	3		3		3		ns	
Output enable to output in high-Z	$\mathrm{t}_{\mathrm{OHZ}}$		6		8		10	ns	
Output enable to output in low-Z	tolz	0		0		0		ns	
Read cycle time	$t_{\text {RC }}$	15		20		25		ns	(Note 2)

Write Operation

Address setup time	$t_{\text {AS }}$	0		0		0		ns	
Address valid to end of write	$t_{\text {AW }}$	13		15		20		ns	
Chip select to end of write	${ }^{\text {t }}$ CW	13		15		20		ns	
Data hold time	${ }^{\text {t }}{ }_{\text {DH }}$	0		0		0		ns	
Data valid to end of write	${ }^{\text {t }}$ W	10		12		14		ns	
Output active from end of write	tow	0		0		0		ns	(Note 3)
Write cycle time	twe	15		20		25		ns	
Write enable to output in high-Z	${ }^{\text {t WHz }}$	0	6	0	8	0	10	ns	(Note 4)
Write pulse width	twp	12		14		18		ns	
Write recovery time	${ }^{\text {W }}$ W	0		0		0		ns	

Notes:

(1) Inf at pulse levels $=$ GND to 3.0 V ; input pulse rise and fall times $=3 \mathrm{~ns}$; timing reference levels $=1.5 \mathrm{~V}$; see figure 1 for output load.
(2) All read cycle timings are referenced from the last valid address to
(3) Transition is measured at $\pm 200 \mathrm{mV}$ from steady-state voltage with the load shown in figure 1.
(4) Transition is measured at $\mathrm{V}_{\mathrm{OL}}+200 \mathrm{mV}$ and $\mathrm{V}_{\mathrm{OH}}-200 \mathrm{mV}$ with the load shown in figure 1. the first transitioning address.

Figure 1. Output Loads

$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ (inciuding scope and test jg) 	

Timing Waveforms

Address Access Cycle

Notes:
[1] WE is held high for a read cycle.
[2] The device is continually selected, where $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$.

Chip Select Access Cycle

Timing Waveforms (cont)
WE-Controlled Write Cycle

Timing Waveforms (cont)

CS-Controlled Write Cycle

Notes:

[1] $\overline{\mathrm{CS}}$ or $\overline{\mathrm{WE}}$ must be hagh duing address transition.
[2] A write cycle occurs during the overlap of a low $\overline{C S}$ and a low $\overline{W E}$.
[3] twA is measured between the rising edge of elther $\overline{\mathrm{CS}}$ or WE,
whichever occurs first, and the end of twC.

Description

The μ PD43254B is a 65,536 -word by 4-bit static RAM fabricated with advanced silicon-gate technology. CMOS peripheral circuits and N -channel memory cells with polysilicon resistors make the μ PD43254B a highspeed device that requires very low power and no clock or refreshing.
The μ PD43254B is available in standard 24-pin plastic DIP and SOJ packaging.

Features

- 65,536-word x 4-bit organization
- Single +5 -volt power supply
- Fully static operation-no clock or refreshing
- TTL-compatible inputs and outputs
- Common I/O capability
- Low power dissipation
- 140 mA max (active)
-2 mA max (standby)
- Standard 24-pin plastic DIP and SOJ packaging

Ordering Information

Part Number	Access Time (max)	Package
μ PD43254BCR-15	15 ns	24-pin plastic DIP
CR-20	20 ns	
CR-25	25 ns	
μ PD43254BLA-15	15 ns	24-pin plastic SOJ
LA-20	20 ns	
LA-25	25 ns	

Pin Configurations

24-Pin Plastic DIP

24-Pin Plastic SOJ

Pin Identification

Symbol	Function
$A_{0}-A_{15}$	Address inputs
$I / O_{1}-I / O_{4}$	Data inputs and outputs
$\overline{C S}$	Chip select
$\overline{W E}$	Write enable
GND	Ground
$V_{C C}$	+5 -volt power supply

Absolute Maximum Ratings

Supply voltage, V_{CC}	-0.5 to +7.0 V
Input and output voltages, V_{IN} (Note 1)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Operating temperature, $\mathrm{T}_{\mathrm{OPR}}$	0 to $+70^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\text {STG }}$	-55 to $+125^{\circ} \mathrm{C}$
Power dissipation, P_{D}	1.0 W

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Notes:

(1) $\mathrm{V}_{\mathbb{N}}(\mathrm{min})=-3.0 \mathrm{~V}$ for 10 ns pulse.

Capacitance

$T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{IN}}$ and $\mathrm{V}_{\text {DOUT }}=0 \mathrm{~V} ; f=1 \mathrm{MHz}$ (Note 1)

Parameter	Symbol	Min	Max	Unit
Input capacitance	$\mathrm{C}_{\mathbb{N}}$	6	pF	
Output capacitance	$\mathrm{C}_{\text {DOUT }}$		8	pF

Notes:

(1) This parameter is sampled and not 100% tested.

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Input voltage, high	V_{IH}	2.2		$\mathrm{~V}_{\mathrm{CC}}+0.3$	V
Input voltage, low	V_{IL}	-0.5		0.8	V
Operating temperature	T_{A}	0		70	${ }^{\circ} \mathrm{C}$

Notes:

(1) $\mathrm{V}_{\mathrm{IL}}=-3.0 \mathrm{~V}$ for 20 ns pulse.

Truth Table

Function	$\overline{\text { CS }}$	$\overline{\text { WE }}$	Input/Output	ICC
Not selected	H	X	High-Z	Standby
Read	L	H	Dout	Active
Write	L	L	DIN $_{\text {IN }}$	Active

Notes:

(1) $X=$ don't care.

Block Diagram

DC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Input leakage current	I_{LI}	-2	2	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{CC}	
Output leakage current	I_{LO}	-2	2	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}} ; \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IH}}$	
Standby supply current	I_{SB}		30	mA	$\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IH}}$	
	$\mathrm{I}_{\mathrm{SB} 1}$		2	mA	$\overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V}$ or $\geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$	
Output voltage, low	V_{OL}		0.4	V	$\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$	
Output voltage, high	V_{OH}	2.4	V	$\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		

AC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	$\mu \mathrm{PD} 43254 \mathrm{B-15}$		$\mu \mathrm{PD} 43254 \mathrm{~B}-20$		μ PD43254B-25		Unit	Test Conditions
		Min	Max	Min	Max	Min	Max		
Read Operation									
Operating supply current	Icc		140		120		120	mA	$\overline{\mathrm{CS}}=\mathrm{V}_{1 L} ; \mathrm{I}_{\text {DOUT }}=0 \mathrm{~mA}$
Read cycle time	t_{BC}	15		20		25		ns	(Note 2)
Address access time	$t_{\text {AA }}$		15		20		25	ns	
Chip select access time	$t_{A C S}$		15		20		25	ns	
Output hold from address change	t_{OH}	3		3		3		ns	
Chip selection to output in low-Z.	${ }^{\text {t CLZ }}$	3		3		3		ns	(Note 3)
Chip deselection to output in high-Z	${ }^{t_{C H Z}}$	0	6	0	8	0	10	ns	(Note 4)

Write Operation

Write cycle time	$t_{W C}$	15	20	25	ns	(Note 2)
Chip select to end of write	$t_{C W}$	13	15	20	ns	
Address valid to end of write	$t_{A W}$	13	15	20	ns	
Address setup time	$t_{A S}$	0	0	0	ns	
Write pulse width	$t_{W P}$	12	14	18	ns	
Write recovery time	$t_{W R}$	0	0	0	ns	
Data valid to end of write	$t_{D W}$	10	12	14	ns	
Data hold time	$t_{D H}$	0	0	0	ns	
Write enable to output in high-Z	$t_{W H Z}$	0	6	0	8	0
Output active from end of write	$t_{O W}$	0	0	10	ns	(Note 4)

Notes:

(1) Input pulse levels = GND to 3.0 V ; input pulse rise and fall times $=3 \mathrm{~ns}$; timing reference levels $=1.5 \mathrm{~V}$; see figures 1 and 2 for output load.
(2) All read cycle timings are referenced from the last valid address to the first transitioning address.
(3) Transition is measured at $\pm 200 \mathrm{mV}$ from steady-state voltage with the load shown in figure 2.
(4) Transition is measured at $\mathrm{V}_{\mathrm{OL}}+200 \mathrm{mV}$ and $\mathrm{V}_{\mathrm{OH}}-200 \mathrm{mV}$ with the load shown in figure 2.

Figure 1. Output Load

"Including Scope and Jig

Figure 2. Output Load for $\boldsymbol{t}_{\text {CHZ }}, \boldsymbol{t}_{\text {CLZ }}, t_{W H z}$, and $t_{\text {ow }}$

Timing Waveforms

Address Access Cycle

Chip Select Access Cycle

Timing Waveforms (cont)
WE-Controlled Write Cycle

Timing Waveforms (cont)

$\overline{C S}$-Controlled Write Cycle

Notes:
[1] $\overline{\mathrm{CS}}$ or $\overline{W E}$ must be high during address transition.
[2] A write cycle occurs during the overlap of a low $\overline{\mathrm{CS}}$ and a low $\overline{\mathrm{WE}}$.
[3] tWR is measured between the rising edge of either $\overline{C S}$ or $\overline{W E}$,
whichever occurs first, and the end of twC.
μ PD43258A

Description

The μ PD 43258 A is a 32,768 -word by 8 -bit static RAM fabricated with advanced silicon-gate technology. Its unique design uses CMOS peripheral circuits and N channel memory cells with polysilicon resistors to make the $\mu \mathrm{PD} 43258 \mathrm{~A}$ a high-speed device that requires very low power and no clock or refreshing.
Minimum standby power is drawn when $\overline{\mathrm{CS}}$ is high, independent of the other inputs' levels. The μ PD43258A is available in standard 28 -pin plastic DIP or SOJ packaging.

Features

- Single +5 -volt power supply
- Fully static operation-no clock or refreshing
- TTL-compatible inputs and outputs
- Common I/O using three-state outputs
- One $\overline{\mathrm{CS}}$ pin and one $\overline{\mathrm{OE}}$ pin for easy application
- Standard 28-pin plastic DIP and SOJ packaging
- Fast access time of 15 ns (max)

Ordering Information

Part Number	Access Time (max)	Package
μ PD43258ACR-15	15 ns	28-pin plastic DIP
CR-20 20 ns CR-25 25 ns $\mu \mathrm{PDD43258ALA-15}$ 15 ns $28-$ pin plastic SOJ LA-20 20 ns LA-25 25 ns		

Pin Configurations

28-Pin Plastic DIP or SOJ

Pin Identification

Symbol	Function
$A_{0}-A_{14}$	Address inputs
$/ O_{1}-I / O_{8}$	Data inputs and outputs
$\overline{\overline{C S}}$	Chip select
$\overline{\overline{O E}}$	Output enable
$\overline{\overline{W E}}$	Write enable
GND	Ground
$V_{C C}$	+5 -volt power supply

Block Diagram

8311-6435B

Truth Table

Function	$\overline{\mathbf{C S}}$	$\overline{\mathrm{OE}}$	$\overline{\text { WE }}$	I/O	ICc
Not selected	H	X	X	High-Z	Standby
Outputs disabled	L	H	H	High-Z	Active
Read	L	L	H	DOUT	Active
Write	L	X	L	DIN	Active

Notes:

(1) $\mathrm{X}=$ don't care.

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage		V_{CC}	4.5	5.0	5.5
Input voltage, low (Note 1)	V_{IL}	-0.5	V		
Input voltage, high	V_{HH}	2.2		$\mathrm{~V}_{\mathrm{CC}}+0.8$	V
Ambient temperature	T_{A}	0	V		

Notes:

(1) -3.0 V minimum (pulse width $=10 \mathrm{~ns}$).

DC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Input leakage current	$\mathrm{ILI}^{\text {l }}$	-2		2	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbf{I N}}=0 \mathrm{~V}$ to V_{CC}
//O leakage current	lo	-2		2	$\mu \mathrm{A}$	$\mathrm{V}_{V} \mathrm{O}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}} ; \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}}$ or $\overline{O E} \geq \mathrm{V}_{\mathrm{IH}}$ or $\overline{W E} \leq \mathrm{V}_{\mathrm{IL}}$
Standby supply current	$I_{\text {SB }}$			30	ma	$\overline{C S} \geq V_{I H} ; V_{I N}=V_{I H}$ or $V_{\text {IL }}$
	$\mathrm{ISB}_{\text {S }}$			2	mA	$\overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} ; \mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V}$ or $\geq \mathrm{V}_{\text {CC }}-0.2 \mathrm{~V}$
Output voltage, low	V_{OL}			0.4	V	$\mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA}$
Output voltage, high	V_{OH}	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$

μ PD43258A

Absolute Maximum Ratings

Supply voltage, V_{CC} (Note 1)	-0.5 to +7.0 V
Input voltage, $\mathrm{V}_{\text {IN }}($ Note 1)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Output voltage, $\mathrm{V}_{\mathrm{V} / \mathrm{O}}$ (Note 1)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Operating temperature, $\mathrm{T}_{\text {OPA }}$	0 to $+70^{\circ} \mathrm{C}$
Storage temperature, $T_{\text {STG }}$	-55 to $+125^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the timits specified under DC and AC Characteristics.

Capacitance

$T_{A}=+25^{\circ} \mathrm{C} ; f=1 \mathrm{MHz} ; V_{\mathbb{N}}$ and $V_{\text {OUT }}=0 \mathrm{~V}$

Parameter	Symbol	Min	Max	Unit
Input capacitance	C_{1}	6	pF	
Input/output capacitance	$\mathrm{C}_{\mathrm{l} / \mathrm{O}}$		8	pF

Notes:

(1) This parameter is sampled and not 100% tested

Notes:

(1) -3.0 V minimum (pulse width $=10 \mathrm{~ns}$).

AC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Operating supply current	Icc		150		140		130	mA	$\overline{\mathrm{CS}} \leq \mathrm{V}_{\text {IL }}($ min cycle $) ; \mathrm{l}_{1 / \mathrm{O}}=0 \mathrm{~mA}$
Read cycle time	$t_{\text {RC }}$	15		20		25		ns	(Note 2)
Address access time	$t_{A A}$		15		20		25	ns	(Note 2)
Chip select access time	$t_{\text {ACS }}$		15		20		25	ns	(Note 2)
Output enable to output valid	$\mathrm{t}_{\text {OE }}$		9		10		12	ns	(Note 2)
Output hold from address change	${ }^{\text {t }}$	3		3		3		ns	(Note 2)
Chip select to output in low-Z	${ }^{\text {t CLZ }}$	3		3		3		ns	(Note 3)
Output enable to output in low-Z	tolz	0		0		0		ns	(Note 3)
Chip select to output in high-Z	${ }^{\text {t }} \mathrm{CHZ}$		10		10		10	ns	(Note 3)
Output enable to output in high-Z	$\mathrm{t}_{\mathrm{OHz}}$		8		8		10	ns	(Note 3)

Write Operation

Write cycle time	${ }^{\prime}$ WC	15	20	25	ns
Chip select to end of write	t_{CW}	12	13	15	ns
Address valid to end of write	t_{AW}	12	13	15	ns
Address setup time	t_{AS}	0	0	0	ns
Write pulse width	t_{WP}	12	13	15	ns
Write recovery time	t_{WR}	0	0	0	ns
Data valid to end of write	t_{DW}	9	10	12	ns
Data hold time	t_{DH}	0	0	0	ns
Write enable to output in high-Z	$\mathrm{t}_{\mathrm{WHZ}}$		8		8

Notes:

(1) Input pulse levels $=0$ to 3 V ; input pulse rise and fall times $=$ 5 ns ; timing reference levels $=1.5 \mathrm{~V}$.
(2) See figure 1 for output load.
(3) See figure 2 for output load.

Figure 1. Output Load

Figure 2. Output Load for $\boldsymbol{t}_{\mathrm{CLZ}}, \mathrm{t}_{\mathrm{OLZ}}, \mathrm{t}_{\mathrm{CHz}}, \mathrm{t}_{\mathrm{OHZ}}, \mathrm{t}_{\mathrm{WHZ}}$, and t_{OW}

[^2]
Timing Waveforms

Address Access Cycle

Chip Select Access Cycle

20d

Timing Waveforms (cont)

WE-Controlled Write Cycle

Timing Waveforms (cont)

$\overline{C S}$-Controlled Write Cycle

Description

The μ PD 43259 A is a 32,768 -word by 9 -bit static RAM fabricated with advanced silicon-gate technology. Its unique design uses CMOS peripheral circuits and N channel memory cells with polysilicon resistors to make the μ PD43259A a high-speed device that requires very low power and no clock or refreshing.
Minimum standby power is drawn when $\overline{\mathrm{CS}}$ is high, independent of the other inputs' levels. The μ PD 43259 A is available in standard 32-pin plastic DIP or SOJ packaging.

Features

- Single +5 -volt power supply

ㅁ Fully static operation-no clock or refreshing

- TTL-compatible inputs and outputs
- Common I/O using three-state outputs
- One $\overline{C S}$ pin and one $\overline{O E}$ pin for easy application
- Standard 32-pin plastic DIP and SOJ packaging

ㅁ Fist access time of 15 ns (max)
Ordering Information

Part Number	Access Time (max)	Package
μ PD43259ACR-15	15 ns	32-pin plastic DIP
CR-20	20 ns	
CR-25	25 ns	
μ PD43259ALA-15	15 ns	32-pin plastic SOJ
LA-20	20 ns	
LA-25	25 ns	

Pin Configuration

32-Pin Plastic DIP or SOJ

Pin Identification

Symbol	Function
$A_{0}-A_{14}$	Address inputs
$I / O_{1}-I / O_{9}$	Data inputs and outputs
$\overline{C S}$	Chip select
$\overline{O E}$	Output enable
$\overline{W E}$	Write enable
$G N D$	Ground
$V_{C C}$	+5 -volt power supply
$N C$	No connection

Block Diagram

83YL-7535B

Truth Table

Function	$\overline{\mathbf{C S}}$	$\overline{\mathrm{OE}}$	$\overline{\text { WE }}$	I/O	ICC
Not selected	H	X	X	High-Z	Standby
Outputs disabled	L	H	H	High-Z	Active
Read	L	L	H	DOUT	Active
Write	L	X	L	DIN	Active

Notes:

(1) $X=$ don't care.

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Input voltage, low (Note 1)	V_{IL}	-0.5	0.8	V	
Input voltage, high	V_{IH}	2.2	$\mathrm{~V}_{\mathrm{CC}}+0.3$	V	
Ambient temperature	T_{A}	0		70	${ }^{\circ} \mathrm{C}$

Notes:

(1) -3.0 V minimum (pulse width $=10 \mathrm{~ns}$).

DC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Input leakage current	l_{1}	-2		2	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{CC}
I/O leakage current	Lo	-2		2	$\mu \mathrm{A}$	$V_{V / O}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}} ; \overline{C S} \geq \mathrm{V}_{\mathrm{H}}$ or $\overline{O E} \geq \mathrm{V}_{\mathrm{HH}}$ or $\overline{W E} \leq \mathrm{V}_{\mathrm{IL}}$
Standby supply current	$\mathrm{I}_{\text {SB }}$			30	ma	$\overline{\mathrm{CS}} \geq \mathrm{V}_{\text {IH }} ; \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or V_{IL}
	$\mathrm{I}_{\text {SB1 }}$			2	mA	$\overline{\mathrm{CS}} \geq \mathrm{V}_{\text {CC }}-0.2 \mathrm{~V} ; \mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V}$ or $\geq \mathrm{V}_{\text {CC }}-0.2 \mathrm{~V}$
Output voltage, low	V_{OL}			0.4	V	$\mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA}$
Output voltage, high	V_{OH}	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$

Absolute Maximum Ratings

Supply voltage, V_{CC} (Note 1)	-0.5 to +7.0 V
Input voltage, $\mathrm{V}_{\mathbb{I N}}$ (Note 1)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Output voltage, $\mathrm{V}_{/ / \mathrm{O}}$ (Note 1)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Operating temperature, T_{OPR}	0 to $+70^{\circ} \mathrm{C}$
Storage temperature, $T_{\text {STG }}$	-55 to $+125^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Capacitance

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\text {IN }}$ and $V_{\text {OUT }}=0 \mathrm{~V}$

Parameter	Symbol	Min	Max	Unit
Input capacitance	C_{1}		6	pF
Input/output capacitance	$\mathrm{C}_{1 / \mathrm{O}}$		8	pF

Notes:

(1) This parameter is sampled and not 100% tested.

Notes:

(1) -3.0 V minimum (pulse width $=10 \mathrm{~ns}$).

AC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	$\mu \mathrm{PD} 43259 \mathrm{~A}$-15		$\mu \mathrm{PDD43259A-20}$		μ PD43259A-25		Unit	Test Conditions
		Min	Max	Min	Max	Min	Max		
Read Operation									
Operating supply current	lc		150		140		130	mA	$\overline{\mathrm{CS}} \leq \mathrm{V}_{\mathrm{IL}}(\mathrm{min}$ cycle$) ; I_{1 / O}=0 \mathrm{~mA}$
Read cycle time	${ }^{\text {R }} \mathrm{C}$	15		20	.	25		ns	(Note 2)
Address access time	$t_{\text {AA }}$		15		20		25	ns	(Note 2)
Chip select access time	$t_{\text {ACS }}$		15		20		25	ns	(Note 2)
Output enable to output valid	toE		9		10		12	ns	(Note 2)
Output hold from address change	${ }^{\text {OHH}}$	3		3		3		ns	(Note 2)
Chip select to output in low-Z	${ }^{\text {t CLZ }}$	3		3		3		ns	(Note 3)
Output enable to output in low-Z	$\mathrm{t}_{\mathrm{OLZ}}$	0		0		0		ns	(Note 3)
Chip select to output in high-Z	${ }^{\text {t }} \mathrm{CHZ}$		10		10		10	ns	(Note 3)
Output enable to output in high-Z	${ }^{1} \mathrm{OHZ}$		8		8		10	ns	(Note 3)
Write Operation									
Write cycle time	${ }_{\text {t }}$ WC	15		20		25		ns	
Chip select to end of write	${ }^{t} \mathrm{CW}$	12		13		15		ns	
Address valid to end of write	$t_{\text {AW }}$	12		13		15		ns	
Address setup time	$t_{\text {AS }}$	0		0		0		ns	
Write pulse width	${ }_{\text {t }}$ WP	12		13		15		ns	
Write recovery time	tWR	0		0		0		ns	
Data valid to end of write	${ }^{\text {t }}$ W	9		10		12		ns	
Data hold time	${ }^{1} \mathrm{DH}$	0		0		0		ns	
Write enable to output in high-Z	${ }_{\text {t WHZ }}$		8		8		10	ns	(Note 3)
Output active from end of write	tow	0		0		0		ns	(Note 3)

Notes:

(1) Input pulse levels $=0$ to 3 V ; input pulse rise and fall times $=5 \mathrm{~ns}$; timing reference levels $=1.5 \mathrm{~V}$.
(2) See figure 1 for output load.
(3) See figure 2 for output load.

Figure 1. Output Load

Figure 2. Output Load for $\boldsymbol{t}_{\mathrm{CLz}}, \boldsymbol{t}_{\mathrm{OLZ}}, \boldsymbol{t}_{\mathrm{CHz}}, \boldsymbol{t}_{\mathrm{OHz}}, \boldsymbol{t}_{\mathrm{whz}}$, and $\boldsymbol{t}_{\mathrm{OW}}$

* Including scope and Jig

Timing Waveforms

Address Access Cycle

Notes:
[1] $\overline{W E}$ is held high for a read cycle.
[2] The device is continually selected, where $\overline{\mathrm{CS}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.

Chip Select Access Cycle

$20 e$

Notes:
[1] $\overline{\text { WE }}$ is high for a read cycle.
[2] Address valid prior to or coincident with the low transition of $\overline{\mathrm{CS}}$.

Timing Waveforms (cont)

WE-Controlled Write Cycle

Timing Waveforms (cont)

CS-Controlled Write Cycle

Application Specilic

 DevicesFast static RAMs (64K)
rast static RAMs (256K)

Fast Static RAMs

 (1M)Fas量Static RAMs
(4W||

Cache Data RAN.

Section 21
Fast Static RAMs (1M)

μ PD	Organization	Features	
431001	$1 \mathrm{M} \times 1$	$20-\mathrm{ns}$	21 a
431004	$256 \mathrm{~K} \times 4$	$20-\mathrm{ns}$	21 b
431008	$128 \mathrm{~K} \times 8$	$15-\mathrm{ns} ;$ Output enable	21 c
431009	$128 \mathrm{~K} \times 9$	$15-\mathrm{ns} ;$ Output enable	21 d
431016	$64 \mathrm{~K} \times 16$	$15-\mathrm{ns} ;$ Output enable	21 e
431018	$64 \mathrm{~K} \times 18$	$15-\mathrm{ns} ;$ Output enable	21 f

Upcoming Products

Description	Device Number	Comments
$128 \mathrm{~K} \times 8$	μ PD461008	Speeds to $8 \mathrm{~ns} ; 3.3$ - and 5 -V versions
$128 \mathrm{~K} \times 9$	μ PD461009	Speeds to $8 \mathrm{~ns} ; 3.3$ - and 5 -V versions
$64 \mathrm{~K} \times 16$	μ PD461016	Speeds to $8 \mathrm{~ns} ; 3.3$ - and 5 -V versions
$64 \mathrm{~K} \times 18$	μ PD461018	Speeds to $8 \mathrm{~ns} ; 3.3$ - and $5-\mathrm{V}$ versions

Description

The μ PD431001 is a $1,048,576$-word by 1 -bit static RAM fabricated with advanced silicon-gate technology. A unique design that uses CMOS peripheral circuits and N -channel memory cells with polysilicon resistors makes the μ PD431001 a high-speed device that requires no clock or refreshing. The $\mu \mathrm{PD} 431001$ is available in 28-pin plastic SOJ packaging.

Features

- 1,048,576-wordx $\mathbf{1}$-bit organization
- Single +5 -volt power supply
- Fully static operation-no clock or refreshing
- TTL-compatible inputs and outputs
- Separated data input and output
- Three-state outputs
- Power dissipation
- 140 mA max (active)
-2 mA max (standby)
- Standard 400-mil, 28 -pin plastic SOJ packaging

Ordering Information

Part Number	Access Time (max)	Package
μ PD431001LE-20	20 ns	28-pin plastic SOJ
$\frac{25 \mathrm{~ns}}{\mathrm{LE}-25}$	35 ns	

Pin Configuration

28-Pin Plastic SOJ

Pin Identification

Symbol	Function	
$A_{0}-A_{19}$	Address inputs	
$\mathrm{D}_{\text {IN }}$	Data input	
DOUT	Data output	a
$\overline{\text { CS }}$	Chip select	
WE	Write enable	
GND	Ground	
$V_{C C}$	+5-volt power supply	
NC	No connection	

Absolute Maximum Ratings

Power supply voltage, V_{CC}	-0.5 to +7.0 V
Input voltage, $\mathrm{V}_{\text {IN }}$ (Note 1)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Output voltage, $\mathrm{V}_{\text {OUT }}$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Operating temperature, $\mathrm{T}_{\text {OPR }}$	0 to $+70^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\text {STG }}$	-55 to $+125^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Notes:

(1) $\mathrm{V}_{\mathbb{N}}=-3.0 \mathrm{~V}$ minimum for 10 ns maximum pulse.

Truth Table

$\overline{\text { CS }}$	$\overline{\text { WE }}$	Function	DOut	ICC
H	X	Not selected	High-Z	Standby
L	H	Read	Output data	Active
L	L	Write	High-Z	Active

Note:

(1) $X=$ don't care

Capacitance
$T_{A}=+25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$ (Note 1); V_{IN} and $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

Parameter	Symbol	Min	Typ	Max	Unit
Input capacitance	C_{l}			6	pF
Output capacitance	C_{O}			10	pF

Notes:

(1) This parameter is sampled and not 100% tested.

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Supply voitage	V_{CC}	4.5	5.0	5.5	V
Input voitage, low	V_{IL}	-0.5		0.8	V
Input voltage, high	V_{IH}	2.2		$\mathrm{~V}_{\mathrm{CC}}+0.3$	V
Ambient temperature	T_{A}	0		70	${ }^{\circ} \mathrm{C}$

Note:

(1) $\mathrm{V}_{\mathrm{IL}}=-3.0 \mathrm{~V}$ minimum for 10 ns maximum pulse.

Block Diagram

DC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Input leakage current	LII	-2		2	$\mu \mathrm{A}$	$V_{\text {IN }}=0 \mathrm{~V}$ to $V_{\text {CC }}$
Output leakage current	Lo	-2		2	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}} ; \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IH}}$ or $\overline{\mathrm{WE}}=\mathrm{V}_{\mathrm{IL}}$
Standby supply current	$\mathrm{I}_{\text {SB }}$			30	mA	$\overline{C S}=V_{\mathbb{I H}} ; V_{\mathbb{I N}}=V_{\text {IH }}$ or V_{IL}
	$\mathrm{I}_{\text {SB1 }}$			2	mA	$\overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{N}} \leq 0.2 \mathrm{~V}$ or $\geq \mathrm{V}_{\text {CC }}-0.2 \mathrm{~V}$
Output voltage, low	V_{OL}			0.4	V	$\mathrm{l}_{\mathrm{OL}}=8.0 \mathrm{~mA}$
Output voltage, high	V_{OH}	2.4			V	$\mathrm{l}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$

AC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	μ PD431001-20		- ${ }^{\text {PDP431001-25 }}$		μ PD431001-35		Unit	Test Conditions
		Min	Max	Min	Max	Min	Max		
Read Operation									
Operating supply current	lcc		140		120		100	mA	$\begin{aligned} & \overline{C S}=V_{\mathrm{LL}} ; t_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}(\mathrm{~min}) ; \\ & \mathrm{l}_{\text {OUT }}=0 \mathrm{~mA} \end{aligned}$
Read cycle time	$t_{\text {R }}$	20		25		35		ns	(Note 2)
Read access time	$t_{A A}$		20		25		35	ns	
Chip select access time	$t_{\text {Acs }}$		20		25		35	ns	
Output hold from address change	${ }^{\text {t }} \mathrm{OH}$	5		5		5		ns	
Chip select to output in low-Z	${ }^{\text {t CLZ }}$	5		5		5		ns	(Note 3)
Chip deselect to output in high-Z	${ }^{t_{\mathrm{CHZ}}}$	0	8	0	10	0	15	ns	(Note 4)

Write Operation

Write cycle time	$t_{\text {w }}$	20		25		35		ns	(Note 2)
Chip select to end of write	${ }^{\text {c }}$ CW	15		20		30		ns	
Address valid to end of write	$t_{\text {AW }}$	15		20		30		ns	
Address setup time	$t_{A S}$	0		0		0		ns	
Write pulse width	$t_{\text {WP }}$	15		15		25		ns	
Write recovery time	${ }^{\text {t }}$ WR	3		3		3		ns	
Data valid to end of write	${ }^{\text {t }}$ WW	12		15		20		ns	
Data hold time	${ }^{\text {t }}{ }^{\text {H }}$	0		0		0		ns	
Write enable to output in high-Z	${ }^{\text {t }}$ WHZ		8	0	10	0	10	ns	(Note 4)
Output active from end of write	tow	0		0		0		ns	(Note 3)

Notes:

(1) Input pulse levels $=$ GND to 3.0 V ; input pulse rise and fall time $=$ 3 ns ; timing reference levels $=1.5 \mathrm{~V}$; see figures 1 and 2 for the output load.
(2) All read and write cycle timings are referenced from the last valid address to the first transitioning address.
(3) The transition is measured $\pm 200 \mathrm{mV}$ from steady-state voltage with the load shown in figure 2.
(4) The transition is measured at $\mathrm{V}_{\mathrm{OL}}+200 \mathrm{mV}$ and $\mathrm{V}_{\mathrm{OH}}-200 \mathrm{mV}$ with the load shown in figure 2.

Figure 1. Output Load

Timing Waveforms

Address Access Cycle

Notes:
[1] WE is held high for a read cycle.
[2] The device is continually selected, where $\overline{C S}=V_{\text {IL }}$.

Chip Select Access Cycle

Timing Waveforms (cont)
WE-Controlled Write Cycle

Timing Waveforms (cont)

CS-Controlled Write Cycle

Description

The μ PD431004 is a 262,144 -word by 4-bit static RAM fabricated with advanced silicon-gate technology. CMOS peripheral circuits and N -channel memory cells with polysilicon resistors make the μ PD431004 a highspeed device that requires very low power and no clock or refreshing.
The μ PD431004 is available in standard 28-pin plastic SOJ packaging.

Features

- 262,144-word x 4-bit organization
- Single +5 -volt power supply
- Fully static operation-no clock or refreshing
- TTL-compatible inputs and outputs
- Common I/O capability
- Low power dissipation
- 150 mA max (active)
-2 mA max (standby)
\square Standard 28 -pin plastic SOJ packaging
Ordering Information

Part Number	Access Time (max)	Package
μ PD431004LE-20	20 ns	28-pin plastic SOJ
LE-25	25 ns	
LE-35	35 ns	

Pin Configuration

28-Pin Plastic SOJ

Pin Identification

Symbol	Function
$A_{0} \cdot A_{17}$	Address inputs
$1 / O_{1} \cdot 1 / O_{4}$	Data inputs and outputs
$\overline{C S}$	Chip select
$\overline{\overline{W E}}$	Write enable
GND	Ground
$V_{C C}$	+5 -volt power supply
$N C$	No connection

Absolute Maximum Ratings

Supply voltage, V_{CC}	-0.5 to +7.0 V
Input and output voltages, V_{IN} (Note 1)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.3$
Operating temperature, $\mathrm{T}_{\mathrm{PPR}}$	0 to $+70^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\text {STG }}$	-55 to $+125^{\circ} \mathrm{C}$
Power dissipation, PD_{D}	1.0 W

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Notes:

(1) $\mathrm{V}_{\mathbb{I N}}=-3.0 \mathrm{~V}$ minimum for 10 ns pulse.

Capacitance

$T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathbb{N}}$ and $\mathrm{V}_{\text {DOUT }}=0 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$ (Note 1)

Parameter	Symbol	Min	Max	Unit
Input capacitance	$\mathrm{C}_{\mathbb{N}}$		6	PF
Output capacitance	$\mathrm{C}_{\text {DOUT }}$		10	PF

Notes:

(1) This parameter is sampled and not 100% tested.

Truth Table

Function	$\overline{\mathbf{C S}}$	$\overline{\text { WE }}$	$\overline{\text { OE }}$	Input/Output	ICC
Not selected	H	X	X	High-Z	Standby
Output disable	L	H	H	High-Z	Active
Read	L	H	L	DouT	Active
Write	L	L	X	DIN	Active

Notes:

(1) $X=$ don't care.

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Input voltage, high	V_{IH}	2.2		$\mathrm{~V}_{\mathrm{CC}}+0.3$	V
Input voltage, low	V_{IL}	-0.5		0.8	V
Operating temperature	T_{A}	0		70	${ }^{\circ} \mathrm{C}$

Notes:

(1) $V_{I L}=-3.0 \mathrm{~V}$ minimum for 10 ns pulse.

Block Diagram

DC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Input leakage current	l_{LI}	-2		2	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to V_{CC}
Output leakage current	l_{L}	-2		2	$\mu \mathrm{A}$	$V_{\text {OUT }}=O V$ to $V_{C C} ; \overline{\mathrm{CS}}=\mathrm{V}_{\text {IH }}$ or $\overline{W E}=V_{\text {IL }}$ or $\overline{\mathrm{OE}}=\mathrm{V}_{\text {IH }}$
Standby supply current	$I_{\text {SB }}$			30	mA	$\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IH}}$
	$I_{\text {SB1 }}$			2	mA	$\overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} ; \mathrm{V}_{\mathbb{N}} \leq 0.2 \mathrm{~V}$ or $\geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$
Output voltage, low	VOL			0.4	V	$\mathrm{lOL}=8.0 \mathrm{~mA}$
Output voltage, high	V_{OH}	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$

AC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

		$\mu \mathrm{PD} 431004$-20		μ PD431004-25		[PD431004-35			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Test Conditions

Read Operation

Operating supply current	Icc		150		140		120	mA	$\begin{aligned} & \overline{C S}=V_{\mathrm{IL}} ; \mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}(\mathrm{~min}) ; \\ & \mathrm{I}_{\text {DOUT }}=0 \mathrm{~mA} \end{aligned}$
Read cycle time	$t_{\text {R }}$	20		25		35		ns	(Note 2)
Address access time	$t_{\text {AA }}$		20		25		35	ns	
Chip select access time	$t_{\text {ACS }}$		20		25		35	ns	
Output hold from address change	t_{OH}	5		5		5		ns	
Output enable access time	t_{OE}		10		10		15	ns	
Output enable to output in low-Z	tolz	0		0		0		ns	(Note 3)
Output disable to output in high-Z	$\mathrm{t}_{\mathrm{OHz}}$	0	8	0	10	0	15	ns	(Note 4)
Chip selection to output in low-Z	$\mathrm{t}_{\mathrm{CLZ}}$	5		5		5		ns	(Note 3)
Chip selection to output in high-Z	${ }^{\text {t }} \mathrm{CHZ}$	0	8	0	10	0	15	ns	(Note 4)

Write Operation

Write cycle time	${ }^{\text {twC }}$	20		25		35		ns	(Note 2)
Chip select to end of write	${ }^{\text {t }} \mathrm{CW}$	15		20		30		ns	
Address valid to end of write	$t_{\text {AW }}$	15		20		30		ns	
Address setup time	$t_{\text {AS }}$	0		0		0		ns	
Write pulse width	$t_{\text {WP }}$	15		20		30		ns	
Write recovery time	$t_{\text {WR }}$	3		3		3		ns	
Data valid to end of write	${ }^{\text {t }}$ DW	12		12		20		ns	
Data hold time	${ }^{t_{\text {DH }}}$	0		0		0		ns	
Write enable to output in high- Z	${ }^{\text {W WHZ }}$	0	8	0	8	0	10	ns	(Note 4)
Output active from end of write	tow	0		0		0		ns	(Note 3)

Notes:

(1) Input pulse levels $=$ GND to 3.0 V ; input pulse rise and fall times $=3 \mathrm{~ns}$; timing reference levels $=1.5 \mathrm{~V}$; see figures 1 and 2 for output load.
(2) All read cycle timings are referenced from the last valid address to the first transitioning address.
(3) Transition is measured at $\pm 200 \mathrm{mV}$ from steady-state voltage with the load shown in figure 2.
(4) Transition is measured at $\mathrm{V}_{\mathrm{OL}}+200 \mathrm{mV}$ and $\mathrm{V}_{\mathrm{OH}}-200 \mathrm{mV}$ with the load shown in figure 2.

Figure 1. Output Load

Timing Waveforms

Address Access Cycle

Chip Select Access Cycle

Timing Waveforms (cont)

Output Enable Access Cycle

Notes:
[1] WE is held high for a read cycle.
[2] The device is continually selected, where $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$.

WE-Controlled Write Cycle

Notes:

[1] $\overline{\mathrm{CS}}$ or $\overline{\mathrm{WE}}$ must be high during address transition.
[2] If $\overline{\mathrm{OE}}$ is high, the VO pins remain in high impedance.
[3] During this period, the VO pins may be active ($\overline{O E}$ low). Therefore, data input signals of opposite polarity to the outputs must not be applied.

Timing Waveforms (cont)

$\overline{C S}$ Controlled Write Cycle

Notes:

[1] $\overline{\mathrm{CS}}$ or $\overline{\mathrm{WE}}$ must be high during address transition.
[2] If $\overline{\mathrm{OE}}$ is high, the VO pins remain in high impedance.
[3] During this period, the VO pins may be active ($\overline{\mathrm{OE}}$ low). Therefore, data input signals of opposite polarity to the outputs must not be appled.
\qquad

Description

The μ PD431008 is a 131,072 -word by 8 -bit static RAM fabricated with advanced silicon-gate technology. Its unique design uses CMOS peripheral circuits and N channel memory cells to make the μ PD431008 a highspeed device that requires no clock or refreshing. The μ PD431008 is available in a standard 32 -pin plastic SOJ.

Features

- Single +5 -volt power supply
- Fully static operation-no clock or refreshing
- TTL-compatible inputs and outputs
- Common I/O using three-state outputs
- One $\overline{\mathrm{CS}}$ pin and one $\overline{\mathrm{OE}}$ pin for easy application
- Standard 32 -pin plastic SOJ packaging

Ordering Information

Part Number	Access Time (max)	Package
μ PD431008LE-15	15 ns	32-pin plastic SOJ
LE-17 17 ns LE-20 20 ns		

Pin Identification

Symbol	Function
$A_{0}-A_{16}$	Address inputs
$/ / O_{1}-1 / O_{8}$	Data inputs and outputs
$\overline{C S}$	Chip select
$\overline{\mathrm{OE}}$	Output enable
$\overline{\mathrm{WE}}$	Write enable
GND	Ground
VCC	+5 -volt power supply
$N C$	No connection

Pin Configuration

32-Pin Plastic SOJ

Block Diagram

Absolute Maximum Ratings

Supply voltage, V_{CC} (Note 1)	-0.5 to +7.0 V
Input voltage, $\mathrm{V}_{\mathrm{IN}}($ Note 1)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Output voltage, $\mathrm{V}_{1 / \mathrm{O}}$ (Note 1)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Operating temperature, $\mathrm{T}_{\mathrm{OPR}}$	0 to $+70^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\mathrm{STG}}$	-55 to $+125^{\circ} \mathrm{C}$
Power dissipation, P_{D}	1.0 W

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Note:

(1) -3.0 V minimum (pulse width $=10 \mathrm{~ns}$).

Capacitance

$T_{A}=+25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathbb{N}}$ and $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

Parameter	Symbol	Min	Max	Unit
Input capacitance	C_{1}		6	pF
Input/output capacitance	$\mathrm{C}_{/ / \mathrm{O}}$		8	pF

Note:
(1) This parameter is sampled and not 100% tested.

DC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Input leakage current	${ }_{\text {LI }}$	-2		2	$\mu \mathrm{A}$	$V_{\mathbb{I N}}=0 \mathrm{~V}$ to $V_{C C}$
I/O leakage current	Lo	-2		2	$\mu \mathrm{A}$	$V_{\text {I/O }}=0 \mathrm{~V}$ to $\mathrm{V}_{C C}$
Operating supply current	$\left.\left.\mathrm{ICC1}^{\left(t_{\mathrm{RC}}\right.}=t_{\text {WC }}\right)=15 \mathrm{~ns}\right)$			160	mA	$\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}} ; \mathrm{I}_{1 / \mathrm{O}}=0 \mathrm{~mA}$
	$\left.\left.\mathrm{ICC2}^{(} \mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{WC}}\right)=17 \mathrm{~ns}\right)$			150	mA	$\overline{C S}=V_{1 L} ; I_{/ / O}=0 \mathrm{~mA}$
	$\left.\mathrm{I}_{\mathrm{CC} 3}\left(\mathrm{t}_{\mathrm{RC}}={ }^{\text {t }} \mathrm{WC}\right)=20 \mathrm{~ns}\right)$			140	mA	$\overline{C S}=V_{\text {IL }} ; I_{\text {I/O }}=0 \mathrm{~mA}$
Standby supply current	$\mathrm{I}_{\text {SB }}$			30	mA	$\overline{C S} \geq V_{\text {IH }} ; \mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}
	$\mathrm{I}_{\text {SB1 }}$			10	mA	$\overline{\mathrm{CS}} \geq \mathrm{V}_{C C}-0.2 \mathrm{~V} ; \mathrm{V}_{\mathbb{I}} \leq 0.2 \mathrm{~V}$ or $\geq \mathrm{V}_{C C}-0.2 \mathrm{~V}$
Output voltage, low	$\mathrm{V}_{\text {OL }}$			0.4	V	$\mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA}$
Output voltage, high	V_{OH}	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$

AC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

		μ PD $431008-15$		μ PD431008-17		μ PD431008-20		Unit	Test Conditions
Parameter	Symbol	Min	Max	Min	Max	Min	Max		

Read Operation

Read cycle time	$t_{\text {R }}$	15		17		20		ns
Address access time	$t_{A A}$		15	!	17		20	ns
Chip select access time	$t_{\text {acs }}$		15		17		20	ns
Output enable to output valid	$\mathrm{t}_{\text {OE }}$		8		9		10	ns
Output hold from address change	t_{OH}	5		5		5		ns
Chip select to output in low-Z	${ }^{\text {che }}$	5		5		5		ns
Output enable to output in low-Z	tolz	1		1		1		ns
Chip select to output in high-Z	${ }^{\text {t }} \mathrm{CHZ}$		7		7		7	ns
Output enable to output in high-Z	${ }^{\text {tohz }}$		7		7		7	ns

Write Operation

Write cycle time	two	15		17		20		ns
Chip select to end of write	${ }^{\text {t }}$ CW	10		11		12		ns
Address valid to end of write	$t_{\text {aw }}$	9		11		12		ns
Address setup time	$t_{\text {AS }}$	0		0		0		ns
Write pulse width	twp	9		10		10		ns
Write recovery time	${ }^{\text {twR }}$	0		0		0		ns
Data valid to end of write	${ }^{\text {t }}$ W ${ }_{\text {W }}$	8		9		10		ns
Data hold time	${ }^{\text {t }} \mathrm{DH}$	0	\cdots	0		0		ns
Write enable to output in high-Z	${ }^{\text {twhz }}$		7		7		7	ns
Output active from end of write	tow	3		3		3		ns

Figure 1.Output Loads

$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ (ncluding scope and test gg) $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ for $\mathrm{t}_{\mathrm{CHz}} \mathrm{t}_{\mathrm{CLZ}} \mathrm{t}_{\mathrm{OHZ}} \mathrm{t}^{\mathrm{OLZ}}{ }^{\text {tow }}$, and $\mathrm{t}_{\mathrm{WHz}}$	
	8sFm-908A

Timing Waveforms

Address Access Cycle

Notes:
[1] WE is held high for a read cycle.
[2] The device is continually selected, where $\overline{C S}=\overline{\mathrm{OE}}=\mathrm{V}_{\text {IL }}$.

Chip Select Access Cycle

Notes:

[1] WE is high for a read cycle.
[2] Address valld prior to or coincldent with the low transilion of $\overline{\mathrm{CS}}$.

Timing Waveforms (cont)

WE-Controlled Write Cycle

Notes:
[1] A write cycle occurs during the overlap of a low $\overline{\mathrm{CS}}$ and a low $\overline{\mathrm{WE}}$.
[2] $\overline{\mathrm{CS}}$ or WE must be high during address transition.
[3] During thls period, the VO pins may be in the output state.
Therefore, Input signals of opposite phase must not be applled.

Timing Waveforms (cont)

Cs-Controlled Write Cycle

Description

The μ PD431009 is a 131,072 -word by 9 -bit static RAM fabricated with advanced silicon-gate technology. Its unique design uses CMOS peripheral circuits and N channel memory cells to make the μ PD431009 a highspeed device that requires no clock or refreshing. The μ PD431009 is available in a standard 36 -pin plastic SOJ.

Features

- Single +5 -volt power supply
- Fully static operation-no clock or refreshing
- TTL-compatible inputs and outputs
- Common I/O using three-state outputs
- One $\overline{\mathrm{CS}}$ pin and one $\overline{\mathrm{OE}}$ pin for easy application
- Standard 36 -pin, 400 -mil plastic SOJ packaging

Ordering Information

Part Number	Access Time (max)	Package
μ PD431009LE-15	15 ns	36-pin plastic SOJ
$\frac{\text { LE-17 }}{\text { LE-20 }}$	17 ns	

Pin Identification

Symbol	Function
$A_{0}-A_{16}$	Address inputs
$I / O_{1}-I / O_{9}$	Data inputs and outputs
$\overline{\overline{C S}}$	Chip select
$\overline{\overline{O E}}$	Output enable
$\overline{W E}$	Write enable
$G N D$	Ground
$V_{C C}$	+5 -volt power supply
$N C$	No connection

Pin Configuration

36-Pin Plastic SOJ

Block Diagram

Absolute Maximum Ratings

Supply voltage, V_{CC} (Note 1)	-0.5 to +7.0 V
Input voltage, $\mathrm{V}_{\mathrm{IN}}($ Note 1)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Output voltage, $\mathrm{V}_{\text {/O }}$ (Note 1)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Operating temperature, $T_{O P R}$	0 to $+70^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{S T G}$	-55 to $+125^{\circ} \mathrm{C}$
Power dissipation, P_{D}	1.0 W

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Note:

(1) -3.0 V minimum (pulse width $=10 \mathrm{~ns}$).

Capacitance

$T_{A}=+25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{IN}}$ and $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$				
Parameter	Symbol	Min	Max	Unit
Input capacitance	C_{I}		6	pF
Input/output capacitance	$\mathrm{C}_{\text {VO }}$		8	pF

Note:

Truth Table

$\overline{\mathrm{CS}}$	$\overline{\mathrm{OE}}$	$\overline{\mathrm{WE}}$	Function	I/O	ICC
H	X	X	Not selected	High-Z	Standby
L	H	H	Outputs disabled	High-Z	Active
L	L	H	Read	DouT	Active
L	X	L	Write	DIN	Active

Note:
(1) $\mathrm{X}=$ don't care.

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Input voltage, low (Note 1)	V_{IL}	-0.5		0.8	V
Input voltage, high	V_{IH}	2.2	$\mathrm{~V}_{\mathrm{CC}}+0.5$	V	
Ambient temperature	T_{A}	0	70	${ }^{\circ} \mathrm{C}$	
Note:					
(1) -3.0 V minimum (pulse width $=10 \mathrm{~ns}$).					

(1) This parameter is sampled and not 100% tested.

DC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Input leakage current	I_{LI}	-2		2	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{CC}
I/O leakage current	Lo	-2		2	$\mu \mathrm{A}$	$V_{1 / O}=O V$ to $V_{C C}$
Operating supply current	$I_{C C 1}\left(t_{\text {RC }}=t_{W C}=15 \mathrm{~ns}\right)$			160	mA	$\overline{C S}=V_{1 L} ; l_{/ / O}=0 \mathrm{~mA}$
	$\mathrm{ICC2}\left(\mathrm{t}_{\mathrm{RC}}=t_{W C}=17 \mathrm{~ns}\right)$			150	mA	$\overline{C S}=V_{1 L} ; l_{1 / O}=0 \mathrm{~mA}$
	$\mathrm{ICC3}^{\left(t_{\text {RC }}\right.}=\mathrm{t}_{\text {WC }}=20 \mathrm{~ns}$)			140	mA	$\overline{C S}=V_{I L} ; l_{1 / O}=0 \mathrm{~mA}$
Standby supply current	$I_{S B}$			30	mA	$\overline{C S} \geq V_{\text {IH }} ; V_{\text {IN }}=V_{\text {IH }}$ or $V_{\text {IL }}$
	$\mathrm{ISB1}$			10	mA	$\overline{C S} \geq V_{C C}-0.2 \mathrm{~V} ; \mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V}$ or $\geq \mathrm{V}_{\text {CC }}-0.2 \mathrm{~V}$
Output voltage, low	V_{OL}			0.4	V	$\mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA}$
Output voltage, high	V_{OH}	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$

AC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	μ PD431009-15		μ PD $431009-17$		μ PD431009-20		Unit	Test Conditions
		Min	Max	Min	Max	Min	Max		

Read Operation

Read cycle time	$t_{\text {RC }}$	15		17		20		ns
Address access time	$t_{\text {AA }}$		15		17		20	ns
Chip select access time	$t_{\text {ACS }}$		15		17		20	ns
Output enable to output valid	t_{OE}		8		9		10	ns
Output hold from address change	t_{OH}	5		5		5		ns
Chip select to output in low-Z	${ }^{\text {t CLZ }}$	5		5		5		ns
Output enable to output in low-Z	tolz	1		1		1		ns
Chip select to output in high-Z	${ }^{1} \mathrm{CHz}$		7		7		7	ns
Output enable to output in high-Z	${ }^{\text {tohz }}$		7		7		7	ns

Write Operation								
Write cycle time	$t_{\text {wc }}$	15		17		20.		ns
Chip select to end of write	${ }^{\text {t }}$ CW	10		11		12		ns
Address valid to end of write	${ }_{\text {taw }}$	9		11		12.		ns
Address setup time	$t_{\text {AS }}$	0		0		0		ns
Write pulse width	$t_{\text {wp }}$	9		10		10		ns
Write recovery time	$t_{\text {WR }}$	0		0		0		ns
Data valid to end of write	$t_{\text {dW }}$	8		9		10		ns
Data hold time	${ }^{\text {t }}$ D	0		0		0		ns
Write enable to output in high-Z	$t_{\text {WHZ }}$		7		7		7	ns
Output active from end of write	tow	3		3		3		ns

Figure 1. Output Loads

$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ (including scope and test fg)
$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ for $\mathrm{t}_{\mathrm{CHZ}} \mathrm{t}_{\mathrm{CL}}$, $\mathrm{t}_{\mathrm{OHZ}}$ tolz ${ }^{\text {tow }}$, and $\mathrm{t}_{\mathrm{WHZ}}$

Timing Waveforms

Address Access Cycle

Notes:

[1] WE is held high for a read cycie.
[2] The device is continually selected, where $\overline{C S}=\overline{\overline{O E}}=\mathrm{V}_{\text {IL }}$.

Chip Select Access Cycle

Notee:

[1] WE Is high for a read cycle.
[2] Address valld prior to or coincident with the low transition of $\overline{\mathrm{CS}}$.

Timing Waveforms (cont)

WE-Controlled Write Cycle

Timing Waveforms (cont)

CS-Controlled Write Cycle

[1] A write cycle occurs during the overiap of a low $\overline{C S}$ and a low $\overline{W E}$.
[2] $\overline{\mathrm{CS}}$ or $\overline{\mathrm{WE}}$ must be high during address transition.

Description

The μ PD431016 is a 65,536 -word by 16 -bit static RAM fabricated with advanced silicon-gate technology, unique CMOS peripheral circuits, and N -channel memory cells. It is suitable for cache memory and buffer memory applications where high speed, high density, and wide I/O SRAMs are required.
The μ PD431016 operates with low power from a single +5 -volt supply. No clock or refreshing is required. The plastic package is a standard 44-pin SOJ or TSOP.

Features

- 65,536-word x 16-bit organization
- Single +5 -volt power supply
- Fully static operation-no clock or refreshing
- TTL-compatible inputs and outputs
- Common I/O capability
- Output buffer control: $\overline{\mathrm{OE}}$
- Data byte control: $\overline{L B}, \overline{U B}$
- Low power dissipation
-240 mA max (active)
- 10 mA max (standby)
- Standard 44-pin, 400-mil plastic SOJ or TSOP package

Ordering Information

Part Number	Access Time (max)	Package
μ PD431016LE-15	15 ns	44-pin plastic SOJ
L.E-17	17 ns	
LE-20	20 ns	
μ PD431016G5-15	15 ns	44-pin plastic TSOP
G5-17	17 ns	
G5-20	20 ns	

Pin Configurations

44-Pin Plastic SOJ

21e

Pin Configurations (cont)

44-Pin Plastic TSOP

Pin Identification

Symbol	Function
$A_{0}-A_{15}$	Address inputs
$1 / O_{1}-I / O_{16}$	Data inputs and outputs
$\overline{\overline{C S}}$	Chip select
$\overline{\overline{L B}}$	Lower byte select $\left(/ / O_{1}-I / O_{8}\right)$
$\overline{\overline{O E}}$	Output enable
$\overline{\overline{U B}}$	Upper byte select $\left(1 / O_{9}-I / O_{16}\right)$
$\overline{W E}$	Write enable
$\overline{G N D}$	Ground
$V C D$	+5 -volt power supply
$N C$	No connection

Truth Table

$\overline{\text { CS }}$	OE	WE	LB	$\overline{U B}$	Mode	$1 / O_{1}-1 / O_{8}$	$\mathrm{I} / \mathrm{O}_{9}-\mathrm{I} / \mathrm{O}_{16}$	Power
H	X	X	X	X	Not selected	$\mathrm{Hi}-\mathrm{Z}$	Hi-Z	Standby
L	L	H	L	L	Read	Dout	Dout	Active
			L	H	Read	Dout	Hi-Z	
			H	L	Read	Hi-Z	Dout	
L	X	L	L	L	Write	$\mathrm{D}_{\text {IN }}$	$\mathrm{D}_{\text {IN }}$	
			L	H	Write	DIN_{1}	Hi-Z	
			H	L	Write	Hi-Z	$\mathrm{D}_{\text {IN }}$	
L	H	H	X	X	-	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$	
L	X	X	H	H	-	$\mathrm{Hi}-\mathrm{Z}$	Hiz	

$X=$ Don't care.

Block Diagram

21e

Absolute Maximum Ratings

Supply voltage, V_{CC}	-0.5 to +7.0 V
Input and output voltages, $\mathrm{V}_{\text {IOO }}$ (Note 1)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Operating temperature, $\mathrm{T}_{\text {OPR }}$	0 to $+70^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\text {STG }}$	-55 to $+125^{\circ} \mathrm{C}$
Power dissipation, P_{D}	1.0 W

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Note:

(1) $V_{I N}(\mathrm{~min})=-3.0 \vee$ for $10-\mathrm{ns}$ pulse.

Capacitance

$T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\text {IN }}$ and $V_{\text {DOUT }}=0 \mathrm{~V} ; f=1 \mathrm{MHz}$

Parameter	Symbol	Min	Max	Unit
Input capacitance	$\mathrm{C}_{\mathbb{N}}$		6	pF
Output capacitance	$\mathrm{C}_{\text {DOUT }}$		8	pF

Capacitance is sampled and not 100% tested.

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Input voltage, high	V_{IH}	2.2		$\mathrm{~V}_{\mathrm{CC}}+0.3$	V
Input voltage, low	V_{IL}	-0.5		0.8	V
Operating temperature	T_{A}	0		70	${ }^{\circ} \mathrm{C}$

Note:
(1) $\mathrm{V}_{\mathrm{IL}}=-3.0 \mathrm{~V}$ for $10-\mathrm{ns}$ pulse.

DC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Input leakage current	$l_{\text {LI }}$	-2		2	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{CC}
Output leakage current	LO	-2		2	$\mu \mathrm{A}$	$\begin{aligned} & V_{\text {OUT }}=O V \text { to } V_{C C} \overline{C S}, \overline{O E}, \overline{L B}, \text { or } U B=V_{I H} \text { or } \\ & W E=V_{I L} \end{aligned}$
Standby supply current	$l_{\text {SB }}$			30	mA	$\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IH}}$
	$\mathrm{I}_{\text {SB1 }}$			10	mA	$\overline{C S} \geq V_{C C}-0.2 \mathrm{~V} ; \mathrm{V}_{\mathbb{N}} \leq 0.2 \mathrm{~V}$ or $\geq \mathrm{V}_{C C}-0.2 \mathrm{~V}$
Output voltage, low	V_{OL}			0.4	V	$\mathrm{IOL}=8.0 \mathrm{~mA}$
Output voltage, high	V_{OH}	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$

Figure 1. Output Loads

AC Characteristics

$T_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	μ PD431016-15		μ PD431016-17		μ PD431016-20		Unit	Test Conditions
		Min	Max	Min	Max	Min	Max		
Read Operation									
Operating supply current	${ }^{1} \mathrm{Cc}$		240		230		220	mA	$\begin{aligned} & \overline{C S}=V_{I L} ; I_{\text {DOUT }}= \\ & 0 \mathrm{~mA}(\text { Note } 5) \end{aligned}$
Address access time	$t_{\text {AA }}$		15		17		20	ns	
Chip select access time	$t_{\text {ACS }}$		15		17		20	ns	
Data byte select access time	${ }^{\text {tadB }}$		8		9		10	ns	
Data byte select to output in high-Z	$t_{\text {BHZ }}$		7		7		7	ns	
Data byte select to output in low-Z	$t_{\text {BLL }}$	1		1		1		ns	
Chip deselection to output in high-Z	${ }^{t_{C H Z}}$	0	7	0	7	0	7	ns	(Note 4)
Chip selection to output in low-Z	${ }^{\text {t }} \mathrm{CLZ}$	5		5		5	,	ns	(Note 3)
Output enable access time	toe		8		9		10	ns	
Output hold from address change	${ }^{\text {t }}$	5		5		5		ns	
Output enable to output in high-Z	$\mathrm{t}_{\mathrm{OHZ}}$		7		7		7	ns	
Output enable to output in low-Z	tolz	1		1		1		ns	
Read cycle time	$t_{\text {f }}$	15		17		20		ns	(Note 2)

Write Operation

Address setup time	$t_{\text {AS }}$	0		0		0		ns	
Address valid to end of write	$t_{\text {AW }}$	9		11		12		ns	
Data byte select to end of write	$t_{\text {bW }}$	9		11		12		ns	
Chip select to end of write	${ }^{\text {c }}$ CW	10		11		12		ns	
Data hold time	${ }^{\text {t }}$ DH	0		0		0		ns	
Data valid to end of write	${ }^{\text {t }}$ DW	8		9		10		ns	
Output active from end of write	tow	3		3		3		ns	(Note 3)
Write enable to output in high-Z	${ }^{\text {t WHz }}$	0	7	0	7	0	7.	ns	(Note 4)
Write cycle time	$t_{\text {w }}$	15		17		20		ns	(Note 2)
Write pulse width	$t_{\text {WP }}$	9		10		10		ns	
Write recovery time	${ }^{\text {twR }}$	0		0		0		ns	

Notes:

(1) Input pulse levels $=$ GND to 3.0 V ; input pulse rise and fall times $=3 \mathrm{~ns}$; timing reference levels $=1.5 \mathrm{~V}$; see figure 1 for output loads.
(2) All read cycle timings are referenced from the last valid address to the first transitioning address.
(3) Transition is measured at $\pm 200 \mathrm{mV}$ from steady-state voltage with the load shown in figure 1.
(4) Transition is measured at $\mathrm{V}_{\mathrm{OL}}+200 \mathrm{mV}$ and $\mathrm{V}_{\mathrm{OH}}-200 \mathrm{mV}$ with the load shown in figure 1.
(5) $\mathrm{I}_{\mathrm{CC}}=180 \mathrm{~mA} \max$ at $\mathrm{t}_{\mathrm{AA}}=50 \mathrm{~ns}$.

Timing Waveforms

Address Access Cycle

Notes:
[1] WE is heid high for a read cycie.
[2] The device is continually selected, where $\overline{C S}=V_{I L}$.

Chip Select Access Cycle

Timing Waveforms (cont)

WE-Controlled Write Cycle

Timing Waveforms (cont)

CS-Controlled Write Cycle

Timing Waveforms (cont)

$\overline{L B} / \overline{U B}$-Controlled Write Cycle

Notes:

[1] A write occurs during the overiap of $\overline{C S}$ low, $\overline{\mathrm{WE}}$ low, and $\overline{\mathrm{LB}}$ low.
[2] A witte occurs during the overlap of $\overline{\mathrm{CS}}$ low, $\overline{\mathrm{WE}}$ low, and $\overline{\mathrm{UB}}$ low.
[3] $\overline{C S}$ or WE must be high during address transition.
[4] During thls period, VO pins are in the output state; therefore, Input signals of opposite phase to the output must not be applied.

Description

The μ PD431018 is a 65,536 -word by 18 -bit static RAM fabricated with advanced silicon-gate technology, unique CMOS peripheral circuits, and N -channel memory cells. It is suitable for cache memory and buffer memory applications where high speed, high density, and wide I/O SRAMs are required.
The μ PD431018 operates with low power from a single +5 -volt supply. No clock or refreshing is required. The plastic package is a standard 44-pin SOJ or TSOP.

Features

- 65,536 -word x 18-bit organization
- Single +5 -volt power supply
- Fully static operation-no clock or refreshing
- TTL-compatible inputs and outputs
- Common I/O capability
\square Output buffer control: $\overline{\mathrm{OE}}$
- Data byte control: $\overline{L B}, \overline{U B}$
- Low power dissipation
- 260 mA max (active)
- 10 mA max (standby)
- Standard 44-pin, 400-mil SOJ or TSOP plastic package

Ordering Information

Part Number	Access Time (max)	Package
μ PD431018LE-15	15 ns	44-pin plastic SOJ
LE-17 17 ns LE-20 20 ns μ PD431018G5-15 15 ns 44-pin plastic TSOP G5-17 17 ns G5-20 20 ns		

Pin Configurations

44-Pin Plastic SOJ

	μ PD431018	
$\mathrm{A}_{4} 1$	44	$\square A_{5}$
$\mathrm{A}_{3} \mathrm{C}_{2}$	43	$\square A_{6}$
$\mathrm{A}_{2} \mathrm{C}_{3}$	42	D_{7}
$\mathrm{A}_{1} \mathrm{C}_{4}$	41	$\square \overline{O E}$
$A_{0} \square_{5}$	40	$\square \overline{\text { UB }}$
$\overline{\mathrm{CS}} \mathrm{H}$	39	$\square \overline{L B}$
$\mathrm{VO}_{1} \square^{7}$	38	$\square \mathrm{VO}_{18}$
NO_{2} ㄷ. 8	37	$\square \mathrm{VO}_{17}$
$\mathrm{VO}_{3} \mathrm{Cl}_{9}$	36	$\square \mathrm{VO}_{16}$
$\mathrm{VO}_{4}-10$	35	$\square \mathrm{VO}_{15}$
VCc 411	34	$\square \mathrm{GND}$
GND 12	33	$\square V_{\text {cc }}$
$\mathrm{VO}_{5} \mathrm{C}_{13}$	32	$\square \mathrm{VO}_{14}$
VO_{6} ㄷ- 14	31	$\square \mathrm{VO}_{13}$
$\mathrm{VO}_{7} \mathrm{H}_{4} 15$	30	$\square V_{12}$
$\mathrm{VO}_{8}-16$	29	$\square \mathrm{VO}_{11}$
$\mathrm{VOg}_{9} 17$	28	$\square \mathrm{VO}_{10}$
WE C-18	27	\square NC
A_{15}-19	26	$\square \mathrm{A}_{8}$
$A_{14}-20$	25	$\square \mathrm{Ag}$
$A_{13} \square^{21}$	24	A_{10}
$\mathrm{A}_{12} \mathrm{C}_{2}$	23	$\square A_{11}$

83FM-8676A

44-Pin Plastic TSOP

Pin Identification

Symbol	Function
$A_{0} \cdot A_{15}$	Address inputs
$l / O_{1}-1 / O_{18}$	Data inputs and outputs
CS	Chip select
LB	Lower byte select ($/ / O_{1}-1 / O_{9}$)
$\overline{\text { OE }}$	Output enable
$\overline{\text { UB }}$	Upper byte select ($1 / \mathrm{O}_{10} \cdot 1 / \mathrm{O}_{18}$)
WE	Write enable
GND	Ground
$\mathrm{V}_{C C}$	+5-volt power supply
NC	No connection

Truth Table

$\overline{\mathbf{C S}}$	OE	WE	$\overline{L B}$	$\overline{\text { UB }}$	Mode	$1 / O_{1}-1 / O_{9}$	$1 / 0_{10}-1 / O_{18}$	Power
H	X	X	X	X	Not selected	Hi-Z	Hi-Z	Standby
L	L	H	L	L	Read	DOUT	DOUT	Active
			L	H	Read	Dout	Hi-Z	
			H	L	Read	Hi-Z	Dout	
L	X	L	L	L	Write	$\mathrm{DIN}_{\text {N }}$	$\mathrm{DIN}_{\text {N }}$	
			L	H	Write	DiN	Hiz	
			H	L	Write	Hi-Z	$\mathrm{D}_{\text {IN }}$	
\underline{L}	H	H	X	X	-	Hi-Z	Hiz	
L	X	X	H	H	-	$\mathrm{Hi}-\mathrm{Z}$	Hi-Z	

$X=$ Don't care.

Block Diagram

Absolute Maximum Ratings

Supply voltage, V_{CC}	-0.5 to +7.0 V
Input and output voltages, $\mathrm{V}_{1 / O}$ (Note 1)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Operating temperature, $\mathrm{T}_{\mathrm{OPR}}$	0 to $+70^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\text {STG }}$	-55 to $+125^{\circ} \mathrm{C}$
Power dissipation, P_{D}	1.0 W

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Note:

(1) $\mathrm{V}_{\mathrm{IN}}(\mathrm{min})=-3.0 \mathrm{~V}$ for 10 -ns pulse.

Capacitance

$T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {DOUT }}=0 \mathrm{~V} ; f=1 \mathrm{MHz}$

Parameter	Symbol	Min	Max	Unit
Input capacitance	$\mathrm{C}_{\mathbb{N}}$		6	pF
Output capacitance	$\mathrm{C}_{\text {DOUT }}$		8	pF

Capacitance is sampled and not 100% tested.

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Input voltage, high	V_{IH}	2.2	$\mathrm{~V}_{\mathrm{CC}}+0.5$	V	
Input voltage, low	V_{IL}	-0.5	0.8	V	
Operating temperature	T_{A}	0		70	${ }^{\circ} \mathrm{C}$

Note:

(1) $\mathrm{V}_{\mathrm{IL}}=-3.0 \mathrm{~V}$ for 10 -ns pulse.

DC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Input leakage current	l_{LI}	-2		2	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{CC}
Output leakage current	Lo	-2		2	$\mu \mathrm{A}$	$\begin{aligned} & V_{\text {OUT }}=O V \text { to } V_{C C} ; \overline{C S}, \overline{O E}, \overline{L B}, \text { or } U B=V_{I H} \text { or } \\ & W E=V_{I L} \end{aligned}$
Standby supply current	$I_{\text {SB }}$			30	mA	$\overline{C S}=V_{1 H}$
	$l_{\text {SB1 }}$			10	mA	$\overline{C S} \geq \mathrm{V}_{C C}-0.2 \mathrm{~V} ; \mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V}$ or $\geq \mathrm{V}_{C C}-0.2 \mathrm{~V}$
Output voltage, low	V_{OL}			0.4	V	$\mathrm{l}_{\mathrm{OL}}=8.0 \mathrm{~mA}$
Output voltage, high	V_{OH}	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$

Figure 1. Output Loads

AC Characteristics

Parameter	Symbol	μ PD431018-15		μ PD 431018-17		$\mu \mathrm{PD431018-20}$		Unit	Test Conditions
		Min	Max	Min	Max	Min	Max		
Read Operation									
Operating supply current	lcc		260		220		200	mA	$\overline{\mathrm{CS}}=V_{\mathrm{IL}} ; \mathrm{l}_{\mathrm{DOUT}}=$ 0 mA (Note 5)
Address access time	${ }^{\text {A A }}$		15		17		20	ns	
Chip select access time	$t_{\text {ACS }}$		15		17		20	ns	
Data byte select access time	$t_{\text {ADB }}$		8		9		10	ns	
Data byte select to output in high-Z	$\mathrm{t}_{\mathrm{BHZ}}$		7		7		7	ns	
Data byte select to output in low-Z	$t_{\text {BLZ }}$	1		1		1		ns	
Chip deselection to output in high-Z	${ }^{\text {t }} \mathrm{CHZ}$	0	7	0	7	0	7	ns	(Note 4)
Chip selection to output in low-Z	${ }_{\text {t CLZ }}$	5		5		5		ns	(Note 3)
Output enable access time	toe		8		8		10	ns	
Output hold from address change	t_{OH}	5		5		5		ns	
Output enable to output in high-Z	$\mathrm{t}_{\mathrm{OHZ}}$		7		7		7	ns	
Output enable to output in low-Z	tolz	1		1		1		ns	
Read cycle time	t_{RC}	15		17		20		ns	(Note 2)

Write Operation

Address setup time	$t_{\text {AS }}$	0		0		0		ns	
Address valid to end of write	$t_{\text {AW }}$	9		11		12		ns	
Data byte select to end of write	$t_{\text {BW }}$	9		11		12		ns	
Chip select to end of write	${ }^{\text {t }} \mathrm{CW}$	10		11		12		ns	
Data hold time	${ }^{\text {t }}$ DH	0		0		0		ns	
Data valid to end of write	${ }^{\text {t }}$ DW	8		9		10		ns	
Output active from end of write	tow	3		3		3		ns	(Note 3)
Write enable to output in high-Z	${ }^{\text {t Whz }}$	0	7	0	7	0	7	ns	(Note 4)
Write cycle time	${ }^{\text {tw }}$ w	15		17		20		ns	(Note 2)
Write pulse width	${ }^{\text {twp }}$	9		10		10		ns	
Write recovery time	$t_{\text {WR }}$	0		0		0		ns	

Notes:

(1) Input pulse levels $=$ GND to 3.0 V ; input pulse rise and fall times $=3 \mathrm{~ns}$; timing reference levels $=1.5 \mathrm{~V}$; see figure 1 for output loads.
(2) All read cycle timings are referenced from the last valid address to the first transitioning address.
(3) Transition is measured at $\pm 200 \mathrm{mV}$ from steady-state voltage with the load shown in figure 1.
(4) Transition is measured at $\mathrm{V}_{\mathrm{OL}}+200 \mathrm{mV}$ and $\mathrm{V}_{\mathrm{OH}}-200 \mathrm{mV}$ with the load shown in figure 1.
(5) $I_{C C}=140$ ma max at $t_{A A}=50 \mathrm{~ns}$.

Timing Waveforms

Address Access Cycle

Notes:
[1] $\overline{W E}$ is held high for a read cycle.
[2] The device is continually selected, where $\overline{C S}=V_{I L}$.

Chip Select Access Cycle

Notes:
[1] WE is high for a read cycle.
[2] Device is continuously selected:

$$
\overline{\mathrm{CS}}=\overline{\mathrm{OE}}=\overline{\mathrm{B}}=\text { Low }
$$

$$
\overline{\mathrm{CS}}=\overline{\mathrm{OE}}=\overline{\mathrm{UB}}=\mathrm{LOW}
$$

[3] Address valld prior to or colncident with $\overline{\mathrm{CS}}$ transition low.

Timing Waveforms (cont)

WE-Controlled Write Cycle

Notes:

[1] A write occurs during the overlap of $\overline{C S}$ low, $\overline{W E}$ low, and $\overline{\mathrm{LB}}$ low.
[2] A witte occurs during the overlap of $\overline{C S}$ low, $\overline{W E}$ low, and $\overline{U B}$ low.
[3] $\overline{\mathrm{CS}}$ or $\overline{\mathrm{WE}}$ must be high during address transition.
[4] During thls period, VO pins are in the output state; therefore, input signals of opposite phase to the output must not be applled.

Timing Waveforms (cont)

$\overline{C S}$-Controlled Write Cycle

Timing Waveforms (cont)

$\overline{L B} / \overline{U B}-C o n t r o l l e d$ Write Cycle

Notes:
[1] A write occurs during the overiap of $\overline{C S}$ low, $\overline{W E}$ low, and $\overline{L B}$ low.
[2] A write occurs during the overlap of $\overline{C S}$ low, $\overline{W E}$ low, and $\overline{U B}$ low.
[3] $\overline{\mathrm{CS}}$ or $\overline{\mathrm{WE}}$ must be hlgh during address transition.
[4] During this period, VO pins are in the output state; therefore, input signals of opposite phase to the output must not be applled.
ceneral

Application Specilic Devices

Fas static RMME (64K)

Yas Satic RAM (256K)

Fast Static RAMIS
(11 ${ }^{(1)}$

Fast Static RAMs
(4M)
22

Cache Drtan Mats

Standard Static RAMM

Section 22

Fast Static RAMs (4M)

$\mu \mathrm{PD}$	Organization	Features	
434001	$4 \mathrm{M} \times 1$	$20-\mathrm{ns}$	22 a
434004	$1 \mathrm{M} \times 4$	$20-\mathrm{ns} ;$ Output enable	22 b
434008	$512 \mathrm{~K} \times 8$	$20-\mathrm{ns} ;$ Output enable	22 c

Description

The μ PD434001 is a 4,194,304-word by 1 -bit static RAM fabricated with advanced silicon-gate technology. A unique design with CMOS peripheral circuits and N -channel memory cells, the μ PD434001 is a highspeed device that requires no clock or refreshing.

Features

4,194,304-word x 1-bit organization
Single +5 -volt power supply
Fully static operation-no clock or refreshing
TTL-compatible inputs and outputs

- Separated data input and output
- Three-state outputs
- Power dissipation
- 140 mA max (active)
- 10 mA max (standby)

Standard 400-mil, 32-pin plastic SOJ package
Ordering Information

Part Number	Access Time (max)	Package
μ PD434001LE-20	20 ns	32 -pin plastic SOJ
LE-25	25 ns	

Pin Configuration

32-Pin Plastic SOJ

Pin Identification

Symbol	Function
$A_{0}-A_{21}$	Address inputs
$\overline{\overline{C S}}$	Chip select input
$\overline{D I N}$	Data input
$\bar{D}_{\text {OUT }}$	Data output
$\overline{\mathrm{OE}}$	Output enable input
$\overline{T E}$	Test mode enable input
$\overline{\mathrm{WE}}$	Write enable input
GND	Ground
$V_{C C}$	+5 -volt power supply

Absolute Maximum Ratings

Power supply voltage, V_{CC}	-0.5 to +7.0 V
Input voltage, $\mathrm{V}_{\text {IN }}($ Note 1)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Output voltage, $\mathrm{V}_{\text {OUT }}$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Operating temperature, $\mathrm{T}_{\text {OPR }}$	0 to $+70^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\text {STG }}$	-55 to $+125^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Note:

(1) $\mathrm{V}_{\mathrm{IN}}=-3.0 \mathrm{~V}$ minimum for 10 -ns maximum pulse.

Truth Table

$\overline{\text { CS }}$	$\overline{\text { WE }}$	$\overline{\text { OE }}$	Function	I/O	ICC
H	X	X	Not selected	High-Z	Standby
L	H	L	Read	Output data	Active
L	L	X	Write	Data in	Active
L	H	H	Output disable	High-Z	Active

$X=$ don't care

Capacitance
$T_{A}=+25^{\circ} \mathrm{C} ; f=1 \mathrm{MHz} ; V_{I N}$ and $V_{\text {OUT }}=0 \mathrm{~V}$

Parameter	Symbol	Min	Typ	Max	Unit
Input capacitance	C_{1}			6	pF
Output capacitance	C_{O}			10	pF

* Capacitance is sampled and not 100% tested.

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Input voltage, low	V_{IL}	-0.5		0.8	V
Input voltage, high	V_{IH}	2.2		$\mathrm{~V}_{\mathrm{CC}}+0.3$	V
Ambient temperature	T_{A}	0		70	${ }^{\circ} \mathrm{C}$

$\mathrm{V}_{\mathrm{IL}}=-2.0 \mathrm{~V}$ minimum for $10-\mathrm{ns}$ maximum pulse.

Block Diagram

μ PD434001

DC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Typ	Max	Unit
	Test Conditions				
Input leakage current	I_{LI}	-2	2	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{CC}
Output leakage current	I_{LO}	-2	2	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}} ; \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IH}}$ or $\overline{\mathrm{WE}}=\mathrm{V}_{\mathrm{IL}}$
Standby supply current	$\mathrm{I}_{\mathrm{SB}}(-20)$		60	mA	$\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IH}} ; \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}
	$\mathrm{I}_{\mathrm{SB}}(-25)$		50	mA	
	$\mathrm{I}_{\mathrm{SB} 1}$	-25	10	mA	$\overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V}$ or $\geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$
Output voltage, low	V_{OL}		0.4	V	$\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$
Output voltage, high	V_{OH}	2.4	V	$\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	

AC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	μ PD434001-20		μ PD434001-25		Unit	Test Conditions
		Min	Max	Min	Max		
Operating supply current	lcc		140		130	mA	$\overline{C S}=V_{L L} ; \mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}(\mathrm{min}) ;$ l $\mathrm{OUT}=0 \mathrm{~mA}$
Read Operation							
Read access time	$t_{\text {AA }}$		20		25	ns	
Chip select access time	${ }^{\text {tacs }}$		20		25	ns	
Chip deselect to output in high-Z	${ }^{\text {t }} \mathrm{CHZ}$	0	8	0	10	ns	(Note 4)
Chip select to output in low-Z	${ }_{\text {t }}^{\text {clz }}$	3		3		ns	(Note 3)
Output enable access time	${ }^{\text {toE }}$		10		12	ns	
Output hold from address change	${ }^{\text {t }} \mathrm{OH}$	3		3		ns	
Output enable to output in high-Z	${ }^{\text {tohz }}$		8		10	ns	
Output enable to output in low-Z	$\mathrm{t}_{\mathrm{OLz}}$		0		0	ns	
Read cycle time	t_{RC}	20		25		ns	(Note 2)

Write Operation

Address setup time	$t_{\text {AS }}$	0		0		ns	
Address valid to end of write	$t_{\text {AW }}$	14		17		ns	
Chip select to end of write	${ }^{\text {t }} \mathrm{CW}$	14		17		ns	
Data hold time	t_{DH}	0		0		ns	
Data valid to end of write	${ }_{\text {t }}{ }_{\text {d }}$	10		12		ns	
Output active from end of write	tow	0		0		ns	(Note 3)
Write cycle time	${ }_{\text {tw }}$ w	20		25		ns	(Note 2)
Write enable to output in high-Z	$\mathrm{t}_{\mathrm{WHZ}}$	0	8	0	10	ns	(Note 4)
Write pulse width	$t_{\text {WP }}$	12		15		ns	
Write recovery time	${ }^{\text {twR }}$	3		3		ns	

Notes:

(1) Input pulse levels $=$ GND to 3.0 V ; input pulse rise and fall time $=$ 5 ns ; timing reference levels $=1.5 \mathrm{~V}$; see figure 1 for the output load.
(2) All read and write cycle timings are referenced from the last valid address to the first transitioning address.
(3) The transition is measured $\pm 200 \mathrm{mV}$ from steady-state voltage with the load shown in figure 1.
(4) The transition is measured at $\mathrm{V}_{\mathrm{OL}}+200 \mathrm{mV}$ and $\mathrm{V}_{\mathrm{OH}}-200 \mathrm{mV}$ with the load shown in figure 1.

Figure 1. Output Loads

$C_{L}=30 \mathrm{pF}$ (including scope and test Jg)
$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ for ${ }^{\mathrm{t}_{\mathrm{CHZ}}} \mathrm{t}_{\mathrm{CLZ}}, \mathrm{t}_{\mathrm{OHZ}}, \mathrm{t}_{\mathrm{OL}}, \mathrm{t}_{\mathrm{OW}}$, and $\mathrm{t}_{\mathrm{WHZ}}$

Figure 2. Test Mode

Test Mode Set Cycle

Test Mode Reset Cycle

TE

Notes:

(1) In test mode, the apparent Internal memory organization is 512 K words by 8 blts.
(2) Write the same data (1 or 0) on all 8 bits through pin $D_{1 N}$, addressing pins $A_{\sigma}-A_{18}$. Pins $A_{19}-A_{21}$ are "Don't Care."
(3) Read data through pin DOUT. Data output is 1 if correct, 0 if incorrect.

Timing Waveforms

Address Access Cycle

Notes:
[1] WE is held high for a read cycle.
[2] The device is continually selected, where $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$.

Chip Select Access Cycle

Notes:

[1] $\overline{\text { WE }}$ is held high for a read cycle.
[2] Device is continuously selected: $\overline{\mathrm{CS}}=\overline{\mathrm{OE}}=$ Low
[3] Address valld prior to or colncident with the low transition of $\overline{\mathrm{CS}}$.

Timing Waveforms (cont)

$\overline{\text { WE-Controlled Write Cycle }}$

Timing Waveforms (cont)

$\overline{C S}$-Controlled Write Cycle

Description

The μ PD 434004 is a $1,048,576$-word by 4 -bit static RAM fabricated with advanced silicon-gate technology. A unique design with CMOS peripheral circuits and N -channel memory cells, the $\mu \mathrm{PD} 434004$ is a highspeed device that requires no clock or refreshing.

Features

- 1,048,576-word x 4-bit organization
- Single +5 -volt power supply
- Fully static operation-no clock or refreshing
- TTL-compatible inputs and outputs
- OE signal for output control
- Common I/O with three-state outputs
- Power dissipation
- 150 mA max (active)
- 10 mA max (standby)
- Standard 400-mil, 32-pin plastic SOJ package

Ordering Information

Part Number	Access Time (max)	Package
μ PD434004LE-20	20 ns	32 -pin plastic SOJ
LE-25	25 ns	

Pin Configuration

32-Pin Plastic SOJ

Pin Identification

Symbol	Function
$A_{0} \cdot A_{19}$	Address inputs
$\overline{C S}$	Chip select input
$/ / O_{1}-I / O_{4}$	Data input/output
$\overline{O E}$	Output enable input
$\overline{T E}$	Test mode enable input
$\overline{W E}$	Write enable input
$G N D$	Ground
$V_{C C}$	+5 -volt power supply

Absolute Maximum Ratings

Power supply voltage, V_{CC}	-0.5 to +7.0 V
Input voltage, V_{IN}	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Output voltage, $\mathrm{V}_{\text {OUT }}$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Operating temperature, $\mathrm{T}_{\text {OPR }}$	0 to $+70^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\text {STG }}$	-55 to $+125^{\circ} \mathrm{C}$

$V_{I N}=-2.0 \mathrm{~V}$ minimum for 10 -ns maximum pulse.
Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Truth Table

$\mathbf{C S}$	$\overline{\text { WE }}$	$\overline{\mathbf{O E}}$	Function	I/O	ICC
H	X	X	Not selected	High-Z	Standby
L	H	L	Read	Output data	Active
L	L	X	Write	Data in	Active
L	H	H	Output disable	High-Z	Active

$X=$ don't care

Capacitance
$T_{A}=+25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

Parameter*	Symbol	Min	Typ	Max	Unit
Input capacitance	C_{l}			6	pF
Output capacitance	C_{o}			10	pF

* Capacitance is sampled and not 100% tested.

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Input voltage, low	V_{IL}	-0.5		0.8	V
Input voltage, high	V_{IH}	2.2	$\mathrm{~V}_{\mathrm{CC}}+0.3$	V	
Ambient temperature	T_{A}	0		+70	${ }^{\circ} \mathrm{C}$

$\mathrm{V}_{\mathrm{IL}}=-2.0 \mathrm{~V}$ minimum for 10 -ns maximum pulse.

Block Diagram

DC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Typ	Max	Unit
Input leakage current	I_{LI}	-2	Test Conditions		
Output leakage current	I_{LO}	-2	2	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{CC}
Standby supply current	$\mathrm{I}_{\mathrm{SB}}(-20)$		2	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}} ; \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IH}}$ or $\overline{\mathrm{WE}}=\mathrm{V}_{\mathrm{IL}}$
	$\mathrm{I}_{\mathrm{SB}}(-25)$		60	mA	$\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IH}} ; \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}
	I_{SB}		50	mA	
Output voltage, low	V_{OL}		10	mA	$\overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V}$ or $\geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$
Output voltage, high	V_{OH}	2.4	0.4	V	$\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$

AC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	μ PD434004-20		μ PD434004-25		Unit	Test Conditions
		Min	Max	Min	Max		
Operating supply current	lcc		150		140	mA	$\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}} ; \mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}(\mathrm{min}) ; \mathrm{l}_{\text {OUT }}=0 \mathrm{~mA}$
Read Operation							
Read access time	$t_{\text {AA }}$		20		25	ns	
Chip select access time	${ }^{\text {a }}$ ACS		20		25	ns	
Chip deselect to output in high-Z	${ }^{\text {cherz }}$	0	8	0	10	ns	(Note 4)
Chip select to output in low-Z	${ }^{\text {t CLZ }}$	3		3		ns	(Note 3)
Output enable access time	${ }^{\text {t }}$ OE		10		12	ns	
Output hold from address change	t_{OH}	3		3		ns	
Output enable to output in high-Z	$\mathrm{t}_{\mathrm{OHZ}}$		8		10	ns	
Output enable to output in low-Z	${ }_{\text {tolz }}$		0		0	ns	
Read cycle time	$\mathrm{t}_{\text {RC }}$	20		25		ns	(Note 2)
Write Operation							
Address setup time	$\mathrm{t}_{\text {AS }}$	0		0		ns	
Address valid to end of write	${ }_{\text {t }}$ AW	14		17		ns	
Chip select to end of write	${ }^{\text {t }} \mathrm{CW}$	14		17		ns	
Data hold time	${ }^{\text {t }}$ DH	0		0		ns	
Data valid to end of write	${ }^{\text {t }}$ DW	10		12		ns	
Output active from end of write	tow	0		0		ns	(Note 3)
Write cycle time	$t_{\text {w }}$	20		25		ns	(Note 2)
Write enable to output in high-Z	$\mathrm{t}_{\text {Whz }}$	0	8	0	10	ns	(Note 4)
Write pulse width	$t_{\text {WP }}$	12		15		ns	
Write recovery time	${ }^{\text {twn }}$	3		3		ns	

Notes:

(1) Input pulse levels $=$ GND to 3.0 V ; input pulse rise and fall time $=$ 5 ns ; timing reference levels $=1.5 \mathrm{~V}$; see figure 1 for the output load.
(2) All read and write cycle timings are referenced from the last valid address to the first transitioning address.
(3) The transition is measured $\pm 200 \mathrm{mV}$ from steady-state voltage with the load shown in figure 1.
(4) The transition is measured at $\mathrm{V}_{\mathrm{OL}}+200 \mathrm{mV}$ and $\mathrm{V}_{\mathrm{OH}}-200 \mathrm{mV}$ with the load shown in figure 1.

Figure 1. Output Loads

$C_{L}=30 \mathrm{pF}$ (including scope and test Jg) $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ for $\mathrm{t}_{\mathrm{CHZ}} \mathrm{t}_{\mathrm{CL}}, \mathrm{t}_{\mathrm{OH}}, \mathrm{t}_{\mathrm{OL}} \mathrm{t}$ tow, and $\mathrm{t}_{\mathrm{WHZ}}$

Figure 2. Test Mode

Teet Mode Set Cycle

Test Mode Reset Cycle

TE

Notes:
(1) In test mode, the apparent internal memory organization is 512 K words by 8 blts.
(2) Write the same data (1 or 0) on all 8 bits through pins $V O_{1}-V O_{4}$, witting 2 bits on each VO and addressing pins $\mathrm{A}_{0}-\mathrm{A}_{18}$. Pin A_{19} is "Don't Care."
(3) Read data through pins $1 / \mathrm{O}_{1}-1 / \mathrm{O}_{4}$. Data output is 1 if 2 bits are correct, 0 if incorrect.

Timing Waveforms

Address Access Cycle

Notes:
[1] WE Is held high for a read cycle.
[2] The device is continually selected, where $\overline{C S}=V_{\text {IL }}$.

Chip Select Access Cycle

Timing Waveforms (cont)

$\overline{W E}$ Controlled Write Cycle

Timing Waveforms (cont)

$\overline{C S}$-Controlled Write Cycle

22b

Description

The μ PD434008 is a 524,288 -word by 8 -bit static RAM fabricated with advanced silicon-gate technology. A unique design with CMOS peripheral circuits and N -channel memory cells, the μ PD434008 is a highspeed device that requires no clock or refreshing. The device is available in a 36 -pin plastic SOJ package.

Features

- 524,288-word x 8-bit organization
- Single +5 -volt power supply
- Fully static operation-no clock or refreshing
- TTL-compatible inputs and outputs
- Chip select and output enable for easy application
- Common I/O with three-state outputs
- Power dissipation
- 190 mA max (active)
- 10 mA max (standby)
- Standard 400-mil, 36 -pin plastic SOJ package

Ordering Information

	Access Time (max)	Package
μ PD434008LE-20	20 ns	36-pin plastic SOJ
LE-25	25 ns	

Pin Identification

Symbol	Function
$\mathrm{A}_{0}-\mathrm{A}_{18}$	Address inputs
$\overline{\mathrm{CS}}$	Chip select input
$\mathrm{I/O}_{1}-1 / \mathrm{O}_{8}$	Data input/output
$\overline{\mathrm{OE}}$	Output enable input
$\overline{\mathrm{WE}}$	Write enable input
GND	Ground
VCC	+5 -volt power supply
NC	No connection

Pin Configuration

36-Pin Plastic SOJ

$\mu \mathrm{PD} 434008$		
$A_{0} 41$	36	$\square N C$
$A_{1} \square_{2}$	35	$\mathrm{P}^{1} 18$
$\mathrm{A}_{2} \mathrm{C}_{3}$	34	$\square A_{17}$
$\mathrm{A}_{3} \square^{4}$	33	P_{16}
$\mathrm{A}_{4} \mathrm{C}_{5}$	32	$\square A_{15}$
CS ${ }^{\text {C }}$	31	$\square \overline{O E}$
$\mathrm{VO}_{1} \mathrm{Cl}_{7}$	30	VO_{8}
$\mathrm{VO}_{2} \mathrm{C}_{8}$	29	VO_{7}
VCC \square^{9}	28	$\square \mathrm{GND}$
GND 10	27	$\square \mathrm{VCC}$
$\mathrm{VO}_{3}-11$	26	$\square \mathrm{VO}_{6}$
$\mathrm{VO}_{4}-12$	25	VO_{5}
WE 13	24	P_{14}
$\mathrm{A}_{5} \mathrm{C}_{14}$	23	A_{13}
$\mathrm{A}_{6}{ }^{-15}$	22	A_{12}
$A_{7}{ }^{-16}$	21	A_{11}
$\mathrm{A}_{8} 17$	20	A_{10}
$\mathrm{Ag}_{9} 18$	19	$\square \mathrm{NC}$

Absolute Maximum Ratings

Power supply voltage, V_{CC}	-0.5 to +7.0 V
Input voltage, $\mathrm{V}_{\text {IN }}($ Note 1)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Output voltage, $\mathrm{V}_{\text {OUT }}$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Operating temperature, $\mathrm{T}_{\text {OPR }}$	0 to $+70^{\circ} \mathrm{C}$
Storage temperature, $T_{\text {STG }}$	-55 to $+125^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Note:

(1) $\mathrm{V}_{\mathrm{IN}}=-2.0 \mathrm{~V}$ minimum for 10 -ns maximum pulse.

Truth Table

$\overline{\mathbf{C S}}$	$\overline{\text { WE }}$	$\overline{\mathbf{O E}}$	Function	I/O	ICc
H	X	X	Not selected	High-Z	Standby
L	H	L	Read	Output data	Active
L	L	X	Write	Data in	Active
L	H	H	Output disable	High-Z	Active

$X=$ don't care

Capacitance
$T_{A}=+25^{\circ} \mathrm{C} ; f=1 \mathrm{MHz} ; \mathrm{V}_{\mathbb{I}}$ and $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

Parameter	Symbol	Min	Typ	Max	Unit
Input capacitance	C_{I}			6	pF
Output capacitance	C_{0}		10	pF	

Note:
(1) This parameter is sampled and not 100% tested.

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Input voltage, low	V_{IL}	-0.5		0.8	V
Input voltage, high	V_{IH}	2.2	$\mathrm{~V}_{\mathrm{CC}}+0.3$	V	
Ambient temperature	T_{A}	0		70	${ }^{\circ} \mathrm{C}$

Note:

(1) $\mathrm{V}_{\mathrm{IL}}=-2.0 \mathrm{~V}$ minimum for 10 -ns maximum pulse.

Block Diagram

DC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Input leakage current	I_{L}	-2		2	$\mu \mathrm{A}$	$V_{\text {IN }}=0 \mathrm{~V}$ to $V_{C C}$
Output leakage current	Lo	-2		2	$\mu \mathrm{A}$	$V_{\text {OUT }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }} \overline{C S}=V_{\text {IH }}$ or $\overline{W E}=V_{\text {IL }}$
Operating supply current	ICC (Note 1)			190	mA	$\overline{C S}=V_{\text {IL }} ; \mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}(\mathrm{min}) ; \mathrm{l}_{\text {OUT }}=0 \mathrm{~mA}$
Standby supply current	$\mathrm{I}_{\text {SB }}$ (Note 2)			60	mA	$\overline{C S}=V_{\mathbb{H}} ; V_{\mathbb{I N}}=V_{\mathbb{I H}}$ or $V_{\text {IL }}$
	$\mathrm{I}_{\text {SB1 }}$			10	mA	$\overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} ; \mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V}$ or $\geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$
Output voltage, low	V_{OL}			0.4	V	$\mathrm{l}_{\mathrm{OL}}=8.0 \mathrm{~mA}$
Output voltage, high	V_{OH}	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$

Notes:

(1) $I_{C C}=170 \mathrm{~mA}(\max)$ for the $\mu \mathrm{PD} 434008-25$.
(2) $\mathrm{I}_{\mathrm{SB}}=50 \mathrm{~mA}$ (max) for the μ PD434008-25.

AC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	$\mu \mathrm{PD434008-20}$		μ PD434008-25		Unit	Test Conditions
		Min	Max	Min	Max		
Read Operation							
Read access time	$t_{\text {AA }}$		20		25	ns	
Chip select access time	$t_{\text {ACS }}$		20		25	ns	
Chip deselect to output in high-Z	${ }^{\text {t }} \mathrm{CHZ}$	0	8	0	10	ns	(Note 4)
Chip select to output in low-Z	${ }^{\text {t }} \mathrm{CLZ}$	3		3		ns	(Note 3)
Output enable access time	t_{OE}		10		12	ns	
Output hold from address change	${ }^{\text {toH }}$	3		3		ns	
Output enable to output in high-Z	$\mathrm{t}_{\mathrm{OHZ}}$		8		10	ns	
Output enable to output in low-Z	$\mathrm{t}_{\mathrm{OLZ}}$		0		0	ns	
Read cycle time	${ }^{\text {t }} \mathrm{CB}$	20		25		ns	(Note 2)

Write Operation

Address setup time	$t_{\text {AS }}$	0		0		ns	
Address valid to end of write	$t_{\text {AW }}$	14		15		ns	
Chip select to end of write	${ }^{\text {t }}$ CW	14		15		ns	
Data hold time	${ }^{\text {t }}$ DH	0		0		ns	
Data valid to end of write	$t_{\text {DW }}$	10		12		ns	
Output active from end of write	tow	0		0		ns	(Note 3)
Write cycle time	$t_{\text {w }}$	20		25		ns	(Note 2)
Write enable to output in high-Z	${ }_{\text {t }}$ WHz	0	8	0	10	ns	(Note 4)
Write pulse width	$t_{\text {WP }}$	12		15		ns	
Write recovery time	${ }^{\text {t }}$ WR	3		3		ns	

Notes:

(1) Input pulse levels $=$ GND to 3.0 V ; input pulse rise and fall time $=$ 3 ns ; timing reference levels $=1.5 \mathrm{~V}$; see figure 1 for the output load.
(2) All read and write cycle timings are referenced from the last valid address to the first transitioning address.
(3) The transition is measured $\pm 200 \mathrm{mV}$ from steady-state voltage with the load shown in figure 1.
(4) The transition is measured at $\mathrm{V}_{\mathrm{OL}}+200 \mathrm{mV}$ and $\mathrm{V}_{\mathrm{OH}}-200 \mathrm{mV}$ with the load shown in figure 1.

Figure 1. Output Loads

$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ (Including scope and test Jig)
$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ for $\mathrm{t}_{\mathrm{CHZ}} \mathrm{t}_{\mathrm{CLZ}}, \mathrm{t}_{\mathrm{OHZ}} \mathrm{t}_{\mathrm{OLZ}} \mathrm{t}^{\mathrm{t}} \mathrm{OW}$, and $\mathrm{t}_{\mathrm{WHZ}}$

Timing Waveforms

Address Access Cycle

Chip Select Access Cycle

22c

Notes:

[1] WE is held high for a read cycle.
[2] Device is continuously selected: $\overline{\mathrm{CS}}=\overline{\mathrm{OE}}=$ Low
[3] Address valld prior to or coincident with the low transition of $\overline{\mathrm{CS}}$.

Timing Waveforms (cont)

WE-Controlled Write Cycle

Notes:
[1] $\overline{\mathrm{CS}}$ or $\overline{\mathrm{WE}}$ must be high during address transition.
[2] A write cycle occurs during the overtap of a low $\overline{C S}$ and a low $\overline{\text { WEE }}$.
[3] tWR is measured between CS or WE, whichever rising edge occurs first, and the end of twC.

Timing Waveforms (cont)

$\overline{C S}$-Controlled Write Cycle

Notes:

[1] $\overline{\mathrm{CS}}$ or $\overline{\mathrm{WE}}$ must be high duing address transition.
[2] A wite cycle occurs during the overlap of a low $\overline{C S}$ and a low $\overline{W E}$.
[3] twA ls measured between CS or WE, whichever ising edge occurs first, and the end of twC.

22c

Fast Static RAMs (64K)

Fas Static RaMms |256k!

Fast Static RAMs
(11

Fast Static RAMS
(4M)

Cache Data RAMs

Cache Data RAMs

Section 23

Cache Data RAMs
$\mu \mathrm{PD} \quad$ Organization \quad Features

46710A $16 \mathrm{~K} \times 10$ bit $\times 2$ Cache data; 12-ns 23a
$46741 \mathrm{~A} \quad 8 \mathrm{~K} \times 20$ bit $\times 2 \quad$ Cache data; 12-ns $\quad 23 \mathrm{~b}$

Description

The μ PD46710A is a high-performance static BiCMOS RAM organized as $16,384 \times 10$ bits $\times 2$ and designed for use as a high-speed cache memory. The μ PD46710A integrates two $16,384 \times 10$-bit SRAM cores with associated address latches and control signals that can be used to implement an instruction/data cache for 25 and $33-\mathrm{MHz}$ VR $3000^{\text {TM }}$ RISC systems.

Features

- Fast access time: 12 or 15 ns
- $16,384 \times 10$-bit $\times 2$ organization
- On-chip address latches
- On-chip instruction/data caches
- Fully static read/write operation
- TTL-compatible inputs and outputs
- 52-pin PLCC package

Ordering Information

Part Number	Access Time	Output Enable Time	Package
μ PD46710ALN-12	12 ns	4.5 ns	52 -pin PLCC
$\mathrm{LN}-15$	15 ns	7 ns	

Pin Configuration

52-Pin PLCC

Pin Identification

Symbol	Function
$A_{0}-A_{13}$	Addresses
$A L E_{0}$ and $A L E_{1}$	Address latch enable inputs
$D_{0}-D_{9}$	Data inputs/outputs
LCE and $\overline{\mathrm{LCE}}$	Latch chip enable inputs
$\overline{\overline{O E}_{0} \text { and } \overline{\mathrm{OE}}_{1}}$	Output enable inputs
$\overline{\mathrm{WE}}_{0}$ and $\overline{W E}_{1}$	Write enable inputs
$V_{C C}$ and $V_{C C Q}$	+5 -volt power supply
$V_{S S}$ and $V_{S S Q}$	Ground
$N C$	No connection

Block Diagram

Figure 1. 64K-Byte Cache System

Functional Operation

The μ PD46710A integrates two 16K x 10 SRAM cores with associated address latches and control logic to be used as an instruction/data cache in a high-speed VR3000 RISC processor. In this system, the CPU initiates a μ PD46710A memory cycle by outputting an address to one of the two memory arrays. The signals on address lines $A_{0}-A_{13}$ are latched onto the address latch of array 0 at the rising edge of $A L E_{0}$ while $A L E E_{1}$ is inactive low. The CPU executes a read cycle on array 0 and initiates the next memory operation. Memory array 1 is then accessed by latching the CPU address at the rising edge of ALE_{1} with ALE_{0} inactive low.
To read data from memory array $0, \overline{\mathrm{OE}}_{0}$ is driven active low while $\overline{\mathrm{WE}}_{0}, \overline{\mathrm{WE}}_{1}$, and $\overline{\mathrm{OE}}_{2}$ remain inactive high. Data in memory array 1 is read by driving $\overline{\mathrm{OE}}_{1}$ low with OE_{0}, $\overline{W E}_{0}$, and $\overline{W E}_{1}$ inactive high.
The $\overline{W E}_{0}$ and $\overline{W E}_{1}$ signals control write cycles into each of the two memory arrays. Data is written into memory
array 0 by driving write data on data lines $D_{0}-D_{9}$ with $\overline{W E}_{0}$ active low. In a similar manner, the $\overline{W E}_{1}$ signal controls write cycles into memory array 1.
The LCE and $\overline{\text { LCE }}$ latch chip enable signals provide a decoding function that can be used to increase the size of the VA 3000 cache memory. A 64 K -byte cache (figure 1) can be implemented using six μ PD 46710 As with LCE and LCE connected to $V_{C C}$ and GND, respectively.
Cache size can be increased to 128 K bytes (figure 2) using two banks of six μ PD46710As. In this case, address signal A_{14} is used to decode the two 64 K -byte memory banks. LCE of the first bank is connected to address A_{14} and LCE is connected to $V_{C C}$. LCE of the second bank is connected to A_{14} with LCE grounded.

Figure 2. 128K-Byte Cache System

Truth Table

Function	LCE	$\overline{\mathrm{LCE}}$	$\overline{\mathrm{WE}}_{\mathbf{0}}$	$\overline{\mathrm{WE}}_{\mathbf{1}}$	$\overline{\mathrm{OE}}_{\mathbf{0}}$	$\overline{\mathbf{O E}}_{\mathbf{1}}$	Output
Not selected	L	L	X	X	X	X	$\mathrm{Hlgh}-\mathrm{Z}$
Not selected	L	H	X	X	X	X	$\mathrm{Hlgh}-\mathrm{Z}$
Not selected	H	H	X	X	X	X	$\mathrm{Hlgh}-\mathrm{Z}$
Read RAM array 0 data	H	L	H	H	L	H	Read data
Read RAM array 1 data	H	L	H	H	H	L	Read data
Output high-Z	H	L	H	H	H	H	Hlgh-Z
(Note 1)	H	L	H	H	L	L	HIgh-Z
Write data into RAM array 0	H	L	L	H	X	X	Write data
Write data into RAM array $\mathbf{~}$	H	L	H	L	X	X	Write data
Write same data into both RAM arrays. (Note 2)	H	L	L	L	X	X	Write data

Notes:

(1) Not recommended for use because of multiselection in the multiplexer circuit.
(2) Not recommended for use because of increasing ac power during write operation.
(3) $X=$ don't care.

Absolute Maximum Ratings

Supply voltage, V_{CC}	-0.5 to +7.0 V
Input voltage, $\mathrm{V}_{\text {IN }}$	-0.5 to +7.0 V
Output voltage, $\mathrm{V}_{\text {OUT }}$	-0.5 to +7.0 V
Operating temperature, $\mathrm{T}_{\text {OPR }}$	0 to $+70^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\text {STG }}$	-55 to $+125^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Input voltage, high	V_{IH}	2.2		$\mathrm{~V}_{\mathrm{CC}}+0.3$	V
Input voltage, low	$\mathrm{V}_{I L}$	-0.5^{*}		0.8	V
Ambient temperature	T_{A}	0		+70	${ }^{\circ} \mathrm{C}$

* $V_{\mathrm{IL}}=-2.0 \mathrm{~V} \min$ for $20-\mathrm{ns}$ maximum pulse.

Capacitance

$T_{A}=25^{\circ} \mathrm{C} ; f=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{IN}}$ and $\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}$

Parameter*	Symbol	Min	Typ	Max	Unit
Input capacitance	$\mathrm{C}_{1 \mathrm{~N}}$			6	pF
Input/output capacitance	$\mathrm{C}_{1 / \mathrm{O}}$			8	pF

* These parameters are sampled and not 100% tested.

DC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Input leakage current	I_{LI}	-2	2	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{CC}	
Output leakage current	I_{LO}	-2	2	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$ to V_{CC}	
Operating supply current*	$\mathrm{I}_{\mathrm{CCA}}$		300	mA	$\mathrm{~V}_{\mathrm{O}}=$ open; $\mathrm{V}_{\mathrm{CC}}=\max ; f=2 / \mathrm{t}_{\mathrm{RC}}$	
Output voltage, low	V_{OL}		0.4	V	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{min}$	
Output voltage, high	V_{OH}	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{min}$	

* Applicable to two SRAM cores operating at maximum frequency.

AC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	μ PD46710A-12		μ PD46710A-15		Unit	Test Conditions
		Min	Max	Min	Max		

Read Operation

Address access time	$t_{\text {AA }}$		12		15	ns	
Address hold time for ALE_{0} and ALE_{1}	${ }^{\text {AHLHLL}}$	2		2		ns	(Note 3)
Latched chip enable access time	$t_{\text {ALCE }}$		12		15	ns	
ALE access time	$t_{\text {ALEA }}$	1	14	1	17	ns	
Address latch enable pulse width	$\mathrm{t}_{\text {AP }}$	6		8		ns	
Address setup time for ALE_{0} and ALE_{1}	$\mathrm{t}_{\text {ASLL }}$	4		4		ns	(Note 4)
Latched chip enable to output in high-Z	${ }^{\text {t }} \mathrm{CHZ}$	1	6	2	7	ns	(Note 1)
Latched chip enable to output in low-Z	${ }^{\text {t }}$ cLZ	1		2		ns	(Note 1)
Output enable to output valid	toe		4.5		6	ns	(Note 5)
Output hold from address change	${ }^{\text {tor }}$	3		3		ns	
$\overline{O E}$ to output in high-Z	${ }^{\text {tohz }}$	0	4	0	6	ns	(Note 1)
$\overline{\text { OE to output in low-Z }}$	tolz	0		0		ns	
Output enable overlap time	too	1		1		ns	
Read cycle time	${ }^{\text {t }} \mathrm{RC}$	15		20		ns	

AC Characteristics (cont)

Parameter	Symbol	μ PD46710A-12		μ PD46710A-15		Unit	Test Conditions
		Min	Max	Min	Max		
Write Operation							
Address hold time for ALE_{0} and ALE_{1}	$t_{\text {AHLL }}$	2		2		ns	(Note 3)
ALE setup time prior to end of write	$\mathrm{t}_{\text {ALES }}$	2		2		ns	
ALE setup time to end of write	talew	17		17		ns	
Address latch enable pulse width	$t_{\text {AP }}$	6		8		ns	
Address setup time	$t_{\text {AS }}$	2		2		ns	
Address setup time for ALE_{0} and ALE_{1}	$t_{\text {ASLL }}$	4		4		ns	(Note 4)
Address valid to end of write	$t_{\text {AW }}$	12		15		ns	
Address latch enable hold time after write	${ }^{\text {tawh }}$	0		0		ns	
Latched chip enable to end of write	$\mathrm{t}_{\mathrm{C}} \mathrm{W}$	12		15		ns	
Data hold time	${ }^{t}{ }_{\text {DH }}$	0		0		ns	(Note 8)
Data valid to end of write	tow	5		7		ns	(Note 7)
Output enable to end of write	toew	0		0		ns	(Note 6)
Output disable to write enable	todw	2		2		ns	
Write cycle time	twe	12		15		ns	
Write pulse width	$t_{\text {W }}$ P	7		10		ns	
Write recovery time	$\mathrm{t}_{\text {WR }}$	2		3		ns	

Notes:

(1) This transition is measured $\pm 200 \mathrm{mV}$ from steady-state with the output load in figure 3.
(2) Input pulse levels $=0.8$ to 2.4 V ; input pulse rise and fall times $\leq 3 \mathrm{~ns}$; see figure 3 .
(3) $t_{A H L L}=1.5$ ns for $V_{C C}=+5 \mathrm{~V} \pm 5 \%, T_{A}=0$ to $50^{\circ} \mathrm{C}$.
(4) $t_{A S L L}=3$ ns for $V_{C C}=+5 \mathrm{~V} \pm 5 \%, T_{A}=0$ to $50^{\circ} \mathrm{C}$.
(5) $\mathrm{t}_{\mathrm{OE}}=4 \mathrm{~ns}$ for $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, T_{A}=0$ to $50^{\circ} \mathrm{C}$.
(6) $\overline{O E}_{n}, \overline{W E}_{m}(n=0$ or $1, m=0$ or 1)
toew $=0$ ns min at $n \neq m$
$=2 \mathrm{~ns} \min$ at $\mathrm{n}=\mathrm{m}$
(7) $t_{D W}=4 \mathrm{~ns}$ for $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $50^{\circ} \mathrm{C}$.
(8) $t_{D H}=0.5 \mathrm{~ns}$ for $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $50^{\circ} \mathrm{C}$.

Figure 3. AC Test Conditions

Timing Waveforms

Read Cycle (LCE High)

* 0 and 1 refer to memory arrays 0 and 1.
$\dagger \overline{W E}_{0}$ and $\overline{W E}_{1}$ are High.

Timing Waveforms (cont)

Read Cycle (LCE = Address)

* 0 and 1 refer to memory arrays 0 and 1.
$\dagger \overline{\mathrm{WE}}_{0}$ and $\overline{\mathrm{WE}}_{1}$ are Hlgh.

Timing Waveforms (cont)
Write Cycle (LCE = Address)

23a

* 0 and 1 refer to memory arrays 0 and 1.
\qquad

Description

The μ PD46741A is a high－performance BiCMOS static RAM organized as a 8192×20 bits $\times 2$ and designed to be used as a high－speed cache memory．The μ PD46741A integrates two 8192×20－bit SRAM cores with associated address latches and control signals that can be used to implement an instruction／data cache for $25-$ and $33-\mathrm{MHz}$ VR3000 ${ }^{\text {TM }}$ RISC systems．

Features

－Fast access time： 12 or 15 ns
－ 8192×20－bit x 2 organization
－On－chip address latches
－On－chip instruction／data caches
－Fully static read／write operation
TTL－compatible inputs and outputs
－68－pin PLCC package
VR3000 is a trademark of NEC Corporation．

Ordering Information

Part Number	Access Time	Output Enable Access Time	Package
μ PD46741ALP－12	12 ns	4.5 ns	68 －pin PLCC
LP－15	15 ns	7 ns	

Pin Identification

Symbol	Function
$A_{0}-A_{12}$	Addresses
$A L E_{0}$ and $A L E_{1}$	Address latch enable inputs
$D_{0}-D_{19}$	Data inputs／outputs
$L C E$ and $\overline{\mathrm{LCE}}$	Latch chip enable inputs
$\overline{\overline{O E}_{0} \text { and } \overline{O E}}{ }_{1}$	Output enable inputs
$\overline{W E}_{0}$ and $\overline{W E}$	
$V_{C C}$ and $V_{C C Q}$	Write enable inputs
$V_{S S}$ and $V_{S S Q}$	+5 －volt power supply
$N C$	Ground

Pin Configuration

68－Pin PLCC

		の - ¢ ¢		
v_{cc}	10		60	v_{cc}
v_{ss}［	11		59	$\mathrm{v}_{\text {ss }}$
D_{0}	12		58	D_{19}
D_{1}	13		57	D_{18}
D_{2}	14		56	D_{17}
$\mathrm{v}_{\text {SSO }} 5$	15		55	$\mathrm{v}_{\text {SSQ }}$
$v_{\text {cca }}$	16		54	veca
D_{3}	17		53	D_{16}
D_{4}	18	$\mu \mathrm{PD} 46741 \mathrm{~A}$	52	D_{15}
$v_{\text {SSQ }} 5$	19		51	$\mathrm{v}_{\text {SSQ }}$
D_{5}	20		50	D_{14}
$\mathrm{D}_{6} 5$	21		49	D_{13}
$v_{\text {cCo }}{ }^{\text {a }}$	22		48	$v_{\text {cco }}$
$v_{\text {Ssa }}$	${ }^{23}$		47	$\mathrm{v}_{\text {SSQ }}$
${ }^{7} 9$	24		46	D_{12}
D_{8}	25		45	D_{11}
$\mathrm{D}_{9}-$	26		44	D_{10}
		むめ\％\％		

Block Diagram

Functional Operation

The μ PD 46741A integrates two 8K x 20 SRAM cores with associated address latches and control logic to be used as an instruction/data cache in a high-speed VR3000 RISC processor. In this system, the CPU initiates a μ PD46741A memory cycle by outputting an address to one of the two memory arrays. The signals on address lines $A_{0}-A_{12}$ are latched into the address latch of array 0 at the rising edge of $A L E_{0}$ while $A L E_{1}$ is inactive low. The CPU executes a read cycle on array 0 and initiates the next memory operation. Memory array 1 is then accessed by latching the CPU address at the rising edge of $A L E_{1}$ with $A L E_{0}$ inactive low.
To read data from memory array $0, \overline{O E}_{0}$ is driven active low while $\mathrm{WE}_{0}, \overline{W E}_{1}$, and OE_{2} remain inactive high. Data in memory array 1 is read by driving $\overline{\mathrm{OE}}_{1}$ low with $\overline{\mathrm{OE}}_{0}$, $\overline{W E}_{0}$, and $\overline{W E}_{1}$ inactive high.
The $\overline{W E}_{0}$ and $\overline{W E}_{1}$ signals control write cycles into each of the two memory arrays. Data is written into memory array 0 by driving write data on data lines $D_{0}-D_{19}$ with $\overline{W E}_{0}$ active low. In a similar manner, the $\overline{W E}_{1}$ signal controls write cycles into memory array 1.

The LCE and LCE latch chip enable signals provide a decoding function that can be used to increase the size of the VR3000 cache memory. A 32K-byte cache (figure 1) can be implemented using three μ PD46741As with LCE and LCE connected to V_{CC} and GND, respectively.
Cache size can be increased to 64 K bytes (figure 2) using two banks of three μ PD46741As. In this case, address signal A_{13} is used to decode the two 32K-byte memory banks. LCE of the first bank is connected to address A_{13} and LCE is connected to $V_{C C}$. LCE of the second bank is connected to A_{13} with LCE grounded.

Figure 1. 32K-Byte Cache System

Figure 2. 64K-Byte Cache System

Truth Table

Function	LCE	$\overline{\text { LCE }}$	$\overline{W E}_{0}$	$\overline{W E}_{1}$	$\overline{\mathrm{OE}}_{0}$	$\overline{\mathrm{OE}}_{1}$	Output
Not selected	L	L	X	X	X	X	High-Z
Not selected	L	H	X	X	X	X	High-Z
Not selected	H	H	X	X	X	X	High-Z
Read RAM array 0 data	H	L	H	H	L	H	Read data
Read RAM array 1 data	H	L	H	H	H	L	Read data
Output high-Z	H	L	H	H	H	H	HIgh-Z
(Note 1)	H	L	H	H	L	L	High-Z
Write data into RAM array 0	H	L	L	H	X	X	Write data
Write data into RAM array 1	H	L	H	L	X	X	Write data
Write same data into both RAM arrays. (Note 2)	H	L	L	L	X	X	Write data

Notes:

(1) Not recommended for use because of multiselection in the multiplexer circuit.
(2) Not recommended for use because of increasing ac power during write operation.

Absolute Maximum Ratings

Supply voltage, V_{CC}	-0.5 to +7.0 V
Input voltage, V_{IN}	-0.5 to +7.0 V
Output voltage, $\mathrm{V}_{\text {OUT }}$	-0.5 to +7.0 V
Operating temperature, $\mathrm{T}_{\text {OPR }}$	0 to $+70^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\text {STG }}$	-55 to $+125^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Input voltage, high	V_{IH}	2.2		$\mathrm{~V}_{\mathrm{CC}}+0.3$	V
Input voltage, low	V_{IL}	-0.5^{*}		0.8	V
Ambient temperature	T_{A}	0		+70	${ }^{\circ} \mathrm{C}$

* $V_{\text {IL }}=-2.0 \mathrm{~V} \min$ for $20-\mathrm{ns}$ maximum pulse.

Capacitance

$T_{A}=25^{\circ} \mathrm{C} ; f=1 \mathrm{MHz} ; \mathrm{V}_{\text {IN }}$ and $V_{\text {OUT }}=0 \mathrm{~V}$

Parameter*	Symbol	Min	Typ	Max	Unit
Input capacitance	$\mathrm{C}_{\text {IN }}$			6	pF
Input/output capacitance	$\mathrm{C}_{1 / \mathrm{O}}$			8	pF

* These parameters are sampled and not 100% tested.

DC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Input leakage current	I_{LI}	-2	2	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathbb{I N}}=0 \mathrm{~V}$ to V_{CC}	
Output leakage current	I_{LO}	-2	2	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$ to V_{CC}	
Operating supply current*	$\mathrm{I}_{\mathrm{CCA}}$		300	mA	$\mathrm{~V}_{\mathrm{O}}=$ open; $\mathrm{V}_{\mathrm{CC}}=\max ; f=2 / \mathrm{t}_{\mathrm{RC}}$	
Output voltage, low	V_{OL}		0.4	V	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{min}$	
Output voltage, high	V_{OH}	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{min}$	

* Applicable to two SRAM cores operating at maximum frequency.

AC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	μ PD46741A-12		μ PD46741A-15		Unit	Test Conditions
		Min	Max	Min	Max		
Read Operation							
Address access time	$t_{A A}$		12		15	ns	
Address hold time for ALE $_{0}$ and ALE ${ }_{1}$	$t_{\text {AHLL }}$	2		2		ns	(Note 3)
Latched chip enable access time	$t_{\text {ALCE }}$		12		15	ns	
ALE access time	$t_{\text {ALEA }}$	1	14	1	17	ns	
Address latch enable pulse width	$t_{\text {AP }}$	6		8		ns	
Address setup time for ALE_{0} and ALE_{1}	$t_{\text {ASLL }}$	4		4		ns	(Note 4)
Latched chip enable to output in high-Z	${ }^{\text {t }} \mathrm{CHZ}$	1	6	2	7	ns	(Note 1)
Latched chip enable to output in low-Z	$t_{\text {clz }}$	1		2		ns	(Note 1)
Output enable to output valid	$\mathrm{t}_{\text {OE }}$		4.5		6	ns	(Note 5)
Output hold from address change	t_{OH}	3		3		ns	
$\overline{\text { OE to output in high-Z }}$	${ }^{\text {t }} \mathrm{OHZ}$	0	4	0	6	ns	(Note 1)
$\overline{O E}$ to output in low-Z	tolz	0		0		ns	
Output enable overlap time	too	1		1		ns	

AC Characteristics (cont)

Parameter	Symbol	$\mu \mathrm{PD} 46741 \mathrm{~A}$-12		$\mu \mathrm{PD} 46741 \mathrm{~A}$-15		Unit	Test Conditions
		Min	Max	Min	Max		
Read cycle time	$t_{\text {RC }}$	15		20		ns	
Write Operation							
Address hold time for ALE_{0} and ALE_{1}	$t_{\text {AHLL }}$	2		2		ns	
ALE setup time prior to end of write	$t_{\text {ALES }}$	2		2		ns	
ALE setup time to end of write	$t_{\text {ALEW }}$	17		17		ns	
Address latch enable pulse width	$t_{A P}$	6		8		ns	
Address setup time	$t_{A S}$	2		2		ns	
Address setup time for ALE_{0} and ALE_{1}	$t_{\text {ASLL }}$	4		4		ns	
Address valid to end of write	${ }^{\text {aW }}$	12		15		ns	
Address latch enable hold time after write	$t_{\text {AWH }}$	0		0		ns	
Latched chip enable to end of write	t_{CW}	15		15		ns	
Data hold time	${ }^{\text {d }}$ D	0		0		ns	(Note 8)
Data valid to end of write	$\mathrm{t}_{\text {DW }}$	5		7		ns	(Note 7)
Output enable to end of write	toew	0		0		ns	(Note 6)
Output disable to write enable	topw	2		2		ns	
Write cycle time	two	12		15		ns	
Write pulse width	$t_{\text {WP }}$	7		10		ns	
Write recovery time	$t_{\text {WR }}$	2		3		ns	

Notes:

(1) This transition is measured $\pm 200 \mathrm{mV}$ from steady-state with the output load in figure 3.
(2) Input pulse levels $=0.8$ to 2.4 V ; input pulse rise and fall times $\leq 3 \mathrm{~ns}$; see figure 3.
(3) $t_{A H L L}=1.5 \mathrm{~ns}$ for $V_{C C}=+5 \mathrm{~V} \pm 5 \%, T_{A}=0$ to $50^{\circ} \mathrm{C}$.
(4) $t_{A S L L}=3 \mathrm{~ns}$ for $V_{C C}=+5 \mathrm{~V} \pm 5 \%, T_{A}=0$ to $50^{\circ} \mathrm{C}$.
(5) $t_{O E}=4 \mathrm{~ns}$ for $V_{C C}=+5 \mathrm{~V} \pm 5 \%, T_{A}=0$ to $50^{\circ} \mathrm{C}$.
(6) $\overline{O E}_{n}, \overline{W E}_{m}(n=0$ or $1, m=0$ or 1$)$.
$t_{O E W}=0 n s \min$ at $n \neq m$

$$
=2 \text { ns } \min \text { at } n=m
$$

(7) $t_{D W}=4$ ns for $V_{C C}=+5 V \pm 5 \%, T_{A}=0$ to $50^{\circ} \mathrm{C}$.
(8) $t_{D H}=0.5 \mathrm{~ns}$ for $V_{C C}=+5 \mathrm{~V} \pm 5 \%, T_{A}=0$ to $50^{\circ} \mathrm{C}$.

Figure 3. AC Test Conditions

Timing Waveforms

Read Cycle (LCE High)

* 0 and 1 refer to memory arrays 0 and 1.
$t \overline{W E}_{0}$ and $\overline{W E}_{1}$ are High.

Timing Waveforms (cont)
Read Cycle (LCE = Address)

* 0 and 1 refer to memory arrays 0 and 1.
$\dagger \overline{W E}_{0}$ and $\overline{W E}_{1}$ are Hlgh .

Timing Waveforms (cont)

Write Cycle (LCE = Address)

* 0 and 1 refer to memory arrays 0 and 1.

Standard Static RAMs

Section 24

Standard Static RAMs

(See App Notes 50, 90-04.)

μ PD	Org.	Features	
43256 A	$32 \mathrm{~K} \times 8$	$85-\mathrm{ns} ;$ Output enable	24 a
43256 B	$32 \mathrm{~K} \times 8$	55-ns; Output enable	24 b
431000 A	$128 \mathrm{~K} \times 8$	70-ns; Output enable, two chip enables	24 C
434000	$512 \mathrm{~K} \times 8$	55-ns; Output enable	24 d
MC-434000	$512 \mathrm{~K} \times 8$	Module; 85-ns; Output enabie	24 e

Upcoming Products

Description	Device Number	Comments
$32 \mathrm{~K} \times 8$	μ PD43256A-10X, 12X	-25 to $+85^{\circ} \mathrm{C}$; speeds to 100 ns
$32 \mathrm{~K} \times 8$	$\mu \mathrm{PD} 43256 \mathrm{~A}-10 \mathrm{Y}, 12 \mathrm{Y}$	-40 to $+85^{\circ} \mathrm{C}$; speeds to 100 ns
$32 \mathrm{~K} \times 8$	$\mu \mathrm{PD} 43256 \mathrm{~B}-\mathrm{A} 12$	3.0 to $5.5 \mathrm{~V} ; 120-\mathrm{ns}$ access time
$32 \mathrm{~K} \times 8$	μ PD43256B-B12	2.7 to $5.5 \mathrm{~V} ; 120$-ns access time
$128 \mathrm{~K} \times 8$	$\mu \mathrm{PD} 431000 \mathrm{~A}-70 \mathrm{X}, 85 \mathrm{X}, 100 \mathrm{X}$	-25 to $+85^{\circ} \mathrm{C}$; speeds to 70 ns
$128 \mathrm{~K} \times 8$	$\mu \mathrm{PD} 431000 \mathrm{~A}-70 \mathrm{Y}, 85 \mathrm{Y}, 100 \mathrm{Y}$	-40 to $+85^{\circ} \mathrm{C}$; speeds to 70 ns
$128 \mathrm{~K} \times 8$	μ PD431000B-55L/LL, 70L/LL, 85L/LL	Low power; speeds to 55 ns
$128 \mathrm{~K} \times 8$	μ PD431000B-B10, B12	2.7 to 5.5 V ; speeds to 100 ns
128K x 9	μ PD431003	Low power; speeds to 55 ns ; two Chip Enables
$128 \mathrm{~K} \times 9$	μ PD431003-B10, B12	2.7 to 5.5 V ; speeds to 100 ns ; two Chip Enables
$512 \mathrm{~K} \times 8$	μ PD434000-B15	2.7 to 5.5 V ; 150-ns access time; two Chip Enables

Description

The μ PD43256A is a 32,768 -word by 8 -bit static RAM fabricated with advanced silicon-gate technology. Its unique design uses CMOS peripheral circuits and N channel memory cells with polysilicon resistors to make the μ PD43256A a high-speed device that requires very low power and no clock or refreshing.
Minimum standby power is drawn when $\overline{\mathrm{CS}}$ is high, independent of the other inputs' levels. Data retention is guaranteed at a power supply voltage as low as 2 V . The μ PD43256A is available in standard 28 -pin plastic DIP, 28-pin plastic miniflat, or 32 -pin plastic TSOP packaging.

Features

- Single +5 -volt power supply
- Fully static operation-no clock or refreshing required
- TTL-compatible inputs and outputs
- Common I/O using three-state outputs
- One $\overline{\mathrm{CS}}$ pin and one $\overline{\mathrm{OE}}$ pin for easy application
- Data retention of 2 V minimum
- Standard 28-pin plastic DIP and miniflat packaging
- Standard 32-pin plastic TSOP packaging (with either normal or reverse bent leads)

Pin Configurations

28-Pin Plastic DIP or Miniflat

Pin Identification

Symbol	Function
$A_{0}-A_{14}$	Address inputs
$I / O_{1}-I / O_{8}$	Data inputs and outputs
$\overline{C S}$	Chip select
$\overline{O E}$	Output enable
$\overline{W E}$	Write enable
GND	Ground
$V_{C C}$	+5 -volt power supply
$N C$	No connection

Pin Configurations (cont)

32-Pin Plastic TSOP (Normal Pinouts)

$\mu \mathrm{PD} 43256$ A			
$\overline{O E} \square^{1}$	\checkmark	32	A_{10}
$\mathrm{A}_{11} \square_{2}$		31	$\square \overline{C S}$
NC $\square 3$		30	$\square \mathrm{NC}$
$A_{9} \square_{4}$		29	$\square \mathrm{VO}_{8}$
$A_{8} \square_{5}$		28	VO_{7}
$\mathrm{A}_{13} \square^{6}$		27	$\square V O_{6}$
WE \square^{7}		26	$\square \mathrm{VO}_{5}$
${ }^{\text {CCC }} \square_{8}^{8}$	- EJA	25	$\square \mathrm{VO}_{4}$
$\mathrm{A}_{14} \square^{9}$		24	\square GND
$A_{12}{ }^{10}$		23	$\mathrm{V}^{1} \mathrm{O}_{3}$
$\mathrm{A}_{7} \square_{11}$		22	$\square \mathrm{VO}_{2}$
$A_{6} \square_{12}$		21	$\square \mathrm{VO}_{1}$
$A_{5} \square^{13}$		20	$\square \mathrm{A}_{0}$
NC 14		19	$\square \mathrm{NC}$
$\mathrm{A}_{4} \square 15$		18	A_{1}
A_{3} C16		17	A_{2}

Suffix -EJA in the package identlifier denotes normal pinout sequence.

32-Pin Plastic TSOP (Reserve Pinouts)

μ PD43256A			
$\mathrm{A}_{10}{ }^{1}$		$\bigcirc 32$	$\square \overline{O E}$
CS -2		31	A_{11}
NC ${ }^{3}$		30	$\square \mathrm{NC}$
$\mathrm{VO}_{8} \mathrm{~N}_{4}$		29	$\square \mathrm{Ag}$
$\mathrm{VO}_{7} \mathrm{C}_{5}$		28	\square_{8}
$V_{0} \mathrm{O}_{6}$		27	A_{13}
VO_{5}-7		26	$\square \mathrm{WE}$
$\mathrm{VO}_{4} \square^{8} \mathrm{O}$	- EKA	$\bigcirc{ }^{25}$	V_{CC}
GND 49		24	A_{14}
$1 / O_{3}-10$		23	A_{12}
VO_{2}-11		22	$\square^{1} A_{7}$
$V O_{1}$ - 12		21	$\square A_{6}$
$\mathrm{A}_{0}-13$		20	$\square{ }^{\text {A }}$
NC 14		19	\square NC
$\mathrm{A}_{1} \mathrm{C}_{15}$		18	P_{4}
$A_{2} 16$		17	$\square \mathrm{AB}^{\prime}$

Suffix -EKA in the package Identifier denotes reverse pinout sequence.

Ordering Information

Catalog Part Number	Access Time (max)	Data Retention Current (max) $T_{A}=0 \text { to } 70^{\circ} \mathrm{C}(\text { max })$	Package
μ PD43256AC-85L	85 ns	$50 \mu \mathrm{~A}$	28-pin plastic DIP(600 mil)
C-10L	100 ns		
C-12L	120 ns		
C-15L	150 ns		
$\mu \mathrm{PD} 43256 \mathrm{AC-85LL}$	85 ns	$20 \mu \mathrm{~A}$	28-pin plastic DIP (600 mil)
C-10LL	100 ns		
C-12LL	120 ns		
C-15LL	150 ns		
μ PD43256AGU-85L	85 ns	$50 \mu \mathrm{~A}$	28-pin plastic miniflat
GU-10L	100 ns		
GU-12L	120 ns		
GU-15L	150 ns		
μ PD43256AGU-85LL	85 ns	$20 \mu \mathrm{~A}$	28-pin plastic miniflat
GU-10LL	100 ns		
GU-12LL	120 ns		
GU-15LL	150 ns		
$\mu \mathrm{PD} 43256 \mathrm{AGX}$-10L	100 ns	$50 \mu \mathrm{~A}$	32-pin plastic TSOP (normal pinouts)
GX-12L	1200 ns		
$\mu \mathrm{PD} 43256 \mathrm{AGX}$-10LL	100 ns	$20 \mu \mathrm{~A}$	
GX-12LL	120 ns		
$\mu \mathrm{PD} 43256 \mathrm{AGXM}$-10L	100 ns	$50 \mu \mathrm{~A}$	32-pin plastic TSOP (reverse pinouts)
GXM-12L	1200 ns		
μ PD43256AGXM-10LL	100 ns	$20 \mu \mathrm{~A}$	
GXM-12LL	120 ns		

Block Dlagram

Absolute Maximum Ratings

Supply voltage, V_{CC} (Note 1)	-0.5 to +7.0 V
Input voltage, $\mathrm{V}_{\mathbb{I N}}$ (Note 1)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Output voltage, $\mathrm{V}_{\mathrm{I} / \mathrm{O}}$ (Note 1)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Operating temperature, TOPR	0 to $+70^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\mathrm{STG}}$	-55 to $+125^{\circ} \mathrm{C}$
Power dissipation, P_{D}	1.0 W

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Notes:

(1) -3.0 V minimum (pulse width $=50 \mathrm{~ns}$).

Capacitance

$T_{A}=+25^{\circ} \mathrm{C} ; f=1 \mathrm{MHz} ; \mathrm{V}_{\mathbb{N}}$ and $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

Parameter	Symbol	Min	Max	Unit
Input capacitance	C_{I}		5	PF
Input/output capacitance	$\mathrm{C}_{\text {I/O }}$		8	pF

Truth Table

$\overline{\text { CS }}$	$\overline{\text { OE }}$	$\overline{\text { WE }}$	Function	I/O	ICC
H	X	X	Not selected	High-Z	Standby
L	H	H	Not selected	High-Z	Active
L	L	H	Read	DOUT $^{\text {H }}$	Active
L	X	L	Write	DIN	Active

Notes:

(1) $X=$ don't care.

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unlt
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Input voltage, low (Note 1)	V_{LL}	-0.3		0.8	V
Input voltage, high	V_{IH}	2.2	$\mathrm{~V}_{\mathrm{CC}}+0.5$	V	
Ambient temperature	T_{A}	0		70	${ }^{\circ} \mathrm{C}$
Notes:					
(1) -3.0 V minimum (pulse width $=50 \mathrm{~ns}$).					

Notes:

(1) This parameter is sampled and not 100% tested.

DC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditlons
Input leakage current	l_{LI}	-1		1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{CC}
I/O leakage current	Lo	-1		1	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{V} / \mathrm{O}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \mathrm{CS} \geq \mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{OE} \geq \mathrm{V}_{\mathrm{IH}} \\ & \text { or } W \mathrm{WE} \leq \mathrm{V}_{\mathrm{IL}} \end{aligned}$
Operating supply current	$I_{\text {ccal }}$			45	mA	$\overline{C S} \leq \mathrm{V}_{\mathrm{IL}}($ min cycle) $)$ I $\mathrm{I}_{1 / \mathrm{O}}=0 \mathrm{~V}($ Note 1)
	lccar			10	mA	$\overline{C S}=\mathrm{V}_{\mathrm{IL}} \mathrm{l}_{1 / \mathrm{O}}=0 \mathrm{~V}$
	lccas			10	mA	$\begin{aligned} & \overline{C S} \leq 0.2 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz} ; \mathrm{l}_{\mathrm{IO}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{IL}} \leq 0.2 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{IH}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$
Standby supply current	$\mathrm{I}_{\text {SB }}$			3	ma	$\overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{HH}}$
	$I_{\text {SB1 }}$		0.002	0.1	mA	$\overline{C S} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$ (Note 2)
Output voltage, low	V_{OL}			0.4	V	$\mathrm{I}_{\mathrm{OL}}=2.1 \mathrm{~mA}$
Output voltage, high	$\mathrm{V}_{\mathrm{OH} 1}$	2.4			V	$\mathrm{IOH}=-1.0 \mathrm{~mA}$
	$\mathrm{V}_{\mathrm{OH} 2}$	$\mathrm{V}_{\mathrm{CC}}-0.5$			V	$\mathrm{IOH}=-0.1 \mathrm{~mA}$

Notes:

(1) μ PD $43256 \mathrm{~A}-10 \mathrm{~L} /-10 \mathrm{LL} /-12 \mathrm{~L} /-12 \mathrm{LL}=40 \mathrm{~mA}(\max)$. μ PD $43256 \mathrm{~A}-15 \mathrm{~L} /-15 \mathrm{LL}=35 \mathrm{~mA}$ (max).
(2) μ PD43256AGX-10LL/-12LL $=50 \mu \mathrm{~A}(\max)$.

AC Characteristics (for L. and LL Versions)

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	μ PD43256A-85		$\mu \mathrm{PD} 43256 \mathrm{~A}-10$		MPD43256A-12		MPD43256A-15		Unit	Test Conditions
		Min	Max	Min	Max	Min	Max	Min	Max		
Read Operation											
Read cycle time	t_{RC}	85		100		120		150		ns	
Address access time	$t_{A A}$		85		100		120		150	ns	(Note 2)
Chip select access time	$t_{\text {Acs }}$		85		100		120		150	ns	(Note 2)
Output enable to output valid	toe		40		50		60		70	ns	(Note 2)
Output hold from address change	$\mathrm{toH}^{\text {H }}$	10		10		10		10	\cdots	ns	
Chip select to output in low-Z	tcLz	10		10		10		10		ns	(Note 3)
Output enable to output in low-Z	tolz	5		5		5		5		ns	(Note 3)
Chip select to output in high-Z	${ }^{\text {t }} \mathrm{CHZ}$		30		35		40		50	ns	(Note 3)
Output enable to output in high-Z	${ }^{\text {tohz }}$		30		35		40		50	ns	(Note 3)

Write Operation

Write cycle time	$t_{\text {wc }}$	85	100		120	150		ns	
Chip select to end of write	${ }^{\text {tow }}$	70	80		85	100		ns	
Address valid to end of write	$t_{\text {AW }}$	70	80		85	100		ns	
Address setup time	$t_{\text {AS }}$	0	0		0	0		ns	
Write pulse width	twp	65	70		70	90		ns	
Write recovery time	twR	5	5		5	5		ns	
Data valid to end of write	tow	35	40		50	60		ns	
Data hold time	${ }^{\text {tH }}$	0	0		0	0		ns	
Write enable to output in high-Z	tWHz			35			50	ns	(Note 3)
Output active from end of write	tow	10	10		10	10		ns	(Note 3)

Notes:

(1) Input pulse levels $=0.8$ to 2.2 V ; input pulse rise and fall times $=$
(2) See figure 1 for output load.
5 ns ; timing reference levels $=1.5 \mathrm{~V}$.
(3) See figure 2 for output load.

Low VCc Data Retention Characteristics

$T_{A}=0$ to $70^{\circ} \mathrm{C}$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Data retention supply voltage	$V_{C C D R}$	2.0		5.5	V	$\overline{C S} \geq V_{C C}-0.2 \mathrm{~V}$
Data retention supply current	$\mathrm{I}_{\mathrm{CCDR}}$		1	50	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{CS} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$ (Notes 1, 2)
Chip deselection to data retention	$\mathrm{t}_{\mathrm{CDR}}$	0			ns	
Operation recovery time	t_{f}	t_{RC}			ns	

Notes:

(1) For μ PD43256A-LL, $I_{C C D R}=20 \mu \mathrm{~A}(\max)$ at $\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$ and $3 \mu \mathrm{~A}(\max)$ at $\mathrm{T}_{\mathrm{A}}=0$ to $40^{\circ} \mathrm{C}$.
(2) For μ PD43256A-L, ICCDR $=15 \mu \mathrm{~A}(\max)$ at $\mathrm{T}_{\mathrm{A}}=0$ to $40^{\circ} \mathrm{C}$.

Data Retention Timing

Note:
[1] The other inputs (Addresses, $\overline{O E}, \overline{W E}$, VOs) can be in a state of high impedance.

Figure 1. Output Load

Figure 2. Output Load for $\boldsymbol{t}_{\text {CLZ }}, \boldsymbol{t}_{\mathrm{OLZ}}, \boldsymbol{t}_{\mathbf{C H Z}}, \boldsymbol{t}_{\mathrm{OHZ}}, \mathrm{t}_{\mathrm{WHZ}}$, and $\boldsymbol{t}_{\mathrm{W}}$

Timing Waveforms

Address Access Cycle

Notes:

[1] WE is held high for a read cycle.
[2] The device is continually selected, where $\overline{\mathrm{CS}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.

Chip Select Access Cycle

Timing Waveforms (cont)
WE-Controlled Write Cycle

Notes:
[1] A write cycle occurs during the overlap of a low $\overline{\mathrm{CS}}$ and a low $\overline{\mathrm{WE}}$.
[2] $\overline{\mathrm{CS}}$ or $\overline{\mathrm{WE}}$ must be high during address transition.
[3] If $\overline{\mathrm{OE}}$ is high, the V/O pins remain in a state of high impedance.
[4] During this period, the I/O pins may be in the output state.
Therefore, input signals of opposite phase must not be applied.

Timing Waveforms (cont)

CS-Controlled Write Cycle

Description

The μ PD43256B is a 32,768 -word by 8 -bit static RAM fabricated with advanced silicon-gate technology. Its unique design uses CMOS peripheral circuits and N channel memory cells with polysilicon resistors to make the μ PD43256B a high-speed device that requires very low power and no clock or refreshing.

Minimum standby power is drawn when $\overline{C S}$ is high, independent of the other inputs' levels. Data retention is guaranteed at a power supply voltage as low as 2 V . The μ PD 43256 B is available in standard 28 -pin plastic DIP and 28 -pin plastic miniflat.

Features

- Single +5 -volt power supply
- Fully static operation-no clock or refreshing
- TTL-compatible inputs and outputs
- Common I/O using three-state outputs
- One $\overline{\mathrm{CS}}$ pin and one $\overline{\mathrm{OE}}$ pin for easy application
- Data retention of 2 V minimum
- Standard 28-pin plastic DIP and miniflat packaging
- Fast access time of 55 ns

Ordering Information

Part Number	Access Time (max)	Package
μ PD43256BCZ-55L	55 ns	28-pin plastic DIP
CZ-70L	70 ns	
CZ-85L.	85 ns	
$\mu \mathrm{PD} 43256 \mathrm{BCZ}$-55LL	55 ns	
CZ-70LL	70 ns	
CZ-85LL	85 ns	
μ PD43256BGU-55L	55 ns	28-pin plastic miniflat
GU-70L	70 ns	
GU-85L	85 ns	
$\mu \mathrm{PD} 43256 \mathrm{BGU}$-55LL	55 ns	
GU-70LL	70 ns	
GU-85LL	85 ns	

Pin Configuration

28-Pin Plastic DIP or Miniflat

$\mu \mathrm{PD} 43256 \mathrm{~B}$		
$\mathrm{A}_{14} 1$	28.7 cc	
$\mathrm{A}_{12} \mathrm{C}_{2}$	27 ص WE	
$\mathrm{A}_{7} \mathrm{H}_{3}$	$26 \mathrm{~A}_{13}$	
$\mathrm{A}_{6} \mathrm{C}_{4}$	$25 \mathrm{~A}_{8}$	
$\mathrm{A}_{5} \mathrm{C}_{5}$	24 P A_{9}	
$\mathrm{A}_{4} \mathrm{C} 6$	${ }_{23} \mathrm{~A}_{11}$	
$\mathrm{A}_{3} \mathrm{Cl}_{7}$	$22 \square \overline{O E}$	
$\mathrm{A}_{2} \mathrm{~S}^{8}$	${ }^{1} \mathrm{P} \mathrm{A}_{10}$	
$\mathrm{A}_{1} \mathrm{Cl}^{\text {a }}$	20 صCS	
${ }^{\text {A O }} 10$	19 习V08	
$V^{1} \mathrm{O}_{1} \mathrm{Cl}_{11}$	18 VO7	
$\mathrm{VO}_{2} \mathrm{H} 12$	$17{ }^{1706}$	
$\mathrm{VO}_{3} \mathrm{H}_{13}$	$16 \square{ }^{16}{ }^{\text {V }}$	
GND 14	15 صVO4	
		833L-7194A

Pin Identification

Symbol	Function
$A_{0}-A_{14}$	Address inputs
$/ / O_{1}-I / O_{8}$	Data inputs and outputs
$\overline{\overline{C S}}$	Chip select
Pin Identification	
Symbol	Function
$\overline{\mathrm{OE}}$	Output enable
$\overline{W E}$	Write enable
GND	Ground
$V_{C C}$	+5 -volt power supply
NC	No connection

Block Diagram

Absolute Maximum Ratings	
Supply voltage, V_{CC} (Note 1)	-0.5 to +7.0 V
Input voltage, $\mathrm{V}_{\mathrm{IN}}($ Note 1)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Output voltage, $\mathrm{V}_{/ / \mathrm{O}}$ (Note 1)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Operating temperature, $\mathrm{T}_{\text {OPR }}$	0 to $+70^{\circ} \mathrm{C}$
Storage temperature, $T_{\text {STG }}$	-55 to $+125^{\circ} \mathrm{C}$
Power dissipation, P_{D}	1.0 W

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Notes:

(1) -3.0 V minimum (pulse width $=50 \mathrm{~ns}$).

Capacitance

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$				
Parameter	Symbol	Min	Max	Unit
Input capacitance	C_{1}		5	pF
Input/output capacitance	$\mathrm{C}_{1 / \mathrm{O}}$		8	pF

Notes:

(1) This parameter is sampled and not 100% tested.

Truth Table

$\overline{\overline{C S}}$	$\overline{\mathrm{OE}}$	$\overline{\text { WE }}$	Function	I/O	ICC
H	X	X	Not selected	High-Z	Standby
L	H	H	Outputs disabled	High-Z	Active
L	L	H	Read	DOuT	Active
L	X	L	Write	DIN	Active

Notes:

(1) $X=$ don't care.

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Input voltage, low (Note 1)	V_{IL}	-0.3		0.8	V
Input voltage, high	V_{IH}	2.2		$\mathrm{~V}_{\mathrm{CC}}+0.5$	V
Ambient temperature	T_{A}	0		70	${ }^{\circ} \mathrm{C}$

Notes:

(1) -3.0 V minimum (pulse width $=50 \mathrm{~ns}$).

DC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Input leakage current	$\mathrm{I}_{\text {LI }}$	-1		1	$\mu \mathrm{A}$	$\mathbf{V}_{\mathbf{I N}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathbf{C C}}$
I/O leakage current	Lo	-1		1	$\mu \mathrm{A}$	$\begin{aligned} & V_{I / O}=0 V \text { to } V_{C C} ; \overline{C S} \geq V_{I H} \text { or } \overline{O E} \geq V_{I H} \\ & \text { or } \overline{W E} \leq V_{I L} \end{aligned}$
Operating supply current	ICCA1			50	mA	$\overline{C S} \leq \mathrm{V}_{\mathrm{IL}}($ min cycle $) ; \mathrm{I}_{\mathrm{Y} / \mathrm{O}}=0 \mathrm{~V}($ Note 1)
	$I_{\text {ccar }}$			10	mA	$\overline{C S}=V_{1 L} ; l_{\text {l }}=0 \mathrm{~V}$
	$\mathrm{I}_{\text {ccab }}$			10	mA	$\begin{aligned} & \overline{\mathrm{CS}} \leq 0.2 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz} ; \mathrm{I}_{\mathrm{VO}}=0 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{IL}} \leq 0.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{IH}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$
Standby supply current	$\mathrm{I}_{\text {SB }}$			3	mA	$\overline{C S} \geq V_{1 H}$
	$\mathrm{I}_{\text {SB1 }}$		0.002	0.1	$\mu \mathrm{A}$	$\overline{\mathrm{CS}} \geq \mathrm{V}_{C C}-0.2 \mathrm{~V}$ (Note 2)
Output voltage, low	$\mathrm{V}_{\text {OL }}$			0.4	V	$\mathrm{l}_{\mathrm{OL}}=2.1 \mathrm{~mA}$
Output voltage, high	$\mathrm{V}_{\mathrm{OH} 1}$	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$
	$\mathrm{V}_{\mathrm{OH} 2}$	$\mathrm{V}_{C C}-0.5$			V	$\mathrm{l}_{\mathrm{OH}}=-0.1 \mathrm{~mA}$

Notes:

(1) -70 and $-85=45 \mathrm{~mA}$ (max).
(2) $-\mathrm{LL}=0.001$ (typ) and 0.05 (max).

AC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	$\mu \mathrm{PD} 43256 \mathrm{~B}-55$		$\mu \mathrm{PD} 43256 \mathrm{B-70}$		$\mu \mathrm{PD} 43256 \mathrm{~B}-85$		Unit	Test Conditions
		Min	Max	Min	Max	Min	Max		
Read Operation									
Read cycle time	t_{RC}	55		70		85		ns	
Address access time	${ }^{\text {t }}$ A		55		70		85	ns	
Chip select access time	$t_{A C S}$		55		70		85	ns	
Output enable to output valid	${ }^{\text {toE }}$		30		35		40	ns	
Output hold from address change	t_{OH}	10		10		10		ns	
Chip select to output in low-Z	${ }^{\text {chez }}$	10		10		10		ns	
Output enable to output in low-Z	$\mathrm{t}_{\mathrm{OLZ}}$	5		5		5		ns	
Chip select to output in high-Z	${ }^{\text {t }} \mathrm{CHZ}$		30		30		30	ns	
Output enable to output in high-Z	$\mathrm{t}_{\mathrm{OHZ}}$		30		30		30	ns	
Write Operation									
Write cycle time	${ }^{\text {tw }}$	55		70		85		ns	
Chip select to end of write	${ }^{\text {t CW }}$	50		60		70		ns	
Address valid to end of write	${ }^{\text {AWW }}$	50		60		70		ns	
Address setup time	$t^{\text {AS }}$	0		0		0		ns	
Write pulse width	${ }^{\text {t }}$ WP	45		55		65		ns	
Write recovery time	${ }^{\text {twR }}$	5		5		5		ns	
Data valid to end of write	tow	30		30		35		ns	
Data hold time	${ }^{\text {t }}$ H	0		0		0		ns	
Write enable to output in high-Z	$\mathrm{t}_{\mathrm{WHZ}}$		30		30		30	ns	
Output active from end of write	tow	10		10		10		ns	

Notes:

(1) Input pulse levels $=0.8$ to 2.2 V ; input pulse rise and fall times $=$ 5 ns ; timing reference levels $=1.5 \mathrm{~V}$.
(2) Output loads:

[^3]Low VCc Data Retention Characteristics
$\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Data retention supply voltage	$\mathrm{V}_{\mathrm{CCDR}}$	2.0		5.5	V	$\overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$
Data retention supply current	$\mathrm{I}_{\mathrm{CCDR}}$		1	50	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$ (Note 1)
Chip deselection to data retention	$\mathrm{t}_{\mathrm{CDR}}$	0			ns	
Operation recovery time	t_{R}	t_{RC}			ns	

Notes:
(1) At 0 to $40^{\circ} \mathrm{C}$, the maximum for $\mathrm{I}_{\mathrm{CCDR}}$ is $15 \mu \mathrm{~A}$ for the -L version and $3 \mu \mathrm{~A}$ for the - LL version.

Data Retention Timing

Note:
[1] The other inputs (Addresses, $\overline{O E}, \overline{W E}, V / O s$) can be In a state of high impedance.

Timing Waveforms

Address Access Cycle

Notes:
[1] WE is held high for a read cycle.
[2] The device is continually selected, where $\overline{C S}=\overline{O E}=V_{I I}$.

Chip Select Access Cycle

Notes:

[1] WE is high for a read cycle.
[2] Address valid prior to or coincident with the low transition of $\overline{\mathrm{CS}}$.

Timing Waveforms (cont)

WE-Controlled Write Cycle

Notes:
[1] A write cycle occurs during the overlap of a low $\overline{\mathrm{CS}}$ and a low $\overline{\mathrm{WE}}$.
[2] $\overline{\mathrm{CS}}$ or $\overline{\mathrm{WE}}$ must be high during address transition.
[3] If $\overline{\mathrm{OE}}$ is high, the VO pins remain in a state of high impedance.
[4] During this period, the VO pins may be in the output state.
Therefore, Input signals of opposite phase must not be applied.

24b

Timing Waveforms (cont)

$\overline{C S}$-Controlled Write Cycle

Description

The μ PD431000A is a 131,072 -word by 8 -bit static RAM fabricated with advanced silicon-gate technology. CMOS peripheral circuits and N -channel memory cells with polysilicon resistors make the μ PD 431000 A a highspeed device that requires very low power and no clock or refreshing.
Minimum standby power is drawn when CE_{2} is low, independent of the other inputs' levels. Data retention is guaranteed at a power supply voltage as low as 2 volts. The μ PD431000A is available in standard 32-pin plastic DIP, 32-pin plastic miniflat, and 32 -pin plastic TSOP packaging.

Features

131,072-word by 8-bit organization

- Single +5 -volt power supply
- Fully static operation-no clock or refreshing
- TTL-compatible inputs and outputs
- Common I/O using three-state outputs
- Two CE pins and one OE pin for easy application
- Data retention current of $0.5 \mu \mathrm{~A}$ typical
- Data retention voltage of 2 V minimum
- Standard 32 -pin plastic DIP, miniflat, and TSOP packaging

Pin Identification

Symbol	Function
$\mathrm{A}_{0}-\mathrm{A}_{16}$	Address inputs
$\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7}$	Data inputs/outputs
$\overline{\overline{\mathrm{CE}}_{1} \text { and } \mathrm{CE}_{2}}$	Chip enables 1 and 2
$\overline{\mathrm{OE}}$	Output enable
$\overline{\mathrm{WE}}$	Write enable
GND	Ground
VCC	+5 -volt power supply
$N C$	No connection

Pin Configurations

32-Pin Plastic DIP or Miniflat

Pin Configurations (cont)
32-Pin Plastic TSOP (Normal Pinouts)

μ PD431000A			
$A_{11} \square 1$	\square	32	$\square \overline{O E}$
$\mathrm{Ag}_{9} 2$		31	A_{10}
$\mathrm{A}_{8} \mathrm{C}_{3}$		30	$\square \overline{C E}_{1}$
$\mathrm{A}_{13} \mathrm{C}_{4}$		29	$\square \mathrm{VO}_{8}$
WE 5		28	$\square 1 \mathrm{VO}_{7}$
$\mathrm{CE}_{2} \mathrm{C}_{6}$		27	$\square \mathrm{VO}_{6}$
$\mathrm{A}_{15} \mathrm{C}^{7}$		26	$\square \mathrm{VO}_{5}$
$V_{\text {cc }} 5^{8}$	- KJH	25	$\square \mathrm{VO}_{4}$
NCH9	-KJH	24	$\square \mathrm{GND}$
$A_{16} \square_{10}$		23	$\square \mathrm{VO}_{3}$
$\mathrm{A}_{14} \square^{11}$		22	$\square \mathrm{VO}_{2}$
A_{12} - 12		21	$\square \mathrm{VO}_{1}$
$A_{7} \square_{13}$		20	$\square A_{0}$
$A_{6} \square 14$		19	A_{1}
$A_{5} \square^{15}$		18	$\square \mathrm{A}_{2}$
A_{4} C 16		17	$\square \mathrm{A}_{3}$

Suffix -KJH in the package identifler denotes normal pinout sequence.

32-Pin Plastic TSOP (Reverse Pinouts)

μ PD431000A			
$\overline{O E} \square 1$		$\bigcirc 32$] A_{11}
$\mathrm{A}_{10} \mathrm{C}_{2}$		31	$\square \mathrm{Ag}^{\prime}$
$\overline{C E}_{1} \square^{3}$		30	$\square A_{8}$
$\mathrm{VO}_{8} \mathrm{~N}_{4}$		29	A_{13}
$\mathrm{VO}_{7} \mathrm{C} 5$		28	$\square \overline{W E}$
$V_{6} \mathrm{O}_{6} 6$		27	$\square \mathrm{CE}_{2}$
$1 / O_{5} \square_{7}$		26	$\square \mathrm{A}_{15}$
$\mathrm{VO}_{4} \mathrm{H}^{8} \mathrm{O}$	$-\mathrm{KKH}$	$\bigcirc 25$	$\square \mathrm{V}_{\mathrm{cc}}$
GND 59		24	$\square \mathrm{NC}$
$\mathrm{VO}_{3}-10$		23	$\square \mathrm{A}_{16}$
$\mathrm{VO}_{2} \square^{11}$		22	$\square \mathrm{A}_{14}$
$\mathrm{VO}_{1}-12$		21	$\square A_{12}$
$A_{0}{ }_{13}$		20	A_{7}
$\mathrm{A}_{1} \mathrm{Cl}_{14}$		19	$\square A_{6}$
A_{2} [15		18	A_{5}
$\mathrm{A}_{3} \square_{16}$		17	$\square \mathrm{A}_{4}$

Suffix -KKH in the package Identifier denotes reverse plnout sequence.

Block Diagram

83IH-5742B

Absolute Maximum Ratings

Supply voltage, V_{CC} (Note 1)	-0.5 to +7.0 V
Input voltage, V_{IN} (Note 1)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Output voltage, $\mathrm{V}_{1 / \mathrm{O}}$ (Note 1)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Operating temperature, $\mathrm{T}_{\mathrm{OPR}}$	0 to $+70^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\mathrm{STG}}$	-55 to $+125^{\circ} \mathrm{C}$
Power dissipation, P	1.0 W

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Notes:

(1) -3.0 V minimum (pulse width $=50 \mathrm{~ns}$).

Capacitance

$T_{A}=+25^{\circ} \mathrm{C} ; f=1 \mathrm{MHz} ; \mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

Parameter	Symbol	Min	Typ	Max	Unit	
Input capacitance	C_{l}		6	pF		
Input/output capacitance	$\mathrm{C}_{\\| O}$		10	pF		

Notes:

(1) This parameter is sampled and not 100% tested.

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Input voltage, low	V_{IL}	-0.3		0.8	V
Input voltage, high	V_{IH}	2.2		$\mathrm{~V}_{\mathrm{CC}}+0.5$	V
Ambient temperature	T_{A}	0		70	${ }^{\circ} \mathrm{C}$

Notes:
(1) -3.0 V minimum (pulse width $=50 \mathrm{~ns}$).

Truth Table

Function	$\overline{\mathrm{CE}}_{1}$	CE_{2}	$\overline{\mathrm{OE}}$	$\overline{W E}$	1/0	Icc
Not selected	H	X	X	X	High-Z	Standby
Not selected	X	L	X	X	High-Z	Standby
Selected	L	H	H	H	High-Z	Active
Read	L	H	L	H	Dout	Active
Write	L	H	X	L	$\mathrm{D}_{\text {IN }}$	Active

Notes:

(1) $X=$ don't care.

Ordering Information

Catalog Part Number	Access Time (max)	$\mathrm{I}_{\text {SB1 }}($ max $)$	Package
μ PD431000ACZ-70L	70 ns	0.1 mA	$32-\mathrm{pin}$ plastic DIP
CZ-85L	85 ns		
CZ-10L	100 ns		
μ PD431000ACZ-70LL	70 ns	0.05 mA	
CZ-85LL	85 ns		
CZ-10LL	100 ns		
$\mu \mathrm{PD431000AGW}-70 \mathrm{~L}$	70 ns	0.1 mA	32-pin plastic miniflat
GW-85L	85 ns		
GW-10L	100 ns		
μ PD431000AGW-70LL	70 ns	0.05 mA	
GW-85LL	85 ns		
GW-10LL	100 ns		
μ PD431000AGZ-70L	70 ns	0.1 mA	32-pin plastic TSOP
GZ-85L	85 ns		(normal pinouts)
GZ-10L	100 ns		
μ PD431000AGZ-70LL	70 ns	0.05 mA	
GZ-85LL	85 ns		
GZ-10LL	100 ns		
$\mu \mathrm{PD} 431000 \mathrm{AGZM}-70 \mathrm{~L}$	70 ns	0.1 mA	32-pin plastic TSOP
GZM-85L	85 ns		(reverse pinouts)
GZM-10L	100 ns		
μ PD431000AGZM-70LL	70 ns	0.05 mA	
GZM-85LL	85 ns		
GZM-10LL	100 ns		

DC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	-L Version			-LL Version.			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max		
Input leakage current	li	-1		1	-1		1	$\mu \mathrm{A}$	$V_{\text {IN }}=0 \mathrm{~V}$ to $V_{C C}$
1/O leakage current	Lo	-1		1	-1		1	$\mu \mathrm{A}$	$\begin{aligned} & V_{1 / O}=0 V \text { to } V_{C C} ; \overline{C E}_{1}=V_{I H} \text {, or } C E_{2}=V_{I L} \\ & \text { or } \overline{O E}=V_{I H} \text {, or } \overline{W E}=V_{I L} \end{aligned}$
Operating supply current	I ccat		40	70		40	70	mA	$\begin{aligned} & \overline{\mathrm{CE}}_{1}=V_{I L} ; C E_{2}=V_{I H} ; \mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}(\mathrm{~min}) ; \\ & \mathrm{I}_{1 / \mathrm{O}}=0 \mathrm{~mA} \end{aligned}$
	1 lcaz			15			15	mA	$\overline{C E}_{1}=V_{1 L} ; C E_{2}=V_{1 H} ; l_{1 / O}=0 \mathrm{~mA}$
	ICCA3			10			10	mA	$\begin{aligned} & V_{C E 1} \leq 0.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{CE} 2} \geq V_{C C}-0.2 \mathrm{~V} ; \mathrm{t}_{\mathrm{RC}} \text { or } t_{\mathrm{WC}} \\ & =1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } V_{I N} \geq V_{C C}-0.2 \mathrm{~V} \end{aligned}$
Standby supply current	$l_{\text {SB }}$			3			3	mA	$\overline{C E}_{1}=\mathrm{V}_{\text {IH }}$ or $\mathrm{CE}_{2}=\mathrm{V}_{\mathrm{IL}}$ (Note 1)
	${ }^{\text {SB1 }}$		0.002	0.1		0.001	0.05	mA	$\overline{\mathrm{CE}}_{1}$ and $\mathrm{CE}_{2} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$ (Note 2)
	$\mathrm{I}_{\text {SB2 }}$		0.002	0.1		0.001	0.05	mA	$\mathrm{CE}_{2} \leq 0.2 \mathrm{~V}$ (Note 2)
Output voltage, low	VOL			0.4			0.4	V	$\mathrm{l}_{\mathrm{OL}}=2.1 \mathrm{~mA}$
Output voltage, high	V_{OH}	2.4			2.4			V	$\mathrm{l}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$

AC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	μ PD431000A-70		μ PD431000A-85		μ PD431000A-10		Unit	Test Conditions
		Min	Max	Min	Max	Min	Max		

Read Operation

Read cycle time	$t_{\text {R }}$	70		85		100		ns	
Address access time	$t_{A A}$		70		85		100	ns	(Note 2)
$\overline{C E}_{1}$ access time	${ }^{\text {c }}$ CO1		70		85		100	ns	(Note 2)
CE_{2} access time	${ }^{\text {c }} \mathrm{CO} 2$		70		85		100	ns	(Note 2)
Output enable to output valid	$\mathrm{t}_{\text {OE }}$		35		45		50	ns	(Note 2)
Output hold from address change	${ }^{\text {tor }}$	10		10		10		ns	
$\overline{\mathrm{CE}}_{1}$ to output in low-Z	$t_{L Z 1}$	10		10		10		ns	(Note 3)
CE_{2} to output in low-z	tız2	10		10		10		ns	(Note 3)
Output enable to output in low-Z	$\mathrm{t}_{\mathrm{OLZ}}$	5		5		5		ns	(Note 3)
$\overline{\mathrm{CE}}_{1}$ to output in high-Z	$\mathrm{t}_{\mathrm{HZ1}}$		25		30		35	ns	(Note 3)
$C E_{2}$ to output in high-Z	$\mathrm{t}_{\mathrm{HZ2}}$		25		30		35	ns	(Note 3)
Output enable to output in high-Z	${ }^{\text {t }} \mathrm{OHZ}$		25		30		35	ns	(Note 3)

Write Operation

Notes:

(1) Input pulse levels $=0.8$ to 2.2 V ; input rise and fall times $=5 \mathrm{~ns}$; timing reference levels $=1.5 \mathrm{~V}$.
(2) See figure 1 for output loading.
(3) See figure 2 for output loading.

Figure 1. Output Loading

Figure 2. Output Loading for $t_{H Z 1}, t_{H Z 2}, t_{L Z 1}, t_{L Z 2}, t_{O L Z}, t_{O H Z}, t_{O W}$, and $t_{W H Z}$
(Including scope and jig

Low VCc Data Retention Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C}$

Parameter	Symbol	-L Version			-LL Version			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max		
Data retention supply voltage	$V_{\text {CCDR1 }}$	2		5.5	2		5.5	V	$\begin{aligned} & \overline{C E}_{1} \geq V_{C C}-0.2 \mathrm{~V} ; \mathrm{CE}_{2} \geq \mathrm{V}_{C C}-0.2 \mathrm{~V} \\ & \text { or } C E_{2} \leq 0.2 \mathrm{~V} \end{aligned}$
	$\mathrm{V}_{\text {CCDR2 }}$	2		5.5	2		5.5	V	$\mathrm{CE}_{2} \leq 0.2 \mathrm{~V}$
Data retention supply current	I'CCDRt		1	50		0.5	20	$\mu \mathrm{A}$	$\begin{aligned} & V_{C C}=3.0 \mathrm{~V} ; \overline{C E}_{1} \geq V_{C C}-0.2 \mathrm{~V} ; \\ & C E_{2} \geq V_{C C}-0.2 \mathrm{~V} \text { or } C E_{2} \leq 0.2 \mathrm{~V} \text { (Note 1) } \end{aligned}$
	$1 \mathrm{CCDR2}$		1	50		0.5	20	$\mu \mathrm{A}$	$\mathrm{V}_{C C}=3.0 \mathrm{~V} ; \mathrm{CE}_{2} \leq 0.2 \mathrm{~V}$ (Note 1)
Chip deselection to data retention	${ }^{t_{\text {CDR }}}$	0			0			ns	
Operation recovery time	${ }^{t} \mathrm{R}$	5			5			ms	

Notes:

(1) At 0 to $40^{\circ} \mathrm{C}$, the maximum for $\mathrm{I}_{\mathrm{CCDR} 1}$ and $\mathrm{I}_{\mathrm{CCDR}}$ is $15 \mu \mathrm{~A}$ for the $-L$ version and $3 \mu \mathrm{~A}$ for the -LL version.

Figure 3. $\overline{C E}_{\boldsymbol{1}}$-Controlled Data Retention Timing

Note:
[1] CE_{2} must be equal to or higher than VCC -0.2 V , or equal to or lower than 0.2 V
The other inputs (Addresses, $\overline{O E}, \overline{W E}, \mathrm{l} / \mathrm{Os}$) can be in high impedance.

Figure 4. C_{2}-Controlled Data Retention Timing

Note:
[1] The other inputs (Addresses, $\overline{\mathrm{CE}}_{1}, \overline{\mathrm{OE}}, \overline{\mathrm{WE},} \mathrm{l} / \mathrm{Os}$) can be in high impedance.

Timing Waveforms

Read Cycle

Timing Waveforms (cont)

$\overline{\text { WE-Controlled Write Cycle }}$

Timing Waveforms (cont)
$\overline{C E}_{1}$-Controlled Write Cycle

Timing Waveforms (cont)

CE $_{2}$-Controlled Write Cycle

Description

The μ PD 434000 is a 524,288 -word by 8 -bit static RAM fabricated with advanced silicon-gate technology. CMOS peripheral circuits and N -channel memory cells with thin-film transistor (TFT) loads make the μ PD434000 a high-speed device that requires very low power and no clock or refreshing.
Minimum standby power is drawn when $\overline{\mathrm{CS}}$ is high, independent of $\overline{O E}$ and $\overline{W E}$. Data retention is guaranteed at a power supply voltage as low as 2 volts.

The μ PD434000 is available in standard 32 -pin DIP, SOP, and TSOP plastic packaging.

Features

- 524,288-word by 8 -bit organization
- Single +5 -volt power supply
- Fully static operation-no clock or refreshing
- TTL-compatible inputs and outputs
- Common I/O using three-state outputs
- Chip select ($\overline{\mathrm{CS}}$) and output enable ($\overline{\mathrm{OE}}$) inputs for easy application
- Data retention current of $0.5 \mu \mathrm{~A}$ typical
- Data retention voltage of 2 V minimum
- Packages: 32-pin plastic DIP, SOP, and TSOP

Pin Identification

Symbol	Function
$A_{0}-A_{18}$	Address inputs
$1 / O_{1}-1 / O_{8}$	Data inputs/outputs
$\overline{\overline{C S}}$	Chip select
$\overline{\mathrm{OE}}$	Output enable
$\overline{\mathrm{WE}}$	Write enable
GND	Ground
V_{CC}	+5 -volt power supply
$N C$	No connection

Pin Configurations

32-Pin Plastic DIP or SOP

24d

Pin Configurations (cont)

32-Pin Plastic TSOP (Normal Pinouts)

	$\mu \mathrm{PD} 434000$			
A_{18}	10		32	$\square \mathrm{Vcc}$
$A_{16} \square^{2}$	2		31	$\square \mathrm{A}_{15}$
$\mathrm{A}_{14} \mathrm{H}$	3		30	$\mathrm{F}^{\text {A17 }}$
$\mathrm{A}_{12} \mathrm{C}_{4}$	4		29	WE
$\mathrm{A}_{7} \mathrm{C}_{5}$	5		28	A_{13}
$\mathrm{A}_{6} \mathrm{C}$	6		27	DA_{8}
$\mathrm{A}_{5} \mathrm{C}_{7}$	7		26	$\square \mathrm{Ag}$
$\mathrm{A}_{4} \mathrm{H}$	8	-7JD	25	A_{11}
$\mathrm{A}_{3} \mathrm{C}$	9		24	$\overline{O E}$
A_{2} C	10		23	P ${ }^{10}$
A_{1} -	11		22	$\square \overline{C s}$
A_{0}	12		21	$\mathrm{V}_{1} \mathrm{O}_{8}$
$V_{1} \mathrm{O}_{1}$	13		20	VO_{7}
$\mathrm{VO}_{2}-$	14		19	$\square \mathrm{VO}_{6}$
VO_{3} -	15		18	VO_{5}
GND [10	16		017	$\square \mathrm{VO}_{4}$

Suffix -7JD In the package identifier denotes normal pinout sequence.

32-Pin Plastic TSOP (Reverse Pinouts)

$\mu \mathrm{PD} 434000$		
Vcc 1	$\bigcirc \quad 032$	$]^{\prime} A_{18}$
$\mathrm{A}_{15} \mathrm{H}^{2}$	31	A_{16}
$\mathrm{A}_{17} \square^{3}$	30	A_{14}
WE C4	29	A_{12}
$\mathrm{A}_{13}{ }_{5}$	28	$\square^{A_{7}}$
$A_{8}{ }^{6}$	27	$\square A_{6}$
$\mathrm{Ag}^{\square} 7$	26	$\square^{A_{5}}$
$\mathrm{A}_{11} \mathrm{H}_{8}$	7KD 25	Ca_{4}
$\overline{O E} \square^{\circ}$	-7KD 24	$\square^{\text {A }}$
$\mathrm{A}_{10}-10$	23	$\square A_{2}$
$\overline{\mathrm{CS}}-11$	22	$\square^{-1} A_{1}$
V/O8 12	21	$\square A_{0}$
VO_{7}-13	20	$V^{\prime} O_{1}$
$V^{\prime} \mathrm{O}_{6}-14$	19	V_{2}
$\mathrm{VO}_{5}-15$	18	VO_{3}
$\mathrm{VO}_{4}-16$	$\bigcirc 17$	$\square \mathrm{GND}$

Suffix -7KD in the package Identifier denotes normal pinout sequence.

Block Diagram

Ordering Information

Part Number	Access Time (max)	Standby Supply Current	Package
μ PD434000CZ-55	55 ns	2 mA	32-pin plastic DIP
CZ-70	70 ns		
CZ-85	85 ns		
CZ-10	100 ns		
μ PD434000CZ-55L	55 ns	0.1 mA	
CZ-70L	70 ns		
CZ-85L	85 ns		
CZ-10L	100 ns		
$\mu \mathrm{PD} 434000 \mathrm{CZ}$-55LL	55 ns	0.05 mA	
CZ-70LL	70 ns		
CZ-85LL	85 ns		
CZ-10LL	100 ns		
μ PD434000GW-55	55 ns	2 mA	32-pin plastic SOP
GW-70	70 ns		
GW-85	85 ns		
GW-10	100 ns		
$\mu \mathrm{PD} 434000 \mathrm{GW}$-55L	55 ns	0.1 mA	
GW-70L	70 ns		
GW-85L	85 ns		
GW-10L	100 ns		
μ PD434000GW-55LL	55 ns	0.05 mA	
GW-70LL	70 ns		
GW-85LL	85 ns		
GW-10LL	100 ns		

24d

Ordering Information (cont)

Part Number	Access Time (max)	Standby Supply Current	Package
$\mu \mathrm{PD} 434000 \mathrm{G5-55}$	55 ns	2 mA	32-pin plastic TSOP
G5-70	70 ns		rmal pinouts)
G5-85	85 ns		
G5-10	100 ns		
μ PD434000G5-55L	55 ns	0.1 mA	
G5-70L	70 ns		
G5-85L	85 ns		
G5-10L	100 ns		
μ PD434000G5-55LL	55 ns	0.05 mA	
G5-70LL	70 ns		
G5-85LL	85 ns		
G5-10LL	100 ns		
μ PD434000G5M-55	55 ns	2 mA	32-pin plastic TSOP
G5M-70	70 ns		(reverse pinouts)
G5M-85	85 ns		
G5M-10	100 ns		
μ PD434000G5M-55L	55 ns		
G5M-70L	70 ns	0.1 mA	
G5M-85L	85 ns		
G5M-10L	100 ns		
μ PD434000G5M-55LL	55 ns		
G5M-70LL	70 ns	0.05 mA	
G5M-85LL	85 ns		
G5M-10LL	100 ns		

Absolute Maximum Ratings

Supply voltage, V_{CC} (Note 1)	-0.5 to +7.0 V
Input voltage, V_{IN} (Note 1)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Output voltage, $\mathrm{V}_{1 / \mathrm{O}}$ (Note 1)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Operating temperature, $\mathrm{T}_{\mathrm{OPR}}$	0 to $+70^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\text {STG }}$	-55 to $+125^{\circ} \mathrm{C}$
Power dissipation, P_{D}	1.0 W

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.
Note:
(1) -3.0 V minimum (pulse width $=30 \mathrm{~ns}$).

Capacitance

$T_{A}=+25^{\circ} \mathrm{C} ; f=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{IN}}$ and $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

Parameter \dagger	Symbol	Min	Typ	Max
Unit				
Input capacitance	C_{1}		6	pF

\dagger Parameter is sampled and not 100% tested.

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Input voltage, low	V_{IL}	-0.3		0.8	V
Input voltage, high	V_{IH}	2.2		$\mathrm{~V}_{\mathrm{CC}}+0.3$	V
Ambient temperature	T_{A}	0		70	${ }^{\circ} \mathrm{C}$

Note:

(1) -3.0 V minimum (pulse width $=30 \mathrm{~ns}$).

Truth Table

Function	$\overline{\mathrm{CS}}$	$\overline{\mathrm{OE}}$	$\overline{\mathrm{WE}}$	I/O	ICc
Not selected	H	X	X	High-Z	Standby
Dout disabled	L	H	H	High-Z	Active
Read	L	L	H	DOUT	Active
Write	L	X	L	DIN $_{\text {IN }}$	Active

$X=$ don't care.

DC Characteristics
$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	μ PD434000			$\mu \mathrm{PD} 434000-\mathrm{L}$			μ PD434000-LL			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
Input leakage current	l_{LI}	-1		1	-1		1	-1		1	$\mu \mathrm{A}$	$V_{I N}=O V$ to $V_{C C}$
1/O leakage current	Lo	-1		1	-1		1	-1		1	$\mu \mathrm{A}$	$\begin{aligned} & V_{I O}=O V \text { to } V_{C C} ; \overline{O E}= \\ & V_{I H} \text { or } \overline{W E}=V_{I L} \text { or } \overline{C S}= \\ & V_{I H} \end{aligned}$
Operating supply current	$\mathrm{I}_{\text {CCA2 }}$			15			15			15	mA	$\mathrm{I}_{1 / \mathrm{O}}=0 \mathrm{~mA} ; \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$
	Iccas			15			15			15	mA	$\begin{aligned} & \overline{\overline{C S}} \leq 0.2 \mathrm{~V} ; \mathrm{t}_{\mathrm{RC}}=1 \mu \mathrm{~s} ; \\ & \mathrm{V}_{\mathrm{IL}} \leq 0.2 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{IH}} \geq V_{\mathrm{CC}}-0.2 \mathrm{~V} ; \\ & \mathrm{I}_{1 / \mathrm{O}}=0 \mathrm{~mA} \end{aligned}$
Standby supply current	$\mathrm{I}_{\text {SB }}$			5			3			3	mA	$\overline{C S}=V_{I H}$
	$\mathrm{I}_{\text {SB1 }}$		0.02	2		0.002	0.1		0.001	0.05	mA	$\overline{C S} \geq V_{C C}-0.2 \mathrm{~V}$
Output voltage, low	V_{OL}			0.4			0.4			0.4	V	$\mathrm{l}_{\mathrm{OL}}=2.1 \mathrm{~mA}$
Output voltage, high	$\mathrm{V}_{\mathrm{OH} 1}$	2.4			2.4			2.4			V	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$
	$\mathrm{V}_{\mathrm{OH} 2}$	$\begin{gathered} \mathrm{v}_{\mathrm{CC}}- \\ 0.5 \end{gathered}$			$\underset{0.5}{\mathrm{~V}_{\mathrm{CC}}-}$			$\mathrm{V}_{0.5}{ }_{0 .}$			V	$\mathrm{l}_{\mathrm{OH}}=-0.1 \mathrm{~mA}$

AC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5.0 \mathrm{~V} \pm 10 \%$; see figure 1 for ac test conditions.

Parameter	Symbol	-55		-70		-85		-10		Unit	Test Conditions
		Min	Max	Min	Max	Min	Max	Min	Max		
Operating supply current	ICCA1		70		65		60		55	mA	$\begin{aligned} & \overline{\mathrm{CS}}=V_{\mathrm{IL}} ; \mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}} \\ & (\mathrm{~min}) ; \mathrm{I}_{\mathrm{I} / \mathrm{O}}=0 \mathrm{~mA} \end{aligned}$
Address access time	$t_{A A}$		55		70		85		100	ns	
$\overline{\mathrm{CS}}$ access time	$t_{\text {ACS }}$		55		70		85		100	ns	
Address setup time	$t_{\text {AS }}$	0		0		0	-	0		ns	
Address valid to end of write	$t_{\text {AW }}$	50	*	60		70		80		ns	
$\overline{\mathrm{CS}}$ to output in high-Z	${ }^{\text {t }} \mathrm{CHZ}$		25		30		30		35	ns	
$\overline{\mathrm{CS}}$ to output in low-Z	$t_{\text {cLZ }}$	10		10		10		10		ns	
$\overline{\mathrm{CS}}$ to end of write	${ }^{\text {chw }}$	50		60		70		80		ns	
Data hold time	${ }^{\text {t }}$ D	0		0		0		0		ns	
Data valid to end of write	tow	30		35		35		40		ns	
Output enable to output valid	${ }^{\text {toE }}$		30		35		45		50	ns	
Output hold from address change	${ }^{\text {OHH}}$	10		10		10		10		ns	
Output enable to output in high-Z	$\mathrm{t}_{\mathrm{OHZ}}$		25		30		30		35	ns	
Output enable to output in low-Z	${ }^{\text {O OLZ }}$	5		5		5		5		ns	
Output active from end of write	tow	5		5		5		5		ns	
Read cycle time	$t_{\text {RC }}$	55		70		85		100		ns	
Write cycle time	$t_{\text {WC }}$	55		70		85		100		ns	
Write enable to output in high-Z	$\mathrm{t}_{\text {WHZ }}$		25		30		30		35	ns	
Write pulse width	twP	45		55		65		70		ns	
Write recovery time	${ }^{\text {tWR }}$	5		5		5		5		ns	

Low VCc Data Retention Characteristics
$T_{A}=0$ to $+70^{\circ} \mathrm{C}$; see figure 2 for timing diagram.

Parameter	Symbol	-L Version			-LL. Version			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max		
Data retention supply voltage	$V_{\text {CCDR1 }}$	2		5.5	2		5.5	V	$\overline{\mathrm{CS}} \geq \mathrm{V}_{\text {CC }}-0.2 \mathrm{~V}$
Data retention supply current	$t{ }^{\text {cocor1 }}$		1	50		0.5	20	$\mu \mathrm{A}$	$V_{C C}=3.0 \mathrm{~V} ; \overline{C S} \geq V_{C C}-0.2 \mathrm{~V}$
Chip deselection to data retention	${ }^{\text {t }}$ CDR	0			0			ns	
Operation recovery time	t_{R}	5			5			ms	

\dagger At 0 to $40^{\circ} \mathrm{C}$, the maximum for I_{C} CDR1 is $15 \mu \mathrm{~A}$ for the -L version and $3 \mu \mathrm{~A}$ for the -LL version.

Figure 1. AC Test Conditions

Figure 2. Data Retention Timing

Timing Waveforms

Read Cycle

Timing Waveforms (cont)

$\overline{W E}$-Controlled Write Cycle

24d

Timing Waveforms (cont)
$\overline{C S}$-Controlled Write Cycle

Advance Information

Description

The MC－434000 is a high－density 4M static RAM module with four $128 \mathrm{~K} \times 8$－bit SRAMs and one decoder circuit． The module is compatible with the future 4 M monolithic SRAM－with TTL－compatible inputs and outputs and fully asynchronous circuitry that requires no clocks or refreshing and provides equal access and cycle times for ease of use．

The MC－434000 operates from a +5 －volt power supply and is available in a standard $600-\mathrm{mil}, 32$－pin ceramic DIP or a JEDEC－type 32－pin plastic（FR－4）DIP．

Features

－524，288－word by 8－bit organization
－Single +5 －volt power supply
－Fully static operation－no clocks or refreshing
－TTL－compatible inputs and outputs
－Common I／O using three－state outputs
－One $\overline{C S}$ pin and one $\overline{O E}$ pin for easy application
－32－pin ceramic and plastic（FR－4）DIP packaging

Pin Identification

Symbol	Function
$A_{0}-A_{18}$	Address inputs
$/ / O_{1}-1 / O_{8}$	Data inputs／outputs
$\overline{\overline{C S}}$	Chip select
$\overline{\overline{O E}}$	Output enable
$\overline{\overline{W E}}$	Write enable
GND	Ground
$V_{C C}$	+5 －volt power supply

Pin Configuration

32－Pin Ceramic or Plastic（FR－4）DIP

	MC－434000
	A_{18}－ 32 VCC
	$\mathrm{A}_{16} \square^{2} \quad 31 \mathrm{~A}_{15}$
	$\mathrm{A}_{12} \mathrm{Cl}^{4} 29$ ص WE
	$\mathrm{A}_{7} \mathrm{D}_{5} \quad 28 \mathrm{~A}_{13}$
	$\mathrm{A}_{6} \mathrm{~A}^{6} 9$
	$\mathrm{A}_{4} \mathrm{C}^{8} 8$ 25 A_{11}
	$\mathrm{A}_{3} \mathrm{C} 9 \quad 24$ 曰 $\overline{\mathrm{OE}}$
	$\mathrm{A}_{2} 510 \quad 23 \square \mathrm{~A}_{10}$
	A_{1}［－11 $11 \quad 22 \mathrm{\square} \overline{\mathrm{CS}}$
	$V_{1} \text { 自 } 13 \text { VO7 }$
	$v_{2} \text { 号 } 14 \text { vo }$
	$1 / O_{3}-15 \quad 18 \text { 曰VO5 }$
	$\text { GND } 16$
	83FM－89694

Ordering Information

Catalog Part Number	Access Time（max）	Package
MC－434000D－85	85 ns	32－pin ceramic DIP
D－10	100 ns	
MC－434000E－85	85 ns	32－pin plastic E－10

Block Diagram

Absolute Maximum Ratings

Supply voltage, V_{CC} (Note 1)	-0.5 to +7.0 V
Input voltage, V_{IN} (Note 1)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Output voltage, $\mathrm{V}_{\text {I/O }}$ (Note 1)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Operating temperature, TOPR	0 to $+70^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\mathrm{STG}}$	-55 to $+125^{\circ} \mathrm{C}$
Power dissipation, P_{D}	1.0 W

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Note:

(1) -3.0 V minimum (pulse width $=30 \mathrm{~ns}$).

Capacitance

Parameter	Symbol	Max	Unit	Pins
Input capacitance	C_{IN}	45	pF	$A_{0}-A_{18}, \overline{W E}, \overline{O E}, \overline{C S}$
Input/output capacitance	$\mathrm{Cl}_{1 / \mathrm{O}}$	50	pF	$\mathrm{l} / \mathrm{O}_{1}-1 / \mathrm{O}_{8}$

Note: Capacitance is sampled and not 100% tested.

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Input voltage, low	V_{IL}	-0.3		0.8	V
Input voltage, high	V_{IH}	2.2		$\mathrm{~V}_{\mathrm{CC}}+0.5$	V
Ambient temperature	T_{A}	0		70	${ }^{\circ} \mathrm{C}$

Note: -3.0 V minimum (pulse width $=30 \mathrm{~ns}$).

Truth Table

Function	$\overline{\mathbf{C S}}$	$\overline{\mathbf{O E}}$	$\overline{\mathrm{WE}}$	I/O	ICC
Not selected	H	X	X	High-Z	Standby
Selected	L	H	H	High-Z	Active
Read	L	L	H	DOUT	Active
Write	L	X	L	DIN	Active

$X=$ don't care.

DC Characteristics
$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Input leakage current	l_{LI}			2	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{CC}
I/O leakage current	lo			2	$\mu \mathrm{A}$	$\begin{aligned} & V_{\mathrm{IOO}}=0 \mathrm{~V} \text { to } V_{\mathrm{CC}} ; \overline{\mathrm{CSI}}=V_{\mathrm{IH}} \text { or } \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{HH}} \text { or } \\ & \mathrm{WE}=V_{\mathrm{IL}} \end{aligned}$
Operating supply current	Iccal		48	89	mA	$\begin{aligned} & \overline{\mathrm{CS1}}=V_{\mathrm{IL}} ; \mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}(\mathrm{~min}) ; \\ & \mathrm{I}_{\mathrm{IO}}=0 \mathrm{~mA} \end{aligned}$
	lccaz		19	46	mA	$\overline{\mathrm{CS1}}=\mathrm{V}_{\mathrm{LL}} ; \mathrm{l}_{1 / \mathrm{O}}=0 \mathrm{~mA}$
	I'ca3			36	mA	$\begin{aligned} & \overline{\mathrm{CS}} \leq 0.2 \mathrm{~V} ; \mathrm{t}_{\mathrm{RC}} \text { or } t_{\mathrm{WC}}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$
Standby supply current	I_{SB}		4	12	mA	$\overline{\mathrm{CS1}}=\mathrm{V}_{\mathrm{IH}}$ (Note 1)
	$\mathrm{I}_{\text {SB1 }}$		8	400	$\mu \mathrm{A}$	$\overline{\mathrm{CS}} \geq \mathrm{V}_{C C}-0.2 \mathrm{~V}$ (Note 2)
Output voltage, low	VOL			0.4	V	$\mathrm{l}_{\mathrm{OL}}=2.1 \mathrm{~mA}$
Output voltage, high	V_{OH}	2.4			V	$\mathrm{l}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$

AC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	MC-434000-85		MC-434000-10		Unit
		Min	Max	Min	Max	
Read Operation						
Read cycle time	$t_{\text {RC }}$	85		100		ns
Address access time	$t_{\text {AA }}$		85		100	ns
$\overline{\overline{C S}}$ access time	${ }^{\text {t }} \mathrm{CO}$		85		100	ns
Output enable to output valid	t_{OE}		35		45	ns
Output hold from address change	t_{OH}	10		10		ns
$\overline{\text { CS }}$ to output in low-Z	tLZ	10		10		ns
Output enable to output in low-Z	$\mathrm{t}_{\mathrm{OLZ}}$	5		5		ns
CS to output in high-Z	t_{Hz}		25		30	ns
Output enable to output in high-Z	$\mathrm{t}_{\mathrm{OHZ}}$		20		30	ns

Write Operation

Write cycle time	$t_{\text {wo }}$	85	100		ns
$\overline{\overline{C S}}$ to end of write	${ }^{\text {t }}$ W ${ }^{\text {w }}$	75	90		ns
Address valid to end of write	$t_{\text {AW }}$	75	90		ns
Address setup time	$t_{\text {AS }}$	0	0		ns
Write pulse width	twp	65	75		ns
Write recovery time	${ }^{\text {W }}$ W	5	5		ns
Data valid to end of write	$t_{\text {DW }}$	35	40		ns
Data hold time	${ }^{\text {t }}$ D	0	0		ns
Write enable to output in high-Z	${ }^{\text {W }}$ WHZ		30	35	ns
Output active from end of write	tow	5	5		ns

Notes:

(1) Input pulse levels $=0.8$ to 2.2 V ; input rise and fall times $=5 \mathrm{~ns}$; timing reference levels $=1.5 \mathrm{~V}$.
(2) See figure 1 for output load.

Figure 1. Output Load

$C_{L}=100 \mathrm{pF}$ (Including scope and test Jg)
$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ for toHZ, toLZ tow, and WHZ

Low-VCc Data Retention Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C}$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Data retention supply voltage	$V_{C C D R}$	2		5.5	V	$\overline{\mathrm{CS1}} \geq \mathrm{V}_{\text {CC }}-0.2 \mathrm{~V}$
Data retention supply current	$\mathrm{I}_{\mathrm{CCDR}}$		4	200	$\mu \mathrm{~A}$	$\mathrm{~V}_{\text {CC }}=3.0 \mathrm{~V} ; \overline{\mathrm{CS}} \geq \mathrm{V}_{\text {CC }}-0.2 \mathrm{~V}$
Chip deselection to data retention	$\mathrm{t}_{\mathrm{CDR}}$	0			ns	
Operation recovery time	t_{R}	5		ms		

Figure 2. $\overline{C S}$-Controlled Data Retention Timing

Timing Waveforms

Read Cycle

Timing Waveforms (cont)

$\overline{W E}$-Controlled Write Cycle

Timing Waveforms (cont)
$\overline{C S}$-Controlled Write Cycle

Package Drawings

32-Pin Ceramic DIP

Hem	Millimeters	Inches
A	$43.053 \pm .127$	1.7 ± 0.01
B	$14.99 \pm .254$	$.59 \pm 0.10$
C	9.78 max	.385 max
D	$0.254 \pm .127$	$.010 \pm .005$
E	$2.54[\mathrm{TP}]$	$.100[\mathrm{TP}]$
F	$0.508 \pm .127$	$.02 \pm .005$
G	$1.27 \pm .381$	$.05 \pm .015$
H	10.287 max	.405 max
I	$3.81 \pm .635$	$.15 \pm .025$
J	$0.254 \pm .076$	$.01 \pm .003$
K	$15.37 \pm .381$	$.605 \pm .015$

32-Pin Plastic (FR-4) DIP

Item	Millimeters	Inches
A	53.47 ± 0.13	$2.105 \pm .005$
B	15.24	.600
C	$2.54[\mathrm{TP}]$	$.100[\mathrm{TP}]$
D	0.47 ± 0.12	$.019 \pm .005$
E	1.02	.040
F	5.84 max	.230 max
G	2.54 min	.100 min
H	7.62	.300
I	0.38 min	.015 min
J	0.28 ± 0.08	$.011 \pm .003$

ECL RAMs 10K Interface

$\begin{aligned} & \text { Section } 25 \\ & \text { ECL RAMs (10K Interface) } \end{aligned}$			
$\mu \mathrm{PB}$	Organization	Features	
10422	256×4	7-ns	25a
10470	$4 \mathrm{~K} \times 1$	10-ns	25b
10474	$1 \mathrm{~K} \times 4$	8-ns	25c
10474A	$1 \mathrm{~K} \times 4$	5-ns	25d
10474E	1K $\times 4$	3-ns	25 e
10476LL	$1 \mathrm{~K} \times 4$	6-ns	$25 f$
10480	$16 \mathrm{~K} \times 1$	10-ns	25 g
10484	$4 \mathrm{~K} \times 4$	10-ns	25h
10484A	$4 \mathrm{~K} \times 4$	5-ns	$25 i$
10 A 484	$4 \mathrm{~K} \times 4$	5-ns	25j
μ PD10500	$256 \mathrm{~K} \times 1$	15-ns; BiCMOS	25k

Upcoming Products

Description	Device Number	Comments
$16 \mathrm{~K} \times 4$	μ PD10494	$\mathrm{T}_{\text {AA }}=6,7 \mathrm{~ns} ; 28$-pin PDIP/PFP
$16 \mathrm{~K} \times 4$	μ PD10494LL	Tcycle $=10,12 \mathrm{~ns} ;$ 32-pin PDIP/PFP
$32 \mathrm{~K} \times 9$	μ PD10509	Tcycle $=6$, TDQ $=3 ;$ registered I/O, scannable; 52-pin PLCC
$64 \mathrm{~K} \times 4$	μ PD10504	$\mathrm{T}_{\text {AA }}=8,10 \mathrm{~ns} ; 32$-pin PDIP/PFP

Description

The μ PB10422 is a very high-speed 10K interface ECL RAM organized as 256 words by 4 bits and designed with noninverted, open-emitter outputs and low power consumption. Two versions with fast access times of 7 and 10 ns maximum are available in 24 -pin ceramic DIP packaging.

Features

- 256-word x 4-bit organization
- 10K ECL interface
- Noninverted, open-emitter outputs
- Fast access times
- Low power consumption
- 24-pin ceramic DIP packaging

Ordering Information

Part Number	Access Time (max)	Supply Current (min)	Package
μ PB10422D-7	7 ns	-220 mA	24-pin ceramic DIP
$\mathrm{D}-10$	10 ns		

Pin Configurations

24-Pin Ceramic DIP

Pin Identification

Symbol	Function
$\mathrm{A}_{0}-\mathrm{A}_{7}$	Address inputs
$\mathrm{DI}_{1}-\mathrm{DI}_{4}$	Data inputs
$\mathrm{DO}_{1}-\mathrm{DO}_{4}$	Data outputs
$\overline{\overline{\mathrm{S}}_{1}-\overline{\mathrm{BS}}_{4}}$	Block select inputs
$\overline{\mathrm{WE}}$	Write enable
V_{CC}	Power supply (current switches and blas driver)
VCCA	Power supply (output devices)
V_{EE}	Power supply

Absolute Maximum Ratings

Supply voltage, $V_{E E}$ to $V_{\text {CC }}$	-7.0 to +0.5 V
Input voltage, V_{IN}	$\mathrm{V}_{\text {EE }}$ to +0.5 V
Output current, IOUT	-30 to +0.1 mA
Storage temperature, $\mathrm{T}_{\text {STG }}$	-65 to $+150^{\circ} \mathrm{C}$
Storage temperature under bias, $\mathrm{T}_{\text {STG }}$ (bias)	-55 to $+125^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device rellability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Truth Table

BS	$\overline{\text { WE }}$	DI	DO	Function
H	X	X	L	Not selected
L	L	L	L	Write 0
L	L	H	L	Write 1
L	H	X	Data Valid	Read

Notes:

(1) The Block Select input for each of the four memory blocks is used independently as shown in the block diagram.

Capacitance					
Parameter	Symbol	Min	Typ	Max	UnIt
Input capacitance	$\mathrm{C}_{\text {IN }}$		4		PF
Output capacitance	$\mathrm{C}_{\text {OUT }}$		5	PF	

Block Diagram

DC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$; output load $=50 \mathrm{Q}$ to -2.0 V

Parameter	Symbol	Min	Max	Unit	Test Conditions
Output voltage, high	V_{OH}	-1000	-840	mV	$\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathbb{H}} \max$ or $\mathrm{V}_{\mathrm{IL}} \min ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$
		-960	-810	mV	$V_{1 N}=V_{1 H} \max$ or $V_{I L} \min ; T_{A}=25^{\circ} \mathrm{C}$
		-900	-720	mV	$V_{\mathbb{I N}}=V_{\text {IH }}$ max or $V_{I L} \min ; T_{A}=75^{\circ} \mathrm{C}$
Output voltage, low	V_{OL}	-1870	-1665	mV	$V_{\mathbb{I N}}=V_{I H}$ max or $V_{\text {IL }} \min ; T_{A}=0^{\circ} \mathrm{C}$
		-1850	-1650	mV	$V_{\mathbb{I N}}=\mathrm{V}_{\mathrm{H}}$ max or $\mathrm{V}_{\text {IL }} \min ; T_{A}=25^{\circ} \mathrm{C}$
		-1830	-1625	mV	$V_{I N}=V_{I H} \max$ or $V_{I L} \min T_{A}=75^{\circ} \mathrm{C}$
Output threshold voltage, high	$\mathrm{V}_{\mathrm{OHC}}$	-1020		mV	$V_{I N}=V_{I H} \min$ or $V_{I L}$ max; $T_{A}=0^{\circ} \mathrm{C}$
		-980		mV	$V_{\mathbb{N}}=V_{H H} \min$ or $V_{I L}$ max; $T_{A}=25^{\circ} \mathrm{C}$
		-920		mV	$V_{\mathbb{I N}}=V_{I H} \min$ or $V_{I L}$ max; $T_{A}=75^{\circ} \mathrm{C}$
Output threshold voltage, low	VoLC		-1645	mV	$V_{I N}=V_{I H} \min$ or $V_{I L} \max ; T_{A}=0^{\circ} \mathrm{C}$
			-1630	mV	$V_{I N}=V_{I H} \min$ or $V_{I L} \max T_{A}=25^{\circ} \mathrm{C}$
			-1605	mV	$V_{\text {IN }}=V_{\text {IH }} \min$ or $V_{\text {IL }}$ max; $T_{A}=75^{\circ} \mathrm{C}$
Input voltage, high	V_{IH}	-1145	-840	mV	For all inputs: $T_{A}=0^{\circ} \mathrm{C}$
		-1105	-810	mV	For all inputs: $T_{A}=25^{\circ} \mathrm{C}$
		-1045	-720	mV	For all inputs: $T_{A}=75^{\circ} \mathrm{C}$
input voltage, low	$V_{\text {IL }}$	-1870	-1490	mV	For all inputs: $T_{A}=0^{\circ} \mathrm{C}$
		-1850	-1475	mV	For all inputs: $T_{A}=25^{\circ} \mathrm{C}$
		-1830	-1450	mV	For all inputs: $T_{A}=75^{\circ} \mathrm{C}$
Input current, high	$\mathrm{IH}^{\text {H }}$		220	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathbb{H}}$ max
Input current, low	IIL	0.5	170	$\mu \mathrm{A}$	$\overline{B S}_{1} \cdot \overline{B S}_{4} ; \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$ min
		-50		$\mu \mathrm{A}$	For all others: $\mathrm{V}_{\mathbf{I N}}=\mathrm{V}_{\mathrm{IL}}$ min
Supply current	IEE	-220		mA	For all inputs and outputs open

Notes:

(1) The device under test is mounted in a test socket and measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.

AC Characteristics

$T_{A}=0$ to $+75^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%$; output load $=50 \mathrm{Q}$ to -2.0 V

Parameter	Symbol	$\mu \mathrm{PB} 10422-7$			MPB10422-10			Unit	Test Conditions
		Min	Typ	Max	M1n	Typ	Max		
Read Operation									
Block select access time	$t_{\text {ABS }}$			5			5	ns	
Block select recovery time	$t_{\text {R }}{ }_{\text {ABS }}$			5			5	ns	
Address access time	$t_{\text {AA }}$			7			10	ns	
Write Operation									
Write pulse width	${ }_{\text {W }}$ w	5			6			ns	
Data setup time	${ }_{\text {twSD }}$	1			2			ns	
Data hold time	${ }_{\text {t WHD }}$	1			2			ns	
Address setup time	$t_{\text {WSA }}$	1			2			ns	
Address hold time	$t_{\text {WHA }}$	1			2			ns	
Block select setup time	${ }^{\text {twSBS }}$	1			2			ns	
Block select hold time	$t_{\text {WHBS }}$	1			2			ns	
Write disable time	$t_{\text {ws }}$			5			5	ns	
Write recovery time	$t_{\text {WR }}$			6			9	ns	

Output Rise and Fall Times

Output rise time	t_{R}	2	2	ns
Output fall time	t_{F}	2	2	ns

Notes:

(1) The device under test is mounted in a test socket and measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.
(2) All timing measurements are referenced to 50% input levels.
(3) See figures 1 and 2.

Figure 1. Loading Conditions Test Circuit

25a

Figure 2. Input Pulse

Note:
[1] $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}$ (typ).

μ PB10422

Timing Waveforms

Chip Select Access Cycle

Note:
[1] Address is valid more than 2 ns prior to the low transition of $\overline{\mathrm{BS}}$.

Address Access Cycle

Write Cycle

Description

The $\mu \mathrm{PB} 10470$ is a very high-speed 10 K interface ECL RAM organized as 4 K words by 1 bit and designed with an open emitter output (noninverted) for low power consumption. Two fast access time versions are available: 10 ns maximum and 15 ns maximum. The μ PB10470 is available in a hermetic, 300 -mil, 18 -pin cerdip.

Features

- 4096-word x 1-bit organization
- 10K ECL interface
- Open emitter output (noninverted)
- Fast access times
- Low power consumption

ㅁ 300-mil, 18 -pin cerdip packaging
Ordering Information

Part Number	Access Time (max)	Package
μ PB10470D-10	10 ns	18-pin cerdip
D-15	15 ns	

Pin Configuration

18-Pin Cerdip

Pin Identification

Symbol	Function
$A_{0}-A_{11}$	Address inputs
D_{IN}	Data input
$\mathrm{D}_{\mathrm{OUT}}$	Data output
$\overline{\mathrm{CS}}$	Chip select
$\overline{\mathrm{WE}}$	Write enable
V_{CC}	Ground
V_{EE}	-5.2 -volt power supply

Absolute Maximum Ratings

Supply voltage, V_{EE} to V_{CC}	-7.0 to +0.5 V
Input voltage, V_{IN}	$\mathrm{V}_{\mathrm{EE} \text { to }+0.5 \mathrm{~V}}$
Output current, louT	-30 to +0.1 mA
Storage temperature, $\mathrm{T}_{\text {STG }}$	-65 to $+150^{\circ} \mathrm{C}$
Storage temperature under bias, $\mathrm{T}_{\text {STG }}$ (bias)	-55 to $+125^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device rellability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Truth Table

$\overline{C S}$	$\overline{\text { WE }}$	DIN $^{\prime}$	Function	Output
H	X	X	Not selected	L
L	L	L	Write 0	L
L	L	H	Write 1	L
L	H	X	Read	D OUT

Notes:
(1) $X=$ don't care.

Capacitance

Parameter	Symbol	Min	Typ	Max	Unit
Input capacitance	$\mathrm{C}_{\text {IN }}$		4		pF
Output capacitance	$\mathrm{C}_{\text {OUT }}$		5		pF

Block Diagram

DC Characteristics

$T_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C}$; $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$; output load $=50 \mathrm{Q}$ to -2.0 V

Parameter	Symbol	$\mathrm{TA}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$	Min	Max	Unit	Test Conditions
Output voltage, high	VOH	0	-1000	-840	mV	$\mathrm{V}_{\mathbb{I}}=\mathrm{V}_{\mathrm{IH}}(\max)$ or $\mathrm{V}_{\mathrm{IL}}(\mathrm{min})$
		+25	-960	-810	mV	
		+75	-900	-720	mV	
Output voltage, low	V_{OL}	0	-1870	-1665	mV	$\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathbb{I H}}(\max)$ or $\mathrm{V}_{\mathrm{IL}}(\min)$
		+25	-1850	-1650	mV	
		+75	-1830	-1625	mV	
Output threshold voltage, high	$\mathrm{V}_{\mathrm{OHC}}$	0	-1020		mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\min)$ or $\mathrm{V}_{\mathrm{IL}}(\max)$
		+25	-980		mV	
		+75	-920		mV	
Output threshold voltage, low	$\mathrm{V}_{\text {OLC }}$	0		-1645	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\min)$ or $\mathrm{V}_{\mathrm{IL}}(\max)$
		+25		-1630	mV	
		+75		-1605	mV	
Input voltage, high	V_{H}	0	-1145	-840	mV	Guaranteed input voltage high for all inputs
		+25	-1105	-810	mV	
		+75	-1045	-720	mV	
Input voltage, low	VIL	0	-1870	-1490	mV	Guaranteed input voltage low for all inputs
		+25	-1850	-1475	mV	
		+75	-1830	-1450	mV	
Input current, high	I_{H}	0 to +75		220	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{iN}}=\mathrm{V}_{\mathrm{iH}}(\max)$
Input current, low	IIL	0 to +75	0.5	170	$\mu \mathrm{A}$	For CS: $\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathrm{IL}}$ (min)
		0 to +75	-50		$\mu \mathrm{A}$	For all others: $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{min})$
Supply current	lee	0 to +75	-220		mA	All inputs and outputs open

Notes:

(1) The device under test (DUT) is mounted in a test socket and is measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.

AC Characteristics

$T_{A}=0$ to $+75^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%$

Parameter	Symbol	μ PB10470-10			μ PB 10470-15			UnIt	Test Conditions
		Min	Typ	Max	Min	Typ	Max		
Read Operation									
Address access time	$t_{A A}$			10			15	ns	
Chip select access time	$t_{\text {acs }}$			6			8	ns	
Chip select recovery time	$t_{\text {thCS }}$			6			8	ns	

Write Operation

Write pulse width	${ }_{\text {tw }}$	10		15		ns
Data setup time	${ }^{\text {tw }}$ WS	2		2		ns
Data hold time	$t_{\text {WHD }}$	2		2		ns
Address setup time	${ }^{\text {twSA }}$	3		3		ns
Address hold time	$t_{\text {WHA }}$	2		2		ns
Chip select setup time	twscs	2		2		ns
Chip select hold time	${ }^{\text {twhCs }}$	2		2		ns
Write disable time	$t_{\text {ws }}$		6		8	ns
Write recovery time	$t_{\text {WR }}$		10		10	ns

Output Rise and Fall Times

Rise time	t_{R}	2	2	ns	ns
Fall time	t_{F}	2	2		

Notes:

(1) The device under test (DUT) is mounted in a test socket and is measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.

Figure 1. Loading Conditions Test Circuit

Figure 2. Input Pulse

Note:
[1] $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2 \mathrm{~ns}$ (typ).

Timing Waveforms

Chip Select Access Cycle

Address Access Cycle

Write Cycle

Description

The μ PB10474 is a very high-speed 10K interface ECL RAM organized as 1,024 words by 4 bits and designed with noninverted, open-emitter outputs and low power consumption. Three versions with access times of 8 ns , 10 ns and 15 ns maximum are available in hermetic, 400-mil, 24-pin cerdip packaging.

Features

- 1,024-word $\times 4$-bit organization
- 10K ECL interface
- Noninverted, open-emitter outputs
- Fast access times
- Low power consumption
- 400-mil, 24-pin cerdip packaging

Ordering Information

Part Number	Access Time (max)	Package
μ PB10474D-8	8 ns	24 -pin cerdip
$\mathrm{D}-10$	10 ns	
$\mathrm{D}-15$	15 ns	

Pin Configuration

24-Pin Cerdip
25c

Pin Identification

Symbol	Function
$A_{0}-A_{9}$	Address inputs
$D I_{1}-D I_{4}$	Data inputs
$D O_{1}-D_{4}$	Data outputs
$\overline{W E}$	Write enable
$\overline{C S}$	Chip select
$V_{C C}$	Power supply (current switches and bias driver)
$V_{C C A}$	Power supply (output devices)
$V_{E E}$	Power supply
$N C$	No connection

Absolute Maximum Ratings

Supply voltage, $\mathrm{V}_{\text {EE }}$ to V_{CC}	-7.0 to +0.5 V
Input voltage, V_{IN}	$\mathrm{V}_{\text {EE }}$ to +0.5 V
Output current, lout	-30 to +0.1 mA
Storage temperature, $\mathrm{T}_{\text {STG }}$	-65 to $+150^{\circ} \mathrm{C}$
Storage temperature under bias, TSTG (bias)	-55 to $+125^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Truth Table

CS	WE	D $_{\text {IN }}$	Output	Mode
H	X	X	L	Not selected
L	L	L	L	Write 0
L	L	H	L	Write 1
L	H	X	DouT	Read

Notes:
(1) $X=$ don't care.

Capacitance
$\mathrm{f}=1 \mathrm{MHz}$

Parameter	Symbol	Min	Typ	Max	Unit
Input capacitance	C_{N}	4	pF		
Output capacitance	$\mathrm{C}_{\text {OUT }}$	5	pF		

Block Diagram

DC Characteristics

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Output voltage, high	V_{OH}	-1000		-840	mV	$\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathbb{H}}$ max or $\mathrm{V}_{\mathrm{IL}} \min ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$
		-960		-810	mV	$V_{\mathbb{I N}}=\mathrm{V}_{\mathrm{IH}}$ max or $\mathrm{V}_{\mathrm{IL}} \min ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
		-900		-720	mV	$\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{IH}}$ max or $\mathrm{V}_{\mathrm{IL}} \mathrm{min} ; \mathrm{T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$
Output voltage, low	$\mathrm{V}_{\text {OL }}$	-1870		-1665	mV	$V_{\mathbb{I N}}=\mathrm{V}_{\mathbb{I}}$ max or $\mathrm{V}_{\text {IL }}$ min; $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$
		-1850		-1650	mV	$V_{\mathbb{I N}}=V_{\text {IH }}$ max or $V_{I L} \min ; T_{A}=25^{\circ} \mathrm{C}$
		-1830		-1625	mV	$V_{I N}=V_{I H}$ max or $V_{I L}$ min; $T_{A}=75^{\circ} \mathrm{C}$
Output threshold voltage, high	$\mathrm{V}_{\mathrm{OHC}}$	-1020			mV	$V_{\mathbb{N}}=V_{\mathbb{I}}$ min or $V_{I L}$ max; $T_{A}=0^{\circ} \mathrm{C}$
		-980			mV	$V_{\mathbb{N}}=V_{\text {IH }}$ min or $V_{\text {IL }}$ max; $T_{A}=25^{\circ} \mathrm{C}$
		-920			mV	$V_{\text {IN }}=V_{\text {IH }}$ min or $V_{\text {IL }}$ max; $T_{A}=75^{\circ} \mathrm{C}$
Output threshold voltage, low	VOLC			-1645	mV	$V_{\mathbb{N}}=V_{I H}$ min or $V_{I L} \max ; T_{A}=0^{\circ} \mathrm{C}$
				-1630	mV	$V_{\mathbb{N}}=V_{\mathbb{I H}}$ min or $V_{\text {IL }}$ max; $T_{A}=25^{\circ} \mathrm{C}$
				-1605	mV	$V_{\mathbb{I N}}=V_{I H}$ min or $V_{\text {IL }}$ max; $T_{A}=75^{\circ} \mathrm{C}$
Input voltage, high	$V_{\text {IH }}$	-1145		-840	mV	For all inputs: $T_{A}=0^{\circ} \mathrm{C}$
		-1105		-810	mV	For all inputs: $T_{A}=25^{\circ} \mathrm{C}$
		-1045		-720	mV	For all inputs: $T_{A}=75^{\circ} \mathrm{C}$
Input voltage, low	V_{lL}	-1870		-1490	mV	For all inputs: $T_{A}=0^{\circ} \mathrm{C}$
		-1850		-1475	mV	For all inputs: $T_{A}=25^{\circ} \mathrm{C}$
		-1830		-1450	mV	For all inputs: $T_{A}=75^{\circ} \mathrm{C}$
Input current, high	$\mathrm{IIH}^{\text {H}}$			220	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {IH }}$ max
Input current, low	IIL.	0.5		170	$\mu \mathrm{A}$	For CS: $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ min
		-50			$\mu \mathrm{A}$	For all others: $\mathrm{V}_{1 \mathrm{~N}}=\mathrm{V}_{\text {IL }}$ min
Supply current	lee	-220			mA	All inputs and outputs open

Notes:

(1) The device under test is mounted in a test socket and measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.

AC Characteristics

$T_{A}=0$ to $+75^{\circ} \mathrm{C} ; V_{E E}=-5.2 \mathrm{~V} \pm 5 \%$; output load $=50 Q$ to -2.0 V

		MPB10474-8			- PPB10474-10			$\mu \mathrm{PB} 10474$-15				Test Condilions
Parameter	Symbol	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		

Read Operation

Chip select access time	$t_{\text {ACS }}$	5	6	8	ns
Chip select recovery time	$t_{\text {RCS }}$	5	6	8	ns
Address access time	$t_{\text {AA }}$	8	10	15	ns

Write Operation

Write pulse width	t_{W}	6		10		15		ns
Data setup time	${ }^{\text {W }}$ WSD	1		2		2		ns
Data hold time	${ }^{\text {t WHD }}$	1		2		2		ns
Address setup time	t wSA	1		3		3		ns
Address hold time	${ }^{\text {twha }}$	1		2		2		ns
Chip select setup time	${ }^{\text {twscs }}$	1		2		2		ns
Chip select hold time	$t_{\text {WHCS }}$	1		2		2		ns
Write disable time	$t_{\text {ws }}$		5		6		8	ns
Write recovery time	$t_{\text {WR }}$		8		10		10	ns

Output Rise and Fall Times

Output rise time	t_{R}	2	2	2	ns
Output fall time	t_{F}	2	2	2	ns

Notes:

(i) The device under test is mounted in a test socket and measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.
(2) See figures 1 and 2 for loading conditions and input pulse timing. Input pulse levels $=-1.7$ to -0.9 V ; input rise and fall times (measured between 20% and 80% or 80% and 20%) $=2 \mathrm{~ns}$; input and output timing reference levels $=\mathbf{5 0 \%}$.

Figure 1. Loading Conditions Test Circuit

Figure 2. Input Pulse

Note:
[1] $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2 \mathrm{~ns}$ (typ).

Timing Waveforms
Chip Select Access Cycle

Address Access Cycle

Write Cycle

Description

The $\mu \mathrm{PB} 10474 \mathrm{~A}$ is a very high-speed 10K interface ECL RAM organized as 1,024 words by 4 bits and designed with noninverted, open-emitter outputs and low power consumption. Two versions with access times of 5 and 6 ns maximum are available in hermetic, 400 -mil, 24 -pin cerdip packaging.

Features

- 1,024-word x 4-bit organization
- 10K ECL interface
- Noninverted, open-emitter outputs
- Fast access times
- Low power consumption
- 400-mil, 24 -pin cerdip packaging

Ordering Information

Part Number	Access Time (max)	Package
μ PB10474AD-5	5 ns	24 -pin cerdip
D-6	6 ns	

Pin Configurations

24-Pin Cerdip

Pin Identification

Symbol	Function
$\mathrm{A}_{0}-\mathrm{A}_{9}$	Address inputs
$\mathrm{DI}_{1}-\mathrm{DI}_{4}$	Data inputs
$\mathrm{DO}_{1}-\mathrm{DO}_{4}$	Data outputs
$\overline{W E}$	Write enable (active low)
$\overline{C S}$	Chip select (active low)
$V_{C C}$	Power supply (current switches and blas driver)
$V_{C C A}$	Power supply (output devices)
$V_{E E}$	-5.2 -volt power supply
$N C$	No connection

Absolute Maximum Ratings
$V_{C C}=V_{C C A}=0 \mathrm{~V}$

Supply voltage, V_{EE} to V_{CC}	-7.0 to +0.5 V
Input voltage, $\mathrm{V}_{\mathbb{N}}$	V_{EE} to +0.5 V
Output current, louT	-30 to +0.1 mA
Storage temperature, $\mathrm{T}_{\text {STG }}$	-65 to $+150^{\circ} \mathrm{C}$
Storage temperature under blas, $\mathrm{T}_{\text {STG }}$ (blas)	-55 to $+125^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device rellablity; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Truth Table

CS	$\overline{\text { WE }}$	DIN $_{\text {IN }}$	Output	Function
H	X	X	L	Not selected
L	L	L	L	Write 0
L	L	H	L	Write 1
L	H	X	Dout	Read
Notes:				

(1) $X=$ don't care.

Capacitance

$f=1 \mathrm{MHz}$

Parameter	Symbol	Min	Typ	Max	Unlt
Input capacitance	$\mathrm{C}_{\mathbb{N}}$		4		pF
Output capacitance	$\mathrm{C}_{\text {OUT }}$		5		pF

Block Diagram

DC Characteristics

$T_{A}=0$ to $+75^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$; output load $=50 \mathrm{D}$ to $-2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=0 \mathrm{~V}$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Output voltage, high	VOH	-1000		-840	mV	$V_{\mathbb{I N}}=V_{V_{H}}$ max or $V_{\mathbb{I L}} \min ; T_{A}=0^{\circ} \mathrm{C}$
		-960		-810	mV	$V_{\mathbb{N}}=V_{\mathbb{H}} \max$ or $V_{I L} \min ; T_{A}=25^{\circ} \mathrm{C}$
		-900		-720	mV	$V_{\mathbb{N}}=V_{\mathbb{H}}$ max or $V_{I L} \min ; T_{A}=75^{\circ} \mathrm{C}$
Output voltage, low	V OL	-1870		-1665	mV	$V_{\mathbb{N}}=V_{\text {IH }} \max$ or $V_{I L} \min ; T_{A}=0^{\circ} \mathrm{C}$
		-1850		-1650	mV	$V_{I N}=V_{I H} \max$ or $V_{I L} \min ; T_{A}=25^{\circ} \mathrm{C}$
		-1830		-1625	mV	$V_{\mathbb{N}}=V_{\mathbb{H}}$ max or $V_{I L}$ min; $T_{A}=75^{\circ} \mathrm{C}$
Output threshold voltage, high	VOHC	-1020			mV	$V_{I N}=V_{I H}$ min or $V_{I L} \max T_{A}=0^{\circ} \mathrm{C}$
		-980			mV	$V_{\mathbb{N}}=V_{\mathbb{H}}$ min or $V_{I L}$ max; $T_{A}=25^{\circ} \mathrm{C}$
		-920			mV	$V_{\mathbb{N}}=V_{\mathbb{H}}$ min or $V_{V L}$ max; $T_{A}=75^{\circ} \mathrm{C}$
Output threshold voltage, low	VoLC			-1645	mV	$V_{\mathbb{N}}=V_{I H}$ min or $V_{I L}$ max; $T_{A}=0^{\circ} \mathrm{C}$
				-1630	mV	$V_{\mathbb{N}}=V_{H H}$ min or $V_{I L}$ max; $T_{A}=25^{\circ} \mathrm{C}$
				-1605	mV	$V_{\mathbb{I N}}=V_{\mathbb{H}}$ min or $V_{I L}$ max; $T_{A}=75^{\circ} \mathrm{C}$
Input voltage, high	$V_{1 H}$	-1145		-840	mV	For all inputs: $T_{A}=0^{\circ} \mathrm{C}$
		-1105		-810	mV	For all inputs: $T_{A}=25^{\circ} \mathrm{C}$
		-1045		-720	mV	For all inputs: $T_{A}=75^{\circ} \mathrm{C}$
Input voltage, low	V_{IL}	-1870		-1490	mV	For all inputs: $T_{A}=0^{\circ} \mathrm{C}$
		-1850		-1475	mV	For all inputs: $T_{A}=25^{\circ} \mathrm{C}$
		-1830		-1450	mV	For all inputs: $T_{A}=75^{\circ} \mathrm{C}$
Input current, high	I_{IH}			220	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbb{I}}=\mathrm{V}_{\mathbb{H}}$ max
Input current, low	ILL	0.5		170	$\mu \mathrm{A}$	For CS: $\mathrm{V}_{\mathbf{I N}}=\mathrm{V}_{\text {IL }} \min$
		-50			$\mu \mathrm{A}$	For all others: $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ min
Supply current	$l_{\text {EE }}$	-250			mA	All inputs and outputs open

Notes:

(1) The device under test is mounted in a test socket and measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.

AC Characteristics

Parameter	Symbol	$\mu \mathrm{PB} 10474 \mathrm{~A}-5$			$\mu \mathrm{PB} 10474 \mathrm{~A}-6$			Unlt	Test Condlitions
		Min	Typ	Max	Min	Typ	Max		
Read Operation									
Address access time	$t_{\text {AA }}$			5			6	ns	
Chip select recovery time	${ }_{\text {thcs }}$			3			4	ns	
Chip select access time	$t_{\text {acs }}$			3			4	ns	
Write Operation									
Write pulse width	t_{W}	5			6			ns	
Data setup time	$t_{\text {WSD }}$	1			1			ns	
Data hold time	${ }^{\text {W }}$ WHD	1			1			ns	
Address setup time	twSA	1			1			ns	
Address hold time	$t_{\text {WHA }}$	1			1			ns	
Chip select setup time	twses	1			1			ns	
Chip select hold time	${ }^{\text {twhCS }}$	1			1			ns	
Write disable time	tws			3			4	ns	
Write recovery time	twR			6			7	ns	
Output Rise and Fall Times									
Output rise time	$t_{\text {R }}$		2			2		ns	
Output fall time	${ }^{\text {t }}$ F		2			2		ns	

Notes:

(1) The device under test is mounted in a test socket and measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.
(2) See figures 1 and 2 for loading conditions and input pulse timing. Input pulse levels $=-1.7$ to -0.9 V ; input rise and fall times (measured between 20% and 80% or 80% and 20%) $=2 \mathrm{~ns}$; input and output timing reference levels $=50 \%$.

Figure 1. Loading Conditions Test Circuit

Figure 2. Input Pulse

Note:
[1] $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2 \mathrm{~ns}$ (typ).

Timing Waveforms

Chip Select Access Cycle

Address Access Cyclo

Write Cycle

Description

The $\mu \mathrm{PB} 10474 \mathrm{E}$ is a very-high-speed 10 K interface ECL RAM organized as 1024 words by 4 bits and designed with noninverted, open-emitter outputs and low power consumption.

Features

- 1024-wordx 4-bit organization
- 10K ECL interface
- Noninverted, open-emitter outputs
- Fast access times
- Low power consumption: 1.6 W max
- 24-pin ceramic package, DIP or flatpack

Ordering Information

Part Number	Access Time (max)	Package
μ PB10474EDH-3	3 ns	24-pin cerdip
$\frac{\mathrm{DH}-4}{}$	4 ns	
$\mu \mathrm{~PB} 10474 \mathrm{EBH}-3$	3 ns	24-pin ceramic flatpack
$\overline{\mathrm{BH}-4}$	4 ns	

Pin Identification

Symbol	Function
$\mathrm{A}_{0}-\mathrm{A}_{9}$	Address inputs
$\mathrm{DI}_{1}-\mathrm{DI}_{4}$	Data inputs
$\mathrm{DO}_{1}-\mathrm{DO}_{4}$	Data outputs
$\overline{\mathrm{WE}}$	Write enable input
$\overline{\overline{\mathrm{CS}}}$	Chip select input
V_{CC}	Power supply ground (current switches and bias driver)
$\mathrm{V}_{\mathrm{CCA}}$	Power supply ground (output devices)
V_{EE}	Power supply (-5.2 volts)
NC	No connection

Pin Configurations

24-Pin Cerdip
 \square

83FM-8846A

24-Pin Ceramic Flatpack

Absolute Maximum Ratings

Supply voltage, V_{EE} to V_{CC}	-7.0 to +0.5 V
Input voltage, V_{IN}	V_{EE} to +0.5 V
Output current, louT	-30 to +0.1 mA
Storage temperature, $\mathrm{T}_{\text {STG }}$	-65 to $+150^{\circ} \mathrm{C}$
Storage temperature under bias, $\mathrm{T}_{\text {STG }}$ (bias)	-55 to $+125^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Capacitance
$\mathrm{f}=1 \mathrm{MHz}$

Parameter	Symbol	Min	Typ	Max	Unit
Input capacitance	$\mathrm{C}_{\text {IN }}$		4		pF
Output capacitance	$\mathrm{C}_{\text {OUT }}$		5		pF

Truth Table

$\overline{\mathbf{C S}}$	$\overline{\text { WE }}$	D $_{\text {IN }}$	Output	Mode
H	X	X	L	Not selected
L	L	L	L	Write 0
L	L	H	L	Write 1
L	H	X	DOUT	Read
$\mathrm{X}=$ don't care.				

Block Diagram

DC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$; output load $=50 \Omega$ to -2.0 V

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Output voltage, high	V OH	-1000		-840	mV	$V_{I N}=V_{I H} \max$ or $V_{1 L} \min ; T_{A}=0^{\circ} \mathrm{C}$
		-960		-810	mV	$V_{I N}=V_{I H}$ max or $V_{\text {IL }} \min ; T_{A}=25^{\circ} \mathrm{C}$
		-900		-720	mV	$V_{I N}=V_{I H}$ max or $V_{I L} \min ; T_{A}=75^{\circ} \mathrm{C}$
Output voltage, low	VOL	-1870		-1665	mV	$V_{I N}=V_{I H}$ max or $V_{I L} \min ; T_{A}=0^{\circ} \mathrm{C}$
		-1850		-1650	mV	$V_{I N}=V_{I H}$ max or $V_{\text {IL }} \min ; T_{A}=25^{\circ} \mathrm{C}$
		-1830		-1625	$m V$	$V_{I N}=V_{I H}$ max or $V_{I L} \min ; T_{A}=75^{\circ} \mathrm{C}$
Output threshold voltage, high	$\mathrm{V}_{\mathrm{OHC}}$	-1020			mV	$V_{I N}=V_{I H}$ min or $V_{I L} \max ; T_{A}=0^{\circ} \mathrm{C}$
		-980			mV	$V_{I N}=V_{I H}$ min or $V_{\text {IL }}$ max; $T_{A}=25^{\circ} \mathrm{C}$
		-920			mV	$V_{I N}=V_{I H} \min$ or $V_{I L} \max ; T_{A}=75^{\circ} \mathrm{C}$
Output threshold voltage, low	$V_{\text {OLC }}$			-1645	mV	$V_{I N}=V_{I H}$ min or $V_{I L} \max ; T_{A}=0^{\circ} \mathrm{C}$
				-1630	mV	$V_{I N}=V_{I H}$ min or $V_{I L}$ max; $T_{A}=25^{\circ} \mathrm{C}$
				-1605	mV	$V_{I N}=V_{1 H}$ min or $V_{I L}$ max; $T_{A}=75^{\circ} \mathrm{C}$
Input voltage, high	$V_{\text {IH }}$	-1145		-840	mV	For all inputs: $T_{A}=0^{\circ} \mathrm{C}$
		-1105		-810	mV	For all inputs: $T_{A}=25^{\circ} \mathrm{C}$
		-1045		-720	mV	For all inputs: $T_{A}=75^{\circ} \mathrm{C}$
input voltage, low	V_{IL}	-1870		-1490	mV	For all inputs: $T_{A}=0^{\circ} \mathrm{C}$
		-1850		-1475	mV	For all inputs: $T_{A}=25^{\circ} \mathrm{C}$
		-1830		-1450	mV	For all inputs: $T_{A}=75^{\circ} \mathrm{C}$
Input current, high	$\mathrm{IIH}^{\text {H }}$			220	$\mu \mathrm{A}$	$V_{\mathbb{N}}=V_{1 H}$ max
Input current, low	IIL	0.5		170	$\mu \mathrm{A}$	For $\overline{\mathrm{CS}}$: $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ min
		-50			$\mu \mathrm{A}$	For all others: $\mathrm{V}_{\mathbb{I}}=\mathrm{V}_{\mathrm{IL}}$ min
Supply current	$\mathrm{l}_{\text {E }}$	-330			mA	All inputs and outputs open

Notes:

(1) The device under test is mounted in a test socket and measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.

AC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \% ;$ output load $=50 \Omega$ to -2.0 V

Parameter	Symbol	$\mu \mathrm{PB} 10474 \mathrm{E}-3$			$\mu \mathrm{PB} 10474 \mathrm{E}-4$			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max		

Read Operation

Address access time	$t_{A A}$	3	4	n ns
Chip select access time	$t_{A C S}$	2	3	$n s$
Chip select recovery time	$t_{\text {RCS }}$	2	3	$n s$

Write Operation

Write pulse width	t_{W}	5	6	ns	
Address hold time	$t_{W H A}$	0.5	0.5	ns	
Chip select hold time	$t_{W H C S}$	0.5	0.5	ns	
Data hold time	$t_{W H D}$	0.5	0.5	ns	
Write recovery time	$t_{W R}$		4	5	ns
Write disable time	$t_{W S}$	$t_{W S A}$	0.5	2	3
Address setup time	$t_{W S C S}$	0.5	0.5	ns	
Chip select setup time	$t_{W S D}$	0.5	0.5	ns	
Data setup time		0.5	ns		

Output Rise and Fall Times

Output rise time	t_{R}	2	2	ns	
Output fall time	t_{F}	2	2	ns	

Notes:

(1) The device under test is mounted in a test socket and measured at a thermal equilibrium established with a transverse air flow
maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.
(2) See figure 1 for loading conditions and input pulse shape.

Figure 1. Test Circuit

Timing Waveforms

Chip Select Access Cycle

Note:
[1] Address is valld more than 2 ns prior to the low transition of $\overline{\mathrm{CS}}$.
[2] $\overline{W E}=V_{I H}$.

Address Access Cycle

μ PB10474E

Timing Waveforms (cont)
Write Cycle

Preliminary Information

Description

The $\mu \mathrm{PB} 10476 \mathrm{LL}$ is a very-high-speed 10 K interface ECL RAM organized as 1024 words by 4 bits and designed with noninverted, open-emitter outputs and low power consumption.

The device integrates input latches, high-speed ECL RAM, output latches, and a write pulse generator. The synchronous design allows precise cycle control by use of an internal clock.

Features

ㅁ 1024-word x 4-bit organization

- 10K ECL interface
- High-speed clock cycle: 6 ns

Latched I/O

- Self-timed write
- 28-pin ceramic package, DIP or flatpack

Ordering Information

Part Number	Access Time (max)	Package
μ PB10476LLDH-6	6 ns	28-pin cerdip
BH-6	6 ns	28-pin ceramic flatpack

Pin Identification

Symbol	Function
$\mathrm{A}_{0}-\mathrm{A}_{9}$	Address inputs
$\mathrm{DI}_{1}-\mathrm{DI}_{4}$	Data inputs
$\mathrm{DO}_{1}-\mathrm{DO}_{4}$	Data outputs
$\mathrm{CLK}, \overline{\mathrm{CLK}}$	Clock inputs
$\overline{\mathrm{CS}}$	Chip select input
$\overline{\mathrm{WE}}$	Write enable input
$V_{B B}$	Reference voltage output
$V_{C C}$	Power supply ground (current switches and bias driver)
$V_{C C A}$	Power supply ground (output devices)
$V_{E E}$	Power supply (-5.2 volts)
$N C$	No connection

Pin Configuration

28-Pin Cerdip

28-Pin Ceramic Flatpack

Block Diagram

B3FM-88638

Absolute Maximum Ratings

Supply voltage, V_{EE} to V_{CC}	-7.0 to +0.5 V
Input voltage, V_{IN}	V_{EE} to +0.5 V
Output current, louT	-30 to +0.1 mA
Storage temperature, $\mathrm{T}_{\text {STG }}$	-65 to $+150^{\circ} \mathrm{C}$
Storage temperature under bias, $\mathrm{T}_{\text {STG }}$ (bias)	-55 to $+125^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Capacitance

$\mathrm{f}=1 \mathrm{MHz}$

Parameter	Symbol	Min	Typ	Max	Unit
Input capacitance	$\mathrm{C}_{\text {IN }}$	4		pF	
Output capacitance	$\mathrm{C}_{\text {OUT }}$	5		pF	

Truth Table

$\mathbf{C S}$	$\overline{\text { WE }}$	D $_{\text {IN }}$	Output	Mode
H	X	X	L	Not selected
L	L	L	L	Write 0
L	L	H	H	Write 1
L	H	X	DouT	Read
X $=$ don't care.				

DC Characteristics

$T_{A}=0$ to $+75^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$; output load $=50 \Omega$ to -2.0 V

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Output voltage, high	V OH	-1000		-840	mV	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ max or $\mathrm{V}_{\text {IL }} \min ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$
		-960		-810	mV	$V_{I N}=V_{I H}$ max or $V_{I L} \min ; T_{A}=25^{\circ} \mathrm{C}$
		-900		-720	mV	$V_{I N}=V_{I H} \max$ or $V_{I L} \min ; T_{A}=75^{\circ} \mathrm{C}$
Output voltage, low	V_{OL}	-1870		-1665	mV	$V_{I N}=V_{I H}$ max or $V_{\text {IL }} \min ; T_{A}=0^{\circ} \mathrm{C}$
		-1850		-1650	mV	$V_{I N}=V_{I H}$ max or $V_{I L} \min ; T_{A}=25^{\circ} \mathrm{C}$
		-1830		-1625	mV	$V_{I N}=V_{I H}$ max or $V_{I L} \min ; T_{A}=75^{\circ} \mathrm{C}$
Output threshold voltage, high	$\mathrm{V}_{\text {OHC }}$	-1020			mV	$V_{I N}=V_{I H}$ min or $V_{I L} \max ; T_{A}=0^{\circ} \mathrm{C}$
		-980			mV	$V_{I N}=V_{I H}$ min or $V_{I L}$ max; $T_{A}=25^{\circ} \mathrm{C}$
		-920			mV	$V_{I N}=V_{I H}$ min or $V_{I L} \max ; T_{A}=75^{\circ} \mathrm{C}$
Output threshold voltage, low	Volc			-1645	mV	$V_{I N}=V_{I H}$ min or $V_{I L} \max ; T_{A}=0^{\circ} \mathrm{C}$
				-1630	mV	$V_{I N}=V_{I H}$ min or $V_{I L} \max ; T_{A}=25^{\circ} \mathrm{C}$
				-1605	mV	$V_{I N}=V_{I H}$ min or $V_{I L} \max ; T_{A}=75^{\circ} \mathrm{C}$
Input voltage, high	$\mathrm{V}_{1 \mathrm{H}}$	-1145		-840	mV	For all inputs: $T_{A}=0^{\circ} \mathrm{C}$
		-1105		-810	mV	For all inputs: $T_{A}=25^{\circ} \mathrm{C}$
		-1045		-720	mV	For all inputs: $T_{A}=75^{\circ} \mathrm{C}$
Input voltage, low	$\mathrm{V}_{\text {IL }}$	-1870		-1490	$m V$	For all inputs: $T_{A}=0^{\circ} \mathrm{C}$
		-1850		-1475	mV	For all inputs: $T_{A}=25^{\circ} \mathrm{C}$
		-1830		-1450	mV	For all inputs: $T_{A}=75^{\circ} \mathrm{C}$
Input current, high	${ }_{1 /}$			220	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ max
Input current, low	IIL	0.5		170	$\mu \mathrm{A}$	For $\overline{\mathrm{CS}}$: $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ min
		-50			$\mu \mathrm{A}$	For all others: $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ min
Supply current	IEE	-350			mA	All inputs and outputs open
Reference voltage	$\mathrm{V}_{\text {BB }}$	-1820		-1250	mV	

Notes:

(1) The device under test is mounted in a test socket and measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.

AC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%$; output load $=50 \Omega$ to -2.0 V

Parameter	Symbol	$\mu \mathrm{PB10476LL-6}$			Unit	Test Conditions
		Min	Typ	Max		
Address access time	${ }^{\text {A }}$ (Add)			2.5	ns	$\mathrm{t}_{\mathrm{SA}}=0.5 \mathrm{~ns}$
Clock access time	${ }^{\text {t }}$ (Clik)			3.3	ns	${ }^{\text {twL.(Clk) }}=1.5 \mathrm{~ns}$
$\overline{\mathrm{CS}}$ access time	$t_{\text {A }}(\mathrm{CS})$			2.3	ns	$\mathrm{t}_{\mathrm{SC}}=0.5 \mathrm{~ns}$
Data access time	${ }^{t_{\text {A (}}(\mathrm{D})}$			2.3	ns	$\mathrm{t}_{\text {SD }}=0.5 \mathrm{~ns}$
Write access time	$t_{\text {A }}(\underline{M})$			2.3	ns	$\mathrm{t}_{\mathrm{SW}}=0.5 \mathrm{~ns}$
Clock cycle time	t_{Cl}	6			ns	
Data release time	$t_{\text {DR }}$	0.3		1.8	ns	$t_{\text {WL(Clk) }}>t_{A(C l k)} \max , t_{S A}>t_{A(A d d)} \max$ $t_{S C}>t_{A(C S)}$ max, $t_{S D}>t_{A(D I)}$ max
Address hold time	$t_{\text {HA }}$	1			ns	
CS hold time	$t_{H C}$	1			ns	
Data hold time	$t_{H D}$	1			ns	
WE hold time	t_{HW}	1			ns	
Address setup time	$t_{\text {SA }}$	0.5			ns	
$\overline{C S}$ setup time	$t_{\text {S }}$	0.5			ns	
Data setup time	$t_{S D}$	0.5			ns	
WE setup time	${ }^{\text {SW }}$ W	0.5			ns	
Clock high-pulse width	${ }^{\text {t }}$ WH(Clik)	4.5			ns	
Clock low-pulse width	${ }^{\text {t }} \mathrm{WL}$ (Clk)	1.5			ns	

Notes:

(1) The device under test is mounted in a test socket and measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.
(2) See figure 1 for loading conditions and input pulse shape.

Figure 1. Test Circuit

Figure 2. Clock Input Modes

Timing Waveforms

Address Access, Read Mode

Timing Waveforms (cont)
Chip Select Access, Read Mode

Timing Waveforms (cont)

Clock Access, Read Mode

Timing Waveforms (cont)

Write Mode

Description

The $\mu \mathrm{PB} 10480$ is a very high-speed 10K interface ECL RAM organized as 16,384 words by 1 bit and designed with noninverted, open-emitter outputs and low power consumption. Two versions with fast access times of 10 ns and 15 ns maximum are available in hermetic, $300-\mathrm{mil}, 20$-pin cerdip or 20 -pin ceramic flatpack packaging.

Features

- 16,384-word x 1-bit organization
- 10K ECL interface
- Noninverted, open-emitter outputs
- Fast access times
- Low power consumption
- 300 -mil, 20 -pin cerdip or 20 -pin ceramic flatpack packaging

Ordering Information

Part Number	Access Time (max)	Power Consumption (max)	Package
μ PB10480D-10	10 ns	1.4 W	20-pin cerdip
$\mathrm{D}-15$	15 ns	1.3 W	
μ PB10480B-10	10 ns	1.4 W	20-pin ceramic flatpack

Pin Configurations

20-Pin Cerdip

DO ${ }^{1}$		20	V cc
$\mathrm{A}_{0} \mathrm{O}^{2}$		19	DI
$\mathrm{A}_{1} \square^{3}$		18	$\overline{\mathrm{cs}}$
$\mathrm{A}_{2}{ }^{4}$	\%	17] WE
$\mathrm{A}_{3} \square^{5}$	앙	16	A_{13}
$\mathrm{A}_{4} \mathrm{O}^{6}$	$\stackrel{0}{\underline{0}}$	15	A_{12}
$\mathrm{A}_{5} \mathrm{Q}^{7}$		14	A_{11}
$\mathrm{A}_{6} \mathrm{C}^{8}$		13	A_{10}
$\mathrm{A}_{7} \mathrm{C}^{9}$		12	Ag_{9}
VEES 10		11	A_{8}

831H-6190A

20-Pin Ceramic Flatpack

Pin Identification

Symbol	Function
$\mathrm{A}_{0}-\mathrm{A}_{13}$	Address inputs
DI	Data input
DO	Data output
$\overline{\mathrm{CS}}$	Chip select
$\overline{\mathrm{WE}}$	Write enable
V_{CC}	Ground
V_{EE}	-5.2 -volt power supply

Capacitance

$f=1 \mathrm{MHz}$

Parameter	Symbol	Min	Typ	Max	Unit
Input capacitance	C_{IN}	4		pF	
Output capacitance	$\mathrm{C}_{\text {OUT }}$		6		pF

Absolute Maximum Ratings

Supply voltage, V_{EE}	$-\mathbf{7 . 0}$ to +0.5 V
Input voltage, V_{IN}	V_{EE} to +0.5 V
Output current, lout	-30 to +0.1 mA
Storage temperature, $\mathrm{T}_{\text {STG }}$	-65 to $+150^{\circ} \mathrm{C}$
Storage temperature under bias, $\mathrm{T}_{\text {STG }}$ (bias)	-55 to $+125^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Truth Table

$\overline{\mathbf{C S}}$	$\overline{\text { WE }}$	D $_{\text {IN }}$	Output	Mode
H	X	X	L	Not selected
L	L	L	L	Write 0
L	L	H	L	Write 1
L	H	X	Dout	Read

Notes:
(1) $X=$ don't care.

Block Diagram

DC Characteristics

$T_{A}=0$ to $+75^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$; output load $=50 \Omega$ to -2.0 V

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Output voltage, high	V_{OH}	-1000		-840	mV	$\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathrm{IH}}$ max or $\mathrm{V}_{\mathrm{IL}} \min ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$
		-960		-810	mV	$V_{\mathbb{I N}}=V_{1 H}$ max or $V_{\text {IL }}$ min; $T_{A}=25^{\circ} \mathrm{C}$
		-900		-720	mV	$V_{\mathbb{I}}=V_{\text {IH }}$ max or $V_{\text {IL }} \min ; T_{A}=75^{\circ} \mathrm{C}$
Output voltage, low	V_{OL}	-1870		-1665	mV	$\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\text {IH }}$ max or $\mathrm{V}_{\mathrm{IL}} \min ; T_{A}=0^{\circ} \mathrm{C}$
		-1850		-1650	mV	$V_{I N}=V_{I H}$ max or $V_{I L} \min T_{A}=25^{\circ} \mathrm{C}$
		-1830		-1625	mV	$V_{\mathbb{N}}=V_{\text {IH }}$ max or $V_{I L} \min ; T_{A}=75^{\circ} \mathrm{C}$
Output threshold voltage, high	$\mathrm{V}_{\mathrm{OHC}}$	-1020			mV	$V_{\mathbb{I N}}=V_{I H}$ min or $V_{I L}$ max; $T_{A}=0^{\circ} \mathrm{C}$
		-980			mV	$V_{I N}=V_{I H}$ min or $V_{I L}$ max; $T_{A}=25^{\circ} \mathrm{C}$
		-920			mV	$V_{\mathbb{I N}}=V_{\text {IH }}$ min or $V_{\text {IL }}$ max; $T_{A}=75^{\circ} \mathrm{C}$
Output threshold voltage, low	VoLC			-1645	mV	$\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathrm{IH}}$ min or V_{IL} max; $T_{A}=0^{\circ} \mathrm{C}$
				-1630	mV	$V_{I N}=V_{I H}$ min or $V_{\text {IL }}$ max; $T_{A}=25^{\circ} \mathrm{C}$
				-1605	mV	$V_{\mathbb{N}}=V_{\mathbb{I H}}$ min or $V_{\mathbb{I L}}$ max; $T_{A}=75^{\circ} \mathrm{C}$
Input voltage, high	V_{IH}	-1145		-840	mV	For all inputs: $T_{A}=0^{\circ} \mathrm{C}$
		-1105		-810	mV	For all inputs: $T_{A}=25^{\circ} \mathrm{C}$
		-1045		-720	mV	For all inputs: $T_{A}=75^{\circ} \mathrm{C}$
Input voltage, low	V_{IL}	-1870		-1490	mV	For all inputs: $T_{A}=0^{\circ} \mathrm{C}$
		-1850		-1475	mV	For all inputs: $T_{A}=25^{\circ} \mathrm{C}$
		-1830		-1450	mV	For all inputs: $T_{A}=75^{\circ} \mathrm{C}$
Input current, high	$\mathrm{IIH}^{\text {H}}$			220	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathbb{H}}$ max
Input current, low	IIL	0.5		170	$\mu \mathrm{A}$	For CS: $\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathbb{L L}}$ min
		-50			$\mu \mathrm{A}$	For all others: $V_{\mathbb{I}}=V_{\mathbb{L}}$ min
Supply current	lee	-260			mA	For μ PB10480-10: all inputs and outputs open
		-240			mA	For μ PB10480-15: all inputs and outputs open

Notes:

(1) The device under test is mounted in a test socket and measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.

AC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%$

Parameter	Symbol	$\mu \mathrm{PBB10480-10}$			$\mu \mathrm{PB10480-15}$			Unlt	Test Conditions
		Min	Typ	Max	Min	Typ	Max		
Read Operation									
Address access time	$t_{\text {AA }}$			10			15	ns	
Chip select recovery time	$t_{\text {facs }}$			5			8	ns	
Chip select access time	$t_{\text {ACS }}$			5			8	ns	

Write Operation

Write pulse width	${ }^{\text {w }}$ W	10		15		ns
Data setup time	$t_{\text {wsd }}$	2		3		ns
Data hold time	${ }^{\text {t WHD }}$	1		2		ns
Address setup time	$t_{\text {WSA }}$	2		3		ns
Address hold time	$t_{\text {WHA }}$	1		2		ns
Chip select setup time	twscs	2		3		ns
Chip select hold time	${ }^{\text {twhes }}$	1		2		ns
Write disable time	tws		5		8	ns
Write recovery time	$t_{\text {WR }}$		11		17	ns

Output Rise and Fall Times

Output rise time	t_{R}	2	2	ns
Output fall time	t_{F}	2	2	ns

Notes:

(1) The device under test is mounted in a test socket and measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.
(2) Input pulse levels $=-1.7$ to -0.9 V ; input rise and fall times (measured between 20% and 80% or 80% to 20%) $=2.5 \mathrm{~ns}$; Input and output timing reference level $=50 \%$.

Figure 1. Loading Conditions Test Circuit

25g

Figure 2. Input Pulse

Note:
[1] $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}$ (typ).

Timing Waveforms
Chip Select Access Cycle

Address Access Cycle

Write Cycle

μ PB 10484
4,096 x 4-Bit

Description

The $\mu \mathrm{PB} 10484$ is a very high-speed 10K interface ECL RAM organized as 4,096 words by 4 bits and designed with noninverted, open-emitter outputs and low power consumption. Two versions with access times of 10 and 15 ns maximum are available. The μ PB10484 is packaged in a hermetic, 400-mil, 28-pin cerdip or 28-pin ceramic flatpack.

Features

- 4,096-word x 4-bit organization
- 10 K ECL interface
- Noninverted, open-emitter outputs
- Low power consumption of 1.4 W maximum
- Fast access times of 10 and 15 ns maximum

ㅁ 400-mil, 28-pin cerdip or 28-pin ceramic flatpack packaging

Ordering Information

Part Number	Access Time (max)	Package
μ PB10484D-10	10 ns	28-pin cerdip
D-15	15 ns	
μ PB10484B-10	10 ns	28-pin ceramic flatpack
B-15	15 ns	

Pin Configurations

28-Pin Cerdip

	$v_{C C A}-1 \sim 2 v_{C C}$
	$\mathrm{DO}_{3} \mathrm{H}_{2} \quad 27 \mathrm{DO}_{2}$
	$\mathrm{DO}_{4} \square^{3} \quad 26 \mathrm{DO}_{1}$
	$\mathrm{A}_{0} \square^{4} \quad 25{ }^{2} \mathrm{DI}_{4}$
	$\mathrm{A}_{1} \square_{5} \quad{ }^{24} \mathrm{Dl}_{3}$
	$\mathrm{A}_{2} \mathrm{O}_{6} \quad \stackrel{\text { W }}{\text { W }}$
	$\mathrm{A}_{3} \mathrm{Cl}_{7} \quad \frac{\mathrm{O}}{\mathrm{m}} \quad 22 \square \mathrm{Dl}_{1}$
	A_{4} Д8 $\mathrm{C}_{5} \quad 21 \mathrm{D} \overline{\mathrm{CS}}$
	$\mathrm{A}_{5} \mathrm{H} 9020 \overline{W E}_{1}$
	$\mathrm{A}_{6} \mathrm{O}_{10} \quad 19 \square \overline{\mathrm{WE}}_{2}$
	$\mathrm{A}_{7} \mathrm{G}_{11} 18 \mathrm{p} \mathrm{NC}$
	$\mathrm{A}_{8} \mathrm{O}_{12}$ 17 ${ }^{\text {a }} \mathrm{A}_{11}$
	NC [13
	VEE ${ }^{14}$
	8314-669A

28-Pin Ceramic Flatpack

Pin Identification

Symbol	Function
$\mathrm{A}_{0}-\mathrm{A}_{11}$	Address inputs
$\mathrm{DI}_{1}-\mathrm{DI}_{4}$	Data inputs
$\mathrm{DO}_{1}-\mathrm{DO}_{4}$	Data outputs
$\overline{\mathrm{WE}_{1}, \overline{W E}_{2}}$	Write enable (active low)
$\overline{\mathrm{CS}}$	Chip select (active low)
V_{CC}	Power supply (current switches and bias driver)
$\mathrm{V}_{\mathrm{CCA}}$	Power supply (output devices)
V_{EE}	-5.2 -volt power supply
NC	No connection

Capacitance

$f=1 \mathrm{MHz}$

Parameter	Symbol	Min	Typ	Max	UnIt
Input capacitance	$\mathrm{C}_{\mathbb{I N}}$		4		pF
Output capacitance	$\mathrm{C}_{\text {OUT }}$		6		pF

Absolute Maximum Ratings

age	-7.0 to +0.5V
Sput voltage $V_{\text {I }}$	
Input voltage, $\mathrm{V}_{\text {IN }}$	V_{EE} to +0.5 V
Output current, lout	-30 to +0.1 mA
Storage temperature, TSTG	-65 to $+150^{\circ} \mathrm{C}$
Storage temperature under bias, ISTG (bias)	-55 to $+125^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Truth Table

$\overline{\text { CS }}$	$\overline{\text { WE }}$	D $_{\text {IN }}$	Output	Mode
H	X	X	L	Not selected
L	L (Note 2)	L	L	Write 0
L	L (Note 2)	H	L	Write 1
L	H (Note 2)	X	Dout	Read

Notes:
(1) $X=$ don't care.
(2) Both $\overline{W E}_{1}$ and $\overline{W E}_{2}$ must be low to initiate write operation. For read operation, either $\overline{W E}_{1}$ or $\overline{W E}_{2}$ or both must be high.

Block Diagram

DC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$; output load $=50 \mathrm{D}$ to $-2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=0 \mathrm{~V}$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Output voltage, high	V_{OH}	-1000		-840	mV	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ max or $\mathrm{V}_{\text {IL }}$ min; $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$
		-960		-810	mV	$V_{I N}=V_{I H}$ max or $V_{\text {IL }}$ min; $T_{A}=25^{\circ} \mathrm{C}$
		-900		-720	mV	$V_{I N}=V_{I H}$ max or $V_{I L} \min ; T_{A}=75^{\circ} \mathrm{C}$
Output voltage, low	V_{OL}	-1870		-1665	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IH }}$ max or $\mathrm{V}_{\mathrm{IL}} \min ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$
		-1850		-1650	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ max or $\mathrm{V}_{\mathrm{IL}} \min ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
		-1830		-1625	mV	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ max or $\mathrm{V}_{\text {IL }}$ min; $\mathrm{T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$
Output threshold voltage, high	$\mathrm{V}_{\mathrm{OHC}}$	-1020			mV	$V_{\text {IN }}=V_{\text {IH }} \min$ or $V_{\text {IL }}$ max; $T_{A}=0^{\circ} \mathrm{C}$
		-980			mV	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \min$ or $V_{I L}$ max; $T_{A}=25^{\circ} \mathrm{C}$
		-920			mV	$V_{\mathbb{I N}}=V_{\text {IH }} \min$ or $V_{\text {IL }}$ max; $T_{A}=75^{\circ} \mathrm{C}$
Output threshold voltage, low	VOLC			-1645	mV	$V_{\text {IN }}=V_{\text {IH }} \min$ or $V_{\text {IL }}$ max; $T_{A}=0^{\circ} \mathrm{C}$
				-1630	mV	$V_{I N}=V_{I H} \min$ or $V_{I L}$ max; $T_{A}=25^{\circ} \mathrm{C}$
				-1605	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \min$ or V_{IL} max; $\mathrm{T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$
Input voltage, high	V_{H}	-1145		-840	mV	For all inputs: $T_{A}=0^{\circ} \mathrm{C}$
		-1105		-810	mV	For all inputs: $T_{A}=25^{\circ} \mathrm{C}$
		-1045		-720	mV	For all inputs: $T_{A}=75^{\circ} \mathrm{C}$
input voltage, low	$V_{\text {IL }}$	-1870		-1490	mV	For all inputs: $T_{A}=0^{\circ} \mathrm{C}$
		-1850		-1475	mV	For all inputs: $T_{A}=25^{\circ} \mathrm{C}$
		-1830		-1450	mV	For all inputs: $T_{A}=75^{\circ} \mathrm{C}$
Input current, high	I_{H}			220	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{H}}$ max
Input current, low	ILL	0.5		170	$\mu \mathrm{A}$	For CS: $V_{\text {IN }}=V_{\text {IL }}$ min
		-50			$\mu \mathrm{A}$	For all others: $\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\text {IL }}$ min
Supply current	$l_{\text {eE }}$	-260			mA	For μ PB10484-10: all inputs and outputs open
		-240			mA	For μ PB10484-15: all inputs and outputs open

Notes:

(1) The device under test is mounted in a test socket and measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.

AC Characteristics

$T_{A}=0$ to $+75^{\circ} \mathrm{C} ; \mathrm{V}_{E E}=-5.2 \mathrm{~V} \pm 5 \%$; output load $=50 \Omega$ to $-2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=0 \mathrm{~V}$

Parameter	Symbol	μ PB 10484-10			$\mu \mathrm{PB} 10484$-15			Unit	Test Condlitions
		Min	Typ	Max	Min	Typ	Max		
Read Operation									
Address access time	$t_{\text {AA }}$			10			15	ns	
Chip select recovery time	$t_{\text {fas }}$			5			8	ns	
Chip select access time	$t_{\text {ACS }}$			5			8	ns	

Write Operation

Write pulse width	t_{W}	10		15		ns
Data setup time	${ }^{\text {W WSD }}$	2		3		ns
Data hold time	${ }^{\text {W WHD }}$	1		2		ns
Address setup time	${ }_{\text {W }}$ WSA	2		3		ns
Address hold time	$t_{\text {WHA }}$	1		2		ns
Chip select setup time	${ }^{\text {t }}$ wscs	2		3		ns
Chip select hold time	${ }^{\text {WHCS }}$	1		2		ns
Write disable time	$t_{\text {ws }}$		5		8	ns
Write recovery time	${ }^{\text {twR }}$		11		17	ns

Output Rise and Fall Times

| Output rise time | t_{R} | 2 | 2 | n |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Output fall time | t_{F} | 2 | 2 | ns |

Notes:

(1) The device under test is mounted in a test socket and measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.
(2) Input pulse levels $=-1.7$ to -0.9 V ; input rise and fall times (measured between 20% and 80% or 80% to 20%) $=2.5$ ns; input and output timing reference level $=50 \%$.

Figure 1. Loading Conditions Test Circuit

Figure 2. Input Pulse

Note:
[1] $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}$ (typ).

Timing Waveforms

Chip Select Access Cycle

Note:
[1] Address is valid more than 2 ns prior to the low transition of $\overline{\mathrm{CS}}$.
83it-6164B

Address Access Cycle

Write Cycle

Description

The $\mu \mathrm{PB} 10484 \mathrm{~A}$ is a very high-speed 10 K interface ECL RAM. It is organized as 4,096 words by 4 bits and designed with noninverted, open-emitter outputs and low power consumption. Two versions with access times of 5 or 7 ns maximum are available. The μ PB10484A is packaged in a hermetic, 400 -mil, 28 -pin cerdip or 28 -pin ceramic flatpack.

Features

- 4,096-word x 4-bit organization
- 10K ECL interface
- Noninverted, open-emitter outputs
- Fast access times of 5 and 7 ns maximum
- Low power consumption of 1.4 W maximum
- 400 -mil, 28 -pin cerdip or ceramic flatpack packaging

Ordering Information

Part Number	Access Time (max)	Package
μ PB10484AD-5	5 ns	28 -pin cerdip
D-7	7 ns	
μ PB10484AB-5	5 ns	28-pin ceramic flatpack
B-7	7 ns	

Pin Configurations
28-Pin Cerdip

$V_{\text {CCA }}+1$		28	$\square V_{C C}$
$\mathrm{DO}_{3} \mathrm{H} 2$		27	$\square \mathrm{DO}_{2}$
$\mathrm{DO}_{4} \mathrm{H}_{3}$		26	DDO_{1}
$\mathrm{A}_{0} \mathrm{C} 4$		25	TBl_{4}
$\mathrm{A}_{1} \mathrm{C}_{5}$		24	$\square \mathrm{Dl}_{3}$
$\mathrm{A}_{2} \mathrm{C}_{6}$	K	23	Cl_{2}
$\mathrm{A}_{3} \mathrm{C}_{7}$	O	22	$\square \mathrm{Dl}_{1}$
$\mathrm{A}_{4} \mathrm{H}_{8}$	-	21	$\square \overline{\mathrm{CS}}$
$\mathrm{A}_{5}-9$	\pm	20	$\square \overline{W E}_{1}$
$\mathrm{A}_{6}-10$		19	$\square \overline{W E}_{2}$
$\mathrm{A}_{7} \mathrm{C}_{11}$		18	$\square \mathrm{NC}$
$\mathrm{A}_{8} \mathrm{H}_{12}$		17	A_{11}
NC [13		16	$\square A_{10}$
VEE C-14		15] Ag

831H-5944A

28-Pin Ceramic Flatpack

Pin Identification

Symbol	Function
$\mathrm{A}_{0}-\mathrm{A}_{11}$	Address inputs
$\mathrm{DI}_{1}-\mathrm{DI}_{4}$	Data inputs
$\mathrm{DO}_{1}-\mathrm{DO}_{4}$	Data outputs
$\overline{\mathrm{WE}}, \overline{W E}_{2}$	Write enable (active low)
$\overline{\mathrm{CS}}$	Chip select (active low)
V_{CC}	Power supply (current switches and bias driver)
$\mathrm{V}_{\mathrm{CCA}}$	Power supply (output devices)
V_{EE}	-5.2 -volt power supply
NC	No connection

Capacitance
 $f=1 \mathrm{MHz}$

Parameter	Symbol	Min	Typ	Max	Unlt
Input capacitance	C_{IN}		4		pF
Output capacitance	$\mathrm{C}_{\text {OUT }}$		6		pF

Absolute Maximum Ratings
$V_{C C}=V_{C C A}=0 V$

Supply voltage, V_{EE}	-7.0 to +0.5 V
Input voltage, V_{IN}	V_{EE} to +0.5 V
Output current, lout	-30 to +0.1 mA
Storage temperature, $\mathrm{T}_{\mathrm{STG}}$	-65 to $+150^{\circ} \mathrm{C}$
Storage temperature under bias, $\mathrm{T}_{\text {STG }}$ (bias)	-55 to $+125^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Truth Table

$\overline{\mathbf{C S}}$	$\overline{\text { WE }}$	DI	Output	Function
H	X	X	L	Not selected
L	L (Note 2)	L	L	Write 0
L	L (Note 2)	H	L	Write 1
L	H (Note 2)	X	Dout	Read

Notes:

(1) $X=$ don't care.
(2) Both $\overline{W E}_{1}$ and $\overline{W E}_{2}$ must be low to initiate write operation. For read operation, either $\overline{W E}_{1}$ or $\overline{W E}_{2}$ or both must be high.

Block Diagram

μ PB10484A

DC Characteristics

$T_{A}=0$ to $+75^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$; output load $=50 \Omega$ to $-2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=0 \mathrm{~V}$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Output voltage, high	V_{OH}	-1000		-840	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IH }} \max$ or $\mathrm{V}_{\mathrm{IL}} \min ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$
		-960		-810	mV	$V_{\text {IN }}=V_{\text {IH }}$ max or $V_{I L}$ min; $T_{A}=25^{\circ} \mathrm{C}$
		-900		-720	mV	$V_{\text {IN }}=V_{\text {IH }}$ max or $V_{\text {IL }}$ min; $T_{A}=75^{\circ} \mathrm{C}$
Output voltage, low	V_{OL}	-1870		-1665	mV	$V_{\mathbb{I N}}=\mathrm{V}_{\text {IH }} \max$ or $V_{\text {IL }} \min ; T_{A}=0^{\circ} \mathrm{C}$
		-1850		-1650	mV	$V_{I N}=V_{I H}$ max or $V_{I L} \min ; T_{A}=25^{\circ} \mathrm{C}$
		-1830		-1625	mV	$\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{IH}}$ max or $\mathrm{V}_{\mathrm{IL}} \min ; \mathrm{T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$
Output threshold voltage, high	$\mathrm{V}_{\mathrm{OHC}}$	-1020			mV	$V_{\mathbb{I N}}=V_{\text {IH }}$ min or $V_{I L}$ max; $T_{A}=0^{\circ} \mathrm{C}$
		-980			mV	$V_{\mathbb{I N}}=V_{V_{H}} \min$ or $V_{\mathbb{I L}}$ max; $T_{A}=25^{\circ} \mathrm{C}$
		-920			mV	$V_{\mathbb{I N}}=V_{\mathbb{I}}$ min or $V_{\mathbb{I L}} \max ; T_{A}=75^{\circ} \mathrm{C}$
Output threshold voltage, low	Volc			-1645	mV	$V_{\mathbb{I}}=V_{I H} \min$ or $V_{I L} \max ; T_{A}=0^{\circ} \mathrm{C}$
				-1630	mV	$V_{\mathbb{I N}}=V_{\mathbb{I H}} \min$ or V_{IL} max; $T_{A}=25{ }^{\circ} \mathrm{C}$
				-1605	mV	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IH}}$ min or V_{IL} max; $\mathrm{T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$
Input voltage, high	$V_{\text {IH }}$	-1145		-840	mV	For all inputs: $T_{A}=0^{\circ} \mathrm{C}$
		-1105		-810	mV	For all inputs: $T_{A}=25^{\circ} \mathrm{C}$
		-1045		-720	mV	For all inputs: $T_{A}=75^{\circ} \mathrm{C}$
input voltage, low	$V_{\text {IL }}$	-1870		-1490	mV	For all inputs: $T_{A}=0^{\circ} \mathrm{C}$
		-1850		-1475	mV	For all inputs: $T_{A}=25^{\circ} \mathrm{C}$
		-1830		-1450	mV	For all inputs: $T_{A}=75^{\circ} \mathrm{C}$
Input current, high	$\mathrm{liH}^{\text {H }}$			220	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathbb{H}}$ max
Input current, low	IIL	0.5		170	$\mu \mathrm{A}$	For CS: $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ min
		-50			$\mu \mathrm{A}$	For all others: $\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{IL}}$ min
Supply current	$l_{\text {EE }}$	-260			mA	For μ PB10484A-5: all inputs and outputs open
		-240			mA	For μ PB10484A-7: all inputs and outputs open

Notes:

(1) The device under test is mounted in a test socket and measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.

AC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%$; output load $=50 \mathrm{Q}$ to $-2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=0 \mathrm{~V}$

Parameter	Symbol	$\mu \mathrm{PB} 10484 \mathrm{~A}-5$			$\mu \mathrm{PB} 10484 \mathrm{~A} 7$			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max		
Read Operation									
Address access time	$t_{\text {AA }}$			5			7	ns	
Chip select recovery time	$t_{\text {tres }}$			3.5			4	ns	
Chip select access time	$t_{\text {Acs }}$			3.5			4	ns	

Write Operation

Write pulse width	t_{W}	6	8	n	
Data setup time	$t_{\text {WSD }}$	1	1	ns	
Data hold time	$\mathrm{t}_{\text {WHD }}$	2	2	ns	
Address setup time	$\mathrm{t}_{\text {WSA }}$	1	1	ns	
Address hold time	$\mathrm{t}_{\text {WHA }}$	2	2	ns	
Chip select setup time	$\mathrm{t}_{\text {WSCS }}$	1	1	ns	
Chip select hold time	$\mathrm{t}_{\text {WHCS }}$	2	2	ns	
Write disable time	$\mathrm{t}_{\text {WS }}$		3.5		5
Write recovery time	$\mathrm{t}_{\text {WR }}$		7	ns	

Output Rise and Fall Times

Output rise time	t_{R}	2	2	ns
Output fall time	t_{F}	2	2	$n s$

Notes:

(1) The device under test is mounted in a test socket and measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.
(2) Input pulse levels $=-1.7$ to -0.9 V ; input rise and fall times (measured between 20% and 80% or 80% and 20%) $=2.5 \mathrm{~ns}$; input and output timing reference level $=50 \%$.

Figure 1. Loading Conditions Test Circuit

Figure 2. Input Pulse

Note:
[1] $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}$ (typ).

Timing Waveforms

Chip Select Access Cycle
$\overline{\mathrm{CS}}$

Note:
[1] Address is valid more than 2 ns prior to the low transition of $\overline{\mathrm{CS}}$.

Address Access Cycle

Write Cycle

Description

The $\mu \mathrm{PB} 10 \mathrm{~A} 484$ is a very high-speed 10 K interface ECL RAM organized as 4,096 words by 4 bits with noninverted, open-emitter outputs. Two versions with access times of 5 ns and 7 ns maximum are available. The μ PB10A484 is packaged in a hermetic, 400 -mil, 28 -pin cerdip or 28 -pin ceramic flatpack.

Features

- 4,096-word x 4-bit organization
- 10K ECL interface
- Noninverted, open-emitter outputs

ㅁast access times of 5 and 7 ns maximum

- 400-mil, 28-pin cerdip or ceramic flatpack packaging
- Center power pins

Ordering Information

Part Number	Access Time (max)	Package
μ PB10A484D-5	5 ns	28 -pin cerdip
D-7	7 ns	
MPB10A484BH-5	5 ns	28-pin ceramic flatpack
BH-7	7 ns	

Pin Configurations

28-Pin Cerdip

28-Pin Ceramic Flatpack

Pin Identification

Symbol	Function
$\mathrm{A}_{0}-\mathrm{A}_{11}$	Address inputs
$\mathrm{DI}_{1}-\mathrm{DI}_{4}$	Data inputs
$\mathrm{DO}_{1}-\mathrm{DO}_{4}$	Data outputs
$\overline{\mathrm{WE}}$	Write enable (active low)
CS	Chip select (active low)
V_{CC}	Power supply (current switches and bias driver)
$\mathrm{V}_{\mathrm{CCA}}$	Power supply (output devices)
VEE	-5.2 -volt power supply
NC	No connection

Capacitance

$f=1 \mathrm{MHz}$

Parameter	Symbol	Min	Typ	Max	Unlt
Input capacitance	$\mathrm{C}_{\mathbb{N}}$		4		pF
Output capacitance	$\mathrm{C}_{\text {OUT }}$		6		pF

Absolute Maximum Ratings

$V_{C C}=V_{C C A}=0 V$

Supply voltage, $\mathrm{V}_{\text {EE }}$	-7.0 to +0.5 V
Input voltage, V_{IN}	$\mathrm{V}_{\text {EE }}$ to +0.5 V
Output current, louT	-30 to +0.1 mA
Storage temperature, $\mathrm{T}_{\text {STG }}$	-65 to $+150^{\circ} \mathrm{C}$
Storage temperature under bias, TSTG (blas)	-55 to $+125^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Truth Table

Function	$\overline{\mathbf{C S}}$	$\overline{\text { WE }}$	DiN	Output
Not selected	H	X	X	L
Write 0	L	L	L	L
Write 1	L	L	H	L
Read	L	H	X	DOUT

Notes:
(1) $X=$ don't care.

Block Dlagram

DC Characteristics

$T_{A}=0$ to $+75^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$; output load $=500$ to $-2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=0 \mathrm{~V}$

Parameter	Symbol	Min	Typ	Max	Unit	Test Condlitons
Output voltage, high	V_{OH}	-1000		-840	mV	$\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\text {IH }} \max$ or $\mathrm{V}_{\mathrm{IL}} \min ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$
		-960		-810	mV	$V_{I N}=V_{I H}$ max or $V_{I L} \min ; T_{A}=25^{\circ} \mathrm{C}$
		-900		-720	mV	$V_{\mathbb{I N}}=V_{1 H}$ max or $V_{\mathbb{I L}} \min ; T_{A}=75^{\circ} \mathrm{C}$
Output voltage, low	VOL	-1870		-1665	mV	$V_{\text {IN }}=V_{\text {IH }}$ max or $V_{\text {IL }} \min ; T_{A}=0^{\circ} \mathrm{C}$
		-1850		-1650	mV	$V_{\mathbb{I N}}=V_{\text {IH }}$ max or $V_{\text {IL }}$ min; $T_{A}=25^{\circ} \mathrm{C}$
		-1830		-1625	mV	$V_{\text {IN }}=V_{\text {IH }}$ max or $V_{\text {IL }} \min ; T_{A}=75^{\circ} \mathrm{C}$
Output threshold voltage, high	$\mathrm{V}_{\mathrm{OHC}}$	-1020			mV	$V_{\mathbb{I N}}=V_{I H}$ min or $V_{I L}$ max; $T_{A}=0^{\circ} \mathrm{C}$
		-980			mV	$V_{\mathbb{I N}}=V_{1 H}$ min or $V_{I L}$ max; $T_{A}=25^{\circ} \mathrm{C}$
		-920			mV	$V_{I N}=V_{I H}$ min or $V_{I L}$ max; $T_{A}=75^{\circ} \mathrm{C}$
Output threshold voltage, low	VoLC			-1645	mV	$V_{\mathbb{I}}=V_{\mathbb{H}}$ min or $V_{\text {IL }}$ max; $T_{A}=0^{\circ} \mathrm{C}$
				-1630	mV	$V_{\mathbb{I N}}=V_{\text {IH }}$ min or $V_{I L}$ max; $T_{A}=25^{\circ} \mathrm{C}$
				-1605	mV	$V_{I N}=V_{I H}$ min or $V_{\text {IL }}$ max; $T_{A}=75^{\circ} \mathrm{C}$
Input voltage, high	V_{H}	-1145		-840	mV	For all inputs: $T_{A}=0^{\circ} \mathrm{C}$
		-1105		-810	mV	For all inputs: $T_{A}=25^{\circ} \mathrm{C}$
		-1045		-720	mV	For all inputs: $T_{A}=75^{\circ} \mathrm{C}$
Input voltage, low	$\mathrm{V}_{\text {IL }}$	-1870		-1490	mV	For all inputs: $T_{A}=0^{\circ} \mathrm{C}$
		-1850		-1475	mV	For all inputs: $T_{A}=25^{\circ} \mathrm{C}$
		-1830		-1450	mV	For all inputs: $T_{A}=75^{\circ} \mathrm{C}$
Input current, high	IIH			220	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{iN}}=\mathrm{V}_{\mathrm{IH}}$ max
Input current, low	IIL	0.5		170	$\mu \mathrm{A}$	For CS: $V_{\text {IN }}=V_{\text {IL }}$ min
		-50			$\mu \mathrm{A}$	For all others: $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ min
Supply current	$\mathrm{IEE}^{\text {e }}$	320			mA	All inputs and outputs open

Notes:

(1) The device under test is mounted in a test socket and measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.

AC Characteristics

$T_{A}=0$ to $+75^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%$; output load $=50 \mathrm{Q}$ to $-2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=0 \mathrm{~V}$

Parameter	Symbol	$\mu \mathrm{PB} 104484-5$			$\mu \mathrm{PB10A484-7}$			Unit	Tost Conditions
		Min	Typ	Max	Min	Typ	Max		
Read Operation									
Address access time	$t_{\text {AA }}$			5			7	ns	
Chip select recovery time	$t_{\text {RCS }}$			3.5			4	ns	
Chip select access time	$t_{\text {Acs }}$			3.5			4	ns	
Write Operation									
Write pulse width	t_{w}	6			8			ns	
Data setup time	$t_{\text {WSD }}$	1			1			ns	
Data hold time	${ }_{\text {W WHD }}$	2			2			ns	
Address setup time	$t_{\text {WSA }}$	1			1			ns	
Address hold time	${ }^{\text {W WHA }}$	2			2			ns	
Chip select setup time	${ }^{\text {twscs }}$	1			1			ns	
Chip select hold time	${ }^{\text {twhes }}$	2			2			ns	
Write disable time	$t_{\text {ws }}$			3.5			5	ns	
Write recovery time	${ }^{\text {twR }}$			7			9	ns	

Output Rise and Fall Times

Output rise time	t_{R}	2	2	ns
Output fall time	t_{F}	2	2	ns

Notes:

(1) The device under test is mounted in a test socket and measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.
(2) Input pulse levels $=-1.7$ to -0.9 V ; input rise and fall times (measured between 20% and 80% or 80% and 20%) $=2.5 \mathrm{~ns}$; input and output timing reference level $=50 \%$.

Figure 1. Loading Conditions Test Circuit

Figure 2. Input Pulse

Note:
$[1] \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}$ (typ).

Timing Waveforms

Chip Select Access Cycle

Address Access Cycle

Write Cycle

Description

The μ PD10500 is a very high-speed BiCMOS RAM with a 10 K ECL interface. Its unique design uses blended CMOS and bipolar peripheral circuits and N -channel MOS memory cells. The device is organized as 262,144 words by 1 bit and is designed with an open-emitter output (noninverted) and low power consumption. Two versions with fast access times of 15 and 20 ns maximum are available in hermetic, 300 -mil, 24 -pin cerdip packaging.

Features

- BiCMOS technology
- 262,144-word x 1-bit organization
- 10K ECL interface
- Open-emitter output (noninverted)
- Fast access times
- Low power consumption

ㅁ 300 -mil, 24 -pin cerdip packaging
Ordering Information

	Access Part Number	Power Time (max)	Consumption (max)

Pin Configuration

24-Pin Cerdip

25k

Pin Identification

Symbol	Function
$A_{0} \cdot A_{17}$	Address inputs
$D I$	Data input
$\overline{D O}$	Data output
$\overline{\overline{C S}}$	Chip select
$\overline{\text { WE }}$	Write enable
$V_{C C}, V_{C C A}$	Ground
$V_{E E}$	-5.2 -volt power supply

Absolute Maximum Ratings

Supply voltage, V_{EE}	-7.0 to +0.5 V
Input voltage, $\mathrm{V}_{\mathbb{N}}$	V_{EE} to +0.5 V
Output current, IOUT	-30 to +0.1 mA
Storage temperature, $\mathrm{T}_{\mathrm{STG}}$	-65 to $+150^{\circ} \mathrm{C}$
Storage temperature under bias, $\mathrm{T}_{\text {STG }}$ (bias)	-55 to $+125^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Truth Table

$\mathbf{C S}$	$\overline{\text { WE }}$	Dl	Functlon	Output
H	X	X	Not selected	L
L	L	L	Write O	L
L	L	H	Write 1	L
L	H	X	Read	Dout

Notes:

(1) $X=$ don't care.

Capacitance

$\mathrm{f}=1 \mathrm{MHz}$

Parameter	Symbol	Min	Typ	Max	Unit
Input capacitance	C_{N}	4		pF	
Output capacitance	COUT	6	pF		

Block Diagram

DC Characteristics

$T_{A}=0$ to $+75^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%$; output load $=50 \mathrm{O}$ to $-2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=0 \mathrm{~V}$

Parameter	Symbol	Min	Typ	Max	Unit	Test Condlitons
Output voltage, high	V_{OH}	-1000		-840	mV	$\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathbb{I H}}$ max or $\mathrm{V}_{\mathrm{IL}} \min ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$
		-960		-810	mV	$\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathrm{IH}}$ max or V_{IL} min; $T_{A}=25^{\circ} \mathrm{C}$
		-900		-720	mV	$\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathrm{IH}}$ max or $\mathrm{V}_{\mathbb{I L}} \min ; \mathrm{T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$
Output voltage, low	VoL	-1870		-1665	mV	$\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathbb{I}}$ max or $\mathrm{V}_{\mathbb{I L}} \min ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$
		-1850		-1650	mV	$V_{\mathbb{I N}}=V_{I H}$ max or $V_{\mathbb{I L}} \min ; T_{A}=25^{\circ} \mathrm{C}$
		-1830		-1625	mV	$V_{\mathbb{I N}}=V_{1 H} \max$ or $V_{\mathbb{I L}} \min ; T_{A}=75^{\circ} \mathrm{C}$
Output threshold voltage, high	$\mathrm{V}_{\mathrm{OHC}}$	-1020			mV	$V_{\mathbb{I N}}=V_{I H} \min$ or $V_{I L} \max ; T_{A}=0^{\circ} \mathrm{C}$
		-980			mV	$V_{I N}=V_{I H} \min$ or $V_{I L} \max ; T_{A}=25^{\circ} \mathrm{C}$
		-920			mV	$V_{\mathbb{N}}=V_{1 H}$ min or $V_{I L}$ max; $T_{A}=75^{\circ} \mathrm{C}$
Output threshold voltage, low	VoLC			-1645	mV	$V_{\mathbb{N}}=V_{1 H} \min$ or $V_{1 L}$ max; $T_{A}=0^{\circ} \mathrm{C}$
				-1630	mV	$V_{\mathbb{N}}=V_{I H} \min$ or $V_{I L}$ max; $T_{A}=25^{\circ} \mathrm{C}$
				-1605	mV	$V_{\mathbb{N}}=V_{I H} \min$ or $V_{I L} \max ; T_{A}=75^{\circ} \mathrm{C}$
Input voltage, high	V_{IH}	-1145		-840	mV	For all inputs: $T_{A}=0^{\circ} \mathrm{C}$
		-1105		-810	mV	For all inputs: $T_{A}=25^{\circ} \mathrm{C}$
		-1045		-720	mV	For all inputs: $T_{A}=75^{\circ} \mathrm{C}$
Input voltage, low	VIL	-1870		-1490	mV	For all inputs: $T_{A}=0^{\circ} \mathrm{C}$
		-1850		-1475	mV	For all inputs: $T_{A}=25^{\circ} \mathrm{C}$
		-1830		-1450	mV	For all inputs: $T_{A}=75^{\circ} \mathrm{C}$
Input current, high	$\mathrm{IIH}^{\text {H }}$			220	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathbb{H}}$ max
Input current, low	I_{1}	0.5		170	$\mu \mathrm{A}$	For CS: $\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathrm{IL}}$ min
		-50			$\mu \mathrm{A}$	For all others: $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ min
Supply current	$l_{\text {EE }}$	-160			mA	All inputs and outputs open

Notes:

(1) The device under test is mounted in a test socket and measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.

AC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+75^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%$

Parameter	Symbol	μ PD10500-15			μ PD10500-20			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max		
Read Operation									
Address access time	$t_{\text {AA }}$			15			20	ns	
Chip select access time	$t_{\text {ACS }}$			10			15	ns	
Chip select recovery time	$t_{\text {R }}$			10			15	ns	
Write Operation									
Write pulse width	${ }_{\text {W }}$ W	10			15			ns	
Data setup time	twsd	2			2			ns	
Data hold time	$t_{\text {WHD }}$	3			3			ns	
Address setup time	${ }^{\text {t }}$ WSA	2			2			ns	
Address hold time	$t_{\text {WHA }}$	3			3			ns	
Chip select setup time	$t_{\text {wscs }}$	2			2			ns	
Chip select hold time	${ }^{\text {twhes }}$	3			3			ns	
Write disable time	tws			10			15	ns	
Write recovery time	$t_{\text {WR }}$			18			23	ns	

Output Rise and Fall Times

| Rise time | t_{R} | 2 | 2 | $n-1$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Fall time | t_{F} | 2 | 2 | $n s$ |

Notes:

(1) The device under test (DUT) is mounted in a test socket and is measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.
(2) Input pulse levels $=-1.7$ to -0.9 V ; input rise and fall times (measured between 20% and 80% or 80% and 20%) $=2.5 \mathrm{~ns}$; input and output timing reference levels $=50 \%$.

Figure 1. Loading Conditions Test Circuit

Figure 2. Input Pulse

Note:
[1] ${ }^{\mathrm{R}} \mathrm{R}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}$ (typ).

Timing Waveforms

Chip Select Access Cycle

Note:
[1] Address is valid more than 2 ns prior to the low transition of $\overline{\mathrm{CS}}$.
$831 \mathrm{H}-6164 \mathrm{~B}$

Address Access Cycle

Write Cycle

Application Notes
package Drawings

Section 26
ECL RAMs (100K Interface)
$\mu \mathrm{PB}$
100422
100470

Upcoming Products ($101 / 100 \mathrm{~K}$ Interface)

Description	Device Number	Comments
$16 \mathrm{~K} \times 4$	μ PD101/100494	$\mathrm{T}_{\text {AA }}=6,7 \mathrm{~ns} ; 28$-pin PDIP/PFP
$16 \mathrm{~K} \times 4$	$\mu \mathrm{PD101/100494LL}$	Tcycle $=10,12 \mathrm{~ns} ; 32$-pin PDIP/PFP
$32 \mathrm{~K} \times 9$	$\mu \mathrm{PD101/100509}$	Tcycle $=6$, TDQ $=3$; registered I/O, scannable; 52-pin PLCC
$64 \mathrm{~K} \times 4$	$\mu \mathrm{PD101} / 100504$	$\mathrm{~T}_{A A}=8,10 \mathrm{~ns} ; 32$-pin PDIP/PFP

Description

The $\mu \mathrm{PB} 100422$ is a very high-speed 100 K interface ECL RAM organized as 256 words by 4 bits and designed with noninverted, open-emitter outputs and low power consumption. Two versions with fast access times of 7 or 10 ns maximum are available in 24-pin ceramic DIP or ceramic flatpack packaging.

Features

- 256-word x 4-bit organization
- 100 K ECL interface
- Noninverted, open-emitter outputs
- Fast access times
- Low power consumption
- 400-mil, 24-pin ceramic DIP or 24-pin ceramic flatpack packaging

Ordering Information

	Access Time (max)	Supply Current (min)	Package
$\mu \mathrm{PB} 100422 \mathrm{D}-7$	7 ns	-220 mA	24 -pin ceramic DIP
$\mathrm{D}-10$	10 ns		
$\mu \mathrm{~PB} 100422 \mathrm{~B}-7$	7 ns	-220 mA	24-pin ceramic flatpack
$\mathrm{B}-10$	10 ns		

Pin Configurations

24-Pin Ceramic DIP

	$\mathrm{Dl}_{4} \square_{1}$ 24 CDI_{3}
	$\overline{B S}_{3} \square^{2} \quad 23 \square \mathrm{~A}_{4}$
	$\mathrm{DO}_{3} \square^{3} \quad 22 \square \mathrm{~A}_{3}$
	$\overline{\mathrm{BS}}_{4} \square 4 \quad 21 \square \mathrm{~A}_{2}$
	$\mathrm{DO}_{4} \square^{5}$ N \% 20 - A_{1}
	$V_{C C} \mathrm{H}_{6}^{6}$ ○ ${ }^{\text {¢ }}$ 19 A_{0}
	$V_{C C A} \square^{7}$ 吕 $18 \mathrm{~V}_{\mathrm{EE}}$
	$\mathrm{DO}_{1} \square^{8} \quad$ - 17 CA_{7}
	$\overline{B S}_{1} \square^{9}$ 16ص A_{6}
	DO_{2}-10 ${ }^{15} \mathrm{~A}_{5}$
	$\overline{\mathrm{BS}}_{2}$ प11 14 ${ }^{11}$ WE
	DI_{1}-12 ${ }_{12}{ }^{\text {12 }} \mathrm{Dl}_{2}$
	8314-5951A

$26 a$

24-Pin Ceramic Flatpack

Pin Identification

Symbol	Function
$A_{0}-A_{7}$	Addresses
$\overline{\overline{S S}_{1}-\overline{B S}_{4}}$	Block select Inputs
$\mathrm{DI}_{1}-\mathrm{DI}_{4}$	Data inputs
$D O_{1}-\mathrm{DO}_{4}$	Data outputs
$\overline{W E}$	Write enable
$V_{C C}$	Power supply (current switches and blas driver)
$V_{C C A}$	Power supply (output devices)
$V_{E E}$	Power supply

Capacitance					
Parameter	Symbol	Min	Typ	Max	Unit
Input capacitance	$\mathrm{C}_{\mathbb{N}}$		4		pF
Output capacitance	$\mathrm{C}_{\text {OUT }}$		5		pF

Absolute Maximum Ratings

Supply voltage, V_{EE} to V_{CC}	-7.0 to +0.5 V
Input voltage, V_{IN}	V_{EE} to +0.5 V
Output current, IOUT	-30 to +0.1 mA
Storage temperature, $\mathrm{T}_{\text {STG }}$	-65 to $+150^{\circ} \mathrm{C}$
Storage temperature, under blas, $\mathrm{T}_{\text {STG }}$ (blas)	-55 to $+125^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliablity; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Truth Table

$\overline{\text { BS }}$	$\overline{\text { WE }}$	DI	DO	Function
H	X	X	L	Not Selected
L	L	L	L	Write "0"
L	L	H	L	Write "1"
L	H	X	Data Valid	Read

Notes:

(1) The Block Select input for each of the four memory blocks is used independently as shown in the block diagram.

Block Diagram

DC Characteristics

$T_{A}=0$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$; output load $=50 \Omega$ to -2.0 V

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Output voltage, high	V_{OH}	-1025		-880	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ max or V_{IL} min
Output voltage, low	V_{OL}	-1810		-1620	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \max$ or V_{IL} min
Output threshold voltage, high	$\mathrm{V}_{\mathrm{OHC}}$	-1035			mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \min$ or V_{IL} max
Output threshold voltage, low	$V_{\text {OLC }}$			-1610	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ min or $\mathrm{V}_{\text {IL }}$ max
Input voltage, high	$\mathrm{V}_{1 \mathrm{H}}$	-1165		-880	mV	For all inputs
Input voltage, low	$\mathrm{V}_{\text {IL }}$	-1810		-1475	mV	For all inputs
Input current, high	IIH			220	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbb{I}}=\mathrm{V}_{\mathbb{I H}}$ max
Input current, low	I_{LL}	0.5		170	$\mu \mathrm{A}$	For $\overline{B S}_{1}-\overline{B S}_{4}: \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ min
		-50			$\mu \mathrm{A}$	For all others: $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ min
Supply current	I_{EE}	-220			mA	All inputs and outputs open

Notes:

(1) Device under test is mounted in a test socket and measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.

AC Characteristics

$T_{\mathrm{A}}=0$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} \pm 5 \%$

		μ PB100422-7			μ PB100422-10			Unit	Test Conditions
Parameter	Symbol	Min	Typ	Max	Min	Typ	Max		

Read Operation				
Block select access time	$t_{\text {ABS }}$	5	5	ns
Block select recovery time	$\mathrm{t}_{\mathrm{ABS}}$	5	5	ns
Address access time	t_{AA}	7	10	ns

Write Operation

Output Rise and Fall Times

Output rise time	t_{R}	2	2	$n s$
Output fall time	t_{F}	2	2	ns

Notes:

(1) Device under test is mounted in a test socket and measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.
(2) All timing measurements are referenced to 50% input levels.
(3) The output load is shown in figure 1.
(4) Input transition times are shown in figure 2.

Figure 1. Loading Conditions Test Circuit

Figure 2. Input Pulse

Note:
[1] $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}$ (typ).

Timing Waveforms

Chip Select Access

Note:
[1] Address is valid more than 2 ns prior to the low transition of $\overline{\mathrm{BS}}$.

Address Access Cycle

Write Cycle

Description

The μ PB100470 is a very high-speed 100 K interface ECL RAM with full voltage and temperature compensation. The device is organized as 4 K words by 1 bit, and is designed with an open emitter output (noninverted) for low power consumption. Two fast access time versions are available: 10 ns maximum and 15 ns maximum. The μ PB100470 is available in a hermetic, 300 -mil, 18 -pin cerdip.

Features

- 4,096-word $\times 1$-bit organization
- 100K ECL interface with full voltage and temperature compensation
- Open emitter output (noninverted)
- Fast access times
- Low power consumption
- 300-mil, 18 -pin cerdip packaging

Ordering Information

Part Number	Access Time (max)	Package
μ PB100470D-10	10 ns	18-pin cerdip
D-15	15 ns	

Pin Configuration

18-Pin Cerdip

Pin Identification

Symbol	Function
$A_{0}-A_{11}$	Address inputs
$D_{I N}$	Data input
$D_{\text {OUT }}$	Data output
$\overline{C S}$	Chip select
$\overline{W E}$	Write enable
V_{CC}	Ground
$V_{E E}$	-4.5 -volt power supply

Absolute Maximum Ratings	
Supply voltage, V_{EE} to V_{CC}	-7.0 to +0.5 V
Input voltage, V_{IN}	V_{EE} to +0.5 V
Output current, IOUT	-30 to +0.1 mA
Storage temperature, $\mathrm{T}_{\text {STG }}$	-65 to $+150^{\circ} \mathrm{C}$
Storage temperature under bias, TSTG (bias)	-55 to $+125^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Truth Table					
$\mathbf{C S}$	$\overline{\text { WE }}$	DIN	Function	Output	
H	X	X	Not selected	L	
L	L	L	Write O	L	
L	L	H	Write 1	L	
L	H	X	Read	DouT	

Notes:
(1) $X=$ don't care.

Capacitance

Parameter	Symbol	Min	Typ	Max	Unit
Input capacitance	C_{IN}		4		pF
Output capacitance	$\mathrm{C}_{\mathrm{OUT}}$		5		pF

Block Diagram

DC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$; output load $=500$ to -2.0 V

Parameter	Symbol	Min	Max	Unit	Test Conditions
Output voltage, high	V_{OH}	-1025	-880	mV	$\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathrm{IH}}(\max)$ or $\mathrm{V}_{\mathrm{IL}}(\min)$
Output voltage, low	V_{OL}	-1810	-1620	mV	
Output threshold voltage, high	$\mathrm{V}_{\mathrm{OHC}}$	-1035		mV	$\mathrm{V}_{\mathbb{I}}=\mathrm{V}_{\mathbb{I H}}(\min)$ or $\mathrm{V}_{\mathrm{IL}}(\max)$
Output threshold voltage, low	$\mathrm{V}_{\text {OLC }}$		-1610	mV	
input voltage, high	V_{H}	-1165	-880	mV	Guaranteed input voltage high for all inputs
Input voltage, low	V_{IL}	-1810	-1475	mV	Guaranteed input voltage low for all inputs
Input current, high	I_{I}		220	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathbb{I}}($ max $)$
Input current, low	ILL	0.5	170	$\mu \mathrm{A}$	For $\overline{C S}$: $\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{min})$
		-50		$\mu \mathrm{A}$	For all others: $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{min})$
Supply current	$l_{\text {EE }}$	-220		mA	All inputs and outputs open

Notes:

(1) The device under test (DUT) is mounted in a test socket and is measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.

AC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} \pm 5 \%$

Parameter	Symbol	μ PB 100470-10			$\mu \mathrm{PB} 100470-15$			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max		
Read Operation									
Address access time	$t_{A A}$			10			15	ns	
Chip select access time	$t_{\text {Acs }}$			6			8	ns	
Chip select recovery time	$t_{\text {RCS }}$			6			8	ns	

Write Operation

Output Rise and Fall Times

| Rise time | t_{R} | 2 | 2 | ns |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Fall time | t_{F} | 2 | 2 | ns |

Notes:

(1) The device under test (DUT) is mounted in a test socket and is measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.

Figure 1. Loading Conditions Test Circuit

Figure 2. Input Pulse

Note:
[1] $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2 \mathrm{~ns}$ (typ).

Timing Waveforms

Chip Select Access Cycle

Address Access Cycle

Write Cycle

\qquad

Description

NEC's μ PB100474 is a very high-speed 100 K interface ECL RAM organized as 1,024 words by 4 bits and designed with open-emitter, noninverted outputs. It is available in a 24 -pin cerdip, 24 -pin ceramic LCC, or 24-pin ceramic flatpack package.

Features

- 1024-word by 4-bit organization
- 100K interface ECL
- Full voltage and temperature compensation
- Noninverted, open emitter outputs
- Fast access times
- 24-pin cerdip, ceramic LCC, and ceramic flatpack packaging

Ordering Information

Part Number	Access Time (max)	Supply Current (min)	Package
μ PB100474B-6	6 ns	-450 mA	24-pin ceramic flatpack
B-8	8 ns	-220 mA	
B-10	10 ns		
B-15	15 ns		
$\mu \mathrm{PB100474D-8}$	8 ns	-220 mA	24-pin cerdip
D-10	10 ns		
D-15	15 ns		
$\mu \mathrm{PB100474K-4.5}$	4.5 ns	-450 mA	24-pin ceramic LCC
K-6	6 ns		

Pin Configurations

24-Pin Cerdip

24-Pin Ceramic Flatpack

24-Pin Ceramic LCC

Block Diagram

83 YL-7258B

Pin Identification

Symbol	Function
$\mathrm{A}_{0}-\mathrm{Ag}_{9}$	Addresses
$\mathrm{DI}_{1}-\mathrm{DI}_{4}$	Data inputs
$\mathrm{DO}_{1}-\mathrm{DO}_{4}$	Data outputs
$\overline{\mathrm{WE}}$	Write enable
$\overline{\mathrm{CS}}$	Chip select
V_{CC}	Power supply (current switches and bias driver)
$\mathrm{V}_{\mathrm{CCA}}$	Power supply (output devices)
V_{EE}	Power supply
NC	No connection

Capacitance

Parameter	Symbol	Min	Typ	Max	Unit
Input capacitance	$\mathrm{C}_{\mathbb{N}}$	4	pF		
Output capacitance	$\mathrm{C}_{\text {OUT }}$		5	pF	

Absolute Maximum Ratings

Supply voltage, V_{EE} to V_{CC}	-7.0 V to +0.5
Input voltage, V_{IN}	+0.5 V to V_{EE}
Output current, louT	-30 mA to +0.1
Storage temperature, $\mathrm{T}_{\mathrm{STG}}$	-65 to $+150^{\circ} \mathrm{C}$
Storage temperature under bias, $\mathrm{T}_{\text {STG }}$ (Bias)	-55 to $+125^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Truth Table

CS	$\overline{\text { WE }}$	D $_{\text {IN }}$	Output	Function
H	X	X	L	Not selected
L	L	L	L	Write O
L	L	H	L	Write 1
L	H	X	Dout	Read
Notes:				

(1) $X=$ don't care.

DC Characteristics

$T_{A}=0$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$; output load $=50 \Omega$ to -2.0 V

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Output voltage, high	V_{OH}	-1025		-880	mV	$V_{I N}=V_{I H}$ max or $V_{I L}$ min
Output voltage, low	$\mathrm{V}_{\text {OL }}$	-1810		-1620	mV	$V_{I N}=V_{I H}$ max or $V_{\text {IL }}$ min
Output threshold voltage, high	$\mathrm{V}_{\text {OHC }}$	-1035			mV	$V_{I N}=V_{I H} \min$ or $V_{I L}$ max
Output threshold voltage, low	$V_{\text {OLC }}$			-1610	mV	$V_{\text {IN }}=V_{\text {IH }}$ min or $V_{\text {IL }}$ max
Input voltage, high	$\mathrm{V}_{\text {IH }}$	-1165		-880	mV	Guaranteed input voltage high for all inputs
Input voltage, low	V_{IL}	-1810		-1475	mV	Guaranteed input voltage low for all inputs
Input current, high	I_{H}			220	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbb{I}}=\mathrm{V}_{\mathbb{I H}}$ max
input current, low	IIL	0.5		170	$\mu \mathrm{A}$	For $\overline{C S}$: $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ min
		-50			$\mu \mathrm{A}$	For all others: $\mathrm{V}_{\mathbb{I}}=\mathrm{V}_{\mathrm{IL}}$ min
Supply current	$I_{\text {EE }}$	-220			mA	$t_{A A}=8 / 10 / 15 \mathrm{~ns}$; all inputs and outputs open
		-450			mA	$t_{A A}=4.5 / 6 \mathrm{~ns}$; all inputs and outputs open (Note 2)

Notes:

(1) The device under test is mounted in a test socket and is measured at a thermal equilibrium established with a transverse air flow maintained at greater than 2.0 ms .
(2) For the μ PB100474-4.5/-6, take measures to reduce the thermal resistance and to keep the junction temperature less than $90^{\circ} \mathrm{C}$. Forced air and appropriate fins on the substrate on which the package is mounted, or on the package itself, are recommended. The thermal resistance of the junction to the case (bottom side) of an LCC or flatpack package is less than $10^{\circ} \mathrm{C} / \mathrm{N}$.

Figure 1. Loading Conditions Test Circuit

Figure 2. Input Pulse

Note: .
$t_{R}=t^{f}=2.0 \mathrm{~ns}$

AC Characteristics

$T_{A}=0$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} \pm 5 \%$

Parameter	Symbol	μ PB100474-4.5		$\mu \mathrm{PBB100474-6}$		${ }_{\mu}{ }^{\text {PPB100474-8 }}$		$\mu \mathrm{PBB100474-10}$		MPB100474-15		Unit
		Min	Max									
Read Operation												
Chip select access time	$t_{\text {ACS }}$		4		4		5		6		8	ns
Chip select recovery time	$t_{\text {RCS }}$		4		4		5		6		8	ns
Address access time	$t_{A A}$		4.5		6		8		10		15	ns

Write Operation

Write pulse width	${ }^{\text {w }}$ W	4.5		6		6		10		15		ns
Data setup time	${ }_{\text {W Ws }}$	1		1		1		2		2		ns
Data hold time	${ }_{\text {WHD }}$	1		1		1		2		2		ns
Address setup time	${ }_{\text {W }}$ WSA	1		1		1		3		3		ns
Address hold time	${ }^{\text {W WHA }}$	2		2		1		2		2		ns
Chip select setup time	twscs	1		1		1		2		2		ns
Chip select hold time	twhes	1		1		1		2		2		ns
Write disable time	tws		4		4		5		6		8	ns
Write recovery time	$t_{\text {WR }}$		4.5		6		8		10		10	ns

Notes:

(1) The device under test is mounted in a test socket and is measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{sec}$.
(2) For the μ PB100474-4.5/-6, take measures to reduce the thermal resistance and to keep the junction temperature less than $90^{\circ} \mathrm{C}$. Forced air and appropriate fins on the substrate on which the package is mounted, or on the package itself, are recommended. The thermal resistance of the junction to the case (bottom side) of an LCC or flatpack package is less than $10^{\circ} \mathrm{C} / \mathrm{W}$.
(3) See figures 1 and 2 for loading conditions and input pulse timing. For the $\mu \mathrm{PB} 100474-4.5 /-6, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$. For the $\mu \mathrm{PB} 100474-8 / 10 / 15$, $C_{L}=30 \mathrm{pF}$.
(4) Output rise and fall times $=2 \mathrm{~ns}$ (typ).

Timing Waveforms

Chip Select Access Cycle

Address Access Cycle

Address \begin{tabular}{l}
Note:

[1] $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$.
[2] $\overline{\mathrm{WE}}=\mathrm{V}_{\mathrm{IH}}$.

\end{tabular}

Timing Waveforms (cont)
Write Cycle

Description

The μ PB100474A is a very high-speed 100 K interface ECL RAM organized as 1,024 words by 4 bits and designed with noninverted, open emitter outputs and full voltage and temperature compensation. The device is packaged in a 24 -pin cerdip or ceramic flatpack.

Features

- 1,024 word by 4-bit organization
- 100 K ECL interface
- Full voltage and temperature compensation
- Open emitter outputs (noninverted)
- Fast access times
- 24-pin cerdip and flatpack packaging

Ordering Information

Part Number	Access Time (max)	Supply Current (min)	Package
μ PB100474AD-5	5 ns	-250 mA	24-pin cerdip
AD-6	6 ns		
$\mu \mathrm{PB100474ABH-5}$	5 ns	-250 mA	24-pin ceramic
ABH-6	6 ns		flatpack

Pin Configurations

24-Pin Cerdip

26d

24-Pin Ceramic Flatpack

Pin Identification

Symbol	Function
$\mathrm{A}_{0}-\mathrm{A}_{9}$	Address inputs
$\mathrm{DI}_{1}-\mathrm{DI}_{4}$	Data inputs
$\mathrm{DO}_{1}-\mathrm{DO}_{4}$	Data outputs
$\overline{\mathrm{WE}}$	Write enable
CS	Chip select
V_{CC}	Power supply (current switches and blas driver)
V_{CCA}	Power supply (output devices)
$V_{E E}$	-4.5 -volt power supply
NC	No connection

Capacitance $T_{A}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$
Parameter

Absolute Maximum Ratings

Supply voltage, V_{EE} to V_{CC}	$-\mathbf{7 . 0}$ to +0.5 V
Input voltage, V_{IN}	V_{EE} to +0.5 V
Output current, I IOUT	-30 to +0.1 mA
Storage temperature, $\mathrm{T}_{\text {STG }}$	-65 to $+150^{\circ} \mathrm{C}$
Storage temperature under bias, $\mathrm{T}_{\text {STG }}$ (Bias)	-55 to $+125^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Truth Table

Function	$\overline{\text { CS }}$	$\overline{\text { WE }}$	DIN $_{\text {IN }}$	Output
Not selected	H	X	X	L
Write 0	L	L	L	L
Write 1	L	L	H	L
Read	L	H	X	Dout

Notes:
(1) $X=$ don't care.

Block Diagram

DC Characteristics

$T_{A}=0$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$; output load $=500$ to $-2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=0 \mathrm{~V}$

Parameter	Symbol	Min	Typ	Max	Unlt	Test Conditions
Output voltage, high	V_{OH}	-1025		-880	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}($ max $)$ or $\mathrm{V}_{\mathrm{IL}}(\mathrm{min})$
Output voltage, low	V_{OL}	-1810		-1620	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}($ max $)$ or $\mathrm{V}_{\mathrm{IL}}(\min)$
Output threshold voltage, high	$\mathrm{V}_{\mathrm{OHC}}$	-1035			mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\min)$ or $\mathrm{V}_{\mathrm{IL}}(\max)$
Output threshold voltage, low	VOLC			-1610	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{min})$ or $\mathrm{V}_{\mathrm{IL}}(\max)$
Input voltage, high	V_{lH}	-1165		-880	mV	
Input voltage, low	V_{IL}	-1810		-1475	mV	
input current, high	$\mathrm{IIH}^{\text {H }}$			220	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\max)$
Input current, low	IIL	0.5		170	$\mu \mathrm{A}$	For CS: $\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{min})$
		-50			$\mu \mathrm{A}$	For all others: $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ (min)
Supply current	IEE	-250			mA	All inputs and outputs open

Notes:

(1) The device under test (DUT) is mounted in a test socket and is measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{sec}$.

AC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} \pm 5 \%$; output load $=50 \mathrm{D}$ to $-2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=0 \mathrm{~V}$

Parameter	Symbol	$\mu \mathrm{PB} 100474 \mathrm{~A}-5$			$\mu \mathrm{PB100474A-6}$			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max		
Read Operation									
Address access time	$t_{\text {AA }}$			5			6	ns	
Chip select access time	$t_{\text {ACS }}$			3			4	ns	
Chip select recovery time	$t_{\text {RCS }}$			3			4	ns	

Write Operation

Write pulse width	$\mathrm{t}_{\text {W }}$	5	6	ns	
Data setup time	$\mathrm{t}_{\text {WSD }}$	1	1	ns	
Data hold time	$\mathrm{t}_{\text {WHD }}$	1	1	ns	
Address setup time	$\mathrm{t}_{\text {WSA }}$	1	1	ns	
Address hold time	$\mathrm{t}_{\text {WHA }}$	1	1	ns	
Chip select setup time	$\mathrm{t}_{\text {WSCS }}$	1	1	ns	
Chip select hold time	$\mathrm{t}_{\text {WHCS }}$	1		1	ns
Write disable time	$\mathrm{t}_{\text {WS }}$		3		ns
Write recovery time	$\mathrm{t}_{\text {WR }}$		6		ns

Rise and Fall Times

| Output rise time | t_{R} | 2 | 2 | n |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Output fall time | t_{F} | 2 | 2 | ns |

Notes:

(1) The device under test (DUT) is mounted in a test socket and is measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{sec}$.
(2) See figures 1 and 2 for loading conditions and input pulse timing. Input pulse levels $=-1.7$ to -0.9 V ; input rise and fall times (measured between 20% and 80% or 80% and 20%) $=2 \mathrm{~ns}$; input and output timing reference levels $=50 \%$.

Figure 1. Loading Conditions Test Circuit

Figure 2. Input Pulse

Note:
[1] $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=\mathbf{2 . 5} \mathrm{ns}$ (typ).

Timing Waveforms

Chip Select Access Cycle

Note:
[1] Address is valid more than 2 ns prior to the low transition of $\overline{\mathrm{CS}}$.

Address Access Cycle

Write Cycle

Description

The $\mu \mathrm{PB} 100474 \mathrm{E}$ is a very-high-speed 100 K interface ECL RAM organized as 1024 words by 4 bits and designed with noninverted, open-emitter outputs and low power consumption.

Features

- 1024-word x 4-bit organization
- 100K ECL interface
- Noninverted, open-emitter outputs
- Fast access times
- Full voltage and temperature compensation
- 24-pin ceramic package, DIP or flatpack

Ordering Information

Part Number	Access Time (max)	Package
$\mu \mathrm{PB} 100474 \mathrm{EDH}-3$	3 ns	24-pin cerdip
$\mathrm{DH}-4$	4 ns	
$\mu \mathrm{~PB} 100474 \mathrm{EBH}-3$	3 ns	24-pin ceramic flatpack
$\mathrm{BH}-4$	4 ns	

Pin Identification

Symbol	Function
$\mathrm{A}_{0}-\mathrm{A}_{9}$	Address inputs
$\mathrm{DI}_{1}-\mathrm{DI}_{4}$	Data inputs
$\mathrm{DO}_{1}-\mathrm{DO}_{4}$	Data outputs
$\overline{\mathrm{WE}}$	Write enable input
$\overline{\mathrm{CS}}$	Chip select input
$V_{C C}$	Power supply ground (current switches and bias driver)
$V_{C C A}$	Power supply ground (output devices)
$V_{E E}$	Power supply (-5.2 volts)
$N C$	No connection

Pin Configurations

24-Pin Cerdip

24-Pin Ceramic Flatpack

Absolute Maximum Ratings

Supply voltage, V_{EE} to V_{CC}	-7.0 to +0.5 V
Input voltage, V_{IN}	V_{EE} to +0.5 V
Output current, louT	-30 to +0.1 mA
Storage temperature, $\mathrm{T}_{\text {STG }}$	-65 to $+150^{\circ} \mathrm{C}$
Storage temperature under bias, $\mathrm{T}_{\text {STG }}$ (bias)	-55 to $+125^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Capacitance
$\mathrm{f}=1 \mathrm{MHz}$

Parameter	Symbol	Min	Typ	Max	Unit
Input capacitance	$\mathrm{C}_{\text {IN }}$		4		pF
Output capacitance	$\mathrm{C}_{\text {OUT }}$		5		pF

Truth Table

$\overline{\text { CS }}$	WE	DIN $^{\prime}$	Output	Mode
H	X	X	L	Not selected
L	L	L	L	Write 0
L	L	H	L	Write 1
L	H	X	DOUT	Read
X $=$ don't care				

Block Diagram

DC Characteristics

$T_{A}=0$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{C C}=\mathrm{V}_{C C A}=0 \mathrm{~V} ; \mathrm{V}_{E E}=-4.5 \mathrm{~V}$; output load $=50 \Omega$ to -2.0 V

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Output voltage, high	V_{OH}	-1025		-880	mV	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ max or $\mathrm{V}_{\text {IL }} \mathrm{min}$;
Output voltage, low	$\mathrm{V}_{\text {OL }}$	-1810		-1620	mV	$V_{I N}=V_{\text {IH }}$ max or $V_{\text {IL }}$ min;
Output threshold voltage, high	$\mathrm{V}_{\mathrm{OHC}}$	-1035			mV	$V_{\text {IN }}=V_{\text {IH }}$ min or $V_{\text {IL }}$ max;
Output threshold voltage, low	$V_{\text {OLC }}$			-1610	mV	$V_{I N}=V_{\text {IH }}$ min or $V_{\text {IL }}$ max;
Input voltage, high	$\mathrm{V}_{\text {IH }}$	-1165		-880	mV	For all inputs: $T_{A}=0^{\circ} \mathrm{C}$
Input voltage, low	$V_{\text {IL }}$	-1810		-1475	mV	For all inputs: $T_{A}=0^{\circ} \mathrm{C}$
Input current, high	IIH			220	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ max
Input current, low	IIL	0.5		170	$\mu \mathrm{A}$	For $\overline{C S}: V_{\text {IN }}=V_{\text {IL }}$ min
		-50			$\mu \mathrm{A}$	For all others: $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ min
Supply current	l_{EE}	-330			mA	All inputs and outputs open

Notes:

(1) The device under test is mounted in a test socket and measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.

AC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} \pm 5 \%$; output load $=50 \Omega$ to -2.0 V

Parameter	Symbol	$\mu \mathrm{PB} 100474 \mathrm{E}-3$			$\mu \mathrm{PB} 100474 \mathrm{E}-4$			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max		
Read Operation									
Address access time	$t_{\text {AA }}$			3			4	ns	
Chip select access time	$t_{\text {ACS }}$			2			3	ns	
Chip select recovery time	$t_{\text {RCS }}$			2			3	ns	
Write Operation									
Write pulse width	t_{W}	5			6			ns	
Address hold time	$t_{\text {WHA }}$	0.5			0.5			ns	
Chip select hold time	$\mathrm{t}_{\text {WHCS }}$	0.5			0.5			ns	
Data hold time	${ }^{\text {t }}$ WHD	0.5			0.5			ns	
Write recovery time	${ }^{\text {t }}$ WR			4			5	ns	
Write disable time	${ }^{\text {tws }}$			2			3	ns	
Address setup time	${ }^{\text {t WSA }}$	0.5			0.5			ns	
Chip select setup time	twscs	0.5			0.5			ns	
Data setup time	${ }^{\text {t WSD }}$	0.5			0.5			ns	

Notes:

(1) The device under test is mounted in a test socket and measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.
(2) See figure 1 for loading conditions and input pulse shape.

Figure 1. Test Circuit

Timing Waveforms

Chip Select Access Cycle

$26 e$

Address Access Cycle

Timing Waveforms (cont)
Write Cycle

Preliminary Information

Description

The μ PB100476LL is a very-high-speed 100 K interface ECL RAM organized as 1024 words by 4 bits and designed with noninverted, open-emitter outputs and low power consumption.

The device integrates input latches, high-speed ECL RAM, output latches, and a write pulse generator. The synchronous design allows precise cycle control by use of an internal clock.

Features

- 1024-word x 4-bit organization
- 100K ECL interface
- High-speed clock cycle: 6 ns
- Latched I/O
- Self-timed write
- 28-pin ceramic package, DIP or flatpack

Ordering Information

Part Number	Access Time (max)	Package
μ PB100476LLDH-6	6 ns	28-pin cerdip
$\mathrm{BH}-6$	6 ns	28 -pin ceramic flatpack

Pin Identification

Symbol	Function
$\mathrm{A}_{0}-\mathrm{A}_{9}$	Address inputs
$\mathrm{DI}_{1}-\mathrm{DI}_{4}$	Data inputs
$\mathrm{DO}_{1}-\mathrm{DO}_{4}$	Data outputs
$\mathrm{CLK}, \overline{\mathrm{CLK}}$	Clock inputs
$\overline{\mathrm{CS}}$	Chip select input
$\overline{\mathrm{WE}}$	Write enable input
V_{BB}	Reference voltage output
V_{CC}	Power supply ground (current switches and bias driver)
$\mathrm{V}_{\mathrm{CCA}}$	Power supply ground (output devices)
V_{EE}	Power supply (-5.2 volts)
$N C$	No connection

Pin Configurations

28-Pin Cerdip

28-Pin Ceramic Flatpack

Block Diagram

Absolute Maximum Ratings

Supply voltage, V_{EE} to V_{CC}	-7.0 to +0.5 V
Input voltage, V_{IN}	V_{EE} to +0.5 V
Output current, louT	-30 to +0.1 mA
Storage temperature, $\mathrm{T}_{\text {STG }}$	-65 to $+150^{\circ} \mathrm{C}$
Storage temperature under bias, $\mathrm{T}_{\text {STG }}$ (bias)	-55 to $+125^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Capacitance
 $\mathrm{f}=1 \mathrm{MHz}$

Parameter	Symbol	Min	Typ	Max	Unit
Input capacitance	C_{IN}		4		pF
Output capacitanıe	$\mathrm{C}_{\text {OUT }}$		5	pF	

Truth Table

$\overline{\mathbf{C S}}$	$\overline{\text { WE }}$	DIN	Output	Mode
H	X	X	L	Not selected
L	L	L	L	Write 0
L	L	H	L	Write 1
L	H	X	Dout	Read
X $=$ don't care.				

DC Characteristics

$T_{A}=0$ to $+85^{\circ} \mathrm{C} ; V_{C C}=V_{C C A}=0 \mathrm{~V} ; V_{E E}=-4.5 \mathrm{~V}$; output load $=50 \Omega$ to -2.0 V

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Output voltage, high	V_{OH}	-1025		-880	mV	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ max or $\mathrm{V}_{\text {IL }}$ min
Output voltage, low	V_{OL}	-1810		-1620	mV	$V_{I N}=V_{I H}$ max or $V_{I L}$ min
Output threshold voltage, high	$\mathrm{V}_{\mathrm{OHC}}$	-1035			mV	$V_{\mathbb{N}}=V_{\mathbb{I H}}$ min or $V_{\mathbb{I L}}$ max
Output threshold voltage, low	$\mathrm{V}_{\text {OLC }}$			-1610	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IH }}$ min or $\mathrm{V}_{\text {IL }}$ max
Input voltage, high	V_{H}	-1165		-880	mV	Guaranteed input voltage high for all inputs
Input voltage, low	$V_{\text {IL }}$	-1810		-1475	mV	Guaranteed input voltage low for all inputs
Input current, high	$\mathrm{IIH}^{\text {H }}$			220	$\mu \mathrm{A}$	$V_{\mathbb{N}}=V_{\text {IH }}$ max
Input current, low	ILL	0.5		170	$\mu \mathrm{A}$	For $\overline{C S}: \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ min
		-50			$\mu \mathrm{A}$	For all others: $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ min
Supply current	$l_{\text {EE }}$	-350			mA	All inputs and outputs open
Reference voltage	$V_{B B}$	-1390		-1250	mV	

$26 f$

Notes:
(1) The device under test is mounted in a test socket and measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.

AC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} \pm 5 \%$; output load $=50 \Omega$ to -2.0 V

Parameter	Symbol	μ PB 100476LL-6			Unit	Test Conditions
		Min	Typ	Max		
Address access time	$t_{\text {A(Add }}{ }^{\text {a }}$			2.5	ns	$\mathrm{t}_{\text {SA }}=0.5 \mathrm{~ns}$
Clock access time	$\mathrm{t}_{\mathrm{A}(\mathrm{Clk})}$			3.3	ns	$\mathrm{twL}_{(\mathrm{Clk})}=1.5 \mathrm{~ns}$
$\overline{\mathrm{CS}}$ access time	$\mathrm{t}_{\mathrm{A}(\mathrm{CS})}$			2.3	ns	$\mathrm{t}_{\mathrm{SC}}=0.5 \mathrm{~ns}$
Data access time	$t_{\text {A(D) }}$			2.3	ns	$\mathrm{t}_{\text {SD }}=0.5 \mathrm{~ns}$
Write access time	${ }^{t}{ }_{\text {A }}{ }^{\text {M }}$			2.3	ns	$\mathrm{t}_{\text {SW }}=0.5 \mathrm{~ns}$
Clock cycle time	$t_{\text {che }}$	6			ns	
Data release time	${ }^{\text {t }}$ D	0.3		1.8	ns	$t_{W L(C I K)}>t_{A(C l k)} \max , t_{S A}>t_{A(A d d)} \max$, $t_{S C}>t_{A(C S)} \max , t_{S D}>t_{A(D I)}$ max
Address hold time	${ }^{\text {H }} \mathrm{HA}$	1			ns	
$\overline{\mathrm{CS}}$ hold time	$t_{\text {HC }}$	1			ns	
Data hold time	$t_{\text {HD }}$	1			ns	
WE hold time	$t_{\text {HW }}$	1			ns	
Address setup time	$t_{\text {SA }}$	0.5			ns	
$\overline{\mathrm{CS}}$ setup time	$t_{\text {SC }}$	0.5			ns	
Data setup time	$t_{\text {SD }}$	0.5			ns	
$\overline{\text { WE setup time }}$	${ }_{\text {t }}^{\text {SW }}$	0.5			ns	
Clock high-pulse width	${ }_{\text {t }}^{\text {WH(Clk }}$)	4.5			ns	
Clock low-pulse width	twL(Clk)	1.5			ns	

Notes:

(1) The device under test is mounted in a test socket and measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.
(2) See figure 1 for loading conditions and input pulse shape.

Figure 1. Test Circuit

Figure 2. Clock Input Modes

Timing Waveforms

Address Access, Read Mode

$26 f$

Timing Waveforms (cont)
Chip Select Access, Read Mode

Timing Waveforms (cont)

Clock Access, Read Mode

Timing Waveforms (cont)

Write Mode

Description

The $\mu \mathrm{PB} 100480$ is a very high-speed 100 K interface ECL RAM with full voltage and temperature compensation. The device is organized as 16,384 words by 1 bit and designed with noninverted, open-emitter outputs and low power consumption. Two versions with fast access times of 10 ns and 15 ns maximum are available. The $\mu \mathrm{PB} 100480$ is packaged in a hermetic, $300-\mathrm{mil}, 20$-pin cerdip or 20 -pin ceramic flatpack.

Features

- 16,384-word $\times 1$-bit organization
- 100K ECL interface with full voltage and temperature compensation
- Noninverted, open-emitter outputs
- Fast access times of 10 and 15 ns maximum
- Low power consumption
- 300-mil, 20-pin cerdip or 20-pin ceramic flatpack packaging

Ordering Information

	Access Time (max)	Power Consumption (max)	Package
μ PB100480D-10	10 ns	1.2 W	20 -pin cerdip
$\mathrm{D}-15$	15 ns	1.1 W	
μ PB100480B-10	10 ns	1.2 W	20-pin ceramic flatpack
$\mathrm{B}-15$	15 ns	1.1 W	

Pin Configurations

20-Pin Cerdip

20-Pin Ceramic Flatpack

Pin Identification

Symbol	Function
$A_{0}-A_{13}$	Address inputs
$D 1$	Data input
$D O$	Data output
$\overline{C S}$	Chip select
$\overline{W E}$	Write enable
$V_{C C}$	Ground
$V_{E E}$	-4.5 -volt power supply

Capacitance
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

Parameter	Symbol	Min	Typ	Max	Unit
Input capacitance	C_{N}		4		pF
Output capacitance	$\mathrm{C}_{\mathrm{OUT}}$		6		pF

Absolute Maximum Ratings

Supply voltage, V_{EE}	-7.0 to +0.5 V
Input voltage, V_{IN}	V_{EE} to +0.5 V
Output current, louT	-30 to +0.1 mA
Storage temperature, $\mathrm{T}_{\text {STG }}$	-65 to $+150^{\circ} \mathrm{C}$
Storage temperature under bias, T $_{\text {STG }}$ (bias)	-55 to $+125^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Truth Table

$\mathbf{C S}$	WE	D $_{\text {IN }}$	Output	Mode
H	X	X	L	Not selected
L	L	L	L	Write 0
L	L	H	L	Write 1
L	H	X	DouT	Read

Notes:

(1) $X=$ don't care.

Block Diagram

DC Characteristics

$T_{A}=0$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$; output load $=50 \Omega$ to $-2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Output voltage, high	V_{OH}	-1025		-880	mV	$\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{IH} \text { max or } \mathrm{V}_{\mathrm{IL}} \text { min }}$
Output voltage, low	V_{OL}	-1810		-1620	mV	$V_{\mathbb{I N}}=V_{\text {IH }}$ max or $V_{\text {IL }}$ min
Output threshold voltage, high	$\mathrm{V}_{\mathrm{OHC}}$	-1035			mV	$V_{\text {IN }}=\mathrm{V}_{\mathrm{IH}}$ min or V_{IL} max
Output threshold voltage, low	$\mathrm{V}_{\text {OLC }}$			-1610	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ min or V_{IL} max
Input voltage, high	V_{1}	-1165		-880	mV	Guaranteed input voltage high for all inputs
Input voltage, low	V_{IL}	-1810		-1475	mV	Guaranteed input voltage low for all inputs
Input current, high	$\mathrm{IIH}^{\text {H }}$			220	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathrm{IH} \text { max }}$
Input current, low	ILL	0.5		170	$\mu \mathrm{A}$	For CS: $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ min
		-50			$\mu \mathrm{A}$	For all others: $\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathbb{I L}}$ min
Supply current	$I_{\text {eE }}$	-260			mA	For $\mu \mathrm{PB} 100480-10$: all inputs and outputs open
		-240			mA	For μ PB100480-15: all inputs and outputs open

Notes:

(1) The device under test is mounted in a test socket and measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.

AC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} \pm 5 \%$

Parameter	Symbol	$\mu \mathrm{PB} 100480$-10			$\mu \mathrm{PB} 100480$-15			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max		
Read Operation									
Address access time	$t_{\text {AA }}$			10			15	ns	
Chip select recovery time	$t_{\text {RCS }}$			5			8	ns	
Chip select access time	$t_{\text {ACS }}$			5			8	ns	

Write Operation

Write pulse width	t_{W}	10		15		ns
Data setup time	${ }^{\text {t }}$ WSD	2		3		ns
Data hold time	${ }_{\text {W WHD }}$	1		2		ns
Address setup time	${ }^{\text {t WSA }}$	2		3		ns
Address hold time	${ }^{\text {W WHA }}$	1		2		ns
Chip select setup time	twscs	2		3		ns
Chip select hold time	$t_{\text {WHCS }}$	1		2		ns
Write disable time	$t_{\text {ws }}$		5		8	ns
Write recovery time	$t_{\text {WR }}$		11		17	ns

Output Rise and Fall Times

| Output rise time | t_{R} | 2 | 2 | $n s$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Output fall time | t_{F} | 2 | 2 | $n s$ |

Notes:

(1) The device under test is mounted in a test socket and measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.
(2) Input pulse levels $=-1.7$ to -0.9 V ; input rise and fall times (measured between 20% and 80% or 80% to 20\%) $=2.5 \mathrm{~ns}$; input and output timing reference level $=50 \%$.

Figure 1. Loading Conditions Test Circuit

Figure 2. Input Pulse

Note:
[1] $\mathrm{t}_{\mathrm{R}}=\mathrm{t} \mathrm{F}=2.5 \mathrm{~ns}$ (typ).

Timing Waveforms

Chip Select Access Cycle

Note:
[1] Address is valid more than 2 ns prior to the low transition of $\overline{\mathrm{CS}}$.

Address Access Cycle

Write Cycle

Description

The $\mu \mathrm{PB} 100484$ is a very high-speed 100 K interface ECL RAM organized as 4,096 words by 4 bits with openemitter outputs (noninverted). It is available in 28 -pin cerdip or flatpack packages.

Features

- 4,096-word $\times 4$-bit organization
- 100 K ECL interface
- Full voltage and temperature compensation
- Open-emitter outputs (noninverted)
- Fast access times and low power consumption
- 28-pin cerdip and 28-pin flatpack packaging

Ordering Information

Part Number	$\begin{gathered} \text { Access } \\ \text { Time (max) } \end{gathered}$	Supply Cur rent (min)	Package
μ PB100484D-10	10 ns	-260 mA	28-pin cerdip
D-15	15 ns	-240 mA	
μ PB100484B-10	10 ns	-260 mA	28-pin ceramic flatpack
B-15	15 ns	-240 mA	

Pin Configurations

28-Pin Cerdip

28-Pin Ceramic Flatpack

831H-6173A

Pin Identification

Symbol	Function	
$\mathrm{A}_{0}-\mathrm{A}_{11}$	Address inputs	
$\mathrm{DI}_{1}-\mathrm{DI}_{4}$	Data inputs	
$\mathrm{DO}_{1}-\mathrm{DO}_{4}$	Data outputs	
$\overline{\mathrm{WE}_{1}, \overline{W E}_{2}}$	Write enable (active low)	
$\overline{\mathrm{CS}}$	Chip select (active low)	
V_{CC}	Power supply (current switches and bias driver)	
$\mathrm{V}_{\mathrm{CCA}}$	Power supply (output devices)	
V_{EE}	-4.5 -volt power supply	
NC	No connection	
Capacitance		
$f=1 \mathrm{MHz}$		
Parameter	Symbol	MIn
Input capacitance	$\mathrm{C}_{\mathbb{N}}$	Typ
Output capacitance	$\mathrm{C}_{\mathrm{OUT}}$	Max

Absolute Maximum Ratings

$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=0 \mathrm{~V}$

Supply voltage, V_{EE}	-7.0 to +0.5 V
Input voltage, V_{IN}	V_{EE} to +0.5 V
Output current, IOUT	-30 to +0.1 mA
Storage temperature, $\mathrm{T}_{\text {STG }}$	-65 to $+150^{\circ} \mathrm{C}$
Storage temperature under bias, $\mathrm{T}_{\mathrm{STG}}$ (bias)	-55 to $+125^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Truth Table

$\overline{\mathbf{C S}}$	$\overline{\text { WE }}$	D $_{\text {IN }}$	Output	Mode
H	X	X	L	Not selected
L	L (Note 2)	L	L	Write 0
L	L (Note 2)	H	L	Write 1
L	H (Note 2)	X	Dout	Read

Notes:

(1) $\mathrm{X}=$ don't care.
(2) Both $\overline{W E}_{1}$ and $\overline{W E}_{2}$ must be low to initiate write operation. For read operation, either WE_{1} or WE_{2} or both must be high.

Block Diagram

DC Characteristics

$T_{A}=0$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$; output load $=50 \Omega$ to $-2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=0 \mathrm{~V}$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Output voltage, high	V_{OH}	-1025		-880	mV	$V_{\text {IN }}=\mathrm{V}_{\mathrm{IH}} \max$ or V_{IL} min
Output voltage, low	V_{OL}	-1810		-1620	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ max or V_{IL} min
Output threshold voltage, high	$\mathrm{V}_{\mathrm{OHC}}$	-1035			mV	$V_{\text {IN }}=V_{\text {IH }} \min$ or $V_{\text {IL }}$ max
Output threshold voltage, low	$\mathrm{V}_{\text {OLC }}$			-1610	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \min$ or V_{LL} max
Input voltage, high	V_{H}	-1165		-880	mV	
Input voltage, low	V_{IL}	-1810		-1475	mV	
Input current, high	$\mathrm{IIH}^{\text {H }}$			220	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathbb{I H}}$ max
Input current, low	ILL	0.5		170	$\mu \mathrm{A}$	For CS: $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ min
		-50			$\mu \mathrm{A}$	For all others: $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ min
Supply current	l_{EE}	-260			mA	For μ PB100484-10: all inputs and outputs open
		-240			mA	For μ PB100484-15: all inputs and outputs open

Notes:

(1) The device under test is mounted in a test socket and measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.

AC Characteristics

$T_{A}=0$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} \pm 5 \%$; output load $=50 \Omega$ to $-2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=0 \mathrm{~V}$

Parameter	Symbol	μ PB100484-10			$\mu \mathrm{PB} 100484$-15			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max		
Read Operation									
Address access time	$t_{\text {AA }}$			10			15	ns	
Chip select recovery time	$t_{\text {RCS }}$			5			8	ns	
Chip select access time	$t_{\text {ACS }}$			5			8	ns	

Write Operation

Write pulse width	t_{W}	10		15		ns
Data setup time	${ }^{\text {t }}$ WSD	2		3		ns
Data hold time	${ }^{\text {t WHD }}$	1		2		ns
Address setup time	${ }^{\text {W WSA }}$	2		3		ns
Address hold time	${ }^{\text {twha }}$	1		2		ns
Chip select setup time	$t_{\text {wSCS }}$	2		3		ns
Chip select hold time	${ }^{\text {WHCS }}$	1		2		ns
Write disable time	${ }^{\text {tws }}$		5		8	ns
Write recovery time	${ }^{\text {twR }}$		11		17	ns

Output Rise and Fall Times

| Output rise time | t_{R} | 2 | 2 | $n s$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Output fall time | t_{F} | 2 | 2 | $n s$ |

Notes:

(1) The device under test is mounted in a test socket and measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.
(2) See figure 1 and 2 for loading conditions and input pulse timing. Input pulse levels $=-1.7$ to -0.9 V ; input rise and fall times $=$ 2.5 ns ; input and output timing reference levels $=50 \%$.

Figure 1. Loading Conditions Test Circuit

26h
$831 \mathrm{H}-5947 \mathrm{~B}$
Figure 2. Input Pulse

Note:
[1] $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}$ (typ).

Timing Waveforms

Chip Select Access Cycle

Address Access Cycle

Write Cycle

Description

The $\mu \mathrm{PB} 100484 \mathrm{~A}$ is a very high-speed 100 K interface ECL RAM. It is organized as 4,096 words by 4 bits with noninverted, open-emitter outputs and low power consumption. Two access time versions are available: 5 ns and 7 ns maximum. The $\mu \mathrm{PB} 100484 \mathrm{~A}$ is available in a hermetic, 400 -mil, 28 -pin cerdip or 28 -pin ceramic flatpack.

Features

- 4,096-word x 4-bit organization
- 100 K ECL interface
- Full voltage and temperature compensation
- Noninverted, open-emitter outputs
- Fast access times: 5 and 7 ns maximum
- Low power consumption
- 400 -mil, 28 -pin cerdip or 28 -pin ceramic flatpack packaging

Ordering Information

Part Number	Access Time (max)	Supply current (min)	Package
μ PB100484AB-5	5 ns	-260 mA	28-pin ceramic flatpack
B. 7	7 ns	-240 mA	
$\mu \mathrm{PB} 100484 \mathrm{AD}-5$	5 ns	-260 mA	28-pin cerdip
D-7	7 ns	-240 mA	

Pin Configurations

28-Pin Cerdip

	${ }_{83} 14.6014 \mathrm{~A}$

28-Pin Ceramic Flatpack

Pin Identification

Symbol	Function
$\mathrm{A}_{0}-\mathrm{A}_{11}$	Address inputs
$\mathrm{DI}_{1}-\mathrm{DI}_{4}$	Data inputs
$\mathrm{DO}_{1}-\mathrm{DO}_{4}$	Data outputs
$\overline{W E}_{1}, \overline{W E}_{2}$	Write enable (active low)
$\overline{\mathrm{CS}}$	Chip select (active low)
V_{CC}	Power supply (current switches and bias driver)
$\mathrm{V}_{\mathrm{CCA}}$	Power supply (output devices)
V_{EE}	-4.5 -volt power supply
NC	No connection

Absolute Maximum Ratings

$V_{C C}=V_{C C A}=0 V$

Supply voltage, V_{EE}	-7.0 to +0.5 V
Input voltage, V_{IN}	V_{EE} to +0.5 V
Output current, $\mathrm{I}_{\text {OUT }}$	-30 to +0.1 mA
Storage temperature, $\mathrm{T}_{\text {STG }}$	-65 to $+150^{\circ} \mathrm{C}$
Under bias, $\mathrm{T}_{\text {STG }}$ (bias)	-55 to $+125^{\circ} \mathrm{C}$

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Capacitance

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Input capacitance	C_{IN}	4	pF			
Output capacitance	$\mathrm{C}_{\text {OUT }}$	6	pF			

Truth Table

CS	WE	DIN $^{\text {IN }}$	Output	Function
H	X	X	L	Not selected
L	L (Note 2)	L	L	Write 0
L	L (Note 2)	H	L	Write 1
L	H (Note 2)	X	DOuT	Read

Notes:

(1) $X=$ don't care.
(2) Both $\overline{W E}_{1}$ and $\overline{W E}_{2}$ must be low to initiate write operation. For read operation, either $\overline{W E}_{1}$ or $\overline{W E}_{2}$ or both must be high.

Block Diagram

DC Characteristics

$T_{A}=0$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$; output load $=50 \Omega$ to $-2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=0 \mathrm{~V}$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Output voltage, high	V_{OH}	- 1025		-880	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ max or V_{IL} min
Output voltage, low	V_{OL}	- 1810		-1620	mV	$V_{\text {IN }}=V_{\text {IH }}$ max or $V_{\text {IL }}$ min
Output threshold voltage, high	$\mathrm{V}_{\mathrm{OHC}}$	-1035			mV	$V_{\mathbb{I N}}=V_{I H} \min$ or $V_{I L}$ max
Output threshold voltage, low	$V_{\text {OLC }}$			- 1610	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \min$ or V_{IL} max
Input voltage, high	V_{IH}	-1165		-880	mV	
Input voltage, low	V_{IL}	-1810		-1475	mV	
Input current, high	$\mathrm{IIH}^{\text {H }}$			220	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbb{I}}=\mathrm{V}_{\mathrm{IH}}$ max
Input current, low	IIL	0.5		170	$\mu \mathrm{A}$	For $\overline{C S}: V_{\mathbb{I N}}=V_{\mathbb{I L}}$ min
		-50			$\mu \mathrm{A}$	For all others: $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ min
Supply current	$l_{\text {EE }}$	-260			mA	For μ PB100484A-5: All inputs and outputs open
		-240			mA	For μ PB100484A-7: All inputs and outputs open

Notes:

(1) The device under test is mounted in a test socket and measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.

Figure 1. Loading Conditions Test Circuit
Notes:
[1] $\mathrm{R}_{\mathrm{L}}=50 \Omega$.
[2] $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$.

AC Characteristics

$T_{A}=0$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} \pm 5 \% ;$ output load $=50 \mathrm{D}$ to $-2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=0 \mathrm{~V}$

		$\mu \mathrm{PB100484A-5}$			$\mu \mathrm{PB} 100484 \mathrm{~A}$-7			Unit	Test Conditions
Parameter	Symbol	Min	Typ	Max	Min	Typ	Max		

Read Operation

Address access time	t_{AA}	5	7	ns
Chip select recovery time	$\mathrm{t}_{\mathrm{RCS}}$	3.5	4	ns
Chip select access time	$\mathrm{t}_{\mathrm{ACS}}$	3.5	4	ns

Write Operation

Write pulse width	${ }^{\text {t }}$ W	6		8		ns
Data setup time	${ }^{\text {WSSD }}$	1		1		ns
Data hold time	${ }^{\text {WHD }}$	2		2		ns
Address setup time	${ }^{\text {t WSA }}$	1		1		ns
Address hold time	${ }^{\text {W WHA }}$	2		2		ns
Chip select setup time	$t_{\text {wScs }}$	1		1		ns
Chip select hold time	$t_{\text {WHCS }}$	2		2		ns
Write disable time	$t_{\text {wS }}$		3.5		5	ns
Write recovery time	${ }^{\text {t }}$ WR		7		9	ns

Output Rise and Fall Times

Output rise time	t_{R}	2	2	ns
Output fall time	t_{F}	2	2	ns

Notes:

(1) The device under test is mounted in a test socket and measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.
(2) See figures 1 and 2 for loading conditions and input pulse timing. Input pulse levels $=-1.7$ to -0.9 V ; input rise and fall times $=$ 2.5 ns ; input and output timing reference levels $=50 \%$.

Figure 2. Input Pulse

Note:
[1] $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}$ (typ).

Timing Waveforms

Read Cycle

Write Cycle

Description

The $\mu \mathrm{PB} 100 \mathrm{~A} 484$ is a very high-speed 100 K interface ECL RAM organized as 4 K words by 4 bits and designed with open emitter outputs (noninverted). It is available in 28-pin cerdip or flatpack packages.

Features

- 4096 word $\times 4$-bit organization
- 100 K ECL interface
- Full voltage and temperature compensation
- Open emitter outputs (noninverted)
- Fast access times and low power consumption
- 28-pin cerdip and flatpack packaging
- Center power pins

Ordering Information

Part Number	Access Time (max)	Supply Current (min)	Package
μ PB100A484B-5	5 ns	TBD	28-pin ceramic
B-7	7 ns	TBD	
μ flatpack			

Pin Configurations

28-Pin Cerdip

28-Pin Ceramic Flatpack

Pin Identification

Symbol	Function
$\mathrm{A}_{0}-\mathrm{A}_{11}$	Address inputs
$\mathrm{DI}_{1}-\mathrm{DI}_{4}$	Data inputs
$\mathrm{DO}_{1}-\mathrm{DO}_{4}$	Data outputs
$\overline{\mathrm{WE}}$	Write enable input (active low)
$\overline{\mathrm{CS}}$	Chip select (active low)
V_{CC}	Power supply (current switches and bias driver)
$\mathrm{V}_{\mathrm{CCA}}$	Power supply (output devices)
V_{EE}	-4.5-volt power supply
NC	No connection

Capacitance					
Parameter	Symbol	Min	Typ	Max	Unit
Input capacitance	$\mathrm{C}_{\text {IN }}$		4		pF
Output capacitance	$\mathrm{C}_{\text {OUT }}$		6		pF

Truth Table

$\overline{C S}$	$\overline{\text { WE }}$	D $_{\text {IN }}$	Output	Function
H	X	X	L	Not selected
L	L	L	L	Write 0
L	L	H	L	Write 1
L	H	X	Dout	Read

Notes:

(1) $X=$ don't care.

Absolute Maximum Ratings

$V_{C C}=V_{C C A}=0 V$

Supply voltage, V_{EE}	-7.0 to +0.5 V
Input voltage, V_{IN}	V_{EE} to +0.5 V
Output current, Iout	-30 to +0.1 mA
Storage temperature, $\mathrm{T}_{\text {STG }}$	-65 to $+150^{\circ} \mathrm{C}$
Storage temperature under bias, $\mathrm{T}_{\text {STG }}$ (Bias)	-55 to $+125^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Block Diagram

DC Characteristics

$T_{A}=0$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{E E}=-4.5 \mathrm{~V}$; output load $=50 \Omega$ to $-2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=0 \mathrm{~V}$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Output voltage, high	V_{OH}	-1025		-880	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\max)$ or $\mathrm{V}_{\mathrm{IL}}($ min $)$
Output voltage, low	$\mathrm{V}_{\text {OL }}$	-1810		-1620	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}($ max $)$ or $\mathrm{V}_{\mathrm{IL}}($ min $)$
Output threshold voltage, high	$\mathrm{V}_{\mathrm{OHC}}$	-1035			mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\min)$ or $\mathrm{V}_{\mathrm{IL}}(\max)$
Output threshold voltage, low	$\mathrm{V}_{\text {OLC }}$			-1610	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\min)$ or $\mathrm{V}_{\mathrm{IL}}(\max)$
Input voltage, high	V_{IH}	-1165		-880	mV	
Input voltage, low	$\mathrm{V}_{\text {IL }}$	-1810		-1475	mV	
Input current, high	$\mathrm{IIH}_{\mathrm{H}}$			220	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}($ max $)$
Input current, low	ILL	0.5		170	$\mu \mathrm{A}$	For CS: $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{min})$
		-50			$\mu \mathrm{A}$	For all others: $\mathrm{V}_{\mathbb{I}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{min})$
Supply current	$I_{\text {eE }}$	TBD			mA	$\mu \mathrm{PB100A484-5:} \mathrm{all} \mathrm{inputs} \mathrm{and} \mathrm{outputs} \mathrm{open}$
		TBD			mA	μ PB100A484-7: all inputs and outputs open

Notes:

(1) The device under test is mounted in a test socket and measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{sec}$.

AC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} \pm 5 \%$; output load $=50 \Omega$ to $-2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=0 \mathrm{~V}$

		$\mu \mathrm{PB} 100 \mathrm{~A} 484-5$			$\mu \mathrm{PB} 100 \mathrm{~A} 484-7$			Unit	Test Conditions
Parameter	Symbol	Min	Typ	Max	Min	Typ	Max		

Read Operation

Address access time	$t_{A A}$	5	7	$n s$
Chip select recovery time	$t_{\text {RCS }}$	3.5	4	$n s$
Chip select access time	$t_{A C S}$	3.5	4	$n s$

Write Operation

Write pulse width	t_{W}	6		8		ns
Data setup time	${ }^{\text {twSD }}$	1		1		ns
Data hold time	${ }^{\text {t }}$ WHD	2		2		ns
Address setup time	twSA	1		1		ns
Address hold time	${ }^{\text {W WHA }}$	2		2		ns
Chip select setup time	twscs	1		1		ns
Chip select hold time	$t_{\text {WHCS }}$	2		2		ns
Write disable time	${ }^{\text {tws }}$		3.5		5	ns
Write recovery time	$t_{\text {WR }}$		7		9	ns

Output Rise and Fall Times

Output rise time	t_{R}	2	2	$n-2$	n
Output fall time	t_{F}	2	2	ns	

Notes:

(1) The device under test is mounted in a test socket and measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.
(2) See figures 1 and 2 for loading conditions and input pulse timing. Input pulse levels $=-1.7$ to -0.9 V ; input rise and fall times $=$ 2.5 ns ; input and output timing reterence levels $=50 \%$.

Figure 1. Loading Conditions Test Circuit

Figure 2. Input Pulse

Note:
[1] $\mathrm{t}_{\mathrm{R}}=\mathrm{t}=2 \mathrm{~ns}$ (typ).

Timing Waveforms

Chip Select Access Cycle

Address Access Cycle

Write Cycle

Description

The μ PD100500 is a very high-speed BiCMOS RAM with full voltage and temperature compensation for a 100 K ECL interface. Its unique design uses blended CMOS and bipolar peripheral circuits and N-channel MOS memory cells. The device is organized as 262,144 words by 1 bit and designed with an open-emitter output (noninverted) for low power consumption. Two versions with fast access times of 15 and 20 ns maximum are available in hermetic, 300 -mil, 24 -pin cerdip packaging.

Features

- BiCMOS technology

ㅁ 262,144-word x 1-bit organization

- 100K interface ECL with full voltage and temperature compensation
- Noninverted, open-emitter output
- Fast access times of 15 and 20 ns maximum
- Low power consumption
- 300-mil, 24 -pin cerdip packaging

Ordering Information

| | Access
 Part Number | Power
 Time (max) | Consumption
 (max) |
| :---: | :---: | :---: | :--- | Package | μ PD100500D-15 | 15 ns | 720 mW |
| :---: | :---: | :---: |
| $\mathrm{D}-20$ | 20 ns | |

Pin Configuration

24-Pin Cerdip

Pin Identification

Symbol	Function
$A_{0}-A_{17}$	Address inputs
$D_{\text {IN }}$	Data input
$D_{\text {OUT }}$	Data output
$\overline{\overline{C S}}$	Chip select
$\overline{\mathrm{WE}}$	Write enable
V_{CC}	Ground
$V_{E E}$	-4.5 -volt power supply

Absolute Maximum Ratings

Supply voltage, V_{EE}	-7.0 to +0.5 V
Input voltage, V_{IN}	$\mathrm{V}_{\text {EE }}$ to +0.5 V
Output current, Iout	$-\mathbf{3 0}$ to +0.1 mA
Storage temperature, $\mathrm{T}_{\text {STG }}$	-65 to $+150^{\circ} \mathrm{C}$
Storage temperature under bias, $\mathrm{T}_{\text {STG }}$ (bias)	-55 to $+125^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Truth Table

$\overline{\text { CS }}$	$\overline{\text { WE }}$	D $_{\text {IN }}$	Output	Mode
H	X	X	L	Not selected
L	L	L	L	Write 0
L	L	H	L	Write 1
L	H	X	DOUT	Read

Notes:
(1) $X=$ don't care.

Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$					
Parameter	Symbol	Min	Typ	Max	UnIt
Input capacitance	C_{N}		4		pF
Output capacitance	$\mathrm{C}_{\mathrm{OUT}}$		6		pF

Block Diagram

DC Characteristics
$T_{A}=0$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$; output load $=50 \mathrm{D}$ to $-2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$

Parameter	Symbol	Min	Max	Unit	Test Condlitions
Output voltage, high	V_{OH}	-1025	-880	mV	$\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathbb{H}}$ max or V_{IL} min
Output voltage, low	V_{OL}	-1810	-1620	mV	$\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathbb{H}} \max$ or V_{IL} min
Output threshold voltage, high	$\mathrm{V}_{\mathrm{OHC}}$	-1035		mV	$\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathrm{IH}} \min$ or V_{IL} max
Output threshold voltage, low	$\mathrm{V}_{\text {OLC }}$		-1610	mV	$V_{\mathbb{N}}=V_{\text {IH }} \min$ or $V_{I L}$ max
Input voltage, high	V_{1}	-1165	-880	mV	Guaranteed input voltage high for all inputs
Input voltage, low	$\mathrm{V}_{\text {IL }}$	-1810	-1475	mV	Guaranteed input voltage low for all inputs
Input current, high	I_{H}		220	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathbb{H}}$ max
Input current, low	ILL	0.5	170	$\mu \mathrm{A}$	For CS: $\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathrm{IL}}$ min
		-50		$\mu \mathrm{A}$	For all others: $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ min
Supply current	l_{EE}	-160		mA	All inputs and outputs open

Notes:

(1) The device under test is mounted in a test socket and is measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.

AC Characteristics

$\mathrm{T}_{\mathrm{A}}=0$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} \pm 5 \%$

		MPD100500-15			$\mu \mathrm{PD100500-20}$				
Parameter	Symbol	Min	Typ	Max	Min	Typ	Max	Unit	Test Conditions

Read Operation

Address access time	$t_{A A}$	15	20	$n s$
Chip select access time	$t_{A C S}$	10	15	ns
Chip select recovery time	$t_{\text {RCS }}$	10	15	ns

Write Operation

Write pulse width	t_{w}	10		15		ns
Data setup time	$t_{\text {WSD }}$	2		3		ns
Data hold time	$t_{\text {WHD }}$	3		3		ns
Address setup time	$t_{\text {WSA }}$	2		2		ns
Address hold time	${ }^{\text {W WHA }}$	3		3		ns
Chip select setup time	twscs	2		2		ns
Chip select hold time	twhes	3		3		ns
Write disable time	tws		10		15	ns
Write recovery time	${ }^{\text {twR }}$		18		23	ns

Output Rise and Fall Times

Rise time	t_{R}	2	2	ns
Fall time	t_{F}	2	2	ns

Notes:

(1) The device under test is mounted in a test socket and is measured at a thermal equilibrium established with a transverse air flow maintained at greater than $2.0 \mathrm{~m} / \mathrm{s}$.
(2) Input pulse levels $=-1.7$ to -0.9 V ; input rise and fall times (measured between 20% and 80% or 80% and 20%) $=2.5 \mathrm{~ns}$; input and output timing reference levels $=50 \%$.

Figure 1. Loading Conditions Test Circuit

Figure 2. Input Pulse

Nota:
[1] $t_{R}=t_{F}=2.5 \mathrm{~ns}(\mathrm{typ})$.

Timing Waveforms

Chip Select Access Cycle

Address Access Cycle

Write Cycle

ECL RAMS 10M Intariack
 100\% Intarace

Section 27

EEPROMs

$\mu \mathrm{PD}$	Organization	
28 C 04	512×8	27 a
28 C 05	512×8	27 b
28 C 64	$8 \mathrm{~K} \times 8$	27 c
28 C 256	$32 \mathrm{~K} \times 8$	27 d

Description

The $\mu \mathrm{PD} 28 \mathrm{C} 04$ is a 4,096-bit electrically erasable and programmable read-only memory (EEPROM) organized as 512×8 bits and fabricated with an advanced CMOS process for high performance and low power consumption.
The device operates from a single +5 -volt power supply and provides a DATA polling function to indicate the precise end of write cycles. Additional features include chip erase, auto erase and programming cycles. The μ PD28C04 is available in standard 24-pin plastic DIP or miniflat packaging.

Features

Fast access times of 200 and 250 ns maximum

- Single +5 -volt power supply
- Chip erase feature
- Auto erase and programming at 10 ms maximum
- DATA polling verification
- Low power dissipation
- 50 mA max (active)
- $100 \mu \mathrm{~A}$ max (standby)
- Endurance: 100,000 erase/write cycles per byte
- TTL-compatible inputs and outputs
- Three-state outputs
- Advanced CMOS technology
- 24-pin plastic DIP or miniflat packaging

Ordering Information

Part Number	Access Time (max)	Package
μ PD28C04C-20	200 ns	24-pin plastic DIP
$\frac{\mathrm{C}-25}{}$	250 ns	
$\mu \mathrm{PD} 28 \mathrm{CO4G}-20$	200 ns	24-pin plastic miniflat
$\mathrm{G}-25$	250 ns	

Pin Configuration

24-Pin Plastic DIP or Miniflat

Pin Identification

Symbol	Function
$A_{0}-A_{8}$	Address inputs
$I / O_{0}-I / O_{7}$	Data inputs/outputs
$\overline{C E}$	Chip enable
$\overline{O E}$	Output enable
$\overline{W E}$	Write enable
$\overline{G N D}$	Ground
$V_{C C}$	+5 -volt power supply
$N C$	No connection

Absolute Maximum Ratings

Supply voltage, V_{CC}	-0.6 to +7.0 V
Input voltage, V_{11}	-0.6 to +7.0 V
Input voltage, $\mathrm{V}_{13}(\overline{\mathrm{OE}})$	-0.6 to +16.5 V
Output voltage, V_{O}	-0.6 to +7.0 V
Operating temperature, $\mathrm{T}_{\text {OPT }}$	-10 to $+85^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\text {STG }}$	-65 to $+125^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Input voltage, high	V_{IH}	2.0		$\mathrm{~V}_{\mathrm{CC}}+0.3$	V
Input voltage, low	V_{IL}	-0.3		0.8	V
Ambient temperature	T_{A}	0		70	${ }^{\circ} \mathrm{C}$

Capacitance
$T_{A}=25^{\circ} \mathrm{C} ; f=1 \mathrm{MHz} ; V_{\text {IN }}$ and $V_{\text {OUT }}=0 \mathrm{~V}$

Parameter	Symbol	Min	Typ	Max	Unit
Input capacitance	C_{l}		7	12	pF
Output capacitance	C_{O}			10	pF

Truth Table

Function	$\overline{\mathrm{CE}}$	$\overline{\mathrm{OE}}$	$\overline{\mathrm{WE}}$	I / O	ICc
Read	V_{IL}	V_{IL}	V_{IH}	$\mathrm{D}_{\mathrm{OUT}}$	Active
Standby and write inhibit	V_{IH}	X	X	High-Z	Standby
Write	V_{IL}	V_{IH}	V_{IL}	D_{IN}	Active
Chip erase	V_{IL}	$\mathrm{V}_{\mathrm{IHH}}$	V_{IL}	$\mathrm{D}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$	Active
Write inhibit	X	V_{IL}	X	-	-
	X	X	V_{IH}		

Notes:

(1) X can be either $V_{I L}$ or $V_{I H}$.
(2) $\mathrm{V}_{\mathrm{HH}}=+15 \pm 0.5 \mathrm{~V}$.

Block Diagram

DC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Output voltage, high	$\mathrm{V}_{\mathrm{OH} 1}$	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
	$\mathrm{V}_{\mathrm{OH} 2}$	$\mathrm{V}_{\text {cc }}-0.7$			V	$\mathrm{IOH}^{\text {O }}=-100 \mu \mathrm{~A}$
Output voltage, low	V_{OL}			0.45	V	$\mathrm{l}_{\mathrm{OL}}=2.1 \mathrm{~mA}$
Output leakage current	Lo			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0$ to $\mathrm{V}_{\text {CC }}$
Input leakage current	l_{LI}			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=0$ to V_{CC}
$V_{\text {cc }}$ current (active)	Iccat			20	mA	$\overline{C E}=V_{\text {IL }} ; \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$
	ICCA2			50	mA	$f=5 \mathrm{MHz}$; lout $=0 \mathrm{~mA}$
VCC current (standby)	lccs 1			1	mA	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$
	l ccs2			100	$\mu \mathrm{A}$	$\overline{C E}=V_{C C} ; V_{\text {IN }}=O V$ to $V_{C C}$

AC Characteristics
$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	μ PD28C04-20		μ PD28C04-25		Unit	Test Conditions
		Min	Max	Min	Max		
Read Operation							
Address to output delay	$t_{\text {Acc }}$		200		250	ns	$\overline{C E}=\overline{O E}=V_{I L} ; \overline{W E}=V_{I H}$
$\overline{\mathrm{CE}}$ to output delay	${ }^{\text {t }}$ CE		200		250	ns	$\overline{O E}=V_{\text {IL }} ; \overrightarrow{W E}=V_{I H}$
$\overline{\text { CE }}$ high to output float	$t_{\text {DFC }}$	0	60	0	80	ns	$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}} ; \overline{\mathrm{WE}}=\mathrm{V}_{\mathrm{IH}}$
OE high to output float	$\mathrm{t}_{\mathrm{DFO}}$	0	60	0	80	ns	$\overline{C E}=V_{\text {IL }} ; \overline{W E}=V_{I H}$
$\overline{\mathrm{OE}}$ to output delay	t_{OE}	10	75	10	100	ns	$\overline{C E}=V_{1 L} ; \overline{W E}=V_{1 H}$
Output hold time from address change	${ }^{\text {toha }}$	0		0		ns	$\begin{aligned} & \overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}} ; \\ & \overline{\mathrm{WE}}=\mathrm{V}_{\mathrm{IH}}(\text { Note } 2) \end{aligned}$
Output hold time from rising edge of $\overline{\mathrm{CE}}$	${ }^{\text {tohC }}$	0		0		ns	$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}} ; \overline{\mathrm{WE}}=\mathrm{V}_{\mathrm{IH}}$ (Note 2)
Output hold time from rising edge of $\overline{\mathrm{OE}}$	$\mathrm{t}_{\mathrm{OHO}}$	0		0		ns	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}} ; \overline{\mathrm{WE}}=\mathrm{V}_{\mathrm{IH}}$
$\overline{\text { WE }}$ hold time from rising edge of $\overline{O E}$	${ }^{\text {twho }}$	10		10		ns	$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$
	twsc	10		10		ns	$\overline{C E}=V_{1 H}$
WE setup time to $\overline{O E}$	$t_{\text {wso }}$	10		10		ns	$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$
Write Operation							
Address hold time	$t_{\text {AH }}$	200		200		ns	
Address setup time	$t_{A S}$	10		10		ns	
$\overline{\mathrm{CE}}$ high after $\overline{\mathrm{CE}}$-controlled write cycle	${ }^{\text {t CEH }}$	9.9		9.9		ms	
Write hold time	${ }^{\text {t }}$ CH	0		0		ns	
Write setup time	t_{CS}	0		0		ns	

AC Characteristics (cont)

Parameter	Symbol	μ PD28C04-20		μ PD28C04-25		Unit	Test Conditions
		Min	Max	Min	Max		
Write Operation (cont)							
$\overline{\overline{C E}}$ pulse width	${ }^{\text {t }} \mathrm{CW}$	150		150		ns	
Data hold time	${ }^{\text {t }}$ D	20		20		ns	
Data setup time	$t_{\text {DS }}$	100		100		ns	
Data valid time	$t_{\text {d }}$		300		300	ns	
$\overline{\text { OE high hold time }}$	toen	10		10		ns	
$\overline{\text { OE high setup time }}$	$\mathrm{t}_{\text {OES }}$	10		10		ns	
Write cycle time	$t_{\text {w }}$	10		10		ms	
$\overline{\overline{W E}}$ high after $\overline{\mathrm{WE}}$-controlled write cycle	$t_{\text {WEH }}$	9.9		9.9		ms	
WE pulse width	$t_{W P}$	150		150		ns	
WE high hold time	${ }^{\text {W WPH }}$	50		50		ns	
Chip Erase Operation							
$\overline{\overline{C E} \text { hold time }}$	${ }^{\text {teCH }}$	5		5		$\mu \mathrm{s}$	
$\overline{\overline{C E} \text { setup time }}$	$\mathrm{t}_{\text {ECS }}$	500		500		ns	
Data hold time	$\mathrm{t}_{\text {EDH }}$	100		100		ns	
Data setup time	teds	500		500		ns	
$\overline{\text { OE hold time }}$	$t_{\text {EOEH }}$	$\mathrm{t}_{\mathrm{ECH}}+3$		$\mathrm{t}_{\mathrm{ECH}}+3$		$\mu \mathrm{s}$	
OE setup time	$t_{\text {EOES }}$	500		500		ns	
WE pulse width	${ }^{\text {t EWP }}$	10		10		ms	

Notes:

(1) See figure 1 for the output load. Input rise and fall time $\leq 20 \mathrm{~ns}$; input pulse levels $=0.45$ and 2.4 V ; timing measurement reference levels $=0.8$ and 2.0 V for both inputs and outputs.
(2) Output hold time is specified from address, $\overline{\mathrm{OE}}$ or $\overline{\mathrm{CE}}$, whichever goes invalid first.

Figure 1. Output Load

Timing Waveforms

Read Cycle

Notes:
[1] Use tDFC if $\overline{\mathrm{CE}}$ transitions to V_{IH} before $\overline{\mathrm{OE}}$ transitions to V_{IH}
[2] Use tDFO if $\overline{O E}$ transitions to $V_{I H}$ before $\overline{C E}$ transitions to $V_{I H}$
[3] $\overline{O E}$ may be delayed for read operation up to $t_{A C C}-t_{O E}$ after the falling edge of $\overline{\mathrm{CE}}$ without impacting $\mathrm{t}_{\mathrm{A}} \mathrm{CC}$.

Timing Waveforms (cont)

$\overline{W E}$-Controlled Write Cycle

Timing Waveforms (cont)

$\overline{C E}$-Controlled Write Cycle

Timing Waveforms (cont)
Chip Erase Cycle

Read Cycle

Both $\overline{C E}$ and $\overline{O E}$ must be at $V_{I L}$ in order to read stored data. While the device is executing read cycles, bringing either of these inputs to $\mathrm{V}_{1 H}$ will place the outputs in a state of high impedance. This two-line output control allows bus contention to be eliminated in the system application.

Byte Write Cycle

Low levels on $\overline{\mathrm{CE}}$ and $\overline{\mathrm{WE}}$ and a high level on $\overline{\mathrm{OE}}$ place the μ PD28C04 in write operation. The write address inputs are latched by the falling edge of either $\overline{\mathrm{CE}}$ or $\overline{W E}$ whichever occurs later. The data inputs are latched by the rising edge of either $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$, whichever occurs earlier. Once byte write cycles begin executing, internal circuits assume all timing control and the byte being addressed is automatically erased and then programmed. The operation is completed within a write cycle time (t_{w}) of 10 ms .

Chip Erase Cycle

All bytes of the $\mu \mathrm{PD} 28 \mathrm{C} 04$ can be erased simultaneously by making $\overline{C E}$ and $\overline{W E}$ fall to V_{IL} after $\overline{O E}$ has been increased to $\mathrm{V}_{1 \mathrm{HH}}$ ($15 \pm 0.5 \mathrm{~V}$). The address inputs are "don't care," but the data inputs must all be driven to $V_{I H}$ before the chip erase cycle begins.

DATA Polling Feature

This feature supports system software by indicating the precise end of byte write cycles. DATA polling can be used to reduce the total programming time of the μ PD28C04 to a minimum value, which varies with the system environment.
While internal automatic write cycles are in progress, any attempt to read data at the last externally supplied address location will result in inverted data on pin $1 / \mathrm{O}_{7}$ (for example, if write data $=1 \times x x x x x x$, then read data $=0 x x x \mathrm{xxxx}$). Once the write cycle is complete, a read cycle will result in true data being output on $\mathrm{I} / \mathrm{O}_{7}$.

Write Protection Features

The μ PD28C04 provides three features to prevent invalid write cycles:

- Noise immunity, where write operation is inhibited when the $\overline{W E}$ pulse width is 20 ns or less.
-Supply voltage-level detection, where write operation is inhibited when $V_{C C}$ is 2.5 volts or less.
-Write protection logic, where write operation is inhibited if $\overline{O E}$ is held low or $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$ is held high during power-on or -off of the V_{CC} supply voltage.

Description

The $\mu \mathrm{PD} 28 \mathrm{C} 05$ is an electrically erasable and programmable read-only memory (EEPROM) organized as 512 words by 8 bits. The device operates from a +5 -volt power supply and is fabricated with an advanced CMOS process for high performance and low power consumption.
The device offers an $\overline{\text { ALE }}$ pin to control the latching of addresses and a DATA polling function to indicate the precise end of write cycles. Additional features include chip erase, auto erase and programming. The μ PD28C05 is available in standard 24-pin plastic DIP or miniflat packaging.

Features

- 512-word by 8-bit organization
- Single +5 -volt power supply
- Fast access times of 200 and 250 ns maximum
- Chip erase feature
- Auto erase and programming: 10 ms maximum
- DATA polling feature
- Address latching by means of $\overline{\text { ALE }}$ pin
- Low power dissipation
- 50 mA max (active)
- $100 \mu \mathrm{~A}$ max (standby)
- Endurance: 100,000 erase/write cycles per byte
- TTL-compatible inputs and outputs
- Three-state outputs
- Advanced CMOS technology
- 24-pin plastic DIP or miniflat packaging

Ordering Information

Part Number	Access Time (max)	Package
μ PD28C05C-20	200 ns	24-pin plastic DIP
$\mathrm{C}-25$	250 ns	
μ PD28C05G-20	200 ns	24-pin plastic miniflat
$\mathrm{G}-25$	250 ns	

Pin Configuration

24-Pin Plastic DIP or Miniflat

Pin Identification

Symbol	Function
$A_{0}-A_{8}$	Address inputs
$1 / O_{0}-I / O_{7}$	Data inputs and outputs
$\overline{C E}$	Chip enable
$\overline{O E}$	Output enable
$\overline{W E E}$	Write enable
$\overline{\text { ALE }}$	Address latch enable
$G N D$	Ground
$V_{C C}$	+ 5-volt power supply
$N C$	No connection

Absolute Maximum Ratings

Supply voltage, V_{CC}	-0.6 to +7.0 V
Input voltage, V_{11}	-0.6 to +7.0 V
Input voltage, $\mathrm{V}_{12}(\overline{\mathrm{OE})}$	-0.6 to +16.5 V
Output voltage, $\mathrm{V}_{\mathrm{OUT}}$	-0.6 to +7.0 V
Operating temperature, $\mathrm{T}_{\mathrm{OPT}}$	-10 to $+85^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\mathrm{STG}}$	-65 to $+125^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Input voltage, high	V_{IH}	2.0		$\mathrm{~V}_{\mathrm{CC}}+0.3$	V
Input voltage, low	V_{IL}	-0.3		0.8	V
Operating temperature	T_{A}	0	70	${ }^{\circ} \mathrm{C}$	

Capacitance

$T_{A}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

Parameter	Symbol	Min	Max	Unit
Input capacitance	C_{I}	12	pF	
Output capacitance	C_{o}	10	pF	

Truth Table

Function	$\overline{\mathbf{C E}}$	$\overline{\mathrm{OE}}$	$\overline{\mathrm{WE}}$	$\overline{\mathrm{ALE}}$	I / O	ICC
Read	V_{IL}	V_{IL}	V_{IH}	X	$\mathrm{D}_{\text {OUT }}$	Active
Standby and write inhibit	V_{IH}	X	X	X	High-Z	Standby
Write	V_{IL}	V_{IH}	V_{IL}	V_{IH}	D_{IN}	Active
Chip erase	V_{IL}	$\mathrm{V}_{\mathrm{IHH}}$	V_{IL}	V_{IH}	$\mathrm{D}_{\text {IN }}=\mathrm{V}_{\mathrm{IH}}$	Active
Write Inhibit	X	V_{IL}	X	X	-	-
	X	X	V_{IH}	X	-	-

Notes:

(1) X can be either $V_{I L}$ or $V_{I H}$.
(2) $\mathrm{V}_{\mathrm{IHH}}=+15 \pm 0.5 \mathrm{~V}$.

Block Diagram

DC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Output voltage, high	$\mathrm{V}_{\mathrm{OH} 1}$	2.4			V	$\mathrm{IOH}=-400 \mu \mathrm{~A}$
	$\mathrm{V}_{\mathrm{OH} 2}$	$\mathrm{V}_{\mathrm{cc}}-0.7$			v	$\mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$
Output voltage, low	V_{OL}			0.45	V	$\mathrm{l}_{\mathrm{OL}}=2.1 \mathrm{~mA}$
Output leakage current	Lo			10	$\mu \mathrm{A}$	$V_{\text {OUT }}=O V_{\text {to }} V_{\text {CC }}$ (max)
Input leakage current	l_{L}			10	$\mu \mathrm{A}$	$V_{\mathbb{N}}=O V^{\text {to }} V_{C C}$ (max)
$\mathrm{V}_{\text {cc }}$ current (active)	$I_{\text {ccal }}$			20	mA	$\overline{C E}=V_{I L} ; V_{I N}=V_{I H}$
	$I_{\text {ccal }}$			50	mA	$f=5 \mathrm{MHz} ; \mathrm{l}_{\text {OUT }}=0 \mathrm{~mA}$
$\mathrm{V}_{\text {CC }}$ current (standby)	$\mathrm{lccs1}$			1	mA	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$
	Iccs2			100	$\mu \mathrm{A}$	$\overline{C E}=V_{C C} ; V_{I N}=O V$ to $V_{C C}$

AC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	$\mu \mathrm{PD} 28 \mathrm{C} 05-20$		$\mu \mathrm{PD} 28 \mathrm{C} 05-25$		Unit	Test Conditions
		Min	Max	Min	Max		
Read Cycle							
Address to output delay	$\mathrm{t}_{\text {ACC }}$		200		250	ns	$\begin{aligned} & \overline{\mathrm{CE}}=\overline{\mathrm{OE}}=V_{I L} \\ & \overline{A L E}=\overline{\mathrm{WE}}=\overline{V_{I H}} \end{aligned}$
Address hold time from $\overline{\text { ALE }}$	$t_{\text {AHL }}$	20		30		ns	$\overline{W E}=V_{i H}$
$\overline{\text { ALE }}$ to output delay	$t_{\text {ALE }}$		200		250	ns	$\overline{C E}=\overline{O E}=V_{1 L} ; \overline{W E}=V_{I H}$
Address setup time to $\overline{\text { ALE }}$	$t_{\text {ASL }}$	15		20		ns	$\overline{W E}=V_{1 H}$
$\overline{\overline{C E}}$ to output delay	${ }^{\text {t }}$ CE		200		250	ns	$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}} ; \overline{\mathrm{WE}}=\mathrm{V}_{\mathrm{IH}}$
$\overline{\mathrm{CE}}$ setup time to $\overline{\mathrm{ALE}}$	${ }^{\text {t CSL }}$	20		20		ns	$\overline{\mathrm{WE}}=\mathrm{V}_{\mathrm{IH}}$
$\overline{\overline{C E}}$ high to output float	${ }^{\text {t }}$ DFC	0	60	0	80	ns	$\overline{O E}=V_{I L} ; \overline{W E}=V_{I H}$
OE high to output float	$\mathrm{t}_{\text {DFO }}$	0	60	0	80	ns	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}} ; \overline{\mathrm{WE}}=\mathrm{V}_{\mathrm{IH}}$
$\overline{\text { ALE }}$ high-level pulse width	${ }_{\text {tLL }}$	40		40		ns	$\overline{W E}=V_{I H}$
OE to output delay	$\mathrm{t}_{\text {OE }}$	10	75	10	100	ns	$\overline{C E}=V_{\text {IL }} ; \overline{W E}=V_{\text {IH }}$
Output hold time from address change	${ }^{\text {t }} \mathrm{OHA}$	0		0		ns	$\begin{aligned} & \overline{\overline{C E}}=\overline{\mathrm{OE}}=V_{\mathrm{IL}} ; \\ & \overline{\mathrm{ALE}}=\overline{\mathrm{WE}}=\mathrm{V}_{\mathrm{IH}}(\text { Note 2) } \end{aligned}$
Output hold time from rising edge of CE	${ }^{\text {tohe }}$	0		0		ns	$\overline{O E}=V_{I L} ; \overline{\mathrm{WE}}=\mathrm{V}_{\mathrm{IH}}$ (Note 2)
Output hold time from rising edge of $\overline{A L E}$	${ }^{\text {tohi }}$	0		0		ns	$\begin{aligned} & \overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{LL}} ; \overline{\mathrm{WE}}=\mathrm{V}_{\mathrm{IH}} \\ & \text { (Note 2) } \end{aligned}$
Output hold time from rising edge of $\overline{O E}$	$\mathrm{t}_{\mathrm{OHO}}$	0		0		ns	$\overline{C E}=V_{1 L} ; \overline{W E}=V_{1 H}$
$\overline{\overline{W E}}$ hold time from rising edge of $\overline{\mathrm{OE}}$	${ }^{\text {twho }}$	10		10		ns	$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$
	twsc	10		10		ns	$\overline{C E}=V_{1 H}$
	twso	10		10		ns	$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$

AC Characteristics (cont)

Parameter	Symbol	$\mu \mathrm{PD} 28 \mathrm{C05-20}$		$\mu \mathrm{PD} 28 \mathrm{CO5-25}$		Unit	Test Conditions
		Min	Max	Min	Max		
Write Cycle							
Address hold time from WE	$\mathrm{t}_{\text {AH }}$	200		200		ns	
Address setup time to WE	$\mathrm{t}_{\text {AS }}$	10		10		ns	
$\overline{\overline{C E}}$ high after $\overline{\mathrm{CE}}$-controlled write cycle	${ }^{t} \mathrm{CEH}$	9.9		9.9		ms	
$\overline{\text { CE }}$ hold time from WE high	${ }^{\text {t }} \mathrm{CH}$	0		0		ns	
$\overline{\text { CE }}$ setup time to $\overline{\text { WE }}$	${ }^{\text {t }}$ CS	0		0		ns	
$\overline{C E}$ pulse width	t_{CW}	150		150		ns	
Data hold time	${ }^{\text {t }}$ DH	20		20		ns	
Data setup time	$t_{\text {DS }}$	100		100		ns	
$\overline{\text { OE high hold time }}$	${ }^{\text {toEH }}$	10		10		ns	
OE high setup time	toes	10		10		ns	
Write cycle time	$t_{\text {w }}$	10		10		ms	
$\overline{\text { WE }}$ high after $\overline{W E}$-controlled write cycle	${ }^{\text {tWEH }}$	9.9		9.9		ms	
WE pulse width	${ }^{\text {twp }}$	150		150		ns	
Chip Erase Cycle							
CE hold time	${ }^{\text {teCH }}$	5		5		$\mu \mathrm{s}$	
$\overline{\mathrm{CE}}$ setup time	$\mathrm{t}_{\text {ECS }}$	500		500		ns	
Data hold time	tedh	100		100		ns	
Data setup time	${ }_{\text {t }}$	500		500		ns	
$\overline{O E}$ hold time	teoen	${ }^{\text {teCH }}+3$		$\mathrm{t}_{\mathrm{ECH}}+3$		$\mu \mathrm{s}$	
$\overline{O E}$ setup time	teoes	500		500		ns	
WE pulse width	tewp	10		10		ms	

Notes:

(1) input rise and fall time $\leq 20 \mathrm{~ns}$; input pulse levels $=0.45$ and 2.4 V ; timing measurement reference levels $=0.8$ and 2.0 V for both inputs and outputs. See figure 1 for output load.
(2) Output hold time is specified either from the address, or from the $\overline{\mathrm{ALE}}, \overline{\mathrm{OE}}$ or $\overline{\mathrm{CE}}$ pins, whichever goes invalid first.

Figure 1. Output Load

Read Cycles

$\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ must both be at V_{IL} for read cycles to be executed. If either of these inputs rise to $\mathrm{V}_{1 H}$ while the device is reading stored data, the outputs will be placed in a state of high impedance. This two-line output control eliminates bus contention in the system application.

Byte Write Cycles

Low logic levels on $\overline{\mathrm{CE}}$ and $\overline{\mathrm{WE}}$ and high logic levels on $\overline{\mathrm{OE}}$ and $\overline{\mathrm{ALE}}$ place the $\mu \mathrm{PD} 28 \mathrm{C} 05$ in write operation. The write address inputs are latched by the falling edge of either $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$, whichever occurs later. The data inputs are latched by the rising edge of either $\overline{C E}$ or $\overline{W E}$, whichever occurs earlier. Once byte write operation has begun, the internal circuitry assumes all timing control and the byte being addressed in automatically erased and then programmed. The operation completes within the write cycle time ($\mathrm{t} w \mathrm{c}$) of 10 ms .

Chip Erase Cycles

All bytes of the $\mu \mathrm{PD} 28 \mathrm{C} 05$ can be erased simultaneously by making $\overline{C E}$ and $\overline{W E}$ fall to $V_{I L}$ and $\overline{A L E}$ rise to $V_{I H}$ after $\overline{\mathrm{OE}}$ has been increased to $\mathrm{V}_{\mathrm{IHH}}(+15 \pm 0.5 \mathrm{~V}$). The address inputs are "don't care," but the data inputs must all be driven to V_{IH} before the chip erase cycle begins.

$\overline{\text { DATA }}$ Polling Feature

This feature supports system software by indicating the precise end of byte write cycles and can be used to reduce the total programming time of the $\mu \mathrm{PD} 28 \mathrm{C} 05$ to a minimum value, which varies with the system environment.
While internal automatic write cycles are being executed, any attempt to read data at the last externally supplied address location will result in inverted data on pin I / O_{7}. For example, if write data $=1 x x x$ xxxx, then read data $=0 x x x$ xxxx. Once write cycles have finished executing, the execution of a subsequent read cycle will result in true data being output on $1 / \mathrm{O}_{7}$.

Write Protection Features

Three features protect against invalid write cycles:

- Noise immunity, where write operation is inhibited when the WE pulse width is 20 ns or less;
-Supply voltage-level detection, where write operation is inhibited when V_{CC} is 2.5 volts or less; and
- Write protection logic, where write operation is inhibited if $\overline{\mathrm{OE}}$ is held low or $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$ is held high during power-on or off of the V_{CC} supply voltage.

Truth Table

Function	$\overline{C E}$	$\overline{\mathrm{OE}}$	$\overline{W E}$	$\overline{\text { ALE }}$	$\mathrm{I} / \mathrm{O}_{0}-1 / \mathrm{O}_{7}$	Icc
Read	$V_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	V_{IH}	X	Dout	Active
Standby and write inhibit	V_{IH}	X	X	X	High-Z	Standby
Write	$V_{\text {IL }}$	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IL }}$	V_{IH}	$\mathrm{D}_{\mathbb{N}}$	Active
Chip erase	$\mathrm{V}_{\text {IL }}$	V_{HH}	$\mathrm{V}_{\text {IL }}$	V_{1}	$\mathrm{DIN}_{\text {IN }}=\mathrm{V}_{\text {IH }}$	Active
Write inhibit	X	$V_{\text {IL }}$	X	X	-	-
	X	X	V_{IH}	X		

Notes:
(1) X can be either $V_{I L}$ or $V_{I H}$.
(2) $V_{1 H H}=+15 \pm 0.5 \mathrm{~V}$.

Timing Waveforms

Synchronous Read Cycle ($\overline{A L E}$-Controlled)

Timing Waveforms (cont)

Asynchronous Read Cycle

Timing Waveforms (cont)

WE-Controlled Write Cycle

Notes:
[1] The address inputs are latched at the falling edge of $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$, whichever occurs later.
[2] The data inputs are latched at the rising edge of $\overline{C E}$ or $\overline{W E}$, whichever occurs earlier.
[3] Write operation requires both $\overline{\mathrm{CE}}$ and $\overline{\mathrm{WE}}$ to be at V_{IL}. Parameter twp is defined only for the period when both $\overline{\mathrm{CE}}$ and $\overline{\mathrm{WE}}$ are at V_{IL}.

Timing Waveforms (cont)

CE-Controlled Write Cycle

Timing Waveforms (cont)
Chip Erase Cycle

Description

The $\mu \mathrm{PD} 28 \mathrm{C} 64$ is a 65,536 -bit electrically erasable and programmable read-only memory (EEPROM) organized as $8,192 \times 8$ bits and fabricated with an advanced CMOS process for high performance and low power consumption.
Operating from a single +5 -volt power supply, the μ PD28C64 provides DATA polling function to indicate the precise end of write cycles. Additional features include chip erase, auto erase and programming, and 32-byte page write cycles.

The μ PD28C64 is available in standard 28 -pin plastic DIP.

Features

- 8,192 x 8-bit organization
- Single +5 -volt power supply
- Chip erase cycles
- Auto erase and programming at 10 ms max
- 32-byte page programming cycles
- DATA polling verification
- Low power dissipation
$-50 \mathrm{~mA} \max$ (active)
$-100 \mu \mathrm{~A}$ max (standby)
- Endurance: 100,000 erase/write cycles per byte
- Silicon signature
- TTL-compatible inputs and outputs
- Three-state outputs
- Advanced CMOS technology
- 28-pin plastic DIP packaging

Ordering Information

Part Number	Access Time (max)	Package
μ PD28C64C-20	200 ns	28-pin plastic DIP
$\mathrm{C}-25$	250 ns	

Pin Configuration

28-Pin Plastic DIP

Pin Identification

Symbol	Function
$A_{0}-A_{12}$	Address inputs
$I / O_{0}-I / O_{7}$	Data inputs and outputs
$\overline{\overline{C E}}$	Chip enable
$\overline{\overline{O E}}$	Output enable
$\overline{\mathrm{WE}}$	Write enable
GND	Ground
$V_{C C}$	+5 -volt power supply
$N C$	No connection

Absolute Maximum Ratings

Supply voltage, V_{CC}	-0.6 to +7.0 V
Input voltage, V_{IN}	-0.6 to +7.0 V
Input voltage, A_{9}	-0.6 to +13.5 V
$\overline{\overline{O E}}$	-0.6 to +16.5 V
Output voltage, $\mathrm{V}_{\text {OUT }}$	-0.6 to +7.0 V
Operating temperature, $\mathrm{T}_{\mathrm{OPR}}$	-10 to $+85^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\text {STG }}$	-65 to $+125^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Input voltage, high	V_{IH}	2.0	$\mathrm{~V}_{\mathrm{CC}}+0.3$	V	
Input voltage, low	V_{IL}	-0.3	0.8	V	
Operating temperature	T_{A}	0		70	${ }^{\circ} \mathrm{C}$

Capacitance
$T_{A}=25^{\circ} \mathrm{C} ; f=1 \mathrm{MHz} ; \mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

Parameter	Symbol	Min	Typ	Max	Unit
Input capacitance	C_{l}			12	pF
Output capacitance	C_{0}		10	pF	

Truth Table

Function	$\overline{\mathbf{C E}}$	$\overline{\mathrm{OE}}$	$\overline{\mathrm{WE}}$	Input/Output	ICc
Read	V_{IL}	V_{IL}	V_{IH}	$\mathrm{D}_{\text {OUT }}$	Active
Standby and write inhibit	V_{IH}	X	X	High-Z	Standby
Write	V_{IL}	V_{IH}	V_{IL}	D_{IN}	Active
Chip erase	V_{IL}	$\mathrm{V}_{\mathrm{IHH}}$	V_{IL}	$\mathrm{D}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$	Active
Write Inhibit	X	V_{IL}	X	-	-
	X	X	V_{IH}		

Notes:

(1) X can be either $V_{I L}$ or $V_{I H}$.
(2) $\mathrm{V}_{\mathrm{IHH}}=+15 \mathrm{~V} \pm 0.5$.

Block Diagram

DC Characteristics
$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Output voltage, high	$\mathrm{V}_{\mathrm{OH} 1}$	2.4			V	$\mathrm{l}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
	$\mathrm{V}_{\mathrm{OH} 2}$	$\mathrm{v}_{\text {cc }}-0.7$			V	$\mathrm{IOH}=-100 \mu \mathrm{~A}$
Output voltage, low	VOL			0.45	\checkmark	$\mathrm{IOL}^{\text {a }}$ 2.1 mA
Output leakage current	Lo			10	$\mu \mathrm{A}$	$\begin{aligned} & V_{\text {OUT }}=0 V \text { to } V_{\mathrm{CC}} \\ & \mathrm{CE} \text { or } \overline{O E}=V_{\mathrm{IH}} \end{aligned}$
Input leakage current	l_{LI}			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to $\mathrm{V}_{C C}$
$\mathrm{V}_{\text {cc }}$ current (active)	ICCA1			20	mA	$\overline{C E}=V_{1 L} ; \overline{O E}=V_{1 H}$
	$l_{\text {ccar }}$			50	mA	$\mathrm{f}=5 \mathrm{MHz}$; lout $=0 \mathrm{~mA}$
$V_{\text {CC }}$ current (standby)	ICCs1			1	mA	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {IH }}$
	$\mathrm{lccs2}$			100	$\mu \mathrm{A}$	$\overline{C E}=V_{C C} ; V_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$

AC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{C \mathrm{C}}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	$\mu \mathrm{PD} 28 \mathrm{C} 64-20$		$\mu \mathrm{PD} 28 \mathrm{C64-25}$		Unit	Test Conditions
		Min	Max	Min	Max		
Read Operation							
Address to output delay	$t_{A C C}$		200		250	ns	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$
$\overline{\mathrm{CE}}$ to output delay	${ }^{t_{C E}}$		200		250	ns	$\overline{O E}=V_{i L}$
$\overline{\mathrm{OE}}$ or $\overline{\mathrm{CE}}$ high to output float	$t^{\text {dF }}$	0	60	0	80	ns	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$ or $\overline{O E}=V_{\mathrm{IL}}$
$\overline{\mathrm{OE}}$ to output delay	$\mathrm{t}_{\text {OE }}$	10	75	10	100	ns	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$
Output hold from address, $\overline{\mathrm{OE}}$ or $\overline{\mathrm{CE}}$, whichever transition occurs first	${ }^{\text {toH }}$	0		0		ns	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$

AC Characteristics (cont)

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Write Operation						
Address hold time	${ }^{\text {thH }}$	200			ns	
Address setup time	$\mathrm{t}_{\text {AS }}$	10			ns	
Write hold time	${ }^{\text {t }} \mathrm{CH}$	0			ns	
Write setup time	${ }^{\text {t }} \mathrm{CS}$	0			ns	
$\overline{\mathrm{CE}}$ pulse width	${ }^{\mathrm{t}_{\mathrm{CW}}}$	150			ns	
$\overline{\mathrm{OE}}$ high hold time	$\mathrm{t}_{\text {OEH }}$	10			ns	
$\overline{\text { OE high setup time }}$	toes	10			ns	
Write cycle time	$t_{\text {w }}$	10			ms	
WE pulse width	$t_{W P}$	150			ns	
$\overline{\text { WE high hold time }}$	${ }^{\text {t }}$ WPH	50			ns	

AC Characteristics (cont)

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Write Operation						
Byte load cycle time	${ }_{\text {t }}^{\text {BLC }}$	3		100	$\mu \mathrm{s}$	
Data hold time	${ }^{\text {t }}$ D	20			ns	
Data setup time	$t_{\text {DS }}$	100			ns	
Data valid time	$t_{\text {DV }}$			300	ns	
Chip Erase Operation						
$\overline{\mathrm{OE}}$ hold time	${ }^{\text {t }}$ CEH	${ }^{\text {t }} \mathrm{CH}+3$			$\mu \mathrm{s}$	
$\overline{C E}$ hold time	${ }^{\mathrm{t}_{\mathrm{CH}}}$	5			$\mu \mathrm{s}$	
$\overline{\overline{C E} \text { setup time }}$	${ }^{\text {tas }}$	500			ns	
Data hold time	${ }^{\text {t }}{ }_{\text {dH }}$	100			ns	
Data setup time	$t_{\text {DS }}$	500			ns	
$\overline{\overline{O E}}$ setup time	$\mathrm{t}_{\text {OES }}$	500			ns	
WE pulse width	$t_{\text {wp }}$	10			ms	

Notes:

(1) See figure 1 for the output load. Input rise and fall times ≤ 20 ns; input pulse levels $=0.45$ and 2.4 V ; timing measurement reference levels $=0.8$ and 2.0 V for both inputs and outputs.

Figure 1. Output Load

Read Cycles

Both $\overline{C E}$ and $\overline{O E}$ must both be at $V_{I L}$ in order to read stored data. While the device is executing read cycles, bringing either of these inputs to V_{IH} will place the outputs in a state of high impedance. This two-line output control allows bus contention to be eliminated in the system application.

Byte Write Cycles

Low levels on $\overline{\mathrm{CE}}$ and $\overline{\mathrm{WE}}$ and a high level on $\overline{\mathrm{OE}}$ place the μ PD28C64 in write operation. Write address inputs are latched by the falling edge of either $\overline{C E}$ or $\overline{W E}$, whichever occurs later. The data inputs are latched by the rising edge of either $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$, whichever occurs earlier. Once byte write operation has begun, the internal circuits assume all timing control. The byte being addressed is automatically erased and then programmed. The operation completes within the write cycle time ($\mathrm{twc}_{\mathrm{w}}$) of 10 ms .

Page Write Cycle

This option allows the $\mu \mathrm{PD} 28 \mathrm{C} 64$ to be completely programmed in a much shorter time than is required using byte write cycles. The loading of up to 32 bytes of data before internal write cycles program all of these bytes simultaneously allows the μ PD28C64 to be completely written in a maximum of 2.6 seconds. The page address is specified by the inputs A_{5} through A_{12}; once set, this address cannot be changed during a page write cycle. Within the page, address inputs A_{0} through A_{4} can be used sequentially or in random order to specify individual bytes.
The beginning of a page write cycle is the same as a $\overline{W E}$-controlled byte write cycle. If the next falling edge of $\overline{W E}$ occurs within a byte load cycle time of $100 \mu \mathrm{~s}$, the internal byte load register will be loaded with another byte of input data. This cycle can be repeated to load a
maximum of 32 bytes of data. At any point in the sequence, if WE does not have a new falling edge within the byte load cycle time of $100 \mu \mathrm{~s}$, byte load operation will terminate and automatic erasing and programming operations will begin.

Chip Erase Cycles

All bytes of the $\mu \mathrm{PD} 28 \mathrm{C} 64$ can be erased simultaneously by making $\overline{C E}$ and $\overline{W E}$ fall to $V_{\text {IL }}$ after $\overline{O E}$ has been increased to $\mathrm{V}_{\mathrm{HH}}(15 \mathrm{~V} \pm 0.5)$. The address inputs are "don't care," but the data inputs must all be driven to $V_{I H}$ before the chip erase cycle begins.

$\overline{\text { DATA }}$ Polling Feature

This feature supports system software by indicating the precise end of byte write and page write cycles. DATA polling can be used to reduce total programming
time of the μ PD28C64 to a minimum value, which varies with the system environment.
While internal automatic write operation is in progress, any attempt to read data at the last externally supplied address location will result in inverted data on pin $1 / \mathrm{O}_{7}$ (for example, if write data $=1 \mathrm{xxx} x \mathrm{xxx}$, then read data $=0 x x x \times x x x)$. Once the write cycle is complete, a read cycle will result in true data being output on $1 / \mathrm{O}_{7}$.

Write Protection Features

The μ PD28C64 provides three features to prevent invalid write cycles.

- Noise immunity, where write operation is inhibited when the WE pulse width is 20 ns or less.
- Supply voltage level detection, where write operation is inhibited when V_{CC} is 2.5 V or less.
- Write protection logic, where write operation is inhibited if $\overline{\mathrm{OE}}$ is held low or $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$ is held high during power on or off of the V_{CC} supply voltage.

Timing Waveforms

Read Cycle

Notes:
[1] $\overline{O E}$ may be delayed for read operation up to $t_{A C C}-{ }^{\text {t }}$ OE, atter the falling edge of CE, without impact on ${ }^{\prime} A C C$.
[2] $t_{D F}$ is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

Timing Waveforms (cont)

WE-Controlled Write Cycle

Timing Waveforms (cont)

CE-Controlled Write Cycle

Timing Waveforms (cont)

Page Write Cycle

Notes:
[1] The address inputs are latched at the falling edge of $\overline{C E}$ or $\overline{W E}$, whichever occurs later.
[2] The data inputs are latched at the rising edge of $\overline{C E}$ or $\overline{W E}$, whichever occurs earlier.
[3] Write operation requires both $\overline{C E}$ and $\overline{W E}$ to be at $V_{\text {IL }}$. Parameters tWP and $\mathrm{t}_{\mathrm{C}} \mathrm{CW}$ are defined only for the period when both CE and WE are at $V_{\text {IL }}$.
[4] The page cannot be changed in the middle of a page write cycle. Address inputs $\mathrm{A}_{5}-\mathrm{A}_{12}$ must be supplied for every byte load cycle and must remain the same throughout the page write cycle to prevent writing to an unknown address location. Address inputs $\mathbf{A}_{0}-\mathbf{A}_{4}$ are altered for each byte load cycle and determine the individual byte to be written within the page.
[5] A maximum of 32 bytes may be loaded in a single page write cycle.

Timing Waveforms (cont)
Chip Erase Cycle

Description

The $\mu \mathrm{PD} 28 \mathrm{C} 256$ is a 262,144 -bit electrically erasable and programmable read-only memory (EEPROM) organized as $32,768 \times 8$ bits and fabricated with an advanced CMOS process for high performance and low power consumption.
Operating from a single +5 -volt power supply, the μ PD28C256 provides DATA polling and toggle bit functions to indicate the precise end of write cycles. Additional features include software data protection, software chip erase, auto erase and programming, and 64 -byte page write operation using automatic write timing and internal address and data latches.
The $\mu \mathrm{PD} 28 \mathrm{C} 256$ is available in standard 28 -pin plastic DIP packaging.

Features

- Single +5 -volt power supply

ㅁ Fast access time of 200 ns (max)

- Software chip erase cycles
- Auto erase and programming at 10 ms (max)
- 64-byte page programming cycles
- End of write detection
- DATA polling
- Toggle bit
- Software data protection

ㅁ Low power dissipation
-50 mA max (active)
$-100 \mu \mathrm{~A} \max$ (standby)

- 10,000 erase/write cycles per byte
- Silicon signature included
- Advanced CMOS technology
- 28-pin plastic DIP packaging

Ordering Information

Part Number	Access Time (max)	Package
μ PD28C256CZ-20	200 ns	28-pin plastic DIP
$\mathrm{CZ}-25$	250 ns	

Pin Configuration

28-Pin Plastic DIP

Pin Identification

Symbol	Function
$A_{0}-A_{14}$	Address inputs
$/ / O_{0}-I / O_{7}$	Data inputs and outputs
$\overline{\overline{C E}}$	Chip enable
$\overline{\mathrm{OE}}$	Output enable
$\overline{\mathrm{WE}}$	Write enable
GND	Ground
$V_{C C}$	+5 -volt power supply

Absolute Maximum Ratings

Supply voltage, V_{CC}	-0.6 to +7.0 V
Input voltage, V_{IN}	-0.6 to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Input voltage $\left(\mathrm{A}_{\mathrm{g}}\right)$	-0.6 to +13.5 V
Output voltage, $\mathrm{V}_{\text {OUT }}$	-0.6 to +7.0 V
Operating temperature, TOPR	-10 to $+85^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\text {STG }}$	-65 to $+125^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{CC}	4.5	5.0	5.5	V
input voltage, high	V_{IH}	2.0	$\mathrm{~V}_{\mathrm{CC}}+0.3$	V	
Input voltage, low	V_{IL}	-0.3	0.8	V	
Operating temperature	T_{A}	0		70	${ }^{\circ} \mathrm{C}$

Capacitance

$T_{A}=25^{\circ} \mathrm{C} ; f=1 \mathrm{MHz} ; V_{I N}$ and $V_{\text {OUT }}=0 \mathrm{~V}$

Parameter	Symbol	Min	Typ	Max	Unit
Input capacitance	C_{I}			12	pF
Output capacitance	C_{O}			10	pF

Truth Table

Function	$\overline{\mathrm{CE}}$	$\overline{\mathrm{OE}}$	$\overline{\mathrm{WE}}$	Input/Output	ICC
Read	V_{IL}	V_{IL}	V_{IH}	$\mathrm{D}_{\mathrm{OUT}}$	Active
Standby and write inhibit	V_{IH}	X	X	High-Z	Standby
Write	V_{IL}	V_{IH}	V_{IL}	D_{IN}	Active
Write Inhibit	X	V_{IL}	X	-	-
	X	X	V_{IH}		

Notes:

(1) X can be either $V_{I L}$ or $V_{I H}$.

Block Diagram

μ PD28C256

DC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Output voltage, high	$\mathrm{V}_{\mathrm{OH} 1}$	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
	$\mathrm{V}_{\mathrm{OH} 2}$	$\mathrm{V}_{\text {cc }}-0.7$			V	$\mathrm{IOH}=-100 \mu \mathrm{~A}$
Output voltage, low	V_{OL}			0.45	V	$\mathrm{IOL}=2.1 \mathrm{~mA}$
Output leakage current	${ }^{\text {LO }}$	-10		10	$\mu \mathrm{A}$	$\begin{aligned} & V_{\text {OUT }}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{CE} \text { or } \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{HH}} \end{aligned}$
Input leakage current	ILI	-10		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbf{I N}}=0 \mathrm{~V}$ to V_{CC}
$\mathrm{V}_{\text {cc }}$ current (active)	$I_{\text {ccal }}$			20	mA	$\overline{C E}=V_{\text {IL }} ; V_{\text {IN }}=V_{\text {IH }}$
	lccat			50	mA	$f=5 \mathrm{MHz}$; lout $=0 \mathrm{~mA}$
$\mathrm{V}_{\text {cc }}$ current (standby)	lccsi			1	mA	$\overline{C E}=V_{1 H}$
	lccs2			100	$\mu \mathrm{A}$	$\overline{C E}=V_{C C} ; V_{\text {IN }}=O V$ to $V_{C C}$

AC Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	μ PD28C256-20		μ PD28C256-25		Unit	Test Conditions
		Min	Max	Min	Max		
Read Operation							
Address to output delay	$t_{\text {ACC }}$		200		250	ns	$\overline{C E}=\overline{O E}=V_{\text {IL }}$
$\overline{\overline{C E}}$ to output delay	${ }^{\text {t }}$ CE		200		250	ns	$\overline{O E}=V_{\text {IL }}$
$\overline{O E}$ to output delay	${ }^{\text {toE }}$	10	75	10	100	ns	$\overline{C E}=V_{\text {IL }}$
$\overline{O E}$ or $\overline{C E}$ high to output float	$t_{\text {dF }}$	0	60	0	80	ns	$\overline{C E}=V_{\text {IL }}$ or $\overline{O E}=V_{\text {IL }}$
Output hold from address,	${ }^{\text {toh }}$	0		0		ns	$\overline{C E}=\overline{O E}=V_{\text {IL }}$

$\overline{\mathrm{OE}}$ or $\overline{\mathrm{CE}}$, whichever
transition occurs first

Write Operation

Write cycle time	twe	10		10		ms
Address setup time	$t_{\text {AS }}$	10		10		ns
Address hold time	${ }_{\text {t }}{ }_{\text {H }}$	200		200		ns
Write setup time	$t_{\text {cs }}$	0		0		ns
Write hold time	${ }^{\text {teH }}$	0		0		ns
$\overline{\text { CE pulse width }}$	${ }^{\text {t }} \mathrm{CW}$	150		150		ns
OE high setup time	toes	10		10		ns
OE high hold time	$\mathrm{t}_{\text {OEH }}$	50		50		ns
WE pulse width	${ }^{\text {W }}$ W	150		150		ns
WE high pulse width	${ }_{\text {twPH }}$	2		2		$\mu \mathrm{s}$
WE high hold time	${ }^{\text {W WEH }}$	9.9		9.9		ms
$\overline{C E}$ high hold time	$\mathrm{t}_{\text {CEH }}$	9.9		9.9		ms
Data setup time	$t_{\text {d }}$	100		100		ns
Data hold time	${ }^{\text {t }}$ D	50		50		ns
Byte load cycle time	${ }_{\text {t }}^{\text {BLC }}$	3	100	3	100	$\mu \mathrm{s}$

AC Characteristics (cont)

Parameter	Symbol	MPD28C256-20		μ PD28C256-25		Unit	Test Conditions
		Min	Max	Min	Max		
Software Chip Erase Operation							
$\overline{\text { CE }}$ setup time	$t_{\text {ECS }}$	500		500		ns	
$\overline{\text { WE pulse width }}$	$t_{\text {EWP }}$	10		10		ms	
CE hold time	${ }^{\text {t }}$ ECH	20		20		$\mu \mathrm{s}$	

Notes:

(1) See figure 1 for the output load. Input rise and fall times $\leq 20 \mathrm{~ns}$; input pulse levels $=0.45$ and 2.4 V ; timing measurement reference levels $=0.8$ and 2.0 V for both inputs and outputs.

Figure 1. Output Load

Read Cycles

Both $\overline{C E}$ and $\overline{O E}$ must be at $V_{I L}$ to enable stored data to be read. While the device is executing read cycles, bringing either of these inputs to V_{IH} will place the outputs in high impedance. This two-line output control allows bus contention to be eliminated in the system application.

Byte Write Cycles

Low levels on $\overline{\mathrm{CE}}$ and $\overline{\mathrm{WE}}$ and a high level on $\overline{\mathrm{OE}}$ place the μ PD28C256 in write operation. Write address inputs are latched by the falling edge of either $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$, whichever occurs later. Data inputs are latched by the rising edge of either $\overline{C E}$ or $\overline{W E}$, whichever occurs earlier. Once byte write operation has begun, the internal circuits assume all timing control and the byte being addressed is automatically erased and then programmed within the write cycle time (t_{wc}) of 10 ms .

Page Write Cycles

This option allows the μ PD28C256 to be completely programmed in a much shorter time than is required by byte write cycles. Page write cycles can program up to 64 bytes simultaneously, enabling the μ PD28C256 to be completely written within a maximum of 5.2 seconds. The page address is specified by the inputs A_{6} through A_{14}; once set, this address cannot be changed. Within the page, address inputs A_{0} through A_{5} can be used sequentially or in random order to specify individual bytes.

The beginning of a page write cycle is the same as a WE-controlled byte write cycle. If the next falling edge of $\overline{W E}$ occurs within a byte load cycle time of $100 \mu \mathrm{~s}$, the internal byte register will be loaded with another byte of input data. This cycle can be repeated to load a maximum of 64 bytes of data. At any point in the sequence, if WE does not have a new falling edge within the cycle time of $100 \mu \mathrm{~s}$, byte loading will terminate and automatic erasing and programming operations will begin.

$\overline{\text { DATA }}$ Polling Feature

This feature supports system software by indicating the precise end of byte write and page write cycles. DATA polling can be used to reduce total programming time of the $\mu \mathrm{PD} 28 \mathrm{C} 256$ to a minimum value, which varies with the system environment.
While internal automatic write operation is in progress, any attempt to read data at the last externally supplied address location will result in inverted data on pin $\mathrm{I} / \mathrm{O}_{7}$ (for example, if write data $=1 \times x \times x \times x x$, then read data $=0 \times x x x x x x$). Once the write cycle is complete, a read cycle will result in true data being output on $1 / \mathrm{O}_{7}$.

Toggle Bit Feature

The feature provides another method for indicating the end of write cycles. During the internal automatic write operation, $\mathrm{I} / \mathrm{O}_{6}$ will toggle from 0 to 1 and back on successive attempts to read data. When the write cycle is complete, the toggling stops; a read cycle results in true data being output on $\mathrm{I} / \mathrm{O}_{6}$ (figure 2).

Hardware Data Protection

The μ PD28C256 provides three features to prevent invalid write cycles:

- Noise immunity, where write operation is inhibited when the $\overline{W E}$ pulse width is 20 ns or less.
- Supply voltage level detection, where write operation is inhibited when V_{Cc} is 2.5 V or less.
- Write protection logic, where write operation is inhibited if $\overline{\mathrm{OE}}$ is held low or $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$ is held high during power on or off of the V_{CC} supply voltage.

Figure 2. Data Polling and Toggle Bit Operation

Software Data Protection

Additional protection of data is available using software control. Standard, unprotected write cycles are illustrated in the timing waveforms. Additional software-controlled protection is enabled or reset with two special sequences of write cycles. To enable software data protection, or to execute additional write cycles after the μ PD28C256 is in a protected state, use the address and data sequence shown in table 1. All three byte write cycles must be issued in sequence and must meet the timing illustrated in figure 3.

Table 1. Sequence to Enable Software Data Protection

Address Input (Hex)	Write Data (Hex)
5555 H	AAH
2 AAAH	55 H
5555 H	AOH

Under software protection, no write cycles will be executed unless preceded by the above sequence. The protection circuit is nonvolatile and continues to protect the data during power-down and power-up.

Figure 3. Sequence to Initiate or Continue Software Data Protection

To disable software protection for ease in testing or reprogramming of the $\mu \mathrm{PD} 28 \mathrm{C} 256$, the byte reset sequence shown in table 2 must be issued. The timing is illustrated in figure 4.

Table 2. Sequence to Disable Software Data Protection

Address Input (Hex)	Write Data (Hex)
5555 H	AAH
2 AAAH	55 H
5555 H	80 H
5555 H	AAH
2 AAAH	55 H
5555 H	20 H

At the end of this sequence, and after a minimum delay of twc to reset the nonvolatile protection circuit, the μ PD28C256 is in an unprotected state. Any standard write cycle can be executed as desired. in this state, the hardware features provide all data protection.

Figure 4. Reset Sequence for Software Data Protection

Software Chip Erase Feature

All bytes of the μ PD28C256 can be erased simultaneously by making $\overline{C E}$ and then $\overline{W E}$ fall to $V_{I L}$ using the address and data sequence shown in table 3. The required timing is illustrated in figure 5.

Table 3. Sequence to Set Up Soft ware Chip

 Erase| Address Input (Hex) | Write Data (Hex) |
| :--- | :---: |
| 5555 H | AAH |
| 2 AAAH | 55 H |
| 5555 H | 80 H |
| 5555 H | AAH |
| 2 AAAH | 55 H |
| 5555 H | 10 H |

Figure 5. Sequence for Software Chip Erase

Timing Waveforms

Read Cycle

Timing Waveforms (cont)

WE-Controlled Write Cycle

Notes:

[1] The address inputs are latched at the falling edge of $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$, whichever occurs later.
[2] The data inputs are latched at the rising edge of $\overline{C E}$ or $\overline{W E}$, whichever occurs earlier.
[3] Write operation requires both $\overline{C E}$ and $\overline{W E}$ to be at $V_{\text {IL }}$. Parameters tWP and tCW are defined only for the period when both $\overline{\mathrm{CE}}$ and $\overline{W E}$ are at $\mathrm{V}_{\text {IL }}$.

Timing Waveforms (cont)
$\overline{C E}$-Controlled Write Cycle

Timing Waveforms (cont)

Page Write Cycle

Notes:
[1] The address inputs are latched at the falling edge of $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$, whichever occurs later.
[2] The data inputs are latched at the rising edge of $\overline{C E}$ or $\overline{W E}$, whichever occurs earlier.
[3] Write operation requires both $\overline{\mathrm{CE}}$ and $\overline{\mathrm{WE}}$ to be at V_{IL}. Parameters tWP and t^{C} Ware defined only for the period when both CE and WE are at V_{IL}.
[4] The page cannot be changed in the middle of a page write cycle. Address inputs $\mathrm{A}_{6}-\mathrm{A}_{14}$ must be supplied for every byte load cycle and must remain the same throughout the page write cycle to prevent writing to an unknown address location. Address inputs $A_{0}-A_{5}$ are altered for each byte load cycle and determine the individual byte to be written within the page.
[5] A maximum of 64 bytes may be loaded in a single page write cycle.

Section 28 Application Notes		
App Note 90-03	Memory Systems Overview	28a
App Note 54	μ PD42505 Line Buffer for Communications Systems	28b
App Note 55	μ PD42101/42102 High- Speed Line Buffers	28c
App Note 57	μ PD42101/42102/42505 High-Speed Line Buffers	28d
App Note 58	Interlaced to Noninterlaced Scan Conversion Using the μ PD42101 High-Speed Line Buffer	28e
μ PD42601 Silicon File	28 f	
App Note 56	Silicon File System Architecture	28g
App Note 90-06	28h	
App Note 90-02	High-Performance Memory Systems	28i
App Note 50	Battery Backup Circuits for SRAMs	
App Note 90-04	Battery Backup Using NEC's Supercaps	28 j

Introduction

The objective of a memory system is to match the operating speed of a processor with the rate of information transfer. A CPU is usually about a thousand times faster than the average access time of a memory system, and the high cost of implementing a system with enough speed to accommodate this performance gap would be out of reach. To be able to meet cost and performance goals, a multilevel or hierarchical system encompassing a mix of memory devices must be implemented.
In most of these systems, the top level will have the highest performance and lowest level the slowest. Alternatively, the highest level is usually the most expensive and has the smallest density and the lowest level is the least expensive and has the highest density. Hierarchies are typically structured so that devices at level i are higher than those at level $i+1$. If $\mathrm{C}_{\mathrm{i}}, \mathrm{T}_{\mathrm{i}}$, and S_{i}, respectively, are the cost per byte, the average access time, and the total memory size at level i, then the following relationships normally would hold between level i and $i+1$:
$C_{i}>C_{i}+1, T_{i}<T_{i}+1$, and $S_{i}<S_{i}+1$ for $i \geq 1$
Memory hierarchy can be classified into primary and secondary devices, depending on access times. In a typical hierarchy, the top level may consist of fast static RAMs with access times of less than 35 ns . These devices have been produced in $x 1, x 4$ and $x 8$ organizations, and in some cases need a very low current to retain data during power failures. The next level is classified as main memory and consists of dynamic RAMs with access times between 80 and 120 ns . Secondary memory may consist of several levels of rotating drum or fixed-head magnetic disks with average times taken from the sum of rotational latency and transfer time, most likely a few milliseconds for blocks or sectors of between 1 and 4 Kbytes. Their capacity is in the Mbyte range and reflect a price equaling a few hundredths of a cent per bit. These devices are usually connected to the primary memory on a shared bus. Finally, the lowest level consists of removable magnetic tape for offline storage in a data archive.
A performance gap traditionally has existed between primary and secondary memories. The magnetic bubbles and charge-coupled devices developed to fill this gap did not find wide acceptance in most memory
system applications, and contemporary designs are now using low-power, solid-state devices such as NEC's μ PD42601 silicon file.
The goal of a system designer is to optimize the memory hierarchy so that system performance approaches that of the highest level of memory and cost approaches the cost of the cheapest memory. Performance depends on a number of interrelated factors, including program behavior with respect to memory references, access time and memory size of each level, granularity of information transfer (size of the data field or block), and management policies. One other important factor is the design of the processor-memory interconnection network.
Hierarchical performance can be measured by effective access time from the processor to the lowest level of the hierarchy, i.e., the sum of individual average access times of each of the memory levels. Effective access time generally includes the wait time caused by memory conflicts at a particular level, as well as delays in the switching network between one level and the next. The degree of conflict is usually a function of the number of processors, the number of memory modules, and the interconnection network between the processors and memory modules.
Connections between hierarchical levels are characterized by their transfer rates, or bandwidth, i.e., the number of bits per second that can be accessed. For example, if a memory system has a cycle time of 500 ns and is able to access 32 bits (4 bytes) per cycle, its bandwidth is 64 Mbits (8 Mbytes). To increase bandwidth, a designer might choose to reduce the cycle time, increase word size of the memory, or access the memory modules in parallel. Each would have a different impact on system architecture and cost.
Although the best possible design depends on workload and the available technology, there is no one formula for creating an optimal generic design. When considering a traditional von Neumann architecture, a single memory module of conventional design can access no more than one word during each clock cycle. With this fundamental constraint, the designer must rely on technological advances to be able to improve computer system performance.

HIERARCHICAL CLASSIFICATIONS

High-Speed Static RAMs at Level 1

Although the highest hierarchical level contains memory capable of matching the cycle time of the CPU, capacity of these devices typically will be determined by the cost and performance goals of the system. Static RAM traditionally has been used in this level because of its performance capabilities and ease of use. An SRAM is basically a stable dc flip-flop requiring no clocks or refreshing, which means its storage element retains data as power is applied. Fast access times, a parallel address structure, and the absence of strict timing requirements have made these devices very attractive in cache and small system designs.
SRAMs have been developed with technologies such as Bipolar, CMOS and BICMOS, resulting in a number of products with different access times and organizations. Some of the most common configurations are $32 \mathrm{~K} \times 8,64 \mathrm{~K} \times 4$ and $256 \mathrm{~K} \times 1,1 \mathrm{M} \times 1$ and $256 \mathrm{~K} \times 4$, as reflected in NEC's μ PD43256A, μ PD43254, μ PD46251, $\mu \mathrm{PD} 431001$ and $\mu \mathrm{PD} 431004$ devices, respectively. In the small system market, where low cost rather than high performance is the primary objective, byte-wide SRAMs with access times similar to DRAMs or EPROMs are required. Alternatively, cache memory design requires very fast access time, high density, and $x 1$ or $x 4$ organizations with high performance and advanced SRAM technology.

Some SRAMs have the ability to retain data when system power has failed or is shut down. In this case, the SRAM is usually designated as a low-power device (-LL version) whose data retention current can be as low as $10 \mu \mathrm{~A}$ and whose backup power is supplied by a battery backup circuit. This feature is attractive in small laptop systems and in instrumentation applications where low power is a primary concern.

The byte-wide SRAM such as NEC's 32K x 8-bit μ PD43256A has access times in the range of 85 to 150 ns , 28-pin DIP packaging (600 mil wide), and access time compatibility with EPROMs (figure 1). However, a $600-\mathrm{mil}$ device requires a substantial amount of board space (figure 1), and thus the part is also offered in a 28-pin plastic miniflat package for higher density, surface-mounted printed circuit board applications (figure 2).

A x1 SRAM is often used for large, high-speed memory circuits where fast access time and high-density chip layouts are required. Having only one data bit per SRAM chip reduces the pin count and allows use of an

Figure 1. 28-Pin Plastic DIP (600 mil)

Figure 2. 28-Pin Plastic Miniflat (450 mil)

	A_{14} - ${ }^{1} \mathrm{O}: 28 \mathrm{VCC}$
	$A_{6} \square^{4} \quad 25{ }^{\text {a }}$
	$A_{5} \mathrm{H}_{5} \quad 24{ }^{\text {a }}{ }^{\text {a }}$
	$A_{4} \square^{23}{ }^{23} A_{11}$
	$\mathrm{A}_{3} \mathrm{H}_{7} \quad 22{ }^{\text {a }}$
	$A_{2} \square^{8} \quad 21 \mathrm{~A}_{10}$
	$\mathrm{A}_{1} \mathrm{O}^{9} \quad 20 \square \overline{C S}$
	$\mathrm{A}_{0} \mathrm{Cl}_{10} 19{ }^{\text {a }} 19 \mathrm{O}_{8}$
	$1 / \mathrm{O}_{1} \mathrm{H}_{11} \quad 18 \mathrm{l} \mathrm{IO}_{7}$
	$1 / O_{2}$-12 17 日 $/ O_{6}$
	$1 / O_{3} \mathrm{H}^{13} \quad 16 \mathrm{l} \mathrm{O}_{5}$
	GND [14 15] $1 O_{4}$
	8зRD-7334A

18- or 22-pin package that significantly reduces board space. High-speed static RAMs are available in $\times 1, \times 4$, and $x 8$ configurations with access times ranging from 15 to 80 ns . A typical application for these devices is as data and address tag memories in cache subsystems whose access times must equal processor access times.

One advantage of using an SRAM is its ability to interface to a memory bus. The $\mu \mathrm{PD} 43256 \mathrm{~A}$, for example, has 15 address lines, 8 common input/output signals, an output enable ($\overline{\mathrm{OE}}$) pin, a write enable (WE) pin, and power and ground pins (figure 3). A chip select $(\overline{\mathrm{CS}})$ pin controls operation of the device. When $\overline{\mathrm{CS}}$ is high, the device is in standby and power consumption is greatly reduced. A designer can minimize total power supply current by enabling only the accessed devices in standby.

Figure 3. Block Diagram of μ PD43256A

The $\overline{O E}$ pin controls the three-state output drivers during a read cycle and can only be active when $\overline{\mathrm{CS}}$ is asserted. Write cycles are controlled by WE. When CS and $\overline{W E}$ are asserted low, data on the common I/O pins is written into the memory cells and the output data drivers are disabled to prevent a possible bus fight.

The separation of the chip select function into two components, $\overline{\mathrm{OE}}$ and $\overline{\mathrm{CE}}$, has several timing implications. The access times from chip select ($\mathrm{t}_{\mathrm{ACS}}$) and address valid (t_{AA}) are the same in the μ PD43256A, 85 ns , but typically an SRAM design requires that the address be decoded before the chip can be selected. This decoding function requires an additional delay, making the effective address time the sum of the worst case propagation delay of the address decoder (74LS138) and the chip select address access time ($\mathrm{t}_{\mathrm{ACS}}$). Alternatively, since the output enable time (toE) of 40 ns is less than the access time, the effective access time can be optimized by concurrently accessing the SRAM with a valid address and controlling the OE pin with a read signal and the output of the address decoder. The disadvantage of this scheme is that the $\overline{C S}$ pin is always asserted, causing the SRAM to always
be active. For circuits with only a few SRAM devices, the power considerations are not important. In cases where a lot of SRAMs are being used, power requirements may necessitate that $\overline{C S}$ be asserted to control the active and standby current.

Dynamic RAMs at Level 2

Data in an SRAM cell will remain valid as long as power is applied to the chip, because data is stored as a 1 or 0 in a flip-flop circuit consisting of four or six transistors. This approach allows for simplified operation, although the relatively large memory cell requires a large die. A dynamic RAM, on the other hand, stores data in the charge on a capacitor rather than in a flip-flop, thereby reducing the area required for each cell. And since die size has a direct bearing on the cost of a chip, a denser DRAM circuit will have a lower cost per bit.

Using a capacitor to store memory data means that more complex circuitry is required, as well as sophisticated techniques to sense the charge on the storage capacitor. Because of leakage current, a method of periodically refreshing the charge on the capacitor is
also required. Since DRAMs are traditionally used in large systems where tens or hundreds of memory chips are needed, the more complex interface circuitry can be absorbed into the cost of the memory circuit.

In a hierarchy, DRAMs are used in the larger, slower main level. It is this level that degrades effective access time and system performance. When the smaller cache does not have the data requested by the processor, the cache executes a replacement cycle to read the data from main memory and fetch it for the processor. Because the access time of main memory is in the range of 80 to 120 ns , the CPU must go into a wait state while the data is being read. In fact, high performance 20 to 33 MHz microprocessors require at least one wait state to access a DRAM circuit, requiring in the top level of the hierarchy a high performance cache able to match CPU cycle time.

DRAM performance can be enhanced with a number of circuit design techniques, as well as with a number of on-chip operating features that help to optimize bandwidth. Most contemporary 1M DRAMs are manufactured with extended features such as fast-page cycles that allow several locations within a row of memory to be accessed without repeating the row address, thereby reducing cycle time (figure 4). DRAMs designed with a nibble mode are able to read four successive bits by simply pulsing the $\overline{\mathrm{CAS}}$ control signal, because column addresses are incremented internally (figure 5). Static-column DRAMs use static circuitry to decode the column addresses, reducing cycle time by allowing column accesses to be executed the same as in static RAMs (figure 6).

Figure 4. Fast-Page Early Write Cycle

Figure 5. Nibble Mode Read Cycle

28a

Figure 6. Static-Column Read Cycle

The architecture of the interface between the CPU and main memory is another important factor in determining system performance. Pipelined and interleaved architectures that can access the device in parallel operations can also enhance bandwidth, but require another level of complexity and cost in the CPUmemory interface.
In main memory design, the most efficient DRAM configuration is the x1 DRAM because its organization minimizes the number of pins on the chip (figure 7). Main memory circuits may have hundreds of memory
chips on a printed circuit board, and since the address, data and control signals are connected to every chip, the memory section of the board is layed out in a very dense array. In fact, one of the most important parts of the DRAM design is the printed circuit layout. This array requires a memory chip with minimal pins and package size, making the $x 1$ the most efficient. Also, with the high number of memory chips for each circuit, the cost of the circuit is high compared to other system boards and requires a higher system reliability standard.

Figure 7. Block Diagram of 1 Meg DRAM

An error correction and detection technique is typically used to enhance reliability. Most ERCC algorithms can detect two-bit errors and correct single-bit errors, allowing a single memory chip to fail without causing the system to malfunction. If the circuit uses a $\times 4$ organization and a single chip failure occurred, the ERCC circuit could not correct the multibit failure, reducing system reliability. Also, a x4 DRAM has more pins, a larger package size, and higher costs, increasing the size and cost of the memory array.
The wider organization does have one advantage for systems that require the number of memory chips to be limited because of layout area or cost. One $x 4$ chip can replace four $x 1$ devices in applications where density is not a factor. A typical application for the $x 4$ organization is in computer graphics where memory size is
constrained by screen resolution and the 4:1 increase in bandwidth is required to refresh the screen.
Some disadvantages of using DRAMs involve their complex interface circuitry and dynamic nature. DRAMs are arranged in a rectangular array, in which the cells are connected in a matrix of rows and columns. To be able to reduce the number of address pins, the address field is multiplexed into a row address field and a column address field (figure 8). A row address is first presented to the memory and the row address strobe ($\overline{\mathrm{RAS}})$ control signal is asserted, beginning the memory cycle and latching the row address. The row address decoding circuit selects the appropriate row of cells (512 cells in the case of a 1M DRAM) and the column address is multiplexed onto the address pins.

Figure 8. $\overline{\operatorname{RAS}} / \overline{\mathrm{CAS}}$ Address Multiplexer Circuit

Figure 9. $\overline{\boldsymbol{R A S}} / \overline{\mathrm{CAS}}$ Address Timing

The column address strobe ($\overline{\mathrm{CAS}}$) is then asserted to latch the column address and enable the output drivers. The column address decoder selects one of the memory cells in the selected row and the data is read and sent to the output circuits. Once the data has been accessed, the $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ signals are de-asserted and remain inactive for a specified precharge time so that the circuits can recover from the previous access. Thus, the increase in cycle time over access time equals the precharge time.
DRAMs with an access time of 80 ns typically have a cycle time of 160 ns . Although multiplexing provides some substantial system benefits in terms of minimizing the number of pins and reducing package size, the
address timing is complicated and requires more interface circuitry (figure 9). Row and column addresses are both multiplexed, presenting a rather tight window during which the individual events must occur. Row and column addresses both have setup and hold times with respect to $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$, and if these specifications aren't met, the read or write cycle could fail. Therefore, the designer must consider the complex requirements very carefully, eliminating any timing skews, control or address line noise, and power supply noise.The dynamic nature of a DRAM means that data is stored in the charge of a capacitor, causing the charge to leak over time and the data to be lost. To prevent data loss, the DRAM must be periodically accessed to guarantee
that the charge will remain in memory. This operation is called a refresh cycle and for a 1M DRAM, all 512 rows have to be refreshed every 8 ms . This requires the DRAM interface circuit to access each row in the memory by means of either a read, write, or refresh cycle every $15.6 \mu \mathrm{~s}$. Failure to execute a refresh cycle in the specified interval will cause the cell to leak off the charge, resulting in data errors. A refresh cycle consists of using a row address to access the appropriate row and executing a $\overline{R A S}$ cycle to refresh all the cells in that row. No CAS or column address is required.
DRAMs specify several refresh cycles: $\overline{R A S}$-only refreshing in which an external counter drives the address on the address pins; $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ refreshing in which an internal address counter is used; and hidden refreshing which is executed during a normal refresh cycle. For all refresh cycles, an external timer is required to signal the control circuit to initiate the cycle. Memory control circuitry must also have to arbitrate between an active refresh request and active memory cycle, ensuring that the refresh interval is not exceeded.

An important system design consideration is the standardization of pinouts and package size so that the circuit can be upgraded with the next generation of higher density chips (figures 10, 11, 12, 13). It is also advantageous to design a circuit with options that allow the density of the memory board to be upgraded, saving the expense of developing a new board with each new generation. For example, in the past, a memory board could be designed to easily accommodate both $64 \mathrm{~K} \times 1$ and $256 \mathrm{~K} \times 1$ DRAMs, both of which were packaged in a 16 -pin plastic DIP. The only difference was that most 64 K memory chips had one pin designated as a no connection. To accommodate the $256 \mathrm{~K} x$ 1 device, the extra address line A_{8} was added to the circuit to allow operation with both devices.

Figure 10. Typical 256K $\times 1$ DRAM Pin Configuration

Figure 11. Typical 64K $\times 4$ DRAM Pin Configuration

18-PIn Plastic DIP

$\overline{O E} \square$	18	\square GND
$\mathrm{VO}_{1} \mathrm{H}_{2}$	17	$\mathrm{Q}^{-1 O_{4}}$
$\mathrm{NO}_{2} \mathrm{C}^{3}$	16	\square CAS
WE 44	15	- VO_{3}
$\overline{\text { RAS }} 5$	14	$\square A_{0}$
$A_{6} \square^{6}$	13	${ }^{\text {d }} A_{1}$
$A_{5}{ }^{4}$	12	$\square A_{2}$
$A_{4} \square^{8}$	11	- A_{3}
VCC \square_{9}	10	B_{7}

18-PIn Plastic Leaded Chip Carrler (PLCC)

Figure 12. Typical 1 Meg $x 1$ DRAM Pin Configuration

18-PIn Plastic DIP

26/20-Pin Plastic SOJ

20-PIn Plastic ZIP

Figure 13. Typical 256K $\times 4$ DRAM Pin Configuration

Designing the system to use either memory size also affects the multiplexing and address decoding logic. Compatibility between 256K and 1M DRAMs is more difficult because the number of pins increases from 16 to 18 pins to accommodate the additional A_{9} address. The current 1M and future 4M DRAMs have the same number of pins, with the additional A_{10} address line designated for pin 4 on the DIP package, pin 5 on the SOJ, and pin 10 on the ZIP. The trend in DRAM packaging is evolving from predominantly DIP packages in the 256K era to surface-mounted SOJs and high-density ZIPs in the 1 M and 4 M eras.

The size of the package is another concern the designer must address when choosing 1 M and 4 M DRAMs. The transition from 256 K to 1M DRAMs saw a change from the 16 -pin packages to 18 -pin packages. The 1 M to 4 M evolution represents a crossover generation in SOJ package width-from 300 to 350 mils. NEC's SOJ-packaged 1M μ PD421000 has a specified width of 300 mils, but because of the larger die needed to implement the 4M DRAM, a width with an additional 50 mils is required for the initial 4 M SOJ package. The 1M and 4M ZIP packages remain the same size, while the 4M DIP is 100 mils larger than the 300 -mil DIP for the 1M DRAM. Because the surface-mounted SOJ package is projected to be the dominant package type in the future, some manufacturers may market compatible 300 -mil packages for the 1 M and 4 M devices, but the trend will be toward even larger package sizes. For example, packages for the 16M DRAMs are likely to be $400-\mathrm{mil}$ SOJs and $475-\mathrm{mil}$ ZIPs, while the DIP package eventually will be phased out.

The typical development cycle of a DRAM includes a second generation of 4M DRAMs, scaled in size to optimize access time and die size. This scaled or shrink version will allow the die of a 4M DRAM to be mounted in a 300 -mil SOJ package that is compatible with the SOJ package of a 1M DRAM. Also, the shrink version of the 4M DRAM will provide a very fast access time of 60 ns.

The trend in DRAM technology has seen a quadrupling in capacity about every two to four years, a result of fewer features and estimates that the 64M DRAM could use $0.35 \mu \mathrm{~m}$ technology. One major concern with very high density memory chips is test time. The widely used GALPAT standard has a test complexity of $4 n^{2}+$ 4 n for an n-bit RAM and needs about 162 days to test a 4M RAM chip with a cycle time of 200 ns , which is unacceptable in today's manufacturing environment.
To reduce this test time, NEC has built into its μ PD421000 1M DRAM a test function that reorganizes the $1 \mathrm{M} \times 1$-bit part into a $256 \mathrm{~K} \times 4$-bit configuration (figure 14). The 1 M test mode is enabled by applying a super voltage ($\mathrm{V}_{\mathrm{CC}}+3$ volts) to pin 4 on the 1M DIP package (figure 15). While this super voltage is being applied, the internal configuration is changed to a 4-bit width intended to be used in a testing environment rather than in a circuit environment. Pin 4 should be regarded as a no connection, and as long as standard TTL voltage levels are connected to this pin, the 1 M DRAM will remain in its normal operating state.

Figure 14. Internal Test Circuit Block Diagram

Figure 15. Timing of 1 Meg DRAM Internal Test Circuit

Notes:
[1] $\mathrm{V}_{\mathrm{IH}}=9.5 \mathrm{~V}+\mathrm{V}_{\mathrm{CC}} / 2$.
[2] $V_{\text {IL }}=1 \mathrm{~V}$ min and 7 V max.
[3] Maximum voltage $=12.5 \mathrm{~V}$.
[4] When a test cycle is executed, access times, device power, and the level of V_{CC} are higher than normal. Therefore, a test cycle should only be executed for verifying functional operation of the device.
[5] Data output is high impedance during a write cycle in read-modity-write test operation.
[6] Data output is high impedance after $\overline{\mathrm{RAS}}$ goes high in a hidden refresh cycle.
[7] Four bits in a test cycle are treated the same as four bits in nibble mode.

The same test strategy is implemented for the 4 M DRAM, except that pin 4 on the DIP package becomes the new A_{10} address line and the test mode is initialized with logic functions rather than a super voltage. The 4M test mode will be initialized when the WE and CAS signals are active before the RAS signal is asserted, similar to a CAS before $\overline{\mathrm{RAS}}$ refresh cycle, except that $\overline{W E}$ is asserted at the same time as the $\overline{C A S}$ signal (figure 16). The memory designer must ensure that the memory control logic does not execute $\overline{W E}$ and the $\overline{C A S}$ before $\overline{R A S}$ cycle during normal operation, which would cause the device to be configured into a 4-bit organization and errors to occur. The test issue is a major concern for future DRAM products. The 16M DRAM may have a built-in test circuit that can execute simple test programs and detect on-chip failure, but at this time no standard 16M test procedure has been defined.

Pseudostatic RAMs

The advantage of using a static RAM is its simple interface circuit and its static nature, which means it doesn't have to be periodically refreshed to retain data. Alternatively, a dynamic RAM provides greater density and a lower cost per bit. One approach that tries to provide the best attributes of both devices is the pseudostatic RAM, a chip that uses dynamic storage cells but contains all refresh logic on-chip so that it is able to function similarly to a static RAM. NEC's $\mu \mathrm{PD} 428128$ is a $128 \mathrm{~K} \times 8$-bit pseudostatic RAM that offers a system designer a byte-wide RAM with the density and simple interface of a 1M DRAM (figure 17).

Figure 16. Timing of 4 Meg DRAM Internal Test Circuit

E0-06 әłon uo!peo!!ddv

Pseudostatic RAM are nearly, but not quite, as easy to use as fully static RAMs. Because pseudostatic RAMs must execute internal refresh cycles periodically, there is a potential for a conflict between an external access request and an internal cycle. The μ PD428128 uses two types of refresh cycles, pulse and self-refresh, each of which requires an extra $\overline{R F S H}$ function pin. In pulse refresh operation, the $\overline{\mathrm{RFSH}}$ signal is asserted during a read or write cycle, allowing refreshing to occur during a valid memory cycle. NEC's other pseudostatic RAM, the $32 \mathrm{~K} \times 8$-bit $\mu \mathrm{PD} 42832$ (now obsolete), was packaged in a 28 -pin plastic DIP and did not have a separate $\overline{\text { RFSH }}$ pin. As a result, external pulse and self-refresh operations were controlled by the $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}} / \overline{\mathrm{RFSH}}$ signals.

The μ PD428128, on the other hand, is packaged in a 32-pin package and has separate $\overline{\text { RFSH (pin 1), } \overline{\mathrm{CE}} \text { (pin }}$ 22), $\overline{O E}$ (pin 24), and $\overline{C S}$ (pin 30) signals. Similar to its counterpart in the $32 \mathrm{~K} \times 8$-bit $\mu \mathrm{PD} 42832$, the $\overline{\mathrm{CE}}$ pin can control external or $\overline{\mathrm{CE}}$-controlled refresh cycles, but only the separate $\overline{\mathrm{RFSH}}$ signal can control pulse refreshing. Also, self-refresh cycles are generated by the $\overline{\text { RFSH }}$ signal and feature a very low $200 \mu \mathrm{~A}$ self-refresh current. Therefore, the pseudostatic RAM, with its lower cost per bit, simplified interface circuit, and low selfrefresh current fills a cost and performance niche between the higher priced SRAM and the more complex DRAM.

NONVOLATILE MEMORIES

Unlike SRAMs and DRAMs, which lose data as soon as power is removed from the device, nonvolatile memories have the capability to store data indefinitely, even when power has been removed. Although these devices have slower access times and are not usually part of the high performance memory hierarchy, they are able to store data for functions involving communications, CRTs, keyboards, and other peripheral circuits. In today's system development environment, the designer can choose from erasable programmable read-only memories or one-time programmable EPROMs, electrically programmable ROMs (EEPROMs), and mask-
programmable ROMs, each of which has a different effect on product development and manufacturing in terms of functionality, compatibility and cost.

EPROMs

EPROMs offer the system designer a nonvolatile memory source and also the ability to erase and program. EPROMs are programmed by an instrument called a PROM programmer and then inserted into an applications system. EPROMs retain their data for years without power, and can be erased by shining an ultraviolet light into the window in the top of the IC package. The EPROM can then be reprogrammed any number of times. Programming requires a special programming voltage ($V_{P P}$) which is typically 12 to 25 volts, depending on the type of device. The programmer interfaces to the EPROM, supplying the control signals, address, data and V_{PP} for each address and follows an algorithm that programs and verifies the data being written into the device. Early EPROM designs required a 25 volt programming voltage, which was reduced in succeeding generations to 21 volts and then to 12.5 volts.

EPROMs are used to storing a local program for system initiation, baud rate and data formats for CRT terminals and character translation for keyboards. Such applications require the EPROM to interface directly to the CPU's local bus, which may be 8,16 or 32 bits. For this reason, most EPROMs are configured as a byte-wide (8-bit) device, requiring a relatively large, 600 -mil package and pinout. EPROMs are primarily intended to be used in the circuit development phase and replaced with less costly one-time programmable devices such as OTP EPROMs and mask-programmable ROMs in the production phase. This requires compatible package sizes and pin assignments across the family of nonvolatile devices. To accommodate this compatibility issue, nonvolatile devices use a standard byte-wide format for package size and pin assignments (figure 18). If the designer designs a circuit to upgrade from an EPROM of one size to an EPROM of the next size, the required jumper options need to be implemented to reconfigure the circuit to the next highest density.

Figure 18. EPROM/ROM Pinout Compatibility

EEPROMs

One disadvantage of the EPROM is that it cannot be programmed while it is in a circuit. The EEPROM solves that problem by providing a write function that can be used while the EEPROM is still in the circuit. The microprocessor can write to the EEPROM just as if it were a RAM and continue with other operations during the long write cycle time. NEC's 8K x 8-bit μ PD28C64 EEPROM includes a feature called DATA polling to
indicate when a write cycle is complete (figure 19). If the EEPROM is read while an internal write cycle is in progress, the EEPROM returns the complement of the last data written. Thus, the system software can determine when the write cycle is complete by reading the location last written and comparing it to the data being written. The EEPROM can accomplish this because it includes on-chip latches and an automatic "erase before write" function.

Figure 19. DATA Polling Flow Chart

The microprocessor can execute other instructions and periodically poll the EEPROM to determine if the write cycle is complete. The μ D28C64 also includes protection against accidental write cycles at power down (figure 20). For a write cycle to occur, $\overline{\text { WE }}$ and $\overline{C E}$ must be asserted low and $\overline{\mathrm{OE}}$ must be high. It is unlikely that this combination would occur during power transitions. Additional write protection is provided by a noise immunity filter that inhibits write operation when the WE pulse is 20 ns or less, and when the power supply voltage level is detected to be 2.5 volts or less.

The μ PD28C64 optimizes the write cycle with a feature that speeds effective access time when writing a series of 32 bytes simultaneously (figure 20). The $8 \mathrm{~K} \times 8$-bit device is compatible with the byte-wide pin assignment standard and is pin-compatible with the $8 \mathrm{~K} \times 8$-bit EPROM and SRAM. While the $8 \mathrm{~K} \times 8$-bit device is targeted at the larger capacity EEPROM applications, several small devices provide a low-cost solution for low-end systems. The $\mu \mathrm{PD} 28 \mathrm{C} 04$ is such a device and is orgnanized as 256×8 bits and provides the same write and protection features as the μ PD28C64.

Figure 20. Error Write Protection

Figure 21. μ PD28C64 Page Write Cycle

Mask-Programmable ROMs

The ability to erase an EPROM is an important feature, especially during the product development phase when the EPROM code is frequently changed. When the product enters its manufacturing stage and the program code becomes fixed, the extra cost due to the special package with a transparent lid is difficult to justify. Mask-programmable ROMs, which are programmed during the manufacture of the chip itself, are less expensive. NEC produces mask-programmable ROMs and will also manufacture the custom mask required for the device. There is a charge and lead time required for producing the mask, but for high-volume applications, the mask can be amortized with a cost savings compared to the standard EPROM. Typically, the mask-programmable ROM is compatible with the byte-wide standard used in EPROM devices for feature and package compatibility.

One of the disadvantages of the mask-programmable ROM is that if a bug is found in the code, the mask has to be replaced at a large cost. A one-time programma-
ble (OTP) EPROM fills the gap between the standard EPROM in cost and functionality because this product can be programmed like a standard EPROM, but cannot be erased. Since it doesn't have the special EPROM package with transparent lid, the cost is less than an EPROM but higher than a mask-programmable ROM. The mask charge and lead time is eliminated and the parts can be inventoried in their unprogrammed state and programmed just prior to final assembly. Waste caused by program changes is thus minimized, and only one part type is purchased for any number of different programs.

Silicon File

In the past, there has existed a technology gap between the faster primary and the slower secondary memories (figure 22). Average access time of secondary devices, most often magnetic disks and drums, is 1000 to 10,000 times slower than that of primary devices. Electronic disks such as charge-coupled devices and magnetic
bubble memories have not proved cost-effective in closing the technology gap and thus have had little impact on system design.

Standard semiconductor memory in the secondary level is able to bridge this gap, and of the various alternatives, battery backed-up static RAM and EPROM/EEPROM technologies historically have been used in solid-state nonvolatile systems. Typically they have been restricted to low-capacity applications, since the high cost of static RAMs prohibits using them either as replacements for magnetic media or in applications where the operating environment makes rotating media too unreliable.
NEC's μ PD42601 silicon file, a device with higher performance, higher capacity, and lower power requirements is also able to bridge this performance gap. The silicon file is based on DRAM technology and provides the capacity and reliability of a standard DRAM, but also features a way to retain data by means of batteries when power is shut off. Although reliability and ruggedness are important attributes of solid-state memories, the silicon file also offers advantages such as lighter weight, higher I/O bandwidth, and simpler interfacing.
The silicon file is an economical mass storage device specifically designed to replace magnetic media in silicon disk, solid-state recording, and system backup applications. It is based on the trench cell technology of NEC's 1M DRAM s and implements the same read and write cycles (figure 23), but optimizes system bandwidth with a page cycle that repeatedly pulses CAS while maintaining $\overline{\text { RAS }}$ low (figure 24). The silicon file must also periodically execute standard $\overline{\text { RAS }}$-only and $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ refresh cycles to refresh its cells within a specified interval of 32 ms , which is four times slower than a 1M DRAM.

An important feature of the silicon file is its ability to retain data while being powered by a backup battery. This is accomplished by means of a self-refresh cycle that can be used in applications requiring a low data retention or self-refresh current. The RFSH control signal goes low while the RAS signal is clocked at a relatively slow rate ($\mathrm{t}_{\mathrm{RCF}}$). Since data loss is caused by leakage, and leakage current is a function of temperature, $\mathrm{t}_{\mathrm{RCF}}$ is specified at three temperature ratings: 50° $\mathrm{C}, 60^{\circ} \mathrm{C}$, and $70^{\circ} \mathrm{C}$. Each rating has a corresponding refresh current (directly proportional to the refresh rate) which is required to maintain data (table 2).

Table 2. Selt-Refresh Current Versus Clock Frequency and Temperature

Type	Temperature	RAS Clock	Maximum Current
μ PD42601-60L	0 to $50^{\circ} \mathrm{C}$	50 KHz	$30 \mu \mathrm{~A}$
	0 to $60^{\circ} \mathrm{C}$	100 KHz	$60 \mu \mathrm{~A}$
	0 to $70^{\circ} \mathrm{C}$	200 KHz	$120 \mu \mathrm{~A}$
μ PD42601-60	0 to $70^{\circ} \mathrm{C}$	200 KHz	$120 \mu \mathrm{~A}$

Self-refresh cycles are intended to be used when power to the silicon file's memory array is shut down for an extended amount of time. In this case, the system backup circuit is required to provide to the memory array a backup supply voltage between 4.5 and 5.5 volts while pulsing RAS at the given $t_{\text {RCF }}$ frequency and driving RFSH low. As long as the circuit can maintain these operating conditions, the silicon file will retain data.

Figure 22. Memory Hierarchy

Figure 23. Silicon File Read Cycle

Note:
[1] $\overline{\mathrm{RFSH}}=\mathrm{V}_{\mathrm{H}}$.

Figure 24. Silicon File Page Read Cycle

Note:
[1] $\overline{\mathrm{RFSH}}=\mathrm{V}_{\mathrm{IH}}$.

Introduction

The current trend in storage devices is toward larger, faster, better-performing products. There is a complementary trend toward the development of storage devices designed for specific purposes. The video buffer is an example of a dedicated device. Line buffers, field (frame) buffers for TV and broadcast equipment, and graphics buffers for computers are examples of video storage devices. Table 1 shows some of NEC's dedicated video buffers.

Table 1. Video Buffers

Function	Product	Storage Configuration	Serial Cycle Time	Application in Video/Optical Systems
Line buffers	μ PD42505	5048×8	50 or 75 ns	Line storage in facsimile machines, copiers, and scanners
	$\mu \mathrm{PD41101/} / \mathrm{PD} 42101$	910×8	34 or 69 ns	Double-speed scan conversion for NTSC TV, luma/chroma separation
	μ PD41102/ μ PD42102	1135×8	28 or 56 ns	Double-speed scan conversion for PAL TV, luma/chroma separation
Field buffer	μ PD42270	$263 \times 910 \times 4$	60 ns	Image field storage
Dual-port graphics buffers	μ PD41264	$64 \mathrm{~K} \times 4 / 256 \times 4$	40 or 60 ns	High-speed drawing device
	μ PD42274/ μ PD42273	$256 \mathrm{~K} \times 4 / 512 \times 4$	30 or 40 ns	
Triple-port graphics buffer	μ PD42232	$32 \mathrm{~K} \times 8 / 256 \mathrm{~K} \times 1 / 128 \times 8$	40 or 60 ns	High-speed drawing/image processing device
Bidirectional data buffer	μ PD42532	$32 \mathrm{~K} \times 8$	100 ns	Data transfer rate conversion

This application note introduces the μ PD42505, a highspeed serial access device with the same general interface specifications as those of the μ PD41101. The μ PD42505 was developed specifically for office automation equipment that handles a large amount of data in each horizontal line, equipment such as G3 and G4 digital facsimile machines, high-performance copiers, and image scanners.

There has been a great deal of technical progress toward higher quality and performance in the development of this image-processing equipment. For example, there are already advances in image quality using two-dimensional filtering, image contraction and expansion, and high-speed video signal transfer. The μ PD42505 achieves optimal processing with a storage array of 5048×8 bits, and by use of an internal algorithm to read out data in the order in which it was input. The fast cycle time of 50 ns allows the μ PD42505 to perform various types of image processing.

Figure 1 shows a typical application for the μ PD42505 using a digital copier as an example.

A digital copier mainly consists of a reader and a printer section. The image reflected from the original document placed in the scanner section is input to an image sensor (e.g., a CCD or contact-type image sensor) and photoelectrically converted to a digital signal. The digital signal is then input to the image processing section for image quality improvement and processing. The electronic image signal processed in the reader block is sent to the printer block, converted to light in the laser modulation section, developed, fixed, and printed out. If a communication facility is added to this copier, it can function as a facsimile machine.
Digital copiers and facsimile machines configured in this way can use dedicated video buffers in the image processing or transmission section.

Figure 1. Configuration and Data Flow in a Digital Copier

Uses for the μ PD42505

The following discussion describes the types of applications for which the μ PD42505 was developed: frequency (speed) conversion, a data delay line for one horizontal scanning line, and buffering for data transfer operations in a simple configuration with simple control.

Consider the need for a device that asynchronously converts the read and write speed for frequency conversion, e.g., a serial access device used for image contraction or expansion, with a word length of one to two horizontal lines. The buffer must be written to and read from asynchronously and at different rates. High speed is also a requirement. Figure 2 illustrates a frequency conversion application.

Figure 2. Frequency Conversion

Another application might require a data delay line with a delay length of one to two lines. This type of buffer could be used for image quality improvement in two-dimensional filtering, especially for filtering in the vertical direction, because it could be written to and read from simultaneously in synchronization with a single clock signal. Figure 3 illustrates two-dimensional filtering.

A third application is a buffer for data transfer operations. This application requires a device large enough to store the amount of data handled, with the capability to read and write asynchronously, simultaneously, and at different speeds. An output such as a flag to indicate the amount of data in the storage array might also be required. Figure 4 illustrates buffering for data transfer.

Figure 3. Two-Dimensional Filfering

83-004955A

Figure 4. Data Transfer Buffering

These applications typically require a double-buffer configuration using high-speed SRAMs for data storage in bits, as shown in figure 5.

In the first phase, data is written to the first SRAM while data in the second SRAM is read simultaneously, alternating operations between the two SRAMs. However, this operation requires components such as read and write address counters, a multiplexer to switch address signals according to the read and write state of each device, a multiplexer to switch write data input and read data output, and a sophisticated controller to control the SRAMs and the other components. The μ PD42505, by performing some of these functions itself, considerably simplifies these applications.

Figure 5. Typical System Using High-Speed SRAMs

Features of the μ PD42505

The μ PD 42505 is a 5048 -word $\times 8$-bit high-speed serial access device that uses $1.5-\mu \mathrm{m}$ CMOS processing and dual-port storage cell circuits allowing simultaneous, asynchronous read and write cycles at different speeds. An internal algorithm makes an external address signal unnecessary.
Read and write operations are fully and independently controlled by their own set of control signals. The storage array length of 5048 words meets the size required to sample one line of JIS A3-size paper on the shorter side (297 mm) with a sampling rate of 16 dots $/ \mathrm{mm}(400$ dots $/ \mathrm{in}$). On the longer side (418 mm), the sampling rate is 12 dots $/ \mathrm{mm}$ (300 dots $/ \mathrm{in}$). The μ PD42505 can easily process document data for each line. The configuration of 8 bits to 1 word corresponds to the number of bits for one sampling point, which allows the device to process natural-looking images.
The μ PD42505 can be used in video applications that require high-speed processing because of its minimum simultaneous write/read cycle time of 50 ns and maximum access time of 40 ns . For example, the cycle time of 50 ns is fast enough to digitally process an NTSC or PAL composite video signal at a sampling rate of four times the color subcarrier frequency (4 f sc).

The μ PD42505 is particularly suitable for use as a digital delay line with a delay length of up to 5048 cycles in one-cycle steps. The device is mounted in a $300-\mathrm{mil}, 24-\mathrm{pin}$ plastic slim DIP. The $300-\mathrm{mil}$ width allows high-density mounting.

28b

μ PD42505 Pinout

Pins 1 through 12 control read operation (Douto-Dout7, $\overline{R S T R}, \overline{R E}$, and RCK) and the GND pin. Pins 13 through 24 control write operation ($\mathrm{D}_{\mathrm{INO}}-\mathrm{D}_{\mathrm{IN} 7}, \overline{\mathrm{RSTW}}, \overline{\mathrm{WE}}$, and WCK) and the power supply (V_{CC}).
$\overline{\text { RSTW }}$ and RSTR are control signal inputs that reset the internal read and write address pointers to starting address 0 . These pins are useful for initializing the chip after power-on or for returning the address to 0 .

Figure 6. μ PD 42505 Pin Configuration

$\overline{\mathrm{WE}}$ and $\overline{\mathrm{RE}}$ are control signals that enable (low) or disable (high) write and read operation. When WE is high, write operation is disabled and the write address stops at the current value. When $\overline{\mathrm{RE}}$ is high, read operation is disabled, the read address stops at the current value, and the output goes to high impedance. $\overline{W E}$ and $\overline{R E}$ may be input at any time, but they are latched in each cycle at the rising edge of WCK or RCK, respectively.
WCK and RCK are the write and read system clock inputs. One write or read cycle is executed in synchronization with each WCK or RCK input when WE or $\overline{R E}$ is low. The write or read address is incremented internally in single steps and wraps around automatically from 5047 to 0 .
$\mathrm{D}_{\text {INO }}-\mathrm{D}_{\text {IN } 7}$ are the write data input pins. Write data is clocked into the chip at the rising edge at the end of the WCK cycle. Douto-Dout7 are the read data output pins. Read data is output when the access time has elapsed from the rising edge at the beginning of the RCK cycle.

Read and Write Timing

Input a low-level signal to $\overline{\text { RSTW (for writing) or } \overline{\text { RSTR }}}$ (for reading) to satisfy the setup and hold times measured from the rising edge at the beginning of the WCK or RCK cycle. This returns the cycle to starting address 0 . Figure 7 shows read and write timing for the μ PD42505.
As the figure shows, the $\overline{\text { RSTW }}$ or $\overline{R S T R}$ signal can end in one write or read cycle or can be repeated for successive write or read cycles. Repeating the reset cycle holds the address at 0 . The address is incremented to address 1 only in a cycle when RSTW or $\overline{\text { RSTR }}$ is set high at the rising edge of the WCK (RCK) cycle. For write reset, the write data clocked in the last reset cycle is written to address 0 . For read reset, the data in address 0 is output continuously. After the reset, write or read operation continues as the address is incremented by 1 for each cycle in synchronization with its appropriate clock. When the internal address reaches 5,047 (i.e., when write or read cycles are executed 5,048 times), the address returns to address 0 and the write or read operation starts over at that point.
Speed Conversion. Independently controlling the read and write operations of the μ PD42505 allows you to perform speed conversion. For example, when the read and write addresses are initialized by $\overline{\operatorname{RSTW}}$ and $\overline{\mathrm{RSTR}}$,
data is written in synchronization with WCK and the write data is written to the chip from device address 0 . Data written can be read out from address 0 . In this case, the reset signal input timing and the clock signal speed (cycle time) can be independently controlled for read and write operation. The μ PD42505 can be used for speed (frequency or time axis) conversion by outputting the data previously input with an arbitrary drive frequency and time at a different drive frequency and time.

Digital Delay Line. To use the μ PD42505 as a digital delay line, input the same clock to WCK and RCK and reset the read and write cycles in parallel. Written data is read out after 5,048 cycles to provide a 5,048 -cycle digital delay line.
There are three ways to control the delay length:

- By controlling the $\overline{\mathrm{WE}}$ and $\overline{\mathrm{RE}}$ signals
- By inputting $\overline{\operatorname{RSTW}}$ and $\overline{\mathrm{RSTR}}$ at different times (the delay length is determined by the offset between the signals)
- By changing the reset signal interval when $\overline{\text { RSTW }}$ and $\overline{\text { SSTR }}$ are concurrently controlled (the delay length is determined by the reset signal input interval)

Figure 7. Read and Write Timing

Notes:

[1] $\overline{W E}=\overline{R E}=V_{\text {IL }}$.
[2] $\mathbf{V}=$ Valid data.

The delay length can be changed in one-cycle steps by controlling $\overline{W E}$ and $\overline{\mathrm{RE}}$. When $\overline{\mathrm{WE}}$ and $\overline{\mathrm{RE}}$ are high, write and read operation is disabled. The write and read addresses remain where they were when the operations were disabled, regardless of WCK and RCK.
When $\overline{\text { RSTW }}$ and $\overline{\text { RSTR }}$ are used to control the delay length, the data written at address 0 when $\overline{\text { RSTW }}$ is input is read out from address 0 when $\overline{R S T R}$ is next input. The offset between RSTW and RSTR determines the delay length.

In the third method, changing the reset signal input interval, the same signal is used for WCK and RCK so that $\overline{\text { RSTW }}$ and $\overline{\text { RSTR }}$ are controlled together. The data, written after a reset signal, is read out after the next reset signal in the order it was written. This interval determines the delay length. For example, if the reset signal is input every 4,800 cycles, the delay length is 4,800 cycles. Figure 8 shows the timing for this method.

Figure 8. Controlling Delay Length with the Reset Interval

Functional Blocks

The write data input from pins $\mathrm{D}_{\text {INO }}-\mathrm{D}_{\mathrm{IN} 7}$ goes through the $D_{\text {IN }}$ buffer and is serially written to either a static cell in an 8-byte configuration, or a dynamic cell in a 5,040-byte configuration, one byte (8 bits) at a time, in synchronization with WCK. The data read out from
these cells is serially output from the Dout pins through the sense amplifier and the Dout buffer, one byte at a time, in synchronization with RCK. The read and write control circuits control these operations.

Figure 9. μ PD 42505 Block Diagram

Storage Cells

The μ PD42505 uses dual-port storage cells to allow read and write cycles to be executed asynchronously and at different speeds. Figure 10 shows a circuit diagram of a static dual-port storage cell, and figure 11 shows a dynamic dual-port storage cell.

In the static cell, read and write data are input as a differential signal so that it can operate at a higher speed. The circuit size is larger because it requires more components.

Figure 10. Static Dual-Port Storage Cell

RW [Word Line for Read Operation]
83-004960A
Figure 11. Dynamic Dual-Port Storage Cell

83-004961A

The dynamic cell has only one bit line for read operation and one for write operation. It requires a longer data sense phase, reducing the speed. However, it can be configured with fewer components.

Both types of cells are used in the μ PD42505 to exploit the advantages of each. Other than initializing the internal address pointer to the starting address with the reset signal, the μ PD42505 is configured so that the internal address is incremented one bit at a time and data is serially accessed. After a reset operation (immediately changing the addressing sequence), a static dual-port storage cell that can operate at higher speed is accessed. Simultaneously or subsequently, a dynamic cell is used as a pipeline, allowing both types of cells to be accessed at high speed.

Pipeline operation refers to an instance where the word line (row) to be selected next is set to the selected level in advance, so that it can be written or read at high speed in the time required to select a column in dynamic static-column mode.
Shift registers are used as read and write column and row selectors to enable the sequential selection of write or read addresses in pipeline processing.

Applications

Signal processing technology aims toward higher quality in the development of digital copiers and facsimile machines. As examples, consider image quality improvement processing such as the adaptive bilevel control technique, which produces a stable and accurate binarization regardless of the original document type, and the two-dimensional equalizing filter, which corrects fading in photoelectric signal conversion. The μ PD42505 fits easily into these processes. It can also reduce system size and cost.

Two-Dimensional Filter

In handling an image with half-tones, e.g., a photograph, there is some deterioration in the image quality, such as thin lines and small characters fading out; fading is usually caused by the lens or photoelectric signal conversion system in a CCD sensor. A twodimensional filter is very effective in enhancing contours where contrast changes sharply and in reducing the fading problems. Figure 12 shows a contour enhancement circuit.

Figure 12. Contour Enhancement Circuit

In this example, the video input is handled as a 4-bit signal so that a circuit with a delay length equal to two scanning lines can be configured with a single μ PD42505. Adding adders or subtractors and multipliers to the μ PD42505 completes the contour enhancement configuration.

The video signal of the $\mathrm{n}+1$ th line (delayed by one scanning line) is input to $\mathrm{D}_{\text {INo }}-\mathrm{D}_{\text {IN3 }}$ and output from Douto-Douts as the nth line. Applying this output directly to $\mathrm{D}_{\mathrm{IN} 4}-\mathrm{D}_{\mathrm{IN} 7}$ delays the video signal another scanning line before it is output from Dout4-D ${ }_{\text {OUT7 }}$ as the $n-1$ th line. There is a delay of one scanning line between the signal input to $\mathrm{D}_{\text {INO }}-\mathrm{D}_{\text {IN3 }}$ and the signal output from Douto-D OUT3, and a delay of another scanning line between the signal input to $D_{\text {IN4 }}-D_{\text {IN7 }}$ and the signal output from Douta-Doutr. Processing these signals in the adders and multipliers provides
contour enhancement in the vertical direction. You can control the delay length by controlling the reset signals ($\overline{\text { RSTW }}$ and $\overline{\text { SSTR }}$) and the clock signals (WCK and RCK) in common, and by controlling the reset signal input interval.

The delay length of one scanning line is used in various applications for two-dimensional data processing. The μ PD42505 can also be used in applications such as VTR jitter compensation (time axis variation) caused by the variance in head drum rotation rate or the expansion or shrinkage of the tape, applications requiring variable-length delay lines to contract or expand a video image in the horizontal direction, applications involving the synchronization of two or more digital signal inputs, and as a line buffer in data transfer operations between devices using different data transfer rates.

Figure 13. μ PD 425055048×8 Line Buffer

Introduction

The μ PD41101 and μ PD41102 are high-speed serial access line buffers organized as 910 words $\times 8$ bits and as 1135 words $\times 8$ bits, respectively. An algorithm that enables data to be read out in the order in which it was input makes these devices suitable for use as data delay lines or for converting data transfer rates, e.g., as buffer storage used for data transfer between devices with different data processing rates.
The μ PD41101 can process an NTSC composite video signal (the TV system used in Japan and North America) that has been previously digitized. The fast access times of the device allow a sampling frequency of four times the color signal subcarrier frequency (where $\mathrm{f}_{\mathrm{SC}}=3.58 \mathrm{MHz}$ and $4 \mathrm{f}_{\mathrm{SC}}=14.32 \mathrm{MHz}$) for each scanning line to be used. This means that 910 addresses are required for each scanning line when sampling at $4 \mathrm{f}_{\mathrm{Sc}}$.
The μ PD41102 can process a PAL composite video signal (the TV system used in European countries other than France) that has been previously digitized. This device also uses a sampling frequency of four times the color signal subcarrier frequency (where fsc $=4.43 \mathrm{MHz}$ and $4 \mathrm{f}_{\mathrm{SC}}=17.72 \mathrm{MHz}$) for each scanning line, which means that 1135 addresses are required for each scanning line when sampling at $4 f_{S c}$.
Figure 1 shows the pin configuration for these devices. The $\mathrm{D}_{\mathrm{INO}}-\mathrm{D}_{\mathrm{IN} 7}, \overline{\mathrm{RSTW}}, \overline{\mathrm{WE}}$, and WCK pins control write operation, while $D_{\text {Outo- }}$ - ${ }_{\text {OUt7 }}, \overline{R S T R}, \overline{R E}$, and RCK control read operation. The pins are organized to operate asynchronously and at different speeds simultaneously. A built-in serial address generator automatically generates read and write addresses so that an address need not be supplied externally.

High-Speed Operation

Write and Read Operation

Write and read cycles are executed identically. One address of data (8 bits) is written or read in one cycle in synchronization with WCK or RCK when WE or $\overline{\text { RE }}$ is low. The write or read address is incremented by 1 at the falling edge of each write or read clock. Write data must satisfy setup and hold times as measured from the rising edge of WCK.

Figure 1. Pin Configuration

The $\overline{\text { RSTW }}$ and $\overline{\text { RSTR }}$ reset signals initialize the write and read address pointers to 0 . A reset signal must be input to satisfy the setup and hold times as measured from the rising edge of WCK or RCK. Once the address is initialized, a write or read cycle is executed in synchronization with its respective clock and the pointer is incremented by 1 . In the μ PD41101, the pointer returns to 0 after address 909 . In the μ PD41102, the pointer returns to 0 after address 1134.
When $\overline{W E}$ is high, write operation is disabled and the line address is held regardless of the status of WCK. When $\overline{R E}$ is high, read operation is disabled, the output goes to high impedance, and the line address is held regardless of the status of RCK.

Functional Blocks

The write data from $\mathrm{D}_{\text {INO }}-\mathrm{D}_{\text {IN7 }}$ goes through an input buffer and is serially written to either a static cell in an 8 -byte configuration, or a dynamic cell in an 1136-byte configuration, one byte (8 bits) at a time, in synchronization with WCK. The data read from these cells is serially output from the Dout pins through a sense amplifier and the output buffer, one byte at a time, in synchronization with RCK. The read and write circuits control these operations.
WCK, $\overline{\text { WE, and }} \overline{\text { RSTW }}$ are input to the write control circuit. RCK, $\overline{\operatorname{RE}}$, and $\overline{\text { RSTR }}$ are input to the read control circuit. These segments are composed of simple gate circuits (figure 2).

Figure 2. Block Dlagram of the μ PD41101 and μ PD41102

Storage Cells

The μ PD41101 and μ PD41102 use dual-port storage cells to execute read and write cycles asynchronously and at different speeds (figures 3 and 4).

Static Cell Organization. In the static cell, two pairs of transfer gates (one pair each for read and write operation) are connected to the flip-flop in the middle. The other end is connected to a pair of bit lines for read operation (RD, RD), and another pair for write operation (WD, WD). One word line each for RW and WW are connected to the transfer gate pins.

When the word line for a write cycle (WW) goes to the selected level, and write data is applied to the pair of bit lines (WD, WD) of the selected column, a write cycle is executed on the cell where the row (word line) and column (bit line) intersect.
A read cycle is executed independently. When the word line goes to the selected level (RW), data is transferred to the bit line pair (RD, $\overline{R D}$) through a transfer gate. Data is selected by the column signal and read externally. Data in the storage cell at the intersection of the selected row and column is also read.

Read and write data are input as a differential signal so that the static dual-port cell can operate at a higher speed. The circuit size is larger because it requires more components.

Dynamic Cell Organization. Each dynamic array in the μ PD41101 and μ PD41102 consists of two subarrays with 71 rows apiece. Each row of the subarray consists of 8 (number of bits) $\times 8$ addresses (bytes). Each row of each subarray therefore has 8 subword lines. Figure 5 shows the organization of a dynamic array.

Figure 3. Dual-Port Static Storage Cell

83-004960A

Figure 4. Dual-Port Dynamic Storage Cell

Figure 5. Organization of Dynamic Storage Array

The dynamic cell has only one bit line for each read ($\overline{\mathrm{RD}}$) and write (WD) operation, one word line for each read (RW) and write (WW) operation, three transistors, and one capacitor. Although the longer data sense phase reduces its speed, a dynamic cell can be configured with fewer components and used for highdensity integration.
In a write cycle, write data input through the bit line (WD) is guided through a transfer gate made conductive by the word line (WW). The gate charges or discharges the storage capacitor.
In a read cycle, the transistor with the gate connected to one end of the storage capacitor is turned on or off depending on whether or not the capacitor is charged. Data is transferred to the bit line ($\overline{R D}$) through the transfer gate, made conductive by the word line (RW), and then read externally. Word and bit lines for each operation are independent of each other so that read and write cycles can be executed asynchronously.

Data Transfer

The μ PD41101 and μ PD41102 are configured so that the internal address is incremented one bit at a time and data is accessed serially. After a reset signal initializes the device, a static cell that can operate at higher speed is accessed. Simultaneously or later, a dynamic cell is used as a pipeline, allowing access to both types of cells at high speed.
Stored information is defined by the state of the storage capacitor. When the word line for the write cycle goes to a selected level, the write transfer gate of each storage cell connected to the word line becomes conductive, and the data (electrical level) given to the bit line is rewritten to the capacitor connected to the end of the transfer gate. The precharge level of the write bit line (typically a high level) is rewritten to the storage cells on the selected word line, other than the one to which the column signal applies data, thereby destroying data stored there.

The μ PD41101 and μ PD41102 prevent this destruction of data by using a main word line and a subword line. The subword line is driven by the ANDed signals of the main word line and the write column. The transfer gate of each cell corresponding to each address is connected to a subword line. Therefore, the write word line of the storage cells at the selected row and column address is the only one which goes to a high level, preventing the destruction of data in other cells on the same write line.

Address Selection

A dynamic storage array consists of subarrays 1 and 2 , each of which is $568(71 \times 8)$ bytes. A column selector and a row selector circuit are provided for independent read and write operation for each subarray.
The first step of address selection involves the accessing of an 8 -byte static cell immediately after a reset cycle. The address selector moves to the first row of the subarray, and subarray 1 is accessed from left to right, one byte at a time. When 8 bytes of subarray 1 have been accessed, the address selector moves to the first row of subarray 2 , also accessed from left to right, one byte at a time. When 8 bytes of subarray 2 have been accessed, the address selector alternately selects 8 bytes from addresses in both subarrays, so that rows are selected from the higher row to the lower row.
When the number of access cycles to the static cell array (8 addresses) and the dynamic cell array reaches 910 (for the μ PD41101) or 1135 (for the μ PD41102), the pointer moves to address 0 of the static array.

This method of sequential address selection increases the access speed of the dynamic cell by selecting row addresses in the pipeline method. Pipeline operation occurs when the word line (row) to be selected next is set to the selected level in advance so that it can be written or read at high speed, i.e., in the time required to select one column in static-column mode.

After a reset cycle, when 8 bytes of the static cell are being accessed, the first row of subarray 1 , which is accessed next, is set to the selected level in advance. When the selected address moves to the first row of subarray 1 (after 8 bytes of static storage are accessed), a read or write cycle can be executed at high speed for that row. The first row of subarray 1 can be accessed at high speed even after the static array is selected. This process continues with the first row of subarray 2 , the second row of subarray 1 , and so on.
While the static cell is being accessed immediately after a reset cycle, the address on the dynamic cell is held on the first column and row of subarray 1 . The dynamic array is not accessed at this time. Pipeline
operation is performed independently for write and read cycles by the row and column selectors for each subarray.

Shift registers are used as read and write column and row selectors for the sequential selection of write or read addresses and pipeline processing. Shift registers are provided for each column and row, and each node level is set in advance so that when reset, each shift register outputs a high signal for the first column or row and a low signal for other columns or rows.

The column selector (shift register) is driven by WCK or RCK and the address is incremented by 1 for each clock cycle, i.e., the node that outputs a high signal changes in synchronization with the clock, and the column selector changes with it.
The row selector (shift register) is related to pipeline control and is driven by the pulse generated when the column address selector moves from subarray 1 to subarray 2 or vice versa. The row selector is incremented by one row address after the change from one subarray to another.

Each shift register used as a column or row selector is configured as a ring counter so that when the last column or row is reached, it automatically returns to the first column or row.

Applications

For the most part, the applications described below pertain to noninterlaced digital TV. The descriptions apply to NTSC systems, unless otherwise specified.

Comb Filter

A composite TV signal (output of a TV tuner) is the sum of the luminance (Y) and chrominance ($R-Y, B-Y$) color signals. The $\mathrm{Y}, \mathrm{R}-\mathrm{Y}$, and $\mathrm{B}-\mathrm{Y}$ signals must be separated, and the R, G, and B signals input to the picture tube generated from them.

A comb filter with line buffers derives the color or luminance signal by cancelling it from the composite signal, using the correlation between neighboring lines. This filtering fully separates the color and luminance signals, especially when there is a strong correlation between lines, to produce a clear picture.
If the signals are not well separated, the color signal may interfere with the luminance signal and cause dot crawl. The luminance signal may also interfere with the color signal and cause cross-color. This interference degrades the picture quality, especially where color or luminance changes sharply. Figure 6 shows a typical comb filter using line correlation.

This example compares target line B with neighboring lines A and C. Two μ PD41101s are used as 910 -bit delay lines. The color signal ($C=R-Y, B-Y$) is separated by subtracting the data of the upper and lower lines ($A+C$) from the target line data (B) and filtering the separated signal through the $3.58-\mathrm{MHz}$ bandpass filter. The luminance signal is the result of subtracting the separate color signal from the original data (B). See the description of the "Variable-Length Delay Line" application for information on controlling a delay line of 910 bits or less.

Double-Speed Scan Conversion

The current NTSC and PAL TV systems use interlaced scanning to eliminate the flickering caused by field transition. Scanning is performed every two lines,
reducing the pixel density and doubling the field frequency (number of fields-per-second), as illustrated in figure 7.

In interlaced scanning in the NTSC system, a complete frame consists of two fields of 262.5 scanning lines each. The field frequency is 60 Hz , i.e., the sum of 30 first fields-per-second and 30 second fields-persecond. In the PAL system, a complete frame is comprised of two fields of 312.5 scanning lines each. The field frequency is 50 Hz , the sum of 25 first fields-per-second and 25 second fields-per-second. In both cases, interlaced scanning reduces the flicker in motion scenes caused by field transition. The pixel density in the vertical direction is also reduced, diminishing the level of detail.

Figure 6. InterIIne Y/C Separation with a Comb Filter

Figure 7. Relationship of Field to Frame in NTSC Systems

The μ PD41101 or μ PD41102 can be used to convert interlaced scanning to noninterlaced scanning. Doubling the pixel density (number of scanning lines) in the vertical direction without changing the field frequency produces clear and precise images (figure 8). In interlaced scanning, the first field of solid lines and the second field of broken lines are scanned alternately at 30 fields-per-second (25 fields-per-second in PAL). In noninterlaced scanning, the number of scanning lines per field is doubled, and 60 fields-per-second are scanned (50 fields-per-second in PAL).

In noninterlaced scanning, the data of the skipped line is created using the buffer. It is read at twice the sampling frequency of interlaced scanning ($8 \mathrm{f}_{\mathrm{SC}}$ if the interlaced sampling rate is 4 fSC). Noninterlaced scanning scans two lines in the time that one line is scanned in interlaced scanning. The horizontal frequency of the CRT must also be doubled for noninterlaced scanning.

The data of the skipped line can be created

- Using the data of the previous line (reading out the same data twice)
- Using the average value of the lines before and after the skipped line
- Using data that is one-field-old (the data for 262 lines before for NTSC, or 312 lines before for PAL)

In the first option, one μ PD41101 (or one μ PD41102 for PAL) is used for one input signal. The data is written at $4 \mathrm{f}_{\mathrm{SC}}$ and read out at $8 \mathrm{f}_{\mathrm{sc}}$. Reading starts when data is written to half of the line (455 bytes). The same data is read twice (910 bytes $\times 2$) at 8 fSc . Data read in the latter half is used as interpolated data (figure 9).

In the second method, one μ PD41101 delays the data of one line, and two μ PD41101s convert the current data and the interpolated data for double-speed scanning.

Figure 8. Interlaced and Noninterlaced Scanning

Figure 9. Using the Previous Line as Interpolated Data

The two μ PD41101s used for scan conversion are written at 4 f sC and read at 8 fsc . The $\overline{\mathrm{RE}}$ signal is controlled to first read the μ PD41101 to which the current line data is written, and then read the μ PD41101 to which the interpolated data is written (figure 10).

In the last option, as in the previous one, one buffer delays the data for one field and two other μ PD41101s perform scan conversion. The control sequence is the same as described in the second method. Using data from a line of the previous field produces a clear image, especially in a still scene (figure 11).

Figure 10. Using the Average of the Previous and Following Lines

Figure 11. Using a Line from the Previous Field

Dropout Compensation

Dropout compensation cancels the noise in a VTR picture reproduction. If a line contains noise, the portion of the previous line in the same position as the noise is reproduced instead, eliminating the noise from the reproduced image (figure 12).

Figure 12. Example of Dropout Compensation

nth Line $n+1$ th Line	Data Output to TV System
Data with Noise	

Video data from a tape normally is written to the μ PD41101, delayed for one scanning line (910 bits), and then used as image data to a TV system. The noisedetection circuit senses noise in the video signal. When data containing noise is input to the μ PD41101, the input is switched to the data already in the buffer so that the previous data line is written again. Data containing the noise is not output to the TV system (figure 13).

Figure 13. Dropout Compensation Circuit

The μ PD41101 can also be used as a 910 -bit (one scanning line) delay. If the write data fed back by switching is delayed, the delay length must be reduced to compensate for it. For example, if switching causes two bits of delay, the delay length must be adjusted to 908 bits.

Jitter Compensation [Time Base Correction]

In a VTR, variation in head drum rotation speed or tape contraction or expansion can cause jitter in the reproduced image. The image can be reproduced clearly when jitter is adjusted and the image is reproduced with accurate clocks (figure 14).

Figure 14. Basic Jitter Compensation Circuit

The video signal input from the tape is written to the μ PD41101 with a clock that can be accurately slaved to the time axis variation of the input video signal. Video data with the same time axis is reproduced by reading data using the synchronized read clock as a reference. If a jitter compensation circuit is configured so that the device to which the data is written, or from which it is read, is selected from among two or more devices by the $\overline{R E}$ or $\overline{W E}$ signal, the circuit can have a delay length of two or more lines.

Variable-Length Delay Line

The μ PD41101, driven at 8 fsc , can be used as a variable-length delay line with a delay length of 10 to 910 bits (12 to 1135 bits for the μ PD41102). Driven at $4 \mathrm{f}_{\mathrm{SC}}$, it can produce a delay of 5 to 910 bits (6 to 1135 bits for the μ PD41102). If an analog-to-digital (A/D) and a digital-to-analog (D/A) converter are connected to the input and output sides, respectively, it can also be used as an analog signal delay line (figure 15).

Figure 15. Analog Signal Delay Line

When reading data at a certain address, the μ PD41101 requires $300 \mathrm{~ns}+0.5$ write cycles (maximum) to read data once the write cycle is complete. For example, when the μ PD41101 operates on a 34 -ns clock, the minimum delay length is $(300+34 / 2) / 34=9.3$, or 10 cycles. When the μ PD41102 operates on a 28 -ns clock, the minimum delay length is $(300+28 / 2) / 28=11.2$, or 12 cycles. The maximum delay length of the μ PD41101 is 910 cycles and 1135 cycles for the μ PD41102.
Delay length can be controlled by

- Controlling the reset input interval
- Inputting the write and read reset signals at different times (the delay length is determined by the offset between the inputs)
- Controlling the $\overline{\mathrm{WE}}$ and $\overline{\mathrm{RE}}$ signals

In the first method, the same signal is used for WCK and RCK. $\overline{\text { RSTW }}$ and $\overline{\text { RSTR }}$ are controlled together. Data written after a reset signal is read after the next reset interval. If the reset signal is input every 900 cycles, the delay length is 900 bits. This option produces a delay length determined by the reset interval to control the delay length (figure 16).

In the second method, using the write and read reset signals, data written from address 0 by the RSTW signal is read out from address 0 when the next RSTR signal is input. The delay length is determined by the offset between the write reset signal and the next read reset signal input (figure 17).

Figure 16. Controlling Delay Length with the Reset Interval

Figure 17. Controlling Delay Length with $\overline{\operatorname{RSTW}}$ and $\overline{\operatorname{RSTR}}$

In the third method, using the $\overline{\mathrm{WE}}$ and $\overline{\mathrm{RE}}$ signals, write or read operation is disabled when $\overline{W E}$ or $\overline{R E}$ is high; the interval pointer remains at the address where operation is disabled, regardless of the status of WCK or RCK. The delay length can be controlled in onecycle units by controlling $\overline{\mathrm{WE}}$ and $\overline{\mathrm{RE}}$. After the reset interval, read data is delayed by 910 cycles (1135 cycles for the μ PD41102) from the write data (figure 18).

Time Axis Conversion

You can use the μ PD41101 for time axis conversion by changing the write clock frequency (WCK) and the read clock frequency (RCK). One application for time axis conversion involves image contraction or expansion in the horizontal direction. The image contracts if the read clock frequency is higher than the write clock frequency, and it expands if WCK is higher than RCK (figure 19).

Figure 18. Controlling Delay Length with $\overline{W E}$ and $\overline{R E}$ in the μ PD41101

Figure 19. Time Access Conversion Application
Data Processing by Converting W/R Speeds

Digital Signal Input Synchronization

When performing timeshared data processing in an electronic telephone exchanger or in a star-configured local area network, the phase between input streams may be offset because of differences between the terminal and the central line exchange module. The μ PD41101 can be used to correct the phase offset (figure 20).

Inputs 1 to n are serial data input streams. However, the frame heads (flags indicating the beginning of the data) of each input stream are not synchronized.

The solution requires controlling write operation for each stream. When a frame head is detected, the write address is reset to 0 . A clock extracted from each input can be used as the clock for that write cycle. When data is written to all μ PD41101s, the read address is reset to 0 by inputting $\overline{R S T R}$ with appropriate timing. All data streams then can be read out in the same phase by reading all μ PD41101s simultaneously, even if the input streams are not synchronized.

The serial-to-parallel and parallel-to-serial conversion circuits shown in figure 20 may be used only when serial data is handled at each input and output.

Figure 20. Digital Signal Input Synchronization

General Application

The μ PD41101 and μ PD41102 are suitable for use as buffer storage in data transfer operations between devices of different speeds. Because they use dynamic circuits, the maximum hold time for storage cell data is 1 ms . To hold data longer than 1 ms , you must rewrite it to the same address within 1 ms (figure 21).

The read and write addresses must coincide when rewriting data. If the feedback data is not delayed by a multiplexer, input the RSTW and RSTR signals simultaneously so that the output data of address n is fed
back to the input as it is, and then written again to address n .

If the feedback data is delayed, adjust the input timing of RSTW and RSTR, depending on the delay (number of cycles) of the feedback data. RSTR must be advanced according to the feedback data delay.

In either case, WCK and RCK must be the same. To read the data written to an address after the write cycle for that address is complete, $300 \mathrm{~ns}+$ one-half write cycle is required.

Figure 21. Static Hold Circuit for Storage Cell Data

Notes:
[1] A D-type flip-flop must be provided when the data is delayed.
[2] RSTW must be input at least once while Data Hold is at a true (high) logic level.

Figure 22. μ PD41101/ μ PD41102 High-Speed Line Buffer

Application Note 57 μ PD42101/42102/42505 High-Speed Line Buffers

Introduction

The need for storage devices to provide delay and speed conversion in a variety of computer, telecommunication, and consumer applications has led to NEC's development of several new high-speed line buffers. The synchronous or asynchronous operation of these devices allows them to be used as elastic storage to synchronize data flow between two asynchronous parts of a system, e.g., between communication and microcomputer chips.
In graphics systems, line storage devices can act as high-speed source and destination registers during raster operations. In television and VCR products, the $1 \mathrm{~K} \times 8$ buffers provide the raster line storage required
for luminance and chrominance separation and noninterlaced scan conversion. The larger 5K x 8 devices are perfectly suited for facsimile and printer applications because they can store a line of information or a page of text at high speed.

This application note describes NEC's μ PD41101, μ PD41102 and μ PD42505, three functionally equivalent buffers with different capacities and speeds. Each device has independent, 1-byte write and read ports with separate write and read clocks. High-speed performance is achieved by means of unique circuitry rather than a submicron process. Fast access times

Figure 1. Die Photograph of the μ PD41101 and μ PD41102

and low cost are possible because of specialized dynamic circuit designs using the best of MOS technology (figures 1 and 2).

Features

The μ PD41101, μ PD41102, and μ PD42505 are identical except in organization and cycle times (table 1). The following discussion applies to the three devices collectively, unless noted otherwise.
Serial Addressing. Addresses are generated automatically by an internal address counter and need not be supplied externally. The clocks provided by the WCK and RCK signals increment the respective write and read address counters, enabling data to be read out in the order in which it was input.
Wraparound Addresses. The internal address pointers are implemented as ring counters; they return to address 0 after the last byte in a line has been accessed.

Asynchronous Operation. Separate write and read clocks, coupled with their respective enable inputs, allow for independent write and read operation.
Reset Function. The $\overline{\text { RSTW }}$ and $\overline{\text { RSTR }}$ pins reset the internal pointers to address 0 . Resetting of the read pointer can be initiated after " n " write cycles to provide an adjustable delay line of " n " cycles.

High-Speed Address Selection. By interleaving the internal storage arrays and using a novel pipelining technique for high-speed address selection, the devices achieve very fast access times. The μ PD41102-3, for example, has a specified minimum cycle time of 28 ns .
Large Capacity. All devices are 1-byte wide. Their line lengths vary as shown in table 1. The μ PD42505 is configured as 5048 by 8 bits to store a page of information.

Table 1. Configurations and Cycle Times

Part Number	Organization	Cycle Times
μ PD41101	910×8 bits	34 or 69 ns
μ PD41102	1135×8 bits	28,34, or 56 ns
μ PD42505	5048×8 bits	50 or 75 ns

Functional Description

Historically, line buffers were designed with shift registers that suffered from fall-through delay as data tumbled down the stack. With NEC's new generation of buffers, which provide independent write and read clocks for asynchronous writing and reading, the write data requires a delay of at least 10 or 11 cycles before appearing at the output. The minimum line delay (specified in the individual data sheets for each device) is not a problem in most applications because the required delay is usually longer than the specified minimum delay.

In synchronous operation, where write and read cycles are controlled together (and write and read addresses coincide), the internal logic causes a write cycle to be delayed by one-half cycle from the read cycle. Read data is output from the previous line, while new input data is written just one-half cycle later.

Storage Arrays

Unlike other devices based solely on static cells, NEC's line buffers have two types of storage elements: a static cell for high-speed operation and a dynamic cell for achieving large capacity in a small die area. To operate at high speed, the fast static cell is used as a prefetch buffer. While the first 8 bytes of data are being accessed from the static cell, the first row of the dynamic cell is preselected for subsequent access (see Addressing).

Figure 2. Die Photograph of the μ PD 42505

Figure 3. Dual-Port Static Storage Cell Array

RW [Word Line for Read Operation]
83-004960A

Figure 4. Dual-Port Dynamic Storage Cell Array

The static storage cell has separate word lines for write and read cycles (RW and WW), as well as differential data inputs (RD/ $\overline{R D}$ and WD/WD) for high-speed operation (figure3). The three-transistor, one-capacitor dynamic storage cell contains separate write and read data and word lines, two access transistors, and a third transistor for cell signal pre-amplification (figure 4). Pre-amplification is required since there are only eight data amplifiers, one each for the eight input/output ports.

Unlike the static cell, the dynamic cell uses only one write and read data line and cannot take advantage of differential sensing. Although the speed is slower, its fewer components make this cell more suitable for compact layout and high device integration. The success of these high-speed buffers lies in the matching of the static and dynamic cells to achieve high performance at a low cost (figure 5).

Addressing

On a cold start, initial writing and reading to the device requires fast access times from the six-transistor static cell. While the first eight bytes are being accessed from the static cell, the first row of the dynamic cell is preselected. To achieve relatively fast dynamic access, the dynamic array is split into two segments and storage interleaving is employed.

From a functional point of view, the line buffer is a long, eight-bit-wide shift register. Its layout is compacted to produce a small die size. The chip has two arrays, each representing one-half of the line length. For the 1135×8 device, each subarray is organized as 568 bytes (71×8 bytes).
The serial addresses are generated automatically using column and row selectors for both write and read operation. The following steps summarize the interleaving sequence.

- In a reset cycle, data is read from the 8 -byte static cell, and the first row of subarray 2 is preselected.
- Row 1 of dynamic subarray 2 is accessed, and the address pointer moves to subarray 1 for preselection.
- Row 1 of subarray 1 is read, and row 2 of subarray 2 is preselected.
- Interleaving continues between the subarrays until the last address is accessed, at which time the internal pointer automatically resets to address 0 .

The address pointers are shift registers wired as ring counters and clocked in a wraparound fashion to control writing and reading of data at specific locations. The shift registers are incremented by one address for each WCK or RCK clock. Separate write and read address pointers are required to execute write and read cycles independently and at different speeds.

Figure 5. Block Diagram

Write and Read Timing

The μ PD41101, μ PD41102, and μ PD42505 are equipped with the following pins: $\mathrm{D}_{\text {IN } 0}$ through $\mathrm{D}_{\mathrm{IN} 7}, \overline{\mathrm{RSTW}}, \overline{\mathrm{WE}}$, and WCK for write operation and Douto through $\mathrm{D}_{\text {OUT7, }}, \overline{\mathrm{RSTR}}, \overline{\mathrm{RE}}$, and RCK for read operation (figures 6 and 7). Serial addresses are automatically generated by an internal address counter. When WE is low, one byte is written to each address in synchronization with the WCK write clock (refer to the individual data sheets for timing diagrams); the internal write address pointer increments by 1 with each falling edge of WCK. Write data must meet the specified setup and hold times as measured from the rising edge of WCK.

Figure 6. Configuration of 24-Pin Plastic DIP (and Miniflat for μ PD41101, μ PD41102 only)

Douto 1	24 Dino
Dout1 ${ }^{2}$	23 DIN1
Douta ${ }^{3}$	$22{ }^{\text {DIN2 }}$
Dout3 \square^{4}	21 DIN3
$\overline{\text { RE }} 5$	20 WE
ASTR 6	9 - $\overline{\text { RSTW }}$
GND \square^{7}	8 曰Vcc
RCK ${ }^{8}$	7] wck
Douta ${ }^{-1}$	6 DIN4
Douts 10	$5 \square \mathrm{DiN}^{1}$
Dout6 11	4 Ding
Dout7 12	3 D $\mathrm{DIN7}$

Figure 7. Configuration of 28-Pin Plastic ZIP (μ PD42505 only)

83-005256A

The signal on $\overline{\text { RSTW, }}$, which is used to reset the write address pointer to 0 , also has setup and hold requirements with respect to the write clock.
When the signal on the read enable ($\overline{\mathrm{RE}})$ pin is low, one byte of data is read out of the device for each RCK clock cycle, and the read address pointer increments by 1. The read address pointer is totally independent of the write address pointer.
The control functions of $\overline{W E}$ and $\overline{R E}$ are shown in figure 8. Bringing these two signals high (inactive) stops the internal address pointers; activating them again causes the internal pointers to increment to the next sequential address.

Synchronous Operation

Figure 8 shows the internal timing sequences, including those for address transitions and write cycles, during synchronous operation of these devices. With a common write and read clock, the internal write period is delayed from the write address. This delay, required when the write and read addresses are identical, allows a read cycle and then a write cycle to be executed to the same cell location. Read data is taken from the previously written line.

Designing with NEC's Line Buffers

Initialization

After power has been applied, the write and read address pointers are undefined and therefore need to be set to address 0 . Proper timing for a RSTR or RSTW reset cycle is described in the individual data sheet for each device.

Refreshing

Refreshing of the dynamic storage cells must be performed at regular intervals. Data remains valid for 1 or 5 ms , depending on the line length of the device (1 ms for the μ PD41101 or μ PD41102 and 5 ms for the μ PD42505). Since NEC's line buffers contain only data amplifiers and no sense amplifiers, a standard read cycle does not refresh the storage cell. If longer hold times are required, the original data must be rewritten to the same address.

Figure 8. Internal Timing for Synchronous Operation

Minimum Delay Length

Unlike register-based line buffers, which use a data flow-through cycle, NEC's line storage elements are not capable of reading data immediately after it has been written. Each device requires a minimum delay, as calculated by the equations shown in table 2.

Table 2. Calculating Minimum Delay

Part Number	Equation
μ PD41101	$1 / 2$ write cycle +300 ns $(34 \mathrm{~ns} / 2+300 \mathrm{~ns}) / 34=9.3$ or 10 cycles
μ PD41102	$\begin{aligned} & 1 / 2 \text { write cycle }+300 \mathrm{~ns} \\ & (28 \mathrm{~ns} / 2+300 \mathrm{~ns}) / 28=11.2 \text { or } 12 \text { cycles } \end{aligned}$
μ PD42505	$1 / 2$ write cycle +500 ns $(50 \mathrm{~ns} / 2+500 \mathrm{~ns}) / 50=10.5$ or 11 cycles

Delay length, as measured by the number of cycles, is dependent on the speed of the clock, i.e., at 14.3 MHz , the minimum delay for the μ PD41101 would be 5 cycles.

Storage Contention

In asynchronous operation, when write and read cycles contend for the same line, the last " n " bytes (where " n " may be 5-12 bytes) of line output are taken from the previous line. This type of contention occurs most frequently when executing continuous write and read cycles at different rates, such as when converting video images from interlaced to noninterlaced scanning. In this case, the read clock operates at twice the speed of the write clock. Near the end of the line, the read cycle catches up and contends with the write cycle.

Setting Delay Length

Varying the Reset Interval in Synchronous Operation. Depending on the application, some schemes for implementing delay length suit system timing better than others (see individual data sheets for timing).

In synchronous operation, the delay is set simply by varying the interval between the reset pulses. In this case, the reset clocks are tied together. Since write and read clocks are common, line delay is determined by the offset between resets.
Varying the Reset Interval in Asynchronous Operation. In asynchronous operation, the reset interval can be varied using independent clocks and reset signals. Delay length is calculated as the timing difference between the write and read reset pulses.

Controlling the $\overline{\mathbf{R E}}$ Pin. In the third option, the read enable pin ($\overline{\mathrm{RE}})$ can be used to control read operation and the read address counter. When $\overline{R E}$ is high (disabled), the read address counter does not increment and no data is output. After the desired delay, $\overline{\mathrm{RE}}$ can be brought low to begin executing read cycles. For delays exceeding one line length, care must be taken to ensure that new data is not written into an address before the old data is read.

μ PD42505 Large-Capacity Line Buffer

The μ PD42505 was designed for applications where a large amount of data is handled per line, e.g., in highperformance digital copiers and G3 or G4 facsimile machines requiring buffer storage for image compression, expansion, data transmission, and in some cases, image enhancement using filtering techniques for digital signal processing. The $5 \mathrm{~K} \times 8$ line length has also been used in some designs to hold the data tokens in digital filtering arrays.

Although line buffering can be achieved using fast static RAMs as shown in figure 9, the need for two devices and other complicated peripheral circuits necessarily increases the cost of a system and makes it more difficult to implement. The μ PD 42505 eliminates the complexity and high cost by providing the same functions and more advantages in one package.

Figure 9. Systom Design Using Static RAMs Versus High-Speed Line Buffer

Figure 10. Line Buffering in Local Area Networks

Figure 11. Elastic Storage for Digital Signal Processing Applications

Notes:
[1] Line buffers synchronize data flow between two asynchronous processors.

Figure 12. Image Enhancement Techniques in High-Performance Digital Copiers

Notes:
[1] In this application, a large-capacity line buffer is used to hold token data for digital signal processing.

Figure 13. Doubling the Line Rate in Scan Conversion

Notes:
[1] In high-definition TV applications, the line buffer is used to double the scan rate by reading at twice the write frequency.

Introduction

Interlaced scanning is used in television, videotape, and videocassette recording applications to reduce bandwidth and maintain an acceptable amount of screen flicker in video signals. The procedure involves lowering the vertical resolution and doubling the number of fields so that one complete frame is formed from the first and second fields. When a video signal subsequently is decoded and ready for display on a monitor or TV, bandwidth generally is no longer a problem and the higher vertical resolution of a noninterlaced signal may be used to produce a sharper image on the screen.

In NTSC TV systems, there are 262.5 scan lines per field, 2 fields per frame, and 30 frames per second (figure 1). With the resolution per field in the vertical
direction lowered by interlaced scanning, the lines become rougher and the gap between scanned lines more visible. This drawback becomes all the more conspicuous in larger-screen TVs.

Vertical resolution problems caused by interlaced scanning can be resolved by first repeating the signal of each scan line. The number of scan lines per field then can be doubled by doubling the horizontal frequency and keeping the vertical frequency intact. Subsequently, an interlaced signal can be converted to a noninterlaced signal to increase the resolution of the picture in the vertical direction (figure 2).

The conversion from interlaced to noninterlaced scanning can be achieved by temporarily storing each line in a buffer and then displaying it twice to double the number of lines per field (figure 3).

Figure 1. Relationship of Field to Frame in Interlaced Scanning

Figure 2. Difference Between Interlaced and Noninterlaced Scanning

Figure 3. Doubling the Line Rate

Figure 4. Block Diagram

The μ PD41101 High-Speed Line Buffer

The type of scan conversion described in this application note requires buffer storage for each line. Required storage is calculated by dividing the scanning period per line by the sampling period to determine the number of samples per line. Required storage for NTSC systems is computed as shown in the following sequence.
(1) Scanning period per line:

$$
\frac{1}{\frac{(525 \text { lines }}{\text { frame }} \times \frac{30 \text { frames })}{\text { second }}}=63.5 \mu \mathrm{~s}
$$

(2) Minimum sampling frequency:

$$
3.58 \mathrm{MHz} \times 4=14.32 \mathrm{MHz}=69.83 \mathrm{~ns}
$$

(3) Samples per line:

$$
63.5 \mu \mathrm{~s} / 69.8 \mathrm{~ns}=909.7 \text { samples }
$$

This application requires the storing of 910 words, exactly one horizontal scanning line of data. NEC's μ PD41101 high-speed line buffer, configured as 910 words by 8 bits, is ideally suited for the digital processing of video signals because one-line delays and time axis conversions can be executed easily.
The μ PD41101 differs from general-purpose static devices in that it doesn't require a double-buffer configuration (figure 4). Writing and reading can be
executed independently and asynchronously. Since an internal address pointer eliminates the need for external address generation, the only external controls required are those for the WCK and RCK write and read clocks and the RSTW and RSTR write and read reset signals (see figure 5 for pin assignments). As shown in table 1, three versions of the μ PD41101 are available.

Table 1. Access and Cycle Times of the μ PD41101

Part Number	Access Time [max]	Write Cycle Time (min)	Read Cycle Time (min)
μ PD41101-3	27 ns	34 ns	34 ns
μ PDD41101-2	27 ns	69 ns	34 ns
μ PD41101-1	49 ns	69 ns	69 ns

Figure 5. μ PD41101 Pin Configuration

Douto	1		24	Doino
Dout1	2		23	-DiN1
Dout2	3		22	$\square \mathrm{DiN2}^{1}$
Dout3	4		21	D Din3
$\overline{\text { RE }}$	5		20	WE
RSTR	6	욱	19	صRSTW
GND	7	\%	18	$\square \mathrm{v}_{\mathrm{cc}}$
RCK ${ }^{\text {a }}$	8		17]wCK
Douta	9		16	$]^{\text {Din4 }}$
Douts	10		15	Dins
Douts	11		14	$\square \mathrm{Ding}^{\text {a }}$
Dout7	12		13	$\mathrm{D}_{\text {DIN7 }}$

Operation

Write and Read Reset Cycles. After power is applied to the μ PD41101, its internal address pointers are undefined and must be initialized to address 0 . As shown in figure 6 , the inputs on $\overline{\text { RSTW }}$ and $\overline{\text { RSTR }}$ have required setup and hold times as measured from the rising edges of WCK and RCK, respectively.
Write Cycles. Write cycles are executed in synchronization with the WCK clock (figure 7). When WE is low, 8 bits of data are sampled from $\mathrm{D}_{1 \mathrm{~N} 0^{-} \mathrm{D}_{1 \mathrm{~N} 7} \text { at the rising }}$ edge of WCK and the internal write pointer increments to the next sequential address. When the pointer reaches the last address, it wraps around to address 0 again. When high, WE disables write operation and inhibits the write address pointer. Write data must satisfy required setup and hold times as specified from the rising edge of WCK.

Read Cycles. When $\overline{R E}$ is low, read cycles are executed in synchronization with the RCK clock (figure 7). Read data is output from $\mathrm{D}_{\text {outo- }}$ - ${ }_{\text {Outt }}$ after a specified access time as measured from the rising edge of RCK. The internal read pointer functions identically to the write pointer, except that the read address increments sequentially with each RCK clock.

Example of System Configuration

The block diagram in figure 8 shows a hardware system designed to convert a standard NTSC interlaced video signal to a noninterlaced signal. In this configuration, described on the following pages, the input signals derive either from an NTSC composite signal (video input), from a TV/VTR/VCR, or from the R-G-B signal output of a personal computer.

Figure 6. Write or Read Reset Cycle

Note:
[1] $\overline{\mathbf{W E}}=\overline{\mathbf{R E}}=\mathrm{V}_{\mathrm{IL}}$.
[2] $V=$ Valid Data.
[3] Read operations commence from the rising edge of RCK at the beginning of a cycle. For the first cycle in a group of reset cycles, the read access time is defined as taCR. In all other cycles, $t_{A C}$ defines the read access time.
[4] $\mathrm{H}=910$ cycles.
[5] Write data is strobed into the device on the rising edge of WCK at the end of a cycie.

Figure 7. Write or Read Cycle

Figure 8. Scan Converter Block Diagram

Video Signal Processor

The video signal is decoded from the R-G-B inputs by NEC's μ PC1401, a device specifically designed to process the color, video, and synchronizing signals
used in NTSC color TV systems (figures 9 and 10). By separating the signals, the $\mu \mathrm{PC} 1401$ can independently control them and thereby reduce the number of peripheral devices usually required in this phase.

Figure 9. μ PD 1401 Block Diagram

Figure 10. μ PD1401 Pin Configuration

R-G-B Signal Processor

The level of the R-G-B output signals from the personal computer are adjusted by a $\mu \mathrm{PC} 1387$ (figures 11 and 12). An interface between the digital R-G-B signals and the TV color signal output, the $\mu \mathrm{PC} 1387$ provides high-speed switching by means of a built-in R-G-B signal converter and sophisticated circuitry that blanks the signal levels. The horizontal (H) and vertical (V) synchronizing signals from the personal computer are combined into a composite synchronizing signal. When the selector switches to the R-G-B input position, the composite signal is applied to the $\mu \mathrm{PC} 1401$ in place of a TV signal.

Figure 12. μ PD1387 Pin Configuration

Figure 11. μ PD 1387 Block Dlagram

Analog-to-Digital Converter

The input selector chooses one of the two R-G-B signals from the $\mu \mathrm{PC} 1401$ and $\mu \mathrm{PC} 1387$ and passes it to the μ PD6950, where it first is sampled at a clock frequency equal to $4 \mathrm{f}_{\mathrm{sc}}(14.3 \mathrm{MHz})$ and then written to the μ PD41101 line buffer. The CMOS-fabricated μ PD6950 is an analog-to-digital (A/D) converter whose high speed and low power consumption are particularly suited to video applications (figures 13 and 14).

Figure 13. μ PD6950 Pin Configuration

Figure 14. μ PD6950 Block Diagram

Line Buffer

This configuration uses a total of three μ PD41101 line buffers, one each for the R-G-B inputs. Independent control of write and read operation by the μ PD41101 allows the inputs to be written at a $4 \mathrm{f}_{\mathrm{sc}}$ sampling rate and subsequently read at twice that frequency ($8 \mathrm{ff}_{\mathrm{sc}}$). Reading the scanned image twice doubles the number of lines sent to the TV monitor, fills the gaps between lines of an interlaced signal, and increases the vertical resolution.

Digital-to-Analog Converter

After being read at a frequency of $8 \mathrm{f}_{\mathrm{sc}}(28.6 \mathrm{MHz})$, the digital signal from the μ PD41101 is converted to an analog signal by the $\mu \mathrm{PC} 6902$ (figures 15 and 16). The CMOS-fabricated μ PC6902 D/A converter is designed to handle 50 million samples per second.

Timing Generator

The $8 \mathrm{f}_{\mathrm{sc}}$ and $4 \mathrm{f}_{\mathrm{sc}}$ clocks and $\overline{\text { RSTW }}$ and $\overline{\text { RSTR }}$ signals are output by the timing generator. The horizontal (H) signal from the $\mu \mathrm{PC} 1401$ passes to a phase-locked loop
circuit, where it is compared and locked with a horizontal signal obtained by dividing the $8 f_{\text {sc }}$ clock. After the horizontal frequency has been multiplied by $2(2 \mathrm{H})$, this signal is combined with the vertical drive signal (V) from the $\mu \mathrm{PC} 1401$ for use as the composite synchronizing signal in noninterlaced scanning. Together with the R-G-B output signals, it is then passed to the TV monitor.

Figure 15. μ PD 6902 Pin Configuration

Figure 16. μ PD 6902 Block Diagram

Operation

A circuit diagram for the scan converter is shown in figure 17. The operation in each block is described below.

Video Signal Input Stage

Switch SW $_{1}$ selects the NTSC video signal and applies it to the $\mu \mathrm{PC} 1401$, which decodes the composite signal and outputs $\mathrm{R}-\mathrm{G}-\mathrm{B}$ horizontal and vertical synchronizing signals. The $\mu \mathrm{PC} 1401$ integrated circuit separates color types ($\mathrm{Y}, \mathrm{R}-\mathrm{Y}, \mathrm{B}-\mathrm{Y}, \mathrm{G}-\mathrm{Y}$) to form a matrix using three external transistors ($\mathrm{Tr}_{3}-\mathrm{Tr}_{5}$) to produce the R-G-B signal.
A 4528BC one-shot multivibrator sets the horizontal synchronizing signal to a suitable pulse width. One of the pulse signals is applied to pins 34 and 35 of the $\mu \mathrm{PC} 1401$ as the burst gate and blanking pulses; the other signal is applied to the MC4044 phase comparator for clock generation comparison purposes.

R-G-B Signal Input Stage

The R-G-B input signal passes to a 74LS08 two-input positive AND gate and then to the $\mu \mathrm{PC} 1387$ which, together with Tr_{6} and the 74LS08, ensures that no signal is applied during the horizontal retracing period.
The R-G-B signal applied to the $\mu \mathrm{PC} 1387$ is adjusted to a suitable level prior to being output from that device. Conversely, the vertical and horizontal synchronizing signals are combined in the 74LS08 to form the composite synchronizing signal passed to the $\mu \mathrm{PC} 1401$ by selection switch SW_{1}.

A/D Conversion Stage

The R-G-B signal selected by SW_{1} is passed to the μ PC6950 through a $7-\mathrm{MHz}$ low-pass filter to cut frequencies in excess of one-half the sampling frequency of 14.3 MHz (figure 18). This analog signal is converted by the $14.3-\mathrm{MHz}$ clock and then passed to the $\mu \mathrm{PC} 1401$ as an 8-bit digital signal.

Line Buffer Stage

The 8-bit digital input is written at 14.3 MHz before being passed to the μ PC6902 for D/A conversion at 28.6 MHz. The WCK, RCK, RSTW, and RSTR controls for the line buffer are supplied from the timing generator (figure 19).

D/A Conversion Stage

The digital input from the μ PD4 4101 is converted to an analog signal by the $28.6-\mathrm{MHz}$ clock to reproduce an R-G-B signal of twice the horizontal line frequency.

Timing Generation Stage

An LC oscillator circuit uses a 74F04 inverter to generate the $28.6-\mathrm{MHz}$ signals required for driving the line buffer and D/A converter clocks, as well as the $14.3-\mathrm{MHz}$ signals required for driving the line buffer and A/D converter clocks.

The horizontal signal from the $\mu \mathrm{PC} 1401$ is passed to the MC4044 phase frequency detector for phase comparison with the horizontal signal obtained by dividing the clock from the clock generator. The resultant signal is then transferred through a low-pass filter to the 1SV164 varactor diode of a voltage-controlled oscillator to adjust the oscillating frequency (figure 20).

Three 74LS163 synchronous 4-bit counters divide the $14.3-\mathrm{MHz}$ clock by a factor of 455 . The resultant $31.5-\mathrm{kHz}$ clock $\left(2 \mathrm{f}_{\mathrm{H}}\right)$ is timed by the $28.6-\mathrm{MHz}$ clock and passed to the line buffer as the RSTR signal.
The vertical synchronizing signal from the $\mu \mathrm{PC} 1401$ is adjusted to a suitable pulse width by a 74LS123 retriggerable monostable multivibrator. The signal timed by this $2 \mathrm{f}_{\mathrm{H}}$ clock is then combined with the $2 \mathrm{f}_{\mathrm{H}}$ clock to obtain the composite synchronizing signal for noninterlaced scanning purposes. The $2 \mathrm{f}_{\mathrm{H}}$ clock is subsequently divided in half and timed by the $14.3-\mathrm{MHz}$ clock to become the $\overline{\text { RSTW }}$ signal passed to the line buffer and MC4044 (figures 21 and 22).

R-G-B Output Stage

The noninterlaced R-G-B signal and the composite synchronizing signal output to the TV monitor are adjusted to levels of 0.7 and 0.3 V VP , respectively, by a 75 -ohm terminating resistor. Switch SW_{2} is used to select external or internal display. When on, the switch allows a noninterlaced picture to be displayed externally on a TV monitor.
In this application, the TV monitor must be capable of operating at a horizontal scanning frequency of 31.5 kHz . Suitable monitors include the PC-TV451 and PC-TV471 from NEC Home Electronics.

Figure 17. μ PD41101 Composite Schematic

Figure 18. Characteristics of LT15LP7.0M01-32 Low-Pass Filter

Figure 19. Scan Conversion Timing

Flgure 20. Characteristic Curve of 1SV164

Figure 21. Counter Stage of Timing Generator

Introduction

In the field of computer-aided design and manufacturing (CAD/CAM), running software with many utility programs results in time-consuming disk accesses. Workstations operating in a local area network (LAN) also are performance-limited by the heavy burden on magnetic disks serving multiple users. These systems receive a performance boost when the magnetic disk is replaced with a solid-state disk.

NEC developed the μ PD42601 silicon file, a $1,048,576 x$ 1-bit semiconductor disk, precisely for such applications. The CMOS-fabricated μ PD42601 operates much faster than hard disks, with simplified circuitry and fewer sense amplifiers than standard DRAMs. Although access times from $\overline{R A S}\left(\mathrm{t}_{\text {RAC }}\right)$ and $\overline{\mathrm{CAS}}\left(\mathrm{t}_{\mathrm{CAC}}\right)$ of 600 ns and 100 ns , respectively, make this device slower than standard DRAMs such as NEC's μ PD421000, the use of word-width system architecture and page-cycle accesses achieves very high data transfer rates and can therefore improve system efficiency.

Applications

Because the device's high capacity, battery-supportable nonvolatility, and environmental hazard resistance are expected to challenge the niche previously defined by bubble devices, the μ PD42601 should find its major market in large solid-state disk applications. However, as shown in table 1, other potential markets exist. For example, the μ PD42601's very low data retention current, which reduces heat buildup and simplifies thermal design, means that a cool die operating in a 300-mil SOJ offers greater flexibility in packaging and stimulates new ideas for other product applications (see figure 1 for packaging options and pin assignments of the μ PD42601).

Table 1. Potential Markets for μ PD42601 Silicon File

Market	Requirements	Applications		
Solid-state disks	High capacity Reliability Battery backup	High-end engineering workstation (100 Mbytes to 1 Gbyte)		
Portable handheld products	Light weight	Personal computers Low power Small size		Retaii point-of-sale
:---				
terminals				

Figure 1. Pin Configurations

Power and Speed Enhancements

All access cycles and timing specifications for the μ PD42601 are similar to those of generic DRAMs. However, the μ PD42601 requires only 25% of the operating power and 5% of the standby power of a standard DRAM, and therefore provides a better silicon solution for the aforementioned applications. The silicon file has a specified access time from $\overline{\mathrm{RAS}}$ ($\mathrm{t}_{\text {RAC }}$) of 600 ns . A quick page access time from $\overline{\mathrm{CAS}}$ ($\mathrm{t}_{\mathrm{CAC}}$) of 100 ns is also available. Heavy system use of page cycles makes the best choice for two reasons: the first is speed enhancement over standard $\overline{\mathrm{RAS}} / \overline{\mathrm{CAS}}$ cycles and the second is disk sector size, which closely matches the number of bits accessible in page cycles.

In target applications for the μ PD42601, low power is required. Both operating and standby power are important: low operating power results in cooler device temperatures and higher reliability, while standby currents in the microampere range allow for battery backup and small packaging options.

Self-Refreshing

The μ PD42601 has a self-refresh feature similar to the one found in pseudostatic DRAMs. Bringing the RFSH pin low and clocking $\overline{\text { RAS }}$ permits the silicon file to retain data while using only $30 \mu \mathrm{~A}$ of power. In large solid-state systems, the solid-state disk would use byte-wide or word-wide banks of silicon file storage, with only one bank of devices active at a time, and all others in a state of self-refreshing. In this low-power operation, total power consumption of the system
would be very low, making battery backup possible with compact batteries.
During self-refresh cycles, a relatively slow $\overline{\mathrm{RAS}}$ clock can be applied and data integrity still be maintained. To enter this power-down quiescent state, the user can pull $\overline{\text { RFSH }}$ low and start the $\overline{\text { RAS }}$ clock at a slow cycle time ($\mathrm{t}_{\mathrm{RCF}}$). Since data loss is caused by leakage, and leakage current increases with temperature, NEC has specified the $t_{\text {RCF }}$ rating at $50^{\circ} \mathrm{C}, 60^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$. Each temperature rating has a corresponding refresh current (directly proportional to the refresh rate) which is required to maintain data, with faster rates required for higher temperatures (table 2).

Table 2. Self-Refresh Conditions

T_{A}	t $_{\text {RCF }}\{$ max $]$	Self-Refresh Current (max]
$50^{\circ} \mathrm{C}$	$20 \mu \mathrm{~S}$	$30 \mu \mathrm{~A}$
$60^{\circ} \mathrm{C}$	$10 \mu \mathrm{~s}$	$60 \mu \mathrm{~A}$
$70^{\circ} \mathrm{C}$	$5 \mu \mathrm{~s}$	$120 \mu \mathrm{~A}$

It is important to make a distinction between selfrefresh cycles and the more familiar $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ refresh cycles. When low, the $\overline{\mathrm{RFSH}}$ pin enables selfrefreshing and disables most of the internal circuits. Only those circuits required for self-refresh operation are active. Because of the rate of $t_{\text {RCF }}$ required for substrate bias generation, nineteen RAS clocks are used in the μ PD42601 to refresh one row (figure 2).

Figure 2. Internal Address Generation in Self-Refresh Operation

Figure 3 shows a simplified block diagram of the μ PD42601 during self-refresh operation. The low level of $\overline{\text { RFSH}}$ disables the ring oscillator and initializes the $\overline{\text { RAS }}$ buffer and 19-bit counter. The external $\overline{\text { RAS }}$ clock is reduced in frequency by the 19-bit counter. The outputs of the counter and the timing generator are then used to generate the slow-speed timing, decoding, and sensing operations, while the substrate bias generator functions at a reduced frequency to keep the substrate stabilized but minimize power consumption.
Figure 4 shows the transition and delay times for IDD1, $I_{D D 2}$, IDD3, and I IDD5. When RFSH goes low, a $2.5-\mathrm{ms}$ delay occurs before the device enters true self-refreshing. The timing shown in figure 4 depends on internal temperature-compensated delay circuits and is required to allow the die to stabilize at a lower temperature. During this $2.5-\mathrm{ms}$ period, the standby current is specified as $I_{\text {DD3 }}$, or $500 \mu \mathrm{~A}$. After the die cools, the substrate bias generator operates at a lower frequency and power consumption is composed of five components: the $\overline{\mathrm{RAS}}$ buffer, the 19-bit counter, the decoder, the substrate bias generator, and the sense amplifiers. All other peripheral circuits are disabled.

Figure 4. Transition and Delay Timing in Self-Refresh Operation

Figure 3. Circuit Operation in Self-Refresh Operation

$\overline{\text { CAS }}$ Before $\overline{\text { RAS }}$ Refreshing

The μ PD42601 does not incorporate its own automatic refresh circuits on-chip, but requires pulsing $\overline{\mathrm{RAS}}$ in the self-refresh state to hold data. Another more descriptive term for this function is "pulse refreshing." In most pulse-refreshed devices, the method of entering and exiting self-refresh operation is crucial; however, the $1 \mathrm{M} \times 1$ silicon file makes transitioning between operating and self-refresh modes simpler than previous-generation pseudostatic devices.
In the case shown in figure 5 , no $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ cycles are executed during a period of normal write and read cycles. Re-entering self-refresh operation after short write/read bursts limits the number of bits that could have been accessed in the relatively short time specified for $t_{R C F}$ (i.e., the maximum cycle time for $\overline{R A S}$ in self-refresh operation).
If system timing remains in normal write or read operation longer than $t_{R C F}$ (max), then refresh logic is needed to control $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ refreshing. Every $32 \mathrm{~ms}, 512$ refresh cycles are needed to refresh the 512
row addresses, an average rate of one every $62 \mu \mathrm{~s}$. Because of the reduced operating current and the resultant lower die temperature, the refresh period can be extended to four times the 8 -ms value specified for most $1 \mathrm{M} \times 1$ DRAMs.
In $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ cycles, addresses need not be supplied because an internal counter supplies them to the decoders. Since the clocks for both $\overline{\text { CAS }}$ before $\overline{\text { RAS }}$ refresh cycles and self-refresh cycles increment the same internal address counter, there are orderly and sequential transitions from self-refreshing to CAS before $\overline{R A S}$ refreshing and back to self-refreshing. Ensuring that the row addresses are refreshed in a timely fashion is the function of the refresh counter, which is clocked by $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ during normal cycles and at the rate of $1 /\left(19 \times t_{R C F}\right)$ during self-refresh cycles. The μ PD42601 runs cooler than other selfrefreshing devices and does not require a burst of extra $\overline{C A S}$ before $\overline{R A S}$ cycles before self-refreshing to ensure data integrity.

Figure 5. Special Requirements for $\mathrm{t}_{\text {RCF }}$ Near Periods of Limited Standard Refresh Cycles

Notes:
[1] The value for $\mathrm{t}_{\mathrm{RCF}}$ [$\mathbf{m i n}$] is specified in AC Characteristics. The value for trCF [$\mathbf{m a x}$] is dependent upon temperature and shown in the table below.

	trCF [max]	
T_{A}	$\mu \mathrm{PD42601-L}$	$\mu \mathrm{PD42601}$
$50^{\circ} \mathrm{C}$	$20 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$
$60^{\circ} \mathrm{C}$	$10 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$
$70^{\circ} \mathrm{C}$	$5 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$

[2] When exiting self-refresh to a period of read and write operation which includes CBR refresh cycles, tRCF is the delay between the last self-refresh pulse and the first CBR cycle. When entering self-refresh operation, tRCF is the delay between the last CBR cycle and the first self-refresh pulse.
[3] In this period of normal read/write operation, there are no CBR refresh cycies or less than $512 \overline{\text { RAS-only refresh cycles. }}$
[4] The time delay between the last self-refresh pulse in one selfrefresh cycle, and the first self-refresh pulse in the next cycle, is defined by trcF [max] when the intervening period of read and write operation meets the conditions in Note 3.
[5] The built-in counter generates the refresh address in selfrefresh and CBR refresh cycles. Since this address increments sequentially from the last cycle in either self-refresh or CBR operation to the first cycle in the alternate refresh mode, CBR refreshing should be used during normal read and write operation to refresh one address location every 62μ s or less. If some other means of refreshing is used, it is necessary to do a burst refresh of all storage cells just before changing to and just after exiting self-refresh operation.

As discussed earlier, a lower die temperature permits both a relaxed refresh rate and simplified transition timing between self-refresh and normal write and read cycles. The die temperature is a function of the ambient temperature, operating power, and the junction-toambient thermal resistance (θ_{JA}). The calculations showing the increase of junction temperature (T_{j}) over ambient temperature (T_{A}) at maximum power consumption (P_{D} max) are shown in the sequence below.
(1) $T_{J}=\left(\theta_{J A} \times P_{D}\right)+T_{A}$
(2) $\mathrm{T}_{J}=\left[95^{\circ} \mathrm{C} / \mathrm{W} \times(5.5 \mathrm{~V} \times 12 \mathrm{~mA})\right]+55^{\circ} \mathrm{C}$
(3) $\mathrm{T}_{J}=61.27^{\circ} \mathrm{C}$

In a solid-state disk system where the air temperature stabilizes at $55^{\circ} \mathrm{C}$, the silicon file chip temperature would not exceed $61.27^{\circ} \mathrm{C}$, comparing favorably with the die temperature of $81^{\circ} \mathrm{C}$ or more for a standard DRAM encapsulated in a plastic $\mathrm{SO} J$ and operating in similar conditions.

Figure 6 shows the maximum specification for $t_{\text {RCF }}$, the critical parameter when transitioning between CAS before $\overline{\text { RAS }}$ and self-refresh cycles. When exiting selfrefresh operation, $t_{\text {RCF }}(\max)$ is measured between the falling edges of $\overline{\mathrm{RAS}}$, from the last self-refresh cycle to the first $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ refresh cycle. After transitioning from self-refresh operation to a period of normal write or read cycles, writing and reading can proceed
for only $5 \mu \mathrm{~S}$ (at $70^{\circ} \mathrm{C}$) before a $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ refresh cycle is required. When transitioning from write and read operation to self-refresh operation, the process is simply reversed, with $t_{\text {RCF }}$ (max) referenced between the last CAS before RAS refresh cycle and the first self-refresh cycle.
$\overline{\text { RAS}}$-only refreshing does not increment the refresh counter, complicating the procedure for moving between refresh modes. In refresh methods other than $\overline{\mathrm{CAS}}$ before RAS, a burst of 512 refresh cycles is required before entering and also after exiting selfrefresh operation. Complete refreshing of all rows is needed since, in refresh modes other than $\overline{\mathrm{CAS}}$ before $\overline{\text { RAS, }}$, the status of the refresh counter is unknown and the maximum specification for $t_{R C F}$ may be exceeded. When the self-refresh capability is used, then CAS before $\overline{\text { RAS }}$ refreshing is recommended.

Soft Error Performance

Like the 1M $\times 1$ DRAM, the μ PD42601 uses the trench cell for a small die size and excellent immunity to alpha particles. Accelerated soft error results are less than 1000 FITs (Failures In Time, or errors in 10^{9} devicehours). With low manufacturing cost as an objective, the device includes no error correction circuit (ECC), parity, or data checking functions on-chip. Most customers prefer to implement these functions off-chip.

Figure 6. Timing Restrictions Entering and Exiting Self-Refresh Operation

Notes:
[1] The value for $\mathrm{t}_{\mathrm{RCF}}$ [min] is specified in AC Characteristics. The value for $\mathrm{t}_{\text {RCF }}$ [max] is dependent upon temperature and shown in the table below.

	tRCF [max]	
T_{A}	$\mu \mathrm{PD42601}-\mathrm{L}$	$\mu \mathrm{PD} 42601$
$50^{\circ} \mathrm{C}$	$20 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$
$60^{\circ} \mathrm{C}$	$10 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$
$70^{\circ} \mathrm{C}$	$5 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$

[2] When exiting self-refresh to a period of read and write operation which includes CBR refresh cycles, IRCF is the delay between the last self-refresh pulse and the first CBR cycle. When entering self-refresh operation, tRCF is the delay between the last CBR cycle and the first self-refresh puise.
[3] The built-in counter generates the refresh address in selfrefresh and CBR refresh cycles. Since this address increments sequentially from the last cycle in either self-refresh or CBR operation to the first cycle in the alternate refresh mode, CBR refreshing should be used during normal read and write operation to refresh one address location every $62 \mu \mathrm{~s}$ or less. If some other means of refreshing is used, it is necessary to do a burst refresh of all storage cells just before changing to and just after exiting self-refresh operation.

Silicon File-Based Solid-State Disk System

To assist our customers in the design-in of the μ PD42601, NEC undertook a 20-Mbyte solid-state disk hardware project, a block diagram of which appears in figure 7 and a photograph in figure 8 (the hardware enclosure was designed for expansion to 40 Mbytes). Contained within the same package form factor as a 5.25-inch Winchester, the solid-state disk system includes batteries, a power supply, and the necessary power fail logic to provide complete nonvolatility for up to one month. The error correction device is a gate array developed at NEC and is not commercially available. A specification summary of this application project is shown in table 3.

Table 3. Specification Summary

Parameter	Specification
Capacity	20 Mbytes
Interface	SCSI (host)
Data transfer rate	1.5 Mbytes/sec (max)
Access time	0.1 ms (max)
Error correction	1-bit correction and 2-bit detection
Sector size	256 or 512 bytes
Power supply	5 volts, 2 amps
Package size	5.25 -inch disk
Battery voltage	4.8 volts
Battery backup	0 One month
Operating temperature	5 to $50^{\circ} \mathrm{C}$

Description of the Block Diagram

For the purpose of explanation, the block diagram in figure 7 and the following system description are detailed according to the format shown in table 4.

Table 4.

Major Functional Blocks	Major Components
Power source/switch	Battery, power control circuits
Silicon file and ECC	μ PD42601LA, ECC gate array
Timing generator circuits	$\overline{\text { RAS }}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}$ logic
Data/address control	$\mathrm{V40}^{\text {m }}$, WD33C93

Power Supply and Power Fail Circuits

The upper left corner of the block diagram consists of the battery, power switch, voltage detector, and power fail circuits. Included in the power switch is a 5 -volt
switching regulator and the power conversion circuits. When the detector senses the falling power supply voltage, the power switch supplies the battery voltage to the components shown within the shaded block (battery backup). At the same time, the power fail logic sends a nonmaskable interrupt (NMI) to the V40, which initiates an internal subroutine and places the microprocessor in the low-current HALT mode.

When system power is restored, the rising voltage is detected. After a delay, the power switch disconnects the battery source and allows the 5 -volt supply to power the system. Once the V40 receives the second NMI and resets the processor, $\overline{\mathrm{RFSH}}$ goes inactive and normal timing resumes.

To ensure nonvolatility and reduced battery current drain, the silicon file devices must be placed in selfrefresh operation when system power fails. In figure 7, the power fail logic has two outputs: one called selfrefresh, which pulls $\overline{\mathrm{RFSH}}$ low on all the storage chips, and a second output connected to the control pins of the V40 and the timing generator block. This output is actually two lines: one for the V40 NMI input initializing HALT mode and the second for initializing the timing generator circuits. When this output signal is active, the power fail logic switches the timing for $\overline{\mathrm{RAS}}$ from normal read/write/refresh timing to the self-refresh oscillator. For this application, the self-refresh frequency is set at 50 kHz because this system is specified to operate at $50^{\circ} \mathrm{C}$ (maximum).

Storage Organization with ECC

The solid-state disk is organized as five banks of 39 devices, a 32-bit internal data word and an additional 7 bits for the ECC check bits. The ECC device is capable of 2-bit detection and 1-bit correction.

A 32-bit data bus is acceptable for the ECC chip, but the V40 and the SCSI interface controller require a byte-wide bus. The lower right corner of figure 7 shows a four-section register to accomplish this 32- to 8-bit conversion. This register is composed of eight octal bus transceivers with eight enable lines generated in the timing generator block. Four of these transceivers are used for the input side and four are used for the output side. The four octal bus transceivers (4×8 bits) comprise the 32-bit-wide data bus. The enable signals select one of the four transceivers receiving and sending each byte to or from the 8-bit data bus.

Figure 7. Block Diagram of Silicon File Disk

Figure 8. Photograph of Silicon File Disk

Timing Generation and Decoding

The timing generator block consists of a delay line, several PALs ${ }^{\circledR}$, and glue logic. Its purpose is to control write and read operation and $\overline{C A S}$ before $\overline{R A S}$ timing. One of the PALs is used for decoding the eight enable signals used in the 32- to 8 -bit multiplexing and demultiplexing operation discussed in the preceding section. Selecting one of five of the storage banks is accomplished by decoding $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$ and $\overline{\mathrm{WE}}$. This function, together with the selection of the self-refresh oscillator, is contained in the logic blocks shown to the left of the storage array. The self-refresh oscillator is contained in the power fail logic block.

Data Transfer Control [V40 and SCSI Controller]

In this system, the SCSI controller is the target and the host computer connected to the SCSI controller is the initiator. Although a solid-state device is not a disk in that it has no cylinders, heads, or sectors, the V40 has been designed to handle all the control, data transfer, and address translation functions. Used as a microcontroller, the V40 makes the silicon disk look like a magnetic disk to the WD33C93.

Read Operation

Upon receiving the input/output command from the host system, the host adapter arbitrates and wins bus control. The target, the SCSI controller in this case, is selected and receives the read instruction and starting address from the host adapter. This information is stored as part of the command data block in the SCSI controller's internal register. At this point, the host disconnects. The V40 first recognizes the read command and the address and then sets the proper bits in the WD33C93 address register. Under V40 control, data is accessed from the correct logical address in the silicon file and moved to the μ PD43256A buffer RAM.

Once the silicon file has started filling the RAM, the SCSI adapter can reconnect to the host. During this phase, the target arbitrates for the bus and wins control of it. The host is selected and the target sends the message that it is reconnecting. Under control of the V40, data is moved from the RAM to the SCSI controller and is received by the host adapter completing the operation. With this fast semiconductor disk, the data transfer rate depends more on arbitration time than on device access time.

Introduction

The objective in designing a hierarchical memory system is to match the processor's speed either with the rate of information transfer or with the bandwidth of the memory at the lowest level, at a reasonable cost. No one type of device meets all criteria, i.e., inexpensive, reliable, fast and nonvolatile. In fact, the hierarchy in most computers is often organized so that the highest level has the fastest speed and the lowest level has the lowest speed, e.g., a cache typically resides in the highest level and contains the fastest and most expensive memory, the next level contains random access devices that are 5 to 10 times slower than the cache, and the lowest level has the slowest and cheapest devices.

In the past, there has existed a technology gap between the faster primary and the slower secondary memories (figure 1). Average access time of secondary devices, most often magnetic disks and drums, is 1000 to 10,000 times slower than that of primary devices. Electronic disks such as charge-coupled devices and magnetic bubble memories have not proved cost-effective in closing the gap and thus have had little impact on system design.

Figure 1. Memory Hierarchy

Standard semiconductor memory in the secondary level is able to bridge this gap, and of the various alternatives, battery backed-up static RAM and EPROM/EEPROM technologies historically have been used in solid-state nonvolatile systems. Typically they have been restricted to low-capacity applications, since the high cost of static RAMs prohibits using them in place of magnetic media or in applications where the operating environment makes rotating media unreliable.

NEC's μ PD42601 silicon file, a device with higher performance, higher capacity, and lower power requirements is also able to bridge this performance gap. Based on DRAM technology, the μ PD42601 provides the capacity and reliability of a standard DRAM, but also features a way to retain data by means of batteries when power is shut off. It also offers the reliability and ruggedness of solid-state memories, as well as lighter weight, higher I/O bandwidth, and simpler interfacing.

Functional Overview

Standard Operation. The silicon file is specifically designed to replace magnetic media in silicon disk, solidstate recording, and system backup applications. It is based on the trench cell technology of NEC's 1M DRAMs and implements the same read and write cycles (figure 2), but optimizes system bandwidth with a page cycle that repeatedly pulses $\overline{\text { CAS }}$ while maintaining $\overline{R A S}$ low (figure 3). The silicon file also periodically executes standard $\overline{R A S}$-only and $\overline{C A S}$ before $\overline{R A S}$ refresh cycles to refresh its cells within a specified interval of 32 ms , which is four times slower than a 1 M DRAM.

Low-Power Operation. An important feature of the silicon file is its ability to retain data while being powered by a backup battery. This is accomplished by means of a self-refresh cycle that can be used in applications requiring a low data retention or self-refresh current. The $\overline{\text { RFSH }}$ control signal goes low while the RAS signal is clocked at a relatively slow rate ($\mathrm{t}_{\mathrm{RCF}}$). Since data loss is caused by leakage, and leakage current is a function of temperature, $t_{\text {RCF }}$ is specified at three temperature ratings: $50^{\circ} \mathrm{C}, 60^{\circ} \mathrm{C}$, and $70^{\circ} \mathrm{C}$. Each rating has a corresponding refresh current (directly proportional to the refresh rate) which is required to maintain data (table 1).

Figure 2. Read Cycle

Table 1. Self-Refresh Current Versus Clock Frequency and Temperature

Type	Temperature	RAS Clock	Maximum Current
μ PD42601-60L	0 to $50^{\circ} \mathrm{C}$	50 KHz	$30 \mu \mathrm{~A}$
	0 to $60^{\circ} \mathrm{C}$	100 KHz	$60 \mu \mathrm{~A}$
	0 to $70^{\circ} \mathrm{C}$	200 KHz	$120 \mu \mathrm{~A}$
μ PD42601-60	0 to $70^{\circ} \mathrm{C}$	200 KHz	$120 \mu \mathrm{~A}$

Self-refresh cycles are intended to be used when power to the silicon file's memory array is shut down for an extended amount of time. In this case, the system backup circuit is required to provide to the memory array a backup supply voltage of between 4.5 and 5.5 volts while pulsing $\overline{\mathrm{RAS}}$ at the given $\mathrm{t}_{\mathrm{RCF}}$ frequency and
driving $\overline{\mathrm{RFSH}}$ low. As long as the circuit can maintain these operating conditions, the silicon file will retain data (figure 4).

Special consideration must be given to the requirements for $t_{\text {RCF }}$ near periods of limited standard refresh cycles, and to the time restriction when entering and exiting self-refresh operation (refer to the data sheet for the μ PD42601 as well as Application Note 56).

Comparison with 1M DRAMs

Table 2 compares the functions of the μ PD421000 DRAM with the μ PD42601 silicon file. Both have a similar 1M x 1 organization and interface circuit, and both are available in the same high-density 26/20-pin plastic SOJ and 20-pin plastic ZIP packages.

Figure 3. Page Read Cycle

Note:
[1] $\overline{\mathrm{RFSH}}=\mathrm{V}_{\mathrm{IH}}$.

Table 2. Comparison of Silicon File to Standard DRAM

Part Number	Organization	Pinout	Package	Access Times	Active Power	Refresh Operation
MPD421000	$1 \mathrm{M} \times 1$	Standard	26-pin plastic SOJ 20-pin plastic ZIP 18-pin plastic DIP	Fast-Page $\left\{\begin{array}{l} \mathrm{t}_{\mathrm{RAC}}=120 \mathrm{~ns} \\ \mathrm{t}_{\mathrm{CAC}}=30 \mathrm{~ns} \\ \mathrm{t}_{\mathrm{PC}}=70 \mathrm{~ns} \end{array}\right.$ Standard $\begin{aligned} & t_{\mathrm{RAC}}=600 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{CAC}}=100 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{PC}}=200 \mathrm{~ns} \end{aligned}$	40 mA max 14.8 max	$\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ refreshing $\overline{\text { RAS-only refreshing }}$ Refresh current $=50 \mathrm{~mA}$ max Standby refresh current RAS cycle at $64 \mathrm{KHz}=1.7 \mathrm{~mA}$
بPD42601	$1 \mathrm{M} \times 1$	Standard plus $\overline{\mathrm{RFSH}}$ pin	26-pin plastic SOJ 20-pin plastic ZIP	$\begin{aligned} & \text { Page } \\ & { }^{{ }^{\text {RAC }}=}=600 \mathrm{~ns} \\ & { }^{{ }^{4} \mathrm{CAC}}=100 \mathrm{~ns} \\ & { }^{{ }^{\text {PC }}=200 \mathrm{~ns}} \end{aligned}$	12 mA max	$\overline{\text { CAS }}$ before $\overline{\mathrm{RAS}}$ refreshing $\overline{\text { RAS-only refreshing }}$ Refresh current $=10 \mathrm{~mA}$ max Self-refresh current $\left(\begin{array}{rl} (\overline{\text { PAS }} \text { cycle }) & 50 \mathrm{KHz}=30 \mu \mathrm{~A} \\ & 100 \mathrm{KHz}=60 \mu \mathrm{~A} \\ & 200 \mathrm{KHz}=120 \mu \mathrm{~A} \end{array}\right.$

Figure 4. Block Diagram of Backup Circuit for Self-Refreshing

Access Time and Power Comparison

The 1M DRAM is designed for high performance at low cost. Its optimized technology, also used in the silicon file and based on NEC's CMOS process and trench memory cell, is proven to provide high reliability, excel-
lent immunity to alpha particles, and accelerated soft error rates of less than 1000 FITs (Failures in Time or errors in device-hours).

Figure 5 shows a comparison of the die layouts for the silicon file and 1M DRAM. The 1M DRAM is segmented into 16 memory cell arrays with appropriate column decoders and sense amplifiers separating each pair of arrays. This highly segmented approach is used to reduce the length of the bit line, which in turn reduces bit line capacitance and results in a faster access time.
Conversely, the eight memory cell segments and eight sense amplifiers in the simplified layout of the silicon file optimize power consumption rather than access time. The silicon file has a slower access time and lower active current, and although active current can be reduced in any DRAM if cycle time is also reduced, active current in the silicon file is still much lower than active current in a DRAM when both are operating at a $1 \mu \mathrm{~s}$ cycle rate.
When a standard DRAM and the silicon file are not being accessed by the system, they operate in standby and dissipate a current much lower than their active current. Standby is used by both devices to reduce system power requirements during normal system operation. The silicon file also has a unique self-refresh
cycle that isn't implemented on a standard DRAM and can operate at very low currents, as low as $30 \mu \mathrm{~A}$, and still retain data via a battery powered backup system. Furthermore, the silicon file uses an additional $\overline{\text { RFSH }}$ pin (pin 4 on the 20/26-pin SOJ and pin 9 on the 20-pin plastic ZIP).

System Design

When considering a system design using the silicon file, the system designer will recognize a number of similarities with the 1M DRAM. Both devices use the same $\times 1$ organization, as well as $\overline{R A S}, \overline{C A S}, \overline{W E}$ and A_{0}
through Ag_{g}, and both are available in the same SOJ and ZIP package types. Typically, a silicon file system design will be functionally similar to a standard DRAM system, making it very easy for the designer to use traditional DRAM system design techniques.

Figure 6 shows an interface between the silicon file and a host interface. It is very similar to a DRAM system, except for the power monitor and backup circuit used to implement self-refreshing. The interface circuit is application-dependent, and can be an interface to a variety of standard I/O or memory interfaces.

Figure 5. Die Comparison of 1M DRAM and Silicon File

Figure 6. Block Diagram of 20 Mbyte Solid-State Disk System

The control circuit supervises interaction between the host interface and the storage array of the silicon file, translating signals from the host interface into silicon file access cycles and controlling the transfer of data on the host interface bus. The power monitor and backup circuit track power supply voltage for power failures or shutdowns, and maintain memory data by generating control signals for self-refresh cycies and battery backup voltage. To increase system reliability, an error correction and detection circuit, such as a parity bit or ERCC, may be implemented. One common design characteristic is that the silicon file control and memory array circuits will remain applicationindependent, while the system interface circuit will be application-dependent.

Control Circuitry

This section focuses on the circuitry of a silicon file system, and in particular on the applicationindependent control circuits and various system interfaces.

The similarity between the silicon file and a 1M DRAM extends to the organization of their memory cells in a matrix of rows and columns, with each individual cell accessed by first addressing a row and then a column (figure 7). The external address is presented to the silicon file in two parts, as shown in the waveform in figure 2. The row address first is driven on the address input pins and RAS goes low to clock the row address into an internal row address latch. The row address must be stable for the specified setup time of $t_{\text {ASR }}$ before RAS is asserted, and also for the specified hold time of $t_{\text {RAH }}$ after $\overline{R A S}$ is asserted.
The address inputs are then changed to column addresses and $\overline{\mathrm{CAS}}$ is asserted. $\overline{\mathrm{CAS}}$ also serves as the output enable signal, in that the three-state driver is
enabled whenever $\overline{\mathrm{CAS}}$ is asserted. The time when $\overline{\mathrm{CAS}}$ can be asserted is determined by the minimum requirements for a $\overline{R A S}$ to $\overline{\mathrm{CAS}}$ delay, as specified by $\mathrm{t}_{\text {RCD }}$. Additionally, setup and hold times for $\overline{C A S}$ must be met. Presenting the address in two parts has the advantage of reducing by 50% the number of address pins and the package size. The silicon file is typically used in large memory systems where chip size is an important consideration.
Data is available after the access times from both RAS ($\mathrm{t}_{\mathrm{RAC}}$) and $\overline{\mathrm{CAS}}\left(\mathrm{t}_{\mathrm{CAC}}\right)$ have been satisfied. The limit of performance is determined by the access time from $\overline{\mathrm{RAS}}$. If the assertion of $\overline{\mathrm{CAS}}$ is delayed longer than required, then maximum performance will not be obtained and access time from $\overline{\mathrm{CAS}}$ will determine the overall access time.

Another specification of importance is the $t_{R P}$ precharge time for $\overline{\mathrm{RAS}}$, which is required for the memory circuit to recover from the previous access. Because a read cycle destroys the data in an addressed memory cell, a precharge cycle must be executed to restore the data and equalize signal levels on the bit lines. Thus, the cycle time for a silicon file is greater than the access time. The difference between access time and cycle time is equal to the precharge time, e.g., a silicon file with an access time of 600 ns will have a cycle time of $1 \mu \mathrm{~s}$.

Figure 8 shows the timing for an early write cycle. The addressing sequence is the same; the only difference is that $\overline{W E}$ is asserted, and data is supplied by the CPU on the $\mathrm{D}_{\text {IN }}$ pin. There are two types of write cycles, depending upon the timing relationship between $\overline{W E}$ and $\overline{C A S}$. Figure 8 shows the $\overline{W E}$ signal being asserted before $\overline{\mathrm{CAS}}$. In this case, setup and hold times are referenced to the falling edge of $\overline{\mathrm{CAS}}$. In a late write cycle, $\overline{\mathrm{WE}}$ is asserted after CAS.

Figure 7. Silicon File Block Diagram

Figure 8. Early Write Cycle

Refreshing of Dynamic Cells

The silicon file, as well as all DRAMs, uses a memory cell structure that stores a dynamic charge on a capacitor, which means that the charge can decrease in time because of leakage. As a result, all devices using DRAM cell technology must be periodically restored or refreshed. Whenever a row is selected in a silicon file, all the cells in that row are accessed and the charge in that cell refreshed. The maximum interval in which a row address must be refreshed is called the refresh period ($t_{\text {REF }}$) and is specified as 32 ms for the silicon file. If each row address is not accessed every 32 ms , data in that row cannot be guaranteed.

Two refresh cycles can be used to refresh a silicon file. $\overline{\text { RAS-only refresh cycles are executed when the refresh }}$ address is driven onto the address pins by an external circuit when $\overline{R A S}$ is low. $\overline{C A S}$ is left inactive during this cycle since no data is being read or written.

To simplify the circuitry needed to initiate refresh cycles, the silicon file has an on-chip counter that generates every refresh address and is activated by asserting $\overline{C A S}$ before the $\overline{R A S}$ signal. Internal control logic detects this state and uses the address generated by the internal refresh address counter to execute a CAS before RAS refresh cycle, which is standard in most DRAMs. Its advantage is that no external counter is required and the refresh address sequence is main-
tained when switching between $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ and self-refresh operation during operation of the silicon file. In fact, the use of $\overline{\text { RAS }}$-only refresh cycles with the silicon file is discouraged because of the difficulty in synchronizing $\overline{\mathrm{RAS}}$-only operation (external refresh counter) with self-refresh operation (internal refresh counter).

Page Mode

The silicon file provides a page mode to increase effective bandwidth of the memory hierarchy. Page mode takes advantage of the matrix organization of the silicon file by continuously accessing data in a single row in the memory array. The silicon file is organized with 512 columns per each of the 512 rows, allowing a page cycle to access a maximum of 512 bits of information. The first word is accessed in the same manner as in a standard read and write operation, with row addresses latched onto the chip by $\overline{\mathrm{RAS}}$ and column addresses latched by CAS. Subsequent column addresses are accessed for each CAS cycle, repeated for a period equal to the maximum specification for the RAS pulse width. System performance is enhanced because the 100 ns page cycle access time ($\mathrm{tpg}_{\mathrm{pc}}$) is much faster than the 600 ns standard access time from $\overline{\mathrm{RAS}}$. In solid-state disk applications, a 512 -byte sector can use a page cycle to reduce read or write access times for the sector. However, the logic required to implement a page cycle is more complex than for conventional read or write operation, requiring extra system control logic or a controller chip that supports page mode.

Control and Interface Circuit Design

A silicon file requires a number of functions to be performed to execute a read or write operation. A control circuit must determine that a valid silicon file cycle is being executed and translate the read and write control signals from the host CPU into $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$ and WE signals compatible with silicon file timing. The address must be latched and multiplexed into the row and column address, conforming to the timing specifications. Finally, the silicon file must be refreshed periodically to guarantee data retention.
The first task requires the control circuit to monitor the system interface and determine if a valid silicon file cycle is being executed by the host. When a valid access cycle is active, the control circuit must interface with the host through asynchronous or asynchronous acknowledgement signals that determine when silicon file data will be valid on the system bus. The control circuit must also generate control and timing signals to
the silicon file memory array that executes a read or write cycle. Once the cycle is complete, the control circuit releases the system interface for the next operation.

A control circuit can be implemented with discrete logic or integrated controller circuits that include a number of on-chip interface functions. The discrete design requires a PAL-based, status machine control circuit to perform the following functions:

- Determine valid silicon file access cycles
- Input and translate the system interface control signals into silicon file control signals, i.e., $\overline{\mathrm{RAS}}$, CAS, WE
- Acknowledge to the host when valid data is available
- Execute refresh cycles

The controller must also determine when a refresh cycle is required and provide the circuitry for controlling the silicon file data and address path control and timing circuits.
The PAL-based controller must provide internal synchronous feedback of system access information and synchronize timing of the silicon file access cycle with timing of the host's access cycle. The valid signal indicates to the control circuit that an access to the silicon file is being requested by the host. The control circuit must determine if the system access is a read or write cycle, determine whether a refresh cycle is also being requested at the same time, signal the host to wait for valid data, generate the RAS enable signal to initiate the control and addressing timing circuits of the silicon file.
Once the control circuit has determined that a valid access cycle is being executed and arbitrated any refresh and access cycle conflicts, it must generate the $\overline{\text { RAS }}$ enable signal to initiate the control and address timing circuit. This circuit generates the $\overline{\text { RAS }}$ and CAS signals and controls the address multiplexer that multiplexes the row and column addresses. Since most silicon file devices are organized into banks of data, the control circuit must also determine what bank is being accessed. The bank decoder circuit decodes the appropriate address bits and selects the $\overline{\text { RAS }}$ signal for the selected bank allowing the read or write cycle to start.
The address multiplexer, a two-input device controlled by the select signal (mux_select) generated by the control circuit, selects either the lower or upper address bits to generate the row and column address (figure 9). In applications using $\overline{\mathrm{RAS}}$-only refresh cy-
cles, the refresh address must also be multiplexed onto the address lines during a refresh cycle. This can be done with an additional multiplexer or by using threestate drivers to drive the address onto one of the multiplexer inputs. Since the silicon file uses the internal $\overline{C A S}$ before $\overline{R A S}$ address counter for self-refresh operation, it is recommended that the $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ refresh method be used to eliminate the need for synchronization of the external $\overline{R A S}$-only refresh with the internal self-refresh address. An additional signal from the PAL-based control circuit is required to enable the $\overline{\mathrm{CAS}}$ signal before the $\overline{\mathrm{RAS}}$ signal.

Figure 9. Address Multiplexer and Driver Circuits

μ PD42601 read or write cycles follow this sequence:

- The address multiplexer is selected for the row address bits and the row address is driven onto the address pins for a specified setup time.
- The control circuit generates $\overline{\mathrm{RAS}}$, and the bank select decoder selects the $\overline{\mathrm{RAS}}$ signal corresponding to the selected bank.
- The row address is maintained for a specified hold time.
- The multiplexer is switched to select a column address.
- The column address is maintained for a specified setup time and for the minimum specification for a $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ delay.
- The $\overline{\mathrm{CAS}}$ signal is asserted.

The timing for this cycle must be precise to be able to maintain the address setup and hold times and $\overline{\text { RAS }}$ to $\overline{\text { CAS }}$ delay specifications. This timing is usually implemented in DRAM applications with a delay line of ± 1 or 2 ns (figure 10), but since the silicon file's specification are not as critical as a DRAM's, the timing can be derived from a high-speed clock using synchronous flip-flop circuits (although consideration for timing skews between different devices should be considered and minimized by using flip-flops circuits from the same package). A gate array controller could also easily generate the address timing signals for a silicon file application.

Figure 10. Memory Control Circuit and $\overline{R A S} / \overline{C A S}$ Timing Circuit

Since the silicon file cannot be read or written while a refresh cycle is executing, the host cannot always have access to memory. The simplest way to override this is to halt the host every 32 ms and execute a burst of 512 refresh cycles, also known as burst refreshing. It must be pointed out that burst refresh cycles can degrade the performance of the system. The percentage of time that the microprocessor is halted for refreshing isn't large, but the length of the burst refresh period increases the system's latency time in responding to an asynchronous event.
Another approach is called distributed refreshing, in which a single refresh cycle is executed every $62.5 \mu \mathrm{~s}$. In this method, if a refresh cycle and an access cycle are active at the same time, the silicon file control circuit must arbitrate control between the two cycles, i.e., the control circuit must delay the host until the refresh cycle is completed by causing the host to execute a wait state. The refresh cycle must take precedent over the active access cycle to ensure that the maximum refresh period is not exceeded. Both refresh methods require a refresh interval counter to signal the control circuit when a refresh cycle is to be executed. This circuit consists of synchronous counters, clocked by the system clock and reset after each refresh cycle.

Data Input

Data to be written into a selected cell is latched by an on-chip register with the combination of the $\overline{W E}$ and $\overline{\mathrm{CAS}}$ signals while $\overline{\mathrm{RAS}}$ is active. There are two types of write cycles, both of which depend on when the write data is available. If write data is valid before $\overline{\mathrm{CAS}}$ goes low, an early write cycle can be executed. In an early write cycle, $\overline{W E}$ signal is asserted before $\overline{C A S}$, and setup and hold times for the write pulse and the data are referenced to the falling edge of $\overline{\mathrm{CAS}}$. The other type is called a late write, and is executed when $\overline{W E}$ and $\overline{\mathrm{CAS}}$ are both low. Since $\overline{\mathrm{CAS}}$ controls the output drivers, the output buffer is briefly enabled from the time $\overline{\mathrm{CAS}}$ is active until the assertion of the $\overline{\mathrm{WE}}$ signal. In a late write cycle, setup and hold times are referenced from the falling edge of $\overline{W E}$.

The timing specification for the host's write data will determine which write cycle is to be implemented in each design. If data is valid before the assertion of $\overline{C A S}$, the control circuit must assert a write pulse before $\overline{\mathrm{CAS}}$ while maintaining the specified twos write command
setup, $t_{W C H}$ hold, and $t_{W P}$ pulse width times. Since the WE signal is connected in parallel to all of the siliconfile chips, propagation delays caused by capacitive loading should also be taken into account.

The circuit may also require write data to be latched in a transparent latch if the host isn't capable of maintaining write data long enough to meet the setup and hold times, or if a refresh arbitration cycle has to remain active during a number of wait cycles. A write data latch is controlled by a data strobe from the host that is connected to the latch enable input of the latch. The strobe should be high while write data is valid. The host system bus and the falling edge of the data strobe latch the write data at the end of the host's data cycle. The need for a write data latch is dependent upon the host's requirement for write data timing and should be considered when designing a silicon file circuit.

Memory Design Considerations

The silicon file memory array is organized into banks of chips, and the size of each bank is determined by the size of the system bus, as well as by the additional chips required for parity or error detection and correction (ERCC). For example, a 20 MByte solid-state disk with ERCC will have 5 banks of silicon file chips, each bank consisting of 32 devices to store the memory word and 7 devices to store the ERCC syndrome bits. The bank organization allows active system power to be minimized because only a part of the total array is accessed during each cycle.

The bank organization requires that the address and control lines be wired in parallel, which presents a large capacitive load to the driver circuits. The compact design presents inductive and capacitive loads to the address and control line drivers, which can cause ringing and large under- and overshoots during signal transitions, subsequent violation of address setup and hold times, or glitching on the control lines that will result in memory failures. The undershoot and ringing can be minimized with proper printed circuit board design techniques that reduce not only the length of the etch run between the driver and input pin but also the impedance of the signal etch. This is accomplished by means of damping resistors between the address and control line drivers and the silicon file inputs (figure 11). The value of these damping resistors is typically 15 to 33 ohms and should be empirically chosen.

Figure 11. Bank Decoding and Memory Driver Circuits

Because of the large input capacitance of the memory array, the transitions of address and control signals are slowed by the need to charge and discharge this capacitance. Drivers designed for use with memory arrays can drive large capacitive loads, but the designer must account for the added propagation delay due to the loading effects. If driver circuits are required to drive the address and control lines of each memory bank, the bank must divided into separate groups, and the total capacitance load must not exceed the driver's capabilities. For this purpose, some manufacturers produce memory drivers, but an integrated memory controller will provide such drivers internally.
A typical memory driver can drive a 250 pF capacitive load with the silicon file address and control line inputs specified at 5 pF for address lines and 8 pF for control lines. For a bank of 39 chips, one driver is required to drive each address line (A_{0} through A_{g}) and two drivers to drive each control line ($\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$, and $\overline{\mathrm{WE}}$). This requires 16 drivers for all address and control lines. Because the driver circuits are quad packages, an additional four packages are required to drive each bank.

Power Distribution and Decoupling

As in all high-speed memory designs, controlling large current transients and protecting high frequency components from fast switching speeds is an important consideration. In order to control these current transients and prevent them from generating voltage spikes that can cause loss of data and soft errors, every effort must be made to minimize impedance in the decoupling path of the device.

The decoupling path is the trace distance from a power pin through a decoupling capacitor and to package ground. The impedance of this path is determined by the line inductance and series impedance of the decoupling capacitor. The line inductance can be minimized either by providing a power plane or by girding the power. To increase the effectiveness of the girded power, decoupling capacitors should be placed between the power and ground pins of every chip. The decoupling capacitors used for a typical silicon file design would be a high frequency (100 MHz) $0.2 \mu \mathrm{~F}$ ceramic capacitor. Since most memory designs have some low frequency DC currents, large bulk electrolyte $27 \mu \mathrm{~F}$ capacitors should be located judiciously around the periphery of the printed circuit board.

Introduction

Today's RISC microprocessor architectures offer a promise of high performance systems able to execute an instruction in one system clock cycle, which means the challenge for a system designer is to design a memory system that can support high CPU throughput requirements. Common elements of these VLSI designs include on-chip subsystems such as floating point units and/or cache memory.
Although the size of an on-chip cache is typically small (4 to 8 Kb) to minimize chip size and optimize cost, the system may also require an external, second-level cache that is much larger (256 Kb to 1 Mb) and can interface to a high performance system bus. If the CPU executes an instruction that isn't stored in the cache, the cache must access main memory and fetch an instruction for the processor. Even though a cache is designed to sustain a high hit rate, a percentage of the CPU's read cycles and all writes cycles must access main memory, making it essential that data transfer cycles be executed so that latency of the system bus is minimized. System bus latency may increase dramatically in a multiprocessor system and can be the critical issue in determining system performance.
This application note will discuss quantitative measures of memory performance, as well as a number of design techniques for optimizing performance in today's system environment.

Hierarchical Systems

Bottlenecks in most Von Neumann architectures have traditionally occurred because a processor could only read a single word from memory during each access cycle, and to be able to match processor cycle time, a system would have to use very high-speed devices that in most cases could not be justified in terms of cost. The classical solution has been to configure a hierarchical or multilevel structure containing several types of memory devices with various cost and performance characteristics.
Performance can be affected by such interrelated factors as program behavior with respect to memory references, access times and sizes of each level, granularity of information transfer, memory management policies, and the processor-to-memory interconnection network. One measure of performance is called effective access time, which is the sum of average
access times at each level of the hierarchy. Another quantitative measure is bandwidth, which refers to the number of bits that can be accessed per second. To increase bandwidth, a system designer may choose to reduce cycle time, increase word size by accessing more bits per cycle, or replicate the memory banks and access two or more concurrently.

Properties of Program Locality

The majority of computer systems developed today are based on properties of program locality that reveal a strong tendency for accesses to be clustered in small regions of memory during any short period of time. Program locality has two aspects, temporal and spatial. The first, locality of time, means that information that will be in use in the near future is likely to be in use already. This type of behavior can be expected from program loops in which both the data and instructions are reused. The second property, locality of space, means that portions of the address space which are in use generally consist of a fairly small number of individual contiguous segments of that address space. Locality of space means that the program's loci of reference in the near future are likely to be near the current loci of reference. This theory is based on common patterns of behavior: related data items (e.g., variable arrays) are usually stored together and instructions are mostly executed sequentially.
The characteristics of temporal locality have shown a strong tendency for program references to be grouped in time, and in fact were responsible for the invention of virtual memory and the subsequent design of highspeed caches, both of which exploit the properties of locality by storing a copy of the program in a temporary segment of memory. Virtual memory increases the size of the system by segmenting the program into pages that are individually loaded from magnetic secondary memory into main memory. A cache optimizes CPU throughput by also storing a segment of the program in a buffer that matches the speed of the processor.

Optimizing the Hierarchy

Once program behavior is understood, main memory can be structured to optimize processor performance. As discussed earlier, effective access time is the sum of the average access time in each of the levels of the hierarchy, defined as
$t_{E F F}=\Sigma t_{K}$
where $t_{\text {EFF }}$ is effective access time from the processor to the ith level of the hierarchy, and t_{K} is the individual average access time at each level, where $K=1$ to i. Generally, t_{K} includes not only the wait time caused by memory conflicts at level K, but also the delay in the switching network between levels $K-1$ and K. The degree of conflicts is usually a function of the number of processors, the number of memory modules, and the interconnection network between the processors and modules.

In modeling the performance of a hierarchy, it is often assumed that the probability of finding requested information in the memory of a given level is characterized by a success function or hit ratio h. In general, h depends on the granularity of information transfer, the capacity of memory at that level, the management strategy, and other factors. However, for some class of management policies, it has been found that h is most sensitive to memory size. Because copies of information at the highest hierarchical level are assumed to exist in levels below that level, the probability of finding the data at the higher levels is $f=1-h$, where f is the miss ratio. Therefore in a two-level system, effective access time would be equal to
$\mathrm{t}_{\mathrm{EFF}}=\mathrm{h} \mathrm{t}_{\mathrm{K} 1}+(1-\mathrm{h}) \mathrm{t}_{\mathrm{K} 2}$
where $t_{K_{1}}=t_{A C C}$ at level 1 and $t_{K_{2}}=t_{A C C}$ at level 2 . If the hierarchy consists of one level of infinite size (an expensive option for most applications), the probability of accessing this data at level one is 100% (hit ratio $=1$). Memory size greatly impacts the probability of finding data at a given level, which is why the probabilities at each level are expressed in terms of hit and miss ratios. For example, effective access time for a two-level hierarchy would be expressed as follows:
$\mathrm{t}_{\mathrm{EFF}}=\mathrm{h} \mathrm{t}_{\mathrm{K} 1}+(1-\mathrm{h}) \mathrm{t}_{\mathrm{K} 2}$
If the hit ratio at level one is 0.99 , then the probability of finding the data at level two, or the miss ratio at level two, would be $1-0.99=0.01$. Effective access time then would be
$t_{E F F}=(0.99) t_{K 1}+(0.01) t_{K 2}$
Hit ratio is crucial to system performance. For example, if the memory at level two is ten times slower than the memory at level one, the hit ratio decreases from 0.99 to 0.98 (roughly 1% fewer hits) and results in an increase in $t_{\text {EFF }}$ of roughly 10%. Small changes in hit ratio affect effective cycle time of the overall system, making $\mathrm{t}_{\mathrm{EFF}}$ very sensitive to hit ratio. A decrease of 10% in hit ratio (from 0.99 to 0.89) almost doubles the effective cycle time and divides net performance in half when the cycle time ratio is 10 . If the cycle time ratio is 20 , that same

10\% decrease increases effective cycle time by almost a factor of 4 . Hit ratio should be as high as possible; in many cases, techniques resulting in marginal 1% to 2% improvements may yield substantial performance improvements.
A very large structure in only one level is too expensive for most systems, and a multilevel structure is the only configuration that makes sense in terms of cost and performance objectives. Therefore, the goal is to structure the hierarchy so that the highest performance is available for the least cost. Because hit ratio is a function of the memory size at each level, the implication is that the larger the memory at a given level, the higher the hit rate at that level.

Optimizing the Cache

The other variable in the $\mathrm{t}_{\mathrm{EFF}}$ equation is average access time (t_{k}) at each level. The hierarchical level closest to the processor should have access times equal to the processor's cycle time, as well as capacity large enough to maintain a high hit rate. The classical solution has been to design this level as a cache, which is a high-speed buffer typically located between the processor and main memory that provides data to the processor without any wait intervals. Success of the cache is attributed to the properties of program locality and is measured by cache hit ratio, as well as by placement algorithm (degree of associativity), block size, ability to perform during a miss, write cycles, and data consistency in multiprocessor or multicache systems.

A cache operation starts when the processor executes a read cycle and outputs a physical address to the memory system. The physical address is separated into two fields, the address tag field and the set select field. The cache latches the address, and the set field in the physical address selects a set in the cache directory or address tag memory. The address tag from the cache directory is compared to the physical address tag from the CPU. If they're the same, a hit occurs and the data is read from the selected block. If the address tags are not the same, a miss occurs and the data has to be fetched from main memory, which means the CPU must wait until the data is read. New data with a new address tag is stored in the cache.
Cache performance is determined by hit ratio, a function of the design that includes the size of the cache, the degree of associativity used to search the cache directory (placement algorithm), the size of its data block, and the replacement algorithm used in a miss cycle.

Although a larger cache can be effective in sustaining a high hit rate, its benefits are diminished by higher costs.

The same relationship regarding effective access for a two-level hierarchy is valid for a two-level system with a cache in the first level. The cache's hit rate can be optimized not only by increasing the size of the cache, but also by optimizing its placement algorithm, block size, and replacement algorithm. With an optimized architecture, the hit rate should be above 90%.

Effective access time in a two-level hierarchy, with the cache in the first level and main memory in the second level, is calculated as the sum of the hit rate and cache access time in the first level and the miss rate multiplied by the access time of main memory in the second level. For a cache with a read cycle time of 60 ns and a hit ratio of 95%, and a main memory read cycle time of 250 ns and a miss rate of 5%, effective access would be determined as followed:
$t_{\text {eff }}=\left(h_{\text {CAChe }}\right)\left(t_{\text {Cache }}\right)+\left(1-h_{\text {Cache }}\right)$ ($t_{\text {main mem- }}$ ORY)
$\mathrm{t}_{\mathrm{EFF}}=(0.95)(60)+(0.05)(250)=59+12.5=71.5 \mathrm{~ns}$
Effective access time must also include the effect of a write cycle on system performance. To determine this effect, the ratio of read and write cycles must be determined by analyzing the program address characteristics. The ratio between read and write cycles is typically 85% to 15% in general-purpose computer environments, but it may change to $50 \%-50 \%$ in scientific and other computation-based environments. The equation would have to be expanded as follows:
$t_{\text {EfF }}=R\left[\left(h_{\text {CACHE }}\right)\left(\mathrm{t}_{\text {CACHE }}\right)+\left(1-\mathrm{h}_{\text {CACHE }}\right)\left(\mathrm{t}_{\text {main }}\right.\right.$ MEMORY)] + W (twCYC)
where R is the fraction of cycles that are read cycles, W is the fraction of cycles that are write cycles, and $t_{\text {worc }}$ equals write cycle time. If $R=0.85, W=0.15$, and $t_{\text {wcrc }}=250 \mathrm{~ns}$, total effective access time would be equal to
$t_{E F F}=0.85[(0.95)(60)+(0.05)(250)]+0.15(250)=$ 96.57 ns

The span of a write cycle does not reflect hit rate. A larger percentage of write cycles will increase $t_{\text {EfF }}$. For example, if R and W were equal at 50%, then tefF would increase as follows:
$t_{E F F}=0.50[(0.95)(60)+(0.05)(250)]+0.50(250)=$ 159.75 ns

Most program workloads generally have a higher ratio of read cycles to write cycles, allowing the cache to optimize read operation as well as system performance. The main concern with write cycles is that the CPU has to wait for the entire transfer cycle between cache and main memory (> 250 ns) before proceeding to the next instruction. If the cache were able to buffer write data, write cycle time could be reduced to the write access time and the processor wouldn't have to wait for access into main memory and could proceed to the next instruction. Meanwhile the cache could concurrently execute a write cycle into main memory (figure 1). In this case, $t_{\text {woyc }}$ would equal the 60 ns access time of the cache and not the 250 ns access time of main memory. The equation for $\mathrm{t}_{\mathrm{EFF}}$ in a buffered write cycle is calculated as follows:
$\mathrm{t}_{\mathrm{EFF}}=0.85[(0.95)(60)]+0.15(60)=57.45 \mathrm{~ns}$

28h

Figure 1. Write, Fetch Bypass, and Wraparound Load Buffers

83YL-7:83B

The disadvantage of a buffered write cycle is that the circuitry required to control the concurrent CPU and main memory write cycles would have to be more complex.

Optimizing the Miss Cycle

The block size of a cache is the parameter, together with the overall size of the cache itself, that most strongly affects cache performance and also overall system performance. When the data the processor is addressing is not in the cache, the cache executes a miss cycle to access main memory and fetch the missed data to the cache and the CPU. Enlarging block size can decrease the miss ratio and thereby increase the storage delay component of an average instruction, but the longer transfer time required may cause problems in multiprocessor systems because of higher levels of traffic.

A number of design tradeoffs influence block size. For example, architecture of the bus between a cache and main memory plays an important role. A bus protocol that requires an address with each data transfer may force the block size to be one word, because multiple word transfers would be very inefficient. Conversely, if one address can fetch several words of data, then a larger block size would be advantageous. Devices with the ability to transfer bursts of data are becoming popular in a number of microprocessor systems and, together with nibble mode DRAMs, can be implemented to increase memory bus bandwidth. Increasing the width of the bus is another technique that can increase system bandwidth.
In large mainframe systems, block size can reflect the wider bus size and also take advantage of the degree of memory interleaving. Interleaving increases memory bandwidth by enabling data to be accessed from a number of memory banks concurrently, eliminating the delay required while individual banks are accessed separately. In multiprocessor systems, a large block size will increase the cache miss data transfer time, increasing the system bus I/O latency and decreasing the system bus bandwidth.
A larger block size generally increases cache performance, but doesn't necessarily improve system performance. Cache features such as burst data transfers, prefetching, fetch bypass and wraparound load cycles can be added as necessary.
During a miss cycle, the cache accesses main memory and reads the missed block. If the missed word is loaded directly into the cache before the CPU can fetch
the data, access time of the miss cycle will equal the sum of the access time from main memory and the delay required for the missed word to be written and read from the cache. The fetch bypass and wraparound load functions minimize this time by initially bypassing the cache and allowing the CPU to directly fetch the missed word from the fetch bypass buffer, which is loaded with the missed word as soon as it is fetched from main memory (figure 1). The CPU can fetch and execute the missed word from the fetch bypass buffer and then proceed to the next address without having to wait for the cache to be updated. The missed data block is concurrently loaded into the wraparound load buffer; after the entire block is fetched from main memory, the cache is updated. If the CPU attempts to fetch the next word in the block before the block is loaded into memory, the CPU may be required to wait for the memory to be updated or, if an additional function exists in the block load buffer, to directly access the next word from the block load buffer.
The effective access time of the miss cycle can be minimized by reducing the amount of data required to execute a cache miss cycle. This can be accomplished by employing a data transfer mode, called burst data transfer, that requires a single address for each 16 bytes of data rather than separate addresses for each 4 bytes of data. Burst data transfers are implemented in high performance microprocessors such as Intel's 80486, Motorola's 68040, and NEC's V80™. Burst mode allows a 16 -byte cache block to be transferred during a cache miss, minimizing the cache miss data transfer time and increasing system bus bandwidth.

Optimizing the Transfer Cycle

As discussed above, during a miss cycle, the missed data is fetched from main memory. The cache block is the data element used to transfer the data between main memory and the cache. The size of the cache data block can be one word, but typically it is more than one word (figure 2). It has been determined that the cache hit rate increases as a function of cache block size and is generally dependent on the properties of program locality, which are enhanced by fetching a large number of consecutive instructions. However, a very large block size increases the time required to transfer the data over the system bus, decreasing the system bus bandwidth and increasing bus latency. Therefore, the choice of block size is a tradeoff between maintaining the cache hit rate and maximizing the system bus bandwidth.

V80 is a trademark of NEC Corporation

Figure 2. Block Transfers for a Direct Mapped Cache

Burst Mode. A 16-byte block size has been implemented in a number of RISC/CISC architectures. This block size is a good compromise between maintaining a high hit rate and minimizing the bus latency during a cache miss cycle. This 16 -byte block transfer is called burst mode data transfer and it requires only one address for each 16 -byte data transfer. By allowing four consecutive words to be accessed with one address, this feature decreases data transfer time and maximizes system bandwidth.

Although its primary advantage is being able to minimize bus latency and sustain a high hit rate, burst mode would be useless if it could not easily be supported by the interface circuit for main memory. Fortunately, burst mode is designed to be used with DRAMs offering a nibble mode, whereby four consecutive bits
can be accessed in a single cycle. In a standard DRAM read cycle, each cycle requires a address that must satisfy the specifications for $\overline{R A S}$ access ($\mathrm{t}_{\mathrm{RAS}}$) and precharging (t_{RP}), calculated as follows:
TOTAL CYCLE TIME $=\left(\mathrm{t}_{\text {RAS1 }}+\mathrm{t}_{\text {RP1 }}\right)+\left(\mathrm{t}_{\text {RAS2 }}+\mathrm{t}_{\text {RP2 }}\right)$ $+\left(t_{\text {RAS3 }}+t_{\text {RP3 }}\right)+\left(t_{\text {RAS } 4}+t_{\text {RP4 }}\right)$

The separate address and precharge time represents a significant amount of overhead to complete the memory access.

Nibble mode DRAMs provide additional on-chip circuitry that minimizes total cycle time by eliminating the requirement for precharge between consecutive memory accesses. The nibble mode cycle time is given as follows:

TOTAL NIBBLE MODE CYCLE TIME $=\mathrm{t}_{\text {RAS } 1}+\mathrm{t}_{\text {RAS2 }}+$ $t_{\text {RAS }}+t_{\text {RAS } 4}+t_{\text {RPN }}$

Four consecutive data bits are accessed by a single address and loaded into an on-chip shift register that is clocked by CAS. The precharge cycle is delayed until after the bits are valid to prevent the timing skew that usually occurs between each memory cycle (figure 3).
Burst mode data transfers are intended to be implemented with nibble mode DRAMs in main memory. Although nibble mode DRAMs provide the simplest interface for burst mode data transfers, other DRAM operating modes such as fast-page and static-column modes can be used. These DRAM operating modes also reduce DRAM effective access time and require additional external circuitry for implementation.
Fast-page and static-column DRAMs differ from nibble mode DRAMs in that they require a new column address and can access a total of 512 data bits in a single cycle. Most often they are required in computer graphics applications or in direct memory access (DMA) I/O cycles.

Future Enhancements. Among the features proposed for future generations of DRAMs is a feature called gated $\overline{\text { RAS }}$ precharge, which minimizes DRAM access time by eliminating one of the $\overline{\mathrm{RAS}}$ transition times. In a standard DRAM cycle, cycle time is defined as follows:
$t_{R C}=t_{T 1}+t_{R A S}+t_{T 2}+t_{R P}$
where $\mathrm{t}_{\mathrm{T}_{1}}$ and $\mathrm{t}_{\mathrm{T} 2}$ are $\overline{\text { RAS }}$ transition times, $\mathrm{t}_{\text {RAS }}$ is $\overline{\text { RAS }}$ cycle time, and $t_{R P}$ is $\overline{R A S}$ precharge time. Minimum cycle time cannot be achieved in a system because of a mininum and maximum skew in the logic generating the edges of the RAS signal (figure 4). The gated RAS precharge feature removes both $\mathrm{t}_{\mathrm{T} 2}$ and the timing skew from the minimum cycle time, as follows:
$t_{\mathrm{RC}}=\mathrm{t}_{\mathrm{T} 1}+\mathrm{t}_{\mathrm{RAS}}+\mathrm{t}_{\mathrm{RP}}$
Unlike a standard DRAM, this feature allows $\overline{\mathrm{RAS}}$ to go inactive anytime after CAS is asserted. For a minimum cycle, $\overline{\mathrm{RAS}}$ can go inactive prior to the minimum time for $t_{\text {RAS }}$, allowing internal timing to place the device into precharge.
Another proposed DRAM enhancement is extended fast-page data output, which would permit system-level page cycle times to approach those permitted by the specification for memory data. Currently, data output is sampled after a specified access time and after an additional lapse caused by a skew in the system logic has expired. $\overline{\mathrm{CAS}}$ is not permitted to go inactive until after the setup and hold times of the devices are satisfied. Using an extended data output feature, data output would remain valid after $\overline{C A S}$ goes inactive if $\overline{\text { RAS }}$ is also active. Data output can then be sampled by the same signal used to turn off $\overline{\text { CAS. When } \overline{\text { CAS }} \text { goes }}$ inactive again, the data output changes from the previous data to that of the currently accessed location. If the previous and current data are the same, there will be no discharging or precharging of the memory bus. The outputs will be three-state when both $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ are inactive (figure 5). The elimination of the additional timing skew will improve effective cycle time and simplify the complexity of the control logic. Both of these proposed enhancements offer solutions that minimize the effective memory cycle by eliminating timing skews inherent to standard DRAM designs. Unfortunately, the precharge time remains an inherent disadvantage, because consecutive accesses to the memory module will always have a timing skew (t t_{RP}).

Figure 3. Types of Data Transfer Cycles

Figure 4. Gated Precharge

Interleaving

In a two-level hierarchy, memory bandwidth in the first level can be optimized by means of a cache that matches the CPU's read cycle time. For cache misses and write cycles, the cache-to-main memory bandwidth can be maximized by means of burst mode data transfers and standard DRAMs with special operating modes.
Interleaving optimizes effective access when more than one row of data needs to be accessed at the same time. Fast-page cycles are a means of reducing access time for bits located in the same row of the memory array, but they are inefficient for handling the consecutive access of data residing in different row addresses. To fetch diagonal elements in the matrix, the system needs to concurrently access row 1 and column 1, row 2 and column 2, etc. Page cycles can't be used in this scheme because a new row must be accessed for each data element.

A memory system organized to distribute the address to several banks simultaneously is said to be interleaved. The interleaving of addresses among M modules is called M-way interleaving and allows consecutive access to M memory banks. In high-order
interleaving, the addresses are distributed so that the memory modules contain consecutive addresses. High-order bits are used to select the module while the low-order bits are used to select the address within the module. A second method, called low-order interleaving, distributes the address so that consecutive addresses are located within consecutive modules. The low-order bits of the address select the module, while the remaining bits select the address within the module.

In a low-order interleaved system, the memory is organized into banks with each bank providing data bits equal to the width of the CPU memory bus. An address is latched by the memory circuit and the low-order bits are decoded to determine the number of banks to be accessed (figure 6). If four banks are accessed, they are said to be four-way interleaved.
A memory controller circuit initially generates the control signals for the accessing of bank 1. The data for access 1 will be valid after the specified time for $t_{\text {RAS }}$ has elapsed, after which the accessed bank will be precharged. Control signals are simultaneously being generated for bank 2, and they may be skewed by a system clock to accommodate data access for the second fetch from the CPU. Data from bank 2 becomes
valid immediately after the data from bank 1 becomes valid, and no timing skew exists for precharging in the data stream. A precharge cycle for bank 2 is executed while the access to bank 3 is initiated. Data is read from bank 3 immediately after the data from bank 2 is read. Bank 3 executes the precharge while bank 4 accesses data for the cycle immediately following the bank 3 access. Finally, bank 4 executes the precharge cycle to end the interleaving. This scheme eliminates the precharge timing skew and maximizes memory bus bandwidth, but at the cost of a more complex control circuit.

Another scheme uses low-order interleaving and applies the high-order bits of the address to all memory modules simultaneously in one access (figure 7). The single access returns M consecutive words of information from the M memory modules and accesses information from a particular module using the low-order bits. A data latch is associated with each module, the information from each module is gated into a latch in a
fetch cycle, whereupon a multiplexer can be used to direct the desired data to the data bus. Figure 7 illustrates timing for a multiword read access using this method, which is ideal for accessing a vector of data elements or for prefetching sequential instructions in a pipeline processor. It can also be used to access a block of information for a pipeline processor with a cache.

References

Agrawal, O. P., and Pohm, A. V., High-Speed Memory Systems, Reston Publishing, 1983.
Baer, J., Computer Systems Architecture, Computer Science Press, 1980.
Briggs, F. A., and Hwang, K., Computer Architecture and Parallel Processing, McGraw-Hill, 1984.

Stone, H., High-Performance Computer Architecture, Addison-Wesley, 1987.

Figure 5. Extended Data Output

Figure 6. Low-Order Interleaving with Concurrent Access

Figure 7. Low-Order Interleaving with Simultaneous Access

Timing Diagram

Introduction

The evolution of low-power, high-capacity, high-speed memory technologies has led the system designer to novel and highly portable computer designs. As technology has advanced to low-power devices, it has become possible to make an entire system nonvolatile for the life of the product.

To provide this nonvolatile function, secondary power sources are mounted on a printed circuit board controlled by a backup circuit that switches from the primary power to secondary power during power failures. The backup issue is considered as part of the overall system design, and the choice of a secondary power source and backup circuit are based on the unique characteristics of each application.

This application note deals with the issues of providing a nonvolatile memory system. A review of the evolution of static RAMs (SRAMs) with regard to state-of-the-art, low-power SRAM technology is followed by an example of secondary power sources, as well as several sample backup circuit designs.

SRAM Technology

The SRAM historically has been used by system designers to provide a high-speed, low-power data storage function for a variety of computer architectures. The higher cost-per-bit compared to dynamic memories is offset by a simpler circuit design that features a nonmultiplexed address structure, simple timing signals, and no refresh requirement.

Six-Transistor Cell

The development of the SRAM memory cell has followed the trail of bipolar, NMOS, and CMOS technologies in that large-capacity memory devices require minimal cell size, not only to reduce power requirements, but also to be able to fit the die into the package.

The static memory cell is basically a cross-coupled flip-flop circuit requiring no clocks or refreshing. Early six-transistor NMOS static memory cell designs employed the use of enhancement or depletion mode FETs as load devices. Figure 1 shows an example using depletion loads. Q3 and Q4 are depletion-type devices fabricated such that they are always conductive when their respective gate and source nodes are shorted together. If the gate of enhancement device Q2 is written to a low level using Q5 and the data line, Q2 turns off. This allows load device Q4 to pull its source node high and turn on Q1; the write operation using Q6 also helps this action. The cell is designed so that Q1 has much lower "on" resistance than its load Q3. After the write operation ends, and Q5 and Q6 are off, Q1 keeps its drain node at a low level to maintain Q2 in the off state, while the drain node of Q2 is maintained high by Q4. The stored voltages are stable.

Figure 1. Six-Transistor Cell-Depletion

Four-Transistor Cell

As NMOS technology evolved, the active device for the load was replaced with polysilicon resistors (see figure 2). With the polysilicon load resistor, current levels of less than 1 nA are achievable. Because of these low-current levels, the cell can be used in advanced SRAMs with very high memory density and low standby current. NEC uses this technology in its low-power family of SRAMs to facilitate their use in battery backup applications. This type of core cell is used in both NMOS and CMOS SRAMs from NEC.

CMOS Cell

CMOS technology, with its high-speed, low-power characteristics, makes an attractive choice for memory backup systems.
In figure 3, Q1-Q3 and Q2-Q4 form two CMOS inverters that are cross-coupled to form the conventional flipflop of the SRAM cell. Unlike the enhancement or polysilicon resistor cells, the CMOS cell does not have a dc current path (other than leakage) in either of its quiescent logic states. While the potentially lowerleakage and wider-voltage operating range makes the six-transistor CMOS cell very desirable for battery backup operation, the large die area required makes it less competitive in cost and memory density.

Figure 2. Four-Transistor Cell—Polysilicon Resistor

Figure 3. CMOS Cell

Battery Backup Concept

The goal of a memory backup system design is to guarantee memory data retention for days, months, or years. In the past, these memory backup circuits were implemented as part of the computer's power supply circuit. Today, the memory backup function is designed as part of the individual memory circuit, where each provides a constant secondary (backup) power source and the necessary circuitry to detect power failures and isolate the main power supply from the backup power source (battery). The battery backup circuit must be an integral part of printed circuit board layout. Furthermore, SRAM technology must be able to guarantee the requirements of the memory battery backup function. The following sections discuss in detail the aspects of memory battery backup circuit design using NEC's low-power SRAM technology.

A typical functional block diagram for a memory battery backup system is illustrated in figure 4. The power supply converts ac voltage into a regulated dc voltage, which powers all of the system components (V_{CC}). The power supply monitor circuit detects a power failure and generates an interrupt to the CPU. This circuit also signals the memory circuit to deselect the memory array, thus protecting the memory from false CPU commands. The power supply monitor circuit may be centralized to the power supply or decentralized to each memory circuit.

On the memory circuit, power failure is sensed by a voltage-detector circuit, which isolates the system power from the memory power, allowing the backup battery to become active.

Figure 4. Battery Backup System Block Diagram

Backup Battery Selection

Battery Type

Nickel-cadmium batteries and lithium batteries were compared for use in a memory battery backup application. Although nickel-cadmium batteries have been a popular choice for this application, recent years have seen the development of lithium batteries. Some characteristics of these two types of batteries are contrasted in table 1. For additional comparison, the characteristics of current drain versus operating time for nickel-cadmium and lithium batteries are shown in figures 5 and 6, respectively.
Since lithium batteries provide a constant current for up to 10 years in this type of low-power application, they were chosen over nickel-cadmium for this design example. A single 3 -volt lithium battery is adequate for most CMOS SRAM applications. If higher voltage is required, batteries may be connected in series.

Physical characteristics of a battery are determined by the manufacturer according to common system requirements. The designer must select a battery of the proper size and shape to meet the requirements of printed circuit board technology. Such requirements may include terminal connections and solderability.

Table 1. Lithium Versus Nickel-Cadmium Battery Characteristics

Characteristic	Lithium	Nickel-Cadmium
Shelf life	10 years	6 months
Rechargeable	no	yes
Energy density	5000 mAh *	4000 mAh* *
Cost	moderate	moderate
PCB-compatible	yes	yes
*milliampere hours		

Figure 5. Current Drain Versus Operating TimeNickel Cadmlum Battery

Figure 6. Current Drain Versus Operating TimeLithium Battery

Battery Capacity

Battery capacity defines the current drive of the battery over a period of time, measured in milliampere hours (mAh). Required capacity of the battery selected for the memory backup circuit can be determined from the following formula:
Current required (mA) x time in backup mode (hours/day) $\times 365$ days/year x number of years

Figure 7. Lithium Discharge Characteristics$\simeq 20 \mu \mathrm{~A}$ Load

Battery capacity is affected by temperature, humidity, and load conditions. The designer must ensure that these conditions do not degrade the operating life (discharge characteristics) of the battery. Figures 7 and 8 show the effects of temperature and load current variations on lithium battery discharge characteristics.

Figure 8. Lithium Discharge Characteristics$\simeq 8.5 \mathrm{~mA}$ Load

Design Example

This section presents and documents a detailed battery backup design example. The discussion encompasses SRAM memory array design, current and voltage requirements, voltage-detector and isolation circuitry, and memory protection design considerations.

SRAM Memory Array

For the battery backup design example, NEC's μ PD43256A-15LL (a CMOS-fabricated, 150-ns SRAM memory device) is used to implement the memory array, configured as 32 K by 32 bits using four 32K x 8-bit memory devices (figure 9). The memory array's interface of common address lines, common 1/O lines, and control signals are asserted by control logic common to all devices. However, the power supply connection to the memory array requires special consideration. The power plane of the memory array must be isolated from the system power supply to ensure that the backup battery drives only the memory array (see "Voltage-Level Detector and Isolation Circuit Design").

Current and Voltage Requirements

The first task for the designer is to define the required battery capacity. Table 2 shows data retention characteristics for the μ PD43256A SRAM. The maximum data retention current for this device is $20 \mu \mathrm{~A}$ at 0 to $70^{\circ} \mathrm{C}$. For a circuit with four memory devices, total memory array current is $4 \times 20 \mu \mathrm{~A}=80 \mu \mathrm{~A}$.

The battery's operating period is assumed to be 10 years at 12 hours-per-day. Using the formula shown under "Battery Capacity," the required capacity of the battery can be derived from this calculation.
$80 \mu \mathrm{~A} \times 12$ hours/day $\times 365$ days/year $\times 10$ years $=3504 \mathrm{mAh}$
Requirements for the data retention voltage of the μ PD43256A SRAM are defined in table 2, while figure 10 shows timing requirements for data retention with respect to the $\overline{\mathrm{CS}}$ chip select signal.

Table 2. μ PD $43256 A$ SRAM Data Retention Characteristics

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Data retention supply voltage	$V_{\text {CCDR }}$	2.0		5.5	V	$\overline{\mathrm{CS}} \geq \mathrm{V}_{\text {CC }}-0.2 \mathrm{~V}$
Data retention supply current	ICCDR		1	50	$\mu \mathrm{A}$	$\begin{aligned} & V_{C C}=3.0 \mathrm{~V} ; \\ & C S \geq V_{C C}-0.2 \mathrm{~V} \\ & \text { (Notes } 1,2 \text {) } \end{aligned}$
Chip deselection to data retention	$\mathrm{t}_{\text {CDR }}$	0			ns	
Operation recovery time	$t_{\text {R }}$	$t_{\text {RC }}$			ns	

Notes:

(1) μ PD43256A-LL: $I_{C C D R}=20 \mu \mathrm{~A}(\max)$ for $\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$ and $3 \mu \mathrm{~A}(\max)$ for $\mathrm{T}_{\mathrm{A}}=0$ to $40^{\circ} \mathrm{C}$.
(2) μ PD43256A-L: $\mathrm{I}_{\mathrm{CCDR}}=15 \mu \mathrm{~A}(\max)$ for $\mathrm{T}_{\mathrm{A}}=0$ to $40^{\circ} \mathrm{C}$.

Figure 9. SRAM Memory Array

Figure 10. Data Retention Timing Waveforms

Battery Protection. Figure 11 shows the battery portion of the memory battery backup circuit. This portion of the circuit must be designed to provide the required data retention voltage and energy capacity for the memory backup function, yet protect the battery from reverse (charging) current. The diode and resistor shown in figure 11 were selected to protect the battery according to UL standards.
Since lithium batteries are not rechargeable, currentlimiting protection must be provided to control the amount of current from the main power supply. For this purpose, the designer must select a diode that protects against charging current, yet provides sufficient voltage for memory battery backup.

The UL-allowable charging current for a lithium battery is specified as 1% of the battery capacity, calculated as follows:
$1 \% \times$ capacity of battery (mAh) \div (amount of time charging may occur (hours/day) $\times 365$ days/year \times number of years)
In this design example, a minimum capacity of 3504 mAh is required. The closest standard-size lithium battery has a capacity of 5000 mAh . The allowed charging current of this battery for a 10 -year period is calculated in this way:
$1 \% \times 5000 \mathrm{mAh} \div(12$ hours $/$ day $\times 365$ days $/$ year $\times 10$ years $)=1.1 \mu \mathrm{~A}$

Therefore, the diode selected to protect the battery must have a maximum reverse leakage current rating of $1.1 \mu \mathrm{~A}$. To maintain the required data retention voltage at the memory device, a diode with a small forward-voltage drop must be selected. A Schottky diode, with a forward-voltage drop of 0.2 volt, provides a 2.7-volt battery backup voltage and also meets the reverse leakage current specification for this circuit.

According to UL standards, the battery must also be protected against charging current in case the protection diode is damaged. The designer must select a current-limiting resistor for this purpose. Resistor value is determined according to this formula:
$\left(V_{C C}-V_{\text {Battery }}\right) \div$ maximum charging current
UL standards specify a maximum charging current of 5 mA . Therefore, for the circuit in this design example, the minimum resistor value is specified as follows:
$(5.5-3 \mathrm{~V}) \div 5 \mathrm{~mA}=500 \Omega$
Selecting the aforementioned Schottky diode and a standard 10% resistor value of 560Ω would guarantee minimum data retention voltage for the battery backup circuit. Total voltage drop across the protection diode which provides a memory backup voltage of 2.755 volts-well above the minimum data retention voltage of 2 volts.

Figure 11. Backup Energy Source Circuit

Voltage-Level Detector and Isolation Circuit Design

The designer must also determine the best method for detecting power failures and isolating the main power supply from the backup battery. The circuit designed for these functions must fulfill two requirements: 1) sustain maximum operating current for the memory array, and 2) provide isolation protection during battery backup operation. Several design alternatives for voltage-level detector and isolation circuits are discussed in this section. The standards of comparison between these circuits are relative simplicity of design and voltage drop of the isolation element.

Note: In applications that are subjected to brownouts or extreme temperatures, these voltage-level detector and isolation circuits will minimize unnecessary cycling of the backup battery. However, considerations must be made to protect the memory devices from unstable circuit conditions, especially during power failure. For a discussion of memory protection under these circumstances, refer to "System Power Failure Design Considerations," following this section.

The designer must first determine maximum operating current of the memory array. Since maximum operating current for the μ PD43256A SRAM is specified as 35 mA , total operating current is calculated as $4 \times 35 \mathrm{~mA}=$ 140 mA for the memory array in this design example.

Diode Isolation Circuit. The diode isolation circuit in figure 12 provides a simple approach to memory battery backup. The isolation diode (D1) must be able to sustain the maximum memory operating current, yet minimize voltage skew between V_{CC} and $\mathrm{V}_{\mathrm{CCM}}$ by limiting forward-voltage drop. A large voltage skew could cause illegal conditions to occur in normal system operations. A typical silicon diode with a forward-voltage drop of 0.7 V at a $140-\mathrm{mA}$ load current would provide a large voltage skew between V_{CC} and $V_{C C M}$. Since SRAM $V_{C C}$ is 0.7 V less than the level of a logic signal from a device not in the backup system, $V_{C C}$ would have to be adjusted to a nonstandard level of 5.7 V to maintain V_{CC} at 5 V .

In contrast, a Schottky diode typically provides a forward-voltage drop of 0.2 V at a 3-A load current. This low voltage drop minimizes voltage skew and maintains logic input levels to within 0.2 V of V_{CC}, which makes the Schottky diode an ideal choice for the diode isolation circuit.

Voltage-Level Detector Circuit. The diode isolation circuit provides a simple means of battery backup, but some applications may require a circuit that minimizes voltage skew and has a more defined threshold level. The voltage-level detector circuit shown in figure 13 would allow the designer to fulfill these system requirements.

The voltage-level detector circuit isolates the supply voltage from the memory voltage when the voltage level falls below $V_{\text {Cc }}$ minimum. Threshold voltage is specified by using a zener diode in the voltage-divider circuit of figure 13. Care must be taken to ensure that marginal $V_{C C}$ levels do not cause unnecessary cycling of the backup battery.

Figure 12. Diode Isolation Circuit

Figure 13. Voltage-Level Detector Circuit

The voltage-level detector circuit consists of zener diode Z1, switching transistor Q1, and the R1 and R2 voltage-divider network. The collector of Q1 is connected to the base of PNP isolation transistor Q2, isolating V_{CC} from $\mathrm{V}_{\mathrm{CCM}}$ when the V_{CC} voltage level falls below threshold. Threshold voltage $\left(V_{T H}\right)$ is determined by $\mathrm{V}_{\mathrm{TH}}=\mathrm{V}_{\mathrm{Z}}+\mathrm{V}_{\mathrm{BE} 1}$, where V_{Z} is zener voltage and $\mathrm{V}_{\mathrm{BE} 1}$ is the base-to-emitter voltage drop of Q1. The threshold voltage in figure 13 is $3.9+0.6 \mathrm{~V}=$ 4.5 V , which is the specification for minimum V_{CC}. When $V_{\text {CC }}$ drops below minimum specification, the zener diode operates in its forward-voltage region, and no base current flows into Q1. Q1 is then forced into cutoff. With Q1 in cutoff, no base current flows into Q2, consequently forcing Q 2 into cutoff and isolating V_{CC} from $\mathrm{V}_{\mathrm{CCM}}$.
Isolation transistor Q2 must be capable of supplying a maximum memory operating current of 140 mA and also must provide a minimum $V_{S A T}$ to reduce voltage skew. The PNP 2N2907 medium-power transistor chosen for this application can drive up to 150 mA with a dc gain range of 100 to 300 . The maximum base current needed to turn on Q2 is calculated as follows:
$I_{\mathrm{BQ} 2}=\mathrm{I}_{\mathrm{CQ} 2} \div \mathrm{h}_{\mathrm{fe}}=140 \mathrm{~mA} \div 100=1.4 \mathrm{~mA}$
Since the base of Q2 is connected to the collector of Q1, and $\mathrm{I}_{\mathrm{BQ} 2}=\mathrm{I}_{\mathrm{CQ} 1}, \mathrm{Q} 1$ must be capable of driving a collector current of 1.4 mA or greater. The choice for Q1 is an NPN 2N3904, a general-purpose transistor with an I_{C} maximum of 10 mA and an h_{fe} of 100 . The base current needed to turn on Q1 is calculated at $3 \mathrm{~mA} \div 100=30 \mu \mathrm{~A}$, which is much less than the maximum $\mathrm{I}_{\mathrm{BQ} 1}$ provided by the R1-R2 network. The voltage divider R1-R2 must also forward-bias the base-emitter junction of Q1 to allow the transistor to operate in its active region. The voltage at the Q1 base
node is 4.1 volts, which keeps Q1 turned on until threshold voltage is reached.

The circuit in figure 13 was characterized, and the relationship between the input and output voltage for two output loads is shown in figure 14. At an input voltage level of 4.5 V , the output voltage maintains a voltage level higher than the minimum data retention voltage of 2 V .
Schmitt Trigger Voltage-Level Detector. The voltagelevel detector circuit is an improvement over the diode isolation circuit. However, the threshold point is sensitive to variations in Q1 gain, and could cause oscillations around the trigger point, draining the backup battery. The circuit shown in figure 15 reduces threshold sensitivity by adding an operational amplifier, thereby improving threshold margin by introducing hysteresis into the threshold region. This comparator circuit is commonly referred to as a Schmitt trigger.

Figure 14. Voltage-Level Detector/Transfer Function

Figure 15. Schmitt Trigger Voltage-Level Detector Circuit

83-004854B

The noninverting input of the $\mu \mathrm{PC} 358$ is connected to a reference-voltage network consisting of R4 and R5. This reference voltage, when compared to the input voltage on the inverting input, determines when the output of the operational amplifier will transition. If a loop gain in excess of unity is chosen, the output waveform continues to be virtually discontinuous at the comparison voltage. However, at this point, the circuit would exhibit a phenomenom called hysteresis. Hysteresis voltage is determined by the resistor network of R4 and R5.
Figure 16 illustrates the response of the Schmitt trigger voltage-level detector circuit to the input signals connected to the noninverting input of the $\mu \mathrm{PC} 358$. When the input voltage reaches the value V1, the output goes high, and when the input is at V2, the output transitions to the low state. The difference between the input signals ($\mathrm{V} 1-\mathrm{V} 2$) is called the hysteresis voltage (V_{H}). Therefore, the threshold voltage is dependent upon two input values, increasing the threshold sensitivity by the difference between the two voltages. For the circuit in figure 15, V_{H} is equal to 0.34 V . This circuit provides the best response of the three backup circuits, but at a cost of increased device count.

The circuit in figure 15 was characterized, and the relationship between input voltage and output voltage for a $100-\mathrm{k} \Omega$ output load is shown in figure 17. When the input voltage reaches $4.5 \mathrm{~V}(\mathrm{~V} 1)$, the output voltage is set at a level higher than the minimum data retention voltage. Output voltage does not change until input voltage reaches a value of 4.1 V (V2).

System Power Failure Design Considerations

As shown in figure $18, \mathrm{~V}_{\mathrm{CC}}$ decays slowly after power failure, providing time for an orderly system shutdown. Even during an orderly shutdown, the system may generate spurious memory commands, causing viable data to be overwritten. The designer can use the status signal generated by the system's power supply monitor circuit to protect the memory from false CPU commands after power failure. (The power supply monitor circuit is shown as part of the memory battery backup system in figure 4.)

Figure 16. Response of the Schmitt Trigger to an Arbltrary Signal

Figure 17. Schmitt Trigger Detector/Transfer Function

Figure 18. Power Failure Vcc Profile

The power supply status signal (Power OK) remains inactive during the entire time $V_{C C}$ is off to force the output of the NAND gate to remain inactive (high). This status signal also is sent to the NAND gate of the memory circuit ("Power OK" in figure 19). The memory circuit "ands" this status signal with the other control signals and deselects the memory array before any false commands are generated.
Once the backup circuit has taken over and the memory array has been deselected, $\overline{\mathrm{CS}}$ must be maintained at $V_{C C}-0.2 \mathrm{~V}$. The $10-\mathrm{k} \Omega$ resistor ensures that the requirement for $\overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CCM}}-0.2 \mathrm{~V}$ is met.

If a power supply monitor circuit is not provided, the designer may design one. The circuit shown in figure 20 uses a voltage-level detector design to detect when V_{CC} falls below 4.5 V . This circuit is similar to the voltagelevel detector circuit used in the battery backup design example. Rather than control an isolation transistor, this power supply monitor circuit generates a power supply status signal (Power OK) to the memory select logic.
The circuit shown in figure 20 is subject to oscillations due to variations in Q1 gain and limited threshold margins. The addition of a Schmitt trigger to the power supply monitor circuit (figure 21) increases threshold margins by introducing hysteresis into the threshold region. The amount of hysteresis is determined by the values of R4 and R5. When input voltage falls below 4.5 V , the circuit generates a low signal (Power OK) to the memory select logic, and the memory array is deselected. Power OK remains low because R5 pulls it down as long as V_{CC} is off.

Figure 19. Memory Array Deselect Circuit

Figure 20. Power Supply Monitor Circuit

Figure 21. Power Supply Monitor Circuit With Schmitt Trigger

Introduction

Supercaps are an innovative type of capacitor providing a volumetric efficiency (i.e., capacitance per unit volume for a given voltage) of 10 to 50 times that of conventional aluminum electrolytic capacitors. High capacitance (2.2 million $\mu \mathrm{F}$) and low leakage current make the supercap an efficient, reliable and costeffective energy storage device.
In 1879, the theory of electric double-layer capacitance was introduced by Helmholtz, but the first electric double-layer capacitor using solid electrolyte wasn't developed until 90 years later, a gap caused in part by a lack of proper materials. In 1979, NEC introduced its electric double-layer supercapacitor, nicknamed supercap, and with it a new manufacturing technology and newly developed construction materials.

Today NEC manufactures an extensive line of supercaps to meet a variety of demands. For example, large current backup is provided by our FA- and FE-series, small current backup by our FY-series, moderate current backup by the FS-series, and wide operating margins by the FR-series.

Theory of Operation

At each interface (figure 1), an array of charged particles and induced charges is thought to exist. This array is known as an electric double layer. The large capacitance of an electric double-layer capacitor arises from the charge stored at the interface as the electric field changes across two available phases. In a supercap, one phase consists of activated carbon particles and the other of sulfuric acid solution as an ionically conducting electrolyte. In general, the relationship of the charge per unit area (η) and the double-layer potential (ϕ) is reflected by the following equation:
$\eta=[d /(4 \pi \delta)] \times \phi$
where d is the dielectric constant of the interface media and δ is the mean distance between the solid surface (polarizable electrode) and the ionic center. The value of δ is a few angstroms. In the Helmholtz model, the potential gradient exists only in the area of the electric double layer. As a result, the potential curve is as shown in figure 1.

Figure 1. Basic Model of a Supercap

Supercap is a trademark of NEC Corporation.

If ϕ_{0} represents ϕ when no external bias is applied, then the calculation is expressed this way:
$\eta_{0}=[d /(4 \pi \delta)] \times \phi_{0}$
Conversely, some charges are accumulated at the interface if an external electric field is applied to the system shown in figure 1. In this case, the potential rises to ϕ_{1} and the charge of η_{1} can be accumulated as shown by this equation:
$\eta_{1}=[d /(4 \pi \delta)] \times\left(2 \phi_{1}-\phi_{0}\right)$
The charge equivalent to η_{1} can be accumulated by changing the external electric field, as follows:

$$
\eta_{1} \cong 2 \eta_{0}\left(\phi_{1} / \phi_{0}\right), \text { where }\left(\phi_{1} \gg \phi_{0}\right)
$$

The experimental result, using mercury as a polarizable electrode, shows a 20 to $40 \mu \mathrm{~F} / \mathrm{cm}^{2}$ value. Therefore, if the activated carbon behavior is the same as that of mercury, the capacitance for a capacitor consisting of activated carbon with a $1,000 \mathrm{~m}^{2} / \mathrm{g}$ surface area is calculated to be 200 to $400 \mathrm{~F} / \mathrm{g}$, a very large value. In this way, a device with large capacitance and small size can be easily manufactured.

Structure

The cross section of a unit cell is shown in figure 2. The activated carbon particles moisturized (semi-liquid state) by diluted sulfuric acid electrolyte are segregated by a porous, ion-permeable separator. The unit cell is sealed by the electroconductive polymer and a nonconductive rubber gasket, which are vulcanized simultaneously. No adhesive glue is used for the seal.

Figure 2. Unit Cell

The breakdown voltage of the unit cell can be as low as 1.2 volts (thermodynamically), which is the decomposition voltage of aqueous electrolyte solution. Therefore, several unit cells are stacked in series to get the required rated voltage (figure 3).

Performance

Supercaps have no standard specifications from groups such as the EIA and, accordingly, are specified by individual manufacturers. For example, NEC has specifications to cover the following:

- Operating temperature
- Maximum working voltage
- Capacitance
- Capacitance tolerance
- Equivalent series resistance ${ }^{1}$ (ESR)
- Charging (leakage) current at 30 minutes
- Voltage holding characteristics
- Temperature characteristics
- Lead terminal strength
- Vibration
- Solderability
- Resistance to soldering heat
- Temperature cycling
- Humidity
- Load life

Detailed information can be found in the data sheets for each series.

Note:

[1] Due to relatively high ESR, supercaps may be unsuitable for filtering applications. ESR involves different resistance factors in the electrolyte, the activated carbon particles, the carbon to electroconductive polymer contacts, and the contacts between cell units, among others.

Calculating Required Supercap Size

When the required backup current is on the order of miliamps or more, size is determined as shown in figure 4. When backup current is on the order of microamps or less, figure 5 applies. Keep in mind that the curves in figure 5 are approximations and actual backup time may vary.

Figure 3. Cross Section

Figure 4. Relationship Between Voltage and Time While the Supercap is Charging and Discharging

Figure 5. Minimum Backup for CMOS RAMs

Applications

Supercaps typically are used as

- Backup power during primary outages
- Backup power during voltage drops caused by heavy loads
- Backup sources to primary batteries

As battery backup sources for the microcomputer and memory devices found in VCRs, AM-FM tuners, cameras and hand-held computers, their primary function is to prevent errors in operation during power outages (figure 6). Until recently, batteries or electrolytic capacitors have been used, but because batteries have to be replaced or recharged and aluminum capacitors are
too large, supercaps are an excellent alternative to traditional backup technologies.

Figure 6. Basic Backup Circuit Using a Supercap

Table 1. Comparison of Features

Features	Supercaps	Ni-Cd Batterles	Lithlum Batteries	Aluminum Electrolytic Capacitors
Operating temperature	-40 to $85^{\circ} \mathrm{C}$	-20 to $65^{\circ} \mathrm{C}$	-20 to $60^{\circ} \mathrm{C}$	-40 to $85^{\circ} \mathrm{C}$
Working voltage	5.5 V and 11 V	1.2 V	3 V	Over 6.3 V
Capacitance	1	210	360	0.01
Charging time	Several seconds	Several hours	-	Several seconds
Charging current limitations	None	Limited	-	None
Charge/discharge cycles	Infinite (more than 10^{5} times)	300 to 500 times	-	Infinite (more than 105 times)
Refiow soldering	Applicable	Not applicable	Not applicable	Applicable
Materials safety	No noxious materials	Cadmium	No noxious materials	No noxious materials

Notes:

(1) Capacitance is shown as a ratio to the supercap's electric charge per unit volume.

Table 2. Advantages and Disadvantages of Afternate Sources to Supercaps

Backup Source	Advantages	Disadvantages
Ni-Cd Battery	Rechargeable	Noxious materials
	Large capacity	Must be replaced every 6 months to 2 years because of limited charge/ discharge cycles
		Needs protection against rapid charging
		May be broken by shorting terminals after charging
Lithium Battery	Large capacity	Unsuitable for high current applications
		No reflow soldering
		Not rechargeable
Aluminum Electrolytic Capacitor	Easy to use	Small capacitance

Figure 7. Memory Backup Circuit Block Diagram

28j

> ECL ${ }^{\text {na }}$ 䁌s 10K interflace

EEPROMS

Applimation wates

Section 29

Package Drawings

Device/Package Cross-Reference 1
Package Drawings (in order by number of pins) 16

Device/Package Cross-Reference

Part Number	Ordering Designation	Package	Page
MC-434000	D	32-Pin Ceramic DIP (600-mil)	43
	E	32-Pin Plastic (FR-4) DIP (600-mil)	44
$\mu \mathrm{PB} 100422$	B	24-Pin Ceramic Flatpack	29
	D	24-Pin Ceramic DIP (400-mil)	25
μ PB100470	D	18-Pin Cerdip (300-mil)	17
μ PB100474	B	24-Pin Ceramic Flatpack	29
	D	24-Pin Ceramic DIP (400-mil)	25
	K	24-Pin Ceramic LCC	28
$\mu \mathrm{PB100474A}$	BH	24-Pin Ceramic Flatpack	29
	D	24-Pin Cerdip ($400-\mathrm{mil}$) \#2	25
$\mu \mathrm{PB100474E}$	DH	24-Pin Cerdip (400-mil) \#1	24
	BH	24-Pin Ceramic Flatpack	29
$\mu \mathrm{PB100476LL}$	DH	28-Pin Cerdip (400-mil) \#2	36
	BH	28-Pin Ceramic Flatpack	37
μ PB100480	B	20-Pin Ceramic Flatpack	20
	D	$20-$ Pin Cerdip ($300-\mathrm{mil}$)	19
μ PB100484	B	28-Pin Ceramic Flatpack	37
	D	28-Pin Cerdip (400-mil) \#1	35
$\mu \mathrm{PB} 100484 \mathrm{~A}$	B	28-Pin Ceramic Flatpack	37
	D	28-Pin Cerdip (400-mil) \#1	35
$\mu \mathrm{PB100A} 484$	B	28-Pin Ceramic Flatpack	37
	D	28 -Pin Cerdip (400-mil) \#1	35
μ PB10422	D	24-Pin Ceramic DIP (400-mil)	25
μ PB10470	D	18-Pin Cerdip (300-mil)	17
$\mu \mathrm{PB} 10474$	D	24-Pin Cerdip (400 -mil) \#2	25
μ PB10474A	D	24-Pin Cerdip (400-mil) \#2	25
μ PB10474E	DH	24-Pin Cerdip (400-mil) \#1	24
	BH	24-Pin Ceramic Flatpack	29
$\mu \mathrm{PB10476LL}$	DH	28-Pin Cerdip (400-mil) \#2	36
	BH	28-Pin Ceramic Flatpack	37
$\mu \mathrm{PB} 10480$	B	20-Pin Ceramic Flatpack	20
	D	$20-$ Pin Cerdip ($300-\mathrm{mil}$)	19
$\mu \mathrm{PB10484}$	B	28-Pin Ceramic Flatpack	37
	D	28-Pin Cerdip (400-mil) \#1	35
μ PB10484A	B	28-Pin Ceramic Flatpack	37
	D	28-Pin Cerdip (400-mil) \#1	35
μ PB10A484	BH	28-Pin Ceramic Flatpack	37
	D	28-Pin Cerdip (400-mil) \#1	35
μ PD100500	D	24-Pin Cerdip (300-mil)	24
μ PD10500	D	24-Pin Cerdip (300-mil)	24

Device/Package Cross-Reference (cont)

Part Number	Ordering Designation	Package	Page
$\mu \mathrm{PD} 28 \mathrm{C} 04$	C	24-Pin Plastic DIP (600-mil)	23
	G	24-Pin Plastic SOP (Miniflat) ($450-\mathrm{mil}$)	27
$\mu \mathrm{PD} 28 \mathrm{C} 05$	C	24-Pin Plastic DIP (600 -mil)	23
	G	24-Pin Plastic SOP (Miniflat) ($450-\mathrm{mil}$)	27
$\mu \mathrm{PD} 28 \mathrm{C} 256$	CZ	28-Pin Plastic DIP (600 -mil)	34
$\mu \mathrm{PD} 28 \mathrm{C} 64$	C	28-Pin Plastic DIP ($600-\mathrm{mil}$)	34
$\mu \mathrm{PD} 41256$	C	16-Pin Plastic DIP ($300-\mathrm{mil}$)	16
	L	18-Pin Plastic Leaded Chip Carrier	18
$\overline{\mu \text { PD41264 }}$	C	24-Pin Plastic DIP (400-mil)	22
	V	24-Pin Plastic ZIP ($350-\mathrm{mil}$)	27
$\mu \mathrm{PD} 41464$	C	18-Pin Plastic DIP (300-mil) \#1	16
	L	18-Pin Plastic Leaded Chip Carrier	18
μ PD421000	C	18-Pin Plastic DIP (300-mil) \#2	17
	GX	24/20-Pin Plastic TSOP 1	26
	LA	26/20-Pin Plastic SOJ ($300-\mathrm{mil}$)	30
	V	20-Pin Plastic ZIP ($350-\mathrm{mil}$)	19
μ PD42101	C	24-Pin Plastic DIP (300-mil) \#2	21
	G	24-Pin Plastic SOP (Miniflat) (450-mil)	27
$\mu \mathrm{PD} 42102$	C	24-Pin Plastic DIP (300 -mil) \#2	21
	G	24-Pin Plastic SOP (Miniflat) (450-mil)	27
μ PD42116162		50-Pin Plastic TSOP II (400-mil)	55
μ PD42116182		$50-\mathrm{Pin}$ Plastic TSOP II (400-mil)	55
μ PD42116420		44-Pin Plastic TSOP II (400-mil) \#2	54
μ PD42116820		44-Pin Plastic TSOP II (400-mil) \#2	54
μ PD42116920		44-Pin Plastic TSOP II ($400-\mathrm{mil}$) \#2	54
μ PD4216100	G5	28/24-Pin Plastic TSOP II (400-mil)	39
	LE	28/24-Pin Plastic SOJ (400 -mil)	38
	G5M	28/24-Pin Plastic TSOP II (400-mil)	39
	V	24-Pin Plastic ZIP (425-mil)	28
$\overline{\mu \text { PD4216101 }}$	G5	28/24-Pin Plastic TSOP II ($400-\mathrm{mil}$)	39
	LE	28/24-Pin Plastic SOJ (400-mil)	38
	G5M	28/24-Pin Plastic TSOP II (400-mil)	39
	V	24-Pin Plastic ZIP (425-mil)	28
/PD4216102	V	24-Pin Plastic ZIP (425-mil)	28
	G5M	28/24-Pin Plastic TSOP II ($400-\mathrm{mil}$)	39
	G5	28/24-Pin Plastic TSOP II (400-mil)	39
	LE	28/24-Pin Plastic SOJ (400 -mil)	38

Package Drawings

Part Number	Ordering Designation	Package	Page
$\mu \mathrm{PD} 4216160$	G5	50/44-Pin Plastic TSOP II (400-mil)	56
	G5M	50/44-Pin Plastic TSOP II ($400-\mathrm{mil}$)	56
	LE	42-Pin Plastic SOJ (400-mil)	51
$\mu \mathrm{PD} 4216160 \mathrm{~L}$	G5M	50/44-Pin Plastic TSOP II (400 -mil)	56
	LE	42-Pin Plastic SOJ (400-mil)	51
	G5	50/44-Pin Plastic TSOP II (400-mil)	56
$\mu \mathrm{PD} 4216180$	LE	42-Pin Plastic SOJ ($400-\mathrm{mil}$)	51
	G5M	50/44-Pin Plastic TSOP II (400-mil)	56
	G5	50/44-Pin Plastic TSOP II (400 -mil)	56
$\overline{\mu \mathrm{PD} 4216180 \mathrm{~L}}$	G5	50/44-Pin Plastic TSOP II (400-mil)	56
	G5M	50/44-Pin Plastic TSOP : $1(400-\mathrm{mil}$)	56
	LE	42-Pin Plastic SOJ (400-mil)	51
$\overline{\mu \text { PD4216400 }}$	G5M	28/24-Pin Plastic TSOP II (400-mil)	39
	V	24-Pin Plastic ZIP (425-mil)	28
	G5	28/24-Pin Plastic TSOP If (400-mil)	39
	LE	28/24-Pin Plastic SOJ (400-mil)	38
$\overline{\mu \text { PD4216402 }}$	G5M	28/24-Pin Plastic TSOP II (400-mil)	39
	V	24-Pin Plastic ZIP (425-mil)	28
	G5	28/24-Pin Plastic TSOP II (400-mil)	39
	LE	28/24-Pin Plastic SOJ (400-mil)	38
$\overline{\mu \text { PD4216410 }}$	G5M	28/24-Pin Plastic TSOP II (400-mil)	39
	V	24-Pin Plastic ZIP (425-mil)	28
	G5	28/24-Pin Plastic TSOP II (400-mil)	39
	LE	28/24-Pin Plastic SOJ (400-mil)	38
$\overline{\mu \text { PD4216412 }}$	G5M	28/24-Pin Plastic TSOP II (400 -mil)	39
	V	24-Pin Plastic ZIP (425-mil)	28
	G5	28/24-Pin Plastic TSOP II (400-mil)	39
	LE	28/24-Pin Plastic SOJ ($400-\mathrm{mil}$)	38
$\mu \mathrm{PD} 4216800$	G5	28-Pin Plastic TSOP 11 ($400-\mathrm{mil}$)	39
	G5M	28-Pin Plastic TSOP II (400-mil)	39
	LE	$28-\mathrm{Pin}$ Plastic SOJ ($400-\mathrm{mil}$)	38
$\overline{\mu \text { PD4216800L }}$	LE	$28-\mathrm{Pin}$ Plastic SOJ ($400-\mathrm{mil}$)	38
	G5M	28-Pin Plastic TSOP II (400-mil)	39
	G5	28-Pin Plastic TSOP II (400-mil)	39
$\overline{\mu \text { PD4216802 }}$	G5	28-Pin Plastic TSOP II (400-mil)	39
	LE	$28-\mathrm{Pin}$ Plastic SOJ ($400-\mathrm{mil}$)	38
	G5M	28-Pin Plastic TSOP II (400-mil)	39
$\overline{\mu \text { PD4216802L }}$	G5	28-Pin Plastic TSOP II (400-mil)	39
	LE	$28-\mathrm{Pin}$ Plastic SOJ ($400-\mathrm{mil}$)	38
	G5M	28-Pin Plastic TSOP II (400-mil)	39

Device/Package Cross-Reference (cont)

Part Number	Ordering Designation	Package	Page	
$\mu \mathrm{PD} 4216900$	G5	32-Pin Plastic TSOP II ($400-\mathrm{mil}$)	47	
	G5M	32-Pin Plastic TSOP II (400 -mil)	47	
	LE	32-Pin Plastic SOJ (400-mil) \#2	45	
$\mu \mathrm{PD} 4216900 \mathrm{~L}$	G5M	32-Pin Plastic TSOP II (400-mil)	47	
	LE	32-Pin Plastic SOJ (400-mil) \#2	45	
	G5	32-Pin Plastic TSOP II ($400-\mathrm{mil}$)	47	
$\mu \mathrm{PD} 4216902$	G5	32-Pin Plastic TSOP II ($400-\mathrm{mil}$)	47	
	G5M	32-Pin Plastic TSOP II ($400-\mathrm{mil}$)	47	
	LE	32-Pin Plastic SOJ (400-mil) \#2	45	
$\mu \mathrm{PD} 4216902 \mathrm{~L}$	G5	32-Pin Plastic TSOP II ($400-\mathrm{mil}$)	47	
	G5M	32-Pin Plastic TSOP II (400-mil)	47	
	LE	32-Pin Plastic SOJ (400-mil) \#2	45	
$\mu \mathrm{PD} 4217100$	G5	28/24-Pin Plastic TSOP II (400 -mil)	39	
	LE	28/24-Pin Plastic SOJ (400-mil)	38	
	V	24-Pin Plastic ZIP (425-mil)	28	
	G5M	28/24-Pin Plastic TSOP II ($400-\mathrm{mil}$)	39	
μ PD4217101	G5	28/24-Pin Plastic TSOP II ($400-\mathrm{mil}$)	39	
	LE	28/24-Pin Plastic SOJ (400-mil)	38	
	V	24-Pin Plastic ZIP (425-mil)	28	
	G5M	28/24-Pin Plastic TSOP II (400-mil)	39	
$\mu \mathrm{PD} 4217102$	V	24-Pin Plastic ZIP (425-mil)	28	
	G5M	28/24-Pin Plastic TSOP II (400-mil)	39	
	LE	28/24-Pin Plastic SOJ (400-mil)	38	
	G5	28/24-Pin Plastic TSOP 11 ($400-\mathrm{mil}$)	39	
$\mu \mathrm{PD} 4217160$	G5	50/44-Pin Plastic TSOP II ($400-\mathrm{mil}$)	56	
	LE	42-Pin Plastic SOJ (400-mil)	51	
	G5M	50/44-Pin Plastic TSOP \|	(400-mil)	56
$\mu \mathrm{PD} 4217160 \mathrm{~L}$	G5M	50/44-Pin Plastic TSOP \\| ($400-\mathrm{mil}$)	56	
	LE	42-Pin Plastic SOJ (400-mil)	51	
	G5	50/44-Pin Plastic TSOP II (400-mil)	56	
/PD4217180	LE	42-Pin Plastic SOJ (400 -mil)	51	
	G5M	50/44-Pin Plastic TSOP II (400-mil)	56	
	G5	50/44-Pin Plastic TSOP II ($400-\mathrm{mil}$)	56	
$\mu \mathrm{PD} 4217180 \mathrm{~L}$	G5	50/44-Pin Plastic TSOP II ($400-\mathrm{mil}$)	56	
	LE	42-Pin Plastic SOJ (400-mil)	51	
	G5M	50/44-Pin Plastic TSOP II (400-mil)	56	
$\mu \mathrm{PD} 4217400$	V	24-Pin Plastic ZIP (425-mil)	28	
	G5M	28/24-Pin Plastic TSOP 11 ($400-\mathrm{mil}$)	39	
	LE	28/24-Pin Plastic SOJ (400-mil)	38	
	G5	28/24-Pin Plastic TSOP II (400-mil)	39	

Device/Package Cross-Reference (cont)

Part Number	Ordering Designation	Package	Page	
$\mu \mathrm{PD} 4217402$	V	24-Pin Plastic ZIP (425-mil)	28	
	G5M	28/24-Pin Plastic TSOP II (400-mil)	39	
	LE	28/24-Pin Plastic SOJ (400-mil)	38	
	G5	28/24-Pin Plastic TSOP 11 (400 -mil)	39	
$\overline{\mu \text { PD4217410 }}$	V	24-Pin Plastic ZIP (425-mil)	28	
	G5M	28/24-Pin Plastic TSOP II (400-mil)	39	
	LE	28/24-Pin Plastic SOJ (400-mil)	38	
	G5	28/24-Pin Plastic TSOP \|	(400-mil)	39
$\overline{\mu \text { PD4217412 }}$	V	24-Pin Plastic ZIP (425-mil)	28	
	G5M	28/24-Pin Plastic TSOP II (400-mil)	39	
	LE	28/24-Pin Plastic SOJ (400-mil)	38	
	G5	28/24-Pin Plastic TSOP 11 (400 -mil)	39	
$\mu \mathrm{PD} 4217800$	G5	28-Pin Plastic TSOP II (400-mil)	39	
	LE	$28-\mathrm{Pin}$ Plastic SOJ (400-mil)	38	
	G5M	28-Pin Plastic TSOP II ($400-\mathrm{mil}$)	39	
$\overline{\mu \text { PD4217800L }}$	G5M	28-Pin Plastic TSOP II (400 -mil)	39	
	LE	28 -Pin Plastic SOJ (400-mil)	38	
	G5	28-Pin Plastic TSOP II (400-mil)	39	
$\overline{\mu \text { PD4217802 }}$	LE	$28-\mathrm{Pin}$ Plastic SOJ ($400-\mathrm{mil}$)	38	
	G5M	28-Pin Plastic TSOP II (400-mil)	39	
	G5	28-Pin Plastic TSOP II (400-mil)	39	
$\overline{\mu \mathrm{PD} 4217802 \mathrm{~L}}$	LE	$28-\mathrm{Pin}$ Plastic SOJ (400-mil)	38	
	G5M	28 -Pin Plastic TSOP II (400-mil)	39	
	G5	28-Pin Plastic TSOP II ($400-\mathrm{mil}$)	39	
$\overline{\mu \text { PD4217900 }}$	G5	32 -Pin Plastic TSOP II (400-mil)	47	
	LE	32-Pin Plastic SOJ (400-mil) \#2	45	
	G5M	32-Pin Plastic TSOP II ($400-\mathrm{mil}$)	47	
$\overline{\mu \mathrm{PD} 4217900 \mathrm{~L}}$	G5M	32-Pin Plastic TSOP II (400-mil)	47	
	LE	32-Pin Plastic SOJ (400-mil) \#2	45	
	G5	32-Pin Plastic TSOP II (400-mil)	47	
μ PD4217902	G5M	32-Pin Plastic TSOP II (400-mil)	47	
	LE	32-Pin Plastic SOJ (400-mil) \#2	45	
	G5	32-Pin Plastic TSOP II (400-mil)	47	
$\mu \mathrm{PD} 4217902 \mathrm{~L}$	G5M	32-Pin Plastic TSOP II (400-mil)	47	
	G5	32-Pin Plastic TSOP II (400-mil)	47	
	LE	32-Pin Plastic SOJ (400-mil) \#2	45	
μ PD4218160	G5	50/44-Pin Plastic TSOP II (400-mil)	56	
	LE	42-Pin Plastic SOJ (400-mil)	51	
	G5M	50/44-Pin Plastic TSOP II (400-mil)	56	

Device/Package Cross-Reference (cont)

Part Number	Ordering Designation	Package	Page
$\mu \mathrm{PD} 4218160 \mathrm{~L}$	G5M	50/44-Pin Plastic TSOP II (400-mil)	56
	LE	42-Pin Plastic SOJ ($400-\mathrm{mil}$)	51
	G5	50/44-Pin Plastic TSOP II (400-mil)	56
μ PD4218180	LE	42-Pin Plastic SOJ (400 -mil)	51
	G5M	50/44-Pin Plastic TSOP II ($400-\mathrm{mil}$)	56
	G5	50/44-Pin Plastic TSOP II ($400-\mathrm{mil}$)	56
$\overline{\mu \text { PD4218180L }}$	G5	50/44-Pin Plastic TSOP II ($400-\mathrm{mil}$)	56
	LE	42-Pin Plastic SOJ ($400-\mathrm{mil}$)	51
	G5M	50/44-Pin Plastic TSOP II (400-mil)	56
$\overline{\mu \text { PD42264 }}$	C	24-Pin Plastic DIP ($400-\mathrm{mil}$)	22
	V	24-Pin Plastic ZIP ($350-\mathrm{mil}$)	27
	LA	24-pin Plastic SOJ ($300-\mathrm{mil}$)	26
$\mu \mathrm{PD} 42270$	C	28-Pin Plastic DIP ($400-\mathrm{mil}$)	33
μ PD42271	GF	64-Pin Plastic QFP	58
μ PD42272	GF	64-Pin Plastic QFP	58
μ PD42273	LE	28-Pin Plastic SOJ (400-mil)	38
	V	28-Pin Plastic ZIP ($350-\mathrm{mil}$)	41
$\overline{\mu \text { PD42274 }}$	LE	28-Pin Plastic SOJ ($400-\mathrm{mil}$)	38
	V	28-Pin Plastic ZIP ($350-\mathrm{mil}$)	41
$\mu \mathrm{PD} 42274-80$	V	28-Pin Plastic ZIP ($350-\mathrm{mil}$)	41
	LE	28-Pin Plastic SOJ ($400-\mathrm{mil}$)	38
μ PD42275	LE	40-Pin Plastic SOJ (400-mil)	49
$\mu \mathrm{PD42280}$	GU	28-Pin Plastic SOP (Miniflat) (450-mil) \#1	40
	V	28-Pin Plastic ZIP ($350-\mathrm{mil}$)	41
$\mu \mathrm{PD} 424100$	GS	26/20-Pin Plastic TSOP II (300-mil)	32
	GSM	26/20-Pin Plastic TSOP \& ($300-\mathrm{mil}$)	32
	V	20-Pin Plastic ZIP ($350-\mathrm{mil}$)	19
	LA	26/20-Pin Plastic SOJ (300-mil)	30
μ PD424100A	LA	26/20-Pin Plastic SOJ (300-mil)	30
	GS	26/20-Pin Plastic TSOP 11 ($300-\mathrm{mil}$)	32
	GSM	26/20-Pin Plastic TSOP II (300-mil)	32
	V	20-Pin Plastic ZIP ($350-\mathrm{mil}$)	19
$\overline{\mu \text { PD424100L }}$	LA	26/20-Pin Plastic SOJ (300-mil)	30
	GS	26/20-Pin Plastic TSOP II ($300-\mathrm{mil}$)	32
	GSM	26/20-Pin Plastic TSOP II (300-mil)	32
	V	20-Pin Plastic ZIP ($350-\mathrm{mil}$)	19
μ PD424101	GS	26/20-Pin Plastic TSOP II (300-mil)	32
	V	20-Pin Plastic ZIP ($350-\mathrm{mil}$)	19
	LA	26/20-Pin Plastic SOJ (300-mil)	30
	GSM	26/20-Pin Plastic TSOP II (300-mil)	32

Device/Package Cross-Reference (cont)

Part Number	Ordering Designation	Package	Page
$\mu \mathrm{PD} 424102$	LA	26/20-Pin Plastic SOJ (300-mil)	30
	GSM	26/20-Pin Plastic TSOP II (300-mil)	32
	V	20-Pin Plastic ZIP ($350-\mathrm{mil}$)	19
	GS	26/20-Pin Plastic TSOP \|I (300-mil)	32
$\mu \mathrm{PD} 424170 \mathrm{~A}$	V	40-Pin Plastic ZIP ($400-\mathrm{mil}$)	50
	G5M	44/40-Pin Plastic TSOP II ($300-\mathrm{mil}$)	52
	LE	40-Pin Plastic SOJ (400-mil)	49
	G5	44/40-Pin Plastic TSOP II (300-mil)	52
μ PD424170L	V	40-Pin Plastic ZIP (400 -mil)	50
	G5M	44/40-Pin Plastic TSOP II ($300-\mathrm{mil}$)	52
	LE	40-Pin Plastic SOJ (400-mil)	49
	G5	44/40-Pin Plastic TSOP II ($300-\mathrm{mil}$)	52
μ PD424190A	G5	44/40-Pin Plastic TSOP II ($300-\mathrm{mil}$)	52
	LE	40-Pin Plastic SOJ (400-mil)	49
	V	40-Pin Plastic ZIP ($400-\mathrm{mil}$)	50
	G5M	44/40-Pin Plastic TSOP II (300-mil)	52
$\overline{\mu \text { PD } 424190 \mathrm{~L}}$	G5	44/40-Pin Plastic TSOP II (300-mil)	52
	LE	40-Pin Plastic SOJ (400-mil)	49
	V	40-Pin Plastic ZIP (400-il)	50
	G5M	44/40-Pin Plastic TSOP II (300-mil)	52
$\boldsymbol{\mu \text { PD424256 }}$	C	20-Pin Plastic DIP ($300-\mathrm{mil}$)	18
	LA	26/20-Pin Plastic SOJ (300-mil)	30
	V	20-Pin Plastic ZIP ($350-\mathrm{mil}$)	19
	GX	24/20-Pin Plastic TSOP I	26
$\overline{\mu \text { PD424260A }}$	G5	44/40-Pin Plastic TSOP II (300-mil)	52
	LE	40-Pin Plastic SOJ (400-mil)	49
	V	40-Pin Plastic ZIP ($400-\mathrm{mil}$)	50
	G5M	44/40-Pin Plastic TSOP II (300-mil)	52
μ PD424260L	G5	44/40-Pin Plastic TSOP II (300-mil)	52
	LE	40-Pin Plastic SOJ ($400-\mathrm{mil}$)	49
	V	40-Pin Plastic ZIP (400 -mil)	50
	G5M	44/40-Pin Plastic TSOP II ($300-\mathrm{mil}$)	52
$\overline{\mu \text { PD424263A }}$	G5	44/40-Pin Plastic TSOP II (300-mil)	52
	LE	40-Pin Plastic SOJ (400-mil)	49
	V	40-Pin Plastic ZIP ($400-\mathrm{mil}$)	50
	G5M	44/40-Pin Plastic TSOP II ($300-\mathrm{mil}$)	52
$\overline{\mu \text { PD }}$ /24263L	G5	44/40-Pin Plastic TSOP II (300-mil)	52
	LE	40-Pin Plastic SOJ ($400-\mathrm{mil}$)	49
	V	40-Pin Plastic ZIP (400-mil)	50
	G5M	44/40-Pin Plastic TSOP II (300-mil)	52

Device/Package Cross-Reference (cont)

Part Number	Ordering Designation	Package	Page
μ PD 424280 A	V	40-Pin Plastic ZIP (400 -mil)	50
	G5M	44/40-Pin Plastic TSOP II ($300-\mathrm{mil}$)	52
	LE	40-Pin Plastic SOJ (400-mil)	49
	G5	44/40-Pin Plastic TSOP II ($300-\mathrm{mil}$)	52
$\mu \mathrm{PD} 424280 \mathrm{~L}$	V	40 -Pin Plastic ZIP ($400-\mathrm{mil}$)	50
	G5M	44/40-Pin Plastic TSOP II (300-mil)	52
	LE	40-Pin Plastic SOJ (400 -mil)	49
	G5	44/40-Pin Plastic TSOP II ($300-\mathrm{mil}$)	52
$\mu \mathrm{PD} 424400$	GSM	26/20-Pin Plastic TSOP II (300-mil)	32
	V	20-Pin Plastic ZIP ($350-\mathrm{mil}$)	19
	LA	26/20-Pin Plastic SOJ ($300-\mathrm{mil}$)	30
	GS	26/20-Pin Plastic TSOP II ($300-\mathrm{mil}$)	32
$\mu \mathrm{PD} 424400 \mathrm{~A}$	GSM	26/20-Pin Plastic TSOP II ($300-\mathrm{mil}$)	32
	GS	26/20-Pin Plastic TSOP II (300-mil)	32
	V	20-Pin Plastic ZIP ($350-\mathrm{mil}$)	19
	LA	26/20-Pin Plastic SOJ (300 -mil)	30
$\mu \mathrm{PD} 424400 \mathrm{~L}$	GSM	26/20-Pin Plastic TSOP II (300-mil)	32
	GS	26/20-Pin Plastic TSOP II (300-mil)	32
	V	20-Pin Plastic ZIP ($350-\mathrm{mil}$)	19
	LA	26/20-Pin Plastic SOJ (300 -mil)	30
μ PD424402	V	$20-\mathrm{Pin}$ Plastic ZIP ($350-\mathrm{mil}$)	19
	LA	26/20-Pin Plastic SOJ (300 -mil)	30
	GSM	26/20-Pin Plastic TSOP II ($300-\mathrm{mil}$)	32
	GS	26/20-Pin Plastic TSOP II (300-mil)	32
$\mu \mathrm{PD} 424410$	V	$20-\mathrm{Pin}$ Plastic ZIP ($350-\mathrm{mil}$)	19
	LB	26/20-Pin Plastic SOJ (350-mil)	30
	LA	26/20-Pin Plastic SOJ (300 -mil)	30
	GS	26/20-Pin Plastic TSOP II ($300-\mathrm{mil}$)	32
μ PD424412	LA	26/20-Pin Plastic SOJ (300 -mil)	30
	V	20-Pin Plastic ZIP ($350-\mathrm{mil}$)	19
	GS	26/20-Pin Plastic TSOP II ($300-\mathrm{mil}$)	32
μ PD424440	LE	26/24-Pin Plastic SOJ (350-mil)	31
μ PD424440L	LE	26/24-Pin Plastic SOJ (350-mil)	31
$\mu \mathrm{PD} 424800 \mathrm{~A}$	G5	28-Pin Plastic TSOP II (400-mil)	39
	LE	28-Pin Plastic SOJ ($400-\mathrm{mil}$)	38
	V	28-Pin Plastic ZIP ($350-\mathrm{mil}$)	41
	G5M	28-Pin Plastic TSOP II ($400-\mathrm{mil}$)	39
$\overline{\mu \text { PD424800L }}$	G5	28-Pin Plastic TSOP II (400-mil)	39
	LE	28-Pin Plastic SOJ (400-mil)	38
	V	28-Pin Plastic ZIP ($350-\mathrm{mil}$)	41
	G5M	28-Pin Plastic TSOP II (400-mil)	39

Device/Package Cross-Reference (cont)

Part Number	Ordering Designation	Package	Page	
$\mu \mathrm{PD} 424810 \mathrm{~A}$	LE	28-Pin Plastic SOJ (400-mil)	38	
	G5	28-Pin Plastic TSOP II ($400-\mathrm{mil}$)	39	
	G5M	28-Pin Plastic TSOP II (400-mil)	39	
	\checkmark	28-Pin Plastic ZIP ($350-\mathrm{mil}$)	41	
$\mu \mathrm{PD} 424810 \mathrm{~L}$	LE	28-Pin Plastic SOJ (400-mil)	38	
	G5	28-Pin Plastic TSOP \|	(400-mil)	39
	G5M	28-Pin Plastic TSOP II (400-mil)	39	
	V	28-Pin Plastic ZIP ($350-\mathrm{mil}$)	41	
μ PD424900A	G5	28-Pin Plastic TSOP II (400-mil)	39	
	LE	28-Pin Plastic SOJ ($400-\mathrm{mil}$)	38	
	V	28-Pin Plastic ZIP ($350-\mathrm{mil}$)	41	
	G5M	28-Pin Plastic TSOP II (400-mil)	39	
$\mu \mathrm{PD} 424900 \mathrm{~L}$	G5	28-Pin Plastic TSOP II (400-mil)	39	
	LE	28-Pin Plastic SOJ (400-mil)	38	
	V	28-Pin Plastic ZIP ($350-\mathrm{mil}$)	41	
	G5M	28-Pin Plastic TSOP II (400-mil)	39	
$\mu \mathrm{PD} 42505$	C	24-Pin Plastic DIP (300-mil) \#2	21	
	V	28-Pin Plastic ZIP ($350-\mathrm{mil}$)	41	
$\mu \mathrm{PD} 42532$	C	40-Pin Plastic DIP (600 -mil)	49	
$\mu \mathrm{PD} 42601$	V	20-Pin Plastic ZIP ($350-\mathrm{mil}$)	19	
	LA	26/20-Pin Plastic SOJ (300-mil)	30	
μ PD42641	GS	26/20-Pin Plastic TSOP II ($300-\mathrm{mil}$)	32	
	LA	26/20-Pin Plastic SOJ (300-mil)	30	
	GSM	26/20-Pin Plastic TSOP II ($300-\mathrm{mil}$)	32	
$\mu \mathrm{PD} 42644$	LA	26/20-Pin Plastic SOJ ($300-\mathrm{mil}$)	30	
	GSM	26/20-Pin Plastic TSOP II ($300-\mathrm{mil}$)	32	
	GS	26/20-Pin Plastic TSOP II ($300-\mathrm{mil}$)	32	
$\overline{\mu \text { PD42S16160 }}$	G5	50/44-Pin Plastic TSOP II (400 -mil)	56	
	G5M	50/44-Pin Plastic TSOP II (400-mil)	56	
	LE	42-Pin Plastic SOJ (400-mil)	51	
$\mu \mathrm{PD} 42 \mathrm{S16160L}$	LE	42-Pin Plastic SOJ (400-mil)	51	
	G5M	50/44-Pin Plastic TSOP 11 ($400-\mathrm{mil}$)	56	
	G5	50/44-Pin Plastic TSOP II (400-mil)	56	
μ PD42S16180	G5M	50/44-Pin Plastic TSOP II (400-mil)	56	
	G5	50/44-Pin Plastic TSOP \|	(400-mil)	56
	LE	42-Pin Plastic SOJ (400-mil)	51	
μ PD42S16180L	G5M	50/44-Pin Plastic TSOP II (400-mil)	56	
	G5	50/44-Pin Plastic TSOP II ($400-\mathrm{mil}$)	56	
	LE	42-Pin Plastic SOJ (400-mil)	51	

Device/Package Cross-Reference (cont)

Part Number	Ordering Designation	Package	Page	
μ PD42S16800	G5	28-Pin Plastic TSOP II (400-mil)	39	
	G5M	28-Pin Plastic TSOP II ($400-\mathrm{mil}$)	39	
	LE	28-Pin Plastic SOJ ($400-\mathrm{mil}$)	38	
$\overline{\mu \text { PD42S16800L }}$	LE	28-Pin Plastic SOJ (400-mil)	38	
	G5M	28-Pin Plastic TSOP II ($400-\mathrm{mil}$)	39	
	G5	28-Pin Plastic TSOP II (400-mil)	39	
μ PD42S16802	G5	28-Pin Plastic TSOP \\| ($400-\mathrm{mil}$)	39	
	G5M	28-Pin Plastic TSOP II (400-mil)	39	
	LE	28-Pin Plastic SOJ (400-mil)	38	
$\mu \mathrm{PD} 42 \mathrm{~S} 16802 \mathrm{~L}$	G5	28-Pin Plastic TSOP II ($400-\mathrm{mil}$)	39	
	G5M	28-Pin Plastic TSOP II ($400-\mathrm{mil}$)	39	
	LE	28 -Pin Plastic SOJ (400-mil)	38	
μ PD42S16900	G5	32-Pin Plastic TSOP II (400-mil)	47	
	G5M	32-Pin Plastic TSOP II (400-mil)	47	
	LE	32-Pin Plastic SOJ ($400-\mathrm{mil}$) \#2	45	
$\mu \mathrm{PD} 42 \mathrm{~S} 16900 \mathrm{~L}$	LE	32-Pin Plastic SOJ (400-mil) \#2	45	
	G5M	32-Pin Plastic TSOP II (400-mil)	47	
	G5	32-Pin Plastic TSOP II (400-mil)	47	
$\mu \mathrm{PD} 42 \mathrm{S16902}$	G5	32-Pin Plastic TSOP II ($400-\mathrm{mil}$)	47	
	LE	32-Pin Plastic SOJ ($400-\mathrm{mil}$) \#2	45	
	G5M	32-Pin Plastic TSOP II ($400-\mathrm{mil}$)	47	
$\overline{\mu \text { PD42S16902L }}$	G5	32-Pin Plastic TSOP II (400-mil)	47	
	LE	32-Pin Plastic SOJ ($400-\mathrm{mil}$) \#2	45	
	G5M	32-Pin Plastic TSOP II (400-mil)	47	
$\overline{\mu \text { PD42S17160 }}$	G5	50/44-Pin Plastic TSOP II ($400-\mathrm{mil}$)	56	
	G5M	50/44-Pin Plastic TSOP II (400-mil)	56	
	LE	42-Pin Plastic SOJ (400-mil)	51	
$\overline{\mu \mathrm{PD} 42 \mathrm{~S} 17160 \mathrm{~L}}$	LE	42-Pin Plastic SOJ (400-mil)	51	
	G5M	50/44-Pin Plastic TSOP II (400-mil)	56	
	G5	50/44-Pin Plastic TSOP II ($400-\mathrm{mil}$)	56	
μ PD42S17180	G5M	50/44-Pin Plastic TSOP II (400-mil)	56	
	G5	50/44-Pin Plastic TSOP II (400-mil)	56	
	LE	42-Pin Plastic SOJ (400-mil)	51	
$\mu \mathrm{PD} 42 \mathrm{S17180L}$	G5M	50/44-Pin Plastic TSOP II (400-mil)	56	
	G5	50/44-Pin Plastic TSOP II (400-mil)	56	
	LE	42-Pin Plastic SOJ (400 -mil)	51	
$\boldsymbol{\mu \text { PD42S17800 }}$	G5	28-Pin Plastic TSOP II ($400-\mathrm{mil}$)	39	
	G5M	28-Pin Plastic TSOP II ($400-\mathrm{mil}$)	39	
	LE	28-Pin Plastic SOJ (400-mil)	38	

Device/Package Cross-Reference (cont)

Part Number	Ordering Designation	Package	Page	
μ PD42S17800L	LE	28-Pin Plastic SOJ (400-mil)	38	
	G5M	28-Pin Plastic TSOP II ($400-\mathrm{mil}$)	39	
	G5	$28-\mathrm{Pin}$ Plastic TSOP II (400 -mil)	39	
$\overline{\mu \text { PD42S17802 }}$	G5M	28 -Pin Plastic TSOP II (400 -mil)	39	
	LE	28 -Pin Plastic SOJ (400-mil)	38	
	G5	$28-\mathrm{Pin}$ Plastic TSOP II (400-mil)	39	
$\overline{\mu \text { PD42S17802L }}$	LE	28 -Pin Plastic SOJ ($400-\mathrm{mil}$)	38	
	G5M	28-Pin Plastic TSOP II (400 -mil)	39	
	G5	28-Pin Plastic TSOP II (400-mil)	39	
μ PD42S17900	G5	32-Pin Plastic TSOP II (400-mil)	47	
	LE	32-Pin Plastic SOJ (400-mil) \#2	45	
	G5M	32-Pin Plastic TSOP II (400-mil)	47	
$\overline{\mu \text { PD42S17900L }}$	LE	32-Pin Plastic SOJ (400-mil) \#2	45	
	G5M	32-Pin Plastic TSOP II (400-mil)	47	
	G5	32-Pin Plastic TSOP II (400-mil)	47	
μ PD42S17902	LE	32-Pin Plastic SOJ ($400-\mathrm{mil}$) \#2	45	
	G5M	32-Pin Plastic TSOP II ($400-\mathrm{mil}$)	47	
	G5	$32-\mathrm{Pin}$ Plastic TSOP II (400 -mil)	47	
μ PD42S17902L	G5M	32-Pin Plastic TSOP II (400-mil)	47	
	LE	32-Pin Plastic SOJ (400-mil) \#2	45	
	G5	32-Pin Plastic TSOP II (400-mil)	47	
μ PD42S18160	G5	50/44-Pin Plastic TSOP II (400-mil)	56	
	LE	42-Pin Plastic SOJ (400-mil)	51	
	G5M	50/44-Pin Plastic TSOP \\|l (400-mil)	56	
$\overline{\mu \text { PD42S18160L }}$	LE	42-Pin Plastic SOJ (400-mil)	51	
	G5	50/44-Pin Plastic TSOP II (400-mil)	56	
	G5M	50/44-Pin Plastic TSOP \|	(400-mil)	56
$\mu \mathrm{PD} 42 \mathrm{~S} 18180$	G5M	50/44-Pin Plastic TSOP II (400-mil)	56	
	G5	50/44-Pin Plastic TSOP \|1 (400-mil)	56	
	LE	42-Pin Plastic SOJ (400-mil)	51	
$\mu \mathrm{PD} 42 \mathrm{~S} 18180 \mathrm{~L}$	LE	42-Pin Plastic SOJ (400-mil)	51	
	G5	50/44-Pin Plastic TSOP \\| ($400-\mathrm{mil}$)	56	
	G5M	50/44-Pin Plastic TSOP II (400-mil)	56	
μ PD42S4100A	LA	26/20-Pin Plastic SOJ (300-mil)	30	
	V	20-Pin Plastic ZIP ($350-\mathrm{mil}$)	19	
	GS	26/20-Pin Plastic TSOP II (300-mil)	32	
	GSM	26/20-Pin Plastic TSOP II (300-mil)	32	
$\overline{\mu \mathrm{PD} 42 \mathrm{S4100L}}$	LA	26/20-Pin Plastic SOJ (300 -mil)	30	
	V	20-Pin Plastic ZIP ($350-\mathrm{mil}$)	19	
	GS	26/20-Pin Plastic TSOP II (300-mil)	32	
	GSM	26/20-Pin Plastic TSOP \\| $1300-\mathrm{mil}$)	32	

Device/Package Cross-Reference (cont)

Part Number	Ordering Designation	Package	Page
μ PD42S4170A	V	40-Pin Plastic ZIP (400-mil)	50
	G5	44/40-Pin Plastic TSOP II (300-mil)	52
	G5M	44/40-Pin Plastic TSOP II ($300-\mathrm{mil}$)	52
	LE	$40-\mathrm{Pin}$ Plastic SOJ ($400-\mathrm{mil}$)	49
μ PD42S4170L	V	40-Pin Plastic ZIP ($400-\mathrm{mil}$)	50
	G5	44/40-Pin Plastic TSOP II ($300-\mathrm{mil}$)	52
	G5M	44/40-Pin Plastic TSOP II ($300-\mathrm{mil}$)	52
	LE	40-Pin Plastic SOJ (400-mil)	49
μ PD42S4190A	G5	44/40-Pin Plastic TSOP II ($300-\mathrm{mil}$)	52
	G5M	44/40-Pin Plastic TSOP II ($300-\mathrm{mil}$)	52
	LE	40-Pin Plastic SOJ (400-mil)	49
	V	40-Pin Plastic ZIP ($400-\mathrm{mil}$)	50
$\mu \mathrm{PD} 42 \mathrm{S4190L}$	G5	44/40-Pin Plastic TSOP II ($300-\mathrm{mil}$)	52
	G5M	44/40-Pin Plastic TSOP II ($300-\mathrm{mil}$)	52
	LE	40-Pin Plastic SOJ (400-mil)	49
	V	40-Pin Plastic ZIP ($400-\mathrm{mil}$)	50
μ PD42S4260A	G5	44/40-Pin Plastic TSOP II (300-mil)	52
	G5M	44/40-Pin Plastic TSOP \11 (300-mil)	52
	LE	$40-\mathrm{Pin}$ Plastic SOJ (400-mil)	49
	V	40-Pin Plastic ZIP (400 -mil)	50
$\mu \mathrm{PD} 42 \mathrm{S4260L}$	G5	44/40-Pin Plastic TSOP II (300-mil)	52
	G5M	44/40-Pin Plastic TSOP \|I ($300-\mathrm{mil}$)	52
	LE	$40-\mathrm{Pin}$ Plastic SOJ ($400-\mathrm{mil}$)	49
	V	40-Pin Plastic ZIP (400 -mil)	50
μ PD42S4263A	G5	44/40-Pin Plastic TSOP II (300-mil)	52
	G5M	44/40-Pin Plastic TSOP II ($300-\mathrm{mil}$)	52
	LE	40-Pin Plastic SOJ (400-mil)	49
	V	40-Pin Plastic ZIP (400-mil)	50
$\mu \mathrm{PD} 42 \mathrm{S4263L}$	G5	44/40-Pin Plastic TSOP II (300-mil)	52
	G5M	44/40-Pin Plastic TSOP II ($300-\mathrm{mil}$)	52
	LE	$40-\mathrm{Pin}$ Plastic SOJ ($400-\mathrm{mil}$)	49
	V	40-Pin Plastic ZIP ($400-\mathrm{mil}$)	50
μ PD42S4280A	V	40-Pin Plastic ZIP ($400-\mathrm{mil}$)	50
	G5	44/40-Pin Plastic TSOP II ($300-\mathrm{mil}$)	52
	G5M	44/40-Pin Plastic TSOP II (300-mil)	52
	LE	$40-\mathrm{Pin}$ Plastic SOJ ($400-\mathrm{mil}$)	49
MPD42S4280L	V	40-Pin Plastic ZIP (400 -mil)	50
	G5	44/40-Pin Plastic TSOP II ($300-\mathrm{mil}$)	52
	G5M	44/40-Pin Plastic TSOP II ($300-\mathrm{mil}$)	52
	LE	$40-\mathrm{Pin}$ Plastic SOJ (400-mil)	49

Device/Package Cross-Reference (cont)

Part Number	Ordering Designation	Package	Page	
μ PD42S4400A	GSM	26/20-Pin Plastic TSOP II (300-mil)	32	
	LA	26/20-Pin Plastic SOJ (300-mil)	30	
	\checkmark	20-Pin Plastic ZIP ($350-\mathrm{mil}$)	19	
	GS	26/20-Pin Plastic TSOP II (300-mil)	32	
$\mu \mathrm{PD} 42 \mathrm{S4400L}$	GSM	26/20-Pin Plastic TSOP III (300-mil)	32	
	LA	26/20-Pin Plastic SOJ ($300-\mathrm{mil}$)	$30-$	
	V	20-Pin Plastic ZIP ($350-\mathrm{mil}$)	19	
	GS	26/20-Pin Plastic TSOP II ($300-\mathrm{mil}$)	32	
μ PD42S4440	LE	26/24-Pin Plastic SOJ (350-mil)	31	
$\mu \mathrm{PD} 42 \mathrm{S4440L}$	LE	26/24-Pin Plastic SOJ (350-mil)	31	
$\mu \mathrm{PD} 42 \mathrm{S4800A}$	G5	28-Pin Plastic TSOP II (400 -mil)	39	
	G5M	28-Pin Plastic TSOP II (400-mil)	39	
	LE	28-Pin Plastic SOJ (400-mil)	38	
	V	28-Pin Plastic ZIP ($350-\mathrm{mil}$)	41	
$\mu \mathrm{PD} 42 \mathrm{~S} 4800 \mathrm{~L}$	G5	28-Pin Plastic TSOP II (400-mil)	39	
	G5M	28-Pin Plastic TSOP II (400-mil)	39	
	LE	$28-\mathrm{Pin}$ Plastic SOJ (400-mil)	38	
	V	28-Pin Plastic ZIP ($350-\mathrm{mil}$)	41	
μ PD42S4810A	LE	28-Pin Plastic SOJ (400-mil)	38	
	V	28-Pin Plastic ZIP ($350-\mathrm{mil}$)	41	
	G5	28-Pin Plastic TSOP II (400-mil)	39	
	G5M	28-Pin Plastic TSOP II (400 -mil)	39	
$\mu \mathrm{PD} 42 \mathrm{S4810L}$	LE	$28-\mathrm{Pin}$ Plastic SOJ ($400-\mathrm{mil}$)	38	
	V	28-Pin Plastic ZIP ($350-\mathrm{mil}$)	41	
	G5	28-Pin Plastic TSOP \|	(400-mil)	39
	G5M	28-Pin Plastic TSOP II (400-mil)	39	
μ PD42S4900A	G5	28-Pin Plastic TSOP II (400-mil)	39	
	G5M	28-Pin Plastic TSOP II (400-mil)	39	
	LE	28-Pin Plastic SOJ (400-mil)	38	
	V	28-Pin Plastic ZIP ($350-\mathrm{mil}$)	41	
$\mu \mathrm{PD} 42 \mathrm{S4900L}$	G5	28-Pin Plastic TSOP II (400 -mil)	39	
	G5M	28-Pin Plastic TSOP II (400 -mil)	39	
	LE	28-Pin Plastic SOJ ($400-\mathrm{mil}$)	38	
	V	28-Pin Plastic ZIP ($350-\mathrm{mil}$)	41	
$\mu \mathrm{PD} 431000 \mathrm{~A}$	GZM	32-Pin Plastic TSOP 1 \#1	46	
	CZ	$32-\mathrm{Pin}$ Plastic DIP ($600-\mathrm{mil}$)	43	
	GW	32-Pin Plastic SOP (Miniflat) (525-mil)	47	
	GZ	32-Pin Plastic TSOP I \#1	46	
μ PD431001	LE	28-Pin Plastic SOJ (400-mil)	38	
μ PD431004	LE	$28-\mathrm{Pin}$ Plastic SOJ ($400-\mathrm{mil}$)	38	
μ PD431008	LE	32-Pin Plastic SOJ ($400-\mathrm{mil}$) \#1	45	

Device/Package Cross-Reference (cont)

Part Number	Ordering Designation	\ldots Package	Page
μ PD431009	LE	36-Pin Plastic SOJ (400-mil)	48
$\mu \mathrm{PD} 431016$	LE	44-Pin Plastic SOJ (400-mil)	51
	G5	U44-Pin Plastic TSOP II (400-mil) \#3	55
$\overline{\mu \text { PD431018 }}$	G5	44-Pin Plastic TSOP II ($400-\mathrm{mil}$) \#3	55
	LE	44-Pin Plastic SOJ (400-mil)	51
$\mu \mathrm{PD43251B}$	LA	24-Pin Plastic SOJ ($300-\mathrm{mil}$)	26
	CR	24-Pin Plastic DIP ($300-\mathrm{mil}$) \#1	21
$\mu \mathrm{PD} 43253 \mathrm{~B}$	LA	$28-\mathrm{Pin}$ Plastic SOJ ($300-\mathrm{mil}$)	37
	CR	28-Pin Plastic DIP ($300-\mathrm{mil}$) \#2	33
$\mu \mathrm{PD43254B}$	LA	24-Pin Plastic SOJ ($300-\mathrm{mil}$)	26
	CR	24-Pin Plastic DIP (300-mil) \#1	21
$\mu \mathrm{PD43256A}$	GU	28-Pin Plastic SOP (Miniflat) (450-mil) \#2	40
	C	28-Pin Plastic DIP (600-mil)	34
	GXM	32-Pin Plastic TSOP I \#2	46
	GX	32-Pin Plastic TSOP I \#2	46
μ PD43256B	GU	28-Pin Plastic SOP (Miniflat) (450-mil) \#2	40
	CZ	28-Pin Plastic DIP (600-mil)	34
$\mu \mathrm{PD} 43258 \mathrm{~A}$	LA	$28-\mathrm{Pin}$ Plastic SOJ ($300-\mathrm{mil}$)	37
	CR	28-Pin Plastic DIP ($300-\mathrm{mil}$) \#2	33
$\mu \mathrm{PD43259A}$	CR	32-Pin Plastic DIP ($300-\mathrm{mil}$)	42
	LA	32-Pin Plastic SOJ ($300-\mathrm{mil}$)	44
$\overline{\mu \text { PD434000 }}$	CZ	32-Pin Plastic DIP (600 -mil)	43
	GW	32-Pin Plastic SOP (Miniflat) (525-mil)	47
	G5	32-Pin Plastic TSOP II (400 -mil)	47
	G5M	32-Pin Plastic TSOP II (400-mil)	47
μ PD434001	LE	32-Pin Plastic SOJ (400-mil) \#1	45
μ PD434004	LE	32-Pin Plastic SOJ (400-mil) \#1	45
$\mu \mathrm{PD434008}$	LE	36-Pin Plastic SOJ ($400-\mathrm{mil}$)	48
$\mu \mathrm{PD} 4361 \mathrm{~B}$	CR	22-Pin Plastic DIP ($300-\mathrm{mil}$)	20
	LA	24-Pin Plastic SOJ ($300-\mathrm{mil}$)	26
$\overline{\mu \text { PD4362B }}$	LA	24-Pin Plastic SOJ (300-mil)	26
	CR	22-Pin Plastic DIP ($300-\mathrm{mil}$)	20
$\overline{\mu \text { PD4363B }}$	CR	24-Pin Plastic DIP (300-mil) \#1	21
	LA	24-Pin Plastic SOJ (300-mil)	26
μ PD4368	CR	28-Pin Plastic DIP ($300-\mathrm{mil}$) \#2	33
	LA	28-Pin Plastic SOJ ($300-\mathrm{mil}$)	37
μ PD4369	CR	28-Pin Plastic DIP (300-mil) \#1	32
	LA	\cdots 28-Pin Plastic SOJ (300-mil)	37
$\mu \mathrm{PD} 46710 \mathrm{~A}$	LN	$\therefore 52$-Pin Plastic LCC	57
$\mu \mathrm{PD} 46741 \mathrm{~A}$	LP	68-Pin Plastic LCC	59
μ PD481440	LE	40-Pin Plastic SOJ (400-mil)	49

Package Drawings

Device/Package Cross-Reference (cont)

Part Number	Ordering Designation	Package	Page	
μ PD482234	G5M	44-Pin Plastic TSOP II (400-mil) \#1	53	
	VF	40-Pin Plastic Shrink ZIP ($450-\mathrm{mil}$)	50	
	G5	44-Pin Plastic TSOP \\|I ($400-\mathrm{mil}$) \#1	53	
	LE	40-Pin Plastic SOJ (400-mil)	49	
μ PD482235	G5M	44-Pin Plastic TSOP \# ($400-\mathrm{mil}$) \#1	53	
	VF	40-Pin Plastic Shrink ZIP (450-mil)	50	
	G5	44-Pin Plastic TSOP II (400-mil) \#1	53	
	LE	40-Pin Plastic SOJ ($400-\mathrm{mil}$)	49	
$\mu \mathrm{PD} 485505$	GU	24-Pin Plastic SOP (Miniflat) (450-mil)	27.	
	V	24-Pin Plastic ZIP ($350-\mathrm{mil}$)	27	
μ PD485506	G5	44-Pin Plastic TSOP II (400-mil) \#1	53	
μ PD488130		32-Pin Surface Vertical Package (SVP)	48	
$\underline{\mu \text { PD488170 }}$		32-Pin Surface Vertical Package (SVP)	48	

16-Pin Plastic DIP (300-mil)

18-Pin Plastic DIP (300-mil) \#1

Item	Millimeters	Inches
\mathbf{A}	22.86 max	.900 max
B	1.27 max	.050 max
C	$2.54(\mathrm{TP})$	$.100(\mathrm{TP})$
D	0.50 ± 0.10	$.020 \pm .004$
F	1.2 min	.047 min
G	3.2 ± 0.3	$.126 \pm .012$
H	0.51 min	.020 min
I	4.31 max	.170 max
J	5.08 max	.200 max
$\mathrm{K} *$	$7.62(\mathrm{TP})$	$.300(\mathrm{TP})$
L	6.7	.264
M	0.25 ± 0.10	$.010 \pm .004$
N	0.25	.010
P	1.0 min	.039 min

* Item K to center of leads when formed parallel.

PT8C-100-300SA

18-Pin Plastic DIP (300-mil) \#2

18-Pin Cerdip ($\mathbf{3 0 0}$-mil)

18-Pin Plastic Leaded Chip Carrier

20-Pin Plastic DIP (300-mil)

20-Pin Cerdip (300-mil)

20-Pin Plastic ZIP (350-mil)

20-Pin Ceramic Flatpack

22-Pin Plastic DIP (300-mil)

24-Pin Plastic DIP (300-mil) \#1

24-Pin Plastic DIP (300-mil) \#2

24-Pin Plastic DIP (400-mil)

24-Pin Plastic DIP (600-mil)

24-Pin Cerdip ($\mathbf{3 0 0}$-mil)

24-Pin Cerdip (400-mil) \#1

24-Pin Cerdip (400-mil) \#2

Item	Millimeters	Inches
A	33.02 max	1.300 max
B	2.54 max	. 100 max
C	2.54 [TP]	. 100 [TP]
D	0.50 ± 0.10	$.020_{-.005}^{+.004}$
F	1.2 min	. 047 min
G	3.5 ± 0.3	. $138 \pm .012$
H	0.51 min	. 020 min
1	3.80	. 150
J	5.08 max	. 200 max
K	10.16 [TP]	. 400 [TP]
\underline{L}	9.70	. 382
M	0.25 ± 0.05	$.010_{-.002}^{+.002}$
N	0.89 min	. 035 min
P	0.25	. 010

Notes:
[1] Each lead centerline is located within 0.25 mm [. 010 inch] of its true position [TP] at maximum material condition.
[2] Item " K " to center of leads when formed paraliel.

24-Pin Ceramic DIP (400-mil)

Item	Millimeters	Inches
A	33.02 max	1.30 max
B	2.54 max	. 100 max
C	2.54 [TP]	. 100 [TP]
D	0.46 ± 0.05	. $018 \pm .002$
F	1.25 min	. 049 min
G	3.50 ± 0.30	. $138 \pm .012$
H	0.51 min	. 020 min
I	2.74	. 108
J	4.57 max	. 180 max
K	10.16 [TP]	. 400 [TP]
L	10.0	. 394
M	0.25 ± 0.05	$.010_{-.003}^{+.002}$
N	1.00 min	. 039 min
P	0.25	. 010
Notes:		
[1] Each lead centerline is located within 0.25 mm [. 010 inch] of its true position [TP] at maximum material condition.		
[2] It	K" to cente	leads when

[1] Each lead centerline is located within 0.25 mm [. 010 inch] of its true position [TP] at maximum material condition.
[2] Item " K " to center of leads when formed parallel.

24-Pin Plastic SOJ (300-mil)

24/20-Pin Plastic TSOP I

24-Pin Plastic SOP (Miniflat) (450-mil)

Hem	Millimeters	Inches
A	16.51 max	.650 max
B	1.27 max	.050 max
C	$1.27(\mathrm{TP})$	$.050(\mathrm{TP})$
D	0.40 ± 0.10	$.016_{-}^{+.004}$
E	$0.1+0.2$	$.004_{\mathrm{L}}^{+.008}$
F	2.5 max	.099 max
G	2.00	.079
H	12.2 ± 0.3	$.480 \pm .013$
I	8.4	.331
J	1.9	.075
K	0.15 ± 0.10	$.006 \pm .004$
L	0.9 ± 0.2	$.035 \pm .009$
M	0.12	.005

P249M-50-450A
49NFR13 (8/91)

24-Pin Plastic ZIP (350-mil)

24-Pin Plastic ZIP (425-mil)

24-Pin Ceramic LCC

24-Pin Ceramic Flatpack

26/20-Pin Plastic SOJ (300-mil)

26/20-Pin Plastic SOJ (350-mil)

26/24-Pin Plastic SOJ (350-mil)

26/20-Pin Plastic TSOP II (300-mil)

28-Pin Plastic DIP (300-mil) \#\#1

28-Pin Plastic DIP (300-mil) \#2

28-Pin Plastic DIP (400-mil)

28-Pin Plastic DIP (600-mil)

28-Pin Cerdip (400-mil) \#1

28-Pin Cerdip (400-mil) \#2

Item	Millimeters	Inches
A	38.10 max	1.500 max
B	2.54 max	.100 max
C	$2.54(\mathrm{TP})$	$.100(\mathrm{TP})$
D	0.50 ± 0.10	$.020 \pm .004$
F	1.20 min	.047 min
G	3.5 ± 0.3	$.138 \pm .012$
H	0.51 min	.020 min
I	4.00	.157
J	5.08 max	.200 max
$\mathrm{K} *$	$10.16(\mathrm{TP})$	$.400(\mathrm{TP})$
L	9.65	.380
M	0.25 ± 0.05	$.010 \pm .002$
N	0.25	.010
P	0.89 min	.035 min

* Item K to center of leads when formed parallel.

28-Pin Ceramic Flatpack

28-Pin Plastic SOJ (300-mil)

Item	Millimeters	Inches
B	18.67 ± 0.2	$.735 \pm .008$
C	7.57	.298
D	8.47 ± 0.2	$.333 \pm .009$
E	1.08 ± 0.15	$.043 \pm .006$
F	0.74	.029
G	3.5 ± 0.2	$.138 \pm .008$
H	2.4 ± 0.2	$.094 \pm .009$
I	0.8 min	.031 mln
J	2.55	. .100
K	$1.27 \mathrm{TP})$	$.050(\mathrm{TP})$
M	0.40 ± 0.10	$.016 \pm .004$
N	0.12	.005
P^{\star}	6.73 ± 0.20	$.265 \pm .008$
Q	0.1	.004
T	0.85 rad	.033 rad
U	0.20 ± 0.10	$.008 \pm .004$

* Item P to center of leads.

P28LA-300A

28-Pin Plastic SOJ (400-mil)

Item	Millimeters	Inches
B	$18.67+0.20$	$\begin{array}{r} .735+.008 \\ -.013 \end{array}$
C	10.16	. 400
D	11.18 ± 0.20	$\begin{array}{r} .440+.006 \\ -.007 \end{array}$
E	1.08 ± 0.15	$\begin{array}{r} .043+.006 \\ -.007 \\ \hline \end{array}$
F	0.6	. 024
G	3.5 ± 0.2	$\begin{array}{r} .138+.006 \\ -.007 \\ \hline \end{array}$
H	2.4 ± 0.2	$\begin{array}{r} .094+.006 \\ -.007 \\ \hline \end{array}$
1	0.8 min	. 031 min
J	2.6	. 102
K	1.27 (TP)	. 050 (TP)
M	0.40 ± 0.10	$\begin{array}{r} .016+.004 \\ -.005 \\ \hline \end{array}$
N	0.12	. 005
P*	9.40 ± 0.20	$\begin{array}{r} .370+.006 \\ -.007 \end{array}$
Q	0.15	. 006
T	0.85 rad	. 033 rad
U	$\begin{array}{r} 0.20+0.10 \\ -0.05 \end{array}$	${ }^{.008+.004}+$

* Item P to center of leads.

P28LA-400A. 1

28/24-Pin Plastic SOJ (400-mil)

Hem	Millimeters	Inches
B	$18.67{ }^{+0.20}$ -0.35	$.735+.008$ -.013
C	10.16	. 400
D	11.18 ± 0.20	.440 +.006 -.007
E	1.08 ± 0.15	$\begin{array}{r}.043+.006 \\ -.007 \\ \hline\end{array}$
F	0.7	. 028
G	3.5 ± 0.2	$.138+.006$ -.007
H	2.4 ± 0.2	$\begin{array}{r}.094+.006 \\ -.007 \\ \hline\end{array}$
1	0.8 mln	. 031 min
J	2.6	. 102
K	1.27 (TP)	. 050 (TP)
M	0.40 ± 0.10	$.016+.004$ -.005
N	0.12	. 005
P *	9.40 ± 0.20	$\begin{array}{r} .370+.006 \\ -.007 \\ \hline \end{array}$
Q	0.15	. 006
T	0.85 rad	. 033 rad
U	0.20 ± 0.10	${ }^{.008}+{ }_{-}^{+.004}$

* Item \mathbf{P} to center of leads.

P28LB-400A1

28-Pin Plastic TSOP I/ (400-mil)

28/24-Pin Plastic TSOP II (400-mil)

28-Pin Plastic SOP (Miniflat) (450-mil) \#1

28-Pin Plastic SOP (Miniflat) (450-mil) \#2

28-Pin Plastic ZIP (350-mil)

32-Pin Plastic DIP (300-mil)

Htem	Mililimeters	Inches
A	40.64 max	1.600 max
B	1.27 max	. 050 max
C	2.54 (TP)	. 100 (TP)
D	0.50 ± 0.10	$\begin{array}{r} .020+.004 \\ -.005 \end{array}$
F	1.2 min	. 047 min
G	3.2 ± 0.3	. $126 \pm .012$
H	0.51 min	. 020 min
1	4.31 max	. 170 max
J	5.08 max	. 200 max
K*	7.62 (TP)	. 300 (TP)
L	7.25	. 285
M	$0.25_{-0.05}^{+0.10}$	$\begin{array}{r} .010_{-}^{+.004} \\ -.003 \end{array}$
N	0.25	. 01
P	1.0 min	. 039 min

- Hem K to center of leads when formed parallel.

P32C-100-300WA
8SNR-TSASB (1/91)

32-Pin Plastic DIP (600-mil)

32-Pin Ceramic DIP (600-mil)

Hem	Millimeters	Inches
A	$43.053 \pm .127$	1.7 ± 0.01
B	$14.99 \pm .254$	$.59 \pm 0.10$
C	9.78 max	.385 max
D	$0.254 \pm .127$	$.010 \pm .005$
E	$2.54[\mathrm{TP}]$	$.100[\mathrm{TP}]$
F	$0.508 \pm .127$	$.02 \pm .005$
G	$1.27 \pm .381$	$.05 \pm .015$
H	10.287 max	.405 max
I	$3.81 \pm .635$	$.15 \pm .025$
J	$0.254 \pm .076$	$.01 \pm .003$
K	$15.37 \pm .381$	$.605 \pm .015$

32-Pin Plastic (FR-4) DIP (600-mil)

Hem	Millimeters	Inches
A	53.47 ± 0.13	$2.105 \pm .005$
B	15.24	.600
C	$2.54[\mathrm{TP}]$	$.100[\mathrm{TP]}$
D	0.47 ± 0.12	$.019 \pm .005$
E	1.02	.040
F	5.84 max	.230 max
G	2.54 min	.100 min
H	7.62	.300
I	0.38 min	.015 min
J	0.28 ± 0.08	$.011 \pm .003$

32-Pin Plastic SOJ (300-mil)

Item	Mililimeters	Inches
B	$\begin{gathered} 21.21+0.3 \\ -0.35 \end{gathered}$	$\begin{array}{r} .835+.009 \\ -.014 \end{array}$
C	7.57	. 298
D	8.47 ± 0.2	.333 +.009 -.008
E	1.08 ± 0.15	$\begin{array}{r}.043 \pm .006 \\ -.007 \\ \hline\end{array}$
F	0.74	. 029
G	3.5 ± 0.2	. $138 \pm .008$
H	2.4 ± 0.2	$\begin{array}{r} .094+.009 \\ -.008 \\ \hline \end{array}$
1	0.8 min	.031 min
J	2.55	. 100
K	127 (TP)	. 050 (TP)
M	0.40 ± 0.10	$\begin{array}{r} .016+.004 \\ -.005 \\ \hline \end{array}$
N	0.12	. 005
P*	6.73 ± 0.20	. $265 \pm .008$
Q	0.1	. 004
T	0.85 rad	. 033 rad
U	0.20 ± 0.10	$.008 \pm .004$ -.002

*Item P to center of leads.
P32A-300A

32-Pin Plastic SOJ (400-mil) \#1

32-Pin Plastic SOJ (400-mil) \#2

32-Pin Plastic TSOP I \#1

Item	Millimeters	Inches
A	8.0 ± 0.05	$.315 \pm .002$
B	0.45 max	.018 max
C	0.5 ± 0.08	$.020 \pm .003$
D	0.2 ± 0.1	$.008 \pm .004$
G	0.97	.038
H	20 ± 0.15	$.787 \pm .006$
I	18.4 ± 0.05	$.724 \pm .002$
J	0.8 ± 0.1	$.031 \pm .004$
K	0.125 ± 0.01	.005
L	0.5	.020
M	0.08	.003
N	0.1	.004
P	19.0 ± 0.2	$.748 \pm .008$
Q	0.08 ± 0.08	$.003 \pm .003$
S	1.1 max	.043 max

(32

40NR-7378 (11/91)

32-pin Plastic TSOP I \#2

Item	Millimeters	Inches
A	8.2 max	. 323 max
B	0.45 max	. 018 max
C	0.5 (TP)	. 020 (TP)
D	0.20 ± 0.10	. $008 \pm .004$
G	1.05	. 041
H	15.3 ± 0.2	$\begin{aligned} & +.009 \\ & -.008 \end{aligned}$
1	13.7	. 539
\checkmark	0.8 ± 0.2	$\begin{array}{r} .031+.009 \\ -.008 \\ \hline \end{array}$
K	$\begin{aligned} & +0.10 \\ & 0.125+0.05 \end{aligned}$	$.005 \pm .004$
L	0.5 ± 0.1	$\begin{array}{r} .020 \pm .004 \\ -.005 \\ \hline \end{array}$
M	0.08	. 003
N	0.10	. 004
P	14.3 ± 0.2	. $563 \pm .008$
Q	0.05 ± 0.05	. $002 \pm .002$
S	1.27 max	. 050 max

40NR-801B (11/81)

32-Pin Plastic TSOP II (400-mil)

32-Pin Plastic SOP (Miniflat) (525-mil)

32-Pin Surface Vertical Package (SVP)

36-Pin Plastic SOJ (400-mil)

40-Pin Plastic DIP (600-mil)

40-Pin Plastic SOJ (400-mil)

Hem	Millimeters	Inches
B	$26.29 \pm .02$	$1.035 \pm .008$
C	10.16	.400
D	11.18 ± 0.2	$.440 \pm .008$
E	1.08 ± 0.15	$.043 \pm .006$
F	0.7	.028
G	3.5 ± 0.2	$.138 \pm .008$
H	2.4 ± 0.2	$.094 \pm .007$
I	0.8 min	.031 mln
J	2.6	.102
K	$1.27(\mathrm{TP})$	$.050(\mathrm{TP})$
M	0.40 ± 0.10	$.016 \pm .004$
N	0.12	.005
P^{*}	9.40 ± 0.20	$.370 \pm .008$
Q	0.15	.006
T	0.85 rad	.033 rad
U	0.20 ± 0.10	$.008 \pm .004$

* Item \mathbf{P} to center of leads.

P40.E-400A

40-Pin Plastic ZIP (400-mil)

40-Pin Plastic Shrink ZIP (450-mil)

42-Pin Plastic SOJ (400-mil)

44-Pin Plastic SOJ (400-mil)

Item	Millimeters	Inches
B	28.83 ± 0.20	$1.135 \pm .008$
C	10.16	.400
D	11.18 ± 0.2	$.440 \pm .008$
E	1.08 ± 0.15	$.043 \pm .006$
F	0.6	.024
G	3.5 ± 0.2	$.138 \pm .008$
H	2.4 ± 0.2	$.094 \pm .008$
I	0.8 min	.031 min
J	2.6	.102
K	$1.27(\mathrm{TP})$	$.050(\mathrm{TP})$
M	0.40 ± 0.10	$.016 \pm .004$
N	0.12	.005
P^{*}	9.40 ± 0.20	$.370 \pm .008$
Q	0.15	.006
T	0.85 rad	.033 rad
U	0.20 ± 0.10	$.008 \pm .004$

* Item \mathbf{P} to center of leads.

44/40-Pin Plastic TSOP II (300-mil)

Hem	Millimeters	Inchea
A	18.81 max	.741 max
B	1.04 max	.041 max
C	0.8 typ.	.031 typ.
D	0.3 ± 0.1	$.012 \pm .004$
E	0.05 ± 0.05	$.002 \pm .002$
F	1.13 max	.044
G	1.0 typ.	.039
H	9.22 ± 0.2	$.363 \pm .008$
I	7.62 ± 0.2	$.300 \pm .008$
J	0.8 ± 0.2	$.031 \pm .008$
K	0.14 ± 0.1	$.006 \pm .004$
L	0.5 ± 0.05	$.020 \pm .004$
M	0.21	.008
N	0.1	.004

44-Pin Plastic TSOP II (400-mil) \#1

44-Pin Plastic TSOP II (400-mil) \#2

44-Pin Plastic TSOP II ($400-\mathrm{mil}$) \#3

Hem	Millimeters	Inches
\mathbf{A}	18.37 ± 0.05	$.723 \pm .002$
B	0.885 ± 0.05	$.035 \pm .002$
C	$0.8(\mathrm{TP})$	$.031(\mathrm{TP})$
D	0.30 ± 0.08	$.012 \pm .004$
E	0.04 ± 0.04	$.002 \pm .002$
F	1.01 ± 0.06	$.040 \pm .002$
G	0.97 ± 0.05	$.038 \pm .002$
H	11.76 ± 0.2	$.463 \pm .008$
I	10.16 ± 0.1	$.400 \pm .004$
J	0.8 ± 0.2	$.031 \pm .009$
K	0.125 ± 0.10	$.005 \pm .004$
L	0.5 ± 0.1	$.020 \pm .004$
M	0.13	.005
N	0.08	.003

C

50-Pin Plastic TSOP II (400-mil)

Hem	Mallimeters	Inchee
A	$21.11 \pm .05$	$.831 \pm .002$
C	0.8 ± 0.05	$.031 \pm .002$
D	0.3 ± 0.08	$.012 \pm .003$
E	0.05 ± 0.05	$.002 \pm .002$
F	1.10 max	.043 max
G	0.97	.038
H	11.76 ± 0.2	$.463 \pm .008$
I	10.16 ± 0.1	$.400 \pm .004$
J	0.8 ± 0.2	$.031 \pm .008$
K	0.125 ± 0.10	$.005 \pm .004$
L	0.5 ± 0.1	$.020 \pm .004$

$83 C L-00818(9802)$

50/44-Pin Plastic TSOP II (400-mil)

52-Pin Plastic LCC

64-Pin Plastic QFP

Item	Millimeters	Inches
A	23.6 ± 0.4	. $929 \pm .016$
B	20.0 ± 0.2	$\begin{array}{r} .795+.009 \\ -.008 \\ \hline \end{array}$
C	14.0 ± 0.2	$\begin{aligned} & .551+.009 \\ & -.008 \end{aligned}$
D	17.6 ± 0.4	. $693 \pm .016$
F	1.0	. 039
G	1.0	. 039
H	0.40 ± 0.10	$.016+.004$
1	0.20	. 008
J	1.0 (TP)	. 039 (TP)
K	1.8 ± 0.2	$\begin{aligned} & .071+.008 \\ & -.009 \end{aligned}$
L	0.8 ± 0.2	$\begin{array}{r} .031+.009 \\ -.008 \\ \hline \end{array}$
M	$\begin{array}{r} +0.10 \\ 0.15+0.05 \\ \hline \end{array}$	$\begin{array}{r} .006+.004 \\ -.003 \\ \hline \end{array}$
N	0.15	. 006
P	2.7	. 106
0	0.1 ± 0.1	. $004 \pm .004$
R	0.1 ± 0.1	. $004 \pm .004$
S	3.0 max	. 119 max

P6AGF-100-3B8, 3BE-1
40NRAE99B (B/91)

68-Pin Plastic LCC

Field Sales Offices

Northern Callfornia Region
4677 Old Ironsides Dr .
Suite 450
Santa Clara, CA 95054
TEL: 408-986-1020
FAX: 408-988-4165
Western Region
One Embassy Centre
9020 S.W. Washington
Square Road
Suite 400
Tigard, OR 97223
TEL: 503-671-0177
FAX: 503-643-5911
Encino Office Park Two
6345 Balboa Blvd.
Suite 240
Encino, CA 91316
TEL: 818-342-3112
FAX: 818-342-0842
200 E. Sandpointe
Bldg. 8
Suite 150
Santa Ana, CA 92707
TEL: 714-546-0501
FAX: 714-432-8793
14001 East lliff Avenue
Suite 411
Aurora, CO 80014
TEL: 303-755-6353
FAX: 303-755-6728

Central Region
1500 West Shure Drive
Suite 250
Arlington Heights, IL. 60004
TEL: 708-577-9090
FAX: 708-577-2147
Auto Sales \& Tech. Center
Regent Court
16800 Executive Plaza Drive
Suite 143
Dearborn, MI 48126
TEL: 313-336-5225
FAX: 313-336-7922
201 W. Big Beaver Road Suite 350
Troy, MI 48084
TEL: 313-680-0506
FAX: 313-680-1015
7760 France Ave. South
Suite 1015
Minneapolis, MN 55435
TEL: 612-844-0209
FAX: 612-844-0509

International

EUROPE	EUROPE (cont)	EUROPE (cont)	EUROPE (cont)	ASIA (cont)
NEC Electronics	Hannover Office	NEC Electronics	NEC Electronics	Seoul Branch
European Headquarters	Koenigstr. 12	(Scandinavia)	(France) S.A.	Room 501, Korea Air Terminal
Oberrather Str. 4	3000 Hannover 1	Svardvagen 258	9, rue Paul Dautier-BP187	Bldg. 159-1
4000 Dusseldolf 30	Germany	S-182 33 Danderyd	78142 Velizy-Villacoublay	Samsung-Dong, Kangnam-Ku
Germany	TEL: 511-316091	Sweden	Cedex, France	Seoul, the Republic of Korea
TEL: 211-650301	TLK: 9230109	TEL: 8-753-6020	TEL: 1-3067-5800	
TWX: 8589960	FAX: 511-3481703	TLX: 13839	TLX: 699499	TEL: 2-551-0450
FAX: 211-6503327		FAX: 8-755-3506	FAX: 1-3946-3663	FAX: 2-551-0451
NEC Electronics (Benelux)	Munich Office Arabellastr. 17 8000 Munchen 81 Germany TEL: 89-9210030 TLK: 522971 FAX: 89-92100315	NEC Electronics (UK) Ltd. Headquarters	Madrid Office	NEC Electronics Taiwan Ltd.7F. NO. 363 Fu Shing North
Boschdijk 187A NL-5612 Eindhoven Netherlands TEL: 40-455-845 TLX: 51923 FAX: 40-444-580		Cygnus House Sunrise	28007 Madrid, Spain	Road
		Park Way	TEL: 1-504-2787	Taipei, Taiwan
		Milton Keynes MK14 6NP	TLX: 41316	TEL: 2-719-2370
		United Kingdom	FAX: 1-504-2860	TLX: 22372
		TEL: 908-691133	NEC Electronics	FAX: 2-719-5951
	Suttgart Office Heibornnerstr. 314 7000 Stuttgart 30 Germany TEL: 711-890910 TLK: 7252220 FAX: 711-8909119	TLK; 826791.	Italiana s.r.I.	NEC Electronics
NEC Electronics (Germany) GmbH Headquarters		FAX: 908-670290	Via Fabio Filzi 25/A	Singapore Pte. Ltd.
		Dublin Office 34/35, South William Street Dublin 2, Ireland	20124 Milano, Italy TEL: 2-6709108	101 Thomson Road \#04-02/05
Kanzlerstr. 2. 4000 Dusseldorf 30 Germany TEL: 211-650302			FAX: 2-66981329	United Square, Singapore 1130 TEL: 253-8311 FAX: 250-3583
		TEL: 1-679-4200		
		FAX: 1-679-4081	ASIA	
		Motherwell Office	NEC Electronics	
FAX: 211-6503490		Block 3 Carifin	Hong Kong Limited	
		Industrial Estate	12th Floor, City Plaza 4	
		Motherwell ML1 4UL	12 Taikoo Wan Road,	
		Scotland	Hong Kong	
		United Kingdom	TEL: 866-9318	
		TEL: 698-732221	fAX. 886-9022	
		TLK: 777565		
		FAX: 698-833868		

NEC

NEC Electronics Inc.

[^0]: FP Fast page
 SR Self-refresh
 SC Static column
 WPB Write-per-bit

[^1]: FP Fast page
 HP Hyper page (extended data out)

[^2]: * Including scope and jig

[^3]:

