

17 K 4-BIT MICROCONTROLLER DATA BOOK

1992
 17K 4-BIT MICROCONTROLLER DATA BOOK

20043
© 1991 NEC Electronics Inc./Printed in the U.S.A.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics Inc. The information in this document is subject to change without notice. Devices sold by NEC Electronics Inc. are covered by the warranty and patent indemnification provisions appearing in NEC Electronics Inc. Terms and Conditions of Sale only. NEC Electronics Inc. makes no warranty, express, statutory, implied, or by description, regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. NEC Electronics Inc. makes no warranty of merchantability or fitness for any purpose. NEC Electronics Inc. assumes no responsibility for any errors that may appear in this document. NEC Electronics Inc. makes no commitment to update or to keep current the information contained in this document.

General Information

μ PD17K-Family

Table of Contents

Pages

Section 1-General Information
General Overview 1-3
Section 2 - μ PD17K-Family
General Overview 2-3
170xx Overview 2-3
171xx Overview 2- 4
172xx Overview 2- 5
μ PD170xx Series (Digital Tuning Systems)
μ PD17001 \quad 4-Bit S/C Microcomputer 2-7
μ PD17P001 4-Bit S/C Microcomputer 2-11
μ PD17003A 4-Bit S/C Microcomputer 2-15
μ PD17005 4-Bit S/C Microcomputer 2-69
μ PD17P005 4-Bit S/C Microcomputer 2-109
μ PD17006 4-Bit S/C Microcomputer 2-131
μ PD17P006 4-Bit S/C Microcomputer 2-135
μ PD17010 4-Bit S/C Microcomputer 2-139
μ PD17P010 4-Bit S/C Microcomputer 2-143
μ PD17002 4-Bit S/C Microcomputer 2-147
μ PD17P008 4-Bit S/C Microcomputer 2-165
μ PD17051 4-Bit S/C Microcomputer 2-169
μ PD17052 4-Bit S/C Microcomputer 2-195
μ PD17053 4-Bit S/C Microcomputer 2-213
μ PD171xx Series (Consumer Specific Microcomputers)
μ PD17102 4-Bit S/C Microcomputer 2-217
μ PD17106 4-Bit S/C Microcomputer 2-253
μ PD17P106 4-Bit S/C Microcomputer 2-257
μ PD17103/
μ PD17104 4-Bit S/C Microcomputer 2-261
μ PD17P103 4-Bit S/C Microcomputer 2-285
μ PD17P104 4-Bit S/C Microcomputer 2-303
μ PD17107 4-Bit S/C Microcomputer 2-321
μ PD17108 \quad 4-Bit S/C Microcomputer 2-349
MPD17P107 4-Bit S/C Microcomputer 2-377
MPD17P108 4-Bit S/C Microcomputer 2-397
μ PD17134A
μ PD17136A 4-Bit S/C Microcomputer 2-415
μ PD17P136A 4-Bit S/C Microcomputer 2-419
μ PD17135A
μ PD17137A 4-Bit S/C Microcomputer 2-423
μ PD17P137A 4-Bit S/C Microcomputer 2-427
μ PD172xx Series (Remote Controller)
μ PD17201A 4-Bit S/C Microcomputer 2-431
μ PD17207 4-Bit S/C Microcomputer 2-455
μ PD17P207 4-Bit S/C Microcomputer 2-459
μ PD17202A 4-Bit S/C Microcomputer 2-485
μ PD17P202A 4-Bit S/C Microcomputer 2-507
μ PD17203A 4-Bit S/C Microcomputer 2-525
μ PD17P203A 4-Bit S/C Microcomputer 2-529
μ PD17204 4-Bit S/C Microcomputer 2-547
μ PD173xx Series (Home Automation Controller)
μ PD17301 4-Bit S/C Microcomputer 2-551
μ PD174xx Series (Special Consumer Applications)
μ PD17401 4-Bit S/C Microcomputer 2-555
μ PD17P401 4-Bit S/C Microcomputer 2-559
Section 3 - Instruction manual of the μ PD17K-Family
Chapter 1 General 3-3
Chapter 2 Data memory addressing 3-4
Chapter 3 Instruction set 3-11
Section 4 - Development tools
Development tools for the μ PD17K- Family 4 - 3
Section 5 - Packaging information Package/device cross reference
16-Pin Plastic DIP (300 mil) 5-3
16-Pin Plastic SOP (300 mil) 5-4
22-Pin Plastic DIP (300 mil) 5-5
24-Pin Plastic SOP (300 mil) 5-6
28-Pin Plastic Shrink DIP (400 mil) 5-7
28-Pin Plastic SOP (375 mil) 5-8
48-Pin Plastic QFP (10x14) 5-9
48-Pin Plastic Shrink DIP (600 mil) 5-10
52-PIn Plastic QFP (14x14) 5-11
52-PIn Plastic QFP (14×14) bent lead 5-12
52-PIn Plastic QFP (14×14) straight lead 5- 13
64-Pin Plastic Shrink DIP (750 mil) 5-14
64-PIn Plastic QFP (14x20) 5-15
80-PIn Plastic QFP (14x20) 5-16

General information

Section 1-General Information

General Overview ... 1 - 3

NEC

NEC's consumer ICs include a variety of devices which are built into the electronic equipment found nowadays in most homes. They are used to control audio and video systems, transmit and display information, store data, drive clocks and for many other functions.
Infrared remote controllers for home entertainment like VCR, TV and audio equipment are extremly popular. Their use is spreading to household appliances and new application fields like car locks, security systems, burglar alarms and airconditioning systems.

The NEC consumer data book is divided into the following sections:

1. General Information. This section gives a general overview of NEC's consumer devices and the structure of the data book.
2. μ PD17K-Family. In this section you will find all devices of our μ PD17K-Family separated into 5 main groups: - the μ PD170xx series (digital tuning systems)

- the μ PD171xx series (consumer specific microcomputers)
- the μ PD172xx series (remote controllers)
- the μ PD173xx series (home automation controllers)
- the μ PD174xx series (special consumer applications)

3. Instruction Manual of the μ PD17K-Family. This section provides you with information about the architecture and the instruction set of this device family.

Section 2 - μ PD17K-Family

General Overview 2- 3
170xx Overview 2- 3
171xx Overview 2- 4
172xx Overview 2-5
μ PD17001 4-Bit S/C Microcomputer 2-7
μ PD17P001 4-Bit S/C Microcomputer 2-11
μ PD17003A 4-Bit S/C Microcomputer 2-15
μ PD17005 4-Bit S/C Microcomputer 2-69
μ PD17P005 4-Bit S/C Microcomputer 2-109
μ PD17006 4-Bit S/C Microcomputer 2-131
μ PD17P006 4-Bit S/C Microcomputer 2-135
μ PD17010 4-Bit S/C Microcomputer 2-139
μ PD17P010 4-Bit S/C Microcomputer 2-143
μ PD17002 4-Bit S/C Microcomputer 2-147
μ PD17P008 4-Bit S/C Microcomputer 2-165
μ PD17051 4-Bit S/C Microcomputer 2-169
μ PD17052 4-Bit S/C Microcomputer 2-195
μ PD17053 4-Bit S/C Microcomputer 2-213
μ PD17102 4-Bit S/C Microcomputer 2-217
μ PD17103/
μ PD17104 4-Bit S/C Microcomputer 2-261
μ PD17P103 4-Bit S/C Microcomputer 2-285
μ PD17P104 4-Bit S/C Microcomputer 2-303
μ PD1710 4-Bit S/C Microcomputer 2-253
μ PD17P106 4-Bit S/C Microcomputer 2-257
μ PD17107 4-Bit S/C Microcomputer 2-321
μ PD17108 4-Bit S/C Microcomputer 2-349
μ PD17P107 4-Bit S/C Microcomputer 2-377
μ PD17P108 4-Bit S/C Microcomputer 2-397
μ PD17134A
μ PD17136A 4-Bit S/C Microcomputer 2-415
μ PD17P136A 4-Bit S/C Microcomputer 2-419
μ PD17135A
μ PD17137A 4-Bit S/C Microcomputer 2-423
μ PD17P137A 4-Bit S/C Microcomputer 2-427
μ PD17201A 4-Bit S/C Microcomputer 2-431
μ PD17207 4-Bit S/C Microcomputer 2-455
μ PD17P207 4-Bit S/C Microcomputer 2-459
μ PD17202A 4-Bit S/C Microcomputer 2-485
μ PD17P202A 4-Bit S/C Microcomputer 2-507
μ PD17203A 4-Bit S/C Microcomputer 2-525
μ PD17P203A 4-Bit S/C Microcomputer 2-529
μ PD17204 4-Bit S/C Microcomputer 2-547
μ PD17301 4-Bit S/C Microcomputer 2-551
μ PD17401 4-Bit S/C Microcomputer 2-555
μ PD17P401 4-Bit S/C Microcomputer 2-559

NEC

17K-Family

- One machine-cycle instruction execution
- General Register Machine not just Accu based CPU
- 16 bit instruction length

170xx

- Digital tuning systems
- Serial interface
- AVD -D/A-converters
- IF-counter

LCD-driver

- Image display controller
- PLL

171xx

- White goods controllers
- Low power consumption
- General purpose
- Serial interface
- ADD-converter
- Timer
- Low voltage operation

172xx

- Remote controller
- Low voltage operation
- Carrier frequency generation
- Low voltage detection circuit
- Constant LCD voltage circuit
- Learning remote controller
- Built-in preamplifier
- Large static RAM

170xx - Overview

	DTS (TUNERS)					LCD-TVNCR		Portable TV; Voltage symthesizer		
	17001	17003A	17005	17010	17006	17002	17008	17051	17052	17053
ROM (words)	3836	3836	7932		12288	3968	16256	8192		12288
RAM (words)	224	320	432		896	336	672	448		672
Stack levels	7			9	7	6	7	6		7
Minimum instruction execution time	$4.44 \mu \mathrm{~s} / 4.5 \mathrm{MHz}$				$\begin{aligned} & 1.78 \mu \mathrm{~s} / \\ & 4.5 \mathrm{MHz} \end{aligned}$	$2 \mu \mathrm{~s} / 8 \mathrm{MHz}$				
ADCs	6×6 bit				6×8 bit	6×4 bit	8×4 bit			
DACs (PWM)	3×8 bit				3×9 bit	4×6 bit	$\begin{array}{\|l\|} \hline 9 \times 8 \text { bit } \\ 6 \times 6 \text { bit } \\ \hline \end{array}$	3×6 bit	4×6 bit	
Amplifiers	1			-		-				
Int./ext. interrupts	3/1	3/2		4/2		-11				
Serial interface	1 channel 3 wires 1 channel 2 wires	2 channels 3 wires 1 channels 2 wires				1 channel 3 wires 1 channel 2 wires				
VO-Ports	12	16			48	15	16	15	20	
Input-Ports	8					4				
Output-Ports	12	9			11	8	25	12	20	
LCD Driver	-	30 segments / 2 common			-	-				
IDC ${ }^{\text {cher }}$ charact. on screen						99	200	97	99	199
1 - different types						120248		128	128	256
Counter	16 bit IF counter					Vsync-; Hsync- counter				
PLL/voltage synthesizer	$\begin{array}{\|c} 150 \mathrm{MHz} \\ \text { PLL } \\ \hline \end{array}$	$\begin{gathered} 250 \mathrm{MHz} \\ \text { PLL } \\ \hline \end{gathered}$	$\begin{gathered} 150 \mathrm{MHz} \\ \mathrm{PLL} \end{gathered}$			15 MHz PL (ext. prescaler required)		14 bit D/A (PWM) Voltage synthesizer		
Pins Package	48 QFP	80 QFP				48 SDIP/QFP	$\begin{gathered} 64 \\ \text { SDIP } \end{gathered}$	$\begin{gathered} 48 \\ \text { SDIP } \end{gathered}$	64 SDIP	
OTP	17P001	17 P 005		17 P 010	17P006	No OTP version	17P008	No OTP version		

171xx - Overview

	17102	17106	17103 (L)*	17104 (L)*	17107(L)*	17108 (L)*	17134A	17136A	17135A	17137A
ROM (words)	2048	4096	512				1024	2048	1024	2048
RAM (words)	222	178	16				112			
Stack levels	3	7	1				5			
Minimum instruction execution time	$2 \mu \mathrm{~s} / 8 \mathrm{MHz}$		$\begin{gathered} \mathrm{STD}: \mathrm{V}_{\mathrm{DDD}} 4 \\ 2 \mu \mathrm{~s} \end{gathered}$	4.5-6V 18 MHz	STD: VDD 4.5-6 V $8 \mu \mathrm{~s} / 1 \mathrm{MHz}$		$8 \mu \mathrm{~s} / 1 \mathrm{MHz}$		$2 \mu \mathrm{~s} / 8 \mathrm{MHz}$	
			$\text { L: } \quad \begin{aligned} & V_{D D 1} \\ & 8 \mu \mathrm{~s} / \end{aligned}$	$\begin{aligned} & 1.8-3.6 \mathrm{~V} \\ & 12 \mathrm{MHz} \end{aligned}$	$\text { L: } \quad \begin{aligned} & V_{D D} 1 \\ & 40 \mu \mathrm{~s} \end{aligned}$	$\begin{aligned} & 1.5-3.6 \mathrm{~V} \\ & \text { is } / 200 \mathrm{kHz} \end{aligned}$				
ADCs	$\begin{gathered} 6 \text { bits } \\ 4 \text { channels } \end{gathered}$	-					1×8 bit / 4 channel			
DACs (PWM)	1×6 bit	-								
Timers	$\begin{gathered} 8 \text { bit } \\ 2 \text { channels } \end{gathered}$	-					8 bit / 2 channels + watchdog			
Zero-Cross Detectors	1	-					1			
Int/ext. interrupts	2/3	$2 / 1$	-				4/1			
Serial interface	1channel 3 wires	2 channels 2 and 3 wires	-				1channel 3 wires			
LCD-Driver	$\begin{array}{\|c\|} \hline 48 \\ \text { segments } \end{array}$	$\begin{array}{\|c\|} \hline 176 \\ \text { segments } \\ \hline \end{array}$	-							
VO-Ports	16	5	11	16	11	16	21			
Input-Ports	8	4	-							
Output-Ports	14	-								
Amplifiers	2	-								
Clock Generator	Ceramic resonator				RC oscillator				Ceramic resonator	
Pins Package	$\begin{aligned} & 52 \\ & \text { QFP } \end{aligned}$	$\begin{aligned} & 64 \\ & \text { QFP } \end{aligned}$	$\begin{aligned} & 16 \text { DIP } \\ & 16 \text { SOP } \end{aligned}$	$\begin{aligned} & 22 \text { SDIP } \\ & 24 \text { QFP } \end{aligned}$	$\begin{aligned} & 16 \mathrm{DIP} \\ & 16 \mathrm{SOP} \end{aligned}$	$\begin{aligned} & 22 \text { SDIP } \\ & 24 \mathrm{SOP} \end{aligned}$	$\begin{aligned} & 28 \mathrm{SDIP} \\ & 28 \mathrm{SOP} \end{aligned}$			
OTP	No OTP version	17P106	17P103	17P104	17P107	17P108	17P136A		17P137A	

* L: Low voltage version

172xx - Overview

	17201A	17207	17202A	17203A	17204
ROM (words)	3072	4096	2048	4096	7936
RAM (words)	336		112	$\begin{gathered} 336 \\ +4096 \text { SRAM } \end{gathered}$	$\begin{gathered} 336 \\ +2048 \text { SRAM } \end{gathered}$
Stack levels	5				7
Instr.exec. time	$4 \mu \mathrm{~s} / 4 \mathrm{MHz}$				
ADCs	4×8 bit		-		
Timers	8 bit + watchdog			8 bit / 10 bit / 16 bit + watchdog	
Ext. interrupt	1				
Serial interface	1		-	1	
I/O-Ports	19		16	28	
LCD-Drivers	34 segments + 4 common		24 segments + 4 common	-	
Pins Package	80 QFP		64 QFP	52 QFP	
OTP	17 P 207		17P202A	17P203A	17P204

Common features:

- Low voltage operation (2.0V) •Low voltage detection circuit

BUILT-IN PRESCALER

μ PD17001 is a 4 bits CMOS microcomputer for Digital Tuning System implemented prescaler (operational frequency up to 150 MHz), PLL frequency synthesizer and IF counter on chip.

CPU applies μ PD17000 architecture which operates data memory directly without accumulater, and it realizes effective programming.

All instructions consist of 16 bits one word.
As PLL frequency synthesizer can apply pulse swallow method, high performance tuner is easily constructed by selecting high reference frequency like 50 kHz or 100 kHz .

In addition, station detect is realized by counting intermediate frequency of tuner using built-in 16 bits IF counter.

As system development support tools of μ PD17001, IE-17K (In Circuit Emulator) and AS17K (assembler) are prepared.

FEATURES

- 4 bits microcomputer for Digital Tuning System
- program memory (ROM)
: 8 K bytes (16 bits $\times 3836$ steps)
- data memory (RAM)
: 224 words (4 bits $\times 224$ words)
- stack level: 7
- 35 types of simple instruction
- decimal operation
- instruction execution time: $4.44 \mu \mathrm{~s}$
(with 4.5 MHz crystal oscillator)
- built-in PLL frequency synthesizer and 150 MHz prescaler
- 12 types of reference frequencies can be selected by software.
$1,1.25,2.5,3,5,6.25,9,10,12.5,25,50,100 \mathrm{kHz}$
- built-in amplifier for LPF (Low pass filter)
- built-in IF counter (AMIFC, FMIFC)
- built-in 8 bits serial interface

1 system 2 channels: 3 wire or 2 wire system

- built-in D/A converter: 8 bits $\times 3$ (PWM output)
- built-in A/D converter: 6 bits $\times 6$
- built-in discharge detection circuit and power on reset circuit
- interrupt
external interrupt: 2 channels
internal interrupt: 3 channels
- various I/O ports
input/output ports: 12 lines
input ports : 8 lines
output ports : 12 lines
- built-in CGP (Clock Generator Port)
- single power supply ($5 \mathrm{~V} \pm 10 \%$)
- CMOS low power consumption
- 48-pin plastic QFP

Notes on Serial interface:

The 2-wire mode corresponds to the 12C-Bus specification from Philips.
In case of using this interface mode note the following:

Duties when using I2C bus system

Purchase of NEC's I2C bus system hardware components conveys a license under the Philips I2C patents rights to use this components in an I2C system, provided that the system conforms the I2C standard specifications as defined by Philips.

Consequently for all ROM based components with I2C hardware circuits the user is kindly requested to notify the use of the I2C bus interface at the ROM code verification stage.

PIN CONFIGURATION (Top View)

BLOCK DIAGRAM

GND O

BUILT-IN EPROM, PRESCALER

μ PD17P001 is a 4 bits CMOS microcomputer for Digital Tuning System implemented EPROM, prescaler (operational frequency up to 150 MHz), PLL frequency synthesizer and IF counter on chip.

CPU applies μ PD17000 architecture which operates data memory directly without accumulater, and it realizes effective programming.

All instructions consist of 16 bits one word.
As PLL frequency synthesizer can apply pulse swallow method, high performance tuner is easily constructed by selecting high reference frequency like 50 kHz or 100 kHz .

In addition, station detect is realized by counting intermediate frequency of tuner using built-in 16 bits IF counter.
μ PD17P001 is the most suitable for evaluating the program of μ PD17001 or for producing a few products because μ PD17P001 is built-in EPROM.

As system development support tools of μ PD17P001, IE-17K (In Circuit Emulator) and AS17K (assembler) are prepared.

FEATURES

- 4 bits microcomputer for Digital Tuning System
- program memory (EPROM)
: 8 K bytes (16 bits $\times 3836$ steps)
- data memory (RAM)
: 224 words (4 bits $\times 224$ words)
- stack level: 7
- 35 types of simple instruction sets
- decimal operation
- instruction execution time: $4.44 \mu \mathrm{~s}$
(with 4.5 MHz crystal oscillator)
- built-in PLL frequency synthesizer and 150 MHz prescaler
- 12 types of reference frequencies can te selected by software.
$1,1.25,2.5,3,5,6.25,9,10,12.5,25,50,100 \mathrm{kHz}$
- built-in amplifier for LPF (Low pass filter)
- built-in IF counter (AMIFC, FMIFC)
- built-in 8 bits serial interface

1 system 2 channels: 3 wire or 2 wire system

- built-in D/A converter: 8 bits $\times 3$ (PWM output)
- built-in A/D converter: 6 bits $\times 6$
- built-in discharge detection circuit and power on reset circuit
- interrupt
external interrupt: 2 channels
internal interrupt: 3 channels
- various I/O ports
input/output ports: 12 lines
input ports: 8 lines
output ports : 12 lines
- built-in CGP (Clock Generator Port)
- single power supply ($5 \mathrm{~V} \pm 10 \%$)
- CMOS low power consumption
- Product of mask ROM version: μ PD17001
- 48-pin plastic QFP

PIN CONFIGURATION (Top View)

BLOCK DIAGRAM

DIGITAL TUNING SYSTEM HARDWARE BUILT-IN 4-BIT SINGLE CHIP MICRO CONTROLLER

μ PD17003A is a 4-bit single chip CMOS micro controller which contains digital tuning system hardware.
17K architecture is used for CPU, data and memory manipulations and various types of operations, and peripheral hardware control can be performed directly by one instruction.

Peripheral hardware devices include a prescaler which operates up to 250 MHz , PLL frequency synthesizer, LPF (Low Pass Filter) amplifier, and frequency counter for digital tuning in addition to various types of input/output ports, LCD controller/driver, A/D converter, D/A converter (PWM output), and clock generator ports.

Consequently, a high performance digital tuning system with a variety of functions can be constructed using only one chip. μ PD17005 (note) is available as the product which is pin-compatible with μ PD17003A and whose memory size (ROM) is extended. One-time PROM version μ PD17P005 (note) is available as μ PD17005, and μ PD17P005 can be used for program evaluation of μ PD17003A at small volume production.

FEATURES

- Using 17K architecture - Instruction execution time
- Program memory (ROM) 4.44μ (using 4.5 MHz quarts oscillator)
8 K bytes (3836 steps $\times 16$ bits)
- General purpose data memory (RAM) 320 nibble (320 words $\times 4$ bits)
- Dual modules prescaler (250 MHz Max.), programmable divider, phase comparator, charge pump, and LPF amplifier
- Various types of peripheral hardware

General purpose input/output ports, LCD controller/driver, serial interface, ADD converter, D/A converter (PWM output), clock generator, ports, and frequency counter

- Various types of interrupt
Externalinterrupt : 2 channels
Internalinterrupt : 3 channels
- Power On Reset, resetting by a CE pin, and built-in blackout detection circuit
- CMOS low power consumption
- Power supply voltage $5 \mathrm{~V} \pm 10 \%$

ORDERING INFORMATION

Order Code
 Package

μ PD17003AGF-XXX-3B9
80-pin plastic QFP (14×20)
Notes on Serial interface:
The 2-wire mode corresponds to the I2C-Bus specification from Philips.
In case of using this interface mode note the following:

Duties when using 12C bus system
Purchase of NEC's I2C bus system hardware components conveys a license under the Philips I2C patents rights to use this components in an 12C system, provided that the system conforms the 12C standard specifications as defined by Philips.

Consequently for all ROM based components with I2C hardware circuits the user is kindly requested to notify the use of the I2C bus interface at the ROM code verification stage.
μ PD17003A FUNCTION OUTLINE

Item	Function
Program memory (ROM)	- 8 K bytes (3836 steps $\times 16$ bits). Table reference area: up to 256 steps $\times 16$ bits
General data memory (RAM)	- 320 nibble (320 words $\times 4$ bits) Data buffer: 4 nibbles General register: 16 nibbles
System register	- 12 nibbles
Register file	- 33 nibbles (control register)
General port register (including LCD dot data register)	- 24 nibbles
Instruction execution time	- $4.44 \mu \mathrm{~s}$ (using 4.5 MHz quarts oscillator)
Stack level	- 7 levels (stack operation enabled)
General purpose port	- Input/output port: 16 - Input ports: 8 - Output ports: 9 (+30: LCD segment pin)
Clock generator port (CGP)	- 1 VDP (Variable Duty Pulse) and SG (Signal Generator) functions
LCD controller/driver	- 30 segments, 2 common $1 / 2$ duty, $1 / 2$ bias, frame frequency 250 Hz , driving voltage VDD, segment pin used also for key source: 16 ports All of the 30 ports can be used as output ports (4 ports, 4 ports, 6 ports, and 16 ports can be set independently)
Serial interface	- Two types (3 channels) 8 -bit 3 -wire system: 2 channels 8 -bit 2-wire system: 1 channel
D/A converter	- 8 bits $\times 3$ (PWM output and output resisting pressure 16 V Max.)

Item		Function
A/D converter		- 6 bits $\times 6$ (consecutive comparison method by software)
Interrupt		- 5 channels (maskable interrupt) External interrupt: 2 channels (INTo pin and INT ${ }_{1}$ pin) Internal interrupt: $\quad 3$ channels (timer, serial interface 1, and frequency counter)
Timer		- Two types Timer carry FF ($1,5,100,250 \mathrm{~ms}$) Timer interrupt ($1,5,10,250 \mathrm{~ms}$)
Reset		- Power On Reset (at power supply connection) - Resetting by CE pin (CE pin Low - High) - Blackout detection function
PLL frequency synthesizer	Division method	- 2 types Direct division method (VCOL pin 20 MHz Max.) Pulse swallow method (VCOL pin 40 MHz Max.) (VCOH pin 250 MHz Max.)
	Reference frequency	- 12 types are selected by the program $1,1.25,2.5,3,5,6.25,9$, $10,12.5,25,50,100 \mathrm{kHz}$
	Charge pump	- Two independent error output
	Phase comparator	- Unlocking can be detected by a program Unlocking FF delay time can selected
	LPF amplifier	- CMOS operation amplifier output resisting pressure 16 V Max.
Frequency cour	nter	- Frequency test P1D3 / FMIFC pin 5 to 15 MHz P1D2 / AMIFC pin 0.1 to 1 MHz - External gate width test POA1 / FCG pin
Power supply voltage		$5 \mathrm{~V} \pm 10 \%$
Package		80-pin plastic QFP

PIN CONFIGURATION (Top View)

1. PIN FUNCTIONS

1.1 EXPLANATION ON EACH PIN FUNCTION

$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	SYMBOL	INPUT/ OUTPUT	OUTPUT MODE	PIN NAME	FUNCTION
$\begin{array}{r} 79 \\ 80 \\ 1 \\ 2 \end{array}$	POC_{3} POC_{2} POC_{1} POCo	Input/ Output	CMOS Push-Pull	Port OC	4-bit general purpose output port. Can be specified as an input or output port in 4-bit units (group I/O). Input/ output is specified by the POCGPIO register (address 27 H) of a register file. The POC register (address 27 H of BANKO) of the port register is used for reading input data and setting output data. At Power On Reset, Clock Stop instruction execution, or CE Reset, these pins are specified as input ports.
$\begin{aligned} & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & \mathrm{POA}_{3} / \mathrm{SDA} \\ & \mathrm{P}_{2} \mathrm{~A}_{2} / \mathrm{SCL} \\ & \mathrm{POA}_{1} / \overline{\mathrm{SCK}}{ }_{1} \\ & \mathrm{POA}_{0} / \mathrm{SO} \end{aligned}$	Input/ Output	N -ch open drain CMOS PushPull	Port 0A	Used as a 4-bit general purpose input/ output port and also for serial interface. A general purpose input/output port and serial interface is switched by the SIO1MODE register (address 08H) and SIO2MODE register (address 02H) of the SIO1MODE register of the register file. (1) When the pin is used as a 4-bit general purpose input/output port The port can be specified as an input or output port in bit units (bit $/ / \mathrm{O}$). Input or output is specified by the POABIO register (address 35 H) of the register file. The POA register (address 70 H of BANKO) is used for reading input data and output data and setting the port register. Since $\mathrm{POA}_{3} /$ SDA, and POA2 / SCL pins are N-ch open drain output, pull-up resistance is required in the external section.

$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	SYMBOL	INPUT/ OUTPUT	OUTPUT MODE	PIN NAME	FUNCTION					
$\begin{aligned} & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	POA3 / SDA POA $/$ / SCL $\mathrm{POA}_{1} / \overline{\mathrm{SCK}}{ }_{1}$ POA $/$ / SO	Input/ Output	$\left\{\begin{array}{l} \text { N-ch } \\ \text { open } \\ \text { drain } \\ \text { CMOS } \\ \text { Push- } \\ \text { Pull } \end{array}\right.$	Port 0A	Pin name	Function	Operating mode			
					$\mathrm{POB}_{2} /$ SCK_{2}	Clock input/ output	3. wire	Serial interface 2		
					$\mathrm{POB}_{1} /$ SO_{2}	Data output				
					POBo / SI_{2}	Data input				
					Since pins $\mathrm{POA}_{3} / \mathrm{SDA}$ and $\mathrm{POA} A_{2} / \mathrm{SCL}$ are N -ch open drain, Pull-Up resistance is required externally. At Power On Reset, Clock Stop instruction execution, and CE Reset, all of these pins are specified as input ports of general purpose input/output ports.					
$\begin{array}{r} 7 \\ 8 \\ 9 \\ 10 \end{array}$	$\begin{aligned} & \mathrm{POB}_{3} / \mathrm{Sl}_{1} \\ & \mathrm{POB}_{2} / \frac{\mathrm{SCK}_{2}}{} \\ & \mathrm{POB}_{1} / \mathrm{SO}_{2} \\ & \mathrm{POB}_{0} / \mathrm{SI}_{2} \end{aligned}$	Input/ Output	CMOS Push-Pull	Port 0B	Used for 4-bit general purpose input/ output ports and also for serial interface The SIO1MODE register (address 08H) or SIO2MODE register (address 02 H) of the register file are used for switching the function as general purpose input/ output port to serial interface or vice versa. (1) When using the pins as 4-bit general purpose input/output ports The pins can be specified as input or output ports in bit units (bit I / O). Input or output is specified by the POBBIO register (address 35 H) of the register file. The POB register (address 71H of BANKO) of the port register is used for reading input data and setting output data.					

PIN NO.	SYMBOL	INPUT/ OUTPUT	OUTPUT MODE	PIN NAME	FUNCTION
$\begin{array}{r} 7 \\ 8 \\ 9 \\ 10 \end{array}$	$\begin{aligned} & \mathrm{POB}_{3} / \mathrm{SI}_{1} \\ & \mathrm{POB}_{2} / \frac{\mathrm{SCK}_{2}}{} \\ & \mathrm{POB}_{1} / \mathrm{SO}_{2} \\ & \mathrm{POB} 0 / \mathrm{Sl}_{2} \end{aligned}$	Input/ Output	CMOS Push-Pull	Port 0B	(2) When the pins are used for serial interface Two types of serial interface can be used including Port 0A (addresses 3 to 6), serial interface 1 and serial interface 2. See the explanation on Port 0A for the function of each pin. At Power On Reset, Clock Stop instruction execution, and CE Reset, all of these pins are specified as input ports of general purpose input/output ports.
$\begin{aligned} & 11 \\ & 12 \end{aligned}$	$\begin{aligned} & \mathrm{INT}_{1} \\ & \mathrm{INT} \end{aligned}$	Input	-	Interrupt	External interrupt request input pin. An interrupt request is issued from the input signal rising edge or falling edge of the input signal added to the pin. A rising edge and a falling edge can be specified by the INTEDGE register (address 1FH) of the register file using INT0 pin and INT 1 pin independently. Even if an interrupt request is issued, interrupt cannot be accepted unless it is permitted (maskable interrupt). Types of interrupt permission include permission of all the interrupts by the El instruction and permission of the interrupt of each INTo pin and INT1 pin. Permission of interrupt for each pin is specified by the INTPM2 register (address 2FH) of the register file. When interrupt is permitted and when an interrupt request is issued, the interrupt is accepted. When interrupt is accepted, control of the program is passed to address 0005 H in the case of interrupt by the INTo pin and address 0004 H in the case of interrupt by the ${ }^{\mathrm{INT}} \mathrm{I}_{1}$ pin. When interrupts for both INTo pin and INT_{1} pin are allowed and when interrupts for both pins are issued, priority is given to the interrupt by INT0 pin.

$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	SYMBOL	INPUT/ OUTPUT	OUTPUT MODE	PIN NAME	FUNCTION
$\begin{aligned} & 11 \\ & 12 \end{aligned}$	$\begin{aligned} & \text { INT }_{1} \\ & \text { INT0 } \end{aligned}$	Input	-	Interrupt	Even if an interrupt is not permitted, the issuing of an interrupt request can be checked using the INTREQ2 register (address 3FH) of the register file. When an interrupt function is not used, the input level of each pin can be detected by the INTJDG register (address OFH) of the register file, and the pin can be used as a general purpose input port. At Power On Reset, Clock Stop Instruction execution, or CE Reset, the interrupt permission and interrupt request are reset.
13	CE	Input	-	Chip Enable	Input pins for device operation selection signal and reset signal. Device operation selection is to select the operation of the PLL frequency synthesizer and standby status as described below. (1) Device operation selection When the CE pin is at a High level, the PLL frequency synthesizer section can be operated. When the CE pin is at a Low level, the PLL frequency synthesizer section sets to a Disable state (operation prohibited) automatically in the device internal section. When the CE pin is at a Low level, the operation of quartz oscillation circuits in the internal section and CPU can be stopped by executing a Clock Stop instruction and data memory can be kept under a low consumption current ($15 \mu \mathrm{~A}$ or less) (at CE pin = High level, the Clock Stop instruction operates as the NOP instruction). At execution of a Clock Stop instruction, the LCD controller/driver is set to a Display Off mode (LCD 0 to $L^{2} D_{29}$, $\mathrm{COM}_{0}, \mathrm{COM}_{1}$ pin are Low level

$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	SYMBOL	INPUT/ OUTPUT	OUTPUT MODE	PIN NAME	FUNCTION
13	CE	Input	-	Chip Enable	output) and general purpose inputoutput ports (Port 0A, Port 0B, Port 0 C , and Port 1A) are used as input ports. (2) Reset signal input When the CE pin is changed from a Low level to High level, the device is reset by synchronizing with the Timer Carry FF of the internal section (CE Reset). When the device is reset, the program starts from address 0 . In this case, the general purpose input/output ports are used as input ports. Since four types of internal Timer Carry FF, 1, 5, 100, and 250 ms can be selected, the time elapsing from when the pin is changed from the Low level to High level until the device is reset can be selected. However, if a Clock Stop instruction has been executed, the device is reset about 100 ms after the CE pin is changed to a High level. This pin does not accept a Low level or High level of less than 100 to 165μ s to prevent operation error due to noise. By using the CEJDG register (address 07 H) of the register file, the input signal level of this pin can be detected. In this case also, the contents of the CEJDG register do not change at a Low level or High level of less than 110 to 165 $\mu \mathrm{s}$. Shumit Trigger input with hysterisis feature is used for this pin. Note that a voltage higher than that of VoD pin must not be supplied at power connection.

$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	SYMBOL	INPUT/ OUTPUT	OUTPUT MODE	PIN NAME	FUNCTION
$\begin{aligned} & 14 \\ & 15 \\ & 16 \\ & 17 \end{aligned}$	P1A3 P1A2 P1A1 P1A0 / FCG	Input Output	CMOS Push- Pull	Port 1A	Used as a 4-bit general purpose input/ output port and also as an external gate counter (P1Ao / FCG pin). The switching between the general purpose input/output port and an external gate counter is performed by the IFCMODE register (address 12 H) of the register file. (1) When the port is used as a 4-bit general purpose input/output port The port can be specified as an input or output port in bit units (bit $1 / \mathrm{O}$). Input or output is specified by the P1A register (address 35 H) of the register file. The P1ABIO register (address 70H of BANK1) of the port register is used for reading input data and setting output data. (2) When the port is used as an external gate counter (FCG) (P1Ao / FCG pin) The counter counts the time from one rising edge to the next rising edge of the signal sent to the P1A0/FCG pin. A reference frequency ($1 \mathrm{kHz}, 100 \mathrm{kHz}, 900 \mathrm{kHz}$) of the internal section is counted by a 16 -bit counter. The external gate counter is specified by the IFCMODE register (address 12 H) and IFCCONT register (address 23 H) of the register file. The PIAo / FCG pin must be specified as the input port by the P1ABIO register (address 35 H). Since the IFCMODE register and IFCCONT register control the frequency conter ($\mathrm{P}_{1} \mathrm{D}_{3}$ / FMIFC and P1D2 / AMIFC pins) and a clock

$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	SYMBOL	INPUT/ OUTPUT	OUTPUT MODE	PIN NAME	FUNCTION
$\begin{aligned} & 14 \\ & 15 \\ & 16 \\ & 17 \end{aligned}$	Р1А P1A2 P1A1 P1Ao / FCG	Input Output	CMOS Push-Pull	Port 1A	generator port (P1Bo / CGP pin) also, an external gate counter, frequency counter, and a lock generator port cannot be used concurrently. At Power On Reset, execution of a Clock Stop instruction, and CE Reset, all of these pins are specified for input ports of the general input/output ports.
$\begin{aligned} & 18 \\ & 19 \\ & 20 \\ & \\ & 21 \end{aligned}$	$\mathrm{P}_{1} \mathrm{~B}_{3} / \mathrm{PWM}_{2}$ $\mathrm{P}_{1} \mathrm{~B}_{2} / \mathrm{PWM}_{1}$ P1B1 / PWM0 P1Bo / CGP	Output	N -ch open drain CMOS Push-Pull	Port 1B	Used as a 4-bit general output port, D/A converter ($\mathrm{P}_{1} \mathrm{~B}_{2}$ / $\mathrm{PWM}_{2}, \mathrm{P}_{1} \mathrm{~B}_{2}$ / $\mathrm{PWM}_{1}, \mathrm{P}_{1} \mathrm{~B}_{1} / \mathrm{PWN} \mathrm{N}_{0}$ pins), and a clock generator port (P1Bo / CGP pin). The PWMMODE register (address 13H) of the register file is used for switching the general output port, D/A converter and a clock generator port. (1) When the port is used as a 4-bit general purpose output port The P1B register (address 71 H of BANK1) of the port register is used for setting output data. The pins PIB3 / PWM2, PIB2 / PWM1, and PIBo / PWMo require Pull-UP resistance for N -ch open drain output. (Resisting pressure 16 V Max.) (2) When the port is used as a D / A converter (PWM output) (pins $\mathrm{P}_{1 B_{3} /}$ PWM2, P1B2/PWM1, and P1B1 / PWMo) Each of pins $\mathrm{P}_{1} \mathrm{~B}_{3} / \mathrm{PWM}_{2}, \mathrm{P} 1 \mathrm{~B}_{2} /$ $P W M_{1}$, and $P 1 B_{1}$ / $P W M_{0}$ can output an independent signal. A pulse width modulation (PWM) method is used as the output method, the frequency is 878.9 Hz ($225 \mathrm{kHz} / 256$) and duty is $0.25 / 256-255.25 / 256$. (256 stages)

$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	SYMBOL	INPUT/ OUTPUT	OUTPUT MODE	PIN NAME	FUNCTION		
$\begin{aligned} & 18 \\ & 19 \\ & 20 \\ & 21 \end{aligned}$	$\mathrm{P}_{1 \mathrm{~B}_{3} / \mathrm{PWM}}^{2}$ $\mathrm{P}_{1} \mathrm{~B}_{2} / \mathrm{PWM}_{1}$ P1B1/PWM0 P1Bo / CGP	Output	$\left\{\begin{array}{l}\text { N-ch } \\ \text { open } \\ \text { drain }\end{array}\right.$ CMOS Push-Pull	Port 1B	Function	Frequency	Duty
					VDP	269 Hz	$\begin{gathered} \frac{2+X}{67} \times 100 \% \\ X=0-63 \end{gathered}$
					SG	$\begin{aligned} & \frac{18}{2(2+X)} \mathrm{kHz} \\ & X=0-63 \end{aligned}$	50\%
					At Power On Reset, execution of a Clock Stop instruction, these pins are specified as general purpose output ports. At Power On Reset, undefined data is output. At execution of a Clock Stop instruction, the value of the general purpose output port is retained. At CE reset, the statuses (general purpose output port, A/D converter, CGP) which are set at that time are retained.		
$\begin{aligned} & 22 \\ & 23 \\ & 24 \\ & 24 \\ & 25 \end{aligned}$	$\mathrm{P}_{1} \mathrm{C}_{3}$ $\mathrm{P}_{1} \mathrm{C}_{2}$ $\mathrm{P}_{1} \mathrm{C}_{1}$ P1C0 P1C0	Output	CMOS Push- Pull	Port 1C	4-bit general purpose output port. Output data is set via the P1C register (address 72 H of BANK1) of the port register. At Power On Reset, Undefined data is output. At execution of a Clock Stop instruction or CE reset, the value which was output previously is kept.		
26 27 28 29	$\mathrm{P}_{1} \mathrm{D}_{3} / \mathrm{FMIFC}$ P1D2 / AMIFC P1D $/$ ADC 1 P1Do / ADCo	Input	-	Port 1D	Used as a 4-bit general purpose input port, frequency counter (pins P1D3/ FMIFC and P1D2 / AMIFC), and also A/D converter (pins PID $/ \mathrm{ADC}_{1}$ and $\mathrm{PID}_{0} /$ ADCo). The IFCMODE register (address 12 H) of the register file is used for switching the general purpose input port and A/D converter.		

$\begin{array}{\|l} \hline \text { PIN } \\ \text { NO. } \end{array}$	SYMBOL	INPUT/ OUTPUT	OUTPUT MODE	PIN NAME	FUNCTION
$\begin{aligned} & 26 \\ & 27 \\ & 28 \\ & 29 \end{aligned}$	$\mathrm{P}_{1} \mathrm{D}_{3} / \mathrm{FMIFC}$ P1D2 / AMIFC P1D1/ADC1 P1Do / ADC0	Input	-	Port 1D	The ADCCH register (address 14 H) of the register file is used for switching the general input port and A / D converter. (1) When the port is used as a 4-bit general purpose input port The P1D register (address 73 H of BANK1) of the port register is used for reading input data. (2) When the port is used as a frequency counter ($\mathrm{P}_{1} \mathrm{D}_{3} /$ FMIFC and P1D2 / AMIFC) Using the IFCMODE register of the register file, pins $\mathrm{P}_{1} \mathrm{D}_{3} /$ FMIFC and P1D2 / AMIFC can be used as frequency test pins. The following frequencies can be tested. As the test method, the frequency input within the gate time ($1 \mathrm{~ms}, 4$ $\mathrm{ms}, 8 \mathrm{~ms}$, open) is counted by a 16 -bit counter. However, the value divided by 2 is counted for the $\mathrm{P}_{1} \mathrm{D}_{3} /$ FMIFC pin. At termination of the test (when the gate is closed), an interrupt request can be issued. These functions can be used at detection of broadcast station by counting the intermediate frequency. When the port is used as a frequency counter, cut the direct current section of the input signal with a condenser because an alternate current amplifier is used for input.

$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	SYMBOL	INPUT/ OUTPUT	OUTPUT MODE	PIN NAME	FUNCTION
$\begin{aligned} & 26 \\ & 27 \\ & 28 \\ & 29 \end{aligned}$	$\mathrm{P}^{\mathrm{D}} \mathrm{D}_{3} / \mathrm{FMIFC}$ P1D2 / AMIFC P1D $/ A_{1} C_{1}$ P1D $/$ ADC 0	Input	-	Port 1D	The pin which was selected is used as an intermediate electric potential (about $1 / 2 \mathrm{VDD}$). Pins which are not selected can be used as a general purpose input port. The alternate current ampilfier must be initialized by a program as required because it is not set to Disabled (prohibited state) even if the CE pin (pin number 13) is set to a Low level (if the amplifier is operating, the current consumed may increase the noise factor). Since the IFCMODE register also specifies an external gate counter (P1Ao / FCG pin) and clock generator port (P1Bo / CGP pin), the frequency counter, external gate counter, and clock generator port cannot be used concurrently. (3) When the port is used as an A/D converter (pins P1D1 / ADC1 and P1D0 / ADC0) The port can be used as an A/D converter of 6 bits by the ADCCH register (address 14H) of the register file. The A/D converter can use six channels by switching pins $\mathrm{POD}_{3} / \mathrm{ADC}_{5}$ to $\mathrm{POD}_{0} / \mathrm{ADC}_{2}$ (pin numbers from 75 to 78) in addition to pins P1D1 / ACD1 and P1Do / ACDo. A consecutive comparison type is used as the conversion method and the reference voltage is created by dividing power supply voltage Vod using the R string method.

$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	SYMBOL	INPUT/ OUTPUT	OUTPUT MODE	PIN NAME	FUNCTION
$\begin{aligned} & 26 \\ & 27 \\ & 28 \\ & 29 \end{aligned}$	P1D3 / FMIFC P1D2 / AMIFC P1D $/ A_{1} C_{1}$ P1Do / ADC0	Input	-	Port 1D	At Power On Reset, execution of a Clock Stop instruction, all these pins are specified as a general purpose input ports. At CE reset, the statuses (general purpose input port, frequency counter, and A / D converter) set at that time are retained.
$\begin{aligned} & 30 \\ & 41 \end{aligned}$	VDD1 VDD2	-	-	Power supply	Device power supply pin Voltage of $5 \mathrm{~V} \pm 10 \%$ is supplied at operation of CPU and peripheral functions. When only CPU is operating, the voltage can be reduced to 3.5 V . When the CE pin (pin number 13) is at a Low level and when a Clock Stop instruction is executed, oscillation of the quartz oscillator stops and a data set backup state is set. During the clock stop state, the voltage can be reduced to 2.2 V . When the voltage rises from 0 V to 4.5 V or when the voltage rises to 4.5 V again after decreasing to a degree less than 3.5 V (less than 2.2 V at clock stop), Power On reset is performed for the device. When Power On Reset is performed, the peripheral circuits, system registers, and register files are initialized and the program starts from address 0. The time spent from the voltage $0 V$ to 4.5 V must be within 500 ms . Resetting by a CE pin (CE Pin Reset) is also available in addition to Power On Reset described above for resetting a device. Since the values of timer carry FF if the register file differs between Power On Reset and CE Reset, blackout can be detected by detecting the timer carry FF.

$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	SYMBOL	INPUT/ OUTPUT	OUTPUT MODE	PIN NAME	FUNCTION				
$\begin{array}{\|l\|} 30 \\ 41 \end{array}$	Vod1 Vod2	-	-	Power supply	A volta pin mus other th particula Vod pin simulta The VDD connec The Vod quartz Xout), erra EO1), an LPFin). power	ge hig st not an VDD ar, car and th neous 1 pin ted to 2 pin oscillat rror o nd low Pin V to other	her than th be supplie pins (VDD e is neces CE pin y. Latch-U and VDD2 pin an electric used to ion circuit ut circuits path filter D_{1} is used r sections.	hat of th d to all 1 and V sary wh are star Up may in must cal pote supply s (pins (pins E circuit for sup	Vdo the pins D2). In en the ed occur. be tial. power to Xin and O_{0} and (pin plying
$\begin{aligned} & 31 \\ & 32 \end{aligned}$	VCOL VCOH	Input	-	Local oscilla- tion Low input Local oscilla- tion High input	Used for inputting local oscillation (VCO) frequency of PLL. A direct division method (MF mode) and pulse swallow method (HF mode and VHF mode) are available as division methods and the method is specified by the PLLMODE register (address 21 H) of the register file. The input pin, input frequency and division ratio by each division method are as follows.				
					Division method	Input pin	Input frequency (MHz)	Input voltage (Vp-p)	Division ratio
					Direct division	VCOL	0.5 to 30	0.3	$\begin{aligned} & 16 \text { to } \\ & 2^{16}-1 \end{aligned}$
					Pulse swallow (HF)	VCOL	5 to 40	0.3	$\begin{gathered} 2^{16}-1 \end{gathered}$
					Pulse swallow (VHF)	VCOH	9 to 150	0.3	$\begin{aligned} & 256 \text { to } \\ & 2^{16}-1 \end{aligned}$
							9 to 250	0.5	
					Since alternate current amplifier is used for input of these pins, the direct current section of the input signal must be cut using a condenser. The pin specified by the PLLMODE register is used as an intermediate electrical potential (about $1 / 2 \mathrm{VDo}$).				

$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	SYMBOL	INPUT/ OUTPUT	OUTPUT MODE	PIN NAME	FUNCTION
$\begin{aligned} & 31 \\ & 32 \end{aligned}$	VCOL VCOH	Input	-	Local oscillation Low input Local oscillation High input	Pins which are not specified are pulled down in the internal section of the device. When PLL is disabled or when the CE pin is at a Low level, these pins are pulled down in the internal section of the device. At Power On Reset or execution of a Clock Stop instruction, a PLL Disabled state is set. At CE reset, the state specified by the PLLMODE register is set.
33	GND	-	-	Ground	Ground pin of the device
$\begin{aligned} & 34 \\ & 35 \end{aligned}$	Xout $X_{\text {IN }}$	Output Input	CMOS	Quartz oscillator	Quartz oscillator connection pin Connects a 4.5 MHz quarts oscillator as shown below. The values of C1 and C2 are determined by the quartz oscillator which is used. When the values of C1 and C2 are increased to values which are too high, the oscillation activation feature may deteriorate or current consumption may increase. In general, the adjustment range of a trimmer condenser for oscillation frequency adjustment increases when the oscillator is connected to the XIN

$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	SYMBOL	INPUT/ OUTPUT	OUTPUT MODE	PIN NAME	FUNCTION
$\begin{aligned} & 34 \\ & 35 \end{aligned}$	Xout XIN	Output Input	CMOS	Quartz oscillator	pin. However, the quartz oscillator which is actually used, including oscillation stabilizer, must be used for evaluation. An oscillation frequency cannot be adjusted accurately because of the problem at capacity, etc., if a probe is connected to the Xоut pin or Xin pin. Consequently, the frequency must be tested while testing the LCD driving wave form (125 Hz) or VCO oscillation frequency. Since the reference frequency of the timer of the internal section or PLL is used by dividing 4.5 MHz , if the value is shifted from 4.5 MHz , the values of the timer and reference frequency also shift in the same proportion.
$\begin{aligned} & 36 \\ & 37 \end{aligned}$	$\begin{aligned} & \mathrm{EO}_{1} \\ & \mathrm{EO}_{0} \end{aligned}$	Output	CMOS 3 states	Error out	Used as charge pump output pins of a PLL frequency synthesizer. When the value producing by dividing the local oscillation (VCO) frequency which is input to the VCOL pin (pin number 31) or VCOH pin (pin number 32) is higher than the reference frequency, a High level is output from these pins and when the value is lower than the reference frequency, a Low level is output. When the values match, floating occurs. A PLL frequency synthesizer can be structured by adding output of these pins to VCO (Voltage Controlled Oscillator) via LPF (Low Pass Filter). Either of the pins EO1 and EO2 can be used because the same signal is output. At a PLL Disabled state, these pins are set floating. That is, when the CE pin (pin number 13) is at a Low level or at Power On Reset, floating occurs.

$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	SYMBOL	INPUT/ OUTPUT	OUTPUT MODE	PIN NAME	FUNCTION
$\begin{aligned} & 36 \\ & 37 \end{aligned}$	$\begin{aligned} & \mathrm{EO}_{1} \\ & \mathrm{EO}_{0} \end{aligned}$	Output	CMOS 3 states	Error out	The PLL frequency synthesizer can detect a PLL unlocked state by the PLLULJDG register (address 05H) of the register file. Four types of time ($0.5 \mu \mathrm{~s}$, $1 \mu \mathrm{~s}, 2 \mu \mathrm{~s}$, and Disable) can be selected as the delay time for detecting the PLL unlocated state using the PLULDLY register (address 15 H) of the register file.
38	LPFin	Input	-		Pins for a built-in CMOS operation amplifier for LPF (Low Pass Filter) Examples of an internal equivalent circuit of each pin and application of circuit are shown below.
39 40	LPFOUT VIPF	Output -	open drain	LPF Amplifier	

$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	SYMBOL	INPUT/ OUTPUT	OUTPUT MODE	PIN NAME	FUNCTION
38 39 40	LPFin LPFout VLPF	Input Output	N -ch open drain	LPF Amplifier	Pull-Up resistance is required for the LPFour pin because of N -ch open drain output. The resisting pressure is 16 V Max. A voltage higher than that of the LPFout pin must be supplied to the VLpF pin ($16 \vee \mathrm{Max}$). At a PLL Disabled State, the LPFin pin is pulled up in the device internal section.
42	P2A0	Output	CMOS Push-Pull	Port 2A	1-bit general purpose output port. Output data is set via the P2A register (address 70 H of BANK2) of the port register. At Power On Reset, undefined data is output. At execution of a Clock Stop instruction or CE reset, the value which was output previously is kept.
$\begin{aligned} & 43 \\ & 44 \end{aligned}$	COM 1 COMo	Output	CMOS 3-value output	Common signal	Common signal output pins of the LCD controller/driver. The duty, bias, frame frequency, and driving voltage of the LCD controller/ driver are $1 / 2,1 / 2,250 \mathrm{~Hz}$, and V_{DD} respectively. Display of up to 60 dots can be performed by the matrix with pins LCDo / POYo / KSo to LCD29 / POF3. Three types of voltages, $0,1 / 2 \mathrm{VDD}$, and VDD are output from these pins. The light of the dot from which a potential difference of $\pm V_{D D}$ is produced between these pins and pins LCDo / POYo / KS 0 to L_{29} / POF 3 comes on. When a Display Off mode is set by the LCDMODE register (address 10 H of the LCDMODE register of the register file), a Low level is output at Power On Reset or execution of a Clock Stop instruction. At CE Reset, the state is kept if the mode is a Display On mode.

PIN				
NO.	SYMBOL	INPUT/ OUTPUT	OUTPUT MODE	PIN NAME

PIN				
NO.				
	SYMBOL	INPUT/ OUTPUT	OUTPUT MODE	PIN NAME

$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	SYMBOL	INPUT/ OUTPUT	OUTPUT MODE	PIN NAME	FUNCTION			
$\begin{aligned} & 45 \\ & \text { to } \\ & 48 \end{aligned}$	$\begin{gathered} \mathrm{LCD}_{29} / \mathrm{POF}_{3} \\ \text { to } \\ \mathrm{LCD}_{26} / \mathrm{POFF}_{0} \end{gathered}$	Output	CMOS Push-Pull	LCD segment signal	When the LCD controller/driver is in Display Off mode (segment signal output = Low level) and when these pins are specified for a general purpose output port, a key source signal is not output. (3) When the pins are used for a general purpose output port Each pin can be specified for an output port as listed in the following table using the LCDPORT register (address 11 H) of the register file.			
					Pin number	Pin name	Port name	Number bit
49 to	$\begin{gathered} \mathrm{LCD}_{25} / \mathrm{POE}_{3} \\ \text { to } \end{gathered}$				45 to 48	$\begin{aligned} & \mathrm{LCD}_{29} / \mathrm{POF}_{3} \\ & \text { to } \\ & \mathrm{LCO}_{26} / \mathrm{POFF}_{0} \end{aligned}$	Port OF	4 bits
53	LCD 21 / POX ${ }_{5}$				$\begin{aligned} & 49 \\ & \text { to } \\ & 52 \end{aligned}$	$\begin{aligned} & \mathrm{LCD}_{25} / \mathrm{POEE}_{3} \\ & \text { to } \\ & \mathrm{LCD}_{22} / \mathrm{POE}_{0} \end{aligned}$	Port 0E	4 bits
to 58	$\stackrel{\text { to }}{\text { LCD } / \text { POX }}$				$\begin{aligned} & 53 \\ & \text { to } \\ & 58 \end{aligned}$	$\begin{aligned} & \text { LCD } 21^{21} \text { / POX } \\ & \text { LCD }_{5} \text { / POX } \end{aligned}$	Port 0X	6 bits
$\begin{aligned} & 59 \\ & \text { to } \\ & 74 \end{aligned}$	```LCD 15 / POY 15 / KS to LCDo / POYO / KSo```				59 to 74	$\begin{aligned} & \mathrm{LCD}_{15} / \mathrm{POY}_{15} / \\ & \mathrm{KS}_{15} \text { to } \\ & \mathrm{LCD} / \mathrm{LO}_{0} / \\ & \mathrm{KS} \mathrm{~S}_{0} \end{aligned}$	Port OY	16 bits
						OF, Port OE, can be specif pose output s which are n neral purpose used as LCD put pins. tput data of e as listed below.	ort 0X, d as ge rts ind specifi utput p gment h output	and Poit eral idually. for a rt can ignal port is

$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	SYMBOL	INPUT/ OUTPUT	OUTPUT MODE	PIN NAME	FUNCTION	
$\begin{aligned} & 45 \\ & \text { to } \\ & 48 \end{aligned}$	$\begin{gathered} \mathrm{LCD}_{29} / \mathrm{POF}_{3} \\ \text { to } \\ \mathrm{LCD}_{26} / \mathrm{POFFF}_{0} \end{gathered}$	Output	CMOS Push-Pull	LCD segment signal	Port name	Setting output data
					Port OF	- POF register (address 6DH of BANKO) Used also for the LCDD13 register of the LCD dot register
					Port 0E	- POE register (Address 6BH of BANKO) Used also for the LCDD11 register of the LCD dot register
					Port 0X	- POXH and POXL regis-
49 to	$\begin{aligned} & \mathrm{LCD}_{25} / \mathrm{POE}_{3} \\ & \text { to } \end{aligned}$					and 68 H of BANKO) Used also for the
52	$\mathrm{LCD}_{22} / \mathrm{POE} 0$					LCDD9 and LCDD8 registers of the LCD dot register
$\begin{aligned} & 53 \\ & \text { to } \\ & 58 \end{aligned}$	```LCD21 / P0X5 to LCD16 / POX0```					- Set by the POX group register (0 CH) via a data buffer
$\begin{aligned} & 59 \\ & \text { to } \\ & 74 \end{aligned}$	$\begin{aligned} & \mathrm{LCD}_{15} / \mathrm{POY}_{15} / \mathrm{KS}_{15} \\ & \text { to } \\ & \text { LCD }_{0} / \mathrm{POY}_{0} / \mathrm{KS}_{0} \end{aligned}$				Port OY	- Set by a OY group register $(42 \mathrm{H})$ via a data buffer
					At Power Clock Stop are speci and set to Consequ from all At CE Re signal ou and gene which ar	On Reset or execution of p instruciton, all of these pins ied for segment signal output a Display Off mode. ntly a Low level is output hese pins. et, the statuses (segment put, key source signal output, al purpose output port) set at that time are retained.

PIN NO.	SYMBOL	INPUT/ OUTPUT	OUTPUT MODE	PIN NAME	FUNCTION
$\begin{aligned} & 75 \\ & 76 \\ & 77 \\ & 78 \end{aligned}$	$\begin{aligned} & \mathrm{POD}_{3} / \mathrm{ADC}_{5} \\ & \mathrm{POD}_{2} / \mathrm{ADC}_{4} \\ & \mathrm{POD}_{1} / \mathrm{ADC}_{3} \\ & \mathrm{POD}_{0} / \mathrm{ADC}_{2} \end{aligned}$	Input	(Pull- Down Input with resistance)	Port 0D	Used for a 4-bit general purpose input port and also LCD segment key source signal return input, and also A / D converter input. The ADCCH register (address 14 H) of the register file is used for switching the general purpose port and A / D converter. The pins POD_{3} / ADC_{5} to $\mathrm{POD} 0 / \mathrm{ADC}_{2}$ contain pull-down resistance so that they can be used as key return signal input pins of a key matrix. (1) When the pins are used for general purpose input ports Input data is read via the POD register (address 72H of BANKO) of the port register. When pins are used for a general input port, the built-in pull down resistance is always set to ON . (2) When the pins are used for key source signal return input of an LCD segment When an LCD segment pins is used for key source, the built-in pull down resistance is set to ON only during output of a key source signal ($220 \mu \mathrm{~s}$) and the resistance is set to OFF during output of an LCD segment signal. The signals which were input to these pins during output of key source signals are fetched as key input data. Consequently, these pins must be used when a LCD segment signal output is used as the key source signal.

$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	SYMBOL	INPUT/ OUTPUT	OUTPUT MODE	PIN NAME	FUNCTION
$\begin{aligned} & 75 \\ & 76 \\ & 77 \\ & 78 \end{aligned}$	$\mathrm{POD}_{3} / \mathrm{ADC}_{5}$ $\mathrm{POD}_{2} / \mathrm{ADC}_{4}$ POD $1 / A D C_{3}$ POD $/$ / ADC 2	Input	(Pull- Down Input with resistance	Port 0D	(3) When pins are used as an A/D converter By the ADCCH register (address 14 H) of the register file, the port can be used as a 6-bit A/D converter. A consecutive comparison method by a program is used as the A/D converter conversion method and the reference voltage is created by dividing power supply voltage $V_{D D}$ using the R string method. An A/D converter can be used by switching six channels, pins P1D1 / ADC 1 and P1Do / ADC0 (pin numbers 28 and 29) in addition to pins from POD $/$ ADC5 to POD $/ \mathrm{ADC}_{2}$. The channel used is specified by the ADCCH register of the register file. The other five channels which are not specified for the A/D converter can be used as a general purpose input port. For the built-in pull-down resistance, only the pin which was set is set to OFF when it is set to A / D converter input by the ADCCH register. At Power On Reset or execution of a Clock Stop instruction, the pins are specified for a general purpose input port. At CE Reset, the status (general purpose input port, LCD segment key source, return input, and A/D converter) which are set at that point are retained.

1.2 NOTES ON USING A GENERAL PURPOSE PORT

1.2.1 Port Register Data Set

The port registers (registers POA to P2A) on data memory are used for reading input data or setting output data of each of the ports, Port $0 A$, Port $0 B$, Port $0 C$, Port $0 D$, Port 1A, Port 1B, Port 1C, and Port 2A.

In this case, the POA3 pin of Port OA corresponds to the highest bit of port register POA and the POAD pin corresponds to the lowest bit.

These apply also to Port 0B, Port 0C, Port 0D, Port 1A, Port 1B, Port 1C, Port 1D, and Port 2A. Output data of Port OE, Port OF, Port OX, and Port OY is set by the LCD group register via the LCD dot register or a data buffer on the data memory.
1.2.2 Input/Output Ports (Port 0A, Port 0B, Port 0C, and Port 1A)
(1) When each port is specified as an input port

By executing an instruction (the address of the port register is specified for m of SKT m, \#i, or ADD r, m) for reading the contents of each port register in the data memory, the status of each port pin is used as the value of the port register.
When an instruction (specified for r of MOV $m, \# i$ or ADD r, m) for writing data to each port register is executed, the value is written to the output data latch circuit.
(2) When each port is specified as an output port

When an instruction for writing data to each port register is executed, the value is written to the output data latch circuit and is output from each pin.
When an instruction for reading the contents of each port register is executed, the content of output data latch are used as the value of the port register. However, for pins POA3/SDA and P0A2/SCL, the pin status is read as it is when the contents of the port register are read and the status may be different from the output data.
At Power On Reset, CE Reset, or execution of a Clock Stop instruction, all of these pins are set for input ports.
Since the contents of the output data latch circuit are undefined at Power On Reset, a Write instruction must be executed for the port register before setting data to the output port. Otherwise, undefined data is output. At CE Reset or execution of a Clock Stop instruction, the contents of the output data latch circuit do not change.

1.2.3 Output Ports (Port 1B, Port 1C, Port OF, Port 0E, Port 0X, and Port OY)

An output port is used for writing the value of the port register to the output data latch circuit by executing an instruction for writing data in a port register and outputting data from each pin.

When a Read instruction is executed for a port register value, the port register value is set as the status of the output data latch circuit.

At Power On Reset, undefined data is output.
At CE Reset, the previous output data is kept at execution of a Clock Stop instruction. However, Port OE, Port OF, Port OX, and Port OY output a Low level automatically at Power On Reset and at execution of a Clock Stop instruction.
1.3 PIN EQUIVALENT CIRCUITS
1.3.1 POA (POA1 / SCK1 $\left.\mathrm{POA}_{1} / \mathrm{SO}_{1}\right)$

POB (P0B3 / Sll $, \mathrm{POB}_{2} / \overline{\mathrm{SCK}} 2, \mathrm{POB}_{1} / \mathrm{SO}_{2}, \mathrm{POB}_{0} / \mathrm{Sl}_{2}$)
POC (POC 3 , POC2, POC1, POC0) (*1)
(Input/output)

*1: The RESET signal is not provided to POC.
1.3.2 POA (POA3 / SDA and POA2 / SCL) (Input/Output)

1.3.3 P1B (P1Bo / CGP) P1C (P1C3, P1C2, P1C1, and P1C0) P2A (P2A0)
(Output) LCD 0 / POY 0 / KS 0 to $\mathrm{LCD}_{29} / \mathrm{POF}_{3}$

1.3.4 $P 1 B$ ($P_{1} B_{3} / P W M_{2}$ and $P_{1} B_{2} / P W M_{1}$, and $\left.P_{1} B_{1} / P W M_{0}\right)$ (Output)

1.3.5 $\mathrm{POD}\left(\mathrm{POD}_{3} / \mathrm{ADC}, \mathrm{POD}_{2} / \mathrm{ADC}_{4}, \mathrm{POD}_{1} / \mathrm{ADC}_{3}\right.$, and $\left.\mathrm{POD} / \mathrm{ADC} 2\right)$ (Input)

1.3.6 P1D (P1D $/ A_{1} C_{1}$ and $\left.P_{1} D_{0} / A D C_{0}\right)$ (Input)

1.3.7 P1D (P1D ${ }_{3}$ / FMIFC, and P1D2 / AMIFC) (Input)

1.3.8 CE
$\left.\begin{array}{l}\text { INT1 } \\ \text { INT }_{0}\end{array}\right\}$ (Schmit trigger input)

1.3.9 Xout (output) and Xin (input)

1.3.10 $\left.\begin{array}{ll}\text { EO } \\ & \text { EO0 }\end{array}\right\}$ (Output)

1.3.11 LPFin (input), LPFout (output), and VLpF

1.3.12 $\left.\begin{array}{ll}\text { COM }_{1} \\ \text { COM }_{0}\end{array}\right\}$ (Output)

$\left.\begin{array}{ll}\text { 1.3.13 } & \mathrm{VCOH} \\ & \mathrm{VCOL}\end{array}\right\}$ (Input)

2. BLOCK DIAGRAM

μ PD17003A INSTRUCTIONS

INSTRUCTION SET

LIST OF INSTRUCTIONS

Legends	
M	Data memory address
m	Data memory address excluding bank
m_{H}	Data memory row address
mL_{L}	Data memory column address
R	General register address
r	General register column address
RP	General register pointer
RF	Register file
rf	Register file address
rf_{H}	Register file address (upper 3 bits)
rf	Register file address (lower 3 bits)
AR	Address register
IX	Index register
IXE	Index enable flag
DBF	Data buffer
WR	Window register
MP	Data memory row address pointer
MPE	Memory pointer enable flag
PE	Peripheral register
P	Peripheral address
P_{H}	Peripheral address (upper 3 bits)
PL	Peripheral address (lower 4 bits)
PC	Program memory counter
SP	Stack pointer
STACK	Stack value indicated by stack pointer
STACKpc	Program counter value indicated by stack pointer
BANK	Bank register
(ROM)PC	Program memory data indicated by program memory counter
INTEF	Interrupt enable flag
SGR	Program memory segment register
i	Immediate data (4 bits)
n	Bit position (4 bits)
addr	Program memory address (11 bits)
CY	Carry flag
c	Carry
b	Borrow
h	Halt canceling condition
[1]	Data memory or register address
()	Data memory or register value

$\begin{array}{\|l\|} \hline \text { 든 } \\ \text { 雲 } \\ \hline \end{array}$	Mnemonic	Operand	Operation	Machine code			
				$\begin{array}{\|c\|} \hline \text { Operation } \\ \text { code } \end{array}$			
	ADD	r. m	$(\mathrm{R}) \leftarrow(\mathrm{R})+(\mathrm{M})$	00000	mH	mL	r
		m, \#i	$(\mathrm{M}) \leftarrow(\mathrm{M})+\mathrm{i}$	10000	mH	mi .	i
	ADDC	r, m	$(\mathrm{R}) \leftarrow(\mathrm{R})+(\mathrm{M})+(\mathrm{CY})$	00010	mH	ml .	r
		m, \#i	$(\mathrm{M}) \leftarrow(\mathrm{M})+\mathrm{i}+(\mathrm{CY})$	10010	mH	mL	i
	INC	AR	$(\mathrm{AR}) \leftarrow(\mathrm{AR})+1$	00111	000	1001	0000
		IX	$(\mathrm{IX}) \leftarrow(\mathrm{IX})+1$	00111	000	1000	0000
	SUB	r. m	$(\mathrm{R}) \leftarrow(\mathrm{R})-(\mathrm{M})$	00001	mH	m .	r
		m. \#i	$(\mathrm{M}) \leftarrow(\mathrm{M})-\mathrm{i}$	10001	mı	mi .	i
	SUBC	r, m	$(\mathrm{R}) \leftarrow(\mathrm{R})-(\mathrm{M})-(\mathrm{Cl})$	00011	mH	ml .	r
		m. \#i	$(\mathrm{M}) \leftarrow$ (I$)-\mathrm{i}-(\mathrm{CY})$	10011	mı	m .	i
	SKE	m. \#i	(M) - i. skip if zero	01001	mH	m	i
	SKGE	m, \#i	(M) - i, skip if not borrow	11001	mH	mi_{L}	i
	SKLT	m, \#i	(M) - i. skip if borrow	11011	mH	m!	i
	SKNE	m, \#i	(M) - i, skip if not zero	01011	mH	mm .	i
Logical instruction	AND	m. \#i	$(\mathrm{M}) \leftarrow(\mathrm{M}) \mathrm{AND} \mathrm{i}$	10100	mH	ml	i
		r. m	$(\mathrm{R}) \leftarrow(\mathrm{R}) \mathrm{A} \times \mathrm{D}(\mathrm{M})$	00100	mH	mı	r
	OR	m. \#i	(M) \leftarrow (M$)$ OR i	10110	mH	mi .	1
		r, m	$(\mathrm{R}) \leftarrow(\mathrm{R})$ OR (M)	00110	mH	mı	r
	XOR	m. \#i	$(\mathrm{M}) \leftarrow(\mathrm{M}) \times \mathrm{XOR} \mathrm{i}$	10101	mH	mi .	i
		r, m	$(\mathrm{R}) \leftarrow(\mathrm{R}) \mathrm{XOR}(\mathrm{M})$	00101	mH	m:	r
	LD	r. m	$(\mathrm{R}) \leftarrow(\mathrm{M})$	01000	m	m	r
	ST	m, r	$(\mathrm{M}) \leftarrow(\mathrm{R})$	11000	mH	m	r
	MOV	@ r. m	$\begin{aligned} & \text { if MPE }=1: \quad[(\mathrm{MP}),(\mathrm{R})] \leftarrow(\mathrm{M}) \\ & \text { if } \mathrm{MPE}=0:[(\mathrm{mH}),(\mathrm{R})] \leftarrow(\mathrm{M}) \end{aligned}$	01010	mH	$\mathrm{mı}$.	r
		m. (ar	$\begin{array}{ll} \text { if } \mathrm{MPE}=1: & (\mathrm{M}) \leftarrow[(\mathrm{MP}),(\mathrm{R})] \\ \text { if } \mathrm{MPE}=0: & (\mathrm{M}) \leftarrow[(\mathrm{mH}), \end{array}$	11010	mH .	ms .	r
		m, \#i	(M) $\leftarrow \mathrm{i}$	11101	mH	m.	i
	MOV'	$\begin{aligned} & \mathrm{DBF} \\ & @ \mathrm{AR} \end{aligned}$	$\begin{aligned} & (\mathrm{STACKP} \cdot \mathrm{C}) \leftarrow(\mathrm{PC}),(\mathrm{PC}) \leftarrow(\mathrm{AR}) \\ & (\mathrm{DBF}) \leftarrow(\mathrm{ROM}) \mathrm{PC},(\mathrm{PC}) \leftarrow(\mathrm{STACK} \cdot \mathrm{C}) \end{aligned}$	00111	000	0001	0000
	PUSH	AR	$(\mathrm{SP}) \leftarrow(\mathrm{SP})-1,(\mathrm{STACKP} \mathrm{C}) \leftarrow(\mathrm{AR})$	00111	000	1101	0000
	POP	AR	$(\mathrm{AR}) \leftarrow(\mathrm{STACKPC}),(\mathrm{SP}) \leftarrow(\mathrm{SP})+1$	00111	000	1100	0000
	PEEK	WR, rf	$(\mathrm{WR}) \leftarrow(\mathrm{RF})$	00111	$\mathrm{rfH}_{\mathrm{H}}$	0011	rfL
	POKE	rf, WR	$(\mathrm{RF}) \leftarrow(\mathrm{WR})$	00111	rf H	0010	rfi.
	GET	DBF, p	$(\mathrm{DBF}) \leftarrow(\mathrm{PE})$	00111	PH	1011	p_{L}
	PUT	p, DBF	$(\mathrm{PE}) \leftarrow(\mathrm{DBF})$	00111	PH	1010	p_{L}
	SKT	m, \#n	if $(\mathrm{M})_{\mathrm{n}}=$ all ${ }^{\text {" } 1 \text { ", then skip }}$	11110	mi	m .	n
	SKF	m, \#n	if $(\mathrm{M})_{\mathrm{n}}=$ all " 0 ", then skip	11111	mH	m .	n
¢ 5	BR	addr	$(\mathrm{PC}) \leftarrow$ addr, $(\mathrm{PC})=11 \leftarrow 0$	01100	addr (11 bits)		
或			$(\mathrm{PC}) \leftarrow$ addr, $\quad(\mathrm{PC})=11 \leftarrow 1$	01101			
\bigcirc		@ AR	$(\mathrm{PC}) \leftarrow(\mathrm{AR})$	00111	000	0100	0000

	Mnemonic	Operand	Operation	Machine code			
				Operation			
$\begin{aligned} & \text { 宏 } \\ & \hline \end{aligned}$	RORC	r	$(R)_{b 3} \rightarrow(R)_{b 2} \rightarrow(R)_{b 1} \rightarrow(R)_{b 0}$	00111	000	0111	r
$\begin{aligned} & \text { 烒 } \\ & \text { U } \\ & \text { E } \\ & .0 \\ & . E \end{aligned}$	CALL	addr	$\begin{aligned} & (\mathrm{SP}) \leftarrow(\mathrm{SP})-1,(\mathrm{STACKPC}) \leftarrow((\mathrm{PC})+1), \\ & (\mathrm{PC})_{\# 11} \leftarrow 0,(\mathrm{PC}) \leftarrow \mathrm{addr} \end{aligned}$	11100	addr（11 bits）		
		（a）AR	$\begin{aligned} & (\mathrm{SP}) \leftarrow(\mathrm{SP})-1,\left(\mathrm{STACK} \mathrm{PC}^{\prime}\right) \leftarrow((\mathrm{PC})+1), \\ & (\mathrm{PC}) \leftarrow(\mathrm{AR}) \end{aligned}$	00111	000	0101	0000
$\begin{aligned} & \text { E } \\ & \text { D } \\ & \text { 2 } \\ & \text { n } \end{aligned}$	RET		$(\mathrm{PC}) \leftarrow(\mathrm{STACKPC}),(\mathrm{SP}) \leftarrow(\mathrm{SP})+1$	00111	000	1110	0000
	RETSK		$(\mathrm{PC}) \leftarrow\left(\mathrm{STACK}_{\mathrm{PC}}\right),(\mathrm{SP}) \leftarrow(\mathrm{SP})+1$, skip	00111	001	1110	0000
	RETI		（PC），（BANK），（IXE）$\leftarrow(\mathrm{STACK}),(\mathrm{SP}) \leftarrow(\mathrm{SP})+1$	00111	100	1110	0000
$\begin{array}{\|l\|l} \hline \stackrel{\rightharpoonup}{0} \\ \text { E. } \\ \text { 号 } \end{array}$	EI		INTEF $\leftarrow 1$	00111	000	1111	0000
	DI		INTEF $\leftarrow 0$	00111	001	1111	0000
䮃	STOP	0	stop clock if $\mathrm{CE}=$ low	00111	010	1111	0000
	HALT	h	halt	00111	011	1111	h
	NOP		No operation	00111	100	1111	0000

ASSEMBLER（AS17K）BUILT－IN MACRO INSTRUCTION

Legend		
flag	$:$	One of flagl－flagn
flagl－flagn	$:$	Flag names indicated by reserved words
n	$:$	Number
\rangle	$:$	Omission allowed

Mnemonic	Operand	n	Operation
SKTn	flag1，\cdots flagn	$1 \leqq n \leqq 4$	if（flag1）$\sim($ flagn $)=$ all ${ }^{\text {c }} \mathbf{1}^{\text {－}}$ ，then skip
SKFn	flagı，\cdots flagn	$1 \leqq n \leqq 4$	if（flag1）$\sim($ flagn $)=$ all ${ }^{\text {0 }} 0$－ ．then skip
SETn	flag1，\cdots flagn	$1 \leqq n \leqq 4$	（flag 1 ）\sim（flagn）$\leftarrow 1$
CLRn	flag1，\cdots flagn	$1 \leqq n \leqq 4$	（flag 1$) \sim($ flagn $) \leftarrow 0$
NOTn	flag1，\cdots flagn	$1 \leqq n \leqq 4$	if（flag）$={ }^{*} 0$＂，then（flag）$\leftarrow 1 \&$ if（flag）$={ }^{\prime} 1$＂，then（flag）$\leftarrow 0$
INITFLG	$\begin{aligned} & <\text { NOT }>\text { flag } 1 . \\ & \cdots<\text { NOT }>\text { flagn } \end{aligned}$		$\begin{aligned} & \text { if description }=\text { NOT flag, } \quad \text { (flag) } \leftarrow 0 \\ & \text { if description }=\text { flag, } \text { (flag) } \leftarrow 1 \end{aligned}$
BANKn		$0 \leqq n \leqq 2$	（BANK）$\leftarrow \mathrm{n}, \quad 0 \leqq \mathrm{n} \leqq 2$

μ PD17003A RESERVED WORDS

UST OF RESERVED WORDS

System Register (SYSREG)

Reserved word	Type	Address	Read/ Write	
AR3	MEM	0.74 H	R	Address register bit b_{15} - b_{12}
AR2	MEM	0.75 H	R	Address register bit $\mathrm{b}_{11} \mathrm{~b}_{8}$
AR1	MEM	0.76 H	R/W	Address register bit b_{7} - b_{4}
AR0	MEM	0.77 H	R/W	Address register bit b_{3} - b_{0}
WR	MEM	0.78 H	R/W	. Window register
BANK	MEM	0.79 H	R/W	Bank register
IXH	MEM	0.7 AH	R/W	Index register high
MPH	MEM	0.7 AH	R/W	Memory pointer high
MPE	FLG	0.7 AH .3	R/W	Memory pointer enable flag
IXM	MEM	0.7 BH	R/W	Index register middle
MPL	MEM	0.7 BH	R/W	Memory pointer low
IXL	MEM	0.7 CH	R/W	Index register low
RPH	MEM	0.7 DH	R/W	General register pointer high
RPL	MEM	0.7 EH	R/W	General register pointer low
PSW	MEM	0.7 FH	R/W	Program status word
BCD	FLG	0.7 EH .0	R/W	BCD flag
CMP	FLG	0.7 FH .3	R/W	Compare flag
CY	FLG	0.7 FH .2	R/W	Carry flag
Z	FLG	0.7 FH .1	R/W	Zero flag
IXE	FLG	0.7 FH .0	R/W	Index enable flag

26.1.2 Data buffer (DBF)

Reserved word	Type	Address	Read Write	Function
DBF3	MEM	0.0 CH	R/W	DBF bit b_{15} to b_{12}
DBF2	MEM	0.0 DH	R/W	DBF bit b_{11} to b_{8}
DBF1	MEM	0.0 EH	R/W	DBF bit b_{7} to b_{4}
DBF0	MEM	0.0 FH	R/W	DBF bit b_{3} to b_{0}

LCD dot data register

Reserved word	Type	Address	Read/ Write	Function
LCDD0	MEM	0.60H	R/W	LCD data register
LCDD1	MEM	0.61 H	R/W	LCD data register
LCDD2	MEM	0.62 H	R/W	LCD data register
LCDD3	MEM	0.63 H	R/W	LCD data register
LCDD4	MEM	0.64 H	R/W	LCD data register
LCDD5	MEM	0.65 H	R/W	LCD data register
LCDD6	MEM	0.66 H	R/W	LCD data register
LCDD7	MEM	0.67 H	R/W	LCD data register
LCDD8	MEM	0.68 H	R/W	LCD data register
LCDD9	MEM	0.69 H	R/W	LCD data register
LCDD10	MEM	0.6 AH	R/W	LCD data register
LCDD11	MEM	0.6 BH	R/W	LCD data register
LCDD12	MEM	0.6 CH	R/W	LCD data register
LCDD13	MEM	0.6 DH	R/W	LCD data register
LCDI14	MEM	0.6 EH	R/W	LCD data register

General port register

Reserved word	Type	Address	Read/ Write	Function
P0A3	FLG	0.70 H .3	R/W	Port 0A bit b3
P0A2	FLG	0.70 H .2	R/W	Port 0A bit b2
P0A1	FLG	0.70 H .1	R/W	Port 0A bit b1
P0A0	FLG	0.70 H .0	R/W	Port 0A bit bo
P0B3	FLG	0.71 H .3	R/W	Port 0B bit b3
P0B2	FLG	0.71H. 2	R/W	Port 0B bit b2
P0B1	FLG	0.71 H .1	R/W	Port 0B bit bl
P0B0	FLG	0.71 H .0	R/W	Port 0B bit bo
P0C3	FLG	0.72 H .3	R/W	Port 0C bit b3
P0C2	FLG	0.72H. 2	R/W	Port 0C bit b_{2}
P0C1	FLG	0.72 H .1	R/W	Port 0C bit bl
P0C0	FLG	0.72 H .0	R/W	Port 0C bit b_{0}
P0D3	FLG	0.73H.3	R	Port 0D bit b3
P0D2	FLG	0.73H. 2	R	Port 0D bit b_{2}
P0D1	FLG	0.73H.1	R	Port 0D bit b1
P0D0	FLG	0.73 H .0	R	Port 0D bit bo
P0XL3	FLG	0.68 H .3	R/W	Port 0X bit bl
P0XL2	FLG	0.68H. 2	R/W	Port 0X bit bo
P0XL1	FLG	0.68 H .1	R/W	Dummy
P0XL0	FLG	0.68 H .0	R/W	Dummy
P0XH3	FLG	0.69 H .3	R/W	Port 0X bit b5
P0XH2	FLG	0.69H. 2	R/W	Port 0X bit b4
P0XH1	FLG	0.69 H .1	R/W	Port 0X bit b ${ }_{3}$
P0XH0	FLG	0.69 H .0	R/W	Port 0X bit b_{2}
P0E3	FLG	0.6 BH .3	R/W	Port 0E bit b3
P0E2	FLG	0.6BH. 2	R/W	Port 0E bit b2
P0E1	FLG	0.6BH. 1	R/W	Port 0E bit b1
P0E0	FLG	0.6 BH .0	R/W	Port 0E bit bo
P0F3	FLG	0.6DH. 3	R/W	Port 0F bit b3
P0F2	FLG	0.6DH. 2	R/W	Port 0F bit b2
P0F1	FLG	0.6DH. 1	R/W	Port 0F bit bl
P0F0	FLG	0.6 DH .0	R/W	Port 0F bit bo
P1A3	FLG	1.70 H .3	R/W	Port 1A bit b3
P1A2	FLG	1.70H. 2	R/W	Port 1A bit b2
P1A1	FLG	1.70 H .1	R/W	Port 1A bit bi
P1A0	FLG	1.70 H .0	R/W	Port 1A bit bo

Reserved word	Type	Address	Read/ Write	Function
P1B3	FLG	1.71H.3	R/W	Port 1B bit b_{3}
P1B2	FLG	$1.71 \mathrm{H}$.	R/W	Port 1B bit b2
P1B1	FLG	1.71 H .1	R/W	Port 1B bit b_{1}
P1B0	FLG	$1.71 \mathrm{H.0}$	R/W	Port 1B bit bo
P1C3	FLG	$1.72 \mathrm{H}$.	R/W	Port 1C bit b_{3}
P1C2	FLG	1.72 H .2	R/W	Port 1C bit b2
PlCl	FLG	$1.72 \mathrm{H.1}$	R/W	Port 1C bit bl
P1C0	FLG	1.72 H .0	R/W	Port 1C bit bo
P1D3	FLG	1.73 H .3	R/W	Port 1D bit b_{3}
P1D2	FLG	1.73 H .2	R/W	Port 1D bit b_{2}
P1D1	FLG	1.73 H .1	R/W	Port 1D bit b_{1}
P1D0	FLG	1.73 H .0	R/W	Port 1D bit b_{0}
P2A3	FLG	2.70 H .3	R/W	Port 2A bit b_{3}
P2A2	FLG	2.70 H .2	R/W	Port 2A bit b2
P2A1	FLG	2.70 H .1	R/W	Port 2A bit b_{1}
P2A0	FLG	2.70 H .0	R/W	Port 2A bit bo

Register file (Control register)

Reserved word	Type	Address	Read/ Write	Function
SP	MEM	0.81 H	R/W	Stack pointer
SIO2TS	FLG	0.82 H .3	R/W	SIO_{2} start flag
SIO2HIZ	FLG	0.82 H .2	R/W	$\mathrm{SO}_{2} / \mathrm{P} 0 \mathrm{~B}_{1}$ select flag
SIO2CK1	FLG	0.82 H .1	R/W	SIO_{2} clock select bit b_{1}
SIO2CK0	FLG	0.82 H .0	R/W	SIO_{2} clock select bit b_{0}
IFCG	FLG	0.84 H .0	R	IF counter gate status flag
PLLUL	FLG	0.85 H .0	R	PLL unlock FF flag
ADCCMP	FLG	0.86 H .0	R	ADC judge flag
CE	FLG	0.87 H .0	R	CE pin status flag
SIO1CH	FLG	0.88 H .3	R/W	SIO1 mode select flag
SB	FLG	0.88 H .2	R/W	SB/SBI select flag
SIO1MS	FLG	0.88 H .1	R/W	SIOı clock mode select flag
SIO1TX	FLG	0.88 H .0	R/W	SIO_{1} TX/RX select flag
TMMD3	FLG	0.89 H .3	R/W	Timer interrupt mode select flag
TMMD2	FLG	0.89 H .2	R/W	Timer interrupt mode select flag
TMMD1	FLG	0.89 H .1	R/W	Timer carry FF mode select flag
TMMD0	FLG	- 0.89 H .0	R/W	Timer carry FF mode select flag
INT1	FLG	0.8 FH .1	R	INT_{1} pin status flag
INT0	FLG	0.8 FH .0	R	INT0 pin status flag
KSEN	FLG	0.90H.1	R/W	Key source decoder enable flag
LCDEN	FLG	0.90 H .0	R/W	LCD driver enable flag
P0YON	FLG	0.91 H .3	R/W	Port 0Y enable flag
P0XON	FLG	0.91 H .2	R/W	Port 0x enable flag
P0EON	FLG	0.91 H .1	R/W	Port 0E enable flag
P0FON	FLG	0.91 H .0	R/W	Port 0F enable flag
IFCMD1	FLG	0.92 H .3	R/W	IF counter mode select flag
IFCMD0	FLG	0.92 H .2	R/W	IF counter mode select flag
IFCCK1	FLG	0.92 H .1	R/W	IF counter clock select flag
IFCCK0	FLG	0.92 H .0	R/W	IF counter clock select flag
PWM2ON	FLG	0.93 H .3	R/W	PWM2 enable flag
PWM1ON	FLG	0.93 H .2	R/W	PWM1 enable flag
PWM0ON	FLG	0.93 H .1	R/W	PWM0 enable flag
CGPON	FLG	0.93 H .0	R/W	CGP enable flag
ADCCH3	FLG	0.94 H .3	R	AD mode select flag (Dummy : 0)
ADCCH2	FLG	0.94H. 2	R/W	AD mode select flag
ADCCH1	FLG	0.94H.1	R/W	AD mode select flag
ADCCH0	FLG	0.94 H .0	R/W	AD mode select flag

Reserved word	Type	Address	Read/ Write	Function
PLULDLY3	FLG	0.95H. 3	R	PLL unlock time select flag (Dummy :0)
PLULDLY2	FLG	0.95 H .2	R	PLL unlock time select flag (Dummy :0)
PLULDLY1	FLG	0.95 H .1	R/W	PLL unlock time select flag
PLULDLY0	FLG	0.95 H .0	R/W	PLL unlock time select flag
KEYJ	FLG	0.96 H .0	R	Key input judge flag
TMCY	FLG	0.97 H .0	R	Timer carry FF status flag
SBACK	FLG	0.98H. 3	R/W	SB acknowledge flag
S1O1NWT	FLG	0.98H. 2	R/W	SIO, not wait flag
SIO1WRQ1	FLG	0.98 H .1	R/W	SIO_{1} wait mode flag
SIO1WRQ0	FLG	0.98 H .0	R/W	SIO wait mode flag
IEG1	FLG	0.9FH.1	R/W	INT1 interrupt edge select flag
IEG0	FLG	$0.9 \mathrm{FH.0}$	R/W	INT0 interrupt edge select flag
PLLMD3	FLG	0.0A1H. 3	R	PLL mode select flag (Dummy : 0)
PLLMD2	FLG	0.0A1H. 2	R	PLL mode select flag (Dummy : 0)
PLLM11	FLG	$0.0 \mathrm{AlH}$.	R/W	PLL mode select flag
PLLMD0	FLG	$0.0 \mathrm{AlH}$.	R / W	PLL mode select flag
IFCSTRT	FLG	0.0.A3H. 1	W	IF counter start flag
IFCRES	FLG	0.0 A 3 H .0	W	IF counter reset flag
P0CGIO	FLG	0.0 A 7 H .0	R/W	Port OC I O select flag
SIO1SF8	FLG	0.0 .48 H .3	R/W	SIO: clock counter status flag
SIO1SF9	FLG	0.0 A 8 H .2	R/W	SIO: clock counter status flag
SBSTT	FLG	0.0.48H.1	R/W	SB start condition status flay
SBBS ${ }^{\circ}$	FLG	0.0 A 8 H .0	R/W	SB start stop condition status flag
IPIFC	FLG	0.0 AEH .0	R/W	IF counter interrupt permission flag
IPSIO1	FLG	$0.0 \mathrm{AFH}$.	R/W	SIO ${ }_{1}$ interrupt permission flag
IPTM	FLG	0.0 AFH .2	R/W	Timer interrupt permission flag
IP1	FLG	$0.0 \mathrm{AFH.1}$	R/W	NO_{1} interrupt permission flag
IP0	FLG	$0.0 \mathrm{AFH}$.	R / W	INT" interrupt permission flag
PLLRFMD3	FLG	0.0 B 1 H .3	R/W	PLL reference clock select flag
PLLRFMD2	FLG	0.0B1H. 2	R/W	PLL reference clock select flag
PLLRFMD1	FLG	0.0 B 1 H .1	R/W	PLL reference clock select flag
PLLRFMD0	FLG	$0.0 \mathrm{BlH}$.	R/W	PLL reference clock select flag
P1ABIO3	FLG	0.0B5H. 3	R/W	P1A: I O select flag
P1ABIO2	FLG	0.0B5H. 2	R/W	P1Az I O select flag
P1ABIO1	FLG	0.0B5H.1	R/W	P1A I O select flag
P1ABIO0	FLG	0.0 B 5 H .0	R/W	P1A. I O select flag
P0BBIO3	FLG	$0.0 \mathrm{B6H}$.	R/W	$\mathrm{P0B3}$ I O select flag
P0BBIIO2	FLG	0.0B6H. 2	R/W	POB: I O select flag
P0BBIO1	FLG	0.0B6H.1	R/W	POB: I O select flag
P0BBIOO	FLG	$0.0 \mathrm{B6H}$.	R/W	P0B6, I O select flag

Reserved word	Type	Address	Read/ Write	Function
P0ABIO3	FLG	0.0 B 7 H .3	R/W	P0A3 I/O select flag
P0ABIO2	FLG	0.0 B 7 H .2	R/W	P0A2 I/O select flag
P0ABIO1	FLG	0.0 B 7 H .1	R/W	P0A1 I/O select flag
P0ABIO0	FLG	0.0 B 7 H .0	R/W	P0A0 I/O select flag
SIO1IMD3	FLG	0.0 B 8 H .3	R	SIO1 interrupt mode select flag (Dummy : 0)
SIO1IMD2	FLG	0.0 B 8 H .2	R	SIO1 interrupt mode select flag (Dummy : 0)
SIO1IMD1	FLG	0.0 B 8 H .1	R/W	SIO_{1} interrupt mode select flag
SIO1IMD0	FLG	0.0 B 8 H .0	R/W	SIO1 interrupt mode select flag
SIO1CK3	FLG	0.0 B 9 H .3	R	SIO_{1} shift clock select flag (Dummy :0)
SIO1CK2	FLG	0.0B9H. 2	R	SIO_{1} shift clock select flag (Dummy :0)
SIO1CK1	FLG	0.0 B 9 H .1	R/W	SIO_{1} shift clock select flag
SIOICK0	FLG	0.0 B 9 H .0	R/W	SIO1 shift clock select flag
IRQIFC	FLG	0.0 BEH .0	R/W	IF counter interrupt request flag
IRQSIO1	FLG	0.0 BFH .3	R/W	SIO_{1} interrupt request flag
IRQTM	FLG	0.0BFH. 2	R/W	Timer interrupt request flag
IRQ1	FLG	0.0BFH. 1	R/W	INT ${ }_{1}$ interrupt request flag
IRQ0	FLG	0.0BFH. 0	R/W	IN T 0 interrupt request flag

Peripheral hardware address

Reserved word	Type	Address	Read/ Write	Function
DBF	DAT	0FH	R/W	Data buffer address of GET/PUT instruction
IX	DAT	01 H	R/W	Index register address of INC instruction
ADCR	DAT	02H	R/W	A D converter VREF data register
SIO2SFR	DAT	03H	R/W	SIO_{2} presettable shift register
SIO1SFR	DAT	04H	R/W	SIO_{3} presettable shift register
PWMR0	DAT	05H	R/W	PWM0 data register
PWMR1	DAT	06H	R/W	PW M1 data register
PWMR2	DAT	07H	R/W	PWM2 data register
LCDR0	DAT	08H	W	LCD group data register 0
LCDR1	DAT	09H	W	LCD group data register 1
LCDR2	DAT	0 AH	W	LCD group data register 2
LCDR3	DAT	0BH	W	LCD group data register 3
LCDR4	DAT	0 CH	W	LCD group data register 4
P0X	DAT	0 CH	W	Port 0X data register
LCDR5	DAT	0DH	W	LCD group data register 5
LCDR6	DAT	0EH	W	LCD group data register 6
LCDR7	DAT	0FH	W	LCD group data register 7
CGPR	DAT	20 H	R/W	CGP data register
AR	DAT	40 H	R/W	Address register address of GET PL'T PL'SH CALL BR MOVT IN'C instruction
PLLR	DAT	41H	R/W	PLL data register
KSR	DAT	42 H	R/W	Key source data register
P0Y	DAT	42 H	R/W	Port 0Y data register
IFC	DAT	43H	R	IF counter data register

ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS (Uniess otherwise specified, $\mathrm{T}_{5}=25 \pm \mathbf{2 ~}^{\circ} \mathrm{C}$)

Source voltage	Voo		-0.3 to +6.0	V
Input voltage	V_{1}		-0.3 to VDD +0.3	V
Output voltage	Vo	Excluding $\mathrm{P}_{1} \mathrm{~B}_{1}$, to $\mathrm{P1B}_{3}, \mathrm{POA}_{2}, \mathrm{POA}_{3}$ and LPFout	-0.3 to VDD +0.3	V
Output withstand voltage	Vadsi	P1B ${ }_{1}$ to P1B3, LPFout	18.0	V
Output withstand voltage	Vbis2	POA2, POA ${ }_{3}$	Vdo +0.3	V
Output absorbing current	10		10.0	mA
Operating temperature	Topt		-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	Texp		-55 to +125	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
Source voltage	VDD1	4.5	5.0	5.5	V	PLL and CPU are operating
Source voltage	VDD2	3.5	5.0	5.5	V	PLL is OFF and CPU is operating
Data holding voltage	VDDR	2.2		5.5	V	Quartz oscillator OFF
Source voltage rise time	Trise			500	ms	Vod $=04.5 \mathrm{~V}$
Input amplitude	Vin1	0.5		Vod	Vp-p	$\mathrm{VCOL}, \mathrm{VCOH}$
Input amplitude	Vin2	0.5		Vod	Vp-p	AMIFC, FMIFC
Output withstand voltage	Vbis			16.0	V	$\mathrm{P}_{1} \mathrm{~B}_{1}$ to P1B3, LPFout
Operating temperature	Topt	-40		+85	${ }^{\circ} \mathrm{C}$	

DC CHARACTERISTICS (UNLESS OTHERWISE SPECIFIED, $T_{2}=-40$ to $+85{ }^{\circ} \mathrm{C}, \mathrm{VDD}_{\mathrm{D}}=4.5$ to 5.5 V)

CHARACTERISTICS	SYMBOL	STANDARD VALUE				CONDITIONS
		MIN.	TYP.	MAX.	UNIT	
Source voltage	VDD1	4.5	5.0	5.5	\checkmark	CPU and PLL are operating
Source voltage	VDD2	3.5	5.0	5.5	V	CPU is operating and PLL is OFF.
Source current	lod 1		1.2	2.4	mA	CPU is operating and PLL is OFF Xin pin Sirc wave input (fin $=4.5 \mathrm{MHz}$, Vin. Vool, $\mathrm{T}_{2}=25^{\circ} \mathrm{C}$
Source current	1002		0.45	0.90	mA	CPU is operating, PLL is OFF, and HALT Instruction is used $\mathbf{1} 20$ Instructions executed per 1 ms). $X, ~ p i n$ Sinc wave input fin $4.5 \mathrm{MHz}, \operatorname{Vin}=V_{D o}, T_{a}=25^{\circ} \mathrm{C}$
Data holding voltage	Voda 1	3.5		5.5	V	Power failure detection by timer FF, quartz oscillator oscillating
Data holding voltage	Vodr2	2.2		5.5	v	Power failure detection by timer FF, quartz oscillator not oscillating
Data holding voltage	Voda	2.0		5.5	\checkmark	Data memory (RAM) holding
Data holding current	ldor,		2	15	$\mu \mathrm{A}$	Quartz oscillator not oscillating $\mathrm{T}_{2}=$ $25^{\circ} \mathrm{C}$
Data Holding current	lodr2		2	10	$\mu \mathrm{A}$	Quartz oscillator not oscillating $\mathrm{V}_{\mathrm{DD}}=$ $5.0 \mathrm{~V} \mathrm{Ta} 25^{\circ} \mathrm{C}$
Intermediate level output voltage	Vom 1	2.3	2.5	2.7	v	$\mathrm{COM}_{0} \mathrm{CGM}_{1} \quad V_{D D} 5 \mathrm{~V}$
High level input voltage	V_{1+1}	$\begin{aligned} & 0.8 \\ & V_{D D} \end{aligned}$		Voo	v	POA ${ }^{2}$, to $\mathrm{PCA}_{3}, \mathrm{POB}$ to POB_{3}, POCo to $\mathrm{POC}_{3}, \mathrm{P} 1 \mathrm{~A}_{0}$, to P_{18}, $\mathrm{P} 1 \mathrm{O}_{0}$, to ${\mathrm{P} 1 \mathrm{O}_{3}, \mathrm{CE}, \mathrm{INT}, \text {, }}^{2} T$,
High level input voltage	V_{1+2}	$\begin{aligned} & 0.6 \\ & V_{\text {D }} \end{aligned}$		Voo	V	$\mathrm{PODo} \mathrm{to} \mathrm{POO}_{3}$
Low level input voltage	VIL	0		$\begin{aligned} & 0.2 \\ & V_{D D} \end{aligned}$	V	POA to $\mathrm{POA}_{3}, \mathrm{POB}_{0}$ to POB_{3}, POCo to $\mathrm{POC}_{3}, \mathrm{POD}_{0}$, to POD_{3}, $P O A 0$, to $P 1 C_{3}, P 1 D_{0}$ to $P 1 D_{3}, C E, I N T 0$, INT,
High level output current	1он,	-1.0	-5.0		mA	$P O A_{0}$ to $P O A_{3}, P O B_{0}$ to $P O B_{3}$, $P O C_{0}$ to $P O C_{3}, P O D_{0}$ to $P O D_{3}$, $P 1 C_{0}$ to $P 1 A_{3}, P 1 B_{0}$ to $P 1 A_{3}$, $V_{O H}=V_{D D}-1 V$
High level output current	Іонг	-1.0	-4.0		mA	$\begin{aligned} & \text { LODo to } \mathrm{LCl}_{29} \mathrm{EOO}_{0} \mathrm{EO}_{1} \\ & \qquad \mathrm{VOH}_{O H}=\mathrm{V}_{\mathrm{DD}}-1 \mathrm{~V} \end{aligned}$
Low level output current	low	1.0	7.0		mA	$P O A_{0}$ to $P O A_{3}, P O B 0$, to $P O B_{3}$, $P 0 C_{0}$ to. $\mathrm{POC}_{3}, P 1 A_{0}$, to $P 1 A_{3}$, P1Co, to $\mathrm{P}_{1} \mathrm{C}_{3}, \mathrm{P} 1 \mathrm{~B}_{0}, \mathrm{P} 2 \mathrm{~A}_{0} \quad \mathrm{Vol} 1 \mathrm{~V}$
Low level output current	lota	1.0	3.5		mA	LCD_{0} to $\mathrm{LCO}_{29} \mathrm{EOO}_{0}=\mathrm{ElO} 1 \quad \mathrm{VoL} 1 \mathrm{~V}$
Low level output current	lot3	1.0	2.0		mA	
Low level output current	10.4	1.0	10.0		mA	$\mathrm{POA}_{2} \mathrm{POA}_{3} \quad \mathrm{VoL} 1 \mathrm{~V}$
High level output current	lint	0.1	0.8		mA	VCOH pull-down $\quad \mathrm{V}_{1 H}=\mathrm{V}_{\text {D }}$
High level input current	$11+2$	0.1	0.8		mA	VCOL pull-down $\quad \mathrm{V}_{\text {IH }}=\mathrm{V}_{\text {D }}$
High level input current	$11+3$	0.1	1.3		mA	Pin pull-down $\quad V_{\text {IH }}=\mathrm{V}_{\text {D }}$

CHARACTERISTICS	SYMBOL	STANDARD VALUE				CONDITION	
		MIN.	TYP.	MAX.	UNIT		
High Level input current	lin4	0.05	0.13	0.30	mA	PODo to POD_{3} pull-down $\mathrm{V}_{\text {IH }}=\mathrm{V}_{\text {Do }}$	
Output off leak current	Lı1			500	nA	POA $2, ~ P O A 3$	$\mathrm{VOH}_{\text {O }}=\mathrm{V}_{\text {DO }}$
Output off leak current	12			500	nA	P1B1 to P1B3, LPFout	Vон=16 V
Output off leak current	lıs			± 100	nA	$E O_{0}, E_{1} \quad V_{\text {о }}=V_{\text {d }}$	$\mathrm{V}_{\text {оH }}=\mathrm{V}_{\text {DoI }} \mathrm{VaL}_{\text {a }}=0 \mathrm{~V}$

AC CHARACTERISTICS (Unless otherwise specified, $\mathrm{T}_{8}=-40$ to $+85{ }^{\circ} \mathrm{C}, \mathrm{Vod}_{\mathrm{DO}}=4.5$ to 5.5 V)

CHARACTERISTICS	SYMBOL	STANDARDVALUE				CONDITION
		MIN.	TYP.	MAX.	UNIT	
Operating frequency	fint	0.5		30	MHz	VCOL MF mode, sine wave input $V_{\text {in }}=0.3 V_{p-p}$
Operating frequency	fin2	5		40	MHz	VCOL MF mode, sine wave input $V_{\text {in }}=0.3 V_{p . p}$
Operating frequency	fin 3	9		150	MHz	VCOL, sine wave input $\mathrm{V}_{\text {in }}=0.3 \mathrm{~V}$ p.p
Operating frequency	fin4	9		250	MHz	VCOL, sine wave input $\mathrm{V}_{\text {in }}=0.3 \mathrm{~V}$ p.p
Operating frequency	fins	0.1		1	MHz	AMIFC, sine wave input $V_{\text {in }}=0.3 \mathrm{~V}_{\text {p.p }}$
Operating frequency	fins	5		15	MHz	FMIFC, sine wave input $V_{\text {in }}=0.3 \mathrm{~V}$ p.p
AD converting resolution				6	bit	
Absolute accuracy of AD conversion			± 1	± 1.5	LSB	$T_{s}=+10$ to $+50^{\circ} \mathrm{C}$

REFERENCE CHARACTERISTICS

CHARACTERISTICS	SYMBOL	STANDARD VALUE				CONDITION	
		MIN.	TYP.	MAX.	UNIT		
Source current	lods		15		mA	CPU and PLL are operating VCOL sine wave Input $\mathrm{f}_{\mathrm{in}}=150 \mathrm{MHz}$ $V_{\text {in }}=0.5 \mathrm{VP}-\mathrm{P}$ $V_{D D}=5 \vee T_{: ~}=25^{\circ} \mathrm{C}$	
High level output current	Іон4		-0.2		mA	COMo, COM,	$V_{\text {OH }}=V_{\text {DO- }} 1 \mathrm{~V}$
Intermediate level output current	lom1		-20		$\mu \mathrm{A}$	COMo, COM_{1}	$V_{\text {OM }}=V_{D O}+1 \mathrm{~V}$
Intermediate level output current	lomz		20		$\mu \mathrm{A}$	$\mathrm{COM}_{0}, \mathrm{COM}_{1}$	$V_{\text {om }}=1 \mathrm{~V}$
Low level output current	low		0.2		mA	$\mathrm{COM}_{0}, \mathrm{COM}_{1}$	Vou=1 V

RECOMMENDED SOLDERING CONDITIONS

The following conditions (see table below) must be met when soldering this product.
Please consult with our sales offices in case other soldering process is used, or in case soldering is done under different conditions.

TYPES OF SURFACE MOUNT DEVICE

For more details, refer to our document "SMT MANUAL" (IEI-1207).
μ PD17003AGF

Soldering process	Soldering conditions	Symbol
Infrared ray reflow	Peak package's surface temperature: $230^{\circ} \mathrm{C}$ or below, Reflow time: 30 seconds or below $\left(210^{\circ} \mathrm{C}\right.$ or higher), Number of reflow process: 1, Exposure limit*: None	IR30-00
VPS	Peak package's surface temperature: $215^{\circ} \mathrm{C}$ or below, Reflow time: 40 seconds or below ($200^{\circ} \mathrm{C}$ or higher), Number of reflow process: 1, Exposure limit*: None	VP15-00
Wave soldering	Solder temperature: $260^{\circ} \mathrm{C}$ or below, Flow time: 10 seconds or below, Number of flow process: 1, Exposure limit*: None	WS60-00
Partial heating method	Terminal temperature: $300^{\circ} \mathrm{C}$ or below, Flow time: 10 seconds or below, Exposure limit $:$ None	

*: Exposure limit before soldering after dry-pack package is opened.
Storage conditions: $25^{\circ} \mathrm{C}$ and relative humidity at 65% or less.
Note: Do not apply more than a single process at once, except for "Partial heating method".

SINGLE CHIP MICROCONTROLLER FOR DIGITAL TUNING SYSTEM

The μ PD17005 is a 4 bit single chip CMOS microcontroller equipped with the hardware exclusively for digital tuning systems.

Adoption of the μ PD17000 architecture enables its CPU to directly operate the data memory, perform various calculations, or control the peripheral hardware with just one instruction. All instructions are single 16-bit words.

The μ PD17005 integrates input/output ports, LCD drivers, A/D converters, D/A converters (PWM output), clock generator ports, digital tuning 150 MHz prescalars, PLL frequency synthesizers, low pass filter (LPF) amplifiers, and frequency counters into one chip.

With all these in one chip, the μ PD17005 provides a high performance and multi-functional digital tuning system.
The one-time PROM (OTP) μ PD17P005 is available for evaluating the μ PD17005 program and low quantity production.

The μ PD17003, which contains the compressed program memory (ROM), is compatible with this microcontroller.

FEATURES

- Employment of the μ PD17000 architecture
- Decimal calculation available
- 16 K byte (16 bits $\times 7932$ steps) program memory (ROM)
- Table referencing available
- 432 nibble (4 bits $\times 432$ nibbles) general purpose data memory (RAM)
- $4.44 \mu \mathrm{~s}$ (4.5 MHz crystal oscillator) instruction execution time
- Equipped with the PLL frequency synthesizer hardware

Dual modular prescalars (up to 150 MHz), programmable dividers, phase comparators, charge pumps, and LPF amplifiers

- Abundant peripheral hardware

General purpose input/output ports, LCD drivers, serial interfaces, A/D converters, D/A converters (PWM output), clock generator ports, frequency counters

- Enriched interrupt function

External interrupt 2 channels
Internal interrupt 3 channels

- Equipped with power on reset/CE pin reset/electrical blackout detection circuit
- CMOS low energy requirement
- Voltage: $5 \mathrm{~V} \pm 10 \%$

ORDERING INFORMATION

Order Code	Package
μ PD17005GF-xxx-3B9	80-pin plastic QFP (bent lead)

Notes on Serial interface:

The 2-wire mode corresponds to the 12C-Bus specification from Philips.
In case of using this interface mode note the following:

Duties when using I2C bus system

Purchase of NEC's I2C bus system hardware components conveys a license under the Philips I2C patents rights to use this components in an I2C system, provided that the system conforms the 12 C standard specifications as defined by Philips.

Consequently for all ROM based components with I2C hardware circuits the user is kindly requested to notify the use of the I2C bus interface at the ROM code verification stage.

TABLE OF μ PD17005 FUNCTIONS

NAME	FUNCTION
Program memory (ROM)	16K bytes (16 bits $\times 7932$ steps) Table reference area: up to 16 bits $\times 7932$ steps
General purpose data memory (RAM)	432 nibbles (4 bits $\times 432$ nibbles) Data buffer : 4 nibbles General register: 16 nibbles
System register	12 nibbles
Register file	33 nibbles
Port register (including LCD register)	24 nibbles
Instruction execution time	$4.44 \mu \mathrm{~s}$ (with 4.5 MHz crystal oscillator)
Stack level	7 levels (stack operation possible)
General purpose port	16 input/output ports 8 input ports 9 output ports (+30 : LCD segment pins)
Clock generator port (CGP)	One port Variable duty pulse (VDP) and signal generator (SG) functions
LCD driver	30 segment pins, 2 common pins, $1 / 2$ duty, $1 / 2$ bias, 250 Hz frame frequency, driving voltage $\mathrm{V}_{\mathrm{DD}}, 16$ segment pins shared with key source All 30 segments can be used as an output port. (separatable into 4, 4,6 and 16 segment settings)
Serial interface	2 systems (3 channels) 8 bit 3 lines: 2 channels 8 bit 2 lines: 1 channel
D/A converter	8 bits $\times 3$ lines (PWM output, up to 12 V)
A/D converter	6 bits $\times 6$ lines (consecutive comparison by the software)
Interrupt	5 channels (maskable interrupt) External interrupt: 2 channets (INT ${ }_{0}$ pin, INT_{1} pin) Internal interrupt: 3 channels (timer, serial interface 1, frequency counter)
Timer	2 systems Timer carry F/F (1, 5, 100, 250 ms) Timer interrupt ($1,5,100,250 \mathrm{~ms}$)
Reset	Power on reset (by turning on the power) CE pin reset (CE pin low \rightarrow high) Electrical blackout detection

NAME		FUNCTION
PLL frequency synthesizer	Division	Two types Direct division (VCOL pin 20 MHz MAX.) Pulse swallow (VCOL pin 40 MHz MAX.) (VCOH pin 250 MHz MAX.)
	Reference frequency	12 choices by program $1,1.25,2.5,3,5,6.25,9,10,12.5,25,50,100 \mathrm{kHz}$
	Charge pump	Two independent error outputs
	Phase comparator	Unlock detection by program Unlock F/F delay time selection
	LPF amplifier	CMOS operation amplifier Output voltage up to 12 V
Frequency counter		Frequency measuring $\mathrm{P}_{1} \mathrm{D}_{2} /$ AMIFC pin 5 to 15 MHz External gate width measuring POA ${ }_{1} /$ FCG pin
Power voltage		$5 \mathrm{~V} \pm 10$ \%
Package		80-pin plastic QFP

1. PINS
1.1 PIN CONFIGURATION (Top View)

1.2 PIN DESCRIPTION

PIN No.	SYMBOL	INPUT/ OUTPUT	OUTPUT FORMAT	PIN NAME	DESCRIPTION			
$\begin{array}{r} 79 \\ 80 \\ 1 \\ 2 \end{array}$	$\begin{aligned} & \mathrm{POC}_{3} \\ & \mathrm{POC}_{2} \\ & \mathrm{POC}_{1} \\ & \mathrm{POC} \end{aligned}$	Input/ output	CMOS push/pull	Port OC	4 bit general purpose input/output port pins. Specify input or output in 4-bit units. (Group I/O) Specify input/output by the register file's POCGPIO register (address 27H). To read the input data or to set the output data, use the port register's POC register (BANKO address 27H). These pins are set as an input port during power resetting, clock stop instruction execution, and CE resetting.			
$\begin{aligned} & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	POA3/SDA POA2/SCL POA $1 / \overline{\text { SCK }_{1}}$ $\mathrm{POA}_{0} / \mathrm{SO}_{1}$	Input/ output	N -ch open drain cMOS push/pull	Port 0A	Pins function both as a 4-bit general purpose input/output port and serial interface. To switch from an input/output port to serial interface, use the register file's SIO1MODE register (address 08H) and the SIO2MODE register (address 02H). (1) When used as an 4-bit input/output port: Specify input or output in 1-bit units (bit I/O). To specify input/output, use the register file's POABIO register (address 35H). To read the input data or set the output data, use the port register's POA register (BANKO address 70H). The POA 3 / SDA and $\mathrm{POA}_{2} / \mathrm{SCL}$ pins require external pull up resistance because they are N -ch open drain. These pins are set to an input port during power resetting, clock stop instruction execution, and CE resetting. (2) When used as a serial interface: There are two serial interface lines: serial interface 1 and serial interface 2 including the Port OB (7 to 10 pins). The serial interfaces 1 and 2 can be used together at the same time. The serial interface 1 has $\mathbf{2}$ channels of 2 line and 3 line, and the serial interface 2 has 1 channel of 3 line. To specify the serial interface 1 , use the register file SIO1 MODE register; to specify the serial interface 2 , use the register file SIO2MODE register. The following are the pin functions.			
					PIN NAME	FUNCTION	OPERATING MODE	
					POA3/SDA	Data input/output		Serial inter- face 1
					POA2/SCL	Clock input/output		
					$\mathrm{POA}_{1} / \overline{\mathrm{SCK}_{1}}$	Clock input/output	3 lines	
					$\mathrm{POA}_{0} / \mathrm{SO}_{1}$	Data output		
					$\mathrm{POB}_{3} / \mathrm{SI}_{1}$	Data input		
					$\mathrm{POB}_{2} / \overline{\mathrm{SCK}}{ }_{2}$	Clock input/output	3 lines	Serial interface 2
					$\mathrm{POB}_{1} / \mathrm{SO}_{2}$	Data output		
					$\mathrm{POB}_{0} / \mathrm{SI}_{2}$	Data input		

PIN. No.	SYMBOL	INPUT/ OUTPUT	OUTPUT FORMAT	PIN NAME	DESCRIPTION
$\begin{aligned} & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & \mathrm{POA}_{3} / \mathrm{SDA} \\ & \mathrm{POA}_{2} / \mathrm{SCL} \\ & \mathrm{POA}_{1} / \overline{\mathrm{SCK}} 1 \\ & \mathrm{POA}_{0} / \mathrm{SO}_{1} \end{aligned}$				The $\mathrm{POA}_{3} / \mathrm{SDA}$ and $\mathrm{POA}_{2} / \mathrm{SLC}$ pins require external pull up resistance because they are N -ch open drain. These pins are set as an input port of the general purpose input/output port during power on resetting, clock stop instruction execution, and CE resetting.
$\begin{array}{r} 7 \\ 8 \\ 9 \\ 10 \end{array}$	$\begin{aligned} & \mathrm{POB}_{3} / \mathrm{SI}_{1} \\ & \mathrm{POB}_{2} / \overline{\mathrm{SCK}} 2 \\ & \mathrm{POB}_{1} / \mathrm{SO}_{2} \\ & \mathrm{POB}_{0} / \mathrm{SI}_{2} \end{aligned}$	Input/ output	CMOS push-pull	Port 0B	Pins function both as a $\mathbf{4}$ bit general purpose input/output port and serial interface. To switch from input/output port to serial interface, use the register file's SIO1MODE register (address 08H) and the SIO2MODE register (address 02H). (1) When used as an 4-bit input/output port: Specify input or output in 1 -bit units (bit I / O). To specify input/output, use the register file's POBBIO register (address 35H). To read the input data or set the output data, use the port register's POA register (BANKO address 71H). These pins are set as an input port during power resetting, clock stop instruction execution, and CE resetting. (2) When used as an serial interface: There are two serial interface lines: serial interface 1 and serial interface 2 including the Port OA (3 to 6 pins). These pins are set as an input port of the general purpose input/output port during power resetting, clock stop instruction execution, and CE resetting.
$\begin{aligned} & 11 \\ & 12 \end{aligned}$	$\begin{aligned} & \text { INT1 } \\ & \text { INTO } \end{aligned}$	Input	-	Interrupt	Input pins for external interrupt request signal Interrupt requests are issued at the rising or falling edge of the signal input through these pins. To specify the rising or falling edge, use the register file's INTEDGE register (address 1 FH), INT_{0} pin, or INT_{1} pin. Interrupt requests are not accepted unless permitted (maskable interrupt). The El instruction permits all interrupts, and the INT T_{0} pin or INT 1 pin separately also gives permission. To give interrupt permissions, use the register file's INTPM2 register (address 2FH). Interrupt requests are accepted if permitted. Interrupts accepted by the INT_{0} pin shift the flow of the program to address 05 H , and interrupts accepted by the INT_{1} pin shift the flow of the program to address $\mathbf{0 4 H}$. Interrupts accepted by the INT \mathbf{O}_{0} pin are executed before interrupts accepted by the INT ${ }_{1}$ pin, if issued simultaneously. The issuer of the interrupt request can be checked by the register file's INTREQ2 register (address 3) even when the interrupt is not accepted. The register file's INTJDG register (address OFH) checks the status of these pins and assigns them as a general purpose input port while the interrupt function is not being used. These pins are set as an input port during power resetting, clock stop instruction execution, and CE resetting.

PIN No.	SYMBOL	INPUT/ OUTPUT	OUTPUT FORMAT	PIN NAME	DESCRIPTION
13	CE	Input	-	Chip enables	Input pin for device selection signal or reset signal Device selection is selecting PLL actions or standby status as described below. The PPL frequency synthesizer is enabled when the CE pin is set to high. The PPL frequency synthesizer is disabled when the CE pin is set to low. When the CE pin is set to low, the CPU and the internal crystal oscillation circuit are disabled by the clock stop instruction execution and the data memory is retained by the low energy requirement current (up to $15 \mu \mathrm{~A}$). (when the CE pin is set to high, the clock stop instruction is executed as the NOP instruction.) During the clock stop instruction execution, the LCD driver display mode is turned off ($L C D_{0}$ to $L_{2} D_{27}, \mathrm{COM}_{0}, \mathrm{COM}_{1}$ pins set to low) and the input/output ports (Port 0A, Port 0B, Port OC, Port 1A) are set as input ports. The CE pin functioning as a reset signal input pin is described below. When the CE pin is reset to high from low, the internal timer carrier F/F synchronizes and resets the device. When the device is reset, the flow of the program shifts to address 0 and the input/output ports become input ports. The time required from pin resetting to device resetting can be selected from 1, 5, 100, 250 ms , which are offered by the carrier F/F. However, when the clock stop instruction is executed, the device will be reset 100 ms after the CE is reset to high. This pin does not accept anything lower than $110 \mu \mathrm{~s}$ or anything higher than $165 \mu \mathrm{~s}$ in order to prevent mis-operation caused by noise. For this reason, the content of the register is not updated. Also, to detect the pin status, use the register file's CEJDG register (address 07). This pin features Schmidt trigger input with the hysteresis characteristics. Do not apply voltage higher than the $V_{D D}$ pin when turning on the power.
$\begin{aligned} & 14 \\ & 15 \\ & 16 \\ & 17 \end{aligned}$	$\mathrm{P}_{1} \mathrm{~A}_{3}$ $\mathrm{P}_{1} \mathrm{~A}_{2}$ P1 A_{1} P1A0/FCG	Input/ output	CMOS push-pull	Port 1A	Pins functioning both as a 4-bit general purpose input/output port or external gate counter (P1A0/FCG pin). To switch from an input/output port to external gate counter, use the register file's IFCMODE register (address 12 H) and the SIO2MODE register (address 02 H). (1) When used as a 4-bit input/output port: Specify input or output in 1 -bit units (bit I / O). To specify input/output, use the register file's P1A register (address 35H). To read the input data or set the output data, use the port register's P1ABIO register (BANK1 address 70H). These pins are set as input ports during power resetting, clock stop instruction execution, and CE resetting.

MPD17005

PIN No.	SYMBOL	INPUT/ OUTPUT	OUTPUT FORMAT	PIN NAME	DESCRIPTION

$\begin{aligned} & \text { PIN } \\ & \text { No. } \end{aligned}$	SYMBOL	INPUT/ OUTPUT	OUTPUT FORMAT	PIN NAME	DESCRIPTION
$\begin{aligned} & 18 \\ & 19 \\ & 20 \\ & 21 \end{aligned}$	$\mathrm{P1B}_{3} / \mathrm{PWM}_{2}$ $\mathrm{P1B}_{2} / \mathrm{PWM}_{1}$ $\mathrm{P1B}_{1} /$ PWM $_{0}$ P1B0/CGP	Output	N -ch open drain cmos push-pull	Port 1B	(3) When used as a clock generator port (CGP) (P1B0/CGP pin): To set the $\mathrm{P} 1 \mathrm{~B}_{0} / \mathrm{CGP}$ pin to CGP mode, use the register file's PWMMODE register (address 13 H) and IFGMODE register (address 12 H). The CGP mode has VDP (variable duty pulse) and SG (signal generator) functions. The VDP function outputs 269 Hz frequency duties at 64 gradations from 2/67 to 65/67. The SG function divides and outputs the standard 18 kHz frequency by 4 to 130 (64 gradations). To set the data for VDP and SG functions, use the CGPR register (address 20 H) via the data buffer. $\begin{aligned} & \text { VDP duty }=\frac{2+X}{67} \quad X=0 \text { to } 63 \\ & \text { SG divider }=\frac{18 \mathrm{kHz}}{2(2+X)} \end{aligned}$ The $\mathrm{P} 1 \mathrm{~B}_{0} / \mathrm{CGP}$ pin is set as a general purpose output port during clock stop instruction execution and power resetting. The status of these pins functioning as a clock generator port output is retained during CE resetting.
$\begin{aligned} & 22 \\ & 23 \\ & 24 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{P}_{1} \mathrm{C}_{3} \\ & \mathrm{P}_{1} \mathrm{C}_{2} \\ & \mathrm{P} 1 \mathrm{C}_{1} \\ & \mathrm{P} 1 \mathrm{C}_{0} \end{aligned}$	Output	CMOS push-pull	Port 16	4-bit general purpose output ports. To set the output data, use the port register's P1C register (BANK1 address 72). The data output during power resetting is unstable. The previous values are retained during clock stop instruction execution or CE resetting.
$\begin{aligned} & 26 \\ & 27 \\ & 28 \\ & 29 \end{aligned}$	$\mathrm{P1D}_{3}$ /FMIFC $\mathrm{P1D}_{2}$ /AMIFC $\mathrm{P}_{1} \mathrm{D}_{1} / \mathrm{ADC} \mathbf{1}_{1}$ $P_{1 D_{0}} / A D C_{0}$	Input	-	Port 10	Pins functioning as a 4 -bit general purpose input port, frequency counter ($\mathrm{P1D}_{3} / \mathrm{FMIFC}, \mathrm{P1D}_{2} / \mathrm{AMIFC}$ pins) and A/D converter (${\mathrm{P} 1 \mathrm{D}_{1} / \mathrm{ADC}}_{1}, \mathrm{PAD}_{0} / A D C_{0}$ pins). To switch from input port to frequency counter, use the register file's IFCMODE register (address 12H). To switch from input port to A/D converter, use the register file's ADCCH register (address 14H). (1) When used as a 4 bit input/output port: To read the input data, use the port register's P1D register (BANK1 address 73H). (2) When used as a frequency counter: To use the $\mathrm{P}_{1} \mathrm{D}_{3} /$ FMIFC and $\mathrm{P}_{1} \mathrm{D}_{2} /$ AMIFC pins as a frequency measuring pin, use the register file IFCMODE register. The measurable frequency bands for the $\mathrm{P}_{1} \mathrm{D}_{3} /$ FMIFC pins are 5 to $15 \mathrm{MHz}(0.3 \mathrm{Vp}-\mathrm{p}$ input) and 0.1 to $1 \mathrm{MHz}(0.3$ Vp-p input) for the $\mathrm{P}_{1} \mathrm{D}_{2} /$ AMIFC pin. To measure, count the frequencies input in the gate time ($1 \mathrm{~ms}, 4 \mathrm{~ms}, 8 \mathrm{~ms}$, open) by the 16 bit counter. The $\mathrm{P}_{1 \mathrm{D}_{3}} /$ FMIFC pin counts the values divided by $1 / 2$. Interrupt requests can be issued after the measuring is completed (when the gate closes). These functions can be utilized for detecting broadcasting stations by counting the intermediate frequencies. When used as a frequency counter, cut DC input signals by the condenser because the AC amplifier accepts inputs only.

$\begin{aligned} & \text { PIN } \\ & \text { No. } \end{aligned}$	SYMBOL	INPUT/ OUTPUT	OUTPUT FORMAT	PIN NAME	DESCRIPTION
$\begin{aligned} & 26 \\ & 27 \\ & 28 \\ & 29 \end{aligned}$	$\mathrm{P}_{1} \mathrm{D}_{3} /$ FMIFC P1D ${ }_{2} / A M I F C$ $\mathrm{P1}_{1} / \mathrm{ADC}_{1}$ $P_{1} D_{0} / A D C_{0}$	Input	-	Port 1D	The intermediate voltage of the selected pins are set to approx. $1 / 2 V_{\text {DD }}$. Non-selected pins are used as a general purpose input port. Initialize the AC amplifier by programming as necessary, because it is not disabled by resetting the CE pin (No. 13) to low. (Noise from the active amplifier may increase the current consumption.) Use the frequency counter, external gate counter, and clock generator port separately because the IFCMODE register specifies the external gate counter ($\mathrm{P} 1 \mathrm{~A}_{0} / \mathrm{FCG}$ pin) as well as the clock generator port (${\mathrm{P} 1 \mathrm{~B}_{0} / \mathrm{CGP}}^{\text {pin }}$). These pins are set as a general purpose input port during power resetting and clock stop instruction execution. These pins continue acting as a frequency counter during CE resetting. (3) Used as an A / D converter ($\mathrm{P1D}_{1} / \mathrm{ADC}_{1}, \mathrm{P}_{1} \mathrm{D}_{0} / A D C_{0}$ pin): To use these pins as a 6-bit A/D converter, use the register file's ADCCH register (address 14 H). Up to six channels can be switched for the $\mathrm{P1}_{1} \mathrm{D}_{1} / A D C_{1}$, $\mathrm{P}_{1} \mathrm{D}_{0} / A D C_{0}$ pins as well as the $\mathrm{POD}_{3} / \mathrm{ADC}_{5}$ to $\mathrm{POD}_{0} / A D C_{2}$ pins (75 to 78 pins). Use the consecutive comparison by programming to convert from A to D and reference voltage is created by R string method, in which the power voltage is divided up. These pins are set as a general purpose input port during power resetting and clock stop instruction execution. These pins continue acting as an A/D converter during CE resetting.
$\begin{aligned} & 30 \\ & 41 \end{aligned}$	$V_{D D 1}$ $V_{D D 2}$	-	-	Power	Device power pin. These pins supply $5 \mathrm{~V} \pm 10$ \% voltage to the CPU and peripheral functions under operation. These pins lower the voltage to 3.5 V if the CPU alone is being operated. When the CE pin (No. 13) executes the clock stop instruction at low, the crystal oscillator stops oscillation and enters the data memory backup state. During this time, the power voltage is lowered to 2.2 V . When the power voltage rises from 0 to 4.5 V or when the power voltage falls below $3.5 \mathrm{~V}(2.2 \mathrm{~V}$ for clock stop instruction) and rises to 4.5 V , the device enters the power resetting state. After power resetting, the peripheral circuit, system register, and register files are initialized, and the program starts from address 0 . The power voltage rising time from 0 to 4.5 V should be up to 500 ms . In addition to power on resetting, just explained, the CE pin also resets the device (CE pin low \rightarrow high). Electric blackouts can be detected by detecting the timer carrier F/F values of the register file, which are different during power resetting and CE resetting.

$\begin{aligned} & \text { PIN } \\ & \text { No. } \end{aligned}$	SYMBOL	INPUT/ OUTPUT	OUTPUT FORMAT	PIN NAME	DESCRIPTION				
$\begin{aligned} & 30 \\ & 41 \end{aligned}$	$V_{D D 1}$ $V_{D D 2}$	-		Power	Do not apply a voltage higher than the V_{DD} pin to the rest of the pins. Pay special attention to both $V_{D D}$ pin and $C E$ pin rising simultaneously, otherwise resulting in latch up. Always connect the $V_{D D 1}$ and $V_{D D 2}$ pins to the same potential. The VDD2 pin supplies power to the crystal oscillation circuit ($\mathrm{X}_{1 \mathrm{~N}}$ and $\mathrm{X}_{\mathrm{OUT}}$ pins), error out circuit ($E O_{0}$ and $E O_{1}$ pins), and low pass filter circuit (LPFIN and LPFOUT pins); the VDD1 pin supplies power to all other parts.				
$\begin{aligned} & 31 \\ & 32 \end{aligned}$	VCOL VCOH	Input	-	Oscillation low input Oscillation high input	Pin for entering PLL oscillation frequency (VCO). To specify one of the two division methods, direct division (MF mode) and pulse swallow (HF mode and VHF mode), use the register file's PLLMODE register (address 21 H). The following shows the input pins, input frequencies, and division ratios for each division methods.				
					Division method	Input pin	Input frequency	Input voltage	Division ratio
					Direct division MF mode	VCOL	0.5-30 MHz	0.3 Vp-p	16 to $2^{16}-1$
					Pulse swallow HF mode	VCOL	5-40 MHz	0.3 Vp-p	$\begin{aligned} & 256 \text { to } \\ & 2^{16}-1 \end{aligned}$
					Pulse swallow VHF mode	VCOH	$9-150 \mathrm{MHz}$	$0.3 \mathrm{Vp}-\mathrm{p}$ $0.5 \mathrm{Vp}-\mathrm{p}$	$\begin{aligned} & 256 \text { to } \\ & 2^{16}-1 \end{aligned}$
					Cut DC input signals by the condenser because these pins accept AC amplifier inputs only. The pin specified by the PLLMODE register is set to intermediate voltage (approx. $\left.1 / 2 V_{D D}\right)$. The pins that are not specified are internally pulled down. These pins are internally pulled down during PLL disabled and low CE pin states. These pins disable the PLL during power on resetting and clock stop instruction execution. These pins enter the PLLMODE register specified state during CE resetting.				
33	GND	-	-	Ground	Device ground pin				
$\begin{aligned} & 34 \\ & 35 \end{aligned}$	$X_{\text {OUT }}$ XIN	Output Input	cmos	Crystal oscillator	Crystal oscillator The following shows the method for connecting the 4.5 MHz crystal oscillator.				

μ PD17005

PIN No.	SYMBOL	INPUT/ OUTPUT	OUTPUT FORMAT	PIN NAME	DESCRIPTION
$\begin{aligned} & 34 \\ & 35 \end{aligned}$	$\begin{aligned} & X_{\text {OUT }} \\ & X_{\text {IN }} \end{aligned}$	Output Input	CMOS	Crystal oscillator	The crystal oscillator in use determines the values of C1 and C2. Large C1 and C2 values degrade the oscillation start characteristic and increase the consumption current. Although the trimmer condenser connected to the $X_{I N}$ pin is generally considered to adjust wider range of oscillation frequencies, it is recommended that it be connected to the crystal oscillator in use for a better oscillation stability. If probes are connected to the XOUT pin or XIN pin, the oscillation frequencies cannot be adjusted correctly owing to probe capacitance. Thus, adjust while measuring the LCD driving waveform $(125 \mathrm{MHz})$ of the number of VCO oscillation frequencies. When the oscillation frequency is off the 4.5 MHz setting the oscillation frequencies of the internal timer and LL reference frequency are also off in the same proportion because they employ a divided 4.5 MHz .
$\begin{aligned} & 36 \\ & 37 \end{aligned}$	$\begin{aligned} & \mathrm{EO} \\ & \mathrm{EO} \\ & \mathbf{E} \end{aligned}$	Output	CMOS 3 state	Error out	Output pin for PLL frequency synthesizer charge pump. These pins output high level when the divided VCO frequency input through the VCOL pin (No. 31) and VCOH pin (No. 32) is higher than the reference frequency; these pins output low level when the divided VCO frequency input through the VCOL pin (No. 31) and VCOH pin (No. 32) is lower than the reference frequency. These pins are set to floating when the divided VCO frequency matches the reference frequency. To construct the PLL frequency synthesizer, use the external low pass filter (LPF) and apply these pin outputs to the voltage control oscillator (VCO). The EO_{1} pin and EO_{2} pin output the same signals, so use either pin. These pins are set to floating during PLL disabled state, i.e., during low CE pin (No. 13) or power resetting. To detect the PLL unlock state, use the register file's PLLULJDG register (05 H). To select one of the four delay times ($0.5 \mu \mathrm{~s}, 1 \mu \mathrm{~s}, 2 \mu \mathrm{~s}$, disable) for PLL unlock state detection, use the register file's PLULDLY register (address 15H).
$\begin{aligned} & 38 \\ & 39 \\ & 40 \end{aligned}$	LPFIN LPFOUT $V_{\text {LPF }}$	Input Output	N -ch open drain	LPF amplifier	Low pass filter (LPF) CMOS operation amplifier built-in pin. The following is the example of a pin internal equivalent circuit and application circuit.

$\begin{array}{\|l} \hline \text { PIN } \\ \text { No. } \end{array}$	SYMBOL	INPUT/ OUTPUT	OUTPUT FORMAT	PIN NAME	DESCRIPTION
$\begin{aligned} & 38 \\ & 39 \\ & 40 \end{aligned}$	LPFIN LPFOUT $V_{\text {LPF }}$	Input Output -	N -ch open drain	LPF amplifier	The LPFOUT pin requires pull up resistance because it is for N -ch open drain output. It withstands voltage up to 16 V . Apply a voltage, which is higher than that applied to the LPFOUT pin, but not exceeding 16 V , to the V LPF pin. The LPFOUT pin is internally pulled up during PLL disabled state.
42	$\mathrm{P} 2 \mathrm{~A}_{0}$	Output	CMOS push-pull	Port 2A	1 bit output port pin. To set the data, use the port register's P2A register (BANK2 address 70 H). The data output during power on resetting is unstable. The previous output values are retained during clock stop instruction execution and CE resetting.
$\begin{aligned} & 43 \\ & 44 \end{aligned}$	$\begin{aligned} & \mathrm{COM}_{1} \\ & \mathrm{COM}_{0} \end{aligned}$	Output	CMOS	Common signal	Output pin for LCD driver common signal. The LCD driver has $1 / 2$ duty, $1 / 2$ bias, a 250 Hz frame frequency, and $V_{D D}$ driving voltage. Up to 60 -dot display can be done by matrix with the LCD_{0} / $\mathrm{POY}_{0} / \mathrm{KS}_{0}$ to $\mathrm{LCD}_{29} / \mathrm{POF}_{3}$ pins. These pins output three voltages: ground, $1 / 2 \mathrm{~V}_{\mathrm{DD}}$, and VDD. Dots light up when $\pm \mathrm{V}_{\text {DD }}$ potential difference is generated between these pins and $\mathrm{LCD}_{0} / \mathrm{POY}_{0} / \mathrm{KS}_{0}$ to $\mathrm{LCD}_{29} / \mathrm{POF}_{3}$ pins. These pins output low during power resetting and clock stop instruction execution, provided that the display mode was turned off by the register file's LCDMODE register (address $\mathbf{1 0 H}$). The output status of these pins is retained during CE resetting, provided that the display mode is turned on.
45 to 48 49 to 52 53 to 58 59 to 74	$\mathrm{LCD}_{29} / \mathrm{POF}_{3}$ to $\mathrm{LCD}_{26} / \mathrm{POF}_{0}$ $\mathrm{LCD}_{25} / \mathrm{POE}_{3}$ to $\mathrm{LCD}_{22} / \mathrm{POE}_{0}$ $\mathrm{LCD}_{21} / \mathrm{POX}_{5}$ to $\mathrm{LCD}_{16} / \mathrm{POX}_{0}$ $\mathrm{LCD}_{15} /$ $\mathrm{POY}_{15} / \mathrm{KS} \mathrm{K}_{15}$ to $\mathrm{LCD}_{0} /$ $\mathrm{POY}_{0} / \mathrm{KS}_{0}$	Output	cMOS push-pull	LCD segment signal	Pins functioning as LCD driver segment signal output pins ($\mathrm{LCD}_{29} / \mathrm{POF}_{3}$ to $\mathrm{LCD}_{0} / \mathrm{POY}_{0} / \mathrm{KS}_{0}$ pins), key matrix source signal output pins (LCD $15 / \mathrm{POY}_{15} / \mathrm{KS}_{0}$ to $\mathrm{LCD}_{0} / \mathrm{POY}_{0} / \mathrm{KS}_{0}$ pins), and general purpose output port (LCD $29 / \mathrm{POF}_{3}$ to $\mathrm{LCD}_{0} / \mathrm{POY}_{0} / \mathrm{KS}_{0}$ pins). To switch from segment signal to key source signal or to general purpose output port, use the register file LCDMODE register (address 10 H) or the LCDPORT register (address 11H). (1) When using as an LCD driver segment signal output pin ($\mathrm{LCD}_{29} / \mathrm{POF}_{3}$ to $\mathrm{LCD}_{0} / \mathrm{POY}_{0} / \mathrm{KS}_{0}$ pins): The LCD driver has a $1 / 2$ duty, $1 / 2$ bias, and 250 Hz frame frequency (125 Hz segment signal output). Up to 60 dot display can be done by matrix with these segment signal output pins and COM_{0} pin and COM_{1} pin (No. 44 and 43). Dots light up when $\pm \mathrm{V}_{\text {DD }}$ potential difference is generated between these pins and $\mathrm{LCD}_{0} / \mathrm{POY}_{0} / \mathrm{KS}_{0}$ to $\mathrm{LCD}_{29} / \mathrm{POF}_{3}$ pins. To set the LCD driver display data, use the LCD dot register (BANKO address $60 H$ to $6 E H$), or the LCD group register (address 08 H to 0 FH) via the data buffer. To turn the LCD driver display on or off, use the register file's LCDMODE register. When the display mode is turned off, these segment signal output pins are set to low. But the pins, which are specified as a general purpose output port

PIN No.	SYMBOL	INPUT/ OUTPUT	OUTPUT FORMAT	PIN NAME	DESCRIPTION		
45 to 48 49 to 52 53 to 58 59 to 74	$\begin{gathered} \mathrm{LCD}_{29} / \mathrm{POF}_{3} \\ \text { to } \\ \mathrm{LCD}_{26} / \mathrm{POF}_{0} \end{gathered}$	Output	CMOS push-pull	LCD segment signal	by the register file's LCDPORT register, output the output port data regardless of the display mode. These pins output low during power resetting and clock stop instruction execution. The output status of these pins are retained during CE resetting, provided that the display mode is turned on. The $\mathrm{LCD}_{15} / \mathrm{POY}_{15} / \mathrm{KS}_{15}$ to $\mathrm{LCD}_{0} / \mathrm{POY}_{0} / \mathrm{KS}_{0}$ pins can output both the segment signal and key source signal of the 16 key matrix at the same time. (2) When using as a key matrix source signal: To set these $16 \mathrm{LCD}_{15} / \mathrm{POY}_{15} / \mathrm{KS}_{15}$ to $\mathrm{LCD}_{0} / \mathrm{POY}_{0} / \mathrm{KS}_{0}$ pins as a key source signal output pin, use the register file's LCDMODE register. The key source signals are output with the LCD segment signals by time division. (Key source signal output time: $220 \mu \mathrm{~s}$). To use the key source signal, set the $\mathrm{POD}_{3} / A D C_{5}$ to $\mathrm{POD}_{0} /$ ADC2 pins as a key return signal input pin (No. 75 to 78). Therefore, the key matrix with 16 key sources and four input keys is configured. Key source signals are output every 4 ms . To set the output data of the key source signal, use the key source register (address 42H) via the data buffer. The key source signal is not output when the LCD driver display mode is turned off (the segment signal output is low) or when these pins are set as a general purpose output port. The key source signal is not output during power on resetting and clock stop instruction execution. The output status of these pins are retained during CE resetting. (3) When used as an output port: The following table shows how to set these pins as an output port using the register file's LCDPORT register (address 11H).		
					PIN No. PIN Name 45 $\mathrm{LCD}_{29} / \mathrm{POF}_{3}$ to to 48 $\mathrm{LCD}_{26} /$ POF $_{0}$	$\begin{array}{l}\text { Port } \\ \text { name }\end{array}$ Port OF	Number of bits 4 bits
					49 $\mathrm{LCD}_{25} / \mathrm{POE}_{3}$ to to 52 $\mathrm{LCD}_{22} / \mathrm{POE}_{0}$	Port OE	4 bits
					53 $\mathrm{LCD}_{21} / \mathrm{POX}_{5}$ to to 58 $\mathrm{LCD}_{16} / \mathrm{POX}_{0}$	Port 0X	6 bits
					59 $\mathrm{LCD}_{15} / \mathrm{POY}_{15} / \mathrm{KS}_{15}$ to to 74 $\mathrm{LCD}_{0} / \mathrm{POY}_{0} / \mathrm{KS}_{0}$	Port OY	16 bits

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
\& \text { PIN } \\
\& \text { No. }
\end{aligned}
\] \& SYMBOL \& INPUT/ OUTPUT \& OUTPUT FORMAT \& PIN NAME \& \& DESCRIPTION \\
\hline \multirow[b]{3}{*}{\begin{tabular}{l}
45 \\
to \\
48
\end{tabular}} \& \multirow[b]{3}{*}{\[
\begin{gathered}
\mathrm{LCD}_{29} / \mathrm{POF}_{3} \\
\text { to } \\
\mathrm{LCD}_{26} / \mathrm{POF}_{0}
\end{gathered}
\]} \& \multirow{7}{*}{Output} \& \multirow{7}{*}{\begin{tabular}{l}
CMOS \\
push-pull
\end{tabular}} \& \multirow{7}{*}{} \& \multicolumn{2}{|l|}{The Port OF, Port OE, Port 0X, and Port OY can be specified separately as an output port, otherwise they function as an LCD segment signal output pin. The following table shows how to set output data in each port.} \\
\hline \& \& \& \& \& Port name \& Output data setting \\
\hline \& \& \& \& \& Port 0F \& POF register (BANKO address 6DH) also functions as the LCD dot register's LCDD 13 register. \\
\hline \[
\begin{array}{|l|}
\hline 49 \\
\text { to } \\
52
\end{array}
\] \& \[
\begin{gathered}
\mathrm{LCD}_{25} / \mathrm{POE}_{3} \\
\text { to } \\
\mathrm{LCD}_{22} / \mathrm{POE}_{0}
\end{gathered}
\] \& \& \& \& Port OE \& POE register (BANKO address 6BH) also functions as the LCD dot register's LCDD 11 register. \\
\hline 53
to
58

59

to \& $$
\begin{aligned}
& \mathrm{LCD}_{21} / \mathrm{POX}_{5} \\
& \text { to } \\
& \mathrm{LCD}_{16} / \mathrm{POX}_{0} \\
& \mathrm{LCD}_{15} / \\
& \mathrm{POY}_{15} / \mathrm{KS}_{15}
\end{aligned}
$$ \& \& \& \& Port 0X \& POXH, and POXL registers (BANKO address 69 H and 68 H) also function as the LCD dot register's LCDD 9 register and LCDD 8 register, respectively. To set the output data, use the POX group register $(O C H)$ via the data buffer.

\hline 74 \& \multirow[t]{2}{*}{$$
\begin{aligned}
& \mathrm{LCD}_{15} / \\
& \mathrm{POY}_{15} / \mathrm{KS}_{15} \\
& \text { to } \\
& \mathrm{LCD}_{0} / \\
& \mathrm{POY}_{0} / \mathrm{KS}_{0}
\end{aligned}
$$} \& \& \& \& Port OY \& To set the output data, use the POY group register (42CH) via the data buffer.

\hline \& \& \& \& \& These pins a output low l instruction e The previous \& | t as a segment signal output pin and thus during power resetting and clock stop uticn. |
| :--- |
| tput status is retained during CE resetting. |

\hline \[
$$
\begin{aligned}
& 75 \\
& 76 \\
& 77 \\
& 78
\end{aligned}
$$

\] \& | $\mathrm{POC}_{3} / \mathrm{ADC}_{5}$ |
| :--- |
| $\mathrm{POC}_{2} / \mathrm{ADC}_{4}$ |
| $\mathrm{POC}_{1} / \mathrm{ADC}_{3}$ |
| $\mathrm{POC}_{0} / \mathrm{ADC}_{2}$ | \& Input \& Input with pull down \& Port 0C \& \multicolumn{2}{|l|}{| Pins functioning as a 4-bit general purpose input port and A/D converter input pin. |
| :--- |
| To switch from the input port to A/D converter, use the register file's ADCCH register (address 14H). |
| (1) When used as an input port: |
| To read the input data, use the port register's POC register (BANKO address 72H). |
| The $\mathrm{POC}_{3} / \mathrm{ADC}_{5}$ to $\mathrm{POC}_{0} / \mathrm{ADC}_{2}$ pins have a built-in pulldown resistance enabling them to be used as a key return signal input pin of the key matrix. To use the LCD segment pin as the key source, turn off the pull-down resistance during key source signal output ($220 \mu \mathrm{~s}$), and turn on the pull-down resistance during segment signal output ($220 \mu \mathrm{~s}$). Always keep the pull-down resistance on when the LCD segment pin is not used as the key source. |
| Turn off the pull-down resistance of the pin set as an A/D converter by the register file's ADCCH register. |
| (2) When used as an A/D converter: |
| To set these pins as a 6 bit A / D converter, use the register file's ADCCH register (address 14 H). |
| Use the consecutive comparsion by programming to convert from A to D. The reference voltage is created by the R string method, in which the power voltage is divided up. |
| Up to six channels can be switched for the $\mathrm{POC}_{3} / \mathrm{ADC}_{5}$ to $\mathrm{POC}_{0} / A D C_{2}$ pins as well as the ${\mathrm{P} 1 D_{1} / A D C_{1}, ~}_{\mathrm{P} 1 \mathrm{D}_{0} / A D C_{0}}$ |}

\hline
\end{tabular}

1.3 NOTES ON USING GENERAL PURPOSE PORT

1.3.1 Port register data bit

To read the input data or set the output data in the Port 0A, Port 0B, Port 0C, Port OD, Port 1A, Port 1B, Port 1C, Port 1D, and Port 2A, use port registers (P0A to P2A register) in the data memory.

The POA_{3} pin and the POA_{0} pin of the Port OA correspond to the most significant bit and the least significant bit of the port register POA, respectively.

The same rule applies to the Port OB, Port 0C, Port 0D, Port 1A, Port 1B, Port 1C, Port 1D, and Port 2A.
To set the output data in the Port OE, Port OF, Port OX, and Port OY, use the LCD group register via the LCD dot register or the data buffer in the data memory.

1.3.2 Input/output ports (Port 0A, Port 0B, Port 0C, Port 1A)

(1) When a port is specified as an input port:

Execute the instruction to read the contents of the port register in the data memory (provided that the port register address is defined as m of the SKT $\mathrm{m}, \# \mathrm{i}$ instruction or ADD r, m instruction). The port pin status is stored as the port register value. Execute the instruction to write in the port register (provided that the port register address is defined as m of the MOV $m, \# i$ instruction or r of the ADD r, m instruction), and the values are written in the output data latch circuit.
(2) When a port is specified as an output port:

Executes the instruction to write in the port register. The values are written in the output data latch circuit and output through each pin. Execute the instruction to read the contents of the port register. The output data latch content is stored as the port register value. However, when the read instruction is executed through the $\mathrm{POA}_{3} / \mathrm{SDA}$ and $\mathrm{POA}_{2} / \mathrm{SCL}$ pins, the pin status is read and different data may be output.
These pins are set as an input port during power resetting, CE resetting or clock stop instruction execution. Write the output latch content, which becomes unstable during power resetting, in the port register before setting it in the output port, otherwise the output data will be unstable. The output data latch content is not updated during clock stop instruction execution or CE resetting.

1.3.3 Output ports (Port 1B, Port 1C, Port OF, Port 0E, Port 0X, and Port 0Y)

Output ports write port register values in the output latch and outputs them through the pins.
Execute the instruction to read the port register value. The latch status is stored as the port register value.
The data output during power on resetting is unstable.
The previous output data is retained during CE resetting or clock stop instruction execution.
The Port OE, Port OF, Port OX, and Port OY automatically output low level during power on resetting or clock stop instruction execution.
1.4 PIN EQUIVALENT CIRCUITS
1.4.1 POA (POA $\left./ \overline{\mathrm{SCK}}_{1}, \mathrm{POA}_{0} / \mathrm{SO}_{1}\right)$ $\mathrm{POB}\left(\mathrm{POB}_{3} / \mathrm{SI}_{1}, \mathrm{POB}_{2} / \overline{\mathrm{SCK}}_{2}, \mathrm{POB}_{1} / \mathrm{SO}_{2}, \mathrm{POB}_{0} / \mathrm{SI}_{1}\right.$) P1A (P1A, P1A 2, P1A,$\left.~ P 1 A_{0}\right)$

1.4.2 $\mathrm{POA}\left(\mathrm{POA}_{3} / \mathrm{SDA}, \mathrm{POA}_{2} / \mathrm{SCL}\right)$

1.4.3 POC ($\mathrm{POC}_{3} / \mathrm{POC}_{2}, \mathrm{POC}_{1}, \mathrm{POC}_{0}$)

P1B (P1B0/CGP)
P1C (P1C3, P1C 2, P1C $_{1}$, P1C $_{0}$)
P2A ($\mathrm{P}_{2} \mathrm{~A}_{0}$)
$\mathrm{LCD}_{0} / \mathrm{POY}_{0} / \mathrm{KS}_{0}$ to $\mathrm{LCD}_{29} / \mathrm{POF}_{3}$

1.4.5 POD ($\left.\mathrm{POD}_{3} / \mathrm{ADC}_{5}, \mathrm{POD}_{2} / \mathrm{ADC}_{4}, \mathrm{POD}_{1} / \mathrm{ADC}_{3}, \mathrm{POD}_{0} / \mathrm{ADC}_{2}\right)$

1.4.6 P1D ($\left.\mathrm{P1D}_{1} / \mathrm{ADC}_{1}, \mathrm{P}_{1} \mathrm{D}_{\mathbf{0}} / \mathrm{ADC}_{0}\right)$

1.4.7 P1D (P1D $\mathbf{3}_{3} /$ FMIFC, P1D $_{2} /$ AMIFC $)$

1.4.8 CE

INT $_{1}$
INT $_{0}$

1.4.9 $\mathrm{X}_{\text {OUT }}, \mathrm{X}_{\text {IN }}$

1.4.10 $\mathrm{EO}_{1}, \mathrm{EO}_{0}$

(Output)
1.4.11 LPFiN, LPFout, V $_{\text {LPF }}$

1.4.12 $\mathrm{COM}_{1}, \mathrm{COM}_{0}$

(Output)
1.4.13 VCOH

VCOL

2. BLOCK DIAGRAM

3. μ PD17005 INSTRUCTIONS

3.1 TABLE OF INSTRUCTION SETS

$b_{14} b_{13} b_{12} b_{11}$		0		1	
$\begin{array}{llll}0 & 0 & 0 & 0\end{array}$	0	ADD	r, m	ADD	m, \#i
0000001	1	SUB	r, m	SUB	m, \#i
$\begin{array}{lllll}0 & 0 & 1 & 0\end{array}$	2	ADDC	r, m	ADDC	m, \#i
$\begin{array}{llll}0 & 0 & 1 & 1\end{array}$	3	SUBC	r, m	SUBC	m, \#i
$\begin{array}{lllll}0 & 1 & 0 & 0\end{array}$	4	AND	r, m	AND	m, \#i
$\begin{array}{llll}0 & 1 & 0 & 1\end{array}$	5	XOR	r, m	XOR	m, \#i
$\begin{array}{llll}0 & 1 & 1 & 0\end{array}$	6	OR	r, m	OR	$\mathrm{m}, ~ \# \mathrm{i}$
$\begin{array}{llll}0 & 1 & 1 & 1\end{array}$	7	INC INC MOVT BR CALL RET RETSK EI DI RETI PUSH POP GET PUT PEEK POKE RORC STOP HALT NOP	AR IX DBF, @ AR @AR @AR AR AR DBF, p p, DBF WR, rf rf, WR r 0 h		
$\begin{array}{lllll}1 & 0 & 0 & 0\end{array}$	8	LD	r, m	ST	m, r
$\begin{array}{lllll}1 & 0 & 0 & 1\end{array}$	9	SKE	m , \#i	SKGE	m, \#i
$\begin{array}{llll}1 & 0 & 1 & 0\end{array}$	A	MOV	@ r, m	MOV	m, @ r
$\begin{array}{lllll}1 & 0 & 1 & 1\end{array}$	B	SKNE	m, \#i	SKLT	m, \#i
$\begin{array}{lllll}1 & 1 & 0 & 0\end{array}$	C	BR	addr (page0)	CALL	addr (page0)
$\begin{array}{llll}1 & 1 & 0 & 1\end{array}$	D	BR	addr (pagel)	MOV	m, \#i
$\begin{array}{lllll}1 & 1 & 1 & 0\end{array}$	E	BR	addr (page2)	SKT	$m, \# n$
$\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	F	BR	addr (page3)	SKF	m, \#n

3.2 TABLE OF INSTRUCTIONS

NOTE	
M	: One of Data memory specified by [(BANK),m]
m	Data memory address specified by $\left[m_{H}, m_{L}\right.$) of each bank
m_{H}	: Data memory address high (Row address) ; 3bits
m_{L}	Data memory address Low (Column address) ; 4 bits
R	: One of General register specified by ((RD), r〕
r	: General register address low ; 4bits
RP	: General register pointer
RF	: One of register file specified by rf
rf	: Register file address specified by $\left[\mathrm{rf}_{\mathrm{H}}, \mathrm{rf}_{\mathrm{L}}\right.$)
rf_{H}	: Register file address high
rf_{L}	: Register file address low
AR	: Address register
IX	: Index register
IXE	: Index enable flag
DBF	: Data buffer
WR	: Window register
MP	: Memory pointer
MPE	: Memory pointer enable flag
PE	: Peripheral
p	: Peripheral address
P_{H}	: Peripheral address high
p_{L}	: Peripheral address low

PC	: Program memory counter
SP	: Stack pointer
STACK	: Stack of (PC), (BANK), (IXE)
STACK $_{\text {PC }}$:	Stack of (PC)
BANK	: Bank register
$(\mathrm{ROM})_{\mathrm{PC}}$:	One of Program memory data specified by (PC)
INTEF	: Interrupt enable flag
SGR	: Program memory segment register
i	: Immediate data ; 4bits
n	Bit position ; 4bits
addr	: One of program memory address ; 11bits
CY	: Carry flag
c	: Carry
b	: Borrow
h	: Halt release conditions
(〕	: Address of M, R, RF
()	: Contents of M, R, RF, AR, IX, DBF, WR, PE

	Mnemonic	Operand	Function	Operation	Machine code			
					Op. code			
	ADD	r, m	Add Data memory to General register	$(\mathrm{R}) \leftarrow(\mathrm{R})+(\mathrm{M})$	00000	m_{H}	m_{L}	r
		m, \#i	Add immediate data to Data memory	(M) $\leftarrow(\mathrm{M})+\mathrm{i}$	10000	m_{H}	m_{L}	i
	ADDC	r, m	Add Data memory to General register with carry	$(\mathrm{R}) \leftarrow(\mathrm{R})+(\mathrm{M})+(\mathrm{CY})$	00010	m_{H}	m_{L}	r
		m, \#i	Add immediate data to Data memory with carry	$(\mathrm{M}) \leftarrow(\mathrm{M})+\mathrm{i}+(\mathrm{CY})$	10010	m_{H}	m_{L}	1.
	INC	AR	Increment Address register	$(\mathrm{AR}) \leftarrow(\mathrm{AR})+1$	00111	000	1001	0000
		IX	Increment Index register	$(\mathrm{IX}) \leftarrow(\mathrm{IX})+1$	00111	000	1000	0000
	SUB	r, m	Subtract Data memory from General register	$(\mathrm{R}) \leftarrow(\mathrm{R})-(\mathrm{M})$	00001	m_{H}	m_{L}	r
		m, \#i	Subtract immediate data from Data memory	(M) $\leftarrow(\mathrm{M})-\mathrm{i}$	10001	m_{H}	m_{L}	i
	SUBC	r, m	Subtract Data memory from General register with borrow	$(\mathrm{R}) \leftarrow(\mathrm{R})-(\mathrm{M})-(\mathrm{CY})$	00011	m_{H}	m_{L}	r
		m, \#i	Subtract immediate data from Data memory with borrow	$(\mathrm{M}) \leftarrow(\mathrm{M})-\mathrm{i}-(\mathrm{CY})$	10011	m_{H}	m_{L}	i
	SKE	m, \#i	Skip if Data memory equals immediate data	$\text { (M) }-\mathrm{i} \&$ skip if zero	01001	m_{H}	m_{L}	1
	SKGE	m, $=1$	Skip if Data memory is greater than or equal to immediate data	$\text { (M) }-\mathrm{i} \text { \& }$ skip if not borrow	11001	m_{H}	m_{L}	1
	SKLT	m, \#i	Skip if Data memory is less than immediate data	$\text { (M) }-\mathrm{i} \&$ skip if borrow	11011	m_{H}	m_{L}	1
	SKNE	m, \#i	Skip if Data memory not equal immediate data	$\text { (M) }-\mathrm{i} \&$ skip if not zero	01011	m_{H}	m_{L}	1

	Mnemonic	Operand	Function	Operation	Machine code			
					Op. code			
	AND	m, \#i	Logic AND of Data memory and immediate data	$(\mathrm{M}) \leftarrow$ (M) AND i	10100	m_{H}	m_{L}	i
		r, m	Logic AND of General register and Data memory	$(\mathrm{R}) \leftarrow(\mathrm{R})$ AND (M)	00100	m_{H}	m_{L}	r
	OR	m, \#i	Logic OR of Data memory and immediate data	$(\mathrm{M}) \leftarrow(\mathrm{M}) \mathrm{OR} \mathrm{i}$	10110	m_{H}	m_{L}	i
		r, m	Logic OR of General register and Data memory	$(\mathrm{R}) \leftarrow(\mathrm{R}) \mathrm{OR}(\mathrm{M})$	00110	m_{H}	m_{L}	r
	XOR	m, \#i	Exclusive Logic OR of Data memory and immediate data	(M) $\leftarrow(\mathrm{M}) \mathrm{XOR} \mathrm{i}$	10101	m_{H}	m_{L}	i
		r, m	Exclusive Logic OR of General register and Data memory	$(\mathrm{R}) \leftarrow(\mathrm{R}) \mathrm{XOR}(\mathrm{M})$	00101	m_{H}	m_{L}	r
	LD	r, m	Load Data memory to General register	$(\mathrm{R}) \leftarrow(\mathrm{M})$	01000	m_{H}	m_{L}	r
	ST	m, r	Store General register to Data memory	(M) $\leftarrow(\mathrm{R})$	11000	m_{H}	m_{L}	r
	MOU	@r,m	Move Data memory to Destination data memory referring to General register	$\begin{aligned} & \text { if } M P E=1:[(\mathrm{MP}),(\mathrm{R})] \leftarrow(\mathrm{M}) \\ & \text { if } M P E=0:\left[\left(\mathrm{m}_{H}\right),(\mathrm{R})\right] \leftarrow(\mathrm{M}) \end{aligned}$	01010	m_{H}	m_{L}	r
		m, @r	Move Source data memory referring to General register to Data memory	$\begin{aligned} & \text { if } \mathrm{MPE}=1:(\mathrm{M}) \leftarrow[(\mathrm{MP}),(\mathrm{R})] \\ & \text { if } \mathrm{MPE}=0:(\mathrm{M}) \leftarrow\left[\left(\mathrm{m}_{H}\right),(\mathrm{R})\right] \end{aligned}$	11010	m_{H}	m_{L}	r
		m, \# i	Move immediate data to Data memory	(M) $\leftarrow \mathrm{i}$	11101	m_{H}	m_{L}	1
	MOUT	DBF, @AR	Move Program memory data specified by Address register to Data buffer	$\begin{aligned} & \left(\mathrm{STACK}_{p}\right)+(\mathrm{PC}) \&(\mathrm{PC})+(\mathrm{AR}) \& \\ & (\mathrm{DBF})+(\mathrm{ROM})_{p} \&(\mathrm{PC})+\left(\mathrm{STACK}_{p}\right) \end{aligned}$	00111	000	0001	0000
	PUSH	AR	Decrement Stack pointer, then move Address register to Stack	$\begin{aligned} & (\mathrm{SP}) \leftarrow(\mathrm{SP})-1 \& \\ & \left(\mathrm{STACK}_{\mathrm{pc}}\right) \leftarrow(\mathrm{AR}) \end{aligned}$	00111	000	1101	0000
	POP	AR	Move Stack to Address register, then increment Stack pointer	$\begin{aligned} & (\mathrm{AR}) \leftarrow\left(\mathrm{STACK}_{\mathrm{pc}}\right) \& \\ & (\mathrm{SP}) \leftarrow(\mathrm{SP})+1 \end{aligned}$	00111	000	1100	0000
	PEEK	WR, rf	Get data of Register file to Window register	$(\mathrm{WR}) \leftarrow(\mathrm{RF})$	00111	rf_{H}	0011	rf_{L}
	POKE	rf, WR	Put data of Window register into Register file	$(\mathrm{RF}) \leftarrow(\mathrm{WR})$	00111	rf_{H}	0010	rf_{L}.
	GET	DBF, p	Get peripheral data to Data buffer	$(\mathrm{DBF}) \leftarrow(\mathrm{PE})$	00111	p_{H}	1011	p_{L}
	PUT	$\mathrm{DBF}^{\mathrm{p}}{ }^{\text { }}$	Put data of Data buffer to peripheral	$(\mathrm{PE}) \leftarrow(\mathrm{DBF})$	00111	p_{H}	1010	p_{L}
	SKT	m, \#n	Test Data memory bits, then skip if all bits specified are true	$\text { if }(\mathrm{M})_{\mathrm{n}}=\text { all " } 1 \text { ", }$ then skip	11110	m_{H}	m_{L}	n
	SKF	$\mathrm{m}, \# \mathrm{n}$	Test Data memory bits, then skip if all bits specified are false	$\text { if }(\mathrm{M})_{\mathrm{n}}=\text { all " } 0 \text { ", }$ then skip	11111	m_{H}	m_{t}.	n
	BR	addr	Jump to the address in page 0	$(\mathrm{PC})+$ addr \& $(\mathrm{PC})=12 .: 11+00$	01100	addr (11bits)		
			Jump to the address in page 1	$(\mathrm{PC}) \leftarrow \operatorname{addr} \&(\mathrm{PC})_{ \pm 12:=11} \leftarrow 01$	01101			
			Jump to the address in page 2	$(\mathrm{PC}) \leftarrow$ addr \& $(\mathrm{PC})_{=12}=11 \sim 10$	01110			
			Jump to the address in page 3	(PC)-addr \& $(\mathrm{PC})_{ \pm 12: \geq 11} \leftarrow 11$	01111			
		@ AR	Jump to the address specified by Address register	$(\mathrm{PC}) \leftarrow(\mathrm{AR})$	00111	000	0100	0000
$\begin{aligned} & \leftrightarrows \\ & \underset{\hbar}{6} \end{aligned}$	RORC	r	Rotate General register right with carry		00111	000	0111	r

	Mnemonic	Operand	Function	Operation	Machine code			
					Op. code			
	CALL	addr	Call subroutine in page 0	$\begin{aligned} & (\mathrm{SP}) \leftarrow(\mathrm{SP})-1 \& \\ & \left(\mathrm{STACK}_{\mathrm{pc}}\right) \leftarrow((\mathrm{PC})+1) \& \\ & (\mathrm{PC})=11 \leftarrow 0 \&(\mathrm{PC}) \leftarrow \mathrm{addr} \end{aligned}$	11100	addr	(11bit	
		@AR	Call subroutine	$\begin{aligned} & (\mathrm{SP}) \leftarrow(\mathrm{SP})-1 \& \\ & \left(\mathrm{STACK}_{\mathrm{pc}}\right) \leftarrow((\mathrm{PC})+1) \& \\ & (\mathrm{PC}) \leftarrow(\mathrm{AR}) \end{aligned}$	00111	000	0101	0000
	RET		Return to main routine from subroutine	$\begin{aligned} & (\mathrm{PC}) \leftarrow\left(\mathrm{STACK}_{\mathrm{pc}}\right) \& \\ & (\mathrm{SP}) \leftarrow(\mathrm{SP})+1 \end{aligned}$	00111	000	1110	0000
	RETSK		Return to main routine from subroutine, then skip unconditionally	$\begin{aligned} & (\mathrm{PC}) \leftarrow\left(\mathrm{STACK}_{\mathrm{pc}}\right) \& \\ & (\mathrm{SP}) \leftarrow(\mathrm{SP})+1 \& \text { and skip } \end{aligned}$	00111	001	1110	0000
	RETI		Return to main routine from interrupt service routine	(PC), (BANK), (IXE) $-(\mathrm{STACK})$ $\&(\mathrm{SP}) \leftarrow(\mathrm{SP})+1$	00111	100	1110	0000
¢	EI		Enable interrupt	INTEF $\leftarrow 1$	00111	000	1111	0000
g2	DI		Disable interrupt	INTEF $\leftarrow 0$	00111	001	1111	0000
	STOP	0	Stop clock if CE= low	stop clock if $\mathrm{CE}=$ low	00111	010	1111	0000
岂	HALT	h	Halt the CPU, Restart by condition h	halt	00111	011	1111	h
	NOP		No operation		00111	100	1111	0000

3.3 ASSEMBLER (AS17K) INCORPORATED MACRO

NOTE

flag	: One of flag1 to flagn
flag1 to flagn	: Flag mane specified by RESERVED TABLE
n	: Number
$<>$: Description can be omitted

Mnemonic	Operand	n	Function	Operation
SKTn	flag1, \cdots flagn	$1 \leqq n \leqq 4$	Test flag1 to flagn, then skip all flags specified are true	if (flag1) to (flagn) = all " 1 ", then skip
SKFn	flag1, \cdots flagn	$1 \leqq n \leqq 4$	Test flag1 to flagn, then skip all flags specified are false	$\begin{gathered} \text { if }(\text { flag } 1) \text { to }(\text { flagn })=\text { all } \\ \text { " } 0 \text { ", then skip } \end{gathered}$
SETn	flag1, \cdots flagn	$1 \leqq n \leqq 4$	Set all flags in flag1 to flagn,	(flag1) to (flagn) $\leftarrow 1$
CLRn	flag1, \cdots flagn	$1 \leqq n \leqq 4$	Clear all flags in flag1 to flagn	(flag1) to (flagn) $\leftarrow 0$
NOTn	flag1, \cdots flagn	$1 \leqq n \leqq 4$	Complement all flags in flag1 to flagn	if (flag) $=$ " 0 ", then $($ flag $) \leftarrow 1 \quad \&$ if (flag) $={ }^{" 1}{ }^{\prime \prime}$, then (flag) $\leftarrow 0$
INITFLG	$\left\lvert\, \begin{array}{\|c\|c\|c\|} \mid c \text { NOT }>\text { flagi, } \\ \cdots<\text { NOT }>\text { flagn } \end{array}\right.$	$1 \leqq n \leqq 4$	Initialize all flags in flag1 to flagn	$\begin{gathered} \text { if description }=\text { NOT } \\ \text { flag, (flag) } \leftarrow 0 \\ \text { if description }=\text { flag, } \\ \text { (flag) } \leftarrow 1 \end{gathered}$
BANKn		$0 \leqq n \leqq 3$	Set n into Bank register	(BANK) $\leftarrow \mathrm{n}, 0 \leqq \mathrm{n} \leqq 3$

4. μ PD17005 RESERVED WORDS (ASI7K)

4.1 TABLE OF RESERVED WORDS

4.1.1 System register (SYSREG)

Reserved word	Model	Address	Read/ Write	
AR3	MEM	0.74 H	R	BIT b15-12 of Address Register
AR2	MEM	0.75 H	R	BIT b11-8 of Address Register
AR1	MEM	0.76 H	R/W	BIT b7-4 of Address Register
AR0	MEM	0.77 H	R/W	BIT b3-0 of Address Register
WR	MEM	0.78 H	R/W	Window Register
BANK	MEM	0.79 H	R/W	Bank Register
IXH	MEM	0.7 AH	R/W	Index register high
MPH	MEM	0.7 AH	R/W	Memory pointer high
MPE	FLG	0.7 AH .3	R/W	Memory pointer enable flag
IXM	MEM	0.7 BH	R/W	Index register middle
MPL	MEM	0.7 BH	R/W	Memory pointer low
IXL	MEM	0.7 CH	R/W	Index register low
RPH	MEM	0.7 DH	R/W	General Register pointer high
RPL	MEM	0.7 EH	R/W	General Register pointer low
PSW	MEM	0.7 FH	R/W	Program status word
BCD	FLG	0.7 EH .0	R/W	Binary Coded Decimal flag
CMP	FLG	0.7 FH .3	R/W	Compare flag
CY	FLG	0.7 FH .2	R/W	Carry flag
Z	FLG	0.7 FH .1	R/W	Zero flag
IXE	FLG	0.7 FH .0	R/W	Index register enable flag

4.1.2 Data buffer (DBF)

Reserved word	Model	Address	Read/ Write	Function outline	
DBF3	MEM	0.0 CH	R/W	BIT b15-12 OF DBF	
DBF2	MEM	0.0 DH	R/W	BIT b11-8 OF DBF	
DBF1	MEM	0.0 EH	R/W	BIT b7-4 OF DBF	
DBF0	MEM	0.0 FH	R/W	BIT b3-0 OF DBF	

4.1.3 LCD dot data register

Reserved word	Model	Address	Read/ Write	Function outline
LCDD0	MEM	0.60H	R/W	LCD data register
LCDD1	MEM	0.61 H	R/W	LCD data register
LCDD2	MEM	0.62 H	R/W	LCD data register
LCDD3	MEM	0.63 H	R/W	LCD data register
LCDD4	MEM	0.64 H	R/W	LCD data register
LCDD5	MEM	0.65 H	R/W	LCD data register
LCDD6	MEM	0.66 H	R/W	LCD data register
LCDD7	MEM	0.67 H	R/W	LCD data register
LCDD8	MEM	0.68 H	R/W	LCD data register
LCDD9	MEM	0.69 H	R/W	LCD data register
LCDD10	MEM	0.6AH	R/W	LCD data register
LCDD11	MEM	0.6 BH	R/W	LCD data register
LCDD12	MEM	0.6CH	R/W	LCD data register
LCDD13	MEM	0.6 DH	R/W	LCD data register
LCDD14	MEM	0.6 EH	R/W	LCD data register.

4.1.4 General Purpose Port Register

Reserved word	Model	Address	Read/ Write	Function outline
P0A3	FLG	0.70 H .3	R/W	Port 0A bit b3
P0A2	FLG	0.70 H .2	R/W	Port 0A bit b2
P0A1	FLG	0.70 H .1	R/W	Port 0A bit b1
P0A0	FLG	0.70 H .0	R/W	Port 0A bit b0
P0B3	FLG	0.71 H .3	R/W	Port 0B bit b3
P0B2	FLG	0.71H.2	R/W	Port 0B bit b2
P0B1	FLG	0.71 H .1	R/W	Port 0B bit b1
P0B0	FLG	0.71 H .0	R/W	Port 0B bit b0
P0C3	FLG	0.72 H .3	R/W	Port 0C bit b3
P0C2	FLG	0.72 H .2	R/W	Port 0C bit b2
P0C1	FLG	0.72H.1	R/W	Port 0C bit b1
P0C0	FLG	0.72 H .0	R/W	Port 0C bit b0
P0D3	FLG	0.73 H .3	R	Port 0D bit b3
P0D2	FLG	0.73H. 2	R	Port 0D bit b2
P0D1	FLG	0.73 H .1	R	Port 0D bit bl
P0D0	FLG	0.73 H .0	R	Port 0D bit b0

Reserved word	Model	Address	Read/ Write	Function outline
P0XL3	FLG	0.68H. 3	R/W	Port 0X bit bl
P0XL2	FLG	0.68 H .2	R/W	Port 0X bit b0
P0XL1	FLG	0.68 H .1	R/W	DUMMY
P0XL0	FLG	0.68H. 0	R/W	DUMMY
P0XH3	FLG	0.69H. 3	R/W	Port 0X bit b5
P0XH2	FLG	0.69H. 2	R/W	Port 0X bit b4
P0XH1	FLG	0.69 H .1	R/W	Port 0X bit b3
P0XH0	FLG	0.69H. 0	R/W	Port 0X bit b2
P0E3	FLG	0.6 BH .3	R/W	Port 0E bit b3
P0E2	FLG	0.6 BH .2	R/W	Port 0E bit b2
P0E1	FLG	0.6 BH .1	R/W	Port 0E bit b1
P0E0	FLG	0.6BH.0	R/W	Port 0E bit b0
P0F3	FLG	0.6 DH .3	R/W	Port 0F bit b3
P0F2	FLG	0.6 DH .2	R/W	Port 0F bit b2
P0F1	FLG	0.6 DH .1	R/W	Port 0F bit b1
P0F0	FLG	0.6 DH .0	R/W	Port 0F bit b0
P1A3	FLG	1.70 H .3	R/W	Port 1A bit b3
P1A2	FLG	1.70 H .2	R/W	Port 1A bit b2
P1A1	FLG	1.70 H .1	R/W	Port 1A bit bl
P1A0	FLG	1.70 H .0	R/W	Port 1A bit b0
P1B3	FLG	$1.71 \mathrm{H}$.	R/W	Port 1B bit b3
P1B2	FLG	1.71 H .2	R/W	Port 1B bit b2
P1B1	FLG	$1.71 \mathrm{H.1}$	R/W	Port 1B bit bl
P1B0	FLG	1.71 H .0	R/W	Port 1B bit b0
P1C3	FLG	1.72 H .3	R/W	Port 1C bit b3
P1C2	FLG	1.72 H .2	R/W	Port 1C bit b2
$\mathrm{PlC1}$	FLG	1.72 H .1	R/W	Port 1C bit bl
P1C0	FLG	1.72 H .0	R/W	Port 1C bit b0
P1D3	FLG	$1.73 \mathrm{H}$.	R/W	Port 1D bit b3
P1D2	FLG	1.73 H .2	R/W	Port 1D bit b2
P1D1	FLG	$1.73 \mathrm{H.1}$	R/W	Port 1D bit bl
P1D0	FLG	1.73 H .0	R/W	Port 1D bit b0
P2A3	FLG	2.70 H .3	R/W	Port 2A bit b3
P2A2	FLG	2.70 H .2	R/W	Port 2A bit b2
P2A1	FLG	2.70 H .1	R/W	Port 2A bit bl
P2A0	FLG	2.70 H .0	R/W	Port 2A bit b0

4.1.5 Register File (Control Register)

Reserved word	Model	Address	Read/ Write	Function outline
SP	MEM	0.81 H	R/W	Stack pointer
SIO2TS	FLG	0.82 H .3	R/W	SIO2 start flag
SIO2HIZ	FLG	0.82 H .2	R/W	SO2/P0B1 select flag
SIO2CK1	FLG	0.82 H .1	R/W	SIO2 clock select bit b1
SIO2CK0	FLG	0.82 H .0	R/W	SIO2 clock select bit b0
IFCG	FLG	0.84 H .0	R	IF counter gate status flag
PLLUL	FLG	0.85H.0	R	PLL unlock F/F flag
ADCCMP	FLG	0.86 H .0	R	ADC judge flag
CE	FLG	0.87 H .0	R	CE terminal status flag
SIOICH	FLG	0.88 H .3	R/W	SIO1 mode select flag
SB	FLG	0.88 H .2	R/W	SB/SBI select flag
SIO1MS	FLG	0.88 H .1	R/W	SIO1 clock mode select flag
SIOITX	FLG	0.88 H .0	R/W	SIO1 TX/RX select flag
TMMD3	FLG	0.89 H .3	R/W	Timer interrupt mode select flag
TMMD2	FLG	0.89 H .2	R/W	Timer interrupt mode select flag
TMMD1	FLG	0.89 H .1	R/W	Timer carry F/F mode select flag
TMMD0	FLG	0.89 H .0	R/W	Timer carry F/F mode select flag
INT1	FLG	0.8 FH .1	R	INT1 terminal status flag
INT0	FLG	0.8 FH .0	R	INT0 terminal status flag
KSEN	FLG	0.90 H .1	R/W	Key souce decorder enable flag
LCDEN	FLG	0.90 H .0	R/W	LCD driver enable flag
P0VON	FLG	0.91 H .3	R/W	Port OY enable flag
P0XON	FLG	0.91H.2	R/W	Port 0X enable flag
POEON	FLG	0.91 H .1	R/W	Port OE enable flag
POFON	FLG	0.91 H .0	R/W	Port 0F enable flag
IFCMD1	FLG	0.92 H .3	R/W	IF counter mode select flag
IFCMD0	FLG	0.92 H .2	R/W	IF counter mode select flag
IFCCK1	FLG	0.92 H .1	R/W	IF counter clock select flag
IFCCK0	FLG	0.92 H .0	R/W	IF counter clock select flag
PWM2ON	FLG	0.93 H .3	R/W	PWM2 enable flag
PWM1ON	FLG	0.93H.2	R/W	PWM1 enable flag
PWM00N	FLG	0.93 H .1	R/W	PWM0 enable flag
CGPON	FLG	0.93 H .0	R/W	CGP enable flag
ADCCH3	FLG	0.94 H .3	R	AD mode select flag (DUMMY : 0)
ADCCH2	FLG	0.94 H .2	R/W	AD mode select flag
ADCCH1	FLG	0.94 H .1	R/W	AD mode select flag
ADCCH0	FLG	0.94H. 0	R/W	AD mode select flag

Reserved word	Model	Address	Read/ Write	Function outline
PLULDLY3	FLG	0.95H. 3	R	PLL unlock time select flag (DUMMY : 0)
PLULDLY2	FLG	0.95 H .2	R	PLL unlock time select flag (DUMMY : 0)
PLULDLY1	FLG	0.95 H .1	R/W	PLL unlock time select flag (DUMMY : 0)
PLULDLY0	FLG	0.95 H .0	R/W	PLL unlock time select flag
KEYJ	FLG	0.96 H .0	R	KEY imput judge flag
TMCY	FLG	0.97 H .0	R	Timer carry F/F status flag
SBACK	FLG	0.98 H .3	R/W	SB acknowledge flag
SIO1NWT	FLG	0.98 H .2	R/W	SIO1 Not wait flag
SIO1WRQ1	FLG	0.98 H .1	R/W	SIO1 wait mode flag
SIO1WRQ0	FLG	0.98 H .0	R/W	SIO1 wait mode flag
IEG1	FLG	0.9 FH .1	R/W	INT1 interrupt edge select flag
IEG0	FLG	0.9 FH .0	R/W	INT0 interrupt edge select flag
PLLMD3	FLG	0.0 A 1 H .3	R	PLL mode select flag (DUMMY : 0)
PLLMD2	FLG	0.0A1H. 2	R	PLL mode select flag (DUMMY : 0)
PLLMD1	FLG	$0.0 \mathrm{AlH.1}$	R/W	PLL mode select flag
PLLMD0	FLG	0.0 A 1 H .0	R/W	PLL mode select flag
IFCSTRT	FLG	0.0 A 3 H .1	W	IF counter start flag
IFCRES	FLG	0.0 A 3 H .0	W	IF counter reset flag
P0CGIO	FLG	0.0 A 7 H .0	R/W	Port 0C I/O select flag
SIO1SF8	FLG	0.0A8H. 3	R/W	SIO1 clock counter status flag
SIO1SF9	FLG	0.0 A 8 H .2	R/W	SIO1 clock counter status flag
SBSTT	FLG	0.0 A 8 H .1	R/W	SB start condition status flag
SBBSY	FLG	0.0 A 8 H .0	R/W	SB start \& stop condition status flag
IP1FC	FLG	0.0 AEH .0	R/W	IF counter interrupt permission flag
IPSIO1	FLG	$0.0 \mathrm{AFH}$.	R/W	SIO1 interrupt permission flag
IPTM	FLG	$0.0 \mathrm{AFH}$.	R/W	Timer interrupt permission flag
IP1	FLG	0.0AFH. 1	R/W	INT1 interrupt permission flag
IP0	FLG	$0.0 \mathrm{AFH.0}$	R/W	INT0 interrupt permission flag
PLLRFMD3	FLG	0.0B1H. 3	R/W	PLL reference clock select flag
PLLRFMD2	FLG	0.0B1H.2	R/W	
PLLRFMD1	FLG	0.0B1H.1	R/W	
PLLRFMD0	FLG	0.0 B 1 H .0	R/W	PLL reference clock select flag
P1ABIO3	FLG	0.0 B 5 H .3	R/W	P1A3 I/O select flag
P1ABIO2	FLG	0.0 B 5 H .2	R/W	P1A2 I/O select flag
P1ABIO1	FLG	0.0 B 5 H .1	R/W	P1A1 I/O select flag
P1ABIO0	FLG	0.0 B 5 H .0	R/W	P1A0 I/O select flag
P0BBIO3	FLG	0.0 B 6 H .3	R/W	P0B3 I/O select flag
P0BBIO2	FLG	0.0B6H. 2	R/W	P0B2 I/O select flag
P0BBIO1	FLG	0.0B6H.1	R/W	P0B1 I/O select flag
P0BBIO0	FLG	0.0 B 6 H .0	R/W	P0B0 I/O select flag

Reserved word	Model	Address	Read/ Write	Function outline
P0ABIO3	FLG	0.0 B 7 H .3	R/W	P0A3 I/O select flag
P0ABIO2	FLG	0.0B7H. 2	R/W	P0A2 I/O select flag
P0ABIO1	FLG	0.0 B 7 H .1	R/W	P0A1 I/O select flag
P0ABIO0	FLG	0.0B7H. 0	R/W	P0A0 I/O select flag
SIO1IMD3	FLG	0.0 B 8 H .3	R	SIO1 interrupt mode select flag (DUMMY : 0)
SIO1IMD2	FLG	0.0 B 8 H .2	R	SIO1 interrupt mode select flag (DUMMY : 0)
SIO1IMD1	FLG	0.0 B 8 H .1	R/W	SIO1 interrupt mode select flag
SIO1IMD0	FLG	0.0B8H. 0	R/W	SIO1 interrupt mode select flag
SIO1CK3	FLG	0.0 B 9 H .3	R	SIO1 Shift clock select flag (DUMMY : 0)
SIO1CK2	FLG	0.0B9H. 2	R	SIO1 Shift clock select flag (DUMMY: 0)
SIO1CK1	FLG	0.0B9H. 1	R/W	SIO1 Shift clock select flag
SIOICK0	FLG	0.0B9H. 0	R/W	SIO1 Shift clock select flag
IRQIFC	FLG	0.0 BEH .0	R/W	IF counter Interrupt request flag
IRQSIO1	FLG	0.0 BFH .3	R/W	SIO1 Interrupt request flag
IRQTM	FLG	0.0 BFH .2	R/W	Timer Interrupt request flag
IRQ1	FLG	0.0BFH. 1	R/W	INT1 Interrupt request flag
IRQ0	FLG	0.0 BFH .0	R/W	INT0 Interrupt request flag

4.1.6 Peripheral hardware address

Reserved word	Model	Address	Read/ Write	Function outline
DBF	DAT	0FH	R/W	Data Buffer address for GET/PUT instructions
IX	DAT	01H	R/W	Index register address for INC instructions
ADCR	DAT	02H	R/W	A/D converter Vref data register
SIO2SFR	DAT	03H	R/W	SIO2 Presettable shift register
SIO1SFR	DAT	04H	R/W	SIO1 Presettable shift register
PWMR0	DAT	05H	R/W	PWM0 Data register
PWMR1	DAT	06H	R/W	PWM1 Data register
PWMR2	DAT	07H	R/W	PWM2 Data register
LCDR0	DAT	08H	W	LCD group data register 0
LCDR1	DAT	${ }^{09 H}$	W	LCD group data register 1
LCDR2	DAT	0AH	W	LCD group data register 2
LCDR3	DAT	OBH	W	LCD group data register 3
LCDR4	DAT	0 CH	W	LCD group data register 4
P0X	DAT	OCH	W	Port 0X data register
LCDR5	DAT	ODH	W	LCD group data register 5
LCDR6	DAT	OEH	W	LCD group data register 6
LCDR7	DAT	0FH	W	LCD group data register 7
CGPR	DAT	20H	R/W	CGP data register
AR	DAT	40 H	R/W	Address Register address for GET/PUT/PUSH/CALL/BR/MOUT/INC instructions
PLLR	DAT	41H	R/W	PLL data register
KSR	DAT	42H	R/W	Key souce data register
POY	DAT	42H	R/W	Port 0Y data register
IFC	DAT	43H	R	IF counter data register

5. ELECTRIC CHARACTERISTICS (TENTATIVE)

5.1 ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{a}}=25 \pm \mathbf{2}^{\circ} \mathrm{C}$, unless otherwise)

Power Voltage	$V_{\text {DD }}$	-0.3 to +6.0	V
Input Voltage	v_{1}	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Output Voltage	V_{0}		V
Maximum Output Voltage	$\mathrm{V}_{\mathrm{BDS} 1}$		V
Maximum Output Voltage	$V_{\text {BDS } 2}$	$\mathrm{V}_{\mathrm{DD}}+0.3\left(\mathrm{POA}_{2}, \mathrm{POA}_{3}\right)$	V
Output Absorption Current	${ }^{1}$	10.0	mA
Operating Temperature	Ta	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

5.2 RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
Power Voltage	$V_{\text {DD1 }}$	4.5	5.0	5.5	V	With PLL and CPU active
Power Voltage	$\mathrm{V}_{\mathrm{DD} 2}$	3.5	5.0	5.5	V	With CPU active and PLL not active
Data Retention Voltage	$\mathrm{V}_{\text {DDR }}$	2.2		5.5	V	No crystal oscillation
Power Voltage Rising Time	$\mathrm{T}_{\text {rise }}$			500	ms	$\mathrm{V}_{\mathrm{DD}}=0 \rightarrow 4.5 \mathrm{~V}$
Input Magnitude	Vin1	0.5		V_{DD}	$V_{\text {P-p }}$	VCOL, VCOH
Input Magnitude	Vin2	0.5		$V_{D D}$	$V_{\text {P. P }}$	AMIFC, FMIFC
Maximum Output Voltage	$V_{\text {bis }}$	0.0		16.0	V	$\mathrm{P}_{1} \mathrm{~B}_{1}$ to PlB_{3}, LPFout
Operating Temperature	T_{a}	-40		85	${ }^{\circ} \mathrm{C}$	

5.3 ELECTRIC CHARACTERISTICS

($\mathrm{T}_{\mathrm{a}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=4.5$ to $5.5 \mathrm{~V}, \mathrm{RH} \leqq 70 \%$, unless otherwise specified)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
Power Voltage	$V_{\text {DD1 }}$	4.5	5.0	5.5	V	With CPU and PLL active
Power Voltage	$\mathrm{V}_{\mathrm{DD} 2}$	3.5	5.0	5.5	V	With CPU active and PLL not active
Power Current	IDD1		1.2	2.4	mA	With CPU active and PLL not active Positive wave input $\begin{aligned} & \text { (fin }=4.5 \mathrm{MHz}, \mathrm{~V}_{I \mathrm{~N}}=\mathrm{V}_{\mathrm{DD}} \text {), } \\ & \mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \mathrm{X}_{\mathrm{IN}} \text { pin } \end{aligned}$
Power Current	${ }^{\prime}$ DD2		0.45	0.90	mA	With CPU active and PLL not active HALT instruction in use (execute 20 instructions per 1 ms) Positive wave input $\begin{aligned} & \left(\text { fin }=4.5 \mathrm{MHz}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}\right) \text {, } \\ & \mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} X_{\text {IN }} \text { pin } \end{aligned}$
Data Retention Voltage	$V_{\text {DDR1 }}$	3.5	5.0	5.5	V	Use electrical blackout detection by timer F/F Crystal oscillation
Data Retention Voltage	$\mathrm{V}_{\text {DDR2 }}$	2.2	5.0	5.5	V	Use electrical balckout detection by timer F/F No crystal oscillation
Data Retention Voltage	$\mathrm{V}_{\text {DDR3 }}$	2.0	5.0	5.5	V	Data memory (RAM) retention
Data Retention Current	IDDR1		5	15	$\mu \mathrm{A}$	No crystal oscillation $\quad \mathrm{T}_{\mathrm{a}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$
Data Retention Current	IDDR2		5	10	$\mu \mathrm{A}$	No crystal oscillation $V_{D D}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
Intermediate Level Output Voltage	$\mathrm{V}_{\mathrm{CM1}}$	2.3	2.5	2.7	V	$\mathrm{COM}_{0}, \mathrm{COM}_{1} \quad \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$
High Level Output Voltage	V_{1+1}	$0.8 \mathrm{~V}_{\mathrm{DD}}$	0.6 V ${ }_{\text {DD }}$		V	POA_{0} to $\mathrm{POA}_{3}, \mathrm{POB}_{0}$ to POB_{3}, $\mathrm{POC} \mathrm{C}_{0}$ to $\mathrm{POC}_{3}, \mathrm{P} 1 \mathrm{~A}_{0}$ to $\mathrm{P} 1 \mathrm{~A}_{3}$, $\mathrm{P}_{1} \mathrm{D}_{0}$ to $\mathrm{P} 1 \mathrm{D}_{3}, \mathrm{CE}, \mathrm{INT} \mathrm{O}_{0}, \mathrm{INT} 1_{1}$
High Level Output Voltage	$\mathrm{V}_{1 \mathrm{H} 2}$	$0.6 \mathrm{~V}_{\text {DD }}$	0.5 V DD		V	POD ${ }_{0}$ to POD_{3}
Low Level Output Voltage	$V_{\text {ILI }}$		0.4 V ${ }_{\text {DD }}$	0.2 VDD	V	POA_{0} to $\mathrm{POA}_{3}, \mathrm{POB}_{0}$ to POB_{3}, POC_{0} to $\mathrm{POC}_{3}, \mathrm{POD}_{0}$ to POD_{3}, $\mathrm{P} 1 \mathrm{~A}_{0}$ to $\mathrm{P} 1 \mathrm{~A}_{3}, \mathrm{P} 1 \mathrm{D}_{0}$ to $\mathrm{P}_{1} \mathrm{D}_{3}$, $\mathrm{CE}, \mathrm{INT}_{0}, \mathrm{INT}_{1}$
High Level Output Current	ІОН1	-1.0	-5.0		mA	$\begin{aligned} & \mathrm{POA} \mathrm{~A}_{0} \text { to } \mathrm{POA}_{1}, \mathrm{POB}_{0} \text { to } \mathrm{POB}_{3}, \\ & \mathrm{POC} \mathrm{C}_{0} \text { to } \mathrm{POC}_{3}, \mathrm{POD}_{0} \text { to } \mathrm{POD}_{3}, \\ & \mathrm{P} 1 \mathrm{~A}_{0} \text { to } \mathrm{P} 1 \mathrm{~A}_{3}, \mathrm{P1C} \mathrm{C}_{0} \text { to } \mathrm{P1C}_{3}, \mathrm{P} 1 \mathrm{~B}_{0} \\ & \qquad V_{O H}=V_{D D}-1 \mathrm{~V} \end{aligned}$
High Level Output Current	IOH_{2}	-1.0	-4.0		mA	$\begin{aligned} & \mathrm{LCD}_{0} \text { to } \mathrm{LCD}_{29}, \mathrm{EO}_{0}, \mathrm{EO}_{1} \\ & \mathrm{~V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-1 \mathrm{~V} \end{aligned}$

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
Low Level Output Current	IOL1	1.0	7.0		mA	$\mathrm{POA}_{0}, \mathrm{POA}_{1}, \mathrm{POB}_{0}$ to POB_{3}, $P O C_{0}$ to $\mathrm{POC}_{3}, \mathrm{POD}_{0}$ to POD_{3}, $\mathrm{P}_{1} \mathrm{~A}_{0}$ to $\mathrm{P}_{1 \mathrm{~A}_{3}}, \mathrm{P}_{1} \mathrm{C}_{0}$ to $\mathrm{P}_{1} \mathrm{C}_{3}, \mathrm{P} 1 \mathrm{~B}_{0}$ $\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-1 \mathrm{~V}$
Low Level Output Current	Iol2	1.0	3.5		mA	$\begin{array}{r} \mathrm{LCD}_{0} \text { to } \mathrm{LCD}_{29}, \mathrm{EO}_{0}, \mathrm{EO}_{1} \\ \mathrm{~V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}-1} \mathrm{~V} \end{array}$
Low Level Output Current	Iol3	1.0	2.0		mA	
Low Level Output Current	IoL4	1.0	10.0		mA	$\mathrm{POA}_{2}, \mathrm{POA}_{3} \quad \mathrm{~V}_{\mathrm{OL}}=1 \mathrm{~V}$
High Level Input Current	I_{1+1}	0.1	0.8		mA	VCOH at pull-down $\quad \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}$
High Level Input Current	$\mathrm{I}_{\mathbf{H} \mathbf{H}}$	0.1	0.8		mA	VCOL at pull-down $\quad \mathrm{V}_{1 H}=\mathrm{V}_{\mathrm{DD}}$
High Level Input Current	$\mathrm{I}_{\mathbf{H} 3}$	0.1	1.3		mA	$\mathrm{X}_{\text {IN }}$ at pull-down $\quad \mathrm{V}_{\text {IH }}=\mathrm{V}_{\text {DD }}$
High Level Input Current	$\mathrm{I}_{\mathbf{H} 4}$	0.05	0.13	0.30	mA	POD_{0} to POD_{3} at pull-down $V_{I H}=V_{D D}$
Maximum Output Voltage	$\mathrm{V}_{\mathrm{BDS}}$	0		16	V	${\mathrm{P} 1 \mathrm{~B}_{1} \text { to }{\mathrm{P} 1 \mathrm{~B}_{3}}^{\text {, LPF }} \text { OUT }}^{\text {d }}$
Output Off-Leak Current	$I_{\text {L1 }}$			500	nA	$\mathrm{POA}_{2}, \mathrm{POA}_{3} \quad \mathrm{~V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}$
Output Off-Leak Current	$\mathrm{I}_{\mathrm{L} 2}$			500	nA	
Output Off-Leak Current	$I_{\text {L3 }}$			100	nA	$E O_{0}, \mathrm{EO}_{1} \mathrm{~V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{OL}}=0 \mathrm{~V}$
AD Conversion Resolution				6	bit	
AD Conversion Absolute Accuracy			1	1.5	LSB	$\mathrm{T}_{\mathrm{a}}=-10$ to $50{ }^{\circ} \mathrm{C}$
Operating Frequency	$\mathrm{f}_{\text {in } 1}$	0.5		30	MHz	VCOL MF mode Positive wave input $V_{I N}=0.3 V_{P-P}$
Operating Frequency	$\mathrm{f}_{\text {in2 }}$	5		40	MHz	VCOL HF mode Positive wave input $V_{I N}=0.3 V_{P-P}$
Operating Frequency	$\mathrm{f}_{\text {in }}$	9		150	MHz	VCOH Positive wave input $V_{I N}=0.3 V_{\text {P-P }}$
Operating Frequency	$\mathrm{f}_{\text {in4 }}$	9		250	MHz	VCOH Positive wave input $V_{I N}=0.5 V_{\text {P.P }}$
Operating Frequency	$\mathrm{f}_{\text {in } 5}$	0.1		1	MHz	AMIFC Positive wave input $V_{I N}=0.3 V_{P-P}$
Operating Frequency	$\mathrm{f}_{\text {in6 }}$	5		15	MHz	FMIFC Positive wave input $V_{\text {IN }}=0.3 V_{\text {P. } . \mathrm{P}}$

(Reference characteristics)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION	
Power Current	${ }^{\text {IDD3 }}$		15		mA	With CPU and PLL active VCOH Positive wave input $\begin{aligned} & \text { fin }=150 \mathrm{MHz}, \mathrm{~V}_{\mathrm{in}}=0.5 \mathrm{~V} \mathrm{P}-\mathrm{P}, \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \end{aligned}$	
High Level Output Current	IOH		-0.2		mA	$\mathrm{COM}_{0}, \mathrm{COM}_{1}$	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-1 \mathrm{~V}$
Intermediate Level Output Current	Іом1		20		$\mu \mathrm{A}$	$\mathrm{COM}_{0}, \mathrm{COM}_{1}$	$\mathrm{V}_{\text {OM }}=\mathrm{V}_{\text {DD }}$
Intermediate Level Output Current	'ом2		-20		$\mu \mathrm{A}$	$\mathrm{COM}_{0}, \mathrm{COM}_{1}$	$\mathrm{V}_{\text {OM }}=0 \mathrm{~V}$
Low Level Output Current	Iol6		0.2		mA	$\mathrm{COM}_{0}, \mathrm{COM}_{1}$	$\mathrm{V}_{\mathrm{OL}}=1 \mathrm{~V}$

ONE-TIME PROM 4-BIT SINGLE-CHIP MICROCONTROLLER WITH BUILT-IN HARDWARE FOR DIGITAL TUNING SYSTEM

The μ PD17P005 is a product with the built-in mask ROM of μ PD17005 replaced with the one-time PROM.
μ PD17P005 allows the user to write any program and is suitable for prototyping or small volume production in the system development of the μ PD17005 or μ PD17003A (ROM, RAM scale-down version of μ PD17005).

The analog characteristics (PLL) of μ PD17P005 are different from the μ PD17005 or the μ PD17003A cases. Using device really should be evaluated about time constance.

See also μ PD17005 or μ PD17003A data when reading this data sheet.

FEATURES

- μ PD17005, μ PD17003A compatible.
- Built-in one time PROM ROM: 16 KB (7932 steps $\times 16$ bits)
- Single supply $5 \mathrm{~V} \pm 10 \%$

ORDERING INFORMATION

Order Code
Package
Quality Grade
μ PD17P005GF-3B9
80-pin plastic QFP (14×20)
Standard

PIN CONFIGURATION (Top View)

(1) Normal operation mode

(2) PROM programming mode

Note: (): Treatment of pins that are not used in PROM programming mode.
L: Separately connect to respective ground via a resistor (470 Ω)
Open: Do not connect.

$\mathrm{POA}_{0}-\mathrm{POA}_{3}$	Port 0A
$\mathrm{POB}_{0}-\mathrm{POB}_{3}$	Port 0B
$\mathrm{POC}_{0}-\mathrm{POC}_{3}$	Port 0C
$\mathrm{POD}_{0}-\mathrm{POD}_{3}$	Port 0D
$\mathrm{POE}_{0}-\mathrm{POE}_{3}$	Port 0E
$\mathrm{POF}_{0}-\mathrm{POF}_{3}$	Port OF
$\mathrm{POX}_{0}-\mathrm{POX}_{5}$	Port OX
$\mathrm{POY}_{0} \cdot \mathrm{POY}_{15}$	Port OY
P1A ${ }_{0} \cdot \mathrm{P} 1 \mathrm{~A}_{3}$	Port 1A
$\mathrm{P}^{1 \mathrm{~B}_{0}}$ - $\mathrm{P}^{1 \mathrm{~B}_{3}}$	Port 1B
${\mathrm{P} 1 \mathrm{C}_{0}-\mathrm{P} 1 \mathrm{C}_{3}}$	Port 1C
${\mathrm{P} 1 \mathrm{D}_{0}-\mathrm{P} 1 \mathrm{D}_{3}}$	Port 1D
P2A ${ }_{0}$	Port 2A
SDA	Serial data input/output
SCL	Serial clock input/output
$\overline{\mathrm{SCK}}_{1}, \overline{\mathrm{SCK}}_{2}$	Serial clock input/output
$\mathrm{SO}_{1}, \mathrm{SO}_{2}$	Serial data output
$\mathrm{SI}_{1}, \mathrm{SI}_{2}$	Serial data input
$\mathrm{INT}_{0}, \mathrm{INT}_{1}$	External interrupt input
CE	Chip enable input
FCG	External gate counter input

$\mathrm{PWM}_{0} \cdot \mathrm{PWM}_{2}$	D/A converter output
CGP	Clock generator port
FMIFC	Frequency counter input
AMIFC	Frequency counter input
$A D C C_{0}-A D C 5$	A/D converter input
VCOL	Local oscillation low input
VCOH	Local oscillation high input
X ${ }_{\text {IN }}$, Xout	Crystal resonator connecting pin
$\mathrm{EO}_{0}, \mathrm{EO}_{1}$	Error-out output
LPFIN	LPF amplifier input
LPFout	LPF amplifier output
$\mathrm{COM}_{0}, \mathrm{COM}_{1}$	LCD common signal output
$\mathrm{LCD}_{0}-\mathrm{LCD}_{29}$	LCD segment signal output
KS $0 \cdot \mathrm{KS}_{15}$	Key source signal output
CLK	Clock input for PROM
MD0-MD3	Mode selection for PROM
D0-D7	Data input/output for PROM
$V_{\text {PP }}$	Power Supply for PROM
$V_{\text {LPF }}$	LPF amplifier source
$V_{D D 1}, V_{D D 2}$	Power source
GND	Ground

BLOCK DIAGRAM

1. PIN FUNCTIONS

1.1 Port Pin

Pin Name	Input/ output	Dual function pin (*)	Function	Reset
POA_{0}	Input/ output	SO_{1}	4-bit input/output port (Port OA) Input/output settable in 1-bit.	Input
POA_{1}		$\overline{S C K}_{1}$		
POA_{2}		SCL	N -ch open-drain.	
POA_{3}		SDA	5 V withstand voltage	
POB_{0}	Input/ output	Sl_{2}	4-bit input/output port (Port OB) Input/output settable in 1 -bit.	Input
POB_{1}		SO_{2}		
POB_{2}		$\overline{\mathrm{SCK}}_{2}$		
POB_{3}		Sl_{1}		
$\mathrm{POC}_{0}-\mathrm{POC}_{3}$	Input/output	-	4-bit input/output port.(Port 0C) Input/output settable in 1-bit.	Input
$\mathrm{POD}_{0}-\mathrm{POD}_{3}$	Input	$\mathrm{ADC}_{2}-\mathrm{ADC}_{5}$ (MDO-MD3)	4-bit input port (Port OD) Pull-down resistor built-in.	-
$\mathrm{POE}_{0}-\mathrm{POE}_{3}$	Output	$\mathrm{LCD}_{22}-\mathrm{LCD}_{25}$ (DO-D3)	4-bit output port (Port OE)	-
$\mathrm{POF}_{0}-\mathrm{POF}_{3}$	Output	$\mathrm{LCD}_{26}-\mathrm{LCD}_{29}$ (D4-D7)	4-bit output port (Port OF)	-
$\mathrm{POX}_{0}-\mathrm{POX}_{5}$	Output	$\mathrm{LCD}_{16}-\mathrm{LCD}_{21}$	6-bit output port (Port 0X)	-
$\mathrm{POY}_{0}-\mathrm{POY}_{15}$	Output	$\mathrm{LCD}_{0} / \mathrm{KS}_{0}-\mathrm{LCD}_{15} / \mathrm{KS}_{15}$	16-bit output port (Port OY)	-
P1AO	Input/output	FCG	4-bit input/output port (Port OA) Input/output settable in 1 -bit.	Input
${\mathrm{P} 1 \mathrm{~A}_{1}-\mathrm{P} 1 \mathrm{~A}_{3}}^{\text {P }}$		-		
$\mathrm{P}_{1} \mathrm{~B}_{0}$	Output	CGP	4-bit output port (Port 1B)	-
$\mathrm{P}_{1} \mathrm{~B}_{1}-\mathrm{P} 1 \mathrm{~B}_{3}$		$\mathrm{PWM}_{0}-\mathrm{PWM}_{2}$	N =ch open-drain. 16 V withstand voltage	
$\mathrm{P}_{1} \mathrm{C}_{0}-{\mathrm{P} 1 C_{3}}$	Output	-	4-bit output port (Port 1C)	-
$\mathrm{P}^{1} \mathrm{D}_{0}$	Input	$A^{\prime} C_{0}$	4-bit input port (Port 1D)	-
$\mathrm{P}_{1} \mathrm{D}_{1}$		ADC_{1}		
${\mathrm{P} 1 \mathrm{D}_{2}}$		AMIFC		
${\mathrm{P} 1 \mathrm{D}_{3}}$		FMIFC		
P2A0	Output	-	1-bit output port (Port 2A)	-

[^0]
1.2 Pin for Other Than Port (In Normal Operation Mode)

Pin Name	Input/ output	Dual function pin (*)	Function	Reset
SO_{1}	Output	POA_{0}	Serial data output pin	Input
$\overline{S C K}_{1}$	Input/ output	POA_{1}	Serial clock input/output pin	
SCL	Input/output	POA_{2}	Serial clock input/output pin	
SDA	Input/output	POA_{3}	Serial data input/output pin	
Sl_{2}	Input	POB_{0}	Serial data input pin	Input
SO_{2}	Output	POB_{1}	Serial data output pin	
$\overline{\mathrm{SCK}}_{2}$	Input/output	POB_{2}	Serial clock input/output pin	
SI_{1}	Input	POB_{3}	Serial data input pin	
INT0	Input	-	Edge-sensitive vector interrupt input pin (detection edge selectable)	-
INT 1		(VPP)		
CE	Input	-	Operation select pin and reset signal input pin	-
FCG	Input	P1A0	External gate counter input pin	-
CGP	Output	$\mathrm{P}_{1} \mathrm{~B}_{0}$	Clock generator port output pin	-
$\mathrm{PWM}_{0}-\mathrm{PWM}_{2}$	Output	$\mathrm{P} 1 \mathrm{~B}_{1}-\mathrm{P} 1 \mathrm{~B}_{3}$	D/A converter output pin. N -ch open-drain. 16 V withstand voltage	-
$A D C_{0}-A D C_{1}$	Input	$\mathrm{P}_{1} \mathrm{D}_{0}-\mathrm{P}_{1} \mathrm{D}_{1}$	Analog input pin to D / A converter Key source signal return output pin	-
$A D C 2_{2-A D C 5}$		$\mathrm{POD}_{0}-\mathrm{POD}_{3}$ (MDO-MD3)		
$\mathrm{COM}_{0} . \mathrm{COM}_{1}$	Output	-	Common signal output pin of LCD controller/ Driver	-
$\mathrm{LCD}_{0}-\mathrm{LCD}_{15}$	Output	$\mathrm{POY}_{0} / \mathrm{KS}_{0}-\mathrm{POY}_{15} / \mathrm{KS}_{15}$	Segment signal output pin of LCD controller/ Driver	-
$\mathrm{LCD}_{16}-\mathrm{LCD}_{21}$		$\mathrm{POX}_{0}-\mathrm{POX}_{5}$		
$\mathrm{LCD}_{22}-\mathrm{LCD}_{25}$		$\mathrm{POE}_{0}-\mathrm{POE}_{3}(\mathrm{DO}-\mathrm{D} 3)$		
$\mathrm{LCD}_{26}-\mathrm{LCD}_{29}$		$\mathrm{POF}_{0}-\mathrm{POF}_{3}(\mathrm{D} 4-\mathrm{D} 7$)		
$\mathrm{KS}_{0}-\mathrm{KS}_{15}$	Output	$\mathrm{LCD}_{0} / \mathrm{POY}_{0}-\mathrm{LCD}_{15} / \mathrm{POY}_{15}$	Key source signal output pin of key matrix	-
AMIFC	Input	${\mathrm{P} 1 \mathrm{D}_{2}}$	Frequency counter input pin	-
FMIFC		${\mathrm{P} 1 \mathrm{D}_{3}}$		
VCOL	Input	-	Local oscillation frequency input pin	-
VCOH		-		
XIN	Input	(CLK)	Crystal resonator	-
X OUT	Output	-		
EO_{0}	Output	-	Charge pump output pin of PLL frequency synthesizer	-
EO_{1}				
LPFIN	Input	-	Amplifier input pin for low-pass filter	-
LPFOUT	Output	-	Amplifier output pin for low-pass filter N -ch open-drain. 16 V withstand voltage	-

Pin Name	Input/ output	Dual function pin (*)		Runction
V LPF *	-	-	Amplifier supply pin for low-pass filter	-
V DD1	-	-	Device supply pin. 6 V applied in program memory write/read/verify mode.	-
VDD2		Ground pin	-	
GND	-	-		

*: Pins in parentheses are dual function pins in PROM programming mode.
1.3 Pin for Other Than Port (In PROM Programming Mode)

Pin Name	Input/output	Dual function pin	Function	Reset
CLK	Input	$X_{\text {IN }}$	Clock input pin at program memory write/ read/verify.	-
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Input/output	$\mathrm{LCD}_{22} / \mathrm{POE}_{0}-\mathrm{LCD}_{29} / \mathrm{POF}_{3}$	Data input/output pin at program memory write/read/verify.	-
MD0-MD3	Input	$\mathrm{POD}_{0} / \mathrm{ADC}_{2}-\mathrm{POD}_{3} / \mathrm{ADC}_{5}$	Operation mode select pin at program memory write/read/verify.	-
VPP	-	INT_{1}	Program voltage application pin at program memory write/read/verify. 12.5 V applied at program memory write/read/ verify. Used as INT 1 pin in normal operation mode.	-

1.4 Equivalent Circuit for Pin
1.4.1 $\mathrm{POA}\left(\mathrm{POA}_{1} / \overline{\mathrm{SCK}}_{1}, \mathrm{POA}_{0} / \mathrm{SO}_{1}\right)$ $\mathrm{POB}\left(\mathrm{POB}_{3} / \mathrm{SI}_{1}, \mathrm{POB}_{2} / \overline{\mathrm{SCK}}_{2}, \mathrm{POB}_{1} / \mathrm{SO}_{2}, \mathrm{POB}_{0} / \mathrm{SI}_{2}\right)$ POC ($\mathrm{POC}_{3}, \mathrm{POC}_{2}, \mathrm{POC}_{1}, \mathrm{POC}_{0}$) (Note) P1A (P1A, P1A 2, P1A, P1A $)$ DO-D7

1.4.2 POA ($\mathrm{POA}_{3} / \mathrm{SDA}, \mathrm{POA}_{2} / \mathrm{SCL}$) (Input/output)

1.4.3 P1B ($\mathrm{P}_{\left.1 \mathrm{~B}_{0} / \mathrm{CGP} \text {) }\right) ~}^{\text {(}}$

P1C (P1C3, P1C $_{2}$, P1C $_{1}$, P1C $_{0}$)
P2A ($\mathrm{P}_{2} \mathrm{~A}_{0}$)
$\mathrm{LCD}_{0} / \mathrm{PO}_{0} / \mathrm{KS}_{0}-\mathrm{LCD}_{29} / \mathrm{POF}_{3}$
(Output)

1.4.4 $\mathrm{P} 1 \mathrm{~B}\left(\mathrm{P}_{1} \mathrm{~B}_{3} / \mathrm{PWM}_{2}, \mathrm{P}_{1 \mathrm{~B}_{2}} / \mathrm{PWM}_{1}, \mathrm{P}_{1} \mathrm{~B}_{1} / \mathrm{PWM}_{0}\right)$ (Output)

1.4.5 $\mathrm{POD}\left(\mathrm{POD}_{3} / \mathrm{ADC}_{5} / \mathrm{MD} 3, \mathrm{POD}_{2} / \mathrm{ADC}_{4} / \mathrm{MD} 2, \mathrm{POD}_{1} / \mathrm{ADC}_{3} / \mathrm{MD} 1, \mathrm{POD}_{0} / \mathrm{ADC} C_{2} / \mathrm{MDO}\right)$ (Input)

1.4.6 $\mathrm{P} 1 \mathrm{D}\left(\mathrm{P}_{1 D_{1}} / \mathrm{ADC}_{1}, \mathrm{P}_{1} \mathrm{D}_{0} / \mathrm{ADC}_{0}\right)$ (Input)

1.4.7 P1D (P1D ${ }_{3} /$ FMIFC, $\mathrm{P}_{1} \mathrm{D}_{2} /$ AMIFC) (Input)

1.4.8 CE
$\left.\begin{array}{l}\mathrm{CE} \\ \mathrm{INT} T_{1} / \mathrm{V}_{\mathrm{PP}} \\ \mathrm{INT}_{0}\end{array}\right\}$ (Schmitt triggered input)

1.4.9 Xout (Output), Xin/CLK (Input)

$\begin{array}{ll:l}1.4 .10 & \text { EO }_{1} & \text { (Output) }\end{array}$

1.4.11 LPFin (Input), LPFout (Output), VLPF

1.4.12 $\left.\begin{array}{cc}\mathrm{COM}_{1} \\ \mathrm{COM}_{0}\end{array}\right\}$ (Output)

$\left.\begin{array}{ll}\text { 1.4.13 } & \mathrm{VCOH} \\ & \mathrm{VCOL}\end{array}\right\}$ (Input)

2. FUNCTION LIST

Model Item		$\mu \mathrm{PD} 17003 \mathrm{~A}$	$\mu \mathrm{PD} 17005$	$\mu \mathrm{PD} 17 \mathrm{P} 005$
ROM (x 16 bits)		3836	7932	7932 (PROM)
Table reference area		256		
RAM (x 4 bits)		320		
Data buffer			4	
General register			16	
System register			12 nibbles	
Register file		33 nibbles (control register)		
General-purpose port register		24 nibbles		
Insturction execution time		$4.44 \mu \mathrm{~s}$ (4.5 MHz crystal resonator used)		
Stack level		7-level (stack operation available)		
Generalpurpose port	Input/output port	16 units		
	Input port	8 units		
	Output port	9 units (+30: LCD segment pin)		
Clock generator port		1 unit		
LCD controller/driver		- 30 segments, 2 commons $1 / 2$ duty, $1 / 2$ bias, frame frequency 250 Hz , drive voltage $V_{D D}$ 16 segment pins, also working as key source All of 30 segments can be used as output ports. (4, 4, 6,16 segments: independently settable.)		
Serial interface		- 2 systems 8-bit 3-wire: 2-channel 8-bit 2-wire: 1-channel		
D/A converter		- 8-bits $\times 3$ (PWM output, output withstand voltage 16 V max.)		
A/D converter		- 6 bits $\times 6$ (successive approximation by software)		
Interrupt		- 5 channels (Maskable interrupt) External interrupt: 2 channels (INT_{0} pin, INT_{1} pin) Internal interrupt: 3 channels (timer, serial interface 1, frequency counter)		
Timer		- 2 systems Timer carry FF (1, 5, 100, 250 ms) Timer interrupt (1, 5, 100, 250 ms)		
Reset function		- Power-ON reset (at power on) - Reset by CE pin (CE pin goes from low to high.) - Power failure detection function		

Model Item		μ PD17003A	$\mu \mathrm{PD} 17005$	μ PD17P005
PLL frequency synthesizer	Dividing method	- 2 types: Direct dividing method: (VCOL pin 20 MHz max.) Pulse swallowing: (VCOL pin 40 MHz max.) (VCOH pin 250 MHz max.)		
	Reference frequency	- 12 types selectable by program. $1,1.25,2.5,3,5,6.25,9,10,12.5,25,50,100 \mathrm{kHz}$		
	Charge pump	- Two independent error-out output		
	Phase comparator	- Unlock detection available by program. Unlock FF delay time selectable.		
	Amplifier for LPF	- CMOS operational amplifier, output withsatnd voltage 16 V max.		
Frequency counter		- Frequency measurement $\mathrm{P}_{1 D_{3}} /$ FMIFC pin: 5 to 15 MHz P1D ${ }_{2} /$ AMIFC pin: 0.1 to 1 MHz - External gate width measurement POA ${ }_{1} /$ FCG pin		
Supply voltage		- $\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V (PLL and CPU operations) - $\mathrm{V}_{\mathrm{DD}}=3.5$ to 5.5 V (PLL stop, CPU operation) - $V_{D D}=2.2$ to 5.5 V (Crystal resonator stop)		
Package		80-pin plastic QFP		

μ PD17P005

3. WRITE/READ/VERIFY THE ONE-TIME PROM (PROGRAM MEMORY)

The program memory built in μ PD17P005 is a 15864×8-bit electrically writable one-time PROM. This PROM is accessed in 1 -word, 16 -bit in normal operation mode and in 1 -word, 8 -bit in program memory write/read/verify mode. In this case, the upper 8 bits of 1 -word, 16 bits are allocated to even address and the lower 8 bits to odd address, respectively.

At PROM write/read/verify, set to PROM mode and use those pins shown in Table 3-1.
Addresses are updated by the clock input from the CLK pin instead of the address input.

Table 3-1 Pins to be used at program memory write/read/verify

Pin Name	Function
VPP	Program voltage application pin. Used as INT1 pin in normal operation mode.
CLK	Address update clock input pin
MD0-MD3	Operation mode select pin
D0-D7	8-bit data input/output pin
$V_{\text {DD1, }}$	VDD2
	Supply voltage application pin. 6 V applied $5 \mathrm{~V} \pm 10 \%$ applied in normal operation mode.

The built-in PROM is written using the specified PROM programmer and dedicated program adapter. Use the following PROM programmer and program adapter.

PROM programmer:	AF-9703 (Ando Electric Co.)
	AF-9704 (Ando Electric Co.)
Program adapter:	AF-9803 (Ando Electric Co.)

3.1 Operation Mode at Program Memory Write/Read/Verify

The μ PD17P005 changes to the program memory write/read/verify mode when +6 V is applied to the V_{DD} pin and +12.5 V to the V_{PP} pin.

According to the setting of the MDO-MD3, this mode is set to the operation mode as shown in Table 3-2.
All input pins not used in program memory write/read/verify mode are connected to the ground via the pulldown resistance (470 Ω).

Table 3-2 Operation mode at program memory write/read/verify

Designation of operation mode						Operation mode
V_{PP}	V DD	MDO	MD1	MD2	MD3	
	+6 V	H	L	H	L	O clear of program memory address
		L	H	H	H	Write mode
		L	L	H	H	Read/verify mode
		H	X	H	H	Program inhibit mode

Remark X: Lor H

3.2 Program Memory Write Procedure

The program memory write procedure is as follows and High-speed write is avilable.
(1) Pull down the input pins not in use to the ground via the resistance. Set the CLK pin low.
(2) Supply 5 V to the $V_{D D}$ and $V_{P P}$ pins.
(3) Wait for $10 \mu \mathrm{~s}$.
(4) 0 clear mode of program memory address.
(5) Supply 6 V to the V_{DD} pin and 12.5 V to the $\mathrm{V}_{\text {PP }}$ pin.
(6) Program inhibit mode
(7) Write data in 1 ms write mode.
(8) Program inhibit mode
(9) Verify mode. Proceed to (1) if written. If not, repeat steps (7) to (9).
(10) Times written in (7) to (9): X) $\times 1 \mathrm{~ms}$ additional writing
(11) Program inhibit mode
(12) The program memory address is updated (+1) by inputting 4 pulse signals to the CLK pin.
(13) Repeat (7) to (12) up to the final address.
(14) 0 clear mode of program memory address
(15) Change the $V_{D D} / V_{P P}$ pin voltage to 5 V .
(16) Power OFF

Steps (2) to (12) are schematically shown below.

3.3 Program Memory Read Procedure

The μ PD17P005 can read the contents of program memory by the following procedures.
(1) Pull down the input pins not in use to the ground via the resistance. Set the CLK pin low.
(2) Supply 5 V to the $V_{D D}$ and $V_{P P}$ pins.
(3) Wait for $10 \mu \mathrm{~s}$.
(4) 0 clear mode of program memory address.
(5) Supply 6 V to the V_{DD} pin and 12.5 V to the V_{PP} pin.
(6) Program inhibit mode
(7) Verify mode. Sequentially output the data of one address each time 4 clock pulse signals are input to the CLK pin.
(8) Program inhibit mode
(9) 0 clear mode of program memory address
(10) Change the $V_{D D}, V_{P P}$ pin voltage to 5 V .
(11) Power OFF

Steps (2) to (9) are shown below.

CLK

DO-D7

MDO

MD1

MD2

4. ELECTRIC CHARACTERISTICS

ABSOLUTE MAXIMUM RATING ($\left.\mathrm{T}_{\mathrm{a}}=25 \pm 2^{\circ} \mathrm{C}\right)$

Supply Voltage	$V_{\text {DD }}$		-0.3 to +6.0	V
Input Voltage	V_{1}		-0.3 to $V_{D D}+0.3$	V
Output Voltage	V_{0}	Except P1 $\mathrm{B}_{1}-\mathrm{P1} \mathrm{~B}_{3}, \mathrm{POA}_{2}, \mathrm{POA}_{3}$, LPFOUT	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	v
Ouput Withstand Voltage	$\mathrm{V}_{\text {BDS } 1}$	P1 $B_{1}-$ P1 $^{1 B_{3}}$, LPFOUT	18.0	v
Output Withstand Voltage	$V_{\text {BDS } 2}$	$\mathrm{POA}_{2}, \mathrm{POA}_{3}$	$V_{D D}+0.3$	V
High level Output Current	$\mathrm{IOH}^{\text {I }}$	1 pin	-12	mA
		All pins	-20	$m A$
Low Level Output Current	I_{OL}	1 pin	12	mA
		All pins	20	$m A$
Operating temperature	Topt		-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$		-55 to +125	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATION CONDITIONS

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
Supply Voltage	$V_{\text {DD1 }}$	4.5	5.0	5.5	V	PLL and CPU operations
Supply Voltage	$V_{\text {DD2 }}$	3.5	5.0	5.5	V	PLL stop, CPU operation
Data Retention Voltage	V DDR	2.2		5.5	V	Crystal resonator stop
Supply Voltage Rise Time	t rise			500	ms	$\mathrm{V}_{\text {DD }}=0 \rightarrow 4.5 \mathrm{~V}$
Input Amplitude	$V_{\text {in } 1}$	0.5		$V_{\text {DD }}$	V_{P-P}	$\mathrm{VCOL}, \mathrm{VCOH}$
Input Amplitude	$V_{\text {in2 }}$	0.5		$V_{D D}$	V_{P-P}	AMIFC, FMIFC
Output Withstand Voltage	$V_{\text {BDS }}$			16.0	V	P1 $\mathrm{B}_{1}-\mathrm{P} 1 \mathrm{~B}_{3}$, LPF OUT
Operating Temperature	Topt	-40		+85	${ }^{\circ} \mathrm{C}$	

DC CHARACTERISTICS ($\mathrm{T}_{\mathrm{a}}=\mathbf{- 4 0}$ to $+\mathbf{8 5}{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathbf{4 . 5}$ to 5.5 V)

CHARACTERISTIC	SYMBOL	STANDARD VALUE				CONDITION
		MIN.	TYP.	MAX.	UNIT	
Supply Voltage	$\mathrm{V}_{\text {DD1 }}$	4.5	5.0	5.5	V	CPU and PLL operations
Supply Voltage	$\mathrm{V}_{\text {DD2 }}$	3.5	5.0	5.5	V	CPU operation, PLL stop
Data Retention Voltage	VDDR1	3.5		5.5	V	At power failure detection by timer F/F. At crystal oscillation.
Data Retention Voltage	VDDR2	2.2		5.5	V	At power failure detection by timer F/F. When crystal oscillation is stopped.
Data Retention Voltage	$V_{\text {DDR3 }}$	2.0		5.5	V	Data memory (RAM) Retention
Data Retention Current	IDDR1		2	15	$\mu \mathrm{A}$	When crystal oscillation is stopped. $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
Data Retention Current	IDDR2		2	10	$\mu \mathrm{A}$	When crystal oscillation is stopped. $V_{D D}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
Intermediate Level Output Voltage	$\mathrm{V}_{\mathrm{OM} 1}$	2.3	2.5	2.7	V	$\mathrm{COM}_{0}, \mathrm{COM}_{1}, \mathrm{~V}_{\text {DD }}=5 \mathrm{~V}$
High Level Input Voltage	$\mathrm{V}_{1 \mathrm{H} 1}$	0.8 V DD		VDD	V	$\mathrm{POA}_{0}-\mathrm{POA}_{3}, \mathrm{POB}_{0}-\mathrm{POB}_{3}, \mathrm{POC}_{0}-\mathrm{POC}_{3}$, P1 A0-P1A $3, ~ P 1 D_{0}-$ P1 $_{3}, C E, I N T_{0}, I N T_{1}$
High Level Input Voltage	$\mathrm{V}_{1 \mathrm{H} 2}$	$0.6 \mathrm{~V}_{\mathrm{DD}}$		VDD	V	$\mathrm{POD}_{0}-\mathrm{POD}_{3}$
Low Level Input Voltage	$\mathrm{V}_{\text {IL }}$	0		0.2 VDD	V	$\mathrm{POA}_{0}-\mathrm{POA}_{3}, \mathrm{POB}_{0}-\mathrm{POB}_{3}, \mathrm{POC}_{0}-\mathrm{POC}_{3}$, $\mathrm{POD}_{0}-\mathrm{POD}_{3}, \mathrm{P} 1 \mathrm{~A}_{0}-\mathrm{P} 1 \mathrm{~A}_{3}, \mathrm{P}_{1} \mathrm{D}_{0}-\mathrm{P}_{1} \mathrm{D}_{3}$, CE, INT ${ }_{0}$, INT 1
High Level Output Current	${ }^{\text {IOH1 }}$	-1.0	-5.0		mA	$\begin{aligned} & P O A_{0}, P_{O A}, P_{1}, B_{0}-P_{0} B_{3}, P_{O C}-P_{0}-C_{3}, \\ & P 1 A_{0}-P 1 A_{3}, P 1 C_{0}-P 1 C_{3}, P_{1} B_{0}, P_{2} A_{0} \\ & V_{O H}=V_{D D}-1 V \end{aligned}$
High Level Output Current	${ }^{1} \mathrm{OH} 2$	-1.0	-4.0		mA	$\begin{aligned} & \mathrm{LCD}_{\mathrm{O}}-\mathrm{LCD}_{29}, \mathrm{EO}_{0}, \mathrm{EO}_{1} \\ & \mathrm{~V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-1 \mathrm{~V} \end{aligned}$
Low Level Output Current	${ }^{\text {IOL1 }}$	1.0	7.0		mA	$\mathrm{POA}_{0}-\mathrm{POA}_{3}, \mathrm{POB}_{0}-\mathrm{POB}_{3}, \mathrm{POC}_{0}-\mathrm{POC}_{3}$, $P 1 A_{0}-P 1 A_{3}, P 1 C_{0}-P 1 C_{3}, P 1 B_{0}, P 2 A_{0}$ $\mathrm{V}_{\mathrm{OL}}=1 \mathrm{~V}$
Low Level Output Current	IOL2	1.0	3.5		mA	$\mathrm{LCD}_{0}-\mathrm{LCD}_{29}, \mathrm{EO}_{0}, \mathrm{EO}_{1} \mathrm{~V}_{\mathrm{OL}}=1 \mathrm{~V}$
Low level Output current	IOL3	1.0	2.0		mA	${\mathrm{P} 1 \mathrm{~B}_{1}-\mathrm{P} 1 \mathrm{~B}_{3} \quad \mathrm{~V}_{\mathrm{OL}}=1 \mathrm{~V}}^{\text {l }}$
Low Level Output Current	IOL4	1.0	10.0		mA	$\mathrm{POA}_{2}, \mathrm{POA}_{3} \mathrm{~V}_{\mathrm{OL}}=1 \mathrm{~V}$
High Level Input Current	1/H1	0.1	0.8		mA	At VCOH pull-down. $\mathrm{V}_{1 H}=\mathrm{V}_{\mathrm{DD}}$
High Level Input Current	$1_{1 / \mathrm{H} 2}$	0.1	0.8		mA	At VCOL pull-down. $\mathrm{V}_{1 H}=\mathrm{V}_{\text {DD }}$
High Level Input Current	$\mathrm{I}_{1 \mathrm{H} 3}$	0.1	1.3		mA	At $X_{I N}$ pull-down. $\mathrm{V}_{1 H}=\mathrm{V}_{\mathrm{DD}}$
High Level Input Current	$\mathrm{I}_{1 \mathrm{H} 4}$	0.05	0.13	0.30	mA	At $\mathrm{POD}_{0}-\mathrm{POD}_{3}$ pull-down. $\mathrm{V}_{1 H}=\mathrm{V}_{\mathrm{DD}}$
Output Leakage Current	$I_{\text {L1 }}$			500	nA	$\mathrm{POA}_{2}, \mathrm{POA}_{3} \quad \mathrm{VOH}^{\prime}=\mathrm{V}_{\text {DD }}$
Output Leakage Current	IL2			500	nA	
Output Leakage Current	IL3			± 100	nA	$\mathrm{EO}_{0}, \mathrm{EO}_{1} \mathrm{~V}_{\mathrm{OH}}=\mathrm{VDD}, \mathrm{V}_{\mathrm{OL}}=0 \mathrm{~V}$

AC CHARACTERISTICS $\left(T_{a}=-40\right.$ to $+85{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathbf{4 . 5}$ to 5.5 V)

CHARACTERISTIC	SYMBOL	STANDARD VALUE				CONDITION
		MIN.	TYP.	MAX.	UNIT	
Operating Frequency	$\mathrm{f}_{\mathrm{in} 1}$	0.5		30	M Hz	VCOL MF mode Sine wave input $V_{\text {in }}=0.3 V_{\text {P-P }}$
Operating Frequency	f in2	5		40	MHz	VCOL HF mode Sine wave input $V_{\text {in }}=0.3 V_{P-P}$
Operating Frequency	fin	9		150	MHz	VCOH Sine wave input $V_{\text {in }}=0.3 V_{P-P}$
Operating Frequency	$\mathrm{fin4}^{\text {f }}$	0.1		1	MHz	AMIFC Sine wave input $V_{\text {in }}=0.3 V_{\text {P_P }}$
Operating Frequency	$f_{\text {in5 }}$	0.44		0.46	MHz	AMIFC Sine wave input $V_{\text {in }}=0.05 V_{p-p}$
Operating Frequency	$\mathrm{f}_{\text {in6 }}$	5		15	MHz	FMIFC Sine wave input $V_{\text {in }}=0.3 V_{P-P}$
Operating Frequency	$\mathrm{fin7}$	10.5		10.9	MHz	FMIFC Sine wave input $V_{\text {in }}=0.06 V_{P-P}$
Analog-to Digital Conversion Resolution	:			6	bit	
Analog-to-Digital Conversion Total Error		-	± 1	± 1.5	LSB	$\mathrm{T}_{\mathrm{a}}=-10$ to $+50^{\circ} \mathrm{C}$

REFERENCE CHARACTERISTICS

CHARACTERISTIC	SYMBOL	STANDARD VALUE				CONDITION
		MIN.	TYP.	MAX.	UNIT	
Supply Current	IDD3		15		mA	CPU and PLL operations VCOH sine wave input $\begin{aligned} & \mathrm{f}_{\text {in }}=150 \mathrm{MHz}, \\ & \mathrm{~V}_{\text {in }}=0.5 \mathrm{VP}-\mathrm{P} \\ & V_{D D}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \end{aligned}$
High Level Output Current	${ }^{\prime} \mathrm{OH} 4$		-0.2		$m A$	$\begin{aligned} & \operatorname{COM}_{0}, \operatorname{COM}_{1} \\ & \mathrm{~V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-1 \mathrm{~V} \end{aligned}$
Intermediate Level Output Current	IOM1		-20		$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{COM}_{0}, \mathrm{COM}_{1} \\ & \mathrm{~V}_{\mathrm{OM}}=\mathrm{V}_{D D}-1 \mathrm{~V} \end{aligned}$
Intermediate Level Output Current	IOM2		20		$\mu \mathrm{A}$	$\begin{aligned} & \operatorname{COM}_{0}, \operatorname{COM}_{1} \\ & \mathrm{~V}_{\mathrm{OM}}=1 \mathrm{~V} \end{aligned}$
Low Level Output Current	IOL5		0.2		mA	$\mathrm{COM}_{0}, \mathrm{COM}_{1}$ $\mathrm{V}_{\mathrm{OL}}=1 \mathrm{~V}$

DC PROGRAMMING CHARACTERISTICS $\left(T_{a}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=6.0 \pm 0.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=12.5 \pm 0.5 \mathrm{~V}\right)$

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
High Level Input Voltage	$\mathrm{V}_{1} \mathrm{H}_{1}$	$0.7 \mathrm{~V}_{\text {DD }}$		$V_{\text {DD }}$	V	Other than CLK
	$\mathrm{V}_{\text {IH2 }}$	$\mathrm{V}_{\text {DD }} 0.5$		$V_{\text {DD }}$	V	CLK
Low Level Input Voltage	$\mathrm{V}_{\text {IL1 }}$	0		$0.3 V_{\text {DD }}$	V	Other than CLK
	$V_{\text {IL2 }}$	0		0.4	V	CLK
Input Leakage Current	IL1			± 10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$
High Level Output Voltage	V_{OH}	$V_{\text {DD }}$-1.0			V	$\mathrm{IOH}^{\prime}=-1 \mathrm{~mA}$
Low Level Output Voltage	VOL			1.0	V	$\mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA}$
VDD Supply Current	IDD			30	mA	
VPP Supply Current	IPP			30	mA	MD0 $=\mathrm{V}_{\text {IL }}, \mathrm{MD1}=\mathrm{V}_{\text {IH }}$

Note 1: Be sure to keep Vpp below +13.5 V including overshoot.
2: Be sure to apply $V_{D D}$ before $V_{P P}$ and cut it after $V_{P P}$.

AC PROGRAMMING CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=6.0 \pm 0.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=12.5 \pm 0.5 \mathrm{~V}\right)$

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
Address Setup Time (*) (vs MDO +)	${ }^{\text {t }}$ AS	2			$\mu \mathrm{s}$	
MD1 Setup Time (vs MDO \downarrow)	${ }^{\text {tM1S }}$	2			$\mu \mathrm{s}$	
Data Setup Time (vs MDO \downarrow)	${ }^{t} \mathrm{DS}$	2			$\mu \mathrm{s}$	
Address Hold Time (*) (vs MDO \uparrow)	${ }^{t}{ }_{\text {AH }}$	2			$\mu \mathrm{s}$	
Data Hold Time (vs MDO ¢)	${ }^{\text {t }} \mathrm{DH}$	2			$\mu \mathrm{s}$	
MDO \uparrow to Data Output Float Delay Time	${ }^{\text {t }} \mathrm{DF}$	0		130	ns	
VPp Setup Time (vs MD3 \uparrow)	tVPS	2			$\mu \mathrm{s}$	
VDD Setup Time (vs MD3 \uparrow)	${ }^{\text {t V D S }}$	2			$\mu \mathrm{s}$	
Initial Program Pulse Width	tPW	0.95	1.0	1.05	ms	
Additional Program Pulse Width	topw	0.95		21.0	ms	
MDO Setup Time (vs MD1 ¢)	${ }^{\text {t MOS }}$	2			$\mu \mathrm{s}$	
MDO \downarrow to Data Output Delay Time	${ }^{\text {t }}$ DV			1	$\mu \mathrm{s}$	$\mathrm{MDO}=\mathrm{MD} 1=\mathrm{V}_{1 L}$
MD1 Hold Time (vs MDO \uparrow)	$\mathrm{t}_{\mathrm{M} 1 \mathrm{H}}$	2			$\mu \mathrm{s}$	
MD1 Recover Time (vs MDO \downarrow)	${ }^{\text {t M 1R }}$	2			$\mu \mathrm{s}$	
Program Counter Reset Time	tPCR	10			$\mu \mathrm{s}$	
CLK Input High/Low Level Width	${ }^{\text {t }}$ ¢ $\mathrm{H}, \mathrm{t}_{\text {¢ }}$	0.125			$\mu \mathrm{s}$	
CLK Input Frequency	${ }^{\dagger} \mathrm{X}$			4.19	MHz	
Initial Mode Set Time	${ }_{4}$	2			$\mu \mathrm{s}$	
MD3 Setup Time (vs MD1 ¢)	${ }^{\text {t M }}$ 3S	2			$\mu \mathrm{s}$	
MD3 Hold Time (vs MD1 \downarrow)	${ }^{\text {m M 3 }}$ H	2			$\mu \mathrm{s}$	
MD3 Setup Time (vs MDO \downarrow)	${ }^{\text {t M }}$ MSR	2			$\mu \mathrm{s}$	At program memory read.
Address (*) to Data Output Delay Time	${ }^{\text {t }}$ AAD	2			$\mu \mathrm{s}$	At program memory read.
Address (*) to Data Output Hold Time	${ }^{\text {tHAD }}$	0		130	ns	At program memory read.
MD3 Hold Time (vs MD0 \uparrow)	${ }^{\text {t M }}$ 3HR	2			$\mu \mathrm{s}$	At program memory read.
MD3 \downarrow to Data Output Float Delay Time	tDFR	2			$\mu \mathrm{s}$	At program memory read.

[^1]PROGRAM MEMORY WRITE TIMING

PROGRAM MEMORY READ TIMING

4-BIT SINGLE-CHIP MICROCONTROLLER

The μ PD17006 is a 4-bit single-chip CMOS microcontroller for use with a digital tuning system.
The CPU employs 17 K architecture which enables to directly operate a data memory by one instruction and to control various operations and peripheral hardware. Each instruction is comprised to one 16 -bit word.

The peripheral hardware incorporates a variety of input/output ports, a serial interface, a clock generator port, a prescalar for digital tuning, a PLL frequency synthesizer, a timer for remote controlled decoding, etc.

To cope with the RDS (Radio Data System) various timer functions, interrupt functions and external SRAM interface functions are incorporated.

Thus, a high-performance, multi-functional digital tuning sytem can be constructed.
The μ PD17P006* having an on-chip one-time PROM is also available for mask ROM product, μ PD 17006 program evaluation and small production.

An easy-to-use incircuit emulator (IE-17K) and an assembler (AS17K) are available as μ PD 17006 system development tools.
*: Under development

FEATURES

- 4-bit microcontroller for digital tuning
- Program memory (ROM): 24K bytes (12288×16 bits)
- General-purpose data memory (RAM): 896 nibbles (896×4 bits)
- Instruction execution time:
$1.78 \mu \mathrm{~s}$ (when a 4.5 MHz
crystal oscillator is used.)
- Stack level: 7
- A set of 46 easy-to-understand instructions
- Decimal operation enable
- 12K-step table reference enable
- On-chip PLL frequency synthesizer and 150 MHz prescalar
- 12 kinds of reference frequencies can be selected using appropriate programs
- 2-system error output ($\mathrm{EO}_{00}, \mathrm{EO}_{01}$ and EO_{10} systems)
- On-chip IF counter (AMIFC, FMIFC)
- On-chip 8-bit serial interface

2 systems with 3 channels:
2-wire and 3-wire interfaces

- On-chip D/A converter:

9 bits $\times 3$ channels (PWM output)
Usable as a modulo timer

- On-chip A/D converter: 8 bits $\times 6$ channels Hardware ($32 \mu \mathrm{~s}$) and software conversion

Also serves as an external event counter.

- Various timer functions

12-bit modulo timer (remote controlled: 10, $50 \mu \mathrm{~s}$)
8 -bit module timer (RDS clock synchronization:
$10,100 \mu \mathrm{~s}$)
8 -bit modulo timer (general-purpose:
$10,100,500,1000 \mu \mathrm{~s})$
Timer carry (general-purpose: 100 ms)

- Various interrupts

External interrupt: 2 channels ($\mathrm{INT}_{1}, \mathrm{INT}_{2}$ pins)
Internal interrupt: 4 channels (timer: 3 channels, serial interface: 1 channel)
Dual-function interrupt:
2 channels (serial interface: 2
channels, A/d converter, IF
counter and timer overflow)

- General-purpose input/output ports

Input/output port: 48
Input port: 8 (with 4 on-chip pull-down resistors) Output port: 11

- On-chip function of parallel interface with the external SRAM
- On-chip power-ON reset, CE reset and power failure detection circuit
- CMOS Low power consumption
- Supply voltage: $5 \mathrm{~V} \pm 10 \%$
- 80-pin plastic QFP

Notes on Serial interface: The 2-wire mode corresponds to the 12C-Bus specification from Philips. In case of using this interface mode note the following:

Duties when using I2C bus system

Purchase of NEC's I2C bus system hardware components conveys a license under the Philips I2C patents rights to use this components in an I2C system, provided that the system conforms the I2C standard specifications as defined by Philips.

Consequently for all ROM based components with I2C hardware circuits the user is kindly requested to notify the use of the 12C bus interface at the ROM code verification stage.

PIN CONFIGURATION (Top View)

BLOCK DIRAGRAM

SINGLE-CHIP MICROCONTROLLER

The μ PD17P006 is a 4-bit single-chip CMOS microcontroller for use with a digital tuning system.
The CPU employs 17 K architecture which enables to directly operate a data memory by one instruction and to control various operations and peripheral hardware. Each instruction is comprised of one 16 -bit word.

The peripheral hardware incorporates a variety of input/output ports, a serial interface, a clock generator port, a prescalar for digital tuning, a PLL frequency synthesizer, a timer for remote controlled decoding, etc.

To cope with the RDS (Radio Data System) various timer functions, interrupt functions and external SRAM interface functions are incorporated.

Thus, a high-performance, multi-functional digital tuning system can be constructed.
The μ PD17P006 has an on-chip one-time PROM, making it useful for mask ROM product μ PD17006* program evaluation and small production.

An easy-to-use incircuit emulator (IE-17K) and an assembler (AS17K) are available as μ PD17P006 system development tools.
*: Under development

FEATURES

- 4-bit microcontroller for digital tuning
- Program memory (OTPROM) :

24 K bytes (12288×16 bits)

- General-purpose data memory (RAM):

896 nibbles (896×4 bits)

- Instruction execution time: $1.78 \mu \mathrm{~s}$
(when a 4.5 MHz crystal oscillator is used.)
- Stack level: 7
- A set of 46 easy-to-understand instructions
- Decimal operation enable
- 12K-step table reference enable
- On-chip PLL frequency synthesizer and 150 MHz prescalar
- 12 kinds of reference frequencies can be selected using appropriate programs
- 2-system error output ($\mathrm{EO}_{00}, \mathrm{EO}_{01}$ and EO_{10} systems)
- On-chip IF counter (AMIFC, FMIFC)
- On-chip 8-bit serial interface

2 systems with 3 channels: 2-wire and 3 -wire

- On-chip D/A converter:

9 bits $\times 3$ channels (PWM output) Usable as a modulo timer

- On-chip A/D converter: 8 bits $\times 6$ channels Hardware ($32 \mu \mathrm{~s}$) and software conversion Also serves as an external event counter.
- Various timer functions

12-bit modulo timer (remote controlled: 10, $50 \mu \mathrm{~s}$)
8 -bit modulo timer (RDS clock syncronization: $10,100 \mu \mathrm{~s})$
8-bit modulo timer (general-purpose: $10,100,500,1000 \mu \mathrm{~s})$
Timer carry (general-purpose: 100 ms)

- Various interrupts

External interrupt: 2 channels ($\mathrm{INT}_{1}, \mathrm{INT}_{2}$ pins)
Internal interrupt: 4 channels (timer: 3 channels, serial interface: 1 channel)
Dual-function interrupt: 2 channels (serial interface: 2 channels, A/D converter, IF counter and timer overflow)

- General-purpose input/output ports Input/output port: 42
Input port: 8 (with 4 on-chip pull-down resistors) Output port: 11
- On-chip function of parallel interface with the external SRAM
- On-chip power-ON reset, CE reset and power failure detection circuit
- CMOS low power consumption
- Supply voltage: $5 \mathrm{~V} \pm 10 \%$
- 80 -pin plastic QFP

PIN CONFIGURATION (Top View)

4-BIT SINGLE-CHIP MICROCONTROLLER

The μ PD17010 is a 4-bit single-chip microcontroller for digital tunign system which incorporates the sprecaler operational up to 150 MHz , PLL frequency synthesizer, LCD driver, and IF counter.

Since the CPU has no accumulator and adopts 17 K architecture which may control the data memory directly, you can perform very effecient programming. It is necessary to be noted that any instruction is 16 -bit length 1 word.

PLL frequency synthesizer can operate in pulse swallow system and select such high frequency as 50 or 100 kHz , which makes it much easier to configure a high-performance tuner. Since it also incorporates 16 -bit frequency counter, you can use it for the detection of broadcast by counting the intermediate frequency of a tuner.

IE-17K (incircuit emulator) and AS17K (assembler) are available as well, which are easy-to-use as the tools of μ PD17010 system development.

Since One-Time PROM version, μ PD17P010: is available as well, it is recommendable for the system evaluation when developing the system of μ PD17010 and for its small production.
*: Under development

FEATURES

- 4-bit single-chip microcontroller for digital tuning system
- Program memory (ROM)
- μ PD17010: 7932×16 bits
- Data memory (RAM)
- μ PD17010: 432×4 bits
- Stack level: 9
- Perceptible 35 types of instruction set
- Decimal operational
- Instruction execution time: $4.44 \mu \mathrm{~s}$ (when connecting a 4.5 MHz crystal resonator)
- On-chip PLL frequency synthesizer and 150 MHz prescaler
- 12 types of reference frequency selectable by program
- On-chip LCD driver (1/2 bias, 1/2 duty, frame frequency: 250 Hz)
- On-chip IF counter (AMIFC, FMIFC)

Notes on Serial interface:

The 2-wire mode corresponds to the 12C-Bus specification from Philips.
In case of using this interface mode note the following:

Duties when using 12C bus system

Purchase of NEC's I2C bus system hardware components conveys a license under the Philips I2C patents rights to use this components in an I2C system, provided that the system conforms the I2C standard specifications as defined by Philips.

Consequently for all ROM based components with I2C hardware circuits the user is kindly requested to notify the use of the I2C bus interface at the ROM code verification stage.

- On-chip 8-bit serial interface (2 systems 3 channels: 3-wire and 2-wire)
- On-chip 12-bit timer modulo counter
- On-chip 8-bit D/A converter: 3 outputs (PWM)
- On-chip 6-bit A/D converter: 6 inputs
- On-chip service interruption detector and power-on reset circuit
- Interrupt (external: 2 systems, internal: 4 systems)
- Various I/O ports available (33 ports (+ 30 ports: segment pins))
- On-chip CGP (Clock Generator Port)
- $5 \mathrm{~V} \pm 10 \%$
- CMOS low power consumption
- 80-pin plastic QFP

PIN CONFIGURATION (Top View)

BLOCK DIAGRAM

FUNCTION LIST

Product Name	μ PD1 7010	μ PD17P010
ROM	7932×16 bits	
RAM	432×4 bits	
System register	12×4 bits	
Register file	41×4 bits	
Port register	7×4 bits	
Port	Input/output port: $: 16$ ports Input port $: 8$ ports Output port $: 9$ ports $(+30$ ports: Segment pins)	
Serial interface	- 2 systems, 3 channels 8 bits, 3 -wire and 2-wire	
Interrupt	- 6 channels External interrupt: 2 channels Internal interrupt : 4 channels	
Timer	Timer carry $(1 \mathrm{~ms}, 5 \mathrm{~ms}, 100 \mathrm{~ms}, 250 \mathrm{~ms})$ Timer interrupt $(1 \mathrm{~ms}, 5 \mathrm{~ms}, 100 \mathrm{~ms}, 250 \mathrm{~ms})$ 12-bit timer modulo counter $(10 \mu \mathrm{~s}, 11.1 \mu \mathrm{~s}, 333.3 \mu \mathrm{~s}, 1 \mathrm{~ms})$	
Standby function	- STOP, HALT	
Power supply voltage	$\mathrm{V}_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$	
Package	80-pin plastic QFP	

4-BIT SINGLE-CHIP MICROCONTROLLER

μ PD17P010 is the 4-bit single-chip microcontroller for digital tuning system which incorporates the prescaler operational up to 150 MHz , PLL frequency synthesizer, LCD driver, and IF counter.

Since the CPU has no any accumulator and adopts 17 K architecture which can control the data memory directly, you can perform very efficient programming. It is necessary to be noted that any instruction is 16-bit length 1 word.

PLL frequency synthesizer can operate in pulse swallow system and select such high frequency as 50 or 100 kHz , which makes it much easier to configure a high performance tuner. Since it also incorporates 16-bit frequency counter, you can use it for the detection of broadcast by counting the intermediate frequency of a tuner.

IE-17K (incircuit emulator) and AS17K (assembler) are available, which are easy-to-use as the tools of μ PD17P010 system development.

Since it incorporates One-Time PROM, it is useful for the system evaluation when developing the system of μ PD17010*, and for small production.
*: Under development.

FEATURES

- 4-bit single chip microcontroller for digital tuning system
- Program memory (One-Time PROM): 7932×16 bits
- Data memory (RAM): 432×16 bits
- Stack level: 9
- Perceptible 35 types of instruction set
- Decimal operational
- Instruction execution time: $4.44 \mu \mathrm{~s}$ (when connecting a 4.5 MHz crystal resonator)
- On-chip PLL frequency synthesizer and 150 MHz prescaler
- 12 types of reference frequency selectable by program
- On-chip LCD driver (1/2 bias, $1 / 2$ duty, frame frequency: 250 MHz)
- On-chip 8-bit serial interface (2 systems 3 channels: 3-wire and 2-wire)
- 12-bit timer modulo counter
- On-chip 8-bit D/A converter: 3 outputs (PWM)
- On-chip 6-bit A/D converter: 6 inputs
- On-chip service interruption detector and poweron reset circuit
- Interrupt (external: 2 systems, internal: 4 systems)
- Various I/O ports available (33 ports (+30 ports: Segment pins))
- On-chip CGP (Clock Generator Port)
- $5 \mathrm{~V} \pm 10 \%$
- CMOS low power consumption
- 80-pin plastic QFP

PIN CONFIGURATION (TOP VIEW)

BLOCK DIAGRAM

FUNCTION LIST

Product Name	μ PD17010		μ PD17P010
ROM	7932×16 bits		
RAM	432×4 bits		
System register	12×4 bits		
Register file	41×4 bits		
Port register	7×4 bits		
Port	Input/output port: 16 portsInput port $: 8$ portsOutput portO: 9 ports (+30 ports: Segment pins)		
Serial interface	- 2 systems, 3 channels 8 bits, 3 -wire and 2-wire		
Interrupt	- 6 channels External interrupt: $\mathbf{2}$ channels Internal interrupt : 4 channels		
Timer	Timer carry $(1 \mathrm{~ms}, 5 \mathrm{~ms}, 100 \mathrm{~ms}, 250 \mathrm{~ms})$ Timer interrupt $(1 \mathrm{~ms}, 5 \mathrm{~ms}, 100 \mathrm{~ms}, 250 \mathrm{~ms})$ 12-bit timer modulo counter $(10 \mu \mathrm{~s}, 11.1 \mu \mathrm{~s}, 333.3 \mu \mathrm{~s}, 1 \mathrm{~ms})$		
Standby function	- STOP, HALT		
Power supply voltage	$V_{D D}=5 \mathrm{~V} \pm 10 \%$		
Package	80-pin plastic QFP		

SINGLE CHIP MICROCOMPUTER FOR PLL FREQUENCY SYNTHESIZER
 BUILT-IN IMAGE DISPLAY CONTROLLER

μ PD17002 is a $\mathbf{4}$ bits CMOS microcomputer for digital tuning system in single chip incorporating an Image Display Controller with various kinds of display capability and a PLL frequency synthesizer.

CPU has 4-bit parallel addition and substruction instructions, logical operation instructions, bit test instructions, carry F/F set and reset instructions, interrupt function, and timer function. Built-in user programable IDC (Image Display Controller) controls various kinds of display with easy program. This IC is made of 48 pin plastic shrink DIP (Dual In-Line Package) provided with plentiful I/O (Input/Output) ports controlled by effective input/output instructions, serial interface function, 4 bits A/D converter and 6 bits PWM output.

FEATURES

- 4 bits microcomputer for digital tuning system
- built-in PLL frequency synthesizer using prescaler: μ PB568
- single power supply ($5 \mathrm{~V} \pm 10 \%$)
- CMOS with low power consumption
- program memory (ROM): 8 K byte (16 bits x 3968 steps)
- data memory (RAM): 4 bits $\times 336$ words
- stack level: 6
- 35 types of understandable instruction
- capable of decimal arithmetic
- instruction execution time: $2 \mu \mathrm{~s}$ (with 8 MHz crystal connected)
- IDC (Image Display controller) built-in (user programable)
- number of display character : 97 characters (max. in one screen)
- display location : 12 lines $\times 16$ columns
- number of character types : 120 types
- character format : 10×15 dots (capable of fringe function)
- character color : 8 colors
- character size : 4 types of setting is available independently both for line and column $(14,28,42,56 \mathrm{H})$
- built-in 8 bits serial interface (1 system 2 channel: 3 wire and 2 wire system)
- built-in D/A converter: 6 bits $\times 4$ (PWM output)
- built-in A/D converter: 4 bits $\times 6$
- built-in H. Sync. signal counter
- built-in commercial power supply frequency counter
- built-in power-up detection circuit and power-on-reset circuit
- interrupt input for remote control signal (with noise canceller)
- plentiful I/O ports input output port : 15
input port : 4
output port : 8

ORDERING INFORMATION

Order Code	Package
μ PD17002CU-XXX	48-pin plastic shrink DIP $(600 \mathrm{mil})$

Notes on Serial interface: The 2-wire mode corresponds to the I2C-Bus specification from Philips. In case of using this interface mode note the following:

Duties when using 12C bus system
Purchase of NEC's I2C bus system hardware components conveys a license under the Philips I2C patents rights to use this components in an I2C system, provided that the system conforms the I2C standard specifications as defined by Philips.

Consequently for all ROM based components with I2C hardware circuits the user is kindly requested to notify the use of the I2C bus interface at the ROM code verification stage.

PIN CONNECTION (Top View)

BLOCK DIAGRAM

PIN DESCRIPTION

$\begin{aligned} & \text { PIN } \\ & \text { No. } \end{aligned}$	SYMBOL	PIN NAME	FUNCTION	OUTPUT TYPE
$\begin{array}{r} 1 \\ \text { to } \\ 4 \end{array}$	$\begin{gathered} \mathrm{POC}_{3} \\ \text { to } \\ \mathrm{POC}_{0} \end{gathered}$	PORT OC	4 bit output port. Latch for Port OC is located at 72 H address of BANK 0 or BANK 2 of data memory (RAM). Output status is unconstant at the initial power-on (V_{DD}).	CMOS push-pull
$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	$\begin{aligned} & \mathrm{POD}_{3} / \mathrm{ADC}_{5} \\ & \mathrm{POD}_{2} / \mathrm{ADC}_{4} \\ & \mathrm{POD}_{1} / \mathrm{ADC}_{3} \\ & \mathrm{POD}_{0} / \mathrm{ADC}_{2} \end{aligned}$	Port OD	4 bit input port. These ports can be used also as A / D converter. When used as port, pulldown resistor ($100 \mathrm{k} \Omega$ TYP.) is connected. The built-in 4 -bit A / D converters employ the successive approximation method. The A / D converter reference voltage is $V_{D D}$. Latch for Port 0 D is located at 73 H address of BANK 0 or BANK 2 of data memory (RAM).	Input with pull-down resister
$\begin{gathered} 9 \\ \text { to } \\ 12 \end{gathered}$	PWM_{3} to PWM 0	$\begin{gathered} \text { D/A } \\ \text { converter } \end{gathered}$	VDP (Variable Duty Port) or output port. VDP function is to output the pulse of 15.625 kHz frequency sequently. The pulse duty is variable by 66 -step program.	N -ch open-drain
13	$V_{\text {DD }}$	Power Supply	Device power supply pin. This pin supplies $5 \mathrm{~V} \pm 10 \%$ while the device is operating with full functions. When only CPU operates (PLL and IDC stop), 4.0 to 5.5 V is supplied. This voltage can be dropped to 2.5 V to hold the internal data memory (RAM) with a STOP instruction. When the voltage applied to this pin changes from 0 to 4.0 V , the device is reset and the program starts from address 0 because the μ PD17002 has a power-on reset circuit. To operate power-on reset circuit normally, the rising time ($0 \rightarrow 4.0 \mathrm{~V}$) should be within 500 ms .	-
14	Vco	Local Oscillator Signal Input	Input the output of VCO (Voltage Controlled Oscillator) after frequency division by the μ PB568 prescaler, that is the output of the prescaler. μ PB568 is a Two-Modulus prescaler with division ratio (1 GHz MAX.).	$\begin{aligned} & \text { Input } \\ & \text { (self-bias) } \end{aligned}$

PIN No.	SYMBOL	PIN NAME	FUNCTION	OUTPUT TYPE
15	EO	Error Output	PLL error output pin. If the frequency obtained by dividing the oscillation output of VCO is higher than the reference frequency, high level is output from this pin. Otherwise, low level is output. A floating condition results if the two frequencies are identical. The output is supplied through the LPF (Low Pass Filter) to the varacter diodes that form the VCO (Voltage Controlled Oscillator) as a tuning voltage.	CMOS 3-state
$\begin{aligned} & 16 \\ & 25 \end{aligned}$	GND	Ground	Device ground pin. Both pins should be connected to the ground.	-
17	PSC	Pulse Swallowing Control Output	Pin used to output a frequency division ratio switching signal to the μ PD568. Connected directly to the PSC pin of the μ PB568. The ratios are $1 / 128$ and $1 / 136$ (or $1 / 64$ and $1 / 68$).	CMOS push-pull
18	CE	Chip Enable	Device selection signal input pin. This pin must be high level to enable the device and low level to disable the device. When a STOP instruction in the program is executed while the CE pin is low level, the internal clock generator and CPU stop, and the memory can enter the hold state requiring low power consumption. STOP instruction is effective only when CE pin is low level, and when high level, works as same as NOP instruction. When CE pin goes to the high level from the low level, the device is reset and the program starts from 0 address. When the device is reset, BANK turns 0 and I/O port enters the input mode.	Input
$\begin{aligned} & 19 \\ & 20 \end{aligned}$	$X_{\text {OUT }}$ $X_{I N}$	X'tal	Crystal oscillator connector pin. Connect a 8 MHz crystal resonator to this pin.	cmos push-pull ($\mathrm{X}_{\mathrm{OUT}}$) Input ($X_{\text {IN }}$)
$\begin{aligned} & 21 \\ & \text { to } \\ & 24 \end{aligned}$	$\begin{aligned} & {\mathrm{P} 1 \mathrm{~A}_{3}}^{\text {to }} \\ & \mathrm{P} 1 \mathrm{~A}_{0} \end{aligned}$	Port 1A	4-bit output port. Latch for this port is located at $\mathbf{7 0 H}$ address of e BANK 1 in the data memory (RAM). This pin is N -channel open drain type. (Breakdown Voltage: 12.5 V) (Sink Current: 20 mA TYP.)	N -ch open-drain

PIN No.	SYMBOL	PIN NAME	FUNCTION	OUTPUT TYPE
$\begin{aligned} & 26 \\ & \text { to } \\ & 29 \end{aligned}$	$\begin{gathered} {\mathrm{P} 1 \mathrm{~B}_{3}}^{\text {to }} \\ \mathrm{P} 1 \mathrm{~B}_{0} \end{gathered}$	Port 1B	4-bit input output port. The input or output state of each bit can be specified in these ports. The input and output are set by the P1BBIO word $(35 \mathrm{H})$ in the resistor file. Latch for these ports are located at 71 H address of BANK 1 in the data memory (RAM).	CMOS push-pull (I/O)
$\begin{aligned} & 30 \\ & 31 \\ & 32 \end{aligned}$	RED GREEN BLUE	Character Signal Output	Character data output pins for R. G. B. Active high output	CMOS push-pull
33	BLANK	Blanking Signal Output	Blanking signal output pin to cut video signal. (Active high output)	CMOS push-pull
34	$\overline{\mathrm{H}_{\text {SYNC }}}$	H. Sync Signal Input	H. Sync. signal input pin for IDC (Active low input)	Input
35	$\overline{V_{\text {SYNC }}}$	V. Sync. Signal Input	V. Sync. signal input pin for IDC (Active low input). This signal can be used for interruption.	Input
$\begin{aligned} & 36 \\ & 37 \\ & 38 \end{aligned}$	$\begin{gathered} \mathrm{P}_{1 \mathrm{C}_{3} / \mathrm{ADC}_{1}} \\ {\mathrm{P} 1 \mathrm{C}_{2}}^{\mathrm{P}_{1} \mathrm{C}_{1}} \end{gathered}$	Port IC	3-bit input output port or A/D converter pin. The input or output state of each 3-bit can be set in these ports. The input and output are specified by the P1CGIO bit (\#O bit of 27H) in the resistor file. When used as A / D converter, input should be specified. Latch for this port is allocated at 72 H address of BANK 1 in the data memory (RAM). Port 1C enters into input at initial power-on ($V_{D D}$), or at clock stop time or at reset time. (CE pin: Low \rightarrow High)	CMOS push-pull (I/O)
39	ADC_{0}	AD Conversion	The A / D converter input pin. The built-in 4-bit A / D converters employ the successive approximation method. The A / D converter reference voltage is $V_{D D}$.	Input
$\begin{aligned} & 40 \\ & 41 \\ & 42 \\ & 43 \end{aligned}$	$\begin{gathered} \mathrm{POB}_{3} / \mathrm{HSCNT} \\ \mathrm{POB}_{2} / \mathrm{TMIN} \\ \mathrm{POB}_{1} \\ \mathrm{POB}_{0} / \mathrm{SI} \end{gathered}$	Port OB	4 -bit input output ports. The input or output state of each bit can be specified in these ports. The input and output are set by the POBBIO word $(36 \mathrm{H})$ in the resistor file. Latch for these ports are located at 71 H address of BANK 0 or BANK 2 in the data memory (RAM). $\mathrm{POB}_{2} /$ TMIN can be used also as an external timer input. Interruption starts by the $1 / 5$ or $1 / 6$ of the frequency input to this pin.	CMOS push-pull (I/O) However $\mathrm{POB}_{3} / \mathrm{HSCNT}$ is self biased at input.

PIN No.	SYMBOL	PIN NAME	FUNCTION	OUTPUT TYPE
$\begin{aligned} & 40 \\ & 41 \\ & 42 \\ & 43 \end{aligned}$	$\begin{gathered} \mathrm{POB}_{3} / \mathrm{HSCNT} \\ \mathrm{POB}_{2} / \mathrm{TMIN} \\ \mathrm{POB}_{1} \\ \mathrm{POB}_{0} / \mathrm{SI} \end{gathered}$	Port OB	Usually commercial power supply frequency is input to this pin, and used as reference clock for timer. $\mathrm{POB}_{0} / \mathrm{SI}$ pin can be used also as a serial interface ($\mu \mathrm{COM}$ standard mode) data input pin. $\mathrm{POB}_{3} / \mathrm{HSCNT}$ pin can be used also as a H . sync. signal counter input pin. Therefore this pin is self biased ($\mathrm{V}_{\mathrm{DD}} / 2$) at any time. Port OB turns input at the initial power-on (V_{DD}) or at clock stop time or at reset time (CE pin: Low \rightarrow High).	CMOS push-pull (I/O) However $\mathrm{POB}_{3} / \mathrm{HSCNT}$ is self biased at input.
$\begin{aligned} & 44 \\ & 45 \\ & 46 \\ & 47 \end{aligned}$	$\begin{gathered} \mathrm{POA}_{3} / \mathrm{SO} \\ \mathrm{POA}_{2} / \overline{\mathrm{SCK}} \\ \mathrm{POA} \\ \hline \end{gathered} \mathrm{SCL}$	Port 0A	4-bit input output port. The input or output state of each bit can be specified in these ports. The input and output are set by the POABIO word $(37 \mathrm{H})$ in the resistor file. Latch for these ports are located at 70 H address of BANK 0 or BANK 2 in the datamemory (RAM). $\mathrm{POA}_{3} / \mathrm{SO}$ pin can be used also as a serial interface ($\mu \mathrm{COM}$ standard mode) data output pin. $\mathrm{POA}_{2} / \overline{\mathrm{SCK}}$ pin can be used also as a shift clock input output pin. POA $0 / S D A$ pin can be used as a serial interface (two wire mode and $\mu \mathrm{COM}$ standard mode) data input output pin. POA ${ }_{1} /$ SCL pin can be used as a shift clock input output pin.	$\begin{aligned} & \mathrm{POA}_{3} / \mathrm{SO} \\ & \mathrm{POA}_{2} / \overline{\mathrm{CCK}} \end{aligned}$ CMOS push-pull (I/O) P0A1/SCL POA ${ }_{0} /$ SDA N -ch open-drain (I/O)
48	$I^{\prime} T_{N C}$	Interrupt Request Signal Input	Interrupt request signal input pin with noise canceller. This pin makes programming easy for a noisy signal such as a remote control signal. Program decides if interruption starts at rising time or at falling time of input signal into this pin. IEDG1 flag reset enters into interruption at rising time. IEDG1 flag set enters into interruption at falling time. At reset time (CE pin: Low \rightarrow High), IEDG1 flag is reset and interruption starts at the rising edge.	Input

INPUT/OUTPUT CIRCUITS

POA (POA $/$ SO, $\left.\mathrm{POA}_{2} / \overline{\mathrm{SCK}}\right)$
POB ($\left.\mathrm{POB}_{1}, \mathrm{POB}_{0} / \mathrm{SI}\right)$
P1B (P1B3, P1B2, P1B 1_{1}, P1B $_{0}$)
$P 1 C\left(P 1 C_{3} / A D C_{1}, P 1 C_{2}, P 1 C_{1}\right)$

POA (POA $/$ /SCL, POA $\left.A_{0} / S D A\right)$

POC (POC $_{3}, \mathrm{POC}_{2}, \mathrm{POC}_{1}, \mathrm{POC}_{0}$) RED, GREEN, BLUE, BLANK, PSC

PWM (PWM ${ }_{3}, \mathrm{PWM}_{2}, \mathrm{PWM}_{1}, P W M_{0}$)
P1A (P1A A_{3}, P1A $\left._{2}, P 1 A_{1}, P 1 A_{0}\right)$

POD ($\mathrm{POD}_{3} / A D C_{5}, \mathrm{POD}_{2} / A D C_{4}, \mathrm{POD}_{1} / A D C_{3}, \mathrm{POD}_{0} / A D C_{2}$)

$A D_{0}$

$\mathrm{POB}_{3} / \mathrm{HSCNT}$

$\mathrm{POB}_{2} /$ TMIN

$\overline{H_{S Y N C}}, \overline{V_{S Y N C}}, I N T_{N C}, C E$

$X_{\text {OUT, }} X_{\text {IN }}$

EO

VCO

ELECTRICAL CHARACTERISTICS (TARGET SPEC)

ABSOLUTE MAXIMUM RATINGS

CHARACTERISTICS	SYMBOL	RATING	UNIT
Supply Voltage	V_{DD}	-0.3 to +6.0	V
Input Voltage	V_{I}	-0.3 to V_{DD}	V
Output Voltage	V_{O}	-0.3 to V_{DD}	V
Output Sink Current	I_{o}	10 (except P1A)	mA
Output Breakdown Voltage	$\mathrm{V}_{\mathrm{BDS}}$	$13(\mathrm{P} 1 \mathrm{~A}, \mathrm{PWM})$	V
Operating Temperature	T_{a}	-20 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{V}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
Supply Voltage	V $_{\text {DD1 }}$	4.5	5.0	5.5	V	All functions operate (CPU, PLL, IDC)
Supply Voltage	$\mathrm{V}_{\text {DD2 }}$	4.0	5.0	5.5	V	Only CPU operates
Data Retention Voltage	V_{DR}	3.0		5.5	V	Crystal oscillation stopped
Output Breakdown Voltage	$\mathrm{V}_{\mathrm{BDS}}$			12.5	V	P1A, PWM
Supply Voltage Rising Time	$\mathrm{t}_{\text {rise }}$			500	ms	$\mathrm{~V}_{\mathrm{DD}}: 0 \rightarrow 4.0 \mathrm{~V}$

DC CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{a}}=\mathbf{- 2 0}\right.$ to $\mathbf{+ 7 0}{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathbf{4 . 5}$ to $\mathbf{5 . 5} \mathrm{V}$)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
Supply Current	IDD1		8		mA	$\left(\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}\right)$
Supply Current	IDD2		1		mA	Only CPU operates ($\mathrm{T}_{\mathrm{a}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)
High Level Input Voltage	$\mathrm{V}_{\mathbf{1 H 1}}$	$0.7 \mathrm{~V}_{\text {DD }}$			V	POA, P0B, P0D, P1B, P1C
High Level Input Voltage	$\mathrm{V}_{\mathbf{1 H 2}}$	0.8 V DD			V	CE, INT ${ }_{\text {NC }}, \overline{\mathrm{V}_{\text {SYNC }}}, \overline{H_{\text {SYNC }}}$
Low Level Input Voltage	$\mathrm{V}_{\text {ILI }}$			0.3 V D	V	POA, P0B, P0D, P1B, P1C
Low Level Input Voltage	$\mathrm{V}_{1 \mathrm{~L} 2}$			0.2 V DD	V	CE, INT ${ }_{\text {NC }}$, $\overline{\mathrm{V}_{\text {SYNC }}}$, $\overline{\mathrm{H}_{\text {SYNC }}}$
High Level Output Current	IOH		-2	-1	mA	POA ${ }_{2}$, POA $_{3}, ~ P O B, ~ P O C, ~ P 1 B, ~ P 1 C, ~$ RED, GREEN, BLUE, BLANK $\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}-1} \mathrm{~V}$
Low Level Output Current	Iolı	1	2		mA	P0A, POB, POC, P1B, P1C, RED, GREEN, BLUE, BLANK, PWM $\mathrm{V}_{\mathrm{OL}}=1 \mathrm{~V}$
Low Level Output Current	Iol2	15	20		mA	P1A, $\mathrm{V}_{\text {OL }}=1 \mathrm{~V}$
High Level Input Current	I_{IH}	100			$\mu \mathrm{A}$	$\mathrm{VCO}, \mathrm{X}_{1 \mathrm{I}}, \mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$
Data Retention Current	${ }^{\text {d }}$ D			10	$\mu \mathrm{A}$	Crystal oscillation stopped $\left(\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}\right)$
Output Leakage Current	IL			1	$\mu \mathrm{A}$	POA ${ }_{0}$, POA $_{1}$, P1A, PWM, EO, $V_{1 H}=5 \mathrm{~V}$

AC CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{a}}=\mathbf{- 2 0}\right.$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathbf{4 . 5}$ to 5.5 V)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
Input Frequency	$\mathrm{f}_{\text {TMR }}$	50		60	Hz	$\mathrm{POB}_{2} /$ TMIN
Input Frequency	f_{HS}	10		20	kHz	$\mathrm{POB}_{3} / \mathrm{HSCNT}$
IDC Jitter	IDC_{G}		4	6	ns	
IDC H. SYNC Start Position	IDC HP		16.25		$\mu \mathrm{s}$	from last edge of H . SYNC
IDC I. SYNC Start Position	$\mathrm{IDC}_{\mathrm{Vp}}$		17		H	from last edge of V. SYNC
Operating Frequency	$\mathrm{f}_{\text {in }}$			15	MHz	VCO ($\mathrm{V}_{\mathbf{1}}=0.6 \mathrm{~V}_{\text {P-P, }}$ SIN WAVE)

A/D CONVERTER CHARACTERISTICS $\left(T_{a}=\mathbf{- 2 0}\right.$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathbf{4 . 5}$ to 5.5 V)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
A/D Conversion Absolute Accuracy		$\pm 1 / 2$		± 1	LSB	$T_{a}=-10$ to $+50^{\circ} \mathrm{C}$
Input Impedance		1			M Ω	

μ PD17002

μ PD 17002 INSTRUCTION SET

Instruction Table

b_{14}	b_{13}	b_{12}	b_{11}	b_{15}		0		1
0	0	0	0	0	ADD	r, m	ADD	m, \#i
0	0	0	1	1	SUB	r, m	SUB	m, \#i
0	0	1	0	2	ADDC	r, m	ADDC	m, \#i
0	0	1	1	3	SUBC	r, m	SUBC	m, \#i
0	1	0	0	4	AND	r, m	AND	m, \#i
0	1	0	1	5	XOR	r, m	XOR	m, \#i
0	1	1	0	6	OR	r, m	OR	m, \#i
0	1	1	1	7	INC INC MOVT BR CALL RET RETSK EI DI RETI PUSH POP GET PUT PEEK POKE RORC STOP HALT NOP	AR IX DBF, @AR @AR @AR AR AR DBF, p p, DBF WR, rf rf, WR r 0 h		,
1	0	0	0	8	LD	r, m	ST	m, r
1	0	0	1	9	SKE	m, \#i	SKGE	m, \#i
1	0	1	0	A	MOV	@r, m	MOV	m, @r
1	0	1	1	B	SKNE	m, \#i	SKLT	m, \#i
1	1	0	0	C	BR	addr (page 0)	CALL	addr (page 0)
1	1	0	1	D	BR	addr (page 1)	MOV	m, \#i
1	1	1	0	E			SKT	m, \#n
1	1	1	1	F			SKF	m, \#n

Instructions

note

M	One of Data memory specified by [(BANK), m]
m	: Data memory address specified by [$\mathrm{mH}_{\mathrm{H}}, \mathrm{mL}$] of each bank
mH_{H}	: Data memory address high (Row address); 3 bits
mL_{L}	: Data memory address low (Column address); 4 bits
R	: One of General register specified by [(RP), r]
r	: General register address low; 4 bits
RP	: General register pointer
RF	: One of register file specified by rf
rf	: Register file address specified by [$\mathrm{rf}_{\mathrm{H}}, \mathrm{rf}_{\mathrm{L}}$]
rf_{H}	: Register file address high
rfL	: Register file address low
AR	: Address register
IX	: Index register
IXE	: Index enable flag
DBF	: Data buffer
WR	; Window register
MP	: Memory pointer
MPE	: Memory pointer enable flag

PE	: Peripheral
P	: Peripheral address
PH	: Peripheral address high
PL	: Peripheral address low
PC	: Program memory counter
SP	: Stack pointer
STACK	: Stack of (PC), (BANK), (IXE)
STACK	: Stack of (PC)
BANK	: Bank register
(ROM)	
INTEF	: One of Program memory data specified by (PC)
SGR	: Prorrupt enable flag
i	: Immediate data; 4 bits
n	: Bit position; 4 bits
addr	: One of program memory address; 11 bits
CY	: Carry flag
c	: Carry
b	: Borrow
h	: Halt release conditions
[]	: Address of M, R, RF
()	: Contents of M, R, RF, AR, IX, DBF, WR, PE

	Mnemonic	Operand	Function	Operation	Machine code			
					Op. code			
	ADD	r, m	Add Data memory to General register	$(\mathrm{R}),(\mathrm{CY}) \leftarrow(\mathrm{R})+(\mathrm{M})$	00000	mH_{H}	mL	r
		m, \#i	Add immediate data to Data memory	(M), (CY) $\leftarrow(M)+i$	10000	mH_{H}	mL	i
		r, m	Add Data memory to General register with carry	$(R),(C Y) \leftarrow(R)+(M)+(C Y)$	00010	m_{H}	m_{L}	r
		m, \#i	Add immediate data to Data memory with carry	$(\mathrm{M}),(\mathrm{CY}) \leftarrow(\mathrm{M})+\mathrm{i}+(\mathrm{CY})$	10010	m_{H}	mL	i
	INC	AR	Increment Address register	$(A R) \leftarrow(A R)+1$	00111	000	1001	0000
		IX	Increment Index register	$(I X) \leftarrow(I X)+1$	00111	000	1000	0000
岂	SUB	r, m	Subtract Data memory from General register	$(\mathrm{R}),(\mathrm{CY}) \leftarrow(\mathrm{R})-(\mathrm{M})$	00001	mH_{H}	m_{L}	r
		m, \#i	Subtract immediate data from Data memory	(M), (CY) $\leftarrow(\mathrm{M})-\mathrm{i}$	10001	mH_{H}	m_{L}	i
	SUBC	r, m	Subtract Data memory from General register with borrow	$(R),(C Y) \leftarrow(R)-(M)-(C Y)$	10011	m_{H}	m_{L}	r
		m, \#i	Subtract immediate data from Data memory	$(\mathrm{M}),(\mathrm{CY}) \leftarrow(\mathrm{M})-\mathrm{i}-(\mathrm{CY})$	10011	$\mathrm{mH}^{\text {H}}$	m_{L}	i
	SKE	m, \#i	Skip if Data memory equals immediate data	(M) - i \& skip if zero	01001	m_{H}	m_{L}	i
	SKGE	m, \#i	Skip if Data memory is greater than or equal to immediate data	(M) - i \& skip if not borrow	11001	$\mathrm{mH}^{\text {H}}$	mL_{L}	i
	SKLT	m, \#i	Skip if Data memory is less than immediate data	(M) - i \& skip if borrow	11011	mH_{H}	mL_{L}	i
	SKNE	m, \#i	Skip if Data memory not equal immediate data	(M) - i \& skip if not zero	01011	mH_{H}	mL	i

						Mach	code	
	nic	Operand	Function	Operation	Op. code			
	AND	m, \#i	Logic AND of Data memory and immediate data	$(\mathrm{M}) \leftarrow(\mathrm{M})$ AND i	10100	mH	mL	i
		r, m	Logic AND of General register and Data memory	$(\mathrm{R}) \leftarrow(\mathrm{R})$ AND (M)	00100	m_{H}	mL	r
	OR	m, \#i	Logic OR of Data memory and immediate data	$(\mathrm{M}) \leftarrow(\mathrm{M}) \mathrm{OR} \mathrm{i}$	10110	m_{H}	mL	i
		r, m	Logic OR of General register and Data memory	$(R) \leftarrow(R) O R(M)$	00110	$\mathrm{mH}^{\text {H}}$	mL	r
	XOR	m, \#i	Exclusive Logic OR of Data memory and immediate data	$(\mathrm{M}) \leftarrow(\mathrm{M})$ XOR i	10101	mH_{H}	mL	i
		r, m	Exclusive Logic OR of General register and Data memory	$(R) \leftarrow(R) \times O R(M)$	00101	m_{H}	mL	r
	LD	r, m	Load Data memory to General register	$(R) \leftarrow(M)$	01000	m_{H}	mL	r
	ST	m, r	Store General register to Data memory	$(\mathrm{M}) \leftarrow(\mathrm{R})$	11000	$\mathrm{mH}^{\text {H}}$	mL	r
	MOV	@r, m	Move Data memory to Destination data memory referring to General register	$\begin{aligned} & \text { if MPE=1 }:[(M P),(R)] \leftarrow(M) \\ & \text { if } M P E=0:[(m H),(R)] \leftarrow(M) \end{aligned}$	01010	mH_{H}	mL	r
		m, @r	Move Source data memory referring to General register to Data memory	$\begin{aligned} & \text { if MPE=1 }:(M) \leftarrow[(M P),(R)] \\ & \text { if } M P E=0:(M) \leftarrow[(\mathrm{mH}),(R)] \end{aligned}$	11010	$\mathrm{mH}^{\text {H}}$	mL	r
		m, \#i	Move immediate data to Data memory	(M) $\leftarrow \mathrm{i}$	11101	mH	mL	i
	MOVT	DBF, @AR	Move Program memory data specified by Address register to Data buffer	$\left.\begin{array}{l} \left(\text { STACK }_{\mathrm{pc}}\right) \leftarrow(\mathrm{PC}) \& \\ (\mathrm{PC}) \leftarrow(\mathrm{AR}) \& \\ (\mathrm{DBF}) \leftarrow(\mathrm{ROM})_{\mathrm{pc}} \& \\ (\mathrm{PC}) \leftarrow(\mathrm{STACK} \\ \mathrm{pc} \end{array}\right)$	00111	000	0001	0000
	PUSH	AR	Decrement Stack pointer, then move Address register to Stack	$\begin{aligned} & (S P) \leftarrow(S P)-1 \& \\ & \left(S T A C K_{p c}\right) \leftarrow(A R) \end{aligned}$	00111	000	1101	0000
	POP	AR	Move Stack to Address register, then increment Stack pointer	$\begin{aligned} & (A R) \leftarrow\left(\text { STACK }_{p c}\right) \& \\ & (S P) \leftarrow(S P)+1 \end{aligned}$	00111	000	1100	0000
	PEEK	WR, rf	Get data of Register file to Window register	$(W R) \leftarrow(R F)$	00111	${ }^{\text {rf }} \mathrm{H}$	0011	${ }^{\text {rf }} \mathrm{L}$
	PCKE	rf, WR	Put data of Window register into Register file	$(\mathrm{RF}) \leftarrow(\mathrm{WR})$	00111	rf_{H}	0010	rf_{L}
	GET	DBF, p	Get peripheral data to Data buffer	$(\mathrm{DBF}) \leftarrow(\mathrm{PE})$	00111	PH	1011	PL
	PUT	p, DBF	Put data of Data buffer to peripheral	$(\mathrm{PE}) \leftarrow(\mathrm{DBF})$	00111	PH	1010	PL
$\begin{aligned} & \text { 䔍 } \\ & \stackrel{\text { H }}{+} \end{aligned}$	SKT	m, \#n	Test Data memory bits, then skip if all bits specified are true	if $(M)_{n}=$ all ' 1 ", then skip	11110	mH_{H}	mL_{L}	n
	SKF	m, \#n	Test Data memory bits, then skip if all bits specified are false	if $(M)_{n}=$ all ' 0 ', then skip	11111	m_{H}	mL	n

	Mnemonic	Operand	Function	Operation	Machine code			
					Op. code			
$\stackrel{\circ}{5}$	BR	addr	Jump to the address in page 0 Jump to the address in page 1	$\begin{aligned} & (\mathrm{PC}) \leftarrow \text { addr } \&(\mathrm{PC}) * 11 \leftarrow 0 \\ & (\mathrm{PC}) \leftarrow \text { addr } \&(\mathrm{PC}) * 11 \leftarrow 1 \end{aligned}$	01100 01101	addr (11 bits)		
		@AR	Jump to the address specified by Address register	$(P C) \leftarrow(A R)$	00111	000	0100	0000
$\begin{aligned} & \frac{\vdots}{\hbar} \\ & \text { に } \end{aligned}$	RORC	r	Rotate General register right with carry		00111	000	0111	r
	CALL	addr	Call subroutine in page 0		11100	addr (11 bits)		
		@AR	Call subroutine	$\begin{aligned} & (S P) \leftarrow(S P)-1 \& \\ & \left(S T A C K_{p C}\right) \leftarrow((P C)+1) \& \\ & (P C) \leftarrow(A R) \end{aligned}$	00111	000	0101	0000
	RET		Return to main routine from subroutine	$\begin{aligned} & (P C) \leftarrow\left(\text { STACK }_{p c}\right) \& \\ & (S P) \leftarrow(S P)+1 \end{aligned}$	00111	000	1110	0000
	RETSK		Return to main routine from subroutine, then skip unconditionally	$\begin{aligned} & (P C) \leftarrow\left(\text { STACK }_{\text {pc }}\right) \& \\ & (S P) \leftarrow(S P)+1 \& \text { skip } \end{aligned}$	00111	001	1110	0000
	RETI		Return to main routine from interrupt service routine	$\begin{aligned} & (P C),(\text { BANK }),(I X E) \leftarrow(S T A C K) \\ & \&(S P) \leftarrow(S P)+1 \end{aligned}$	00111	100	1110	0000
$\left\|\begin{array}{\|c} \text { 흔 } \\ \underline{ㄷ ㅡ ㄴ ~} \end{array}\right\|$	EI		Enable interrupt	INTEF $\leftarrow 1$	00111	000	1111	0000
	DI		Disable interrupt	INTEF $\leftarrow 0$	00111	001	1111	0000
	STOP	0	Stop clock if CE = low	stop clock if CE = low	00111	010	1111	0000
	HALT	h	Halt the CPU, Restart by condition h	halt	00111	011	1111	h
	NOP		No operation		00111	100	1111	0000

BUILT-IN IMAGE DISPLAY CONTROLLER

The μ PD17P008 is a 4 bits CMOS microcontroller incorporating One Time PROM, 2K bits EEPROM, Image Display Controller (IDC) and PLL frequency synthesizer into one chip for digital tuning of PLL frequency synthesizer system of TV.

Image Display Controller has various display function showing not only letters but also drawings.
Fonts of IDC are selected by user's program and effective debugging can be realized by actual indications from the beginning of software development.

In addition, Hsync. counter for station detection and serial interface for communication with other peripheral devices are incorporated, also 4 bits A/D converter 8 bits D/A converter (PWM output) and 6 bits D/A converter (PWM output) are incorporated.

CPU applies μ PD1 7000 architecture which operates data memory directly without accumulater, and it realizes effective programming.

All instructions consist of 16 bits one word.
One Time PROM makes it perfect for system evaluation or small lot production of the mask ROM products μ PD17008.

Package type is 64 -pin plastic shrink DIP (Dual In-Line Package).

FEATURES

- 4 bits microcontroller for digital tuning system
- program memory (ROM):

32 K byte (16.256 steps $\times 16$ bits)

- data memory (RAM): 672 words $\times 4$ bits
- stack level: 7
- 36 types of understandable instruction
- capable of decimal arithmetic
- instruction execution time:
2μ (with 8 MHz crystal connected)
- built-in PLL frequency synthesizer
using 1 GHz prescaler: μ PB568
- IDC (Image Display Controller) built-in (user programmable)
- number of display character:

200 characters (max. in one screen)

- display location: 14 lines $\times 19$ columns
- number of character types: 248 types
- character format:
10×15 dots (capable of fringe function)
2-dot space between characters can be set.
- character color: 8 colors
- character size:

4 types of setting is available independently
both for line and column $(14,28,42,56 \mathrm{H})$

- built-in circuit to prevent 1 -dot vertical flicker.
- built-in 8 bits serial interface:
(1 system 2 channels: 3 wire and 2 wire systems)
- built-in D/A converter: 6 bits $\times 6$ ch (PWM output)
: 8 bits $\times 9$ ch (PWM output)
- built-in A/D converter: 4 bits $\times 8 \mathrm{ch}$
- built-in H. Sync. signal counter
- built-in commercial power supply freq. counter
- built-in power-up detection circuit and power-on reset circuit.
- interrupt input for remote control signal (with noise canceller)
- plentiful I/O ports: input output port: 16

input port	$: 4$

- single power supply ($5 \mathrm{~V} \pm 10 \%$)
- CMOS with low power consumption
- 64-pin plastic shrink DIP (600 mil)

PIN CONFIGURATION (Top View)

BLOCK DIAGRAM

NEC

SINGLE-CHIP MICROCONTROLLER FOR VOLTAGE SYNTHESIZER WITH ON-CHIP IMAGE DISPLAY CONTROLLER

The μ PD17051 is a 4-bit CMOS microcontroller for digital tuning systems with an on-chip image display controller (IDC) allowing various kinds of display and 14-bit D/A converter for voltage synthesizer use.

The CPU features include 4-bit parallel addition, logical operations, multiple bit testing, carry flag setting/ resetting, powerful interrupt functions and timer functions.

The on-chip user-programmable image display controller for on-screen enables easy program control of various kinds of display.

The μ PD17051 comes in 48-pin plastic shrink DIP form, and has a wide range of I/O port and serial interface functions controlled by powerful input/output instructions, plus a 4-bit A/D converter and 6-bit PWM output.

FEATURES

- 4-bit microcontroller for digital tuning systems
- On-chip 14-bit D/A converter for voltage synthesizer
- Programmable memory (ROM)
- Data memory (RAM)
- Stack levels
- 35 easy-to-understand instruction sets
- Decimal operation capability
- Instruction execution time
- On-chip IDC (user-programmable)

Display capacity
Display positions
Character set
Character format
Colors
Character size

- On-chip 8-bit serial interface (1 system: 3-wire or 2-wire)
- On-chip D/A converter : 6 bits $\times 3$ (PWM output)
- On-chip AVD converter : 4 bits $\times 8$
- On-chip horizontal synchronization signal counter
- On-chip commercial power supply frequency counter
- On-chip power outage detection circuit and power-on reset circuit
- Remote control signal interrupt input (with noise canceler)
- Many l/O ports

Input/output ports : 16
Input ports : 5
Output ports : 10

- $5 \mathrm{~V} \pm 10 \%$
- Low power consumption CMOS

ORDERING INFORMATION
Order Code
Package
μ PD17051CU-xxx $\quad 48$-Pin Plastic Shrink DIP (600 mil)

Notes on Serial interface: The 2-wire mode corresponds to the I2C-Bus specification from Philips. In case of using this interface mode note the following:

Duties when using I2C bus system

Purchase of NEC's I2C bus system hardware components conveys a license under the Philips I2C patents rights to use this components in an I2C system, provided that the system conforms the I2C standard specifications as defined by Philips.

Consequently for all ROM based components with I2C hardware circuits the user is kindly requested to notify the use of the I2C bus interface at the ROM code verification stage.

FUNCTIONAL OUTLINE

Item	Function
Program memory	- 16 K bytes (8192 steps $\times 16$ bits) Table reference area : 256 steps CROM dual-function area : 2048 steps
Data memory	- 448 words (448 words $\times 4$ bits) Data buffer : 4 words General-purpose registers: 16 words VRAM dual-function area : 224 words
System registers	- 12 words
Register file	- 24 words (control registers)
Port registers	- 8 words
Instruction execution time	- 2μ s (using 8 MHz ceramic oscillator)
Stack levels	- 6 levels (stack manipulation capability)
General-purpose ports	- Input/output ports : 16 - Input ports : 5 - Output ports : 10
IDC (Image Display Controller)	- Display capacity : 97 characters per screen - Display positions : 14 rows $\times 19$ columns - Character set : 128 characters (user-programmable) (64 different characters simultaneously displayable per screen) - Character format : 10×15 dots - Colors : 8 - Character size : 4 vertical $(15,30,45,60 H)$ 4 horizontal (2.5, 5.0, $7.510 \mu \mathrm{~s}$) Independent vertical/horizontal setting capability
Serial interface	- 1 system (2 channels) 8-bit 3-wire: 1 channel 8-bit 2-wire: 1 channel
D/A converter	- 14-bit $\times 1$ (PWM output, Max. 12.5 V withstand voltage) - 6-bit $\times 3$ (PWM output, Max. 12.5 V withstand voltage)
A/D converter	- 4-bit $\times 8$ (software-driven successive approximation method)
Interrupts	- 4 channels (maskable interrupts) External interrupts: 2 channels (RMC pin, $\overline{V_{\text {sYNC }}}$ pin) Internal interrupts: 2 channels (timer, serial interface)
Timer	$\bullet 2$ systems \quad Internal timer : $\quad 5,20,100 \mathrm{~ms}$ External timer : $\quad 1 / 5,1 / 6$ frequency input to $\mathrm{P} 1 \mathrm{~B}_{3} /$ TMIN pin
Reset	- Power-on reset (on powering-on) - Reset by CE pin (CE pin: Low \rightarrow high) - Power outage detection function
Supply voltage	$5 \mathrm{~V} \pm 10 \%$
Package	48-pin plastic shrink DIP (600 mil)

PIN CONFIGURATION (Top View)

$A D C_{0}$ to ADC_{7}	AVD converter inputs	SDA	Data input/output
CE	Chip enable	POA 0 to POA3	Port 0A
RMC	Interrupt signal input	POBo to POB_{3}	Port OB
Xin, Xout	Oscillator	POC0 to POC3	Port 0C
TMIN	External timer input	POD 0 to POD 3	Port OD
PWMo to PWM 2	D/A converter outputs	$\mathrm{P} 1 \mathrm{~A}_{0}$ to P1A3	Port 1A
PWMrmp	Station selection D/A converter output	$\mathrm{P} 1 \mathrm{~B}_{0}$ to P1B3	Port 1B
RED	Character signal output	$\mathrm{P}_{1} \mathrm{C}_{0}$ to ${\mathrm{P} 1 \mathrm{C}_{3}}$	Port 1C
GREEN	Character signal output	P1Do to ${\mathrm{P} 1 \mathrm{D}_{3}}$	Port 1D
BLUE	Character signal output	Voo	: Power supply
BLANK	Blanking signal output	GND	: Ground
$\overline{\text { Hsync }}$	Horizontal synchronization signal input		
$\overline{\text { Vsinc }}$	Vertical synchronization signal input		
HSCNT	Horizontal synchronization signal counter input		
SI	Data input		
SO	Data output		
$\overline{\text { SCK }}$	Shift clock input/output		
SCL	Shift clock input/output		

1. PIN FUNCTIONS

1.1 SUMMARY OF PIN FUNCTIONS

PIN No.	SIGNAL	PIN NAME	DESCRIPTION	OUTPUT TYPE
1 to 4	POC3 to POCo	Port 0C	4-bit output port. Port OC latch is located in address 72 H of data memory (RAM) BANKO or BANK2. Output status is undefined after power-on reset.	CMOS push-pull
$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	$\mathrm{POD}_{3} / \mathrm{ADC}_{7}$ $\mathrm{POD}_{2} / \mathrm{ADC}_{6}$ POD $1 / A D C_{5}$ POD0/ADC4	Port 0D	4-bit input port or A/D converter input pins. When used as a port, a pull-down resistor (100 $\mathrm{k} \Omega$ TYP.) is attached. Port OD latch is located in address 73H of data memory (RAM) BANK0 or BANK2.	Input (with pulldown resistor)
$\begin{aligned} & 9 \text { to } \\ & 12 \end{aligned}$	P1D ${ }^{\text {to }}$ P1D0	Port 1D	4-bit output port. Port 1D latch is located in address 73 H of data memory (RAM) BANK1 or BANK3. Output status is undefined after power-on reset.	CMOS push-pull
13	VDD	Power supply	Device power supply pin. Supplies $5 \mathrm{~V} \pm 10 \%$ voltage when all functions are operated. When IDC is not used, device operations on 4 to 5.5 V . When RAM data is retained (when clock oscillation is stopped) voltage can be reduced to approx. 2.2 V. As the μ PD17051 incorporates a power-on reset circuit, a $0 \rightarrow 4.0 \mathrm{~V}$ transition effects a system reset and the program starts at address 0 . To ensure proper operation of the power-on reset circuit, the rise time from 0 to 4.0 V should be within 500 ms .	-
14	CE	Chip enable	Device selection signal input pin. Driven high when the device is operated normally, and low when the device is not used. When this pin is low, execution of the STOP instruction stops clock oscillation, allowing low-current-consumption backup. The STOP instruction is only effective when the CE pin is low; when high, this instruction operates identically to an NOP instruction. This pin has a dual function as a reset pin; A low-to high transition of the CE pin resets the device and	Input

μ PD17051

PIN No.	SIGNAL	PIN NAME	DESCRIPTION	OUTPUT TYPE
14	CE	Chip enable	the program starts from address 0 . When the device is reset, bank 0 is selected and I / O ports are placed in input mode. Note however that a low-level signal of 188 us or less is not acknowledged.	
15	RMC	Interrupt signal input	Interrupt input pin with noise canceler. Using this pin for noisy signals such as remote control signals facilitates programming. Whether an interrupt is generated on the rise or the fall of the input signal to this pin can be specified by the program. An interrupt is generated on a rise when the IEDG1 flag is reset, and on a fall when this flag is set. In a CE reset the IEDG1 flag is rest, and an interrupt is thus generated on a rise of the signal	Input
16	GND	Ground	Device ground pin.	-
$\begin{aligned} & 17 \text { to } \\ & 20 \end{aligned}$	P1A3 to P1A0	Port 1A	4-bit output port. Port 1A latch is located in address 70 H of data memory (RAM) BANK1 or BANK3. N -ch open-drain type (medium voltage, high current).	N -ch open-drain
$\begin{aligned} & 21 \\ & 22 \end{aligned}$	Xout Xin	Oscillator	Ceramic oscillator or crystal resonator connection pins. An 8 MHz oscillator/resonator should be used.	CMOS push-pull (Xout) Input (Xin)
$\begin{aligned} & 23 \\ & 24 \\ & 25 \\ & 26 \end{aligned}$	$\begin{aligned} & {\mathrm{P} 1 \mathrm{~B}_{3} / \mathrm{TMIN}}^{\mathrm{P}_{1} \mathrm{~B}_{2}} \\ & {\mathrm{P} 1 \mathrm{~B}_{1}}^{\mathrm{P}_{1} \mathrm{~B}_{0}} \end{aligned}$	Port 1B	4-bit input/output port. These port pins can be specified as input/output bit by bit. Input/output setting is performed by the P1BBIO word $(35 \mathrm{H})$ in the register file. The latch for this port is located in address 71 H of data memory BANK1 or BANK3. $\mathrm{P} 1 \mathrm{~B}_{3} /$ TMIN can also be used as the external timer input. Interrupts can be generated at 1/ 5 or $1 / 6$ the frequency input to this pin. Normally the commercial power supply frequency is input to this pin and used as the basic clock for the clock.	CMOS push-pull (I/O)

PIN No.	SIGNAL	PIN NAME	DESCRIPTION	OUTPUT TYPE
$\begin{aligned} & 27 \\ & 28 \\ & 29 \end{aligned}$	PWM 2 PWM1 PWM0	D/A converter	VDP (Variable Duty Port) or 1-bit output ports. The VDP function outputs consecutive 15.625 kHz pulses, and the duty of these pulses can be varied by the program in 64 steps.	N -ch open-drain
30	PWMrmp	Station selection D/A converter output	Voltage synthesizer 14-bit D/A converter output or 1-bit output port. The D/A converter outputs pulses combining 9-bit PWM and 5bit RMP (Rate Multiplier). Therefore, D/A conversion can be performed by external connection of a simple CR filter. Outputs a low-level signal after power-on reset or when clock is stopped.	N-ch open-drain
$\begin{aligned} & 31 \\ & 32 \\ & 33 \end{aligned}$	RED GREEN BLUE	Character signal outputs	Output pins for character data corresponding to R, G, B. Active-high output.	CMOS push-pull
34	BLANK	Blanking signal output	Output pin for blanking signal cutting video signals. Active-high output.	CMOS push-pull
35	$\overline{\mathrm{Hsync}}$	Horizontal synchronization signal input	Input pin for horizontal synchronization signal for IDC. Use active-low input.	Input
36	$\overline{\text { V SYNC }}$	Vertical synchronization signal input	Input pin for vertical synchronization signal for IDC. Use active-low input. This pin can be used to effect interrupts.	Input
$\begin{aligned} & 37 \\ & 38 \\ & 39 \\ & 40 \end{aligned}$	POB3/ HSCNT POB_{2} POB_{1} POBo/SI	Port 0B	4-bit input/output port. These port pins can be specified as input/output bit by bit. Input/ output setting is performed by the POBBIO word $(36 \mathrm{H})$ in the register file. The latch for this port is located in address 71 H of data memory BANKO or BANK2. The POBo/SI pin can also be used as the serial interface (serial I/O mode) data input pin. The $\mathrm{POB}_{3} / \mathrm{HSCNT}$ pin can also be used as the horizontal synchronization signal counter input pin, in which case self-bias (VDD/2) is applied to the HSCNT pin. Port OB is set to input mode after a power-on reset, when the clock is stopped, or after a CE reset.	CMOS push-pull (I/O) But note that HSCNT is self-bias in input mode.

PIN No.	SIGNAL	PIN NAME	DESCRIPTION	OUTPUT TYPE
$\begin{aligned} & 41 \\ & 42 \\ & 43 \\ & 44 \end{aligned}$	POA $3 /$ SP $\mathrm{POA}_{2} / \mathrm{SCK}$ POA $1 /$ SCL POA0/SDA	Port 0A	4-bit input/output port. These port pins can be specified as input/output bit by bit. Input/ output setting is performed by the POABIO word (37H) in the register file. The latch for this port is located in address 70 H of data memory BANK0 or BANK2. The $\mathrm{POA}_{3} / \mathrm{SO}$ pin can also be used as the serial interface (serial I/O mode) data output pin, and the POAz:SCK pin can be used as a shift clock input/output pin. The POAO/SDA pin can be used as a serial interface (2 -wire mode and serial I/O mode) data input/output pin, and the POA $1 /$ SCL pin can be used as a shift clock input/output pin.	POA3/S0 POA $2 /$ SCK CMOS push-pull (I/O)
				POA $1 / \mathrm{SCL}$ POA0/SDA N -ch open-drain (I/O)
$\begin{aligned} & 45 \\ & 46 \\ & 47 \end{aligned}$	$\mathrm{P}_{1} \mathrm{C}_{3} / \mathrm{ADC}_{3}$ $\mathrm{P}_{1} \mathrm{C}_{2} / \mathrm{ADC}_{2}$ $\mathrm{P}_{1} \mathrm{C}_{1} / \mathrm{ADC}_{1}$	Port 1C	3-bit input/output port or A/D converter input pins. Input/output setting is performed as a 3 bit unit, and is specified by the P1CG10 bit (bit \#0 or 27 H) in the register file. When used as A D converter pins, input must always be specified. The latch for this port is located in address 72 H of data memory BANK1 or BANK3. Port 1C is set to input mode after a power-on reset, when the clock stopped, or after a CE reset.	CMOS push-pull (I/O)
48	ADC0	A/D converter input	A program-driven successive approximation 4-bit A/D converter is incorporated. The A/D converter reference voltage is $\mathrm{VDD}_{\mathrm{D}}$.	Input

1.2 PIN EQUIVALENCE CIRCUITS

POA (POA $1 / \mathrm{SCL}, \mathrm{POA} 0 / \mathrm{SDA}): \quad$ (Input/output)

$\left.\begin{array}{l}\left.\text { P0C (P0C3 }, \mathrm{POC}_{2}, \mathrm{POC}_{1}, \mathrm{POC}_{0}\right) \\ \text { P1D (P1D }, \text { P1D } \\ \left.\text { RED, } \mathrm{P}_{3} \mathrm{D}_{1}, \mathrm{P}_{0} D_{0}\right)\end{array}\right\}$ (output)

POD (POD $3 / \mathrm{ADC}_{7}, \mathrm{POD}_{2} / \mathrm{ADC}_{6}, \mathrm{POD}_{1} / \mathrm{ADC}_{5}, \mathrm{POD}_{0} / \mathrm{ADC}_{4}$): (Input)

ADCo: (Input)

$\mathrm{P}_{1 B_{3}}$ TMIN: (Input/output)

Hsync, Vsync, RMC, CE: (Schmitt triggered inputs)

Xin: (Input)
Xout: (Output)

2. BLOCK DIAGRAM

22. μ PD17051 INSTRUCTIONS

22.1 INSTRUCTION SET LIST

		0		1	
0000	0	ADD	r, m	ADD	m, \#i
0001	1	SUB	r, m	SUB	m, \#i
0010	2	ADDC	r, m	ADDC	m, \#i
0011	3	SUBC	r, m	SUBC	m, \#i
0100	4	AND	r, m	AND	m, \#i
0101	5	XOR	r, m	XOR	m, \#i
0110	6	OR	r, m	OR	m, \#i
0111	7	INC INC MOVT BR CALL RET RETSK EI DI RETI PUSH POP GET PUT PEEK POKE RORC STOP HALT NOP	AR IX DBF, @AR @AR @AR AR AR DBF, p p. DBF WR, rf rf, WR r 0 h	\%	
1000	8	己D)	r. m	ST	m, r
1001	9	SKE	$\mathrm{m}, ~=\mathrm{i}$	SKGE	m, \#i
1010	A	MOV	(r r, m	MOV	m, @r
1011	B	SKNE	m, Fi	SKLT	m. \#i
1100	C	BR	addr (page 0)	CALL	addr (page 0)
1101	D	BR	addr (page 1)	MOV	m, \#i
1110	E	BR	addr (page 2)	SKT	$\mathrm{m}, ~ \# n$
1111	F	BR	addr (page 3)	SKF	$\mathrm{m}, ~ \# \mathrm{n}$

Legend

M	Data memory indicated by [(BANK), m]
m	Data memory address indicated by [$\left.\mathrm{m}_{\mathrm{H}}, \mathrm{mL}\right]$
m_{H}	Data memory row address (3 bits)
mL	Data memory column address (4 bits)
R	General register indicated by [(RP), r]
r	General register column address (4 bits)
RP	General register pointer
RF	Register file indicated by rf
rf	Register file address indicated by [$\mathrm{ff}_{\mathrm{H}, \mathrm{rl}} \mathrm{rf}$]
rf_{H}	Register file address (most significant 3 bits)
rfi	Register file address (least significant 3 bits)
AR	Address register
IX	Index register
IXE	Index enable flag
DBF	Data buffer
WR	Window register
MP	Data memory row address pointer
MPE	Memory pointer enable flag
PE	Peripheral register
P	Peripheral address
PH	Peripheral address (most significant 3 bits)
PL	Peripheral address (least significant 4 bits)
PC	Program counter
SP	Stack pointer
STACK	Stack value indicated by stack pointer
STACKpc	Program counter value indicated by stack pointer
BANK	Bank register
(ROM) PC	Program memory data indicated by (PC)
INTEF	Interrupt enable flag
SGR	Program memory segment register
i	Immediate data (4 bits)
n	Bit position (4 bits)
addr	Program memory address (11 bits)
c	Carry
b	Borrow
h	Halt release condition
[]	Data memory or register address
()	Data memory or register value

$\begin{array}{\|l\|} \hline \text { 亮 } \\ \stackrel{\rightharpoonup}{E} \\ \text { 总 } \\ \hline \end{array}$	Mnemonic	Operand	Operation	Machine Code			
				$\begin{aligned} & \text { Operation } \\ & \text { Code } \end{aligned}$			
进	ADD	r，m	$(\mathrm{R}) \leftarrow(\mathrm{R})+(\mathrm{M})$	00000	mH	mL	r
		m，\＃i	$(\mathrm{M}) \leftarrow(\mathrm{M})+\mathrm{i}$	10000	$\mathrm{mH}^{\text {H}}$	mL	i
	ADDC	r，m	$(\mathrm{R}) \leftarrow(\mathrm{R})+(\mathrm{M})+\mathrm{c}$	00010	mH	mL	r
		m，\＃i	$(\mathrm{M}) \leftarrow(\mathrm{M})+\mathrm{i}+\mathrm{c}$	10010	mH	mL	i
	INC	AR	$(\mathrm{AR}) \leftarrow(\mathrm{AR})+1$	00111	000	1001	0000
		IX	$(\mathrm{IX}) \leftarrow(\mathrm{IX})+1$	00111	000	1000	0000
	SUB	r，m	$(\mathrm{R}) \leftarrow(\mathrm{R})-(\mathrm{M})$	00001	$\mathrm{mH}^{\text {}}$	mL	r
		m，\＃i	$(\mathrm{M}) \leftarrow(\mathrm{M})-\mathrm{i}$	10001	m	mL	i
	SUBC	r，m	$(\mathrm{R}) \leftarrow(\mathrm{R})-(\mathrm{M})-\mathrm{b}$	00011	mH	mL	r
		m，\＃i	（M）$\leftarrow(\mathrm{M})-\mathrm{i}-\mathrm{b}$	10011	mH	ml ．	i
	SKE	m，\＃i	（M）－i，skip if zero	01001	mH	mL	i
	SKGE	m，\＃i	（M）－i，skip if not borrow	11001	mH	mL	i
	SKLT	m，\＃i	（M）－i，skip if borrow	11011	mH	mL	i
	SKNE	m，\＃i	（M）－i，skip if not zero	01011	mH	mL	i
	AND	m，\＃i	$(\mathrm{M}) \leftarrow(\mathrm{M})$ AND i	10100	mH	mL	i
		r，m	$(\mathrm{R}) \leftarrow(\mathrm{R})$ AND（M）	00100	mH	mL	r
	OR	m，\＃i	（M）$\leftarrow(\mathrm{M}) \mathrm{OR} \mathrm{i}$	10110	mH	mL	i
		r, m	$(\mathrm{R}) \leftarrow(\mathrm{R})$ OR（M）	00110	m_{H}	mL	r
	XOR	m，\＃i	（M）$\leftarrow(\mathrm{M}) \times$ XOR i	10101	m	mL	i
		r, m	$(\mathrm{R}) \leftarrow(\mathrm{R})$ XOR（M）	00101	mH	mL ．	r
	LD	r，m	$(\mathrm{R}) \leftarrow(\mathrm{M})$	01000	mH	mL	r
	ST	m，r	（M）$\leftarrow(\mathrm{R})$	11000	mH	mL	r
	MOV	（a r，m	$\begin{aligned} & \text { if MPE }=1:[(\mathrm{MP}), \quad(\mathrm{R})] \leftarrow(\mathrm{M}) \\ & \text { if } \mathrm{MPE}=0:\left[\left(\mathrm{mH}_{\mathrm{H}}\right), \quad(\mathrm{R})\right] \leftarrow(\mathrm{M}) \end{aligned}$	01010	m ${ }_{\text {H }}$	mL	r
		m．＂ r	$\begin{aligned} & \text { if } \mathrm{MPE}=1:(\mathrm{M}) \leftarrow[(\mathrm{MP}), \quad(\mathrm{R})] \\ & \text { if } \mathrm{MPE}=0:(\mathrm{M}) \leftarrow[(\mathrm{mH}), \quad(\mathrm{R})] \end{aligned}$	11010	mH	mL	r
		m，\＃i	$(M) \leftarrow i$	11101	mH	mL	i
	MOVT ${ }^{\text {注 }}$	DBF，＂AR	$\begin{aligned} & (S T A C K P C) \leftarrow(P C), \quad(P C) \leftarrow(A R), \\ & (D B F) \leftarrow(R O M) P C, \quad(P C) \leftarrow(S T A C K P C) \end{aligned}$	00111	000	0001	0000
	PUSH	AR	$(\mathrm{SP}) \leftarrow-(\mathrm{SP})-1, \quad(\mathrm{STACKPC}) \leftarrow(\mathrm{AR})$	00111	000	1101	0000
	POP	AR	$(\mathrm{AR}) \leftarrow(\mathrm{STACKPC}), \quad(\mathrm{SP}) \leftarrow(\mathrm{SP})+1$	00111	000	1100	0000
	PEEK	WR，rf	$(\mathrm{WR}) \leftarrow(\mathrm{RF})$	00111	rfH	0011	$r \mathrm{f}_{\mathrm{L}}$
	POKE	rf，WR	（RF）$\leftarrow(\mathrm{WR})$	00111	rfH	0010	rfL
	GET	DBF，p	（ DBF ）\leftarrow（ PE）	00111	pH	1011	p_{L}
	PUT	p，DBF	$(\mathrm{PE}) \leftarrow(\mathrm{DBF})$	00111	pH	1010	p_{L}

[^2]| | Mnemonic | Operand | Operation | Machine Code | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | $\begin{array}{\|c\|} \hline \text { Operation } \\ \text { Code } \\ \hline \end{array}$ | | | |
| $\begin{gathered} \ddot{0} \\ \stackrel{\rightharpoonup}{D} \end{gathered}$ | SKT | m, \#n | if $(\mathrm{M})_{\mathrm{n}}=$ all " 1 ", then skip | 11110 | mH | mL | n |
| | SKF | m, \#n | if $(\mathrm{M})_{\mathrm{n}}=$ all " 0 ", then skip | 11111 | mH | mL | n |
| | BR | addr | $(\mathrm{PC}) \leftarrow \operatorname{addr}, \quad(\mathrm{PC}) \pm{ }_{12}, \pm{ }_{11} \leftarrow 00$ | 01100 | addr (least addr significant 11 bits) | | |
| | | | $(\mathrm{PC}) \leftarrow$ addr, $\quad(\mathrm{PC})=12, \pm 15 \leftarrow 01$ | 01101 | | | |
| | | | $(\mathrm{PC}) \leftarrow \operatorname{addr}, \quad(\mathrm{PC})=12, \pm{ }_{11} \leftarrow 10$ | 01110 | | | |
| | | | $(\mathrm{PC}) \leftarrow \operatorname{addr}, \quad(\mathrm{PC})={ }_{12}, \quad=11 \leftarrow 11$ | 01111 | | | |
| | | * AR | $(\mathrm{PC}) \leftarrow(\mathrm{AR})$ | 00111 | 000 | 0100 | 0000 |
| $\begin{aligned} & \stackrel{y}{c} \\ & \stackrel{y}{5} \end{aligned}$ | RORC | r | $\rightarrow(R)={ }_{3} \rightarrow(R)={ }_{2} \rightarrow(R)={ }_{1} \rightarrow(R)=0$ | 00111 | 000 | 0111 | r |
| | CALL | addr | $\begin{aligned} & (\mathrm{SP}) \leftarrow(\mathrm{SP})-1, \quad(\mathrm{STACKP}) \leftarrow((\mathrm{PC})+1) \\ & (\mathrm{PC})=11 \leftarrow 0 . \quad(\mathrm{PC}) \leftarrow \text { addr } \end{aligned}$ | 11100 | addr (11 bits) | | |
| | | $\because \mathrm{AR}$ | $\begin{aligned} & (\mathrm{SP}) \leftarrow(\mathrm{SP})-1 . \quad(\mathrm{STACKP}() *((\mathrm{PC})+1) \\ & (\mathrm{PC}) \leftarrow(\mathrm{AR}) \end{aligned}$ | 00111 | 000 | 0101 | 0000 |
| | RET | | $(\mathrm{PC}) \leftarrow(\mathrm{STACKPC}), \quad(\mathrm{SP}) \leftarrow(\mathrm{SP})+1$ | 00111 | 000 | 1110 | 0000 |
| | RETSK | | $\begin{aligned} & (\mathrm{PC}) \leftarrow(S T A C K P C) \\ & \left(S P^{\prime}\right) \leftarrow\left(S P^{\prime}\right)+1, \text { and skip } \end{aligned}$ | 00111 | 001 | 1110 | 0000 |
| | RETI | | $\begin{aligned} & (\mathrm{PC}),(\mathrm{BANK}), \quad(\mathrm{INE})+(\mathrm{STACK}) \\ & (\mathrm{SP}) \leftarrow(S P)+1 \end{aligned}$ | 00111 | 100 | 1110 | 0000 |
| 츨 | EI | | INTEF 61 | 00111 | 000 | 1111 | 0000 |
| 喜 | I)1 | | INTEF -0 | 00111 | 001 | 1111 | 0000 |
| | STOP | 0 | stop clock if $\mathrm{CE}=1 \mathrm{w}$ | 00111 | 010 | 1111 | 0000 |
| $\stackrel{\text { 늧 }}{5}$ | HALT | h | halt | 00111 | 011 | 1111 | h |
| O | NOP | | No operation | 00111 | 100 | 1111 | 0000 |

22.3 INTRINSIC MACRO INSTRUCTIONS

The following macro instructions are available as intrinsic macro instructions for the 17 K series assembler (AS17K). For details, refer to the Assembler User's Manual.

Legend

flag	$:$	One of flag1 to flagn
flag1 to flagn :	Flag name indicated by the reserved word	
n	$:$	Number
$<>$	$:$	Omissible

	Mnemonic	Operand	n	Operation
	SKTn	flag1, ... flagn	$1 \leqq n \leqq 4$	if (flag 1$)-($ flagn $)=$ all " $1^{\prime \prime}$, then skip
	SKFn	flag1, ... flagn	$1 \leqq n \leqq 4$	if (flag 1$)-($ flagn $)=$ all " 0 ", then skip
	SETn	flag1, ... flagn	$1 \leqq n \leqq 4$	(flag1) $-($ flagn $) \leftarrow 1$
	CLRn	flag1, ... flagn	$1 \leqq n \leqq 4$	$($ flag 1$)-($ flagn $) \leftarrow 0$
	NOTn	flag1, ... flagn	$1 \leqq n \leqq 4$	if $($ flag $)=" 0 "$, then $($ flag $) \leftarrow 1$, if $($ flag $)=" 1 "$, then (flag) $\leftarrow 0$
	INITFLG	<NOT〉flag1, \cdots … NOT 〉flagn	$1 \leqq n \leqq 4$	$\begin{array}{ll} \text { if description= NOT flag, } \text { (flag }) \leftarrow 0 \\ \text { if description }= & \text { flag, (flag }) \leftarrow 1 \end{array}$
	BANKn		$0 \leqq n \leqq 3$	(BANK) $\leftarrow \mathrm{n}$

23. RESERVATION SYMBOLS FOR ASSEMBLER

$\mu \mathrm{PD} 17051$ reservation symbols for use of an assembler are shown below.

23.1 SYSTEM REGISTER (SYSREG)

Reserved Word	Type	Address	Read Write	Overview of Function
AR3	MEM	0.74 H	R	Address register bits b15 to b12
AR2	MEM	0.75 H	R	Address register bits bll to b8
AR1	MEM	0.76 H	R W	Address register bits b9 tu b4
AR"	MEM	0.77 H	R W	Address register bits b3 to bo
WR	MEM	0.78 H	R W	Window register
B.A.CK	MEM	0.79 H	R W	Bank register
IXH	MEM	0.7 AH	R W	Index register high
MPH	MEM	0.7 AH	R W	Data memory row address pointer high
M1PE	FLG	0.7AH. 3	R W	Memory pointer enable flag
18.M	MEM	0.7 BH	R W	Index register middle
MPL	MEM	0.7 BH	R W	Data memory row address pointer low
IXL	MEM	0.7 CH	R W	Index register low
RPM	MEM	0.7 DH	R W	General register pointer high
RPL	MEM	0.7EH	R W	General register pointer low
PSW	MEM	0.7FH	R W	Program status word
BCD	FLG	0.7EH.0	R W	BCD flag
CMP	FLG	0.7 FH .3	R W	Compare flag
CI	FLG	0.7 FH .2	R IV	Carry flag
Z	FLG	0.7 FH .1	R W	Zero flag
IXE	FLG	0.7FH. 0	R W	Index enable flag

23.2 DATA BUFFER (DBF)

Reserved Word	Type	Address	Read Write	Overview of Function
DBF3	MEM	0.0 CH	R W	Data buffer bits b15 to b12
DBF2	MEM	0.0 DH	R W	Data buffer bits b11 to b8
DBF1	MEM	0.0 EH	R W	Data buffer bits b7 to b4
DBF0	MEM	0.0 FH	R W	Data buffer bits b3 to b0

23.3 GENERAL-PURPOSE PORT REGISTER

Reserved Word	Type	Address	Read/ Write	Overview of Function
P0A3	FLG	0.70 H .3	R/W	Bit b3 of Port 0A
P0A2	FLG	0.70 H .2	R/W	Bit b2 of Port 0A
P0A1	FLG	0.70 H .1	R/W	Bit bl of Port 0A
P0A0	FLG	0.70 H .0	R/W	Bit b0 of Port 0A
P0B3	FLG	0.71 H .3	R/W	Bit b3 of Port 0B
P0B2	FLG	0.71 H .2	R/W	Bit b2 of Port 0B
P0B1	FLG	0.71 H .1	R/W	Bit b1 of Port 0B
P0B0	FLG	0.71 H .0	R/W	Bit b0 of Port 0B
P0C3	FLG	0.72 H .3	R/W	Bit b3 of Port 0C
P0C2	FLG	0.72H. 2	R/W	Bit b2 of Port 0C
P 0 C 1	FLG	0.72 H .1	R/W	Bit bl of Port 0C
P0C0	FLG	0.72 H .0	R/W	Bit b0 of Port 0C
P0D3	FLG	0.73 H .3	R	Bit b3 of Port 0D
P0D2	FLG	0.73 H .2	R	Bit b2 of Port 0D
P0D1	FLG	0.73 H .1	R	Bit b1 of Port 0D
P0D0	FLG	0.73 H .0	R	Bit b0 of Port 0D
P1A3	FLG	1.70 H .3	R/W	Bit b3 of Port 1A
P1A2	FLG	1.70 H .2	R/W	Bit b2 of Port 1A
P1A1	FLG	1.70 H .1	R/W	Bit b1 of Port 1A
P1A0	FLG	1.70 H .0	R/W	Bit b0 of Port 1A
P1B3	FLG	1.71 H .3	R/W	Bit b3 of Port 1B
P1B2	FLG	1.71 H .2	R'W	Bit b2 of Port 1B
P1B1	FLG	1.71 H .1	R/W	Bit bl of Port 1B
P1B0	FLG	1.71 H .0	R/W	Bit b0 of Port 1B
P1C3	FLG	1.72H.3	R/W	Bit b3 of Port 1C
P1C2	FLG	1.72 H .2	R W W	Bit b2 of Port 1C
P1C1	FLG	1.72 H .1	R^{\prime} W	Bit bl of Port 1C
P1D3	FLG	1.73H.3	R/W	Bit $\mathrm{b}^{3} 3$ of Port 1D
P1D2	FLG	1.73 H .2	R/W	Bit b2 of Port 1D
P1D1	FLG	1.73 H .1	R/W	Bit bl of Port 1D
P1D0	FLG	1.73 H .0	R/W	Bit b0 of Port 1D

23.4 REGISTER FILE (CONTROL REGISTER)

Reserved Word	Type	Address	Read Write	Overview of Function
IDCDMAEN	FLG	0.80 H .1	K W	D.MA enable flag
SP	MEM	0.81 H	R W	Stack pointer
CE	FLG	0.87 H .0	R	CE pin status flag
SlOCH	FLG	0.88H.3	R W	SIO channel select flag
SB	FLG	0.884.2	R W	SIO mode select flag
SIOMS	FL(;	0.8811.1	R W	SIO clock mode select flat
SIOTX	FLG	0.88H.0	R W	SIO TX RX select flag
zCROSS	FLG	0.89H. 3	R W	Timer interrupt mode select flaz
TMM12	FLG	0.89H.2	R W	Timer carry FF mode select flat
TMM11]	FLG	0.89 H .1	R W	Timer carry FF mode select flas
TMMD0	FLG	0.8911 .0	R W	Timer carry FF mode select flas
N゙TVSY゙N	FLG	0.8FH.2	R	Vsync pin status flag
INT	FLG	0.8FH. 0	R	RMC pin status flag
HSCGT3	FLG	0.91 H .3	R	Hsync counter mode select flag idummy : 0)
HSCGT:	FL;	0.91H.2	R	Hisne counter mode select flag dummy: ()
HSCGT1	FLG	0.91 H .1	R W	Hsync counter mode select flag
HSCGT0	FLG	0.91 H .0	R W	Hsyne counter mode select flag
HACGOPN	FLG	0.92 H .3	R W	Hsync coumter gate open f'ag
RMCSTAT3	FLG	0.95 H .3	R	RMC pin status flag (dummy: in
RMCSTAT"	FLG	0.95 H .2	R IV	RMC pin status flag
RMCSTAT1	FLG	0.95 H .1	R W	RMIC pin status flag
RMCSTAT0	FLG	0.95 H .0	R W	RMC pin status flag
TMCY	FLG	0.97 H .0	R	Timer carry FF status flag
SBACK	FLG	0.98H.3	R W	Serial bus acknowledge flag
SIONWT	FLG	0.98H.2	R W	SIO no wait flag
SIOWRQ1	FLG	0.98 H .1	R W	SIO wait request flag
SIOWRQ*	FLG	0.98H.0	R WV	SIO wait request flag
IEGVSIN	FLG	0.9FH.2	R W	Vsync interrupt edge select flag
IEG;	FLG	0.9FH. 0	R W	RMC interrupt edge select flag
ADCCH2	FLG	0.0 A 1 H .3	R W	A D converter channel select flag
ADCCH1	FLG	0.0 AlH .2	R W	A^{\prime} D converter channel select flag
ADCCH0	FLG	0.0 AlH .1	R W	A D converter channel select flag
ADCCMP	FLG	0.0AlH. 0	R	A D converter judge flag
$\mathrm{P}(\mathrm{CGIO}$	FLG	0.0A7H. 0	R W	Port OC I'O select flag
SIOSF8	FLG	0.0A8H. 3	R W	SIO shift 8 clock flag
SIOSF9	FLG	0.0A8H. 2	R W	SIO shift 9 clock flag
SBSTT	FLG	0.0A8H.1	R W	Serial bus start test flag
SBBSY	FLG	0.0A8H. 0	R W	Serial bus busy flag

Reserved Word	Type	Address	Read/ Write	Overview of Function
IPSIO	FLG	0.0AFH. 3	R/W	SIO interrupt permission flag
IPVSYN	FLG	0.0AFH. 2	R/W	Vsync interrupt permission flag
IPTM	FLG	0.0AFH. 1	R/W	Timer interrupt permission flag
IP	FLG	0.0AFH. 0	R/W	RMC interrupt permission flag
CROMBNK	FLG	0.0 B 0 H .0	R/W	CROM bank select flag
IDCEN	FLG	0.0 B 1 H .0	R/W	IDC enable flag
P1BBIO3	FLG	0.0B5H. 3	R/W	P1B3I/O select flag
P1BBIO2	FLG	0.0B5H. 2	R/W	P1B2I/O select flag
P1BBIO1	FLG	0.0 B 5 H .1	R/W	P1B1I/O select flag
P1BBIO0	FLG	0.0 B 5 H .0	R/W	P1B0I/O select flag
P0BBIO3	FLG	0.0B6H. 3	R/W	P0B3I/O select flag
P0BBIO2	FLG	0.0B6H. 2	R/W	P0B2I/O select flag
P0BBIO1	FLG	0.0B6H. 1	R/W	P0B1I/O select flag
P0BBIOO	FLG	0.0 B 6 H .0	R/W	P0B0I/O select flag
P0ABIO3	FLG	0.0 B 7 H .3	R/W	P0A3I/O select flag
P0ABIO2	FLG	0.0B7H. 2	$\mathrm{R}^{\prime} \mathrm{W}$	P0A2I/O select flag
P0ABIO1	FLB	0.0 B 7 H .1	R/W	P0A1I/O select flag
P0ABIO0	FLG	0.0B7H. 0	$\mathrm{R}^{\prime} \mathrm{W}$	P0A0I/O select flag
SIOIMD3	FLG	0.0 B 8 H .3	R	SIO interrupt mode select flag (dummy : 0)
SIOIMD2	FLG	0.0B8H. 2	R	SIO interrupt mode select flag (dummy : 0)
SIOIMD1	FLG	0.0B8H.1	R W	SIO interrupt mode select flag
SIOIMD0	FLG	0.0 B 8 H .0	R W	SIO interrupt mode select flag
SIOCK3	FLG	0.0B9H. 3	R	SIO shift clock select flag (dummy: 0)
SIOCK2	FLG	0.0 B 9 H .2	R	SIO shift clock select flag (dummy: 0)
SIOCK1	FLG	0.0 B 9 H .1	R W	SIO shift clock select flag
SIOCK0	FLG	0.0 B 9 H .0	R W	SIO shift clock select flag
IRQSIO	FLG	0.0 BFH .3	R W	SIO interrupt request flag
IRQVSYN	FLG	0.0 BFH .2	R W	Vsync interrupt request flag
IRQTM	FLG	0.0 BFH .1	$\mathrm{R}^{\prime} \mathrm{W}$	Timer interrupt request flag
IRQ	FLG	0.0BFH. 0	R W	RMC interrupt request flag

Remarks: Dummy is " 0 ".
23.5 PERIPHERAL HARDWARE ADDRESS

Reserved Hord	Type	Address	Read Write	Overview of Function
DBF	DAT	0FH	$\mathrm{R}^{\prime} \mathrm{W}$	GET 'PUT instruction data buffer address
IX	DAT	01H	$\mathrm{R}^{\prime} \mathrm{W}^{\prime}$	INC instruction index register address
IDCORG	DAT	01H	R W	IDC start position set register
ADCR	DAT	02H	R W	A D converter Vrff data register
SIOSFR	DAT	03H	R W	SIO presettable shift register
HSC	D.AT	04H	R W	Hsync counter data register
PWMR0	DAT	05 H	R W	PW:M data register 0
PWMR1	DAT	06H	R W	PWM data register 1
PWMR?	DAT	07H	R W	PWM data register 2
AR	DAT	40 H	R W	GET PUT PUSH CALL BR MO「T NCC instruction address register address
PW:MRMP	DAT	41H	R W	PWMRMP data register

24. ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS

Power Supply Voltage	Vod		-0.3 to +6.0	V
Input Voltage	VI		-0.3 to Vod	V
Output Voltage	Vo	Except P1A and PWM	-0.3 to Vod	V
Output Current High	loH	1 pin	-12	mA
		All pins	-20	mA
Output Current Low	loL1	1 pin (except P1A)	12	mA
		All pins (except P1A)	20	mA
Output Current Low	loL2	1 pin (P1A only)	17	mA
		All pins (P1A only)	60	mA
Output Withstand	VBos	P1A, PWM	13	V
Voltage			-20 to +70	${ }^{\circ} \mathrm{C}$
Operating Temperature	Topt		-55 to +125	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Power Supply Voltage	VDD1	4.5	5.0	5.5	V	All functions in operation
Power Supply VoItage	VDD2 $^{\prime 2}$	4.0	5.0	5.5	V	Only IDC stop
Data Hold Voltage	VDR	2.2		5.5	V	Clock oscillation stop
Output Withstand Voltage	VBDS			12.5	V	P1A, PWM
Power Supply Voltage Rising Time	trise			500	ms	VDD: $0 \rightarrow 4.0 \mathrm{~V}$

μ PD17051

DC CHARACTERISTICS ($\mathrm{T}_{\mathrm{a}}=\mathbf{- 2 0}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathbf{4 . 0}$ to 5.5 V)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Power Supply Current	$1 \mathrm{DD1}$		7	15	mA	CPU operation, IDC operation $\quad V_{D D}=5.5 \mathrm{~V}$
Power Supply Current	1002		3.5	15	mA	CPU operation, IDC stop $V_{D D}=5.5 \mathrm{~V}$
Input Voltage High	V_{1+1}	$\begin{aligned} & 0.7 \\ & \text { VDD } \end{aligned}$		VDD	V	POA, P0B, POD, P1B, P1C
Input Voltage High	V_{1+2}	$\begin{aligned} & 0.8 \\ & V_{D D} \end{aligned}$		Vod	V	CE, RMC, $\overline{\text { Vsrnc }}$, $\overline{H_{s v N C}}$
Input Voltage Low	VIL1	0		$\begin{aligned} & 0.3 \\ & V_{D D} \end{aligned}$	V	P0A, P0B, P0D, P1B, P1C
Input Voltage Low	VIL2	0		$\begin{aligned} & 0.2 \\ & V_{D D} \end{aligned}$	V	CE, RMC, $\overline{\text { VsYNc, }}$, $\overline{H \text { SYNC }}$
Output Current High	IOH	-1	-2		mA	POA2 POA3 POB, POC, P1B, P1C, P1D, RED, GREEN, BLUE, BLANK $\quad \mathrm{Voh}_{\mathrm{ol}}=\mathrm{VDD}-1 \mathrm{~V}$
Output Current Low	loL1	2	3		mA	POA, POB, POC, P1B, P1C, P1D, RED, GREEN, BLUE, BLANK $\quad V o l=1 \mathrm{~V}$
Output Current Low	10L2	15	20		mA	P1A \quad Vol $=1 \mathrm{~V}$
Output Current Low	loL3	1	2		mA	PWM \quad Vol $=1 \mathrm{~V}$
Input Current High	Іı		50		$\mu \mathrm{A}$	POD, when pulled down $V_{I H}=V_{D D}$
Data Hold Current	IDR			10	$\mu \mathrm{A}$	Clock oscillation stop $T_{a}=25^{\circ} \mathrm{C}, \mathrm{VDD}^{2}=5.5 \mathrm{~V}$
Output Leakage	IL			1	$\mu \mathrm{A}$	P0A0, P0A 1, P1A, PWM $\text { VOH }=5 \mathrm{~V}$

AC CHARACTERISTICS ($\mathrm{Ta}=\mathbf{- 2 0}$ to $\mathbf{+ 7 0}{ }^{\circ} \mathrm{C}, \mathrm{VDD}=\mathbf{4 . 0}$ to 5.5 V)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Input Frequency	fTMIN	50		60	Hz	$\mathrm{P}_{1 \mathrm{~B} 3} / \mathrm{TMIN}$
Input Frequency	fHS	10		20	kHz	$\mathrm{POB}_{3} / \mathrm{HSCNT}$
IDC Jitter	IDCG		3	4	ns	$\mathrm{VDD}^{2}=4.5$ to 5.5 V

A/D CONVERTER CHARACTERISTICS ($\mathrm{Ta}_{\mathrm{a}}=-20$ to $+70^{\circ} \mathrm{C}, \mathrm{VDD}_{\mathrm{DD}}=4.0$ to 5.5 V)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
A/D conversion absolute accuracy		$\pm 1 / 2$		± 1	LSB	
A/D input impedance		1			M Ω	

SINGLE-CHIP MICROCOMPUTER BUILT-IN IMAGE DISPLAY CONTROLLER FOR VOLTAGE SYNTHESIZER

The μ PD17052 is a 4-bit single-chip microcomputer with a built-in display controller and 14 -bit D/A converter for a digital tuning system designed for use in a voltage synthesizer TV set.

The image display controller (IDC) has a variety of image display functions. It is capable of displaying figures as well as characters. All fonts are user-programmable and can be specified as desired. Debugging can be done by actually outputting this data from the start of program development.

The microcomputer is also provided with a horizontal synchronization signal counter for detecting broadcasting stations, and a serial interface for communication with peripheral devices. Also, a 4-bit A/D converter and a 6-bit D/A converter (PWM output) are provided.

The CPU employs the μ PD1 7000 architecture capable of handling the data memory directly without using an accumulator. This ensures highly efficient programming. All instructions comprise a single word with a length of 16 bits.

We also provide an IE-17K (In-Circuit Emulator) and an assembler as easy-to-use μ PD17052 system development tools.

FEATURES

- 4-bit microcomputer for digital tuning șystem
- Built-in 14-bit D/A voltage synthesizer
- Program memory (ROM) : 16K bytes (16 bits $\times 8,192$ steps)
- Data memory (RAM) : 4 bits $\times 448$ words
- Stack levels : 6
- Easy-to-understand instructions (35)
- Decimal operations available
- Instruction execution time : $2 \mu \mathrm{~s}$ (8 MHz oscillator connected)
- Built-in IDC (Image Display Controller) (User programmable)

Number of display characters : Max. 99 characters per screen
Display position : 14 lines $\times 19$ columns
Character set $\quad: 128$ characters (64 different characters can be displayed in one screen simultaneously.)

Colors
: 8 colors
Character size $\quad: 4$ sizes can be set in vertical and/or horizontal directions $(14,28,42,56 \mathrm{H})$

- Built-in 8-bit serial interface (One system with two channels: three-wire and two-wire types)
- Built-in D/A converter: 6 bits $\times 4$ (PWM output)
- Built-in A/D converter: 4 bits $\times 8$
- Built-in horizontal synchronization signal counter
- Built-in commercial power frequency counter
- Built-in power failure detection circuit and Power On reset circuit
- Interrupt input for remote control signals (with noise canceller)

Notes on Serial interface: The 2-wire mode corresponds to the I2C-Bus specification from Philips. In case of using this interface mode note the following:

Duties when using I2C bus system

Purchase of NEC's I2C bus system hardware components conveys a license under the Philips I2C patents rights to use this components in an I2C system, provided that the system conforms the I2C standard specifications as defined by Philips.

Consequently for all ROM based components with I2C hardware circuits the user is kindly requested to notify the use of the I2C bus interface at the ROM code verification stage.

PIN CONFIGURATION (Top View)

BLOCK DIAGRAM

List of μ PD17052 functions

CHARACTERISTIC	FUNCTION
Program Memory	- 16 K bytes (8,192 steps $\times 16$ bits) Table reference area : 256 steps $\times 16$ bits Area serving also as CROM : 2,048 steps $\times 16$ bits
Data Memory	- 448 words (448 words $\times 4$ bits) Data buffer : 4 words, General-purpose register : 16 words Area also serving as VRAM : 224 words $\times 4$ bits
System Register	- 12 words
Register File	- 24 words
Port Register	- 11 words
Instruction Execution Time	- $2 \mu \mathrm{~s}$, using an 8 MHz ceramic oscillator
Stack Levels	- 6 levels (stack operation available)
General-Purpose-Ports	- Input/output ports - Input ports - Output ports
IDC (Image Display Controller)	
Serial Interface	- One system (two channels) 8-bit 3-wire type : one channel 8-bit 2-wire type : one channel
D/A Converter	- 14 bits $x 1$ (PWM output, withstanding voltage : Max. 12.5 V) - 6 bits $\times 4$ (PWM output, withstanding voltage : Max. 12.5 V)
A/D Converter	- 4 bits $\times 8$ (sequential comparison by means of software)
Interruption	- 4 channels (maskable interrupt) External interrupt : 3 channels (RMC pin, $\overline{V_{S Y N C}}$ pin, serial interface) Internal interrupt : One channel (timer)

CHARACTERISTIC	FUNCTION
Timer	- Two system Internal timer : 5, 20, 100 ms External timer : $1 / 5$ and $1 / 6$ of frequency input to PIB $_{3} /$ TMIN pin
Reset	- Power ON reset (When the power is input) - Resetting by CE pin (CE pin Low \rightarrow High) - Power failure detection
Power Supply Voltage	- $5 \mathrm{~V} \pm 10 \%$
Package	- 64-pin plastic shrink DIP (750 mil)

PIN DESCRIPTION

PIN No.	SYMBOL	PIN NAME	DESCRIPTION	OUTPUT TYPE
$\begin{gathered} 1 \\ \text { to } \\ 4 \end{gathered}$	$\begin{aligned} & {\mathrm{P} 1 \mathrm{D}_{3}}^{\text {to }} \\ & \mathrm{P}_{1} \mathrm{D}_{0} \end{aligned}$	Port 1D	4-bit output ports. The latch of port 1 D is assigned to address 73 H of Bank 1 of the data memory (RAM). The output state is undefined at the time when the power ($V_{D D}$) is applied initially.	CMOS push-pull
$\begin{array}{r} 5 \\ \text { to } \\ 8 \end{array}$	$\begin{aligned} & {\mathrm{P} 2 \mathrm{~A}_{3}}^{\text {to }} \\ & \mathrm{P} 2 \mathrm{~A}_{0} \end{aligned}$	Port 2A	4-bit input/output ports. These ports can be specified for input/output on a bit-by-bit basis. The setting of input/output is performed by using the P1BBIO word $(35 \mathrm{H})$ on the register file. The latch of the port is assigned to address 70 H of Bank 2 of the data memory (RAM).	CMOS push-pull (I/O)
$\begin{gathered} 9 \\ 10 \\ 11 \\ 12 \end{gathered}$	$\begin{gathered} {\mathrm{P} 1 \mathrm{~B}_{3} / \text { TMIN }}^{\mathrm{P} 1 \mathrm{~B}_{2}} \\ \mathrm{P}_{1} \mathrm{~B}_{1} \\ \mathrm{P} 1 \mathrm{~B}_{0} \end{gathered}$	Port 1B	4-bit input/output ports. These ports can be specified for input/output on a bit-by-bit basis. The setting of input/output is performed by using the P1BBIO word $(35 \mathrm{H})$ on the register file. The latch of the port is assigned to address 71 H of Bank 1 of the data memory (RAM). P1B3/TMIN can also be used as input to an external timer. It is possible to make an interrupt with a frequency equivalent to one-fifth or one-sixth the frequency input to this pin. Normally, the commercial power supply frequency is input to this pin for use as the reference clock.	CMOS push-pull (I/O)
13	CE	Chip enable	Device selection signal input pin. Set the pin at the high level to put the device in normal operation. Set the pin at the low level if the device is not used. When the pin is at the low level, executing the STOP instruction causes the clock oscillation to stop, making backup with a low current possible. The STOP instruction is effective only when the CE pin is at the low level. The instruction is in effect the same as the NOP instruction when the CE pin is at the high level. The pin also serves as a reset pin. Changing the CE pin from the low level to the high level causes the device to be reset and the program to start from address 0 . If the device is reset, the bank is made 0 and the I/O ports are put in the input mode.	Input
14	VDD	Power	Device power pin. Supply a voltage of $5 \mathrm{~V} \pm 10 \%$ to when activating all functions. If the IDC is not used, apply a voltage of 4 to 5.5 V . To retain the data of RAM (when the clock oscillation is stopped), the voltage may be dropped to 2.5 V . Since the μ PD17052 has a built-in power On reset circuit, if the voltage changes from 0 to 4.0 V , the system is reset and the program starts from address 0 . To operate the Power On reset circuit properly, it is necessary to limit the rise time from 0 to 4.0 V to 550 ms or less.	-
$\begin{aligned} & 15 \\ & 16 \end{aligned}$	$\begin{aligned} & \text { OSC OUT }_{\text {OUT }}^{\text {ON }} \end{aligned}$	LC oscillation	LC oscillation circuit pin for the IDC. Oscillation is made at 4 MHz .	cMOS push-pull (OSCOUT) INPUT (OSCIN)
17	GND	Ground	Device grounding pin.	-

μ PD17052

PIN No.	SYMBOL	PIN NAME	DESCRIPTION	OUTPUT TYPE
$\begin{aligned} & 18 \\ & \text { to } \\ & 21 \end{aligned}$	$\begin{gathered} {\mathrm{P} 1 \mathrm{~A}_{3}}^{\text {to }} \\ \mathrm{P} 1 \mathrm{~A}_{0} \end{gathered}$	Port 1A	4-bit output port. The latch of the port is assigned to address 70 H of Bank 1 of the data memory (RAM). N-ch open drain type. (medium withstanding voltage, large current)	N -ch open drain
22	PWM ${ }_{\text {RMP }}$	Tuning D/A converter output	Port for the output of the 14 -bit D/A (Digital-to-Analog) converter for a voltage synthesizer, or port for the output of one bit. The D/A converter outputs pulses made up of a combination of 9-bit PWM (Pulse Width Modulation) and 5-bit RMP (Rate Multiplier). D/A conversion is therefore possible by connecting a simple external CR filter. The output is at the low level when Power On is reset or when the clock is stopped.	N -ch open drain
$\begin{aligned} & 23 \\ & \text { to } \\ & 26 \end{aligned}$	PWM_{3} to PWM_{0}	D/A converter	VDP (Variable Duty Port), or port for the output one bit. The VDP function is to output pulses of a frequency of $15,625 \mathrm{kHz}$ continuously. The duty of the pulse can be made variable in 64 steps by means of a program.	N -ch open drain
$\begin{aligned} & 27 \\ & 28 \end{aligned}$	$\begin{aligned} & X_{\text {OUT }} \\ & X_{\text {IN }} \end{aligned}$	Oscillator	CPU oscillation circuit pin. Used to connect a ceramic oscillator or a crystal oscillator. Use an 8 MHz oscillator.	CMOS push-pull (XO) Input (XI)
$\begin{aligned} & 29 \\ & 30 \\ & 31 \end{aligned}$	RED GREEN BLUE	Character signal output	Pins to output character data corresponding to R, G and B. Output is in active High.	CMOS push-pull
32	BLANK	Blanking signal output	Pin to output blanking signals to cut image signals. Output is in active High.	CMOS push-pull
33	$\overline{V_{S Y N C}}$	Vertical synchronization signal input	Pin to input vertical synchronization signals for the IDC. Input in active Low. It is possible to make an interrupt with this signal.	Input
34	$\overline{\text { HSYNC }}$	Horizontal synchronization signal input	Pin to input horizontal synchronization signals for the IDC. Input in active Low.	Input
$\begin{aligned} & 35 \\ & 36 \\ & 37 \\ & 38 \end{aligned}$	$\begin{gathered} \mathrm{POB}_{3} / \mathrm{HSCNT} \\ \mathrm{POB}_{2} \\ \mathrm{POB}_{1} \\ \mathrm{POB}_{0} / \mathrm{SI} \end{gathered}$	Port OB	4-bit input/output ports. For these ports, it is possible to specify input/output on a bit by bit basis. The setting is made with the POBBIO word $(36 \mathrm{H})$ on the register file. The latch of the port is assigned to address 71 H of Bank 0 of the data memory (RAM). The $\mathrm{POB}_{0} / \mathrm{SI}$ pin can also serve as a data input pin of a serial interface ($\mu \mathrm{COM}$ standard mode). The $\mathrm{POB}_{3} /$ HSCNT pin can also serve as an input pin of the horizontal synchronization signal counter. This pin is always self-biased ($V_{D D} / 2$). Port OB is for input when the power ($V_{D D}$) is input initially, the clock stops, or resetting is done by the CE pin (Low \rightarrow High).	CMOS push-pull ($1 / \mathrm{O}$). provided $\mathrm{POB}_{3} /$ HSCNT is self-biased at the time of input.
$\begin{aligned} & 39 \\ & 40 \\ & 41 \\ & 42 \end{aligned}$	$\begin{aligned} & \mathrm{POA}_{3} / \mathrm{SO} \\ & \mathrm{POA}_{2} / \overline{\mathrm{SCK}} \\ & \mathrm{POA}_{1} / \mathrm{SCL} \\ & \mathrm{POA}_{0} / \mathrm{SDA} \end{aligned}$	Port 0A	4-bit input/output ports. These ports can be specified for input/output on a bit-by bit basis. The setting is made with the POABIO word (37H) on the register file. The latch of the port is assigned to address 70 H of Bank 0 of the data memory. The POA_{3} pin can be used as a data output pin of a serial interface ($\mu \mathrm{CMOS}$ standard mode) and the $\mathrm{POA}_{2} / \mathrm{SCK}$ pin as a shift clock input/output pin. The POA ${ }_{0} /$ SDA pin can be used as a data input/output pin of a serial interface (two-wire mode and $\mu \mathrm{COM}$ standard mode), and the POA ${ }_{1} / \mathrm{SCL}$ pin as a shift clock input/ output pin.	CMOS push-pull

PIN No.	SYMBOL	PIN NAME	DESCRIPTION	OUTPUT TYPE
$\begin{aligned} & 43 \\ & \text { to } \\ & 46 \end{aligned}$	$\begin{aligned} & {\mathrm{P} 2 \mathrm{~B}_{3}}^{\text {to }} \\ & \mathrm{P} 2 \mathrm{~B}_{0} \end{aligned}$	Port 2B	4-bit output port. The latch of the port is assigned to address 71 H of Bank 2 of the data memory (RAM). N -ch open drain (medium withstanding voltage).	N -ch open drain
$\begin{aligned} & 47 \\ & \text { to } \\ & 50 \end{aligned}$	$\begin{gathered} \mathrm{P} 2 \mathrm{C}_{3} \\ \text { to } \\ \mathrm{P} 2 \mathrm{C}_{0} \end{gathered}$	Port 2C	4-bit output port. The latch of the port is assigned to address 72 of Bank 2 of the data memory (RAM). N -ch open drain. (medium withstanding voltage)	N -ch open drain
$\begin{gathered} 51 \\ \text { to } \\ 54 \end{gathered}$	$\begin{aligned} & \mathrm{POC}_{3} \\ & \text { to } \\ & \mathrm{POC}_{0} \end{aligned}$	Port OC	4-bit output port. The latch of Port $O C$ is assigned to address 72 H of Bank 0 of the data memory (RAM). The output state is indefinite when the power ($V_{D D}$) is input initially.	CMOS push-pull
$\begin{aligned} & 55 \\ & 56 \\ & 57 \\ & 58 \end{aligned}$	$\begin{gathered} {\mathrm{P} 1 C_{3}} \\ {\mathrm{P} 1 \mathrm{C}_{2} / \mathrm{ADC}_{7}}^{{\mathrm{P} 1 \mathrm{C}_{1} / \mathrm{ADC}_{6}}^{{\mathrm{P} 1 \mathrm{C}_{0} / \mathrm{ADC}_{5}}^{2}}}=\text { 3 } \end{gathered}$	Port 1C	4-bit input/output port or A/D converter pin. The setting of input/output is made every 4 bits. The P1CGIO bit (bit \#O of address 27H) on the register file is used for input/output specification. It is necessary to specify input without fail when used as an A/D converter. The latch of the port is assigned to address 72 of Bank 1 of the data memory (RAM). Port 1 C is for input when the power (V_{DD}) is applied for the first time, the clock is stopped or resetting is made with the CE pin (Low \rightarrow High).	cmos push-pull (I/O)
$\begin{aligned} & 59 \\ & 60 \\ & 61 \\ & 62 \end{aligned}$	$\mathrm{POD}_{3} / \mathrm{ADC}_{4}$ $\mathrm{POD}_{2} / \mathrm{ADC}_{3}$ $\mathrm{POD}_{1} / \mathrm{ADC}_{2}$ $P_{0} D_{0} / A D C_{1}$	Port OD	4-bit input port. This port can also be used as an A/D converter. When used as a port, a pull-down resistance ($100 \mathrm{k} \Omega$ TYP.) is attached. The latch of Port OD is assigned to address 73 H of the data memory (RAM).	Input (with pull-down resistance)
63	$A D C 0_{0}$	A/D converter input	A/D (Analog to Digital) converter input pin. The converter is a 4 -bit built-in A/D converter employing programmed sequential comparison. The reference voltage of the A / D converter is $V_{D D}$.	Input
64	RMC	Interrupt signal input	Interrupt input pin with a noise canceller. Signals with a high level of noise, such as remote control signals, can be programmed easily by using this pin. It is possible to specify by means of a program whether an interrupt is made at the rise or at the fall of an input signal to this pin. Specifically, an interrupt is made at the rise or at the fall of the signal depending on whether the IEDG1 flag is reset or set, respectively. At the time of resetting (CE pin: Low \rightarrow High), the IEDG1 flag is reset and an interrupt is made at the edge of the rise.	Input

μ PD17052

PIN EQUIVALENT CIRCUITS
POA ($\mathrm{POA}_{3} / \mathrm{SO}, \mathrm{POA}_{2} / \mathrm{SCK}$)
$\mathrm{POB}\left(\mathrm{POB}_{2}, \mathrm{POB}_{1}, \mathrm{POB}_{0} / \mathrm{SI}\right)$
P1B (P1B ${ }_{2}$, P1B $_{1}$, P1B $_{0}$)
$\mathrm{P} 1 \mathrm{C}\left(\mathrm{P}_{1} \mathrm{C}_{3},{\left.\mathrm{P} 1 \mathrm{C}_{2} / \mathrm{ADC}_{7}, \mathrm{P} 1 \mathrm{C}_{1} / \mathrm{ADC}_{6}, \mathrm{P} 1 \mathrm{C}_{0} / \mathrm{ADC}_{5}\right)}\right.$)
P2A (P2A, P2A $_{2}$, P2A $_{1}$, P2A $\left._{0}\right)$

POA (POA ${ }_{1} /$ SCL, POA $_{0} /$ SDA $)$

(IN/OUT)
$\mathrm{POC}\left(\mathrm{POC}_{3}, \mathrm{POC}_{2}, \mathrm{POC}_{1}, \mathrm{POC}_{0}\right)$
P1D (P1D ${ }_{3}$, P1D $_{2}$, P1D $_{1}$, P1D $_{0}$)
RED, GREEN, BLUE, BLANK

(OUT)

PWM ($\mathrm{PWM}_{3}, \mathrm{PWM}_{2}, \mathrm{PWM}_{1}, \mathrm{PWM}_{0}, \mathrm{PWM}_{\text {RMP }}$)
P1A (P1A $\left.A_{3}, P 1 A_{2}, P 1 A_{1}, P 1 A_{0}\right)$
P2B (P2B ${ }_{3}$, P2B $_{2}$, P2B $_{1}$, P2B $\left._{0}\right)$
P2C ($\mathrm{P}_{2} \mathrm{C}_{3}, \mathrm{P}_{2} \mathrm{C}_{2}, \mathrm{P}_{2} \mathrm{C}_{1}, \mathrm{P}_{2} \mathrm{C}_{0}$)

(OUT)
$\mathrm{POD}\left(\mathrm{POD}_{3} / \mathrm{ADC}_{4}, \mathrm{POD}_{2} / \mathrm{ADC}_{3}, \mathrm{POD}_{1} / \mathrm{ADC}_{2}, \mathrm{POD}_{0} / A D C_{1}\right)$

(IN)

ADC $_{0}$

(IN)
$\mathrm{POB}_{3} / \mathrm{HSCNT}$
$\mathrm{P}_{1 B_{3}} /$ TMIN

μ PD17052

$\overline{H_{S Y N C}}, \overline{V_{S Y N C}}, R M C, C E$

$X_{\text {OUT }}, X_{\text {IN }}$, OSC $_{\text {OUT }}$, OSC $_{\text {IN }}$

μ PD17052 instructions

Instruction set

		0		1	
0000	0	A D D	r, m	A D D	m, \# i
0001	1	S U B	r, m	S U B	m, \# i
0010	2	A D D C	r, m	A D D C	m, \# i
0011	3	S U B C	r, m	S U B C	m, \# i
0100	4	AND	r, m	AND	m, \# i
0101	5	X OR	r, m	X OR	m, \# i
0110	6	0 R	r, m	OR	m, \#i
0111	7.	I N C I N C MOVT B R CALL RET RETSK EI D I RETI PUSH POP GET PUT PEEK POKE RORC STOP HALT NOP	AR I X DBF, @AR @ AR @ A R A R AR DBF, p $\mathrm{p}, \mathrm{D} \text { B F }$ WR, r f r f, WR r 0 h	;	
1000	8	L D	r, m	S T	m, r
1001	9	SKE	m, \#i	S K G E	m, \# i
1010	A	MOV	@ \mathbf{r}, m	MOV	m, @ r
1011	B	S K N E	m, \#i	SKLT	m, \# i
1100	C	B R	$\begin{aligned} & \operatorname{addr} \\ & (\text { page } 0) \end{aligned}$	C A L L	$\begin{aligned} & \text { a d dr} \\ & (\text { page } 0) \end{aligned}$
1101	D	B R	$\begin{aligned} & \text { a d d } \mathbf{r} \\ & (\text { page } 1 \text {) } \end{aligned}$	M O V	m, \# i
1110	E	B R	$\begin{aligned} & \text { a d d r } \\ & (\text { page } 2 \text {) } \end{aligned}$	S K T	m, \#n
1111	F	B R	$\begin{aligned} & \text { a d d r } \\ & \text { (page } 3 \text {) } \end{aligned}$	S K F	m, \#n

INSTRUCTION

NOTE

M	One of Data memory specified by [(BANK),m]
m	Data memory address specified by [$\mathrm{m}_{\mathrm{H}}, \mathrm{m}_{\mathrm{L}}$] of each bank
m_{4}	Data memory address high (Row address) ; [3its]
m_{L}	: Data memory address low (Column address) ; [4bits]
R	One of General register specified by [(RP), r]
r	:General register address low ; [4its]
RP	General register pointer
RF	One of register file specified by if
rf	Register file address specified by [$\mathrm{rf}_{\mathrm{H}}, \mathrm{r}_{\mathrm{L}}$]
r_{4}	:Register file address high
rl_{L}	: Register file address low
AR	: Address register

Ma R M M
m_{L} : Data memory address low (Column address) ; [4bits]
R :One of General register specified by [(RP), r]
r : General register address low ; [4bits]
: General register pointer
One of register file specified by rf
: Register file address high
ff_{L} : Register file address low

IX	: Index register
IXE	: Index enable flag
DBF	: Data buffer
WR	: Window register
MP	: Memory pointer
MPE : Memory pointer enable flag	
PE	: Peripheral
p	: Peripheral address
p_{H}	: Peripheral address high
p_{L}	: Peripheral address low
PC	: Program memory counter
SP	:Stack pointer

STACK :Stack of (PC), (BANK), (IXE)
STACK $_{\text {PC }}$: Stack of (PC)
BANK : Bank register
(ROM) $)_{\text {PC }}$: One of Program memory data specified by (PC)
INTEF : Interrupt enable flag
SGR : Program memory segment register
1 :Immediate data ; [4bits]
n : Bit position ; [4bits]
addr : One of program memory address ; [11bits]
CY :Carry flag
h \quad Halt release conditions
[] : Address of M, R, RF
() Contents of M, R, RF , AR , IX , DBF , WR, PE

	INC	AR	Increment Address register	R) $\leftarrow(\mathrm{AR})+1$	0111	000	1	0000
								0000
		IX	Increment Index register	(IX) \leftarrow (IX) +1	00111	000	1000	0000
	SUB	r,m	Subtract Data memory from General register	(R), (CY) $\leftarrow(\mathrm{R})-(\mathrm{M})$	00001	m_{H}	m_{L}	r
		m, \#i	Subtract immediate data from Data memory	(M), (CY) $\leftarrow(\mathrm{M})-\mathrm{i}$	10001	m_{H}	m_{L}	i
	SUBC	r,m	Subtract Data memory from General register with borrow	(R), (CY) \leftarrow (R)-(M)-(CY)	00011	m_{H}	m_{L}	r
		m, \#i	Subtract immediate data from Data memory with borrow	(M), (CY) \leftarrow (M)-i-(CY)	10011	m_{H}	m_{L}	i
	SKE	m, \#i	Skip if Data memory equals immediate data	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { (M)-i \& } \\ \text { skip if zero } \end{array} \\ \hline \end{array}$	01001	m_{H}	m_{L}	i
	SKGE	m, \#i	Skip if Data memory is greater than or equal to immediate data	$(\mathrm{M})-\mathrm{i} \&$ skip if not borrow	11001	m_{H}	m_{L}	i
	SKLT	m, \#i	Skip if Data memory is less than immediate data	$\begin{array}{\|l\|} \hline \text { (M)-i \& } \\ \text { skip if borrow } \\ \hline \end{array}$	11011	m_{H}	m_{L}	i
	SKNE	m, \# i	Skip if Data memory not equal immediate data	$\text { (M) }-\mathrm{i} \&$ skip if not zero	01011	m_{H}	m_{L}	i
	AND	m, \#i	Logic AND of Data memory and immediate data	(M) \leftarrow (M) AND i	10100	m_{H}	m_{L}	i
		r,m	Logic AND of General register and Data memory	$(\mathrm{R}) \leftarrow(\mathrm{R})$ AND (M)	00100	m_{H}	m_{L}	r
	OR	m, \#i	Logic OR of Data memory and immediate data	(M) \leftarrow (M) OR i	10110	m_{H}	m_{L}	i
		r,m	Logic OR of General register and Data memory	(R) $\leftarrow(\mathrm{R}) \mathrm{OR}(\mathrm{M})$	00110	m_{H}	m_{L}	r
	XOR	m, \#i	Exclusive Logic OR of Data memory and immediate data	(M) - (M) XOR i	10101	m_{H}	m_{L}	i
		r,m	Exclusive Logic OR of General register and Data memory	$(\mathrm{R}) \leftarrow(\mathrm{R}) \mathrm{X} 0 \mathrm{R}(\mathrm{M})$	00101	m_{H}	m_{L}	r

	Mnemonic	Operand	Function	Operation	Machine code			
					Operation code			
$\begin{aligned} & \text { 苞 } \\ & \text { 品 } \end{aligned}$	LD	r，m	Load Data memory to General register	$(\mathrm{R}) \leftarrow(\mathrm{M})$	01000	m_{H}	m_{L}	r
	ST	m，r	Store General register to Data memory	$(\mathrm{M}) \leftarrow(\mathrm{R})$	11000	m_{H}	m_{L}	r
	MOV	＠r，m	Move Data memory to Destination data memory referring to General register	$\begin{aligned} & \text { if MPE }=1:[(\mathrm{MP}),(\mathrm{R})] \leftarrow(\mathrm{M}) \\ & \text { if } M P E=0:\left[\left(m_{H}\right),(\mathrm{R})\right] \leftarrow(\mathrm{M}) \end{aligned}$	01010	m_{H}	m_{L}	r
		m，＠r	Move Source data memory referring to General register to Data memory	$\begin{aligned} & \text { if MPE }=1:(\mathrm{M}) \leftarrow[(\mathrm{MP}),(\mathrm{R})] \\ & \text { if MPE }=0:(\mathrm{M}) \leftarrow\left[\left(\mathrm{m}_{H}\right),(\mathrm{R})\right] \end{aligned}$	11010	m_{H}	m_{L}	r
		m，\＃i	Move immediate data to Data memory	（M）-i	11101	m_{H}	m_{L}	i
	MOVT	DBF，＠AR	Move Program memory data specified by Address register to Data buffer	$\begin{aligned} & \left.\mathrm{STACK}_{\mathrm{PC}}\right)-(\mathrm{PC}) \&(\mathrm{PC})-(\mathrm{AR}) \& \\ & (\mathrm{DBF})-(\mathrm{ROM})_{\mathrm{PC}} \&(\mathrm{PC})-\left(\mathrm{STACK}_{\mathrm{PC}}\right) \end{aligned}$	00111	000	0001	0000
	PUSH	AR	Decrement Stack pointer，then move Address register to Stack	$\begin{aligned} & (\mathrm{SP}) \leftarrow(\mathrm{SP})-1 \& \\ & \left(\mathrm{STACK}_{\mathrm{PC}}\right) \leftarrow(\mathrm{AR}) \end{aligned}$	00111	000	1101	0000
	POP	AR	Move Stack to Address register，then increment Stack pointer	$\begin{aligned} & (\mathrm{AR}) \leftarrow\left(\mathrm{STACK}_{\mathrm{PC}}\right) \& \\ & (\mathrm{SP}) \leftarrow(\mathrm{SP})+1 \end{aligned}$	00111	000	1100	0000
	PEEK	WR，rf	Get data of Register file to Window register	$(\mathrm{WR}) \leftarrow(\mathrm{RF})$	00111	rf_{H}	0011	rf_{L}
	POKE	rf，WR	Put data of Window register into Register file	（RF）\ldots（WR）	00111	rf_{H}	0010	rf_{L}
	GET	DBF，p	Get peripheral data to Data buffer	（DBF）- （PE）	00111	p_{H}	1011	p_{L}
	PUT	p，DBF	Put data of Data buffer to peripheral	$(\mathrm{PE}) \leftarrow(\mathrm{DBF})$	00111	p_{H}	1010	p_{L} ．
	SKT	m，\＃n	Test Data memory bits， then skip if all bits specified are true	$\text { if }(\mathrm{M})_{\mathrm{n}}=\text { all " } 1 " \text {, }$ then skip	11110	m_{H}	m_{L}	n
	SKF	m，\＃n	Test Data memory bits， then skip if all bits specified are false	if $(M)_{n}=$ all＂ 0 ＂， then skip	11111	m_{H}	m_{L}	n
	BR	addr	Jump to the address in page 0		01100	addr（11 bits）		
			Jump to the address in page 1	$(\mathrm{PC})+$ addr \＆$\left(\mathrm{PC}_{1012}-0 .(\mathrm{PC})_{ \pm 11}+1\right.$	01101			
			Jump to the address in page 2	$(\mathrm{PC}) \leftarrow$ addr \＆$(\mathrm{PC})_{1212}+1,(\mathrm{PC})_{111}-1$	01110			
			Jump to the address in page 3		01111			
		（a）AR	Jump to the address specified by Address register	$(\mathrm{PC}) \leftarrow(\mathrm{AR})$	00111	000	0100	0000
$\begin{aligned} & \ddagger \\ & \vdots \\ & \vdots \end{aligned}$	RORC	r	Rotate General register right with carry		00111	000	0111	r
	CALL	addr	Call subroutine in page 0	$\begin{aligned} & (\mathrm{SP}) \leftarrow(\mathrm{SP})-1 \& \\ & \left(\mathrm{STACK}_{\mathrm{PC}}\right) \leftarrow((\mathrm{PC})+1) \& \\ & (\mathrm{PC})_{\# 11} \leftarrow 0 \&(\mathrm{PC}) \leftarrow \mathrm{addr} \\ & \hline \end{aligned}$	11100	addr（11 bits）		
		＠AR	Call subroutine	$\begin{aligned} & (\mathrm{SP}) \leftarrow(\mathrm{SP})-1 \& \\ & (\mathrm{STACK} \\ & \mathrm{PC} \end{aligned} \leftarrow((\mathrm{PC})+1) \&-1(\mathrm{PC}) \leftarrow(\mathrm{AR}) \mathrm{l}$	00111	000	1110	0000
	RET		Return to main routine from subroutine	$\begin{aligned} & (\mathrm{PC}) \leftarrow\left(\mathrm{STACK}_{\text {PC }}\right) \& \\ & (\mathrm{SP}) \leftarrow(\mathrm{SP})+1 \end{aligned}$	00111	001	1110	0000
	RETSK		Return to main routine from subroutine， then skip unconditionary	$\begin{aligned} & (\mathrm{PC}) \leftarrow\left(\mathrm{STACK}_{\mathrm{PC}}\right) \& \\ & (\mathrm{SP}) \leftarrow(\mathrm{SP})+1 \text { \& and skip } \end{aligned}$	00111	100	1110	0000
	RETI		Return to main routine from interrupt service routine	$\begin{aligned} & (\mathrm{PC}),(\mathrm{BANK}),(\mathrm{IXE})-(\mathrm{STACK}) \& \\ & (\mathrm{SP}) \leftarrow(\mathrm{SP})+1 \end{aligned}$	00111	000	0101	0000
$\begin{array}{\|l\|} \hline \text { 唇 } \\ \text { 筑 } \end{array}$	EI		Enable interrupt	INTEF $\leftarrow 1$	00111	000	1111	0000
	DI		Disable interrupt	INTEF $\leftarrow 0$	00111	001	1111	0000
$\begin{aligned} & \text { 岛 } \\ & \text { S } \end{aligned}$	STOP	0	Stop clock if CE＝low	stop clock if $\mathrm{CE}=$ low	00111	010	1111	0000
	HALT	h	Halt the CPU，Restart by condition h	halt	00111	011	1111	h
	NOP		No operation		00111	100	1111	0000

ELECTRIC CHARACTERISTICS (PROVISIONAL)

ABSOLUTE MAXIMUM RATINGS

Power Supply Voltage	V_{DD}	-0.3 to +6.0	V
Input Voltage	V_{1}	-0.3 to V_{DD}	V
Output Voltage	V_{O}	-0.3 to V_{DD}	V
Output Absorption Current	I_{O}	10	mA
Withstanding Output Voltage	$\mathrm{V}_{\mathrm{BDS}}$	$13(\mathrm{P} 1 \mathrm{~A}, \mathrm{P} 2 \mathrm{~B}, \mathrm{P} 2 \mathrm{C}, \mathrm{PWM})$	V
Operating Temperature	T_{a}	-20 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\mathrm{stg}}$	-55 to +125	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
Power Supply Voltage	VDD1	4.5	5.0	5.5	V	All function activated
Power Supply Voltage	VDD2	4.0	5.0	5.5	V	Only IDC stopped
Data Storing Voltage	VDR	2.5		5.5	V	Clock oscillation stopped
Withstanding Output Voltage	$V_{\text {BDS }}$			12.5	V	P1A, P2B, P2C, PWM
Power Supply Voltage Rise Time	${ }^{\text {trise }}$			500	ms	$\mathrm{V}_{\mathrm{DD}}: 0 \rightarrow 4.0 \mathrm{~V}$

DC CHARACTERISTICS ($\mathrm{T}_{\mathrm{a}}=\mathbf{- 2 0}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=4.0$ to 5.5 V)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
Power Supply Current	'DD1		7	15	mA	CPU in operation, IDC in operation $v_{D D}=5.5 \mathrm{~V}$
Power Supply Current	'DD2		3.5	15	mA	CPU in operation, IDC stopped $\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$
High Level Input Voitage	$\mathrm{V}_{1} \mathrm{H} 1$	$0.7 \mathrm{~V}_{\text {DD }}$			V	POA, P0B, POD, P1B, P1C, P2A
High Level Input Voltage	$\mathrm{V}_{1 \mathrm{H} 2}$	$0.8 \mathrm{~V}_{\text {DD }}$			V	CE, RMC, $\overline{V_{S Y N C}}, \overline{H_{S Y N C}}$
Low Level Input Voltage	$V_{\text {IL1 }}$			$0.3 \mathrm{~V}_{\mathrm{DD}}$	v	POA, POB, POD, P1B, P1C, P2A
Low Level Input Voltage	$V_{\text {IL2 }}$			$0.2 \mathrm{~V}_{\text {DD }}$	v	CE, RMC, $\overline{V_{S Y N C}}, \overline{H_{S Y N C}}$
High Level Output Current	${ }^{\mathrm{I}} \mathrm{OH}$		-2	-1	mA	$\mathrm{POA}_{2}, \mathrm{POA}, \mathrm{P}, \mathrm{POB}, \mathrm{POC}, \mathrm{P1B}, \mathrm{P1C},$ P1D, RED, GREEN, BLUE, BLANK $\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-1 \mathrm{~V}$
Low Level Output Current	'OL1	2	3		mA	POA, POB, POC, P1B, P1C, P1D. RED, GREEN, BLUE, BLANK $\mathrm{V}_{\mathrm{OL}}=1 \mathrm{~V}$
Low Level Output Current	${ }^{1} \mathrm{OL} 2$	15	20		mA	P1A $\mathrm{V}_{\text {OL }}=1 \mathrm{~V}$
Low Level Output Current	IOL3	1	2		mA	PWM, P2B, P2C $\quad \mathrm{V}_{\mathrm{OL}}=1 \mathrm{~V}$
High Level Input Current	$\mathrm{I}_{\mathbf{H}}$		50		$\mu \mathrm{A}$	POD, pull-down time
Data Storing Current	${ }^{\prime}$ DR			10	$\mu \mathrm{A}$	Clock oscillation stopped $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{D D}=5.5 \mathrm{~V}$
Output Leak	IL			1	$\mu \mathrm{A}$	$\mathrm{POA}_{0}, \mathrm{POA}_{1}, \mathrm{P} 1 \mathrm{~A}, \mathrm{P} 2 \mathrm{~B}, \mathrm{P} 2 \mathrm{C}, \mathrm{PWM}$ $\mathrm{V}_{\mathrm{OH}}=5 \mathrm{~V}$

AC CHARACTERISTICS

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
Input Frequency	fTMR	50		60	Hz	$\mathrm{P}_{1} \mathrm{~B}_{3} /$ TMIN
Input Frequency	f_{HS}	10		20	kHz	$\mathrm{POB}_{3} / \mathrm{HSCNT}$

BUILT-IN IMAGE DISPLAY CONTROLLER

The μ PD 17053 is a 4 bits CMOS microcontroller incorporating Image Display Controller (IDC) and 14 bits D/A converter into one chip for digital tuning of voltage synthesizer system of TV.

Image Display Controller has various display function showing not only letters but also drawings.
Fonts of IDC are selected by user's program and effective debugging can be realized by actual indications from the beginning of software development.

In addition, Hsync. counter for station detection and serial interface for communication with other peripheral devices are incorporated, also 4 bits A/D converter and 6 bits D/A converter (PWM output) are incorporated.

CPU applies μ PD17000 architecture which operates data memory directly without accumulater, and it realizes effective programming.

All instruction consist of $\mathbf{1 6}$ bits one word.
As system development support tool of μ PD17053, IE-17K (In Circuit Emulator) and assembler are prepared.

FEATURES

- 4 bits microcontroller for digital tuning system
- built-in 14 bits D/A converter
- single power supply ($5 \mathrm{~V} \pm 10 \%$)
- CMOS with low power consumption
- program memory (ROM):

24 K byte (16 bits $\times 12,288$ steps)

- data memory (RAM): 4 bits $\times 672$ words
- stack level: 7 levels
- easy to understand instruction set with 36 types
- capable of decimal arithmetic
- instruction execution time:
$2 \mu \mathrm{~s}$ (with 8 MHz ceramic resonator connected)
- IDC (Image Display Controller) built-in
(user programmable)
- number of display character:

199 characters (max. in one screen)

- display location: 14 lines $\times 19$ columns
- number of character types: 256 types
- character format:
10×15 dots (capable of fringe function)

Notes on Serial interface:

The 2-wire mode corresponds to the 12C-Bus specification from Philips.
In case of using this interface mode note the following:

Duties when using I2C bus system

Purchase of NEC's I2C bus system hardware components conveys a license under the Philips 12C patents rights to use this components in an I2C system, provided that the system conforms the I2C standard specifications as defined by Philips.

Consequently for all ROM based components with I2C hardware circuits the user is kindly requested to notify the use of the I2C bus interface at the ROM code verification stage.

PIN CONFIGURATION (Top View)

BLOCK DIAGRAM

SINGLE-CHIP MICROCONTROLLER

The μ PD17102 is a four-bit single chip microcontroller which has a built-in LCD controller, D/A converter, and operational amplifier. This CPU uses the μ PD1 7000 architecture, allowing data transfer and operation between data memory areas or between data memory areas and peripheral circuits with only one instruction. It also supports 16-bit (1-word) instructions.

FEATURES

- μ PD17000 architecture
- Program memory (ROM) : 4K bytes (2048×16 bits)
- Data memory (RAM) : 208 words (208×4 bits)
- Command execution time : $2.0 \mu \mathrm{~s}(8 \mathrm{MHz}$, ceramic/crystal oscillator)
- Interrupting function (Internal: 3, and external: 2)
- 8-bit timer/counter : 2 channels (built-in modulo)
- 8-bit serial interface
- 2-channel complete CMOS operational amplifier (Two operation modes available: NORMAL and SAMPLE/HOLD)
- 4-channel multiplexer input comparator
- 6-bit D/A converter
- Feasible to realize the 4-channel 6-bit A/D conversion function using the above-mentioned comparator and D/A converter
- LCD controller/driver (14SEGMENT $\times 2$ COMMON, 13SEGMENT $\times 3 C O M M O N$, and 12 SEGMENT $\times 4 C O M M O N)$
- Zero-cross detection selectable
- Standby function (Stop/Halt)

USE:

Electronic rice cooker and blood pressure meter, etc.

ORDERING INFORMATION

Order Code	Package
μ PD17102G•XXX-00	52-pin plastic QFP (bent lead)
μ PD17102G-XXX-03	52-pin plastic QFP (straight lead)

OUTLINE OF FUNCTIONS

- μ PD1 7000 architecture
- Program memory (ROM) : 4K bytes (2048×16 bits)
- Data memory (RAM) : 222 words (222×4 bits)
- Stack level : 3 levels
- Instruction cycle : $2 \mu \mathrm{~s}$ (when operated at 5.0 V and 8 MHz)
- Interrupting function : (Internal: 3, and external: 2)
- 8-bit timer/counter : 2 CH (with modulo integrated)
- 8-bit serial interface
- 2-channel complete CMOS operational amplifier
(Two operation modes available: NORMAL and SAMPLE/HOLD)
- 4-channel input comparator with multiplexer
- 6-bit D/A converter
- Feasible to realize 4-channel, 6 -bit A / D conversion function using the above-mentioned comparator and D/A converter
- LCD controller (14SEGMENT x 2COMMON, 13SEGMENT x 3COMMON, and 12SEGMENT x 4COMMON)
- Zero-cross detecting function
- Standby function (STOP/HALT)
- Data/memory low supply voltage holding function
- Oscillator circuit for system clock (ceramic and crystal)
- Single power unit (3.0 to 6.0 V , but 4.5 to 6.0 V when the operational amplifier is used)

PIN CONFIGURATION (Top View)

BLOCK DIAGRAM

1. OUTLINE

The μ PD17102 is a 4-bit single chip microcontroller which integrates all the following circuits on one chip: 4-bit ALU, program memory (ROM), data memory (RAM), I/O ports, timer/event counter, serial interface, vector interrupt circuit.

This chip using the μ PD1 7000 Series architecture has various built-in peripheral circuits including analog circuits, allowing the user to incorporate it into electrical appliances and intelligent units in a distributed system for home automation.

For program development, NEC supports the in-circuit emulator (IE-17K), so that the user can debug programs easily by using the emulator together with the SE board for each product.

2. PIN FUNCTIONS

2.1 Input/Output Ports

2.1.1 POA_{0} to $\mathrm{POA}_{\mathbf{3}}$ (Port OA): Bi-directional input/output ports

Port $O A$ is a 4 -bit input port (pins from $P O A_{0}$ to $P O A_{3}$) with output latch circuits.
This port is mapped to 70 H at bank 0 in the data memory space and accessed with normal data memory operation instructions. The direction of input/output is switched for all four bits by the POAGIO value. Setting POAGIO to " 1 " outputs the value stored at 70 H of bank 0 to the pin and setting to " 0 " disables output and sets input mode.

Regardless of the POAGIO value, the pin status can be read with a data memory reference instruction. The contents of the output latch remain unchanged unless the data at 70 H of bank 0 is rewritten.

POA A_{0} is shared by the timer 1 output pin TMOUT. It operates as TMOUT when PTOUTON in the register file is " 0 " and in normal input/output mode.

When TMOUT is selected, this pin outputs " 1 " at time 1 reset and reverses the output each time the timer 1 value matches the contents of the modulo register. At this time, this pin is set in output mode regardless of the POAGIO value. The pin status at this time can also be read with a data memory reference instruction. The output latch as POA_{0} is independent of TMOUT, and therefore data can be written to 70 H of bank 0 even if the pin operates as TMOUT and the data is output when PTOUTON is set to " 0 " while POAGIO is " 1. ."
POA_{1} to POA_{3} are shared by $\overline{\mathrm{SCK}}, \mathrm{SO}$, and SI of the serial interface. The PAO pin is set in normal input/output mode when the SIOON value in the register file is " 0 " and used as the SIO pin when it is " 1. ."

In the port OA input/output format, either of the Nch open/drain input/output or Nch open/drain input/output with a built-in pull-up resistor is selectable by the mask option. In Nch open/drain input/output mode, the port has a 9 V withstanding voltage and is suitable for an interface with a circuit using a different supply voltage. By using the Nch open/drain input/output structure, a 2 -wire serial interface can also be used.

When SIOON is "1," data cannot be output to the $\overline{\text { SCK }}$ and SO pins as a port. Even if data is transferred to address 70 H of bank 0 , this data cannot be input to $\mathrm{POA} A_{1}$ to $\mathrm{PO} \mathrm{A}_{3}$. At this time, only $\mathrm{PO} \mathrm{A}_{3}$ is available.

When the $\overline{\text { SCK }}$ pin is in input mode, however, data can be written to the POA ${ }_{1}$ output latch.

Table 2-1 Port 0A functions

PTOUTON	SIOON	POAGIO	Write to bank$0,70 \mathrm{H}$	Read from bank 0,70H	Pin function			
					POA_{0}	POA_{1}	POA_{2}	POA_{3}
0	0	0	All four bits are valid.	Enable. (Pin status)	POA 0 IN	$\begin{gathered} \mathrm{POA}_{1} \\ \text { IN } \end{gathered}$	$\begin{gathered} \mathrm{POA}_{2} \\ \mathrm{IN} \end{gathered}$	POA_{3} IN
		1	All four bits are valid.		POAO OUT	$\begin{aligned} & \mathrm{POA}_{1} \\ & \text { OUT } \end{aligned}$	POA_{2} OUT	$\begin{aligned} & \mathrm{POA}_{3} \\ & \text { OUT } \end{aligned}$
	1	0	Only POA0 is valid.		POA 0 IN	$\overline{\text { SCK }}$	SO	SI
		1	Only POA is valid.		POAO OUT			
1	0	0	All four bits are valid		TMOUT	$\begin{gathered} \mathrm{POA}_{1} \\ \mathrm{IN} \end{gathered}$	$\begin{gathered} \mathrm{POA}_{2} \\ \mathrm{IN} \end{gathered}$	$\begin{gathered} \mathrm{POA}_{3} \\ \mathrm{IN} \end{gathered}$
		1	All four bits are valid.			$\begin{aligned} & \mathrm{POA}_{1} \\ & \text { OUT } \end{aligned}$	POA_{2} OUT	$\begin{aligned} & \mathrm{POA}_{3} \\ & \text { OUT } \end{aligned}$
	1	0	Only POA A_{0} is valid.			$\overline{\text { SCK }}$	SO	SI
		1	Only $\mathrm{POA} \mathrm{A}_{0}$ is valid.					

Note: If data is written to 70 H of bank 0 when SIOON is " 1 ," this data can be written to POA 1 only when the $\overline{\text { SCK }}$ pin is in input mode.

2.1.2 POB_{0} to POB_{3} (port OB), POC_{0} to POC_{3} (port OC): Bi-directional input/output

Ports $O B$ and $O C$ are 4-bit input/output pins with output latch circuits: From POB_{0} to POB_{3} and from POC_{0} to POC_{3}. These ports are mapped to 71 H and 72 H of bank 0 in the data memory space, respectively and are accessed with normal data memory operation instructions like port OA. The direction of input/output is switched for all 4-bits by the POBGIO or POCGIO value in the register file. Setting the value to " 1 " outputs the data at 71 H or 72 H of bank 0 to the corresponding pin and " 0 " disables the output and sets the input mode. Regardless of the POBGIO and POCGIO values, the pin status is read when a data memory reference instruction is executed. At this time, the contents of the output latch remain unchanged.

The input/output format of ports $O B$ and $O C$ is the CMOS (push/pull) type.

Table 2-2 Functions of ports OB and OC

POBGIO POCGIO	Input/output direction of pin	Write to bank $0,71 \mathrm{H}$ or 72 H	Read from bank 0,71H or 72 H
0	Input (output disable)	Available	Available (pin status input)
1	Output	Annter	

2.1.3 $\mathrm{POD}_{\mathbf{0}}$ to POD_{3} (port D): Bi-directional input/output

Port OD comprises 4-bit input/output pins with output latch circuits. It is mapped to 73 H of bank 0 in the data memory space. The input/output direction is switched by the PODGIO value in the register file.
$P O D_{0}$ is shared with the AMP1 output pin AMP1OUT, and POD 1 is shared with the AMP2 output pin AMP2OUT. These bits are used in normal input/output mode when the AMP1EN or AMP2EN values in the register file are " 0 " and as AMP1OUT and AMP2OUT respectively when the values are " 1. "

When AMP1OUT and AMP2OUT are selected, the pins are used as the AMP1OUT and AMP2OUT output pins, regardless of the PODGIO value. A data memory reference instruction reads the pin status regardless of the function selected for the pin. At this time, the pin potential is intermediate, the read value is undefined. The μ PD17102 reads only at the moment the instruction is executed and disables other input circuits. Therefore, the through current does not flow through the input circuit.

The POD ${ }_{0}$ and $P O D_{1}$ output latch circuits are independent of AMP1OUT and AMP2OUT. Therefore, data can be written to bank $0,73 \mathrm{H}$ by setting AMP1EN and AMP2EN to " 1 " even if the pins operate as AMP1OUT and AMP2OUT. When PODGIO is " 1 ," the pins output data as a port by setting AMP1EN and AMP2EN to " 0 ."

The port OD input/output format is CMOS (push/pull) input/output.

Table 2-3 Port OD functions

AP1EN		Write to	Read from		Pin fu	ction	
AP2EN		bank 0, 73H	bank 0, 73H	POD ${ }_{0}$	POD 1	POD_{2}	POD_{3}
0	0	All four bits are valid.	Enable. Pin status.	PODO IN	$\mathrm{POD}_{1} \mathrm{IN}$	$\mathrm{POD}_{2} \mathrm{IN}$	$\mathrm{POD}_{3} \mathrm{IN}$
	1			POD 0 OUT	POD 1 OUT	POD_{2} OUT	POD_{3} OUT
1	0			AMP1OUT	AMP2OUT	$\mathrm{POD}_{2} \mathrm{IN}$	$\mathrm{POD}_{3} \mathrm{IN}$
	1					POD_{2} OUT	POD_{3} OUT

Note: The AMP output control is selectable for AMP1/2 separately.

2.1.4 P1A A_{0} to $\mathrm{P1A}_{3}$ (port 1A): Input

Port 1 A comprises 4 -bit input pins.
It is mapped to 70 H of bank 1 in the data memory space.
$P 1 A_{0}$ and $P 1 A_{1}$ are shared with AMP1 non-reverse input (AMP1IN+) and reverse input (AMP1IN-), PI1A and P1A3 are shared with AMP2 non-reverse input (AMP2IN+) and reverse input (AMP2IN-). These pins are not switched and are always connected to both input circuits of the operator amplifier (analog input) and port (digital input).

When used as analog input pins, apply an intermediate potential or AC voltage. If a data memory reference instruction is executed at this time, an undefined value is read. Similar to port 0D, the through current does not flow through the input circuit.

Port 1A has three mask options: With pull-up resistor, with pull-down resistor, and with no built-in resistor. When the pins are used as analog input pins, select the mask option for no built-in resistor. Otherwise, the pins may not operate normally

Output instructions to the port (data write to 70 H in bank 1) are invalid.

Table 2-4 Port 1 A function

Read from bank 1,70H (logical input)	Write to bank 1,70H	Analog input
Enable (Pin status input) (Undefined at intermediate potential)	Disable	Always connected to AMP input.

2.1.5 $\mathrm{P}_{1} \mathrm{~B}_{\mathbf{0}}$ to $\mathrm{P}_{1 \mathrm{~B}_{3}}$ (port 1B): Input

Port 1B comprises 4-bit input pins.
It is mapped to 71 H of bank 1 in the data memory space.
Only one of these pins can be set as the input pin of the non-reserve input from the comparator by ADCCHO and ADCCH1. For more information, see Section 3.12. Similar to ports OD and 1A, the pin status of port 1B is read with the data memory reference instruction, regardless of the selected pin function, and the through current does not flow through the input circuit even if the intermediate potential is applied.

Port 1B also has three mask options: With pull-up resistor, with pull-down resistor, and with no built-in resistor. When the pins are used as analog input pins, select the mask option for no built-in resistor. Otherwise, the pins may not operate normally.

Output instructions to port 1B (data write to 71 H in bank 1) are invalid.

Table 2-5 Port 1B function

Read from bank 1,71H (logical input)	Write to bank 1, 71H	Analog input
Enable	Disable	Either pin is connected to the comparator input (Pin status input) (Undefined at intermediate potential)

$2.2 \mathrm{INT}_{0}, \mathrm{INT}_{1}$

$I N T_{0}$ and $I N T_{1}$ are interrupt request input pins for which the active rising or falling edge is selectable by $I E G_{0}$ and $I E G_{1}$. At the rising or falling edge of the $I N T_{0}$ or $I N T_{1}$ signal selected by $I E G_{0}$ and $I E G_{1}$, the interrupt request flag (IRQ0, IRQ1) is set.

To prevent malfunctions from noise, the pins has a built-in noise remover. The status of the pin for which noise is eliminated by the noise remover is read by referencing $I N T_{0}$ and $I N T_{1}$ in the register file with the PEEK instruction, so that the pins are simply used as input pins.

In addition, $I N T_{0} / I N T_{1}$ are the count clock input pins of timer $1 / 2$, respectively, and are used when external clocks are selected as timer count clock sources. When sharing the timer input and INT $/$ INT T_{1} interrupt request input, note that the $I N T_{0} / I N T_{1}$ interrupt request flag is also set by the clock.

The INT 1_{1} pin is also used to detect zero-cross when ZCROSS in the register file is set to " 1. ."

2.3 CMPIN/DAC, $V_{D D 2}$, GND $_{2}$

$V_{D D 2}$ and $G N D_{2}$ are pins used to apply the reference voltage of the built-in 6-bit D / A converter. Apply the $V_{D D}$ potential to $V_{D D 2}$ and the GND potential to $G_{N D}$. These two pins are separated from $V_{D D}$ and GND and can have separated digital and analog power sources. The applied voltage between the pins is divided into 2^{6} steps (64 steps). The analog value corresponding to digital data stored in four bits of 72 H and high-order two bits of 73 H of bank 1 in the data memory space is the D/A converter output.

To output the D/A converter data from the CMPIN/DAC pin, set DACEN to " 1 " and CMPEN to " 0 " in the register file.

To use a comparator, set DACEN to " 0 " and CMPEN to " 1 " in the register file. At this time, the CMPIN/DAC pin operates as the reverse input pin of the comparator (CMPIN). Apply a voltage with the same potential as $V_{D D}$ to the $V_{\text {DD2 }}$ pin. Also apply the same potential to $G N D_{2}$ pin to minimize the current flowing through the D / A converter which is not used.

When using the 6-bit D/A converter under program control, set DACEN to " 1 " and CMPEN to " 1 " in the register file. At this time, D/A converter data is not output externally, but is directly input to the comparator reverse input pin. Therefore, the CMPIN/DAC pin is not used.

Table 2-6 VDD2, GND $_{2}$, and CMPIN/DAC functions

DACEN	CMPEN	$V_{\text {DD2 }}$	GND_{2}	CMPIN/DAC	Function
0	0	$V_{\text {DD }}$ potential	V_{DD} potential	$\mathrm{V}_{\text {DD }}$ potential	D/A converter and comparator are not used.
		$\mathrm{V}_{\text {DD2 }}$	GND_{2}	High impedance	Initial state when the D/A converter is used (Note).
0	1	$V_{\text {DD }}$ potential	$\mathrm{V}_{\text {DD }}$ potential	CMPIN	When the comparator is used.
1	0	$\mathrm{V}_{\text {DD2 }}$	GND_{2}	DAC	When the D/A converter is used.
1	1	$\mathrm{V}_{\mathrm{DD} 2}$	GND_{2}	$\mathrm{V}_{\text {DD }}$ potential	Used as D/A converter

$\mathrm{V}_{\text {DD }}$ potential indicates that $\mathrm{V}_{\text {DD }}$ potential is applied externally.
Note: DACEN and CMPEN are set to " 0 " at reset.

$2.4 \mathrm{~V}_{\mathrm{LCD}}$

$V_{\text {LCD }}$ is a power supply pin for driving the liquid crystal display panel (LCD panel).
Depending on the bias method used, it generates the $1 / 2 V_{\text {LCD }}, 1 / 3 V_{L C D}$, and $2 / 3 V_{\text {LCD }}$ voltages. When using $L C D_{0}$ to $L C D_{13}$ as the output pins, apply the high voltage under the supply voltage ($V_{D D}$).
$2.5 \mathrm{LCD}_{0}$ to $\mathrm{LCD}_{11}, \mathrm{COM}_{3} / \mathrm{LCD}_{12}, \mathrm{COM}_{2} / \mathrm{LCD}_{13}, \mathrm{COM}_{1}, \mathrm{COM}_{0}$
$L C D_{0}$ to $\mathrm{LCD}_{11}, \mathrm{COM}_{3}, \mathrm{LCD}_{12}, \mathrm{COM}_{2} / \mathrm{LCD}_{13}, \mathrm{COM}_{1}$, and $C O M_{0}$ are LCD panel segment driver pins used to select drive method, such as 14 -segment 2 -common, 13 -segment 3 -common, 12 -segment 4 -common.
L_{0} to $L_{0} C_{13}$ are used as output pins when LCDEN in the register file is " $0 .{ }^{\prime \prime}$ At this time, $C O M_{1}$ and $C O M_{0}$ are not used.

For more information on the LCD panel, see Section 3.10.

Table 2-7 LCD_{0} to $\mathrm{LCD}_{11}, \mathrm{COM}_{3} / \mathrm{LCD}_{12}, \mathrm{COM}_{2} / L C D_{13}, \mathrm{COM}_{1}$, and COM_{0} functions

LCDEN	LCD_{0} to $\mathrm{LCD}_{11}, \mathrm{COM}_{3} / \mathrm{LCD}_{12}, \mathrm{COM}_{2} / \mathrm{LCD}$	
13		$\mathrm{COM}_{1}, \mathrm{COM}_{0}$
0	All are output pins.	Not used
1	LCD drivers and common drivers	Common drivers

$2.6 \mathrm{X}_{\text {IN }}, \mathrm{X}_{\text {OUT }}$

$X_{\text {IN }}$ and $X_{\text {OUT }}$ are pins used to connect the oscillation vibrator in the system clock generator.

2.7 RESET

$\overline{\text { RESET }}$ is a low-level active reset input pin. The reset has priority over all other operations.
In addition to CPU initial start, this pin is also used to release standby mode.

$2.8 \mathrm{~V}_{\mathrm{DD} 1}$

$V_{D D 1}$ is a positive power supply pin.

2.9 GND $_{1}$, GND $_{2}$

GND_{1} and GND_{2} are GND potential pins. Wire them so that the same potential is used externally.

2.10 Pin Mask Options

The μ PD17102 pins have the mask options listed below. These option can be selected bit according to purpose.

Pin name	Mask option
$\mathrm{POA} \mathrm{A}_{0}$ to POA_{3}	(1) Nch open-drain input/output (2) Nch open-drain plus built-in pull-up resistor input/output
P1 A_{0} to $P 1 A_{3}$ $\mathrm{P} 1 \mathrm{~B}_{0}$ to $\mathrm{P} 1 \mathrm{~B}_{3}$	(1) No built-in resistor (2) Built-in pull-up resistor (3) Built-in pull-down resistor
$\begin{aligned} & \mathrm{INT} T_{0} \\ & \mathrm{INT} \mathrm{P}_{1} \end{aligned}$	(1) No built-in resistor (2) Built-in pull-up resistor (3) Built-in pull-down resistor
RESET	(1) No built-in resistor (2) Built-in pull-up resistor

2.11 Pin Input/Output Circuits

The Input/output circuit of each pin of the μ PD17102 is shown below in a partly simplified format:
(1) POA_{0} to POA_{3}

(2) POB_{0} to $\mathrm{POB}_{3}, \mathrm{POC}_{0}$ to $\mathrm{POC}_{3}, \mathrm{POD}_{0}$ to POD_{3}

Input buffer
(3) $\mathrm{P} 1 \mathrm{~A}_{0}$ to $\mathrm{P} 1 \mathrm{~A}_{3}, \mathrm{P} 1 \mathrm{~B}_{0}$ to $\mathrm{P} 1 \mathrm{~B}_{3}, \mathrm{INT}_{0}, \mathrm{INT}_{1}$

(4) $\overline{\mathrm{RESET}}$

Input buffer

Table 2-8 Digital input/output port pin functions

PIN NAME	1/0	COMBINED USE	FUNCTION	WHEN RESET
POA_{0}	Input/output	TMOUT	4-bit I/O port (port 0A)	High impedance (POAn input)
POA_{1}		$\overline{\text { SCK }}$		
POA_{2}		SO		
POA_{3}		SI		
POB_{0} to POB_{3}	Input/output		4-bit I/O port (port OB) Large current (15 mA).	High impedance (input)
POC_{0} to POC_{3}	Input/output		4-bit I/O port (port OC) Large current (15 mA)	High impedance (input)
POD_{0}	Input/output	AMP10UT	4-bit I/O port (port OD) Middle current (10 mA)	High impedance (PODn input)
POD_{1}		AMP2OUT		
POD_{2} to POD_{3}				High impedance (input)
$\mathrm{P}_{1} \mathrm{~A}_{0}$	Input	AMP1 IN+	4-bit input port (port 1A)	Input
$\mathrm{P}_{1} \mathrm{~A}_{1}$		AMP1IN-		
$\mathrm{P}_{1} \mathrm{~A}_{2}$		AMP2IN+		
${\mathrm{P} 1 \mathrm{~A}_{3}}$		AMP2IN-		
${\mathrm{P} 1 \mathrm{~B}_{0}}$	Input	ADC_{0}	4-bit input port (port 1B)	Input
${\mathrm{P} 1 \mathrm{~B}_{1}}^{1}$		ADC_{1}		
${\mathrm{P} 1 \mathrm{~B}_{2}}$		ADC_{2}		
${\mathrm{P} 1 \mathrm{~B}_{3}}$		ADC_{3}		

Table 2-9 Pins other than port pins

Pin name	Input/output	Shared	Function	At reset
INT_{0}	Input		Used as both the timer 1 count clock input pin and the external interrupt input pin.	Input
INT_{1}	Input		Used as the timer 2 count clock input pin and external interrupt input pin. Zero-cross detection function is selectable.	Input
TMOUT	Output	POA 0	Timer 1 output pin	POA ${ }_{0}$ input
$\overline{\text { SCK }}$	Input/output	POA_{1}	Serial clock input/output pin	POA_{1} input
SO	Output	POA_{2}	Serial data output pin	POA_{2} input
SI	Input	POA_{3}	Serial data input pin	POA_{3} input
AMP1OUT	Output	POD 0	AMP1 output pin	POD ${ }_{0}$ input
AMP2OUT		POD ${ }_{1}$	AMP2 output pin	POD 1 input
AMP1IN+	Input	P1A0	AMP1 non-reversed input pin	Input
AMP1IN-		P1A ${ }_{1}$	AMP1 reversed input pin	
AMP2IN+		P1A ${ }_{2}$	AMP2 non-reversed input pin	
AMP2IN-		P1 A ${ }_{3}$	AMP2 reversed input pin	
ADC_{0} to ADC_{3}	Input	$\mathrm{P} 1 \mathrm{~B}_{0}$ to $\mathrm{P} 1 \mathrm{~B}_{3}$	Comparator input pin	Input
$V_{\text {DD2 }}$	Input		D/A converter reference voltage input pin (high-potential side)	
GND_{2}	Input		D/A converter reference voltage input pin (low-potential side)	
CMPIN	Input/output	DAC	Used as the D/A converter output pin and comparator input pin.	High impedance
$\begin{aligned} & L C D_{0} \text { to } \\ & L C D_{11} \end{aligned}$	Output		LCD segment driver output pin. Also used as the output port.	Output
COM_{3}	Output	L^{-12}	Used as the LCD common driver output and LCD segment driver pin. Also used as an output port.	Output
COM_{2}		LCD_{13}		
$\mathrm{COM}_{0}, \mathrm{COM}_{1}$	Output		LCD common driver output pin	Output
$V_{\text {LCD }}$	Input		LCD driver split potential setting pin	Input
RESET	Input		System reset input pin	Input
$\mathrm{V}_{\text {DD1 }}$			Positive power supply pin	
$\mathrm{GND}_{1}, \mathrm{GND}_{3}$			GND potential pin	
$\mathrm{X}_{\text {IN }}, \mathrm{X}_{\text {OUT }}$			System clock oscillator pin	

3. INTERNAL BLOCK

3.1 Program Counter (PC)

The program counter (PC) is an 11-bit binary counter that retains address data of the program memory (ROM).

Fig. 3-1 Program counter configuration

PC10	PC9	PC8	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0

When the $\overline{\text { RESET }}$ signal goes to low, the PC is set to 0 .
Usually, the counter is incremented by one each time an instruction is executed.
The CALL instruction saves the contents of the counter (return address) to the stack memory then loads the branch destination address to the counter. Return instructions (RET, RETSK, and RETI) load the contents of the stack memory (return address) to the counter. The branch instruction ($B R$) loads the branch destination address to the counter. The ROM data reference instruction (MOVT) temporarily loads the address at which the data to be referenced is stored to the counter. Take care with the level because the contents of the PC are saved to the stack memory immediately before the address is loaded.

In Fig. 3-2, AHn, AMn, and ALn are addresses indicated by the instruction operand. (See Fig. 3-3.) ARmm is bit n in the address register (ARm) which contains the address to be loaded to the program counter. SP is the stack pointer which points to the contents of the stack memory.

Fig. 3-2 Relationship between instructions and values to be loaded

RET, RETSK, RETI
BR,CALL
BR@AR, CALL@AR,MOVT
PC10

PC9	PC8	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0		
AH2	(SP)										
1	1	1	AR0	AM3	AM2	AM1	AR12	AR11	AR10	AL3	AL2
AL1	AL	AR02	AR01	AR00							

Fig. 3-3 Instruction word configuration

7. ASSEMBLER RESERVED WORDS

7.1 Mask Option Pseudo Instructions

For coding μ PD17102 programs, a mask option must be specified in Assembler source programs with the mask option pseudo instruction.

The following pins require the mask option:

- POA $0, P_{1}$, POA $_{2}$, POA $_{3}$
- P1A0, P1A 1, P1A 2, P1A A_{3}
- P1B0, P1B $1_{1}, P 1 B_{2}, P 1 B_{3}$
- $\mathrm{INT}_{0}, \mathrm{INT}_{1}$
- RESET

7.1.1 OPTION and ENDOP pseudo instructions

From the OPTION pseudo instruction to the ENDOP pseudo instruction is referred to as the mask option definition block. The format of this block is shown below.

Only the six pseudo instructions explained in Section 7.1.2 can be input to the mask option definition block.

Format:

$\frac{\text { Symbol field }}{[\text { lievel: }]}$	$\frac{\text { Mnemonic field }}{\text { OPTION }}$		
	\vdots		
	\vdots		
ENDPOP			

7.1.2 Mask option definition pseudo instructions

Table 7-1 lists the pseudo instruction that are allowed in the mask option definition block.
An example for defining the mask option is shown below.

Format:

Table 7-1 Mask option definition pseudo instructions

Pin name	Mask option pseudo instruction	Number of parameters	Parameter name
$\mathrm{PO} \mathrm{A}_{0}$ to POA_{3}	OPTPOA	4	POAPLUP : Pull up OPEN : Open
$\mathrm{P} 1 \mathrm{~A}_{0}$ to $\mathrm{P} 1 \mathrm{~A}_{3}$	OPTP1A	4	P1APLUP : Pull up P1APLDW : Pull down OPEN : Open
$\mathrm{P} 1 \mathrm{~B}_{0}$ to $\mathrm{P} 1 \mathrm{~B}_{3}$	OPTP1B	4	P1BPLUP : Pull up P1BPLDW : Pull down OPEN : Open
INT0	OPTINTO	1	INTOPLUP : Pull up INTOPLDW : Pull down OPEN : Open
INT ${ }_{1}$	OPTINT1	1	INT1PLUP : Pull up INT1PLDW : Pull down OPEN : Open
$\overline{\text { RESET }}$	OPTRES	1	$\begin{array}{ll} \text { RESPLUP } & \text { : Pull up } \\ \text { OPEN } & \text { : Open } \end{array}$

7.2 Reserved Symbols

Table 7-2 lists the symbols defined in the μ PD17102 device file. These defined symbols include the control register names, port names, and peripheral device names.
(1) Control registers in register file

The names of the control register assigned to data memory addresses 80 H to BFH in bank 0 are defined. These registers are accessible through the window register (WR) with the PEEK and POKE instructions.
(2) Registers and ports in data memory

Registers assigned to data memory addresses 00 H to 7 FH , and ports and system registers assigned to 70 H and after are defined.
(3) Peripheral circuits

Peripheral circuits accessible with the GET and PUT D/A converters are defined.

Table 7-2 List of reserved symbols (1/4)

NAME	ATTRIBUTE	VALUE	R/W	DESCRIPTION
DBF3	MEM	0.0 CH	R/W	Bit 15 to bit 12 of data buffer
DBF2	MEM	0.0 DH	R/W	Bit 11 to bit 8 of data buffer
DBF1	MEM	0.OEH	R/W	Bit 7 to bit 4 of data buffer
DBFO	MEM	0.0FH	R/W	Bit 3 to bit 0 of data buffer
AR3	MEM	0.74H	R	Bit 15 to bit 12 of address register
AR2	MEM	0.75 H	R	Bit 11 to bit 8 of address register
AR1	MEM	0.76H	R/W	Bit 7 to bit 4 of address register
ARO	MEM	0.77H	R/W	Bit 3 to bit 0 of address register
WR	MEM	0.78 H	R/W	Window register
BANK	MEM	0.79 H	R/W	Bank register
IXH	MEM	0.7 AH	R/W	Bit 11 to bit 8 of index register
MPH	MEM	0.7 AH	R/W	Bit 7 to bit 4 of memory pointer
MPE	FLG	0.7 AH. 3	R/W	Memory pointer enable flag
IXM	MEM	0.7BH	R/W	Bit 7 to bit 4 of index register
MPL	MEM	0.7 BH	R/W	Bit 3 to bit 0 of memory pointer
IXL	MEM	0.7 CH	R/W	Bit 3 to bit 0 of index register
RPH	MEM	0.7DH	R/W	Bit 7 to bit 4 of register pointer
RPL	MEM	0.7 EH	R/W	Bit 3 to bit 0 of register pointer
PSW	MEM	0.7 FH	R/W	Program status word
BCD	FLG	0.7EH. 0	R/W	BCD operation flag
CMP	FLG	0.7 FH .3	R/W	Compare flag
CY	FLG	0.7FH. 2	R/W	Carry flag
Z	FLG	0.7FH. 1	R/W	Zero flag
IXE	FLG	0.7FH. 0	R/W	Index register enable flag
LCDDO	MEM	0.60 H	R/W	LCD segment 0
LCDD1	MEM	0.61 H	R/W	LCD segment 1
LCDD2	MEM	0.62 H	R/W	LCD segment 2
LCDD3	MEM	0.63 H	R/W	LCD segment 3
LCDD4	MEM	0.64H	R/W	LCD segment 4
LCDD5	MEM	0.65 H	R/W	LCD segment 5
LCDD6	MEM	0.66H	R/W	LCD segment 6

Table 7-2 List of reserved symbols (2/4)

NAME	ATTRIBUTE	VALUE	R/W	DESCRIPTION
LCDD7	MEM	0.67 H	R/W	LCD segment 7
LCDD8	MEM	0.68 H	R/W	LCD segment 8
LCDD9	MEM	0.69 H	R/W	LCD segment 9
LCDD10	MEM	0.6 AH	R/W	LCD segment 10
LCDD11	MEM	0.6 BH	R/W	LCD segment 11
LCDD12	MEM	0.6 CH	R/W	LCD segment 12
LCDD13	MEM	0.6DH	R/W	LCD segment 13
POAO	FLG	0.70 H .0	R/W	Port 0A bit 0
POA1	FLG	0.70 H .1	R/W	Port 0A bit 1
POA2	FLG	0.70H. 2	R/W	Port 0A bit 2
POA3	FLG	0.70H. 3	R/W	Port OA bit 3
POBO	FLG	0.70 H .0	R/W	Port OB bit 0
POB1	FLG	$0.71 \mathrm{H}$.	R/W	Port OB bit 1
POB2	FLG	0.71H. 2	R/W	Port OB bit 2
POB3	FLG	0.71 H .3	R/W	Port OB bit 3
POCO	FLG	0.71H. 0	R/W	Port 0C bit 0
POC1	FLG	0.72 H .1	R/W	Port OC bit 1
POC2	FLG	0.72H. 2	R/W	Port OC bit 2
POC3	FLG	0.72H. 3	R/W	Port 0C bit 3
PODO	FLG	0.73H.0	R/W	Port OD bit 0
POD1	FLG	0.73 H .1	R/W	Port OD bit 1
POD2	FLG	0.73H. 2	R/W	Port 0D bit 2
POD3	FLG	0.73H. 3	R/W	Port OD bit 3
P1A0	FLG	$1.70 \mathrm{H.O}$	R	Port 1A bit 0
P1A1	FLG	1.70 H .1	R	Port 1A bit 1
P1A2	FLG	1.70 H .2	R	Port 1A bit 2
P1A3	FLG	1.70 H .3	R	Port 1A bit 3
P1B0	FLG	1.71 H .0	R	Port 1B bit 0
P1B1	FLG	$1.71 \mathrm{H}$.	R	Port 1B bit 1
P1B2	FLG	$1.71 \mathrm{H}$.	R	Port 1B bit 2
P1B3	FLG	1.71 H .3	R	Port 1B bit 3
DARH	MEM	1.72 H	R/W	D/A conversion data bit 4 and bit 5

μ PD17102

Table 7-2 List of reserved symbols (3/4)

NAME	ATTRIBUTE	VALUE	R/W	DESCRIPTION
DARL	MEM	1.73 H	R/W	D/A conversion data bit 3 to bit 0
DACCMP	FLG	1.73 H .0	R	Result of comparison
SP	MEM	0.81 H	R/W	Stack pointer
SIOTS	FLG	0.82 H .3	R/W	SIO operating status
SIOHIZ	FLG	0.82 H .2	R/W	Status of SO pin
SIOCK1	FLG	0.82 H .1	R/W	Selection of serial clock
SIOCKO	FLG	0.82 H .0	R/W	Selection of serial clock
INT1	FLG	0.8FH. 2	R	Status of INT ${ }_{1}$ pin
INTO	FLG	0.8FH. 1	R	Status of INT ${ }_{0}$ pin
ZCROSS	FLG	0.8FH. 0	R/W	Status of zero-cross detection circuit
TM1EN	FLG	0.91 H .3	R/W	Timer 1 permit
TM1RES	FLG	0.91 H .2	R/W	Timer 1 reset
TM1CK1	FLG	0.91 H .1	R/W	Timer 1 clock selection
TM1CK0	FLG	$0.91 \mathrm{H.O}$	R/W	Timer 1 clock selection
TM2EN	FLG	0.92 H .3	R/W	Timer 2 permit
TM2RES	FLG	0.92 H .2	R/W	Timer 2 reset
TM2CK1	FLG	0.92 H .1	R/W	Timer 2 clock selection
TM2CK0	FLG	0.92 H .0	R/W	Timer 2 clock selection
IEG 1	FLG	0.9FH. 2	R/W	INT1 edge selection
IEGO	FLG	0.9FH. 1	R/W	INTO edge selection
AMP1EN	FLG	0.A1H. 3	R/W	AMP1 permit
AMP1MD2	FLG	$0 . \mathrm{A} 1 \mathrm{H} .2$	R/W	Mode selection
AMP2MD1	FLG	0.A2H. 1	R/W	Be sure to write " 0 "
AMP2MD0	FLG	0.A2H. 0	R/W	SAMPLE-HOLD selection
CMPEN	FLG	$0 . \mathrm{A} 3 \mathrm{H} .3$	R/W	Comparator permit
DACEN	FLG	$0 . \mathrm{A} 3 \mathrm{H} .2$	R/W	D/A converter permit
ADCCH1	FLG	0.A3H. 1	R/W	Comparator input selection
ADCCHO	FLG	$0 . \mathrm{A} 3 \mathrm{H} .0$	R/W	Comparator input selection
PODGIO	FLG	0.A7H. 3	R/W	Port OD I/O selection
PODGIO	FLG	0.A7H. 2	R/W	Port OC I/O selection
POBGIO	FLG	0.A7H. 1	R/W	Port OB I/O selection
POAGIO	FLG	0.A7H. 0	R/W	Port OA I/O selection

Table 7-2 List of reserved symbols (4/4)

NAME	ATTRIBUTE	VALUE	R/W	DESCRIPTION
IPTM2	FLG	0.AEH. 1	R/W	INTTM2 permit flag
IP1	FLG	O.AEH. 0	R/W	INT1 permit flag
IPSIO	FLG	0.AFH. 3	R/W	INTSIO permit flag
IPO	FLG	0.AFH. 2	R/W	INTO permit flag
IPTM1	FLG	0.AFH. 1	R/W	INTTM1 permit flag
LCDOFF	FLG	0.B1H. 3	R/W	LCD segment/port selection
LCDMD2	FLG	0.B1H. 2	R/W	LCD mode selection
LCDMD1	FLG	0.B1H. 1	R/W	LCD mode selection
LCDMDO	FLG	0.B1H. 0	R/W	LCD mode selection
LCDEN	FLG	0.B2H. 3	R/W	ICD segment output permit
PTOUTON	FLG	0.B7H. 0	R/W	PTOUT output permit
SIOON	FLG	0.87 H .1	R/W	SIO output permit
IRQTM2	FLG	0.BEH. 1	R/W	INTTM2 interrupt request
IRQ1	FLG	0.BEH. 0	R/W	INT1 interrupt request
IRQSIO	FLG	0.BFG. 3	R/W	INTSIO interrupt request
IRQO	FLG	0.BFH. 2	R/W	INTO interrupt request
IRQTM 1	FLG	0.BFG. 1	R/W	INTTM1 interrupt request
DBF	DAT	OFH	R/W	GET/PUT instruction operand
IX	DAT	01 H	R/W	Index register
AR	DAT	OOH	R/W	Address register
SIOSFR	DAT	01H	R/W	SIO register
TM1M	DAT	02 H	W	Timer 1 modulo register
TM2M	DAT	03H	W	Timer 2 modulo register
TMC	DAT	41H	R	Timer count register

Note: 'W. XYH. Z'" in the value field indicates

$$
\begin{array}{lll}
\text { W } & \ldots . & \text { Bank } \\
\mathbf{X} & \ldots . & \text { Row address } \\
\text { Y } & \ldots . & \text { Colum address } \\
\text { Z } & \ldots . & \text { Bit }
\end{array}
$$

8. INSTRUCTION SET

Table 8-1 List of instruction sets

b14 to b11 b15		0	1		
BIN	HEX				
0000	0	ADD r, m	ADD	m,	\# i
0001	1	SUB r, m	SUB	m,	\#
0010	2	ADDC r, m	ADDC	m,	\#
0011	3	SUBC r, m	SUBC	m,	\#i
0100	4	AND r, m	AND	m,	\#i
0101	5	XOR r, m	XOR	m,	\#i
0110	6	OR r, m	OR	m,	\# i
01111	7	INC AR INC IX MOVT DBF, @AR BR @AR CALL @AR RET RETSK EI DI RETI PUSH AR POP AR GET DBF PUT p, DBF PEEK WR, RA POKE RA, WR RORC r STOP s HALT h NOP			
1000	8	LD r, m	ST	m,	r
1001	9	SKE m, \#i	SKGE	m ,	\# i
1010	A	MOV @r, m	MOV	m ,	@r
1011	B	SKNE m, \#i	SKLT	m,	\#
1100	C	BR addr	CALL	addr	
1101	D		MOV	m,	\# i
1110	E		SKT	m,	\# n
1111	F		SKF	m,	\#

Legends

$\mathrm{m} \quad$ ：Data memory address specified by［ mH, mL ］of each bank
m_{H} ：Date memory address high（row address）： 3 bits
m_{L} ：Data memory address low（column address）： 4 bits One of general register specified by［（RP），r］
：General register address low（column address）： $\mathbf{4}$ bits General register pointer
One of register file specified by rf
rf ：Register file address specified by［rfH，rfL］
$\mathrm{rf}_{\mathrm{H}} \quad$ ：Register file address high（row address）： 3 bits
$\mathrm{rf}_{\mathrm{L}} \quad$ ：Register file address low（column address）： 4 bits
AR
Address register
Index register
IXE ：Index register enable flag
$\begin{array}{ll}\text { DBF } & \text { Data buffer } \\ \text { WR } & \text { ：Window register }\end{array}$
Memory pointer
MPE ：Memory pointer enable flag Peripheral
p ：Peripheral addres
$\mathrm{p}_{\mathrm{H}}:$ Peripheral address high（row address）： 3 bits
p_{l} ：Peripheral address low（column address）： $\mathbf{4}$ bits

	Mnemimic	Operand	Function	Operatio：	Machine code			
					$\begin{array}{\|c\|} \hline \text { Opration } \\ \text { code } \end{array}$	3 bits	4bits	4bits
	ADD	r，m	Add memory to register	R． $\mathrm{Cl} \leftarrow(\mathrm{R})+(\mathrm{M})$	00000	m_{H}	m_{L}	r
		m，\＃i	Add immediate data to memory	M． $\mathrm{CY} \leftarrow$（M）+i	10000	m_{H}	m_{L}	i
	ADDC	r，m	Add memory to register with carry	R． $\mathrm{CY} \leftarrow(\mathrm{R})+(\mathrm{M},+(\mathrm{CY})$	00010	m_{H}	m_{L}	r
		m，\＃i	Add immediate data to memory with carry	R， $\mathrm{Cl} \leftarrow(\mathrm{M})+\mathrm{i}+(\mathrm{CY})$	10010	m_{H}	m_{L}	i
	INC	AR	Increment address register	AR－AR＋1	00111	000	1001	0000
		IX	Increment index register	$\mathrm{IX}-1 \mathrm{X}+1$	00111	000	1000	0000
	SUB	r，m	Subtract memory from register	R． $\mathrm{Cl} \leftarrow(\mathrm{R})-(\mathrm{M})$	00001	m_{H}	m_{L}	r
		m，\＃i	Subtract immediate data from memory	M． $\mathrm{CY} \leftarrow(\mathrm{M})-\mathrm{i}$	10001	m_{H}	m_{L}	i
	SUBC	r，m	Subtract memory from register with borrow	R． $\mathrm{CY}-(\mathrm{R})-(\mathrm{M})-(\mathrm{CY})$	00011	m_{H}	m_{L}	r
		m，\＃i	Subtract immediate data from memory with borrow	M．CY：（M）－i－（CY）	10011	m_{H}	m_{L}	i
	SKE	m, \＃ i	Skip if memory equal to immediate data	M－i，skip if zero	01001	m_{H}	m_{L}	i
	SKGE	m，\＃i	Skip if memory greater than or equal to immediate data	M－i，skip if not borrow	11001	m_{H}	m_{L}	i
	SKLT	m，\＃${ }_{\text {i }}$	Skip if memory less than immediate data	M－i．skip if borrow	11011	m_{H}	m_{L}	i
	SKNE	m，\＃i	Skip if memory not equal to immediate data	M－i．skip if not zero	01011	m_{H}	m_{L}	i
	AND	m，\＃i	Logical AND of memory and immediate data	$\mathrm{M} \leftarrow$（M）AND i	10100	m_{H}	m_{L}	i
		r，m	Logical AND of register and memory	$\mathrm{R} \leftarrow$（R）AND（M）	00100	m_{H}	m_{L}	r
	OR	m，\＃i	Logical OR of memory and immediate data	$\mathrm{M} \leftarrow$（M）OR i	10110	m_{H}	m_{L}	i
		r，m	Logical OR of register and memory	$\mathrm{R} \leftarrow(\mathrm{R}) \mathrm{OR}$（M）	00110	m_{H}	m_{1}	r
	XOR	m．\＃i	Logical XOR of memory and immediate data	$\mathrm{M}-(\mathrm{M}) \mathrm{XOR} \mathrm{i}$	10101	m_{H}	m_{L}	i
		r，m	Logical XOR of register and memory	$\mathrm{R} \leftarrow(\mathrm{R}) \mathrm{XOR}$（ M ：	00101	m_{H}	m_{L}	r
$\begin{array}{\|l\|l} \frac{5}{5} \\ \frac{1}{W} \\ E \\ E \end{array}$	LD	r，m	Load memory to register	$\mathrm{R} \leftarrow(\mathrm{M})$	01000	m_{H}	m_{L}	r
	ST	m， r	Store register to memory	（M）$\leftarrow \mathrm{R}$	11000	m_{H}	m_{L}	r
	MOV	＠r，m	Move memory to destination memory referring to register	$\begin{aligned} & \text { if MPE }=1,[(M P),(R)] \leftarrow(M) \\ & \text { if } M P E=0,\left[\left(m_{H}\right),(R)\right] \leftarrow(M) \end{aligned}$	01010	m_{H}	m_{L}	r
		m，© $\mathrm{r}_{\text {r }}$	Move source memory referring to register to memory	$\begin{aligned} & \text { if MPE }=1, \mathrm{M} \leftarrow[(\mathrm{MP}),(\mathrm{R})] \\ & \text { if } \mathrm{MPE}=0, \mathrm{M} \leftarrow\left[\left(\mathrm{~m}_{\mathrm{H}}\right),(\mathrm{R})\right] \end{aligned}$	11010	m_{H}	m_{L}	r
		m，\＃i	Move immediate data to memory	$\mathrm{M} \leftarrow \mathrm{i}$	11101	m_{H}	m_{L}	i
	MOVT	$\underset{⿷ 匚}{\text { ©AR }}$	Move ROM data from the address specified in AR to DBF	$\begin{aligned} & \text { sp } \leftarrow(\mathrm{sp})-1, \mathrm{STACK} \leftarrow \mathrm{PC} \\ & \mathrm{DBF}-(\mathrm{AR}) \text { rom, } \\ & \mathrm{PC} \leftarrow \mathrm{STACK}, \text {, } \mathrm{sp} \leftarrow(\mathrm{sp})+1 \end{aligned}$	00111	000	0001	0000
	PUSH	AR	Decrement SP，then move AR to stack top	SPヶ（SP）－1，STACK -AR	00111	000	1101	0000
	POP	AR	Move stack top to AR，then increment SP	$\mathrm{AR} \leftarrow \mathrm{STACK}, \mathrm{SP} \leftarrow \mathrm{SP}+1$	00111	000	1100	0000
	PEEK	WR．RA	Get RA from RF through WR	WR－（RF）	00111	rf_{H}	0011	rf_{L}

	Mnemonic	Operand	Function	Operation	Machine code			
					$\begin{array}{\|l\|} \hline \text { Opration } \\ \text { code } \end{array}$	3bits	4bits	4bits
$\begin{array}{\|c\|} \hline \stackrel{4}{4} \\ \text { 岂 } \\ \stackrel{5}{5} \end{array}$	POKE	RA,WR	Put data on WR into RA of RF	$(\mathrm{RF}) \leftarrow \mathrm{WR}$	00111	rf_{H}	0010	rf_{L}
	GET	DBF, p	Get peripheral data to DBF	DBF $\leftarrow \mathrm{p}$	00111	p_{H}	1011	p_{L}
	PUT	p, DBF	Put data in DBF to peripheral	p \leftarrow DBF	00111	p_{H}	1010	p_{L}
	SKT	m, \#n	Test memory bits. then skip if all bits specified are true	$\begin{aligned} & \text { CMP } \leftarrow \\ & \text { skip if } M(N)=\text { all" } 1^{\prime \prime} \end{aligned}$	11110	m_{H}	m_{L}	n
	SKF	m, \#n	Test memory bits, then skip if all bits specified are false	$\begin{aligned} & \text { CMP } \leftarrow 0 \\ & \text { skip if } M(N)=\text { all" } 0^{"} \end{aligned}$	11111	m_{H}	m_{L}	n
	BR	addr	Jump to the address	PC $\leftarrow \mathrm{ADDR}$	01100	a_{H}	a_{M}	a_{L}
		@AR	Jump to the address specified in AR	$\mathrm{PC} \leftarrow \mathrm{AR}$	00111	000	0100	0000
$\left\lvert\, \begin{array}{l\|} \text { 涼 } \end{array}\right.$	RORC	r	Rotate register right with carry	$(\mathrm{CY}) \rightarrow(\mathrm{R}) \rightarrow \mathrm{CY}$	00111	000	0111	r
	CALL	addr	Call subroutine	$\begin{aligned} & \text { SP } \leftarrow(\mathrm{SP})-1 \\ & \text { STACK } \leftarrow((\mathrm{PC})+1), \\ & \text { PC } \leftarrow \mathrm{ADDR} \end{aligned}$	11100	a_{H}	a_{M}	a_{L}
		@ AR	Call subroutine specified in AR	$\begin{aligned} & \mathrm{SP} \leftarrow(\mathrm{SP})-1, \\ & \mathrm{STACK} \leftarrow((\mathrm{PC})+1), \\ & \mathrm{PC} \leftarrow(\mathrm{AR}) \end{aligned}$	00111	000	0101	0000
	RET		Return to main routine from subroutine	$\mathrm{PC} \leftarrow(\mathrm{STACK}), \mathrm{SP} \leftarrow(\mathrm{SP})+1$	00111	000	1110	0000
	RETSK		Return to main routine from subroutine, then skip unconditionary	$\begin{aligned} & \mathrm{PC} \leftarrow(\mathrm{STACK}) \cdot \mathrm{SP} \leftarrow(\mathrm{SP})+1 \\ & \text { and skip } \end{aligned}$	00111	001	1110	0000
	RETI		return to main routine from interrupt service routine	$\mathrm{PC} \leftarrow(\mathrm{STACK}), \mathrm{SP} \leftarrow(\mathrm{SP})+1$ BANK \leftarrow (interrupt stack)	00111	100	1110	0000
	EI		Enable interrupt	INTE flag $\leftarrow 1$	00111	000	1111	0000
	DI		Disable interrupt	INTE flag $¢ 0$	00111	001	1111	0000
$\begin{aligned} & \text { n } \\ & \stackrel{y}{4} \\ & \hline \end{aligned}$	STOP	s	Stop clock	STOP	00111	010	1111	s
	HALT	h	Halt the CPU, restart by condition H	HALT	00111	011	1111	h
	NOP		No operation	No operation	00111	100	1111	0000

9. ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$)					
Supply Voltage	$V_{\text {D }}$	-0.3 to +7.0	V		
Input Voltage	V_{1}	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V	POA	(1)
		-0.3 to +11	V		(2)
		-0.3 to $V_{D D}+0.3$	V	All pins other th	P POA
Output Voltage	v_{0}	-0.3 to $V_{D D}+0.3$	v	POA	(1)
		-0.3 to +11	V		(2)
		-0.3 to $\mathrm{V}_{\mathrm{LCD}}+0.3$	V	Segment/commo	n pins
		-0.3 to $V_{D D}+0.3$	\checkmark	Pins other than a	
High-Level Output Current	$\mathrm{IOH}^{\text {I }}$	-5	mA	1 pin	
		-20	mA	Total of all pins	
Low-Level Output Current	lOL	15	$m A$	1 pin	POA, POD
		30	mA		POB, POC
		100	mA	Total of all pins	
Operating Temperature	$\mathrm{T}_{\text {opt }}$	-40 to +85	${ }^{\circ} \mathrm{C}$		
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$		
Power Consumption	P_{d}	190	mW	$\mathrm{T}_{\mathrm{a}}=8{ }^{\circ} \mathrm{C}$	

Remarks: 1. N-ch open/drain output plus built-in pull-up resistor output
2. N-ch open/drain input/output

CAPACITY ($\left.\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}\right)$

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX	UNIT	CONDITION
Input Capacity	$c_{\text {IN }}$			15	pF	$f=1 \mathrm{MHz}$ Pins other than those measured: 0 V
Output Capacity	COUT			15	pF	
Input/Output Capacity	Cl_{10}			15	pF	

DC CHARACTERISTICS ($\mathrm{T}_{\mathrm{a}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.0$ to 6.0 V)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION	
High-Level Input Voltage	$\mathrm{V}_{1 \mathrm{H} 1}$	0.8 V DD		9	V	At SI or $\overline{\text { SCK }}$ input	
	$\mathrm{V}_{1 \mathrm{H} 2}$	$0.7 V_{\text {DD }}$		9	v	At POA input	
	$\mathrm{V}_{1 \mathrm{H} 3}$	0.8 V DD		$V_{\text {DD }}$	V	$\mathrm{INT}_{1}, \mathrm{INT}_{1}, \overline{\text { RESET }}$	
	$\mathrm{V}_{1 \mathrm{H} 4}$	0.7 V DD		VDD	V	Pins other than above	
Low-Level Input Voitage	$V_{\text {IL1 }}$	0		0.2 VDD	V	SI, $\overline{\text { SCK, }}$ INT $0, ~ I N T 1, ~ \overline{R E S E T}$	
	VIL2	0		$0.3 V_{\text {DD }}$	V	Pins other than above	
High-Level Output Voltage	V_{OH}	$\mathrm{V}_{\text {DD }}{ }^{2.0}$	$V_{D D}-0.4$		V		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.5 \text { to } 6.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
		$V_{\text {DD }}{ }^{-1.0}$	$V_{D D}-0.04$		v		$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$
Low-Level Output Voltage	V_{OL}		0.85	2.0	V	POB, POC	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.5 \text { to } 6.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OL}}=15 \mathrm{~mA} \end{aligned}$
			0.06	0.5	V		$\mathrm{I}_{\mathrm{OL}}=600 \mu \mathrm{~A}$
			0.85	2.0	V	POA, POD	$\begin{aligned} & V_{D D}=4.5 \text { to } 6.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA} \end{aligned}$
			0.15	0.4	V		$\begin{aligned} & V_{D D}=4.5 \text { to } 6.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA} \end{aligned}$
			0.04	0.5	V		$\mathrm{I}_{\mathrm{OL}}=400 \mu \mathrm{~A}$
High-Level Input Leak Current	ILIH1			3	$\mu \mathrm{A}$	Other than XI and XO	$V_{\text {IN }}=V_{\text {DD }}$
	'LIH2			10	$\mu \mathrm{A}$	XI, XO	$V_{\text {IN }}=V_{\text {DD }}$
	ILIH3			10	$\mu \mathrm{A}$	POA (3)	$\mathrm{V}_{\text {IN }}=9 \mathrm{~V}$
Low-Level Input Leak Current	ILIL			-3	$\mu \mathrm{A}$	Other than XI and XO	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
				-10	$\mu \mathrm{A}$	XI, XO	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
High-Level Output Leak Current	ILOH1			3	$\mu \mathrm{A}$		$V_{\text {OUT }}=V_{\text {DD }}$
	ILOH2			10	$\mu \mathrm{A}$	POA (3)	$\mathrm{V}_{\text {OUT }}=9 \mathrm{~V}$
Low-Level Output Leak Current	'LOL			-3	$\mu \mathrm{A}$		$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
Input pin with built-in resistor (pull up/pull down)		35	65	110	k Ω	INTO, INT1, P1A, P1B	
Input pin with built-in resistor (pull up)		35	65	110	$k \Omega$	RESET	
Input pin with built-in resistor (pull down)		7	15	26.5	k Ω	POA	
Supply Current (4)	' DD1		1500	4500	$\mu \mathrm{A}$	Operation mode	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \% \\ & \mathrm{f} C \mathrm{CC}=8 \mathrm{MHz} \end{aligned}$
			250	750	$\mu \mathrm{A}$		$\begin{aligned} & V_{D D}=3 \mathrm{~V} \pm 10 \% \\ & f_{C C}=2 \mathrm{MHz} \end{aligned}$
	IDD2		550	1600	$\mu \mathrm{A}$	Halt mode	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \% \\ & \mathrm{f}_{\mathrm{CC}}=8 \mathrm{MHz} \end{aligned}$
			110	330	$\mu \mathrm{A}$		$\begin{aligned} & V_{D D}=3 \mathrm{~V} \pm 10 \% \\ & f_{C C}=2 \mathrm{MHz} \end{aligned}$
	IDD3		0.1	10	$\mu \mathrm{A}$	Stop mode	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$
			0.1	5	$\mu \mathrm{A}$		$V_{D D}=3 \mathrm{~V} \pm 10 \%$

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX	UNIT	CONDITION	
$V_{\text {LCD }}$ Voltage Range	$\mathrm{V}_{\text {LCD }}$	3.0		$V_{\text {DD }}$	v		
Common Output Impedance (5)	RCOM		40		$\mathrm{k} \Omega$		$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
	RSEG1		40		k Ω	At LCD drive	$V_{D D}=4.5$ to 6.0 V
Segment Output Impedance (5)	RSEG2		5		$k \Omega$	At port operation	Total output of all segment pins Current 2 mA or less $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LCD}}=4.5 \\ & \text { to } 6.0 \mathrm{~V} \end{aligned}$
Resistance Between $V_{\text {LCD }}$ and GND	$\mathrm{R}_{\text {VLC }}$		100		k Ω	When normal	
			3.0		$k \Omega$	When switching	

Remarks: 3. When N -ch open/drain input/output is selected
4. The current that flows through the built-in pull-up or pull-down resistor is excluded
5. $3.5 \mathrm{k} \Omega$ (typ.) when switching between the common and segment output.

AMPLIFIER CHARACTERISTICS ($\mathrm{T}_{\mathrm{a}}=-40=+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
Input Offset Voltage	$V_{\text {OS }}$		± 6	± 18	mV	Normal amplifier mode
In-phase Input Voltage	$\mathrm{V}_{\text {ICM }}$	0.0		3.6	V	$V_{D D}=5.0 \mathrm{~V}$
Output Voltage Range	$V_{\text {OUT }}$	0.12		4.8	V	$V_{D D}=5.0 \mathrm{~V}$, IOUT $=0 \mu \mathrm{~A}$
Unity Gain Frequency	f_{O}		1.5		MHz	
Large Amplitude Gain	AV		85		dB	$V_{D D}=5.0 \mathrm{~V}$
Output Current	IOUT	-50		100	$\mu \mathrm{~A}$	$V_{D D}=5.0 \mathrm{~V}$
CMRR			75		dB	
SVRR			-60		dB	
Through Rate		1.0			$\mathrm{~V} / \mu \mathrm{s}$	
Hold Time	TSAMP		0.05		ms	Sample/hold amplifier mode
Input/Output Voltage Error	$V_{\text {DIF }}$		± 6	± 18	mV	Sample/hold amplifier mode
Input Voltage Range	$V_{\text {IN }}$		0.12	2.5	V	Sample/hold amplifier mode
Supply Current	IAMP		230	500	$\mu \mathrm{~A}$	

COMPARATOR CHARACTERISTICS ($\mathrm{T}_{\mathrm{a}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V)

CHARACTERISTIC	SYMEOL	MIN.	TYP.	MAX.	UNIT	CONDITION
Input Voltage Range	$V_{\text {IN }}$	$\mathrm{V}_{\text {SS }}$		$V_{\text {DD }}$	V	
Response Speed (6)	$\mathrm{t}^{\text {COMP }}$	2			IC	
Power Consumption	$\mathrm{V}_{\text {COMP }}$		100		$\mu \mathrm{~A}$	$\mathrm{~V}_{\text {DD }}=5.0 \mathrm{~V}$
Absolute Accuracy	$\mathrm{V}_{\text {IT }}$		± 8.0	± 15.0	mV	
Input Resolution	$\mathrm{V}_{\text {RE }}$		3.0		mV	

D/A CONVERTER CHARACTERISTICS $\left(T_{a}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V , $\mathrm{V}_{\mathrm{REFH}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{REFL}}=0 \mathrm{~V}$)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
Resolution		6	6	6	Bit	
Linearity				± 0.5	LSB	
D/A Conversion Time (6)	tCONV	2			IC	At no output load
DAC Current	IDAC		220	390	$\mu \mathrm{~A}$	
A/D Conversion Time (6)		4			IC	

Remarks 6: IC indicates "instruction cycle".

$$
\text { ZERO-CROSS CHARACTERISTICS (} \mathrm{T}_{\mathrm{a}}=-40 \text { to }+85^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{DD}}=4.5 \text { to } 6.0 \mathrm{~V} \text {) }
$$

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
Detection Input Level	$V_{Z X}$	0.8	3.0		VP-P	Input AC
Accuracy	AzX		± 120		mV	$50 / 60 \mathrm{~Hz}$
Detection Input Frequency	${ }^{\text {f }} \mathbf{X}$	0.04	1		kHz	

DATA MEMORY DATA RETENTION CHARACTERISTICS AT LOW SUPPLY VOLTAGE IN STOP MODE ($\mathrm{T}_{\mathrm{a}}=-40$ to $+85^{\circ} \mathrm{C}$)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
Data Retention Supply Voltage	VDDDR	2.0		6.0	V	
Data Retention Supply Current	I DDDR		0.1	5.0	$\mu \mathrm{~A}$	V $_{\text {DDDR }}=2.0 \mathrm{~V}$
Release Signal Set Time	tSREL	0			$\mu \mathrm{~s}$	
Wait Time for Stable Oscillation	tWAIT		$2^{19 / f x}$		ms	Release by $\overline{\text { RESET }}$ (7)
			(8)		ms	Release by interrupt request

Remarks: 7. fx indicates the oscillator frequency.
8. According to the timer 2 value.

Data Retention Timing (Stop Mode Release by Reset)

Data Retention Timing (Stand-by Release Signal: Stop Mode Release)

μ PD17102

AC CHARACTERISTICS ($\mathrm{T}_{\mathrm{a}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.0$ to 6.0 V)

Remarks 9: For SI, SO and $\overline{\mathrm{SCK}}$ pins, the N-ch open/drain output plus built-in pull-up resistor input/output.

AC Timing Measuring Point (INT ${ }_{0}$, INT $_{1}$, SI, $\overline{\text { SCK }}$ and SO Pins)

AC Timing Measuring Point (Pins other than $\mathrm{INT}_{\mathbf{0}}, \mathrm{INT}_{\mathbf{1}}, \mathbf{S I}, \overline{\mathbf{S C K}} \mathbf{S O}$)

Event Input Timing

Serial Transfer Timing

INT Input Timing

RESET Input Timing

10. RECOMMENDED SOLDERING CONDITIONS

The following conditions (see table below) must be met when soldering this product.
Please consult with our sales offices in case other soldering process is used, or in case soldering is done under different conditions.

TYPES OF SURFACE MOUNT DEVICE

For more details, refer to our document "SMT MANUAL" (IEI-1207).
μ PD17102G

Soldering process	Soldering conditions	Symbol
Infrared ray reflow	Peak package's surface temperature : $230^{\circ} \mathrm{C}$ or below, Reflow time: 30 seconds or below ($210^{\circ} \mathrm{C}$ or higher), Number of reflow process: 1, Exposure limit* : None	IR30.00
VPS	Peak package's surface temperature : $215^{\circ} \mathrm{C}$ or below, Reflow time : $\mathbf{4 0}$ seconds or below ($200^{\circ} \mathrm{C}$ or higher), Number of reflow process: 1, Exposure limit* : None	VP15-00
Wave soldering	Solder temperature: $260^{\circ} \mathrm{C}$ or below, Flow time : 10 seconds or below, Number of flow process: 1, Exposure limit* : None	WS60-00
Partial heating method	Terminal temperature : $300^{\circ} \mathrm{C}$ or below, Flow time : $\mathbf{1 0}$ seconds or below, Exposure limit* : None	

*: Exposure limit before soldering after dry-pack package is opened. Storage conditions: $25^{\circ} \mathrm{C}$ and relative humidity at 65% or less.
Note: Do not apply more than a single process at once, except for "Partial heating method".

11. DEVELOPMENT SUPPORT TOOLS

The following tools are supported for developing systems using the μ PD17102 chip.

Hard- ware	IE-17K	IE-17K is an in-circuit emulator available for all the μ PD1 7000 Series chips. For the μ PD17102 chip, use IE-17K and the optional SE-17102 together. When connected to a personal computer, IE-17K adds and modifies programs in real time. A PC-9801 personal computer runs the support software SIMPLEHOST, providing a more advanced development environment.		
	SE-17102	SE-17102 is an emulation board (SE board) used to evaluate the system by mounting the program developed by $\mathrm{IE}-17 \mathrm{~K}$ and loading the board instead of the μ PD17102 to the system.		
	EP-17102G	Probe used to connect the target system.		
Software	μ PD17000 Series Assembler AS17K	Host machine	OS	Order name (product name)
		PC-9800 Series (excluding PC-98LT)	MS-DOS ${ }^{\text {TM }}$ (Ver 2.11 or later)	μ S5A1AS17K (8" 2D) μ S5A10AS17K (5" 2HD)
	Device file	Used together with the μ PD1 7000 Series Assembler AS17K (for μ PD17102 only).		μ S5A1AS17102 (8"2D) μ S5A10AS17102 (5" 2HD)
	SIMPLEHOST*	Program to support man-machine interface when connecting PC-9801 to IE-17K. MS-WINDOWS ${ }^{\text {TM }}$ is required.		μ S5A1IE17K (8" 2D) μ S5A10IE17K (5" 2HD)

*: Under development

MS-DOS ${ }^{\mathbf{T M}}$ and MS-WINDOW ${ }^{\mathbf{T M}}$ are the trademark of Microsoft Co., Ltd.

FRONT PANEL CONTROLLER (FPC) μ PD1 7106

SINGLE-CHIP MICROCONTROLLER

The μ PD17106 is a 4-bit single-chip CMOS microcomputer for front panel control.
The CPU uses the μ PD1 7000 architecture, allowing direct operation of data memory, arithmetic operation, and peripheral hardware control by the use of a single instruction. Every instrustion consists of a 16-bit word.

The peripheral hardware includes an abundant series of input/output ports, serial interface, clock generator port,LCD driver for front panel control, key source decoder, and timer for remote control decoding.

The μ PD17106 can make up a sophisticated, high performance front panel system.
The OTP (one-time PROM) version of the μ PD17106 is also available as the μ PD17P106 (*). The μ PD17P106 is used for program evaluation or limited production of the μ PD17106.

NEC provides easy-to-use tools for μ PD17106 system development: in-circuit emulator (IE-17K) and assembler (AS17K).
*:under development

Features

- 4-bit microcontroller for front panel control
- Program memory (ROM):

8 K bytes (4096 steps $\times 16$ bits)

- General-purpose data memory (RAM):

178 nibbles (178 nibbles $\times 4$ bits)

- Instruction executionn time:
$4.44 \mu \mathrm{~s}$ (using a 4.5 MHz crystal oscillator)
- Stack level: 7
- Easy 46-instruction set
- Decimal operation possible
- Table reference possible
- Built-in LCD driver

Static $\quad: 46 \times 1=46$ segments
$1 / 2$ duty, $1 / 2$ bias : $46 \times 2=92$ segments
$1 / 3$ duty, 132 bias: $45 \times 3=135$ segments
$1 / 4$ duty, $1 / 4$ bias : $44 \times 4=176$ segments

- Built-in key source decoder

16 lines (Output by time division with LCD segment signal)

- Built-in 16-bit counter providing four functions

Timer modulo
Frequency counter
Pulse width counter
CGP (clock generator port)

- Built-in 8-bit serial interface

Two 1-system channels (2- or 3-wire type)

- Interrupt
- External interrupt : 1 channel (INT pin)
- Internal interrupt : 2 channels (timer and serial interface)
- General-purpose I/O ports
- Input/output ports : 5 lines (+4 : segment pin)
- Input ports : 4 lines (built-in pull-up resistor)
- Output ports $\quad: 0$ line (+12: segment pins. 8 out
of 12 allows LED direct drive.)
- Built-in power-on reset, CE reset, and power failure
detection circuit
- Low-power consumption CMOS
- Power-supply voltage: $5 \mathrm{~V} \pm 10 \%$
- 64-pin plastic QFP

PIN CONFIGURATION (Top View)

BLOCK DIAGRAM

SUPPORT TOOLS FOR PROGRAM DEVELOPMENT

The following support tools are available to develop the program for the μ PD17106:

Hardware		
Name	Description	Order name
In-circuit emulator (IE-17K)	The IE-17K is the in-circuit emulator for evaluation, to be used commonly for the μ PD1 7000 series. The IE-17K serves for program development for the μ PD17106 together with the system evaluation board SE-17106. The IE-17K operates based on RAM. A program can be added or modified a console by simply connecting the console to the IE-17K. Running the support software SIMPLEHOST on the personal computer PC-9801 instead of using the console will bring sophistication to the program development environment.	IE-17K
SE board (*) (SE-17106)	The SE-17106 is a system evaluation board for the μ PD17106. It is used independently or in combination with the IE-17K.	SE-17106
$\begin{aligned} & \text { Probe (*) } \\ & \text { (EP-17106GC) } \end{aligned}$	The EP-17106GC is a probe to connect the SE-17106 to a target system.	EP-17106GC
Receptacle (*) (EV-9200GC-64)	The EV-9200GC-64 is a socket to connect the EP-17106 to a target system.	EV-9200GC-64
OTP (*) (μ PD17P106)	The μ PD17P106 is an OTP (One-time PROM) for program evaluation or limited production of the μ PD17106.	μ PD17P106GC-3BE

Software					
Name		Description	Host machine	OS	Order name
Assembler	Assembler (AS17K)	The AS17K is the assembler main routine to be used commonly for the μ PD17000 series. The AS17K is used in combination with the device file (AS17106).	PC-9801 series IBM PC-ATTM	MS-DOSTM Ver. 2.11 Ver. 3.1 PC DOS ${ }^{\text {TM }}$ Ver. 3.1	MS-DOS version μ S5A1AS17K (8-inch 2D) μ S5A10AS17K (5-inch 2HD) PC-DOS version μ S7B11AS17K (5-inch 2D)
	Device file (") (AS17106)	The AS17106 is used to assemble the program for the μ PD17106 in combination with the AS17K.			MS-DOS version μ S5AIAS17106 (8-inch 2D) μ S5A10AS17106 (5-inch 2HD) PC-DOS version μ S7B11AS17106 (5-inch 2D)
Support so (SIMPLEH	$\begin{aligned} & \text { ware (*) } \\ & \text { ST) } \end{aligned}$	SIMPLEHOST is software to provide a man-machine interface during program development using the IE-17K and a personal computer.		MS-WINDOWS ${ }^{\text {TM }}$	-

[^3][^4]
FRONT PANEL CONTROLLER (FPC) WITH ON-CHIP ONE TIME PROM μ PD17P106

 4-BIT SINGLE-CHIP MICROCONTROLLER

 4-BIT SINGLE-CHIP MICROCONTROLLER}

The μ PD17P106 is a 4-bit single-chip CMOS microcontroller with on-chip ONE TIME PROM, for use in front panel control.
The CPU uses the μ PD17000 architecture, which allows direct data memory manipulation and various operations with a single instructionand peripheral hardware control. Moreover, all instrustions are one 16-bit word in lenght.

In addition to a wide range of input/output ports, serial interface, and clock generator port, on chip peripheral hardware includes, for front panel control, an LCD driver, key source decoder, and remote control decoding timer, enabling highperformance front panel systems of various kinds to be configured.

As the μ PD17P106 includes on-chip ONE TIME PROM, it is ideal for system evaluation in program development for the μ PD17106* mask ROM version, or for small-volume production.

An easy-to-use in-circuit emulator (IE-17K) and assembler (AS17K) are available as μ PD17P106 system development tools.
*:under development

Features

- 4-bit microcontroller for front panel controller use
- Program memory (ONE TIME PROM): 8 K bytes (4096 steps $\times 16$ bits)
- General-purpose data memory (RAM): 178 nibbles (178 nibbles $\times 4$ bits)
- Instruction executionn time:
$4.44 \mu \mathrm{~s}$ (using a 4.5 MHz crystal oscillator)
- Stack levels: 7
- Easy-to-understand instruction set (46 instructions)
- Decimal operation capability
- Table reference capability
- On-chip LCD driver

Static $\quad: 46 \times 1=46$ segments
$1 / 2$ duty, $1 / 2$ bias : $46 \times 2=92$ segments
$1 / 3$ duty, 132 bias: $45 \times 3=135$ segments
$1 / 4$ duty, $1 / 4$ bias : $44 \times 4=176$ segments

- On-chip key source decoder
- 16 lines (Output by time-division multiplexing with LCD • segment signal)
- On-chip 16-bit counter with 4 functions:

Timer modulo
Frequency count
Pulse width count
CGP (clock generator port)

- On-chip 8-bit serial interface

1 system 2 channels (2-wire and 3-wire)

- Variety of interrupts

External interrupts : 1 channel (INT pin)
Internal interrupts : 2 channels
(timer, serial interface)

- General input/output ports
- Input/output ports : 5 lines (+4: Segment pins)
- Input ports : 4 lines (with internal pull-up resistor)
- Output ports $: 0$ (+12: segment pins, 8 with

LED direct drive capability.)
Power-on reset, CE reset, and power failure
detection circuit on chip

- Low-power consumption CMOS
- Supply voltage $: 5 \mathrm{~V} \pm 10 \%$
- 64-pin plastic QFP
- Mask ROM version : μ PD17106

PIN CONFIGURATION (Top View)

BLOCK DIAGRAM

DEVELOPMENT SUPPORT TOOLS

The following support tools are available for system development using the μ PD17P106.

Hardware	
Name	\quad Description
In-circuit emulator (IE-17K)	The IE-17K is an in-circuit emulator which can be used with all models in the μ PD17000 series. For μ PD17P106 program development, the IE-17K is used in conjunction with the SE-17106 system evaluation board. As the IE-17K features RAM-based operation, immediate program additions and amendments can be made by connecting a console to the IE-17K. Moreover, use of the "SIMPLEHOST" support software provides a higher- level development environment.
SE board* (SE-17106)	The SE-17106 is a μ PD17P106 system evaluation board used either alone or together with the IE-17K.
Probe* (EP-17106GC)	The EP-17106GC is a probe for connection of the target system to the SE-17106.
Receptacle* (EV-9200GC-64)	The EV-9200GC-64 is a socket for connection of the target system to the EP-17106.
EPROM programmer (Manuf. by Ando Electric Co., Ltd.)	AF-9703

Software					
Name		Description	Host Machine	OS	Ordering Code
Assembler	Assembler (AS17K)	AS17K is the assembler for use with the entire μ PD17000 series. AS17K is used in conjunction with the device file (AS17106).	PC-9801 series IBM PC-ATTM	MS-DOS ${ }^{\text {TM }}$ Ver. 2.11 Ver. 3.1 PC DOs ${ }^{\text {TM }}$ Ver. 3.1	MS-DOS version μ S5A1AS17K (8-inch 2D) μ S5A10AS17K (5-inch 2HD) PC DOS version μ S7B11AS17K (5-inch 2D)
	Device file* (AS17106)	AS17106 is used together with AS17K to assemble μ PD17P106 programs.			MS-DOS version μ S5A1AS17106 (8-inch 2D) μ S5A10AS17106 (5-inch 2HD) PC DOS version μ S7B11AS17106 (5-inch 2D)
Support so (SIMPLEH	$\begin{aligned} & \text { vare* } \\ & \text { iT) } \end{aligned}$	SIMPLEHOST is software which implements the man-machine interface under MS-WINDOWS ${ }^{\text {TM }}$ during program development using the $\mathrm{IE}-17 \mathrm{~K}$ and a personal computer.		MSWINDOWSTM	-

Remarks: For details of the EPROM programmer, please consult Ando Electric Co., Ltd.
*: Under development
MS-DOS ${ }^{\text {TM }}$ and MS-WINDOWS ${ }^{\text {TM }}$ are trademarks of MicroSoft Corporation, IBM PC-AT ${ }^{T M}$ and PC DOS ${ }^{T M}$ are trademarks of IBM Corporation.

FOUR-BIT SINGLE-CHIP MICROCOMPUTERS

μ PD17103 and μ PD17104 are tiny microcontrollers each consisting of a 1 K -byte ROM, 16 -word RAM, and 11 pins (for μ PD17103) or 16 pins (for μ PD17104) for I/O ports.

The CPU can be programmed using the $\mu \mathrm{PD17000}$ architecture based on a general register system that allows direct access to data memory. Every instruction for these microcontrollers consists of a 16 -bit single word.

FEATURES

- Program memory (ROM): 1 K bytes (512 words $\times 16$ bits)
- Data memory (RAM): 16 words $\times 4$ bits
- I/O ports:
μ PD17103: 11 pins (including three ports for N -ch open-drain output)
μ PD17104: 16 pins (including four ports for N -ch open-drain output)
- Instruction execution time: $2 \mu \mathrm{~s}$ (in connection with an 8 MHz crystal or ceramic oscillator)
- Instruction types: 31 types (single-word instructions)
- Stack level: 1 level
- Standby functions (using STOP and HALT instructions)
- Retains data in data memory at low voltage (Min. 2.0 V).
- Incorporates an oscillating circuit for a system clock (crystal or ceramic oscillator).
- Operating supply voltage range:
2.7 to 6.0 V (in 2 MHz operation)
4.5 to 6.0 V (in 8 MHz operation)

APPLICATIONS

- Electronic control of electric home appliances and toys
- Circuit integration of general-purpose logic ICs on one chip

ORDERING INFORMATION

Order Code	Package
μ PD17103CX $-X X X$	$\mathbf{1 6}$ pin plastic DIP (300 mil)
μ PD17103GS $-X X X$	16 pin plastic SOP (300 mil)
μ PD17104CS $-X X X$	22 pin plastic shrink DIP (300 mil)
μ PD17104GS $-X X X$	24 pin plastic SOP (300 mil)

PIN CONFIGURATION (Top View)
μ PD17103CX/ μ PD17103GS
μ PD17104CS

BLOCK DIAGRAM

Note: The section enclosed in a dotted line is not supported by the μ PD17103.

1. PIN FUNCTIONS

1.1 LISTS

- Port pins

PIN NAME	INPUT/ OUTPUT	FUNCTIONS	ON Resetting
POA_{0} to POA ${ }^{(*)}$	Input/output	- CMOS (push-pull) 4-bit input/output port (Port OA)	High impedance (input mode)
$\mathrm{POB}_{0} /$ RLS ${ }_{\text {HALT }}$	Input/output	For resetting HALT mode	- High impedance at open-drain
$\mathrm{POB}_{1} / \mathrm{RLS}_{\text {STOP }}$		For resetting STOP mode	(input mode)
POB_{2}		- N-ch open-drain 4-bit I/O port; (Port OB)	resistor (input mode)
$\mathrm{POB}_{3}\left({ }^{(*)}\right.$		- Can corporate a pull-up resistor for each bit (by mask option) - Dielectric strength of 9 V at open-drain	
POC_{0} to POC_{3}	input/output	- CMOS (push-pull) 4-bit input/output port (Port OC)	High impedance (input mode)
POD_{0} to POD_{3}	Input/output	- CMOS (push-pull) 4-bit input/output port (Port OD)	High impedance (input mode)

* The pins marked by an asterisk * are not built into μ PD17103.
- Pins other than port pins

PIN NAME	INPUT/ OUTPUT	FUNCTIONS	ON RESETTING
RESET	Input	\bullet System reset input pin \bullet Can incorporate a pull-up resistor (by mask option)	
VDD		\bullet Positive power supply pin	
GND		\bullet GND pin	
XIN, XOUT		\bullet System clock oscillator connecting pin	

1.2 DESCRIPTION

1.2.1 POA_{0} to POA_{3} (Port OA), POC_{0} to POC_{3} (Port OC), and POD_{0} to POD_{3} (Port OD): Input/output pins
 POA_{0} to $\mathrm{POA}, \mathrm{POC}_{0}$ to POC 3 , and POD , to POD_{3} are four-bit input/output pins with output latches for ports

 $O A, O C$, and $O D$, respectively.The contents of ports $0 \mathrm{~A}, 0 \mathrm{C}$, and 0 D are respectively mapped to addresses $70 \mathrm{H}, 72 \mathrm{H}$, and 73 H in data memory space as port registers. Data can be read from and written to the port registers using the normal data memory access instructions.

On being reset, each pin goes into the input mode. When data is written into each port register, each pin for the corresponding port enters into the output mode to output the written data. Once the pin enters into the output mode, the written data and the mode are held until another datum is written into the port register or the mode is reset.

Whenever datum in a port register is read out, the corresponding pin outputs its status whether in input or output mode. The contents of the port register do not change at this time.

Ports 0A, OC, and OD use the CMOS (push-pull) output form. Note that μ PD17103 does not have POA_{0} to POA_{3}.

1.2.2 $\mathrm{POB}_{0} /$ RLS $\mathrm{HALT}, \mathrm{POB}_{1} /$ RLSStOP, POB_{2}, and POB_{3} (Port OB): Input/Output Pins

POB_{0} to POB_{3} are four-bit input/output pins each with an output latch for the port OB.
The port $0 B$ is mapped to 71 H in data memory space and can be accessed by the normal data memory access instructions. On being reset, each pin enters into the input mode.

When data is written into the port register, each pin for the port enters into the output mode to output the written data. Once the pin enters into the output mode, the written data and the mode are held until another datum is written into the port register or the mode is reset.

Whenever data in the port register is read out, the pin outputs its status whether in input or output mode. The contents of the port register do not change at this time.

For the output format of the port OB, N-ch open-drain output or N -ch open-drain plus pull-up built-in resistance output can be selected using the mask option. (See Section 1.3.)

The N-ch open-drain output has a dielectric strength of 9 V , providing efficient interface to a circuit operating at a different supply voltage.
POB_{0} and POB_{1} are pins for pseudo-interruption to reset the HALT or STOP mode on the leading edge of the input signal. The pin incorporates a hazard preventive circuit to prevent malfunction resulting from noise of $1 \mu \mathrm{~s}$ or less.

Note that μ PD17103 has no POB_{3}. Therefore, whenever an attempt is made to read data from POB_{3}, only " 0 " (fixed) is read from μ PD17103. Data attempted to be written into POB_{3} become invalid.

1.2.3 $X_{\text {IN }}$ and $X_{\text {OUT }}$

These pins are connected to the oscillator of a system clock oscillating circuit.

1.2.4 RESET

This pin is a low-level-active system reset input pin. It is used for resetting the standby mode as well as normal system resetting.

1.2.5 $V_{D D}$

Positive power supply pin

1.2.6 GND

GND pin

1.3 INPUT/OUTPUT CIRCUITS OF PINS

This section illustrates the input/output circuit of each pin of μ PD17103 and μ PD17104 in a partly simplified form.
(1) POA, POC and POD

(2) POB_{0} and POB_{1}

(3) POB_{2} and POB_{3}

(4) $\overline{\text { RESET }}$

1.4 PIN MASK OPTIONS

In programming μ PD17103 or μ PD17104, the mask options for pins must be set using mask option pseudoinstructions in the assembler source program. Before setting the mask options, the file D17103.OPT or D17104.OPT must be stored in the current directory.

The following pins require mask option setting:

- POB_{0}
- POB_{1}
- POB_{2}
- $\mathrm{POB}_{3}\left({ }^{*}\right)$
- $\overline{\text { RESET }}$
* The pin marked by the asterisk * is not built into μ PD17103.

1.4.1 Mask option pseudo-instructions

(1) OPTION and ENDOP pseudo-instructions

Assume the mask option definition block ranging from the OPTION pseudo-instruction to the ENDOP pseudoinstruction. Within this block, execute the following mask option pseudo-instruction shown in (2).
Description format:

| $\frac{\text { Label }}{\text { [Label:] }} \frac{\text { Instruction }}{\text { OPTION }} \quad$ Operand | | Comment |
| :---: | :---: | :---: | :---: |
| [;Comment] | | |
| | \vdots | |
| | ENDOP | |

(2) Mask option defining pseudo-instruction

This pseudo-instruction defines the mask option for each pin.
$\langle\mu$ PD17103 \rangle
(1) Pins POB_{0} to POB_{2}

Description format:

Label	$\frac{\text { Instruction }}{\text { OPTP0B }}$
	$\frac{\text { Operand }}{(P O B 2),(P O B 1),(P O B O)}$

A series of "POBX" (X : 0 to 2) indicates the option parameters that can be described as the operand each. Beginning with the first operand, they define mask options for pins $P O B_{2}, P O B_{1}$ and $P O B_{0}$, respectively. POBPLUP (Pull-up) and OPEN (open) are available as option parameters.
$\langle\mu$ PD17104 >
(1) POB_{0} to POB_{3}

Description format:

Label			$\frac{\text { Instruction }}{\text { OPTP0B }}$	Operand

A series of "POBX" ($\mathrm{X}: 0$ to 3) indicates the option parameters that can be described as the operand each. Beginning with the first operand, they define mask options for pins $\mathrm{POB}_{3}, \mathrm{POB}_{2}, \mathrm{POB}_{1}$, and POB_{0}, respectively.
POBPLUP (pull-up) and OPEN (open) are available as option parameters.
(2) RESET pin

Description format:

Label $\quad \frac{\text { Instruction }}{\text { OPTRES }} \quad \frac{\text { Operand }}{\text { (RESET) }}$
"RESET" indicates the option parameter which can be described as the operand. RESPLUP (pull-up) and OPEN (open) are available as option parameters.

Example 1 Set the following mask option using the source file for assembling of μ PD17103:

$\mathrm{POB}_{2}:$	Pull-up	$\mathrm{POB}_{1}:$	Open
$\mathrm{POB}_{0}:$	Open	$\overline{\text { RESET: }}:$	Pull-up

Example 2 Set the following mask option using the source file for assembling μ PD17104:

$\mathrm{POB}_{3}:$	Pull-up	$\mathrm{POB}_{2}:$	Open
$\mathrm{POB}_{1}:$	Open	$\mathrm{POB}_{0}:$	Open
$\overline{\text { RESET: }}:$	Pull-up		

	\vdots		
; 17104	\vdots		
Mask option setting:	OPTION		
	\vdots	OPTPOB	POBPLUP, POBPLUP, OPEN, OPEN
	ENDOP		
	\vdots		

2. INTERNAL BLOCK FUNCTIONS

2.1 PROGRAM COUNTER (PC) 9 BITS

The program counter is a nine-bit binary counter to retain program memory address information.

Fig. 2-1 Program counter configuration

$P C 8$	PC8	PC7	PCC	PC5	PC4	PC3	PC2	PC1

Usually the program counter is incremented by one whenever one instruction is executed.
When the call instruction (CALL) is executed, the call address is loaded onto the PC after the current contents (return address) of the PC are saved on the stack. When the return instruction (RET or RETSK) is executed, the current contents (return address) of the PC are loaded onto the PC. When the jump instruction (BR) is executed, the jump address indicating the destination of the jump is loaded onto the PC.

The address stack has only one level.

Fig. 2-2 Relationship among PC, stack, and instruction

In Fig. 2-2, $A H n, A M n$, and $A L n$ ($\mathrm{n}: 0$ to 3) indicate their respective bits in a 16 -bit instruction as shown in Fig. 2-3.

Fig. 2-3 16-bit instruction configuration

When using a BR or CALL instruction, be sure to set AH 2 and AH 3 both to 0 .
Sn ($\mathrm{n}: 0$ to 8) indicates the address stack.
When RESET is input, program counter bits are all cleared to zero.

2.2 ADDRESS STACK

The address stack has a dedicated stack format of only one level. Note that the stack pointer can neither be written nor read by any instruction.

The contents (return address) of the PC for the last-executed CALL instruction are saved on the address stack.

2.3 PROGRAM MEMORY (ROM) 512 WORDS $\times 16$ BITS

This memory is a mask programmable ROM having a capacity of 512 words $\times 16$ bits. It is addressed by the program counter. The programmable memory stores programs. Address 000 H is a reset start address.

Fig. 2-4 Program memory map

2.4 DATA MEMORY (RAM)
 \qquad 16 WORDS $\times 4$ BITS

The data memory occupies 16 nibbles as memory space.

Fig. 2-5 Data memory map

16 words between 00 H and 0 FH are available for the data storage area.
Since μ PD17103 has neither the four bits of 70 H nor the third bit of $71 \mathrm{H}, 0$ is read from the data memory in μ PD17103.

2.4.1 Port data mapping

Port data is mapped into addresses 70 H to 73 H (port register) on the data memory space. The data written in these addresses is output from each port. When port data is read, the read data is not stored in this area until the instruction to write the data into the data memory is executed.

2.4.2 Addressing

Addresses can be specified by three-bit row addresses and four-bit column addresses.
μ PD17000 series allows determining the area to be used for general registers by setting the value of the register pointer (RP). μ PD17103 or μ PD17104 allows the 16 words of $0 H$ to OFH to be used as general registers because the register pointer is fixed at 0 . Thus OH to 0 FH can be specified either as registers or certain addresses in the data memory. The operands of one instruction carry information specifying one (column) of 16 general registers and information on row and column addresses of the data memory. In data transfer between data memory and a general register, data is transferred between the data memory at the address specified by the corresponding operand of the instruction and the register with the number (column) specified by the corresponding operand of the instruction.

2.5 SYSTEM REGISTERS

System registers are the ones directly concerning the control of the CPU, which are mapped into addresses 74 H to 7FH on the data memory address space. μ PD17103 and μ PD17104 have only one system register, program status word (PSW).

Fig. 2-6 System register map

Bit 0 at address 7EH and the higher three bits at address 7FH are assigned for the program status word. Bit 0 at address 7 EH is mapped for a BCD flag. Bits 3,2 , and 1 at address 7 FH are mapped respectively for CMP, carry (CY), and zero (Z) flags.

The higher three bits at address 7 EH and bit 0 at address 7 FH are fixed at 0 .

Fig. 2-7 Structure of program status word
7EH Address 7FH Address

The CY flag does not change with the compare instruction (SKE, SKNE, SKGE, or SKLT). However, it changes according to the result of an arithmetic operation even though the CMP flag has been set.

Note that each bit of the program status word is initialized to 0 when the reset signal is input.
The Z flag in the program status word varies with the value of the CMP flag as shown in Table 2-1.

Table 2-1 Variation of Z-flag value

Conditions	Value of Z flag	
	$\mathrm{CMP}=0$	$\mathrm{CMP}=1$
On resetting	0	-
Z flag is set to 0 by memory operation.	0	0
Z flag is set to 1 by memory operation.	1	1
Result of arithmetic operation is 0.	0	0
Result of arithmetic operation is 1.	1	$\mathrm{Zn}-1$

$\mathrm{Zn}-1$: Value of Z flag just before execution.

When the CMP is 1 , the value of the \mathbf{Z} flag is held to be 1 when the value of the \mathbf{Z} flag is 1 and the result of an arithmetic operation is OH . If the result becomes any value other than OH at this time, the value of the Z flag is reset to 0 . In this case, the value of the \mathbf{Z} flag is not set to 1 even though the result of the retried arithmetic operation becomes OH .

That is, if the \mathbf{Z} flag remains 1 when being referenced after setting of CMP and \mathbf{Z} flags both to 1 and several times of comparison (though subtraction), it means that the result of each comparing operation is identically 0 . If the Z flag becomes 0 then, it means that the comparing operations have given different values at least once.

2.6 LOGICAL ARITHMETIC UNIT (ALU) 4 BITS

The logical arithmetic unit (ALU) executes arithmetic and logical operations on four-bit data, bit check, comparison, and data rotation.

2.6.1 Arithmetic operations

The ALU performs two types of arithmetic operations: binary and decimal. It performs a decimal operation when the value of the BCD flag (in the program status word) is 1 and a binary operation when the value is 0 .

When addition generates a carry or subtraction generates a borrow, the carry (CY) flag is set to 1 . If neither of them occurs, the flag is reset to 0 .

If the result of an arithmetic operation is 0 , the zero (Z) flag is set to 1 . The flag is reset to 0 when the result is not 0 .
(1) Binary operation

A carry occurs when the result of a binary arithmetic operation exceeds 15 (1111B). When the result is less than 0 , a borrow occurs and the CY flag is set to 1 .
(2) Decimal operation

A carry occurs when the result of a decimal arithmetic operation exceeds 9 (1001B). When the result is less than 0 , a borrow occurs and the $C Y$ flag is set to 1 . The decimal arithmetic operation can be executed only when the operation results as follows. If the result of the operation falls out of the following specified ranges, the CY flag is set to 1 and the value of the operation is $10(1010 \mathrm{~B})$ or more:

1. The result of addition must be within 0 to 19 .,
2. The result of subtraction must be within 0 to 9 or -10 to -1 .

2.6.2 Logical operations

The ALU performs three types of logical operations: conjunction (AND), disjunction (OR), exclusive OR (XOR).

2.6.3 Other operations

The ALU performs bit check, decision though comparison, and data rotation.

3. STANDBY FUNCTIONS

This device provides two types of standby modes: HALT mode and STOP mode.

3.1 HALT MODE

The HALT mode sets the state where the program counter (PC) stops carrying out any further operations until restarted with the system clock left oscillating. This mode is set by the HALT instruction and reset by the reset signal $\overline{\text { RESET }}$ or input to the POB_{0} pin. When the mode is reset by the input to the POB_{0} pin, the device resets the mode without waiting for the system clock to stabilize its oscillation. In this case, the first instruction to be executed after the resetting of the mode is the one next to the HALT instruction.

The normal system reset (restarting from address $\mathbf{O H}$) occurs if the mode is forced to be reset by the reset signal RESET.

3.2 STOP MODE

The STOP mode stops the oscillation of the system clock and sets the state where data can be retained at a low supply voltage. This mode is set by the STOP instruction and reset by the reset signal $\overline{\operatorname{RESET}}$ or input to the POB_{1} pin. When the mode is reset by input to the POB_{1} pin, the first instruction to be executed after the reset is the one that follows the STOP instruction.

The normal system reset (restarting from address $\mathbf{O H}$) occurs if the mode is forced to be reset by the reset signal RESET.

3.3 SETTING AND RESETTING STANDBY MODES

(1) Setting and resetting HALT mode

The HALT instruction allows selection of the conditions to set and reset the HALT mode depending on the setting of the low-order bit of the operand as follows. Fix the higher three bits of the operand to 0 .

Fig. 3-1 Mode setting/resetting conditions of HALT instruction

HALT 000XB - Four-bit data of operand

X	Setting and resetting conditions
0	When executed, the HALT instruction sets the HALT mode unconditionally. The mode is reset only by the reset signal RESET. After the mode is reset, execution of instructions is started from address OH.
1	When POB_{0} is 0 , the HALT instruction sets the HALT mode when executed. If POB_{0} is 1, the instruction does not set the mode when executed. The mode set by this instruction is reset by the reset signal RESET. After the resetting, execution of instructions are started from address OH. The mode is also reset at rise of the input signal to the POB to be executed after the reset is the one that follows the HALT instruction.

(2) Setting and resetting STOP mode

The STOP instruction allows selection of the conditions to set and reset the STOP mode depending on the setting of the low-order bit of the operand as follows. Fix the higher three bits of the operand to 0 .

Fig. 3-2 Mode setting/resetting condition of the STOP instruction

STOP $000 \times$ XB -Four-bit data of operand

X	Setting and resetting conditions
0	When executed, the STOP instruction sets the STOF mode unconditionally. All the peripheral circuits stop operations after returning to their initial status as if the system reset occurs. The mode is reset only by the reset signal $\overline{\text { RESET. After the mode is reset, execution of }}$ instructions are started from address OH .
1	When POB_{1} is 0 , the STOP instruction sets the STOP mode when executed. If POB_{1} is 1 , the instruction does not set the mode when executed., The mode set by this instruction is reset by reset signal $\overline{\operatorname{RESET}}$. After the resetting, execution of instructions are started from address OH . The mode is also reset at rise of the input signal to the POB_{1} pin. In this case, the first instruction to be executed after the reset is the one that follows the HALT instruction.

3.4 STANDBY MODE RESETTING TIMING

Fig. 3-3 Resetting HALT mode by $\overline{\text { RESET }}$ signal input

When the HALT mode is reset by inputting the $\overline{\operatorname{RESET}}$ signal, the device enters the operating mode after returning the $\overline{\operatorname{RESET}}$ input to a high level.
*: This interval is the time for waiting for stable oscillation in the HALT mode.

Fig. 3-4 Resetting the HALT mode by interruption

Fig. 3-5 Resetting STOP mode by $\overline{\operatorname{RESET}}$ signal input

The clock starts oscillation the moment the $\overline{\text { RESET input goes from high to low level in the STOP mode. }}$
*: This interval is the time for waiting for stable oscillation in the HALT mode.

Fig. 3-6 Resetting the STOP mode by interruption

*: This interval is the time for waiting for stable oscillation in the HALT mode.

4. RESETTING

4.1 HARDWARE STATUS ON RESETTING

When the $\overline{\operatorname{RESET}}$ pin inputs a low-level active reset signal, the hardware components are set as follows. They are released from their reset status when the $\overline{\text { RESET }}$ pin returns to the high level.

Table 4-1 Hardware after reset

Component	Memory address	Set value
Program counter		000 H
RAM	OH to OFH	Data before reset is retained.
Program status word (PSW)	7EH BITO 7FH BIT3-1	All 0
Ports OA to OD	70H to 73H	Data is retained. All the pins enter the input mode.

5. RESERVED WORDS

Table 5-1 lists the reserved words defined in the device files of the μ PD17103 and μ PD17104.

Table 5-1 Reserved words list

Name	Attribute	Value	R/W	Description
* POAO	FLG	0.70H. 0	R/W	Bit 0 of port 0A
*POA1	FLG	0.70 H .1	R/W	Bit 1 of port 0A
* POA2	FLG	0.70H. 2	R/W	Bit 2 of port 0A
*POA3	FLG	0.70 H .3	R/W	Bit 3 of port 0A
POBO	FLG	0.71 H .0	R/W	Bit 0 of port 0B
POB1	FLG	0.71 H .1	R/W	Bit 1 of port OB
POB2	FLG	0.71 H .2	R/W	Bit 2 of port OB
* POB3	FLG	0.71 H .3	R/W	Bit 3 of port OB
POCO	FLG	0.72 H .0	R/W	Bit 0 of port 0C
POC1	FLG	0.72H. 1	R/W	Bit 1 of port 0C
POC2	FLG	0.72 H .2	R/W	Bit 2 of port OC
POC3	FLG	0.72 H .3	R/W	Bit 3 of port 0C
PODO	FLG	0.73 H .0	R/W	Bit 0 of port OD
POD1	FLG	0.73 H .1	R/W	Bit 1 of port 0D
POD2	FLG	0.73 H .2	R/W	Bit 2 of port 0D
POD3	FLG	0.73 H .3	R/W	Bit 3 of port OD
BCD	FLG	0.7EH. 0	R/W	BCD arithmetic flag
PSW	MEM	0.7FH	R/W	Program status word
Z	FLG	0.7FH. 1	R/W	Zero flag
CY	FLG	0.7FH. 2	R/W	Carry flag
CMP	FLG	0.7FH. 3	R/W	Compare flag

*: POA_{0} to POA_{3} are not defined in the device file of $\mu \mathrm{PD} 17103$. The POB_{3} is not provided for μ PD1 7103 but registered as a read-only flag to be used as a dummy bit in using a built-in macro.
6. INSTRUCTION SET
6.1 INSTRUCTION LIST

MNEMO	OPERND	OPERATION	SKIP	OPCODE	A98	7654	3210
ADD	R, M	$R \leftarrow(R)+(M)$		00000	MH	ML	R
ADDC	R, M	$R \leftarrow(R)+(M)+C Y$		00010	MH	ML	R
ADD	M, \#1	$\mathrm{M} \leftarrow(\mathrm{M})+1$		10000	MH	ML	1
ADDC	M, \#1	$M \leftarrow(M)+1+C Y$		10010	MH	ML	1
SUB	R, M	$R \leftarrow(R)-(M)$		00001	MH	ML	R
SUBC	R, M	$R \leftarrow(R)-(M)-B R W$		00011	MH	ML	R
SUB	M, \#I	$M \leftarrow(M)-1$		10001	MH	ML	1
SUBC	M, \#1	$\mathrm{M} \leftarrow(\mathrm{M})-\mathrm{I}-\mathrm{BRW}$		10011	MH	ML	1
SKE	M, \#1	(M) -1	ZERO	01001	MH	ML	1
SKNE	M, \#1	(M) -1	NOT ZERO	01011	MH	ML	1
SKGE	M, \#1	(M) -1	NOT BRW	11001	MH	ML	1
SKLT	M, \#	(M)-1	BRW	11011	MH	ML	1
AND	M, \#1	$\mathrm{M} \leftarrow(\mathrm{M})$ AND I		10100	MH	ML	1
OR	M, \#	$M \leftarrow(M)$ OR I		10110	MH	ML	1
XOR	M, \#1	$\mathrm{M} \leftarrow(\mathrm{M})$ XOR I		10101	MH	ML	1
AND	R, M	$R \leftarrow(R)$ AND (M)		00100	MH	ML	R
OR	R, M	$R \leftarrow(R) O R(M)$		00110	MH	ML	R
XOR	R, M	$\mathrm{R} \leftarrow \mathrm{R}) \times \mathrm{XOR}(\mathrm{M})$		00101	MH	ML	R
RORC	R	$\mathrm{CY} \rightarrow(\mathrm{R}) \rightarrow \mathrm{CY}$		00111	000	0111	R
LD	R, M	$R \leftarrow(M)$		01000	MH	ML	R
ST	M, R	$\mathrm{M} \leftarrow(\mathrm{R})$		11000	MH	ML	R
MOV	M, \#1	M -1		11101	MH	ML	1
SKT	M, \#n	TEST (M)n, CMP $\leftarrow 0$	ALL true	11110	MH	ML	n
SKF	M, \#n	TEST (M)n, CMP $\leftarrow 0$	ALL FALSE	11111	MH	ML	n

MNEMO	OPERND	OPERATION	SKIP	OPCODE	A98	7654	3210
BR		$\mathrm{PC}(8-0) \leftarrow \mathrm{A}$		01100	AH	AM	AL
CALL		$\mathrm{SP} \leftarrow(\mathrm{SP})-1$, STACK $\leftarrow((\mathrm{PC})+1)$, $\mathrm{PC}(8-0) \leftarrow \mathrm{A}$		11100	AH	AM	AL
RET		$\mathrm{PC} \leftarrow($ STACK $), \mathrm{SP} \leftarrow(\mathrm{SP})+1$		00111	000	1110	0000
RETSK		$\mathrm{PC} \leftarrow($ STACK $), \mathrm{SP} \leftarrow(\mathrm{SP})+1$	UNCONDITION	00111	001	1110	0000
STOP	C	STOP CLOCK		00111	010	1111	C
HALT	h	HALTCPU		00111	011	1111	h
NOP		NO OPERATION		00111	100	1111	0000

CY:Carry flag
CMP : Compare flag
(R) : Value of register
(M) : Value of data memory

R : Register number
I : Numerical data
\#n : Bit number
PC : Program counter
R : Register
M : Data memory MH, ML
A : Address AH, AM, AL

μ PD17103, μ PD17104

7. ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$)

Supply Voltage	$V_{\text {DD }}$			-0.3 to +7.0	v
Input Voltage	v_{1}	POA, C, D		-0.3 to $V_{D D}+0.3$	v
		POB	(1)	-0.3 to $\mathrm{V}_{\text {DD }}+0.3$	v
			(2)	-0.3 to +11	v
Output Voltage	v_{0}	POA, C, D		-0.3 to $V_{D D}+0.3$	v
		POB	(1)	-0.3 to $V_{\text {DD }}+0.3$	v
			(2)	-0.3 to +11	v
High Output Current	${ }^{1} \mathrm{OH}$	One pin of POA, POB, POC and POD each		-5	mA
		Total of all pins		-15	mA
Low Level Output Current	${ }^{\prime} \mathrm{OL}$	One pin of POA, POB, POC and POD		30	mA
		Total of all pins		100	mA
Operating Temperature	Topt			-40 to -85	C
Storage Temperature	$\mathrm{T}_{\text {stg }}$			-65 to +150	c
Power Consumption.	P_{d}	$\mathrm{T}_{\mathrm{a}}=85^{\circ} \mathrm{C}$		400	mW
				190	mW
				400	mW
				250	mW

Remarks: (1) N-ch open-drain input/output + pull-up resistor built-in input/output
(2) N -ch open-drain input/output

CAPACITY ($\left.\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}\right)$

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Input Capacity	CIN $^{\text {IN }}$			15	pF	$\mathrm{f}=1 \mathrm{MHz}$, Pins except the one under
measurement: 0 V						

DC CHARACTERISTICS ($\mathrm{T}_{\mathrm{a}}=\mathbf{4 0}$ to $\mathbf{+ 8 5}{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7$ to 6.0 V)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS	
High Level Input Voltage	$\mathrm{V}_{\mathbf{1 H 1}}$	$0.7 \mathrm{~V}_{\text {DD }}$		$V_{\text {DD }}$	v	Other than below	
	$\mathrm{V}_{\text {IH2 }}$	0.8 V DD		$V_{\text {DD }}$	V	POB, $\overline{\text { RESET }}$	
	$\mathrm{V}_{\text {IH3 }}$	0.8 V DD		9	V	POB (3)	
	$\mathrm{V}_{\text {IH4 }}$	VDD-0.5		$V_{\text {DD }}$	v	XIN	
Low Level Input Voltage	$V_{\text {IL1 }}$	0		$0.3 \mathrm{~V}_{\text {DD }}$	v	Other than below	
	$\mathrm{V}_{\text {IL2 }}$	0		$0.2 \mathrm{~V}_{\text {DD }}$	v	POB, $\overline{\text { RESET }}$	
	VIL3	0		0.5	V	XIN	
POA, C, D High Level Output Voltage	V_{OH}	$V_{D D}-2.0$			V	$\begin{aligned} & V_{D D}=4.5 \text { to } 6.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA} \end{aligned}$	
		$\mathrm{V}_{\mathrm{DD}}-1.0$				$\mathrm{I}_{\mathrm{OH}}=-200 \mathrm{~A}$	
POA, B, C, D Low Level Output Voltage	V_{OL}			2.0	V	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.5 \text { to } 6.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OL}}=15 \mathrm{~mA} \end{aligned}$	
				0.5	V	$\mathrm{IOL}=600 \mu \mathrm{~A}$	
POA, B, C, D High Level Input Leak Current	'LIH1			5	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$	
	'LIH2			10	$\mu \mathrm{A}$	$V_{\text {IN }}=9 \mathrm{~V}$	
POA, B, C, D Low Level Input Leak Current	${ }^{\text {I LIL }}$			-5	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	
POA, B, C, D High Level Output Leak Current	ILOH1			5	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {DD }}$	
	${ }^{\text {L LOH2 }}$			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=9 \mathrm{~V}$	
POA, B, C, D Low Level Output Leak Current	ILOL			-5	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	
Input Pin Built in Resistor		20	47	95	k Ω	$\overline{\text { RESET }}$ (Pull-up)	
I/O Pin Built-in Resistor		5	15	30	$\mathrm{k} \Omega$	$\mathrm{POB}_{0}, \mathrm{POB}_{1}, \mathrm{POB}_{2}, \mathrm{POB}_{3}$ (Pull-up)	
Power Supply Current (4)	IDD1		1.5	4.5	mA	Operating mode	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \pm 10 \% \\ & f_{c c}=8.0 \mathrm{MHz} \end{aligned}$
			250	750	$\mu \mathrm{A}$		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 10 \% \\ & \mathrm{f}_{\mathrm{cc}}=2.0 \mathrm{MHz} \end{aligned}$
	IDD2		1.0	3.0	mA	HALT mode	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \% \\ & \mathrm{f}_{\mathrm{cc}}=8.0 \mathrm{MHz} \end{aligned}$
			200	600	$\mu \mathrm{A}$		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 10 \% \\ & \mathrm{f}_{\mathrm{cc}}=2.0 \mathrm{MHz} \end{aligned}$
	${ }^{\text {I DD3 }}$		0.1	10	$\mu \mathrm{A}$	STOP mode	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$
			0.1	5	$\mu \mathrm{A}$		$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 10 \%$

Remark (3): For N-ch open-drain input/output selection.
Remark (4): The current flowing to the built-in pull-up resistor is excluded.

Characteristics of data retention in data memory at low supply VOLTAGE ($\mathrm{T}_{\mathrm{a}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Data Retention Supply Voltage	$V_{\text {DDDR }}$	2.0		6.0	v	
Data Retention Supply Current	IDDDR		0.1	5.0	$\mu \mathrm{A}$	$V_{\text {DDDR }}=2.0 \mathrm{~V}$
Release Signal Setting Time	tSREL	0			$\mu \mathrm{s}$	
Stable Oscillation Wait Time	twalt request		8/fx (5)		mS	Reset by $\overline{\text { RESET }}$
			8/fx (5)		mS	Reset by interrupt (POB_{0})
		0			mS	Reset by interrupt (POB_{1})

Remark (5): fx indicates an oscillator frequency.

AC CHARACTERISTICS ($\mathrm{T}_{\mathrm{a}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7$ to 6.0 V)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Internal Clock Cycle Time	T_{cy}	1.9		30	$\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V
		7.6		30	$\mu \mathrm{s}$	
POB 0 , High/Low Level Width	TPBH TPBL	10			$\mu \mathrm{s}$	
RESET High/Low Level Width	TRSH TRSLK	10			$\mu \mathrm{s}$	

4-BIT SINGLE-CHIP MICROCONTROLLER

The μ PD17P103 is a tiny microcontrollers consisting of a 1 K -byte ROM, 16 -word RAM, and 11 input/output ports. It is a one-time PROM version of the μ PD17103, whose internal mask ROM is replaced with a one-time PROM.

Two μ PD17P103 models are available: μ PD17P103CX, which allows a program to be written only once, and μ PD17P103GS. They are suitable for evaluation of μ PD17103 and for small-scale production.

The μ PD17000 architecture of the CPU uses general registers so that data memory can be manipulated directly for effective programming. Every instruction is 1 word long, consisting of 16 bits.

FEATURES

- Compatible with the μ PD17103
- Program memory (one-time PROM): 1 K bytes (512 words $\times 16$ bits)
- Data memory (RAM): 16 words $\times 4$ bits
- Input/output ports: 11 ports (including three N -ch open-drain outputs)
- Instruction execution time: 2μ (with $8-\mathrm{MHz}$ crystal or ceramic resonator connected)
- Number of instructions: 24 (Each instruction is 1 word long.)
- Stack level: 1
- A standby function is supported (with the STOP and HALT instructions).
- Data memory can retain data on low voltage (2.0 V at minimum).
- An oscillator is included for the system clock (for crystal or ceramic resonator).
- Operating supply voltage: $\quad 2.7$ to 6.0 V (at 2 MHz) 4.5 to 6.0 V (at 8 MHz)

APPLICATIONS

- Controlling electric appliances or toys
- Providing general-purpose logic ICs in one chip

ORDERING INFORMATION

Order Code	Package
μ PD17P103CX	16-pin plastic DIP (300 mil $)$
μ PD17P103GS	16-pin plastic SOP $(300 \mathrm{mil})$

PIN CONFIGURATION (Top View)

BLOCK DIAGRAM

PIN FUNCTIONS

PIN FUNCTIONS

- Port pins

$\begin{gathered} \text { PIN } \\ \text { NAME } \end{gathered}$	INPUT/ OUTPUT	DUAL FUNCTION PIN		FUNCTION		When writing to program memory or verifying its contents	WHEN RESET
POB_{0}	Input/ output	RLS ${ }_{\text {HALT }}$	MDo	- N -ch open-drain 4-bit input/ output port (port OB)	For the HALT mode releasing	Mode selection pin	High impedance (input mode)
POB_{1}		RLS STOP	MD1		For the STOP		
POB_{2}		MD_{2}			mode releasing		
POC_{0}	Input/ output	D_{4}		- CMOS (push-pull) 4-bit input/output port (port OC)		8-bit data input/ output pin (high order 4 bits)	High impedance (input mode)
POC_{1}		D_{5}					
POC_{2}		D_{6}					
POC_{3}		D_{7}					
POD_{0}	Input/ output	D_{0}		- CMOS (push-pull) 4-bit input/output port (port OD)		8-bit data input/ output pin (loworder 4-bits)	High impedance (input mode)
POD_{1}		D_{1}					
POD_{2}		D_{2}					
POD_{3}		D_{3}					

- Non-port pins

PIN NAME	INPUT/ OUTPUT	DUAL FUNCTION PIN	FUNCTION	When writing to program memory or verifying its contents
RESET	Input	Vpp	System reset input pin	Voltage is applied to this pin (+12.5 V)
$V_{\text {DD }}$			Positive power supply pin	Positive power supply pin (+6.0 V)
GND			GND pin	GND pin
XIN			Pins to be connected to the system clock resonator	Program memory address update
X OUT		MD_{3}	Pins to be connected to the system clock resonator	Mode selection pin

PIN INPUT/OUTPUT CIRCUITS

Following are schematics of the input/output circuits of the pins of the μ PD17P103.
(1) POC and POD

(2) $\mathrm{POB} \mathrm{B}_{0}$ and $\mathrm{POB} \mathrm{B}_{1}$

(3) POB_{2}

(4) $\overline{\text { RESET }}$

9. DIFFERENCES BETWEEN THE μ PD17P103 AND μ PD17103

The μ PD17P103 is a one-time PROM version of the μ PD17103, in which the internal mask ROM is replaced with a one-time PROM. The μ PD17P103 has the same CPU functions and internal hardwares as those of μ PD17103 except for its program memory and mask option. Table 9-1 lists the differences between them.

Table 9-1 Differences between μ PD17P103 and μ PD17103

ITEM	μ PD17P103	$\mu \mathrm{PD} 17103$
ROM	One-time PROM 512×16 bits	Mask ROM 512×16 bits
Pull-up resistors of pins POB_{0} to POB_{2}	None	Mask option
Pull-up resistors of $\overline{\text { RESET }}$ pin	None	Mask option
Connection pin	VPP pin and operation mode selection pins are provided.	$V_{\text {PP pin }}$ and operation mode selection pins are not provided.
Power supply	$\begin{aligned} & 2.7 \text { to } 6.0 \mathrm{~V} \text { (at } 2 \mathrm{MHz} \text {) } \\ & 4.5 \text { to } 6.0 \mathrm{~V} \text { (at } 8 \mathrm{MHz} \text {) } \end{aligned}$	
Package	$\begin{aligned} & \text { 16-pin DIP } \\ & \text { 16-pin SOP } \end{aligned}$	

10. WRITING TO AND VERIFYING ONE-TIME PROM (PROGRAM MEMORY)

The μ PD17P103's internal program memory consists of a 512×16 bit one-time PROM.
Writing to the one-time PROM or verifying the contents of the PROM is accomplished using the pins shown in the table below. Note that address inputs are not used; instead, the address is updated using the clock input from the $X_{I N}$ pin.

PIN NAME	FUNCTION
$V_{P P}$	Voltage is applied to this pin when writing to program memory or verifying its contents.
$\mathrm{X}_{\text {IN }}$	Input pin for address update clock used when writing to program memory or verifying its contents.
MD_{0} to MD_{3}	Pins that turn to input pins and are used as operation mode selection pins when writing to program memory or verifying its contents
$\mathrm{D}_{\mathbf{0}}$ to D_{7}	Input/output pins for 8-bit data used when writing to program memory or verifying its contents

10.1 Program Memory Write/Verify Modes

If +6 V is applied to the $\mathrm{V}_{D D}$ pin and +12.5 V is applied to the V_{PP} pin after a certain duration of reset status ($\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \overline{\mathrm{RESET}}=0 \mathrm{~V}$), the $\mu \mathrm{PD} 17 \mathrm{P} 103$ enters program memory write/verify mode. A specific operating mode is then selected by setting the $M D_{0}$ through $M D_{3}$ pins as follows. Set the other unused pins to GND level by means of pull-down resistors.

Operating mode specification						Operating mode
VPP	$V_{\text {DD }}$	MD_{0}	MD ${ }_{1}$	MD_{2}	MD_{3}	
+12.5 V	+6V	H	L	H	L	Program memory address clear mode
		L	H	H	H	Write mode
		L	L	H	H	Verify mode
		H	X	H	H	Program inhibit mode

X: L (low) or H (high)

10.2 Writing to Program Memory

The procedure for writing to program memory is described below: high-speed write is possible.
(1) Pull low the levels on all unused pins to GND by means of resistors. Bring $X_{\mathbb{I N}}$ to low level.
(2) Apply 5 V to V_{DD} and bring V_{PP} to low level.
(3) Wait $10 \mu \mathrm{~s}$. Then apply 5 V to V_{Pp}.
(4) Set the mode selection pins to program memory address clear mode.
(5) Apply 6 V to V_{DD} and 12.5 V to V_{Pp}.
(6) Select program inhibit mode.
(7) Write data in 1 ms write mode.
(8) Select program inhibit mode.
(9) Select verify mode. If the write operation is found successful, proceed to step (10). If the operation is found unsuccessful, repeat steps (7) to (9).
(10) Perform additional write for (number of repetitions of steps (7) to (9)) $\times 1 \mathrm{~ms}$.
(11) Select program inhibit mode.
(12) Increment the program memory address by one on reception of four pulses on the $X_{\text {IN }}$ pin.
(13) Repeat steps (7) to (12) until the last address is reached.
(14) Select program memory address clear mode.
(15) Apply 5 V to the $V_{D D}$ and $V_{P P}$ pins.
(16) Turn power off.

The timing for steps (2) to (12) is shown below.

10.3 Reading Program Memory

(1) Pull low the levels of all unused pins to GND by means of resistors. Bring $X_{I N}$ to low level.
(2) Apply 5 V to V_{DD} and bring $\mathrm{V}_{\text {PP }}$ to low level.
(3) Wait $10 \mu \mathrm{~s}$. Then apply 5 V to $V_{\text {PP }}$.
(4) Set the mode selection pins to program memory address clear mode.
(5) Apply 6 V to V_{DD} and 12.5 V to V_{PP}.
(6) Select program inhibit mode.
(7) Select verify mode. Data is output sequentially one address at a time for each cycle of four clock pulses on the $X_{I N}$ pin.
(8) Select program inhibit mode.
(9) Select program memory address clear mode.
(10) Apply 5 V to the $V_{D D}$ and $V_{P P}$ pins.
(11) Turn power off.

The timing for steps (2) to (9) is shown below.

11. RESERVED WORDS

Table 11-1 lists the reserved words defined in the μ PD17P103 device file (AS17103).

Table 11-1 Reserved Words

Name	Attribute	Value	Read/write	Description
POBO	FLG	0.71H.O	Read/write	Bit 0 of port OB
P0B1	FLG	0.71H. 1	Read/write	Bit 1 of port OB
P0B2	FLG	0.71 H .2	Read/write	Bit 2 of port OB
* P0B3	FLG	0.71H. 3	Read	Always set to 0
POCO	FLG	0.72 H .0	Read/write	Bit 0 of port 0 C
P0C1	FLG	0.72H. 1	Read/write	Bit 1 of port 0C
POC2	FLG	0.72H. 2	Read/write	Bit 2 of port 0C
P0C3	FLG	0.72H. 3	Read/write	Bit 3 of port 0C
P0DO	FLG	0.73H.0	Read/write	Bit 0 of port 0D
P0D1	FLG	0.73 H .1	Read/write	Bit 1 of port 0D
POD2	FLG	0.73H. 2	Read/write	Bit 2 of port 0D
P0D3	FLG	0.73H. 3	Read/write	Bit 3 of port 0D
BCD	FLG	0.7EH. 0	Read/write	BCD arithmetic flag
PSW	MEM	0.7FH	Read/write	Program status word
Z	FLG	0.7 FH .1	Read/write	Zero flag
CY	FLG	0.7FH. 2	Read/write	Carry flag
CMP	FLG	0.7FH. 3	Read/write	Compare flag

* Although P0B3 does not exist in the μ PD17P103, it is defined as a ready-only flag so that it is treated as a dummy bit when a built-in macro is used.

12. INSTRUCTION SET

12.1 Instruction Set List

bll		0		1	
BIN	HEX				
0000	0	ADD	r, m	ADD	m, \#i
0001	1	SUB	r, m	SUB	m, \#i
$\begin{array}{llll}0 & 0 & 1 & 0\end{array}$	2	ADDC	r, m	ADDC	m, \#i
00011	3	SUBC	r, m	SUBC	m, \#i
0100	4	AND	r, m	AND	m, \#i
$\begin{array}{lllll}0 & 1 & 0 & 1\end{array}$	5	XOR	r, m	XOR	m, \#i
01110	6	OR	r, m	OR	m, \#i
$\begin{array}{lllll}0 & 1 & 1 & 1\end{array}$	7	RET RETSK RORC STOP HALT NOP	r s h		
1000	8	LD	r, m	ST	m, r
10001	9	SKE	m, \#i	SKGE	m, \#i
1010	A				
1011	B	SKNE	m, \#i	SKLT	m, \#i
1100	C	BR	addr	CALL	addr
1101	D			MOV	m, \#i
$\begin{array}{lllll}1 & 1 & 1 & 0\end{array}$	E			SKT	$\mathrm{m}, ~ \# \mathrm{n}$
	F			SKF	$\mathrm{m}, ~ \# \mathrm{n}$

12.2 INSTRUCTIONS LIST

Legend:

M

	: One of data memory	n	: Bit position : 4 bits
	: Data memory address specified by [$\mathrm{m}_{\mathrm{H}} \cdot \mathrm{m}_{\mathrm{L}}$] of each bank	addr	: One of program memory address; 11 bits
m_{H}	: Data memory address high (row address) ; 3 bits		: Program memory address high ; 3 bits
m_{L}	: Data memory address low (column address) ; 4 bits		: Program memory address middle ; 4 bits
	: One of general register specified by [(RP), r]		: Program memory address low ; 4 bits
	: General register address low (column address) ; 4 bits	CY	: Carry flag
RP	: General register pointer	CMP	: Compare flag
	: Program counter	s	: Stop release condition
	: Stack pointer	h	: Halt release condition
CK	: Stack specified by (SP)	[]	: Address of M, R
	: Immediate data ; 4 bits	()	: Contents of M, R

$\underset{\sim}{8}$	Mnemonic	Operand	Function	Operation	Machine code			
					Op code	3 bits	4 bits	4 bits
$\stackrel{\square}{\square}$	ADD	r,m	Add memory to register	$\mathrm{R} \leftarrow(\mathrm{R})+(\mathrm{M})$	00000	m_{H}	m_{L}	r
		m. \#i	Add immediate data to memory	$\mathrm{M}-(\mathrm{M})+\mathrm{i}$	10000	m_{H}	m_{L}	i
	ADDC	r,m	Add memory to register with carry	$\mathrm{R} \leftarrow(\mathrm{R})+(\mathrm{M})+(\mathrm{CY})$	00010	m_{H}	m_{L}	r
		m, \#i	Add immediate data to memory with carry	$\mathrm{R} \leftarrow(\mathrm{M})+\mathrm{i}+(\mathrm{CY})$	10010	m_{H}	m_{L}	i
	SUB	r,m	Subtract memory from register	$\mathrm{R} \leftarrow(\mathrm{R})-\mathrm{M})$	00001	m_{H}	m_{L}	r
		m. \# i	Subtract immediate data from memory	M- (M) - i	10001	m_{H}	m_{L}	i
	SUBC	r,m	Subtract memory from register with borrow	$\mathrm{R} \leftarrow(\mathrm{R})-(\mathrm{M})-(\mathrm{CY})$	00011	m_{H}	m_{L}	r
		m. \#i	Subtract immediate data from memory with borrow	$\mathrm{M} \leftarrow(\mathrm{M})-\mathrm{i}-(\mathrm{CY})$	10011	m_{H}	m_{L}	i
	SKE	m, \#i	Skip if memory equal to immediate data	$\mathrm{M}-\mathrm{i}$, skip if zero	01001	m_{H}	m_{L}	i
	SKGE	m. \#i	Skip if memory greater than or equal to immediate data	M-i, skip if not borrow	11001	m_{H}	m_{L}	i
	SKLT	m, \#i	Skip if memory less than immediate data	$\mathrm{M}-\mathrm{i}$, skip if borrow	11011	m_{H}	m_{L}	i
	SKNE	m. \#i	Skip if memory not equal to immediate data	$\mathrm{M}-\mathrm{i}$, skip if not zero	01011	m_{H}	m_{L}	i
	AND	m, \#i	Logical AND of memory and immediate data	$\mathrm{M} \leftarrow$ (M) AND i	10100	m_{H}	m_{L}	i
		r.m	Logical AND of register and memory	$\mathrm{R} \leftarrow$ (R) AND (M)	00100	m_{H}	m_{L}	r
	OR	m, \#i	Logical OR of memory and immediate data	M - (M) OR i	10110	m_{H}	m_{L}	i
		r,m	Logical OR of register and memory	$\mathrm{R} \leftarrow(\mathrm{R}) \mathrm{OR}$ (M)	00110	m_{H}	m_{L}	r
	XOR	m. \#i	Logical XOR of memory and immediate data	$\mathrm{M} \leftarrow$ (M) XOR i	10101	m_{H}	m_{L}	i
		r,m	Logical XOR of register and memory	$\mathrm{R} \leftarrow$ (R) XOR (M)	00101	m_{H}	m_{L}	r
	LD	r,m	Load memory to register	$\mathrm{R} \leftarrow(\mathrm{M})$	01000	m_{H}	m_{L}	r
	ST	m, r	Store register to memory	(M) $\leftarrow \mathrm{R}$	11000	m_{H}	m_{L}	r
	MOV	m. \# i	Move immediate data to memory	$\mathrm{M}-\mathrm{i}$	11101	m_{H}	m_{L}	i
$\stackrel{\rightharpoonup}{\underline{E}}$	SKT	m, \#n	Test memory bits. then skip if all bits specified are true	$\begin{aligned} & \mathrm{CMP} \leftarrow 0 \\ & \text { skip if } \mathrm{M}_{\mathrm{n}}=\text { all }{ }^{1} 1^{\prime} \end{aligned}$	11110	m_{H}	m_{L}	n
	SKF	m. \#n	Test memory bits, then skip if all bits specified are false	$\begin{aligned} & \mathrm{CMP} \leftarrow 0 \\ & \text { skip if } \mathrm{M}_{\mathrm{n}}=\text { all } \cdot 0^{*} \end{aligned}$	11111	m_{H}	m_{L}	n

	Mnemonic	Operand	Function	Operation	Machine code			
					Op code	3 bits	4 bits	4 bits
皆	BR	addr	Jump to the address	$\mathrm{PC} \leftarrow \mathrm{ADDR}$	01100	a_{H}	a_{m}	a_{L}
等	RORC	r	Rotate register right with carry	$(\mathrm{CY}) \rightarrow(\mathrm{R}) \rightarrow \mathrm{CY}$	00111	000	0111	r
嵒	CALL	addr	Call subroutine	$\begin{aligned} & \mathrm{SP} \leftarrow(\mathrm{SP})-1 \\ & \mathrm{STACK} \leftarrow((\mathrm{PC})+1), \\ & \mathrm{PC} \leftarrow \mathrm{ADDR} \end{aligned}$	11100	$\mathrm{a}_{\text {H }}$	a_{M}	a_{L}
	RET		Return to main routine from subroutine	PC \leftarrow（STACK）. SP \leftarrow（SP）+1	00111	000	1110	0000
	RETSK		Return to main routine from subroutine，then skip unconditionally	$P C \leftarrow(S T A C K) . S P \leftarrow(S P)+1$ and skip	00111	001	1110	0000
	STOP	s	Stop clock	STOP	00111	010	1111	s
	HALT	h	Halt the CPU，restart by condition h	HALT	00111	011	1111	h
	NOP		No operation	No Operation	00111	100	1111	0000

13. ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$)

Supply Voltage	$V_{D D}$		-0.3 to +7.0	v
Supply Voltage	$V_{\text {PP }}$		-0.3 to +13.5	v
Input Voltage	v_{1}	POC, POD	-0.3 to $V_{D D}+0.3$	v
		POB	-0.3 to +11	v
Output Voltage	v_{0}	POC, POD	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	v
		POB	-0.3 to +11	V
High-Level Output Current	IOH .	Each of POB, POC, POD	-5	mA
		Total of all pins	-15	mA
Low-Level Output Current	IOL	Each of POB, POC, POD	30	mA
		Total of all pins	100	mA
Operating Temperature	$T_{\text {opt }}$		-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {s }} \mathrm{tg}$		-65 to +150	${ }^{\circ} \mathrm{C}$
Power Consumption	P_{d}	$\mathrm{T}_{\mathrm{a}}=85^{\circ} \mathrm{C}$ 16-pin DIP	400	mW
		16-pin SOP	190	

CAPACITANCE ($\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}$)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Input Capacitance	$C_{I N}$			15	pF	$\mathrm{f}=1 \mathrm{MHz}$
$\mathrm{I} / \mathrm{O}^{(*)}$ Capacitance	C_{IO}			15	pF	$\mathbf{0} \mathrm{V}$ for pins other than pins to be measured

*: Input/Output

DC CHARACTERISTICS ($\mathrm{T}_{\mathrm{a}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7$ to 6.0 V)

[^5]CHARACTERISTICS OF DATA MEMORY FOR HOLDING DATA ON LOW SUPPLY VOLTAGE IN THE STOP MODE ($\mathrm{T}_{\mathrm{a}}=\mathbf{- 4 0}$ to $+85{ }^{\circ} \mathrm{C}$)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
Data Hold Supply Voltage	VDDDR	2.0		6.0	V	
Data Hold Supply Current	IDDDR		0.1	5.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {DDDR }}=2.0 \mathrm{~V}$
Release Signal Set Time	tSREL	0			$\mu \mathrm{s}$	

AC CHARACTERISTICS ($\mathrm{T}_{\mathrm{a}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7$ to 6.0 V)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
Internal Clock Cycle Time	${ }^{T} \mathrm{CY}$	1.9		33	$\mu \mathrm{s}$	$\mathrm{V}_{\text {DD }}=4.5$ to 6.0 V
		7.6		33	$\mu \mathrm{s}$	
High/Low Level Width on POB_{0} and POB_{1}	TPBH TPBL	10			$\mu \mathrm{s}$	
High/Low Level Width on RESET	$T_{\text {RSH }}$ TRSL	10			$\mu \mathrm{s}$	

DC PROGRAMING CHARACTERISTICS
($\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=6.0 \pm 0.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=12.5 \pm 0.5 \mathrm{~V}$)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
Input Voltage High	$\mathrm{V}_{1} \mathrm{H}_{1}$	0.7- V_{DD}		V_{DD}	v	Except $\mathrm{X}_{\text {IN }}$
	$\mathrm{V}_{1 \mathrm{H} 2}$	$\mathrm{V}_{\text {DD }} 0.5$		$V_{D D}$	V	XIN
Input Voltage Low	$V_{\text {ILI }}$	0		0.3 VDD	V	Except $\mathrm{XIN}^{\text {IN }}$
	$V_{\text {IL2 }}$	0		0.4	v	XIN
Input Leakage Current	ILI			10	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {IL }}$ or $V_{\text {IH }}$
Output Voltage High	V_{OH}	$\mathrm{V}_{\text {DD }}{ }^{1.0}$			V	$1 \mathrm{OH}=-1 \mathrm{~mA}$
Output Voltage Low	V_{OL}			0.4	V	$1 \mathrm{OL}=1.6 \mathrm{~mA}$
VDD Power Supply Current	${ }^{\prime}$ DD			30	mA	
VPp Power Supply Current	IPP			30	mA	$\mathrm{MDO}=\mathrm{V}_{\text {IL }}, \mathrm{MD1}=\mathrm{V}_{\text {IH }}$

Notes 1: VPP must be under +13.5 V including overshoot.
2: $V_{D D}$ must be applied before $V_{P P}$ on and must be off after $V_{\text {PP }}$ off.

AC PROGRAMMING CHARACTERISTICS

($\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=6.0 \pm 0.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=12.5 \pm 0.5 \mathrm{~V}$)

CHARACTERISTICS	SYMBOL	*1	MIN.	TYP.	MAX.	UNIT	CONDITION
Address Set Up Time ${ }^{(* 2)}$ to MDO \downarrow	${ }^{\text {t }}$ AS	${ }^{t}$ AS	2			μs	
MD1 Setup Time to MDO \downarrow	${ }^{\text {m M } 1 S}$	toes	2			μ	
Data Setup Time to MDO \downarrow	${ }^{\text {t }}$ DS	${ }^{\text {t }} \mathrm{DS}$	2			μs	
Address Hold Time ${ }^{(* 2)}$ to MDO \uparrow	${ }^{\text {t }}$ AH	${ }^{t}$ AH	2			$\mu \mathrm{s}$	
Data Hold Time to MDO \uparrow	tDH	${ }^{\text {t }} \mathrm{H}$	2			μ	
Data Output Float Delay Time From MDO $\uparrow \rightarrow$	${ }^{\text {t }}$ D	tDF	0		130	ns	
$V_{\text {PP }}$ Setup Time to MD3 \uparrow	tVPS	tVPS	2			μs	
$V_{\text {DD }}$ Setup Time to MD3 \uparrow	tVDS	tVCs	2			μs	
Initial Program Pulse Width	tpw	tPW	0.95	1.0	1.05	ms	
Additional Program Pulse Width	topw	topw	0.95		21.0	ms	
MDO Setup Time to MD1 \uparrow	${ }^{\text {m MOS }}$	tCES	2			$\mu \mathrm{s}$	
Data Output Delay Time From MDO $\downarrow \rightarrow$	tov	tov			1	μs	$\mathrm{MDO}=\mathrm{MD1}=\mathrm{V}_{\mathbf{I L}}$
MD1 Hold Time to MD0 \uparrow	${ }^{\text {m M }}$ (H	toen	2			μs	
MD1 Recovery Time to MDO \downarrow	${ }^{\text {m M1R }}$	tor	2			μs	H ${ }_{\text {din }}$
Program Counter Reset Time	tPCR	-	10			μs	
$\mathrm{X}_{\text {IN }}$ Input High, Low Level Range	${ }^{\text {t }} \times \mathrm{H},{ }^{\text {t }}$ XL	-	0.125			$\mu \mathrm{s}$	
$\mathrm{X}_{\text {IN }}$ Input Frequency	${ }^{\text {f }} \mathrm{X}$	-			4.19	MHz	
Initial Mode Set Time	t	-	2			μs	
MD3 Setup Time to MD1 \uparrow	${ }^{\text {tM3S }}$	-	2			$\mu \mathrm{s}$	
MD3 Hold Time to MD1 \downarrow	${ }^{\text {m M }}$ 3H	-	2			μs	
MD3 Setup Time to MDO \downarrow	${ }^{\text {tM3SR }}$	-	2			$\mu \mathrm{s}$	Read program memory
Data Output Delay Time From Address ${ }^{(* 2)}$	${ }^{\text {t }}$ DAD	${ }^{t} \mathrm{ACC}$	2			$\mu \mathrm{s}$	Read program memory
Data Output Hold Time From Address (*2)	thad	${ }^{\text {tor }}$	0		130	ns	Read program memory
MD3 Hold Time to MDO \uparrow	${ }^{\text {t M }}$ 3HR	-	2			$\mu \mathrm{s}$	Read program memory
Data Output Float Delay Time From MD3 $\downarrow \rightarrow$	t DFR	-	2			μs	Read program memory
Reset Setup Time	${ }^{\text {t RES }}$		10			$\mu \mathrm{s}$	

*1: Symbols for corresponding μ PD27C256.
*2: Internal address signal is incremented by one at the falling edge of the third $X_{I N}$ input, and it is not connected to the pin.

Write program memory timing

Read program memory timing

4-BIT SINGLE-CHIP MICROCONTROLLER

The μ PD17P104 is a tiny microcontroller consisting of a 1 K -byte ROM, 16 -word RAM, and 16 input/output ports. It is a one-time PROM version of the μ PD17104, whose internal mask ROM is replaced with a one-time PROM.

Two μ PD17P104 models are available: μ PD17P104CS and μ PD17P104GS, which allow a program to be written only once. They are suitable for evaluation of μ PD17104 and for small-scale production.

The μ PD17000 architecture of the CPU uses general registers so that data memory can be manipulated directly for effective programming. Every instruction is 1 word long, consisting of 16 bits.

FEATURES

- Compatible with the μ PD17104
- Program memory (one-time PROM): 1 K bytes (512 words $\times 16$ bits)
- Data memory (RAM):
- Input/output ports:
- Instruction execution time:
- Number of instructions:
- Stack level:
- A standby function is supported (with the STOP and HALT instructions).
- Data memory can retain data on low voltage (2.0 V at minimum).
- An oscillator is included for the system clock (for crystal or ceramic resonator).
- Operating supply voltage: $\quad 2.7$ to 6.0 V (at 2 MHz)
4.5 to 6.0 V (at 8 MHz)

APPLICATIONS

- Controlling electric appliances or toys
- Providing general-purpose logic ICs in one chip

ORDERING INFORMATION

Order Code	Package
μ PD17P104CS	22-pin plastic shrink DIP (300 mil)
μ PD17P104GS	24-pin plastic SOP (300 mil)

PIN CONFIGURATION (Top View)

BLOCK DIAGRAM

PIN FUNCTIONS

- Port pins

$\begin{gathered} \text { PIN } \\ \text { NAME } \end{gathered}$	INPUT/ OUTPUT	DUAL FUNCTION PIN		FUNCTION		When writing to program memory or verifying its contents	WHEN RESET
POA_{0}	Input/output			- CMOS (push-pull) 4-bit input/ output port (port OA)		Pull down	High impedance (input mode)
POA_{1}							
POA_{2}							
POA_{3}							
POB_{0}	Input/output	RLS HALT	MD_{0}	- N-ch open-drain 4-bit input/ output port (port OB)	For the HALT mode releasing	Mode selection pin	High impedance (input mode)
POB_{1}		RLS STOP	MD1		For the STOP mode releasing		
POB_{2}		MD_{2}					
POB_{3}						Pull down	
POCO_{0}	Input/output	D_{4}		- CMOS (push-pull) 4-bit input/ output port (port 0C)		8 -bit data input/output pin (high. order 4 bits)	High impedance (input mode)
POC_{1}		D_{5}					
POC_{2}		D_{6}					
POC_{3}		D_{7}					
POD 0	Input/output	D_{0}		- CMOS (push-pull) 4-bit input/ output port (port OD)		8-bit data input/output pin (loworder 4-bits)	High impedance (input mode)
POD_{1}		D_{1}					
POD_{2}		D_{2}					
POD_{3}		D_{3}					

- Non-port pins

PIN NAME	INPUT/ OUTPUT	DUAL FUNCTION PIN	FUNCTION	When writing to program memory or verifying its contents
$\overline{\text { RESET }}$	Input	VPP	System reset input pin	Voltage is applied to this pin $(+12.5 \mathrm{~V})$
VDD			Positive power supply pin	Positive power supply pin (+6.0 V)
GND			GND pin	GND pin
$X_{\text {IN }}$			Pins to be connected to the system clock resonator	Program memory address update
$\mathrm{X}_{\text {OUT }}$		M_{3}	Pins to be connected to the system clock resonator	Mode selection pin
NC			NC pin is not connected internally.	

PIN INPUT/OUTPUT CIRCUITS

Following are schematics of the input/output circuits of the pins of the μ PD17P104.
(1) POC and POD

(2) POB_{0} and POB_{1}

(3) POB_{2} and POB_{3}

(4) $\overline{\text { RESET }}$

9. DIFFERENCES BETWEEN THE μ PD17P104 AND μ PD17104

The μ PD17P104 is a one-time PROM version of the μ PD17104, in which the internal mask ROM is replaced with a one-time PROM. The μ PD17P104 has the same CPU functions and internal hardwares as those of μ PD17104 except for its program memory and mask option. Table 9-1 lists the differences between them.

Table 9-1 Differences between μ PD17P104 and μ PD17104

ITEM	μ PD17P104	μ PD17104
ROM	One-time PROM 512×16 bits	Mask ROM $512 \times 16 \text { bits }$
Pull-up resistors of pins POB_{0} to POB_{3}	None	Mask option
Pull-up resistors of RESET pin	None	Mask option
Connection pin	VPP pin and operation mode selection pins are provided.	VPp pin and operation mode selection pins are not provided.
Power supply	$\begin{aligned} & 2.7 \text { to } 6.0 \mathrm{~V} \text { (at } 2 \mathrm{MHz}) \\ & 4.5 \text { to } 6.0 \mathrm{~V} \text { (at } 8 \mathrm{MHz} \text {) } \end{aligned}$	
Package	22-pin plastic shrink DIP 24-pin plastic SOP	
Waiting time for the operation mode	16 clock pulses	8 clock pulses

μ PD17P104

10. WRITING TO AND VERIFYING ONE-TIME PROM (PROGRAM MEMORY)

The μ PD17P104's internal program memory consists of a 512×16 bit one-time PROM.
Writing to the one-time PROM or verifying the contents of the PROM is accomplished using the pins shown in the table below. Note that address inputs are not used; instead, the address is updated using the clock input from the $X_{\text {IN }}$ pin.

PIN NAME	FUNCTION		
$V_{P P}$	Voltage is applied to this pin when writing to program memory or verifying its contents.		
$X_{\text {IN }}$	Input pin for address update clock used when writing to program memory or verifying its contents		
${M D_{0} \text { to } M D_{3}}^{D_{0} \text { to } D_{7}}$Pins that turn to input pins and are used as operation mode selection pins when writing to program memory or verifying its contents			Input/output pins for 8-bit data used when writing to program memory or verifying its
:---			
contents	\quad		
:---			

10.1 PROGRAM MEMORY WRITE/VERIFY MODES

If +6 V is applied to the $V_{D D}$ pin and +12.5 V is applied to the $\mathrm{V}_{\text {PP }}$ pin after a certain duration of reset status $\left(V_{D D}=5 \mathrm{~V}, \overline{\mathrm{RESET}}=0 \mathrm{~V}\right)$, the μ PD17P104 enters program memory write/verify mode. A specific operating mode is then selected by setting the $M D_{0}$ through $M D_{3}$ pins as follows. Set the other unused pins to GND level by means of pull-down resistors.

OPERATING MODE SPECIFICATION						OPERATING MODE
$\mathrm{V}_{\text {PP }}$	$V_{\text {DD }}$	MD ${ }_{0}$	MD ${ }_{1}$	MD_{2}	MD_{3}	
+12.5 V	+6 V	H	L	H	L	Program memory address clear mode
		L	H	H	H	Write mode
		L	L	H	H	Verify mode
		H	X	H	H	Program inhibit mode

X: L (low) or \mathbf{H} (high)

10.2 WRITING TO PROGRAM MEMORY

The procedure for writing to program memory is described below; high-speed write is possible.
(1) Pull low the levels on all unused pins to GND by means of resistors. Bring $X_{I N}$ to low level.
(2) Apply 5 V to V_{DD} and bring V_{PP} to low level.
(3) Wait $10 \mu \mathrm{~s}$. Then apply 5 V to V_{PP}.
(4) Set the mode selection pins to program memory address clear mode.
(5) Apply 6 V to V_{DD} and 12.5 V to V_{PP}.
(6) Select program inhibit mode.
(7) Write data in 1 ms write mode.
(8) Select program inhibit mode.
(9) Select verify mode. If the write operation is found successful, proceed to step (10). If the operation is found unsuccessful, repeat steps (7) to (9).
(10) Perform additional write for (number of repetitions of steps (7) to (9)) $\times 1 \mathrm{~ms}$.
(11) Select program inhibit mode.
(12) Increment the program memory address by one on reception of four pulses on the $X_{I N}$ pin.
(13) Repeat steps (7) to (12) until the last address is reached.
(14) Select program memory address clear mode.
(15) Apply 5 V to the $V_{D D}$ and $V_{P P}$ pins.
(16) Turn power off.

The timing for steps (2) to (12) is shown below.

10.3 READING PROGRAM MEMORY

(1) Pull low the levels of all unused pins to GND by means of resistors. Bring $X_{I N}$ to low level.
(2) Apply 5 V to $V_{D D}$ and bring $V_{P P}$ to low level.
(3) Wait $10 \mu \mathrm{~s}$. Then apply 5 V to $V_{P P}$.
(4) Set the mode selection pins to program memory address clear mode.
(5) Apply 6 V to V_{DD} and 12.5 V to V_{PP}.
(6) Select program inhibit mode.
(7) Select verify mode. Data is output sequentially one address at a time for each cycle of four clock pulses on the $X_{I N}$ pin.
(8) Select program inhibit mode.
(9) Select program memory address clear mode.
(10) Apply 5 V to the $V_{D D}$ and $V_{\text {PP }}$ pins.
(11) Turn power off.

The timing for steps (2) to (9) is shown below.

11. ASSEMBLER RESERVED WORDS

Table 11-1 lists the reserved words defined in the μ PD17P104 device file (AS17104).
Table 11-1 Reserved Words

Name	Attribute	Value	Read/write	Description
POAO	FLG	0.70 H .0	Read/write	Bit 0 of port 0A
P0A1	FLG	0.70 H .1	Read/write	Bit 1 of port 0A
POA2	FLG	0.70 H .2	Read/write	Bit 2 of port 0A
P0A3	FLG	0.70 H .3	Read/write	Bit 3 of port 0A
POBO	FLG	0.71 H .0	Read/write	Bit 0 of port 0B
POB1	FLG	$0.71 \mathrm{H}$.	Read/write	Bit 1 of port OB
POB2	FLG	0.71 H .2	Read/write	Bit 2 of port OB
POB3	FLG	$0.71 \mathrm{H}$.	Read/write	Bit 3 of port OB
POCO	FLG	$0.72 \mathrm{H.O}$	Read/write	Bit 0 of port 0C
POC1	FLG	$0.72 \mathrm{H.1}$	Read/write	Bit 1 of port 0C
POC2	FLG	0.72 H .2	Read/write	Bit 2 of port 0C
POC3	FLG	0.72 H .3	Read/write	Bit 3 of port 0C
PODO	FLG	0.73 H .0	Read/write	Bit 0 of port 0D
P0D1	FLG	0.73 H .1	Read/write	Bit 1 of port 0D
POD2	FLG	0.73 H .2	Read/write	Bit 2 of port 0D
P0D3	FLG	0.73 H .3	Read/write	Bit 3 of port 0D
BCD	FLG	0.7EH. 0	Read/write	BCD arithmetic flag
PSW	MEM	0.7FH	Read/write	Program status word
Z	FLG	0.7FH. 1	Read/write	Zero flag
CY	FLG	0.7FH. 2	Read/write	Carry flag
CMP	FLG	0.7FH. 3	Read/write	Compare flag

12. INSTRUCTION SET
12.1 INSTRUCTION SET LIST

b_{14} to b_{11}			0	1	
BIN	HEX				
0000	0	ADD	r, m	ADD	m. $=\mathrm{i}$
$\begin{array}{llll}0 & 0 & 0 & 1\end{array}$	1	SUB	r, m	SUB	m , $=\mathrm{i}$
0010	2	ADDC	r, m	ADDC	m , I i
$\begin{array}{llll}0 & 0 & 1 & 1\end{array}$	3	SUBC	r, m	SUBC	m . $=\mathrm{i}$
$\begin{array}{llll}0 & 1 & 0 & 0\end{array}$	4	AND	r, m	AND	$\mathrm{m},=\mathrm{i}$
$\begin{array}{llll}0 & 1 & 0 & 1\end{array}$	5	XOR	r, m	XOR	m . $=\mathrm{i}$
$\begin{array}{lllll}0 & 1 & 1 & 0\end{array}$	6	OR	r, m	OR	$\mathrm{m},=\mathrm{i}$
$\begin{array}{lllll}0 & 1 & 1 & 1\end{array}$	7	RET RETSK RORC STOP HALT NOP	r s h		
1000	8	LD	r, m	ST	m, r
$\begin{array}{llll}1 & 0 & 0 & 1\end{array}$	9	SKE	$\mathrm{m}, ~ \pm \mathrm{i}$	SKGE	$\mathrm{m}, ~=\mathrm{i}$
1010	A				
$\begin{array}{llll}1 & 0 & 1 & 1\end{array}$	B	SKNE	m, \#i	SKLT	$\mathrm{m},=\mathrm{i}$
1100	C	BR	addr	CALL	addr
1101	D			MOV	$\mathrm{m}, ~ \pm \mathrm{i}$
1110	E			SKT	$\mathrm{m}, \not \mathrm{F}_{\mathrm{n}}$
$\begin{array}{llllll}1 & 1 & 1 & 1\end{array}$	F			SKF	$\mathrm{m}, ~ \# \mathrm{n}$

12.2 INSTRUCTIONS

Legend:

M	One of data memory	n	Bit position: 4 bits
m	: Data memory address specified by [$\mathrm{m}_{\mathrm{H}} \cdot \mathrm{m}_{\mathrm{L}}$] of each bank	addr	: One of program memory address : 11 bits
m_{H}	: Data memory address high (row address) : 3 bits		: Program memory address high : 3 bits
m_{1}.	: Data memory address low (column address) : 4 bits		: Program memory address middle : 4 bits
R	: One of general register specified by [(RP), r]		: Program memory address low : 4 bits
r	: General register address low (column address) : $\mathbf{4}$ bits	CY	: Carry flag
RP	: General register pointer	CMP	Compare flag
PC	: Program counter	s	Stop release condition
SP	Stack pointer	h	: Halt release condition
STACK	: Stack specified by (SP)	[]	Address of M, R
i	: Immediate data : 4 bits	()	: Contents of M, R

\pm	Mnemuric	Operand	Function	Operation	Machine code			
					Op code	3 bits	4 bits	4 bits
$\frac{\square}{4}$	ADD	r.m	Add memory to register	$\mathrm{R} \leftarrow(\mathrm{R})+(\mathrm{M})$	00000	m_{H}	m_{L}	r
		$\mathrm{m} .=\mathrm{i}$	Add immediate data to memory	$\mathrm{M} \leftarrow(\mathrm{M})+\mathrm{i}$	10000	m_{H}	m_{L}.	i
	ADDC	r.m	Add memory to register with carry	$\mathrm{R} \leftarrow(\mathrm{R})+(\mathrm{M})+(\mathrm{CY})$	00010	m_{H}	m_{L}	r
		$\mathrm{m} .=\mathrm{i}$	Add immediate data to memory with carry	$\mathrm{R} \leftarrow(\mathrm{M})+\mathrm{i}+(\mathrm{CY})$	10010	m_{H}	m_{L}.	i
	SLB	r.m	Subtract memory from register	$R \leftarrow(\mathrm{R})-(\mathrm{M})$	00001	m_{H}	m_{L}	r
		$\mathrm{m}, ~=\mathrm{i}$	Subtract immediate data from memory	$M-(\mathrm{M})-\mathrm{i}$	10001	m_{H}	m_{L}	i
	SUBC	r,m	Subtract memory from register with borrow	$\mathrm{R} \leftarrow(\mathrm{R})-(\mathrm{M})-(\mathrm{CY})$	00011	m_{H}	m_{L}	r
		m. \% $_{\text {i }}$	Subtract immediate data from memory with borrow	$\mathrm{M}-(\mathrm{M})-\mathrm{i}-$ (CY)	10011	m_{H}	m_{1}.	i
$\begin{array}{\|l\|l} \stackrel{y}{\omega} \\ \text { an } \\ \text { E } \\ \hline \end{array}$	SKE	m. $\pm \mathrm{i}$	Skip if memory equal to immediate data	$\mathrm{M}-\mathrm{i}$, skip if zero	01001	m_{4}	m_{L}	i
	SKGE	$\mathrm{m}, \mathrm{\#} \mathrm{i}$	Skip if memory greater than or equal to immediate data	M-i, skip if not borrow	11001	m_{H}	m_{L}	i
	SKLT	m. ${ }_{\text {\% }}$	Skip if memory less than immediate data	M-i. skip if borrow	11011	m_{H}	m_{L}	i
	SKNE	m, \#i	Skip if memory not equal to immediate data	M-i. skip if not zero	01011	m_{H}	m_{1}.	i
	AND	m, \#i	Logical AND of memory and immediate data	$\mathrm{M}-\mathrm{M})$ AND i	10100	m_{H}	m_{L}	i
		r.m	Logical AND of register and memory	$\mathrm{R} \leftarrow(\mathrm{R})$ AND (M)	00100	m_{H}	m_{L}	r
	OR	m, \#i	Logical OR of memory and immediate data	$\mathrm{M} \leftarrow(\mathrm{M}) \mathrm{OR} \mathrm{i}$	10110	m_{H}	m_{1}.	i
		r,m	Logical OR of register and memory	$\mathrm{R} \leftarrow$ (R) OR (M)	00110	m_{H}	m_{L}	r
	XOR	m. \#i	Logical XOR of memory and immediate data	$\mathrm{M} \leftarrow$ (M) XOR i	10101	m_{H}	m_{L}	i
		r,m	Logical XOR of register and memory	$\mathrm{R} \leftarrow(\mathrm{R}) \mathrm{XOR}(\mathrm{M})$	00101	m_{H}	m_{L}	r
	LD	r,m	Load memory of register	$\mathrm{R}-\mathrm{M}$)	01000	m_{H}	m_{L}	r
	ST	m.r	Store register to memory	(M) $¢ \mathrm{R}$	11000	m_{H}	m_{L}.	r
	MOV	m, \# ${ }_{\text {i }}$	Move immediate data to memory	$\mathrm{M} \leftarrow \mathrm{i}$	11101	m_{H}	m_{L}	i
	SKT	m. \#n	Test memory bits. then skip if all bits specified are true	$\begin{aligned} & \text { CMP } \leftarrow 0 \\ & \text { skip if } M_{n}=\text { all } 1^{\prime \prime} \end{aligned}$	11110	m_{H}	m_{L}	n
	SKF	m, \#n	Test memory bits, then skip if all bits specified are false	$\begin{aligned} & \text { C.MP } \div 0 \\ & \text { skip if } M_{n}=\text { all }{ }^{-} 0^{-} \end{aligned}$	11111	m_{H}	m_{l}.	n

$\underset{5}{8}$	Mnemonic	Operand	Function	Operation	Machine code			
					Op code	3 bits	4 bits	4 bits
墕	BR	addr	Jump to the address	$\mathrm{PC} \leftarrow \mathrm{ADDR}$	01100	a_{H}	a_{M}	a_{L}
券	RORC	r	Rotate register right with carry	(C) \rightarrow (R) \rightarrow CY	00111	000	0111	r
$\stackrel{3}{2}$	CALL	addr	Call subroutine	$\begin{aligned} & \mathrm{SP} \leftarrow(\mathrm{SP})-1 \\ & \mathrm{STACK} \leftarrow((\mathrm{PC})+1), \\ & \mathrm{PC} \leftarrow \mathrm{ADDR} \end{aligned}$	11100	a_{H}	a_{n}	a_{L}
	RET		Return to main routine from subroutine	PC-(STACK), SP $-1 \mathrm{SP})+1$	00111	000	1110	0000
	RETSK		Return to main routine from subroutine, then skip unconditionary	$\begin{aligned} & P C-1 S T A C K) \cdot S P-(S P)+1 \\ & \text { and skip } \end{aligned}$	00111	001	1110	0000
	STOP	s	Stop clock	STOP	00111	010	1111	s
	HALT	h	Halt the CPU, restart by condition h	HALT	00111	011	1111	h
	NOP		No operation	No Operation	00111	100	1111	0000

13. ELECTRICAL CHARACTERISTICS (PRELIMINARY)

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$)

Supply Voitage	$V_{\text {DD }}$		-0.3 to +7.0	V
Supply Voltage	$V_{\text {PP }}$		-0.3 to +13.5	v
Input Voltage	v_{1}	POA, POC, POD POB	$\begin{gathered} -0.3 \text { to } V_{D D}+0.3 \\ -0.3 \text { to }+11 \end{gathered}$	v
Output Voltage	Vo	POA, POC, POD POB	$\begin{gathered} -0.3 \text { to } V_{D D}+0.3 \\ -0.3 \text { to }+11 \end{gathered}$	V
High-Level Output Current	IOH	Each of POA, POB, POC, POD Total of all pins	-5 -15	mA
Low-Level Output Current	lol	Each of POA, POB, POC, POD Total of all pins	30 100	$m A$
Operating Temperature	$\mathrm{T}_{\text {opt }}$		-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$		-65 to +150	${ }^{\circ} \mathrm{C}$
Power Consumption	P_{d}	$\begin{array}{ll} \mathrm{T}_{\mathrm{a}}=85^{\circ} \mathrm{C} & \begin{array}{l} \text { 22-pin shrink DIP } \\ 24-\text { pin SOP } \end{array} \end{array}$	$\begin{aligned} & 400 \\ & 250 \end{aligned}$	mW

CAPACITANCE ($\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}$)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Input Capacitance	CIN			15	pF	$f=1 \mathrm{MHz}$ $0 \vee$ for pins other than pins to be measured
1/0(*) Capacitance	ClO_{10}			15	pF	

* Input/output

DC CHARACTERISTICS ($\mathrm{T}_{\mathrm{a}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7$ to 6.0 V)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS	
High-Level Input Voltage	$\mathrm{V}_{1} \mathrm{H}_{1}$	0.7 V VD		$V_{\text {DD }}$	v	Other than the following pins and port	
	$\mathrm{V}_{1 \mathrm{H} 2}$	$0.8 \mathrm{~V}_{\text {DD }}$		$V_{D D}$	V	POB and $\overline{\text { RESET }}$	
	$\mathrm{V}_{1 \mathrm{H} 3}$	$0.8 V_{\text {DD }}$		9	v	POB	(*)
	$\mathrm{V}_{1 \mathrm{H} 4}$	$\mathrm{V}_{\text {DD }}-0.5$		V_{DD}	V	XIN	
	$V_{\text {ILI }}$	0		$0.3 V_{D D}$	V	Other than the following pins and port	
Low-Level Input Voltage	$\mathrm{V}_{\text {IL2 }}$	0		$0.2 \mathrm{~V}_{\text {DD }}$	\checkmark	POB and RESET	
	$V_{\text {IL3 }}$	0		0.5	V	XIN	
High-Level Output Voltage	H	$V_{\text {DD }}-2.0$			V	$\mathrm{V}_{\mathrm{DD}}=4.5$ to $6.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	
on POA, POC, and POD		$V_{\text {DD }}{ }^{1.0}$			V	${ }^{1} \mathrm{OH}=-200 \mu \mathrm{~A}$	
Low-Level Output Voltage	V_{OL}			2.0	V	$\mathrm{V}_{\mathrm{DD}}=4.5$ to $6.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=15 \mathrm{~mA}$	
on POA, POB, POC, and POD				0.5	V	$\mathrm{I}^{\text {OL }}=600 \mu \mathrm{~A}$	
High-Level Input Leakage	'LIH1			5	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {DD }}$	
Current on POA to POD	'LIH2			10	$\mu \mathrm{A}$	$V_{\text {IN }}=9 \mathrm{~V}$	
Low-Level Input Leakage Current on POA to POD	'LIL			-5	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	
High-Level Output Leakage	ILOH1			5	$\mu \mathrm{A}$	$V_{\text {OUT }}=V_{\text {DD }}$	
Current on POA to POD	${ }^{\text {L LOH2 }}$			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=9 \mathrm{~V}$	
Low-Level Output Leakage Current on POA to POD	ILOL			-5	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	
Power Supply Current	${ }^{\prime}$ DD1		1.5	4.5	mA	Operation mode	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \\ & { }^{\mathrm{f} C \mathrm{CC}}=8.0 \mathrm{MHz} \end{aligned}$
			250	750	$\mu \mathrm{A}$		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 10 \%, \\ & { }^{{ }^{\prime} \mathrm{CC}}=2.0 \mathrm{MHz} \end{aligned}$
	'0D2		1.0	3.0	mA	HALT mode	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \\ & \mathrm{f}_{\mathrm{CC}}=8.0 \mathrm{MHz} \end{aligned}$
			200	600	$\mu \mathrm{A}$		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 10 \%, \\ & { }^{\mathrm{f}} \mathrm{CC}=2.0 \mathrm{MHz} \end{aligned}$
	IDD3		0.1	10	$\mu \mathrm{A}$	STOP mode	$\mathrm{V}_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
			0.1	5	$\mu \mathrm{A}$		$\mathrm{V}_{\text {DD }}=3 \mathrm{~V} \pm 10 \%$

[^6]CHARACTERISTICS OF DATA MEMORY FOR HOLDING DATA ON LOW SUPPLY VOLTAGE IN THE STOP MODE ($\mathrm{T}_{\mathrm{a}}=-\mathbf{4 0}$ to $+85^{\circ} \mathrm{C}$)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Data Hold Supply Voltage	VDDDR	2.0		6.0	V	
Data Hold Supply Current	IDDDR		0.1	5.0	$\mu \mathrm{~A}$	V $_{\text {DDDR }}=2.0 \mathrm{~V}$
Release Signal Set Time	t'SREL	0			$\mu \mathrm{~s}$	

AC CHARACTERISTICS ($\mathrm{T}_{\mathrm{a}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7$ to 6.0 V)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Internal Clock Cycle Time	TCY	1.9		33	$\mu \mathrm{~s}$	$V_{D D}=4.5$ to 6.0 V
	7.6		33	$\mu \mathrm{~s}$		
High/Low Level Width on POB $_{0}$ and POB	TPBH $T_{P B L}$	10			$\mu \mathrm{~s}$	
High/Low Level Width on RESET	$T_{\text {RSH }}$ $T_{\text {RSL }}$	10			$\mu \mathrm{~s}$	

DC PROGRAMING CHARACTERISTICS ($\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=6.0 \pm 0.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=12.5 \pm 0.5 \mathrm{~V}$)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX	UNIT	CONDITIONS
Input Voltage High	$\mathrm{V}_{1 \mathrm{HI}}$	$0.7 \mathrm{~V}_{\text {DD }}$		$V_{\text {DD }}$	V	Except $\mathrm{X}_{\text {IN }}$
	$\mathrm{V}_{1 \mathrm{H} 2}$	$\mathrm{V}_{\text {DD }} 0.5$		$V_{\text {DD }}$	v	XIN
Input Voltage Low	$V_{\text {ILI }}$	0		$0.3 V_{\text {DD }}$	V	Except $X_{\text {IN }}$
	$\mathrm{V}_{\text {IL2 }}$	0		0.4	v	XIN
Input Leakage Current	ILI			10	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {IL }}$ or $V_{\text {IH }}$
Output Voltage High	V_{OH}	$V_{D D-1.0}$			V	$\mathrm{I}^{\mathrm{OH}}=-1 \mathrm{~mA}$
Output Voltage Low	v_{OL}			0.4	V	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$
V DD Power Supply Current	IDD			30	mA	
Vpp Power Supply Current	IPP			30	mA	MDO $=\mathrm{V}_{1 \mathrm{~L}}, \mathrm{MD1}=\mathrm{V}_{\text {IH }}$

Notes 1. VPP must be under +13.5 V including overshoot.
2. $V_{\text {DD }}$ must be applied before $V_{\text {PP }}$ on and must be off after $V_{\text {PP }}$ off.

AC CHARACTERISTICS ($\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=6.0 \pm 0.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=12.5 \pm 0.5 \mathrm{~V}$)

CHARACTERISTICS	SYMBOL	(*1)	MIN.	TYP.	MAX .	UNIT	CONDITION
Address Set Up Time(*2) to MDO \downarrow	${ }^{\text {t }}$ AS	${ }^{\text {t }}$ AS	2			$\mu \mathrm{s}$	
MD1 Setup Time to MDO \downarrow	${ }^{\text {m M }}$ 1S	toes	2			$\mu \mathrm{s}$	
Data Setup Time to MDO \downarrow	${ }^{\text {t }}$ S	${ }^{\text {t }}$ D	2			$\mu \mathrm{s}$	
Address Hold Time(*2) to MDO个	${ }^{t} \mathrm{AH}$	${ }^{t}$ AH	2			$\mu \mathrm{s}$	
Data Hold Time to MDO \uparrow	${ }^{\text {t }} \mathrm{DH}$	${ }^{\text {t }}$ DH	2			$\mu \mathrm{s}$	
Data Output Float Delay Time from MDO \rightarrow	${ }^{\text {t }}$ DF	${ }^{\text {t }}$ DF	0		130	ns	
$V_{\text {Pp }}$ Setup Time to MD3 \uparrow	tVPS	${ }^{\text {t VPS }}$	2			$\mu \mathrm{s}$	
$\mathrm{V}_{\text {DD }}$ Setup Time to MD3 \uparrow	${ }^{\text {t V DS }}$	tves	2			$\mu \mathrm{s}$	
Initial Program Pulse Width	tPW	tPW	0.95	1.0	1.05	ms	
Additional Program Pulse Width	topw	topw	0.95		21.0	ms	
MD0 Setup Time to MD1 \uparrow	${ }^{\text {t MOS }}$	${ }^{\text {t CES }}$	2			$\mu \mathrm{s}$	
Data Output Delay Time from MDO $\downarrow \rightarrow$	${ }^{\text {t }} \mathrm{DV}$	${ }^{\text {t }} \mathrm{DV}$			1	$\mu \mathrm{s}$	$\mathrm{MDO}=\mathrm{MD1}=\mathrm{V}_{\mathbf{I L}}$
MD1 Hold Time to MDO \uparrow	${ }^{t} \mathbf{M 1 H}$	toen	2			$\mu \mathrm{s}$	
MD1 Recovery Time to MDO \downarrow	${ }^{\text {t M } 1 R}$	${ }^{\text {t }} \mathrm{OR}$	2			$\mu \mathrm{s}$	H ${ }_{\text {M }} \mathrm{R}$ ($50 \mu \mathrm{~s}$
Program Counter Reset Time	tPCR	-	10			$\mu \mathrm{s}$	
$\mathrm{X}_{\text {IN }}$ Input High, Low Level Range	$\begin{aligned} & { }^{t} \times \mathrm{H} \\ & { }^{t} \times \mathrm{L} \end{aligned}$	-	0.063			$\mu \mathrm{s}$	
XIN Input Frequency	${ }^{\text {f }} \mathrm{X}$	-			8	MHz	
Initial Mode Set Time	${ }_{1}$	-	2			$\mu \mathrm{s}$	
MD3 Setup Time to MD1 \uparrow	${ }^{\text {tM3S }}$	-	2			μs	
MD3 Hold Time to MD1 \downarrow	${ }^{\text {m }}$ 3 H	-	2			$\mu \mathrm{s}$	
MD3 Setup Time to MDO \downarrow	${ }^{\text {t M 3 SR }}$	-	2			$\mu \mathrm{s}$	Read program memory
Data Output Deiay Time from Address(*2)	${ }^{\text {t }}$ DAD	${ }^{t} \mathrm{ACC}$	2			$\mu \mathrm{s}$	Read program memory
Data Output Hold Time from Address(*2)	$t^{\text {HAD }}$	${ }^{\text {t }} \mathrm{OH}$	0		130	ns	Read program memory
MD3 Hold Time to MDO \uparrow	${ }^{\text {t M } 3 \mathrm{HR}}$	-	2			μs	Read program memory
Data Output Float Delay Time from MD3 $\downarrow \rightarrow$	${ }^{\text {t DFR }}$	-	2			$\mu \mathrm{s}$	Read program memory
Reset Setup Time	${ }^{\text {t RES }}$		10			$\mu \mathrm{s}$	

* 1 Symbols for corresponding μ PD27C256.
*2 Internal address signal is incremented by one at the falling edge of the third $X_{I N}$ input, and it is not connected to the pin.

WRITE PROGRAM MEMORY TIMING

READ PROGRAM MEMORY TIMING

4-BIT SINGLE-CHIP MICROCONTROLLER

The μ PD17107 is a tiny microcontroller consisting of a 1 K -byte ROM, 16 -word RAM, and 11 input/output ports.
The 17 K architecture of the CPU uses general registers so that data memory can be manipulated directly for effective programming. Every instruction is 1 word long, consisting of 16 bits.

FEATURES

- Program memory (ROM):
- Data memory (RAM):
- Input/output ports:
- Instruction execution time:
- Number of instructions:
- Stack level:
- A standby function is supported (with the STOP and HALT instructions).
- Data memory can retain data on low voltage (2.0 V at minimum).
- An oscillator is included for the system clock (only resistor for external circuit).
- Operating supply voltage: $\quad 2.5$ to 6.0 V (at 250 kHz)
4.5 to 6.0 V (at 1 MHz)

APPLICATIONS

- Controlling electric appliances or toys

ORDERING INFORMATION
Ordering Code Package

μ PD17107CX-xxx	16-pin plastic DIP (300 mil)
μ PD17107GS-xxx	16 -pin plastic SOP (300 mil $)$

PIN CONFIGURATIONS (Top View)
μ PD17107CX / μ PD17107GS

BLOCK DIAGRAM

PIN FUNCTIONS

- Port pins

Pin name	I/O	Function	Reset
POBO/RLShait	I/O	For releasing the HALT mode	- Open-drain: High impedance (input mode) - With pull-up resistor provided: High level (input mode)
POB1/RLSstop		For releasing the STOP mode	
POB2		- N-ch open-drain 4-bit I/O port (port OB) - A pull-up resistor can be provided bit by bit (mask-selected). - 9 V in open-drain mode	
$\mathrm{POB3}_{3}$			
POCo to POC_{3}	I/O	CMOS (push-pull) 4-bit I/O port (port 0C)	High impedance (input mode)
POD 0 to POD 3	I/O	CMOS (push-pull) 4-bit I/O (port OD)	High impedance (input mode)

- Non-port pins

Pin name	I/O	Function	Reset
$\overline{\text { RESET }}$	Input	- System reset input pin - A built-in pull-up resistor can be provided bit by bit (mask-selected).	
VDD	- Positive power supply pin		
GND	- GND pin		
OSCO, OSC	- Pins to be connected to the system clock resonator		

VO: Input/output

PIN INPUT/OUTPUT CIRCUITS

Following are schematics of the input/output circuits of the pins of the μ PD17107.
(1) POC, and POD

(2) POB_{0} and POB 1

(3) POB_{2}

(4) RESET

1. PROGRAM COUNTER (PC)

1.1 FORMAT OF THE PROGRAM COUNTER (PC)

The program counter is a 9-bit binary counter formatted as shown in Fig. 1-1.
Fig. 1-1 Format of the Program Counter

1.2 FUNCTIONS OF THE PROGRAM COUNTER (PC)

The program counter specifies the address of a program memory (ROM) or a program.
Usually, every time an instruction is executed, the program counter is incremented by one. When a branch instruction (BR), a subroutine call instruction (CALL), or a return instruction (RET) is executed, the address specified in the operand is loaded in the PC. Then the instruction in the address is executed. When a skip instruction is executed, the address of the instruction next to the skip instruction is specified irrespective of the contents of the skip instruction. If the skip conditions are satisfied, the instruction next to the skip instruction is regarded as a No Operation (NOP) instruction. So, the NOP instruction is executed and the address of the next instruction is specified.

2. STACK

Stack of the μ PD17107 is a register in which the return address of a program is saved when a subroutine call instruction is executed. One level of address stack is provided.

Fig. 2-1 shows the relationship between PC, stack, and instructions.
Fig. 2-1 Relationship between PC, Stack, and Instructions

In Fig. 2-1, AHn, AMn, and ALn ($\mathrm{n}=\mathbf{0}$ to 3) indicate bit positions in a $\mathbf{1 6}$-bit instruction as follows:
Fig. 2-2 Format of a 16-Bit Instruction

When the assembler (AS17K) is not used and a BR or CALL instruction is used, AH2 and AH1 must be set to 0.
$\mathrm{Sn}(\mathrm{n}=0$ to 8) denotes a stack.
$\overline{\text { RESET }}$ signal input clears all bits of the program counter to 0 .

μ PD17107

3. PROGRAM MEMORY (ROM)

Fig. 3-1 shows the configuration of program memory (ROM).
The program memory consists of 512 words by 16 bits.
The program memory is addressed in units of 16 bits and it ranges from addresses 000 H to 01FFH. Each address is specified by the program counter (PC).

Since an instruction consists of 16 bits (one word), the instruction is stored at one address of the program memory.

Address 000 H is assigned to a reset start address.

Fig. 3-1 Program Memory Map

4. DATA MEMORY (RAM)

The data memory stores data of arithmetic/logic and control operations. Data can be always written to or read from it by means of instructions.

4.1 FORMAT OF THE DATA MEMORY (RAM)

Fig. 4-1 shows the format of the data memory (RAM).
The data memory is configured in units of four bits, or "one nibble," and an address is assigned to each four bits of data. The three high-order bits are called the "row address," and the four low-order bits are called the "column address."

According to its functions, the data memory is divided into three blocks as shown below: general-purpose data memory, port register, and system register.

Fig. 4-1 Data Memory Map

4.1.1 Functions of the general-purpose data memory

The general-purpose data memory is a part of the data memory from which the system register (SYSREG) and port register are excluded. By executing a data memory manipulation instruction, a four-bit arithmetic operation and comparison, evaluation, and transfer between data on data memory and any immediate data can be executed with a single operation.

4.1.2 Functions of the general register

The general register indicates any identical row address (16 nibbles) in the data memory specified in the register pointer (RP) in the system register. Since the μ PD17107 register pointer is always set to 0 , the generalpurpose data memory is also used as a general register. The general register can operate or transfer data to and from the data memory.

4.1.3 Functions of the port register

The port register is used to set output data or to read the input data of input/output ports.
Once data are written to the port register corresponding to a port, the port is set as an output port and continues to output the value unless the value is rewritten. Whenever a read instruction is executed for a port register, the read data indicate the states of the pins, not the value of the port register, regardless of whether the pins are in the input or output mode.

4.1.4 Functions of the system register

The system register controls the CPU. The program status word (PSW) is the only system register existing in the μ PD17107.

Fig. 4-2 System Register Map

Bit 0 at address 7 EH and the high-order three bits at address 7 FH are assigned to the program status word. The BCD flag is mapped in bit 0 at address 7EH, the CMP flag is mapped in bit 3 at address 7FH, the carry (CY) flag is mapped in bit 2 at address 7FH, and the zero (Z) flag is mapped in bit 1 at address 7FH.

The high-order three bits at address 7EH and bit 0 at address 7FH are always set to 0 .

Fig. 4-3 Format of the Program Status Word

Comparison instructions (SKE, SKNE, SKGE, or SKLT) do not change the state of the CY flag, but an arithmetic operation may affect the CY flag according to the result even if the CMP flag is set.

Each bit of the program status word is initialized to 0 when a reset signal is applied.
The \mathbf{Z} flag in the program status word changes according to the set value of the CMP flag as listed in Table 4-1.

Table 4-1 Change in \mathbf{Z} Flag

Condition	Z flag value	
	$\mathrm{CMP}=0$	$\mathrm{CMP}=1$
Reset	0	-
Memory manipulation sets the Z flag to 0.	0	0
Memory manipulation sets the Z flag to 1.	1	1
Arithmetic operation results in a non-zero value.	0	0
Arithmetic operation results in 0.	1	$\mathrm{Zn}-1$

$\mathbf{Z n}-1$: The \mathbf{Z} flag value present immediately before arithmetic operation

While CMP is $\mathbf{1}$, if an arithmetic operation results in $0 H$ when the value of the Z flag is 1 , the Z flag does not change. If an arithmetic operation results in other than 0 H , the Z flag is reset to 0 and remains intact even when a second arithmetic operation results in OH .

After the CMP and Z flags are set to 1 , subtraction and comparison are performed several times. Then, if the \mathbf{Z} flag still indicates $\mathbf{1}$, all of the comparison operations showed a match, resulting in 0 . If the \mathbf{Z} flag is $\mathbf{0}$ after the comparison operations, a mismatch occurred in at least one comparison operation.

5. ARITHMETIC AND LOGIC UNIT (ALU)

The arithmetic and logic unit (ALU) performs arithmetic operations, logical operations, bit tests, comparisons, and rotations on 4-bit data.

5.1 ARITHMETIC OPERATIONS

Arithmetic operations are performed on binary or decimal data. If the BCD flag in the program status word is 1 , the ALU operates on decimal data, and if the flag is 0 , it operates on binary data.

If an addition produces a carry or if a subtraction produces a borrow, the carry (CY) flag is set to 1 . If neither a carry nor borrow is produced, the flag is reset to 0 .

If an arithmetic operation results in zero, the zero (Z) flag is set to $\mathbf{1}$. Otherwise, the flag is reset to $\mathbf{0}$.
(1) Binary operation

If the result of a binary arithmetic operation is greater than $\mathbf{1 5}$ (1111B), a carry is made. If it is less than zero, a borrow is made. In either case, the CY flag is set to $\mathbf{1}$.
(2) Decimal operation

If the result of a decimal arithmetic operation is greater than $\mathbf{9}$ (1001B), a carry is made. If it is less than $\mathbf{0}$, a borrow is made. In either case, the CY flag is set to 1.

Decimal operations are allowed if one of the following results is generated. If the result of a decimal operation does not fall into these ranges, the CY flag is set to 1 , and a result greater than or equal to $10(1010 \mathrm{~B})$ is produced.

1. Addition must generate a result from 0 to 19.
2. Subtraction must generate a result from 0 to 9 or $\mathbf{- 1 0}$ to $\mathbf{- 1}$.

5.2 LOGICAL OPERATIONS

Logical operations include ANDing, ORing, and XORing.

5.3 OTHER OPERATIONS

The ALU enables bit testing, comparison, and data rotation.

6. PORTS

6.1 PORT OB (POBo/RLShalt, POB1/RLSstop, POB2)

Port 0 B is a three-bit input/output port. Only N -ch open-drain outputs appear on the pins of port 0 B . The N -ch open-drain output mode allows application of 9 V , so it can be used for interfacing with a circuit operating on a different power supply voltage.

Input and output are set in units of nibbles. The input mode is set at reset, and the output mode is set by writing data to the port register in address 71 H of the data memory. The output mode is maintained until the system is reset.

Output to the port is executed via the port register. Once data are written to the port register, all pins of port POB are placed in the output mode to continue to output written data. The data are retained unless new data are written to the register.

Whenever the port register is read, the read data indicate the states of the pins, not the contents of the port register, regardless of whether the pins are in the input or output mode. In this case, the contents of the port register remain unchanged.

The port register for port B consists of four bits but its highest bit is always set to 0 . This means that if an attempt is made to write data to the highest bit of 71 H , the data is invalidated and if an attempt is made to read it, 0 is always returned.

When the μ PD 17107 is in the HALT or STOP mode, P0Bo and POBı function as pseudo interrupt pins to release the HALT and STOP modes. (Refer to Section 8).

6.2 PORT OC (POB_{0} to POC_{3})

Port OC is a four-bit input/output port. CMOS (push-pull) outputs appear on those pins.
Input and output are set in units of nibbles. The input mode is set at reset, and the output mode is set by writing data to the port register in address 72 H of the data memory. The output mode is maintained until the system is reset.

Output to the port is executed via the port register. Once data are written to the port register, all pins of the port POC are placed in the output mode to continue to output written data. The data are retained unless new data are written to the register.

Whenever the port register is read, the read data indicate the states of the pins, not the contents of the port register, regardless of whether the pins are in the input or output mode. In this case, the contents of the port register remain unchanged.

6.3 PORT OD (POD 0 to POD3)

Port OD is a four-bit input/output port. CMOS (push-pull) outputs appear on these pins.
Input and output are set in units of nibbles. The input mode is set at reset, and the output mode is set by writing data to the port register in address 73 H of the data memory. The output mode is maintained until the system is reset.
Output to the port is executed via the port register. Once data are written to the port register, all pins of the port POD are placed in the output mode to continue to output written data. The data are retained until new data are written to the register.

Whenever the port register is read, the read data indicate the states of the pins, not the contents of the port register, regardless of whether the pins are in the input or output mode. In this case, the contents of the port register remain unchanged.

Fig. 6-1 Port Register Map

6.4 RECOMMENDED CONDITIONS FOR UNUSED μ PD17107 PINS

To prevent malfunction, process unused input/output pins as shown below.

Table 6-1 Recommended Conditions for Unused Pins

Input/ output mode	Port	Recommended connection
Input mode	Ports B, C, and D	Connect to VoD or GND.
Output mode	CMOS ports (ports C and D)	Open
	N-ch open-drain port (port B)	

7. STANDBY FUNCTIONS

The μ PD17107 provides two standby modes, the HALT mode and the STOP mode.

7.1 HALT MODE

The HALT mode stops the program counter (PC) while allowing the system clock to continue operating. The HALT mode can be entered with the HALT instruction, and can be released by a reset signal ($\overline{\text { RESET }}$) or input to the POB 0 pin. When the HALT mode is released by input to the POB 0 pin, the next instruction after the HALT instruction is executed without waiting for stable oscillation of the system clock.

When the HALT mode is released forcibly by the reset signal (RESET), normal system reset occurs, and execution starts at address 0 H .

7.2 STOP MODE

The STOP mode stops oscillation of the system clock so that data can be retained at low voltage. The STOP mode can be entered with the STOP instruction, and can be released by a reset signal ($\overline{R E S E T}$) or input to the POB1 pin. When the mode is released by input to the POB_{1} pin, execution starts with the next instruction after the STOP instruction.

When the STOP mode is released forcibly by the reset signal (RESET), normal system reset occurs, and execution starts at address OH .

7.3 SETTING AND RELEASING THE STANDBY MODES

(1) Setting and releasing the HALT mode

The conditions for releasing the HALT mode can be selected with the least significant bit of the operand in the HALT instruction. The high-order three bits of the operand must be set to 0 .

Table 7-1 Setting and Releasing Conditions Specified in the HALT Instruction

HALT 000XB $\leftarrow 4$-bit data in the operand

x	Conditions for setting/releasing the HALT mode
0	Executing the HALT instruction enters the HALT mode unconditionally. The mode can be released only by the reset signal (RESET). After the mode is released, instructions are executed starting at address OH.
1	If POBO is 0, executing the HALT instruction enters the HALT mode. If POBO is 1, executing the HALT instruction does not enter the HALT mode. Application of the reset signal (RESET) releases the HALT mode. After the mode is released, instructions are executed starting at address OH. The rising edge of an input signal on the POBo pin also releases the HALT mode. In this case, execution starts with the next instruction after the HALT instruction.

(2) Setting and releasing the STOP mode

Conditions to release the STOP mode can be selected with the least significant bit of the operand in the STOP instruction. The high-order three bits of the operand must be set to 0 .

Table 7-2 Setting/Releasing Conditions Specified in the STOP Instruction

STOP 000XB \leftarrow 4-bit data in the operand

X	Conditions for setting/releasing the STOP mode
0	Executing the STOP instruction enters the STOP mode unconditionally. All peripheral circuits are placed in the same initial state as when the system is reset, then they stop operating. Only the reset signal (RESET) can release the STOP mode. After the mode is released, instructions are executed starting at address OH.
1	If POB1 is 0, executing the STOP instruction enters the STOP mode. If POB1 is 1, executing the STOP instruction does not enter the STOP mode. Application of the reset signal (RESET) can release the STOP mode. After the mode is released, instructions are executed starting at address OH. The rising edge of the signal applied to the POB1 pin can also release the mode. In this case, execution starts with the next instruction after the STOP instruction.

7.4 TIMING FOR RELEASING THE STANDBY MODES

Fig. 7-1 Releasing the HALT Mode by $\overline{\text { RESET }}$ Input

When the $\overline{\operatorname{RESET}}$ signal is applied to release the HALT mode, the $\overline{\operatorname{RESET}}$ input makes a transition from low to high, then an operation mode is entered.

* The HALT mode remains effective in this period, waiting for the operation mode.

At least eight clock pulses on the OSCI pin cause operation to start.
Fig. 7-2 Releasing the HALT Mode by Interrupt

Fig. 7-3 Releasing the STOP Mode by RESET Input

As soon as the $\overline{\operatorname{RESET}}$ input makes a transition from high to low in the STOP mode, the system clock starts generating clock pulses.

* The HALT mode remains effective in this period, waiting for the generation of clock pulses to stabilize. At least eight clock pulses on the OSC C_{1} pin cause operation to start.

Fig. 7-4 Releasing the STOP Mode by Interrupt

*The HALT mode remains effective in this period, waiting for the generation of clock pulses to stabilize. At least eight clock pulses on the OSC1 pin cause operation to start.
8. RESET FUNCTION
8.1 HARDWARE STATE AT RESET

A low-active reset signal applied to the $\overline{\operatorname{RESET}}$ pin sets the hardware states as listed below. A transition from low to high on the $\overline{\text { RESET }}$ pin releases the reset state.

Table 8-1 Hardware after Reset

Name	Location in memory space	Set value
Program counter	OH to 0FH	000 H
RAM	Bit 0 at 7 EH reset is retained. Bits 3 to 1 at 7FH	All 0s
Program status word (PSW)	71 H to 73H	Data present before reset is retained. All pins are placed in the input mode.
Ports $0 B$ to $0 D$		

9. ASSEMBLER RESERVED WORDS

9.1 MASK OPTION PSEUDO INSTRUCTIONS

Source programs in the assembly language for the μ PD17107 must include mask option pseudo instructions to select pin options.

To do this, be sure to catalog the D17107. OPT file in AS17107 (device file for μ PD17107) into the current directory beforehand.

Options must be mask-selected for the following pins:

- POBo
- POB1
- POB2
- $\overline{\text { RESET }}$

9.1.1 OPTION and ENDOP pseudo instructions

The part starting with the OPTION pseudo instruction and ending with the ENDOP pseudo instruction is referred to as a mask option definition block. The coding format of the mask option definition block is shown on the next page.

Within this block, the mask option definition pseudo instructions listed in Table 9-1 can be coded.
Format
Symbol
$\frac{\text { Mnemonic }}{\text { OPTION }}$
Operand
Comment
[;comment]

ENDOP
9.1.2 Mask option definition pseudo instructions

Table 9-1 lists the mask option definition pseudo instructions corresponding to each pin.

Table 9-1 Mask Option Definition Pseudo Instructions

Pin	Mask option pseudo instruction	Number of operands	Operand name
POB2 to POBo	OPTPOB	3	POBPLUP (with pull- up resistor) OPEN (without pull- up resistor)
$\overline{\text { RESET }}$	OPTRES	1	RESPLUP (with pull- up resistor) OPEN (without pull- up resistor)

The coding format of OPTPOB is shown below. The operands POB2, POB1, and POBo are dafined in this order.

Format
$\frac{\text { Symbol }}{\text { llabel: } 1} \quad \frac{\text { Mnemonic }}{\text { OPTPOB }} \quad \frac{\text { Operand }}{\left(\mathrm{POB}_{2}\right),\left(\mathrm{POB}_{1}\right),\left(\mathrm{POB}_{0}\right)} \quad \frac{\text { Comment }}{\text { [;comment] }}$

The coding format of OPTRES is shown below.

Format
$\frac{\text { Symbol }}{\text { [label: }]} \quad \frac{\text { Mnemonic }}{\text { OPTRES }} \quad \frac{\text { Operand }}{\text { (RESET) }} \quad \frac{\text { Comment }}{\text { [;comment] }}$

Example:

To set the following mask options in a $\mu \mathrm{PD} 17107$ source file to be assembled:
POB_{2} : Pull-up POB1: Open $\mathrm{POB} \mathrm{B}_{0}$: Open
$\overline{\text { RESET }}$: Pull-up

9.2 RESERVED WORDS

Table 9-2 lists the reserved words defined in the μ PD17107 device file (AS17107).
Table 9-2 Reserved Words

Name	Attribute	Value	Read/write	Description
POBO	FLG	0.71H. 0	Read/write	Bit 0 of port OB
P0B1	FLG	0.71H. 1	Read/write	Bit 1 of port 0B
POB2	FLG	0.71H. 2	Read/write	Bit 2 of port 0B
*P0B3	FLG	0.71H. 3	Read	Set to 0.
POCO	FLG	0.72H.0	Read/write	Bit 0 of port 0C
POC1	FLG	0.72H. 1	Read/write	Bit 1 of port 0C
POC2	FLG	0.72H. 2	Read/write	Bit 2 of port 0C
POC3	FLG	0.72H. 3	Read/write	Bit 3 of port 0C
PODO	FLG	0.73 H .0	Read/write	Bit 0 of port OD
POD1	FLG	0.73H. 1	Read/write	Bit 1 of port 0D
POD2	FLG	0.73H. 2	Read/write	Bit 2 of port OD
P0D3	FLG	0.73H. 3	Read/write	Bit 3 of port 0D
BCD	FLG	0.7EH. 0	Read/write	BCD arithmetic flag
PSW	MEM	0.7FH	Read/write	Program status word
Z	FLG	0.7FH. 1	Read/write	Zero flag
CY	FLG	0.7FH. 2	Read/write	Carry flag
CMP	FLG	0.7FH. 3	Read/write	Compare flag

- Although P0B3 does not exist in the μ PD17107, it is defined as a read-only flag so that it is treated as a dummy bit when a built-in macro is used.

10. INSTRUCTION SET
10.1 INSTRUCTION SET LIST

		0		1	
BIN	HEX				
0000	0	ADD	r, m	ADD	m, \#i
0001	1	SUB	r, m	SUB	m, \#i
0010	2	ADDC	r, m	ADDC	m, \#i
00111	3	SUBC	r, m	SUBC	m, \#i
01100	4	AND	r, m	AND	m, \#i
$\begin{array}{lllll}0 & 1 & 0 & 1\end{array}$	5	XOR	r, m	XOR	m, \#i
01110	6	OR	r, m	OR	m, \#i
0111	7	RET RETSK RORC STOP HALT NOP	r s h		
1000	8	LD	r, m	ST	m, r
1001	9	SKE	m, \#i	SKGE	m, \#i
1010	A				
10011	B	SKNE	m, \#i	SKLT	m, \#i
1100	C	BR	addr	CALL	addr
1101	D			MOV	m, \#i
11110	E			SKT	m, \#n
$\begin{array}{llllll}1 & 1 & 1 & 1\end{array}$	F			SKF	$\mathrm{m}, ~ \# \mathrm{n}$

10.2 INSTRUCTIONS

Legend：

M
m ：Data memory address specified by $\left[m_{H}, m_{L}\right.$ ］of each bank
m_{H} ：Data memory address high（row address）： $\mathbf{3}$ bits
m_{L} ：Data memory address low（column address）： $\mathbf{4}$ bits
R
r ：One of general register specified by［（RP），r］
：General register address low（column address）： 4 bits
RP ：General register pointer
PC
：Program counter
SP ：Stack pointer
STACK ：Stack specified by（SP）
：Immediate data ； $\mathbf{4}$ bits
addr
n
$\mathrm{a}_{\mathbf{N}}$ ：Program memory address middle ： $\mathbf{4}$ bits
a_{L} ：Program memory address low： $\mathbf{4}$ bits
CY ：Carry flag
CMP ：Compare flag
s
［ ］：Address of M，R
（ ）：Contents of M，R

$\underset{\underset{\sim}{2}}{\stackrel{y}{2}}$	Mnemonic	Operand	Function	Operation	Machine code			
					Op code	3bits	4bits	4bits
号	ADD	r，m	Add memory to register	$\mathrm{R} \leftarrow(\mathrm{R})+(\mathrm{M})$	00000	m_{H}	m_{L}	r
		m．\＃i	Add immediate data to memory	$\mathrm{M} \leftarrow$（M）＋i	10000	m_{H}	m_{L}	i
	ADDC	r，m	Add memory to register with carry	$\mathrm{R} \leftarrow(\mathrm{R})+(\mathrm{M})+(\mathrm{CY})$	00010	m_{H}	m_{L}	r
		m，\＃i	Add immediate data to memory with carry	$\mathrm{R}-(\mathrm{M})+\mathrm{i}+(\mathrm{CY})$	10010	m_{H}	m_{L}	i
$\begin{aligned} & \stackrel{\rightharpoonup}{\tilde{N}} \\ & \stackrel{0}{3} \\ & \tilde{n} \end{aligned}$	SUB	r，m	Subtract memory from register	$\mathrm{R}-(\mathrm{R})-(\mathrm{M})$	00001	m_{H}	m_{L}	r
		m，\＃i	Subtract immediate data from memory	$\mathrm{M} \leftarrow(\mathrm{M})-\mathrm{i}$	10001	m_{H}	m_{L}	1
	SUBC	r，m	Subtract memory from register with borrow	$\mathrm{R} \leftarrow(\mathrm{R})-(\mathrm{M})-(\mathrm{CY})$	00011	m_{H}	m_{L}	r
		m，\＃i	Subtract immediate data from memory with borrow	$\mathrm{M}+$（M）－i－（CY）	10011	m_{H}	m_{L} ．	i
	SKE	m，\＃i	Skip if memory equal to immediate data	M－i，skip if zero	01001	m_{H}	m_{L}	1
	SKGE	m，\＃i	Skip if memory greater than or equal to immediate data	M－i，skip if not borrow	11001	m_{H}	m_{L}	i
	SKLT	m，\＃i	Skip if memory less than immediate data	M－i，skip if borrow	11011	m_{H}	m_{L}	i
	SKNE	m，\＃i	Skip if memory not equal to immediate data	$\mathrm{M}-\mathrm{i}$ ，skip if not zero	01011	m_{H}	m_{L}	1
	AND	m，\＃i	Logical AND of memory and immediate data	$\mathrm{M} \leftarrow$（M）AND i	10100	m_{H}	m_{L}	i
		r．m	Logical AND of register and memory	$\mathrm{R} \leftarrow$（R）AND（ ${ }^{(1)}$	00100	m_{H}	m_{L}	r
	OR	m．\＃i	Logical OR of memory and immediate data	$\mathrm{M} \leftarrow$（M）OR i	10110	m_{H}	m_{L}	1
		r．m	Logical OR of register and memory	$\mathrm{R} \leftarrow$（R）OR（M）	00110	m_{H}	m_{L}	r
	XOR	m．\＃i	Logica！XOR of memory and immediate data	$\mathrm{M} \leftarrow$（M）XOR i	10101	m_{H}	m_{L}	i
		r．m	Logical XOR of register and memory	$\mathrm{R} \leftarrow(\mathrm{R}) \mathrm{XOR}$（M）	00101	m_{H}	m_{L}	r
$\left\lvert\, \begin{gathered} \text { 甮 } \\ \text { 㕿 } \\ \hline \end{gathered}\right.$	LD	r．m	Load memory of register	$\mathrm{R} \leftarrow(\mathrm{M})$	01000	m_{H}	m_{L}	r
	ST	m，r	Store register to memory	（M）$\leftarrow \mathrm{R}$	11000	m_{H}	m_{L}	r
	MOV	m，\＃i	Move immediate data to memory	$\mathrm{M} \sim \mathrm{i}$	11101	m_{H}	m_{L}	i
$\begin{aligned} & \breve{6} \\ & \stackrel{y}{6} \end{aligned}$	SKT	m，\＃n	Test memory bits． then skip if all bits specified are true	$\begin{aligned} & C M P \leftarrow 0 \\ & \text { skip if } M_{n}=\text { all } * 1^{\prime \prime} \end{aligned}$	11110	m_{H}	m_{L}	n
	SKF	m．\＃n	Test memory bits． then skip if all bits specified are false	$\begin{aligned} & \mathrm{CMP} \leftarrow 0 \\ & \text { skip if } \mathrm{M}_{n}=\text { all }{ }^{*} 0^{*} \end{aligned}$	11111	m_{H}	m_{L}	n

罢	Mnemonic	Operand	Function	Operation	Machine code			
					$\begin{aligned} & \text { Opp} \\ & \text { code } \end{aligned}$	3bits	4bits	4bits
皆	BR	addr	Jump to the address	PCヶADDR	01100	a_{4}	a_{M}	a_{2}
$\left\lvert\, \begin{aligned} & \text { 玄 } \\ & \vdots \end{aligned}\right.$	RORC	r	Rotate register right with carry	$(\mathrm{CY}) \rightarrow(\mathrm{R}) \rightarrow \mathrm{CY}$	00111	000	0111	r
	CALL	addr	Call subroutine	$\begin{aligned} & S P \leftarrow(S P)-1 \\ & S T A C K \leftarrow((P C)+1), \\ & \text { PC } \leftarrow A D D R \end{aligned}$	11100	a_{n}	a_{M}	a_{L}
	RET		Return to main routine from subroutine	PC－（STACK）．SP－（SP）＋1	00111	000	1110	0000
	RETSK		Return to main routine from subroutine，then skip unconditionary	$\begin{aligned} & \mathrm{PC}-(\mathrm{STACK}) \cdot \mathrm{SP}-(\mathrm{SP})+1 \\ & \text { and skip } \end{aligned}$	00111	001	1110	0000
	STOP	s	Stop clock	STOP	00111	010	1111	s
	HALT	h	Halt the CPU．restart by condition h	HALT	00111	011	1111	h
	NOP		No operation	No Operation	00111	100	1111	0000

11. ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS (Ta $=25^{\circ} \mathrm{C}$)

Supply Voltage	Vod			-0.3 to +7.0	V
		POC, POD,		-0.3 to $\mathrm{VOD}+0.3$	v
Input Voltage	v_{1}		("1)	-0.3 to Vod+0.3	V
		POB	("2)	-0.3 to +11	V
		POC, POD, $\overline{\text { RE }}$		-0.3 to $\mathrm{VDD}_{\text {+ }} 0.3$	v
Output Voltage	Vo		("1)	-0.3 to Voo+0.3	V
			(*2)	-0.3 to +11	V
High-Level Output Current	Іон	Each of POB,	POD	-5	mA
		Total of all p		-15	mA
Low-Level Output Current	lot	Each of POB,	POD	30	mA
		Total of all p		100	mA
Operating Temperature	Topt			-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	Tstg			-65 to +150	${ }^{\circ} \mathrm{C}$
Power Consumption	Pd	$\mathrm{T}=85^{\circ} \mathrm{C}$	$\begin{aligned} & 16 \text {-pin DIP } \\ & 16 \text {-pin SOP } \end{aligned}$	400 250	mW

- 1 N -ch open-drain input/output and input/output with a pull-up resistor provided
*2 N-ch open-drain input/output

CAPACITANCE ($\mathrm{T}_{2}=\mathbf{2 5}^{\circ} \mathrm{C}, \mathrm{VDD}_{\mathrm{DD}}=0 \mathrm{~V}$)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
Input capacitance	CiN_{1}			15	pF	$\mathrm{f}=1 \mathrm{MHz}$
Input/output capacitance	CiO			15	pF	OV for pins other than pins to be measured

DC CHARACTERISTICS (T: $=-\mathbf{4 0}$ to $+85{ }^{\circ} \mathrm{C}$, , $\mathrm{VDD}=\mathbf{2 . 5}$ to 6.0 V)

CHARACTERISTICS	SYMBOL	MIN.	TYPE	MAX.	UNIT	CONDITION
High-Level Input Voltage	VIH1	0.7 Voo		Voo	\checkmark	Other than the following pins and port
	V_{1+2}	0.8 Vod		Vod	V	POB and RESET
	V_{1+3}	0.8 VoD		9	V	POB ${ }^{\circ}$
	V_{H}	VDo - 0.5		Voo	V	OSC_{1}
Low-Level Input Voltage	VILI	0		0.3 Vdo	V	Other than the following pins and port
	VIL2	0		0.2 Vod	V	POB and RESET
	V113	0		0.5	V	OSC1
High-Level Output Voltage on POC and POD	Vон	Vod - 2.0			V	$\begin{aligned} & \mathrm{VDO}=4.5 \text { to } 6.0 \mathrm{~V}, \\ & \mathrm{l}^{2}=-2 \mathrm{~mA} \end{aligned}$
		VDD - 1.0			V	Іон $=-200 \mu \mathrm{~A}$
Low-Level Output Voltage on POB, POC and POD	Vou			2.0	V	$\begin{aligned} & V_{D O}=4.5 \text { to } 6.0 \mathrm{~V}, \\ & \mathrm{loL}=15 \mathrm{~mA} \end{aligned}$
				0.5	v	loL $=600 \mu \mathrm{~A}$
High-Level Input Leakage Current on POB to POD	Iuti			5	$\mu \mathrm{A}$	$\mathrm{VIN}_{\text {I }}=\mathrm{V}_{\text {Do }}$
	Iurz			10	$\mu \mathrm{A}$	$V_{\text {IN }}=9 \mathrm{~V} \quad$ *3
Low-Level Input Leakage Current on POB to POD	lut			-5	$\mu \mathrm{A}$	$\mathrm{Vin}=0 \mathrm{~V}$
High-Level Output Leakage Current on POB to POD	ILorı			5	$\mu \mathrm{A}$	Vout $=$ Vod
	ІІон2			10	$\mu \mathrm{A}$	Vout $=9 \mathrm{~V} \quad$ *3
Low-Level Output Leakage Current on POB to POD	Llol			-5	$\mu \mathrm{A}$	Vout $=0 \mathrm{~V}$
Resistor Provided for Input Pin		20	47	95	k Ω	$\overline{\text { RESET }}$ (pull-up)
Resistor Provided for Input/Output Pin		5	15	30	k Ω	POBo, POB 1 , and POB 2 (pull-up)

* When N -ch open-drain input/output is selected

CHARACTERISTICS	SYMBOL		MIN.	TYP.	MAX.	UNIT	CONDITION
Power Supply Current (-4)	1001	Operation mode		0.4	1.2	mA	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \pm 10 \% \\ & f_{c c}=1.0 \mathrm{MHz} \pm 20 \% \end{aligned}$
				50	150	$\mu \mathrm{A}$	$\begin{aligned} & V \mathrm{VD}=3 \mathrm{~V} \pm 10 \%, \\ & \mathrm{fcc}=250 \mathrm{KHz} \pm 20 \% \end{aligned}$
	1002	HALT mode		0.3	0.9	mA	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \pm 10 \%, \\ & \mathrm{fcc}=1.0 \mathrm{MHz} \pm 20 \% \end{aligned}$
				40	120	$\mu \mathrm{A}$	$\begin{aligned} & V_{\text {do }}=3 V \pm 10 \%, \\ & f_{c c}=250 \mathrm{kHz} \pm 20 \% \end{aligned}$
	1003	STOP mode		0.1	10	$\mu \mathrm{A}$	$V_{\text {DO }}=5 \mathrm{~V} \pm 10 \%$
				0.1	5	$\mu \mathrm{A}$	$\mathrm{VDO}=3 \mathrm{~V} \pm 10 \%$

*4 This current excludes the current which flows through the built-in pull-up resistors.

CHARACTERISTICS OF DATA MEMORY FOR HOLDING DATA ON LOW SUPPLY VOLTAGE IN THE STOP MODE ($\mathrm{T}_{\mathbf{s}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
Data Hold Supply Voltage	VODDR	2.0		6.0	V	
Data Hold Supply Current	IDODR		0.1	5.0	$\mu \mathrm{~A}$	VODOR $=2.0 \mathrm{~V}$
Release Signal Set Time	tsRel	0			$\mu \mathrm{~s}$	

AC CHARACTERISTICS ($\mathrm{T}_{2}=-\mathbf{4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.5$ to 6.0 V)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
Internal Clock Cycle Time	Tcr	6.6		160	$\mu \mathrm{~s}$	VDD $=4.5$ to 6.0 V
		26.6		160	$\mu \mathrm{~s}$	
High/Low Level Width on POBo and POB1	TPBH TPBL	10			$\mu \mathrm{~s}$	
High/Low Level Width on RESET	TASH TASL	10			$\mu \mathrm{~s}$	

4-BIT SINGLE-CHIP MICROCONTROLLER

The μ PD17108 is a tiny microcontroller consisting of a 1K-byte ROM, 16-word RAM, and 16 input/output ports.
The 17 K architecture of the CPU uses general registers so that data memory can be manipulated directly for effective programming. Every instruction is 1 word long, consisting of 16 bits.

FEATURES

- Program memory (ROM): 1 K bytes (512 words $\times 16$ bits)
- Data memory (RAM):

16 words $\times 4$ bits

- Input/output ports:
- Instruction execution time:
- Number of instructions:

16 ports (including four N -ch open-drain outputs)
$128 \mu \mathrm{~s}$ (for 62.5 kHz) to $8 \mu \mathrm{~s}$ (for 1 MHz)

- Stack level: 24 (Each instruction is 1 word long.)
- A standby function is supported (with the STOP and HALT instructions).
- Data memory can retain data on low voltage (2.0 V at minimum).
- An oscillator is included for the system clock (only resistor for external circuit).
- Operating supply voltage: 2.5 to 6.0 V (at 250 kHz) 4.5 to 6.0 V (at 1 MHz)

APPLICATIONS

- Controlling electric appliances or toys

ORDERING INFORMATION

Order Code	Package
μ PD17108CS-xxx	22-pin plastic shrink DIP (300 mil)
μ PD17108GS-xxx	24-pin plastic SOP (300 mil)

PIN CONFIGURATION (Top View)

BLOCK DIAGRAM

PIN FUNCTIONS

- Port pins

Pin name	VO	Function	Reset
POAo to POA3	vo	- CMOS (push-pull) 4-bit VO port (port OA)	High impedance (input mode)
P0B/RLSthat	I/O	For releasing the HALT mode	- Open-drain: High impedance (input mode) - With pull-up resistor provided: High level (input mode)
POB1/RLSstop		For releasing the STOP mode	
POB2		- N-ch open-drain 4-bit I/O port (port OB) - A pull-up resistor can be provided bit by bit (mask-selected). - 9 V in open-drain mode	
$\mathrm{POB3}_{3}$			
POCo to POC3	I/O	CMOS (push-pull) 4-bit I/O port (port OC)	High impedance (input mode)
PODo to POD_{3}	I/O	CMOS (push-pull) 4-bit I/O port (port 0D)	High impedance (input mode)

- Non-port pins

Pin name	I/O	Function	Reset
$\overline{\text { RESET }}$	Input	- System reset input pin - A built-in pull-up resistor can be provided (mask-selected).	
VDD	- Positive power supply pin		
GND	- GND pin		
OSCO, OSC1	- Pins to be connected to the system clock resonator		

VO: Input/output

PIN INPUT/OUTPUT CIRCUITS

Following are schematics of the input/output circuits of the pins of the μ PD17108.
(1) POA, POC, and POD

(2) POBo and POB,

(3) POB_{2} and POB_{3}

(4) $\overline{R E S E T}$

1. PROGRAM COUNTER (PC)

1.1 FORMAT OF THE PROGRAM COUNTER (PC)

The program counter is a 9-bit binary counter formatted as shown in Fig. 1-1.
Fig. 1-1 Format of the Program Counter

1.2 FUNCTIONS OF THE PROGRAM COUNTER (PC)

The program counter specifies the address of a program memory (ROM) or a program.
Usually, every time an instruction is executed, the program counter is incremented by one. When a branch instruction (BR), a subroutine call instruction (CALL), or a return instruction (RET) is executed, the address specified in the operand is loaded in the PC. Then the instruction in the address is executed. When a skip instruction is executed, the address of the instruction next to the skip instruction is specified irrespective of the contents of the skip instruction. If the skip conditions are satisfied, the instruction next to the skip instruction is regarded as a No Operation (NOP) instruction. So, the NOP instruction is executed and the address of the next instruction is specified.
2. STACK

Stack of the μ PD17108 is a register in which the return address of a program is saved when a subroutine call instruction is executed. One level of address stack is provided.

Fig. 2-1 shows the relationship between PC, stack, and instructions.

Fig. 2-1 Relationship between PC, Stack, and Instructions

In Fig. 2-1, AHn, AMn, and $\operatorname{ALn}(\mathbf{n}=0$ to 3) indicate bit positions in a 16 -bit instruction as follows:

Fig. 2-2 Format of a 16-Bit Instruction
MSB LSB

Instruction

When the assembler (AS17K) is not used and a BR or CALL instruction is used, AH2 and AH1 must be set to 0 .

Sn ($\mathrm{n}=0$ to 8) denotes a stack.
RESET signal input clears all bits of the program counter to 0 .

μ PD17108

3. PROGRAM MEMORY (ROM)

Fig. 3-1 shows the configuration of program memory (ROM).
The program memory consists of 512 words by 16 bits.
The program memory is addressed in units of 16 bits and it ranges from addresses 000 H to 01FFH. Each address is specified by the program counter (PC).

Sirce an instruction consists of $\mathbf{1 6}$ bits (one word), the instruction is stored at one address of the program memory.

Address 000 H is assigned to a reset start address.
Fig. 3-1 Program Memory Map

4. DATA MEMORY (RAM)

The data memory stores data of arithmetic/logic and control operations. Data can be always written to or read from it by means of instructions.

4.1 FORMAT OF THE DATA MEMORY (RAM)

Fig. 4-1 shows the format of the data memory (RAM).
The data memory is configured in units of 4 bits, or "1 nibble," and an address is assigned to each 4-bits of data. The 3 high-order bits are called the "row address," and the 4 low-order bits are called the "column address."

According to its functions, the data memory is divided into $\mathbf{3}$ blocks as shown below: general-purpose data memory, port register, and system register.

Fig. 4-1 Data Memory Map

4.1.1 Functions of the general-purpose data memory

The general-purpose data memory is a part of the data memory from which the system register (SYSREG) and port register are excluded. By executing a data memory manipulation instruction, a 4-bit arithmetic operation and comparison, evaluation, and transfer between data on data memory and any immediate data can be executed with a single operation.

4.1.2 Functions of the general register

The general register indicates any identical row address (16 nibbles) in the data memory specified in the register pointer (RP) in the system register. Since the μ PD17108 register pointer is always set to 0 , the generalpurpose data memory is also used as a general register. The general register can operate or transfer data to and from the data memory.

4.1.3 Functions of the port register

The port register is used to set output dara or to read the input data of input/output ports.
Once data is written to the port register corresponding to a port, the port is set as an output port and continues to output the value unless the value is rewritten. Whenever a read instruction is executed for a port register, the read data indicates the states of the pins, not the value of the port register, regardless of whether the pins are in the input or output mode.

4.1.4 Functions of the system register

The system register controls the CPU. The program status word (PSW) is the only system register existing in the μ PD17108.

Fig. 4-2 System Register ivap

Bit 0 at address 7EH and the high-order three bits at address 7FH are assigned to the program status word. The BCD flag is mapped in bit 0 at address 7EH, the CMP flag is mapped in bit 3 at address 7 FH , the carry (CY) flag is mapped in bit 2 at address 7FH, and the zero (Z) flag is mapped in bit 1 at address 7FH.

The high-order three bits at address 7EH and bit 0 at address 7FH are always set to 0 .

Fig. 4-3 Format of the Program Status Word

Comparison instructions (SKE, SKNE, SKGE, or SKLT) do not change the state of the CY flag, but an arithmetic operation may affect the CY flag according to the result even if the CMP flag is set.

Each bit of the program status word is initialized to 0 when a reset signal is applied.
The \mathbf{Z} flag in the program status word changes according to the set value of the CMP flag as listed in Table 4-1.

Table 4-1 Change in \mathbf{Z} Flag

Condition	Z flag value	
	CMP $=0$	$\mathrm{CMP}=1$
Reset	0	-
Memory manipulation sets the Z flag to 0.	0	0
Memory manipulation sets the Z flag to 1.	1	1
Arithmetic operation results in a non-zero value.	0	0
Arithmetic operation results in 0.	1	$\mathrm{Zn}-1$

$\mathbf{Z n}_{\mathrm{n}} \mathbf{1}$: The \mathbf{Z} flag value presents immediately before arithmetic operation

While CMP is $\mathbf{1}$, if an arithmetic operation results in $0 H$ when the value of the Z flag is 1 , the \mathbf{Z} flag does not change. If an arithmetic operation results in other than OH , the Z flag is reset to 0 and remains intact even when a second arithmetic operation results in OH .

After the CMP and Z flags are set to 1 , subtraction and comparison are performed several times. Then, if the \mathbf{Z} flag still indicates 1 , all of the comparison operations showed a match, resulting in 0 . If the \mathbf{Z} flag is $\mathbf{0}$ after the comparison operations, a mismatch occurred in at least one comparison operation.

5. ARITHMETIC AND LOGIC UNIT (ALU)

The arithmetic and logic unit (ALU) performs arithmetic operations, logical operations, bit tests, comparisons, and rotations on 4-bit data.

5.1 ARITHMETIC OPERATIONS

Arithmetic operations are performed on binary or decimal data. If the BCD flag in the program status word is $\mathbf{1}$, the ALU operates on decimal data, and if the flag is $\mathbf{0}$, it operates on binary data.

If an addition produces a carry or if a subtraction produces a borrow, the carry (CY) fiag is set to 1 . If neither a carry nor borrow is produced, the flag is reset to 0 .

If an arithmetic operation results in zero, the zero (Z) flag is set to $\mathbf{1}$. Otherwise, the flag is reset to 0 .
(1) Binary operation

If the result of a binary arithmetic operation is greater than 15 (1111B), a carry is made. If it is less than zero, a borrow is made. In either case, the CY flag is set to 1.
(2) Decimal operation

If the result of a decimal arithmetic operation is greater than $\mathbf{9}$ (1001B), a carry is made. If it is less than $\mathbf{0}$, a borrow is made. In either case, the CY flag is set to 1 .
Decimal operations are allowed if one of the following results is generated. If the result of a decimal operation does not fall into these ranges, the CY flag is set to 1 , and a result greater than or equal to 10 (1010B) is produced.

1. Addition must generate a result from 0 to 19.
2. Subtraction must generate a result from 0 to 9 or -10 to -1.

5.2 LOGICAL OPERATIONS

Logical operations include ANDing, ORing, and XORing.

5.3 OTHER OPERATIONS

The ALU enables bit testing, comparison, and data rotation.

6. PORTS

6.1 PORT OA (POA0 to POA 3)

Port OA is a 4-bit input/output port. CMOS (push-pull) outputs appear on these pins.
Input and output are set in units of nibbles. The input mode is set at reset, and the output mode is set by writing data to the port register in address 70 H of the data memory. The output mode is maintained until the system is reset.

Output to the port is executed via the port register. Once data is written to the port register, all pins of the port POA are placed in the output mode to continue to output written data. The data is retained unless new data is written to the register.

Whenever the port register is read, the read data indicates the states of the pins, not the contents of the port register, regardless of whether the pins are in the input or output mode. In this case, the contents of the port register remain unchanged.

6.2 PORT OB (POBo/RLShalt, POB1/RLSstop, P0B2, POB3)

Port OB is a 4-bit input/output port. Only N -ch open-drain outputs appear on the pins of port 0B. The N -ch opendrain output mode allows application of 9 V , so it can be used for interfacing with a circuit operating on a different power supply valtage.

Input and output are set in units of nibbles. The input mode is set at reset, and the output mode is set by writing data to the port register in address 71 H of the data memory. The output mode is maintained until the system is reset.

Output to the port is executed via the port register. Once data is written to the port register, all pins of port POB are placed in the output mode to continue to output written data. The data are retained unless new data is written to the register.

Whenever the port register is read, the read data indicates the states of the pins, not the contents of the port register, regardless of whether the pins are in the input or output mode. In this case, the contents of the port register remain unchanged.

The port register for port B consists of four bits but its highest bit is always set to 0 . This means that if an attempt is made to write data to the highest bit of 71 H , the data is invalidated and if an attempt is made to read it, 0 is always returned.

When the $\mu \mathrm{PD} 17108$ is in the HALT or STOP mode, POB 0 and POB , function as pseudo interrupt pins to release the HALT and STOP modes. (Refer to Section 8).

6.3 PORT OC (POC_{0} to POC_{3})

Port OC is a 4 -bit input/output port. CMOS (push-pull) outputs appear on these pins.
Input and output are set in units of nibbles. The input mode is set at reset, and the output mode is set by writing data to the port register in address 72 H of the data memory. The output mode is maintained until the system is reset.

Output to the port is executed via the port register. Once data is written to the port register, all pins of the port POC are placed in the output mode to continue to output written data. The data is retained unless new data is written to the register.

Whenever the port register is read, the read data indicates the states of the pins, not the contents of the port register, regardless of whether the pins are in the input or output mode. In this case, the contents of the port register remain unchanged.

6.4 PORT OD (PODo to POD ${ }_{3}$)

Port OD is a 4-bit input/output port. CMOS (push-pull) outputs appear on these pins.
Input and output are set in units of nibbles. The input mode is set at reset, and the output mode is set by writing data to the port register in address 73 H of the data memory. The output mode is maintained until the system is reset.

Output to the port is executed via the port register. Once data is written to the port register, all pins of the port POD are placed in the output mode to continue to output written data. The data is retained until new data is written to the register.

Whenever the port register is read, the read data indicates the states of the pins, not the contents of the port register, regardless of whether the pins are in the input or output mode. In this case, the contents of the port register remain unchanged.

Fig. 6-1 Port Register Map
Column address

6.5 RECOMMENDED CONDITIONS FOR UNUSED μ PD 17108 PINS

To prevent malfunction, process unused input/output pins as shown below.

Table 6-1 Recommended Conditions for Unused Pins

Input/ output mode	Port	Recommended connection
Input mode	Ports A, B, C, and D	Connect to Voo or GND.
Output mode	CMOS ports (ports A, C, D)	Open
	N-ch open-drain port (port B)	

7. STANDBY FUNCTIONS

The μ PD17108 provides two standby modes, the HALT mode and the STOP mode.

7.1 HALT MODE

The HALT mode stops the program counter (PC) while allowing the system clock to continue operating. The HALT mode can be entered with the HALT instruction, and can be released by a reset signal ($\overline{\mathrm{RESET}}$) or input to the POB pin. When the HALT mode is released by input to the POBo pin, the next instruction after the HALT instruction is executed without waiting for stable oscillation of the system clock.

When the HALT mode is released forcibly by the reset signal ($\overline{R E S E T}$), normal system reset occurs, and execution starts at address OH .

7.2 STOP MODE

The STOP mode stops oscillation of the system clock so that data can be retained at low voltage. The STOP mode can be entered with the STOP instruction, and can be released by a reset signal ($\overline{\mathrm{RESET}}$) or input to the POB_{1} pin. When the mode is released by input to the $P O B_{1}$ pin, execution starts with the next instruction after the STOP instruction.

When the STOP mode is released forcibly by the reset signal ($\overline{\mathrm{RESET}}$), normal system reset occurs, and execution starts at address OH .

7.3 SETTING AND RELEASING THE STANDBY MODES

(1) Setting and releasing the HALT mode

The conditions for releasing the HALT mode can be selected with the least significant bit of the operand in the HALT instruction. The high-order three bits of the operand must be set to 0 .

Table 7-1 Setting and Releasing Conditions Specified in the HALT Instruction

HALT 000XB \leftarrow 4-bit data in the operand

x	Conditions for setting/releasing the HALT mode
0	Executing the HALT instruction enters the HALT mode unconditionally. The mode can be released only by the reset signal (RESET). After the mode is released, instructions are executed starting at address OH.
1	If POBO is 0, executing the HALT instruction enters the HALT mode. If POBO is 1, executing the HALT instruction does not enter the HALT mode. Application of the reset signal (RESET) releases the HALT mode. After the mode is released, instructions are executed starting at address OH. The rising edge of an input signal on the POBo pin also releases the HALT mode. In this case, execution starts with the next instruction after the HALT instruction.

(2) Setting and releasing the STOP mode

Conditions to release the STOP mode can be selected with the least significant bit of the operand in the STOP instruction. The high-order three bits of the operand must be set to 0 .

Table 7-2 Setting/Releasing Conditions Specified in the STOP Instruction

STOP 000XB $\leftarrow 4$-bit data in the operand

\mathbf{x}	Conditions for setting/releasing the STOP mode
$\mathbf{0}$	Executing the STOP instruction enters the STOP mode unconditionally. All peripheral circuits are placed in the same initial state as when the system is reset, then they stop operating. Only the reset signal (RESET) can release the STOP mode. After the mode is released, instructions are executed starting at address OH.
1	If POB1 is 0, executing the STOP instruction enters the STOP mode. If POB1 is 1, executing the STOP instruction does not enter the STOP mode. Application of the reset signal ((RESET) can release the STOP mode. After the mode is released, instructions are executed starting at address OH. The rising edge of the signal applied to the POB1 pin can also release the mode. In this case, execution starts with the next instruction after the STOP instruction.

7.4 timing for releasing the standby modes

Fig. 7-1 Releasing the HALT Mode by RESET Input

When the $\overline{\operatorname{RESET}}$ signal is applied to release the HALT mode, the $\overline{\operatorname{RESET}}$ input makes a transition from low to high, then an operation mode is entered.

* The HALT mode remains effective in this period, waiting for the operation mode. At least eight clock pulses on the OSC1 pin cause operation to start.

Fig. 7-2 Releasing the HALT Mode by Interrupt
Standby-release
signal $\left(\mathrm{POB}_{0}\right)$

Fig. 7-3 Releasing the STOP Mode by $\overline{\text { RESET Input }}$

As soon as the $\overline{\operatorname{RESET}}$ input makes a transition from high to low in the STOP mode, the system clock starts generating clock pulses.

* The HALT mode remains effective in this period, waiting for the generation of clock pulses to stabilize. At least eight clock pulses on the OSCI pin cause operation to start.

Fig. 7-4 Releasing the STOP Mode by Interrupt

* The HALT mode remains effective in this period, waiting for the generation of clock pulses to stabilize. At least eight clock pulses on the OSC 1 pin cause operation to start.

8. RESET FUNCTION

8.1 HARDWARE STATE AT RESET

A low-active reset signal applied to the $\overline{\operatorname{RESET}}$ pin sets the hardware states as listed below. A transition from low to high on the $\overline{\text { RESET }}$ pin releases the reset state.

Table 8-1 Hardware after Reset

Name	Location in memory space	Set value
Program counter		000 H
RAM	OH to 0 FH	Data present before reset is retained.
Program status word (PSW)	Bit 0 at 7 EH Bits 3 to 1 at 7 FH	All 0s
Ports 0 A to 0 D	70 H to 73 H	Data present before reset is retained. All pins are placed in the input mode.

9. ASSEMBLER RESERVED WORDS

9.1 MASK OPTION PSEUDO INSTRUCTIONS

Source programs in the assembly language for the μ PD17108 must include mask option pseudo instructions to select mask options. To do this, be sure to catalog the D17108. OPT file in AS17108 (device file for μ PD17108) into the current directory beforehand.

Options must be mask-selected for the following pins:

- POBo
- POB1
- POBz
- POB_{3}
- RESET

9.1.1 OPTION and ENDOP pseudo instructions

The part starting with the OPTION pseudo instruction and ending with the ENDOP pseudo instruction is referred to as a mask option definition block.

The coding format of the mask option definition block is shown on the next page.
Within this block, the mask option definition pseudo instructions listed in Table 9-1 can be coded.

Format

Symbol	Mnemonic	Operand	Comment
[label:]	OPTION		[; comment]
	.		
	.		
	ENDOP		

9.1.2 Mask option definition pseudo instructions

Table 9-1 lists the mask option definition pseudo instructions corresponding to each pin.
Table 9-1 Mask Option Definition Pseudo Instructions

Pin	Mask option pseudo instruction	Number of operands	Operand name
POB3to POBo	OPTPOB	4	POBPLUP (with pull-up resistor) OPEN (without pull-up resistor)
RESET	OPTRES	1	RESPLUP (with pull-up resistor) OPEN (without pull-up resistor)

The coding format of OPTPOB is shown on the next page. The operands $\mathrm{POB}_{3}, \mathrm{POB}_{2}, \mathrm{POB}_{1}$ and POB 0 are defined in this order.

Format
$\frac{\text { Symbol }}{\text { [label :] }} \quad \frac{\text { Mnemonic }}{\text { OPTPOB }} \quad\left(\mathrm{POB}_{3}\right),\left(\mathrm{POB}_{2}\right),\left(\mathrm{POB}_{1}\right),\left(\mathrm{POBB}_{0}\right) \quad \frac{\text { Operand }}{\text { C; comment }}$

The coding format of OPTRES is shown below.

Format
$\frac{\text { Symbol }}{\text { [label:] }} \quad \frac{\text { Mnemonic }}{\text { OPTRES }} \quad \frac{\text { Operand }}{\text { (RESET) }} \quad \frac{\text { Comment }}{\text { [; comment] }}$

Example:
To set the following mask options in a μ PD17108 source file to be assembled:

POB3:	Pull-up \quad POB2: Pull-up \quad POB1: Open	POBo: Open			
RESET:	Pull-up				

	\cdot
:17108	
Setting mask options:	\cdot
	OPTION OPTPOB POBPLUP, POBPLUP, OPEN, OPEN OPTRES RESPLUP ENDOP
	\cdot
	\cdot

9.2 RESERVED WORDS

Table 9-2 lists the reserved words defined in the μ PD17108 device file (AS17108).
Table 9-2 Reserved Words

Name	Attribute	Value	Read/write	Description
POAO	FLG	0.70H.O	Read/write	Bit 0 of port 0 A
POA1	FLG	0.70H. 1	Read/write	Bit 1 of port 0A
POA2	FLG	0.70H. 2	Read/write	Bit 2 of port 0A
P0A3	FLG	0.70H. 3	Read/write	Bit 3 of port 0A
POBO	FLG	0.71H.O	Read/write	Bit 0 of port 0B
P0B1	FLG	0.71H. 1	Read/write	Bit 1 of port 0B
P0B2	FLG	0.71H. 2	Read/write	Bit 2 of port 0B
P0B3	FLG	0.71H. 3	Read/write	Bit 3 of port 0B
POCO	FLG	0.72H. 0	Read/write	Bit 0 of port 0 C
POC1	FLG	0.72H. 1	Read/write	Bit 1 of port 0C
POC2	FLG	0.72H. 2	Read/write	Bit 2 of port 0 C
POC3	FLG	0.72H.3	Read/write	Bit 3 of port 0 C
PODO	FLG	0.73H.0	Read/write	Bit 0 of port 0D
P0D1	FLG	0.73H.1	Read/write	Bit 1 of port 0D
POD2	FLG	0.73H.2	Read/write	Bit 2 of port 0D
P0D3	FLG	0.73 H .3	Read/write	Bit 3 of port 0D
BCD	FLG	0.7EH. 0	Read/write	BCD arithmetic flag
PSW	MEM	0.7FH	Read/write	Program status word
Z	FLG	0.7FH. 1	Read/write	Zero flag
CY	FLG	0.7FH. 2	Read/write	Carry flag
CMP	FLG	0.7FH. 3	Read/write	Compare flag

10. INSTRUCTION SET
10.1 INSTRUCTION SET UST

$\underbrace{b_{15}}_{b_{14}-b_{11}}$		0		1	
BIN	HEX				
0000	0	ADD	r. m	ADD	m, \#i
0001	1	SUB	r. m	SUB	m, \#i
0010	2	ADDC	r. m	ADDC	m, \#i
0011	3	SUBC	r. m	SUBC	m, \#i
0100	4	AND	r. m	AND	m, \#i
0101	5	XOR	r, m	XOR	m, \#i
0110	6	OR	r. m	OR	m, \#i
0111	7	RET RETSK RORC STOP HALT NOP	s h		
1000	8	LD	r, m	ST	m, r
1001	9	SKE	m, \#i	SKGE	m. \#i
1010	A				
1011	B	SKNE	m, \#i	SKLT	m, \#i
1100	C	BR	addr	CALL	addr
1101	D			MOV	m, \#i
1110	E			SKT	m, \#n
1111	F			SKF	m, \#n

10．2 INSTRUCTIONS

Legend：

M	：One of data memory	n	：Bit position ： 4 bits
m	：Data memory address specified by［ $\mathrm{m}_{\mathrm{H}}, \mathrm{m}_{\mathrm{L}}$ ］of each bank	addr	：One of program memory address； 11 bits
m_{H}	：Data memory address high（row address）； 3 bits		：Program memory address high ； 3 bits
m_{L}	：Data memory address low（column address）； 4 bits		：Program memory address middle ； 4 bits
R	：One of general register specified by［（RP），r］		：Program memory address low ； 4 bits
r	：General register address low（column address）； 4 bits	CY	：Carry flag
RP	：General register pointer	CMP	：Compare flag
PC	：Program counter	s	：Stop release condition
SP	：Stack pointer	h	：Halt release condition
STACK	：Stack specified by（SP）	［ ］	：Address of M，R
i	：Immediate data ； 4 bits	（ ）	：Contents of M，R

$\|\underset{\epsilon}{\underset{\epsilon}{\Delta}}\|$	Mne－ monic	Operand	Function	Operation	Machine code			
					$\begin{aligned} & \text { Op } \\ & \text { code } \end{aligned}$	$\begin{aligned} & 3 \\ & \text { bits } \end{aligned}$	${ }_{\text {bits }}^{4}$	bits bit
号	ADD	r，m	Add memory to register	$\mathrm{R} \leftarrow(\mathrm{R})+(\mathrm{M})$	00000	m_{H}	m_{L}	r
		m，\＃i	Add immediate data to memory	$\mathrm{M} \leftarrow(\mathrm{M})+\mathrm{i}$	10000	m_{H}	m_{L}	i
	ADDC	r，m	Add memory to register with carry	$\mathrm{R} \leftarrow(\mathrm{R})+(\mathrm{M})+(\mathrm{CY})$	00010	m_{H}	m_{L}	r
		m，\＃i	Add immediate data to memory with carry	$\mathrm{R} \leftarrow(\mathrm{M})+\mathrm{i}+(\mathrm{CY})$	10010	m_{H}	m_{L}	i
$\left\|\begin{array}{c} \stackrel{\rightharpoonup}{5} \\ \text { H } \\ \vec{B} \end{array}\right\|$	SUB	r，m	Subtract memory from register	$R \leftarrow(R)-(M)$	00001	m_{H}	m_{L}	r
		m，\＃i	Subtract immediate data from memory	$\mathrm{M} \leftarrow$（M）－i	10001	m_{H}	m_{L}	i
	SUBC	r．m	Subtract memory from register with borrow	$\mathrm{R} \leftarrow(\mathrm{R})-(\mathrm{M})-(\mathrm{CY})$	00011	m_{H}	m_{L}	r
		m，\＃i	Subtract immediate data from memory with borrow	$\mathrm{M} \leftarrow$（M）－ $\mathrm{i}-(\mathrm{CY})$	10011	m_{H}	m_{L}	i
$\begin{array}{\|l\|l} 0 \\ 0 \\ 0 \\ \hline \end{array}$	SKE	m，\＃i	Skip if memory equal to immediate data	M－i，skip if zero	01001	m_{H}	m_{L}	i
	SKGE	m，\＃i	Skip if memory greater than or equal to immediate data	M－i，skip if not borrow	11001	m_{H}	m_{L}	i
	SKLT	m，\＃i	Skip if memory less than immediate data	M－i．skip if borrow	11011	m_{H}	m_{L}	i
	SKNE	m，\＃i	Skip if memory not equal to immediate data	M－i，skip if not zero	01011	m_{H}	m_{L}	i
	AND	m，\＃i	Logical AND of memory and immediate data	$\mathrm{M} \leftarrow$（M）AND i	10100	m_{H}	m_{L}	i
		r，m	Logical AND of register and memory	$\mathrm{R} \leftarrow$（R）AND（M）	00100	m_{H}	m_{L}	r
	OR	m，\＃i	Logical OR of memory and immediate data	$\mathrm{M} \leftarrow(\mathrm{M}) \mathrm{OR} \mathrm{i}$	10110	m_{H}	m_{L}	i
		r，m	Logical OR of register and memory	$\mathrm{R} \leftarrow(\mathrm{R}) \mathrm{OR}$（M）	00110	m_{H}	m_{L}	r
	XOR	m，\＃i	Logical XOR of memory and immediate data	$\mathrm{M} \leftarrow$（M）XOR i	10101	m_{H}	m_{L}	i
		r，m	Logical XOR of register and memory	$\mathrm{R} \leftarrow(\mathrm{R}) \mathrm{XOR}$（M）	00101	m_{H}	m_{L}	r
$\begin{aligned} & \text { 呁 } \\ & \text { 䔍 } \end{aligned}$	LD	r，m	Load memory of register	$\mathrm{R} \leftarrow(\mathrm{M})$	01000	m_{H}	m_{L}	r
	ST	m，r	Store register to memory	（M）$\leftarrow \mathrm{R}$	11000	m_{H}	m_{L}	r
	MOV	m，\＃i	Move immediate data to memory	$\mathbf{M} \leftarrow \mathbf{i}$	11101	m_{H}	m_{L}	i
	SKT	m，\＃n	Test memory bits， then skip if all bits specified are true	$\begin{aligned} & \text { CMP } \leftarrow 0 \\ & \text { skip if } M_{a}=\text { all } 1^{\prime \prime} \end{aligned}$	11110	m_{H}	m_{L}	n
	SKF	m，\＃n	Test memory bits， then skip if all bits specified are false	$\begin{aligned} & \text { CMP } \leftarrow 0 \\ & \text { skip if } M_{n}=\text { all }{ }^{\circ} 0^{*} \end{aligned}$	11111	m_{H}	m_{L}	n

$\stackrel{y}{*}$	Mne－ monic	Operand	Function	Operation	Machine code			
					$\begin{aligned} & \hline \mathrm{Op} \\ & \text { code } \end{aligned}$	$\begin{aligned} & \hline 3 \\ & \text { bits } \end{aligned}$	bits	bits
宕	BR	addr	Jump to the address	PC↔ADDR	01100	a_{1}	am_{m}	$\mathrm{a}_{\mathbf{L}}$
訔	RORC	r	Rotate register right with carry	$(\mathrm{CY}) \rightarrow(\mathrm{R}) \rightarrow \mathrm{CY}$	00111	000	0111	r
号	CALL	addr	Call subroutine	$\begin{aligned} & \mathrm{SP} \leftarrow(\mathrm{SP})-1 \\ & \mathrm{STACK} \leftarrow((\mathrm{PC})+1), \\ & \mathrm{PC} \leftarrow \mathrm{ADDR} \end{aligned}$	11100	a_{1}	am_{m}	a_{L}
	RET		Return to main routine from subroutine	PC－（STACK），SP $-(S P)+1$	00111	000	1110	0000
	RETSK		Return to main routine from subroutine，then skip unconditionary	$\mathrm{PC}-(\mathrm{STACK}), \mathrm{SP} \mapsto(\mathrm{SP})+1$ and skip	00111	001	1110	0000
	STOP	s	Stop clock	STOP	00111	010	1111	s
	HALT	h	Halt the CPU，restart by condition h	HALT	00111	011	1111	h
	NOP		No operation	No Operation	00111	100	1111	0000

11. ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{s}}=\mathbf{2 5}^{\circ} \mathrm{C}$)

Supply Voltage	Vod	POA, POC, POD			
				-0.3 to +7.0	v
Input Voltage	vi			-0.3 to Vod+0.3	V
		POB	(*1)	-0.3 to Vod+0.3	V
Output Voltage	Vo		(*2)	-0.3 to +11	v
		POA, POC,	, RESET	-0.3 to Vod+0.3	V
High-Level Output Current	Іон		("1)	-0.3 to Vod +0.3	V
		POB	(*2)	-0.3 to +11	V
Low Level Output Current	lo	Each of PO	POB, POC, POD	-5	mA
		Total of all		-15	mA
				30	mA
Operating Temperature	Topt	Each of PO	POB, POC, POD	100	mA
		Total of all		-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	T3to			-65 to +150	${ }^{\circ} \mathrm{C}$
Power Consumption	Pd	Ts $=85^{\circ} \mathrm{C}$	22-pin shrink DIP 24-pin SOP	$\begin{aligned} & 400 \\ & 250 \end{aligned}$	mW

- 1 N-ch open-drain input/output and input/output with a pull-up resistor provided
- 2 N-ch open-drain input/output

CAPACITANCE $\quad\left(\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{od}}=0 \mathrm{~V}\right)$

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	Unit	CONDITION
Input Capacitance	$\mathrm{CiN}_{\mathrm{I}}$			15	pF	$\mathrm{f}=1 \mathrm{MHz}$
Input/Output Capacitance	CiO_{10}			15	pF	OV for pins other than pins to be measured

DC CHARACTERISTICS ($\mathrm{T}_{\mathbf{s}}=\mathbf{- 4 0}$ to $+\mathbf{8 5}{ }^{\circ} \mathrm{C}, \mathrm{Vod}=\mathbf{2 . 5}$ to $\mathbf{6 0} \mathrm{V}$)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
High-Level Input Voltage	V_{1+1}	0.7 VDO		Vod	\checkmark	Other than the following pins and port
	$\mathrm{V}_{1} \mathrm{H}_{2}$	0.8 VDD		Voo	V	POB and RESET
	V_{1+3}	0.8 Vod		9	V	POB ${ }^{3}$
	$V_{1 H 4}$	VDD - 0.5		Vod	V	OSC_{1}
Low-Level Input Voltage	VIL1	0		0.3 Vod	V	Other than the following pins and port
	$\mathrm{V} \mathrm{HL}_{2}$	0		0.2 Vod	V	POB and RESET
	VIL3	0		0.5	V	OSC1
High-Level Output Voltage on POA, POC, and POD	Vон	Vod-2.0			V	$\begin{aligned} & \mathrm{VOD}=4.5 \text { to } 6.0 \mathrm{~V}, \\ & \mathrm{IOH}^{2}=-2 \mathrm{~mA} \end{aligned}$
		Vod- 1.0			V	IOH $=-200 \mu \mathrm{~A}$
Low-Level Output Voltage on POA, POB, POC, and POD	Vos			2.0	V	$\begin{aligned} & \mathrm{VoD}=4.5 \text { to } 6.0 \mathrm{~V}, \\ & \mathrm{lot}=15 \mathrm{~mA} \end{aligned}$
				0.5	V	$\mathrm{loL}=600 \mu \mathrm{~A}$
High-Level Input Leakage Current on POA to POD	lumı			5	$\mu \mathrm{A}$	$\mathrm{V}_{1 \mathrm{I}}=\mathrm{V}_{\text {DO }}$
	Іıнг			10	$\mu \mathrm{A}$	$\mathrm{VIN}=9 \mathrm{~V} \quad * 3$
Low-Level Input Leakage Current on POA to POD	Lut			-5	$\mu \mathrm{A}$	$\mathrm{VIN}=0 \mathrm{~V}$
High-Level Output Leakage Current on POA to POD	lıoht			5	$\mu \mathrm{A}$	Vout $=\mathrm{V}_{\text {OD }}$
	ILOH2			10	$\mu \mathrm{A}$	Vout $=9 \mathrm{~V} \quad{ }^{3}$
Low-Level Output Leakage Current on POA to POD	Hol			-5	$\mu \mathrm{A}$	Vout $=0 \mathrm{~V}$
Resistor Provided for Input Pin		20	47	95	K Ω	$\overline{\text { RESET }}$ (pull-up)
Resistor Provided for Input/Output Pin		5	15	30	K Ω	POBO, P0B1, POB2 and POB3 (pull-up)

[^7]| CHARACTERISTICS | SYMBOL | TYP. | MAX. | UNIT | MIN. | CONDITION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Power Supply
 Current ${ }^{4}$ | 1001 | 0.4 | 1.2 | mA | Operation mode | $\begin{aligned} & \mathrm{VDD}=5 \mathrm{~V} \pm 10 \% \\ & \mathrm{fcc}=1.0 \mathrm{MHz} \pm 20 \% \end{aligned}$ |
| | | 50 | 150 | $\mu \mathrm{A}$ | | $\begin{aligned} & \mathrm{VoD}=3 \mathrm{~V} \pm 10 \%, \\ & \mathrm{fcc}=250 \mathrm{KHz} \pm 20 \% \end{aligned}$ |
| | 1002 | 0.3 | 0.9 | mA | HALT
 mode | $\begin{aligned} & V_{\text {Do }}=5 V_{ \pm} 10 \%, \\ & f_{c c}=1.0 \mathrm{MHz}_{ \pm 20 \%} \end{aligned}$ |
| | | 40 | 120 | $\mu \mathrm{A}$ | | $\begin{aligned} & V_{\mathrm{DD}}=3 \mathrm{~V}_{ \pm} 10 \%, \\ & \mathrm{fcc}=250 \mathrm{kHz} \pm 20 \% \end{aligned}$ |
| | 1003 | 0.1 | 10 | $\mu \mathrm{A}$ | STOP
 mode | $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$ |
| | | 0.1 | 5 | $\mu \mathrm{A}$ | | $V_{D D}=3 \mathrm{~V} \pm 10 \%$ |

4 This current excludes the current which flows through the built-in pull-up resistors.

CHARACTERISTICS OF DATA MEMORY FOR HOLDING DATA ON LOW SUPPLY VOLTAGE IN THE STOP MODE (Ts $=\mathbf{- 4 0}$ to $+85{ }^{\circ} \mathrm{C}$)

CHARACTERISTICS	SYMBOL	MIN.	TYPE	MAX.	UNIT	CONDITION
Data Hold Supply Voltage	VDODR	2.0		6.0	V	
Data Hold Supply Current	looor		0.1	5.0	$\mu \mathrm{~A}$	VODOR $=2.0 \mathrm{~V}$
Release Signal Set Time	tsaet	0			$\mu \mathrm{~s}$	

AC CHARACTERISTICS ($\mathrm{T}_{4}=-\mathbf{4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathbf{2 . 5}$ to 6.0 V)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
Internal Clock Cycle Time	TCY	6.6		160	$\mu \mathrm{~s}$	$V_{\text {VDD }}=4.5$ to 6.0 V
		26.6		160	$\mu \mathrm{~s}$	
High/Low Level Width on POBo and POB1	TPBH TPBL	10			$\mu \mathrm{~s}$	
High/Low Level Width on RESET	TRSH Trst	10			$\mu \mathrm{~s}$	

4-BIT SINGLE-CHIP MICROCONTROLLER

The μ PD17P107 is a tiny microcontroller composed of a ROM with 1 K -byte capacity, a RAM with 16 -word capacity and 11 I/O ports. It is a product developed by replacing the on-chip mask ROM of the μ PD17107 with the one-time PROM.

The μ PD17P107CX, which is writable only once, and the μ PD17P107GS are available. They are convenient for evaluating or producing in small quantities the μ PD17107.

Very efficient programming is possible due to the μ PD17000 architecture incorporating the generalpurpose register system, which allows the data memory to be manipulated directly, being adopted in the CPU. Every instruction is composed of 1 word of 16 -bit length.

FEATURES

- μ PD17107 compatible
- Program memory (one-time PROM): 1K byte (512 words $\times 16$ bits)
- Data memory (RAM): 16 words $\times 4$ bits
- I/O ports: 11 ports (N-ch open-drain output 3 ports)
- Instruction execution time: $128 \mu \mathrm{~s}(62.5 \mathrm{kHz})$ to $8 \mu \mathrm{~s}(1 \mathrm{MHz})$
- Instruction types: 24 types (all 1-word instructions)
- Stack levels: 1 level
- Standby function available (by STOP, HALT instruction)
- Data memory data retainable at low voltage (MIN. 2.0 V)
- With on-chip system clock oscillator (only resistor externally provided)
- Operating supply voltage: 2.5 to 6.0 V (at 250 kHz)
4.5 to 6.0 V (at 1 MHz)

APPLICATIONS

- Electronic control of home electric appliances, TOY, etc.

ORDERING INFORMATION

Order Code	Package
μ PD17P107CX	16-pin plastic DIP (300 mil)
μ PD17P107GS	16-pin plastic SOP (300 mil)

PIN CONFIGURATION (Top View)

16 Pin Plastic DIP
16 Pin Plastic SOP

BLOCK DIAGRAM

PIN FUNCTIONS

PIN FUNCTION LIST

- Port pins

Pin Name	Input/ Output	Dual-Function Pin		Function			Program Memory WriteNerify Mode	Reset
P0Bo	Input/ Output	RLShalt	MDo		N -ch open-drain 4-bit input/ output port (Port 0B)	HALT mode releasing	Mode setting pin	High impedance (input mode)
POB1		RLSstop	MD1			STOP mode releasing		
POB_{2}		MD2						
POC0	Input/ Output	D4			CMOS (push-pull) input/output port (Port 0C)	4-bit	8 -bit data input/ output pin (high-order 4 bits)	High impedance (input mode)
POC_{1}		D5						
POC_{2}		D6						
POC_{3}		D7						
POD ${ }_{0}$	Input/ output	Do			CMOS (push-pull) input/output port (Port OD)	4-bit	8-bit data input/ output pin (loworder 4 bits)	High impedance (input mode)
POD ${ }_{1}$		D1						
POD2		D2						
POD3		D3						

- Other than port pins

Pin Name	Input Output	Dual- Function Pin	Function	Program Memory Write/Verify Mode
$\overline{\text { RESET }}$	Input	VPP	System reset input pin	Voltage impression pin (+12.5 V)
VDD			Positive power pin	Positive power pin (+6.0 V)
GND			GND pin	GND pin
OSC $_{1}$			System clock oscillation resonator connection pin	Program memory address update
OSC $_{0}$		MD $_{3}$	System clock oscillation resonator connection pin	Mode setting pin

PIN INPUT/OUTPUT CIRCUITS

The μ PD17P107 pin input/output circuit diagrams are shown below.
(1) POC, POD

(2) $\mathrm{POB}_{0}, \mathrm{POB}_{1}$

(3) POB_{2}

(4) RESET

9. DIFFERENCES BETWEEN μ PD17P107 AND μ PD17107

The $\mu \mathrm{PD} 17 \mathrm{P} 107$ is a product developed by replacing the program memory of the $\mu \mathrm{PD} 17107$ with the onchip mask ROM with the one-time PROM. These 2 models have the same CPU functions and on-chip hardware with the only difference being the program memory and the mask option. Table 9-1 shows the differences between the μ PD17P107 and μ PD17107.

Table 9-1 Differences between μ PD17P107 and μ PD17107

Item	μ PD17P107	μ PD17107
ROM	One-time PROM 512×16 bits	Mask ROM 512×16 bits
POB 0 to POB_{2} pin pull-up resistor	Not available	Mask option
RESET pin pull-up resistor	Not available	Mask option
Connection pin	Vpp pin, run mode selection pin available	VPp pin, run mode selection pin not available
Input power	$\begin{aligned} & 2.5 \text { to } 6.0 \mathrm{~V} \text { (at } 250 \mathrm{kHz} \text {) } \\ & 4.5 \text { to } 6.0 \mathrm{~V} \text { (at } 1 \mathrm{MHz} \text {) } \end{aligned}$	
Package	16-pin DIP 16 -pin SOP	

10. ONE-TIME PROM (PROGRAM MEMORY) WRITE AND VERIFY

The μ PD17P107's on-chip program memory is a 512×16-bit one-time PROM.
To write/verify this one-time PROM, the pins shown in the table below are used. No address input is available. Instead, a system to update the address by the clock input via the OSC ${ }_{1}$ pin is adopted.

Pin Name	Function
VPp $^{\text {Pp }}$	Voltage impression pin at program memory write/verify
OSC_{1}	Address updating clock input pin at program memory write/verify
MD_{0} to MD_{3}	Input pin at program memory write/verify. Used as run mode selection pin.
D_{0} to D_{7}	8-bit data input/output pin at program memory write/verify

10.1 RUN MODE AT PROGRAM MEMORY WRITE/VERIFY

The μ PD17P107 assumes the program memory write/verify mode if +6 V is impressed to the V_{Do} pin and +12.5 V is impressed to the V_{PP} pin after the reset status ($\mathrm{V}_{\mathrm{DO}}=5 \mathrm{~V}, \overline{\mathrm{RESET}}=0 \mathrm{~V}$) assumed for a certain period of time. In that mode, the following run mode is entered according to the MD_{0} to MD_{3} pin setting. All the remaining pins are at the GND potential by the pull-down resistor.

Run Mode Setting						Run Mode
VPP	Vod	MD0	MD1	MD2	M ${ }_{3}$	
+12.5 V	$+6 \mathrm{~V}$	H	L	H	L	Program memory address 0 clear
		L	H	H	H	Write mode
		L	L	H	H	Verify mode
		H	\times	H	H	Program inhibit mode

\mathbf{x} : L or \mathbf{H}

10.2 PROGRAM MEMORY WRITING PROCEDURE

The program memory writing procedure is shown below. High-speed write is possible.
(1) Pull down the pins not to be used to GND via the resistor. The OSC 1 pin at the low level.
(2) Supply 5 V to the Voo pin. The Vpp pin at the low level.
(3) Wait $10 \mu \mathrm{~s}$ and then supply 5 V to the Vpp pin.
(4) Set the mode setting pin to the program memory address 0 clear mode.
(5) Supply 6 V to V_{Do} and 12.5 V to Vpp.
(6) Assume the program inhibit mode.
(7) Write data in the 1-ms write mode.
(8) Assume the program inhibit mode.
(9) Assume the verify mode. If written, go to (10). If not, repeat (7) to (9).
(10) Additionally write (number of times written in (7) to (9): X) $\times 1 \mathrm{~ms}$.
(11) Assume the program inhibit mode.
(12) Update $(+1)$ the program memory address by inputting a pulse to the OSC_{1} pin 4 times.
(13) Repeat (7) to (12) up to the last address.
(14) Assume the program memory address 0 clear mode.
(15) Change the VDD, VPP pin voltage to 5 V .
(16) Power off.

The above procedure of (2) to (12) is shown in the diagram below.

10.3 PROGRAM MEMORY READING PROCEDURE

(1) Pull down the pins not to be used to GND via the resistor. The OSC 1 pin at the low level.
(2) Supply 5 V to the V_{DD} pin. The Vpp pin at the low level.
(3) Wait $10 \mu \mathrm{~s}$ and then supply 5 V to the Vpp pin.
(4) Set the mode setting pin to the program memory address 0 clear mode.
(5) Supply 6 V to $V_{D D}$ and 12.5 V to $V_{P P}$.
(6) Assume the program inhibit mode.
(7) Assume the verify mode. Output data sequentially 1 address at a time at intervals of 4 inputs when a clock pulse is input to the OSC_{1} pin.
(8) Assume the program inhibit mode.
(9) Assume the program memory address 0 clear mode.
(10) Change the VDo, VPP pin voltage to 5 V .
(11) Power off.

The above procedure of (2) to (9) is shown in the diagram below.

11. ASSEMBLER RESERVED WORDS

Table 11-1 lists the reserved symbols defined in the μ PD17P107's device file (AS17107).

Table 11-1 Reserved Symbol List

Name	Attribute	Value	R/W	Description
P0B0	FLG	0.71 H .0	R/W	Port OB, bit 0
P0B1	FLG	0.71 H .1	R/W	Port OB, bit 1
P0B2	FLG	0.71H. 2	R/W	Port 0B, bit 2
POB3*	FLG	0.71H.3	R	Value "0" fixed
POCO	FLG	0.72H.0	R/W	Port 0C, bit 0
P0C1	FLG	0.72H. 1	R/W	Port 0C, bit J
POC2	FLG	0.72 H .2	R/W	Port 0C, bit 2
Р0С3	FLG	0.72H.3	R/W	Port 0C, bit 3
PODO	FLG	0.73H.0	R/W	Port OD, bit 0
P0D1	FLG	0.73H. 1	R/W	Port 0D, bit 1
P0D2	FLG	0.73H. 2	R/W	Port 0D, bit 2
P0D3	FLG	0.73H.3	R/W	Port OD, bit 3
BCD	FLG	0.7EH. 0	R/W	BCD operation flag
PSW	MEM	0.7FH	R/W	Program status word
Z	FLG	0.7FH. 1	R/W	Zero flag
CY	FLG	0.7FH. 2	R/W	Carry flag
CMP	FLG	0.7FH. 3	R/W	Compare flag

*: P0B3, which is not available in the μ PD17P107, has been registered as a read only flag to be used as a dummy bit when using a built-in macro.
12. INSTRUCTION SETS
12.1 INSTRUCTION SET LIST

$\mathrm{b}_{14}-\mathrm{b}_{11}$			0	1	
BIN	HEX				
$\begin{array}{llll}0 & 0 & 0 & 0\end{array}$	0	ADD	r, m	ADD	m, \#i
0001	1	SUB	r, m	SUB	m, \#i
$\begin{array}{llll}0 & 0 & 1 & 0\end{array}$	2	ADDC	r, m	ADDC	m, \#i
$\begin{array}{lllll}0 & 0 & 1 & 1\end{array}$	3	SUBC	r, m	SUBC	m, \#i
$\begin{array}{llll}0 & 1 & 0 & 0\end{array}$	4	AND	r, m	AND	m, \#i
$\begin{array}{llll}01 & 1 & 1\end{array}$	5	XOR	r, m	XOR	m, \#i
$\begin{array}{lllll}0 & 1 & 1 & 0\end{array}$	6	OR	r, m	OR	m, \#i
$\begin{array}{llll}0 & 1 & 1\end{array}$	7	RET RETSK RORC STOP HALT NOP	r s h		
1000	8	LD	r, m	ST	m, r
10001	9	SKE	m, \#i	SKGE	m, \#i
1010	A				
10011	B	SKNE	m, \#i	SKLT	m, \#i
1100	C	BR	addr	CALL	addr
$\begin{array}{lllll}11 & 0 & 1\end{array}$	D			MOV	m, \#i
$\begin{array}{llll}111 & 1\end{array}$	E			SKT	m, \#n
11111	F			SKF	m, \#n

12.2 INSTRUCTION LIST

Legend

M
m : Data memory address specified by $\left[\mathrm{m}_{\mathrm{H}}, \mathrm{m}_{\mathrm{L}}\right.$] of each bank
m_{H} : Data memory address high (row address) ; 3 bits
m_{L} : Data memory address low (column address) : 4 bits
R
: One of general register specified by [(RP), r]
$r:$ General register address low (column address) : 4 bits
RP : General register pointer
PC : Program counter
SP : Stack pointer
STACK : Stack specified by (SP)
i : Immediate data : $\mathbf{4}$ bits
n \quad : Bit position : 4 bits
a_{L} : Program memory address low ; 4 bits
CY : Carry flag
CMP : Compare flag
s : Stop release condition
h : Halt release condition
[] : Address of M, R
() : Contents of M,R

	Mnemonic	Operand	Function	Operation	Machine Code			
					Op. Code	$\begin{aligned} & 3 . \\ & \text { Bit } \end{aligned}$	${ }_{8}^{4 i t}$	${ }_{\text {Bit }}^{4}$
문	ADD	r,m	Add memory to register	$\mathrm{R} \leftarrow(\mathrm{R})+(\mathrm{M})$	00000	m_{H}	m_{L}	r
		m, \#i	Add immediate data to memory	$\mathrm{M} \leftarrow(\mathrm{M})+\mathrm{i}$	10000	m_{H}	m_{L}	i
	ADDC	r,m	Add memory to register with carry	$\mathrm{R} \leftarrow(\mathrm{R})+(\mathrm{M})+(\mathrm{CY})$	00010	m_{H}	m_{L}	r
		m, \#i	Add immediate data to memory with carry	$\mathrm{R} \leftarrow(\mathrm{M})+\mathrm{i}+(\mathrm{CY})$	10010	m_{H}	m_{L}	i
	SUB	r,m	Subtract memory from register	$\mathrm{R} \leftarrow(\mathrm{R})-(\mathrm{M})$	00001	m_{H}	m_{L}	r
		m, \#i	Subtract immediate data from memory	$\mathrm{M} \leftarrow(\mathrm{M})-\mathrm{i}$	10001	m_{H}	m_{L}	i
	SUBC	r,m	Subtract memory from register with borrow	$\mathrm{R} \leftarrow(\mathrm{R})-(\mathrm{M})-(\mathrm{CY})$	00011	m_{H}	m_{L}	r
		m, \#i	Subtract immediate data from memory with borrow	$\mathrm{M} \leftarrow(\mathrm{M})-\mathrm{i}-(\mathrm{CY})$	10011	m_{H}	m_{L}	i
$\begin{array}{\|l\|l} 0 \\ 0 \\ E \\ E \\ 0 \\ \hline \end{array}$	SKE	m, \#i	Skip if memory equal to immediate data	$\mathrm{M}-\mathrm{i}$, skip if zero	01001	m_{H}	m_{L}	i
	SKGE	m, \#i	Skip if memory greater than or equal to immediate data	$\mathrm{M}-\mathrm{i}$, skip if not borrow	11001	m_{H}	m_{L}	i
	SKLT	m, \#i	Skip if memory less than immediate data	$\mathrm{M}-\mathrm{i}$, skip if borrow	11011	m_{H}	m_{L}	i
	SKNE	m, \#i	Skip if memory not equal to immediate data	$\mathrm{M}-\mathrm{i}$, skip if not zero	01011	m_{H}	m_{L}	i
	AND	m, \#i	Logical AND of memory and immediate data	$\mathrm{M} \leftarrow$ (M) AND i	10100	m_{H}	m_{L}	i
		r,m	Logical AND of register and memory	$\mathrm{R} \leftarrow(\mathrm{R})$ AND (M)	00100	m_{H}	m_{L}	r
	OR	m, \#i	Logical OR of memory and immediate data	$\mathrm{M} \leftarrow$ (M) OR i	10110	m_{H}	m_{L}	i
		r,m	Logical OR of register and memory	$\mathrm{R} \leftarrow(\mathrm{R}) \mathrm{OR}(\mathrm{M})$	00110	m_{H}	m_{L}	r
	XOR	m, \#i	Logical XOR of memory and immediate data	$\mathrm{M} \leftarrow$ (M) XOR i	10101	m_{H}	m_{L}	i
		r,m	Logical XOR of register and memory	$\mathrm{R} \leftarrow(\mathrm{R}) \mathrm{XOR}(\mathrm{M})$	00101	m_{H}	m_{L}	r
	LD	r,m	Load memory of register	$\mathrm{R} \leftarrow(\mathrm{M})$	01000	m_{H}	m_{L}	r
	ST	m, r	Store register to memory	(M) $\leftarrow \mathrm{R}$	11000	m_{H}	m_{L}	r
	MOV	m, \#i	Move immediate data to memory	Mャi	11101	m_{H}	m_{L}	i
$\begin{aligned} & \stackrel{8}{8} \\ & \mathbf{0} \\ & \hline \end{aligned}$	SKT	m. \#n	Test memory bits, then skip if all bits specified are true	$\begin{aligned} & \mathrm{CMP} \leftarrow 0 \\ & \text { skip if } M_{n}=\text { all }{ }^{\prime \prime} . \end{aligned}$	11110	m_{H}	m_{L}	n
	SKF	m, \#n	Test memory bits, then skip if all bits specified are false	$\begin{aligned} & \text { CMP } \leftarrow 0 \\ & \text { skip if } M_{n}=\text { all " } 0 " \end{aligned}$	11111	m_{H}	m_{L}	n

	Mnemonic	Operand	Function	Operation	Machine Code			
					Op. Code	$\begin{aligned} & 3 \cdot \\ & \text { Bit } \end{aligned}$	${ }_{\text {Bit }}^{4}$	${ }^{4}$ Bit
c\|cos	BR	addr	Jump to the address	$\mathrm{PC} \leftarrow \mathrm{ADDR}$	01100	a_{H}	a_{M}	a_{L}
	RORC	r	Rotate register right with carry	$(\mathrm{CY}) \rightarrow(\mathrm{R}) \rightarrow \mathrm{CY}$	00111	000	0111	r
	CALL	addr	Call subroutine	$\begin{aligned} & \mathrm{SP} \leftarrow\left(\mathrm{SI}^{\prime}\right)-1 \\ & \mathrm{STACK} \cdot(\mathrm{PC})+1), \\ & \mathrm{PC} \leftarrow \mathrm{ADDR} \end{aligned}$	11100	a_{H}	a_{M}	$\mathrm{a}_{\mathrm{L} .}$
	RET		Return to main routine from subroutine	$\mathrm{PC}+-(\mathrm{STACK}) . \mathrm{SP}^{2}-\left(\mathrm{SP}^{\text {P }}\right)+1$	00111	000	1110	0000
	RETSK		Return to main routine from subroutine, then skip unconditionary	$\begin{aligned} & \mathrm{PC} \leftarrow(\mathrm{STACK}), \mathrm{SP} \leftarrow(\mathrm{SP})+1 \\ & \text { and skip } \end{aligned}$	00111	001	1110	0000
$\begin{gathered} \stackrel{\rightharpoonup}{\Phi} \\ \stackrel{5}{0} \end{gathered}$	STOP	s	Stop clock	STOP	00111	010	1111	s
	HALT	h	Halt the CPU, restart by condition h	HALT	00111	011	1111	h
	NOP		No operation	No Operation	00111	100	1111	0000

13. ELECTRIC CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS $\left(\mathbf{T a}=25{ }^{\circ} \mathrm{C}\right.$)

Supply Voltage	VDD		-0.3 to +7.0	v
Supply Voltage	$V_{\text {PP }}$		-0.3 to +13.5	V
Input Voltage	VI	POC, POD, $\overline{\text { RESET }}$	0.3 to $\mathrm{VDD}+0.3$	V
		POB	-0.3 to +11	V
Output Voltage	Vo	POC, POD	0.3 to $\mathrm{VDD}^{\text {+ }} 0.3$	V
		POB	-0.3 to +11	V
High-level Output Amperage	IOH	POB, POC, POD per pin	-5	mA
		Total for all pins	-15	mA
Low-level Output Amperage	IoL	POB, POC, POD per pin	30	mA
		Total for all pins	100	mA
Operating Temperature	Topt		-40 to +85	C
Storage temperature	Tstg		-65 to +150	${ }^{\circ} \mathrm{C}$
Power Dissipation	Pd	$\mathrm{Ta}=85{ }^{\circ} \mathrm{C} \quad 16 \mathrm{pin}$ DIP	400	mW
		16 pin SOP	190	mW

CAPACITY ($\mathrm{Ta}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{VdD}=0 \mathrm{~V}$)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
Input Capacity	CIN^{\prime}			15	pF	$\mathrm{f}=1 \mathrm{MHz}, 0 \mathrm{~V}$ at other than measured pins
Input/Output Capacity	CiO_{10}			15	pF	

μ PD17P107

DC CHARACTERISTICS ($\mathrm{Ta}=\mathbf{- 4 0}$ to $+85{ }^{\circ} \mathrm{C}, \mathrm{VdD}=\mathbf{2 . 5}$ to $\mathbf{6 . 0} \mathrm{V}$)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT		CONDITION
High-level Input Voltage	VIH_{1}	0.7 VDo		VDD	V	Other than specified below.	
	VIH_{2}	0.8 VDD		VDD	V	POB, $\overline{\text { RESET }}$	
	VIH3	0.8 VDD		9	V	POB*	
	VIH_{4}	VDD - 0.5		Vod	V	OSC_{1}	
Low-level Input Voltage	VIL1	0		0.3 Vdo	V	Other than specified below.	
	VIL2	0		0.2 Vod	V	POB, RESET	
	VIL3	0		0.5	V	OSC ${ }_{1}$	
POC, D High-level Output Voltage	Vон	VDD - 2.0			V	$\begin{aligned} & \mathrm{VDD}=4.5 \text { to } 6.0 \mathrm{~V} \\ & \mathrm{IOH}=-2 \mathrm{~mA} \end{aligned}$	
		VDo - 1.0			V	Іон $=-200 \mu \mathrm{~A}$	
POB, C, D Low-level Input Voltage	VoL			2.0	v	$\begin{aligned} & \mathrm{VDD}=4.5 \text { to } 6.0 \mathrm{~V} \\ & \mathrm{loL}=15 \mathrm{~mA} \end{aligned}$	
				0.5	V	$\mathrm{loL}=600 \mu \mathrm{~A}$	
POB, C, D High-level Input Leak Current	lıır			5	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {D }}$	
	ІІн2			10	$\mu \mathrm{A}$	$\mathrm{VIN}=9 \mathrm{~V}$ *	
POB, C, D Low-level Input Leak Current	ILuL			-5	$\mu \mathrm{A}$	$\mathrm{VIN}=0 \mathrm{~V}$	
POB, C, D High-level Output Leak Current	ILoh			5	$\mu \mathrm{A}$	Vout $=\mathrm{V}_{\text {DO }}$	
	ІLOH2			10	$\mu \mathrm{A}$	Vout $=9 \mathrm{~V}^{*}$	
POB, C, D Low-level Output Leak Current	ILoL			-5	$\mu \mathrm{A}$	Vout $=0 \mathrm{~V}$	
Supply Amperage	1001		0.4	1.2	mA	Run mode	$\begin{aligned} & V_{D O}=5 \mathrm{~V} \pm 10 \% \\ & f_{\mathrm{cc}}=1.0 \mathrm{MHz} \pm 20 \% \end{aligned}$
			50	150	$\mu \mathrm{A}$		$\begin{aligned} & V D 0=3 V \pm 10 \% \\ & f_{c c}=250 \mathrm{kHz} \pm 20 \% \end{aligned}$
	IdD2		0.3	0.9	mA	HALT mode	$\begin{aligned} & V_{o o}=5 \mathrm{~V} \pm 10 \% \\ & f_{\mathrm{cc}}=1.0 \mathrm{MHz} \pm 20 \% \end{aligned}$
			40	120	$\mu \mathrm{A}$		$\begin{aligned} & V_{D D}=3 V \pm 10 \% \\ & f_{c C}=250 \mathrm{kHz} \pm 20 \% \end{aligned}$
	Ido3		0.1	10	$\mu \mathrm{A}$	STOP mode	$\mathrm{V}_{\text {Do }}=5 \mathrm{~V} \pm 10 \%$
			0.1	5	$\mu \mathrm{A}$		$\mathrm{V}_{\mathrm{DO}}=3 \mathrm{~V} \pm 10 \%$

*: If N -ch open-drain input/output selected.

LOW-SUPPLY VOLTAGE DATA HOLDING CHARACTERISTICS IN DATA MEMORY STOP MODE ($\mathrm{Ta}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
Data Holding Supply Voltage	VDDDR	2.0		6.0	V	
Data Holding Supply Amperage	IDDDR		0.1	5.0	$\mu \mathrm{~A}$	VDDDR $=2.0 \mathrm{~V}$
Release Signal Set Time	tSREL	0			$\mu \mathrm{~s}$	

AC CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{a}}=\mathbf{- 4 0}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=\mathbf{2 . 5}$ to $\mathbf{6 . 0} \mathrm{V}$)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
Internal Clock Cycle Time	TCY	6.6		160	$\mu \mathrm{~s}$	VDD $=4.5$ to 6.0 V
	26.6		160	$\mu \mathrm{~s}$		
POBO, POB 1, High/Low Level Width	TPBH TPBL	10			$\mu \mathrm{~s}$	
RESET, High/Low Level Width	TRSH TRSL	10			$\mu \mathrm{~s}$	

μ PD17P107

DC PROGRAMMING CHARACTERISTICS $\left(\mathrm{Ta}_{\mathrm{a}}=25{ }^{\circ} \mathrm{C}, \mathrm{VdD}=6.0 \pm 0.25 \mathrm{~V}, \mathrm{Vpp}=12.5 \pm 0.5 \mathrm{~V}\right)$

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
High-Level Input Voltage	$\mathrm{V}_{\mathbf{H} 1}$	0.7 VDO		Vod	V	Other than OSC_{1}
	$\mathrm{V}_{\text {IH2 }}$	VDo - 0.5		Vod	V	OSC_{1}
Low-Level Input Voltage	VIL1	0		0.3 VDO	V	Other than OSC ${ }_{1}$
	VIL2	0		0.4	V	OSC_{1}
Input Leak Current	14			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$
High-Level Output Voltage	Vон	VDo - 1.0			V	$\mathrm{I}_{\mathrm{O}} \mathrm{H}=-1 \mathrm{~mA}$
Low-Level Output Voltage	VoL			0.4	V	$\mathrm{loL}=1.6 \mathrm{~mA}$
Vod Supply Current	IDD			30	mA	
Vpp Supply Current	Ipp			30	mA	$\mathrm{MDO}=\mathrm{V}_{\mathrm{IL}}, \mathrm{MD1}=\mathrm{V}_{\mathrm{H}}$

NOTE 1: VPP must not be a minimum of +13.5 V including overshoot.
2: Impress $V_{D D}$ before VPP and break it after VPP.

AC PROGRAMMING CHARACTERISTICS ($\mathrm{Ta}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{VDD}_{\mathrm{D}}=\mathbf{6 . 0} \pm \mathbf{0 . 2 5} \mathrm{V}, \mathrm{VPP}=12.5 \pm 0.5 \mathrm{~V}$)

CHARACTERISTICS	SYMBOL	* 1	MIN.	TYP.	MAX.	UNIT	CONDITION
Address Set-Up Time *2 (for MDO \downarrow)	$\mathrm{tas}^{\text {a }}$	$\mathrm{tas}^{\text {a }}$	2			$\mu \mathrm{s}$	
MD1 Set-Up Time (for MDO \downarrow)	tmis	toes	2			$\mu \mathrm{s}$	
Data Set-Up Time (for MDO \downarrow)	tos	tos	2			$\mu \mathrm{s}$	
Address Hold Time *2 (for MDO \uparrow)	$\mathrm{taH}_{\text {A }}$	$\mathrm{taH}^{\text {A }}$	2			$\mu \mathrm{s}$	
Data Hold Time (for MDO \uparrow)	tor	ton	2			$\mu \mathrm{s}$	
MDO $\uparrow \rightarrow$ Data Output Float Delay Time	tof	tof	0		130	ns	
Vpp Set-Up Time (for MD3 \uparrow)	tvps	tvps	2			$\mu \mathrm{s}$	
Vod Set-Up Time (for MD3 \uparrow)	tvos	tvcs	2			$\mu \mathrm{s}$	
Initial Program Pulse Width	tow	tow	0.95	1.0	1.05	ms	

CHARACTERISTICS	SYMBOL	*1	MIN.	TYP.	MAX.	UNIT	CONDITION
Additional Program Pulse Width	topw	topw	0.95		21.0	ms	
MDO Set-Up Time (for MD1 \uparrow)	tmos	tces	2			$\mu \mathrm{s}$	
MDO $\downarrow \rightarrow$ Data Output Delay Time	tov	tov			1	$\mu \mathrm{s}$	$\mathrm{MDO}=\mathrm{MD1}=\mathrm{V}_{\mathrm{LL}}$
MD1 Hold Time (for MDO \uparrow)	$\mathrm{tmir}^{\text {¢ }}$	toEH	2			$\mu \mathrm{s}$	$\mathrm{t}_{\text {MIH }}+\mathrm{t}_{\text {M1R }} \geq 50 \mu \mathrm{~s}$
MD1 Recover Time (for MDO \downarrow)	${ }_{\text {tmin }}$	tor	2			$\mu \mathrm{s}$	
Program Counter Reset Time	trca	-	10			$\mu \mathrm{s}$	
OSC1 Input High/Low Level Width	$\begin{aligned} & t_{\times \mathrm{H}}, \\ & \mathrm{t}_{2 \mathrm{~L}} \end{aligned}$	-	0.42			$\mu \mathrm{s}$	
OSC1 Input Frequency	fosc	-			1.2	MHz	
Initial Mode Set Time	${ }^{1}$	-	2			$\mu \mathrm{s}$	
MD3 Set-Up Time (for MD1 \uparrow)	${ }_{\text {tm3s }}$	-	2			$\mu \mathrm{s}$	
MD3 Hold Time (for MD1 \downarrow)	tмз	-	2			$\mu \mathrm{s}$	
MD3 Set-Up Time (for MDO \downarrow)	tm 3 S $^{\text {a }}$	-	2			$\mu \mathrm{s}$	At program memory read
Address *2 \rightarrow Data Output Delay Time	toad	tacc	2			$\mu \mathrm{s}$	At program memory read
Address *2 \rightarrow Data Output Hold Time	thad	tor	0		130	ns	At program memory read
MD3 Hold Time (for MDO \uparrow)	Імзнв	-	2			$\mu \mathrm{s}$	At program memory read
MD3 $\downarrow \rightarrow$ Data Output Float Delay Time	tofn	-	2			$\mu \mathrm{s}$	At program memory read
Reset Set-Up Time	$\mathrm{t}_{\text {tes }}$		10			$\mu \mathrm{s}$	

*1: A symbol of the corresponding $\mu \mathrm{PD} 27 \mathrm{C} 256$.
*2: The internal address signal is incremented $(+1)$ at the 3rd OSC 1 input falling and is not connected to a pin.

PROGRAM MEMORY WRITING TIMING

PROGRAM MEMORY READING TIMING

4-BIT SINGLE CHIP MICROCONTROLLER

The μ PD17P108 is a tiny microcontroller consisting of a 1 K -byte ROM, 16 -word RAM, and 16 input/output ports. It is a one-time PROM version of the μ PD17108, whose internal mask ROM is replaced with a one-time PROM.

Two μ PD17P108 models are available: μ PD17P108CS and μ PD17P108GS, which allow a program to be written only once. They are suitable for evaluation of $\mu \mathrm{PD} 17108$ and for small-scale production.

The 17 K architecture of the CPU uses general registers so that data memory can be manipulated directly for effective programming. Every instruction is 1 word long, consisting of 16 bits.

FEATURES

- Compatible with the μ PD17108
- Program memory (one-time PROM) : 1 K bytes (512 words $\times 16$ bits)
- Data memory (RAM)
: 16 words $\times 4$ bits
- Input/output ports
- Instruction execution time
: 16 ports (including four N -ch open-drain outputs)
- Number of instructions
: $\quad 128 \mu \mathrm{~s}(62.5 \mathrm{kHz})$ to $8 \mu \mathrm{~s}(1 \mathrm{MHz})$
- Stack level
: 24 (Each instruction is 1 word long.)
: 1
- A standby function is supported (with the STOP and HALT instructions).
- Data memory can retain data on low voltage (2.0 V at minimum).
- An oscillator is included for the systern clock. (Only resistors are mounted externally.)
- Operating supply voltage : 2.5 to 6.0 V (at 250 kHz) 4.5 to 6.0 V (at 1 MHz)

APPLICATIONS

- Controlling electric appliances or toys

ORDERING INFORMATION

Order Code Package

μ PD17P108CS	22-pin plastic shrink DIP (300 mil)
μ PD17P108GS	24-pin plastic SOP (300 mil)

PIN CONFIGURATION (Top View)

BLOCK DIAGRAM

μ PD17P108

PIN FUNCTIONS

Pin Functions

- Port pins

Pin name	Input/ output	Dual function pin		Function		When writing to program memory or verifying its contents	When reset	
POA0	Input/ output			CMOS (push-pull) 4-bit input/output port (port 0A)		Pull down	High impedance (input mode)	
POA ${ }_{1}$								
POA_{2}								
POA_{3}								
POBo	Input/ output	RLShait	MDo	N -ch opendrain 4-bit input/output port (port OB)	For the HALT mode releasing	Mode selection pin	High impedance (input mode)	
POB_{1}		RLSstop	MD1					
POB_{2}		MD_{2}			For the STOP mode releasing			
POB_{3}						Pull down		
POCo	Input/ output	D		CMOS (push-pull) 4-bit input/output port (port OC)		8-bit data input/ output pin (highorder 4 bits)	High impedance (input mode)	
POC_{1}		D						
POC_{2}		D						
POC_{3}		D						
PODo	Input/ output	D		CMOS (push-pull) 4-bit input/output port (port OD)		8-bit data input/ output pin (loworder 4 bits)	High impedance (input mode)	
POD 1		D						
POD_{2}		D						
POD_{3}		D						

- Non-port pins

Pin name	Input/ output	Dual Function pin	Function	When writing to program me- mory or verifying its contents
$\overline{\text { RESET }}$	Input	VPp	System reset input pin	Voltage is applied to this pin $(+12.5 \mathrm{~V})$
VoD			Positive power supply pin	Positive power supply pin $(+6.0 \mathrm{~V})$
GND			GND pin resonator	GND pin
OSC $_{1}$		MD_{3}	Pins to be connected to the system clock resonator	Program memory address update
OSCo			NC pin is not connected internally.	Mode selection pin
NC				

PIN INPUT/OUTPUT CIRCUITS

Following are schematics of the input/ouput circuits of the pins of the μ PD17P108.
(1) POA, POC, and POD

(2) POB and POB ,

(3) POB_{2} and POB_{3}

(4) $\overline{\text { RESET }}$

10. WRITING TO AND VERIFYING ONE-TIME PROM (PROGRAM MEMORY)

The μ PD17P108's internal program memory consists of a 512×16 bit one-time PROM.
Writing to the one-time PROM or verifying the contents of the PROM is accomplished using the pins shown in the table below. Note that address inputs are not used; instead, the address is updated using the clock input from the OSC_{1} pin.

Pin name	Function
$V_{\text {pp }}$	Voltage is applied to this pin when writing to program memory or verifying its contents.
OSC $_{1}$	Input pin for address update clock used when writing to program memory or verifying its contents
MD $_{0}$ to MD3	Pins that turn to input pins and are used as operation mode selection pins when writing to program memory or verifying its contents
${\text { Do to } \mathrm{D}_{7}}^{\text {Input/output pins for 8-bit data used when writing to program memory or verifying its contents }}$	

10.1 PROGRAM MEMORY WRITE/VERIFY MODES

If +6 V is applied to the V_{DD} pin and +12.5 V is applied to the $\mathrm{V}_{\text {PP }}$ pin after a certain duration of reset status (VDD $=5 \mathrm{~V}$, $\overline{\operatorname{RESET}}=0 \mathrm{~V}$), the $\mu \mathrm{PD} 17 \mathrm{P} 108$ enters program memory write/verify mode. A specific operating mode is then selected by setting the MDo through MD3 pins as follows. Set the other unused pins to GND level by means of pull-down resistors.

Operating mode specification						Operating mode
Vpp	Vod	MD0	MD1	MD2	MD3	
+12.5 V	+6V	H	L	H	L	Program memory address clear mode
		L	H	H	H	Write mode
		L	L	H	H	Verify mode
		H	x	H	H	Program inhibit mode

x : L (low) or H (high)

10.2 WRITING TO PROGRAM MEMORY

The procedure for writing to program memory is described below; high-speed write is possible.
(1) Pull low the levels on all unused pins to GND by means of resistors. Bring OSCi to low level.
(2) Apply 5 V to Vod and bring Vpp to low level.
(3) Wait $10 \mu \mathrm{~s}$. Then apply 5 V to Vpp
(4) Set the mode selection pins to program memory address clear mode.
(5) Apply 6 V to V_{DD} and 12.5 V to V_{PP}.
(6) Select program inhibit mode.
(7) Write data in 1 ms write mode.
(8) Select program inhibit mode.
(9) Select verify mode. If the write operation is found successful, proceed to step (10). If the operation is found unsuccessful, repeat steps (7) to (9).
(10) Perform additional write for (number of repetitions of steps (7) to (9) $\times 1 \mathrm{~ms}$.
(11) Select program inhibit mode.
(12) Increment the program memory address by one on reception of four pulses on the OSC ${ }_{1}$ pin.
(13) Repeat steps (7) to (12) until the last address is reached.
(14) Select program memory address clear mode.
(15) Apply 5 V to the V_{DD} and VPp pins.
(16) Turn power off.

The timing for steps (2) to (12) is shown below.

10.3 READING PROGRAM MEMORY

(1) Pull low the levels of all unused pins to GND by means of resistors. Bring OSC1 to low level.
(2) Apply 5 V to V_{DD} and bring Vpp to low level.
(3) Wait $10 \mu \mathrm{~s}$. Then apply 5 V to Vpp
(4) Set the mode selection pins to program memory address clear mode.
(5) Apply 6 V to V_{DD} and 12.5 V to $\mathrm{V}_{\text {PP }}$
(6) Select program inhibit mode.
(7) Select verify mode. Data is output sequentially one address at a time for each cycle of four clock pulses on the OSC_{1} pin.
(8) Select program inhibit mode.
(9) Select program memory address clear mode.
(10) Apply 5 V to the VDD and VPP pins.
(11) Turn power off.

The timing for steps (2) to (9) is shown below.
$V_{p p}$

Do to D_{8}

$M D_{0}$

MD_{2}

$M D 3_{3}$

11. ASSEMBLER RESERVED WORDS

Table 11-1 lists the reserved words defined in the μ PD17P108 device file (AS17108).

Table 11-1 Reserved Words

Name	Attribute	Value	Read/write	Description
POAO	FLG	0.70H. 0	Read/write	Bit 0 of port 0A
POA1	FLG	0.70 H .1	Read/write	Bit 1 of port 0A
POA2	FLG	0.70 H .2	Read/write	Bit 2 of port 0A
P0A3	FLG	0.70H. 3	Read/write	Bit 3 of port 0A
POBO	FLG	0.71H.0	Read/write	Bit 0 of port $0 B$
P0B1	FLG	0.71H. 1	Read/write	Bit 1 of port 0B
P0B2	FLG	0.71 H .2	Read/write	Bit 2 of port 0B
P0B3	FLG	0.71H.3	Read/write	Bit 3 of port OB
POCO	FLG	0.72 H .0	Read/write	Bit 0 of port 0C
POC1	FLG	0.72 H .1	Read/write	Bit 1 of port 0C
POC2	FLG	0.72H. 2	Read/write	Bit 2 of port 0C
POC3	FLG	0.72H.3	Read/write	Bit 3 of port 0C
PODO	FLG	0.73 H .0	Read/write	Bit 0 of port 0D
P0D1	FLG	0.73 H .1	Read/write	Bit 1 of port 0D
POD2	FLG	0.73 H .2	Read/write	Bit 2 of port 0D
POD3	FLG	0.73 H .3	Read/write	Bit 3 of port 0D
BCD	FLG	0.7EH. 0	Read/write	$B C D$ arithmetic flag
PSW	MEM	0.7FH	Read/write	Program status word
Z	FLG	0.7FH. 1	Read/write	Zero flag
CY	FLG	0.7FH. 2	Read/write	Carry flag
CMP	FLG	0.7FH. 3	Read/write	Compare flag

12. INSTRUCTION SET

12.1 INSTRUCTION SET LIST

			0	1	
BIN	HEX				
0000	0	ADD	r, m	ADD	m, \#i
$\begin{array}{llll}0 & 0 & 0 & 1\end{array}$	1	SUB	r, m	SUB	m, \#i
0010	2	ADDC	r, m	ADDC	m, \#i
$\begin{array}{llll}0 & 0 & 1 & 1\end{array}$	3	SUBC	r, m	SUBC	m, \#i
$\begin{array}{llll}0 & 1 & 0 & 0\end{array}$	4	AND	r, m	AND	m, \#i
$\begin{array}{llll}0 & 1 & 0 & 1\end{array}$	5	XOR	r, m	XOR	m, \#i
$\begin{array}{llll}0 & 1 & 1 & 0\end{array}$	6	OR	r, m	OR	m, \#i
$\begin{array}{lllll}0 & 1 & 1 & 1\end{array}$	7	RET RETSK RORC STOP HALT NOP	r S h		
1000	8	LD	r, m	ST	m, r
10001	9	SKE	m, \#i	SKGE	m, \#i
1010	A				
1011	B	SKNE	m, \#i	SKLT	m, \#i
1100	C	BR	addr	CALL	addr
1101	D			MOV	m, \#i
11110	E			SKT	m, \#n
1111	F			SKF	$\mathrm{m}, ~ \# \mathrm{n}$

12.2 INSTRUCTIONS

Legend:

M	: One of data memory	n	: Bit position : 4 bits
m	: Data memory address specified by [$\mathrm{m}_{\mathrm{H}}, \mathrm{m}_{\mathrm{L}}$] of each bank	addr	: One of program memory address; 11 bits
m_{H}	: Data memory address high (row address) ; 3 bits		: Program memory address high ; 3 bits
m_{L}	: Data memory address low (column address) ; 4 bits		: Program memory address middle ; 4 bits
R	: One of general register specified by [(RP), r]		: Prograin memory address low ; 4 bits
r	: General register address low (column address) ; 4 bits	CY	: Carry flag
RP	General register pointer	CMP	: Compare flag
PC	Program counter	s	: Stop release condition
SP	Stack pointer	h	Halt release condition
STACK	: Stack specified by (SP)	[]	Address of M, R
i	: Immediate data ; 4 bits	()	: Contents of M, R

$\underset{\sim}{\underset{\sim}{2}}$	Mnemonic	Operand	Function	Operation	Machine code			
					Op code	$\begin{aligned} & \hline 3 \\ & \text { bits } \end{aligned}$	$\begin{aligned} & 4 \\ & \text { bits } \end{aligned}$	$\begin{aligned} & \hline 4 \\ & \text { bits } \end{aligned}$
进	ADD	r,m	Add memory to register	$\mathrm{R} \leftarrow(\mathrm{R})+(\mathrm{M})$	00000	m_{H}	m_{L}	r
		m, \#i	Add immediate data to memory	$\mathrm{M} \leftarrow$ (M) +i	10000	m_{H}	m_{L}	i
	ADDC	r,m	Add memory to register with carry	$\mathrm{R} \leftarrow(\mathrm{R})+(\mathrm{M})+(\mathrm{CY})$	00010	m_{H}	m_{L}	r
		m, \#i	Add immediate data to memory with carry	$\mathrm{R} \leftarrow(\mathrm{M})+\mathrm{i}+(\mathrm{CY})$	10010	m_{H}	m_{L}	i
$\begin{aligned} & \stackrel{\rightharpoonup}{4} \\ & \stackrel{y}{5} \\ & \stackrel{0}{3} \\ & \dot{n} \end{aligned}$	SUB	r,m	Subtract memory from register	$\mathrm{R} \leftarrow(\mathrm{R})-(\mathrm{M})$	00001	m_{H}	m_{L}	r
		m, \#i	Subtract immediate data from memory	$\mathrm{M} \leftarrow$ (M) -i	10001	m_{H}	m_{L}	i
	SUBC	r,m	Subtract memory from register with borrow	$\mathrm{R} \leftarrow(\mathrm{R})-(\mathrm{M})-(\mathrm{CY})$	00011	m_{H}	m_{L}	r
		m, \#i	Subtract immediate data from memory with borrow	$\mathrm{M} \leftarrow$ (M) - $\mathrm{i}-(\mathrm{CY})$	10011	m_{H}	m_{L}	i
	SKE	m, \#i	Skip if memory equal to immediate data	$\mathrm{M}-\mathrm{i}$, skip if zero	01001	m_{H}	m_{L}	i
	SKGE	m, \#i	Skip if memory greater than or equal to immediate data	M-i, skip if not borrow	11001	m_{H}	m_{L}	i
	SKLT	m, \#i	Skip if memory less than immediate data	$\mathrm{M}-\mathrm{i}$, skip if borrow	11011	m_{H}	m_{L}	i
	SKNE	m, \#i	Skip if memory not equal to immediate data	M-i, skip if not zero	01011	m_{H}	m_{L}	i
	AND	m, \#i	Logical AND of memory and immediate data	$\mathrm{M} \leftarrow$ (M) AND i	10100	m_{H}	m_{L}	i
		r,m	Logical AND of register and memory	$\mathrm{R} \leftarrow(\mathrm{R})$ AND (M)	00100	m_{H}	m_{L}	r
	OR	m, \#i	Logical OR of memory and immediate data	$\mathrm{M} \leftarrow(\mathrm{M}) \mathrm{OR} \mathrm{i}$	10110	m_{H}	m_{L}	i
		r,m	Logical OR of register and memory	$\mathrm{R} \leftarrow(\mathrm{R}) \mathrm{OR}$ (M)	00110	m_{H}	m_{L}	r
	XOR	m, \#i	Logical XOR of memory and immediate data	$\mathrm{M} \leftarrow(\mathrm{M}) \mathrm{XOR} \mathrm{i}$	10101	m_{H}	m_{L}	i
		r,m	Logical XOR of register and memory	$\mathrm{R} \leftarrow(\mathrm{R}) \mathrm{XOR}(\mathrm{M})$	00101	m_{H}	m_{L}	r
	LD	r,m	Load memory of register	$\mathrm{R} \leftarrow(\mathrm{M})$	01000	m_{H}	m_{L}	r
	ST	m, r	Store register to memory	(M) $\leftarrow \mathrm{R}$	11000	m_{H}	m_{L}	r
	MOV	m, \#i	Move immediate data to memory	$\mathrm{M}-\mathrm{i}$	11101	m_{H}	m_{L}	i
$\stackrel{\rightharpoonup}{\ddot{E}}$	SKT	$\mathrm{m}, \mathrm{\# n}$	Test memory bits, then skip if all bits specified are true	$\begin{aligned} & \mathrm{CMP} \leftarrow 0 \\ & \text { skip if } M_{n}=\text { all " } 1 " \end{aligned}$	11110	m_{H}	m_{L}	n
	SKF	m, \#n	Test memory bits, then skip if all bits specified are false	$\begin{aligned} & \mathrm{CMP} \leftarrow 0 \\ & \text { skip if } \mathrm{M}_{\mathrm{n}}=\text { all } * 0^{*} \end{aligned}$	11111	m_{H}	m_{L}	n

	Mnemonie	Operahd	Function	Operation	Machine code			
突					Op code	$\begin{aligned} & 3 \\ & \text { bits } \end{aligned}$	$\begin{aligned} & 4 \\ & \text { bits } \end{aligned}$	$\begin{array}{\|l\|} \hline 4 \\ \text { bits } \end{array}$
	BR	addr	Jump to the address	$\mathrm{PC} \leftarrow \mathrm{ADDR}$	01100	a_{H}	a_{M}	a_{L}
育	RORC	r	Rotate register right with carry	$(\mathrm{CY}) \rightarrow(\mathrm{R}) \rightarrow \mathrm{CY}$	00111	000	0111	r
	CALL	addr	Call subroutine	$\begin{aligned} & \mathrm{SP} \leftarrow(\mathrm{SP})-1 \\ & \mathrm{STACK} \leftarrow((\mathrm{PC})+1), \\ & \mathrm{PC} \leftarrow \mathrm{ADDR} \end{aligned}$	11100	a_{H}	a_{M}	a_{L}
	RET		Return to main routine from subroutine	$\mathrm{PC} \leftarrow(\mathrm{STACK}) . \mathrm{SP} \leftarrow(\mathrm{SP})+1$	00111	000	1110	0000
	RETSK		Return to main routine from subroutine, then skip unconditionary	$\begin{aligned} & \mathrm{PC} \leftarrow(\mathrm{STACK}), \mathrm{SP} \leftarrow(\mathrm{SP})+1 \\ & \text { and skip } \end{aligned}$	00111	001	1110	0000
	STOP	s	Stop clock	STOP	00111	010	1111	s
	HALT	h	Halt the CPU, restart by condition h	HALT	00111	011	1111	h
	NOP		No operation	No Operation	00111	100	1111	0000

13. ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{a}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}\right.$)

CAPACITY ($\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{VDD}=0 \mathrm{~V}$)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
Input Capacitance	CIN			15	pF	$\mathrm{f}=1 \mathrm{MHz}$ 0 V for pins other than pins to be measured
Input/Output Capacitance	CIo			15	pF	

DC CHARACTERISTICS (Ta $=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=\mathbf{2 . 5}$ to $\mathbf{6 . 0} \mathrm{V}$)

[^8]CHARACTERISTICS OF DATA MEMORY FOR HOLDING DATA ON LOW SUPPLY VOLTAGE IN THE STOP MODE ($\mathrm{T}_{\mathrm{a}}=-\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
Data Hold Supply VoItage	VDDDR	2.0		6.0	V	
Data Hold Supply Current	IDDDR		0.1	5.0	$\mu \mathrm{~A}$	VDODR $=2.0 \mathrm{~V}$
Release Signal Set Time	tsREL	0			$\mu \mathrm{~s}$	

AC CHARACTERISTICS ($\mathrm{T}_{\mathbf{2}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=\mathbf{2 . 5}$ to 6.0 V)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
Internal Clock Cycle Time	Tcy	6.6		160	$\mu \mathrm{s}$	$V_{D D}=4.5$ to 6.0 V
		26.6		160	$\mu \mathrm{s}$	
High/Low Level Width on POB_{0} and POB_{1}	TPв Tpbl	10			$\mu \mathrm{s}$	
High/Low Level Width on $\overline{\text { RESET }}$	Trsh TrsL	10			$\mu \mathrm{s}$	

DC PROGRAMMING CHARACTERISTICS ($\mathrm{T}_{\mathrm{z}}=25^{\circ} \mathrm{C}, \mathrm{V} D=6.0 \pm 0.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=12.5 \pm 0.5 \mathrm{~V}$)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
Input Voltage High	$\mathrm{V}_{\mathrm{H} 1}$	0.7 VDD		VDD	V	Except OSC ${ }_{1}$
	$\mathrm{V}_{\mathrm{H} 2}$	VDD -0.5		Vod	V	OSC ${ }_{1}$
Input Voltage Low	VIL1	0		0.3 Vod	V	Except OSC ${ }_{1}$
	VIL2	0		0.4	V	OSC ${ }_{1}$
Input Leakage Current	lu			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$
Output Voltage High	Vor	$V_{\text {DD }}-1.0$			V	$\mathrm{IOH}=-1 \mathrm{~mA}$
Output Voltage Low	Vol			0.4	\checkmark	$\mathrm{loL}=1.6 \mathrm{~mA}$
Vod Power Supply Current	lod			30	mA	
VPP Power Supply Current	Ipp			30	mA	$\mathrm{MDO}=\mathrm{V}_{\mathrm{IL}}, \mathrm{MD1}=\mathrm{V}_{\mathrm{IH}}$

Notes 1. VPp must be under +13.5 V including overshoot.
2. Vod must be applied before $V_{\text {PP }}$ on and must be off after $V_{P P}$ off.

AC PROGRAMMING CHARACTERISTICS $\left(T_{s}=25^{\circ} \mathrm{C}, \mathrm{VDD}_{\mathrm{DD}}=\mathbf{6 . 0} \pm 0.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=12.5 \pm 0.5 \mathrm{~V}\right.$)

CHARACTERISTICS	SYMBOL	(*1)	MIN.	TYP.	MAX.	UNIT	CONDITION
Address Set Up Time to MDO ${ }^{(2)}$	tas	tus	2			$\mu \mathrm{s}$	
MD1 Setup Time to MD0 \downarrow	$\mathrm{tmis}^{\text {che }}$	toes	2			$\mu \mathrm{s}$	
Data Setup Time to MDO \downarrow	tos	tos	2			$\mu \mathrm{s}$	
Address Hold Time to MD0 \uparrow (${ }^{(2)}$	tah	tan	2			$\mu \mathrm{s}$	
Data Hold Time to MD0 \uparrow	tor	tor	2			$\mu \mathrm{s}$	
Data Output Float Delay Time from MDO $\uparrow \rightarrow$	tof	tof	0		130	ns	
Vpp Setup Time to MD3 \uparrow	tups	tups	2			$\mu \mathrm{s}$	
Vod Setup Time to MD3 \uparrow	tros	tves	2			$\mu \mathrm{s}$	
Initial Program Pulse Width	tow	tow	0.95	1.0	1.05	ms	
Additional Program Pulse Width	topw	topw	0.95		21.0	ms	
MD0 Setup Time to MD1 \uparrow	tmos	tces	2			$\mu \mathrm{s}$	
Data Output Delay Time from MDO $\downarrow \rightarrow$	tov	tov			1	$\mu \mathrm{s}$	
MD1 Hold Time to MD0 \uparrow	tmin $^{\text {d }}$	toen	2			$\mu \mathrm{s}$	$\mathrm{MDO}=\mathrm{MD1}=\mathrm{V}_{11}$
MD1 Recovery Time to MDO \downarrow	$\mathrm{t}_{\text {м1F }}$	ton	2			$\mu \mathrm{s}$	
Program Counter Reset Time	teca	-	10			$\mu \mathrm{s}$	$\mathrm{t}_{\text {MH }}=\mathrm{t}_{\text {MRR }} \geqq 50 \mu \mathrm{~s}$
OSC1 Input High, Low Level Range	$\begin{aligned} & \mathrm{t} \times \mathrm{H}, \\ & \mathrm{t} \times \mathrm{l} \end{aligned}$	-	0.42			$\mu \mathrm{s}$	
OSC, Input Frequency	fosc				1.2	MHz	
Initial Mode Set Time	t	-	2			$\mu \mathrm{s}$	
MD3 Setup Time to MD1 \uparrow	$\mathrm{tm}_{\mathrm{ms}}$	-	2			$\mu \mathrm{s}$	
MD3 Hold Time to MD1 \downarrow	tм3 $^{\text {¢ }}$	-	2			$\mu \mathrm{s}$	
MD3 Setup Time to MDO \downarrow	tm3sa	-	2			$\mu \mathrm{s}$	Read program memory
Data Output Delay Time From Address ${ }^{(22)}$	toad	-	2			$\mu \mathrm{s}$	Read program memory
Data Output Hold Time From Address (2)	thad	tacc	0		130	ns	Read program memory
MD3 Hold Time to MDO \uparrow	Амзня	tor	2			$\mu \mathrm{s}$	Read program memory
Data Output float Delay Time From MD3 $\downarrow \rightarrow$	tofa	-	2			$\mu \mathrm{s}$	Read program memory
Reset Setup Time	tess	-	10			$\mu \mathrm{s}$	

*1 Symbols for corresponding μ PD27C256.
*2 Internal address signal is incremented by one at the falling edge of the third OSC_{1} input, and it is not connected to the pin.

Write program memory timing

The μ PD17134A and μ PD17136A are 4-bit single-chip microcontrollers containing four channels of 8-bit AND converters, two channels of 8-bit timers, an AC zerocross detector, a power-on reset circuit, and a serial interface in one chip.

For the CPU, the 17 K architecture is used. This enables accumulator direct data memory manipulation, facilitating effective programming. Every instruction is one word long, consisting of 16 bits.

Since the μ PD17134A and μ PD17136A have the on-chip A/D converters and AC zerocross detector, they can provide economical electronic control in appliances.

For the evaluation of the μ PD 17134A and μ PD17136A or small production, the μ PD17P136A, in which a program can be written once, is provided.

FEATURES

- Program memory (ROM)
μ PD17134A: 2 K bytes (1024×16 bits)
μ PD17136A: 4 K bytes (2048×16 bits)
- Data memory (RAM): 112 words (112×4 bits)
- 35 easy-to-understand instructions
- Instruction execution time: $8 \mu \mathrm{~s}$ (at 2 MHz) with Resistance, when $\mathrm{V}_{D D}=5 \mathrm{~V}$
- Stack level: 5 levels (interrupt: 3 levels)
- Vectored interrupt function:

5 interrupt sources (INT pin, timer 1, timer 0, basic interval timer, and serial interface)

- 8-bit A/D converter: 4 channels

Absolute accuracy
± 1.5 LSB or higher (on $5 \mathrm{~V} \pm 10 \%$)

- AC zerocross detector: 1 input (also used as INT pin)
- 8-bit timer: 2 channels

Timer 0 count clock (fosc $/ 16, f_{\mathrm{OSc}} / 64, f_{\mathrm{OSc}} / 256$, INT pin input)
Timer 1 count clock ($f_{\mathrm{OSC}} / 256, \mathrm{f}_{\mathrm{OSC}} / 512, \mathrm{f}_{\mathrm{OSC}} / 2048$, incrementing timer 0)

- 8-bit basic interval timer: 1 channel. Can be used as watchdog timer Basic interval timer count clock (INT pin input, incrementing timer 0, fosc $/ 4096, f_{\text {OSC }} / 8192$)
- 3-wire serial interface: 1 channel
- On-chip power-on reset circuit
- I/O pin: 21 pins
- Standby function (HALT/STOP) provided
- Operating temperature: -40 to $+85^{\circ} \mathrm{C}$
- Operating voltage: 2.7 to 6.0 V
- CMOS low power consumption

PIN CONNECTION FOR THE μ PD17134A AND μ PD17136A (Top View)

28-pin shrink DIP
28-pin SOP

Microcontroller family for small white goods Appliances

Item	μ PD17134A	$\mu \mathrm{PD} 17136 \mathrm{~A}$	$\mu \mathrm{PD} 17135 \mathrm{~A}$	μ PD17137A	Remarks
ROM size	1024×16 bits	2048×16 bits	1024×16 bits	2048×16 bits	
RAM size	112×4 bits				
Number of I/O port lines	21 lines				Including 8 N -ch opendrain lines
Analog input	4 channels				Also used as port pins
Timer	3 timers				
Serial interface	1 channel				Also used as port pin
Stack	5 levels				
Power-on reset	Provided				
System clock	RC s	ource	Ceramic/cry	stal source	
Standby function	Provided				STOP/HALT
Power supply	2.7 to 6.0 V				$5 \mathrm{~V} \pm 10$ \% for A / D
Package	28-pin shrink DIP 28-pin SOP				
PROM version	$\mu \mathrm{PD17P136A}$		μ PD17P137A		

4-BIT SINGLE-CHIP MICROCONTROLLER

The μ PD17P136A has been developed by replacing the on-chip ROM of μ PD17136A, which is a mask ROM, with a onetime PROM, which is writable only once. It is convenient for evaluating or producing in small quantities the μ PD17134A, μ PD17136A.

The μ PD17P136A is a 4-bit single-chip microcontroller with on-chip 8-bit AVD converter (4-channel), 8-bit timer (2channell, AC zero cross detector, power on resetter and serial interface.

Very efficient programming is possible through the use of the 17 K architecture, which allows the accumulator direct data memory to be operated, being adopted in the CPU. Every instruction is composed of 1 word of 16 -bit lenght.

FEATURES

- Program memory (OTP): 4 K bytes (2048×16 bits)
- Data memory (RAM): 112 words (112×4 bits)
- Instruction execution time: $8 \mu \mathrm{~s}(2 \mathrm{MHz}) \mathrm{R}$ resonator, if $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ used
- Stack level: 5 levels (interrupt: 3 levels)
- Vectored interrupt function:

5 types of causes of interrupt (INT pin, timer 1, timer 0, basic interval timer, and serial interface)

- 8-bit A/D converter: 4 channels, absolute precision ± 1.5 LSB max. ($5 \mathrm{~V} \pm 10 \%$)
- AC zero cross detector: 1 input (dual function with INT pin)
- 8-bit timer: 2 channels
- 8-bit basic interval timer: 1 channel, available as watchdog timer
- 3-wire serial interface: 1 channel
- On-chip power on resetter
- Input/output pin: 21 pins
- Standby function available (HALT/STOP)
- Operating supply voltage: 2.7 to 5.5 V
μ PD17P136A PIN CONFIGURATION (Top View)

μ PD17P136A BLOCK DIAGRAM

μ PD17P136A

MICROCONTROLLER FAMILY FOR SMALL WHITE GOOD'S APPLIANCES

Item	$\mu \mathrm{PD} 17134 \mathrm{~A}$	μ PD17136A	μ PD17135A	$\mu \mathrm{PD} 17137 \mathrm{~A}$	Remarks
ROM capacity	1024×16 bits	2048×16 bits	1024×16 bits	2048×16 bits	
RAM capacity	112×4 bits				
Number of input/ output ports	21 pins				Including 8 Nch open-drain input/output ports
Analog input	4 channels				Dual function with port pin
Timer	3 systems				
Serial interface	1 channel				Dual function with port pin
Stack	5 levels				
Power on reset	Available				
System clock	RC resonator		Ceramic/crystal resonator		
Standby function	Available				STOP/HALT
Input power	2.7 to 5.5 V				$5 \mathrm{~V} \pm 10 \% \text { if } \mathrm{A} / \mathrm{D}$ used
Package	28-pin shrink DIP 28-pin SOP				
PROM product	μ PD17P136A		μ PD17P137A		

4-BIT SINGLE-CHIP MICROCONTROLLER

The μ PD17135A and μ PD17137A are 4-bit single-chip microcontrollers containing four channels of 8-bit A/D converters, two channels of 8-bit timers, an AC zerocross detector, a power-on reset circuit, and a serial interface in one chip.

For the CPU, the 17 K architecture is used. This enables accumulator direct data memory manipulation, facilitating effective programming. Every instruction is one word long, consisting of 16 bits.

Since the μ PD17135A and μ PD17137A have the on-chip ADD converters and AC zerocross detector, they can provide economical electronic control in appliances.

For the evaluation of the μ PD17135A and μ PD17137A or small production, the μ PD17P137A, in which a program can be written once, is provided.

FEATURES

- Program memory (ROM)
μ PD17135A: 2 K bytes (1024×16 bits)
μ PD17137A: 4 K bytes (2048×16 bits)
- Data memory (RAM): 112 words (112×4 bits)
- 35 easy-to-understand instructions
- Instruction execution time: $2 \mu \mathrm{~s}$ (at 8 MHz) with ceramic/crystal source when $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$)
- Stack level: 5 levels (interrupt: 3 levels)
- Vectored interrupt function:

5 interrupt sources (INT pin, timer 1, timer 0, basic interval timer, and serial interface)

- 8-bit A/D converter: 4 channels

Absolute accuracy
± 1.5 LSB or higher (on $5 \mathrm{~V} \pm 10 \%$)

- AC zerocross detector: 1 input (also used as INT pin)
- 8-bit timer: 2 channels

Timer 0 count clock ($f_{x} / 16, f_{x} / 64, f_{x} / 256$, INT pin input)
Timer 1 count clock ($f_{x} / 256, f_{x} / 512, f_{x} / 2048$, incrementing timer 0)

- 8-bit basic interval timer: 1 channel. Can be used as wathodog timer.

Basic interval timer count clock
(INT pin input, incrementing timer $0, \mathrm{f}_{\mathrm{x}} / 4096, \mathrm{f}_{\mathrm{x}} / 8192$)

- 3-wire serial interface: 1 channel
- On-chip power-on reset circuit
- I/O pin: 21 pins
- Standby function (HALT/STOP) provided
- Operating temperature: -40 to $+85^{\circ} \mathrm{C}$
- Operating voltage: 2.7 to 6.0 V
- CMOS low power consumption

PIN CONFIGURATION FOR THE μ PD17135A AND μ PD17137A (Top View)

28-pin shrink DIP
28-pin SOP

MICROCONTROLLER FAMILY FOR SMALL WHITE GOODS APPLIANCES

Item	$\mu \mathrm{PD} 17134 \mathrm{~A}$	μ PD17136A	μ PD17135A	$\mu \mathrm{PD} 17137 \mathrm{~A}$	Remarks
ROM size RAM size	1024×16 bits 112×4 bits	$\begin{gathered} 2048 \times 16 \text { bits } \\ 112 \times 4 \text { bits } \end{gathered}$	1024×16 bits 112×4 bits	2048×16 bits 112×4 bits	
Number of I/O port lines	21 lines				Including 8 N -ch opendrain lines
Analog input	4 channels				Also used as port pins
Timer	3 timers				
Serial interface	1 channel				Also used as port pin
Stack	5 levels				
Power-on reset	Provided				
System clock	RC source		Ceramic/cry	stal source	
Standby function	Provided				STOP/HALT
Power supply	2.7 to 6.0 V				$5 \mathrm{~V} \pm 10$ \% for A / D
Package	28-pin shrink DIP 28-pin SOP				
PROM version	$\mu \mathrm{PD} 17 \mathrm{P} 136 \mathrm{~A}$		μ PD17P137A		

4-BIT SINGLE-CHIP MICROCONTROLLER

The μ PD17P137A is a one-time PROM version of the μ PD17137A, whose internal mask ROM is replaced with a one-time PROM, and is therefore suitable for evaluation of the μ PD17135A, and μ PD17137A or for small-scale production.

The μ PD17P137A is a 4-bit single-chip microcontroller containing four channels of 8-bit ADD converters, two channels of 8-bit timers, an AC zerocross detector, a power-on reset circuit and a serial interface in one chip.

For the CPU, the 17 K architecture is used. This enables accumulator direct data memory manipulation, facilitating effective programming. Every instruction is one word long, consisting of 16 bits.

FEATURES

- Program memory (OTP): 4 K bytes (2048×16 bits)
- Data memory (RAM): 112 words (112×4 bits)
- Instruction execution time: $2 \mu \mathrm{~s}$ (at 8 MHz) with ceramic or crystal source, when $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ used
- Stack level: 5 levels (interrupt: 3 levels)
- Vectored interrupt function: 5 interrupt sources
- 8-bit A/D converter: 4 channels absolute accuracy $\pm 1.5 \mathrm{LSB}$ or higher (on $5 \mathrm{~V} \pm 10 \%$)
- AC zerocross detector: 1 input (also used as INT pin)
- 8-bit timer: 2 channels
- 8-bit basic interval timer: 1 channel. Can be used as watchdog timer.
- 3-wire serial interface: 1 channel
- On-chip power-on reset circuit
- Input/output pin: 21 pins
- Standby function (HALT/STOP) provided
- Operating voltage: 2.7 to 5.5 V

PIN CONNECTION μ PD17P137A (Top View)

μ PD17P137A BLOCK DIAGRAM

MICROCONTROLLER FAMILY FOR SMALL WHITE GOODS APPLIANCES

Item	$\mu \mathrm{PD17134A}$	μ PD17136A	μ PD17135A	μ PD17137A	Remarks
ROM size	1024×16 bits	2048×16 bits	1024×16 bits	2048×16 bits	
RAM size	112×4 bits				
Number of input/ output port lines	21 lines				Including 8 N -ch open-drain lines
Analog input	4 channels				Also used as port pins
Timer	3 timers				
Serial interface	1 channel				Also used as port pin
Stack	5 levels				
Power-on reset	Provided				
System clock	RC source		Ceramic/crystal source		
Standby function	Provided				STOP/HALT
Power supply	2.7 to 5.5 V				$5 \mathrm{~V} \pm 10 \%$ for A / D
Package	28-pin shrink DIP 28-pin SOP				
PROM version	μ PD17P136A		μ PD17P137A		

μ PD17201A

4-BIT SINGLE-CHIP MICROCONTROLLER WITH A/D CONVERTER AND LCD CONTROLLER/DRIVER FOR INFRARED REMOTE CONTROLLER

The μ PD17201A is a 4-bit single-chip microcontroller integrating an LCD controller/driver, AD converter, and an infrared remote controller carrier generator circuit on a single chip.

This microcontroller employs the 17 K architecture and can execute transfer and arithmetic operations with a single 16bit instruction between data memory addresses, and between the data memory and a peripheral circuit.
μ PD17201A is housed in an 80-pin plastic QFP.

FEATURES

- 17K architecture
- Program memory (ROM): 6K bytes (3072×16 bits)
- Data memory (RAM): 336 words (336×4 bits)
- Internal infrared remote controller carrier generator
- 4 channel 8-bit A/D converter
- Internal LCD controller/driver (can display up to 136 segments)

Common pins: 4, segment pins: 34 (two of the common pins can also be used a segment pins)
Internal LCD drive constant rising-voltage circuit: LCD drive voltage can be arbitrarily set at 2.4 to 5.4 V by external resistor

- I/O ports: 19
- Three-line serial interface
- Stack levels: 5 (3 interrupt levels)
- 8-bit timer: 1 channel
- Watch timer: 1 channel
- Instruction execution time: $4 \mu \mathrm{~s}$ (with 4 MHz ceramic/crystal oscillator)
- Standby function (STOP, HALT): Watch display with $32,768 \mathrm{kHz}$ crystal oscillator inSTOP mode
- Operating voltage range: 2.2 to 5.5 V

APPLICATIONS

Infrared remote controllers for air conditioners, and remote controllers with LCD

ORDERING INFORMATION

Order Code	Package	Quality Grade
μ PD17201AGF-xxx-3B9	$80-$ pin plastic QFP	Standard

1. PIN CONFIGURATION (Top View)

1.1 PIN CONFIGURATION (Top View

1.2 PIN FUNCTION LIST

PIN No.	SYMBOL	1/0	OUTPUT TYPE	PIN NAME	FUNCTION
$\begin{aligned} & 78 \\ & 79 \\ & 80 \\ & 81 \\ & 32 \\ & 34 \end{aligned}$	$\begin{aligned} & \mathrm{LCD}_{35} / \mathrm{COM}_{2} \\ & \mathrm{LCD}_{34} / \mathrm{COM}_{3} \\ & \mathrm{LCD}_{33} \\ & \mathrm{LCD}_{32} \\ & \mathrm{LCD}_{1} \\ & \mathrm{LCD}_{0} \end{aligned}$	Output		LCD segment signal	Segment signal output pins for the LCD driver. LCD_{35} / CM_{2} and $\mathrm{LCD}_{34} / \mathrm{COM}_{3}$ serve as segment signal output and common signal output pins. The function for these pins. The function for these pins is selected by LCDMD3 through LCDMDO (address 32 H , bit 3-0) in the register file. Display dots can number 72, 105, or 136, depending on the matrix for the segment signal output and common signal output pins. The bias is fixed to $1 / 3$, and the duty factor is $1 / 2,1 / 3$, or $1 / 4$, depending on the selected number of common pins. The frame frequency can be selected by LCDCK2 through LCDCKO registers (address $31 \mathrm{H})$ in the register file. The dot with a segment signal output pin and common signal output, between which $a \pm \mathrm{V}_{\mathrm{DD}}$ potential difference is generated, lights. The display data for the LCD driver is set through the LCD display register (addresses $\mathbf{4 0 H}$ through 63 H in BANKO). The display ON and OFF modes for the LCD driver are set by the LCDEN register (address 31 H , bit 3) in the register file. In the display OFF mode, the segment signal output pin outputs a signal waveform, because the display goes off. When μ PD17201A is reset by the RESET signal, low voltage detection by the voltage detector, or watchdog timer, the LCDEN register is set in the display OFF mode.
33	GND	-	-	Ground	Device ground pin
35	$V_{\text {ADC }}$	-	-	Analog power	A/D converter power pin. Connect this pin to the $V_{\text {DD }}$ pin.
36 37 38 39	$A D C_{0}$ $A D C_{1}$ $A D C_{2}$ ADC_{3}	Input Input Input Input		A/D converter input 0 A/D converter input 1 A/D converter input 2 A/D converter input 3	Input pins for the 8-bit A/D converter. The A/D converter can also be used as a comparator, when so specified by VREFEN, ADCEN, ADCCH1 and ADCCHO (address 21 H) in the register file. The A/D converter has a successive approximate type and its reference voltage is generated by dividing the voltage on the analog power pin ($V_{\text {ADC }}$) with a resistor string. A total of six A/D converter channels, $A_{0} C_{0}$ through $A D C_{3}$ pins, are available. Two comparator channels, with one consisting of $A D C_{0}$ and $A D C_{2}$ pins and the other consisting of $A D C_{1}$ and $A D C_{3}$, are available. The A/D converter or comparator function and the channel to be used are selected by VREFEN, ADCEN, ADCCH1, and ADCCHO (address $\mathbf{2 1 H}$) in the register file.
40	GNDADC	-	-	Analog ground	A/D converter ground pin

PIN. NO.	SYMBOL	1/0	OUTPUT TYPE	PIN NAME	FUNCTION
41	INT	Input	-	Interrupt	External interrupt request signal input pin. The interrupt request is issued at the rising edge of the signal input to this pin. The interrupt is not accepted, even when the interrupt request is issued, unless the interrupt is enabled (maskable interrupt). All the interrupts can be enabled by the El instruction, or only the INT pin can be enabled by IP (address 2FH) in the register file. When the interrupt request is issued, while the interrupt is enabled, the interrupt is accepted, and the program execution branches to address 03 H . The interrupt request issuance can be checked by IRQ (address 3FH) in the register file, even when the interrupt is not enabled. All the interrupts are disabled and interrupt requests are cleared, when μ PD17201A is reset by the RESET pin or watchdog timer.
$\begin{aligned} & 42 \\ & 43 \\ & 44 \\ & 45 \end{aligned}$	POAO POA 1 POA_{2} POA_{3}	1/0	CMOS push-pull	Port 0A	These pins constitute a 4-bit I/O port, which can be set in input or output mode in 4 bits units (group I/O). The input mode is specified by POAGIO (address 37 H , bit 0) in the register file. The input data is read and output data is set through port register POA (address 70H in BANKO). POA_{0} through POA_{3} are internally connected with a pull-up resistor. When μ PD17201A is reset by the RESET signal or watchdog timer, these pins are set in the input mode.
$\begin{aligned} & 46 \\ & 47 \\ & 48 \\ & 49 \end{aligned}$	POB_{0} POB_{1} POB_{2} POB_{3}	1/0	N -ch open-drain	Port OB	These pins constitute a 4-bit I/O port, which can be set in input or output mode in 4 bits units (group I/O). The input mode is specified by POBGIO laddress 37 H , bit 1) in the register file. The input data is read and output data is set through port register POB (address 71 H in BANKO). Since these pins are N-ch opendrain, they must be connected to an external pull-up resistor. When μ PD17201A is reset by the RESET signal or watchdog timer, these pins are set in the input mode.
$\begin{aligned} & 50 \\ & 51 \\ & 52 \\ & 53 \end{aligned}$	$P^{P O C}$ POC_{1} POC_{2} POC_{3}	1/0	N -ch open-drain	Port OC	These pins constitute a 4-bit I/O port, which can be set in input or output mode in 4 bit units (group I/O). The input mode is specified by POCGIO (address 37 H , bit 2) in the register file. The input data is read and output data is set through port register POC (address 72H in BANKO). Since these pins are N-ch opendrain, they must be connected to an external pull-up resistor. When μ PD17201A is reset by the RESET signal or watchdog timer, these pins are set in the input mode.

$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	SYMBOL	1/0	OUTPUT TYPE	PIN NAME	FUNCTION
$\begin{aligned} & 54 \\ & 55 \\ & 56 \end{aligned}$	POD ${ }_{0} /$ LED POD ${ }_{1} / T M O U T$ POD_{2}	1/0	CMOS11 push-pull	Port OD	POD $0 /$ LED is a 4-bit I/O port pin and LED output pin. POD ${ }_{1}$ /TMOUT is a 4-bit I/O port pin and an external signal output pin for the timer. Whether these pins function as port pins or LED output and timer output pins is specified by NRZEN (bit 2 in address $\mathbf{2 3 H}$) and TMOE (bit 1 in address $\mathbf{2 3 H}$). When μ PD17201A is reset by the RESET signal or watchdog timer, these pins are set in the input mode. (1) As I/O port pin These pins can be set in input or output mode bitwise (bit I/O) by PODBIO3 through PODBIOO (address 27 H , bits 3 through 0). The input date is read and output data is set through port register POD (address 73 H in BANKO). (2) $P O D_{0}$ as LED output pin Whether POD_{0} pin functions as LED output pin or I/O port pin is specified by NRZEN. As an LED output pin, this pin outputs an NRZ signal in synchronization with REM output. (3) POD_{1} as timer output pin Whether this pin functions as the external signal output pin for the 8 -bit timer or $1 / O$ port pin is specified by TMOE).
$\begin{aligned} & 58 \\ & 59 \\ & 60 \end{aligned}$	$\begin{aligned} & \mathrm{P} 1 \mathrm{~A}_{0} / \overline{\mathrm{SCK}} \\ & {\mathrm{P} 1 \mathrm{~A}_{1} / \mathrm{SO}}^{\mathrm{P}_{1} \mathrm{~A}_{2} / \mathrm{SI}} \end{aligned}$	1/0	cMOS push-pull	Port 1A	These pins constitute a 3-bit general-purpose I/O port, which also functions as a serial interface. Whether these pins function as an I/O port or serial interface is specified by SIOEN (address 23 H , bit 0) in the register file: When μ PD17201A is reset by the $\overline{\text { RESET }}$ signal or watchdog timer, these pins are set in the input mode. (1) As 3-bit I/O port The I/O port can be set in the input or output mode in 3 bit units (group I/O) by P1AGIO (address 37H, bit 3) in the register file. The input data is read or output data is set through port register P1A (address 70H in BANK1). (2) As serial interface The serial interface function ($\mu \mathrm{COM}$ standard mode) is selected by SIOEN.
61	REM	Output	CMOS push-pull	Remote controller transfer output	Infrared remote controller signal output pin. The carrier frequency can be set for from to $\mathbf{1 6}$ to $\mathbf{1 0 2 4} \mathbf{~ k H z}$.
62	$V_{\text {DD }}$			Power supply	Device power supply pin
$\begin{aligned} & 63 \\ & 64 \end{aligned}$	$\begin{aligned} & X_{\text {IN }} \\ & X_{\text {OUT }} \end{aligned}$	Input Output		Main clock oscillator	Connect a 4 MHz ceramic/crystal oscillator between these pins.
65	RESET	Input		Reset	Inputs the system reset signal. μ PD17021A is reset, when a low-level signal is input to this pin for $50 \mu \mathrm{~s}$ or longer.
66	VREG	Output		Voltage regulator output	Voltage regulator output pin. Connect an external 0.1 $\mu \mathrm{F}$ capacitor to this pin.
67	WDOUT	Output		Watchdog output	Detects program overrunning, such as for watchdog timer and stack overflow

$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	SYMBOL	1/0	OUTPUT TYPE	PIN NAME	FUNCTION
$\begin{aligned} & 68 \\ & 74 \end{aligned}$	XTIN XTOUT	Input Output		Subclock oscillator	Connect a 32 kHz crystal oscillator between these pins.
71	$\mathrm{V}_{\text {LCDC }}$	Output		LCD drive reference voltage adjuster	This pin adjusts the LCD drive reference voltage. Connect a resistor between $V_{\text {LCDO }}$ and $V_{\text {LCDC }}$, and between $V_{\text {LCDC }}$ and GND to adjust the reference voltage.
$\begin{aligned} & 70 \\ & 72 \\ & 73 \end{aligned}$	$V_{\text {LCDO }}$ VLCD1 VLCD2	Output		LCD drive reference voltage output	LCD drive reference voltage output pins. VLCDO outputs the reference voltage. $\mathrm{V}_{\text {LCDC1 }}$ outputs a voltage two times the reference voltage (doubler), while $V_{\text {LCDC2 }}$ outputs a voltage three times the reference voltage (tripler). Connect a resistor to adjust the reference voltage between $\mathrm{V}_{\text {LCDO }}$ and $\mathrm{V}_{\text {LCDC }}$ and between $V_{\text {LCDC }}$ and GND. Connect a $0.47 \mu \mathrm{~F}$ capacitor between each pin and GND.
$\begin{aligned} & 74 \\ & 75 \end{aligned}$	CAPH CAPL			Voltage-raising capacitor	Connect a voltage-raising capacitor between these pins. Connect a $0.47 \mu \mathrm{~F}$ capacitor between these pins.
$\begin{aligned} & 76 \\ & 77 \end{aligned}$	$\begin{aligned} & \text { COM }_{0} \\ & \text { COM }_{1} \end{aligned}$	Output		Common signal	Common signal output pins for the LCD driver. In addition to these pins, $\mathrm{LCD}_{35} / \mathrm{COM}_{2}$ and $\mathrm{LCD}_{34} / \mathrm{COM}_{3}$ pins can also be used as common signal output pins. The function of these pins is selected by LCDMDO and LCDMD1 registers (address 32 H) in the register file. The display dots can number 72,105, or 136, depending on the matrix of the segment signal output and common signal output pins. The bias is fixed to $1 / 3$, and the duty factor is $1 / 2,1 / 3$, or $1 / 4$, depending on the selected number of common pins. The frame frequency can be selected by LCDCKO and LCDCK1 registers (address 31 H) in the register file. The dot with a segment signal output pin and common signal output, between which a $\pm \mathrm{V}_{\text {DD }}$ potential difference is generated, lights. The display ON and OFF modes for the LCD driver are set by the LCDEN register (address $\mathbf{3 1} \mathrm{H}$) in the register file. In the display OFF mode, the segment signal output pin outputs a signal waveform, because the display goes off. When μ PD17201A is reset by the RESET signal, low voltage detection by the voltage detector, or watchdog timer, the LCDEN register is set in the display OFF mode.

1.3 INPUT/OUTPUT CIRCUITS

The input/output circuits for each μ PD17201A pin are shown below.
(1) $\mathrm{POA}_{0}-\mathrm{POA}_{3}$

(2) $\mathrm{POB}_{0}-\mathrm{POB}_{3}$

(3) $\mathrm{POC}_{0}-\mathrm{POC}_{3}$

(4) $\mathrm{POD}_{0}-\mathrm{POD}_{3}$

Input buffer
(5) P1A0.P1A A_{2}

(6) $\overline{\text { RESET }}$

2. BLOCK DIAGRAM

3.1 MASK OPTION DEFINITION DIRECTIVES

Table 3-1 lists the directives that can be used in the mask option definition block.
Here is an example of mask option definition:

Symbol field	Mnemonic field	Operand field	Comment field
[label:]	OPTION		[; comment]
	OPTRES	RESPLUP	
	OPTCK	USEX,USEXT	
	ENDOP		

Table 3-1 Mask Option Definition Directives

Item	Directive	No. of Operands	First Operand	Second Operand
RESET pin	OPTRES	1	RESET Mask option	
			RESPLUP (w/pull-up resistor) OPEN (w/o pull-up resistor)	
External oscillator	OPTCK	2	Using main clock	Using subclock
			USEX (main clock is used) NOX (main clock is not used)	USEXT (subclock is used) NOXT (subclock is not used)

3.2 KEYWORD 8YMBOLS

The symbols defined by the μ PD17201A device file, are listed in Table 3-2. The defined symbols are the following register file names, port names, and peripheral device names.

Table 3-2 Keyword Symbols

Symbol	Attribute	Value	R/W	Remarks
DBF3	MEM	0.0 CH	R/W	Bits 15-12 for data buffer
DBF2	MEM	0.0DH	R/W	Bits 11-8 for data buffer
DBF1	MEM	0.0 EH	R/W	Bits 7-4 for data duffer
DBF0	MEM	0.0 FH	R/W	Bits 3-0 for data duffer
AR3	MEM	0.74 H	R	Bits 1512 for address register
AR2	MEM	0.75 H	R/W	Bits 11-8 for address register
AR1	MEM	0.76 H	R/W	Bits 7-4 for address register
AR0	MEM	0.77 H	R/W	Bits 3-0 for address register
WR	MEM	0.78 H	R/W	Window register
BANK	MEM	0.79 H	R/W	Bank register
IXH	MEM	0.7 AH	R/W	Bits 11-8 for index register
MPH	MEM	0.7 AH	R/W	Bits 7-4 for memory pointer
MPE	FLG	0.7 AH. 3	R/W	Memory pointer enable flag
IXM	MEM	0.7 BH	R/W	Bits 7-4 for index register
MPL	MEM	0.7 BH	R/W	Bits 3-0 for memory pointer
IXL	MEM	0.7 CH	R/W	Bits 3-0 for index register
RPH	MEM	0.7 DH	R/W	Bits 7-4 for register pointer
RPL	MEM	0.7 EH	R/W	Bits 3-0 for register pointer
PSW	MEM	0.7 FH	R/W	Program status word
BCD	FLG	0.7 EH .0	R/W	BCD arithmetic flag
CMP	FLG	0.7 FH .3	R/W	Compare flag
CY	FLG	0.7FH. 2	R/W	Carry flag
Z	FLG	0.7 FH .1	R/W	Zero flag
IXE	FLG	0.7FH. 0	R/W	Index register enable flag
LCDD0	MEM	0.40 H	R/W	LCD segment 0
LCDD1	MEM	0.41 H	R/W	LCD segment 1
LCDD2	MEM	0.42 H	R/W	LCD segment 2
LCDD3	MEM	0.43 H	R/W	LCD segment 3
LCDD4	MEM	0.44H	R/W	LCD segment 4
LCDD5	MEM	0.45 H	R/W	LCD segment 5
LCDD6	MEM	0.46 H	R/W	LCD segment 6
LCDD7	MEM	0.47 H	R/W	LCD segment 7
LCDD8	MEM	0.48H	R/W	LCD segment 8
LCDD9	MEM	0.49 H	R/W	LCD segment 9
LCDD10	MEM	0.4 AH	R/W	LCD segment 10
LCDD11	MEM	0.4 BH	R/W	LCD segment 11

Symbol	Attribute	Value	R/W	Remarks
LCDD12	MEM	0.4 CH	R/W	LCD segment 12
LCDD13	MEM	0.4 DH	R/W	LCD segment 13
LCDD14	MEM	0.4 EH	R/W	LCD segment 14
LCDD15	MEM	0.4 FH	R/W	LCD segment 15
LCDD16	MEM	0.50 H	R/W	LCD segment 16
LCDD17	MEM	0.51 H	R/W	LCD segment 17
LCDD18	MEM	0.52 H	R/W	LCD segment 18
LCDD19	MEM	0.53 H	R/W	LCD segment 19
LCDD20	MEM	0.54 H	R/W	LCD segment 20
LCDD21	MEM	0.55 H	R/W	LCD segment 21
LCDD22	MEM	0.56 H	R/W	LCD segment 22
LCDD23	MEM	0.57 H	R/W	LCD segment 23
LCDD24	MEM	0.58 H	R/W	LCD segment 24
LCDD25	MEM	0.59 H	R/W	LCD segment 25
LCDD26	MEM	0.5 AH	R/W	LCD segment 26
LCDD27	MEM	0.5BH	R/W	LCD segment 27
LCDD28	MEM	0.5 CH	R/W	LCD segment 28
LCDD29	MEM	0.5 DH	R/W	LCD segment 29
LCDD30	MEM	0.5 EH	R/W	LCD segment 30
LCDD31	MEM	0.5 FH	R/W	LCD segment 31
LCDD32	MEM	0.60 H	R/W	LCD segment 32
LCDD33	MEM	0.61 H	R/W	LCD segment 33
LCDD34	MEM	0.62 H	R/W	LCD segment 34
LCDD35	MEM	0.63 H	R/W	LCD segment 35
P0A0	FLG	0.70 H .0	R/W	Bit 0 for port 0A
P0A1	FLG	0.70 H .1	R/W	Bit 1 for port 0A
P0A2	FLG	0.70 H .2	R/W	Bit 2 for port 0A
P0A3	FLG	0.70 H .3	R/W	Bit 3 for port 0A
P0B0	FLG	0.71 H .0	R/W	Bit 0 for port 0 B
P0B1	FLG	0.71 H .1	R/W	Bit 1 for port 0B
P0B2	FLG	0.71 H .2	R/W	Bit 2 for port 0B
P0B3	FLG	0.71 H .3	R/W	Bit 3 for port 0B
P0C0	FLG	0.72 H .0	R/W	Bit 0 for port 0C
P 0 Cl	FLG	0.72 H .1	R/W	Bit 1 for port 0C
P0C2	FLG	0.72 H .2	R/W	Bit 2 for port 0C
P0C3	FLG	0.72 H .3	R/W	Bit 3 for port 0C
P0D0	FLG	0.73 H .0	R/W	Bit 0 for port 0D
P0D1	FLG	0.73 H .1	R/W	Bit 1 for port 0D
P0D2	FLG	0.73 H .2	R/W	Bit 2 for port 0D
P0D3	FLG	0.73 H .3	R/W	Bit 3 for port 0D
P1A0	FLG	1.70 H .0	R/W	Bit 0 for port 1A

Symbol	Attribute	Value	R/W	Remarks
PlAl	FLG	1.70 H .1	R/W	Bit 1 for port 1A
P1A2	FLG	1.70 H .2	R/W	Bit 2 for port 1A
SP	MEM	0.81 H	R/W	Stack pointer
SYSCK	FLG	0.82 H .1	R/W	Selects system clock
XEN	FLG	0.82 H .0	R/W	Enables main clock
WDTRES	FLG	0.83 H .3	R/W	Resets watchdog timer
WTMMD	FLG	0.83 H .2	R/W	Selects watch timer mode
WTMRES	FLG	$0.83 \mathrm{H.1}$	R/W	Resets watch timer mode
VDDDET1	FLG	0.87 H .3	R/W	VDD detection flag 1
VDDDET0	FLG	0.87 H .2	R/W	VDD detection flag 0
INT	FLG	0.8 FH .0	R	Interrupt pin status
NRZBF	FLG	0.91 H .0	R/W	NRZ buffer data
NRZ	FLG	0.92 H .0	R/W	NRZ data
ADCCMP	FLG	$0 . \mathrm{AOH} .0$	R/W	Comparator result
VREFEN	FLG	$0 . \mathrm{AlH}$.	R/W	Enables VDD reference terminal
ADCEN	FLG	$0 . \mathrm{AlH}$.	R/W	ADC enable flag
ADCCH0	FLG	$0 . A 1 H .1$	R/W	ADC channel selection \#1
ADCCH0	FLG	$0 . A 1 H .0$	R/W	ADC channel selection \#0
SIOTS	FLG	$0 . \mathrm{A} 2 \mathrm{H} .3$	R/W	Serial interface
SIOHIZ	FLG	0.A2H. 2	R/W	SO/port selection
SIOCK1	FLG	$0 . \mathrm{A} 2 \mathrm{H} .1$	R/W	Serial interface clock \#1
SIOCK0	FLG	0.A2H. 0	R/W	Serial interface clock \#0
NRZEN	FLG	$0 . \mathrm{A} 3 \mathrm{H} .2$	R/W	NRZ enable flag
TMOE	FLG	$0 . \mathrm{A} 3 \mathrm{H} .1$	R/W	Timer output enable flag
SIOEN	FLG	0.A3H. 0	R/W	SIO enable flag
P0DBI03	FLG	$0 . \mathrm{A} 7 \mathrm{H} .3$	R/W	I/O setting flag for bit 3 in POD port
P0DBI02	FLG	$0 . \mathrm{A} 7 \mathrm{H} .2$	R/W	I/O setting flag for bit 2 in POD port
P0DBI01	FLG	0.A7H.1	R/W	I/O setting flag for bit 1 in P0D port
P0DBI00	FLG	$0 . \mathrm{A} 7 \mathrm{H} .0$	R/W	I/O setting flag for bit 0 in P0D port
IPSIO	FLG	0. AFH. 3	R/W	Interrupt enable flag for INTSIO
IPWTM	FLG	0.AFH. 2	R/W	Watch timer interrupt enable flag
IP	FLG	0.AFH.1	R/W	INT interrupt enable flag
IPTM	FLG	0.AFH. 0	R/W	8-bit timer interrupt enable flag
LCDEN	FLG	$0 . \mathrm{B1H}$.	R/W	LCD display enable flag
LCDCK2	FLG	0.B1H. 2	R/W	LCD display setting \#2
LCDCK1	FLG	$0 . \mathrm{B} 1 \mathrm{H} .1$	R/W	LCD display setting \#1
LCDCK0	FLG	$0 . \mathrm{B1H}$.	R/W	LCD display setting \#0
LCDMD3	FLG	$0 . \mathrm{B} 2 \mathrm{H} .3$	R/W	LCD display setting \#3
LCDMD2	FLG	$0 . \mathrm{B} 2 \mathrm{H} .2$	R/W	LCD display setting \#2
LCDMD1	FLG	$0 . \mathrm{B} 2 \mathrm{H} .1$	R/W	LCD display setting \#1
LCDMD0	FLG	$0 . \mathrm{B2H.0}$	R/W	LCD display setting \#0

Symbol	Attribute	Value	R/W	Remarks
TMEN	FLG	0. B3H.3	R/W	8-bit timer counter enable flag
TMRES	FLG	0. B3H. 2	R/W	8-bit timer reset flag
TMCK1	FLG	0. B3H.1	R/W	Selects 8-bit timer clock source
TMCK0	FLG	0. B3H.0	R/W	Selects 8-bit timer clock source
P1AGI0	FLG	0. B7H.3	R/W	P1A port I/O setting flag
P0CGI0	FLG	0. B7H. 2	R/W	P0C port I/O setting flag
P0BGI0	FLG	0. B7H.1	R/W	P0B port I/O setting flag
P0AGI0	FLG	0. B7H.0	R/W	P0A port I/O setting flag
IRQSIO	FLG	0. BBH.3	R/W	SIO interrupt request flag
IRQWTM	FLG	0. BCH.2	R/W	Watch timer interrupt request flag
IRQ	FLG	0. BDH.1	R/W	INT interrupt request flag
IRQTM	FLG	0. BEH.0	R/W	8-bit timer interrupt request flag
SIOSFR	DAT	01 H	R/W	Serial I/O register
TMM	DAT	02 H	W	8-bit timer modulo register
TMC	DAT	02 H	R	8-bit timer count register
NRZLTMM	DAT	03 H	R/W	NRZ modulo register, low
NRZHTMM	DAT	04 H	R/W	NRZ modulo register, high
ADCR	DAT	05 H	R/W	ADC reference voltage setting register
DBF	DAT	0 FH	R/W	Data buffer
IX	DAT	01 H	R/W	Index register
AR	DAT	40 H	R/W	Address register

4. μ PD17201A INSTRUCTION SET

4.1 INSTRUCTION SET OUTLINE

$\mathrm{b}_{14}-b_{11}$		0		1	
BIN	HEX				
0000	0	ADD	r, m	ADD	m, \#i
0001	1	SUB	r, m	SUB	m, \#i
0010	2	ADDC	r, m	ADDC	m, \#i
0011	3	SUBC	r, m	SUBC	m, \#i
0100	4	AND	r, m	AND	m, \#i
0101	5	XOR	r, m	XOR	m, \#i
0110	6	OR	r, m	OR	m, \#i
0111	7	INC INC MOVT BR CALL RET RETSK EI DI RETI PUSH POP GET PUT PEEK POKE RORC HALT NOP	AR IX DBF, @AR @ AR @ AR AR AR DBF, p p. DBF WR, RA RA, WR r h		
1000	8	LD	r, m	ST	m, r
1001	9	SKE	m, \#i	SKGE	m, \#i
1010	A	MOV	$@_{\text {r, m }}$	MOV	m, @ r
1011	B	SKNE	m, \#i	SKLT	m, \#i
1100	C	BR	addr (page 0)	CALL	addr (page 0)
1101	D	BR	addr (page 1)	MOV	m, \#i
1110	E			SKT	m, \#n
1111	F			SKF	m, \#n

4.2 INSTRUCTION LIST

Legend

M
m : Data memory address specified by $\left[m_{H}, m_{L}\right]$ of each bank
$\mathrm{m}_{\mathrm{H}} \quad$: Data memory address high (row address) : 3 bits
$\mathrm{m}_{\mathrm{L}} \quad$: Data memory address low (column address) : 4 bits
R
r : General register address low (column address) : 4 bits
RP
RF
rf : Register file address specified by [rf $H_{H}, \mathrm{rf}_{\mathrm{L}}$]
$\mathrm{rf}_{\mathrm{H}} \quad:$ Register file address high (row address) : 3 bits
$\mathrm{rf}_{\mathrm{L}} \quad$: Register file address low (column address) ; 4 bits
AR
IX
IXE : Index register enable flag
DBF : Data buffer
WR : Window register
MP : Memory pointer
MPE : Memory pointer enable flag
PE
Periphera
p : Peripheral address
$\mathrm{p}_{\mathrm{H}} \quad$: Peripheral address high (row address) : 3 bits
$\mathrm{p}_{\mathrm{L}} \quad$: Peripheral address low (column address) ; 4 bits

PC	Program counter
SP	Stack pointer
STACK	Stack specified by (SP)
BANK	Bank register
(AR) rom :	One of program memory data specified by (AR)
INTEF	Interrupt enable flag
i :	: Immediate data : 4 bits
n :	Bit position : 4 bits
addr	One of program memory address : 11 bits
a_{H}	Program memory address high : 3 bits
a_{M}	Program memory address middle : 4 bits
${ }^{\text {a }}$ L	Program memory address low : 4 bits
CY	Carry
s :	Stop releasing condition
h :	Halt releasing condition
[]	Address of M, R, RF
()	Contents of M, R, RF, AR, IX, DBF, WR, PE

\|	Mnemonic	Operand	Function	Operation	Machine code			
					OP code			
	ADD	r,m	Add memory to register	$\mathrm{R} \leftarrow(\mathrm{R})+(\mathrm{M})$	00000	m_{H}	m_{L}	r
		m, \#i	Add immediate data to memory	$\mathrm{M} \leftarrow(\mathrm{M})+\mathrm{i}$	10000	m_{H}	m_{L}	i
	ADDC	r, m	Add memory to register with carry	$\mathrm{R} \leftarrow(\mathrm{R})+(\mathrm{M})+(\mathrm{CY})$	00010	m_{H}	m_{1}.	r
		m, \#i	Add immediate data to memory with carry	$\mathrm{R} \leftarrow(\mathrm{M})+\mathrm{i}+(\mathrm{CY})$	10010	m_{H}	m_{L}	i
	INC	AR	Increment address register	$A R \leftarrow A R+i$	00111	000	1001	0000
		IX	Increment index register	IX $\leftarrow \mathrm{IX}+\mathrm{i}$	00111	000	1000	0000
	SUB	r, m	Subtract memory from register	$\mathrm{R} \leftarrow(\mathrm{R})-(\mathrm{M})$	00001	m_{H}	m_{L}	r
		m, \#i	Subtract immediate data from memory	$\mathrm{M} \leftarrow \mathrm{M})-\mathrm{i}$	10001	m_{H}	m_{L}	i
	SUBC	r.m	Subtract memory from register with borrow	$\mathrm{R} \leftarrow(\mathrm{R})-(\mathrm{M})-(\mathrm{CY})$	00011	m_{H}	m_{L}	r
		m, \#i	Subtract immediate data from memory with borrow	$\mathrm{M} \leftarrow(\mathrm{M})-\mathrm{i}-(\mathrm{CY})$	10011	m_{H}	m_{L}	i
	SKE	m, \#i	Skip if memory equal to immediate data	M-i, skip if zero	01001	m_{H}	m_{L}	i
	SKGE	m, \#i	Skip if memory greater than or equal to immediate data	M-i, skip if not borrow	11001	m_{H}	m_{L}	i
	SKLT	m, \#i	Skip if memory less than immediate data	M-i, skip if borrow	11011	m_{H}	m_{L}	i
	SKNE	m, \#i	Skip if memory not equal to immediate data	M-i, skip if not zero	01011	m_{H}	m_{L}	i
	AND	m, \#i	Logical AND of memory and immediate data	$\mathrm{M} \leftarrow(\mathrm{M})$ AND i	10100	m_{H}	m_{L}	i
		r, m	Logical AND of register and memory	$\mathrm{R} \leftarrow(\mathrm{R})$ AND (M)	00100	m_{H}	m_{L}	r
	OR	m, \#i	Logical OR of memory and immediate data	$\mathrm{M} \leftarrow(\mathrm{M}) \mathrm{OR} \mathrm{i}$	10110	m_{H}	m_{L}	i
		r, m	Logical OR of register and memory	$\mathrm{R} \leftarrow(\mathrm{R}) \mathrm{OR}(\mathrm{M})$	00110	m_{H}	m_{L}	r
	XOR	m. \#i	Logical XOR of memory and immediate data	$\mathrm{M} \leftarrow(\mathrm{M}) \mathrm{XOR} \mathrm{i}$	10101	m_{H}	m_{L}	i
		r, m	Logical XOR of register and memory	$\mathrm{R} \leftarrow(\mathrm{R}) \mathrm{XOR}(\mathrm{M})$	00101	m_{H}	m_{L}	r

$\begin{aligned} & \text { 导 } \\ & \text { d } \end{aligned}$	Mnemonic	Operand	Function	Operation	Machine code			
					OP code			
$\begin{aligned} & \stackrel{\rightharpoonup}{\tilde{W}} \\ & \text { 震 } \end{aligned}$	LD	r，m	Load memory to register	$\mathrm{R} \leftarrow(\mathrm{M})$	01000	m_{H}	m_{L}	r
	ST	m，r	Store register to memory	（M）$\leftarrow \mathbf{R}$	11000	m_{H}	m_{L}	r
	MOV	（6） $\mathrm{r}_{1} \mathrm{~m}$	Move memory to destination memory referring to register	$\begin{aligned} & \text { if MPE } \pm 1,[(M P) .(R)] \leftarrow(M) \\ & \text { if MPE }=0 .\left[\left(m_{H}\right),(R)\right] \leftarrow(M) \end{aligned}$	01010	m_{H}	m_{L}	\mathbf{r}
		m，© ${ }_{\text {er }}$	Move source memory referring to register to memory	$\begin{aligned} & \text { if MPE }=1, M \leftarrow[(M P),(R)] \\ & \text { if MPE }=0, M \leftarrow\left[\left(m_{H}\right),(R)\right] \end{aligned}$	11010	m_{H}	m_{L}	r
		m．${ }_{\text {\％}} \mathrm{i}$	Move immediate data to memory	M－i	11101	m_{H}	m_{L}	i
	MOVT	$\begin{aligned} & \mathrm{DBF}, \\ & \text { © } \mathrm{AR} \end{aligned}$	Move ROM data from the address specified in AR to DBF	sp $-($ sp $)-1$, STACK \leftarrow PC DBF $\leftarrow(A R)$ rom． PC \leftarrow STACK， $\mathbf{s p} \leftarrow($ sp $)+1$	00111	000	0001	0000
	PUSH	AR	Decrement SP，then move AR to stack top	SP↔（SP）－1，STACK $\leftarrow \mathrm{AR}$	00111	000	1101	0000
	POP	AR	Move stack top to AR，then increment SP	AR $\leftarrow \mathrm{STACK}, \mathrm{SP} \leftarrow \mathrm{SP}+1$	00111	000	1100	0000
	PEEK	WR．RA	Get from RF through WR	WRヶ（RF）	00111	rf_{H}	0011	rf_{L}
	POKE	RA．WR	Put data on WR into RF	$(\mathrm{RF}) \leftarrow \mathrm{WR}$	00111	rf_{H}	0010	rf_{L}
	GET	DBF，p	Get peripheral data to DBF	DBF $\leftarrow \mathrm{P}$	00111	P_{H}	1011	P_{L}
	PUT	p．DBF	Put data in DBF to peripheral	$\mathrm{P} \leftarrow \mathrm{DBF}$	00111	P_{H}	1010	P_{L}
	SKT	m，\＃n	Test memory bits， then skip if all bits specified are true	$\begin{aligned} & \text { CMP } \leftarrow 0 . \\ & \text { skip if } M_{n}=\text { all * } 1 * \end{aligned}$	11110	m_{H}	m_{L}	n
	SKF	m，\＃n	Test memory bits， then skip if all bits specified are false	$\begin{aligned} & \text { CMP } \leftarrow 0 . \\ & \text { skip if } M_{n}=\text { all " } 0 \text { " } \end{aligned}$	11111	m_{H}	m_{L}	n
	BR	addr	Jump to the address specified in page 0	$\mathrm{PC} \leftarrow \mathrm{ADDR}, \mathrm{PAGE} \leftarrow 00$	01100	a_{H}	$\mathrm{a}_{\text {M }}$	a_{L}
			Jump to the address specified in page 1	$\mathrm{PC} \leftarrow \mathrm{ADDR}, \mathrm{PAGE} \leftarrow 01$	01101	a_{H}	a_{M}	${ }^{a_{L}}$
		$\mathfrak{C A R}$	Jump to the address specified in AR	$\mathrm{PC} \leftarrow \mathrm{AR}$	00111	000	0100	0000
坴	RORC	r	Rotate register right with carry	$(\mathrm{CY}) \rightarrow(\mathrm{R}) \rightarrow \mathrm{CY}$	00111	000	0111	r
	CALL	addr	Call subroutine in page 0	$\begin{aligned} & \text { SP } \leftarrow(S P)-1 . \\ & S T A C K \leftarrow((P C)+1), \\ & \text { PC } \leftarrow A D D R, P A G E \leftarrow 00 \end{aligned}$	11100	a_{H}	a_{M}	a_{L}
		© AR	Call subroutine specified in AR	$\begin{aligned} & \text { SP } \leftarrow(S P)-1 . \\ & \text { STACK } \leftarrow((P C)+1), \\ & \text { PC } \leftarrow(A R) \end{aligned}$	00111	000	0101	0000
	RET		Return to main routine from subroutine	$\mathrm{PC} \leftarrow(\mathrm{STACK}), \mathrm{SP} \leftarrow(\mathrm{SP})+1$	00111	000	1110	0000
	RETSK		Return to main routine from subroutine，then skip unconditionary	$\begin{aligned} & \mathrm{PC} \leftarrow(\mathrm{STACK}), \mathrm{SP} \leftarrow(\mathrm{SP})+1 \\ & \text { and skip } \end{aligned}$	00111	001	1110	0000
	RETI		Return to main routine from interrupt service routine	$\mathrm{PC} \leftarrow(\mathrm{STACK}), \mathrm{SP} \leftarrow(\mathrm{SP})+$ 1 BANK \leftarrow（Interruptstack）	00111	100	1110	0000
$\begin{array}{\|l\|} \hline \stackrel{\rightharpoonup}{\mathrm{E}} \\ \underline{y y y y y} \\ \hline \end{array}$	EI		Enable interrupt	INTE flag $\leftarrow 1$	00111	000	1111	0000
	DI		Disable interrupt	INTE flag $\leftarrow 0$	00111	001	1111	0000
枈	HALT	h	Halt the CPU，restart by condition H	HALT	00111	011	1111	h
	NOP		No operation	No operation	00111	100	1111	0000

5. ELECTRICAL CHARACTERISTICS (Preliminary)

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{a}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Supply Voltage	$V_{D D}$		-0.3 to +7.0	V
Input Voltage		POBO-POB3	-0.3 to $V_{D D}+0.3$	V
	V_{1}	All pins, except above	-0.3 to $V_{D D}+0.3$	V
Operating Temperature	$T_{\text {opt }}$		-20 to +75	${ }^{\circ} \mathrm{C}$
Storage Temperature	$T_{\text {stg }}$		-40 to +125	${ }^{\circ} \mathrm{C}$

CAPACITANCE ($T_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}$)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Input Capacitance	CIN 3			10	pF	INT, SI, $\overline{\text { RESET }}$ pins
	CPIN			10	pF	Other than INT, SI, $\overline{\text { RESET }}$

RECOMMENDED OPERATING RANGE

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Supply Voltage	VDD1	2.2	3.0	5.5	V	${ }^{\prime} \mathrm{X}=4 \mathrm{MHz}$
	VDD2	3.5	5.0	5.5	V	${ }^{\mathrm{f}} \mathrm{X}=8 \mathrm{MHz}$
Main Clock Oscillation Frequency Subclock Oscillation Frequency	${ }^{\mathbf{x}}$	2.0	4.0	8.0	MHz	
	${ }^{4} \times 1$		32.768		kHz	

DC CHARACTERISTICS ($\mathrm{V}_{\mathrm{DD}}=2.2$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{f} \mathrm{X}=\mathbf{4} \mathrm{MHz}, \mathrm{f}_{\mathrm{XT}}=\mathbf{3 2} \mathbf{~ k H z}$)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS	
Operating Supply Voltage	VDD	2.2	3.0	5.5	V		
High-level Input Voltage	$\mathrm{V}_{1 \mathrm{H} 1}$	2.4			V	RESET pin	
	$\mathrm{V}_{1 \mathrm{H} 2}$	2.			v	Other than RESET	
Low-level Input Voltage	$\mathrm{V}_{\text {ILI }}$			0.6	v	RESET pin	
	VIL2			0.9	v	Other than RESET ${ }^{\text {pin }}$	
High-Level Input Current	1/H1			0.2	$\mu \mathrm{A}$	INT pin	$\mathrm{V}_{\text {IH }}=3.0 \mathrm{~V}$
	1/H2			0.2	$\mu \mathrm{A}$	RESET pin	$\mathrm{V}_{\text {IH }}=3.0 \mathrm{~V}$
	1/H3			0.2	$\mu \mathrm{A}$	P0A-P1A pin	$\mathrm{V}_{1 \mathrm{H}}=3.0 \mathrm{~V}$
Low-Level Input Current	IIL1			0.2	$\mu \mathrm{A}$	INT pin	$V_{\text {IL }}=0 \mathrm{~V}$
	IIL2			0.2	$\mu \mathrm{A}$		$\text { VIL }=0 \mathrm{~V}$ w/o pull-up resistor
	IIL3	20	50	100	$\mu \mathrm{A}$	RESET pin	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V} \\ & \mathrm{w} / \text { pull-up resistor } \end{aligned}$
	IIL4			0.2	$\mu \mathrm{A}$	POA pin	$V_{I L}=0 \mathrm{~V}$ w/o pull-up resistor
	IIL5	6	12	20	$\mu \mathrm{A}$		$\begin{aligned} & \mathrm{V}_{1 \mathrm{~L}}=0 \mathrm{~V} \\ & \text { w/pull-up resistor } \end{aligned}$
	IIL6	,		0.2	$\mu \mathrm{A}$	POB, POC, POD, P1A, pin	$V_{\text {IL }}=0 \mathrm{~V}$
High-Level Output Current	IOH1	0.6	2.0	4.0	mA	$\begin{aligned} & \text { POA, POD, P1A } \\ & \text { pin } \end{aligned}$	$\mathrm{V}_{\mathrm{OH}}=2.7 \mathrm{~V}$
	IOH_{2}	7.0	15.0	25.0	mA	REM pin	$\mathrm{VOH}=1.0 \mathrm{~V}$
Low-Level Output Current	IOL1	0.5	1.5	2.5	mA	$\begin{aligned} & \text { POA, POD, P1A } \\ & \text { pin } \end{aligned}$	$\mathrm{V}_{\mathrm{OL}}=0.3 \mathrm{~V}$
	IOL2	0.5	1.5	2.5	mA	POB, POC pin	$\mathrm{V}_{\mathrm{OL}}=0.3 \mathrm{~V}$
	IOL3	0.5	1.5	2.5	mA	REM pin	$\mathrm{V}_{\mathrm{OL}}=0.3 \mathrm{~V}$
Supply Current	IDD1	0.2	0.5	1.5	mA	Operation mode	XT and X
	IDD2		15	30	$\mu \mathrm{A}$		Only XT
	IDD3		0.5	1.5	mA	HALT mode	XT and X
	IDD4		10	15	$\mu \mathrm{A}$		Only XT
LCD Output Voltage Adjustable Range	VLCDO	0.6		1.8	v		
Doubler Output Voltage	VLCD1	$\begin{array}{c\|} \hline 1.9 \\ \mathrm{~V}_{\mathrm{LCDO}} \end{array}$	$\begin{gathered} 2 \\ \mathrm{~V}_{\mathrm{LCDO}} \end{gathered}$		V		
Tripler Output Voltage	VLCD2	$\left.\begin{gathered} 2.85 \\ \mathrm{v}_{\mathrm{LCDO}} \end{gathered} \right\rvert\,$	$\begin{gathered} 3 \\ \mathrm{v}_{\mathrm{LCDO}} \end{gathered}$		V		
Common Output Current	ICOM	30			$\mu \mathrm{A}$	$\mathrm{V}_{\text {DS }}=0.2 \mathrm{~V}$	
Segment Output Current	ILCD	5			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DS}}=0.2 \mathrm{~V}$	
Low Voltage Detection Voltage 1	VDET1	1.6	2.0	2.9	V		
Low Voltage Detection Voltage 2	VDET2	1.9	2.2	2.9	V		
A/D Converter Current Dissipation	IDD5		60	120	$\mu \mathrm{A}$	$V_{\text {ADC }}=3 \mathrm{~V}$	
Absolute A/D Conversion Accuracy			± 1	± 2	LSB	$\mathrm{V}_{\text {ADC }}=3 \mathrm{~V}$	

AC CHARACTERISTICS ($\mathrm{T}_{\mathrm{a}}=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.2$ to 5.5 V)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Main Clock Oscillation Frequency	fX	2.0		4.0	MHz	$V_{\text {DD }}=2.2$ to 5.5 V
		2.0		8.0	MHz	$V_{\text {DD }}=3.5$ to 5.5 V
Subclock Oscillation Frequency	${ }^{\mathbf{4} \times \mathrm{T}}$		32.768		kHz	
INT Input High-Level Width	INTH	50			$\mu \mathrm{s}$	
RESET Low-Level Width	${ }^{\text {t RSL }}$	50			$\mu \mathrm{s}$	

SERIAL INTERFACE AC CHARACTERISTICS ($T_{a}=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.2$ to 5.5 V)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS	
$\overline{\text { SCK }}$ Cycle Time	${ }^{1} \mathrm{KCY}$	2.0			$\mu \mathrm{s}$	$\begin{aligned} & V_{D D}=4.5 \\ & \text { to } 5.5 \mathrm{~V} \end{aligned}$	Data input Data output
		10.0			$\mu \mathrm{s}$		
		5.0			$\mu \mathrm{s}$		Data input
		13.0			$\mu \mathrm{s}$		Data output
$\overline{\text { SCK }}$ Low-Level Width	${ }^{\mathbf{t}} \mathrm{KH}, \mathrm{t}_{\text {KL }}$	1.0			$\mu \mathrm{s}$	$\begin{aligned} & V_{D D}=4.5 \\ & \text { to } 5.5 \mathrm{~V} \end{aligned}$	Data-input
		5.0			μs		Data output
		2.5			μs		Data input
		6.5			μs		Data output
SI Setup Time (vs. $\overline{\text { SCK }} \uparrow$)	${ }^{\text {tSIK }}$	100			ns		
SI Hold Time (vs. $\overline{\text { SCK }} \uparrow$)	${ }^{\text {t K S }}$	100			ns		
$\overline{\text { SCK }} \downarrow \rightarrow$ SO Output Delay Time	${ }^{\text {t K S }}$			4.5	$\mu \mathrm{s}$	$C_{L}=100 \mathrm{pF}$	

SERIAL TRANSFER TIMING

Three-line Serial I/O Mode:

RECOMMENDED OSCILLATORS

Main System Clock: Ceramic Oscillator

Manufacturer	Product name	External capacitor (pf)		Oscillation voltage (V)		Remarks
		C1	C2	MIN.	MAX.	
Murata Mfg	CSA3.58MG	30	30	2.0	6.0	
	CSA4.00MG	30	30	2.0	6.0	
	CSA4.19MG	30	30	2.0	6.0	
	CST3.58MGW	none	none	2.0	6.0	C contained type
	CST4.00MGW	none	none	2.0	6.0	
	CST4.19MGW	none	none	2.0	6.0	
Kyocera	KBR3.58MS	33	33	2.0	6.0	
	KBR4.0MS	33	33	2.0	6.0	
	KBR4.19MS	33	33	2.0	6.0	
Toko	CRHF4.00	18	18	2.0	6.0	
Dai-Shinku	PRS0400BCSAN	39	33	2.0	6.0	

Main System Clock: Crystal Oscillator

Manufacturer	Frequency(MHz)	Retainer	External Capacitor (pf)		Oscillation voltage (V)		Remarks
			C1	C2	MIN.	MAX	
Kinseki	4.0	HC-49U-S	22	22	2.0	6.0	

OSCILLATOR CIRCUIT

4-BIT SINGLE-CHIP MICROCONTROLLER

The $\mu \mathrm{P} 17207$ is a 4-bit single-chip microcontroller for infrared remote controller containing the LCD controller/driver, ADD converter, and the remote control carrier generator.

The μ PD17207 employs the 17K architecture. Therefore, data transfer or operation within the data memory or between the data memory and peripheral circuit is possible by single instruction. All instructions are 16-bit one word instructions. The μ PD17207 is packaged in 80-pin plastic QFP.

FEATURES

- Program memory (ROM) μ PD17207: 4096×16 bits
- Data memory (RAM): 336×4 bits)
- Built-in infrared remote control carrier generator
- Built-in 8-bit A/D converter: 4 inputs
- Built-in LCD controller/driver (136 segments max.)

Common pins: 4, Segments pins: 34 (2 of the common pins can be used as segment pins)

- LCD drive voltage boosting circuit with voltage regulator: LCD drive voltage can be boosted up to 2.4 to 5.4 V , using the external resistor
- Abundant I/O ports pins: 19
- Built-in 3-line serial interface
- Stack levels: 5 levels
- 8-bit timer: 1 channel
- Clock timer: 1 channel
- Instruction execution time: $4 \mu \mathrm{~s}$ (with 4 MHz resonator connected)
- Standby functions: STOP mode, HALT mode

Clock display is possible with 32.768 kHz crystal in STOP mode

- Can operate at low voltage: $\mathrm{V}_{\mathrm{DD}}=2.2$ to 5.5 V
- 80-pin plastic QFP ($14 \times 20 \mathrm{~mm}$)
- One-time PROM versions: μ PD17P207GF-3B9

PIN CONFIGURATION (Top View)

$\mathrm{POA}_{0}-\mathrm{POA}_{3}$:	Input/output port	$\mathrm{XIN}_{\text {IN }}, \mathrm{X}_{\text {OUT }}$:	Main clock oscillator circuit
$\mathrm{POB}_{0}-\mathrm{POB}_{3}$:	Input/output port	XTIN, XTOUT	:	Subclock oscillator circuit
$\mathrm{POC}_{0}-\mathrm{POC}_{3}$:	Input/output port	SI	:	Serial data input
$\mathrm{POD}_{0}-\mathrm{POD}_{3}$:	Input/output port	So	:	Serial data output
$P 1 A_{0} \cdot P 1 A_{2}$		Input/output port	$\overline{\text { SCK }}$:	Serial clock input/output
LED	:	Remote control transmission output indication	$V_{\text {LCDC }}$:	LCD drive reference voltage adjustment
REM	:	Remote control transmission output	$\mathrm{V}_{\text {LCDO }} \mathrm{V}_{\text {LCD2 }}$:	LCD drive reference voltage output
$\mathrm{LCD}_{0}-\mathrm{LCD}_{35}$	-	LCD segment signal output	CAPH, CAPL	:	Booster capacitor connection pins
$\mathrm{COM}_{0} \mathrm{COM}_{3}$:	LCD common signal output	VREG	:	Subclock voltage regulator output
TMOUT		Timer output	$V_{\text {ADC }}$:	A/D converter reference voltage
WDOUT		Watchdog timer output			input
INT		External interrupt input	VDD	:	Power supply pin
RESET		Reset signal input	GND, GND ${ }_{\text {ADC }}$:	Ground

BLOCK DIAGRAM

FUNCTION LIST

Product	HPD17201A	μ PD17207	μ PD17P207
ROM	3072×16 bits	4096×16 bits	
	Mask ROM	Mask ROM	One-time PROM
RAM	336×4 bits		
Instruction execution time	$4 \mu \mathrm{~s}$ (with 4 MHz resonator connected)		
Stack level	5 levels (Multiple interrupt: up to 2 levels)		
Input/output ports	19		
Serial interface	- 8-bit, 3-line: 1 channel		
Interrupts	- 4 channels External interrupts: 1 channel Internal interrupts: 3 channels		
Timers	- 2 systems 8-bit timer Clock timer (also serves as watchdog timer)		
Standby functions	- STOP mode, HALT mode		
Operating voltage	$\mathrm{V}_{\mathrm{DD}}=2.2$ to 5.5 V		
Package	80 -pin plastic QFP ($14 \times 20 \mathrm{~mm}$)		

μ PD17P207 is a model of μ PD17207 which is equipped with a one-time PROM in place of the μ PD17207 internal mask ROM.

Sice the user can write the program to μ PD17P207, the microcontroller is suitable for experimental or small-scale production of μ PD17207 systems.

It is recommended that you also read the documents related to μ PD17207, in addition to this data sheet.

FEATURES

- Compatible with μ PD17207
- Internal one-time PROM: 4096×16 bits
- Operating voltage range: 2.2 to 5.5 V

ORDERING INFORMATION

Order Code	Package	Quality Grade
μ PD17P207GF-3B9	80-pin-plastic QFP (14×20)	Standard

PIN CONFIGURATION (Top View)

(1) Ordinary operation

(2) In PROM programming mode

Note : () indicates processing for pins not used in the PROM programming mode.
L : Ground each of these pins through a 470Ω resistor.
OPEN : Do not connect these pins.

BLOCK DIAGRAM

1. PIN FUNCTIONS

1.1 IN ORDINARY OPERATION MODE

Pin No.	Symbol	1/0	Output format	Pin name	Function
$\begin{array}{r} 78 \\ 79 \\ 80 \\ 1 \\ 32 \\ 34 \end{array}$	$\begin{aligned} & \mathrm{LCD}_{35} / \mathrm{COM}_{2} \\ & \mathrm{LCD}_{34} / \mathrm{COM}_{3} \\ & \mathrm{LCD}_{33} \\ & \mathrm{LCD}_{32} \\ & \mathrm{LCD}_{1} \\ & \mathrm{LCD}_{0} \end{aligned}$	Output		LCD segment signal	These are the segment signal output pins for the LCD driver. $\mathrm{LCD}_{35} / \mathrm{COM}_{2}$ and $\mathrm{LCD}_{34} / \mathrm{COM}_{3}$ pins are multiplexed pins equipped with segment signal output and common signal output functions. Whether the segment signal output function or common signal output function is selected is specified by LCDMD3 through LCDMD0 (address 32H, bits $3-0$) of the register file. The number of display dots can be selected by the matrix of segment signal output pins and common signal output pins from 72,105 , or 136 dots. The bias is fixed to $1 / 3$. Duty factors of $1 / 2,1 / 3$, and $1 / 4$ can be selected, depending on the selected number of common signal output pins. The frame frequency can be selected by LCDCK2-LCDCKO registers (address $31 \mathrm{H})$ for the register file. The dot corresponding to a segment signal output pin and a common signal output pin, between which a potential difference of $+V_{D D}$ is generated illuminates. Display data are set in the LCD driver through LCD display register (address $40 \mathrm{H}-63 \mathrm{H}$ of BANKO). The display ON mode and display OFF mode for the LCD driver are selected by the LCDEN register (address 31 H , bit 3) for the register file. In the display OFF mode, the segment signal output pin outputs a signal waveform that extinguishes the display. When reset is effected by the RESET pin, the voltage detector detecting a voltage drop, or the watchdog timer, the LCDEN register is set in the display OFF mode.
33	GND	-	-	Ground	Device ground pin
35	$V_{\text {ADC }}$	-	-	Analog power	This pin supplies power to the A/D converter. Connect this pin to the V_{DD} pin.

Pin No.	Symbol	1/0	Output format	Pin name	Function
36 37 38 39	$A D C_{0}$ $A D C_{1}$ $A D C_{2}$ $A D C_{3}$	Input Input Input Input		A/D converter input 0 A/D converter input 1 A/D converter input 2 A/D converter input 3	These pins are input pins for the 8 -bit A/D converter, which can function as either an 8 -bit A/D converter or a comparator, depending on the settings used in VREFEN, ADCEN, ADCCH1, and ADCCHO (address 21 H), for the register file. The A/D converter is of successive approximation type. The reference voltage for the converter is created by dividing the voltage of an analog power supply $\left(V_{\text {ADC }} \mathrm{pin}\right)$ with a registor string. The A/D converter can use a total of six channels, formed by pins $A D C_{0}$ through ADC_{3}. The comparator is provided with a total of two channels with one channel consisting of pins $A D C_{0}$ and $A C D_{2}$ and the other of pin $A D C_{1}$ and pin $A D C_{3}$. Whether the A/D converter or comparator is used, and which channel is selected, are specified by VREFEN, ADCEN, ADCCH1, and ADCCH0 (address 21 H), for the register file.
40	GNDADC	-	-	Analog ground	This is the ground pin for the A/D converter.
41	INT	Input	-	Interrupt	This pin inputs an external interrupt request signal. The interrupt request is issued at the rising edge of the signal input to this pin. Even when an interrupt request has been issued, the interrupt is not accepted unless it is enabled (maskable interrupt). All interrupts can be enabled by the El instruction, or only a selected interrupt can be enabled by the INT pin. Enabling an interrupt by the INT pin is specified by IP (address 2FH) for the register file. If an interrupt is enabled, and when an interrupt request is issued, the interrupt is accepted. When an interrupt has been accepted, the program is executed, starting from address 03 H . Whether an interrupt request has been issued can be checked by IRQ (address 3FH) for the register file, even when the interrupt is not enabled. When reset is effected by the $\overline{\operatorname{RESET}}$ pin or watchdog timer, all interrupts are disabled and all interrupt requests are cleared.
$\begin{aligned} & 42 \\ & 43 \\ & 44 \\ & 45 \end{aligned}$	$P_{P O A}$ $P^{P O A} 1$ POA_{2} POA_{3}	1/0	cmos push-pull	Port 0A	These pins constitute a 4-bit general-purpose I/O port, which can be set in the input or output mode in 4 bit units (group I/O) by POAGIO (address 37 H , bit 0) for the register file. The input data is read and output data is set by port register POA laddress 70 H for BANKO). These port pins are internally connected with pull-up resistors. When reset is effected by the $\overline{\operatorname{RESET}}$ pin or watchdog timer, these pins are set in the input mode.

Pin No.	Symbol	1/0	Output format	Pin name	Function
$\begin{aligned} & 46 \\ & 47 \\ & 48 \\ & 49 \end{aligned}$	POB_{0} POB_{1} POB_{2} POB_{3}	1/0	N -ch open drain	Port 0B	These pins constitute a 4-bit general-purpose I/O port, which can be set in the input or output mode in 4 bit units (group I/O) by POBGIO (address 37H, bit 1). The input data is read or output data is set by port register POB (address 71 H for BANKO). Since these pins are N -ch open-drain, they must be connected to external pull-up resistors. When reset is effected by the RESET pin or watchdog timer, these pins are set in the input mode.
$\begin{aligned} & 50 \\ & 51 \\ & 52 \\ & 53 \end{aligned}$	POCO POC_{1} POC_{2} POC_{3}	1/0	N -ch open arain	Port0C	These pins constitute a 4-bit general-purpose I/O port, which can be set in the input or output mode in 4 -bit units (group $1 / \mathrm{O}$) by POCGIO (address 37 H , bit 2). The input data is read and output data is set by port register POC (address 72H for BANKO). Since these pins are N-ch open-drain, they must be connected with pull-up registors. When reset is effected by the $\overline{\text { RESET }}$ pin or watchdog timer, these pins are set in the input mode.
$\begin{aligned} & 54 \\ & 55 \\ & 56 \\ & 57 \end{aligned}$	POD ${ }_{0} /$ LED $\mathrm{POD}_{1} /$ TMOUT POD_{2} POD_{3}	1/0	cmos push-pull	Port 0D	These pins constitute a 4-bit general-purpose I/O port. Of these four pin, PODO also function as an LED output pin (LED), and POD1 serves as the external signal output pin for the timer (TMOUT). Whether the port pin, LED output, or timer output function is used is specified by NRZEN (address 23 H , bit 2) and TMOE (address 23 H , bit 1) for the register file. When reset is effected by the $\overline{\operatorname{RESET}}$ pin or watchdog timer, these pins are set in the input mode. (1) When 4-bit $1 / O$ port function is used The port can be set in the input or output mode bitwise (bit $1 / 0$) by PODBIO3 through PODBIOO (address 27H, bits 3 through 0) for the register file. The input data is read or output data is set by port register POD (address 73 H for BANKO). (2) When POD_{0} pin is used as LED output pin Whether this pin functions as an I/O port pin (POD_{0}) or LED output pin is specified by NRZEN. As an LED output pin, NRZ signal is output in synchronization with REM output. (3) When POD $_{1}$ pin is used as external signal output pin for 8 -bit timer Whether this pin functions as an I/O port pin (POD_{1}) or timer output pin is specified by TMOE.

Pin No.	Symbol	1/0	Output format	Pin name	Function
$\begin{aligned} & 58 \\ & 59 \\ & 60 \end{aligned}$	$\begin{aligned} & \mathrm{P} 1 \mathrm{~A}_{0} / \overline{\mathrm{SCK}} \\ & \mathrm{P} 1 \mathrm{~A}_{1} / \mathrm{SO} \\ & \mathrm{P}_{1} \mathrm{~A}_{2} / \mathrm{SI} \end{aligned}$	1/0	cmos push-pull	Port1A	These pins constitute a 3-bit general-purpose I/O port. They also form a serial interface. Whether these pins function as port pins or serial interface pins can be specified by SIOEN (address $\mathbf{2 3 H}$, bit 0) for the register file. When RESET is effected by the RESET pin or watchdog timer, these pins are set in the input mode. (1) When used as 3-bit I/O port The port can be set in the input or output mode in $\mathbf{3}$ bit units (group I/O) by P1 AGIO (address 37 H , bit 3) for the register file. The input data can be read or output data can be set by port register P1A (address 70 H of BANK1). (2) When used as serial interface The serial interface (μ COM standard mode) function for these pins is selected by SIOEN.
61	REM	Output	cMOS push-pull	Remote controller transmission output	This pin outputs an infrared remote controller signal. The carrier frequency can be set from 16 to $1,024 \mathrm{kHz}$.
62	$V_{\text {DD }}$			Power	Device power supply
$\begin{aligned} & 63 \\ & 64 \end{aligned}$	$\begin{aligned} & X_{\text {IN }} \\ & X_{\text {OUT }} \end{aligned}$	Input Output		Main clock oscillation	Connect a 4 MHz ceramic/crystal oscillator across these pins.
65	RESET	Input		Reset	This pin inputs a system reset signal. The system is reset, when a lower-level signal is input to this pin for $50 \mu \mathrm{~s}$ or longer.
66	VREG	Output		Voltage regulator output	This is the output pin for the voltage regulator. Connect an external $0.1 \mu \mathrm{~F}$ capacitor to this pin.
67	WDOUT	Output	cMOS push-pull	Watchdog output	This pin goes low, when overrunning, such as watchdog timer operation and stack overflow, is detected.
$\begin{aligned} & 68 \\ & 74 \end{aligned}$	$\begin{aligned} & \text { XTIN } \\ & \text { XTOUT } \end{aligned}$	Input Output		Subclock oscillation	Connect a 32 kHz crystal oscillator across these pins.
71	$V_{\text {LCDC }}$	Output		LCD drive reference voltage adjustment	This pin adjusts the reference voltage for the LCD driver. Connect variable resistors for reference voltage adjustment between $\mathrm{V}_{\mathrm{LCDO}}$ and $\mathrm{V}_{\mathrm{LCD}}$, and between $V_{\text {LCDC }}$ and GND.
$\begin{aligned} & 70 \\ & 72 \\ & 73 \end{aligned}$	$V_{\text {LCDO }}$ $V_{\text {LCD1 }}$ VLCD2	Output		LCD drive reference voltage output	These pins output the reference voltages for the LCD driver. $\mathrm{V}_{\text {LCDO }}$ outputs the reference voltage, VLCD1 outputs a voltage two times the reference voltage (doubler output), and VLCD2 outputs a voltage three times the reference voltage (tripler output). Connect variable resitors for reference voltage adjustment between $V_{\text {LCDO }}$ and $V_{\text {LCDC }}$, and between $V_{\text {LCDC }}$ and GND. In addition, connect a $0.47 \mu \mathrm{~F}$ capacitors between VLCDO and VLCD1, and VLCD2 and GND.
$\begin{aligned} & 74 \\ & 75 \end{aligned}$	CAPH CAPL			Voltage raising capacitor	Connect a $0.47 \mu \mathrm{~F}$ capacitor, to raise the voltage across these pins.

Pin No.	Symbol	1/0	Output format	Pin name	Function
$\begin{aligned} & 76 \\ & 77 \end{aligned}$	$\begin{aligned} & \mathrm{COM}_{0} \\ & \mathrm{COM}_{1} \end{aligned}$	Output	CMOS	Common signal	These pins output the common signais from the LCD driver. In addition, $\mathrm{LCD}_{35} / \mathrm{COM}_{2}$ and $\mathrm{LCD}_{34} / \mathrm{COM}_{3}$ pins can also be used as common signal output pins. Whether the segment signal output function or common signal output function is selected is specified by LCDMD0 and LCDMD1 registers (address 32 H) for the register file. The number of display dots can be selected by the matrix of segment signal output pins and common signal output pins, from 72, 105, or 136 dots. The bias is fixed to $1 / 3$. Duty factors of $1 / 2,1 / 3$, and $1 / 4$ can be selected, depending on the selected number of common signal output pins. The frame frequency can be selected by LCDCK0 and LCDCK1 registers (address 31 H) for the register file. The dot corresponding to a segment signal output pin and a common signal output pin, between which a potential difference of $+V_{D D}$ is generated, illuminates. The display ON mode and display OFF mode for the LCD driver are selected by the LCDEN register (address $\mathbf{3 1 H}$) for the register file. In the display OFF mode, the common signal output pin outputs a signal waveform that extinguishes the display. When reset is effected by the $\overline{\text { RESET }}$ pin, the voltage detector, upon detecting a voltage drop, for the watchdog timer, the LCDEN register is set in the display OFF mode.

1.2 IN PROM PROGRAMMING MODE

Pin name	1/0	Shared by:	Function	At reset
CLK	Input	XIN	Address updating clock input pin	-
D0 to D3	1/0	POA 0 to POA3	8-bit data I/O pin	Input
D4 to D7		POCO_{0} to POC3		
MD0 to MD3	Input	POB_{0} to POB_{3}	Operation mode selector pins	Input
VPP	-	INT	Apply the program voltage (12.5 V) to this pin. In the ordinary operation mode, this pin is used as the INT pin.	-

1.3 I/O CIRCUITS

The simplified I/O circuits schematic views for μ PD17P207 pins are presented below.
(1) POA_{0} to POA_{3}

(2) POB_{0} to POB_{3}

(3) POC_{0} to POC_{3}

(4) POD_{0} to POD_{3}

(5) P1A A_{0} to $P 1 A_{2}$

(6) $\overline{\text { RESET }}$

2. WRITING, READING, AND VERIFYING ONE-TIME PROM (PROGRAM MEMORY)

When the PROM is to be written, read, or verified, μ PD17P207 is set in the PROM mode, and the pins shown
in Table 2-1 are used.
No address has to be input. Instead, the address is incremented by the clock input from the CLK pin.

Table 2-1 Pins Used to Write/Read/Verify Program Memory

Pin name	Function
$V_{\text {PP }}$	Apply program voltage (12.5 V) to this pin. This pin is used as INT pin in ordinary operation mode.
CLK	Address incrementing clock input pin.
MD_{0} to MD_{3}	Operation mode selector pins.
D_{0} to D_{7}	8-bit I/O pins.
V_{DD}	Apply operating voltage $(6 \mathrm{~V})$ to this pin. Apply 2.2 to 5.5 V in ordinary operation mode.

2.1 OPERATION MODES FOR PROGRAM MEMORY WRITE, READ, AND VERIFY

μ PD17P207 is set in the program memory write, read, or verify mode, when +6 V is applied to pin VDD, and +12.5 V is applied to pin V_{PP}, after being placed in the reset status ($\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \overline{\mathrm{RESET}}=$ low level $)$ for a certain period of time.

The operation modes, selected by pins MDO through MD3, are listed in Table 2-2.
Any pins not used to write, read, or verify the program memory must be grounded through pull-down resistors (470 Ω).

Table 2-2 Operation Modes for Program Memory Write, Read, and Verify

Operation mode selection						Operation mode
VPP	VDD	MDO	MD1	MD2	MD3	
+12.5V	+6 V	H	L	H	L	Program memory address 0 clear
		L	H	H	H	Write mode
		L	L	H	H	Read, verify mode
		H	x	H	H	Program inhibit mode

Remarks: \mathbf{x} : Lor \mathbf{H}

2.2 PROGRAM MEMORY WRITING PROCEDURE

Write the program memory by following these steps. The program memory can be written at high speeds.
(1) Pull down the unused pins to the ground potential through resistors. Make the pin CLK low.
(2) Apply 5 V to pin V_{DD}. Make pin V_{Pp} low.
(3) Wait for $10 \mu \mathrm{~s}$. Then, apply 5 V to pin V_{Pp}.
(4) Set the program memory address 0 clear mode by the mode selector pins.
(5) Apply 6 V to pin V_{DD}, and 12.5 V to pin V_{Pp}.
(6) Program inhibit mode
(7) Write data in the 1 ms write mode.
(8) Program inhibit mode
(9) Verify mode. Proceed to (10), if the memory has been written. If it has not been written, repeat (7) through (9).
(10) Additional writing for (the number of times (7) through (9) are repeated: X) $\times 1 \mathrm{~ms}$
(11) Program inhibit mode
(12) Input a pulse four times to pin CLK, in order to increment the program memory address (by one).
(13) Repeat (7) through (12), until the last address is programmed.
(14) Program memory address 0 clear mode
(15) Decrease the voltages on pin $V_{D D}$ and $V_{P P}$ to 5 V .
(16) Turn power off.

The following figure illustrates steps (2) through (12) above.

2.3 PROGRAM MEMORY READING PROCEDURE

(1) Pull down the unused pins to the ground potential through resistors. Make the pin CLK low.
(2) Apply 5 V to pin V_{DD}. Make pin V_{Pp} low.
(3) Wait for $10 \mu \mathrm{~s}$. Then, apply 5 V to pin V_{pp}.
(4) Set the program memory address 0 clear mode by the mode selector pins.
(5) Apply 6 V to pin V_{DD}, and 12.5 V to pin V_{Pp}.
(6) Program inhibit mode
(7) Verify mode. The data for each address is output on a one-by-one basis in a cycle during which the clock pulse is input to pin CLK four times.
(8) Program inhibit mode
(9) Program memory address 0 clear mode
(10) Decrease the voltages on pin $V_{D D}$ and $V_{P P}$ to 5 V .
(11) Turn power off.

The following figure illustrates steps (2) through (9) above.

MD_{2}

MD_{3}

3. ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{a}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Supply Voltage	$V_{D D}$		-0.3 to +7.0	V
Input Voltage	V_{1}	POBO-POP3	-0.3 to $V_{D D}+0.3$	V
Operating Temperature	$T_{\text {opt }}$		-0.3 to $V_{D D}+0.3$	V°
Storage Temperature	$T_{\text {stg }}$		-20 to +75	${ }^{\circ} \mathrm{C}$
		-40 to +125	${ }^{\circ} \mathrm{C}$	

CAPACITANCE $\left(\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}\right)$

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Input Capacitance	$\mathrm{C}_{\text {IN }}$			10	pF	Pins INT, SI, $\overline{\text { RESET }}$
	CPIN^{2}			10	pF	Other than pins INT, SI, $\overline{\text { RESET }}$

RECOMMENDED OPERATING RANGE

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX .	UNIT	CONDITIONS
Supply Voltage	VDD1	2.2	3.0	5.5	v	${ }^{\dagger} \mathrm{X}=4 \mathrm{MHz}$
	VDD2	3.5	5.0	5.5	V	$\mathrm{f}_{\mathrm{X}}=8 \mathrm{MHz}$
Main Clock Oscillation Frequency	${ }^{\text {f }} \mathrm{x}$	2.0	4.0	8.0	MHz	
Subclock Oscillation Frequency	${ }^{\text {X }}$ T ${ }^{\text {I }}$		32.768		kHz	

DC CHARACTERISTICS ($\mathrm{V}_{\mathrm{DD}}=2.2$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{X}}=4 \mathrm{MHz}, \mathrm{f}_{\mathrm{XT}}=32 \mathrm{kHz}$)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS	
Operating Supply Voltage	$V_{\text {DD }}$	2.2	3.0	5.5	V		
High-Level Input Voltage	$\mathrm{V}_{1} \mathrm{H} 1$	2.4			v	RESET ${ }^{\text {pin }}$	
	$\mathrm{V}_{1 \mathrm{H} 2}$	2.1			v	Other than $\overline{\text { RESET }}$ pin	
Low-Level Input Voltage	$\mathrm{V}_{\text {IL1 }}$			0.6	v	RESET pin	
	VIL2			0.9	V	Other than $\overline{\text { RESET }}$ pin $^{\text {p }}$	
High-Level Input Current	1/H1			0.2	$\mu \mathrm{A}$	INT pin	$\mathrm{V}_{1 H}=3.0 \mathrm{~V}$
	1/H2			0.2	$\mu \mathrm{A}$	RESET pin	$\mathrm{V}_{1 \mathrm{H}}=3.0 \mathrm{~V}$
	11 H 3			0.2	$\mu \mathrm{A}$	P0A-P1A pin	$\mathrm{V}_{1 \mathrm{H}}=3.0 \mathrm{~V}$
Low-Level Input Current	IIL1			0.2	$\mu \mathrm{A}$	INT pin	$\mathrm{V}_{\text {IL }}=0 \mathrm{~V}$
	IIL2			0.2	$\mu \mathrm{A}$	$\overline{\text { RESET }}^{\text {pin }}$	$V_{I L}=0 \mathrm{~V}$ w/o pull-up resistor
	IIL3	20	50	100	$\mu \mathrm{A}$		$\begin{aligned} & \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V} \\ & \text { w/pull-up resistor } \end{aligned}$
	IIL4			0.2	$\mu \mathrm{A}$	POA pin	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V} \\ & \text { w/o } \\ & \text { pull-up resistor } \end{aligned}$
	I/L5	6	12	20	$\mu \mathrm{A}$		$\begin{aligned} & \mathrm{V}_{\text {IL }}=0 \mathrm{~V} \\ & \text { w/pull-up resistor } \end{aligned}$
	IIL6			0.2	$\mu \mathrm{A}$	$\begin{aligned} & \text { POB, POC, POD, P1A } \\ & \text { pin } \end{aligned}$	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$
High-Level Output Current	${ }^{\mathbf{I}} \mathrm{OH} 1$	0.6	2.0	4.0	mA	P0A, POD, P1A pin	$\mathrm{V}_{\mathrm{OH}}=2.7 \mathrm{~V}$
	IOH_{2}	7.0	15.0	25.0	mA	REM pin	$\mathrm{VOH}=1.0 \mathrm{~V}$
Low-Level Output Current	IOL1	0.5	1.5	2.5	mA	POA, P0D, P1A pin	$\mathrm{V}_{\mathrm{OL}}=0.3 \mathrm{~V}$
	IOL2	0.5	1.5	2.5	mA	POB, POC pin	$\mathrm{V}_{\mathrm{OL}}=0.3 \mathrm{~V}$
	IOL3	0.5	1.5	2.5	mA	REM pin	$\mathrm{V}_{\mathrm{OL}}=0.3 \mathrm{~V}$
Supply Current	IDD1	0.2	0.5	1.5	mA	Operation mode	Both XT and X oscillate
	IDD2		15	30	$\mu \mathrm{A}$		Only XT oscillates
	IDD3		0.5	1.5	mA	HALT mode	Both XT and X oscillate
	IDD4		10	15	$\mu \mathrm{A}$		Only XT oscillates
LCD Output Voltage Variable Range	$\mathrm{V}_{\text {LCDO }}$	0.6		1.8	V		
Doubler Output Voltage	$\mathrm{V}_{\text {LCD1 }}$	$1.9 \mathrm{~V}_{\text {LCDO }}$	$2 \mathrm{~V}_{\text {LCDO }}$		V		
Tripler Output Voltage	$V_{\text {LCD2 }}$	$2.85 \mathrm{~V}_{\text {LCDO }}$	3 VLCDO		V		
Common Output Current	ICOM	30			$\mu \mathrm{A}$	$\mathrm{V}_{\text {DS }}=0.2 \mathrm{~V}$	
Segment Output Current	ILCD	5			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DS}}=0.2 \mathrm{~V}$	
Low-Voltage Detection Voltage 1	$\mathrm{V}_{\text {DET1 }}$	1.6	2.0	2.5	V		
Low-Voltage Detection Voltage 2	$V_{\text {DET2 }}$	1.9	2.2	2.9	v		

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
A/D Converter Current Dissipation	IDD5		60	120	$\mu \mathrm{~A}$	$\mathrm{~V}_{\text {ADC }}=3 \mathrm{~V}$
A/D Converter Absolute Accuracy			± 1	± 2	LSB	$\mathrm{V}_{\text {ADC }}=3 \mathrm{~V}$

AC CHARACTERISTICS ($\mathrm{T}_{\mathrm{a}}=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.2$ to 5.5 V)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Main Clock Oscillation Frequency	${ }^{\mathbf{f}} \mathrm{X}$	2.0		4.0	MHz	$\mathrm{V}_{\mathrm{DD}}=2.2$ to 5.5 V
		2.0		8.0	MHz	$V_{\text {DD }}=3.5$ to 5.5 V
Subclock Oscillation Frequency	${ }^{\prime} \times 1$		32.768		kHz	
INT Input High-Level Width	IINTH	50			$\mu \mathrm{s}$	
$\overline{\text { RESET }}$ Low-Level Width	${ }^{\text {tr }}$ RSL	50			$\mu \mathrm{s}$	

RECOMMENDED OSCILLATOR

MAIN SYSTEM CLOCK: CERAMIC OSCILLATORS

Manufacturer	Product name	External capacitance (pF)		Oscillation voltage range (V)		Remarks
		C1	C2	MIN.	MAX.	
Murata Mfg	CSA3.58MG	30	30	2.0	6.0	
	CSA4.00MG	30	30	2.0	6.0	
	CSA4.19MG	30	30	2.0	6.0	
	CST3.58MGW	unnecessary	unnecessary	2.0	6.0	C-contained type
	CST4.00MGW	unnecessary	unnecessary	2.0	6.0	
	CST4.19MGW	unnecessary	unnecessary	2.0	6.0	
Kyocera	KBR3.58MS	33	33	2.0	6.0	
	KBR4.00MS	33	33	2.0	6.0	
	KBR4.19MS	33	33	2.0	6.0	
Toko	CRHF4.00	18	18	2.0	6.0	
Dai-Shinku	PRS0400BCSAN	39	33	2.0	6.0	

MAIN SYSTEM CLOCK: CRYSTAL OSCILLATOR

Manufacturer	Frequency (MHz)	Retainer	External capacitance (pF)		Oscillation voltage range (V)		Remarks
			C1	C2	MIN.	MAX.	
Kinseki	4.0	HC-49U-S	22	22	2.0	6.0	

Oscillator

SERIAL INTERFACE AC CHARACTERISTICS ($\mathrm{T}_{\mathrm{a}}=\mathbf{- 2 0}$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.2$ to 5.5 V)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS	
$\overline{\text { SCK }}$ Cycle Time	${ }^{\mathrm{t}} \mathrm{KCY}$	2.0			$\mu \mathrm{s}$	$V_{D D}=4.5$ to 5.5 V	Data input
		10.0			$\mu \mathrm{s}$		Data output
		5.0			$\mu \mathrm{s}$		Data input
		13.0			$\mu \mathrm{s}$		Data output
$\overline{\text { SCK }}$ Low-Level Width	${ }^{\text {t }} \mathrm{KH}, \mathrm{t}_{\text {KL }}$	1.0			$\mu \mathrm{s}$	$V_{D D}=4.5$ to 5.5 V	Data input
		5.0			$\mu \mathrm{s}$		Data output
		2.5			$\mu \mathrm{s}$		Data input
		6.5			$\mu \mathrm{s}$		Data output
SI Setup Time (vs. $\overline{\text { SCK }} \uparrow$)	${ }^{\text {t }}$ IK	100			ns		
SI Hold Time (vs. $\overline{\text { SCK }} \uparrow$)	${ }_{\text {t K S }}$	100			ns		
$\overline{\text { SCK }} \downarrow \rightarrow$ SO Output Delay Time	${ }^{\text {t K S O }}$			4.5	$\mu \mathrm{s}$	$C_{L}=100 \mathrm{pF}$	

SERIAL TRANSFER TIMING

3-line serial I/O mode:

μ PD17P207

DC PROGRAMMING CHARACTERISTICS $\left(T_{a}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=6.0 \pm 0.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=12.5 \pm 0.5 \mathrm{~V}\right)$

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
High-Level Input Voltage	$\mathrm{V}_{1 \mathrm{H} 1}$	$0.7 V_{\text {DD }}$		VDD	v	Other than CLK
	$\mathrm{V}_{(\mathrm{H} 2}$	VDD-0.5		VDD	V	CLK
Low-Level Input Voltage	$V_{\text {ILI }}$	0		0.3 $V_{\text {DD }}$	v	Other than CLK
	VIL2	0		0.4	v	CLK
Input Leakage Current	IL1			10	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {IL }}$ or $V_{\text {IH }}$
High-Level Output Voltage	V_{OH}	$V_{\text {DD }}-1.0$			V	$\mathrm{IOH}^{\prime}=-1 \mathrm{~mA}$
Low-Level Outpuit Voltage	VOL			0.4	\checkmark	$\mathrm{IOL}=1.6 \mathrm{~mA}$
VDD Supply Current	IDD			30	mA	
Vpp Supply Current	IPP			30	mA	MD0 $=\mathrm{V}_{\text {IL }}, \mathrm{MD1}=\mathrm{V}_{1} \mathrm{H}$

Note 1: Keep $V_{P P}$ to below +13.5 V , including the overshoot.
2: Apply $V_{D D}$ before $V_{P P}$, and remove $V_{D D}$ after $V_{P P}$.

AC PROGRAMMING CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=6.0 \pm 0.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=12.5 \pm 0.5 \mathrm{~V}\right)$

CHARACTERISTICS	SYMBOL	* 1	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Address Setup Time*2 (vs. MDO \downarrow)	${ }^{\text {t }}$ AS	${ }^{\text {tas }}$	2			$\mu \mathrm{s}$	
MD1 Setup Time (vs. MDO \downarrow)	${ }^{\text {m M1S }}$	toes	2			$\mu \mathrm{s}$	
Data Setup Time (vs. MDO \downarrow)	tDS	tDS	2			$\mu \mathrm{s}$	
Address Hold Time ${ }^{2}$ (vs. MDO \uparrow)	${ }^{\text {t }}$ A ${ }^{\text {d }}$	${ }^{\text {t }} \mathrm{AH}$	2			$\mu \mathrm{s}$	
Data Hold Time (vs. MDO \uparrow)	${ }^{\text {t }} \mathrm{DH}$	tDH	2			$\mu \mathrm{s}$	
MDO $\uparrow \rightarrow$ Data Output Float Delay Time	${ }^{\text {t }}$ F	tDF	0		130	$\mu \mathrm{s}$	
VPP Setup Time (vs. MD3 \uparrow)	tVPS	tVPS	2			$\mu \mathrm{s}$	
$\mathrm{V}_{\text {DD }}$ Setup Time (vs. MD3 \uparrow)	tVDS	tvCs	2			$\mu \mathrm{s}$	
Initial Program Pulse Width	tpw	tpw	0.95	1.0	1.05	ms	
Additional Program Pulse Width	topw	topw	0.95		21.0	ms	
MD0 Setup Time (vs. MD1 \uparrow)	${ }^{\text {t MOS }}$	${ }^{\text {t CES }}$	2			$\mu \mathrm{s}$	
MDO $\downarrow \rightarrow$ Data Output Delay Time	tDV	${ }^{t} \mathrm{DV}$			1	$\mu \mathrm{s}$	$\mathrm{MDO}=\mathrm{MD1}=\mathrm{V}_{\mathrm{IL}}$
MD1 Hold Time (vs. MDO \downarrow)	${ }^{\mathbf{T}} \mathrm{M} 1 \mathrm{H}$	TOEH	2			$\mu \mathrm{s}$	${ }^{\prime}{ }_{M 1 H}+\mathrm{t}_{\mathrm{M} 1 \mathrm{R}} \geqq \mathbf{5 0} \mu \mathrm{s}$
MD1 Recovery Time (vs. MDO \downarrow)	${ }^{\text {t M1R }}$	${ }^{\text {tor }}$	2			$\mu \mathrm{s}$	
Program Counter Reset Time	tPCR	-	10			$\mu \mathrm{s}$	
CLK Input High-Low-Level Width		-	0.125			$\mu \mathrm{s}$	
CLK Input Frequency	${ }^{\mathrm{f}} \mathrm{X}$	-			4	MHz	
Initial Mode Set Time	t	-	2			$\mu \mathrm{s}$	
MD3 Setup Time (vs. MD1 \uparrow)	${ }^{\text {tM3S }}$	-	2			$\mu \mathrm{s}$	
MD3 Hold Time (vs. MD1 \downarrow)	${ }^{\mathbf{m}} \mathrm{M} 3 \mathrm{H}$	-	2			$\mu \mathrm{s}$	
MD3 Setup Time (vs. MDO \downarrow)	${ }^{\text {tM3SR }}$	-	2			$\mu \mathrm{s}$	When program memory is read
Address* ${ }^{\text {a }} \rightarrow$ Data Output Delay Time	${ }^{\text {t DAD }}$	${ }^{\text {taCC }}$			2	$\mu \mathrm{s}$	When program memory is read
Address" ${ }^{\mathbf{~} \rightarrow \text { Data Output Hold Time }}$	thad	${ }^{\text {toh }}$	0		130	$\mu \mathrm{s}$	When program memory is read
MD3 Hold Time (vs. MDO \uparrow)	${ }^{\text {t M }}$ 3HR	-	2			$\mu \mathrm{s}$	When program memory is read
MD3 $\downarrow \rightarrow$ Data Output Float Delay Time	$t^{\text {t }}$ FR	-	2			$\mu \mathrm{s}$	When program memory is read
Reset Setup Time	${ }^{\text {tres }}$		10			$\mu \mathrm{s}$	

*1: Symbols for corresponding μ PD27C256
*2: The internal address signal is incremented by one at the falling edge of the third CLK input and is not connected to a pin.

PROGRAM MEMORY WRITE TIMING

PROGRAM MEMORY READ TIMING

4-BIT SINGLE-CHIP MICROCONTROLLER WITH LCD CONTROLLER/DRIVER FOR INFRARED REMOTE CONTROLLER

μ PD17202A is a 4-bit single-chip microcontroller containing an LCD controller/driver and an infrared remote controller carrier generator circuit.

This microcontroller employs the 17 K architecture and can execute transfer and arithmetic operations with a single 16 -bit instruction between data memory addresses and between the data memory and a peripheral circuit. μ PD17202A is housed in a 64-pin plastic QFP.

FEATURES

- 17K architecture
- Program memory (ROM): 2048×16 bits
- Data memory (RAM): 112×4 bits
- Internal infrared remote controller carrier generator
- Internal LCD controller/driver (can display up to 96 segments)

Common pins: 4, segment pins: 24 (two of the common pins can also be used as segment pins), internal LCD constant voltage supply circuit: LCD drive voltage can be arbitrarily set at 2.4 to 5.4 V by external resistor

- I/O ports: 16
- External interrupt pin: 1
- Stack levels: 5 (two interrupt levels)
- 8-bit timer: 1 channel
- Watch timer: 1 channel (used as watchdog timer or watch timer)
- Standby function: STOP and HALT
(to reduce current dissipation)
- Instruction execution time: $4 \mu \mathrm{~s}$
(with 4 MHz ceramic oscillator)
- Operation clock: 4 MHz or 32 kHz
- Operating voltage range: 2.2 to 5.5 V

ORDERING INFORMATION

Order Code	Package	Quality Grade
μ PD17202AGF- $\times \times x-3 B E$	64-pin plastic QFP	Standard

PIN CONFIGURATION (Top View)

1. PIN FUNCTIONS

1.1 PIN FUNCTION LIST

PIN NO.	SYMBOL	PIN NAME	FUNCTION	OUTPUT TYPE
$\begin{aligned} & 28 \\ & 29 \\ & 30 \\ & 31 \end{aligned}$	POAO $P^{P} A_{1}$ POA_{2} POA_{3}	Port 0A	These pins constitute a 4-bit I/O port which can be set in input or output mode in 4 bit units. In output mode, the port serves as a CMOS output port. In input mode, the port serves as a CMOS input port with pull-up resistor and can be used for key return input for a key matrix. If any one of these pins is made low in standby mode, the standby mode is released.	CMOS
$\begin{aligned} & 32 \\ & 33 \\ & 34 \\ & 35 \end{aligned}$	POB_{0} POB_{1} POB_{2} POB_{3}	Port OB	These pins constitute a 4-bit I/O port which can be set in input or output mode in 4 bit units. In output mode, the port serves as a CMOS output port. In input mode, the port serves as a CMOS input port with pull-up resistor and can be used for key return input for a key matrix. If any one of these pins is made low in standby mode, the standby mode is released.	cMOS
$\begin{aligned} & 36 \\ & 37 \\ & 38 \\ & 39 \end{aligned}$	$P_{O C}$ POC_{1} POC_{2} POC_{3}	Port 0C	These pins constitute a 4-bit I/O port which can be set in input or output mode in 4 bit units. In output mode, the port serves as an N -ch opendrain port and can be used for key source output for a key matrix. In input mode, the port serves as a CMOS input port. The standby mode cannot be set, when any one of these pins outputs a high level.	N -ch open drain
$\begin{aligned} & 40 \\ & 41 \\ & 42 \\ & 43 \end{aligned}$	$\begin{aligned} & \mathrm{POD}_{0} \\ & \mathrm{POD}_{1} \\ & \mathrm{POD}_{2} \\ & \mathrm{POD}_{3} \end{aligned}$	Port 0D	These pins constitute a 4 -bit I/O port which can be set in input or output mode in 4 bit units. In output mode, the port serves as an N -ch opendrain port and can be used for key source output for a key matrix. In input mode, the port serves as a CMOS input port. The standby mode cannot be set, when any one of these pins outputs a high level.	N -ch open drain
27	INT	External interrupt input	This CMOS input pin inputs an external interrupt signal.	-
44	TMOUT/LED	Remote controlier transfer/ display output	This pin outputs an NRZ (LED) signal in synchronization with an infrared remote controller signal, or 8 -bit timer's output signal (TMOUT). When the NRZ signal is selected and while the remote controller carrier is output, this pin remains low.	CMOS
45	REM	Remote controiler transfer output	This pin outputs an active-high infrared remote controller signal.	cMOS
$\begin{aligned} & 47 \\ & 48 \end{aligned}$	XIN XOUT	Main clock oscillator	Connect a 4 MHz ceramic/crystal oscillator across these pins.	-

PIN NO.	SYMBOL	PIN NAME	FUNCTION	OUTPUT TYPE
49	RESET	Reset input		

While a low level is input to this pin, main clock

oscillation stops.\end{array}\right]-\)| Low |
| :--- |
| 50 |

1.2 INPUT/OUTPUT CIRCUITS

The input/output circuit for each μ PD17202A's pin is shown below.
(1) $\mathrm{POA}_{0}-\mathrm{POA}_{3}, \mathrm{POB}_{0}-\mathrm{POB}_{3}$

(2) $\mathrm{POC}_{0}-\mathrm{POC}_{3}, \mathrm{POD}_{0}-\mathrm{POD}_{3}$

(3) RESET

Input buffer

2. ASSEMBLER KEYWORDS

2.1 MASK OPTION DIRECTIVES

When developing the μ PD17202A program, mask options must be specified by using mask option directives in the program.

The mask options must be specified for the following items:

- POA $_{0}, \mathrm{POA}_{1}, \mathrm{POA}_{2}, \mathrm{POA}_{3}$
- $\mathrm{POB}_{0}, \mathrm{POB}_{1}, \mathrm{POB}_{2}, \mathrm{POB}_{3}$
- RESET
- SYSTEM CLOCK

2.1.1 OPTION and ENDOP Directives

That portion of the program enclosed by the OPTION and ENDOP directives is called a mask option definition block. This block is described in the following format:

Description:

Symbol field	Mnemonic field	Operand field	Comment field
[label:]	OPTION		[; comment]
	ENDOP		

2.1.2 Mask Option Definition Directives

Table 2-1 lists the directives that can be used in the mask option definition block.
Here is an example of mask option definition:

Description:
Symbol field
[label:]

Mnemonic field
OPTPOA

Operand field

Table 2-1 Mask Option Definition Directives

2.2 KEYWORD SYMBOLS

The symbols defined by the μ PD17202A device file are listed in Table 2-2.
The defined symbols are the following register file names, port names, and peripheral device names.

2.2.1 Register File

The names of the symbols assigned to the register file are defined. These registers are accessed by the PEEK and POKE instructions through the window register (WR).

2.2.2 Registers and Ports on Data Memory

The names of the registers assigned at addresses $00 H$ through 7 FH on the data memory and the names of ports assigned to address 70 H and those that follow, and system register names are defined.

2.2.3 Peripheral Circuits

The names of peripheral circuits accessed by the GET and PUT instructions are defined.

Table 2-2 Keyword Symbols (1/3)

Symbol	Attribute	Value	R/W	Remarks
DBF3	MEM	0.0 CH	R/W	Bits 15-12 of data buffer
DBF2	MEM	0.0 DH	R/W	Bits 11-8 of data buffer
DBF1	MEM	0.0 EH	R/W	Bits 7-4 of data buffer
DBF0	MEM	0.0FH	R/W	Bits 3-0 of data buffer
AR3	MEM	0.74 H	R	Bits 15-12 of address register
AR2	MEM	0.75 H	R/W	Bits 11-8 of address register
AR1	MEM	0.76 H	R/W	Bits 7-4 of address register
AR0	MEM	0.77 H	R/W	Bits 3-0 of address register
WR	MEM	0.78 H	R/W	Window register
BANK	MEM	0.79 H	R	Bank register
IXH	MEM	0.7AH	R/W	Bits 11-8 of index register
MPH	MEM	0.7 AH	R/W	Bits 7-4 of memory pointer
MPE	FLG	$0.7 \mathrm{AH}$.	R/W	Memory pointer enable flag
IXM	MEM	0.7 BH	R/W	Bits 7-4 of index register
MPL	MEM	0.7 BH	R/W	Bits 3-0 of memory pointer
IXL	MEM	0.7 CH	R/W	Bits 3-0 of index register
RPH	MEM	0.7 DH	R/W	Bits 7-4 of register pointer
RPL	MEM	0.7 EH	R/W	Bits 3-0 of register pointer
PSW	MEM	0.7 FH	R/W	Program status word
BCD	FLG	0.7 EH .0	R/W	BCD flag
CMP	FLG	0.7 FH .3	R/W	Compare flag
CY	FLG	0.7 FH .2	R/W	Carry flag
Z	FLG	0.7 FH .1	R/W	Zero flag
IXE	FLG	0.7 FH .0	R/W	Index register enable flag
LCDD0	MEM	0.40 H	R/W	LCD segment 0
LCDD1	MEM	0.41 H	R/W	LCD segment 1
LCDD2	MEM	0.42 H	R/W	LCD segment 2
LCDD3	MEM	0.43 H	R/W	LCD segment 3
LCDD4	MEM	0.44 H	R/W	LCD segment 4
LCDD5	MEM	0.45 H	R/W	LCD segment 5
LCDD6	MEM	0.46 H	R/W	LCD segment 6
LCDD7	MEM	0.47 H	R/W	LCD segment 7
LCDD8	MEM	0.48 H	R/W	LCD segment 8
LCDD9	MEM	0.49 H	R/W	LCD segment 9
LCDD10	MEM	0.4 AH	R/W	LCD segment 10
LCDD11	MEM	0.4 BH	R/W	LCD segment 11
LCDD12	MEM	0.4 CH	R/W	LCD segment 12
LCDD13	MEM	0.4 DH	R/W	LCD segment 13
LCDD14	MEM	0.4 EH	R/W	LCD segment 14
LCDD15	MEM	0.4 FH	R/W	LCD segment 15

Table 2-2 Keyword Symbols (2/3)

Symbol	Attribute	Value	R/W	Remarks
LCDD16	MEM	0.50 H	R/W	LCD segment 16
LCDD17	MEM	0.51 H	R/W	LCD segment 17
LCDD18	MEM	0.52 H	R/W	LCD segment 18
LCDD19	MEM	0.53 H	R/W	LCD segment 19
LCDD20	MEM	0.54 H	R/W	LCD segment 20
LCDD21	MEM	0.55 H	R/W	LCD segment 21
LCDD22	MEM	0.56 H	R/W	LCD segment 22
LCDD23	MEM	0.57 H	R/W	LCD segment 23
LCDD24	MEM	0.58 H	R/W	LCD segment 24
LCDD25	MEM	0.59H	R/W	LCD segment 25
P0A0	FLG	0.70 H .0	R/W	Bit 0 of port 0 A
P0A1	FLG	0.70 H .1	R/W	Bit 1 of port 0A
P0A2	FLG	0.70 H .2	R/W	Bit 2 of port 0A
P0A3	FLG	0.70 H .3	R/W	Bit 3 of port 0A
P0B0	FLG	0.71 H .0	R/W	Bit 0 of port 0B
P0B1	FLG	0.71 H .1	R/W	Bit 1 of port 0B
P0B2	FLG	0.71 H .2	R/W	Bit 2 of port 0B
P0B3	FLG	0.71 H .3	R/W	Bit 3 of port 0B
P0C0	FLG	0.72 H .0	R/W	Bit 0 of port 0 C
P 0 Cl	FLG	$0.72 \mathrm{H.1}$	R/W	Bit 1 of port 0C
P0C2	FLG	0.72 H .2	R/W	Bit 2 of port 0C
P0C3	FLG	$0.72 \mathrm{H}$.	R/W	Bit 3 of port 0C
P0D0	FLG	$0.73 \mathrm{H.0}$	R/W	Bit 0 of port 0D
P0D1	FLG	$0.73 \mathrm{H.1}$	R/W	Bit 1 of port 0D
P0D2	FLG	0.73 H .2	R/W	Bit 2 of port 0D
P0D3	FLG	$0.73 \mathrm{H}$.	R/W	Bit 3 of port 0D
SP	MEM	0.81 H	R/W	Stack pointer
SYSCK	FLG	0.82 H .1	R/W	Selects system clock
XEN	FLG	$0.82 \mathrm{H.0}$	R/W	Enables main clock
WDTRES	FLG	0.83 H .3	R/W	Resets watchdog timer
WTMMD	FLG	0.83 H .2	R/W	Selects watch timer mode
WTMRES	FLG	0.83 H .1	R/W	Resets watch timer mode
VDDDET	FLG	0.87 H .3	R/W	VDD detection flag
INT	FLG	0.8 FH .0	R	INT pin status
NRZBF	FLG	0.91 H .0	R/W	NRZ buffer data
NRZ	FLG	0.92 H .0	R/W	NRZ data
IEG	FLG	$0.9 \mathrm{FH.0}$	R/W	Selects interrupt edge of INT pin
TMOE	FLG	$0 . \mathrm{A} 4 \mathrm{H} .1$	R/W	8 -bit timer output enable flag
IPWTM	FLG	0.AFH. 2	R/W	Watch timer interrupt enable flag
IP	FLG	$0 . \mathrm{AFH.1}$	R/W	INT interrupt enable flag

Table 2-2 Keyword 8ymbols (3/3)

Symbol	Attribute	Value	R/W	Remarks
IPTM	FLG	0.AFH. 0	R/W	8-bit timer interrupt enable flag
LCDEN	FLG	0.B1H. 3	R/W	LCD display enable flag
LCDCK2	FLG	0.B1H. 2	R/W	LCD display setting \# 2
LCDCK1	FLG	$0 . \mathrm{B1H} .1$	R/W	LCD display setting \# 1
LCDCK0	FLG	0.B1H. 0	R/W	LCD display setting \# 0
LCDMD3	FLG	$0 . \mathrm{B} 2 \mathrm{H} .3$	R/W	LCD display setting \# 3
LCDMD2	FLG	$0 . \mathrm{B} 2 \mathrm{H} .2$	R/W	LCD display setting \#2
LCDMD1	FLG	$0 . \mathrm{B} 2 \mathrm{H} .1$	R/W	LCD display setting \# 1
LCDMD0	FLG	$0 . \mathrm{B} 2 \mathrm{H} .0$	R/W	LCD display setting \# 0
TMEN	FLG	$0 . \mathrm{B3H} .3$	R/W	8 -bit timer counter enable flag
TMRES	FLG	0.B3H. 2	R/W	8 -bit timer reset flag
TMCK1	FLG	$0 . \mathrm{B} 3 \mathrm{H} .1$	R/W	Selects clock source of 8-bit timer
TMCK0	FLG	$0 . \mathrm{B3H} .0$	R/W	Selects clock source of 8-bit timer
P0DGIO	FLG	0.B7H. 3	R/W	P0D port I/O setting flag
POCGIO	FLG	0.B7H. 2	R/W	P0C port I/O setting flag
P0BGIO	FLG	$0 . \mathrm{B7H} .1$	R/W	P0B port I/O setting flag
P0AGIO	FLG	$0 . \mathrm{B} 7 \mathrm{H} .0$	R/W	P0A port I/O setting flag
IRQWTM	FLG	0.BDH. 0	R/W	Watch timer interrupt request flag
IRQ	FLG	0.BEH. 0	R/W	INT interrupt request flag
IRQTM	FLG	0.BFH. 0	R/W	8 -bit timer interrupt request flag
DBF	DAT	OFH	R/W	Operand of GET and PUT instructions
IX	DAT	01H	R/W	Index register
TMC	DAT	02H	R	8 -bit timer/counter
TMM	DAT	02H	W	Modulo register of 8-bit timer
NRZLTMM	DAT	03H	R/W	NRZ modulo register, low
NRZHTMM	DAT	04H	R/W	NRZ modulo register, high
AR	DAT	40 H	R/W	Address register

3. μ PD17202A INSTRUCTION SET

3.1 INSTRUCTION SET OUTLINE

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

3.2 LEGEND

M	Data memory address
m	Data memory address except bank
m_{H}	Data memory row address
m_{L}	Data memory column address
R	General register address
r	General register column address
RP	General register pointer
RF	Register file
rf	Register file address
rf_{H}	Register file address (higher 3 bits)
H_{L}	Register file address (lower 3 bits)
AR	Address register
IX	Index register
IXE	Index enable flag
DBF	Data buffer
WR	Window register
MP	Data memory row address pointer
MPE	Memory pointer enable flag
PE	Peripheral register
p	Peripheral address
P_{H}	Peripheral address (higher 3 bits)
P_{L}	Peripheral address (lower 4 bits)
PC	Program memory counter
SP	Stack pointer
STACK	Stack value indicated by stack pointer
BANK	Bank register
(AR)rom	Data for program memory indicated by address register
INTEF	Interrupt enable flag
i	Immediate data (4 bits)
n	Bit position (4 bits)
addr	Program memory address (11 bits)
CY	Carry flag
s	STOP releasing condition
h	HALT releasing condition
[]	Data memory or register address
11	Data memory or register value

3．3 INSTRUCTION LIST

$\begin{array}{\|l} \hline \text { 悥 } \\ \text { 仿 } \end{array}$	Mnemonic	Operand	Operation	Machine code			
				OP code	3 bits	4 bits	4 bits
	ADD	r，m	$(\mathrm{R}) \leftarrow(\mathrm{R})+(\mathrm{M})$	00000	m_{H}	m_{L}	r
		m，\＃i	（M）$\leftarrow(\mathrm{M})+\mathrm{i}$	10000	m_{H}	m_{L}	i
	ADDC	r，m	$(\mathrm{R}) \leftarrow(\mathrm{R})+(\mathrm{M})+(\mathrm{CY})$	00010	m_{H}	m_{L}	r
		m，\＃i	$(\mathrm{M}) \leftarrow(\mathrm{M})+\mathrm{i}+(\mathrm{CY})$	10010	m_{H}	m_{L}	i
	INC	AR	$(\mathrm{AR}) \leftarrow(\mathrm{AR})+1$	00111	000	1001	0000
		IX	$(\mathrm{IX}) \leftarrow(\mathrm{IX})+1$	00111	000	1000	0000
	SUB	r，m	$(\mathrm{R}) \leftarrow(\mathrm{R})-(\mathrm{M})$	00001	m_{H}	m_{L}	r
		m，\＃i	（M）\leftarrow（M）－i	10001	m_{H}	m_{L}	i
	SUBC	r，m	$(\mathrm{R}) \leftarrow(\mathrm{R})-(\mathrm{M})-(\mathrm{CY})$	00011	m_{H}	m_{L}	r
		m，\＃i	（M）\leftarrow（M）－i－（CY）	10011	m_{H}	m_{L}	i
	SKE	m，\＃i	（M）－i，skip if zero	01001	m_{H}	m_{L}	i
	SKGE	m，\＃i	（M）－i，skip if not borrow	11001	m_{H}	m_{L}	i
	SKLT	m，\＃i	（M）-i ，skip if borrow	11011	m_{H}	m_{L}	i
	SKNE	m，\＃i	（M）－i，skip if not zero	01011	m_{H}	m_{L}	i
	AND	m，\＃i	（M）\leftarrow（M）AND i	10100	m_{H}	m_{L}	i
		r，m	$(\mathrm{R}) \leftarrow(\mathrm{R})$ AND（M）	00100	m_{H}	m_{L}	r
	OR	m，\＃i	（M）\leftarrow（M）OR i	10110	m_{H}	m_{L}	i
		r，m	（R）$\leftarrow(\mathrm{R}) \mathrm{OR}(\mathrm{M})$	00110	m_{H}	m_{L}	r
	XOR	m，\＃i	（M）\leftarrow（M）XOR i	10101	m_{H}	m_{L}	i
		r，m	$(\mathrm{R}) \leftarrow(\mathrm{R})$ XOR（M）	00101	m_{H}	m_{L}	r
	LD	r，m	$(\mathrm{R}) \leftarrow(\mathrm{M})$	01000	m_{H}	m_{L}	r
	ST	m, r	$(\mathrm{M}) \leftarrow(\mathrm{R})$	11000	m_{H}	m_{L}	r
	MOV	＠r，m	$\begin{aligned} & \text { if MPE }=1:[(\mathrm{MP}),(\mathrm{R})] \leftarrow(\mathrm{M}) \\ & \text { if } \mathrm{MPE}=0:\left[\left(\mathrm{m}_{\mathrm{H}}\right),(\mathrm{R})\right] \leftarrow(\mathrm{M}) \end{aligned}$	01010	m_{H}	m_{L}	r
		m，＠r	$\begin{array}{ll} \text { if MPE }=1: & (\mathrm{M}) \leftarrow[(\mathrm{MP}),(\mathrm{R})] \\ \text { if } \mathrm{MPE}=0: & (\mathrm{M}) \leftarrow\left[\left(\mathrm{m}_{\mathrm{H}}\right),(\mathrm{R})\right] \end{array}$	11010	m_{H}	m_{L}	r
		m，\＃i	（M）$\leftarrow \mathrm{i}$	11101	m_{H}	m_{L}	i
	MOVT	$\begin{aligned} & \mathrm{DBF}, \\ & \text { @AR } \end{aligned}$	$\begin{aligned} & \mathrm{SP} \leftarrow(\mathrm{SP})-1, \mathrm{STACK} \leftarrow \mathrm{PC}, \\ & \mathrm{DBF} \leftarrow(\mathrm{AR}) \text { rom }, \\ & \mathrm{PC} \leftarrow \mathrm{STACK}, \mathrm{SP} \leftarrow(\mathrm{SP})+1 \end{aligned}$	00111	000	0001	0000
	PUSH	AR	$(\mathrm{SP}) \leftarrow(\mathrm{SP})-1,(\mathrm{STACK}) \leftarrow(\mathrm{AR})$	00111	000	1101	0000
	POP	AR	$(\mathrm{AR}) \leftarrow(\mathrm{STACK}),(\mathrm{SP}) \leftarrow(\mathrm{SP})+1$	00111	000	1100	0000
	PEEK	WR，rf	$(\mathrm{WR}) \leftarrow(\mathrm{RF})$	00111	rf_{H}	0011	rf_{L}
	POKE	rf，WR	$(\mathrm{RF}) \leftarrow(\mathrm{WR})$	00111	rf_{H}	0010	rf_{L}
	GET	DBF，p	（ DBF ）$\leftarrow(\mathrm{PE})$	00111	p_{H}	1011	p_{L}
	PUT	p，DBF	$(\mathrm{PE}) \leftarrow(\mathrm{DBF})$	00111	p_{H}	1010	p_{L}
号	SKT	m，\＃n	CMP $\leftarrow 0$ ，skip if $\mathrm{M}_{\mathrm{N}}=$ all＂ 1 ＂	11110	m_{H}	m_{L}	n
$\stackrel{3}{2}$	SKF	m，\＃n	CMP $\leftarrow 0$ ，skip if $\mathrm{M}_{\mathrm{N}}=$ all＂ 0 ＂	11111	m_{H}	m_{L}	n

$\begin{aligned} & \text { O} \\ & \text { O} \\ & \text { U } \end{aligned}$	Mnemonic	Operand	Operation	Machine code			
				OP code	3 bits	4 bits	4 bits
$\begin{array}{\|l} \hline \text { 或 } \\ \text { ヘu } \end{array}$	BR	addr	$\mathrm{PC} \leftarrow \mathrm{addr}$	01100	addr		
		＠AR	$\mathrm{PC} \leftarrow \mathrm{AR}$	00111	000	0100	0000
苞	RORC	r	$(\mathrm{CY}) \rightarrow(\mathrm{R}) \rightarrow \mathrm{CY}$	00111	000	0111	r
	CALL	addr	$\begin{aligned} & \mathrm{SP} \leftarrow(\mathrm{SP})-1, \mathrm{STACK} \leftarrow((\mathrm{PC})+1), \\ & \mathrm{PC} \leftarrow \mathrm{addr} \end{aligned}$	11100	addr		
		＠AR	$\begin{aligned} & \mathrm{SP} \leftarrow(\mathrm{SP})-1, \mathrm{STACK} \leftarrow((\mathrm{PC})+1), \\ & \mathrm{PC} \leftarrow(\mathrm{AR}) \end{aligned}$	00111	000	0101	0000
	RET		$\mathrm{PC} \leftarrow(\mathrm{STACK}), \mathrm{SP} \leftarrow(\mathrm{SP})+1$	00111	000	1110	0000
	RETSK		$\mathrm{PC} \leftarrow(\mathrm{STACK}), \mathrm{SP} \leftarrow(\mathrm{SP})+1$ and skip	00111	001	1110	0000
	RETI		$\mathrm{PC} \leftarrow(\mathrm{STACK}), \mathrm{SP} \leftarrow(\mathrm{SP})+1$	00111	100	1110	0000
旁	EI		INTEF $\leftarrow 1$	00111	000	1111	0000
㟥	DI		INTEF $\leftarrow 0$	00111	001	1111	0000
	STOP	8H	STOP	00111	010	1111	1000
¢	HALT	h	HALT	00111	011	1111	h
	NOP		No operation	00111	100	1111	0000

3.4 ASSEMBLER (AS17K) MACROINSTRUCTIONS

Legend
flag : One of flag1-flagn
flag1-flagn : Flag name indicated by keyword
$n \quad:$ Number
$<>$: Can be omitted

Mnemonic	Operand	n	Operation
SKTn	flag1, \cdots flagn	$1 \leqq n \leqq 4$	if (flag $)$ - (flagn) $=$ all ${ }^{\text {* }} 1$ ". then skip
SKFn	flag1, \cdots flagn	$1 \leqq n \leqq 4$	if (flag1) - (flagn) $=$ all ${ }^{*} 0$ ". then skip
SETn	flag1, \cdots flagn	$1 \leqq n \leqq 4$	(flag1) - (flagn) $\leftarrow 1$
CLR	flag1, \cdots flagn	$1 \leqq n \leqq 4$	(flag1) - (flagn) -0
NOTn	flag1, \cdots flagn	$1 \leqq n \leqq 4$	if (flag) $={ }^{*} 0{ }^{0}$, then (flag) $\leftarrow 1$, if $($ flag $)={ }^{*} 1^{\prime \prime}$, then (flag) $\leftarrow 0$
INITFLG	$\begin{aligned} & \quad<\text { NOT }>\text { flag1, } \\ & \cdots<\text { NOT }>\text { flagn } \end{aligned}$	$\mathrm{n}=4$	if description $=$ NOT flag, $\quad($ flag $) \leftarrow 0$ if description $=$ flag, (flag) $\leftarrow 1$

4. ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$)

Supply Voltage	$V_{D D}$	-0.3 to +7.0	V
Input Voltage	V_{1}	-0.3 to $V_{D D}+0.3$	V
Operating Temperature	$\mathrm{T}_{\text {opt }}$	-20 to +75	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-40 to +125	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING RANGE

CAHRACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Supply Voltage	V DD1	2.2	3.0	5.5	V	$\mathrm{f}_{\mathrm{X}}=4 \mathrm{MHz}$
	VDD2	3.5	5.0	5.5	V	$\mathrm{f}_{\mathrm{X}}=8 \mathrm{MHz}$
Main Clock Oscilla- tion Frequency	f^{X}	2.0	4.0	5.0	MHz	
Subclock Oscillation Frequency	f_{XT}		32.768		kHz	

CAPACITANCE $\left(\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}\right)$

CAHRACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Input Capacitance	CIN *			10	PF	INT, $\overline{\text { RESET }}$ pins
	CPIN 2			10	PF	Other than INT, $\overline{\text { RESET pins }}$

μ PD17202A

DC CHARACTERISTICS ($\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{X}}=\mathbf{4} \mathrm{MHz}, \mathrm{f}_{\mathrm{XT}}=\mathbf{3 2} \mathbf{k H z}$)

CAHRACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS	
Low Voltage Detection Voltage	$V_{\text {det }}$	1.3	2.0	2.9	V		
High-Level Input Voltage	$\mathrm{V}_{\text {IH1 }}$	0.8 V VD		VDD	V	RESET, INT pins	
	$\mathrm{V}_{\text {IH2 }}$	$0.7 \mathrm{~V}_{\text {DD }}$		VDD	V	Other than RESET, INT pins	
Low-Level Input Voltage	$V_{\text {ILI }}$	0		$0.2 \mathrm{~V}_{\text {DD }}$	V	RESET, INT pins	
	$V_{\text {IL2 }}$	0		$0.3 \mathrm{~V}_{\mathrm{DD}}$	\checkmark	Other than $\overline{\text { RESET, INT pins }}$	
High-Level Input Current	${ }_{1 / H 1}$			0.2	$\mu \mathrm{A}$	INT pin	$\mathrm{V}_{\text {IH }}=\mathrm{V}_{\text {DD }}$
	1/H2			0.2	$\mu \mathrm{A}$	RESET pin	$V_{I H}=V_{\text {DD }}$
	IIH3			0.2	$\mu \mathrm{A}$	POA-POD pin	$\mathrm{V}_{\text {IH }}=\mathrm{V}_{\text {DD }}$
Low-Level Input Current	IIL1			-0.2	$\mu \mathrm{A}$	INT pin	$V_{1 L}=0 V$
	IIL2			-0.2	$\mu \mathrm{A}$	RESET pin	$V_{I L}=0 V$ w/o pull-up resistor
	IIL3	-20	-50	-100	$\mu \mathrm{A}$		$V_{I L}=0 \mathrm{~V}$ w/pull-up resistor
	IIL4			-0.2	$\mu \mathrm{A}$	POA, POB pins	$V_{I L}=0 \mathrm{~V}$ w/o pull-up resistor
	IIL5	-6	-12	-20	$\mu \mathrm{A}$		$v_{I L}=0 \mathrm{~V}$ w/pull-up resistor
	IIL6			-0.2	$\mu \mathrm{A}$	POC, POD pins	$\mathrm{V}_{\text {IL }}=0 \mathrm{~V}$
High-Level Output Current	${ }^{1} \mathrm{OH} 1$	-0.6	-2.0	-4.0	mA	POA, POB pins	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\text {DD }}-0.3 \mathrm{~V}$
	${ }^{1} \mathrm{OH} 2$	-7.0	-15.0	-25.0	mA	REM pin	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-2.0 \mathrm{~V}$
	IOH3	-0.3	-1.0	-2.0	mA	LED pin	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.3 \mathrm{~V}$
High-Level Output Current	${ }^{\prime} \mathrm{OH} 4$	-0.3	-1.0	-2.0	mA	VDOUT ${ }^{\text {pin }}$	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.3 \mathrm{~V}$
Low-Level Output Current	'OL1	0.5	1.5	2.5	mA	POA, POB pins	$\mathrm{V}_{\mathrm{OL}}=0.3 \mathrm{~V}$
	IOL2	0.5	1.5	2.5	mA	POC, POD pins	$\mathrm{V}_{\mathrm{OL}}=0.3 \mathrm{~V}$
	IOL3	0.5	1.5	2.5	mA	REM pin	$\mathrm{V}_{\mathrm{OL}}=0.3 \mathrm{~V}$
	IOL4	0.5	1.5	2.5	mA	LED pin	$\mathrm{V}_{\mathrm{OL}}=0.3 \mathrm{~V}$
	IOL5	0.5	1.5	2.5	mA	VDOUT pin	$\mathrm{V}_{\mathrm{OL}}=0.3 \mathrm{~V}$
Supply Current	IDD1	0.2	0.5	1.5	mA	Operation mode HALT mode	XT and X
	IDD2		15	30	$\mu \mathrm{A}$		Only XT
	IDD3		0.5	1.5	mA		XT and X
	IDD4		10	15	$\mu \mathrm{A}$		Only XT
LCD Output Voltage Adjustable Range	$\mathrm{V}_{\text {LCDO }}$	0.6		1.8	V		
Doubler Output Voltage	$\mathrm{V}_{\text {LCD1 }}$	$1.9 \mathrm{~V}_{\text {LCDO }}$	2V LCDO		V		
Tripler Output Voltage	$\mathrm{V}_{\text {LCD2 }}$	$2.85 \mathrm{~V}_{\text {LCDO }}$	$3 V_{\text {LCDO }}$		V		
Common Output Current	ICOM	30			$\mu \mathrm{A}$	$V_{\text {DS }}=0.2 \mathrm{~V}$	
Segment Output Current	ILCD	5			$\mu \mathrm{A}$	$V_{D S}=0.2 \mathrm{~V}$	

RECOMMENDED OSCILLATORS

MAIN SYSTEM CLOCK: CERAMIC OSCILLATOR

MANUFACTURER	PRODUCT NAME	EXTERNAL CAPACITOR (pF)		OSCILLATION VOLTAGE (V)		REMARKS
		C1	C2	MIN.	MAX.	
Murata Mfg.	CSA3.58MG	30	30	2.0	6.0	
	CSA4.00MG	30	30	2.0	6.0	
	CSA4.19MG	30	30	2.0	6.0	
	CST3.58MGW	none	none	2.0	6.0	C contained type
	CST4.00MGW	none	none	2.0	6.0	
	CST4.19MGW	none	none	2.0	6.0	
Kyocera	KBR3.58MS	33	33	2.0	6.0	
	KBR4.0MS	33	33	2.0	6.0	
	KBR4.19MS	33	33	2.0	6.0	
Toko	CRHF4.00	18	18	2.0	6.0	
Dai-Shinku	PRS0400BCSAN	39	33	2.0	6.0	

MAIN SYSTEM CLOCK: CRYSTAL OSCILLATOR

MANUFACTURER	FREQUENCY (MHz)	RETAINER	EXTERNAL CAPACITOR (pF)		OSCILLATION VOLTAGE (V)		REMARKS
			C1	C2	MIN.	MAX.	
Kinseki	4.0	HC-49U-S	22	22	2.0	6.0	

Oscillator circuit

5. APPLICATION CIRCUIT EXAMPLE

μ PD17P202A is a model of μ PD17202A which is equipped with a one-time PROM in place of the μ PD17202A internal mask ROM.

Since the user can write the program to μ PD17P202A, the microcomputer is suitable for experimental or smallscale production of μ PD17202A systems.

It is recommended that you also read the documents related to μ PD17202A, in addition to this data sheet.

FEATURES

- Compatible with μ PD17202A
- Internal one-time PROM: $2,048 \times 16$ bits
- Operating voltage range: 2.2 to 5.5 V

ORDERING INFORMATION

Order Code	Package	Quality Grade
μ PD17P202AGF-001-3BE	64-pin plastic QFP $(14 \times 20 \mathrm{~mm})$	Standard
μ PD17P202AGF-002-3BE	64-pin plastic QFP $(14 \times 20 \mathrm{~mm})$	Standard
μ PD17P202AGF-003-3BE	64-pin plastic QFP $(14 \times 20 \mathrm{~mm})$	Standard

Note: Table below indicates differences in these products:

| | Item | Pull-up
 resistor
 for $\overline{R E S E T}$
 pin | Pull-up
 resistors for
 P0A, P0B pins | Main clock
 generator
 used/unused |
| :--- | :---: | :---: | :---: | :---: | | Subclock
 generator
 used/unused |
| :---: |
| μ PD17P202AGF-001-3BE |
| Provided |

PIN CONFIGURATION (Top View)

(1) Ordinary operation

$\mathrm{POA}_{0}-\mathrm{POA}_{3}$	Input/output port	REM	Remote control transmission output
$\mathrm{POB}_{0}-\mathrm{POB}_{3}$	Input/output port	INT	External interrupt request signal input
$\mathrm{POC}_{0}-\mathrm{POC}_{3}$	Input/output port	RESET	Reset input
$\mathrm{POD}_{0}-\mathrm{POD}_{3}$	Input/output port	VDOUT	Low voltage detection circuit output
$V_{\text {REG }}$	Voltage regulator output	$X_{\text {IN }}, X_{\text {OUT }}$	Main clock oscillator circuit
$V_{\text {DET }}$	Voltage detector detection voltage adjustment	XTIN, XTOUT CAPH, CAPL	Subclock oscillator circuit Booster capacitor connection pins
$\mathrm{V}_{\text {LCDC }}$	LCD drive reference voltage adjustment	CLK	: PROM clock input
$\mathrm{V}_{\text {LCDO }} \mathrm{V}_{\text {LCD2 }}$	LCD drive voltage outputs	MDO-MD3	PROM mode selection input
$\mathrm{LCD}_{0}-\mathrm{LCE}_{35}$	LCD segment signal output	D0-D7	PROM data input/output
$\mathrm{COM}_{0}-\mathrm{COM}_{3}$	LCD common signal output	V PP	PROM write voltage power supply pin
TMOUT	8 -bit timer output	$\mathrm{V}_{\text {DD }}$	Power supply pin
LED	Remote control transmission indication output	$\mathrm{GND}_{0}, \mathrm{GND}_{1}$: GND
		2-508	

(2) PROM programming mode

Note: (indicates processing for pins not used in the PROM programming mode.
L : Ground each of these pins through a 470Ω resistor.
Open : Do not connect these pins.

BLOCK DIAGRAM

1. PIN FUNCTIONS

1.1 ORDINARY OPERATION MODE

PIN No.	SYMBOL	FUNCTION	OUTPUT TYPE	POWER ON RESET
$\begin{array}{r} 62 \\ 63 \\ 64 \\ 1 \\ 2 \\ 1 \\ 25 \end{array}$	$\begin{gathered} \mathrm{COM}_{0} \\ \mathrm{COM}_{1} \\ \mathrm{LCD}_{25} / \mathrm{COM}_{2} \\ \mathrm{LCD}_{24} / \mathrm{COM}_{3} \\ \mathrm{LCD}_{23} \\ \text { । } \\ \mathrm{LCD}_{0} \end{gathered}$	LCD controller/driver segment signal outputs and LCD controller/driver common signal outputs. - LCD_{25} to LCD_{0} - LCD controller/driver segment signal outputs - COM_{0} to COM_{3} - LCD controller/driver common signal outputs	CMOS	-
26	GND 0	GND	-	-
27	INT	Inputs external interrupt request signal. Either the rising edge or the falling edge can be specified as the interrupt request effective edge.	-	Input
$\begin{gathered} 28 \\ \text { । } \\ 31 \end{gathered}$	$\begin{gathered} \mathrm{POA}_{0} \\ \text { । } \\ \mathrm{POA}_{3} \end{gathered}$	4-bit CMOS input/output port. This port can be specified for input/output in 4bit units. In the input mode, these pins become CMOS inputs, and can be used as key return inputs for key matrix. See Note.	CMOS push- pull	Input
$\begin{gathered} 32 \\ \text { । } \\ 35 \end{gathered}$	$\begin{gathered} \mathrm{POB}_{0} \\ \mathrm{I} \\ \mathrm{POB}_{3} \end{gathered}$	4-bit CMOS input/output port. This port can be specified for input/output in 4 bit units. In the input mode, these pins become CMOS inputs, and can be used as key return inputs for key matrix. See Note.	CMOS push- pull	Input
$\begin{gathered} 36 \\ \text { । } \\ 39 \end{gathered}$	$\begin{gathered} \mathrm{POC}_{0} \\ \mathrm{I} \\ \mathrm{POC}_{3} \end{gathered}$	4-bit CMOS input/output port. This port can be specified for input/output in 4bit units. In the output mode, these pins become N -ch open-drain output, and can be used for key source output for key matrix.	N -ch opendrain	Input
$\begin{gathered} 40 \\ 1 \\ 43 \end{gathered}$	$\begin{gathered} \mathrm{POD}_{0} \\ \mathrm{I} \\ \mathrm{POD}_{3} \end{gathered}$	4-bit CMOS input/output port. This port can be specified for input/output in 4bit units. In the output mode, these pins become N -ch open-drain output, and can be used for key source output for key matrix.	N -ch opendrain	Input
44	TMOUT/LED	This pin outputs NRZ signal (LED) synchronized with infrared remote control signal and 8-bit timer (TMOUT). - TMOUT - 8-bit timer output - LED - Remote control transmission indication output	CMOS push- pull	High level output

[^9]| PIN No. | SYMBOL | FUNCTION | OUTPUT TYPE | POWER ON RESET |
| :---: | :---: | :---: | :---: | :---: |
| 45 | REM | Infrared remote control signal output. | CMOS
 push-
 pull | High
 level output |
| 46 | $V_{\text {DD }}$ | Positive voltage power supply pin. 2.2 to 5.5 V is applied in the normal operation mode. | - | - |
| $\begin{aligned} & 47 \\ & 48 \end{aligned}$ | $\begin{aligned} & X_{\text {IN }} \\ & X_{\text {OUT }} \end{aligned}$ | Main clock oscillation circuit is connected across these pins.
 Connect a 4 MHz ceramic resonator or crystal resonator across these pins. | - | - |
| 49 | RESET | Reset signal input. | - | Input |
| 50 | $\overline{\text { VDOUT }}$ | Internal low voltage detection circuit output. | CMOS
 push-
 pull | - |
| $\begin{aligned} & 51 \\ & 52 \end{aligned}$ | $\begin{aligned} & \text { XTIN } \\ & \text { XTOUT } \end{aligned}$ | Subclock oscillation circuit is connected across these pins.
 Connect a 32 kHz crystal resonator across these pins. | - | - |
| 53 | $V_{\text {REG }}$ | Voltage regulator output for subclock generator. | - | - |
| 54 | $V_{\text {DET }}$ | A resistor for adjusting the voltage detector detection level is connected to this pin. | - | - |
| 55 | $V_{\text {LCDC }}$ | Adjusts LCD drive reference voltage. | - | - |
| $\begin{aligned} & 56 \\ & 57 \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{LCD}} \\ & \mathrm{~V}_{\mathrm{LCD} 1} \end{aligned}$ | Outputs a voltage boosted from LCD drive reference voltage. | - | - |
| 58 | GND_{1} | GND | - | - |
| 59 | $\mathrm{V}_{\text {LCD2 }}$ | Outputs a voltage boosted from LCD drive reference voltage. | - | - |
| $\begin{aligned} & 60 \\ & 61 \end{aligned}$ | CAPL CAPH | Voltage boosting capacitor is connected across these pins. | - | - |

1.2 PROM PROGRAMMING MODE

PIN No.	SYMBOL	FUNCTION	OUTPUT TYPE	POWER ON RESET
26	GND_{0}	GND	-	-
27	$\mathrm{V}_{\text {PP }}$	Positive power supply pin for PROM programming. 12.5 V is applied to this pin when programming, reading, or verifying the program memory.	-	-
$\begin{gathered} 32 \\ 1 \\ 35 \end{gathered}$	$\begin{gathered} \text { MD3 } \\ \text { । } \\ \text { MDO } \end{gathered}$	Operation mode selection inputs for PROM programming.	-	Input
$\begin{gathered} 36 \\ 1 \\ 39 \\ 40 \\ 1 \\ 43 \end{gathered}$	D4 1 D7 D0 1 D3	8 -bit data input/output for PROM programming.	cmos pushpull	Input
46	$V_{\text {DD }}$	Positive power supply pin. 6 V is applied to this pin when programming, reading, or verifying the program memory.	-	-
47	CLK	Clock input for PROM programming.	-	-
48	GND_{1}	GND	-	-

Remarks: Pins other then listed above are not used in the PROM programming mode. Refer to "Pin Connection Diagram (2) PROM Programming Mode" for recommended conditions for unused pins.

1.3 PIN EQUIVALENT CIRCUITS

The simplified pin equivalent circuits schematic views for μ PD17P202A's pins are presented below.
(1) POA_{0} through $\mathrm{PO} \mathrm{A}_{3}, \mathrm{POB}_{0} / \mathrm{MD} 0$ through $\mathrm{POB} 3 / \mathrm{MD} 3$

*: Only μ PD17P202A-001 and μ PD17P202A-002
(2) $P O C_{0} / D 4$ through $P O C_{3} / D 7, P_{0} D_{0} / D 0$ through $P O D_{3} / D 3$

Input buffer

(3) RESET

*: Only μ PD17P202A-001

2. WRITING, READING, AND VERIFYING ONE-TIME PROM (PROGRAM MEMORY)

When the PROM is to be written, read, or verified, μ PD17P201A is set in the PROM mode, and the pins shown in Table $2-1$ are used. No address has to be input. Instead, the address is incremented by the clock input from the CLK pin.

Table 2-1 Pins Used to Write/Read/Verify Program Memory

Pin name	Function
$V_{P P}$	Apply program voltage (12.5 V) to this pin.
CLK	Address incrementing clock input
MD0 to MD3	Operation mode selector
D0 to D7	8-bit data input/output
$V_{D D}$	Apply operating voltage (6 V) to this pin.

2.1 OPERATION MODES FOR PROGRAM MEMORY WRITE, READ, AND VERIFY
μ PD17P202A is set in the program memory write, read, or verify mode, when +6 V is applied to pin $V_{D D}$, and +12.5 V is applied to pin V_{PP}, after being placed in the reset status $\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \overline{\mathrm{RESET}}=\right.$ low level $)$ for a certain period of time.

The operation modes, selected by pens MDO through MD3, are listed in Table 2-2.
Pins not used to write, read, or verify the program memory must be open, or grounded through pull-down resistors (470 Ω).

Table 2-2 Operation Modes for Program Memory Write, Read, and Verify

Operation mode selection						Operation mode
$V_{\text {PP }}$	$V_{\text {DD }}$	MDO	MD1	MD2	MD3	
+12.5V	+6V	H	L	H	L	Program memory address 0 clear
		L	H	H	H	Write mode
		L	L	H	H	Read, verify mode
		H	x	H	H	Program inhibit mode

Remarks: x: Lor H

2.2 PROGRAM MEMORY WRITING PROCEDURE

Write the program memory by following these steps. The program memory can be written at high speeds.
(1) Pull down the unused pins to the ground potential through resistors. Make the pin CLK low.
(2) Apply 5 V to pin V_{DD}. Make pin V_{PP} low.
(3) Wait for $10 \mu \mathrm{~s}$. Then, apply 5 V to pin V_{PP}.
(4) Set the program memory address 0 clear mode by the mode selector pins.
(5) Apply 6 V to pin V_{DD}, and 12.5 V to pin V_{Pp}.
(6) Program inhibit mode
(7) Write data in the 1 ms write mode.
(8) Program inhibit mode
(9) Verify mode. Proceed to (10), if the memory has been written. If it has not been written, repeat (7) through (9).
(10) Additional writing for (the number of times (7) through (9) are repeated: X) $\times 1 \mathrm{~ms}$
(11) Program inhibit mode
(12) Input a pulse four times to pin CLK, in order to increment the program memory address (by one).
(13) Repeat (7) through (12), until the last address is programmed.
(14) Program memory address 0 clear mode
(15) Decrease the voltages on pin $V_{D D}$ and $V_{P P}$ to 5 V .
(16) Turn power off.

The following figure illustrates steps (2) through (12) above.

2.3 PROGRAM MEMORY READING PROCEDURE

(1) Pull down the unused pins to the ground potential through resistors. Make the pin CLK low.
(2) Apply 5 V to pin V_{DD}. Make pin V_{Pp} low.
(3) Wait for $10 \mu \mathrm{~s}$. Then, apply 5 V to pin V_{Pp}.
(4) Set the program memory address 0 clear mode by the mode selector pins.
(5) Apply 6 V to pin V_{DD}, and 12.5 V to pin V_{Pp}.
(6) Program inhibit mode
(7) Verify mode. The data for each address is output on a one-by-one basis in a cycle during which the clock pulse is input to pin CLK four times.
(8) Program inhibit mode
(9) Program memory address 0 clear mode
(10) Decrease the voltages on pin $V_{D D}$ and $V_{P P}$ to 5 V .
(11) Turn power off.

The following figure illustrates steps (2) through (9) above.

3. DIFFERENCES BETWEEN μ PD17P202A AND μ PD17202A

In the μ PD17P202A, the internal mask ROM (program memory) for the μ PD17202A is replaced by the PROM which can be programmed by the user. Therefore, the program memory and some mask options are the only differences between the μ PD17P202A and μ PD17202A, so the CPU functions and internal hardware are identical.

The table below summarizes the differences between the μ PD17P202A and μ PD17202A.
Refer to the μ PD17202A data sheet for details on CPU functions and internal hardware.

	μ PD17P202A-001	μ PD17P202A-002	$\mu \mathrm{PD} 17 \mathrm{P} 202 \mathrm{~A}-003$	$\mu \mathrm{PD} 17202 \mathrm{~A}$
Program memory		- PROM - 0000H-07FFH - 2048×16 bits		- Mask ROM - 0000H-07FFH - 2048×16 bits
RESET pin pull-up resistor	Provided	None	None	(Mask option)
POA, POB pins pull-up resistors		Provided		
Main clock generator provided/not provided				
Subclock generator provided/not provided		None	Provided	
Pin connections	$V_{\text {PP }}$ pin,	M programming pin	provided.	$V_{\text {PP }}$ pin, PROM programming pin not provided
Operating voltage range	2.2 to 5.5 V			
Package	64-pin plastic QFP (14 $\times 20 \mathrm{~mm}$)			

4. ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$)

Supply Voltage	$V_{D D}$	-0.3 to +7.0	V
Input Voltage	V_{1}	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Operating Temperature	$\mathrm{T}_{\text {opt }}$	-20 to +75	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-40 to +125	${ }^{\circ} \mathrm{C}$

CAPACITANCE ($\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}$)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Input Capacitance	$\mathrm{C}_{\text {IN }}$			10	pF	Pins INT, $\overline{\text { RESET }}$
	$\mathrm{C}_{\text {PIN }}$			10	pF	Other than pins INT, RESET

RECOMMENDED OPERATING RANGE

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Supply Voltage	V $_{\text {DD1 }}$	2.2	3.0	5.5	V	$\mathrm{f}_{\mathrm{X}}=4 \mathrm{MHz}$
	$\mathrm{V}_{\text {DD2 }}$	3.5	5.0	5.5	V	$\mathrm{f}_{\mathrm{X}}=8 \mathrm{MHz}$
Main Clock Oscillation Frequency	f_{X}	2.0	4.0	8.0	MHz	
Subclock Oscillation Frequency	f_{XT}		32.768		kHz	

μ PD17P202A

DC CHARACTERISTICS ($\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{X}}=\mathbf{4} \mathrm{MHz}, \mathrm{f}_{\mathrm{XT}}=\mathbf{3 2} \mathbf{k H z}$)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS	
Low-Level Output Current	IOL1	0.5	1.5	2.5	mA	POA, POB	$\mathrm{V}_{\mathrm{OL}}=0.3 \mathrm{~V}$
	lol2	0.5	1.5	2.5	mA	POC, POD	$\mathrm{V}_{\mathrm{OL}}=0.3 \mathrm{~V}$
	Iol3	0.5	1.5	2.5	mA	REM	$\mathrm{V}_{\mathrm{OL}}=0.3 \mathrm{~V}$
	Iol4	0.5	1.5	2.5	mA	LED	$\mathrm{V}_{\mathrm{OL}}=0.3 \mathrm{~V}$
	Iol5	0.5	1.5	2.5	mA	VDOUT	$\mathrm{V}_{\mathrm{OL}}=0.3 \mathrm{~V}$
Common Output Current	' сом	30			$\mu \mathrm{A}$	Output voltage deviation$=0.2 \mathrm{~V}$	
Segment Output Current	ILCD	5			$\mu \mathrm{A}$	Output voltage deviation$=0.2 \mathrm{~V}$	
Supply Current	IDD1		0.5	1.5	mA	Oepration mode	Both XT and X oscillate
	IDD2		15	30	$\mu \mathrm{A}$		Only XT oscillates
	IDD3		0.5	1.5	mA	HALT mode	Both XT and X oscilate
	IDD4		10	15	$\mu \mathrm{A}$	$\begin{aligned} & \text { STOP } \\ & \text { mode } \end{aligned}$	Only XT oscillates

DC PROGRAMMING CHARACTERISTICS $\left(T_{a}=25 \pm 5^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=6.0 \pm 0.25 \mathrm{~V}\right.$, $V_{P P}=12.5 \pm 0.3 \mathrm{~V}$)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
High-Level Input Voltage	V_{1+1}	$0.7 \mathrm{~V}_{\text {DD }}$		$V_{D D}$	V	Other than CLK
	$\mathrm{V}_{1 \mathrm{H} 2}$	$\mathrm{V}_{\mathrm{DD}}-0.5$		V_{DD}	v	CLK
Low-Level Input Voltage	$\mathrm{V}_{\text {ILI }}$	0		$0.3 V_{D D}$	V	Other than CLK
	V_{112}	0		0.4	v	CLK
Input Leakage Current	IL1			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$
High-Level Output Voltage	V_{OH}	$V_{D D}-1.0$			V	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$
Low-Level Output Voltage	$\mathrm{V}_{\text {OL }}$			0.4	V	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$
$V_{\text {DD }}$ Supply Current	IdD			30	mA	
$V_{\text {PP }}$ Supply Current	Ipp			30	mA	$\mathrm{MDO}=\mathrm{V}_{\mathrm{IL}}, \mathrm{MD1} 1=\mathrm{V}_{\mathrm{IH}}$

Note 1: Keep VPP to below +13.5 V , including the overshoot.
2: Apply $V_{D D}$ before $V_{P P}$, and remove $V_{D D}$ after $V_{P P}$.

AC PROGRAMMING CHARACTERISTICS $\left(T_{a}=25 \pm 5^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=6.0 \pm 0.25 \mathrm{~V}\right.$, $V_{P P}=12.5 \pm 0.3 \mathrm{~V}$)

CHARACTERISTICS	SYMBOL	*1	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Address setup time*2 (vs. MDO \downarrow)	${ }^{t}$ AS	${ }^{t}$ AS	2			$\mu \mathrm{s}$	
MD1 setup time (vs. MDO \downarrow)	$\mathrm{t}_{\mathrm{M} 1 \mathrm{~S}}$	toes	2			$\mu \mathrm{s}$	
Data setup time (vs. MDO \downarrow)	${ }^{\text {t }}$ D	$t_{\text {DS }}$	2			$\mu \mathrm{s}$	
Address hold time*2 (vs. MDO 个)	${ }^{\text {t }}$ H	${ }^{\text {taH }}$	2			$\mu \mathrm{s}$	
Data hold time (vs. MDO \uparrow)	$t_{\text {DH }}$	t_{DH}	2			$\mu \mathrm{s}$	
MDO $\uparrow \rightarrow$ data output float delay time	${ }^{\text {t }}$ DF	${ }^{\text {t }}$ DF	0		130	ns	
$\mathrm{V}_{\text {PP }}$ setup time (vs. MD3 \uparrow)	$t_{\text {VPS }}$	tVPS	2			$\mu \mathrm{s}$	
$\mathrm{V}_{\text {DD }}$ setup time (vs. MD3 \uparrow)	tvDs	tvcs	2			$\mu \mathrm{s}$	
Initial program pulse width	$t_{\text {PW }}$	$t_{\text {pw }}$	0.95	1.0	1.05	ms	
Additional program pulse width	topw	topw	0.95		21.0	ms	
MDO setup time (vs. MD1 ¢)	$\mathrm{t}_{\text {MOS }}$	${ }_{\text {t CeS }}$	2			$\mu \mathrm{s}$	
MDO $\downarrow \rightarrow$ data output delay time	$t_{\text {dV }}$	$t_{\text {dV }}$			1	$\mu \mathrm{s}$	$\mathrm{MDO}=\mathrm{MD1}=\mathrm{V}_{\mathrm{IL}}$
MD1 hold time (vs. MD0 \uparrow)	$\mathrm{t}_{\mathrm{M} 1 \mathrm{H}}$	toen	2			$\mu \mathrm{s}$	$\mathrm{H}^{+\mathrm{t}_{\text {M1R }}}$
MD1 recovery time (vs. MDO \downarrow)	$\mathrm{t}_{\mathrm{M} 1 \mathrm{R}}$	t_{OR}	2			$\mu \mathrm{s}$	$\geqq 50 \mu \mathrm{~s}$
Program counter reset time	${ }^{\text {tPCR }}$	-	10			$\mu \mathrm{s}$	
CLK input high-, low-level width	${ }^{\text {t }}$ H, ${ }^{\text {txL }}$	-	0.125			$\mu \mathrm{s}$	
CLK Input Frequency	f_{X}	-			4.19	MHz	
Initial Mode Set Time	t_{1}	-	2			$\mu \mathrm{s}$	
MD3 Setup Time (vs. MD1 \uparrow)	$\mathrm{t}_{\mathrm{M} 3 \mathrm{~S}}$	-	2			$\mu \mathrm{s}$	
MD3 Hold Time (vs. MD1 \downarrow)	${ }^{\text {m }}$ M 3 H	-	2			$\mu \mathrm{s}$	
MD3 Setup Time (vs. MDO \downarrow)	${ }^{\text {t M }}$ SRR	-	2			$\mu \mathrm{s}$	When program memory is read
Address* ${ }^{*} \rightarrow$ Data Output Delay Time	${ }^{\text {t }}$ AD	${ }^{\text {A ACC }}$			2	$\mu \mathrm{s}$	When program memory is read
Address*2 \rightarrow Data Output Hold Time	${ }^{\text {thad }}$	${ }^{\text {toh }}$	0		130	$\mu \mathrm{s}$	When program memory is read
MD3 Hold Time (vs. MDO \uparrow)	${ }^{\text {t }}$ 3 HR	-	2			$\mu \mathrm{s}$	When program memory is read
MD3 $\downarrow \rightarrow$ Data Output Float Delay Time	${ }^{\text {t }}$ DFR	-	2			$\mu \mathrm{s}$	When program memory is read
Reset Setup Time	$t_{\text {RES }}$		10			$\mu \mathrm{s}$	

*1: Symbols for corresponding μ PD27C256
*2: The internal address is incremented $(+1)$ at the falling edge of third clock periods for the four CLK clock periods, which constitute one cycle. The internal address has no external pin connection.

4-BIT SINGLE-CHIP MICROCONTROLLER

The μ PD17203A is a 4-bit CMOS microcontroller for infrared remote controllers. It contains 16K-bit static RAM, three channels of timers, a carrier generator for remote control, an amplifier for remote control receive signals, and a waveform shaping circuit in one chip.

The 17K architecture used in the μ PD17203A allows the user to perform an arithmetic/logical operation or data transfer between data memory locations or between data memory and a peripheral circuit with a single instruction. Every instruction is 1 word long, consisting of 16 bits.

The microcontroller is packaged in a 52-pin plastic QFP.

FEATURES

- 17K architecture
- Program memory (ROM): 8 K bytes (4096×16 bits)
- Data memory (RAM): 336 words (336×4 bits)
- Static RAM: 16K bits (4096×4 bits)
- On-chip carrier generator for infrared remote control
- On-chip amplifier for infrared remote control receive signals
- On-chip waveform shaping circuit for infrared remote control receive signals
- Many input/output ports provided (28 lines)
- 3-wire serial interface contained (also used as a input/output port)
- 5 stack levels
- 8-bit timer: 1 channel (with a modulo function)

Clock for the timer ($8 \mu \mathrm{~s}, 16 \mu \mathrm{~s}, 64 \mu \mathrm{~s}$, remote control carrier input)

- 10-bit timer: 1 channel (with a modulo function)

Clock for the timer ($0.5 \mu \mathrm{~s}, 4 \mu \mathrm{~s}$, INT input)

- 16-bit timer: 1 channel (with a modulo function)

Clock for the timer ($8 \mu \mathrm{~s}, 16 \mu \mathrm{~s}, 32 \mu \mathrm{~s}, 64 \mu \mathrm{~s}$)

- Clock timer: 1 channel (used as a watchdog timer or a clock)
- Instruction execution time: $4 \mu \mathrm{~s}$ (when a 4 MHz ceramic resonator is used)
- Standby function (STOP, HALT)
- Low-voltage detector contained
- Operating voltage: 2.2 to 5.5 V
- Operating clock: 4 MHz ceramic resonator/ 32.768 kHz crystal resonator

PIN CONFIGURATION (Top View)

μ PD17203A

BLOCK DIAGRAM

The μ PD17P203A is provided with a one-time PROM in the place of the internal ROM in the μ PD17203A.
Since a program can be written into the PROM for this microcomputer, it is suitable for experimental production or small-scale production of systems using μ PD17203A.

It is recommended that you also read the separately available reference materials on μ PD17203A.

FEATRUES

- Internal one-time PROM: $4,096 \times 16$ bits
- Single power source: 2.2 to 5.5 V

ORDERING INFORMATION

Order Code	Package	Quality Grade
μ PD17P203AGC-001-3BH	52-pin plastic QFP	Standard
μ PD17P203AGC-002-3BH	52-pin plastic QFP	Standard
μ PD17P203AGC-003-3BH	52-pin plastic QFP	Standard

The differences among the above models are as follows:

Item	μ PD17P203A-001	μ PD17P203A-002	μ PD17P203A-003	μ PD17203A
$\overline{\text { RESET }}$ pin pull-up resistor	Provided	Not provided	Not provided	Mask option
POA and POB pins pull-up resistor	Provided	Provided	Not provided	Mask option
Main clock oscillator circuit	Provided	Provided	Not provided	Mask option
Subclock oscillator circuit	Provided	Not provided	Provided	Mask option

PIN CONFIGURATION (Top View)

(1) For Ordinary Operations

$\left.\begin{array}{llllll}\text { LED } & :: ~ R e m o t e ~ c o n t r o l l e r ~ s i g n a l ~ t r a n s m i s s i o n ~ & \text { TM2OUT } \\ \text { output display }\end{array}\right)$
(2) PROM programming mode

Note: () indicates processing of pins not used in the PROM programming mode.
L : Ground each of these pins through a resistor (470Ω).
Open : Connect nothing to these pins.

BLOCK DIAGRAM

1. PIN FUNCTIONS

1.1 PORT PINS

Symbol	1/0	Shared by: *	Function	At reset
$\mathrm{POA}_{0}-\mathrm{POA}_{3}$	1/0	-	4-bit I/O port (Port 0A). Can be set in input or output mode in 4 bit units. Pull-up resistors are connected in I/O mode.	Input
$\mathrm{POB}_{0}-\mathrm{POB}_{3}$	1/0	(MDO-MD3)	4-bit I/O port (Port OB). Can be set in input or output mode in 4 bit units. Pull-up resistors are connected in I/O mode.	Input
$\mathrm{POC}_{0}-\mathrm{POC}_{3}$	1/0	(D4-D7)	4-bit I/O port (Port OC). Can be set in input or output mode in 4 bit units. N -ch open-drain in output mode.	Input
$\mathrm{POD}_{0}-\mathrm{POD}_{3}$	1/0	(D0-D3)	4-bit I/O port (Port OD). Can be set in input or output mode in units of 4 bits. N -ch open-drain in output mode.	Input
$P 1 A_{0}-P 1 A_{3}$	1/0	-	4-bit I/O port (Port 1A). Can be set in input or output mode in bit units. N -ch open-drain in output mode. Pull-up resistor can be connected by program in I/O mode.	Input
${\mathrm{P} 1 \mathrm{~B}_{0}}$		-	4-bit I/O port (Port 1B).	
$\mathrm{P}_{1} \mathrm{~B}_{1}-\mathrm{P} 1 \mathrm{~B}_{3}$	1/O	TMOOUT-TM2OUT	Can be set in input or output mode in bit units. N -ch open drain in output mode. Pull-up resistor can be connected by program in I/O mode.	Input
$\mathrm{P}_{1} \mathrm{C}_{0}$	1/0	$\overline{\text { SCK }}$	4-bit I/O port (Port 1C). Can be set in input or output mode in bit units. Pull-up resistor can be connected by program in I/O mode.	Input
$\mathrm{P}_{1} \mathrm{C}_{1}$		SO		
${\mathrm{P} 1 C_{2}}$		SI		
${\mathrm{P} 1 C_{3}}$		-		

* (): Pins shared in PROM programming mode.

1.2 PINS OTHER THAN PORT PINS (IN ORDINARY OPERATION MODE)

Symbol	1/0	Shared by:	Function	At reset
LED	Output	-	For display of infrared remote controller signal output	Low-level output
REM	Output	-	Infrared remote controller signal output	Low-level output
XIN	Input	-	For main clock oscillator. Connect 4 MHz ceramic oscillator to these pins.	-
X OUT	Output	-		
RESET	Input	-	RESET signal input	-
$\overline{\text { VDOUT }}$	Output	-	Low-voltage detector circuit output	-
XTIN	Input	-	For subclock oscillator	-
XTOUT	Output	-		-
VREG	Output	-	Output from voltage regulator for subclock oscillator	-
AMPIN-	Input	-	Inverted input from internal operational amplifier	-
AMPOUT	Output	-	Internal operational amplifier output	-
VREF	Output	-	Reference voltage output	-
CMPIN+	Input	-	Non-inverted input for comparator	-
CMPOUT	Output	-	Comparator output	-
TMOIN	Input	-	Clock input to timer 0	-
INT	Input	(VPP)	External interrupt signal input	-
$V_{\text {DD }}$	-	-	Power	-
$V_{\text {XRAM }}$	-	-	Power to XRAM	-
$\mathrm{GND}_{0}-\mathrm{GND}_{5}$	-	-	Ground	-

1.3 PINS OTHER THAN PORT PINS (IN PROM PROGRAMMING MODE)

Symbol	I/O	Shared by:	Function	At reset
CLK	Input	XIN	Address updating clock input	-
D0-D3	1/0	$\mathrm{POD}_{0}-\mathrm{POD}_{3}$	8-bit data input/output	Input
D4-D7		$\mathrm{POC}_{0}-\mathrm{POC}_{3}$		
MDO-MD3	Input	$\mathrm{POB}_{0}-\mathrm{POB}_{3}$	Operation mode selection	Input
VPP	-	INT	Applies program voltage (12.5 V). Used as INT pin in ordinary operation mode.	-

1.4 INPUT/OUTPUT CIRCUITS

The input/output circuit for each μ PD17P203A's pin are shown below.
(1) $\mathrm{POA}_{0}-\mathrm{POA}_{3}, \mathrm{POB}_{0} / \mathrm{MDO}-\mathrm{POB}_{3} / \mathrm{MD} 3$

Note: μ PD17P203A-001 and -002 only.
(2) $\mathrm{POC}_{0} / \mathrm{D} 4-\mathrm{POC}_{3} / \mathrm{D} 7, \mathrm{POD}_{0} / \mathrm{DO}-\mathrm{POD}_{3} / \mathrm{D} 3$

(4) $\mathrm{P}_{1} \mathrm{C}_{0} / \overline{\mathrm{SCK}}-\mathrm{P}_{1} \mathrm{C}_{3}$

(3) RESET

Note: μ PD17P203A-001 only.

2. DIFFERENCES BETWEEN μ PD17P203A AND μ PD17203A

Since μ PD17P203A replaces the internal mask ROM for μ PD17203A with a PROM that can be written by the user, the only differences between the two microcomputers are the program memory and mask option. Their CPU functions and internal hardware are essentially the same. The following table lists the differences between μ PD17P203A and μ PD17203A.
Refer to the μ PD17203A Data Sheet for the CPU functions and internal hardware for μ PD17P203A.

Item \quadProduct name	μ PD17P203A-001	μ PD17P203A-002	μ PD17P203A-003	μ PD17203A
Program memory	- PROM - 0000H-OFFFH - $4,096 \times 16$ bits			- Mask ROM - 0000H-0FFFH - $4,096 \times 16$ bits
Pull-up resistor for $\overline{\text { RESET }}$ pin	Provided	Not provided	Not provided	Mask option
Pull-up resistor for POA and POB pins	Provided	Provided	Not provided	Mask option
Main clock oscillator circuit	Provided	Provided	Not provided	Mask option
Subclock oscillator circuit	Provided	Not provided	Provided	Mask option
Pin connection	VPP and PROM programming pins are provided			VPP and PROM programming pins are not provided
Operating voltage range	2.2 to 5.5 V			
Package	52-pin plastic QFP			

3. WRITING, READING, AND VERIFYING ONE-TIME PROM (PROGRAM MEMORY)

The μ PD17P203A internal program memory is a one-time $4,096 \times 16$ bit PROM.
The write, read, and verify this one-time PROM, the pins shown in the following table are used. Note that no address input pin is provided. Instead, the address is updated by the clock signal input from the CLK pin.

Pin	Function
$V_{\text {PP }}$	Program voltage application
CLK	Address updating clock input
MD0-MD3	Operation mode selection
D0-D7	8-bit data input/output

3.1 OPERATION MODES WHEN PROGRAM MEMORY IS WRITTEN, READ, OR VERIFIED

μ PD17P203A is set in the program memory write, read, and verify mode, when, +6 V is applied to the V_{DD} pin and +12.5 V is applied to the V_{PP} pin after it has been reset for a certain period of time ($\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \overline{\operatorname{RESET}}=0 \mathrm{~V}$). Once this mode has been set, the following operation modes are available, depending on the setting of the MDO through MD3 pins. Note that all the unused pins are pulled down with resistors to the ground potential.

Operation mode setting						Operation mode
VPP	$\mathrm{V}_{\text {DD }}$	MDO	MD1	MD2	MD3	
+12.5V	+6V	H	L	H	L	Program memory address 0 clear
		L	H	H	H	Write mode
		L	L	H	H	Read and verify mode
		H	X	H	H	Program inhibit mode

X: Lor H

3.2 PROGRAM MEMORY WRITING PROCEDURE

The program memory can be written in the following procedure at high speeds:
(1) Pull down the unused pins with resistors to the ground potential. Make the CLK pin low.
(2) Apply 5 V to the V_{DD} pin. Make the $\mathrm{V}_{\text {PP }}$. pin low.
(3) Wait for $10 \mu \mathrm{~s}$. Then apply 5 V to the V_{PP} pin.
(4) Set the program memory address 0 clear mode by using the mode selection pins.
(5) Apply 6 V to V_{DD} and 12.5 V to V_{Pp}.
(6) Set the program inhibit mode.
(7) Write data in the 1 ms write mode.
(8) Set the program inhibit mode.
(9) Set the verify mode. If the data has been correctly written, proceed to step (10). If not, repeat (7) through (9).
(10) Additional write for (the number of times (7) through (9) are repeated: X) $\times 1 \mathrm{~ms}$.
(11) Set the program inhibit mode.
(12) Input a pulse to the CLK pin four times to increment the program memory address by one.
(13) Repeat (7) through (12) until the last address is written.
(14) Set the program memory address 0 clear mode.
(15) Apply 5 V to the V_{DD} and $\mathrm{V}_{\text {PP }}$ pins.
(16) Turn off power.

Steps (2) through (12) are illustrated below.

3.3 PROGRAM MEMORY READING PROCEDURE

(1) Pull down the unused pins with resistors to the ground potential. Make the CLK pin low.
(2) Apply 5 V to the $V_{D D}$ pin. Make the $V_{P P}$ pin low.
(3) Wait for $10 \mu \mathrm{~s}$. Then apply 5 V to the V_{PP} pin.
(4) Set the program memory address 0 clear mode by using the mode selection pins.
(5) Apply 6 V to V_{DD} and 12.5 V to V_{PP}.
(6) Set the program inhibit mode.
(7) Set the verify mode. Input the clock pulse to the CLK pin. Data for one address is output each time the pulse is input four times.
(8) Set the program inhibit mode.
(9) Set the program memory address 0 clear mode.
(10) Apply 5 V to the V_{DD} and $\mathrm{V}_{P P}$ pins.
(11) Turn off power.

Steps (2) through (9) are illustrated below.

4. ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$)

Supply Voltage	V_{DD}	-0.3 to +7.0	V
Input Voltage	V_{1}	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Operating Temperature	$\mathrm{T}_{\text {opt }}$	-20 to +75	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-40 to +125	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING RANGE

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
Supply Voitage	$\mathrm{V}_{\text {DD1 }}$	2.2	3.0	5.5	V	$\mathrm{f}_{\mathrm{X}}=4 \mathrm{MHz}$
	$V_{\text {DD2 }}$	3.5	5.0	5.5	V	$\mathrm{f}_{\mathrm{X}}=8 \mathrm{MHz}$
XRAM Supply Voltage	$V_{\text {XRAM }}$	1.3		VDD	V	$\mathrm{V}_{\text {XRAM }} \leqq \mathrm{V}_{\text {DD }}$
Main Clock Oscillation Frequency	${ }^{\mathbf{f}} \mathrm{X}$	2.0	4.0	8.0	MHz	
Subclock Oscillation Frequency	${ }^{\mathbf{f} \times \mathrm{T}}$		32.768		kHz	

CAPACITANCE ($\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}$)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
Input Capacitance	CIN			10	pF	INT, $\overline{\text { RESET }}$ pins
	CPIN			10	pF	Other than INT, $\overline{\text { RESET }}$ pin

DC CHARACTERISTICS ($\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{X}}=\mathbf{4} \mathrm{MHz}, \mathrm{f}_{\mathrm{XT}}=32 \mathrm{kHz}$)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION	
Low Voltage Detection Voltage	$V_{\text {DET }}$	1.3	2.0	2.9	V		
High-Level Input Voltage	$V_{\text {IH1 }}$	0.8 V VD		$V_{\text {DD }}$	V	RESET, INT pins	
	$\mathrm{V}_{\text {IH2 }}$	$0.7 \mathrm{~V}_{\text {DD }}$		$V_{\text {DD }}$	V	Other than RESET, INT pins	
Low-Level Input Voltage	$V_{\text {ILI }}$	0		0.2 V DD	V	RESET, INT pins	
	$V_{\text {IL2 }}$	0		$0.3 \mathrm{~V}_{\text {DD }}$	V	Other than RESET, INT pins	
High-Level Input Current	$\mathrm{I}_{\text {IH1 }}$			0.2	$\mu \mathrm{A}$	INT	$\mathrm{V}_{\text {IH }}=\mathrm{V}_{\text {DD }}$
	$\mathrm{I}_{1 \mathrm{H} 2}$			0.2	$\mu \mathrm{A}$	TMOIN	$\mathrm{V}_{1 H}=\mathrm{V}_{\text {DD }}$
	I/H3			0.2	$\mu \mathrm{A}$	RESET	$\mathrm{V}_{1 H}=\mathrm{V}_{\text {DD }}$
	$1_{1 / 4}$			0.2	$\mu \mathrm{A}$	POA-POD	$V_{1 H}=V_{\text {DD }}$
	I/H5			0.2	$\mu \mathrm{A}$	P1A-P1C	$\mathrm{V}_{1 H}=\mathrm{V}_{\text {DD }}$
Low-Level Input Current	IIL1			-0.2	$\mu \mathrm{A}$	INT	$V_{1 L}=0 \mathrm{~V}$
	IIL2			-0.2	$\mu \mathrm{A}$	TMOIN	$\mathrm{V}_{\text {IL }}=0 \mathrm{~V}$
	1 IL3			-0.2	$\mu \mathrm{A}$	RESET	$V_{I L}=0 \mathrm{~V}$ w/o pull-up resistor
	IIL4	-20	-50	-100	$\mu \mathrm{A}$		$I_{I L}=0 \mathrm{~V}$ w/pull-up resistor
	I/L5	-6	-12	-20	$\mu \mathrm{A}$	POA, POB	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V} \\ & \mathrm{w} / \mathrm{pull}-\mathrm{up} \\ & \text { resistor } \end{aligned}$
	I/L6			-0.2	$\mu \mathrm{A}$	POC, POD	$\mathrm{V}_{\text {IL }}=0 \mathrm{~V}$
	1167			-0.2	$\mu \mathrm{A}$	P1A-P1C	$V_{I L}=0 \mathrm{~V}$ w/o pull-up resistor
	IIL8	-20	-50	-90	$\mu \mathrm{A}$		$I_{I L}=0 V$ w/pull-up resistor
High-Level Output Current	${ }^{1} \mathrm{OH} 1$	-0.6	-2.0	-4.0	mA	POA, POB	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.3 \mathrm{~V}$
	${ }^{1} \mathrm{OH} 2$	-0.6	-2.0	-4.0	mA	P1C	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.3 \mathrm{~V}$
	${ }^{\text {I OH3 }}$	-7.0	-15.0	-25.0	mA	REM	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}$
	${ }^{1} \mathrm{OH} 4$	-0.3	-1.0	-2.0	mA	LED	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.3 \mathrm{~V}$
	${ }^{1} \mathrm{OH} 5$	-0.3	-1.0	-2.0	mA	VDOUT	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.3 \mathrm{~V}$
	${ }^{\text {I OH6 }}$	-0.3	-1.0	-2.0	mA	CMPOUT	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.3 \mathrm{~V}$
Low-Level Output Current	${ }^{\text {I OL1 }}$	0.5	1.5	2.5	mA	POA, POB	$\mathrm{V}_{\mathrm{OL}}=0.3 \mathrm{~V}$
	${ }^{\text {I OL2 }}$	0.5	1.5	2.5	mA	POC, POD	$\mathrm{V}_{\mathrm{OL}}=0.3 \mathrm{~V}$
	${ }^{\text {I OL3 }}$	0.5	1.5	2.5	mA	REM	$\mathrm{V}_{\mathrm{OL}}=0.3 \mathrm{~V}$
	IOL4	0.5	1.5	2.5	mA	LED	$\mathrm{V}_{\mathrm{OL}}=0.3 \mathrm{~V}$
	${ }^{\text {'OL5 }}$	0.5	1.5	2.5	mA	VDOUT	$\mathrm{V}_{\mathrm{OL}}=0.3 \mathrm{~V}$
	${ }^{\text {I OL6 }}$	0.5	1.5	2.5	mA	CMPOUT	$\mathrm{V}_{\mathrm{OL}}=0.3 \mathrm{~V}$
VREF Output Voltage	$V_{\text {REF }}$	0.8	1.2	1.6	V	External capacitance for $V_{\text {REF }}$ pin $=0.1 \mu \mathrm{~F}$	
Supply Current	IDD1	0.5	1.0	2.0	mA	Operation mode	XT and X
	IDD2		15	30	$\mu \mathrm{A}$		Only XT
	IDD3			2.0	mA	HALT mode	XT and X
	IDD4		10	15	$\mu \mathrm{A}$		Only XT
XRAM Hold Voltage	$V_{\text {XRAM }}$	1.3	3.0	5.5	V	HALT mlde, $\mathrm{V}_{\text {XRAM }}=3 \mathrm{~V}$,$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	
XRAM Supply Current	IXRAM1		3.0		$\mu \mathrm{A}$		
	'XRAM2		0.2	1.0	$\mu \mathrm{A}$		

DC PROGRAMMING CHARACTERISTICS ($\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=6.0 \pm 0.25 \mathrm{~V}, \mathrm{VPP}=12.5 \pm 0.5 \mathrm{~V}$)

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
High-Level Input Voltage	$\mathrm{V}_{1 \mathrm{H} 1}$	$0.7 V_{\text {DD }}$		$V_{\text {DD }}$	V	Other than CLK
	$V_{1 H 2}$	$\mathrm{V}_{\mathrm{DD}}{ }^{-0.5}$		$V_{\text {DD }}$	v	CLK
Low-Level Input Voltage	$V_{\text {IL } 1}$	0		$0.3 \mathrm{~V}_{\text {DD }}$	V	Other than CLK
	$V_{\text {IL2 }}$	0		0.4	V	CLK
Input Leakage Current	$\mathrm{I}_{\mathrm{L} 1}$			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$
High-Level Output Voltage	V_{OH}	$\mathrm{V}_{\text {DD }}{ }^{-1.0}$			V	$\mathrm{I}^{\mathrm{OH}}=-1 \mathrm{~mA}$
Low-Level Output Voltage	V_{OL}			0.4	V	$\mathrm{OL}=1.6 \mathrm{~mA}$
V DD Supply Current	' DD			30	mA	
VPP Supply Current	IPP			30	mA	$\mathrm{MDO}=\mathrm{V}_{\mathrm{IL}}, \mathrm{MD1}=\mathrm{V}_{\mathrm{IH}}$

Note: 1. Keep VPP to less than +13.5 V , including the overshoot.
2. Apply V_{DD} before V_{PP}. Remove V_{DD} after V_{PP}.

AC PROGRAMMING CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=6.0 \pm 0.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=12.5 \pm 0.5 \mathrm{~V}\right)$

CHARACTERISTICS	SYMBOL	*1	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Address Setup Time*2 (vs. MDO \downarrow)	${ }^{\text {t }}$ AS	${ }^{\text {t }}$ AS	2			$\mu \mathrm{s}$	
MD1 Setup Time (vs. MDO \downarrow)	tMIS	toes	2			$\mu \mathrm{s}$	
Data Setup Time (vs. MDO \downarrow)	${ }^{\text {t DS }}$	tDS	2			$\mu \mathrm{s}$	
Address Hold Time*2 (vs. MDO \uparrow)	${ }^{\text {t }}$ AH	${ }^{\text {t }}$ A ${ }^{\text {d }}$	2			$\mu \mathrm{s}$	
Data Hold Time (vs. MDO \uparrow)	${ }^{\text {t }}$ H	${ }^{\text {t }}$ DH	2			$\mu \mathrm{s}$	
MD0 $\uparrow \rightarrow$ Data Output Float Delay Time	${ }^{\text {t }}$ D	${ }^{\text {t }}$ DF	0		130	ns	
$V_{\text {PP }}$ Setup Time (vs. MD3 \uparrow)	tVPS	tVPS	2			$\mu \mathrm{s}$	
$\mathrm{V}_{\text {DD }}$ Setup Time (vs. MD3 \uparrow)	tVDS	tVCS	2			$\mu \mathrm{s}$	
Initial Program Pulse Width	tPW	tpw	0.95	1.0	1.05	ms	
Additional Program Pulse Width	topw	topw	0.95		21.0	ms	
MDO Setup Time (vs. MD1 \uparrow)	${ }^{\text {m MOS }}$	${ }^{\text {t }}$ CES	2			$\mu \mathrm{s}$	
MDO $\downarrow \rightarrow$ Data Output Delay Time	tov	${ }^{\text {t }}$ DV			1	$\mu \mathrm{s}$	MD0 $=$ MD1 $=\mathrm{V}_{\text {IL }}$
MD1 Hold Time (vs. MDO \uparrow)	${ }^{\text {m M }}$ 1 H	toEH	2			$\mu \mathrm{s}$	
MD1 Recovery Time (vs. MD0 \downarrow)	${ }^{\text {t M 1 R }}$	${ }^{\text {tor }}$	2			$\mu \mathrm{s}$	
Program Counter Reset Time	tPCR	-	10			$\mu \mathrm{s}$	
CLK Input High, Low Level Widths	${ }^{\text {t }}$ XH, ${ }^{\text {X }}$ XL	-	0.063			$\mu \mathrm{s}$	
CLK Input Frequency	${ }^{\text {f }}$ X	-			8	MHz	
Initial Mode Set Time	t_{1}	-	2			$\mu \mathrm{s}$	
MD3 Setup Time (vs. MD1 \uparrow)	${ }^{\text {t M }}$ 3S	-	2			$\mu \mathrm{s}$	
MD3 Hold Time (vs. MD1 \downarrow)	${ }^{\text {m M }}$ 3 ${ }^{\text {H }}$	-	2			$\mu \mathrm{s}$	
MD3 Setup Time (vs. MDO \downarrow)	tM3SR	-	2			$\mu \mathrm{s}$	When program memory is read
Address*2 \rightarrow Data Output Delay Time	${ }^{\text {t }}$ DAD	${ }^{t} \mathrm{ACC}$			2	$\mu \mathrm{s}$	When program memory is read
Address*2 $\boldsymbol{\rightarrow}$ Data Output Hold Time	${ }^{\text {tha }}$	${ }^{\text {toH }}$	0		130	ns	When program memory is read
MD3 Hold Time (vs. MD0 \uparrow)	${ }^{\text {tM3HR}}$	-	2			$\mu \mathrm{s}$	When program memory is read
MD3 $\downarrow \rightarrow$ Data Output Float Delay Time	${ }^{\text {t DFR }}$	-	2			$\mu \mathrm{s}$	When program memory is read
Reset Setup Time	${ }^{\text {t RES }}$		10			$\mu \mathrm{s}$	

*1. Corresponding symbols of μ PD27C256.
*2. The internal address signal is incremented by one at the falling edge of the third CLK input signal and is not connected to a pin.

PROGRAM MEMORY WRITE TIMING

PROGRAM MEMORY READ TIMING

4-BIT SINGLE-CHIP MICROCONTROLLER

The μ PD17204 is a 4-bit CMOS microcontroller with an 8 K -bit RAM, a 3-channel timer, a remote controlled carrier generator, a remote controlled receive signal amplifier and a waveform rectifier integrated on a single-chip for infrared remote controller.
The μ PD17204 employs the μ PD1 7000 architecture and can execute data transfer and operations with one instruction
between data memories or between a data memory and peripheral circuits. All instructions are a 16-bit word.
52-pin plastic QFP package is used.

FEATURES

- μ PD17000 architecture is employed.
- Program memory (ROM): 16 K bytes (7936×16 bits)
- Data memory (RAM): 336 words (336×4 bits)
- Static RAM: 8 K bits (2048×4 bits)
- On-chip infrared remote controlled carrier generator
- On-chip infrared remote controlled receive signal amplifier
- Variety of I/O ports (28 ports)
- On-chip 3-wire serial interface (which also serves as an input/output port)
- Stack level: 7 levels
- 8-bit timer: 1 channel (with modulo function)

Timer clock ($8 \mu \mathrm{~s}, 16 \mu \mathrm{~s}$ and $64 \mu \mathrm{~s}$ remote controlled carrier inputs)

- 10-bit timer: 1 channel (with modulo function)

Timer clock ($0.5 \mu \mathrm{~s}$ and $4 \mu \mathrm{~s}$, INT input)

- 16-bit timer: 1 channel

Timer clock ($8 \mu \mathrm{~s}, 16 \mu \mathrm{~s}, 32 \mu \mathrm{~s}, 64 \mu \mathrm{~s}$)

- Watch timer: 1 channel (which also serves as a watchdog timer)
- Instruction execution time: $4 \mu \mathrm{~s}$ (when 4 MHz ceramic oscillator is used)
- Standby function (STOP, HALT)
- On-chip low-voltage detector
- Operating voltage range: 2.2 to 5.5 V
- Operating clock: 4 MHz ceramic resonator/ 32.768 kHz crystal resonator
- OTP product: μ PD17P204GC is available.

PIN CONFIGURATION (Top View)

$\left.\begin{array}{llll}\text { LED } & \begin{array}{ll}\text { Remote controlled transmit output } \\ \text { display pin }\end{array} & \text { TMOOUT } & : \text { Timer } 0 \text { output pin } \\ & \text { Remote controlled transmit output } & \text { TM1OUT } & : \text { Timer } 1 \text { output pin }\end{array}\right)$

BLOCK DIAGRAM

FUNCTIONAL COMPARISON BETWEEN μ PD17203A AND μ PD17204

Product Name	$\mu \mathrm{PD} 17203 \mathrm{~A}$	$\mu \mathrm{PD} 17204$
ROM	4096×16 bits	7936×16 bits
RAM	336×4 bits	
SRAM	4096×4 bits	2048×4 bits
Instruction execution time	$4 \mu \mathrm{~s}$ (when 4 MHz ceramic oscillator is used)	
Stack level	5 levels	7 levels
Input/output port	28 ports	
Serial interface	8-bit 3-wire: 1 channel	
Interrupt	7 channels External interrupt: 1 channel Internal interrupt: 6 channel	
Timer	```4 systems 8-bit timer 10-bit timer 16-bit timer Watch timer (which also serves as a watchdog timer)```	
Standby function	STOP mode, HALT mode	
Recommended operating voltage range	$\mathrm{V}_{\text {DD }}=2.2$ to 5.5 V	
Package	52-pin plastic QFP	

4-BIT SINGLE-CHIP MICROCONTROLLER

The μ PD17301 is a 4-bit single-chip microcontroller with on-chip DTMF generator, DTMF receiver, and abbreviated dial memory.

The CPU uses μ PD17000 architecture. Since all instructions have a 16 -bit word configuration, efficient programming is possible.

The package is a 64-pin plastic QFP.

FEATURES

- μ PD17000 architecture
- Program memory (ROM): 16K bytes (8192×16 bits)
- Data memory (RAM): 336 words (336×4 bits)
- Repertory dial memory 768 words (768×4 bits)
- On-chip DTMF generator
- On-chip DTMF receiver
- Serial interfaces: 2ch
- Abundant I/O ports: 48
- 8-bit AND converter: 4ch
- Abundant interupt functions (external cause: 2, internal cause: 7)
- Stack level: 7 levels (multiple interrupt: max. 3 levels)
- Timer: 4 (8-bit modulo timer: 3, basic interval timer: 1)
- Standby function (STOP mode, HALT mode)
- Instruction execution time: $2.23 \mu \mathrm{~s}$ (when 3.58 MHz ceramic oscillator used)
- Operating voltage range: 2.0 to 5.5 V
- Program evaluation OTP product: μ PD17P301GF

μ PD17301 BLOCK DIAGRAM

4-BIT SINGLE-CHIP MICROCONTROLLER FOR VCR CAMERA

μ PD17401 is a 4-bit single-chip microcontroller for the home VCR camera with an on-chip image display controller and LCD controller/driver.

The Image Display Controller (IDC) has various screen display functions. It can display graphics as well as characters. All the display fonts are user-programmable and can be specified freely. Debugging is possible while actually outputting these displays from the time of the program development.

It has an on-chip LCD controller/driver for displaying the operating condition of the camera and serial interface circuit for communication with peripheral devices. It also has an on-chip 6-bit AD converter and 32 kHz clock counter.

The CPU, which has no accumulator and in which the 17 K architecture to allow the data memory to be operated directly is adopted, enables very efficient programming.

As the μ PD17401 system development tools, the easy-to-use IE-17K (incircuit emulator) and assembler are available.

FEATURES

- A 4-bit single-chip microcontroller for the home VCR camera
- Program memory (ROM): 12288×16 bits
- Data memory (RAM): 524×4 bits
- Stack level: 7
- Instruction set comprising 36 easy-to-understand instructions
- Decimal capability
- Instruction execution time: $1.6 \mu \mathrm{~s}$ (at 10 MHz oscillator connection)
- With IDC on-chip (Image Display Controller9 (userprogrammable)
Number of display characters: Max. 155 per screen Display position: 14 lines $\times 25$ columns Character types: 256 types
Character format: 10×15 dots (framable)
Character size: 4 types settable independently between vertical and horizontal (14, 28, 42, 56H) (2.5, 5.0, 7.5, $10 \mu \mathrm{~s}$)
- On-chip LCD controller/driver 35-segment, 4-common or 36-segment, 3-common
- On-chip serial interface (2-system, 3-channel: 3-wire and 2-wire)
- On-chip 6-bit AVD converter: 1 input
- On-chip 32 kHz clock counter ($\mathrm{V}_{\mathrm{DD}}=2.2$ to 5.5 V)
- On-chip power failure detection circuit and poweron reset circuit
- Interrupt pins: 2 pins
- Various range of I/O ports Input/output ports: 20 (including dual-function pins)
Output ports: 16 (including dual-function pins)
- $5 \mathrm{~V} \pm 10 \%$
- CMOS low power consumption
- 80-pin plastic QFP ($14 \times 14 \mathrm{~mm}$)
- One-time PROM product: μ PD17P401GC-3B9 available

PIN CONFIGURATION (Top View)

BLOCK DIAGRAM

LIST OF FUNCTIONS

Product Nanee	μ FD17401	
ROM	12288×16 bits (Mask ROM)	12288×16 bits (One-time PROM)
RAM	524×4 bits	
System register	12×4 bits	
Register file	45×4 bits (Control register)	
Port register	6×4 bits	
Instruction execution time	$1.6 \mu \mathrm{~s}$ (at 10 MHz oscillator connection)	
Stack levels	7 levels	
Serial interface	$\bullet 2$-system, 3-channel	
3-wire and 2 -wire		

4-BIT SINGLE-CHIP MICROCONTROLLER FOR VCR CAMERA

μ PD17P401 is a product which has replaced an on-chip mask ROM in 4-bit single-chip microcontroller μ PD17401 for a VTR camera with an on-time PROM. μ PD17401 allows write operation only once. It is effective for small production of a set, and an earlier start-up.
μ PD17P401 incorporates an image display controller (IDC) and an LCD controller/driver. Since it can be operated on the same power-supply voltage as for the mask product, it is the most suitable for preproduction and small production at system development.

FEATURES

- Fully compatible with μ PD17401
- Program memory (one-time PROM): 12288×16 bits
- Data memory (RAM): 524×4 bits
- Stack level: 7
- Instruction set comprising 36 easy-to-understand instructions
- Decimal operation capability
- Instruction execution time:
$1.6 \mu \mathrm{~s}$ (at 10 MHz oscillator connection)
- On-chip Image Display Controller (IDC) (user programmable)
Number of display
characters: Up to 155 characters on one screen Display position: 14 lines $\times 24$ digits
Character types: 256 types
Character format: 10×15 dots (Can be fringed)
Character size: 4 types can be independently set for each of vertical and horizontal directions.
$(14,28,42,56 \mathrm{H})(2.5,5.0,7.5,10 \mu \mathrm{~s})$
- On-chip LCD controller/driver 35-segment, 4-common or 36-segment, 3-common
- On-chip serial interface (2-system, 3-channel: 3-wire and 2-wire)
- On-chip 6-bit ADD converter: 1 input
- On-chip 32 kHz clock counter ($\mathrm{V}_{\mathrm{DD}}=2.2$ to 5.5 V)
- On-chip power failure detection circuit and poweron reset circuit
- Interrupt pins: 2 pins
- Various range of I/O ports Input/output ports: 20 (dual-function pin included) Output ports: 16 (dual-function pin included)
- $5 \mathrm{~V} \pm 10 \%$
- CMOS low power consumption
- 80-pin plastic QFP (14 x 14 mm)
- Mask PROM product:
μ PD17P401GC-xxx-3B9 is available

$P O A_{0}$ to POA ${ }_{3}$	Input/output port
POB_{0} to POB_{3}	Input/output port
POC_{0} to POC_{3}	Input/output port
POD_{0} to POD_{3}	Output port
$\mathrm{Pl} \mathrm{A}_{0}$ to P1A A_{3}	Output port
$\mathrm{P} 1 \mathrm{~B}_{0}$ to $\mathrm{P} 1 \mathrm{~B}_{3}$	Input/output port
${\mathrm{P} 1 \mathrm{C}_{0}}^{\text {to } \mathrm{P1}^{\text {C }} \mathrm{C}_{3}}$	Output port
$\mathrm{Pl}^{1} \mathrm{D}_{0}$ to $\mathrm{P1D}_{3}$	Output port
	Input/output port
KS ${ }_{0}$ to KS_{15}	Key source signal output
LCD_{0} to LCD_{35}	LCD segment signal output
COM_{0} to COM_{3}	LCD common signal output
CKOUT	Subclock output
STPRLS	Stop mode release input
CE	Chip enable input
INT0, INT1	External interrupt input
ADC	A/D converter input
SDA	Serial data input/output

SCL	Serial clock input/output
$\mathrm{SIO}_{0} \mathrm{SI}_{1}$	Serial data input
$\mathrm{SO}_{0}, \mathrm{SO}_{1}$	Serial data output
SCK0, ${ }^{\text {SCK }} 1$	Serial clock input/output
XIN, XOUT	Oscillation circuit for main clock
XTIN, XTOUT	Oscillation circuit for subclock
OSCIN, OSCOUT	Oscillation circuit for IDC
IDC_{0} to IDC 2	IDC Display signal output
BLK_{0} to BLK2	Blanking signal output
HSYNC	Horizontal synchronous signal input
VSYNC	Vertical synchronous signal input
CLK	Clock input for PROM
MDO to MD3	Mode selection input for PROM
D0 to D7	Data input/output for PROM
VPP	Power supply for PROM
$V_{D D 1}, V_{D D 2}$	Power supply
GND	Ground

μ PD17P401

BLOCK DIAGRAM

FUNCTION LIST

Product Name	μ PD1 7401	μ PD17P401
ROM	12288×16 bits (mask ROM)	12288×16 bits (One-time PROM)
RAM	524×4 bits	
System register	12×4 bits	
Register file	45×4 bits (control register)	
Port register	6×4 bits	
Instruction execution time	1.6 us (at 10 MHz oscillation)	
Stack level	7 levels	
Serial interface	- 2-system, 3 channel 3 -wire and 2 -wire	
Interrupt	- 2 channels	
Timer	- 2-system 8-bit timer ($10 \mu \mathrm{~s}, 100 \mu \mathrm{~s}, 500 \mu \mathrm{~s}$, 1 ms (at 10 MHz oscillation)) clock timer (100 ms (at 10 MHz oscillation))	
Standby function	- STOP, HALT	
Power supply voltage	$\mathrm{V}_{\mathrm{DD}}=4.5$ to $5.5 \mathrm{~V}(32 \mathrm{kHz}$ counter for clock is operated at 2.2 to 5.5 V .	
Package	$80-\mathrm{pin}$ plastic QFP ($14 \times 14 \mathrm{~mm}$)	

Instruction Manual of the μ PD17K-Family

Section 3 - Instruction Manual of the μ PD17K-Family

Chapter 1General3-3 Chapter 2 Chapter 3 Data memory addressing
3-4Instruction set3-11

CHAPTER 1 GENERAL

1.1 GENERAL DESCRIPTION

Each instruction of the μ PD17000 series is composed of 16 bits per word. The instruction set contains 47 useful instructions having the following features:
(1) Permitting operation between memories in single step
(2) Permitting both binary and decimal calculation
(3) Permitting table reference on program memory (ROM)
(4) Permitting branching and subroutine call using the register value as address
(5) Well-arranged 47 types of instructions

This manual explains the instructions of the μ PD17000 series. However, some instructions are inapplicable or limited in usage for certain products. Careful reference should be taken to the data sheet of the product you want to use before creating a program.

1.2 CONFIGURATION OF INSTRUCTION

The instruction codes of μ PD1 7000 series are classified into the following three types:
(1) 0 operand instruction

Instructions 'INC AR', 'PUSH AR', 'RET', etc. These instructions have a unique or no operand.
(2) 1 operand instruction

Instructions 'RORC r', 'STOP s', etc. The address or immediate data is described in the operand.
(3) 2 operand instruction

Instructions 'ADD r, m', 'ADD m, \#i', etc. Two addresses, or an address and immediate data are described in the operand.

CHAPTER 2 DATA MEMORY ADDRESSING

A data memory address is composed of a bank (four bits), row address (3 bits) and column address (four bits).

2.1 DIRECT ADDRESSING OF DATA MEMORY

When directly specifying data memory, the bank is specified by the BANK (bank register: 79H) of the system register, and the row address and column address are specified by the instruction operand m (seven bits).

[Example]

If BANK $=0$,
MOV $\frac{43 \mathrm{H}, \frac{\# 2 \mathrm{H}}{L}}{}$ Immediate data

2.2 GENERAL-PURPOSE REGISTER ADDRESSING

When specifying a general-purpose register, the bank and row addresses are specified by RPH and RPL (register pointer: $7 \mathrm{DH}, 7 \mathrm{EH}$) of the system register, and the column address is specified by the instruction operand r (four bits).

[Example]

When BANK $=0, \mathrm{RPH}=0$, and $\mathrm{RPL}=1$;
ST $43 \mathrm{H}, 2 \mathrm{H}$ \square General-purpose register column address

2.3 INDEX MODIFICATION ADDRESSING OF DATA MEMORY

If IXE (index addressing enable flag: 7FH.O) of the system register is set ' 1 ', the data memory address is specified as the ORed result of the address specified by the system register BANK (bank register: 79 H) and instruction operand m (seven bits) and the contents of system register IXH, IXM, and IXL (index register: 7AH, 7BH, and 7CH).

[Example]

If $B A N K=0, I X E=1, I X H=0, I X M=0 E H$, and $I X L=8$;
MOV 43H, \#2H

Data memory address $=[B A N K, m]$ OR $[I X H, I X M, I X L]$

$$
\begin{aligned}
& =[00001000011 \mathrm{~B}] \text { OR }[00011101000 \mathrm{~B}] \\
& =[00011101011 \mathrm{~B}] \\
& =6 \mathrm{BH} \text { of bank } 1
\end{aligned}
$$

2.4 GENERAL-PURPOSE REGISTER INDIRECT ADDRESSING OF DATA MEMORY

The data memory address specification method for executing the general-purpose register indirect transfer instruction 'MOV @r, m' and 'MOV m, @r' is explained below.
(1) When MPE $=0, \mathrm{IXE}=0$

The bank for direct specification by operand m is specified by the system register BANK (bank register: 79H) and the row address and column address are specified by the instruction operand m (seven bits).
The bank for indirect specification by operand @r is specified by the system register BANK (bank register: 79 H), and the row address is specified by the upper three bits of operand m. The column address is specified by the value of the general-purpose register. The bank and row address of the general-purpose register are specified by the system register RPH and RPL (register pointer: 7DH, 7EH), and the column address is specified by the instruction operand r (four bits).
Accordingly, indirect transfer with MPE $=0$ and IXE $=0$ occurs within the same row address of the same bank.

[Example]

When $B A N K=0, R P H=0, R P L=0$, and the value of address 0.02 H is 8 H ;
MOV 43H, @2H
Indirect specification address

Direct specification address $=$ [BANK, m]
$=[00001000011 \mathrm{~B}]$
$=43 \mathrm{H}$ of bank 0
Indirect specification address $=\left[\right.$ BANK, $\left.m_{6-4},(R)\right]$
$=$ [0000 100 1000B]
$=48 \mathrm{H}$ of bank 0

(2) When MPE $=1$ and $I X E=0$

The bank for direct specification by operand m is specified by the system register BANK (bank register: 79H), and the row address and column address are specified by the instruction operand m (seven bits).
The bank for indirect specification by operand @r and the row address are specified by the MPH and MPL (memory pointer: $7 \mathrm{AH}, 7 \mathrm{BH}$) of the system register, and the column address is specified by the value of the general-purpose register. The bank and row address of the general-purpose register are specified by the RPH and RPL (register pointer: 7DH, 7 EH) of the system register, and the column address is specified by the instruction operand r (four bits).
Accordingly, when MPE $=1$ and $I X E=0$, indirect data transfer is allowed between any data memories.

[Example]

When $\mathrm{BANK}=0, \mathrm{MPH}=0, \mathrm{MPL}=3, \mathrm{RPH}=0, \mathrm{RPL}=0$, and the value of 0.02 H address is 8 H ; MOV 43H, @2H

Indirect specification address
Direct specification address
Direct specification address $=[$ BANK, m$]$
$=[00001000011 \mathrm{~B}]$
$=43 \mathrm{H}$ of bank 0
Indirect specification address $=[\mathrm{MPH}, \mathrm{MPL},(R)]$
$=[0000011$ 1000B]
$=38 \mathrm{H}$ of bank 0

(3) When MPE $=0$ and $\mid X E=1$

The bank, row address and column address for direct specification by operand m are specified by the ORed result of the address specified by the system register BANK (bank register: 79 H) and instruction operand m (seven bits) and the contents of system registers IXH, IXM and IXL (index registers: 7AH, 7BH, 7CH).
The bank and row address of the indirect specification by operand @r are specified by the ORed result of the address specified by the system register BANK (bank register: 79 H) and the upper three bits of operand m and the contents of system registers $I X H$ and IXM (index registers: $7 \mathrm{AH}, 7 \mathrm{BH}$). The column address is specified by the value of the general-purpose register. The bank and row address of the general-purpose register are specified by the system registers RPH and RPL (register pointers: 7DH, 7EH), and the column address is specified by the instruction operand r (four bits).
If MPE $=0$ and $I X E=1$, indirect transfer of data occurs within the same row address of the same bank.

[Example]

When BANK $=0, I X H=0, I X M=2, I X L=4, R P H=0, R P L=0$, and the value of address 0.02 H is 8 H ; MOV 43H, @2H
-Indirect specification address
-Direct specification address

$$
\begin{aligned}
\text { Direct specification address } & =[B A N K, m] \text { OR }[I X H, I X M, I X L] \\
& =[00001000011 \mathrm{~B}] \text { OR }[00000100100 \mathrm{~B}] \\
& =[00001100111 \mathrm{~B}] \\
& =67 \mathrm{H} \text { of bank } 0 \\
\text { Indirect specification address } & =\left[B A N K, m_{6-4},(\mathrm{R})\right] \text { OR }[I X H, \text { IXM, 0] } \\
& =[00001001000 \mathrm{~B}] \text { OR }[00000100000 \mathrm{~B}] \\
& =[00001011000 \mathrm{~B}] \\
& =58 \mathrm{H} \text { of bank } 0
\end{aligned}
$$

μ PD17K-FAMILY

(4) When MPE $=1$, IXE $=1$

The bank, row address, and column address by direct specification with operand m are specified by the ORed result of the address specified by the system register BANK (bank register: 79 H) and instruction operand m (seven bits) and the contents of the system registers IXH, IXM, and IXL (index registers: 7AH, 7BH and 7CH).
The bank and row address by indirect specification with operand @r is specified by the system registers MPH and MPL (memory pointers; 7AH, 7 BH), and the column address is specified by the value of the general-purpose register. The bank and row address of the general-purpose register are specified by the system registers RPH and RPL (register pointers: 7DH, 7EH), and the column address is specified by the instruction operand r (four bits).

Accordingly, indirect data transfer with MPE $=1$ and $I X E=1$ is allowed between any data memories.

[Example]

When $B A N K=0, I X H(M P H)=0, I X M(M P L)=2, I X L=4, R P H=0, R P L=0$, and value of address 0.02 H is 8 H ; MOV 43H, @2H
[-Direct specification address

Direct specification address $=[B A N K, m] O R[I X H, I X M, I X L]$
$=[00001000011 \mathrm{~B}]$ OR [000 0010 0100B]
$=[00001100111 \mathrm{~B}]$
$=67 \mathrm{H}$ of bank 0
Indirect specification address $=[\mathrm{MPH}, \mathrm{MPL},(\mathrm{R})]$
$=[000001010000 \mathrm{~B}]$
$=28 \mathrm{H}$ of bank 0

CHAPTER 3 INSTRUCTION SET

This chapter explains the instruction set. The abbreviations used in the explanation of instruction set are shown below:
(X) : Value of data memory or register indicated by X (four bits)
[$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$]: Address consisting of upper 4 bits (X), medium 3 bits (Y) and lower 4 bits (Z) (Total 11 bits)
$\mathrm{M} \quad$: Data memory address
If IXE $=0$, then $M=\left[(\right.$ BANK $\left.), m_{H}, m_{L}\right]$
If $I X E=1$, then $M=\left[(B A N K), m_{H}, m_{L}\right] O R(I X)$
IXE : Index enable flag
(BANK) : Bank register value (4 bits)
m_{H} : Data memory row address (3 bits)
m_{L} : Data memory column address (4 bits)
(IX) : Index register value (11 bits)
R : General-purpose register address $R=\left[\left(R P_{H}\right),\left(R P_{L}\right), r\right]$
$\left(R P_{\mathrm{H}}\right)$: General-purpose register bank (4 bits)
(RP_{L}) : General-purpose register row address (3 bits)
r : General-purpose register column address (4 bits)
$i \quad: \quad$ immediate data (4 bits)
addr : Address of branching destination
CY : Carry flag
SP : Stack pointer
STACK : Stack value indicated by stack pointer
AR : Address register
DBF : Data buffer
WR : Window register
rf : Register file address
$\mathrm{rf}_{\mathrm{H}} \quad$: Upper 3 bits of register file address
rf_{L} : Lower 4 bits of register file address
p : Address of peripheral circuit
$\mathrm{p}_{\mathrm{H}} \quad$: Upper 3 bits of peripheral circuit address
PL : Lower 4 bits of peripheral circuit address

Note: Unless otherwise specified, the following conditions are used:

```
BANK = 0
RPH =0,RPL = 0
IXE = O
```

The data memory address is represented by direct address. When actually using an assembler, be sure to use the type MEM symbol. Any description of memory address directly into the operand will cause an error.

3.1 ADD r, m

Add data memory to general register

(1) Instruction code

00000	mH_{H}	m_{L}	r

(2) Function

If $C M P=0, R \leftarrow(R)+(M)$
The contents of the data memory addressed by M is added to the contents of the general-purpose register indicated by R, and the results are stored into the general-purpose register indicated by R.
If $C M P=1$, then $(R)+(M)$
No results are stored. The flag only changes.
If a carry is made, set a carry flag (CY). If no carry is made, reset the carry flag (CY).
If the result of addition is other than zero, the zero flag (Z) is reset.
If the result of addition is zero, the zero flag (Z) will be set when the compare flag is in the reset status (CMP $=$ $0)$. When the compare flag is in the set status (CMP $=1$), the zero flag (Z) will not be changed if the result of addition is zero.
There are two types in addition: binary operation and BCD operation. The addition type is selected by the BCD flag (BCD) of PSW.

(3) Example 1

When the row address $0(0.00 \mathrm{H}$ to 0.0 FH) of bank 0 is specified as general-purpose register ($\mathrm{RPH}=0, \mathrm{RPL}=0$), the result of addition of the contents of 0.2 FH address is stored to the contents of 0.03 H address.

```
0.03H}\leftarrow(0.03H)+(0.2FH
MOV BANK, #OOH ; Data memory bank 0
MOV RPH, #OOH ; General-purpose register bank to 0
MOV RPL, #OOH ; General-purpose register row address to 0
ADD 03H, 2FH
```


Example 2

When row address $2(1.20 \mathrm{H}$ to 1.2 FH) of bank 1 is specified as general-purpose register ($\mathrm{RPH}=1, \mathrm{RPL}=4$), the content of address 1.23 H is added to the content of address 0.2 FH , and the results are stored into address 1.23 H .

```
1.23H}\leftarrow(1.23H)+(0.2FH
MOV BANK, #OOH ; Data memory bank 0
MOV RPH, #01H ; General-purpose register bank 1
MOV RPL, #O4H ; General-purpose register row address 2
ADD 03H, 2FH
```

μ PD17K-FAMILY

Example 3

The result of addition of the contents of address 0.03 H and address 0.6 FH is stored into address 0.03 H . If $I X E=1, I X H=0, I X M=4$, and $I X L=0$, that is, if $I X=0.40 \mathrm{H}$, then the data memory 0.6 FH can be specified by setting the data memory address at 2 FH .

```
0.03H}\leftarrow(0.03H)+(\underline{0.6FH)
                                    L_ORed result of index register content 0.40H and data memory
                                    address 0.2FH
MOV RPH, #OOH ; General-purpose register bank 0
MOV RPL, #OOH ; General-purpose register row address 0
MOV IXH, #OOH ; IX \leftarrow00001000000B
MOV IXM, #O4H
MOV IXL, #OOH ;
SET1 IXE ; IXE flag \leftarrow1
ADD 03H, 2FH ; IX 00001000000B (0.40H)
    ; Bank operand OR \000001011111B (0.2FH)
    ; Specified address 000011011111B(0.6FH)
```


Example 4

The result of addition of the contents of address 0.03 H and address 2.3 FH is stored into address 0.03 H . If $I X E=1, I X H=1, I X M=1$, and $I X L=0$, that is, if $I X=2.10 H$, then the data memory $2.3 F H$ can be specified by setting the data memory address at 2 FH .

(4) Note

The 1st operand of 'ADD r, m ' instruction is the column address of general-purpose register. If it is described as follows, the general-purpose register column address is taken as 03 H . This will not cause any error in assembling.
ADD $13 \mathrm{H}, 2 \mathrm{FH}$
The lower 4 bits are significant.
If CMP flag $=1$, no added result is stored.
If BCD flag $=1$, the result of decimal operation is stored.

3.2 ADD m, \#i

Add immediate data to data memory
(1) Instruction code

10000	mH	mL	i

(2) Function

If $C M P=0$, then $M \leftarrow(M)+i$
The immediate data i is added to the content of data memory addressed by M, and the result is stored into the data memory addressed by M .
If $C M P=1$, then $(M)+i$
No result is stored. Only the flag changes.

If any carry occurs as a result of addition, the carry flag (CY) is set. If no carry occurs, the carry flag (CY) is reset.
If the result of addition is other than zero, the zero flag (Z) is reset.
If the compare flag is reset $(C M P=0)$ when the result of addition is zero, the zero flag (Z) is set. If the compare flag is set (CMP $=1$), the zero flag (Z) will not change when the result of addition turns zero.
There are two types of addition: binary operation and BCD operation. The addition type is specified by the $B C D$ flag (BCD) of PSW.
(3) Example 1

Value 5 is added to the content of address 0.2 FH , and the result is stored to address 0.2 FH .
$0.2 \mathrm{FH} \leftarrow(0.2 \mathrm{FH})+5$
ADD 2FH, \#05H

Example 2

Value 5 is added to the content of address 0.6 FH , and the result is stored to address 0.6 FH . If $\mathrm{IXE}=1$, $I X H=0, I X M=4$, and $I X L=0$, that is, if $I X=0.40 \mathrm{H}$, then the data memory 0.6 FH can be specified by setting the data memory address at 2 FH .
$0.6 \mathrm{FH} \leftarrow(0.6 \mathrm{FH})+05 \mathrm{H}$

- ORed result of the index register content 0.40 H and data memory address 0.2 FH
MOV BANK, \#OOH ; Data memory bank 0
MOV IXH, \#OOH ; IX $\leftarrow 00001000000 B(0.40 \mathrm{H})$
MOV IXM, \#04H
MOV IXL, \#OOH
SET1 IXE ; IXE flag $\leftarrow 1$
ADD 2FH, \#05H ; IX 00001000000B
; Bank operand OR $工 00000101111 \mathrm{~B}(0.2 \mathrm{FH})$
; Specified address $00001101111 \mathrm{~B}(0.6 \mathrm{FH})$

Example 3

Value 5 is added to the content of address 2.2 FH , and the result is stored to address 2.2 FH . If $\mathrm{IXE}=1$, $I X H=1, I X M=0$ and $I X L=0$, that is, if $I X=2.00 \mathrm{H}$, then the data memory 2.2 FH can be specified by setting the data memory address at 2 FH .
$2.2 \mathrm{FH} \leftarrow(2.2 \mathrm{FH})+05 \mathrm{H}$
—ORed result of index register content 2.00 H and data memory address 0.2 FH
MOV BANK, \#OOH ; Data memory bank 0
MOV IXH, \#01H ; iX $\leftarrow 00100000000 \mathrm{~B}$
MOV IXM, \#OOH
MOV IXL, \#OOH
SET1 IXE ; IXE flag $\leftarrow 1$

ADD 2FH, \#05H ; IX 00100000000B (2.00H)
; Bank operand OR $200000101111 \mathrm{~B}(0.2 \mathrm{FH})$
; Specified address $00100101111 \mathrm{~B}(2.2 \mathrm{FH})$
(4) Note

If CMP flag $=1$, then no addition result is stored.
If BCD flag $=1$, the result of decimal operation is indicated.

3.3 ADDC r, m

(1) Instruction code

00010	mH	mL	r

(2) Function

If $C M P=0$, then $R \leftarrow(R)+(M)+C Y$
The content of general-purpose register indicated by R, the content of data memory addressed by M and the value of carry flag (CY) are added, and the result is stored into the general-purpose register indicated by R .
If $C M P=1$, then $(R)+(M)+C Y$
The result of addition is not stored. Only the flag is changed.
Use of this 'ADDC' instruction permits addition to two words or more can be performed easily.
If a carry occurs as a result of addition, the carry flag (CY) is set; if no carry occurs, the carry flag (CY) is reset. If the result of addition is other than zero, then zero flag (Z) is reset.
If the compare flag is reset $(C M P=0)$ when the result of addition is zero, the zero flag (Z) is set. If the compare flag is set (CMP = 1), the zero flag (Z) will not change when the result of addition turns zero.
There are two types of addition: binary operation and BCD operation. The addition type is specified by the BCD flag (BCD) of PSW.
(3) Example 1

When row address $0(0.00 \mathrm{H}$ to 0.0 FH$)$ of bank 0 is specified as a general-purpose register, the 12 -bit content of address $0.2 \mathrm{DH}-0.2 \mathrm{FH}$ is added to the 12 -bit content of address $0.0 \mathrm{DH}-0.0 \mathrm{FH}$, and then the result is stored into the 12 -bit area of address $0.0 \mathrm{DH}-0.0 \mathrm{FH}$.
$0.0 \mathrm{FH} \leftarrow(0.0 \mathrm{FH})+(0.2 \mathrm{FH})$
$0.0 \mathrm{EH} \leftarrow(0.0 \mathrm{EH})+(0.2 \mathrm{EH})+\mathrm{CY}$
$0.0 \mathrm{DH} \leftarrow(0.0 \mathrm{DH})+(0.2 \mathrm{DH})+\mathrm{CY}$
MOV BANK, \#OOH ; Data memory bank 0
MOV RPH, \#OOH ; General-purpose register bank 0
MOV RPL, \#OOH ; General-purpose register row address 0
ADD OFH, 2FH
ADDC OEH, 2EH
ADDC ODH, 2DH

Example 2

When row address $2(1.20 \mathrm{H}$ to 1.2 FH$)$ of bank 1 is specified as a general-purpose register, the 12 -bit content of address 1.2 DH to 1.2 FH is shifted to the left including a carry flag by one.

MOV RPH, \#01H ; General-purpose register bank 1
MOV RPL, \#04H ; General-purpose register row address 2
MOV BANK; \#01H ; Data memory bank 1
ADDC OFH, 2FH
ADDC OEH, 2EH
ADDC 0DH, 2DH

Example 3

The content of address 0.0 FH and the contents of addresses 0.40 H to 0.4 FH are added, and then store the result into address 0.0 FH .

```
0.0\textrm{FH}\leftarrow(0.0\textrm{FH})+(0.40\textrm{H})+(0.41\textrm{H})+\ldots+(0.4\textrm{FH})
    MOV BANK, #OOH ; Data memory bank 0
    MOV RPH, #OOH ; General-purpose register bank 0
    MOV RPL, #OOH ; General-purpose register row address 0
    MOV IXH, #OOH ; IX\leftarrow00001000000B (0.40H)
    MOV IXM, #04H
    MOV IXL, #OOH
LOOP1:
    SET1 IXE ; IXE flag &1
    ADD OFH,OOH
    CLR1 IXE ; IXE flag }\leftarrow
    INC IX ; IX\leftarrowIX+1
    SKE IXL, #O
    JMP LOOP1
```


Example 4

The 12 -bit contents of addresses 1.40 H to 1.42 H are added to the 12 -bit contents of addresses 0.0 DH to 0.0 FH , then the result is stored to the 12 -bit area of addresses 0.0 DH to 0.0 FH .
$0.0 \mathrm{DH} \leftarrow(0.0 \mathrm{DH})+(1.40 \mathrm{H})$
$0.0 \mathrm{EH} \leftarrow(0.0 \mathrm{EH})+(1.41 \mathrm{H})+\mathrm{CY}$
$0.0 \mathrm{FH}-(0.0 \mathrm{FH})+(1.42 \mathrm{H})+\mathrm{CY}$
MOV BANK, \#OOH ; Data memory bank 0
MOV RPH, \#OOH ; General-purpose register bank 0
MOV RPL, \#OOH ; General-purpose register row address 0
MOV IXH, \#OOH ; IX $\leftarrow 00011000000(1.40 \mathrm{H})$
MOV IXM, \#OCH
MOV IXL, \#OOH
SET1 IXE ; IXE flag $\leftarrow 1$
ADD $0 D H, 00 \mathrm{H} ; 0.0 D \mathrm{H} \leftarrow(0.0 \mathrm{DH})+(1.40 \mathrm{H})$
ADDC 0EH, $01 \mathrm{H} ; 0.0 \mathrm{EH} \leftarrow(0.0 \mathrm{EH})+(1.41 \mathrm{H})$
ADDC $0 F \mathrm{FH}, 02 \mathrm{H} ; 0.0 \mathrm{FH} \leftarrow(0.0 \mathrm{FH})+(1.42 \mathrm{H})$

3.4 ADDC m, \#i

Add immediate data to data memory with carry fiag
(1) Instruction code

10010	mH	mL	\mathbf{i}

(2) Function

If $C M P=0: M \leftarrow(M)+i+C Y$
The values of immediate data i and carry flag (CY) are added to the content of data memory addressed by M, and the result is stored to the data memory addressed by M .
If $C M P=1:(M)+i+C Y$
The result is not stored. Only the flag is changed.

If a carry occurs as a result of addition, the carry flag (CY) is set; if no carry occurs, the carry flag (CY) is reset.
If the result of addition is other than zero, then zero flag (Z) is reset.
If the compare flag is reset ($C M P=0$) when the result of addition is zero, the zero flag (Z) is set. If the compare flag is set (CMP $=1$), the zero flag (Z) will not change when the result of addition turns zero.
There are two types of addition: binary operation and BCD operation. The addition type is specified by the BCD flag (BCD) of PSW.
(3) Example 1

The value 5 is added to the 12 -bit contents of addresses 0.0 DH to 0.0 FH , and then the result is stored to the addresses 0.0 DH to 0.0 FH .
$0.0 \mathrm{FH} \leftarrow(0.0 \mathrm{FH})+05 \mathrm{H}$
$0.0 \mathrm{EH} \leftarrow(0.0 \mathrm{EH})+\mathrm{CY}$
$0.0 \mathrm{DH} \leftarrow(0.0 \mathrm{DH})+\mathrm{CY}$
MOV BANK, \#OOH; Data memory bank 0
ADD OFH, \#05H
ADDC OEH, \#OOH
ADDC 0DH, \#0OH

Example 2

The value 5 is added to the 12 -bit contents of addresses 0.4 DH to 0.4 FH , and the result is stored to the addresses 0.4 DH to 0.4 FH .
$0.4 \mathrm{FH} \leftarrow(0.4 \mathrm{FH})+05 \mathrm{H}$
$0.4 \mathrm{EH} \leftarrow(0.4 \mathrm{EH})+\mathrm{CY}$
$0.4 \mathrm{DH} \leftarrow(0.4 \mathrm{DH})+\mathrm{CY}$
MOV BANK, \#OOH ; Data memory bank 0
MOV IXH, \#OOH ; IX $\leftarrow 00001000000 \mathrm{~B}(0.40 \mathrm{H})$
MOV IXM, \#04H
MOV IXL, \#OOH
SET1 IXE ; IXE flag $\leftarrow 1$
ADD OFH, \#5 $\quad 0.4 \mathrm{FH} \leftarrow(0.4 \mathrm{FH})+05 \mathrm{H}$
ADDC OEH, \#O $0.4 \mathrm{EH} \leftarrow(0.4 \mathrm{EH})+\mathrm{CY}$
ADDC ODH, \#O $0.4 \mathrm{DH} \leftarrow(0.4 \mathrm{DH})+\mathrm{CY}$

3.5 SUB r, m

(1) Instruction code

00001	mH	mL	r

(2) Function

If $C M P=0: R \leftarrow(R)-(M)$
The content of data memory addressed by M is subtracted from the content of general-purpose register indicated by R, and the result is stored into the general-purpose register indicated by R.
If $C M P=1:(R)-(M)$
The result is not stored. Only the flag is changed.

If a borrow occurs as a result of subtraction, the carry flag (CY) is set; if no borrow occurs, the carry flag (CY) is reset.

If the result of subtraction is other than zero, then zero flag (Z) is reset.
If the compare flag is reset ($C M P=0$) when the result of subtraction is zero, the zero flag (Z) is set. If the compare flag is set $(C M P=1)$, the zero flag (Z) will not change when the result of subtraction turns zero.
There are two types of subtraction: binary operation and BCD operation. The subtraction type is specified by the $B C D$ flag (BCD) of PSW.

(3) Example 1

When row address $0(0.00 \mathrm{H}$ to 0.0 FH) of bank 0 is specified as general-purpose register ($\mathrm{RPH}=0, \mathrm{RPL}=0$), the content of address 0.2 FH is subtracted from the content of address 0.03 H , then the result is stored to the address 0.03 H .
$0.03 \mathrm{H} \leftarrow(0.03 \mathrm{H})-(0.2 \mathrm{FH})$
SUB 03H, 2FH

Example 2

When bank 1 row address $2(1.20 \mathrm{H}$ to 1.2 FH) is specified as general-purpose register ($\mathrm{RPH}=1$, RPL $=4$), the content of address 0.2 FH is subtracted from the content of address 1.23 H , and the result is stored to the address 1.23 H .
$1.23 \mathrm{H} \leftarrow(1.23 \mathrm{H})-(0.2 \mathrm{FH})$
MOV BANK, \#OOH ; Data memory bank 0
MOV RPH, \#01H ; General-purpose register bank 1
MOV RPL, \#04H ; General-purpose register row address 2
SUB 03H, 2FH

Example 3

The content of address 0.6 FH is subtracted from the content of address 0.03 H , and the result is stored to the address 0.03 H . If $\mid X E=1, I X H=0, I X M=4$, and $I X L=0$, that is, if $I X=0.40 \mathrm{H}$, then the data memory 0.6 FH can be specified by setting the data memory address at 2 FH .

MOV BANK, \#OOH	Data memory bank 0
MOV RPH, \#OOH	General-purpose register bank 0
MOV RPL, \#OOH	General-purpose register row address 0
MOV IXH, \#OOH	IX $\leftarrow 00001000000 \mathrm{~B}(0.40 \mathrm{H})$
MOV IXM, \#04H	
MOV IXL, \#OOH	
SET1 IXE	IXE flag $\leftarrow 1$
SUB 03H, 2FH	IX 00001000000B (0.40H)
	Bank operand OR $)^{00000101111 \mathrm{~B}(0.2 \mathrm{FH})}$
	Specified address 00001101111B (0.6FH)

Example 4

The content of address 2.3 FH is subtracted from the content of address 0.03 H , and the result is stored to the address 0.03 H . If $\mathrm{IXE}=1, \mathrm{IXH}=1, \mathrm{IXM}=1$ and $\mathrm{IXL}=0$, that is, if $\mathrm{IX}=2.10 \mathrm{H}$, then the data memory 2.3 FH can be specified by setting the data memory address at 2 FH .

(4) Note

The 1st operand of the 'SUB r, m instruction must be a general-purpose register address. The address 03 H is specified as a register if described as follows. This will not cause an error in assembling.

SUB 13H, 2FH
_ The general-purpose register address must fall within the range from 00 H to 0 FH (with register pointer set at other than row address 1).
If CMP flag $=1$, the subtracted result is not stored.
If $B C D$ flag $=1$, the result of decimal operation is stored.

3.6 SUB m, \#

Subtract immediate data from data memory
(1) Instrctuion code

10001	mH	mL	i

(2) Function

If $C M P=0: M \leftarrow(M)-i$
The immediate data i is subtracted from the content of data memory addressed by M, and the result is stored into the data memory addressed by M .
If $C M P=1:(M)-i$
The result is not stored. Only the flag is changed.

If a borrow occurs as a result of subtraction, the carry flag (CY) is set; if no borrow occurs, the carry flag (CY) is reset.

If the result of subtraction is other than zero, then zero flag (Z) is reset.
If the compare flag is reset ($C M P=0$) when the result of subtraction is zero, the zero flag (Z) is set. If the compare flag is set ($C M P=1$), the zero flag (Z) will not change when the result of subtraction turns zero.
There are two types of subtraction: binary operation and BCD operation. The subtraction type is specified by the BCD flag (BCD) of PSW.

(3) Example 1

Value 5 is subtracted from the contents of address 0.2 FH , and the result is stored to the address 0.2 FH .
$0.2 \mathrm{FH} \leftarrow(0.2 \mathrm{FH})-5$
SUB 2FH, \#05H

Example 2

The value 5 is subtracted from the content of address 0.6 FH , and the result is stored to the address 0.6 FH . If $I X E=1, I X H=0, I X M=4$, and $I X L=0$, that is, if $I X=0.40 \mathrm{H}$, then the data memory 0.6 FH can be specified by setting the data memory address at 2 FH .


```
-ORed result of the content 0.40 H of index register and the data memory address 0.2 FH
\(\quad\) ORed result of the content 0.40 H of index register and the data
memory address 0.2 FH
```

MOV BANK, \#OOH ; Data memory bank 0
MOV IXH, \#00H ; IX $\leftarrow 00001000000 \mathrm{~B}(0.40 \mathrm{H})$
MOV IXM, \#O4H ;
MOV IXL, \#OOH ;
SET1 IXE ; IXE flag $\leftarrow 1$
SUB 2FH, \#05H ; IX 00001000000B (0.40H)
; Bank operand OR $00000101111 \mathrm{~B}(0.2 \mathrm{FH})$
; Specified address $00001101111 \mathrm{~B}(0.6 \mathrm{FH})$

MOV BANK, \#OOH	Data memory bank 0
MOV IXH, \#OOH	IX $\leftarrow 00001000000 \mathrm{~B}(0.40 \mathrm{H})$
MOV IXM, \#04H	
MOV IXL, \#OOH	
SET1 IXE	IXE flag $\leftarrow 1$
SUB 2FH, \#05H	IX 00001000000B (0.40H)
	Bank operand OR) $00000101111 \mathrm{~B}(0.2 \mathrm{FH})$
	Specified address $00001101111 \mathrm{~B}(0.6 \mathrm{FH})$

Example 3

The value 5 is subtracted from the content of address 2.2 FH , and the result is stored to the address 2.2 FH . If IXE $=1, I X H=1, I X M=0$, and $I X L=0$, that is, if $I X=2.00 \mathrm{H}$, then the data memory 2.2 FH can be specified by setting the data memory address at 2 FH .

```
\(2.2 \mathrm{FH} \leftarrow(\underline{2.2 \mathrm{FH}})-5\)
                                    ORed result of the content 2.00 H of index register and the data
                                    memory address 0.2 FH
```

MOV BANKO, \#OOH; Data memory bank 0

MOV IXH, \#01H	IX $¢ 00100000000 \mathrm{~B}(2.00 \mathrm{H})$
MOV IXM, \#OOH	;
MOV IXL, \#OOH	;
SET1 IXE	IXE flag $\leftarrow 1$
SUB 2FH, \#05H	IX $00100000000 \mathrm{~B}(2.00 \mathrm{H})$
	Bank operand OR $200000101111 \mathrm{~B}(0.2 \mathrm{FH})$
	Specified address 00100101111B (2.2FH)

(4) Note

If CMP flag $=1$, no subtract result is stored.
If $B C D$ flag $=1$, the result of decimal operation is stored.

3.7 SUBC r, m

Subtract data memory from general register with carry flag

(1) Instruction code

00011	$\mathrm{~m}_{\mathrm{H}}$	m_{L}	r

(2) Function

If $C M P=0: R \leftarrow(R)-(M)-C Y$
The content of data memory indicated by address M and the value of carry flag ($C Y$) are subtracted from the content of general-purpose register indicated by R, and the result is stored into the general-purpose register indicated by R. Use of this SUBC instruction permits subtraction of more than two words to be performed easily.
If $C M P=1:(R)-(M)-C Y$
The result is not stored. Only the flag is changed.

If a borrow occurs as a result of subtraction, the carry flag (CY) is set; if no borrow occurs, the carry flag (CY) is reset.
If the result of subtraction is other than zero, then zero flag. (Z) is reset.
If the compare flag is reset $(C M P=0)$ when the result of subtraction is zero, the zero flag (Z) is set. If the compare flag is set $(C M P=1)$, the zero flag (Z) will not change when the result of subtraction turns zero.

There are two types of subtraction: binary operation and BCD operation. The subtraction type is specified by the BCD flag (BCD) of PSW.
(3) Example 1

When bank 0 row address $0(0.00 \mathrm{H}$ to 0.0 FH$)$ is specified as general-purpose register, the 12 -bit contents of addresses 0.2 DH to 0.2 FH are subtracted from the 12 -bit content of addresses 0.0 DH to 0.0 FH , and then the result is stored into the 12 -bit area of addresses 0.0 DH to 0.0 FH .
$0.0 \mathrm{FH} \leftarrow(0.0 \mathrm{FH})-(0.2 \mathrm{FH})$
$0.0 \mathrm{EH} \leftarrow(0.0 \mathrm{EH})-(0.2 \mathrm{EH})-\mathrm{CY}$
$0.0 \mathrm{DH} \leftarrow(0.0 \mathrm{DH})-(0.2 \mathrm{DH})-\mathrm{CY}$
SUB OFH, 2FH
SUBC OEH, 2EH
SUBC 0DH, 2DH

Example 2

The contents of 12 bits from addresses 1.40 H to 1.42 H are subtracted from the contents of 12 bits from addresses 0.0 DH to 0.0 FH , and then the result is stored to the 12 bits from 0.0 DH to 0.0 FH .

$$
\begin{aligned}
& 0.0 \mathrm{DH} \leftarrow(0.0 \mathrm{DH})-(1.40 \mathrm{H}) \\
& 0.0 \mathrm{EH} \leftarrow(0.0 \mathrm{EH})-(1.41 \mathrm{H})-\mathrm{CY} \\
& 0.0 \mathrm{FH} \leftarrow(0.0 \mathrm{FH})-(1.42 \mathrm{H})-\mathrm{CY}
\end{aligned}
$$

$$
\text { MOV BANK, \#OOH ; Data memory bank } 0
$$

MOV RPH, \#OOH ; General-purpose register bank 0
MOV RPL, \#OOH ; General-purpose register row address 0
MOV IXH, \#OOH ; IX $\leftarrow 00011000000 \mathrm{~B}(1.40 \mathrm{H})$
MOV IXM, \#OCH ;
MOV IXL, \#OOH ;
SET1 IXE ; IXE flag $\leftarrow 1$
SUB ODH, OOH ; $0.0 \mathrm{DH} \leftarrow(0.0 \mathrm{DH})-(1.40 \mathrm{H})$
SUBC OEH, $01 \mathrm{H} ; 0.0 \mathrm{EH} \leftarrow(0.0 \mathrm{EH})-(1.41 \mathrm{H})$
SUBC OFH, $02 \mathrm{H} ; 0.0 \mathrm{FH} \leftarrow(0.0 \mathrm{FH})-(1.42 \mathrm{H})$

Example 3

The contents of 12 bits from addresses 0.00 H to 0.03 H and the contents of 12 bits from addresses 0.0 CH to 0.0 FH are compared. If identical, jump is made to LAB1; if different, jump is made to LAB2.

(1) Instruction code

10011	mH	mL	i

(2) Function

If $C M P=0: M \leftarrow(M)-i-C Y$
The immediate data i and the value of carry flag (CY) are subtracted from the content of data memory addressed by M, and the result is stored into the data memory addressed by M.
If $C M P=1:(M)-i-C Y$
The result is not stored. Only the flag is changed.

If a borrow occurs as a result of subtraction, the carry flag (CY) is set; if no borrow occurs, the carry flag (CY) is reset.
If the result of subtraction is other than zero, then zero flag (Z) is reset.
If the compare flag is reset ($C M P=0$) when the result of subtraction is zero, the zero flag (Z) is set. If the compare flag is set $(C M P=1)$, the zero flag (Z) will not change when the result of subtraction turns zero.
There are two types of subtraction: binary operation and BCD operation. The subtraction type is specified by the BCD flag (BCD) of PSW.
(3) Example 1

Value 5 is subtracted from the contents of 12 bits of addresses 0.0 DH to 0.0 FH , and the result is stored to addresses 0.0 DH to 0.0 FH .
$0.0 \mathrm{FH} \leftarrow(0.0 \mathrm{FH})-05 \mathrm{H}$
$0.0 \mathrm{EH} \leftarrow(0.0 \mathrm{EH})-\mathrm{CY}$
$0.0 \mathrm{DH} \leftarrow(0.0 \mathrm{DH})-\mathrm{CY}$
SUB OFH, \#05H
SUBC OEH, \#OOH
SUBC ODH, OOH

Example 2

Value 5 is subtracted from the contents of 12 bits of addresses 0.4 DH to 0.4 FH , and the result is stored into addresses 0.4 DH to 0.4 FH .

```
0.4FH}\leftarrow(0.4FH)-05
0.4EH}\leftarrow(0.4EH)-C
0.4DH}\leftarrow(0.4DH)-C
MOV BANK, #OOH ; Data memory bank 0
MOV IXH, #OOH ; IX \leftarrow00001000000B (0.40H)
MOV IXM, #04H ;
MOV IXL, #OOH ;
SET1 IXE ; IXE flag \leftarrow1
SUB OFH, #5 ; (0.4FH) (0.4FH) - 05H
SUBC 0EH, #O ; (0.4EH) (0.4EH) - CY
SUBC ODH, #O ; (0.4DH) (0.4DH) - CY
```


Example 3

The contents of 12 bits of addresses 0.00 H to 0.03 H and 0 A 3 FH of the immediate data are compared. If.' identical, jump is made to LAB1; if different, jump is made to LAB2.

SET2 CMP, $Z \quad ; \quad$ CMP flag $\leftarrow 1, Z$ flag $\leftarrow 1$
SUB 00 H, \#OH ; The contents of addresses 0.00 H to 0.03 H
SUBC 01 H, \#AH ; remain unchanged because the CMP flag is
SUBC 02H, \#3H ; set.
SUBC 03H, \#FH
SKF1 Z; If identical in comparison, Z flag $=1$;
BR LAB1 ; if different, Z flag $=0$
BR LAB2

LAB1:

LAB2

3.9 INC AR

(1) Instruction code

00111	000	1001	0000

(2) Function
$A R \leftarrow(A R)+1$
Address register (AR) is incremented.

(3) Example 1

Value 1 is added to the contents of 16 bits of AR3 to ARO (address register) in the system register, and the result is stored from AR3 to ARO.

$$
\begin{aligned}
& A R O \leftarrow A R O+1 \\
& A R 1 \leftarrow A R 1+C Y \\
& A R 2 \leftarrow A R 2+C Y \\
& A R 3 \leftarrow A R 3+C Y
\end{aligned}
$$

INC AR
This instruction can be performed by using addition instruction as follows:
ADD ARO, \#01H
ADDC AR1, \#00H
ADDC AR2, \#OOH
ADDC AR3, \#OOH

Example 2

The table data is transferred to DBF (data buffer) in units of 16 bits (one address). (For details, refer to 3.26

"MOVT Instruction".)			
; Address		Table data	
O10H	DW	OF3FFH	
011H	DW	0A123H	
012 H	DW	OFFF1H	
013 H	DW	OFFF5H	
014H	DW	OFF11H	
	:		
	:		
	MOV	AR3, \#OH	Table data address
	MOV	AR2, \#OH	0010H is set into address
	MOV	AR1, \#1H	register.
	MOV	ARO, \#OH	
LOOP:			
	MOVT	@AR	Table data is read into DBF.
	:		
	:		Table data referencing
	,		
	INC	AR	Address register is incremented
	BR	LOOP	by 1.

(4) Note

The number of bits allowed for use with address registers (AR3, AR2, AR1, ARO) vary with the device types. When using, reference should be made to the appropriate manual of the device to be used.

3.10 INC IX

(1) Instruction code

00111	000	1000	0000

(2) Function
$\mid X \leftarrow(I X)+1$
The index register (IX) is incremented.

(3) Example 1

Value 1 is added to the content of 12 bits of IXH to IXL (index register) in the system register, and the result is stored into the $\mid X H$ to $\mid X L$.

$$
\begin{aligned}
& I X L \leftarrow I X L+1 \\
& I X M \leftarrow I X M+C Y \\
& I X H \leftarrow I X H+C Y
\end{aligned}
$$

INC IX
This operation can be performed by using the addition instruction as follows:
ADD IXL, \#01H
ADDC IXM, \#OOH
ADDC IXH, \#OOH

Example 2

The contents of data memory 0.00 H to 0.73 H are all turned ' 0 ' using the index register.
MOV IXH, \#00H ; The contents of index register
MOV IXM, \#OOH ; are all set at 00 H of bank 0 .
MOV IXL, \#OOH ;
RAM clear:
SET1 IXE ; IXE flag $\leftarrow 1$
MOV $00 \mathrm{H}, \# 0 \mathrm{OH} ; 0$ is written into the data memory indicated by the index register.
CLR1 IXE ; IXE flag $\leftarrow 0$
INC IX
SET2 CMP, $\mathbf{Z} \quad ; \quad$ CMP flag $\leftarrow 1, Z$ flag $\leftarrow 1$
SUB IXL, \#03H ; Whether the content of index
SUBC IXM, \#O7H ; register turned to 73 H of bank 0
SUBC IXH, \#OOH ; is checked.
SKT1 Z ; Loop is repeated until the contents
BR RAM clear ; of index register turns to 73 H of
; bank 0 .

μ PD17K-FAMILY

3.11 SKE m, \#i

Skip if data memory equal to immediate data
(1) Instruction code

01001	mH	mL	i

(2) Function

If the content of the data memory addressed by M is equal to the value of immediate data i, then the instruction that follows is skipped.
(3) Example

OFH is transferred to address 24 H if the content of address 24 H is 0 . If not 0 , control jumps to OPE1.
SKE 24H, \#OOH
BR OPE1
MOV 24H, \#OFH
OPE1 :
(1) Instruction code

11001	mH	mL	i

(2) Function

If the content of the data memory addressed by M is greater than the value of immediate data i , then the instruction that follows is skipped.
(3) Example

If the 8 -bit data stored in address 1 FH (upper) and address 2FH (lower) is greater than the immediate data ' 17 H ', then RET occurs; otherwise, RETSK occurs.

SKGE 1FH, \#1
RETSK
SKNE 1FH, \#1
SKLT 2FH, \#8 ; 7+1
RET
RETSK

3.13 SKLT m, \#i

Skip if data memory less than immediate data
(1) Instruction code

11011	mH	mL	i

(2) Function

If the content of data memory addressed by M is less than the value of immediate data i, then the instruction that follows is skipped.

(3) Example

If the content of address 10 H is greater than the immediate data ' 6 ', then 01 H is stored into address 0 FH ; if less than the immediate data ' 6 ', 02 H is stored into address 0 FH .

MOV	OFH, \#02H
SKLT	$10 \mathrm{H}, \# 06 \mathrm{H}$
MOV	OFH, \#01H

3.14 SKNE m, \#i

Skip if data memory not equal to immediate data
(1) Instruction code

01011	mH	mL	\mathbf{i}

(2) Function

If the content of data memory addressed by M is different from the value of immediate data i, then the instruction that follows is skipped.
(3) Example

If the content of address 1 FH is 1 and the content of 1 EH is 3 , then control jumps to XYZ ; if not, control jumps to $A B C$. Comparison of 8 bits can be performed by combining the instructions as shown below:

3

1
1FH 0001

SKNE 1FH, \#1
SKE 1EH, \#3
BR ABC
$B R \quad X Y Z$
The same operation can be performed by using the compare flag and zero flag, as shown below.
SET2 CMP, $Z \quad ; \quad$ CMP flag $\leftarrow 1, Z$ flag $\leftarrow 1$
SUB 1FH, \#1
SUBC 1EH, \#3
SKT1 Z
BR ABC
$B R \quad X Y Z$

3.15 AND m, \#i

AND between data memory and immediate data

(1) Instruction code

10100	mH_{H}	mL	i

(2) Function
$M \leftarrow(M)$ AND i
The content of data memory addressed by M and the immediate data are ANDed, and the result is stored into the data memory addressed by M .
(3) Example 1

Bit 3 (MSB) of address 0.03 H is reset. $0.03 \mathrm{H} \leftarrow(0.03 \mathrm{H})$ and 0111 B

Address 0.03 H

AND 03H, \#0111B

Example 2

All the bits of address 0.03 H are reset.
AND 03H, \#0000B
or
MOV 03H, \#00H

3.16 AND r, m

AND between general register and data memory

(1) Instruction code

00100	mH	mL	r

(2) Function
$R \leftarrow(R)$ AND (M)
The content of general-purpose register indicated by R and the content of data memory addressed by M are ANDed, and the result is stored into the general-purpose register indicated by R.
(3) Example 1

The content (1010 B) of address 0.03 H and the content (0110 B) of address 0.2 FH are ANDed, and the result (0010B) is stored into address 0.03 H .
$0.03 \mathrm{H} \leftarrow(0.03 \mathrm{H})$ and $(0.2 \mathrm{FH})$

Address 03H
and

0	0	1	0

Address 2FH

Address 03 H

MOV 03H, \#1010B
MOV 2FH, \#0110B
AND 03H, 2FH

3.17 OR m, \#i

OR between data memory and immediate data
(1) Instruction code

10110	mH	mL	i

(2) Function
$M \leftarrow(M) O R i$
The content of data memory addressed by M and the immediate data i are ORed, and the result is stored into the data memory addressed by M .
(3) Example 1

Bit 3 (MSB) of address 0.03 H is set.
$0.03 \mathrm{H} \leftarrow(0.03 \mathrm{H})$ or 1000 B

Address 0.03 H

OR 03H, \#1000B

Example 2

All the bits of address 0.03 H are set.
OR 03H, \#1111B
or
MOV 03H, \#OFH

3.18 OR r, m

OR between general register and data memory
(1) Instruction code

00110	$\mathrm{~m}_{\mathrm{H}}$	m_{L}	r

(2) Function
$R \leftarrow(R) O R(M)$
The content of general-purpose register indicated by R and the content of data memory addressed by M are ORed, and the result is stored into the general-purpose register indicated by R.
(3) Example 1

The content (1010B) of address 0.03 H and the content (0111B) of address 0.2 FH are ORed, and the result $(1111 \mathrm{~B})$ is stored into address 0.03 H .

$$
0.03 \mathrm{H} \leftarrow(0.03 \mathrm{H}) \text { or }(0.2 \mathrm{FH})
$$

Address 03H
or

1	1	1	1

Address 2FH

Address 03 H

MOV	$03 \mathrm{H}, \# 1010 \mathrm{~B}$
MOV	$2 \mathrm{FH}, \# 0111 \mathrm{~B}$
OR	$03 \mathrm{H}, 2 \mathrm{FH}$

3.19 XOR m, \#i

Exclusive OR between data memory and immediate data
(1) Instruction code

10101	mH	mL	i

(2) Function
$M \leftarrow(M) \times O R i$
The content of data memory addressed by M and the immediate data i are XORed, and the result is stored into the data memory addressed by M .

(3) Example

The bit 1 and bit 3 of address 0.03 H are inverted, and the result is stored into address 03 H .

XOR 03H, \#1010B
(1) Instruction code

00101	mH_{H}	mL_{L}	r

(2) Function
$R \leftarrow(R) \times O R(M)$
The content of general-purpose register indicated by R and the content of data memory addressed by M are XORed, and the result is stored into the general-purpose register indicated by R.
(3) Example 1

The content of address 0.03 H and the content of address 0.0 FH are compared, and the different bits are set and stored into address 0.03 H . If all bits of 0.03 H are reset (that is, the address 0.03 H and address 0.0 FH have the same content), then control jumps to LBL1; otherwise, jumps to LBL2.
This operation occurs when the status of an alternate switch (content of address 0.03 H) and internal status (content of address 0.0 FH) are compared and branch is made to the processing of changed switch.

x or

XOR	$03 \mathrm{H}, 0 \mathrm{FH}$
SKNE	$03 \mathrm{H}, \# 00 \mathrm{H}$
BR	LBL1
BR	LBL2

Example 2

The content of address 0.03 H is cleared.

0	1	0	1	Address 03H
1				
0	0	0	0	Address 03H

3.21 LD r, m

Load data memory to general register

(1) Instruction code

01000	mH	mL	r

(2) Function
$R \leftarrow(M)$
The content of data memory addressed by M is stored into the general-purpose register indicated by R.

(3) Example 1

The content of address 0.2 FH is stored into address 0.03 H .

$$
\begin{aligned}
& 0.03 \mathrm{H} \leftarrow(0.2 \mathrm{FH}) \\
& \text { LD } \quad 03 \mathrm{H}, 2 \mathrm{FH}
\end{aligned}
$$

BANK 0

Example 2

When row address 2 of bank $1(1.20 \mathrm{H}$ to 1.2 FH) is specified as general-purpose register ($\mathrm{RPH}=1$, RPL $=4$), the content of address 0.2 FH is stored into address 1.23 H .
$1.23 \mathrm{H} \leftarrow(0.2 \mathrm{FH})$
MOV RPH, \#01H ; Bank 1 is selected for general-purpose register.
MOV RPL, \#04H ; Row address 2 is selected for general-purpose register
LD 03H, 2FH

BANK 0

Example 3

The content of address 0.6 FH is stored into address 0.03 H . If $\mathrm{IXE}=1, I X H=0, I X M=4$, and $I X L=0$, that is, if $\mathrm{IX}=0.40 \mathrm{H}$, then the data memory 0.6 FH can be specified by setting the data memory address at 2 FH .
$\mathrm{IXH} \leftarrow \mathrm{OOH}$
$I X M \leftarrow 04 \mathrm{H}$
$\mathrm{IXL} \leftarrow \mathrm{OOH}$
IXE flag $\leftarrow 1$.
$0.03 \mathrm{H} \leftarrow(0.6 \mathrm{FH})$
LAddress obtained by computing OR of the content $(0.40 \mathrm{H})$ of index register and the content (0.2 FH) of data memory.
MOV IXH, \#OOH ; IX $\leftarrow 00001000000 \mathrm{~B}(0.40 \mathrm{H})$
MOV IXM, \#04H
MOV IXL, \#OOH
SET1 IXE ; IXE flag $\leftarrow 1$
LD 03H, 2FH

BANK 0

Example 4

The content of address 2.3 FH is stored into address 0.03 H . If $\mathrm{IXE}=1, I X H=1, I X M=1$, and $I X L=0$, that is, if $\mathrm{IX}=2.10 \mathrm{H}$, then the data memory 2.3 FH can be specified by setting the data memory address at 2 FH .
$0.03 \mathrm{H} \leftarrow \underline{(2.3 \mathrm{FH})}$
Address obtained by computing OR of the content $(2.10 \mathrm{H})$ of index register and the content (0.2FH) of data memory
MOV IXH, \#O்1H ; IX $\leftarrow 00100010000 \mathrm{~B}(2.10 \mathrm{H})$
MOV IXM, \#01H
MOV IXL, \#OOH
SET1 IXE ; IXE flag $\leftarrow 1$
LD 03H, 2FH

BANK 0

(4) Note

The 1st operand of the 'LD r, m' instruction is the column address of the general-purpose register. If described as shown below, the column address of the general-purpose register is set at 03 H . This will cause no error in assembling.

LD $13 \mathrm{H}, 2 \mathrm{FH}$
Column address of general-purpose register is meant, and the lower four bits are significant. If row address 0 of bank 0 is specified as general-purpose register, the address 03 H is specified.
(1) Instruction code

11000	$\mathrm{~m}_{\mathrm{H}}$	mL_{L}	r

(2) Function
$M \leftarrow(R)$
The content of general-purpose register indicated by R is stored into the data memory addressed by M.
(3) Example 1

The content of address 0.03 H is stored into address 0.2 FH .
$(0.2 \mathrm{FH}) \leftarrow(0.03 \mathrm{H})$
ST $2 \mathrm{FH}, 03 \mathrm{H}$; The content of general-purpose register is transferred to data memory.

BANK 0

Exampia 2

The content of address 1.13 H is stored into address 0.2 FH . The general-purpose register is specified at row address 1 of bank $1(1.10 \mathrm{H}$ to 1.1 FH$)$ by using register pointer.
$(0.2 \mathrm{FH}) \leftarrow(1.13 \mathrm{H})$
MOV RPH, \#01H ; General-purpose register is set in bank 1
MOV RPL, \#02H ; General-purpose register is set at row address 1.
ST 2FH, 13H ; The content of general-purpose register is transferred to data memory.

BANK 0

Example 3

The content of address 0.00 H is stored into the addresses 0.18 H to 0.1 FH . The data memory (18 H to 1 FH) is specified by index register.
$(0.18 \mathrm{H}) \leftarrow(0.00 \mathrm{H})$
$(0.19 \mathrm{H}) \leftarrow(0.00 \mathrm{H})$
$(0.1 \mathrm{FH}) \leftarrow(0.00 \mathrm{H})$
MOV IXH, \#00H; IX $\leftarrow 00000000000 \mathrm{~B}(0.00 \mathrm{H})$
MOV IXM, \#OOH
MOV IXL, \#OOH ; Address 0.00 H is specified for data memory.

LOOP1:
SET1 IXE ; IXE flag $\leftarrow 1$
ST $18 \mathrm{H}, 00 \mathrm{H}$; $(0.1 \mathrm{XH}) \leftarrow(0.00 \mathrm{H})$
CLR1 IXE ; IXE flag $\leftarrow 0$
INC IX \quad; Index register + 1
SKGE IXL, \#08H
BR LOOP1

BANK 0

3.23 MOV @r, m

Move data memory to destination indirect

(1) Instruction code

01010	mH	mL	\mathbf{r}

(2) Function

If $M P E=1$:
[(MP), (R)] $\leftarrow(M)$
If $\mathrm{MPE}=0$:
$\left[m_{H},(R)\right] \leftarrow(M)$
The content of data memory addressed by M is stored into the data memory indicated by general-purpose register R. If MPE $=0$, transfer occurs within the same row address of the same bank.
(3) Example 1

The content of address 0.20 H is stored into address 0.2 FH . The destination data memory is specified by the column address indicated by the general-purpose register (OOH) and the row address of data memory $(20 \mathrm{H})$.
$(0.2 \mathrm{FH}) \leftarrow(0.20 \mathrm{H})$
CLR1 MPE ; MPE flag $\leftarrow 0$
MOV 00 H , \#OFH ; Column address is set at general-purpose register
MOV @OOH, 2OH ; Store.

BANK 0

Example 2

The content of address 0.20 H is stored into address 0.3 FH . The destination data memory is specified by the column address indicated by general-purpose register (OOH) and the row address indicated by the memory pointer (MP).
(0.3FH) $\leftarrow(0.20 \mathrm{H})$
MOV RPH, \#OOH ; General-purpose register is set on bank 0
MOV RPL, \#OOH ; General-purpose register is set at row address 0
MOV $00 \mathrm{H}, \# 0 \mathrm{FH} ;$ Column address is set in general-purpose register
MOV MPH, \#OOH $;$ Row address is set in memory pointer.
MOV MPL, \#03H
SET1 MPE
MOV @OOH, $20 \mathrm{H}:$ MPE flag $\leftarrow 1$

BANK 0

$\begin{array}{llllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & A & B & C & D & E & F\end{array}$

Example 3

The content of address 0.10 H is stored into addresses 1.10 H to 1.1 FH .
$(1.10 \mathrm{H}) \leftarrow(0.10 \mathrm{H})$
$(1.11 \mathrm{H}) \leftarrow(0.10 \mathrm{H})$
:
$(1.1 \mathrm{FH}) \leftarrow(0.10 \mathrm{H})$
MOV RPH, \#OOH ; General-purpose register is set on bank 0 .
MOV RPL, \#OOH ; General-purpose register is set at row address 0.
MOV $00 \mathrm{H}, \# 00 \mathrm{H}$; Column address is set in general-purpose register.
MOV MPH, \#OOH ; Bank 1 and row address 1 are set for memory pointer.
MOV MPL, \#09H
SET1 MPE ; MPE flag $\leftarrow 1$
LOOP 1:
MOV @ $00 \mathrm{H}, 10 \mathrm{H}$; $[(\mathrm{MP}),(00 \mathrm{H})] \leftarrow(10 \mathrm{H})$
ADD 00H, \#01H ; Column address + 1
SKT1 CY ; Operation completed for address 1 FH of bank 1?
BR LOOP1

BANK 0
BANK 1

3.24 MOV m, @r

Move data memory to destination indirect

(1) Instruction code

11010	mH	mL	r

(2) Function

If $M P E=1:(M) \leftarrow[(M P),(R)]$
If MPE $=0:(M) \leftarrow\left[m_{H},(R)\right]$
The content of data memory indicated by the general-purpose register R is stored into the data memory addressed by M . When MPE $=0$, this movement occurs within the same row address on the same bank.
(3) Example 1

The content of address 0.2 FH is stored into address 0.20 H . The destination data memory is specified by the column address indicated by the general-purpose register $(00 \mathrm{H})$ and the row address of the data memory $(20 \mathrm{H})$.
$(0.20 \mathrm{H}) \leftarrow(0.2 \mathrm{FH})$
CLR1 MPE ; MPE flag $\leftarrow 0$
MOV 00H, \#OFH ; Column address is set at general-purpose register
MOV 20H, @00H ; Store

BANK 0

Example 2

The content of address 0.3 FH is stored into address 0.20 H . The destination data memory is specified by the column address indicated by general-purpose register $(\mathbf{O O H})$ and the row address indicated by memory pointer (MP).
$(0.20 \mathrm{H}) \leftarrow(0.3 \mathrm{FH})$
MOV 00 H , \#OFH ; Column address is set at general-purpose register
MOV MPH, \#OOH ; Row address is set at memory pointer.
MOV MPL, \#O3H ;
SET1 MPE ; MPE flag $\leftarrow 1$
MOV 2OH, @OOH ; Store

BANK 0

Example 3

The contents of addresses 0.20 H to 0.2 FH are stored into addresses 1.10 H to 1.1 FH . The storing data memory is specified by the column address indicated by the general-purpose register (OOH) and memory pointer (MP) or row address of data memory $(20 \mathrm{H})$.

$(1.10 \mathrm{H}) \leftarrow(0.20 \mathrm{H})$	
$(1.11 \mathrm{H}) \leftarrow(0.21 \mathrm{H})$	
$(1.12 \mathrm{H}) \leftarrow(0.22 \mathrm{H})$	
:	
:	
$(1.1 \mathrm{FH}) \leftarrow(0.2 \mathrm{FH})$	
CLR1 MPE	MPE flag $\leftarrow 0$
MOV OOH, \#OOH	Column address is set in the general-purpose register.
MOV MPH, \#OOH	Memory pointer is set.
MOV MPL, \#O9H	Bank 1, row address 1
LOOP1:	
MOV 20H, @OOH	$(20 \mathrm{H}) \leftarrow[2,(00 \mathrm{H})]$
SET1 MPE	MPE flag $\leftarrow 1$
MOV @OOH, 20H	[(MP), $(00 \mathrm{H})] \leftarrow(20 \mathrm{H})$
CLR1 MPE	MPE flag $\leftarrow 0$
ADD 00H, \#01H	Column address +1
SKT1 CY	Up to 1 FH of bank 1 terminated
BR LOOP1	

BANK 0

The data is transferred via 20 H .

3.25 MOV m, \#i

(1) Instruction code

11101	mH	mL	i

(2) Function
(M) $\leftarrow i$

The immediate data i is stored in the data memory addressed by M .

(3) Example 1

The immediate data 0 AH is stored to address 0.50 H used as data memory. $0.50 \mathrm{H} \leftarrow 0 \mathrm{AH}$ MOV 50H, \#OAH

Example 2

If $I X H=0, I X M=3, I X L=2$ and IXE flag $=1$ when address 0.00 H is specified as data memory, then the immediate data 07 H is stored into address 0.32 H .

```
0.32H}\leftarrow07\textrm{H
MOV IXH, #OOH ; IX <00000110010B (0.32H)
MOV IXM, #O3H
MOV IXL, #02H
SET1 IXE ; IXE flag &1
MOV 00H, #07H
```


3.26 MOVT DBF, @AR

Move program memory data specified by AR to DBF
(1) Instruction code

00111	000	0001	0000

(2) Function
$S P \leftarrow S P-1$,
STACK $\leftarrow P C$,
$D B F \leftarrow(A R)_{\text {rom }}$,
$P C \leftarrow$ STACK,
$S P \leftarrow S P+1$
The content of program memory addressed by address register AR is stored into data buffer DBF.
Attention should be paid to the nesting such as subroutine and interruption, because this instruction temporarily uses one level of stack.

(3) Example 1

The 16-bit table data is transferred to the data buffers (DBF3, DBF2, DBF1, DBFO) according to the values of address registers (AR3, AR2, AR1, ARO) in the system register.

```
;*
;** Table data
:*
```

Address ORG 0010H
0010H DW 0000000000000000B; (0000H)
$0011 \mathrm{H} D W$ 1010101111001101B; (0ABCDH)

```
;*
;** Table reference program
;*
MOV AR3, #OOH ; AR3 \leftarrow00H 0011H is set in address register.
MOV AR2, #OOH ; AR2 \leftarrowOOH
MOV AR1, #01H ; AR1\leftarrow01H
MOV ARO, #01H ; ARO \leftarrow01H
MOVT DBF, @AR ; Data of address 0011H is transferred to DBF.
```

In this case, the data stored in DBF is shown below.
DBF3 $=0 \mathrm{OH}$
DBF2 $=0 \mathrm{BH}$
DBF1 $=0 \mathrm{CH}$
$D B F O=O D H$

Example 2

The channel number is set at addresses 0.10 H and 0.11 H as data memory, and the divided value (N value) of PLL is obtained according to the content of the memory. The N value is then transferred to the PLL register.
;*
;** Table data for N value
;*

Address	ORG 0010 H
0010 H	DW OF58H $; 87.5 \mathrm{MHz}$ (Lowest frequency 00 channel)
0011 H	DW OF5CH $; 87.6 \mathrm{MHz}$
0012 H	DW OF6OH $; 87.7 \mathrm{MHz}$
0013 H	DW OF64H ; 87.8 MHz
0014 H	DW OF68H $; 87.9 \mathrm{MHz}$
0015 H	DW OF6CH $; 88.0 \mathrm{MHz}$
0016 H	DW OF7OH $; 88.1 \mathrm{MHz}$
0017 H	DW OF74H ; 88.2 MHz

```
;*
;** N value setting program
;*
MOV RPH, #OOH ; RPH \leftarrowOOH Row address 7 (0.70H
MOV RPL, #OEH ; RPL }\leftarrow0EH\mathrm{ to 0.7FH) is set as
MOV AR3, #OOH ; AR3\leftarrowO general-purpose
MOV AR2, #OOH ; AR2 \leftarrow0 register.
LD AR1, 10H ; AR1 }\leftarrow10\textrm{H}\mathrm{ Channel data upper
LD ARO, 11H ; ARO }\leftarrow11\textrm{H}\mathrm{ Channel data lower
ADD AR1, #01H ; 0010H is added to the address
ADDC AR2, #OOH ; register since table data start
ADDC AR3, #OOH ; address starts at address 0010H.
MOVT DBF, @AR ; Table data is stored to DBF.
PUT PLLR, DBF ; N value is transferred to PLL register (PLLR).
```


(4) Notes

1. The number of bits allowed for use with address registers (AR3, AR2, AR1, ARO) vary with the device types. When using, reference should be made to the appropriate manual of the device to be used.
2. When executing 'MOVT' instruction, one level of stack is used. Accordingly, sufficient care should be exercised to the stack level when using this instruction within a subroutine or interrupt processing routine.

3.27 PUSH AR

(1) Instruction code

00111	000	1101	0000

(2) Function
$S P \leftarrow S P-1$,
STACK $\leftarrow A R$
The value of address register AR is stored into STACK after decrement of the stack pointer SP.
(3) Example 1

The address register is set at 003 FH and stored into the stack.
MOV AR3, \#OOH
MOV AR2, \#OOH
MOV AR1, \#03H
MOV ARO, \#OFH
PUSH AR

BANK 0

Example 2

When the data table is placed behind a subroutine, the return address of the subroutine is set in the address register for returning.

(1) Instruction code

00111	000	1100	0000

(2) Function
$A R \leftarrow S T A C K$,
$S P \leftarrow S P+1$
The content of STACK is taken out to the address register, then the stack pointer SP is incremented.

(3) Example

When performing an interrupt processing, PSW may be changed within the interrupt processing routine. In such a case, the content of PSW is transferred to the address register via WR at the beginning of the interrupt processing, and then it is saved into the STACK by a 'PUSH' instruction. Before returning of the routine, the saved content is put into the address register by a 'POP' instruction, and then it is transferred to PSW via WR.

3.29 PEEK WR, rf

(1) Instruction code

00111	rf H	0011	rfL

(2) Function
$W R \leftarrow(r f)$
The content of the register file addressed by $r f$ is stored into the window register WR.
(3) Example 1

The content of the stack pointer SP of address 01 H in the register file is stored into the window register.
PEEK WR, SP

BANK 0

(1) Instruction code

00111	rf_{H}	0010	rf_{L}

(2) Function
$(\mathrm{rf}) \leftarrow W R$
The content of window register WR is stored into the register file addressed by ff .
(3) Example 1

The immediate data OFH is stored into the register file POABIO via the window register.
MOV WR, \#OFH
POKE POABIO, WR; Each of POA $, \mathrm{POA}_{1}, \mathrm{POA}_{2}$ and POA_{3} is set in the output mode.

BANK 0

(4) Note

The 'PEEK, POKE' instruction permits accessing of addresses 40 H to 7 FH in each bank of the data memory in addition to the register file. For example, this instruction can be used in the following way.

PEEK WR, PSW ; The content of PSW $(7 \mathrm{FH})$ in system register is stored into WR.
POKE 5FH, WR ; The content of WR is stored into address 5FH of data memory.

BANK 0

3.31 GET DBF, p

(1) Instruction code

00111	P_{H}	1011	P_{L}

(2) Function

DBF $\leftarrow(p)$
(3) Example 1

The content (8 bits) of the peripheral shift register (SIO) is stored into data buffers DBF0 and DBF1.
GET DBF, SIO

BANK 0

Peripheral circuit

(4) Notes

1. The data buffer is allocated to $0 \mathrm{CH}, 0 \mathrm{DH}, 0 \mathrm{EH}$, and 0 FH in bank 0 of the data memory, irrespective of the value of the bank register.

BANK 0

2. The data buffer has a total of 16 bits. The number of bits to be used as the unit of input/output varies with the peripheral circuit accessed by 'GET' instruction. For example, if a 'GET' instruction is executed for a peripheral circuit whose input/output is done in units of 8 bits, data is stored to the lower 8 bits (DBF1, DBFO) of the data buffer DBF. Pay attention to the number of bits required as the unit of input/output because it varies with the peripheral circuits of each device.
(1) Instruction code

00111	pH_{H}	1010	p_{L}

(2) Function
(p) \leftarrow DBF

The content of data buffer DBF is stored into the peripheral circuit addressed by p .
(3) Example 1

OAH and 05 H are set into data buffers DBF1 and DBF0, respectively, and are then transferred to the shift

MOV BANK, \#OOH ; Data memory bank 0
MOV DBFO, \#05H
MOV DBF1, \#OAH
PUT SIO
DBF

BANK 0

Example 2

The data 0758 H is set as PLL data in data buffers DBF0-DBF3, and then it is transferred to PLL register (PLL) of the peripheral circuit.
MOV DBF3, \#00H
MOV DBF2, \#07H
MOV DBF1, \#05H
MOV DBF0, \#08H
PUT PLL, DBF

BANK 0

(4) Note

The data buffer size is 16 bits. The number of bits required as the unit of input/output varies with the peripheral circuit accessed by 'PUT' instruction. For example, the shift register SIO requires 8 -bit input/output. When a 'PUT' instruction is executed, the contents of lower 8 bits (DBF1, DBFO) of data buffer DBF are transferred to the peripheral circuit. (The contents of DBF3 and DBF2 are not transferred.)

3.33 SKT m, \#n

(1) Instruction code

11110	mH	mL	n

(2) Function

If the ANDed result of the content of data memory addressed by M and immediate data n is not 0 , then the next one instruction is skipped.
(3) Example 1

If bit 0 of address 03 H is ' 1 ', control jumps to AAA; if ' 0 ', it jumps to BBB.
SKT 03H, \#0001B
BR BBB
BR AAA

Example 2

If bit 0 and bit 1 of address 03 H are both ' 1 ', the next instruction is skipped.
SKT 03H, \#0011B

Example 3

The following two instructions provide the same execution result.

- SKT 13H, \#1111B
- SKE 13H, \#OFH

3.34 SKF m, \#n

Skip next instruction if data memory bits are false
(1) Instruction code

11111	mH	mL	n

(2) Function

When the result of AND of the content of data memory addressed by M and the immediate data n is 0 , the next one instruction is skipped.
(3) Example 1

If bit 2 of address 13 H is ' 0 ', 00 H of the immediate data is stored into address 0 FH in the data memory; if ' 1 ', control jumps to ABC .

SKF 13H, \#0100B
BR ABC
MOV OFH, \#OOH

Example 2

If bit 3 and bit 0 of address 29 H are both ' 0 ', the next instruction is skipped.
SKF 29H, \#1001B

Example 3

The following two instructions provide the same execution result.

- SKF 34H, \#1111B
- SKE 34H, \#OOH

3.35 BR addr

(1) Instruction code

011	addr

(2) Function

PC \leftarrow addr
Control branches to the address indicated by addr.
The range of address to which direct branch by this instruction is allowed is 8 K steps from address 0000 H to address 1FFFH. When branching is required to address 2000 H or after, use the following 'BR @AR' instruction.
(3) Example

```
FLY LAB OFH ; FLY = OFH is defined.
            BR FLY ; Jumps to address OF.
            BR LOOP1; Jumps to LOOP1.
            BR $+2 ; Jumps to the address which is lower by 2 than the current address.
            :
            BR $ - 3 ; Jumps to the address which is higher by 3 than the current address.
            :
    LOOP1:
```


(4) Note

The BR instruction can be described in assembler without mentioning the page. The same description can be used between ROM addresses 0000 H and 1FFFH. However, the BR instruction into page 0 (addresses 0000 H to 07 FFH), BR instruction into page 1 (addresses 07FFH to OFFFH), BR instruction into page 2 (addresses 1000 H to 17 FFH), and BR instruction into page 3 (addresses 17 FFH to 1 FFFH) have respectively different operation codes.
The operation code in page 0 is ' $0 C^{\prime}$ ', in page 1 , ' $O D$ ', in page 2 , ' $0 E^{\prime}$ ', and in page 3 , ' $0 F^{\prime}$ '. If the μ PD17000 series assembler is used, these operation codes are automatically converted by the assembler by referencing the respective jump destinations.

When operation code is ' $0 \mathrm{C}^{\prime}$
(The jumping destination
address is in page 0)

0000H

$07 F F H$
0800 H

OFFFH
1000 H

17 FFH
1800 H

1 IFFFH

When operation code is ' OF '
(The jumping destination address is in page 3)

When operation code is ' $0 D^{\prime}$
(The jumping destination
address is in page 1)

When batch correction is required in debugging, the programmer is required to convert each of the operation codes ' $O C^{\prime}$, ' $O D^{\prime}$ ' ' $O E^{\prime}$, and ' $O F$ ' by himself.
Address must also be converted if the jump destination of BR instruction is in any of address 0000 H to 07 FFH , address 0800 H to 0 FFFH, address 1000 H to 17 FFH , and address 1800 H to 1 FFFH . In other words, each of address 0000 H , address 0800 H , address 1000 H and address 1800 H can be assumed as address 000 H , which is incremented by 1 , respectively.

Note: The number of pages varies from device to device of the μ PD1 7000 series. Please refer to the manual of the device to be used.
(1) Instruction code

00111	000	0100	0000

(2) Function
$P C \leftarrow A R$
Control branches to the address indicated by the address register (AR).
(3) Example 1

003 FH is set in the address register AR (AR0-AR3), and execution jumps to address 003FH by the 'BR @AR' instruction.

MOV AR3, \#OOH $;$	AR3 $\leftarrow 00 \mathrm{H}$
MOV AR2, \#00H $;$	AR2 $\leftarrow 00 \mathrm{H}$
MOV AR1, \#03H $;$	AR1 $\leftarrow 03 H$
MOV AR0, \#OFH $;$	AR0 $\leftarrow 0 F H$
BR @AR	$;$ Jump to address $003 F H$

Example 2

The branching destination is changed as shown below depending on the content of address 0.10 H of the data memory.

Content of 0.10 H		Label of destination
00 H	\rightarrow	AAA
01 H	\rightarrow	BBB
02 H	\rightarrow	CCC
03 H	\rightarrow	DDD
04 H	\rightarrow	EEE
05 H	\rightarrow	FFF
06 H	\rightarrow	GGG
07 H	\rightarrow	HHH
$08 \mathrm{H}-0 \mathrm{FH}$	\rightarrow	ZZZ

	${ }^{* *}$	
Address	$i *$	
0010 H	BR	AAA
0011 H	BR	BBB
0012 H	BR	CCC
0013 H	BR	DDD
0014 H	BR	EEE
0015 H	BR	FFF
0016 H	BR	GGG
0017 H	BR	HHH
0018 H	BR	ZZZ

MOV	RPH, \#OOH	General-purpose register bank 0
MOV	RPL, \#02H	General-purpose register row address 1
MOV	AR3, \#OOH	AR3 $\leftarrow 00 \mathrm{H}$ AR is set to $001 \times \mathrm{H}$.
MOV	AR2, \#OOH	AR2 $\leftarrow 00 \mathrm{H}$
MOV	AR1, \#01H	AR1 $\leftarrow 01 \mathrm{H}$
ST	ARO, 10H	$\mathrm{ARO} \leftarrow 0.10 \mathrm{H}$
SKF	ARO, \#1000B;	If the content of ARO is greater than
AND	AR0, \#1000B;	08 H , the content of ARO is changed to
BR	@AR	08H.

(4) Note

The number of bits of address registers (AR3, AR2, AR1, ARO) allowed for use varies with the device types. When using the address register, reference should be made to the manual of the appropriate device.

3.37 RORC r

(1) Instruction code

00111	000	0111	r

(2) Function

The content of the general-purpose register indicated by R is shifted to the right by one bit, with carry flag included.

(3) Example 1

When row address $0(0.00 \mathrm{H}$ to 0.0 FH$)$ of bank 0 is specified as general-purpose register ($\mathrm{RPH}=0, \mathrm{RPL}=0$), the value of address $0.00 \mathrm{H}(1000 \mathrm{~B})$ is shifted to the right by one bit, and the value becomes 0100B.

```
0.00H \leftarrow(0.00H) \div2
MOV RPH, #OOH ; General-purpose register bank 0
MOV RPL, #OOH ; General-purpose register row address 0
CLR1 CY ; Carry flag }\leftarrow
RORC 00H
```


Example 2

When row address $0(0.00 \mathrm{H}$ to 0.0 FH$)$ of bank 0 is specified as general-purpose register ($\mathrm{RPH}=0, \mathrm{RPL}=0$), the value OFA52H of data buffer (DBF) is shifted to the right by one bit, and the content of DBF is changed to 7D29H.

MOV RPH, \#OOH ; General-purpose register bank 0
MOV RPL, \#OOH ; General-purpose register row address 0
CLR1 CY ; Carry flag $\leftarrow 0$
RORC OCH
RORC ODH
RORC OEH
RORC OFH

3.38 CALL addr

(1) Instruction code

11100	addr

(2) Function
$S P \leftarrow S P-1$,
STACK $\leftarrow P C+1$,
$\mathrm{PC}_{0-10} \leftarrow \mathrm{addr}$,
$\mathrm{PC}_{11-15} \leftarrow 0$
The value of the program counter (PC) is incremented, and then it is stored into the stack. After this, execution branches to the subroutine indicated by addr.
This instruction can be used to call subroutines contained within 2 K steps from address 0000 H to address 07 FFH . It is therefore advisable to allocate frequently using subroutines in the range from address 0000 H to 07 FFH .
To call a subroutine allocated after address 0800 H , use the 'CALL @AR' instruction to be mentioned in the next section.
(3) Example 1

Example 2

(4) Note

When using a 'CALL' instruction, the calling address, or the initial address of the subroutine to be called must be placed within page $0(0000 \mathrm{H}$ to 07 FFH$)$. When calling a subroutine whose initial address is not positioned in page 0, use 'CALL @AR' instruction.

If the initial address of the subroutine is placed within page 0 , the end address of the subroutine ('RET' or 'RETSK' instruction) may be placed outside of page 0.
The 'CALL' instruction can be used without considering page as far as the initial address of the subroutine to be called is placed within page 0 . However, the following technique is useful when it is impracticable to place the initial address of a subroutine within page 0 .

In this method, ' $B R^{\prime}$ instruction is set within page 0 , and the actual subroutine is called by using this ' $B R^{\prime}$ instruction.

3.39 CALL @AR

Call subroutine specified by address register
(1) Instruction code

00111	000	0101	0000

(2) Function
$S P \leftarrow S P-1$,
STACK $\leftarrow P C+1$,
$P C \leftarrow A R$
The value of program counter (PC) is incremented, and stored into the stack, then execution branches to the subroutine indicated by address register (AR).
(3) Example 1

Value 0020 H is set in the address register AR (ARO-AR3), and the subroutine of address 0020 H is called by the 'CALL @AR' instruction.

MOV	AṘ3, \#OOH	$\mathrm{AR} 3 \leftarrow 00 \mathrm{H}$
MOV	AR2, \#OOH	$\mathrm{AR} 2 \leftarrow 00 \mathrm{H}$
MOV	AR1, \#02H	$A R 1 \leftarrow 02 \mathrm{H}$
MOV	ARO, \#OOH	ARO $\leftarrow 00 \mathrm{H}$
CALL	@AR	Subroutine at address 0020 H is called

Example 2

The following subroutines are called depending on the contents of address 0.10 H of the data memory.

Content of 0.10 H	Subroutine name	
00 H	\rightarrow	SUB1
01 H	\rightarrow	SUB2
02 H	\rightarrow	SUB3
03 H	\rightarrow	SUB4
04 H	\rightarrow	SUB5
05 H	\rightarrow	SUB6
06 H	\rightarrow	SUB7
07 H	\rightarrow	SUB8
$08 \mathrm{H}-0 \mathrm{FH}$	\rightarrow	SUB9

(4) Note

The number of bits of address registers (AR3, AR2, AR1, ARO) allowed for use varies with the device types. When using the address register, reference should be made to the manual of the appropriate device.

3.40 RET

(1) Instruction code

00111	000	1110	0000

(2) Function
$P C \leftarrow S T A C K$,
$S P \leftarrow S P+1$
This instruction is used to return to the main program from a subroutine.
The return address saved into the stack by CALL instruction is restored to the program counter.
(3) Example

3.41 RETSK

Return to the main program then skip next instruction
(1) Instruction code

00111	001	1110	0000

(2) Function

PC \leftarrow STACK,
$S P \leftarrow S P+1$,
$P C \leftarrow P C+1$
This instruction is used to return to the main program from a subroutine. The instruction following the 'CALL' instruction is skipped. That is, the return address saved to the stack by 'CALL' instruction is restored in the program counter (PC), then the program counter is incremented.

(3) Example

If the content of LSB (least significant bit) of address 25 H of the data memory (RAM) is ' 0 ', the 'RET' instruction is executed, then control returns to the instruction next to the 'CALL' instruction. If the content is ' 1 ', 'RETSK' instruction is executed, and control returns to the instruction (in this example, ADD 03H, 16H) that follows the 'CALL' instruction.

(1) Instruction code

00111	100	1110	0000

(2) Function
$P C \leftarrow$ STACK,
$S P \leftarrow S P+1$
This instruction is used to return to the main program from an interrupt processing program. The return address which was saved into the stack by vector interrupt is restored in the program counter.
In some devices, a part of the system register is also returned to the status that existed before occurrence of vector interrupt.

(3) Example

A vector interrupt occurred when the data memory is placed in bank 1 . Saving of data memory bank is needed since the data memory bank 0 is required for interrupt processing.

(4) Notes

1. The content of system register saved automatically by interrupt (this content can be restored by 'RETI' instruction) varies from device to device. Reference should be made to the manual of the device to be used.
2. If 'RETI' instruction is used in place of the 'RET' instruction in an ordinary subroutine, the bank and other data (saved by the interrupt) are restored when program execution returns to the return address. This may result in undefined status after returning. To avoid this, be sure to use the 'RET' (or 'RETSK') instruction when returning from a subroutine.

3.43 EI

Enable interrupt
(1) Instruction code

00111	000	1111	0000

(2) Function

This instruction enables vector interrupt.
Vector interrupt is enabled after executing the instruction that follows the 'El' instruction.
(3) Example 1

As shown in the following example, the interrupt request is actually accepted and program execution changes to the vector address after completing execution of the instruction (except program counter operating instruction) that follows this El instruction.*

*: The vector address varies with the interrupt accepted. For details, refer to the manual of the device to be used.
**: Assume that the interrupt to be accepted here (Interrupt request is issued after execution of El instruction and the flow of program execution changes to the interrupt service routine) is provided with the interrupt permission flag (IP) for that interrupt. No change will occur in the flow of program execution (that is, interrupt will not be accepted) if an interrupt request is issued after execution of the El instruction, provided no interrupt permission flag is set for such interrupt. However, this causes the interrupt request flag (IREQ) to be set, hence the interrupt request will be accepted at the time when the interrupt permission flag is set. (For details, refer to the device manual.)

Example 2

Shown below is an example of interrupt caused by the interrupt request which is accepted during execution of an instruction for operating program counter (PC).

(1) Instruction code

00111	001	1111	0000

(2) Function

This instruction is used to disable vector interrupt.
(3) Example

See Example 1 of Section 3.43.

3.45 STOP s

(1) Instruction code

00111	010	1111	s

(2) Function

This instruction stops main clock, and turns the device to STOP mode.
The current consumption can be minimized by setting a device in the STOP mode.
The operand (s) specifies the condition by which the STOP mode is released and main clock oscillation restarted.
(1) Instruction code

00111	011	1111	h

(2) Function

This instruction turns the device into HALT mode.
The current consumption can be reduced by setting the device in HALT mode.
The operand (h) specifies the condition by which the HALT mode is released and main clock oscillation started.

3.47 NOP

(1) Instruction code

00111	100	1111	0000

(2) Function

This instruction causes one machine cycle to be consumed by executing nothing.

Development Tools

Section 4 - Development tools

Development tools for the μ PD17K- Family .. 4 - 3

1. Development tools for the μ PD17K-Family

This section gives a brief explanation of the development environment of the μ PD17K-Family.
Hardware Tools: - IE-17K

- SE-17xxx
- EP-17xxx
- EV-9200G-xx

Software Tools:
-Absolute assembler (μ S7B11AS17K)

- Device files (μ SB10AS170xx) (μ SB10AS171xx) (μ SB10AS172xx)
- Simplehost, source-level debugger (μ S7B10IE17K)
- SW development
- HW/SW debugging
- Real time test HW/SW
- OTP/PROM sample programming for further tests

Development Environment

IE-17K

The IE-17K is a software development support tool applicable to every model of the μ PD17K-Family. It consists of two boards:
a memory board and a supervisor board.
Features:

- Real-time emulation and one step emulation are available.
- Programmable break/trace function by which various break/trace conditions can be set hierarchically.
- Real-time trace function with a large-capacity trace memory (32K steps)
- Data memory coverage function which displays the state of writing in the data memory.
- Program memory coverage function which increments a counter every time an instruction which references to an address location is executed. The maximum count is 255.
- Incorporated programmable pattern generator (PPG) with 14 channels.

SE-17xxx

The SE-17xxx is the device-specific emulator board which completes the in-circuit-emulator. To ensure that the system evaluation (SE) board exhibits the same electrical behaviour as the original IC, a method known as "MAM chip" (implemented as an ASIC) device is applied. Two μ PD1 7000 devices and a MAM chip are mounted on the SE board as shown in the diagram. Half the l/O-lines of each 17000 device are passed outside the board, so that they can be used to evaluate the VO-lines of the real chip. Together with the MAM chip the other device form a bus system. All data sent out from the SE board or received by the SE board from outside are routed through the two μ PD17000 devices. Therefore an observer outside the SE board gets the impression that a real chip is being used. The external memory which is connected to the MAM chip stores the developed software in the case the SE board is used as a stand alone system.

EP-17xxx

To connect the SE board with the printed circuit board a special cable is required. This device-specific emulation probe is called EP-17xxx.

EV-9200G-xx

The EV-9200G-xx is a special adapter socket to connect the emulation probe EP-17xxx with the target hardware in the case that the target device is mounted in a QFP package. This conversion socket is soldered onto the PCB.
μ S7B11AS17K, μ S7B10AS170xx
μ S7B11AS17K, μ S7B10AS171xx
μ S7B11AS17K, μ S7B10AS172xx

These are absolute macro assembler packages used for all devices of the 170xx, 171xx and the 172xx device group. They all comprise two parts. One part is the main unit used for all devices of the corresponding device group, the other is a device file for the particular μ PD17000 device. The device file includes device-specific information, like ROM and RAM size, reserved words and addresses of the on-chip hardware functions. The assembler has a unique feature which supports software assembly of the code configured in modules. The assembler handles up to 99 modules. This feature, however, belongs to a relocatable assembler. The assembler is not able to assemble each module separately. Nevertheless, after the software is assembled for the first time, the assembler can be directed to assemble only those parts of the user program which were changed. Therefore the software development is speeded up.
The assembler also performs linkage operations to produce an executable code. In addition, this assembler supports powerful macro functions to end up in a versatile development tool for execution in a MS-DOS environment.

SIMPLEHOST (μ S7B10IE17K)

SIMPLEHOST is a full-screen debugger which improves the interface between the in-circuit-emulator and the operator. SIMPLEHOST runs under Microsoft Windows, which means that all emulator commands can be selected and activated with a mouse. The contents of the ROM and RAM size of the emulator are shown on the screen together with the source program.

Development Tools for 17K Family of Microcontrollers

 To Develop and Debug Code| Device | Full Emulator | Mini Emulator | Evaluation Board | Assembler | Device File | Debugger (Simplehost) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mu \mathrm{PD} 17001$ | IE-17K | IE-17K-ET | SE-17001 | μ S7B11AS17K | μ S7B10AS17001 | μ S7B10IE17K |
| μ PD17002 | IE-17K | IE-17K-ET | SE-17002 | μ S7B11AS17K | μ S7B10AS17002 | μ S7B101E17K |
| $\mu \mathrm{PD} 17003 \mathrm{~A}$ | IE-17K | IE-17K-ET | SE-17003 | μ S7B11AS17K | μ S7B10AS17003 | μ S7B101E17K |
| μ PD17005 | IE-17K | IE-17K-ET | SE-17003 | μ S7B11AS17K | μ S7B10AS17005 | μ S7B10IE17K |
| $\mu \mathrm{PD} 17006$ | IE-17K | IE-17K-ET | SE-17001 | μ S7B11AS17K | μ S7B10AS17006 | μ S7B10IE17K |
| $\mu \mathrm{PD} 17008$ | IE-17K | IE-17K-ET | SE-17008 | μ S7B11AS17K | μ S7B10AS17008 | μ S7B10IE17K |
| μ PD17010 | IE-17K | IE-17K-ET | SE-17003 | μ S7B11AS17K | μ S7B10AS17010 | μ S7B10IE17K |
| μ PD17051 | IE-17K | IE-17K-ET | SE-17051 | μ S7B11AS17K | μ S7B10AS17051 | μ S7B10IE17K |
| $\mu \mathrm{PD} 17052$ | IE-17K | IE-17K-ET | SE-17052 | μ S7B11AS17K | μ S7B10AS17052 | μ S7B101E17K |
| $\mu \mathrm{PD} 17053$ | IE-17K | IE-17K-ET | SE-17053 | μ S7B11AS17K | μ S7B10AS17053 | μ S7B10IE17K |
| μ PD17102 | IE-17K | IE-17K-ET | SE-17102 | μ S7B11AS17K | μ S7B10AS17102 | μ S7B10IE17K |
| μ PD17103 | IE-17K | IE-17K-ET | SE-17103 | μ S7B11AS17K | μ S7B10AS17103 | μ S7B10IE17K |
| $\mu \mathrm{PD} 17103 \mathrm{~L}$ | IE-17K | IE-17K-ET | SE-17103 | μ S7B11AS17K | μ S7B10AS17103 | μ S7B10IE17K |
| $\mu \mathrm{PD} 17104$ | IE-17K | IE-17K-ET | SE-17104 | μ S7B11AS17K | μ S7B10AS17104 | μ S7B10IE17K |
| $\mu \mathrm{PD} 17104 \mathrm{~L}$ | IE-17K | IE-17K-ET | SE-17104 | μ S7B11AS17K | μ S7B10AS17104 | μ S7B10IE17K |
| $\mu \mathrm{PD} 17106$ | IE-17K | IE-17K-ET | SE-17106 | μ S7B11AS17K | μ S7B10AS17106 | μ S7B101E17K |
| $\mu \mathrm{PD} 17107$ | IE-17K | IE-17K-ET | SE-17107 | μ S7B11AS17K | μ S7B10AS17107 | μ S7B101E17K |
| $\mu \mathrm{PD} 17107 \mathrm{~L}$ | IE-17K | IE-17K-ET | SE-17107 | μ S7B11AS17K | μ S7B10AS17107 | μ S7B1OIE17K |
| μ PD17108 | IE-17K | IE-17K-ET | SE-17108 | μ S7B11AS17K | μ S7B10AS17108 | μ S7B10IE17K |
| $\mu \mathrm{PD17108L}$ | IE-17K | IE-17K-ET | SE-17108 | μ S7B11AS17K | μ S7B10AS17108 | μ S7B10IE17K |
| $\mu \mathrm{PD} 17134 \mathrm{~A}$ | IE-17K | IE-17K-ET | SE-17134 | μ S7B11AS17K | μ S7B10AS17134 | μ S7B10IE17K |
| $\mu \mathrm{PD} 17135 \mathrm{~A}$ | IE-17K | IE-17K-ET | SE-17134 | μ S7B11AS17K | $\mu \mathrm{S} 7 \mathrm{~B} 10 \mathrm{AS17135}$ | μ S7B10IE17K |
| $\mu \mathrm{PD17136A}$ | IE-17K | IE-17K-ET | SE-17134 | μ S7B11AS17K | $\mu \mathrm{S} 7 \mathrm{~B} 10 \mathrm{AS} 17136$ | μ S7B101E17K |
| $\mu \mathrm{PD17137A}$ | IE-17K | IE-17K-ET | SE-17134 | $\mu \mathrm{S} 7 \mathrm{B11AS17K}$ | $\mu \mathrm{S7B10AS17137}$ | μ S7B10IE17K |
| $\mu \mathrm{PD} 17201 \mathrm{~A}$ | IE-17K | IE-17K-ET | SE-17207 | μ S7B11AS17K | μ S7B10AS17201 | μ S7B10IE17K |
| $\mu \mathrm{PD} 17202 \mathrm{~A}$ | IE-17K | IE-17K-ET | SE-17202 | μ S7B11AS17K | μ S7B10AS17202 | μ S7B101E17K |
| $\mu \mathrm{PD17203A}$ | IE-17K | IE-17K-ET | SE-17203 | μ S7B11AS17K | μ S7B10AS17203 | μ S7B10IE17K |
| $\mu \mathrm{PD} 17204$ | IE-17K | IE-17K-ET | SE-17204 | μ S7B11AS17K | μ S7B10AS17204 | μ S7B10IE17K |
| $\mu \mathrm{PD} 17207$ | IE-17K | IE-17K-ET | SE-17207 | μ S7B11AS17K | μ S7B10AS17207 | μ S7B10IE17K |

Development Tools for the 17K Family of Microcontrollers

 To Exercise Customer Hardware| Device | Probe | Receptacle | PROM Burner PROMAC P2A (Ando) | PROM Burner Adapter (Ando) |
| :---: | :---: | :---: | :---: | :---: |
| μ PD17001 | EP-17001GH | EV-9200G-48 | AF-9704 | AF-9796 |
| $\mu \mathrm{PD} 17002$ | EP-17002CU | EV-9200G-64 | AF-9704 | - |
| μ PD17003A | EP-17003GF | EV-9200G-80 | AF-9704 | AF-9803 |
| $\mu \mathrm{PD} 17005$ | EP-17003GF | EV-9200G-80 | AF-9704 | AF-9803 |
| μ PD17006 | EP-17201GF | EV-9200G-80 | AF-9704 | AF-9808E |
| μ PD17008 | EP-17008CW | - | AF-9704 | AF-9803 |
| μ PD17010 | EP-17003GF | EV-9200G-80 | AF-9704 | AF-9803 |
| μ PD17051 | EP-17051 CU | - | AF-9704 | - |
| $\mu \mathrm{PD} 17052$ | EP-17052CW | - | AF-9704 | - |
| $\mu \mathrm{PD} 17053$ | EP-17052CW | - | AF-9704 | - |
| μ PD17102 | EP-17102G | - | AF-9704 | - |
| $\mu \mathrm{PD} 17103$ | EP-17103CX | - | AF-9704 | AF-9799 |
| $\mu \mathrm{PD} 17103 \mathrm{~L}$ | EP-17103CX | - | AF-9704 | AF-9799 |
| $\mu \mathrm{PD} 17104$ | EP-17104CS | - | AF-9704 | AF-9799 |
| $\mu \mathrm{PD} 17104 \mathrm{~L}$ | EP-17104CS | - | AF-9704 | AF-9799 |
| μ PD17106 | EP-17106GC | EV-9200G-64 | AF-9704 | AF-9803 |
| $\mu \mathrm{PD} 17107$ | EP-17103CX | - | AF-9704 | AF-9799 |
| $\mu \mathrm{PD} 17107 \mathrm{~L}$ | EP-17103CX | - | AF-9704 | AF-9799 |
| μ PD17108 | EP-17104CS | - | AF-9704 | AF-9799 |
| $\mu \mathrm{PD} 17108 \mathrm{~L}$ | EP-17104CS | - | AF-9704 | AF-9799 |
| $\mu \mathrm{PD} 17134 \mathrm{~A}$ | EP-17134CT | - | AF-9704 | AF-9808F |
| $\mu \mathrm{PD} 17135 \mathrm{~A}$ | EP-17134CT | - | AF-9704 | AF-9808F |
| $\mu \mathrm{PD} 17136 \mathrm{~A}$ | EP-17134CT | - | AF-9704 | AF-9808F |
| $\mu \mathrm{PD} 17137 \mathrm{~A}$ | EP-17134CT | - | AF-9704 | AF-9808F |
| μ PD17201A | EP-17201GF | EV-9200G-80 | AF-9704 | AF-9808A |
| μ PD17202A | EP-17202GF | EV-9200G-64 | AF-9704 | AF-9808B |
| μ PD17203A | EP-17203GC | EV-9200G-52 | AF-9704 | AF-9808B |
| $\mu \mathrm{PD17204}$ | EP-17203GC | EV-9200G-52 | AF-9704 | AF-9808B |
| μ PD17207 | EP-17201GF | EV-9200G-80 | AF-9704 | AF-9808A |

Packaging Information

Package/device cross reference

Section 5 - Packaging Information

Package/device cross reference
16-Pin Plastic DIP (300 mil) 5-3
16-Pin Plastic SOP (300 mil) 5-4
22-Pin Plastic DIP (300 mil) 5-5
24-Pin Plastic SOP (300 mil) 5-6
28-Pin Plastic Shrink DIP (400 mil) 5-7
28-Pin Plastic SOP (375 mil) 5-8
48-Pin Plastic QFP (10×14) 5-9
48-Pin Plastic Shrink DIP (600 mil) 5-10
52-PIn Plastic QFP (14×14) 5-11
52-PIn Plastic QFP (14×14) bent lead 5-12
52-PIn Plastic QFP (14×14) straight lead 5- 13
64-Pin Plastic Shrink DIP (750 mil) 5-14
64-PIn Plastic QFP (14x20) 5-15
$80-$ PIn Plastic QFP (14x20) 5-16

16-Pin Plastic DIP (300 mil)

μ PD17103CX μ PD17P103CX μ PD17107CX μ PD17P107CX

NOTES

1) Each lead centerline is located within 0.25 mm (0.01 inch) of its true position (T.P.) at maximum material condition.
2) Item " K " to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
A	20.32 MAX.	0.800 MAX.
B	1.27 MAX.	0.050 MAX.
C	2.54 (T.P.)	0.100 (T.P.)
D	$0.50^{ \pm 0.10}$	$0.020^{+0.004}$
F	1.1 MIN.	0.043 MIN.
G	$3.5^{+0.3}$	$0.138^{ \pm 0.012}$
H	0.51 MIN.	0.020 MIN.
I	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
K	7.62 (T.P.)	0.300 (T.P.)
L	6.5	0.256
M	$0.25^{+0.105}$	$0.010^{+0.004}$
N	0.25	0.01
P	1.1 MIN.	0.043 MIN.

16-Pin Plastic SOP (300 mil) μ PD17103GS μ PD17P103GS μ PD17107GS μ PD17P107GS

P16GM-50-300B

NOTE

Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	10.46 MAX.	0.412 MAX.
B	0.78 MAX.	0.031 MAX.
C	1.27 (T.P.)	0.050 (T.P.)
D	0.40 ± 0.19	0.016 ± 0.004
E	$0.1{ }^{\text {+0.1 }}$	$0.004{ }^{+0.004}$
F	1.8 MAX.	0.071 MAX.
G	1.55	0.061
H	$7.7^{\text {+0.3 }}$	0.303 ± 0.012
1	5.6	0.220
J	1.1	0.043
K	0.20 00.80	0.008 ± 0.804
L	$0.6{ }^{ \pm 0.2}$	0.024 ± 0.008
M	0.12	0.005

22-Pin Plastic DIP ($\mathbf{3 0 0}$ mil)

μ PD17104CS
μ PD17P104CS
μ PD17108CS
μ PD17P108CS

NOTES

1) Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
2) Item " K " to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
A	23.12 MAX.	0.911 MAX.
B	2.67 MAX.	0.106 MAX.
C	1.778 (T.P.)	0.070 (T.P.)
D	$0.50{ }^{0.10}$	$0.020^{+0.004}$
F	0.85 MIN .	0.033 MIN .
G	$3.2{ }^{\text {¢ }}$. ${ }^{\text {a }}$	$0.126^{+0.012}$
H	0.51 MIN.	0.020 MIN .
1	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX .
K	7.62 (T.P.)	0.300 (T.P.)
L	6.5	0.256
M	$0.25{ }^{10.10}$	$0.010: 0.004$
N	0.17	0.007

Packaging information

24-Pin Plastic SOP (300 mil) μ PD17104GS μ PD17P104GS
μ PD17108GS
μ PD17P108GS

NOTE
Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	15.54 MAX.	0.612 MAX
B	0.78 MAX	0.031 MAX.
C	1.27 (T.P.)	0.050 (T.P.)
D	0.40 ± 0.10	$0.016{ }^{+0.004}$
E	$0.1^{ \pm 0.1}$	$0.004^{ \pm 0.004}$
F	1.8 MAX.	0.071 MAX .
G	1.55	0.061
H	$7.7^{ \pm 0.3}$	$0.303^{ \pm 0.012}$
1	5.6	0.220
J	1.1	0.043
K	$0.20 \pm \begin{gathered}+0.10 \\ -0.05\end{gathered}$	$0.008{ }^{+0.004}$
L	$0.6{ }^{ \pm 0.2}$	$0.024{ }^{+0.0088}$
M	0.12	0.005

28-Pin Plastic Shrink DIP (400 mil)
μ PD17134ACT
μ PD17135ACT
μ PD17136ACT
μ PD17P136ACT
μ PD17137ACT
μ PD17P137ACT

NOTES

1) Each lead centerline is located within 0.25 mm (0.01 inch) of its true position (T.P.) at maximum material condition.
2) Item " K " to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
A	35.56 MAX.	1.400 MAX.
B	1.27 MAX.	0.050 MAX.
C	2.54 (T.P.)	0.100 (T.P.)
D	$0.50{ }^{ \pm 0.10}$	0.020 ± 0.005
F	1.1 MIN.	0.043 MIN.
G	$3.5{ }^{ \pm 0.3}$	$0.138{ }^{ \pm 0.012}$
H	$1 \quad 0.51 \mathrm{MIN}$.	0.020 MIN .
1	4.31 MAX.	0.170 MAX.
J	5.72 MAX.	0.226 MAX .
K	10.16 (T.P.)	0.400 (T.P.)
L	8.6	0.339
M	0.25 ± 0.10	0.010 ± 0.0084
N	0.25	0.01
P	0.9 MIN.	0.035 MIN .

28-Pin Plastic SOP (375 mil)

μ PD17134AGT
μ PD17135AGT
μ PD17136AGT
μ PD17P136AGT
μ PD17137AGT
μ PD17P137AGT

P28GM-50-375B

NOTE

Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	18.07 MAX	0.712 MAX.
B	0.78 MAX	0.031 MAX.
C	1.27 (T.P.)	0.050 (T.P.)
D	$0.40^{ \pm 0.10}$	$0.016^{ \pm 0.003}$
E	$0.1^{ \pm 0.1}$	$0.004^{ \pm 0.004}$
F	2.9 MAX	0.115 MAX.
G	2.50	0.098
H	$10.3^{ \pm 03}$	$0.406{ }^{ \pm 0.012}$
I	7.2	0.283
J	1.6	0.063
K	$0.15^{ \pm 0.10}$	$0.006{ }^{ \pm 0.00 .004}$
L	$0.8^{ \pm 0.2}$	0.031 ± 0.008
M	0.12	0.005

48-Pin Plastic QFP (10x14)

μ PD17001GH-xxx-2A5
μ PD17P001GH-2A5

P48GH-80-2A5-1
NOTE
Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	$16.8{ }^{ \pm 0.4}$	$0.661 \pm 0.81{ }^{\circ}$
B	$14.0{ }^{ \pm 0.2}$	0.551 ± 0.008
C	$10.0{ }^{ \pm 0.2}$	0.394 ± 0.008
D	$12.8{ }^{ \pm 0.4}$	0.504 ± 0.016
F	1.4	0.055
G	1.8	0.071
H	$0.35{ }^{ \pm 0.10}$	0.014 ± 8004
1	0.15	0.006
J	0.8 (T.P.)	0.031 (T.P.)
K	$1.4{ }^{ \pm 0.2}$	$0.055^{ \pm 0.008}$
L	$0.6{ }^{ \pm 0.2}$	0.024 ± 0808
M	0.20 ± 018	0.079 ± 8088
N	0.15	0.006
P	$2.2{ }^{ \pm 0.1}$	0.087 -8005
0	0.1 ± 0.1	$0.004^{ \pm 0.004}$
R	0.1 ± 0.1	0.004 ± 0.004
S	2.5 MAX .	0.099 MAX

48-Pin Plastic Shrink DIP (600 mil)
μ PD17002CU
μ PD17051CU

NOTES

1) Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
2) Item " K " to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
A	44.46 MAX.	1.751 MAX.
B	1.78 MAX.	0.070 MAX.
C	1.778 (T.P.)	0.070 (T.P.)
D	$0.50^{ \pm 0 ~ 10}$	$0.020^{ \pm 0.004}$
F	0.85 MIN.	0.033 MIN.
G	$3.2^{ \pm 0.3}$	$0.126^{ \pm 0.012}$
H	0.51 MIN.	0.020 MIN.
I	4.31 MAX.	0.170 MAX.
J	5.72 MAX.	0.226 MAX.
K	15.24 (T.P.)	0.600 (T.P.)
L	13.2	0.520
M	$0.25^{ \pm 0.005}$	$0.010^{ \pm 0.004}$
N	0.17	0.007

52-Pin Plastic QFP (14x14)

μ PD17203AGC-xxx-3BH μ PD17P203AGC-001-3BH μ PD17P203AGC-002-3BH μ PD17P203AGC-003-3BH μ PD17204GC-xxx-3BH

detail of lead end

S52GC-100-3BH

NOTE

Each lead centerline is located within 0.20 mm (0.008 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	$17.2^{+0.4}$	0.677 ± 0.016
B	$14.0{ }^{+0.2}$	0.551 ± 0.808
C	$14.0{ }^{+0.2}$	$0.551+0.009$
D	$17.2^{+0.4}$	$0.677^{ \pm 0.016}$
F	1.0	0.039
G	1.0	0.039
H	$0.40{ }^{+0.10}$	$0.016^{+0.004}$
1	0.20	0.008
J	1.0 T.P.)	0.039 (T.P.)
K	$1.6{ }^{+0.2}$	0.063 ± 0.008
L	$0.8{ }^{+0.2}$	$0.031 \div 0.008$
M	$0.15{ }^{\circ} \mathrm{O} .10$	$0.006{ }^{* 0.004}$
N	0.15	0.006
P	2.7	0.106
Q	$0.1^{+0.1}$	$0.004^{ \pm 0.004}$
R	$0.1^{+0.1}$	$0.004^{+0.004}$
S	3.0 mAX .	0.119 MAX .

52-Pin Plastic QFP (14×14)

bent lead

μ PD17102G-xxx-00

detail of lead end

P52G-100.00.1
NOTE
Each lead centerline is located within 0.20 mm (0.008 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	$21.0=0.4$	0.827 ± 0.016
B	$14.0{ }^{-0.2}$	0.551 ± 0.808
C	14.0 ± 0.2	0.551 ± 0.008
D	21.0 ± 0.4	$0.827^{ \pm 0.016}$
F	1.0	0.039
G	1.0	0.039
H	$0.40{ }^{+0.10}$	0.016 ± 8.804
1	0.20	0.008
J	1.0 (T.P.)	0.039 (T.P.)
K	3.5 ± 0.2	0.138 ± 8.8088
L	$2.2^{ \pm 0.2}$	0.087 ± 0.8088
M		0.006 ± 8.803^{4}
N	0.15	0.006
P	2.6 ± 8.2	$0.102 \pm 8.889{ }^{\text {2 }}$
Q	0.1 ± 0.1	$0.004^{ \pm 0.004}$
S	3.0 MAX	0.119 MAX .

52-Pin Plastic QFP (14x14)

straight lead

μ PD17102G-xxx-03

P52G-100-03-1
NOTE
Each lead centerline is located within 0.20 mm (0.008 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	$19.8{ }^{ \pm 0.4}$	0.780 ± 0.819
B	14.0 ± 0.2	$0.551{ }^{+0.808}$
C	14.0 ± 0.2	0.551 ± 8.808
D	$19.8{ }^{ \pm 0.4}$	$0.780 \pm 0.81{ }^{+0}$
F	1.0	0.039
G	1.0	0.039
H	0.40 ± 0.10	0.016 ± 8.8085
1	0.20	0.008
J	1.0 (T.P.)	0.039 (T.P.)
K	$2.9{ }^{ \pm 0.2}$	$0.114^{+0.8088}$
M	0.15 ± 0.105	$0.006 \pm 8.88{ }^{4}$
P	$2.6 \pm{ }^{ \pm 0.1}$	0.102 ± 8.888
T	1.0	0.039
U	1.45	0.057

64-Pin Plastic Shrink DIP (750 mil) μ PD17052CW μ PD17053CW

P64C-70-750A,C

NOTES

1) Each lead centerline is located within 0.17 $\mathrm{mm}(0.007 \mathrm{inch})$ of its true position (T.P.) at maximum material condition.
2) Item "K" to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
A	58.68 MAX.	2.311 MAX.
B	1.78 MAX.	0.070 MAX.
C	1.778 (T.P.)	0.070 (T.P.)
D	$0.50{ }^{+0.10}$	$0.0200^{+0.004}$
F	0.9 MIN.	0.035 MIN .
G	$3.2{ }^{+0.3}$	$0.126 * 0.012$
H	0.51 MIN.	0.020 MIN .
1	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX .
K	19.05 (T.P.)	0.750 (T.P.)
L	17.0	0.669
M	$0.25 * 0.10{ }^{*}$	0.010 ± 0.0084
N	0.17	0.007

64-Pin Plastic QFP (14×20)

 μ PD17106GC μ PD17P106GC μ PD17202AGF-xxx-3BE μ PD17P202AGF-3BE μ PD17301GF-xxx-3BE

NOTE

Each lead centerline is located within 0.20 mm (0.008 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	23.6 ± 0.4	0.929 ± 0.016
B	20.0 ± 0.2	$0.795 * 0: 8088$
C	14.0 ± 0.2	$0.551+8.808$
D	17.6 ± 0.4	0.693 ± 0.016
F	1.0	0.039
G	1.0	0.039
H	0.40 ± 0.10	0.016 ± 0.806
1	0.20	0.008
J	1.0 (T.P.)	0.039 (T.P.)
K	$1.8{ }^{+0.2}$	0.071 - 8:888
L	$0.8{ }^{+0.2}$	$0.031 * 8.888$
M	$0.15 * 8.85$	0.006*8:883
N	0.15	0.006
P	2.7	0.106
0	$0.1^{+0.1}$	$0.004^{+0.004}$
R	$0.1^{+0.1}$	0.004 ± 0.004
S	3.0 MAX.	0.119 MAX.

detail of lead end

S80GF-80-3B9

NOTE

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	$23.2+0.4$	$0.913{ }^{+0.017}$
B	$20^{+0.2}$	$0.787^{+8.889}$
C	$14^{+0.2}$	0.551 ± 0.808
D	$17.2^{+0.4}$	0.677 ± 0.016
F	1.0	0.039
G	0.8	0.031
H	$0.35+0.10$	$0.014^{+8.004}$
1	0.15	0.006
J	0.8 (T.P.)	0.031 (T.P.)
K	$1.6{ }^{+0.2}$	$0.063{ }^{ \pm 0.008}$
L	$0.8{ }^{+0.2}$	$0.031{ }^{+0.809}$
M	$0.15{ }^{10.19}$	$0.006{ }^{+0.004}$
N	0.15	0.006
P	2.7	0.106
Q	$0.1^{+0.1}$	$0.004^{ \pm 0.004}$
R	$0.1^{+0.1}$	$0.004^{ \pm 0.004}$
S	3.0 MAX.	0.119 MAX.

NEC

NEC Electronics Inc.

CORPORATE HEADQUARTERS
401 Ellis Street
P.O. Box 7241

Mountain View, CA 94039
TEL 415-960-6000
For literature, call toll-free 7 a.m. to 6 p.m. Pacific time:
1-800-632-3531
DOC NO. 20043
TLX 3715792

[^0]: *: Pins in parentheses are dual function pins in PROM programming mode.

[^1]: *: The internal address signal is incremented by one (+1) at the 3rd CLK input fall and is not connected to the pin

[^2]: ＊： 2 machine cycles（equivalent to 2 instructions）are necessary for the execution of MOVT instruction．The stack is temporarily used for instruction execution．

[^3]: * Under development

[^4]: MS-DOSTM and MS-WINDOWS ${ }^{\text {TM }}$ are the trademarks of MicroSoft Corp.
 IBM PC-AT ${ }^{\text {TM }}$ and PC DOS ${ }^{\text {TM }}$ are the trademarks of IBM Corp.

[^5]: *: When N -ch open-drain input/output is selected

[^6]: *When N -ch open-drain input/output is selected

[^7]: - 3 When N -ch open-drain input/output is selected

[^8]: " When N -ch open-drain input/output is selected

[^9]: Note: Pull-up resistors are provided only in the μ PD17P202A-001 and μ PD17P202A-002.

