NECElectronics

MICROCOMPUTER PRODUCTS

DATABOK

NEC

1983/1984 MICROCOMPUTER CATALOG

The information in this document is subject to change without notice. NEC Electronics Inc. makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. NEC Electronics Inc. assumes no responsibilities for any errors that may appear in this document. NEC Electronics Inc. makes no commitment to update nor to keep current the information contained in this document.
No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics Inc.
© 1983 by NEC Electronics Inc. Printed in the United States of America

Selection Guide	2-1
Alternate Source Guide	2-4
ROM-Based Products Ordering	
Procedure	2-6
μ COM-4	3-1
μ PD557L	3-13
μ PD552/553	3-15
μ PD550/554	3-17
μ PD550L/554L	3-19
μ PD556B Evaluation Chip	3-21
μ PD7500 Series Introduction	3-25
μ PD7501	3-35
μ PD7502/7503	3-41
μ PD7506	3-47
μ PD7507/7508	3-53
μ PD7507S	3-61
μ PD7508A	3-67
μ PD7508H	3-75
μ PD7514	3-81
μ PD7519/75CG19E	3-89
μ PD7520	3-97
μ PD7527/7528/7537/7538	3-103
μ PD7500 Evaluation Chip	3-105
MC-430P	3-113
SINGLE CHIP	
8-BIT MICROCOMPUTERS	
Selection Guide	2-2
Alternate Source Guide	2-4
ROM-Based Products Ordering	
Procedure	2-6
μ PD7800	4-1
μ PD7801/7802	4-11
μ PD78C06/78C05	4-35
μ PD7809/7807/78P09	4-45
μ PD7810/7811	4-51
μ PD8021	4-65
μ PD8041A/8741A	4-71
μ PD8048H/8035HL	4-83
μ PD8748	4-91
μ PD80C48/80C35	4-103
μ PD8049H/8749H/8039HL	4-119
μ PD80C49/80C39	4-127
MICROPROCESSORS	
Selection Guide	2-2
Alternate Source Guide	2-4
μ PD780	5-1
μ PD8085AH/ μ PD8085A-2	5-15
μ PD8086	5-27
μ PD8088	5-39

PRODUCT	PAGE
$\mu \mathrm{COM-4}$	3-1
MC-430P	3-113
MC-4760	6-135
μ PD550	3-17
μ PD550L	3-19
μ PD552	3-15
μ PD553	3-15
μ PD554	3-17
μ PD554L	3-19
μ PD556B	3-21
μ PD557L	3-13
μ PD765A	6-1
μ PD780	5-1
μ PD7201A	6-15
μ PD7210	6-31
μ PD7220	6-47
μ PD7225	6-71
μ PD7227	6-79
μ PD7228	6-87
μ PD7261	6-93
μ PD7265	6-1
μ PD7500 Evaluation Chip	3-105
μ PD7500 Series Introduction	3-25
μ PD7501	3-35
μ PD7502	3-41
μ PD7503	3-41
μ PD7506	3-47
μ PD7507	3-53
μ PD7507S	3-61
μ PD7508	3-53
μ PD7508A	3-67
μ PD7508H	3-75
μ PD7514	3-81
μ PD7519	3-89
μ PD7520	3-97
μ PD7527	3-103
μ PD7528	3-103
μ PD7537	3-103
μ PD7538	3-103
μ PD7720	6-115
μ PD77P20	6-123
μ PD7751	6-131
μ PD7752	6-133
μ PD7761	6-135
μ PD7762	6-135
μ PD7800	4-1
μ PD7801	4-11
μ PD7802	4-11
μ PD78C05	4-35
μ PD78C06	4-35
μ PD7807	4-45
μ PD7809	4-45
μ PD78P09	4-45

NEC

MICROCOMPUTER SELECTION GUIDE

SINGLE CHIP 4-BIT MICROCOMPUTERS

DEVICE	FAMILY	ROM	RAM	1/0	PROCESS	OUTPUT	FEATURES	SUPPLY VOLTAGE	PINS
μ PD553	$\mu \mathrm{COM}-43 \mathrm{H}$	2000×8	96×4	35	PMOS	O.D.	A	-10	42
μ PD557L	$\mu \mathrm{COM}-43 \mathrm{SL}$	2000×8	96×4	21	PMOS	O.D.	A	-8	28
μ PD552	$\mu \mathrm{COM}-44 \mathrm{H}$	1000×8	64×4	35	PMOS	O.D.	A	-10	42
$\mu \mathrm{PD} 550$	μ COM-45	640×8	32×4	21	PMOS	O.D.	A	-10	28
μ PD550L	$\mu \mathrm{COM}$-45L	640×8	32×4	21	PMOS	O.D.	A	-8	28
μ PD554	μ COM-45	1000×8	32×4	21	PMOS	O.D.	A	-10	28
μ PD554L	μ COM-45L	1000×8	32×4	21	PMOS	O.D.	A	-8	28
μ PD556B	μ COM-43	External	96×4	35	PMOS	O.D.	B	-10	64
MC-430P	$\mu \mathrm{COM}-43$	2000×8 UV EPROM	96×4	35	PMOS	O.D.	G	-10	42
μ PD7500	μ PD7500 Series	External	256×4	46	cMOS	O.D.	C	+2.7 to 5.5	64
μ PD7501	μ PD7500 Series	1024×8	96×4	24	cMOS	O.D.	D	+2.7 to 5.5	64
μ PD7502	μ PD7500 Series	2048×8	128×4	23	cMOS	O.D.	D	+2.7 to 5.5	64
μ PD7503	μ PD7500 Series	4096×8	224×4	23	CMOS	O.D.	D	+2.7 to 5.5	64
μ PD7506	μ PD7500 Series	1024×8	64×4	22	cMOS	O.D.		+2.7 to 5.5	28
μ PD7507	μ PD7500 Series	2048×8	128×4	32	CMOS	O.D.		+2.7 to 5.5	40/52
μ PD7507S	μ PD7500 Series	2048×8	128×4	20	cMOS	O.D.		+ 2.7 to 5.5	28
μ PD7508	μ PD7500 Series	4096×8	224×4	32	CMOS	O.D.		+ 2.7 to 5.5	40/52
μ PD7508H	μ PD7500 Series	4096×8	224×4	32	cMOS	O.D.		+2.7 to 5.5	40/52
μ PD7508A	μ PD7500 Series	4096×8	208×4	32	cmos	O.D.	A	+ 2.7 to 5.5	40
μ PD7519	μ PD7500 Series	4096×8	256×4	28	CMOS	O.D.	F	+2.7 to 5.5	64
μ PD7520	μ PD7500 Series	768×8	48×4	24	PMOS	O.D.	E	-6 to -10	28
μ PD7514	μ PD7500 Series	4096×8	256×4	31	CMOS	O.D.	D	+ 2.7 to 5.5	80
μ PD7528/38	μ PD7500 Series	4096×8	160×4	35	CMOS	O.D.	A	+2.7 to 5.5	42
μ PD7527/37	μ PD7500 Series	2048×8	160×4	35	cMOS	O.D.	A	+2.7 to 5.5	42

[^0]
MICROCOMPUTER SELECTION GUIDE

SINGLE CHIP 8-BIT MICROCOMPUTERS

DEVICE	SPECIAL FEATURES	ROM	RAM	1/0	PROCESS	OUTPUT	CYCLE	SUPPLY VOLTAGE	PINS
μ PD8021	Zero-Cross Detector	1024×8	64×8	21	NMOS	BD	3.6 MHz	+5	28
$\mu \mathrm{PD} 8035 \mathrm{HL}$	μ PD8048 w/External Memory	External	64×8	27	HMOS	TS, BD	6 MHz	+5	40
$\mu \mathrm{PD} 8039 \mathrm{HL}$	μ PD8049 w/External Memory	External	128×8	27	HMOS	TS, BD	11 MHz	+5	40
μ PD8041	Peripheral Interface w/Slave Bus	1024×8	64×8	18	NMOS	TS, BD	6 MHz	+5	40
μ PD8041A	Enhanced μ PD8041	1024×8	64×8	18	NMOS	TS, BD	6 MHz	+5	40
$\mu \mathrm{PD} 8048 \mathrm{H}$	Expansion Bus	1024×8	64×8	27	HMOS	TS, BD	6 MHz	+5	40
$\mu \mathrm{PD} 8049 \mathrm{H}$	High Speed μ PD8048	2048×8	128×8	27	HMOS	TS, BD	11 MHz	+5	40
$\mu \mathrm{PD} 8741 \mathrm{~A}$	UV-EPROM μ PD8041A	1024×8	64×8	18	NMOS	TS, BD	6 MHz	+5	40
μ PD8748	UV-EPROM μ PD8048	1024×8	64×8	27	NMOS	TS, BD	6 MHz	+5	40
$\mu \mathrm{PD} 8749 \mathrm{H}$	UV-EPROM μ PD8049	2048×8	128×8	27	HMOS	TS, BD	11 MHz	+5	40
μ PD80C35	CMOS 8035	External	64×8	27	CMOS	TS, BD	6 MHz	+2.7 to 5.5	40
μ PD80C48	CMOS 8048	1024×8	64×8	27	CMOS	TS, BD	6 MHz	+2.7 to 5.5	40
μ PD80C39	CMOS 8039	External	128×8	27	CMOS	TS, BD	8 MHz	+2.7 to 5.5	40
$\mu \mathrm{PD} 80 \mathrm{C} 39 \mathrm{H}$	CMOS 8039H	External	128×8	27	CMOS	TS, BD	12 MHz	+2.7 to 5.5	40
$\mu \mathrm{PD80C49}$	CMOS 8049	2048×8	128×8	27	CMOS	TS, BD	8 MHz	+2.7 to 5.5	40
$\mu \mathrm{PD} 80 \mathrm{C} 49 \mathrm{H}$	CMOS 8049H	2048×8	128×8	27	CMOS	TS, BD	12 MHz	+2.7 to 5.5	40
$\mu \mathrm{PD} 7800$	Development Chip	External	128×8	48	NMOS	TS, BD	4 MHz	+5	64
μ PD7801	8080 Expansion Bus 64K Memory Address Space	4096×8	128×8	48	NMOS	TS, BD	4 MHz	+5	64
μ PD7802	Expanded μ PD7801	6144×8	64×8	48	NMOS	TS, BD	4 MHz	+5	64
μ PD78C05	CMOS Microprocessor	External	128×8	46	CMOS	TS, BD	4 MHz	$+5$	64
μ PD78C06	CMOS Microcomputer	4096×8	128×8	46	HCMOS	TS, BD	4 MHz	+5	64
μ PD7807	7809 w/Ext. Memory	External	256×8	40	HMOS	TS, BD	12 MHz	+5	64
μ PD7809	8/16 Bit Microcomputer	8192×8	256×8	40	HMOS	TS, BD	12 MHz	$\cdots+5$	64
μ PD7810	Romless μ PD7811	External	256×8	44	NMOS	TS, BD	12 MHz	+5	64
μ PD7811	8 Channel A/D/8-16 Bit Micro	4096×8	128×8	44	NMOS	TS, BD	12 MHz	$+5$	64

MICROPROCESSORS

DEVICE	PRODUCT	SIZE	PROCESS	OUTPUT	CYCLE	SUPPLY VOLTAGES	PINS
μ PD780	Microprocessor	8-bit	NMOS	3-State	2.5 MHz	+5	40
μ PD780-1	Microprocessor	8-bit	NMOS	3-State	4.0 MHz	$+5$	40
μ PD780-2	Microprocessor	8-bit	NMOS	3-State	6.0 MHz	+5	40
μ PD8085A	Microprocessor	8-bit	NMOS	3-State	3.0 MHz	$+5$	40
μ PD8085A-2	Microprocessor	8-bit	NMOS	3-State	5.0 MHz	+5	40
μ PD8085AH	Microprocessor	8-bit	NMOS	3-State	3.0 MHz	+ 5	40
μ PD8086	Microprocessor	16-bit	NMOS	3-State	5.0 MHz	+5	40
μ PD8086-2	Microprocessor	16-bit	NMOS	3-State	8.0 MHz	+5	40
μ PD8088 ${ }^{\text {. }}$	Microprocessor	8-bit	NMOS	3-State	5.0 MHz	+5	40

MICROCOMPUTER SELECTION GUIDE

SYSTEM SUPPORT

DEVICE	PRODUCT	SIZE	PROCESS	OUTPUT	CYCLE	SUPPLY VOLTAGES	PINS
μ PD765A	Double Sided/Double Density Floppy Disk Controller	8-bit	NMOS	3-State	8 MHz	+5	40
μ PD7201A	Multi-Protocol Serial Controller	8-bit	NMOS	3-State	4 MHz	+5	40
μ PD7210	IEEE Controller (Talker, Listener, Controller)	8-bit	NMOS	3-State	8 MHz	+5	40
μ PD7220	Color Graphic Display Controller	8-bit	NMOS	3-State	5 MHz	+5	40
μ PD7225	Alpha Numeric LCD Controller/Driver	8-bit	cmos	-	-	2.7 to 5.5	52
μ PD7227	Dot Matrix LCD Controller/Driver	8 -bit	CMOS	-	-	2.7 to 5.5	64
μ PD7228	Dot Matrix LCD Controller/Driver	8-bit	CMOS	-	-	2.7 to 5.5	80
μ PD7720	Signal Processor	16-bit	NMOS	3-State	8 MHz	+5	28
μ PD77P20	EPROM Version of μ PD7720	16-bit	NMOS	3-State	8 MHz	+5	28
$\mu \mathrm{PD8155H}$	256×8 RAM with I/O Ports and Timer	8-bit	HMOS	3-State	-	+5	40
μ PD8155-2	256×8 RAM with I/O Ports and Timer	8-bit	NMOS	3-State	-	$+5$	40
μ PD8156H	256×8 RAM with I/O Ports and Timer	8-bit	HMOS	3-State	-	+5	40
μ PD8156-2	256×8 RAM with I/O Ports and Timer	8-bit	NMOS	3-State	-	$+5$	40
μ PB8212	I/O Port	8-bit	Bipolar	3-State	-	+5	24
$\mu \mathrm{PB8216}$	Bus Driver Non-Inverting	4-bit	Bipolar	3-State	-	+5	16
$\mu \mathrm{PB8226}$	Bus Driver Invertıng	4-bit	Bipolar	3-State	-	+5	16
μ PD8243	1/O Expander	4×4 bits	NMOS	3-State	-	+5	24
μ PD82C43	1/O Expander	4×4 bits	cmos	3-State	-	+5	24
μ PD8251A/AF	Programmable Communications Interface (Async/Sync)	8-bit	NMOS	3-State	A-9.6K baud S-64K baud	+5	28
μ PD8253-2/-5	Programmable Timer	8 -bit	NMOS	3-State	4.0 MHz	+5	24
μ PD8255A-2/-5	Perıpheral Interface	8 -bit	NMOS	3-State	-	+5	40
μ PD8257-2/-5	Programmable DMA Controller	8-bit	NMOS	3-State	4 MHz	+5	40
μ PD8259-2/-5	Programmable Keyboard/Display Interface	8 -bit	NMOS	3-State	-	+5	40
μ PB8282/8283	8-Bit Latches		Bipolar	3-State	5 MHz	+5	20
μ PB8284A	Clock Driver		Bipolar	3-State	5 MHz	+5	18
μ PB8286/8287	8-Bit Bus Transceivers		Bipolar	3-State	5 MHz	+5	20
$\mu \mathrm{PB8288}$	Bus Controller		Bipolar	3-State	5 MHz	+5	20
$\mu \mathrm{PB8289} 9$	Bus Arbiter		Bipolar	3-State	5 MHz	+5	20
μ PD8355/-2/A	2048×8 ROM with I/O Ports	8-bit	NMOS	3-State	-	+5	40
μ PD8755A	2048×8 EPROM with I/O Ports	8-bit	NMOS	3-State	-	+5	40
μ PD8759A/A-2	Programmable Interrupt Controller	8-bit	HMOS	3-State	$5 / 8 \mathrm{MHz}$	+5	28
$\begin{aligned} & \text { SPEECH } \\ & \text { PRODUCTS } \end{aligned}$							
μ PD7751	ADPCM Speech Synthesizer	8-bit	NMOS	3-State	6 MHz	+5	40
μ PD7752	Formant Speech Synthesizer	8-bit	cMOS	3-State	36 MHz	+5	28
$\left.\begin{array}{l} \mu \text { PD7761 } \\ \mu \text { PD7762 } \\ \mu \mathrm{MC}-4760 \end{array}\right\}$	K 3 Chip-SR Speech Recognition Chip Set	$\begin{aligned} & 16 \text {-bit } \\ & 8 \text {-bit } \end{aligned}$	NMOS NMOS Hybrid	3-State 3-State 3-State	8 MHz 4 MHz 2 MHz	$\begin{aligned} & +5 \\ & +5 \\ & +5, \pm 12 \end{aligned}$	28 64 24

MICROCOMPUTER ALTERNATE SOURCE GUIDE

MANUFACTURER	PART NUMBER	DESCRIPTION	NEC REPLACEMENT
AMD	AM8085A AM8155 AM8156 AM8212 AM8214 AM8216 AM8226 AM8251 AM8255 AM8257 AM8355 AM8048	Microprocessor (3.0 MHz) Programmable Peripheral Interface with 256×8 RAM Programmable Peripheral Interface with 256×8 RAM I/O Port (8-Bit) Priority Interrupt Controller Bus Driver, Inverting Bus Driver, Non-Inverting Programmable Communications Interface Programmable Peripheral Interface Programmable DMA Controller Programmable Peripheral Interface with 2048×8 ROM Single Chip Microcomputer	μ PD8085A μ PD8155 μ PD8156 μ PB8212 μ PB8214 μ PB8216 μ PB8226 μ PD8251 μ PD8255 μ PD8257 μ PD8355 μ PD8048
AMI	7500 Family 78C06/78C05 7810/7811 7807/7809 7720	4-Bit CMOS Microcomputer 8-Bit CMOS Microcomputer 16-Bit High-Performance Microcomputer 16-Bit High-Performance Microcomputer Signal Processor	μ PD750X μ PD78C06/78C05 μ PD7810/7811 μ PD7807/7809 μ PD7720
INTEL	$\begin{aligned} & 8021 \\ & 8035 \mathrm{HL} \\ & 8039 \mathrm{HL} \\ & 8041 \mathrm{~A} \\ & \\ & 8048 \mathrm{H} \\ & 8049 \mathrm{H} \\ & 8085 \mathrm{~A} \\ & 8085 \mathrm{~A}-2 \\ & 8086 \\ & 8155 / 8155-2 \\ & 8156 / 8156-2 \\ & \\ & 8212 \\ & 8214 \\ & 8216 \\ & 8226 \\ & 8243 \end{aligned}$	Microcomputer with ROM Microprocessor Microprocessor Programmable Peripheral Controller with ROM Microcomputer with ROM Microcomputer with ROM Microprocessor (3.0 MHz) Microprocessor (5.0 MHz) Microprocessor (16-Bit) Programmable Peripheral Interface with 256×8 RAM Programmable Perıpheral Interface with 256×8 RAM I/O Port (8-Bit) Priority Interrupt Controller Bus Driver, Non-Inverting Bus Driver, Inverting I/O Expander	μ PD8021 μ PD8035HL μ PD8039HL μ PD8041A μ PD8048H μ PD8049H μ PD8085A μ PD8085A-2 μ PD8086 μ PD8155/8155-2 μ PD8156/8156-2 μ PB8212 μ PB8214 μ PB8216 μ PB8226 μ PD8243

MICROCOMPUTER ALTERNATE SOURCE GUIDE

MANUFACTURER	PART NUMBER	description	NEC REPLACEMENT
INTEL (CONT.)	8251A 8253-5 8255A-5 8257-5 8259A 8272 8279-5 8282/8283 8284 8286/8287 8288 8355 8741A 8748 8749H 8755A 8274	Programmable Communications Interface (Async/Sync) Programmable Timer Programmable Peripheral Interface Programmable DMA Controller Programmable Interrupt Controller Double Sided/Double Density Floppy Disk Controller Programmable Keyboard/Display Interface 8-Bit Latches Clock Driver 8-Bit Transceivers Bus Controller Programmable Peripheral Interface with 2048×8 ROM Programmable Peripheral Controller with EPROM Microcomputer with EPROM Microcomputer with EPROM Programmable Peripheral Interface with $2 \mathrm{~K} \times 8$ EPROM Multiprotocol Serial Controller	μ PD8251A μ PD8253-5 μ PD8255A-5 μ PD8257-5 μ PD8259A μ PD765 μ PD8279-5 μ PB8282/8283 μ PB8284 μ PB88286/8287 μ PB8288 μ PD8355 μ PD8741A μ PD8748 μ PD8749H μ PD8755A μ PD7201
NATIONAL	$\begin{aligned} & \text { INS8048 } \\ & \text { INS8049 } \\ & 8212 \\ & 8214 \\ & 8216 \\ & 8226 \\ & \text { INS8251 } \\ & \\ & \text { INS8253 } \\ & \text { INS8255 } \\ & \text { INS8257 } \\ & \text { INS8259 } \end{aligned}$	Microcomputer with ROM Microcomputer with ROM I/O Port (8-Bit) Priority Interrupt Controller Bus Driver, Non-Inverting Bus Driver, Inverting Programmable Communications Interface Programmable Timer Programmable Peripheral Interface Programmable DMA Controller Programmable Interrupt Controller	μ PD8048 μ PD8049 μ PB8212 μ PB8214 μ PB8216 μ PB8226 μ PD8251A μ PD8253-5 μ PD8255A-5 μ PD8257-5 μ PD8259A
T.I.	SN74S412	1/O Port (8-Bit)	$\mu \mathrm{PB8212}$

ROM-BASED PRODUCTS ORDERING PROCEDURE

The following NEC products fall under the guidelines set by the ROM-based Products Ordering Procedure:

μ PD7801	μ PD80C48	μ PD554L	μ PD7508A	μ PD2308A
μ PD7802	μ PD8049H	μ PD557L	μ PD7508H	μ PD2316E
μ PD78C06	μ PD80C49	μ PD7501	μ PD7514	μ PD2332
μ PD7807	μ PD8355	μ PD7502	μ PD7519	μ PD2364
μ PD7808	μ PD550	μ PD7503	μ PD7520	μ PD2380
μ PD7811	μ PD550L	μ PD7506	μ PD7527	μ PD23128
μ PD8021	μ PD552	μ PD7507	μ PD7528	μ PD23256
μ PD8041AH	μ PD553	μ PD7507S	μ PD7537	μ PD231000
μ PD8048H	μ PD554	μ PD7508	μ PD7538	μ PD23C128
			μ PD7720	μ PD73128G

NEC Electronics Inc. is able to accept mask patterns in a variety of formats to facilitate the transferral of ROM mask information. These are intended to suit various customer needs and minimize turnaround time. Always enclose a listing of the code and a complete "ROM Code Submission" form. The following is a list of acceptable media for code transferral.

- PROM/EPROM equivalents to ROM devices
- Sample ROMs or ROM-based microcomputers
- ISIS-II compatible 8" floppy disks
- CP/M (® Digital Research Corp.) compatible 8" single-density floppy disk

Thoroughly tested verification procedures protect against unnecessary delays or costly mistakes. NEC Electronics Inc. will return the ROM code patterns to the customer in the most convenient format. Unprogrammed EPROMs, if sent with the ROM code, can be programmed and returned for verification. Earth satellites and the world-wide GE Mark III timesharing systems provide reliable and instant communication of ROM patterns to the factory.

The following is an example of a ROM code transferral procedure. The $\mu \mathrm{PD} 8048 \mathrm{H}$ is used here; however, the process is the same for all other ROM-based products.

1. The customer contacts his local NEC Electronics Inc. Sales Representative, concerning a ROM pattern for the μ PD8048H that he would like to send.
2. Since an EPROM version of that part is available, the μ PD8748 is proposed as a code transferral medium. Alternatively, a μ PD2716 or a floppy disk may be used.
3. Two programmed μ PD8748s are sent to NEC Electronics Inc., along with a listing and the "ROM Code Submission" form. A floppy disk may also be sent as back-up.
4. NEC Electronics Inc. compares the media provided and enters the code into GE-TSS. The GE-TSS file is accessed at the NEC factory and a copy of the code is returned to NEC Electronics Inc. for verification. One of the μ PD8748s is erased and reprogrammed with the customer's code as the NEC factory has it. The μ PD8748s, a listing, and a "ROM Code Verification" form are returned to the customer for final verification.
5. Once the customer has notified NEC Electronics Inc. in writing that the code is verified, and has provided both the mask charge payment and a hard-copy purchase order, work begins immediately on production of his μ PD8048Hs.

Please contact your local Sales Representative for assistance with all ROM-based product orders.

ROM Code Submission

To NEC Electronics Inc. 252 Humboldt Court Sunnyvale, CA 94086

Date \qquad

Attn ROM-Based Product Admınıstrator

We are ready to place our purchase order for our \qquad your \qquad and are submitting Two copies of the ROM Code on the following medium/media (Please check all applicable boxes)
$\mu \mathrm{PD} 2716$$\mu$ PD8741A$\mathrm{CP} / \mathrm{M}^{\text {® }}$ compatible $8^{\prime \prime}$ single-density floppy diskμ PD2732μ PD8748Intel ISIS-II compatible $8^{\prime \prime}$ single-density floppy disk$\mu \mathrm{PD} 2764$$\mu \mathrm{PD} 8749 \mathrm{H}$Intel ISIS-II compatıble $8^{\prime \prime}$ double-density floppy disk$\mu \mathrm{PD} 27128$$\mu$ PD8755A

Please manufacture this device with the special marking. \qquad , and with the I/O Port Loading Options (available only on the μ PD7519, μ PD7527, μ PD7528, μ PD7537, μ PD7538, μ PD8021, μ PD80C48, and μ PD80C49, and not available on all other NEC ROM-Based Products) selected on the back of this page

The mask charge payment and the ROM code listıng are also enclosed

Please return the processed ROM code to the following individual for our verification

| Name | | |
| :--- | :--- | :--- | :--- |
| Company | | |
| Division | | |
| Shipping Address (not a P O Box please) | | |
| Tity | | |
| Telephone Number | | |

Send this form along with the ROM code, a listing, and the mask charge payment, in a package clearly marked with "ROM CODE ENCLOSED' to the attention of the ROM-Based Product Admınistrator at the address above

Device	Port	1/O Port Loading Option
$\mu \mathrm{PD} 7519$	SO S1 S2 S3 S4 S5 S6 S7 T8/S8 T9/S9 T10/S10 T11/S11 T12/S12 T13/S13 T14/S14 T15/S15 TO T1 T2 T3 T4 T5 T6 T7	\square open drain open drain open drain open drain open draın open drain open dran open drain open draın open drain open draın open dran open drain open draın open drain pull-down resistor to $V_{\text {LOAD }}$ pull-down resistor to V LOAD pull-down resistor to $\mathrm{V}_{\text {LOAD }}$ pull-down resistor to V LOAD pull-down resistor to $\mathrm{V}_{\text {LOAD }}$ pull-down resistor to $V_{\text {LOAD }}$ pull-down resistor to $V_{\text {LOAD }}$ pull-down resistor to V LOAD pull-down resistor to $V_{\text {LOAD }}$ pull-down resistor to $V_{\text {LOAD }}$ pull-down resistor to $V_{\text {LOAD }}$ pull-down resistor to V LOAD pull-down resistor to $V_{\text {LOAD }}$ pull-down resistor to $V_{\text {LOAD }}$ pull-down resistor to $V_{\text {LOAD }}$ pull-down resistor to V LOAD pull-down resistor to V LOAD pull-down resistor to $V_{\text {LOAD }}$ pull-down resistor to $V_{\text {LOAD }}$
μ PD7527 μ PD7528 μ PD7537 μ PD7538	$\begin{aligned} & \mathrm{P} 0_{0} / \mathrm{INT}_{0} \\ & \mathrm{P}_{3}-\mathrm{P} 2_{1} \\ & \mathrm{P} 3_{3}-\mathrm{P} 3_{0} \\ & \mathrm{P} 4_{3}-\mathrm{P} 4_{0} \\ & \mathrm{P} 5_{3}-\mathrm{P} 5_{0} \\ & \mathrm{P} 8_{0} \\ & \mathrm{P} 8_{1} \\ & \mathrm{P} 8_{2} \\ & \mathrm{P} 8_{3} \\ & \mathrm{P} 9_{0} \\ & \mathrm{P} 9_{1} \\ & \mathrm{P} 9_{2} \\ & \mathrm{P} 9_{3} \\ & \mathrm{P} 10_{0} \\ & \mathrm{P} 10_{1} \\ & \mathrm{P} 10_{2} \\ & \mathrm{P} 10_{3} \\ & \mathrm{P} 11_{0} \\ & \mathrm{P} 11_{1} \\ & \mathrm{P} 11_{2} \\ & \mathrm{P} 11_{3} \end{aligned}$	\square direct connection \square zero-crossing detector (no zero-crossing detector) \square open drain \square pull-down resistor to $V_{\text {LOAD }}$ \square open drain \square pull-down resistor to $V_{\text {LOAD }}$ \square open drain \square pull-down resistor to $V_{\text {LOAD }}$ \square open drain \square pull-down resistor to $V_{\text {LOAD }}$ \square open drain \square pull-down resistor to $V_{\text {LOAD }}$ \square open drain \square pull-down resistor to $V_{\text {LOAD }}$ \square open drain \square pull-down resistor to $V_{\text {LOAD }}$ \square open drain \square pull-down resistor to $V_{\text {LOAD }}$ \square open drain \square pull-down resistor to $V_{\text {LOAD }}$ \square open drain \square pull-down resistor to $V_{\text {LOAD }}$ \square open drain \square pull-down resistor to $V_{\text {LOAD }}$ \square open drain \square pull-down resistor to $V_{\text {LOAD }}$ \square open drain \square pull-down resistor to $V_{\text {LOAD }}$ \square open drain \square pull-down resistor to $V_{\text {LOAD }}$ \square open drain \square pull-down resistor to $V_{\text {LOAD }}$ \square open drain \square pull-down resistor to $V_{\text {LOAD }}$ \square open drain \square pull-down resistor to $V_{\text {LOAD }}$ \square open drain \square pull-down resistor to $V_{\text {LOAD }}$ \square open drain \square pull-down resistor to $V_{\text {LOAD }}$ \square open drain
$\mu \mathrm{PD} 8021$	$\begin{aligned} & \text { T1 } \\ & \text { P00-P07 } \end{aligned}$	zero-crossing detector TTL-compatible open drain TTL-compatible
μ PD80C48 μ PD80C49	$\begin{aligned} & \text { P10-P17 } \\ & \text { P20-P23 } \\ & \text { P24-P27 } \end{aligned}$	CMOS $(-5 \mu \mathrm{~A})$ TTL-compatıble ($-50 \mu \mathrm{~A}$) CMOS $(-5 \mu \mathrm{~A})$ TTL-compatible $(-50 \mu \mathrm{~A})$ CMOS $(-5 \mu A)$ TTL-compatıble ($-50 \mu \mathrm{~A}$)

4-BIT SINGLE CHIP MICROCOMPUTER FAMILY

DESCRIPTION The μ COM-4 4-bit Microcomputer Family is a broad product line of 14 individual devices designed to fulfill a wide variety of design criteria. The product line shares a compatible architecture and instruction set. The architecture includes all functional blocks necessary for a single chip controller, including an ALU, Accumulator, Bytewide ROM, RAM, and Stack. The instruction set maximizes the efficient utilization of the fixed ROM space, and includes a variety of Single Bit Manipulation, Table Look-Up, BCD arithemetic, and Skip instructions.
The $\mu \mathrm{COM}-4$ Microcomputer Family includes seven different products capable of directly driving 35 V Vacuum Fluorescent Displays. Four products are manufactured with a CMOS process technology. μ COM-4 Microcomputers are ideal for low-cost general purpose controller applications such as industrial controls, instruments, appliance controls, intelligent VF display drivers, and games.

FEATURES - Choice of ROM size: $2000 \times 8,1000 \times 8$, or 640×8

- Choice of RAM size: $96 \times 4,64 \times 4$, or 32×4
- Six 4-Bit Working Registers Available
- One 4-Bit Flag Register Available
- Powerful Instruction Set
- Choice of 80 or 58 Instructions
- Table Look-Up Capability with CZP and JPA Instructions
- Single Bit Manipulation of RAM or I/O Ports
- BCD Arithmetic Capability
- Choice of 3-Level, 2-Level, or 1-Level Subroutine Stack
- Extensive I/O Capability
- Choice of 35 or 21 I/O Lines

	$42 / 52-$ Pın Packages		28-Pin Package
- 4-Bit Input Ports	2	1	
- 4-Bit I/O Ports	2	2	
- 4-Bit Output Ports	4	2	
- 3-Bit Output Ports	1	-	
- 1-Bit Output Port	-	1	

- Programmable 6-Bit Timer Available
- Choice of Hardware or Testable Interrupt
- Built-In Clock Signal Generation Circuitry
- Built-In Reset Circuitry
- Single Power Supply
- Low Power Consumption
- PMOS or CMOS Technologies
- Choice of 42-pin DIP, 28-pin DIP, or 52-pin Flat Plastic Package

Internal Registers

The ALU, the Accumulator, and the Carry Flag together comprise the central portion of the $\mu \mathrm{COM}-4$ Microcomputer Family architecture. The ALU performs the arithmetic and logical operations and checks for various results. The Accumulator stores the results generated by the ALU and acts as the major interface point between the RAM, the I/O ports, and the Data Pointer registers. The Carry F/F can be addressed directly, and can also be set during an addition. The μ PD546, μ PD553, μ PD557L, and μ PD650 also have a Carry Save F/F for storage the value of the Carry F/F.

Data Pointer Registers

The $D P_{H}$ register and 4-bit $D P_{L}$ register reside outside the RAM. They function as the Data Pointer, addressing the rows and columns of the RAM, respectively. They are individually accessible and the L register can be automatically incremented or decremented.

RAM

All μ COM-4 microcomputers have a static RAM organized into a multiple-row by 16 -column configuration, as follows:

MICROCOMPUTER	RAM	ORGANIZATION	DP $_{H}$	DP $_{L}$
μ PD546, μ PD553, μ PD557L, and μ PD650	96×4	6 rows $\times 16$ columns	3	4
μ PD547, μ PD547L μ PD552, and μ PD65	64×4	4 rows $\times 16$ columns	2	4
μ PD550, μ PD550L, μ PD554, μ PD554L, 日nd μ PD652	32×4	2 rows $\times 16$ columns	1	4

The μ PD546, μ PD553, μ PD557L, and μ PD 650 also have a 4-bit Flag register and six 4 -bit working registers resident in the last row of the RAM. Their extended instruction set provides 10 additional instructions with which you can access or manipulate these seven registers.

ROM

The ROM is the mask-programmable portion of the μ COM-4 Microcomputer which stores the application program. It is organized as follows:

MICROCOMPUTER	ROM	ORGANIZATION	
		FIELDS	PAGES
μ PD546, μ PD553, μ PD557L, and μ PD650	2000×8	8	16
μ PD547, μ PD547L, μ PD552, μ PD651	1000×8	8	8
μ PD554, μ PD554L, and μ PD652	\cdots	1000×8	8
μ PD550 and μ PD550L	640×8	8	8

FUNCTIONAL
DESCRIPTION (CONT.)

Program Counter and Stack Register

The Program Counter contaıns the address of a particular instruction being executed. It is incremented durıng normal operation, but can be modified by various JUMP and CALL instructions. The Stack Register is a LIFO push-down stack register used to save the value of the Program Counter when a subroutine is called. It is organized as follows:

MICROCOMPUTER	STACK ORGANIZATION	ALLOWABLE SUBROUTINE CALLS
μ PD546, μ PD553, μ PD557L, and μ PD650	3 words $\times 11$ bits	3 Levels
μ PD651	2 words $\times 10$ bits	2 Levels
μ PD547, μ PD547L, and μ PD552	1 word $\times 10$ bits	1 Level
μ PD550, μ PD550L, μ PD554, μ PD554L, and μ PD652	1 word $\times 10$ bits	1 Level

Interrupts

All μ COM-4 microcomputers are equipped with a software-testable interrupt which skips an instruction if the Interrupt F/F has been set. The TIT instruction resets the Interrupt F/F.
In addition, the μ PD546, μ PD553, μ PD557L, and μ PD650 have a level-triggered hardware interrupt, which causes an automatic stack level shift and interrupt service routine call when an interrupt occurs.

Interval Timer

The μ PD546, μ PD553, μ PD557L, and μ PD650 are equipped with a programmable 6 -bit interval timer which consists of a 6 -bit polynomial counter and a 6 -bit binary down counter. The STM instruction sets the initial value of the binary down counter and starts the timing. The polynomial counter decrements the binary down counter when 63 instruction cycles have been completed. When the binary down counter reaches zero, the timer F/F is set. The TTM instruction tests the timer F/F, and skips the next instruction if it is set.

Clock and Reset Circuitry

The Clock Circuitry for any μ COM-4 microcomputer can be implemented by connecting either an Intermediate Frequency Transformer (IFT) and a capacitor, or a Ceramic Resonator and two capacitors, to the CL_{0} and CL_{1} Inputs. The Power-On-Reset Circuitry for any $\mu \mathrm{COM}-4$ microcomputer can be implemented by connecting a Resistor, a Capacitor, and a Diode to the RESET input.

I/O Capability

The μ COM-4 microcomputer family devices have either 35 or 21 I/O lines, depending upon the individual device, for communication with and control of external circuitry. They are organized as follows:

PORT	SYMBOL	FUNCTION	μ PD546, μ PD547, μ PD547L, μ PD552, μ PD553, μ PD650, and μ PD 651	μ PD550, μ PD550L, μ PD554, μ PD554L, μ PD557L, and μ PD652
Port A	PA_{0-3}	4-Bit Input	\bullet	\bullet
Port B	PB_{0-3}	4-Bit Input	\bullet	
Port C	PC_{0-3}	4-Bit Input/Output (VF Drive Possible)	-	\bullet
Port D	PD_{0-3}	.4-Bit Input/Output (VF Drive Possible)	\bullet	-
Port E	PE_{0-3}	4-Bit Output (VF Drive Possible)	-	\bullet
Port F	PF_{0-3}	4-Bit Output (VF Drive Possible)	-	\bullet
Port G	PG_{0-3}	4- Bit Output (VF Drive Possible)	\bullet	
	PG_{0-1}	1-Bit Output (VF Drive Possıble)		\bullet
Port H	PH_{0-3}	4-Bit Output (VF Drive Possible)	\bullet	
Port 1	${ }^{\mathrm{P}} \mathrm{O}_{0-2}$	3-Bit Output (VF Drive Possible)	\bullet	.

Development Tools

The NEC Development System (NDS) is available for developing software service code, editing, and assembling source code into object code. In addition, the ASM-43 Cross Assembler is available for systems which support either the Intel ISIS-II Operating System or the CP/M (${ }^{\circledR}$ Digital Research Corp.) Operating System.
The EVAKIT-43P Evaluation Board is available for production device emulation and prototype system debugging. The SE-43P Emulation Board is available for demonprototype system debugging. The SE-43P Emulation Board is available for demon-
strating the final system design. The μ PD556B ROM-less Evaluation Chip is available for small pilot production. for

FUNCTIONAL DESCRIPTION (CONT.)

μ PD547, μ PD547L, μ PD552, μ PD651
BLOCK DIAGRAM

μ PD550, μ PD550L, μ PD554, μ PD554L, μ PD652
BLOCK DIAGRAM

The μ PD546, μ PD553, μ PD557L, and μ PD650 execute all 80 instructions of the extended $\mu \mathrm{COM}-4$ instruction set. The 22 additional instructions are indicated by shading.
The μ PD547, μ PD547L, μ PD550, μ PD550L, μ PD552, μ PD554, μ PD554L, μ PD651, and μ PD652 execute a 58 instruction subset of the μ COM -4 instruction set.

INSTRUCTION SET SYMBOL DEFINITIONS

The following abbreviations are used in the description of the μ COM -4 instruction set:

SYMBOL	EXPLANATION AND USE
ACC	Accumulator
$A_{C C}$	Bit "n" of Accumulator
address	Immediate address
C	Carry F/F
C'	Carry Save F/F
data	Immediate data
D_{n}	Bit " n " of immediate data or immediate address
DP	Data Pointer
$\mathrm{DPH}_{\mathrm{H}}$	Upper Bits of Data Pointer
DP ${ }_{\text {L }}$	Lower 4 Bits of Data Pointer
FLAG	FLAG Register
INTE F/F	Interrupt Enable F/F
INT F/F	Interrupt F/F
P()	Parallel Input/Output Port addressed by the value within the brackets
P_{n}	Bit " n " of Program Counter
PA	Input Port A
PC	Input/Output Port C
PD	Input/Output Port D
PE	Output Port E
R	R Register
S	S Register
SKIP	Number of Bytes in next instruction when skip condition occurs
STACK	Stack Register
TC	6-Bit Binary Down Timer Counter
TIMER F/F	Timer F/F
W	W Register
X	X Register
Y	Y Register
Z	Z Register
()	The contents of RAM addressed by the value within the brackets
[]	The contents of ROM addressed by the value within the brackets
\leftarrow	Load, Store, or Transfer
\leftrightarrow	Exchange
-	Complement
\forall	LOGICAL EXCLUSIVE OR
	Applies to μ PD546, μ PD553, μ PD556B, μ PD557L, and μ PD 650 only

MNEMONIC	FUNCTION	DESCRIPTION	INSTRUCTION CODE								bytes	CYCLES	SKIP CONDITION
			D7	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D0			
LOAD													
LI data	$A_{C C}-\mathrm{D}_{3-0}$	Load ACC with 4 bits of immediate data; execute succeeding LI instructions as NOP instructions	1	0	0	1	D_{3}	D_{2}	D_{1}	Do	1	1	String
L	$A C C-(D P)$	Load Acc with the RAM contents addressed by DP	0	0	1	1	1	0	0	0	1	1	
LM data	$\begin{aligned} & A C C \leftarrow(D P) \\ & D P_{H} \leftarrow D P_{H} \forall D_{1-0} \end{aligned}$	Load ACC with the RAM contents addressed by DP; Perform a LOGICAL EXCLUSIVE-OR Between DP H and 2 bits of Immediate Data, Store the result in DP_{H}	0	0	1	1	1	0	D_{1}	D_{0}	1	1	
LDI data	$D P \leftarrow D_{6-0}$	Load DP with 7 bits of immediate data	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \mathrm{D}_{6} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathrm{D}_{5} \end{aligned}$	$\begin{aligned} & 1 \\ & D_{4} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \mathrm{D}_{3} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{2} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \mathrm{D}_{1} \end{aligned}$	$\frac{1}{D_{0}}$	2	2	
LDZ data	$\begin{aligned} & D P_{H} \leftarrow 0 \\ & D P_{L} \leftarrow D_{3-0} \end{aligned}$	Load DPH with 0, Load DPL with 4 bits of immediate data	1	0	0	0	D_{3}	D_{2}	D_{1}	D_{0}	1	1	
Store													
s	$(D P) \leftarrow A C C$	Store ACC into the RAM location addressed by DP	0	0	0	0	0	1	0	0	1	1	
TRANSFER													
TAL	$D P_{L}-A C C$	Transfer $\mathrm{A}_{\text {CC }}$ to DP_{L}	0	0	0	0	0	1	1	1	1	1	
TLA	$A_{C C} \leftarrow D P_{L}$	Transfer $D P_{L}$ to $A_{C C}$	0	0	0	1	0	0	1	0	1	1	
Taw	w-Acc	Transter Acc ro W	0	1	0	0	0	0	1	1	1	2	
TAZ	z - Acc	Transfer Acc to 2	0	1	0	0	0	0	1	0	1	2	
THX	$x+\mathrm{BPH}$	Trenster DPH to X		1	0	0	.	,	1	f	1	8	
TI.Y	$y-b P_{L}$	Transter DP. to Y	0	1	0	0.	\bigcirc	1	4	0	1	2	
EXCHANGE													
x	${ }^{\text {A CC }} \multimap(\mathrm{DP})$	Exchange A with the RAM contents addressed by DP	0	0	1	0	1	0	0	0	1	1	
XI	$\begin{aligned} & A C C \curvearrowleft(D P) \\ & D P_{L} \leftarrow D P_{L}+1 \\ & \text { Skip if } D P_{L}=O H \\ & \hline \end{aligned}$	Exchange Acc with RAM contents addressed by DP, increment $D P_{L} \text {, Skip if } D P_{L}=O H$	0	0	1	1	1	1	0	0	1	$1+5$	$\mathrm{DP}_{\mathrm{L}}=\mathrm{OH}$
XD	$\begin{aligned} & A C C \leftarrow(D P) \\ & D P_{L} \leftarrow D P_{L}-1 \\ & \text { Skip if } D P_{L}=F H \end{aligned}$	Exchange Acc with the RAM contents addressed by DP, decrement $D P_{L}$, Skip if $D P_{L}=F H$	0	0	1	0	1	1	0	0	1	$1+\mathrm{S}$	$D P_{L}=F H$
XM data	$\begin{aligned} & A C C \leftrightarrow(D P) \\ & D P_{H} \leftarrow D P_{H} \forall D_{1-0} \end{aligned}$	Exchange ACC with the RAM contents addressed by DP, Perform a LOGICAL EXCLUSIVEOR Between DP ${ }_{H}$ and 2 bits of immediate data, store the results in $D P_{H}$	0	0	1	0	1	0	D_{1}	D_{0}	1	1	
XMI data	$\begin{aligned} & A c c \leftarrow(D P) \\ & D P_{H} \leftarrow D P_{H} \forall D_{1-0} \\ & D P_{L} \leftarrow D P_{L}+1 \\ & \text { Skip if } D P_{L}=0 H \end{aligned}$	Exchange $A_{C C}$ with the RAM contents addressed by DP, Perform a LOGICAL EXCLUSIVEOR Between DP ${ }_{H}$ and 2 bits of immediate data, store the results in $D P_{H}$ increment $D P_{L}$, Skip if $D P_{L}=\mathrm{OH}$	0	0	1	1	1	1	D_{1}	Do	1	$1+\mathrm{S}$	$D P_{L}=O H$
XMD data	$\begin{aligned} & A C C \leftarrow(D P) \\ & D P_{H} \leftarrow D P_{H} \forall D_{1-0} \\ & D P_{L} \leftarrow D P_{L}-1 \\ & S k \mid p \text { if } D P_{L}=F H \end{aligned}$	Exchange ACC with the RAM contents addressed by DP, Perform a LOGICAL EXCLUSIVEOR Between DP ${ }_{H}$ and 2 bits of immediate data, store the results in $D P_{H}$ decrement $D P_{L}$. Skip if $D P_{L}=F H$	0	0	1	0	1	1	D_{1}	D_{0}	1	$1+\mathrm{S}$	$D P_{L}=F H$
XAW	Acc - w	Exchange Acc with W	0	1	0	0	1	0	1	1.	1	2	
XAZ	Acc^{+2}	Exchange Acc with Z	0	1	0	0	1	0	1	0	1	2	4*
XHR	$\mathrm{BPH}^{\text {+ }}$	Exchange DPH with R	0	1	0	0	1	1	0	1	1	2	-
x+1x	OPH + P	Exchange DPH with x	0	1	0	0	1	1	1	1	1	2	
xLS	$\mathrm{DP}_{\mathrm{L}}-\mathrm{S}$ fegister	Exchange DP, with S Register:	0	1	0	0	1	1	0	0	4	- 2	
XLY		Exchange DP L with Y	0	1	0	0	1	1	1	0	1	2	[
$x c$	$c-c$	Exchange Cariv FiF with Carry Save F/f											

	DESCRIPTION	INSTRUCTION CODE								bytes	cycles	$\begin{gathered} \text { SKIP } \\ \text { CONDITION } \end{gathered}$
FUNCTION		D7	D_{6}	D5	D_{4}	D_{3}	D2	D_{1}	D0			

ARITHMETIC																
$A D$	$A C C \leftarrow A C C+(D P)$ Skip if overflow	Add the RAM contents addressed by DP to ACC; skıp if overflow is generated	0	0	0	0	1	0	0	0	0		1		$1+5$	Overflow
ADC	$A C C \leftarrow A C C+(D P)+C$ If overfiow occurs, $c \leftarrow 1$	Add the RAM contents addressed by DP, and the Carry F/F to ACC; If overfiow occurs, set carry F/F	0	0	0	1	1	0	0	0	1		1		1	
ADS	$A C C+A C C+(D P)+C$ if overflow occurs, $\mathrm{C}-1$ and skip	Add the RAM contents addressed by DP and the carry F/F to ACC. if overflow occurs, set Carry F/F and skip	0	0	0	0	1		0	0	1		1		$1+5$	Overfiow
DAA	$A C C \leftarrow A C C+6$	Add 6 to ACC to Adjust Decimal for BCD Addition	0	0	0	0	0		1	1	0		1		1	
DAS	$A C C-A C C+10$	Add 10 to ACC to Adjust Decimal for BCD Subtraction	0	0	0	0	1	0	0	1	0		1		1	
logical																
EXL	$A C C \leftarrow A C C \forall(D P)$	Performa LOGICAL EXCLUSIVE-OR between the RAM contents addressed by DP and ACC, store the result in ACC	0	0	0	1	1	0	0	0	0		1		1	
ACCUMULATOR																
CLA	$\mathrm{A}^{\text {c }}+0$	Clear ACC to zero	1	0	0	1	0	0	0	0	0		1		1	String
CMA	$\mathrm{A}_{\mathrm{CC}}+\overline{A_{C C}}$	Complement ACC	0	0	0	1	0	0	0	0	0		1		1	
CIA	$A_{C C} \leftarrow \overline{A_{C C}+1}$	Complement A, Increment A	0	0	0	1	0	0	0	0	1		1		1	
FAR		protate AcC fight itrougt Carry fif:			11	1					0				1	
CARRY FLAG																
CLC	$\mathrm{C} \leftarrow 0$	Reset Carry F/F to zero	0	0	0	0	1	0	0	1	1		1		1	
STC	$\mathrm{C}+1$	Set Carry F/F to one	0	0	0	1	1	0	0	1	1		1		1	
TC	Skıp if $\mathrm{C}=1$	Skip if Carry F/F is true	0	0	0	0	0	1	1	0	0		1		$1+5$	$\mathrm{C}=1$
sFB	$\int f\left(A C_{b i r}+8\right.$	Ser a single bir tdentiod by OTDO of FLAC R Rogistor to ono	0													
RFB	$\text { FUAG }{ }_{6 i t}=0$	Peset a single bit lderpted by F100 of Flachegister to zero				0			1	8					2	
	$\text { SkipiffLA } \mathrm{C}_{\mathrm{bl}}-1$	Stio hra sirgie bit idenoted by DTDOL 6 t the FLAC Regliter is true				11				b1					$2 \cdot 5$	
FBF	Skip if FLAG	Skipilás single bit ldenothd by D, Dolaf the FLAG Register is false					30			P_{1}					$2+8$	clagbit

INCREMENT AND DECREMENT

MNEMONIC	FUNCTION	DESCRIPTION	INSTRUCTION CODE										
				D_{6}	D5	D_{4}	D_{3}	D_{2}	D1	Do	BYTES	cYCles	CONDITION
BIT MANIPULATION													
RMB data	$(\mathrm{DP})_{\text {bit }} \leftarrow 0$	Reset a single bit (denoted by $D_{1}-D_{0}$) of RAM at the location addressed by DP to zero	0	1	1	0	1	0	D_{1}	Do	1	1	
SMB data	$(\mathrm{DP})_{\text {bit }} \leftarrow 1$	Set a single bit (denoted by $\mathrm{D}_{1} \mathrm{D}_{0}$) of RAM at the location addressed by DP to one	0	1	1	1	1	0	D_{1}	D_{0}	1	1	
REB data	$P E_{\text {bit }} \leftarrow 0$	Reset a single bit (denoted by $D_{1} D_{0}$) of output Port E to zero	0	1	1	0	0	1	D_{1}	D_{0}	1	2	
SEB data	$P E_{\text {bit }} \leftarrow 1$	Set a single bit (denoted by $\mathrm{D}_{1} \mathrm{D}_{0}$) of output Port E to one	0	1	1	1	0	1	D_{1}	D_{0}	1	2	
RPB data	P(DP L $_{\text {bit }}-0$	Reset a single bit (denoted by $D_{1} D_{0}$) of the output port addressed by DP_{L} to zero	0	1	1	0	0	0	D_{1}	D_{0}	1	1	
SPB data	$P\left(D P_{L}\right)_{\text {bit }}-1$	Set a single bit (denoted by $\mathrm{D}_{1} \mathrm{D}_{0}$) of the output port addressed by $D P_{L}$	0	1	1	1	0	0	D1	D_{0}	1	1	
JUMP, CALL AND RETURN													
JMP address	$\mathrm{P}_{10-0} \leftarrow \mathrm{D}_{10-0}$	Jump to the address specified by 11 bits of immediate data	$\begin{gathered} 1 \\ \mathrm{D}_{7} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{D}_{6} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ D_{5} \end{gathered}$	$\begin{gathered} 0 \\ D_{4} \end{gathered}$	$\begin{gathered} 0 \\ D_{3} \end{gathered}$	$\begin{gathered} \mathrm{D}_{10} \\ \mathrm{D}_{2} \end{gathered}$	$\begin{aligned} & D_{9} \\ & D_{1} \end{aligned}$	$\begin{aligned} & \mathrm{D}_{8} \\ & \mathrm{D}_{0} \end{aligned}$	2	2	
JCP address	$\mathrm{P}_{5-0} \leftarrow \mathrm{D}_{5-0}$	Jump to the address within the current ROM page specified by 6 bits of immediate data	1	1	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	1	1	
JPA	$\begin{aligned} & P_{5-2} \leftarrow A_{C C} \\ & P_{1-0} \leftarrow 00 \end{aligned}$	Jump to the address within the current ROM page modified by ACC	0	1	0	0	0	0	0	1	1	2	
CAL address	$\begin{aligned} & \text { Stack } \leftarrow P+2 \\ & P_{10-0} \leftarrow D_{10-0} \end{aligned}$	Store a return address ($P+2$) in the stack, call the subroutine program at the location specified by 11 bits of immediate data	$\begin{array}{\|c\|} \hline 1 \\ D_{7} \end{array}$	$\begin{gathered} 0 \\ \mathrm{D}_{6} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{5} \end{gathered}$	$\begin{gathered} 0 \\ D_{4} \end{gathered}$	$\begin{gathered} \hline 1 \\ \mathrm{D}_{3} \end{gathered}$	$\begin{gathered} D_{10} \\ D_{2} \end{gathered}$	$\begin{aligned} & \mathrm{D}_{9} \\ & \mathrm{D}_{1} \end{aligned}$	$\begin{aligned} & \mathrm{D}_{8} \\ & \mathrm{D}_{0} \end{aligned}$	2	2	
CZP address	$\begin{aligned} & \text { Stack } \leftarrow P+1 \\ & P_{10-6} \leftarrow 00000 \\ & P_{5-2} \leftarrow D_{3-0} \\ & P_{1-0} \leftarrow 00 \end{aligned}$	Store a return address $(P+1)$ in the stack, call the subroutine program at one of sixteen locations in Page 0 of Field 0 , specified by 4 bits of immediate data	1	0	1	1	D_{3}	D_{2}	D_{1}	D_{0}	1	1	
RT	P ¢ Stack	Return from Subroutine	0	1	0	0	1	0	0	0	1	2	
RTS	$P \leftarrow$ Stack Skip unconditionally	Return from Subroutıne, skip unconditionally	0	1	0	0	1	0	0	1	1	$2+s$	Unconditional
SKIP													
Cl data	Skip if $A_{C C}=\mathrm{D}_{3-0}$	Skıp if ACC equals 4 bits of immediate data	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ \mathrm{D}_{3} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{2} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{1} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{0} \\ \hline \end{gathered}$	2	$2+5$	$A_{C C}=D_{3-0}$
CM	Skıp if $\mathrm{A}_{\text {c }} \mathrm{CC}=(\mathrm{DP})$	Skip if ACC equals the RAM contents addressed by DP	0	0	0	0	1	1	0	0	1	$1+5$	$A_{C C}=(D P)$
CMB data	Skıp if $A_{C C} C_{b i t}=(D P)_{b i t}$	Skip if the single bit (denoted by $D_{1} D_{0}$) of $A C C$, is equal to the single bit (also denoted by $D_{1} D_{0}$) of RAM addressed by DP	0	0	1	1	0	1	D_{1}	D_{0}	1	$1+s$	$A_{C C}{ }_{\text {bit }}=(D P)_{b i t}$
TAB data	Skip if $A_{\mathrm{CC}_{\mathrm{bit}}}=1$	Skip if the single bit (denoted by $D_{1} D_{0}$) of $A_{C C}$ is true	0	0	1	0	0	1	D_{1}	D_{0}	1	$1+\mathrm{S}$	$A_{C C}{ }_{\text {bit }}=1$
CLI data	Skıp if $D P_{L}=D_{3-0}$	Skip if DP ${ }_{L}$ equals 4 bits of immediate data	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ \mathrm{D}_{3} \end{gathered}$	$\begin{gathered} 1 \\ D_{2} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{1} \end{gathered}$	$\begin{gathered} \hline 0 \\ \mathrm{D}_{0} \\ \hline \end{gathered}$	2	$2+5$	$D P_{L}=D_{3-0}$
TMB data	Skip if (DP) ${ }_{\text {bit }}=1$	Skip if the single bit Idenoted by $\mathrm{D}_{1} \mathrm{D}_{0}$) of the RAM location addressed by DP is true	0	1	0	1	1	0	D_{1}	D_{0}	1	$1+\mathrm{S}$	$(\mathrm{DP})_{\text {bit }}=1$
TPA data	Skıp if $\mathrm{PA}_{\text {bit }}=1$	Skip if the single bit (denoted by $D_{1} D_{0}$) of Port A is true	0	1	0	1	0	1	D_{1}	D_{0}	1	$2+s$	PAbit $=1$
TPB data	Skıp if $P\left(D P_{L}\right)_{b i t}=1$	Skip if the single bit Idenoted by $\mathrm{D}_{1} \mathrm{D}_{0}$) of the input Port addressed by DP L_{L} is true	0	1	0	1	0	0	D_{1}	D_{0}	1	$1+\mathrm{S}$	$P\left(D P_{L}\right)_{\text {bit }}=1$
STMI	$\begin{aligned} & \text { TMER FiF- } 0 \\ & \text { TC t- } 06.0 \end{aligned}$	Feset Tiner FIF to zero, Load Tiner Counter with 6 bits of invediaze datas Stan timer.		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{array}{r} 0 \\ \mathrm{D}_{3} \\ \hline \end{array}$				2	2	
171	Stio if TIMER FIF: $=1$	Ship II Tiner Ffle is true		0	0	0	0	1	$\overline{0}$		1	$1+5$	TMES FIF=1

INSTRUCTION SET
(CONT.)

MNEMONIC	FUNCTION	DESCRIPTION	INSTRUCTION CODE								BYtes	Crcles	$\begin{gathered} \text { SKIP } \\ \text { CONDITION } \end{gathered}$
			D7	D6	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}			
INTERRUPT													
TIT	Skip if INT F/F = 1	Skip if interrupt F / F is true, Reset Interrupt F/F	0	0	0	0	0	0	1	1	1	$1+s$	INT F/F $=1$
E1 DI	NTE EFET TNTEFIEF=0	 Herekinetrupt Enable itero zero, Disabie therruat						$\frac{8}{6}$					
PARALLEL I/O													
IA	$A C C-P A$	Input Port A to ACC	0	1	0	0	0	0	0	0	1	2	
IP	$A C C \leftarrow P\left(D P P_{L}\right)$	Input the Port addressed by $D P_{L}$ to $A C C$	0	0	1	1	0	0	1	0	1	1	
OE	$\mathrm{PE}+\mathrm{A}_{\text {C }}$	Output ACC to Port E	0	1	0	0	0	1	0	0	1	2	
OP	$\mathrm{P}\left(\mathrm{DP} \mathrm{L}_{\mathrm{L}}\right) \leftarrow \mathrm{A}_{\text {C }}$	Output ACC to the port addressed by DP L .	0	0	0	0	1	1	1	0	1	1	
OCD	$\begin{aligned} & P_{D_{3-0}}-D_{7-4} \\ & P C_{3-0}-D_{3-0} \end{aligned}$	Output 8 bits of immediate data to Ports C and D	$\begin{aligned} & 0 \\ & \mathrm{D}_{7} \end{aligned}$	$\begin{gathered} 0 \\ \mathrm{D}_{6} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{D}_{5} \end{gathered}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{4} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{3} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{D}_{1} \end{aligned}$	$\begin{gathered} 0 \\ D_{0} \end{gathered}$	2	2	
CPU CONTROL													
NOP		Perform no operation, consume one machine cycle	0	0	0	0	0	0	0	0	1	1	

μ COM-4

Package Outlines

For information, see Package Outline Section 7.
Plastic, μ СОМ-4C
Plastic Miniflat, μ COM-4G

4-BIT SINGLE CHIP MICROCOMPUTER WITH VACUUM FLUORESCENT DISPLAY DRIVE CAPABILITY

The μ PD557L is a 4-bit single chip microcomputer which has the same architecture as the μ PD553, but is pin-compatible with the μ PD550L and the μ PD554L. The μ PD557L contains a 2000×8-bit ROM and a 96×4-bit RAM, which includes six working registers and the FLAG register. It has a lever-triggered hardware interrupt input $\overline{\mathrm{NT}}$, a three-level stack and a 6 -bit programmable timer. The μ PD557L provides $21 \mathrm{I} / \mathrm{O}$ lines, organized into the 4 -bit input port A, the 4 -bit I/O ports C and D, and the 4 -bit output ports E and F , and the 1 -bit output port G . The $17 \mathrm{I} / \mathrm{O}$ ports and output ports are capable of being pulled to -35 V in order to drive Vacuum Fluorescent Displays directly. The μ PD557L typically executes all 80 instructions of the extended μ COM -4 family instruction set with a $25 \mu \mathrm{~s}$ instruction cycle time. It is manufactured with a modified PMOS process, allowing use of a single -8 V power supply and is available in a 28 -pin dual-ın-lıne plastıc package.

The μ PD550L and the μ PD554L are upward-compatible with the μ PD557L.

PIN CONFIGURATION

PIN NAMES

$\mathrm{PA}_{0}-\mathrm{PA}_{3}$	Input Port A
$\mathrm{PC}_{0}-\mathrm{PC}_{3}$	Input/Output Port C
$\mathrm{PD}_{0}-\mathrm{PD}_{3}$	Input/Output Port D
$\mathrm{PE}_{0}-\mathrm{PE}_{3}$	Output Port E
$\mathrm{PF}_{0}-\mathrm{PF}_{3}$	Output Port F
PG_{0}	Output Port G
$\overline{\mathrm{NT}}$	Interrupt Input
$\mathrm{CL}_{0}-\mathrm{CL}_{1}$	External Clock Signals
RESET	Reset
V_{GG}	Power Supply Negative
V_{SS}	Power Supply Positive
TEST	Factory Test Pin (Connect to $V_{S S}$)

Operatıng Temperature . $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage, V_{GG}. -15 to +0.3V
Input Voltages (Port A, INT, RESET) . -15 to +0.3V
(Ports C, D) . -40 to +0.3V
Output Voltages -40 to +0.3 V
Output Current (Ports C, D, each bit) . -4 mA
(Ports E, F, G, each bit) . -25 mA
(Total, all ports) . - 100 mA
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT Stress above those listed under "Absolute Maximum Ratıngs" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maxımum ratıng conditions for extended perıods may affect device reliability.
$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GG}}=-8.0 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Voltage High	$\mathrm{V}_{\text {IH }}$	0		-2.5	V	Ports A, C, D, $\overline{\text { INT }}$, RESET
Input Voltage Low	V_{IL}	-6.5		V_{GG}	v	Ports A, INT, RESET
	$\mathrm{V}_{\text {IL2 }}$	-6.5		-35	V	Ports C, D
Clock Voltage High	$\mathrm{V}_{\phi} \mathrm{H}$	0		-0.6	\checkmark	CL_{0} Input, External Clock
Clock Voltage Low	$\mathrm{V}_{\phi \mathrm{L}}$	-5.0		V_{GG}	V	CL0 Input, External Clock
Input Leakage Current High	${ }^{\text {ILIH }}$			+10	$\mu \mathrm{A}$	Ports A, C, D, INT, RESET $V_{1}=-1 V$
Input Leakage Current Low	${ }^{\prime}$ LIL 1			-10	$\mu \mathrm{A}$	Ports A, C, D, $\overline{\mathrm{NT}}$, RESET $V_{1}=-9 \mathrm{~V}$
	${ }^{\text {LIIL2 }}$			-30	$\mu \mathrm{A}$	Ports C, D, V1 $=-35 \mathrm{~V}$
Clock Input Leakage Current High	${ }^{1} \mathrm{~L} \phi \mathrm{H}$			+200	$\mu \mathrm{A}$	CL ${ }_{0}$ input, $\mathrm{V}_{\phi H}=0 \mathrm{~V}$
Clock Input Leakage Current Low	${ }^{\text {I L } \phi \mathrm{L}}$			-200	$\mu \mathrm{A}$	CL_{0} Input, $\mathrm{V}_{\phi \mathrm{L}}=-9 \mathrm{~V}$
Output Voltage High	V_{OH}			-1.0	V	Ports C through G, $\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$
	VOH_{2}			-4.0	V	Ports E, F, G, IOH $=-20 \mathrm{~mA}$
Output Leakage Current Low	$\mathrm{I}_{\mathrm{LOL}}^{1}$			-10	$\mu \mathrm{A}$	Ports C through G, $V_{O}=-9 \mathrm{~V}$
	$\mathrm{I}_{\mathrm{LOL}}^{2}$			-30	$\mu \mathrm{A}$	Ports C through G, $V_{\mathrm{O}}=-35 \mathrm{~V}$
Supply Current	IGG		-20	-36	mA	

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	C_{1}			15	pF	$\mathrm{f}=1 \mathrm{MHz}$
Output Capacitance	C_{0}			15	pF	
Input/Output Capacitance	ClO_{10}			15	pF	

$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GG}}=-8.0 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Oscillator Frequency	f	100		180	kHz	
Rise and Fall Times	$\mathrm{tr}_{\mathrm{r}, \mathrm{tf}}$	0		0.3	$\mu \mathrm{s}$	External Clock
Clock Puise Width High	${ }^{\text {t }} \mathrm{W} \mathrm{H}_{\mathrm{H}}$	2.0		8.0	$\mu \mathrm{s}$	
Clock Puise Width Low	${ }^{\text {t }}{ }^{\prime} W_{L}$	2.0		8.0	$\mu \mathrm{s}$	

DC CHARACTERISTICS

CAPACITANCE

AC CHARACTERISTICS

CLOCK WAVEFORM

Package Outlines

For information, see Package Outline Section 7.

4-BIT SINGLE CHIP MICROCOMPUTERS WITH VACUUM FLUORESCENT DISPLAY DRIVE CAPABILITY

DESCRIPTION

The μ PD552 and the μ PD553 are pin-compatible 4-bit single chip microcomputers which have similar architectures.

The μ PD552 contains a 1000×8-bit ROM and a 64×4-bit RAM. It has a testable interrupt input $\overline{\mathrm{NT}}$, a single-level stack, and executes all 58 instructions of the μ COM-4 family instruction set. The μ PD552 is upward compatible with the μ PD553.

The μ PD553 contains a 2000×8-bit ROM, and a 96×4-bit RAM which includes six working registers and the Flag register. It has a level-triggered hardware interrupt, a three-level stack, and a programmable 6-bit Timer. The μ PD553 executes all 80 instructions of the extended $\mu \mathrm{COM}-4$ family instruction set.
Both the $\mu \mathrm{PD} 552$ and the $\mu \mathrm{PD} 553$ provide $35 \mathrm{I} / \mathrm{O}$ lines organized into the 4-bit input Ports A and B, the 4-bit I/O Ports C and D, the 4-bit output Ports E, F, G, and H, and the 3 -bit output Port I. The 27 I/O ports and output ports are capable of being pulled to -35 V in order to drive Vacuum Fluorescent Displays directly. Both devices typically execute their instructions with a 10μ s instruction cycle time. The μ PD552 and the μ PD553 are manufactured with a standard PMOS process, allowing use of a sıngle -10 V power supply, and are available in a 42-pin dual-ın-lıne plastic package.
 RATINGS*

Operating Temperature .$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage, VGG -15 to +0.3 V
Input Voltages (Port A, B, $\overline{\text { INT, RESET) .-15 to }+0.3 \mathrm{~V}}$
(Ports C, D) . 40 to +0.3V
Output Voltages . 40 to +0.3V
Output Current (Ports C through I, each bit) . - 12 mA
(Total, all ports) . - 60 mA
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT Stress above those listed under "Absolute Maxımum Ratıngs" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maxımum rating condıtions for extended periods may affect device relıability.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Voltage High	$\mathrm{V}_{\text {IH }}$	0		-3 5	V	Ports A through D, $\overline{\mathrm{INT}}$. RESET
Input Voltage Low	$V_{1 L_{1}}$	-75		V_{GG}	v	Ports A, B, INT, RESET
	$V_{1 L_{2}}$	-75		-35	V	Ports C, D
Clock Voltage High	$\mathrm{V}_{\phi} \mathrm{H}$	0		-08	v	CLo Input, External Clock
Clock Voltage Low	$\mathrm{V}_{\phi \mathrm{L}}$	-60		V_{GG}	v	CLo Input, External Clock
Input Leakage Current High	'LIH			+10	$\mu \mathrm{A}$	Ports A through D, INT, RESET, $\mathrm{V}_{\mathrm{I}}=-1 \mathrm{~V}$
Input Leakage Current Low	${ }^{\text {L }} \mathrm{LIL}_{1}$			-10	$\mu \mathrm{A}$	Ports A through D, $\overline{\mathrm{NT}}$, RESET, $V_{I}=-11 \mathrm{~V}$
	${ }^{\text {LIIL2 }}$			-30	$\mu \mathrm{A}$	Ports C, D, $\mathrm{V}_{1}=-35 \mathrm{~V}$
Clock Input Leakage Current High	$\mathrm{I}_{\mathrm{L} \phi \mathrm{H}}$			+200	$\mu \mathrm{A}$	CLo Input, $\mathrm{V}_{\phi H}=0 \mathrm{~V}$
Clock Input Leakage Current Low	${ }_{\text {L }} \mathrm{L} \phi \mathrm{L}$			-200	$\mu \mathrm{A}$	CL_{0} Input, $\mathrm{V}_{\phi} \mathrm{L}=-11 \mathrm{~V}$
Output Voltage High	V_{OH}			-20	V	Ports C through I , $\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$
Output Leakage Current Low	${ }^{1} \mathrm{LOL}_{1}$			-10	$\mu \mathrm{A}$	Ports C through I, $\mathrm{V}_{\mathrm{O}}=-11 \mathrm{~V}$
	${ }^{1} \mathrm{LOL}_{2}$			-30	$\mu \mathrm{A}$	Ports C through I, $V_{\mathrm{O}}=-35 \mathrm{~V}$
Supply Current	IGG		-30	-50	mA	

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	C_{1}			15	pF	
Output Capacitance	Co_{0}			15	pF	$f=1 \mathrm{MHz}$
Input/Output Capacitance	ClO_{10}			15	pF	

CAPACITANCE

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Oscillator Frequency	f	150		440	KHz	
Rise and Fall Times	t_{r}, t_{f}	0		03	$\mu \mathrm{s}$	EXTERNAL CLOCK
Clock Pulse Width High	${ }^{t_{\phi} W_{H}}$	05		5.6	$\mu \mathrm{s}$	
Clock Puise Width Low	${ }^{t}{ }_{\phi} W_{L}$	0.5		56	$\mu \mathrm{s}$	

AC CHARACTERISTICS

Package Outlines

For information, see Package Outline Section 7.

Plastic, μ PD552C/553C

4-BIT SINGLE CHIP MICROCOMPUTERS WITH VACUUM FLUORESCENT DISPLAY DRIVE CAPABILITY

DESCRIPTION The μ PD550 and the μ PD554 are pin-compatible 4-bit single chip microcomputers which have the same architecture. The only difference between them is that the μ PD550 contains a 640×8-bit ROM, whereas the μ PD554 contains a 1000×8-bit ROM. Both devices have a 32×4-bit RAM, a testable interrupt input $\overline{I N T}$, and a single-level stack. The μ PD550 and the μ PD554 provide 21 I/O lines organızed into the 4 -bit input port A , the 4 -bit I / O ports C and D , the 4 -bit output ports E and F , and the 1 -bit output port G . The $17 \mathrm{I} / \mathrm{O}$ ports and output ports are capable of being pulled to -35 V in order to drive Vacuum Fluorescent Displays directly. The μ PD550 and the μ PD554 typically execute all 58 instructions of the μ COM- 4 family instruction set with a $10 \mu \mathrm{~s}$ instruction cycle time. Both devices are manufactured with a standard PMOS process, allowing use of a single -10 V power supply, and are available in a 28 pin dual-in-line plastic package.

PIN CONFIGURATION

$\mathrm{CL}_{1}-1$		28	$\square \mathrm{CL}_{0}$
$\mathrm{PC}_{0}-2$		27	$]^{-1}$
$\mathrm{PC}_{1}-3$		26	RESET
$\mathrm{PC}_{2} \square 4$		25	INT
$\mathrm{PC}_{3}-5$		24	PA_{3}
$\mathrm{PD}_{0} \mathrm{C}^{6}$		23	$\square \mathrm{PA}_{2}$
$\mathrm{PD}_{1} \square^{-1}$	$550 /$	22] PA_{1}
$\mathrm{PD}_{2} \square 8$	554	21	PAO
$\mathrm{PD}_{3} \square 9$		20	PGo
$P E_{0}-10$		19	PF_{3}
$P E_{1} \square_{11}$		18	PF_{2}
$\mathrm{PE}_{2} \square_{12}$		17	PF_{1}
$\mathrm{PE}_{3} \square_{13}$		16	PFo
vSS 14		15] TEST

$\mathrm{PA}_{0}-\mathrm{PA}_{3}$	Input Port A
$\mathrm{PC}_{0}-\mathrm{PC}_{3}$	Input/Output Port C
$\mathrm{PD}_{0}-\mathrm{PD}_{3}$	Input/Output Port D
$\mathrm{PE}_{0}-\mathrm{PE}_{3}$	Output Port E
$\mathrm{PF}_{0}-\mathrm{PF}_{3}$	Output Port F
PG_{0}	Output Port G
$\mathrm{CL}_{0}-\mathrm{CL}_{1}$	External Clock Signals
$\overline{\mathrm{INT}}$	Interrupt Input
RESET	Reset
V_{GG}	Power Supply Negative
$\mathrm{V}_{\text {SS }}$	Power Supply Positive
TEST	Factory Test $\mathrm{P}_{1 n}$ (Connect to $\mathrm{V}_{\text {SS }}$)

[^1]| PARAMETER | SYMBOL | LIMITS | | | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | MIN | TYP | MAX | | |
| Input Voltage High | $V_{\text {IH }}$ | 0 | | -2.0 | v | Ports A, C, D, INT, RESET |
| Input Voltage Low | $\mathrm{V}_{1 L_{1}}$ | -4.3 | | V_{GG} | V | Ports A, INT, RESET |
| | $\mathrm{V}_{1} \mathrm{~V}_{2}$ | -4.3 | | -35 | V | Ports C, D |
| Clock Voltage High | $\mathrm{V}_{\phi} \mathrm{H}$ | 0 | | -0.6 | V | CLo Input, External Clock |
| Clock Voltage Low | $V_{\phi L}$ | -6.0 | | VGG | V | CLo Input, External Clock |
| Input Leakage Current High | ILIH | | | +10 | $\mu \mathrm{A}$ | Ports A, C, D, INT, RESET $v_{1}=-1 V$ |
| Input Leakage Current Low | ILIL_{1} | | | -10 | $\mu \mathrm{A}$ | Ports A, C, D, INT, RESET $v_{1}=-11 \mathrm{~V}$ |
| | ILIL2 | | | -30 | $\mu \mathrm{A}$ | Ports C, D, V $\mathrm{V}_{1}=-35 \mathrm{~V}$ |
| Clock Input Leakage Current High | IL ¢ ${ }^{\text {H }}$ | | | +200 | $\mu \mathrm{A}$ | CLo Input, $\mathrm{V}_{\phi H}=0 \mathrm{~V}$ |
| Clock Input Leakage Current Low | IL¢L | | | -200 | $\mu \mathrm{A}$ | CL-0 input, $\mathrm{V}_{\phi \mathrm{L}}=-11 \mathrm{~V}$ |
| Output Voltage High | VOH_{1} | | | -1.0 | V | Ports C, D, $\mathrm{IOH}=-2 \mathrm{~mA}$ |
| | VOH_{2} | | | -2.5 | V | Ports E, F, G, IOH $=-10 \mathrm{~mA}$ |
| Output Leakage Current Low | ILOL_{1} | | | -10 | $\mu \mathrm{A}$ | Ports C through G, $v_{0}=-11 \mathrm{~V}$ |
| | ILOL_{2} | | | -30 | $\mu \mathrm{A}$ | Ports \mathbf{C} through G , $v_{0}=-35 \mathrm{~V}$ |
| Supply Current | IGG | | -20 | -40 | mA | |

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	c_{1}			15	pF	$f=1 \mathrm{MHz}$
Output Capacitance	C_{0}			15	pF	
Input/Output Capacitance	C_{10}			15	pF	

CAPACITANCE

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Oscillator Frequency	f	150		440	KHz	
Rise and Fall Times	t_{r}, t_{f}	0		0.3	$\mu \mathrm{s}$	External Clock
Clock Puise Width High	${ }^{t}{ }_{\phi} W_{H}$	0.5		5.6	$\mu \mathrm{s}$	
Clock Pulse Width Low	${ }_{t}{ }^{+} W_{L}$	0.5		5.6	$\mu \mathrm{s}$	

AC CHARACTERISTICS

Package Outlines

For information, see Package Outline Section 7.
Plastic, μ PD550C/554C
Plastic Shrinkdip, μ PD550CT
Plastic Shrinkdip, μ PD554CT

4-BIT SINGLE CHIP MICROCOMPUTERS WITH VACUUM FLUORESCENT DISPLAY DRIVE CAPABILITY

DESCRIPTION The μ PD550L and the μ PD554L are pin-compatıble 4-bit single chip microcomputers which have the same architecture. The only difference between them is that the μ PD550L contans a 640×8-bit ROM, whereas the μ PD554L contains a 1000×8-bit ROM. Both devices have a 32×4-bit RAM, a testable interrupt input INT, and a singlelevel stack. The μ PD550L and the μ PD554L provide $21 \mathrm{I} / \mathrm{O}$ lines organized into the 4-bit input port A, the 4-bit I/O ports C and D, the 4-bit output ports E and F, and the 1 -bit output port G. The $17 \mathrm{I} / \mathrm{O}$ ports and output ports are capable of beıng pulled to -35V in order to drive Vacuum Fluorescent Displays directly. The μ PD550L and the μ PD554L typically execute all 58 instructions of the μ COM-4 family instruction set with a 25μ s instruction cycle time. Both devices are manufactured with a modified PMOS process, allowing use of a single -8 V power supply, and are available in a 28 -pin dual-in-line plastic package.

The μ PD550L and the μ PD554L are upward compatible with the μ PD557L.

PIN CONFIGURATION

PIN NAMES

$\mathrm{PA}_{0}-\mathrm{PA}_{3}$	Input Port A
$\mathrm{PC}_{0}-\mathrm{PC}_{3}$	Input/Output Port C
$\mathrm{PD}_{0}-\mathrm{PD}_{3}$	Input/Output Port D
$\mathrm{PE}_{0}-\mathrm{PE}_{3}$	Output Port E
$\mathrm{PF}_{0}-\mathrm{PF}_{3}$	Output Port F
PG_{0}	Output Port G
$\mathrm{CL}_{0}-\mathrm{CL}_{1}$	External Clock Signals
INT	Interrupt Input
RESET	Reset
V_{GG}	Power Supply Negative
$\mathrm{V}_{\text {SS }}$	Power Supply Positive
TEST	Factory Test Pin (Connect to $V_{\text {SS }}$)

ABSOLUTE MAXIMUM Operating Temperature. $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage, VGG. .-15 to +0.3V
Input Voltages (Port A, INT, RESET) .-15 to +0.3V
(Ports C, D) . 40 to +0.3V
Output Voltages . 40 to +0.3V
Output Current (Ports C, D, each bit) . 4 mA
(Ports E, F, G, each bit) . - 15 mA
(Total, all ports) . - 60 mA
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maxımum Ratıngs" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Voltage High	$V_{1 H}$	0		-16	\checkmark	Ports A, C, D, INT, RESET
Input Voltage Low	$V_{\text {IL }}$	-45		V_{GG}	\checkmark	Ports A, $\overline{\text { INT, R }}$ RESET
	$\mathrm{V}_{1} \mathrm{~L}_{2}$	45		-35	V	Ports C, D
Clock Voltage High	$\mathrm{V}_{\phi} \mathrm{H}$	0		-06	v	CLo Input, External Clock
Clock Voltage Low	$\mathrm{V}_{\phi} \mathrm{L}$	-50		VGG	V	CLo Input, External Clock
Input Leakage Current High	ILIH			+10	$\mu \mathrm{A}$	Ports A, C, D, INT, RESET $V_{1}=-1 \mathrm{~V}$
Input Leakage Current Low	${ }^{\text {L L I I }}$ 1 ${ }_{1}$			-10	$\mu \mathrm{A}$	Ports A, C, D, $\overline{\mathrm{N} T}$, RESET $v_{1}=-9 v$
	${ }_{\text {L }}^{1} \mathrm{~L} \mathrm{~L}_{2}$			-30	$\mu \mathrm{A}$	Ports C, D, V1 $=-35 \mathrm{~V}$
Clock Input Leakage Current High	$\mathrm{I}_{\mathrm{L} \phi \mathrm{H}}$			+200	$\mu \mathrm{A}$	CLo Input, $\mathrm{V}_{\phi} \mathrm{H}=0 \mathrm{~V}$
Clock Input Leakage Current Low	${ }^{\prime} \mathrm{L} \phi \mathrm{L}$			-200	$\mu \mathrm{A}$	CLO Input, $\mathrm{V}_{\phi \mathrm{L}}=-9 \mathrm{~V}$
Output Voltage High	VOH_{1}			-10	V	Ports C, D, $\mathrm{IOH}=-2 \mathrm{~mA}$
	$\mathrm{V}^{\mathrm{OH}}{ }_{2}$			-25	v	Ports E, F, G, IOH $=-10 \mathrm{~mA}$
Output Leakage Current Low	${ }^{\prime} \mathrm{LOL}_{1}$			-10	$\mu \mathrm{A}$	Ports C through G, $v_{0}=-9 v$
	${ }_{1} \mathrm{LOL}_{2}$			-30	$\mu \mathrm{A}$	Ports C through G, $v_{0}=-35 \mathrm{~V}$
Supply Current	IGG		-12	-24	mA	

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	C_{1}			15	pF	$\mathrm{f}=1 \mathrm{MHz}$
Output Capacitance	c_{0}			15	pF	
Input/Output Capacitance	ClO_{10}			15	pF	

$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GG}}=-8.0 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Oscillator Frequency	f	100		180	KHz	
Rise and Fall Tımes	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	0		0.3	$\mu \mathrm{s}$	External Clock
Clock Pulse Width High	${ }^{\text {t }} \mathrm{W}{ }_{\mathrm{H}}$	2.0		80	$\mu \mathrm{s}$	
Clock Pulse Width Low	${ }^{t}{ }_{\text {W }} \mathrm{W}_{\mathrm{L}}$	2.0		8.0	$\mu \mathrm{s}$	

CAPACITANCE

AC CHARACTERISTICS

CLOCK WAVEFORM

Package Outlines
For information, see Package Outline Section 7.
Plastic, μ PD550LC/554LC

μ COM-4 4-BIT SINGLE CHIP ROM-LESS EVALUATION CHIP

DESTCRIPTION The μ PD556B is the ROM-less evaluation chip for the μ COM-4 4-bit single chıp microcomputer family. The μ PD556B is used in conjunction with an external 2048×8-bit program memory, such as the μ PD2716 UV EPROM, to emulate each of the 14 different $\mu \mathrm{COM}-4$ single chip microcomputers.

The μ PD556B contains a 96×4-bit RAM, which includes six working registers and the Flag register. It has a level-triggered hardware interrupt, a three-level stack, and a programmable 6-bit timer. The μ PD556B executes all 80 instructıons of the extended $\mu \mathrm{COM}-4$ family instruction set.

The μ PD556B provides 35 I/O lines organized into the 4 -bit input Ports A and B , the 4-bit I/O Ports C and D, the 4-bit output Ports E, F, G, and H, and the 3-bit output Port I. It typıcally executes its instructions with a $10 \mu \mathrm{~s}$ instruction cycle tıme. The μ PD556B is manufactured with a standard PMOS process, allowing use of a single -10 V power supply, and is available in a 64 -pin quad-in-line ceramic package.

Operating Temperature
$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage, VGG . -15 V to +0.3 V
All Input Voltages . -15 V to +0.3 V
All Output Voltages -15 V to +0.3 V
Output Current (total, all ports) $-4 \mathrm{~mA}$

ABSOLUTE MAXIMUM RATINGS*
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended perıods may affect device reliability.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input High Voltage	$\mathrm{V}_{\text {IH }}$	0		-2.0	V	Ports A to D, 17.0 BREAK, STEP, INT, RESET, and $A C C / P C$
Input Low Voltage	$V_{\text {IL }}$	-4.3		V_{GG}	v	Ports A to D, $17-0$ BREAK, STEP, INT, RESET, and $\mathrm{ACC}^{/ P C}$
Clock High Voltage	$\mathrm{V}_{1, \mathrm{H}}$	0		-0.8	v	CL_{0} Input, External Clock
Clock Low Voltage	$\mathrm{V}_{1, \mathrm{~L}}$	-60		V_{GG}	v	CL_{0} Input, External Clock
Input Leakage Current High	${ }^{\text {LIIH }}$			+10	$\mu \mathrm{A}$	Ports A and B, 17.0 INT, RESET, BREAK, STEP, $A_{C C} / P C, V_{1}=-1 V$
				+10	$\mu \mathrm{A}$	Ports C and D, $\mathrm{V}_{1}=-1 \mathrm{~V}$
Input Leakage Current Low	${ }^{\prime}$ LIL			-10	$\mu \mathrm{A}$	Ports A and $B, 17.0$ İÑ, RESET, BREAK, STEP, $\mathrm{A}_{\mathrm{CC}} / \mathrm{PC}, \mathrm{V}_{1}=-11 \mathrm{~V}$
				-10	$\mu \mathrm{A}$	Ports C and $\mathrm{D}, \mathrm{V}_{1}=-11 \mathrm{~V}$
Clock Input Leakage Hıgh	${ }^{\text {LobH }}$			+200	$\mu \mathrm{A}$	$C L_{0}$ Input, External Clock, $\mathrm{V}_{\mathrm{CH}}=\mathrm{oV}$
Clock Input Leakage Low	${ }^{1} \mathrm{~L}$ ¢ L			-200	$\mu \mathrm{A}$	CL_{O} Input, External Clock, $V_{\phi L}=-11 \mathrm{~V}$
Output High Voltage	$\mathrm{V}_{\mathrm{OH} 1}$			-10	v	Ports C to I, P_{10-0} $\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$
	${ }^{\mathrm{OH} 2}$			-2.3	v	Ports C to I, P10-0 $\mathrm{I}_{\mathrm{OH}}=-3.3 \mathrm{~mA}$
Output Leakage Current Low	'LOL			-30	$\mu \mathrm{A}$	$\begin{aligned} & \text { Ports } C \text { to } 1, P_{10-0} \\ & v_{0}=-11 \mathrm{~V} \end{aligned}$
Supply Current	'GG		-30	-50	mA	

AC CHARACTERISTICS $\quad T_{a}=-10^{\circ} \mathrm{C}+0+70^{\circ} \mathrm{C}, \mathrm{V}_{G G}=-10 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Frequency	f_{6}	150		440	KHz	
Clock Rise and Fall Times	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	0		03	$\mu \mathrm{s}$	
Clock Pulse Width High	${ }^{\mathrm{t}} \mathrm{c}_{\mathrm{W}} \mathrm{WH}$	05		56	$\mu \mathrm{s}$	
Clock Puise Width Low	${ }^{t_{\phi} \text { W }}$ WL	05		56	$\mu \mathrm{s}$	
Input Setup Time	${ }^{\text {I }}$ is			5	μs	
Input Hold Time	${ }_{\text {I }} \mathrm{H}$	0			$\mu \mathrm{s}$	
BREAK to STEP Interval	${ }^{\text {t }}$ BS	200			$\mu \mathrm{s}$	$f=400 \mathrm{KHz}, ~ " 1$ " Written
STEP to RUN Interval	${ }^{\text {t }}$ SB	200			$\mu \mathrm{s}$	$f=400 \mathrm{KHz}$, "1" Written
STEP Pulse Width	tws	30			$\mu \mathrm{s}$	$\mathrm{f}=400 \mathrm{KHz}$, "1" Written
BREAK to ACC Interval	${ }^{\text {t }} \mathrm{BA}$	200			$\mu \mathrm{s}$	$f=400 \mathrm{KHz}, ~ " 1 "$ Writen
$A_{\text {CC }} /$ PC Pulse Width	tWA	30			$\mu \mathrm{s}$	$\mathrm{f}=400 \mathrm{KHz}$, "1" Written
STEP to ACC Interval	${ }^{\text {t }}$ SA1	200			$\mu \mathrm{s}$	$f=400 \mathrm{KHz},{ }^{\text {, } 1 \text { " Written }}$
PC to STEP Overlap	${ }^{\text {t }}$ SA2			5	$\mu \mathrm{s}$	$\mathrm{f}=400 \mathrm{KHz},{ }^{\text {, }}$ " Written
PC to RUN Interval	${ }^{t} A B$	0			$\mu \mathrm{s}$	$\mathrm{f}=400 \mathrm{KHz}$, "1" Written
ACC/PC $\rightarrow \mathrm{P}_{10-0}$ Delay	${ }^{\text {t DAP1 }}$			15	$\mu \mathrm{s}$	$f=400 \mathrm{KHz}$, "1" Written
	tDAP2			15	$\mu \mathrm{s}$	$\mathrm{f}=400 \mathrm{KHz}$, "1" Written

CAPACITANCE $T_{a}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	C_{1}			15	pf	$f=1 \mathrm{MHz}$
Output Capacitance	C_{0}			15	pf	
Input/Output Capacitance	Cl_{10}			15	pf	

CLOCK WAVEFORM

Package Outlines

For information, see Package Outline Section 7.

Description

The μ PD7500 Series CMOS 4-Bit Single Chip Microcomputer Family is a broad product line of 16 individual devices designed to fulfill a wide variety of applications. The advanced 4th generation architecture includes all of the functional blocks necessary for a single chip controller, including an ALU, Accumulator, Program Memory (ROM), Data Memory (RAM), four General Purpose Registers, Stack Pointer, Program Status Word (PSW), 8-Bit Timer/Event Counter, Interrupt Controller, Display Controller/Driver, and 8-Bit Serial Interface. The instruction set maximizes the efficient utilization of fixed Program Memory space, and includes a variety of addressing, Table-Look-up, Logical, Single Bit Manipulation, vectored jump, and Condition Skip Instructions.
The μ PD7500 Series includes four different devices, the μ PD7501, μ PD7502, μ PD7503, and μ PD7514, capable of directly driving Liquid Crystal Displays with up to 167 -segment digits. The μ PD7508A, μ PD7528, μ PD7517, μ PD7538, μ PD7537, and μ PD7519 can directIy drive up to 35 V Vacuum Fluorescent Displays with up to 87 -segment digits, and the μ PD7519 can directly drive up to 35 V Vacuum Fluorescent Displays with up to 167 -segment digits.
All 16 devices are manufactured with a Silicon gate CMOS process, consuming only $900 \mu \mathrm{~A}$ max at 5 V , and only $400 \mu \mathrm{~A}$ max at 3 V . The HALT and STOP powerdown instructions can significantly reduce power consumption even further.
The flexibility and the wide variety of μ PD7500 Series devices available make the μ PD7500 series ideally suited for a wide range of battery-powered, solarpowered, and portable products, such as telecommunication devices, hand-held instruments and meters, automotive products, industrial controls, energy management systems, medical instruments, portable terminals, portable measuring devices, appliances, and consumer products.

Features

Advanced 4th Generation Architecture
Choice of 8 -Bit Program Memory (ROM) size:

- $1 \mathrm{~K}, 2 \mathrm{~K}, 4 \mathrm{~K}$ internal, or 8 K external bytes
\square Choice of 4-Bit Data Memory (RAM) size:
- 64, $96,128,208,224$, or 256 internal nibbles

RAM Stack
Four General Purpose Registers: D, E, H, and L

- Can address Data Memory and I/O ports
- Can be stored to or retrieved from Stack

Powerful Instruction Set

- From 58 to 110 instructions, including:
- Direct/indirect addressing
- Table Look-up
- RAM Stack Push/Pop
- Single byte subroutine calls
- RAM and I/O port single bit manipulation
- Accumulator and I/O port Logical operations
- $10 \mu \mathrm{~s}$ Instruction Cycle Time, typically

Extensive General Purpose I/O Capability

- One 4-Bit Input Port
- Two 4-Bit latched tri-state Output Ports
- Five 4-Bit input/latched tri-state Output Ports
- Easily expandable with μ PD82C43 CMOS I/O Expander
- 8-Bit Parallel I/O capability

Hardware Logic Blocks - Reduce Software Requirements

- Operation completely transparent to instruction execution
- 8-Bit Timer/Event Counter
- Binary-up counter generates INTT at coincidence
- Accurate Crystal Clock or External Event operation possible
- Vectored, Prioritized Interrupt Controller
- Three external interrupts ($\mathrm{INT}_{0}, \mathrm{INT}_{1}, \mathrm{INT}_{2}$)
- Two internal interrupts (INTT, INTS)
- Display Controller/Driver
- Complete Direct Drive and Control of Multiplexed LCD or Vacuum Fluorescent Display
- Display Data automatically multiplexed from RAM to dedicated segment/backplane/digit driver lines
- 8-Bit Serial Interface
- 3-line I/O configuration generates INTS upon transmission of eighth bit
- Ideal for distributed intelligence systems or communication with peripheral devices
- Complete operation possible in HALT and STOP power-down modes
Built-in System Clock Generator
Built-in Schmidt-Trigger RESET Circuitry
Single Power Supply, Variable from 2.7V to 5.5 V
Low Power Consumption Silicon Gate CMOS Technology
- $900 \mu \mathrm{~A}$ max at $5 \mathrm{~V}, 400 \mu \mathrm{~A}$ max at 3 V
- HALT, STOP Power-down instructions reduce power consumption to $20 \mu \mathrm{~A}$ max at 5 V , $10 \mu \mathrm{~A}$ at 3 V (Stop mode)
Extended $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Temperature Range Available
Choice of 28 -pin, 40 -pin, 42 -pin dual-in-line packages, or 52 -pin, 64 -pin, or 80 -pin flat plastic packages.

Instruction Set

The μ PD7500 Series Instruction Set consists of 110 powerful instructions designed to take full advantage of the advanced μ PD7500 architecture in your application. It is divided into two subsets, according to the complexity of the device.
Instruction Set " A " is available for the higherperformance μ PD7500 Series devices having either a $2 \mathrm{~K} \times 8$-bit or a $4 \mathrm{~K} \times 8$-bit Program Memory. It can be used with the μ PD7500, μ PD7502, μ PD7503, μ PD7507, μ PD7507S, μ PD7508, μ PD7508A, μ PD7519, μ PD7514, μ PD7527, μ PD7528, μ PD7537, and μ PD7538 products. Instruction Set " B " is available for the lower-cost μ PD7500 Series devices having a $1 \mathrm{~K} \times 8$-bit Program Memory. Its instructions are a compatible subset of Instruction Set "A," and can be used with the μ PD7500, μ PD7501, and μ PD7506 products.

Instruction Set Symbol Definitions

The following abbreviations are used in the description of the μ PD7500 Series Instruction sets:

μ PD7500 SERIES

Instruction Set "A"
For the μ PD7500, μ PD7502, μ PD7503, μ PD7507, μ PD7507S, μ PD7508, μ PD7508A, and μ PD7519 devices only

Mnemonic	Function	Description	Instruction Code									Bytes	Cycles	Sklp Condition
			D7	D6	D5	D4	D3	D2	D1	Do	HEX			
Load														
LADR addr	$A \leftarrow\left(D_{7-0)}\right.$	Load Accumulator from directly addressed RAM	$\begin{gathered} 0 \\ D_{7} \end{gathered}$	$\begin{gathered} 0 \\ D_{6} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{5} \end{gathered}$	$\begin{gathered} 1 \\ D_{4} \end{gathered}$	$\begin{gathered} 1 \\ D_{3} \end{gathered}$	$\begin{gathered} 0 \\ D_{2} \end{gathered}$	$\begin{gathered} 0 \\ D_{1} \end{gathered}$	$\begin{gathered} 0 \\ D_{0} \end{gathered}$	$\begin{gathered} 38 \\ 00-F F \end{gathered}$	2	2	
LAI data	$A \leftarrow D_{3-0}$	Load Accumulator with immediate data	0	0	0	1	D3	D_{2}	D1	D_{0}	10-1F	1	1	String
LAM rp	$\begin{aligned} & A-(r p) \\ & r p=D L, D E, H L-, H L+, H L \\ & \text { if } r p=H L-\text {, skıp if borrow } \\ & \text { if } r p=H L+\text { skip if overflow } \end{aligned}$	Load Accumulator from Memory, possible skip	0	1	0	D2	0	0	D1	Do	$\begin{aligned} & 40,41 \\ & 50-52 \end{aligned}$	1	$1+5$	See explanation of "rp" in symbol definitions
LAMT (μ PD7500, μ PD7502 only)	$\begin{aligned} & \text { ROM addr }=P^{\text {RO }} 10-6, \\ & 0, C, A_{3-0} \\ & \text { Aヶ[ROM addr] }]-4 \\ & (H L) \leftarrow[R O M \text { addr }]_{3-0} \end{aligned}$	Load Accumulator and Memory from Table	0	1	0	1	1	1	1	0	5E	1	2	
LAMTL (μ PD7500, μ PD7503, μ PD7507, μ PD7507S, μ PD7508, μ PD7508A, μ PD7519, only)	$\begin{aligned} & \text { ROM addr }=\text { PC }_{11-8}, \\ & \text { A3-0, }(\mathrm{HL})_{3-0} \\ & \text { A }-[\text { ROM addr }]_{7-4} \\ & (\mathrm{HL}) \leftarrow[\text { ROM addr }]_{3-0} \end{aligned}$	Load Accumulator and Memory from Table Long	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 3 F \\ & 34 \end{aligned}$	2	2	
LDEI data	$\begin{aligned} & D \leftarrow D_{7-4} \\ & E \leftarrow D_{3-0} \end{aligned}$	Load DE register pair with immediate data	$\begin{gathered} 0 \\ \mathrm{D}_{7} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{6} \end{gathered}$	$\begin{gathered} 0 \\ D_{5} \end{gathered}$	$\begin{gathered} 0 \\ D_{4} \end{gathered}$	$\begin{gathered} 1 \\ D_{3} \end{gathered}$	$\begin{gathered} 1 \\ D_{2} \end{gathered}$	$\begin{gathered} 1 \\ D_{1} \end{gathered}$	$\begin{gathered} 1 \\ \mathbf{D}_{0} \end{gathered}$	$\begin{gathered} 4 F \\ 00-F F \end{gathered}$	2	2	
LDI data	$D<\mathrm{D}_{3-0}$	Load D register with immediate data	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{gathered} 1 \\ \mathrm{D}_{3} \end{gathered}$	$\begin{gathered} 1 \\ D_{2} \end{gathered}$	$\begin{gathered} 1 \\ D_{1} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{D}_{0} \end{gathered}$	$\begin{gathered} 3 E \\ 20-2 F \end{gathered}$	2	2	
LEI data	$E \leftarrow \mathrm{D}_{3-0}$	Load E register with immediate data	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{gathered} 1 \\ \mathrm{D}_{3} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{2} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{1} \end{gathered}$	$\begin{gathered} 0 \\ D_{0} \end{gathered}$	$\begin{gathered} 3 E \\ 00-0 F \end{gathered}$	2	2	
LHI data	$\mathrm{H}-\mathrm{D}_{3} \mathbf{-}$	Load H register with immediate data	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 1 \\ D_{3} \end{gathered}$	$\begin{gathered} 1 \\ D_{2} \end{gathered}$	$\begin{gathered} 1 \\ D_{1} \end{gathered}$	$\begin{gathered} 0 \\ D_{0} \end{gathered}$	$\begin{gathered} 3 \mathrm{E} \\ 30-3 \mathrm{~F} \end{gathered}$	2	2	
LHLI data	$\begin{aligned} & \mathrm{H} \leftarrow \mathrm{D}_{7-4} \\ & \mathrm{~L} \leftarrow \mathrm{D}_{3-0} \end{aligned}$	Load HL register pair with immediate data	$\begin{gathered} 0 \\ D_{7} \end{gathered}$	$\begin{gathered} 1 \\ \mathbf{D}_{6} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{D}_{5} \end{gathered}$	$\begin{gathered} 0 \\ D_{4} \end{gathered}$	$\begin{gathered} 1 \\ D_{3} \end{gathered}$	$\begin{gathered} 1 \\ \mathbf{D}_{2} \end{gathered}$	$\begin{aligned} & 1 \\ & \mathbf{D}_{1} \end{aligned}$	$\begin{gathered} 0 \\ D_{0} \end{gathered}$	$\begin{gathered} 4 E \\ 00-F F \end{gathered}$	2	2	String
LHLT taddr	$\begin{aligned} & \text { ROM addr }=0 \mathrm{OCOH}+\mathrm{D}_{3-0} \\ & \mathrm{H} \leftarrow[\mathrm{ROM} \text { addr]7-4 } \\ & \mathrm{L}-[\mathrm{ROM} \text { addr }] 3-0 \end{aligned}$	Load HL register pair from ROM Table \qquad	1	1	0	0	D3	D2	D1	D_{0}	C0-CF	1	2	String
LLI data	L $-\mathrm{D}_{3-0}$	Load L register with immediate data	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 1 \\ D_{3} \end{gathered}$	$\begin{gathered} 1 \\ D_{2} \end{gathered}$	$\begin{gathered} 1 \\ D_{1} \end{gathered}$	$\begin{gathered} 0 \\ D_{0} \end{gathered}$	$\begin{gathered} 3 E \\ 10-1 F \end{gathered}$	2	2	
Store														
ST	(HL)-A	Store A to Memory	0	1	0	1	0	1	1	1	57	1	1	
Transfor														
TAD	D $-A$	Transfer A to D	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathbf{3 E} \\ & \mathbf{A A} \end{aligned}$	2	2	
TAE	$E \leftarrow A$	Transfer A to E	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{3 E} \\ & \mathbf{8 A} \\ & \hline \end{aligned}$	2	2	
TAH	$\mathrm{H} \leftarrow \mathrm{A}$	Transfer A to H	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 3 \mathrm{E} \\ & \mathrm{BA} \\ & \hline \end{aligned}$	2	2	
TAL	L-A	Transfer A to L	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 3 E \\ & 9 A \\ & \hline \end{aligned}$	2	2	
TDA	A-D	Transfer D to A	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 3 E \\ & \mathbf{A B} \\ & \hline \end{aligned}$	2	2	
TEA	AโE	Transfer E to A	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 E \\ & 8 B \end{aligned}$	2	2	
THA	A-H	Transfer H to A	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 3 E \\ & \mathrm{BB} \\ & \hline \end{aligned}$	2	2	
TLA	A-L	Transfer L to A	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 E \\ & 9 B \end{aligned}$	2	2	
Exchange														
XAD	$A \rightarrow D$	Exchange A with D	0	1	0	0	1	0	1	0	4A	1	1	
XADR addr	$A \rightarrow($ D-0)	Exchange A with directly addressed RAM	$\begin{gathered} 0 \\ \mathbf{D}_{7} \end{gathered}$	$\begin{gathered} 0 \\ D_{6} \end{gathered}$	$\begin{gathered} 1 \\ D_{5} \end{gathered}$	$\begin{gathered} 1 \\ D_{4} \end{gathered}$	$\begin{gathered} 1 \\ D_{3} \end{gathered}$	$\begin{gathered} 0 \\ D_{2} \end{gathered}$	$\begin{aligned} & 0 \\ & \mathrm{D}_{1} \end{aligned}$	$\begin{gathered} 1 \\ D_{0} \end{gathered}$	$\begin{gathered} 39 \\ 00-F F \end{gathered}$	2	2	
XAE	A -E	Exchange A with E	0	1	0	0	1	0	1	1	4B	1	1	
XAH	$A \leftrightarrow H$	Exchange A with H	0	1	1	1	1	0	1	0	7A	1	1	
XAL	$A \sim L$	Exchange A with L	0	1	1	1	1	0	1	1	78	1	1	
XAM rp	$\begin{aligned} & A \rightarrow(r p) \\ & r p=D L, D E, H L-, H L+, H L \\ & \text { if } r p=H L-\text {, skıp if borrow } \\ & \text { if } r p=H L+\text { skıp if overflow } \end{aligned}$	Exchange A with Memory, Possible Skip	0	1	0	D_{2}	0	1	D1	Do	$\begin{aligned} & 44,45 \\ & 54-56 \end{aligned}$	1	$1+5$	See explanation or "rp" in symbol definitions
XHDR addr	$H \rightarrow\left(D_{7-0}\right)$	Exchange H with directly addressed RAM	$\begin{gathered} 0 \\ \mathrm{D}_{7} \end{gathered}$	$\begin{gathered} 0 \\ D_{6} \end{gathered}$	$\begin{gathered} 1 \\ D_{5} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{4} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{3} \end{gathered}$	$\begin{gathered} 0 \\ D_{2} \end{gathered}$	$\begin{gathered} 1 \\ D_{1} \end{gathered}$	$\begin{gathered} 0 \\ D_{0} \end{gathered}$	$\begin{gathered} 3 A \\ 00-F F \end{gathered}$	2	2	
XLDR addr	L↔(D7-0)	Exchange L with directly addressed RAM	$\begin{gathered} 0 \\ D_{7} \end{gathered}$	$\begin{gathered} 0 \\ D_{6} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{5} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{4} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{3} \end{gathered}$	$\begin{gathered} 0 \\ D_{2} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{1} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{0} \end{gathered}$	$\begin{gathered} 3 \mathrm{~B} \\ 00-\mathrm{FF} \end{gathered}$	2	2	

Instruction Set "A" (Cont.)

For the μ PD7500, μ PD7502, μ PD7503, μ PD7507, μ PD7507S, μ PD7508, μ PD7508A, and μ PD7519 devices only

Instruction Set "A" (Cont.)

For the μ PD7500, μ PD7502, μ PD7503, μ PD7507, μ PD7507S, μ PD7508, μ PD7508A, and μ PD7519 devices only

Mnomonic	Function	Description	Instruction Code									Bytes	Cycles	Skip Condition
			D7	D6	D5	D4	D3	D2	D1	Do	HEX			
Branch														
CALL addr		Call subroutine	$\begin{gathered} 0 \\ \mathrm{D}_{7} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{D}_{6} \end{gathered}$	$\begin{aligned} & 1 \\ & D_{5} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{4} \end{aligned}$	$\begin{gathered} 0 \\ D_{3} \end{gathered}$	$\begin{aligned} & \mathrm{D}_{10} \\ & \mathrm{D}_{2} \end{aligned}$	$\begin{aligned} & \mathbf{D g}_{9} \\ & \mathbf{D}_{1} \end{aligned}$	$\begin{aligned} & \mathrm{D}_{8} \\ & \mathrm{D}_{0} \end{aligned}$	$\begin{aligned} & 30-37 \\ & \text { 00-FF } \end{aligned}$	2	2	
CALT addr		Call subroutine through ROM Table (single byte)	1	1	D5	D4	D3	D2	D1	D_{0}	D0-FF	1	2	
JAM data	$\begin{aligned} & \mathrm{PC}_{11-8}+\mathrm{D}_{3-0} \\ & \mathrm{PC}_{7-4+\mathrm{A}} \\ & \mathrm{PC}_{3-0}+(\mathrm{HL}) \\ & \hline \end{aligned}$	Vectored Jump on Accumulator and Memory	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 1 \\ \mathrm{D}_{3} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{2} \end{gathered}$	$\begin{gathered} 1 \\ D_{1} \end{gathered}$	$\begin{gathered} 1 \\ D_{0} \end{gathered}$	$\begin{gathered} 3 F \\ 10-1 F \end{gathered}$	2	2	
JCP addr	PC5-0 ${ }^{\text {- }}$ 5-0	Jump within current page	1	0	D5	D4	D3	D_{2}	D1	Do	80-BF	1	1	
JMP addr	PC $\mathbf{1 1 - 0}^{-D_{11-0}}$	Jump to specified address	$\begin{gathered} 0 \\ \mathrm{D}_{7} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{D}_{6} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{5} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ \mathbf{D}_{4} \end{gathered}$	$\begin{aligned} & \mathbf{D}_{11} \\ & D_{3} \end{aligned}$	$\begin{aligned} & D_{10} \\ & D_{2} \end{aligned}$	$\begin{aligned} & \mathrm{D}_{9} \\ & \mathrm{D}_{1} \end{aligned}$	$\begin{aligned} & \mathrm{D}_{8} \\ & \mathrm{D}_{0} \end{aligned}$	$\begin{aligned} & 20-2 F \\ & 00-\mathrm{FF} \end{aligned}$	2	2	
JuMPL addr	$\begin{aligned} & \text { BANK-D12 } \\ & \text { PC11.0-D11-0 } \end{aligned}$	Jump Long to specifled address		0 D_{6}	$\begin{gathered} 1 \\ 012 \\ 05 \\ \hline \end{gathered}$		$\begin{aligned} & 1 \\ & D_{11} \\ & D_{3} \end{aligned}$	$\begin{array}{r} 1 \\ \mathrm{D}_{10} \\ \mathrm{D}_{2} \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & 0_{9} \\ & \mathrm{D}_{1} \end{aligned}$	$\begin{aligned} & 1 \\ & D_{8} \\ & D_{0} \end{aligned}$	$3 F$ 00.0 00.0 F 20-2F 00.FI			
RT		Return from Subroutine	0	1	0	1	0	0	1	1	53	1	1	
RTPSW	$\begin{aligned} & \mathrm{PC}_{11-8}+(\mathrm{SP}) \\ & \mathrm{PSW} \div(\mathrm{SP}+1) \\ & \mathrm{PC}_{3-0}+(\mathrm{SP}+2) \\ & \mathrm{PC} 7-4 \div(\mathrm{SP}+3) \\ & \mathrm{SP} \div \mathrm{SP}^{2}+4 \end{aligned}$	Return from Subroutine and restore PSW	0	1	0	0	0	0	1	1	43	1	2	
RTS		Return from Subroutine; then skip next instruction	0	1	0	1	1	0	1	1	5B	1	$1+5$	Unconditional
Stack														
POPDE	$\begin{aligned} & \mathrm{E} \leftarrow(\mathrm{SP}) \\ & \mathrm{D} \leftarrow(\mathrm{SP}+1) \\ & \mathrm{SP} \leftarrow \mathrm{SP}+2 \end{aligned}$	Pop DE register pair off Stack	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 3 E \\ & 8 F \end{aligned}$	2	2	
POPHL	$\begin{aligned} & \mathrm{L}-(\mathrm{SP}) \\ & \mathrm{H}-(\mathrm{SP}+1) \\ & \mathrm{SP}+\mathrm{SP}+2 \end{aligned}$	Pop HL register pair off Stack	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 3 E \\ & 9 F \end{aligned}$	2	2				
PSHDE	$\begin{aligned} & (S P-1) \leftarrow D \\ & (S P-2)<E \\ & S P-S P-2 \end{aligned}$	Push DE register pair on Stack	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 3 \mathrm{E} \\ & 8 \mathrm{EE} \end{aligned}$	2	2	
PSHHL	$\begin{aligned} & (S P-1)-H \\ & (S P-2)+L \\ & S P-S P-2 \end{aligned}$	Push HL register pair on Stack	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 3 E \\ & 9 E \end{aligned}$	2	2				
TAMSP		Transfer Accumulator and Memory to Stack Pointer	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathbf{3 F} \\ & 31 \end{aligned}$	2	2	
TSPAM	$\begin{aligned} & \text { A-SP7-4 } \\ & \text { (HL)3-1-SP3-1 } \\ & \text { (HL) } 0^{*-0} \end{aligned}$	Transfer Stack Pointer to Accumulator and Memory \qquad	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3 F \\ & 35 \end{aligned}$	2	2	
Conditional Skip														
SKABT bit	$\begin{aligned} & \text { Skip if A }{ }_{\text {bit }}=1 \\ & \text { bit }=B_{1-0}(0-3) \end{aligned}$	Skip if Accumulator bit true	0	1	1	1	0	1	B_{1}	B_{0}	74-77	1	$1+5$	$A_{\text {bit }}=1$
SKAEI data	Skip if $A=D_{3-0}$	Skip if Accumulator equals immediate data	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & D_{3} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{D}_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & D_{1} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{0} \end{aligned}$	$\begin{gathered} 3 F \\ 60-6 F \end{gathered}$	2	$2+5$	$A=D_{3-0}$
SKAEM	Skip it $\mathrm{A}=(\mathrm{HL}$)	Skip if Accumulator equals Memory	0	1	0	1	1	1	1	1	5 F	1	1+S	$A=(\mathrm{HL})$
SKC	Skip if $\mathrm{C}=1$	Skip if Carry	0	1	0	1	1	0	1	0	5A	1	$1+5$	$C=1$
SKDEI data	Skip if $\mathrm{D}=\mathrm{D}_{3} \mathbf{0}$	Skıp if D equals immediate data	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{gathered} 1 \\ D_{3} \end{gathered}$	$\begin{aligned} & 1 \\ & D_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{1} \\ & \hline \end{aligned}$	$\begin{gathered} 0 \\ \mathrm{D}_{0} \end{gathered}$	$\begin{gathered} 3 E \\ 60-6 F \end{gathered}$	2	$2+5$	$D=D_{3-0}$
SKEEI data	Skip if $\mathbf{E}=\mathrm{D}_{\mathbf{3}-0}$	Skip if E equals immediate data	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{gathered} 1 \\ D_{3} \end{gathered}$	$\begin{gathered} 1 \\ \mathbf{D}_{2} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ D_{1} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{D}_{0} \end{gathered}$	$\begin{gathered} 3 \mathrm{EE} \\ 40-4 \mathrm{~F} \\ \hline \end{gathered}$	2	$2+5$	$E=D_{3-0}$
SKHEI data	Skip if $\mathrm{H}=\mathrm{D}_{3-0}$	Skip if H equals immediate data	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & D_{3} \end{aligned}$	$\begin{aligned} & 1 \\ & D_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & D_{1} \end{aligned}$	$\begin{gathered} 0 \\ D_{0} \end{gathered}$	$\begin{gathered} 3 E \\ 70-7 F \end{gathered}$	2	$2+5$	$\mathrm{H}=\mathrm{D}_{3-0}$

Instruction Set "A" (Cont.)
For the μ PD7500, μ PD7502, μ PD7503, μ PD7507, μ PD7507S, μ PD7508, μ PD7508A, and μ PD7519 devices only

Mnemonic	Function	Description	Instruction Code									Bytos	Cycles	Sklp Condition
			D7	D6	Ds	D_{4}	D3	D2	D1	Do	HEX			
Conditional skip (Cont.)														
SKLEI data	Skip if L = D $\mathbf{3 - 0}^{\text {- }}$	Skip if L equals immediate data	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{gathered} 1 \\ D_{3} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ \mathbf{D}_{2} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ D_{1} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ \mathbf{D O}_{0} \\ \hline \end{gathered}$	$\begin{gathered} 3 E \\ 50-5 F \end{gathered}$	2	$2+5$	$\mathrm{L}=\mathrm{D}_{3} \mathbf{- 0}$
SKMBF bit	$\begin{aligned} & \text { Skip if }(\mathrm{HL}) \text { bit }=0 \\ & \text { bit }=B_{1-0(0-3)} \end{aligned}$	Skip if Memory bit false	0	1	1	0	0	0	B_{1}	B_{0}	60-63	1	1+S	(HL) bit $=0$
SKMBT bit	$\begin{aligned} & \text { Skip if }(\mathrm{HL}) \text { bit }=1 \\ & \text { bit }=B_{1-0(0-3)} \end{aligned}$	Skip if Memory bit true	0	1	1	0	0	1	B1	B_{0}	64-67	1	$1+5$	(HL) bit $=1$
SKMEI	$\text { Sup } 1(M L)=\theta_{3-0}$	Sitp il Memon equats immediats deta		9		19	$\begin{aligned} & 1 / \\ & 09 \end{aligned}$	$\frac{1}{12}$	$\begin{aligned} & 4 \\ & 01 \\ & \hline \end{aligned}$	58	$\frac{35}{30.75}$			$74=0_{3} 0$
TimerlEvent Counter														
TAMMOD	$\begin{aligned} & \text { TMR7-4-A } \\ & \text { TMR3-0 }^{\text {TML }} \end{aligned}$	Transfer Accumulator and Memory to Timer Modulo Register	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1	$\begin{aligned} & \hline \mathbf{3 F} \\ & 3 F \end{aligned}$	2	2	
TCNTAM	$\begin{aligned} & \mathrm{A}-\mathrm{TCR} 7-4 \\ & (\mathrm{HL})-\mathrm{TCR}_{3-0} \end{aligned}$	Transfer Timer Count Register to Accumulator and Memory	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1	$\begin{aligned} & 3 F \\ & 3 \mathrm{~B} \end{aligned}$	2	2	
TIMER	$\begin{aligned} & \mathrm{TCR}_{7-0+0} \\ & \text { IRF }_{\mathrm{T}}=0 \\ & \hline \end{aligned}$	Start Timer	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 3 F \\ & 32 \end{aligned}$	2	2	
Interrupt Control														
DI data	$\begin{aligned} & \text { IME F/F } \leftarrow 0 \text { if data }=0 \\ & \text { IER }_{3-0}-1 \text { IER3-0 AND NOT } \\ & \text { D }_{3-0} \text { if data }<>0 \end{aligned}$	Disable Interrupt, Interrupt Master Enable F/F or specified	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & D_{3} \end{aligned}$	$\begin{aligned} & \hline 1 \\ & D_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & D_{1} \end{aligned}$	$\begin{aligned} & \hline 1 \\ & D_{0} \end{aligned}$	$\begin{gathered} 3 F \\ 80-8 F \end{gathered}$	2	2	
El data	$\begin{aligned} & \text { IME F/F }-1 \text { if data }=0 \\ & \text { IER }_{3 /-0^{\circ}-\text { IER }}^{3-0} \\ & \text { if data }<\gg 0 \end{aligned}$	Enable Interrupt, Interrupt Master Enable F/F or specified	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & D_{3} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{D}_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & D_{1} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{D}_{0} \end{aligned}$	$\begin{gathered} 3 F \\ 90-8 F \end{gathered}$	2	2	
SKI data	Skip if RFF $_{n}$ AND $\mathrm{D}_{3-0}<>0$ IRF $_{\mathbf{n}}-\mathrm{IRF}_{\mathrm{n}}$ AND NOT $\mathrm{D}_{3}-\mathbf{0}$	Skip if Interrupt Request Flag is true	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & D_{3} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{D}_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & D_{1} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{D}_{0} \end{aligned}$	$\begin{gathered} 3 F \\ 40-4 F \end{gathered}$	2	$2+5$	IRF ${ }_{\text {n }}=1$
Sorial Intorface														
SIO	$\begin{gathered} \hline \text { SIOCR }-0 \\ \text { IRF }_{\mathbf{0} / \mathrm{S}}+0 \\ \hline \end{gathered}$	Start Serial I/O Operation	$\begin{aligned} & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3F } \\ & 33 \\ & \hline \end{aligned}$	2	2	
TAMSIO	$\begin{aligned} & \text { SIO7-4-A } \\ & \text { SIO }_{3-0}+(\mathrm{HL}) \end{aligned}$	Transfer Accumulator and Memory to SI Shift Register	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 3 F \\ & 3 \mathrm{E} \end{aligned}$	2	2	
TSIOAM	$\begin{aligned} & \mathrm{A} \leftarrow \mathrm{SIO}_{-4}-4 \\ & (\mathrm{HL}) \leftarrow \mathrm{SIO}_{3-0} \end{aligned}$	Transfer SI Shift Register to Accumulator and Memory	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 3 F \\ & 3 A \end{aligned}$	2	2	
Paraliel IIO														
ANP data		AND output port latch with immediate data	$\begin{gathered} 0 \\ D_{3} \end{gathered}$	$\begin{aligned} & 1 \\ & \mathbf{D}_{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{D}_{1} \end{aligned}$	$\begin{gathered} \mathbf{0} \\ \mathbf{D}_{\mathbf{0}} \end{gathered}$	$\begin{aligned} & 1 \\ & P_{3} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{P}_{2} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{P}_{1} \end{aligned}$	$\begin{aligned} & 0 \\ & P_{0} \end{aligned}$	$\begin{gathered} 4 \mathrm{C} \\ 00-\mathrm{FF} \end{gathered}$	2	2	
IP port	A-P($\left.\mathrm{P}_{3}-0\right)$	Input from port, immediate address	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & P_{3} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & P_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & P_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & P_{0} \\ & \hline \end{aligned}$	$\begin{gathered} 3 F \\ c 0-C F \end{gathered}$	2	2	
IP1 (except μ PD7507S)	A-P(1)	Input from Port 1	0	1	1	1	0	0	0	1	71	1	1	
IP54	$\begin{aligned} & A-P(5) \\ & (H L) \div P(4) \end{aligned}$	Input Byte from Ports 5 and 4	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 3F } \\ & 38 \\ & \hline \end{aligned}$	2	2	
IPL	A $-\mathbf{P}$ (L)	Input from Port specified by L	0	1	1	1	0	0	0	0	70	1	1	
OP port	$\mathbf{P}\left(\mathrm{P}_{3}-0\right) \leftarrow \mathrm{A}$	Output to port, immediate address	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & P_{3} \end{aligned}$	$\begin{aligned} & 1 \\ & P_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{P}_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & P_{0} \\ & \hline \end{aligned}$	$\begin{gathered} 3 F \\ \text { EO-EF } \end{gathered}$	2	2	
OP3	$\mathbf{P}(\mathbf{3})-\mathbf{A}$	Output to Port 3	0	1	1	1	0	0	1	1	73	1	1	
OP54	$\begin{aligned} & P(5)-A \\ & P(4) \div(H L) \end{aligned}$	Output Byte to Ports 5 and 4	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 F \\ & 3 C \\ & \hline \end{aligned}$	2	2	
OPL	$\mathbf{P}(\mathrm{L})-\mathrm{A}$	Output to port specified by L	0	1	1	1	0	0	1	0	72	1	1	
ORP data	P(P3-0)-(P3-0) OR D3-0	OR output port latch with Immediate data	$\begin{gathered} 0 \\ \mathbf{D}_{3} \end{gathered}$	$\begin{aligned} & 1 \\ & \mathbf{D}_{2} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{D}_{1} \end{aligned}$	$\begin{gathered} 0 \\ \mathbf{D}_{0} \end{gathered}$	$\begin{aligned} & 1 \\ & P_{3} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{P}_{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{P}_{1} \end{aligned}$	$\begin{aligned} & 1 \\ & P_{0} \end{aligned}$	$\begin{gathered} 4 \mathrm{D} \\ 00-\mathrm{FF} \end{gathered}$	2	2	
APBL	uPD82CA3 yO Expander Port (L3-2) bit (41-0)-0	Reset Port Bit specified by L	0			1					$5 \mathrm{C}$			8
\qquad	uPD82C43 110 Expander Port $\left(L_{3-2}\right)$ bit $(1.1-0)-1$	$\begin{aligned} & \text { Ser Pott Bit } \\ & \text { specified by L } \end{aligned}$		1		1		1		1	50	1	1	
CPU Control														
HALT		Enter HALT Mode	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 3 F \\ & 36 \end{aligned}$	2	2	
NOP		No operation	0	0	0	0	0	0	0	0	00	1	1	
STOP		Enter STOP Mode	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 3F } \\ & 37 \\ & \hline \end{aligned}$	2	2	

μ PD7500 SERIES

Instruction Set "B"

For the μ PD7500, μ PD7501, and μ PD7506 devices only

Mnemonic	Function	Description	Instruction Code									Bytes	Cycles	Sklp Condition
			D7	D6	D5	D4	D3	D_{2}	D1	Do	HEX			
Load														
LADR addr	$A \leftarrow\left(D_{6-0}\right)$	Load Accumulator from directly addressed RAM	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ D_{6} \end{gathered}$	$\begin{gathered} 1 \\ D_{5} \end{gathered}$	$\begin{gathered} 1 \\ D_{4} \end{gathered}$	$\begin{gathered} 1 \\ D_{3} \end{gathered}$	$\begin{gathered} 0 \\ D_{2} \end{gathered}$	$\begin{gathered} 0 \\ D_{1} \end{gathered}$	$\begin{gathered} 0 \\ D_{0} \end{gathered}$	$\begin{gathered} 38 \\ 00-5 F \end{gathered}$	2	2	
LAI data	A- $\mathrm{D}_{3} \mathbf{0}$	Load Accumulator with immediate data	0	0	0	1	D3	D2	D1	D_{0}	10-1F	1	1	String
LAM rp	$\begin{aligned} & A \leftarrow(r p) \\ & r p=H L-, H L+, H L \\ & \text { if } r p=H L-\text {, skip if borrow } \\ & \text { if } r p=H L+\text { skip if overflow } \end{aligned}$	Load Accumulator from Memory, possible skıp	0	1	0	1	0	0	D1	D0	50-52	1	$1+5$	See explanation of "rp" in symbol definitions
LAMT	$\begin{aligned} & \text { ROM addr }=P^{\text {P }} 10-6, \\ & \quad 0, \mathrm{C}, \mathrm{~A}_{3-0} \\ & \text { A-[ROM addr }] 7-4 \\ & \text { (HL) }-[\text { ROM addr }] 3-0 \end{aligned}$	Load Accumulator and Memory from Table	0	1	0	1	1	1	1	0	5E	1	2	
lavte		Load Accumulator and Memory Irom Tabletiong	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 0 \\ 0 \end{array}$			$\begin{array}{r} 1 \\ 0 \end{array}$		$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{array}{r} 1 \\ 0 \end{array}$	$\begin{aligned} & 3 F \\ & 34 \end{aligned}$	2	$\text { F } 2$	
LHI data	$\begin{aligned} & H_{3}-0 \\ & H_{2-0}-D_{2-0} \end{aligned}$	Load H register with immediate data	0	0	1	0	1	D2	D1	Do	28-2F	1	1	
LHLI data	$\begin{aligned} & \mathrm{H}_{3}-1 \leftarrow 0 \\ & \mathrm{H}_{0} \leftarrow \mathrm{D}_{4} \\ & \mathrm{~L} \leftarrow \mathrm{D}_{3}-0 \end{aligned}$	Load HL register pair with immediate data	1	1	0	D4	D3	D2	D1	D_{0}	CO-DF	1	1	String
Store														
ST	(HL) - A	Store A to Memory	0	1	0	1	0	1	1	1	57	1	1	
STII data	$\begin{aligned} & (H L)-D_{3-0} \\ & L \leftarrow L+1 \end{aligned}$	Store immediate data and increment L	0	1	0	0	D_{3}	D_{2}	D1	Do	40-4F	1	1	
Exchange														
XADR addr	$A \rightarrow\left(D_{6-0}\right)$	Exchange A with directly addressed RAM	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ D_{6} \end{gathered}$	$\begin{gathered} 1 \\ \mathbf{D}_{5} \end{gathered}$	$\begin{gathered} 1 \\ D_{4} \end{gathered}$	$\begin{gathered} 1 \\ D_{3} \end{gathered}$	$\begin{gathered} 0 \\ D_{2} \end{gathered}$	$\begin{gathered} 0 \\ D_{1} \end{gathered}$	$\begin{gathered} 1 \\ \mathbf{D}_{0} \end{gathered}$	$\begin{gathered} 39 \\ 00-5 F \end{gathered}$	2	2	
XAH	$A \leftrightarrow H$	Exchange A with H	0	1	1	1	1	0	1	0	7A	1	1	
XAL	$A \leftrightarrow L$	Exchange A with L	0	1	1	1	1	0	1	1	7B	1	1	
XAM rp	```\(A \rightarrow(r p)\) \(\mathbf{r p}=\mathrm{HL}-, \mathrm{HL}+, \mathrm{HL}\) if \(\mathbf{r p}=\mathbf{H L}-\), skip if borrow if \(\mathrm{rp}=\mathrm{HL}+\), skip if overflow```	Exchange A with Memory, Possible Skip	0	1	0	1	0	1	D1	D_{0}	54-56	1	$1+5$	See explanation or "rp" in symbol defintions
XHDR addr	$H \rightarrow\left(D_{6-0}\right)$	Exchange H with directly addressed RAM	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ D_{6} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{5} \end{gathered}$	$\begin{gathered} 1 \\ D_{4} \end{gathered}$	$\begin{gathered} 1 \\ D_{3} \end{gathered}$	$\begin{gathered} 0 \\ D_{2} \end{gathered}$	$\begin{aligned} & 1 \\ & D_{1} \end{aligned}$	$\begin{gathered} 0 \\ D_{0} \end{gathered}$	$\begin{gathered} 3 A \\ 00-5 F \end{gathered}$	2	2	
XLDR addr	$L \rightarrow\left(D_{6-0}\right)$	Exchange L with directly addressed RAM	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ D_{6} \end{gathered}$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{D}_{5} \end{aligned}$	$\begin{gathered} 1 \\ D_{4} \end{gathered}$	$\begin{gathered} 1 \\ D_{3} \end{gathered}$	$\begin{gathered} \mathbf{0} \\ \mathrm{D}_{2} \end{gathered}$	$\begin{gathered} \mathbf{1} \\ \mathbf{D}_{1} \end{gathered}$	$\begin{gathered} 1 \\ D_{0} \end{gathered}$	$\begin{gathered} 3 \mathrm{~B} \\ 00-5 \mathrm{~F} \end{gathered}$	2	2	
Arithmetic														
ACSC	$A, C \leftarrow A \pm(H L)+C$ skip if carry	Add with carry; skip if carry	0	1	1	1	1	1	0	0	7 C	1	$1+5$	Carry = 1
AISC data	$A \leftarrow A+D_{3-0}$ skip if overflow	Add immediate; skip if overflow	0	0	0	0	D_{3}	D2	D1	D_{0}	00-0F	1	$1+5$	Overflow
ASC	$A \leftarrow A+(H L)$ skip if overflow	Add memory; skip if overflow	0	1	1	1	1	1	0	1	7 C	1	$1+5$	Carry $=1$
Logical														
ANL	A-A AND (HL)	AND Accumulator and Memory	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 3F } \\ & \text { B2 } \end{aligned}$	2	2	
EXL	A\&A XOR (HL)	Exclusive-Or Accumulator and Memory	0	1	1	1	1	1	1	0	7E	1	1	
ORL	A-A OR (HL)	OR Accumulator and Memory	$\begin{aligned} & \hline 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3F } \\ & \text { B6 } \\ & \hline \end{aligned}$	2	2	
Accumulator														
CMA	A-NOT A	Complement Accumulator	0	1	1	1	1	1	1	1	7F	1	1	
PAL	$\begin{aligned} & C-A_{3} \\ & A_{3}-A_{2} \\ & A_{2}-A_{1} \\ & A_{1}-A_{0} \\ & A_{0}-C \text { (old) } \end{aligned}$	Potate Accumulator lett through Carry	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			$\begin{array}{r} 1 \\ 0 \end{array}$				$\begin{aligned} & 3 \mathrm{~F} \\ & \mathrm{By} \end{aligned}$		2	
RAR	$\begin{aligned} & C-A_{0} \\ & A_{0}-A_{1} \\ & A_{1}-A_{2} \\ & A_{2}-A_{3} \\ & A_{3}-C \text { (old) } \end{aligned}$	Rotate Accumulator right through Carry	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { 3F } \\ & \text { B3 } \end{aligned}$	2	2	
Program Status Word														
RC	C-0	Reset Carry	0	1	1	1	1.	0	0	0	78	1	1	
SC	C-1	Set Carry	0	1	1	1	1	0	0	1	79	1	1	

Instruction Set "B" (Cont.)

For the μ PD7500, μ PD7501, and μ PD7506 devices only

Mnemonic	Function	Description	Instruction Code									Bytes	Cycles	Skip Condition
			D7	D6	D5	D4	D3	D_{2}	D1	Do	HEX			
Increment and Decrement														
DDRS addr	$\begin{aligned} & \left(D_{6-0}\right)+\left(D_{6-0}\right)-1 \\ & \text { skip if }\left(D_{6-0}\right)=F H \end{aligned}$	Decrement directly addressed RAM; skip if borrow	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ \mathrm{D}_{6} \end{gathered}$	$\begin{aligned} & 1 \\ & D_{5} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{4} \end{aligned}$	$\begin{aligned} & 1 \\ & D_{3} \end{aligned}$	$\begin{aligned} & 1 \\ & D_{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{D}_{1} \end{aligned}$	$\begin{gathered} 0 \\ D_{0} \end{gathered}$	$\underset{00-5 \mathrm{~F}}{3 \mathrm{C}}$	2	$2+5$	$\left(D_{6-0}\right)=\mathrm{FH}$
DLS	$\begin{aligned} & L-L-1 \\ & \text { skip if } L=F H \end{aligned}$	Decrement L; skip If borrow	0	1	0	1	1	0	0	0	58	1	$1+5$	$\mathbf{L}=\mathbf{F H}$
IDRS addr	$\begin{aligned} & \left(D_{6-0}\right)-\left(D_{6-0}\right)+1 \\ & \text { skip if }\left(D_{6-0}\right)=O H \end{aligned}$	Increment directly addressed; skip if overtiow	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ \mathrm{D}_{6} \end{gathered}$	$\begin{gathered} 1 \\ D_{5} \end{gathered}$	$\begin{aligned} & 1 \\ & D_{4} \end{aligned}$	$\begin{aligned} & 1 \\ & D_{3} \end{aligned}$	$\begin{aligned} & 1 \\ & D_{2} \end{aligned}$	$\begin{aligned} & 0 \\ & D_{1} \end{aligned}$	$\begin{aligned} & 1 \\ & D_{0} \end{aligned}$	$\begin{gathered} 3 D \\ 00.5 F \end{gathered}$	2	$2+5$	$\left(\mathrm{D}_{6-0}\right)=O \mathrm{H}$
ILS	$\begin{aligned} & L-L+1 \\ & \text { skip if } L=O H \end{aligned}$	Increment L; skip if overflow	0	1	0	1	1	0	0	1	59	1	$1+5$	$\mathrm{L}=\mathrm{OH}$
Bit Manlpulation														
RMB bit	$\begin{aligned} & (\mathrm{HL}) \text { bitto } \\ & \mathrm{bit}=\mathrm{B}_{1-0}(0-3) \end{aligned}$	Reset Memory bit	0	1	1	0	1	0	B1	B0	68-6B	1	1	
SMB bit	$\begin{aligned} & (H L) \text { bit }{ }^{-1} \\ & \text { bit }=B_{1-0}(0-3) \end{aligned}$	Set Memory bit	0	1	1	0	1	1	B1	B0	6C-6F	1	1	
Branch														
CALL addr		Call subroutine	$\begin{gathered} 0 \\ D_{7} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{D}_{6} \end{gathered}$	$\begin{gathered} 1 \\ D_{5} \end{gathered}$	$\begin{aligned} & 1 \\ & D_{4} \end{aligned}$	$\begin{aligned} & 0 \\ & D_{3} \end{aligned}$	$\begin{aligned} & \mathrm{D}_{10} \\ & \mathrm{D}_{2} \end{aligned}$	$\begin{aligned} & \hline D_{9} \\ & D_{1} \end{aligned}$	$\begin{aligned} & \hline \mathrm{D}_{8} \\ & \mathrm{D}_{0} \end{aligned}$	$\begin{aligned} & 30-37 \\ & 00-F F \end{aligned}$	2	2	
CAL addr		Call short to CAL address subrountine	1	1	1	D4	D3	D2	D1	D_{0}	E0-FF	1	2	
JAM data	$\begin{aligned} & \mathrm{PC}_{10-8}+\mathrm{D}_{2-0} \\ & \mathrm{PC}_{7-4+-A} \\ & \mathrm{PC}_{3-0-(\mathrm{HL}} \\ & \hline \end{aligned}$	Vectored Jump on Accumulator and Memory	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & D_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & D_{1} \end{aligned}$	$\begin{aligned} & 1 \\ & D_{0} \end{aligned}$	$\begin{gathered} 3 F \\ 10-17 \end{gathered}$	2	2	
JCP addr	PC5-0 - D5-0	Jump within current page	1	0	D5	D4	D3	D2	D1	Do	80-BF	1	1	
JMP addr	PC $\mathbf{1 0 - 0}^{-\mathrm{D}_{10-0}}$	Jump to specified address	$\begin{gathered} 0 \\ \mathrm{D}_{7} \end{gathered}$	$\begin{gathered} 0 \\ \mathbf{D}_{6} \end{gathered}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{5} \end{aligned}$	$\begin{gathered} 0 \\ \mathrm{D}_{4} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ \mathbf{D}_{3} \end{gathered}$	$\begin{gathered} D_{10} \\ D_{2} \\ \hline \end{gathered}$	$\begin{aligned} & \mathbf{D}_{9} \\ & \mathbf{D}_{1} \end{aligned}$	$\begin{aligned} & \mathbf{D}_{8} \\ & \mathbf{D}_{0} \end{aligned}$	$\begin{aligned} & 20-27 \\ & 00-\mathrm{FF} \\ & \hline \end{aligned}$	2	2	
mplader	$\begin{aligned} & \text { BANK-D12 } \\ & \text { PCi1-0-D110 } \end{aligned}$	tump lons to spoclled nadrez:		$\begin{aligned} & 0 \\ & 0 \\ & 98 \\ & 98 \end{aligned}$	$\begin{aligned} & \mathbf{p}_{12} \\ & \mathrm{p}_{12} \\ & \mathrm{D}_{5} \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & p_{4} \\ & \hline \end{aligned}$	$\begin{gathered} 1, \\ \text { Pry } \\ 54 \\ 58 \end{gathered}$	$\begin{aligned} & 1 \\ & D_{10} \\ & \mathrm{D}_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & 59 \\ & 0 \\ & 0_{1} \end{aligned}$	$\begin{array}{r} 19 \\ 188 \\ 0 \\ \hline 90 \end{array}$				
RT		Return from Subroutine	0	1	0	1	0	0	1	1	53	1	1	
RTS	$\begin{aligned} & \mathrm{PC}_{10-8-(S P)} \\ & \text { BANK-(SP }+1) \\ & \text { PC }_{3}-0-(S P+2) \\ & \text { PC }_{7-4-(5 P+3)} \\ & \text { SP }+ \text { SP }+4 \end{aligned}$ Skip unconditionally	Return from Subroutine; then skip next instruction	0	1	0	1	1	0	1	1	58	1	$1+5$	Unconditional
Stack														
TAMSP	$\begin{aligned} & \text { SP7-4-A } \\ & \text { SP3-1-(HL)3-1 } \\ & \text { SP } 0+0 \end{aligned}$	Transfer Accumulator and Memory to Stack Pointer	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3 F \\ & 31 \end{aligned}$	2	2	
ISpAM		Trunster Stwct Pointerto Alscimititior and Nemory				$\frac{7}{1}$					3F 35			
Conditional Skip														
SKABT bit	$\begin{aligned} & \text { Skip if } A_{\text {bit }}=1 \\ & \text { bit }=B_{1-0}(0-3) \end{aligned}$	Skip if Accumulator bit true	0	1	1	1	0	1	B1	B_{0}	74-77	1	1+S	$A_{\text {blt }}=1$
SKAEI data	Skip if $\mathbf{A}=\mathrm{D}_{\mathbf{3}-0}$	Skip if Accumulator equals immediate data	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{D}_{3} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{D}_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & D_{1} \end{aligned}$	$\begin{gathered} 1 \\ D_{0} \end{gathered}$	$\begin{gathered} 3 F \\ 60-6 F \end{gathered}$	2	$2+5$	$A=D_{3-0}$
SKAEM	Skip if $A=$ (HL)	Skip if Accumulator equals Memory	0	1	0	1	1	1	1	1	5 F	1	$1+5$	$A=(H L)$
SKC	Skip if $\mathbf{C}=1$	Skip if Carry	0	1	0	1	1	0	1	0	5A	1	$1+5$	$C=1$
SKLEI data	Skip if $\mathrm{L}=\mathrm{D}_{3-0}$	Skip if L equals immediate data	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{array}{r} 1 \\ 1 \\ \hline \end{array}$	$\begin{gathered} 1 \\ \mathrm{D}_{3} \end{gathered}$	$\begin{gathered} 1 \\ \mathbf{D}_{2} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ D_{1} \end{gathered}$	$\begin{gathered} 0 \\ \mathbf{D O}_{0} \\ \hline \end{gathered}$	$\begin{gathered} 3 E \\ 50-5 F \end{gathered}$	2	$2+5$	$L=D_{3-0}$
SKMBF bit	$\begin{aligned} & \text { Skip if }(H L \text {)bit }=0 \\ & \text { bit }=B_{1-0(0-3)} \end{aligned}$	Skip if Memory bit false	0	1	1	0	0	0	B_{1}	B_{0}	60-63	1	$1+5$	(HL) bit $=0$
SKMBT bit	$\begin{aligned} & \text { Skip if }(\mathrm{HL}) \text { bit }=1 \\ & \text { bit }=\mathrm{B}_{1-0(0-3)} \end{aligned}$	Skip if Memory bit true	0	1	1	0	0	1	B1	B_{0}	64-67	1	$1+5$	(HL) bit $^{\text {c }}$ (
SKMEI	$\text { skp } 11(11)=D_{3-0}$	Skip if Memory equals immediate data	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	1	$\frac{1}{1}$		$\begin{aligned} & 1 \\ & D_{3} \end{aligned}$	$\begin{aligned} & 1 \\ & 0_{2} \end{aligned}$	0_{1}	${ }^{51}$	$\begin{array}{r} 3 F \\ 70.75 \\ \hline \end{array}$	2	$2+5$	$(H L)=b_{3-0}$

μ PD7500 SERIES

Instruction Set "B" (Cont.)

For the μ PD7500, μ PD7501, and μ PD7506 devices only

Mnemonic	Function	Description	Instruction Code									Bytes	Cycles	Skip Condition
			D7	D6	D5	D4	D3	D2	D_{1}	D_{0}	HEX			
Timer/Event Counter														
TAMMOD	$\begin{aligned} & \text { TMR7-4-A } \\ & \text { TMR3-0 } \end{aligned}$	Transfer Accumulator and Memory to Timer Modulo Register	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathbf{3 F} \\ & \mathbf{3 F} \end{aligned}$	2	2						
TCNTAM (except μ PD7506)	$\begin{aligned} & \text { A-TCR7-4 } \\ & \text { (HL) }- \text { TCR }_{3-0} \end{aligned}$	Transfer Timer Count Register to Accumulator and Memory	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { 3F } \\ & 3 \mathrm{BB} \end{aligned}$	2	2	
TIMER	$\begin{aligned} & \mathrm{TCR}_{7-0^{+0}} \\ & \mathrm{IRF}_{\mathrm{T}}=0 \\ & \hline \end{aligned}$	Clear Timer Counter Register	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 3F } \\ & 32 \\ & \hline \end{aligned}$	2	2	
Interrupts														
SKI data	Skip if IRF ${ }_{n}$ AND D $\mathbf{D}_{3-0}<>0$ IRFn - IRF $_{n}$ AND NOT D_{3-0}	Skip if interrupt Request Flag is true	0	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{gathered} 1 \\ \mathrm{D}_{2} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{1} \end{gathered}$	$\begin{gathered} 1 \\ D_{0} \end{gathered}$	$\begin{gathered} 3 F \\ 40-47 \end{gathered}$	2	$2+5$	$\mathrm{IRF}_{\mathrm{n}}=1$
Serial Interface														
SIO (except μ PD7506)	$\begin{aligned} & \text { SIOCR }-0 \\ & \text { IRFO/S }-0 \\ & \hline \end{aligned}$	Start Serial I/O Operation	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3 F \\ & 33 \end{aligned}$	2	2	
TAMSIO (except μ PD7506)	$\begin{aligned} & \mathrm{SIO}_{7-4-A}-\mathrm{A} \\ & \mathrm{SIO}_{3-0 \div(\mathrm{HL})} \end{aligned}$	Transfer Accumulator and Memory to SIO Shift Register	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 3 F \\ & 3 E \end{aligned}$	2	2					
TSIOAM (except μ PD7506)	$\begin{aligned} & \text { A-SIO7-4 } \\ & \text { HL-SIO }-\mathrm{SIO}_{3} \end{aligned}$	Transfer SIO Shift Register to Accumulator and Memory	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 3F } \\ & \text { 3A } \end{aligned}$	2	2	
Parallel l10														
IP port	A-P(P3-0)	Input from port, immediate address	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & P_{3} \\ & \hline \end{aligned}$	$\begin{gathered} 1 \\ \mathbf{P}_{2} \end{gathered}$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{P}_{1} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{P}_{0} \end{aligned}$	$\begin{gathered} 3 \mathrm{~F} \\ \mathrm{CO}-\mathrm{CF} \end{gathered}$	2	2	
P1 1	A-(1)	Input from Port 1	0	1	1	1	0	0	0	1	71	1	1	
IP54	$\begin{aligned} & A-P(5) \\ & (H L)-P(4) \end{aligned}$	Input Byte from Ports 5 and 4	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathbf{3 F} \\ & 38 \\ & \hline \end{aligned}$	2	2	
IPL	A-P(L)	Input from Port specified by L	0	1	1	1	0	0	0	0	70	1	1	
OP port	P(P3-0)-A	Output to port, immediate address	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & P_{3} \end{aligned}$	$\begin{aligned} & 1 \\ & P_{2} \end{aligned}$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{P}_{1} \end{aligned}$	$\begin{aligned} & 1 \\ & P_{0} \\ & \hline \end{aligned}$	$\begin{gathered} 3 F \\ E 0-E F \end{gathered}$	2	2	
OP3 (except μ PD7506)	$P(3)-A$	Output to Port 3	0	1	1	1	0	0	1	1	73	1	1	
OP54	$\begin{aligned} & P(5)-A \\ & P(4)-(H L) \end{aligned}$	Output Byte to Ports 5 and 4	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3F } \\ & \text { 3C } \end{aligned}$	2	2	
OPL	$\mathrm{P}(\mathrm{L})-\mathrm{A}$	Output to port specified by L	0	1	1	1	0	0	1	0	72	1	1	
RPBL	upD82c43 10 Expander Pon (L3-2) bit (4-0) -0	Feset Port Bit Spectifed byl	0							\bigcirc				
SPBL	pPD日2C43 10 Expander Port (L3-2) bit (L. 1-0)- -1	Set Port Bit Specified by L	0		0	1	1	1	0	1	50			
CPU Control														
HALT		Enter HALT Mode	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 3 F \\ & 36 \end{aligned}$	2	2	
NOP		No operation	0	0	0	0	0	0	0	0	00	1	1	
STOP		Enter STOP Mode	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 F \\ & 37 \end{aligned}$	2	2	

Development Tools

For software development, editing, debugging, and assembly into object code, the NDS Development System, designed and manufactured by NEC Electronics U.S.A., Inc., is available. Additionally, for systems supporting either the ISIS-II (${ }^{\circledR}$ Intel Corp.), CP/M (® Digital Research Corp.) operating systems, or Fortran IV ANSI 1966 V3.9, the ASM75 CrossAssembler is available.
Once software development is complete, the code can be completely evaluated and debugged with hardware by the Evakit-7500 Evaluation Board. Available options include the Evakit-7500-LCD LCD driver board (for the μ PD7501, μ PD7502, and μ PD7503), Evakit-7500-VFD Vacuum Fluorescent Display driver board (for the μ PD7508A and μ PD7519), and the Evakit-7500-RTT Real Time Tracer. The SE-7502 System Emulation Board will emulate complete functionality of the
μ PD7501, μ PD7502, or μ PD7503 for demonstrating your final system design. The SE-7508 System Emulation Board will emulate complete functionality of the μ PD7506, μ PD7507, μ PD7507S, μ PD7508, or μ PD7508A for demonstrating your final system design. All of these boards take advantage of the capabilities of the μ PD7500 Rom-less evaluation chip to perform their tasks.
Complete operation details on any μ PD7500 Series CMOS 4-Bit Microcomputer can be found in the μ PD7500 Series CMOS 4-Bit Microcomputer Technical Manual.

Description

The μ PD7501 is a CMOS 4-bit single chip microcomputer which has the μ PD750x architecture.
The μ PD 7501 contains a 1024×8-bit ROM, and a $96 \times$ 4-bit RAM.
The μ PD7501 contains two 4-bit general purpose registers located outside RAM. The subroutine stack is implemented in RAM for greater nesting depth and flexibility, providing such operations as the pushing and popping of register values. The μ PD7501 typically executes 63 instructions of the μ PD7500 series "B" instruction set with a $10 \mu \mathrm{~s}$ instruction cycle time. The μ PD7501 has two external and two internal edgetriggered testable interrupts. It also contains an 8-bit timer/event counter and an 8-bit serial interface to help reduce software requirements. The on-board LCD controller/driver supervises all of the timing required by the 24 Port S segment drivers and the 4 Port COM backplane drivers, for either a 12 -digit 7 -segment quadriplexed LCD, or an 8-digit 7 -segment triplexed LCD. The μ PD7501 provides 24 I/O lines organized into the 4 -bit input/serial interface Port 0, the 4-bit input Port 1, the 4 -bit output Port 3 , and the 4 -bit I/O Ports 4, 5, and 6. It is manufactured with a low power consumption CMOS process, allowing the use of a single power supply between 2.7 V and 5.5 V . Current consumption is less than $900 \mu \mathrm{~A}$ maximum, and can be lowered much further in the HALT and STOP power-down modes. The μ PD7501 is available in a space-saving 64-pin flat plastic package.
The μ PD7501 is upward compatible with the μ PD7502 and the μ PD7503.

Pin Configuration

Pin Identification

Pin		Function
No.	Symbol	
1	NC	No connection.
2-4, 64	$\mathrm{P}_{3}-\mathrm{P}_{3}$	4-bit latched tri-state output Port 3 (active high).
5	$\mathrm{PO}_{3} / \mathrm{SI}$	4 -bit input Port 0/serial I/O interface (active high).
6 7 55	$\begin{aligned} & \mathrm{PO}_{2} / \mathrm{SO} \\ & \mathrm{PO}_{1} / \overline{\mathrm{SCK}} \\ & \mathrm{PO}_{0} / \mathrm{NT}_{1} \end{aligned}$	This port can be configured either as a parallel input port, or as the 8 -bit serial I/O Interface, under control of the serial mode select register. The Serial Input SI (active high), Serial Output SO (active low), and the Serial Clock SCK (active low) used for synchronizing data transfer, comprise the 8 -bit serial I/O interface. Line PO_{0} is always shared with external interrupt INT_{1}.
8-11	$\mathrm{P6}_{3} \mathbf{- P 6} 0$	4-bit input/latched tri-state output Port 6 (active high). Individual lines can be configured either as inputs or as outputs under control of the Port 6 mode select register.
12-15	$\mathrm{P5}_{3} \mathrm{P}^{-5_{0}}$	4 -bit input/latched tri-state output Port 5 (active high). Can also perform 8-bit parallel I/O in conjunction with Port 4.
16-19	$\mathrm{P4}_{3} \mathbf{- P 4}_{0}$	4 -bit input/latched tri-state output Port 4 (active high). Can also perform 8-bit parallel I/O in conjunction with Port 5.
20, 21	$\mathrm{X}_{2}, \mathrm{x}_{1}$	Crystal clock/external event input Port X (active high). A crystal oscillator circuit is connected to input X_{1} and output X_{2} for crystal clock operation. Alternatively, external event puises are connected to input X_{1} while output X_{2} is left open for external event counting.
22	$\mathbf{v}_{\text {SS }}$	Ground.
23-25	$\begin{aligned} & \mathrm{V}_{\mathrm{LCD}_{3}}, \mathrm{~V}_{\mathrm{LCD}_{2}} \\ & \mathrm{v}_{\mathrm{LCD}} \end{aligned}$	LCD blas voltage supply inputs to LCD voltage controlier. Apply appropriate voltages from a voltage ladder connected across $V_{D D}$.
26,58	$V_{\text {DD }}$	Power supply positive. Apply single voltage ranging from 2.7V to 5.5 V for proper operation.
27-30	$\mathrm{COM}_{3} \mathrm{COM}_{0}$	LCD backplane driver outputs.
31-54	$\mathbf{S}_{\mathbf{2 3}}-\mathrm{S}_{0}$	LCD segment driver outputs.
56	RESET	RESET input (active high). R/C circuit or puise initializes μ PD7501 after power-up.
57,59	$\mathrm{CL}_{1}, \mathrm{CL}_{2}$	System clock Input (active high). Connect $82 \mathrm{k} \Omega$ resistor across CL_{1} and CL_{2}, and connect 33 pF capacitor from CL_{1} to V_{SS}. Alternatively, an external clock source may be connected to CL_{1}, whereas CL_{2} is left open.
60-63	$\begin{aligned} & \mathrm{P1}_{3} \cdot{ }^{-P 1_{0}} \\ & \left(\mathrm{PI}_{0} / \mathrm{IN}_{0}\right) \end{aligned}$	4 -bit input Port 1 (active high). Line P_{10} is also shared with external interrupt NST_{0}.

Absolute Maximum Ratings*

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Operating Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature	-0.3 V to +7.0 V
Power Supply Voltage, V_{DD}	-0.3 V to $\mathrm{VDD}+\mathbf{0 . 3 \mathrm { V }}$
All Input and Output Voltages	$\mathrm{IOH}=-20 \mathrm{~mA}$
Output-Current (Total, All Output Ports)	$\mathrm{IOL}=30 \mathrm{~mA}$

*Comment: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Block Diagram

$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V

AC Characteristics

$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V

Parameter	Symbol	Limits			Unit	Test Conditions	
		Min	Typ	Max			
System Clock Oscillation Frequency	${ }^{\text {t }} \mathrm{Cc}$	120	200	280	KHz	$\begin{aligned} & R=82 \mathrm{k} \Omega \pm 2 \% \\ & C=33 \mathrm{pF} \pm 5 \% \end{aligned}$	$V_{D D}=5 \mathrm{~V} \pm 10 \%$
		60	100	130		R/C Clock ${ }_{\text {R }}=160 \mathrm{kQ} \pm 2 \%$	$V_{D D}=3 V_{ \pm} 10 \%$
		60		180		$\mathrm{C}=33 \mathrm{pF} \pm 5 \%$	$V_{\text {DD }}=2.7 \mathrm{~V}$ to 5.5 V
	${ }^{\text {t }} \mathrm{C}$	10	200	300		CL ${ }_{1}$, External Clock	$\mathrm{V}_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		10		135			$V_{D D}=2.7 \mathrm{~V}$ to 5.5 V
System Clock Rise and Fall Times	${ }^{\text {t }}$ CR, ${ }^{\text {t }}$ CF			0.2	$\mu \mathrm{s}$	CL ${ }_{1}$, External Clock	
System Clock Pulse Width	${ }^{\mathbf{t}} \mathrm{CH}^{\prime}{ }^{\text {t }} \mathrm{CL}$	1.5		50	μs	CL ${ }_{1}$, External Clock	$V_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		3.5		50			$V_{\text {DD }}=2.7 \mathrm{~V}$ to 5.5 V
Counter Clock Oscillation Frequency	${ }^{\text {f }} \mathrm{XX}$	25	32	50	KHz	$\mathrm{X}_{1}, \mathrm{X}_{2}$ Crystal Oscillator	
	${ }^{\text {f }} \mathrm{X}$	0		300		X_{1}, External Pulse Input	$\mathrm{V}_{\text {DD }}=5 \mathrm{~V} \pm \pm 10 \%$
		0		135			$\mathrm{V}_{\text {DD }}=2.7 \mathrm{~V}$ to 5.5 V
Counter Clock Rise and Fall Times	${ }^{\text {t }}$ XR,${ }^{\text {t }}$ KF			0.2	$\mu \mathrm{s}$	X_{1}, External Pulse Input	
Counter Clock Puise Width	${ }^{t} \mathbf{X H}_{\mathbf{H}}{ }^{\prime} \mathbf{x}_{\mathbf{L}}$	1.5			$\mu \mathbf{s}$	X_{1}, External Pulse Input	$V_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		3.5					$V_{\text {DD }}=2.7 \mathrm{~V}$ to 5.5 V
SCK Cycle Time	${ }^{\text {t }} \mathrm{KCY}$	4.0			$\mu \mathbf{s}$	SCK is an input	$V_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		7.0					$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V
		6.7				$\overline{\text { SCK }}$ is an output	$\mathrm{V}_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		14.0					$V_{\text {DD }}=2.7 \mathrm{~V}$ to 5.5 V
SCK Pulse Width	${ }^{\mathbf{t}} \mathbf{H}{ }^{\text {t }} \mathrm{K}_{\mathrm{L}}$	1.8			$\mu \mathrm{s}$	SCK is an input	$\mathrm{V}_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		3.3					$V_{\text {DD }}=2.7 \mathrm{v}$ to 5.5 V
		3.0				SCK is an output	$V_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		6.5					$V_{\text {DD }}=2.7 \mathrm{~V}$ to 5.5 V
SI Setup Time to $\overline{\text { SCK }} \uparrow$	${ }^{\text {t }}$ IIK	300			ns		
SI Hold Time after $\overline{\text { SCK }} \uparrow$	${ }^{\text {t KSI }}$	450			ns		
SO Delay Time after $\overline{\text { SCK }} \downarrow$	${ }^{\text {K KSO }}$			850	ns	$V_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$	
				1200		$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V	
NT_{0} Pulse Width	${ }^{t_{0}}{ }^{\text {H }}$, ${ }_{10 \mathrm{OL}}$	10			μs		
NNT_{1} Pulse Width	$t_{1}{ }_{1}, t_{1 / 1}$	2/f ${ }_{\text {d }}$			$\mu \mathrm{s}$		
RESET Pulse Width		10			$\mu \mathrm{s}$		
RESET Setup Time	${ }^{\text {t }}$ SRS	0			ns		
RESET Hold Time	${ }^{\text {thRS }}$	0			ns		

Capacitance

$\mathrm{T}_{\mathbf{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{OV}$

Paramotor	Symbol	Limits			Unit	Tost Condifitions
		MIn	Typ	Max		
Input Capacitance	c_{1}			15	pF	$\mathrm{f}=1 \mathrm{MHz}$
Output Capacitance	c_{0}			15	PF	Unmeasured pins
Input/Output Capacitance	$\mathrm{C}_{1 / \mathrm{O}}$			15	PF	returned to $\mathbf{V S S}_{\text {S }}$

Timing Waveforms

Clocks

Reset

Operating Characteristics

Typical, $\mathbf{T a}_{\mathbf{a}}=25^{\circ} \mathrm{C}$

Notes:

(1) Only R/C system clock is operating and consuming power. All other internal logic blocks are not active.
(2) Only crystal oscillator clock is operating and consuming power. All other internal logic blocks are not active.

Operating Characteristics (Cont.)

Typical, $\mathrm{T}_{\mathrm{a}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Recommended R and C Values for the System Clock Oscillator Circuit

Supply Voltage Range	Recommended Values		Frequency Range (kHz)		
Min Typ Max	R	c	Min	Typ	Max
$4.5 \mathrm{~V}<\mathrm{V}_{\text {DD }}<6 \mathrm{~V}$	$82 \mathrm{k} \Omega \pm \mathbf{2 \%}$	$\begin{gathered} 33 \mathrm{pF} \pm 5 \% \\ \left(\left\|\mathrm{dC} /{ }^{\circ} \mathrm{C}\right\|<60 \mathrm{ppm}\right) \end{gathered}$	150		250
$2.7 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<6 \mathrm{~V}$	$160 \mathrm{k} \Omega \pm 2 \%$	$\begin{gathered} 33 \mathrm{pF} \pm 5 \% \\ \left(\left\|\mathrm{dC} /{ }^{\circ} \mathrm{C}\right\|<60 \mathrm{ppm}\right) \end{gathered}$	75		135
$V_{\text {DD }}=3 V \pm 10 \%$	$160 \mathrm{k} \Omega \pm 2 \%$	$\begin{gathered} 33 \mathrm{pF} \pm 5 \% \\ \left(\left\|\mathrm{dC} /{ }^{\circ} \mathrm{C}\right\|<60 \mathrm{ppm}\right) \end{gathered}$	75		120
$2.5 \mathrm{~V}<\mathrm{V}_{\text {DD }}<6 \mathrm{~V}$	$240 \mathrm{k} \Omega \pm 2 \%$	$\begin{gathered} 33 \mathrm{pF} \pm 5 \% \\ \left(\left\|\mathrm{dC} /{ }^{\circ} \mathrm{C}\right\|<60 \mathrm{ppm}\right) \end{gathered}$	50		85
$2.5 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<3.3 \mathrm{~V}$	240k $\Omega \pm 2 \%$	$\begin{gathered} 33 \mathrm{pF} \pm 5 \% \\ \left(\left\|\mathrm{dC} /{ }^{\circ} \mathrm{C}\right\|<60 \mathrm{ppm}\right) \end{gathered}$	50		80

Package Outlines

For information, see Package Outline Section 7.
Plastic Miniflat, μ PD7501G

CMOS 4-BIT SINGLE CHIP MICROCOMPUTERS WITH LCD CONTROLLER/DRIVER

Description

The μ PD7502 and the μ PD7503 are pin-compatible CMOS 4-bit single chip microcomputers which have the same μ PD750x architecture.
The μ PD7502 contains a 2048×8-bit ROM, and a $128 \times$ 4-bit RAM. The μ PD 7503 contains a 4096×8-bit ROM, and a 224×4-bit RAM.
Both the μ PD7502 and the μ PD7503 contain four 4-bit general purpose registers located outside RAM. The subroutine stack is implemented in RAM for greater nesting depth and flexibility, providing such operations as the pushing and popping of register values. The μ PD7502 and the μ PD7503 typically execute 92 instructions of the μ PD7500 series " A " instruction set with a $10 \mu \mathrm{~s}$ instruction cycle time.
The μ PD7502 and the μ PD7503 have two external and two internal edge-triggered hardware vectored interrupts. They also contain an 8 -bit timer/event counter and an 8-bit serial interface to help reduce software requirements. The on-board LCD controller/driver supervises all of the timing required by the 24 Port S segment drivers and the 4 Port COM backplane drivers, for either a 12-digit 7-segment quadriplexed LCD, or an 8-digit 7-segment triplexed LCD.
Both the μ PD7502 and the μ PD7503 provide 23 I/O lines, organized into the 3-bit input/serial interface Port 0, the 4-bit input Port 1, the 4-bit output Port 3, and the 4-bit I/O Ports 4,5, and 6. They are manufactured with a low power consumption CMOS process, allowing the use of a single power supply between 2.7 V and 5.5 V . Current consumption is less than $900 \mu \mathrm{~A}$ maximum, and can be lowered much further in the HALT and STOP power-down modes. The μ PD7502 and the μ PD7503 are available in a space-saving 64-pin flat plastic package.
The μ PD7502 is downward compatible with the μ PD7501.

Pin Configuration

Pin Names

Pln No.	Symbol	Function
1	NC	No connection.
2-4, 64	$\mathrm{P3}_{3}-\mathrm{P}_{3}$	4-bit latched tristate output Port 3 (active high).
5	$\mathrm{PO}_{3} / \mathrm{SI}$	3-bit input Port 0/serial I/O interface (active high)
6 7	$\begin{aligned} & \mathrm{PO}_{2} / \mathrm{SO} \\ & \mathrm{PO}_{1} / \overline{\mathrm{SCK}} \end{aligned}$	This port can be configured either as a parallel input port, or as the 8 -bit serial I/O Interface, under control of the serial mode select register. The Serial Input SI (active high), Serial Output SO (active high), and the Serial Clock $\overline{\text { SCK }}$ (active low) used for synchronizing data transfer, comprise the 8-bit serial I/O interface
8-11	$\mathrm{P6}_{3}-\mathrm{P} 6_{0}$	4-bit input/latched tristate output Port 6 (active high). Individual lines can be configured either as inputs or as outputs under control of the Port 6 mode select register
12-15	$\mathrm{P5}_{3}-\mathrm{P5} 0$	4-bit input/latched tristate output Port 5 (active high). Can also perform 8-bit parallel I/O in conjunction with Port 4.
16-19	$\mathrm{P4}_{3}-\mathrm{P4}_{0}$	4-bit input/latched tristate output Port 4 (active high). Can also perform 8-bit parallel I/O in conjunction with Port 5
20,21	x_{2}, x_{1}	Crystal clock/external event input Port X (active high). A crystal oscillator circuit is connected to input X_{1} and output X_{2} for crystal clock operation. Alternatively, external event pulses are connected to input X_{1} while output X_{2} is left open for external event counting.
22	$V_{\text {SS }}$	Ground
23-25	$\begin{aligned} & {\mathrm{v} \mathrm{LCD}_{3},} \mathrm{v}_{\mathrm{LCD}_{2}} \\ & \mathrm{v}_{\mathrm{LCD}_{1}} \end{aligned}$	LCD bias voltage supply inputs to LCD voltage controller. Apply appropriate voltages from a voltage ladder connected across $V_{D D}$.
26, 58	VDD	Power supply positive Apply single voltage ranging from 2.7 V to 55 V for proper operation.
27-30	$\mathrm{COM}_{3}-\mathrm{COM}_{0}$	LCD backplane driver outputs.
31-54	$\mathrm{S}_{23}-\mathrm{S}_{0}$	LCD segment driver outputs.
55	INT_{1}	External Interrupt INT $_{1}$ (active high). This is a rising edgetriggered interrupt
56	RESET	RESET input (active high). R/C circuit or pulse initializes μ PD7502 or μ PD7503 after power-up.
57, 59	$\mathrm{CL}_{1}, \mathrm{CL}_{2}$	System clock input (active high). Connect $\mathbf{8 2 k} \Omega$ resistor across CL_{1} and CL_{2}, and connect 33 pF capacitor from CL_{1} to $\mathbf{V}_{\text {SS }}$. Alternatively, an external clock source may be connected to $C L_{1}$, whereas $C L_{2}$ is left open.
60-63	$\begin{aligned} & \mathrm{P}_{3}-\mathrm{P} 1_{0} \\ & \left(\mathrm{PI}_{0} / \mathrm{IN}_{0}\right) \end{aligned}$	4-bit input Port 1 (active high). Line $\mathrm{P1}_{0}$ is also shared with external interrupt INT_{0}, which is a rising edge-triggered interrupt.

Absolute Maximum Ratings*

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Operating Temperature	$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	-65
Power Su	-0.3
All Input and Output Voltages	0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Output-Current (Total, All Output Ports)	$1 \mathrm{OH}=-20 \mathrm{~mA}$
	$10 \mathrm{LL}=30 \mathrm{~mA}$
*Comment: Stress above those listed under "Absolute	
Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.	

Capacitance

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathbf{0 V}$

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Input Capacitance	C_{1}			15	pF	$f=1 \mathrm{MHz}$,
Output Capacitance	C_{0}			15	pF	Unmeasured pins
Input/Output Capacitance	$\mathrm{C}_{1 / \mathrm{O}}$			15	pF	returned to $\mathrm{V}_{\text {SS }}$

$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{VDD}=2.7$ to 5.5 V

AC Characteristics

$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V

Parameter	Symbol	Limits			Unit	Test Conditions	
		Min	Typ	Max			
System Clock Oscillation Frequency	${ }^{\text {f }}$ c	120	200	280	kHz	$\begin{aligned} & R=82 \mathrm{kQ} \pm 2 \% \\ & C=33 \mathrm{pF} \pm 5 \% \end{aligned}$	$V_{\text {DD }}=5 V_{ \pm} \mathbf{1 0 \%}$
		60	100	130		$\mathrm{CL}_{1}, \mathrm{CL}_{2} \mathrm{R}=160 \mathrm{kQ} \pm 2 \%$	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}_{ \pm} 10 \%$
		60		180		R/C Clock $\mathrm{C}=33 \mathrm{pF} \pm 5 \%$	$V_{\text {DD }}=2.7 \mathrm{~V}$ to 5.5V
	${ }^{\text {f }}$ c	10	200	300		CL_{1}, External Clock	$V_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		10		135			$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V
System Clock Rise and Fall Times	${ }^{\mathbf{t}}{ }^{\text {Pr, }}$ ' ${ }_{\mathbf{C F F}}$			0.2	$\mu \mathrm{s}$	CLi, External Clock	
System Clock Pulse Width	${ }^{\mathbf{t}} \mathbf{C H}^{\prime}, \mathbf{t} \mathbf{C L}$,	1.5		50	$\mu \mathrm{s}$	CLi, External Clock	$\mathrm{V}_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		3.5		50			$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V
Counter Clock Oscillation Frequency	$\mathrm{f}_{\mathrm{xx}}{ }^{-}$	25	32	50	kHz	$\mathrm{X}_{1}, \mathrm{X}_{2}$ Crystal Oscillator	
	${ }^{\text {f }}$	0		300		X_{1}, External Puise Input	$\mathrm{V}_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		0		135			$V_{D D}=2.7 \mathrm{~V}$ to 5.5 V
Counter Clock Rise and Fall Times	${ }^{\mathbf{t}} \mathbf{x},{ }^{\prime} \mathrm{t}_{\mathrm{xf}}$			0.2	μs	X_{1}, External Puise Input	
Counter Clock Puise Width	${ }^{\mathbf{t}} \mathbf{X H},{ }^{\text {t }}$ XL	1.5			$\mu \mathbf{s}$	X $\mathbf{1}^{\text {, External Puise Input }}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$
		3.5					$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V
SCK Cycle Time	${ }^{\mathbf{K}} \mathrm{KCY}$	4.0			μs	$\overline{\text { SCK }}$ is an input	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$
		7.0					$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5V
		6.7				SCK is an output	$\mathrm{V}_{\text {DD }}=5 \mathrm{~V} \mathrm{~V}_{ \pm} 10 \%$
		14.0					$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V
$\overline{\text { SCK }}$ Puise Width	${ }^{\mathbf{t} \mathbf{K H}, \mathbf{t}_{\mathbf{K L}}}$	1.8			μs	$\overline{\text { SCK }}$ is an input	$\mathrm{V}_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		3.3					$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{v}$ to 5.5 V
		3.0				$\overline{\text { SCK }}$ is an output	$\mathrm{V}_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		6.5					$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5V
SI Setup Time to SCK \uparrow	${ }^{\text {t }}$ SIK	300			ns		
SI Hold Time after SCK \uparrow	${ }_{\text {t }}$ KSI	450			ns		
SO Delay Time after SCK \downarrow	${ }^{\text {t KSO }}$			850	ns	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$	
			1200			$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V	
INT_{0} Pulse Width	${ }^{\mathrm{t}_{\mathbf{O H}}{ }^{\text {, }} \mathrm{IO}_{\mathrm{OL}}}$	10			μs		
INT_{1} Pulse Width		2/f ${ }_{\text {¢ }}$			μs		
RESET Pulse Width	${ }^{\mathbf{t} R S^{\prime}{ }^{\text {t }} \text { RS }}$	10			$\mu \mathrm{s}$		

Timing Waveforms

Clocks

Reset

Data Retention Mode

Operating Characteristics

Typical, $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Notes:
(1) Only R/C system clock is operating and consumıng power. All other internal logic blocks are not active.
(2) Only crystal oscillator clock is operating and consuming power. All other internal logic blocks are not active.

Operating Characteristics (Cont.)

Typical, $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

System Clock Oscillation Frequency $\stackrel{\text { VS }}{\text { Supply Voltage }}$

Package Outlines

For information, see Package Outline Section 7.
Plastic Miniflat, μ PD7502G/03G

Description

The μ PD7506 is a CMOS 4-bit single chip microcomputer which has the μ PD750x architecture.
The μ PD7506 contains a 1024×8-bit ROM, and a $64 \times$ 4-bit RAM.
The μ PD7506 contains two 4-bit general purpose registers located outside RAM. The subroutine stack is implemented in RAM for greater nesting depth and flexibility, providing such operations as the pushing and popping of register values. The μ PD7506 typically executes 58 instructions of the μ PD7500 series " B " instruction set with a $10 \mu \mathrm{~s}$ instruction cycle time.
The μ PD7506 has one external and one internal edgetriggered testable interrupts. It also contains an 8-bit timer/event counter to help reduce software requirements.
The μ PD7506 provides 22 I/O lines, organized into the 2 -bit input Port 0, the 4 -bit output Port 2, and the 4 -bit I/O Ports $1,4,5$, and 6 . It is manufactured with a low power consumption CMOS process, allowing the use of a single power supply between 2.7 V and 5.5 V . Current consumption is less than $600 \mu \mathrm{~A}$ maximum, and can be lowered much further in the HALT and STOP powerdown modes. The μ PD7506 is available either in a 28 -pin dual-in-line plastic package, or in a space-saving 52-pin flat plastic package.
The μ PD7506 is upward compatible with the μ PD7507 and the μ PD7507S.

Pin Configuration

Pin Configuration (Cont.)

Pin Names

28-Pin DIP	52-Pin Flat	Symbol	Function
1, 25-27	24, 29, 30, 34	$\mathrm{P}_{4} \mathrm{O}_{-} \mathrm{PH}_{3}$	4-bit input/latched tristate output Port 4 (active high). Can also perform 8 -bit parallel I/O in conJunction with Port 5.
2, 3	36,41	$\mathrm{X}_{2}, \mathrm{PO}_{3} / \mathrm{X}_{1}$	Crystal clock/external event input Port X (active high). A crystal oscillator circuit is connected to input X_{1} and output X_{2} for crystal clock operation. Alternatively, external event pulses are connected to input X_{1} while output X_{2} is left open for external event counting. Line X_{1} is always shared with Port 0 input PO_{3}.
4-7	42-45	$\begin{aligned} & \mathrm{P}_{2}-\mathrm{P}_{2} \\ & \mathrm{P}_{2} / \mathrm{P}_{\mathrm{STB}} \\ & \mathrm{P}_{1} / \mathrm{P}_{\mathrm{T}_{\text {OUT }}} \end{aligned}$	4-bit latched tristate output Port 2 (active high). Line $\mathbf{P 2}_{0}$ is also shared with P $\overline{\text { STB }}$, the Port 1 output strobe puise (active low). Line $\mathbf{P 2}_{1}$ is also shared with $\mathrm{P}_{\mathbf{T}_{\text {OUT }}}$, the timer-out F/F signal (active high).
8-11	47-50	$\mathrm{P6}_{0}-\mathrm{P6} 3$	4-bit input/latched tristate output Port 6 (active high). Individual lines can be configured either as inputs or as outputs under control of the Port 6 mode select register.
12, 13	3, 5	$\mathrm{CL}_{1}, \mathrm{CL}_{2}$	System clock input (active high). Connect 120k\& resistor across CL_{1} and $\mathrm{CL}_{\mathbf{2}}$. Alternatively, an external clock source may be connected to CL_{1}, whereas CL_{2} is left open.
14	7, 33	VDD	Power supply positive. Apply single voltage ranging from 2.7V to 5.5 V for proper operation.
15	8	RESET	RESET input (active high). R/C circult or puise Initializes μ PD7507 or μ PD7508 after power-up.
16-19	9-11, 16	$\mathrm{P1}_{0}-\mathrm{Pl}_{3}$	4-bit input/tristate output Port 1 (active high). Data output to Port 1 is strobed in synchronization with a $\mathrm{P}_{2} / \mathrm{P} \overline{\mathrm{STB}}$ pulse.
20-23	16-18, 21	$\mathrm{P5}_{0}-\mathrm{P5}_{3}$	4-blt input/latched tristate output Port 5 (active high). Can also perform 8-bit parallel I/O in conjunction with Port 4.
24, 3	23, 41	$\begin{aligned} & \mathrm{PO}_{0} / \mathrm{INT}_{0} \\ & \mathrm{PO}_{3} / \mathrm{X}_{1} \end{aligned}$	2-bit input Port $\mathbf{0}$ (active high). Line PO_{0} is always shared with external interrupt INT $_{0}$ (active high). Line PO_{3} is always shared with crystal clock/external event input X_{1} (active high).
28	31	$\mathbf{V}_{\mathbf{S S}}$	Ground.
-	$\begin{aligned} & 1,2,4,6 \\ & 12-15,19,20, \\ & 25-28,32, \\ & 35,37-40,46, \\ & 51,52 \end{aligned}$	NC	No connection.

Rev/2
51, 52

Block Dlagram

Absolute Maximum Ratings*
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Operating Temperature	$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Supply Voltage, VDD	-0.3 V to +7.0 V
All Input and Output Voltages	-0.3 V to $\mathrm{VDD}+0.3 \mathrm{~V}$
Output-Current (Total, All Output Ports)	$\mathrm{IOH}=-20 \mathrm{~mA}$

*Comment: Stress above those listed under "Absolute Maximum Ratings' may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Capacitance
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{VDD}=0 \mathrm{~V}$

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Input Capacitance	c_{1}			15		$t=1 \mathrm{MHz}$,
Output Capacitance	C_{0}			15	pF	Unmeasured pins returned to VSS $^{\text {* }}$
Input/Output Capacitance	$\mathrm{Cl}_{1 / \mathrm{O}}$			15		

DC Characteristics

$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{VDD}=\mathbf{2 . 7 V}$ to 5.5 V

Parameter	Symbol	Limits			Unit	Test Conditions		
		MIn	Typ	Max				
Input Voltage High	V_{IH}	$0.7 \mathrm{~V}_{\mathrm{DD}}$	V_{DD}		v	All Inputs Other than $\mathrm{CL}_{1}, \mathrm{X}_{1}$		
	$\mathrm{V}_{\mathrm{H}_{2}}$	$V_{\text {DD - } 0.5}$	$V_{\text {DD }}$			$\mathrm{CL}_{1}, \mathrm{X}_{1}$		
	$\mathrm{V}_{\text {IH }}{ }_{\text {DR }}$	$0.9 \mathrm{~V}_{\mathrm{DD}} \mathrm{DR}$	$\mathrm{V}_{\mathrm{DD}} \mathrm{DR}^{+0.2}$			RESET, Data Retention Mode		
Input Voltage Low	$V_{\text {IL }}$	0	$0.3 \mathrm{~V}_{\text {DD }}$		v	All Inputs Other than CL_{1}, X_{1}		
	$\mathrm{V}_{1 \mathrm{IL}_{2}}$	0	0.5			$C L L_{1}, X_{1}$		
Input Leakage Current High	${ }^{1} \mathrm{LI}_{\mathrm{H}}$			3	$\mu \mathrm{A}$	All inputs Other than $\mathrm{CL}_{1}, \mathrm{X}_{1}$	$\mathbf{V}_{1}=\mathrm{V}_{\mathrm{DD}}$	
	LIH_{2}			10		$\mathrm{CL}_{1}, \mathrm{X}_{1}$		
Input Leakage Current Low	${ }^{\text {L }} \mathrm{L}_{\mathrm{L}}$		-3		$\mu \mathrm{A}$	All Inputs Other than $\mathrm{CL}_{1}, \mathrm{X}_{1}$	$\mathrm{V}_{1}=0 \mathrm{~V}$	
	ILIL_{2}		-10^{\prime}			$\mathrm{CL}_{1}, \mathrm{X}_{1}$		
Output Voltage High	V_{OH}	$V_{D D}-1.0$			v	$V_{\text {DD }}=5 \mathrm{~V} \pm 10 \%, \mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$		
		$\mathrm{V}_{\mathrm{DD}}-0.5$				$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$		
Output Voltage Low	VOL	0.4			v	$V_{D D}=5 \mathrm{~V} \pm 10 \%, 10 \mathrm{~L}=1.6 \mathrm{~mA}$		
					$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=400 \mu \mathrm{~A}$			
Output Leakage Current High	${ }^{1} \mathrm{O}_{\mathrm{H}}$		3			$\mu \mathrm{A}$	$\mathrm{v}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}$	
Output Leakage Current Low	${ }^{\mathrm{L} \mathrm{O}_{\mathrm{L}}}$		-3		$\mu \mathrm{A}$	$\mathrm{v}_{0}=0 \mathrm{~V}$		
Supply Voltage	$\mathrm{V}_{\mathrm{DD}} \mathrm{DR}$	2.0			V	Data Retention Mode		
	${ }^{\prime} \mathrm{DD}_{1}$		200	600	$\mu \mathrm{A}$	Normal Operation	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$,	
							$V_{\text {DD }}=3 V_{ \pm} \mathbf{1 0 \%}$	
Supply Current	${ }^{\prime} \mathrm{DO}_{2}$		1	10		Stop Mode, $\mathrm{X}_{1}=\mathbf{O V}$	$V_{D D}=5 V_{ \pm}$10\%	
			0.3	5			$V_{D D}=3 V_{ \pm} 10 \%$	
	${ }^{\prime}{ }^{\text {D }}$ DR		0.3	5		Data Retention Mode	$\mathrm{V}_{\text {DD }}=2.0 \mathrm{~V}$	

AC Characteristics
$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{VDD}=2.7 \mathrm{~V}$ to 5.5 V

Paramotor	Symbol	Limits			Unit	Test Condilions	
		MIn	Typ	Max			
System Clock Osclilation Frequency	${ }^{\mathbf{t}} \mathbf{c}$	120	200	260	kHz	$\mathrm{R}=82 \mathrm{kQ} \pm \mathbf{2 \%}$	$\mathrm{V}_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		60	100	130		$\mathrm{CL}_{1}, \mathrm{CL}_{2} \quad \mathrm{R}=160 \mathrm{kQ} \pm \mathbf{2 \%}$	$V_{\text {DD }}=3 V_{ \pm} \pm 10 \%$
		60		180			$V_{\text {DD }}=2.7 \mathrm{~V}$ to 5.5 V
	${ }^{\text {c }}$	10	200	300		CL_{1}, External Clock	$V_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		10		135			$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V
System Clock Rise and Fall Times	${ }^{\text {t }}$ CR, ${ }^{\text {t }}$ CF			0.2	$\mu \mathrm{s}$	CL_, External Clock	
System Clock Pulse Width	${ }^{\mathbf{t}} \mathbf{C H},{ }^{\text {t }}$ CL	1.5		50	$\mu \mathrm{s}$	CL1, External Clock	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$
		3.5		50			$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V
Counter Clock Oscillation Frequency	${ }^{7} \mathrm{xx}$	25	32	50	kHz	$\mathrm{X}_{1}, \mathrm{X}_{2}$ Crystal Oscillator	
	${ }^{\text {f }}$	0		300		X_{1}, External Pulse Input	$\mathrm{V}_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		0		135			$V_{D D}=2.7 \mathrm{~V}$ to 5.5V
Counter Clock Rise and Fall Times	${ }^{\mathbf{t}} \mathbf{X R},{ }^{\text {, }}$ ' ${ }^{\prime}$			0.2	$\mu \mathrm{s}$	X_{1}, External Pulse Input	
Counter Clock Pulse Width	${ }^{\mathbf{t}} \mathbf{X H},{ }^{\text {t }}$ XL	1.5			$\mu \mathbf{3}$	\mathbf{X}_{1}, External Pulse Input	$V_{D D}=5 V_{ \pm}$10\%
		3.5					$V_{\text {DD }}=2.7 \mathrm{~V}$ to 5.5V
Port 1 Output Setup Time to P $\overline{\text { STB }}$ ¢	${ }^{\text {PPST }}$	1/(2f ${ }_{\phi} \mathbf{8 0 0}$)			ns	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$	
		1/(2f ${ }_{\phi}-2000$)				$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V	
Port 1 Output Hold Time after P $\overline{\text { STB }} \uparrow$	$\mathbf{t s T P}^{\text {ste }}$	300	350	500	ns	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$	
		300		1500		$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V	
P $\overline{\text { StB }}$ Pulse Width	${ }^{\text {t }} \mathrm{SW}_{\mathbf{L}}$	1/(2f ${ }_{\text {d }}$-800)			ns	$V_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$	
		1/(2f ${ }_{\phi}-2000$)				$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V	
NNT_{0} Pulse Width	${ }^{1} \mathrm{OH}$ ' ${ }^{1} \mathrm{OL}$	10			$\mu \mathrm{s}$		
RESET Pulse Width	${ }^{t} \mathrm{RS}_{\mathrm{H}} \mathrm{t}^{\mathbf{t} R S_{\mathrm{L}}}$	10			$\mu \mathrm{s}$		

μ PD7506

Timing Waveforms

Clocks

Output Strobe

Reset

Operating Characteristics

Typical, $\mathbf{T}_{\mathbf{a}}=25^{\circ} \mathrm{C}$

Notes:
(1) Only R/C system clock is operating and consuming power. All other internal logic blocks are not active.
(2) Only crystal oscillator clock is operating and consuming power. All other internal logic blocks are not active.

Package Outlines

For information, see Package Outline Section 7.
Plastic, μ PD7506C
Plastic Miniflat, μ PD7506G
Plastic Shrinkdip, μ PD7506CT

Notes

μ PD7507
 μ PD7508 CMOS 4-BIT SINGLE CHIP MICROCOMPUTERS

Description

The μ PD7507 and the μ PD7508 are pin-compatible CMOS 4-bit single chip microcomputers which have the same μ PD750x architecture.
The μ PD 7507 contains a 2048×8-bit ROM, and a $128 \times$ 4-bit RAM. The μ PD7508 contains a 4096×8-bit ROM, and a 224×4-bit RAM.
Both the μ PD7507 and the μ PD7508 contain four 4-bit general purpose registers located outside RAM. The subroutine stack is implemented in RAM for greater nesting depth and flexibility, providing such operations as the pushing and popping of register values. The μ PD7507 and the μ PD5708 typically execute 92 instructions of the μ PD7500 series " A " instruction set with a 10μ s instruction cycle time.
The μ PD7507 and the μ PD7508 have two external and two internal edge-triggered hardware vectored interrupts. They also contain an 8-bit timer/event counter and an 8 -bit serial interface to help reduce software requirements. Both the μ PD7507 and the μ PD7508 provide 32 I/O lines organized into the 4-bit input/serial interface Port 0, the 4-bit input Port 2, the 4-bit output Port 3, and the 4-bit I/O Ports 1, 4, 5, 6, and 7. They are manufactured with a low power consumption CMOS process, allowing the use of a single power supply between 2.7 V and 5.5 V . Current consumption is less than $900 \mu \mathrm{~A}$ maximum, and can be lowered much further in the HALT and STOP power-down modes. The μ PD7507 and the μ PD7508 are available in either a 40-pin dual-in-line plastic package or in a spacesaving 52-pin flat plastic package.
The μ PD7507 is downward compatible with the μ PD7506 and the μ PD7507S.

Pin Configuration

Pin Identification

$\begin{aligned} & \text { 40-Pin } \\ & \text { DIP } \end{aligned}$	52-Pin Flat	Symbol	Function
1,40	32, 34	$\mathrm{X}_{2}, \mathrm{X}_{1}$	Crystal clock/external event input Port X (active high). A crystal oscillator circuit is connected to input X_{1} and output X_{2} for crystal clock operation. Alternatively, external event puises are connected to input X_{1} while output X_{2} is left open for external event counting.
2-5	36-39	$\begin{aligned} & \mathrm{P}_{0}-\mathrm{P}_{3} \\ & \mathrm{P}_{0} / \mathrm{P}_{\mathrm{STB}} \\ & \mathrm{P}_{2} / \mathrm{P}_{\mathrm{T}} \\ & \text { OUT } \end{aligned}$	4-bit latched tri-state output Port 2 (active high). Line $\mathbf{P 2}_{0}$ is also shared with P STB, the Port 1 output strobe pulse (active low). Line P2 ${ }_{1}$ is also shared with $\mathrm{P}_{\text {TOUT }}$, the timer-out F/F signal (active high).
6-9	41-44	$\mathrm{P1}_{0}-\mathrm{Pl}_{3}$	4-bit input/tri-state output Port 1 (active high). Data output to Port 1 is strobed in synchronization with a $\mathrm{P}_{2} / \mathrm{P} \overline{\mathrm{STB}}$ pulse.
10-13	46-49	$\mathrm{P3}_{0}-\mathrm{P3}_{3}$	4-bit latched tri-state output Port 3 (active high).
14-17	50-52, 2	$\mathrm{P7}_{0}-\mathrm{P7}_{3}$	4-bit input/latched tri-state output Port 7 (active high).
18	3	RESET	RESET input (active high). R/C circuit or pulse initializes μ PD7507 or μ PD7508 after power-up.
19, 21	5,9	$\mathrm{CL}_{1}, \mathrm{CL}_{2}$	System clock input (active high). Connect 82ks resistor across CL_{1} and CL_{2}, and connect 33 pF capacitor from CL_{1} to $\mathrm{V}_{\mathbf{S S}}$. Alternatively, an external clock source may be connected to CL_{1}, whereas CL_{2} is left open.
20	7,33	VDD	Power supply positive. Apply single voltage ranging from 2.7 V to 5.5 V for proper operation.
22	10	$\mathbf{I N T}_{1}$	External Interrupt INT 1 (active high). This is a rising edge-triggered interrupt.
23-26	$\begin{aligned} & 11,12 \\ & 15,16 \end{aligned}$	$\begin{aligned} & \mathrm{PO}_{0} / \mathrm{NT}_{0} \\ & \mathrm{PO}_{1} / \overline{\mathrm{SCK}} \\ & \mathrm{PO}_{2} / \mathrm{SO} \\ & \mathrm{PO}_{3} / \mathrm{SI} \end{aligned}$	4-bit input Port 0/Serial I/O Interface (active high). This port can be configured either as a 4-bit parallel input port, or as the 8-bit serial $1 / 0$ interface, under control of the serial mode select register. The Serial Input SI (active high), Serial Output SO (active low), and the Serial Clock SCK (active low) used for synchronizing data transfer comprise the $\mathbf{8}$-bit serial I/O interface. Line $\mathbf{P O}_{\mathbf{0}}$ is always shared with external interrupt INT_{0} (active high) which is a rising edge-triggered interrupt.

Pin Identification (Cont.)

$\begin{aligned} & \text { 40-PIn } \\ & \text { DIP } \end{aligned}$	52-Pin Flat	Symbol	Function
27-30	17-20	$\mathbf{P} 6_{0}-\mathbf{P 6}_{3}$	4-bit input/latched tri-state output Port 6 (active high). Individual lines can be configured either as inputs or as outputs under control of the Port 6 mode select register.
31-34	21-24	$\mathrm{P5}_{0}-\mathrm{P} 5_{3}$	4-bit input/latched tri-state output Port 5 (active high). Can also perform 8-bit parallel I/O in conjunction with Port 4.
35-38	$\begin{aligned} & 25,26, \\ & 28,30 \end{aligned}$	$\mathrm{P4}_{0}-\mathrm{P4}_{3}$	4-bit input/latched tri-state output Port 4 (active high). Can also perform 8 -bit parallel I/O in conjunction with Port 5.
39	31	$v_{\text {SS }}$	Ground.
-	$\begin{aligned} & 1,4,6,8, \\ & 13,14,27,29, \\ & 35,40,45 \\ & \hline \end{aligned}$	NC	No connection.

Absolute Maximum Ratings*
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Operating Temperature	$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Supply Voltage, VDD	-0.3 V to +7.0 V
All Input and Output Voltages	-0.3 V to $\mathrm{VDD}+\mathbf{0 . 3 \mathrm { V }}$
Output-Current (Total, All Output Ports)	$1 \mathrm{OH}=-20 \mathrm{~mA}$
	$1 \mathrm{OL}=30 \mathrm{~mA}$

*Comment: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V

AC Characteristics

$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{VDD}=2.7 \mathrm{~V}$ to 5.5 V

Parameter	Symbol	Limits			Unit	Test Conditions		
		Min	Typ	Max				
System Clock Oscillation Frequency	${ }^{\text {f }} \mathbf{c}$	120	200	280	KHz		$\begin{aligned} & R=82, k Q \pm 2 \% \\ & C=33 \mathrm{pF} \pm 5 \% \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$
		60	100	130		$\mathrm{CL}_{1}, \mathrm{CL}_{2}$	$\mathrm{R}=160 \mathrm{k} \mathrm{I}_{ \pm}$2\%	$\mathrm{V}_{\text {DD }}=3 \mathrm{~V}_{ \pm} \mathbf{1 0 \%}$
		60		180			C = $33 \mathrm{pF} \pm 5 \%$	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V
	${ }^{\prime} \mathrm{C}$	10	200	300		$\mathbf{C L}_{1}$, External Clock		$V_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		10		135				$V_{\text {DD }}=2.7 \mathrm{~V}$ to 5.5 V
System Clock Rise and Fall Times	${ }^{\text {t }}$ CR, ${ }^{\text {t }}$ CF			0.2	$\mu \mathrm{s}$	CL1, Exter	al Clock	
System Clock Pulse Width	${ }^{\mathbf{T}} \mathbf{C H}, \mathbf{t} \mathbf{C L}$	1.5		50	$\mu \mathbf{5}$	CL1, External Clock		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		3.5		50				$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V
Counter Clock Oscillation Frequency	f_{xx}	25	32	50	KHz	$\mathrm{x}_{1}, \mathrm{x}_{2}$ Cry	tal Oscillator	
	${ }^{f} \mathrm{x}$	0		300		X_{1}, External Pulse Input		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		0		135				$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5V
Counter Clock Rise and Fall Times				0.2	μs	X_{1}, Extern	al Pulse Input	
Counter Clock Pulse Width	${ }^{\mathbf{t}} \mathbf{X H},{ }^{\mathbf{t}} \mathbf{X L}$	1.5			$\mu \mathbf{s}$	\mathbf{X}_{1}, External Puise Input		$V_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		3.5						$V_{\text {DD }}=2.7 \mathrm{~V}$ to 5.5V

Paramoter	Symbol	Lumis			Unit	Test Conditions	
		Min	Typ	Max			
$\overline{\text { SCK }}$ Cycle Time	${ }^{\mathbf{T}} \mathbf{K C Y}$	4.0			$\mu 8$	$\overline{\text { SCK }}$ is an input	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$
		7.0					$V_{D D}=2.7 \mathrm{~V}$ to 5.5 V
		6.7				$\overline{\text { SCK }}$ is an output	$\mathrm{V}_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		14.0					$V_{D D}=2.7 \mathrm{~V}$ to 5.5 V
SCK Puise Width	${ }^{\mathbf{t} \mathbf{K H}, \mathbf{t}_{\mathbf{K L}}}$	1.8			$\mu 8$	$\overline{\text { SCK }}$ is an input	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$
		3.3					$V_{\text {DD }}=2.7 \mathrm{~V}$ to 5.5 V
		3.0				$\overline{\text { SCK }}$ is an output	$V_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		6.5					$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V
SI Setup Time to SCK \dagger	${ }^{\text {t SIK }}$	300			ns		
SI Hold Time after $\overline{\text { SCK }} \uparrow$	$\mathbf{t}_{\text {KSI }}$	450			n8		
SO Delay Time after $\overline{\text { SCK }} \downarrow$	$\mathbf{t K S O}^{\text {O }}$			850	${ }^{\text {n }}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$	
				1200		$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V	
Port 1 Output Setup Time to $\mathbf{P}_{\text {STB }} \boldsymbol{T}$	${ }^{\text {tPST }}$	1/(2f \dagger^{-800})			n8	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$	
		1/(2f $\mathrm{f}_{\mathbf{L}}-2000$)				$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V	
Port 1 Output Hold Time after PsTE ${ }^{\text {P }}$	${ }^{\text {tstp }}$	300	350	500	ns	$V_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$	
		300		1500		$V_{\text {DD }}=2.7 \mathrm{~V}$ to 5.5 V	
PSTE Pulse Width	${ }^{\text {t }}{ }^{\text {W }}$ L	t/(2f $\left.{ }_{\text {d }}-\mathbf{8 0 0}\right)$			ns	$V_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$	
		f/(2f ${ }_{\text {¢ }}$-2000)				$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V	
INT_{0} Pulse Width	${ }^{t_{0}} \mathrm{OH}^{\prime}{ }^{\text {t }} \mathrm{OL}$	10			$\mu 8$		
INT_{1} Pulse Width	$t_{1} w_{H}, t_{1} w_{L}$	2/f ${ }_{\text {¢ }}$			$\mu 8$		
RESET Pulse Width		10			$\mu \mathrm{s}$		
RESET Setup Time	${ }^{\text {tsRS }}$	0			ns		
RESET Hoid Time	$t_{\text {HRS }}$	0			ns		

Capacitance

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}$

Parametor	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Input Capacitance	c_{1}			15	pF	$\mathrm{f}=1 \mathrm{MHz}$
Output Capacitance	C_{0}			15	pF	Unmeasured pins
Input/Output Capacitance	$c_{1 / 0}$			15		returned to $\mathbf{V}_{\mathbf{S S}}$

Block Dlagram

Timing Waveforms

Clocks

External Interrupts

Reset

μ PD750717508

Operating Characteristics
 (Typlcal, $\mathbf{T}_{\mathbf{a}}=25^{\circ} \mathrm{C}$)

Notes:
(1) Only R/C system clock is operating and consuming power. All other internal logic blocks are not active.
(2) Only crystal oscillator clock is operating and consuming power. All other internal logic blocks are not active.

Operating Characteristics (Cont.)

(Typical, $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$)

Package Outlines

For information, see Package Outline Section 7.
Plastic, μ PD7507C/08C
Plastic Miniflat, μ PD7507G/08G
Plastic Shrinkdip, μ PD7507CU μ PD7508CU

NOTES

Description

The μ PD7507S is a CMOS 4-bit single chip microcomputer which has the same μ PD750x architecture.
The μ PD7507S contains a 2048×8-bit ROM, and a 128 x 4-bit RAM.
The μ PD7507S contains two 4-bit general purpose registers located outside RAM. The subroutine stack is implemented in RAM for greater nesting depth and flexibility, providing such operations as the pushing and popping of register values. The μ PD7507S typically executes 91 instructions of the μ PD7500 series " A " instruction set with a $10 \mu \mathrm{~s}$ instruction cycle time.
The μ PD7507S has two external and two internal edgetriggered hardware vectored interrupts. It also contains an 8 -bit timer/event counter and an 8-bit serial interface to help reduce software requirements.
The μ PD7507S provides 20 I/O lines organized into the 4 -bit input/serial interface Port 0, the 4-bit output Port 2, the 4 -bit output Port 3 , and the 4 -bit I/O Ports 4 and 5. It is manufactured with a low power consumption CMOS process, allowing the use of a single power supply between 2.7 V and 5.5 V . Current consumption is less than $900 \mu \mathrm{~A}$ maximum, and can be lowered much further in the HALT and STOP power-down modes. The μ PD7507S is available in a 28 -pin dual-in-line plastic package.
The μ PD7507S is upward compatible with the μ PD7507, and downward compatible with the μ PD7506.

Pin Configuration

Pin Identification

Pin		Function
No.	Symbol	
1, 25-27	$\mathrm{P4}_{0}-\mathrm{P4}_{3}$	4-bit input/latched tri-state output Port 4 (active high). Can also perform 8-bit paraliel I/O in conjunction with Port 5.
2, 3	x_{2}, x_{1}	Crystal clock/external event input Port X (active high). A crystal oscillator circuit is connected to input X_{1} and output X_{2} for crystal clock operation. Alternatively, external event pulses are connected to input X_{1} while output X_{2} is left open for external event counting.
4-7	$\begin{aligned} & \mathrm{P}_{0}-\mathrm{P}_{3} \\ & \mathrm{P}_{1} / \mathrm{P}_{\mathrm{T}_{\text {OUT }}} \end{aligned}$	4-bit latched tri-state output Port 2 (active high). Line P21 is shared with $\mathrm{P}_{\mathbf{T}_{\text {OUT }}}$, the timer-out F/F signal (active high).
8-11	$\mathrm{P}_{3} \mathrm{O}_{-}-\mathrm{P}_{3}$	4-bit latched tri-state output Port 3 (active high).
12	RESET	RESET input (active high). R/C circult or pulse initializes μ PD7507 or μ PD7508 after power-up.
13, 15	$\mathrm{CL}_{1}, \mathrm{CL}_{2}$	System clock input (active high). Connect 82ks resistor across CL_{1} and CL_{2}, and connect 33pF capacitor from CL_{1} to $\mathbf{V}_{\text {SS }}$. Alternatively, an external clock source may be connected to CL_{1}, whereas CL_{2} is left open.
14	$V_{\text {DD }}$	Power supply positive. Apply single voltage ranging from 2.7V to 5.5 V for proper operation.
16	INT_{1}	External Interrupt $\operatorname{INT} T_{1}$ (active high). This is a rising edgetriggered interrupt.
17-20	$\begin{aligned} & \mathrm{PO}_{0} / \mathrm{INT}_{0} \\ & \mathrm{PO}_{1} / \overline{\mathrm{SCK}} \\ & \mathrm{PO}_{2} / \mathrm{SO} \\ & \mathrm{PO}_{3} / \mathrm{SI} \end{aligned}$	4-bit input Port 0/serial I/O interface (active high). This port can be configured either as a 4-bit parallel input port, or as the 8-bit serial I/O interface, under control of the serial mode select register. The Serial Input SI (active high), Serial Output SO (active low), and the Serial Clock SCK (active low) used for synchronizing data transfer comprise the 8-bit serial I/O interface. Line $\mathbf{P O}_{\mathbf{0}}$ is always shared with external interrupt INT $_{\mathbf{0}}$ (active high) which is a rising edge-triggered interrupt.
21-24	$\mathrm{P5}_{0}-\mathrm{P5}_{3}$	4-bit input/latched tri-state output Port 5 (active high). Can also perform 8-bit parallel I/O in conjunction with Port 4.
28	$\mathbf{V}_{\mathbf{S S}}$	Ground.

$\mathbf{T}_{\mathbf{a}}=25^{\circ} \mathrm{C}$	$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Operating Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature	-0.3 V to +7.0 V
Power Supply Voltage, V_{DD}	-0.3 V to $\mathrm{VDD}+0.3 \mathrm{~V}$
All Input and Output Voltages	$\mathrm{IOH}=-17 \mathrm{~mA}$
Output-Current (Total, All Output Ports)	$\mathrm{IOL}=-34 \mathrm{~mA}$

*Comment: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Block Dlagram

DC Characteristics

$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{VDD}=2.7 \mathrm{~V}$ to 5.5 V

Parametor	Symbol	Limits			Unit	Test Conditions		
		Min	Typ	Max				
Input Voltage High	$\mathbf{V}_{\mathbf{I H}}$	$0.7 \mathrm{~V}_{\mathrm{DD}}$	V_{DD}		v	All Inputs Other than $\mathrm{CL}_{1}, \mathrm{X}_{1}$		
	$\mathrm{V}_{\mathrm{HH}_{2}}$	$V_{D D-0.5}$	$V_{\text {D }}$			$\mathrm{CL}_{1}, \mathrm{X}_{1}$		
	$\mathrm{V}_{\mathrm{IH}_{\text {DR }}}$	$0.9 \mathrm{~V}_{\text {DD }}$	$\mathrm{V}_{\text {DD }} \mathrm{DR}+0.2$			RESET, Data Retention Mode		
Input Voltage Low	$\mathrm{V}_{\text {IL }}$	0		$\frac{0.3 V_{\text {DD }}}{0.5}$	v	All Inputs Other than $\mathrm{CL}_{1}, \mathrm{X}_{1}$		
	$\mathrm{V}_{1 \mathrm{IL}_{2}}$	0				$\mathrm{CL}_{1}, \mathrm{X}_{1}$		
Input Leakage Current High	${ }^{L_{L 1}}$		3		$\mu \mathrm{A}$	All inputs Other than $\mathrm{CL}_{1}, \mathrm{X}_{1}$$\mathrm{CL}_{1}, \mathrm{X}_{1}$	$\mathbf{V}_{1}=\mathbf{V}_{\text {D }}$	
	$\mathrm{V}_{\mathrm{LiH}_{2}}$		10					
Input Leakage Current Low	${ }_{\text {LIL }}$		-3		$\mu \mathrm{A}$	All Inputs Other than $\mathrm{CL}_{1}, \mathrm{X}_{1}$	$\mathrm{V}_{1}=0 \mathrm{~V}$	
	$\mathrm{V}_{\mathrm{LIL}_{2}}$		-10			$\mathrm{CL}_{1}, \mathrm{X}_{1}$		
Output Voltage High	V_{OH}	$\mathrm{V}_{\mathrm{DD}}-1.0$			v	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}_{ \pm} 10 \%, \mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$		
		$\mathrm{V}_{\mathrm{DD}}-0.5$						
Output Voltage Low	V_{OL}		0.4		V	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{l}_{\mathrm{OL}}=1.6 \mathrm{~mA}$		
			0.5			$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5V, $\mathrm{IOL}=400 \mu \mathrm{~A}$		
Output Leakage Current High	${ }^{1} \mathrm{LO}_{\mathrm{H}}$			3	$\mu \mathrm{A}$	$V_{O}=V_{\text {DD }}$		
Output Leakage Current Low	${ }_{\mathrm{L}} \mathrm{O}_{\mathrm{L}}$		-3		$\mu \mathrm{A}$	$\mathrm{V}_{0}=0 \mathrm{~V}$		
Supply Voltage	$\mathrm{V}_{\mathrm{DD}} \mathrm{DR}$	2.0			V	Data Retention Mode		
Supply Current	${ }^{\prime} \mathrm{DD}_{1}$		300		$\mu \mathrm{A}$	Normal Operation	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$	
			70				$V_{D D}=3 V_{ \pm} 10 \%$	
	${ }^{1} \mathrm{DD}_{2}$		1	20		Stop Mode, $\mathrm{X}_{1}=0 \mathrm{~V}$Data Retention Mode	$V_{\text {DD }}=5 V_{ \pm} 10 \%$	
			0.3	10			$V_{D D}=3 V_{ \pm} 10 \%$	
	${ }^{1} \mathrm{DD}_{\text {DR }}$	0.410					$\mathrm{V}_{\text {DD }} \mathrm{DR}=2.0 \mathrm{~V}$	

AC Characteristics

$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V

Paramotor	Symbol	Limits			Unlt	Tost Conditions	
		Min	Typ	Max			
System Clock Oscillation Frequency	${ }^{\text {t }} \mathbf{c}$	150	200	240	KHz	$\begin{aligned} & R=82 \mathrm{kQ} \pm 2 \% \\ & C=33 \mathrm{pF} \pm 5 \% \end{aligned}$	$V_{D D}=5 \mathrm{~V} \pm 10 \%$
		75	100	120		R/C Clock $\mathrm{R}=160 \mathrm{kQ} \pm 2 \%$	$V_{\text {DD }}=3 V_{ \pm} \pm 10 \%$
		75		135			$V_{D D}=2.7 \mathrm{~V}$ to 5.5 V
	t_{c}	10	200	300		CL ${ }_{1}$, External Clock	$V_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		10		135			$V_{D D}=2.7 \mathrm{~V}$ to 5.5 V
System Clock Rise and Fall Times	${ }^{\text {t }}$ CR, $\mathrm{t}_{\text {CF }}$			0.2	$\mu \mathrm{s}$	CL ${ }_{1}$, External Clock	
System Clock Pulse Width	${ }^{\mathbf{t}} \mathbf{C H},{ }^{\text {t }}$ CL	1.1		50	$\mu 3$	CLi, External Clock	$V_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		3.5		50			$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V
Counter Clock Oscillation Frequency	${ }^{\text {fxx }}$	20	32	50	KHz	$\mathrm{X}_{1}, \mathrm{X}_{2}$ Crystal Oscillator	
	${ }^{\text {f }}$ x	0		300		X_{1}, External Pulse Input	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$
		0		135			$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5V
Counter Clock Rise and Fall Times				0.2	$\mu 8$	X_{1}, External Pulse Input	
Counter Clock Pulse Width	${ }^{\mathbf{x}} \mathbf{x},{ }^{\text {, }}$ tiL	1.5			$\mu 5$	X_{1}, External Puise Input	$V_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		3.5					$V_{\text {DD }}=2.7 \mathrm{~V}$ to 5.5 V
$\overline{\text { SCK }}$ Cycle Time	${ }^{\mathbf{t} \mathbf{K C Y}}$	4.0			$\mu \mathbf{s}$	SCK is an input	$\mathrm{V}_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		7.0					$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5V
		6.7				SCK is an output	$\mathrm{V}_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		14.0					$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5V
$\overline{\text { SCK }}$ Puise Width	${ }^{\mathbf{T}} \mathbf{K H},{ }^{\text {t }}$ KL	1.3			μs	SCK is an input	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$
		3.3					$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5V
		2.2				$\overline{\text { SCK }}$ is an output	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$
		6.5					$V_{D D}=2.7 \mathrm{~V}$ to 5.5V
SI Setup Time to $\overline{\text { SCKt }}$	${ }^{\text {S SIK }}$	300			ns		
SI Hold Time after $\overline{\mathbf{S C K}} \uparrow$	${ }^{\text {t KSI }}$	450			ns		
SO Delay Time after $\overline{\text { SCK }}$	${ }^{\mathbf{t} \mathbf{K S O}}$			850	ns	$V_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$	
				1200		$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V	
NT_{0} Pulse Width	${ }^{1} \mathrm{OH}^{\prime}{ }^{1} \mathrm{OL}$	10			$\mu 8$		
NT_{1} Pulse Width	${ }^{t_{1} H^{\prime} t_{1 L}}$	$2 /{ }_{\text {c }}$			μ		
RESET Pulse Width	${ }^{\mathbf{t} \mathrm{RS}_{H},{ }^{\text {tr }} \text { RS }}$	10			$\mu 8$		
RESET Setup Time	${ }^{\text {t }}$ SRS	0			ns		
RESET Hold Time	thas	0			ns		

μ PD7507S

Capacitance

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{OV}$

Parameter	Symbol	Limits			Unit	Test Condtitions
		Min	Typ	Max		
Input Capacitance	c_{1}			15	pF	$f=1 \mathrm{MHz}$
Output Capacitance	c_{0}			15	pF	Unmeasured pins
Input/Output Capacitance	$\mathrm{C}_{1 / 0}$			15	PF	returned to $\mathbf{V}_{\mathbf{S S}}$

Timing Waveforms

Clocks

External Interrupts

Operating Characteristics
 (Typical, $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$)

Notes:

(1) Only R/C system clock is operating and consuming power. All other internal logic blocks are not active.

Only crystal oscillator clock is operating and consuming power. All other internal logic blocks are not active.

Package Outlines

For information, see Package Outline Section 7.
Plastic, μ PD7507SC
Plastic Shrinkdip, μ PD7507SCT

Descriptlon

The μ PD7508A is a CMOS 4-bit single chip microcomputer which has the μ PD750x architecture. It is identical to the μ PD7508, except for a slightly smaller RAM, and 16 lines of vacuum fluorescent display drive capability. The μ PD7508A contains a 4096×8-bit ROM, and a 208 $\times 4$-bit RAM.
The μ PD7508A contains four 4-bit general purpose registers located outside RAM. The subroutine stack is implemented in RAM for greater nesting depth and flexibility, providing such operations as the pushing and popping of register values. The μ PD7508A typically executes 92 instructions of the μ PD7500 series "A" instruction set with a $10 \mu \mathrm{~s}$ instruction cycle time.
The μ PD7508A has two external and two internal edgetriggered hardware vectored interrupts. It also contains an 8-bit timer/event counter and an 8 -bit serial interface to help reduce software requirements.
The μ PD7508A provides 32 I/O lines organized into the 4-bit input/serial interface Port 0, the 4-bit output Port 2, the 4-bit output Port 3, and the 4-bit I/O Ports 1, 4, 5, 6, and 7. Ports $3,4,5$, and 6 are capable of being pulled to -35 V in order to drive vacuum fluorescent displays directly. It is manufactured with a low power consumption CMOS process, allowing the use of a single power supply between 2.7 V and 5.5 V . Current consumption is less than $900 \mu \mathrm{~A}$ maximum, and can be lowered much further in the HALT and STOP power-down modes. The μ PD7508A is available in a 40-pin dual-in-line plastic package.

Pin Configuration

Pin Names

40-Pin DIP	Symbol	Function
1,40	x_{2}, x_{1}	Crystal clock external event input Port X (active high). A crystal oscillator circuit is connected to input X_{1} and output X_{2} for crystal clock operation. Alternatively, external event pulses are connected to input X_{1} while output X_{2} is left open for external event counting.
2-5		4-bit latched tristate output Port 2 (active high). Line $\mathrm{P2}_{0}$ is also shared with PSTB, the Port 1 output strobe pulse (active low). Line $\mathbf{P}_{1}{ }_{1}$ is also shared with $\mathrm{P}_{\mathbf{T}_{\text {OUT }}}$, the timer out F/F signal (active high).
6-9	$\mathrm{Pr}_{0} \cdot \mathrm{P1}_{3}$	4-bit input/tristate output Port 1 (active high). Data output to Port 1 is strobed in synchronization with a $\mathbf{P 2}_{\mathbf{0}} / \mathbf{P}_{\mathbf{S T B}}$ pulse.
10-13	$\mathrm{P3}_{0}-\mathrm{P3}_{3}$	4-bit latched tristate output Port 3 (active high).
14-17	$\mathrm{P7}_{0}-\mathrm{P7}_{3}$	4-bit input/latched tristate output Port 7 (active high).
18	RESET	RESET input (active high). R/C circuit or pulse initializes μ PD7507 or μ PD7508 after power-up.
19, 21	$\mathrm{CL}_{1}, \mathrm{CL}_{2}$	System clock input (active high). Connect $\mathbf{8 2 k}$ \& resistor across CL_{1} and CL_{2}, and connect 33 pF capacitor from CL_{1} to $\mathrm{V}_{\mathbf{S S}}$.

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	
Operating Temperature	$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Supply Voltage, VDD	-0.3 V to +7.0 V
$\begin{array}{r}\text { Input Voltages, Ports 4,5, and } 6 \\ \hline \text { All Other Input Ports }\end{array}$	0.0) V to ($\left.\mathrm{V}_{\text {DD }}+0.3\right) \mathrm{V}$
	-0.3 V to $\mathrm{V}_{D D}+0.3 \mathrm{~V}$
Output Voltages, Ports 3, 4, 5, and 6 (VDD - 40.0)V to (VDD + 0.3)V	
All Other Output Ports	-0.3 V to $\mathrm{V}_{\text {DD }}+0.3 \mathrm{~V}$
Output-Current (Total, All Output Ports)	$1 \mathrm{OH}=-150 \mathrm{~mA}$
	$1 \mathrm{OL}=50 \mathrm{~mA}$

*Comment: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect Rev/2 device reliability.

DC Characteristics
 $\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V

Capacltance

$T_{a}=25^{\circ} \mathrm{C}, \mathrm{V} D \mathrm{DD}=0 \mathrm{~V}$

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Input Capacitance	c_{1}			20	pF	$f=1 \mathrm{mHz}$,
Output Capacitance	c_{0}			20	pF	Unmeasured pins
Input/Output Capacitance	$\mathrm{C}_{1 / 0}$			20		

AC Characteristics

$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{VDD}=2.7 \mathrm{~V}$ to 5.5 V

Timing Waveforms

Operating Characteristics
 Typleal, $\mathbf{T a}_{\mathrm{a}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Supply Current
System Clock Oscillation Frequency
(Note (1)

Supply Current
System Clock Oscillation Frequency
(Note (1))

Notes:
(1) Only R/C system clock is operating and consuming power. All other internal logic blocks are not active.
(2) Only crystal oscillator clock is operating and consuming power. All other internal logic blocks are not active.

Operating Characteristics (Cont.)

Typical, $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Package Outlines

For information, see Package Outline Section 7.
Plastic, μ PD7508AC
Plastic Shrinkdip, μ PD7508ACU
Ceramic Piggyback, μ PD75CG08E

3

NOTES

Description

The μ PD 7508 H is a high-speed CMOS 4-bit single chip microcomputer which is based upon the μ PD7500 series architecture.
The μ PD7508H contains a 4096×8-bit ROM, and a $224 \times$ 4 -bit RAM. It contains four 4-bit general purpose registers located outside RAM. The subroutine stack is implemented in RAM for greater nesting depth and flexibility, providing such operations as the pushing and popping of register values. The μ PD7508H typically executes 92 instructions of the μ PD7500 series "A" instruction set with 4μ s instruction cycle time.
The μ PD7508H has two external and two internal edgetriggered hardware vectored interrupts. It also contains an 8 -bit timer/event counter and an 8 -bit serial interface to help reduce software requirements.
The μ PD7508H provides $32 \mathrm{I} / \mathrm{O}$ lines organized into the 4 -bit input/serial interface Port 0 , the 4 -bit input Port 2 , the 4 -bit output Port 3 , and the 4 -bit I/O Ports $1,4,5,6$, and 7 . It is manufactured with a low power consumption CMOS process, allowing the use of a single power supply between 2.7 V and 5.5 V . Current consumption is less than $900 \mu \mathrm{~A}$ maximum, and can be lowered much further in the HALT and STOP power-down modes. The μ PD7508H is available in a 40 -pin dual-in-line plastic package. The $\mu \mathrm{PD} 7508 \mathrm{H}$ is downward compatible with the μ PD7508 and the μ PD7507. The μ PD7508H is ideally suited as a controller in the following applications:telephone/telecommunication equipment
portable instruments
automotive dashboard controls
medical instruments
portable and hand-held computer terminals
office equipment

Development Tools

For software development, editing, debugging, and assembly into object code, you can use the NEC Development System (NDS). Additionally, for systems supporting either the ISIS-II (${ }^{\circledR}$ Intel Corp.), CP/M (${ }^{\text {© Digital Research Corp.) }}$ operating systems, or Fortran IV ANSI 1966 V3.9, the ASM75 Cross-Assembler is available.
During software development, the code can be completely evaluated and debugged with hardware by the Evakit-7500 Evaluation Board. The Evakit-7500-RTT Real-Time Tracer Board is an optional device used to examine operation of your code in the actual prototype circuit. The SE-7508 System Emulation Board will emulate complete functionality of the μ PD 7508 H for demonstrating your final system design. All of these boards take advantage of the capabilities of the μ PD7500 ROM-less evaluation chip to perform their tasks.
Complete operation details on the μ PD7508H CMOS 4 -bit Microcomputer can be found in the μ PD7506, μ PD7507, and μ PD7508 CMOS 4-bit Microcomputers Technical Manual.

Features

Advanced 4th Generation Architecture
Program Memory (ROM) size: 4K x 8-bit bytes
Data Memory (RAM) size: 224×4-bit nibbles
RAM Stack
Four General Purpose Registers: D, E, H, and L

- Can address Data Memory and I/O ports
- Can be stored to or retrieved from Stack

92 Powerful Instructions, including

- Direct/indirect addressing
- Table look-up
- RAM stack push/pop
- Single byte subroutine calls
- RAM and I/O port single bit manipulation
- Accumulator and I/O port logical operations
$-4 \mu \mathrm{~s}$ instruction cycle time, typically
- One 4-bit input port
- Two 4-bit latched tri-state output ports
- Five 4-bit input/latched tri-state output ports
- Easily expandable with μ PD82C43 CMOS I/O expander
- 8-bit parallel I/O capacity

Hardware Logic Blocks - Reduce Software
Requirements

- Operation completely transparent to
instruction execution
- 8-bit Timer/Event counter
- Binary-up counter generates INT $_{T}$ at coincidence
- Accurate Crystal Clock or External Event operation possible
- Vectored, Prioritized Interrupt Controller
- Three external interrupts ($\mathrm{INT}_{0}, \mathrm{INT}_{1}, \mathrm{INT}_{2}$)
- Two internal interrupts ($\mathrm{INT}_{\mathrm{T}}, \mathrm{INT}_{\mathrm{S}}$)
- 8-bit Serial Interface
- 3-line I/O configuration generates $\mathrm{INT}_{\mathrm{S}}$ upon transmission of eighth bit
- Ideal for distributed intelligence systems or communication with peripheral devices
- Complete operation possible in HALT and STOP power-down modes
Built-in System Clock Generator
Built-in Schmidt-Trigger RESET Circuitry
Single Power Supply, Variable from 2.7V to 5.5 V
Low Power Consumption Silicon Gate CMOS
Technology
- $900 \mu \mathrm{~A}$ max at $5 \mathrm{~V}, 400 \mu \mathrm{~A}$ max at 3 V
- HALT, STOP power-down instructions reduce power consumption to $20 \mu \mathrm{~A}$ max at $5 \mathrm{~V}, 10 \mu \mathrm{~A}$ at 3 V (Stop Mode)
Extended $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Temperature Range
Available
40-pin Dual-in-line Plastic Package

Pin Configuration

Absolute Maximum Ratings*
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Operating Temperature	$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Supply Voltage, V_{DD}	-0.3 V to +7.0 V
All Input and Output Voltages	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Output Current (Total, All Output Ports)	$\frac{\mathrm{I}_{\mathrm{OH}}=-20 \mathrm{~mA}}{}$
	$\mathrm{I}_{\mathrm{OL}}=30 \mathrm{~mA}$

*COMMENT: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Pin Identification

	Pin	Function
No.	Symbol	
1	Clock Out	Crystal Clock Output (active high) The Crystal Oscillator frequency is divided by 12 , and then output through a buffer
2-5	$\begin{aligned} & \mathbf{P} \mathbf{2}_{0}-\mathbf{P 2}_{3} \\ & \mathbf{P 2}_{0} / \mathbf{P}_{\text {STB }} \\ & \mathbf{P 2}_{1} / \mathbf{P}_{\text {TouT }} \\ & \hline \end{aligned}$	4-bit latched tri-state output Port 2 (active high). Line $\mathbf{P 2}_{0}$ is also shared with $P_{\text {sib }}$, the Port 1 output strobe pulse (active low). Line P_{2}, is also shared with $P_{\text {Tout }}$, the timer-out F/F signal (active high).
6-9	$\mathbf{P 1} 0_{0}-\mathrm{Pl}_{3}$	4-bit input/tri-state output Port 1 (active high). Data output to Port 1 is strobed in synchronization with a $\mathbf{P} \mathbf{2}_{0} / \mathbf{P}_{\text {STв }}$ puise.
10-1	$\mathrm{P3}_{0}-\mathrm{P3}_{3}$	4-bit input/latched tri-state output Port 3 (actıve high).
14-17	$\mathrm{P7}_{0}-\mathrm{P7}_{3}$	4-bit input/latched tri-state output Port 7 (active high).
18	RESET	RESET input (actıve high). R/C circuit or pulse initializes μ PD7507 or μ PD7508 after power-up.
19,21	$\mathrm{X}_{1}, \mathrm{X}_{2}$	Crystal Clock Oscillator input (active hıgh). Connect a 4.19 MHz crystal across X_{1}, and X_{2}.
20	$V_{\text {D }}$	Power supply positive. Apply single voltage ranging from 2.7 V to 5.5 V for proper operation.
22	INT,	External interrupt INT_{1} (active high). This is a risıng edge-triggered interrupt.
23-26	$\begin{aligned} & \mathrm{PO}_{0} / \mathrm{INT}_{0} \\ & \mathrm{PO}_{3} / \mathbf{S C K} \\ & \mathrm{PO}_{2} / \mathbf{S O} \\ & \mathrm{PO}_{3} / \mathbf{S I} \end{aligned}$	4-bit input Port 0/Serial I/O interface (active high). This port can be configured either as a 4-bit parallel input port, or as the 8-bit serial I/O interface, under control of the serial mode select register. The Serial Input SI (active high), Serial Output SO (active low), and the Serial Clock SCK (active low) used for synchronizing data transfer comprise the 8-bit serial I/O interface Line PO_{0} is always shared with external interrupt INT ${ }_{0}$ (active high) which is a rising edge-triggered interrupt.
27-30	$\mathrm{P6}_{0}-\mathrm{P6}_{3}$	4-bit input/latched tri-state output Port 6 (actıve high). Individual lines can be configured either as inputs or as outputs under control of the Port 6 mode select register.
31-34	P5 $\mathbf{0}^{-} \mathrm{P5}_{3}$	4-bit input/latched tri-state output Port 5 (actıve high). Can also perform 8-bit parallel I/O in conjunction with Port 4.
35-38	$\mathbf{P 4}_{0}-\mathbf{P 4}_{3}$	4-bit input/latched tri-state output Port 4 (active high). Can also perform 8-bit parallel I/O in conjunction with Port 5.
39	$V_{\text {ss }}$	Ground.
40	EVENT	EVENT counter pulse input (active high)

DC Characteristics

$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V

μ PD7508H

AC Characteristics

$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V

Parameter	Symbol	Limits			Unit	Test Conditions		
		Min	Typ	Max				
System Clock Oscillation Frequency	${ }^{\text {f }} \mathbf{c}$	120	TBD	TBD	KHz	$\mathrm{X}_{1}, \mathrm{X}_{2}$	$\begin{aligned} & \mathrm{R}=120 \mathrm{k} \Omega \pm 2 \% \\ & \mathrm{C}=33 \mathrm{pF} \pm 5 \% \end{aligned}$	$V_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		60	TBD	TBD			$\mathrm{R}=250 \mathrm{k} \Omega \pm \mathbf{2 \%}$	$V_{\text {DD }}=3 \mathrm{~V} \pm 10 \%$
		60		TBD			$\mathrm{C}=33 \mathrm{pF} \pm 5 \%$	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V
	${ }^{\prime} \mathrm{C}$	10	TBD	TBD		X_{1}, External Clock		$V_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
		10		TBD				$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5V
EVENT Frequency	f_{x}	25	32	50	KHz	$\mathrm{X}_{1}, \mathrm{X}_{2}$ Crystal Oscillator		
	$t_{\text {event }}$	0		300		EVEN		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$
		0		135				$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5V
EVENT Rise and Fall Tımes	$\mathrm{t}_{\text {CR }}, \mathrm{t}_{\text {CF }}$			0.2	$\mu \mathrm{s}$	EVENT		
EVENT Pulse Width	${ }^{\text {tru }}$, $\mathrm{t}_{\text {xL }}$	1.5			$\mu \mathrm{s}$	EVEN		$V_{D D}=5 \mathrm{~V} \pm 10 \%$
		3.5						$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V
SCK Cycle Time	$t_{\text {KCr }}$	4.0			μs	SCK is an input		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$
		7.0						$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V
		6.7				SCK is an output		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$
		14.0						$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V
SCK Pulse Width	$t_{\mathbf{K}_{\mathbf{H}}^{\prime}}, \mathrm{t}_{\mathbf{K}_{\mathrm{L}}}$	1.8			$\mu \mathrm{s}$	SCK is an input		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$
		3.3						$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V
		3.0				SCK is an output		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$
		6.5						$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V
SI Setup Time to SCK \uparrow	$\mathrm{t}_{\text {sik }}$	300			ns			
$\underline{\text { SI Hold Time after SCK } \uparrow \sim}$	t_{KS}	450			ns			
SO Delay Time after SCK \downarrow	$\mathrm{t}_{\text {kso }}$		850		ns	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$		
			1200			$V_{D D}=2.7 \mathrm{~V}$ to 5.5 V		
Port 1 Output Setup Time to $\mathrm{P}_{\text {STB }} \uparrow$	$t_{\text {PST }}$	1/(2f ${ }_{\phi}-800$)			ns	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$		
		1/(2f ${ }^{-2}$				$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5V		
Port 1 Output Hold Time after $\mathbf{P}_{\text {STB }} \uparrow$	${ }^{\text {t }}$ STP	300	350	500	ns	$\mathrm{V}_{\mathrm{DD}}=$	$\pm 10 \%$	
		300		1500		$V_{\text {DD }}=$	V to 5.5 V	
$\mathbf{P s t a}^{\text {Sti }}$ Pulse Width	$\mathrm{t}_{\text {Sw }}{ }_{\text {L }}$	$f / 2 f_{\phi}-80$			ns	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$		
		f/21 ${ }_{\text {¢ }}$ - 20				$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V		
INT ${ }_{0}$ Pulse Width	$\mathrm{t}_{\mathrm{OH}} \cdot \mathrm{t}_{\text {loL }}$	10			$\mu \mathrm{s}$			
INT, Puise Width	$t_{1}, w_{H}, t_{1} w_{L}$	$2 / 1{ }_{\text {¢ }}$			$\mu \mathrm{s}$			
RESET Pulse Width	$\mathrm{t}_{\mathrm{SS}_{H}, \mathrm{t}_{\text {RS }}}$	10			$\mu \mathrm{s}$			

Capacitance

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}$

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Input Capacitance	c_{1}			15	pF	$\mathrm{f}=1 \mathrm{MHz}$
Output Capacitance	C_{0}			15	pF	Unmeasured pins
Input/Output Capacitance	$\mathrm{C}_{1 / 0}$			15	pF	returned to $\mathrm{V}_{\text {ss }}$

Timing Waveforms

Output Strobe

Package Outlines

For information, see Package Outline Section 7.
Plastic, μ PD7508HC
Plastic Shrinkdip, μ PD7508HCU LCD CONTROLLER/DRIVER

Description

The μ PD7514 CMOS 4-bit single chip microcomputer has the standard μ PD750X architecture. It contains 4 Kx 8 -bits of program memory ROM, 256×4-bits of data memory RAM, an 8-bit timer/event counter, and an 8-bit serial interface.
The on-chip LCD controller/driver is capable of driving a variety of LCD displays configured from biplexed to quadriplexed (2-4 backplane). It can utilize up to 32 segment and 4 common drive lines that are output from a 128-bit (32×4) display data memory.
The μ PD7514 also features 4 vectored interrupts (2 internal and 2 external) and 2 standby modes. It is available in the 80-pin plastic flat package to conserve space and is manufactured with a low power consumption CMOS process allowing the use of a single 5 V power supply. A powerful 92 instruction set (subset of μ PD750X Instruction Set A) allows greater software flexibility.
The μ PD7514 is capable of forming a system with a minimum amount of additional circuitry. It is designed to operate with low power and can be used for a wide variety of applications because the chip can generate a reference clock for timer operations.

Features

\square 4-bit single chip microcomputer92 instructions (subset of μ PD7500 set A)Instruction cycle: $5 \mu \mathrm{~s} / 400 \mathrm{kHz}$ at 5 VProgram memory (ROM): 4096×8 bitsData memory (RAM): 256×4 bitsVectored interrupts: 2 externals, 2 internals8-bit timer/event counter8-bit serial interfaceOn-chip LCD controller/driver
$-1 / 2$ bias: biplexed, triplexed
$-1 / 3$ bias: triplexed, quadriplexed

- Segment outputs: 32 lines
-Common outputs: 4 linesStandby modes (stop/halt)Low-power data retention capability
31 I/O linesOn-chip RC oscillator for system clockOn-chip crystal oscillator for count clockCMOS technology
Single power supply80-pin plastic flat package

Pin Configuration

Pin Identification

Pin			Function
No.	Symbol		
$\begin{gathered} 1,2 \\ 79,80 \end{gathered}$	$\mathrm{P4}_{0}-\mathrm{P4}_{3}$	VO	//O pins (4 bits) of Port 4 (4-bit I/O port).
3,4	X_{1}, X_{2}		Count Clock Osciliation pins to be connected to crystal. X_{1} is for External Clock input.
5-7	$\mathrm{V}_{\mathrm{LC} 1}-\mathrm{V}_{\mathrm{LC} 3}$		LCD bias voltage supply input pins.
8-11	$\mathrm{COM}_{0}-\mathrm{COM}_{3}$		LCD common signal output pins.
$\begin{aligned} & 12-22, \\ & 24-32, \\ & 34-41, \\ & 43-46 \end{aligned}$	$S_{0}-S_{31}$		LCD segment signal output pins.
33	V_{DD}		Power supply positive.
47	INT1		External Interrupt input pin.
48	RESET		Reset input pin.
49, 50	$\mathrm{CL}_{1}, \mathrm{CL}_{2}$		System Clock Oscillation pins to be connected to RC. CL_{1} is for External Clock input.
51-54	P7 ${ }_{0}-\mathrm{P} 7_{3}$	1/0	I/O pins (4 bits) of Port 7 (4-bit I/O port).
$\begin{aligned} & 55 \\ & 56 \\ & 57 \end{aligned}$	$\begin{aligned} & \mathrm{P2}_{2} \\ & \mathrm{P2}_{1} / \text { PTOUT } \\ & \mathrm{P}_{2} / \text { PSTB } \end{aligned}$		Output pins (3 bits) of Port 2 (3-bit output port). Commonly used as Strobe output (PSTB) for Port 1 output, TOUT output (PTOUT).
58-61	$\mathrm{P1}_{0}-\mathrm{P1}_{3}$	1/0	I/O pins (4 bits) of Port 1 (4-bit I/O port), not including latches.
$\begin{aligned} & 62,63, \\ & 65,66 \end{aligned}$	$\mathrm{P3}_{0}-\mathrm{P3}_{3}$		Output pins (4 bits) of Port 3 (4-bit output port).
64	$\mathrm{V}_{\text {SS }}$		Ground.
$\begin{aligned} & 67 \\ & 68 \\ & 69 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{PO}_{3} / \mathrm{SI} \\ & \mathrm{PO}_{2} / \mathrm{SO} \\ & \mathrm{PO}_{4} / \mathrm{SCK} \\ & \mathrm{PO}_{0} / \mathrm{INTO} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { l/O } \\ & \text { I/O } \end{aligned}$	Input pins (4 bits) of Port 0 (4-bit input port). Commonly used as interrupt Request input (INTO), Serial Clock I/O (SCK), Serial Data input (SI), Serial Data output (SO).
71-74	$\mathrm{P6}_{0}-\mathrm{P6}_{3}$	$1 / 0$	I/O pins (4 bits) of Port 6 (programmable 4-bit I/O port).
75-78	$\mathrm{P5}_{0}-\mathrm{P5}_{3}$	1/0	I/O pins (4 bits) of Port 5 (4-bit I/O port).

Block Diagram

Program Memory (ROM)

Program Memory is a mask-programmable ROM of 4096word $\times 8$-bit configuration, and is addressed by the program counter. Program Memory stores programs and table data.

The address locations of the program memory are from 000 H to FFFH. RESET, Interrupt, start address, and the table areas of LHLT and CALT instructions have been allocated specific memory locations. When a program is generated, the aforementioned memory locations must be taken into consideration.

Program Memory Map

Timer/Event Counter Configuration

(3) * indicates execution of instruction

Serial interface is used to input/output serial data and is basically composed of an 8-bit shift register, a 4-bit shift mode register and a 3-bit counter.

Serial Interface Block Diagram

Notes: (1) ϕ indicates the internal clock signal (system clock)
(2) TOUT is the timer-out F/F signal
(3) "indicates the execution of instruction
(4) SM3 is to the interrupt controller

Note: * indicates instruction execution

The LCD controller/driver consists of a 4-bit display mode register (DMO - DM3), 128-bit (32×4) display data memory (i.e., addresses from 00 H to 1 FH in data memory), a timing controller, multiplexers, an LCD drive-voltage controller, segment drivers, and common drivers.
The LCD controller/driver provides an LCD direct drive function with $1 / 2$ bias voltage (biplexed, triplexed) and $1 / 3$ bias voltage (triplexed, quadriplexed) configurations. For LCD driver outputs, 32 segment lines ($\mathrm{S}_{0}-\mathrm{S}_{31}$) and 4 common lines $\left(\mathrm{COM}_{\mathrm{o}}-\mathrm{COM}_{3}\right)$ are provided.

Maximum Segment Number

Bias	Multiplexing	COM Lines	Maximum Segment Number
1/2	Biplexed	$\mathrm{COM}_{0}, \mathrm{COM}_{1}$	64 (32 Segments $\times 2$ Commons)
	Triplexed		
1/3	Triplexed	$\mathrm{COM}_{0}, \mathrm{COM}_{1}, \mathrm{COM}_{2}$	96 (32 Segments $\times 3$ Commons)
	Quadriplexed	$\mathrm{COM}_{0}, \mathrm{COM}_{1}, \mathrm{COM}_{2}, \mathrm{COM}_{3}$,	128 (32 Segments $\times 4$ Commons)

Format of Shift Mode Register

SM3	SM2	SM1	SM0	Shift Mode Register Serial Interface Operation and Mode Setting of Port 0			
	SM2	SM1	SM0	$\mathrm{PO}_{3} / \mathrm{SI}$	$\mathrm{PO}_{2} / \mathrm{SO}$	PO,/SCK	Serial Operation
	0	0	0	Port Input	Port Input	Port Input	Stop
	0	1	0			To output ϕ continuously	
	0	1	1			To output TOUT continuously	
	1	0	0	SII Input	SO Output	$\overline{\text { SCK }}$ Input	To operate with external clock
	1	1	0				To operate with ϕ
	1	1	1			SCK Output (TOUT)	To operate with TOUT

SM3	Interrupt Source
0	INTS
1	INTO

Note: $\phi=$ System Clock

Interrupt Controller Block Diagram

Notes: (1) *indicates execution of instruction
(2) SM3 is bit 3 of the shift mode register (Selection of INTO or INTS)

Clock Control Circuit

Package Outlines

For information, see Package Outline Section 7.
Plastic Miniflat, μ PD7514G

Notes

Description

The μ PD7519 is a CMOS 4-bit single-chip microcomputer which has the μ PD750x architecture.
The μ PD7519 contains a 4096×8-bit ROM, and a $256 \times$ 4-bit RAM.
The μ PD7519 contains four 4-bit general purpose registers located outside RAM. The subroutine stack is implemented in RAM for greater nesting depth and flexibility, providing such operations as the pushing and popping of register values. The μ PD7519 typically executes 106 instructions of the μ PD7500 series A instruction set with a $7.637 \mu \mathrm{~S}$ instruction cycle time.
The μ PD7519 has two external and two internal edgetriggered hardware vectored interrupts. They also contain an 8-bit timer/event counter, an 8-bit serial interface, and a 9 -bit D/A programmable pulse generator, to help reduce software requirements. The on-board vacuum fluorescent display controller/driver supervises all of the timing required by the 24 Port S segment drivers either for a 16 -digit 7 segment vacuum fluorescent display, or for an 8 -character 14 -segment vacuum fluorescent display.
The μ PD7519 provides 28 I/O lines organized into the 4 -bit input/serial interface Port 0, the 4-bit output Port 2, the 4 -bit output Port 3 , and the 4 -bit $1 / O$ Ports 1, 4, 5, and 6. Additionally, Port 1 can be automatically expanded to 16 I/O lines through connection to a μ PD82C43. The μ PD7519 is manufactured with a low power consumption CMOS process, allowing the use of a single power supply between 2.5 V and 5.5 V . Current consumption is less than 2 mA maximum, and can be lowered much further in the Halt and Stop power-down modes. The μ PD7519 is available in a space-saving 64-pin flat plastic package, or a 64 -pin QUIL package.
There is also a piggyback EPROM version available, the 75CG19E, which is pin-compatible and functionally equivalent to the masked version. It is excellent for prototyping and program development.

Pin Configuration
 64-pin Plastic Flat Package

64-pin Plastic QUIL Package

Pin Identification

Pin Nos.		Symbol	Description
Flat	QUIL		
1	7,24	NC	No connection
$\begin{aligned} & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	$\begin{gathered} 8 \\ 9 \\ 10 \\ 11 \end{gathered}$	$\begin{gathered} \mathrm{PO}_{0} / \mathrm{INT} \mathrm{NT}_{0} \\ \mathrm{PO}_{1} / \mathrm{SCK} \\ \mathrm{PO}_{2} / \mathrm{SO} \\ \mathrm{PO}_{3} / \mathrm{SI} \end{gathered}$	4-bit input Port 0/serial I/O interface (active high). This port can be configured either as a parallel input port, or as the 8-bit serial I/O interface, under control of the serial mode select register. The Serial Input SI (active high), Serial Output SO (actıve hıgh), and the Serial Clock SCK (active low) used for synchronizing data transfer comprise the 8 -bit serial I/O interface. Line PO_{0} is always shared with external interrupt INT_{0}, which is a rising edgetriggered interrupt.
6-9	12-15	$\mathrm{Pb}_{0}-\mathrm{P} 6_{3}$	4-bit input/latched three-state output Port 6 (active high). Individual lines can be configured either as inputs or as outputs under control of the Port 6 mode select register.
10-13	16-19	$\mathbf{P 5} \mathbf{0}_{0} \mathbf{P 5}{ }_{3}$	4-bit input/latched three-state output Port 5 (active high). Can also perform 8-bit parallel I/O in conjunction with Port 4.
14-17	20-23	$\mathrm{P1}_{0}-\mathrm{P1} \mathbf{3}_{3}$	4-bit input/latched three-state output Port 1 (active high).
18-21	25-28	$\mathrm{P4}_{0}-\mathrm{P4}_{3}$	4-bit input/latched three-state output Port 4 (actıve high). Can also perform 8-bit parallel I/O in conjunction with Port 5.
22	29	EVENT	1-bit external event input for timer/event counter (active high).
23-24	30-31	$\mathrm{X}_{2}, \mathrm{X}_{1}$	Crystal clock input (active high). A crystal oscillator circuit is connected to input X_{1} and output X_{2} for system clock operation. Alternatively, an external clock source may be connected to input X_{1} while output X_{2} is left open.
25	32	$\mathbf{V}_{\text {SS }}$	Ground.
26, 58	64	$V_{\text {D }}$	Power supply positive. Apply single voltage ranging from 2.5 V to 5.5 V for proper operation.
$\begin{aligned} & 27-34 \\ & 35-42 \\ & 43-50 \end{aligned}$	$\begin{aligned} & 33-40 \\ & 41-48 \\ & 49-56 \end{aligned}$	$\begin{gathered} S_{0}-S_{7} \\ T_{8} / S_{8}-T_{15} / S_{15} \\ T_{0}-T_{7} \end{gathered}$	Vacuum fluorescent display outputs (active high). $S_{0}-S_{7}$ are always segment driver outputs, and $T_{0}-T_{7}$ are always digit driver outputs. $T_{8} / \mathrm{S}_{8}-\mathrm{T}_{15} / \mathrm{S}_{15}$ can be configured as either segment driver outputs or as digit driver outputs under control of the display mode select register.

μ PD7519
Pin Identification (Cont.)

Pin Nos.		Symbol	Description
Fiat	QUIL		
51	57	$V_{\text {LOAD }}$	Vacuum fluorescent display power supply negative. Apply single voltage between $\mathrm{V}_{\mathrm{DD}}{ }^{-35.0}$ and V_{DD} for proper display operation.
52	58	$V_{\text {PRE }}$	Power supply for VFD driver.
53-56	59-62	$\mathrm{P3}_{0}-\mathrm{P}_{3}$	4-bit latched three-state output Port 3 (active high).
57	63	$\mathbf{N T T}_{1}$	External Interrupt INT $_{1}$ (active high). This is a rising edge-triggered interrupt.
$\begin{aligned} & 59 \\ & 60 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{P}_{0} / \mathrm{P}_{\overline{\text { STB }}} \\ & \mathrm{P}_{1} / \mathrm{P}_{\mathrm{T}_{\text {OUT }}} \end{aligned}$	4-bit latched output Port 2 (active high). Line $\mathbf{P 2}_{0}$ is also shared with $\mathbf{P}_{\text {STB }}$, the Port 1 output strobe pulse (active low). Line $\mathbf{P 2}_{1}$ is also shared with $P_{T_{\text {OUT }}}$, the timer-out F / F signal (active high).
$\begin{aligned} & 61 \\ & 62 \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{gathered} \mathbf{P 2}_{2} / \mathbf{P}_{\mathrm{CL}} \\ \mathbf{P 2}_{3} \end{gathered}$	internal system clock output. General purpose output.
63	5	RESET	RESET input (active high). R/C circuit or puise initializes μ PD7502 or μ PD7503.
64	6	PPO	1-bit programmable pulse generator output (active high).

Operating Supply Voltage

Parameter	Limits			Unit	Test Conditions
	Min	Typ	Max		
CPU (2)	4.0		6.0	V	High-speed Mode (EM2 = 1)
	2.5		6.0	V	Low-speed Mode (EM2 $=0$)
Crystal Oscillation Circuit	2.7		6.0	V	$\mathrm{C}_{1}=10 \mathrm{pF}$, Crystal $\mathrm{C}_{2} \leqslant 10 \mathrm{pF}$
	2.85		6.0	V	Oscillation (3) $\begin{aligned} & \mathrm{C}_{1}=10 \mathrm{pF}, \\ & \mathrm{C}_{\mathbf{2}} \leqslant 22 \mathrm{pF}\end{aligned}$
	2.5		6.0	V	External Clock (3)
Display Controller	4.0		6.0	V	
Programmable Pulse Generator	4.0		6.0	V	
Port 1	2.5		6.0	V	Port Output Mode
	4.0		6.0	V	I/O Expander Mode

Notes: See notes (2) and (3) after AC Characteristics tables

Block Diagram

Absolute Maximum Ratings*

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Supply Voltage	$V_{\text {DD }}=-0.3 \mathrm{~V}$ to + 7.0 V
	$\begin{gathered} V_{\text {LOAD }}=V_{D D}-40 \mathrm{~V} \text { to } \\ V_{D D}+0.3 \mathrm{~V} \end{gathered}$
	$\begin{gathered} V_{P R E}=V_{D D}-12 V \text { to } \\ V_{D D}+0.3 V \end{gathered}$
Input Voltage, V_{1}	$-0.3 V$ to $V_{D D}+0.3 V$
Output Voltage Outputs other than display outputs	$\begin{gathered} V_{O}=-0.3 V \text { to } \\ V_{D D}+0.3 V \end{gathered}$
Display outputs	$\begin{gathered} V_{O D}=V_{D D}-40 V \text { to } \\ V_{D D}+0.3 V \end{gathered}$
Output Current High, I_{OH}	
Per pin other than display outputs	-15mA
Per pin, $\mathbf{S}_{\mathbf{0}}-\mathbf{S}_{\mathbf{7}}$	-15mA
Per pin, $\mathrm{T}_{0}-\mathrm{T}_{\mathbf{7}}, \mathrm{T}_{\mathbf{8}} / \mathrm{S}_{\mathbf{8}}-\mathrm{T}_{15} / \mathrm{S}_{\mathbf{1 5}}$	-30mA
Total, all outputs other than display outputs	ts $\quad-20 \mathrm{~mA}$
Total, all display outputs	-120mA

Output Current Low, IoL
Per pin 17mA
Total, all outputs 60 mA

Total Power Consumption, $P_{T}(1)$	400 mw
Plastic flat package	

Plastic QUIL package 600 mw
Operating Temperature, $\mathrm{T}_{\text {OPT }} \quad-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Storage Temperature, $\mathrm{T}_{\text {STG }}$
$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Note: (1) See note (1) after AC Characteristics tables
*COMMENT: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Capacitance

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}$

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Input Capacitance	C_{IN}			15	pF	
Output Capacitance				15	pF	$f=1 \mathrm{MHz}$
Other than display outputs Display outputs	$\mathrm{C}_{\text {out }}$			35	pF ${ }^{\text {" }}$	Unmeasured pins returned to OV .
//O Capacitance	C_{10}			15	pF	

DC Characteristics

$T_{\text {a }}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ to 6.0 V

Notes: See notes (3), (4), and (5) after AC Characteristics tables

AC Characteristics

$\mathrm{T}_{\mathrm{a}}=10^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$
Clock Operation ($\mathrm{V}_{\mathrm{DD}}=\mathbf{2 . 5 V}$ to 6.0 V)

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
System Clock Oscillation Frequency	${ }^{\text {fxx }}$	3.5	4.19	5.0	MHz	Crystal Oscillation (3), (8)
System Clock Input Frequency	${ }^{f} \times$	0.1		5.0	MHz	
$\mathrm{X}_{1}, \mathrm{X}_{2}$ Input Pulse Width, High and Low	$\mathrm{t}_{\mathrm{xH}}, \mathrm{t}_{\mathrm{xL}}$	100			ns	External Clock (3)
EVENT Input Frequency	f_{E}			410	kHz	$\mathrm{V}_{\mathrm{DD}}=4 \mathrm{~V}$ to 6 V
				80	kHz	
EVENT Input Pulse Width, High and Low	$\mathrm{t}_{\text {EH, }} \mathrm{t}_{\mathrm{EL}}$	1.2			$\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{DD}}=4 \mathrm{~V}$ to 6 V
		6.25			$\mu \mathrm{s}$	

Note: See notes (3) and (5) after AC Characteristics tables

AC Characteristics (Cont.)

Port 1 I/O Operation ($\mathbf{V}_{\text {DD }}=\mathbf{2 . 5 V}$ to 6.0V)

Parameter	Symbol	Limits		Units	Test Conditions
		Min	Typ Max		
Port 1 Output Set-up Time (to $\mathrm{P}_{\mathrm{STB}} \uparrow$)	$t_{\text {PST }}$	400		ns	
Port 1 Output Hold Time (after $\mathrm{P}_{\text {STB }} \uparrow$)	${ }_{\text {tstp }}$	100		ns	Port Output Mode
P ${ }_{\text {STE }}$ Puise Width Low	$\mathrm{t}_{\text {STL1 }}$	600		ns	
Output Data Set-up Time (to $\mathrm{P}_{\mathrm{STE}} \uparrow$)	$\mathrm{t}_{\text {DST }}$	400		ns	
Output Data Hold Time (after $\mathrm{P}_{\overline{\text { STB }}} \uparrow$)	${ }_{\text {sto }}$	100		ns	
Input Data Valid Time (after $\mathrm{P}_{\overline{\mathrm{STB}}} \downarrow$)	$\mathrm{t}_{\text {Stov }}$		850	ns	
Input Data Floating Time (after $\mathrm{P}_{\mathrm{STB}} \uparrow$)	$\mathrm{t}_{\text {Stop }}$	0		ns	vo Expander Mode $V_{D D}=4 V$ to 6 V
Control Set-up Time (to $\mathrm{P}_{\mathrm{STB}} \downarrow$)	${ }_{\text {csst }}$	400		ns	
Control Hold Time Output Command Input Command	$\mathrm{t}_{\text {Ste }}$	$\begin{gathered} 100 \\ 0 \\ \hline \end{gathered}$	80	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
P ${ }_{\text {STE }}$ Pulse Width Low	$\mathrm{t}_{\text {STL2 }}$	1200		ns	

Serial Interface Operation ($\mathbf{V}_{\mathbf{D D}}=\mathbf{2 . 5 V}$ to 6.0V)

Other Operation ($\mathbf{V}_{\mathbf{D D}}=\mathbf{2 . 5 V}$ to 6.0 V)

Parameter	Symbol	Limits		Unit	Test Conditions
		Min	Typ Max		
INT_{0} Pulse Width High, Low	$\mathrm{t}_{10 \mathrm{OH}}, \mathrm{t}_{10 \mathrm{~L}}$	10		$\mu \mathrm{s}$	
INT, Pulse Width High, Low	$\mathrm{t}_{11 \mathrm{H}}, \mathrm{t}_{11 \mathrm{~L}}$	(7)		$\mu \mathrm{s}$	
RESET Pulse Width High, Low	$\mathrm{t}_{\text {RSH }}, \mathrm{t}_{\text {RSL }}$	10		$\mu \mathrm{s}$	

Notes: (1) Calculation of Total Power Consumption
The μ PD7519 has three kinds of power consumption, the total for which should be less than the total power consumption $\left(\mathrm{P}_{\mathrm{T}}\right)$ given in the specifications. (Use under the condition that less than 80% of the specification is recommended.)

1. Power consumption of CPU: $V_{D D}$ (max) $\times I_{D D 1}$ (max)
2. The power consumption of output pins can be classified as normal output and display output. The total power consumption of each output pin to which the maximum current flows should be calculated.
3. The power consumption of on-chip pull-down resistors (mask option) on display output lines. See following example:

Example:

Configuration 9 segments $\times 11$ digits, 4 LED outputs

$$
\begin{array}{ll}
V_{D D} & =5 \mathrm{~V} \pm 10 \% \\
\text { Segment pIn } & =5 \mathrm{~mA}(\max) \\
\text { Timing pin } & =15 \mathrm{~mA}(\max) \\
\text { LED output pin } & =10 \mathrm{~mA}(\max) \tag{1}
\end{array}
$$

Vacuum Fluorescent Display ($\mathrm{V}_{\text {LOAD }}$) $=-30 \mathrm{~V}$
CPU. $55 \mathrm{~V} \times 20 \mathrm{~mA}=11 \mathrm{~mW}$.
Output Pins
Segment pins' $(5 / 7 \times 2 \mathrm{~V}) \times 5 \mathrm{~mA} \times 9=64 \mathrm{mw}$
Timing pins $2 \mathrm{~V} \times 15 \mathrm{~mA}=30 \mathrm{mw}$
LED output pins $(10 / 15 \times 2 \mathrm{~V}) \times 10 \mathrm{~mA} \times 4=53 \mathrm{mw}$
Pull-down Resistors
$\frac{\left(30+55 V^{2}\right.}{100 \Omega} \times 10=126 \mathrm{mw}$
Therefore
$\mathrm{P}_{\mathrm{T}}=(1)+(2)+(3)=284 \mathrm{mw}$
(2) Except Crystal Oscillation Circuit, Display Controller, Programmable Pulse Generator, and Port 1.
(3) The following circuits are recommended:

Crystal

External Clock

(4) The following external circuit is recommended:

Note: RD9 1EL Zener diode (NEC)
Zener voltage $=8.29 \mathrm{~V}$ to 930 V
(5) Display Controller and Programmable Pulse Generator are not operated.
(6) Refer to Operatıng Supply Voltage.
(7) $2^{8 / f_{x}}$ or $2^{8 / f_{x X}}$.

Timing Waveforms

AC Test Points (Except X_{1})

Clock Timing

EVENT Timing

Strobe Output Timing

Port 1 I/O Expander Timing

Serial Interface Timing

Interrupt Input Timing

RESET Input Timing

Stop Mode Low Voltage Data Retention Characteristics

$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+\mathbf{7 0} 0^{\circ} \mathrm{C}$

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Data Retention Supply Voltage	$V_{\text {DDDR }}$	20		6.0	v	
Data Retention Supply Current	$\mathrm{I}_{\text {DDD }}$			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {DDDR }}=20 \mathrm{~V}$
Reset Set-up Tıme	$\mathrm{t}_{\text {SRS }}$	0			$\mu \mathrm{s}$	

Data Retention Timing

Operating Characteristics

$\mathbf{T}_{\mathrm{a}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$, Typical

Supply Current versus Supply Voltage
$I_{D D}$ vs $V_{D D}\left(f_{X X}=4.19 \mathrm{MHz}\right)$

Supply Current versus Clock Oscillation Frequency $I_{D D} v s f_{X X}$

Supply Current versus External Clock Frequency $I_{D D}$ vs f_{X}

Segment Output Current versus Output Voltage
$I_{O D}$ vs ($\left.V_{D D}-V_{O D}\right) ;\left(V_{D D}=4 V\right.$ to 6 V$)$

Operating Characteristics (Cont.)

$\mathbf{T}_{\mathrm{a}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$, Typical

Timing Output Current versus Output Voltage
$I_{O D} v s\left(V_{D D}-V_{O D}\right) ;\left(V_{D D}=4 V\right.$ to $\left.6 V\right)$

Output Current Low versus Output Voltage Low $I_{\text {OL }}$ vs $V_{\text {OL }}$

Package Outlines

For information, see Package Outline Section 7.
Plastic Quil, μ PD7519G
Plastic Shrinkdip, μ PD7519CW
QUIL Ceramic Piggyback, μ PD75CG19E

Output Current High versus Output Voltage High
$I_{O H} v s\left(V_{D D}-V_{O H}\right)$

Notes

Description

The μ PD7520 is a low-cost 4-bit single chip microcomputer which shares the 4th generation architecture of the μ PD7500 series of CMOS 4 -bit microcomputers. It contains a 768×8-bit ROM and a 48×4-bit RAM. It has a 2 -level subroutine stack, and executes a 47instruction subset of the μ PD7500 series instruction set. The μ PD7520 provides 24 I/O lines, organized into the 4 -bit input Port 1, the 4-bit I/O Port 4, the 2 -bit output Port 3, the 8 -bit output Port S, and the 6 -bit output Port T. Ports S and T are controlled by the on-board programmable LED display controller/driver hardware logic block, which automatically directly drives either static or multiplexed common-anode 7 -segment LED displays totally transparent to program execution. The μ PD7520 is manufactured with a low-power consumption PMOS process, allowing use of a single power supply between -6 V and -10 V , and is available in a 28 -pin dual-in-line plastic package.

Pin Configuration

Pin Names

	$\mathbf{S}_{0}-\mathbf{S}_{7}$
$\mathrm{~T}_{0}-\mathrm{T}_{5}$	Segment Drive Output Port S
$\mathrm{P}_{0}-\mathrm{P1}_{3}$	Digit Drive Output Port T
$\mathrm{P}_{0}-\mathrm{P3}_{1}$	Input Port 1
$\mathrm{PA}_{0}-\mathrm{PA}_{3}$	Output Port 3
CLK	Input/Output Port 4
RESET	Clock Input
$\mathrm{V}_{\mathbf{G G}}$	Reset
$\mathrm{V}_{\mathbf{S S}}$	Power Supply Negative
	Ground

Further details on device operation can be found in the μ PD7520 4-Bit Single Chip Microcomputer Technical Manual.

Absolute Maximum Ratings*

$\mathbf{T}_{\mathbf{a}}=25^{\circ} \mathrm{C}$	$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Operating Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature	-15 V to +0.3 V
Supply Voltage, V_{GG}	-15 V to +0.3 V
Input Voltages	-15 V to +0.3 V
Output Voltages	-100 mA
Output Current (lOH Total)	90 mA

*Comment: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics
$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{G G}=-6 \mathrm{~V}$ to $-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$

Notes:

(1) Current within 2.5 ms after turning to the low level $\left(T_{a}=25^{\circ} \mathrm{C}\right)$.
(2) $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GG}}=-9 \mathrm{~V}$.

AC Characteristics

$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathbf{G G}}=-\mathbf{6 V}$ to -10 V

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Clock Frequency	${ }^{\text {fosc }}$	225	300	375	KHz	$\begin{aligned} & \mathrm{R}_{\mathrm{f}}=1 \mathrm{M} \Omega, \\ & \mathrm{~V}_{\mathrm{GG}}=-9 \mathrm{~V} \pm 1 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \end{aligned}$
		180	300	450	KHz	$\begin{aligned} & R_{f}=1 \mathrm{M} \Omega, \\ & \mathrm{~V}_{\mathrm{GG}}=-9 \mathrm{~V} \pm 1 \mathrm{~V} \end{aligned}$
	${ }^{\prime}{ }_{\text {¢ }}$	100		330	KHz	
Clock Rise and Fall Times	$t_{r}, t_{\text {f }}$			2	$\mu \mathbf{s}$	CLK, External Clock
Clock Pulse Width High	$t_{\phi} \mathbf{W}_{\mathbf{H}}$	1.5		3	$\mu \mathrm{S}$	
Clock Pulse Width Low	$t_{\phi} W_{L}$	1.5		3	$\mu \mathrm{s}$	

Capacitance

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Input Capacitance	c_{1}			15	pF	Port 1, RESET
Output Capacitance	c_{0}			20	pF	Ports 3, S,T
Input/Output Capacitance	ClO_{10}			20	pF	Port 4
Clock Capacitance	C_{ϕ}			30	pF	CLK

Clock Waveform

Development Tools

The NEC Electronics U.S.A.'s NDS Development System is available for the development of software source code, editing, and assembly into object code. In addition, the ASM75 Cross Assembler is available for systems supporting the ISIS-II or the CP/M (®Digital Research Corp.) Operating Systems.
The EVAKIT-7520 Evaluation Board is available for production device evaluation and prototype system debugging.
The ASM75-F9T Cross Assembler is available for systems supporting fortran IV ANSI Standard 1966-V3.9.

Instruction Set Symbol Definitions

The following abbreviations are used in the description of the μ PD7520 instruction set:

SYMBOL	EXPLANATION AND USE
A	Accumulator
address	Immediate address
C	Carry Flag
data	Immediate data
D_{n}	Bit ' n ' of immediate data or immediate address
H	Register H
HL	Register pair HL
L	Register L
P()	Parallel Input/Output Port addressed by the value within the brackets
$\mathrm{PC}_{\text {n }}$	Bit ' n '' of Program Counter
S	Zero when Skip Condition does not occur; the number of bytes in next instruction when Skip Condition occurs
Stack	Stack Register
String	String Effect Skip Condition, whereby succeeding instructions of the same type are executed as NOP instructions
()	The contents of RAM addressed by the value within the brackets
[]	The contents of ROM addressed by the value within the brackets
\leftarrow	Load, Store, or Transfer
\leftrightarrow	Exchange
-	Complement
$*$	LOGICAL Exclusive-OR

Instruction Set

MNEMONIC	FUNCTION	DESCRIPTION	INSTRUCTION CODE								BYTES		SKIP
			D_{7}	D_{6}	D_{5}	D_{4}	D3	D_{2}	D_{1}	D_{0}		CYCLES	CONDITION
LOAD													
LAI data	$A \sim P_{3-0}$	Loed A with 4 bits of immediate data, execute succeeding LAI instructions as NOP instructions	0	0	0	1	D_{3}	D_{2}	D_{1}	D_{0}	1	1	String
LHI data	$H \leftarrow \mathrm{D}_{1-0}$	Load H with 2 bits of immediate data	0	0	1	0	\uparrow	0	D_{1}	D_{0}	1	1	
LHLI data	$\mathrm{HL} \leftarrow \mathrm{D}_{4.0}$	Load HL with 5 bits of immediate data, execute succeeding LHLI instructions as NOP instructions	1	1	0	D4	D_{3}	D_{2}	D_{1}	Do	1	1	String
LAMT	$A \leftarrow\left[P C_{9-6}, 0, C, A\right]_{H}$	Load the upper 4 bits of ROM Table Data at address PC9-6, O, C, A to A	0	1	0	1	1	1	1	0	1	2	
	$\begin{aligned} &(H L) \leftarrow {\left[P C_{9-6},\right.} \\ &0, C, A]_{L} \end{aligned}$	Load the lower 4 bits of ROM Table Data at address PC9-6, O, C, A to the RAM location addressed by HL											
L	$A \leftarrow(H L)$	Load A with the contents of RAM addressed by HL	0	1	0	1	0	0	1	0	1	1	
LIS	$\begin{aligned} & A \leftarrow(H L) \\ & L=L+1 \\ & \text { Skip if } L=O H \end{aligned}$	Load A with the contents of RAM addressed by HL, increment L, skip if $L=O H$	0	1	0	1	0	0	0	1	1	$1+5$	$\mathrm{L}=\mathrm{OH}$
LDS	$\begin{aligned} & A \leftarrow(H L) \\ & L=L-1 \\ & S k \text { ip if } L=F H \end{aligned}$	Load A with the contents of RAM addressed by HL, decrement L, skip if $L=F H$	0	1	0	1	0	0	0	0	1	$1+S$	$L=F H$
LADR address	$A \leftarrow\left(D_{5-0}\right)$	Load A with the contents of RAM addressed by 6 bits of Immediate data	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 1 \\ D_{5} \end{gathered}$	$\begin{gathered} 1 \\ D_{4} \end{gathered}$	$\begin{gathered} 1 \\ D_{3} \end{gathered}$	$\begin{gathered} 0 \\ D_{2} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{D}_{1} \end{gathered}$	$\begin{gathered} 0 \\ D_{0} \end{gathered}$	2	2	

Instruction Set (Cont.)

MNEMONIC	FUNCTION	DESCRIPTION	INSTRUCTION CODE								BYTES	CYCLES	SKIP CONDITION
			D7	D6	D_{5}	D4	D3	D_{2}	D1	D0			
Store													
ST	$(H L) \leftarrow A$	Store \mathbf{A} into the RAM location addressed by HL	0	1	0	1	0	1	1	1	1	1	
STII data	$\begin{aligned} & (\mathrm{HL}) \leftarrow \mathrm{D}_{3-0} \\ & \mathrm{~L} \leftarrow \mathrm{~L}+1 \end{aligned}$	Store 4 bits of immediate data into the RAM location addressed by HL; increment L	0	1	0	0	D_{3}	D_{2}	D_{1}	D_{0}	1	1	
EXCHANGE													
XAH	$\begin{aligned} & A_{1-0} \leftarrow \mathrm{H}_{1-0} \\ & A_{3-2} \leftarrow 00 \mathrm{H} \end{aligned}$	Exchange A with H	0	1	1	1	1	0	1	0	1	1	
XAL	$A \leftrightarrow L$	Exchange A with L	0	1	1	1	1	0	1	1	1	1	
\times	$A \hookleftarrow(H L)$	Exchange A with the contents of RAM addressed by HL	0	1	0	1	0	1	1	0	1	1	
xis	$\begin{aligned} & A \leftrightarrow(H L) \\ & L \leftarrow L+1 \\ & \text { Skip if } L=0 H \end{aligned}$	Exchange A with the contents of RAM addressed by HL; increment L, skip if $L=\mathbf{O H}$	0	1	0	1	0	1	0	1	1	$1+5$	$\mathrm{L}=\mathrm{OH}$
XDS	$\begin{aligned} & A \leftrightarrow(H L) \\ & L \leftarrow L-1 \\ & \text { Skip if } L=F H \end{aligned}$	Exchange \mathbf{A} with the contents of RAM addressed by HL; decrement L; skip if $L=F H$	0	1	0	1	0	1	0	0	1	$1+5$	$\mathbf{L}=\mathbf{F H}$
XADR address	$A \leftrightarrow\left(D_{5-0}\right)$	Exchange A with the contents of RAM addressed by $\mathbf{6}$ bits of immediate data	$\begin{aligned} & \mathbf{0} \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{D}_{5} \end{aligned}$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{D}_{\mathbf{4}} \end{aligned}$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{D}_{3} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{D}_{2} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{D}_{\mathbf{1}} \end{aligned}$	$\begin{gathered} \mathbf{1} \\ \mathbf{D}_{0} \end{gathered}$	2	2	
ARITHMETIC AND LOGICAL													
AISC data	$A \leftarrow A+D_{3-0}$ Skip if overflow	Add 4 bits of immediate data to A, Skip if overflow is generated	0	0	0	0	D3	D2	D1	D_{0}	1	$1+5$	Overflow
ASC	$A \leftarrow A+(H L)$ Skıp if overflow	Add the contents of RAM addressed by HL to \mathbf{A}; skip if overflow is generated	0	1	1	1	1	1	0	1	1	$1+5$	Overfiow
ACSC	$\begin{aligned} & A_{,} C \leftarrow A+(H L)+C \\ & \text { Skip if } C=1 \end{aligned}$	Add the contents of RAM addressed by HL and the carry flag to A, skip if carry is generated	0	1	1	1	1	1	0	0	1	$1+5$	$C=1$
EXL	$A \leftarrow A \forall(H L)$	Perform a LOGICAL Exclusive-OR operation between the contents of RAM addressed by HL and A, store the result in A	0	1	1	1	1	1	1	0	1	1	
ACCUMULATOR AND CARRY FLAG													
CMA	$A \leftarrow \bar{A}$	Complement A	0	1	1	1	1	1	1	1	1	1	
RC	$C \leftarrow 0$	Reset Carry Flag	0	1	1	1	1	0	0	0	1	1	
SC	$C \leftarrow 1$	Set Carry Flag	0	1	1	1	1	0	0	1	1	1	
INCREMENT AND DECREMENT													
ILS	$\begin{aligned} & L \leftarrow L+1 \\ & \text { Skip if } L=O H \end{aligned}$	Increment L, Skip if $\mathrm{L}=\mathbf{0 H}$	0	1	0	1	1	0	0	1	1	$1+5$	$\mathrm{L}=\mathrm{OH}$
IDRS address	$\begin{aligned} & \left(D_{5-0}\right) \leftarrow\left(D_{5-0}\right)+1 \\ & \text { Skip if }\left(D_{5-0}\right)=0 H \end{aligned}$	Increment the contents of RAM addressed by 6 bits of immediate data; Skip if the contents $=\mathbf{O H}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{0} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & 0 \end{aligned}$	$\begin{gathered} 1 \\ D_{5} \end{gathered}$	$\begin{aligned} & 1 \\ & D_{4} \end{aligned}$	$\begin{aligned} & 1 \\ & D_{3} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{D}_{2} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{D}_{1} \end{aligned}$	$\begin{gathered} 1 \\ D_{0} \end{gathered}$	2	$2+5$	$\left(\mathrm{D}_{5-0}\right)=0 \mathrm{H}$
DLS	$\begin{aligned} & L \leftarrow L-1 \\ & \text { Skip if } L=F H \end{aligned}$	Decrement L; Skip if $L=F H$	0	1	0	1	1	0	0	0	1	$1+5$	$L=F H$
DDRS address	$\begin{aligned} & \left(D_{5-0}\right)+\left(D_{5-0}\right)-1 \\ & \text { Skip if }\left(D_{5-0}\right)=F H \end{aligned}$	Decrement the contents of RAM addressed by 6 bits of immediate data, skip if the contents $=$ FH	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	$\begin{gathered} 1 \\ D_{5} \end{gathered}$	$\begin{gathered} 1 \\ D_{4} \end{gathered}$	$\begin{gathered} 1 \\ \mathbf{D}_{3} \end{gathered}$	1 D_{2}	0 D_{1}	0 Do	2	$2+5$	$\left(\mathrm{D}_{5-0}\right)=\mathrm{FH}$
BIT MANIPULATION													
RMB data	$(\mathrm{HL})_{\text {bit }} \leftarrow 0$	Reset a single bit (denoted by $\mathrm{D}_{1} \mathrm{D}_{0}$) of the RAM location addressed by HL to zero	0	1	1	0	1	0	D1	Do	1	1	
SMB data	$(\mathrm{HL})_{\text {bit }} \leftarrow 1$	Set a single bit (denoted by $D_{1} D_{0}$) of the RAM location addressed by HL to one	0	1	1	0	1	1	D1	Do	1	1	
JUMP. CALL AND RETURN													
JMP address	$\mathrm{PC}_{9-0} \leftarrow \mathrm{D}_{9-0}$	Jump to the address specified by 10 bits of immediate data	$\begin{aligned} & \mathbf{0} \\ & \mathbf{D}_{7} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{D}_{6} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{D}_{5} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{D}_{\mathbf{4}} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{D}_{3} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{D}_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{D}_{\mathbf{9}} \\ & \mathbf{D}_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{D}_{8} \\ & \mathbf{D O}_{0} \end{aligned}$	2	2	
JAM data	$\begin{aligned} & P_{9} 9_{-8} \leftarrow D_{1-0} \\ & P C_{7-4} \leftarrow A \\ & P C_{3-0} \leftarrow(H L) \end{aligned}$	Jump to the address specified by 2 bits of immediate data, A. and the RAM contents addressed by HL	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \mathbf{1} \\ & 0 \end{aligned}$	$\begin{aligned} & \mathbf{1} \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{D}_{1} \end{aligned}$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{D}_{0} \end{aligned}$	2	2	

Instruction Set (Cont.)

			INSTRUCTION CODE								BYTES	CYCLES	SKIP CONDITION
MNEMONIC	FUNCTION	DESCRIPTION	D7	D_{6}	D_{5}	D_{4}	D3	D_{2}	D1	D_{0}			
SUMP, CALL, AND RETURN													
JCP address	$P C_{5-0} \leftarrow \mathrm{D}_{5-0}$	Jump to the address specified by the higher-order bits PC9-6 * of the PC, and 6 bits of immediate data	1	0	D_{5}	D4	D3	D2	D1	Do	1	1	
CALL address	$\begin{aligned} & \text { STACK } \leftarrow P C+2 \\ & \text { PC }_{9-0} \leftarrow D_{9-0} \end{aligned}$	Store a return address (PC +2) in the stack; call the subroutine program at the location specified by 10 bits of immediate data	$\begin{gathered} 0 \\ D_{7} \end{gathered}$	$\begin{gathered} 0 \\ D_{6} \end{gathered}$	$\begin{gathered} 1 \\ D_{5} \end{gathered}$	$\begin{aligned} & 1 \\ & D_{4}, \end{aligned}$	$\begin{aligned} & 0 \\ & \mathrm{D}_{3} \end{aligned}$	$\begin{gathered} 0 \\ \mathrm{D}_{2} \end{gathered}$	$\begin{aligned} & \mathrm{D}_{9} \\ & \mathrm{D}_{1} \end{aligned}$	$\begin{aligned} & \mathrm{D}_{8} \\ & \mathrm{D}_{0} \end{aligned}$	2	2	
CAL address	$\begin{aligned} & \text { STACK } \leftarrow P C+1 \\ & \text { PC }_{9-0} \leftarrow 01 D_{4} D_{3} \\ & 000 D_{2} D_{1} D_{0} \end{aligned}$	Store a return address (PC +1) in the stack; call the subroutine program at one of the 32 special locations specified by 5 bits of immediate data	1	1	1	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	1	1	
RT	PC \leftarrow STACK	Return from Subroutine	0	1	0	1	0	0	1	1	1	1	
RTS	PC \leftarrow STACK Skip unconditionally	Return from Subroutine; skıp unconditionally	0	1	0	1	1	0	1	1	1	$1+\mathrm{S}$	Unconditional
SKIP													
SKC	Skip if $\mathrm{C}=1$	Skip if carry flag is true	0	1	0	1	1	0	1	0	1	$1+\mathrm{S}$	$\mathrm{C}=1$
SKMBT data	Skip if $(\mathrm{HL})_{\text {bit }}=1$	Skip if the single bit (denoted by $D_{1} D_{0}$) of the RAM location addressed by HL is true	0	1	1	0	0	1	D_{1}	D_{0}	1	$1+\mathrm{S}$	$(\mathrm{HL})_{\text {bit }}=1$
SKMBF data	Skip if $(H L)_{\text {bit }}=0$	Skip if the single bit (denoted by $\mathrm{D}_{1} \mathrm{D}_{0}$) of the RAM location addressed by HL is false	0	1	1	0	0	0	D_{1}	D_{0}	1	$1+\mathrm{S}$	$(\mathrm{HL})_{\text {bit }}=0$
SKABT data	Skip if $\mathrm{A}_{\text {bit }}=1$	Skip if the single bit (denoted by $D_{1} D_{0}$) of A is true	0	1	1	1	0	1	D_{1}	D_{0}	1	$1+5$	$A_{\text {bit }}=1$
SKAEI data	Skip if $\mathbf{A}=$ data	Skip if A equals 4 bits of immediata data	$\begin{aligned} & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{gathered} \hline 1 \\ \mathrm{D}_{3} \\ \hline \end{gathered}$	$\begin{aligned} & \hline 1 \\ & \mathbf{D}_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \\ & \mathrm{D}_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \\ & \mathrm{D}_{0} \\ & \hline \end{aligned}$	2	$2+5$	$A=$ data
SKAEM	Skip if $A=(H L)$	Skip if A equals the RAM contents addressed by HL	0	1	0	1	1	1	1	1	1	1+S	$A=(H L)$
PARALLEL I/O													
IPL	$A \leftarrow P(L)$	Input the Port addressed by L to A	0	1	1	1	0	0	0	0	1	1	
\|P1	$\mathrm{A} \leftarrow \mathrm{P} 1$	Input Port 1 to A	0	1	1	1	0	0	0	1	1	1	
OPL	$P(L) \leftarrow A$	Output A to the port addressed by L	0	1	1	1	0	0	1	0	1	1	
OP3	$P 3 \leftarrow \mathrm{~A}_{1-0}$	Output the lower 2 bits of A to Port 3	0	1	1	1	0	0	1	1	1	1	
CPU CONTROL													
NOP		Perform no operation: consume one machine cycle	0	0	0	0	0	0	0	0	1	1	

Package Outlines

For information, see Package Outline Section 7.
Plastic, μ PD7520C
Plastic Shrinkdip, μ PD7520CT

μ PD7527/7528/7537/7538
 CMOS 4-BIT SINGLE-CHIP MICROCOMPUTER WITH VACUUM FLUORESCENT DISPLAY DRIVE CAPABILITY

Description

The μ PD7527/28 and the μ PD7537/38 are pin-compatible CMOS 4-bit single-chip microcomputers which have the same μ PD750X architecture.
The μ PD7527/37 contains a 2048×8-bit ROM, and a $128 \times$ 4 -bit RAM. The μ PD7528/38 contains a 4096×8-bit ROM, and a 160×4-bit RAM.
Both the μ PD7527/28 and the μ PD7537/38 contain two 4 -bit general purpose registers located outside RAM. The subroutine stack is implemented in RAM for greater depth and flexibility. The μ PD7527/28 and μ PD7537/38 typically execute 67 instructions of the μ PD7500 series A instruction set with a $5 \mu \mathrm{~s}$ instruction cycle time.
The μ PD7527/28 and the μ PD7537/38 have one external and two internal edge-triggered hardware vectored interrupts. They also contain an 8 -bit timer/event counter and an 8 -bit serial interface to help reduce software requirements.
Both the μ PD7527/28 and the μ PD7537/38 provide 31 I/O lines organized into the 4 -bit input/serial interface Port 0, the 3 -bit Port 2, the 4 -bit Port 3, and the 4 -bit I/O Ports 1, 4, $5,8,9,10$ and 11. They are manufactured with a low power consumption CMOS process, allowing the use of a power supply between 2.7 V and 5.5 V . Current consumption is less than 900μ A maximum, and can be lowered much further in the Halt and Stop power-down modes. The μ PD7527/28 and μ PD7537/38 are available in a 42-pin dual-in-line plastic package.
The μ PD7527/28 and μ PD7537/38 are upward compatible with other members of the μ PD75xx product family.
For prototyping work, and as an aid to program development, there are piggyback EPROM versions for both devices: the 75CG28E and 75CG38E. These are pin-compatible and functionally compatible with the final, masked versions of the devices.

Pin Configuration

RESET

Pin					Function

Block Diagram

Distinguishing Features

	μ PD7527	μ PD7528	μ PD7537	μ PD7538
Type of Oscillator $\left(\mathrm{CL}_{1}, \mathrm{CL}_{2}\right)$	R/C	R/C	Crystal	Crystal
Program Counter	11 bits	12 bits	11 bits	12 bits
Program Memory	2048×8	4096×8	2048×8	4096×8
Data Memory	128×4	160×4	128×4	160×4
Number of Instructions	67	67	66	66

Mask Options

$\mathrm{PO}_{\mathrm{o}} / \mathrm{INT}_{0}$

Ports $2_{1}-2_{3}, 3_{0}-3_{3}$,
$4_{0}-4_{3}, 5_{0}-5_{3}, 8_{0}-8_{3}$, $9_{0}-9_{3}, 10_{0}-10_{3}, 11_{o}-11_{3}$

This input, as a mask option, can be altered from a standard digital CMOS input to a zerocrossing detector.
These I/O ports can selectively be provided with optional pull-down load resistors at the bit level.

Package Outlines

For information, see Package Outline Section 7.
Plastic, μ PD7527C/28C/37C/38C
Plastic Shrinkdip, μ PD7527C 28C 37C 38C
Ceramic Piggyback, μ PD75CG28E/CG38E

Description

The μ PD7500 is a CMOS 4-bit microprocessor which has the μ PD750x architecture, and also functions as the μ PD7500 series ROM-less evaluation chip.
The μ PD7500 contains a 256×4-bit RAM, and is capable of addressing up to 8192×8-bits of external program memory.
The μ PD7500 contains four 4-bit general purpose registers located outside RAM. The subroutine stack is implemented in RAM for greater nesting depth and flexibility, providing such operations as the pushing and popping of register values. The μ PD7500 typically executes either all 110 instructions of the μ PD7500 series " A " instruction set, or all 70 instructions of the μ PD7500 series " B " instruction set with a $10 \mu \mathrm{~s}$ instruction cycle time.
The μ PD7500 has three external and two internal edgetriggered hardware vectored interrupts. It also contains an 8-bit timer/event counter and an 8-bit serial interface to help reduce software requirements. A display timing pulse is also provided when emulating the μ PD7501, μ PD7502, the μ PD7503, or the μ PD7519.
The μ PD7500 provides 32 I/O lines organized into the 4 -bit input/serial interface Port 0 , the 4 -bit output Port 2, the 4 -bit output Port 3, and the 4 -bit I/O Ports 1, 4, 5, 6, and 7. It is manufactured with a low power consumption CMOS process, allowing the use of a single +5 V power supply. Current consumption is less than $900 \mu \mathrm{~A}$ maximum, and can be lowered much further in the HALT and STOP power-down modes. The μ PD7500 is available in a 64 -pin quad-in-line plastic package.

Pin Configuration

Rev/1
3-105

Pin Names

Pin		Function
No.	Symbol	
1, 2	$\mathrm{X}_{2}, \mathrm{X}_{1}$	Crystal clock/external event input Port X (active high). A crystal oscillator circuit is connected to input X_{1} and output X_{2} for crystal clock operation. Alternatively, external event pulses are connected to input X_{1} while output X_{2} is left open for external event counting.
3	TEST	Factory test pin (connect to $\mathrm{V}_{\mathbf{S S}}$).
$\begin{aligned} & 4-9, \text { and } \\ & 56-63 \end{aligned}$	BUS $_{0}$ BUS $_{13}$	External data bus (active high). Connected to external program memory.
10-13	$\mathrm{P4}_{0}-\mathrm{P4}_{3}$	4-bit input/latched tri-state output Port 4 (active high). Can also perform 8-bit parallel I/O in conjunction with Port 5.
14-17	$\mathrm{P5}_{0}-\mathrm{P} 5_{3}$	4-bit input/latched tri-state output Port 5 (active high). Can also perform 8-bit parallel I/O in conjunction with Port 4.
18-21	$\mathrm{P6}_{0}-\mathrm{P6}_{3}$	4-bit input/latched tri-state output Port 6 (active high). Individual lines can be configured either as inputs or as outputs under control of the Port 6 mode select register.
22-25	$\mathrm{P7}_{0}-\mathrm{P} 7_{3}$	4-bit input/latched tri-state output Port 7 (active high).
26	INT_{1}	External Interrupt INT_{1} (active high). This is a rising edgetriggered interrupt.
27	$\mathbf{N N T}_{0}$	External interrupt INT_{0} (active high). This is a rising edgetriggered interrupt.
28	$\mathbf{I N T}_{2}$	External Interrupt INT_{2} (active high). This is a rising edgetriggered interrupt.
29	RESET	RESET input (actıve high). R/C circuit or pulse initializes μ PD7500 after power-up.
30, 31	$\mathrm{CL}_{1}, \mathrm{CL}_{2}$	System clock input (active high). Connect $\mathbf{8 2 K}$, resistor across CL_{1} and CL_{2}, and connect 33pF capacitor from CL_{1} to $\mathbf{V}_{\text {SS }}$. Alternatively, an external clock source may be connected to $C L_{1}$, whereas CL_{2} is left open.
32	VDD	Power supply positive. Apply single voltage ranging from 2.7V to 5.5 V for proper operation.
33-36	$\mathrm{P3}_{0}-\mathrm{P3}_{3}$	4-bit input/latched tri-state output Port 3 (active high).
37	DOUT	Data output (active low).
38	ALE	Address latch enable (active high).
39	NC	No connection.
40-43	$\begin{aligned} & \mathrm{PO}_{0} \\ & \mathrm{PO}_{1} / \overline{\mathrm{SCK}} \\ & \mathrm{PO}_{2} / \mathrm{SO} \\ & \mathrm{PO}_{3} / \mathrm{SI} \end{aligned}$	4-bit input Port 0/serial I/O interface (actıve high). This port can be configured either as a 4-bit parallel input port, or as the 8-bit serial I/O interface, under control of the serial mode select register. The Serial Input SI (active high), Serial Output SO (active low), and the Serial Clock SCK (active low) used for synchronizing data transfer comprise the 8-bit serial I/O interface.
44-47	$\begin{aligned} & \mathrm{P}_{2}-\mathrm{P}_{3} \\ & \mathrm{P}_{0} / \mathrm{P}_{\mathrm{STB}} \\ & \mathrm{P}_{1} / \mathrm{P}_{\mathrm{T}_{\text {OUT }}} \end{aligned}$	4-bit latched tri-state output Port 2 (active high). Line $\mathrm{P}_{2}{ }_{0}$ is also shared with PSTB, the Port 1 output strobe pulse (active low). Line $\mathrm{P2}_{1}$ is also shared with $\mathrm{P}_{\mathrm{TOUT}}$, the timer-out F/F signal (active high).
48	PSEN	Program store enable (active low).
49	DISPLAY	DISPLAY timing pulse (active high).
50	CSOUT	Chip select output (active low). Connected to μ PD82C43.
51	$\overline{\text { STB }}$	STROBE output (active low). Connected to μ PD82C43.
52-55	$\mathrm{P}_{1} \mathrm{O}^{-\mathrm{P}} \mathbf{3}_{3}$	4-bit input/tri-state output Port 1 (active high). Data output to Port 1 is strobed in synchronization with a $\mathbf{P 2}_{0} / P_{\text {STB }}$ pulse.
64	$\mathbf{V}_{\mathbf{S S}}$	Ground.

Absolute Maximum Ratings*
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Operating Temperature	$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Supply Voltage, V_{DD}	-0.3 V to +7.0 V
All Input and Output Voltages	-0.3 V to $\mathrm{VDD}+0.3 \mathrm{~V}$
Output-Current (Total, All Output Ports)	$\mathrm{IOH}=-20 \mathrm{~mA}$
	$1 \mathrm{OL}=50 \mathrm{~mA}$

*Comment: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics
 $\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm \mathbf{1 0 \%}$

Parametor	Symbol	Limits			Unit	Tost Conditions
		Min	Typ	Max		
Input Voltage High	$\mathrm{V}_{\mathrm{IH}_{1}}$	0.7 VDD		V_{DD}	v	All Inputs Other than $\mathrm{CL}_{1}, \mathrm{X}_{1}$
	$\overline{\mathrm{V}_{\mathrm{IH}_{2}}}$	$V_{\text {DD }}-0.5$		$V_{\text {DD }}$		$\mathrm{CL}_{1}, \mathrm{X}_{1}$
Input Voltage Low	$\mathrm{V}_{\mathrm{IL}_{1}}$	0		$0.3 \mathrm{~V}_{\mathrm{DD}}$	V	All Inputs Other than $\mathrm{CL}_{1}, \mathrm{X}_{1}$
	$\mathrm{V}_{\mathrm{IL}_{2}}$	0		0.5		$\mathrm{CL}_{1}, \mathrm{X}_{1}$
Input Leakage Current High	${ }^{1} \mathrm{LI}_{\mathrm{H} 1}$			3		$\begin{aligned} & \text { All Inputs Other } \mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}} \\ & \text { than } \mathrm{CL}_{1}, \mathrm{x}_{1} \end{aligned}$
	${ }^{\text {Li }}{ }_{\mathbf{H} 2}$			10	$\mu \mathrm{A}$	$\mathrm{CL}_{1}, \mathrm{X}_{1}$
Input Leakage Current Low	${ }^{1} \mathrm{~L}_{\mathrm{L} 1}$			-3		All inputs Other $\mathrm{V}_{1}=\mathbf{O V}$ than $\mathrm{CL}_{1}, \mathrm{X}_{1}$
	${ }^{1} \mathrm{LI}_{\mathrm{L} 2}$			-10	$\mu \mathrm{A}$	$\mathrm{CL}_{1}, \mathrm{X}_{1}$
Output Voltage High	V_{OH}	$V_{D D}-1.0$			V	
Output Voltage Low	V_{OL}			0.4	v	
Output Leakage Current High	${ }^{\mathbf{L}} \mathrm{O}_{\mathbf{H}}$			3	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}$
Output Leakage Current Low	${ }^{\text {L }}$ L L			-3	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$
Supply Current	${ }^{\prime} \mathrm{DD}_{1}$			2	mA	Normal Operation All Output Pins Open No BUS Conflicts
	${ }^{\prime} \mathrm{DD}_{2}$		2	20	$\mu \mathrm{A}$	Stop Mode, $\mathrm{X}_{1}=0 \mathrm{~V}$
			0.4	10		Data Retention Mode $\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V}$

Capacltance

$\mathrm{T}_{\mathrm{a}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{VDD}=\mathbf{0 V}$

Parametor	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Input Capacitance	$C_{\text {IN }}$			15	pF	$f=1 \mathrm{MHz}$
Output Capacitance	Cout			15	PF	Unmeasured pins
I/O Capacitance	C_{10}			15	pF	returned to $\mathbf{V}_{\text {SS }}$

AC Characteristics

$\mathbf{T}_{\mathrm{a}}=-10^{\circ} \sim+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm \mathbf{1 0 \%}$
Clock Operation

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
System Clock Oscillation Frequency	${ }^{\prime} \phi$	120	200	280	KHz	$\begin{aligned} & R=82 \mathrm{k} \Omega \pm 2 \% \\ & \mathrm{C}=33 \mathrm{pF} \pm 5 \% \end{aligned}$
	1	10		300	KHz	CL_{1}, External Clock
CL_{1} Input Rise Time	${ }^{\text {c }}$ CR			0.2	μs	
CL_{1} Input Fall Time	${ }^{\text {t }} \mathbf{C}$			0.2	$\mu 8$	
CL_{1} Input Clock Width (High)	${ }^{\mathbf{t}} \mathbf{C H}$	1.5			$\mu 8$	
CL_{1} Input Clock Width (Low)	${ }^{\text {t }} \mathrm{CL}$	1.5			μs	
Count Clock Oscillation Frequency $\left(x_{1}, x_{2}\right)$	${ }^{\mathbf{f}} \mathrm{Xx}$		32		KHz	Xtal Oscillation
Count Clock Input Frequency (X_{1})	${ }^{\mathbf{4}} \mathrm{X}$	0		300	KHz	
x_{1} Input Rise Time	${ }^{\text {tXR }}$			0.2	μs	
x_{1} Input Fall Time	${ }^{\text {t }}$ XF			0.2	$\mu 8$	
X_{1} Input Clock Width (High)	${ }^{\text {t }}$ H	1.5			$\mu 8$	
X_{1} Input Clock Width (Low)	${ }^{\text {t }}$ L	1.5			$\boldsymbol{\mu s}$	

Bus I/O Operation

Parameter	Symbol	Limits			Unit	Test Conditlons
		Min	Typ	Max		
ALE Pulse Width (High)	${ }_{\text {t }}^{\text {LH }}$	600			n8	
Address Setup Time to ALE \downarrow	${ }^{\text {A }}$ L	200			ns	
Address Hold Time after ALE \downarrow	$t_{\text {LA }}$	100			ns	
Output Data Setup Time to $\overline{\text { DOUT }} \uparrow$	tDDO	200			ns	
Output Data Hold Time after DOUT \uparrow	${ }^{\text {t }}$ DOD	100			ns	
$\overline{\text { DOUT Pulse Width }}$ (Low)	${ }^{\text {tDOL }}$	600			ns	
ALE \rightarrow Data Input Valid Time	${ }^{\text {t LDV }}$			700	ns	
Address \rightarrow Data Input Valid Time	$t_{\text {ADV }}$			900	ns	
$\overline{\text { PSEN Pulse Width }}$ (Low)	${ }^{\text {tPSL }}$	1200			ns	
$\overline{\text { PSEN }} \rightarrow$ Data Input Valid Time	tPSDV			600	ns	
$\overline{\text { PSEN }} \rightarrow$ Data Float	${ }^{\text {t PSDF }}$	0			ns	

μ PD7500

Port 1 I/O Operation

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Port 1 Output Setup Time to $\overline{\text { STB }} \uparrow$	${ }^{\text {PPST }}$	200			ns	
Port 1 Output Hold Time after STB \uparrow	${ }^{\text {tSTP }}$	100			ns	Port Output Mode
STB Pulse Width (Low)	${ }^{\text {'STL }}{ }_{1}$	600			ns	
Output Data Setup Time to STB \uparrow	${ }^{\text {D }}$ DST	300			ns	
Output Data Hold Time after STB \uparrow	${ }^{\text {tsto }}$	100			ns	
$\overline{\text { STB }} \downarrow \rightarrow$ Input Data Valid Time	tstov			850	ns	
$\overline{\text { STB }} \downarrow \rightarrow$ Input Data Float Time	${ }^{\text {t }}$ StDF	0			ns	
Control Setup Time to STB \downarrow	${ }^{\text {t }}$ CST	200			ns	1/O Expander Mode
Control Hold Time after $\overline{\text { STB }}+$	${ }^{\text {tSTC }}$	100			ns	
STB Pulse Width (Low)	${ }^{\mathbf{S}} \mathrm{STL}_{2}$	1200			ns	
$\overline{C S O U T}$ Setup Time to $\overline{\text { STB }} \downarrow$	${ }^{\text {t }}$ csst	200			ns	
CSOUT Hold Time after STB \downarrow	${ }^{\text {tstcs }}$	100			ns	

Other Operations

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
INT_{0} Pulse Width High	${ }_{10}{ }_{0}$	10			$\mu \mathbf{s}$	
INT $_{0}$ Pulse Width Low	${ }^{1} 10$ L	10			$\mu \mathbf{s}$	
INT_{1} Pulse Width High	$t_{1} \mathrm{H}$	2/f ${ }_{\phi}$			$\mu \mathrm{s}$	
INT_{1} Pulse Width Low	$t_{1} \mathrm{~L}$	2/f ${ }_{\phi}$			$\mu \mathrm{s}$	
INT_{2} Pulse Width High	$\mathrm{t}_{\mathbf{2}} \mathrm{H}$	2/f ${ }_{\phi}$			$\mu \mathrm{s}$	
INT_{2} Pulse Width Low	$\mathrm{t}_{\mathbf{2}} \mathrm{L}$	2/f ${ }_{\phi}$			$\mu \mathbf{s}$	
RESET Pulse Width High	${ }^{\text {tRSH }}$	10			$\mu \mathrm{S}$	
RESET Pulse Width Low	$t_{\text {RSL }}$	10		;	$\mu \mathrm{s}$	

Serial Interface Operation

		Limits		
	Parameter	Symbol	Min	Typ

Clock Timing Waveforms

Bus I/O Timing Waveforms

Strobe Output Timing Waveforms

Port 1 I/O Expander Port Timing Waveforms

Serial Interface Timing Waveforms

Interrupt Input Timing Waveforms

RESET Input Timing

Operating Characteristics

Note:
(1) Only R/C system clock is operating and consuming power. All other internal logic blocks are not active

MPD7500

Package Outlines

For information, see Package Outline Section 7.
Plastic Quil, μ PD7500G Evaluation Chip

HYBRID UV EPROM 4-BIT SINGLE CHIP MICROCOMPUTER

DESCRIPTION The MC-430P is a hybrid chip containing a μ PD556B ROM-less Evaluation chip, a μ PD2716 $2 \mathrm{~K} \times 8$-bit UV EPROM, a μ PC7905 3-terminal voltage regulator, and pull-up resistors on the same ceramic substrate. The MC-430P is pin-compatible with the μ PD546C/ μ PD547C, and can emulate the high-voltage drive or CMOS μ COM-4 microcomputers with the corresponding I/O line buffers.

The MC-430P contains a 2048×8-bit UV EPROM and a 96×4-bit RAM which includes six working registers and the flag register. It has a level-triggered hardware interrupt, a three-level stack, and a programmable 6-bit timer. The MC-430P executes all 80 instructions of the extended μ COM-4 family instruction set.

The MC-430P provides $35 \mathrm{I} / \mathrm{O}$ lines organized into the 4-bit input ports A and B, the 4-bit I/O ports C and D, the 4-bit output ports E, F, G, and H, and the 3-bit output port I. It typically executes its instructions with a 10μ s instruction cycle time. The MC-430P is manufactured with a standard PMOS process, allowing use of a single -10 V power supply, and is available in a 42-pin dual-in-line ceramic hybrid package.
MC-430P (PIN COMPATIBLE WITH μ PD546 $/ \mu$ PD547)

PIN NAMES

PA $_{0}-$ PA $_{3}$	Input Port A
$\mathrm{PB}_{0}-\mathrm{PB}_{3}$	Input Port B
$\mathrm{PC}_{0}-\mathrm{PC}_{3}$	Input/Output Port C
$\mathrm{PD}_{0}-\mathrm{PD}_{3}$	Input/Output Port D
$\mathrm{PE}_{0}-\mathrm{PE}_{3}$	Output Port E
$\mathrm{PF}_{0}-\mathrm{PF}_{3}$	Output Port F
$\mathrm{PG}_{0}-\mathrm{PG}_{3}$	Output Port G
$\mathrm{PH}_{0}-\mathrm{PH}_{3}$	Output Port H
$\mathrm{PI}_{0}-\mathrm{PI}_{2}$	Output Port I
$\overline{\mathrm{INT}^{2}}$	Interrupt Input
$\mathrm{CL}-\mathrm{CL}_{1}$	External Clock Signals
RESET	Reset
V_{GG}	Power Supply Negative
$\mathrm{V}_{\text {SS }}$	Power Supply Positive
TEST	Factory Test Pin (Connect to VSS

EPROM WRITE PADS (μ PD2716)

PIN NAMES	
$A_{0}-A_{10}$	Addresses
OE	Output Enable
$\mathrm{O}_{0}-\mathrm{O}_{7}$	Data Outputs
$\mathrm{CE} /$ PGM	Chip Enable/Program

: μ PD556
: Pull-Up Resistors
: μ PC7905 (3-Terminal 5 Volt Voltage Regulator)
: μ PD 2716 (EPROM)
: μ PD546C/ μ PD547C Compatible Pins (42 Pins)
: EPROM Write Pads (24 Pads)
Operating Temperature . $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage, VGG . -15 to +0.3V
Input Voltages . -15 to +0.3V
Output Voltages . -15 to +0.3V
Output Current (Total, all ports) . -4 mA

ABSOLUTE MAXIMUM
 RATINGS*

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

SPECIFICATIONS

DC CHARACTERISTICS

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Voltage High	V IH	0		-20	V	Ports A through D, $\overline{\mathrm{INT}}$, RESET
Input Voltage Low	$V_{\text {IL }}$	-43		$V_{\text {GG }}$	v	Ports A through D, $\overline{\mathrm{INT}}$, RESET
Clock Voltage High	$\mathrm{V}_{\phi H}$	0		-08	V	CLo Input, External Clock
Clock Voltage Low	$\mathrm{V}_{\phi} \mathrm{L}$	-60		V_{GG}	v	CLo Input, External Clock
Input Leakage Current High	'LIH			+10	$\mu \mathrm{A}$	Ports A through D, INT, RESET, $V_{1}=-1 \mathrm{~V}$
Input Leakage Current Low	ILIL			-10	$\mu \mathrm{A}$	Ports A through D, $\overline{\mathrm{INT}}$, RESET, $V_{1}=-11 \mathrm{~V}$
Clock Input Leakage Current High	${ }_{\text {L }}^{\text {L }}$ H			+200	$\mu \mathrm{A}$	CL_{0} Input, $\mathrm{V}_{\phi H}=0 \mathrm{~V}$
Clock Input Leakage Current Low	${ }^{\prime} \mathrm{L} \phi \mathrm{L}$			-200	$\mu \mathrm{A}$	CL_{0} Input, $\mathrm{V}_{\phi L}=-11 \mathrm{~V}$
Output Voltage High	VOH_{1}			-10	\checkmark	Ports C through I , $\mathrm{I}_{\mathrm{OH}}=-10 \mathrm{~mA}$
	VOH_{2}			-23	V	Ports C through I . $\mathrm{I}_{\mathrm{OH}}=-3.3 \mathrm{~mA}$
Output Leakage Current Low	ILOL			-10	$\mu \mathrm{A}$	Ports C through I , $v_{\mathrm{O}}=-11 \mathrm{~V}$
Supply Current	${ }^{\prime} \mathrm{GG}$		-110	-165	mA	

AC CHARACTERISTICS

$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GG}}=-10 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Oscillator Frequency	f	150		440	KHz	
Rise and Fall Tımes	t_{r}, t_{f}	0		0.3	$\mu \mathrm{s}$	EXTERNAL CLOCK
Clock Pulse Width High	${ }_{\text {t }}^{\text {¢ }} \mathrm{W}_{\mathrm{H}}$	0.5		5.6	$\mu \mathrm{s}$	
Clock Pulse Width Low	${ }_{\phi}{ }^{+} W_{L}$	0.5		5.6	$\mu \mathrm{s}$	

CAPACITANCE

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	c_{1}			15	pF	$\mathrm{f}=\mathbf{1 M H z}$
Output Capacitance	Co			40	pF	
Input/Output Capacitance	c_{10}			30	pF	

PROGRAM, PROGRAM VERIFY AND PROGRAM INHIBIT MODE
$T_{a}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}$ (1) $=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{PP}}$ (1) (2) $=+25 \mathrm{~V} \pm 1 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN.	TYP	MAX.		
Input High Voltage	$\mathrm{V}_{\text {IH }}$	+20		$\mathrm{V}_{\mathrm{cc}}+1$	\checkmark	
Input Low Voltage	$V_{\text {IL }}$	-01		+08	\checkmark	
Input Leakage Current	IIL			± 10	$\mu \mathrm{A}$	$\mathrm{V}_{1 \mathrm{~N}}=525 \mathrm{~V} / 0.45 \mathrm{~V}$
Vpp Current	'pp1			+5	mA	$\overline{C E} /$ PGM $=V_{\text {IL }} \begin{gathered}\text { Program Verify } \\ \text { Program Inhibit }\end{gathered}$
	${ }^{\text {IPP2 }}$			+30	mA	$\overline{C E} /$ PGM $=V_{\text {IH }}$ Program Mode
V_{CC} Current	${ }^{1} \mathrm{CC}$			+100	mA	

PROGRAM, PROGRAM VERIFY AND PROGRAM INHIBIT MODE
$T_{a}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}{ }^{(1)}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{PP}}$ (1)(2) $=+25 \mathrm{~V} \pm 1 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
Address Setup Time	tAS	2			$\mu \mathrm{s}$	
$\overline{\text { OE Setup Time }}$	tOES	2			$\mu \mathrm{s}$	
Data Setup Tıme	${ }^{\text {t }} \mathrm{DS}$	2			$\mu \mathrm{s}$	
Address Hold Time	${ }^{\text {t }} \mathrm{AH}$	2			$\mu \mathrm{s}$	
$\overline{\mathrm{OE}}$ Hold Time	${ }^{\text {t }}$ OEH	2			$\mu \mathrm{s}$	
Data Hold Time	${ }^{\text {to }}$	2			$\mu \mathrm{s}$	
Output Enable to Output Float Delay	t ${ }^{\text {PF }}$	0		120	ns	$\overline{C E} /$ PGM $=V_{\text {IL }}$
Output Enable to Output Delay	${ }^{\text {t }} \mathrm{OE}$			120	ns	$\overline{C E} / P G M=V_{\text {IL }}$
Program Pulse Width	tPW	45	50	55	ms	
Program Pulse Rise Tıme	tPRT	5			ns	
Program Pulse Fall Time	tPFT	5			ns	

Test Conditions

Input Pulse Levels $\quad 08 \mathrm{~V}$ to 22 V	Output Timing Reference Level. 0.8 V and 2 V
Input Timing Reference Level. .	
1 V and 2 V	

Notes (1) V_{CC} must be applied simultaneously or before V_{PP} and removed after V_{PP}
(2) During programming, program inhibit, and program verify, a maximum of $+\mathbf{2 6 V}$ should be applied to the VPP pin Overshoot voltages to be generated by the VPP power supply should be limited to less than +26 V
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	$\mathrm{CIN}^{\text {I }}$			60	pF	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
Output Capacitance	COUT			45	pF	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

DC CHARACTERISTICS

AC CHARACTERISTICS

AC

CAPACITANCE

TIMING WAVEFORM

Package Outlines

For information, see Package Outline Section 7.

Cerdip, MC-430PD

NOTES

NEC

HIGH END SINGLE CHIP 8-BIT MICROCOMPUTER ROM-LESS DEVELOPMENT DEVICE

DESCRIPTION
The NEC μ PD7800 is an advanced 8-bit general purpose single-chip microcomputer fabricated with N-channel Silicon Gate MOS Technology. Intended as a ROM-less development device for NEC μ PD7801/7802 designs, the μ PD7800 can also be used as a powerful microprocessor in volume production enabling program memory flexibility. Basic on-chip functional blocks include 128 bytes of RAM data memory, 8-bit ALU, 32 I/O lines, Serial I/O port, and 12 -bit timer. Fully compatible with the industry standard 8080A bus structure, expanded system operation can be easily implemented using any of 8080A/8085A peripheral and memory products. Total memory address space is 64 K bytes.

FEATURES - NMOS Silicon Gate Technology Requiring Single +5 V Supply.

- Single-Chip Microcomputer with On-Chip ALU, RAM and I/O
- 128 Bytes RAM
- 32 I/O Lines
- Internal 12-Bit Programmable Timer
- On-Chip 1 MHz Serial Port
- Five-Level Vectored, Prioritized Interrupt Structure
- Serial Port
- Timer
- 3 External Interrupts
- Bus Expansion Capabilities
- Fully 8080A Bus Compatible
- 64K Byte Memory Address Range
- Wait State Capability
- Alternate Z80™ Type Register Set
- Powerful 140 Instruction Set
- 8 Address Modes; Including Auto-Increment/Decrement
- Multi-Level Stack-Capabilities
- Fast 2μ s Cycle Time
- Bus Sharing Capabilities

PIN NO	DESIGNATION	FUNCTION
1, 49-63	$A B 0^{-A B 15}$	(Tri-State, Output) 16-bit address bus.
2	$\overline{\text { EXT }}$	(Output) EXT is used to simulate μ PD7801/7802 external memory reference operation. EXT distinguishes between internal and external memory references, and goes low when locations 4096 through 65407 are accessed.
3-10	$\mathrm{DB}_{0}-\mathrm{DB} 7$	(Tri-State Input/Output, active high) 8-bit true bi-directional data bus used for external data exchanges with I/O and memory.
11	INT_{0}	(Input, active high) Level-sensitive interrupt input.
12	INT1	(Input, active high) Rising-edge sensitive interrupt input. Interrupts are initiated on low-to-high transitions, providing interrupts are enabled.
13	INT_{2}	(Input) INT $_{2}$ is an edge sensitive interrupt input where the desired activation transition is programmable. By setting the ES bit in the Mask Register to a $1, \mathrm{INT}_{2}$ is rising edge sensitive. When ES is set to $0, \mathrm{INT}_{2}$ is falling edge sensitive.
14	$\overline{\text { WAIT }}$	(Input, active low) $\overline{\text { WAIT }}$, when active, extends read or write timing to interface with slower external memory or I/O. WAIT is sampled at the end of T_{2}, if active processor enters a wait state TW and remains in that state as long as WAIT is active.
15	M1	(Output, active high) when active, M1 indicates that the current machine cycle is an OP CODE FETCH.
16	$\overline{W R}$	(Tri-State Output, active low) $\overline{W R}$, when active, indicates that the data bus holds valid data. Used as a strobe signal for external memory or I/O write operations. WR goes to the high impedance state during HALT, HOLD, or RESET.
17	$\overline{\mathrm{RD}}$	(Tri-State Output, active low) $\overline{R D}$ is used as a strobe to gate data from external devices on the data bus. $\overline{R D}$ goes to the high impedance state during HALT, HOLD, and RESET.
18-25	$\mathrm{PC}_{0}-\mathrm{PC}_{7}$	(Input/Output) 8-bit I/O configured as a nibble I/O port or as control lines.
26	$\overline{\text { SCK }}$	(Input/Output) $\overline{\text { SCK }}$ provides control clocks for Serial Port Input/Output operations. Data on the SI line is clocked into the Serial Register on the rising edge. Contents of the Serial Register is clocked onto SO line on falling edges.
27	SI	(Input) Serial data is input to the processor through the SI line. Data is clocked into the Serial Register MSB to LSB with the rising edge of SCK.
28	SO	(Output) SO is the Serial Output Port. Serial data is output on this line on the falling edge of SCK, MSB to LSB.
29	RESET	(Input, active low) RESET initializes the μ PD7800.
30	STB	(Output) Used to simulate μ PD7801/7802 Port E operation, indicating that a Port E operation is being performed when active.
31	X_{1}	(Input) Clock Input
33-40	PA0-PA7	(Output) 8-bit output port with latch capability.
41-48	$\mathrm{PB}_{0}-\mathrm{PB} 7$	(Tri-State Input/Output) 8-bit programmable I/O port. Each line configurable independently as an input or output.

BLOCK DIAGRAM

μ PD7800

Architecturally consistent with μ PD7801/7802 devices, the μ PD7800 uses a slightly different pin-out to accommodate for the address bus and lack of on-chip clock generator. For complete μ PD7800 functional operation, please refer to μ PD7801 product information. Listed below are functional differences that exist between μ PD7800 and μ PD7801 devices.

μ PD7800/7801 Functional Differences

1. The functionality of μ PD7801 Port E is somewhat different on the μ PD7800. Because the μ PD7800 contains no program memory, the address bus is made accessible to address external program memory. Thus, lines normally used for Port E operation with the $\mu \mathrm{PD} 7801$ are used as the address bus on the $\mu \mathrm{PD} 7800$. $\mathrm{AB}_{0}{ }^{-}$ $A B_{15}$ is active during memory access 0 through 4095.
2. Consequently Port E instructions (PEX, PEN, and PER) have different functionality.
PEX Instruction - The contents of B and C register are output to the address bus. The value 01 H is output to the data bus. STB becomes active.
PEN Instruction - B and C register contents are output to the address bus. The value 02 H is output to the data bus. STB becomes active.
PER Instruction - The address bus goes to the high impedance state. The value 04 H is output to the data bus. STB becomes active.
3. ON-CHIP CLOCK GENERATOR. The μ PD 7800 contains no internal clock generator. An external clock source is input to the X_{1} input.
4. PIN 30. This pin functions as the X_{2} crystal connection on the μ PD7801. On the μ PD7800, pin 30 functions as a strobe output (STB) and becomes active when a Port E instruction is executed. This control signal is useful in simulating μ PD7801 Port E operation - indicating that a port E operation is being performed.
5. PIN 2. Functions as the Φ out clock output used for synchronizing system external memory and I/O devices, on the μ PD7801. On the μ PD7800, this pin is used to simulate external memory reference operation of the μ PD7801. $\overline{\mathrm{EXT}}$ is used to distinguish between internal and external memory references and goes low when location 4096 through 65407 are accessed.

RECOMMENDED CLOCK DRIVE CIRCUIT

ABSOLUTE MAXIMUM RATINGS*

Operating Temperature . $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage On Any Pin . -0.3 V to +7.0 V
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maxımum Ratıngs" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maxımum rating conditıons for extended periods may affect device reliability.

DC CHARACTERISTICS $\quad T_{a}=-10^{\circ} \mathrm{C} \sim+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage	$V_{\text {IL }}$	0		0.8	V	
Input High Voltage	$\mathrm{V}_{1} \mathrm{H} 1$	2.0		V_{CC}	V	Except $\overline{\text { SCK }}$, $\times 1$
	$\mathrm{V}_{1 \mathrm{H} 2}$	3.8		$V_{\text {cC }}$	V	$\overline{\text { SCK, }} \times 1$
Output Low Voltage	V_{OL}			0.45	V	${ }^{1} \mathrm{OL}=2.0 \mathrm{~mA}$
Output High Voltage	$\mathrm{VOH1}$	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$
	$\mathrm{V}_{\mathrm{OH} 2}$	2.0			V	$\mathrm{I}^{\mathrm{OH}}=-500 \mu \mathrm{~A}$
Low Level Input Leakage Current	ILIL			-10	$\mu \mathrm{A}$	$V_{\text {IN }}=0 \mathrm{~V}$
High Level Input Leakage Current	ILIH			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$
Low Level Output Leakage Current	ILOL			-10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=045 \mathrm{~V}$
High Level Output Leakage Current	${ }^{\text {L LOH }}$			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$V_{\text {CC }}$ Power Supply Current	${ }^{\text {ICC }}$		110	200	mA	

CAPACITANCE $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{GND}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	C_{1}			10	pF	$\mathrm{fc}=1 \mathrm{MHz}$ All pins not under test at 0 V
Output Capacitance	C_{0}			20	pF	
Input/Output Capacitance	ClO_{10}			20	pF	

CLOCK TIMING

PARAMETER	SYMBOL	LIMITS			TEST CONDITIONS
		MIN	MAX	UNITS	
X OUT Cycle Time	${ }^{\text {t }} \mathrm{CY} \mathrm{X}$	454	2000	ns	${ }^{\text {t }} \mathrm{CYX}$
X OUT Low Level Width	${ }^{t} \times \times \mathrm{L}$	212		ns	${ }^{\text {t }}$ XXL
XOUT High Level Width	${ }^{t} \times \times \mathrm{H}$	212		ns	${ }^{t} \times \times \mathrm{H}$

READ/WRITE OPERATION

PARAMETER	SYMBOL	LIMITS		UNITS	TEST CONDITIONS
		MIN	MAX		
$\overline{\mathrm{RD}}$ L.E. $\rightarrow \mathrm{X}_{\text {OUT }}$ L.E.	${ }_{\text {t } R X ~}$	20		ns	
Address (PE $0-15$) \rightarrow Data Input	${ }^{\text {t } A D 1}$		$550+500 \times N$	ns	
$\overline{\mathrm{RD}}$ T.E. \rightarrow Address	tRA	200(T3); 700(T4)		ns	
$\overline{\text { RD L.E. } \rightarrow \text { Data Input }}$	tRD		$350+500 \times N$	ns	
RDT.E. \rightarrow Data Hold Time	${ }^{\text {tRDH }}$	0		ns	
RD Low Level Width	tRR	$850+500 \times N$		ns	
$\overline{\text { RD }}$ L.E. $\rightarrow \overline{\text { WAIT L.E. }}$	${ }^{\text {t }}$ RWT		450	ns	
$\begin{aligned} & \text { Address }\left(\text { PE }_{0-15}\right) \rightarrow \\ & \text { WAIT L.E. } \\ & \hline \end{aligned}$	${ }^{\text {t } A W T 1}$		650	ns	
$\overline{\text { WAIT }}$ Set Up Time (Referenced from $\mathrm{X}_{\text {OUT L L.E.) }}$	${ }^{\text {tWTS }}$	180		ns	
WAIT Hold Time (Referenced from $X_{\text {OUT L.E. }}$)	tWTH	0	120	ns	
M1 \rightarrow RD L.E.	${ }^{\text {t MR }}$	200		ns	
$\overline{\mathrm{RD}}$ T.E. \rightarrow M1	${ }^{\text {t RM }}$	200		ns	
$10 / \bar{M} \rightarrow$ RD L.E.	tIR	200		ns	
$\overline{\text { RD T.E. }} \rightarrow$ IO/M	${ }^{\text {t }} \mathrm{R}$ I	200		ns	
$\mathrm{X}_{\text {OUT }}$ L.E. \rightarrow WR L.E.	${ }^{t} \times W$		270	ns	
Address (PE_{0-15}) \rightarrow $\mathrm{X}_{\text {OUT }}$ T.E.	${ }^{\text {t } A X}$		300	ns	
$\begin{array}{\|l} \hline \text { Address }\left(\mathrm{PE}_{0-15}\right) \rightarrow \\ \text { Data Output } \\ \hline \end{array}$	${ }^{\text {t }} \mathrm{AD} 2$	450		ns	
$\begin{aligned} & \text { Data Output } \rightarrow \overline{\mathrm{WR}} \\ & \text { T.E. } \end{aligned}$	${ }^{\text {t }}$ DW	$600+500 \times N$		ns	
WR T.E. \rightarrow Data Stabilization Time	tWD	150		ns	
$\begin{aligned} & \text { Address }\left(\mathrm{PE}_{0-15}\right) \rightarrow \\ & \text { WR L.E. } \\ & \hline \end{aligned}$	${ }^{\text {t }}$ AW	400		ns	
$\overline{\text { WR T.E. } \rightarrow \text { Address }}$ Stabilization Time	tWA	200		ns	
WR Low Level Width	twW	$600+500 \times N$		ns	
10/M \rightarrow WR L.E.	tiw	500		ns	
$\overline{\text { WR T.E. } \rightarrow \text { IO/M }}$	${ }^{\text {tw }}$ W	250		ns	

SERIAL I/O OPERATION

PARAMETER	SYMBOL	MIN	MAX	UNIT	CONDITION
$\overline{\text { SCK }}$ Cycle Time	${ }^{\text {t }}$ CYK	800		ns	$\overline{\text { SCK Input }}$
		900	4000	ns	$\overline{\text { SCK Output }}$
$\overline{\text { SCK }}$ Low Level Width	${ }^{\text {t }} \mathrm{KKL}$	350		ns	$\overline{\text { SCK }}$ Input
		400		ns	SCK Output
$\overline{\text { SCK High Level Width }}$	tKKH	350		ns	SCK Input
		400		ns	SCK Output
SI Set-Up Time (referenced from $\overline{\text { SCK }}$ T.E.)	${ }^{\text {t }}$ SIS	80		ns	
SI Hold Time (referenced from $\overline{\text { SCK }}$ T.E.)	${ }^{\text {tSIH }}$	260		ns	
$\overline{\text { SCK }}$ L.E. \rightarrow SO Delay Time	${ }^{\text {t }} \mathrm{K}$		180	ns	
	${ }^{\text {t }}$ CSK	100		ns	
$\overline{\text { SCK T.E. } \rightarrow \text { SCS Low }}$	${ }^{\text {t K C S }}$	100		ns	
$\overline{\text { SCK T.E. } \rightarrow \text { SAK Low }}$	${ }^{\text {t K SA }}$		260	ns	

PEN, PEX, PER OPERATION

PARAMETER	SYMBOL	MIN	MAX	UNIT	CONDITION
X 1 L.E. $\rightarrow \overline{\text { EXT }}$	${ }^{\text {t }}$ XE		250	ns	${ }^{\text {t }} \mathrm{CYX}=500 \mathrm{~ns}$
Address (AB_{0-15}) \rightarrow STB L.E.	${ }^{\text {t }}$ AST	200			
Data (DB0-7) \rightarrow STB L.E.	${ }^{\text {t DST }}$	200			
STB Hold Time	${ }^{\text {t }}$ STST	300			
STB \rightarrow Data	tsTD	400			

HOLD OPERATION

PARAMETER	SYMBOL	MIN	MAX	UNIT	CONDITION
HOLD Set-Up Time (referenced from $X_{\text {OUT L.E.) }}$	${ }^{\text {t }} \mathrm{HDS} \mathbf{S}_{1}$	100		ns	
	thDS 2	100		ns	
HOLD Hold Time (referenced from $\varnothing_{\text {OUT }}$ L.E.)	${ }^{\text {t }} \mathrm{HDH}$	100		ns	
$\mathrm{X}_{\text {OUT }}$ L.E. \rightarrow HLDA	${ }^{\text {t }}$ XHA		100	ns	
HLDA High \rightarrow Bus Floating (High Z State)	${ }^{\text {t }} \mathrm{HABF}$	-150	150	ns	
HLDA Low \rightarrow Bus Enable	${ }^{\text {t HABE }}$		350	ns	

Notes:

(1) AC Signal waveform (unless otherwise specified)

(2) Output Timing is measured with $1 \mathrm{TTL}+200 \mathrm{pF}$ measuring points are $\mathrm{VOH}=2.0 \mathrm{~V}$
$\mathrm{VOL}=0.8 \mathrm{~V}$
(3) L.E. $=$ Leading Edge, T.E. $=$ Trailing Edge
${ }^{\text {t}} \mathrm{CYX}$ DEPENDENT AC PARAMETERS

PARAMETER	EQUATION	MIN/MAX	UNIT
${ }^{t} \mathrm{RX}$	(1/25) T	MIN	ns
${ }^{t} \mathrm{AD}_{1}$	$(3 / 2+N) T-200$	MAX	ns
$\mathrm{t}_{\mathrm{RA}}\left(\mathrm{T}_{3}\right)$	(1/2) T-50	MIN	ns
$\mathrm{t}_{\mathrm{RA}}\left(\mathrm{T}_{4}\right)$	(3/2) T-50	MIN	ns
${ }^{\text {R }}$ D	$(1+N) T-150$	MAX	ns
${ }^{\text {t } R R}$	(2+N) T-150	MIN	ns
${ }^{\prime}$ RWT	(3/2) T-300	MAX	ns
${ }^{\text {t }}{ }^{\text {WW }} \mathrm{T}_{1}$	(2) T-350	MIN	ns
${ }^{\text {t MR }}$	(1/2) T-50	MIN	ns
${ }^{\text {t RM }}$	(1/2) T-50	MIN	ns
$\mathrm{t}_{1} \mathrm{R}$	(1/2) T-50	MIN	ns
$\mathrm{t}_{\mathrm{R}} \mathrm{I}$	(1/2) T-50	MIN	ns
${ }^{\text {t }}$ WW	(27/50) T	MAX	ns
${ }^{\mathrm{t}} \mathrm{AD}_{2}$	T-50	MIN	ns
${ }^{\text {t }}$ DW	(3/2 + N) T-150	MIN	ns
${ }^{\text {t }}$ WD	(1/2) T-100	MIN	ns
${ }^{\text {t }}$ AW	T-100	MIN	ns
${ }^{\text {t }}$ WA	(1/2) T-50	MIN	ns
${ }^{\text {t }}$ WW	$(3 / 2+N) T-150$	MIN	ns
tIW	T	MIN	ns
${ }^{\text {t WI }}$	(1/2) T	MIN	ns
thabe	(1/2) T-150	MAX	ns
${ }^{t}$ AST	(2/5) T	MIN	ns
${ }^{\text {t }}$ DST	(2/5) T	MIN	ns
${ }^{\text {t }}$ STST	(3/5) T	MIN	ns
${ }^{\text {t STD }}$	(4/5) T	MIN	ns

Notes: (1) $N=$ Number of Wait States
(2) $T=t \mathrm{CYX}$
(3) Only above parameters are ${ }^{t} \mathrm{C} Y \mathrm{X}$ dependent
(4) When a crystal frequency other than 4 MHz is used ($\mathrm{t}_{\mathrm{CYX}}=500 \mathrm{~ns}$) the above equations can be used to calculate $A C$ parameter
values.

CLOCK TIMING

TIMING WAVEFORMS (CONT.)

Package Outlines

For information, see Package Outline Section 7.
Plastic Quil, μ PD7800G

HIGH END SINGLE CHIP 8-BIT MICROCOMPUTER WITH 4K ROM

The NEC μ PD7801/7802 is an advanced 8-bit general purpose single-chip microcomputer fabricated with N-Channel Silicon Gate MOS technology

The NEC μ PD7801/7802 is intended to serve a broad spectrum of 8 -bit designs ranging from enhanced single chip applications extending into the multi-chip microprocessor range. All the basic functional blocks - 8 -bit ALU, 48 I/O lines, Serial I/O port, 12-bit tımer, and clock generator are provided on-chip to enhance stand-alone applications. Fully compatible with the industry standard 8080A bus structure, expanded system operation can be easily implemented using any of the 8080A/8085A peripherals and memory products. Total memory space can be increased to 64 K bytes.

The powerful 140 instruction set coupled with 4 K bytes of ROM program memory and 128 bytes of RAM data memory greatly extends the range of single chip microcomputer applications. Five level vectored interrupt capability combined with a 2 microsecond cycle time enable the μ PD7801 to compete with multi-chip microprocessor systems with the advantage that most of the support functions are onchip.

- NMOS Silicon Gate Technology Requiring +5 V Supply
- Complete Sinale-Chip Microcomputer with On-Chip ROM, RAM and I/O
- 4K Bytes ROM-7801
- 128 Bytes RAM
- 6K Bytes-7802
- 64 Bytes-7802
- 48 I/O Lines
- Internal 12-Bit Programmable Timer
- On-Chip 1 MHz Serial Port
- Five Level Vectored, Prioritized Interrupt Structure
- Serial Port
- Timer
- 3 External Interrupts
- Bus Expansion Capabilities
- Fully 8080A Bus Compatible
- 60K Bytes External Memory Address Range-7801
- 58K Bytes-7802
- On-Chip Clock Generator
- Wait State Capability
- Alternate Z80 TM Type Register Set
- Powerful 140 Instruction Set
- 8 Address Modes, Including Auto-Increment/Decrement
- Multı-Level Stack Capabilities
- Fast 2μ s Cycle Time
- Bus Sharing Capabilities

PIN CONFIGURATION

TM: Z80 is a registered trademark of Zilog, Inc

PIN NO.	DESIGNATION	FUNCTION
49-63	$P E_{0} / A B_{0}$	(Tri-State, Output) 16-bit address bus.
1	$\mathrm{PE}_{15} / \mathrm{AB}_{15}$	
2	ϕ OUT	(Output) ϕ OUT provides a prescaled output clock for use with external I/O devices or memories. ϕ OUT frequency is f_{X} TAL/2.
3-10	$\mathrm{DB}_{0}-\mathrm{DB}_{7}$	(Tri-State Input/Output, active high) 8 -bit true bi-directional data bus used for external data exchanges with I/O and memory.
11	INT_{0}	(Input, active high) Level-sensitive interrupt input.
12	INT1	(Input, active high) Rising-edge sensitive interrupt input. Interrupts are initiated on low-to-high transitions, providing interrupts are enabled.
13	INT_{2}	(Input) INT_{2} is an edge sensitive interrupt input where the desired activation transition is programmable. By setting the ES bit in the Mask Register to a $1, \mathrm{INT}_{2}$ is rising edge sensitive. When ES is set to $0, \mathrm{INT}_{2}$ is falling edge sensitive.
14	$\overline{\text { WAIT }}$	(Input, active low) WAIT, when active, extends read or write timing to interface with slower external memory or I/O. WAIT is sampled at the end of T_{2}, if active processor enters a wait state TW and remains in that state as long as WAIT is active.
15	M1	(Output, active high) when active, M1 indicates that the current machine cycle is an OP CODE FETCH.
16	$\overline{W R}$	(Tri-State Output, active low) $\overline{W R}$, when active, indicates that the data bus holds valid data. Used as a strobe signal for external memory or I/O write operations. WR goes to the high impedance state during HALT, HOLD, or RESET.
17	$\overline{\mathrm{RD}}$	(Tri-State Output, active low) $\overline{R D}$ is used as a strobe to gate data from external devices onto the data bus. $\overline{\mathrm{RD}}$ goes to the high impedance state during HALT, HOLD, and RESET.
18-25	$\mathrm{PC}_{0}-\mathrm{PC}_{7}$	(Input/Output) 8-bit I/O configured as a nibble I/O port or as control lines.
26	$\overline{\text { SCK }}$	(Input/Output) $\overline{\text { SCK }}$ provides control clocks for Serial Port Input/Output operations. Data on the SI line is clocked into the Serial Register on the rising edge. Contents of the Serial Register is clocked onto SO line on falling edges.
27	SI	(Input) Serial data is input to the processor through the SI line. Data is clocked into the Serial Register MSB to LSB with the rising edge of SCK.
28	SO	(Output) SO is the Serial Output Port. Serial data is output on this line on the falling edge of SCK, MSB to LSB.
29	RESET	(Input, active low) $\overline{\text { RESET initializes the } \mu \text { PD7801. }}$
30	X_{2}	(Output) Oscillator output.
31	X_{1}	(Input) Clock Input.
33-40	PA0-PA7	(Output) 8-bit output port with latch capability.
41-48	$\mathrm{PB}_{0}-\mathrm{PB}_{7}$	(Tri-State Input/Output) 8-bit programmable I/O port. Each line configurable independently as an input or output.

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

Memory Map
The μ PD7801/7802 can directly address up to 64K bytes of memory. Except for
the on-chip ROM and RAM, any memory location can be used as either ROM or RAM. The following memory map defines the $0-64 \mathrm{~K}$ byte memory space for the μ PD7801/7802 showing that the Reset Start Address, Interrupt Start Address, Call Tables, etc., are located in the internal ROM area.

I/O Ports

PORT	FUNCTIONS
Port A	8-bit output port with latch
Port B	8-bit programmable Input/Output port w/latch
Port C	8-bit nibble I/O or Control port
Port E	16-bit Address/Output Port

Port A

Port A is an 8-bit latched output port. Data can be readily transferred between the aंccumulator and the output latch buffers. The contents of the output latches can be modified using Arithmetic and logic instructions. Data remains latched at Port A unless acted on by another Port A instruction or a RESET is issued.

Port B

Port B is an 8-bit I/O port. Data is latched at Port B in both the Input or Output modes. Each bit of Port B can be independently set to either Input or Output modes. The Mode B register programs the individual lines of Port B to be either an Input (Mode $B_{n=1}$) or an Output (Mode $B_{n=0}$).

Port C

Port C is an 8 -bit I/O port. The Mode C register is used to program the upper 6 bits of Port C to provide control functions or to set the I/O structure per the following table.

	MODE $\mathbf{C}_{\mathbf{n}}=\mathbf{0}$	MODE $\mathrm{C}_{\boldsymbol{n}}=\mathbf{1}$
$\mathrm{PC}_{\mathbf{0}}$	Output	Input
PC_{1}	Output	Input
PC_{2}	$\overline{\mathrm{SCS}}$ Input	Input
PC_{3}	SAK Output	Output
PC_{4}	To Output	Output
PC_{5}	IO \bar{M} Output	Output
PC_{6}	HLDA Output	Output
PC_{7}	HOLD Input	Input

Port E

Port E is a 16-bit address bus/output port. It can be set to one of three operating modes using the PER, PEN, or PEX instructions.

- 16-Bit Address Bus - the Per instruction sets this mode for use with external I/O or memory expansion (up to 60 K bytes, externally).
- 4-Bit Output Port/12 Bit Address Bus - the PEN instruction sets this mode which allows for memory expansion of up to 4 K bytes, externally, plus the transfer of 4-bit nibbles.
- 16-Bit Output Port - the PEX instruction sets Port E to a 16 -bit output port. The contents of B and C registers appear on $P E_{8-15}$ and $P E_{0-7}$, respectively.

FUNCTIONAL DESCRIPTION (CONT.)

Timer Operation

TIMER BLOCK DIAGRAM

A programmable 12-bit timer is provided on-chip for measurıng time intervals, generating pulses, and general time-related control functions. It is capable of measuring time intervals from $4 \mu \mathrm{~s}$ to $16 \mu \mathrm{~s}$ in duration. The timer consists of a prescaler which decrements a 12 -bit counter at a fixed 4μ s rate. Count pulses are loaded into the 12 -bit down counter through timer register (TMO and TM1). Count-down operation is initiated upon extension of the STM instruction when the contents of the down counter are fully decremented and a borrow operation occurs, an interval interrupt (INTT) is generated. At the same time, the contents of TM0 and TM1 are reloaded into the down-counter and countdown operation is resumed. Count operation may be restarted or initialized with the STM instruction. The duration of the timeout may be altered by loading new contents into the down counter.

The timer flip flop is set by the STM instruction and reset on a countdown operation. Its output (TO) is available externally and may be used in a single pulse mode or general external synchronization.

Timer interrupt (INTT) may be disabled through the interrupt.

Serial Port Operation

SERIAL PORT BLOCK DIAGRAM

The on-chip serial port provides basic synchronous serial communication functions allowing the NEC μ PD7801/7802 to serially interface with external devices.

FUNCTIONAL DESCRIPTION (CONT.)

Serial Transfers are synchronized with either the internal clock or an external clock input ($\overline{\mathrm{SCK}}$). The transfer rate is fixed at $1 \mathrm{Mbit} /$ second if the internal clock is used or is variable between DC and $1 \mathrm{Mbit} /$ second when an external clock is used. The Clock Source Select is determined by the Mode C register. The serial clock (internal or external $\overline{\text { SCK }}$) is enabled when the Serial Chip Select Signal ($\overline{\mathrm{SCS}}$) goes low. At this time receive and transmit operations through the Serial Input port (SI)/Serial Output port (SO) are enabled. Receive and transmit operations are performed MSB first.
Serial Acknowledge (SAK) goes high when data transfers between the accumulator and Serial Register is completed. SAK goes low when the buffer becomes full after the completion of serial data receive or transmit operations. While SAK is low, no further data can be received.

Interrupt Structure

The μ PD7801/7802 provides a maskable interrupt structure capable of handling vectored prioritized interrupts. Interrupts can be generated from six different sources; three external interrupts, two internal interrupts, and nonmaskable software interrupt. Each interrupt when activated branches to a designated memory vector location for that interrupt.

INT	VECTORED MEMORY LOCATION	PRIORITY	TYPE
INTT	8	3	Internal, Timer Overflow
INTS	64	6	Internal, Serial Buffer Full/Empty
INT0	4	2	Ext., level sensitive
INT1	16	4	Ext., Rising edge sensitive
INT2	32	1	Ext., Rising/Falling edge sensitive
SOFTI	96	Software Interrupt	

FUNCTIONAL DESCRIPTION

RESET (Reset)

An active low-signal on this input for more than 4μ s forces the μ PD7801 into a Reset condition. $\overline{\operatorname{RESET}}$ affects the following internal functions:

- The Interrupt Enable Flags are reset, and Interrupts are inhibited.
- The Interrupt Request Flag is reset.
- The HALT flip flop is reset, and the Halt-state is released.
- The contents of the MODE B register are set to $\mathrm{FFH}_{\mathrm{H}}$, and Port B becomes an input port.
- The contents of the MODE C register are set to FFH. Port C becomes an I/O port and output lines go low.
- All Flags are reset to 0 .
- The internal COUNT register for timer operation is set to FFFH_{H} and the timer F / F is reset.
- The ACK F/F is set.
- The HLDA F/F is reset.
- The contents of the Program Counter are set to 0000 H .
- The Address Bus (PE0-15), Data Bus (DB0-7), $\overline{\mathrm{RD}}$, and $\overline{\mathrm{WR}}$ go to a high impedance state.

Once the RESET input goes high, the program is started at location 0000_{H}.
REGISTERS The μ PD7801 contains sixteen 8 -bit registers and two 16 -bit registers.

General Purpose Registers (B, C, D, E, H, L)
There are two sets of general purpose registers (Main: B, C, D, E, H, L: Alternate: $\left.B^{\prime}, C^{\prime}, D^{\prime}, H^{\prime}, L^{\prime}\right)$. They can function as auxiliary registers to the accumulator or in pairs as data pointers ($B C, D E, H L, B^{\prime} C^{\prime}, D^{\prime} E^{\prime}, H^{\prime} L^{\prime}$). Auto Increment and Decrement addressing mode capabilities extend the uses for the DE, HL, $D^{\prime} E^{\prime}$, and $H^{\prime} L^{\prime}$ register-pairs. The contents of the BC, DE, and HL register-pairs can be exchanged with their Alternate Register counterparts using the EXX instruction.

Vector Register (V)

When defining a scratch pad area in the memory space, the upper 8-bit memory address is defined in the V -register and the lower 8 -bits is defined by the immediate data of an instruction. Also the scratch pad indicated by the V-register can be used as 256×8-bit working registers for storing software flags, parameters and counters.

Accumulator (A)

All data transfers between the μ PD7801/7802 and external memory or I/O are done through the accumulator. The contents of the Accumulator and Vector Registers can be exchanged with their Alternate Registers using the EX instruction.

Program Counter (PC)

The PC is a 16 -bit register containing the address of the next instruction to be fetched. Under normal program flow, the PC is automatically incremented. However, in the case of a branch instruction, the PC contents are from another register or an instruction's immediate data. A reset sets the PC to 0000 H .

Stack Pointer (SP)

The stack pointer is a 16 -bit register used to maintain the top of the stack area (last-in-first-out). The contents of the SP are decremented during a CALL or PUSH instruction or if an interrupt occurs. The SP is incremented during a RETURN or POP instruction.

Register Addressing
Register Indirect Addressing
Auto-Increment Addressing
Auto-Decrement Addressing

Working Register Addressing
Direct Addressing
Immediate Addressing
Immediate Extended Addressing

Register Addressing

The instruction opcode specifies a register r which contains the operand.
Register Indirect Addressing

The instruction opcode specifies a register pair which contains the memory address of the operand. Mnemonics with an X suffix are ending this address mode.

Auto-Increment Addressing

The opcode specifies a register pair which contains the memory address of the. operand. The contents of the register pair is automatically incremented to point to a new operand. This mode provides automatic sequential stepping when working with a table of operands.

Working Register Addressing

The contents of the register is linked with the byte following the opcode to form a memory address whose contents is the operand. The V register is used to indicate the memory page. This address mode is useful as a short-offset address mode when working with operands in a common memory page where only 1 additional byte is required for the address. Mnemonics with a W suffix ending this address mode.

Direct Addressing

$P C$	OPCODE		
PC +1	Low Address		
$P C+2$	High Address	\quad	operand
:---:			
1 byte		Low Operand	
:---			
High Operand			
2 byte			

The two bytes following the opcode specify an address of a location containing the operand.

Immediate Addressing

OPCODE
OPERAND

Immediate Extended Addressing

PC
PC + 1
PC + 2
OPCODE
Low Operand
High Operand

OPERAND	DESCRIPTION
r	V, A, B, C, D, E, H, L
$r 1$	B, C, D, E, H, L
$r 2$	A, B, C
sr	PA PB PC MK MB MC TMO TM1 S
sr1	PA PB PC MK
sr2	PA PB PC MK
rp	SP, B, D, H
rp1	V, B, D, H
rpa	B, D, H, D+, H+, D-, H-
rpa1	B, D, H
wa	8 bıt immediate data
word	16 bit immediate data
byte	8 bıt immediate data
bit	3 bıt immediate data
f	F0, F1, F2, FT, FS,

Notes: 1. When special register operands sr, sr1, sr2 are used; $P A=$ Port $A, P B=P o r t B$, PC=Port C, MK=Mask Register, MB=Mode B Register, MC=Mode C Register, TM0=Timer Regıster 0, TM1 = Timer Register 1, $\mathrm{S}=$ Serial Register.
2. When register pair operands $\mathrm{rp}, \mathrm{rp} 1$ are used; $S P=$ Stack Pointer, $B=B C$, $D=D E, H=H L, V=V A$.
3. Operands $\mathrm{rPa}, \mathrm{rPa} 1$, wa are used in indirect addressing and auto-increment/ auto-decrement addressing modes. $B=(B C), D=(D E), H=(H L)$ $\mathrm{D}^{+}=(\mathrm{DE})^{+}, \mathrm{H}^{+}=(\mathrm{HL})^{+}, \mathrm{D}^{-}=(\mathrm{DE})^{-}, \mathrm{H}^{-}=(\mathrm{HL})^{-}$.
4. When the interrupt operand f is used; $F 0=$ INTFO, $F 1=$ INTF1, $F 2=$ INTF2, $F T=I N T F T, F S=I N T F S$.

MNEMONIC	OPERANDS	NO. BYTES	CLOCK CYCLES	OPERATION	SKIP CONDITION	FLAGS	
						CY	z
8-BIT DATA TRANSFER							
MOV	r1, A	1	4	$r 1 \leftarrow A$			
MOV	A, r1	1	4	$A \leftarrow r 1$			
MOV	sr, A	2	10	$\mathrm{sr} \leftarrow \mathrm{A}$			
MOV	A, sr 1	2	10	$A \leftarrow s \mathrm{r} 1$			
MOV	r, word	4	17	$r \leftarrow$ (word)			
MOV	word, r	4	17	(word) $\leftarrow r$			
MVI	r, byte	2	7	$r \leftarrow$ byte			
MVIW	wa, byte	3	13	(V, wa) - byte			
MVIX	rpa1, byte	2	10	$($ rpa1 $) \leftarrow$ byte			
STAW	wa	2	10	$(\mathrm{V}, \mathrm{wa}) \leftarrow \mathrm{A}$			
LDAW	wa	2	10	$A \leftarrow(V, w a)$			
STAX	rpa	1	7	$(r p a) \leftarrow A$			
LDAX	rpa	1	7	$A \leftarrow(\mathrm{rpa})$			
EXX		1	4	Exchange register sets			
EX		1	4	$V, A \leftrightarrow V, A$			
BLOCK		1	13 (c+1)	$(D E)^{+} \leftarrow(H L)^{+}, C \leftarrow C-1$			
16-BIT DATA TRANSFER							
SBCD	word	4	20	(word) \leftarrow C, (word +1$) \leftarrow$ B			
SDED	word	4	20	(word) $\leftarrow E$, (word +1$) \leftarrow D$			
SHLD	word	4	20	$($ word $) \leftarrow L$, (word +1$) \leftarrow H$			
SSPD	word	4	20	$($ word $) \leftarrow S P_{L}($ word +1$) \leftarrow S P_{H}$			
LBCD	word	4	20	$C \leftarrow($ word $), B \leftarrow($ word +1$)$			
LDED	word	4	20	$E \leftarrow$ (word), $\mathrm{D} \leftarrow($ word +1$)$			
LHLD	word	4	20	$L \leftarrow($ word $), \mathrm{H} \leftarrow($ word +1$)$			
LSPD	word	4	20	$S P_{L} \leftarrow($ word $), S P_{H} \leftarrow($ word +1$)$			
PUSH	rp1	2	17	$(S P-1) \leftarrow r)^{1} H^{\prime}(S P-2) \leftarrow r p 1_{L}$			
POP	rp1	2	15	$\begin{aligned} & r p 1_{L} \leftarrow(S P) \\ & r p 1_{H} \leftarrow(S P+1), S P \leftarrow S P+2 \\ & \hline \end{aligned}$			
LXI	rp, word	3	10	rp ¢ word			
TABLE		1	19	$\begin{aligned} & C \leftarrow(P C+2+A) \\ & B \leftarrow(P C+2+A+1) \end{aligned}$			

INSTRUCTION GROUPS (CONT.)

MNEMONIC	OPERANDS	$\begin{aligned} & \text { NO. } \\ & \text { BYTES } \end{aligned}$	$\begin{aligned} & \text { CLOCK } \\ & \text { CYCLES } \end{aligned}$	OPERATION	SKIP CONDITION	FLAGS	
						CY	z
ARITHMETIC							
ADD	A, r	2	8	$A \leftarrow A+r$		\downarrow	\uparrow
ADD	r, A	2	8	$r \leftarrow r+A$		\downarrow	\downarrow
ADDX	rpa	2	11	$A \leftarrow A+(\mathrm{rpa})$		\downarrow	\dagger
ADC	A, r	2	8	$A \leftarrow A+r+C Y$		\uparrow	\pm
ADC	r, A	2	8	$r \leftarrow r+A+C Y$		\downarrow	\downarrow
ADCX	rpa	2	11	$A \leftarrow A+(r p a)+C Y$		\uparrow	\downarrow
SUB	A, r	2	8	$A \leftarrow A-r$		\ddagger	\downarrow
SUB	r, A	2	8	$r \leftarrow r-A$		\uparrow	\uparrow
SUBX	rpa	2	11	$A \leftarrow A-(r p a)$		\uparrow	\uparrow
SBB	A, r	2	8	$A \leftarrow A-r-C Y$		\uparrow	\downarrow
SBB	r, A	2	8	$r \leftarrow r-A-C Y$		\uparrow	\uparrow
SBBX	rpa	2	11	$A \leftarrow A-(r p a)-C Y$		\downarrow	\ddagger
ADDNC	A, r	2	8	$A \leftarrow A+r$	No Carry	\downarrow	\dagger
ADDNC	r, A	2	8	$r \leftarrow r+A$	No Carry	\uparrow	\ddagger
ADDNCX	rpa	2	11	$A \leftarrow A+(\mathrm{rpa})$	No Carry	\pm	\uparrow
SUBNB	A, r	2	8	$A \leftarrow A-r$	No Borrow	\downarrow	\ddagger
SUBNB	r, A	2	8	$r \leftarrow r-A$	No Borrow	\downarrow	\ddagger
SUBNBX	rpa	2	11	$A \leftarrow A-(r p a)$	No Borrow	\ddagger	\downarrow
LOGICAL							
ANA	A, r	2	8	$A \leftarrow A \wedge r$			\ddagger
ANA	r, A	2	8	$r \leftarrow r \wedge A$			\downarrow
ANAX	rpa	2	11	$A \leftarrow A \wedge(\mathrm{rpa})$			\ddagger
ORA	A, r	2	8	$A \leftarrow A \vee r$			\downarrow
ORA	r, A	2	8	$r \leftarrow r \vee A$			\downarrow
ORAX	rpa	2	11	$A \leftarrow A \vee(r p a)$			\ddagger
XRA	A, r	2	8	$A \leftarrow A \forall r$			\uparrow
XRA	r, A	2	8	$A \leftarrow r \forall A$			\ddagger
XRAX	rpa	2	11	$A \leftarrow A \forall$ (rpa)			\ddagger
GTA	A, r	2	8	A-r-1	No Borrow	\downarrow	\downarrow

μ PD7801/7802
INSTRUCTION GROUPS (CONT.)

MNEMONIC	OPERANDS	$\begin{gathered} \text { NO. } \\ \text { BYTES } \end{gathered}$	$\begin{aligned} & \text { CLOCK } \\ & \text { CYCLES } \end{aligned}$	OPERATION	$\begin{array}{\|c\|} \text { SKIP } \\ \text { CONDITION } \end{array}$	FLAGS	
						CY	z
LOGICAL (CONT.)							
GTAX	rpa	2	11	A - (rpa) - 1	No Borrow	\ddagger	\ddagger
LTA	A, r	2	8	A-r	Borrow	\pm	\ddagger
LTA	r, A	2	8	$r-A$	Borrow	\pm	\pm
LTAX	rpa	2	11	A - (rpa)	Borrow	\downarrow	\ddagger
ONA	A, r	2	8	A^r	No Zero		\downarrow
ONAX	rpa	2	11	$A \wedge(\mathrm{rpa})$	No Zero		\downarrow
OFFA	A, r	2	8	$A \wedge r$	Zero		\ddagger
OFFAX	rpa	2	11	$A \wedge(\mathrm{rpa})$	Zero		\downarrow
NEA	A, r	2	8	A-r	No Zero	\pm	\pm
NEA	r, A	2	8	$r-A$	No Zero	\pm	\pm
NEAX	rpa	2	11	A - (rpa)	No Zero	\pm	\uparrow
EQA	A, r	2	8	A-r	Zero	\pm	\downarrow
EQA	r, A	2	8	$r-A$	Zero	\ddagger	\ddagger
EQAX	rpa	2	11	A - (rpa)	Zero	\ddagger	\ddagger
IMMEDIATE DATA TRANSFER (ACCUMULATOR)							
XRI	A, byte	2	7	$A \leftarrow A \forall$ byte			\ddagger
ADINC	A, byte	2	7	$A \leftarrow A+$ byte	No Carry	\ddagger	\ddagger
SUINB	A, byte	2	7	$A \leftarrow A$ - byte	No Borrow	\ddagger	\uparrow
ADI	A, byte	2	7	$A \leftarrow A+$ byte		\pm	\uparrow
ACl	A, byte	2	7	$A \leftarrow A+$ byte $+C Y$		\downarrow	\uparrow
SUI	A, byte	2	7	$A \leftarrow A-$ byte		\pm	\pm
SBI	A, byte	2	7	$A \leftarrow A-b y t e-C Y$		\pm	\ddagger
ANI	A, byte	2	7	$A \leftarrow A \wedge$ byte			\pm
ORI	A, byte	2	7	$A \leftarrow A \vee b y t e$			\ddagger
GTI	A, byte	2	7	A - byte - 1	No Borrow	\ddagger	\pm
LTI	A, byte	2	7	A - byte	Borrow	\ddagger	\ddagger
ONI	A, byte	2	7	A \wedge byte	No Zero		\ddagger
OFFI	A, byte	2	7	A^ byte	Zero		\ddagger
NEI	A, byte	2	7	A - byte	No Zero	\ddagger	\ddagger
EQI	A, byte	2	7	A - byte	Zero	\ddagger	\ddagger

INSTRUCTION GROUPS (CONT.)

MNEMONIC	OPERANDS	NO. BYTES	$\begin{aligned} & \text { CLOCK } \\ & \text { CYCLES } \end{aligned}$	OPERATION	$\begin{gathered} \text { SKIP } \\ \text { CONDITION } \end{gathered}$	FLAGS	
						CY	z
IMMEDIATE DATA TRANSFER							
XRI	r, byte	3	11	$r \leftarrow r \forall$ byte			\downarrow
ADINC	r, byte	3	11	$r \leftarrow r+$ byte	No Carry	\ddagger.	\pm
SUINB	r, byte	3	11	$r \leftarrow r$-byte	No Borrow	\uparrow	\ddagger
ADI	r, byte	3	11	$r \leftarrow r+$ byte		\uparrow	\pm
ACI	r, byte	3	11	$r \leftarrow r+$ byte $+C Y$		\ddagger	\uparrow
SUI	r, byte	3	11	$r \leftarrow r$-byte		\downarrow	\uparrow
SBI	r, byte	3	11	$r \leftarrow r$-byte - CY		\ddagger	1
ANI	r, byte	3	11	$r \leftarrow r \wedge$ byte		\pm	\uparrow
ORJ	r, byte	3	11	$r \leftarrow r$ b byte			\downarrow
GTI	r, byte	3	11	r-byte-1	- No Borrow	\pm	1
LTI	r, byte	3	11	r-byte	Borrow	\downarrow	\downarrow
ONI	r, byte	3	11	r Abyte	No Zero		\downarrow
OFFI	r, byte	3	11	r A byte	Zero		\pm
NEI	r, byte	3	11	r-byte	No Zero	\downarrow	\downarrow
EQI	r, byte	3	11	r-byte	Zero	\downarrow	\downarrow
IMMEDIATE DATA TRANSFER (SPECIAL REGISTER)							
XRI	sr2, byte	3	17	sr2 $-\mathrm{sr} 2 \forall$ byte			\downarrow
ADINC	sr2, byte	3	17	sr2 \leftarrow sr2 + byte	No Carry	\uparrow	\ddagger
SUINB	sr2, byte	3	17	sr2 ¢ sr2 - byte	No Borrow	\ddagger	\downarrow
ADI	sr2, byte	3	17	sr2 \leftarrow sr2 + byte		\downarrow	\downarrow
ACl	sr2, byte	3	17	sr2 $¢$ sr2 + byte $+C Y$		\ddagger	\ddagger
SUI	sr2, byte	3	17	sr2 \leftarrow sr2 - byte		1	\downarrow
SBI	sr2, byte	3	17	sr2 \leftarrow sr2 - byte - CY		\downarrow	\downarrow
ANI	sr2, byte	3	17	sr2 ¢ sr2 ^byte			\ddagger
ORI	sr2, byte	3	17	sr2 ¢ sr2 V byte			\ddagger
GTI	sr2, byte	3	14	sr2-byte - ,	No Borrow	\downarrow	\downarrow
LTI	sr2, byte	3	14	sr2 - byte	Borrow	\ddagger	\ddagger
ONI	sr2, byte	3	14	sr2^ byte	No Zero		\downarrow

MNEMONIC	OPERANDS	NO. BYTES	$\begin{array}{\|c\|c\|} \text { CLOCK } \\ \text { CYCLES } \end{array}$	OPERATION	$\begin{gathered} \text { SKIP } \\ \text { CONDITION } \end{gathered}$	FLAGS	
						CY	z
IMMEDIATE DATA TRANSFER (SPECIAL REGISTER) (CONT.)							
OFFI	sr2, byte	3	14	sr2^byte	Zero		\downarrow
NEI	sr2, byte	3	14	sr2-byte	No Zero	\downarrow	\downarrow
EQI	sr2, byte	3	14	sr2-byte	Zero	\uparrow	\downarrow
WORKING REGISTER							
XRAW	wa	3	14	$A \leftarrow A \forall(V, w a)$			\pm
ADDNCW	wa	3	14	$A \leftarrow A+(V, w a)$	No Carry	\downarrow	\downarrow
SUBNBW	wa	3	14	$A \leftarrow A-(V, w a)$	No Borrow	\downarrow	\downarrow
ADDW	wa	3	14	$A-A+(V, w a)$		\downarrow	\ddagger
ADCW	wa	3	14	$A \leftarrow A+(V, w a)+C Y$		\downarrow	\ddagger
SUBW	wa	3	14	$A \leftarrow A-(V, w a)$		\downarrow	\downarrow
SBBW	wa	3	14	$A-A-(V, w a)-C W$		\downarrow	\ddagger
ANAW	wa	3	14	$A \leftarrow A \wedge(V, w a)$			\downarrow
ORAW	wa	3	14	$A \leftarrow A \vee(V, w a)$			\downarrow
GTAW	wa	3	14	$A \leftarrow(V, w a)-1$	No Borrow	\ddagger	\ddagger
LTAW	wa	3	14	A - (V, wa)	Borrow	\downarrow	\downarrow
ONAW	wa	3	14	$A \wedge(V, w a)$	No Zero		\downarrow
OFFAW	wa	3	14	$A \wedge(V, w a)$	Zero		\pm
NEAW	wa	3	14	A - (V, wa)	No Zero	\downarrow	\downarrow
EQAW	wa	3	14	A - (V, wa)	Zero	\downarrow	\downarrow
ANIW	wa, byte	3	16	$(V$, wa $) \leftarrow(V$, wa $) \wedge$ byte			\downarrow
ORIW	wa, byte	3	16	$(V$, wa $) \leftarrow(V$, wa $) \vee$ byte			\downarrow
GTIW	wa, byte	3	13	(V, wa) - byte - 1	No Borrow	\ddagger	\downarrow
LTIW	wa, byte	3	13	(V, wa) - byte	Borrow	\downarrow	\ddagger
ONIW	wa, byte	3	13	(V, wa) \wedge byte	No Zero		\downarrow
OFFIW	wa, byte	3	13	(V, wa) ^ byte	Zero		\pm
NEIW	wa, byte	3	13	(V, wa) - byte	No Zero	\downarrow	\pm
EQIW	wa, byte	3	13	(V, wa) - byte	Zero	\downarrow	\downarrow
INCREMENT/DECREMENT							
INR	r2	1	4	$\mathrm{r} 2 \leftarrow \mathrm{r} 2+1$	Carry		\downarrow
INRW	wa	2	13	$(V, w a) \leftarrow(V, w a)+1$	Carry		\downarrow

INSTRUCTION GROUPS (CONT.)

MNEMONIC	OPERANDS	NO. BYTES	$\begin{aligned} & \text { CLOCK } \\ & \text { CYCLES } \end{aligned}$	OPERATION	SKIP CONDITION	FLAGS	
						CY	Z
INCREMENT/DECREMENT (CONT.)							
DCR	r2	1	4	$r 2 \leftarrow r 2-1$	Borrow		\dagger
DCRW	wa	2	13	$(V, w a) \leftarrow(V, w a)-1$	Borrow		\ddagger
INX	rp	1	7	$r p \leftarrow r p+1$			
DCX	rp	1	7	$r p \leftarrow r p-1$			
DAA		1	4	Decımal Adjust Accumulator		\downarrow	\pm
STC		2	8	$C Y \leftarrow 1$		1	
CLC		2	8	$\mathrm{CY} \leftarrow 0$		0	
ROTATE AND SHIFT							
RLD		2	17	Rotate Left Digit			
RRD		2	17	Rotate Right Digit			
RAL		2	8	$A m+1 \leftarrow A m, A_{0} \leftarrow C Y, C Y \leftarrow A_{7}$		\downarrow	
RCL		2	8	$\mathrm{Cm}+1 \leftarrow \mathrm{Cm}, \mathrm{C}_{0} \leftarrow \mathrm{CY}, \mathrm{CY} \leftarrow \mathrm{C}_{7}$		\ddagger	
RAR		2	8	$A m-1 \leftarrow A m, A_{7} \leftarrow C Y, C Y \leftarrow A_{0}$		\downarrow	
RCR		2	8	$\mathrm{Cm}-1 \leftarrow \mathrm{Cm}_{\mathrm{m}} \mathrm{C}_{7} \leftarrow \mathrm{CY}, \mathrm{CY} \leftarrow \mathrm{C}_{0}$		\downarrow	
SHAL		2	8	$A m+1 \leftarrow A m, A_{0} \leftarrow 0, C Y \leftarrow A_{7}$		\ddagger	
SHCL		2	8	$\mathrm{Cm}+1 \leftarrow \mathrm{CM}, \mathrm{C}_{0} \leftarrow 0, \mathrm{CY} \leftarrow \mathrm{C}_{7}$		\downarrow	
SHAR		2	8	$A m-1 \leftarrow A m, A_{7} \leftarrow 0, C Y \leftarrow A_{0}$		\ddagger	
SHCR		2	8	$\mathrm{Cm}-1 \leftarrow \mathrm{Cm}, \mathrm{C}_{7} \leftarrow 0, \mathrm{CY} \leftarrow \mathrm{C}_{0}$		\uparrow	
JUMP							
JMP	word	3	10	PC ¢ word			
JB		1	4	$P C_{H} \leftarrow \mathrm{~B}, \mathrm{PC} C_{L} \leftarrow \mathrm{C}$			
JR	word	1	13	$\mathrm{PC} \leftarrow \mathrm{PC}+1+\jmath \mathrm{d}$ ısp 1			
JRE	word	2	13	$\mathrm{PC} \leftarrow \mathrm{PC}+2+\jmath \mathrm{d}$ ısp			
CALL							
CALL	word	3	16	$\begin{aligned} & (S P-1)_{\leftarrow} \leftarrow(P C-3)_{H},(S P-2) \leftarrow \\ & (P C-3)_{L}, P C \leftarrow \text { word } \end{aligned}$			
CALB		1	13	$\begin{aligned} & (S P-1) \leftarrow(P C-1)_{H},(S P-2) \leftarrow \\ & (P C-1)_{L}, P_{H} \leftarrow B, P C_{L} \leftarrow C \end{aligned}$			
CALF	word	2	16	$\begin{aligned} & (S P-1) \leftarrow(P C-2)_{\mathrm{H}},(S P-2) \leftarrow(\mathrm{PC}-2)_{\mathrm{L}} \\ & \mathrm{PC} 15 \sim 11 \leftarrow 00001, \mathrm{PC} 10 \sim 0 \leftarrow \mathrm{fa} \end{aligned}$			
CALT	word	1	19	$\begin{aligned} & (\mathrm{SP}-1) \leftarrow(\mathrm{PC}-1)_{\mathrm{H}},(\mathrm{SP}-2) \leftarrow(\mathrm{PC}-1)_{\mathrm{L}} \\ & \mathrm{PC}_{\mathrm{L}} \leftarrow(128-2 \mathrm{ta}), \mathrm{PC}_{\mathrm{H}} \leftarrow(129+2 \mathrm{ta}) \end{aligned}$			
SOFTI		1	19	$\begin{aligned} & (S P-1) \leftarrow P S W, S P-2,(S P-3) \leftarrow P C \\ & P C \leftarrow 0060_{H}, S I R Q \leftarrow 1 \end{aligned}$			

MNEMONIC	OPERANDS	NO. BYTES	$\begin{aligned} & \text { CLOCK } \\ & \text { CYCLES } \end{aligned}$	OPERATION	$\begin{gathered} \text { SKIP } \\ \text { CONDITION } \end{gathered}$	FLAGS	
						CY	Z
RETURN							
RET		1	11	$\begin{aligned} & P C_{L} \leftarrow(S P), P C_{H} \leftarrow(S P+1) \\ & S P \leftarrow S P-2 \end{aligned}$			
RETS		1	11+a	$\begin{aligned} & P C_{L} \leftarrow(S P), P C_{H} \leftarrow(S P+1), \\ & S P \leftarrow S P+2, P C \leftarrow P C+n \end{aligned}$			
RETI		1	15	$\begin{aligned} & \mathrm{PC}_{\mathrm{L}} \leftarrow(\mathrm{SP}), \mathrm{PC} C_{H} \leftarrow(\mathrm{SP}+1) \\ & \mathrm{PSW}-(S P+2), S P \leftarrow S P+3, S I R Q \leftarrow 0 \end{aligned}$			
SKIP							
BIT	bit, wa	2	10	Bit test	$\begin{aligned} & \text { TV, wa })_{\text {bit }} \\ & =11 \end{aligned}$		
SKC		2	8	Skip if Carry	$C Y=1$		
SKNC		2	8	Skip if No Carry	$C Y=0$		
SKZ		2	8	Skip if Zero	$z=1$		
SKNZ		2	8	Skip if No Zero	$z=0$		
SKIT	f	2	8	Skip if INT $X=1$, then reset INT X	$f=1$		
SKNIT	f	2	8	Skip if No INT X otherwise reset INT X	$\mathrm{f}=0$		
CPU CONTROL							
NOP		1	4	No Operation			
EI		2	8	Enable Interrupt			
DI		2	8	Disable Interrupt			
HLT		1	6	Halt			
SERIAL PORT CONTROL							
SIO		1	4	Start (Trigger) Serial I/O			
STM		1	4	Start Tımer			
INPUT/OUTPUT							
IN	byte	2	10	$\begin{aligned} & A B_{15-8} \leftarrow B, A B_{7.0}-\text { byte } \\ & A \leftarrow D B_{7.0} \end{aligned}$			
OUT	byte	2	10	$\begin{aligned} & A B_{15-8}-B_{1} A B_{7-0}-\text { byte } \\ & D B_{7-0}-A \end{aligned}$			
PEX		2	11	$\mathrm{PE}_{15.8}-\mathrm{B}^{\text {P }} \mathrm{PE}_{7-0} \leftarrow \mathrm{C}$			
PEN		2	11	PE_{15-12} - B_{7-4}			
PER		2	11	Port E AB Mode			

Program Status Word (PSW) Operation

OPERATION						D6	D5	D4	D3	D2	D0
REG, MEMORY			IMMEDIATE		SKIP	z	SK	HC	L1	L0	CY
ADD ADC SUB SBB	ADDW ADCW SUBW SBBW	ADDX ADCX SUBX SBBX	ADI ACl SUI SBI			\downarrow	0	\downarrow	0	0	\downarrow
ANA ORA XRA	ANAW ORAW XRAW	ANAX ORAX XRAX	ANI ORI XRI	ANIW ORIW		\ddagger	0	-	0	0	-
ADDNC SUBNB GTA LTA	ADDNCW SUBNBW GTAW LTAW	ADDNCX SUBNBX GTAX LTAX	ADINC SUINB GTI LTI	$\begin{aligned} & \text { GTIW } \\ & \text { LTIW } \end{aligned}$		\downarrow	\downarrow	\downarrow	0	0	\downarrow
ONA OFFA	ONAW OFFAW	ONAX OFFAX	ONI OFFI	ONIW OFFIW		\downarrow	\ddagger	\bullet	0	0	-
$\begin{aligned} & \text { NEA } \\ & \text { EQA } \end{aligned}$	NEAW EQAW	NEAX EQAX	$\begin{aligned} & \text { NEI } \\ & \text { EQI } \end{aligned}$	NEIW EQIW		\downarrow	\downarrow	\downarrow	0	0	\downarrow
$\begin{aligned} & \text { INR } \\ & \text { DCR } \end{aligned}$	INRW DCRW					\downarrow	\downarrow	\downarrow	0	0	-
DAA						\downarrow	0	\pm	0	0	\pm
RAL, RAR, RCL, RCR SHAL, SHAR, SHCL, SHCR						\bullet	0	-	0	0	\downarrow
RLD, RRD						\bullet	0	-	0	0	-
STC						\bullet	0	-	0	0	1
CLC						\bullet	0	\bullet	0	0	0
			MVI A, byte			-	0	-	1	0	-
			MVI L, byte LXI H, word			\bullet	0	-	0	1	\bullet
					BIT SKC SKNC SKZ SKNZ SKIT SKNIT	\bullet	\downarrow	\bullet	0	0	-
					RETS	\bullet	1	\bullet	0	0	\bullet
All other instructions						\bullet	0	\bullet	0	0	\bullet

[^2]| ABSOLUTE MAXIMUM | Operating Temperature $\ldots \ldots$ |
| ---: | :--- |
| RATINGS* | . $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| | Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| | Voltage On Any Pin . -0.3 V to +7.0 V |

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT Stress above those listed under "Absolute Maxımum Ratıngs" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maxımum ratıng conditions for extended periods may affect device reliability.
$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage	VIL	0		0.8	V	
Input High Voltage	$\mathrm{V}_{\text {IH1 }}$	2.0		V_{CC}	V	Except $\overline{\text { SCK, }} \times 1$
	$\mathrm{V}_{1 \mathrm{H} 2}$	3.8		V_{CC}	V	$\overline{\text { SCK, }} \times 1$
Output Low Voltage	VOL			0.45	V	$\mathrm{I}^{\mathrm{OL}}=2.0 \mathrm{~mA}$
Output High Voltage	V OH 1	2.4			V	$\mathrm{I}^{\mathrm{OH}}=-100 \mu \mathrm{~A}$
	$\mathrm{V}_{\mathrm{OH} 2}$	2.0			V	$\mathrm{I}^{\mathrm{OH}}=-500 \mu \mathrm{~A}$
Low Level Input Leakage Current	ILIL			-10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
High Level Input Leakage Current	ILIH			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$
Low Level Output Leakage Current	ILOL			-10	$\mu \mathrm{A}$	$V_{\text {OUT }}=0.45 \mathrm{~V}$
High Level Output Leakage Current	${ }^{1} \mathrm{LOH}$			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$V_{\text {CC }}$ Power Supply Current	${ }^{\text {ICC }}$		110	200	mA	

CAPACITANCE $T_{a}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{GND}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	C_{1}			10	pF	$\mathrm{fc}=1 \mathrm{MHz}$ All pins not under test at OV
Output Capacitance	Co			20	pF	
Input/Output Capacitance	ClO_{10}			20	pF	

CLOCK TIMING

PARAMETER	SYMBOL	LIMITS		UNITS	TEST CONDITIONS
		MIN	MAX		
X1 Input Cycle Time	${ }_{\text {t }}^{\text {c }}$ PX	227	1000	ns	
X1 Input Low Level Width	${ }^{\text {t }} \times$ XL	106		ns	
X1 Input High Level Width	${ }^{\text {t }} \times \times \mathrm{H}$	106		ns	
¢OUT Cycle Time	${ }^{1} \mathrm{CY}{ }_{\phi}$	454	2000	ns	
ϕ OUT Low Level Width	${ }_{\text {t }}^{\text {¢ }}$ ¢ ${ }_{\text {L }}$	150		ns	
$\phi_{\text {OUT }}$ High Level Width	$\mathrm{t}_{\phi \phi \mathrm{H}}$	150		ns	
$\phi_{\text {OUT }}$ Rise/Fall Time	$\mathrm{t}_{\mathrm{r}, \mathrm{t}} \mathrm{t}$		40	ns	

READ/WRITE OPERATION

PARAMETER	SYMBOL	LIMITS		UNITS	TEST CONDITIONS
		MIN	MAX		
RD L.E. \rightarrow ¢OUT L.E.	${ }^{\prime \prime} \mathrm{R} \phi$ '	100		ns	
Address (PE0-15) \rightarrow Data Input	${ }^{\text {t }}$ AD1		$550+500 \times N$	ns	
RDT.E. \rightarrow Address	tRA	200(T3); 700(T4)		ns	
$\overline{\text { RD L.E. } \rightarrow \text { Data Input }}$	${ }^{\text {t R D }}$		$350+500 \times \mathrm{N}$	ns	
RDT.E. \rightarrow Data Hold Time	tRDH	0		ns	
$\overline{\text { RD Low Level Width }}$	trR	$850+500 \times \mathrm{N}$		ns	
$\overline{\text { RD L.E. } \rightarrow \text { WAIT L.E. }}$	${ }^{\text {t }}$ WWT		450	ns	
Address $\left(P_{0-15}\right) \rightarrow$ WAIT L.E.	${ }^{\text {t AWT1 }}$		650	ns	
$\overline{\text { WAIT }}$ Set Up Time (Referenced from ©OUT L.E.)	tWTS	290		ns	
WAIT Hold Time (Referenced from фOUT L.E.)	tWTH	0	120	ns	
M1 \rightarrow RD L.E.	${ }^{\text {t MR }}$	200		ns	
RD T.E. \rightarrow M1	trM	200		ns	${ }^{\text {Cr }}{ }_{\text {¢ }}=500 \mathrm{~ns}$
$10 / \bar{M} \rightarrow$ RD L.E.	${ }_{1} \mathrm{R}$	200		ns	
$\overline{\text { RD T.E. } \rightarrow \text { IO/M }}$	tRI	200		ns	
ϕ OUT L.E. \rightarrow WR L.E.	${ }^{t}{ }_{\phi} \mathrm{W}$	40	125	ns	
Address (PE_{0-15}) \rightarrow фOUT T.E.	${ }^{t} A \phi$	100		ns	
$\begin{aligned} & \text { Address }\left(\mathrm{PE}_{0-15}\right) \rightarrow \\ & \text { Data Output } \end{aligned}$	${ }^{\text {t }}$ AD2	450		ns	
$\begin{aligned} & \text { Data Output } \rightarrow \text { WR } \\ & \text { T.E. } \end{aligned}$	tDW	$600+500 \times N$		ns	
WR T.E. \rightarrow Data Stabilization Time	tWD	150		ns	
Address (PE0-15) \rightarrow $\overline{W R}$ L.E.	tAW	400		ns	
WR T.E. \rightarrow Address Stabilization Time	tWA	200		ns	
WR Low Level Width	twW	$600+500 \times N$		ns	
10/M \rightarrow WR L.E.	tIW	500		ns	
WR T.E. \rightarrow IO/M	tWi	250		ns	

SERIAL I/O OPERATION

PARAMETER	SYMBOL	MIN	MAX	UNIT	CONDITION
$\overline{\text { SCK }}$ Cycle Time	${ }^{\text {t }} \mathrm{CYK}$	800		ns	$\overline{\text { SCK Input }}$
		900	4000	ns	SCK Output
$\overline{\text { SCK }}$ Low Level Width	${ }^{\text {t K K }}$ L	350		ns	$\overline{\text { SCK }}$ Input
		400		ns	SCK Output
$\overline{\text { SCK }}$ High Level Width	tKKH	350		ns	$\overline{\text { SCK }}$ Input
		400		ns	SCK Output
SI Set-Up Time (referenced from $\overline{\text { SCK }}$ T.E.)	${ }^{\text {ts }}$ IS	80		ns	
SI Hold Time (referenced from $\overline{\text { SCK T.E.) }}$	${ }_{\text {tSIH }}$	260		ns	
$\overline{\text { SCK }}$ L.E. \rightarrow SO Delay Time	${ }_{\text {t }} \mathrm{KO}$		180	ns	
$\overline{\text { SCS }} \mathrm{HIgh} \rightarrow \overline{\text { SCK }}$ L.E.	${ }^{\text {t }}$ CSK	100		ns	
$\overline{\text { SCK }}$ T.E. $\rightarrow \overline{\text { SCS }}$ Low	${ }^{\text {t K CS }}$	100		ns	
$\overline{\text { SCK T.E. } \rightarrow \text { SAK Low }}$	${ }^{\text {t K K A }}$		260	ns	

HOLD OPERATION

PARAMETER	SYMBOL	MIN	MAX	UNIT	CONDITION
HOLD Set-Up Time (referenced from ØOUT L.E.)	${ }^{\text {t }} \mathrm{HDS} \mathbf{1}_{1}$	200		ns	${ }^{\mathrm{t}} \mathrm{CY}{ }^{\prime}=500 \mathrm{~ns}$
	tHDS 2	200		ns	
HOLD Hold Time (referenced from $\emptyset_{\text {OUT }}$ L.E.)	${ }^{\text {t }} \mathrm{HDH}$	0		ns	
$\emptyset_{\text {OUT L L.E. } \rightarrow \text { HLDA }}$	${ }^{\text {t }}$ DHA	110	100	ns	
HLDA High \rightarrow Bus Floating (High Z State)	thabF	-150	150	ns	
HLDA Low \rightarrow Bus Enable	thabe		350	ns	

Notes:

(1) AC Signal waveform (unless otherwise specified)

(2) Output Timing is measured with $1 \mathrm{TTL}+200 \mathrm{pF}$ measuring points are $\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}$
$\mathrm{VOL}_{\mathrm{OL}}=0.8 \mathrm{~V}$
(3) L.E. $=$ Leadıng Edge, T.E. $=$ Trailing Edge
${ }^{\mathbf{t}} \mathbf{C} \mathbf{Y} \phi$ DEPENDENT AC PARAMETERS

PARAMETER	EQUATION	MIN/MAX	UNIT
${ }^{\text {R }} \mathrm{R} \phi$	(1/5) T	MIN	ns
${ }^{t} \mathrm{AD}_{1}$	$(3 / 2+N) T-200$	MAX	ns
${ }_{\text {tra }}\left(T_{3}\right)$	(1/2) T-50	MIN	ns
${ }^{\text {R }}$ R $\left(T_{4}\right.$)	(3/2) T-50	MIN	ns
${ }^{\text {t }}$ R	$(1+N) T-150$	MAX	ns
${ }^{\text {tr } R}$	(2+N) T-150	MIN	ns
${ }^{\text {t }}$ RWT	(3/2) T-300	MAX	ns
${ }^{\text {t }}{ }^{\text {WWT }}{ }_{1}$	(2) T-350	MAX	ns
${ }^{\text {t MR }}$	(1/2) T-50	MIN	ns
${ }^{\text {t }}$ RM	(1/2) T-50	MIN	ns
$\mathrm{t}_{1} \mathrm{R}$	(1/2) T-50	MIN	ns
$t_{\text {R }} \mathrm{l}$	(1/2) T-50	MIN	ns
${ }^{\text {t }}{ }_{\phi} \mathrm{W}$	(1/4) T	MAX	ns
${ }^{\text {t }}$ A ϕ	(1/5) T	MIN	ns
${ }^{t} \mathrm{AD}_{2}$	T-50	MIN	ns
${ }^{\text {t }}$ DW	$(3 / 2+N) T-150$	MIN	ns
${ }^{t}$ WD	(1/2) T-100	MIN	ns
${ }^{\text {t }}$ AW	T-100	MIN	ns
${ }^{\text {t }}$ WA	(1/2) T-50	MIN	ns
twW	$(3 / 2+N) T-150$	MIN	ns
tIW	T	MIN	ns
${ }^{\text {t }}$ I 1	(1/2) T	MIN	ns
${ }^{\text {t HABE }}$	(1/2) T-150	MAX	ns

Notes: (1) $\mathbf{N}=$ Number of Wait States
(2) $\mathrm{T}={ }^{\mathrm{t}} \mathrm{CY} \phi$
(3) Only above parameters are ${ }^{\mathrm{C}} \mathrm{C}_{\phi}$ dependent
(4) When a crystal frequency other than 4 MHz is used ($\mathrm{t}_{\mathrm{CY}}^{\phi}=500 \mathrm{~ns}$) the above equations can be used to calculate AC parameter
values.

CLOCK TIMING

AC CHARACTERISTICS (CONT.)

TIMING WAVEFORMS (CONT.)

WRITE OPERATION

-ACTIVE ONLY WHEN IOMM IS ENABLED

Package Outlines

For information, see Package Outline Section 7.
Plastic Quil, μ PD7801G/02G
Plastic Shrinkdip, μ PD7801CW μ PD7802CW

Description

The NEC μ PD78C06/ μ PD78C05 are advanced CMOS 8 -bit general purpose single-chip microcomputers intended for applications requiring 8-bit microprocessor control and extremely low power consumption, and ideally suited for portable, battery-powered/backedup products. Subsets of the μ PD 7801 , the μ PD78C06/05 integrate an 8 -bit ALU, 4 K -ROM, 128 -byte RAM, 46 I/O lines, an 8 -bit timer, and a serial I/O port on a single die. Fully compatible with the 8080A bus structure, expanded system operation can easily be implemented using industry standard peripheral and memory components. Total memory space can be increased to 64K-bytes.
The μ PD78C06/05 lend themselves well to low power, portable applications by featuring two power down modes to further conserve power when the processor is not active. The μ PD78C06 is packaged in a 64 -pin flat pack. The μ PD78C05 is a ROM-less version packaged in a 64-pin QUIL, designed for prototype development and small volume production.

Features

CMOS silicon gate technology +5 V supplyComplete single-chip microcomputer

- 8 -bit ALU
-4K-ROM
- 128-Byte RAM

Low power consumption46 I/O lines
Expansion capabilities

- 8080A bus-compatible
- 60 K -byte external memory address rangeSerial I/O port101 instruction set
- Multiple address modesPower-down modes
- Halt mode
- Stop mode8 -bit timerPrioritized interrupt structure
- 2 external
- 1 internalOn-chip clock generator64-pin flat pack
ROM-less version available (78C05)

Pin Identification

Symbol	Name
$\mathrm{PA}_{7}-\mathrm{PA}_{0}, \mathrm{~PB}_{7}-\mathrm{PB}_{0}, \mathrm{PC}_{5}-\mathrm{PC}_{0}, \mathrm{PE}_{15}-\mathrm{PE}_{0}$	1/O Ports
$\mathrm{DB}_{7}-\mathrm{DB}_{0}$	Data Bus
WAIT	Wait Request
$\underline{\text { INT }}$, NNT_{1}	Interrupt Request
$\mathrm{X}_{2}, \mathrm{X}_{1}$	Crystal
$\underline{\overline{\text { SCK }}}$	Serial Clock Input/Output
SI	Serial Input
So	Serial Output
RESET	Reset
$\overline{\text { RD }}$	Read Strobe
WR	Write Strobe
$\phi_{\text {OUT }}$	Clock Output

Pin Configuration

Block Diagram

Table 1. Halt and Stop Modes

Function	Halt Mode	Stop Mode
Oscillator	Run	Stop
Internal System Clock	Stop	
Timer	Run	
Timer Register	Hold	Set
Upcounter, Prescaler 0,1	Run	Cleared
Serial Interface		Run (1)
Serial Clock	Hold	Hold
Interrupt Control Circuit	Run	Stop
Interrupt Enable Flag	Hold	Reset
$\underline{\mathbf{N T}_{0}, \mathbf{I N T}_{1} \text { Input }}$		Inactive
$\mathbf{I N T}_{\text {T }}$	Active	-
T_{8} (INTFS)		-
Mask Register	Hold	Set
Pending Interrupts (INTFX)		Reset
REL input	Inactive	Active
$\overline{\text { RESET Input }}$	Active	

Function	Halt Mode	Stop Mode
On-chip RAM	Hold	Hold
Output Latch in Ports A, B, E		
Program Counter (PC)		Cleared
Stack Pointer (SP)		Unknown
General Registers		
(A, B, C, D, E, F, L)		
Program Status Word (PSW)		Reset
Mode B Register		Hold
Standby Control Register ($\mathrm{SC}_{0}-\mathrm{SC}_{3}$)		
Standby Control Register (SC_{4})		Set
Timer Mode Register (TMM $_{0}-$ TMM $_{1}$)		Hold
Tımer Mode Regıster (TMM ${ }_{1}$)		Set
Serial Mode Regıster (SM)		Hold
Data Bus ($\mathrm{DB}_{0}-\mathrm{DB}_{7}$)	High-Z	High-Z
$\overline{\text { RD, WR Output }}$	High	Hıgh

Note: (1) Serial clock counter is running and T_{8} is generated, however, there are no effects

Functional Description

Memory map

The μ PD78C06 can directly address up to 64 K bytes of memory. Except for the on-chip ROM ($0-4,095$) and RAM 65,408-65,535), any memory location can be used as
either ROM or RAM. The following memory map defines the $0-64 \mathrm{~K}$-byte memory space for the μ PD78C06 showing that the Reset Start Address, Interrupt Start Address, Call Tables, etc., are located in the internal ROM area.

I/O Ports

Port	Functions
Port A	8-bit output port with latch
Port B	8-bit programmable Input/Output port with latch
Port C	6-bit nibble I/O or Control port
Port E	16-bit Address/Output port

Port A. Port A is an 8 -bit latched output port. Data can be readily transferred between the accumulator and the output latch buffers. The contents of the output latches can be modified using arithmetic and logic instructions. Data remains latched at Port A unless acted on by another Port A instruction or a RESET is issued.
Port B. Port B is an 8-bit $1 / \mathrm{O}$ port. Data is latched at Port B in both the Input or Output mode. Each bit of Port B can be independently set to either Input or Output modes. The Mode B register programs the individual lines of Port B to be either an Input ($\operatorname{Mode} \mathrm{B}_{\mathrm{n}} \mathrm{F}_{1}$) or an Output (Mode $\mathrm{B}_{\mathrm{n}=0}$)
Port C. Port C is a 6 -bit I/O port with internal pull-up resistors.

Port E (78C06). Port E is a 16 -bit address bus/output port. It can be set to one of two operating modes using the PER or PEX instruction.
$\square 16$-bit address bus - the PER instruction sets this mode for use with external I/O or memory expansion (up to 60 K bytes, externally).
\square 16-bit output port - the PEX instruction sets Port E to a 16 -bit output port. The contents of B and C registers appear on $\mathrm{PE}_{8}-\mathrm{PE}_{15}$ and $P E_{0}-\mathrm{PE}_{1}$, respectively.
Address bus $\mathrm{AB}_{15}-\mathrm{AB}_{0}$ (78C05)
These lines are the 16 bit-to-bit address bus to the main memory. The 78C05, having no internal ROM, must address the area from 0 to 4096 as external ROM. The 78C05 AB lines are unlike the 78C06 PE lines in that they have no internal latches. When the Port E output instruction PEX is executed in a 78 C 05 , the register pair $B C$ is output to the $A B$ lines for only one clock cycle during the third machine cycle. This is provided to allow external hardware to emulate the Port E operation of the 78C06.

μ PD78C06/78C05

Functional Description (Cont.)

Timer Block Diagram

Timer operation

A programmable 8-bit timer is provided on-chip for measuring time intervals, generating pulses, and general time-related control functions. It is capable of measuring time intervals from $8 \mu \mathrm{~s}$ to 32 ms in duration. The timer consists of a prescaler which decrements an 8-bit counter at a fixed $8 \mu s$ or 128μ s rate. Count pulses are loaded into the 8 -bit upcounter through the timer register.
Countup operation is initiated upon execution of the STM instruction when the contents of the upcounter are fully
incremented and a coincidence occurs, an interval interrupt $\left(\mathrm{INT}_{\mathrm{T}}\right)$ is generated. Count operation may be reinitialized with the STM instruction. The duration of the timeout may be altered by loading new contents into the timer register. The timer flip-flop is set by the STM instruction and reset on a countup operation. Its output $\left(T_{0}\right)$ is available externally and may be used for general external synchronization.
Timer interrupt ($\mathrm{INT}_{\mathrm{T}}$) may be disabled through the interrupt.

Serial Port Block Diagram

Functional Description (Cont.)
 Serial port operation

The on-chip serial port provides basic synchronous serial communication functions allowing the NEC μ PD78C06/05 to serially interface with external devices.
Serial transfers are synchronized with either the internal clock or an external clock input (SCK). The transfer rate is fixed at $0.5 \mathrm{Mbit} /$ second if the internal clock is used or is variable between DC and $0.5 \mathrm{Mbit} /$ second when an external clock is used. The Clock Source Select is determined by the Mode C register. The serial clock (internal or external SCK) is enabled when the Serial Chip Select signal (SCS) goes low. At this time receive and transmit operations through the Serial Input port (SI)/Serial Output port (SO) are enabled. Receive and transmit operations are performed MSB first.

Interrupt structure

The μ PD78C06/05 provide a maskable interrupt structure capable of handling vectored prioritized interrupts. Interrupts can be generated from six different sources: two external interrupts, two internal interrupts, and nonmaskable software interrupt. When activated, each interrupt branches to a designated memory vch interrupt branches to a designated memory vector location for that interrupt.

Interrupt Structure

INT	Vectored Memory Location	Priority	Type
INT_{T}	8	3	Internal, Tımer Overflow
INT_{0}	4	2	External, level sensitive
INT_{1}	16	4	External, Rising edge sensitıve

RESET (Reset)

An active-low signal on this input for more than $4 \mu \mathrm{~s}$ forces the μ PD780C06/05 into a Reset condition. RESET affects the following internal functions:

The Interrupt Enable flags are reset, and interrupts are inhibited.The Interrupt Request flag is reset.The Halt flip-flop is reset, and the Halt state is released.The contents of the Mode B register are set to FF_{H}, and Port B becomes an input port.All flags are reset to 0 .The internal Count register for timer operation is set to FF_{H} and the timer F / F is reset.The contents of the program counter are set to 0000_{H}.
Data bus ($\mathrm{DB}_{0}-\mathrm{DB}_{7}$) , $\overline{\mathrm{RD}}$, and $\overline{\mathrm{WR}}$ go to a high impedance state.
Once the $\overline{\text { RESET }}$ input goes high, the program is started at location 0000_{H}.

Registers

The μ PD78C06/05 contain seven 8-bit registers and two 16-bit registers.

General purpose registers. The general purpose registers A, B, C, D, E, H, L, can function as auxiliary registers to the accumulator or in pairs as data pointers ($B C, D E, H L$). Automatic increment and decrement addressing mode capabilities extend the uses for the DE and HL register pairs.

Accumulator (A)

All data transfers between the μ PD78C06/05 and external memory or I/O are done through the accumulator.

Program counter (PC)

The PC is a 16 -bit register containing the address of the next instruction to be fetched. Under normal program flow, the PC is automatically incremented. However, in the case of a branch instruction, the PC contents are from another register or an instruction's immediate data. A reset sets the PC to 0000_{H}.

Stack pointer (SP)

The stack pointer is a 16 -bit register used to maintain the top of the stack area (last-in/first-out). The contents of the SP are decremented during a Call or Push instruction or if an interrupt occurs. The SP is incremented during a Return or POP instruction.

Address Modes

Register addressing
Register indirect addressing
Automatic increment addressing
Automatic decrement addressing

> Working-register addressing Direct addressing Immediate addressing Immediate extended addressing

Register addressing

The instruction opcode specifies a register r which contains the operand.

Register indirect addressing

The instruction opcode specifies a register pair which contains the memory address of the operand. Mnemonics with an X suffix are ending this address mode.

μ PD78C06/78C05

Address Modes (Cont.)

Automatic increment addressing

The opcode specifies a register pair which contains the memory address of the operand. The contents of the register pair are automatically incremented to point to a new operand. This mode provides automatic sequential stepping when working with a table of operands.

Automatic decrement addressing

Working-register addressing

The contents of the register are linked with the byte following the opcode to form a memory address which contains the operand. The V register is used to indicate the memory page. This address mode is useful as a short-offset address mode when working with operands in a common memory page where only one additional byte is required for the address. Mnemonics with a W suffix indicate this address mode. In the 78C06/05 the V register is always FFH.

Direct addressing

The two bytes following the opcode specify an address of a location containing the operand.

Instruction Set Definitions

Operand	Description
r	A, B, C, D, E, H, L
11	B, C, D, E, H, L
r2	A, B, C
sr	PA, PB, PC, MK, MB, $\mathrm{TM}_{\mathbf{0}}, \mathrm{TM}_{1}, \mathrm{~S}$, SM, SC
sr1	PA, PB, PC, MK, S, TM ${ }_{0}, \mathrm{TM}_{1}, \mathrm{SC}$
sr2	PA, PB, PC, MK
rp	SP, B, D, H
rp1	B, D, H
rpa	B, D, H, D+, H+, D-, H-
wa	8-bit immediate data
word	16-bit immediate data
byte	8-bit immediate data
bit	3-bit immediate data
if	F0, 1, FT, FS
F	CY, \mathbf{Z}

Notes: 1. When special register operands sr, sr1, sr2 are used, PA = Port A, $\mathrm{PB}=$ Port $\mathrm{B}, \mathrm{PC}=$ Port $\mathrm{C}, \mathrm{MK}=$ Mask register,
$M B=$ Mode B register, $M C=$ Mode C Regıster, $\mathrm{TM}_{0}=$ Timer register $0, \mathrm{TM}_{1}=$ Timer register $1, \mathrm{~S}=$ Serıal regıster. 2. When register pair operands $\mathrm{rp}, \mathrm{rp1}$ are used, $\mathrm{SP}=$ Stack Pointer, $B=B C, D=D E, H=H L$.
3. Operands rPa , rPa 1 , wa are used in indirect addressing and auto-increment/auto-decrement addressing modes. $B=(B C), D=(D E), H=(H L)$
$D_{+}=(D E)^{+}, H^{+}=(H L)^{+}, D-=(D E)^{-}, H_{-}=(H L)^{-}$.
4. When the interrupt operand if is used, F0 $=$ INTF0, F1 $=$ INTF1, FT $=$ INTFT, FS $=$ INTFS.
5. When the operand F is used, $C Y=$ Carry and $Z=$ Zero.
6. The V register is always FFHex.

Instruction Set

Mnemonic Operand		No. Bytes	Clock Cycles	Operation	Skip Condition	Flags		
		CY				z		
8-bit Data Transfer								
MOV	r1, A		1	6	$r 1 \leftarrow A$			
MOV	A, r1	1	6	$A \leftarrow r 1$				
MOV	sr, A	2	14	$\mathbf{s r} \leftarrow \mathbf{A}$				
MOV	A, sr1	2	14	$\mathrm{A} \leftarrow \mathrm{sr} 1$				
MOV	r, word	4	25	$r \leftarrow$ (word)				
MOV	word, r	4	25	(word) $\leftarrow r$				
MVI	r, byte	2	11	$r \leftarrow$ byte				
STAW	wa	2	14	$(\mathrm{V}, \mathrm{wa}) \leftarrow \mathrm{A}$				
LDAW	wa	2	14	$A \leftarrow(V, w a)$				
STAX	rpa	1	39	$(\mathrm{rpa}) \leftarrow A$				
LDAX	rpa	1	9	$A \leftarrow(r p a)$				
16-bit Data Transfer								
SBCD	word	4	28	(word) $\leftarrow C$, (word +1) $\leftarrow B$				
SDED	word	4	28	(word) $\leftarrow E,($ word +1$) \leftarrow D$				
SHLD	word	4	28	(word) $\leftarrow L$, (word +1) $\leftarrow H$				
SSPD	word	4	28	$\begin{aligned} & \text { (word) } \leftarrow S P_{L} \text {, } \\ & \text { (word }+1 \text {) } \leftarrow S P_{H} \end{aligned}$				
LBCD	word	4	28	$\mathbf{C} \leftarrow$ (word), $\mathbf{B} \leftarrow$ (word +1)				
LDED	word	4	28	$\mathrm{E} \leftarrow$ (word), $\mathrm{D} \leftarrow($ word +1$)$				
LHLD	word	4	28	$\mathrm{L} \leftarrow$ (word), $\mathrm{H} \leftarrow($ word +1$)$				
LSPD	word	4	28	$\begin{aligned} & S P_{\mathrm{L}} \leftarrow \text { (word), } \\ & \mathbf{S P}_{\mathrm{H}} \leftarrow(\text { word }+1) \end{aligned}$				
PUSH	rp1	2	21	$\begin{aligned} & (S P-1) \leftarrow \mathrm{rp}_{1_{H}} \\ & (\mathrm{SP}-2) \leftarrow \mathrm{rp} 1_{\mathrm{L}} \\ & \hline \end{aligned}$				
POP	rp1	2	18	$\begin{aligned} & r p 1_{L} \leftarrow(S P) \\ & r p 1_{H} \leftarrow(S P+1), \\ & S P \leftarrow S P+2 \end{aligned}$				
LXI	rp, word	3	16	rp \leftarrow word				

Instruction Set (Cont.)

Mo. Clock	Operation	Skip Condition	Flags CY Z

Arithmetic						
ADD	A, r	2	12	$A \leftarrow A+r$		$\downarrow \quad \downarrow$
ADDX	rpa	2	15	$A \leftarrow A+(r p a)$		$\downarrow \quad \downarrow$
ADC	A, r	2	12	$A \leftarrow A+r+C Y$		\uparrow
ADCX	rpa	2	15	$A \leftarrow A+(r p a)+C Y$		$\downarrow \quad \downarrow$
SUB	A, r	2	12	$A \leftarrow A-r$		$\downarrow \quad \downarrow$
SUBX	rpa	2	15	$A \leftarrow A-(r p a)$		$\downarrow \quad \downarrow$
SBB	A, r	2	12	$A \leftarrow A-r-C Y$		\pm
SBBX	rpa	2	15	$A \leftarrow A-(r p a)-C Y$		$1 \quad 1$
ADDNC	A, r	2	12	$A \leftarrow A+r$	No Carry	$\downarrow \quad \downarrow$
ADDNCX	rpa	2	15	$A \leftarrow A+$ (rpa)	No Carry	1
SUBNB	A, r	2	12	$A \leftarrow A-r$	No Borrow	$1 \quad 1$
SUBNBX	rpa	2	15	$A \leftarrow A+$ (rpa)	No Borrow	$\uparrow \quad 1$

Logical						
ANA	A, r	2	8/12	$A \leftarrow A \backslash r$		\downarrow
ANAX	rpa	2	11/15	$A \leftarrow A \backslash(\mathrm{rpa})$		1
ORA	A, r	2	12	$A \leftarrow A V r$		1
ORAX	rpa	2	15	$A \leftarrow A V(r p a)$		\downarrow
XRA	A, r	2	12	$A \leftarrow A \forall r$		\downarrow
XRAX	rpa	2	15	$A \leftarrow A \forall(r p a)$		\uparrow
GTA	A, r	2	12	$A-r-1$	No Borrow	
GTAX	rpa	2	15	$A-(r p a)-1$	No Borrow	$\downarrow \quad \uparrow$
LTA	A, r	2	12	$A-r$	Borrow	$\downarrow \quad \downarrow$
LTAX	rpa	2	15	A - (rpa)	Borrow	$\uparrow 1$
ONA	A, r	2	12	A A^{\prime}	No Zero	\downarrow
ONAX	rpa	2	15	A A (rpa)	No Zero	\downarrow
OFFA	A, r	2	12	$\mathrm{A} A \mathrm{r}$	Zero	\downarrow
OFFAX	rpa	2	15	A \wedge (rpa)	Zero	\downarrow
NEA	A, r	2	12	$A-r$	No Zero	$\downarrow \quad \downarrow$
NEAX	rpa	2	15	$A-$ (rpa)	No Zero	$\downarrow 1$
EQA	A, r	2	12	$A-r$	Zero	$\uparrow \uparrow$
EQAX	rpa	2	15	A- (rpa)	Zero	11

Immediate Data Transfer (Accumulator)						
XRI	A, byte	2	$7 / 11$	$A \leftarrow A \vee$ byte		\downarrow
ADINC	A, byte	2	$7 / 11$	$A \leftarrow A+$ byte	No Carry	1
SUINB	A, byte	2	$7 / 11$	$A \leftarrow A$ - byte	No Borrow	\downarrow
ADI	A, byte	2	7/11	$A \leftarrow A+$ byte		$\downarrow \quad \uparrow$
ACI	A, byte	2	7/11	$A \leftarrow A+$ byte + CY		\downarrow
SUI	A, byte	2	$7 / 11$	$A \leftarrow A$ - byte		$\downarrow \downarrow$
SBI	A, byte	2	7/11	$A \leftarrow A$ - byte - CY		$\downarrow \downarrow$
ANI	A, byte	2	$7 / 11$	$A \leftarrow A \cap$ byte		\uparrow
ORI	A, byte	2	$7 / 11$	$A \leftarrow A V$ byte		\downarrow
GTI	A, byte	2	$7 / 11$	A - byte - 1	No Borrow	$\uparrow \uparrow$
LTI	A, byte	2	$7 / 11$	A - byte	Borrow	$\downarrow \quad \downarrow$
ONI	A, byte	2	$7 / 11$	A 4 byte	No Zero	\uparrow
OFFI	A, byte	2	$7 / 11$	A \triangle byte	Zero	\downarrow
NEI	A, byte	2	$7 / 11$	A - byte	No Zero	$\uparrow \uparrow$
EQI	A, byte	2	$7 / 11$	A - byte	Zero	$\downarrow \uparrow$
Immediate Data Transfer (Special Register)						
ANI	sr2, byte	3	17	$\mathbf{s r} 2 \leftarrow \mathrm{sr} 2 \mathrm{~A}$ byte		\uparrow
ORI	sr2, byte	3	17	$\mathbf{s r 2}$ ¢sr2 V byte		1
OFFI	sr2, byte	3	14	sr2 \triangle byte	Zero	\downarrow
ONI	sr2, byte	3	14	sr2 4 byte	No Zero	\downarrow
Working Register						
ANIW	wa, byte	3	16	$(\mathrm{V}, \mathrm{wa}) \leftarrow(\mathrm{V}, \mathrm{wa}) \Lambda$ byte		1
ORIW	wa, byte	3	16	(\mathbf{V}, wa) $\leftarrow(\mathbf{V}$, wa) \mathbf{V} byte		1
GTIW	wa, byte	3	13	(V, wa) - byte - 1	No Borrow	$\uparrow \quad 1$
LTIW	wa, byte	3	13	(V, wa) - byte	Borrow	$\uparrow \quad \downarrow$
ONIW	wa, byte	3	13	(V, wa) A byte	No Zero	\uparrow
OFFIW	wa, byte	3	13	(V, wa) A byte	Zero	\downarrow
NEIW	wa, byte	3	13	(V, wa) - byte	No Zero	$\downarrow \quad \downarrow$
EQIW	wa, byte	3	13	(V, wa) - byte	Zero	$\uparrow \quad 1$

Instruction Set (Cont.)

Program Status Word (PSW) Operation

Operation				D6	D5	D4	D3	D2	DO
Reg. Memory		Immediate	Skip	2	SK	HC	L1	10	CY
ADD ADC SUB SBB	ADDX ADCX SUBX SBBX	ADI ACl SUI SBI		\downarrow	0	\uparrow	0	0	\uparrow
ANA ORA XRA	ANAX ORAX XRAX	ANI ANIW ORI ORIW XRI		\downarrow	0	-	0	0	-
ADDNC SUBNB GTA LTA	ADDNCX SUBNBX GTAX LTAX	ADINC SUINB GTI GTIW LTI LTIW		\downarrow	\downarrow	\downarrow	0	0	\downarrow
	ONAX OFFAX	$\begin{array}{ll}\text { ONI } & \text { ONIW } \\ \text { OFFI } & \text { OFFIW }\end{array}$		\downarrow	\downarrow	-	0	0	\bullet
NEA EQA	NEAX EQAX	NEI NEIW EQI EQIW		\downarrow	\downarrow	\downarrow	0	0	\uparrow
INR INRW DCR DCRW				\downarrow	\downarrow	\downarrow	0	0	\bullet
DAA				\uparrow	0	\uparrow	0	0	\downarrow
RLL, RLR				\bullet	0	-	0	0	\uparrow
RLD - RRD				-	0	-	0	0	-
STC				\bullet	0	\bullet	0	0	1
CLC				\bullet	0	-	0	0	0
		MVI A, byte		\bullet	0	-	1	0	\bullet
		MVI L, byte LXI H, word		\bullet	0	\bullet	0	1	\bullet
			SKNC SKNZ SKNIT	-	\downarrow	\bullet	0	0	\bullet
			RETS	-	1	-	0	0	-
All other instructions				\bullet	0	-	0	0	\bullet

Notes: \downarrow Flag affected according to result of operation
Flag set
0 Flag reset

- Flag not affected

Absolute Maximum Ratings*

($\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$)

Supply Voltage, V_{cc}	-0.3 V to +7.0 V
Input Voltage, V_{1}	-0.3 V to $\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}$
Output Voltage, V_{0}	-0.3 V to $\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}$
Output High Current, I_{OH} (Device Total)	-5mA
Output Low Current, IoL (Device Total)	43.5 mA
Operating Temperature, TOPT $^{\text {O }}$	$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature, $\mathrm{T}_{\text {S }}$	$-40^{\circ} \mathrm{C}$ to +125

*COMMENT: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics
$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+\mathbf{7 0 ^ { \circ }} \mathrm{C} ; \mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Input High Voltage	$\mathrm{V}_{\mathrm{H}+1}$	$0.7 \mathrm{~V}_{\mathrm{cc}}$		V_{cc}	V	Except $\mathrm{DB}_{0}-\mathrm{DB}_{7}, \mathrm{X}_{1}$
	$\mathrm{V}_{\mathrm{H} 2}$	$\mathrm{V}_{\mathrm{CC}}-2.0$		V_{cc}	v	$\mathrm{DB}_{0}-\mathrm{DB}_{7}$
	V_{1+3}	$\mathrm{V}_{\text {cc }}-0.5$		V_{cc}	v	X_{1}
Input Low Voltage	$\mathrm{V}_{\text {IL1 }}$	0		$0.3 \mathrm{~V}_{c c}$	v	Except $\mathrm{DB}_{0}-\mathrm{DB}_{7}, \mathrm{X}_{1}$
	$\mathrm{V}_{\mathrm{HL} 2}$	0		0.8	v	$\mathrm{DB}_{0}-\mathrm{DB}_{7}$
	$\mathrm{V}_{1 \mathrm{LL} 3}$	0		0.5	v	X_{1}
Output High Voltage	$\mathrm{V}_{\mathrm{OH} 1}$	2.4			v	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$
	$\mathrm{V}_{\mathrm{OH} 2}$	$\mathrm{V}_{\mathrm{cc}}-0.5$			v	$\mathrm{IOH}^{\text {O }}=-50 \mu \mathrm{~A}$
Output Low Voltage	V_{OL}			0.45	v	$\mathrm{I}_{\mathrm{OL}}=1.8 \mathrm{~mA}$
Input High Current	I_{1+1}	8		90	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ (REL)
	I_{1+2}			40	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}\left(\mathrm{X}_{1}\right)$

DC Characteristics

$T_{a}=-10^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C} ; V_{c c}=5 V \pm 10 \%$

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Input Low Current	$\mathrm{ILL1}^{1}$	-8		-90	$\mu \mathbf{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{OV}\left(\mathrm{WAIT}, \mathrm{PC}_{0}-\mathrm{PC}_{5}\right)$
	$\mathrm{ILL2}$			-40	$\mu \mathbf{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{OV}\left(\mathrm{X}_{1}\right)$
Input High Leakage Current	ILIH			3	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \\ & \text { (Except REL, } \mathrm{X}_{1} \text {) } \end{aligned}$
Input Low Leakage Current	$\mathrm{I}_{\text {LIL } 1}$			-3	$\mu \mathbf{A}$	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\text { OV Except WAIT, } \\ & \mathrm{PC}_{0}-\mathrm{PC}_{5}, \mathrm{X}_{1} \end{aligned}$
	ILL2			-3	$\mu \mathbf{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & \left(\text { Stop Mode, } \mathrm{X}_{1}\right. \text {) } \end{aligned}$
Output High Leakage Current	$\mathrm{I}_{\text {LOH }}$			3	$\mu \mathbf{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
Output Low Leakage Current	ILOL			-3	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$\mathrm{V}_{\text {cc }}$ Supply Current	ICCl		3.5	6.0	mA	Operation Mode
	${ }^{\text {CC2 }}$		0.8	1.8	mA	Halt Mode
	$\mathrm{ICC3}$		1	15	$\mu \mathbf{A}$	Stop Mode ($\mathrm{X}_{1}=\mathbf{O V}$, $X_{2}=$ Open $)$

Low Power Data Memory Retention
Characteristics for Stop Mode Operation
$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Data Retention Voltage	$V_{\text {CCDR }}$	2.0			V	
Data Retention Supply Current	$I_{\text {cCDR }}$		0.8	15	$\mu \mathbf{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CCDR}}=2.0 \mathrm{~V},\left(\mathrm{X}_{1}=0 \mathrm{~V},\right. \\ & \left.\mathrm{X}_{2}=\text { Open }\right) \end{aligned}$
Data Retention Input Low RES Voltage	$V_{\text {ILDR }}$	0		$0.2 \mathrm{~V}_{\text {CCDR }}$	V	
Data Retention Input High RESET Voltage	$\mathrm{V}_{\text {IHDR }}$	$0.8 \mathrm{~V}_{\text {CCDR }}$		$\mathrm{V}_{\text {CCDR }}$	V	
REL Input Delay Time	t_{D}	500			μs	
REL Input High Time	$\mathrm{t}_{\text {REL }}$	10			μs	

Notes: In data retention mode, Input voltages to WAIT and $\mathrm{PC}_{0}-\mathrm{PC}_{5}$ pins (with pull-up resistors) should be maintained same as $\mathrm{V}_{C C D R}$ level, other input voltages should be kept less than $V_{\text {CCDR }}$ level

DC Characteristics

Read/Write Operation

DC Characteristics (Cont.)

Read/Write Operation

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Address ($\mathrm{PE}_{0}-\mathrm{PE}_{15}$) to Data Output	$t_{\text {AD2 }}$	850			ns	
Data Output to WR TE	$t_{\text {bw }}$	$\begin{gathered} 1200 \\ +1000 \\ \times N \end{gathered}$			ns	
WR TE to Data Stable Time	$t_{\text {wo }}$	300			ns	
Address ($\mathrm{PE}_{0}-\mathrm{PE}_{15}$) to WRLE	$t_{\text {AW }}$	800			ns	
WR TE to Address Stable Time	$t_{\text {WA }}$	300			ns	
WR Low Time	${ }^{\text {tww }}$	$\begin{gathered} 1200 \\ +1000 \\ \times N \end{gathered}$			ns	
WR LE to WAIT LE	$t_{\text {wwr }}$			250	ns	
Notes: (1) Applies only to μ PD78C05 N is number of $T_{\text {wait }}$ LE is leading edge, and TE is traling edge						

Serial Operation

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
SCK Cycle Time	$\mathrm{t}_{\text {crk }}$	1800			ns	SCK Input
		1818		80000	ns	SCK Output
SCK Low Time	$t_{\text {KKL }}$	700			ns	SCK Input
		759			ns	SCK Output
SCK Hıgh Time	$\mathbf{t}_{\mathbf{K K H}}$	700			ns	SCK Input
		759			ns	SCK Output
Si Set-up Tıme to SCK TE	$\mathbf{t s I S}$	200			ns	
Si Hold Time after SCK TE	$\mathrm{t}_{\text {SIH }}$	500			ns	
SCK LE to SO Delay Time	$t_{K O}$			550	ns	
Notes: Input timings are measured at V_{IH} min and V_{IL} max Output timings are measured at $\mathrm{V}_{\mathrm{OH}}=24 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OL}}=045 \mathrm{~V}$ with $1-\mathrm{TTL}+200 \mathrm{pF}$ = load $L E$ is leading edge, $T E$ is trailing edge						

Capacitance

$\mathbf{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathbf{V}_{\mathbf{c c}}=\mathbf{G N D}=\mathbf{0 V}$

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Input Capacitance	C_{1}			15	pF	$\mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}$
Output Capacitance	C_{0}			15	pF	Unmeasured pins
I/O Capacitance	$\mathrm{C}_{1 / 0}$			15	pF	returned to 0 V

AC Characteristics

$\mathbf{T}_{\mathbf{a}}=-10^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C} ; \mathrm{V}_{\mathbf{c c}}=+5 \mathrm{~V} \pm 10 \%$ Clock Timing

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
X_{1} Input Cycle Time	${ }^{\mathrm{t}_{\mathrm{CYX}}}$	227		10000	ns	
X_{1} Input Low Time	$\mathrm{t}_{\mathrm{xXL}}$	106			ns	
X_{1} Input High Time	$\mathrm{t}_{\mathrm{XXH}}$	106			ns	
$\phi_{\text {out }}$ Cycle Time	${ }^{\mathbf{t} \mathrm{Cr}_{\boldsymbol{*}}}$	908		40000	ns	
$\phi_{\text {Out }}$ Low Time	$\mathbf{t}_{\text {¢ }{ }_{\text {dL }}}$	300			ns	
$\phi_{\text {out }}$ High Time	$t_{\text {dob }}{ }^{\text {H }}$	300			ns	
$\phi_{\text {OUT }}$ Rise/Fall Time	t_{R}, t_{F}			150	ns	

Write Operation

Serial Operation

Timing Waveforms (Cont.)

Read Operation

Note: (1) Applies only to μ PD78C05

Clock Timing

Package Outlines

For information, see Package Outline Section 7.
Plastic Miniflat, μ PD78C06G
Plastic Quil, μ PD78C05G

Description

The μ PD7809/7807/78P09 single chip microcomputer augments the high-end in NEC's family of 8-bit microcomputers with sophisticated on-chip peripheral functionality. Like its nearest relative in the family, the μ PD7811, this device has a fast internal 16-bit ALU and data paths, 256 bytes of RAM, multifunction 16-bit timer/event counter, two 8 -bit timers, a USART, and two zero-cross detect inputs. Features that distinguish this device in the NEC 8-bit family are: 8 K ROM, programmable threshold comparator (8 inputs), programmable WAIT function, watchdog timer, hold and hold acknowledge for DMA interface, and bit test/write instructions for both RAM and I/O.
The μ PD7809 is the mask-ROM version with the customer's program on chip. The μ PD7807 is the ROM-less version for prototyping and small volume applications. The μ PD78P09 is an EPROM version of the 8 K ROM μ PD7809.

Features

NMOS silicon gate technology requiring +5 v supply
Complete single chip microcomputer

- 16-bit ALU
- 8K ROM

256 bytes RAM
Large I/O capability

- 40 I/O port lines (μ PD7809)
- 28 I/O port lines (μ PD7807)
- 8 input lines

Two zero-cross detect inputs
Expansion capability (total of 64 K memory access)

- 8085A bus compatible
- 56K bytes external memory address rangeProgrammable threshold comparator
- 8 inputs, 1 of 16 software selectable levelsFull duplex USART
- Synchronous and asynchronous

165 powerful instructions

- 16-bit arithmetic, multiply and divide
\square
$1 \mu s$ instruction cycle timePrioritized interrupt structure
- 3 external
- 8 internalHold, hold acknowledge for DMA interfaceProgrammable WAIT functionWatchdog timerStandby functionOn-chip clock generator
64-pin QUIL package

Pin Configuration

Pin Identification

Pin		Function	
No.	Symbol		
1-8	$\mathrm{PA}_{0}-\mathrm{PA}_{7}$	Port A: (Three-state input/output) 8-bit programmable I/O port. Each line independently programmable as an input or output. Reset places all lines of Port A in input mode.	
9-16	$\mathrm{PB}_{0}-\mathrm{PB}_{7}$	Port B: (Three-state input/output) 8-bit programmable I/O port. Each line independently programmable as an input or output Reset places all lines of Port B in input mode	
17	PC 0	Port C: (Three-state input/output) 8-bit programmable I/O port Each line independently programmable as an input or output. Alternatively, Port C may be used as control lines for USART and timer Reset puts Port C in Port mode and all lines in input mode.	Transmıt Data (TxD): Serial data output terminal
18	PC 1		Receive Data (RxD): Serial data input terminal.
19	PC_{2}		Serıal Clock (SCK): Serıal clock input/output terminal. When internal clock is used, the output can be selected; when an external clock is used, the input can be selected.
20	PC_{3}		Timer Input (TI)/interrupt request input (${ }^{(N T} T_{2}$): Timer clock input termınal; can also be used as falling edge, maskable-interrupt input terminal and AC input zero-cross detection terminal.
21	PC_{4}		Timer Output (TO): This output signal is a square wave whose frequency is determined by the timer/counter.
22	PC_{5}		Counter input (CI): External pulse input terminal to the tımer/ event counter.
23-24	$\mathrm{PC}_{6}, \mathrm{PC}_{7}$		Counter Outputs 0,1 $\left(\mathrm{CO}_{0}-\mathrm{CO}_{1}\right)$. Programmable rectangular wave output termınal based on timer/event counter

Pin Identification (Cont.)

Pin		Function	
No.	Symbol		
25	$\overline{\text { NMI }}$	Fallıng-edge, nonmaskable interrupt (NMI) input.	
26	INT_{1}	This signal is a risıng-edge, maskable interrupt input This input is also used to make the zero-cross detection AC input.	
27	MODE1	Used as input in conjunction with MODEO to select appropriate memory expansion mode. Also outputs M1 Signal during each opcode fetch	
28	RESET	(input, active low), RESET initializes the μ PD7811.	
29	MODE0	Used as input in conjunction with MODE1 to select appropriate memory expansion mode. Also used to ouput $10 / \mathrm{M}$.	
30-31	$\begin{gathered} \mathrm{X}_{2}, \mathrm{X}_{1} \\ \text { (crystal) } \end{gathered}$	This is a crystal connection terminal for system clock oscillation. When an external clock is supplied X_{1} is the input.	
32	$V_{\text {SS }}$	Power supply ground potential.	
33	$V_{T H}$	$\mathbf{V}_{T H}$ threshold voltage input. Reference voltage for variable threshold input, Port T. Threshold voltage to each Port T input is software programmable to 16 different levels.	
34-41	$\mathrm{PT}_{1}-\mathrm{PT}_{7}$	Eight variable threshold input ports. Ports $T_{0}-T_{7}$ inputs are each connected internally to comparators where the other input is the threshold voltage.	
42	HOLD	HOLD request input. When high, CPU is in a HOLD state until HOLD goes low.	
43	HLDA	HOLD Acknowledge output by CPU when HOLD state is accepted; goes low when HOLD is released.	
44	$\overline{\mathrm{RD}}$	(Three-state output, active low) RD is used as a strobe to gate data from external devices onto the data bus. RD goes high during Reset.	
45	$\overline{W R}$	(Three-state output, active low) WR, when active, indicates that the data bus holds valid data. Used as a strobe signal for external memory or I/O write operations. WR goes high during Reset.	
46	ALE	The strobe signal is for latching the address signal to the output from $\mathrm{PD}_{7}-\mathrm{PD}_{0}$ when accessing external expansion memory.	
47-54	$\mathrm{PF}_{0}-\mathrm{PF}_{7}$	Port F: (Three-state input/output) 8-bit programmable I/O port. Each line configurable independently as an input or output.	Address Bus: When external expansion memory is used, multiplexed address/data bus can be selected.
55-62	$\mathrm{DB}_{0}-\mathrm{DB}_{7}$	Port D: 8-bit programmable l/O port. This byte can be designated as ether input or output.	Address Bus: When external expansion memory is used, multıplexed address/data bus can be selected.
63	$V_{D D}$	This is a backup power terminal for on-chıp RAM.	
64	V_{CC}	+5 V power supply.	

Notes: 1 clock cycle $=1 \mathrm{CL}=3 / \mathrm{f}$
1 machine cycle $=3$ or 4 clock cycles
1 instruction cycle $=1$ to 19 machine cycles
f System clock frequency (MHz)

Instruction Set

In addition to the basic 7800 family instruction set, the following instructions are incorporated in the μ PD7809/7807/ 78P09:16-bit data transfers between memory, registers, and extended accumulator16-bit addition and subtraction
16-bit comparison and skip
16-bit and, or, ex-or operation
16-bit data shift and rotation
Multiply
8 -bit by 8-bit, 16-bit product
Less than 8μ s executionDivide
16-bit by 8 -bit, 16 -bit quotient, 8 -bit remainder Less than $14 \mu s$ executionWorking register instructions for efficient RAM addressing, testing and manipulatingDirect bit addressing for code-efficient addressing, testing and manipulating bits in RAM, port lines and mode registers

Block Diagram

4

Note: The μ PD 7807 has no on chip ROM (8 K bytes)

Please refer to the section on μ PD7811 for description of the following functions which are the same as on this device:

1. Memory expansion (except 56K bytes maximum for μ PD7809)
2. Timer/event counter
3. USART
4. Interrupt structure
5. Standby function
6. Reset
7. External memory access and timing
8. Package information

Variable Threshold Input Port (Port T)

$\square 8$ input lines16 levels - from $1 / 16$ of reference voltage $\left(V_{T H}\right)$ to ${ }^{16 / 16} \mathrm{~V}_{\mathrm{TH}}$Level selected by software write to Mode T registerInput at Port bit reads 0 until voltage at pin exceeds selected levelComparison execution time: $12 \mu \mathrm{~s}$.

Block Diagram of Threshold Variable Input Port

Input/Output

40 digital I/O lines - Five 8-bit ports (Port A, Port B, Port C, Port D, Port F)Port operation for Ports A, B, C, and F:Each line of these ports can be individually programmed as an input or as an output.Port D can be programmed as a byte input or a byte output.Control lines:
Under software control, each line of Port C can be configured individually to provide control lines for serial interface, timer and timer/counter.

Block Diagram of Threshold Variable Port

0	0	0	0	$V_{T H} \times 16 / 16$
0	0	0	1	$V_{T H} \times 1 / 16$
0	0	1	0	$V_{T H} \times 2 / 16$
0	0	1	1	$V_{T H} \times 3 / 16$
0	1	0	0	$V_{T H} \times 4 / 16$
0	1	0	1	$V_{T H} \times 5 / 16$
0	1	1	0	$V_{T H} \times 6 / 16$
0	1	1	1	$V_{T H} \times 1 / 16$
1	0	0	0	$V_{T H} \times 8 / 16$
1	0	0	1	$V_{T H} \times 9 / 16$
1	0	1	0	$V_{T H} \times 19 / 16$
1	0	1	1	$V_{T H} \times 11 / 16$
1	1	0	0	$V_{T H} \times 12 / 16$
1	1	0	1	$V_{T H} \times 13 / 16$
1	1	1	0	$V_{T H} \times 14 / 16$
1	1	1	1	$V_{T H} \times 15 / 16$

Watchdog Timer

\square
Used for software safety check or overall performance safety check. Watchdog, if enabled, must be cleared at regular intervals in program execution to avoid watchdog interrupt. Intervals are software selectable.

Block Diagram for Watchdog Timer

Note: $\phi 384={ }_{\text {frata }} \times 1 / 384$

Bit Address Instructions

The following bits may be addressed directly with certain instructions:Any bit in a 16-byte group in RAMAny bit in the five 8 -bit I/O ports (A, B, C, D, F)Any bit in the variable threshold portAny bit in the following special registers:
9 -bit interrupt mask register, serial mode register, timer
mode register, timer/event counter output register
An addressed bit may be tested, set, cleared, or complemented.
An addressed bit may be moved to or from the carry flag. An addressed bit may be ANDed, ORed, X -ORed with the carry flag.

Difference between the μ PD7801, μ PD7811, μ PD7807, and μ PD7809

		μ PD7801	μ PD7811	μ PD7807	μ PD 7809
Number of Instructions		134	158	165	165
16-bit Operation Instruction		No	Yes	Yes	Yes
Multiply/Divide Instruction		No	Yes	Yes	Yes
Instruction Cycle		$2 \mu \mathrm{~s} / 4 \mathrm{MHz}$	$1 \mu \mathrm{~s} / 12 \mathrm{MHz}$	$1 \mu \mathrm{~s} / 12 \mathrm{MHz}$	$1 \mu \mathrm{~s} / 12 \mathrm{MHz}$
Number of General-purpose Registers		16	18	18	18
On-chip ROM Capacity		4K Bytes	4K Bytes	No	8K Bytes
On-chip RAM Capacity		128 Bytes	256 Bytes	256 Bytes	256 Bytes
Direct-Addressable External Memory Capacity		60K Bytes	60K Bytes	64K Bytes	56K Bytes
Interrupt Source	Internal	2	8	8	8
	External	3	3	3	3
//O Lines		48	$40+4$	28*	40
Threshold Variable Port		No	No	8 Bits	8 Bits
Timer/Counter	Timer	12 Bits	8 Bits $\times 2$	8 Bits $\times 2$	8 Bits $\times 2$
	Counter	No	16 Bits	16 Bits	16 Bits
Watchdog Timer		No	No	Yes	Yes
Serial Interface	Asynchronous	No	Yes	Yes	Yes
	Synchronous	No	Yes	Yes	Yes
	1/O interface	Yes	Yes	Yes	Yes
A/D Converter		No	Yes	No	No
Standby Function		No	Yes	Yes	Yes
Hold Function		Yes	No	Yes	Yes
Technology		NMOS	NMOS	NMOS	NMOS
Package		64-Pin Flat	64-Pın QUIP	64-Pin QUIP	64-Pın QUIP

Package Outlines

For information, see Package Outline Section 7.
Plastic Quil, μ PD7807G/09G
Plastic Shrinkdip, μ PD7809CW/07CW

Notes

Description

The NEC μ PD7810/ μ PD7811 is a high-performance single-chip microcomputer integrating sophisticated onchip peripheral functionality normally provided by external components. The device's internal 16-bit ALU and data paths, combined with a powerful instruction set and addressing, make the μ PD7810/7811 appropriate in data processing as well as control applications. The device integrates a 16 -bit ALU, 4 K -ROM, 256 -byte RAM with an 8 -channel A/D converter, a multifunction 16-bit timer/event counter, two 8 -bit timers, a USART and two zero-cross detect inputs on a single die, to direct the device into fast, high-end processing applications involving analog signal interface and processing.
The μ PD7811 is the mask-ROM high volume production device embedded with custom customer program. The μ PD7810 is a ROM-less version for prototyping and small volume production. The μ PD78PG11E is a piggy-back EPROM version for design development.

Features

\square NMOS silicon gate technology requiring +5 V supplyComplete single-chip microcomputer

- 16-bit ALU
- 4K-ROM
- 256-byte RAM

44 I/O lines
Two zero-cross detect inputsTwo 8-bit timersMultifunction 16-bit timer/event counter
Expansion capabilities

- 8085A bus compatible
- 60K-byte external memory address range8-channel, 8-bit A/D converter
- Auto scan
- Channel selectFull duplex USART
- Synchronous and asynchronous

153 instruction set

- 16-bit arithmetic, multiply and divide
$1 \mu s$ instruction cycle time (12 MHz operation)
Prioritized interrupt structure
- 2 external
- 4 internal

Standby function
On-chip clock generator
64-quil package

Pin Configuration

Pin Identification

Pin		Function	
No.	Symbol		
1-8	$\mathrm{PA}_{0}-\mathrm{PA}_{7}$	Port A: (Three-state input/output) 8-bit programmable //O port. Each line independently programmable as an input or output. Reset places all lines of Port A in input mode	
9-16	$\mathrm{PB}_{0}-\mathrm{PB}_{7}$	Port B: (Three-state input/output) 8-bit programmable I/O port. Each line independently programmable as an input or output. Reset places all lines of Port B in input mode.	
17	PC 0	Port C: (Three-state input/output) 8-bit programmable I/O port. Each line independently programmable as an input or output. Alternatively, Port C may be used as control lines for USART and timer. Reset puts Port C in Port mode and all lines in input mode.	Transmit Data (TxD): Serial data output terminal.
18	PC_{1}		Receive Data (RxD): Serial data input terminal.
19	PC 2		Serial Clock (SCK): Serial clock input/output terminal. When internal clock is used, the output can be selected; when an external clock is used, the input can be selected.
20	PC_{3}		Timer Input (TI)/interrupt request input (${ }^{(N T} T_{2}$): Timer clock input terminal; can also be used as falling edge, maskable-interrupt input terminal and AC input zero-cross detection terminal.
21	PC_{4}		Timer Output (TO): This output signal is a square wave whose frequency is determined by the timer/counter.
22	PC_{5}		Counter Input (CI): External pulse input terminal to the timer/ event counter.
23-24	$\mathrm{PC}_{6}, \mathrm{PC}_{7}$		Counter Outputs 0,1 $\left(\mathrm{CO}_{0}-\mathrm{CO}_{1}\right)$: Programmable rectangular wave output terminal based on tımer/event counter.

Pin Identification (Cont.)

Pin		Function
No.	Symbol	
25	NMI	Failıng-edge, nonmaskable interrupt ($\overline{\mathrm{NMI}}$) input.
26	INT ${ }_{1}$	This sıgnal is a rising-edge, maskable interrupt input This input is also used to make the zero-cross detection AC input.
27	MODE1	Used as input in conjunction with MODE0 to select appropriate memory expansion mode. Also outputs M1 Signal during each opcode fetch.
28	RESET	(Input, active low), $\overline{\text { RESET }}$ initializes the μ PD7811.
29	MODE0	Used as input in conjunction with MODE1 to select appropriate memory expansion mode. Also used to ouput IO/M.
30-31	x_{2}, x_{1} (crystal)	This is a crystal connection terminal for system clock oscillation. When an external clock is supplied X_{1} is the input.
32	$V_{\text {SS }}$	Power supply ground potentıal.
33	$\mathrm{AV}_{\text {SS }}$	A/D converter power supply ground potential. Sets conversion range lower limit.
34-41	$\mathrm{AN}_{0}-\mathrm{AN}_{7}$	Eight analog inputs to the A/D converter. $\mathbf{A N}_{7}-$ AN $_{4}$ can also be used as a digital input port for falling edge detection.
42	$\mathbf{V}_{\text {AREF }}$	Reference voltage for A/D converter. Sets conversion range upper limit.
43	$\mathrm{AV}_{\mathbf{C C}}$	Power supply voltage for A/D converter.

Pin		Function	
No.	Symbol		
44	$\overline{\text { RD }}$	(Three-state output, active low) $\overline{\mathrm{RD}}$ is used as a strobe to gate data from external devices onto the data bus. RD goes high during Reset.	
45	$\overline{W R}$	(Three-state output, active low) $\overline{\mathrm{WR}}$, when active, indicates that the data bus holds valid data. Used as a strobe signal for external memory or I/O write operations. WR goes high during Reset.	
46	ALE	The strobe signal is for latching the address signal to the output from $\mathrm{PD}_{7}-\mathrm{PD}_{0}$ when accessing external expansion memory.	
47-54	$\mathrm{PF}_{0}-\mathrm{PF}_{7}$	Port F: (Three-state input/output) 8-bit programmable l/O port. Each line configurable independently as an input or output	Address Bus: When external expansion memory is used, multiplexed address/data bus can be selected.
55-62	$\mathrm{DB}_{0}-\mathrm{DB}_{7}$	Port D: 8-bit programmable l/O port. This byte can be designated as either input or output.	Address Bus: When external expansion memory is used, multiplexed address/data bus can be selected.
63	$V_{\text {DD }}$	This is a backup power terminal for on-chip RAM.	
64	$V_{\text {cc }}$	+5V power supply.	
```Notes: 1 clock cycle =1 CL =3/f 1 machine cycle = 3 or 4 clock cycles 1 instruction cycle = 1 to 19 machine cycles f System clock frequency (MHz)```			

## Block Diagram



## Functional Index

## Memory map

The $\mu$ PD7811 can directly address up to 64 K -bytes of memory. Except for the on-chip ROM(0-4095) and RAM(65280-65535), any memory location can be used as ROM or RAM. The following memory map defines the $0-64 \mathrm{~K}$-byte memory space for the $\mu$ PD7811.

## Memory Map



## $\mu$ PD7810/7811

## Input/Output

## 8 Analog Input Lines

44 Digital I/O Lines: five 8-bit ports (Port A, Port B, Port C, Port D, Port F) and 4 input lines ( $\mathrm{AN}_{4}-\mathrm{AN}_{7}$ )

1. Analog Input Lines $\mathrm{AN}_{0}-\mathrm{AN}_{7}$ are configured as analog input lines for onchip A/D converter.
2. Port Operation

- Port A, Port B, Port C, Port F Each line of these ports can be individually programmed as an input or as an output. When used as I/O ports, all have latched outputs, highimpedance inputs.
- Port D

Port D can be programmed as a byte input or a byte output.
$-\mathrm{AN}_{4}-\mathrm{AN}_{7}$ The high-order analog input lines, $\mathrm{AN}_{4}-\mathrm{AN}_{7}$ can be used as digital input lines for falling edge detection.
3. Control Lines

Under software control, each line of Port C can be configured individually to provide control lines for serial interface, timer and timer/counter.
4. Memory Expansion

In addition to the single-chip operation mode $\mu$ PD7811 has 4 memory expansion modes. Under software control, Port D can provide multiplexed low-order address and data bus and Port F can provide high-order address bus. The relation between memory expansion modes and the pin configurations of Port D and Port F is shown in the table that follows.

Memory Expansion		Port Configuration
None	Port D Port F	I/O Port I/O Port
256 Bytes	Port D Port F	Multiplexed Address/Data Bus I/O Port
4K Bytes	Port D   Port $\mathrm{F}_{0}-\mathrm{F}_{3}$   Port $\mathrm{F}_{4}-\mathrm{F}_{7}$	Multiplexed Address/Data Bus Address Bus I/O Port
16K Bytes	Port D   Port $\mathrm{F}_{0}-\mathrm{F}_{5}$   Port $F_{6}-F_{7}$	Multiplexed Address/Data Bus Address Bus I/O Port
60K Bytes	Port D Port F	Multiplexed Address/Data Bus Address Bus

## Timers

The timer/event counter consists of two 8-bit timers. The timers may be programmed independently or may be cascaded and used as a 16-bit timer. The timer can be set in software to increment at intervals of 4 machine cycles ( $1 \mu \mathrm{~s}$ at 12 MHz operation) or 128 machine cycles $(32 \mu \mathrm{~s}$ at 12 MHz ), or to increment on receipt of a pulse at $T_{1}$.

## Timer/Event Counter

The 16-bit multifunctional timer/event counter can be used for the following operations:

Interval timer
External event timer
Frequency measurement
Pulse width measurement
Programmable square-wave output

## Timer Block Diagram



Notes: $1 \mathrm{CL}=3 / \mathrm{f}$ (250ns 12 MHz operatıon)
$f$ System clock frequency $(\mathrm{MHz})$

## Block Diagram for Timer/Event Counter



## 8-Bit A/D Converter

8 Input Channels
4 Conversion Result Registers
2 Powerful Operation Modes
Auto Scan Mode
Channel Select Mode
Successive Approximation Technique

Absolute Accuracy	$\pm 1.5 \mathrm{LSB}( \pm 0.6 \%)$
Conversion Range	$0 \sim 5 \mathrm{~V}$
Conversion Time	$50 \mu \mathrm{~s}$

Interrupt Generation

## Analog/Digital Converter

The $\mu$ PD7810/7811 features an 8-bit, high-speed, high accuracy A/D converter. The A/D converter comprises a 256-Resistor Ladder and Successive Approximation Register (SAR). There are four conversion result registers $\left(\mathrm{CR}_{0}-\mathrm{CR}_{3}\right)$. The 8-channel analog input may be operated in either of two modes. In the select mode, the conversion value of one analog input is sequentially stored in $\mathrm{CR}_{0}-\mathrm{CR}_{3}$. In the scan mode, the upper four channels or the lower four channels may be specified. Then those four channels will be consecutively selected and the conversion results stored sequentially in the four conversion result registers.

## A/D Converter Block Diagram



## $\mu$ PD7810/7811

## Interrupt Structure

There are 11 interrupt sources. Three are external interrupts and 8 are internal. These 11 interrupt sources are divided into 6 priority levels as shown in the table below.

Interrupt   Request	Interrupt	Type of Interrupt	In/Ext
IRQ0	4	NMI (Non-maskable interrupt)	External
IRQ1	8	INTTO (Coincidence signal from timer 0)   INTT1 (Coincidence signal from timer 1)	Internal
IRQ2	16	INT1 (Maskable interrupt)   INT2 (Maskable interrupt)	External
IRQ3	24	INTE0 (Coincidence signal from timer/   event counter)   INTE1 (Coincidence signal from timer/   event counter)	Internal
IRQ4	32	INTEIN (Falling signal of C1 and TO   counter)   INTAD (A/D converter interrupt)	In/External
IRQ5	40	INTSR (Serial receive interrupt)   INST (Serial send interrupt)	Internal



## Standby Function

The $\mu$ PD7810/7811 offers a standby function that allows the user to save up to 32 bytes of RAM with backup power $\left(V_{D D}\right)$ if the main power $\left(V_{C C}\right)$ fails. On powerup the $\mu$ PD7811 checks whether recovery was made from standby mode or from cold start.

## Universal Serial Interface

The serial interface can operate in any of three modes: synchronous, asynchronous, and $1 / O$ interface. The I/O interface mode transfers data MSB first for ease of communication with certain peripheral devices. Synchronous and asynchronous modes transfer data LSB first. Synchronous operation offers two modes of data reception. In the search mode, data is transferred one bit at a time from serial register to receive buffer. This allows a software search for a sync character. In the nonsearch mode, data transfer from serial register to transmit buffer occurs 8 bits at a time.

## Universal Serial Interface Block Diagram



## Zero-crossing Detector

The INT , and $\mathrm{INT}_{2}$ terminals (used common to TI and $\mathrm{PC}_{3}$ ) can be used to detect the zero-crossing point of slow moving AC signals. When driven directly, these pins respond as a normal digital input.
To utilize the zero-cross detection mode, an AC signal of approximately $1-3 \mathrm{~V}$ AC peak-to-peak magnitude and a maximum frequency of 1 kHz is coupled through an external capacitor to these pins.
For the $\mathrm{INT}_{1}$ pin, the internal digital state is sensed as a zero until the rising edge crosses the DC average level, when it becomes a one and $\mathrm{INT}_{1}$ interrupt is generated. For the $\mathrm{INT}_{2}$ pin, the state is sensed as a one until the falling edge crosses the DC average level, when it becomes a zero and $\mathrm{INT}_{2}$ interrupt is generated.
The zero-cross detection capability allows the user to make the $50-60 \mathrm{~Hz}$ power signal the basis for system timing and to control voltage phase sensitive devices.

Zero-crossing Detection Circuit

Format	Description
$\begin{aligned} & \hline r \\ & r 1 \\ & r 2 \end{aligned}$	$\begin{aligned} & \text { V, A, B, C, D, E, H, L } \\ & \text { EAH, EAL, B, C, D, E, H, L } \\ & \text { A, B, C } \end{aligned}$
sr   sr1   sr2   sr3   sr4	PA, PB, PC, PD,PF, MKH MKL, ANM, SMH, SML, EOM, ETMM, TMM, MM,MCC, MA, MB, MC MF, TXB, TM0, TM1 PA, PB, PC, PD, PF, MKH, MKL, ANM, SMH, EOM, TMM, RXB, CRO, CR1, CR2, CR3 PA, PB, PC, PD, PF, MKH, MKL, ANM, SMH, EOM, TMM ETMO, ETM1 ECNT, ECPT
$\begin{aligned} & \text { rp } \\ & \text { rp1 } \\ & \text { pp2 } \\ & \text { pp3 } \end{aligned}$	$\begin{aligned} & \text { SP, B, D, H } \\ & \text { V,B,D,H,EA } \\ & \text { SP,B,D,H, EA } \\ & \text { B, D,H } \end{aligned}$
$\begin{aligned} & \text { rpa } \\ & \text { rpa1 } \\ & \text { rpa2 } \\ & \text { rpa3 } \\ & \hline \end{aligned}$	B, D, H, D+, H+,D-, H-   B, D, $\mathbf{H}$   $\mathrm{B}, \mathrm{D}, \mathrm{H}, \mathrm{D}+, \mathrm{H}+, \mathrm{D}-, \mathrm{H}-, \mathrm{D}+$ byte, $\mathrm{H}+\mathrm{A}, \mathrm{H}+\mathrm{B}, \mathrm{H}+\mathrm{EA}, \mathrm{H}+$ byte   $\mathrm{D}, \mathrm{H}, \mathrm{D}+, \mathrm{H}++, \mathrm{D}+$ byte $, \mathrm{H}+\mathrm{A}, \mathrm{H}+\mathrm{B}, \mathrm{H}+\mathrm{EA}, \mathrm{H}+$ byte
wa	8-bit immediate data
word   byte   bit	16-bit immediate data 8 -bit immediate data 3-bit immediate data
$f$	CY, HC, Z
iff	FNMI, FT0, FT1, F1, F2, FE0, FE1, FEIN, FAD, FSR, FST, ER, OV, AN4, AN5, AN6, AN7, SB

## Remarks

1. sr-sr4 (special register)	
PA = Port A	ECNT $=$ Timer/Event
PB = Port B	Counter Upcounter
PC = Port C	ECPT $=$ Timer/Event
PD = Port D	Counter Capture
PF $=$ Port F	ETMM $=$ Timer/Event
MA $=$ Mode A	Counter Mode
MB $=$ Mode B	EOM $=$ Timer/Event
MC = Mode C	Counter Output Mode
MCC = Mode Control C	ANM = A/D Channel Mode
MF $=$ Mode F	CRO = A/D Conversion
MM = Memory Mapping	to Result 0-3
TMO = Timer Register 0	CR3
TM1 = Timer Register 1	TXB = Tx Buffer
TMM $=$ Timer Mode	RXB $=$ Rx Buffer
ETMO $=$ Timer/Event	SMH = Serial Mode High
Counter Register 0	SML = Serial Mode Low
ETM1 = Timer/Event   Counter Register 1	MKH = Mask High MKL = Mask Low
2. rp-rp3 (register pair)	
SP = Stack Pointer	$\mathrm{H}=\mathrm{HL}$
$\mathrm{B}=\mathrm{BC}$	$\mathbf{V}=\mathrm{VA}$
$\mathrm{D}=\mathrm{DE}$	EA = Extended Accumulator


3. rpa-rpa3 (rp addressing)			
B	= (BC)	$\mathrm{D}^{++}=(\mathrm{DE})^{++}$	
D	$=(\mathrm{DE})$	$\mathrm{H}++\quad=(\mathrm{HL})^{++}$	
H	$=(\mathrm{HL})$	$\mathrm{D}+$ byte = ( $\mathrm{DE}+$ byte $)$	
D+	$=(\mathrm{DE})^{+}$	H+A$H+B=(H L+A)$	
H+	$=(\mathrm{HL})^{+}$	H+	( ${ }^{\text {a }}$ ( $\mathrm{HL}+\mathrm{B}$ )
D-	$=(\mathrm{DE})^{-}$	$H+E A=(H L+E A)$	
H-	$=(\mathrm{HL})^{-}$	$\mathrm{H}+$ byte $=(\mathrm{HL}+$ + byte)	
4. f (flag)			
CY = Carry		HC = Half	Carry $\quad \mathbf{Z}=$ Zero
5. irf (interrupt flag)			
FNMI	= INTFNMI	FSR	= INTFSR
FTO	$=$ INTFTO	FST	$=$ INTFST
FT1	= INTFT1	ER	= Error
F1	= NTF1	OV	= Overflow
F2	= INTF2	AN4	= Analog Input 4-7
FE0	= INTFEO	to	
FE1	= ${ }^{\text {NTFE1 }}$	AN7	
FEIN	= INTFEIN	SB	= Standby
FAD	$=$ INTFAD		

Instruction Groups

8-bit Data Transfer								
Mnemonic	Operand	OP Code					Operation	Skip Condition
		B1	B2	B3	B4			
MOV **	r1, A	$00011 \mathrm{~T}_{2} \mathrm{~T}_{1} \mathrm{~T}_{0}$				4	$\mathrm{r} 1 \leftarrow \mathrm{~A}$	
	A, r1	$00001 \mathrm{~T}_{2} \mathrm{~T}_{1} \mathrm{~T}_{0}$				4	$\mathrm{A} \leftarrow \mathrm{r} 1$	
	sr, A	01001101	$110 \mathrm{~S}_{4} \mathrm{~S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$			10	$\mathbf{s r} \leftarrow \mathbf{A}$	
	A, sr1	01001100	$11 \mathrm{~S}_{5} \mathrm{~S}_{4} \mathrm{~S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$			10	$\mathbf{A} \leftarrow \mathrm{sr} 1$	
	$r$, (word)	01110000	$01101 \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{R}_{0}$	Low Adrs	High Adrs	17	$r \leftarrow$ (word)	
	(word), r	01110000	$01111 \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{R}_{0}$	Low Adrs	High Adrs	17	(word) $\leftarrow r$	
MVI	$r$, byte	$01101 \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{R}_{0}$	Data			7	$\begin{aligned} & r \leftarrow \text { byte } \\ & \text { String skip, other } r=A \text { or } L \end{aligned}$	
	sr2, byte	01100100	$\mathrm{S}_{3} 0000 \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$	Data		14	sr2 $¢$ byte	
MVIW *	wa, byte	01110001	Offset	Data		13	(V, wa) ↔ byte	
MVIX	rpa1, byte	$010010 A_{1} A_{0}$	Data			10	(rpa1) ¢byte	
STAW	wa	01100011	Offset			10	$(\mathrm{V}, \mathrm{wa}) \leftarrow \mathrm{A}$	
LDAW	wa	00000001	Offset			10	$A \leftarrow(V, w a)$	
STAX	rpa2	$\mathrm{A}_{3} 0111 \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0}$	Data *(1)			7/13	$($ rpa2 $) \leftarrow A$	
LDAX *	rpa2	$A_{3} 0101 A_{2} A_{1} A_{0}$	Data * (1)			7/13	$\mathrm{A} \leftarrow$ (rpa2)	
EXX		01001000	10101111			8	$\begin{aligned} & \mathbf{B \leftrightarrow} \mathbf{B}^{\prime}, \mathbf{C} \leftrightarrow \mathbf{C}^{\prime}, \mathbf{D} \leftrightarrow \mathbf{D}^{\prime} \\ & \mathbf{E} \leftrightarrow \mathbf{E}^{\prime}, \mathbf{H} \leftrightarrow \mathbf{H}^{\prime}, \mathbf{L} \leftrightarrow \mathbf{L}^{\prime} \end{aligned}$	
EXA		01001000	10101100			8	$\mathbf{V}, \mathbf{A} \leftrightarrow \mathbf{V}^{\prime}, \mathbf{A}^{\prime}, \mathbf{E A} \leftrightarrow \mathrm{EA}^{\prime}$	
EXH		01001000	10101110			8	$\mathbf{H}, \mathbf{L} \leftrightarrow \mathbf{H}^{\prime}, \mathbf{L}^{\prime}$	
16-bit Data Transfer								
BLOCK	D+	00010000				$\begin{gathered} 13 \\ \left(C^{13}+1\right) \end{gathered}$	$\begin{aligned} & \text { (DE) }+\leftarrow(\mathrm{HL})+, \mathrm{C} \leftarrow \mathrm{C}-1 \\ & \text { End if borrow } \end{aligned}$	
	D-	00010001				$\left(C^{13}+1\right)$	$\begin{aligned} & \text { (DE) }-\underset{\text { End If borrow }}{\text { (HL) }}-, C \leftarrow C-1 \end{aligned}$	
DMOV	rp3, EA	$101101 \mathrm{P}_{1} \mathrm{P}_{0}$				4	$r \mathrm{P} 3_{L} \leftarrow E \mathrm{EAL}, \mathrm{rp} 3_{\mathrm{H}} \leftarrow \mathrm{EAH}$	
	EA, rp3	$101001 \mathrm{P}_{1} \mathrm{P}_{0}$				4	EAL $\leftarrow \mathrm{rp3} \mathrm{~L}_{\mathrm{L}}, \mathrm{EAH} \leftarrow \mathrm{rp3}{ }_{\mathrm{H}}$	
	sr3, EA	01001000	$1101001 \mathrm{U}_{0}$			14	sr3¢EA	
	EA, sr4	1	$110000 \mathrm{~V}_{1} \mathrm{~V}_{0}$			14	EA $\leftarrow$ Sr 4	
SBCD	(word)	01110000	00011110	Low Adrs	High Adrs	20	(word) $\leftarrow C$, (word + 1) $\leftarrow B$	
SDED	(word)		00101110			20	(word) $\leftarrow E$, (word + 1) $\leftarrow D$	
SHLD	(word)		00111110			20	(word) $\leftarrow L$, $($ word +1$) \leftarrow H$	
SSPD	(word)	1	00001110	1		20		
STEAX	rpa3	01001000	$1001 \mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1} \mathrm{C}_{0}$	Data* ${ }^{\text {(2) }}$	1	14/20		
LBCD	word	01110000	00011111	Low Adrs	High Adrs	20	$\mathrm{C} \leftarrow$ (word), $\mathrm{B} \leftarrow$ (word + 1)	
LDED	word		00101111			20	$\mathrm{E} \leftarrow$ (word) , D $\leftarrow$ (word + 1 )	
LHLD	word		00111111			20	$\mathrm{L} \leftarrow$ (word) , $\mathrm{H} \leftarrow$ (word + 1)	
LSPD	word		00001111	1		20	$S P_{L} \leftarrow$ (word),$S P_{H} \leftarrow($ word +1$)$	
LDEAX	rpa3	01001000	$1000 \mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1} \mathrm{C}_{0}$	Data *(2)		14/20	$\mathrm{EAL} \leftarrow(\mathrm{rpa3}), \mathrm{EAH} \leftarrow($ rpa3 +1$)$	
PUSH	rp1	$10110 Q_{2} Q_{1} Q_{0}$				13	$\begin{aligned} & (\mathrm{SP}-1) \leftarrow \mathrm{rp}_{\mathrm{H}} \leftarrow(\mathrm{SP}-2) \leftarrow \mathrm{Pp} 1_{\mathrm{L}} \\ & \mathrm{SP} \leftarrow \mathrm{SP}-2 \end{aligned}$	
POP	rp1	$10100 Q_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}$				10	$\begin{aligned} & r p 1_{L} \leftarrow(S P), r p 1_{H} \leftarrow(S P+1) \\ & S P \leftarrow S P+2 \end{aligned}$	
LXI	rp2, word	$0 P_{2} P_{1} P_{0} 0100$		Low Byte	High Byte	10	$\begin{aligned} & \mathrm{rp2} 2 \leftarrow(\text { word }) \\ & \text { String skip when rp2 }=\mathrm{H} \end{aligned}$	
8-bit Arithmetic (Register)								
TABLE		01001000	10101000			17	$\begin{aligned} & C \leftarrow(P C+3+A) \\ & B \leftarrow(P C+3+A+1) \end{aligned}$	
ADD	A, $\mathbf{r}$	01100000	$11000 \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{R}_{0}$			8	$A \leftarrow A+r$	
	r, A		$01000 \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{R}_{0}$			8	$\mathbf{r} \leftarrow \mathbf{r}+\mathbf{A}$	
ADC	A, r		$11010 \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{R}_{0}$			8	$A \leftarrow A+r+C Y$	
	$r, A$		$01010 \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{R}_{0}$			8	$r \leftarrow r+A+C Y$	
ADDNC	A, r		$10100 \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{R}_{0}$			8	$A \leftarrow A+r$	No Carry
	$r$, A		$00100 \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{R}_{0}$			8	$r \leftarrow r+A$	No Carry
SUB	A, r		$11100 \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{R}_{0}$			8	$A \leftarrow A-r$	
	r, A		$01100 \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{R}_{0}$			8	$r \leftarrow r-A$	
SBB	A, r		$11110 \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{R}_{0}$			8	$A \leftarrow A-r-C Y$	
	r, A		$01110 \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{R}_{0}$			8	$r \leftarrow r-A-C Y$	
SUBNB	A, r		$10110 R_{2} R_{1} R_{0}$			8	$A \leftarrow A-r$	No Borrow
	r, A		$00110 \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{R}_{0}$			8	$r \leftarrow r-A$	No Borrow
ANA	A, r		$10001 \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{R}_{0}$			8	$A \leftarrow A \Lambda r$	
	$r, A$		$00001 \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{R}_{0}$			8	$r \leftarrow r \wedge A$	
ORA	A, r		$10011 \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{R}_{0}$			8	$A \leftarrow A V r$	
	$r, A$		$00011 \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{R}_{0}$			8	$r \leftarrow r$ VA	
XRA	A, r		$10010 \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{R}_{0}$			8	$A \leftarrow A \forall r$	
	r, A		$00010 \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{R}_{0}$			8	$r \leftarrow r \forall A$	
GTA	A, r		$10101 \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{R}_{0}$			8	$A-r-1$	No Borrow
	r, A		$00101 \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{R}_{0}$			8	$r-A-1$	No Borrow

## Instruction Groups (Cont.)



## Instruction Groups (Cont.)



## Instruction Groups (Cont.)



## Instruction Groups (Cont.)

CPU Control								
Mnemonic	Operand	OP Code				State	Operation	Skip Condition
		B1	B2	B3	B4			
SK	$f$	01001000	$00001 \mathrm{~F}_{2} \mathrm{~F}_{1} \mathrm{~F}_{0}$			8	Skıp if $f=1$	$\mathrm{f}=1$
SKN	$f$		$0001 \downarrow$			8	Skip if $f=0$	$f=0$
SKIT	irf		$010 l_{4} l_{3} l_{2} l_{1} I_{0}$			8	Skıp if iff $=1$, then reset iff	irf $=1$
SKNIT	irf	1	$011 l_{4} l_{3} l_{2} l_{1} l_{0}$			8	$\begin{aligned} & \text { Skıp if iff }=0 \\ & \text { Reset iff, if iff = } \end{aligned}$	ıff $=0$
NOP		00000000				4	No Operation	
El		10101010				4	Enable Interrupt	
DI		10111010				4	Disable Interrupt	
HLT		01001000	00111011			11	Halt	

Notes: *(1) B2 (Data) rpa2 = D + byte, H + byte
*(2) B3 (Data) rpa3 $=\mathrm{D}+$ byte, $\mathrm{H}+$ byte
*(3) Right side of slash (/) in states indıcates case rpa2, rpa3 $=\mathrm{D}+$ byte, $\mathrm{H}+\mathrm{A}, \mathrm{H}+\mathrm{B}, \mathrm{H}+\mathrm{EA}, \mathrm{H}+$ byte
*(4) In the case of skip condition, the idle states are as follows
1-byte instruction 4 states $\quad 2$-byte instruction (with *) 7 states
2-byte instruction 8 states 3 -byte instruction (with *) 10 states
3-byte instruction 11 states 4-byte instruction 14 states

## Absolute Maximum Ratings*

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Power Supply Voltages, $\mathbf{V}_{\text {cc }}$	-0.5 V to +7.0 V
$V_{\text {D }}$	-0.5 V to +7.0 V
$\mathrm{AV}_{\text {cc }}$	-0.5 V to +7.0 V
Input Voltage, $\mathrm{V}_{1}$	-0.5 V to +7.0 V
Output Voltage, $\mathrm{V}_{0}$	-0.5 V to +7.0 V
Reference Input Voltage, $\mathrm{V}_{\text {AREF }}$	-0.5 V to +7.0 V
Operating Temperature, $\mathrm{T}_{\text {OPT }}$	
$10 \mathrm{MHz}<\mathrm{f}_{\text {XTAL }} \leq 12 \mathrm{MHz}$	$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$\mathrm{f}_{\text {XTAL }} \leq 10 \mathrm{MHz}$	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature, $\mathbf{T}_{\text {STG }}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

*COMMENT: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## Operating Conditions



## DC Characteristics

$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{cc}}=-5.0 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\text {ss }}=0 \mathrm{~V}$;
$V_{c C}-\mathbf{0 . 8 V} \leq V_{D D} \leq V_{C C}$

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	0		0.8	V	
Input High Voltage	$\mathrm{V}^{\text {H1 }}$	20		$\mathrm{V}_{\mathrm{cc}}$	V	All except $\overline{\text { SCK }}, \overline{\text { RESET }}$ and X 1
	$\mathrm{V}_{\mathrm{HH} 2}$	$0.8 \mathrm{~V}_{\mathrm{cc}}$		$\mathrm{V}_{\mathrm{cc}}$	v	SCK, X 1
	$\mathrm{V}_{1+3}$	$0.8 \mathrm{~V}_{\text {DD }}$		$\mathrm{V}_{\text {cc }}$	$v$	RESET
Output Low Voltage	$V_{\text {OL }}$			0.45	v	$\mathrm{l}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
Output High Voltage	e $\mathrm{V}_{\mathrm{OH}}$	2.4			v	$\mathrm{IOH}=-200 \mu \mathrm{~A}$
Input Current	1			$\pm 200$	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{INT}_{1}, \mathrm{TI}\left(\mathrm{PC}_{3}\right) ; \\ & +\mathbf{0 . 4 5 V} \leq \mathrm{V}_{\text {iN }}<\mathrm{V}_{\mathrm{CC}} \end{aligned}$
Input Leakage Current	LI			$\pm 10$	$\mu \mathrm{A}$	$\begin{aligned} & \text { All except } \mathbb{N N}_{1}, \mathrm{Tl}\left(\mathrm{PC}_{3}\right) \\ & \mathrm{OV} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}} \end{aligned}$
Output Leakage Current	${ }_{\text {Lo }}$			$\pm 10$	$\mu \mathrm{A}$	$+0.45 \mathrm{~V} \leq \mathrm{V}_{0} \leq \mathrm{V}_{\mathrm{cc}}$
$\mathrm{V}_{\mathrm{DD}}$ Supply Current	$\mathrm{I}_{\mathrm{DD}}$		1.51	3.5	mA	$\mathrm{T}_{\mathrm{a}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}$ Supply Current	$\mathrm{I}_{\mathrm{cc}}$		110 (1)	220	mA	$\mathrm{Ta}_{\mathrm{a}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

AC Characteristics
$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}$;
$\mathbf{V}_{\text {cc }}-\mathbf{0 . 8 V} \leq \mathbf{V}_{\text {DD }} \leq \mathbf{V}_{\mathbf{c c}}$
Read/Write Operation

Parameter	Symbol	Limits				Unit	Test Conditions
		$\mathrm{f}_{\text {XTAL }}=10 \mathrm{MHz}$		$\mathrm{f}_{\text {XTAL }}=12 \mathrm{MHz}$			
		Min	Max	Min	Max		
$\mathrm{X}_{1}$ Input Cycle Time	tcrc	100		83		ns	
Address Setup to ALE $\downarrow$	$\mathrm{t}_{\text {AL }}$	100		65		ns	
Address Hold after ALE $\downarrow$	$t_{\text {LA }}$	70		50		ns	
Address to $\overline{\mathrm{RD}} \downarrow$ Delay Time	$t_{\text {AR }}$	200		150		ns	
$\overline{\mathrm{RD}} \downarrow$ to Address Floating	$\mathrm{t}_{\text {AFR }}$		20		20	ns	
Address to Data Input	$\mathrm{t}_{\text {AD }}$		480		360	ns	
ALE $\downarrow$ to Data Input	$\mathrm{t}_{\text {LDR }}$		300		215	ns	
$\overline{\mathrm{RD}} \downarrow$ to Data Input	$\mathrm{t}_{\text {RO }}$		250		180	ns	
ALE $\downarrow$ to $\overline{\text { RD }} \downarrow$ Delay Time	$t_{\text {LR }}$	50		35		ns	
Data Hold Time to $\overline{\mathbf{R D}} \uparrow$	$\mathrm{t}_{\text {ROH }}$	0		0		ns	
$\overline{\mathrm{RD}} \uparrow$ to ALE $\uparrow$ Delay Time	$\mathrm{t}_{\text {RL }}$	150		115		ns	
$\overline{\mathrm{RD}}$ Width Low	$t_{\text {RR }}$	350		280		ns	Data   Read
		650		530		ns	OP Code Fetch
ALE Width High	$\mathrm{t}_{\mathrm{LL}}$	160		125		ns	
Address to $\overline{W R} \downarrow$ Delay	$t_{\text {AW }}$	200		150		ns	
ALE $\downarrow$ to Data Output	$t_{\text {Low }}$		210		195	ns	
$\overline{\text { WR }} \downarrow$ to Data Output	$t_{\text {wo }}$	130		100		ns	
$\begin{aligned} & \hline \text { ALE } \downarrow \text { to } \\ & \hline \text { WR } \downarrow \text { Delay } \end{aligned}$	$\mathrm{t}_{\text {Lw }}$	50		35		ns	
Data Setup Time to WR $\uparrow$	${ }_{\text {tow }}$	300		230		ns	
Data Hold Tıme to $\overline{W R} \uparrow$	${ }^{\text {w }}$ WH	130		95		ns	
$\overline{\overline{W R}} \uparrow$ to ALE $\uparrow$ Delay Time	$t_{\text {wL }}$	150		115		ns	
WR Width Low	$t_{\text {ww }}$	350		280		ns	

Note: (1) Load capacitance $\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
Serial Operation

Parameter	Symbol	Limits			Unit	Test Conditions	
		Min	Typ	Max			
$\overline{\text { SCK }}$ Cycle Time	${ }^{\text {terk }}$	1			$\mu s$		(2)
		500			ns		(3)
		2			$\mu \mathrm{s}$	$\overline{\text { SCK Output }}$	
$\overline{\text { SCK }}$ Width Low	$\mathrm{t}_{\mathrm{KKL}}$	400			ns	$\overline{\text { SCK }}$ Input	(2)
		200			ns		(3)
		900			ns	SCK Output	
$\overline{\mathbf{S C K}}$ Width High	$\mathrm{t}_{\text {KKH }}$	400			ns	$\overline{\text { IncKut }}$	(2)
		200			ns		(3)
		900			ns	$\overline{\text { SCK Output }}$	
RXD Setup Time to SCK $\uparrow$	$\mathrm{t}_{\mathrm{BXK}}$	80			ns		
RxD Hold Time After $\overline{\mathbf{S C K}} \uparrow$	$\mathrm{t}_{\mathrm{KRX}}$	80			ns		
$\overline{\overline{S C K}} \downarrow$ TXD Delay Time	$\mathrm{t}_{\mathrm{KTX}}$			210	ns		

Notes: (2) 1x Baud rate in Asynchronous, Synchronous, or I/O Interface mode (3) $16 \times$ Baud rate or $64 \times$ Baud rate in Asynchronous mode

AC Characteristics (Cont.)
$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}$;
$\mathbf{V}_{\text {cc }}-\mathbf{0 . 8 V} \leq \mathbf{V}_{\text {DD }} \leq \mathbf{V}_{\mathbf{c c}}$
Zero-cross Characteristics

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Zero-cross Detection Input	$\mathrm{V}_{\mathrm{ZX}}$	1		3	VAC ${ }_{\text {P-P }}$	AC Coupled
Zero-cross Accuracy	$A_{z x}$			$\pm 135$	mV	60 Hz Sine Wave
Zero-cross   Detection   Input Frequency	$\mathrm{f}_{\mathrm{zx}}$	0.05		1	kHz	

$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{cc}}=A V_{c c}=+5.0 \mathrm{~V} \pm 5 \% ;$
$\mathbf{V}_{\mathbf{S S}}=A \mathbf{V}_{\mathbf{S S}}=0 V_{;} \mathbf{A} \mathbf{V}_{\text {cc }}-\mathbf{0 . 5 V} \leq \mathbf{V}_{\text {AREF }} \leq A V_{\text {cc }}$
AID Converter Characteristics


Note: (4) In case of $\mathrm{f}_{\mathrm{XTAL}} \leq 10 \mathrm{MHz}, \mathrm{T}_{\mathrm{a}}=-\mathbf{4 0}{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Bus Timing Depending on $t_{\text {crc }}$

Symbol	Calculating Expression	Min/Max	Unit
$t_{\text {AL }}$	2T-100	Mın	ns
$t_{\text {LA }}$	T-30	Min	ns
$t_{\text {AR }}$	$3 T-100$	Min	ns
$t_{A D}$	7T-220	Max	ns
$t_{\text {LID }}$	$5 \mathrm{~T}-200$	Max	ns
$t_{\text {RD }}$	4T-150	Max	ns
$t_{\text {LR }}$	T-50	Mın	ns
$t_{\text {RL }}$	2T-50	Mın	ns
$t_{\text {RR }}$	4T-50 (Data Read)	Min	ns
	7T - 50 (OP Code Fetch)		
$t_{L L}$	2T-40	Min	ns
$t_{\text {AW }}$	$3 T-100$	Min	ns
$t_{\text {LDW }}$	$T+110$	Max	ns
$t_{\text {LW }}$	T-50	Min	ns
$t_{\text {dw }}$	4T-100	Min	ns
$t_{\text {WOH }}$	2T-70	Min	ns
${ }_{\text {twL }}$	2T-50	Mın	ns
$t_{\text {ww }}$	$4 \mathrm{~T}-50$	Min	ns
$\mathrm{t}_{\mathrm{CYK}}$	12 T ( $\overline{\text { SCK }}$ Input) ${ }^{(1)}$	Mın	ns
	24 T (SCK Output)		
$\mathrm{t}_{\mathbf{K K L}}$	6T - 100 (SCK Input) (1)	Mın	ns
	12T-100 (-SCK Output)		
$\mathbf{t}_{\mathbf{K K H}}$	6T-100 (SCKInput) (1)	Min	ns
	12T-100 (SCK Output)		

Notes: (1) 1x Baud rate in Asynchronous, Synchronous, or I/O Interface mode
$T=t_{\mathrm{CYC}}=1 / \mathrm{f}_{\mathrm{XTAL}}$
The items out of this list are not dependent on oscillating frequency ( ${ }^{\prime} \times T A L$ )

## Timing Waveforms

## Read Operation



Write Operation


## Transmit/Receive Timing



## Package Outlines

For information, see Package Outline Section 7.
Plastic Quil, $\mu$ PD7810G/11G
Plastic Shrinkdip, $\mu$ PD7810CW/11CW
QUIL Ceramic Piggyback, $\mu$ PD78PG11E

## SINGLE CHIP 8-BIT MICROCOMPUTER

DESCRIPTION The NEC $\mu$ PD8021 is a stand alone 8 -bit parallel microcomputer incorporating the following features usually found in external peripherals. The $\mu$ PD8021 contains: $1 \mathrm{~K} \times 8$ bits of mask ROM program memory, $64 \times 8$ bits of RAM data memory, 21 I/O lines, an 8-bit interval timer/event counter, and internal clock circuitry.

FEATURES - 8-Bit Processor, ROM, RAM, I/O, Timer/Counter

- Single +5 V Supply ( +4.5 V to +6.5 V )
- NMOS Silicon Gate Technology
- $8.38 \mu$ s Instruction Cycle Time
- All Instructions 1 or 2 Cycles
- Instructions are Subset of $\mu$ PD8048/8748/8035
- High Current Drive Capability - 2 I/O Pins
- Clock Generation Using Crystal or Single Inductor
- Zero-Cross Detection Capability
- Expandable I/O Using $\mu 8243$ 's
- Available in $28-$ Pin Plastic Package

$\operatorname{Rev} / 2$


Operating Temperature
. $\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature (Ceramic Package) . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

$$
\text { (Plastic Package) . . . . . . . . . . . . . . . . . . . . }-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

Voltage on Any Pin -0.5 to +7 Volts (1)
Power Dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Watt
Note: (1) With Respect to Ground.
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.5 \mathrm{~V} \pm 1 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage	$V_{\text {IL }}$	-0.5		+ 0.8	v	
Input High Voltage, RESET, T1   (All Except XTAL 1, XTAL 2)	$\mathrm{V}_{\mathrm{IH}}$	2.0		$V_{C C}$	V	$\mathrm{V}_{C C}=5.0 \mathrm{~V} \pm 10 \%$
Input High Voltage (XTAL 1, XTAL 2)	$\mathrm{V}_{1 \mathrm{H} 1}$	3.0		$V_{\text {cc }}$	V	$\mathrm{V}_{C C}=5.5 \mathrm{~V} \pm 1 \mathrm{~V}$
Output Low Voltage	$\mathrm{V}_{\mathrm{OL}}$			0.45	V	$\mathrm{IOL}=1.7 \mathrm{~mA}$
Output Low Voltage ( $\mathrm{P}_{10}, \mathrm{P}_{11}$ )	$\mathrm{V}_{\text {OLI }}$			2.5	V	$\mathrm{IOL}=7 \mathrm{~mA}$
Output High Voltage (All Unless Open Drain)	$\mathrm{V}_{\mathrm{OH}}$	2.4			V	$\mathrm{I}^{\prime} \mathrm{OH}=40 \mu \mathrm{~A}$
Output Leakage Current (Open Drain Option - Port 0)	Iol			$\pm 10$	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \geqslant \mathrm{~V}_{\mathrm{IN}} \geqslant \mathrm{~V}_{\mathrm{SS}} \\ & +0.45 \mathrm{~V} \end{aligned}$
VCC Supply Current	ICC		40	75	mA	

DC CHARACTERISTICS

AC CHARACTERISTICS

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	TEST CONDITIONS
Cycle Time	TCY	8.38		50.0	$\mu \mathrm{~s}$	3.58 MHz XTAL   for T TM Min.

ABSOLUTE MAXIMUM RATINGS*

PIN		FUNCTION
No.	SYMBOL	
$\begin{gathered} 1-2 \\ 26-27 \end{gathered}$	$\begin{aligned} & \mathrm{P}_{20}-\mathrm{P}_{23} \\ & \text { (Port 2) } \end{aligned}$	$\mathrm{P}_{20} \mathrm{P}_{23}$ comprise the 4 -bit bi-directional $\mathrm{I} / \mathrm{O}$ port which is also used as the expander bus for the $\mu$ PD8243.
3	PROG	PROG is the output strobe pin for the $\mu$ PD8243.
4-11	$\mathrm{P}_{00-\mathrm{P}_{07}}$   (Port 0)	One of the two 8-bit quasi bi-directional I/O ports.
12	ALE	Address Latch Enable output (active-high). Occurring once every 30 input clock periods, ALE can be used as an output clock.
13	T1	Testable input using transfer functions JT1 and JNT1. T1 can be made the counter/timer input using the STRT CNT instruction. T1 also provides zero-cross sensing for low-frequency AC input signals.
14	$\mathrm{V}_{\text {SS }}$	Processor's ground potential.
15	XTAL 1	One side of frequency source input using resistor, inductor, crystal or external source. (non-TTL compatible $V_{I H}$ ).
16	XTAL 2	The other side of frequency source input.
17	RESET	Active high input that initializes the processor and starts the program at location zero.
18-25	$\begin{aligned} & \mathrm{P}_{10} \mathrm{P}_{17} \\ & \text { (Port 1) } \\ & \hline \end{aligned}$	The second of two 8-bit quasi bi-directional I/O ports.
28	$\mathrm{V}_{\mathrm{CC}}$	+5 V power supply input.

FUNCTIONAL DESCRIPTION The NEC $\mu$ PD8021 is a single component, 8 -bit, parallel microprocessor using N -channel silicon gate MOS technology. The self-contained $1 \mathrm{~K} \times 8$-bit ROM, $64 \times 8$-bit RAM, 8 -bit timer/counter, and clock circuitry allow the $\mu$ PD8021 to operate as a single-chip microcomputer in applications ranging from controllers to arithmetic processors.

The instruction set, a subset of the $\mu$ PD8048/8748/8035, is optimum for high-volume, low cost applications where I/O flexibility and instruction set power are required. The $\mu$ PD8021 instruction set is comprised mostly of single-byte instructions with no instructions over two bytes.

MNEMONIC	FUNCTION	DESCRIPTION	instruction code								CYCLES	BYTES	$\begin{gathered} \text { FLAG } \\ \mathrm{C} \\ \hline \end{gathered}$
			$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$			
DATA MOVES													
MOV A, = data	(A) ¢ data	Move Immediate the specified data into the Accumulator	$\begin{gathered} 0 \\ d_{7} \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 1 \\ d_{5} \end{gathered}$	$\begin{gathered} 0 \\ d_{4} \end{gathered}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~d}_{2} \end{gathered}$	$\begin{aligned} & 1 \\ & d_{1} \end{aligned}$	$\begin{gathered} 1 \\ \mathrm{~d}_{0} \end{gathered}$	2	2	
MOV A, Rr	$(\mathrm{A}) \leftarrow(\mathrm{Rr}), \mathrm{r}=0-7$	Move the contents of the designated registers into the Accumulator	1	1	1	1	1		,	r	1	1	
MOV A, @ Rr	$(\mathrm{A})+((\mathrm{Rr})), \mathrm{r}=0-1$	Move Indirect the contents of data memory location into the Accumulator	1	1	1	1	0	0	0	r	1	1	
MOV $\mathrm{Rr}_{\text {r }}=$ data	$(\mathrm{Rr})+$ data, $\mathrm{r}=0-7$	Move Immediate the specified data into the designated register	$\begin{gathered} 1 \\ d_{7} \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 1 \\ d_{5} \end{gathered}$	$\begin{gathered} 1 \\ d_{4} \end{gathered}$	$\begin{gathered} 1 \\ d 3 \end{gathered}$	$\begin{gathered} r \\ d_{2} \end{gathered}$	$\begin{gathered} r \\ d_{1} \end{gathered}$	$\stackrel{r}{d_{0}}$	2	2	
MOV Rr, A	$(\mathrm{Rr}) \leftarrow(\mathrm{A}), \mathrm{r}=0-7$	Move Accumulator Contents into the designated register	1	0	1	0	1	$r$	r	r	1	1	
MOV@Rr, A	$((R r))+(A), r=0-1$	Move Indirect Accumulator Contents into data merriory location	1	0	1	0	0	0	0	$r$	1	1	
MOV @ Rr, = data	$((\mathrm{Rr})) \leftarrow$ data, $r=0-1$	Move Immediate the specified data into data memory	$\begin{gathered} 1 \\ d_{7} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~d}_{6} \end{gathered}$	$\begin{gathered} 1 \\ d_{5} \end{gathered}$	$\begin{gathered} 1 \\ d_{4} \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ d 3 \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} 0 \\ d_{1} \end{gathered}$	$\begin{gathered} \mathrm{r} \\ \mathrm{do} \end{gathered}$	2	2	
MOVP A, @ A	$\begin{aligned} & (P C O-7) \leftarrow(A)) \\ & (A) \leftarrow((P C)) \end{aligned}$	Move data in the current page into the Accumulator	1	0	1	0	0	0	1	1	2	1	
$\mathrm{XCH} A, \mathrm{Rr}$	$(\mathrm{A})=(\mathrm{Rr}), r=0-7$	Exchange the Accumulator and designated register's contents	0	0	1	0	1	$r$	r	r	1	1	
XCH A, @ Rr	$(\mathrm{A}) \underset{( }{ }$ ( $(\mathrm{Rr})$ ), $\mathrm{r}=0-1$	Exchange Indirect contents of Accumulator and location in data memory	0	0	1	0	0	0	0	$r$	1	1	
XCHD A, @ Rr	$\begin{aligned} & (A 0-3) \geq((\operatorname{Rr}) \mid 0-3)) . \\ & r=0-1 \end{aligned}$	Exchange Indirect 4-bit contents of Accumulator and data memory	0	0	1	1	0	0	0	r	1	1	
FLAGS													
CPL C	(C) - NOT (C)	Complement Content of carry bit	1	0	1	0	0	1	1	1	1	,	-
CLR C	(C) $\leftarrow 0$	Clear content of carry bit to 0	1	0	0	1	0	1	1	1	1	1	-
INPUT/OUTPUT													
ANLD Pp, A	$\begin{aligned} & \left(P_{p}\right)+\left(P_{p}\right) \text { AND }(A 0-3) \\ & p=4-7 \end{aligned}$	Logical and contents of Accumulator with designated port ( $4-7$ ).	1	0	0	1	1	1	p	p	2	1	
IN A, Pp	$(\mathrm{A}) \leftarrow\left(\mathrm{P}_{\mathrm{p}}\right), \mathrm{p}=1-2$	Input data from designated port (1-2) into Accumulator	0	0	0	0	1	0	p	p	2	1	
MOVD A, $\mathrm{P}_{\mathrm{p}}$	$\begin{aligned} & \left(\begin{array}{ll} A & 0-3 \end{array}\right)-\left(P_{p}\right), p=4-7 \\ & (A 4-7) \leftarrow 0 \end{aligned}$	Move contents of designated port (4-7) into Accumulator	0	0	0	0	1	1	p	p	2	1	
MOVD $P_{p}, A$	$\left(P_{p}\right)-A 0-3, p=4-7$	Move contents of Accumulator to designated port (4-7)	0	0	1	1	1	1	p	p	1	1	
ORLD $\mathrm{P}_{\mathrm{p}}$, $A$	$\begin{aligned} & \left(P_{p}\right) \leftarrow\left(P_{p}\right) \text { OR }(A-3) \\ & p=4-7 \end{aligned}$	Logical or contents of Accumulator with designated port (4-7)	1	0	0	0	1	1	p	p	1	1	
OUTLP $\mathrm{P}^{\prime}$, A	$\left(P_{p}\right) \leftarrow(A), p=1-2$	Output contents of Accumulator to designated port (1-2)	0	0	1	1	1	0	p	p	1	1	
REGISTERS													
INC Rr	$(\mathrm{Rr}) \leftarrow(\mathrm{Rr})+1, r=0-7$	Increment by 1 contents of designated register		0	0	1	1	r	r	r	1	1	
INC @ Rr	$\begin{aligned} & ((R r))-\left(\left(R_{r}\right)\right)+1, \\ & r=0-1 \end{aligned}$	Increment Indirect by 1 the contents of data memory location	0	0	0	1	0	0	0	r	1	1	
SUBROUTINE													
CALL addr		Call designated Subroutine		$\begin{aligned} & a_{9} \\ & a_{6} \end{aligned}$	$\begin{aligned} & \text { a8 } \\ & \text { a5 } \end{aligned}$	$\begin{gathered} 1 \\ a_{4} \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ \text { a3 } \end{gathered}$		$\begin{gathered} 0 \\ a_{1} \end{gathered}$	$\begin{gathered} 0 \\ a_{0} \end{gathered}$	2	2	
RET	$\begin{aligned} & (\mathrm{SP}) \leftarrow(\mathrm{SP})-1 \\ & (\mathrm{PC}) \leftarrow(\mathrm{SP})) \end{aligned}$	Return from Subroutine without restoring Program Status Word	1	0	0	0	0	0	1	1	2	1	
TIMER/COUNTER													
MOV A, T	$(\mathrm{A}) \leftarrow(\mathrm{T})$	Move contents of Timer/Counter into Accumulator	0	1	0	0	0	0	1	0	1	1	
movt, A	$(\mathrm{T}) \leftarrow(\mathrm{A})$	Move contents of Accumulator into Timer/Counter	0	1	1	0	0	0	1	0	1	1	
STOP TCNT		Stop Count for Event Counter	0	1	1	0	0	1	0	1	1	1	
STRT CNT		Start Count for Event Counter	0	1	0	0	0	1	0	1	1	1	
STRT T		Start Count for Timer	0	1	0	1	0	1	0	1	1	1	
MISCELLANEOUS													
NOP		No Operation performed	0	0	0	0	0	0	0	0	1	1	

Notes (1) Instruction Code Designations $r$ and $p$ form the binary representation of the Registers and Ports involved
(2) The dot under the appropriate flag bit indicates that its content is subject to change by the instruction it appears in
(3) References to the address and data are specified in bytes 2 and/or 1 of the instruction
(4) Numerical,Subscripts appearing in the FUNCTION column reference the specific bits affected.

Symbol Definitions

SYMBOL	DESCRIPTION
$A$	The Accumulator
addr	Program Memory Address (12 bits)
$C$	Carry Flag
CLK	Clock Sıgnal
CNT	Event Counter
$D$	Nibble Designator (4 bits)
data	Number or Expression (8 bits)
$P$	"in-Page ${ }^{\prime \prime}$ Operation Designator
$P_{p}$	Port Designator $(p=1,2$ or $4-7)$
$R r$	Register Designator $(r=0,1$ or $0-7)$


SYMBOL	DESCRIPTION
T	Timer
$\mathrm{T}_{1}$	Testable Flag 1
$\mathbf{X}$	External RAM
$=$	Prefix for Immediate Data
$@$	Prefix for Indirect Address
$\$$	Program Counter's Current Value
$(x)$	Contents of External RAM Location
$((x))$	Contents of Memory Location Addressed   by the Contents of External RAM Location
$\leftarrow$	Replaced By

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{MNEMONIC} \& \multirow[b]{2}{*}{FUNCTION} \& \multirow[b]{2}{*}{DESCRIPTION} \& \multicolumn{8}{|c|}{INSTRUCTION CODE} \& \multirow[b]{2}{*}{cycles} \& \multirow[b]{2}{*}{BYTES} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { FLAG } \\
\& \text { C }
\end{aligned}
\]} \\
\hline \& \& \& \(\mathrm{D}_{7}\) \& \(\mathrm{D}_{6}\) \& \(\mathrm{D}_{5}\) \& \(\mathrm{D}_{4}\) \& \(\mathrm{D}_{3}\) \& \(\mathrm{D}_{2}\) \& \(\mathrm{D}_{1}\) \& D0 \& \& \& \\
\hline \multicolumn{14}{|c|}{ACCUMULATOR} \\
\hline ADD \(\mathrm{A}_{1}=\) data \& \((\mathrm{A}) \leftarrow(\mathrm{A})+\) data \& Add immediate the specified Data to the Accumulator \& \[
\begin{gathered}
0 \\
d 7
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d 6
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d_{5}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d_{4}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d_{3}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d 2
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
d_{1}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
d 0
\end{gathered}
\] \& 2 \& 2 \& \(\bullet\) \\
\hline Add A, Rr \& \[
\begin{aligned}
\& (A) \leftarrow(A)+(R r) \\
\& \text { for } r=0-7
\end{aligned}
\] \& Add contents of designated register to the Accumulator \& 0 \& 1 \& 1 \& 0 \& 1 \& r \& r \& r \& 1 \& 1 \& \(\bullet\) \\
\hline ADD A, @ Rr \& \[
\begin{aligned}
\& (A) \leftarrow(A)+((R r)) \\
\& \text { for } r=0-1
\end{aligned}
\] \& Add indirect the contents the data memory location to the Accumulator \& 0 \& 1 \& 1 \& 0 \& 0 \& 0 \& 0 \& r \& 1 \& 1 \& - \\
\hline ADDC A, = data \& \((\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{C})+\) data \& Add immediate with carry the specified data to the Accumulator \& \[
\begin{gathered}
0 \\
d 7
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d 6
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d_{5}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
\mathrm{~d}_{4}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d_{3}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
\mathrm{~d}_{2}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
d_{1}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
d_{0}
\end{gathered}
\] \& 2 \& 2 \& - \\
\hline ADDC A, Rr \& \[
\begin{aligned}
\& (A) \leftarrow(A)+(C)+(R r) \\
\& \text { for } r=0-7
\end{aligned}
\] \& Add with carry the contents of the designated register to the Accumulator \& 0 \& 1 \& 1 \& 1 \& 1 \& \(r\) \& \(r\) \& r \& 1 \& 1 \& - \\
\hline ADDC A, @ Rr \& \[
\begin{aligned}
\& (A) \leftarrow(A)+(C)+((R r)) \\
\& \text { for } r=0-1
\end{aligned}
\] \& Add indirect with carry the contents of data memory location to the Accumulator \& 0 \& 1 \& 1 \& 1 \& 0 \& 0 \& 0 \& \(r\) \& 1 \& 1 \& - \\
\hline ANL \(A\), data \& \((\mathrm{A}) \leftarrow(\mathrm{A})\) AND data \& Logical and specified Immediate Data with Accumulator \& \[
\begin{gathered}
0 \\
d 7
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
d_{6}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d_{5}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
d_{4}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
\mathrm{~d}_{3}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d_{2}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
d_{1}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
d_{0}
\end{gathered}
\] \& 2 \& 2 \& \\
\hline ANL A, Rr \& \[
\begin{aligned}
\& (A) \leftarrow(A) \text { AND }(\mathrm{Rr}) \\
\& \text { for } r=0-7
\end{aligned}
\] \& Logical and contents of designated register with Accumulator \& 0 \& 1 \& 0 \& 1 \& 1 \& r \& r \& r \& 1 \& 1 \& \\
\hline ANL A, @ Rr \& \[
\begin{aligned}
\& (A) \leftarrow(A) \text { AND }((R r)) \\
\& \text { for } r=0-1
\end{aligned}
\] \& Logical and Indirect the contents of data memory with Accumulator \& 0 \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& r \& 1 \& 1 \& \\
\hline CPL A \& \((\mathrm{A}) \leftarrow \operatorname{NOT}(\mathrm{A})\) \& Complement the contents of the Accumulator \& 0 \& 0 \& 1 \& 1 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \\
\hline CLR A \& (A) \(\leftarrow 0\) \& CLEAR the contents of the Accumulator \& 0 \& 0 \& 1 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \\
\hline DAA \& \& DECIMAL ADJUST the contents of the Accumulator \& 0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& - \\
\hline DEC A \& \((A) \leftarrow(A)-1\) \& DECREMENT by 1 the Accumulator's contents \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \\
\hline INC A \& \((A) \leftarrow(A)+1\) \& Increment by 1 the Accumulator's contents \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \\
\hline ORL \(A\), \(=\) data \& \((A) \leftarrow(A)\) OR data \& Logical OR specified immediate data with Accumulator \& \[
\begin{gathered}
0 \\
d 7
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
d_{6}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d_{5}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d 4
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d_{3}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d_{2}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
d_{1}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
d_{0}
\end{gathered}
\] \& 2 \& 2 \& \\
\hline ORL A, Rr \& \[
\begin{aligned}
\& (A) \leftarrow(A) O R(R r) \\
\& \text { for } r=0-7
\end{aligned}
\] \& Logical OR contents of designated register with Accumulator \& 0 \& 1 \& 0 \& 0 \& 1 \& \(r\) \& r \& r \& 1 \& 1 \& \\
\hline ORLA@Rr \& \[
\begin{aligned}
\& (A) \leftarrow(A) O R((R r)) \\
\& \text { for } r=0-1
\end{aligned}
\] \& Logical OR Indirect the contents of data memory location with Accumulator \& 0 \& 1 \& 0 \& c \& 0 \& 0 \& 0 \& \(r\) \& 1 \& 1 \& \\
\hline RLA \& \[
\begin{aligned}
\& (A N+1) \leftarrow(A N) \\
\& \left(A_{0}\right) \leftarrow(A 7) \\
\& \text { for } N=0-6
\end{aligned}
\] \& Rotate Accumulator left by 1 -bit without carry \& 1 \& 1 \& 1 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \\
\hline RLC A \& \[
\begin{aligned}
\& (A N+1) \leftarrow(A N), N=0-6 \\
\& \left(A_{0}\right) \leftarrow(C) \\
\& (C) \leftarrow\left(A_{7}\right)
\end{aligned}
\] \& Rotate Accumulator left by 1 -bit through carry \& 1 \& 1 \& 1 \& 1 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& - \\
\hline RR A \& \[
\begin{aligned}
\& (A N) \leftarrow(A N+1), N=0-6 \\
\& \left(A_{7}\right) \leftarrow\left(A_{0}\right)
\end{aligned}
\] \& Rotate Accumulator right by 1 -bit without carry \& 0 \& 1 \& 1 \& 1 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \\
\hline RRC A \& \[
\begin{aligned}
\& (A N) \leftarrow(A N+1), N=0-6 \\
\& \left(A_{7}\right) \leftarrow(C) \\
\& (C) \leftarrow\left(A_{0}\right)
\end{aligned}
\] \& Rotate Accumulator right by 1 -bit through carry. \& 0 \& 1 \& 1 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& - \\
\hline SWAP A \& \(\left(A_{4.7}\right) \stackrel{\left(A_{0}-3\right)}{ }\) \& Swap the 24 -bit nibbles in the Accumulator \& 0 \& 1 \& 0 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \\
\hline XRL \(A_{1}=\) data \& \((A) \leftarrow(A) X O R\) data \& Logical XOR specified immediate data with Accumulator \& \[
\begin{gathered}
1 \\
d 7
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
d_{6}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d_{5}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
\mathrm{~d}_{4}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d_{3}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d_{2}
\end{gathered}
\] \& \[
\begin{aligned}
\& 1 \\
\& d_{1}
\end{aligned}
\] \& \[
\begin{gathered}
1 \\
d 0
\end{gathered}
\] \& 2 \& 2 \& \\
\hline XRLA, Rr \& \[
\begin{aligned}
\& (A) \leftarrow(A) \text { XOR }(R r) \\
\& \text { for } r=0-7
\end{aligned}
\] \& Logical XOR contents of designated register with Accumulator \& 1 \& 1 \& 0 \& 1 \& 1 \& r \& r \& r \& 1 \& 1 \& \\
\hline XRL A, @ Rr \& \[
\begin{aligned}
\& (A) \leftarrow(A) \text { XOR }((R r)) \\
\& \text { for } r=0-1
\end{aligned}
\] \& Logical XOR Indirect the contents of data memory location with Accumulator \& 1 \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& r \& 1 \& 1 \& \\
\hline \multicolumn{14}{|c|}{BRANCH} \\
\hline DJNZ Rr, addr \& \[
\begin{aligned}
\& (R r) \leftarrow(R r)-1, r=0-7 \\
\& \text { If }(R r) \neq 0 \\
\& (P C 0-7) \leftarrow \text { addr }
\end{aligned}
\] \& Decrement the specified register and test contents \& \[
\begin{gathered}
1 \\
a_{7}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{6}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{5}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a 4
\end{gathered}
\] \& 1
a3 \& \[
\stackrel{r}{\mathrm{r}}
\] \& \[
a_{1}
\] \& a
\(a_{0}\) \& 2 \& 2 \& \\
\hline JC addr \& \[
\begin{aligned}
\& (P C 0-7) \leftarrow \text { addr if } C=1 \\
\& (P C) \leftarrow(P C)+2 \text { if } C=0
\end{aligned}
\] \& Jump to specified address if carry flag is set \& \[
\begin{gathered}
1 \\
a_{7}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{6}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{5}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
34
\end{gathered}
\] \& 0
a3 \& \[
\begin{gathered}
1 \\
a_{2}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{1}
\end{gathered}
\] \& 0
a \& 2 \& 2 \& \\
\hline JMP addr \& \[
\begin{aligned}
\& (\text { PC 8-10) } \leftarrow \text { addr } 8-10 \\
\& (\text { PC 0-7) addr } 0-7 \\
\& (\text { PC 11) } 4 \text { DBF }
\end{aligned}
\] \& Direct Jump to specified address within the 2 K address block \& \[
\begin{aligned}
\& \mathbf{a}_{10} \\
\& \mathbf{a}_{7}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { a9 } \\
\& \text { a6 }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { a8 } \\
\& \text { a5 }
\end{aligned}
\] \& \[
\begin{gathered}
0 \\
a 4
\end{gathered}
\] \& 0
a3 \& \[
\begin{gathered}
1 \\
\mathrm{a} 2
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a_{1}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
\text { ao }
\end{gathered}
\] \& 2 \& 2 \& \\
\hline JMPP@ A \& \((\mathrm{PC} \mathrm{0-7)} \mathrm{\leftarrow}\) \& Jump indirect to specified address with address page \& 1 \& 0 \& 1 \& 1 \& 0 \& 0 \& 1 \& 1 \& 2 \& 1 \& \\
\hline JNC addr \& \[
\begin{aligned}
\& (P C 0-7) \leftarrow \text { addr if } C=0 \\
\& (P C) \leftarrow(P C)+2 \text { if } C=1
\end{aligned}
\] \& Jump to specified address if carry flag is low \& \[
\begin{gathered}
1 \\
a_{7}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{6}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
\text { a5 }
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
04
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
\text { a3 }
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{2}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{1}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
\text { ap }
\end{gathered}
\] \& 2 \& 2 \& \\
\hline JNT1 addr \& \[
\begin{aligned}
\& (\mathrm{PCC} 0-7) \leftarrow \text { addr if } \mathrm{T} 1=0 \\
\& (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } \mathrm{T} 1=1
\end{aligned}
\] \& Jump to specified address if Test 1 is low \& \[
\begin{gathered}
0 \\
07
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{6}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a_{5}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a 4
\end{gathered}
\] \& 0
a3 \& \[
\begin{gathered}
1 \\
\mathrm{a}_{2}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{1}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
\text { a0 }
\end{gathered}
\] \& 2 \& 2 \& \\
\hline JNZ addr \& \[
\begin{aligned}
\& \text { (PC } 0-7) \leftarrow \text { addr if } A=0 \\
\& (P C) \leftarrow(P C)+2 \text { if } A=0
\end{aligned}
\] \& Jump to specified address if Accumulator is non-zero \& \[
\begin{gathered}
1 \\
a_{7}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a_{6}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a_{5}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a 4
\end{gathered}
\] \& 0
a3 \& \[
\begin{gathered}
1 \\
a_{2}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{1}
\end{gathered}
\] \& 0
a0 \& 2 \& 2 \& \\
\hline JTF addr \& \begin{tabular}{l}
(PC 0-7) \(\leftarrow\) addr if TF \(=1\) \\
\((P C) \leftarrow(P C)+2\) if TF \(=0\)
\end{tabular} \& Jump to specified address if Timer Flag is set to 1 \& \[
\begin{gathered}
0 \\
a_{7}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a_{6}
\end{gathered}
\] \& \& \[
\begin{gathered}
1 \\
24
\end{gathered}
\] \& 0
a3 \& \[
\begin{gathered}
1 \\
a_{2}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{1}
\end{gathered}
\] \& 0
a0 \& 2 \& 2 \& \\
\hline JT1 addr \& \[
\begin{aligned}
\& (P C 0-7) \leftarrow \operatorname{addr} \text { if } \mathrm{T} 1=1 \\
\& \text { (PC) } \leftarrow(\mathrm{PC})+2 \text { if } \mathrm{T} 1=0
\end{aligned}
\] \& Jump to specified address if Test 1 is a 1 \& \[
\begin{gathered}
0 \\
a_{7}
\end{gathered}
\] \& 1
\({ }^{6} 6\) \& 0
a \& 1

4 \& \& 1
$a_{2}$ \& 1
$a_{1}$
1 \& 0
a0 \& 2 \& 2 \& <br>

\hline JZ addr \& $$
\begin{aligned}
& (P C O-7) \leftarrow \text { addr if } A=0 \\
& (P C) \leftarrow(P C)+2 \text { if } A=0
\end{aligned}
$$ \& Jump to specified address if Accumulator is 0 . \& \[

$$
\begin{gathered}
1 \\
a 7
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
a_{6}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{5}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a 4
\end{gathered}
$$

\] \& \& \[

$$
\begin{gathered}
1 \\
a_{2}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
\mathbf{a}_{1}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{0}
\end{gathered}
$$
\] \& 2 \& 2 \& <br>

\hline
\end{tabular}

## Package Outlines

For information, see Package Outline Section 7.
Plastic, $\mu$ PD8021C
Cerdip, $\mu$ PD8021D

## UNIVERSAL PROGRAMMABLE PERIPHERAL INTERFACE - 8-BIT MICROCOMPUTER

DESCRIPTION The $\mu$ PD8041A/8741A is a programmable peripheral interface intended for use in a wide range of microprocessor systems. Functioning as a totally self-sufficient controller, the $\mu$ PD8041A/8741A contains an 8 -bit CPU, $1 \mathrm{~K} \times 8$ program memory, $64 \times 8$ data memory, I/O lines, counter/timer, and clock generator in a 40-pin DIP. The bus structure, data registers, and status register enable easy interface to $8048,8080 \mathrm{~A}$ or 8085 A based systems. The $\mu$ PD8041A's program memory is factory mask programmed, while the $\mu$ PD8741A's program memory is UV EPROM to enable user flexibility.<br>FEATURES - Fully Compatible with $8048,8080 \mathrm{~A}, 8085 \mathrm{~A}$ and 8086 Bus Structure<br>- 8 -Bit CPU with $1 \mathrm{~K} \times 8$ ROM, $64 \times 8$ RAM, 8 -Bit Timer/Counter, 18 I/O Lines<br>- 8-Bit Status and Two Data Registers for Asynchronous Slave-to-Master Interface<br>- Interchangeable EPROM and ROM Versions<br>- Interrupt, DMA or Polled Operation<br>- Expandable I/O<br>- 40-Pin Plastic or Cerdip DIP Package<br>- Single +5V Supply



PIN		FUNCTION
NO	SYMBOL	
1,39	$\mathrm{T}_{0} \mathrm{~T}_{1}$	Testable input pins using conditional transfer instructions JT0, JNT0, JT1, JNT1. T 1 can be made the counter/timer input using the STRT CNT instruction. The PROM programming and verification on the $\mu$ PD8741A uses $T_{0}$.
2	$\mathrm{X}_{1}$	One side of the crystal input for external oscillator or frequency source.
3	$\mathrm{X}_{2}$	The other side of the crystal input.
4	RESET	Active-low input for processor initialization. $\overline{\text { RESET }}$ is also used for PROM programming, verification, and power down.
5	$\overline{\text { SS }}$	Single Step input (active-low). $\overline{\mathrm{SS}}$ together with SYNC output allows the $\mu$ PD8741A to "single-step" through each instruction in program memory.
6	$\overline{\mathrm{CS}}$	Chip Select input (active-low). $\overline{\mathrm{CS}}$ is used to select the appropriate $\mu$ PD8041A/8741A on a common data bus.
7	EA	External Access input (active-high). A logic " 1 " at this input commands the $\mu$ PD8041A/8741A to perform all program memory fetches from external memory.
8	$\overline{R D}$	Read strobe input (active-low). $\overline{R D}$ will pulse low when the master processor reads data and status words from the DATA BUS BUFFER or Status Register.
9	$\mathrm{A}_{0}$	Address input which the master processor uses to indicate if a byte transfer is a command or data.
10	$\overline{W R}$	Write strobe input (active-low). $\overline{W R}$ will pulse low when the master processor writes data or status words to the DATA BUS BUFFER or Status Register.
11	SYNC	The SYNC output pulses once for each $\mu$ PD8041A/8741A instruction cycle. It can function as a strobe for external circuitry. SYNC can also be used together with $\overline{\mathrm{SS}}$ to "single-step" through each instruction in program memory.
12-19	$\mathrm{D}_{0}-\mathrm{D}_{7} \mathrm{BUS}$	The 8 -bit, bi-directional, tri-state DATA BUS BUFFER lines by which the $\mu$ PD8041A/8741A interfaces to the 8 -bit master system data bus.
20	$\mathrm{V}_{\text {SS }}$	Processor's ground potential.
$\begin{aligned} & \hline 21-24, \\ & 35-38 \end{aligned}$	$\mathrm{P}_{20}-\mathrm{P}_{27}$	PORT 2 is the second of two 8 -bit, quasi-bi-directional I/O ports. $\mathrm{P}_{20}-\mathrm{P}_{23}$ contain the four most significant bits of the program counter during external memory fetches. $\mathrm{P}_{20}-\mathrm{P}_{23}$ also serve as a 4 -bit I/O bus for the $\mu$ PD8243, INPUT/ OUTPUT EXPANDER. $\mathrm{P}_{24}-\mathrm{P}_{27}$ can be used as port lines or can provide Interrupt Requiest (IBF and OBF) and DMA handshake lines (DRQ and $\overline{\mathrm{DACK}}$ ).
25	PROG	Program Pulse. PROG is used in programming the $\mu$ PD8741A. It is also used as an output strobe for the $\mu$ PD8243.
26	$V_{\text {DD }}$	$\mathrm{V}_{\mathrm{DD}}$ is the programming supply voltage for programming the $\mu$ PD8741A. It is +5 V for normal operation of the $\mu$ PD8041A/8741A. $V_{D D}$ is also the Low Power Standby input for the ROM version.
27.34	$\mathrm{P}_{10} \mathrm{P}_{17}$	PORT 1 is the first of two 8-bit quasi-bi-directional I/O ports.
40	$\mathrm{V}_{\mathrm{CC}}$	Primary power supply. $\mathrm{V}_{\mathrm{CC}}$ must be +5 V for programming and operation of the $\mu$ PD8741A and for the operation of the $\mu$ PD8041A.

FUNCTIONAL The $\mu$ PD8041A/8741A is a programmable peripheral controller intended for use DESCRIPTION

## $\mu$ PD8041A/8741A <br> FUNCTIONAL ENHANCEMENTS

 in master/slave configurations with 8048, 8080A, 8085A, 8086 - as well as most other 8 -bit and 16 -bit microprocessors. The $\mu$ PD8041A/8741A functions as a totally self-sufficient controller with its own program and data memory to effectively unburden the master CPU from I/O handling and peripheral control functions. The $\mu$ PD8041A/8741A is an intelligent peripheral device which connects directly to the master processor bus to perform control tasks which off load main system processing and more efficiently distribute processing functions.The $\mu$ PD8041A/8741A features several functional enhancements to the earlier $\mu$ PD8041 part. These enhancements enable easier master/slave interface and increased functionality.

1. Two Data Bus Buffers. Separate Input and Output data bus buffers have been provided to enable smoother data flow to and from master processors.

2. 8-Bit Status Register. Four user-definable status bits, $\mathrm{ST}_{4}-\mathrm{ST}_{7}$, have been added to the status register. $\mathrm{ST}_{4}-\mathrm{ST}_{7}$ bits are defined with the MOV STS, A instruction which moves accumulator bits $4-7$ to bits $4-7$ of the status register. $\mathrm{ST}_{0}-\mathrm{ST}_{3}$ bits are not affected.

$\mathrm{ST}_{7}$	$\mathrm{ST}_{6}$	$\mathrm{ST}_{5}$	$\mathrm{ST}_{4}$	$\mathrm{~F}_{1}$	$\mathrm{~F}_{0}$	IBF	OBF
$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	D 3	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$

MOV STS, A Instruction OP Code 90H
3. $\overline{R D}$ and $\overline{W R}$ inputs are edge-sensitive. Status bits IBF, OBF, F1 and F0 are affected on the trailing edge at $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$.

4. $\mathrm{P}_{24}$ and $\mathrm{P}_{25}$ can be used as either port lines or Buffer Status Flag pins. This feature allows the user to make OBF and IBF status available externally to interrupt the master processor. Upon execution of the EN Flags instruction, $P_{24}$ becomes the OBF pin. When a " 1 " is written to $P_{24}$, the OBF pin is enabled and the status of OBF is output. A " $O$ " written to $P_{24}$ disables the OBF pin and the pin remains low. This pin indicates valid data is available from the $\mu$ PD8041A/8741A. EN Flags instruction execution also enables $\mathrm{P}_{25}$ indicate that the $\mu$ PD8041A/8741A is ready to accept data. A " 1 " written to $\mathrm{P}_{25}$ enables the IBF pin and the status of IBF is available on P25. A " 0 " written to $\mathrm{P}_{25}$ disables the IBF pin. If OBF is not true, the data at the databus is invalid.
EN Flags Instruction Op code - F5H.
5. $\mathrm{P}_{26}$ and $\mathrm{P}_{27}$ can be used as either port lines or DMA handshake lines to allow DMA interface. The EN DMA instruction enables $P_{26}$ and $P_{27}$ to be used as DRO (DMA Request) and DACK (DMA acknowledge) respectively. When a " 1 " is written to $P_{26}$, DRQ is activated and a DMA request is issued. Deactivation of DRQ is accomplished by the execution of the EN DMA instruction, $\overline{\mathrm{DACK}}$ anded with $\overline{\mathrm{RD}}$, or $\overline{\mathrm{DACK}}$ anded with $\overline{\mathrm{WR}}$. When EN DMA has been executed, $\mathrm{P}_{27}$ (DACK) functions as a chip select input for the Data Bus Buffer registers during DMA transfers.

EN DMA Instruction Op Code - E5H.
$\mu$ PD8041A/8741A FUNCTIONAL ENHANCEMENTS (CONT.)

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS*
Operating Temperature
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature (Ceramic Package) $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Storage Temperature (Plastic Package). . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Voltage on Any Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 0.5 to +7 Volts (1)
Power Dissipation
1.5 Watt
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maxımum ratıng conditions for extended periods may affect device reliability.
Note (1) With respect to ground
$\mathrm{T}_{\mathrm{a}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=\mathbf{0 V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage (All except $X_{1}$ and $X_{2}$ )	$V_{\text {IL }}$	-0.5		+0.8	V	
Input Low Voltage ( $X_{1}$ and $X_{2}, \overline{\text { RESET }}$ )	VIL1	-0.5		0.6	V	
Input High Voltage (All except $X_{1}, X_{2}, \overline{\text { RESET }}$	$\mathrm{V}_{\mathbf{I H}}$	2.0		$\mathrm{V}_{\mathrm{Cc}}$	V	
Input High Voltage ( $\mathrm{X}_{1}, \mathrm{X}_{2}, \overline{\text { RESET }}$ )	$\mathrm{V}_{1} \mathrm{H}_{1}$	3.8		$\mathrm{V}_{\mathrm{CC}}$	V	
Output Low Voltage ( $D_{0}$-D7, SYNC)	VOL			0.45	V	$1 \mathrm{OL}=2.0 \mathrm{~mA}$
Output Low Voltage   (All other outputs except PROG)	Voli			0.45	V	$\mathrm{IOL}=1.0 \mathrm{~mA}$
Output Low Voltage (PROG)	VOL2			0.45	V	$\mathrm{IOL}^{\prime}=1.0 \mathrm{~mA}$
Output High Voltage ( $\mathrm{D}_{0}-\mathrm{D}_{7}$ )	VOH	2.4			V	$1 \mathrm{OH}=-400 \mu \mathrm{~A}$
Output High Voltage (All other outputs)	$\mathrm{V}_{\mathrm{OH} 1}$	2.4			V	$\mathrm{IOH}^{\prime}=-50 \mu \mathrm{~A}$
Input Leakage Current ( $T_{0}, T_{1}, \overline{R D}, \overline{W R}, \overline{C S}, E A, A_{0}$ )	IIL			$\pm 10$	$\mu \mathrm{A}$	$\begin{aligned} & v_{S S}<v_{\text {IN }} \leqslant \\ & v_{\text {CC }} \end{aligned}$
Output Leakage Current ( $\mathrm{D}_{0}-\mathrm{D}_{7}$; High Z State)	${ }^{1} \mathrm{OL}$			$\pm 10$	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}}+0.45 \leqslant \\ & \mathrm{~V}_{\mathrm{IN}} \leqslant \mathrm{~V}_{\mathrm{CC}} \end{aligned}$
V DD Supply Current	IDD			15	mA	
Total Supply Current	ICC + IDD			125	mA	
Low Input Source Current ( $\mathrm{P}_{10}-\mathrm{P}_{17}$; $\mathrm{P}_{20}-\mathrm{P}_{27}$ )	$\mathrm{I}_{\mathrm{LI}}$			0.5	mA	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$
Low Input Source Current (SS; RESET)	ILII			0.2	mA	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$

$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS				UNITS	TEST CONDITIONS
		$\mu$ PD8041A		$\mu$ PD8741A			
		MIN	MAX	MIN	. MAX		
DBB READ							
$\overline{C S}, A_{0}$ Setup to $\overline{R D} \downarrow$	tAR	0		60		ns	
$\overline{C S}, A_{0}$ Hold after $\overline{R D} \uparrow$	tra	0		30		ns	
$\overline{\mathrm{RD}}$ Pulse Width	tRR	250		300	$2 \times \mathrm{t} \mathrm{CY}$	ns	${ }^{\text {t }} \mathrm{CY}=2.5 \mu \mathrm{~s}$
$\overline{C S}, A_{0}$ to Data Out Delay	${ }^{\text {t }}$ AD		225		370	ns	$C_{L}=150 \mathrm{pF}$
$\overrightarrow{R D}+$ to Data Out Delay	tRD		225		200	ns	$C_{L}=150 \mathrm{pF}$
RD $\uparrow$ to Data Float Delay	tDF		100		140	ns	
Cycle Time	${ }^{\text {t }} \mathrm{C} Y$	25	15	2.5	15	$\mu \mathrm{s}$	6 MHz Crystal
DBB WRITE							
$\overline{\mathrm{CS}}, \mathrm{A}_{0}$ Setup to $\overline{\mathrm{WR}} \downarrow$	${ }^{\text {t }}$ AW	10		60		ns	
$\overline{\mathrm{CS}}, \mathrm{A}_{0}$ Hold after $\overline{\mathrm{WR}} \uparrow$	tWA	10		30		ns	
$\overline{\text { WR Pulse Width }}$	twW	260		300	$2 \times \mathrm{tc}$	ns	${ }^{\text {t }} \mathrm{CY}=2.5 \mu \mathrm{~s}$
Data Setup to $\overline{W R} \uparrow$	tDW	150		250		ns	
Data Hold after $\overline{W R} \uparrow$	${ }^{\text {t W }}$	10		30		ns	
PORT 2							
Port Control Setup before falling edge of $\overline{P R O G}$	${ }^{1} \mathrm{CP}$	110		110		ns	
Port Control Hold after Falling Edge of $\overline{\text { PROG }}$	${ }^{\text {tPC }}$	100		100		ns	
$\overline{\text { PROG }}$ to $\mathrm{P}_{2}$ Input Valid	${ }^{\text {P PR }}$		810		810	ns	
Input Data Hold Time	${ }^{\text {P PF }}$	0	150	0	150	ns	
Output Data Setup Time	${ }^{1} \mathrm{DP}$	250		250		ns	
Output Data Hold Time	tpD	65		65		ns	
PROG Puise Width		1200		1200		ns	
DMA							
$\overline{\text { DACK }} \downarrow$ to $\overline{\mathrm{RD}} \downarrow$ or $\overline{\mathrm{WR}} \downarrow$	${ }^{\text {a }}$ ACC	0		0		ns	
$\overline{\mathrm{RD}} \uparrow$ or $\overline{\mathrm{WR}}$ to $\overline{\mathrm{DACK}} \uparrow$	${ }^{\text {C CAC }}$	0		0		ns	
$\overline{\text { DACK }}$ to Data Valid	${ }^{\prime} A C D$		225		225	ns	$C_{L} \quad 150 \mathrm{pF}$
$\overline{\mathrm{RD}}$ or WR to DRQ $\downarrow$	${ }^{\text {'CRO }}$		225		225	ns	

READ OPERATION - DATA BUS BUFFER REGISTER


## DMA TIMING DIAGRAM



## PORT 2 TIMING DIAGRAM




INSTRUCTION SET (CONT.)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{MNEMONIC} \& \multirow[b]{2}{*}{FUNCTION} \& \& \multicolumn{8}{|c|}{INSTRUCTION CODE} \& \multirow[b]{2}{*}{CYCLES} \& \multirow[b]{2}{*}{BYTES} \& \multicolumn{6}{|c|}{flags} \& \multirow[b]{2}{*}{ST4.7} <br>
\hline \& \& \& D7 \& $\mathrm{D}_{6}$ \& $\mathrm{O}_{5}$ \& $\mathrm{D}_{4}$ \& $\mathrm{D}_{3}$ \& $\mathrm{D}_{2}$ \& $\mathrm{D}_{1}$ \& $\mathrm{D}_{0}$ \& \& \& C \& AC \& F0 \& \& 18F \& OBF \& <br>
\hline \multicolumn{20}{|c|}{BRANCH (CONT} <br>
\hline JNT0 addr \& $$
\begin{aligned}
& \text { (PC } 0-7) \leftarrow \text { addr if } \mathrm{TO}=0 \\
& (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } \mathrm{TO}=1
\end{aligned}
$$ \& Jump to specified address if Test 0 is low \& 0
9 \& 0
$a_{6}$ \& 1

5 \& $$
\begin{gathered}
0 \\
34
\end{gathered}
$$ \& \[

$$
\begin{aligned}
& 0 \\
& 0 \\
& a_{3}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
1 \\
a_{2}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 1 \\
& a_{1}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& a_{0}
\end{aligned}
$$
\] \& 2 \& 2 \& , \& \& \& \& \& \& <br>

\hline JNT1 addr \& $$
\begin{aligned}
& (P C 0-7) \leftarrow \text { addr if } T 1=0 \\
& (P C) \leftarrow(P C)+2 \text { if } T 1=1
\end{aligned}
$$ \& Jump to specified address if Test 1 is low \& 0

97 \& 1
96 \& 0

5 \& 0
3
4 \& 0
3 \& 1
3
1 \& 1
$a_{1}$ \& 0

0 \& 2 \& 2 \& \& \& \& \& \& \& <br>

\hline JNZ addr \& $$
\begin{aligned}
& (P C O-7) \leftarrow \text { addr if } A=0 \\
& (P C) \leftarrow(P C)+2 \text { if } A=0
\end{aligned}
$$ \& Jump to specified address if accumulator is non zero \& 1

37 \& $$
\begin{gathered}
0 \\
96
\end{gathered}
$$ \& \[

$$
\begin{aligned}
& 0 \\
& 35
\end{aligned}
$$
\] \& 1

3

4 \& $$
\begin{gathered}
0 \\
a_{3}
\end{gathered}
$$ \& \[

$$
\begin{gathered}
1 \\
a_{2}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
a_{1}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
0
\end{gathered}
$$
\] \& 2 \& 2 \& \& \& \& \& \& \& <br>

\hline JTF addr \& $$
\begin{aligned}
& (\mathrm{PC} 0-7)-\text { addr if } \mathrm{TF}=1 \\
& (\mathrm{PC})-(\mathrm{PC})+2 \text { if } T F=0
\end{aligned}
$$ \& Jump to specified address if Timer Flag is set to 1 \& 0

9 \& | 0 |
| :---: |
| 6 | \& \[

$$
\begin{array}{r}
0 \\
a 5
\end{array}
$$

\] \& \& \[

$$
\begin{gathered}
0 \\
a 3
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
a_{2}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
a_{1}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
30
\end{gathered}
$$
\] \& 2 \& 2 \& \& \& \& \& \& \& <br>

\hline JTO addr \& $$
\begin{aligned}
& (\mathrm{PC} 0-7) \leftarrow \text { addr if } \mathrm{TO}=1 \\
& (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } \mathrm{TO}=0
\end{aligned}
$$ \& Jump to specified address it Test 0 is a 1 . \& 0

97 \& 0
${ }^{9} 6$ \& 1
35 \& 1
3
4 \& 0 \& 1
2 \& ${ }^{1} 1$ \& 0
0 \& 2 \& 2 \& \& \& \& \& \& \& <br>

\hline JT1 addr \& $$
\begin{aligned}
& (\mathrm{PC} 0-7) \leftarrow \text { addr if } \mathrm{T} 1=1 \\
& (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } \mathrm{T} 1=0
\end{aligned}
$$ \& Jump to specified address if Test 1 is a 1 \& \[

$$
\begin{gathered}
0 \\
97
\end{gathered}
$$
\] \& \& \& \& 0

$a_{3}$ \& 1
2 \& \& 0 \& 2 \& 2 \& \& \& \& \& \& \& <br>

\hline JZ addr \& $$
\begin{aligned}
& (P C O-7) \leftarrow \text { addr if } A=0 \\
& \text { (PC) } \leftarrow(P C)+2 \text { if } A=0
\end{aligned}
$$ \& Jump to specified address if Accumulator

\[
is 0

\] \& | 1 |
| :---: |
| 97 | \& \[

$$
\begin{gathered}
1 \\
a_{6}
\end{gathered}
$$

\] \& \& \& \[

$$
\begin{gathered}
0 \\
3 \\
\hline
\end{gathered}
$$

\] \& \& \& \[

$$
\begin{gathered}
0 \\
{ }^{2} 0
\end{gathered}
$$
\] \& 2 \& 2 \& \& \& \& \& \& \& <br>

\hline \multicolumn{20}{|c|}{CONTROL} <br>
\hline EN I \& \& Enable the External Interrupt input \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \& \& \& \& <br>
\hline DISI \& \& Disable the External Interrupt inout \& 0 \& \& 0 \& \& \& \& \& 1 \& 1 \& 1 \& \& \& \& \& \& \& <br>

\hline SEL RBO \& (BS) - 0 \& Select Bank 0 (focations 0 - 7) of Data Memory \& 1 \& $$
1
$$ \& 0 \& 0 \& \[

0

\] \& 1 \& 0 \& 1 \& 1 \& \[

1
\] \& \& \& \& \& \& \& <br>

\hline SEL RB1 \& (BS) $\leftarrow 1$ \& Select Bank 0 (locations 24-31) of Data Memory \& 1 \& 1 \& 0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \& \& \& \& <br>
\hline EN DMA \& \& Enable DMA Handshake \& \& \& \& \& \& \& \& \& 1 \& 1 \& \& \& \& \& \& \& <br>
\hline EN FLAGS \& \& Enable Interrupt to Master Device \& 1 \& 1 \& 1 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \& \& \& \& <br>
\hline \multicolumn{20}{|c|}{DATA MOVES} <br>

\hline MOV $A_{\text {, }}=$ data \& (A) - data \& Move Immediate the specified data into the Accumulator \& \[
$$
\begin{gathered}
0 \\
d 7
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{6}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 1 \\
& d_{5}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
0 \\
0 \\
d 4
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& d_{3}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{2}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d_{1}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d 0
\end{gathered}
$$
\] \& 2 \& 2 \& \& \& \& \& \& \& <br>

\hline MOV A, Rr \& $(A)-(R r), r=0 \quad 7$ \& Move the contents of the designated registers into the Accumulator \& 1 \& 1 \& 1 \& 1 \& 1 \& $r$ \& r \& , \& 1 \& 1 \& \& \& \& \& \& \& <br>
\hline MOV A.@Rr \& $(A)-\left(\begin{array}{l}\text { r }\end{array}\right) ~ r=0 \quad 1$ \& Move indirect the contents of data memory location into the Accumulator \& 1 \& 1 \& 1 \& 1 \& 0 \& 0 \& 0 \& ' \& 1 \& 1 \& \& \& \& \& \& \& <br>
\hline MOV A. PSW \& (A). (PSW) \& Move contents of the Program Status Word into the Accumulator \& 1 \& 1 \& 0 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \& \& \& \& \& \& <br>

\hline MOV Rr, $\boldsymbol{z}$ data \& $\left(R_{r}\right)-$ data, $r=0 \quad 7$ \& Move Immediate the specified data into the designated register \& \[
$$
\begin{gathered}
1 \\
07
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{6}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d 5
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d_{4}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d_{3}
\end{gathered}
$$

\] \& \[

d_{2}

\] \& \[

d_{1}^{\prime}

\] \& \[

d_{0}
\] \& 2 \& 2 \& \& \& \& \& \& \& <br>

\hline MOV Rr A \& $(R r \mid-(A), r=0 \quad 7$ \& Move Accumulator Contents into the designated register \& 1 \& 0 \& 1 \& 0 \& 1 \& , \& $\cdots$ \& , \& 1 \& 1 \& \& \& \& \& \& \& <br>
\hline MOV@Rr. A \& $((R r))-(A) . r=0 \quad 1$ \& Move Indirect Accumulator Contents into data memory location \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& ' \& 1 \& 1 \& \& \& \& \& \& \& <br>

\hline MOV @ Rr, $\boldsymbol{z}$ deta \& ( $\left.\mathrm{Rr}_{\mathrm{r}}\right)$ - data $r=0 \quad 1$ \& Move immediate the specified data into data memory \& \[
$$
\begin{gathered}
1 \\
d 7
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{6}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d 5
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d_{4}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d 3
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{2}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{1}
\end{gathered}
$$
\] \& do \& 2 \& 2 \& \& \& \& \& \& \& <br>

\hline MOV PSW, A \& (PSW) - (A) \& Move contents of Accumulator into the program status word \& 1 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \& \& \& \& \& \& <br>

\hline MOVPA.@A \& $$
\begin{aligned}
& (P C=07)-(A) \\
& (A)-(1 P C))
\end{aligned}
$$ \& Move data in the current page into the Accumulator \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1 \& 1 \& 2 \& 1 \& \& \& \& \& \& \& <br>

\hline MOVP3 A @ A \& $$
\begin{aligned}
& (P C O \quad 7)-(A) \\
& (P C 8-10)-011 \\
& (A)-(1 P C) 1
\end{aligned}
$$ \& Move Program data in Page 3 into the Accumulator \& 1 \& 1 \& 1 \& 0 \& 0 \& 0 \& 1 \& 1 \& 2 \& 1 \& \& \& \& \& \& \& <br>

\hline $\mathrm{XCHA}, \mathrm{Rr}$ \& $(A)=($ Rr),$r=0-7$ \& Exchange the Accumulator and designated register's contents \& 0 \& 0 \& 1 \& 0 \& 1 \& ${ }^{\prime}$ \& 1 \& ' \& 1 \& 1 \& \& \& \& \& \& \& <br>
\hline XCHA.PRr \& $(A)=\left(\begin{array}{l}\text { r }\end{array}\right), r=0-1$ \& Exchange Indirect contents of Accumu lator and location in data memory \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& ' \& 1 \& 1 \& \& \& \& \& \& \& <br>

\hline XCHD A.@Rr \& $$
\begin{aligned}
& (A 0-3) \leftrightarrows((A r)) 0-3)) . \\
& r=0-1
\end{aligned}
$$ \& Exchange Indirect 4 bit contents of Accumulator and data memory \& 0 \& 0 \& 1 \& 1 \& 0 \& 0 \& 0 \& , \& 1 \& 1 \& \& \& \& \& \& \& <br>

\hline \multicolumn{20}{|c|}{FLAGS} <br>
\hline CPL C \& (C) - NOT (C) \& Complement Content of carty bit \& 1 \& 0 \& 1 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& - \& \& \& \& \& \& <br>
\hline CPL FO \& (FO) - NOT (FO) \& Complement Content of Fiag FO \& 1 \& 0 \& 0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& - \& \& \& \& <br>

\hline CPL F1 \& (F1) - NOT (F1) \& Complement Content of Fiag F1 \& 1 \& $$
0
$$ \& \[

1

\] \& \[

1

\] \& \[

0

\] \& \[

1
\] \& 0 \& 1 \& 1 \& 1 \& \& \& \& - \& \& \& <br>

\hline CLR C \& (C) - C \& Cleer content of carry but to 0 \& 1 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& - \& \& \& \& \& \& <br>
\hline CLR FO \& (FO)-0 \& Ciser content of Fise 0 to 0. \& 1 \& \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& - \& \& \& \& <br>

\hline CLR F1 \& (F1) - 0 \& Clear content of Flag 1 to 0 \& 1 \& \& $$
1
$$ \& \& 0 \& \[

1
\] \& \& 1 \& 1 \& 1 \& \& \& \& $\bullet$ \& \& \& <br>

\hline MOV STS, A \& $\mathrm{ST}_{4} \mathbf{- S T 7} ¢ \mathrm{~A}_{4}-\mathrm{Al}_{7}$ \& Move high order 4 bits of Accumulator into status register bits 4-7 \& 1 \& \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1 \& \& \& \& \& \& \& - <br>
\hline
\end{tabular}

INSTRUCTION SET (CONT.)

	FUNCTION	DESCRIPTION	InStRUCTION CODE								crcles	BYtES	flags						ST4.7				
MNEMONIC			D7	D6	D5	D4	D3	D2	D1	Do			c	AC	F0	F1	IBF	OBF					
INPUT/OUTPUT																							
ANL Pp. = data	$\begin{aligned} & \left(P_{\rho}\right) \cdot\left(\begin{array}{l} \left(P_{\rho}\right) \\ p=1 \end{array}\right. \\ & \text { ANO datar } \end{aligned}$	Logical and Immediate specified data with designated port (1 or 2)	$\begin{gathered} 1 \\ d 7 \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 0 \\ d_{5} \end{gathered}$	$\begin{gathered} 1 \\ d_{4} \end{gathered}$	$\begin{gathered} 1 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} p \\ d_{1} \end{gathered}$	$\begin{gathered} p \\ d_{0} \end{gathered}$	2	2											
ANLD Pp, A	$\begin{aligned} & \left(P_{p}\right)-\left(P_{p}\right) \text { AND }\left(\begin{array}{lll} A & 0 & 3 \end{array}\right) \\ & p=4 \\ & 7 \end{aligned}$	Logical and contents of Accumulator with designated port (4-7).	1	0	0	1	1	1	p	p	2	1											
IN A. Pp	(A). (Pp), $\mathrm{P}=12$	Input data from designated port (1 or 2 ) into Accumulator	0	0	0	0	1	0	p	p	2	1											
IN A. DB8	(A) - (DBB)	Input strobed DBB data into Accumulator and clear IBF	0	0	1	0	0	0	1	0	1	1											
MOVD A. Pp	$\begin{aligned} & \left(\begin{array}{ll} (A-3)-(P D) p=4-7 \\ (A 47)-0 \end{array}\right. \end{aligned}$	Move contents of designated port (4-7) into Accumulator	0	0	0	0	1	1	p	р	2	1											
MOVD Pp. A		Move contents of Accumulator to desıgnated port (4-7)	0	0	1	1	1	1	p	p	1	1											
ORLD Pp. A	$\begin{aligned} & \left(P_{p}\right)-\left(P_{p}\right) \text { OR }\left(\begin{array}{lll} A & 0 & 3 \end{array}\right) \\ & p=4 \end{aligned}$	Logical or contents of Accumulator with designated port (4-7)	1	0	0	0	$1$	$1$	$p$	p	1	1											
ORL Pp. $=$ data	$\begin{aligned} & \left(P_{p}\right)-\left(P_{p}\right) O R \text { data } \\ & p-1=2 \end{aligned}$	Logical or Immediate specified data with designated port (1 or 2)	$\begin{gathered} 1 \\ d 7 \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 0 \\ d 5 \end{gathered}$	$\begin{gathered} 0 \\ d 4 \end{gathered}$	$\begin{gathered} 1 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} p \\ \mathbf{d}_{1} \end{gathered}$	$\begin{gathered} p \\ d 0 \end{gathered}$	2	2											
OUT D88, A	(DBB) (A)	Output contents of Accumulator onto DBB and set OBF.	0	0	0	0	0	0	1	0	1	1											
OUTL PP, A	$(P p)-(A), ~ P=12$	Output contents of Accumulator to designated port (1 or 2)	0	0	1	1	1	0	D	p	1	1											
REGISTERS																							
DEC Rr (Rr)	$\left(R_{r}\right)-\left(R_{r}\right) \quad 1 \quad r=0 \quad 7$	Decrement by 1 contents of designated register	1	1	0	0	1	'	'	r	1	1											
INC Rr	$\left(R_{r}\right) \cdots\left(R_{r}\right)+1 r=0 \quad 7$	Increment by 1 contents of designated register	0	0	0	1	1	'	r	r	1	1											
INC © Rr	$\begin{aligned} & \\|R H\\|-\\|R r\\|+1 \\ & i=0,1 \end{aligned}$	Increment Indirect by 1 the contents of data memory location	0	0	0	1	0	0	0	r	1	1											
SUBROUTINE																							
CALL addr		Call desigrated Subroutine	$\begin{aligned} & \mathbf{a}_{10} \\ & \mathbf{a}_{7} \end{aligned}$	$\begin{aligned} & a_{9} \\ & a_{6} \end{aligned}$	$\begin{aligned} & \text { a8 } \\ & \text { a5 } \end{aligned}$	1 3	$\begin{gathered} 0 \\ a_{3} \end{gathered}$	$\begin{gathered} 1 \\ a_{2} \end{gathered}$	0 $d$		2	2											
RET	$\begin{aligned} & (S P)-(S P))^{1} \\ & (P C)=((S P)) \end{aligned}$	Return from Subroutine without restoring Program Status Word	1	0	0	0	0	0	1	1	$2$	1											
RETR	$\begin{aligned} & (S P)-(S P){ }^{1} \\ & (P C)-((S P)) \cdot((S P)) \\ & (P S W 4) \cdot(1) \end{aligned}$	Return from Subroutine restoring Prograin Status Word	1	0	0	1	0	0	1	1	.2	1											
TIMER/COUNTER																							
EN TCNTI		Enable Internal interrupt Flag for Timer/Counter output	0	0	1	0	0		0	1	1	1											
DIS TCNTI		Disable Internal interrupt Flac for Timer/Counter output	0	- 0	1	1	0	1	0	1	1	1											
MOV A. T	(A) - (T)	Move contents of Timer/Counter into Accumulator	0	1	0	0	0	0	1	0	1	1											
MOV T. A	(T) - (A)	Move contents of Accumulator into Timer/Counter	0	1	1	0	0	0	1	0	1	1											
STOP TCNT		Stop Count for Event Counter	0	1	1	0	0	1	0	1	1	1											
STRT CNT		Start Count for Event Counter	0	1	0	0	0	1	0	1	1	1											
STRT T		Start Count for Timer	0	1	0	1	0	1	0	1	1	1											
Miscellaneous																							
NOP		No Operation performed	0	0	0	0	0	0	0	0	1	1											

Notes (1) Instruction Code Designations rano p form the binary representation of the Registers and Ports involved.
(2) The dot under the appropriate flag bit indicates that its content is subject to change by the instruction it appears in.
(3) References to the address and data are specified in bytes 2 and or 1 of the instruction.
(4) Numerical Subscripts appearing in the FUNCTION column reference the specific bits affected.

Symbol Definitions:

SYMBOL	DESCRIPTION
A	The Accumulator
AC	The Auxiliary Carry Flag
addr	Program Memory Address (12 bits)
Bb	Bit Designator (b = 0-7)
BS	The Bank Switch
BUS	The BUS Port
C	Carry Flag
CLK	Clock Signal
CNT	Event Counter
D	Nibble Designator (4 bits)
data	Number or Expression (8 bits)
DBF	Memory Bank Flip-Flop
FO, F1 $^{\text {S }}$	Flags 0, 1
I	Interrupt
P	"In-Page" Operation Designator
IBF	Input Buffer Full Flag


SYMBOL	DESCRIPTION
$P_{p}$	Port Designator ( $\mathrm{p}=1,2$ or $4-7$ )
PSW	Program Status Word
Rr	Register Designator ( $\mathrm{r}=0,1$ or 0-7)
SP	Stack Pointer
T	Timer
TF	Timer Flag
$\mathrm{T}_{0}, \mathrm{~T}_{1}$	Testable Inputs 0,1
X	External RAM
$\#$	Prefix for Immediate Data
$@$	Prefix for Indirect Address
$\$$	Program Counter's Current Value
$(x)$	Contents of External RAM Location
$((x))$	Contents of Memory Location Addressed   by the Contents of External RAM Location.
$\leftarrow$	Replaced By
OBF	Output Buffer Full
DBB	Data Bus Buffer

## Package Outlines

For information, see Package Outline Section 7.
Plastic, $\mu$ PD8041AC
Ceramic, $\mu$ PD8041AD
Cerdip, $\mu$ PD8741AD, has quartz window

Notes

## Description

The $\mu$ PD8048H family of single chip 8 -bit microcomputers is comprised of the $\mu$ PD8048H and the $\mu$ PD8035 HL. The processors in this family differ only in their internal program memory options: The $\mu$ PD8048H with $1 \mathrm{~K} \times 8$ bytes of mask ROM and the $\mu$ PD8035HL with external memory.

## Features

Fully Compatible with Industry Standard 8048/8748/8035HMOS Silicon Gate Technology Requiring a Single +5 V Supply$2.5 \mu \mathrm{~s}$ Cycle Time. All Instructions 1 or 2 Bytes
Interval Timer/Event Counter
$64 \times 8$ Byte RAM Data Memory
External and Timer Interrupts
96 Instructions: 70\% Single Byte
27 I/O Lines
Internal Clock Generator
8 Level Stack
Compatible with 8080A/8085A Peripherals
Available in Both Ceramic and Plastic 40 Pin Packages

## Functional Description

The NEC $\mu$ PD8048H and $\mu$ PD8035 HL are single component, 8 -bit, parallel microprocessors using N -channel silicon gate MOS technology. The $\mu$ PD8048H family of components functions efficiently in control as well as in arithmetic applications. Standard logic function implementation is facilitated by the large variety of branch and table look-up instructions. The $\mu \mathrm{PD} 8048 \mathrm{H} / 8035 \mathrm{HL}$ instruction set is comprised of 1 and 2 byte instructions with over $70 \%$ of them single-byte and requiring only 1 or 2 cycles per instruction with over $50 \%$ single-cycle.
The $\mu$ PD8048H series of microprocessors will function as stand alone microcomputers. Their functions can easily be expanded using standard 8080A/8085A peripherals and memories.
The $\mu$ PD8048H contains the following functions usually found in external peripheral devices: $1024 \times 8$ bits of ROM program memory; $64 \times 8$ bits of RAM data memory; 27 I/O lines; an 8 -bit interval timer/event counter; oscillator and clock circuitry. The $\mu$ PD8035HL is intended for applications using external program memory only. It contains all the features of the $\mu$ PD8048H except the $1024 \times 8$-bit internal ROM. The external program memory can be implemented using standard 8080A 8085 A memory products.

## Pin Identification

Pin		Function
No.	Symbol	
1	$\mathrm{T}_{0}$	Testable input using conditional transfer functions JT0 and JNTO. The internal State Clock (CLK) is available to T $_{0}$ using the ENTO CLK instruction. $\mathrm{T}_{0}$ can also be used during programming as a testable flag.
2	XTAL 1	One side of the crystal input for external oscillator or frequency (non-TTL compatible $\mathrm{V}_{\mathrm{IH}}$ ).
3	XTAL 2	The other side of the crystal input.
4	RESET	Active low input for processor initialization. $\overline{\text { RESET }}$ is also used for PROM programming verification and power-down (non-TTL. compatible $V_{1 H}$ ).


Pin		Function
No.	Symbol	
5	$\overline{\mathbf{S S}}$	Single Step input (active-low). $\overline{\mathbf{S S}}$ together with ALE allows the processor to "single-step" through each instruction in program memory.
6	$\overline{\text { INT }}$	Interrupt input (active-low). INT will start an interrupt if an enable interrupt instruction has been executed. A reset will disable the interrupt. INT can be tested by issuing a conditional jump instruction.
7	EA	External Access input (active-high). A logic " 1 " at this input commands the processor to perform all program memory fetches from external memory.
8	$\overline{\mathbf{R D}}$	READ strobe output (active-low). $\overline{\operatorname{RD}}$ will pulse low when the processor performs a BUS READ. $\overline{R D}$ will also enable data onto the processor BUS from a peripheral device and function as a READ STROBE for external DATA MEMORY.
9	PSEN	Program Store Enable output (active-low). $\overline{\text { PSEN }}$ becomes active only during an external memory fetch.
10	$\overline{W R}$	WRITE strobe output (active-low). $\overline{\text { WR }}$ will pulse low when the processor performs a BUS WRITE. WR can also function as a WRITE STROBE for external DATA MEMORY.
11	ALE	Address Latch Enable output (active-high). Occurring once each cycle, the falling edge of ALE latches the address for external memory or peripherals ALE can also be used as a clock output.
12-19	$\mathrm{D}_{0}-\mathrm{D}_{7} \mathrm{BUS}$	8-bit, bidirectional port. Synchronous reads and writes can be performed on this port using RD and WR strobes. The contents of the $D_{0}-D_{7}$ BUS can be latched in a static mode.   During an external memory fetch, the $D_{0}-D_{7}$ BUS holds the least significant bits of the program counter. PSEN controls the incoming addressed instruction. Also, for an external RAM data store instruction the $D_{0}-D_{7}$ BUS, controlled by ALE, $\overline{R D}$, and $\overline{W R}$, contains address and data informatıon.
20	$\mathrm{V}_{\text {SS }}$	Processor's GROUND potential.
$\begin{aligned} & 21-24 \\ & 35-38 \end{aligned}$	$\begin{aligned} & P_{20}-P_{27}: \\ & \text { PORT } 2 \end{aligned}$	Port 2 is the second of two 8-bit quasi-bidirectional ports. For external data memory fetches, the four most significant bits of the program counter are contained in $\mathrm{P}_{20}-\mathrm{P}_{23}$ Bits $\mathbf{P}_{20}-\mathbf{P}_{23}$ are also used as a 4-bit I/O bus for the $\mu$ PD8243, INPUT/OUTPUT EXPANDER.
25	PROG	PROG is used as an output strobe for the $\mu$ PD8243.
26,	$\mathrm{V}_{\mathrm{DD}}$	$\mathrm{V}_{\mathrm{DD}}$ must be set to $+\mathbf{5 V}$ for normal operation. $\mathrm{V}_{\mathrm{DD}}$ functions as the Low Power Standby input for the $\mu$ PD8048H.
27-34	$\begin{aligned} & \mathbf{P}_{10}-\mathbf{P}_{17}: \\ & \text { PORT } 1 \end{aligned}$	Port 1 is one of two 8-bit quasi-bidirectional ports.
39	T1	Testable input using conditional transfer functions JT1 and JNT1. T1 can be made the counter/timer input using the STRT CNT instruction.
40	$\mathrm{V}_{\mathrm{cc}}$	Primary Power Supply. $\mathrm{V}_{\mathrm{cc}}$ must be +5 V for operation of the $\mu$ PD8035H and $\mu$ PD8048H.

## Pin Configuration

${ }^{1} 0$		40	$\mathrm{v}_{\mathrm{cc}}$
XTAL 1 -		39	$\mathrm{T}_{1}$
$\times$ XAL 2 G		38	P27
RESET ${ }^{\text {d }}$		37	日 P 26
$\overline{\mathrm{S}}$		36	Q P25
INT		35	$\square^{P} 24$
EA		34	$\mathrm{G}^{P 17}$
$\overline{\mathrm{RD}}$ 당	$\mu \mathrm{PD}$	33	$\mathrm{p}^{\mathrm{P} 16}$
PSEN	8048H	32	$\mathrm{QP}^{\mathrm{P} 15}$
WR ${ }^{10}$	8035 HL .	31	$\square^{1} \mathrm{P} 14$
ale ${ }^{11}$		30	[P13
$\mathrm{DB}_{0} \mathrm{H}^{12}$		29	$\square^{P} 12$
$\mathrm{DB}_{1} \square^{13}$		28	$\mathrm{p}^{1} 11$
$\mathrm{DB}_{2} \mathrm{~S}^{14}$		27	$\mathrm{P}^{\text {P10 }}$
$\mathrm{DB}_{3} \mathrm{~S}^{15}$		26	$\mathrm{P} \mathrm{V}_{\text {D }}$
$\mathrm{DB}_{4} \mathrm{~S}^{16}$		25	$\square \mathrm{PROG}$
$\mathrm{DB}_{5} \mathrm{~S}^{17}$		24	$]^{2} 23$
$\mathrm{DB}_{6} \mathrm{~S}^{18}$		23	P P22
$\mathrm{DB}_{7} \mathrm{~S}^{19}$		22	$\mathrm{P}^{2} 1$
$v_{\text {SS }}{ }^{20}$		21	Р P20

## $\mu$ PD8048H/8035HL

## Block Diagram



Note: $\mu$ PD8035H does not include ROM.

DC Characteristics
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=\mathbf{0 V}$

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Input Low Voltage (All Except XTAL 1, XTAL 2)	$V_{\text {IL }}$	-05		0.8	V	
Input Low Voltage (RESET, $\mathbf{x} 1, \mathbf{x} \mathbf{2}$	$\mathrm{V}_{\text {LL }}$	-0.5		0.8	V	
Input High Voltage (All Except XTAL 1, XTAL 2, RESET)	$\mathrm{V}_{\mathbf{I H}}$	2.0		$\mathrm{V}_{\mathrm{cc}}$	v	
Input High Voltage (RESET, XTAL 1, XTAL 2)	$\mathrm{V}_{\mathbf{1 + 1}}$	3.8		$\mathrm{V}_{\text {cc }}$	V	
Output Low Voltage (BUS)	$\mathrm{V}_{\mathrm{OL}}$			0.45	$v$	$\mathrm{IOL}=2.0 \mathrm{~mA}$
Output Low Voltage ( $\overline{\mathrm{RD}}$, WR, PSEN, ALE)	$\mathrm{V}_{\mathrm{OL}, 1}$			0.45	V	$\mathrm{IOL}=2.0 \mathrm{~mA}$
Output Low Voltage (PROG)	$\mathrm{V}_{\mathrm{OL} 2}$			0.45	v	$\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
Output Low Voltage (All Other Outputs)	$\mathrm{V}_{\mathrm{OL} 3}$			0.45	V	$\mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}$
Output High Voitage (BUS)	$\mathrm{V}_{\mathrm{OH}}$	2.4			V	$\mathrm{IOH}=-400 \mu \mathrm{~A}$
Output High Voltage ( $\overline{\mathrm{RD}}$, WR, PSEN, ALE)	$\mathrm{V}_{\mathrm{OH} 1}$	2.4			v	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
Output High Voltage (All Other Outputs)	$\mathrm{V}_{\mathrm{OH} 2}$	2.4			v	$\mathrm{I}_{\mathrm{OH}}=-40 \mu \mathrm{~A}$
Input Leakage Current ( $\mathrm{T}_{1}$, INT)	$1 / 1$			$\pm 10$	$\mu \mathrm{A}$	$\mathrm{V}_{\text {Ss }} \leqslant \mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\text {cc }}$
Input Leakage Current $\left(\mathbf{P}_{10}-\mathbf{P}_{17}, \mathbf{P}_{20}-\mathbf{P}_{27}, \mathbf{E A}, \overline{\mathbf{S S}}\right)$	$\mathrm{I}_{1 / 1}$			-500	$\mu \mathrm{A}$	$\mathrm{V}_{\text {cc }} \geqslant \mathrm{V}_{\text {IN }} \geqslant \mathrm{V}_{\text {SS }}+0.45 \mathrm{~V}$
Output Leakage Current (BUS, $\mathrm{T}_{0}$ - High Impedance State)	lob			$\pm 10$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{cc}} \geqslant \mathrm{V}_{\mathbf{I N}} \geqslant \mathrm{V}_{\text {SS }}+0.45 \mathrm{~V}$
Power Down Supply Current	$\mathrm{I}_{\mathrm{D}}$		4	8	mA	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
Total Supply Current	$I_{\text {D }}+I_{\text {cc }}$		50	80	mA	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
RAM Standby Voitage	$V_{\text {D }}$	2.2		5.5	v	Standby Mode. Reset $\leqslant \mathbf{0 . 6 V}$

Absolute Maximum Ratings*

$\mathbf{T}_{\mathrm{a}}=\mathbf{2 5} \mathbf{}{ }^{\circ} \mathrm{C}$	
Operating Temperature	$0^{\circ} \mathrm{C}$ to $+\mathbf{7 0 ^ { \circ } \mathrm { C }}$
Storage Temperature (Ceramic Package)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic Package)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin	-0.5 V to $+7 \mathrm{~V} ₫$
Power Dissipation	1.5 W

Note: (1) With respect to ground
*COMMENT: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

AC Characteristics
$\mathrm{T}_{\mathrm{a}}=\mathbf{0}^{\circ} \mathrm{C}$ to $\mathbf{7 0}{ }^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=\mathbf{0 V}$

Parameter	Symbol	Limits			Unit	$f\left(t_{c r}\right)$ and Test Conditions
		Min	Typ	Max		
ALE Pulse Width	$t_{\text {LL }}$	410			ns	$7 / 30 \mathrm{t}_{\mathrm{Cr}}-170$
Addr Setup to ALE	$t_{\text {AL }}$	220			ns	$2 / 15 t_{c r}-110$
Addr Hold from ALE	$t_{\text {LA }}$	120			ns	$1 / 15 t_{\text {cr }}-40$
Control Pulse Width (RD, WR)	$\mathbf{t c c l}$	1050			ns	$1 / 2 t_{C Y}-200$
Control Puise Width ( $\overline{\text { PSEN }}$ )	$\mathrm{t}_{\mathrm{cc} 2}$	800			ns	$2 / 5 \mathrm{t}_{\mathrm{cr}}-200$
Data Setup WR	$t_{\text {dw }}$	880			ns	$13 / 30 t_{\text {cr }}-200$
Data Hold after WR	$t_{\text {wo }}$	110			ns	1/15 $\mathrm{t}_{\mathrm{cr}}-50$ (2)
Data Hold ( $\overline{\text { RD, }}$, $\overline{\text { PSEN }}$ )	$t_{\text {DR }}$	0		220	ns	$1 / 10 \mathrm{t}_{\mathrm{cr}}-30$
$\overline{\overline{R D}}$ to Data in	$\mathrm{t}_{\mathrm{RD1} 1}$			800	ns	2/5 $\mathrm{t}_{\mathrm{cr}}-200$
PSEN to Data in	$\mathrm{t}_{\mathrm{RD} 2}$			550	ns	3/10 $t_{\text {cr }}-200$
Addr Setup to $\overline{W R}$	$t_{\text {AW }}$	680			ns	$1 / 3 t_{C Y}-150$
Addr Setup to Data (RD)	$t_{\text {AD } 1}$			1570	ns	$11 / 15 t_{C Y}-250$
Addr Setup to Data ( $\overline{\text { PSEN }}$ )	$\mathrm{t}_{\mathrm{AD} 2}$			1090	ns	8/15 $\mathrm{t}_{\mathrm{Cr}}-250$
Addr Float to $\overline{\mathrm{RD}}, \overline{\mathrm{WD}}$	$t_{\text {AFC }}$	290			ns	2/15 $\mathrm{t}_{\mathrm{cr}}-40$
Addr Float to PSEN	$\mathrm{t}_{\text {AFC2 }}$	40			ns	$1 / 30{ }^{\text {t }} \mathrm{cr}-40$
ALE to Control ( $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ )	$t_{\text {LAFC1 }}$	420			ns	$1 / 5 \mathrm{t}_{\mathrm{cr}}-75$
ALE to Control (PSEN)	$t_{\text {LAFC2 }}$	170			ns	$1 / 10 t_{c r}-75$
Control to ALE (RD, $\overline{W R}, \overline{P R O G})$	$t_{\text {cal }}$	120			ns	$1 / 15 t_{c r}-40$
Control to ALE ( $\overline{\text { PSEN }}$ )	$\mathrm{t}_{\text {CA2 }}$	620			ns	4/15 $\mathrm{t}_{\mathrm{cr}}-40$
Port Control Setup to $\overline{\text { PROG }}$	${ }^{\text {cPP }}$	210			ns	1/10 $t_{c r}-40$
Port Control Hold to PROG	$t_{\text {PC }}$	460			ns	4/15 $\mathrm{t}_{\mathrm{cY}}-200$
PROG to P2 Input Valid	$t_{\text {PR }}$			1300	ns	$17 / 30 t_{\text {cY }}-120$
Input Data Hold from PROG	$t_{\text {PF }}$			250	ns	$1 / 10 t_{\text {cr }}$
Output Data Setup	$t_{\text {DP }}$	850			ns	$2 / 5 t_{c r}-150$
Output Data Hold	$t_{\text {PD }}$	200			ns	$1 / 10 t_{c r}-50$
PROG Pulse Width	$t_{\text {pp }}$	1500			ns	7/10 $\mathrm{t}_{\mathrm{cr}}-250$
Port 2 I/O Setup to ALE	$t_{\text {PL }}$	460			ns	4/15 $\mathrm{t}_{\mathrm{cr}}-200$
Port 2 V/O Hold to ALE	$\mathrm{t}_{\mathrm{LP}}$	150			ns	$1 / 10 t_{\text {cr }}-100$
Port Output from ALE	$t_{\text {PV }}$			850	ns	$3 / 10 t_{\mathrm{cr}}+100$
Cycle Time	${ }^{\text {c }} \mathrm{Cr}$	25			$\mu \mathrm{s}$	6 MHz
TO Rep Rate	$t_{\text {OPRR }}$	500			ns	$3 / 15 t_{\text {cy }}$

Notest (1) Control Outputs $\mathrm{CL}=80 \mathrm{pF}$
BUS Outputs $\mathrm{CL}=150 \mathrm{pF}$
(2) BUS High Impedance Load 20pF

## Logic Symbol



## $\mu$ PD8048H/8035HL

## Timing Waveforms

## Instruction Fetch from External Memory



## Read from External Data Memory



## Write to External Memory



## Port 2 Timing




Port P1 and P2 Output High Voltage vs. Source Current


BUS Output Low Voltage vs. Sink Current


## Instruction Set (for Symbol Definitions, see page 8.)


$\mu$ PD8048H/8035HL
Instruction Set (Cont.)

Mnemonic	Function	Description	Instruction Code										Flags		
			$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$	Cycles	Bytes	c	AC FO	F1
Branch (Cont.)															
JNT0 addr	$\begin{aligned} & (P C 0-7) \leftarrow \operatorname{addr} \text { if T0 }=0 \\ & (P C) \leftarrow(P C)+2 \text { if } T 0=1 \end{aligned}$	Jump to specified address if Test $\mathbf{0}$ is low.	$\begin{aligned} & 0 \\ & a_{7} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{a}_{6} \end{aligned}$	$\begin{aligned} & 1 \\ & a_{5} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{a}_{4} \end{aligned}$	$\begin{gathered} 0 \\ \mathbf{a}_{3} \end{gathered}$	$\begin{aligned} & 1 \\ & a_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & a_{1} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{a}_{0} \end{aligned}$	2	2			
JNT1 addr	$\begin{aligned} & (\mathrm{PCO} 0-7) \leftarrow \text { addr if T1 }=0 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } \mathrm{T1}=1 \end{aligned}$	Jump to specified address if Test 1 is low.	$\begin{aligned} & \mathbf{0} \\ & \mathbf{a}_{7} \end{aligned}$	$\begin{aligned} & 1 \\ & a_{6} \end{aligned}$	$\begin{aligned} & 0 \\ & a_{5} \end{aligned}$	$\begin{gathered} 0 \\ a_{4} \end{gathered}$	$\begin{aligned} & 0 \\ & a_{3} \end{aligned}$	$\begin{aligned} & 1 \\ & a_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & a_{1} \end{aligned}$	$\begin{gathered} 0 \\ \mathbf{a}_{0} \end{gathered}$	2	2			
JNZ addr	$\begin{aligned} & \text { (PCO-7) } \leftarrow \text { addr if } A=0 \\ & (P C) \leftarrow(P C)+2 \text { if } A=0 \end{aligned}$	Jump to specified address if accumulator is non-zero.	$\begin{aligned} & 1 \\ & a_{7} \end{aligned}$	$\begin{aligned} & \hline \mathbf{0} \\ & \mathbf{a}_{6} \end{aligned}$	$\begin{aligned} & 0 \\ & a_{5} \end{aligned}$	$\begin{aligned} & 1 \\ & a_{4} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{a}_{3} \end{aligned}$	$\begin{gathered} 1 \\ a_{2} \end{gathered}$	$\begin{aligned} & 1 \\ & a_{1} \end{aligned}$	$\begin{aligned} & 0 \\ & a_{0} \end{aligned}$	2	2			
JTF addr	$\begin{aligned} & (\mathrm{PCO} 0-7) \leftarrow \text { addr if TF }=1 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \mathrm{If} \text { TF }=0 \end{aligned}$	Jump to specified address if Timer Flag is set to 1.	$\begin{aligned} & \mathbf{0} \\ & \mathbf{a}_{7} \end{aligned}$	$\begin{gathered} 0 \\ \mathbf{a}_{6} \end{gathered}$	$\begin{aligned} & 0 \\ & a_{5} \end{aligned}$	$\begin{aligned} & 1 \\ & a_{4} \end{aligned}$	$\begin{gathered} 0 \\ a_{3} \end{gathered}$	$\begin{gathered} 1 \\ a_{2} \end{gathered}$	$\begin{aligned} & 1 \\ & a_{1} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{a}_{0} \end{aligned}$	2	2			
JT0 addr	$\begin{aligned} & (\mathrm{PCO}-7) \leftarrow \text { addr if T0 }=1 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } T 0=0 \end{aligned}$	Jump to specified address if Test 0 is a $\mathbf{1}$.	$\begin{gathered} 0 \\ a_{7} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ a_{6} \end{gathered}$	$\begin{gathered} 1 \\ a_{5} \end{gathered}$	$\begin{aligned} & 1 \\ & a_{4} \end{aligned}$	$\begin{gathered} \mathbf{0} \\ \mathbf{a}_{3} \end{gathered}$	$\begin{gathered} 1 \\ a_{2} \end{gathered}$	$\begin{aligned} & 1 \\ & a_{1} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{a}_{0} \end{aligned}$	2	2			
JT1 addr	$\begin{aligned} & (\mathrm{PCO} 0-7) \leftarrow \operatorname{addr} \mathrm{IfT1}=1 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \mathrm{HT} \mathrm{~T}=0 \end{aligned}$	Jump to specified address if Jest 1 is a 1.	$\begin{aligned} & 0 \\ & \mathbf{a}_{7} \end{aligned}$	$\begin{aligned} & 1 \\ & a_{6} \end{aligned}$	$\begin{aligned} & 0 \\ & a_{5} \end{aligned}$	$\begin{aligned} & 1 \\ & a_{4} \end{aligned}$	$\begin{gathered} \mathbf{0} \\ \mathbf{a}_{3} \end{gathered}$	$\begin{gathered} 1 \\ a_{2} \end{gathered}$	$\begin{aligned} & 1 \\ & \mathbf{a}_{1} \end{aligned}$	$\begin{gathered} 0 \\ \mathbf{a}_{0} \end{gathered}$	2	2			
JZ addr	$\begin{aligned} & \text { (PC 0-7) addr if } A=0 \\ & (P C) \leftarrow(P C)+2 \text { if } A=0 \end{aligned}$	Jump to specified address if Accumulator is 0 .	$\begin{gathered} 1 \\ a_{7} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ a_{6} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ a_{5} \end{gathered}$	$\begin{gathered} 0 \\ \mathbf{a}_{4} \end{gathered}$	$\begin{gathered} 0 \\ a_{3} \end{gathered}$	$\begin{gathered} 1 \\ a_{2} \end{gathered}$	$\begin{gathered} 1 \\ \mathbf{a}_{1} \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{0} \\ \mathbf{a}_{0} \\ \hline \end{gathered}$	2	2			
Control															
ENI		Enable the External Interrupt input.	0	0	0	0	0	1	0	1	1	1			
DIS I		Disable the External Interrupt input.	0	0	0	1	0	1	0	1	1	1			
ENTO CLK		Enable the Clock Output pin T0.	0	1	1	1	0	1	0	1	1	1			
SEL MBO	(DBF) $\leftarrow 0$	Select Bank 0 (locations 0-2047) of Program Memory.	1	1	1	0	0	1	0	1	1	1			
SEL MB1	(DBF) $\leftarrow 1$	Select Bank 1 (locations 2048-4095) of Program Memory.	1	1	1	1	0	1	0	1	1	1			
SEL RBO	$(\mathrm{BS}) \leftarrow 0$	Select Bank 0 (locations 0-7) of Data Memory.	1	1	0	0	0	1	0	1	1	1			
SEL RB1	(BS) $\leftarrow 1$	Select Bank 1 (locations 24-31) of Data Memory.	1	1	0	1	0	1	0	1	1	1			
Data Moves															
MOV A, \# data	(A) $\leftarrow$ data	Move Immediate the specified data into the Accumulator.	$\begin{gathered} 0 \\ d_{7} \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 1 \\ d_{5} \end{gathered}$	$\begin{gathered} 0 \\ d_{4} \end{gathered}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{aligned} & 0 \\ & d_{2} \end{aligned}$	$\begin{gathered} 1 \\ d_{1} \end{gathered}$	$\begin{gathered} 1 \\ d_{0} \end{gathered}$	2	2			
MOV A, Rr	( A$) \leftarrow(\mathrm{Rr}) ; \mathrm{r}=0-7$	Move the Contents of the designated registers into the Accumulator.	1	1	1	1	1	$r$	$r$	$r$	1	1			
MOV A, @ Rr	$(\mathrm{A}) \leftarrow((\mathrm{Rr})$ ) $\mathrm{r}=0-1$	Move Indirect the Contents of data memory location into the Accumulator.	1	1	1	1	0	0	0	r	1	1			
MOV A, PSW	(A) $\leftarrow$ (PSW)	Move contents of the Program Status Word into the Accumulator.	1	1	0	0	0	1	1	1	1	1			
MOV Rr, \# data	(Rr) $\leftarrow$ data; $\mathrm{r}=0-7$	Move Immediate the specified data into the designated register.	$\begin{aligned} & 1 \\ & d_{7} \end{aligned}$	$\begin{gathered} 0 \\ \mathbf{d}_{6} \end{gathered}$	$\begin{aligned} & 1 \\ & d_{5} \end{aligned}$	$\begin{aligned} & 1 \\ & d_{4} \end{aligned}$	$\begin{aligned} & 1 \\ & d_{3} \end{aligned}$	$\begin{gathered} r \\ d_{2} \end{gathered}$	$\stackrel{r}{d_{1}}$	$\begin{gathered} r \\ d_{0} \end{gathered}$	2	2			
MOV Rr, A	$(\mathrm{Rr}) \leftarrow(\mathrm{A}) ; \mathrm{r}=0-7$	Move Accumulator Contents into the designated register.	1	0	1	0	1	r	$r$	$r$	1	1			
MOV @ Rr, A	$((\mathrm{Rr})) \leftarrow(\mathrm{A}) ; \mathrm{r}=0-1$	Move Indirect Accumulator Contents into data memory location.	1	0	1	0	0	0	0	$r$	1	1			
MOV @ Rr, \# data	$((\mathrm{Rr}) \leftarrow$ ¢data; $\mathrm{r}=0-1$	Move Immediate the specified data into data memory.	$\begin{aligned} & 1 \\ & d_{7} \end{aligned}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{aligned} & 1 \\ & \mathbf{d}_{5} \end{aligned}$	$\begin{aligned} & 1 \\ & d_{4} \end{aligned}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} 0 \\ \mathbf{d}_{1} \end{gathered}$	$\stackrel{r}{\mathbf{d}_{0}}$	2	2			
MOV PSW, A	$($ PSW $) \leftarrow(A)$	Move contents of Accumulator into the program status word.	1	1	0	1	0	1	1	1	1	1			
MOVP A, @ A	$\begin{aligned} & \text { (PC 0-7) } \leftarrow(A) \\ & (A) \leftarrow((P C)) \end{aligned}$	Move data in the current page into the Accumulator.	1	0	1	0	0	0	1	1	2	1			
MOVP3 A, @ A	$\begin{aligned} & (P C 0-7) \leftarrow(A) \\ & (P C 8-10) \leftarrow 011 \\ & (A) \leftarrow(P C)) \end{aligned}$	Move Program data in Page 3 into the Accumulator.	1	1	1	0	0	0	1	1	2	1			
MOVX A, @ R	$(A) \leftarrow((R r)) ; r=0-1$	Move Indirect the contents of external data memory into the Accumulator.	1	0	0	0	0	0	0	r	2	1			
MOVX @ R, A	$((\mathrm{Rr})$ ) $\leftarrow(A) ; r=0-1$	Move Indirect the contents of the Accumulator into external data memory.	1	0	0	1	0	0	0	r	2	1			
XCH A, Rr	(A) $\rightleftarrows($ (Rr) $)$; $\mathrm{r}=0-7$	Exchange the Accumulator and designated register's contents.	0	0	1	0	1	r	r	r	1	1			
XCH A, @ Rr	(A) $\rightleftarrows($ (Rr) $)$; $\mathrm{r}=0-1$	Exchange Indirect contents of Accumulator and location in data memory.	0	0	1	0	0	0	0	r	1	1			
XCHD A, @ Rr	$\begin{aligned} & (\mathrm{A} 0-3) \leftrightarrows(\mathrm{Rr})(0-3)) ; \\ & r=0-1 \end{aligned}$	Exchange Indirect 4-bit contents of Accumulator and data memory.	0	0	1	1	0	0	0	r	1	1			
Flags															
CPL C	(C) $\leftarrow \mathrm{NOT}(\mathrm{C})$	Complement Content of carry bit.	1	0	1	0	0	1	1	1	- 1	1	-		
CPLFO	(FO) ¢ NOT (FO)	Complement Content of Flag FO.	1	0	0	1	0	1	0	1	1	1			
CPLF1	(F1) $\leftarrow$ NOT (F1)	Complement Content of Flag F1.	1	0	1	1	0	1	0	1	1	1			
CLRC	(C) $\leftarrow 0$	Clear content of carry bit to 0 .	1	0	0	1	0	1	1	1	1	1	-		
CLRFO	(FO) $\leftarrow 0$	Clear content of Flag 0 to 0.	1	0	0	0	0	1	0	1	1	1		-	
CLRF1	(F1) $\leftarrow 0$	Clear content of Flag 1 to 0.	1	0	1	0	0	1	0	1	1	1			

Instruction Set (Cont.)


Notes: (1) Instruction Code Designations $r$ and p form the binary representation of the Registers and Ports involved
(2) The dot under the appropniate flag bit indicates that its content is subject to change by the instruction it appears in
(3) References to the address and data are specified in bytes 2 and/or 1 of the instruction
(4) Numenical Subscripts appearing in the FUNCTION column reference the specific bits affected
(5) When the Bus is written to, with an OUTL instruction, the Bus remains an Output Port until either device is reset or a MOVX instruction is executed

Symbol	Description
A	The Accumulator
AC	The Auxiliary Carry Flag
addr	Program Memory Address (12 bits)
Bb	Bit Designator ( $\mathrm{b}=0-7$ )
BS	The Bank Switch
BUS	The BUS Port
C	Carry Flag
CLK	Clock Signal
CNT	Event Counter
D	Nibble Designator (4 bits)
data	Number of Expression (8 bits)
DBF	Memory Bank Flıp-Flop
$\mathrm{F}_{0}, \mathrm{~F}_{1}$	Flags 0, 1
1	Interrupt
P	"In-Page" Operation Designator
$P_{p}$	Port Designator ( $p=1,2$ or $4-7$ )
PSW	Program Status Word
Rr	Regıster Designator ( $\mathrm{r}=0,1$ or $0-7$ )
SP	Stack Pointer
T ${ }^{\text {c }}$	Timer
TF	Timer Flag
$T_{0}, T_{1}$	Testable Flags 0,1
$\mathbf{X}$	External RAM
$=$	Prefix for Immediate Data
©	Prefix for Indirect Address
\$	Program Counter's Current Value
(x)	Contents of External RAM Location
( $(\mathrm{x})$ )	Contents of Memory Location Addressed by the Contents of External RAM Location
	Replaced By

## Package Outlines

For information, see Package Outline Section 7.
Plastic, $\mu$ PD8048HC/35HLC
Ceramic, $\mu$ PD8048HD/35HLD

## $\mu$ PD8048 FAMILY OF SINGLE CHIP 8-BIT MICROCOMPUTERS

DESCRIPTION The $\mu$ PD8748 is a member of the $\mu$ PD8048 family of single-bit 8-chip microcomputers. It differs from the $\mu$ PD8048H/8035HL in that it contains 2 K of on-board EPROM rather than math programmable ROM. The $\mu$ PD8748 uses N -channel MOS technology. Refer to the $\mu \mathrm{PD} 8048 \mathrm{H} / 8035 \mathrm{HL}$ data sheet for additional information.

FEATURES

- Fully Compatible With Industry Standard 8048/8748/8035
- NMOS Silicon Gate Technology Requiring a Single +5 V Supply
- $2.5 \mu \mathrm{~s}$ Cycle Time. All Instruction 1 or 2 Bytes
- Interval Timer/Event Counter
- $64 \times 8$ Byte RAM Data Memory
- Single Level Interrupt
- 96 Instructions: 70\% Single Byte
- 27 I/O Lines
- Internal Clock Generator
- 8 Level Stack
- Compatible With 8080A/8085A Peripherals
- Available in Both Ceramic and Plastic 40 Pin Packages

To 1		40	$\mathrm{V}_{C C}(+5)$
xtal 12		39	$\mathrm{T}_{1}$
xtal 2 吅		38	P27
$\overline{\text { RESET }} 4$		37	P26
$\overline{\text { SS }} 5$		36	P25
INT 6		35	$\square \mathrm{P} 24$
EA 7		34	P17
$\overline{R D} 8$		33	P16
PSEN 9		32	P P15
WR 10	8748	31	$\square \mathrm{P} 14$
ALE 11		30	P P13
$\mathrm{DB}_{0} \mathrm{C}^{12}$		29	PP12
$\mathrm{DB}_{1}{ }^{13}$		28	P P11
$\mathrm{DB}_{2}{ }^{14}$		27	P P10
$\mathrm{DB}_{3}{ }^{15}$		26	$\mathrm{v}_{\text {DD }}$
$\mathrm{DB}_{4} \mathrm{C}_{16}$		25	$\square \mathrm{PROG}$
$\mathrm{DB}_{5}{ }^{17}$		24	P P23
$\mathrm{DB}_{6}{ }^{18}$		23	P $\mathrm{P}^{2}$
$\mathrm{DB}_{7} \mathrm{~S}^{19}$		22	P21
$\mathrm{v}_{\text {SS }}{ }^{20}$		21	P20

Rev/2
4-91

The NEC $\mu$ PD8748 is a single component, 8 -bit, parallel microprocessor using Nchannel silicon gate MOS technology. The 8748 efficiently functions in control as well as arithmetic applications. The flexibility of the instruction set allows for the direct set and reset of individual data bits within the accumulator and the I/O port structure. Standard logic function implementation is facilitated by the large variety of branch and table look-up instructions.

The $\mu$ PD8748 instruction set is comprised of 1 and 2 byte instructions with over 70\% single-byte and requiring only 1 or 2 cycles per instruction with over $50 \%$ singlecycle.

The $\mu$ PD8748 series of microprocessors will function as stand alone microcomputers. Their functions can easily be expanded using standard 8080A/8085A peripherals and memories.

The $\mu$ PD8748 contains the following functions usually found in external perıpheral devices: $1024 \times 8$ bits of ROM program memory; $64 \times 8$ bits of RAM data memory; 27 I/O lines; an 8 -bit interval timer/event counter; oscillator and clock circuitry.
The $\mu$ PD8748 differs from the $\mu$ PD8048 only in its $1024 \times 8$-bit UV erasable EPROM program memory instead of the $1024 \times 8$-bit ROM memory. It is useful in preproduction or prototype applications where the software design has not yet been finalized or in system designs whose quantities do not require a mask ROM.


PIN		FUNCTION
NO.	SYMBOL	
1	T0	Testable input using conditional transfer functions JTO and JNTO The internal State Clock (CLK) is available to $T_{0}$ using the ENTO CLK instruction $T_{0}$ can also be used during programming as a testable flag
2	XTAL 1	One side of the crystal input for external oscillator or frequency (non TTL compatible $\mathrm{V}_{1 H}$ ).
3.	XTAL 2	The other side of the crystal input
4	RESET	Active low input for processor initialization. $\overline{\operatorname{RESET}}$ is also used for PROM programming verification and powerdown (non TTL compatible $V_{1 H}$ ).
5	$\overline{\overline{S S}}$	Single Step input (active-low) $\overline{\mathrm{SS}}$ together with ALE allows the processor to "single-step" through each instruction in program memory
6	$\overline{\text { INT }}$	Interrupt input (active-low) $\overline{I N T}$ will start an interrupt if an enable interrupt instruction has been executed. A reset will disable the interrupt $\overline{\mathrm{INT}}$ can be tested by issuing a conditional jump instruction.
7	EA	External Access input (active-high) A logic " 1 " at this input commands the processor to perform all program memory fetches from external memory.
8	$\overline{\mathrm{RD}}$	READ strobe output (active-low). $\overline{R D}$ will pulse low when the processor performs a BUS READ. $\overline{R D}$ will also enable data onto the processor BUS from a perıpheral device and function as a READ STROBE for external DATA MEMORY.
9	$\overline{\text { PSEN }}$	Program Store Enable output (active-low). $\overline{\text { PSEN }}$ becomes active only during an external memory fetch
10	$\overline{W R}$	WRITE strobe output (active-low). $\overline{W R}$ will pulse low when the processor performs a BUS WRITE. WR can also function as a WRITE STROBE for external DATA MEMORY.
11	ALE	Address Latch Enable output (active high). Occurring once each cycle, the falling edge of ALE latches the address for external memory or peripherals ALE can also be used as a clock output.
12-19	$D_{0}-D_{7} B \cup S$	8 -bit, bidirectional port. Synchronous reads and writes can be performed on this port using $\overline{R D}$ and $\overline{W R}$ strobes. The contents of the $D_{0}-D_{7}$ BUS can be latched in a static mode.   During an external memory fetch, the $\mathrm{D}_{0}-\mathrm{D}_{7}$ BUS holds the least significant bits of the program counter. PSEN controls the incoming addressed instruction. Also, for an external RAM data store instruction the $D_{0}-D_{7} B U S$, controlled by ALE, $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$, contaıns address and data information.
20	$\mathrm{V}_{\text {SS }}$	Processor's GROUND potential
$\begin{aligned} & 21-24 \\ & 35-38 \end{aligned}$	$\begin{gathered} \mathrm{P}_{20}-\mathrm{P}_{27} \\ \mathrm{PORT} 2 \end{gathered}$	Port 2 is the second of two 8-bit quasi-bidirectional ports. For external data memory fetches, the four most significant bits of the program counter are contained in $P_{20}-P_{23}$. Bits $P_{20}-P_{23}$ are also used as a 4 -bit I/O bus for the $\mu$ PD8243, INPUT/OUTPUT EXPANDER.
25	PROG	Program Pulse. A +25 V pulse applied to this input is used for programming the $\mu$ PD8748. PROG is also used as an output strobe for the $\mu$ PD8243.
26	VDD	Programming Power Supply. VDD must be set to +25 V for programming the $\mu$ PD8748, and to +5 V for the ROM and PROM versions for normal operation. $V_{D D}$ functions as the Low Power Standby input for the $\mu$ PD8048.
27-34	$\begin{gathered} P_{10}-P_{17} \\ \text { PORT } 1 \end{gathered}$	Port 1 is one of two 8-bit quasi-bidirectional ports.
39	T1	Testable input using conditional transfer functions JT1 and JNT1. T1 can be made the counter/timer input using the STRT CNT instruction.
40	$\mathrm{V}_{\mathrm{CC}}$	Primary Power Supply. VCC must be +5 V for programming and operation of the $\mu$ PD8748, and for operation of the $\mu$ PD8035L. and $\mu$ PD8048.

Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature (Ceramic Package) . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic Package) . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin . . . . . . . . . . . . . . . . . . . . . . . -0.5 to + +7 Volts ${ }^{\text {(1) }}$
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 W
Note: (1) With respect to ground.
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum ratıng conditions for extended periods may affect device reliability.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage   (All Except XTAL 1, XTAL 2)	$V_{\text {IL }}$	-0.5		0.8	V	
Input High Voltage   (All Except XTAL 1, XTAL 2, $\overline{\text { RESET }}$	$\mathrm{V}_{\text {IH }}$	2.0		Vcc	V	
Input High Voltage (RESET, XTAL 1, XTAL 2)	$\mathrm{V}_{1} \mathrm{H}_{1}$	38		Vcc	V	
Output Low Voltage (BUS)	VOL			045	v	$1 \mathrm{OL}=20 \mathrm{~mA}$
Output Low Voltage ( $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, PSEN, ALE)	VOL1			045	V	$\mathrm{IOL}=1.8 \mathrm{~mA}$
Output Low Voltage (PROG)	$\mathrm{V}_{\mathrm{OL} 2}$			0.45	V	$\mathrm{IOL}=1.0 \mathrm{~mA}$
Output Low Voltage (All Other Outputs)	VOL3			045	V	$\mathrm{IOL}=16 \mathrm{~mA}$
Output High Voltage (BUS)	V OH	2.4			v	$1 \mathrm{OH}=-400 \mu \mathrm{~A}$
Output High Voltage ( $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, PSEN, ALE)	VOH 1	2.4			V	$\mathrm{IOH}^{\prime}=-100 \mu \mathrm{~A}$
Output High Voltage (All Other Outputs)	$\mathrm{V}_{\mathrm{OH} 2}$	2.4			V	$\mathrm{I}^{\prime} \mathrm{OH}=-40 \mu \mathrm{~A}$
Input Leakage Current ( $T_{1}$, INT)	${ }^{\prime} \mathrm{L}$			$\pm 10$	$\mu \mathrm{A}$	$\mathrm{V}_{\text {SS }} \leqslant \mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\text {cc }}$
Input Leakage Current ( $P_{10}-P_{17}, P_{20}-P_{27}, E A, \overline{S S}$ )	'LI1			-500	$\mu \mathrm{A}$	$V_{\text {CC }} \geqslant \mathrm{V}_{\text {IN }} \geqslant \mathrm{V}_{\text {SS }}+045 \mathrm{~V}$
Output Leakage Current (BUS, $\mathrm{T}_{0}$ - High Impedance State)	${ }^{\prime} \mathrm{OL}$			$\pm 10$	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }} \geqslant \mathrm{V}_{\text {IN }} \geqslant \mathrm{V}_{\text {SS }}+045 \mathrm{~V}$
Power Down Supply Current	IDD		7	15	mA	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
Total Supply Current	${ }^{1} \mathrm{DD}+\mathrm{ICC}$		60	135	mA	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

$T_{a}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{DD}}=+25 \mathrm{~V} \pm 1 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
V DD Program Voltage High-Level	$V_{\text {DOH }}$	24.0		260	V	
VDD Voltage Low-Level	VDDL	4.75		5.25	V	
PROG Voltage High-Level	VPH	215		24.5	V	
PROG Voltage Low-Level	$V_{\text {PL }}$			02	V	
EA Program or Verify Voltage High-Level	VEAH	21.5		245	V	
EA Voltage Low-Level	VEAL			5.25	V	
VDD High Voltage Supply Current	IDD			30.0	mA	
PROG High Voltage Supply Current	IPROG			16.0	mA	
EA High Voltage Supply Current	'EA			10	mA	

ABSOLUTE MAXIMUM RATINGS*

DC CHARACTERISTICS

DC CHARACTERISTICS PROGRAMMING THE $\mu$ PD8748

## READ, WRITE AND INSTRUCTION FETCH - EXTERNAL

DATA AND PROGRAM MEMORY
AC CHARACTERISTICS
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST (1) CONDITIONS
		MIN	TYP	MAX		
ALE Pulse Width	${ }_{\text {t }}$ LL	400			ns	
Address Setup before ALE	tAL	120			ns	
Address Hold from ALE	tha	80			ns	
Control Pulse Width ( $\overline{\text { PSEN }}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ )	${ }^{\text {t }} \mathrm{C}$	700			ns	
Data Setup before WR	${ }^{1}$ DW	500			ns	
Data Hold after WR	two	120			ns	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$
Cycle Time	${ }^{t} \mathrm{C} Y$	25		150	$\mu \mathrm{s}$	6 MHz XTAL
Data Hold	tor	0		200	ns	
$\overline{\text { PSEN }}, \overline{\mathrm{RD}}$ to Data In	${ }^{\text {tRD }}$			500	ns	
Address Setup before WR	${ }^{\text {t }}$ AW	230			ns	
Address Setup before Data In	${ }^{t} A D$			950	ns	
Address Float to $\overline{\mathrm{RD}}, \overline{\mathrm{PSEN}}$	${ }^{t} A F C$	0			ns	
Control Pulse to ALE	tCA	10			ns	

Notes (1) For Control Outputs $C_{L}=80 \mathrm{pF}$ For Bus Outputs $C_{L}=150 \mathrm{pF}$ ${ }^{\mathrm{t}} \mathrm{CY}=25 \mu \mathrm{~s}$

PORT 2 TIMING
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Port Controi Setup defore Falling Edge of PROG	${ }^{\text {t }} \mathrm{CP}$	110			ns	
Port Control Hold after Falling Edge of PROG	tpe	100			ns	
$\overline{\text { PROG to Time P2 Input must be }}$ Valıd	tPR			810	ns	
Output Data Setup Tıme	${ }^{t} \mathrm{DP}$	250			ns	
Output Data Hold Time	${ }^{\text {tPD }}$	65			ins	
Input Data Hold Time	tPF	0		150	ns	
$\overline{\text { PROG Pulse Width }}$	tpp	1200			ns	
Port $21 / \mathrm{O}$ Data Setup	tPL	350			ns	
Port 2 I/O Data Hold	${ }^{\text {t }} \mathrm{L}$ P	150			ns	

PROGRAMMING SPECIFICATIONS - $\mu$ PD8748
$T_{a}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{DD}}=+25 \mathrm{~V} \pm 1 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Address Setup Time before RESET $\uparrow$	${ }^{\text {taw }}$	4 t CY				
Address Hold Time after RESET $\uparrow$	tWA	4 tcy				
Data In Setup Time before PROG $\uparrow$	tDW	4 tCY				
Data In Hold Time after $\overline{\text { PROG }} \downarrow$	twD	. 4 tcy				
RESET Hold Time to VERIFY	tPH	4 t CY				
VDD	tVDDW	4 t CY				
VDD Hold Time after $\overline{\text { PROG }} \downarrow$	tVDDH	0				
Program Pulse Width	${ }^{\text {tPW }}$	50		60	ms	
Test 0 Setup Time before Program Mode	tTW	4 tcy				
Test 0 Hold Time after Program Mode	twT	4 tcy				
Test 0 to Data Out Delay	too			4 tcy		
RESET Pulse Width to Latch Address	tww	4 tcy				
VDD and PROG Rise and Fall Times	$\mathrm{tr}_{\mathrm{r}, \mathrm{tf}}$	0.5		2.0	$\mu \mathrm{s}$	
Processor Operation Cycle Time	try	5.0			$\mu \mathrm{s}$	
$\overline{R E S E T}$ Setup Time before EA $\uparrow$	$t_{\text {RE }}$	4 tCY				



INSTRUCTION FETCH FROM EXTERNAL MEMORY


READ FROM EXTERNAL DATA MEMORY


WRITE TO EXTERNAL MEMORY


PORT 2 TIMING


PROGRAM/VERIFY TIMING ( $\mu$ PD8748 ONLY)


Notes:
(1) Conditions: $\overline{\mathrm{CS}}$ TTL Logic " 1 '; Ao TTL Logic " 0 " must be met. (Use 10 K resistor to $V_{C C}$ for CS, and 10K resistor to $V_{S S}$ for Ao)
(2) tCY $5 \mu \mathrm{~s}$ can be achieved using a 3 MHz frequency source (LC, XTAL or external) at the XTAL 1 and XTAL 2 inputs.

MNEMONIC	FUNCTION	DESCRIPTION	INSTRUCTION CODE								CYCLES	BYTES	flags			
			$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$			c	AC	F0	F1
ACCUMULATOR																
ADD A, \# data	$(A) \leftarrow(A)+$ data	Add Immediate the specified Data to the Accumulator	$\begin{gathered} 0 \\ d 7 \end{gathered}$	$\begin{gathered} 0 \\ d 6 \end{gathered}$	$\begin{gathered} 0 \\ d_{5} \end{gathered}$	$\begin{gathered} 0 \\ d_{4} \end{gathered}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} 1 \\ d_{1} \end{gathered}$	$\begin{gathered} 1 \\ d_{0} \end{gathered}$	2	2	-			
ADD A, Rr	$\begin{aligned} & (A)-(A)+(R r) \\ & \text { for } r=0-7 \end{aligned}$	Add contents of designated register to the Accumulator	0	1	1	0	1	$r$	$r$	r	1	1	-			
ADOA, @ Rr	$\begin{aligned} & (A)+(A)+((R r)) \\ & \text { for } r=0-1 \end{aligned}$	Add Indirect the contents the data memory location to the Accumulator	0	1	1	0	0	0	0	r	1	1	-			
ADOC A, = data	$(A) \leftarrow(A)+(C)+$ data	Add Immediate with carry the specified data to the Accumulator	$\begin{gathered} 0 \\ \mathrm{~d}_{7} \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 0 \\ d_{5} \end{gathered}$	$\begin{gathered} 1 \\ d_{4} \end{gathered}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} 1 \\ d_{1} \end{gathered}$	$\begin{gathered} 1 \\ d_{0} \end{gathered}$	2	2	-			
ADOC A, Rr	$\begin{aligned} & (A) \cdot(A)+(C)+(R r) \\ & \text { for } r=0-7 \end{aligned}$	Add with carry the contents of the designated register to the Accumulator	0	1	1	1	1	r	$r$	r	1	1	-			
ADDC A, @ Rr	$\begin{aligned} & \text { (A) }-(A)+(C)+(\text { Rr })) \\ & \text { for } r=0-1 \end{aligned}$	Add Indirect with carry the contents of data memory location to the Accumulator	0	1	1	1	0	0	0	$r$	1	1	-			
ANL $\mathrm{A}_{1}=$ data	(A) - (A) AND data	Logical and specified Immediate Data with Accumulator	$\begin{gathered} 0 \\ d 7 \end{gathered}$	$\begin{gathered} 1 \\ d_{6} \end{gathered}$	$\begin{gathered} 0 \\ d_{5} \end{gathered}$	$\begin{gathered} 1 \\ d_{4} \end{gathered}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~d}_{2} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{~d}_{1} \end{gathered}$	$\begin{gathered} 1 \\ d_{0} \end{gathered}$	2	2				
ANL A, Rr	$\begin{aligned} & (A) \leftarrow(A) \text { AND }(\mathrm{Rr}) \\ & \text { for } r=0-7 \end{aligned}$	Logical and contents of designated register with Accumulator	0	1	0	1	1	r	r	r	1	1				
ANL A, @ Rr	$\begin{aligned} & (A)-(A) \text { AND }((\mathrm{Rr})) \\ & \text { for } r=0 \quad 1 \end{aligned}$	Logical and Indirect the contents of data memory with Accumulator	0	1	0	1	0	0	0	r	1	1				
CPL A	$(\mathrm{A})-\operatorname{NOT}(\mathrm{A})$	Complement the contents of the Accumulator	0	0	1	1	0	1	1	1	1	1				
CLRA	( $A$ ) -0	CLEAR the contents of the Accumulator	0	0	1	0	0	1	1	1	1	1				
DA A		DECIMAL ADJUST the contents of the Accumulator	0	1	0	1	0	1	1	1	1	1	-			
DEC A	(A). (A) 1	DECREMENT by 1 the accumulator's contents	0	0	0	0	0	1	1	1	1	1				
INC A	(A) $-(A)+1$	Increment by 1 the accumulator's contents	0	0	0	1	0	1	1	1	1	1				
ORL A, = data	(A)-(A) OR data	Logical OR specified immediate data with Accumulator	$\begin{gathered} 0 \\ d_{7} \end{gathered}$	$\begin{gathered} 1 \\ d_{6} \end{gathered}$	$\begin{gathered} 0 \\ d_{5} \end{gathered}$	$\begin{gathered} 0 \\ d_{4} \end{gathered}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} 1 \\ d_{1} \end{gathered}$	$\begin{gathered} 1 \\ d_{0} \end{gathered}$	2	2				
ORL A, Rr	$\begin{aligned} & \text { (A) }=(A) \text { OR (Rr) } \\ & \text { for } r=0-7 \end{aligned}$	Logical OR contents of designated register with Accumulator	0	1	0	0	1	r	r	r	1	1				
ORL A, © R	$\begin{aligned} & (A)-(A) O R(\mid R()) \\ & \text { for } r=0-1 \end{aligned}$	Logical OR Indirect the contents of data memory location with Accumulator	0	1	0	0	0	0	0	r	1	1				
RL A	$\begin{aligned} & (A N+1)-(A N) \\ & \left(A_{0}\right)-\left(A_{7}\right) \\ & \text { for } N=0-6 \end{aligned}$	Rotate Accumulator left by 1 bit without carry	1	1	1	0	0	1	1	1	1	1				
RLC A	$\begin{aligned} & (A N+1)-(A N), N=0-6 \\ & \left(A_{0}\right)-(C) \\ & (C)-(A 7) \end{aligned}$	Rotate Accumulator left by 1 -bit through carry	1	1	1	1	0	1	1	1	1	1	-			
RR A	$\begin{aligned} & (A N)-(A N+1) ; N=0-6 \\ & (A 7)-\left(A_{0}\right) \end{aligned}$	Rotate Accumulator right by 1 -bit without carry	0	1	1	1	0	1	1	1	1	1				
RRC A	$\begin{aligned} & (A N)-(A N+1), N=0-6 \\ & (A 7)-(C) \\ & (C)-\left(A_{0}\right) \end{aligned}$	Rotate Accumulator right by 1 -bit through carry	0	1	1	0	0	1	1	1	1	1	-			
SWAP A	$\left(A_{4-7}\right)=\left(A_{0}-3\right)$	Swap the 24-bit nibbles in the Accumulator	0	1	0	0	0	1	1	1	1	1				
XRL A, \# data	$(A)-(A) \times O R$ data	Logical XOR specified immediate data with Accumulator	1 $d 7$	$\begin{gathered} 1 \\ d_{6} \end{gathered}$	$\begin{gathered} 0 \\ d 5 \end{gathered}$	$\begin{gathered} 1 \\ d_{4} \end{gathered}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} 1 \\ d_{1} \end{gathered}$	$\begin{gathered} 1 \\ d_{0} \end{gathered}$	2	2				
XRL A, Rr	$\begin{aligned} & \text { (A) }-(A) \times O R(\operatorname{Rr}) \\ & \text { for } r=0-7 \end{aligned}$	Logical XOR contents of designated register with Accumulator	1	1	0	1	1	,	r	r	1	1				
XRL A, @ Rr	$\begin{aligned} & (A)-(A) \times O R((\operatorname{Rr})) \\ & \text { for } r=0-1 \end{aligned}$	Logical XOR Indirect the contents of data memory location with Accumulator	1	1	0	1	0	0	0	$r$	1	1				
BRANCH																
DJNZ Rr, addr	$\begin{aligned} & (R r) \leftarrow(R r)-1, r=0-7 \\ & \text { If }(R r) \neq 0 \\ & (P C 0-7) \leftarrow \text { addr } \end{aligned}$	Decrement the specified register and test contents	$\begin{gathered} 1 \\ \text { a7 } \end{gathered}$	$\begin{gathered} 1 \\ a_{6} \end{gathered}$	$\begin{gathered} 1 \\ a_{5} \end{gathered}$	$\begin{gathered} 0 \\ a_{4} \end{gathered}$	$\begin{gathered} 1 \\ a_{3} \end{gathered}$	$a_{2}$	$\begin{gathered} r \\ a_{1} \end{gathered}$	$\stackrel{r}{\text { a }}$	2	2				
JBb addr	$\begin{aligned} & (P C 0-7)-\operatorname{addr} \text { if } \mathrm{Bb}=1 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } \mathrm{Bb}=0 \end{aligned}$	Jump to speeified address if Accumulator bit is set	$\begin{aligned} & b_{2} \\ & a_{7} \end{aligned}$	$\begin{aligned} & b_{1} \\ & a_{6} \end{aligned}$	$\begin{aligned} & \mathrm{b}_{0} \\ & \mathrm{a}_{5} \end{aligned}$	$\begin{gathered} 1 \\ a_{4} \end{gathered}$	$\begin{gathered} 0 \\ a_{3} \end{gathered}$	$\begin{gathered} 0 \\ a_{2} \end{gathered}$	$\begin{gathered} 1 \\ a_{1} \end{gathered}$	0 $a_{0}$	2	2				
JC addr	$\begin{aligned} & (P C O-7)-\text { addr if } C=1 \\ & (P C)-(P C)+2 \text { if } C=0 \end{aligned}$	Jump to specified address if carry flag is set.	$\begin{gathered} 1 \\ 27 \end{gathered}$	$\begin{gathered} 1 \\ a_{6} \end{gathered}$	$\begin{gathered} 1 \\ a_{5} \end{gathered}$	$\begin{gathered} 1 \\ a_{4} \end{gathered}$	$\begin{gathered} 0 \\ a_{3} \end{gathered}$	$\begin{gathered} 1 \\ a_{2} \end{gathered}$	$\begin{gathered} 1 \\ a_{1} \end{gathered}$	0 a	2	2				
JFO addr	$\begin{aligned} & (P C 0-7) \leftarrow \text { addr if } F O=1 \\ & (P C)-I(P C)+2 \text { if } F O=0 \end{aligned}$	Jump to specified address if Flag FO is set		$\begin{gathered} 0 \\ a_{6} \end{gathered}$	1 9	1 $a_{4}$	0 93	1 $a_{2}$	1 $a_{1}$	0 a	2	2				
JF1 addr	$\begin{aligned} & (P C 0-7) \leftarrow \text { addr if } F_{1}=1 \\ & (P C)-(P C)+2 \text { if } F 1=0 \end{aligned}$	Jump to specified address if Flag F1 is set	$\begin{gathered} 0 \\ 97 \end{gathered}$	$\begin{gathered} 1 \\ a_{6} \end{gathered}$	$\begin{gathered} 1 \\ a_{5} \end{gathered}$	$\begin{gathered} 1 \\ a_{4} \end{gathered}$	$\begin{gathered} 0 \\ a_{3} \end{gathered}$	$\begin{gathered} 1 \\ a_{2} \end{gathered}$	$\begin{gathered} 1 \\ a_{1} \end{gathered}$	$\begin{gathered} 0 \\ a_{0} \end{gathered}$	2	2				
JMP addr	$\begin{aligned} & (\text { PC } 8-10)-\operatorname{addr} 8-10 \\ & (\text { PC } 0-7)-\text { addr } 0-7 \\ & (\text { PC 11) }- \text { DBF } \end{aligned}$	Direct Jump to specified address within the 2 K address block	$\begin{array}{\|l} a_{10} \\ a_{7} \end{array}$	$\begin{aligned} & \text { a9 } \\ & \text { a6 } \end{aligned}$	$\begin{aligned} & \text { a8 } \\ & a_{5} \end{aligned}$	$\begin{gathered} 0 \\ a_{4} \end{gathered}$	0 $a_{3}$	1 $a_{2}$	0 $a_{1}$	$\begin{gathered} 0 \\ a_{0} \end{gathered}$	2	2				
JMPP @ A	(PCC 0-7)-( $(\mathrm{A})$ )	Jump indirect to specified address with with address page	1	0	1	1	0	0	1	1	2*	1				
JNC addr	$\begin{aligned} & (P C O-7)-\text { addr if } C=0 \\ & (P C)-(P C)+2 \text { if } C=1 \end{aligned}$	Jump to specified address if carry flag is low	$\left\lvert\, \begin{gathered} 1 \\ a 7 \end{gathered}\right.$	$\begin{gathered} 1 \\ a_{6} \end{gathered}$	$\begin{gathered} 1 \\ a_{5} \end{gathered}$				1 $a_{1}$	0 $a_{0}$	2	2				
JNI addr	$\begin{aligned} & (P C 0-7)+\text { addr if } I=0 \\ & (P C)+(P C)+2 \text { if } I=1 \end{aligned}$	Jump to specified address if interrupt is low	$\begin{gathered} 1 \\ 27 \end{gathered}$	$\begin{gathered} 0 \\ a 6 \end{gathered}$	0   0	$\begin{gathered} 0 \\ a_{4} \end{gathered}$	$\begin{array}{r}0 \\ 0 \\ \hline\end{array}$	1 3 2	1   $a_{1}$	0 $a_{0}$	2	2				



MNEMONIC	FUNCTION	DESCRIPTION	INSTRUCTION CODE								CYCLES	BYTES	FLAGS			
			D7	D6	D5	D4	D3	D2	D1	D0			c	AC	FO	F1
INPUT/OUTPUT																
ANL BUS, - data	(BUS) - (BUS) AND data	Logical and Immediate specified data with contents of BUS	$\begin{gathered} 1 \\ d 7 \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~d}_{6} \end{gathered}$	$\begin{gathered} 0 \\ d_{5} \end{gathered}$	$\begin{gathered} 1 \\ d_{4} \end{gathered}$	$\begin{gathered} 1 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} 0 \\ d_{1} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~d}_{0} \end{gathered}$	2	2				
ANL Pp, = data	$\begin{aligned} & (P p) \leftarrow(P p) \text { AND data } \\ & p=1-2 \end{aligned}$	Logical and Immediate specified data with designated port (1 or 2)			$\begin{gathered} 0 \\ d 5 \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{~d}_{4} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{~d}_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} p^{\prime} \\ d_{1} \end{gathered}$	$\begin{gathered} \mathrm{p} \\ \mathrm{do} \end{gathered}$	2	2				
ANLD Pp. A	$\begin{aligned} & (P p) \leftarrow(P p) \text { AND }(A 0-3) \\ & p=4-7 \end{aligned}$	Logical and contents of Accumulator with designated port (4-7)	1	0	0	1	1	1	p	p	2	1				
IN A. Pp	$(\mathrm{A})-(\mathrm{Pp}), \mathrm{p}=1-2$	Input data from designated port (1-2) into Accumulator	0	0	0	0	1	0	p	p	2	1				
INS A, BUS	$(\mathrm{A})-(\mathrm{BUS})$	Input strobed BUS data into Accumulator	0	0	0	0	1	0	0	0	2	1				
MOVD A Pp	$\begin{aligned} & (\mathrm{A} 0-3) \leftarrow(\mathrm{Pp}), \mathrm{p}=4-7 \\ & (\mathrm{~A} 4-7) \leftarrow 0 \end{aligned}$	Move contents of designated port (4-7) into Accumulator	0	0	0	0	1	1	$\rho$	p	2	1				
MOVD Pp, A	$(P \mathrm{p}) \leftarrow \mathrm{A} 0=3, p=4-7$	Move contents of Accumulator to designated port ( $4-7$ )	0	0	1	1	1	1	$\rho$	p	2	1				
ORL BUS, data	(BUS) - (BUS) OR data	Logical or Immediate specified data with contents of BUS		$\begin{gathered} 0 \\ d 6 \end{gathered}$	$\begin{gathered} 0 \\ d_{5} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~d}_{4} \end{gathered}$	$\begin{gathered} 1 \\ d 3 \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} 0 \\ d_{1} \end{gathered}$	$\begin{gathered} 0 \\ d 0 \end{gathered}$	2	2				
ORLD PP, A	$\begin{aligned} & (P p) \leftarrow(P p) \text { OR }(A 0-3) \\ & p=4-7 \end{aligned}$	Logical or contents of Accumulator with designated port ( $4-7$ )	1	0	0	0	1	1	p	-	2	1				
ORL Pp, - data	$(\mathrm{Pp})-(\mathrm{Pp})$ OR data $p=1-2$	Logical or Immediate specified data with designated port (1-2)		$\begin{gathered} 0 \\ \mathrm{C}_{6} \end{gathered}$	$\begin{gathered} 0 \\ d 5 \end{gathered}$	$\begin{gathered} 0 \\ d_{4} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{~d} 3 \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~d}_{2} \end{gathered}$	$\begin{gathered} p \\ d d_{1} \end{gathered}$	$\begin{gathered} p \\ d_{0} \end{gathered}$	2	2				,
OUTL BUS, A	$(B \cup S) \leftarrow(A)$	Output contents of Accumulator onto BUS	0	0	0	0	0	0	1	0	2	1				
OUTL Pp, A	$(P \mathrm{p}) \leftarrow(\mathrm{A}), \mathrm{P}=1-2$	Output contents of Accumulator to designated port (1-2)	0	0	1	1	1	0	p	p	2	1				
REGISTERS																
DEC Rr (Rr)	$(\mathrm{Rr}) \leftarrow(\mathrm{Rr})+1, r=0-7$	Decrement by 1 contents of designated register	1	1	0	0	1	「	1	1	1	1				
INC Rr	$(R r) \leftarrow(R r)+1, r=0-7$	Increment by 1 contents of designated register	0	0	0	1	1	'	;	1	1	1				
INC@ RI	$\begin{aligned} & ((\operatorname{Rr})) \leftarrow\left(\left(R_{r}\right)\right)+1 \\ & r=0-1 \end{aligned}$	Inciement Indirect by 1 the contents of data memory location	0	0	0	1	0	0	0	.1	1	1				
SUBROUTINE																
CALL addr	$\begin{aligned} & ((S P)) \leftarrow(P C),(\text { PSW } 4-7) \\ & (S P) \leftarrow(S P)+1 \\ & (P C 8-10) \leftarrow \text { addr } 8-10 \\ & (P C 0-7) \leftarrow \text { addr } 0-7 \\ & (P C \text { 11) DBF } \end{aligned}$	Call designated Subroutine			$\begin{aligned} & a_{8} \\ & a_{5} \end{aligned}$		$\begin{gathered} 0 \\ a_{3} \end{gathered}$		$\begin{gathered} 0 \\ a_{1} \end{gathered}$	$\begin{gathered} 0 \\ a_{0} \end{gathered}$	2	2				
RET	$\begin{aligned} & (S P) \leftarrow(S P)=1 \\ & (P C) \leftarrow((S P)) \end{aligned}$	Return from Subroutine without restoring Program Status Word	1	0	0	0	0	0	1	1	2	1				
RETR	$\begin{aligned} & (S P) \leftarrow(S P)=1 \\ & (P C) \leftarrow((S P)) \\ & (P S W 4-7)-((S P)) \end{aligned}$	Return from Subroutine restoring Program Status Word	1	0	0	1	0	0	1	1	2	1				
TIMER/COUNTER																
EN TCNTI		Enable Internal interrupt Flag for Timer/Counter output	0	0	1	0	0	1	0	1	1	1				
DIS TCNTI		Disable Internal interrupt Flag for Timer/Counter output	0	0	1	1	0	1	0	1	1	1				
MOV A, T	(A) (T)	Move contents of Timer/Counter into Accumulator	0	1	0	0	0	0	1	0	1	1				
MOV T, A	(T) (A)	Move contents of Accumulator into Timer/Counter	0	1	1	0	0	0	1	0	1	1				
STOP TCNT		Stop Count for Event Counter	0	1	1	0	0	1	0	1	1	1				
STRT CNT		Start Count for Event Counter	0	1	0	0	0	1	0	1	1	1				
STRT T		Start Count for Timer	0	1	0	1	0	1	0	1	1	1				
MISCELLANEOUS																
NOP		No Operation performed	0	0	0	0	0	0	0	0	1	1				

Notes (1) Instruction Code Designations $r$ and $p$ form the binary representation of the Registers and Ports involved
(2) The dot under the appropriate flag bit indicates that its content is subject to change by the instruction it appears in
(3) References to the address and data are specified in bytes 2 and/or 1 of the instruction
(4) Numerical Subscripts appearing in the FUNCTION column reference the specific bits affected

Symbol Definitions

SYMBOL	DESCRIPTION
A	The Accumulator
AC	The Auxiliary Carry Flag
addr	Program Memory Address (12 bits)
Bb	Bit Desıgnator (b $=0-7$ )
BS	The Bank Switch
BUS	The BUS Port
C	Carry Flag
CLK	Clock Signal
CNT	Event Counter
D	Nibble Designator (4 bits)
data	Number or Expression (8 bits)
DBF	Memory Bank Flip-Flop
F0, F1	Flags 0, 1
I	Interrupt
P	"In-Page" Operation Desıgnator


SYMBOL	DESCRIPTION
$\mathrm{P}_{\mathrm{p}}$	Port Desıgnator ( $\mathrm{p}=1,2$ or $4-7$ )
PSW	Program Status Word
Rr	Register Designator ( $\mathrm{r}=0,1$ or $0-7$ )
SP	Stack Pointer
T	Timer
TF	Timer Flag
$\mathrm{T}_{0}, \mathrm{~T}_{1}$	Testable Flags 0, 1
X	External RAM
=	Prefix for Immediate Data
@	Prefix for Indirect Address
\$	Program Counter's Current Value
$(x)$	Contents of External RAM Location
( $(\mathrm{x})$ )	Contents of Memory Location Addressed by the Contents of External RAM Location.
$\leftarrow$	Replaced By

## Package Outlines

For information, see Package Outline Section 7.

Notes

## Description

The NEC $\mu$ PD80C48 is a true stand-alone 8 -bit microcomputer fabricated using CMOS technology. All of the functional blocks necessary for an integrated microcomputer are incorporated, including a 1 K -byte ROM, a 64 -byte RAM, 27 I/O lines, an 8-bit timer/event counter, and a clock generator. This integrated capablity permits use in standalone applicatıons. For designs requiring extra capability, the $\mu$ PD80C48 can be expanded using peripherals and memory compatible with industry-standard 8080A/8085A processors. A version of the $\mu$ PD80C48 without ROM is offered by the $\mu$ PD80C35.
Providing compatıbility with industry-standard 8048, 8748, and 8035 processors, the $\mu$ PD80C48 features signtificant savings in power consumption. In addition to the power savings gained through CMOS technology, the $\mu$ PD80C48 is distinct in offering two standby modes (Halt mode and Stop mode) to further minimize power drain.

## Features

8 -bit CPU with ROM, RAM, and I/O on a single chip Hardware/software-compatible with industry-standard
8048,8748 , and 8035 processors$1 \mathrm{~K} \times 8$ ROM
$64 \times 8$ RAM
27 I/O lines
$2.5 \mu \mathrm{~s}$ cycle tıme ( 6 MHz crystal)
All instructions executable in 1 or 2 cycles
97 instructions: 70 percent are single-byte instructions Internal timer/event counter
2 interrupts (an external interrupt and a timer interrupt)
Easily expandable memory and I/OBus compatible with 8080A/8085A peripherals
Power-efficient CMOS technology requiring a single

## +2.5 V to +5.5 V power supply

$\square$ Available in 40 -pin DIP, 44-pin flat pack, and 52 -pin
flat pack
Halt mode
-1mA typical supply current

- Maintenance of internal logic values and control states
- Mode initalizatıon via HALT instruction
- Mode release via external interrupt or reset


## Stop mode

$-1 \mu \mathrm{~A}$ typical supply current

- Disabling of internal clock generation and internal logic
- Maintenance of RAM contents
- Mode initializatıon via hardware ( $\mathrm{V}_{\mathrm{DD}}$ )
- Mode release via reset


## Pin Identification

Pin			Function
No.	Symbol	Name	
1	T0	Test 0	Testable input using conditional jump instructions JTO and JNTO. Also enables clock output via the ENTO CLK instruction.
2	XTAL1	Crystal 1	One of two inputs for external crystal oscillator or LC circuit to generate internal clock signals May also be used as an input for external clock signals (Non-TTL-compatible $\mathrm{V}_{\mathrm{IH}}$ )
3	XTAL2	Crystal 2	One of two inputs for external crystal oscillator or LC circuit to generate internal clock signals. (Non-TTL-compatıble $\mathrm{V}_{\mathrm{IH}}$ )
4	$\overline{\text { RESET }}$	Reset	Active-low input line that initializes the processor Also used to release both the Halt and Stop modes (1)
5	$\overline{\text { SS }}$	Single Step	Active-low input line, that, in conjunction with ALE, causes the processor to single-step through a program one instruction at a time
6	$\overline{\mathrm{NT}}$	Interrupt	Active-low input line that causes an interrupt if an enable instruction has been executed $A$ reset disables the interrupt May be used as a testable input with a conditional jump instruction Can also be used to release the Halt mode
7	EA	External Access	Input line that inhibits internal program memory fetches and initiates access of external program memory. Essential for system testing and may also be used for program debugging
8	$\overline{\mathrm{RD}}$	Read	Active-low output strobe line that is used to read data from external data memory
9	$\overline{\text { PSEN }}$	Program Store Enable	Active-low output line that is used to fetch instructoons from external program memory
10	$\overline{W R}$	Write	Active-low output strobe line that is used to write data into external data memory
11	ALE	Address Latch Enable	Output line for address latch enable At the falling edge of ALE, the address of either external data memory or external program memory is available on the bus
12-19	$\mathrm{DB}_{0}-\mathrm{DB}_{7}$	Bus	These I/O IInes constitute an 8 -bit bidirectional data/address bus Synchronous read and write operations can be performed on this bus using $\overline{\mathrm{RD}}$ and $\bar{W}$ signals Data driven out on the bus by an OUTL BUS instruction is statically latched
			The address of external memory is available on the bus at the falling edge of ALE when reading from external program memory or writing to and reading from external data memory During external program memory fetches, the least-significant 8 bits of the external program memory address are driven out on the bus and the addressed instruction is fetched using PSEN When no external memory is used, the bus can serve as a true bidirectional 8-bit port information is strobed in or out by the $\overline{R D}$ and $\overline{W R}$ signals
20	$\mathrm{V}_{\text {Ss }}$	Ground	Ground potential
$\begin{aligned} & 21-24, \\ & 35-38 \end{aligned}$	$\mathrm{P}_{20}-\mathrm{P}_{27}$	Port 2	These lines constitute Port 2, an 8-bit quasibidirectional port During external program memory fetches, $\mathrm{P}_{20}-\mathrm{P}_{23}$ output the mostsignficant 4 bits of the external program memory address. Lines $P_{20}-P_{23}$ can also be used as a 4-bit I/O expander bus to interface with the optional $\mu$ PD82C43 I/O expander
25	PROG	Program Pulse	This line is used as an output strobe when interfacing with the optional $\mu$ PD82C43 I/O expander.
26	$\mathrm{V}_{\mathrm{DD}}$	Oscillator Control Voltage Line	This input line is used to control oscillator stopping and restarting in Stop mode. Stop mode is enabled by forcing $\mathrm{V}_{D D}$ LOW during a reset.
27-34	$\mathrm{P}_{10}-\mathrm{P}_{17}$	Port 1	These lines constitute Port 1, an 8-bit, generalpurpose quasi-bidirectional port.
39	T1	Test 1	Testable input using conditional jump instructions JT1 and JNT1 Can also be used as the tımer/ counter input line via the STRT CNT instruction
40	$\mathrm{v}_{\mathrm{cc}}$	Prımary Power Supply	Power supply. $\mathrm{V}_{\mathrm{cc}}$ must be between +25 V to +5.5 V for normal operation In Stop mode, $\mathrm{V}_{\mathrm{cc}}$ must be at least +2 V to ensure data retention.

## Pin Configuration

T0	-1		40	$\mathrm{V}_{\mathrm{cc}}$
XTAL 1	2		39	T1
XTAL 2	3		38	$\mathrm{P}_{27}$
RESET	4		37	$\mathrm{P}_{26}$
$\overline{\text { ss }}$	5		36	$\mathrm{P}_{25}$
$\overline{\text { INT }}$	06		35	$\mathrm{P}_{24}$
EA	7		34	$\mathrm{P}_{17}$
$\overline{\text { RD }}$	8		33	$P_{16}$
PSEN	9	$\mu \mathrm{PD}$	32	$\mathrm{P}_{15}$
$\overline{\text { WR }}$	10	$8048 /$ $8748 \text { / }$	31	$\mathrm{P}_{14}$
ALE	11	8035L	30	$\mathrm{P}_{13}$
$\mathrm{DB}_{0}$	12		29	$\mathrm{P}_{12}$
$\mathrm{DB}_{1}$	13		28	$P_{11}$
$\mathrm{DB}_{2}$	14		27	$\mathrm{P}_{10}$
$\mathrm{DB}_{3}$	15		26	$V_{\text {D }}$
$\mathrm{DB}_{4}$	16		25	PROG
$\mathrm{DB}_{5}$	17		24	$\mathrm{P}_{23}$
$\mathrm{DB}_{6}$	18		23	$\mathrm{P}_{22}$
$\mathrm{DB}_{7}$	19		22	$\mathrm{P}_{21}$
$\mathrm{v}_{\text {ss }}$	20		21	$\mathrm{P}_{20}$

## Standby Function HALT mode

In Halt mode, the oscillator continues to operate, but the internal clock is disabled. The status of all internal logic just prior to execution of the HALT instruction is maintained by the CPU. In Halt mode, power consumption is less than 10 percent of normal $\mu$ PD80C48 operation and less than 1 percent of normal 8048 operation.
The Halt mode is initiated by execution of the HALT instruction, and is released by either INT or RESET input. INT input: When the $\overline{\mathrm{NT}}$ pin receives a low-level input, if interrupts are enabled, the internal clock is restarted and
the interrupt is executed after the first or second instruction following the HALT instruction. However, if interrupts are disabled, program operation is resumed from the next address following the HALT instruction. The first instruction following a HALT instruction should be a NOP instruction to ensure proper program execution. If the Halt mode is released when interrupts are enabled, the interrupt service routine is usually executed after the first or second instruction following the release of Halt mode. However, if either a timer or external interrupt is accepted within one machine cycle prior to a HALT instruction, the corresponding timer or external interrupt service routine is executed immediately following the release of Halt mode. It is important to note this sequence of execution when considering interrupt service routine execution following a HALT instruction.
RESET input: When a low-level input is received by the RESET pin, Halt mode is released and the normal reset operation is activated, restarting program operation from address 0 .

## Stop mode

In Stop mode, the oscillator is deactivated and only the contents of RAM are maintained. The operation status of the $\mu$ PD80C48 resembles that of a reset condition. Because only the contents of RAM are maintained, Stop mode provides even lower power consumption than Halt mode, only requiring a minimum $\mathrm{V}_{\mathrm{CC}}$ as low as +2 V . Stop mode is initiated by setting $\mathrm{V}_{\mathrm{DD}}$ to LOW when $\overline{\text { RESET }}$ is LOW, to protect the contents of RAM. Stop mode is released by first raising the supply voltage at the $\mathrm{V}_{\mathrm{cc}}$ pin from standby level to correct operating level and setting $V_{D D}$ to HIGH when RESET is LOW. After the oscillator has been restarted and the oscillation has stabilized, RESET must be set to HIGH, whereby program operation is started from address 0 .

Stop Mode Circuit


## Stop Mode Timing



Stop Mode Circuit: Since $V_{D D}$ controls the restarting of the oscillator, it is important that $\mathrm{V}_{\mathrm{DD}}$ be protected from noise interference. The time required to reset the CPU is represented by $\mathrm{t}_{1}$ (see Stop Mode Timing diagram), which is a minimum of 5 machine cycles. The reset operation will not be completed in less than 5 machine cycles. In Stop mode, it is important to note that if $\mathrm{V}_{\mathrm{DD}}$ goes LOW before 5 machine cycles have elapsed, the CPU will be deactivated and the output of ALE, RD, WR, PSEN, and PROG will not have been stabilized.

Oscillation stabilization time is represented by $\mathrm{t}_{2}$ (see Stop Mode Timing diagram). When $\mathrm{V}_{\text {DD }}$ goes HIGH, oscillator operation is reactivated, but it takes time before oscillation can be stabilized. In particular, such high Q resonators as crystals require longer periods to stabilize. Because there is a delay between restarting of the oscillator and oscillator stabilization, $t_{2}$ should be long enough to ensure that the oscillator has been fully stabilized.
To facilitate Stop mode control, an external capacitor can be connected to the RESET pin (see Stop Mode Control Circuit), affecting only $\mathrm{t}_{2}$, allowing control of the oscillator stabilization time. When $V_{D D}$ is asserted in Stop mode, the capacitor begins charging, pulling up RESET. When RESET reaches a threshold level equivalent to a logic 1 , Stop mode is released. The time it takes RESET to reach the threshold level of logic 1 determines the oscillator stabilization time, which is a function of the capacitance and pull-up resistance values.

Stop Mode Control Circuit


## Port Operation

A port-loading option is offered at the time of ordering the mask. Individual source current requirements for Port 1 and the upper and lower halves of Port 2 may be factory set at either $-5 \mu \mathrm{~A}$ or $-50 \mu \mathrm{~A}$ (see Port-Loading Options table). The $-50 \mu \mathrm{~A}$ option is required for interfacing with TTL/NMOS devices. The $-5 \mu \mathrm{~A}$ option is recommended for interfacing to other CMOS devices. The CMOS option results in lower power consumption and greater noise immunity.
Port lines $\mathrm{P}_{10}$ to $\mathrm{P}_{17}$ and $\mathrm{P}_{24}$ to $\mathrm{P}_{27}$ include a protective circuit " $E$ " to prevent a signal conflict at the port. The circuit prevents a logic 1 from being written to a line that is being pulled down externally (see Port Protection Circuit "E" diagram). When a logic 0 is detected at the port line and a logic 1 is written from the bus, the NOR gate sends a logic 1 to the $D$ input of the flip-flop. The output is inverted, forcing the NAND gate to send a high-level output. This turns off transistor $A$, preventing the output of a logic 1 from the port.

## Port-Loading Options

$\mathrm{I}_{\mathrm{OH}}(\mathbf{m i n}) \mathrm{V}_{\mathbf{C C}}=\mathrm{V}_{\mathrm{DD}}=\mathbf{5 V} \pm \mathbf{1 0 \%} ; \mathrm{V}_{\mathrm{OH}}=\mathbf{2 . 4 V}(\mathbf{m i n})$

Option   Selected	$\mathbf{P}_{\mathbf{1 0}}-\mathbf{P}_{\mathbf{1 7}}$	$\mathbf{P}_{\mathbf{2 0}}-\mathbf{P}_{\mathbf{2 3}}$	$\mathbf{P}_{\mathbf{2 4}}-\mathbf{P}_{\mathbf{2 7}}$	Unit
A	-5	-5	-5	$\mu A$
B	-50	-5	-5	$\mu A$
C	-5	-50	-5	$\mu A$
$D$	-50	-50	-5	$\mu A$
E	-5	-5	-50	$\mu A$
F	-50	-5	-50	$\mu A$
G	-5	-50	-50	$\mu A$
$H$	-50	-50		

Notes: (1) The selection of $\mathrm{I}_{\mathrm{OH}}=-5 \mu \mathrm{~A}$ will result in a port source current of $\mathrm{I}_{\mathrm{ILP}}=-40 \mu \mathrm{~A}$ max when used as input port
(2) The selection of $\mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A}$ will result in a port source current of $\mathrm{I}_{\mathrm{ILP}}=-500 \mu \mathrm{~A}$ max when used as input port

## $\mu$ PD80C48/80C35

## Oscillator Operation

The oscillator maintains an internal frequency for clock generation and controls all system timing cycles. The oscillation is initiated by either a self-generating external resonator or external clock input. The oscillator acts as a high-gain amplifier which produces square-wave pulses at the frequency determined by the resonator or clock source to which it is connected.
To obtain the oscillation frequency, an external LC network
may be connected to the oscillator, or, a ceramic or crystal external resonator may be connected.
As the crystal frequency is lowered, there is an equivalent reduction in series resistance (R). As the temperature of the. crystal is lowered, $R$ is increased. Due to this relationship, it becomes difficult to stabilize oscillation when there is low power supply voltage. When $\mathrm{V}_{\mathrm{cc}}$ is less than 2.7 V and the oscillator frequency is 3 MHz or less, $\mathrm{T}_{\mathrm{a}}$ (ambient temperature) should not be less than $-10^{\circ} \mathrm{C}$.

## Port Protection Circuit "E"



## Crystal Frequency Reference Circuit



Notes: (1) Crystal oscillator constants of $f_{\text {osc }}=6 \mathrm{MHz}$
$\begin{aligned} R_{\text {max }} & =50 \Omega \\ C_{L} & =16 \pm 02 p F\end{aligned}$
$\begin{aligned} C_{L} & =16 \pm 02 p F \\ P & =1 \pm 02 \mathrm{~mW}\end{aligned}$
(2) Operatıng frequency less than 4 MHz
$0<\mathrm{C}_{1} \leq 20 \mathrm{pF}$
$0<\mathrm{C}_{2} \leq 20 \mathrm{pF}$
$\left|\mathrm{C}_{2}-\mathrm{C}_{1}\right| \leq 10 \mathrm{pF}$
(3) Operatıng frequency more than 4 MHz
$0<\mathrm{C}_{1} \leq 10 \mathrm{pF}$
$0<\mathrm{C}_{2} \leq 10 \mathrm{pF}$
$\left|C_{2}-C_{1}\right| \leq 5 p F$

LC Frequency Reference Circuit


Note: $\mathrm{C}_{\mathrm{pp}}=5-10 \mathrm{pF}$ Pin to pin capacitance should be approxımately 20 pF , including stray capacitance

## Ceramic Resonator Frequency Reference Circuit



Note: $\mathrm{C}_{1}>\mathrm{C}_{2}$
$\left|\mathrm{C}_{1}-\mathrm{C}_{2}\right| \simeq 20 \mathrm{pF}$
For example, $\mathrm{C}_{1}=30 \mathrm{pF}$, and $\mathrm{C}_{2}=10 \mathrm{pF}$
Values of $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$ do not include stray capacitance

External Clock Frequency Reference Circuit


Note: A minimum voltage of $\mathrm{V}_{\mathrm{CC}}-1$ is required for XTAL1 to go HIGH

Major Input and Output Signals


Instruction Set Symbol Definitions

Symbol	Description
A	Accumulator
AC	Auxiliary Carry Flag
addr	Program or data memory address ( $a_{0}-a_{7}$ ) or ( $a_{0}-a_{10}$ )
b	Accumulator bit (b=0-7)
BS	Bank Switch
BUS	Bus
C	Carry Flag
CLK	Clock
CNT	Counter
data	8-bit binary data ( $d_{0}-d_{7}$ )
DBF	Memory Bank Flip-Flop
F0, F1	Flag 0, Flag 1
INT	Interrupt pin
n	Indicates the hex number of the specified register or port
PC	Program Counter
$P_{p}$	Port 1, Port 2, or Port 4-7 ( $\mathrm{p}=1,2$ or 4-7)
PSW	Program Status Word
$\mathrm{R}_{\mathrm{r}}$	Register $\mathrm{R}_{0}-\mathrm{R}_{7}(\mathrm{r}=0-7)$
SP	Stack Pointer
T	Timer
TF	Timer Flag
T0, T1	Test 0, Test 1 pin
\#	Immediate data indication
@	Indirect address indication
x	Indicates the hex number corresponding to the accumulator bit or page number specified in the operand
(x)	Contents of RAM
( $(\mathrm{x})$ )	Contents of memory addressed by (x)
$\leftarrow$	Transfer direction, result
$\wedge$	Logical product (logical AND)
$\checkmark$	Logical sum (logical OR)
$\forall$	Exclusive OR
-	Complement

Instruction Set

Mnemonic	Function	Description	Hex Code	Instruction Code								Cycles	Bytes
				$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$		
Accumulator													
ADD A, \# data	$(A) \leftarrow(A)+$ data	Adds immedıate data $d_{0}-d_{7}$ to the accumulator. Sets or clears both carry flags.(2)	03	$\begin{gathered} 0 \\ \mathbf{d}_{7} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 0 \\ d_{5} \end{gathered}$	$\begin{gathered} 0 \\ d_{4} \end{gathered}$	$\begin{gathered} \mathbf{0} \\ \mathbf{d}_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{array}{r} 1 \\ d_{1} \\ \hline \end{array}$	$\begin{gathered} 1 \\ d_{0} \end{gathered}$	2	2
ADD A, $\mathrm{R}_{\mathrm{r}}$	$\begin{aligned} & (A) \leftarrow(A)+\left(R_{r}\right) \\ & =0-7 \end{aligned}$	Adds the contents of register $R_{r}$ to the accumulator. Sets or clears both carry flags (2)	6 n (4)	0	1	1	0	1	r	$r$	r	1	1
ADD A, @ $\mathrm{R}_{\mathrm{r}}$	$\begin{aligned} & (A) \leftarrow(A)+\left(\left(R_{r}\right)\right) \\ & r=0-1 \end{aligned}$	Adds the contents of the internal data memory location specified by bits $0-5$ of register $R_{r}$ to the accumulator. Sets or clears both carry flags.(2)	6n(4)	0	1	1	0	0	0	0	r	1	1
ADDC A, \# data	$(A) \leftarrow(A)+$ data $+(C)$	Adds, with carry, immediate data $d_{0}-d_{7}$ to the accumulator. Sets or clears both carry flags.(2)	13	$\begin{gathered} 0 \\ d_{7} \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 0 \\ d_{5} \end{gathered}$	$\begin{gathered} 1 \\ d_{4} \end{gathered}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ \mathbf{d}_{2} \end{gathered}$	$\begin{array}{r} 1 \\ \mathbf{d}_{1} \\ \hline \end{array}$	$\begin{gathered} 1 \\ d_{0} \end{gathered}$	2	2
ADDC A, $\mathrm{R}_{\mathrm{r}}$	$\begin{aligned} & (A) \leftarrow(A)+\left(R_{r}\right)+(C) \\ & =0-7 \end{aligned}$	Adds, with carry, the contents of register $R_{\mathrm{r}}$ to the accumulator. Sets or clears both carry flags.(2)	$7 \mathrm{n}(4)$	0	1	1	1	1	r	r	r	1	1
ADDC A, (a) $\mathbf{R}_{\mathrm{r}}$	$\begin{aligned} & (A) \leftarrow(A)+\left(\left(R_{r}\right)\right)+(C) \\ & =0-1 \end{aligned}$	Adds, with carry, the contents of the internal data memory location specified by bits 0-5 of register $R_{r}$, to the accumulator. Sets or clears both carry flags.(2)	7n(4)	0	1	1	1	0	0	0	$r$	1	1
ANL A, \# data	$(A) \leftarrow(A) \backslash$ data	Takes the logical product (logical AND) of immediate data $d_{0}-d_{7}$ and the contents of the accumulator, and stores the result in the accumulator.	53	$\begin{gathered} 0 \\ d_{7} \end{gathered}$	$\begin{gathered} 1 \\ d_{6} \end{gathered}$	$\begin{gathered} 0 \\ d_{5} \end{gathered}$	$\begin{aligned} & 1 \\ & d_{4} \end{aligned}$	$\begin{gathered} 0 \\ \mathbf{d}_{3} \end{gathered}$	$\begin{gathered} 0 \\ \mathbf{d}_{2} \end{gathered}$	$\begin{gathered} 1 \\ d_{1} \end{gathered}$	$\begin{gathered} 1 \\ d_{0} \end{gathered}$	2	2
ANL A, $\mathrm{r}_{\mathrm{r}}$	$\begin{aligned} & (A) \leftarrow(A) \Lambda_{r}^{\left(R_{r}\right)} \\ & =0-7 \end{aligned}$	Takes the logical product (logical AND) of the contents of register $\mathrm{R}_{\mathrm{r}}$ and the accumulator, and stores the result in the accumulator	5n(4)	0	1	0	1	1	r	$r$	r	1	1
ANLA, @ $\mathrm{R}_{\mathrm{r}}$	$\begin{aligned} & (A) \leftarrow(A) \wedge\left(\left(R_{r}\right)\right) \\ & =0-1 \end{aligned}$	Takes the logical product (logical AND) of the contents of the internal data memory location specified by bits 0-5 of register $R_{r}$, and the accumulator, and stores the result in the accumulator.	5n(4)	0	1	0	1	0	0	0	$r$	1	1
CPL A	$(\mathbf{A}) \leftarrow(\bar{A})$	Takes the complement of the contents of the accumulator.	37	0	0	1	1	0	1	1	1	1	1
CLR A	$(\mathrm{A}) \leftarrow 0$	Clears the contents of the accumulator	27	0	0	1	0	0	1	1	1	1	1
DA A		Converts the contents of the accumulator to BCD. Sets or clears the carry flags. When the lower 4 bits ( $A_{0-3}$ ) are greater than 9, or if the Auxiliary Carry Flag has been set, adds 6 to $A_{0-3}$. When the upper 4 bits $\left(A_{4-7}\right)$ are greater than 9 or if the Carry Flag (C) has been set, adds 6 to $A_{4-7}$ If an overflow occurs at this point, C is set.(2)	57	0	1	0	1	0	1	1	1	1	1
DEC A	(A) $\leftarrow(A)-1$	Decrements the contents of the accumulator by 1.	07	0	0	0	0	0	1	1	1	1	1
INC A	$(A)+(A)+1$	Increments the contents of the accumulator by 1.	17	0	0	0	1	0	1	1	1	1	1
ORL A, \# data	(A) $-($ ( $) \backslash$ data	Takes the logıcal sum (logıcal OR) of immedıate data $\mathrm{d}_{0}-\mathrm{d}_{7}$ and the contents of the accumulator, and stores the result in the accumulator	43	$\begin{gathered} 0 \\ d_{7} \end{gathered}$	$\begin{gathered} 1 \\ d_{6} \end{gathered}$	$\begin{gathered} 0 \\ \mathbf{d}_{5} \end{gathered}$	$\begin{gathered} 0 \\ d_{4} \end{gathered}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} 1 \\ d_{1} \end{gathered}$	$\begin{gathered} 1 \\ d_{0} \end{gathered}$	2	2
ORL A, Rr	$\begin{aligned} & (A) \leftarrow(A) \bigvee\left(R_{r}\right) \\ & r=0-7 \end{aligned}$	Takes the logical sum (logical OR) of register $\mathbf{R}_{\mathrm{r}}$ and the contents of the accumulator, and stores the result in the accumulator	4n(4)	0	1	0	0	1	$r$	$r$	r	1	1
ORLA, @ $\mathrm{R}_{\mathrm{r}}$	$\begin{aligned} & \left.(A) \leftarrow(A) M\left(R_{r}\right)\right) \\ & =0-1 \end{aligned}$	Takes the logical sum (logical OR) of the contents of the internal data memory location specified by bits 0-5 in register $R_{r}$, and the contents of the accumulator, and stores the result in the accumulator.	4n(4)	0	1	0	0	0	0	0	r	1	1
RL A	$\begin{aligned} & (A b+1) \leftarrow(A b) \\ & \left(A_{0}\right) \leftarrow\left(A_{7}\right) \\ & b=0-6 \end{aligned}$	Rotates the contents of the accumulator one bit to the left. The MSB is rotated into the LSB.	E7	1	1	1	0	0	1	1	1	1	1
RLC A	$\begin{aligned} & (A b+1) \leftarrow(A b) \\ & \left(A_{0}\right) \leftarrow(C) \\ & (C) \leftarrow\left(A_{7}\right) \\ & b=0-6 \end{aligned}$	Rotates the contents of the accumulator one bit to the left through carry.	F7	1	1	1	1	0	1	1	1	1	1
RR A	$\begin{aligned} & (A b) \leftarrow(A b+1) \\ & \left(A_{7}\right) \leftarrow\left(A_{0}\right) \\ & b=0-6 \end{aligned}$	Rotates the contents of the accumulator one bit to the right. The LSB is rotated into the MSB	77	0	1	1	1	0	1	1	1	1	1
RRC A	$\begin{aligned} & (A b) \leftarrow(A b+1) \\ & \left(A_{7}\right) \leftarrow(C) \\ & (C) \leftarrow\left(A_{0}\right) \\ & b=0-6 \end{aligned}$	Rotates the contents of the accumulator one bit to the right through carry	67	0	1	1	0	0	1	1	1	1	1
SWAP A	$\left(A_{4-7}\right) \leftarrow\left(A_{0-3}\right)$	Exchanges the contents of the lower 4 bits of the accumulator with the upper 4 bits of the accumulator.	47	0	1	0	0	0	1	1	1	1	1
XRL A, \# data	$(A) \leftarrow(A) \forall$ data	Takes the exclusive OR of immediate data $d_{0}-d_{7}$ and the contents of the accumulator, and stores the result in the accumulator.	D3	$\begin{gathered} 1 \\ d_{7} \end{gathered}$	$\begin{gathered} 1 \\ d_{6} \end{gathered}$	$\begin{gathered} 0 \\ d_{5} \end{gathered}$	$\begin{aligned} & 1 \\ & d_{4} \end{aligned}$	$\begin{gathered} 0 \\ \mathbf{d}_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} 1 \\ d_{1} \end{gathered}$	$\begin{gathered} 1 \\ d_{0} \end{gathered}$	2	2
XRL A, $\mathrm{R}_{\mathrm{r}}$	$\begin{aligned} & (A) \leftarrow(A) \forall\left(R_{r}\right) \\ & =0-7 \end{aligned}$	Takes the exclusive OR of the contents of register $\mathrm{R}_{\mathrm{r}}$ and the accumulator, and stores the result in the accumulator.	Dn(4)	1	1	0	1	1	r	$r$	$r$	1	1
XRL A, @ $\mathrm{R}_{\mathrm{r}}$	$\begin{aligned} & \left.(A) \leftarrow(A) \subset\left(R_{r}\right)\right) \\ & =0-1 \end{aligned}$	Takes the exclusive OR of the contents of the location in data memory specified by bits $0-5$ in register $R_{r}$, and the accumulator, and stores the result in the accumulator.	Dn(4)	1	1	0	1	0	0	0	r	1	1
Branch													
DJNZ Rr, addr	$\begin{aligned} & \left(R_{r}\right) \leftarrow\left(R_{r}\right)-1 \\ & \text { If }\left(R_{r}\right) \neq 0, \text { then } \\ & \left(P C_{0-7}\right) \leftarrow \text { addr } \\ & r=0-7 \end{aligned}$	Decrements the contents of register $R_{r}$ by 1, and if the result is not equal to 0 , jumps to the address indicated by $\mathrm{a}_{0}-\mathrm{a}_{7}$.	En	$\begin{gathered} 1 \\ a_{7} \end{gathered}$	$\begin{gathered} 1 \\ a_{6} \end{gathered}$	$\begin{gathered} 1 \\ a_{5} \end{gathered}$	$\begin{gathered} 0 \\ a_{4} \end{gathered}$	$\begin{gathered} 1 \\ \mathbf{a}_{3} \end{gathered}$	$\begin{gathered} \mathbf{r} \\ a_{2} \end{gathered}$	$\begin{gathered} \mathrm{r} \\ \mathbf{a}_{1} \end{gathered}$	$\begin{gathered} \mathbf{r} \\ \mathbf{a}_{0} \end{gathered}$	2	2
JBb addr	$\begin{aligned} & \left(P^{\left(P C_{0-7}\right)+\text { addr if } b=1}\right. \\ & (P C)=(P C)+2 \text { if } b=0 \end{aligned}$	Jumps to the address specified by $a_{0}-a_{7}$ if the bit in the accumulator specified by $b_{0}-b_{2}$ is set.	x2©	$\begin{aligned} & \mathbf{b}_{2} \\ & \mathbf{a}_{7} \end{aligned}$	$\begin{aligned} & b_{1} \\ & a_{6} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{b}_{0} \\ & \mathbf{a}_{5} \end{aligned}$	$\begin{gathered} 1 \\ a_{4} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ \mathbf{a}_{3} \end{gathered}$	$\begin{gathered} 0 \\ a_{2} \\ \hline \end{gathered}$	$\begin{array}{r} 1 \\ \mathbf{a}_{1} \\ \hline \end{array}$	$\begin{gathered} 0 \\ \mathbf{a}_{0} \end{gathered}$	2	2

Instruction Set (Cont.)

Mnomonic	Function	Description	$\begin{aligned} & \text { Hex } \\ & \text { Code } \end{aligned}$	Instruction Code								Cycles	Bytes
				$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$		
Branch (Cont.)													
JC addr	$\begin{aligned} & \left(\mathrm{PC}_{0-7}\right) \leftarrow \text { addr if } \mathrm{C}=1 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } \mathrm{C}=0 \end{aligned}$	Jumps to the address specified by $\mathrm{a}_{0}-\mathrm{a}_{7}$ if the Carry Flag is set.	F6	$\begin{aligned} & 1 \\ & a_{7} \end{aligned}$	$\begin{gathered} 1 \\ a_{6} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ a_{5} \\ \hline \end{gathered}$	$\begin{aligned} & 1 \\ & a_{4} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{a}_{3} \end{aligned}$	$\begin{gathered} 1 \\ a_{2} \end{gathered}$	$\begin{aligned} & 1 \\ & \mathbf{a}_{1} \end{aligned}$	0 $a_{0}$	2	2
JFO addr	$\begin{aligned} & \left(\mathrm{PC}_{0-7}\right)-\text { addr if } \mathrm{FO}=1 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } \mathrm{FO}=0 \end{aligned}$	Jumps to the address specified by $a_{0}-a_{7}$ if F0 is set.	B6	$\begin{array}{r} 1 \\ a_{7} \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & a_{6} \end{aligned}$	$\begin{array}{r} 1 \\ a_{5} \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & a_{4} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{a}_{3} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{a}_{2} \end{aligned}$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{a}_{1} \end{aligned}$	0 $a_{0}$	2	2
JF1 addr	$\begin{aligned} & \left(\mathrm{PC}_{0-7}\right) \leftarrow \text { addr if } \mathrm{F} 1=1 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } F 1=0 \end{aligned}$	Jumps to the address specified by $a_{0}-a_{7}$ if $F 1$ is set.	76	$\begin{gathered} 0 \\ a_{7} \\ \hline \end{gathered}$	$\begin{array}{r} 1 \\ a_{6} \\ \hline \end{array}$	$\begin{array}{r} 1 \\ a_{5} \\ \hline \end{array}$	$\begin{array}{r} 1 \\ a_{4} \\ \hline \end{array}$	$\begin{gathered} 0 \\ a_{3} \\ \hline \end{gathered}$	$\begin{aligned} & 1 \\ & \mathbf{a}_{2} \end{aligned}$	$\begin{array}{r} 1 \\ \mathbf{a}_{1} \\ \hline \end{array}$	0 $a_{0}$ 0	2	2
JMP addr	$\begin{aligned} & \left(\mathbf{P C}_{8-10}\right) \leftarrow \text { addr }_{8-10} \\ & \left(\mathbf{P C}_{0-7}\right) \leftarrow \text { addr }_{0-7} \\ & \left(\mathbf{P C}_{11}\right) \leftarrow \mathbf{D B F}^{2} \\ & \hline \end{aligned}$	Jumps directly to the address specified by $\mathrm{a}_{0}-\mathrm{a}_{10}$ and the DBF.	$\times 4$ (6)	$\begin{aligned} & \mathbf{a}_{10} \\ & \mathbf{a}_{7} \end{aligned}$	$\begin{aligned} & \mathbf{a}_{9} \\ & \mathbf{a}_{6} \end{aligned}$	$\begin{aligned} & a_{8} \\ & a_{5} \end{aligned}$	$\begin{aligned} & 0 \\ & a_{4} \end{aligned}$	$\begin{aligned} & 0 \\ & a_{3} \end{aligned}$	$\begin{gathered} 1 \\ a_{2} \end{gathered}$	$\begin{aligned} & 0 \\ & a_{1} \end{aligned}$	0 $a_{0}$	2	2
JMPP@ A	$\left(\mathrm{PC}_{0-7}\right)+((\mathrm{A})$ )	Replaces the lower 8 bits of the Program Counter with the contents of program memory specified by the contents of the accumulator, producing a jump to the specified address within the current page.	B3	1	0	1	1	0	0	1	1	2	1
JNC addr	$\begin{aligned} & \left(\mathrm{PC}_{0-7}\right)+\text { addr if } \mathrm{C}=0 \\ & \text { (PC) } \leftarrow(\mathrm{PC})+2 \text { if } \mathrm{C}=1 \end{aligned}$	Jumps to the address specified by $\mathrm{a}_{\mathbf{0}}-\mathrm{a}_{7}$ If the Carry Flag is not set	E6	$\begin{gathered} 1 \\ \mathbf{a}_{7} \end{gathered}$	$\begin{array}{r} 1 \\ a_{6} \\ \hline \end{array}$	$\begin{array}{r} 1 \\ a_{5} \\ \hline \end{array}$	$\begin{gathered} 0 \\ a_{4} \end{gathered}$	$\begin{gathered} 0 \\ a_{3} \end{gathered}$	$\begin{gathered} 1 \\ a_{2} \end{gathered}$	$\begin{array}{r} 1 \\ \mathbf{a}_{1} \\ \hline \end{array}$	0 $a_{0}$ 0	2	2
JNI addr	$\begin{aligned} & \left(\mathrm{PC}_{0-7}\right) \leftarrow \text { addr if } 1=0 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \mathrm{If} \mid=1 \end{aligned}$	Jumps to the address specified by $a_{0}-a_{7}$ if the Interrupt Flag is not set.	86	$\begin{gathered} 1 \\ \mathbf{a}_{7} \end{gathered}$	$\begin{gathered} 0 \\ \mathbf{a}_{6} \end{gathered}$	$\begin{aligned} & 0 \\ & a_{5} \end{aligned}$	$\begin{aligned} & 0 \\ & a_{4} \end{aligned}$	$\begin{gathered} 0 \\ \mathbf{a}_{3} \end{gathered}$	$\begin{aligned} & 1 \\ & a_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & a_{1} \end{aligned}$	$\begin{aligned} & 0 \\ & a_{0} \end{aligned}$	2	2
JNT0 addr	$\begin{aligned} & \left(\mathrm{PC}_{0-7}\right) \leftarrow \text { addr if T0 }=0 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } \mathrm{TO}=1 \end{aligned}$	Jumps to the address specified by $a_{0}-a_{7}$ if Test 0 is LOW.	26	$\begin{gathered} 0 \\ \mathbf{a}_{7} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ a_{6} \\ \hline \end{gathered}$	$\begin{aligned} & 1 \\ & a_{5} \end{aligned}$	$\begin{gathered} 0 \\ \mathbf{a}_{4} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ \mathbf{a}_{3} \end{gathered}$	$\begin{gathered} 1 \\ a_{2} \end{gathered}$	$\begin{aligned} & 1 \\ & \mathbf{a}_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & a_{0} \end{aligned}$	2	2
JNT1 addr	$\begin{aligned} & \left(\mathrm{PC}_{0-7}\right) \leftarrow \text { addr if } \mathrm{T} 1=0 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } \mathrm{T} 1=1 \end{aligned}$	Jumps to the address specified by $a_{0}-a_{7}$ if Test 1 is LOW.	46	$\begin{gathered} 0 \\ \mathbf{a}_{7} \end{gathered}$	$\begin{array}{r} 1 \\ \mathbf{a}_{6} \end{array}$	$\begin{gathered} 0 \\ a_{5} \end{gathered}$	$\begin{gathered} 0 \\ \mathbf{a}_{4} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ a_{3} \end{gathered}$	$\begin{aligned} & 1 \\ & a_{2} \end{aligned}$	$\begin{array}{r} 1 \\ \mathbf{a}_{1} \\ \hline \end{array}$	$\begin{gathered} 0 \\ a_{0} \end{gathered}$	2	2
JNZ addr	$\begin{aligned} & \left(\mathrm{PC}_{0-7}\right) \leftarrow \text { addr if } A \neq 0 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } A=0 \end{aligned}$	Jumps to the address specified by $a_{0}-a_{7}$ if the contents of the accumulator are not equal to 0 .	96	$\begin{gathered} 1 \\ a_{7} \end{gathered}$	$\begin{gathered} 0 \\ a_{6} \end{gathered}$	$\begin{aligned} & 0 \\ & a_{5} \end{aligned}$	$\begin{gathered} 1 \\ a_{4} \end{gathered}$	$\begin{gathered} \mathbf{0} \\ \mathbf{a}_{3} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ \mathbf{a}_{2} \end{gathered}$	$\begin{aligned} & \hline 1 \\ & \mathbf{a}_{1} \\ & \hline \end{aligned}$	$\begin{gathered} 0 \\ \mathbf{a}_{0} \end{gathered}$	2	2
JTF addr	$\begin{aligned} & \left(\mathrm{PC}_{0-7}\right) \leftarrow \text { add if } \mathrm{TF}=1 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } T F=0 \end{aligned}$	Jumps to the address specified by $a_{0}-a_{7}$ if the Timer Flag is set. The Timer Flag is cleared after the instruction is executed.	16	$\begin{gathered} 0 \\ \mathbf{a}_{7} \end{gathered}$	$\begin{gathered} 0 \\ a_{6} \end{gathered}$	$\begin{gathered} 0 \\ a_{5} \end{gathered}$	$\begin{aligned} & 1 \\ & a_{4} \end{aligned}$	$\begin{gathered} 0 \\ a_{3} \end{gathered}$	$\begin{aligned} & 1 \\ & a_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & a_{1} \end{aligned}$	$\begin{aligned} & 0 \\ & a_{0} \end{aligned}$	2	2
JT0 addr	$\begin{aligned} & \left(\mathrm{PC}_{0-7}\right) \leftarrow \text { addr if } \mathrm{TO}=1 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } \mathrm{TO}=0 \end{aligned}$	Jumps to the address specified by $a_{0}-a_{7}$ if Test 0 is HIGH.	36	$\begin{gathered} 0 \\ a_{7} \end{gathered}$	$\begin{gathered} 0 \\ \mathbf{a}_{6} \end{gathered}$	$\begin{aligned} & 1 \\ & a_{5} \end{aligned}$	$\begin{gathered} 1 \\ a_{4} \end{gathered}$	$\begin{gathered} 0 \\ a_{3} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ a_{2} \end{gathered}$	$\begin{aligned} & \hline 1 \\ & \mathbf{a}_{1} \\ & \hline \end{aligned}$	$\begin{gathered} 0 \\ a_{0} \end{gathered}$	2	2
JT1 addr	$\begin{aligned} & \left(\mathrm{PC}_{0-7}\right) \leftarrow \text { addr if } \mathrm{T} 1=1 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } \mathrm{T} 1=0 \end{aligned}$	Jumps to the address specified by $\mathrm{a}_{0}-\mathrm{a}_{7}$ if Test 1 is HIGH.	56	$\begin{gathered} 0 \\ \mathbf{a}_{7} \end{gathered}$	$\begin{array}{r} 1 \\ a_{6} \\ \hline \end{array}$	$\begin{gathered} 0 \\ a_{5} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ a_{4} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ \mathbf{a}_{3} \end{gathered}$	$\begin{aligned} & 1 \\ & a_{2} \end{aligned}$	$\begin{array}{r} 1 \\ \mathbf{a}_{1} \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & a_{0} \\ & \hline \end{aligned}$	2	2
JZ	$\begin{aligned} & \left(\mathrm{PC}_{0,7}\right) \leftarrow \text { addr if } \mathrm{A}=0 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } \mathrm{A}=1 \\ & \hline \end{aligned}$	Jumps to the address specified by $\mathrm{a}_{0}-\mathrm{a}_{7}$ If the contents of the accumulator are equal to 0 .	C6	$\begin{gathered} 1 \\ a_{7} \end{gathered}$	$\begin{gathered} 1 \\ a_{6} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ a_{5} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ \mathbf{a}_{4} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ \mathbf{a}_{3} \end{gathered}$	$\begin{gathered} 1 \\ a_{2} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ \mathbf{a}_{1} \\ \hline \end{gathered}$	0   $a_{0}$	2	2
Control													
ENI		Enables external interrupts. When external interrupts are enabled, a low-level input to the INT pin causes the processor to vector to the interrupt service routine.	05	0	0	0	0	0	1	0	1	1	1
DIS I		Disables external interrupts. When external interrupts are disabled, low-level inputs to the INT pin have no effect on program execution.	15	0	0	0	1	0	1	0	1	1	1
ENTO CLK		Enables clock output to pin TO .	75	0	1	1	1	0	1	0	1	1	1
SEL MBO	(DBF) $\leftarrow 0$	Clears the Memory Bank Flip-Flop, selecting Program Memory Bank 0 [program memory addresses $0-2047_{(10)}$. Clears $\mathrm{PC}_{11}$ after the next JMP or CALL instruction.	E5	1	1	1	0	0	1	0	1	1	1
SEL MB1	(DBF) $\leftarrow 1$	Sets the Memory Bank Flip-Flop, selecting Program Memory Bank 1 [program memory addresses 2048-4095(10)]. Sets $\mathrm{PC}_{11}$ after the next JMP or CALL instruction.	F5	1	1	1	1	0	1	0	1	1	1
SEL RBO	(BS) $\leftarrow 0$	Selects Data Memory Bank 0 by clearing bit 4 (Bank Switch) of the PSW. Specifies data memory addresses $0-\mathbf{7}_{(10)}$ as regısters $0-7$ of Data Memory Bank 0.	C5	1	1	0	0	0	1	0	1	1	1
SEL RB1	(BS) $\leftarrow 1$	Selects Data Memory Bank 1 by setting bit 4 (Bank Switch) of the PSW. Specifies data memory 24-31 ${ }_{(10)}$ as regısters 0-7 of Data Memory Bank 1.	D5	1	1	0	1	0	1	0	1	1	1
HALT		Initiates Halt mode.	01	0	0	0	0	0	0	0	1	1	1
Data Moves													
MOV A, \# data	(A) $\leftarrow$ data	Moves immediate data $d_{0}-d_{7}$ into the accumulator.	23	$\begin{aligned} & 0 \\ & d_{7} \end{aligned}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 1 \\ d_{5} \end{gathered}$	$\begin{aligned} & 0 \\ & d_{4} \end{aligned}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{aligned} & 0 \\ & d_{2} \end{aligned}$	$\begin{array}{r} 1 \\ d_{1} \\ \hline \end{array}$	$\begin{gathered} 1 \\ d_{0} \end{gathered}$	2	2
MOV A, $\mathrm{R}_{\mathrm{r}}$	$\begin{aligned} & (A) \leftarrow\left(R_{r}\right) \\ & =0-7 \end{aligned}$	Moves the contents of register $\mathbf{R}_{\mathrm{r}}$ into the accumulator.	Fn(4)	1	1	1	1	1	r	r	r	1	1
MOV A, @ $\mathrm{R}_{\mathrm{r}}$	$\begin{aligned} & (A) \leftarrow\left(\left(R_{r}\right)\right) \\ & =0-1 \end{aligned}$	Moves the contents of internal data memory specified by bits 0-5 in register $R_{r}$, into the accumulator.	Fn(4)	1	1	1	1	0	0	0	r	1	1
MOV A, PSW	$($ A $) \leftarrow($ PSW $)$	Moves the contents of the Program Status Word into the accumulator.	C7	1	1	0	0	0	1	1	1	1	1
$\begin{aligned} & \text { MOV } R_{r} \text { \# } \\ & \text { data } \end{aligned}$	$\begin{aligned} & \left(R_{r}\right) \leftarrow \text { data } \\ & r=0-7 \end{aligned}$	Moves immediate data $d_{0}-d_{7}$ into register $\mathrm{R}_{\mathrm{r}}$.	Bn(4)	$\begin{aligned} & 1 \\ & d_{7} \\ & \hline \end{aligned}$	$\begin{gathered} 0 \\ d_{6} \\ \hline \end{gathered}$	$\begin{array}{r} 1 \\ d_{5} \end{array}$	$\begin{gathered} 1 \\ d_{4} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ d_{3} \\ \hline \end{gathered}$	$\begin{array}{r} r \\ d_{2} \end{array}$	$\begin{gathered} r \\ d_{1} \end{gathered}$	$r$ $d_{0}$	2	2
MOV $\mathrm{R}_{\mathrm{r}}, \mathrm{A}$	$\begin{aligned} & \left(R_{r}\right) \leftarrow(A) \\ & \stackrel{=}{=} 0-7 \end{aligned}$	Moves the contents of the accumulator into register $\mathbf{R}_{\mathrm{r}}$	An(4)	1	0	1	0	1	r	r	r	1	1
MOV @ $\mathrm{R}_{\mathrm{r}}, \mathbf{A}$	$\begin{aligned} & \left(\left(R_{r}\right)\right) \leftarrow(A) \\ & =0=0-1 \end{aligned}$	Moves the contents of the accumulator into the data memory location specified by bits 0-5 in register $\mathbf{R}_{\mathbf{r}}$.	An(4)	1	0	1	0	0	0	0	r	1	1
$\underset{\text { MOta }}{\overline{\text { MOV }} @ \mathbf{R}_{r} ; \#}$	$\begin{aligned} & \left(\left(R_{r}\right)\right) \leftarrow \text { data } \\ & =0=0-1 \end{aligned}$	Moves immediate data $d_{0}-d_{7}$ into the data memory location specified by bits $0-5$ in register $\mathrm{R}_{\mathrm{r}}$.	Bn(4)	$\begin{aligned} & 1 \\ & d_{7} \end{aligned}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 1 \\ d_{5} \end{gathered}$	$\begin{aligned} & 1 \\ & d_{4} \end{aligned}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{d}_{1} \end{aligned}$	$\begin{aligned} & r \\ & d_{0} \end{aligned}$	2	2
MOV PSW, A	(PSW) $\leftarrow(A)$	Moves the contents of the accumulator into the Program Status Word.	D7	1	1	0	1	0	1	1	1	1	1


Mnomonic	Function	Description	Hex Code	Instruction Code								Cycles	Bytes
				D7	D6	D	D4	D3	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$		
Data Moves (Cont.)													
MOVP A, @ A	$\begin{aligned} & \left(\mathrm{PC}_{0-7)} \leftarrow(A)\right. \\ & (A) \leftarrow((P C)) \end{aligned}$	Moves the contents of the program memory location specified by $\mathrm{PC}_{\mathbf{3}-11}$ concatenated with the contents of the accumulator, into the accumulator.	A3	1	0	1	0	0	0	1	1	2	1
MOVP3 A, @ A	$\begin{aligned} & \left(\mathrm{PC}_{0-7}\right) \leftarrow(A) \\ & \left(\mathrm{PC}_{8-11}\right) \div 001 \\ & (A) \leftarrow\left(\mathrm{PCC}_{1}\right) \end{aligned}$	Moves the contents of the program memory location specified by 0011 ( $\mathrm{PC}_{8-11}$, page 3 of Program Memory Bank 0) and the contents of the accumulator, into the accumulator.	E3	1	1	1	0	0	0	1	1	2	1
MOVXA, @ R	$\begin{aligned} & (A) \leftarrow\left(\left(R_{r}\right)\right) \\ & r=0-1 \end{aligned}$	Moves the contents of the external data memory location specified by register $R_{r}$, into the accumulator.	8 n (4)	1	0	0	0	0	0	0	r	2	1
MOVX @ R, A	$\begin{aligned} & \left(\left(R_{r}\right)\right) \leftarrow(A) \\ & =00-1 \end{aligned}$	Moves the contents of the accumulator into the external data memory location specified by register $R_{r}$.	9 m (4)	1	0	0	1	0	0	0	r	2	1
XCH A, Rr	$\begin{aligned} & (A) \leftrightarrow\left(R_{r}\right) \\ & =0-7 \end{aligned}$	Exchanges the contents of the accumulator and register $\mathbf{R}_{r}$.	2 n (4)	0	0	1	0	1	r	r	$r$	1	1
XCHA, @ $\mathrm{R}_{\mathrm{r}}$	$\begin{aligned} & (A) \leftrightarrow\left(\left(R_{r}\right)\right) \\ & ==0-1 \end{aligned}$	Exchanges the contents of the accumulator and the contents of the data memory location specified by bits $0-5$ in register $\mathrm{R}_{\mathrm{r}}$.	2n(4)	0	0	1	0	0	0	0	r	1	1
$\begin{aligned} & \text { XCHD A, @ } \\ & \text { R }_{r} \end{aligned}$	$\begin{aligned} & \left(A_{0-3}\right) \leftrightarrow\left(\left(R_{r 0-3}\right)\right) \\ & r=0-1 \end{aligned}$	Exchanges the contents of the lower 4 bits of the accumulator with the contents of the lower 4 bits of the internal data memory location specified by bits $0-5$ in register $R_{r}$.	3n(4)	0	0	1	1	0	0	0	r	1	1
Flags													
CPL C	(C) $\leftarrow \overline{\text { (C) }}$	Takes the complement of the Carry bit.	A7	1	0	1	0	0	1	1	1	1	1
CPL FO	$(\mathrm{FO}) \leftarrow(\overline{\mathrm{FO}})$	Takes the complement of Flag 0.	95	1	0	0	1	0	1	0	1	1	1
CPL F1	(F1) $\leftarrow \overline{(\overline{F 1})}$	Takes the complement of Flag 1.	B5	1	0	1	1	0	1	0	1	1	1
CLRC	(C) $\leftarrow 0$	Clears the Carry bit.	97	1	0	0	1	0	1	1	1	1	1
CLR FO	(FO) $\leftarrow 0$	Clears Flag 0.	85	1	0	0	0	0	1	0	1	1	1
CLR F1	(F1) $\leftarrow 0$	Clears Flag 1.	A5	1	0	1	0	0	1	0	1	1	1
Input/Output													
$\begin{aligned} & \text { ANL BUS, \# } \\ & \text { data } \end{aligned}$	(BUS) $\leftarrow($ BUS $) \wedge$ data	Takes the logical AND of the contents of the bus and immediate data $\mathrm{d}_{0}-\mathrm{d}_{7}$, and sends the result to the bus.	98	$\begin{aligned} & 1 \\ & d_{7} \end{aligned}$	$\begin{gathered} 0 \\ \mathbf{d}_{6} \end{gathered}$	$\begin{gathered} 0 \\ d_{5} \end{gathered}$	$\begin{aligned} & 1 \\ & d_{4} \end{aligned}$	$\begin{gathered} 1 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} 0 \\ d_{1} \end{gathered}$	$\begin{gathered} 0 \\ \mathbf{d}_{0} \end{gathered}$	2	2
$\overline{\text { ANL } P_{p p} \#}$	$\begin{aligned} & \left(P_{p}\right) \leftarrow\left(P_{p}\right) \wedge \text { data } \\ & p=1-2 \end{aligned}$	Takes the logical AND of the contents of designated port $P_{p}$ and immediate data $d_{0}-d_{7}$, and sends the result to port $P_{p}$ for output.	9n(5)	$\begin{aligned} & 1 \\ & d_{7} \end{aligned}$	$\begin{aligned} & 0 \\ & d_{6} \end{aligned}$	$\begin{aligned} & 0 \\ & d_{5} \end{aligned}$	$\begin{aligned} & 1 \\ & d_{4} \end{aligned}$	$\begin{aligned} & 1 \\ & d_{3} \end{aligned}$	$\begin{aligned} & 0 \\ & d_{2} \end{aligned}$	$\begin{gathered} p \\ d_{1} \end{gathered}$	$\begin{gathered} p \\ d_{0} \end{gathered}$	2	2
ANLD P $\mathrm{P}_{\text {, }}$ A	$\left(P_{p}\right) \leftarrow\left(P_{p}\right) \wedge\left(A_{0-3}\right)$	Takes the logical AND of the contents of designated port $\mathrm{P}_{\mathrm{p}}$ and the lower 4 bits of the accumulator, and sends the result to port $\mathrm{P}_{\mathrm{p}}$ for output.	9n(5)	1	0	0	1	1	1	p	p	2	1
IN A, $\mathbf{P}_{\mathbf{p}}$	$\begin{aligned} & (A) \leftarrow\left(P_{p}\right) \\ & P=1-2 \end{aligned}$	Loads the accumulator with the contents of designated port $\mathrm{P}_{\mathrm{p}}$.	On(5)	0	0	0	0	1	0	P	p	2	1
INS A, BUS	(A) + (BUS)	Loads the contents of the bus into the accumulator on the rising edge of RD.	08	0	0	0	0	1	0	0	0	2	1
MOVD A, $\mathrm{P}_{\mathrm{p}}$	$\begin{aligned} & \left(A_{0-3}\right) \leftarrow\left(P_{p}\right) \\ & \left(A_{4-7}\right) \leftarrow 0 \\ & p=4-7 \end{aligned}$	Moves the contents of designated port $P_{p}$ to the lower 4 blts of the accumulator, and clears the upper 4 bits.	On(5)	0	0	0	0	1	1	p	p	2	1
MOVD $\mathrm{P}_{\mathrm{p}}, \mathrm{A}$	$\begin{aligned} & \left(P_{p}\right) \leftarrow\left(A_{0-3}\right) \\ & p=4-7 \end{aligned}$	Moves the lower 4 bits of the accumulator to designated port $P_{p}$. The upper 4 bits of the accumulator are not changed.	3n(5)	0	0	1	1	1	1	p	p	2	1
$\begin{aligned} & \text { ORL BUS, \# } \\ & \text { data } \end{aligned}$	(BUS) $\leftarrow($ BUS $) \backslash$ data	Takes the logical OR of the contents of the bus and immediate data $\mathrm{d}_{0}-\mathrm{d}_{7}$, and sends the result to the bus.	88	$\begin{gathered} 1 \\ d_{7} \end{gathered}$	$\begin{aligned} & 0 \\ & d_{6} \end{aligned}$	$\begin{gathered} 0 \\ d_{5} \end{gathered}$	$\begin{aligned} & 0 \\ & d_{4} \end{aligned}$	$\begin{aligned} & 1 \\ & d_{3} \end{aligned}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{aligned} & 0 \\ & d_{1} \end{aligned}$	$\begin{gathered} 0 \\ d_{0} \end{gathered}$	2	2
$\overline{\text { ORLD P } P^{\prime} \text { A }}$	$\begin{aligned} & \left(P_{p}\right) \leftarrow\left(P_{p}\right) V\left(A_{0-3}\right) \\ & p=4-7 \end{aligned}$	Takes the logical OR of the contents of designated port $P_{p}$ and the lower 4 bits of the accumulator, and sends the result to port $P_{p}$ for output.	8 n (5)	1	0	0	0	1	1	p	p	2	1
$\begin{aligned} & \text { ORL } P_{p} \text { \# \#ata } \\ & \text { dater } \end{aligned}$	$\begin{aligned} & \left(P_{p}\right) \leftarrow\left(P_{p}\right) V \text { data } \\ & p=1-2 \end{aligned}$	Takes the logical OR of the contents of designated port $P_{p}$ and immediate data $d_{0}-d_{7}$, and sends the result to port $P_{p}$ for output.	9n(5)	$\begin{aligned} & 1 \\ & d_{7} \end{aligned}$	$\begin{aligned} & 0 \\ & d_{6} \end{aligned}$	$\begin{gathered} 0 \\ d_{5} \end{gathered}$	$\begin{aligned} & 0 \\ & d_{4} \end{aligned}$	$\begin{gathered} 1 \\ d_{3} \end{gathered}$	$\begin{aligned} & 0 \\ & d_{2} \end{aligned}$	$\begin{gathered} \mathrm{p} \\ \mathrm{~d}_{1} \end{gathered}$	$\stackrel{p}{\mathrm{p}} \underset{\mathrm{~d}_{0}}{ }$	2	2
OUTL BUS, A	(BUS) $-(A)$	Latches the contents of the accumulator onto the bus on the rising edge of WR.   Note: Never use the OUTL BUS instruction when using external program memory, as this will permanently latch the bus.	02	0	0	0	0	0	0	1	0	2	1
OUTL P P A	$\begin{aligned} & \left(P_{p}\right) \leftarrow(A) \\ & p=1-2 \end{aligned}$	Latches the contents of the accumulator into designated port $\mathbf{P}_{\mathrm{p}}$ for output.	3n(5)	0	0	1	1	1	0	P	p	2	1
Registers													
DEC $\mathrm{R}_{\mathrm{r}}$	$\begin{aligned} & \left(R_{r}\right) \leftarrow\left(R_{r}\right)-1 \\ & =0-7 \end{aligned}$	Decrements the contents of register R , by 1.	Cn(4)	1	1	0	0	1	r	$r$	r	1	1
INC $\mathrm{R}_{\mathrm{r}}$	$\begin{aligned} & \left(R_{r}\right) \leftarrow\left(R_{r}\right)+1 \\ & =0=-7 \end{aligned}$	Increments the contents of register $\mathrm{R}_{\mathbf{r}}$ by 1	1 n (4)	0	0	0	1	1	r	r	$r$	1	1
INC @ $\mathrm{R}_{\mathrm{r}}$	$\begin{aligned} & \left(\left(R_{r}\right)\right) \leftarrow\left(\left(R_{r}\right)\right)+1 \\ & ==0-1 \end{aligned}$	Increments by 1 the contents of the data memory location specified by bits $0-5$ in register $\mathrm{R}_{\mathrm{r}}$.	1n(4)	0	0	0	1	0	0	0	$r$	1	1

## Instruction Set (Cont.)

Mnomonic	Function	Description	$\begin{aligned} & \text { Mex } \\ & \text { Code } \end{aligned}$	Instruction Code								Cyclos	Bytes
				$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	D3	$\mathrm{D}_{2}$.		$\mathrm{D}_{0}$		
Subroutine													
CALL addr		Stores the contents of the Program Counter and the upper 4 bits of the PSW in the address Indicated by the Stack Pointer, and Increments the contents of the Stack Pointer, calling the subroutine specified by address $a_{0}-a_{10}$ and the DBF.	x46	$\begin{aligned} & \mathbf{a}_{10} \\ & \mathbf{a}_{7} \end{aligned}$	$\begin{aligned} & \mathbf{a}_{9} \\ & \mathbf{a}_{6} \end{aligned}$	$\begin{aligned} & \mathbf{a}_{8} \\ & \mathbf{a}_{5} \end{aligned}$	$\begin{aligned} & 1 \\ & a_{4} \end{aligned}$	$\begin{aligned} & 0 \\ & a_{3} \end{aligned}$	$\begin{aligned} & 1 \\ & a_{2} \end{aligned}$	$\begin{aligned} & 0 \\ & a_{1} \end{aligned}$	$\begin{aligned} & 0 \\ & a_{0} \end{aligned}$	2	2
RET	$\begin{aligned} & (S P) \leftarrow(S P)-1 \\ & (P C) \leftarrow((S P)) \end{aligned}$	Decrements the contents of the Stack Pointer by 1 and stores, in the Program Counter, the contents of the location specified by the Stack Pointer, executing a return from subroutine without restoring the PSW.	83	1	0	0	0	0	0	1	1	2	1
RETR		Decrements the contents of the Stack Pointer by 1 and stores, in the Program Counter, the contents of the upper 4 blts of the PSW and the contents of the location specified by the Stack Pointer, executing a return from subroutine with restoration of the PSW.	93	1	0	0	1	0	0	1	1	2	1
Timer/Counter													
EN TCNTI		Enables internal interrupt of timer/event counter. If an overflow condition occurs, then an interrupt will be generated.	25	0	0	1	0	0	1	0	1	1	1
DIS TCNTI		Disables internal interrupt of timer/event counter.	35	0	0	1	1	0	1	0	1	1	1
MOV A, T	(A) $-(T)$	Moves the contents of the timer/counter into the accumulator.	42	0	1	0	0	0	0	1	0	1	1
MOV T, A	(T) $-(A)$	Moves the contents of the accumulator into the timer/counter.	62	0	1	1	0	0	0	1	0	1	1
STOP TCNT		Stops the operation of the timer/event counter.	65	0	1	1	0	0	1	0	1	1	1
STRT CNT		Starts the event counter operation of the timer/counter when T1 changes from a low-level Input to a high-lovel Input.	45	0	1	0	0	0	1	0	1	1	1
STRT T		Starts the timer operation of the timer/counter. The timer is incremented every 32 machine cycles.	55	0	1	0	1	0	1	0	1	1	1
Miscellaneous													
NOP		Uses one machine cycle without performing any operation.	00	0	0	0	0	0	0	0	0	1	1

Notes: (1) Binary instruction code designations, and ${ }_{p}$ represent encoded values or the lowest-order bit value of specified registers and ports, respectively
(2) Execution of the ADD, ADDC, and DA instructions affect the carry flags, which are not shown in the respective function equations These instructions set the carry flags when there is an overflow in the accumulator (the Auxiliary Carry Flag is set when there is an overtlow of bit 3 of the accumulator) and clear the carry flags when there is no overflow Flags that are specifically addressed by flag instructions are shown in the function equations for those instructions
(3) References to addresses and data are specified in byte 1 and/or 2 in the opcode of the corresponding instruction
(4) The hex value of $n$ for specific registers is as follows
a) Direct addressing
$\begin{array}{llll}R_{0} . n=8 & R_{2} n=A & R_{4} n=C & R_{6} n=E\end{array}$
$\begin{array}{lllll}R_{0} n=8 & R_{2} n=A & R_{4} n=C & R_{6} n=E \\ R_{1} n=9 & R_{3} n=B & R_{5} n=D & R_{7} n=F\end{array}$
b) Indirect addressing
$@ R_{0} n=0 \quad @ R_{1} n=1$
(5) The hex value of $n$ for specific ports is as follows
$\begin{array}{llll}P_{1} n=9 & P_{4} & n=C & P_{6} n=E \\ P_{2} & n=A & P_{5} & n=D\end{array} P_{7} n=F$
$\begin{array}{llll}P_{2} n=A & P_{5} & n=D & P_{7} n=F\end{array}$
(6) The hex value of $x$ for specific accumulator or address bits is as follows
a) JBb instruction
$B_{0} x=1 \quad B_{2} \quad x=5 \quad B_{4} \quad x=9 \quad B_{6} \quad x=D$
$\begin{array}{llll}B_{1} x=3 & B_{3} x=7 & B_{5} x=B & B_{7} x=F\end{array}$
b) JMP instruction Page $0 \quad x=0 \quad$ Page $2 x=4 \quad$ Page $4 x=8$
$\begin{array}{llll}\text { Page } 0 & x=0 & \text { Page } 2 x=4 & \text { Page } 4 \quad x=8 \quad \text { Page } 6 \quad x=C\end{array}$
) CALL instruction
$\begin{array}{lll}\text { Page } 0 & x=1\end{array}$ Page $2 x=5 \quad$ Page $4 x=9 \quad$ Page $6 x=D$
Page $1 x=3$ Page $3 x=7 \quad$ Page $5 x=B \quad$ Page $7 x=F$
$\mu$ PD80C48/80C35

DC Characteristics: Standard Voltage Range


Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Input Low Voltage	$\mathrm{V}_{\text {LI }}$	-0.3		0.8	v	
Input High Voltage	$\mathrm{V}_{\mathrm{H}}$	$\mathrm{V}_{\mathrm{cc}}{ }^{-2}$		$\mathrm{V}_{\text {cc }}$	v	All except XTAL1, XTAL2, $\overline{\text { RESET }}$
	$\mathrm{V}_{\text {H+1 }}$	$\mathrm{V}_{\mathrm{cc}}{ }^{-1}$		$\mathrm{V}_{\mathrm{cc}}$	v	RESET, XTAL1, XTAL2
Output Low Voltage	$\mathrm{V}_{\mathrm{oL}}$			0.45	V	$\mathrm{IOL}=2.0 \mathrm{~mA}$
Output High Voltage	$\mathrm{V}_{\mathrm{OH}}$	2.4			v	$\text { Bus, } \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{PSEN}}, \mathrm{ALE}, \mathrm{PROG},$ $\mathrm{TO} ; \mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$
	$\mathrm{V}_{\mathrm{OH1}}{ }^{(1)}$	2.4			v	Port 1, Port 2; $\mathrm{I}_{\mathrm{OH}}=-5 \mu \mathrm{~A}$ (Type 0)
						Port 1, Port 2; $I_{\mathrm{OH}}=-50 \mu \mathrm{~A}$ (Type 1)
	$\mathrm{V}_{\mathrm{OH} 2}$	$\mathrm{V}_{\mathrm{cc}}-0.5$			V	All outputs; $I_{\text {OH }}=-0.2 \mu \mathrm{~A}$
Input Current	$\mathbf{I L L P}^{\text {(1) }}$		-15	-40	$\mu \mathrm{A}$	Port 1, Port 2; $\mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}$   (Type 0)
				-500	$\mu \mathrm{A}$	Port 1 Port 2; $\mathrm{V}_{\mathbb{N}} \leq \mathrm{V}_{\mathrm{IL}}$ (Type 1)
	ILC			-40	$\mu \mathrm{A}$	$\overline{\text { SS }}$, $\overline{\text { RESET }} ; \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {IL }}$
Input Leakage Current	$I_{L 11}$			$\pm 1$	$\mu \mathrm{A}$	T, , INT, $\mathrm{V}_{\text {DD }} ; \mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\mathbf{I N}} \leq \mathrm{V}_{\text {CC }}$
	$\mathrm{l}_{12}$			$\pm 3$	$\mu \mathrm{A}$	EA; $\mathbf{V}_{\text {SS }} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {cC }}$
Output Leakage Current	$\mathrm{I}_{\mathrm{LO}}$			$\pm 1$	$\mu \mathrm{A}$	Bus, T0, High-Impedance State; $\mathrm{V}_{\mathrm{ss}} \leq \mathrm{V}_{0} \leq \mathrm{V}_{\mathrm{cc}}$
Standby Current	$\mathrm{ICCl}^{1}$		0.4	0.8	mA	Halt mode; $\mathrm{t}_{\mathrm{CY}}=2.5 \mu \mathrm{~s}$
	lcC		1	20	$\mu \mathrm{A}$	Stop mode (2)
Supply Current	$l_{\text {cc }}$		4	8	mA	$\mathrm{t}_{\mathrm{cY}}=2.5 \mu \mathrm{~s}$
Data Retention Voltage	$V_{\text {cCor }}$	2.0			v	Stop mode ( $V_{\text {DD }}, \overline{\overline{\operatorname{RESET}}} \leq 0.4 \mathrm{~V}$ )

DC Characteristics: Extended Voltage Range
$\mathrm{T}_{\mathrm{a}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{cc}}=+2.5 \mathrm{~V}$ to $+5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}$

Parameter	Symbol	Limits		Unit	Test Conditions
		Min Typ	Max		
Input Low Voltage	$\mathrm{V}_{\mathrm{IL}}$	-0.3	0.18 Vcc	V	
Input High Voltage (All Except XTAL 1, XTAL 2)	$\mathrm{V}_{\mathrm{IH}}$	$0.7 \mathrm{~V}_{\mathrm{cc}}$	$\mathrm{V}_{\mathrm{cc}}$	V	
Input High Voltage (XTAL 1, XTAL 2)	$\mathrm{V}_{\mathbf{H} 1}$	$0.8 \mathrm{~V}_{\mathrm{cc}}$	$\mathrm{V}_{\mathrm{cc}}$	v	
Output Low Voltage	$\mathrm{V}_{\text {OL }}$		0.45	v	$\mathrm{l}_{\mathrm{OL}}=1.0 \mathrm{~mA}$
Output High Voltage (Bus, RD, WR, PSEN, ALE, PROG, TO	$\mathrm{V}_{\text {OH }}$	$0^{0.75 V}$ cc		v	$\mathrm{IOH}^{\text {O }}=-100 \mu \mathrm{~A}$
Output High Voltage (All Other Outputs	$\mathrm{V}_{\text {OH1 }}$	$0.7 \mathrm{~V}_{\text {cc }}$		v	$\begin{aligned} & \text { Port 1, Port 2; } \\ & \text { IoH = } 1 \mu \mathrm{~A} \\ & \text { (Type 0) } \end{aligned}$
					$\begin{aligned} & \text { Port 1, Port 2; } \\ & \text { loH }=-10 \mu \mathrm{~A} \\ & \text { (Type 1) } \end{aligned}$
Output High Voltage (All Outputs)	$\mathrm{V}_{\mathrm{OH} 2}$	$\mathrm{V}_{\mathrm{cc}}-0.5$		V	$\mathrm{I}_{\mathrm{OH}}=-0.2 \mu \mathrm{~A}$
Input Leakage Current (Port 1, Port 2)	ILPP	-15	-40	$\mu \mathrm{A}$	$\mathbf{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{IL}}$ (Type 0)
			-500	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{LL}}$ (Type 1)
Input Leakage Current (SS, RESET)	ILC		-40	$\mu \mathrm{A}$	$\mathbf{V}_{\text {IN }} \leq \mathrm{V}_{\mathbf{I L}}$
Input Leakage Current (T1, INT)	$\mathbf{I L L}^{1}$		$\pm 1$	$\mu \mathrm{A}$	$\mathbf{V}_{\mathbf{S s}}<\mathbf{V}_{\mathbf{I N}}<\mathbf{V}_{\text {cc }}$
Input Leakage Current (EA)	$\mathrm{ILL}^{2}$		$\pm 3$	$\mu \mathrm{A}$	$\mathbf{V}_{\mathbf{s s}}<\mathbf{V}_{\mathbf{I N}}<\mathbf{V}_{\mathbf{c c}}$
Output Leakage Current (Bus, T0 - High Impedance State)	loL		$\pm 1$	$\mu \mathrm{A}$	$\mathbf{v}_{\mathbf{s s}}<\mathbf{v}_{\mathbf{0}}<\mathbf{v}_{\mathbf{c c}}$
Supply Current	$\mathrm{Icc}_{\text {c }}$	0.8	1.6	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}, \\ & \mathrm{t}_{\mathrm{cy}}=10 \mu \mathrm{~s} \end{aligned}$
Halt Mode Standby Current	$\mathrm{ICCl}_{1}$	100	200	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{v}_{\mathrm{cc}}=3 \mathrm{~V}, \\ & \mathrm{t}_{\mathrm{cr}}=10 \mu \mathrm{~s} \end{aligned}$
Stop Mode Standby Current	$\mathbf{l c c}^{2}$	1	20	$\mu \mathrm{A}$	

Notes: (1) Type 0 and type 1 options apply only to the $\mu$ PD80C48, the $\mu$ PD80C35 is type 1 only
(2) Input Pin Voltage is $\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\mathrm{L}}$, or $\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\mathrm{IH}}$

AC Characteristics
Read, Write and Instruction Fetch: External Data and Program Memory
$\mathrm{T}_{\mathrm{a}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{Cc}}=\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}$

Parameter	Symbol	$V_{c c}=+5 \mathrm{~V} \pm 10 \%$			$V_{c c}=+2.5 \mathrm{~V}$ to +5.5 V			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max		
ALE Pulse Width	$t_{L L}$	400			2160			ns	
Address Setup before ALE	$t_{\text {AL }}$	120			1620			ns	
Address Hold from ALE	$t_{\text {LA }}$	80			330			ns	(1)
Control Pulse Width (PSEN, RD, WR)	${ }^{\text {ccc }}$	700			3700			ns	
Data Setup before WR	$t_{\text {dw }}$	500			3500			ns	
Data Hold after WR	$t_{\text {wo }}$	120			370			ns	(2)
Cycle Time	$\mathrm{tcr}_{\mathrm{cr}}$	2.5		150	10		150	$\mu \mathrm{s}$	6 MHz XTAL
Data Hold	$t_{\text {dr }}$	0		200	0		950	ns	
PSEN, $\overline{\mathrm{RD}}$ to Data In	$\mathrm{t}_{\text {RD }}$			500			2750	ns	
Address Setup before WR	$t_{\text {AW }}$	230			3230			ns	(1)
Address Setup before Data In	$t_{A D}$			950			5450	ns	
Address Float to $\overline{\mathrm{RD}}, \overline{\text { PSEN }}$	$\mathrm{t}_{\text {AFC }}$	0			500			ns	
Control Pulse to ALE	$t_{\text {ca }}$	10			10			ns	

## Port 2 Timing

$\mathrm{T}_{\mathrm{n}}=-40^{\circ} \mathrm{C}$ to $+\mathbf{8 5}{ }^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	$V_{c c}=+5 V_{ \pm} 10 \%$			$\mathrm{V}_{\mathrm{cc}}=+2.5 \mathrm{~V}$ to +5.5 V			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max		
Port Control Setup before Falling Edge of PROG	$t_{\text {cP }}$	110			860			ns	
Port Control Hold after Falling Edge of PROG	$t_{\text {PC }}$	0		80	0		200	ns	(1)
PROG to Tlme P2 input must be Valid	$t_{\text {PR }}$			810			5310	ns	
Output Data Setup Time	$t_{\text {DP }}$	250			3250			ns	(3)
Output Data Hold Time	$t_{\text {PD }}$	65			820			ns	
Input Data Hold Time	$t_{\text {PF }}$	0		150	0		900	ns	
PROG Pulse Width	$t_{\text {pp }}$	1200			6450			ns	
Port 2 VO Data Setup	$\mathrm{t}_{\mathrm{pl}}$	350			2100			ns	
Port 2 I/O Data Hold	tP	150			1400			ns	

Notes: (1) For Control Outputs $C_{L}=80 p F$, for Bus Outputs $C_{L}=150 p F$ (2) $\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$
(3) For Control Outputs $C_{l}=80 \mathrm{pF}$
(4) Refer to the operating characteristic curves for Supply Voltage and Port Control Hold

BUS Timing Requirements

Symbol	Timing Formula	Min	Max	Unit
$t_{L L}$	(7/30) T-170	$\bullet$		ns
$t_{\text {AL }}$	(1/5) T-380	$\bullet$		ns
$t_{\text {La }}$	(1/30) T	-		ns
$t_{\text {cc }}$	(2/5) T-300	-		ns
$t_{\text {dw }}$	$(2 / 5) T-500$	$\bullet$		ns
$t_{\text {wo }}$	(1/30) T+40	$\bullet$		ns
$t_{\text {DR }}$	$(1 / 10) T-50$		-	ns
$t_{\text {RD }}$	$(3 / 10) T-250$		-	ns
$t_{\text {AW }}$	(2/5) T-770	-		ns
$t_{\text {AD }}$	(3/5) T-550		-	ns
$t_{\text {AFC }}$	(1 / 15) T-165	-		ns
$t_{\text {cP }}$	(1/10) T-140	-		ns
$t_{\text {PR }}$	(3/5) T-690		$\bullet$	ns
$t_{\text {PF }}$	(1/10) T-100		-	ns
$t_{\text {dP }}$	$(2 / 5) T-750$	$\bullet$		ns
$t_{\text {PD }}$	( $1 / 10) T-180$	$\bullet$		ns
$t_{\text {Pp }}$	(7/10) T-550	-		ns
$t_{\text {PL }}$	(7/30) T-230	-		ns
$t_{\text {LP }}$	(1/6) T-265	-		ns

Notes: $\mathrm{T}=\mathrm{t}_{\mathrm{CY}}$ Unissted parameters are not affected by cycle time

## Timing Waveforms

Instruction Fetch From External Memory


Read From External Data Memory


Write to External Memory


## Low Power Standby Operation

1) Halt Mode (When EI)

2) Stop Mode


## Port 2 Timing



## Block Diagram



Note: $\mu$ PD80C35 does not include ROM

## Absolute Maximum Ratings*

Operating Temperature, $\mathrm{T}_{\text {opt }}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\underline{\text { Storage Temperature (Cerdip Package), } \mathrm{T}_{\text {stg }} \text { }}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic Package), $\mathrm{T}_{\text {stg }}$	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage on Any Pin, $\mathbf{V}_{1 / 0}$	$\mathrm{V}_{\text {Ss }}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\text {cc }}+0.3 \mathrm{~V}$
Supply Voltage, $\mathrm{V}_{\text {cc }}$	$\mathrm{V}_{\text {ss }}-\mathbf{0 . 3}$ to +10 V
Power Dissipation, $\mathbf{P}_{\mathbf{D}}$	0.35

*COMMENT: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## Operating Characteristic Curves

Output High Current vs. Output High Voltage


Output High Current vs. Supply Voltage


Output Low Current vs. Supply Voltage


Output High Current vs. Output High Voltage


Output High Current vs. Supply Voltage


Output Low Current vs. Output Low Voltage


## Operating Characteristic Curves (Cont.)

Supply Current vs. Oscillation Frequency


Cycle Time vs. Supply Voltage


Supply Current vs. Oscillation Frequency (1)


Port Control Hold After PROG, $t_{p c}$ Max ( $\mu$ PD80C48), and Address to Output Delay, $t_{\text {acc }}$ Min ( $\mu$ PD82C43), vs. Supply Voltage


Current Consumption as a Function of Temperature - Normal Operating Mode


Current Consumption as a Function of Operating Frequency Normal Operating Mode


Note: (1) External oscillation is assumed for frequency less than 1 MH 7 Internal oscillation requires more power

## Operating Characteristic Curves (Cont.)

Current Consumption as a Function of Temperature - Stop Mode


## Package Outlines

For information, see Package Outline Section 7.
Plastic, $\mu$ PD8048HC/35HLC
Ceramic, $\mu$ PD8048HD/35HLD
Plastic Shrinkdip, $\mu$ PD80C48C
Plastic Miniflat, $\mu$ PD80C48G/C35G

Notes

## Description

The NEC $\mu$ PD8049H, $\mu$ PD8749H and $\mu$ PD8039HL are single chip 8 -bit microcomputers. The processors differ only in their internal program memory options: the $\mu$ PD8049 has $2 \mathrm{~K} \times 8$ bytes of mask ROM, the $\mu$ PD8749 has $2 \mathrm{~K} \times 8$ of UV erasable EPROM and the $\mu$ PD8039HL has external program memory.

## Features

High performance 11 MHz operationFully compatible with industry standard 8049/8749/8039
Pin compatible with the $\mu$ PD8048/8748/8035
HMOS silicon gate technology requiring a single +5 V $\pm 10 \%$ supply
$1.36 \mu \mathrm{~s}$ cycle time. All instructions 1 or 2 bytes
Programmable interval timer/event counter
2K x 8 bytes of ROM, $128 \times 8$ bytes of RAM
External and internal interrupts
96 instructions: 70 percent single byte
27 I/O lines
Internal clock generator
Expandable with 8080A/8085A peripherals
Available in both ceramic and plastic 40-pin packages

## Pin Configuration



## Pin Identification

Pin		Function
No.	Symbol	
1	$\mathrm{T}_{0}$	Testable input using conditional transfer functions JTO and JNTO. The internal State Clock (CLK) is available to T $_{0}$ using the ENTO CLK instruction. $T_{0}$ can also be used during programming as a testable flag.
2	XTAL 1	One side of the crystal, LC, or external frequency source. (Non-TTL compatible $\mathrm{V}_{\mathrm{IH}}$.)
3	XTAL 2	The other side of the crystal or LC frequency source. For external sources, XTAL 2 must be driven with the logical complement of the XTAL 1 input.
4	RESET	Active low input from processor initialization. RESET is also used for PROM programming verification and power-down (non-TTL compatible $\mathrm{V}_{\mathrm{IH}}$ ).
5	SS	Single Step input (active-low). $\overline{\mathbf{S S}}$ together with ALE allows the processor to "single-step" through each instruction in program memory.
6	INT	Interrupt input (active-low). $\overline{\mathbb{I N T}}$ will start an interrupt if an enable interrupt instruction has been executed. A reset will disable the interrupt. INT can be tested by issuing a conditional jump instruction.
7	EA	External Access input (active-high). A logic " 1 " at this input commands the processor to perform all program memory fetches from external memory.
8	RD	READ strobe outputs (active-low). $\overline{\mathrm{RD}}$ will pulse low when the processor performs a BUS READ. $\overline{\mathrm{RD}}$ will also enable data onto the processor BUS from a peripheral device and function as a READ STROBE for external DATA MEMORY.
9	PSEN	Program Store Enable output (active-low). $\overline{\text { PSEN becomes active }}$ only during an external memory fetch.
10	WR	WRITE strobe output (active-low). $\overline{\text { WR }}$ will pulse low when the processor performs a BUS WRITE. WR can also function as a WRITE STROBE for external DATA MEMORY.
11	ALE	Address Latch Enable output (active-high). Occurring once each cycle, the falling edge of ALE latches the address for external memory or peripherals. ALE can also be used as a clock output.
12-19	$\mathrm{D}_{0}-\mathrm{D}_{7}$ BUS	8-bit, bidirectional port. Synchronous reads and writes can be performed on this port using $\overline{R D}$ and $\overline{W R}$ strobes. The contents of the $D_{0}-D_{7}$ BUS can be latched in a static mode.   During an external memory fetch, the $D_{0}-D_{7}$ BUS holds the least significant bits of the program counter. PSEN controls the incoming addressed instruction. Also, for an external RAM data store instruction the $D_{0}-D_{7}$ BUS, controlled by ALE, $\overline{R D}$ and $\overline{W R}$, contains address and data information.
20	$\mathrm{V}_{\text {SS }}$	Processor's GROUND potential.
$\begin{aligned} & \text { 21-24, } \\ & 35-38 \end{aligned}$	$\begin{aligned} & \mathbf{P}_{20}-\mathbf{P}_{27}: \\ & \text { PORT } 2 \end{aligned}$	Port 2 is the second of two 8-bit quasi-bidirectional ports. For external data memory fetches, the four most significant bits of the program counter are contained in $\mathbf{P}_{20}-\mathbf{P}_{23}$. Bits $\mathbf{P}_{20}-\mathbf{P}_{23}$ are also used as a 4-bit I/O bus for the $\mu$ PD8243, INPUT/OUTPUT EXPANDER.
25	PROG	PROG is used as an output strobe for $\mu$ PD8243s during I/O expansion. When the $\mu$ PD8049H is used in a stand-alone mode the PROG pan can be allowed to float.
26	$\mathrm{V}_{\mathrm{DD}}$	$\mathrm{V}_{\mathrm{DD}}$ is used to provide +5 V to the $128 \times 8$-bit RAM section During normal operation $V_{c c}$ must also be +5 V to provide power to the other functions in the device. During stand-by operation $\mathrm{V}_{\mathrm{DD}}$ must remain at +5 V while $\mathrm{V}_{\mathrm{cc}}$ is at ground potential.
27-34	$\begin{aligned} & \mathbf{P}_{10}-\mathbf{P}_{17}: \\ & \text { PORT } 1 \end{aligned}$	Port 1 is one of two 8-bit quasi-bidirectional ports
39	T1	Testable input using conditional transfer functions JT1 and JNT1. T1 can be made the counter/timer input using the STRT CNT instruction.
40	$\mathrm{V}_{\mathrm{cc}}$	Prımary Power supply. $\mathrm{V}_{\mathrm{CC}}$ is +5 V durıng normal operation

## $\mu$ PD8049H/8749H/8039HL

## Functional Description

The NEC $\mu$ PD8049H, $\mu$ PD8749H and the $\mu$ PD8039HL are high performance, single component, 8 -bit parallel microcomputers using H -channel silicon gate MOS technology. The $\mu$ PD8049H family functions efficiently in control as well as arithmetic applications. The powerful instruction set eases bit handling applications and provides facilities for binary and $B C D$ arithmetic. Standard logic functions implementation is facilitated by the large variety of branch and table look-up instructions.
The instruction set is comprised of 1 and 2 byte instructions, most of which are single-byte. The instruction set requires only 1 or 2 cycles per instruction with over 50 percent of the instructions single-cycle.
The $\mu$ PD8049H family of microprocessors will function as stand-alone microcomputers. Their functions can easily be expanded using standard 8080A/8085A peripherals and memories.

The $\mu$ PD8049H contains the following functions usually found in external peripheral devices: $2048 \times 8$ bits of mask ROM program memory; $128 \times 8$ bits of RAM data memory; 27 I/O lines; an 8-bit interval timer/event counter; and oscillator and clock circuitry.
The $\mu$ PD8749H differs from the $\mu$ PD8049H in its $2048 \times 8$-bit UV erasable EPROM program memory instead of the mask ROM memory. It is useful in preproduction or prototype applications where the software design has not yet been finalized or in system designs whose quantities do not require a mask ROM.
The $\mu$ PD8039HL is intended for applications using external program memory only. It contains all the features of the $\mu$ PD8049H except for the internal ROM. The external program memory can be implemented using standard 8080A/8085A memory products.

## Block Diagram



Note: $\mu$ PD8039H does not include ROM.

## Absolute Maximum Ratings*

Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature (Ceramic Package)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic Package)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin	-0.5 V to +7 V (1)
Power Dissipation	1.5 W

Note: (1) With respect to ground.
*COMMENT: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Input Low Voltage (All Except XTAL 1, XTAL 2)	$\mathrm{V}_{\text {IL }}$	-0.5		0.8	V	
Input High Voltage (All Except XTAL 1, XTAL 2, RESET)	$\mathrm{V}_{\mathrm{IH}}$	2.0		$\mathrm{V}_{\mathrm{cc}}$	V	
Input High Voltage (RESET, XTAL 1, XTAL 2)	$\mathrm{V}_{\mathbf{H 1} 1}$	3.8		$\mathrm{V}_{\mathrm{cc}}$	v	
Output Low Voltage (BUS, RD, WR, PSEN, ALE)	$v_{\text {OL }}$			0.45	V	$\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
Output Low Voltage (All Other Outputs Except PROG)	$\mathrm{V}_{\mathrm{OL} 1}$			0.45	V	$\mathrm{IOL}=2.0 \mathrm{~mA}$
Output Low Voltage (PROG)	$\mathrm{V}_{\text {OL2 }}$			0.45	V	$\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
Output High Voltage (BUS)	$\mathrm{V}_{\mathrm{OH}}$	2.4			V	$\mathrm{IOH}=-400 \mu \mathrm{~A}$
Output High Voltage (RD, WR, PSEN, ALE)	$\mathrm{V}_{\text {OH1 }}$	2.4			V	$\mathrm{IOH}^{\text {O }}=-400 \mu \mathrm{~A}$
Output High Voltage (All Other Outputs)	$\mathrm{V}_{\mathrm{OH} 2}$	2.4			v	$\mathrm{I}_{\mathrm{OH}}=-40 \mu \mathrm{~A}$
Input Leakage Current ( $\mathrm{T}_{1}, \mathrm{EA}, \mathrm{INT}$ )	$1 / 2$			$\pm 10$	$\mu \mathrm{A}$	$\mathbf{V}_{\text {SS }} \leqslant \mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\text {cc }}$
Input Leakage Current P10-17, P20-27, EA, SS	$\mathrm{ILL}_{1}$			500	$\mu \mathrm{A}$	$\begin{aligned} & \mathbf{v}_{\text {ss }}+.45 \leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant \\ & \mathrm{v}_{\mathrm{cc}} \end{aligned}$
Output Leakage Current   (BUS, $\mathrm{T}_{0}$ - High Impedance State)	$\mathrm{IOL}_{\mathrm{L}}$			$\pm 10$	$\mu \mathrm{A}$	$\begin{aligned} & v_{\text {cC }} \geqslant v_{\text {IN }} \geqslant v_{\text {ss }} \\ & 0.45 \mathrm{l} \end{aligned}$
Power Down Supply Current	$\mathrm{I}_{\mathrm{DD}}$		5	10	mA	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
Total Supply Current	$\begin{aligned} & \mathrm{I}_{\mathrm{DD}}+ \\ & \mathrm{I}_{\mathrm{cc}} \\ & \hline \end{aligned}$		80	110	mA	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

DC Characteristics for Programming

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
$V_{D D}$ Program Voltage High Level	$\mathrm{V}_{\text {DDH }}$	20.5		21.5	V	
$\mathrm{V}_{\mathrm{DD}}$ Voltage Low Level	$V_{\text {DDL }}$	4.75		5.25	v	
PROG Program Voltage High Level	$\mathrm{V}_{\text {PH }}$	17.5		18.5	V	
PROG Voitage Low Level	$\mathrm{V}_{\mathrm{PL}}$			4.0	v	
EA Program or Verity Voltage High Level	$\mathrm{V}_{\text {EAH }}$	17.5		18.5	v	
$\mathrm{V}_{\mathrm{DD}}$ High Voltage Supply Current	$\mathrm{I}_{\mathrm{DD}}$			20.0	mA	
PROG High Voltage Supply Current	$\mathrm{I}_{\text {PROG }}$			1.0	mA	
EA High Voitage Supply Current	$\mathrm{I}_{\mathrm{EA}}$			1.0	mA	

## AC Characteristics

$T_{a}=0^{\circ} \mathrm{C}$ to $+\mathbf{7 0} 0^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm \mathbf{1 0 \%}, \mathrm{V}_{\mathrm{SS}}=\mathbf{0 V}$

Parameter S	Symbol	Limits			Unit	$f\left(t_{\mathrm{cy}}\right)$ and Test Conditions
		Min	Typ	Max		
ALE Pulse Width	$t_{\text {LL }}$	150			ns	7/30 $\mathrm{t}_{\mathrm{cy}}-170$
Addr Setup to ALE	$t_{\text {AL }}$	70			ns	$2 / 15 t_{c r}-110$
Addr Hold from ALE	$t_{\text {LA }}$	50			ns	$1 / 15 \mathrm{t}_{\mathrm{cr}}-40$
Control Pulse Width (RD, WR)	tcCl	480			ns	1/2 $\mathrm{t}_{\mathrm{Cr}}-200$
Control Puise Width (PSEN)	$\mathrm{tcC}_{\text {c }}$	350			ns	$2 / 5 t_{\text {cr }}-200$
Data Setup before WR	$t_{\text {DW }}$	390			ns	$13 / 30 t_{C Y}-200$
Data Hold after WR	$t_{\text {wo }}$	40			ns	$1 / 15 \mathrm{t}_{\mathrm{cr}}-50$ (2)
Data Hold (RD, PSEN)	${ }^{\text {D }}$ (	0		110	ns	$1 / 10 t_{c r}-30$
RD to Data in	$\mathrm{t}_{\mathrm{RD} 1}$			350	ns	$2 / 5 \mathrm{t}_{\mathrm{Cr}}-200$
PSEN to Data in	$\mathrm{t}_{\mathrm{RD} 2}$			210	ns	3/10 $t_{C Y}-200$
Addr Setup to WR	$t_{\text {AW }}$	300			ns	$1 / 3 t_{\text {cY }}-150$
Addr Setup to Data (RD)	$t_{\text {AD1 }}$			750	ns	$11 / 15 \mathrm{t}_{\mathrm{cr}}-250$
Addr Setup to Data (PSEN)	$t_{\text {AD2 }}$			480	ns	8/15 $\mathrm{t}_{\mathrm{cr}}-250$
Addr Float to RD, WR	$t_{\text {AFC1 }}$	140			ns	$2 / 15 t_{\text {cr }}-40$
Addr Float to PSEN	$\mathrm{t}_{\text {AFC2 }}$	10			ns	$1 / 30 t_{c r}-40$
ALE to Control (RD, WR)	$t_{\text {LAFC1 }}$	200			ns	$1 / 5 \mathrm{t}_{\mathrm{Cr}}-75$
ALE to Control (PSEN)	$\mathrm{t}_{\text {LAFC2 }}$	50			ns	$1 / 10 t_{\text {cr }}-75$
Control to ALE (RD, WR, PROG)	$\mathrm{t}_{\text {CA1 }}$	50			ns	$1 / 15 t_{\text {cr }}-40$
Control to ALE (PSEN)	$t_{\text {CA2 }}$	320			ns	4/15 $\mathrm{t}_{\mathrm{Cr}}-40$
Port Control Setup to PROG	$t_{C P}$	100			ns	1/10 $t_{\text {cr }}-40$
Port Control Hold to PROG	$t_{P C}$	160			ns	4/15 $\mathrm{t}_{\mathrm{Cr}}-200$
PROG to P2 Input Valid	$t_{\text {PR }}$			550	ns	$17 / 30 \mathrm{t}_{\mathrm{Cr}}-120$
Input Data Hold from PROG	$t_{\text {PF }}$	0		140	ns	$1 / 10 \mathrm{t}_{\mathrm{Cr}}$
Output Data Setup	$t_{\text {DP }}$	400			ns	$2 / 5 \mathrm{t}_{\mathrm{cr}}-150$
Output Data Hold	$t_{\text {PD }}$	90			ns	1/10 $\mathrm{t}_{\mathrm{Cr}}-50$
PROG Pulse Width	$t_{\text {PP }}$	700			ns	7/10 $\mathrm{t}_{\mathrm{cr}}-250$
Port 2 I/O Setup to ALE	$t_{\text {PL }}$	180			ns	4/15 $\mathrm{t}_{\mathrm{cr}}-200$
Port 2 I/O Hold to ALE	$t_{\text {LP }}$	40			ns	$1 / 10 t_{c r}-100$
Port Output from ALE	$t_{\text {pV }}$			510	ns	$3 / 10 t_{C Y}-100$
Cycle Time	${ }^{\text {cr }}$ C	1.36			$\mu \mathrm{s}$	11 MHz
//O Rep Rate	$t_{\text {OPRR }}$	270			ns	$3 / 15 \mathrm{t}_{\mathrm{CY}}$

Notes: (1) Control Outputs $\mathrm{CL}=\mathbf{6 0 p F}$ BUS Outputs CL $=150 \mathrm{pF}$
2) BUS High Impedance Load 20pF
(3) Calculated values will be equal to or better than published 8049 values.

AC Characteristics for Programming
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{DD}}=+21 \mathrm{~V} \pm 0.5 \mathrm{~V}$

Parameter		Limits			
		Symbol	Min	Typ	Max

Notes: (1) Control Outputs $\mathrm{CL}=60 \mathrm{pF}$
BUS Outputs $\mathrm{CL}=150 \mathrm{pF}$
(2) BUS High Impedance Load 20pF
(3) Calculated values will be equal to or better than published 8049 values.

## Timing Waveforms

Instruction Fetch from External Memory


Read from External Data Memory


Write to External Memory


Port 2 Timing


Waveforms for Programming the $\mu$ PD8749H


Program/Verify Timing (ROM/EPROM)


BUS Output Low Voltage vs. Sink Current


Port P1 \& P2 Output High Voltage vs. Source Current


BUS Output High Voltage vs. Source Current


## Symbol Definitions

Symbol	Description
A	The Accumulator
AC	The Auxillary Carry Flag
addr	Program Memory Address (12 bits)
Bb	Bit Designator ( $\mathrm{b}=0-7$ )
BS	The Bank Switch
BUS	The BUS Port
C	Carry Flag
CLK	Clock Signal
CNT	Event Counter
D	Nibble Designator (4 bits)
data	Number of Expression (8 bits)
DBF	Memory Bank Flip-Flop
$F_{0}, F_{1}$	Flags 0, 1
1	Interrupt
P	"In-Page" Operation Designator
$\mathrm{P}_{\mathrm{p}}$	Port Designator ( $p=1,2$ or $4-7$ )
PSW	Program Status Word
Rr	Register Designator ( $\mathrm{r}=0,1$ or $0-7$ )
SP	Stack Pointer
$T$	Timer
TF	Timer Flag
$\mathrm{T}_{0}, \mathrm{~T}_{1}$	Testable Flags 0,1
X	External RAM
$=$	Prefix for Immediate Data
@	Prefix for Indirect Address
\$	Program Counter's Current Value
(x)	Contents of External RAM Location
((x))	Contents of Memory Location Addressed by the Contents of External RAM Location
$\leftarrow$	Replaced By

## Logic Symbol



Instruction Set


Instruction Set (Cont.)

Mnemonic	Function	Description	Instruction Code						$\mathrm{D}_{1}$	$\mathrm{D}_{0}$	Cycles	Bytes	Flags			
			$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$					c	AC	F0	F1
Branch (Cont.)																
JNT0 addr	$\begin{aligned} & (P C 0-7) \leftarrow \text { addr if TO }=0 \\ & (P C) \leftarrow(P C)+2 \text { if } T 0=1 \end{aligned}$	Jump to specified address if Test 0 is low.	$\begin{gathered} 0 \\ a_{7} \end{gathered}$	$\begin{aligned} & \hline 0 \\ & a_{6} \\ & \hline \end{aligned}$	$\begin{gathered} 1 \\ a_{5} \end{gathered}$	$\begin{gathered} 0 \\ a_{4} \end{gathered}$	$\begin{gathered} 0 \\ \mathbf{a}_{3} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ a_{2} \end{gathered}$	$\begin{gathered} 1 \\ a_{1} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ a_{0} \end{gathered}$	2	2				
JNT1 addr	$\begin{aligned} & (\mathrm{PC} 0-7) \leftarrow \text { addr if } \mathrm{T} 1=0 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } T 1=1 \end{aligned}$	Jump to specified address if Test 1 is low.	$\begin{gathered} 0 \\ a_{7} \end{gathered}$	$\begin{gathered} 1 \\ a_{6} \end{gathered}$	$\begin{gathered} 0 \\ a_{5} \end{gathered}$	$\begin{gathered} 0 \\ \mathbf{a}_{4} \end{gathered}$	$\begin{gathered} 0 \\ \mathbf{a}_{3} \end{gathered}$	$\begin{aligned} & 1 \\ & a_{2} \end{aligned}$	$\begin{gathered} 1 \\ a_{1} \end{gathered}$	$\begin{gathered} \mathbf{0} \\ \mathbf{a}_{0} \end{gathered}$	2	2				
JNZ addr	$\begin{aligned} & (P C 0-7) \leftarrow \text { addr if } A \neq 0 \\ & (P C) \leftarrow(P C)+2 \text { if } A=0 \end{aligned}$	Jump to specified address if Accumulator is non-zero.	$\begin{gathered} 1 \\ a_{7} \end{gathered}$	$\begin{gathered} 0 \\ a_{6} \end{gathered}$	$\begin{gathered} 0 \\ a_{5} \end{gathered}$	$\begin{gathered} 1 \\ a_{4} \end{gathered}$	$\begin{gathered} 0 \\ a_{3} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ a_{2} \end{gathered}$	$\begin{gathered} 1 \\ a_{1} \end{gathered}$	$\begin{gathered} 0 \\ a_{0} \end{gathered}$	2	2				
JTF addr	$\begin{aligned} & (\mathrm{PC} 0-7) \leftarrow \text { addr If } \mathrm{TF}=1 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } \mathrm{TF}=0 \end{aligned}$	Jump to specified address if Timer Flag is set to 1.	$\begin{gathered} 0 \\ a_{7} \end{gathered}$	$\begin{gathered} 0 \\ a_{6} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ a_{5} \end{gathered}$	$\begin{gathered} 1 \\ a_{4} \end{gathered}$	$\begin{gathered} 0 \\ a_{3} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ a_{2} \end{gathered}$	$\begin{gathered} 1 \\ a_{1} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ a_{0} \end{gathered}$	2	2				
JT0 addr	$\begin{aligned} & (\mathrm{PC} 0-7) \leftarrow \text { addr if } \mathrm{TO}=1 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } \mathrm{TO}=0 \end{aligned}$	Jump to specified address if Test 0 is a 1.	$\begin{aligned} & 0 \\ & a_{7} \end{aligned}$	$\begin{gathered} 0 \\ a_{6} \end{gathered}$	$\begin{gathered} 1 \\ a_{5} \end{gathered}$	$\begin{gathered} 1 \\ a_{4} \end{gathered}$	$\begin{gathered} 0 \\ a_{3} \\ \hline \end{gathered}$	$\begin{aligned} & 1 \\ & a_{2} \end{aligned}$	$\begin{gathered} 1 \\ a_{1} \end{gathered}$	$\begin{gathered} 0 \\ \mathbf{a}_{0} \end{gathered}$	2	2				
JT1 addr	$\begin{aligned} & (P C \mathrm{O}-7) \leftarrow \text { addr If } \mathrm{T} 1=1 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } \mathrm{T} 1=0 \end{aligned}$	Jump to specified address if Test 1 is a 1.	$\begin{gathered} 0 \\ a_{7} \end{gathered}$	$\begin{gathered} 1 \\ a_{6} \end{gathered}$	$\begin{gathered} 0 \\ a_{5} \end{gathered}$	$\begin{gathered} 1 \\ a_{4} \end{gathered}$	$\begin{gathered} 0 \\ \mathbf{a}_{3} \end{gathered}$	$\begin{gathered} 1 \\ a_{2} \end{gathered}$	$\begin{gathered} 1 \\ a_{1} \end{gathered}$	$\begin{gathered} 0 \\ a_{0} \end{gathered}$	2	2				
JZ addr	$\begin{aligned} & (P C O-7) \leftarrow \text { addr if } A=0 \\ & (P C) \leftarrow(P C)+2 \text { if } A=0 \end{aligned}$	Jump to specified address if Accumulator is 0 .	$\begin{gathered} 1 \\ a_{7} \end{gathered}$	$\begin{gathered} 1 \\ a_{6} \end{gathered}$	$\begin{gathered} 0 \\ a_{5} \end{gathered}$	$\begin{gathered} \hline 0 \\ a_{4} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ a_{3} \end{gathered}$	$\begin{gathered} 1 \\ \mathbf{a}_{2} \end{gathered}$	$\begin{gathered} 1 \\ a_{1} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ a_{0} \end{gathered}$	2	2				
Control																
ENI		Enable the External Interrupt input.	0	0	0	0	0	1	0	1	1	1				
DIS I		Disable the External Interrupt input.	0	0	0	1	0	1	0	1	1	1				
ENTO CLK		Enable the Clock Output pin $\mathbf{T O}$	0	1	1	1	0	1	0	1	1	1				
SEL. MBO	$(\mathrm{DBF}) \leftarrow 0$	Select Bank 0 (locations 0-2047) of Program Memory.	1	1	1	0	0	1	0	1	1	1				
SEL MB1	$(\mathrm{DBF}) \leftarrow 1$	Select Bank 1 (locations 2048-4095) of Program Memory	1	1	1	1	0	1	0	1	1	1				
SEL RBO	(BS) $\leftarrow 0$	Select Bank 0 (locations 0-7) of Data Memory.	1	1	0	0	0	1	0	1	1	1				
SEL RB1	$(\mathrm{BS}) \leftarrow 1$	Select Bank 1 (locations 24-31) of Data Memory.	1	1	0	1	0	1	0	1	1	1				
Data Moves																
MOV A, = data	$(\mathrm{A}) \leftarrow$ data	Move Immediate the specified data into the Accumulator.	$\begin{gathered} 0 \\ d_{7} \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 1 \\ d_{5} \end{gathered}$	$\begin{gathered} 0 \\ d_{4} \end{gathered}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} \mathbf{1} \\ \mathbf{d}_{1} \end{gathered}$	$\begin{gathered} 1 \\ d_{0} \end{gathered}$	2	2				
MOV A, Rr	$(\mathrm{A}) \leftarrow(\mathrm{Rr}) ; \mathrm{r}=0-7$	Move the contents of the designated registers into the Accumulator.	1	1	1	1	1	r	r	r	1	1				
MOV A, @ Rr	$(\mathrm{A}) \leftarrow((\mathrm{Rr})$ ) $\mathrm{r}=0-1$	Move Indirect the contents of data memory location into the Accumulator.	1	1	1	1	0	0	0	r	1	1				
MOV A, PSW	(A) $\leftarrow$ (PSW)	Move contents of the Program Status Word mto the Accumulator.	1	1	0	0	0	1	1	1	1	1				
MOV Rr, = data	$(\mathrm{Rr}) \leftarrow$ data; $\mathrm{r}=0-7$	Move Immediate the specified data into the designated register	$\begin{gathered} 1 \\ d_{7} \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 1 \\ d_{5} \end{gathered}$	$\begin{gathered} 1 \\ d_{4} \end{gathered}$	$\begin{gathered} 1 \\ d_{3} \end{gathered}$	$\begin{gathered} r \\ d_{2} \end{gathered}$	$\begin{gathered} r \\ d_{1} \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{r} \\ \mathbf{d}_{0} \\ \hline \end{gathered}$	2	2				
MOV Rr, A	$(\mathrm{Rr}) \leftarrow(\mathrm{A}) ; \mathrm{r}=0-7$	Move Accumulator Contents into the designated register.	1	0	1	0	1	r	r	r	1	1				
MOV @ Rr, A	$((\mathrm{Rr})) \leftarrow(\mathrm{A}) ; \mathrm{r}=0-1$	Move Indirect Accumulator Contents into data memory location.	1	0	1	0	0	0	0	r	1	1				
MOV @ $\mathbf{R r}$, = data	$((\mathrm{Rr})) \leftarrow$ data; $\mathrm{r}=0-1$	Move Immediate the specified data into data memory.	$\begin{aligned} & 1 \\ & d_{7} \end{aligned}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 1 \\ d_{5} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{~d}_{4} \end{gathered}$	$\begin{gathered} 0 \\ d_{3} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} 0 \\ d_{1} \end{gathered}$	$\begin{gathered} \mathbf{r} \\ \mathbf{d}_{0} \\ \hline \end{gathered}$	2	2				
MOV PSW, A	$($ PSW $) \leftarrow(A)$	Move contents of Accumulator into the program status word.	1	1	0	1	0	1	1	1	1	1				
MOVP A, @ A	$\begin{aligned} & (P C 0-7) \leftarrow(A) \\ & (A) \leftarrow((P C)) \end{aligned}$	Move data in the current page into the Accumulator.	1	0	1	0	0	0	1	1	2	1				
MOVP3 A, @ A	$\begin{aligned} & (P C 0-7) \leftarrow(A) \\ & (P C 8-10) \leftarrow 011 \\ & (A) \leftarrow((P C)) \end{aligned}$	Move Program data in Page 3 into the Accumulator.	1	1	1	0	0	0	1	1	2	1				
MOVX A, @ R	$(\mathrm{A}) \leftarrow((\mathrm{Rr})$ ) $\mathrm{r}=0-1$	Move Indirect the contents of external data memory into the Accumulator.	1	0	0	0	0	0	0	r	2	1				
MOVX@R,A	$((\mathrm{Rr})$ ) $\leftarrow(A) ; \mathrm{r}=0-1$	Move Indirect the contents of the Accumulator into external data memory.	1	0	0	1	0	0	0	$r$	2	1				
XCH A, Rr	$(\mathrm{A}) \rightleftarrows(\mathrm{Rr}) ; \mathrm{r}=0-7$	Exchange the Accumulator and designated register's contents.	0	0	1	0	1	$r$	r	r	1	1				
XCH A, @ Rr	$(A) \rightleftarrows((R r)) ; r=0-1$	Exchange Indirect contents of Accumulator and location in data memory.	0	0	1	0	0	0	0	$r$	1	1				
XCHD A, @ Rr	$\begin{aligned} & (A 0-3) \rightleftarrows((R r)(0-3)) \\ & r=0-1 \end{aligned}$	Exchange Indirect 4-bit contents of Accumulator and data memory.	0	0	1	1	0	0	0	r	1	1				
Flags																
CPL C	(C) $\leftarrow \mathrm{NOT}(\mathrm{C})$	Complement content of carry bit.	1	0	1	0	0	1	1	1	1	1	$\bullet$			
CPL FO	(FO) $\leftarrow$ NOT (FO)	Complement content of Flag FO	1	0	0	1	0	1	0	1	1	1			$\bullet$	
CPLF1	(F1) $\leftarrow$ NOT (F1)	Complement content of Flag F1.	1	0	1	1	0	1	0	1	1	1				$\bullet$
CLR C	(C) $\leftarrow 0$	Clear content of carry bit to 0 .	1	0	0	1	0	1	1	1	1	1	-			
CLRFO	(F0) $\leftarrow 0$	Clear content of Flag 0 to 0 .	1	0	0	0	0	1	0	1	1	1			$\bullet$	
CLRF1	(F1) $\leftarrow 0$	Clear content of Flag 1 to 0.	1	0	1	0	0	1	0	1	1	1				$\bullet$

$\mu$ PD8049H/8749H/8039HL

Instruction Set (Cont.)


Notes: (1) Instruction Code Designations $r$ and $p$ form the binary representation of the Registers and Ports involved
(2) The dot under the appropriate flag bit indicates that its content is subject to change by the instruction it appears in.
(3) References to the address and data are specified in bytes 2 and/or 1 of the instruction
(4) Numerical Subscripts appearing in the FUNCTION column reference the specific bits affected
(5) When the Bus is written to, with an OUTL instruction, the Bus remains an Output Port until erther device is reset or a MOVX instruction is executed

## Package Outlines

For information, see Package Outline Section 7.
Plastic, $\mu$ PD8049HC/39HLC
Ceramic, $\mu$ PD8049HD/39HLD
Cerdip, $\mu$ PD8749HD, has quartz window

## Description

The NEC $\mu$ PD80C49 is a true stand-alone 8 -bit microcomputer fabricated using CMOS technology. All of the functional blocks necessary for an integrated microcomputer are incorporated, including a 2 K -byte ROM, a 128-byte RAM, 27 I/O lines, an 8-bit timer/event counter, and a clock generator. This integrated capability permits use in stand-alone applications. For designs requiring extra capability, the $\mu$ PD80C49 can be expanded using peripherals and memory compatible with industry-standard 8080A/8085A processors. A version of the $\mu$ PD80C48 without ROM is offered by the $\mu$ PD80C39.
Providing compatibility with industry-standard 8049, 8749, and 8039 processors, the $\mu$ PD80C49 features significant savings in power consumption. In addition to the power savings gained through CMOS technology, the $\mu$ PD80C49 is distinct in offering two standby modes (Halt mode and Stop mode) to further minımize power drain.

## Features

8 -bit CPU with ROM, RAM, and I/O on a single chip Hardware/software-compatible with industry-standard 8049, 8749, and 8039 processors
$2 \mathrm{~K} \times 8$ ROM
$128 \times 8$ RAM
27 I/O lines
$1.875 \mu \mathrm{~s}$ cycle time ( 8 MHz crystal)
All instructions executable in 1 or 2 cycles
97 instructions: 70 percent are single-byte instructionsInternal timer/event counter
2 interrupts (an external interrupt and a timer interrupt)Easily expandable memory and I/O
Bus compatible with 8080A/8085A peripherals
Power-efficient CMOS technology requiring a single +2.5 V to +6 V power supplyAvailable in 40 -pin DIP, 44-pin flat pack ( 80 C 49 only), and 52-pin flat pack
Halt mode

- 1mA typical supply current
- Maintenance of internal logic values and control states
- Mode initialization via HALT instruction
- Mode release via external interrupt or reset

Stop mode
$-1 \mu \mathrm{~A}$ typical supply current

- Disabling of internal clock generation and internal logic
- Maintenance of RAM contents
- Mode initialization via hardware ( $\mathrm{V}_{\mathrm{DD}}$ )
- Mode release via reset


## Pin Identification

Pin			Function
No.	Symbol	Name	
1	то	Test 0	Testable input using conditional jump instructions JTO and JNTO Also enables clock output via the ENTO CLK instruction.
2	XTAL1	Crystal 1	One of two inputs for external crystal oscillator or LC circuit to generate internal clock signals. May also be used as an input for external clock signals (Non-TTL-compatible $\mathrm{V}_{\mathrm{iH}}$.)
3	XTAL2	Crystal 2	One of two inputs for external crystal oscillator or LC circuit to generate internal clock signals (Non-TTL-compatible $\mathrm{V}_{\mathrm{IH}}$ )
4	$\overline{\text { RESET }}$	Reset	Active-low input line that initializes the processor. Also used to release both the Halt and Stop modes. (1)
5	$\overline{\text { SS }}$	Single Step	Active-low input line, that, in conjunction with ALE, causes the processor to single-step through a program one instruction at a time
6	$\overline{\mathbb{N T}}$	Interrupt	Active-low input line that causes an interrupt if an enable instruction has been executed $A$ reset disables the interrupt May be used as a testable input with a conditional jump instruction. Can also be used to release the Halt mode
7	EA	External Access	Input line that inhibits internal program memory fetches and initiates access of external program memory. Essential for system testing and may also be used for program debugging.
8	$\overline{\text { RD }}$	Read	Active-low output strobe line that is used to read data from external data memory
9	$\overline{\text { PSEN }}$	Program Store Enable	Active-low output line that is used to fetch instructions from external program memory
10	$\overline{\text { WR }}$	Write	Active-low output strobe line that is used to write data into external data memory.
11	ALE	Address   Latch Enable	Output line for address latch enable At the falling edge of ALE, the address of either external data memory or external program memory is available on the bus.
12-19	$\mathrm{DB}_{0}-\mathrm{DB}_{7}$	Bus	These l/O lines constitute an 8-bit bidirectional data/address bus Synchronous read and write operations can be performed on this bus using $\overline{\mathrm{RD}}$ and WR signals. Data driven out on the bus by an OUTL BUS instruction is statically latched.   The address of external memory is avalable on the bus at the falling edge of ALE when reading from external program memory or writing to and reading from external data memory During external program memory fetches, the least-significant 8 bits of the external program memory address are driven out on the bus and the addressed instruction is fetched using PSEN. When no external memory is used, the bus can serve as a true bidirectional 8 -bit port. Information is strobed in or out by the $\overline{R D}$ and WR signals.
20	$\mathrm{V}_{\text {ss }}$	Ground	Ground potential.
$\begin{aligned} & 21-24, \\ & 35-38 \end{aligned}$	$\mathrm{P}_{20}-\mathrm{P}_{27}$	Port 2	These lines constitute Port 2, an 8-bit quasibidirectional port. During external program memory fetches, $\mathrm{P}_{20}-\mathrm{P}_{23}$ output the mostsignficant 4 bits of the external program memory address Lines $P_{20}-P_{23}$ can also be used as a 4-bit l/O expander bus to interface with the optional $\mu$ PD82C43 I/O expander
25	PROG	Program Pulse	This line is used as an output strobe when interfacing with the optional $\mu$ PD82C43 I/O expander.
26	$\mathrm{V}_{\mathrm{DD}}$	Oscillator Control Voltage Line	This input line is used to control oscillator stopping and restarting in Stop mode. Stop mode is enabled by forcing $\mathrm{V}_{\mathrm{DD}}$ LOW during a reset.
27-34	$\mathrm{P}_{10}-\mathrm{P}_{17}$	Port 1	These lines constitute Port 1, an 8-bit, generalpurpose quasi-bidirectional port.
39	T1	Test 1	Testable input using conditional jump instructions JT1 and JNT1. Can also be used as the tumer/ counter input line via the STRT CNT instruction.
40	$\mathrm{v}_{\text {cc }}$	Prımary Power Supply	Power supply. $\mathrm{V}_{\text {cc }}$ must be between +2.5 V to +6 V for normal operation in Stop mode, $\mathrm{V}_{\mathrm{cc}}$ must be at least +2 V to ensure data retention.

## $\mu$ PD80C49/80C39

## Pin Configuration



## Standby Function

## HALT mode

In Halt mode, the oscillator continues to operate, but the internal clock is disabled. The status of all internal logic just prior to execution of the HALT instruction is maintained by the CPU. In Halt mode, power consumption is less than 10 percent of normal $\mu$ PD80C49 operation and less than 1 percent of normal 8049 operation.
The Halt mode is initiated by execution of the HALT instruction, and is released by either INT or RESET input. INT input: When the INT pin receives a low-level input, if interrupts are enabled, the internal clock is restarted and
the interrupt is executed after the first or second instruction following the HALT instruction. However, if interrupts are disabled, program operation is resumed from the next address following the HALT instruction. The first instruction following a HALT instruction should be a NOP instruction to ensure proper program execution.
If the Halt mode is released when interrupts are enabled, the interrupt service routine is usually executed after the first or second instruction following the release of Halt mode. However, if either a timer or external interrupt is accepted within one machine cycle prior to a HALT instruction, the corresponding timer or external interrupt service routine is executed immediately following the release of Halt mode. It is important to note this sequence of execution when considering interrupt service routine execution following a HALT instruction.
RESET input: When a low-level input is received by the $\overline{\text { RESET }}$ pin, Halt mode is released and the normal reset operation is activated, restarting program operation from address 0 .

## Stop mode

In Stop mode, the oscillator is deactivated and only the contents of RAM are maintained. The operation status of the $\mu$ PD80C49 resembles that of a reset condition. Because only the contents of RAM are maintained, Stop mode provides even lower power consumption than Halt mode, only requiring a minimum $\mathrm{V}_{\mathrm{CC}}$ as low as +2 V . Stop mode is initiated by setting $V_{D D}$ to LOW when RESET is LOW, to protect the contents of RAM. Stop mode is released by first raising the supply voltage at the $\mathrm{V}_{\mathrm{Cc}}$ pin from standby level to correct operating level and setting $\mathrm{V}_{\text {DD }}$ to HIGH when RESET is LOW. After the oscillator has been restarted and the oscillation has stabilized, RESET must be set to HIGH, whereby program operation is started from address 0 .

Stop Mode Circuit


## Stop Mode Timing



Stop Mode Circuit: Since $V_{D D}$ controls the restarting of the oscillator, it is important that $V_{D D}$ be protected from noise interference. The time required to reset the CPU is represented by $\mathrm{t}_{1}$ (see Stop Mode Timing diagram), which is a minimum of 5 machine cycles. The reset operation will not be completed in less than 5 machine cycles. In Stop mode, it is important to note that if $\mathrm{V}_{\mathrm{DD}}$ goes LOW before 5 machine cycles have elapsed, the CPU will be deactivated and the output of ALE, RD, WR, PSEN, and PROG will not have been stabilized.

Oscillation stabilization time is represented by $\mathrm{t}_{2}$ (see Stop Mode Timing diagram). When $\mathrm{V}_{\text {DD }}$ goes HIGH, oscillator operation is reactivated, but it takes time before oscillation can be stabilized. In particular, such high Q resonators as crystals require longer periods to stabilize. Because there is a delay between restarting of the oscillator and oscillator stabilization, $t_{2}$ should be long enough to ensure that the oscillator has been fully stabilized.
To facilitate Stop mode control, an external capacitor can be connected to the RESET pin (see Stop Mode Control Circuit), affecting only $\mathrm{t}_{2}$, allowing control of the oscillator stabilization time. When $V_{D D}$ is asserted in Stop mode, the capacitor begins charging, pulling up RESET. When RESET reaches a threshold level equivalent to a logic 1 , Stop mode is released. The time it takes RESET to reach the threshold level of logic 1 determines the oscillator stabilization time, which is a function of the capacitance and pull-up resistance values.


## Port Operation

A port-loading option is offered at the time of ordering the mask. Individual source current requirements for Port 1 and the upper and lower halves of Port 2 may be factory set at either $-5 \mu \mathrm{~A}$ or $-50 \mu \mathrm{~A}$ (see Port-Loading Options table). The $-50 \mu \mathrm{~A}$ option is required for interfacing with TTL/NMOS devices. The $-5 \mu \mathrm{~A}$ option is recommended for interfacing to other CMOS devices. The CMOS option results in lower power consumption and greater noise immunity.
Port lines $P_{10}$ to $P_{17}$ and $P_{24}$ to $P_{27}$ include a protective circuit " $E$ " to prevent a signal conflict at the port. The circuit prevents a logic 1 from being written to a line that is being pulled down externally (see Port Protection Circuit "E" diagram). When a logic 0 is detected at the port line and a logic 1 is written from the bus, the NOR gate sends a logic 1 to the D input of the flip-flop. The output is inverted, forcing the NAND gate to send a high-level output. This turns off transistor $A$, preventing the output of a logic 1 from the port.

## Port-Loading Options

$\mathrm{I}_{\mathrm{OH}}(\min ) \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}(\mathrm{~min})$

Option Selected	$\mathrm{P}_{10}-\mathrm{P}_{17}$	$\mathrm{P}_{20}-\mathrm{P}_{23}$	$\mathrm{P}_{24}-\mathrm{P}_{27}$	Unit
A	-5	-5	-5	$\mu \mathrm{A}$
B	-50	-5	-5	$\mu \mathbf{A}$
C	-5	-50	-5	$\mu \mathbf{A}$
D	-50	-50	-5	$\mu \mathbf{A}$
E	-5	-5	-50	$\mu \mathbf{A}$
F	-50	-5	-50	$\mu \mathbf{A}$
G	-5	-50	-50	$\mu \mathbf{A}$
H	-50	-50	-50	$\mu \mathbf{A}$

Notes: (1) The selection of $\mathrm{I}_{\mathrm{OH}}=-5 \mu \mathrm{~A}$ will result in a port source current of $\mathrm{I}_{\mathrm{ILP}}=-40 \mu \mathrm{~A}$ max when used as input port
(2) The selection of $\mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A}$ will result in a port source current of $\mathrm{I}_{\mathrm{LP}}=-500 \mu \mathrm{~A}$ max when used as input port

## $\mu$ PD80C49/80C39

## Oscillator Operation

The oscillator maintains an internal frequency for clock generation and controls all system timing cycles. The oscillation is initiated by either a self-generating external resonator or external clock input. The oscillator acts as a high-gain amplifier which produces square-wave pulses at the frequency determined by the resonator or clock source to which it is connected.

To obtain the oscillation frequency, an external LC network may be connected to the oscillator, or, a ceramic or crystal external resonator may be connected.
As the crystal frequency is lowered, there is an equivalent reduction in series resistance (R). As the temperature of the crystal is lowered, R is increased. Due to this relationship, it becomes difficult to stabilize oscillation when there is low power supply voltage. When $\mathrm{V}_{\mathrm{CC}}$ is less than 2.7 V and the oscillator frequency is 3 MHz or less, $\mathrm{T}_{\mathrm{a}}$ (ambient temperature) should not be less than $-10^{\circ} \mathrm{C}$.

## Port Protection Circuit "E"



## Crystal Frequency Reference Circuit



Notes: (1) Crystal oscillator constants of $\mathrm{f}_{\text {osc }}=6 \mathrm{MHz}$
$R_{\text {max }}=50 \Omega$
$\begin{aligned} \mathrm{m}_{\mathrm{L}} & =16 \pm 02 \mathrm{pF} \\ \mathrm{P} & =1 \pm 02 \mathrm{~m}\end{aligned}$
$\mathrm{F}=1 \pm 02 \mathrm{~mW}$
(2) Operating frequency less than 4 MHz
$0<\mathrm{C}_{1} \leq 20 \mathrm{pF}$
$0<\mathrm{C}_{2} \leq 20 \mathrm{pF}$
$\left|\mathrm{C}_{2}-\mathrm{C}_{1}\right| \leq 10 \mathrm{pF}$
(3) Operating frequency more than 4 MHz
$0<\mathrm{C}_{1} \leq 10 \mathrm{pF}$
$0<\mathrm{C}_{1} \leq 10 \mathrm{op}$
$0<\mathrm{C}_{2} \leq 10 \mathrm{OPF}$
$\left|\mathrm{C}_{2}-\mathrm{C}_{1}\right| \leq 5 \mathrm{pF}$

LC Frequency Reference Circuit


Note: $C_{p p}=5-10 \mathrm{pF}$ Pin to pin capacitance should be approximately 20 pF , including stray capacitance

## Ceramic Resonator Frequency Reference Circuit



Note: $\mathrm{C}_{1}>\mathrm{C}_{2}$
$\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)=20 \mathrm{pF}$
For example, $\mathrm{C}_{1}=30 \mathrm{pF}$, and $\mathrm{C}_{2}=10 \mathrm{pF}$
Values of $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$ do not include stray capacitance

External Clock Frequency Reference Circuit


Note: A minimum voltage of $\mathrm{V}_{\mathrm{CC}}{ }^{-1}$ is required for XTAL1 to go HIGH

## Major Input and Output Signals



## Instruction Set Symbol Definitions

Symbol	Description
A	Accumulator
AC	Auxiliary Carry Flag
addr	Program or data memory address ( $\left.a_{0}-a_{7}\right)$ or ( $a_{0}-a_{10}$ )
b	Accumulator bit ( $\mathrm{b}=0-7$ )
BS	Bank Switch
BUS	Bus
C	Carry Flag
CLK	Clock
CNT	Counter
data	8-bit binary data ( $\mathrm{d}_{0}-\mathrm{d}_{7}$ )
DBF	Memory Bank Flip-Flop
F0, F1	Flag 0, Flag 1
INT	Interrupt pin
n	Indicates the hex number of the specified register or port
PC	Program Counter
$P_{p}$	Port 1, Port 2, or Port 4-7 $\left(_{p}=1,2\right.$, or 4-7)
PSW	Program Status Word
$\mathrm{R}_{\mathrm{r}}$	Register $\mathbf{R}_{0}-\mathrm{R}_{7}(\mathrm{r}=0-7$ )
SP	Stack Pointer
T	Timer
TF	Timer Flag
T0, T1	Test 0, Test 1 pin
\#	Immediate data indication
@	Indirect address indication
$\mathbf{x}$	Indicates the hex number corresponding to the accumulator bit or page number specified in the operand
(x)	Contents of RAM
((x))	Contents of memory addressed by (x)
$\leftarrow$	Transfer direction, result
$\wedge$	Logical product (logical AND)
$\checkmark$	Logical sum (logical OR)
$\forall$	Exclusive OR
-	Complement

## Instruction Set

Mnemonic	Function	Description	Hex Code	Instruction Code								Cycles	Bytes
				$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$		
Accumulator													
ADD A, \# data	$(A)+(A)+$ data	Adds immediate data $d_{0}-d_{7}$ to the accumulator. Sets or clears both carry flags.(2)	03	$\begin{gathered} 0 \\ d_{7} \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 0 \\ d_{5} \end{gathered}$	$\begin{aligned} & 0 \\ & d_{4} \end{aligned}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} 1 \\ d_{1} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{~d}_{0} \end{gathered}$	2	2
ADD A, $\mathrm{R}_{\mathrm{r}}$	$\begin{aligned} & (A) \leftarrow(A)+\left(R_{r}\right) \\ & =0-7 \end{aligned}$	Adds the contents of register $R_{r}$ to the accumulator Sets or clears both carry flags. (2)	6n(4)	0	1	1	0	1	r	r	r	1	1
ADD A, @ $\mathrm{R}_{\text {r }}$	$\begin{aligned} & (A) \leftarrow(A)+\left(\left(R_{r}\right)\right) \\ & =0-1 \end{aligned}$	Adds the contents of the internal data memory location specified by bits 0-5 of register $R_{r}$ to the accumulator. Sets or clears both carry flags.(2)	6n(4)	0	1	1	0	0	0	0	r	1	1
ADDC A, \# data	$(A) \leftarrow(A)+$ data $+(C)$	Adds, with carry, immediate data $d_{0}-d_{7}$ to the accumulator. Sets or clears both carry flags.(2)	13	$\begin{aligned} & 0 \\ & d_{7} \end{aligned}$	$\begin{gathered} 0 \\ \mathbf{d}_{6} \end{gathered}$	$\begin{aligned} & 0 \\ & d_{5} \end{aligned}$	$\begin{gathered} 1 \\ \mathrm{~d}_{4} \end{gathered}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{1} \\ \mathbf{d}_{1} \end{gathered}$	$\begin{gathered} 1 \\ d_{0} \end{gathered}$	2	2
ADDC A, $\mathrm{R}_{\mathrm{r}}$	$\begin{aligned} & (A) \leftarrow(A)+\left(R_{r}\right)+(C) \\ & r=0-7 \end{aligned}$	Adds, with carry, the contents of register $R_{r}$ to the accumulator. Sets or clears both carry flags.(2)	7 n (4)	0	1	1	1	1	r	r	r	1	1
ADDC A, @ $\mathbf{R}_{\mathbf{r}}$	$\begin{aligned} & (A) \leftarrow(A)+\left(\left(R_{r}\right)\right)+(C) \\ & =0-1 \end{aligned}$	Adds, with carry, the contents of the internal data memory location specified by bits 0-5 of register $R_{r}$, to the accumulator. Sets or clears both carry flags.(2)	7 n (4)	0	1	1	1	0	0	0	$r$	1	1
ANL A, \# data	$(A) \leftarrow(A) \wedge$ data	Takes the logical product (logical AND) of immediate data $d_{0}-d_{7}$ and the contents of the accumulator, and stores the result in the accumulator.	53	$\begin{gathered} 0 \\ d_{7} \end{gathered}$	$\begin{gathered} 1 \\ d_{6} \end{gathered}$	$\begin{gathered} 0 \\ d_{5} \end{gathered}$	$\begin{gathered} 1 \\ d_{4} \end{gathered}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} \mathbf{0} \\ \mathbf{d}_{2} \end{gathered}$	$\begin{aligned} & \mathbf{1} \\ & d_{1} \end{aligned}$	$\begin{gathered} 1 \\ d_{0} \end{gathered}$	2	2
ANL A, $\mathrm{R}_{\mathrm{r}}$	$\begin{aligned} & (A) \leftarrow(A) \wedge\left(R_{r}\right) \\ & =0-7 \end{aligned}$	Takes the logical product (logical AND) of the contents of register $\mathrm{R}_{\mathrm{r}}$ and the accumulator, and stores the result in the accumulator.	$5 n(4)$	0	1	0	1	1	r	$r$	r	1	1
ANL. A, @ $\mathrm{R}_{\mathrm{r}}$	$\begin{aligned} & (A) \leftarrow(A) \wedge\left(\left(R_{r}\right)\right) \\ & =0-1 \end{aligned}$	Takes the logical product (logical AND) of the contents of the internal data memory location specified by bits $0-5$ of register $R_{r}$, and the accumulator, and stores the result in the accumulator.	5n(4)	0	1	0	1	0	0	0	r	1	1
CPL A	$(\mathrm{A}) \leftarrow \overline{(\bar{A})}$	Takes the complement of the contents of the accumulator.	37	0	0	1	. 1	0	1	1	1	1	1
CLRA	$(\mathrm{A}) \leftarrow 0$	Clears the contents of the accumulator.	27	0	0	1	0	0	1	1	1	1	1
DA A		Converts the contents of the accumulator to BCD Sets or clears the carry flags. When the lower 4 bits ( $A_{0-3}$ ) are greater than 9, or if the Auxiliary Carry Flag has been set, adds 6 to $A_{0-3}$. When the upper 4 bits $\left(A_{4-7}\right)$ are greater than 9 or if the Carry Flag (C) has been set, adds 6 to $A_{4-7}$. If an overflow occurs at this point, $C$ is set.(2)	57	0	1	0	1	0	1	1	1	1	1
DEC A	$(A) \leftarrow(A)-1$	Decrements the contents of the accumulator by 1.	07	0	0	0	0	0	1	1	1	1	1
INC A	$(A) \leftarrow(A)+1$	Increments the contents of the accumulator by 1.	17	0	0	0	1	0	1	1	1	1	1
ORL A, \# data	(A) $\leftarrow(A) \vee$ data	Takes the logical sum (logical OR) of immediate data $d_{0}-d_{7}$ and the contents of the accumulator, and stores the result in the accumulator.	43	$\begin{gathered} 0 \\ d_{7} \end{gathered}$	$\begin{gathered} 1 \\ d_{6} \end{gathered}$	$\begin{gathered} 0 \\ d_{5} \end{gathered}$	$\begin{gathered} 0 \\ d_{4} \end{gathered}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{aligned} & 1 \\ & d_{1} \end{aligned}$	$\begin{gathered} 1 \\ d_{0} \end{gathered}$	2	2
ORL A, R	$\begin{aligned} & (A) \leftarrow(A) V\left(R_{r}\right) \\ & r=0-7 \end{aligned}$	Takes the logical sum (logıcal OR) of register $R_{r}$ and the contents of the accumulator, and stores the result in the accumulator	4n(4)	0	1	0	0	1	r	r	$r$	1	1
ORLA, @ R	$\begin{aligned} & (A) \leftarrow(A) \vee\left(\left(R_{r}\right)\right) \\ & =0-1 \end{aligned}$	Takes the logical sum (logical OR) of the contents of the internal data memory location specified by bits $0-5$ in register $R_{r}$, and the contents of the accumulator, and stores the result in the accumulator.	4n(4)	0	1	0	0	0	0	0	$r$	1	1
RLA	$\begin{aligned} & (A b+1) \leftarrow(A b) \\ & \left(A_{0}\right) \leftarrow\left(A_{7}\right) \\ & b=0-6 \end{aligned}$	Rotates the contents of the accumulator one bit to the left. The MSB is rotated into the LSB.	E7	1	1	1	0	0	1	1	1	1	1
RLC A	$\begin{aligned} & (A b+1) \leftarrow(A b) \\ & \left(A_{0}\right) \leftarrow(C) \\ & (C) \leftarrow\left(A_{7}\right) \\ & b=0-6 \end{aligned}$	Rotates the contents of the accumulator one bit to the left through carry.	F7	1	1	1	1	0	1	1	1	1	1
RR A	$\begin{aligned} & (A b) \leftarrow(A b+1) \\ & \left(A_{7}\right) \leftarrow\left(A_{0}\right) \\ & b=0-6 \end{aligned}$	Rotates the contents of the accumulator one bit to the right. The LSB is rotated into the MSB.	77	0	1	1	1	0	1	1	1	1	1
RRC A	$\begin{aligned} & (A b) \leftarrow(A b+1) \\ & \left(A_{7}\right) \leftarrow(C) \\ & (C) \leftarrow\left(A_{0}\right) \\ & b=0-6 \end{aligned}$	Rotates the contents of the accumulator one bit to the right through carry.	67	0	1	1	0	0	1	1	1	1	1
SWAP A	$\left(A_{4-7}\right) \leftrightarrow\left(A_{0-3}\right)$	Exchanges the contents of the lower 4 bits of the accumulator with the upper 4 bits of the accumulator.	47	0	1	0	0	0	1	1	1	1	1
XRL A, \# data	$(A) \leftarrow(A) \nabla$ data	Takes the exclusive OR of immediate data $d_{0}-d_{7}$ and the contents of the accumulator, and stores the result in the accumulator.	D3	$\begin{gathered} 1 \\ d_{7} \end{gathered}$	$\begin{gathered} 1 \\ d_{6} \end{gathered}$	$\begin{gathered} 0 \\ d_{5} \end{gathered}$	$\begin{aligned} & 1 \\ & d_{4} \end{aligned}$	$\begin{gathered} 0 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{aligned} & 1 \\ & d_{1} \end{aligned}$	$\begin{gathered} 1 \\ d_{0} \end{gathered}$	2	2
XRL A, $\mathbf{R}_{\mathbf{r}}$	$\begin{aligned} & (A) \leftarrow(A) \forall\left(R_{r}\right) \\ & =0-7 \end{aligned}$	Takes the exclusive OR of the contents of register $\mathrm{R}_{\mathrm{r}}$ and the accumulator, and stores the result in the accumulator.	Dn(4)	1	1	0	1	1	r	r	r	1	1
XRL A, @ $\mathrm{R}_{\mathrm{r}}$	$\begin{aligned} & (A) \leftarrow(A) \forall\left(\left(R_{r}\right)\right) \\ & =0-1 \end{aligned}$	Takes the exclusive OR of the contents of the location in data memory specified by bits $0-5$ in register $R_{r}$, and the accumulator, and stores the result in the accumulator.	Dn(4)	1	1	0	1	0	0	0	$r$	1	1
Branch													
$\begin{aligned} & \text { DJNZ } \text { R }_{r}, \\ & \text { addr } \end{aligned}$	$\begin{aligned} & \left(R_{r}\right) \leftarrow\left(R_{r}\right)-1 \\ & \text { If }\left(R_{r}\right) \neq 0 \text {, then } \\ & \left(P_{0-7}\right) \leftarrow a d d r \\ & r=0-7 \end{aligned}$	Decrements the contents of register $R_{r}$ by 1 , and if the result is not equal to 0 , jumps to the address indicated by $a_{0}-a_{7}$.	En	$\begin{gathered} 1 \\ a_{7} \end{gathered}$	$\begin{gathered} 1 \\ a_{6} \end{gathered}$	$\begin{gathered} 1 \\ a_{5} \end{gathered}$	$\begin{gathered} 0 \\ a_{4} \end{gathered}$	$\begin{gathered} 1 \\ a_{3} \end{gathered}$	$\begin{gathered} \mathrm{r} \\ a_{2} \end{gathered}$	$\begin{gathered} r \\ a_{1} \end{gathered}$	$\begin{gathered} \mathbf{r} \\ \mathbf{a}_{0} \end{gathered}$	2	2
JBb addr	$\begin{aligned} & \left(P C_{0-7}\right) \leftarrow \text { addr if } b=1 \\ & (P C)=(P C)+2 \text { if } b=0 \end{aligned}$	Jumps to the address specified by $a_{0}-a_{7}$ if the bit in the accumulator specified by $b_{0}-b_{2}$ is set.	x2®	$\begin{aligned} & \mathbf{b}_{2} \\ & \mathbf{a}_{7} \end{aligned}$	$\begin{aligned} & b_{1} \\ & a_{6} \\ & \hline \end{aligned}$	$\begin{aligned} & b_{0} \\ & a_{5} \end{aligned}$	$\begin{array}{r} 1 \\ a_{4} \\ \hline \end{array}$	$\begin{gathered} 0 \\ a_{3} \end{gathered}$	$\begin{gathered} 0 \\ \mathbf{a}_{2} \end{gathered}$	$\begin{aligned} & 1 \\ & a_{1} \end{aligned}$	$\begin{gathered} 0 \\ a_{0} \end{gathered}$	2	2

## Instruction Set (Cont.)

Mnemonic	Function	Description	Hex Code	Instruction Code								Cycles	Bytes
				$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$		
Branch (Cont.)													
JC addr	$\begin{aligned} & \left(\mathrm{PC}_{0-7}\right) \div \text { addr if } \mathrm{C}=1 \\ & (\mathrm{PC})+(\mathrm{PC})+2 \text { if } \mathrm{C}=0 \end{aligned}$	Jumps to the address specified by $\mathrm{a}_{0}-\mathrm{a}_{7}$ If the Carry Flag is set.	F6	$\begin{gathered} 1 \\ \mathbf{a}_{7} \end{gathered}$	$\begin{gathered} 1 \\ a_{6} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ a_{5} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ a_{4} \end{gathered}$	$\begin{gathered} 0 \\ a_{3} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ a_{2} \end{gathered}$	$\begin{array}{r} 1 \\ a_{1} \\ \hline \end{array}$	$\begin{gathered} 0 \\ a_{0} \end{gathered}$	2	2
JF0 addr	$\begin{aligned} & \left(\mathrm{PC}_{0-7}\right)+\text { addr if } \mathrm{FO}=1 \\ & (\mathrm{PC})+(\mathrm{PC})+2 \text { if } \mathrm{FO}=0 \end{aligned}$	Jumps to the address specified by $a_{0}-a_{7}$ if F0 is set.	B6	$\begin{gathered} 1 \\ \mathbf{a}_{7} \end{gathered}$	$\begin{gathered} 0 \\ a_{6} \end{gathered}$	$\begin{gathered} 1 \\ a_{5} \end{gathered}$	$\begin{aligned} & 1 \\ & a_{4} \end{aligned}$	$\begin{gathered} 0 \\ \mathbf{a}_{3} \end{gathered}$	$\begin{gathered} 1 \\ a_{2} \end{gathered}$	$\begin{aligned} & 1 \\ & a_{1} \end{aligned}$	$\begin{gathered} 0 \\ a_{0} \end{gathered}$	2	2
JF1 addr	$\begin{aligned} & \left(P C_{0-7}\right)+\text { addr if } F 1=1 \\ & (P C) \leftarrow(P C)+2 \text { if } F 1=0 \end{aligned}$	Jumps to the address specified by $a_{0}-a_{7}$ if F1 is set.	76	$\begin{gathered} 0 \\ a_{7} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ a_{6} \end{gathered}$	$\begin{gathered} 1 \\ a_{5} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ a_{4} \end{gathered}$	$\begin{gathered} 0 \\ a_{3} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ a_{2} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ a_{1} \end{gathered}$	$\begin{array}{r} 0 \\ \mathbf{a}_{0} \\ \hline \end{array}$	2	2
JMP addr	$\begin{aligned} & \left(\mathrm{PC}_{8-10}\right) \leftarrow \text { addr }_{8-10} \\ & \left(\mathrm{PC}_{0-7}\right)+\text { addr }_{0-7} \\ & \left(\mathrm{PC}_{11}\right) \leftarrow \text { DBF }^{2} \end{aligned}$	Jumps directly to the address specified by $a_{0}-a_{10}$ and the DBF.	x4®	$\begin{aligned} & \mathbf{a}_{10} \\ & \mathbf{a}_{7} \end{aligned}$	$\begin{aligned} & a_{9} \\ & a_{6} \end{aligned}$	$\begin{aligned} & \mathbf{a}_{8} \\ & \mathbf{a}_{5} \end{aligned}$	$\begin{gathered} 0 \\ a_{4} \end{gathered}$	$\begin{gathered} 0 \\ a_{3} \end{gathered}$	$\begin{gathered} 1 \\ a_{2} \end{gathered}$	$\begin{gathered} 0 \\ a_{1} \end{gathered}$	$\begin{aligned} & 0 \\ & a_{0} \end{aligned}$	2	2
JMPP@ A	$\left(\mathrm{PC}_{0-7}\right)-((\mathrm{A})$ )	Replaces the lower 8 bits of the Program Counter with the contents of program memory specified by the contents of the accumulator, producing a jump to the specified address within the current page.	B3	1	0	1	1	0	0	1	1	2	1
JNC addr	$\begin{aligned} & \left(\mathrm{PC}_{0-7}\right) \leftarrow \text { addr if } \mathrm{C}=0 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } \mathrm{C}=1 \end{aligned}$	Jumps to the address specified by $\mathrm{a}_{0}-\mathrm{a}_{7}$ If the Carry Flag is not set.	E6	$\begin{gathered} 1 \\ \mathbf{a}_{7} \end{gathered}$	$\begin{gathered} 1 \\ a_{6} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ a_{5} \\ \hline \end{gathered}$	$\begin{aligned} & 0 \\ & a_{4} \end{aligned}$	$\begin{gathered} 0 \\ a_{3} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ a_{2} \\ \hline \end{gathered}$	$\begin{array}{r} 1 \\ a_{1} \\ \hline \end{array}$	$\begin{gathered} 0 \\ a_{0} \end{gathered}$	2	2
JNI addr	$\begin{aligned} & \left(P C_{0-7}\right) \leftarrow \text { addr if } I=0 \\ & (P C) \leftarrow(P C)+2 \text { if } \mid=1 \end{aligned}$	Jumps to the address specified by $a_{0}-a_{7}$ if the Interrupt Flag is not set.	86	$\begin{gathered} \mathbf{1} \\ \mathbf{a}_{7} \end{gathered}$	$\begin{gathered} 0 \\ a_{6} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ a_{5} \end{gathered}$	$\begin{gathered} 0 \\ a_{4} \end{gathered}$	$\begin{gathered} 0 \\ a_{3} \end{gathered}$	$\begin{gathered} 1 \\ a_{2} \end{gathered}$	$\begin{aligned} & 1 \\ & a_{1} \\ & \hline \end{aligned}$	$\begin{gathered} 0 \\ \mathbf{a}_{0} \\ \hline \end{gathered}$	2	2
JNTO addr	$\begin{aligned} & \left(P C_{0-7}\right) \leftarrow \text { addr if } \mathrm{TO}=0 \\ & (P C) \leftarrow(P C)+2 \text { if } \mathrm{TO}=1 \end{aligned}$	Jumps to the address specified by $\mathrm{a}_{0}-\mathrm{a}_{7}$ if Test 0 is LOW.	26	$\begin{gathered} 0 \\ \mathbf{a}_{7} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ a_{6} \end{gathered}$	$\begin{gathered} 1 \\ a_{5} \end{gathered}$	$\begin{gathered} 0 \\ \mathbf{a}_{4} \end{gathered}$	$\begin{gathered} 0 \\ \mathbf{a}_{3} \end{gathered}$	$\begin{gathered} 1 \\ \mathbf{a}_{2} \end{gathered}$	$\begin{array}{r} 1 \\ a_{1} \\ \hline \end{array}$	$\begin{gathered} 0 \\ a_{0} \end{gathered}$	2	2
JNT1 addr	$\begin{aligned} & \left(\mathrm{PC}_{0-7}\right) \leftarrow \text { addr if } \mathrm{T} 1=0 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } T 1=1 \end{aligned}$	Jumps to the address specified by $\mathbf{a}_{0}-a_{7}$ if Test 1 is LOW.	46	$\begin{gathered} 0 \\ \mathbf{a}_{7} \end{gathered}$	$\begin{gathered} 1 \\ a_{6} \end{gathered}$	$\begin{gathered} 0 \\ a_{5} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ a_{4} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ \mathbf{a}_{3} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ a_{2} \\ \hline \end{gathered}$	$\begin{array}{r} 1 \\ a_{1} \\ \hline \end{array}$	$\begin{gathered} 0 \\ a_{0} \end{gathered}$	2	2
JNZ addr	$\begin{aligned} & \left(P_{0}-7\right) \leftarrow \text { addr if } A \neq 0 \\ & (P C) \leftarrow(P C)+2 \text { if } A=0 \end{aligned}$	Jumps to the address specified by $\mathrm{a}_{0}-\mathrm{a}_{7}$ if the contents of the accumulator are not equal to 0 .	96	$\begin{gathered} 1 \\ \mathbf{a}_{7} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ a_{6} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ a_{5} \\ \hline \end{gathered}$	$\begin{array}{r} 1 \\ a_{4} \\ \hline \end{array}$	$\begin{gathered} 0 \\ \mathbf{a}_{3} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ a_{2} \\ \hline \end{gathered}$	$\begin{array}{r} 1 \\ a_{1} \\ \hline \end{array}$	$\begin{gathered} 0 \\ \mathbf{a}_{0} \\ \hline \end{gathered}$	2	2
JTF addr	$\begin{aligned} & \left(P C_{0-7}\right) \leftarrow \text { addr if TF }=1 \\ & (P C) \leftarrow(P C)+2 \text { if } T F=0 \end{aligned}$	Jumps to the address specified by $a_{0}-a_{7}$ If the Timer Flag is set. The Timer Flag is cleared after the instruction is executed.	16	$\begin{gathered} 0 \\ \mathbf{a}_{7} \end{gathered}$	$\begin{gathered} 0 \\ a_{6} \end{gathered}$	$\begin{gathered} 0 \\ \mathbf{a}_{5} \end{gathered}$	$\begin{gathered} 1 \\ a_{4} \end{gathered}$	$\begin{gathered} 0 \\ a_{3} \end{gathered}$	$\begin{gathered} 1 \\ \mathbf{a}_{2} \end{gathered}$	$\begin{gathered} 1 \\ a_{1} \end{gathered}$	$\begin{gathered} 0 \\ a_{0} \end{gathered}$	2	2
JT0 addr	$\begin{aligned} & \left(\mathrm{PC}_{0-7}\right) \leftarrow \text { addr if } \mathrm{TO}=1 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } \mathrm{TO}=0 \end{aligned}$	Jumps to the address specified by $a_{0}-a_{7}$ If Test 0 is HIGH.	36	$\begin{gathered} 0 \\ a_{7} \end{gathered}$	$\begin{gathered} 0 \\ \mathbf{a}_{6} \\ \hline \end{gathered}$	$\begin{aligned} & 1 \\ & a_{5} \end{aligned}$	$\begin{aligned} & 1 \\ & a_{4} \\ & \hline \end{aligned}$	$\begin{gathered} 0 \\ \mathbf{a}_{3} \end{gathered}$	$\begin{gathered} 1 \\ \mathbf{a}_{2} \end{gathered}$	$\begin{aligned} & 1 \\ & a_{1} \\ & \hline \end{aligned}$	$\begin{gathered} 0 \\ a_{0} \\ \hline \end{gathered}$	2	2
JT1 addr	$\begin{aligned} & \left(\mathrm{PC}_{0-7}\right) \leftarrow \text { addr if } \mathrm{T} 1=1 \\ & (P C) \leftarrow(P C)+2 \text { if } \mathrm{T} 1=0 \end{aligned}$	Jumps to the address specified by $\mathrm{a}_{0}-\mathrm{a}_{7}$ if Test 1 is HIGH.	56	$\begin{gathered} 0 \\ \mathbf{a}_{7} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ a_{6} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ a_{5} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ a_{4} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ a_{3} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ a_{2} \end{gathered}$	$\begin{array}{r} 1 \\ a_{1} \\ \hline \end{array}$	$\begin{gathered} 0 \\ a_{0} \\ \hline \end{gathered}$	2	2
JZ	$\begin{aligned} & \left(\mathrm{PC}_{0-7}\right) \leftarrow \text { addr if } A=0 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } A=1 \end{aligned}$	Jumps to the address specified by $a_{0}-a_{7}$ if the contents of the accumulator are equal to 0 .	C6	$\begin{gathered} 1 \\ a_{7} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ a_{6} \end{gathered}$	$\begin{gathered} 0 \\ a_{5} \end{gathered}$	$\begin{aligned} & 0 \\ & a_{4} \end{aligned}$	$\begin{gathered} 0 \\ \mathbf{a}_{3} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ \mathbf{a}_{2} \\ \hline \end{gathered}$	$\begin{array}{r} 1 \\ a_{1} \\ \hline \end{array}$	$\begin{gathered} 0 \\ a_{0} \\ \hline \end{gathered}$	2	2
Control													
ENI		Enables external interrupts. When external interrupts are enabled, a low-level input to the INT pin causes the processor to vector to the interrupt service routine.	05	0	0	0	0	0	1	0	1	1	1
DISI		Disables external interrupts. When external interrupts are disabled, low-level inputs to the INT pin have no effect on program execution.	15	0	0	0	1	0	1	0	1	1	1
ENTO CLK		Enables clock output to pin $\mathbf{T O}$	75	0	1	1	1	0	1	0	1	1	1
SEL MBO	(DBF) $\leftarrow 0$	Clears the Memory Bank Flip-Flop, selecting Program Memory Bank 0 [program memory addresses 0-2047 ${ }_{(10)}$ ]. Clears $\mathrm{PC}_{11}$ after the next JMP or CALL instruction.	E5	1	1	1	0	0	1	0	1	1	1
SEL MB1	(DBF) $\leftarrow 1$	Sets the Memory Bank Flip-Fiop, selecting Program Memory Bank 1 [program memory addresses 2048-4095 ${ }_{(10)}$ ]. Sets PC $_{11}$ after the next JMP or CALL instruction.	F5	1	1	1	1	0	1	0	1	1	1
SEL RBO	(BS) $\leftarrow 0$	Selects Data Memory Bank 0 by clearing bit 4 (Bank Switch) of the PSW. Specifies data memory addresses $0-7_{(10)}$ as registers $0-7$ of Data Memory Bank 0.	C5	1	1	0	0	0	1	0	1	1	1
SEL RB1	(BS) $\leftarrow 1$	Selects Data Memory Bank 1 by setting bit 4 (Bank Switch) of the PSW. Specifies data memory $24-31_{(10)}$ as registers 0-7 of Data Memory Bank 1.	D5	1	1	0	1	0	1	0	1	1	1
HALT		Intiates Halt mode.	01	0	0	0	0	0	0	0	1	1	1
Data Moves													
MOV A, \# data	$(A) \leftarrow$ data	Moves immediate data $d_{0}-d_{7}$ into the accumulator.	23	$\begin{gathered} 0 \\ d_{7} \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{array}{r} 1 \\ d_{5} \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & d_{4} \\ & \hline \end{aligned}$	$\begin{gathered} \mathbf{0} \\ \mathbf{d}_{3} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \\ \hline \end{gathered}$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{d}_{1} \\ & \hline \end{aligned}$	$\begin{gathered} 1 \\ d_{0} \end{gathered}$	2	2
MOV A, $\mathrm{R}_{\mathrm{r}}$	$\begin{aligned} & (A) \leftarrow\left(R_{r}\right) \\ & =0-7 \end{aligned}$	Moves the contents of register $\mathrm{R}_{\mathrm{r}}$ into the accumulator.	Fn(4)	1	1	1	1	1	r	r	r	1	1
MOV A, @ $\mathrm{R}_{\mathrm{r}}$	$\begin{aligned} & (A) \leftarrow\left(\left(R_{r}\right)\right) \\ & =0-1 \end{aligned}$	Moves the contents of internal data memory specified by bits 0-5 in register $R_{r}$, into the accumulator.	Fn(4)	1	1	1	1	0	0	0	r	1	1
MOV A, PSW	(A) $\leftarrow($ PSW $)$	Moves the contents of the Program Status Word into the accumulator.	C7	1	1	0	0	0	1	1	1	1	1
$\text { MOV R }_{\mathrm{r}}, \#$ data	$\begin{aligned} & \left(R_{r}\right) \leftarrow \text { data } \\ & r=0-7 \end{aligned}$	Moves immediate data $d_{0}-d_{7}$ into regıster $\mathrm{R}_{\mathrm{r}}$.	Bn(4)	$\begin{gathered} 1 \\ \mathrm{~d}_{7} \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 1 \\ d_{5} \end{gathered}$	$\begin{gathered} 1 \\ d_{4} \end{gathered}$	$\begin{gathered} 1 \\ d_{3} \end{gathered}$	$\begin{gathered} \mathbf{r} \\ \mathbf{d}_{2} \end{gathered}$	$\begin{gathered} \mathbf{r} \\ d_{1} \end{gathered}$	$\stackrel{r}{\mathbf{r}} \underset{\mathbf{d}_{0}}{ }$	2	2
MOV $\mathrm{R}_{\mathrm{r}}$, A	$\begin{aligned} & \left(R_{r}\right) \leftarrow(A) \\ & =0-7 \end{aligned}$	Moves the contents of the accumulator into register $\mathrm{R}_{\mathrm{r}}$.	An(4)	1	0	1	0	1	r	r	r	1	1
MOV @ $\mathrm{R}_{\mathrm{r}}, \mathrm{A}$	$\begin{aligned} & \left(\left(R_{r}\right)\right) \leftarrow(A) \\ & r=0-1 \end{aligned}$	Moves the contents of the accumulator into the data memory location specified by bits 0-5 in register $\mathbf{R}_{\mathrm{r}}$.	An(4)	1	0	1	0	0	0	0	r	1	1
MOV @ $R_{r}$, \# data	$\begin{aligned} & \left(\left(R_{r}\right)\right) \leftarrow \text { data } \\ & =0-1 \end{aligned}$	Moves immediate data $d_{0}-d_{7}$ into the data memory location specified by bits $0-5$ in register $R_{r}$.	$\mathrm{Bn}(4)$	$\begin{gathered} 1 \\ d_{7} \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{aligned} & 1 \\ & d_{5} \end{aligned}$	$\begin{aligned} & 1 \\ & d_{4} \end{aligned}$	$\begin{gathered} 0 \\ \mathbf{d}_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} 0 \\ d_{1} \end{gathered}$	$\begin{gathered} \mathbf{r} \\ \mathbf{d}_{0} \end{gathered}$	2	2
MOV PSW, A	(PSW) $\leftarrow(A)$	Moves the contents of the accumulator into the Program Status Word.	D7	1	1	0	1	0	1	1	1	1	1

## Instruction Set (Cont.)

Mnemonic	Function	Description	$\begin{aligned} & \text { Hex } \\ & \text { Code } \end{aligned}$	Instruction Code								Cycles	Bytes
				$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$		
Data Moves (Cont.)													
MOVP A, @ A	$\begin{aligned} & \left(\mathrm{PC}_{0-7}\right) \leftarrow(A) \\ & (A) \leftarrow((\mathrm{PC})) \end{aligned}$	Moves the contents of the program memory location specified by $\mathrm{PC}_{8-11}$ concatenated with the contents of the accumulator, into the accumulator.	A3	1	0	1	0	0	0	1	1	2	1
MOVP3 A, @ A	$\begin{aligned} & \left(\mathrm{PC}_{0-7}\right) \leftarrow(\mathrm{A}) \\ & \left(\mathrm{PC}_{8-11}\right) \leftarrow 001 \\ & (\mathrm{~A}) \leftarrow(\mathrm{PC})) \end{aligned}$	Moves the contents of the program memory location specified by $0011\left(\mathrm{PC}_{8-11}\right.$, page 3 of Program Memory Bank 0 ) and the contents of the accumulator, into the accumulator.	E3	1	1	1	0	0	0	1	1	2	1
MOVX A, @ R	$\begin{aligned} & (A) \leftarrow\left(\left(R_{r}\right)\right) \\ & ==0-1 \end{aligned}$	Moves the contents of the external data memory location specified by register $R_{r}$, into the accumulator.	$8 \mathrm{n}(4)$	1	0	0	0	0	0	0	$r$	2	1
MOVX@R,A	$\begin{aligned} & \left(\left(R_{r}\right)\right) \leftarrow(A) \\ & =00-1 \end{aligned}$	Moves the contents of the accumulator into the external data memory location specified by register $\mathbf{R}_{r}$.	9n(4)	1	0	0	1	0	0	0	$r$	2	1
XCH A, $\mathrm{R}_{\mathrm{r}}$	$\begin{aligned} & (A) \leftrightarrow\left(R_{r}\right) \\ & =0-7 \end{aligned}$	Exchanges the contents of the accumulator and register $\mathrm{R}_{\mathrm{r}}$.	2n(4)	0	0	1	0	1	r	$r$	r	1	1
$\overline{\mathrm{XCH} A, @} \mathrm{R}_{\mathrm{r}}$	$\begin{aligned} & (A) \leftrightarrow\left(\left(R_{r}\right)\right) \\ & =00-1 \end{aligned}$	Exchanges the contents of the accumulator and the contents of the data memory location specified by bits 0-5 in register $R_{r}$.	2n(4)	0	0	1	0	0	0	0	r	1	1
$\begin{aligned} & \text { XCHD A, @ } \\ & \mathbf{R}_{\mathrm{r}} \end{aligned}$	$\begin{aligned} & \left(A_{0-3}\right) \leftrightarrow\left(\left(R_{r_{0-3}}\right)\right) \\ & r=0-1 \end{aligned}$	Exchanges the contents of the lower 4 bits of the accumulator with the contents of the lower 4 bits of the internal data memory location specified by bits $0-5$ in register $R_{r}$.	3n(4)	0	0	1	1	0	0	0	$r$	1	1
Flags													
CPL C	(C) $\leftarrow(\overline{\text { C }}$ )	Takes the complement of the Carry bit.	A7	1	0	1	0	0	1	1	1	1	1
CPL FO	(FO) $\leftarrow \overline{\text { (FO) }}$	Takes the complement of Flag 0.	95	1	0	0	1	0	1	0	1	1	1
CPL F1	(F1) $\leftarrow \overline{(\mathbf{F 1}})$	Takes the complement of Flag 1.	B5	1	0	1	1	0	1	0	1	1	1
CLRC	(C) $\leftarrow 0$	Clears the Carry bit.	97	1	0	0	1	0	1	1	1	1	1
CLR F0	(FO) $\leftarrow 0$	Clears Flag 0.	85	1	0	0	0	0	1	0	1	1	1
CLR F1	(F1) $\leftarrow 0$	Clears Flag 1.	A5	1	0	1	0	0	1	0	1	1	1
Input/Output													
$\begin{aligned} & \text { ANL BUS, \# } \\ & \text { data } \end{aligned}$	(BUS) $\leftarrow(B U S) \lambda$ data	Takes the logical AND of the contents of the bus and immediate data $\mathrm{d}_{0}-\mathrm{d}_{7}$, and sends the result to the bus.	98	$\begin{aligned} & 1 \\ & d_{7} \end{aligned}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{aligned} & 0 \\ & d_{5} \end{aligned}$	$\begin{aligned} & 1 \\ & d_{4} \end{aligned}$	$\begin{gathered} 1 \\ d_{3} \end{gathered}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{aligned} & 0 \\ & d_{1} \end{aligned}$	$\begin{aligned} & 0 \\ & d_{0} \end{aligned}$	2	2
$\begin{aligned} & \text { ANL } P_{p}, \text { \# } \\ & \text { data } \end{aligned}$	$\begin{aligned} & \left(P_{p}\right)-\left(P_{p}\right) \wedge \text { data } \\ & p=1-2 \end{aligned}$	Takes the logical AND of the contents of designated port $P_{p}$ and immediate data $d_{0}-d_{7}$, and sends the result to port $P_{p}$ for output.	9n(5)	$\begin{aligned} & 1 \\ & d_{7} \end{aligned}$	$\begin{aligned} & 0 \\ & d_{6} \end{aligned}$	$\begin{gathered} 0 \\ d_{5} \end{gathered}$	$\begin{aligned} & 1 \\ & d_{4} \end{aligned}$	$\begin{aligned} & 1 \\ & d_{3} \end{aligned}$	$\begin{aligned} & 0 \\ & d_{2} \end{aligned}$	$\begin{gathered} \mathrm{p} \\ \mathrm{~d}_{1} \end{gathered}$	$\begin{gathered} \mathrm{p} \\ \mathrm{~d}_{0} \end{gathered}$	2	2
ANLD $\mathrm{P}_{\mathrm{p}}, \mathrm{A}$	$\begin{aligned} & \left(P_{p}\right) \leftarrow\left(P_{p}\right) \wedge\left(A_{0-3}\right) \\ & p=4-7 \end{aligned}$	Takes the logical AND of the contents of designated port $P_{p}$ and the lower 4 bits of the accumulator, and sends the result to port $P_{p}$ for output.	9n(5)	1	0	0	1	1	1	p	p	2	1
IN A, $\mathrm{P}_{\mathrm{p}}$	$\begin{aligned} & (A) \leftarrow\left(P_{p}\right) \\ & p=1-2 \end{aligned}$	Loads the accumulator with the contents of designated port $\mathrm{P}_{\mathrm{p}}$.	On(5)	0	0	0	0	1	0	p	p	2	1
INS A, BUS	(A) + (BUS)	Loads the contents of the bus into the accumulator on the rising edge of RD.	08	0	0	0	0	1	0	0	0	2	1
MOVD A, $\mathrm{P}_{\mathrm{p}}$	$\begin{aligned} & \left(A_{0-3}\right) \leftarrow\left(P_{p}\right) \\ & \left(A_{4-7}\right) \leftarrow 0 \\ & p=4-7 \end{aligned}$	Moves the contents of designated port $\mathrm{P}_{\mathrm{p}}$ to the lower 4 bits of the accumulator, and clears the upper 4 bits.	On(5)	0	0	0	0	1	1	p	p	2	1
MOVD $\mathrm{P}_{\mathrm{p}}, \mathrm{A}$	$\begin{aligned} & \left(P_{p}\right) \div\left(A_{0-3}\right) \\ & p=4-7 \end{aligned}$	Moves the lower 4 bits of the accumulator to designated port $P_{p}$. The upper 4 bits of the accumulator are not changed.	$3 n(5)$	0	0	1	1	1	1	$p$	p	2	1
$\begin{aligned} & \text { ORL BUS, \# } \\ & \text { data } \end{aligned}$	(BUS) $\leftarrow($ BUS $) \backslash$ data	Takes the logical OR of the contents of the bus and immediate data $\mathrm{d}_{0}-\mathrm{d}_{7}$, and sends the result to the bus	88	$\begin{aligned} & 1 \\ & d_{7} \end{aligned}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{gathered} 0 \\ d_{5} \end{gathered}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{d}_{4} \end{aligned}$	$\begin{aligned} & 1 \\ & d_{3} \end{aligned}$	$\begin{aligned} & 0 \\ & d_{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{d}_{1} \end{aligned}$	$\begin{aligned} & 0 \\ & d_{0} \end{aligned}$	2	2
ORLD P P, A	$\begin{aligned} & \left(P_{p}\right)+\left(P_{p}\right) V\left(A_{0-3}\right) \\ & p=4-7 \end{aligned}$	Takes the logical OR of the contents of designated port $P_{p}$ and the lower 4 bits of the accumulator, and sends the result to port $P_{p}$ for output.	8n(5)	1	0	0	0	1	1	p	p	2	1
$\begin{aligned} & \text { ORL } P_{p}, \# \\ & \text { data } \end{aligned}$	$\begin{aligned} & \left(P_{p}\right) \leftarrow\left(P_{p}\right) \vee \text { data } \\ & p=1-2 \end{aligned}$	Takes the logical OR of the contents of designated port $P_{p}$ and immediate data $d_{0}-d_{7}$, and sends the result to port $\mathrm{P}_{\mathrm{p}}$ for output.	9n(5)	$\begin{gathered} 1 \\ d_{7} \end{gathered}$	$\begin{gathered} 0 \\ d_{6} \end{gathered}$	$\begin{aligned} & 0 \\ & d_{5} \end{aligned}$	$\begin{aligned} & 0 \\ & d_{4} \end{aligned}$	$\begin{aligned} & 1 \\ & d_{3} \end{aligned}$	$\begin{gathered} 0 \\ d_{2} \end{gathered}$	$\begin{gathered} p \\ d_{1} \end{gathered}$	$\underset{d_{0}}{p}$	2	2
OUTL BUS, A	(BUS) $\leftarrow(A)$	Latches the contents of the accumulator onto the bus on the rising edge of WR.   Note: Never use the OUTL BUS instruction when using external program memory, as this will permanently latch the bus.	02	0	0	0	0	0	0	1	0	2	1
OUTL P $\mathrm{P}_{\mathrm{p}}, \mathrm{A}$	$\begin{aligned} & \left(P_{p}\right) \leftarrow(A) \\ & p=1-2 \\ & \hline \end{aligned}$	Latches the contents of the accumulator into designated port $P_{p}$ for output.	3n⑤	0	0	1	1	1	0	p	p	2	1
Registers													
DEC R ${ }_{\text {r }}$	$\begin{aligned} & \left(R_{r}\right) \leftarrow\left(R_{r}\right)-1 \\ & r=0-7 \end{aligned}$	Decrements the contents of register $\mathrm{R}_{\mathrm{r}}$ by 1.	Cn(4)	1	1	0	0	1	$r$	r	r	1	1
INC $\mathrm{R}_{\mathrm{r}}$	$\begin{aligned} & \left(R_{r}\right) \leftarrow\left(R_{r}\right)+1 \\ & \stackrel{=}{=} 0-7 \end{aligned}$	Increments the contents of register $\mathrm{R}_{\mathrm{r}}$ by 1.	1n(4)	0	0	0	1	1	r	r	r	1	1
INC@ $\mathrm{R}_{\mathrm{r}}$	$\begin{aligned} & \left(\left(R_{r}\right)\right) \leftarrow\left(\left(R_{r}\right)\right)+1 \\ & =0=0-1 \end{aligned}$	Increments by 1 the contents of the data memory location specifled by bits $0-5$ in register $R_{r}$.	1n(4)	0	0	0	1	0	0	0	r	1	1

## Instruction Set (Cont.)

Mnemonic	Function	Description	Hex Code	Instruction Code								Cycles	Bytes
				D7	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$		
Subroutine													
CALL addr	$\begin{aligned} & ((S P)) \leftarrow(P C),\left(\text { PSW }_{4-7}\right) \\ & (S P) \leftarrow(S P)+1 \\ & \left(\mathrm{PC}_{8-10}\right) \leftarrow \text { addr }_{8-10} \\ & \left(\mathrm{PC}_{0-7}\right) \leftarrow \text { addr }_{0-7} \\ & \left(\mathrm{PC}_{11}\right) \leftarrow \mathrm{DBF}^{2} \end{aligned}$	Stores the contents of the Program Counter and the upper 4 bits of the PSW in the address indicated by the Stack Pointer, and increments the contents of the Stack Pointer, calling the subroutine specified by address $\mathrm{a}_{0}-\mathrm{a}_{10}$ and the DBF.	x46)	$\begin{aligned} & \mathbf{a}_{10} \\ & \mathbf{a}_{7} \end{aligned}$	$\begin{aligned} & a_{9} \\ & a_{6} \end{aligned}$	$\begin{aligned} & a_{8} \\ & a_{5} \end{aligned}$	$\begin{gathered} 1 \\ a_{4} \end{gathered}$	$\begin{gathered} 0 \\ \mathbf{a}_{3} \end{gathered}$	$\begin{gathered} 1 \\ a_{2} \end{gathered}$	$\begin{gathered} 0 \\ a_{1} \end{gathered}$	$\begin{gathered} 0 \\ a_{0} \end{gathered}$	2	2
RET	$\begin{aligned} & (S P) \leftarrow(S P)-1 \\ & (P C) \leftarrow((S P)) \end{aligned}$	Decrements the contents of the Stack Pointer by 1 and stores, in the Program Counter, the contents of the location specified by the Stack Pointer, executing a return from subroutine without restoring the PSW.	83	1	0	0	0	0	0	1	1	2	1
RETR	$\begin{aligned} & (S P) \leftarrow(S P)-1 \\ & (P C) \leftarrow((S P)) \\ & \left(P S W_{4-7}\right) \leftarrow((S P)) \end{aligned}$	Decrements the contents of the Stack Pointer by 1 and stores, in the Program Counter, the contents of the upper 4 bits of the PSW and the contents of the location specified by the Stack Pointer, executing a return from subroutıne with restoration of the PSW.	93	1	0	0	1	0	0	1	1	2	1
Timer/Counter													
EN TCNTI		Enables internal interrupt of timer/event counter. If an overflow condition occurs, then an interrupt will be generated.	25	0	0	1	0	0	1	0	1	1	1
DIS TCNTI		Disables internal interrupt of timer/event counter.	35	0	0	1	1	0	1	0	1	1	1
MOV A, T	$(A) \leftarrow(T)$	Moves the contents of the timer/counter into the accumulator.	42	0	1	0	0	0	0	1	0	1	1
MOV T, A	$(\mathrm{T}) \leftarrow(\mathrm{A})$	Moves the contents of the accumulator into the timer/counter.	62	0	1	1	0	0	0	1	0	1	1
STOP TCNT		Stops the operation of the timer/event counter.	65	0	1	1	0	0	1	0	1	1	1
STRT CNT		Starts the event counter operation of the timer/counter when T1 changes from a low-level input to a high-level input.	45	0	1	0	0	0	1	0	1	1	1
STRT T		Starts the timer operation of the timer/counter. The timer is incremented every 32 machine cycles.	55	0	1	0	1	0	1	0	1	1	1
Miscellaneous													
NOP		Uses one machıne cycle without performing any operation.	00	0	0	0	0	0	0	0	0	1	1

Notes: (1) Binary instruction code designations ${ }_{r}$ and ${ }_{p}$ represent encoded values or the lowest-order bit value of specified registers and ports, respectively
(2) Execution of the ADD, ADDC, and DA instructions affect the carry flags, which are not shown in the respective function equations These instructions set the carry fiags when there is an overflow in the accumulator (the Auxiliary Carry Fiag is set when there is an overflow of bit 3 of the accumulator) and clear the carry flags when there is no overflow Flags that are specifically addressed by flag instructions are shown in the function equations for those instructions
(3) References to addresses and data are specified in byte 1 and/or 2 in the opcode of the corresponding instruction
(4) The hex value of $n$ for specific registers is as follows
a) Direct addressing
$\begin{array}{llll}R_{0} n=8 & R_{2} n=A & R_{4} n=C & R_{6} n=E \\ R_{1} n=9 & R_{3} n=B & R_{5} n=D & R_{7} n=F\end{array}$
b) Indirect addressing
@ $R_{0} n=0 \quad @ R_{1} n=1$
(5) The hex value of $n$ for specific ports is as follows
$\begin{array}{llll}P_{1} n=9 & P_{4} & n=C & P_{6} \quad n=E\end{array}$
$P_{2} n=A \quad P_{5} \quad n=D \quad P_{7} n=F$
(6) The hex value of $x$ for specific accumulator or address bits is as follows a) JBb instruction

$B_{0} x=1$	$B_{2} x=5$	$B_{4} x=9$	$B_{6} x=D$
$B_{1} x=3$	$B_{3} x=7$	$B_{5} x=B$	$B_{7} x=F$

b) JMP instruction

Page $0 x=0 \quad$ Page $2 x=4 \quad$ Page $4 x=8 \quad$ Page $6 x=C$
Page $1 x=2$ Page $3 x=6 \quad$ Page $5 x=A \quad$ Page $7 x=E$
c) CALL instruction

Page $0 x=1 \quad$ Page $2 x=5 \quad$ Page $4 \quad x=9 \quad$ Page $6 x=D$
Page $1 x=3 \quad$ Page $3 x=7 \quad$ Page $5 x=B \quad$ Page $7 x=F$
$\mu$ PD80C49/80C39
DC Characteristics: Standard Voltage Range


Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Input Low Voltage	$\mathrm{V}_{\mathrm{H}}$	-0.3		0.8	v	
Input High Voltage	$\mathrm{V}_{\mathrm{H}}$	$\mathrm{V}_{\mathrm{cc}}{ }^{-2}$		$\mathrm{V}_{\text {cc }}$	v	All except XTAL1, XTAL2, $\overline{\text { RESET }}$
	$\mathbf{V}_{\mathbf{H H}}$	$\mathrm{V}_{\mathrm{cc}}{ }^{-1}$		$\mathrm{V}_{\text {cc }}$	v	RESET, XTAL1, XTAL2
Output Low Voltage	$\mathrm{V}_{\mathbf{O}}$			0.45	v	$\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
Output High Voltage	$\mathrm{V}_{\text {OH }}$	2.4			V	Bus, $\overline{\text { RD }}, \overline{\text { WR }}, \overline{\text { PSEN, }}$, ALE, PROG, TO ; $\mathrm{IOH}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$
		2.4			$v$	Port 1, Port 2; $\mathrm{I}_{\mathrm{OH}}=-5 \mu \mathrm{~A}$ (Type 0)
	$\mathrm{VOH1}^{(1)}$					Port 1, Port 2; $I_{\mathrm{OH}}=-50 \mu \mathrm{~A}$ (Type 1)
	$\mathrm{V}_{\mathrm{OH} 2}$	$\mathrm{V}_{\mathrm{cc}}-0.5$			v	All outputs; $\mathrm{I}_{\mathrm{OH}}=-0.2 \mu \mathrm{~A}$
Input Current	$\mathbf{I L L P}^{(1)}$		-15	-40	$\mu \mathrm{A}$	Port 1, Port 2; $\mathbf{V}_{\mathbf{I N}} \leq \mathbf{V}_{\mathbf{I L}}$ (Type 0)
				-500	$\mu \mathrm{A}$	Port 1 Port 2; $\mathbf{V}_{\mathbf{I N}} \leq \mathbf{V}_{\mathbf{I L}}$ (Type 1)
	ILC			-40	$\mu \mathrm{A}$	$\overline{\text { SS }}$, $\overline{\text { RESET }} ; \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {IL }}$
Input Leakage Current	${ }^{\text {LII }}$			$\pm 1$	$\mu \mathrm{A}$	$\mathrm{T}, \overline{\mathrm{NT}}, \mathrm{V}_{\text {DD }} ; \mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$
	$\mathrm{l}_{12}$			$\pm 3$	$\mu \mathrm{A}$	$\mathbf{E A} ; \mathbf{V}_{\text {SS }} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {cC }}$
Output Leakage Current	ILO			$\pm 1$	$\mu \mathrm{A}$	Bus, To, High-Impedance State; $v_{\mathrm{ss}} \leq \mathrm{v}_{\mathrm{o}} \leq \mathrm{v}_{\mathrm{cc}}$
Standby Current	$\mathrm{Icc}^{1}$		0.4	0.8	mA	Halt mode; $\mathrm{t}_{\mathrm{cY}}=2.5 \mu \mathrm{~s}$
	$\mathrm{ICC2}$		1	20	$\mu \mathrm{A}$	Stop mode (2)
Supply Current	Icc		4	8	mA	$\mathrm{t}_{\mathrm{cr}}=2.5 \mu \mathrm{~s}$
Data Retention Voltage	$V_{\text {ccor }}$	2.0			V	Stop mode ( $\left.\mathrm{V}_{\mathrm{DD}}, \overline{\mathrm{RESET}} \leq 0.4 \mathrm{~V}\right)$

DC Characteristics: Extended Voltage Range
$\mathrm{T}_{\mathrm{a}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{cc}}=+2.5 \mathrm{~V}$ to $+5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}$

Parameter	Symbol	Limits			Unit	Test Conditions
		1 Min	Typ	Max		
Input Low Voitage	$\mathrm{V}_{\mathrm{IL}}$	-0.3		0.18 Vcc	V	
Input High Voltage (All Except XTAL 1, XTAL 2)	$\mathrm{V}_{\mathrm{IH}}$	$0.7 \mathrm{~V}_{\mathrm{cc}}$		$\mathrm{V}_{\mathrm{cc}}$	$v$	
Input High Voitage (XTAL 1, XTAL 2)	$\mathrm{V}_{\text {H1 }}$	$0.8 V_{c c}$		$\mathrm{V}_{\mathrm{cc}}$	V	
Output Low Voltage	$\mathrm{V}_{\mathrm{OL}}$			0.45	v	$\mathrm{l}_{\mathrm{OL}}=1.0 \mathrm{~mA}$
Output High Voltage (Bus, RD, WR, PSEN, ALE, PROG, TO	$\mathrm{V}_{\mathrm{OH}}$	$0.75 \mathrm{~V}_{\text {cc }}$			$v$	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$
Output High Voltage (All Other Outputs	$\mathbf{V}_{\text {OH1 }}$	$0.7 \mathrm{~V}_{\mathrm{cc}}$			v	$\begin{aligned} & \text { Port 1, Port 2; } \\ & \text { OHH }^{2}=-1 \mu \mathrm{~A} \\ & \text { (Type } 0 \text { ) } \end{aligned}$
						$\begin{aligned} & \text { Port 1, Port 2; } \\ & \mathrm{I}_{\text {OH }}=-10 \mu \mathrm{~A} \\ & \text { (Type 1) } \end{aligned}$
Output High Voltage (All Outputs)	$\mathrm{V}_{\mathrm{OH} 2}$	$\mathrm{V}_{\text {cc }}-0.5$			v	$\mathrm{I}_{\mathrm{OH}}=-0.2 \mu \mathrm{~A}$
Input Leakage Current (Port 1, Port 2)	ILLP		-15	-40	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\text {IL }}$ (Type 0)
				-500	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {IL }}$ (Type 1)
Input Leakage Current (SS, RESET)	ILC			-40	$\mu \mathrm{A}$	$\mathbf{V}_{\mathbf{I N}} \leq \mathrm{V}_{\mathbf{I L}}$
Input Leakage Current (T1, INT)	$1_{121}$			$\pm 1$	$\mu \mathrm{A}$	$\mathbf{v}_{\mathbf{S S}}<\mathbf{v}_{\text {IN }}<\mathbf{V}_{\mathbf{C C}}$
Input Leakage Current (EA)	1L2			$\pm 3$	$\mu \mathrm{A}$	$\mathbf{v}_{\mathbf{S s}}<\mathbf{v}_{\mathbf{I N}}<\mathbf{v}_{\mathbf{C C}}$
Output Leakage Current (Bus, T0 - High Impedance State)	loL			$\pm 1$	$\mu \mathrm{A}$	$\mathbf{v}_{\mathbf{s s}}<\mathbf{v}_{\mathbf{o}}<\mathbf{v}_{\mathbf{c c}}$
Supply Current	Icc		0.8	1.6	mA	$\begin{aligned} & V_{c c}=3 \mathrm{~V}, \\ & t_{c y}=10 \mu \mathrm{~s} \end{aligned}$
Halt Mode Standby Current	ICCl		100	200	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}, \\ & \mathrm{t}_{\mathrm{cY}}=10 \mu \mathrm{~s} \end{aligned}$
Stop Mode Standby Current	$\mathrm{IcC2}$		1	20	$\mu \mathrm{A}$	

## AC Characteristics

Read, Write and Instruction Fetch: External Data and Program Memory
$T_{\mathrm{a}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathbf{C c}}=\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}$

Parameter	Symbol	$\mathrm{V}_{\text {cc }}=+5 \mathrm{~V} \pm 10 \%$			$\mathrm{V}_{\mathrm{cc}}=+2.5 \mathrm{~V}$ to +5.5 V			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max		
ALE Pulse Width	$t_{\text {LL }}$	400			2160			ns	
Address Setup before ALE	$t_{\text {AL }}$	120			1620			ns	
Address Hold from ALE	tha	80			330			ns	(1)
Control Pulse Width (PSEN, $\overline{\text { RD }}$, WR)	$t_{\text {cc }}$	700			3700			ns	
Data Setup before WR	$t_{\text {dw }}$	500			3500			ns	
Data Hold after $\overline{\text { WR }}$	two	120			370			ns	(2)
Cycle Time	$\mathrm{t}_{\mathrm{Cr}}$	2.5		150	10		150	$\mu \mathrm{s}$	6 MHz XTAL
Data Hold	$\mathrm{t}_{\mathrm{DR}}$	0		200	0		950	ns	
PSEN, $\overline{\mathrm{RD}}$ to Data In	$t_{\text {RD }}$			500			2750	ns	
Address Setup before WR	$t_{\text {AW }}$	230			3230			ns	(1)
Address Setup before Data in	$t_{\text {AD }}$			950			5450	ns	
Address Float to $\overline{\text { RD }}$, PSEN	$\mathrm{t}_{\text {AFC }}$	0			500			ns	
Control Pulse to ALE	$t_{\text {cA }}$	10			10			ns	

## Port 2 Timing

$T_{a}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	$\mathrm{V}_{\text {cc }}=+5 \mathrm{~V} \pm 10 \%$			$\mathrm{V}_{\mathrm{cc}}=+2.5 \mathrm{~V}$ to + 5.5V			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max		
Port Control Setup before Falling Edge of PROG	${ }^{\text {t }}$ PP	110			860			ns	
Port Control Hoid after Falling Edge of PROG	$t_{\text {pc }}$	0		80	0		200	ns	(4)
PROG to Time P2 input must be Valid	$t_{\text {PR }}$			810			5310	ns	
Output Data Setup Time	$\mathrm{t}_{\mathrm{DP}}$	250			3250			ns	(3)
Output Data Hoid Time	$t_{\text {PD }}$	65			820			ns	
Input Data Hold Time	$t_{\text {PF }}$	0		150	0		900	ns	
PROG Pulse Width	$t_{\text {pp }}$	1200			6450			ns	
Port 2 I/O Data Setup	$t_{\text {PL }}$	350			2100			ns	
Port 2 //O Data Hold	$\mathrm{t}_{\mathrm{LP}}$	150			1400			ns	

Notes: (1) For Control Outputs $C_{L}=80 p F$, for Bus Outputs' $C_{L}=150 p F$
(2) $\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$
(3) For Control Outputs $\mathrm{C}_{\mathrm{L}}=80 \mathrm{pF}$
(4) Refer to the operating characteristic curves for Supply Voltage and Port Control Hold

## BUS Timing Requirements

Symbol	Timing Formula	Min	Max	Unit
$\mathrm{t}_{\mathrm{LL}}$	(7/30) T-167	-		ns
$t_{\text {AL }}$	(1/5) T-285	$\bullet$		ns
$t_{\text {LA }}$	$(1 / 30) \mathrm{T}$	-		ns
$t_{\text {cc }}$	(2/5) T-300	$\bullet$		ns
$t_{\text {ow }}$	(2/5) T-500	-		ns
$t_{\text {wo }}$	$(1 / 30) T+40$	$\bullet$		ns
$t_{\text {DR }}$	(1/10) T-50		$\bullet$	ns
$\mathrm{t}_{\text {RD }}$	(3/10) T-250		$\bullet$	ns
$t_{\text {AW }}$	(2/5) T-600	-		ns
$t_{A D}$	(3/5) T-550		$\bullet$	ns
$t_{\text {AFC }}$	(1/15) T-125	-		ns
$t_{\text {cP }}$	$(1 / 10) T-87$	-		ns
$t_{\text {PR }}$	(3/5) T-475		$\bullet$	ns
$t_{\text {PF }}$	(1/10) T-100		-	ns
$t_{\text {DP }}$	(2/5) T-550	-		ns
$t_{\text {PD }}$	(1/10) T-167	-		ns
$t_{\text {pp }}$	(7/10) T-550	$\bullet$		ns
$t_{\text {PL }}$	(7/30) T-230	$\bullet$		ns
tP	(1/6) T-265	-		ns

## Notes: $T=t_{C Y}$

 Unlisted parameters are not affected by cycle time
## Timing Waveforms

Instruction Fetch From External Memory


## Read From External Data Memory



Write to External Memory


## Low Power Standby Operation

1) Halt Mode (When EI)


## 2) Stop Mode



Port 2 Timing


Block Diagram


Note: $\mu$ PD80C39 does not include ROM

Absolute Maximum Ratings*

$\mathrm{Ta}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	
Operating Temperature, $\mathrm{T}_{\text {opt }}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature (Cerdip Package), $\mathrm{T}_{\text {stg }}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic Package), $\mathrm{T}_{\text {stg }}$	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage on Any Pin, $\mathrm{V}_{1 / 0}$	$\mathrm{V}_{\text {Ss }}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}$
Supply Voltage, $\mathrm{V}_{\mathrm{CC}}$	$\mathrm{V}_{\text {Ss }}-0.3$ to +10 V
Power Dissipation, P	

*COMMENT: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## Operating Characteristic Curves

## Output High Current vs. Output High Voltage



Output High Current vs. Supply Voltage


Output Low Current vs. Supply Voltage


## Output High Current vs. Output High Voltage



Output High Current vs. Supply Voltage


Output Low Current vs. Output Low Voltage


## Operating Characteristic Curves (Cont.)

Supply Current vs. Oscillation Frequency


Cycle Time vs. Supply Voltage


Supply Current vs. Oscillation Frequency ${ }^{(1)}$


Port Control Hold After PROG, $t_{p c}$ Max ( $\mu$ PD80C49), and Address to Output Delay, $t_{\text {acc }}$ Min ( $\mu$ PD82C43), vs. Supply Voltage


Current Consumption as a Function of Temperature - Normal Operating Mode


Current Consumption as a Function of Operating Frequency Normal Operating Mode


Note: (1) External oscillation is assumed for frequency less than $1 \mathbf{M H z}$. Internal oscillation requires more power.

## Operating Characteristic Curves (Cont.)

Current Consumption as a Function of Temperature - Stop Mode


## Package Outlines

For information, see Package Outline Section 7.
Plastic, $\mu$ PD80C49C/C39C
Plastic Shrinkdip, $\mu$ PD80C49HC
Plastic Miniflat, $\mu$ PD80C49G/C39G

## Description

The $\mu$ PD780 microprocessor utilizes a highly consistent architectural organization, a comprehensive instruction set that is a superset of the industry-standard 8080A instruction set, and third-generation technology, to provide a flexible, high-performance, efficient CPU easily adaptable to a very broad range of industrial and commercial applications.
All software developed on 8080A-based systems may be run on 780-based systems as a subset of the full 780 instruction set. In addition, the NEC $\mu$ PD780 is fully pin-compatible and software-compatible with the $\mathrm{Z80}{ }^{\circledR}$ microprocessor and is therefore perfectly suited for $\mathrm{CP} / \mathrm{M}^{\circledR}$ designs. The NEC $\mu$ PD780 provides system designers with powerful, wide-range logic capability that requires minimal additional circuitry to complete a microcomputer system.
The output signals of the $\mu$ PD780 are fully decoded and signal timing is fully compatible with industry-standard memory and peripheral devices. Two faster versions of the basic $\mu$ PD780 ( 2.5 MHz master clock rate) are offered by the $\mu$ PD780-1 (4MHz master clock rate) and the $\mu$ PD780-2 ( 6 MHz master clock rate). Other than clock rates, all three versions are identical.

## Features

$\square$ Powerful, wide-range logic capability requiring minimal support circuitryFully $\mathrm{Z80}{ }^{\circledR}$-compatibleIndustry-standard 8080A software compatibility
CP/M ${ }^{\circledR}$-compatibleComprehensive, powerful instruction set featuring 158 instruction typesVectored, multilevel interrupt structureHighly consistent architectural structure featuring dual register setForeground/background programmingAutomatic refreshing of external dynamic memorySignal timing compatible with industry-standard memory and peripheral devicesTTL-compatible signals
Single-phase +5 V clock and + 5VDC power supply Available in plastic package
$@$ Z80 is a registered trademark of Zilog, Inc
®CP/M is a registered trademark of Digital Research Corporation

## Pin Configuration



Pin Identification

Pin		Name	Function
No.	Symbol		
$\begin{gathered} 1-5 \\ 30-40 \end{gathered}$	$A_{0}-A_{15}$	Address Bus	These three-state output lines constitute a 16 -bit address bus. Lines $A_{0}-A_{6}$ output the external memory address during refresh operations
6	$\phi$	Clock	This line is used as an input for external clock sources.
$\begin{gathered} 7-10 \\ 12-15 \end{gathered}$	$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data Bus	These three-state I/O lines constitute an 8 -bit bidirectional data bus
11	+5V	Power Supply	Single +5 V power supply.
16	INT	Interrupt Request	This active-low input line is used for interrupt requests by external I/O devices. Interrupts are serviced upon completion of the current instruction if the Interrupt Enable Flip-Flop (IFF) has been turned on by the software. There are three interrupt response modes: the mode-0 response is equivalent to an 8080 interrupt response, mode 1 uses location $0038_{(H)}$ as a restart address, and mode 2 is a simple vectoring to an interrupt-service routine that can be located anywhere in memory.
17	NMI	Nonmaskable Interrupt	This active-low input line is used for nonmaskable interrupts. A nonmaskable interrupt is always acknowledged at the end of the current instruction, regardless of whether or not the Interrupt Enable FlipFlop has been turned on, except when the BUSRQ signal is asserted. Because of the higher priority of the BUSRQ signal, it is acknowledged before the NMI signal. When $\overline{N M I I}$ is acknowledged, program execution automatically restarts from location $0^{0066}(\mathrm{H})$.
18	HALT	Halt State	This active-low input line is used with the HALT instruction to initiate a halt state. When HALT is asserted, program execution stops and does not resume until an interrupt is generated. During the halt state, NOPs are executed in order to continue memory refresh operations.
19	MREQ	Memory Request	This three-state active-low output line is used to indicate that the address specified for the memory read or write operation is valid.

## Pin Identification (Cont.)

Pin		Name	Function
No.	Symbol		
20	$\overline{\text { IORQ }}$	I/O Request	This three-state active-low output line is used to indicate that the lower half of the address bus holds a valıd address for an I/O read or write operation. During interrupt acknowledge cycles, IORQ and $\overline{\mathrm{M}}_{1}$ are asserted together to indicate that a vector address can be sent to the data bus.
21	$\overline{\mathbf{R D}}$	Read	This three-state active-low output line is used to strobe data from external memory or I/O devices onto the data bus. RD is asserted to indicate that the CPU is requesting data from external memory or I/O devices This line is three-stated during halt or reset conditions.
22	WR	Write	This three-state active-low output line is used to strobe data from the data bus to external memory or I/O devices WR is asserted to indicate that the data bus holds valid data. This line is three-stated during halt or reset conditions.
23	$\overline{\text { BUSAK }}$	Bus Acknowledge	This active-low output line is used to inform the device requesting bus control that the data bus, address bus, and all three-state bus control signals ( $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, $\overline{\text { IORQ, and MREQ) are in a high-impedance }}$ state and the requesting device can now assume control.
24	WAIT	Wart State	This active-low input line is used to indicate that external memory or I/O devices addressed by the CPU are not ready to transfer data. When WAIT is asserted, the CPU is placed in a wait condition
25	$\overline{\text { BUSRQ }}$	Bus Request	This active-low input signal is used to place the data bus, address bus, and all three-state bus control signals (WR, $\overline{R D}$, $\overline{\text { IORQ, and }}$ MREQ) in a high-impedance state to allow a requesting device to assume bus control. The BUSRQ signal has a higher priority than the NMI signal and is always honored at the end of the current machine cycle (1)
26	RESET	Reset	This active-low input signal is used to initıalıze the CPU. When RESET is asserted, the Interrupt Enable Flip-Flop is reset, the program counter and the $I$ and $R$ registers are cleared, and interrupt response mode 0 is enabled. In a reset condition, the address and data buses are three-stated and all output control signals are inactive, after which program execution begins from address 0000 (2)
27	$\bar{M}_{1}$	Machıne Cycle 1	This active-low output line is used to indicate that the current machine cycle is the opcode fetch phase of an instruction execution.
28	$\overline{\text { RFSH }}$	Refresh	This active-low output line is used in conjunction with the MREQ signal to initiate a refresh read of all external dynamic memory. RFSH and MREQ are both asserted when the least-significant 7 bits of the address on the address bus hold a valid external dynamic memory address.
29	GND	Ground	Ground potential
Notes:	(1) Excessive DMA operations resulting in long periods in which BUSRQ is asserted can impair the CPU's ability to adequately refresh the dynamic RAMs $\overline{B U S R Q}$ does not have an internal pull-up resistor For input signals to this pin in a wireOR'ed configuration, an external pull-up resistor should be used   (2) The pulse width of $\overline{\text { RESET }}$ must be a minimum of 3 clock cycles in length to reinitialize the CPU and stabilize operation		

## Architecture

The architecture includes a dual set of six 8-bit generalpurpose registers and two 8-bit accumulators and flag registers. A flexible vectored interrupt structure is supported by an 8-bit interrupt vector register that provides the most-significant 8 bits of a pointer to a table of vector addresses, while the requesting device generates the least-significant 8 bits of the pointer. Two 16-bit index registers enable the manipulation of tabular data as well as facilitating code relocation.
Multilevel interrupts as well as virtually unlimited subroutine nesting are supported by a 16-bit stack pointer and complimentary 16-bit program counter, enhancing the speed and efficiency of a wide variety of data-handling operations. Processing efficiency is additionally supported by a special memory refresh register that enables automatic refreshing of all external dynamic memory with minimal processor overhead.
The dual set of general-purpose registers may be used as individual 8-bit registers or paired as 16-bit registers. The dual register set (including a dual accumulator and flag register) not only allows more powerful addressing and data transfer operations, but also permits programming in foreground/background mode for vastly improved throughput.

## Block Diagram



## Instruction Set

The instruction set of the $\mu$ PD780 consists of 158 types of instructions divided into 16 categories as follows:

8-bit load operations	8-bit arithmetic and logic
register exchanges	operations
memory block searches	bit set, reset, and test
16-bit arithmetic operations	operations
rotate and shift operations	1/O operations
jump operations	call operations
restart operations	return operations
miscellaneous operations	general-purpose
16-bit load operations	accumulator and flag
memory block transfers	operations

This comprehensive instruction set is made more powerful by the array of addressing modes implemented by the architecture, as follows:
bit addressing register-indirect addressing immediate addressing extended addressing implied addressing register addressing
relative addressing immediate-extended addressing indexed addressing modified page zero addresșing

## Instruction Set (Cont.)



Instruction Set (Cont.)


## Instruction Set (Cont.)

MNEMONIC	SYMBOLIC OPERATION	DESCRIPTION	NO BYTES	$\begin{aligned} & \text { NO T } \\ & \text { STATES } \end{aligned}$	FLAGS						OPCODE			
MNEMONIC					C	z	P/V	S	N	H	76	543	210	
INDR	$\begin{aligned} & (H L)-(C) \\ & B \leftarrow B-1 \\ & H L \leftarrow H L-1 \text { until } B=0 \end{aligned}$	Load location ( HL ) with input from port (C), decrement HL and decre ment $B$, repeat untıl $B=0$	2	21	$\bullet$	1	X	X	1	X	11 10	$\begin{aligned} & 101 \\ & 111 \end{aligned}$	$\begin{aligned} & 101 \\ & 010 \end{aligned}$	
INI	$\begin{aligned} & (H L) \leftarrow(C) \\ & B \leftarrow B-1 \\ & H L \leftarrow H L+1 \end{aligned}$	Load location ( HL ) with input from port ( C ), and increment HL and decrement $B$	$?$	16	-		$x$	$\times$	1	X	11 10	$\begin{aligned} & 101 \\ & 100 \end{aligned}$	$\begin{aligned} & 101 \\ & 010 \end{aligned}$	
INIR	$\begin{aligned} & (H L) \leftarrow(C) \\ & B \leftarrow B-1 \\ & H L \leftarrow H L+1 \text { unt\\| } B=0 \end{aligned}$	Load tocation ( HL ) with input from port (C), increment HL and decrement $B$, repeat untı $B=0$	2	21	-	1	X	X	1	X	11 10	$\begin{aligned} & 101 \\ & 110 \end{aligned}$	$\begin{aligned} & 101 \\ & 010 \end{aligned}$	
$J P(H L)$	$P C . H L$	Unconditional jump to (HL)	1	4	-	$\bullet$	$\bullet$	-	$\bullet$	$\bullet$	11	101	001	
JP (IX)	$P C+1 X$	Unconditional jump to (IX)	2	8	-	-	-	-	-	$\bullet$	11 11	$\begin{aligned} & 011 \\ & 101 \end{aligned}$	$\begin{aligned} & 101 \\ & 001 \end{aligned}$	
JP (IY)	PC - IY	Unconditional jump to (IY)	2	8	-	$\bullet$	-	-	-	-	11 11	$\begin{aligned} & 111 \\ & 101 \end{aligned}$	$\begin{aligned} & 101 \\ & 001 \end{aligned}$	
JP cc, nn	If cc true PC - nn else continue	Jump to location nn if condition cc is true	3	10	-	-	$\bullet$	-	-	$\bullet$	11 $n n$ $n n$	$+\mathrm{cc}-$   nnn nnn	$\begin{aligned} & 010^{(H)} \\ & n n n \\ & n n n \end{aligned}$	
$J P \mathrm{nn}$	PC . $\cdot n n$	Unconditional jump to location nn	3	10	-	-	$\bullet$	$\bullet$	$\bullet$	$\bullet$	11 $n n$ $n n$	$\begin{aligned} & 000 \\ & n n n \\ & n n n \end{aligned}$	011   nnn   $n \mathrm{nn}$	
JR C, e	If $\mathrm{C}=0$ continue   If $C=1 P C-P C+e$	Jump relative to PC + e, if carry = 1	2	$\begin{aligned} & 7 \text { if condition } \\ & \text { met } 12, \text { if } \\ & \text { not } \end{aligned}$	-	$\bullet$	$\bullet$	-	-	-	00	$\begin{array}{r} 111 \\ -\mathrm{e}-2 \end{array}$	$\xrightarrow{000}$	
JRe	$P C+P C+e$	Unconditional jump relative to $\mathrm{PC}+\mathrm{e}$	2	12	-	$\bullet$	-	-	$\bullet$	-	00	$\begin{array}{r} 011 \\ -\mathrm{e}-2 \end{array}$	$000$	
JR NC, e	$\begin{aligned} & \text { If } C=1 \text { continue } \\ & \text { If } C=0 P C-P C+e \end{aligned}$	Jump relative to PC + e if carry $=0$	2	7	-	$\bullet$	-	-	-	-	00	$\begin{array}{r} 110 \\ -\mathrm{e}-2 \end{array}$	$000$	
JR NZ, e	If $Z=1$ continue	Jump relative to $P C+e$ if non-zero $(Z=0)$	2	7	-	-	$\bullet$	$\bullet$	$\bullet$	-	00	$\begin{array}{r} 100 \\ -\mathrm{e}-2 \end{array}$	$\underset{\longrightarrow}{000}$	
JR Z, e	If $Z=0$ continue	Jump relative to $\mathrm{PC}+\mathrm{e}$ if zero ( $Z=1$ )	2	7	-	-	-	$\bullet$	-	$\bullet$	00	$\begin{gathered} 101 \\ -\mathrm{e}-2 \end{gathered}$	$\xrightarrow{000}$	
LD A, (BC)	$A-(B C)$	Load ACC with location (BC)	1	7	-	-	-	$\bullet$	$\bullet$	-	00	001	010	
LD A, (DE)	$A-(D E)$	Load ACC with location (DE)	1	7	-	-	-	-	-	$\bullet$	00	011	010	
LD A, I	$A+1$	Load ACC with I	2	9	-	!	IFF	1	0	0	11	$\begin{aligned} & 101 \\ & 010 \end{aligned}$	$\begin{aligned} & 101 \\ & 111 \end{aligned}$	
LD A, (nn)	$A-(n n)$	Load ACC with location nn	3	13	-	-	-	-	-	-	00 $n n$ $n n$	$111$   nnn   nnn	010 nnn nnn	
LD A, R	$A \sim R$	Load ACC with Reg R	2	9	-	1	IFF	1	0	0	11	$\begin{aligned} & 101 \\ & 011 \end{aligned}$	$\begin{aligned} & 101 \\ & 111 \end{aligned}$	
LD (BC), A ${ }^{\text {- }}$	$(\mathrm{BC})-\mathrm{A}$	Load location (BC) with ACC	1	7	-	-	$\bullet$	-	-	$\bullet$	00	000	010	
LD (DE), A	$(\mathrm{DE}) \leftarrow \mathrm{A}$	Load location (DE) with ACC	1	7		-	-	-	*	*	00	010	010	
LD (HL), $n$	$(H L)-n$	Load location (HL) with value $n$	2	10	-	-	-	-	-	-	00 $n n$	$\begin{aligned} & 110 \\ & n n n \end{aligned}$	$\begin{aligned} & 110 \\ & \mathrm{nnn} \end{aligned}$	
LD ss, nn	ss $\leftarrow \mathrm{nn}$	Load Reg parr ss with value nn	4	20	-	$\bullet$	-	-	$\bullet$	$\bullet$	00 $n n$ $n n$	ssO   nnn nnn	$\begin{aligned} & 001 \text { (A) } \\ & n n n \\ & n n n \end{aligned}$	
LD HL, (nn)	$\begin{aligned} & H-(n n+1) \\ & L-(n n) \end{aligned}$	Load HL with location (nn)	3	16	-	-	-	$\bullet$	$\bullet$	$\bullet$	00 $n n$ $n n$	$\begin{aligned} & 101 \\ & \mathrm{nnn} \\ & \mathrm{nnn} \end{aligned}$	010   nnn   nnn	
LD ( HL ), r	(HL) -r	Load location (HL) with Reg r	1	7	-	$\bullet$	-	-	-	$\bullet$	01	110	$\mathrm{rrr}^{(B)}$	
LD I, A	$1-A$	Load I with ACC	2	9	-	-	-	-	-	$\bullet$	11 01	$\begin{aligned} & 101 \\ & 000 \end{aligned}$	$\begin{aligned} & 101 \\ & 111 \end{aligned}$	
LD IX, nn	$1 \mathrm{x} \leftarrow \mathrm{nn}$	Load IX with value nn	4	19	-	-	-	-	-	$\bullet$	11 00 $n n$ $n n$	011   100   nnn nnn	$\begin{aligned} & 101 \\ & 001 \\ & n n n \\ & n n n \end{aligned}$	
LD (X, (nn)	$\begin{aligned} & 1 x_{H} \leftarrow(n n+1) \\ & 1 x_{L}-(n n) \end{aligned}$	Load IX with focation (nn)	4	20	$\bullet$	-	$\bullet$	$\bullet$	-	$\bullet$	11 00 $n n$ $n n$	011   101   nnn   nnn	$\begin{aligned} & 101 \\ & 010 \\ & \mathrm{nnn} \\ & \mathrm{nnn} \end{aligned}$	
LD ( $1 x+d$ ), $n$	$(1 X+d) \leftarrow n$	Load location (IX + d) with value n	4	19	-	-	$\bullet$	$\bullet$	-	$\bullet$	11	011   110   ddd   nnn	$\begin{aligned} & 101 \\ & 110 \\ & \text { ddd } \\ & \mathrm{nnn} \end{aligned}$	
LD ( $1 x+d$ ), r	$(1 X+d) \leqslant r$	Load location ( $1 \times+d$ with Reg $r$	3	19	-	$\bullet$	-	-	$\bullet$	$\bullet$	11 01 dd	$\begin{aligned} & 011 \\ & 110 \\ & \text { ddd } \end{aligned}$	$\begin{aligned} & 101 \text { (B) } \\ & r r r \\ & \text { ddd } \\ & \hline \end{aligned}$	

## Instruction Set (Cont.)



Instruction Set (Cont.)


## Instruction Set (Cont.)



## Instruction Set (Cont.)



## Timing Waveforms

## Input and output cycles

In I/O operations, a single wait state ( $T_{W}$ ) is automatically included to provide adequate time for an I/O port to decode the address from the port address lines and initiate a wait condition if needed.

Input Cycle


Output Cycle


## Opcode fetch instruction cycle

At the beginning of the cycle, the contents of the program counter are placed on the address bus. After approximately one-half cycle, MREQ is asserted and its falling edge can be used directly by the external memory as a chip enable signal. The data from the external memory can be gated onto the data bus when RD is asserted. The CPU reads the data at the rising edge of $\mathrm{T}_{3}$. During $\mathrm{T}_{3}$ and $\mathrm{T}_{4}$, external dynamic memory is refreshed while the instruction is decoded and executed. The assertion of RFSH indicates that the external dynamic memory requires a refresh read.
$\bar{M}_{1}$ Cycle


## $\mu$ PD780/780-1/780-2

## Timing Waveforms (Cont.)

## Memory read or write cycles

In read and write operations, the $\overline{M R E Q}$ and $\overline{R D}$ signals function the same as they do in opcode fetch operations. In a write operation MREQ is asserted and can be used directly by external memory as a chip enable signal when
information on the address bus is stable. The $\overline{W R}$ signal is used as a write strobe to almost any type of semiconductor memory, and is asserted when data on the data bus is stable.


## Interrupt request/acknowledge cycle

The interrupt signal is sampled at the rising edge of the final clock pulse at the end of an instruction. When an interrupt is accepted, an $\bar{M}_{1}$ cycle is begun. Instead of $\overline{M R E Q}, \overline{I O R Q}$ is asserted during this cycle to indicate that an 8-bit vector
address can be placed on the data bus by the interrupting device. This cycle includes the automatic addition of two wait states to facilitate the implementation of a daisy-chain priority interrupt protocol.


## Standard Test Conditions

The standard test conditions reference all voltages to ground ( 0 V ) and follow the convention that positive current flows into the referenced pin. The listing of AC parameters is based on a load capacitance of 50 pF unless explicitly stated otherwise. For every 50pF increase in load capacitance there is a 10ns delay, up to a maximum increase of 200 pF for the data bus and 100 pF for the address bus and the bus control lines.
The operating temperature range is: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; $+4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq+5.25 \mathrm{~V}$.

## Absolute Maximum Ratings*

$\mathbf{T}_{a}=25^{\circ} \mathrm{C}$

Operating Temperature	$0^{\circ} \mathrm{C}$ to $+\mathbf{7 0 ^ { \circ } \mathrm { C }}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+\mathbf{1 5 0 ^ { \circ } \mathrm { C }}$
Voltage on any Pin	$-\mathbf{0 . 3 \mathrm { V } \text { to } + \mathbf { 7 V } \text { (1) }}$
Power Dissipation	1.5 w

Note: (1) With respect to ground
*COMMENT: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathbf{c c}}=+5 \mathrm{~V} \pm 5 \%$ unless
otherwise specified.

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Clock Input Low Voltage	V LC	-0.3		0.45	V	
Clock Input High Voltage	$\mathrm{V}_{\text {IHC }}$	$\begin{aligned} & V_{c c} \\ & -0.6 \end{aligned}$		$\begin{aligned} & v_{c c} \\ & +0.3 \end{aligned}$	V	
Input Low Voltage	$\mathrm{V}_{\mathrm{HL}}$	-0.3		0.8	$V$	
Input High Voltage	$\mathrm{V}_{\mathbf{I H}}$	2.0		$\mathrm{V}_{\mathbf{c c}}$	V	
Output Low Voltage	$\mathrm{V}_{\mathrm{OL}}$			0.4	V	$\mathrm{IOL}=1.8 \mathrm{~mA}$
Output High Voltage	$\mathrm{V}_{\mathrm{OH}}$	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-250 \mu \mathrm{~A}$
Power Supply $\mu$ PD780	$\mathrm{I}_{\mathrm{cc}}$			150	mA	$\mathrm{t}_{\mathrm{C}}=400 \mathrm{~ns}$
Current $\quad \mu$ PD780-1	$I_{\text {cc }}$		90	200	mA	$\mathrm{t}_{\mathrm{C}}=250 \mathrm{~ns}$
Input Leakage Current	$\mathrm{I}_{\mathbf{I}}$			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0$ to $\mathrm{V}_{\mathrm{CC}}$
Three-state Output Leakage Current in Float	ILOH			10	$\mu \mathrm{A}$	$\begin{aligned} & V_{\text {OUT }}=2.4 \\ & \text { to } V_{\text {CC }} \end{aligned}$
Three-state Output Leakage Current in Float	ILOL			-10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$
Data Bus Leakage Current in Input Mode	ILD			$\pm 10$	$\mu \mathbf{A}$	$\begin{aligned} & 0 \leq V_{\text {IN }} \\ & \leq V_{C C} \end{aligned}$

## Capacitance

$\mathrm{T}_{\mathrm{a}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Clock Capacitance	$\mathrm{C}_{\text {¢ }}$			35	pF	$\mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}$
Input Capacitance	$\mathrm{CiN}_{\text {IN }}$			5	pF	Unmeasured pins
Output Capacitance	Cout			10	pF	returned to ground.

## Load Circuit for Output



## AC Characteristics

Parameter	Symbol	Limits						Unit	Test Conditions
		$\mu$ PD780		$\mu$ PD780-1		$\mu$ PD780.2			
		Min	Max	Min	Max	Min	Max		
Clock Period	${ }_{\text {t }}$	0.4	(1)	0.25	(1)	0.165	(1)	$\mu \mathrm{s}$	
Clock Pulse Width, Clock High	$t_{w}(\phi)$	180	(2)	110	(2)	65	(2)	ns	
Clock Pulse Width, Clock Low	$t_{w}(\phi)$	180	2000	110	2000	65	2000	ns	
Clock Rise and Fall Time	$t_{R}{ }^{\text {f }}$		30		30		20	ns	
Address Output Delay	$t_{D(A D)}$		145		110		90	ns	
Delay to Float	$t_{\text {F }}(\mathrm{AD})$		110		90		80	ns	
Address Stable Prior to MREQ (Memory Cycle)	$\mathrm{taCM}^{\text {A }}$	(3)		(3)		(3)		ns	
Address Stable Prior to $\overline{O R Q Q}, \overline{R D}$ or $\overline{W R}$ (1/O Cycle)	$\mathrm{t}_{\mathrm{ACl}}$	(4)		(4)		(4)		ns	
Address Stable from $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$	$\mathrm{t}_{\mathrm{CA}}$	(5)		(3)		(5)		ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
Address Stable from $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ during Float	${ }_{\text {t }}^{\text {caF }}$	(6)		©		(6)		ns	
Data Output Delay	$t_{\text {D( }}$ ( $)$		230		150		130	ns	
Delay to Float durıng Write Cycle	$\mathrm{t}_{\text {F(D) }}$		90		90		80	ns	
Data Setup Time to Rising Edge of Clock during $\mathrm{M}_{1}$ Cycle	$\mathrm{t}_{\text {S }}$ (D)	50		35		30		ns	
Data Setup Time to Falling Edge of Clock during $\mathbf{M}_{2}$ to $\mathbf{M}_{5}$ Cycles	$\mathrm{t}_{\mathbf{S}} \bar{\Phi}(\mathrm{D})$	60		50			40	ns	$C_{L}=200 \mathrm{pF}$
Data Stable prior to $\overline{\mathrm{WR}}$ (Memory Cycle)	$\mathrm{t}_{\text {DCM }}$	(3)		(3)		(3)		ns	
Data Stable prior to $\overline{\mathrm{WR}}$ (//O Cycle)	$\mathrm{t}_{\mathrm{DCI}}$	(8)		(8)		(8)		ns	
Data Stable from WR	$\mathrm{t}_{\text {cDF }}$	(9)		(9)		(9)		ns	
BUSRQ Setup Time to Rising Edge of Clock	$\mathrm{t}_{\mathrm{S}(\mathrm{BQ})}$	80		50		50		ns	
BUSAK Delay from Rising Edge of Clock to BUSAK Low	$t_{\text {DL (BA) }}$		120		100		90	ns	
BUSAK Delay from Falling Edge of Clock to BUSAK High	$\mathrm{t}_{\mathrm{DH}(\mathrm{BA})}$		110		100		90	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
Delay to Float ( $\overline{\text { MREQ}}, \overline{\text { IORQ}}, \overline{\overline{R D}}$ and $\overline{\mathrm{WR}}$ )	$\mathrm{t}_{\mathrm{F}(\mathrm{C})}$		100		80		70	ns	
$\overline{\bar{M}_{1}}$ Stable Prior to $\overline{\mathrm{ORQ}}$ (Interrupt Ack.)	$\mathrm{t}_{\text {MR }}$	(6)		(1)		(1)		ns	
Any Hold Time for Setup Time	$\mathrm{t}_{\mathrm{H}}$	0			0		0	ns	
HALT Delay Time from Falling Edge of Clock	$t_{\text {b(HT) }}$		300		300		260	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
- $\overline{\text { NT }}$ Setup Time to Rising Edge of Clock	$\mathrm{t}_{\mathbf{S} \text { (IT) }}$	80		80		70		ns	
$\overline{\overline{O R Q}}$ Delay from Rising Edge of Clock to IORQ Low	$\mathrm{t}_{\mathrm{DL} \text { ( } \text { (1P) }^{\text {( }} \text { ) }}$		90		75		65	ns	
$\overline{\overline{O R Q}}$ Delay from Falling Edge of Clock to $\overline{\text { ORQ }}$ Low	$\mathrm{t}_{\mathrm{DL}} \bar{\phi}(1 \mathrm{R})$		110		85		70	ns	
$\overline{\overline{O R Q Q}}$ Delay from Rising Edge of Clock to IORQ High	$\mathrm{t}_{\text {DH } \phi(1 \mathrm{I}}$ )		100		85		70	ns	
İORQ Delay from Falling Edge of Clock to TORQ High	$\mathrm{t}_{\text {DH }}^{\underline{\phi}(1 R)}$		110		85		70	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\overline{\bar{M}}_{1}$ Delay from Rising Edge of Clock to $\overline{\mathrm{M}}_{1}$ Low	$\mathrm{t}_{\mathrm{DL}\left(\mathrm{M}_{1}\right)}$		130		100		80	ns	
$\overline{\bar{M}}_{1}$ Delay from Rising Edge of Clock to $\overline{\mathrm{M}}_{1}$ High	$\mathrm{t}_{\mathrm{DH}\left(\mathrm{M}_{1}\right)}$		130		100		80	ns	
MREQ Delay from Falling Edge of Clock to MREQ Low	$\mathrm{t}_{\mathrm{DL} \text { ¢ } \text { ( } \mathrm{MR})}$		100		85		70	ns	
$\overline{\overline{M R E Q}}$ Delay from Rising Edge of Clock to MREQ High	$\mathrm{t}_{\mathrm{DH} \phi(\mathrm{MR})}$		100		85		70	ns	
MREQ Delay from Falling Edge of Clock to $\overline{\text { MREQ }}$ High	$\mathrm{t}_{\mathrm{DH} \bar{\phi}(\mathrm{MR})}$		100		85		70	ns	
Pulse Width, MREQ Low	$\mathrm{t}_{\mathbf{w} \text { (MRL) }}$	(11)		(11)		(11)		ns	
Pulse Width, MREQ High	$\mathrm{t}_{\mathbf{w} \text { (MRH) }}$	(12)		(13)		(13)		ns	
Pulse Width, तָMा Low	${ }^{\text {tw }}$ (NMI)	80		80		70		ns	
RESET Setup Time to Rising Edge of Clock	$t_{\text {S(RS) }}$	90		60		60		ns	
	$\mathrm{t}_{\text {DL¢ }}(\mathrm{RD})$		100		85		70	ns	
$\overline{\overline{R D}}$ Delay from Falling Edge of Clock to $\overline{\text { RD }}$ Low	$\mathrm{t}_{\text {DL }} \mathrm{T}_{(\text {(RD }}$ )		130		95		80	ns	.
$\overline{\overline{R D}}$ Delay from Rising Edge of Clock to $\overline{\text { RD }}$ High	$t_{\text {d }}{ }_{\text {¢ }}(\mathrm{RD})$		100		85		70	ns	
$\overline{\overline{R D}}$ Delay from Falling Edge of Clock to $\overline{\text { RD }}$ High	$t_{\text {DH }} \bar{\phi}(\mathrm{RD})$		110		85		70	ns	
$\overline{\overline{\text { RFSH }}}$ Delay from Rising Edge of Clock to $\overline{\text { RFSH }}$ Low	${ }^{\text {t }}$ L (RF)		180		130		110	ns	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$
RFSH Delay from Rising Edge of Clock to $\overline{\text { RFSH }}$ High	$\mathrm{t}_{\text {DH(RF) }}$		150		120		100	ns	
WAIT Setup Time to Falling Edge of Clock	$t_{\text {S }}^{\text {(WT) }}$	70		70		60		ns	
$\overline{\text { WR }}$ Delay from Rising Edge of Clock to WR Low	$t_{\text {DL }}(\mathrm{WR})$		80		65		60	ns	
$\overline{\text { WR }}$ Delay from Falling Edge of Clock to $\overline{\text { WR }}$ Low	$t_{\text {DL }}\left(\underline{\text { ( }}\right.$ ( ${ }^{\text {d }}$ )		90		80		70	ns	
人 $\overline{\text { WR }}$ Delay from Falling Edge of Clock to WR High			100		80		70	ns	
Pulse Width to WR Low	$t_{\text {W(WRL) }}$	(3)		(3)		(13)		ns	

Notes: (1) $\mathrm{t}_{\mathrm{C}}=\mathrm{t}_{\mathrm{W}}(\phi \mathrm{H})+\mathrm{t}_{\mathrm{W}}(\phi \mathrm{L})+\mathrm{t}_{\mathrm{R}}+\mathrm{t}_{\mathrm{F}}$
(2) Though the structure of the 780 is static, $200 \mu \mathrm{~s}$ is a guaranteed maximum
(3) $t_{A C M}=t_{w}(\phi H)+t_{F}-65(75)^{*}(50)^{* *}$
$t_{A C I}=t_{c}-70(80)^{*}(55)^{* *}$
$\left.\mathrm{t}_{\mathrm{ACI}}=\mathrm{t}_{\mathrm{c}}-7 \mathrm{~L}\right)+\mathrm{t}_{\mathrm{R}}-50(40)^{*}(50)^{* *}$
$\mathrm{t}_{\mathrm{CA}}=\mathrm{t}_{\mathrm{W}}(\mathrm{L}$
$\mathrm{t}_{\mathrm{CAF}}=\mathrm{t}_{\mathrm{W}}(\phi \mathrm{L})+\mathrm{t}_{\mathrm{R}}-45(60)^{\star}(40)^{* *}$
$\mathrm{t}_{\mathrm{DCM}}=\mathrm{t}_{\mathrm{C}}-170(210)^{*}(140)^{* *}$
$t_{\mathrm{DCI}}=\mathrm{t}_{\mathrm{W}}(\phi \mathrm{L})+\mathrm{t}_{\mathrm{R}}-170(210)^{*}(140)^{* *}$
$\mathrm{t}_{\mathrm{CDF}}=\mathrm{t}_{\mathrm{W}}(\phi \mathrm{L})+\mathrm{t}_{\mathrm{R}}-70(80)^{*}(55)^{* *}$
$t_{\text {MR }}=2 t_{C}+t_{W}(\phi H)+t_{F}-65(80)^{*}(50)^{* *}$
For information, see Package Outline Section 7.
$\mathrm{t}_{\mathrm{W}}(\mathrm{MRL})=\mathrm{t}_{\mathrm{C}}-30(40)^{*}(30)^{* *}$
$\mathrm{t}_{\mathrm{W}}(\mathrm{MRH})=\mathrm{t}_{\mathrm{W}}(\phi \mathrm{H})+\mathrm{t}_{\mathrm{F}}-20(30)^{*}(20)^{* *}$
$\mathrm{t}_{\mathrm{W}}(\mathrm{WR})=\mathrm{t}_{\mathrm{C}}-30(40)^{*}(30)^{* *}$

* These values apply to the $\mu$ PD780
** These values apply to the $\mu$ PD780-2


## $\mu$ PD8085A SINGLE CHIP 8-BIT N-CHANNEL MICROPROCESSOR

DESCRIPTION The $\mu$ PD8085A is a single chip 8 -bit microprocessor which is 100 percent software compatible with the industry standard 8080A. It has the ability of increasing system performance of the industry standard 8080A by operating at a higher speed Using the $\mu$ PD8085A in conjunction with its family of ICs allows the designer complete flexibility with minimum chip count.<br>FEATURES<br>- Single Power Supply: +5 Volt, $\pm 10 \%$<br>- Internal Clock Generation and System Control<br>- Internal Serial In/Out Port.<br>- Fully TTL Compatible<br>- Internal 4-Level Interrupt Structure<br>- Multiplexed Address/Data Bus for Increased System Performance<br>- Complete Family of Components for Design Flexibility<br>- Software Compatible with Industry Standard 8080A<br>- Higher Throughput. $\mu$ PD8085AH -3 MHz $\mu$ PD8085A-2 - 5 MHz

- Available in Either Plastic or Ceramic Package

$x_{1} \sqrt{1}$		40	$\square \mathrm{V}_{\mathrm{CC}}$
$x_{2}-2$		39	$\square \mathrm{HOLD}$
RO-3		38	$\square \mathrm{HLDA}$
SOD 4		37	$\square$ CLK (OUT)
SID 5		36	- RESETIN
TRAP $\square 6$		35	$\square$ READY
RST $75 \square$		34	-10/M
RST 6.58		33	$\square \mathrm{S}_{1}$
RST 559		32	$\square \overline{R D}$
INTR $\square 10$	$\mu \mathrm{PD}$	31	$\square \overline{W R}$
INTA 11	8085A	30	$\square \mathrm{ALE}$
$\mathrm{AD}_{0} \square 12$		29	$\square S_{0}$
$A D_{1}-13$		28	] $A_{15}$
$\mathrm{AD}_{2}-14$		27	$\mathrm{A}_{14}$
$\mathrm{AD}_{3} \square 15$		26	- $A_{13}$
$\mathrm{AD}_{4}-16$		25	$\square A_{12}$
$\mathrm{AD}_{5} \mathrm{C}_{17}$		24	- $A_{11}$
$\mathrm{AD}_{6} \square 18$		23	- $\mathrm{A}_{10}$
$A D_{7} \square 19$		22	$\square A_{9}$
$\mathrm{V}_{\text {SS }} \square_{20}$		21	$\square A_{8}$

$\operatorname{Rev} / 5$
5-15

## $\mu$ PD8085A

The $\mu$ PD8085A contains six 8 -bit data registers, an 8 -bit accumulator, four testable flag bits, and an 8 -bit parallel binary arithmetic unit. The $\mu$ PD8085A also provides decimal arithmetic capability and it includes 16 -bit arithmetic and immediate operators which greatly simplify memory address calculations, and high speed arithmetic operations.

The $\mu$ PD8085A has a stack architecture wherein any portion of the external memory can be used as a last in/first out (LIFO) stack to store/retrieve the contents of the accumulator, the flags, or any of the data registers.
The $\mu$ PD8085A also contains a 16 -bit stack pointer to control the addressing of this external stack. One of the major advantages of the stack is that multiple level interrupts can easily be handled since complete system status can be saved when an interrupt occurs and then restored after the interrupt is complete. Another major advantage is that almost unlimited subroutine nesting is possible.

The $\mu$ PD8085A was designed with speed and simplicity of the overall system in mind. The multiplexed address/data bus increases available pins for advanced functions in the processor and peripheral chips while providing increased system speed and less critical timing functions. All signals to and from the $\mu$ PD8085A are fully TTL compatible.
The internal interrupt structure of the $\mu$ PD8085A features 4 levels of prioritized interrupt with three levels internally maskable.
Communication on both the address lines and the data lines can be interlocked by using the HOLD input. When the Hold Acknowledge (HLDA) signal is issued by the processor, its operation is suspended and the address, data and control lines are forced to be in the FLOATING state. This permits other devices, such as direct memory access channels (DMA), to be connected to the address and data busses.

The $\mu$ PD8085A features internal clock generation with status outputs available for advanced read/write timing and memory/IO instruction indications. The clock may be crystal controlled, RC controlled, or driven by an external signal.

On chip serial in/out port is available and controlled by the newly added RIM and SIM instructions.


PIN			FUNCTION
NO	SYMBOL	NAME	
1.2	$\mathrm{X}_{1}, \mathrm{X}_{2}$	Crystat in	Crystal, RC, or external clock input
3	RO	Reset Out	Acknowledge that the processor is being reset to be used as a system reset
4	SOD	Serial Out Data	1 bit data out by the SIM instruction
5	SID	Serial In Data	1 bit data into ACC bit 7 by the RIM instruction
6	Trap	Trap Interrupt Input	Highest priority nonmaskable restart interrupt
$\begin{aligned} & 7 \\ & 8 \\ & 9 \end{aligned}$	RST 75   RST 65   RST 55	Restart Interrupts	Priority restart interrupt inputs, of which 75 is the highest and 55 the lowest priority
10	INTR	Interrupt Request In	A general interrupt input which stops the PC from incrementing, generates INTA, and samples the data bus for a restart or call instruction
11	$\overline{\text { INTA }}$	Interrupt Acknowledge	An output which indicates that the processor has responded to INTR
12.19	$A D_{0}-A D_{7}$	Low   Address/Data Bus	Multiplexed low address and data bus
20	$\mathrm{V}_{\text {SS }}$	Ground	Ground Reference
21.28	$A_{8}-A_{15}$	High Address Bus	Nonmultiplexed high 8-bits of the address bus
29, 33	$\mathrm{S}_{0}, \mathrm{~S}_{1}$	Status Outputs	Outputs which indicate data bus status Halt, Write, Read, Fetch
30	ALE	Address Latch Enable Out	A signal which indicates that the lower 8 -bits of address are valid on the AD lines
31.32	$\overline{W R}, \overline{\mathrm{RD}}$	Write/Read   Strobes Out	Signals out which are used as write and read strobes for memory and I/O devices
34	$10 / \bar{M}$	I/O or Memory Indicator	A signal out which indicates whether $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ strobes are for I/O or memory devices
35	Ready	Ready Inout	An input which is used to increase the data and address bus access times (can be used for slow memory)
36	$\overline{\text { Reset }}$ In	Reset Input	An input which is used to start the processor activity at address 0 , resetting IE and HLDA flip fiops
37	CLK	Clock Out	System Clock Output
38, 39	HLDA, HOLD	Hold Acknowledge Out and Hold Input Request	Used to request and indicate that the processor should relinquish the bus for DMA activi'y When hold is acknowledged, $\overline{\operatorname{RD}}, \overline{\mathrm{WR}}, 10 / \overline{\mathrm{M}}$, Address and Data busses are all 3 stated
40	$\mathrm{V}_{\mathrm{CC}}$	5 V Supply	Power Supply Input

## ABSOLUTE MAXIMUM RATINGS*

Operating Temperature
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Voltage on Any Pin
-0.5 to +7 Volts
Power Dissipation
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}= \pm 5 \mathrm{~V} \pm 5 \%, 8085 \mathrm{~A}-2$
*COMMENT: Stress above those listed under "Absolute Maximum Ratıngs' may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maxımum ratıng conditions for extended periods may affect device reliability.
DC CHARACTERISTICS
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=\mathrm{GND}$, unless otherwise specified

PARAMETER	SYMBOL	LIMITS		UNIT	TEST CONDITIONS
		MIN	MAX		
Input Low Voltage	$V_{\text {IL }}$	$V_{S S}-05$	$\mathrm{V}_{\mathrm{SS}}+08$	V	
Input High Voltage	$\mathrm{V}_{\text {IH }}$	20	$v_{C C}+05$	V	
Output Low Voltage	$\mathrm{VOL}_{\mathrm{OL}}$		045	V	${ }^{1} \mathrm{OL}=2 \mathrm{~mA}$ on all outputs
Output High Voltage	$\mathrm{V}_{\mathrm{OH}}$	24		$V$	${ }^{1} \mathrm{OH}=-400 \mu \mathrm{~s}$ (1)
Power Supply Current (VCC)	${ }^{\prime} \mathrm{CC}(A V)$		170	mA	${ }^{1} \mathrm{CY}$ min (8085A-2)
Maximum Unit Test			135	mA	${ }^{t} \mathrm{C} Y \mathrm{~min}$ (8085AH)
Input Leakage	$1 / 12$		$\pm 10$ (1)	$\mu \mathrm{A}$	$0 \leqslant V_{\text {IN }} \leqslant V_{\text {CC }}$
Output Leakage	'Lo		$\pm 10$ (1)	$\mu \mathrm{A}$	$045 \mathrm{~V} \leqslant V_{\text {OUT }} \leqslant V_{\text {CC }}$
Input Low Level, Reset	$V_{\text {ILR }}$	-05	+08	V	
Input High Level, Reset	$V_{\text {IHR }}$	24	$\mathrm{v}_{\mathrm{CC}}+05$	V	
Hysteresis, Reset	$V_{\text {HY }}$	025		V	
$\mathrm{X}_{1}, \mathrm{X}_{2}$ Input Voltage High	$V_{\text {IHX }}$	4.0	$V_{C C}+05$	V	

Note (1) Minus (-) designates current flow out of the device
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, 8085 \mathrm{~A}-2$

PARAMETER	SYMBOL	LIMITS				UNITS
		D8085AH		$\mu \mathrm{PD8085A-2}$		
		MIN	MAX	MIN	MAX	
CLK Cycle Period	${ }^{\text {t Cry }}$	320	2000	200	2000	ns
CLK Time Low	$\mathrm{t}_{1}$	80		40		ns
CLK Time High	t2	120		70		ns
CLK Rise and Fall Time	$\mathrm{t}_{\mathrm{r}, \mathrm{t}}$		30		30	ns
$X_{1}$ Rising to CLK Rising	tXKR	30	120	50		ns
$X_{1}$ Rising to CLK Falling	tXKF	30	150	80		ns
$\mathrm{A}_{8-15}$ Valid to Leading Edge of CONTROL (1)	${ }^{\text {t }}$ AC	270		50		ns
A 7.0 Valid to Leading Edge of CONTROL	${ }^{\text {t }} \mathrm{ACL}$	240		60		ns
$\mathrm{A}_{0-15}$ Valid to Data in	${ }^{\text {t }}$ AD		575		0	ns
Address Float after Leading Edge of $\overline{\mathrm{RD}}$ (İNTA)	tAFR		0		350	ns
A8-15 Valid before Traling Edge of ALE (1)	${ }^{\text {t }}$ IL	115			150	ns
A0.7 Valid before Traling Edge of ALE	t ALL	90		0		ns
READY Valid from Address Valid	${ }^{\text {taRy }}$		220	90		ns
A8-15 Valid atter CONTROL	${ }^{\text {t }}$ CA	120		60		ns
Width of Control Low (RD, WR, INTA)	${ }^{\text {I CC }}$	400		230		ns
Traling Edge of CONTROL to Leading Edge of ALE	${ }^{\text {t }} \mathrm{CL}$	50		25		ns
Data Valid to Trailing Edge of $\overline{\mathrm{WR}}$	tow	420			100	ns
HLDA to Bus Enable	thabe		210		150	ns
Bus Float After HLDA	thabf		210		150	ns
HLDA Valid to Trailing Edge of CLK	thack	110		40		ns
HOLD Hold Time	thDH	0				ns
HOLD Setup Time to Traling Edge of CLK	thDS	170				ns
INTR Hold Time	IINH	0				ns
INTR,RST,TRAP Setup Time to Failing Edge of CLK	INS	160		220		ns
Address Hold Time After ALE	LLA	100		115		ns
Tralling Edge of ALE to Leading Edge of CONTROL	tLC	130		120		ns
ALE Low Time during CLK High	tLCK	100		0		ns
ALE to Valld Data in during Read	tLDR		460		270	ns
ALE to Valid Data during Write	'LDW		200	0		ns
ALE Pulse Width	tLL	140		30	100	ns
ALE to READY stable	tLRY		110	30	110	ns
Traling Edge of $\overline{\mathrm{RD}}$ to Re-enabling of Address	trae	150			20	ns
$\overline{\mathrm{RD}}$ (or INTA) to Valid Data	tRD		300	50		ns
Traling Edge of CONTROL to Leading Edge of next CONTROL	trv	400		50		ns
Data Hold Time after $\overline{\text { RD }}$ (INTA $)(7)$	tRDH	0			120	ns
READY Hold Time	tRYH	0			30	ns
READY Set up Time to Leading Edge of CLK	thys	110		115		ns
Leading Edge Data Valid After Traling Edge of $\overline{W R}$	${ }^{\text {twD }}$	100		40		ns
Leading Edge of WR to Data Valid	tWDL		40			ns

Notes: (1) A8-A15 address specs apply to IO/M S0 and St except A8-A15 are undefined during T4-T6 of OF cycle whereas $I O / M, S 0$ and $S 1$ are stable
(2) Test Conditions ${ }^{\mathrm{t}} \mathrm{CYC}=320 \mathrm{~ns}(8085 \mathrm{AH}) / 200 \mathrm{~ns}(8085 \mathrm{~A}-2)$
$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
(3) For all output timing where except $C_{L}=150 \mathrm{pF}$ use the following correction factors
$25 \mathrm{pF} \quad \mathrm{C}_{\mathrm{L}} \quad 150 \mathrm{pF}-010 \mathrm{~ns} / \mathrm{pF}$
$150 \mathrm{pF} \mathrm{C}_{\mathrm{L}} \quad 300 \mathrm{pF}+03 \mathrm{~ns} / \mathrm{pF}$
(4) Output Timings are measured with purely capacitive load
(5) All timings are measured as the following,

Output Voltage $V_{L}=08 \mathrm{~V}, \mathrm{~V}_{H}=20 \mathrm{~V}$
Input Voltage $\quad 15 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$
(6) To calculate timing specifications at other values of ${ }^{\mathrm{C}} \mathrm{CYC}$ use Table 1
(7) Data hold time is guaranteed under all loading conditions

Tcyc as a dependent

	$\mu \mathrm{PD8085AH}$	$\mu$ PD808A-2	
taL	(1/2) T - 45	(1/2) T - 50	min
tLA	(1/2) T - 60	(1/2) T-50	min
tLL	(1/2) T - 20	(1/2) T-20	min
tLCK	(1/2) $\mathrm{T}-60$	(1/2) $\mathrm{T}-50$	mın
TLC	(1/2) T - 30	(1/2)T - 40	min
tad	$(5 / 2+N) T-225$	$(5 / 2+N) T-150$	max
trD	$(3 / 2+N) T-180$	$(3 / 2+N) T-150$	max
trae	(1/2) T - 10	(1/2) T - 10	min
tCA	(1/2) T-40	(1/2) T - 40	min
tDW	$(3 / 2+N) T-60$	$(3 / 2+N) T-70$	min
twD	(1/2) T-60	(1/2) T -40	min
tcc	$(3 / 2+N) T-80$	$(3 / 2+N) T-70$	min
tCL	(1/2) T - 110	(1/2) T -75	min
tary	(3/2) T-260	(3/2) $\mathrm{T}-200$	max
thack	(1/2) $\mathrm{T}-50$	(1/2) T - 60	mın
thabF	(1/2) $\mathrm{T}+50$	(1/2) T - 50	max
thabe	(1/2) $\mathrm{T}+50$	(1/2) T - 50	max
tAC	(2/2) $\mathrm{T}-50$	(2/2) T - 85	min
11	(1/2) $\mathrm{T}-80$	(1/2)T - 60	min
12	(1/2) $\mathrm{T}-40$	(1/2) T - 30	mın
trV	(3/2) T-80	(3/2) T-80	min
tLDR	$(4 / 2+N) T-180$	$(4 / 2+N) T-130$	max

## Clock Timing Waveform



## 8085AH Bus Timing

## Read Operation



## Write Operation



## Hold Timing



Interrupt and Hold Timing


## Read Operation with Wait Cycle

Same Ready Timing Applies To Write Operation


Note: (3) READY must remain stable during $t_{\text {RYS }}$ and $t_{\text {RYH }}$ (3) $1 O / M$ is also floating during this time


Notes: (1) BI indicates that the bus is idle during this machine cycle.
(2) CK indicates the number of clock cycles in this machine cycle.

CLOCK INPUTS (1) As stated, the timing for the $\mu$ PD8085A may be generated in one of three ways; crystal, RC, or external clock. Recommendations for these methods are shown below.


EXTERNAL For $6-10 \mathrm{MHz}$ Input Frequency,


STATUS OUTPUTS The Status Outputs are valid during ALE time and have the following meaning:

	S1	S0
Halt	0	0
Write	0	1
Read	1	0
Fetch	1	1

These pins may be decoded to portray the processor's data bus status.

The $\mu$ PD8085A has five interrupt pins available to the user. INTR is operationally the same as the 8080 interrupt request, three (3) internally maskable restart interrupts: RESTART 5.5, 6.5 and 7.5, and TRAP, a non-maskable restart.

PRIORITY	INTERRUPT	RESTART
ADDRESS		
Highest	TRAP	2416
1	RST 7.5	$3 C_{16}$
1	RST 6.5	3416
1	RST 5.5	$2 C_{16}$
Lowest	INTR	

INTR, RST 5.5 and RST 6.5 are all level sensing inputs while RST 7.5 is set on a rising edge. TRAP, the highest priority interrupt, is non-maskable and is set on the rising edge or positive level. It must make a low to high transition and remain high to be seen, but it will not be generated again until it makes another low to high transition.

Serial input and output is accomplished with two new instructions not included in the 8080: RIM and SIM. These instructions serve several purposes: serial I/O, and reading or setting the interrupt mask.

The RIM (Read Interrupt Mask) instruction is used for reading the interrupt mask and for reading serial data. After execution of the RIM instruction the ACC content is as follows:


Note: After the TRAP interrupt, the RIM instruction must be executed to preserve the status of IE.

The SIM (Set Interrupt Mask) instruction is used to program the interrupt mask and to output serial data. Presetting the ACC for the SIM instruction has the following meaning:


The instruction set includes arithmetic and logical operators with direct, register, indirect, and immediate addressing modes.

Move, load, and store instruction groups provide the ability to move either 8 or 16 bits of data between memory, the six working registers and the accumulator using direct, register, indirect, and immediate addressing modes.

The ability to branch to different portions of the program is provided with direct, conditional, or computed jumps. Also, the ability to call and return from subroutines is provided both conditionally and unconditionally. The RESTART (or single byte call instruction) is useful for interrupt vector operation.

Conditional jumps, calls and returns execute based on the state of the four testable flags (Sign, Zero, Parity and Carry). The state of each flag is determined by the result of the last instruction executed that affected flags. (See Instruction Set Table.)

The Sign flag is set (High) if bit 7 of the result is a " 1 "; otherwise it is reset (Low). The Zero flag is set if the result is " 0 "; otherwise it is reset. The Parity flag is set if the modulo 2 sum of the bits of the result is " 0 " (Even Parity); otherwise (Odd Parity) it is reset. The Carry flag is set if the last instruction resulted in a carry or a borrow out of the most significant bit (bit 7) of the result; otherwise it is reset.

In addition to the four testable flags, the $\mu$ PD8085A has another flag (ACY) that is not directly testable. It is used for multiple precision arithmetic operations with the DAA instruction. The Auxiliary Carry flag is set if the last instruction resulted in a carry or a borrow from bit 3 into bit 4; otherwise it is reset.

Double precision operators such as stack manipulation and double add instructions extend both the arithmetic and interrupt handling capability of the $\mu$ PD8085A. The ability to increment and decrement memory, the six general registers and the accumulator are provided as well as extended increment and decrement instructions to operate on the register pairs and stack pointer. Further capability is provided by the ability to rotate the accumulator left or right through or around the carry bit.

Input and output may be accomplished using memory addresses as I/O ports or the directly addressed I/O provided for in the $\mu$ PD8085A instruction set.
Two instructions, RIM and SIM, are used for reading and setting the internal interrupt mask as well as input and output to the serial I/O port.

The special instruction group completes the $\mu$ PD8085A instruction set: NOP, HALT stop processor execution; DAA provides decimal arithmetic capability; STC sets the carry flag; CMC complements it; CMA complements the contents of the accumulator; and XCHG exchanges the contents of two 16 -bit register pairs directly.

Data in the $\mu$ PD8085A is stored as 8 -bit binary integers. All data/instruction transfers to the system data bus are in the following format:

								D	
MSB	$\mathrm{D}_{6}$	D	DATA	WO		D	$\mathrm{D}_{1}$	LS	B

Instructions are one, two, or three bytes long. Multıple byte instructions must be stored in successive locations of program memory. The address of the first byte is used as the address of the instruction.

One Byte Instruc								OP CODE	TYPICAL INSTRUCTIONS   Register to register, memory reference, arithmetic or logical rotate, return, push, pop, enable, or disable interrupt instructions
$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	D3	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$		
Two Byte Instructions									
$\mathrm{O}_{7}$	$\mathrm{D}_{6}$	D5	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$	op code OPERAND	Immediate mode or I/O instructions
D7	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$		
Three Byte Instruc								OP CODE	Jump, call or direct load and store instructions
$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$		
$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$	LOW ADDRESS OR OPERAND 1	
$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$	HIGH ADDRESS OR OPERAND 2	



INSTRUCTION CYCLE One to five machine cycles ( $M_{1}-M_{5}$ ) are required to execute an instruction. Each machine cycle involves the transfer of an instruction or data byte into the processor or a transfer of a data byte out of the processor (the sole exception being the double add instruction). The first one, two or three machine cycles obtain the instruction from the memory or an interrupting I/O controller. The remaining cycles are used to execute the instruction. Each machine cycle requires from three to five clock tımes ( $T_{1}-T_{5}$ ).

Machıne cycles and clock states used for each type of instruction are shown below.

INSTRUCTION TYPE	MACHINE CYCLES EXECUTED MIN/MAX	CLOCK STATUS MIN/MAX
ALU R	1	4
CMC	1	4
CMA	1	4
DAA	1	4
DCR R	1	4
DI	1	4
El	1	4
INR R	1	4
MOV R, R	1	4
NOP	1	4
ROTATE	1	4
RIM	1	4
SIM	1	4
STC	1	4
XCHG	1	4
HLT	1	5
DCX	1	6
INX	1	6
PCHL	1	6
RET COND.	1/3	6/12
SPHL	1	6
ALU I	2	7
ALU M	2	7
JNC	2/3	7/10
LDAX	2	7
MVI	2	7
MOV M, R	2	7
MOV R, M	2	7
STAX	2	7
CALL COND.	2/5	9/18
DAD	3	10
DCR M	3	10
IN	3	10
INR M	3	10
JMP	3	10
LOAD PAIR	3	10
MVI M	3	10
OUT	3	10
POP	3	10
RET	3	10
PUSH	3	12
RST	3	12
LDA	4	13
STA	4	13
LHLD	5	16
SHLD	5	16
XTHL	5	16
CALL	5	18

A minimum computer system consisting of a processor, ROM, RAM, and
$\mu$ PD8085A FAMILY MINIMUM I/O can be built with only 3-40 pin packs. This system is shown below with SYSTEM CONFIGURATION its address, data, control busses and I/O ports.


## Package Outlines

For information, see Package Outline Section 7.
Plastic, $\mu$ PD8085AC/AHC
Ceramic, $\mu$ PD8085AD
Cerdip, $\mu$ PD8085AD AHD

## 16-BIT MICROPROCESSOR

DESCRIPTION The $\mu$ PD8086 is a 16 -bit microprocessor that has both 8 -bit and 16 -bit attributes. It has a 16 -bit wide physical path to memory for high performance. Its architecture allows higher throughput than the $5 \mathrm{MHz} \mu$ PD8085A-2.

FEATURES - Can Directly Address 1 Megabyte of Memory

- Fourteen 16-Bit Registers with Symmetrical Operations
- Bit, Byte, Word, and Block Operations
- 8- and 16-Bit Signed and Unsigned Arithmetic Operations in Binary or Decimal
- Multiply and Divide Instructions
- 24 Operand Addressing Modes
- Assembly Language Compatible with the $\mu$ PD8080/8085
- Complete Family of Components for Design Flexibility


## PIN CONFIGURATION



No.	SYMBOL	NAME	FUNCTION
2-16, 39	AD0-AD15	Address/Data Bus	Multiplexed address $\left(T_{1}\right)$ and data ( $T_{2}, T_{3}, T_{W}, T_{4}$ ) bus. 8 -bit peripherals tied to the lower 8 bits, use $A 0$ to condition chip select functions. These lines are tri-state during interrupt acknowledge and hold states.
17	NMI	Non-Maskable Interrupt	This is an edge triggered input causing a type 2 interrupt. A look-up table is used by the processor for vectoring information.
18	INTR	Interrupt Request	A level triggered input sampled on the last clock cycle of each instruction. Vectoring is via an interrupt look-up table. INTR can mask in software by resetting the interrupt enable bit.
19	CLK	Clock	The clock input is a $1 / 3$ duty cycle input basic timing for the processor and bus controller.
21	RESET	Reset	This active high signal must be high for $\mathbf{4}$ clock cycles. When it returns low, the processor restarts execution.
22	READY	Ready	An acknowledgement from memory or I/O that data will be transferred. Synchronization is done by the $\mu$ PD8284 clock generator.
23	TEST	Test	This input is examined by the "WAIT" instruction, and if low, execution continues. Otherwise the processor waits in an "Idle" state. Synchronized by the prccessor on the leading edge of CLK.
24	INTA	Interrupt   Acknowledge	This is a read strobe for reading vectoring information. During $\mathrm{T}_{2}, \mathrm{~T}_{3}$, and $\mathrm{T}_{\mathrm{W}}$ of each interrupt acknowledge cycle it is low.
25	ALE	Address Latch Enable	This is used in conjunction with the $\mu$ PD8282/8283 latches to latch the address, during $\mathrm{T}_{1}$ of any bus cycle.
26	$\overline{\text { DEN }}$	Dața Enable	This is the output enable for the $\mu$ PD8282/8287 transceivers. It is active low during each memory and I/O access and INTA cycles.
27	DT/R	Data Transmit/Receive	Used to control the direction of data flow through the transceivers.
28	M/10	Memory/IO Status	This is used to separate memory access from I/O access.
29	$\overline{\text { WR }}$	Write	Depending on the state of the $\mathrm{M} / \overline{\mathrm{IO}}$ line, the processor is either writing to $1 / O$ or memory.
30	HLDA	Hold Acknowledge	A response to the HOLD input, causing the processor to tri-state the local bus. The bus return active one cycle after HOLD goes back low.
31	HOLD	Hold	When another device requests the local bus, driving HOLD high, will cause the $\mu$ PD8086 to issue a HLDA.
32	$\overline{\mathrm{RD}}$	Read	Depending on the state of the $M / \overline{\bar{O}}$ line, the processor is reading from either memory or I/O.
33	MN/MX	Minimum/Maximum	This input is to tell the processor which mode it is to be used in. This effects some of the pin descriptions.
34	$\overline{\mathrm{BHE}} / \mathrm{S}_{7}$	Bus/High Enable	This is used in conjunction with the most significant half of the data bus. Peripheral devices on this half qf the bus use BHE to condition chip select functions.
35-38	A16-A19	Most Significant Address Bits	The four most significant address bits for memory operations. Low during I/O operations.
$\begin{gathered} \hline 26,27,28 \\ 34-38 \end{gathered}$	$\mathrm{S}_{0}-\mathrm{S}_{7}$	Status Outputs	These are the status outputs from the processor. They are used by the $\mu$ PD8288 to generate bus control signals.
24, 25	$\mathrm{OS}_{1}, \mathrm{Qs}_{0}$	Que Status	Used to track the internal $\mu$ PD8086 instruction que.
29	$\overline{\text { LOCK }}$	Lock	This output is set by the "LOCK" instruction to prevent other system bus masters from gaining control.
30, 31	$\begin{aligned} & \overline{\mathrm{RQ}} / \overline{\mathrm{GTO}} \\ & \overline{\mathrm{RQ}} / \overline{\mathrm{GT}} 1 \end{aligned}$	Request/Grant	Other local bus masters can force the processor to rebase the local bus at the end of the current bus cycle.


Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to +150 $0^{\circ} \mathrm{C}$
Voltage on Any Pin with Respect to Ground . . . . . . . . . . . . . . -1.0 to +7. C
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5 W

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Power Dissipation 2.5W
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PARAMETER	SYMBOL	LIMITS		UNITS	TEST CONDITIONS	DC CHARACTERISTICS
		MIN	MAX			
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	-0.5	+0.8	V		
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0	$V_{C C}+0.5$	$\checkmark$		
Output Low Voltage	$\mathrm{V}_{\mathrm{OL}}$		0.45	V	$\mathrm{I}_{\mathrm{OL}}=2.5 \mathrm{~mA}$	
Output High Voltage	VOH	2.4		$V$	$\mathrm{IOH}^{\prime}=-400 \mu \mathrm{~A}$	
Power Supply Current $\mu$ PD8086/ $\mu$ PD8086-2	ICC		$\begin{aligned} & 340 \\ & 350 \end{aligned}$	$\begin{aligned} & m A \\ & m A \end{aligned}$	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	
Input Leakage Current	ILI		$\pm 10$	$\mu \mathrm{A}$	$0 \mathrm{~V}<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {CC }}$	
Output Leakage Current	ILO		$\pm 10$	$\mu \mathrm{A}$	$0.45 \mathrm{~V} \leqslant \mathrm{~V}_{\text {OUT }} \leqslant \mathrm{V}_{\text {CC }}$	
Clock Input Low Voltage	$\mathrm{V}_{\mathrm{CL}}$	-0.5	+0.6	V		
Clock Input High Voltage	V CH .	3.9	$V_{C C}+1.0$	V		
Capacitance of Input Buffer   (All input except $\left.A D_{0}-\mathrm{AD}_{15}, \overline{\mathrm{RQ}} / \overline{\mathrm{GT}}\right)$	CIN		15	pF	$\mathrm{fc}=1 \mathrm{MHz}$	
Capacitance of I/O Buffer $\left(A D_{0}-A D_{15}, \overline{R Q} / \overline{G T}\right)$	$\mathrm{ClO}_{10}$		15	pF	$\mathrm{fc}=1 \mathrm{MHz}$	

TIMING REQUIREMENTS
MINIMUM COMPLEXITY SYSTEM

PARAMETER	SYMBOL	$\mu \mathrm{PD8086}$		$\mu$ PD8086-2 (Prelımınary)		UNITS	TEST CONDITIONS
		MIN	MAX	MIN	MAX		
CLK Cycle Perıod - $\mu$ PD8086	TCLCL	200	500	125	500	ns	
CLK Low Time	TCLCH	(2/3 TCLCL) - 15		(2/3 TCLCL)-15		ns	
CLK High Time	TCHCL	(1/3 TCLCL ${ }^{+}+2$		$(1 / 3$ TCLCL) +2		ns	
CLK Rise Time	TCH1CH2		10		10	ns	From 1.0 V to 3.5 V
CLK Fall Time	TCL2CL1		10		10	ns	From 3.5 V to 10 V
Data In Setup Time	TDVCL	30		20		ns	
Data In Hoid Time	TCLDX	10		10		ns	
RDY Setup Time into $\mu$ PD8284   (1) (2)	TRIVCL	35		35		ns	
RDY Hold Time into $\mu$ PD8284   (1) (2)	TCLR1X	0		0		ns	
READY Setup Time into $\mu$ PD8086	TRYHCH	(2/3 TCLCL) - 15		(2/3 TCLCL) - 15		ns	
READY Hold Time into $\mu$ PD8086	TCHRYX	30		20		ns	
READY Inactive to CLK (3)	TRYLCL	-8		-8		ns	
HOLD Setup Time	THVCH	35		20		ns	
INTR, NMI, TEST Setup Time (2)	TINVCH	30		15		ns	
Input Rise Time	TILIH		20			ns	From 08 V to 20 V
Input Fall Time	TIHIL		12			ns	From 20 V to 08 V

TIMING RESPONSES

PARAMETER	SYMBOL	$\mu$ PD8086		$\mu$ PD8086-2 (Prolıminary)		UNITS	TEST CONDITIONS
		MIN	MAX	MIN	MAX		
Address Valıd Delay	TCLAV	10	110	10	60		$C_{L}=20-100 \mathrm{pF}$ for all $\mu$ PD8086 Outputs (In addition to $\mu$ PD8086 self-load)
Address Hold Time	tclax	10		10		ns	
Addrest Float Delay	TCLAZ	TCLAX	80	TCLAX	50	ns	
ALE Width	TLHLL	TCLCH-20		TCLCH-10		ns	
ALE Active Delay	TCLLH		80		50	ns	
ALE Inactive Delay	TCHLL		85		55	ns	
Address Hold Time to ALE Inactive	TLLAX	TCHCL-10		TCHCL-10		ns	
Data Valıd Delay	TCLDV	10	110	10	60	ns	
Data Hold Time	TCHDX	10		10		ns	
Data Hold Time After WR	TWHDX	TCLCH-30		TCLCH-30		ns	
Control Active Delay 1	TCVCTV	10	110	10	70	ns	
Control Active Delay 2	TCHCTV	10	110	10	60	ns	
Control Active Delay	TCVCTX	10	110	10	70	ns	
Address Float to READ Active	TAZRL	0		0		ns	
$\overline{R D}$ Active Delay	TCLRL	10	165	10	100	ns	
$\overline{R D}$ Inactive Delay	TCLRH	10	150	10	80	ns	
$\overline{\mathrm{RD}}$ Inactive to Next Address Active	TRHAV	TCLCL-45		TCLCL-40		ns	
HLDA Valıd Delay	TCLHAV	10	160	10	100	ns	
RD Width	TRLRH	2TCLCL-75		2TCLCL-50		ns	
WR Width	TWLWH	2TCLCL-60		2 TCLCL-40		ns	
Address Valld to ALE Low	TAVAL	TCLCH-60		TCLCH-40		ns	
Output Rise Time	TOLOH		20			ns	From 08 V to 20 V
Output Fall Time	TOHOL		12			ns	From 20 V to 08 V

NOTES: (1) Signel at $\mu$ PD8284 shown for reference only
(2) Setup requirement for asynchronous signal only to guarantee recognition at next CLK.
(3) Appiles only to $\mathbf{T} 2$ state ( 8 ns into $T 3$ )


Minimum Complexity
Systems (Con't.) 5


NOTES: (1) All signals switch between $V_{O H}$ and $V_{O L}$ unless otherwise specified.
(2) RDY is sampled near the end of $T_{2}, T_{3}, T_{W}$ to determine if $T_{W}$ machines states are to be inserted.
(3) Two INTA cycles run back-to-back. The $\mu$ PD8086 local ADDR/Data Bus is floating during both INTA cycles. Control signals shown for second INTA cycle.
(4) Signals at $\mu$ PD8284 are shown for reference only.
(5) All timing measurements are made at 1.5 V unless otherwise noted.

PARAMETER	SYMBOL	$\mu$ PD8086		$\mu$ PD8086-2 (Prelımınary)		UNITS	TEST CONDITIONS
		MIN	MAX	MIN	MAX		
CLK Cycle Period - $\mu$ PD8086	TCLCL	200	500	125	500	ns	
CLK Low Time	TCLCH	(2/3 TCLCL) - 15		(2/3 TCLCL) - 15		ns	
CLK High Time	TCHCL	$(1 / 3$ TCLCL) +2		(1/3 TCLCL) +2		ns	
CLK Rise Time	TCH1CH2		10		10	ns	From 10 V to 35 V
CLN Fall Time	TCL2CL1		10		10	ns	From 35 V to 10 V
Data in Setup Time	TDVCL	30		20		ns	
Data in Hold Time	TCLDX	10		10		ns	
RDY Setup Time into $\mu$ PD8284   (1) (2)	TRIVCL	35		35		ns	
RDY Hold Time into $\mu$ PD8284   (1), (2)	TCLR1X	0		0		ns	
READY Setup Time into $\mu$ PD8086	TRYHCH	(2/3 TCLCL) - 15		(2/3 TCLCL) - 15		ns	
READY Hold Time into $\mu$ PD8086	TCHRYX	30		20		ns	
READY inactive to CLK (4)	TRYLCL	-8		-8		ns	
Setup Time for Recognition (INTR, NMI, TEST) (2)	TINVCH	30		15		ns	
$\overline{\mathrm{RQ}} / \overline{\mathrm{GT}}$ Setup Time	TGVCH	30		15		ns	
$\overline{\mathrm{RO}}$ Hold Time into $\mu$ PD8086	TCHGX	40		30		ns	
Input Rise Time	TILIH		20			ns	From 08 V to 20 V
Input Fall Time	TIHIL		12			ns	From 20 V to 08 V

TIMING RESPONSES

PARAMETER	SYMBOL	$\mu \mathrm{PD8086}$		-PD88086-2 (Prelımınary)		UNITS	TEST CONDITIONS
		MIN	MAX	MIN	MAX		
Command Active Delay (See Note 1)	TCLML	10	35	10	35	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=20-100 \mathrm{pF} \text { for } \\ & \text { all } \mu \mathrm{PD} 8086 \text { Outputs } \\ & \text { (In addition to } \\ & \mu \mathrm{PD} 8086 \text { self-load) } \end{aligned}$
Command Inactive Delay (See Note 1)	TCLMH	10	35	10	35	ns	
READY Active to Status Passive (See Note 3)	TRYHSH		110		65	ns	
Status Active Delay	TCHSV	10	110	10	60	ns	
Status Inactive Delay	TCLSH	10	130	10	70	ns	
Address Valid Delay	TCLAV	10	110	10	60	ns	
Address Hold Tıme -	tclax	10		10		ns	
Address Float Delay	TCLAZ	TCLAX	80	TCLAX	50	ns	
Status Valıd to ALE High (See Note 1)	TSVLH		15		15	ns	
Status Valıd to MCE High (See Note 1)	TSVMCH		15		15	ns	
CLK Low to ALE Valıd (See Note 1)	TCLLH		15		15	ns	
CLK Low to MCE High (See Note 1)	TCLMCH		15		15	ns	
ALE Inactive Delay (See Note 1)	TCHLL		15		15	ns	
MCE Inactive Delay (See Note 1)	TCLMCL		15		15	ns	
Data Valid Delay	TCLDV	10	110	10	60	ns	
Data Hold Time	TCHDX	10		10		ns	
Control Active Delay (See Note 1)	TCVNV	5	45	5	45	ns	
Control Inactive Delay (See Note 1)	TCVNX	10	45	10	45	ns	
Address Float to Read Active	TAZRL	0		0		ns	
RD Active Delay	TCLRL	10	165	10	100	ns	
RD Inactive Delay	TCLRH	10	150	10	80	ns	
RD Inactive to Next Address Active	TRHAV	TCLCL-45		TCLCL-40		ns	
Direction Control Active Delay (See Note 1)	TCHDTL		50		50	ns	
Direction Control Inactive Delay (See Note 1)	TCHDTH		30		30	ns	
GT Active Delay	TCLGL	0	85	0	50	ns	
$\overline{\text { GT Inactive Delay }}$	TCLGH	0	85	0	50	ns	
$\overline{\text { RD }}$ Width	TRLRH	2TCLCL-50		2TCLCL-50		ns	
Output Rise Time	TOLOH		20			ns	From 08 V to 20 V
Output Fall Time	TOHOL		12			ns	From 20 V to 08 V

NOTES (1) Signal at $\mu$ PB8284 or $\mu$ PB8288 shown for reference only.
(2) Setup requirement for asynchronous signal only to guarantee recognition at next CLK
(3) Applies only to T3 and wait states
(4) Applies only to T2 state (8 in into T3)

## TIMING WAVEFORMS

Maximum Mode System Using $\mu$ PB8288 Controller (7)

TIMING WAVEFORMS
Maximum Mode
System Using $\mu$ PB8288 Controller (Con't.) (7)


NOTES (1) All signals switch between $\mathrm{V}_{\mathrm{OH}}$ and $\mathrm{V}_{\mathrm{OL}}$ unless otherwise specified.
(2) RDY is sampled near the end of $\mathrm{T}_{\mathbf{2}}, \mathrm{T}_{\mathbf{3}}, \mathrm{T}_{\mathbf{W}}$ to determine if $\mathrm{T}_{\mathbf{W}}$ machines states are to be inserted.
(3) Cascade address is valid between first and second INTA cycle.
(4) Two INTA cycles run beck-to-back. The 8086 local ADDR/Data Bus is floating during both INTA cycles. Control for pointer address is shown for second INTA cycle.
(5) Sugnals at 8284 or $\mathbf{8 2 8 8}$ are shown for reference only.
(6) The issuance of the 8288 command and control signals (MRDC, MWTC, AMWC, IORC, IOWC, AIOWC, INTA and DEN) lags the active high 8288 CEN
(7) All timing measurements are made at 1.5 V uniess otherwise noted.
(8) Status inactive in state just prior to $\mathrm{T}_{4}$.

ASYNCHRONOUS SIGNAL RECOGNITION

BUS LOCK SIGNAL TIMING


*for Maximum Mode only


## Package Outlines

## For information, see Package Outline Section 7.

## Cerdip, $\mu$ PD8086D

## Descriptlon

The $\mu$ PD8088 is a powerful 8-bit microprocessor that is software-compatible with the $\mu$ PD8086. The $\mu$ PD8088 has the same bus interface signals as the $\mu$ PD8085A, allowing it to interface directly with multiplexed bus peripherals. The $\mu$ PD8088 has a 20-bit address space which can be divided into four segments of up to 64 K bytes each.

## Features

8-bit data bus interface16-bit internal architecture
Addresses 1 M -byte of memory
Software-compatible with the 8086
Provides byte, word, and block operationsPerforms 8 - and 16 -bit signed and unsigned arithmetic in binary and decimalMultiply and divide instruction
Directly interfaces to 8155, 8355, and 8755A multiplexed peripherals

## - 40-pin DIP

## Pin Configuration

			Min Mode	$\left\{\begin{array}{l} \text { Max } \\ \text { Mode } \end{array}\right\}$
GND 1		40	$\square \mathrm{Vcc}$	
A14 2		39	$\square \mathrm{A} 15$	
A13 3		38	$\square \mathrm{A} 16 / \mathrm{S} 3$	
A12 $\square$		37	A17/S4	
A11 $\square$		36	] $\mathrm{A} 18 / \mathrm{S} 5$	
A10 $\square$		35	$\square \mathrm{A} 19 / \mathrm{S6}$	
A9 $\square$		34	$\square \mathbf{~ S S O}$	(HIGH)
A8 $\square$		33	$\square \mathrm{MN} / \overline{\mathrm{MX}}$	
AD7 9		32	$\square \overline{\mathrm{RD}}$	
AD6 10	$\begin{aligned} & 8088 \\ & \text { CPU } \end{aligned}$	31	$\square \mathrm{HOLD}$	
AD5 11		30	$\square \mathrm{HLDA}$	( $\overline{\mathbf{R Q}} / \overline{\mathrm{GT}} 1{ }^{\text {] }}$
AD4 $\square 12$		29	$\square \overline{W R}$	(LOCK)
AD3 ${ }^{13}$		28	$\square 10 / \bar{M}$	( $\overline{\mathbf{S} 2)}$
AD2 14		27	$\square \mathrm{D} / \overline{\text { ® }}$	( $\overline{\mathbf{S} 1)}$
AD1 15		26	$\square \overline{\text { DEN }}$	( $\overline{\mathbf{S O}})$
ADO 16		25	$\square \mathrm{ALE}$	(QSO)
NMI $\square 17$		24	$\square \overline{\text { INTA }}$	(QS1)
INTR $\square 18$		23	$\square \overline{T E S T}$	
CLK $\square 19$		22	$\square \mathrm{BEady}$	
GND $\square 20$		21	$\square \mathrm{RESET}$	

Pin Identification

No.	Symbol	Name	Function
1,20	GND	Ground	
$\begin{aligned} & \text { 2-8, } \\ & 35-39 \end{aligned}$	$\mathrm{A}_{19}-\mathrm{A}_{8}$	Most significant address bits	Most significant bits for memory operations.
9-16	$\mathrm{AD}_{7}-\mathrm{AD}_{0}$	Address/Data bus	Multiplexed address and data bus. 8-bit peripherals tied to these bits use $A_{0}$ to condition chip select functions. These lines are tri-state during hold and interrupt acknowiedge states.
17	NMI	Non-maskable interrupt	This edge-triggered input causes a type 2 interrupt. The processor uses a lookup table for vectoring information.
18	INTR .	Interrupt request	This is a level-triggered interrupt sampled on the last clock cycle of each instruction. A lookup table is used for vectoring. INTR can be masked by software by resetting the interrupt enable bit.
19	CLK	Clock	The clock is a $1 / 3$ duty cycle input providing basic timing for the processor and bus controller.
21	RESET	Reset	This active high signal must be high for 4 clock cycles. When it returns low, the processor restarts execution.
22	READY	Ready	An acknowledgement from memory or I/O that data will be transferred. Synchronization is done by the $\mu$ PD8284 clock generator.
23	TEST	Test	This input is examined by the "WAIT"' instruction and if low, execution continues. Otherwise the processor waits in an "idle" state. Synchronized by the processor on the leading edge of CLK.
24	$\overline{\text { INTA }}$	Interrupt Acknowledge	This is a read strobe for reading vectoring information. During $\mathbf{T}_{\mathbf{2}}, \mathrm{T}_{\mathbf{3}}$, and $\mathrm{T}_{\mathrm{W}}$ of each interrupt acknowledge cycle it is low.
25	$\overline{\text { ALE }}$	Address Latch Enable	Used with the $\mu$ PD8282/8283 latches to latch the address during $\mathrm{T}_{1}$ of any bus cycle.
24, 25	$\mathbf{O S}_{\mathbf{1}}, \mathrm{QS}_{\mathbf{0}}$	Queue Status	(Max Mode) Tracks the internal $\mu$ PD8088 instruction queue.
26	$\overline{\text { DEN }}$	Data Enable	This is the output enable for the $\mu$ PD8286/8287 transcesvers. It is active low during memory and I/O access and INTA cycles.
27	DT/R	Data Transmit/ Receive	Controls the direction of data flow through the transcelvers.
28	10/M	I/O/Memory Status	Separates memory access from I/O access.
29	$\bar{W}$	Write	The processor is writing to memory or I/O, depending on the state of the $10 / \mathrm{M}$ line.
29	LOCK	Lock	(Max Mode) This output is set by the lock instruction to prevent other system bus masters from gaining control.
30	HLDA	Hold   Acknowledge	A response to the HOLD input, causing the processor to tri-state the local bus. The bus becomes active one cycle after HOLD returns low.
31	HOLD	Hold	When another device requests the local bus, HOLD is driven high, causing the $\mu$ PD8088 to issue a HLDA.
30, 31	$\overline{\mathbf{R Q}} / \mathbf{G T} \mathbf{T}_{0}$ $\overline{\mathrm{RQ}} / \mathrm{GT}_{1}$	Request/Grant	(Max Mode) Other local bus masters can force the processor to rebase the local bus at the end of the current bus cycle.
32	RD	Read	Depending on the state of the $\overline{\mathrm{T}} / \mathrm{M}$ line, the processor is reading from memory or $1 / 0$.
33	MN/ $/ \overline{M X}$	Minimum/ Maximum	This input tells the processor in which mode it is to be used. This affects some of the pin descriptions.
34	SSO	Status Line	Equivalent to $\overline{\mathbf{S}}_{\mathbf{0}}$ in Max Mode.
26-28	$\overline{S_{0}}-\overline{S_{2}}$	Status Outputs	(Max Mode)
35-38	$\mathrm{S}_{3}-\mathrm{S}_{6}$	Status Outputs	These outputs from the processor are used by the $u$ PD828民 to generate bus control signals.
40	$v_{\text {cc }}$	Power Supply	5 V power input.

$\mu$ PD8088
Block Diagram


Absolute Maximum Ratings**
$\mathbf{T}_{\mathbf{a}}=25^{\circ} \mathrm{C}$

## Tentative

Ambient Temperature under Bias	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on any Pin with respect to Ground	$-\mathbf{0 . 5 \mathrm { V } \text { to } + \mathbf { 7 V }}$
Power Dissipation	2.5 Watt

*COMMENT: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics
$\mathrm{T}_{\mathrm{a}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0 ^ { \circ }} \mathbf{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm \mathbf{1 0 \%}$

Paramoter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Clock Input Low Voltage	$V_{C L}$	-0.5		+0.6	v	
Clock Input High Voltage	$\mathrm{V}_{\mathrm{CH}}$	3.9		$\mathrm{V}_{\text {CC }}+1.0$	v	
Input Low Voltage	$\mathrm{V}_{\mathrm{IL}}$	-0.5		+0.8	V	
Input High Voltage	$\mathbf{V}_{\mathbf{I H}}$	2.0		vcc + 0.5	V	
Output Low Voltage	$\mathrm{V}_{\mathrm{OL}}$			0.45	V	$1 \mathrm{OL}=2.0 \mathrm{~mA}$
Output High Voltage	$\mathrm{V}_{\mathrm{OH}}$	2.4			V	$1 \mathrm{OH}=400 \mu \mathrm{~A}$
Power Supply Current	${ }^{\text {c CC }}$			340	mA	
Input Leakage	LIL			$\pm 10$	$\mu \mathrm{A}$	$\mathrm{OV}<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {cC }}$
Output Leakage	Lo			$\pm 10$	$\mu \mathrm{A}$	$0.45 \mathrm{~V} \leqslant \mathrm{~V}_{\text {OUT }} \leqslant V_{\text {CC }}$

## Capacitance

Paramotor	Symbol	Limits			Unit	Teat Conditions
		meln	Typ	Max		
Capacitance of input Buffer (All input except $\left.A D_{0}-A D_{7} R Q / G T\right)$	$\mathrm{CIN}_{\text {N }}$			15	pF	$\mathrm{fc}=1 \mathrm{mHz}$
Capacitance of I/O Buffer $\left(\mathrm{AD}_{0}-\mathrm{AD}_{7} \mathrm{RQ} / \mathrm{GT}\right)$	$\mathrm{C}_{10}$			15	pF	$\mathrm{fc}=1 \mathrm{mHz}$

## AC Characteristics

Minimum Mode Timing Requirements
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

Parametor	Symbol	M/n	Typ Max	Unit	Tost Conditions
CLK Period	${ }^{\text {t CLCL }}$	200	500	ns	
CLK Low Time	${ }_{\text {teLCH }}$	(2/3tCLCL)-15		ns	
CLK High Time	${ }^{\text {t }} \mathrm{CHCL}$	$(1 / 3 \mathrm{CLCL})+2$		ns	
CLK Rise Time	${ }^{\text {t }} \mathrm{CH} 1 \mathrm{CH} 2$		10	ns	1.0 V to 3.5 V
CLK Fall Time	${ }^{\text {t }}$ L 2 CLI 1		10	ns	3.5 V to 1.0 V
Data In Setup Time	${ }^{\text {t }}$ LVCL	30		ns	
Data in Hold Time	tcldx	10		ns	
RDY Setup Time $\mu$ PD8284 (1) (2)	$\mathrm{t}_{\text {R1VCL }}$	35		ns	
RDY Hold Time into 4PD8284 (1) (2)	${ }^{\text {t CLR1X }}$	0		ns	
READY Setup Time into $\mu$ PD8088	$\mathrm{t}_{\text {RYHCH }}$	(2/3tCLCL) - 15		ns	
READY Hold Time into $\mu$ PD8088		30		ns	
READY Inactive to CLK (3)	$t_{\text {RYLCL }}$	-8		ns	
HOLD Setup Time	${ }_{\text {thVCH }}$	35		ns	
$\begin{aligned} & \text { INTR, NMI, TEST } \\ & \text { Setup Time (2) } \end{aligned}$	${ }_{\text {I }}$	30		ns	
Input Rise Time (Except CLK)	tilin		20	ns	0.8V to 2.0 V
Input Fall Time (Except CLK)	${ }_{\text {IIHIL }}$		12	ns	2.0 V to 0.8V

## Notes:

(1) Signal at $\mu$ PD8284 shown for reference only.
(2 Setup requirement for asynchronous signal guarantees recognition at next CLK.
(3) Applies to $\mathrm{T}_{2}$ state ( 8 ns into $\mathrm{T}_{3}$ state).

## Timing Responses



## AC Characteristics (Cont.)

Max Mode Systom Timing Requirements (Using 8288 Bus Controller)

Parmmoter	Symbol	Whn	Typ Max	Unit	Teat Conditions
CLK Period	${ }^{\text {t CLCL }}$	200	500	n8	
CLK Low Time	${ }^{\text {C CLCH }}$	(2/3tCLCL) -15		n8	
CLK High Time	${ }^{\text {t }} \mathrm{CHCL}$	$(1 / 3 \mathrm{t}$ CLCL) +2		ns	
CLK Rise Time	${ }^{\mathbf{t} \mathrm{CH}_{1} \mathrm{CH} 2}$		10	ns	1.0 V to 3.5 V
CLK Fall Time	${ }^{\text {tel2CL1 }}$		10	ns	3.5 V to 1.0 V
Data In Setup Time	tovCL	30		ns	
Data in Hold Time	${ }_{\text {ctidx }}$	10		ns	
RDY Setup Time into $\mu$ PD8284 (1) (2)	${ }^{\text {trivCL }}$	35		ns	
RDY Hold Time into $\mu$ PD8284 (1) (2)	tCLR1X	0		ns	
READY Setup Time into $\mu$ PD8088	$t_{\text {RYHCH }}$	(2/3tCLCL)-15		ns	
READY Hold Time Into $\mu$ PD8088	${ }^{\text {chehry }}$	30		ns	
READY Inactive to CLK (4)	${ }^{\text {tryLCL}}$	-8		ns	
Setup Time for Recognition (INTR, NMI, TEST) (2)	tinver	30		ns	
RQ/GT Setup Time	tavCH	30		ns	
RQ Hold Time into $\mu \mathrm{PD} 8088$	${ }^{\text {C CHGX }}$	40		ns	
Input Rise Time (Except CLK)	tiLIH		20	ns	0.8V to 2.0 V
Input Fall Time (Except CLK)	${ }_{\text {ItHIL }}$		12	ns	2.0 V to 0.8V

## Timing Responses

Parametor	Symbol	Min	Typ Max	Units	Test Conditions
Command Active Delay (1)	tCLML	10	35	ns	
Command Inactive Delay (1)	tclme	10	35	ns	
READY Active to Status Passive (3)	tryHSH		110	ns	
Status Active Delay	tersv	10	110	ns	
Status Inactive Delay	tclsh	10	130	ns	
Address Valld Delay	${ }^{\text {ctab }}$	15	110	ns	
Address Hold Time	CCLAX	10		ns	
Address Float Delay	tclaz	tclax	80	ns	
Status Valid to ALE High (1)	tsVLH		15	ns	
Status Valid to MCE High (1)	tsvmch		15	ns	
$\begin{aligned} & \text { CLK Low to ALE } \\ & \text { Valid (1) } \end{aligned}$	${ }^{\text {t CLL }}$ (		15	ns	
CLK Low to MCE High (1)	${ }^{\text {t }}$ CLMCH		15	ns	
ALE Inactive Delay (1)	${ }^{\mathbf{t}} \mathbf{C H L L}$		15	ns	$C_{L}=\mathbf{2 0 - 1 0 0} \mathrm{pF}$ for all 8088 outputs
MCE Inactive Delay (1)	${ }^{\text {chemmeL }}$		15	ns	nd internal load
Data Valid Delay	${ }^{\text {t CLDV }}$	15	110	ns	
Data Hold Time	${ }^{\text {chemb }}$	10		ns	
$\begin{aligned} & \text { Control Active } \\ & \text { Delay (1) } \\ & \hline \end{aligned}$	${ }^{\text {t Cunv }}$	5	45	ns	
Control Inactive Delay (1)	tcvnx	10	45	ns	
Address Float to READ Active	${ }^{\text {t AZRL }}$	0		ns	
RD Active Delay	tclal	10	165	ns	
RD Inactive Delay	tcler	10	150	ns	
RD Inactive to Next Address Active	$t_{\text {RHAV }}$	${ }^{\text {t CLCL }} \mathbf{4 5}$		ns	
Direction Control Active Delay (1)	tchotl		50	ns	
Direction Control Inactive Delay (1)	${ }^{\text {t }}$ CHDTH		30	ns	
GT Active Delay	${ }^{\text {chalal }}$		85	ns	
GT Inactive Delay	${ }_{\text {t }}$ clah		85	ns	
$\overline{\text { RD Width }}$	${ }_{\text {trLRH }}$	${ }^{24} \mathrm{CLCL}-75$		ns	
Output Rise Time	${ }^{\text {O }} \mathrm{OLOH}$		20	ns	0.8 V to 2.0 V
Output Fall Time	${ }^{\text {O}} \mathrm{OHOL}$		12	ns	2.0 V to 0.8V

## Notes:

(1) Signal at $\mu$ PD8284 or $\mu$ PD8288 shown for reference only.
(2) Setup requirement for asynchronous signal guarantees recognition at next CLK.
(3) Applies to $\mathrm{T}_{3}$ and wait states.
(4) Applies to $T_{2}$ state ( 8 ns into $T_{3}$ state).

## $\mu$ PD8088

## Timing Waveforms



## Timing Waveforms (Cont.)



## Notes:

(1) All signals switch between $\mathrm{V}_{\mathrm{OH}}$ and $\mathrm{V}_{\mathrm{OL}}$ unless otherwise specified.
(2) RDY is sampled near the end of $\mathrm{T}_{2}, \mathrm{~T}_{3}$, TWAIT to determine if TWAIT machine states are inserted.
(3) Two INTA cycles run back-to-back. The $\mu$ PD8088 local Address/ Data bus floats during both INTA cycles. The control signals shown are for the second INTA cycle.
(4) Signals at the $\mu$ PD8284 are shown for reference.
(5) All timing measurements are taken at 1.5 V unless otherwise specified.

## Timing Waveforms (Cont.)

## Maximum Mode System Bus Timing (using 8288 Bus Controller)




## Notes:

(1) All signals switch between $\mathrm{V}_{\mathrm{OH}}$ and $\mathrm{V}_{\mathrm{OL}}$ unless otherwise specified.
(2) RDY is sampled near the end of $\mathrm{T}_{2}, \mathrm{~T}_{3}$, TWAIT to determine if TWAIT machine states are inserted.
(3) The cascade address is valid between the first and second INTA cycles.
(4) Two INTA cycles run back-to-back. The $\mu$ PD8088 local Address/Data bus floats during both INTA cycles. The control signals shown are for the second INTA cycle.
(5) Signals at the $\mu$ PD8284 and $\mu$ PD8288 are shown for reference.
(6) The $\mu$ PD8288 active-high CEN lags when the $\mu$ PD8288 issues command and control signals ( $\overline{M R D C}, \overline{M W T C}, \overline{A M W C}, \overline{I O R C}, \overline{I O W C}, \overline{A I O W C}, \overline{I N T A}$, and $\overline{D E N}$ ).
(7) All timing measurements are taken at 1.5 V unless otherwise specified.
(8) Status is inactive prior to $\mathrm{T}_{4}$.

## $\mu$ PD8088

## Timing Waveforms (Cont.)

## Asynchronous Input Recognition


(1) Setup requirements for asynchronous signals guarantee recognition at next CLK.

## Maximum Mode Bus Lock Signal Timing



## Maximum Mode Request/Grant Sequence Timing



## Note:

(1) The coprocessor risks bus contention if it drives the buses outside the areas shown.

## Timing Waveforms (Cont.)

## Mimimum Mode Hold Acknowledge Timing



Note:
(1) All signals switch between $\mathrm{V}_{\mathrm{OH}}$ and $\mathrm{V}_{\mathrm{OL}}$ unless otherwise specified.

## Package Outlines

For information, see Package Outline Section 7.
Cerdip, $\mu$ PD8088D

Notes

NEC

PERIPHERALS
6

## Description

The $\mu$ PD765A is an LSI Floppy Disk Controller (FDC) chip which contains the circuitry and control functions for interfacing a processor to 4 floppy-disk drives. It is capable of supporting either IBM 3740 Single Density format (FM), or IBM System 34 Double Density format (MFM) including double-sided recording. The $\mu$ PD765A provides control signals which simplify the design of an external phase locked loop and write precompensation circuitry. The FDC simplifies and handles most of the burdens associated with implementing a floppy-disk interface.
The $\mu$ PD7265 is an addition to the FDC family that has been designed specifically for the Sony Micro Floppydisk ${ }^{\circledR}$ drive. The $\mu$ PD7265 is pin-compatible and electrically equivalent to the 765A but utilizes the Sony recording format. The $\mu$ PD7265 can read a diskette that has been formatted by the $\mu$ PD765A.
Hand-shaking signals are provided in the $\mu$ PD765A/ $\mu$ PD7265 which make DMA operation easy to incorporate with the aid of an external DMA Controller chip, such as the $\mu$ PD8257. The FDC will operate in either the DMA or nonDMA mode. In the non-DMA mode the FDC generates interrupts to the processor every time a data byte is to be transferred. In the DMA mode, the processor need only load the command into the FDC and all data transfers occur under control of the FDC and DMA controllers. There are 15 commands which the $\mu$ PD765A/ $\mu$ PD7265 will execute. Each of these commands requires multiple 8 -bit bytes to fully specify the operation which the processor wishes the FDC to perform. The following commands are available:

READ DATA	SCAN HIGH OR EQUAL	WRITE DELETED DATA
READ ID	SCAN LOW OR EQUAL	SEEK
SPECIFY	READ DELETED DATA	RECALIBRATE
READ TRACK	WRITE DATA	SENSE INTERRUPT STATUS
SCAN EQUAL	FORMAT TRACK	SENSE DRIVE STATUS

## Features

Address Mark detection circuitry is internal to the FDC which simplifies the phase locked loop and read electronics. The track stepping rate, head load time, and head unload time are user-programmable. The $\mu$ PD765A/ $\mu$ PD7265 offers additional features such as multitrack and multiside read and write commands and single and double density capabilities.
$\square$ Sony (EMCA) Compatible Recording Format
( $\mu$ PD7265)
$\square$ IBM-compatible Format (Single and Double Density) ( $\mu$ PD765A)Multisector and Multitrack Transfer Capability
Drive Up to 4 Floppy or Micro Floppydisk ${ }^{\circledR}$ DrivesData Scan Capability-Will scan a single sector or an entire cylinder comparing byte-for-byte host memory and disk data

Data Transfers in DMA or Non-DMA Mode
Parallel Seek Operations on Up to Four Drives
Compatible with $\mu$ PD8080/85, $\mu$ PD8086/88 and
$\mu$ PD 780 (Z80 ${ }^{\text {mi }}$ ) Microprocessors
Single Phase Clock ( 8 MHz )
+5 V Only
40-Pin Plastic Package
${ }^{\text {'w }} \mathrm{Z} 80$ is a registered trademark of Zilog inc
Mıcro Floppydisk ${ }^{*}$ is a registered trademark of Sony Corporation

## Block Diagram



## Absolute Maximum Ratings*

$\mathbf{\mathbf { T } _ { \mathrm { a } } = \mathbf { 2 5 } { } ^ { \circ } \mathrm { C }}$	
Operating Temperature	$-10^{\circ} \mathrm{C}$ to $+\mathbf{7 0 ^ { \circ } \mathrm { C }}$
Storage Temperature	$-\mathbf{4 0 ^ { \circ } \mathrm { C } \text { to } + \mathbf { 1 2 5 } 5 ^ { \circ } \mathrm { C }}$
All Output Voltages	-0.5 to $+\mathbf{V}$
All Input Voltages	$-\mathbf{0 . 5}$ to $+\mathbf{7 V}$
Supply Voltage $\mathrm{V}_{\mathrm{cc}}$	$-\mathbf{0 . 5}$ to $+\mathbf{7 V}$
Power Dissipation	1 W

*COMMENT: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## Pin Configuration

RESET ${ }^{1}$		40	$\mathrm{v}_{\mathrm{cc}}$
$\overline{R D}{ }^{2}$		39	$\square \overline{\mathbf{R W}} /$ SEEK
$\overline{\mathrm{WR}} 3$		38	Q LCt/DIR
$\overline{\mathrm{CS}}-4$		37	$\square \mathrm{FR} / \mathrm{STP}$
$\mathrm{A}_{0} 5$		36	$\square \mathrm{hdL}$
$\mathrm{DB}_{0} \mathrm{C}^{6}$		35	R RDY
DB, 7		34	WP/TS
$\mathrm{DB}_{2} 8$		33	$\mathrm{FLT} / \mathrm{TR} \mathrm{m}_{0}$
$\mathrm{DB}_{3} \mathrm{C}$		32	$\square \mathrm{PS}_{0}$
$\mathrm{DB}_{4} \mathrm{Cl}^{0}$	$\mu \mathrm{P}$ D765A	31	$\mathrm{PPS}_{1}$
$\mathrm{DB}_{5}-11$	$\mu$ PD7265	30	$\square$ WDA
$\mathrm{DB}_{6} 12$		29	$\square \mathrm{US}_{\text {o }}$
$\mathrm{DB}_{7} 13$		28	$\square \mathrm{US}_{1}$
DRQ 14		27	日
$\overline{\text { DACK }} 15$		26	MFM
TC 16		25	$\square$ we
IDX 17		24	vco
INT 18		23	R $\mathrm{R}^{\text {d }}$
CLK 19		22	RDW
GND 20		21	] wCk

## DC Characteristics

$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$;
$\mathbf{V}_{\mathbf{c c}}=+5 \mathrm{~V} \pm 5 \%$ unless otherwise specified

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ (1)	Max		
Input Low Voitage	$\mathrm{V}_{\mathrm{IL}}$	-0.5		08	V	
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0		$\mathrm{V}_{\mathrm{cc}}+0.5$	v	
Output Low Voltage	$\mathrm{V}_{\mathrm{OL}}$			0.45	V	$\mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA}$
Output High Voltage	$\mathrm{V}_{\mathrm{OH}}$	2.4		$\mathrm{V}_{\mathrm{cc}}$	v	$\mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A}$
Input Low Voltage (CLK + WR Clock)	$\mathrm{V}_{11}(\phi)$	-0.5		0.65	v	
Input High Voltage (CLK + WR Clock)	$V_{\text {IH }}($ ( $)$	24		$\mathrm{V}_{\mathrm{cc}}+05$	$v$	
$\mathrm{V}_{\text {cC }}$ Supply Current	lcc			150	mA	
Input Load Current	$\mathrm{IL}_{\mathrm{L}}$			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{v}_{\text {cc }}$
(All Input Pins)				-10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbf{W}}=0 \mathrm{~V}$
High Level Output Leakage Current	L Lor			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {cc }}$
Low Level Output Leakage Current	LoL			-10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=+0.45 \mathrm{~V}$

Note: (1) Typical values for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and nominal supply voltage

Capacitance

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Clock Input Capacitance	$\mathrm{C}_{\text {IN( } \text { ( })}$			20	PF	All pins except pin under test
Input Capacitance	$\mathrm{C}_{\text {IN }}$			10	pF	tied to AC
Output Capacitance	$\mathrm{Cout}^{\text {O }}$			20	pF	Ground

Pin Identification

Pin			10	Connects To	Function
No.	Symbol	Name			
1	RST	Reset	1	Processor	Places FDC in idle state Resets output lines to FDD to 0 (low) Does not affect SRT, HUT or HLT in Specify command if RDY pin is held high during Reset, FDC will generate an interrupt within 1024 msec To clear this interrupt use Sense Interrupt Status command
2	RD	Read	$1 \pm$	Processor	Control signal for transfer of data from FDC to Data Bus, when 0 (low)
3	WR	Write	11	Processor	Control signal for transfer of data to FDC via Data Bus, when 0 (low)
4	$\overline{\text { CS }}$	Chip Select	1	Processor	IC selected when 0 (low), allowing RD and WR to be enabled
5	$\mathrm{A}_{0}$	Data/Status Reg Select	12	Processor	Selects Data Reg ( $A_{0}=1$ ) or Status Reg ( $\mathrm{A}_{0}=0$ ) contents of the FDC to be sent to Data Bus
6-13	$\begin{aligned} & \mathrm{DB}_{0^{-}} \\ & \mathrm{DB}_{7} \\ & \hline \end{aligned}$	Data Bus	1/0 ${ }^{1}$	Processor	Bidirectional 8-bit Data Bus
14	DRQ	Data DMA Request	0	DMA	DMA Request is being made by FDC when $\mathrm{DRQ}=1$
15	DACK	DMA Acknowledge	1	DMA	DMA cycle is active when 0 (low) and controller is performing DMA transfer.
16	TC	Termınal Count	1	DMA	Indicates the termination of a DMA transfer when 1 (high) it terminates data transfer during Read/Write/Scan command in DMA or Interrupt mode
17	IDX	Index	1	FDD	Indıcates the beginnıng of a disk track
18	INT	Interrupt	0	Processor	Interrupt Request generated by FDC
19	CLK	Clock	I		Single phase 8 MHz squarewave clock
20	GND	Ground			DC power return
21	WCK	Write Clock	1		Write data rate to FDD FM = $500 \mathrm{KHz}, \mathrm{MFM}=1 \mathrm{MHz}$, with a pulse width of 250 ns for both FM and MFM
22	RDW	Read Data Window	1	Phase Lock Loop	Generated by PLL, and used to sample data from FDD
23	RDD	Read Data	1	FDD	Read data from FDD, contaınıng clock and data bits
24	$\begin{aligned} & \text { VCO/ } \\ & \text { Sync } \end{aligned}$	Vco/Sync	0	Phase Locked Loop	Inhibits VCO in PLL when 0 (low), enables VCO when 1
25	WE	Write Enable	0	FDD	Enables write data into FDD
26	MFM	MFM Mode	0	Phase Lock Loop	MFM mode when 1, FM mode when 0
27	HD	Head Select	0	FDD	Head 1 selected when 1 (high), Head 0 selected when 0 (low)
28,29	$\begin{aligned} & \text { US }_{1}, \\ & \text { US }_{0} \end{aligned}$	Unit Select	0	FDD	FDD Unit selected
30	WDA	Write Data	0	FDD	Serial clock and data bits to FDD
31, 32	$\mathrm{PS}_{1}, \mathrm{PS}_{0}$	Precompensation (preshıft)	0	FDD	Write precompensation status during MFM mode Determines early, late, and normal times
33	FLT/TR ${ }_{0}$	Fault/Track 0	1	FDD	Senses FDD fault condition in Read/Write mode, and Track 0 condition in Seek mode.
34	WP/TS	Write Protect/ Two Side	1	FDD	Senses Write Protect status in Read/Write mode, and Two-Side Media in Seek mode
35	RDY	Ready	1	FDD	Indicates FDD is ready to send or receive data
36	HDL	Head Load	0	FDD	Command which causes read write head in FDD to contact dıskette
37	FR/STP	Fit Reset/Step	0	FDD	Resets fault FF in FDD in Read Write mode, contains step pulses to move head to another cylinder in Seek mode
38	LCT/DIR	Low Current/ Direction	0	FDD	Lowers Write current on inner tracks in Read/Write mode, determınes direction head will step in Seek mode A fault reset pulse is issued at the beginning of each Read or Write command prior to the occurrence of the Head Load signal
39	RW/ SEEK	Read Write Seek	0	FDD	When 1 (high) Seek mode selected and when 0 (low) Read/Write mode selected
40	$\mathrm{V}_{\mathrm{cc}}$	$+5 \mathrm{~V}$			DC power.

Note: (1) Disabled when $\overline{\mathrm{CS}}=1$
$\mathbf{V}_{\mathbf{c c}}=+5 \mathrm{~V} \pm 5 \%$ unless otherwise specified


WCK Active Time (High)	$\mathrm{t}_{0}$	80	250	350	ns	
WCK Rise Time	$\mathrm{t}_{\mathrm{r}}$			20	ns	
WCK Fall Time	$t_{f}$			20	ns	
Preshift Delay Time from WCK $\uparrow$	$\mathbf{t}_{\mathbf{C P}}$	20		100	ns	
WCK $\uparrow \rightarrow$ WE $\uparrow$ Delay	$\mathrm{t}_{\text {CWE }}$	20		100	ns	
WDA Delay Time from WCK $\uparrow$	${ }^{\text {ct }}$	20		100	ns	
RDD Active Time (High)	$\mathrm{t}_{\text {RDD }}$	40			ns	
			4			MFM $=0$ 5 $5^{1 / 4}{ }^{\prime \prime}$
			2			MFM = $1 \quad 51 / 4^{\prime \prime}$
Window Cycle Time	$t_{\text {WCr }}$		$\frac{2}{1}$		$\mu s$	MFM $=0 \quad 8{ }^{\prime \prime}$
			2			MFM $=1 \quad 8^{\prime \prime}$
			1			MFM = 0 $\quad 33^{1 / 2^{\prime \prime}}$
						MFM = $1 \quad 31 / 2^{\prime \prime}$


Window Hold Time to/from RDD	$t_{\text {RDW }}$   $t_{\text {WRD }}$	15			ns	
US $_{0,1}$ Hold Time to RW/SEEK	$t_{\text {us }}$	12			$\mu \mathrm{s}$	
RW/SEEK Hold Time to LOW CURRENT/DIRECTION $\uparrow$	$t_{\text {SD }}$	7			$\mu s$	
LOW CURRENT/DIRECTION Hold Time to FAULT RESET/ STEP $\uparrow$	$t_{\text {DST }}$	1.0			$\mu s$	
US $_{0,1}$ Hold Time from FAULT RESET/STEP 1	${ }_{\text {tsTU }}$	5.0			$\mu \mathrm{s}$	8 MHz Clock Period (4)
STEP Active Time (High)	$\mathrm{t}_{\text {STP }}$	6	7	8	$\mu \mathrm{s}$	(4)
STEP Cycle Time	$\mathrm{t}_{\mathrm{SC}}$	33	(2)	(2)	$\mu s$	(4)
FAULT RESET Active Time (High)	$t_{\text {FR }}$	8.0		10	$\mu s$	(4)
Write Data Width	${ }_{\text {WDD }}$	T0-50			ns	
$\mathbf{U S}_{\mathbf{0 , 1}}$ Hold Time After SEEK	$t_{\text {SU }}$	15			$\mu \mathrm{s}$	
Seek Hold Time from DIR	$\mathrm{t}_{\mathrm{DS}}$	30			$\mu \mathrm{s}$	8 MHz Clock Period
DIR Hoid Time after STEP	${ }^{\text {t }}$ STD	24			$\mu \mathrm{s}$	
Index Pulse Width	$t_{\text {IDX }}$	10			¢CY	
RD $\downarrow$ Delay from DRQ	$\mathrm{t}_{\text {MR }}$	800			$\mu \mathrm{s}$	
WR $\downarrow$ Delay from DRQ	$\mathrm{t}_{\text {MW }}$	250			$\mu \mathrm{s}$	8 MHz Clock
WE or RD Response Time from DRQ $\uparrow$	$t_{\text {mRW }}$			12	$\mu \mathrm{S}$	

Notes: (1) Typical values for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and nominal supply voltage
(2) Under Software Control The range is from 1 ms to 16 ms at 8 MHz clock period, and 2
to 32 ms at 4 MHz clock period
(3) Sony Mıcro Floppydısk ${ }^{\oplus 1} 31 / 2^{\prime \prime}$ drıve
(4) Double these values for a 4 MHz clock period

## Timing Waveforms

Processor Read Operation


Processor Write Operation


Clock


DMA Operation


FDD Write Operation


	Preshift 0	Preshift 1
Normal	0	0
Late	0	1
Early	1	0
Invalıd	1	1

## Timing Waveforms (Cont.)

## Seek Operation



## FLT Reset

## FDD Read Operation



Index


Terminal Count
Reset


## Internal Registers

The $\mu$ PD765A/ $\mu$ PD7265 contaıns two registers which may be accessed by the main system processor: a Status Register and a Data Register The 8-bit Maın Status Register contans the status information of the FDC, and may be accessed at any tıme. The 8-bit Data Register (which actually consists of several registers in a stack with only one register presented to the data bus at a time), stores data, commands, parameters, and FDD status information Data bytes are read out of, or written into, the Data Register in order to program or obtain the results after a particular command. Only the Status Register may be read and used to faclitate the transfer of data between the processor and $\mu$ PD765/ $\mu$ PD7265.
The relationship between the Status/Data registers and the signals $\overline{R D}, \overline{W R}$, and $A_{0}$ is shown below.

$\mathbf{A}_{0}$	RD	WR	Function
$\mathbf{0}$	0	1	Read Maın Status Regıster
0	1	0	Iliegal
$\mathbf{0}$	0	0	Illegal
1	0	0	Ilegal
1	0	1	Read from Data Regıster
1	1	0	Write into Data Regıster

## Internal Registers (Cont.)

The bits in the Main Status Register are defined as follows:

Bit			
No.	Name	Symbol	

The DIO and RQM bits in the Status Register indicate when data is ready and in which direction data will be transferred on the data bus. The maximum tıme between the last $\overline{\mathrm{RD}}$ or $\overline{\text { WR during a command or result phase and DIO and RQM }}$ getting set or reset is $12 \mu \mathrm{~s}$. For this reason every time the Main Status Register is read the CPU should wait $12 \mu \mathrm{~s}$. The maximum time from the tralling edge of the last RD in the result phase to when $\mathrm{DB}_{4}$ (FDC busy) goes low is $12 \mu \mathrm{~s}$.


Notes: $\measuredangle$ - Data register ready to be written into by processor (-Data register ready to be written into by processor
固 - Data register not ready to be written into by processor - Data register ready for next data byte to be read by processor © - Data register ready for next data byte to be read by
[ - Data register not ready to be read by processor

## Status Register Identification

Bit			Description
No.	Name	Symbol	
Status Register 0			
	Interrupt Code	IC	$\mathrm{D}_{7}=0 \text { and } \mathrm{D}_{6}=0$   Normal Termination of command, (NT). Command was completed and properly executed.
$\mathrm{D}_{7}$			$D_{7}=0 \text { and } D_{6}=1$   Abnormal Termination of command, (AT). Execution of command was started but was not successfully completed.
$\mathrm{D}_{6}$			$D_{7}=1$ and $D_{6}=0$   Invalid Command issue, (IC). Command which was issued was never started.
			$D_{7}=1 \text { and } D_{6}=1$   Abnormal Termination because during command execution the ready signal from FDD changed state.
$\mathrm{D}_{5}$	Seek End	SE	When the FDC completes the SEEK command, this flag is set to 1 (high).
$\mathrm{D}_{4}$	Equipment Check	EC	If a fault signal is received from the FDD, or if the Track 0 signal fails to occur after 77 step pulses (Recalibrate Command) then this flag is set.
$\mathrm{D}_{3}$	Not Ready	NR	When the FDD is in the not-ready state and a read or write command is issued, this flag is set. If a read or write command is issued to Side 1 of a single-sided drive, then this flag is set.
$\mathrm{D}_{2}$	Head Address	HD	This flag is used to indicate the state of the head at Interrupt.
$\mathrm{D}_{1}$	Unit Select 1	$\mathrm{US}_{1}$	These flags are used to indicate a Drive Unit Number at Interrupt.
$\mathrm{D}_{0}$	Unit Select 0	US ${ }_{0}$	
Status Register 1			
$D_{7}$	End of Cylinder	EN	When the FDC tries to access a sector beyond the final sector of a cylinder, this flag is set.
$\mathrm{D}_{6}$			Not used. This bit is always 0 (low).
$\mathrm{D}_{5}$	Data Error	DE	When the FDC detects a CRC(1) error in either the ID field or the data field, this flag is set.
$\mathrm{D}_{4}$	Overrun	OR	If the FDC is not serviced by the host system during data transfers within a certain time interval, this flag is set.
$\mathrm{D}_{3}$			Not used. This bit always 0 (low).
$\mathrm{D}_{2}$	No Data	ND	During execution of READ DATA, WRITE DELETED DATA or SCAN command, if the FDC cannot find the sector specified in the IDR(2) Register, this flag is set.
			During execution of the READ ID command, if the FDC cannot read the ID field without an error, then this flag is set.
			During execution of the READ A cylinder command, if the starting sector cannot be found, then this flag is set.
D 1	Not Writable	NW	During execution of WRITE DATA, WRITE DELETED DATA or Format A cylinder command, if the FDC detects a write protect signal from the FDD, then this flag is set.
			If the FDC cannot detect the ID Address Mark after encountering the index hole twice, then this flag is set.
D	Missing Address Mark	MA	If the FDC cannot detect the Data Address Mark or Deleted Data Address Mark, this flag is set. Also at the same time, the MD (Missing Address Mark in data field) of Status Register 2 is set.
Status Register 2			
D7			Not used. This bit is always 0 (low).
$\mathrm{D}_{6}$	Control Mark	CM	During execution of the READ DATA or SCAN command, if the FDC encounters a sector which contains a Deleted Data Address Mark, this flag is set.
$\mathrm{D}_{5}$	Data Error in Data Field	DD	If the FDC detects a CRC error in the data field then this flag is set.
$\mathrm{D}_{4}$	Wrong Cylinder	WC	This bit is related to the ND bit, and when the contents of $C(3)$ on the medium is different from that stored in the IDR, this flag is set.
$\mathrm{D}_{3}$	Scan Equal Hit	SH	During execution of the SCAN command, if the condition of "equal" is satisfied, this flag is set.
$\mathrm{D}_{2}$	Scan Not Satisfied	SN	During execution of the SCAN command, if the FDC cannot find a sector on the cylinder which meets the condition, then this flag is set.
D 1	Bad Cylinder	BC	This bit is related to the ND bit, and when the contents of C on the medium is different from that stored in the IDR and the contents of C is $\mathrm{FF}_{(16)}$, then this flag is set.
$\mathrm{D}_{0}$	Missing Address Mark in Data Field	MD	When data is read from the medium, if the FDC cannot find a Data Address Mark or Deleted Data Address Mark, then this flag is set.

## Status Register Identification (Cont.)

Bit			Description
No.	Name	Symbol	
Status Register 3			
$\mathrm{D}_{7}$	Fault	FT	This bit is used to indicate the status of the Fault signal from the FDD.
$\mathrm{D}_{6}$	Write Protected	WP	This bit is used to indicate the status of the Write Protected signal from the FDD.
$\mathrm{D}_{5}$	Ready	RY	This bit is used to indicate the status of the Ready signal from the FDD.
$\mathrm{D}_{4}$	Track 0	T0	This bit is used to indicate the status of the Track 0 signal from the FDD.
$\mathrm{D}_{3}$	Two Side	TS	This bit is used to indicate the status of the Two Side signal from the FDD.
$\mathrm{D}_{2}$	Head Address	HD	This bit is used to indicate the status of the Side Select signal to the FDD
$D_{1}$	Unit Select 1	$\mathrm{US}_{1}$	This bit is used to indicate the status of the Unit Select 1 signal to the FDD.
D0	Unit Select 0	$\mathbf{U S}_{0}$	This bit is used to indicate the status of the Unit Select 0 signal to the FDD.

Notes: (1) $\mathrm{CRC}=$ Cyclic Redundancy Check
(2) IDR = Internal Data Regıster
(3) Cylinder (C) is described more fully in the Command Symbol Descripton on page 7

## Command Sequence

The $\mu$ PD765A/ $\mu$ PD7265 is capable of performing 15 different commands. Each command is initıated by a multibyte transfer from the processor, and the result after execution of the command may also be a multibyte transfer back to the processor. Because of this multibyte interchange of information between the $\mu$ PD765A/ $\mu$ PD7265 and the processor, it is convenient to consider each command as consistıng of three phases:

Command The FDC receives all information
Phase: required to perform a particular operation from the processor.
Execution The FDC performs the operation it was
Phase.
Result Phase. instructed to do.
After completion of the operation, status and other housekeeping information are made available to the processor
Following are shown the required preset parameters and results for each command. Most commands require 9 command bytes and return 7 bytes during the result phase The "W" to the left of each byte indıcates a command phase byte to be written, and an "R" indıcates a result byte

Instruction Set (1) (2)


Notes: (1) Symbols used in this table are described at the end of this section
(2) $A_{0}$ should equal binary 1 for all operations
(3) $\mathrm{X}=$ Don't care, usually made to equal binary 0

## Instruction Set



## Instruction Set (Cont.)



Command Symbol Description

Symbol	Name	Description
$\mathrm{A}_{0}$	Address Line 0	$A_{0}$ controls selection of Main Status Register ( $A_{0}=0$ ) or Data Register ( $A_{0}=1$ )
C	Cylinder Number	C stands for the current/selected cylinder (track) numbers 0 through 76 of the medium.
D	Data	D stands for the data pattern which is going to be written into a sector.
$\mathrm{D}_{7}-\mathrm{D}_{0}$	Data Bus	8 -blt Data Bus, where $D_{7}$ stands for a most significant bit, and $D_{0}$ stands for a least significant bit.
DTL	Data Length	When N is defined as 00 , DTL stands for the data length which users are going to read out or write into the sector.
EOT	End of Track	EOT stands for the final sector number on a cylinder. During Read or Write operations, FDC will stop data transfer after a sector number equal to EOT.
GPL	Gap Length	GPL stands for the length of Gap 3. During Read/Write commands this value determines the number of bytes that VCOs will stay low after two CRC bytes. During Format command it determines the size of Gap 3.
H	Head Address	H stands for head number 0 or 1 , as specified in ID field.
HD	Head	HD stands for a selected head number 0 or 1 and controls the polarity of pin 27. ( $\mathrm{H}=\mathrm{HD}$ in all command words.)
HLT	Head Load Time	HLT stands for the head load time in the FDD (2 to 254 ms in 2 ms increments).
HUT	Head Unload Time	HUT stands for the head unload time after a Read or Write operation has occurred ( $\mathbf{1 6}$ to $\mathbf{2 4 0} \mathbf{~ m s}$ in 16 ms increments).
MF	FM or MFM Mode	If MF is low, FM mode is selected, and if it is high, MFM mode is selected.
MT	Multitrack	If MT is high, a Multitrack operation is performed. If MT = 1 after finishing Read/Write operation on side 0, FDC will automatically start searching for sector 1 on side 1.
N	Number	N stands for the Number of data bytes written in a sector.
NCN	New Cylinder Number	NCN stands for a New Cylinder Number which is going to be reached as a result of the Seek operation. Desired position of head.
ND	Non-DMA Mode	ND stands for operation in the Non-DMA mode.
PCN	Present Cylinder Number	PCN stands for the cylinder number at the completion of Sense Interrupt Status command. Position of Head at present time.
R	Record	R stands for the sector number which will be read or written.
R/W	Read/Write	R/W stands for either Read (R) or Write (W) signal.
SC	Sector	SC indicates the number of Sectors per Cylinder.
SK	Skip	SK stands for Skip Deleted Data Address mark.
SRT	Step Rate Time	SRT stands for the Stepping Rate for the FDD (1 to 16 ms in 1 ms increments). Stepping Rate applies to all drives ( $F=1 \mathrm{~ms}, E=2 \mathrm{~ms}$, etc.).
$\begin{aligned} & \hline \text { ST0 } \\ & \text { ST1 } \\ & \text { ST2 } \\ & \text { ST3 } \end{aligned}$	Status 0   Status 1   Status 2   Status 3	ST 0-3 stands for one of four registers which store the status information after a command has been executed. This information is available during the result phase after command execution. These registers should not be confused with the main status register (selected by $A_{0}=0$ ). ST 0-3 may be read only after a command has been executed and contains information relevant to that particular command.
STP		During a Scan operation, if STP $=1$, the data in contiguous sectors is compared byte by byte with data sent from the processor (or DMA); and if STP = 2, then alternate sectors are read and compared.
US0, US1	Unit Select	US stands for a selected drive number 0 or 1.

## System Configuration



## Processor Interface

During Command or Result phases the Man Status Register (described earlier) must be read by the processor before each byte of information is written into or read from the Data Register. After each byte of data read or written to the Data Register, CPU should wait for $12 \mu \mathrm{~s}$ before reading Main Status Register. Bits D6 and D7 in the Main Status Register must be in a 0 and 1 state, respectively, before each byte of the command word may be written into the $\mu$ PD765A/ $\mu$ PD7265. Many of the commands require multiple bytes and, as a result, the Main Status Register must be read prior to each byte transfer to the $\mu$ PD765A/ $\mu$ PD7265. On the other hand, during the Result phase, D6 and D7 in the Main Status Register must both be 1's ( $\mathrm{D} 6=1$ and D7 = 1) before reading each byte from the Data Register. Note that this readıng of the Main Status Register before each byte transfer to the $\mu$ PD765A/ $\mu$ PD7265 is required only in the Command and Result phases, and not during the Execution phase.
During the Execution phase, the Main Status Register need not be read. If the $\mu$ PD765A/ $\mu$ PD7265 is in the non-DMA mode, then the receipt of each data byte (if $\mu$ PD765A/ $\mu$ PD7265 is reading data from FDD) is indicated by an Interrupt signal on pin 18 (INT = 1). The generation of a Read signal $(\overline{\mathrm{RD}}=0)$ or Write signal $(\overline{\mathrm{WR}}=0)$ will clear the Interrupt as well as output the data onto the data bus. If the processor cannot handle Interrupts fast enough (every $13 \mu \mathrm{~s}$ for the MFM mode and $27 \mu \mathrm{~s}$ for the FM mode), then it may poll the Main Status Register and bit D7 (RQM) functions as the Interrupt signal. If a Write command is in process then the $\overline{W R}$ signal negates the reset to the Interrupt signal.
Note that in the non-DMA mode it is necessary to examine the Main Status Register to determine the cause of the interrupt, since it could be a data interrupt or a command termination interrupt, ether normal or abnormal.
If the $\mu$ PD 765 A/ $\mu$ PD 7265 is in the DMA mode, no Interrupts are generated during the Execution phase. The $\mu$ PD765A/ $\mu$ PD7265 generates DRQs (DMA Requests) when each byte of data is available. The DMA Controller
responds to this request with both a $\overline{\mathrm{DACK}}=0$ (DMA Acknowledge) and an $\mathrm{RD}=0$ (Read signal). When the DMA Acknowledge signal goes low (DACK $=0$ ), then the DMA Request is cleared ( $\mathrm{DRQ}=0$ ). If a Write command has been issued then a WR signal will appear instead of $\overline{\mathrm{RD}}$. After the Execution phase has been completed (Terminal Count has occurred) or the EOT sector read/written, then an Interrupt will occur (INT = 1). This signifies the beginning of the Result phase. When the first byte of data is read during the Result phase, the Interrupt is automatically cleared (INT $=0$ ).
The $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ signals should be asserted while $\overline{\mathrm{DACK}}$ is true. The $\overline{C S}$ signal is used in conjunction with $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ as a gating function during programmed I/O operations. $\overline{C S}$ has no effect during DMA operations. If the non-DMA mode is chosen, the DACK signal should be pulled up to $\mathrm{V}_{\mathrm{cc}}$.
It is important to note that during the Result phase all bytes shown in the Command Table must be read. The Read Data command, for example, has seven bytes of data in the Result phase. All seven bytes must be read in order to successfully complete the Read Data command. The $\mu$ PD765A/ $\mu$ PD7265 will not accept a new command untll all seven bytes have been read. Other commands may require fewer bytes to be read during the Result phase. The $\mu$ PD765A/ $\mu$ PD7265 contains five Status Registers. The Man Status Register mentioned above may be read by the processor at any time. The other four Status Registers (ST0, ST1, ST2, and ST3) are avalable only during the Result phase and may be read only after completing a command. The particular command that has been executed determines how many of the Status Registers will be read.
The bytes of data which are sent to the $\mu$ PD765A/ $\mu$ PD7265 to form the Command phase and are read out of the $\mu$ PD765A/ $\mu$ PD7265 in the Result phase must occur in the order shown in the Command Table. That is, the Command Code must be sent first and the other bytes sent in the prescribed sequence. No foreshortening of the Command or Result phases is allowed. After the last byte of data in the Command phase is sent to the $\mu$ PD765A/ $\mu$ PD7265, the Execution phase automatically starts. In a similar fashion, when the last byte of data is read out in the Result phase, the command is automatically ended and the $\mu$ PD765A/ $\mu$ PD7265 is ready for a new command.

## Polling Feature of the $\mu$ PD765A/ $\mu$ PD7265

After Reset has been sent to the $\mu$ PD765A/ $\mu$ PD7265, the Unit Select lines $U^{0}$ and $U_{1}$ will automatically go into a polling mode. In between commands (and between step pulses in the Seek command) the $\mu$ PD765A/ $\mu$ PD7265 polls all four FDDs looking for a change in the Ready line from any of the drives. If the Ready line changes state (usually due to a door opening or closing), then the $\mu$ PD765A/ $\mu$ PD7265 will generate an interrupt. When Status Register 0 (STO) is read (after Sense Interrupt Status is issued), Not Ready (NR) will be indicated. The polling of the Ready line by the $\mu$ PD765A/ $\mu$ PD7265 occurs continuously between commands, thus notifying the processor which drives are on or off line. Each drive is polled every 1.024 ms except during the Read/Write commands. When used with a 4 MHz clock for interfacing to minifloppies, the polling rate is 2.048 ms .

figure 1. (polling feature)

## Read Data

A set of nine (9) byte words are required to place the FDC into the Read Data Mode. After the Read Data command has been issued the FDC loads the head (if it is in the unloaded state), waits the specified head settling tıme (defined in the Specify Command), and begins readıng ID Address Marks and ID fields. When the current sector number ("R") stored in the ID Register (IDR) compares with the sector number read off the diskette, then the FDC outputs data (from the data field) byte-to-byte to the main system via the data bus.
After completion of the read operation from the current sector, the Sector Number is incremented by one, and the data from the next sector is read and output on the data bus. This continuous read function is called a "MultiSector Read Operatıon." The Read Data Command may be termınated by the receıpt of a Termınal Count signal. TC should be issued at the same time that the DACK for the last byte of data is sent. Upon receipt of this sıgnal, the FDC stops outputting data to the processor, but will continue to read data from the current sector, check CRC (Cyclic Redundancy Count) bytes, and then at the end of the sector terminate the Read Data Command. The amount of data which can be handled with a single command to the FDC depends upon MT (multitrack), MF (MFM/FM), and N (Number of Bytes/Sector). Table 1 below shows the Transfer Capacity.
Transfer Capacity
\(\left.$$
\begin{array}{ccccc}\hline \begin{array}{c}\text { Multi- } \\
\text { Track } \\
\text { MT }\end{array} & \begin{array}{c}\text { MFM/ } \\
\text { FM } \\
\text { MF }\end{array} & \begin{array}{c}\text { Bytes/ } \\
\text { Sector } \\
\text { N }\end{array} & \begin{array}{c}\text { Maximum Transfer Capacity } \\
\text { (Bytes/Sector) } \\
\text { (Number of Sectors) }\end{array} & \begin{array}{c}\text { Final Sector } \\
\text { Read from } \\
\text { Diskettes }\end{array} \\
\hline 0 & 0 & 00 & (128)(26)=3,328 & \begin{array}{c}26 \text { at Side 0 } \\
0\end{array}
$$ <br>

\hline 1 \& 0 \& 01 \& (256)(26)=6,656 \& or 26 at Side 1\end{array}\right]\)| $(128)(52)=6,656$ |
| :---: |
| 1 |

The "multi-track" functıon (MT) allows the FDC to read data from both sides of the diskette. For a particular cylinder, data will be transferred starting at Sector 1, Side 0 and completıng at Sector L, Side 1 (Sector $L=$ last sector on the side). Note, this function pertains to only one cylinder (the same track) on each side of the diskette.
When $N=0$, then DTL defines the data length which the FDC must treat as a sector. If DTL is smaller than the actual data length in a Sector, the data beyond DTL. in the Sector, is not sent to the Data Bus. The FDC reads (internally) the complete Sector performing the CRC check, and
depending upon the manner of command termination, may perform a Multi-Sector Read Operation. When $N$ is nonzero, then DTL has no meaning and should be set to FF Hexidecimal.
At the completion of the Read Data Command, the head is not unloaded until after Head Unload Time Interval (specified in the Specify Command) has elapsed. If the processor issues another command before the head unloads then the head settling time may be saved between subsequent reads. This time out is partıcularly valuable when a diskette is copied from one drive to another.
If the FDC detects the Index Hole twice without finding the right sector, (indicated in "R"), then the FDC sets the ND (No Data) flag in Status Register 1 to a 1 (high), and terminates the Read Data Command. (Status Register 0 also has bits 7 and 6 set to 0 and 1 respectively.)
After reading the ID and Data Fields in each sector, the FDC checks the CRC bytes. If a read error is detected (incorrect CRC in ID field), the FDC sets the DE (Data Error) flag in Status Register 1 to a 1 (high), and if a CRC error occurs in the Data Field the FDC also sets the DD (Data Error in Data Field) flag in Status Register 2 to a 1 (high), and termınates the Read Data Command. (Status Register 0 also has bits 7 and 6 set to 0 and 1 respectively ) If the FDC reads a Deleted Data Address Mark off the diskette, and the SK bit (bit D5 in the first Command Word) is not set ( $\mathrm{SK}=0$ ), then the FDC sets the CM (Control Mark) flag in Status Register 2 to a 1 (high), and termınates the Read Data Command, after reading all the data in the Sector If SK $=1$, the FDC skips the sector with the Deleted Data Address Mark and reads the next sector. The CRC bits in the deleted data field are not checked when SK = 1 During disk data transfers between the FDC and the processor, via the data bus, the FDC must be serviced by the processor every $27 \mu s$ in the FM Mode, and every $13 \mu \mathrm{~s}$ in the MFM Mode, or the FDC sets the OR (Overrun) flag in Status Regıster 1 to a 1 (hıgh), and termınates the Read Data Command.
If the processor termınates a read (or write) operation in the FDC, then the ID information in the Result Phase is dependent upon the state of the MT bit and EOT byte. Table 2 shows the values for $\mathrm{C}, \mathrm{H}, \mathrm{R}$, and N , when the processor termınates the Command.

## Functional Description of Commands

MT	HD	Final Sector Transferred to Processor	ID Information at Result Phase			
			c	H	R	N
0	0	Less than EOT	NC	NC	R+1	NC
	0	Equal to EOT	C+1	NC	$\mathrm{R}=01$	NC
	1	Less than EOT	NC	NC	R+1	NC
	1	Equal to EOT	C+1	NC	$\mathrm{R}=01$	NC
1	0	Less than EOT	NC	NC	R+1	NC
	0	Equal to EOT	NC	LSB	$\mathrm{R}=01$	NC
	1	Less than EOT	NC	NC	R+1	NC
	1	Equal to EOT	C+1	LSB	$\mathrm{R}=01$	NC

Notes: $\quad \mathrm{NC}$ (No Change) The same value as the one at the beginning of command execution LSB (Least Significant Bit) The least significant bit of H is complemented

## Write Data

A set of nine (9) bytes is required to set the FDC into the Write Data mode. After the Write Data command has been issued the FDC loads the head (if it is in the unloaded state), waits the specified head settling time (defined in the Specify command), and begins reading ID fields. When all four bytes loaded during the command ( $\mathrm{C}, \mathrm{H}, \mathrm{R}, \mathrm{N}$ ) match

## $\mu$ PD765A/7265

the four bytes of the ID field from the diskette, the FDC takes data from the processor byte-by-byte via the data bus and outputs it to the FDD.
After writing data into the current sector, the sector number stored in " $R$ " is incremented by one, and the next data field is written into. The FDC contınues this "Multisector Write Operation" untll the issuance of a Termınal Count signal. If a Terminal Count signal is sent to the FDC it contınues writing into the current sector to complete the data field. If the Terminal Count signal is received while a data field is being written then the remainder of the data field is filled with zeros.
The FDC reads the ID field of each sector and checks the CRC bytes. If the FDC detects a read error (CRC error) in one of the ID fields, it sets the DE (Data Error) flag of Status Register 1 to a 1 (high) and terminates the Write Data command. (Status Register 0 also has bits 7 and 6 set to 0 and 1 respectively.)
The Write command operates in much the same manner as the Read command. The following items are the same, and one should refer to the Read Data command for details:

- Transfer Capacity
- EN (End of Cylinder) Flag
- ND (No Data) Flag
- Head Unload Time Interval
- ID Informatıon when the processor termınates command
- Definition of DTL when $N=0$ and when $N \neq 0$

In the Write Data mode, data transfers between the processor and FDC, via the data bus, must occur every $27 \mu \mathrm{~s}$ in the FM mode and every $13 \mu \mathrm{~s}$ in the MFM mode. If the time interval between data transfers is longer than this, then the FDC sets the OR (Overrun) flag in Status Register 1 to a 1 (high) and termınates the Write Data command. (Status Register 0 also has bits 7 and 6 set to 0 and 1 respectively.)

## Write Deleted Data

This command is the same as the Write Data command except a Deleted Data Address mark is written at the begınnıng of the data field instead of the normal Data Address mark.

## Read Deleted Data

This command is the same as the Read Data command except that when the FDC detects a Data Address mark at the begınning of a data field (and SK $=0$ (low)), it will read all the data in the sector and set the CM flag in Status Register 2 to a 1 (high), and then termınate the command. If $\mathrm{SK}=1$, then the FDC skips the sector with the Data Address mark and reads the next sector.

## Read A Track

This command is sımilar to the Read Data command except that this is a contınuous Read operation where the entire data field from each of the sectors is read. Immediately after sensing the index hole, the FDC starts reading all data fields on the track as continuous blocks of data. If the FDC finds an error in the ID or Data CRC check bytes, it continues to read data from the track. The FDC compares the ID information read from each sector with the value stored in the IDR and sets the ND flag of Status Register 1 to a 1 (high) if there is no comparison. Multitrack or skıp operations are not allowed with this command.
This command termınates when the number of sectors read is equal to EOT. If the FDC does not find an ID

Address mark on the diskette after it senses the index hole for the second tıme, it sets the MA (Missing Address mark) flag in Status Register 1 to a 1 (high) and terminates the command. (Status Register 0 has bits 7 and 6 set to 0 and 1 respectively.)

## Read ID

The Read ID command is used to give the present position of the recording head. The FDC stores the values from the first ID field it is able to read If no proper ID Address mark is found on the diskette before the index hole is encountered for the second time, then the MA (Missing Address mark) flag in Status Register 1 is set to a 1 (high), and if no data is found then the ND (No Data) flag is also set in Status Register 1 to a 1 (high). The command is then terminated with bits 7 and 6 in Status Regıster 0 set to 0 and 1 respectively. During this command there is no data transfer between FDC and the CPU except during the result phase.

## Format A Track

The Format command allows an entire track to be formatted. After the index hole is detected, data is written on the diskette; Gaps, Address marks, ID fields and data fields, all per the IBM System 34 (Double Density) or System 3740 (Single Density) format are recorded. The partıcular format which will be written is controlled by the values programmed into N (Number of bytes/sector), SC (Sectors/ Cylinder), GPL (Gap Length), and D (Data pattern) which are supplied by the processor during the Command phase. The data field is filled with the byte of data stored in D. The ID field for each sector is supplied by the processor; that is, four data requests per sector are made by the FDC for C (Cylinder number), H (Head number), R (Sector number) and $N$ (Number of bytes/sector). This allows the diskette to be formatted with nonsequential sector numbers, if desired. The processor must send new values for $C, H, R$, and $N$ to the $\mu$ PD765A/ $\mu$ PD7265 for each sector on the track If FDC is set for the DMA mode, it will issue four DMA requests per sector. If it is set for the Interrupt mode, it will issue four interrupts per sector and the processor must supply C, H, R, and $N$ loads for each sector. The contents of the $R$ register are incremented by 1 after each sector is formatted; thus, the $R$ register contains a value of $R$ when it is read during the Result phase. This incrementing and formatting contınues for the whole track until the FDC detects the index hole for the second time, whereupon it termınates the command.
If a Fault signal is received from the FDD at the end of a Write operation, then the FDC sets the EC flag of Status Register 0 to a 1 (high) and terminates the command after setting bits 7 and 6 of Status Register 0 to 0 and 1 respectively. Also the loss of a Ready signal at the beginning of a command execution phase causes bits 7 and 6 of Status Register 0 to be set to 0 and 1 respectively.
Table 1 shows the relatıonship between N, SC, and GPL for varıous sector sizes.

## Functional Description of Commands (Cont.)

Format	Sector Size	N	SC	GPL (1)	GPL(2) (3)
8' Standard Floppy					
FM Mode	128 bytes/sector	00	1A	07	1 B
	256	01	OF	OE	2A
	512	02	08	1B	3A
	1024	03	04	47	8A
	2048	04	02	C8	FF
	4096	05	01	C8	FF
MFM   Mode (4)	256	01	1A	OE	36
	512	02	OF	1B	54
	1024	03	08	35	74
	2048	04	04	99	FF
	4096	05	02	C8	FF
	8192	06	01	C8	FF
51/4" Minifloppy					
FM Mode	128 bytes/sector	00	12	07	09
	128	00	10	10	19
	256	01	08	18	30
	512	02	04	46	87
	1024	03	02	C8	FF
	2048	04	01	C8	FF
MFM   Mode (4)	256	01	12	OA	OC
	256	01	10	20	32
	512	02	08	2A	50
	1024	03	04	80	FO
	2048	04	02	C8	FF
	4096	05	01	C8	FF
31/2" Sony Microfloppy					
FM Mode	128 bytes/sector	0	OF	07	1B
	256	1	09	OE	2 A
	512	2	05	1 B	3A
MFM   Mode	256	1	OF	OE	36
	512	2	09	1B	54
	1024	3	05	35	74

Table 1
Notes: (1) Suggested values of GPL in Read or Write commands to avoid splice point between data field and ID field of contiguous sections
(2) Suggested values of GPL in format command
(3) All values except sector size are hexidecimal
(4) In MFM mode FDC cannot perform a Read/Write/format operation with 128 bytes sector $(\mathrm{N}=00)$

## Scan Commands

The Scan commands allow data which is being read from the diskette to be compared against data which is being supplied from the main system. The FDC compares the data on a byte-by-byte basis and looks for a sector of data which meets the conditions of $D_{F D D}=D_{\text {Processor }}, D_{F D D} \leqslant$ $\mathrm{D}_{\text {Processor }}$, or $\mathrm{D}_{\text {FDD }} \geqslant \mathrm{D}_{\text {Processor }}$. The hexidecimal byte of FF either from memory or from FDD can be used as a mask byte because it always meets the condition of the comparison. One's complement arithmetic is used for comparison ( $\mathrm{FF}=$ largest number, $00=$ smallest number). After a whole sector of data is compared, if the conditions are not met, the sector number is incremented ( $R+S T P \rightarrow$ R ), and the scan operation is continued. The scan operation continues until one of the following conditions occur: the conditions for scan are met (equal, low, or high), the last sector on the track is reached (EOT), or the terminal count signal is received.
If the conditions for scan are met, then the FDC sets the SH (Scan Hit) flag of Status Register 2 to a 1 (high) and terminates the Scan command. If the conditions for scan are not met between the starting sector (as specified by R) and the last sector on the cylinder (EOT), then the FDC sets the SN (Scan Not Satisfied) flag of Status Register 2 to a 1 (high) and terminates the Scan command. The receipt of a Terminal Count signal from the processor or DMA controller during the scan operation will cause the FDC to complete the comparison of the particular byte which is in process and then to terminate the command. Table 2
shows the status of bits SH and SN under varıous conditions of Scan.

Command	Status Register 2		Comments
	Bit $2=5 N$	Bit 3 = SH	
Scan Equal	0	1	$\mathrm{D}_{\text {FDD }}=\mathrm{D}_{\text {Processor }}$
	1	0	$\mathrm{D}_{\text {FDD }} \neq \mathrm{D}_{\text {Processor }}$
Scan Low or Equal	0	1	$\mathrm{D}_{\text {FDD }}=\mathrm{D}_{\text {Processor }}$
	0	0	$\mathrm{D}_{\text {FDD }}<\mathrm{D}_{\text {Processor }}$
	1	0	$\mathrm{D}_{\text {FDD }}>\mathrm{D}_{\text {Processor }}$
Scan High or Equal	0	1	$\mathrm{D}_{\text {FDD }}=\mathrm{D}_{\text {Processor }}$
	0	0	$\mathrm{D}_{\text {FDD }}>\mathrm{D}_{\text {Processor }}$
	1	0	$\mathbf{D}_{\text {FDD }}<$ D $_{\text {Processor }}$

If the FDC encounters a Deleted Data Address mark on one of the sectors (and $\mathrm{SK}=0$ ), then it regards the sector as the last sector on the cylinder, sets the CM (Control Mark) flag of Status Register 2 to a 1 (high) and terminates the command. If SK $=1$, the FDC skips the sector with the Deleted Address mark and reads the next sector. In the second case (SK = 1), the FDC sets the CM (Control Mark) flag of Status Register 2 to a 1 (high) in order to show tnat a Deleted sector had been encountered.
When either the STP (contiguous sectors $=01$, or alternate sectors $=02$ ) sectors are read or the MT (Multitrack) is programmed, it is necessary to remember that the last sector on the track must be read. For example, if STP $=$ $02, \mathrm{MT}=0$, the sectors are numbered sequentially 1 through 26 and the Scan command is started at sector 21, the following will happen: Sectors 21,23 , and 25 will be read, then the next sector (26) will be skipped and the index hole will be encountered before the EOT value of 26 can be read. This will result in an abnormal termination of the command. If the EOT had been set at 25 or the scanning started at sector 20, then the Scan command would be completed in a normal manner.
During the Scan command, data is supplied by either the processor or DMA Controller for comparison against the data read from the diskette. In order to avoid having the OR (Overrun) flag set in Status Register 1, it is necessary to have the data available in less than $27 \mu \mathrm{~S}$ (FM mode) or 13 $\mu s$ (MFM mode). If an Overrun occurs, the FDC ends the command with bits 7 and 6 of Status Register 0 set to 0 and 1 , respectively.

## Seek

The Read/Write head within the FDD is moved from cylinder to cylinder under control of the Seek command. FDC has four independent Present Cylinder Registers for each drive. They are cleared only after the Recalibrate command. The FDC compares the PCN (Present Cylinder Number) which is the current head position with the NCN (New Cylinder Number), and if there is a difference, performs the following operations:
PCN $<$ NCN: Direction signal to FDD set to a 1 (high), and Step Pulses are issued. (Step In)
PCN $>$ NCN: Direction signal to FDD set to a 0 (low), and Step Pulses are issued. (Step Out)
The rate at which Step pulses are issued is controlled by SRT (Stepping Rate Time) in the Specify command. After each Step pulse is issued NCN is compared aganst PCN, and when NCN = PCN, the SE (Seek End) flag is set in Status Register 0 to a 1 (high), and the command is terminated. At this point FDC interrupt goes high. Bits $D_{0} B-D_{3} B$ in the Main Status Register are set during the Seek operation and are cleared by the Sense Interrupt Status command.

## $\mu$ PD765A/7265

During the command phase of the Seek operation the FDC is in the FDC Busy state, but during the execution phase it is in the Nonbusy state. While the FDC is in the Nonbusy state, another Seek command may be issued, and in this manner parallel Seek operations may be done on up to four drives at once. No other command can be issued for as long as the FDC is in the process of sending step pulses to any drive.
If an FDD is in a Not Ready state at the beginning of the command execution phase or during the Seek operation, then the NR (Not Ready) flag is set in Status Register 0 to a 1 (high), and the command is terminated after bits 7 and 6 of Status Register 0 are set to 0 and 1 respectively.
If the time to write three bytes of Seek command exceeds $150 \mu \mathrm{~s}$, the timing between the first two step pulses may be shorter than set in the Specify command by as much as 1 ms .

## Recalibrate

The function of this command is to retract the Read/Write head within the FDD to the Track 0 position. The FDC clears the contents of the PCN counter and checks the status of the Track 0 signal from the FDD. As long as the Track 0 signal is low, the Direction signal remains 0 (low) and step pulses are issued. When the Track 0 signal goes high, the SE (Seek End) flag in Status Register 0 is set to a 1 (high) and the command is terminated. If the Track 0 signal is still low after 77 step pulses have been issued, the FDC sets the SE (Seek End) and EC (Equipment Check) flags of Status Register 0 to both 1s (highs) and terminates the command after bits 7 and 6 of Status Register 0 are set to 0 and 1 respectively.
The ability to do overlap Recalibrate commands to multiple FDDs and the loss of the Ready signal, as described in the Seek command, also applies to the Recalibrate command. If the Diskette has more than 77 tracks, then Recalibrate command should be issued twice, in order to position the Read/Write head to the Track 0.

## Sense Interrupt Status

An Interrupt signal is generated by the FDC for one of the following reasons:

1. Upon entering the Result phase of:
a. Read Data command
b. Read A Track command
c. Read ID command
d. Read Deleted Data command
e. Write Data command
f. Format A Cylinder command
g. Write Deleted Data command
h. Scan commands
2. Ready Line of FDD changes state
3. End of Seek or Recalibrate command
4. During Execution phase in the non-DMA mode Interrupts caused by reasons 1 and 4 above occur during normal command operations and are easily discernible by the processor. During an execution phase in non-DMA mode, DB5 in the Main Status Regıster is high. Upon entering the Result phase this bit gets cleared. Reasons 1 and 4 do not require Sense Interrupt Status commands. The interrupt is cleared by Reading/Writing data to the FDC. Interrupts caused by reasons 2 and 3 above may be uniquely identified with the aid of the Sense Interrupt Status command. This command when issued resets the Interrupt signal and via bits 5, 6, and 7 of Status Register 0 identifies the cause of the interrupt.

Seek End Bit 5	Interrupt Code		Cause
	Bit 6	Bit 7	
0	1	1	Ready Line changed state, either polarity
1	0	0	Normal Termination of Seek or Recalibrate command
1	1	0	Abnormal Termination of Seek or Recalıbrate command

## Table 3

The Sense Interrupt Status command is used in conjunction with the Seek and Recalibrate commands which have no result phase. When the disk drive has reached the desired head position the $\mu$ PD765A/ $\mu$ PD7265 will set the Interrupt line true. The host CPU must then issue a Sense Interrupt Status command to determine the actual cause of the interrupt, which could be Seek End or a change in ready status from one of the drives. A graphic example is shown:

Seek, Recalibrate, and Sense Interrupt Status


## Specify

The Specify command sets the initial values for each of the three internal timers. The HUT (Head Unload Time) defines the time from the end of the execution phase of one of the Read/Write commands to the head unload state. This timer is programmable from 16 to 240 ms in increments of 16 ms ( $01=16 \mathrm{~ms}, 02=32 \mathrm{~ms} \ldots 0 \mathrm{~F}_{16}=240 \mathrm{~ms}$ ). The SRT (Step Rate Time) defines the tıme interval between adjacent step pulses. This timer is programmable from 1 to 16 ms in increments of $1 \mathrm{~ms}(F=1 \mathrm{~ms}, E=2 \mathrm{~ms}, D=3 \mathrm{~ms}$, etc.). The HLT (Head Load Time) defines the time between when the Head Load signal goes high and the Read/Write operation starts. This timer is programmable from 2 to 254 ms in increments of $2 \mathrm{~ms}(01=2 \mathrm{~ms}, 02=4 \mathrm{~ms}, 03=$ $6 \mathrm{~ms} \ldots 7 \mathrm{~F}=254 \mathrm{~ms}$ ).
The time intervals mentioned above are a direct function of the clock (CLK on pin 19). Times indicated above are for an 8 MHz clock; if the clock was reduced to 4 MHz (mınıfloppy application) then all tıme intervals are increased by a factor of 2.
The choice of a DMA or non-DMA operation is made by the ND (Non-DMA) bit. When this bit is high (ND = 1) the Non-DMA mode is selected, and when ND $=0$ the DMA mode is selected.

## Sense Drive Status

This command may be used by the processor whenever it wishes to obtain the status of the FDDs. Status Register 3 contains the Drive Status information stored internally in FDC registers.

## Invalid

If an Invalid command is sent to the FDC (a command not defined above), then the FDC will terminate the command after bits 7 and 6 of Status Register 0 are set to 1 and 0 respectively. No interrupt is generated by the $\mu$ PD765A/ $\mu$ PD7265 durıng this condition. Bits 6 and 7 (DIO and RQM) in the Main Status Register are both high (1), Indicating to the processor that the $\mu$ PD765A/ $\mu$ PD7265 is in the Result phase and the contents of Status Register 0 (STO) must be read. When the processor reads Status Register 0 it will find an 80 hex, indicating an Invalid command was received.
A Sense Interrupt Status command must be sent after a Seek or Recalibrate Interrupt, otherwise the FDC will consider the next command to be an Invalid command. In some applications the user may wish to use this command as a No-Op command to place the FDC in a standby or No Operation state.

## $\mu$ PD765A (FM Mode)

$\begin{gathered} \text { GAP } 4 \mathrm{a} \\ 40 \mathrm{x} \\ \mathrm{FF} \end{gathered}$	$\begin{gathered} \text { SYNC } \\ 6 \mathrm{x} \\ 00 \end{gathered}$	$\begin{aligned} & \text { IAM } \\ & \text { FC } \end{aligned}$	$\begin{aligned} & \text { GAP }{ }_{2}^{26 x} \\ & \mathrm{FF} \end{aligned}$	$\begin{gathered} \text { SYNC } \\ 6 \mathrm{x} \\ 00 \end{gathered}$	$\begin{aligned} & \text { IDAM } \\ & \text { FE } \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{Y} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & H \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & S \\ & E \\ & C \end{aligned}$	$\begin{aligned} & N \\ & 0 \end{aligned}$		$\begin{gathered} \text { GAP } 2 \\ \substack{11 x \\ F F} \end{gathered}$	$\begin{gathered} \text { SYNC } \\ 6 \mathrm{x} \\ 00 \end{gathered}$	DATA AM FB or F8	DATA (1)	C	$\text { GAP } 3$ (1)	GAP 4b

Re__ Repeat $N$ Times
$\mu$ PD7265 (FM Mode)

## $\mu$ PD765A (MFM Mode)

$\begin{aligned} & \text { GAP 4a } \\ & 80 \mathrm{x} \\ & 4 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { SYNC } \\ & 12 x \\ & 00 \end{aligned}$	IAM											$22 x$	$\begin{gathered} \text { SYNC } \\ 12 x \\ 00 \end{gathered}$	DATA AM		DATA	C	$\begin{gathered} \text { GAP } 3 \\ \text { (1) } \end{gathered}$	GAP 4b
		${ }^{3 \mathrm{3x}}$	FC						${ }_{\mathrm{H}}^{\mathrm{H}}$	E	$\stackrel{N}{\mathrm{~N}}$	R			$\begin{aligned} & 3 \mathrm{x} \\ & \mathrm{~A} 1 \end{aligned}$	$\begin{aligned} & \text { FB } \\ & \text { F8 } \end{aligned}$				

Index $\square$

$\mu$ PD7265 (MFM Mode)

$\begin{gathered} \text { GAP } 12 \times 1 \\ 4 \mathrm{E} \end{gathered}$	$\begin{gathered} \text { SYNC } \\ 12 x \\ 00 \end{gathered}$	IDAM		$\begin{aligned} & \mathrm{C} \\ & \mathrm{y} \end{aligned}$	${ }_{\mathrm{H}}^{\mathrm{H}}$	$\begin{aligned} & \mathbf{S} \\ & \mathbf{E} \\ & \mathbf{C} \end{aligned}$	$\begin{gathered} \mathrm{N} \\ \mathbf{O} \end{gathered}$	$\begin{aligned} & C \\ & R \\ & C \end{aligned}$	$\underset{4 \mathrm{in}}{\mathrm{GAP}} \mathbf{2}$	$\begin{gathered} \text { SYNC } \\ 12 x \\ 00 \end{gathered}$	DATA AM		$\underset{(1)}{\text { DATA }}$	C	$\underset{\text { GAP }}{ }$	GAP 4
		$\begin{aligned} & 3 \mathrm{x} \\ & \mathrm{~A} 1 \end{aligned}$	FE								$\begin{aligned} & 3 \mathrm{x} \\ & \mathrm{~A} 1 \end{aligned}$	$\begin{aligned} & \text { FB } \\ & \text { F8 } \end{aligned}$				

Index $\qquad$

## $\mu$ PD765A/7265

MPD765A

$\mu$ PD7265
 we


Note: $\qquad$
Wrte

Notes: It is suggested that the user refer to the following application notes
(1) \#8 - for an example of an actual interface as well as a theoretical data separator
(2) \#10 - for a well documented example of a working phase - locked loop

## Package Outlines

For information, see Package Outline Section 7.
Plastic, $\mu$ PD765AC/7265C
Ceramic, $\mu$ PD765AD/7265D

## Description

The $\mu$ PD7201A is a dual-channel multifunction peripheral communication controller designed to satisfy a wide variety of serial data communication requirements in computer systems. Its basic function is a serial-to-parallel, parallel-to-serial converter/controller and within that role it is configurable by systems software so its "personality" can be optimized for a given serial data communications application.
The $\mu$ PD7201A is capable of handling asynchronous and synchronous byte-oriented protocols such as IBM Bisync, and synchronous bit-oriented protocols such as HDLC and IBM SDLC. This versatile device can also be used to support virtually any other serial protocol for applications other than data communications.
The $\mu$ PD7201A can generate and check CRC codes in any synchronous mode and can be programmed to check data integrity in various modes. The device also has facilities for modem controls in both channels. In applications where these controls are not needed the modem controls can be used for general-purpose I/O.

## Features

Two fully independent duplex serial channels
Four independent DMA channels for send/received data for both serial inputs/outputsProgrammable interrupt vectors and interrupt priorities Modem controls signals
Variable software programmable data rate, up to 1.25 M baud at 5 MHz clock
$\square$ Double buffered transmitter data and quadruply buffered received dataProgrammable CRC algorithmSelection of Interrupt, DMA or Polling mode of operation
Asynchronous operation

- Character length: 5, 6, 7, or 8 bits
- Stop bits: 1, 112,2 2
- Transmission speed: x1, x16, x32, or x64 clock frequency
- Parity: odd, even, or disable
- Break generation and detection
- Interrupt on parity, overrun, or framing errors

Monosync, bisync, and external sync operations

- Software selectable sync characters
- Automatic sync insertion
- CRC generation and checking

HDLC and SDLC operations

- Abort sequence generation and detection
- Automatic zero insertion and detection
- Address field recognition
- CRC generation and checking
- l-field residue handling

N-channel MOS technology
Single +5 V power supply; interface to most microprocessors including $8080,8085,8086$, and others. Single-phase TTL clockAvailable in plastic and ceramic dual-in-line packages

## Pin Configuration



Pin Identification

Pin				Description
No.	Symbol	Name	1/0	
1	CLK	System Clock	1	A TTL-level system clock signal is applied to this input The system clock frequency must be at least 4.5 times the data clock frequency applied to any of the data clock inputs (TXCA, TXCB, RXCA, or LRXCB).
2	$\overline{\text { RESET }}$	Reset	I	A low on this input (one complete CLK cycle minımum) initialızes the MPSC ${ }^{2}$ to the following conditions' disables the receivers and transmitters; sets TxDA and TxDB to marking (high); and sets the modem control outputs ( $\overline{\text { DTRA }}, \overline{D T R B}, \overline{R T S A}, \overline{R T S B})$ high. Additionally, all interrupts are disabled and all interrupt and DMA requests are cleared. All control registers must be rewritten after a reset and before a restart. (Active low)
3,5	$\begin{aligned} & \overline{\overline{D C D A}}, \\ & \overline{\mathrm{DCDB}} \end{aligned}$	Data Carrier Detect	1	Data carrier detect generally indicates the presence of valid serial data at RxD. The MPSC ${ }^{2}$ may be programmed so that the receiver is enabled only when DCD is low, and also so that any change in state that lasts longer than the minımum specified pulse width causes an interrupt and latches the $\overline{\mathrm{DCD}}$ status bit to the new state. (Actıve low)
4,35	$\frac{\overline{\mathrm{RXCA}}}{\mathrm{RXCB}}$	Receiver Clocks	I	The receiver clock controls the sampling and shifting of serial data at RxD. The MPSC ${ }^{2}$ may be programmed so that the clock rate is $1 \mathrm{x}, 16 \mathrm{x}, 32 \mathrm{x}$, or 64x the data rate. RxD is sampled on the rising edge of $\overline{\mathrm{RxC}}$. $\overline{\mathrm{RxC}}$ features a Schmitt-trigger input for relaxed rise and fall time requirements. (Active low)
6,39	$\begin{aligned} & \overline{\overline{\text { CTSA }}}, \\ & \overline{\text { CTSB }} \end{aligned}$	Clear to Send	I	Clear to send generally indicates that the receiving modem or peripheral is ready to receive data from the MPSC? The MPSC ${ }^{2}$ may be programmed so that the transmitter is enabled only when CTS is low. As with DCD, the MPSC ${ }^{2}$ may be programmed to cause an interrupt and latch the new state when CTS changes state for longer than the minimum specified pulse width. (Active low)

## Pin Identification

Pin				Description
No.	Symbol	Name	1/0	
7,36	$\overline{\overline{T X C A}},$	Transmitter Clocks	1	The transmitter clock controls the rate at which data is shifted out at TxD. The MPSC ${ }^{2}$ may be programmed so that the clock rate is $1 \mathrm{x}, 16 \mathrm{x}, 32 \mathrm{x}$, or $64 x$ the data rate. Data changes on the falling edge of TxC. TxC features a Schmitt-trigger input for relaxed rise and fall time requirements. (Active low)
8,37	$\begin{aligned} & \text { TxDA, } \\ & \text { TxDB } \end{aligned}$	Transmit Data	0	Serial data from the MPSC ${ }^{2}$ is output on these pins. (Markıng high)
9,34	$\begin{aligned} & \text { RxDA, } \\ & \text { RxDB } \end{aligned}$	Recerve Data	1	Serial data to the MPSC ${ }^{2}$ is input on these pins. (Markıng high)
10,33	$\begin{aligned} & \overline{\text { SYNCA }}, \\ & \overline{\text { SYNCB }} \end{aligned}$	Synchronızation (Sync)	1/0	The function of the Sync pin depends on the MPSC ${ }^{2}$ operating mode. In asynchronous mode, Sync is an input that the processor can read. It can be programmed to generate an interrupt in the same manner as $\overline{\text { DCD }}$ or CTS.
				In external sync mode, $\overline{\text { SYNC }}$ is also an input that notifies the MPSC ${ }^{2}$ that synchronization has been achieved. (See the timing waveforms for details). Once synchronization is achieved, SYNC should be held low until synchronization is lost or a new message is about to start.
				In internal synchronization modes (monosync, bisync, SDLC), $\overline{\text { SYNC }}$ is an output which is active wherever a Sync character match is made. There is no qualifying logic associated with this function. Regardless of character boundaries, SYNC is active on any match. (Active low)
10, 38	$\begin{aligned} & \overline{\text { RTSA }} \\ & \overline{\text { RTSB }} \end{aligned}$	Request to Send	0	When the MPSC ${ }^{2}$ is operated in one of the synchronous modes, $\overline{\text { RTSA }}$ and $\overline{\text { RTSB }}$ are general-purpose outputs that may be set or reset with commands to the MPSC ${ }^{2}$. In asynchronous mode, RTS is active immediately as soon as it is programmed on. However, when programmed off, RTS remains active until the transmitter is completely empty. This feature simplifies the programming required to perform modem control. (Active low)
$\begin{aligned} & 11,29, \\ & 30,32, \end{aligned}$	DRQTXA, DRQTxB, DRQRxA, DRQRxB	DMA Request	0	When these lines are active, they indicate to a DMA controller that a transmitter or receiver is requesting a DMA data transfer. (Active high)
11, 32	$\frac{\overline{\text { WAITA }}}{\overline{\text { WAITB }}}$	Wart	0	These outputs synchronize the processor with the MPSC ${ }^{2}$ when block transfer mode is used. It may be programmed to operate with either the receiver or transmitter, but not both simultaneously. WAIT is normally inactive. For example, if the processor tries to perform an inappropriate data transfer such as write to the transmitter when the transmitter buffer is full, the WAIT output for the channel is active until the MPSC ${ }^{2}$ is ready to accept the data. The $\overline{\mathbf{C S}}, \mathbf{C} / \overline{\mathrm{D}}, \mathrm{B} / \overline{\mathrm{A}}, \overline{\mathrm{R}} \overline{\mathrm{D}}$ and WR inputs must remain stable while WAIT is active. (Open drain)
12-19	$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data Bus	1/0	The data bus lines are connected to the system data bus. Data or status from the MPSC ${ }^{2}$ is output on these lines when $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ are active; data or commands are latched into the MPSC ${ }^{2}$ on the rising edge of $\overline{W R}$ when $\overline{\mathrm{CS}}$ is active. (Three-state)
20	$\mathrm{V}_{\text {Ss }}$	Ground		Ground.
21	$\overline{\text { WR }}$	Write	1	This input (with either $\overline{\mathrm{CS}}$ during a read cycle or HAI during a DMA cycle) notıfies the MPSC ${ }^{2}$ to write data or control information to the device. (Active low)
22	$\overline{\mathbf{R D}}$	Read	1	This input (with either $\overline{\mathrm{CS}}$ during a read cycle or HAI during a DMA cycle) notifies the MPSC ${ }^{2}$ to read data or status from the device. (Active low)
23	$\overline{\mathbf{C S}}$	Chip Select	1	Chip select allows the MPSC ${ }^{2}$ to transfer data or commands during a read or write cycle. (Active low)

Pin Identification

Pin				Description
No.	Symbol	Name	1/0	
24	C/ $\overline{\text { D }}$	Control/Data Select	1	This input, with $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, and $\mathrm{B} / \overline{\mathrm{A}}$ selects the data register ( $C / \bar{D}=0$ ) or the control and status registers ( $C / \bar{D}=1$ ) for access over the data bus.
25	$\mathbf{B} / \overline{\mathbf{A}}$	Channel Select	I	A low selects channel $A$ and $a$ high selects channel $B$ for access during a read or write cycle.
26	$\overline{\text { HAI }}$	Hold Acknowledge In	I	This input notifies the MPSC ${ }^{2}$ that the host processor has acknowledged the DMA request and has placed itself in the hold state. The MPSC ${ }^{2}$ then performs a DMA cycle for the highest priority outstanding DMA request, if any. (Active low)
26,31	$\begin{aligned} & \hline \overline{\text { DTRA }}, \\ & \overline{\text { DTRB }} \end{aligned}$	Data Terminal Ready	0	The DTR pins are general-purpose outputs which may be set or reset with commands to the MPSC? (Active low)
27*	$\overline{\text { INTA }}$	Interrupt Acknowledge	1	The processor generates two or three INTA pulses (depending on the processor type) to signal all peripheral devices that an interrupt acknowledge sequence is taking place. During the interrupt acknowledge sequence, the MPSC ${ }^{2}$, if so programmed, places information on the data bus to vector the processor to the appropriate interrupt service location. (Active low)
28	$\overline{\text { INT }}$	Interrupt Request	0	$\overline{\mathrm{NNT}}$ is pulled low when an internal interrupt request is accepted. (Active low, open drain)
29	$\overline{\text { PRI }}$	Interrupt Priority In	I	This input informs the MPSC ${ }^{2}$ that the highest priority device is requesting interrupt and is used with PRO to implement a priority resolution daisy chain when there is more than one interrupting device. The state of PRI and the programmed interrupt mode determine the MPSC2's response to an interrupt acknowledge sequence. (Active low)
30	$\overline{\text { PRO }}$	Interrupt Priority Out	0	This output is active when $\overline{\mathrm{HAl}}$ is active and the MPSC ${ }^{2}$ is not requesting interrupt (INT is inactıve). The active state informs the next lower priority device that there are no higher priority interrupt requests pending during an interrupt acknowledge sequence. (Active low)
31	$\overline{\text { HAO }}$	Hold Acknowledge Out	0	This output, with $\overline{\mathrm{HAl}}$ implements a priority dassychain for multıple DMA devices. $\overline{\mathrm{HAO}}$ is active when $\overline{\mathrm{HAI}}$ is active and there are no DMA requests pending in the MPSC ${ }^{2}$. (Active low)



## $\mu$ PD7201A

## Programming the MPSC²

The software operation of the MPSC ${ }^{2}$ is very straightforward. Its consistent register organization and high-level command structure help minimize the number of operations required to implement complex protocol designs. Programming is further simplified by the MPSC²'s extensive interrupt and status reporting capabilities. This section is divided into two parts.

## The MPSC ${ }^{2}$ Registers

The MPSC² interfaces to the system software with a number of control and status registers associated with each channel. Commonly used commands and status bits are accessed directly through control and status registers 0. Other functions are accessed indirectly with a register pointer to minimize the address space that must be dedicated to the MPSC².

Control Register

Control   Register	Function
0	Frequently used commands and register pointer control
1	Interrupt control
2	Processor/bus interface control
3	Receiver control
4	Mode control
5	Transmitter control
6	Sync/address character
7	Sync character

Status Register

Status   Register	Function
0	Buffer and "external/status" status
1	Recerved character error and special condition status
2   (Channel   B only)	interrupt vector
3	Tx byte count register, low byte
4	Tx byte count register, high byte

All control and status registers except CR2 are separately maintained for each channel. Control and status registers 2 are linked with the overall operation of the MPSC ${ }^{2}$ and have different meanings when addressed through different channels.
When initializing the MPSC ${ }^{2}$ control register 2 A (and 2B if desired) should be programmed first to establish the MPSC ${ }^{2}$ processor/bus interface mode. Each channel may then be programmed to be used separately, beginning with control register 4 to set the protocol mode for that channel. The remaining registers may then be programmed in any order.

## Control Register 0

$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$
CRC Control   Command	Command					

## Register pointer ( $D_{0}-D_{2}$ )

The register pointer specifies which register number is accessed at the next control register write or status register read. After a hardware or software reset the register pointer is set to zero. Therefore, the first control byte goes to control register 0 . When the register pointer is set to a value other than zero the next control or status $(C / \bar{D}=1)$ access is to the specified register, after which the pointer is reset to zero. Other commands can be freely combined in control register 0 by setting the register pointer.

## Commands ( $D_{3}-D_{5}$ )

Commands commonly used during the operation of the MPSC ${ }^{2}$ are grouped in control register 0 . They include the following:
Null (000): This command has no effect and is used only to set the register pointer or issue a CRC command.
Send abort (001): When operating in the SDLC mode this command causes the MPSC ${ }^{2}$ to transmit the SDLC abort code, issuing 8 to 13 consecutive ones. Any data currently in the transmitter or the transmitter buffer is destroyed. After sending the abort the transmitter reverts to the idle phase (flags). When using the Tx byte count mode enable ( $D_{6}$ of CR1), and an underrun condition occurs, the $\mu$ PD7201A will automatically issue the send abort command.
Reset external status interrupts (010): When the external/status change flag is set, the condition of bits $D_{3}-D_{7}$ of status register 0 are latched to allow the capture of the short pulses that may occur. The reset external/ status interrupts command reenables the latches so that new interrupts may be sensed.
Channel reset (011): This command has the same effect on a single channel as an external reset at pin 2. A channel reset command to channel $A$ resets the internal interrupt prioritization logic. This does not occur when a channel reset command is issued to channel B . All control registers associated with the channel to be reset must be reinitialized. After a channel reset, wait at least four system clock cycles before writing new commands or controls to that channel.

Enable interrupt on next character (100): When operating the MPSC ${ }^{2}$ in an interrupt on first received character mode this command may be issued at any time. This command must be issued at the end of a message to reenable the interrupt logic for the next received character (the first character of the next message).

## Reset pending transmitter interrupt/DMA request

(101): A pending transmitter buffer becoming empty interrupt or DMA request can be reset without sending another character by issuing this command (typically at the end of a message). A new transmitter buffer becoming empty interrupt or DMA request is not made until another character has been loaded and transferred to the transmitter shift register or when, if operating in the synchronous or SDLC modes, the first CRC character has been sent.

Error Reset (110): This command resets a special receive condition interrupt. It also reenables the parity and overrun error latches that allow errors at the end of a message to be checked.

End of interrupt (111) (channel A only): Once an interrupt request has been issued by the MPSC ${ }^{2}$ all lower priority internal and external interrupts in the daisychain are held off to permit the current interrupt to be serviced while allowing higher priority interrupts to occur. At some point in the interrupt service routine (generally at the end), the end of interrupt command must be issued to channel $A$ to reenable the daısychain and allow any pending lower prıority internal interrupt requests to occur. The EOI command must be sent to channel A for interrupts that occurred on either channel.

## CRC Control Commands ( $\mathrm{D}_{6}-\mathrm{D}_{7}$ )

The following commands control the operation of the CRC generator/checker logic.
Null (00): This command has no effect and is used when issuing other commands or setting the register pointer.
Reset receiver CRC checker (01): This command resets the CRC checker to zero when the channel is in a synchronous mode and resets to all ones when in an SDLC mode.
Reset transmitter CRC generator (10): This command resets the CRC generator to zero when the channel is in a synchronous mode and resets to all ones when in an SDLC mode.
Reset idle/CRC latch (11): This command resets the idle/ CRC latch so that when a transmitter underrun condition occurs (that is, the transmitter has no more characters to send), the transmitter enters the CRC phase of operation and begins to send the 16-bit CRC character calculated up to that point. The latch is then set so that if the underrun condition persists, idle characters are sent following the CRC. After a hardware or software reset the latch is in the set state. This latch is automatically reset after the first character has been loaded into the Tx buffer in the SDLC mode.

## Control Register 1

$D_{7}$	$D_{6}$	$D_{5}$	$D_{4}$	$D_{3}$	$D_{2}$	$D_{1}$	$D_{0}$
Wait   Function   Enable	Tx Byte   Count   Mode   Enable	Wait on   Receiver   Transmitter	Receiver   Interrupt   Mode	Condition   Affects   Vector	Transmitter   Interrupt   Enable	Ext/Status   INT   Enable	


$D_{7}$	$D_{6}$	$D_{5}$	$D_{4}$	$D_{3}$	$D_{2}$	$D_{1}$	$D_{0}$
Low Byte							


$D_{7}$	$D_{6}$	$D_{5}$	$D_{4}$	$D_{3}$	$D_{2}$	$D_{1}$
High Byte						

## External/status interrupt enable ( $D_{0}$ )

When this bit is set to one the MPSC ${ }^{2}$ issues an interrupt whenever any of the following conditions occur:

Transition of the $\overline{\mathrm{DCD}}$ input pin
Transition of the CTS input pin
Transition of the SYNC input pin
Entering or leaving synchronous hunt phase, break detection or terminatıon
SDLC abort detection or termination Idle/CRC latch becoming set (CRC being sent)
After ending flag is sent in the SDLC mode

## Transmitter interrupt enable ( $D_{1}$ )

When this bit is set to one the MPSC ${ }^{2}$ issues an interrupt when:

1) The character currently in the transmitter buffer is transferred to the shift register (transmitter buffer becoming empty) or,
2) The transmitter enters the idle phase and begins transmitting sync or flag characters.
3) The Tx byte mode enable bit is set (CR1-D6 = 1). The 7201A will automatically issue a Tx interrupt or DMA request when the transmitter becomes enabled $(C R 5-D 3=1)$.

## Condition affects vector $\left(D_{2}\right)$ (programmed

 in channel $B$ for both channels)When this bit is set to zero the fixed vector programmed in CR2B during MPSC² initialization is returned in an interrupt acknowledge sequence. When this bit is set to one the vector is modified to reflect the condition that caused the interrupt.

## Receiver interrupt mode ( $D_{3}-D_{4}$ )

This field controls how the MPSC²'s interrupt/DMA logic handles the character received condition.

## Receiver interrupts/DMA request disabled

 (00)The MPSC ${ }^{2}$ does not issue an interrupt or a DMA request when a character has been received.

## Interrupt/DMA on first received character only (01)

In this mode the MPSC ${ }^{2}$ issues an interrupt only for the first character received after an enable interrupt/DMA on first character command (CRO) has been given. If the channel is in a DMA mode, a DMA request is issued for each character received including the first. This mode generally is used whenever the MPSC ${ }^{2}$ is in a DMA or block transfer mode. This will signal the processor that the beginning of an incoming message has been received.

## Interrupt (and issue a DMA request) on all received characters (10)

In this mode an interrupt (and DMA request if the DMA mode is selected) is issued whenever there is a character present in the receiver buffer. A parity error is considered a special receive condition.
Interrupt (and issue a DMA request) on all received characters (11)
This mode is the same as the one above except that a parity error is not considered a special receive conditıon. The following are considered special receive conditions:

Receiver overrun factor
Asynchronous framıng error
Parity error (if specified)
SDLC end of message (final flag received)

## Wait on receiver/transmitter ( $D_{5}$ )

If the wait function is enabled for block mode transfers, setting this bit to zero causes the MPSC² to issue a wait (WAIT output goes low) when the processor attempts to write a character to the transmitter while the transmitter buffer is full. Settıng this bit to one causes the MPSC² to issue a wait when the processor attempts to read a character from the receiver while the receiver buffer is empty.

## $\mu$ PD7201A

## Tx byte count mode enable ( $\mathrm{D}_{6}$ )

Each channel has a 16 -bit Tx byte count register used for automatic transmit termination. When this bit is set to one the next two consecutive command cycle writes will be to the byte count register. The first byte is loaded into the lower 8 bits and the second to the upper 8 bits of the byte count register. The byte count register holds the number of transfers to be performed by the transmitter. A byte counter is incremented each time a transfer is performed until the value of the byte counter is equal to the value in the byte count register. When equal, interrupts or DMA requests will be stopped until the byte count enable bit is issued and a new byte count is loaded into the byte count register. If a transmit underrun occurs in the SDLC mode, and the byte count is not equal to the byte count register, the abort sequence will be sent automatically.
Also, when using the Tx byte count mode, a transmit interrupt or DMA request will automatically become active after issuing the Tx enable command to CR5.
The Tx byte count mode can be cleared by either a channel reset command or a hardware reset.

## Wait function enable ( $D_{7}$ )

Setting this bit to one enables the wait function which is described in CR1.

## Control Register 2 (Channel A)

$D_{7}$	$D_{6}$	$D_{5}$	$D_{4}$	$D_{3}$	$D_{2}$	$D_{1}$	$D_{0}$
PIn 10   SYNCB/RTSB	Rx INT   Mask	Interrupt Vector Mode				Priority	DMA Mode   Select

## DMA mode select ( $D_{0}-D_{1}$ )

Setting this field determines whether channel $A$ or $B$ is used in a DMA mode (i.e., data transfers are performed by a DMA controller) or in a non-DMA mode where transfers are performed by the processor in either a polled, interrupt, or block transfer mode. The functions of some MPSC ${ }^{2}$ pins are also controlled by this field.

## DMA Mode Selection

$\mathrm{D}_{1}$	$\mathrm{D}_{0}$	Channel		Pin Function					
		A	B	11	26	29	30	31	32
0	0	Non-DMA	Non-DMA	WAITB	DTRB	PRI	PRO	DTRA	WAITA
0	1	DMA	Non-DMA	DRQTXA	HAI	PRI	PRO	HAO	DRQRxA
1	0	DMA	DMA	DRQTXA	HAI	DRQRxB	DRQTxB	HAO	DRQRxA
1	1	DMA	DMA	DRQTxA	DTRB	DRQRxB	DRQTxB	DTRA	DRQRxA

## Priority $\left(D_{2}\right)$

This bit selects the relative priorities of the various interrupt and DMA conditions according to the application requirements.

## DMA/Interrupt Priorities

$\mathrm{D}_{2}$	Mode	DMA Priority Relation	Interrupt Priority Relation
	Channel A Channel B		
0	INT	-	$\begin{aligned} & \text { SRxA, R×A }>\text { TxA > SRxB, RxB }> \\ & \text { TxB }>\text { ExTA }>\text { ExTB } \end{aligned}$
1		-	$\begin{aligned} & \text { SRXA, RXA>SRXB, RxB>TXA> } \\ & \text { T×B>EXTA>EXTB } \end{aligned}$
0	DMA	RXA > TxA	SRXA, RXA $>$ SRxB, RXB $>$ TxB $>$ ExTA > ExTB
1		RXA $>$ TxA	$\begin{aligned} & \text { SRxA, RXA }>\text { SRxB, RxB }>\text { TxB }> \\ & \text { EXTA }>\text { ExTB } \end{aligned}$
0	DMA	$\begin{aligned} & \operatorname{RxA}>\mathrm{TxA}>\mathrm{RxB}> \\ & \operatorname{T\times B} \end{aligned}$	SRxA, RxA > SRxB, RxB > ExTA > ExTB
1		$\begin{aligned} & \text { R×A }>R \times B>T \times A> \\ & T \times B \end{aligned}$	SRXA, R×A $>$ SRxB, RxB $>$ ExTA $>$ ExTB

Interrupt vector mode ( $D_{3}-D_{5}$ )
This field determines how the MPSC² responds to an interrupt acknowledge sequence from the processor.

## Interrupt Acknowledge Sequence Response

$D_{5}$	$D_{4}$	$D_{3}$	Mode	Status Register 2B and Interrupt Vector   Bits Affected When Condition Affects Vector   Is Enabled
0	0	0	Nonvectored	
0	0	1	Nonvectored	$D_{4} D_{3} D_{2}$
0	1	0	Nonvectored	$D_{4} D_{3} D_{2}$
0	1	1	Illegal	$D_{2} D_{1} D_{0}$
1	0	0	8085 Master	-
1	0	1	8085 Slave	$D_{4} D_{3} D_{2}$
1	1	0	8086	$D_{4} D_{3} D_{2}$
1	1	1	$8085 / 8259 A$ Slave	$D_{2} D_{1} D_{0}$

## Rx INT mask ( $\mathrm{D}_{6}$ )

This option is generally used in the DMA modes. Enabling this bit inhibits the interrupt from occurring when the interrupt/DMA Request On First Received Character mode is selected. In other words, only a DMA request will be generated when the first character is received.

## Pin $10 \overline{\text { SYNCB }} / \overline{\text { RTSB }}$ select ( $D_{7}$ )

Programming a zero into this bit selects $\overline{\text { RTSB }}$ as the function of pin 10. A one selects SYNCB as the function.

## Control Register 2 (Channel B)

$D_{7}$	$D_{6}$	$D_{5}$	$D_{4}$	$D_{3}$	$D_{2}$	$D_{1}$	$D_{0}$
Interrupt Vector							

Interrupt vector ( $D_{0}-D_{7}$ )
When the MPSC ${ }^{2}$ is used in the vectored interrupt mode the contents of this register is placed on the bus during the appropriate portion of the interrupt acknowledge sequence. Its value is modified if status affects vector is enabled. The value of SR2B can be read at any time. This feature is particularly useful in determining the cause of an interrupt when using the $\mathrm{MPSC}^{2}$ in a nonvectored interrupt mode.

## Control Register 3

$D_{7}$	$D_{6}$	$D_{5}$	$D_{4}$	$D_{3}$	$D_{2}$	$D_{1}$	$D_{0}$
Number of Received   Bits per Character	Auto   Enables	Enter   Hunt   Phase	Receiver   CRC Enable	Address   Search   Mode	Sync   Character   Load   Inhibit	Receiver   Enable	

## Receiver enable ( $D_{0}$ )

After the channel has been completely initialized, setting this bit to one allows the receiver to begin operation. This bit may be set to zero at any time to disable the receiver.

## Sync character load inhibit ( $D_{1}$ )

In the character synchronous modes, this bit inhibits the transfer of sync characters to the receiver buffer thus performing a "sync-stripping" operation. When using the MPSC ${ }^{2}$ 's CRC checking ability this feature should be used only to strip leading sync characters preceding a message since the load inhibit does not exclude sync characters embedded in the message from the CRC calculation. Synchronous protocols using other types of block checking such as checksum or LRC are free to strip embedded sync characters with this bit.

## Address search mode $\left(D_{2}\right)$

In the SDLC mode, setting this bit places the MPSC² in an address search mode. Character assembly does not begin until the 8 -bit character (secondary address field) following the starting flag of a message matches either the address programmed into CR6 or the global address 11111111.

## Receiver CRC enable ( $D_{3}$ )

This bit enables and disables ( $1=$ enable) the CRC checker in the COP mode allowing characters from the CRC calculation to be selectively included or excluded. The MPSC ${ }^{2}$ features a one-character delay between the receiver shift register and the CRC checker so that the enabling or disabling takes effect with the last character transferred from the shift register to the receiver buffer. Therefore, there is one full character time in which to read the character and decide whether or not it should be included in the CRC calculation. In the SDLC mode, there is no 8 -bit delay.

## Enter hunt phase ( $\mathrm{D}_{4}$ )

Although the MPSC ${ }^{2}$ receiver automatically enters the sync hunt phase after a reset, there are times when reentry may be desired, such as when it has been determined that synchronization has been lost or, in an SDLC mode, to ignore the current incoming message. Writng a one into this bit at any time after initialization causes the MPSC ${ }^{2}$ to reenter the hunt phase.

## Auto enables ( $D_{5}$ )

Setting this bit to one causes the $\overline{\mathrm{DCD}}$ and $\overline{\mathrm{CTS}}$ inputs to act as enable inputs to the receiver and transmitter, respectively.

## Number of received bits per character ( $\mathrm{D}_{6}-\mathrm{D}_{7}$ )

This field specifies the number of data bits assembled to make each character. The value may be changed on the fly while a character is being assembled and, if the change is made before the new number of bits has been reached it affects that character. Otherwise the new specifications take effect on the next character received.
Received Bits per Character

$\mathbf{D}_{7}$	$\mathbf{D}_{6}$	Bits per Character
0	0	5
0	1	7
1	0	6
1	1	8

## Control Register 4

$D_{7}$	$D_{6}$	$D_{5}$	$D_{4}$	$D_{3}$	$D_{2}$	$D_{1}$	$D_{0}$
Clock Rate	Sync Mode		Number of Stop Bits   per Sync Mode	Parity   Even/Odd	Parity   Enable		

## Parity enable ( $\mathrm{D}_{0}$ )

Setting this bit to one adds an extra data bit containing parity information to each transmitted character. Each received character is expected to contain this extra bit and the receiver parity checker is enabled.

## Parity even/odd ( $D_{1}$ )

Programming a zero into this bit when parity is enabled causes the transmitted parity bit to take on the value required for odd parity. The received character is checked for odd parity. Conversely, a one in this bit signifies even parity generation and checking.
Number of stop bits per sync mode ( $D_{2}-D_{3}$ )
This field specifies whether the channel is used in a synchronous (SDLC) or an asynchronous mode. In an asynchronous mode this field also specifies the number of bit times used as the stop bit length by the transmitter. The receiver always checks for one stop bit.

## Stop Bits

$\mathbf{D}_{3}$	$\mathbf{D}_{2}$	Mode
0	0	Synchronous modes
0	1	Asynchronous 1-bit tıme (1 stop bit)
1	0	Asynchronous $1^{1 / 2}$ bit tımes ( $11 / 2$ stop bits)
1	1	Asynchronous 2-bit tımes (2 stop bits)

## Sync mode ( $D_{4}-D_{5}$ )

When the stop bits/sync mode field is programmed for synchronous modes ( $D_{2}, D_{3}=00$ ), this field specifies the particular synchronous format to be used. This field is ignored in an asynchronous mode.

## Synchronous Formats

Sync Mode 1	Sync Mode 2	
$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	Mode
0	0	8-bit internal synchronızation character (monosync)
0	1	16-bit internal synchronızatıon character (bisync)
1	0	SDLC
1	1	External synchronization (SYNC pin becomes an input)

Clock rate ( $D_{6}-D_{7}$ )
This field specifies the relationship between the transmitter and receiver clock inputs ( $\overline{\mathrm{xC}}, \overline{\mathrm{RxC}}$ ) and the actual data rates at TxD and RxD. When operating in a synchronous mode a $1 \times$ clock rate must be specified. In asynchronous modes any of the rates may be specified, however, with a 1 x clock rate the receiver cannot determine the center of the start bit. In this mode, the sampling (rising) edge of
$\widehat{\mathrm{RxC}}$ must be externally synchronized with the data.
Clock Rates

Clock   Rate 1	Clock   Rate 2	
$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	Clock Rate
0	0	Clock Rate $=1 \times$ Data Rate
0	1	Clock Rate $=16 \times$ Data Rate
1	0	Clock Rate $=32 \times$ Data Rate
1	1	Clock Rate $=64 \times$ Data Rate

## Control Register 5

$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$
DTR	Number of Transmitted   Bits per Character	Send   Break	Transmitter   Enable	CRC   Polynomial   Select	$\overline{\text { RTS }}$	Transmitter   CRC   Enable	

## Transmitter CRC enable ( $D_{0}$ )

A one or a zero enables or disables respectively, the CRC generator calculation. The enable or disable does not take effect until the next character is transferred from the transmitter buffer to the shift register, thus allowing specific characters to be included or excluded from the CRC calculation. By setting or resetting this bit just before loading
the next character, it and subsequent characters are included or excluded from the calculation. If this bit is zero when the transmitter becomes empty the MPSC ${ }^{2}$ goes to the idle phase regardless of the state of the idle/CRC latch.

## RTS ( $D_{1}$ )

In synchronous and SDLC modes setting this bit to one causes the RTS pin to go low while a zero causes it to go high. In an asynchronous mode setting this bit to zero does not cause $\overline{R T S}$ to go high until the transmitter is completely empty. This feature facilitates programming the MPSC² for use with asynchronous modems.

## CRC polynomial select ( $D_{2}$ )

This bit selects the polynomial used by the transmitter and receiver for CRC generation and checking. A one selects the CRC-16 polynomial ( $x^{16}+x^{15}+x^{2}+1$ ). A zero selects the CRC-CCITT polynomial ( $x^{16}+x^{12}+x^{5}+1$ ). In an SDLC mode CRC-CCITT must be selected. Either polynomial may be used in other synchronous modes.

## Transmitter enable ( $D_{3}$ )

After a reset the transmitted data output (TxD) is held high (marking) and the transmitter is disabled until this bit is set. In an asynchronous mode TxD remains high until data is loaded for transmission.
In synchronous and SDLC modes the MPSC² automatically enters the idle phase and sends the programmed sync or flag characters.
When the transmitter is disabled in an asynchronous mode any character currently being sent is completed before TxD returns to the marking state.
If the transmitter is disabled during the data phase in a synchronous mode the current character is sent. TxD then goes high (marking). In an SDLC mode the current character is sent, but the marking line following is zero-inserted. That is, the line goes low for one bit time out of every five.
The transmitter should never be disabled during the SDLC data phase unless a reset is to follow immediately. In either case, any character in the buffer register is held.
Disabling the transmitter during the CRC phase causes the remainder of the CRC character to be bit-substituted with the sync (or flag). The total number of bits transmitted is correct and TxD goes high after they are sent.
If the transmitter is disabled during the idle phase the remainder of the sync (flag) character is sent. TxD then goes high.

## Send break ( $D_{4}$ )

Setting this bit to one immediately forces the transmitter output (TxD) low (spacing). This function overrides the normal transmitter output and destroys any data being transmitted although the transmitter is still in operation. Resetting this bit releases the transmitter output.

## Transmitted bits per character ( $D_{5}-D_{6}$ )

This field controls the number of data bits transmitted in each character. The number of bits per character may be changed by rewriting this field just before the first character is loaded to use the new specification.

## Transmitted Bits per Character

Transmitted   Bits per   Character 1	Transmitted   Bits per   Character	
$\mathbf{D}_{6}$	$\mathbf{D}_{5}$	Bits per Character
0	0	5 or less (see below)
0	1	7
1	0	6
1	1	8

Normally each character is sent to the MPSC ${ }^{2}$ rightjustified and the unused bits are ignored. However, when sending five bits or less the data should be formatted as shown below to inform the MPSC ${ }^{2}$ of the precise number of bits to be sent.

## Transmitted Bits per Character for

 5 Characters or Less| $\mathrm{D}_{7}$ | $\mathrm{D}_{6}$ | $\mathrm{D}_{5}$ | $\mathrm{D}_{4}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{1}$ | $\mathrm{D}_{0}$ | Number of Bits per Character |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 | 0 | 0 | 0 | $\mathrm{D}_{0}$ | 1 |
| 1 | 1 | 1 | 0 | 0 | 0 | $\mathrm{D}_{1}$ | $\mathrm{D}_{0}$ | 2 |
| 1 | 1 | 0 | 0 | 0 | $\mathrm{D}_{2}$ | $\mathrm{D}_{1}$ | $\mathrm{D}_{0}$ | 3 |
| 1 | 0 | 0 | 0 | $\mathrm{D}_{3}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{1}$ | $\mathrm{D}_{0}$ | 4 |
| 0 | 0 | 0 | $\mathrm{D}_{4}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{1}$ | $\mathrm{D}_{0}$ | 5 |

## $\overline{\left.\text { DTR (data terminal ready) ( } D_{7} \text { ) }\right) ~(1) ~}$

When this bit is one the DTR output is low (active). Con versely, when this bit is zero DTR is high.

## Control Register 6

$D_{7}$	$D_{6}$	$D_{5}$	$D_{4}$	$D_{3}$	$D_{2}$	$D_{1}$	$D_{0}$
Sync Byte 1							

Sync byte $1\left(D_{0}-D_{7}\right)$
Sync byte 1 is used in the following modes:

Monosync	8-bit sync character transmitted   during the idle phase   Least significant (first) 8 bits of   the 16-bit transmit and receive   sync character
Bisync	Sync character transmitted during the   idle phase
External Sync	
SDLC	Secondary address value matched to   secondary address field of the SDLC   frame when the MPSC
address search mode in the	

## Control Register 7

$D_{7}$	$D_{6}$	$D_{5}$	$D_{4}$		$D_{2}$	$D_{1}$	$D_{0}$
Sync Byte 2							

Sync byte $2\left(D_{0}-D_{7}\right)$
Sync byte 2 is used in the following modes:
Monosync 8-bit sync character matched by the receiver
Bisync Most significant (second) 8 bits of the 16bit transmit and receive sync characters
SDLC The flag character, 01111110, must be programmed into control register 7 for flag matching by the MPSC² receiver

## Status Register 0

$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$
Break/   Abort	Idle/CRC	CTS	Sync   Status	DCD	Transmitter   Buffer   Empty	Interrupt   Pending	Received   Character   Available

## Received character available ( $D_{0}$ )

When this bit is set it indicates that one or more characters in the receiver buffer is available for the processor to read. Once all the available characters have been read the MPSC ${ }^{2}$ resets this bit until a new character is received.

## Interrupt pending ( $D_{1}$ - channel $A$ only)

The interrupt pending bit is used with the interrupt vector register (status register 2) to make it easier to determine the MPSC²'s interrupt status, particularly in a nonvectored interrupt mode where the processor must poll each device to determine the interrupt source. In this mode interrupt pending is set when status register 2 B is read, the $\overline{\mathrm{PRI}}$ input is active (low), and the MPSC ${ }^{2}$ is requesting interrupt service.
The status registers of both channels need not be analyzed to determine if an interrupt is pending. If the status affects vector is enabled and the interrupt pending is set the vector read from SR2 contains valid condition information.
In a vectored interrupt mode interrupt pending is set during the interrupt acknowledge cycle (on the leading edge of the second INTA pulse) when the MPSC² is the highest priority device requesting interrupt service ( $\overline{\mathrm{PRI}}$ is active). In either mode if there are no other pending interrupt requests interrupt pending is reset when the end of the interrupt command is issued.

## Transmitter buffer empty ( $\mathrm{D}_{2}$ )

This bit is set whenever the transmitter buffer is empty except during the transmission of CRC. (The MPSC² uses the buffer to facilitate this function.) After a reset the buffer is considered empty and transmit buffer empty is set.

## External/status flags $\left(D_{3}-D_{7}\right)$

The following status bits reflect the state of the various conditions that cause an external/status interrupt. The MPSC² latches all external/status bits whenever a change occurs that would cause an external/status interrupt (regardless of whether this interrupt is enabled). This allows transient status changes on these lines to be captured with relaxed software timing requirements.
When the MPSC ${ }^{2}$ is operated in an interrupt-driven mode for external/status interrupts, status register 0 should be read when this interrupt occurs and a reset external/status interrupt command issued to reenable the interrupt and the latches. To poll these bits without interrupts, the reset external/status interrupt command can be issued to first update the status to reflect the current values.
$\overline{\mathrm{DCD}}\left(\mathrm{D}_{3}\right)$ : This bit reflects the inverted state of the $\overline{D C D}$ input. When $\overline{D C D}$ is low the $\overline{D C D}$ status bit is high. Any transition on this bit causes an external/status interrupt request.
Sync status $\left(D_{4}\right)$ : The meaning of this bit depends on the operating mode of the MPSC².
Asynchronous mode: Sync status reflects the inverted state of the SYNC input. When SYNC is low, sync status is high. Any transition on this bit causes an external/status interrupt request.

External synchronization mode: Sync status operates in the same manner as an asynchronous mode. The MPSC2's receiver synchronization logic is also tied to the sync status bit in an external synchronization mode and a low-to-high transition (SYNC input going low) informs the receiver that synchronization has been achieved and character assem-

## bly begins.

A low-to-high transition on the $\overline{\text { SYNC }}$ input indicates that synchronization has been lost and is reflected both in the sync status becoming zero and the generation of an external/status interrupt. The receiver remains in the receive data phase until the enter hunt phase bit in control register 3 is set.
Monosync, bisync, SDLC modes: In these modes, sync status indicates whether the MPSC ${ }^{2}$ receiver is in the sync hunt or receive data phase of operation. A zero indicates that the MPSC ${ }^{2}$ is in the receive data phase and a one indicates that the MPSC ${ }^{2}$ is in the sync hunt phase (as after a reset or a setting of the enter sync hunt phase bit). As in the other modes a transition on this bit causes an external/ status interrupt to be issued. It should be noted that entering a sync hunt phase after either a reset or when programmed causes an external/status interrupt request which may be cleared immediately with a reset external/ status interrupt command.
CTS ( $D_{5}$ ): This bit reflects the inverted state of the $\overline{\mathrm{CTS}}$ input. When $\overline{\mathrm{CTS}}$ is low, the $\overline{\mathrm{CTS}}$ status bit is high. Any transition on this bit causes an external/status interrupt request.
Idle/CRC ( $\mathrm{D}_{6}$ ) (Tx underrun/EOM): This bit indicates the state of the idle/CRC latch used in the synchronous and SDLC modes. After a hardware reset this bit is set to one, indicating that the transmitter is completely empty. When the MPSC ${ }^{2}$ enters idle phase it automatically transmits sync or flag characters.
In the SDLC mode the MPSC² automatically resets this latch after the first byte of a frame is written to the Tx buffer. When the transmitter is completely empty, the MPSC² sends the 16-bit CRC character and sets the latch again. An external/status interrupt is issued when the latch is set, indicating that CRC is being sent. No interrupt is issued when the latch is reset.
Break/abort ( $\mathrm{D}_{7}$ ): In the asynchronous mode this bit indicates the detection of a break sequence (a null character plus framing error that occurs when the RxD input is held low, spacing, for more than one character time). Break/ abort is reset when RxD returns high (marking).
In the SDLC mode, Break/abort indicates the detection of an abort sequence when seven or more ones are received in sequence. It is reset when a zero is received.
Any transition of the break/abort bit causes an external/ status interrupt.

## Status Register 1

$D_{7}$	$D_{6}$	$D_{5}$	$D_{4}$	$D_{3}$	$D_{2}$	$D_{1}$	$D_{0}$
End of   SDLC Frame	CRC   Framing   Error	Overrun   Error	Parity   Error	SDLC Residue Code	All Sent		

## All sent ( $D_{0}$ )

This bit is set when the transmitter is empty and reset when a character is present in the transmitter buffer or shift register. This feature simplifies the modem control software routines. In the bit synchronous mode, this bit will be set when the ending flag pattern is sent.

## SDLC residue code ( $D_{1}-D_{3}$ )

Since the data portion of an SDLC message can consist of any number of bits and not necessarily an integral number of characters, the MPSC² features special logic to determine and report when the end of frame flag has been received, the boundary between the data field and the CRC character in the last few data characters that were just read. When the end of frame condition is indicated, that is, status register $1 D_{7}=1$ and special receive condition interrupt (if enabled), the last bits of the CRC character are in the receiver buffer. The residue code for the frame is valid in the status register 1 byte associated with that data character. (SR1 tracks the received data in its own buffer.) The meaning of the residue code depends upon the number of bits per character specified for the receiver. The previous character refers to the last character read before the end of frame, and so forth.

## Residue Codes

D3	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	Previous Character	2nd Previous Character
1	0	0	ccccccco	CCCCCDDD
0	1	0	cccccccc	CCCCDDDD
1	1	0	cccccccc	CCCDDDDD
0	0	1	ccccccc	CCDDDDDD
1	0	1	ccccccc	CDDDDDDD
0	1	1	ccccccco	DDDDDDDD (no residue)
1	1	1	CCCCCCCD	DDDDDDDD
0	0	0	CCCCCCDD	DDDDDDD
7 Bits per Character				
$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	Previous Character	2nd Previous Character
1	0	0	cccccco	CCCCCDD
0	1	0	ccccccc	CCCCDDD
1	1	0	ccccccc	CCCDDDD
0	0	1	cccccc	CCDDDDD
1	0	1	ccccccc	CDDDDDD
0	1	1	ccccccc	DDDDDDD (no residue)
0	0	0	CCCCCCD	DDDDDDD
6 Bits per Character				
$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	Previous Character	2nd Previous Character
1	0	0	cccccc	CCCCCD
0	1	0	CCCCCC	$C C C C D D$
1	1	0	ccccco	CCCDDD
0	0	1	cccccc	CCDDDD
1	0	1	CCCCCC	CDDDDD
0	0	0	CCCCCC	DDDDDD (no residue)
5 Bits per Character				
$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	2nd Previous Character	3rd Previous Character
1	0	0	CCCCC	DDDDD (no residue)
0	1	0	CCCCD	DDDDD
1	1	0	CCCDD	DDDDD
0	0	1	CCDDD	DDDDD
0	0	0	CDDDD	D D D D

## Special receive condition flags

The status bits described below - parity error (if parity as a special receive condition is enabled), receiver overrun error, CRC/framing error, and end of SDLC frame - all represent special receive conditions.

When any of these conditions occur and interrupts are enabled, the MPSC ${ }^{2}$ issues an interrupt request. In addition, if a condition affects vector mode is enabled, the vector generated (and the contents of SR2B for nonvectored interrupts) is different from that of a received character available condition. Thus, it is not necessary to analyze SR1 with each character to determine if an error has occurred.
As a further convenience, the parity error and receiver overrun error flags are latched. That is, once one of these errors occurs, the flag remains set for all subsequent characters until reset by the error reset command. With this facility SR1 need only be read at the end of a message to determine if either of these errors occurred anywhere in the message. The other flags are not latched and follow each character available in the receiver buffer.
Parity error $\left(D_{4}\right)$ : This bit is set and latched when parity is enabled and the received parity bit does not match the sense (odd or even) calculated from the data bits.
Receiver overrun error ( $\mathrm{D}_{5}$ ): This error occurs and is latched when the receiver buffer already contains three characters and a fourth character is completely received, overwriting the last character in the buffer.
CRC/framing error $\left(\mathrm{D}_{6}\right)$ : In the asynchronous mode a framing error is flagged (but not latched) when no stop bit is detected at the end of a character (i.e., RxD is low one bit time after the center of the last data or parity bit). When this condition occurs, the MPSC² waits an additional one-half bit time before sampling again so that the framing error is not interpreted as a new start bit.
In the synchronous and SDLC modes this bit indicates the result of the comparison between the current CRC result and the appropriate check value and is usually set to one since a message rarely indicates a correct CRC result until correctly completed with the CRC check character. Note that a CRC error does not result in a special receive condition interrupt.
End of SDLC frame (EOF) $\left(\mathrm{D}_{7}\right)$ : This status bit is used only in the bit synchronous mode to indicate that the end of frame flag has been received and that the CRC error flag and residue code are valid. This flag can be reset at any time by issuing an error reset command. The MPSC² also automatically resets this bit when the first character of the next message frame is sent.

## Status Register 2B

$D_{7}$	$D_{6}$	$D_{5}$	$D_{4}$	$D_{3}$	$D_{2}$	$D_{1}$	$D_{0}$
Interrupt Vector							

## Interrupt vector ( $D_{0}-D_{7}$ - channel $B$ only)

Reading status register 2 B returns the interrupt vector that is programmed into control register 2 B . If a condition affects vector mode is enabled the value of the vector is modified as shown in the following table.

Condition Affects Vector Modifications

Interrupt Pending (SRO, $\mathbf{D}_{1}$ Channel A)	8085 Modes	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	Condition
	8086 Modes	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$	
0		1	1	1	No interrupt pending
1		0	0	0	Channel B transmitter buffer empty
1		0	0	1	Channel B external/status change
1		0	1	0	Channel B received character available
1		0	1	1	Channel B special receive condition
1		1	0	0	Channel A transmitter buffer empty
1		1	0	1	Channel A external/status change
1		1	1	0	Channel A received character available
1		1	1	1	Channel A special receive condition

As can be seen code 111 can mean either channel A special receive condition or no interrupt pending. They can be easily distinguished by examining the interrupt pending bit $\left(D_{1}\right)$ of status register 0 , channel $A$. In a nonvectored interrupt mode the vector register must be read first for the interrupt pending to be valid.

## Read Register Bit Functions

Read Register 0


Read Register 1 (1)


Read Register 2


Notes: (1) Used with special receive condition mode
(2) Variable if Status Affects Vector is programmed

## Write Register Bit Functions

## Write Register 0



## Write Register Bit Functions (Cont.)

## Write Register 1



Write Register 2 (Channel B)


## Tx Byte Count Register



## Tx Byte Count Register



Write Register 2 (Channel A)

$D_{7}$ $D_{6}$ $D_{5}$ $D_{4}$ $D_{3}$ $D_{2}$ $D_{1}$ $D_{0}$

Write Register 3


Write Register 4


Write Register 5


Write Register 6


Write Register 7


Note: (1) For SDLC it must be programmed to 01111110 for flag recognition

## Timing Waveforms

## Read Cycle

$C / \bar{D}, B / \bar{A}, \overline{C S}$


Write Cycle
$C / \bar{D}, B / \bar{A}, \overline{C S}$


## INTA Cycle



## DMA Cycle



## Other Timing



Clock


Read/Write Cycle
(Software Block Transfer Mode)


Sync Pulse Generation
(External Sync Mode)


## Transmit Data Cycle



Notes: (1) $\overline{\text { NTA }}$ signal acts as $\overline{\mathrm{RD}}$ signal (2) $\overline{\mathrm{PRI}}$ and $\overline{\mathrm{HAI}}$ signais act as $\overline{\mathrm{CS}}$ signal

## Receive Data Cycle



## $\mu$ PD7201A

AC Characteristics
$\mathrm{T}_{\mathrm{a}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C} ; \mathrm{V}_{\mathbf{c c}}=+5 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Clock Cycle	$\mathrm{t}_{\mathrm{Cr}}$	200		4000	ns	
Clock High Width	$\mathrm{t}_{\mathrm{CH}}$	70		2000	ns	
Clock Low Width	$\mathrm{t}_{\mathrm{CL}}$	70		2000	ns	
Clock Rise Time	$\mathrm{t}_{\mathrm{r}}$	0		30	ns	
Clock Fall Time	$t_{\text {f }}$	0		30	ns	
Address Setup to RD	$t_{\text {AR }}$	0			ns	
Address Hold from RD	$t_{\text {RA }}$	0			ns	
RD Pulse Width	$t_{\text {RR }}$	200			ns	
Data Output Delay from Address	$t_{\text {AD }}$			140	ns	
Data Output Delay from RD	$t_{\text {RD }}$			140	ns	
Data Float Delay from RD	$t_{\text {bF }}$	0		70	ns	
Address Setup to WR	$t_{\text {AW }}$	0			ns	
Address Hoid from WR	$t_{\text {WA }}$	0			ns	
WR Pulse Width	$t_{\text {ww }}$	200			ns	
Data Setup to WR	$t_{\text {dw }}$	130			ns	
Data Hold from WR	$t_{\text {wo }}$	0			ns	
PRO Delay from PRI	$t_{\text {PIPO }}$			100	ns	
PRO Delay from INTA	$\mathrm{t}_{\text {IAPO }}$			200	ns	
PRI Setup to INTA	$\mathrm{t}_{\text {PIN }}$	0			ns	
PRI Hold from INTA	$t_{\text {IP }}$	20			ns	
INTA Pulse Width	$t_{11}$	200			ns	
End of INTA to Next INTA	$t_{\text {RHRL }}$	300			ns	
Data Output Delay from INTA	$t_{10}$			140	ns	
Data Float Delay from INTA	$t_{\text {dF }}$	0		70	ns	
Request Hold from RD/WR	$\mathrm{t}_{\mathrm{CQ}}$			60	ns	
HAI Setup to RD/WR	$t_{\text {LR }}$	300			ns	
HAI Hold from RD/WR	$t_{\text {RL }}$	0			ns	
HAO Delay from HAI	$\mathrm{t}_{\mathrm{HHO}}$			100	ns	
Data Clock Cycle	$\mathrm{t}_{\mathrm{DCY}}$	400			ns	RxC, TxC
Data Clock High Width	$t_{\text {DCH }}$	180			ns	RxC, TxC
Data Clock Low Width	${ }_{\text {t }}^{\text {DCL }}$	180			ns	RxC, TxC
Tx Data Delay from TxC	${ }_{\text {to }}$			300	ns	x1 Mode
				1000		x16, 32, 64
Rx Data Setup to RxC	$t_{\text {DS }}$	0			ns	
Rx Data Hold from RxC	$t_{\text {DH }}$	140			ns	
INT Delay Time from Tx Data	$t_{\text {ITD }}$			4-6	$\mathrm{t}_{\mathrm{Cr}}$	
INT Delay Time from RxC	$\mathrm{t}_{\text {IRD }}$			7-11	$\mathrm{t}_{\mathrm{Cr}}$	
CTS, DCD, SYNC High Pulse Width	$\mathrm{t}_{\text {PH }}$	200			ns	
CTS, DCD, SYNC Low Pulse Width	$t_{\text {PL }}$	200			ns	
External INT from CTS, DCD, SYNC	$\mathrm{t}_{\text {IPD }}$			500	ns	
Recovery Time Between Controls		300			ns	
WAIT Delay Time from Address	$\mathrm{t}_{\mathrm{CW}}$			80	ns	
SYNC Setup to RxC	$\mathrm{t}_{\mathrm{DRXC}}$			100	ns	

Notes: 1 RESET must be active for a mınımum of one complete CLK cycle
2 In all modes system clock rate must be 45 times data rate
$\mu$ PD7201A Target Specifications

## Absolute Maximum Ratings

$\mathbf{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	
Power Supply, $\mathrm{V}_{\mathrm{cc}}$	-0.5 V to +7.0 V
Input Voltages, $\mathrm{V}_{1}$	-0.5 V to +7.0 V
Output Voltages, $\mathrm{V}_{\mathrm{O}}$	-0.5 V to +7.0 V
Operating Temperature, $\mathrm{T}_{\text {OPT }}$	$0^{\circ} \mathrm{C}$ to $+\mathbf{7 0 ^ { \circ } \mathrm { C }}$
Storage Temperature, $\mathrm{T}_{\text {STG }}$	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

*COMMENT: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## DC Characteristics

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V} \pm \mathbf{1 0 \%}$

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	-0.5		+0.8	V	
Input High Voltage	$\mathrm{V}_{\text {IH }}$	+2.0		$\mathrm{V}_{\mathrm{cc}}+0.5$	V	
Output Low Voltage	$\mathrm{V}_{\text {OL }}$			+0.45	V	$\mathrm{IOL}=+20 \mathrm{~mA}$
Output High Voltage	$\mathrm{V}_{\mathrm{OH}}$	+2.4			V	$\mathrm{I}_{\mathrm{OH}}=200 \mu \mathrm{~A}$
Input Leakage Current	$1 / 2$			$\pm 10$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{Cc}}$ to OV
Output Leakage Current	$\mathrm{l}_{\mathrm{O}}$			$\pm 10$	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$ to OV
$\mathrm{V}_{\text {cc }}$ Supply Current	$l_{\text {cc }}$			180	mA	

## Capacitance

$\mathrm{T}_{\mathrm{a}}=\mathbf{2 5}{ }^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{cc}}=\mathbf{G N D}=\mathbf{0 V}$

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Input Capacitance	$\mathrm{C}_{\text {IN }}$			10	pF	$\mathrm{fc}=\mathbf{1 M H z}$   Unmeasured pins returned to GND.
Output Capacitance	$\mathrm{Cout}^{\text {out }}$			15	pF	
I/O Capacitance	$\mathrm{C}_{\text {VO }}$			20	pF	

## AC Waveform Measurement Points



## Package Outlines

For information, see Package Outline Section 7.

## Plastic, $\mu$ PD7201AC

Ceramic, $\mu$ PD7201AD

Notes

## DESCRIPTION

FEATURES

The $\mu$ PD7210 TLC is an intelligent GPIB Interface Controller designed to meet all of the functional requirements for Talkers, Listeners, and Controllers as specified by the IEEE Standard 488-1978. Connected between a processor bus and the GPIB, the TLC provides high level management of the GPIB to unburden the processor and to simplify both hardware and software design. Fully compatible with most processor architectures, Bus Driver/Receivers are the only additional components required to implement any type of GPIB interface.

- All Functional Interface Capability Meeting IEEE Standard 488-1978.
- SH1 (Source Handshake)
- AH1 (Acceptor Handshake)
- T5 or TE5 (Talker or Extended Talker)
- L3 or LE3 (Listener or Extended Listener)
- SR1 (Service Request)
- RL1 (Remote Local)
- PP1 or PP2 ((Parallel Poll) (Remote or Local Configuration))
- DC1 (Device Clear)
- DT1 (Device Trigger)
- C1-5 ((Controller) (All Functions))
- Programmable Data Transfer Rate
- 16 MPU Accessible Registers - 8 Read/8 Write
- 2 Address Registers
- Detection of MTA, MLA, MSA (My Talk/Listen/Secondary Address)
- 2 Device Addresses
- EOS Message Automatic Detection
- Command (IEEE Standard 488-78) Automatic Processing and Undefined Command Read Capability
- DMA Capability
- Programmable Bus Transceiver I/O Specification (Works with T.I./Motorola/Intel)
- 1 to 8 MHz Clock Range
- TTL Compatıble
- N Channel MOS
- +5 V Single Power Supply
- 40-Pin Plastıc DIP
- 8080/85/86 Compatible


6-31
$\mu$ PD7210

PIN	NAME	I/O	DESCRIPTION
1	T/R1	0	Transmit/Receive Control - Input/Output Control Signal for the GPIB Bus Transceivers.
2	T/R2	0	Transmit/Receive Control - The functions of T/R2, T/R3 are determined by the values of TRM1, TRM0 of the address mode register.
3	CLK	1	Clock - (1-8 MHz) Reference Clock for generatıng the state change prohibit times T1, T6, T7, T9 specified in IEEE Standard 488-1978.
4	RST	1	Reset - Resets 7210 to an idle state when high (active high).
5	T/R3	0	Transmit/Receive Control - Function determined by TRM1 and TRM0 of address mode register (See T/R2).
6	DRQ	0	DMA Request - 7210 requests data transfer to the computer system, becomes low on input of DMA acknowledge signal $\overline{\text { DACK. }}$.
7	$\overline{\text { DACK }}$	1	DMA Acknowledge - (Actıve Low) Signal connects the computer system data bus to the data register of the 7210.
8	$\overline{\mathrm{CS}}$	1	Chip Select - (Active Low) Enables access to the register selected by RSO-2 (read or write operation).
9	$\overline{\mathrm{RD}}$	1	Read - (Active Low) Places contents of read register specified by RS0-2 - on D0-7 (Computer Bus).
10	$\overline{W R}$	1	Write - (Active Low) writes data on D0-7 into the write register specified by RSO-2.
11		0	Interrupt Request - (Active High/Low) Becomes actıve due to any 1 of 13 internal interrupt factors (unmasked) active state software configurable, actıve high on chip reset.
12-19	D0-7	1/0	Data Bus - 8-bit bidirectional data bus, for interface to computer system.
20	GND		Ground.
21-23	RSO-2	1	Register Select - These lines select one of eight read (write) registers during a read (write) operation.
24	$\overline{I F C}$	1/O	Interface Clear - Control line used for clearing the interface functions.
25	$\overline{\mathrm{REN}}$	1/O	Remote Enable - Control line used to select remote or local control of the devices.
26	$\overline{\text { ATN }}$	1/O	Attention - Control line which indicates whether data on DIO lines is an interface message or device dependent message.
27	$\overline{\text { SRQ }}$	1/0	Service Request - Control line used to request the controller for service.
28-35	$\overline{\text { DIO1-8 }}$	1/O	Data Input/Output - 8-bit bidirectıonal bus for transfer of message on the GPIB.
36	$\overline{\text { DAV }}$	1/O	Data Valid - Handshake lıne indicatıng that data on DIO lines is valid.
37	$\overline{\text { NRFD }}$	1/O	Ready for Data - Handshake line indicating that device is ready for data.
38	$\overline{\text { NDAC }}$	I/O	Data Accepted - Handshake line indicatıng completion of message reception.
39	$\overline{\mathrm{EOI}}$	I/O	End or Identify - Control line used to indicate the end of multiple byte transfer sequence or to execute a parallel polling in conjunction with ATN.
40	VCC		+5 V DC - Technical Specificatıons: +5 V ; NMOS; 500 MW ; 40 Pins; TTL Compatible; 1-8 MHz.

## BLOCK DIAGRAM



The IEEE Standard 488 describes a "Standard Digıtal Interface for Programmable Instrumentation" which, since its introduction in 1975, has become the most popular means of interconnectıng instruments and controllers in laboratory, automatic test and even ındustrial applicatıons. Refined over several years, the 488-1978 Standard, also known as the General Purpose Interface Bus (GPIB), is a highly sophisticated standard providıng a high degree of flexıbility to meet virtually most all instrumentation requirements. The $\mu$ PD7210 TLC implements all of the functions that are required to interface to the GPIB. While it is beyond the scope of this document to provide a complete explanation of the IEEE 488 Standard, a basic description follows:
The GPIB interconnects up to 15 devices over a common set of data control lines. Three types of devices are defined by the standard: Talkers, Listeners, and Controllers, although some devices may combine functions such as Talker/Listener or Talker/Controller.
Data on the GPIB is transferred in a bit parallel, byte serıal fashion over 8 Data I/O lines (D101 - D108). A 3 wire handshake is used to ensure synchronization of transmission and reception. In order to permit more than one device to receive data at the same time, these control lines are "Open Collector" so that the slowest device controls the data rate. A number of other control lines perform a variety of functions such as device addressıng, interrupt generation, etc.

The $\mu$ PD7210 TLC implements all functional aspects of Talker, Listener and Controller functıons as defined by the 488-1978 Standard, and on a sıngle chip.

The $\mu$ PD7210 TLC is an intelligent controller designed to provide high level protocol management of the GPIB, freeing the host processor for other tasks. Control of the TLC is accomplished via 16 internal registers. Data may be transferred either under program control or via DMA using the TLC's DMA control facilities to further reduce processor overhead. The processor interface of the TLC is general in nature and may be readily interfaced to most processor lines.

In addition to providıng all control and data lines necessary for a complete GPIB implementation, the TLC also provides a unique set of bus transceiver controls permitting the use of a variety of different transceiver configurations for maxımum flexibility.

INTRODUCTION

GENERAL

## INTERNAL REGISTERS

The TLC has 16 registers, 8 of which are read and 8 write.

REGISTER NAME	ADDRESSING								SPECIFICATION								
	R		R S 1			$\begin{aligned} & \overline{\bar{W}} \\ & R \end{aligned}$	$\bar{R}$ $D$	$\bar{C}$ $s$									
Data In [OR]			$\bigcirc$	0		1	0	0		D17	D16	D15	D14	D13	D12	D11	DIO
Interrupt Status 1 [1R]	0		0	1		1	0	0		CPT	APT	DET	END	DEC	ERR	DO	DI
Interrupt Status 2 [2R]	0		1	0		1	0	0		INT	SRQI	LOK	REM	CO	LOKC	REMC	ADSC
Serial Poll Status [3R]	0		1	1		1	0	0		58	PEND	S6	S5	S4	S3	S2	S1
Address Status [4R]	1		0	0		1	0	0		CIC	ATN	SPMS	LPAS	TPAS	LA	TA	MJMN
Command Pass Through [5R]	1		0	1		1	0	0		CPT7	CPT6	CPT5	CPT4	CPT3	CPT2	CPT1	CPTO
Address 0 [6R]	1		1	0		1	0	0		X	DTO	DLO	AD5-0	AD4-0	AD3-0	AD2-0	AD1-0
Address 1 [7R]	1		1	1		1	0	0		EOI	DT1	DL1	AD5-1	AD4-1	AD3-1	AD2-1	AD1-1
Byte Out [OW]			0	0		0	1	0		B07	B06	B05	BO4	B03	BO2	BO1	BOO
Interrupt Mask 1 [1W]			0	1		0	1	0		CPT	APT	DET	END	DEC	ERR	DO	DI
Interrupt Mask 2 [2W]			1	0		0	1	0		0	SRaI	DMAO	DMAI	CO	LOKC	REMC	ADSC
Serial Poll Mode [3W]			1	1		0	1	0		58	rsv	S6	S5	54	S3	S2	S1
Address Mode [4W]			0	0		0	1	0		ton	Ion	TRM1	TRMO	0	0	ADM1	ADM0
Auxiliary Mode [5W]			0	1		0	1			CNT2	CNT1	CNTO	COM4	COM3	COM2	COM1	COMO
Address 0/1 [6W]			1	0		0	1	0		ARS	DT	DL	AD5	AD4	AD3	AD2	AD1
End of String [7W]			1	1		0	1	0		EC7	EC6	EC5	EC4	EC3	EC2	EC1	ECO

## DATA REGISTERS

The data registers are used for data and command transfers between the GPIB and the microcomputer system.

## DATA IN (OR)

DI7	DI6	DI5	DI4	DI3	DI2	DI1	DI0

Holds data sent from the GPIB to the computer

\section*{BYTE OUT (OW) <br> | $B 07$ | BO | $\mathrm{BO5}$ | BO | BO | BO | BO 1 | BOO |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Holds information written into it for transfer to the GPIB

## INTERRUPT REGISTERS

The interrupt registers are composed of interrupt status bits, interrupt mask bits, and some other noninterrupt related bits.

> INTERRUPT STATUS 1 [1R]
> INTERRUPT
> STATUS 2 [2R]

CPT	APT	DET	END	DEC	ERR	DO	DI
INT	SRQI	LOK	REM	CO	LOKC	REMC	ADSC

WRITE
INTERRUPT
MASK 1 [1W]
INTERRUPT
MASK 2 [2W]

CPT
APT

There are thirteen factors which can generate an interrupt from the $\mu$ PD7210, each with their own status bit and mask bit.

The interrupt status bits are always set to one if the interrupt condition is met. The interrupt mask bits decide whether the INT bit and the interrupt pin will be active for that condition.

## Interrupt Status Bits

INT	OR of All Unmasked Interrupt Status Bits
CPT	Command Pass Through
APT	Address Pass Through
DET	Device Trigger
END	End (END or EOS Message Received)
DEC	Device Clear
ERR	Error
DO	Data Out
DI	Data In
SRQI	Service Request Input
LOKC	Lockout Change
REMC	Remote Change
ADSC	Address Status Change
CO	Command Output

## Noninterrupt Related Bits

LOK	Lockout
REM	Remote/Local
DMAO	Enable/Disable DMA Out
DMAI	Enable/Disable DMA In

SERIAL POLL REGISTERS
READ
SERIAL POLL STATUS [3R]

S8	PEND	S6	S5	S4	S3	S2	S1

SERIAL POLL MODE [3W]

S8	rSV	S6	S5	S4	S3	S2	S1

The Serial Poll Mode register holds the STB (status byte: S8, S6-S1) sent over the GPIB and the local message rsv (request service). The Serial Poll Mode register may be read through the Serial Poll Status register. The PEND is set by $r s v=1$, and cleared by NPRS • $\overline{\mathrm{rSv}}=1$ (NPRS = Negative Poll Response State).

## ADDRESS MODE/STATUS REGISTERS

ADDRESS STATUS [4R]	CIC	$\overline{\text { ATN }}$	SPMS	LPAS	TPAS	LA	TA	MJMN
ADDRESS MODE [4W]	ton	Ion	TRM1	TRM0	0	0	ADM1	ADM0

The Address Mode register selects the address mode of the device and also sets the mode for T/R3 and T/R2 the transceiver control lines.

The functions of T/R2, T/R3 terminals (2 and 5) are determined as below by the TRM1, TRM0 values of the address mode register.

T/R2	T/R3	TRM1	TRM0
EOIOE	TRIG	0	0
CIC	TRIG	0	1
CIC	EOIOE	1	0
CIC	PE	1	1

$\mathrm{EOIOE}=\mathrm{TACS}+\mathrm{SPAS}+\mathrm{CIC} \cdot \overline{\mathrm{CSBS}}$
This denotes the input/output of $\overline{\mathrm{EOI}}$ terminal.
When "1": Output
When " 0 ": Input
CIC = $\overline{\text { CIDS + CADS }}$
This denotes if the controller inteface function is active or not.
When " 1 ": $\overline{\operatorname{ATN}}=$ output, $\overline{\text { SRO }}=$ input
When " 0 ": $\overline{\text { ATN }}=$ input, $\overline{\text { SRQ }}=$ output
$P E=C I C+\overline{\text { PPAS }}$
This indicates the type of bus driver connected to DI08 to DI01 and DAV lines.
When " 1 ": 3 state type
When " 0 ": Open collector type
TRIG: When DTAS state is initiated or when a trigger auxiliary command is issued, a high pulse is generated.
Upon RESET, TRM0 and TRM1 become " 0 " (TRMO = TRM1 = 0) and local message port is provided, so that T/R2 and T/R3 both become "LOW."

## ADDRESS MODES

ton	Ion	ADM1	ADM0	ADDRESS MODE	CONTENTS OF ADDRESS (0) REGISTER	CONTENTS OF ADDRESS (1) REGISTER
1	0	0	0	Talk only mode	Address Identification Not Necessary (No controller on the GPIB)   Not Used	
0	1	0	0	Listen only mode		
0	0	0	1	Address mode 1 (A1)	Major talk address or Major listen address	Minor talk address or Mınor listen address
0	0	1	0	Address mode 2 (A2)	Prımary address (talk or listen)	Secondary address (talk or listen)
0	0	1	1	Address mode 3 (43)	Primary address (major talk or major listen)	Primary address (minor talk or minor listen)
Combinations other than above indicated Prohibited.						

Notes: (A1)- Either MTA or MLA reception is indicated by coincidence of either address with the received address. Interface function T or L.
(A2) Address register $0=$ primary, Address register $1=$ secondary, interface function TE or LE.
(A3)- CPU must read secondary address via Command Pass Through Register interface function (TE or LE).

ADDRESS STATUS BITS

$\overline{\text { ATN }}$	Data Transfer Cycle (device in CSBS)
LPAS	Listener Primary Addressed State
TPAS	Talker Primary Addressed State
CIC	Controller Active
LA	Listener Addressed
TA	Talker Addressed
MJMN	Sets minor T/L address Reset = Major T/L address
SPMS	Serial Poll Mode State

## ADDRESS REGISTERS

ADDRESS 0 [6R]
ADDRESS 1 [7R]
ADDRESS 0/1 [6W]

X	DT0	DLO	AD5-0	AD4-0	AD3-0	AD2-0	AD1-0
EOI	DT1	DL1	AD5-1	AD4-1	AD3-1	AD2-1	AD1
ARS	DT	DL	AD5	AD4	AD3	AD2	AD1

The TLC is able to automatically detect two types of addresses which are held in address registers 0 and 1 . The addressing modes are outlined below.
Address settings are made by writing into the address $0 / 1$ register. The function of each bit is described below.

## ADDRESS 0/1 REGISTER BIT SELECTIONS

ARS - Selects which address register 0 or 1
DT - Permits or Prohibits address to be detected as Talk
DL - Permits or Prohibits address to be detected as Listen
AD5 - AD1 - Device address value
EOI - Holds the value of EOI line when data is received
COMMAND PASS THROUGH REGISTER
COMMAND PASS
THROUGH [5R]


CPT6 CPT5

The CPT register is used such that the CPU may read the DIO lines in the cases of undefined command, secondary address, or parallel poll response.

END OF STRING REGISTER
END OF

STRING [7W] | $E C 7$ | $E C 6$ | $E C 5$ | $E C 4$ | $E C 3$ | $E C 2$ | $E C 1$ | $E C 0$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

This register holds either a 7- or 8-bit EOS message byte used in the GPIB system to detect the end of a data block. Aux Mode Register A controls the specific use of this register.

## AUXILIARY MODE REGISTER

AUXILIARY

MODE [5W] | CNT2 | CNT1 | CNT0 | COM4 | COM3 | COM2 | COM1 | COM0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

This is a multipurpose register. A write to this register generates one of the following operations according to the values of the CNT bits.

CNT			COM					OPERATION
2	1	0	4	3	2	1	0	
0	0	0	$\mathrm{C}_{4}$	$\mathrm{C}_{3}$	$\mathrm{C}_{2}$	$\mathrm{C}_{1}$	$\mathrm{C}_{0}$	Issues an auxiliary command specified by $\mathrm{C}_{4}$ to $\mathrm{C}_{0}$.
0	0	1	0	$F_{3}$	$F_{2}$	$\mathrm{F}_{1}$	$\mathrm{F}_{0}$	The reference clock frequency is specified and $T_{1}, T_{6}, T_{7}, T_{g}$ are determined as a result.
0	1	1	U	S	$\mathrm{P}_{3}$	$\mathrm{P}_{2}$	P1	Makes write operation to the parallel poll register.
1	0	0	$\mathrm{A}_{4}$	$A_{3}$	$A_{2}$	$A_{1}$	$A_{0}$	Makes write operation to the aux. (A) register.
1	0	1	$B_{4}$	B3	$B_{2}$	B1	$\mathrm{B}_{0}$	Makes write operation to the aux. (B) register.
1	1	0	0	0	0	$\mathrm{E}_{1}$	$E_{0}$	Makes write operation to the aux. (E) register.


AUXILIARY COMMANDS			
COM			
43210			
00000	iepon	-	Immediate Execute pon - Generate local pon Message
00010	crst	-	Chip Reset - Same as External Reset
00011	rrfd	-	Release RFD
00100	trig	-	Trigger
00101	rt	-	Return to Local Message Generation
00110	seoi	-	Send EOI Message
00111	nvid	-	Non Valid (OSA reception) - Release DAC
			Holdoff
01111	vid	-	Valid (MSA reception, CPT, DEC, DET) -
			Release DAC Holdoff
$0 \times 001$	sppf	-	Set/Reset Parallel Poll Flag
10000	gts	-	Go To Standby
10001	tca	-	Take Control Asynchronously
10010	tcs	-	Take Control Synchronously
11010	tcse	-	Take Control Synchronously on End
10011	Itn	-	Listen
11011	Itnc	-	Listen with Continuous Mode
11100	lun	-	Local Unlisten
11101	epp	-	Execute Parallel Poll
$1 \times 110$	sifc	-	Set/Reset IFC
1×111	sren	-	Set/Reset REN
10100	dsc	-	Disable System Control 6-38

## INTERNAL COUNTER $00010 F_{3} F_{2} F_{1} F_{0}$

The internal counter generates the state change prohibit times ( $T_{1}, T_{6}, T_{7}, T_{9}$ ) specified in the IEEE std 488-1978 with reference to the clock frequency.

## AUXILIARY A REGISTER $100 A_{4} A_{3} A_{2} A_{1} A_{0}$

Of the 5 bits that may be specified as part of its access word, 2 bits control the GPIB data receiving modes of the 7210 and 3 bits control how the EOS message is used.

$A_{1}$	$A_{0}$	DATA RECEIVING MODE
0	0	Normal Handshake Mode
0	1	RFD Holdoff on all Data Modes
1	0	RFD Holdoff on End Mode
1	1	Continuous Mode


$\begin{array}{\|l\|} \hline \text { BIT } \\ \text { NAME } \end{array}$			FUNCTION
$\mathrm{A}_{2}$	0	Prohibit	Permits (prohibits) the setting of the END bit by reception of the EOS message.   Permits (prohibits) automatic transmission of END message simultaneously with the transmission of EOS message TACS.   Makes the 8 bits/7 bits of EOS register the valid EOS message.
	1	Permit	
	0	Prohibit	
$\mathrm{A}_{3}$	1	Permit	
	0	7 bit EOS	
A4	1	8 bit EOS	

## 

The Auxiliary B Register is much like the A Register in that it controls the special operating features of the device.

$\begin{aligned} & \text { BIT } \\ & \text { NAME } \end{aligned}$	FUNCTION		
B0	1	Permit	Permits (prohibits) the detection of undefined command. In other words, it permits (prohibits) the setting of the CPT bit on reception of an undefined command.
	0	Prohibit	
$B_{1}$	1	Permit	Permits (prohibits) the transmission of the END message when in serial poll active state (SPAS).
	0	Prohibit	
B2	1	$\mathrm{T}_{1}$   (high-speed)	$T_{1}$ (high speed) as $T_{1}$ of handshake after transmission of 2 nd byte following data transmission.
	0	T1 (low-speed)	
B3	1	$\overline{\text { INT }}$	Specifies the active level of $\overline{\text { INT }} \mathrm{pin}$.
	0	INT	
$\mathrm{B}_{4}$	1	ist $=$ SRQS	SROS indicates the value of ist level local message (the value of the parallel poll flag is ignored). $\begin{aligned} & \text { SRQS }=1 \ldots \text { ist }=1 . \\ & \text { SRQS }=0 \ldots \text { ist }=0 . \end{aligned}$
	0	ist = Parallel   Poll Flag	The value of the parallel poll flag is taken as the ist local message.

## $\mu$ PD7210

AUXILIARYEREGISTER $110000 \mathrm{E}_{1} \mathrm{E}_{0}$
This register controls the Data Acceptance Modes of the TLC.

BIT	FUNCTION		
$E_{0}$	1	Enable	DAC Holdoff by initiation of DCAS
	0	Disable	
$E_{1}$	1	Enable	DAC Holdoff by initiation of DTAS


Parallel Poll Register	0	1	1	$U$	$S$	$P_{3}$	$P_{2}$	$P_{1}$

The Parallel Poll Register defines the parallel poll response of the $\mu$ PD7210.



6


MINIMUM 8085 SYSTEM WITH $\mu$ PD7210 (CONT.)

Note: In this example, high-speed data transfer cannot be made since the bus transceiver is of the open collector type (Set $\mathrm{B}_{2}=0$ ).


Note: In the case of low-speed data transfer $\left(B_{2}=0\right)$, the $T / R_{3}$ pin can be used as a TRIG output. The PE input of SN75160 should be cleared to " 0 ."

ABSOLUTE MAXIMUM $\quad\left(T_{a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}\right)$ RATINGS

Parameter	Symbol	Test Conditions	Ratings	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$		$-0.5 \sim+7.0$	V
Input Voltage	$\mathrm{V}_{\mathbf{1}}$		$-0.5 \sim+7.0$	V
Output Voltage	$\mathrm{V}_{\mathrm{O}}$		$-0.5 \sim+7.0$	V
Operating Temperature	$\mathrm{T}_{\mathrm{opt}}$		$0 \sim+70$	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$		$-65 \sim+125$	${ }^{\circ} \mathrm{C}$

DC CHARACTERISTICS
$\left(T_{a}=0 \sim+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%\right)$

Parameter	Symbol	Test Conditions	Limits			Unit
			Min	Typ	Max	
Input Low Voltage	VIL		-0.5		+0.8	V
Input High Voltage	$\mathrm{V}_{\mathrm{IH}}$		+2.0		$V_{C C}+0.5$	V
Low Level Output Voltage	VOL	$\begin{aligned} & \mathrm{IOL}=2 \mathrm{~mA} \\ & (4 \mathrm{~mA}: T / R 1 \mathrm{Pin}) \end{aligned}$			+0.45	V
High Level Output Voltage	VOH1	$\begin{aligned} & \mathrm{IOH}=-400 \mu \mathrm{~A} \\ & \text { (Except INT) } \end{aligned}$	+2.4			V
High Level Output Voltage (INT Pin)	VOH2	$\begin{aligned} & \mathrm{IOH}=-400 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & +2.4 \\ & +3.5 \end{aligned}$			v
Input Leakage Current	IIL	$V_{\text {IN }}=0 \mathrm{~V} \sim \mathrm{~V}_{\text {CC }}$	-10		+10	$\mu \mathrm{A}$
Output Leakage Current	IOL	$\mathrm{V}_{\text {OUT }}=0.45 \mathrm{~V} \sim \mathrm{~V}_{\text {CC }}$	-10		+10	$\mu \mathrm{A}$
Supply Current	Icc				+180	mA

CAPACITANCE $\quad\left(T_{a}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{GND}=0 \mathrm{~V}\right)$

Parameter	Symbol	Test Conditions	Limits			Unit
			Min.	Typ.	Max	
Input Capacitance	$\mathrm{CIN}_{\text {IN }}$	$f=1 \mathrm{MHz}$   All Pins Except Pin Under Test Tied to AC Ground			10	pF
Output Capacitance	COUT				15	pF
I/O Capacitance	$\mathrm{Cl}_{1 / \mathrm{O}}$				20	pF


Parameter	Symbol	Conditions	Limits		Unit
			Min	Max	
$\overline{\mathrm{EOI}} \downarrow \rightarrow \overline{\mathrm{DIO}}$	tEODI	PPSS $\rightarrow$ PPAS, ATN $=$ True		250	ns
$\overline{\mathrm{EOI} \downarrow} \rightarrow \mathrm{T} / \mathrm{R1} \uparrow$	tEOT11	PPSS $\rightarrow$ PPAS, ATN = True		155	ns
$\overline{\mathrm{EOI}} \uparrow \rightarrow$ T/R1 $\downarrow$	tEOT12	PPAS $\rightarrow$ PPSS, ATN = False		200	ns
$\overline{\text { ATN }} \downarrow \rightarrow \overline{\text { NDAC }} \downarrow_{\downarrow}$	tATND	AIDS $\rightarrow$ ANRS, LIDS		155	ns
$\overline{\text { ATN }} \downarrow \rightarrow$ T/R1 $\downarrow$	tATT1	TACS + SPAS $\rightarrow$ TADS, CIDS		155	ns
$\overline{\text { ATN }} \downarrow \rightarrow$ T/R2 $\downarrow$	${ }^{\text {t ATT2 }}$	TACS + SPAS $\rightarrow$ TADS, CIDS		200	ns
$\overline{\text { DAV }} \downarrow \downarrow \rightarrow$ DMAREQ	tDVRQ	ACRS $\rightarrow$ ACDS, LACS		600	ns
$\overline{\overline{D A V}^{\downarrow} \downarrow} \rightarrow \overline{\text { NRFD }} \downarrow$	tDVNR1	ACRS $\rightarrow$ ACDS		350	ns
$\overline{\overline{D A V}^{\downarrow} \downarrow} \rightarrow \overline{\text { NDAC }} \uparrow$	tDVND1	ACRS $\rightarrow$ ACDS $\rightarrow$ AWNS	.	650	ns
$\overline{\overline{\text { DAV }} \uparrow \rightarrow \overline{\text { NDAC }} \downarrow .}$	tDVND2	AWNS $\rightarrow$ ANRS		350	ns
$\overline{\overline{\mathrm{DAV}} \uparrow} \rightarrow \overline{\mathrm{NRFD}} \uparrow$	tDVNR2	AWNS $\rightarrow$ ANRS $\rightarrow$ ACRS		350	ns
$\overline{\mathrm{RD}} \downarrow \rightarrow \overline{\mathrm{NRFD}} \uparrow$	tRNR	ANRS $\rightarrow$ ACRS   LACS, DI reg. selected		500	ns
$\overline{\text { NDAC }} \uparrow \rightarrow$ DMAREQ $\uparrow$	tNDRQ	STRS $\rightarrow$ SWNS $\rightarrow$ SGNS, TACS		400	ns
$\overline{\overline{N D A C}} \uparrow \rightarrow \overline{\overline{D A V}} \uparrow$	tNDDV	STRS $\rightarrow$ SWNS $\rightarrow$ SGNS		350	ns
$\overline{\mathrm{WR}} \uparrow \rightarrow \overline{\mathrm{DIO}}$	twDI	$\text { SGNS } \rightarrow \text { SDYS, BO }$   reg. selected		250	ns
$\overline{\mathrm{NRFD}} \uparrow \rightarrow \overline{\mathrm{DAV}} \downarrow$	tNRDV	SDYS $\rightarrow$ STRS, $\mathrm{T}_{1}=$ True		350	ns
$\overline{W R} \uparrow \rightarrow \overline{\mathrm{DAV}} \downarrow$	tWDV	SGNS $\rightarrow$ SDYS $\rightarrow$ STRS   BO reg, selected, RFD $=$ True   $N_{F}=f c=8 \mathrm{MHz}$,   $\mathrm{T}_{1}$ (High Speed)		$\begin{aligned} & 830 \\ & \text { +tSYNC } \end{aligned}$	ns
TRIG   Pulse Width	tTRIG	,	50		ns

$$
\left(T_{a}=0 \sim 70^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%\right)
$$

Parameter	Symbol	Test Conditions	Limits		Unit
			Min	Max	
Address Setup to $\overline{\mathrm{RD}}$	${ }^{\text {t }}$ AR	RSO ~ RS2	85		ns
		$\overline{\text { CS }}$	0		ns
Address Hold from $\overline{\mathrm{RD}}$	tRA		0		ns
$\overrightarrow{\mathrm{RD}}$ Pulse Width	trR		170		ns
Data Delay from Address	${ }^{\text {t }}$ AD			250	ns
Data Delay from $\overline{\mathrm{RD}}_{\downarrow}$	tRD			150	ns
Output Float Delay from $\overline{\mathrm{RD}} \uparrow$	tDF		0	80	ns
$\overline{\mathrm{RD}}$ Recovery Time	tRV		250		ns


Address Setup to $\overline{W R}$	taW		0		ns
Address Hold from $\overline{W R}$	tWA		0		ns
$\overline{\mathrm{WR}}$ Pulse Width	tWW		170		ns
Data Setup to $\overline{\mathrm{WR}}$	tDW		150		ns
Data Hold from $\overline{\mathrm{WR}}$	tWD		0		ns
$\overline{\mathrm{WR}}$ Recovery Time	tRV		250		ns


DMAREQ $\downarrow$ Delay from $\overline{\text { DMAACK }}$	tAKRQ			130	ns
Data Delay from $\overline{\text { DMAACK }}$	tAKD			200	ns

TIMING WAVEFORMS

$\overline{\mathrm{CS}}, \mathrm{RS} 2 \sim 0$
$\overline{W R}$
D7 ~0


Package Outlines
For information, see Package Outline Section 7.
Plastic, $\mu$ PD7210C
Ceramic, $\mu$ PD7210D

## Description

The $\mu$ PD7220 Graphics Display Controller (GDC) is an intelligent microprocessor peripheral designed to be the heart of a high-performance raster-scan computer graphics and character display system. Positioned between the video display memory and the microprocessor bus, the GDC performs the tasks needed to generate the raster display and manage the display memory. Processor software overhead is minimized by the GDC's sophisticated instruction set, graphics figure drawing, and DMA transfer capabilities. The display memory supported by the GDC can be configured in any number of formats and sizes up to 256K 16-bit words. The display can be zoomed and panned, while partitioned screen areas can be independently scrolled. With its light pen input and multiple controller capability, the GDC is ideal for advanced computer graphics applications.
For a more detailed description of the GDC's operation, please refer to the GDC Design Manual.

## System Considerations

The GDC is designed to work with a general purpose microprocessor to implement a high-performance computer graphics system. Through the division of labor established by the GDC's design, each of the system components is used to the maximum extent through six-level hierarchy of simultaneous tasks. At the lowest level, the GDC generates the basic video raster timing, including sync and blanking signals. Partitioned areas on the screen and zooming are also accomplished at this level. At the next level, video display memory is modified during the figure drawing operations and data moves. Third, display memory addresses are calculated pixel by pixel as drawing progresses. Outside the GDC at the next level, preliminary calculations are done to prepare drawing parameters. At the fifth level, the picture must be represented as a list of graphics figures drawable by the GDC. Finally, this representation must be manipulated, stored, and communicated. By handling the first three levels, the GDC takes care of the high-speed and repetitive tasks required to implement a graphics system.

## Features

Microprocessor Interface DMA transfers with 8257- or 8237-type controllers FIFO Command BufferingDisplay Memory InterfaceUp to 256 K words of 16 bits
Read-Modify-Write (RMW) Display Memory cycles in under 800ns

> Dynamic RAM refresh cycles for nonaccessed memoryLight Pen Input
External video synchronization mode
Graphics Mode
Four megabit, bit-mapped display memoryCharacter Mode
8 K character code and attributes display memory
$\square$ Mixed Graphics and Character Mode
64 K if all characters
1 megapixel if all graphics
$\square$ Graphics Capabilities
Figure drawing of lines, arc/circles, rectangles, and
graphics characters in 800 ns per pixel
Display 1024-by-1024 pixels with 4 planes of color
or grayscale
Two independently scrollable areasCharacter Capabilities
Auto cursor advance
Four independently scrollable areas
Programmable cursor height
Characters per row: up to 256
Character rows per screen: up to 100Video Display Format
Zoom magnification factors of 1 to 16
Panning
Command-settable video raster parametersTechnology
Single +5 volt, NMOS, 40 -pin DIPDMA Capability
Bytes or word transfers
4 clock periods per byte transferred

## Pin Configuration



## Pin Identification

Pin		Direction	Function
No.	Symbol		
1	2xWCLK	IN	Clock Input
2	DBIN	OUT	Display Memory Read Input Fiag
3	HSYNC	OUT	Horizontal Video Sync Output
4	V/EXT SYNC	IN/OUT	Vertical Video Sync Output or External VSYNC Input
5	BLANK	OUT	CRT Blanking Output
6	ALE (RAS)	OUT	Address Latch Enable Output
7	DRQ	OUT	DMA Request Output
8	DACK	IN	DMA Acknowledge Input
9	RD	IN	Read Strobe Input for Microprocessor Interface
10	WR	IN	Write Strobe Input for Microprocessor Interface
11	A0	IN	Address Select Input for Microprocessor Interface
12-19	DB0 to 7	IN/OUT	Bidirectional Data Bus to Host Microprocessor
20	GND	-	Ground
21	LPEN	IN	Light Pen Detect Input
22-34	ADO to 12	IN/OUT	Address and Data Lines to Display Memory
35-37	AD13 to 15	IN/OUT	Utilization Varles with Mode of Operation
38	A16	OUT	Utilization Varies with Mode of Operation
39	A17	OUT	Utilization Varies with Mode of Operation
40	$\mathrm{V}_{\mathrm{cc}}$	-	+ 5V $\pm 10 \%$

## Block Diagram



## GDC Components

## Microprocessor Bus Interface

Control of the GDC by the system microprocessor is achieved through an 8-bit bidirectional interface. The status register is readable at any time. Access to the FIFO buffer is coordinated through flags in the status register and operates independently of the various internal GDC operations, due to the separate data bus connecting the interface and the FIFO buffer.

## Command Processor

The contents of the FIFO are interpreted by the command processor. The command bytes are decoded, and the succeeding parameters are distributed to their proper destinations within the GDC. The command processor yields to the bus interface when both access the FIFO simultaneously.

## DMA Control

The DMA control circuitry in the GDC coordinates transfers over the microprocessor interface when using an external DMA controller. The DMA Request and Acknowledge handshake lines directly interface with a $\mu$ PD8257 or $\mu$ PD8237 DMA controller, so that display data can be moved between the microprocessor memory and the display memory.

## Parameter RAM

The 16-byte RAM stores parameters that are used repetitively during the display and drawing processes. In character mode, this RAM holds four sets of partitioned display area parameters; in graphics mode, the drawing pattern and graphics character take the place of two of the sets of parameters.

## Video Sync Generator

Based on the clock input, the sync logic generates the raster timing signals for almost any interlaced, noninterlaced, or "repeat field" interlaced video format. The generator is programmed during the idle period following a reset. In video sync slave mode, it coordinates timing between multiple GDCs.

## Memory Timing Generator

The memory timing circuitry provides two memory cycle types: a two-clock period refresh cycle and the read-modify-write (RMW) cycle which takes four clock periods. The memory control signals needed to drive the display memory devices are easily generated from the GDC's ALE and DBIN outputs.

## Zoom \& Pan Controller

Based on the programmable zoom display factor and the display area entries in the parameter RAM, the zoom and pan controller determines when to advance to the next memory address for display refresh and when to go on to the next display area. A horizontal zoom is produced by slowing down the display refresh rate while maintaining the video sync rates. Vertical zoom is accomplished by repeatedly accessing each line a number of times equal to the horizontal repeat. Once the line count for a display area is
exhausted, the controller accesses the starting address and line count of the next display area from the parameter RAM. The system microprocessor, by modifying a display area starting address, can pan in any direction, independently of the other display areas.

## Drawing Controller

The drawing processor contains the logic necessary to calculate the addresses and positions of the pixels of the various graphics figures. Given a starting point and the appropriate drawing parameters, the drawing controller needs no further assistance to complete the figure drawing.

## Display Memory Controller

The display memory controller's tasks are numerous. Its primary purpose is to multiplex the address and data information in and out of the display memory. It also contains the 16 -bit logic unit used to modify the display memory contents during RMW cycles, the character mode line counter, and the refresh counter for dynamic RAMs. The memory controller apportions the video field time between the various types of cycles.

## Light Pen Deglitcher

Only if two rising edges on the light pen input occur at the same point during successive video fields are the pulses accepted as a valid light pen detection. A status bit indicates to the system microprocessor that the light pen register contains a valid address.

## Programmer's View of GDC

The GDC occupies two addresses on the system microprocessor bus through which the GDC's status register and FIFO are accessed. Commands and parameters are written into the GDC's FIFO and are differentiated based on address bit AO. The status register or the FIFO can be read as selected by the address line.


## GDC Microprocessor Bus Interface Registers

Commands to the GDC take the form of a command byte followed by a series of parameter bytes as needed for specifying the details of the command. The command processor decodes the commands, unpacks the parameters, loads them into the appropriate registers within the GDC, and initiates the required operations.
The commands available in the GDC can be organized into five categories as described in the following section.

## GDC Command Summary

## Video Control Commands

1. RESET Resets the GDC to its idle state.
2. SYNC Specifies the video display format.
3. VSYNC Selects master or slave video synchronization mode.
4. CCHAR Specifies the cursor and character row heights.

## Display Control Commands

1. START Ends Idle mode and unblanks the display.
2. BCTRL Controls the blanking and unblanking of the display.
3. ZOOM Specifies zoom factors for the display and graphics characters writing.
4. CURS Sets the position of the cursor in display memory.
5. PRAM Defines starting addresses and lengths of the display areas and specifies the eight bytes for the graphics character.
6. PITCH Specifies the width of the $X$ dimension of display memory.

## Drawing Control Commands

1. WDAT Writes data words or bytes into display memory.
2. MASK Sets the mask register contents.
3. FIGS Specifies the parameters for the drawing controller.
4. FIGD Draws the figure as specified above.
5. GCHRD Draws the graphics character into display memory.

## Data Read Commands

1. RDAT:	Reads data words or bytes from   display memory.
2. CURD:	Reads the cursor position.
3. LPRD:	Reads the light pen address.

## DMA Control Commands

1. DMAR Requests a DMA read transfer.
2. DMAW Requests a DMA write transfer.

## Status Register Flags



Status Register (SR)

## SR-7: Light Pen Detect

When this bit is set to 1 , the light pen address (LAD) register contains a deglitched value that the system microprocessor may read. This flag is reset after the 3-byte LAD is moved into the FIFO in response to the light pen read command.

## SR-6: Horizontal Blanking Active

A 1 value for this flag signifies that horizontal retrace blanking is currently underway.

## SR-5: Vertical Sync

Vertical retrace sync occurs while this flag is a 1. The vertical sync flag coordinates display format modifying commands to the blanked interval surrounding vertical sync. This eliminates display disturbances.

## SR-4: DMA Execute

This bit is a 1 during DMA data transfers.

## SR-3: Drawing in Progress

While the GDC is drawing a graphics figure, this status bit is a 1 .

## SR-2: FIFO Empty

This bit and the FIFO Full flag coordinate system microprocessor accesses with the GDC FIFO. When it is 1, the Empty flag ensures that all the commands and parameters previously sent to the GDC have been interpreted.

## SR-1: FIFO Full

A 1 at this flag indicates a full FIFO in the GDC. A 0 ensures that there is room for at least one byte. This flag needs to be checked before each write into the GDC.

## SR-0: Data Ready

When this flag is a 1, it indicates that a byte is available to be read by the system microprocessor. This bit must be tested before each read operation. It drops to a 0 while the data is transferred from the FIFO into the microprocessor interface data register.

## FIFO Operation \& Command Protocol

The first-in, first-out buffer (FIFO) in the GDC handles the command dialogue with the system microprocessor. This flow of information uses a half-duplex technique, in which the single 16-location FIFO is used for both directions of data movement, one direction at a time. The FIFO's direction is controlled by the system microprocessor through the GDC's command set. The host microprocessor coordinates these transfers by checking the appropriate status register bits.
The command protocol used by the GDC requires differentiation of the first byte of a command sequence from the succeeding bytes. The first byte contains the operation code and the remaining bytes carry parameters. Writing into the GDC causes the FIFO to store a flag value alongside the data byte to signify whether the byte was written into the command or the parameter address. The command processor in the GDC tests this bit as it interprets the
entries in the FIFO.
The receipt of a command byte by the command processor marks the end of any previous operation. The number of parameter bytes supplied with a command is cut short by the receipt of the next command byte. A read operation from the GDC to the microprocessor can be terminated at any time by the next command.
The FIFO changes direction under the control of the system microprocessor. Commands written into the GDC always put the FIFO into write mode if it wasn't in it already. If it was in read mode, any read data in the FIFO at the time of the turnaround is lost. Commands which require a GDC response, such as RDAT, CURD and LPRD, put the FIFO into read mode after the command is interpreted by the GDC's command processor. Any commands and parameters behind the read-evoking command are discarded when the FIFO direction is reversed.

## Read-Modify-Write Cycle

Data transfers between the GDC and the display memory are accomplished using a read-modify-write (RMW) memory cycle. The four clock period timing of the RMW cycle is used to: 1) output the address, 2) read data from the memory, 3) modify the data, and 4) write the modified data back into the initially selected memory address. This type of memory cycle is used for all interactions with display memory including DMA transfers, except for the two clock period display and RAM refresh cycles.
The operations performed during the modify portion of the RMW cycle merit additional explanation. The circuitry in the GDC uses three main elements: the Pattern register, the Mask register, and the 16-bit Logic Unit. The Pattern register holds the data pattern to be moved into memory. It is loaded by the WDAT parameters or, during drawing, from the parameter RAM. The Mask register contents determine which bits of the read data will be modified. Based on the contents of these registers, the Logic Unit performs the selected operations of REPLACE, COMPLEMENT, SET, or CLEAR on the data read from display memory.
The Pattern register contents are ANDed with the Mask register contents to enable the actual modification of the memory read data, on a bit-by-bit basis. For graphics drawing, one bit at a time from the Pattern register is combined with the Mask. When ANDed with the bit set to a 1 in the Mask register, the proper single pixel is modified by the Logic Unit. For the next pixel in the figure, the next bit in the Pattern register is selected and the Mask register bit is moved to identify the pixel's location within the word. The Execution word address pointer register, EAD, is also adjusted as required to address the word containing the next pixel.
In character mode, all of the bits in the Pattern register are used in parallel to form the respective bits of the modify data word. Since the bits of the character code word are used in parallel, unlike the one-bit-at-a-time graphics drawing process, this facility allows any or all of the bits in a memory word to be modified in one RMW memory cycle. The Mask register must be loaded with 1 s in the positions where modification is to be permitted.
The Mask register can be loaded in either of two ways. In graphics mode, the CURS command contains a four-bit
dAD field to specify the dot address. The command processor converts this parameter into the one-of-16 format used in the Mask register for figure drawing. A full 16 bits can be loaded into the Mask register using the MASK command. In addition to the character mode use mentioned above, the 16 -bit MASK load is convenient in graphics mode when all of the pixels of a word are to be set to the same value.
The Logic Unit combines the data read from display memory, the Pattern Register, and the Mask register to generate the data to be written back into display memory. Any one of four operations can be selected: REPLACE, COMPLEMENT, CLEAR or SET. In each case, if the respective Mask bit is 0 , that particular bit of the read data is returned to memory unmodified. If the Mask bit is 1, the modification is enabled. With the REPLACE operation, the Pattern Register data simply takes the place of the read data for modification enabled bits. For the other three operations, a 0 in the modify data allows the read data bit to be returned to memory. A 1 value causes the specified operation to be performed in the bit positions with set Mask bits.

## Figure Drawing

The GDC draws graphics figures at the rate of one pixel per read-modify-write (RMW) display memory cycle. These cycles take four clock periods to complete. At a clock frequency of 5 MHz , this is equal to 800 ns . During the RMW cycle the GDC simultaneously calculates the address and position of the next pixel to be drawn.
The graphics figure drawing process depends on the display memory addressing structure. Groups of 16 horizontally adjacent pixels form the 16-bit words which are handled by the GDC. Display memory is organized as a linearly addressed space of these words. Addressing of individual pixels is handled by the GDC's internal RMW logic.
During the drawing process, the GDC finds the next pixel of the figure which is one of the eight nearest neighbors of the last pixel drawn. The GDC assigns each of these eight directions a number from 0 to 7 , starting with straight down and proceeding counterclockwise.

Drawing Directions


Figure drawing requires the proper manipulation of the address and the pixel bit position according to the drawing direction to determine the next pixel of the figure. To move to the word above or below the current one, it is necessary to subtract or add the number of words per line in display memory. This parameter is called the pitch. To move to the word to either side, the Execute word address cursor, EAD, must be incremented or decremented as the dot address pointer bit reaches the LSB or the MSB of the Mask register. To move to a pixel within the same word, it is necessary to rotate the dot address pointer register to the right or left.

The table below summarizes these operations for each direction.

Dir	Operations to Address the Next Pixel	
000	$E A D+P \rightarrow E A D$	
001	$\begin{aligned} & \mathrm{EAD}+P \rightarrow E A D \\ & \mathrm{dAD}(\mathrm{MSB})=1: E A D+1 \rightarrow E A D \end{aligned}$	$\mathrm{dAD} \rightarrow \mathrm{LR}$
010	$\mathrm{dAD}(\mathrm{MSB})=1: E A D+1 \rightarrow E A D$	$\mathrm{dAD} \rightarrow \mathrm{LR}$
011	$\begin{aligned} & E A D-P \rightarrow E A D \\ & \operatorname{dAD}(M S B)=1: E A D+1 \rightarrow E A D \end{aligned}$	dAD $\rightarrow$ LR
100	$E A D-P \rightarrow E A D$	
101	$\begin{aligned} & \text { EAD - P } \rightarrow \text { EAD } \\ & \text { dAD }(L S B)=1: E A D-1 \rightarrow \text { EAD } \end{aligned}$	$\mathrm{dAD} \rightarrow \mathrm{RR}$
110	dAD (LSB) $=1: \mathrm{EAD}-1 \rightarrow$ EAD	$d A D \rightarrow R R$
111	$\begin{aligned} & E A D+P \rightarrow E A D \\ & \text { dAD }(L S B)=1: E A D-1 \rightarrow E A D \end{aligned}$	$\mathrm{dAD} \rightarrow \mathrm{RR}$

Where $\mathrm{P}=$ Pitch, LR $=$ Left Rotate, RR $=$ Right Rotate,
EAD $=$ Execute Word Address, and
dAD $=$ Dot Address stored in the Mask Register
Whole word drawing is useful for filling areas in memory with a single value. By setting the Mask register to all 1s with the MASK command, both the LSB and MSB of the dAD will always be 1 , so that the EAD value will be incremented or decremented for each cycle regardless of direction. One RMW cycle will be able to effect all 16 bits of the word for any drawing type. One bit in the Pattern register is used per RMW cycle to write all the bits of the word to the same value. The next Pattern bit is used for the word, etc.
For the various figures, the effect of the initial direction upon the resulting drawing is shown below:

Dir	Line	Arc	Character	Slant Char	Rectangle		
000			90.7.		$\square$		
001				WN	$\langle$		
010				$\stackrel{\square}{3}$	$\square$		
011	y						
100					$\square$		
101			$\infty$	Nu.	$>$		
110	$\pi / \pi F^{\circ}$		E3	$\stackrel{\leftrightarrows}{\leftrightarrows}$			
111	M\|l		ATA	$\because$		多	



Note that during line drawing, the angle of the line may be anywhere within the shaded octant defined by the DIR value. Arc drawing starts in the direction initially specified by the DIR value and veers into an arc as drawing proceeds. An arc may be up to 45 degrees in length. DMA transfers are done on word boundaries only, and follow the arrows indicated in the table to find successive word addresses. The slanted paths for DMA transfers indicate the GDC changing both the X and Y components of the
word address when moving to the next word. It does not follow a 45 degree diagonal path by pixels.

## Drawing Parameters

In preparation for graphics figure drawing, the GDC's Drawing Processor needs the figure type, direction and drawing parameters, the starting pixel address, and the pattern from the microprocessor. Once these are in place within the GDC, the Figure Draw command, FIGD, initiates the drawing operation. From that point on, the system microprocessor is not involved in the drawing process. The GDC Drawing Controller coordinates the RMW circuitry and address registers to draw the specifed figure pixel by pixel.
The algorithms used by the processor for figure drawing are designed to optimize its drawing speed. To this end, the specific details about the figure to be drawn are reduced by the microprocessor to a form conducive to high-speed address calculations within the GDC. In this way the repetitive, pixel-by-pixel calculations can be done quickly, thereby minimizing the overall figure drawing time. The table below summarizes the parameters.

Drawing Type	DC	D	D2	D1	DM
Initial Value*	0	8	8	-1	-1
Line	$\|\Delta\|$ \|	$2\|\Delta D\|-\|\Delta I\|$	$2(\|\Delta D\|-\|\Delta I\|)$	$2\|\Delta D\|$	-
Arc**	$r \sin \phi$	r-1	$2(r-1)$	-1	$\boldsymbol{r s i n} \theta \downarrow$
Rectangle	3	A-1	B-1	-1	A-1
Area Fill	B-1	A	A	-	-
Graphic Character***	B-1	A	A	-	-
Write Data	W-1	-	-	-	-
DMAW	D-1	C-1	-	-	-
DMAR	D-1	C-2	(C-2)/2†	-	-
Read Data	W	-	-	-	-
*Initial values for the varıous parameters remain as each drawing process ends   ${ }^{* *}$ Circles are drawn with 8 arcs, each of which span $45^{\circ}$, so that $\sin \phi=1 / \sqrt{ } 2$ and $\sin \theta=0$   ***Graphic characters are a special case of bit-map area filling in which $B$ and $A \leqslant 8$ If $A=8$ there is no need to load D and D2					
Where   -1 = all ONES value					
All numbers are shown in base 10 for convenience The GDC accepts base 2 numbers ( 2 s complement notation where appropriate)					
$-=$ No parameter bytes sent to GDC for this parameter					
$\Delta l=$ The larger at $\Delta x$ or $\Delta y$					
$\Delta \mathrm{D}=$ The smaller at $\Delta x$ or $\Delta y$					
$r=$ Radius of curvature, in pixels					
$\phi=$ Angle from major axis to end of the arc $\phi \leqslant 45^{\circ}$					
$\theta=$ Angle from major axis to start of the arc $\theta \leqslant 45^{\circ}$					
$\uparrow=$ Round up to the next higher integer					
$\downarrow$ = Round down to the next lower integer					
$A=$ Number of pixels in the initially specified direction					
$B=$ Number of pixels in the direction at right angles to the intially specified direction					
W= Number of words to be accessed					
$C=$ Number of bytes to be transferred in the initially specified direction (Two bytes per word if word transfer mode is selected)					
$D=$ Number of words to be accessed in the direction at right angles to the initially specified direction					
$D C=$ Drawing count parameter which is one less than the number of RMW cycles to be executed					
$\mathrm{DM}=$ Dots masked from drawing during arc drawing   $\dagger=$ Needed only for word reads					

## Graphics Character Drawing

Graphics characters can be drawn into display memory pixel-by-pixel. The up to 8-by-8 character display is loaded into the GDC's parameter RAM by the system microprocessor. Consequently, there are no limitations on the character set used. By varying the drawing parameters and drawing direction, numerous drawing options are available. In area fill applications, a character can be written into display memory as many times as desired without reloading the parameter RAM.
Once the parameter RAM has been loaded with up to eight graphics character bytes by the appropriate PRAM command, the GCHRD command can be used to draw the bytes into display memory starting at the cursor. The zoom magnification factor for writing, set by the zoom command, controls the size of the character written into the display memory in integer multiples of 1 through 16. The bit values in the PRAM are repeated horizontally and vertically the number of times specified by the zoom factor.
The movement of these PRAM bytes to the display memory is controlled by the parameters of the FIGS command. Based on the specified height and width of the area to be drawn, the parameter RAM is scanned to fill the required area.
For an 8-by-8 graphics character, the first pixel drawn uses the LSB of RA-15, the second pixel uses bit 1 of RA-15, and so on, until the MSB of RA-15 is reached.
The GDC jumps to the corresponding bit in RA-14 to continue the drawing. The progression then advances toward the LSB of RA-14. This snaking sequence is continued for the other 6 PRAM bytes. This progression matches the sequence of display memory addresses calculated by the drawing processor as shown above. If the area is narrower than 8 pixels wide, the snaking will advance to the next PRAM byte before the MSB is reached. If the area is less than 8 lines high, fewer bytes in the parameter RAM will be scanned. If the area is larger than 8 by 8 , the GDC will repeat the contents of the parameter RAM in two dimensions, as required to fill the area with the 8-by-8 mozaic. (Fractions of the 8 -by- 8 pattern will be used to fill areas which are not multiples of 8 by 8 .)

## Parameter RAM Contents: RAM Address RA 0 to 15

The parameters stored in the parameter RAM, PRAM, are available for the GDC to refer to repeatedly during figure drawing and raster-scanning. In each mode of operation the values in the PRAM are interpreted by the GDC in a predetermined fashion. The host microprocessor must load the appropriate parameters into the proper PRAM locations. PRAM loading command allows the host to write into any location of the PRAM and transfer as many bytes as desired. In this way any stored parameter byte or bytes may be changed without influencing the other bytes.
The PRAM stores two types of information. For specifying the details of the display area partitions, blocks of four bytes are used. The four parameters stored in each block include the starting address in display memory of each display area, and its length. In addition, there are two mode bits for each area which specify whether the area is a bit-
mapped graphics area or a coded character area, and whether a 16-bit or a 32-bit wide display cycle is to be used for that area.

The other use for the PRAM contents is to supply the pattern for figure drawing when in a bit-mapped graphics area or mode. In these situations, PRAM bytes 8 through 16 are reserved for this patterning information. For line, arc, and rectangle drawing (linear figures) locations 8 and 9 are loaded into the Pattern Register to allow the GDC to draw dotted, dashed, etc. lines. For area filling and graphics bitmapped character drawing locations 8 through 15 are referenced for the pattern or character to be drawn.
Details of the bit assignments are shown for the various modes of operation.

## Character Mode



Graphics and Mixed Graphics and Character Modes


## Video Control Commands

## Reset



This command can be executed at any time and does not modify any of the parameters already loaded into the GDC. If followed by parameter bytes, this command also sets the sync generator parameters as described below. Idle mode is exited with the START command.


P8


In graphics mode, a word is a group of 16 pixels. In character mode, a word is one character code and its attributes, if any. The number of active words per line must be an even number from 2 to 256. An all-zero parameter value selects a count equal to $2^{n}$ where $n=$ number of bits in the parameter field for vertical parameters. All horizontal widths are counted in display words. All vertical intervals are counted in lines.

## Horizontal Back Porch Constraints

1. In general:

HBP $\geqslant 3$ Display Word Cycles ( 6 clock cycles).
2. If the IMAGE or WD modes change within one video field:
HBP $\geqslant 5$ Display Word Cycles ( 10 clock cycles).
3. If interlace or mixed mode is used: HBP $\geqslant 5$ Display Word Cycles ( 10 clock cycles).

## Horizontal Front Porch Constraints

1. If the display ZOOM function is used at other than 1 X : HFP $\geqslant 2$ Display Word Cycles ( 4 clock cycles).
2. If the GDC is used in the video sync Slave mode: HFP $\geqslant 4$ Display Word Cycles ( 8 clock cycles).
3. If the Light Pen is used: HFP $\geqslant 6$ Display Word Cycles ( 12 clock cycles).
4. If interlace mode is used: HFP $\geqslant 3$ Display Word Cycles ( 6 clock cycles).

## Horizontal SYNC Constraints

1. If Interlaced display mode is used: HS $\geqslant 5$ Display Word Cycles ( 10 clock cycles).

## Modes of Operation Bits

$\mathbf{C}$	$\mathbf{G}$	Display Mode
0	0	Mixed Graphics \& Character
0	1	Graphics Mode
1	0	Character Mode
1	1	Invalid
$\mathbf{5}$	$\mathbf{s}$	Video Framing
0	0	Noninterlaced
$\mathbf{0}$	1	Invalid
1	0	Interlaced Repeat Field for Character Displays
1	1	Interlaced

Repeat Field Framing: 2 Field Sequence with $1 / 2$ line offset between otherwise identical fields.
Interlaced Framing: 2 Field Sequence with $1 / 2$ line offset. Each field displays alternate lines.
Noninterlaced Framing: 1 field brings all of the information to the screen.
Total scanned lines in interlace mode is odd. The sum of VFP + VS + VBP + AL should equal one less than the desired odd number of lines.

D	Dynamic RAM Refresh Cycles Enable
0	No Refresh - STATIC RAM
1	Refresh - Dynamic RAM

Dynamic RAM refresh is important when high display zoom factors or DMA are used in such a way that not all of the rows in the RAMs are regularly accessed during display raster generation and for otherwise inactive display memory.

F	Drawing Time Window
$\mathbf{0}$	Drawing during active display tıme and retrace blanking
1	Drawing only during retrace blanking

Access to display memory can be limited to retrace blanking intervals only, so that no disruptions of the image are seen on the screen.

## SYNC Format Specify



P8


This command also loads parameters into the sync generator. The various parameter fields and bits are identical to those at the RESET command. The GDC is not reset nor does it enter idle mode.

## Vertical Sync Mode



When using two or more GDCs to contribute to one image, one GDC is defined as the master sync generator, and the others operate as its slaves. The VSYNC pins of all GDCs are connected together.
A few considerations should be observed when synchronizing two or more GDCs to generate overlayed video via the VSYNC INPUT/OUTPUT pin. As mentioned above, the Horizontal Front Porch (HFP) must be 4 or more display cycles wide. This is equivalent to eight or more clock cycles. This gives the slave GDCs time to initialize their internal video sync generators to the proper point in the video field to match the incoming vertical sync pulse (VSYNC). This resetting of the generator occurs just after the end of the incoming VSYNC pulse, during the HFP interval. Enough time during HFP is required to allow the slave GDC to complete the operation before the start of the HSYNC interval.

Once the GDCs are initialized and set up as Master and Slaves, they must be given time to synchronize. It is a good idea to watch the VSYNC status bit of the Master GDC and wait until after one or more VSYNC pulses have been generated before the display process is started. The START command will begin the active display of data and will end the video synchronization process, so be sure there has ${ }^{\circ}$ been at least one VSYNC pulse generated for the Slaves to synchronize to.

## Cursor \& Character Characteristics



In graphics mode, LR should be set to 0 . The blink rate parameter controls both the cursor and attribute blink rates. The cursor blink-on time $=$ blink-off time $=2 \times B R$ (video frames). The attribute blink rate is always $1 / 2$ the cursor rate but with a $3 / 4$ on- $1 / 4$ off duty cycle. All three parameter bytes must be output for interlace displays, regardless of mode. For interlace displays in graphics mode, the parameter $B R_{L}=3$.

## Display Control Commands

## Start Display \& End Idle Mode



## Display Blanking Control




Zoom magnification factors of 1 through 16 are available using codes 0 through 15 , respectively.

Cursor Position Specify


In character mode, the third parameter byte is not needed. The cursor is displayed for the word time in which the display scan address (DAD) equals the cursor address. In graphics mode, the cursor word address specifies the word containing the starting pixel of the drawing; the dot address value specifies the pixel within that word.

Parameter RAM Load


From the starting address, SA, any number of bytes may be loaded into the parameter RAM at incrementing addresses, up to location 15. The sequence of parameter bytes is terminated by the next command byte entered into the FIFO. The parameter RAM stores 16 bytes of information in predefined locations which differ for graphics and character modes. See the parameter RAM discussion for bit assignments.

## Pitch Specification



This value is used during drawing by the drawing processor to find the word directly above or below the current word, and during display to find the start of the next line.
The Pitch parameter (width of display memory) is set by two different commands. In addition to the PITCH command, the RESET (or SYNC) command also sets the pitch value. The "active words per line" parameter, which specifies the width of the raster-scan display, also sets the Pitch of the display memory. Note that the AW value is two less than the display window width. The PITCH command must be used to set the proper memory width larger than the window width.

## Drawing Control Commands

Write Data into Display Memory


Upon receiving a set of parameters (two bytes for a word transfer, one for a byte transfer), one RMW cycle into Video Memory is done at the address pointed to by the cursor EAD. The EAD pointer is advanced to the next word, according to the previously specified direction. More parameters can then be accepted.
For byte writes, the unspecified byte is treated as all zeros during the RMW memory cycle.
In graphics bit-map situations, only the LSB of the WDAT parameter bytes is used as the pattern in the RMW operations. Therefore it is possible to have only an all ones or all zeros pattern. In coded character applications all the bits of the WDAT parameters are used to establish the drawing pattern.
The WDAT command operates differently from the other commands which initiate RMW cycle activity. It requires
parameters to set up the Pattern register while the other commands use the stored values in the parameter RAM. Like all of these commands, the WDAT command must be preceded by a FIGS command and its parameters. Only the first three parameters need be given following the FIGS opcode, to set up the type of drawing, the DIR direction, and the DC value. The DC parameter +1 will be the number of RMW cycles done by the GDC with the first set of WDAT parameters. Additional sets of WDAT parameters will see a DC value of 0 which will cause only one RMW cycle to be executed per set of parameters.

## Mask Register Load



Low significance byte

High significance byte

This command sets the value of the 16-bit Mask register of the figure drawing processor. The Mask register controls which bits can be modified in the display memory during a read-modify-write cycle.
The Mask register is loaded both by the MASK command and the third parameter byte of the CURS command. The MASK command accepts two parameter bytes to load a 16-bit value into the Mask register. All 16 bits can be individually one or zero, under program control. The CURS command on the other hand, puts a " 1 of 16" pattern into the Mask register based on the value of the Dot Address value, dAD. If normal single-pixel-at-a-time graphics figure drawing is desired, there is no need to do a MASK command at all since the CURS command will set up the proper pattern to address the proper pixels as drawing progresses. For coded character DMA, and screen setting and clearing operations using the WDAT command, the MASK command should be used after the CURS command if its third parameter byte has been output. The Mask register should be set to all "ONES" for any "word-at-a-time" operation.

Figure Drawing Parameters Specify


## Valid Figure Type Select Combinations

SL	R	A	GC	$L$	Operation
0	0	0	0	0	Character Display Mode Drawing, Individual Dot Drawing, DMA, WDAT, and RDAT
0	0	0	0	1	Straight Line Drawing
0	0	0	1	0	Graphics Character Drawing and Area filling with graphics character pattern
0	0	1	0	0	Arc and Circle Drawing
0	1	0	0	0	Rectangle Drawing
1	0	0	1	0	Slanted Grapnics Character Drawing and Slanted Area Filling

Only these bit combinations assure correct drawing operation.

Figure Draw Start


On execution of this instruction, the GDC loads the parameters from the parameter RAM into the drawing processor and starts the drawing process at the pixel pointed to by the cursor, EAD, and the dot address, dAD.

## Graphics Character Draw and Area Filling Start

```
GCHRD:
```



Based on parameters loaded with the FIGS command, this command initiates the drawing of the graphics character or area filling pattern stored in Parameter RAM. Drawing begins at the address in display memory pointed to by the $E A D$ and $d A D$ values.

## Data Read Commands

## Read Data from Display Memory



Using the DIR and DC parameters of the FIGS command to establish direction and transfer count, multiple RMW cycles can be executed without specification of the cursor address after the initial load ( $D C=$ number of words or bytes).
As this instruction begins to execute, the FIFO buffer direction is reversed so that the data read from display memory can pass to the microprocessor. Any commands or parameters in the FIFO at this time will be lost. A command byte sent to the GDC will immediately reverse the buffer direction back to write mode, and all RDAT information not yet read from the FIFO will be lost. MOD should be set to 00 if no modification to video buffer is desired.

## Cursor Address Read

CURD:


The following bytes are returned by the GDC through the FIFO:


The Execute Address, EAD, points to the display memory word containing the pixel to be addressed.
The Dot Address, dAD, within the word is represented as a 1-of-16 code for graphics drawing operations.

## Light Pen Address Read

LPRD:


The following bytes are returned by the GDC through the FIFO:


The light pen address, LAD, corresponds to the display word address, DAD, at which the light pen input signal is detected and deglitched.
The light pen may be used in graphics, character, or mixed modes but only indicates the word address of light pen position.

## DMA Read Request




AC Characteristics, $\mu$ PD7220D
$\mathrm{T}_{\mathrm{a}}=\mathbf{0}^{\circ} \mathrm{C}$ to $\mathbf{7 0}{ }^{\circ} \mathrm{C} ; \mathrm{V}_{\text {cc }}=\mathbf{5 . 0 V} \pm \mathbf{1 0 \%} ; \mathrm{GND}=\mathbf{0 V}$

Read Cycle									
Parameter	Symbol	7220D Limits		7220D-1 Limits		7220D-2 Limits		Unit	Test Conditions
		Min	Max	Min	Max	Min	Max		
Address Setup to RD $\downarrow$	$t_{\text {AR }}$	0		0	,	0		ns	
Address Hold from RD $\uparrow$	$t_{\text {RA }}$	0		0		0		ns	
RD Pulse Width	$t_{\text {RR1 }}$	$\mathrm{t}_{\mathrm{RD1}}+20$	$\mathbf{t}_{\text {RCY }}-1 / 2 \mathrm{t}_{\text {CLK }}$	$\mathrm{t}_{\mathrm{RD} 1}+20$	$\mathrm{t}_{\text {RCY }}-1 / 2 \mathrm{t}_{\text {CLK }}$	$\mathrm{t}_{\mathrm{RD} 1}+20$	$\mathrm{t}_{\text {RCY }}-1 / 2 \mathrm{t}_{\text {CLK }}$	ns	
Data Delay from RD $\downarrow$	$\mathrm{t}_{\text {RD1 }}$		120		80		70	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
Data Floating from RD $\uparrow$	$\mathrm{t}_{\mathrm{DF}}$	0	120	0	100	0	90	ns	
RD Puise Cycle	$\mathrm{t}_{\mathrm{BCY}}$	$4 \mathrm{t}_{\text {cLK }}$		$4 \mathrm{t}_{\text {cLK }}$		$4 \mathrm{t}_{\text {cLK }}$		ns	


Write Cycle	$\text { (GDC } \leftrightarrow$								
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Conditions
Address Setup to WR $\downarrow$	$t_{\text {AW }}$	0		0		0		ns	
Address Hold from WR $\uparrow$	$t_{\text {wa }}$	0		0		10		ns	
WR Pulse Width	${ }_{\text {ww }}$	120		100		90		ns	
Data Setup to WR $\uparrow$	$\mathrm{t}_{\mathrm{ow}}$	100		80		70		ns	
Data Hold from WR $\uparrow$	$t_{\text {wo }}$	10		10		10		ns	
WR Pulse Cycle	${ }_{\text {t }}^{\text {WCY }}$	$4 \mathrm{t}_{\text {cLK }}$		$4 \mathrm{t}_{\text {cLK }}$		4 t cLK		ns	


DMA Read Cycle									
Parameter	Symbol	7220D Limits		7220D-1 Limits		7220D-2 Limits		Unit	Test Conditions
		Min	Max	Min	Max	Min	Max		
DACK Setup to RD $\downarrow$	$t_{\text {KR }}$	0		0		0		ns	
DACK Hold from RD $\uparrow$	$t_{\text {HK }}$	0		0	.	0		ns	
RD Pulse Width	$\mathrm{t}_{\text {RR2 }}$	$\mathrm{t}_{\mathrm{RD2} 2}+20$		$\mathrm{t}_{\text {RD2 }}+20$		$\mathrm{t}_{\mathrm{RD} 2}+20$		ns	
Data Delay from RD $\downarrow$	$t_{\text {RD2 }}$		$1.5 \mathrm{t}_{\text {cLK }}+120$		$1.5 \mathrm{t}_{\text {cLK }}+80$		$1.5 \mathrm{t}_{\text {clk }}+70$	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
DREQ Delay from 2XWCLK $\uparrow$	$t_{\text {fea }}$		150		120		110	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
DREQ Setup to DACK $\downarrow$	$t_{\text {ak }}$	0		0		0		ns	
DACK High Level Width	$\mathrm{t}_{\mathrm{DK}}$	$\mathbf{t c L K}$		$\mathbf{t c L K}$		$\mathrm{t}_{\text {clk }}$		ns	
DACK Pulse Cycle	$t_{E}$	$4 \mathrm{tcLk}^{*}$		$4 \mathrm{tcLk}^{*}$		$4 \mathrm{t}_{\text {cLK* }}$		ns	
DREQ $\downarrow$ Delay from	$t_{\text {Ka(R) }}$		$\mathrm{t}_{\text {cLK }}+150$		$\mathrm{t}_{\text {cLK }}+120$		${ }^{\mathbf{t} \text { CLK }}+110$	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

* for high byte and low byte transfers: $\mathrm{t}_{\mathrm{E}}=5 \mathrm{t}_{\mathrm{CLK}}$

DMA Write Cycle $\quad$ (GDC $\leftrightarrow$ CPU)

Parameter	Symbol	7220D Limits		7220D-1 Limits		7220D-2 Limits		Unit	Test Conditions
		Min	Max	Min	Max	Min	Max		
DACK Setup to WR $\downarrow$	${ }_{\text {t }}{ }_{\text {w }}$	0		0		0		ns	
DACK Hold from WR $\uparrow$	$t_{\text {wk }}$	0		0		0		ns	
$\begin{aligned} & \hline \text { DREQ } \downarrow \text { Delay from } \\ & \text { DACK } \downarrow \end{aligned}$	${ }^{\text {tra(W) }}$		${ }^{\text {t }}$ CLK +150		$\mathrm{t}_{\text {cLK }}+120$		$\mathrm{t}_{\text {CLK }}+100$	ns	$C_{L}=50 \mathrm{pF}$
WR Pulse Width	$t_{\text {ww }}$	120	$3 \mathrm{t}_{\text {cLK }}$	100	$3 \mathrm{t}_{\text {cLK }}$	90	$3 \mathrm{t}_{\text {cLK }}$	ns	



ALE $\downarrow$ Delay from 2XWCLK $\downarrow$	$t_{\text {RF }}$	30	100	30	80	30	70	ns	$\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$
ALE Width	$\mathrm{t}_{\text {RW }}$	${ }^{1 / 3} \mathbf{t c L K}$		$1 / 3 \mathrm{t}_{\text {cLK }}$		${ }^{1 / 3} \mathrm{t}_{\text {cLK }}$		ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
ALE Low Wlath	$\mathrm{t}_{\text {RL }}$	$\mathrm{t}_{\text {cLK }}+30$		$\mathrm{t}_{\text {CLK }}+30$		$\mathrm{t}_{\text {CLK }}+30$		ns	
Display Cycle	(GDC $\leftrightarrow$ Display Memory)								
		72200 Limits		72200-1 Limits		7220D-2 Limits			Test Conditions
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	
Video Signal Delay from 2xWCLK $\uparrow$	tvo		150		120		100	ns	$\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$
Input Cycle	(GDC $\leftrightarrow$ Display Memory)								
		72200 Limits		7220D-1 Limits		7220D-2 Limits			Test Conditions
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	
Input Signal Setup to 2XWCLK $\uparrow$	$t_{\text {PS }}$	30		20		15		ns	
Input Signal Width	${ }^{\text {tpw }}$	$t_{\text {cLK }}$		$t_{\text {clik }}$		${ }_{\text {t CLK }}$		ns	
Clock	(2XWCLK)							-	
		7220D Limits		7220D. 1 Limits		7220D.2 Limits		Unit	Test Conditions
Parameter	Symbol	Min	Max	Min	Max	Min	Max		
Clock Rise Time	$\mathrm{t}_{\mathrm{CR}}$		20		20		20	ns	
Clock Fall Time	$\mathrm{t}_{\mathrm{CF}}$		20		20		20	ns	
Clock High Puise Width	$\mathrm{t}_{\mathrm{CH}}$	105		80		70		ns	
Clock Low Puise Width	${ }^{\text {ch }}$	105		80		70		ns	
Clock Cycle	${ }_{\text {t CLK }}$	250	2000	200	2000	180	2000	ns	

## DC Characteristics

$\mathrm{T}_{\mathrm{a}}=\mathbf{0}^{\circ} \mathrm{C}$ to $\mathbf{7 0}{ }^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{cc}}=\mathbf{5 V} \pm \mathbf{1 0 \%}$; GND $=\mathbf{0 V}$

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	-0.5		0.8	v	(1)
Input High Voitage	$\mathrm{V}_{\text {IH }}$	2.2		$\mathrm{V}_{\mathrm{cc}}+0.5$	$v$	(2)
Output Low Voltage	$\mathrm{V}_{\text {OL }}$			0.45	$v$	$\mathrm{l}_{\mathrm{OL}}=22 \mathrm{~mA}$
Output High Voltage	$\mathrm{V}_{\mathrm{OH}}$	2.4			$v$	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
Input Low Leak Current	$\mathrm{I}_{1}$			-10	$\mu \mathrm{A}$	$\mathrm{V}_{1}=0 \mathrm{~V}$
Input High Leak Current	$\mathrm{I}_{\mathrm{H}}$			+ 10	$\mu \mathrm{A}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{cc}}$
Output Low Leak Current	$\mathrm{l}_{\mathrm{OL}}$			-10	$\mu \mathrm{A}$	$V_{0}=0 \mathrm{~V}$
Output High Leak Current	$\mathrm{I}_{\mathrm{OH}}$			+10	$\mu \mathrm{A}$	$\mathrm{v}_{0}=\mathrm{v}_{\mathrm{cc}}$
Clock Input Low Voltage	$\mathrm{V}_{\mathrm{CL}}$	-05		0.6	V	
Clock Input High Voltage	$\mathrm{V}_{\mathrm{CH}}$	3.5		$\mathrm{V}_{\mathrm{CC}}+1.0$	V	
$\mathrm{V}_{\mathrm{CC}}$ Supply Current	$\mathrm{I}_{\mathrm{cc}}$			270	mA	

## Capacitance

$\mathbf{T}_{\mathrm{a}}=\mathbf{2 5} \mathbf{5}^{\circ} \mathbf{C} \mathbf{V}_{\mathrm{cc}}=\mathbf{G N D}=\mathbf{0 V}$

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Input Capacitance 1/O Capacitance	$\begin{aligned} & \mathbf{c}_{1 \mathbb{N}} \\ & \mathbf{C}_{1 / 0} \end{aligned}$			$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	$\mathrm{fc}_{\mathrm{c}}=1 \mathrm{MHz}$
Output Capacitance Clock Input Capacitance	$\begin{aligned} & \mathbf{C}_{\text {OUT }} \\ & \mathbf{C}_{\phi} \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	$\text { (unmeasured) }=0 V$

[^3]
## Absolute Maximum Ratings* (Tentative)

Ambient Temperature under Bias	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	
Voltage on Any Pin with Respect to Ground	-0.5 V to +7 V	
Power Dissipation	1.5 W	

*COMMENT: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## Timing Waveforms

Microprocessor Interface Write Timing


Microprocessor Interface Read Timing


## Microprocessor Interface DMA Write Timing

$$
\text { w(wn tursYNC })=\tau_{\text {CLI }}
$$

$$
\mathbf{t}_{\mathrm{KH}}(\text { DACK } \downarrow \text { to } \operatorname{HSYNC} \uparrow) \geqslant \mathbf{t c L K}
$$

Microprocessor Interface DMA Read Timing


Display Memory Display Cycle Timing


Display Memory RMW Timing


## Timing Waveforms (Cont.)

Display and RMW Cycles (1x Zoom)


## Display and RMW Cycles (2x Zoom)



Zoomed Display Operation with RMW Cycle (3x Zoom)


## Timing Waveforms (Cont.)

## Light Pen and External Sync Input Timing



## Clock Timing (2XWCLK)



Test Level (for AC Tests, except 2XWCLK)


Video Sync Signals Timing


## Interlaced Video Timing



## Timing Waveforms (Cont.)

Video Horizontal Sync Generator Parameters


Video Vertical Sync Generator Parameters


## Cursor - Image Bit Flag



## Video Field Timing



## Drawing Intervals



## DMA Request Intervals



## Block Diagram of a Graphics Terminal



## Multiplane Display Memory Diagram

## Package Outlines

For information, see Package Outline Section 7.
Ceramic, $\mu$ PD7220D

## Description

The $\mu$ PD7225 is an intelligent peripheral device designed to interface most microprocessors with a wide variety of alphanumeric LCDs. It can directly drive any static or multiplexed LCD containing up to 4 backplanes and up to 32 segments and is easily cascaded for larger LCD applications. The $\mu$ PD7225 communicates with a host microprocessor through an 8 -bit serial interface. It includes a 7 -segment numeric and a 14 -segment alphanumeric segment decoder to reduce system software requirements. The $\mu$ PD7225 is manufactured with low power consumption CMOS process allowing use of a single power supply between 2.7 V and 5.5 V and is available in a space-saving 52 -pin flat plastic package.

## Features

$\square$ Single-chip LCD Controller with Direct LCD DriveLow-cost Serial Interface to most MicroprocessorsCompatible with:
7-Segment Numeric LCD Configurations-up to 16 Digits
14-Segment Alphanumeric LCD Configurations-up to 8 CharactersSelectable LCD Drive Configuration:
Static, Biplexed, Triplexed, or Quadriplexed32-Segment DriversCascadable for Larger LCD ApplicationsSelectable LCD Bias Voltage Configuration: Static, $1 / 2$, or $1 / 3$
$\square$ Hardware Logic Blocks Reduce System Software
Requirements

- 8-Bit Serial Interface
- Two $32 \times 4$-Bit Static RAMs for Display Data and Blinking Data Storage
- Programmable Segment Decoding Capability - 16-Character, 7-Segment Numeric Decoder
- 64-Character, 14-Segment USASCII Alphanumeric Decoder
- Programmable Segment Blinking Capability
- Automatic Synchronization of Segment Drivers with Sequentially Multiplexed Backplane DriversSingle Power Supply, Variable from 2.7V to 5.5VLow Power Consumption CMOS Technology
Extended $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Temperature Range AvailableSpace-saving 52-Pin Flat Plastic Package


## Pin Configuration



## Pin Description

Pin		Function
No.	Symbol	
1	$\mathrm{CL}_{2}$	System clock output (active high). Connect to $\mathrm{CL}_{1}$ with 180kS resistor, or leave open.
2	$\overline{\text { SYNC }}$	Synchronization port (active low). For multichip operation tie all SYNC lines together.
3-5	$\begin{aligned} & \mathrm{v}_{\mathrm{LCD}_{1}}, \\ & \mathrm{~V}_{\mathrm{LCD}_{2}}, \\ & \mathrm{~V}_{\mathrm{LCD}_{3}} \end{aligned}$	LCD bias voltage supply inputs to LCD voltage controller. Apply appropriate voltages from a voltage ladder connected across VDD.
6	$\mathrm{V}_{\text {SS }}$	Ground.
7, 33	$V_{\text {DD }}$	Power supply positive. Apply single voltage ranging from 2.7V to 5.5 V for proper operation.
8	$\overline{\text { SCK }}$	Serial clock input (active low). Synchronizes 8-bit serial data transfer from microprocessor to $\mu$ PD7225.
9	SI	Serial input (active high). Data input from microprocessor.
10	$\overline{\text { CS }}$	Chip select input (active low). Enables $\mu$ PD7225 for data input from microprocessor. Display can also be updated when $\mu$ PD7225 is deselected.
11	$\overline{\text { BUSY }}$	Busy output (active low). Handshake line indicates that $\mu$ PD7225 is ready to receive next data byte.
12	c/̄	Command/data select input (active both high and low). Distinguishes serially input data byte as a command or as display data.
13	$\overline{\text { RESET }}$	Reset input (active low). R/C circuit or pulse initializes $\mu$ PD7225 after power-up.
14	NC	No connection.
15-18	$\mathrm{COM}_{0}-\mathrm{COM}_{3}$	LCD Backplane Driver Outputs.
$\begin{aligned} & 19-32, \\ & 34-51 \end{aligned}$	$\mathbf{S}_{0}-\mathbf{S}_{31}$	LCD Segment Driver Outputs.
52	$\mathrm{CL}_{1}$	System clock input (active high). Connect to $\mathrm{CL}_{2}$ with 180 k \& resistor, or to external clock source.



## Command Summary

Command	Description	Instruction Code								
		Binary						HEX		
		$\mathrm{D}_{7} \mathrm{D}_{6} \mathrm{D}_{5} \mathrm{D}_{4} \mathrm{D}_{3} \mathrm{D}_{\mathbf{2}} \mathrm{D}_{1} \mathrm{D}_{0}$								
1. MODE SET	Intialize the $\mu$ PD7225, including selection of:   1) LCD Drive Configuration   2) LCD Bias Voltage Configuration   3) LCD Frame Frequency	0	1	0	$\mathrm{D}_{4}$					-5F
2. UNSYNCHRONOUS DATA TRANSFER	Synchronize Display RAM data transfer to Display Latch with $\overline{\mathrm{CS}}$	0	0	1	1	0	0	0		30
3. SYNCHRONOUS DATA TRANSFER	Synchronize Display RAM data transfer to Display Latch with LCD Drive Cycle	0	0	1	1	0	0	0		31
4. INTERRUPT DATA TRANSFER	Interrupt Display RAM data transfer to Display Latch	0	0	1	1	1	0	0		38
5. LOAD DATA POINTER	Load Data Pointer with 5 bits of Immediate Data	1	1	1	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$		E-FF
6. CLEAR DISPLAY RAM	Clear the Display RAM and reset the Data Pointer	0	0	1	0	0	0	0		20
7. WRITE DISPLAY RAM	Write 4 bits of Immediate Data to the Display RAM location addressed by the Data Pointer; Increment Data Pointer	1	1	0	1	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$		D-DF
8. AND DISPLAY RAM	Perform a Logical AND between the Display RAM data addressed by the Data Pointer and 4 bits of Immediate Data; Write result to same Display RAM locaton Increment Data Pointer	1	0	0	1	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$			0-9F


Command	Description	Instruction Code								
		Binary							HEX	
		$D_{7} D_{6} D_{5} D_{4} D_{3} D_{2} D_{1} D_{0}$								
9. OR DISPLAY RAM	Perform a Logical OR between the Display RAM data addressed by the Data Pointer and 4 bits of Immediate Data, Write result to same Display RAM location, Increment Data Pointer	1	0	1	1	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$		0-BF
10. ENABLE SEGMENT DECODER	Start use of the Segment Decoder	0	0	0	1	0	1	0	1	15
11. DISABLE SEGMENT DECODER	Stop use of the Segment Decoder	0	0	0	1	0	1	0	0	14
12. ENABLE DISPLAY	Turn on the LCD	0	0	0	1	0	0	0	1	11
13. DISABLE DISPLAY	Turn off the LCD	0	0	0	1	0	0	0	0	10
14. CLEAR BLINKING RAM	Clear the Blinking RAM and reset the Data Pointer	0	0	0	0	0	0	0	0	00
15. WRITE BLINKING RAM	Write 4 bits of Immedıate Data to the Blinking RAM location addressed by the Data Pointer; Increment Data Pointer	1	1	0	0	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$D_{1}$		CO-CF
16. AND BLINKING RAM	Perform a Logical AND between Blinking RAM data addressed by the Data Pointer and 4 bits of Immediate Data; Write result to same Blinking RAM Locatıon; Increment Data Pointer	1	0	0	0	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$		80-8F
17. OR BLINKING RAM	Perform a Logıcal OR between Blinking RAM data addressed by the Data Pointer and 4 bits of Immediate Data, Write result to same Blınkıng Location; Increment Data Pointer	1	0	1	0	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$		AO-AF
18. ENABLE BLINKING	Start Segment Blinking at the Frequency Specified by 1 bit of Immediate Data	0	0	0	1	1	0	1	D	1A-1B
19. DISABLE BLINKING	Stop Segment Blinking	0	0	0	1	1	0	0	0	18

Details of operation and application examples can be found in the " $\mu$ PD7225 Intelligent Alphanumeric LCD Controller/Driver Technical Manual."

Absolute Maximum Ratings*

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	
Supply Voltage, $\mathrm{V}_{\mathrm{DD}}$	-0.3 V to +7.0 V
Alll Inputs and Outputs with Respect to $V_{\text {SS }}$	0.3 V to $\mathrm{V}_{\text {DD }}+0$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ}$
Operating Temperature	$-10^{\circ} \mathrm{C}$ to +7
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.	

## DC Characteristlcs



Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Input Voltage High	$\mathbf{V}_{\mathbf{I H}}$	0.7 VDD		$\mathbf{V}_{\text {DD }}$	V	
Input Voltage Low	$\mathbf{V}_{\text {IL }}$	0		$\begin{gathered} 0.3 \\ \mathrm{~V}_{\mathrm{DD}} \\ \hline \end{gathered}$	V	
Input Leakage Current High	'LIH			2	$\mu \mathrm{A}$	$\mathbf{V}_{\mathbf{I H}}=\mathbf{V}_{\mathbf{D D}}$
Input Leakage	ILIL			-2	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbf{I L}}=\mathbf{O V}$


Output Voltage High	$\mathrm{V}_{\mathrm{OH}} \quad \mathrm{V}_{\mathrm{DD}}-0.5$			V	$\begin{aligned} & \overline{\text { BUSY, }} \overline{\text { SYNC }}, \\ & \mathrm{IOH}_{\mathrm{OH}}=-10 \mu \mathrm{~A} \end{aligned}$
Output Voltage Low	$\mathrm{V}_{\mathrm{OL}}$		0.5	V	$\overline{\text { BUSY, }} \mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$
	$\mathrm{VOL}_{2}$		1.0	V	SYNC, $\mathrm{I}_{\mathrm{OL}}=900 \mu \mathrm{~A}$
Output Leakage Current Low	${ }^{\mathrm{L} O H}$		2	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OH }}=\mathrm{V}_{\text {DD }}$
	LOL		-2	$\mu \mathbf{A}$	$\mathrm{V}_{\mathrm{OL}}=\mathrm{OV}$
Output Short Circuit Current	IOS		-300	$\mu \mathbf{A}$	$\overline{\text { SYNC, }} \mathrm{V}_{\text {OS }}=1.0 \mathrm{~V}$
Backplane Driver Output Impedance	$\mathbf{R}_{\text {COM }}$	5	7	k $\Omega$	$\begin{aligned} & \mathrm{COM}_{0}-\mathrm{COM}_{3}, \\ & \mathrm{~V}_{\mathrm{DD}} \geqslant \mathrm{~V}_{\mathrm{LCD}} \end{aligned}$

$V_{D D} \geqslant V_{\text {LCD }}$.
Applies to static-,
$1 / 2-$, and $1 / 3-L C D$
bias voltage schemes

Segment Driver Output Impedance	$\mathbf{R}_{\text {SEG }}$	7	14	k $\Omega$	$\mathrm{S}_{0}-\mathrm{S}_{31}$ $\mathrm{V}_{\mathrm{DD}} \geqslant \mathrm{~V}_{\mathrm{LCD}} .$   Applies to static-, 1/2-, and 1/3-LCD blas voltage schemes
Supply Current	IDD	100	250	$\mu \mathrm{A}$	$\mathrm{CL}_{1}$ external clock, $\mathbf{f}_{\boldsymbol{\phi}}=\mathbf{2 0 0} \mathrm{KHz}$

## DC Characteristics (Cont.)

$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Input Voltage High	$\mathrm{V}_{\mathrm{IH}_{1}}$	$0.7 \mathrm{~V}_{\mathrm{DD}}$		$\mathrm{V}_{\mathrm{DD}}$	v	Except $\overline{\text { SCK }}$
	$\mathrm{V}_{\mathrm{IH}_{2}}$	$0.8 \mathrm{~V}_{\mathrm{DD}}$		$V_{\text {DD }}$	V	$\overline{\text { SCK }}$
Input Voltage Low	$\mathrm{V}_{1 \mathrm{~L}_{1}}$	0		$v_{D D}^{0.3}$	V	Except SCK
	$\mathrm{V}_{\mathrm{IL}_{2}}$	0		$\begin{gathered} 0.2 \\ v_{D D} \end{gathered}$	v	$\overline{\text { SCK }}$
Input Leakage Current High	'LIH			2	$\mu \mathrm{A}$	$\mathbf{V}_{\mathbf{I H}}=\mathbf{V}_{\mathbf{D D}}$
Input Leakage Current Low	LILL			-2	$\mu \mathrm{A}$	$\mathbf{V}_{\mathbf{I L}}=\mathbf{0} \mathbf{V}$
Output Voltage High	$\mathrm{V}_{\mathrm{OH}}$	$V_{D D}-075$			v	$\begin{aligned} & \overline{\text { BUSY, }} \overline{\text { SYNC, }}, \\ & \mathrm{I}_{\mathrm{OH}}=-7 \mu \mathrm{~A} \end{aligned}$
Output Voltage Low	$\mathrm{v}_{\mathrm{OL}}$			0.5	v	$\overline{\text { BUSY, }}$ IOL $=100 \mu \mathrm{~A}$
	$\mathrm{v}_{\mathrm{OL}}$			0.5	v	$\overline{\text { SYNC, }}$ IOL $=400 \mu \mathrm{~A}$
Output Leakage Current Low	${ }^{\text {LOH }}$			2	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OH }}=\mathrm{V}_{\text {DD }}$
	LOL			-2	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{OL}}=0 \mathrm{~V}$
Output Short Circuit Current	los			-200	$\mu \mathrm{A}$	$\overline{\text { SYNC, }}$, $\mathrm{V}_{\text {OS }}=0.5 \mathrm{~V}$
Backplane Driver Output Impedance	$\mathrm{R}_{\text {COM }}$		6		k 2	$\mathrm{COM}_{0}-\mathrm{COM}_{3},$   $V_{D D} \geqslant V_{\text {LCD }}$.   Applies to static-, $1 / 2-$, and $1 / 3-$ LCD bias voltage schemes
Segment Driver Output Impedance	${ }^{\text {R SEG }}$		12		k $\Omega$	$\mathrm{S}_{0}-\mathrm{S}_{31}$,   $V_{D D} \geqslant V_{\text {LCD }}$.   Applies to static-, $1 / 2-$, and $1 / 3-$ LCD blas voltage schemes
Supply Current	IDD		30	100	$\mu \mathrm{A}$	$\mathrm{CL}_{1}$ external clock,   $V_{D D}=3.0 \mathrm{~V} \pm 10 \%$,   $\mathrm{f}_{\phi}=140 \mathrm{KHz}$

## AC Characteristics

$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=+5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Clock Frequency	${ }_{6}{ }_{\text {¢ }}$	50		200	KHz	
	${ }^{\text {f }} \mathrm{OSC}$	85	130	175	KHz	$R=180 \mathrm{k} \Omega+5 \%$
Clock Pulse Width High	${ }_{\phi}{ }^{W}{ }_{H}$	2		16	$\mu \mathbf{S}$	$\mathrm{CL}_{1}$, external clock
Clock Pulse Width Low	$t_{\phi} W_{L}$	2		16	$\mu \mathrm{s}$	$\mathrm{CL}_{1}$, external clock
SCK Cycle	${ }^{t}{ }^{\text {Cr }} \mathrm{Y}_{\mathrm{K}}$	900			ns	
$\overline{\overline{S C K}}$ Pulse Width High	${ }^{\mathbf{K}} \mathrm{KW}_{\mathbf{H}}$	400			ns	
$\overline{\text { SCK }}$ Pulse Width Low	${ }^{\text {K K }}$ W ${ }_{\text {L }}$	400			ns	
$\overline{\text { BUSY }} \uparrow$ to $\overline{\text { SCK }} \downarrow$ Hold Time	${ }^{\mathbf{t} \mathrm{H}_{\mathrm{K}}}$	0			ns	
SI Setup Time to $\overline{\text { SCK }} \uparrow$	${ }^{1} S_{K}$	'100			ns	
SI Hold Time After $\overline{\text { SCK }} \uparrow$	${ }^{1} H_{K}$	200			ns	
8th $\overline{S C K} \uparrow$ to $\overline{B U S Y} \downarrow$ Delay Time	${ }^{\prime} \mathrm{KD}_{\mathrm{B}}$			3	$\mu \mathrm{S}$	$C_{\text {LOAD }}=50 \mathrm{pF}$
$\overline{\text { CS }} \downarrow$ to $\overline{\text { BUSY }} \downarrow$ Delay Time	${ }^{t} \mathrm{CD}_{\mathrm{B}}$			15	$\mu \mathrm{S}$	$C_{\text {LOAD }}=50 \mathrm{pF}$
CID Setup Time to 8 th $\overline{\text { SCK }} \uparrow$	${ }^{t_{D S}}{ }_{K}$	9			$\mu \mathrm{S}$	
C/D Hold Time After 8th SCK $\uparrow$	${ }^{\text {t }}{ }^{\text {H }}$ K	1			$\mu \mathrm{S}$	
$\overline{\mathrm{CS}}$ Hold Time After 8th $\overline{\text { SCK }} \uparrow$	${ }^{\mathbf{t}} \mathrm{CH}_{\mathrm{K}}$	1			$\mu \mathrm{S}$	
$\overline{\mathbf{C S}}$ Pulse Width High	${ }^{\text {t }} \mathrm{CW}_{\mathrm{H}}$	8/f ${ }_{\boldsymbol{\phi}}$			$\mu \mathrm{S}$	
$\overline{\mathbf{C S}}$ Pulse Width Low	${ }^{\text {t }} \mathrm{CW}_{\mathrm{L}}$	$8 /{ }_{\text {¢ }}{ }_{\text {¢ }}$			$\mu \mathrm{S}$	

## AC Characteristics (Cont.)

$\mathrm{T}_{\mathrm{a}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Clock Frequency	${ }_{\text {f }}{ }_{\text {d }}$	50		140	KHz	
	${ }^{\text {fosc }}$	50	100	140	KHz	$\begin{aligned} & R=180 \mathrm{k} \Omega+5 \%, \\ & V_{D D}=30 \mathrm{~V} \pm 10 \% \end{aligned}$
Clock Pulse Width High	${ }_{\text {t }}^{\text {W }} \mathrm{W}_{\mathrm{H}}$	3		16	$\mu \mathrm{s}$	$\mathrm{CL}_{1}$, external clock
Clock Pulse Width Low	$t_{\phi} W_{L}$	3		16	$\mu \mathrm{s}$	$\mathrm{CL}_{1}$, external clock
$\overline{\text { SCK }}$ Cycle	${ }^{\mathbf{t}} \mathrm{CY}_{\mathrm{K}}$	4			$\mu \mathrm{s}$	
SCK Pulse Width High	${ }^{t_{K W}}{ }_{\mathbf{H}}$	18			$\mu \mathrm{s}$	
$\overline{\text { SCK }}$ Pulse Width Low	${ }^{\text {t }}{ }_{\text {W }}{ }_{\text {L }}$	18			$\mu \mathbf{s}$	
$\overline{\text { BUSY }}$ to $\overline{\text { SCK }} \downarrow$ Hold Time	${ }^{\text {t }}{ }^{\text {H }}$ K	0			ns	
SI Setup Time to SCK $\uparrow$	${ }^{1 / S} S_{K}$	1			$\mu \mathrm{s}$	
SI Hold Time After SCK $\uparrow$	${ }^{\mathbf{t} \mathrm{H}_{\mathrm{K}}}$	1			$\mu \mathrm{s}$	
$\begin{aligned} & \hline \text { 8th } \overline{S C K t} \text { to } \\ & \text { BUSY } \\ & \text { Time } \\ & \hline \end{aligned}$	${ }^{\mathrm{K}_{\mathrm{KD}}}{ }_{\mathrm{B}}$			5	$\mu \mathrm{s}$	$C_{\text {LOAD }}=50 \mathrm{pF}$
$\overline{\mathrm{CS}} \downarrow$ to $\overline{\mathrm{BUSY}} \downarrow$ Delay Time	${ }^{\mathbf{t} \mathrm{CD}_{\mathrm{B}}}$			5	$\mu \mathrm{s}$	$\mathrm{C}_{\text {LOAD }}=50 \mathrm{pF}$
$\begin{aligned} & \text { C/D Setup Time } \\ & \text { to 8th } \overline{\mathbf{S C K}} \end{aligned}$	${ }^{\text {D }} \mathrm{S}_{\mathrm{K}}$	18			$\mu \mathbf{S}$	
$C / \bar{D}$ Hold Time After 8th $\overline{\text { SCK }} \uparrow$	${ }^{t} \mathrm{DH}_{\mathrm{K}}$	1			$\mu \mathrm{s}$	
$\overline{\mathrm{CS}}$ Hold Time After 8th $\overline{\text { SCK }} \uparrow$	${ }^{\text {C }} \mathrm{CH}_{\mathrm{K}}$	1			$\mu \mathrm{s}$	
$\overline{\overline{C S}}$ Pulse Width High	${ }^{\text {t }} \mathrm{CW}_{\mathrm{H}}$	$8 / f_{\phi}$			$\mu \mathrm{S}$	
$\overline{\overline{C S}}$ Pulse Width Low	${ }^{\text {t }} \mathrm{CW}_{\mathrm{L}}$	$8 /{ }_{\text {¢ }}$			$\mu \mathrm{s}$	
SYNC Load Capacitance	$\mathrm{C}_{\text {LOAD }}$			50	pF	$\mathrm{f}_{\phi}=200 \mathrm{KHz}$

## Capacitance

## $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Limits			Unit	Test Conditions	
		Min	Typ	Max			
Input Capacitance	$\mathrm{C}_{1}$			10	pF		$f_{\phi}=1 \mathrm{MHz}$. Unmeasured pins return to OV .
Output Capacitance	$\mathrm{C}_{\mathrm{O}_{1}}$			20	pF	Except $\overline{\text { BUSY }}$	
	$\mathrm{C}_{\mathrm{O}_{2}}$			15	pF	BUSY	
Input/Output Capacitance	$\mathrm{C}_{10}$			15	pF	SYNC	
Clock Capacitance	$c_{\phi}$			30	pF	$\mathrm{CL}_{1}$ Input	

## AC Timing Characteristics

All Inputs


All Outputs


## Timing Waveforms



Serial Interface


## $\mu$ PD7225

## Characteristics Curves

## $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$





## 7-Segment Numeric Data Decoder Character Set

Display Byte (HEX)	Character	Decoded Display RAM Data				
		Triplexed			Quadruplexed	
		Display RAM Address			Display RAM Address	
		$n+2$	$n+1$	n	$\mathrm{n}+1$	n
00	E	3	5	3	D	7
01	81	0	0	3	0	6
02	$\square$	2	7	1	E	3
03	$\square$	0	7	3	A	7
04	$\square$	1	2	3	3	6
05	5	1	7	2	B	5
06	$E$	3	7	2	F	5
07	$87$	0	1	3	0	7
08	$\square$	3	7	3	F	7
09	$\square$	1	7	3	B	7
OA	8	3	2	0	2	0
OB	5	3	7	0	F	1
OC	5	3	5	0	D	1
OD	-	0	6	0	A	0
OE	$1$	2	6	2	E	4
OF	$\begin{aligned} & 80 \\ & 80 \\ & 80 \end{aligned}$	0	0	0	0	0

เマコ－を8－L－เへヨy－SaszzL

	Display Byte （HEX）	Char	Display RAM Address$n+3 n+2 n+1 \quad n$				Display Byte （HEX）	Char	Display RAM Address$n+3 n+2 n+1$				Display Byte （HEX）	Char	Display RAM Address$n+3 n+2 n+1 \quad n$				Display Byte （HEX）	Char	Display RAM Address$n+3 n+2 n+1$			$n$
	A0	$00$	0	0	0	0	B0	N	4	7	E	2	CO	7	A	7	C	0	D0	$F$	2	3	6	4
	A1		Invalid				B1	$\begin{aligned} & \sqrt{91} \\ & 2 \pi \end{aligned}$	0	6	0	0	C1	（17）	2	7	6	4	D1	H	0	7	E	8
$\begin{array}{\|c} \text { Ko } \\ \mathbf{0} \\ \hline \mathbf{0} \end{array}$	A2		Invalid				B2	D	2	3	C	4	C2	518	8	7	8	5	D2	8	2	3	6	C
$\frac{5}{7}$	A3		Invalid				B3	N00	2	7	8	4	C3	W	0	1	E	0	D3	5	1	5	8	4
$\begin{aligned} & 9 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	A4		Invalid				B4	Ny	2	6	2	4	C4	（1）	8	7	8	1	D4	$\bar{T}$	8	1	0	1
$\cdot$	A5		Invalid				B5	$\sqrt{N a}$	2	5	A	4	C5	W0）	2	1	E	4	D5		0	6	E	0
	A6		Invalid				B6	WI	2	5	E	4	C6	N	2	1	6	4	D6	17	4	0	6	2
	A7	N10	0	0	0	2	B7	N	0	7	0	0	C7	N0	0	5	E	4	D7	$10$	4	6	6	8
	A8	$\left[\begin{array}{c} 10 \\ 1 \end{array}\right.$	0	0	0	A	B8	NX	2	7	E	4	C8	N	2	6	6	4	D8	N	5	0	0	A
	A9	N	5	0	0	0	B9	$\infty$	2	7	A	4	C9	N0	8	1	8	1	D9	W	9	0	0	2
	AA	5	F	0	0	F	BA		Invalid				CA	N	0	6	C	0	DA	N0．	4	1	8	2
	AB	N0	A	0	0	5	BB		Invalid				CB	$N$	2	0	6	A	DB		Invalid			
	AC		Invalid				BC	$\sqrt{11}$	4	0	8	2	CC	0	0	0	E	0	DC	$\frac{\mathbf{n}^{r}}{}$	1	0	0	8
	AD	M0	2	0	0	4	BD	0	2	0	8	4	CD	N	1	6	6	2	DD	Nox	Invalid			
	AE		Invalid				BE	N	1	0	8	8	CE	D1	1	6	6	8	DE					
	AF	［0］	4	0	0	2	BF		Invalid				CF	F	0	7	E	0	DF		Invalid			

## $\mu$ PD7227 INTELLIGENT DOT-MATRIX LCD CONTROLLER/DRIVER

## DESCRIPTION The $\mu$ PD7227 Intelligent Dot-matrix LCD Controller/Driver is a peripheral device

 designed to interface most microprocessors with a wide variety of dot matrix LCDs. It can directly drive any multiplexed LCD organized as 8 rows by 40 columns, and is easily cascaded up to 16 rows and 280 columns. The $\mu$ PD7227 is equipped with several hardware logic blocks, such as an 8-bit serial interface, ASCII character generator, $40 \times 16$ static RAM with full read/write capability, and an LCD tımıng controller; all of which reduce microprocessor system software requirements. The $\mu$ PD7227 is manufactured with a single 5V CMOS process, and is available in a space-saving 64-pin flat plastic package.FEATURES - Single-chip LCD controller with direct LCD drive

- Compatible with most microprocessors
- Eight row drives
- Designed for dot-matrix LCD configurations up to 280 dots
- Designed for $5 \times 7$ dot-matrix character LCD configuration; up to 8 characters
- Cascadable to 16 row drives
- 40 column drives
- Cascadable to 280 column drives
- Hardware logic blocks reduce system software requirements
-- 8-bit serial interface for communication
- ASCII $5 \times 7$ dot-matrix character generator with 64 -character vocabulary
- $40 \times 16$ bit static RAM for data storage, retrieval, and complete back-up memory capability
- Voltage controller generates LCD bias voltages
- Timing controller synchronizes column drives with sequentially-multiplexed row drives
- Single +5 V power supply
- CMOS technology


Rev/1

PIN NUMBER	SYMBOL	FUNCTION
1	NC	No connection
$\begin{gathered} 2.24,47-57, \\ 59.64 \end{gathered}$	$\mathrm{C}_{0}-\mathrm{C}_{39}$	LCD Column Driver Outputs
25	$\mathrm{V}_{\text {SS }}$	Ground
26,58	VDD	Power supply positive Apply single voltage ranging from 2.7 V to 5.5 V for proper operation.
27	CLOCK	System Clock input (actıve high) connect to external clock source.
28	RESET	Reset input (active high) R/C circuit or pulse initialızes $\mu$ PD7227 after power-up
29	SI	Serial input (active high) Data input from microprocessor
30	C/ $\bar{D}$	Command/Data Select input (active both high and low) Distinguishes serially input data byte as a command or as display data.
31	SO/ $\overline{\text { BUSY }}$	Serial Output (active high)/Busy output (active low) Data output from $\mu$ PD 7227 to microprocessor when in READ MODE and $C / \bar{D}$ is low Handshake output indicates that $\mu$ PD7227 is ready to receive/send next data byte
32	$\overline{\text { SCK }}$	Serial Clock input (active low) Synchronizes 8-bit serial data transfer between microprocessor and $\mu$ PD7227
33	$\overline{\mathrm{CS}}$	Chip Select Input (active low) enables $\mu$ PD7227 for communication with microprocessor
34	SYNC	Synchronization port (active high) For multichip operation tie all SYNC lines together, and configure with MODE SET command
35.38	$\begin{aligned} & \mathrm{V}_{\mathrm{LCD}_{1}}, \mathrm{~V}_{\mathrm{LCD}}^{2} \\ & \mathrm{~V}_{\mathrm{LCD}}^{3} \end{aligned}, \mathrm{~V}_{\mathrm{LCD}} 4$	LCD Bias Voltage supply inputs to LCD Voltage Controller Apply appropriate voltages from a voltage ladder connected across VDD.
39.46	$\mathrm{R}_{0 / 8} \cdot \mathrm{R}_{7 / 15}$	LCD Row Driver Outputs.



Command	Description	Instruction Code								
		Binary								HEX
		D7	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	D1	$\mathrm{D}_{0}$	
1. MODE SET	Initialize the $\mu$ PD7227, including selection of   1. LCD Drive   Confıguration   2. Row Driver Port Function   3. RAM Bank   4. SYNC Port Function	0	0	0	1	1	$\mathrm{D}_{2}$		$\mathrm{D}_{0}$	18-1F
2. FRAME FREQUENCY SET	Set LCD Frame Frequency	0	0	0	1	0	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$	10-17
3. LOAD DATA POINTER	Load Data Poınter with 7 bits of Immediate Data	1	D6	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	D3	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$	80-E7
4. WRITE MODE	Write Display Byte in Serial Register to RAM location addressed by Data Poınter, modify Data Pointer	0	1	1	0	0	1		$\mathrm{D}_{0}$	64-67
5. READ MODE	Load RAM contents addressed by Data Pointer into Serial Register for output; modify Data Pointer	0	1	1	0	0	0	D1	$\mathrm{D}_{0}$	60-63
6. AND MODE	Perform a Logical AND between the display byte in the Serial Register and the RAM contents addressed by Data Pointer; write result to same RAM locatıon; modify Data Pointer	0	1	1	0	1	1	D1	$\mathrm{D}_{0}$	6C-6F
7. OR MODE	Perform a Logical OR between the display byte in the Serial Register and the RAM contents addressed by Data Poınter; write Result to same RAM location; modify Data Pointer	0	1	1	0	1	0	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$	68-6B
8. CHARACTER MODE	Decode display byte in Serial Register into $5 \times 7$ character with Character Generator; write character to RAM location addressed by Data Pointer; increment Data Pointer by 5	0	1	1	1	0	0	1	0	72
9. SET BIT	Set single bit of RAM location addressed by Data Pointer; modify Data Pointer	0	1	0	D4	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$	40-5F
10. RESET BIT	Reset single bit of RAM location addressed by Data Pointer; modify Data Pointer	0	0	1	D4	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	D1	$\mathrm{D}_{0}$	20-3F
$\begin{aligned} & \text { 11. ENABLE } \\ & \text { DISPLAY } \end{aligned}$	Turn on the LCD	0	0	0	0	1	0	0	1	09
$\begin{array}{r} \text { 12. DISABLE } \\ \text { DISPLAY } \\ \hline \end{array}$	Turn off the LCD	0	0	0	0	1	0	0	0	08

Further details of operation can be found in the " $\mu$ PD7227 Intelligent Dot-Matrix LCD Controller/Driver Technical Manual."

## $\mu$ PD7227

Power Supply, VDD .-0.3 V to +7.0 V

Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT. Exposing the device to stresses above those listed in Absolute Maximum Ratıngs could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specificatıon. Exposure to absolute maximum ratıng conditions for extended periods may affect device reliability.
$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, V_{D D}=+5.0 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	CONDITIONS
		MIN	TYP	MAX		
Input Voltage High	$\mathrm{V}_{\text {IH }}$	$0.7 \mathrm{~V}_{\text {DD }}$		$V_{\text {DD }}$	V	
Input Voltage Low	$V_{\text {IL }}$	0		0.3 VDD	V	
Input Leakage Current High	'LIH			+10	$\mu \mathrm{A}$	$V_{\text {IH }}=V_{\text {DD }}$
Input Leakage Current Low	'LIL			-10	$\mu \mathrm{A}$	$\mathrm{V}_{1 H}=0 \mathrm{~V}$
Output Voltage High	$\mathrm{VOH}_{1}$	$V_{\text {DD }}{ }^{-05}$			V	SO/ $/ \overline{\text { BUSY }}, I_{O H}=-400 \mu \mathrm{~A}$
	$\mathrm{VOH}_{2}$					SYNC, $\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$
Output Voltage Low	$\mathrm{VOL}_{1}$			045	V	$\mathrm{SO} / \overline{\mathrm{BUSY}}, \mathrm{IOL}=+1.7 \mathrm{~mA}$
	$\mathrm{V}_{\mathrm{OL}}$					SYNC, IOL $=+100 \mu \mathrm{~A}$
Output Leakage Current High	${ }^{\prime} \mathrm{LOH}$			+10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\text {DD }}$
Output Leakage Current Low	'LOL			-10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{OL}}=0 \mathrm{~V}$
LCD Operatıng Voltage	$V_{\text {LCD }}$	3.0		$V_{\text {DD }}$	V	8-Row Multiplexed LCD Drive Configuratıon
			$V_{\text {DD }}$			16-Row Multiplexed LCD Drive Configuration
Row Drive Output Impedance	$R_{\text {ROW }}$		4	8	k $\Omega$	
Column Drive Output Impedance	$\mathrm{R}_{\text {COLUMN }}$		10	15	k $\Omega$	
Supply Current	${ }^{\prime}$ DD		200	400	$\mu \mathrm{A}$	$\mathrm{f} \phi=400 \mathrm{KHz}$

$T_{a}=-25^{\circ} \mathrm{C}, V_{D D}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	$C_{1}$			10	pF	$\mathrm{f} \phi=1 \mathrm{MHz}$   Unmeasured pins returned to Ground.
Output Capacitance	$\mathrm{C}_{\mathrm{O}}$			25	pF	
Input/Output Capacitance	$\mathrm{ClO}_{10}$			15	pF SYNC	

ABSOLUTE MAXIMUM RATINGS*

DC CHARACTERISTICS

CAPACITANCE
$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+5.0 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	CONDITIONS
		MIN	TYP	MAX		
Clock Frequency	$f \phi$	100		1000	KHz	
Clock Pulse Width High	${ }_{\mathrm{t}}$ ¢ $\mathrm{W}_{\mathrm{H}}$	400			ns	
Clock Pulse Width Low	$t \phi \mathrm{~W}_{\mathrm{L}}$	400			ns	
SCK Cycle	${ }^{t} \mathrm{Cr}_{K}$	0.9			$\mu \mathrm{s}$	
$\overline{\text { SCK Pulse Width High }}$	${ }^{\text {k }} \mathrm{WW}_{\mathrm{H}}$	400			ns	
$\overline{\text { SCK Pulse Width Low }}$	${ }^{\text {t }}$ KW $W_{L}$	400			ns	
$\overline{\text { SCK }}$ Hold Time After $\overline{\mathrm{BUSY}} \uparrow$	${ }^{\text {t }}$ K $\mathrm{H}_{\mathrm{B}}$	0			ns	
SI Setup Tıme To SCK $\uparrow$	${ }^{1} S_{K}$	100			ns	
SI Hold Time After $\overline{\text { SCK }} \uparrow$	${ }^{t} H_{K}$	250			ns	
SO Delay Time After $\overline{\text { SCK }} \downarrow$	${ }^{t} \mathrm{OD}_{\mathrm{K}}$			320	ns	$C_{\text {LOAD }}=50 \mathrm{pF}$
SO Delay Time After C/ $\overline{\mathrm{D}} \downarrow$	${ }^{\text {t }}{ }^{\text {D }}$ D			2	$\mu \mathrm{s}$	
$\overline{\text { SCK Hold Time After C/ } \overline{\mathrm{D}} \downarrow .}$	${ }^{t_{K}} H_{D}$	2			$\mu \mathrm{s}$	
$\overline{\text { BUSY }}$ Delay Time After 8th $\overline{\text { SCK }} \uparrow$	${ }^{t}{ }^{\text {B }}{ }_{K}$			3	$\mu \mathrm{s}$	
$\overline{\text { BUSY }}$ Delay Tıme After C/ $\overline{\mathrm{D} \uparrow}$	${ }^{t_{B D}}{ }_{D}$			2	$\mu \mathrm{s}$	
$\overline{\text { BUSY }}$ Delay Tıme After $\overline{\mathrm{CS}} \downarrow$	${ }^{t} \mathrm{BD}_{\mathrm{C}}$			2	$\mu \mathrm{s}$	
C/ $\overline{\mathrm{D}}$ Setup Time to 8th $\overline{\mathrm{SCK}} \uparrow$	${ }^{t} \mathrm{DS}_{\mathrm{K}}$	2			$\mu \mathrm{s}$	
C/ $\overline{\mathrm{D}}$ Hold Time After 8th $\overline{\text { SCK }} \uparrow$	${ }^{\text {t } \mathrm{DHK}_{K}}$	2			$\mu \mathrm{s}$	
$\overline{\mathrm{CS}}$ Hold Time After 8th $\overline{\text { SCK }} \uparrow$	${ }^{\text {}} \mathrm{CH}_{\mathrm{K}}$	2			$\mu \mathrm{s}$	
$\overline{\text { CS Pulse Width High }}$	${ }^{t} \mathrm{CW}_{\mathrm{H}}$	2/f $\phi$			$\mu \mathrm{s}$	
$\overline{\mathrm{CS}} \uparrow$ Delay Tıme to $\overline{\mathrm{BUSY}}$ Floating	${ }^{t} \mathrm{CD}_{\mathrm{B}}$	2			$\mu \mathrm{s}$	$C_{\text {LOAD }}=50 \mathrm{pF}$
SYNC Load Capacıtance	CLOAD			100	pF	

$\mathrm{T}_{\mathrm{a}}-10$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7$ to 55 V

PARAMETER	SYMBOL	LIMITS			UNIT	CONDITIONS
		MIN	TYP	MAX		
Clock Frequency	$f \phi$	100		250	KHz	
Clock Pulse Width High	$t \phi \mathrm{~W}_{\mathrm{H}}$	1800			ns	
Clock Pulse Wıdth Low	$t \phi \mathrm{~W}_{\mathrm{L}}$	1800			ns	
$\overline{\text { SCK }}$ Cycle	${ }^{\mathrm{t}} \mathrm{CY}_{\mathrm{K}}$	4			$\mu \mathrm{s}$	
$\overline{\text { SCK Pulse Width High }}$	${ }^{\text {k }} \mathrm{WW}_{\mathrm{H}}$	1800			ns	
$\overline{\text { SCK }}$ Pulse Width Low	${ }^{\text {t }}$ KW $\mathrm{L}_{\text {L }}$	1800			ns	
$\overline{\text { SCK }}$ Hold Time After $\overline{\text { BUSY }} \uparrow$	${ }^{\text {K K }} \mathrm{H}_{\mathrm{B}}$	0			ns	
SI Setup Time To $\overline{\text { SCK }} \uparrow$	${ }^{t} \mathrm{IS}_{\mathrm{K}}$	500			ns	
SI Hold Time After $\overline{\text { SCK }} \uparrow$	${ }^{t_{1}} \mathrm{H}_{\mathrm{K}}$	1			ns	
SO Delay Tıme After $\overline{\text { SCK }} \downarrow$	${ }^{\text {t }}{ }^{\text {O }}$ K			1200	ns	
SO Delay Time After C/D $\downarrow$	${ }^{t} O D_{D}$			3	$\mu \mathrm{s}$	
$\overline{\text { S }} \overline{C K}$ Hold Time After C/D $\downarrow$	${ }^{1} \mathrm{KH} \mathrm{H}$	3			$\mu \mathrm{s}$	
$\overline{\overline{B U S Y}}$ Delay Tıme After 8th $\overline{\text { SCK }} \uparrow$	${ }^{t}{ }^{\text {B }}{ }_{K}$			4	$\mu \mathrm{s}$	$C_{\text {LOAD }}=50 \mathrm{pF}$
$\overline{\text { BUSY }}$ Delay Tıme After C/D $\uparrow$	${ }^{t}{ }^{\text {B }}{ }_{\text {D }}$			3	$\mu \mathrm{s}$	
$\overline{\text { BUSY }}$ Delay Time After $\overline{\mathrm{CS}} \downarrow$	${ }^{t} \mathrm{BD}_{\mathrm{C}}$			3	$\mu \mathrm{s}$	
C/ $\overline{\mathrm{D}}$ Setup Time to 8th SCK $\uparrow$	${ }^{t}{ }^{\text {D }}$ K	3			$\mu \mathrm{s}$	
C/̄̄ Hold Time After 8th $\overline{\text { SCK }} \uparrow$	${ }^{\text { }}{ }^{\text {DHK }}$	3			$\mu \mathrm{s}$	
$\overline{\mathrm{C}} \overline{\mathrm{S}}$ Hold Time After 8th SCK $\uparrow$	${ }^{\text {t }} \mathrm{CH}_{\mathrm{K}}$	3			$\mu \mathrm{s}$	
$\overline{\mathrm{CS}}$ Pulse Wıdth Hıgh	${ }^{t} \mathrm{CW}_{\mathrm{H}}$	2/f $\phi$			$\mu \mathrm{s}$	
$\overline{\overline{C S}} \uparrow$ Delay Tıme to $\overline{\mathrm{BUSY}}$ Floatıng	${ }^{\mathrm{t}} \mathrm{CD}_{\mathrm{B}}$	3			$\mu \mathrm{S}$	$C_{\text {LOAD }}=50 \mathrm{pF}$
SYNC Load Capacıtance	$\mathrm{CLOAD}_{\text {L }}$			100	pF	




SERIAL INTERFACE TIMING WAVEFORMS
$5 \times 7$ CHARACTER SET AS GENERATED IN $\mu$ PD7227

Display Byte

Display Byte


## Package Outlines

For information, see Package Outline Section 7.
Plastic Miniflat, $\mu$ PD7227G

## Description

The $\mu$ PD7228 Intelligent Dot-Matrix LCD Controller/Driver is a peripheral device designed to interface most microprocessors with a wide variety of dot-matrix LCDs. It can directly drive any multiplexed LCD organized as 8 rows $x$ 50 columns or 16 rows by 42 columns. The $\mu$ PD7228 has a standby function to conserve power. It is equipped with several logic blocks, such as an 8-bit serial interface, a 4-bit parallel interface, an ASCII upper/lower case, a Kana character generator, a $50 \times 16$ static RAM with full read/ write capability, and an LCD timing controller, all of which reduce microprocessor system software requirements. The $\mu$ PD7228 is manufactured with a single 5 V CMOS process, and is available in an 80-pin space saving flat plastic package.

## Features

LCD direct drive8 -line or 16 -line multiplexing drive possible with single chip

- 8-line multiplexing: $400(50 \times 8)$ dots
- 16-line multiplexing: $672(42 \times 16)$ dots8 -line or 16 -line multiplexing drive with $n$ chip configuration
- 8-line multiplexing: $n \times 400(n \times 50 \times 8)$ dots
- 16-line multiplexing: $n \times 800(n \times 50 \times 16)$ dotsRAM: $2 \times 50 \times 8$ bits for display data storage
Programmer designated dot (graphics) display
$5 \times 7$ dot-matrix display by on-chip character generator ASCII characters (alphanumerics, others): 64 characters; JIS characters (Kana and others): 96 characters Cursor operating command
8-bit serial interface compatible with $\mu$ PD7500, $\mu \mathrm{COM}-43 \mathrm{~N}, \mu \mathrm{COM}-87 / 87 \mathrm{LC}$4-bit parallel interface compatible with $\mu$ PD7500, $\mu$ COM-84/84CStandby function
CMOS
Single power supply80-pin plastic flat package
Extended $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range available


## Pin Configuration



6

Pin		Description
No.	Symbol	
$\begin{aligned} & 1-18 \\ & 42-80 \end{aligned}$	$\mathrm{C}_{0}-\mathrm{C}_{41}$	LCD Column Drive Outputs
5-12	$\mathrm{C}_{42} / \mathrm{R}_{15}-\mathrm{C}_{49} / \mathrm{R}_{8}$	LCD Row/Column Drive Outputs
13-20	$\mathrm{R}_{0} / \mathrm{R}_{8}-\mathrm{R}_{7} / \mathrm{R}_{15}$	LCD Row Drive Outputs
$\begin{aligned} & 21,22 \\ & 24-26 \end{aligned}$	$\mathrm{V}_{\mathbf{L C} 1}-\mathrm{V}_{\text {LC5 }}$	LCD Power Supply
23, 42	NC	No Connection
27	$\mathrm{D}_{0} / \mathrm{SI}$	Data Bus 0/Serial Input
28	$\mathrm{D}_{1}(\mathrm{P} / \overline{\mathbf{S}})$	Data Bus 1 (Parallel/Serial Select)
29	$\mathrm{D}_{\mathbf{2}}$ (CAE)	Data Bus 2 (Chip Address Enable)
30	$\mathrm{D}_{3} / \mathrm{SO}$	Data Bus 3/Serial Output
31	SYNC	Synchronization Signal Input/Output
32	BUSY	Busy Signal Output
33	$V_{\text {DD }}$	Power Supply
34	$\mathrm{V}_{\text {ss }}$	Ground
35	$\overline{\text { STB } / \overline{S C K}}$	Strobe/Serial Clock Input
36	C/D	Command/Data Select Input
37, 38	$\mathrm{CA}_{0}, \mathrm{CA}_{1}$	Chip Address Select Inputs
39	$\overline{\mathbf{C S}}$	Chip Select Input
40	RESET	Reset Signal Input
41	CLOCK	System Clock Input

## Block Diagram



$7 \quad 4 \quad 0$																			
				0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
				0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
				0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
				0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
	0		0		:	: :		$\therefore \cdots$ $\because \because$		$\because$ $\because$ $\because$	$\because$			$\because \because$	-	$\because$	-••••	:	$\bullet^{\bullet}$
0	0	1	1	$\cdots$	$\square$   $\vdots$	$\cdots$   $\therefore$   $\therefore \cdot$.		$\therefore \therefore$		$\cdots$		$\cdots$	$\cdots$	::	:	$\because \bullet^{\bullet}$	-......	$\bullet \cdot$	$\stackrel{\bullet}{\bullet}$
0	1	0	0	$\cdots$	$\square^{\cdots}$		$\vdots^{\cdots} \cdot$	$\because \because$	$\cdots \cdots$   $\vdots \cdots \cdots$   $\vdots$		$\cdots$	!	$\because$   $\vdots$  	-   $\vdots$		!	$\because \because:$	$\vdots$	! $\begin{gathered}\text { ¢ } \\ \vdots\end{gathered}$
0	1	0	1	$\cdots$	$\cdots$	$\cdots$	:....	$\cdots$	! $\quad \vdots$	! $\quad \vdots$	菏 $\quad \vdots$					$\bullet \cdot$		$\bullet \cdot$	.....
0	1	1	0	$\bullet$ •	…	$\vdots$ $\vdots$ $\vdots$	: ${ }^{\ldots}$	.	: $\because \cdots$ :	$\because \bullet$      $\vdots$	$\cdots$	!	$\bullet$      $\therefore$.	-. $\quad \vdots$	$\vdots$ !	$\because$   $\vdots$	$\because \because:$	!	$\square^{\cdots \cdots}$
0	1	1	1	…	$\cdots$	! ${ }^{\bullet}$	$\cdots$	-	! $\quad$ !	$\vdots:$	$\vdots \vdots$		:. $\quad$.	$\cdots$	$\because$	:	$\because$		
1	0	1	0		: $\because:$	$\because$	.	$\bullet$.	::	-•...:	$\cdots$	$\therefore \square^{\bullet}$	$\because \because$		$\cdots:$	$\because \cdots$	-•..:	$\cdots$	: : :
1	0	1	1	-•...	$\cdots$	$\bullet \bullet^{\bullet}$	$\ldots$	-•...	...:	$\cdots$	- $\because \because$	$\ldots$		$\cdots$	$\because \because$	$\cdots \quad \begin{aligned} & \cdots \\ & \cdots\end{aligned}$		-	$\begin{array}{lr}\square & \vdots \\ \cdots \\ \cdots\end{array}$
1	1	0	0	$\cdots$	$\cdots$	: :	$\cdots$	$\vdots$	$\cdots$	$\cdots$	$\because \because$	$\cdots$	$\vdots$	$\vdots \stackrel{\ddots}{\square}$			$\cdots$	$\cdots$	$\cdots$
1	1	0	1	$\cdots$	$\because{ }^{\bullet}$	$\because:$	-: $\because \cdots$	$\vdots$	-•:	…:	$\cdots \cdots$   $\cdots$	$\vdots \vdots$	: $\vdots:$	$\vdots{ }^{\vdots} \cdot{ }^{\circ}$		$\because \cdots$	$\cdots \quad .$.	$\because$	: $:$

## Commands for $\mu$ PD7228

The $\mu$ PD7228 is provided with sixteen types of commands, each command consisting of one byte ( 8 bits).

## Command Summary

1. Set Frame Frequency	0	0	0	1	0	F2	F1	F0
2. Set Multiplexing Mode	0	0	0	1	1	M2	M1	M0
3. Display Off	0	0	0	0	1	0	0	0
4. Display On	0	0	0	0	1	0	0	1
5. Set Read Mode	0	1	1	0	0	0	11	10
6. Set Write Mode	0	1	1	0	0	1	11	10
7. Set AND Mode	0	1	1	0	1	1	11	10
8. Set OR Mode	0	1	1	0	1	0	11	10
9. Set Character Mode with Right Entry	0	1	1	1	0	0	1	1
10. *Set Character Mode with Left Entry*	0	1	1	1	0	0	0	0
11. Bit Set	0	1	0	B2	B1	B0	J1	J0
12. Bit Reset	0	0	1	B2	B1	B0	J1	J0
13. *Write Cursor*	0	1	1	1	1	1	0	1
14. *Clear Cursor*	0	1	1	1	1	1	0	0
15. Load Immediate to Data Pointer	1	D6	D5	D4	D3	D2	D1	D0
16. *Set Stop Mode*	0	0	0	0	0	0	0	1

Note: *Newly added (compared to $\mu$ PD7227)

## Command Summary

Mnemonic	Operation	Instruction Code								HEX
		Binary								
		$D_{7} D_{6} D_{5} D_{4} D_{3} D_{2} D_{1} D_{0}$								
SFF	Set Frame Frequency	0	0	0	,		$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$	10-14
SMM	Set Multiplexing Mode	0	0	0	1	1	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$	18-1F
DISP OFF	Display Off	0	0	0	0	0	0	0	0	08
DISP ON	Display On	0	-	0	0	1	0	0	1	09
LDPI	Load Data Pointer with Immediate	1	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	D1	$\mathrm{D}_{0}$	$\begin{aligned} & 80-\mathrm{B1} \\ & \mathrm{CO} 0 \mathrm{~F} 1 \end{aligned}$
SRM	Set Read Mode	0	1	1	0		0	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$	60-63
SWM	Set Write Mode	0	,	1	0	0	-	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$	64-67
SORM	Set OR Mode	0	1	1	0	1	0	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$	68-6B
SANDM	Set AND Mode	0	1	1	0	1	1	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$	6C-6F
SCML	Set Character Mode with Left Entry	0	1	1	1	0	0	0	1	71
SCMR	Set Character Mode with Right Entry	0	1	1	1	0	0	1	0	72
BSET	Bit Set	0	1	0	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$	40-5F
BRESET	Bit Reset	0	0	1	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	$\mathrm{D}_{0}$	20-3F
WRCURS	Write Cursor	0	1	1	1	1	1	-	1	70
CLCURS	Clear Cursor	0	1		1	-	1	0	0	7 C
STOP	Set Stop Mode	0	0	0	0	-	0	0	1	01

## Electrical Specifications

 Absolute Maximum Ratings*| $\boldsymbol{T}_{\mathbf{a}}=25^{\circ} \mathrm{C}$ | -0.3 V to +7.0 V |
| :--- | ---: |
| Supply Voltage, $\mathrm{V}_{\mathrm{DD}}$ | -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ |
| Input Voltage, $\mathrm{V}_{1}$ | -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ |
| Output Voltage, $\mathrm{V}_{\mathrm{o}}$ | $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| Operating Temperature, $\mathrm{T}_{\mathrm{OPT}}$ | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Storage Temperature, $\mathrm{T}_{\mathrm{STG}}$ |  |

*COMMENT: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## Capacitance

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{VDD}_{\mathrm{DD}}=\mathbf{0 V}$

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Input Capacitance	$\mathrm{CiN}_{\text {I }}$			10	pF	$f=1 \mathrm{MHz}$
Output Capacitance	$\mathrm{Cout}^{\text {O }}$			25	pF	Unmeasured pins
I/O Capacitance	$\mathrm{ClO}_{10}$			15	pF	returned to 0 V

## DC Characteristics

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Input Voltage High	$\mathrm{V}_{\text {IH1 }}$	$0.7 \mathrm{~V}_{\text {DD }}$		$V_{\text {DD }}$	V	Except $\overline{\text { SCK }}$
	$\mathrm{V}_{\mathrm{HH} 2}$	$0.8 \mathrm{~V}_{\text {DD }}$		$V_{\text {DD }}$	V	$\overline{\text { SCK }}$
Input Voltage Low	$\mathrm{V}_{\mathbf{I L}}$	0		$0.3 \mathrm{~V}_{\text {DD }}$	V	
Input Leakage Current High	ILIH			10	$\mu \mathrm{A}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$
Input Leakage Current Low	ILIL			-10	$\mu \mathrm{A}$	$V_{1}=0 \mathrm{~V}$
Output Voltage High	$\mathrm{V}_{\text {OH1 }}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}- \\ 0.5 \end{gathered}$			V	$\begin{aligned} & \text { BUSY, } D_{0}-D_{3}, \\ & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{aligned}$
	$\mathrm{V}_{\mathrm{OH} 2}$	$\underset{0.5}{\mathrm{~V}_{\mathrm{DD}}-}$			V	$\begin{aligned} & \text { SYNC, IOH }= \\ & -100 \mu \mathrm{~A} \end{aligned}$
Output Voltage Low	$V_{\text {OLI }}$			0.45	V	$\begin{aligned} & \text { BUSY, } \mathrm{D}_{0}-\mathrm{D}_{3}, \\ & \mathrm{I}_{\mathrm{OL}}=1.7 \mathrm{~mA} \end{aligned}$
	$\mathrm{V}_{\text {OL2 }}$			0.45	V	$\begin{aligned} & \text { SYNC, } \mathrm{I}_{\mathrm{OL}}= \\ & 100 \mu \mathrm{~A} \end{aligned}$
Output Leakage Current High	ILOH			10	$\mu \mathrm{A}$	$\mathrm{V}_{0}=\mathrm{V}_{\mathrm{DD}}$
Output Leakage Current Low	$\mathrm{I}_{\mathrm{LOL}}$			-10	$\mu \mathrm{A}$	$\mathrm{V}_{1}=0 \mathrm{~V}$
LCD Operating Voltage	$\mathrm{V}_{\text {LCD }}$	3.0		$\mathrm{V}_{\text {DD }}$	V	
Row Output Impedance	R Row		4	8	k $\Omega$	
Row/Column Output Impedance	$\mathrm{R}_{\text {ROW/COL }}$		5	10	$\mathrm{k} \Omega$	
Column Output Impedance	$\mathrm{R}_{\mathbf{C O L}}$		10	15	$k \Omega$	
Supply Current	$\mathrm{I}_{\mathrm{DD} 1}$		200	400	$\mu \mathrm{A}$	Operating Mode, $\mathrm{f}_{\mathrm{C}}=400 \mathrm{kHz}$
	${ }^{\text {DD2 }}$			20	$\mu \mathrm{A}$	Stop Mode, CLK $=0 \mathrm{~V}$

## AC Characteristics

$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C} ; \mathrm{VDD}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%$ Common Operation

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Clock Frequency	${ }^{\text {f }}$ C	100		1100	kHz	
Clock Pulse Width High	$t_{\text {wHC }}$	350			ns	
Clock Pulse Width Low	$t_{\text {wLC }}$	350			ns	
$\overline{\text { BUSY }}$ Delay Time from CS $\downarrow$	$t_{\text {dCSB }}$			2	$\mu \mathrm{s}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\overline{\overline{C S}} 4$ Delay Time to BUSY Floating	$t_{\text {dcsef }}$			4	$\mu s$	$C_{L}=50 \mathrm{pF}$
$\overline{\overline{C S}}$ High Level Time	$t_{\text {WHCS }}$	4			$\mu \mathrm{s}$	
SYNC Load Capacitance	$\mathrm{C}_{\text {LSY }}$			100	pF	
Data Set-up Time to RESET $\downarrow$	$t_{\text {SDR }}$	0			$\mu \mathrm{s}$	
Data Hold Time from RESET $\downarrow$	$t_{\text {HRD }}$	4			$\mu \mathrm{s}$	

AC Characteristics (Cont.)
$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%$ Serial Interface Operation

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
$\overline{\text { SCK Cycle }}$	$\mathrm{t}_{\text {crk }}$	0.9			$\mu s$	
SCK Pulse Width High	${ }_{\text {twhk }}$	400			ns	
SCK Pulse Width Low	$t_{\text {wLK }}$	400			ns	
$\overline{\overline{S C K}}$ Hold Time from $\overline{\text { BUSY }} \uparrow$	$t_{\text {HBK }}$	0			ns	
SI Set-up Time to $\overline{\text { SCK }} \uparrow$	$\mathbf{t s I K}$	100			ns	
SI Hold Time from $\overline{\mathbf{S C K}} \uparrow$	$t_{\text {HKI }}$	250			ns	
SO Delay Time from $\overline{\text { SCK }} \downarrow$	$\mathrm{t}_{\text {DKO }}$			320	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
BUSY Delay Time from Eighth $\overline{\mathbf{S C K}} \uparrow$	$t_{\text {DKB }}$			3	$\mu s$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\overline{\text { BUSY }}$ Low-level Time	${ }^{\text {wLB }}$	18		64	$1 / \mathrm{c}_{\mathrm{c}}$	$C_{L}=50 \mathrm{pF}$
$\overline{C / \bar{D}}$ Set-up Time to First $\overline{\text { SCK }} \downarrow$	$t_{\text {sok }}$	0			$\mu \mathrm{s}$	
$\mathbf{C / \overline { D }}$ Hold Time from Eighth $\overline{\mathbf{S C K}} \uparrow$	$\mathrm{t}_{\text {HKD }}$	2			$\mu \mathrm{s}$	
$\overline{\text { CS }}$ Hold Time from Eighth $\overline{\text { SCK }} \uparrow$	$\mathrm{t}_{\text {HKCS }}$	2			$\mu s$	

AC Characteristics (Cont.)
$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm \mathbf{1 0} \%$
Parallel Interface Operation

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Input Command Set-up Time to STB $\downarrow$	$t_{\text {A }}$	100			ns	$\mathrm{C}_{\mathrm{L}}=80 \mathrm{pF}$
Input Command Hold Time from STB $\downarrow$	$t_{B}$	90			ns	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$
Input Data Set-up Time to STB $\uparrow$	${ }^{\text {c }}$ c	230			ns	$\mathrm{C}_{\mathrm{L}}=80 \mathrm{pF}$
Input Data Hold Time from $\overline{\text { STB }} \uparrow$	$t_{0}$	50			ns	$C_{L}=20 \mathrm{pF}$
Output Data Delay Tıme	$\mathrm{t}_{\text {ACC }}$	90		650	ns	$C_{L}=80 \mathrm{pF}$
Output Data Hold Time	$t_{H}$	0		150	ns	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$
STB Pulse Width Low	$t_{\text {SL }}$	700			ns	
STB High Level Time	$t_{\text {SH }}$	1			$\mu \mathrm{s}$	
$\overline{\text { STB }}$ Hold Time from BUSY $\uparrow$	$\mathrm{t}_{\text {HBS }}$	0			$\mu \mathrm{s}$	
BUSY Delay Time from Second STB $\uparrow$	$t_{\text {DSB }}$			3	$\mu s$	
$\overline{\mathrm{C}} \overline{\bar{D}}$ Set-up Time to First $\overline{\text { STB }} \downarrow$	$\mathrm{t}_{\text {sos }}$	0			$\mu \mathrm{s}$	
$\bar{C} / \bar{D}$ Hold Time from Second STB $\uparrow$	$t_{\text {HSD }}$	2			$\mu s$	
$\overline{\overline{C S}}$ Hold Time from Second $\overline{\text { STB }} \uparrow$	$t_{\text {HScs }}$	2			$\mu s$	

## Serial Interface Timing Waveforms



Serial Interface Timing Waveforms (Cont.)
AC Test Points


Clock Waveform


Interface Timing Waveforms


## Parallel Interface Timing Waveforms



## Package Outlines

For information, see Package Outline Section 7.
Plastic Miniflat, $\mu$ PD7228G

Notes

## Description

The $\mu$ PD7261 hard-disk controller is an intelligent microprocessor peripheral designed to control a number of different types of disk drives. It is capable of supporting either hard-sector or soft-sector disks and provides all control signals that interface the controller with either SMD disk interfaces or Seagate floppy-like drives. Its sophisticated instruction set minimizes the software overhead for the host microprocessor. By using the DMA controller, the microprocessor needs only to load a few command bytes into the $\mu$ PD7261 and all the data transfers associated with read, write, or format operations are done by the $\mu$ PD7261 and the DMA controller. Extensive error reporting, verify commands, ECC, and CRC data error checking assure reliable controller operation. The $\mu$ PD7261 provides internal address mark detection, ID verification, and CRC or ECC checking and verification. An eight-byte FIFO is used for loading command parameters and obtaining command results. This makes the structuring of software drivers a simple task. The FIFO is also used for buffering data during DMA read/write operations.

## Features

Flexible interface to various types of hard-disk drivesProgrammable track formatControls up to 8 drivesParallel seek operation capabilityMultisector and multitrack transfer capabilityData scan and data verify capabilityHigh-level commands, including:
READ DATA SEEK (normal or buffered)
READ ID RECALIBRATE (normal or buffered)
WRITE DATA READ DIAGNOSTIC (SMD only)
FORMAT
SCAN DATA
VERIFY DATA
VERIFY ID SPECIFY
SENSE INTERRUPT STATUS
SENSE UNIT STATUS DETECT ERROR

## CHECK

NRZ or MFM data formatMaximum data transfer rate: 12 MHz (SMD mode)Error detection and correction capabilitySimple I/O structure: compatible with most microprocessorsAll inputs and outputs except clock pins are TTLcompatible (clock pins require pullup)$\square$
Single +5 V power supply40-pin dual-in-line package

## Pin Configuration



Note: Signals shown in parentheses are used when the $\mu$ PD7261 is in the floppy-like mode.
Pin Identification - Host Interface Pins

Pin		1/0	Function
No.	Name		
4	RESET	I	Reset input. When high, it forces the device into an idle state. The device remains idle until a command is issued by the system.
5	INT	0	Interrupt request to the system, set high for request.
6	DREQ	0	DMA request. Normally low, set high to request a transfer of data between the disk controller and memory.
7	$\overline{\mathrm{TC}}$	1	This is used as a terminal count input during DMA.
8	$\overline{\mathbf{C S}}$	1	Chip select. When low, it enables reading from or writing into the register selected by A0.
9	RD	1	Read strobe. When low, selected register contents are read.
10	WR	1	Write strobe. When low, data is written into the selected register.
11	A0	1	Register select input, to be connected to a nonmultiplexed address bus line. When high, the command/status register is selected; when low, the data buffer is selected.
12-19	D0-D7	I/O	Data bus port, to be connected to data bus.
20	GND	P.S.	Ground.
36	INDEX	1	This signal Indicates the beginning of sector zero.
37	CLOCK	1	External clock input, used as timing clock for the on-chip processor.
40	$V_{c c}$	P.S.	+5 V power supply.

## Disk Interface Pins (Defined by mode)

Pin		SMD	Floppy-like	
No.	Name			
1	SYNC	Read Clock Enable	PLO Lock/Read Clock Enable	
2	R/W DATA	Read/Write Data	Read/Write Data	
3	R/W CLK	Read Clock \| Servo Clock	Read Clock \| Write Clock	
21	BT9, DIR	Bit9 \| Unit Selected	Direction In	
22	BT8, -STEP	Bit 8 \| Seek End	Step Pulse	
23	BT7, RWC	Bit7 \| WR Protected	(SR7)	Reduced Write Current
24	BT6, HS2	Bit6 \| (AMFound)	(SR6)	Head Select $\mathbf{2}^{2}$
25	BT5, HS1	Bit5 \| Unit Ready	(SR5)	Head Select ${ }^{1}$
26	BT4, HSO	Bit4 \| On Cylinder	(SR4)	Head Select ${ }^{0}{ }^{0}$
27	BT3, DS1	Bit3 \| Seek Error	(SR3)	Drive Select $\mathbf{2}^{\mathbf{1}}$
28	BT2, DS0	Bit2 \| Fault	(SR2)	Drive Select $\mathbf{2}^{0}$
29	TG1, WFLT	Tag 1	Write Fault	
30	TG2, READY	Tag 2	Ready	
31	TG3, TRK0	Tag 3	Track 000	
32	BDIR, SKC	Direction	Seek Complete	
33	SSTG, DSD	(SR Select Tag)	Drive Selected	
34	USTG, PCL	Unit Select Tag	Precomp Late	
35	SCT, PCE	Sector \| (SR1)	Precomp Early	
36	INDEX	Index \| (SR0)	Index	
38	BTO, WGATE	Bit 0	Write Gate	
39	BT1, RGATE	Bit 1	Read Gate	

Note: The multifunction signals above are defined by the use of the Specify command By setting the SSEC bit in the mode byte of the Specify command to a one the floppy-like mode is selected To better understand the functions of these pins, refer to the individual instructions and to the SMD and floppy-like interface definitions

## Block Diagram



## DC Characteristics

Parameter	Symbol	Limits		Unit	Test Conditions
		Min	Max		
Input Low Voltage	$\mathrm{V}_{\text {LI }}$	-0.5	+0.8	V	All except CLK
Input Low Voltage	$\mathrm{V}_{\text {LI }}$	-0.5	+0.6	V	CLK
Input High Voltage	$\mathrm{V}_{\text {IH }}$	+2.0	$\mathrm{V}_{\mathrm{cc}}$	V	All except CLK, RESET
Input High Voltage	$\mathrm{V}_{\text {tH1 }}$	+3.3	$\mathrm{V}_{\mathrm{cc}}$	V	CLK, RESET
Output Low Voltage	$\mathrm{V}_{\mathrm{OL}}$		+0.45	V	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=+2.0 \mathrm{~mA} \\ & \mathrm{DREQ}, \mathrm{INT}, \mathrm{DO}-\mathrm{D7} \end{aligned}$
Output Low Voltage	$\mathrm{V}_{\text {OL1 }}$		+0.45	v	$\mathrm{I}_{\mathrm{OL}}=+1.6 \mathrm{~mA}$ all except DREQ, INT, D0-D7
Output High Voltage	$\mathrm{V}_{\mathrm{OH}}$	+2.4		v	$\begin{aligned} & \mathrm{I}_{\text {oH }}=-\mathbf{1 0 0 \mu \mathrm { A } \text { DREQ, }} \\ & \text { INT, DO-D7 } \end{aligned}$
Output High Voltage	$\mathbf{V O H 1}$	+2.4		V	$\begin{aligned} & \mathrm{I}_{\text {OH }}=-50 \mu \mathrm{~A} \text { all } \\ & \text { except } \mathrm{DREQ}, \mathrm{INT}, \end{aligned}$
Input Leakage Current	ILL		$\pm 10$	$\mu \mathrm{A}$	$\begin{aligned} & V_{i N}=V_{c c} \text { to } 0.45, \\ & \text { all except Pins } \\ & 21-34 \end{aligned}$
Input Leakage Current	$\mathbf{I L L 1}$		$\pm 500$	$\mu \mathrm{A}$	$\begin{aligned} & V_{i N}=V_{c c} \text { to } 0.45 \\ & \text { Pins } 21-34 \end{aligned}$
Output Leakage Current	IOL		$\pm 10$	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {cc }}$ to 0.45
Input Capacitance	$\mathrm{C}_{\text {IN }}$		15	pf	$\mathrm{f}=1 \mathrm{MHz}$
Output Capacitance	$\mathrm{Cout}^{\text {OUT }}$		15	pf	$\mathrm{f}=1 \mathrm{MHz}$
I/O Capacitance	$\mathrm{C}_{10}$		20	pf	$\mathrm{f}=1 \mathrm{MHz}$
Supply Current	$\mathrm{I}_{\mathrm{cc}}$		360	mA	$\begin{aligned} & V_{c c}=5 \mathrm{~V} \pm 10 \% \\ & \mathrm{Ta}=0 \text { to } 70^{\circ} \mathrm{C} \end{aligned}$
Supply Voltage	$\mathrm{V}_{\mathrm{cc}}$	+4.5	5.5	v	$\mathrm{Ta}=0$ to $70^{\circ} \mathrm{C}$

## Absolute Maximum Ratings*

Operating Temperature	$0^{\circ} \mathrm{C}$	to	$+70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$	to	$+150^{\circ} \mathrm{C}$
Voltage on any Pin with Respect to Ground	-0.5 V	to	+7.0 V

*COMMENT: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
AC Characteristics (Processor Interface)

Parameter	Symbol	Limits		Unit	Test Conditions
		Min	Max		
CLOCK Cycle	$\phi_{\text {cr }}$	90		ns	
CLOCK Low Time	$\phi_{\text {CH }}$	32		ns	
CLOCK High Time	$\phi_{\text {cl }}$	32		ns	
CLOCK Rise Time	$\phi_{\text {R }}$		10	ns	
CLOCK Fall Time	$\phi_{F}$		10	ns	
A0, CS Setup to RD	$t_{\text {AR }}$	0		ns	
A0, CS Hold from $\overline{\text { RD }}$	$t_{\text {RA }}$	0		ns	
RD Pulse Width	$\mathrm{t}_{\text {R }}$	200		ns	
Data Delay from RD	$\mathrm{t}_{\text {RD }}$		150	ns	
Output Float Delay	$t_{\text {bF }}$	0	100	ns	
Data Delay from A0, CS	$t_{\text {AD }}$		150	ns	
A0, CS Setup to WR	$\mathrm{taw}_{\text {a }}$	0		ns	
A0, CS Hold from WR	$t_{\text {wa }}$	0		ns	
WR Pulse Width	$t_{\text {ww }}$	200		ns	
Data Setup to WR	$t_{\text {dw }}$	100		ns	
Data Hold from WR	$t_{\text {wo }}$	0		ns	
$\frac{\text { Recovery Time from } \overline{\mathrm{RD}},}{\text { Wh }}$	$\mathrm{t}_{\mathrm{RV}}$	200		ns	
RESET Pulse Width	$\mathrm{t}_{\text {RST }}$	100		${ }_{\phi}{ }^{\text {Cr }}$	
TC Pulse Width	${ }_{\text {t }}$ c	100		ns	
INT Delay from WR	$t_{\text {wi }}$		200	ns	
DREQ Delay from WR	$t_{\text {wal }}$		250	ns	
DREQ Delay from RD1	$\mathrm{t}_{\text {Ral1 }}$		250	ns	
DREQ Delay from RD2	$\mathrm{t}_{\text {fA12 }}$		150	ns	

AC Characteristics (Floppy-like Interface)

Parameter	Symbol	Limits		Unit	Test Conditions
		Min	Max		
RWCLK Cycle Period	$\mathrm{t}_{\mathrm{cr}}$	83		ns	
R/WCLK Low Time	$\mathrm{t}_{\mathrm{CL}}$	30		ns	
R/WCLK High Time	${ }_{\text {t }}^{\text {ch }}$	30		ns	
R/WCLK Rise Time	$\mathrm{t}_{\mathrm{R}}$		10	ns	
RWCLK Fall Time	$\mathrm{t}_{\mathrm{F}}$		10	ns	
R/WDATA Set up to R/WCLK	$t_{\text {dcs }}$	40		ns	
R/WDATA Hold from R/WCLK	$\mathrm{t}_{\mathbf{C D H}}$	0		ns	
RWDATA Delay from R/WCLK	$t_{\text {DCD }}$		70	ns	
RGATE Delay from R/WCLK	$\mathrm{t}_{\text {cha }}$		300	ns	
WGATE Delay from R/WCLK	$\mathrm{t}_{\text {cwa }}$		150	ns	
PCE/PCL Delay from R/WCLK	${ }^{\text {t }}$ PPC		70	ns	
SYNC Delay from R/WCLK	${ }^{\text {t }}$ CSY		150	ns	
DS0, DS1 Set up to STEP	$\mathrm{t}_{\text {DSST }}$	250		$\phi_{\text {cr }}$	
DIR Set up to STEP	$\mathrm{t}_{\text {DIST }}$	200		$\phi_{\text {cr }}$	
STEP Pulse Width	${ }^{\text {STP }}$	69	85	$\phi_{\text {cr }}$	
DSO, DS1 Hold from STEP	$t_{\text {STDS }}$	750		$\phi_{\mathrm{cr}}{ }^{(1)}$	Normal   Seek   Mode
DIR Hold from STEP	$t_{\text {Stol }}$	750		$\phi_{\text {cry }}{ }^{(1)}$	
DS0, DS1 Hold from SKC	$\mathrm{t}_{\text {SKDS }}$	100		$\phi_{\text {cr }}{ }^{(2)}$	
DIR Hold from SKC	${ }_{\text {t }}^{\text {SKDI }}$	100		$\phi_{\mathrm{Cr}}{ }^{(2)}$	
DS0, DS1 Set up to STEP	$\mathrm{t}_{\text {DSSTB }}$	250		$\phi_{\text {cr }}$	
DIR Set up to STEP	$t_{\text {diST }}$	200		¢Cr	
STEP Pulse Width	${ }_{\text {t }}^{\text {STPB }}$	69	85	¢cr	
STEP Cycle Period	$\mathrm{t}_{\text {STCB }}$	570	795	$\phi_{\text {cr }}$	Buffered
$\begin{aligned} & \text { DSO, DS1 Hold from } \\ & \text { STEP } \end{aligned}$	$t_{\text {Stos }}$	200		$\phi_{\mathrm{cr}}{ }^{(1)}$	Seek Mode
DIR Hold from STEP	$t_{\text {stoib }}$	200		$\phi_{\text {cr }}{ }^{(1)}$	
DS0, DS1 Hold from SKC	$\mathrm{t}_{\text {SKDSB }}$	100		$\phi_{C Y}{ }^{(2)}$	
DIR Hold from SKC	$\mathrm{t}_{\text {SKDIB }}$	100		$\phi_{\mathrm{Cr}}{ }^{(2)}$	

AC Characteristics (SMD Interface)
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}$

Parameter	Symbol	Limits		Unit	Test Conditions
		Min	Max		
R/WCLK Cycle Period	$\mathrm{t}_{\mathrm{cr}}$	83		ns	
R/WCLK Low Time	$\mathrm{t}_{\mathrm{CL}}$	30		ns	
R/WCLK High Time	${ }_{\text {ch }}$	30		ns	
R/WCLK Rise Time	$\mathrm{t}_{\mathrm{B}}$		10	ns	
R/WCLK Fall Time	$\mathrm{t}_{\mathrm{F}}$		10	ns	
R/WDATA Set up to R/WCLK	$t_{\text {dcs }}$	40		ns	
R/WDATA Hold from R/WCLK	${ }_{\text {t }}^{\text {CDH }}$	0		ns	
R/WDATA Delay from R/WCLK	$\mathrm{t}_{\mathrm{DCD}}$		70	ns	
RGATE Delay from R/WCLK	${ }_{\text {cha }}$		300	ns	
WGATE Delay from R/WCLK	$t_{\text {cwa }}$		150	ns	
SYNC Delay from R/WCLK	$\mathrm{t}_{\text {csr }}$		150	ns	
BDIR Set up to USTG	$\mathrm{t}_{\text {BDUT }}$	60		$\phi_{\text {cr }}$	
BDIR Hold from USTG	tutbo	15		$\phi$ cr	
UNIT ADR Set up to USTG	${ }_{\text {t uaut }}$	20	40	¢Cr	Unit   Select Operation
UNIT ADR Hold from USTG	tutua	15		$\phi_{\text {cr }}$	
BDIR Set up to TAG 1	$\mathrm{t}_{\text {BbTI }}$	27	48	¢Cr	
BDIR Hold from TAG1	$\mathrm{t}_{\text {TIBD }}$	60		$\phi_{\text {cr }}$	
CYL. ADR Set up to TAG 1	$\mathrm{t}_{\text {cati }}$	27	48	$\phi_{\text {cr }}$	Cylinder Select
CYL. ADR Hold from TAG 1	$t_{\text {TICA }}$	60		$\phi_{\text {cr }}$	Operation
TAG 1 Pulse Width	$\mathrm{t}_{\text {tag }}$	24	36	$\phi_{\text {cr }}$	
BDIR Set up to TAG2	$\mathrm{t}_{\text {Bot }}$	15		$\phi_{\text {cr }}$	
BDIR Hold from TAG2	$\mathrm{t}_{\text {T2BD }}$	70		$\phi_{\text {cr }}$	
HEAD ADR Set up TAG2	$\mathrm{t}_{\text {HAT2 }}$	15	70	$\phi_{\text {cr }}$	
$\begin{aligned} & \text { HEAD ADR Hold from } \\ & \text { TAG } 2 \end{aligned}$	$\mathrm{t}_{\text {T2HA }}$	70		¢cr	Operation
TAG2, Pulse Width	${ }_{\text {T }}{ }_{\text {AG }}$	24	36	$\phi_{\text {cr }}$	
BDIR Set up to TAG3	$\mathrm{t}_{\text {B0才 }}$	24		$\phi_{\text {cr }}$	RTZ,
BDIR Hold from TAG3	${ }_{\text {T }}{ }^{\text {S }}$ D	24	36	$\phi_{\text {cr }}$	FAULT CLR.,
BT DATA Set up to TAG 3	${ }_{\text {titt }}$		56	$\phi_{\text {cr }}$	SERVO,
$\begin{aligned} & \text { RTZZFLIRST Hold from } \\ & \text { TAG3 } \end{aligned}$	$\mathrm{t}_{\text {T3 }}{ }_{\text {Sabt }}$	24		$\phi_{\text {cr }}$	DATA STB.
TAG3 Pulse Width	$\mathrm{t}_{\text {tag }}$	56	66	$\phi_{\text {cr }}$	Control
DATA STB./SERVO OFF. Hold from TAG 3		75		$\phi_{\text {cr }}$	Timing
BDIR Delay from SSTG	$\mathrm{t}_{\text {StBd }}$	24		$\phi_{\text {cr }}$	
BDIR High Time	$\mathrm{t}_{\text {BDIR }}$	54	66	¢Cr	Sense
BT9 Set up to BDIR	$\mathrm{t}_{\text {B9BD }}$	24	36	$\phi_{\text {cr }}$	Unit
BT9 Hold from BDIR	$\mathrm{t}_{\text {BDB9 }}$	24	33	$\phi_{\text {cr }}$	Status
SSTG Pulse Width	$\mathrm{t}_{\text {SSTG }}$		200	$\phi_{\text {cr }}$	Timing

Timing Waveforms Host System Interface

## Clock



## Read Operation



## Write Operation



Reset

RESET


## Terminal Count



Interrupt


Drive Interface


## Read/Write Data Timing

R/W CLK

R/W Data
(Input)
R/W Data
(Output)


## Read/Write Operation



## Timing Waveforms (Cont.)

Normal Seek (Floppy-like) Operation
Polling Mode


## Nonpolling Mode



Buffered Seek (Floppy-like) Operation

## Polling Mode



Nonpolling Mode


## DMA Timing: Read Operation



Unit Select Operations (SMD Interface)


Cylinder Select (SEEK) Operation (SMD Interface)


Head Select Operation (SMD Interface)


RTZIFault Clear Operation (SMD Interface)


Data Strobe/Servo Offset Control Timing (SMD Interface)


DMA Timing: Write Operation


## Timing Waveforms (Cont.)

## Sense Unit Status Operation (SMD Interface)



## High-level Commands <br> SPECIFY

Allows user to select SMD or floppy-like mode data block length, ending track number, end sector number, gap length, track at which write current is reduced, ECC or CRC function, choice of polynomial, and polling mode enable.

## SENSE INTERRUPT STATUS

When a change of disk status occurs, the HDC will interrupt the host CPU. This command will reveal the cause of interrupt, such as seek end, disk ready change, seek error, or equipment check. The disk unit address is also supplied.

## SENSE UNIT STATUS

The host CPU specifies the drive numbers and the HDC will return information such as write fault, ready, track 000 , seek complete and drive selected, or for SMD units fault, seek error, on cylinder, unit ready, AM found, write protected, seek end and unit selected.

## DETECT ERROR

Used after a read operation where ECC has been employed. The detect error command supplies the information needed to allow the host CPU to execute an error correction routine. (Only allowed when an actual correctable error is detected by the HDC.)

## RECALIBRATE

Returns the disk drive heads to the home position or track 000 position. Has four modes of operation: SMD, normal, buffered, or nonpolling.

## SEEK

Moves the disk drive heads to the specified cylinder. As in recalibrate, seek has four modes of operation.

## FORMAT

This command is used to initialize the medium with the desired format which includes various gap lengths, data patterns, and CRC codes. This command is used in conjunction with the specify command.

## VERIFY ID

Used to verify the ID bytes with data from memory. Performs the operation over a specified number of sectors.
READ ID
Used to verify the position of the read/write heads.

## READ DIAGNOSTIC

Used in SMD mode only, the command allows the programmer to read a sector of data even if the ID portion of the sector is defective. Only one sector at a time can be read.

## READ DATA

Reads and transfers to the system memory the number of sectors specified. The HDC can read multiple sectors and multiple tracks with one instruction.

## SCAN

Compares a specified block of memory with specified sectors on the disk. The 7261 continues until a sector with matching data is found, until the sector count reaches zero, or the end of the cylinder is reached.

## VERIFY DATA

Makes a sector-by-sector comparison of data in the system memory by DMA transfer. As in read operation, multiple sectors and tracks may be verified with this command.

## WRITE DATA

Data from the system memory, transferred by DMA, is written onto the specified disk unit. As in the read command, data may be written onto successive sectors and tracks.

## AUXILIARY COMMAND

Allows four additional functions to be executed: software reset, clear data buffer, mask interrupt request bit (masks interrupts caused by change of status of drives), and reset interrupt caused by command termination (used when no further disk commands will be issued, which would normally reset the interrupt).

## Command Operation

There are three phases for most of the instructions that the $\mu$ PD7261 can execute: Command Phase, Execution Phase, and Result Phase. During the command phase the host CPU loads preset parameters into the $\mu$ PD7261 FIFO via the data bus and by successive write pulses to the part with AO and $\overline{\mathrm{CS}}$ true low. Once the required parameter bytes are loaded the appropriate command is initiated by issuing a write pulse with AO high and $\overline{\mathrm{CS}}$ low and the command code on the data bus.
The $\mu$ PD7261 is now in the execution phase. This can be verified by examining the status register bit 7 (the controller busy bit). The execution phase is ended when a normal termination or an abnormal termination occurs. An abnormal termination can occur due to a read or write error, or a change of status in the addressed disk drive. A normal termination occurs when the command given is correctly completed. (This is indicated by bits in the status register.) The result phase is then entered. The host CPU may read various result parameters from the FIFO. These result parameters may be useful in determining the cause of an interrupt, or the location of a sector causing a read error, for example.
The chart shown on this page illustrates the preset parameters and result parameters that are associated with each command. The abbreviations are defined below.

Preset Parameters and Result Status Bytes

Disk   Command	Command Code	Preset Parameters/Result Status							
		1st	2nd	3rd	4th	5th	6th	7th	8th
DETECT ERROR	0100X								
		EADH	EADL	EPT1	EPT2	EPT3			
RECALIBRATE	0101[B]								
		IST*							
SEEK	0110[B]	PCNH	PCNL						
		IST*							
FORMAT WRITE	0111(S)	PHN	(PSN)	SCNT	DPAT	GPL1	[GPL3]		
		EST	SCNT						

## Preset Parameters and Result Status Bytes (Cont.)

Disk Command	Command Code	Preset Parameters/Result Status						
		1st	2nd	3rd 4th	5th	6th	7th	8th
VERIFY ID	1000(S)	PHN	(PSN)	SCNT				
		EST	SCNT					
READ ID	1001(S)	PHN	(PSN)	SCNT				
		EST	SCNT					
(READ DIAGNOSTIC)	1010X	PHN	PSN					
		EST						
READ DATA	1011X	PHN	(FLAG)	LCNH LCNL	LHN	LSN	SCNT	
		EST	PHN	(FLAG) LCNH	LCNL	LHN	LSN	SCNT
CHECK	1100X	PHN	(FLAG)	LCNH LCNL	LHN	LSN	SCNT	
		EST	PHN	(FLAG) LCNH	LCNL	LHN	LSN	SCNT
SCAN	1101X	PHN	(FLAG)	LCNH LCNL	LHN	LSN	SCNT	
		EST	PHN	(FLAG) LCNH	LCNL	LHN	LSN	SCNT
VERIFY DATA	1110X	PHN	(FLAG)	LCNH LCNL	LHN	LSN	SCNT	
		EST	PHN	(FLAG) LCNH	LCNL	LHN	LSN	SCNT
WRITE DATA	1111X	PHN	(FLAG)	LCNH LCNL	LHN	LSN	SCNT	
		EST	PHN	(FLAG) LCNH	LCNL	LHN	LSN	SCNT
SENSE   INTERRUPT STATUS	0001X	IST						
SPECIFY	0010X	MODE	DTLH	DTLL ETN	ESN	GPL2	$\begin{aligned} & \text { (MGPL } \\ & \text { [RWCH } \end{aligned}$	[RWCL]
SENSE UNIT STATUS	0011X	UST						

Note: ( ) These are omitted for soft-sector disks
[ ] These are omitted for hard-sector disks

* IST available as a result byte only when in nonpolling mode

B Indicates buffered mode when set
S Indicates skewed mode (SMD only) when set
X Indicates don't care

## Mnemonic Definitions

EADH Error Address, High Byte
EADL Error Address, Low Byte
EPT1 Error Pattern, Byte One
EPT2 Error Pattern, Byte Two
EPT3 Error Pattern, Byte Three
PCNH Physical Cylinder Number, High Byte
PCNL Physical Cylinder Number, Low Byte
PHN Physical Head Number
PSN Physical Sector Number
SCNT Sector Count
DPAT Data Pattern
GPL1 Gap Length One
GPL3 Gap Length Three
EST Error Status Byte
FLAG Flag Byte
LCNH Logical Cylinder Number, High Byte
LCNL Logical Cylinder Number, Low Byte
LHN Logical Head Number
LSN Logical Sector Number
IST Interrupt Status Byte
MODE Mode
DTLH Data Length, High Byte
DTLL Data Length, Low Byte
ETN Ending Track Number
ESN Ending Sector Number
GPL2 Gap Length Two
RWCL Write Current Cylinder, Low Byte
RWCH Write Current Cylinder, High Byte
UST Unit Status Byte
MGPL1 Modified Gap Length 1

## Status Register

This register is a read only register and may be read by asserting $\overline{\mathrm{RD}}$ and $\overline{\mathrm{CS}}$ with AO high. The status register may be read at any time. It is used to determine controller status and partial result status.

Bit			Description
No.	Name	Symbol	
D7	Controller Busy	CB	Set by a disk command issue. Cleared when the command is completed. (This bit is also set by an external reset signal or an RST command, but will be cleared at the completion of the reset function.) When this bit is set, a new disk command will not be accepted.
$\begin{aligned} & \text { D6 } \\ & \text { D5 } \end{aligned}$	Command End	$\begin{aligned} & \text { CEH } \\ & \text { CEL } \end{aligned}$	$C E H=0 \text { and } C E L=0$   A disk command is in process, or no disk command is issued after the last reset signal or the last CLCE auxiliary command. Both the CEH and CEL bits are cleared by a disk command, a CLCE auxiliary command, or a reset signal.
			$\mathrm{CEH}=0 \text { and } \mathrm{CEL}=1$   Abnormal termination of a disk command. Execution of a disk command was started, but was not successfully completed.
			$C E H=1 \text { and } C E L=0$   Normal termınation of a disk command.   The execution of a disk command was completed and properly executed.
			$C E H=1 \text { and } C E L=1$   Invalid command issue.
D4	Sense Interrupt Status Request	SRQ	When a seek end, an equipment check condition, or a ready signal state change is detected, this bit is set requesting a sense interrupt status command be issued to take the detailed information. This bit is cleared by an issue of that command or by a reset signal.
D3	Reset Request	RRQ	Set when controller has lost control of the format controller (missing address mark, for example). An auxiliary RST command or another disk command will clear this bit.
D2	ID Error	IER	Set when a CRC error is detected in the ID field. An auxiliary RST or another disk command will reset this bit.
D1	Not Coincident	NCl	Set if the controller cannot find a sector on the cylinder which meets the comparison condition during the execution of a scan command. This bit is also set if data from the disk does not coincide with the data from the system during a verify ID or a verify data command. This bit is cleared by a disk command or a reset signal.
D0	Data Request	DRQ	During execution of write ID, verify ID, scan, verify data, or a write data command, this bit is set to request that data be written into the data buffer.   During execution of read ID, read diagnostic, or read data command, this bit is set to request that data be read from the data buffer.

## Error Status Byte

This byte is available to the host at the termination of a read, write, or data verification command and provides additional error information to the host CPU. If the status register indicates a normal command termination, it can be assumed that the command was executed without error and it is not necessary to read this byte. When it is necessary to determine the cause of an error this byte may be read by issuing an $\overline{\mathrm{RD}}$ pulse with $\overline{\mathrm{CS}}$ and AO low. The remaining result bytes associated with a particular command may be read by issuing additional RD pulses. Data transfer from or to the FIFO is asynchronous and may occur at rates up to 2.5 M bytes per second.

	Bit			
No.	Name	Symbol		
D7	End of   Cylinder	ENC	Set when the controller tries to access a sector beyond the   final sector of a cylinder.   Cleared by a disk command or an auxiliary RST command.	
D6	Overrun	OVR	When set, indicates that the FIFO became full during a   read operation, or empty during a write operation.	
D5	Data   Error	DER	A CRC or an ECC error was detected in the data field.	
D4	Equip-   ment	EQC	A fault signal from the drive has been detected or a track 0   signal has not been returned within a certain time interval   after the recalibrate command was issued.	
Check	Not Ready	NR	The drive is not in ready state.	
D2	No Data	ND	The sector specified by ID parameters was not found on   the track.	
D1	Not   Writable	NWR	Set if write protect signal is detected when the controller   tries to write on the disk. It is cleared by a disk command   or by an auxiliary RST command.	
D0	Missing   Data   Mark	MDM	During execution of read data, check, scan, or verify data   commands, no address mark was found in the data field.	

## Interrupt Status Byte

This byte is made available to the host CPU by executing the Sense Interrupt Status command. This command should be issued only when the $\mu$ PD7261 requests it, as indicated by bit D4 of the status register. This byte reveals changes in disk drive status that have occurred.

Bit			Description
No.	Name	Symbol	
D7	Seek End	SEN	A seek end or seek complete signal has been returned after a seek or a recalibrate command was issued.
D6	Ready Change	RC	The state of the ready signal from the drives has changed. The state itself is indicated by the NR bit.
D5	Seek Error	SER	Seek error has been detected on seek end.
D4	Equipment Check	EQC	Identical to bit 4 of the error status byte.
D3	Not Ready	NR	Identical to bit 3 of the error status byte.
D2	Unit Address	UA2	The unit address of the drive which caused an interrupt request on any of the above conditions.
D1		UA1	
D0		UAO	

## Drive Interface

The $\mu$ PD7261 has been designed to implement two of the more popular types of interfaces: the SMD (Storage Module Drive) and the floppy-like Winchester drive which has come to be known as the ST-506 (Seagate Technology) interface. The desired interface mode is selected by the specify command.

## Floppy-like Interface

In the floppy-like mode the $\mu$ PD7261 performs MFM encoding and decoding at data rates to 6 MHz and provides all necessary drive interface signals. Included internally is circuitry for address mark detection, sync area recognition, serial-to-parallel-to-serial conversion, an 8-byte FIFO for data buffering, and circuitry for logical addressing of the drives. External circuitry required consists of control signal buffering, a delay network for precompensation, a phase lock loop, a write clock oscillator and a differential transceiver for drive data. The floppy-like interface can be implemented with as few as 12 to 14 additional SSI ICs.
$\mu$ PD7261 Floppy-like Interface


Note: $\oplus=220 \Omega$ Pull-up/330 $\Omega$ Pull-down terminator

## SMD Interface

In the SMD mode the $\mu$ PD7261 will support data rates to 12 MHz in the NRZ format. All control functions neces- de-multiplexing of 8 data lines performed externally by a single 8 -bit latch. A small amount of logic is required to multiplex the data and clock lines, and differential drivers and receivers are required to implement the actual interface. Depending on individual logic design and the number of drives used, the SMD interface may be implemented with as few as 12 ICs.

## uPD7261D SMD Interface



Note: TX and RX are differential drivers and receivers

## Internal Architecture

The $\mu$ PD7261 can be divided into three major internal logic blocks: command processor; format controller; microprocessor interface.

## Command Processor

The command processor is an 8-bit microprocessor with its own instruction set, program ROM, scratchpad RAM, ALU, and $I / O$ interface. Its major functions are:

To decode the commands from the host microcomputer that are received through the 8-bit data bus;
$\square$ To execute seek and recalibrate commands;To interface to the drives and read the drive status lines;To load the format controller with the appropriate microcode, enabling it to execute the various read/write data commands.
The command processor microprocessor is idle until it receives the command from the host microcomputer. It then reads the parameter bytes from the FIFO, and loads them into its RAM. The command byte is decoded and, depending on its opcode, the appropriate subroutine from the
2.5K-internal ROM is selected and executed. Some of these commands are executed by the command processor without involvement of the format controller. When data transfers to and from the disk are made, the command processor loads the appropriate microcode into the format controller, then relinquishes control. When the data transfer is complete, the command processor again takes control. One other important function that the command processor performs is managing the interface to the disk drives. The command processor contains an I/O port structure similar to many single chip microcomputers in that the ports may be configured as input or output pins. Depending on the mode of operation selected by the Specify command, the command processor will use the bidirectional I/O lines for different functions.

## Command Register

This register is a write only register. It is selected when the AO input is high and the $\overline{\mathrm{CS}}$ input is low. There are two kinds of commands: disk commands and auxiliary commands. Each command format is shown below.
An auxiliary command is accepted at any time and is immediately executed, while a disk command is ignored if the onchip processor is busy processing another disk command. A valid disk command causes the processor to begin execution using the parameters previously loaded into the data buffer. Disk commands and the parameters needed are described in the next section.

Disk Command Byte


CC4-CCO					
0	0	0	0	$X$	(Auxiliary Command)
0	0	0	1	$X$	SENSE INT. STATUS 1 )
0	0	1	0	$X$	SPECIFY ©
0	0	1	1	$X$	SENSE UNIT STATUS
0	1	0	0	$X$	DETECT ERROR 11
0	1	0	1	$[B]$	RECALIBRATE
0	1	1	0	$[B]$	SEEK
0	1	1	1	$[S]$	FORMAT
1	0	0	0	$[S]$	VERIFY ID
1	0	0	1	$[S]$	READ ID
1	0	1	0	$X$	READ DIAGNOSTIC
1	0	1	1	$X$	READ DATA
1	1	0	0	$X$	CHECK
1	1	0	1	$X$	SCAN
1	1	1	0	$X$	VERIFY DATA
1	1	1	1	$X$	WRITE DATA

Note: (1) means the UA field is 000
$[B]$ indicates buffered mode when set
[S] indicates skewed mode when set

## Format Controller

The format controller is built with logic that enables it to execute instructions at very high speed: one instruction per single clock cycle. The major functions it performs are:Serial-to-parallel and parallel-to-serial data conversion;CRC and ECC generation and checking;
MFM data decoding and encoding;Write precompensation;Address mark detection and generation;
ID field search in soft-sector format;
DMA data transfer control during read/write operations.
The major blocks in the format controller are the sequencer and the serial/parallel data handler. The sequencer consists of a writable control store ( 32 words by 16 bits), a program counter, branch logic, and the parameter register. The serial/parallel logic consists of a parallel-to-serial converter for disk write operations, a serial-to-parallel converter for disk read operations, precompensation logic for writing MFM data, comparator logic that locates sync fields, address marks, and ID fields. There is also comparator logic that is used during Verify Data commands.

Block Diagram of the Format Controller


## Microprocessor Interface

## Read/Write Control

The internal registers are selected via the truth table shown.

## Register Selection Table

$\overline{\mathbf{C S}}$	AO	$\overline{\mathbf{R D}}$	WR	Selection
0	0	0	1	Data Buffer
0	0	1	0	Register (1)
0	1	0	1	Status Register
0	1	1	0	Command Register
0	X	1	1	Don't Care
1	X	X	X	Don' Care
0	X	0	0	Inhibited

Note: (1) Preset parameters and result status information are written and read from the result status register in the HDC through this data buffer register

## Interrupt

The interrupt request line is activated or inactivated according to the following equation:

$$
\text { INT }=\mathrm{CEH}+\mathrm{CEL}+\mathrm{SRQ} \cdot \overline{\mathrm{SRQM}}
$$

This means that if either of the command end bits is set or if the Sense Interrupt Status Request bit is set (and the SRQM mask is not set), then an interrupt will be generated. The command end bits, CEH and CEL, are set by command termination.
The SRQ bit is set when an equipment check condition or a state change of the ready signal from the disk drives is detected. It is also set when a seek operation is completed. Under these conditions the INT line is activated unless the SRQM mask is set.

Both of the CEH and CEL bits are cleared by a disk command, but both bits may be cleared before the next disk command by issuing a CLCE auxiliary command.
The interrupt caused by the SRQ bit indicates that a Sense Interrupt Status command should be issued by the host microprocessor so that it can determine the exact cause of the interrupt. However, the $\mu$ PD7261 may be processing a disk command when the interrupt occurs. Since it is not possible to issue a disk command while the $\mu$ PD7261 is busy, an HSRQ auxiliary command can be issued to set the SRQM (Sense Interrupt Request Mask) and mask the interrupt. The SRQM is reset upon completion of the disk command in progress.

## DMA Control

When true, the DREQ pin and the DRQ (data request) bit of the status register indicate a request for data transfer between the disk controller and external memory. These are activated during execution of the following disk commands:

$$
\begin{aligned}
& \text { HDC } \leftarrow \text { memory: } \text { FORMAT, Verify ID, Scan, } \\
& \text { Verify Data, Write Data }, \\
& H D C \rightarrow \text { memory: } \text { Read ID, Read Diagnostic, } \\
& \text { Read Data }
\end{aligned}
$$

Data being read from a disk or external memory is temporarily stored in the data buffer ( 8 -bytes maximum), and is transferred to external memory or a disk respectively. Data transfers are terminated externally by a reset signal or by a read or a write data operation coinciding with an active terminal count (TC) signal. They are also terminated internally when an abnormal condition is detected or all the data specified by the sector count parameter (SCNT) has been transferred.
Data transfers are accomplished by $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ signals to the $\mu$ PD7261 when DREQ is active. During Read operations, DREQ goes active when the FIFO contains three or more bytes. If the FIFO contains three bytes and an RD pulse is issued, DREQ goes low within $t_{\text {RAI }}$. DREQ will stay active on the final sector until the final byte is extracted. In this case, DREQ goes low within $\mathrm{t}_{\text {RAII }}$. During Write operations DREQ is asserted as soon as a WRITE DATA command is accepted. DREQ remains high until the FIFO contains six bytes, at which time it goes low within $t_{\text {wal }}$. DREQ corresponds to FIFO almost-full and FIFO almost-empty as implemented in the $\mu$ PD7261. This has been done so that a fast DMA controller may actually overrun the FIFO by one or two bytes without harm.

## Recalibrate



The read/write heads of the specified drive are retracted to the cylinder 0 position. IST* is available as a result byte only if polling mode is disabled. See SPECIFY.
a. Hard Sector

An RTZ (Return to zero) signal is asserted on the bit-6 line with the TAG-3 bit being set. Then the CEH bit of the status register is set indicating a normal termination of the command.
After this command is given, the HDC checks the Seek End, Unit Ready, and Fault lines of the drive continually
until an active signal is detected on these lines. Then the SRQ bit of the status register is set indicating that a Sense Interrupt Status command should be performed. Each bit of the IST (Interrupt Status) byte is set according to the result, in anticipation of the Sense Interrupt Status command.

## b. Soft Sector

There are four different ways to implement the Recalibrate command when the ST506 interface mode has been specified. Both polling and nonpolling modes of operation are provided, with both normal or buffered Recalibrate commands available in either mode.
b-1. Normal Mode with Polling
The CEH bit of EST is set to " 1 " immediately after the Recalibrate command is issued (a Recalibrate command may now be issued to another drive). The HDC now begins generating step pulses at the specified rate. The PCN for the drive is cleared and the TRK0 signal is checked while stepping pulses are sent to one or more drives. When TRKO is asserted, the SEN (Seek End) bit of the IST (Interrupt Status) byte is set and the SRQ bit of the status register is set. This causes an interrupt and requests that a Sense Interrupt Status command be issued. If 1023 pulses have been sent and TRKO is not asserted, then the SRQ bit is again set, but with the SER (Seek Error) bit of the IST byte set. The Ready signal of each drive is checked before each step pulse is sent, and the Recalibrate command is terminated if the drive enters a not-ready state, whereby the NR bit of the IST byte is set to " 1 ."

## b-2. Normal Mode with Polling Disabled

Operation is similar to that in section "b-1," but the CEH and CEL bits of the status register are not set until either the SEN (Seek End) or the SER (Seek Error) condition occurs. The SRQ bit is not set when polling is disabled, and the IST byte is now available as a result byte when the Recalibrate command is terminated (see "Preset Parameters and Result Status Bytes"). It is not possible to overlap Recalibrate operations in this mode.
b-3. Buffered Mode with Polling
This mode operates in a manner similar to that described in section " $b-1$ ", but with the following differences:

1. 1023 step pulses are sent at a high rate of speed (approximately $50 \mu s$ between pulses)
2. After the required number of pulses are sent, the CEH bit is set, and then additional Recalibrate or Seek commands will be accepted for other drives
3. The SRQ bit is set when the drive asserts SKC, which causes the SEN bit of the IST byte to be set
4. If SEN is not set within the time it takes to send 1023
"normal" pulses (i.e., when in normal stepping mode), then SER of the IST byte is set.
b-4. Buffered Mode with Polling Disabled 1023 stepping pulses are immediately sent after the Recalibrate command is issued. CEH and/or CEL is set when SEN or SER occurs. SEN is set when TRKO from the addressed drive is asserted. SER is set if TRKO is not asserted within the time required to send 1023 "normal" pulses. The Recalibrate command will be terminated abnormally if a not-ready condition occurs prior to SEN being set. The SRQ bit of the status register is not set. The IST byte (Interrupt Status) is available as a result byte when either CEH or CEL is set.

Seek

0110B	PCNH $\quad$ PCNL
	IST *

PCNH = Physical Cylınder Number, High Byte
PCNL = Physical Cylinder Number, Low Byte
The read/write heads of the specified drive are moved to the cylinder specified by PCNH and PCNL. IST* is available as a result byte only if polling mode is disabled.See SPECIFY.
a. Hard sector

The contents of PCNH and PCNL are asserted on the bit-0 through bit-9 output lines of the SMD interface with the TAG-1 control line being set. (The most significant six bits of PCNH are not used.) The CEH bit of the status register is then set, and the command is terminated normally.
The HDC then checks the Seek End, Unit Ready and Fault lines of the drive continually until an active signal is detected on these lines. The SRQ bit of the status register is then set requesting that a Sense Interrupt Status command be performed. Each bit of the IST (Interrupt Status) byte is set appropriately in anticipation of the Sense Interrupt Status command.
b. Soft Sector (Normal Stepping, Polling Enabled) In this mode, the CEH bit of the status register is set to " 1 " as soon as the Seek command is issued. This allows a Seek or Recalibrate command to be issued to another drive. The HDC now sends stepping pulses at the specified rate and monitors the Ready signal. Should the drive enter a not-ready state, the SER bit of the IST byte is set and the SRQ bit of the status register is set, causing an interrupt and requesting a Sense Interrupt Status command. When the drive asserts the Seek Complete (SKC) signal, the SEN bit of the IST byte is set and the SRQ bit of the status register is set, again requesting service.
c. Soft Sector (Normal Stepping, Polling Disabled) Stepping pulses to the drive begin as soon as the Seek command is accepted. The Ready signal is checked prior to each step pulse. If the drive enters a not-ready state the Seek command is terminated abnormally (CEL = 1), and SER of the IST byte is set. If the Seek operation is successful, the Seek command will be terminated normally (CEH = 1) when the drive asserts SKC (Seek Complete). The SEN (Seek End) bit of the IST byte is set and the IST (Interrupt Status) byte is available as a result byte. The Sense Interrupt Status command is not allowed (SRQ is not set), nor can Seek operations be overlapped in this mode.
d. Soft Sector (Buffered Stepping, Polling Enabled)

As soon as the Seek command is accepted by the HDC, high-speed stepping pulses are generated. As soon as the required number of pulses are sent, CEH is set to "1", indicating a normal termination. Another Seek command in the same mode may now be issued. (The drive is now controlling its own head positioner and asserts SKC when the target cylinder is reached.) If the drive has not asserted SKC (Seek Complete) within the time it takes to send the required number of pulses in normal stepping mode, or if the drive enters a not-ready state, then the SER bit of the IST byte and the SRQ bit of the status register are set. Otherwise, the SEN bit of the IST byte is set, along with SRQ of the status register.
e. Soft Sector (Buffered Stepping, Polling Disabled) In this mode, the appropriate number of high-speed stepping pulses are sent as soon as the Seek command is issued. If the drive enters a not-ready state, or if SKC (Seek Complete) is not asserted within the time it takes to send the required number of pulses in normal stepping mode, then the Seek command is terminated abnormally (CEL = 1). The IST byte is available as a result byte and the appropriate bit is set; i.e., SER or NR (Not Ready). If the Seek operation is successful, the Seek command is terminated normally (CEH =1) and the SEN bit of the IST byte is set. The IST byte is available as a result byte. The Sense Interrupt Status command is not allowed (SRQ is not set), nor can Seek operations be overlapped in this mode.

Format

0111 S	PHN	(PSN)	SCNT	DPAT	GPL1	[GPL3]
	EST	SCNT				

PHN = Physical Head Number
PSN = Physical Sector Number
SCNT = Sector Count
DPAT = Data Pattern
GPL1 $=$ Gap Length 1
GPL3 $=$ Gap Length 3
EST = Error Status
This command is used to write the desired ID and Data format on the disk.
a. When using hard-sector drives, this command will begin format-writing at the sector specified by PHN and PSN, which are loaded during command phase.
When soft-sector drives are specified, this command will begin format-writing at the sector immediately following the index pulse on the track specified by PHN.
In either case, data transmitted from the local memory by DMA operation is written into the ID field, and the Data field is filled with the data constant specified by DPAT until DTL (Data Length) is zero. DTL is established during the Specify command with DTLH and DTLL. The Sector Count, SCNT, is decremented by one at the end of the FormatWrite operation on each sector. The following bytes are required by the HDC for each sector: (FLAG), LCNH, LCNL, LHN, and LSN. FLAG is omitted on soft-sector drives. These bytes are transferred by DMA.
b. The above operation is repeated until SCNT is equal to zero. The execution of the command is terminated normally, when the content of SCNT is equal to zero and the second index pulse has occurred.
c. When using a hard-sector drive, it is possible to write the ID field displaced from the normal position by 64 bytes by setting the Skew bit of the command byte $((S)=1)$. This is useful when defective media prevent writing in the normal area of the sector.
d. Items d, e, and h of the Read Data and item d of the Write Data command are identical for this command. Refer to these items (which appear later in this section) for the remaining Format Write detail.

## Verify ID

1000 S	PHN	(PSN)	SCNT
	EST	SCNT	

PHN = Physical Head Number
PSN = Physical Sector Number
SCNT = Sector Count
EST = Error Status

ID bytes of specified sectors are read and compared with the data that are accessed from local memory via DMA control. The first sector that is verified is specified by PHN and PSN when a hard-sector disk is used. For soft-sector disks, only PHN is given and the Verify ID command begins comparisons with the first physical sector on the track.
Byte comparisons continue as long as successful or until the sector count is zero or a CRC error is found.
When using a hard-sector drive, it is possible to have the HDC verify a Skewed ID field by setting the Skew bit of the command byte. Refer to the Format Write section, given earlier, for details.

## Read ID

1001 S	PHN	(PSN)	SCNT
	EST	SCNT	

PHN = Physical Head Number
PSN = Physical Sector Number
SCNT $=$ Sector Count
EST = Error Status
ID bytes of specified sectors are read and transferred to local memory by DMA.
Hard-sector disks: Beginning with the sector specified by PHN and PSN, the ID bytes of each sector are read until an error is found or the SCNT has reached zero.
It is also possible to perform the above operation with skewed ID fields by setting the Skew bit of the command byte. This will allow reading ID fields that have been shifted by 64 bytes by the Write Skewed ID command.
Soft-sector disks: This command will begin checking ID fields immediately following the index pulse and will continue until one valid ID field is read, or until the second index pulse is detected.

Read Diagnostic

1010 X	PHN PSN
	EST

PHN = Physical Head Number
PSN = Physical Sector Number
EST $=$ Error Status
This command is implemented only for hard-sector disks. The desired physical sector is specified, and the data field will be read even if the ID bytes of that sector contain a CRC error. Only one sector at a time may be read by this command.

## Read Data

1011 X	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT	
	EST	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT

PHN = Physical Head Number
FLAG = Flag Byte, Hard-sector ID Field Only
LCNH = Logical Cylinder Number, High Byte
LCNL $=$ Logical Cylinder Number, Low Byte
LHN = Logical Head Number
LSN = Logical Sector Number
SCNT = Sector Number
EST = Error Status
This command is used to read and transfer data via DMA from the disk to the local memory.
a. The HDC reads data from the specified sector which is determined by the following preset parameters: FLAG (for hard sector only), LCNH, LCNL, LHN, and LSN. The drive is selected by UA (Unit Address) in the command byte. The

HDC then transfers the read data to the local memory via DMA operation.
b. After reading each sector, the HDC updates the SCNT and LSN to point to the next sector, and repeats the above described operation until SCNT is equal to zero. During the above read operations, if LSN is equal to ESN, the HDC updates LSN, and continues the read operations after relocating the head (track) specified by LHN.
c. The HDC abnormally terminates the execution of this command, if SCNT is not equal to zero when the HDC reads out the data from the last sector (LSN = ESN and LHN = ETN). The ENC (End of Cylinder) bit of EST (Error Status) is set to one in this situation.
d. The HDC will terminate this command if a Fault signal is detected while reading data. The HDC will set the EQC (Equipment Check) of the EST (Error Status) byte when this occurs.
e. The HDC will terminate this command abnormally if the Ready signal from the drive is not active or becomes notactive while a Read Data command is being performed. The NR (Not Ready) bit of the EST (Error Status) register will be set to one in this case.
f. The HDC will end this command abnormally if it cannot find an AM (Address Mark) (soft-sector mode) or a SYNC byte (hard-sector mode) of the ID field before three index pulses occur. Under these conditions, the RRQ (Reset Request) bit of the STR (Status Register) will be set. In order to perform further disk commands the HDC will have to be reset because the Format Controller is hung up looking for an AM or SYNC byte.
g. ECC mode: If the HDC detects an ECC error during a read operation, it will execute the following operations: First, the HDC decides whether or not the error is correctable by checking the syndrome of the error pattern. If the error is correctable, the HDC terminates the command in the normal mode after setting the DER (Data Error) bit of EST register to one. The host system can input the erroraddress and the error-pattern information by issuing the Detect Error command. If it is not a correctable error, the HDC will terminate the command in the abnormal mode after setting the DER bit of the EST register to one.
CRC mode: If the HDC detects a CRC error on a sector during the read operation, the HDC will terminate the command in the abnormal mode after setting the DER bit of the EST register to one.
h. If the HDC detects an overrun condition during a Read Data operation, the OVR (Over Run) bit of the EST register is set. (An overrun condition occurs when the internal data FIFO is full, another data byte has been received from the disk drive, and a DMA service does not occur.) The command is then terminated in the abnormal mode.
i. If the HDC cannot find the desired sector within the occurrence of two index pulses, the ND (No Data) bit of the EST register is set to one and the command is terminated in the abnormal mode.
j. If TC (Terminal Count) occurs during a Read Data command the DMA transfers to the local memory will stop.
However, the HDC does continue the read operation until SCNT has reached zero or any other errors have been detected.
k. If the Read Data command has been successfully completed, the result status will be set indicating such, and the result status bytes will be updated according to the number of sectors that have been read. The logical disk parameters - LSN, LHN, and LCNL - are incremented as follows:
LSN is incremented at the end of each sector until the value of ESN is reached. LSN is then set to 0 and LHN is incremented. If LHN reaches the value of ETN, then LHN is cleared and LCNL is incremented.
In other words; if a Read or Write operation is terminated normally, the various parameters will point to the next logical sector.
If the command is terminated in the abnormal mode, the result status bytes will indicate on which sector, cylinder, and head the error occurred.
I. If the HDC cannot detect the Address Mark (soft sector) or SYNC bytes (hard sector) immediately following the VFO Sync in the data field, the HDC will set the MDM (Missing Data Mark) bit of the EST register to one, and will terminate the command in the abnormal mode.

Check

1100 X	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT	
	EST	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT

PHN = Physical Head Number
FLAG = Flag Byte, Hard-sector ID Field Only
LCNH $=$ Logical Cylinder Number, High Byte
LCNL $=$ Logical Cylinder Number, Low Byte
LHN = Logical Head Number
LSN = Logical Sector Number
SCNT $=$ Sector Number
EST = Error Status
This command is used to confirm that the data previously written to the medium by the Write Data command contains the correct CRC or ECC.
a. The HDC reads the data in the sector specified by FLAG (hard sector only), LCNH, LCNL, LHN, and LSN. The Check command differs from the Read Data command in that no DMA transfers occur.
With the exception of the ECC mode, the Check command is the same as the Read Data command. Please refer to items b, c, d, e, f, g, h, k, and I of Read Data command for details.
b. If in the ECC mode, the HDC detects only ECC errors and does not execute any error-correction operation even if the ECC errors are correctable. No data transfers have been made, and there is no data to correct.

## Scan

1101 X	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT	
	EST	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT

PHN = Physical Head Number
FLAG = Flag Byte, Hard-sector ID Field Only
LCNH = Logical Cylinder Number, High Byte
LCNL $=$ Logical Cylinder Number, Low Byte
LHN = Logical Head Number
LSN $=$ Logical Sector Number
SCNT $=$ Sector Number
EST = Error Status
a. In executing the Scan command, the HDC reads the data from the sector specified by the preset parameters of the command phase. The HDC then compares this data
with the data transmitted from the local memory. (The purpose of this command is to locate a sector that contains the same data as the local memory.)
This command will terminate successfully if the data from the disk and the data from the local memory are the same. If they are not, the HDC updates SCNT and LSN, and executes the above-mentioned operation again.
If the HDC cannot locate a sector that satisfies the Scan conditions, the NCI bit of the STR will be set. The HDC tries to compare data until the end of the cylinder has been reached, or until SCNT is zero.
b. If the value of the LSN (Logical Sector Number) is equal to that of ESN (Ending Sector Number) after updating LSN, the HDC updates the contents of LHN (increasing by 1) and that of LSN $(\mathrm{LSN}=0)$, and repeats the operation described in item a after selecting the next head.
c. After comparing the data transferred from the host CPU with the data in the specified sectors, the result bytes (FLAG, which is only for hard-sector disks, LCNH, LCNL, LHN, and LSN) will be set equal to the sector location that satisfies the Scan command.
d. The descriptions in d, e, f, h, and i of Read Data command, and items c and d of Verify Data command are identical for this command. Refer to these descriptions for additional details.

## Verify Data

1110X	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT	
	EST	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT

PHN = Physical Head Number
FLAG = Flag Byte, Hard-sector ID Field Only
LCNH $=$ Logical Cylinder Number, High Byte
LCNL $=$ Logical Cylınder Number, Low Byte
LHN $=$ Logical Head Number
LSN $=$ Logical Sector Number
SCNT = Sector Number
EST = Error Status
This command is used to verify data on the disk.
a. The HDC reads the data from the specified sector, and compares the data transmitted from the local memory via DMA with the data from the disk.
The sector is specified by FLAG (hard sector only), LCNH, LCNL, LHN, and LSN, and the drive is selected by UA. If the data transmitted from the local memory is the same as that read from the sector, the HDC updates the contents of LSN and SCNT, and continues the above-mentioned operation. After updating SCNT, if the value of SCNT is equal to zero, the HDC ends the execution of the command in the normal mode. If the value of LSN is equal to that of ESN after updating LSN, the HDC updates the contents of LHN and LSN, and the HDC continues Verify Data operation after selecting the head (track) specified by LHN.
If the data transmitted from the local memory is not the same as that read from the sector, the HDC ends the execution of the command in the abnormal mode after setting the NCI (Not Coincident) bit of STR to one.
b. If, after verifying the data on the last sector, the contents of SCNT are not equal to zero, the HDC terminates execution of the command abnormally after setting the ENC (End of Cylinder) bit of the EST register to one.
c. After verifying the data read from a sector, the HDC
checks the CRC bytes (CRC mode) or the ECC bytes (ECC mode).
If the HDC detects a CRC or an ECC error on a sector, the HDC terminates execution of the command abnormally after setting the DER bit of the EST register to a one.
d. After detecting an active TC signal (TC=1), the HDC executes the above operation by comparing the read data from the disk drive with the data 00 instead of the data from the main system.
e. After verification of the data on all the sectors, FLAG (hard sector only), LCNH, LCNL, LHN, and LSN are set to the values of FLAG, LCNH, LCNL, LHN, and LSN of the last verified sector.
f. The descriptions in items $d, e, f, h, i$, and I of the Read Data command are valid in this command. Please refer to these items for additional detail.

## Write Data

1111 X	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT	
	EST	PHN	(FLAG)	LCNH	LCNL	LHN	LSN	SCNT

PHN = Physical Head Number
FLAG = Flag Byte, Hard-sector ID Field Only
LCNH $=$ Logical Cylinder Number, High Byte
LCNL $=$ Logical Cylinder Number, Low Byte
LHN = Logical Head Number
LSN = Logical Sector Number
SCNT $=$ Sector Number
EST = Error Status
a. This command is used to write data into the data field of the sectors specified by FLAG (hard disks only), LCNH, LCNL, LHN, and LSN, and to write CRC bytes or ECC bytes according to each internally specified mode (CRC or ECC). The data is written to the disk via DMA transfer from the local memory.
b. After writing data on a sector, the HDC updates the contents of SCNT and LSN, and repeats the above described Write-Data operation until SCNT is equal to zero.
During the above Write-Data operations, if LSN is equal to ESN, the HDC updates LHN and LSN, and continues the Write-Data operations after selecting the new head (track) specified by LHN.
As described above, the HDC has the capability of multisector and multitrack write operations.
c. The HDC abnormally terminates the execution of this command, if the SCNT is not equal to zero when the HDC writes the data to the last sector (LSN = ESN and LHN = ETN). The ENC (End of Cylinder) bit of the EST (Error Status) register is set to one in this situation. d. If the Write Protected signal is active (high) at the beginning of the execution of this command, the HDC ends the execution of this command in the abnormal mode after setting the NWR (Not Writable) bit of the EST register to one.
e. After detecting an active TC signal (TC = 1), the HDC writes the data 00 to the sector, instead of the data from the host system, until the SCNT is equal to zero, or until the HDC detects any abnormal state.
f. In the floppy-like mode, the HDC will set the Reduced Write Current output bit of port 1 to a one when the cylinder number becomes greater than that specified by RWCH and

RWCL. These parameters are loaded during execution of the Specify command.
The descriptions in items $\mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{h}, \mathrm{i}$, and k of the Read Data command are applicable here also. Refer to these items for further detail.

## Sense Interrupt Status

0001 x	
	ST

IST = Interrupt Status
a. The HDC transfers the new disk status to the host CPU at the end of a Seek or Recalibrate operation or the new disk status resulting from a change of state of the Ready signal, which may occur at any time.
b. If the Seek or Recalibrate command in progress is completed when this command is issued or if there has been no change of state of the Ready signal from the drive, this command will be terminated abnormally.

## Specify

0010X	MODE	DTLH	DTLL	ETN	ESN	GPL2	(MGPL1)   [RWCH]	[RWCL]

MODE = Mode Byte; Selects Operation Mode

MDU	ECC	CRCS	SSEC	DSL/   STP3	DSE/   STP2	SOM/   STP1	SOP/   STP0


Bit Name	Specified Mode		
MDU	Inhibited		
	0 MFM data when SSEC $=1, \mathrm{NRZ}$ when SSEC $=0$		
ECC	ECC is appended in data field $\left(x^{21}+1\right)\left(x^{11}+x^{2}+1\right)$		
	0 CRC is appended in data field		
CRCS	1 Generator polynomial: $\left(\mathrm{x}^{16}+1\right)$		
	0 Generator polynomial: ( $\left.\mathrm{x}^{16}+\mathrm{x}^{12}+\mathrm{x}^{5}+1\right)$		
SSEC	1 Soft-sector disk (floppy-like interface)		
	0 Hard-sector disk (SMD interface)		
SSEC $=0$		SSEC $=1$	
DSL	Data Strobe Late	STP3	Stepping rate for
DSE	Data Strobe Early	STP2	
SOM	Servo Offiset Minus	STP1	
SOP	Servo Offset Plus	STPO	$\mathrm{O}_{\mathrm{H}}=33.76 \mathrm{~ms}$
Stepping Rate $=(16-S T P) \times 21100 \times \mathrm{t}_{\mathrm{cY}}$			processor clock.

DTLH = Data Length, High Byte

1	CRC.	PAD	POL	DTL11	DTL10	DTL9	DTL8
```CRC. = Initıal Value of Polynomıal Counter, Eıther All Zeros or All Ones PAD = Selects ID/Data pad of 00 H if 0 \(=\) Selects ID/Data pad of 4EH if 1.```							
POL $\begin{aligned} & =\text { Poiling Mode if } 0 \\ & =\text { Nonpolling Mode if }\end{aligned}$							
DTLL = Data Length, Low Byte							
ETN = Ending Track Number							
ESN = Ending Sector Number							
GPL2 = Gap Length 2							
MGPL1 = Gap Length 1 (used in SMD mode only), Controls Read Gate Timing							
RWCH = Reduced Write Current (Cylınder No), High Byte							
RWCL $=$ Reduced Write Current (Cylınder No.), Low Byte							
The Specify command is used to set the operational mode							
of the HDC by presetting various parameters. Parameters							
Such	MO	E,		LL	,	,	PL

RCNH, and RCNL may be programmed into the HDC. This allows for a high degree of versatility.

Sense Unit Status

Soft-Sector Mode

0011 X	
	UST

SMD Mode

0011X	1	2	5
	UST	DS	DT

The Sense Unit Status (SUS) command is used to transfer the Unit Status (UST) to the host. In the case of SMD mode the SUS command may also be used to transfer the Detail Status (DS) and Device Type (DT) by using the appropriate preset parameter value as shown above. No preset parameters are used in the soft-sector mode, although one is required in the SMD mode. Values other than 1, 2, or 5 do not produce valid results.
The DS and DT bytes are defined by the type of drives used. The UST is shown below:
Unit Status Byte

Bit	Interface Type	
No.	SMD	Floppy-like
D7	Unit Selected	0
D6	Seek End	0
D5	Write Protected	0
D4	(AM Found)	Drive Selected
D3	Unit Ready	Seek Complete
D2	On Cylinder	Track 000
D1	Seek Error	Ready
D0	Fault	Write Fault

Detect Error

0100 X				
	EADH	EADL	EPT1	EPT2
		EPT3		

EADH = Error Address, High Byte
EADL = Error Address, Low Byte
EPT1 = Error Pattern, Byte 1
EPT2 = Error Pattern, Byte 2
EPT3 = Error Pattern, Byte 3
This command is used to transfer the error pattern and the error address to the host CPU, when correctable errors have occurred during the execution of a Read Data command with the ECC mode enabled.
The error address (EADH and EADL) is calculated from the last data byte of the sector that contained a correctable error which was indicated by the status bits of the previous Read Data command with the ECC mode enabled. The error pattern is used for correcting the error data at the location where the error occurred. After receiving the error address and the error pattern, the host CPU can correct the error data by performing an exclusive-OR of the error pattern and the error data.
The result bytes are available to the host CPU within $100 \mu \mathrm{~s}$.

Auxiliary command

There are no preset parameters or result bytes associated with this command. The definitions of the 4 LSBs (AAAA) are given below. The auxiliary command is accepted at any time and is immediately executed. The auxiliary command may be used to recover from certain types of error conditions, or to mask and clear interrupts.

Bit Name	Operation
CLCE	Clears the CE bits of the status register, inactivating the interrupt request output caused by Command End condition. This is used when no disk commands are going to be issued and it is desired to clear the interrupt.
HSRQ	Deactivates the interrupt request output caused by Sense Interrupt Status Request condition until a Command End occurs. However, this command has no effect on the SRQ bit of the status register.
CLB	Clears the data buffer.
RST	This has the same effect as a reset signal on the Reset input. This function is used whenever the RRQ bit in the status register is set (indicating the format controller is hung up), or when a software reset is needed.

Timing Waveforms

Read/Write Sequence

Disk command issue

Sense Interrupt Status Request When Controller Not Busy

Sense Interrupt Status Request When Controller Busy

System Example

Local Bus System

Track Format

System Example Timing Diagrams

Figures 1 through 12 show the interface timing (soft sector and hard sector) required to interface the hard-disk drive.

Figure 1. "Unit Selection" and "State Sense" Timing (Hard Sector)

Figure 2. Return to Zero Timing (Hard Sector)

Figure 3. "Seek" Timing (Hard Sector)

Figure 4. "Head Select" Timing (Hard Sector)

Figure 5. "Device Status Sense" Timing (Hard Sector)

Figure 6. "Data Read" Timing (Hard Sector)

Sync

Figure 7. "Data Write" Timing (Hard Sector)

Figure 8. "Drive Select" and "Unit Status Sense" Timing (Soft Sector)

Figure 9. "Normal Seek" Timing (Soft Sector)

Figure 10. "Buffered Seek" Timing (Soft Sector)

Figure 11. "Data Read" Timing (Soft Sector)

Figure 12. "Data Write" Timing (Soft Sector)

Package Outlines
For information, see Package Outline Section 7.

Description

The NEC μ PD7720 Signal Processing Interface (SPI) is an advanced architecture microcomputer optimized for signal processing algorithms. Its speed and flexibility allow the SPI to efficiently implement signal processing functions in a wide range of environments and applications.
The NEC SPI is the state of the art in signal processing today, and for the future.

Applications

Speech Synthesis and Analysis

Digital FilteringFast Fourier Transforms (FFT)
Dual-Tone Multi-Frequency (DTMF)
Transmitters/ReceiversHigh Speed Data ModemsEqualizers
Adaptive Control
Sonar/Radar Image Processing
Numerical Processing

Performance Benchmarks

Second Order Digital Filter (Biquad) $2.25 \mu \mathrm{~s}$Sine/Cos of Angles $5.25 \mu \mathrm{~s}$
μ / A Law to Linear Conversion $0.50 \mu \mathrm{~s}$
FFT: 32-point Complex
64-point Complex 0.7 ms 1.6 ms

Features

Fast Instruction Execution - 250 ns16-Bit Data WordMulti-Operation Instructions for Optimizing Program ExecutionLarge Memory Capacities

Program ROM	512×23 Bits
Data ROM	510×13 Bits
Data RAM	128×16 Bits

Four Level Subroutine Stack for Program Efficiency
Multiple I/O Capabilities Serial Parallel DMACompatible with Most Microprocessors, Including: μ PD8080
μ PD8085
μ PD8086 μ PD780 (Z80) ${ }^{\text {TM * }}$Power Supply +5 V
Technology NMOS
Package - 28 Pin Dip

Pin Identification

Pin		$1 / 0$	Function
No.	Symbol		
1	NC	1	No Connection for masked ROM μ PD7720 Consult μ PD77P20 specifications for connection for pincompatible EPROM version
2	$\overline{\text { DACK }}$	1	DMA Request Acknowledge. Indicates to the μ PD7720 that the Data Bus is ready for a DMA transfer. ($\overline{\text { DACK }}=\overline{C S} \bullet A_{0}=0$)
3	DRQ	0	DMA Request. Signals that the μ PD7720 is requesting a data transfer on the Data Bus.
4, 5	$\mathrm{P}_{0}, \mathrm{P}_{1}$	0	General purpose output control lines.
6-13	$\mathrm{D}_{0}-\mathrm{D}_{7}$	1/0 Three-state	Port for data transfer between the Data Register or Status Register and external Data Bus.
14	GND		Ground.
15	CLK	I	Single phase Master Clock input.
16	RST	I	Reset. Initializes the μ PD7720 internal logic and sets the PC to 0 .
17	INT	1	Interrupt. A low to high transition on this pin executes a call instruction to location $\mathbf{1 0 0 H}$, if interrupts were previously enabled.
18	SCK	1	Serial Data Input/Output Clock. A serial data bit is transferred when this pin is high.
19	SIEN	I	Serial Input Enable. Enables the shift clock to the Serial Input Register.
20	$\overline{\text { SOEN }}$	I	Serial Output Enable. Enables the shift clock to the Serial Output Register.
21	SI	1	Serial Data Input. Inputs 8- or 16-bit serial data words from an external device such as an A/D converter.
22	So	0 Three-state	Serial Data Output. Outputs 8 - or 16-bit data words to an external device such as a D / A converter.
23	SORQ	0	Serial Data Output Request. Specifies to an external device that the Serial Data Register has been loaded and is ready for output. SORQ is reset when the entire 8 - or 16 -bit word has been transferred.
24	$\overline{W R}$	1	Write Control Signal. Writes an input from the data port into the Data Register.
25	$\overline{\mathrm{RD}}$	1	Read Control Signal. Reads an output to the data port from the Data or Status Register.
26	$\overline{\text { CS }}$	1	Chip Select. Enables data transfer through data port with $\overline{\text { RD }}$ or WR.
27	A_{0}	1	Selects Data Register for Read/Write (low) or Status Register for read (hıgh).
28	V_{cc}		+5V Power

Pin Configuration

Functional Description

Fabricated in high speed NMOS, the μ PD7720 SPI is a complete 16 -bit microcomputer on a single chip. ROM space is provided for program and coefficient storage, while the on-chip RAM may be used for temporary data, coefficients, and results. Computational power is provided by a 16 -bit Arithmetic/Logic Unit (ALU) and a separate 16 x 16 -bit fully parallel multiplier. This combination allows the implementation of a "sum of products" operation in a single 250 ns instruction cycle. In addition, each arithmetic instruction provides for a number of data movement operations to further increase throughput. Two serial I/O ports are provided for interfacing to codecs and other seriallyoriented devices while a parallel port provides both data and status information to conventional microprocessors. Handshaking signals, including DMA controls, allow the SPI to act as a sophisticated programmable peripheral as well as a stand-alone microcomputer.

Memory

Memory is divided into three types: Program ROM, Data ROM, and Data RAM. The 512×23-bit words of Program ROM are addressed by a 9 -bit Program Counter which can be modified by an external reset, interrupt, call, jump, or return instruction.
The Data ROM is organized in 510×13-bit words which are addressed through a 9-bit ROM pointer (RP register). The RP may be modified simultaneously with arithmetic instructions so that the next value is available for the next instruction. The Data ROM is ideal for storing the necessary coefficients, conversion tables, and other constants for your processing needs.
The Data RAM is 128×16-bit words and is addressed through a 7 -bit data pointer (DP register). The DP has extensive addressing features that operate simultaneously with arithmetic instructions so that no added time is taken for addressing or address modification.

Block Diagram

Arithmetic Capabilities
 General

One of the unique features of the SPI's architecture is its arithmetic facilities. With a separate multiplier, ALU, and multiple internal data paths, the SPI is capable of carrying out a multiply, an add, or other arithmetic operation, and a data move between internal registers in a single instruction cycle.

ALU

The ALU is a 16 -bit 2's complement unit capable of executing 16 distinct operations on virtually any of the SPl's internal registers, thus giving the SPI both speed and versatility for efficient data management.

Accumulators (ACCA/ACCB)

Associated with the ALU are a pair of 16 -bit accumulators, each with its own set of flags, which are updated at the end of each arithmetic instruction (except NOP). In addition to Zero Result, Sign Carry, and Overflow Flags, the SPI incorporates auxiliary Overflow and Sign Flags (SA1, SB1, OVA1, OVB1). These flags enable the detection of an overflow condition and maintain the correct sign after as many as three successive additions or subtractions.

ACC A/B Flag Registers

Flag A	SA1	SAO	CA	ZA	OVA1
Flag B	OVA0				
	SB1	SB0	CB	ZB	OVB1

Sign Register (SGN)

When OVA1 is set, the SA1 bit will hold the corrected sign of the overflow. The SGN Register will use SA1 to automatically generate saturation constants 7FFFH (+) or $8000 \mathrm{H}(-)$ to permit efficient limiting of a calculated value.

Multiplier

Thirty-one bit results are developed by a 16×16-bit 2's complement multiplier in 250 ns . The result is automatically latched to two 16 -bit registers M\&N (sign and 15 higher bits in $\mathrm{M}, 15$ lower bits in N ; LSB in N is zero) at the end of each
instruction cycle. A new product is available for use after every instruction cycle, providing significant advantages in maximizing processing speed for real time signal processing.

Stack

The SPI contains a 4-level program stack for efficient program usage and interrupt handling.

Interrupt

A single level interrupt is supported by the SPI. Upon sensing a high level on the INT terminal, a subroutine call to location 100 H is executed. The El bit of the status register is automatically reset to 0 , thus disabling the interrupt facilities until reenabled under program control.

Input/Output

General

The NEC SPI has three communication ports; two serial and one 8-bit parallel, each with its own control lines for interface handshaking. The parallel port also includes DMA control lines (DRQ and $\overline{\mathrm{DACK}}$) for high speed data transfer and reduced processor overhead. A general purpose 2 -line output port rounds out a full complement of interface capability.

Serial I/O

The two shift registers (SI, SO) are software-configurable to single or double byte transfers. The shift registers are externally clocked (SCK) to provide a simple interface between the SPI and serial peripherals such as A/D and D/A converters, codecs, or other SPIs.

Parallel I/O

The 8-bit parallel I/O port may be used for transferring data or reading the SPI's status. Data transfer is handled through a 16-bit Data Register (DR) that is softwareconfigurable for double or single byte data transfers. The port is ideally suited for operating with 8080, 8085, and 8086 processor buses and may be used with other processors and computer systems.

Parallel R/W Operation

$\overline{\mathbf{C S}}$	$\mathbf{A}_{\mathbf{0}}$	$\overline{\text { WR }}$	$\overline{\mathrm{RD}}$	Operation		
$\mathbf{1}$	\mathbf{X}	\mathbf{X}	\mathbf{X}			
\mathbf{X}	\mathbf{X}	1	1		$\}$	No effect on internal operation. $\mathrm{D}_{0}-D_{7}$
:---						
are at high impedance levels						

Note: (1) Eight MSBs or 8 LSBs of data register (DR) are used depending on DR status bit (DRS) The condition of $\overline{D A C K}=0$ is equivalent to $A_{0}=\overline{C S}=0$

Status Register (SR)
MSB

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RQM | USF1 | USFO | DRS | DMA | DRC | SOC | SIC | EI | 0 | 0 | 0 | 0 | 0 | P1 | PO |

The status register is a 16 -bit register in which the 8 most significant bits may be read by the system's MPU for the latest I/O and processing status.

Status Register Flags

Flag	Description
RQM (Request for Master)	A read or write from DR to IDB sets RQM = 1. An external read (write) resets $\mathrm{RQM}=0$.
USF1 and USFO (User Flags 1 and 0)	General purpose flags which may be read by an external processor for user defined signaling.
DRS (DR Status)	For 16-bit DR transfers (DRC $=0$). DRS $=1$ after first 8 bits have been transferred DRS $=0$ after all 16 bits transferred.
DMA (DMA Enable)	$\begin{aligned} & \text { DMA }=0 \text { (Non-DMA transfer mode) } \\ & \text { DMA }=1 \text { (DMA transfer mode). } \end{aligned}$
DRC (DR Control)	$\begin{aligned} & \text { DRC }=0 \text { (} 16 \text {-bit mode }) \\ & \text { DRC }=1 \text { (} 8 \text {-bit mode) } . \end{aligned}$
SOC (SO Control)	$\begin{aligned} & \text { SOC }=0 \text { (} 16 \text {-bit mode }) \\ & \text { SOC }=1 \text { (} 8 \text {-bit mode). } \end{aligned}$
SIC (SI Control)	SIC = 0 (16 -bit mode) SIC $=1$ (8-bit mode).
El (Enable Interrupt)	EI = 0 (interrupts disabled) $E I=1$ (interrupts enabled).
$\begin{aligned} & \text { P1, P0 } \\ & \text { (Ports } 0 \text { and 1) } \end{aligned}$	P0 and P1 directly control the state of output pins P0 and P1.

Instructions

The SPI has 3 types of instructions, all of which are one 23bit word and execute in 250 ns .

Arithmetic/Move-Return (OP $=00 / R T=01)$

	2221	2019	18171615	14	1312	11109	8	7654	3210
OP	00	PSelect	ALU	A S L	DP ${ }_{\text {L }}$	$\mathrm{DP}_{\mathrm{H}}-\mathrm{M}$	R	SRC	DST
RT	01	Same as OP instruction							

OP/RT Instruction Field Specification

There are two instructions of this type, both of which are capable of executing all ALU functions listed in Table 2. The ALU functions operate on the value specified by the P-select field. (See Table 1.)
Besides the arithmetic functions these instructions can also modify (1) the RAM Data Pointer DP, (2) the Data ROM Pointer RP, and (3) move data along the on-chip data bus from a source register to a destination register (the possible source and destination registers are listed in Tables 7 and 8 respectively). The difference in the two instructions of this type is that RT executes a subroutine or interrupt return at the end of the instruction cycle while the OP does not.

Table 1. P-Select Field

Mnemonic	$\mathbf{D}_{\mathbf{2 0}}$	$\mathbf{D}_{\mathbf{1 9}}$	ALU Input
RAM	0	0	RAM
IDB	0	1	Internal Data Bus (1)
M	$\mathbf{1}$	$\mathbf{0}$	M Register
N	$\mathbf{1}$	$\mathbf{1}$	N Register

Note: (1) Any value on the on-chip data bus Value may be selected from any of the registers listed in Table 7 source register selections

Table 2. ALU Field

Mnemonic $\mathrm{D}_{\mathbf{1 8}}$		D_{17}	$D_{16} D_{15}$		ALU Function	Flags	$\frac{\text { SA1 }}{\text { SB1 }}$	$\begin{aligned} & \text { SAO } \\ & \hline \text { SBO } \end{aligned}$	$\frac{\mathrm{CA}}{\mathrm{CB}}$	$\frac{2 A}{2 B}$	$\begin{aligned} & \text { oVA1 } \\ & \hline \text { OVB1 } \end{aligned}$	$\begin{aligned} & \hline \text { OVAO } \\ & \hline \text { OVBO } \end{aligned}$
NOP	0	0	0	0	No Operation		-	-	-	-	-	-
OR	0	0	0	1	OR		X	\dagger	0	\dagger	0	0
AND	0	0	1	0	AND		X	\dagger	0	\downarrow	0	0
XOR	0	0	1	1	Exclusive OR		X	\pm	0	1	0	0
SUB	0	1	0	0	Subtract		\pm	\ddagger	\ddagger	\downarrow	\downarrow	:
ADD	0	1	0	1	ADD		\ddagger	\downarrow	\downarrow	1	\ddagger	\pm
SBB	0	1	1	0	Subtract with Borrow		\uparrow	\downarrow	\downarrow	\downarrow	\downarrow	1
ADC	0	1	1	1	Add with Carry		\pm	1	\dagger	\pm	\ddagger	\dagger
DEC	1	0	0	0	Decrement $A_{\text {cc }}$		\pm	\downarrow	\pm	\pm	\uparrow	\downarrow
INC	1	0	0	1	Increment $\mathrm{A}_{\text {cc }}$		\pm	\pm	1	\pm	\pm	\downarrow
CMP	1	0	1	0	Complement $A_{c c}$ (1's Complement)		X	\downarrow	0	\downarrow	0	0
SHR1	1	0	1	1	1-bit R-Shift		X	1	1	\pm	0	0
SHL1	1	1	0	0	1-bit L-Shift		X	\pm	\downarrow	\downarrow	0	0
SHL2	1	1	0	1	2-bit L-Shift		X	\pm	0	t	0	0
SHL4	1	1	1	0	4-bit L-Shift		X	t	0	\downarrow	0	0
XCHG	1	1	1	1	8-bit Exchange		X	†	0	\downarrow	0	0

Notes: \uparrow May be affected, depending on the results
Previous status can be held
${ }_{0}$ R Reset
X Indefinite

Table 3. ASL Field

Mnemonic	\mathbf{D}_{14}	Acc Selection
ACCA	0	Acc A 2
ACCB	1	AcC B 2

Table 4. DP L Field

Mnemonic	$\mathbf{D}_{\mathbf{1 3}}$	$\mathbf{D}_{\mathbf{1 2}}$	Low DP Modify (DP $\mathbf{D}_{\mathbf{3}}$-DP $\mathbf{D P}_{\mathbf{o}}$
DPNOP	0	0	No Operation
DPINC	0	1	Increment DP
DPDEC	1	0	Decrement DP
DPCLR	1	1	Clear DP

Table 5. $D P_{\boldsymbol{H}}$-M Field

Mnemonic	D_{11}	D_{10}	$\mathrm{D}_{\mathbf{g}}$	High DP Modify
M0	0	0	0	Exclusive OR of DP_{H} ($\mathrm{DP}_{6}-\mathrm{DP}_{4}$) with the Mask defined by the three bits ($\left.\mathrm{D}_{11} 1-\mathrm{D}_{9}\right)$ of the DP $\mathrm{H}_{\mathrm{H}}-\mathrm{M}$ field
M1	0	0	1	
M2	0	1	0	
M3	0	1	1	
M4	1	0	0	
M5	1	0	1	
M6	1	1	0	
M7	1	1	1	

Table 6. RPDCR Field

Mnemonic	$\mathbf{D}_{\mathbf{8}}$	RP Operation
RPNOP	0	No Operation
RPDEC	1	Decrement RP

Table 7. SRC Field

Mnemonic	D_{7}	D_{6}	D_{5}	D_{4}	Source Register
NON	0	0	0	0	No Register
A	0	0	0	1	$A_{c c}$ A (Accumulator A)
B	0	0	1	0	$A_{c c}$ B (Accumulator B)
TR	0	0	1	1	TR Temporary Register
DP	0	1	0	0	DP Data Pointer
RP	0	1	0	1	RP ROM Pointer
RO	0	1	1	0	RO ROM Output Data
SGN	0	1	1	1	SGN Sign Register
DR	1	0	0	0	DR Data Register
DRNF	1	0	0	1	DR No Flag ${ }^{(1)}$
SR	1	0	1	0	SR Status Register
SIM	1	0	1	1	SI Serial in MSB (2)
SIL	1	1	0	0	SI Serial in LSB (3)
K	1	1	0	1	K Register
L	1	1	1	0	L Register
MEM	1	1	1	1	RAM

Notes: (1) DR to IDB, RQM not set in DMA, DRQ not set
(2) First bit in goes to MSB, last bit to LSB
(3) First bit in goes to LSB, last bit to MSB (bit reversed)

Table 8. DST Field

Mnemonic	D_{3}	D_{2}	D_{1}	Do	Destination Register
@NON	0	0	0	0	No Register
@A	0	0	0	1	Acc A (Accumulator A)
@B	0	0	1	0	Acc B (Accumulator B)
@TR	0	0	1	1	TR Temporary Register
@DP	0	1	0	0	DP Data Pointer
@RP	0	1	0	1	RP ROM Pointer
@DR	0	1	1	0	DR Data Register
@SR	0	1	1	1	SR Status Register
@SOL	1	0	0	0	SO Serial Out LSB (1)
@SOM	1	0	0	1	SO Serial Out MSB (2)
@K	1	0	1	0	K (Mult)
@KLR	1	0	1	1	IDB $\rightarrow \mathrm{K}, \mathrm{ROM} \rightarrow \mathrm{L}$ (3)
@KLM	1	1	0	0	Hi RAM \rightarrow K, IDB \rightarrow L (4)
@L	1	1	0	1	L (Mult)
@NON	1	1	1	0	No Register
@MEM	1	1	1	1	RAM

Notes: (1) LSB is first bit out
(2) MSB is first bit ou
(3) Internal data bus to K and ROM to L register
(4) Contents of RAM address specified by $\mathrm{DP}_{6}=1$.
(i e , 1, $\mathrm{DP}_{5}, \mathrm{DP}_{4}-\mathrm{DP}_{0}$) is placed in K register IDB is placed in L

Jump/Call/Branch

JP Instruction Field Specification

	2221	201918	1716151413	121110987654	3210
JP	10	BRCH	CND	NA	

Three types of program counter modifications are accommodated by the processor and are listed in Table 9. All the instructions, if unconditional or if the specified condition is true, take their next program execution address from the Next Address field (NA); otherwise PC = PC +1 .

Table 9. BRCH Field

D_{20}	D_{19}	D_{18}	Branch Instruction
1	0	0	Unconditional jump
1	0	1	Subroutine call
0	1	0	Conditional jump

For the conditional jump instruction, the condition field specifies the jump condition. Table 10 lists all the instruction mnemonics of the Jump/Call/Branch codes.

Load Data (LDI)

LD Instruction Field Specification

22		21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
LD	11								ID										DST				

The Load Data instruction will take the 16 -bit value contained in the Immediate Data field (ID) and place it in the location specified by the Destination field (DST) (see Table 8).

Table 10. BRCH/CND Fields

Mnemonic									Conditions(1)
JMP	1	0	0	0	0	0	0	0	No Condition
CALL	1	0	1	0	0	0	0	0	No Condition
JNCA	0	1	0	0	0	0	0	0	CA $=0$
JCA	0	1	0	0	0	0	0	1	$C A=1$
JNCB	0	1	0	0	0	0	1	0	$C B=0$
JCB	0	1	0	0	0	0	1	1	$C B=1$
JNZA	0	1	0	0	0	1	0	0	$\mathrm{ZA}=0$
JZA	0	1	0	0	0	1	0	1	$Z A=1$
JNZB	0	1	0	0	0	1	1	0	$\mathrm{ZB}=0$
JZB	0	1	0	0	0	1	1	1	$\mathrm{ZB}=1$
JNOVAO	0	1	0	0	1	0	0	0	OVAO $=0$
JOVAO	0	1	0	0	1	0	0	1	OVAO $=1$
JNOVB0	0	1	0	0	1	0	1	0	OVB0 $=0$
JOVB0	0	1	0	0	1	0	1	1	OVBO $=1$
JNOVA1	0	1	0	0	1	1	0	0	OVA1 $=0$
JOVA1	0	1	0	0	1	1	0	1	OVA1 $=1$
JNOVB1	0	1	0	0	1	1	1	0	OVB1 $=0$
JOVB1	0	1	0	0	1	1	1	1	OVB1 $=1$
JNSAO	0	1	0	1	0	0	0	0	SAO $=0$
JSAO	0	1	0	1	0	0	0	1	SAO $=1$
JNSB0	0	1	0	1	0	0	1	0	SB0 $=0$
JSB0	0	1	0	1	0	0	1	1	SB0 $=1$
JNSA1	0	1	0	1	0	1	0	0	SA1 $=0$
JSA1	0	1	0	1	0	1	0	1	$S A 1=1$
JNSB1	0	1	0	1	0	1	1	0	SB1 $=0$
JSB1	0	1	0	1	0	1	1	1	$\mathrm{SB1}=1$
JDPLO	0	1	0	1	1	0	0	0	$D P_{L}=0$
JDPLF	0	1	0	1	1	0	0	1	$D P_{L}=F$ (HEX)
JNSIAK	0	1	0	1	1	0	1	0	SI ACK $=0$
JSIAK	0	1	0	1	1	0	1	1	SI ACK = 1
JNSOAK	0	1	0	1	1	1	0	0	SO ACK = 0
JSOAK	0	1	0	1	1	1	0	1	SO ACK = 1
JNRQM	0	1	0	1	1	1	1	0	RQM $=0$
JRQM	0	1	0	1	1	1	1	1	RQM $=1$

Note: (1) BRCH or CND values not in this table are prohibited
Instruction Timing (Four Phase-Internal Clock)

Instruction Timing

To control the execution of instructions, the external $8-\mathrm{MHz}$ clock is divided into a four-phase, nonoverlapping clock. Execution begins at the rising edge of $\phi 3$ and ends at the falling edge of $\phi 2$. The ALU commences operation at the rise of $\phi 1$, and completes all operations at the fall of $\phi 3$.
Once an instruction-ROM address is available at the rise of $\phi 3$, the instruction is latched, and the source register and RAM address are determined so that data may be put on the internal bus by the fall of $\phi 4$. The ALU input is latched at the rise of $\phi 1$, and the output is avalable for accumulator latch at the rise of $\phi 3$. The cycle then repeats.
The multiplier takes its input at the rise of $\phi 1$, and its results are available in 250 ns , at the rise of the next $\phi 1$.

Absolute Maximum Ratings*

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	
Voltage (V_{cc} Pin)	-0.5 to +7.0 V (1)
Voltage, Any Input	-0.5 to +7.0V (1)
Voltage, Any Output	-0.5 to +7.0 V (1)
Operating Temperature	$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: (1) With respect to GND
*COMMENT: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V} \pm 5 \%$

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	-0.5		0.8	v	
Input High Voitage	$\mathrm{V}_{\text {IH }}$	2.0		$\mathrm{v}_{\mathrm{cc}}+0.5$	V	
CLK Low Voltage	$\mathbf{V}_{\phi_{L}}$	-0.5		0.45	v	
CLK High Voltage	$\mathrm{V}_{\text {¢ }_{H}}$	3.5		$\mathrm{V}_{\mathrm{cc}}+0.5$	v	
Output Low Voltage	V_{OL}			0.45	v	$\mathrm{l}_{\mathrm{oL}}=2.0 \mathrm{~mA}$
Output High Voltage	V_{OH}	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
Input Load Current	LIL			-10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$
Input Load Current	$\mathrm{ILH}^{\text {L }}$			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{cc}}$
Output Float Leakage	liol			-10	$\mu \mathrm{A}$	$V_{\text {OUT }}=0.47 \mathrm{~V}$
Output Float Leakage	$\mathrm{I}_{\text {LOH }}$			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {cc }}$
Power Supply Current	I_{cc}		180	280	mA	

Capacitance

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
CLK, SCK Input Capacitance	C ${ }_{\text {¢ }}$			20	pF	
Input Pin Capacitance	$\mathrm{C}_{\text {IN }}$			10	pF	$\mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}$
Output Pin Capacitance	$\mathrm{C}_{\text {OUt }}$			20	pF	

AC Characteristics

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
CLK Cycle Time	${ }_{\phi} \mathbf{C Y}$	122		2000	ns	(1)
CLK Pulse Width	ϕ D	60			ns	
CLK Rise Time	$\phi \mathbf{R}$			10	ns	(1)
CLK Fall Time	$\phi \mathbf{F}$			10	ns	(1)
Address Setup Time for $\overline{R D}$	$t_{\text {AR }}$	0			ns	
Address Hold Time for $\overline{\mathrm{RD}} \mathrm{t}_{\mathrm{RA}}$		0			ns	
$\overline{\text { RD Pulse Width }}$	t_{RR}	250			ns	
Data Delay from $\overline{\mathrm{RD}}$	t_{RD}			150	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
Read to Data Floating	$t_{\text {bF }}$	10		100	ns	$C_{L}=100 \mathrm{pF}$
Address Setup Time for WR	$t_{\text {AW }}$	0			ns	
Address Hold Time for $\overline{\text { WRt }}$ WA		0			ns	
$\overline{\text { WR }}$ Puise Width	$t_{\text {ww }}$	250			ns	
Data Setup Time for $\overline{\text { WR }}$	$t_{\text {dw }}$	150			ns	
Data Hold Time for $\overline{W R}$	$t_{\text {wD }}$	0			ns	
$\overline{\text { RD }}, \overline{\text { WR}, ~ R e c o v e r y ~ T i m e ~}$	t_{RV}	250			ns	(2)
DRQ Delay	$t_{\text {AM }}$			150	ns	
$\overline{\text { DACK }}$ Delay Time	$t_{\text {daCk }}$	1			$\phi \mathrm{D}$	(2)
SCK Cycle Time	$\mathrm{t}_{\mathrm{sCY}}$	480		DC	ns	
SCK Pulse Width	$\mathrm{t}_{\text {Sck }}$	230			ns	
SCK Rise/Fall Time	$\mathrm{t}_{\text {RSC }}$			20	ns	(1)
SORQ Delay	$t_{\text {DRQ }}$	30		150	ns	$C_{L}=100 \mathrm{pF}$
SOEN Setup Time	$\mathrm{t}_{\text {SOC }}$	50			ns	
SOEN Hold Time	tcso	30			ns	
$\begin{aligned} & \text { SO Delay from SCK } \\ & =\text { LOW } \end{aligned}$	$t_{\text {DCK }}$			150	ns	
SO Delay from SCK with SORQ \uparrow	$t_{\text {DZRQ }}$	20		300	ns	(2)
SO Delay from SCK	$t_{\text {DZSC }}$	20		300	ns	(2)
SO Delay from SOEN	$\mathrm{t}_{\text {DZE }}$	20		180	ns	(2)
SOEN to SO Floating	$t_{\text {HzE }}$	20		200	ns	(2)
SCK to SO Floatıng	$\mathrm{t}_{\mathrm{Hzsc}}$	20		300	ns	(2)
SO Delay from SCK with SORQ \downarrow	$t_{\text {HzRQ }}$	70		300	ns	(2)
$\overline{\text { SIEN, }}$, SI Setup TIme	$t_{\text {DC }}$	55			ns	(2)
$\overline{\text { SIEN, SI Hold Time }}$	t_{CD}	30			ns	
$\mathrm{P}_{\mathbf{0}}, \mathrm{P}_{1}$ Delay	$t_{\text {DP }}$			$\begin{aligned} & \phi C Y \\ & +150 \end{aligned}$	ns	
RST Pulse Width	$\mathrm{t}_{\text {RST }}$	4			${ }_{\phi} \mathbf{C Y}$	
INT Pulse Width	$\mathrm{t}_{\text {INT }}$	8			¢CY	

Notes: (1) Voltage at measuring point of timing 10 V and 30 V
(2) Voltage at measuring point of AC Timing
$\mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{OL}}=08 \mathrm{~V}$
Input Waveform of AC Test (except CLK, SCK) 24

Timing Waveforms

Timing Waveforms (Cont.)

WRITE Operation

DMA Operation

Serial Timing

Notes. (1) For SO timing, the data at rising edge of SCK is valid and the other data is invalid In setup hold time of data for SCK, the most strict specifications are the following setup $=\mathrm{t}_{\text {SCK }}-\mathrm{t}_{\text {DCK }}$ hold $=t_{\text {HZRO }}$
(2) Voltage at measurıng point of $\mathrm{t}_{\mathrm{rsc}}$ and $\mathrm{t}_{\mathrm{fsc}}$ for SCK tımıng (3) 30 V (4) 10 V

Development Tools

For software development, editing, debugging, and assembly into object code, the NDS Development System, designed and manufactured by NEC Electronics U.S.A. Inc., is available. The ASM77 Cross-Assembler and SIM77 Simulator for analyzing development code and I/O timing characteristics are available for both the NDS and for other systems supporting CP/M (®Digital Research Corp.) or ISIS-II (®intel Corp.) operating systems. Additionally, the ASM77 Cross-Assembler is offered in Fortran for VAX systems under VMS (${ }^{\text {®Digital Equipment Corp.). }}$
Once software development is complete, the code can be completely evaluated and debugged in hardware with the Evakit-7720 Evaluation System. The Evakit provides true in-circuit real time emulation of the SPI for debugging and demonstrating your final system design. Code may be down-loaded to the Evakit from a development system via an RS232 port. The Evakit also serves to program the μ PD77P20, a full-speed EPROM version of the SPI. A demonstration mask ROM chip, containing some common digital filtering routines, including N -stage IIR (biquadratic) and FIR (transversal) filters, is available to test hardware interfaces to the SPI.
Further operational details of the SPI can be found in the μ PD7720 Signal Processing Interface Technical Manual.

Operation of the SPI development tools is described in the Cross-Assembler User Manual, the Simulator Operating Manual, the Evakit-7720 Operation Manual, and the NEC Development Systems Users' Manual.

Spectrum Analysis System

An Analog-to-Analog Digital Processing System Using a Single SPI

A Signal Processing System Using Cascaded SPIs \& Serial Communication

A Signal Processing System Using SPI(s) as a Complex Computer Peripheral

Package Outlines

For information, see Package Outline Section 7.
Ceramic, μ PD7720D

Description

The μ PD77P20 is an ultraviolet erasable and electrically programmable (EPROM) version of the μ PD7720 signal processing interface (SPI). Functionally, the two parts are identical, Program and data ROM, masked for the μ PD7720, are implemented in EPROM for the μ PD77P20. The μ PD77P20 is useful in prototye applications or in systems where quantities are insufficient for masked ROM development. For a complete functional description consult the μ PD7720 Technical Manual.

Applications

\square Speech synthesis and analysisDigital filteringFast Fourier transforms (FFT)
Dual-tone Multifrequency (DTMF) transmitters/receiversHigh-speed data modemsEqualizersAdaptive controlSonar/radar image processingNumerical processing

Features

\square Internal ultraviolet EPROM (instruction and data)Programmable with single pulseCompatible with μ PD77208 MHz clock/250ns instruction execution16-bit data wordMultioperation instructions for optimizing program executionLarge memory capacities

- Programmable program ROM
512×23 bits
- Programmable data ROM 512×13 bits
- Data RAM
128×16 bitsFast (250ns) 16×16-bit parallel multiplier with 31 -bit resultDual accumulatorsFour-level subroutine stack for program efficiencyMultiple I/O capabilities
- Serial
- Parallel
- DMAFully bus compatible with most microprocessors, including:
- μ PD8080
- μ PD8085
- μ PD8086
- μ PD780 (Z80) ${ }^{\text {TM }}$+5 V power supplyNMOS technology28 -pin dip package

[^4]
Pin Configuration

$\mathrm{v}_{\mathrm{pP}} \mathrm{C}_{1}$		28	v_{cc}
$\overline{\text { DACK }}{ }^{2}$		27	A_{0}
DRQ 3		26	$\square \mathrm{CS} / \mathrm{PROG}$
$\mathrm{P}_{0} \mathrm{C}_{4}$		25	$\overline{\text { BD }}$
$P_{1}{ }_{5}$		24	W $\overline{\text { w }}$
$\mathrm{D}_{0} 6$		23	\square SORQ
$\mathrm{D}_{1} \mathrm{C}_{7}$	$\mu \mathrm{PD}$	22	so
$\mathrm{D}_{2} 8$	77P20	21	SI
$\mathrm{D}_{3} 9$		20	$\square \mathrm{SOEN}$
$\mathrm{D}_{4} 10$		19	ISIEN
$\mathrm{D}_{5} 11$		18	¢ sck
$\mathrm{D}_{6} 12$		17	INT
$\mathrm{D}_{7} 13$		16	RST
GND [14		15	C CLK

Pin Identification

Pin			
No.	Symbol	I/O	Function

Block Diagram

Mode Selection

	CS/PROG	$V_{\text {pp }}$	Vcc	Outputs
Instruction ROM program	$V_{\text {IH }}$	Vpp	+5V	Din
Data ROM program	$\mathbf{V}_{\text {H }}$	$V_{\text {Pp }}$	+5V	Din
Instruction ROM read	$\mathrm{V}_{\text {IL }}$	$V_{\text {cc }}$	$+5 \mathrm{~V}$	Dout
Data ROM read	V_{L}	$\mathrm{V}_{\text {cc }}$	$+5 \mathrm{~V}$	Dout
	$\overline{\mathbf{V}_{\mathrm{IL}}}$	Vcc	+5V	DiN, Dout
Operation	$\mathbf{V I H}^{\text {H }}$			High Z

Absolute Maximum Ratings*

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Supply Voltage, V_{cc}	-0.3 V to +7.0 V
Input Voltage, V_{l}	-0.3 V to +7.0 V
Output Voltage, V_{o}	-0.3 V to +7.0 V
Operating Temperature, $\mathrm{T}_{\mathrm{OPT}}$	$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature, $\mathrm{T}_{\mathrm{sTG}}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltage, V_{PP}	-0.3 V to +22 V

*COMMENT: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V} \pm 5 \%$

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Input Low Voltage	VIL	-0.5		0.8	V	
Input High Voltage	$\mathbf{V}_{\mathbf{H}}$	2.0		$\mathrm{Vcc}+0.5$	V	
Input CLK Voltage Low	V_{ϕ} L	-0.5		0.45	V	
Input CLK Voltage High	$\mathbf{V}_{\text {¢ }}$	3.5		$\mathrm{Vcc}+0.5$	V	
Output Low Voltage	Vol			0.45	V	$1 \mathrm{loL}=2.0 \mathrm{~mA}$
Output High Voltage	VOH	2.4			V	$\mathrm{lOH}=-400 \mu \mathrm{~A}$
Input Load Current	luil			-10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbf{N}}=\mathbf{O V}$
Input Load Current	ILIH			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {iN }}=\mathrm{V}_{\text {cc }}$
Output Float Leakage	LLOL			-10	$\mu \mathrm{A}$	$V_{\text {OUT }}=0.47 \mathrm{~V}$
Output Float Leakage	ILOH			10	$\boldsymbol{\mu} \mathbf{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {cc }}$
Power Supply Current	Icc		270	350	mA	
Vpp Current	Ipp			70	mA	Program Mode Max Pulse Current ${ }^{(1)}$
		0.5		3.0		Program Verify, Inhibit(2)

Notes: (1) $\mathrm{VPP}_{\mathrm{PP}}=(21 \pm 05) \mathrm{V}$
(2) for K-level parts, $\mathrm{V}_{\text {PPMAX }}=\mathrm{V}_{c c} M A X+025 \mathrm{~V}, \mathrm{~V}_{\text {PPM }} M I N=\mathrm{V}_{c c} M I N-085 \mathrm{~V}$ for E-level and P-level parts, $\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{Cc}}$

AC Operating Characteristics
$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V} \pm 5 \%$; K-level parts, $\mathrm{V}_{\text {pp }}$ MAX $=\mathrm{V}_{\text {ccM }}$ MAX $+0.25 \mathrm{~V} ; \mathrm{V}_{\text {ppMIN }}=$ $\mathbf{V}_{\text {ccis }}$ MIN -0.85 V ; E-level and P-level parts, $\mathrm{V}_{\text {Pp }}=$ $V_{\text {cc }}$

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
CLK Cycle Time	фCY	122		2000	ns	
CLK Pulse Width	$\phi \mathrm{D}$	60			ns	
CLK Rise Time	ϕr			10	ns	Voltage at measuring point
CLK Fall Time	¢f			10	ns	of timing 1.0 V and $3.0 \mathrm{~V}$
$\mathrm{A}_{0}, \overline{\mathbf{C S}}, \overline{\mathrm{DACK}}$ Setup Time for RD	$t_{\text {AR }}$	0			ns	
A0, $\overline{\mathbf{C S}}, \overline{\mathrm{DACK}}$ Hold Time for RD	$t_{\text {PA }}$	0			ns	
$\overline{\overline{R D}}$ Pulse Width	$t_{\text {RR }}$	250			ns	
Data Delay from $\overline{\mathrm{RD}}$	trd			150	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
Read to Data Floating	$t_{\text {DF }}$	10		100	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
A ${ }_{0}, \overline{\text { CS }}, \overline{\text { DACK }}$ Setup Time for WR	$t_{\text {aw }}$	0			ns	
A $, \overline{\mathbf{C S}}, \overline{\text { DACK }}$ Hold Time for WR	twa	0			ns	
WR Pulse Width	tww	250			ns	
Data Setup Time for WR	tow	150			ns	
Data Hold Time for WR	two	0			ns	
$\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ Recovery Time	trv	250			ns	
DRQ Delay Time	tam			150	ns	
DACK Delay Time	tDACK	1			$\phi \mathrm{D}$	
SCK Cycle Time	tscy	480		DC	ns	
SCK Pulse Width	tsck	230			ns	
SCK Rise Time	trsc			20	ns	Voltage at measuring
SCK Fall Time	ttsc			20	ns	point of timing 1.0 V and $3.0 \mathrm{~V}$
SORQ Delay	tora	30		150	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
SOEN Setup Time for SCK	tsoc	50			n̂s	
SOEN Hold Time for SCK	tcso	30			ns	
SO Delay	tock			150	ns	
SO Delay from SCK with SORQ	tDzRQ	20		300	ns	
SO Delay from SCK	tozsc	20		300	ns	
SO Delay from SOEN	tDZE	20		180	ns	
SOEN to SO Floating	thze	20		200	ns	
SCK to SO Floating	thzsc	20		300	ns	
SO Delay from SCK with SORQ	thzra $^{\text {a }}$	70		300	ns	
SEIN, SI Setup Time	toc	55			ns	
SEIN, SI Hold Time	tcD	30			ns	
$\mathrm{P}_{0}, \mathrm{P}_{1}$ Delay	tDP			$\phi C Y+150$	ns	
RST Pulse Width	trst	4			фCY	
INT Pulse Width	tint	8			фCY	

Note: Voltage at measuring point of AC timing

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{HL}}=\mathrm{VOL}_{\mathrm{OL}}=08 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{HH}}=\mathrm{V}_{\mathrm{OH}}=20 \mathrm{~V}
\end{aligned}
$$

Capacitance

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{cc}}=\mathbf{0 V}$

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
CLK, SCK Capacitance	$\mathrm{C}_{\text {¢ }}$			20	pF	
Input Capacitance	$\mathrm{Cin}^{\text {I }}$			10	pF	$\mathrm{fc}_{\mathrm{C}}=1 \mathrm{MHz}$
Output Capacitance	Cout			20	pF	

Input Waveform of AC Test (except CL.K, SCK)
24

Timing Waveforms
μ PD77P20
Clock

Read Operation

$\mathrm{A}_{0}, \overline{\mathrm{CS}}, \overline{\mathrm{DACK}}$

Write Operation

DMA Operation

Serial Input/Output

Port Output

Reset

Interrupt
INT

Notes: (1) For SO timing, the data at rising edge of SCK is valid and the other data is invalid in setup hold time of data for SCK, the most strict specifications are the following setup $=t_{\text {Sck }}-t_{\text {DCK }}$ hold $=$ tizRO $^{\text {IZ }}$
(2) Voitage at measuring point of $\mathrm{t}_{\text {rsc }}$ and $\mathrm{t}_{\text {ssc }}$ for SCK timing (3) 30 V (4) 10 V

Function

The μ PD77P20 operates from a single +5 V power supply and accordingly, can be used in any μ PD7720 masked ROM application.
Programming of the μ PD77P20 is achieved with a single 50 ms TTL pulse. Total programming time for the 11,776 bits of instruction EPROM and also for the 6,630 bits data EPROM is 26 seconds.
Erasure of the μ PD77P20 programmed data can be attained when exposed to light with wavelengths shorter than approximately 4,000 angstroms (\AA). It should also be noted that constant exposure to direct sunlight or room level fluorescent lighting could erase the μ PD77P20. Consequently, if the μ PD77P20 is to be exposed to these types of lighting conditions for long periods of time its window should be masked to prevent unintentional erasure.
The recommended erasure procedure for the μ PD77P20 is exposure to ultraviolet light with wavelengths of 2,537 angstroms (\AA). The integrated dose (i.e., UV intensity \times exposure time) for erasure should not be less than $15 \mathrm{~W}-\mathrm{sec} / \mathrm{cm}^{2}$. The erasure time is approximately 20 minutes using an ultraviolet lamp with a power rating of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. During erasure the μ PD77P20 should be placed within 1 inch of the lamp tubes. If the lamp tubes have filters the filters should be removed before erasure.

Configuration

Data transfer for programming and reading the internal ROM is partitioned into three bytes for each 23-bit wide instruction location and into two bytes for each 13-bit wide data location. Partitioning of data transfer into and out of the data port is as follows:

Instruction ROM

The instruction ROM data is transferred through the data port as a high byte, middle byte, and low byte. Bit 7 of the middle byte should be assigned a value of zero. Data is presented to the data port in a bit-reversed format. The LSB through the MSB of an instruction ROM byte is applied to the MSB through the LSB of the data port, respectively.

Note: * = Set to zero as dummy data

Data ROM

The data ROM data is transferred through the data port as a low byte and a high byte. Bits 0,1, and 2 of the low byte should be assigned a value of zero. Data is presented to the data port in corresponding order. The MSB through the LSB of a data ROM byte is applied to the MSB through the LSB of the data port, respectively.

```
Data Port }\begin{array}{llllllllll}{7}&{6}&{5}&{4}&{3}&{2}&{1}&{0}
High Byte (12 12 11 10
```


Note: * = Set to zero as dummy data
Initially and after each erasure, all bits of the μ PD77P20 are in the zero state.

Operation

In order to read or write the instruction or data ROMs the mode of operation of the μ PD77P20 must be initially set. At the RST trailing edge, the $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, and $\overline{\mathrm{CS}}$ should be logical zero and the $\overline{\mathrm{DACK}}, \mathrm{A}_{0}$, and SI signals should be set to determine the mode of operation accordingly.

DACK A_{0} SI

0	0	0	Write mode instruction and data ROMs
0	0	1	Read the instruction ROM
$\mathbf{0}$	1	0	Read the data ROM

Once set in any of these modes the μ PD77P20 will remain in the selected mode. To transfer to another mode a reset is required.

Write Mode

The individual instruction ROM and data ROM bytes are specified by control signals $\overline{R D}, A_{0}, S I$, and INT. Before writing the EPROM location, the bytes should be loaded accordingly.

| $\overline{R D}$ | A_{0} | SI | INT |
| :--- | :--- | :--- | :--- | :--- |

1	0	0	1	Write instruction byte, high
1	0	1	0	Write instruction byte, middle
1	0	1	1	Write instruction byte, low
1	1	0	0	Write data byte, low
1	1	0	1	Write data byte, high

Read Mode

The instruction ROM and data ROM bytes are specified by the control signals $\overline{\mathrm{RD}}, \mathrm{A}_{0}, \mathrm{SI}$, and INT. Reading is accomplished by setting the control signals accordingly.
$\begin{array}{lllll}\overline{R D} & A_{0} & \text { SI } & \text { INT }\end{array}$

0	0	0	1	Read instruction byte, high
0	0	1	0	Read instruction byte, middle
0	0	1	1	Read instruction byte, low
1	0	0	0	Read data byte, high and low

Addressing

The instruction ROM and data ROM are addressed by the 9-bit program counter and the 9-bit ROM pointer respectively. The PC is reset to 000 H and is automatically incremented to the end address 1FFH. The RP is reset to 1FFH and is automatically decremented to 000 H .

Programming

Programming begins by erasing all data and consequently having all bits in the low (0) level state. Data is then entered by programming a high (1) level into the chosen bit locations. Both instruction ROM and data ROM should be programmed since they cannot be erased independently. Both instruction ROM and data ROM programming modes are entered in the same manner. The device must be initially reset before it can be placed into the programming mode. After being reset the $\overline{W R}$ signal and all other inputs ($\overline{R D}$, $\overline{C S} / P R O G, \overline{D A C K}, A_{0}, S I$ and INT) should be a TTL low (0) signal $\mathrm{T}_{\text {RS }}$ prior to the falling edge of RST. $\overline{\mathrm{WR}}$ is then held for $T_{R H}$ before being set to a TTL high (1) level signal. The device is now in a programming mode and will stay in this mode allowing ROM locations to be sequentially programmed.

Programming Mode-Instruction ROM

Instruction ROM locations are sequentially programmed from address 000 H to address 1 FFH . The location address is incremented by the application of CLK for a duration of $T_{C r}$. Data bytes for each location as specified by control signals $\overline{\mathrm{RD}}, \mathrm{A}_{0}, \mathrm{SI}$, and INT are clocked into the device by the falling edge of $\overline{\mathrm{RD}}$. After the three bytes have been loaded into the device, V_{PP} is raised to $21 \mathrm{~V} \pm 0.5 \mathrm{~V}$ TVs prior to $\overline{\mathrm{CS}} /$ PROG transitioning to a TTL high (1) level signal. $V_{\text {PP }}$ is held for the duration of T_{PW} plus T_{VH} before returning to the V_{CC} level. After $\mathrm{T}_{\text {AH }}$ the instruction ROM address can be incremented to program the next location.

Programming Mode-Data ROM

Data ROM locations are sequentially programmed from address 1 FFH to address 000 H . The location address is decremented by the application of CLK for $T_{C Y}$. The data bytes for each location as specified by control signals $\overline{R D}, A_{0}, S I$, and INT are clocked into the device by the falling edge of $\overline{R D}$. After the two bytes have been loaded into the device, $V_{P P}$ is raised to $21 \mathrm{~V} \pm 0.5 \mathrm{~V} \mathrm{~T}_{\mathrm{vs}}$ prior to $\overline{\mathrm{CS}} / \mathrm{PROG}$ transitioning to a TTL high (1) level signal. V_{PP} is held for the duration of T_{PW} plus T_{VH} before returning to the V_{CC} level. After T_{AH} the data ROM address can be decremented to program the next location.

Read Mode

A read should be performed to verify that the data was programmed correctly. Prior to entering read mode the device must be reset.

Read Mode-Instruction ROM

This mode is entered by holding the $\overline{W R}$ signal at a TTL low (0) level with the SI signal at a TTL high (1) level and all other specified inputs ($\overline{\mathrm{RD}}, \overline{\mathrm{CS}} / \mathrm{PROG}, \overline{\mathrm{DACK}}, \mathrm{A}_{0}, \mathrm{INT}$) at TTL low (0) levels for $T_{\text {RS }}$ prior to the falling edge of RST.
$\overline{\mathrm{WR}}$ is then held for T_{RH} before being set to a TTL high (1) level. The device is now in the instruction ROM read mode and will stay in this mode until reset. Instruction ROM locations are sequentially read from address 000 H through 1FFH. Application of CLK for $T_{c y}$ will increment the location address. The three data bytes will be read as specified by the control signals $\overline{R D}, \mathrm{~A}_{0}, \mathrm{SI}$, and INT .

Read Mode-Data ROM

This mode is entered by holding the $\overline{W R}$ signal at a TTL low (0) level with the A_{0} signal at a TTL high (1) level and all other specified inputs ($\overline{\mathrm{RD}}, \overline{\mathrm{CS}} / \mathrm{PROG}, \overline{\mathrm{DACK}}, \mathrm{SI}, \mathrm{INT}$) at TLL low (0) levels for $T_{\text {RS }}$ prior to the falling edge of RST. $\overline{W R}$ and A_{0} are then held for $T_{R H}$ prior to the falling edge of RST. $\overline{W R}$ and A_{0} are then held for $T_{R H}$ before being set to a TTL high (1) level and TTL low (0) level respectively. The device is now in the data ROM read mode and will stay in this mode until it is reset. Data ROM locations are sequentially read from address 1 FFH through 000 H . Application of CLK for T_{CY} will decrement the location address. After decrementing the location address, the low byte of the current location will be available at the data port subsequent to a $T_{C K D}$ delay. Application of $\overline{R D}$ will present the high byte $T_{R D}$ from the falling edge of the $\overline{\mathrm{RD}}$ pulse. $\overline{\mathrm{RD}}$ is then applied for T_{VR} to complete reading of the current location.

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
CLK Cycle Time	Tcr	240			ns	
RST Pulse Width	Trst	4			Tcy	
RST Setup Time	TRS	1			$\mu \mathrm{s}$	
RST Hold Time	TRH	6			$\mu \mathrm{s}$	
CLK Setup Time	Tclus	2			$\mu \mathrm{s}$	
Data Setup Time	Tos	1			$\mu \mathrm{s}$	
Data Hold Time	TDH	100			ns	
Control Signal Setup Time	Tcss	100			ns	
Control Signal Hold Time	TcSH	100			ns	
Read Pulse Width	Trw	1			$\mu \mathrm{s}$	
Write Data Setup Time	Twds	100			ns	
Write Data Hold Time	TWDH	2			$\mu \mathrm{s}$	
V_{PP} Setup Time	Tvs	2			$\mu \mathrm{s}$	
Vpp Hold Time	Tvh	2			$\mu \mathrm{s}$	
Address Hold Time	$\mathrm{T}_{\text {AH }}$	200			ns	
Program Pulse Width during Programming	Tpw	45	50	55	ms	

Read Operation, AC Characteristics
$\mathrm{T}_{\mathrm{a}}=\mathbf{2 5}{ }^{\circ} \mathrm{C} \pm \mathbf{5}^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{cc}}=\mathbf{5 V} \pm \mathbf{5} \%$; $\mathrm{V}_{\mathrm{pp}}=\mathrm{V}_{\mathrm{cc}} \pm \mathbf{5 \%}$; K-level
parts, $\mathrm{V}_{\text {pP }}$ MAX $=\mathrm{V}_{\text {cc }}$ MAX $+0.25 \mathrm{~V} ; \mathrm{V}_{\text {PPMIN }}=$
$V_{\text {ccIMIN }}$ - 0.85V; E-level and P-level parts, $\mathrm{V}_{\text {pp }}=$
$V_{\text {cc }}$

| Parameter | Symbol | Min | Typ | Max | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | | Test |
| :---: |
| |
| Conditions |

Write Mode of Data ROM

Read Mode of Instruction ROM

Read Mode of Data ROM

Operation Mode

The μ PD77P20 may be utilized in an operation mode after the instruction ROM and data ROM have been programmed. Operation modes are invoked in slightly different manners depending on the mask level and the specific mask lot within the series.

K-mask

The μ PD77P20 K-mask requires that V_{PP} be supplied in a different manner than for the E-mask for an operation mode only. V_{PP} voltage should be supplied in the following fashion:

$$
\begin{gathered}
\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}-(0.6 \pm 0.25) \mathrm{V} \\
\mathrm{I}_{\mathrm{PP}} \quad \mathrm{Min}=0.5 \mathrm{~mA} \\
\mathrm{Max}=3.5 \mathrm{~mA}
\end{gathered}
$$

A silicon junction diode of 0.6 V forward voltage $\left(\mathrm{V}_{\mathrm{F}}\right)$ should be used. R should be 800Ω to $1.8 \mathrm{~K} \Omega$ to satisfy the V_{PP} and $I_{\text {pp }}$ requirements.
Parts before lot K21031 (excluding K21031) require a NOP (No Operation) to be programmed into instruction ROM location 000 H in order to properly operate at 8 MHz . For parts with lot numbers equal to or greater than K21031 location 000 H of the instruction ROM does not require a NOP for 8 MHz operation.

E-mask and P-mask

The μ PD77P20 E-mask and P-mask requires that V_{PP} be connected directly to $\mathrm{V}_{c c}$ for an operation mode as shown. The P-mask version is packaged as a cerdip. Note that these versions are also compatible with the K-mask V_{PP} specifications.

No additional constraints apply to these versions. For both versions adequate power supply decoupling should be provided.

Package Outlines

For information, see Package Outline Section 7.
Ceramic, μ PD77P20D, has quartz window

Description

The μ PD7751 is an LSI device for high quality voice synthesis applications. Based on an ADPCM algorithm (adaptive differential PCM), the device decodes voice data stored in external ROM and outputs a synthesized voice signal. This output may be sent to a conventional audio speaker through an 8-bit D/A converter, filter and power amplifier.
Eight messages can be stored per 128K-bit memory bank, at compressed bit rates of 14 to 20K-bits/second. Efficient encoding of silences within a message allows further compression of digitized voice signals. Voices may also be mixed with background music or other sounds.

Features

\square ADPCM decoding capabilityEight messages selectable per memory bankCompatible with 2716/32 external ROMUnlimited number of messages storable in multiple memory banksVariable bit rate 14 to 20 Kbps
Sampling clock 4, 5 , or 6 KHzCompressed encoding for pauses
Easy voice processing

- High quality voice reproduction
- Minimum dependence on voice characteristics of speaker
- Easy analysis and data generation
- Stable voice quality
- Combined voice and background music capabilityN channel MOS
+5 V single power supply
40-pin plastic DIP

Pin Configuration

TEST, ${ }^{\text {d }}$	1	40 V $\left.\mathrm{cc}^{\text {(}}+5 \mathrm{5}\right)$
$\mathrm{XTAL}_{1}{ }^{\text {a }}$	2	${ }^{9} \mathrm{TEST} \mathrm{TES}_{3}$
XTAL 2	3 38	$38 \square$ BUSY
RESET	$4 \quad 37$	37 SEL
I.C	$5 \quad 36$	36 TEEL
START	6 - 35	35 SEL
TEST ${ }_{2}$	$7 \quad 34$	$34 \square \mathrm{VO}_{7}$
I.c	$8 \quad 3$	${ }^{3} \mathrm{\square vo}$
I.c. \square	93	32 VVO
I.c. 10	$10 \mu \mathrm{PD} 7751{ }^{31}$	${ }^{1} \mathrm{ZVO}_{4}$
I.C. 1	1130	$30 \mathrm{VO}_{3}$
DATA $_{0} 1$	$12 \quad 29$	$29 \mathrm{VO}_{2}$
DATA, 13	13	$88 \mathrm{vo}{ }_{1}$
$\mathrm{DATA}_{2} 1$	14	$27 \mathrm{VO}_{0}$
DATA_{3} - 1	$15 \quad 26$	$26 \mathrm{Vcc}(+5 \mathrm{~V})$
DATA $_{4} 1$	16	25 PROG
DATA ${ }_{1}$	17	${ }^{4}-\mathrm{AD}_{3}$
DATA $_{6} 1$	18	${ }^{3} \square \mathrm{AD}_{2}$
$\mathrm{DATA}_{7} \mathrm{C} 1$	19	$22 \mathrm{AD}{ }_{1}$
GND [20	20	$\left.{ }^{1}\right] \mathrm{AD}_{0}$

Pin Identification

Pin			$1 / 0$	Function
No.	Symbol	Name		
2,3	$\begin{aligned} & \text { XTAL } \\ & \text { XTAL } \end{aligned}$	Crystal	-	Form a clock oscillator circuit when externally connected to 6 MHz crystal
4	RESET	Reset	1	Initializes the μ PD7751 internal logic
6	START	Start	1	Starts output of message that has been selected by SEL 0_{0} SEL . Active low trigger input $^{\text {. }}$
12-19	DATA 0 to DATA7	Data Signal	1	Transfers the compressed voice data from an external memory for decoding.
21-24	$\begin{aligned} & \mathrm{AD}_{0} \\ & \text { to } \\ & \mathrm{AD}_{3} \\ & \hline \end{aligned}$	Address Signal	0	Specifies to I/O expander ports (eg, μ PD8243) the address of the external memory containing the stored voice data.
25	PROG	Program Signal	0	Strobe signal for decoding address signals Low to high transition indicates address information is present on lines $A D_{0}-A D_{3}$
27-34	$\begin{aligned} & \mathrm{VO}_{0} \\ & \text { to } \\ & \mathrm{VO}_{7} \end{aligned}$	Voice Signal	0	Outputs to D / A converter the 8 -bit voice signal that has been decoded via ADPCM
35-37	$\begin{aligned} & \overline{\text { SEL }} \\ & \text { to } \\ & \overline{\text { SEL }_{2}} \end{aligned}$	Message Select	1	Specifies which of eight types of stored messages to be output from external memory
38	Busy	Busy Signal	0	Chip status; goes low during decode and output operations
26,40	V_{cc}	Power Supply	1	+5volt power supply.
20	GND	Ground		
5,8-11	IC	Internal Connection	0	Must be left open during normal operation.
1,7,39	$\begin{aligned} & \text { TEST }_{1} \\ & \text { to } \\ & \text { TEST }_{3} \end{aligned}$	Test Input	1	Inputs for LSI testing. Must be connected to GND during normal operation.

Package Outlines

For information, see Package Outline Section 7.
Plastic, μ PD7751

Notes

Description

The μ PD7752 is an LSI for voice synthesis which employs formant data as accumulated parameters. With five filters corresponding to the first through the fifth formants, vocal characteristics are reproduced to synthesize voice at bit rates as low as 2400 bps. The μ PD7752 can be connected easily to any bus system of the 8080A family. Through serial interfaces, the LSI can also be connected to various other microcomputers. The μ PD7752 operates with attractive low power consumption because of its CMOS structure.

Features

\square Voice synthesizing system using formant parameters5 formants - first through fifthBit rate variable between 5600bps and 2400bpsInternal 32K-bit ROM for voice data storage (voice duration: approx. 13 seconds at 2400bps, max 63 messages)External formant parameter ROM (option)On-board 9-bit D/A converter - option provided to interface an external D/A converter3 different voice synthesizing speeds (slow, normal, and fast)Frame length: 10 ms or 20 msBus-compatible with the μ PD8080A, μ PD8085A and μ PD8048Serial interface for mode/command input
Clock oscillator circuit
CMOS structure
+5 V single power supply
28-pin plastic DIP

Pin Configuration

Pin Identification

Pin				
No.	Symbol	Name		I/O

1/O Control Signals

$\overline{\text { cs }}$	ED	WR	A_{0}	A_{1}	Operation
1	X	X	X	X	No operation
0	0	1	X	X	Status read
0	1	0	0	0	Formant parameter write
0	1	0	0	1	Mode write
0	1	0	1	0	Prohibited
0	1	0	1	1	Command write
Note:	$\begin{aligned} & 0= \\ & 1= \\ & \mathbf{X}= \end{aligned}$				

Package Outlines

For information, see Package Outline Section 7.
Plastic, μ PD7752

Notes

Description

The μ PD7761, μ PD7762, and MC-4760 constitute a 3-chip LSI set containing the main functions of an isolated word, speaker-dependent recognition system. These functions include an analog interface, processing for voice analysis, compressed dynamic programming (DP) matching, and system control. The 3 -chip set employs a DP time warping algorithm to compensate for variations in the rate of speech, which greatly facilitates the matching of a given spoken phrase to a stored vocabulary of digitized words. Three kinds of system I/O interface are supported for ease of control by external microcomputers. With this LSI chip set, speech recognition systems can be developed for low cost and with low total chip count.

Pin Configurations

Features

Recognition of 128 isolated wordsCompressed DP matching algorithm
Word registration capacity: 128 to 512 words (with 16 K -to 64 K -byte memory)
Word duration up to 2 secondsAverage 0.5 seconds response time for recognition
Recognition rate above 98 percentDirectly connectable to microphone for voice input
Supports parallel, serial, and RS-232C system I/O interfaces
Convenient commands for recognition, training, data transfer, and other functionsIncludes analog interface (MC-4760), analysis and calculation processor (μ PD7761), and control processor (μ PD7762)Requires $+5 \mathrm{~V},+12 \mathrm{~V},-12 \mathrm{~V}$ power supply
A/D converter sampling at 10 kHz

Notes

2048 BIT STATIC MOS RAM WITH I/O PORTS AND TIMER

DESCRIPTION The μ PD8155 and μ PD8156 are μ PD8085A family components having 256×8 Static RAM, 3 programmable I/O ports and a programmable timer. They directly interface to the multiplexed μ PD8085A bus with no external logic. The μ PD8155 has an active low chip enable while the μ PD8156 is active high.

FEATURES - 256×8-Bit Static RAM

- Two Programmable 8-Bit I/O Ports
- One Programmable 6-Bit I/O Port
- Single Power Supplies: +5 Volt,$\pm 10 \%$
- Directly interfaces to the μ PD8085A and μ PD8085A-2
- Available in 40 Pin Plastic Packages

* μ PD8155: $\overline{C E}$
μ PD8156: CE

The μ PD8155 and μ PD8156 contain 2048 bits of Static RAM organized as 256×8. The 256 word memory location may be selected anywhere within the 64 K memory space by using combinations of the upper 8 bits of address from the μ PD8085A as a chip select.

The two general purpose 8-bit ports (PA and PB) may be programmed for input or output either in interrupt or status mode. The single 6 -bit port (PC) may be used as control for PA and PB or general purpose input or output port. The $\mu \mathrm{PD} 8155$ and μ PD8156 are programmed for their system personalities by writing into their Command/Status Registers (C/S) upon system initialization.

The timer is a single 14 -bit down counter which is programmable for 4 modes of operation; see Timer Section.

[^5]Note: (1) With Respect to Ground.
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT. Stress above those listed under "Absolute Maxımum Ratings" may cause permanent damage to the device. This is a stress ratıng only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

FUNCTIONAL DESCRIPTION

BLOCK DIAGRAM

ABSOLUTE MAXIMUM

 RATINGS*| PIN | | | FUNCTION |
| :---: | :---: | :---: | :---: |
| NO. | SYMBOL | NAME | |
| $\begin{aligned} & 1,2,5 \\ & 39,38,37 \end{aligned}$ | $\begin{aligned} & \mathrm{PC}_{3}, \mathrm{PC}_{4}, \mathrm{PC}_{5} \\ & \mathrm{PC}_{2}, \mathrm{PC}_{1}, \mathrm{PC}_{0} \end{aligned}$ | Port C | Used as control for PA and PB or as a 6-bit general purpose port |
| 3 | TIMER IN | Timer Clock In | Clock input to the 14 -bit binary down counter |
| 4 | RESET | Reset In | From μ PD 8085A system reset to set PA, PB, PC to the input mode |
| 6 | TIMER OUT | Timer Counter Output | The output of the timer function |
| 7 | $10 / \bar{M}$ | I/O or Memory Indicator | Selects whether operation to and from the chip is directed to the internal RAM or to I/O ports |
| 8 | CE/ $\overline{C E}$ | Chip Enable | Chip Enable Input. Active low for μ PD8155 and active high for μ PD8156 |
| 9 | $\overline{\mathrm{RD}}$ | Read Strobe | Causes Data Read |
| 10 | $\overline{W R}$ | Write Strobe | Causes Data Write |
| 11 | ALE | Address Low Enable | Latches low order address in when valid |
| 12-19 | $A D_{0}-A D_{7}$ | Low Address/Data | 3-State address/data bus to interface directly to μ PD8085A |
| 20 | $\mathrm{V}_{\text {SS }}$ | Ground | Ground Reference |
| 21-28 | $P A_{0}-P A_{7}$ | Port A | General Purpose I/O Port |
| 29-36 | $\mathrm{PB}_{0}-\mathrm{PB} 7$ | Port B | General Purpose I/O Port |
| 40 | V_{CC} | 5 Volt Input | Power Supply |

DC CHARACTERISTICS
 $\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$

PARAMETER		SYMBOL	LIMITS			UNIT	TEST CONDITIONS	
		MIN	TYP	MAX				
Input Low Voltage			$V_{\text {IL }}$	-0.5		0.8	V	
Input High Voltage		$\mathrm{V}_{\text {IH }}$	2.0		$V_{C C}+0.5$	V		
Output Low Voltage		$\mathrm{VOL}_{\text {OL }}$			0.45	V	$1 \mathrm{OL}=2 \mathrm{~mA}$	
Output High Voltage		V OH	2.4			V	$1 \mathrm{OH}=400 \mu \mathrm{~A}$	
Input Leakage		IIL			± 10	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {CC }}$ to 0 V	
Output Leakage Current		ILO			± 10	$\mu \mathrm{A}$	$\begin{aligned} & 0.45 \mathrm{~V} \leqslant \mathrm{~V}_{\text {OUT }} \\ & \leqslant \mathrm{V}_{\text {CC }} \end{aligned}$	
VCC Supply Current		ICC			180	mA		
Chip Enable Leakage	$\mu \mathrm{PD} 8155$	IIL (CE)			+100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {cc }}$ to 0 V	
	MPD8156	IIL(CE)			-100	$\mu \mathrm{A}$		

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS				UNIT	TEST CONDITIONS
		8155/8156		8155-2/8156-2			
		MIN	MAX	MIN	MAX		
Address to Latch Set Up Time	${ }_{\text {t }}^{\text {AL }}$	50		30		ns	150 pF Load
Address Hold Time after Latch	t LA	80		30		ns	
Latch to READ/WRITE Control	${ }^{\text {t }}$ LC	100		40		ns	
Valid Data Out Delay from READ Control	trD		170		140	ns	
Address Stable to Data Out Valid	${ }_{\text {t }}$ D		400		330	ns	
Latch Enable Width	${ }_{\text {t }}$	100		70		ns	
Data Bus Float After READ	trDF	0	100	0	80	ns	
READ/WRITE Control to Latch Enable	${ }^{\text {t }}$ L L	20		10		ns	
READ/WRITE Control Width	${ }^{\text {t }} \mathrm{C}$	250		200		ns	
Data In to WRITE Set Up Time	tDw	150		100		ns	
Data In Hold Time After WRITE	twD	0		0		ns	
Recovery Time Between Controls	tr ${ }^{\text {c }}$	300		200		ns	
WRITE to Port Output	${ }^{\text {t }}$ WP		400		300	ns	
Port Input Setup Time	tPR	70		50		ns	
Port Input Hold Time	${ }_{\text {tr }}$ P	50		10		ns	
Strobe to Buffer Full	${ }^{\text {t SBF }}$		400		300	ns	
Strobe Width	${ }^{\text {tS }}$	200		150		ns	
READ to Buffer Empty	trbe		400		300	ns	
Strobe to INTR On	${ }^{\text {T } 51}$		400		300	ns	
READ to INTR Off	${ }^{\text {tr }}$ R ${ }^{\text {S }}$		400		300	ns	
Port Setup Time to Strobe	tPSS	50		0		ns	
Port Hold Time After Strobe	tPHS	120		100		ns	
Strobe to Buffer Empty	${ }^{\text {t }}$ SBE		400		300	ns	
WRITE to Buffer Full	tWBE		400		300	ns	
WRITE to INTR Off	tWI		400		300	ns	
TIMER-IN to TIMER-OUT Low	TTL		400		300	ns	
TIMER-IN to TIMER-OUT High	${ }_{\text {t }}$ TH		400		300	ns	
Data Bus Enable from READ Control	${ }^{\text {tr }}$ RE	10		10		ns	

READ CYCLE

Write cycle

AC CHARACTERISTICS

TIMING WAVEFORMS

θ

The Command Status Register is an 8 -bit register which must be programmed before the μ PD8155/8156 may perform any useful functions. Its purpose is to define the mode of operation for the three ports and the timer. Programming of the device may be accomplished by writing to I/O address XXXXX000 (X denotes don't care) with a specific bit pattern. Reading of the Command Status Register can be accomplished by performing an I/O read operation at address XXXXX000. The pattern returned will be a 7-bit status report of PA, PB and the Timer. The bit patterns for the Command Status Register are defined as follows:

COMMAND STATUS WRITE

TM2	TM1	IEB	IEA	PC_{2}	PC_{1}	PB	PA

where:

TM2-TM1	Define Timer Mode
IEB	Enable Port B Interrupt
IEA	Enable Port A Interrupt
PC $_{2}-$ PC $_{1}$	Define Port C Mode
PB/PA	Define Port B/A as In or Out (1)

The Timer mode of operation is programmed as follows during command status write:

TM2	TM1	TIMER MODE
0	0	Don't Affect Timer Operation
0	1	Stop Timer Counting
1	0	Stop Counting after TC
1	1	Start Timer Operation

Interrupt enable status is programmed as follows:

IEB/IEA	INTERRUPT ENABLE PORT B/A
0	No
1	Yes

Port C may be placed in four possible modes of operation as outlined below. The modes are selected during command status write as follows:

PC $_{2}$	PC $_{1}$	PORT C MODE
0	0	ALT 1
0	1	ALT 3
1	0	ALT 4
1	1	ALT 2

The function of each pin of port \mathbf{C} in the four possible modes is outlined as follows:

PIN	ALT 1	ALT 2	ALT 3 (2)	ALT 4 (2)
PCO	IN	OUT	A INTR	A INTR
PC1	IN	OUT	A BF	A BF
PC2	IN	OUT	A STB	A STB
PC3	IN	OUT	OUT	B INTR
PC4	IN	OUT	OUT	B BF
PC5	IN	OUT	OUT	B STB

Notes: (1) PB/PA Sets Port B/A Mode: $0=$ Input; 1 = Output
(2) In ALT 3 and ALT 4 mode the control signals are initialized as follows:

CONTROL	INPUT	OUTPUT
STB (Input Strobe)	Input Control	Input Control
INTR (Interrupt Request)	Low	High
BF (Buffer Full)	Low	Low

$$
6-142
$$

COMMAND STATUS READ

$T I$	$I N T E$ B	B $B F$	INTR B	INTE A	A $B F$	INTR A

Where the function of each bit is as follows:

TI	Defines a Timer Interrupt. Latched high at TC and reset after reading the CS register or starting a new count, or reset.
INTE B/A	Defines If Port B/A Interrupt is Enabled. High = enabled.
B/A BF	Defines If Port B/A Buffer is Full-Input Mode or Empty-Output Mode. High = active.
INTR B/A	Port B/A Interrupt Request. High = active.

The programming address summary for the status, ports, and timer are as follows:

I/O Address	Number of Bits	Function
$X \times X \times \times 000$	8	Command Status
$X X X X \times 001$	8	$P A$
$X X X X \times 010$	8	$P B$
$X X X X \times 011$	6	PC
$X X X X \times 100$	8	Timer-Low
$X X X X \times 101$	8	Timer-High

TIMER The Internal Timer is a 14 -bit binary down counter capable of operating in 4 modes. Its desired mode of operation is programmable at any time during operation. Any TTL clock meeting timer in requirements (See AC Characteristics) may be used as a time base and fed to the timer input. The timer output may be looped around and cause an interrupt or used as I/O control. The operational modes are defined as follows and programmed along with the 6 high bits of timer data.

M2	M1	Operation
0	0	High at Start, Low During Second Half of Count
0	1	Square Wave (Period = Count Length, Auto Reload at TC)
1	0	Single Pulse at TC
1	1	Single Pulse at TC with Auto Reload

μ PD8155/8156

Programming the timer requires two words to be written to the μ PD8155/8156 at I/O address $\mathrm{XXXXX1} 100$ and $\mathrm{XXXXX101}$ for the low and high order bytes respectively. Valid count length must be between $\mathbf{2}_{H}$ and $3 F F F_{H}$. The bit assignments for the high and low programming words are as follows:

Word	Bit Pattern								1/O Address
High Byte	M2	M1	T13	T12	T11	T10	T9	T8	XXXXX101
Low Byte	T7	T6	T5	T4	T3	T2	T1	T0	XXXXX100

The control of the timer is performed by TM2 and TM1 of the Command Status Word.
Note that counting will be stopped by a hardware reset and a START command must be issued via the Command Status Register to begin counting. A new mode and/or count length can be loaded while counter is counting, but will not be used until a START command is issued.

When using the timer of the $8155 / 8156$ care must be taken if the timer input is an external, nonsynchronous event. To sync this signal to the system clock the flip-flop shown should be used.

Package Outlines

For information, see Package Outline Section 7.
Plastic, μ PD8155C/56C
Ceramic, μ PD8155D/56D
μ PD8155H
μ PD8155-2
μ PD8156H
μ PD8156-2

2048 BIT STATIC MOS RAM WITH I/O PORTS AND TIMER

$$
\begin{array}{ll}
\text { DESCRIPTION } & \text { The } \mu \text { PD8155 and } \mu \text { PD8156 are } \mu \text { PD8085A family components having } 256 \times 8 \text { Static } \\
& \text { RAM, } 3 \text { programmable I/O ports and a programmable timer. They directly interface } \\
\text { to the multiplexed } \mu \text { PD8085A bus with no external logic. The } \mu \text { PD8155 has an active } \\
& \text { low chip enable while the } \mu \text { PD8156 is active high. }
\end{array}
$$

FEATURES - 256×8-Bit Static RAM

- Two Programmable 8-Bit I/O Ports
- One Programmable 6-Bit I/O Port
- Single Power Supplies: +5 Volt, $\pm 10 \%$
- Directly interfaces to the μ PD8085A and μ PD8085A-2
- Available in 40 Pin Plastic Packages

The μ PD8155 and μ PD8156 contain 2048 bits of Static RAM organızed as 256×8. The 256 word memory location may be selected anywhere within the 64 K memory space by using combinations of the upper 8 bits of address from the μ PD8085A as a chip select.

The two general purpose 8-bit ports (PA and PB) may be programmed for input or output either in interrupt or status mode. The single 6-bit port (PC) may be used as control for PA and PB or general purpose input or output port. The μ PD8155 and μ PD8156 are programmed for their system personalities by writing into theır Command/Status Registers (C/S) upon system initialization.

The tımer is a single 14 -bit down counter which is programmable for 4 modes of operation; see Timer Section.

BLOCK
 DIAGRAM

Operating Temperature . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin . $\quad-0.5$ to +7 Volts 1 (
Power Dissipation . 1.5 W

ABSOLUTE MAXIMUM RATINGS*

Note: (1) With Respect to Ground.
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operatıonal sections of this specification is not implied. Exposure to absolute maximum ratıng conditions for extended periods may affect device reliability.

PIN			FUNCTION
NO.	SYMBOL	NAME	
$\begin{aligned} & 1,2,5 \\ & 39,38,37 \end{aligned}$	$\begin{aligned} & \mathrm{PC}_{3}, \mathrm{PC}_{4}, \mathrm{PC}_{5} \\ & \mathrm{PC}_{2}, \mathrm{PC}_{1}, P C_{0} \end{aligned}$	Port C	Used as control for PA and PB or as a 6-bit general purpose port
3	TIMER IN	Timer Clock In	Clock input to the 14 -bit binary down counter
4	RESET	Reset In	From μ PD 8085A system reset to set PA, PB, PC to the input mode
6	TIMER OUT	Timer Counter Output	The output of the timer function
7	$10 / \bar{M}$	I/O or Memory Indicator	Selects whether operation to and from the chip is directed to the internal RAM or to I/O ports
8	$C E / \overline{C E}$	Chip Enable	Chip Enable Input. Active low for μ PD8155 and active high for μ PD8156
9	$\overline{\mathrm{RD}}$	Read Strobe	Causes Data Read
10	$\overline{W R}$	Write Strobe	Causes Data Write
11	ALE	Address Low Enable	Latches low order address in when valid
12-19	$A D_{0}-A D_{7}$	Low Address/Data	3-State address/data bus to interface directly to μ PD8085A
20	VSS	Ground	Ground Reference
21-28	$P A_{0}-P^{\prime} 7$	Port A	General Purpose I/O Port
29-36	$\mathrm{PB}_{0}-\mathrm{PB}_{7}$	Port B	General Purpose I/O Port
40	$\mathrm{V}_{\text {CC }}$	5 Volt Input	Power Supply

DC CHARACTERISTICS
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$

PARAMETER		SYMBOL	LIMITS		UNIT	TEST CONDITIONS	
		MIN	MAX				
Input Low Voltage			VIL	-0.5	0.8	V	
Input High Voltage		$\mathrm{V}_{\text {IH }}$	2.0	$\mathrm{V}_{\mathrm{CC}}+0.5$	V		
Output Low Voltage		V_{OL}		0.45	V	$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$	
Output High Voltage		V_{OH}	2.4		V	$1 \mathrm{OH}=400 \mu \mathrm{~A}$	
Input Leakage		IIL		± 10	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {CC }}$ to $0 V$	
Output Leakage Current		ILO		± 10	$\mu \mathrm{A}$	$\begin{aligned} & 0.45 \mathrm{~V} \leqslant \mathrm{~V}_{\text {OUT }} \\ & \leqslant \mathrm{V}_{\mathrm{CC}} \end{aligned}$	
VCC Supply Current		ICC		125	mA	8155H/8156H	
			180	mA	8155-2/8156-2		
Chip Enable Leakage	μ PD8155		IIL (CE)		+100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ to 0 V
	μ PD8156	IIL (CE)		-100	$\mu \mathrm{A}$		

$$
6-147
$$

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS				UNIT	TEST CONDITIONS
		8155H/8156H		8155-2/8156-2			
		MIN	MAX	MIN	MAX		
Address to Latch Set Up Time	${ }^{t} \mathrm{AL}$	50		30		ns	
Address Hold Time after Latch	t,	80		30		ns	
Latch to READ/WRITE Control	${ }^{\text {t }}$ LC	100		40		ns	
Valid Data Out Delay from READ Control	${ }^{\text {t } R \text { D }}$		170		140	ns	
Address Stable to Data Out Valid	${ }^{t}$ AD		400		330	ns	
Latch Enable Width	${ }^{\text {t }}$ L L	100		70		ns	
Data Bus Float After READ	${ }^{\text {t }}$ RDF	0	100	0	80	ns	
READ/WRITE Control to Latch Enable	${ }^{\text {t }} \mathrm{CL}$	20		10		ns	
READ/WRITE Control Width	${ }^{\text {t }} \mathrm{C}$	250		200		ns	
Data In to WRITE Set Up Time	t DW	150		100		ns	
Data In Hold Time After WRITE	${ }^{\text {t }}$ WD	0		0		ns	
Recovery Time Between Controls	${ }^{\text {t }} \mathrm{R} \mathrm{V}$	300		200		ns	150 pF Load
WRITE to Port Output	twP		400		300	ns	
Port Input Setup Time	tPR	70		50		ns	
Port Input Hold Time	${ }^{\text {t R P }}$	50		10		ns	
Strobe to Buffer Full	${ }^{\text {t }}$ SBF		400		300	ns	
Strobe Width	${ }^{\text {'S S }}$	200		150		ns	
READ to Buffer Empty	${ }^{\text {tr }}$ R SE		400		300	ns	
Strobe to INTR On	${ }^{\text {'S }}$ I		400		300	ns	
READ to INTR Off	tRDI		400		300	ns	
Port Setup Time to Strobe	tPSS	50		0		ns	
Port Hold Time After Strobe	tPHS	120		100		ns	
Strobe to Buffer Empty	${ }^{\text {t }}$ SBE		400		300	ns	
WRITE to Buffer Full	tWBE		400		300	ns	
WRITE to INTR Off	${ }^{\text {t WI }}$		400		300	ns	
TIMER-IN to TIMER-OUT Low	${ }_{\text {t }}$ L		400		300	ns	
TIMER-IN to TIMER-OUT High	${ }^{\text {t }}$ TH		400		300	ns	
Data Bus Enable from READ Control	trDE	10		10		ns	

READ CYCLE

WRITE CYCLE

θ

μ PD8155/8156

The Command Status Register is an 8-bit register which must be programmed before the μ PD8155/8156 may perform any useful functions. Its purpose is to define the mode of operation for the three ports and the timer. Programming of the device may be accomplished by writing to I/O address XXXXX000 (X denotes don't care) with a specific bit pattern. Reading of the Command Status Register can be accomplished by performing an I/O read operation at address $X X X X X 000$. The pattern returned will be a 7-bit status report of PA, PB and the Timer. The bit patterns for the Command Status Register are defined as follows:

COMMAND STATUS WRITE

TM2	TM1	IEB	IEA	PC_{2}	PC_{1}	PB	PA

where:

TM2-TM1	Define Timer Mode
IEB	Enable Port B Interrupt
IEA	Enable Port A Interrupt
PC $_{2} \cdot$ PC $_{1}$	Define Port C Mode
PB/PA	Define Port B/A as In or Out (1)

The Timer mode of operation is programmed as follows during command status write:

TM2	TM1	TIMER MODE
0	0	Don't Affect Timer Operation
0	1	Stop Timer Counting
1	0	Stop Counting after TC
1	1	Start Timer Operation

Interrupt enable status is programmed as follows:

IEB/IEA	INTERRUPT ENABLE PORT B/A
0	No
1	Yes

Port C may be placed in four possible modes of operation as outlined below. The modes are selected during command status write as follows:

$P_{2} C_{2}$	P_{1}	PORT C MODE
0	0	ALT 1
0	1	ALT 3
1	0	ALT 4
1	1	ALT 2

The function of each pin of port \mathbf{C} in the four possible modes is outlined as follows:

PIN	ALT 1	ALT 2	ALT 3 (2)	ALT 4 (2)
PC0	IN	OUT	A INTR	A INTR
PC1	IN	OUT	A BF	A BF
PC2	IN	OUT	A STB	A STB
PC3	IN	OUT	OUT	B INTR
PC4	IN	OUT	OUT	B BF
PC5	IN	OUT	OUT	B STB

Notes: (1) PB/PA Sets Port B/A Mode: $0=$ Input; 1 = Output
(2) In ALT 3 and ALT 4 mode the control signals are initialized es follows:

CONTROL	INPUT	OUTPUT
STB (Input Strobe)	Input Control	Input Control
INTR (Interrupt Request)	Low	High
BF (Buffer Full)	Low	Low

COMMAND STATUS READ

$T I$	$I N T E$ B	B $B F$	INTR B	$\mathbf{I N T E}$	\mathbf{A}	INTR
$B F$	A					

Where the function of each bit is as follows:

TI	Defines a Timer Interrupt. Latched high at TC and reset after reading the CS register or starting a new count, or reset.
INTE B/A	Defines If Port B/A Interrupt is Enabled. High = enabled.
B/A BF	Defines If Port B/A Buffer is Full-Input Mode or Empty-Output Mode. High = active.
INTR B/A	Port B/A Interrupt Request. High = active.

The programming address summary for the status, ports, and timer are as follows:

I/O Address	Number of Bits	Function
XXXXX000	8	Command Status
XXXXX001	8	PA
XXXXX010	8	PB
XXXXX011	6	PC
XXXXX100	8	Timer-Low
XXXXX101	8	Timer-High

TIMER The Internal Timer is a 14 -bit binary down counter capable of operating in 4 modes. Its desired mode of operation is programmable at any time during operation. Any TTL clock meeting timer in requirements (See AC Characteristics) may be used as a time base and fed to the timer input. The timer output may be looped around and cause an interrupt or used as I/O control. The operational modes are defined as follows and programmed along with the 6 high bits of timer data.

M2	M1	Operation
0	0	High at Start, Low During Second Half of Count
0	1	Square Wave (Period = Count Length, Auto Reload at TC)
1	0	Single Pulse at TC
1	1	Single Pulse at TC with Auto Reload

Programming the timer requires two words to be written to the $\mu \mathrm{PD} 8155 / 8156$ at I/O TIMER (CONT.) address $X X X X X 100$ and $X X X X X 101$ for the low and high order bytes respectively. Valid count length must be between $\mathbf{2 H}_{H}$ and 3 FFFH. The bit assignments for the high and low programming words are as follows:

Word	Bit Pattern								1/O Address
High Byte	M2	M1	T13	T12	T11	T10	T9	T8	XXXXX101
Low Byte	T7	T6	T5	T4	T3	T2	T1	TO	XXXXX100

The control of the timer is performed by TM2 and TM1 of the Command Status Word.
Note that counting will be stopped by a hardware reset and a START command must be issued via the Command Status Register to begin counting. A new mode and/or count length can be loaded while counter is counting, but will not be used until a START command is issued.

When using the timer of the $8155 / 8156$ care must be taken if the timer input is an external, nonsynchronous everr. To sync this signal to the system clock the flip-flop shown should be used.

Package Outlines

For information, see Package Outline Section 7.

Plastic, μ PD8155C/56C
Ceramic, μ PD8155D/56D

EIGHT-BIT INPUT/OUTPUT PORT

DESCRIPTION The μ PB8212 input/output port consists of an 8 -bit latch with three-state output buffers along with control and device selection logic. Also included is a service request flip-flop for the control and generation of interrupts to the microprocessor.

The device is multimode in nature and can be used to implement latches, gated buffers or multıplexers. Thus, all of the principal perıpheral and input/output functions of a microcomputer system can be implemented with this device.

FEATURES - Fully Parallel 8-Bit Data Register and Buffer

- Service Request Flıp-Flop for Interrupt Generation
- Low Input Load Current -0.25 mA Max
- Three State Outputs
- Outputs Sink 15 mA
- 3.65V Output High Voltage for Direct Interface to 8080A Processor
- Asynchronous Register Clear
- Replaces Buffers, Latches and Multıplexers in Microcomputer Systems
- Reduces System Package Count
- Avaılable ın 24-pın Plastic and Cerdıp Packages

PIN NAMES

$\mathrm{DI}_{1}-\mathrm{DI}_{8}$	Data In
$\mathrm{DO}_{1}-\mathrm{DO}_{8}$	Data Out
$\overline{\mathrm{DS}}_{1}, \mathrm{DS}_{2}$	Device Select
MD	Mode
STB	Strobe
$\overline{\mathrm{INT}}$	Interrupt (Active Low)
$\overline{\mathrm{CLR}}$	Clear (Active Low)

STB	MD	$\left(\overline{D S}_{1} \cdot \mathrm{DS}_{2}\right)$	DATA OUT	$\overline{\mathrm{CLR}}$	$\left(\overline{\mathrm{DS}}_{1} \cdot \mathrm{DS}_{2}\right)$	STB	SR (2)	$\overline{\text { INT }}$
			EQUALS	0	0	0	1	1
0	0	0	Three-State	0	1	0	1	0
1	0	0	Three-State	1	0	0	(3)	(3)
0	1	0	Data Latch	1	0			
1	1	0	Data Latch	1	<	0	1	1
0	0	1	Data Latch	1	0	入	0	0
1	0	1	Data In	1	1	0	1	0
0	1	1	Data In	1	1	-	0	0
1	1	1	Data In					

Notes (1) $\overline{\mathrm{CLR}}$ resets data latch sets SR fllp-flop (No effect on output buffer)
(2) Internal SR flip-flop
(3) Previous data remains

Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	ABSOLUTE MAXIMUM
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	RATINGS*
All Output or Supply V	-0.5 to +7 Volts	
All Input Voltages	-1.0 to +5.5 Volts	
Output Currents	. 125 mA	

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT Stress above those listed under "Absolute Maxımum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

PARAMETER	SYMBOL	LIMITS		UNIT	TEST CONDITIONS
		MIN	MAX		
Input Load Current STB, DS 2 , $\overline{\mathrm{CLR}}, \mathrm{DI}_{1}$ - DI D_{8} Inputs	IIL1		-0 25	mA	$V_{F}=045 \mathrm{~V}$
Input Load Current MD Input	IIL2		-075	mA	$\mathrm{V}_{\mathrm{F}}=045 \mathrm{~V}$
Input Load Current $\overline{\mathrm{DS}}_{1}$ Input	IIL3		-10	mA	$V_{F}=045 \mathrm{~V}$
Input Leakage Current STB DS, $\overline{\mathrm{CLR}}, \mathrm{DI}_{1}-\mathrm{Dl}_{8}$ Inputs	IIH1		10	$\mu \mathrm{A}$	$V_{R}=525 \mathrm{~V}$
Input Leakage Current MD Input	11 H 2		30	$\mu \mathrm{A}$	$V_{R}=525 \mathrm{~V}$
Input Leakage Current $\overline{\mathrm{DS}}_{1}$ Input	11 H 3		40	$\mu \mathrm{A}$	$V_{R}=525 \mathrm{~V}$
Input Forward Voltage Clamp	V_{C}		-10	V	$\mathrm{I}^{\prime} \mathrm{C}=-5 \mathrm{~mA}$
Input "Low" Voltage	$V_{\text {IL }}$		085	V	
Input "High" Voltage	$\mathrm{V}_{\text {IH }}$	20		V	
Output "Low" Voltage	V_{OL}		048	V	$\mathrm{I}^{\mathrm{OL}}=15 \mathrm{~mA}$
Output "High" Voltage	VOH	365		V	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$
Short Circuit Output Current	10^{5}	-15	-75	mA	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$
Output Leakage Current High Impedance State $\mathrm{DO}_{0}-\mathrm{DO}_{8}$	10		20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=045 \mathrm{~V} / 525 \mathrm{~V}$
Power Supply Current	ICC		130	mA	

CAPACITANCE (1) $\quad \mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} ; \mathrm{V}_{\mathrm{BI}} \mathrm{AS}=2.5 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$

PARAMETER	SYMBOL	LImits		UNIT	TEST CONDITIONS
		MIN	MAX		
Input Capacitance	$\mathrm{CIN}^{\text {I }}$		12	pF	$\overline{\mathrm{DS}}_{1}, \mathrm{MD}$
Input Capacitance	$\mathrm{CIN}^{\text {IN }}$		9	pF	$\mathrm{DS}_{2}, \overline{\mathrm{CLR}}, \mathrm{STB}, \mathrm{DI}_{1}-\mathrm{DI}_{8}$
Output Capacitance	COUT		12	pF	$\mathrm{DO}_{1}-\mathrm{DO}_{8}$

Note•(1) This parameter is periodically sampled and not 100% tested
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$

PARAMETER	SYMBOL	LIMITS		UNIT	TEST CONDITIONS
		MIN	MAX		
Pulse Width	$t_{\text {pw }}$	30		ns	Input Pulse Amplitude $=2.5 \mathrm{~V}$ Input Rise and Fall Tımes $=5$ ns Between 1V and 2V Measurement made at 1.5 V with 15 mA (1) and 30 pF Test Load
Data To Output Delay	$t_{\text {pd }}$		30	ns	
Write Enable To Output Delay	$\mathrm{t}_{\text {we }}$		40	ns	
Data Setup Tıme	$\mathrm{t}_{\text {set }}$	15		ns	
Data Hold Time	th	20		ns	
Reset to Output Delay	t_{r}		40	ns	
Set To Output Delay	ts		30	ns	
Output Enable/Disable Time	$\mathrm{t}_{\mathrm{e}} / \mathrm{t}_{\mathrm{d}}$		45	ns	
Clear To Output Delay	t_{c}		55	ns	

Notes: (1) $\mathrm{R}_{1}=300 \Omega / 10 \mathrm{~K} \Omega, \mathrm{R}_{2}=600 \Omega / 1 \mathrm{~K} \Omega$

Data Latch

The 8 flip-flops that compose the data latch are of a " D " type design. The output (Q) of the flip-flop follows the data input (D) while the clock input (C) is high. Latching occurs when the clock (C) returns low.
The data latch is cleared by an asynchronous reset input ($\overline{\mathrm{CLR}}$).
(Note. Clock (C) Overrides Reset ($\overline{C L R}$).)

Output Buffer

The outputs of the data latch (O) are connected to three-state, non-Inverting output buffers. These buffers have a common control line (EN); enablıng the buffer to transmit the data from the outputs of the data latch (O) or disabling the buffer, forcing the output into a high impedance state (three-state).
This high-Impedance state allows the designer to connect the μ PB8212 directly to the microprocessor bi-directional data bus.

Control Logic

The μ PB8212 has four control inputs: $\overline{\mathrm{DS}}_{1}, \mathrm{DS}_{2}, \mathrm{MD}$ and STB. These inputs are employed to control device selection, data latchıng, output buffer state and the service request flip-flop.

$\overline{\mathrm{DS}}_{1}, \mathrm{DS}_{2}$ (Device Select)

These two inputs are employed for device selection. When $\overline{\mathrm{DS}}_{1}$ is low and $D S_{2}$ is high ($\overline{\mathrm{DS}}_{1} \cdot \mathrm{DS}_{2}$) the device is selected. In the selected state the output buffer is enabled and the service request flip-flop (SR) is asynchronously set.

Service Request Flip-Flop (SR)

The (SR) flip-flop is employed to generate and control interrupts in microcomputer systems. It is asynchronously set by the $\overline{C L R}$ input (active low). When the (SR) flipflop is set it is in the non-interrupting state.
The output (Q) of the (SR) flıp-flop is connected to an inverting input of a "NOR" gate. The other input of the "NOR" gate is non-Inverting and is connected to the device selection logıc ($\overline{\mathrm{DS}}_{1} \cdot \mathrm{DS}_{2}$). The output of the "NOR" gate ($\overline{\mathrm{INT}}$) is active low (interrupting state) for connection to active low input priority generatıng circuits.

MD (Mode)

This input is employed to control the state of the output buffer and to determine the source of the clock input (C) to the data latch.
When MD is in the output mode (high) the output buffers are enabled and the source of clock (C) to the data latch is from the device selection logic ($\overline{\mathrm{DS}}_{1} \cdot \mathrm{DS}_{2}$).
When MD is in the input mode (low) the output buffer state is determıned by the device selection logıc ($\overline{\mathrm{DS}}_{1} \cdot \mathrm{DS}_{2}$) and the source of clock (C) to the data latch is the STB (Strobe) input.

STB (Strobe)

STB is employed as the clock (C) to the data latch for the input mode ($M D=0$) and to synchronously reset the service request flip-flop (SR).
Note that the SR flip-flop triggers on the negative edge of STB which overrides $\overline{\mathrm{CLR}}$.

TIMING WAVEFORMS

Note: (1) Including Jig and Probe Capacitance
TEST CIRCUIT

Package Outlines

For information, see Package Outline Section 7.
Plastic, μ PB8212C
Cerdip, μ PB8212D

4-BIT PARALLEL BIDIRECTIONAL BUS DRIVER

DESCRIPTION All inputs are low power TTL compatible. For driving MOS, the DO outputs provide a high $3.65 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{OH}}\right)$, and for high capacitance terminated bus structures, the DB outputs provide a high 55 mA (IOL) capability.

FEATURES - Data Bus Buffer Driver for μ COM-8 Microprocessor Family

- Low Input Load Current - 0.25 mA Maximum
- High Output Drive Capability for Driving System Data Bus
- 3.65V Output High Voltage for Direct Interface to μ COM-8 Microprocessor Family
- Three State Outputs
- Reduces System Package Count
- Available in 16 -pin packages: Cerdip and Plastic

PIN NAMES

$D B_{0}-\mathrm{DB}_{3}$	Data Bus Bi Directional
$\mathrm{DI}-\mathrm{DI}_{3}$	Data Input
$D O_{0}-\mathrm{DO}_{3}$	Data Output
$\overline{\mathrm{DIEN}}$	Data in Enable Drection Control
$\overline{C S}$	Chip Select

Microprocessors like the μ PD8080A are MOS devices and are generally capable of driving a single TTL load. This also applies to MOS memory devices. This type of drive is sufficient for small systems with a few components, but often it is necessary to buffer the microprocessor and memories when adding components or expanding to a multi-board system.

The μ PD8216/8226 is a four bit bi-directional bus driver specifically designed to buffer microcomputer system components.

Bi-Directional Driver

Each buffered line of the four bit driver consists of two separate buffers. They are three state in nature to achieve direct bus interface and bi-directional capability. On one side of the driver the output of one buffer and the input of another are tied together (DB), this is used to interface to the system side components such as memories, I/O, etc. Its interface is directly TTL compatible and it has high drive (55 mA). For maximum flexibility on the other side of the driver the inputs and outputs are separate. They can be tied together so that the driver can be used to buffer a true bi-directional bus such as the 8080A Data Bus. The DO outputs on this side of the driver have a special high voltage output drive capability (3.65 V) so that direct interface to the 8080A processor is achieved with an adequate amount of noise immunity (650 mV worst case).

Control Gating $\overline{\text { CS, }} \overline{\text { DIEN }}$

The $\overline{\mathrm{CS}}$ input is used for device selection. When $\overline{\mathrm{CS}}$ is "high" the output drivers are all forced to their high-impedance state. When it is "low" the device is selected (enabled) and the data flow direction is determined by the $\overline{\text { DIEN }}$ input.

The $\overline{\text { DIEN }}$ input controls the data flow direction (see Block Diagrams for complete truth table). This directional control is accomplished by forcing one of the pair of buffers to its high impedance state. This allows the other to transmit its data. This is accomplished by a simple two gate circuit.
The μ PB8216/8226 is a device that will reduce component count in microcomputer systems and at the same time enhance noise immunity to assure reliable, high performance operation.

FUNCTIONAL DESCRIPTION

$\overline{\text { DIEN }}$	$\overline{\text { CS }}$	RESULT
0	0	DI \rightarrow DB
1	0	DB - DO
0	1	High Impedance
1	1	

AbSOLUTE MAXIMUMRATINGS*

Operating Temperature	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Output and Supply Voltages	-0.5 to +7 Volts
All Input Voltages	-1.0 to +5.5 Volts
Output Currents	. . 125 mA

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT• Stress above those listed under "Absolute Maxımum Ratıngs" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended perıods may affect device reliability.

PARAMETER		SYMBOL	LIMITS			UNIT	TEST CONDITIONS	
		MIN	TYP (1)	MAX				
Input Load Current DIEN, $\overline{C S}$			IF 1			-05	mA	$V_{F}=045$
Input Load Current All Other Inputs		IF 2			-025*	mA	$V_{F}=045$	
Input Leakage Current $\overline{D I E N}, \overline{C S}$		IR1			20	$\mu \mathrm{A}$	$V_{R}=525 V$	
Input Leakage Current DI Inputs		IR2			10	$\mu \mathrm{A}$	$V_{R}=525 V$	
Input Forward Voltage Clamp		V_{C}			-10	V	${ }^{\prime} C=-5 \mathrm{~mA}$	
Input "Low" Voltage		VIL			095	V		
Input "High" Voltage		VIH	20			V		
Output Leakage Curient (3 State)	DO	10			20	$\mu \mathrm{A}$	$V_{O}=045 / 525 \mathrm{~V}$	
	DB	10			100			
Power Supply Current	8216	${ }^{1} \mathrm{CC}$			130	mA		
	8226	ICC			120	mA		
Output "Low" Voltage		$\mathrm{V}_{\text {OLI }}$			0.48	V	$\begin{aligned} & \text { DO Outputs IOL }=15 \mathrm{~mA} \\ & \text { DB Outputs IOL }=25 \mathrm{~mA} \end{aligned}$	
Output "Low" Voltage	8216	VOL2			07	V	DB Outputs ${ }^{\text {O }} \mathrm{OL}=55 \mathrm{~mA}$	
	8226	$\mathrm{V}_{\mathrm{OL} 2}$			07	V	DB Outputs $1 \mathrm{OH}=50 \mathrm{~mA}$	
Output "High" Voltage		VOH1	365			V	DO Cutputs $1 \mathrm{OH}=-1 \mathrm{~mA}$	
Output "Hıgh" Voltage		VOH	24			V	DB Outputs $1 \mathrm{OH}=-10 \mathrm{~mA}$	
Output Short Circuit Current		IOS	-15		-65	mA	DO Outputs $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	
		IOS	-30		-120	mA	DB Outputs $\mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V}$	

Note (1) Typical values are for $T_{a}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	CIN			8	pF	$\begin{aligned} & V_{B I A S}=2.5 \mathrm{~V} \\ & V_{C C}=5 \mathrm{~V} \\ & T_{a}=25^{\circ} \mathrm{C} \\ & f=1 \mathrm{MHz} \end{aligned}$
Output Capacıtance	Cout1			10 (2)	pF	
Output Capacitance	COUT2			18 (3)	pF	

Notes: (1) This parameter is not 100% tested.
(2) DO Output.
(3) DB Output.
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$

PARAMETER		SYMBOL	LIMITS			UNIT	TEST CONDITIONS	
		MIN	TYP (1)	MAX				
Input to Output Delay DO Outputs			tPD1			25	ns	$\begin{aligned} & C_{L}=30 \mathrm{pF}, R_{1}=300 \mathrm{~S}, \\ & R_{2}=600 \Omega 2 \text { (4) } \end{aligned}$
Input to Output Delay DB Outputs	8216	tpD2			30	ns	$\begin{aligned} & C_{L}=300 \mathrm{pF}, \mathrm{R}_{1}=90 \Omega, \\ & R_{2}=180 \Omega 24 \end{aligned}$	
	8226	tPD2			25	ns		
Output Enable Tıme	8216	tE			65	ns	(2) (4)	
	8226	te			54	ns		
Output Disable Time		tD			35	ns	(3) (4)	

Notes (1) Typical values are for $T_{a}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V}$
(2) DO Outputs, $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{1}=300 / 10 \mathrm{~K} \Omega, \mathrm{R}_{2}=600 / 1 \mathrm{~K} \Omega$, DB Outputs, $\mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}, \mathrm{R}_{1}=90 / 10 \mathrm{~K} \Omega, \mathrm{R}_{2}=180 / 1 \mathrm{~K} \Omega$
(3) DO Outputs, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{R}_{1}=300 / 10 \mathrm{~K} \Omega, \mathrm{R}_{2}=600 / 1 \mathrm{~K} \Omega$, DB Outputs, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{R}_{1}=90 / 10 \mathrm{~K} \Omega, \mathrm{R}_{2}=180 / 1 \mathrm{~K} \Omega$
(4) Input pulse amplitude 25 V

Input rise and fall times of 5 ns between 1 and 2 volts
Output loading is 5 mA and 10 pF
Speed measurements are made at 15 volt levels

TIMING WAVEFORMS

Package Outlines

For information, see Package Outline Section 7.

Plastic, μ PB8216C/26C

Cerdip, μ PB8216D/26D

Description

The μ PD8237A-5 High Performance DMA Controller is a peripheral interface circuit for microprocessor systems. It is designed to improve system performance by allowing external devices to directly transfer information to or from the system memory. Memory-to-memory transfer capability is also provided. The μ PD8237A-5 offers a wide variety of programmable control features to enhance data throughput and allow dynamic reconfiguration under program control.
The μ PD8237A-5 is designed to be used with an external 8 -bit address register such as the 8282. It contains four independent channels and may be expanded to any number of channels by cascading additional controller chips.
The three basic transfer modes allow the user to program the types of DMA service. Each channel can be individually programmed to Autoinitialize to its original condition following an End of Process (EOP).
Each channel has a full 64 K byte address and word count capability.

Features

Memory-to-memory transfersMemory block initialization
Address increment or decrement
\square Four independent DMA channelsMultiple transfer modes: block, demand, single word, cascadeIndependent Autoinitialization of all channels
Enable/Disable control of individual DMA requests Independent polarity control for DREQ and DACK signalsEnd of Process input for terminating transfers
Software DMA requestsHigh performance: transfers up to 1.6 M-bytes/ secondDirectly expandable to any number of channels
40-pin plastic or ceramic DIP

Pin Configuration

Pin Identification

No.	Symbol	Direction	Function
1	$\overline{\text { I/OR }}$	IN/OUT	In Idle state, $\overparen{/ / O R}$ is an input control line used by the CPU to read control registers. In Active state, the μ PD8237A-5 uses I/OR as an output control signal to access data from a peripheral during a DMA Write
2	I/OW	IN/OUT	In Idle state, the CPU uses $\overline{1 / O W}$ as an input control signal to load information to the μ PD8237A-5. In Active state, the μ PD8237A-5 uses I/OW as an output control signal to load data to a peripheral during a DMA Read.
			The rising edge of $\overline{W R}$ must follow each data byte transfer in order for the CPU to write to the μ PD8237A-5. Holding I/OW low while toggling $\overline{C S}$ does not produce the same effect.
3	$\overline{\text { MEMR }}$	OUT	MEMR accesses data from a specified memory location during memory-to-peripheral or memory-to-memory transfers
4	$\overline{\text { MEMW }}$	OUT	MEMW writes data to a specified memory location during peripheral-to-memory or memory-tomemory transfers.
5		IN	Pin 5 is always tied high.
6	READY	IN	The READY signal can extend memory read and write pulses for slow memories or $1 / O$ peripherals.
7	HLDA	IN	HLDA indicates that the CPU has relinquished control of the system buses
8	ADDSTB	OUT	This signal strobes the upper address byte from $D_{0}-D_{7}$ into an external latch
9	AEN	OUT	This signal allows the external latch to output the upper address byte by disabling the system bus during DMA cycles. You should use HLDA and AEN to deselect I/O peripherals that may be erroneously accessed during DMA transfers The μ PD8237A-5 deselects itself during DMA transfers.

No.	Symbol	Direction	Function
32-35	$\mathrm{A}_{0}-\mathrm{A}_{3}$	IN/OUT	During DMA Idie states, these lines are inputs; allowing the CPU to load or examine control registers. During DMA Active states, these lines are outputs that provide the 4 LSB of the output address.
36	$\overline{\text { EOP }}$	IN/OUT	$\overline{\text { EOP }}$ signals that DMA service has been completed. When the word count of a channel becomes zero, the μ PD8237A-5 pulses EOP low to notify the peripheral that DMA service is complete. The peripheral may pull EOP low to prematurely end DMA service. Internal or external receipt of EOP causes the currently active channel to end service, set its TC bit in the Status register, and reset its request bit. If the channel is programmed for Autoinitialization, the current registers are updated from the base registers. Otherwise, the channel's mask bit is set and the contents of the register are unaltered. $\overline{\text { EOP }}$ is output when TC for channel 1 occurs during memory-to-memory transfers. EOP applies to the channel with an active DACK. When DACK_{0}-DACK 3 are inactive, external EOPs are ignored. It is recommended that you use an external pullup resistor of $3.3 \mathrm{k} \Omega$ or $4.7 \mathrm{k} \Omega$. This pin cannot sink the current passed by a $1 \mathrm{k} \Omega$ pullup.
37-40	$A_{4}-A_{7}$		These lines are outputs that provide the four LSB of the address. These lines are active only during DMA service.

Functional Description

The μ PD8237A-5 has three basic control logic blocks, as shown in the block diagram. The Command Control block decodes commands issued by the CPU to the μ PD8237A-5 before DMA requests are serviced. It also decodes the Mode Control word of each channel. The Timing Control block generates the external control signals and the internal timing. The Priority Encoder block settles priority contentions among channels simultaneously requesting service.

DMA Operation

The μ PD8237A-5 operates in two states: Idle and Active. Each of these is made up of several smaller states equal to one clock cycle. The inactive state, S1, is entered when there are no pending DMA requests. The controller is inactive in S1, but the CPU may program it. SO is the initial state for DMA service; the μ PD8237A-5 requests a hold, but the CPU has not acknowledged. Transfers may begin upon acknowledgement from the CPU. The normal working states of DMA service are

S1, S2, S3, and S4. If more time is needed for a transfer, a wait state, SW, can be inserted using the READY line.
A memory-to-memory transfer requires read-frommemory and write-to-memory operations. The states S11, S12, S13, and S14 provide the read-from operation. S21, S22, S23, and S24 provide the write-to part of the transfer. The byte is stored in the Temporary register between operations.

Idle State

When there are no pending service requests, the μ PD8237A-5 is in the Idle state; more specifically, in S1. DRQ lines and $\overline{C S}$ are sampled to determine requests for DMA service and CPU attempts to inspect or modify the registers of the μ PD8237A-5, respectively. The CPU can read or write to the registers when CS and HLDA are low. $\mathrm{A}_{0}-\mathrm{A}_{3}$ are used as inputs to the μ PD8237A and select the registers affected. The $\overline{1 / O R}$ and $1 / O W$ lines select and time the reads and writes. An internal flip-flop generates an additional address bit which determines the upper or lower byte of the Address and Word Count registers. This flip-flop can be reset by master Clear, Reset, or a software command.
When $\overline{\mathrm{CS}}$ and HLDA are low (Program Phase), the μ PD8237A-5 can execute special software commands. When $\overline{C S}$ and $\overline{1 / O W}$ are active, the commands are decoded as addresses and do not use the data bus.

Active State

When a channel requests service while the μ PD8237A-5 is in Idle state, the μ PD8237A-5 outputs an HRQ to the CPU and enters the Active state. DMA service takes place in the Active state, in one of the four modes described below.

Byte Transfer Mode

In this mode, a one-byte transfer is made during each HRQ/HLDA handshake. HRQ goes active when DRQ goes active. The CPU responds by making HLDA active, and the one-byte transfer takes place. After the transfer, HRQ goes inactive, the word count is decremented, and the address is incremented or decremented. If the word count goes to zero, a Terminal Count (TC) causes

Block Diagram

an Autoinitialize if the channel has been programmed for it.
DRQ is held active only until the corresponding DACK goes active when a single transfer is performed. If DRQ is held active for a longer period, HRQ will become inactive after each transfer, become active again, and a one-byte transfer will be made after each rising edge of HLDA. This assures a full machine cycle between DMA transfers in 8080A/8085A systems. Timing between the μ PD8237A-5 and other bus control protocols depends on the CPU being used.

Block Transfer Mode

In this mode, the μ PD8237A-5 makes transfers until it encounters a TC or an external EOP. Hold DRQ active only until DACK goes active. The channel will Autoinitialize at the end of the DMA service if it has been programmed to do so.

Demand Transfer Mode

In this mode, the μ PD8237A-5 makes transfers until it encounters a TC or an external EOP, or until DRQ becomes inactive. This allows the device requesting service to stop the transfers by sending DRQ inactive. The device can resume service by making DRQ active. The Current Address and Current Word Count registers may be examined during the time between services when the CPU is allowed to operate. Autoinitialization can occur only after a TC or EOP at the end of the DMA service. After an Autoinitialization, there must be an active-going DRQ edge to begin new DMA service.

Cascade Mode

In this mode, you can expand your system by cascading several μ PD8237A-5s together. Connect the HLDA and HRQ signals from the additional μ PD8237A-5s to the DRQ and DACK signals of a channel of the initial μ PD8237A-5. This scheme allows the additional devices to send the DMA requests through the priority resolution circuitry of the preceding device, preserving the priority chain and forcing the device to wait its turn to acknowledge requests. The cascade channel in the initial device does not output any address or control signals because its only function is that of assigning priorities. The μ PD8237A-5 responds to DRQ with DACK, but all outputs except HRQ are disabled. The following figure shows two μ PD8237A-5s cascaded into two channels of another one, forming a two-level DMA system. You could add more devices at the second level by using the leftover channels of the first level; likewise, you could add more devices to form a third level by cascading into the channels of the second level.

Transfers

There are three types of transfers that can be performed by the three active transfer modes: Read, Write, and Verify. Read transfers activate MEMR and I/OW to move memory data to an I/O device. Write transfers activate $\overline{I / O R}$ and MEMW to move data from an I/O device to memory. Verify transfers are not really transfers; the μ PD8237A-5 goes through the motions of a transfer but the memory and I/O lines are not active.

Memory-to-Memory Transfers

Use Block Transfer mode for memory-to-memory transfers. Mask out channels 0 and 1, and initialize the channel 0 word count to the same value as channel 1. Setting bit CO of the command register to 1 makes channels 0 and 1 operate as memory-to-memory transfer channels. Channel 0 is the source address, channel 1 is the destination address, and the channel 1 word count is used. Initiate the memory-to-memory transfer by setting a DMA request for channel 0 . You can write a single source word to a block of memory when channel 0 is programmed for a fixed source address. The μ PD8237A-5 responds to external EOP signals during these transfers, but no DACK outputs are active. The $\overline{E O P}$ input may be used by data comparators doing block searches to end service when a match is found.

Autoinitialization

A channel may be set for Autoinitialize by programming a bit in the Mode register. Autoinitialize restores the original values of the Current Address and Current Word Count registers from the Initial Address and Initial Word Count registers of that channel. The CPU loads the Current and Initial registers simultaneously and they are unchanged through DMA service. EOP does not set the mask bit when the channel is in Autoinitialize. The channel can repeat its service following Autoinitialize without CPU intervention.

Priority Resolution

Two software-selectable priority resolution schemes are available on the μ PD8237A-5: Fixed Priority and Rotating Priority. In the Fixed Priority scheme, priority is assigned by the value of the channel number. Channel 3 is the lowest priority and channel 0 is the highest priority.
In the Rotating Priority scheme, the channel that was just serviced assumes the lowest priority and the other channels move up accordingly. This guarantees that a device requesting service can be acknowledged after no more than three other devices have been serviced, preventing any channel from monopolizing the system.

μ PD8237A-5

The highest priority channel is selected on each activegoing HLDA edge. Once service to a channel begins, it cannot be interrupted by a request from a higher priority channel. A higher priority channel gets control only when the lower priority channel releases HRQ. The CPU gets bus control when control passes from channel to channel, ensuring that a rising HLDA edge can be generated to select the new highest priority request.

Transfer Timing

You can cut transfer timing, if the system allows, by compressing the transfer time to two clock periods. Since state $3\left(\mathrm{~S}_{3}\right)$ extends the access time for the read pulse, you can eliminate S_{3}, making the width of the read pulse equal to the write pulse. A transfer is then made up of S_{2} to change the address and S_{4} to perform the read or write. When the address lines $\mathrm{A}_{8}-\mathrm{A}_{15}$ need to be updated, S_{1} states occur.

Generating Addresses

The eight MSBs of the address are multiplexed on the data lines. These bits are output to an external latch during S_{1}, after which they can be placed on the address bus. The falling edge of ADDSTB loads the bits from the data lines to the latch. AEN places the bits on the address bus. The eight LSBs of the address are directly output on lines $A_{0}-A_{7}$. Connect $A_{0}-A_{7}$ to the address bus.
Sequential addresses are generated during Block and Demand Transfer mode operations because they include several transfers. Often, data in the external address latch does not change; it changes only when a carry or borrow from A_{7} to A_{8} occurs in the sequence of addresses. S1 states are executed only when $\mathrm{A}_{8}-\mathrm{A}_{15}$ need to be updated. In the course of lengthy transfers, S1 states may be executed only once every 256 transfers.

Registers

The following chart summarizes the registers of the μ PD8237A-5.

Register	Bits
Current Address registers (4)	16
Current Word Count registers (4)	16
Initial Address registers (4)	16
Initial Word Count registers (4)	16
Command register	8
Mode registers (4)	6
Request register	4
Mask register	4
Status register	8
Temporary register	8
Temporary Address register	16
Temporary Word Count register	16

Current Address Register

There is a Current Address register for each channel. This register holds the address used for DMA transfers; the address is incremented or decremented after each transfer and the intermediate values are stored here during the transfer. The CPU writes or reads this register in 8-bit bytes. An Autoinitialize restores this register to its initial value.

Current Word Count Register

There is a Current Word Count register for each channel. Program this register with the value of the number of words to be transferred, minus one. The word count is decremented after each transfer and intermediate values are stored in this register during the transfer. A TC is generated when the word count is zero. The CPU writes or reads this register in 8-bit bytes during Program Phase. An Autoinitialize restores this register to its initial value. After an internally generated EOP, the contents of this register will be FFFFH.

Initial Address and Initial Word Count Registers

There is an Initial Address register and an Initial Word Count register for each channel. The initial values of the associated Current registers are stored in these registers. The values in these registers are used to restore the Current registers at Autoinitialize. During DMA programming, the CPU writes the Initial registers and the corresponding Current registers at the same time, in 8 -bit bytes. Intermediate values in the Current registers are overwritten if you write to the Initial registers while the Current registers contain intermediate values. The CPU cannot read the Initial registers.

		Signals							Internal FilpFlop	$\mathrm{D}_{0}-\mathrm{D}_{7}$
Channel	Operation	$\overline{\text { cs }}$	$\overline{\text { IOR }}$	WOW	A_{3}	A_{2}	A_{1}	A_{0}		
0	Initial \& Current	0	1	0	0	0	0	0	0	$A_{0}-A_{7}$
	Address Write	0	1	0	0	0	0	0	1	$A_{8}-A_{15}$
	Current	0	0	1	0	0	0	0	0	$A_{0}-A_{7}$
	Address Read	0	0	1	0	0	0	0	1	$A_{8}-A_{15}$
	Initial \& Current	0	1	0	0	0	0	1	0	
	Word Count Write	0	1	0	0	0	0	1	1	$W_{8}-w_{15}$
	Current	0	0	1	0	0	0	1	0	$\mathrm{W}_{0}-\mathrm{W}_{7}$
	Word Count Read	0	0	1	0	0	0	1	1	$\mathrm{W}_{8}-\mathrm{W}_{15}$
1	Initial \& Current	0				0			0	
	Address Write	0	1	0	0	0	1	0	1	$A_{8}-A_{15}$
	Current	0	0	1	0	0	1	0	0	$A_{0}-A_{7}$
	Address Read	0	0	1	0	0	1	0	1	$A_{8}-A_{15}$
	Initial \& Current	0	1	0	0	0	1	1	0	
	Word Count Write	0	1	0	0	0	1	1	1	$w_{8}-w_{15}$
	Current	0	0	1	0	0	1	1	0	$\mathrm{W}_{0}-\mathrm{W}_{7}$
	Word Count Read	0	0	1	0	0	1	1	1	$W_{8}-W_{15}$
2	Inıtial \& Current	0	1	0	0	1	0	0	0	$A_{0}-A_{7}$
	Address Write	0	1	0	0	1	0	0	1	$A_{8}-A_{15}$
	Current	0	0	1	0	1	0	0	0	$A_{0}-A_{7}$
	Address Read	0	0	1	0	1	0	0	1	$A_{8}-A_{15}$
	Initıal \& Current	0	1	0	0	1	0	1	0	$W_{0}-W_{7}$
	Word Count Write	0	1	0	0	1	0	1	1	$W_{8}-W_{15}$
	Current	0	0	1	0	1	0	1	0	$\mathrm{W}_{0}-\mathrm{W}_{7}$
	Word Count Read	0	0	1	0	1	0	1	1	$W_{8} \cdot W_{15}$
3	Initial \& Current	0	1	0	0	1	1	0	0	$A_{0}-A_{7}$
	Address Write	0	1	0	0	1	1	0	1	$A_{8}-A_{15}$
	Current	0	0	1	0	1	1	0	0	$A_{0}-A_{7}$
	Address Read	0	0	1	0	1	1	0	1	$A_{8}-A_{15}$
	Initial \& Current	0	1	0	0	1	1	1	0	$\mathrm{W}_{0}-\mathrm{W}_{7}$
	Word Count Write	0	1	0	0	1	1	1	1	$W_{8}-W_{15}$
	Current	0	0	1	0	- 1	1	1	0	$\mathrm{W}_{0}-\mathrm{W}_{7}$
	Word Count Read	0	0	1	0	1	1	1	1	$W_{8}-W_{15}$

Word Count and Address Register Command Codes

Command Register

The CPU programs this register during Program Phase. The register can be cleared with Reset.

Mode Register

There is a Mode register associated with each channel. When the CPU writes to this register during the Program Phase, bits 0 and 1 determine on which channel Mode register the operation is performed.

Request Register

This register allows the μ PD8237A-5 to respond to DMA requests from software as well as hardware. There is a bit pattern for each channel in the Request register. These bits can be prioritized by the Priority Resolving circuitry and are not maskable. Each bit is set or reset under software control or cleared when TC or an external EOP is generated. A Reset clears the entire register. The correct data word is loaded by software to set or reset a bit.
Software requests receive service only when the channel is in Block mode. The software request for channel 0 should be set at the beginning of a memory-to-memory transfer.

Mask Register

There is a mask bit for each channel which can disable an incoming DRQ. If the channel is not set for Autoinitialize, each mask bit is set when its channel produces an EOP. Each bit can be set or cleared under software control. Reset clears the register. This disallows DMA requests until they are permitted by a Clear Mask Register instruction.

You may also write all four bits of the Mask register with a single command.

Status Register

The Status register indicates which channels have made DMA requests and which channels have reached TC. Each time a channel reaches TC, including after Autoinitialization, bits $0-3$ are set. Status Read and Reset clear these bits. Bits 4-7 are set when a channel is requesting service. The CPU can read the Status register.

Temporary Register

The Temporary register holds data during memory-tomemory transfers. The CPU can read the last word moved when the transfer is complete. This register always contains the last byte transferred in a memory-to-memory transfer unless cleared by a Reset.

Software Commands

There are two software commands that can be executed in the Program Phase. These commands are independent of data on the data bus.

Clear First/Last Flip-Flop

You may issue this command before reading or writing any word count or address information. It allows the CPU to access registers, addressing upper and lower bytes correctly, by initializing the flip-flop to an identifiable state.

Master Clear

This command produces the same effect as Reset. It clears the Command, Status, Request, Temporary, and Internal First/Last Flip-Flop registers, sets the Mask register, and causes the μ PD8237A-5 to enter Idle state. The following chart illustrates address codes for the software commands.

\mathbf{A}_{3}	\mathbf{A}_{2}	\mathbf{A}_{1}	$\mathbf{A}_{\mathbf{0}}$	$\overline{\text { I/OR }}$	$\overline{\text { I/OW }}$	Operation
$\mathbf{1}$	0	0	0	0	1	Read Status register
1	0	0	0	1	0	Write to Command register
1	0	0	1	1	0	Write to Request register
1	0	1	0	1	0	Write a Mask register bit
1	0	1	1	1	0	Write to Mode register
1	1	0	0	1	0	Clear byte pointer flip-flop
1	1	0	1	0	1	Read Temporary register
1	1	0	1	1	0	Master Clear
1	1	1	1	1	0	Write all Mask register bits
1	1	1	0	0	1	Clear Mask register
All other bit combinations are illegal						

Application Example

The following diagram shows an application using the μ PD8237A-5 with an 8088. The μ PD8237A-5 sends a hold request to the CPU whenever there is a valid DMA request from a peripheral device. The μ PD8237A-5 takes control of the Address, Data, and Control buses when the CPU replies with an HLDA signal. The address for the first transfer appears in two bytes: the eight LSBs are output on A0-A7 and the eight MSBs are output on the data bus pins. The contents of the

data bus pins are latched to the 8282 to make up the 16 bits of the address bus. Once the address is latched, the data bus transfers data to or from a memory location or I/O device, using the control bus signals generated by the μ PD8237A-5.

AC Characteristics Supplementary Information

All AC timing measurement points are 2.0 V for high and 0.8 V for low, for both inputs and outputs. The loading on the outputs is one TTL gate plus 100 pF of capacitance for the data bus pins, and one TTL gate plus 50 pF for all other outputs.
Recovery time between successive read and write inputs must be at least 400 ns . I/O or memory write pulse widths will be TCY-100 ns for normal DMA transfers and 2 TCY- 100 ns for extended cycles. I/O or memory reads will be 2 TCY- 50 ns for normal reads and TCY-50 ns for compressed cycles. TDQ1 and TDQ2 are measured on two different levels. TDQ1 at 2.0 V , TDQ2 at 3.3 V with a $3.3 \mathrm{k} \Omega$ pull-up resistor. DREQ and DACK are both active high and low. DREQ must be held in the active state (user defined) until DACK is returned from the μ PD8237A-5. The AC waveforms assume these are programmed to the active high state.
Absolute Maximum Ratings*

Tentative	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ambient Temperature under Bias	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Storage Temperature	-0.5 V to +7 V
Voltage on any Pin with respect to Ground	1.5 Watt
Power Dissipation	

*COMMENT: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
DC Characteristics
$\mathrm{T}_{\mathrm{a}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm \mathbf{5} \%$

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ (1)	Max		
Output High Voltage	V_{OH}	2.4			V	$\mathrm{I}^{\mathrm{OH}}=-200 \mu \mathrm{~A}$
		33			V	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$ (HRQ Only)
Output Low Voltage	V_{OL}			0.45	V	$\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$ (Data Bus)
						$\mathrm{I} \mathrm{OL}=3.2 \mathrm{~mA}$ (Other Outputs)
Input High Voltage	$\mathrm{V}_{\mathbf{I H}}$	2.0		$V_{C C}+0.5$	V	
Input Low Voltage	V_{IL}	-0.5		0.8	V	
Input Load Current	1 LI			± 10	$\mu \mathrm{A}$	$\mathrm{OV} \leqslant \mathrm{V}_{\mathbf{I N}} \leqslant \mathrm{V}_{\text {CC }}$
Output Leakage Current	ILO			$\pm \mathbf{1 0}$	$\mu \mathrm{A}$	$0.45 \leqslant \mathrm{~V}_{\text {OUT }} \leqslant \mathrm{V}_{\text {CC }}$
V_{CC} Supply Current	ICC		65	130	mA	$\mathrm{T}_{\mathrm{a}}=+25^{\circ} \mathrm{C}$
			75	150	mA	$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$

Note:

(1) Typical values measured at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$, nominal processing parameters, and nominal V_{CC}.

Capacitance

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ (1)	Max		
Output Capacitance	C_{0}		4	8	pF	$\mathrm{fc}=1.0 \mathrm{MHz}$,
Input Capacitance	c_{1}		8	15	pF	Inputs $=0 \mathrm{~V}$
1/O Capacitance	c_{10}		10	18	pF	

Note:

(1) Typical values measured at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$, nomınal processing parameters, and nominal $V_{C C}$.

AC Testing Input/Output Waveform

Inputs are driven at 2.4 V for logic 1 and 0.45 V for logic 0 . These timing measurements are made at 2.0 V for logic 1 and 0.8 V for logic 0 . A transition time of 20 ns or less is assumed for input timing parameters. Unless noted, output loading is 1 TTL gate plus 50 pF capacitance.

Parameter	Symbol	Limits			Unit
		Min	Typ	Max	
AEN High from CLK Low (S1) Delay Time	${ }^{\text {t }}$ AEL			200	ns
AEN Low from CLK High (S1) Delay Time	${ }^{\text {A }}$ AET			130	ns
ADR Active to Float Delay from CLK High	${ }^{\text {t }}$ AFAB			90	ns
$\overline{\overline{\text { READ }} \text { or WRITE Float from CLK High }}$	$t_{\text {AFC }}$			120	
DB Active to Float Delay from CLK High	${ }^{\text {AFAFD }}$			170	ns
ADR from $\overline{\text { READ }}$ High Hold Time	${ }^{\text {t }}$ AHR	${ }_{\text {tcy - }} \mathbf{1 0 0}$			ns
DB from ADDSTB Low Hold Time	${ }^{\text {taHS }}$	30			ns
ADR from WRITE High Hold Time	${ }^{\text {taHW }}$	${ }_{\text {try - }}{ }^{\text {O }}$			ns
DACK Valid from CLK Low Delay Time				170	ns
EOP High from CLK High Delay Time	${ }^{t}$ AK			170	ns
EOP Low to CLK High Delay Time				100	ns
ADR Stable from CLK High	${ }^{\text {t ASM }}$			170	ns
Data Bus to ADDSTB Low Setup Time	${ }^{\text {tass }}$	100			ns
Clock High Time (Transitions $\leqslant 10 \mathrm{~ns}$)	${ }^{\mathbf{t}} \mathbf{C H}$	80			ns
Clock Low Time (Transitions $\leqslant 10 \mathrm{~ns}$)	${ }^{\text {t }} \mathrm{CL}$	68			
CLK Cycle Time	${ }^{\text {t }} \mathrm{CY}$	200			ns
CLK High to $\overline{\text { READ }}$ or WRITE Low Delay (1)	${ }^{\text {tocl }}$			190	ns
$\overline{\text { READ }}$ High from CLK High (S4) Delay Time (1)	${ }^{\text {t }}$ CCTR			190	ns
$\overline{\text { WRITE }}$ High from CLK High (S4) Delay Time (1)	${ }^{\text {toctw }}$			130	ns
HRQ Valid from CLK High Delay Time (2)				120	ns
	${ }^{\text {tona }}$			120	ns
EOP Low from CLK Low Setup Time	${ }^{\text {t EPS }}$	40			
$\overline{E O P}$ Pulse Width	${ }_{\text {t EPW }}$	220			ns
ADR Float to Active Delay from CLK High	${ }^{\text {t }}$ FAAB			170	ns
$\overline{\overline{R E A D}}$ or WRITE Active from CLK High	${ }^{\text {f }}$ FAC			150	ns

Parameter	Symbol	Limits			Unit
		MIn	Typ	Max	
Data Bus Float to Active Delay from CLK High	${ }^{\text {t }}$ FADB			200	ns
HLDA Valid to CLK High Setup Time	${ }^{\text {H }} \mathrm{HS}$	75			ns
Input Data from MEMR High Hold Time	${ }^{\text {I IDH }}$	0			ns
Input Data to MEMR High Setup Time	${ }^{\text {I IDS }}$	170			ns
Output Data from MEMW High Hold Time	${ }^{\text {t }} \mathrm{ODH}$	10			ns
Output Data Valid to $\overline{\text { MEMW }}$ High	${ }^{\text {t O }}$ OV	125			ns
DRQ to CLK Low ($\mathrm{S}_{\mathbf{1}}, \mathrm{S}_{4}$) Setup Time	${ }^{\text {tas }}$	0			ns
CLK to Ready Low Hold Time	${ }^{\text {tr }}$ H	20			ns
READY to CLK Low Setup Time	${ }^{\text {R }}$ (${ }^{\text {S }}$	60			ns
ADDSTB High from CLK High Delay Time	${ }^{\text {t }}$ STL			130	ns
ADDSTB Low from CLK High Delay Time	${ }^{\text {S STT }}$			90	ns

Notes:

(1) Net $\overline{1 / O W}$ or MEMW pulse width for normal write is $\mathrm{t} \mathrm{CY}-100 \mathrm{~ns}$ and $2 \mathrm{CLCY}-100 \mathrm{~ns}$ for extended write. Net T/OR or MEMR pulse width for normal read is $2 \mathrm{tCY}-50 \mathrm{~ns}$ and ter - 50 ns for compressed read.
(2) TDQ1 is measured at 2.0 V . $\mathrm{tDQ}_{\mathrm{D}}$ is measured at 3.3 V . An external pullup resistor of $3.3 \mathrm{k} \Omega$ connected from HRQ to V_{CC} is assumed for tDQ2.

AC Characteristics Peripheral Mode

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathbf{C C}}=5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{SS}}=\mathbf{0 V}$

Parameter	Symbol	Limits			Unit
		Min	Typ	Max	
ADR Valid or CS Low to READ Low	${ }_{\text {taR }}$	50			ns
ADR Valid to WRITE High Setup Time	${ }_{\text {taw }}$	150			s
$\overline{\text { CS }}$ Low to WRITE High Setup Time	${ }_{\text {chw }}$	150			ns
Data Valid to $\overline{\text { WRITE }}$ High Setup Time	tDW	150			ns
ADR or $\overline{\text { CS }}$ Hold from $\overline{\text { EEAD }}$ High	$t_{\text {RA }}$	0			ns
Data Access from $\overline{\text { READ }}$ Low (1)	$t_{\text {R }}$ de			140	ns
Data Bus Float Delay from $\overline{\text { READ }}$ High	$t_{\text {RDF }}$	0		70	ns
Power Supply High to RESET Low Setup Time	$\mathrm{t}_{\text {RSTD }}$	500			ns
RESET to First //OR or I/OW	${ }^{\text {t }}$ RSTS	${ }^{2} \mathrm{C}$ CY			ns
RESET Pulse Width	${ }_{\text {trstw }}$	300			ns
READ Width	$t_{\text {RW }}$	200			ns
ADR from WRITE High Hold Time	${ }^{\text {tw }}$ W	20			ns
$\overline{\text { CS }}$ High from WRITE High Hold Time	twc	20			ns
Data from WRITE High Hold Time	two	30			ns
Write Width	twws	160			ns

Note:

(1) Data bus output loading is 1 TTL gate plus 100 pF capacitance.
μ PD8237A-5

Timing Waveforms

Slave Mode Read

Note:
(1) You must time successive read or write operations by the CPU to allow at least 400 ns recovery time for the μ PD8237A-5 between read and write pulses.

Timing Waveforms (Cont.)

Timing Waveforms (Cont.)

Reset

Package Outlines

For information, see Package Outline Section 7.
Plastic, μ PD8237C-5
Ceramic, μ PD8237D-5
Cerdip, μ PD8237AD-5

NOTES

INPUT/OUTPUT EXPANDER FOR μ PD8048 FAMILY

DESCRIPTION | The μ PD8243 input/output expander is directly compatible with the μ PD8048 famıly |
| :--- |
| of single-chip microcomputers. Using NMOS technology the μ PD8243 provides high |
| drive capabilities while requiring only a single +5 V supply voltage. |
| The μ PD8243 interfaces to the μ PD8048 family through a 4-bit I/O port and offers |
| four 4-bit bi-directional static I/O ports. The ease of expansion allows for multiple |
| μ PD8243's to be added using the bus port. |
| The bi-directional I/O ports of the μ PD8243 act as an extension of the I/O capabilities |
| of the μ PD8048 microcomputer family. They are accessible with their own ANL, MOV, |
| and ORL instructions. |

FEATURES • Four 4-Bit I/O Ports

- Fully Compatible with μ PD8048 Microcomputer Family
- High Output Drive
- NMOS Technology
- Single +5V Supply
- Direct Extension of Resident μ PD8048 I/O Ports
- Logical AND and OR Directly to Ports
- Compatible with Industry Standard 8243
- Available in a 24-Pin Plastic Package

$\mathrm{P}_{50} \triangle 1$		24	V_{CC}
$\mathrm{P}_{40} \mathrm{C}^{2}$		23	- P_{51}
$\mathrm{P}_{41} \square^{3}$		22	P_{52}
$\mathrm{P}_{42} \mathrm{C}_{4}$		21	P_{53}
$\mathrm{P}_{43} \square_{5}$		20] P_{60}
$\overline{\mathrm{CS}} \square^{6}$	$\mu \mathrm{PD}$	19	${ }^{\text {P } 61}$
PROG \square^{1}	8243	18	P_{62}
$\mathrm{P}_{23} \square_{8}$		17	P_{63}
$\mathrm{P}_{22} \mathrm{C}_{8} 9$		16] P_{73}
$\mathrm{P}_{21} \square_{10}$		15	- P_{72}
$\mathrm{P}_{20} \square_{11}$		14	${ }^{P} 71$
GND 12		13] P_{70}

Rev/2
6-175

General Operation

The I/O capablities of the μ PD8048 family can be enhanced in four 4 -bit I/O port increments using one or more μ PD8243's. These additional I/O lines are addressed as ports 4-7. The following lists the operations which can be performed on ports 4.7.

- Logical AND Accumulator to Port.
- Logical OR Accumulator to Port.
- Transfer Port to Accumulator.
- Transfer Accumulator to Port.

Port $2\left(\mathrm{P}_{20}-\mathrm{P}_{23}\right)$ forms the 4-bit bus through which the $\mu \mathrm{PD} 8243$ communicates with the host processor. The PROG output from the μ PD8048 family provides the necessary timing to the μ PD8243. There are two 4-bit nibbles involved in each data transfer. The first nibble contains the op-code and port address followed by the second nibble containing the 4 -bit data. Multiple μ PD8243's can be used for additional I/O. The output lines from the μ PD8048 family can be used to form the chip selects for the additional μ PD8243's.

Power On Initialization

Applying power to the μ PD8243 sets ports $4-7$ to the tri-state mode and port 2 to the input mode. The state of the PROG pin at power on may be either high or low. The PROG pin must make a high-to-low transition in order to exit from the power on mode. The power on sequence is initiated any time V_{CC} drops below 1 V . The table below shows how the 4 -bit nibbles on Port 2 correspond to the μ PD8243 operations.

Port Address			Op-Code		
P_{21}	P_{20}	Address Code	P_{23}	P_{22}	Instruction Code
0	0	Port 4	0	0	Read
0	1	Port 5	0	1	Write
1	0	Port 6	1	0	ORLD
1	1	Port 7	1	1	ANLD

For example an 0010 appearing on $\mathrm{P}_{20}-\mathrm{P}_{23}$, respectively, would result in a Write to Port 4.

Read Mode

There is one Read mode in the μ PD8243. A falling edge on the PROG pin latches the op-code and port address from input Port 2. The port address and Read operation are then decoded causing the appropriate outputs to be tri-stated and the input buffers switched on. The rising edge of PROG terminates the Read operation. The Port $(4,5,6$, or 7$)$ that was selected by the Port address $\left(\mathrm{P}_{21}-\mathrm{P}_{20}\right)$ is returned to the tri-state mode, and Port 2 is switched to the input mode.
Generally, in the read mode, a port will be an input and in the write mode it will be an output. If during program operation, the μ PD8243's modes are changed, the first read pulse immediately following a write should be ignored. The subsequent read signals are valid. Reading a port will then force that port to a high impedance state.

Write Modes

There are three write modes in the μ PD8243. The MOVD $P_{p, A}$ instruction from the μ PD8048 family writes the new data directly to the specified port ($4,5,6$, or 7). The old data previously latched at that port is lost. The ORLD $P_{p, A}$ instruction performs a logical OR between the new data and the data currently latched at the selected port. The result is then latched at that port. The final write mode uses the ANLD $P_{p, A}$ instruction. It performs a logical AND between the new data and the data currently latched at the specified port. The result is latched at that port.

The data remains latched at the selected port following the logical manipulation until new data is written to that port.

BLOCK DIAGRAM

PIN IDENTIFICATION

PIN		FUNCTION

Operating Temperature
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin -0.5 to +7 Volts ${ }^{(1)}$
Power Dissipation 1 W

Note: (1) With respect to ground.

$$
T_{a}=25^{\circ} \mathrm{C}
$$

*COMMENT Stress above those listed under "Absolute Maximum Ratıngs" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device relıability.

$$
\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%
$$

PARAMETER	SYMBOL	LIMITS		UNIT	TEST CONDITIONS
		MIN	MAX		
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	-05	08	V	
Input High Voltage	$\mathrm{V}_{1 \mathrm{H}}$	20	$\mathrm{V}_{C C}+05$	V	
Output Low Voltage (Ports 4.7)	$\mathrm{V}_{\mathrm{OL} 1}$		045	V	$\mathrm{I}^{\mathrm{OL}}=45 \mathrm{~mA}$ (1)
Output Low Voltage (Port 7)	$\mathrm{V}_{\mathrm{OL} 2}$		1	V	$1 \mathrm{OL}=20 \mathrm{~mA}$
Output Low Voltage (Port 2)	$\mathrm{V}_{\mathrm{OL} 3}$		045	\checkmark	$1 \mathrm{OL}=06 \mathrm{~mA}$
Output High Voltage (Ports 4-7)	$\mathrm{V}_{\mathrm{OH} 1}$	24		V	$\mathrm{I}^{\mathrm{OH}}=240 \mu \mathrm{~A}$
Output High Voltage (Port 2)	$\mathrm{V}_{\mathrm{OH} 2}$	24		V	${ }^{1} \mathrm{OH}=100 \mu \mathrm{~A}$
Sum of All IOL From 16 Outputs	${ }^{1} \mathrm{OL}$		100 (8243)	mA	5 mA Each Pin
			80 (8243H)		
Input Leakage Current (Ports 4-7)	I/LI 1	-10	20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ to 0 V
Input Leakage Current (Port 2, $\overline{C S}$, PROG)	ILC2	-10	10	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {CC }}$ to 0 V
$\mathrm{V}_{\text {CC }}$ Supply Current	ICC		20	mA	

> Note (1) Refer to graph of additional sink current drive

PARAMETER	SYMBOL	LIMITS		UNITS	TEST CONDITIONS
		MIN	MAX		
Code Valid Before PROG	${ }^{t} A$	100		ns	80 pF Load
Code Valid After PROG	${ }^{\text {t }}$ B	60		ns	20 pF Load
Data Valid Before PROG	${ }^{\text {t }}$	200		ns	80 pF Load
Data Valıd After PROG	${ }^{\text {t }}$	20		ns	20 pF Load
Port 2 Floatıng After PROG	${ }_{t}{ }_{\text {H }}$	0	150	ns	20 pF Load
PROG Negative Pulse Width	${ }_{\text {t }}$	700		ns	
Ports 4-7 Valid After PROG	tpo		700	ns	100 pF Load
Ports 4-7 Valid Before/After PROG	tLP1	100		ns	
Port 2 Valid After PROG	${ }^{t} \mathrm{ACC}$		650	ns	80 pF Load
$\overline{\text { CS }}$ Valıd Before/After PROG	${ }_{\text {t }}$ CS	50		ns	

DC CHARACTERISTICS

AC CHARACTERISTICS

TIMING WAVEFORMS

CURRENT SINKING CAPABILITY (1)

Note (1) This curve plots the guaranteed worst case current sinking capability of any I/O port line versus the total sink current of all pias The $\mu \mathrm{PD} 8243$ is capable of sinking 5 mA (for $\mathrm{V}_{\mathrm{OL}}=04 \mathrm{~V}$) through each of the $16 \mathrm{I} / \mathrm{O}$ lines simultaneously The current sinking curve shows how the individual I/O line drive increases if all the I/O lines are not fully loaded

Package Outlines

For information, see Package Outline Section 7.
Plastic, μ PD8243C
Ceramic, μ PD8243D
Cerdip, μ PD8243D

Notes

CMOS INPUT/OUTPUT EXPANDER FOR μ PD8048/80C48 FAMILY

Abstract

DESCRIPTION The μ PD82C43 input/output expander is directly compatible with the μ PD8048/80C48 family of single-chip microcomputers. Using NMOS technology the μ PD82C43 provides high drive capabilities while requiring only a single +5 V supply voltage.

The μ PD82C43 interfaces to the μ PD8048/80C48 family through a 4-bit I/O port and offers four 4 -bit bi-directional static I/O ports. The ease of expansion allows for multiple μ PD8243s to be added using the bus port.

The bi-directional I/O ports of the μ PD82C43 act as an extension of the I/O capabilities of the μ PD8048/80C48 microcomputer family. They are accessible with their own ANL, MOV, and ORL instructions.

FEATURES • Four 4-Bit I/O Ports

- Fully Compatible with μ PD8048/80C48 Microcomputer Family
- High Output Drive
- NMOS Technology
- Single +5 V Supply
- Direct Extension of Resident μ PD8048/80C48 I/O Ports
- Logical AND and OR Directly to Ports
- Compatible with Industry Standard 8243
- Available in a 24-Pin Plastic Package

$\mathrm{P}_{50}-1$		24	v_{cc}
$\mathrm{P}_{40} \mathrm{C}_{2}$		23	P_{51}
$\mathrm{P}_{41} \mathrm{C}_{3}$		22	P_{52}
P_{42} - 4		21	P_{53}
$\mathrm{P}_{43} \square_{5}$		20	${ }^{1} \mathrm{P}_{60}$
$\overline{\text { cs }}$	μ PD	19	\square_{61}
PROG \square^{7}	82C43	18	P62
$\mathrm{P}_{23} \square^{8}$		17	P_{63}
$\mathrm{P}_{22} \square_{9}$		16	P_{73}
$\mathrm{P}_{21} \square_{10}$		15	P_{72}
$\mathrm{P}_{20} \square_{11}$		14	$]^{P_{71}}$
GND 12		13	P_{70}

Rev/2
6-181

μ PD82C43

General Operation

The I/O capabilities of the μ PD8048/80C48 family can be enhanced in four 4-bit I/O port increments using one or more μ PD82C43s. These additional I/O lines are addressed as ports 4-7. The following lists the operations which can be performed on ports 4-7.

- Logical AND Accumulator to Port.
- Logical OR Accumulator to Port.
- Transfer Port to Accumulator.
- Transfer Accumulator to Port.

Port $2\left(\mathrm{P}_{20}-\mathrm{P}_{23}\right)$ forms the 4-bit bus through which the $\mu \mathrm{PD} 82 \mathrm{C} 43$ communicates with the host processor. The PROG output from the μ PD8048/80C48 family provides the necessary timing to the μ PD82C43. There are two 4 -bit nibbles involved in each data transfer. The first nibble contains the op-code and port address followed by the second nibble containing the 4-bit data. Multiple μ PD82C43s can be used for additional I/O. The output lines from the μ PD8048/80C48 family can be used to form the chip selects for the additional μ PD82C43s.

Power On Initialization

Applying power to the μ PD82C43 sets ports $4-7$ to the tri-state mode and port 2 to the input mode. The state of the PROG pin at power on may be either high or low. The PROG pin must make a high-to-low transition in order to exit from the power on mode. The power on sequence is initiated any time V_{CC} drops below 1 V . The table below shows how the 4 -bit nibbles on Port 2 correspond to the μ PD82C43 operations.

Port Address			Op-Code		
P_{21}	P_{20}	Address Code	P_{23}	P_{22}	Instruction Code
0	0	Port 4	0	0	Read
0	1	Port 5	0	1	Write
1	0	Port 6	1	0	ORLD
1	1	Port 7	1	1	ANLD

For example an 0010 appearing on $\mathrm{P}_{20}-\mathrm{P}_{23}$, respectively, would result in a Write to Port 4.

Read Mode

There is one Read mode in the μ PD82C43. A falling edge on the PROG pin latches the op-code and port address from input port 2. The port address and Read operation are then decoded causing the appropriate outputs to be tri-stated and the input buffers switched on. The rising edge of PROG terminates the Read operation. The port ($4,5,6$, or 7) that was selected by the port address ($\mathrm{P}_{21}-\mathrm{P}_{20}$) is returned to the tri-state mode, and port 2 is switched to the input mode.
Generally, in the read mode, a port will be an input and in the write mode it will be an output. If during program operation, the μ PD82C43's modes are changed, the first read pulse immediately following a write should be ignored. The subsequent read signals are valid. Reading a port will then force that port to a high impedance state.

Write Modes

There are three write modes in the μ PD82C43. The MOVD P_{p}, A instruction from the μ PD8048/80C48 family writes the new data directly to the specified port (4, 5, 6, or 7). The old data previously latched at that port is lost. The ORLD Pp,A instruction performs a logical OR between the new data and the data currently latched at the selected port. The result is then latched at that port. The final write mode uses the ANLD Pp,A instruction. It performs a logical AND between the new data and the data currently latched at the specified port. The result is latched at that port.

The data remains latched at the selected port following the logical manipulation until new data is written to that port.

BLOCK DIAGRAM

PIN IDENTIFICATION

PIN		
NO.	SYMBOL	FUNCTION

μ PD82C43

Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin	-0.5 to +7 Volts ${ }^{1}$
Power Dissipation	1 W
Supply Voltage	-0.3 to +10 V
Input, Output Voltage	-0.3 to $\mathrm{V}_{\mathrm{CC}}+03 \mathrm{~V}$

Note: (1) With respect to ground.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
COMMENT• Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage	$V_{\text {IL }}$	03		08	V	
Input High Voltage	$\mathrm{V}_{\text {IH }}$	$\mathrm{v}_{\mathrm{CC}}-20$		V_{Cc}	V	
Output Low Voltage (Ports 4 7)	$\overline{v_{\mathrm{OLI}}}$			045	v	IOL 5 mA ()
Output Low Voltage (Port 7)	$\mathrm{V}_{\mathrm{OL} 2}$			1	V	$1 \mathrm{OL}+20 \mathrm{~mA}$
Output Low Voltage (Port 2)	$\mathrm{V}_{\mathrm{OL} 3}$			045	V	$1 \mathrm{OL}=06 \mathrm{~mA}$
Output High Voltage (Ports 47)	${ }^{\mathrm{V} \text { OH1 }}$	$\mathrm{V}_{\mathrm{CC}}-05$			V	$1 \mathrm{OH}=-240 \mu \mathrm{~A}$
Output High Voltage (Port 2)	$\mathrm{V}_{\mathrm{OH} 2}$	$\mathrm{V}_{\text {CC }}-05$			v	$1 \mathrm{OH}=-100 \mu \mathrm{~A}$
Sum of All IOL From 16 Outputs	${ }^{\prime} \mathrm{OL}$			80	mA	5 mA Each Pın
input Leakage Current (Ports 4 7)	'ILI			± 1	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ to 0 V
Input Leakage Current (Port 2, $\overline{\mathrm{CS}}, \mathrm{PROG}$)	${ }^{1 / 2} 2$			± 1	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {CC }}$ to OV
$\mathrm{V}_{\text {CC }}$ Supply Current	${ }^{1} \mathrm{CC}{ }_{1}$		100	300	$\mu \mathrm{A}$	
Power Down Supply Current	${ }^{\prime} \mathrm{CC2}$		1	10	$\mu \mathrm{A}$	

Note (1) Refer to qraph of additional sink current drive

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	-03		$018 \mathrm{~V}_{\text {CC }}$	v	
Input High Voltage	$\mathrm{V}_{\text {IH }}$	$07 \mathrm{~V}_{\text {CC }}$		V_{CC}	V	
Output Low Voltage	$\mathrm{V}_{\text {OL1 }}$			$+045$	v	Port 4-7, $\mathrm{I}_{\text {OL }}=25 \mathrm{~mA}$
	$\mathrm{V}_{\mathrm{OL} 2}$			+1	V	Port 7, $\mathrm{I} \mathrm{OL}=7 \mathrm{~mA}$
	$\mathrm{V}_{\mathrm{OL} 3}$			+045	v	Port $2,1 \mathrm{OL}=03 \mathrm{~mA}$
Output High Voltage	$\mathrm{V}_{\mathrm{OH} 1}$	$075 V_{C C}$			v	$\begin{aligned} & \text { Port 4-7, } \mathrm{OH}= \\ & -120 \mu \mathrm{~A} \end{aligned}$
	$\mathrm{V}_{\mathrm{OH} 2}$	$075 \mathrm{~V}_{\text {CC }}$			v	Port 2, $\mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A}$
Input Leakage Current	IL1			± 1	$\mu \mathrm{A}$	$\begin{aligned} & \text { Port 4-7, } \mathrm{V}_{\mathrm{IN}} \quad \mathrm{~V}_{\mathrm{CC}} \\ & \mathrm{OV} \end{aligned}$
	IL2			± 1	$\mu \mathrm{A}$	$\begin{aligned} & \text { Port 2, } \overline{\mathrm{CS}}, \mathrm{PROG}, \mathrm{~V}_{\text {IN }} \\ & =\mathrm{V}_{\mathrm{CC}} \mathrm{DV} \\ & \hline \end{aligned}$
Supply Current	${ }^{\text {C CC1 }}$		1	10	$\mu \mathrm{A}$	STANDBY MODE,
	${ }^{\text {'CC2 }}$		100	300	$\mu \mathrm{A}$	OPERATION MODE ${ }^{(1} \mathrm{OH}=\mathrm{O} \mu \mathrm{A}$, PROG Pulse Cycle $=5 \mu \mathrm{~s}$ (MIN)
Output Current (Low)	${ }^{\prime} \mathrm{OL}$			40	mA	Port 4-7, 25 mA Each Pin

ABSOLUTE MAXIMUM RATINGS*
$T_{\text {t }} \quad 40 \mathrm{C} 10+85 \mathrm{C} \quad \mathrm{VCC}+5 \mathrm{~V} \quad 10^{n}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Code Valıd Before PROG	${ }^{\text {A }}$ A	100			ns	80 pF Load
Code Valid After PROG	${ }_{18}$	0			ns	20 pF Load
Data Valıd Before PROG	${ }^{t} \mathrm{C}$	200			ns	80 pF Load
Data Valid After PROG	${ }^{\text {t }}$	20			ns	20 pF Load
Port 2 Floating After PROG	${ }^{1} \mathrm{H}$	0		150	ns	20 pF L.oad
PROG Negative Pulse Width	${ }^{1} \mathrm{~K}$	700			ns	
Ports 4.7 Valid After PROG	${ }^{\text {tPO }}$			700	ns	100 pF Load
Ports 4.7 Valid Before/After PROG	${ }_{1} \mathrm{P}$	100			ns	
Port 2 Valid After PROG	${ }^{\text {t }} \mathrm{ACC}$	90		650	ns	80 pF Load
$\overline{\text { CS }}$ Valid Before/After PROG	${ }^{\text {t }} \stackrel{\text { CS }}{ }$	50			ns	

$\mathrm{T}_{\mathrm{a}}=-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V} \sim+6 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Command Input Setup Time to PROG \downarrow	${ }^{t} A$	300			ns	Port 2 (Control, Port, Address), 80pF Load
Command Input Hold Time after PROG \downarrow	${ }^{\text {t }}$ B	0			ns	Port 2, (Control, Port, Address), 20pF Load
Data Input Setup Time to PROG \uparrow	${ }^{t} \mathrm{C}$	600			ns	Port 2, (Write Mode), 80pF Load
Data Input Hold Time after PROG \uparrow	${ }^{\text {t }}$	80			ns	Port 2, (Write Mode). 20pF Load
Data Float Delay Time from PROG \uparrow	${ }^{t} \mathrm{H}$	0		400	ns	Port 2. (Read Mode). 20pF Load
PROG Pulse Width	${ }^{\prime}{ }_{K}$	2			$\mu \mathrm{s}$	
$\overline{\mathrm{CS}}$ Input Setup Time to PROG \downarrow $\overline{\mathrm{CS}}$ input Hold Time after PROG \uparrow	${ }^{t} \mathrm{CS}$	200			ns	
Data Output Delay Time from PROG \uparrow	${ }^{\text {tPO }}$			2	$\mu \mathrm{s}$	Port $4 \quad 7100 \mathrm{pF}$ Load
Data Input Setup Time to PROG \downarrow Data Input Hold Time after PROG \uparrow	${ }^{\prime} \mathrm{P}$	100			ns	Port 47
Data Output Delay Time from PROG \downarrow	${ }^{\text {t }} \mathrm{ACC}$	*		35	μs	Port 2, 80pF Load

TIMING WAVEFORMS

μ PD82C43

Note. (1) This curve plots the quaranteed worst case curfent sinking capability of any l'O port line versus the total sink current of all pins The μ PD82C43 is capable of sinking 5 mA (for $\mathrm{V}_{\mathrm{OL}} 04 \mathrm{~V}$) through each of the $16 \mathrm{I} / \mathrm{O}$ lines simultaneously The cuirent sinking curve shows how the individual I/O line drive increases if all the I/O lines are not fully loaded
${ }^{\mathrm{t}} \mathrm{ACC}($ MIN $) / \mu$ PD82C43 vs tPC $($ MAX $) / \mu$ PD80C48, 49

Package Outlines

For information, see Package Outline Section 7.
Plastic, μ PD82C43C
Cerdip, μ PD82C43D
Plastic Skinnydip, μ PD82C43CX

PROGRAMMABLE COMMUNICATION INTERFACES

DESCRIPTION

The μ PD8251A/AF Universal Synchronous/Asynchronous Receiver/Transmitter (USART) is designed for microcomputer systems data communications. The USART is used as a peripheral and is programmed by the 8080A or other processor to communicate in commonly used serial data transmission techniques including IBM Bi-Sync. The USART receives serial data streams and converts them into parallel data characters for the processor. While receiving serial data, the USART will also accept data characters from the processor in parallel format, convert them to serial format and transmit. The USART will signal the processor when it has completely received or transmitted a character and requires service. Complete USART status including data format errors and control signals such as TxE and SYNDET, is available to the processor at any time.

- Asynchronous or Synchronous Operation
- Asynchronous:

Five 8-Bit Characters
Clock Rate - 1, 16 or $64 \times$ Baud Rate Break Character Generation Select 1, 1-1/2, or 2 Stop Bits
False Start Bit Detector Automatic Break Detect and Handling (μ PD8251A)

- Synchronous:

Five 8-Bit Characters
Internal or External Character Synchronization Automatic Sync Insertion
Single or Double Sync Characters

- Baud Rate (1X Mode) - DC to 64 K Baud
- Full Duplex, Double Buffered Transmitter and Receiver
- Parity, Overrun and Framing Flags
- Fully Compatible with 8080A/8085/ μ PD780 (Z80TM)
- All Inputs and Outputs are TTL Compatible
- Single +5 Volt Supply, $\pm 10 \%$
- Separate Device Receive and Transmit TTL Clocks
- 28 Pin Plastic,Cerdip, and Ceramic DIP Packages
- N-Channel MOS Technology

PIN NAMES

PIN CONFIGURATION

$\mathrm{D}_{7}-\mathrm{D}_{0}$	Data Bus (8 bits)
C/ $\overline{\bar{D}}$	Control or Data is to be Written or Read
$\overline{\overline{R D}}$	Read Data Command
WR	Write Data or Control Command
$\overline{\text { CS }}$	Chip Enable
CLK	Clock Pulse (TTL)
RESET	Reset
$\overline{\mathrm{T} \times \mathrm{C}}$	Transmitter Clock (TTL)
TxD	Transmitter Data
$\overline{\mathrm{BxC}}$	Receiver Clock (TTL)
R×D	Receiver Data
RxRDY	Recenver Ready (has character for 8080)
TXRDY	Transmitter Ready (ready for char from 8080)
$\overline{\text { OSP }}$	Data Set Ready
DTR	Data Terminal Ready
SYNDET	Sync Detect
SYNDET/BD	Sync Detect/Break Detect
RTS	Request to Send Date
CTS	Clear to Send Data
TxE	Transmitter Empty
$V_{\text {cc }}$	+5 Voit Supply
GND	Ground

μ PD8251AF ENHANCEMENTS

PRESENT μ PD8251A

1. A previously loaded data character will be retransmitted if Tx was disabled before TxEMPTY by TxEnable \downarrow or $\overline{\text { CTS }} \uparrow$, and is re-enabled by TxEnable \uparrow or CTS \downarrow before a new data character is sent to μ PD8251A by CPU. CPU.
2. Break Detect does not always reset upon RxData returning to a ' 1 ' during the last bit of the character following the break. Break detect will latch up, and the device must be cleared by device Reset.
3. On TxEnable \downarrow or $\overline{\mathrm{CTS}} \uparrow$ during the first character of a double-character sync output, the second sync character will not be output.
4. If the Status Register is read during a status update, an erroneous status read may result.
5. In Rx mode, a hardware or software reset does not force asynchronous mode, clear hunt condition or require à proper line initialization (1 to 0 transition) before receiving. This may cause reception of garbage characters.
6. Break Detect will occur on the first complete (start bit to stop bit) break. This situation could be confused with a null frame (all zeroes) that also has a framing error.
7. Sync Detect does not reset on status read.
8. RxRDY clears within 2 tCY's of $\overline{\mathrm{RD}}$ leading edge.
9. TxEMPTY oscillates with internal clock when TxEnable \downarrow or CTS \uparrow.
10. TxRDY and TxEMPTY clear on $\overline{W R}$ tralling edge (data).
11. Enter hunt command affects asynchronous Rx by loss of data characters.
12. Writing a command will sometimes clear TxRDY or TxEMPTY if C / \bar{D} set up or hold is marginal. Reading status will sometimes clear RxRDY if C / \bar{D} set up or hold is margınal.
13. Rx data overrun error will not occur and garbage data may result if $\overline{\mathrm{RD}}$ and $\overline{\mathrm{CS}}$ are active during an internal data update.
14. In asynchronous mode, after a reset, the first TXD bit may be shifted out on either the first or second $\overline{\mathrm{TxC}} \downarrow$ edge.
15. RxRDY can glitch when CLK does not have a fixed phase relationship to $\overline{R x C}$.
16. The receiver occasionally gives an extra character following the end of Break condition.

NEW μ PD8251AF

A previously loaded character will be flushed out and not transmitted on $\overline{\mathrm{CTS}} \downarrow$ or TxEnable \uparrow.

Break Detect will reset on RxData going to ' 1 '.

Will output both sync characters on TxEnable \downarrow or $\overline{\text { CTS }}$ \uparrow.

Some valid status (etther new or old) will always be available.
Reset will clear Rx hunt condition, force asynchronous operation (64 X clock), and require a proper line initialization before receiving anything.

Will give a framing error at the end of the first complete or partial break and will give a Break Detect at the stop bit position of the second contiguous break character.
Sync Detect will reset on status read.
RxRDY will clear on $\overline{R D}$ leading edge.
TxEMPTY will not oscillate this way.
TxRDY, TxEMPTY will clear on $\overline{W R}$ leading edge.
Enter hunt will not affect asynchronous operation.
C / \bar{D} set up and hold margin will be improved.

Will indicate an overrun error properly.

The first TxD bit will be shifted out on the first $\overline{T \times C} \downarrow$ edge.

RxRDY will not glitch.

No extra characters will occur.

FUNCTIONAL DESCRIPTION

The μ PD8251A/AF Universal Synchronous/Asynchronous Receiver/Transmitters are designed specifically for 8080 microcomputer systems but work with most 8-bit processors. Operations of the μ PD8251A/AF, like other I/O devices in the 8080 family, are programmed by system software for maximum flexibility.

In the receive mode, the μ PD8251A/AF converts incoming serial format data into parallel data and makes certain format checks. In the transmit mode, it formats parallel data into serial form. The device also supplies or removes characters or bits that are unique to the communication format in use. By performing conversion and formatting services automatically, the USART appears to the processor as a simple or "transparent" input or output of byte-oriented parallel data.

BASIC OPERATION

$\mathbf{C} / \overline{\mathbf{D}}$	$\overline{\mathbf{R D}}$	$\overline{\mathbf{W R}}$	$\overline{\mathbf{C S}}$	
0	0	1	0	μ PD8251A/AF \rightarrow Data Bus
0	1	0	0	Data Bus $\rightarrow \mu$ PD8251A/AF
1	0	1	0	Status \rightarrow Data Bus
1	1	0	0	Data Bus \rightarrow Control
X	X	X	1	Data Bus \rightarrow 3-State
X	1	1	0	

PIN			FUNCTION
NO.	SYMBOL	NAME	
$\begin{gathered} 1,2, \\ 27,28 \\ 5-8 \end{gathered}$	$\mathrm{D}_{7}-\mathrm{D}_{0}$	Data Bus Buffer	An 8-bit, 3-state bi-directional buffer used to interface the USART to the processor data bus. Data is transmitted or received by the buffer in response to input/output or Read/ Write instructions from the processor. The Data Bus Buffer also transfers Control words, Command words, and Status
26	$\mathrm{V}_{\text {CC }}$	$V_{\text {CC }}$ Supply Voltage	+5 volt supply
4	GND	Ground	Ground
Read/Write Control Logic			This logic block accepts inputs from the processor Control Bus and generates control signals for overall USART operation The Mode Instruction and Command Instruction registers that store the control formats for device functional definition are located in the Read/ Write Control Logic

PIN			FUNCTION
NO	SYMBOL	NAME	
21	RESET	Reset	A "one" on this input forces the USART into the "Idle" mode where it will reman untll reinitialized with a new set of control words. Minimum RESET pulse width is 6 t CY .
20	CLK	Clock Pulse	The CLK input provides for internal device timing and is usually connected to the Phase 2 (TTL) output of the μ PB8224 Clock Generator. External inputs and outputs are not referenced to CLK, but the CLK frequency must be at least 30 times the Receiver or Transmitter clocks in the synchronous mode and 4.5 times for the asynchronous mode.
10	$\overline{\mathrm{WR}}$	Write Data	A "zero" on this input instructs the USART to accept the data or control word which the processor is writing out on the data bus.
13	$\overline{R D}$	Read Data	A "zero" on this input instructs the USART to place the data or status information onto the Data Bus for the processor to read
12	C/D	Control/Data	The Control/Data input, in conjunction with the $\overline{W R}$ and $\overline{R D}$ inputs, informs the USART to accept or provide either a data character, control word or status information via the Data Bus $0=$ Data, $1=$ Control.
11	$\overline{\overline{C S}}$	Chip Select	A "zero" on this input enables the USART to read from or write to the processor.
Modem Control			The μ PD8251A/AF have a set of control inputs and outputs which may be used to simplify the interface to a Modem.
22	$\overline{\mathrm{DSR}}$	Data Set Ready	The Data Set Ready input can be tested by the processor via Status information The $\overline{\mathrm{DSR}}$ input is normally used to test Modem Data Set Ready condition
24	$\overline{\text { DTR }}$	Data Termınal Ready	The Data Terminal Ready output can be controlled via the Command word The DTR output is normally used to drive Modem Data Terminal Ready or Rate Select lines
23	$\overline{\text { RTS }}$	Request to Send	The Request to Send output can be controlled via the Command word The $\overline{\mathrm{RTS}}$ output is normally used to drive the Modem Request to Send line
17	CTS	Clear to Send	A "zero" on the Clear to Send input enables the USART to transmit serial data if the TXEN bit in the Command Instruction register is enabled (one)

TRANSMIT BUFFER The Transmit Buffer receives parallel data from the Data Bus Buffer via the internal data bus, converts parallel to serial data, inserts the necessary characters or bits needed for the programmed communication format and outputs composite serial data on the TXD pin.

PIN IDENTIFICATION (CONT.)

PIN			FUNCTION
NO.	SYMBOL	NAME	
Transmit Control Logic			The Transmit Control Logic accepts and outputs all external and internal signals necessary for serial data transmission.
15	T×RDY	Transmitter Ready	Transmitter Ready signals the processor that the transmitter is ready to accept a data character. TxRDY can be used as an interrupt or may be tested through the Status information for polled operation. Loading a character from the processor automatically resets TxRDY, on the leading edge.
18	T×E	Transmitter Empty	The Transmitter Empty output signals the processor that the USART has no further characters to transmit. $T \times E$ is automatically reset upon receiving a data character from the processor. In half-duplex, TxE can be used to signal end of a transmission and request the processor to "turn the line around." The TxEn bit in the command instruction does not effect TXE. In the Synchronous mode, a "one" on this output indicates that a Sync character or characters are about to be automatically transmitted as "fillers" because the next data character has not been loaded.
9	$\overline{\mathrm{TxC}}$	Transmitter Clock	The Transmitter Clock controls the serial character transmission rate. In the Asynchronous mode, the $\overline{T x C}$ frequency is a multiple of the actual Baud Rate. Two bits of the Mode Instruction select the multiple to be $1 x, 16 x$, or $64 x$ the Baud Rate. In the Synchronous mode, the $\overline{T \times C}$ frequency is automatically selected to equal the actual Baud Rate Note that for both Synchronous and Asynchronous modes, serial data is shifted out of the USART by the falling edge of $\overline{T \times C}$.
19	TxD	Transmitter Data	The Transmit Control Logic outputs the composite serial data stream on this pin.

μ PD8251A/AF
INTERFACE TO 8080 STANDARD SYSTEM BUS

The Receive Buffer accepts serial data input at the $\overline{\mathrm{RxD}}$ pin and converts the data from serial to parallel format. Bits or characters required for the specific communication technique in use are checked and then an eight-bit "assembled" character is readied for the processor. For communication techniques which require less than eight bits, the μ PD8251A/AF set the extra bits to "zero."

PIN			FUNCTION
NO.	SYMBOL	NAME	
Receiver Control Logic			This block manages all activities related to incoming data.
14	R×RDY	Receiver Ready	The Receiver Ready output indicates that the Receiver Buffer is ready with an "assembled" character for input to the processor For Polled operation, the processor can check R×RDY using a Status Read or RxRDY can be connected to the processor interrupt structure Note that reading the character to the processor automatically resets R×RDY
25	$\overline{R \times C}$	Receıver Clock	The Receiver Clock determines the rate at which the incoming character is received In the Asynchronous mode, the $\overline{\mathrm{RxC}}$ frequency may be 1.16 or 64 times the actual Baud Rate but in the Synchronous mode the $\overline{R \times C}$ frequency must equal the Baud Rate. Two bits in the mode instruction select Asynchronous at $1 x, 16 x$ or $64 x$ or Synchronous operation at $1 \times$ the Baud Rate Unlike $\overline{T x C}$, data is sampled by the μ PD8251A/AF on the rising edge of $\overline{\mathrm{RxC}}$. (1)
3	$R \times D$	Receiver Data	A composite serial data stream is received by the Receiver Control Logic on this pin
16	SYNDET (μ PD8251)	Sync Detect	The SYNC Detect pin is only used in the Synchronous mode. The μ PD8251A/AF may be programmed through the Mode Instruction to operate in either the internal or external Sync mode and SYNDET then functions as an output or input respectively. In the internal Sync mode, the SYNDET output will go to a "one" when the μ PD8251A/AF has located the SYNC character in the Receive mode If double SYNC character (bi-sync) operation has been programmed, SYNDET will go to "one" in the middle of the last bit of the second SYNC character SYNDET is automatically reset to "zero" upon a Status Read or RESET. In the external SYNC mode, a "zero" to "one" transition on the SYNDET input will cause the μ PD8251A/AF to start assembling data character on the next falling edge of $\overline{\mathrm{RxC}}$. The length of the SYNDET input should be at least one $\overline{\mathrm{R} \times \mathrm{C}}$ period, but may be removed once the μ PD8251A/AF is in SYNC.
16	$\begin{aligned} & \text { SYNDET/BD } \\ & (\mu \mathrm{PD} 8251 \mathrm{~A} / \mathrm{AF}) \end{aligned}$	Sync Detect/ Break Detect	The SYNDET/BD pin is used in both Synchronous and Asynchronous modes. When in SYNC mode the features for the SYNDET pin described above apply. When in Asynchronous mode, the Break Detect output will go high which all zero word of the programmed length is received. This word consists of: start bit, data bit, parity bit and one stop bit. Reset only occurs when Rx data returns to a logic one state or upon chip reset. The state of Break Detect can be read as a status bit.

Note: (1) Since the μ PD8251A/AF will frequently be handing both the reception and transmission for a given link, the Receive and Transmit Baud Rates will be the same. $\overline{\mathrm{RxC}}$ and $\overline{T x C}$ then require the same frequency and may be tied together and connected to a single clock source or Baud Rate Generator.
Examples If the Baud Rate equals 110 (Async) If the Baud Rate equals 300 .
$\overline{R x C}$ or $\overline{T x C}$ equals $110 \mathrm{~Hz}(1 x)$ $\overline{R x C}$ or $\overline{T x C}$ equals $1.76 \mathrm{KHz}(16 x)$ $\overline{R \times C}$ or $\overline{T \times C}$ equals $7.04 \mathrm{KHz}(64 x)$
$\overline{R x C}$ or $\overline{T x C}$ equals 300 Hz (1x) A or S
$\overline{R \times C}$ or $\overline{T \times C}$ equals 4800 Hz (16x) A only
$\overline{\mathrm{RXC}}$ or $\overline{\mathrm{T} \times \mathrm{C}}$ equals $19.2 \mathrm{KHz}(64 \times$) A only

A set of control words must be sent to the μ PD8251A/AF to define the desired mode and communications format. The control words will specify the BAUD rate factor ($1 x, 16 x, 64 x$), character length (5 to 8), number of STOP bits ($1,1-1 / 2,2$) Asynchronous or Synchronous mode, SYNDET (IN or OUT), parity, etc.

After receiving the control words, the μ PD8251A/AF are ready to communicate.' TxRDY is raised to signal the processor that the USART is ready to receive a character for transmission. When the processor writes a character to the USART, TxRDY is automatically reset.

Concurrently, the μ PD8251A/AF may receive serial data; and after receiving an entire character, the RxRDY output is raised to indicate a completed character is ready for the processor. The processor fetch will automatically reset RxRDY.

Note: The μ PD8251A/AF may provide faulty RxRDY for the first read after power-on or for the first read after receive is re-enabled by a command instruction (RxE). A dummy read is recommended to clear faulty RxRDY. But this is not the case for the first read after hardware or software reset after the device operation has once been established.

The μ PD8251A/AF cannot transmit until the TxEN (Transmitter Enable) bit has been set by a Command Instruction and until the CTS (Clear to Send) input is a "zero". TxD is held in the "marking" state after Reset awaiting new control words.

USART PROGRAMMING
The USART must be loaded with a group of two to four control words provided by the processor before data reception and transmission can begin. A RESET (internal or external) must immediately proceed the control words which are used to program the complete operational description of the communications interface. If an external RESET is not available, three successive 00 Hex or two successive 80 Hex command instructions ($C / \bar{D}=1$) followed by a software reset command instruction (40 Hex) can be used to initialize the μ PD8251A/AF.

There are two control word formats:

1. Mode Instruction
2. Command Instruction

MODE INSTRUCTION This control word specifies the general characteristics of the interface regarding the Synchronous or Asynchronous mode, BAUD rate factor, character length, parity, and number of stop bits. Once the Mode Instruction has been received, SYNC characters or Command Instructions may be inserted depending on the Mode Instruction content.

This control word will be interpreted as a SYNC character definition if immediately preceded by a Mode Instruction which specified a Synchronous format. After the SYNC character(s) are specified or after an Asynchronous Mode Instruction, all subsequent control words will be interpreted as an update to the Command Instruction. Command Instruction updates may occur at any time during the data block. To modify the Mode Instruction, a bit may be set in the Command Instruction which causes an internal Reset which allows a new Mode Instruction to be accepted.

MODE INSTRUCTION DEFINITION

ASYNCHRONOUS TRANSMISSION

ASYNCHRONOUS RECEIVE

PROCESSOR BYTE (5-8 BITS/CHAR)

ASSEMBLED SERIAL DATA OUTPUT (T×D)

TRANSMISSION FORMAT

PROCESSOR BYTE (5-8 BITS/CHAR) (3)

RECEIVE FORMAT
(2) Does not appear on the Data Bus
(3) If character length is defined as 5,6 , or 7 bits, the unused bits are set to "zero"

As in Asynchronous transmission, the TxD output remains "high" (marking) until the μ PD8251A/AF receive the first character (usually a SYNC character) from the processor. After a Command Instruction has set TxEN and after Clear to Send $(\overline{\mathrm{CTS}})$ goes low, the first character is serially transmitted. Data is shifted out on the falling edge of $\overline{T x C}$ and the same rate as $\overline{T x C}$.

Once transmission has started, Synchronous Mode format requires that the serial data stream at TxD continue at the $\overline{T x C}$ rate or SYNC will be lost. If a data character is not provided by the processor before the μ PD8251A/AF Transmit Buffer becomes empty, the SYNC character(s) loaded directly following the Mode Instruction will be automatically inserted in the TxD data stream. The SYNC character(s) are inserted to fill the line and maintain synchronization until new data characters are available for transmission. If the μ PD8251A/AF become empty, and must send the SYNC characters(s), the TxEMPTY output is raised to signal the processor that the Transmitter Buffer is empty and SYNC characters are being transmitted. TxEMPTY is automatically reset by the next character from the processor.

In Synchronous Receive, character synchronization can be either external or inter- SYNCHRONOUS nal. If the internal SYNC mode has been selected, and the Enter HUNT (EH) bit has RECEIVE been set by a Command Instruction, the receiver goes into the HUNT mode.

Incoming data on the RxD input is sampled on the rising edge of $\overline{R \times C}$, and the Receive Buffer is compared with the first SYNC character after each bit has been loaded until a match is found. If two SYNC characters have been programmed, the next received character is also compared. When the SYNC character(s) programmed have been detected, the μ PD8251A/AF leave the HUNT mode and are in character synchronization. At this time, the SYNDET (output) is set high. SYNDET is automatically reset by a STATUS READ.

If external SYNC has been specified in the Mode Instruction, a "one" applied to the SYNDET (input) for at least one $\overline{\mathrm{RxC}}$ cycle will synchronize the USART.

Parity and Overrun Errors are treated the same in the Synchronous as in the Asynchronous Mode. If not in HUNT, parity will continue to be checked even if the receiver is not enabled. Framing errors do not apply in the Synchronous format.

The processor may command the receiver to enter the HUNT mode with a Command Instruction which sets Enter HUNT (EH) if synchronization is lost.

MODE INSTRUCTION FORMAT

TRANSMIT/RECEIVE FORMAT SYNCHRONOUS MODE

PROCESSOR BYTES 15.8 BITS CHAR)

ASSEMIBLED SERIAL DATA OUTPUT (T, D)

TRANSMIT FORMAT

RECEIVE FORMAT

Note (1) If characte, length is defined as $5,60,7$ bits, the unused bits are set to "zero
After the functional definition of the μ PD8251A/AF has been specified by the Mode Instruction and the SYNC character(s) have been entered (if in SYNC mode), the USART is ready to receive Command Instructions and begin communication. A Command Instruction is used to control the specific operation of the format selected by the Mode Instruction. Enable Transmit, Enable Receive, Error Reset and Modem Controls are controlled by the Command Instruction.
After the Mode Instruction and the SYNC character(s) (as needed) are loaded, all subsequent "control writes" (C/D $=1$) will load or overwrite the Command Instruction register. A Reset operation (internal via CMD IR or external via the RESET input) will cause the μ PD8251A/AF to interpret the next "control write", which must immediately follow the reset, as a Mode Instruction.

STATUS READ FORMAT

PARITY ERROR

OVERRUN ERROR

FRAMING ERROR (1)
It is frequently necessary for the processor to examine the status of an active interface device to determine if errors have occurred or if there are other conditions which require a response from the processor. The μ PD8251A/AF have features which allow the processor to read the device status at any time. A data fetch is issued by the processor while holding the C/D input "high" to obtain device Status Information. Many of the bits in the status register are copies of external pins. This dual status arrangement allows the μ PD8251A/AF to be used in both Polled and interrupt driven environments. Status update can have a maximum delay of 28 clock periods in the μ PD8251A/AF.

When a parity error is detected, the PE flag is set. It is cleared by setting the ER bit in a subsequent Command Instruction. PE being set does not inhibit USART operation.

If the processor fails to read a data character before the one following is available, the OE flag is set. It is cleared by setting the ER bit in a subsequent Command Instruction. Although OE being set does not inhibit USART operation, the previously received character is overwritten and lost.

If a valid STOP bit is not detected at the end of a character, the FE flag is set. It is cleared by setting the ER bit in a subsequent Command Instruction. FE being set does not inhibit USART operation.

Note. (1) ASYNC mode only.

APPLICATION OF THE μ PD8251A/AF

ASYNCHRONOUS SERIAL INTERFACE TO CRT TERMINAL, DC to 9600 BAUD

ASYNCHRONOUS INTERFACE TO TELEPHONE LINES

SYNCHRONOUS INTERFACE TO TERMINAL OR PERIPHERAL DEVICE

SYNCHRONOUS INTERFACE TO TELEPHONE LINES
Operating Temperature . $-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ali Output Voltages . -0.5 to +7 Volts
All Input Voltages . -0.5 to +7 Volts
Supply Voltages .
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT. Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

$$
T_{a}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \text { for } 8251 \mathrm{~A} / \mathrm{AF} ; \mathrm{GND}=0 \mathrm{~V} .
$$

PARAMETER	SYMBOL		MITS	UNIT	TEST CONDITIONS
		μ PD8251A/AF			
		MIN	MAX		
Input Low Voltage	$V_{\text {IL }}$	-0.5	08	V	
Input High Voltage	$\mathrm{V}_{1} \mathrm{H}$	2.0	$\mathrm{V}_{\text {cc }}$	V	
Output Low Voltage	$\mathrm{V}_{\text {OL }}$		0.45	V	$\begin{array}{ll} \mu \mathrm{PD} 8251 & \mathrm{IOL}=1.7 \mathrm{~mA} \\ \mu \mathrm{PD} 8251 \mathrm{~A} & \mathrm{I}_{\mathrm{OL}}=2.2 \mathrm{~mA} \end{array}$
Output High Voltage	V_{OH}	2.4		V	$\begin{array}{ll} \mu \mathrm{PD} 8251 . & \mathrm{I}_{\mathrm{OH}}=-10 \mathrm{C} \mu \mathrm{~A} \\ \mu \mathrm{PD} 8251 \mathrm{~A} & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{array}$
Output Float Leakage	${ }^{\prime}$ OFL		± 10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0.45 \mathrm{~V}$
			10		$.45 \mathrm{~V} \leqslant \mathrm{~V}_{\text {OUT }} \leqslant V_{\text {CC }}$
Input Load Current	1 IL		10	$\mu \mathrm{A}$	$.45 \mathrm{~V} \leqslant \mathrm{~V}_{\text {IN }} \leqslant \mathrm{V}_{\text {CC }}$
Power Supply Current	${ }^{\prime} \mathrm{CC}$		100	mA	All Outputs = Logic 1

$T_{a}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{GND}=0 \mathrm{~V}$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	CIMITS CONDITIONS
Input Capacitance	$\mathrm{C}_{1 N}$			10	pF	$\mathrm{fc}=1 \mathrm{MHz}$
I/O Capacitance	$\mathrm{C}_{1 / \mathrm{O}}$			20	pF	Unmeasured pins returned to GND

TESTING INPUT, OUTPUT WAVEFORM

TEST LOAD CIRCUIT

ABSOLUTE MAXIMUM RATINGS*

DC CHARACTERISTICS

CAPACITANCE
$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$ for $8251 \mathrm{~A} / \mathrm{AF} ; \mathrm{GND}=0 \mathrm{~V}$.

PARAMETER	SYMBOL	LIMITS				UNIT	TEST CONDITIONS
		${ }_{\mu}$ PD88215A		μ PD8251AF			
		MIN	MAX	MIN	MAX		
READ							
Address Stable before $\overline{\mathrm{READ}}(\overline{\mathrm{CS}} \overline{\mathrm{CD}})$ IT	${ }^{\prime} A R$	50		0		ns	
Address Hold Time for $\overline{\mathrm{READ}}$ ($\overline{\mathrm{CS}} \overline{\mathrm{CD}}$) ()	${ }^{\text {t }} \mathrm{RA}$	50		0		ns	
READ Pulse Width	${ }^{1} \mathrm{RR}$	250		200		ns	
Data Delay from $\overline{\text { READ (B) }}$	${ }^{\text {t }} \mathrm{RD}$		250		140	ns	μ PD8251A C $\mathrm{L} \quad 150 \mathrm{pF}$
READ to Data Floating	${ }^{\text {t }} \mathrm{DF}$	10	100	10	80	ns	
WRITE							
Address Stable betore WRITE	${ }^{\text {t }}$ AW	50		0		ns	
Address Hold Time for WRITE	${ }^{\text {I }}$ WA	50		0		ns	
WRITE Pulse Width	${ }^{\text {tw }}$ W	250		200		ns	
Data Sel-Up Time for WRITE	tow	150		100		ns	
Data Hold Time for WRITE	${ }^{\text {two }}$	30		0		ns	
Recovery Time Between WRITES ¢	${ }^{\text {t } R V}$	6		6		${ }^{1} \mathrm{CY}$	
OTHER TIMING							
Clock Period (3)	${ }^{\text {c }} \mathrm{Cr}$	032	135	20	135	$\mu \mathrm{s}$	
Clock Pulse Width High	${ }_{\text {t }}{ }_{\text {d }}$ W	140	${ }^{1} \mathrm{Cr}^{-90}$	70	${ }^{1} \mathrm{CY}^{-40}$	ns	
Clock Pulse Width Low	$\mathrm{f}_{\mathrm{d} W} \mathrm{~W}$	90		40		ns	
Clock Rise and Fall Time	${ }^{t_{R}{ }^{\text {F }} \text { F }}$	5	20	5	20	ns	
T×D Delay from Falling Edge of T×C			1		1	$\mu \mathrm{s}$	
Rx Data Set-Up Time to Sampling Puise	${ }^{\text {'SAx }}$	2				$\mu \mathrm{s}$	
Rx Data Hold Time to Sampling Puise	${ }^{\text {thra }}$	2				$\mu \mathrm{s}$	
Fransmitter Input Clock Frequency 1X Baud Rate	${ }^{\mathrm{T}} \mathrm{T} \times$		64	DC	64	kHz	
16X Baud Rate			310	DC	310	kHz	
64X Baud Rate			615	DC	615	kHz	
Transmitter Input Clock Pulse Width 1X Baud Rate	${ }^{\text {'TPW }}$	12		12		${ }^{1} \mathrm{CY}$	
16X and 64X Baud Rate		1		1		${ }^{\text {t }} \mathrm{CY}$	
Transmitter Input Clock Pulse Delay 1X Baud Rate	${ }^{\text {t }}$ PD	15		15		${ }^{1} \mathrm{CY}$	
16X and 64X Baud Rate		3		3		${ }^{\text {t }} \mathrm{C} Y$	
Receiver input Clock Frequency 1X Baud Rate	${ }^{\text {f }} \mathrm{X}$		64	DC	64	kHz	
16X Baud Rate			310	DC	310	Khz	
			615	DC	615	kHz	
Receiver input Clock Pulse Width 1X Baud Rate	${ }^{\text {R RPW }}$	12		12		${ }^{\text {t }} \mathrm{CY}$	
16X and 64X Baud Rate		1		1		${ }^{\text {t }} \mathrm{Cr}$	
Receiver Input Clock Pulse Delay $1 \times$ Baud Rate	${ }^{\text {trap }}$	15		15		${ }^{1} \mathrm{CY}$	
16X and 64X Baud Rate		3		3		${ }^{1} \mathrm{Cr}$	
TXRDY Delay from Center of Data Bit ©	${ }^{t}{ }^{\prime} \times$		8		8	${ }^{1} \mathrm{Cr}$	
TxRDY ! from Leading Edge of $\overline{\text { WR }}$ (9)	${ }^{\text {tTx R R }}$ CLEAR				300	ns	
RxRDY Delay from Center of Data Bit Internal SYNDET Delay from Center of Data Bit (9)	$\begin{aligned} & t_{\mathrm{RX}} \\ & \mathrm{I}_{\mathrm{I}} \end{aligned}$		$\begin{aligned} & 24 \\ & 24 \end{aligned}$		20	$\begin{aligned} & { }^{\mathrm{C}} \mathrm{CY} \\ & { }^{\mathrm{t}} \mathrm{CY} \end{aligned}$	
RxRDY \perp from Leading Edge of $\overline{\mathrm{RD}}$ (9)	${ }^{t}$ RX RDY CLEAR				300	ns	
External SYNDET Set-Up Time before Falling Edge of RxC (2)	${ }^{\text {t }}$ ES	16		18		${ }^{\text {t }} \mathrm{C} Y$	
TXEMPTY Delay from Center of Data Bit (9)	${ }^{\text {t }}$ XE		20		20	${ }^{\text {c }} \mathrm{Cr}$	
Control Delay from Rising Edge of WRITE (TxE, DTR RTS) (2)	${ }^{\text {t }}$ WC	,	8		8	${ }^{\text {t }} \mathrm{Cr}$	
Control to READ Set-Up Time ($\overline{\mathrm{DSR}}, \overline{\mathrm{CTS}})$ (2)	${ }^{\text {t }} \mathrm{CR}$	20		20		${ }^{\text {c }} \mathrm{C}$	

Notes (1) AC timings measured at $\mathrm{V}_{\mathrm{OH}}=20 \mathrm{~V}_{\mathrm{Cl}}=08$ and with load circuit of Figure 1
2. This recovery time is for initiaization only when MODE SYNC1 SYNC2 COMMAND and first DATA BYTES are
written into the USART Subsequent writing of both COMMAND and DATA are only allowed when TXRDY 1
(3) The TxC and RXC frequencies have the following limitations with respect to CLK

For $1 \times$ Baud Rate ${ }^{\prime} \mathrm{TX}_{\mathrm{X}}$ or $\mathrm{f}_{\mathrm{Rx}}=1(30 \mathrm{t} \mathrm{CY})$
For 16 X and 64 X Baud Rate ${ }^{\mathrm{T} X}$ or $\mathrm{f}_{\mathrm{RX}} \quad 1\left(45 \mathrm{t}^{\mathrm{CY}}\right.$)
(4) Reset Pulse Width $=6{ }^{\mathrm{t}} \mathrm{CY}$ minmum

5 $T_{T X R D Y C C R ~}{ }^{-2 T_{C Y}} \cdot T_{d} \cdot T_{R} \cdot 200 \mathrm{~ns}$
6 TRXRDYCLR ${ }^{-2 T_{C Y}+T_{d}+T_{R} \cdot 170 n s}$
(7) Chip Select (CS) and Command Data (C D) are considered as Addresses
© Assumes that address is valid before R_{O}.
I Status update can have a maximum delay of 28 clock periods from the event affecting the status

SYSTEM CLOCK INPUT

WRITE DATA CYCLE (PROCESSOR \rightarrow USART)

READ DATA CYCLE (PROCESSOR \leftarrow USART)

TIMING WAVEFORMS (CONT.)

WRITE CONTROL OR OUTPUT PORT CYCLE (PROCESSOR \rightarrow USART)

READ CONTROL OR INPUT PORT CYCLE
(PROCESSOR \leftarrow USART)

NOTES$T_{\text {WC }}$ includes the response timing of a control byte

TRANSMITTER CONTROL AND FLAG TIMING (ASYNC MODE)

TIMING WAVEFORMS (CONT.)

EXAMPLE FORMAT $=5$ BIT CHARACTER WITH PARITY AND 2 SYNC CHARACTERS
TRANSMITTER CONTROL AND FLAG TIMING (SYNC MODE)

RECEIVER CONTROL AND FLAG TIMING (SYNC MODE)

Notes (1) Internal sync, 2 sync characters, 5 bits, with parity (2) External sync, 5 bits, with parity

Package Outlines

For information, see Package Outline Section 7.

Plastic, μ PD8251AC/AFC
Cerdip, μ PD8251AD/AFD
Ceramic, μ PD8251AD/AFD

PROGRAMMABLE INTERVAL TIMER

DESCRIPTION The NEC μ PD8253 contains three independent, programmable, multi-modal 16 -bit counter/timers. It is designed as a general purpose device, fully compatible with the 8080 family. The μ PD8253 interfaces directly to the busses of the processor as an array of I/O ports.

The μ PD8253 can generate accurate time delays under the control of system software. The three independent 16 -bit counters can be clocked at rates from DC to 4 MHz . The system software controls the loading and starting of the counters to provide accurate multiple time delays. The counter output flags the processor at the completion of the time-out cycles.

System overhead is greatly improved by relieving the software from the maintenance of timing loops. Some other common uses for the μ PD8253 in microprocessor based systems are:

- Programmable Baud Rate Generator
- Event Counter
- Binary Rate Multiplier
- Real Time Clock
- Digital One-Shot
- Complex Motor Controller

FEATURES

- Three Independent 16-Bit Counters
- Clock Rate: DC to 4 MHz
- Count Binary or BCD
- Single +5 Volt Supply, $\pm 10 \%$
- 24 Dual-In-Line Plastic Package

PIN NAMES

$D_{7}-D_{0}$	Data Bus (8-Bit)
CLK N	Counter Clock Inputs
GATE N	Counter Gate Inputs
OUT N	Counter Outputs
$\overline{R D}$	Read Counter
$\overline{W R}$	Write Command or Data
$\overline{C S}$	Chip Select
A_{0}, A_{1}	Counter Select
$V_{C C}$	+5 Volts
GND	Ground

Data Bus Buffer
The 3-state, 8-bit, bi-directional Data Bus Buffer interfaces the μ PD8253 to the 8080AF/8085A microprocessor system. It will transmit or receive data in accordance with the INput or OUTput instructions executed by the processor. There are three basic functions of the Data Bus Buffer.

1. Program the modes of the μ PD8253.
2. Load the count registers.
3. Read the count values.

Read/Write Logic

The Read/Write Logic controls the overall operation of the μ PD8253 and is governed by inputs received from the processor system bus.

Control Word Register

Two bits from the address bus of the processor, A_{0} and A_{1}, select the Control Word Register when both are at a logic " 1 " (active-high logic). When selected, the Control Word Register stores data from the Data Bus Buffer in a register. This data is then used to control:

1. The operational MODE of the counters.
2. The selection of $B C D$ or Binary countıng.
3. The loading of the count registers.

$\overline{\mathrm{RD}}$ (Read)

This active-low signal instructs the μ PD8253 to transmit the selected counter value to the processor.

$\overline{W R}$ (Write)

This active-low signal instructs the μ PD8253 to receive MODE information or counter input data from the processor.
A_{1}, A_{0}
The A_{1} and A_{0} inputs are normally connected to the address bus of the processor. They control the one-of-three counter selection and address the control word register to select one of the six operational MODES.

$\overline{\mathrm{CS}}$ (Chip Select)

The μ PD8253 is enabled when an active-low signal is applied to this input. Reading or writing from this device is inhibited when the chip is disabled. The counter operation, however, is not affected.
Counters \#0, \#1, \#2
The three identical, 16 -bit down counters are functionally independent allowing for separate MODE configuration and counting operation. They function as Binary or $B C D$ counters with their gate, input and output line configuration determined by the operational MODE data stored in the Control Word Register. The system software overhead time can be reduced by allowing the control word to govern the loading of the count data.
The programmer, with READ operations, has access to each counter's contents. The μ PD8253 contains the commands and logic to read each counter's contents while still counting without disturbing its operation.
The following is a table showing how the counters are manipulated by the input signals to the Read/Write Logic.

$\overline{\mathbf{C S}}$	$\overline{\mathbf{R D}}$	$\overline{\mathrm{WR}}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	FUNCTION
0	1	0	0	0	Load Counter No. 0
0	1	0	0	1	Load Counter No. 1
0	1	0	1	0	Load Counter No. 2
0	1	0	1	1	Write Mode Word
0	0	1	0	0	Read Counter No. 0
0	0	1	0	1	Read Counter No. 1
0	0	1	1	0	Read Counter No. 2
0	0	1	1	1	No-Operation, 3-State
$\mathbf{1}$	X	X	X	X	Disable, 3-State
$\mathbf{0}$	$\mathbf{1}$	1	X	X	No-Operation, 3-State

6-206

ABSOLUTE MAXIMUM
 RATINGS*

Operatıng Temperature . $\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin . -0.5 to +7 Volts(1)
Note (1) With respect to ground.
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{VCC}=+5 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage	$V_{\text {IL }}$	-0.5		0.8	V	
Input High Voltage	$\mathrm{V}_{1 H^{(1)}}$	2.0		$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
Output Low Voltage	V_{OL}			0.45	V	$\mathrm{I}_{\mathrm{OL}}=2.2 \mathrm{~mA}$
Output High Voltage	V_{OH}	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
Input Load Current	IIL			± 10	$\mu \mathrm{A}$	$0 \leqslant V_{\text {IN }} \leqslant V_{\text {CC }}$
Output Float Leakage Current	IOFL			± 10	$\mu \mathrm{A}$	$0.45 \leqslant V_{\text {OUT }} \leqslant V_{\text {CC }}$
$\mathrm{V}_{\text {CC }}$ Supply Current	${ }^{\prime} \mathrm{CC}$			140	mA	

Note: (1) $\mathrm{V}_{\mathrm{IH}} 2.2 \mathrm{~min}$ for 8253-2.
CAPACITANCE
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{GND}=0 \mathrm{~V}$

		LIMITS				
	PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT

PARAMETER	SYMBOL	$\frac{\text { LIMITS }}{\mu \text { PD8253-2 }}$		$\frac{\text { LIMITS }}{\mu \text { PD8253-5 }}$		UNIT	TEST CONDITIONS
		MIN	MAX	MIN	MAX		
READ							
Address Stable Before $\overline{\text { READ }}$	${ }^{t} A R$	0		0		ns	
Address Hold Time for READ	${ }_{\text {t }}$ A A	0		0		ns	
$\overline{\text { READ }}$ Pulse Width	$\mathrm{t}_{\text {RR }}$	200		250		ns	
Data Delay from $\overline{\text { READ }}$	${ }^{\text {tRD }}$		140		170	ns	$C L=150 \mathrm{pF}$
$\overline{\text { READ }}$ to Data Floatıng	${ }^{\text {t }}$ DF	10	100	25	100	ns	$C L=150 \mathrm{pF}$
Recovery Time Between READ	${ }^{\text {t }} \mathrm{RV}$	200		11000		ns	
WRITE							
Address Stable Before WRITE	${ }^{\text {t }}$ AW	0		0		ns	
Address Hold Time for WRITE	twA	20		0		ns	
WRITE Pulse Width	tww	200		250		ns	
Data Set Up Time for WRITE	tDW	150		150		ns	
Data Hold Time for WRITE	${ }^{\text {tw }}$ W	20		0		ns	
Recovery Time Between WRITES	tr V	200		1000		ns	
CLOCK AND GATE TIMING							
Clock Period	${ }^{\text {t CLK }}$	200		250	DC	ns	
High Pulse Width	tPWH	100		160		ns	
Low Pulse Width	tpWL	100		90		ns	
Gate Pulse Width High	tGW	150		150		ns	
Gate Set Up Time to Clock 1	t_{GS}	100		100		ns	
Gate Hold Time After Clock I	t_{GH}	100		50		ns	
Low Gate Width	${ }^{\text {t GL }}$	50		100		ns	
Output Delay from Clock !	tob		300		300	ns	$\mathrm{CL}=150 \mathrm{pF}$
Output Delay from Gate	${ }^{\text {tod }}$		300		300	ns	$C L=150 \mathrm{pF}$

Note: (1) AC Timing Measured at $\mathrm{V}_{\mathrm{OH}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=08 \mathrm{~V}$

PROGRAMMING The programmer can select any of the six operational MODES for the counters using THE μ PD8253 system software. Individual counter programming is accomplished by loading the CONTROL WORD REGISTER with the appropriate control word data ($A_{0}, A_{1}=11$).

CONTROL WORD FORMAT

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	$\mathrm{D}_{\mathbf{2}}$	$\mathrm{D}_{\mathbf{1}}$	$\mathrm{D}_{\mathbf{0}}$
SC 1	SC 0	RL 1	RL 0	M 2	M 1	M 0	BCD

SC - Select Counter

SC1	SC0	
0	0	Select Counter 0
0	1	Select Counter 1
1	0	Select Counter 2
1	1	Invalid

RL - Read/Load

RL1	RL0	
0	0	Counter Latching Operation
1	0	Read/Load Most Signıficant Byte Only
0	1	Read/Load Least Significant Byte Only
1	1	Read/Load Least Sıgnıficant Byte First, Then Most Signıficant Byte

BCD

0	Binary Counter, 16-Bits
1	BCD Counter, 4-Decades

M-Mode

M2	M1	M0	
0	0	0	Mode 0
0	0	1	Mode 1
X	1	0	Mode 2
X	1	1	Mode 3
1	0	0	Mode 4
1	0	1	Mode 5

Each of the three counters can be individually programmed with different operating MODES by appropriately formatted Control Words. The following is a summary of the MODE operations.

Mode 0: Interrupt on Terminal Count

The initial MODE set operation forces the OUTPUT Iow. When the specified counter is loaded with the count value, it will begin counting. The OUTPUT will remain low until the terminal count sets it high. It will remain in the high state until the trailing edge of the second $\overline{W R}$ pulse loads in COUNT data. If data is loaded during the countıng process, the first $\overline{W R}$ stops the count. Counting starts with the new count data triggered by the falling clock edge after the second $\overline{W R}$. If a GATE pulse is asserted while counting, the count is terminated for the duration of GATE. The falling edge of CLK following the removal of GATE restarts counting from the terminated point.

Mode 1: Programmable One-Shot

The OUTPUT is set low by the falling edge of CLOCK following the tralling edge of GATE. The OUTPUT is set high again at the termınal count. The output pulse is not affected if new count data is loaded while the OUTPUT is low. The new data will be loaded on the rising edge of the next trigger pulse. The assertion of a trigger pulse while OUTPUT is low, resets and retriggers the One-Shot. The OUTPUT will remain low for the full count value after the rising edge of TRIGGER.

Mode 2: Rate Generator

The RATE GENERATOR is a variable modulus counter. The OUTPUT goes low for one full CLOCK period as shown in following timing diagram. The count data sets the time between OUTPUT pulses. If the count register is reloaded between output pulses the present period will not be affected. The subsequent period will reflect the new value. The OUTPUT will remain high for the duration of the asserted GATE input. Normal operation resumes on the falling CLOCK edge following the rising edge of GATE.

Note: (1) All internal counter events occur at the falling edge of the associated clock in all modes of operation.

Mode 3: Square Wave Generator
MODE 3 resembles MODE 2 except the OUTPUT will be high for half of the count and low for the other half (for even values of data). For odd values of count data the OUTPUT will be high one clock cycle longer than when it is low (High Period $\rightarrow \frac{N+1}{2}$ clock cycles; Low Period $\rightarrow \frac{\sqrt{-1}}{2}$ clock periods, where N is the decimal value of count data). If the count register is reloaded with a new value during counting, the new value will be reflected immediately after the output transition of the current count.
The OUTPUT will be held in the high state while GATE is asserted. Counting will start from the full count data after the GATE has been removed.

Mode 4: Software Triggered Strobe

The OUTPUT goes high when MODE 4 is set, and counting begins after the second byte of data has been loaded. When the terminal count is reached, the OUTPUT will pulse low for one clock period. Changes in count data are reflected in the OUTPUT as soon as the new data has been loaded into the count registers. During the loadıng of new data, the OUTPUT is held high and counting is inhibited.

The OUTPUT is held high for the duration of GATE. The counters are reset and countıng begins from the full data value after GATE is removed.

Mode 5: Hardware Triggered Strobe

Loading MODE 5 sets OUTPUT high. Counting begıns when count data is loaded and GATE goes high. After terminal count is reached, the OUTPUT wi'l pulse low for one clock period. Subsequent trigger pulses will restart the counting ser;uence with the OUTPUT pulsing low on terminal count following the last rising ecge of the trigger input (Reference bottom half of timing diagram).

Package Outlines

For information, see Section 7.
Plastic, μ PD8253C-5
Ceramic, μ PD8253D-5
Cerdip, μ PD8253D-5

PROGRAMMABLE PERIPHERAL INTERFACES

DESCRIPTION

The μ PD8255A is a general purpose programmable INPUT/OUTPUT device designed for use with the 8080A/8085A microprocessors. Twenty-four (24) I/O lines may be programmed in two groups of twelve (group I and group II) and used in three modes of operation. In the Basic mode, (MODE 0), each group of twelve I/O pins may be programmed in sets of 4 to be input or output. In the Strobed mode, (MODE 1), each group may be programmed to have 8 lines of input or itput. Three of the remaining four pins in each group are used for handshaking strobes and interrupt control signals. The Bi-directional Bus mode, (MODE 2), uses the 8 lines of Port A for a bi-directional bus, and five lines from Port C for bus control signals. The μ PD8255A is packaged in 40-pin plastic dual-in-line packages.

FEATURES - Fully Compatible with the 8080A/8085 Microprocessor Families

- All Inputs and Outputs TTL Compatible
- 24 Programmable I/O Pins
- Direct Bit SET/RESET Eases Control Application Interfaces
- 8-4 mA Darlington Drive Outputs for Printers and Displays.
- LSI Drastically Reduces System Package Count
- Standard 40-Pin Dual-In-Line Plastic.

Rev/4
6-213

The μ PD8255A Programmable Peripheral Interface (PPI) is designed for use in 8080A/ 8085A microprocessor systems. Peripheral equipment can be effectively and efficiently interfaced to the 8080A/8085A data and control busses with the μ PD8255A. The μ PD8255A is functionally configured to be programmed by system software to avoid external logic for peripheral interfaces.

Data Bus Buffer

The 3-state, bidirectional, 8-bit Data Bus Buffer ($\mathrm{D}_{0}-\mathrm{D}_{7}$) of the μ PD8255A can be directly interfaced to the processor's system Data Bus ($\mathrm{D}_{0}-\mathrm{D}_{7}$). The Data Bus Buffer is controlled by execution of $I N$ and OUT instructions by the processor. Control Words and Status information are also transmitted via the Data Bus Buffer.

Read/Write and Control Logic

This block manages all of the internal and external transfers of Data, Control and Status. Through this block, the processor Address and Control busses can control the peripheral interfaces.

Chip Select, $\overline{\text { CS, }}$, pin 6

A Logic Low, $\mathrm{V}_{\text {IL }}$, on this input enables the μ PD8255A for communication with the 8080A/8085A.
Read, $\overline{\mathrm{RD}}, \operatorname{pin} 5$
A Logic Low, VIL, on this input enables the μ PD8255A to send Data or Status to the processor via the Data Bus Buffer.
Write, $\overline{W R}$, pin 36
A Logic Low, VIL, on this input enables the Data Bus Buffer to receive Data or Control Words from the processor.
Port Select $0, A_{0}, \operatorname{pin} 9$
Port Select 1, A1, pin 8
These two inputs are used in conjunction with $\overline{C S}, \overline{R D}$, and $\overline{W R}$ to control the selection of one of three ports on the Control Word Register. A_{0} and A_{1} are usually connected to A_{0} and A_{1} of the processor Address Bus.

Reset, pin 35

A Logic High, $\mathrm{V}_{1 \mathrm{H}}$, on this input clears the Control Register and sets ports A, B, and C to the input mode. The input latches in ports A, B, and C are not cleared.

Group I and Group II Controls

Through an OUT instruction in System Software from the processor, a control word is transmitted to the μ PD8255A. Information such as "MODE," "Bit SET," and "Bit RESET" is used to initialize the functional configuration of each I/O port.

Each group (I and II) accepts "commands" from the Read/Write Control Logic and "control words" from the internal data bus and in turn controls its associated I/O ports.

Group I - Port A and upper Port C (PC7-PC4)
Group II - Port B and lower Port C ($\mathrm{PC}_{3}-\mathrm{PC}_{0}$)
While the Control Word Register can be written into, the contents cannot be read back to the processor.
Ports A, B, and C
The three 8 -bit I/O ports (A, B, and C) in the μ PD8255A can all be confıgured to meet a wide variety of functional requirements through system software. The effectiveness and flexibility of the μ PD8255A are further enhanced by special features unique to each of the ports.

Port $\mathrm{A}=\mathrm{An} 8$-bit data output latch/buffer and data input latch.
Port $B=$ An 8 -bit data input/output latch/buffer and an 8 -bit data input buffer.
Port $\mathrm{C}=$ An 8 -bit output latch/buffer and a data input buffer (input not latched).
Port C may be divided into two independent 4-bit control and status ports for use with Ports A and B.

Abstract

ABSOLUTE MAXIMUM Operating Temperature. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ RATINGS*

Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Voltage on Any Pin With Respect to VSS.- 0.5 to +7 Volts Note: (1) With respect to $V_{S S}$ $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ *COMMENT: Stress above those listed under "Absolute Maximum Ratıngs" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum ratıng conditions for extended periods may affect device reliability.

PARAMETER	SYMBOL	$\frac{\text { LIMITS }}{\mu \text { PD8255A }}$		UNIT	TEST CONDITIONS
		MIN	MAX		
Input Low Voltage	$V_{\text {IL }}$	-05	08	V	
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2	V_{CC}	V	
Output Low Voltage	V_{OL}		045	V	(2)
Output High Voltage	V_{OH}	24		V	(3)
Darlington Drive Current	${ }^{1} \mathrm{OH}(1)$	-1	-4	mA	$V_{E X T}=15 \mathrm{~V}, \mathrm{R}_{\text {EXT }}=750 \Omega$
Power Supply Current	${ }^{1} \mathrm{CC}$		120	mA	$\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$, Output Open
Input Leakage Current	ILIH		10	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {CC }}$
Input Leakage Current	'LIL		-10	$\mu \mathrm{A}$	$V_{1 N}-04 V$
Output Leakage Current	${ }^{\mathrm{L}} \mathrm{LOH}$		± 10	$\mu \mathrm{A}$	$V_{\text {OUT }}=V_{\text {CC }} . \overline{C S}=20 \mathrm{~V}$
Output Leakage Current	'LOL		-10	$\mu \mathrm{A}$	$V_{\text {OUT }}=04 \mathrm{~V}, \overline{\mathrm{CS}}=20 \mathrm{~V}$

Notes (1) Any set of eight (8) outputs from either Port A, B, or C can source 4 mA into 15 V .
(2) $\cdot \mathrm{I}_{\mathrm{OL}}=2.5 \mathrm{~mA}$ for DB Port, 17 mA for Peripheral Ports
(3) ${ }^{\mathrm{I}} \mathrm{OH}=-400 \mu \mathrm{~A}$ for dB Port, $-200 \mu \mathrm{~A}$ for Peripheral Ports

CAPACITANCE $\quad T_{a}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	CIN			10	pF	$\mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}$
1/O Capacıtance	$\mathrm{Cl}_{1 / \mathrm{O}}$			20	pF	Unmeasured pins returned to V_{SS}

PARAMETER	SYMBOL	8255A-2 LIMITS		8255A-5 LIMITS		UNIT	TEST CONDITIONS
		MIN	MAX	MIN	MAX		
Address Stable Before READ	${ }^{\text {taR }}$	0		0		ns	
Address Stable After $\overline{\text { READ }}$	tra	0		0		ns	
$\overline{R E A D}$ Pulse Width	trR	200		250		ns	
Data Valid From $\overline{\text { READ }}$	trd		140		170	ns	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
Data Float After $\overline{\text { READ }}$	${ }^{\text {t }} \mathrm{DF}$	10	100	10	100	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	$\begin{aligned} & C_{L}=100 \mathrm{pF} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$
Time Between READS and/WRITES	$t^{\text {R }} \mathrm{V}$	200		850		ns	(2)
WRITE							
Address Stable Before WRITE	${ }^{\text {t }}$ AW	0		0		ns	
Address Stable After WRITE	twA	20		20		ns	
WRITE Pulse Width	tww	200		250		ns	
Data Valid to WRRITE (T.E.)	${ }^{\text {t }}$ W	100		100		ns	
Data Valid After $\overline{\text { WRITE }}$	twD	0		0		ns	
OTHER TIMING							
$\overline{\text { WR }}=0$ To Output	tWB		350		350	ns	$C_{L}=150 \mathrm{pF}$
Perıpheral Data Before $\overline{\mathrm{RD}}$	t/R	0		0		ns	
Peripheral Data After $\overline{\mathrm{RD}}$	thr	0		0		ns	
$\overline{\text { ACK Pulse Width }}$	$\mathrm{t}_{\text {AK }}$	300		300		ns	
STE Pulse Width	${ }^{\text {t }}$ ST	350		350		ns	
Per. Data Before T.E. Of $\overline{\text { STB }}$	tPS	0		0		ns	
Per. Data After T.E. Of STTB	tPH	150		150		ns	
$\overline{\text { ACK }}=0$ To Output	${ }^{\text {t }}$ AD		300		300	ns	$C_{L}=150 \mathrm{pF}$
$\overline{A C K}=0$ To Output Float	${ }^{\text {t }}$ KD	20	250	20	250	ns	$\begin{aligned} & C_{L}=50 p F \\ & C_{L}=15 p F \end{aligned}$
$\overline{W R}=1 \mathrm{TO} O B F=0$	twob		300		650	ns	
$\overline{\text { ACK }}=0$ To OBF $=1$	${ }^{\text {t }}$ AOB		350		350	ns	
$\overline{\text { STB }}=0$ TO $\mid B F=1$	${ }^{\text {tSIB }}$		300		300	ns	
$\overline{R D}=1$ To $I B F=0$	${ }^{\text {t }}$ RIB		300		300	ns	
$\overline{\mathrm{RD}}=0$ To INTR $=0$	$t_{\text {RIT }}$		400		400	ns	
$\overline{\text { STB }}=1$ To $\operatorname{INTR}=1$	${ }_{\text {tSIT }}$		300		300	ns	$C_{L}=150 \mathrm{pF}$
$\overline{\text { ACK }}=1$ To $\operatorname{INTR}=1$	talt		350		350	ns	
$\overline{W R}=0$ TO INTR $=0$	tWIT		450		850	ns	$C_{L}=150 \mathrm{pF}$ (3)

Note: (1) Period of Reset pulse must be at least 50μ s during or after power on. Subsequent Reset pulse can be 500 ns min.
(2)

(3) INTR \uparrow may occur as early as $\overline{W R} \downarrow$.

AC Testing Input, Output Waveform
Input/Output

$A C$ Testing inputs are driven at 24 V for a logic 1 and 045 V for a logic 0 Timing measurements are made at 20 V for a logic 1 and 08 V for a logic 0

AC Testing Load Circuit

*VEXT is set at various voltages during testing to guarantee the specification

TIMING WAVEFORMS MODE 0

BASIC OUTPUT (WRITE)

MODE 1

Note (1) Any sequence where $\overline{W R}$ occurs before $\overline{A C K}$ and $\overline{S T B}$ occurs before $\overline{R D}$ is permissible. $($ INTR $=1 B F \cdot \overline{M A S K} \cdot \overline{S T B} \cdot \overline{R D}+\overline{O B F} \cdot \overline{\text { MASK }} \cdot \overline{A C K} \cdot \overline{W R})$
(2) When the μ PD8255A is set to Mode 1 or $2, \overline{\mathrm{OBF}}$ is reset to be high (logic 1).

The μ PD8255A can be operated in modes (0,1 or 2) which are selected by appropriate control words and are detailed below.

- MODE 0 provides for basic Input and Output operations through each of the ports

A, B, and C. Output data is latched and input data follows the peripheral No "handshakıng" strobes are needed
16 different configurations in MODE 0
Two 8-bit ports and two 4 -bit ports
Inputs are not latched
Outputs are latched
MODE 1 provides for Strobed Input and Output operations with data transferred through Port A or B and handshakıng through Port C
Twe I/O Groups (I and II)
Both groups contain an 8 -bit data port and a 4 -bit control/data port
Both 8 -bit data ports can be either Latched Input or Latched Output
MODE 2 provides for Strobed bidirectional operation using PA_{0-7} as the bidırectional latched data bus PC_{3-7} is used for interrupts and "handshakıng" bus flow controls sımilar to Mode 1 Note that $\mathrm{PB}_{0.7}$ and PC_{0-2} may be defined as Mode 0 or 1 , input or output in conjunction with Port A in Mode 2
An 8-bit latched bidirectional bus port (PA 0.7) and a 5 -bit control port ($\mathrm{PC}_{3.7}$) Both inputs and outputs are latched
An additional 8 -bit input or output port with a 3-bit control port

TIMING WAVEFORMS (CONT.)

MODE 2

MODES
MODE 0

MODE 1

MODE 2

BASIC OPERATION

INPUT OPERATION (READ)						
\mathbf{A}_{1}	\mathbf{A}_{0}	$\overline{\mathrm{RD}}$	$\overline{\mathrm{WR}}$	$\overline{\mathbf{C S}}$		
0	0	0	1	0	PORT $A \longrightarrow$ DATA BUS	
0	1	0	1	0	PORT $B \rightarrow$ DATA BUS	
1	0	0	1	0	PORT $C \rightarrow$ DATA BUS	

OUTPUT OPERATION (WRITE)						
$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	$\overline{\mathrm{RD}}$	$\overline{\mathrm{WR}}$	$\overline{\mathbf{C S}}$		
0	0	1	0	0	DATA BUS \rightarrow PORT A	
0	1	1	0	0	DATA BUS \rightarrow PORT B	
1	0	1	0	0	DATA BUS \rightarrow PORT C	
1	1	1	0	0	DATA BUS \rightarrow CONTROL	

DISABLE FUNCTION							
A_{1}	A_{0}	$\overline{\text { RD }}$	$\overline{\text { WR }}$	$\overline{\mathbf{C S}}$			
x	\times	\times	x	1	DATA BUS \rightarrow HIGH Z STATE		
x	x	1	1	0	DATA BUS \rightarrow HIGH Z STATE		

NOTES (1) x means "DO NOT CARE"
(2) All conditions not listed are illegal and should
be avoided

FORMATS

Package Outlines

For information, see Package Outline Section 7.
Plastic, μ PD8255AC-5
Ceramic, μ PD8255AD-5

Notes

PROGRAMMABLE DMA CONTROLLER

DESCRIPTION The μ PD8257 is a programmable four-channel Direct Memory Access (DMA) controller. It is designed to simplify high speed transfers between peripheral devices and memories. Upon a peripheral request, the μ PD8257 generates a sequential memory address, thus allowing the peripheral to read or write data directly to or from memory. Peripheral requests are prioritized within the μ PD8257 so that the system bus may be acquired by the generation of a single HOLD command to the 8080A. DMA cycle counts are maintained for each of the four channels, and a control signal notifies the peripheral when the preprogrammed member of DMA cycles has occurred. Output control signals are also provided which allow simplified sectored data transfers and expansion to other μ PD8257 devices for systems requiring more than four DMA channels.

FEATURES - Four Channel DMA Controller

- Priority DMA Request Logic
- Channel Inhibit Logic
- Terminal Count and Modulo 128 Outputs
- Automatic Load Mode
- Single TTL Clock
- Single +5 V Supply $\pm 10 \%$
- Expandable
- 40 Pin Plastic Dual-In-Line Package

Rev/5
6-221

Operating Temperature
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Voltage on Any Pin . -0.5 to +7 Volts (1)
Power Dissipation 1 Watt

Note: (1) With Respect to Ground
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maxımum Ratıngs" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maxımum ratıng conditıons for extended periods may affect device relıability.
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \% \mathrm{GND}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS		UNIT	TEST CONDITIONS
		MIN.	MAX.		
Input Low Voltage	$V_{\text {IL }}$	-0.5	0.8	Volts	
Input High Voltage	V_{IH}	20	$\mathrm{V}_{\mathrm{CC}}+0.5$	Volts	
Output Low Voltage	V_{OL}		0.45	Volts	$\mathrm{I}^{\mathrm{OL}}=16 \mathrm{~mA}$
Output High Voltage	V_{OH}	2.4	V_{CC}	Volts	$\mathrm{I} \mathrm{OH}=-150 \mu \mathrm{~A}$ for AB , DB and AEN $\mathrm{I}^{\mathrm{OH}}=-80 \mu \mathrm{~A}$ for others
HRQ Output High Voltage	V_{HH}	33	V_{CC}	Volts	$\mathrm{I}^{\mathrm{I} H}=-80 \mu \mathrm{~A}$
Power Supply Current	${ }^{1} \mathrm{CC}$		100	mA	8257-2
			120	mA	8257-5
Input Leakage	IIL	-10	10	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$
Output Leakage During Float	IOFL	-10	10	$\mu \mathrm{A}$	$045 \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{GND}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN.	TYP.	MAX.		
Input Capacitance	$\mathrm{C}_{I N}$			10	pF	$\mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}$
I/O Capacitance	$\mathrm{C}_{I / O}$			20	pF	Unmeasured pins returned to GND

PARAMETER	SYMBOL		Mits	LIM	ITS	UNIT	TEST CONDITIONS
		μ PD8257-2		μ PD8257-5			
		MIN	MAX	MIN	MAX		
READ							
Adr or $\overline{\mathrm{CS}} \downarrow$ Setup to $\overline{\mathrm{Rd}} \downarrow$	TAR	20		0		ns	
Adr or $\overline{\mathrm{CS}} \rightarrow$ Hold from $\overline{\mathrm{Rd}} \uparrow$	$T_{\text {RA }}$	20		0		ns	
Data Access from $\overline{\mathrm{Rd}} \downarrow$	TRDE	0	140	0	170	ns	$C_{L}=100 \mathrm{pF}$
DB \rightarrow Float Delay from $\overline{\mathrm{Rd}} \uparrow$	TRDF	10	100	20	100	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & C_{L}=100 \mathrm{pF} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$
$\overline{\text { Rd Width }}$	TRW	200		250		ns	
WRITE							
Adr Setup to $\overline{W r} \downarrow$	TAW	20		20		ns	
Adr Hold from $\overline{W_{r}} \uparrow$	TWA	20		0		ns	
Data Setup to $\overline{\mathrm{Wr}} \downarrow$	TDW	100		200		ns	
Data Hold from $\overline{\mathrm{Wr}} \uparrow$	TWD	20		0		ns	
$\overline{\text { Wr Width }}$	TWWS	100		200		ns	
OTHER TIMING							
Reset Pulse Width	Trstw	300		300		ns	
Power Supply \uparrow ($\mathrm{V}_{\text {CC }}$) Setup to Reset \downarrow	TRSTD	500		500		$\mu \mathrm{s}$	
Signal Rise \& Fall Times	$\mathrm{T}_{\mathrm{r}}, \mathrm{T}_{\mathrm{f}}$		20		20		
Reset to First $\overline{\text { OWR }}$	TRSTS	2		2		${ }^{\text {t }} \mathrm{CY}$	

Note (1) All timing measurements are made at the following reference voltages uniess specified otherwise input " 1 " at 20 V , " 0 " at 08 V . Output " 1 " at 20 V , " 0 " at 08 V

TIMING WAVEFORMS PERIPHERAL (SLAVE) MODE

READ TIMING

Write timing

Timing Requirements

PARAMETER	SYMBOL	$\frac{\text { LIMITS }}{{ }_{\mu} \text { PD8257-2 }}$		$\frac{\text { LIMITS }}{{ }_{\mu}{ }^{\text {PDD8257-5 }}}$		UNIT	TEST CONDITIONS
		MIN	Max	MIN	MAX		
Cycle Time (Period)	${ }^{T} \mathrm{CY}$	0200	4	0320	4	$\mu \mathrm{s}$	
Clock Active (High)	T θ	80		80	${ }^{87} \mathrm{CY}$	ns	
DRQ! Setup to $\theta 1$ (SI, S4)	$\mathrm{T}_{\text {QS }}$	50		120			
DRQ! Hold from HLDAI	${ }^{T} \mathrm{OH}$	0		0			(4)
HRQI or I Delay from $\theta 1$ (SI, S4) (measured at 2 OV)	${ }^{\text {T }}$ DQ		160		160	ns	
HRQI or I Delay from ${ }^{\text {It }}$ (SI, S4) (measured at 3 3V)	${ }^{T}$ DQ1		200		250	ns	(3)
HLDAt or ISetup to $\theta 1$ (SI, S4)	T_{HS}	50		100		ns	
AENI Delay from $\theta 1$ (S1)	$\mathrm{T}_{\text {AEL }}$		150		300	ns	
AEN! Delay from $\theta 1$ (SI)	$\mathrm{T}_{\text {AET }}$		150		200	ns	
Adr (AB) (Active) Delay from AENI (S1)	$\mathrm{T}_{\text {AEA }}$	20		20		ns	(4)
Adr (AB) (Active Delay from $\theta 1$ (S1)	$\mathrm{T}_{\text {FAAB }}$		200		250	ns	(2)
Adr (AB) (Float) Delay from $\theta 1$ (SI)	$\mathrm{T}_{\text {AFAB }}$		150		150	ns	(2)
Adr (AB) (Stable) Delay from $\theta 1$ (S 1)	$\mathrm{T}_{\text {ASM }}$		200		250	ns	(2)
Adr (AB) (Stable) Hold from $\theta 1$ (S1)	$\mathrm{T}_{\text {AH }}$	TASM - 50		TASM-50			(2)
Adr (AB) (Valld) Hold from $\overline{\text { Rdt }}$ (S2, SI)	$\mathrm{T}_{\text {AHR }}$	60		60		ns	(4)
Adr (AB) (Valid) Hold from $\overline{\mathrm{Wrt}}$ ($\mathrm{S} 1, \mathrm{SI}$)	$\mathrm{T}_{\text {AHW }}$	100		300		ns	(4)
Adr (DB) (Active) Delay from $\theta 1$ (S1)	$\mathrm{T}_{\text {FADB }}$		150		300	ns	(2)
Adr (DB) (Float) Delay from $\theta 1$ (S2)	$\mathrm{T}_{\text {AFDB }}$	${ }^{\text {T }}$ STT	140	$\mathrm{T}_{\text {STT }}+20$	170	ns	(2)
Adr (DB) Setup to Adr Stbl (S1-S2)	$T_{\text {ASS }}$	100		100		ns	(4)
Adr (DB) (Valid) Hold from Adr Stbl (S2)	$\mathrm{T}_{\text {AHS }}$	20		50		ns	(4)
Adr Stbl Delay from $\theta 1$ (S1)	${ }^{\text {T STL }}$		150		200	ns	
Adr Stb! Delay from $\theta 1$ (S2)	${ }^{T}$ STT		140		140	ns	
Adr Stb Width (S1-S2)	${ }^{T}$ SW	${ }^{T}{ }_{C Y}{ }^{100}$		${ }^{T} \mathrm{~T}_{\text {CY - }} 100$		ns	(4)
$\overline{\text { RDI }}$ or $\overline{\mathrm{Wr}}$ (Ext)! Delay from Adr Stbl (S2)	$\mathrm{T}_{\text {ASC }}$	20		70		ns	(4)
RD! or Wr (Ext)! Delay from Adr (DB) (Float) (S2)	${ }^{T}$ DBC	0		20		ns	(4)
$\begin{aligned} & \hline \text { DACKI or IDelay from } \theta 1(\mathrm{~S} 2, \mathrm{~S} 1) \text { and } \\ & \text { TC/Mark : Delay from } \theta 1(\mathrm{~S} 3) \text { and } \\ & \text { TC/Mark : Delay from } \theta 1(\mathrm{~S} 4) \end{aligned}$	$\mathrm{T}_{\text {AK }}$		200		250	ns	(5)
$\overline{\mathrm{Rd}!}$ or $\overline{\mathrm{Wr}}$ (Ext) ! Delay from $\theta 1$ (S 2) and $\overline{\text { Wrl }}$ Delay from $\theta 1$ (S3)	${ }^{T}$ DCL		150		200	ns	(2) (6)
RdT Delay from $\theta 1\left(\mathbf{S} 1, \mathrm{SI}_{1}\right)$ and $\overline{\text { Wrt }}$ Delay from θt (S4)	${ }^{T}$ DCT		150		200	ns	(2) (7)
$\overline{\mathrm{Rd}}$ or $\overline{\mathrm{Wr}}$ (Active) from $\theta \dagger$ (S 1)	$\mathrm{T}_{\text {FAC }}$		200		300	ns	(2)
$\overline{\mathrm{Rd}}$ or $\overline{\mathrm{Wr}}$ (Float) from $\theta 1$ (SI)	${ }^{T}$ AFC		150		150	ns	(2)
$\overline{\mathrm{Rd}}$ Width (S2-S1 or SI)	$T_{\text {RWM }}$	$\begin{aligned} & { }^{2 T_{\mathrm{CY}}+} \\ & \mathrm{T}_{\theta}-50 \end{aligned}$		$\begin{aligned} & { }^{2 T_{C Y}+} \\ & \mathrm{T}_{\theta}-50 \end{aligned}$		ns	(4)
$\overline{\text { Wr Width (S3-S4) }}$	TWWM	$\mathrm{T}_{\mathrm{CY}}-50$		$\mathrm{T}_{\mathrm{CY}}-50$		ns	(4)
$\overline{\text { Wr }}$ (Ext) Width (S2-S4)	TWWME	${ }^{21} \mathrm{~T}_{C Y}-50$		${ }^{2 T} \mathrm{~T}^{\text {CY }}$ - 50		ns	(4)
READY Set Up Time to $\theta 1$ ($\mathrm{S} 3, \mathrm{Sw}$)	$T_{\text {RS }}$	30		30		ns	
READY Hold Time from $\theta 1$ ($\mathrm{S} 3, \mathrm{Sw}$)	$\mathrm{T}_{\text {RH }}$	30		30		ns	

Notes: 1 Load $=1 \mathrm{TL}$
2 Load $=50 \mathrm{pF}$
3 Load $=V_{\mathrm{OH}}=33 \mathrm{~V}$
4 Tracking Specification
$5 \Delta T_{A K}<50 \mathrm{~ns}$
$6 \Delta T_{D C L}<50 \mathrm{~ns}$
$7 \Delta T_{D C T}<50$ ns

μ PD8257

The μ PD8257 is a programmable, Direct Memory Address (DMA) device. When used with an 8212 I/O port device, it provides a complete four-channel DMA controller for use in 8080A/808085A based systems. Once initialized by an 8080A/8085A CPU, the μ PD8257 will block transfer up to 16,364 bytes of data between memory and a peripheral device without any attention from the CPU, and it will do this on all 4-DMA channels. After receiving a DMA transfer request from a peripheral, the following sequence of events occurs within the μ PD8257.

- It acquires control of the system bus (placing 8080A/8085A in hold mode).
- Resolves priority conflicts if multıple DMA requests are made.
- A 16-bit memory address word is generated with the aid of an 8212 in the following manner:

The μ PD8257 outputs the least significant eight bits $\left(A_{0}-A_{7}\right)$ which go directly onto the address bus.
The μ PD8257 outputs the most significant eight bits ($\mathrm{A}_{8}-\mathrm{A}_{15}$) onto the data bus where they are latched into an 8212 and then sent to the high order bits on the address bus.

- The appropriate memory and I/O read/write control signals are generated allowing the peripheral to receive or deposit a data byte directly from or to the appropriate memory location.

Block transfer of data (e.g., a sector of data on a floppy disk) either to or from a peripheral may be accomplished as long as the peripheral maintains its DMA Request $\left(\mathrm{DRQ}_{n}\right)$. The μ PD8257 retains control of the system bus as long as DRQ_{n} remains high or until the Terminal Count (TC) is reached. When the Terminal Count occurs, TC goes high, informing the CPU that the operation is complete.

There are three different modes of operation:

- DMA read, which causes data to be transferred from memory to a peripheral;
- DMA write, which causes data to be transferred from a peripheral to memory; and
- DMA verify, which does not actually involve the transfer of data.

The DMA read and write modes are the normal operating conditions for the μ PD8257. The DMA verify mode responds in the same manner as read/write except no memory or I/O read/write control signals are generated, thus preventing the transfer of data. The peripheral gains control of the system bus and obtains DMA Acknowledgements for its requests, thus allowing it to access each byte of a data block for check purposes or accumulation of a CRC (Cyclic Redundancy Code) checkword. In some applications it is necessary for a block of DMA read or write cycles to be followed by a block of DMA verify cycles to allow the peripheral to verify its newly acquired data.

FUNCTIONAL DESCRIPTION

DMA OPERATION
Internally the μ PD8257 contains six different states (S0, S1, S2, S3, S4 and SW). The duration of each state is determıned by the input clock. In the idle state, (S1), no DMA operation is being executed. A DMA cycle is started upon receipt of one or more DMA Requests ($\mathrm{DRO}_{\mathrm{n}}$), then the μ PD8257 enters the S0 state. During state S0 a Hold Request (HRQ) is sent to the 8080A/8085A and the μ PD8257 waits in S0 until the 8080A/8085A issues a Hold Acknowledge (HLDA) back. During S0, DMA Requests are sampled and DMA priority is resolved (based upon either the fixed or priority scheme). After receipt of HLDA, the DMA Acknowledge line ($\overline{\mathrm{DACK}}_{n}$) with the hıghest priority is driven low, selecting that particular peripheral for the DMA cycle. The DMA Request line $\left(\mathrm{DRO}_{n}\right)$ must remain high until either a DMA Acknowledge $\left(\overline{\mathrm{DACK}}_{n}\right)$ or both $\overline{\mathrm{DACK}}_{n}$ and TC (Terminal Count) occur, indicating the end of a block or sector transfer (burst model).

The DMA cycle consists of four internal states; S1, S2, S3 and S4. If the access time of the memory or I/O device is not fast enough to return a Ready command to the μ PD8257 after it reaches state S3, then a Wait state is initiated (SW). One or more than one Wait state occurs untıl a Ready signal is received, and the μ PD8257 is allowed to go into state S4. Either the extended write option or the DMA Verify mode may eliminate any Wait state.

If the μ PD8257 should lose control of the system bus (i.e., HLDA goes low) then the current DMA cycle is completed, the device goes into the S1 state, and no more DMA cycles occur until the bus is reacquired. Ready setup time (tRS), write setup time ($\mathrm{t} W \mathrm{~L}$), read data access time (t_{RD}) and HLDA setup time (t Q) should all be carefully observed during the handshaking mode between the μ PD8257 and the 8080A/8085A.

During DMA write cycles, the I/O Read ($\overline{\mathrm{I} / \mathrm{OR} \text {) output is generated at the beginning }}$ of state S2 and the Memory Write ($\overline{M E M W}$) output is generated at the beginning of S3. During DMA read cycles, the Memory Read ($\overline{\mathrm{MEMR}}$) output is generated at the
 No Read or Write control signals are generated during DMA verify cycles.

Notes
(1) HRQ is set if DRQ_{n} is active.
(2) HRQ is reset if $D R Q_{n}$ is not active.

TYPICAL μ PD8257
SYSTEM INTERFACE SCHEMATIC

Package Outlines

For information, see Package Outline Section 7.
Plastic, μ PD8257C-5
Ceramic, μ PD8257D-5

Notes

PROGRAMMABLE INTERRUPT CONTROLLER

DESCRIPTION The NEC μ PD8259A is a programmable interrupt controller directly compatible with the 8080A/8085A/8086/8088 microprocessors. It can service eight levels of interrupts and contains on-chip logic to expand interrupt capabilities up to 64 levels with the addition of other μ PD8259As. The user is offered a selection of priority algorithms to tailor the priority processing to meet his system requirements. These can be dynamically modified during operation, expanding the versatility of the system. The μ PD8259A is completely upward compatible with the μ PD8259-5, so software written for the μ PD8259-5 will run on the μ PD8259A and μ PD8259A-2.

FEATURES - Eight Level Priority Controller

- Programmable Base Vector Address
- Expandable to 64 Levels
- Programmable Interrupt Modes (Algorithms)
- Individual Request Mask Capability
- Single +5 V Supply (No Clocks)
- Full Compatibility with $8080 \mathrm{~A} / 8085 \mathrm{~A} / 8086 / 8088$

| Pin | | | \quad Function |
| :---: | :--- | :--- | :--- | :--- |, | No. | Symbol | I/O |
| :---: | :--- | :--- |

Operating Temperature . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin . -0.5 to +7 Volts (1)
Power Dissipation 1W
Note: (1) With respect to ground.
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress ratıng only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum ratıng conditions for extended periods may affect device reliability.

INTERRUPT REQUEST REGISTER (IRR) AND IN-SERVICE REGISTER (ISR)

The interrupt request register and in-service register store the in-coming interrupt request signals appearing on the IRO-7 lines (refer to functional block diagram). The inputs requesting service are stored in the IRR while the interrupts actually being serviced are stored in the ISR.
A positive transition on an IR input sets the corresponding bit in the Interrupt Request Register, and at the same time the INT output of the μ PD8259 is set high. The IR input line must remain high until the first $\overline{\text { INTA }}$ input has been received. Multiple, nonmasked interrupts occurring simultaneously can be stored in the IRR. The incoming $\overline{\mathrm{INTA}}$ sets the appropriate ISR bit (determined by the programmed interrupt algorithm) and resets the corresponding IRR bit. The ISR bit stays high-active during the interrupt service subroutine untll it is reset by the programmed End-of-Interrupt (EOI) command.

PRIORITY RESOLVER

The priority resolver decides the priority of the interrupt levels in the IRR. When the highest priority interrupt is determined it is loaded into the appropriate bit of the In-Service register by the first INTA pulse.

DATA BUS BUFFER

The 3-state, 8-bit, bi-directional data bus buffer interfaces the μ PD8259 to the processor's system bus. It buffers the Control Word and Status Data transfers between the μ PD8259 and the processor bus.

READ/WRITE LOGIC

The read/write logic accepts processor data and stores it in its Initialization Command Word (ICW) and Operation Command Word (OCW) registers. It also controls the transfer of the Status Data to the processor's data bus.

CHIP SELECT ($\overline{\mathrm{CS}}$)

The μ PD8259 is enabled when an active-low signal is received at this input. Reading or writing of the μ PD8259 is inhibited when it is not selected.

WRITE (WR)

This active-low signal instructs the μ PD8259 to receive Command Data from the processor.

READ ($\overline{\mathrm{RD}}$)

When an active-low signal is received on the $\overline{\mathrm{RD}}$ input, the status of the Interrupt Request Register, In-Service Register, Interrupt Mask Register or binary code of the Interrupt Level is placed on the data bus.

INTERRUPT (INT)

The interrupt output from the μ PD8259 is directly connected to the processor's INT input. The voltage levels of this output are compatible with the 8080A/8085A/ 8086/8088.

INTERRUPT MASK REGISTER (IMR)

The interrupt mask register stores the bits for the individual interrupt bits to be masked. The IMR masks the data in the ISR. Lower priority lines are not affected by masking a higher priority line.

μ PD8259A

INTERRUPT ACKNOWLEDGE (INTA)

$\overline{\text { INTA }}$ pulses cause the μ PD8259A to put vectoring information on the bus. The number of pulses depends upon whether the μ PD8259A is in μ PD8085A mode or 8086/ 8088 mode.

A0

A_{0} is usually connected to the processor's address bus. Together with $\overline{W R}$ and $\overline{R D}$ signals it directs the loading of data into the command register or the reading of status data. The following table illustrates the basic operations performed. Note that it is divided into three functions: Input, Output and Bus Disable distinguished by the $\overline{R D}, \overline{W R}$, and $\overline{\mathrm{CS}}$ inputs.

μ PD8259A BASIC OPERATION						
A_{0}	D4	D_{3}	$\overline{\mathrm{RD}}$	$\overline{\mathrm{WR}}$	$\overline{\mathrm{CS}}$	PROCESSOR INPUT OPERATION (READ)
0 1			0	1	0	IRR, ISR or IR \rightarrow Data Bus (1) IMR \rightarrow Data Bus
						PROCESSOR OUTPUT OPERATION (WRITE)
0	0	0	1	0	0	Data Bus \rightarrow OCW2
0	0	1	1	0	0	Data Bus \rightarrow OCW3
0	1	X	1	0	0	Data Bus \rightarrow ICW1
1	X	X	1	0	0	Data Bus \rightarrow OCW1, ICW2, ICW3 (2)
DISABLE FUNCTION						
X	X	X	1	1	0	Data Bus \rightarrow 3-State
X	X	X	X	X	1	Data Bus \rightarrow 3-State

Notes: (1) The contents of OCW2 written prior to the READ operation governs the selection of the IRR, ISR or Interrupt Level.
(2) The sequencer logic on the μ PD8259A aiigns these commands in the proper order.

CASCADE BUFFER/COMPARATOR. (For Use in Multiple μ PD8259 Array.)

The IDs of all μ PD8259As are buffered and compared in the cascade buffer/comparator. The master μ PD8259A sends the ID of the interrupting slave device along the CASO, 1, 2 lines to all slave devices. The cascade buffer/comparator compares its preprogrammed ID to the CASO, 1, 2 lines. The next two INTA pulses strobe the preprogrammed, 2 byte CALL routine address onto the data bus from the slave whose ID matches the code on the CASO, 1, 2 lines.

SLAVE PROGRAM ($\overline{\mathbf{S P}}$). (For Use in Multiple μ PD8259A Array.)

The interrupt capability can be expanded to 64 levels by cascading multiple μ PD8259As in a master-plus-slaves array. The master controls the slaves through the CASO, 1, 2 lines. The $\overline{\mathrm{SP}}$ input to the device selects the CASO-2 lines as either outputs $(\overline{S P}=1)$ for the master or as inputs ($\overline{\mathbf{S P}}=0$) for the slaves. For one device only the $\overline{\mathrm{SP}}$ must be set to a logic " 1 " since it is functioning as a master..

DC CHARACTERISTICS

$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	LIMITS		UNIT	TEST CONDITIONS
		MIN	MAX		
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	-0.5	08	V	
Input High Voitage	V_{IH}	20	$\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	V	
Output Low Voltage	V_{OL}		045	V	$\mathrm{IOL}=22 \mathrm{~mA}$
Output High Voltage	V_{OH}	24		V	$\mathrm{I}^{\mathrm{OH}}=-400 \mu \mathrm{~A}$
Interrupt Output-	$\mathrm{V}_{\mathrm{OH}-\mathrm{INT}}$	2.4		V	$\mathrm{I}^{\mathrm{OH}}=-400 \mu \mathrm{~A}$
High Voltage		3.5		V	$\mathrm{I}^{\mathrm{OH}}=-100 \mu \mathrm{~A}$
Input Leakage Current for other inputs	${ }^{\prime} \mathrm{LI}$	-10	10	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$
Output Leakage Current	LOL	-10	+ 10	$\mu \mathrm{A}$	$0.45 \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\mathrm{CC}}$
$\mathrm{V}_{\text {CC }}$ Supply Current	ICC		85	mA	

CAPACITANCE $\quad T_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{GND}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS		UNIT	TEST CONDITIONS
		MIN	MAX		
Input Capacitance	$\mathrm{CIN}_{\text {I }}$		10	pF	$\mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}$
1/O Capacitance	$\mathrm{Cl}_{1 / \mathrm{O}}$		20	pF	Unmeasured Pins Returned to V_{SS}

AC CHARACTERISTICS

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}+1070^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$
Timing Requirements

PARAMETER	SYMBOL	μ PD8259A		μ PD8259A-2		UNIT	TEST CONDITIONS
		MIN	MAX	MIN	MAX		
AO/CS Setup to $\overline{\mathrm{RD}} / \overline{\mathrm{NTA}}$!	${ }^{\text {taHRL }}$	0		0		ns	
AO/CS Hold after RD/INTĀ	${ }^{\text {tr }}$ HAX	0		0		ns	
$\overline{\mathrm{RD}}$ Puise Width	$\mathrm{t}_{\text {RLRH }}$	235		160		ns	
AO/CS Setup to WR.	${ }^{\text {t }}$ AHWL	0		0		ns	
AO/CS Hold after \bar{W}	tWHAX	0		0		ns	
WR Pulse Width	${ }^{\text {t WLWH }}$	290		190		ns	
Data Setup to WRI	${ }^{\text {t }}$ DVWH	240		160		ns	
Data Hold after WR!	tWHDX	0		0		ns	
Interrupt Request Width (Low)	$t_{\text {JLJH }}$	100		100		ns	(1)
Cascade Setup to Second or Third INTA! (Slave Only)	${ }^{\text {t CVIAL }}$	55		40		ns	
End of $\overline{\mathrm{RD}}$ to Next Command	${ }^{\text {trHRL }}$	160		160		ns	
End of $\overline{W R}$ to Next Command	${ }^{\text {t }}$ WHRL	190		190		ns	
End of Command to next Command (Not same command type)	TCHCL	500		500		ns	(2)
End of INTA sequence to next INTA sequence							

Note: (1) This is the low time required to clear the input latch in the edge triggered mode
(2) Worst case timing for TCHCL in an actual microprocessor system is typically much greater than 500 ns (ie $8085 \mathrm{~A}=16 \mu \mathrm{~s}, 8085 \mathrm{~A}-2=1 \mu \mathrm{~s}, 8086=1 \mu \mathrm{~s}, 8086-2=625 \mathrm{~ns}$)

Timing Responses

PARAMETER	SYMBOL	μ PD8259A		$\mu \mathrm{PD} 8259 \mathrm{~A}$-2		UNIT	TEST CONDITIONS
		MIN	MAX	MIN	MAX		
Data Valid from $\overline{\mathrm{RD}} / \overline{\mathrm{NTA}}$!	${ }^{\text {t }}$ RLDV		200		120	ns	C of Data Bus $=100 \mathrm{pF}$
Data Float after $\overline{\mathrm{RD} / \mathrm{INTA}}$,	${ }^{\text {t }}$ RHDZ	10	100	10	85	ns	C of Data Bus Max Test $\mathrm{C}=100 \mathrm{pF}$ Min Test $C=15 \mathrm{pF}$
Interrupt Output Delay	$t_{\text {JHIH }}$		250		300	ns	$\mathrm{C}_{\text {INT }}=100 \mathrm{pF}$
Cascade Valid from First INTA! (Master Only)	tIALCV		565		360	ns	
Enable Active from $\overline{\mathrm{RD}} \mathrm{l}$ or $\overline{\mathrm{INTA}} \mathrm{l}$	${ }^{\text {t RLEL }}$		125		100	ns	
Enable Inactive from $\overline{\mathrm{RD}}$ ¢ or $\overline{N T T A}$ i	${ }^{\text {t }}$ RHEH		150		150	ns	$\mathrm{C}_{\text {CASCADE }}=100 \mathrm{pF}$
Data Valid from Stable Address	${ }^{\text {taHDV }}$		200		200	ns	
Cascade Valid to Valid Data	${ }^{\text {t }}$ CVDV		300		200	ns	

INPUT WAVEFORMS FOR AC TESTS

WRITE MODE

READ/INTA MODE

OTHER TIMING

IR TRIGGERING TIMING REQUIREMENTS
EARLIEST IR
CAN BE REMOVED

DETAILED OPERATIONAL DESCRIPTION

The sequence used by the μ PD8259A to handle an interrupt depends upon whether an 8080A/8085A or 8086/8088 CPU is being used.

The following sequence applies to 8080A/8085A systems:
The μ PD8259A derives its versatility from programmable interrupt modes and the ability to jump to any memory address through programmable CALL instructions. The following sequence demonstrates how the μ PD8259A interacts with the processor.

1. An interrupt or interrupts appearing on IR $0-7$ sets the corresponding IR bit(s) high. This in turn sets the corresponding IRR bit(s) high.
2. Once the IRR bit(s) has been set, the μ PD8259A will resolve the priorities according to the preprogrammed interrupt algorithm. It then issues an INT signal to the processor.
3. The processor group issues an INTA to the μ PD8259A when it receives the INT.
4. The $\overline{\mathrm{INTA}}$ input to the μ PD8259A from the processor group sets the highest priority ISR bit and resets the corresponding IRR bit. The $\overline{I N T A}$ also signals the μ PD8259A to issue an 8-bit CALL instruction op-code (11001101) onto its Data bus lines.
5. The CALL instruction code instructs the processor group to issue two more $\overline{\text { INTA }}$ pulses to the μ PD8259A.
6. The two INTA pulses signal the μ PD8259A to place its preprogrammed interrupt vector address onto the Data bus. The first INTA releases the low-order 8-bits of the address and the second INTA releases the high-order 8-bits.
7. The μ PD8259A's CALL instruction sequence is complete. A preprogrammed EOI (End-of-Interrupt) command is issued to the μ PD8259A at the end of an interrupt service routine to reset the ISR bit and allow the μ PD8259A to service the next interrupt.

For 8086/8088 systems the first three steps are the same as described above, then the following sequence occurs:
4. During the first $\overline{\text { INTA }}$ from the processor, the μ PD8259A does not drive the data bus. The highest priority ISR bit is set and the corresponding IRR bit is reset.
5. The μ PD8259A puts vector onto the data bus on the second INTA pulse from the 8086/8088.
6. There is no third INTA pulse in this mode. In the AEOI mode the ISR bit is reset at the end of the second INTA pulse, or it remains set until an EOI command is issued.

8080A/8085A MODE

For these processors, the μ PD8259A is controlled by three INTA pulses. The first INTA pulse will cause the μ PD8259A to put the CALL op-code onto the data bus. The second and third INTA pulses will cause the upper and lower address of the interrupt vector to be released on the bus.

IR	Interval $=4$							
	D7	D6	D5	D4	D3	D2	D1	D0
7	A7	A6	A5	1	1	1	0	0
6	A7	A6	A5	1	1	0	0	0
5	A7	A6	A5	1	0	1	0	0
4	A7	A6	A5	1	0	0	0	0
3	A7	A6	A5	0	1	1	0	0
2	A7	A6	A5	0	1	0	0	0
1	A7	A6	A5	0	0	1	0	0
0	$A 7$	A6	A5	0	0	0	0	0

IR	Interval $=\mathbf{8}$								
	D7	D6	D5	D4	D3	D2	D1	D0	
7	A7	A6	1	1	1	0	0	0	
6	A7	A6	1	1	0	0	0	0	
5	A7	A6	1	0	1	0	0	0	
4	A7	A6	1	0	0	0	0	0	
3	A7	A6	0	1	1	0	0	0	
2	A7	A6	0	1	0	0	0	0	
1	A7	A6	0	0	1	0	0	0	
0	A7	A6	0	0	0	0	0	0	

THIRD INTA

D7	D6	D5	D4	D3	D2	D1	D0
A15	A14	A13	A12	A11	A10	A9	A8

In this mode only two $\overline{\text { INTA }}$ pulses are sent to the μ PD8259A. After the first $\overline{\text { INTA }}$ pulse, the μ PD8259A does not output a CALL but internally sets priority resolution. If it is a master, it sets the cascade lines. The interrupt vector is output to the data bus on the second INTA pulse.

	D7	D6	D5	D4	D3	D2	D1	D0
IR7	T7	T6	T5	T4	T3	1	1	1
IR6	T7	T6	T5	T4	T3	1	1	0
IR5	T7	T6	T5	T4	T3	1	0	1
IR4	T7	T6	T5	T4	T3	1	0	0
IR3	T7	T6	T5	T4	T3	0	1	1
IR2	T7	T6	T5	T4	$T 3$	0	1	0
IR1	T7	T6	T5	T4	T3	0	0	1
IR0	T7	T6	T5	T4	T3	0	0	0

INITIALIZATION COMMAND WORDS

ICW1 AND ICW2

A5-A15. Page starting address of service routines. In an 8085A system, the 8 request levels generate CALLs to 8 locations equally spaced in memory. These can be programmed to be spaced at intervals of 4 or 8 memory locations, thus the 8 routines occupy a page of 32 or 64 bytes, respectively.
The address format is 2 bytes long ($A_{0}-A_{15}$). When the routine interval is $4, A_{0}-A_{4}$ are automatically inserted by the μ PD8259A, while A_{5}-A 15 are programmed externally. When the routine interval is $8, A_{0}-A_{5}$ are automatically inserted by the μ PD8259A, while $\mathrm{A}_{6}-\mathrm{A}_{15}$ are programmed externally.
The 8 -byte interval maintains compatibility with current software, while the 4 -byte interval is best for a compact jump table.

In an MCS-86 system, T7-T3 are inserted in the five most significant bits of the vectoring byte and the μ PD8259A sets the three least significant bits according to the interrupt level. $\mathrm{A}_{10}-\mathrm{A}_{5}$ are ignored and ADI (Address Interval) has no effect.
LTIM: If LTIM $=1$, then the μ PD8259A operates in the level interrupt mode. Edge detect logic on the interrupt inputs is disabled.
ADI: \quad CALL address interval. $A D I=1$ then interval $=4 ; A D I=0$ then interval $=8$.
SNGL: Single. Means that this is the only μ PD8259A in the system. If SNGL $=$ 1 no ICW3 is issued.
IC4: If this bit is set - ICW4 has to be read. If ICW4 is not needed, set $I C 4=0$.

ICW3

This word is read only when there is more than one μ PD8259A in the system and cascading is used, in which case $\mathrm{SNGL}=0$. It will load the 8 -bit slave register. The functions of this register are:
a. In the master mode (either when $S P=1$, or in buffered mode when $M / S=1$ in ICW4) a " 1 " is set for each slave in the system. The master then releases byte 1 of the call sequence (for 8085A system) and enables the corresponding slave to release bytes 2 and 3 (for 8086/8088 only byte 2) through the cascade lines.
b. In the slave mode (either when $S P=0$, or if $B U F=1$ and $M / S=0$ in ICW4) bits 2-0 identify the slave. The slave compares its cascade input with these bits and if they are equal, bytes 2 and 3 of the CALL sequence (or just byte 2 for $8086 / 8088$) are released by it on the Data Bus.

ICW4

SFNM: If SFNM $=1$ the special fully nested mode is programmed.
BUF: If BUF = 1 the buffered mode is programmed. In buffered mode $\overline{\mathrm{SP}} / \overline{\mathrm{EN}}$ becomes an enable output and the master/slave determination is by M/S.
$M / S: \quad$ If buffered mode is selected: $M / S=1$ means the μ PD8259A is programmed to be a master, $\mathrm{M} / \mathrm{S}=0$ means the $\mu \mathrm{PD} 8259 \mathrm{~A}$ is programmed to be a slave. If $B U F=0, M / S$ has no function.
AEOI: If AEOI = 1 the automatic end of interrupt mode is programmed.
$\mu \mathrm{PM}: \quad$ Microprocessor mode: $\mu \mathrm{PM}=0$ sets the μ PD8259A for 8085A system operation, $\mu \mathrm{PM}=1$ sets the μ PD8259A for 8086 system operation.

INITIALIZATION COMMAND WORDS (CONT.)

INITIALIZATION SEQUENCE

OPPERATIONAL COMMAND WORDS (OCW's) (2)

Once the μ PD8259A has been programmed with Initialization Command Words, it can be programmed for the appropriate interrupt algorithm by the Operation Command Words. Interrupt algorithms in the μ PD8259A can be changed at any time during program operation by issuing another set of Operation Command Words. The following sections describe the various algorithms available and their associated OCW's.

INTERRUPT MASKS

The individual Interrupt Request input lines are maskable by setting the corresponding bits in the Interrupt Mask Register to a logic " 1 " through OCW 1. The actual masking is performed upon the contents of the In-Service Register (e.g., if Interrupt Request line 3 is to be masked, then only bit 3 of the IMR is set to logic "1." The IMR in turn acts upon the contents of the ISR to mask bit 3). Once the μ PD8259A has acknowledged an interrupt, i.e., the μ PD8259A has sent an INT signal to the processor and the system controller has sent it an INTA signal, the interrupt input, although it is masked, inhibits lower priority requests from being acknowledged. There are two means of enabling these lower priority interrupt lines. The first is by issuing an End-of-Interrupt (EOI) through Operation Command Word 2 (OCW2), thereby resetting the appropriate ISR bit. The second approach is to select the Special Mask Mode through OCW3. The Special Mask Mode (SMM) and End-of-Interrupt (EOI) will be described in more detail further on.

FULLY NESTED MODE

The fully nested mode is the μ PD8259A's basic operatıng mode. It will operate in this mode after the initialızation sequence, without requiring Operatıon Command Words for formattıng. Priorities are set $I R_{0}$ through $I R_{7}$, with IR_{0} the highest priority. After the interrupt has been acknowledged by the processor and system controller, only higher priorities will be serviced. Upon receiving an INTA, the priority resolver determınes the priority of the interrupt, sets the corresponding IR bit, and outputs the vector address to the Data bus. The EOI command resets the corresponding ISR bits at the end of its service routines.

Notes: (1) Reference Figure 2
(2) Reference Figure 3

ROTATING PRIORITY MODE COMMANDS

The two variations of Rotating Priorities are the Auto Rotate and Specific Rotate priorities.

1. Auto Rotate Mode

Programming the Auto Rotate Mode through OCW2 assigns priorities 0-7 to the interrupt request input lines. Interrupt line $I R_{0}$ is set to the highest priority and I_{7} to the lowest. Once an interrupt has been serviced it is automatically assigned the lowest priority. That same input must then wait for the devices ahead of it to be serviced before it can be acknowledged again. The Auto Rotate Mode is selected by programming OCW2 in the following way (refer to Figure 3): set Rotate Priority bit " R " to a logic " 1 "; program EOI to a logic " 1 " and SEOI to a logic " 0 ." The EOI and SEOI commands are discussed further on. The following is an example of the Auto Rotate Mode with devices requesting interrupts on lines IR_{2} and IR_{5}.

Before Interrupts are Serviced:

According to the Priority Status Register, IR_{2} has a higher priority than IR_{5} and will be serviced first.

After Servicing:

At the completion of IR_{2} 's service routine the corresponding In -Service Register bit, IS_{2} is reset to " 0 " by the preprogrammed EOI command. IR_{2} is then assigned the lowest priority level in the Priority Status Register. The μ PD8259A is now ready to service the next highest interrupt, which in this case, is $\mathrm{IR}_{\mathbf{5}}$.
2. Specific Rotate Mode

The priorities are set by programming the lowest level through OCW2. The μ PD8259A then automatically assigns the highest priority. If, for example, IR R_{3} is set to the lowest priority (bits $\mathrm{L}_{2}, \mathrm{~L}_{1}, \mathrm{~L}_{0}$ form the binary code of the bottom priority level), then IR 4 will be set to the highest priority. The Specific Rotate Mode is selected by programming OCW2 in the following manner: set Rotate Priority bit " R " to a logic " 1, " program EOI to a logic " 0 ," SEOI to a logic " 1 " and L_{2}, L_{1}, L_{0} to the lowest priority level. If EOI is set to a logic "1," the ISR bit defined by L_{2}, L_{1}, L_{0} is reset.

OPERATIONAL COMMAND WORDS (CONT.)

END-OF-INTERRUPT (EOI) AND SPECIFIC END-OF-INTERRUPT (SEOI)

The End-of-Interrupt or Specific End-of-Interrupt command must be issued to reset the appropriate In -Service Register bit before the completion of a service routine. Once the ISR bit has been reset to logic " 0 ," the μ PD8259A is ready to service the next interrupt.

Two types of EOIs are available to clear the appropriate ISR bit depending on the μ PD8259A's operating mode.

1. Non-Specific End-of-Interrupt (EOI)

When operating in interrupt modes where the priority order of the interrupt inputs is preserved (e.g., fully nested mode), the particular ISR bit to be reset at the completion of the service routine can be determined. A non-specific EOI command automatically resets the highest priority ISR bit of those set.|The highest priority ISR bit must necessarily be the interrupt being serviced and must necessarily be the service subroutine returned from.
2. Specific End-of-Interrupt (SEOI)

When operating in interrupt modes where the priority order of the interrupt inputs is not preserved (e.g., rotating priority mode) the last serviced interrupt level may not be known. In these modes a Specific End-of-Interrupt must be issued to clear the ISR bit at the completion of the interrupt service routine. The SEOI is programmed by setting the appropriate bits in OCW3 (Figure 2) to logic " 1 " s . Both the EOI and SEOI bits of OCW3 must be set to a logic "1" with L_{2}, L_{1}, L_{0} forming the binary code of the ISR bit to be reset.

SPECIAL MASK MODE

Setting up an interrupt mask through the Interrupt Mask Register (refer to Interrupt Mask Register section) by setting the appropriate bits in OCW 1 to a logic " 1 " inhibits lower priority interrupts from being acknowledged. In applications requiring that the lower priorities be enabled while the IMR is set, the Special Mask Mode can be used. The SMM is programmed in OCW3 by setting the appropriate bits to a logic "1." Once the SMM is set, the μ PD8259A remains in this mode until it is reset. The Special Mask Mode does not affect the higher priority interrupts.

POLLED MODE

In Poll Mode the processor must be instructed to disable its interrupt input (INT). Interrupt service is initiated through software by a Poll Command. Poll Mode is programmed by setting the Poll Mode bit in OCW3 $(P=1)$, during a $\overline{W R}$ pulse. The following $\overline{R D}$ pulse is then considered as an interrupt acknowledge. If an interrupt input is present, that $\overline{\mathrm{RD}}$ pulse sets the appropriate ISR bit and reads the interrupt priority level. Poll Mode is a one-time operation and must be programmed through OCW3 before every read. The word strobed onto the Data bus during Poll Mode is of the form:

D7	D_{6}	D5	D4	D_{3}	D_{2}	D_{1}	D_{0}
I	X	X	X	X	W_{2}	W_{1}	W_{0}

where: $I=1$ if there is an interrupt requesting service
$=0$ if there are no interrupts
$\mathrm{W}_{\mathbf{2 - 0}}$ forms the binary code of the highest priority level of the interrupts requesting service

Poll Mode can be used when an interrupt service routine is common to several interrupt inputs. The INTA sequence is no longer required, thus saving in ROM space. Poll Mode can also be used to expand the number of interrupts beyond 64.

INITIALIZATION COMMAND WORD FORMAT

NOTE 1 SLAVE ID IS EQUAL TO THE CORAESPONDING MASTER IR INPUT

The following major registers' status is available to the processor by appropriately formatting OCW3 and issuing $\overline{\mathrm{RD}}$ command.

INTERRUPT REQUEST REGISTER (8-BITS)

The Interrupt Request Register stores the interrupt levels awaiting acknowledgement. The highest priority in-service bit is reset once it has been acknowledged. (Note that the Interrupt Mask Register has no effect on the IRR.) A WR command must be issued with OCW 3 prior to issuing the $\overline{\mathrm{RD}}$ command. The bits which determine whether the IRR and ISR are being read from are RIS and ERIS. To read contents of the IRR, ERIS must be logic " 1 " and RIS a logic " 0 ."

IN-SERVICE REGISTER (8-BITS)

The In-Service Register stores the priorities of the interrupt levels being serviced. Assertion of an End-of-Interrupt (EOI) updates the ISR to the next priority level. A $\overline{\mathrm{WR}}$ command must be issued with OCW3 prior to issuing the $\overline{\mathrm{RD}}$ command. Both ERIS and RIS should be set to a logic " 1 ."

INTERRUPT MASK REGISTER (8-BITS)

The Interrupt Mask Register holds mask data modifying interrupt levels. To read the IMR status a $\overline{W R}$ pulse preceding the $\overline{R D}$ is not necessary. The IMR data is available to the data bus when $\overline{R D}$ is asserted with A_{0} at a logic " 1. ."
A single OCW3 is sufficient to enable successive status reads providing it is of the same register. A status read is over-ridden by the Poll Mode when bits P and ERIS of OCW3 are set to a logic " 1. ."

SUMMARY OF 8259A INSTRUCTION SET													
Inst.	Mnomonic		AO	D7	08	D5	D4	D3	D2	D1	D0	Operation Description	
1	ICW1	A	0	A7	A6	A5	1	0	1	1	0		Format $=4$, single, edge triggered
2	ICW1	B	0	A7	A6	A5	1	1	1	1	0		Format $=4$, single, level triggered
3	ICW1	C	0	A7	A6	A5	1	0	1	0	0	Byte 1 Initialization	Format $=4$, not single, edge triggered
4	ICW1	D	0	A7	A6	A5	1	1	1	0	0		Format $=4$, not single, level triggered
5	ICW1	E	0	A7	A6	0	1	0	0	1	0	No ICW4 Required	Format $=8$, single, edge triggeres
6	ICW1	F	0	A7	A6	0	1	1	0	1	0		Format $=8$, single, level triggered
7	ICW1	G	0	A7	A6	0	1	0	0	0	0		Format $=8$, not single, edge triggered
8	ICW1	H	0	A7	A6	0	1	1	0	0	0		Format $=8$, not single, level triggered
9	ICW1	1	0	A7	A6	A5	1	0	1	1	1		Format $=4$, single, edge triggered
10	ICW1	J	0	A)	A6	A5	1	1	1	1	1		Format $=4$, single, level triggered
11	ICW1	K	0	A7	A6	A5	1	0	1	0	1	Byte 1 Initialization	Format $=4$, not single, edge triggered
12	ICW1	L	0	A7 ${ }^{\prime}$	A6	A5	1	1	1	0	1		Format $=4$, not single, leval triggered
13	ICW1	M	0	A7	A6	0	1	0	0	1	1	ICW4 Required	Format $=8$, single, edge triggered
14	ICW1	N	0	A7	A6	0	1	1	0	1	1		Format $=8$, single, level triggered
15	ICW1	0	0	A7	A6	0	$1{ }^{\prime}$	0	0	0	1		Format $=8$, not single, edge triggered
16	ICW1	P	0	A7	A6	0	1	1	0	0	1		Format $=8$, not single, level triggered
17	ICW2		1	A15	A14	A13	A12	A11	A10	A9	A8	Byte 2 initalization	
18	ICW3	M	1	S7	S6	S5	S4	S3	S2	S1	So	Byte 3 initialization	- master
19	ICW3	S	1	0	0	0	0	0	S2	S1	so	Byte 3 initialization	- slave
20	ICW4	A	1	0	0	0	0	0	0	0	0	No action, redundant	
21	ICW4	B	1	0	0	0	0	0	0	0	1	,Non-buffered mode,	no AEOI, 8086/8088
22	ICWA	C	1	0	0	0	0	0	0	1	0	Non buffered mode,	AEOI, 80/85
23	ICW4	0	1	0	0	0	0	0	0	1	1	Non-buffered mode,	AEOI, 8086/8088
24	ICW4	E	1	0	0	0	0	0	1	0	0	No action, redundan	
25	ICW4	F	1	0	0	0	0	0	1	0	1	Non buffered mode,	no AEOI, 8086/8088
26	ICW4	G	1	0	0	0	0	0	1	1	0	Non-buffered mode	AEOI, 80/85
27	ICW4	H	1	0	0	0	0	0	1	1	1	Non-buffered mod	AEOI, 8086/8088
28	ICW4	1	1	0	0	0	0	1	0	0	0	Buffered mode, slave	, no AEOI, 80/85
29	ICW4	J	1	0	0	0	0	1	0	0	1	Buffered mode, slave	no AEOI, 8086/808
30	ICW4	K	1	0	0	0	0	1	0	1	0		
31	ICW4	L	1	0	0	0	0	1	0	1	1	Buffered mode, slave	, AEOI, 80/85
32	ICW4	M	1	0	0	0	0	1	1	0	0	Buffered mode, slave	, AEOI, 8086/8088
33	ICW4	N	1	0	0	0	0	1	1	0	1	Buffered mode, mast	er, no AEOI, 80/85
34	ICWA	0	1	0	0	0	0	1	1	1	0	Buffered mode, mast	er, no AEOI, 8086/8088
35	ICW4	P	1	0	0	0	0	1	1	1	1	Buffered mode, mast	er, AEOI, 80/85
36	ICW4	NA	1	0	0	0	1	0	0	0	0	Buffered mode, mas	er AEOI, 8086, 8088
37	ICW4	NB	1	0	0	0	1	0	0	0	1	Fully nested mode,	8085A, non-buffered, no AEOI
38	ICW4	NC	1	0	0	0	1	0	0	1	0	ICW4 NB through	N4 ND are identical to
39	ICWA	ND	1	0	0	0	1	0	0	1	1	ICW4 B through IC	4 D with the addition of
40	ICW4	NE	1	0	0	0	1	0	1	0	0	Fully Nested Mode	
41	ICW4	NF	1	0	0	0	1	0	1	0	1	Fully Nested Mode	80/85, non-buffered, no AEOI
42	ICW4	NG	1	0	0	0	1	0	1	1	0		/86, non-buffered, no AEO
43	ICW4	NH	1	0	0	0	1	0	1	1	1		
44	ICW4	NI	1	0	0	0	1	1	0	0	0		
45	ICW4	NJ	1	0	0	0	1	1	0	0	1		
46	ICW4	NK	1	0	0	0	1	1	0	1	0	ICW4 NF through ICW	V4 NP are identical to
47	ICW4	NL	1	0	0	0	1	1	0	1	1	ICW4 F through ICW Fully Nested Mode	P with the addition of
48	ICW4	NM	1	0	0	0	1	1	1	0	0		
49	ICW4	NN	1	0	0	0	1	1	1	0	1		
50	ICW4	NO	1	0	0	0	1	1	1	1	0		
51	ICW4	$N P$	1	0	0	0	1	1	1	1	1		
52	OCW1		1	M7	M6	M5	M4	M3	M2	M1	MO	Load mask register, r	ead mark regıster
53	OCW2	E	0	0	0	1	0	0	0	0	0	Non-specific EOI	
54	OCW2	SE	0	0	1	1	0	0	12	L1	LO	Specific EOI, LO-L2	code of IS FF to be reset
55	OCW2	RE	0	1	0	1	0	0	0	0	0	Rotate on Non-Speci	fic EOI
56	OCW2	RSE	0	1	1	1	0	0	12	11	LO	Rotate on Specific E	OI LO-L2 code of line
57	OCW2	R	0	1	0	0	0	0	0	0	0	Rotate in Auto EOI	(set)
58	OCW2	CR	0	0	0	0	0	0	0	0	0		
59	OCW2	RS	0	1	1	0	0	0	12	11	LO	Rotate in Auto EOI	clear)
60	OCW3	P	0	0	0	0	0	1	1	0	0	Set Priority Comman	
61	OCW3	RIS	0	0	0	0	0	1	0	1	1	Poll mode Read IS regıster	

SUMMARY OF OPERATION COMMAND WORD PROGRAMMING

LOWER MEMORY INTERRUPT VECTOR ADDRESS

INTERVAL $=4$									INTERVAL $=8$							
	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
IR_{7}	A_{7}	A_{6}	A_{5}	1	1	1	0	0	A_{7}	A_{6}	1	1	1	0	0	0
IR_{6}	A7	A_{6}	A_{5}	1	1	0	0	0	A_{7}	A_{6}	1	1	0	0	0	0
IR_{5}	A_{7}	A_{6}	A_{5}	1	0	1	0	0	A_{7}	A_{6}	1	0	1	0	0	0
IR_{4}	A_{7}	A_{6}	A_{5}	1	0	0	0	0	A_{7}	A_{6}	1	0	0	0	0	0
IR_{3}	A_{7}	A_{6}	A_{5}	0	1	1	0	0	A_{7}	A_{6}	0	1	1	0	0	0
iR_{2}	A_{7}	A_{6}	A_{5}	0	1	0	0	0	A_{7}	A_{6}	0	1	0	0	0	0
IR_{1}	A_{7}	A_{6}	A_{5}	0	0	1	0	0	A_{7}	A_{6}	0	0	1	0	0	0
IR_{0}	A_{7}	A_{6}	A_{5}	0	0	0	0	0	A_{7}	A_{6}	0	0	0	0	0	0

FIGURE 4
Note: Insure that the processor's interrupt input is disabled during the execution of any control command and initialization sequence for all μ PD8259A's.

Package Outlines

For information, see Package Outline Section 7.
Plastic, μ PD8259AC
Cerdip, μ PD8259AD
μ PD8279-2
μ PD8279-5

PROGRAMMABLE KEYBOARDIDISPLAY INTERFACE

Abstract

DESCRIPTION The μ PD8279-2 and μ PD8279-5 are programmable keyboard and display Input/Output devices. They provide the user with the ability to display data on alphanumeric segment displays or simple indicators. The display RAM can be programmed as 16×8 or a dual 16×4 and loaded or read by the host processor. The display can be loaded with right or left entry with an auto-increment of the display RAM address.

The keyboard interface provides a scanned signal to a 64 contact key matrix expandable to 128. General sensors or strobed keys may also be used. Keystrokes are stored in an 8 character FIFO and can be either 2 key lockout or N key rollover. Keyboard entries generate an interrupt to the processor.

FEATURES - Programmable by Processor

- 32 HEX or 16 Alphanumeric Displays
- 64 Expandable to 128 Keyboard
- Simultaneous Keyboard and Display
- 8 Character Keyboard - FIFO
- 2 Key Lockout or N Key Rollover
- Contact Debounce
- Programmable Scan Tımer
- Interrupt on Key Entry
- Single +5 Volt Supply, $\pm 10 \%$
- Fully Compatıble with 8080A, 8085A, μ PD780 (Z80TM)
- Available in 40 Pin Plastic Package

PIN CONFIGURATION

μ PD8279

The μ PD8279 has two basic functions: 1) to control displays to output and 2) to control a keyboard for input. Its specific purpose is to unburden the host processor from monitoring keys and refreshing displays. The μ PD8279 is designed to directly interface the microprocessor bus. The microprocessor must program the operating mode to the μ PD8279. These modes are as follows:

Output Modes

- 8 or 16 Character Display
- Right or Left Entry

Input Modes

- Scanned Keyboard with Encoded $8 \times 8 \times 4$ Key Format or Decoded $4 \times 8 \times 8$ Scan Lines.
- Scanned Sensor Matrix with Encoded 8×8 or Decoded 4×8 Scan Lines
- Strobed Input.

Operatıng Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Output Voltages	-05 to +7 Volts(1)
All Input Voltages	-05 to +7 Volts(1)
Supply Voltages	-05 to +7 Volts(1)
Power Dissipation 1 W

Note (1) With respect to $V_{S S}$
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT. Stress above those listed under "Absolute Maxımum Ratıngs" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maxımum rating conditıons for extended periods may affect device relıability.

FUNCTIONAL DESCRIPTION

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS*

PIN			DESCRIPTION
NO.	SYMBOL	NAME	
$\begin{aligned} & 1,2,5 \\ & 6,7,8 \\ & 38,39 \end{aligned}$	RL0-7	Return Lines	Return line inputs which are connected to the scan lines through the keys or sensor switches. They have active internal pullups to keep them high untıl a switch closure pulls one low. They also serve as an 8 -bit input in the Strobed Input mode
3	CLK	Clock	Clock from system used to generate internal timıng
4	IRO	Interrupt Request	Interrupt Request. In a keyboard mode, the interrupt line is high when there is data in the FIFO/ Sensor RAM. The interrupt line goes low with each FIFO/Sensor RAM read and returns high if there is still information in the RAM. In a sensor mode, the interrupt line goes high whenevier a change in a sensor is detected.
9	Reset	Reset Input	A high signal on this pin resets the μ PD8279.
10	$\overline{\mathrm{RD}}$	Read Input	Input/Output read and write. These signals enable the data buffers to either send data to the external bus or receive it from the external bus.
11	$\overline{W R}$	Write Input	
1219	DB0.7	Data Bus	Bı-Directional data bus All data and commands between the processor and the μ PD8279 are transmitted on these lines.
20	V SS	Ground Reference	Power Supply Ground
21	A_{0}	Buffer Address	Buffer Address. A high on this line indicates the signals in or out are interpreted as a command or status A low indicates that they are data
22	$\overline{\overline{C S}}$	Chıp Select	Chip Select. A low on this pin enables the interface functions to receive or transmit.
23	$\overline{B D}$	Blank Display Output	Blank Display. This output is used to blank the display during digit switching or by a display blanking command.
24-27	OUT A0-3	Display A Outputs	These two ports are the outputs for the 16×4 display refresh registers. The data from these outputs is synchronized to the scan lines ($\mathrm{SL}_{0}-\mathrm{SL}_{3}$) for multiplexed digit displays. The two 4-bit ports may be blanked independently. These two ports may also be considered as one 8-bit port
28.31	OUT B0-3	Display B Outputs	
32-35	SLO-3	Scan Lınes	Scan Lines which are used to scan the key switch or sensor matrix and the display digits. These lines can be either encoded (1 of 16) or decoded (1 of 4).
36	Shift	Shift Input	The shift input status is stored along with the key position on key closure in the Scanned Keyboard modes. It has an active internal pullup to keep it high until a switch closure pulls it low
37	CNTL/STB	Control/ Strobe Input	For keyboard modes this line is used as a control input and stored like status on a key closure. The line is also the strobe line that enters the data into the FIFO in Strobed input mode (Rising Edge) it has an active internal pullup to keep it high until a switch closure pulls it low
40	V_{CC}	+5V Input	Power Supply Input

μ PD8279

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$.
DC CHARACTERISTICS

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage for Return Lines	VILI	-0 5		14	V	
Input Low Voltage (Others)	VIL2	-05	.	08	V	
Input High Voltage for Return Lines	VIH1	22			V	
Input High Voltage (Others)	$\mathrm{V}_{1} \mathrm{H} 2$	20			V	
Output Low Voltage	VOL			045	V	$1 \mathrm{OL}=22 \mathrm{~mA}$
Output High Voltage on Interrupt Line	$\begin{aligned} & \text { IRO } \\ & \text { Pin } \end{aligned}$	+35			V	$\mathrm{IOH}=-50 \mu \mathrm{~A}$
		+24			V	$\mathrm{I}^{\mathrm{OH}}=-400 \mu \mathrm{~A}$
	OTHERS	+24			V	$\mathrm{I}^{\mathrm{OH}}=-400 \mu \mathrm{~A}$
Input Current on Shift, Control and Return Lines	IILI			+10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$
				-100	$\mu \mathrm{A}$	$V_{\text {IN }}=0 \mathrm{~V}$
Input Leakage Current (Others)	1/L2			± 10	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {CC }}$ to $0 V$
Output Float Leakage	IOFL			± 10	$\mu \mathrm{A}$	$V_{\text {OUT }}=V_{\text {CC }}$ to 0 V
Power Supply Current.	ICC			120	mA	

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	CIN	5		10	pF	$\mathrm{VIN}_{\text {I }}=$ VCC
Output Capacitance	COUT	10		20	pF	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}}$

CAPACITANCE
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}$ SS $=0 \mathrm{~V}$
AC CHARACTERISTICS

PARAMETER	SYMBOL	LIMITS		LIMITS		UNIT	TEST CONDITIONS
		MIN	MAX	MIN	MAX		
READ		μ PD8279-5		μ PD8279-2			
Address Stable Before $\overline{\text { READ }}$	tAR	0		0		ns	
Address Hold Time for $\overline{\text { READ }}$	trA	0		0		ns	
$\overline{\text { READ Pulse Width }}$	trR	250		200		ns	
Data Delay from $\overline{\text { READ }}$	tr		150		140	ns	$C_{L}=150 \mathrm{pF}$
Address to Data Valıd	${ }^{\text {t }}$ AD		250		250	ns	$C_{L}=150 \mathrm{pF}$
$\overline{\text { READ }}$ to Data Floatıng	${ }^{\text {t }} \mathrm{DF}$	10	100	10	100	ns	
Read Cycle Tıme	trcy	1000		200		ns	
WRITE							
Address Stable Before $\overline{\text { WRITE }}$	${ }^{\text {t }}$ AW	0		0		ns	
Address Hold Time for WRITE	tWA	0		0		ns	
WRITE Pulse Width	tWW	250		200		ns	
Data Set Up Time for WRITE	tDW	150		150		ns	
Data Hold Time for WRITE	twD	0		0		ns	
Write Cycle Time	${ }^{t}$ WCY	1000		200		ns	
OTHER							
Clock Pulse Width	$\mathrm{t}_{\phi} \mathrm{W}$	120		70		ns	
Clock Perıod	${ }^{\text {t }} \mathrm{C}$	320		200		ns	

GENERAL TIMING

Keyboard Scan Time:
Keyboard Debounce Time:
Key Scan Time:
Display Scan Time:
5.1 ms
10.3 ms
$80 \mu \mathrm{~s}$
10.3 ms

Digit-on Time: $\quad 480 \mu \mathrm{~s}$ Blankıng Time: $\quad 160 \mu \mathrm{~s}$ Internal Clock Cycle: $\quad 10 \mu \mathrm{~s}$

READ

CLOCK INPUT

μ PD8279

The following is a description of each section of the μ PD8279. See the block diagram for functional reference.

I/O Control and Data Buffers

Communication to and from the μ PD8279 is performed by selecting $\overline{C S}, A_{0}, \overline{R D}$ and $\overline{W R}$. The type of information written or read by the processor is selected by $A_{0} . A^{\prime}$ logic 0 states that information is data while a 1 selects command or status. $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ select the direction by which the transfer occurs through the Data Buffers. When the chip is deselected ($\overline{\mathrm{CS}}=1$) the bi-directional Data Buffers are in a high impedance state thus enabling the μ PD8279 to be tied directly to the processor data bus.

Timing Registers and Timing Control

The Timing Registers store the display and keyboard modes and other conditions programmed by the processor. The timing control contains the timing counter chain. One counter is a divide by N scaler which may be programmed to match the processor cycle time. The scaler must take a value between 2 and 31 in binary. A value which scales the internal frequency to 100 KHz gives a 5.1 ms scan time and 10.3 ms switch debounce. The other counters divide down to make key, row matrix and display scans.

Scan Counter

The scan counter can operate in either the encoded or decoded mode. In the encoded mode, the counter provides a count which must be decoded to provide the scan lines. In the decoded mode, the counter provides a 1 out of 4 decoded scan. In the encoded mode the scan lines are active high and in the decoded mode they are active low.

Return Buffers, Keyboard Debounce and Control

The eight return lines are buffered and latched by the return buffers. In the keyboard mode these lines are scanned sampling for key closures in each row. If the debounce circuit senses a closure, about 10 ms are timed out and a check is performed again. If the switch is still pressed, the address of the switch matrix plus the status of shift and control are written into the FIFO. In the scanned sensor mode, the contents of return lines are sent directly to the sensor RAM (FIFO) each key scan. In the strobed mode, the transfer takes place on the rising edge of CNTL/STB.

FIFO/Sensor RAM and Status

This section is a dual purpose 8×8 RAM. In strobe or keyboard mode it is a FIFO. Each entry is pushed into the FIFO and read in order. Status keeps track of the number of entries in the FIFO. Too many reads or writes to the FIFO will be treated as an error condition. The status logic generates an IRQ whenever the FIFO has an entry. In the sensor mode the memory is a sensor RAM which detects changes in the status of a sensor. If a change occurs, the IRQ is generated until the change is acknowledged.

Display Address Registers and Display RAM

The Display Address Register contains the address of the word being read or written by the processor, as well as the word being displayed. This address may be programmed to auto-increment after each read or write. The display RAM may be read by the processor any time after the mode and address is set. Data entry to the display RAM may be set to either right or left entry.

The commands programmable to the $\mu \mathrm{PD} 8279$ via the data bus with $\overline{\mathrm{CS}}$ active (0) and A_{0} high are as follows

Keyboard/Display Mode Set

0	0	0	D	D	K	K	K
MSB					LSB		

Display Mode

DD		
0	0	8-8-bit character display - Left entry
0	$1{ }^{(1)}$	16.8 bit character display - Left entry
1	0	8.8 bit character display - Right entry
1	1	16.8 bit character display - Right entry
Note (1) Power on default condition		

Keyboard Mode•
KKK

0	0	0	Encoded Scan - 2 Key Lockout
0	0	1	Decoded Scan - 2 Key Lockout
0	1	0	Encoded Scan - N Key Rollover
0	1	1	Decoded Scan - N Key Rollover
1	0	0	Encoded Scan-Sensor Matrıx
1	0	1	Decoded Scan-Sensor Matrix
1	1	0	Strobed Input, Encoded Display Scan
1	1	1	Strobed Input, Decoded Display Scan

Where PPPPP is the prescaler value between 2 and 31 this prescaler divides the external clock by PPPPP to develop its internal frequency After reset, a default value of 31 is generated

Read FIFO/Sensor RAM

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 0 & A 1 & X & A & A & A \\
\hline
\end{array} \quad A_{0}=0
$$

A_{1} is the auto-increment flag. AAA is the row to be read by the processor The read command is accomplished with ($\overline{\mathrm{CS}} \cdot \mathrm{RD} \cdot \overline{\mathrm{AO}}$) by the processor If A_{1} is 1 , the row select counter will be incremented after each read. Note that auto-ıncrementing has no effect on the display.

Read Display RAM

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 1 & \mathrm{~A} 1 & \mathrm{~A} & \mathrm{~A} & \mathrm{~A} & \mathrm{~A} \\
\hline
\end{array} \quad \mathrm{~A}_{0}=0
$$

Where A_{1} is the auto-Increment flag and AAAA is the character which the processor is about to read.

$$
\begin{aligned}
& \text { Write Display RAM } \\
& \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 1 & 0 & 0 & \text { A1 } & \text { A } & \text { A } & \text { A } & \text { A } \\
\hline
\end{array}
\end{aligned}
$$

where AAAA is the character the processor is about to write
Display Write Inhibit Blanking

1	0	1	X	IW A	W B	$B L$ A	$B L$

Where IWA and IWB are Inhibit Writing nibble A and B respectively, and BLA, BLB are blankıng. When using the display as a dual 4-bit, it is necessary to mask one of the 4-bit halves to eliminate interaction between the two halves. This is accomplished with the IW flags. The BL flags allow the programmer to blank either half of the display independently. To blank a display formatted as a single 8-bit, it is necessary to set both BLA and BLB. Default after a reset is all zeros. All signals are active high (1).

$C_{\text {D }}$	C_{D}	C_{D}	1	1	0	C_{D}
1	0	\times	All zeros			
1	1	0	$A B=2016$			
1	1	1	All ones			
0	x	x	Disable clear display			

COMMAND OPERATION
(CONT.)

This command is used to clear the display RAM, the FIFO, or both. The CD options allow the user the ability to clear the display RAM to either all zeros or all ones.

CF clears the FIFO.
CA_{A} clears all.
Clearing the display takes one complete display scan. During this time the processor can't write to the display RAM.

CF will set the FIFO empty flag and reset IRC. The sensor matrix mode RAM pointer will then be set to row 0 .
C_{A} is equivalent to C_{F} and C_{D}. The display is cleared using the display clear code specified and resets the internal timing logic to synchronıze it.

End Interrupt/Error Mode Set

1	1	1	E	X	X	X	X

In the sensor matrix mode, this instruction clears IRQ and allows writing into RAM.
In N key rollover, setting the E bit to 1 allows for operating in the special Error mode. See Description of FIFO status.

FIFO Status

DU	S/E	O	U	F	N	N	N

Where: $D_{U}=$ Display Unavailable because a clear display or clear all command is in progress.
$S / E=$ Sensor Error flag due to multiple closure of switch matrix.
$\mathrm{O}=$ FIFO Overrun since an attempt was made to push too many characters into the FIFO.
$U=$ FIFO Underrun. An indication that the processor tried to read an empty FIFO.
$F=$ FIFO Full Flag.
NNN = The Number of characters presently in the FIFO.
The FIFO Status is Read with A_{0} high and $\overline{C S}, \overline{R D}$ active low.
The Display not available is an indication that the C_{D} or C_{A} command has not completed its clearing. The S/E flags are used to show an error in multiple closures has occurred. The O or U , overrun or underrun, flags occur when too many characters are written into the FIFO or the processor tries to read an empty FIFO. F is an indication that the FIFO is full and NNN is the number of characters in the FIFO.

Data Read

Data can be read during $A_{0}=0$ and when $\overline{C S}, \overline{R D}$ are active low. The source of the data is determined by the Read Display or Read FIFO commands.

Data Write

Data is written to the chip when $A 0, \overline{\mathrm{CS}}$, and $\overline{W R}$ are active low. Data will be written into the display RAM with its address selected by the latest Read or Write Display command.

COMMAND OPERATION (CONT.)

Data Format

In the Scanned Key mode, the characters in the FIFO correspond to the above format where CNTL and SH are the most significant bits and the SCAN and return lines are the scan and column counters.

$R L_{7}$	$R L_{6}$	$R L_{5}$	$R L_{4}$	RL_{3}	RL_{2}	RL 1	RL_{0}

In the Sensor Matrix mode, the data corresponds directly to the row of the sensor RAM being scanned. Shift and control (SH, CNTL) are not used in this mode.

Control Address Summary

MSB \quad DATA

0	0	0	D	D	K	K	K

| 0 | 0 | 1 | P | P | P | P | P |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Load Program Clock

0	1	0	A_{1}	X	A	A	A

Read FIFO/Sensor RAM

| 0 | 1 | 1 | A_{1} | A | A | A | A |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Read Display RAM

1	0	0	$\mathrm{~A}_{1}$	A	A	A	A

Write Display RAM

| 1 | 0 | 1 | X | IW | IW | BL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | BL | | | | | |

Display Write Inhibit/Blanking

1	1	0	C_{D}	C_{D}	C_{D}	C_{F}	C_{A}

Clear

| 1 | 1 | 1 | E | X | X | X | X |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | End Interrupt/Error Mode Set

$D U$	S / E	O	U	F	N	N	N

FIFO Status

Package Outlines

For information, see Package Outline Section 7.

Plastic, μ PD8279C-5
Ceramic, μ PD8279D-5

Notes

OCTAL LATCH

DESCRIPTION The μ PB8282/8283 are 8-bit latches with tri-state output buffers. The 8282 is noninverting and the 8283 inverts the input data. These devices are ideal for demultiplexing the address/data buses on the 8085A/8086 microprocessors. The 8282/8283 are fabricated using NEC's Schottky bipolar process.

FEATURES - Supports 8080, 8085A, 8048, 8086 Family Systems

- Transparent During Active Strobe
- Fully Parallel 8-Bit Data Register and Buffer
- High Output Drive Capability (32 mA) for Driving the System Data Bus
- Tri-State Outputs
- 20-Pin Package

PIN NAMES
$\mathrm{DI}_{0}-\mathrm{DI}_{7}$ DATA IN $\mathrm{DO}_{0} \mathrm{DO}_{7}$ DATA OUT $\overline{\mathrm{OE}}$ OUTPUT ENABLE STB STROBE

FUNCTIONAL The μ PB8282/8283 are 8-bit latches with tri-state output buffers. Data on the inputs DESCRIPTION is latched into the data latches on a high to low transition of the STB line. When STB is high, the latches appear transparent. The $\overline{O E}$ input enables the latched data to be transferred to the output pins. When $\overline{\mathrm{OE}}$ is high, the outputs are put in the tri-state condition. $\overline{\mathrm{OE}}$ will not cause transients to appear on the data outputs.

ABSOLUTE MAXIMUM
 RATINGS*

Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ All Output and Supply Voltages . -0.5 V to +7 V All Input Voltages . - 1.0 V to 5.5V $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Conditions $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{a}}=0{ }^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	MIN	MAX	UNITS	TEST CONDITIONS
Input Clamp Voltage	V_{C}		-1	V	$\mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA}$
Power Supply Current	I_{CC}		160	mA	
Forward Input Current	I_{F}		-0.2	mA	$\mathrm{~V}_{\mathrm{F}}=0.45 \mathrm{~V}$
Reverse Input Current	I_{R}		50	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{R}}=5.25 \mathrm{~V}$
Output Low Voltage	V_{OL}		045	V	$\mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA}$
Output High Voltage	V_{OH}	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA}$
Output Off Current	$\mathrm{I}_{\mathrm{OFF}}$		± 50	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{OFF}}=0.45$ to 5.25 V
Input Low Voltage	V_{IL}		0.8	V	$\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \cap 1$
Input High Voltage	V_{IH}	2.0		V	$\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \oplus$
Input Capacitance	C_{IN}		12	pF	$\mathrm{V}_{\mathrm{BIAS}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$

Note:(1) Output Loadıng $\mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA}, \mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}$

AC CHARACTERISTICS

Conditions: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Loading: Outputs $-10 \mathrm{~L}=32 \mathrm{~mA}, \mathrm{IOH}=-5 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}$

PARAMETER	SYMBOL	MIN	MAX	UNITS
Input to Output Delay -Invertıng -Non-Inverting	TIVOV	5 5	$\begin{aligned} & 22 \\ & 30 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
STB to Output Delay - Inverting -Non-Inverting	TSHOV	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 40 \\ & 45 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
Output Disable Time	TEHOZ	5	22	ns
Output Enable Time	TELOV	10	30	ns
Input to STB Setup Time	TIVSL	0		ns
Input to STB Hold Time	TSLIX	25		ns
STB High Time	TSHSL	15		ns
Input, Output Rıse Time	$\mathrm{T}_{\text {ILIH, }} \mathrm{T}^{\text {OLOH }}$		20	ns
Input, Output Fall Time	$\mathrm{T}_{1 \mathrm{HIL},} \mathrm{T}^{\text {OHOL }}$		12	nw

TIMING WAVEFORMS

Note: Output may be momentarily invalıd following the high going into STB transition.

AC TESTING INPUT, OUTPUT WAVEFORM

μ PB8282/8283

Package Outlines

For information, see Package Outline Section 7.
Plastic, μ PB8282C/83C
Cerdip, μ PB8282D/83D

CLOCK GENERATOR AND DRIVER FOR 8086/8088 MICROPROCESSORS

DESCRIPTION The μ PB8284A is a clock generator and driver for the 8066 and 8088 microprocessors. This bipolar driver provides the microprocessor with a reset signal and also provides properly synchronized READY timing. A TTL clock is also provided for peripheral devices.

FEATURES - Generate System Clock for the 8086 and 8088

- Frequency Source can be a Crystal or a TTL Signal
- MOS Level Output for the Processor
- TTL Level Output for Peripheral Devices
- Power-Up Reset for the Processor
- READY Synchronization
- +5V Supply
- 18 Pin Package

[^6]| NO. | SYMBOL | NAME | FUNCTION |
| :---: | :---: | :---: | :---: |
| 1 | CSYNC | Clock Synchronization | An active high signal which allows multiple 8284s to be synchronized. When CYSNC is low, the internal counters count and when high the counters are reset. CYSNC should be grounded when the internal oscillator is used. |
| 2 | PCLK | Perıpheral Clock | A TTL level clock for use with peripheral devices. This clock is onehalf the frequency of CLK. |
| 3, 7 | $\overline{\text { AEN }} 1, \overline{\mathrm{AEN}} 2$ | Address Enable | This active low signal is used to qualify its respective RDY inputs. If there is only one bus to interface to, $\overline{\mathrm{AEN}}$ inputs are to be grounded. |
| 4,6 | RDY1, RDY2 | Bus Ready | This signal is sent to the 8284 from a peripheral device on the bus to indicate that data has been received or data is available to be read. |
| 5 | READY | Ready | The READY signal to the microprocessor is synchronized by the RDY inputs to the processor CLK. READY is cleared after the guaranteed hold time to the processor has been met. |
| 8 | CLK | Processor Clock | This is the MOS level clock output of 33% duty cycle to drive the microprocessor and bipolar support devices (8288) connected to the processor. The frequency of CLK is one third of the crystal or EFI frequency. |
| 10 | RESET | Reset | This is used to initialize the processor. Its input is derived from an RC connection to a Schmitt trigger input for power up operation. |
| 11 | $\overline{\mathrm{RES}}$ | Reset In | This Schmitt trigger input is used to determine the timing of RESET out via an RC circuit. |
| 12 | OSC | Oscillator Output | This TTL level clock is the output of the oscillator circuit running at the crystal frequency. |
| 13 | F/C | Frequency Crystal Select | $F / \overline{\mathrm{C}}$ is a strapping option used to determine where CLK is generated. A high is for the EFI input, and a low is for the crystal. |
| 14 | EFI | External Frequency In | A square wave in at three times the CLK output. A TTL level clock to generate CLK. |
| 16, 17 | $\mathrm{X}_{1}, \mathrm{X}_{2}$ | Crystal In | A crystal is connected to these inputs to generate the processor clock. The crystal chosen is three times the desired CLK output. |
| 15 | $\overline{\text { ASYNC }}$ | Asynchronous Input | Ready Synchronization Select. $\overline{A S Y N C}$ is an input which defines the synchronization mode of the READY logic. When $\overline{A S Y N C}$ is low, 2 stages of READY synchronızation are provided. When $\overline{A S Y N C}$ is left open or HIGH, a single stage of READY synchronızation is provided. |
| 18 | Vcc | Vcc | $+5 \mathrm{~V}$ |

FUNCTIONAL DESCRIPTION
The clock generator can provide the system clock from either a crystal or an external TTL source. There is an internal divide by three counter which receives its input from either the crystal or TTL source (EFI Pin) depending on the state of the F/ \bar{C} input strapping. There is also a clear input (C SYNC) which is used for either inhibiting the clock, or synchronizing it with an external event (or perhaps another clock generator chip). Note that if the TTL input is used, the crystal oscillator section can still be used for an independent clock source, using the OSC output.

For driving the MOS output level, there is a 33% duty cycle MOS output (CLK) for the microprocessor, and a TTL output (PCLK) with a 50% duty cycle for use as a peripheral clock signal. This clock is at one half of the processor clock speed.

Reset timing is provided by a Schmitt Trigger input ($\overline{\mathrm{RES}}$) and a flip-flop to synchronize the reset timing to the falling edge of CLK. Power-on reset is provided by a simple RC circuit on the $\overline{R E S}$ input.

There are two READY inputs, each with its own qualifier ($\overline{\mathrm{AEN} 1}, \overline{\mathrm{AEN} 2}$). The unused $\overline{A E N}$ signal should be tied low.

The READY logic in the 8284A synchronizes the RDY1 and RDY2 asynchronous inputs to the processor clock to insure proper set up time, and to guarantee proper hold time before clearing the ready signal.

Operating Temperature . $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Output and Supply Voltages. -0.5 V to +7 V
All Input Voltages . -1.0 V to +5.5V
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT Stress above those listed under "Absolute Maxımum Ratıngs" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maxımum rating conditions for extended periods may affect device reliability.

Conditions: $\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	MIN	MAX	UNIT	TEST CONDITIONS
Forward Input Current ($\overline{\mathrm{ASYNC}}$) (Other Inputs)	IF		$\begin{aligned} & -1.3 \\ & -0.5 \end{aligned}$	mA	$\begin{aligned} & V_{F}=0.45 \mathrm{~V} \\ & V_{F}=0.45 \mathrm{~V} \end{aligned}$
Reverse Input Current	IR		50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}$
Input Forward Clamp Voltage	V_{C}		-1.0	V	$\mathrm{IC}=-5 \mathrm{~mA}$
Power Supply Current	ICC		140	mA	
Input Low Voltage	VIL		0.8	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
Input High Voltage	$V_{\text {IH }}$	2.0		V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
Reset Input High Voltage	VIHR	2.6		V	$\mathrm{VCC}=5.0 \mathrm{~V}$
Output Low Voltage	V_{OL}		0.45	V	$5 \mathrm{~mA}=1 \mathrm{OL}$
Output High Voltage (CLK) (Other Outputs)	VOH	$\begin{aligned} & 4 \\ & 2.4 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\left.\begin{array}{l} -1 \mathrm{~mA} \\ -1 \mathrm{~mA} \end{array}\right\} \mathrm{I}^{\mathrm{OH}}$
$\overline{\mathrm{RES}}$ Input Hysteresis	$V_{1 H_{R}}-V_{1 L_{R}}$	0.25		V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Conditions: $\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$
TIMING REQUIREMENTS

PARAMETER	SYMBOL	MIN	MAX	UNITS	TEST CONDITIONS
External Frequency High Time	TEHEL	13		ns	90\%-90\% V ${ }_{\text {IN }}$
External Frequency Low Time	TELEH	13		ns	10\%-10\% VIN
EFI Period	TELEL	TEHEL + TELEH + δ		ns	(1)
XTAL Frequency		12	25	MHz	
RDY1, RDY2 Set-Up to CLK	TR1VCL	35		ns	
RDY1, RDY2 Hold to CLK	TCLR1X	0		ns	
AEN1, AEN2 Set-Up to RDY1, RDY2	TA1VR1V	15		ns	
AEN1, AEN2 Hold to CLK	TCLA1X	0		ns	
CSYNC Set-Up to EFI	TYHEH	20		ns	
CSYNC Hold to EFI	TEHYL	10		ns	
CSYNC Width	TYHYL	2 TELEL		ns	
RES Set-Up to CLK	TI1HCL	65		ns	(2)
RES Hold to CLK	TCLI1H	20		ns	(2)
RDY1, RDY2 Active Set-Up to CLK	${ }^{\text {t }} \mathrm{P} 1 \mathrm{VCH}$	35		ns	$\overline{\text { ASYNC }}=$ LOW
RDY1, RDY2 Inactive Set-Up to CLK	${ }^{\text {t R 1 V Cli }}$	35		ns	
ASYNC Set-Up to CLK	${ }^{\text {t }}$ AYVCL	50		ns	
$\overline{\text { ASYNC Hold to CLK }}$	${ }^{\text {t }}$ LLAYX	0		ns	
Input Rise Time	${ }^{\text {I ILIH }}$		20	ns	From 08 V to 20 V
Input Fall Time	tILIL		12	ns	From 20 V to 08 V

TIMING RESPONSES
(CONT.)

PARAMETER	SYMBOL	MIN	MAX	UNITS	TEST CONDITIONS
CLK Cycle Period	TCLCL	125		ns	
CLK High Time	TCHCL	$(1 / 3$ TCLCL $)+20$		ns	Figure 3 and Figure 4
CLK Low Time	TCLCH	(2/3 TCLCL) -150		ns	Figure 3 and Figure 4
CLK Rise and Fall Time	$\begin{aligned} & \text { TCH1CH2 } \\ & \text { TCL2CL1 } \end{aligned}$		10	ns	10 V to 35 V
PCLK High Time	TPHPL	TCLCL-20		ns	
PCLK Low Time	TPLPH	TCLCL-20		ns	
Ready Inactive to CLK (4)	TRYLCL	-8		ns	Figure 5 and Figure 6
Ready Active to CLK (3)	TRYHCH	(2/3 TCLCL) - 150		ns	Figure 5 and Figure 6
CLK To Reset Delay	TCLIL		40	ns	
CLK to PCLK High Delay	TCLPH		22	ns	
CLK to PCLK Low Delay	TCLPL		22	ns	
OSC to CLK High Delay	TOLCH	-5	12	ns	
OSC to CLK Low Delay	TOLCL	2	22	ns	
Output Rise Time (except CLK)	${ }^{\text {toLOH }}$		20	ns	From 08 V to 20 V
Output Fall Time (except CLK)	${ }^{\text {tohol }}$		12	ns	From 20 V to 0.8 V

Notes:
(1) $\delta=$ EFI rise (5 ns max) + EFI fall (5 ns max)
(2) Set up and hold only necessary to guarantee recognition at next clock.
(3) Applies only to T3 and TW states
(4) Applies only to T2 states

TIMING WAVEFORM*

AC TEST CIRCUITS

FIGURE 2 CLOCK HIGH AND LOW TIME

OUTPUT
NOTES (1) $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
(2) $C_{L}=30 \mathrm{pF}$
(3) C_{L} INCLUDES PROBE AND JIG CAPACITANCE

AC TESTING INPUT, OUTPUT WAVEFORM

Package Outlines

For information, see Package Outline Section 7.

8-BIT BUS TRANSCEIVER

DESCRIPTION

FEATURES

The 8286 and 8287 are octal bus transceivers used for buffering microprocessor bus lines. Being bi-directional, they are ideal for buffering the data bus lines on 8 - or 16 -bit microprocessors. Each B output is capable of driving 32 mA low or 5 mA high.

- Data Bus Buffer Driver for μ COM-8 (8080, 8085A, 780) and μ COM-16 (8086) families
- Low Input Load Current -- 0.2 mA max
- High Output Drive Capability for Driving System Data Bus
- Tri-State Outputs
- 20 Pin Package with Fully Parallel 8-Bit Transceivers

PIN CONFIGURATIONS

0

BLOCK DIAGRAMS

$\overline{O E}$	\mathbf{T}	RESULT
0	0	$\mathrm{~B} \rightarrow \mathrm{~A}$
0	1	$\mathrm{~A} \rightarrow \mathrm{~B}$
1	0	A and B 1
1		HIGH IMPEDANCE

[^7]ABSOLUTE MAXIMUM RATINGS*

DC CHARACTERISTICS

PARAMETER	SYMBOL	MIN	MAX	UNITS	TEST CONDITIONS
Input Clamp Voltage	V_{C}		-1	V	$\mathrm{I}_{\mathrm{C}} \mathrm{C}=-5 \mathrm{~mA}$
Power Supply Current	${ }^{1} \mathrm{Cc}$		130	mA	
	${ }^{\text {I CC }}$		160	mA	
Forward Input Current	I_{F}		-02	mA	$V_{F}=045 \mathrm{~V}$
Reverse Input Current	${ }^{\prime} \mathrm{R}$		50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}$
Output Low Voltage - B Outputs - A Outputs	$\mathrm{V}_{\text {OL }}$		$\begin{aligned} & 0.45 \\ & 0.45 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{aligned}$
Output High Voltage- B Outputs 	VOH	$\begin{aligned} & 24 \\ & 2.4 \end{aligned}$		$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA} \\ & \mathrm{I} \mathrm{OH}=-1 \mathrm{~mA} \end{aligned}$
Output Off Current Output Off Current	$\begin{aligned} & \text { IOFF } \\ & \text { IOFF } \end{aligned}$		$\begin{aligned} & I_{F} \\ & I_{R} \end{aligned}$		$\begin{aligned} & V_{\text {OFF }}=045 \mathrm{~V} \\ & V_{\text {OFF }}=525 \mathrm{~V} \end{aligned}$
Input Low Voltage	$\frac{V_{I L}}{V_{I L}}$		0.8	$\begin{aligned} & v \\ & v \end{aligned}$	$\begin{array}{ll} v_{C C}=50 \mathrm{~V} & (1) \\ v_{C C}=50 \mathrm{~V} & 1 \end{array}$
Input High Voltage	$\mathrm{V}_{1} \mathrm{H}$	2.0		V	$\begin{align*} & V_{C C}=50 \mathrm{~V} \tag{1}\\ & F=1 \mathrm{MHz} \end{align*}$
Input Capacitance - A Side	$\mathrm{CIN}_{\text {IN }}$		16	pF	$\begin{aligned} & \mathrm{V}_{\mathrm{BIAS}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \quad \mathrm{~F}=1 \mathrm{MHz} \end{aligned}$

Note (1) B Outputs $-I_{\mathrm{OL}}=32 \mathrm{~mA}, \mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}$ A Outputs $-\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}, \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$

AC CHARACTERISTICS
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$

SYMBOL	PARAMETER	MIN	MAX	UNITS
TIVOV	Input to Output Delay Inverting Non-Inverting	5	22	ns
TEHTV	Transmit/Receive Hold Tıme	TEHOZ		ns
TTVEL	Transmit/Receive Setup	10		ns
TEHOZ	Output Disable Time	5	22	ns
TELOV	Output Enable Time	10	30	ns
TILIH, TOLOH	Input Output Rise Time		20	ns
TIHIL, TOHOL	Input Output Fall Time		12	ns

Notes: See waveforms and test load circuit.
B Outputs $-\mathrm{IOL}=32 \mathrm{~mA}, 1 \mathrm{OH}=-5 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}$ A Outputs $-\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}, \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$

AC TESTING INPUT, OUTPUT WAVEFORM

MOS microprocessors like the 8080/8085A/8086 are generally capable of driving a single TTL load. This also applies to MOS memory devices. While sufficient for minimum type small systems on a single PC board, it is usually necessary to buffer the microprocessor and memory signals when a system is expanded or signals go to other PC boards.
These octal bus transceivers are designed to do the necessary buffering.

Bi-Directional Driver

Each buffered line of the octal driver consists of two separate tri-state buffers. The B side of the driver is designed to drive 32 mA and interface the system side of the bus to I/O, memory, etc. The A side is connected to the microprocessor.

Control Gating, $\overline{\mathrm{OE}}, \mathrm{T}$

The $\overline{O E}$ (output enable) input is an active low signal used to enable the drivers selected by T on to the respective bus.

T is an input control signal used to select the direction of data through the transceivers. When T is high, data is transferred from the $A_{0}-A_{7}$ inputs to the $B_{0} \cdot B_{7}$ outputs, and when low, data is transferred from $B_{0}-B_{7}$ to the $A_{0}-A_{7}$ outputs.

Package Outlines

For information, see Package Outline Section 7.
Plastic, μ PB8286C/87C
Cerdip, μ PB8286D/87D

Notes

DESCRIPTION The μ PB8288 bus controller is for use in medium to large μ PD8086/8088 systems. This 20-pin bipolar component provides command and control timing generation, plus bipolar drive capability and optimal system performance. It provides both MultibusTM command signals and control outputs for the microprocessor system. There is an option to use the controller with a multi-master system bus and separate I/O bus.

FEATURES • System Controller for μ PD8086/8088 Systems

- Bipolar Drive Capability
- Provides Advanced Commands
- Tri-State Output Drivers
- Can be used with an I/O Bus
- Enables Interface to One or Two Multi-Master Buses
- 20-Pin Package

PIN NAMES

SO-S2	Status Input Pins
CLK	Clock
ALE	Address Latch Enable
DEN	Data Enable
DT/ \bar{R}	Data Transmit/Receive
$\overline{\text { AEN }}$	Address Enable
CEN	Command Enable
IOB	I/O Bus Mode
$\overline{\text { AIOWC }}$	Advanced I/O Write
$\overline{\text { IOWC }}$	I/O Write Command
$\overline{\text { IORC }}$	I/O Read Command
$\overline{\text { AMWC }}$	Advanced Memory Write
$\overline{\text { MWTC }}$	Memory Write Command
$\overline{\text { MRDC }}$	Memory Read Command
$\overline{\text { INTA }}$	Interrupt Acknowledge
MCE/PDEN	Master Cascade/Peripheral Data Enable

PIN			FUNCTION
No.	SYMBOL	NAME	
1	IOB	I/O Bus Mode	Sets mode of μ PB8288, high for the I/O bus mode and low for the system bus mode.
2	CLK	Clock	The clock signal from the μ PB8284 clock generator synchronizes the generation of command and control signals.
3, 19, 18	$\overline{s_{0}}, \overline{s_{1}}, \overline{S_{2}}$	Status Input Pins	The μ PB8288 decodes these status lines from the μ PB8086 to generate command and control signals. When not in use, these pins are high.
4	DT/ \bar{R}	Data Transmit/Receive	This signal is used to control the bus transceivers in a system. A high for writing to I/O or memory and a low for reading data.
5	ALE	Address Latch Enable	This signal is used for controlling transparent D type latches (μ PB8282/ 8283). It will strobe in the address on a high to low transition.
6	$\overline{\text { AEN }}$	Address Enable	In the I/O system bus mode, AEN enables the command outputs of the μ PB8288 105 ns after it becomes active. If AEN is inactive, the command outputs are tri-stated.
7	$\overline{\text { MRDC }}$	Memory Read Command	This active low signal is for switching the data from memory to the data bus.
8	$\overline{\text { AMWC }}$	Advanced Memory Write Command	This is an advanced write command which occurs early in the machine cycle, with timing the same as the read command.
9	$\overline{\text { MWTC }}$	Memory Write Command	This is the memory write command to transfer data bus to memory, but not as early as $\overline{\text { AMWC. (See timing }}$ waveforms.)
11	IOWC	I/O Write Command	This command is for transferring information to $1 / O$ devices.
12	$\overline{\text { AIOWC }}$	Advanced I/O Write Command	This write command occurs earlier in the machine cycle than IOWC.
13	$\overline{\text { IORC }}$	I/O Read Command	This signal enables the CPU to read data from an I/O device.
14	$\overline{\text { INTA }}$	Interrupt Acknowledge	This is to signal an interupting device to put the vector information on the data bus
15	CEN	Command Enable	This signal enables all command and control outputs. If CEN is low, these outputs are inactive.
16	DEN	Data Enable	This signal enables the data transceivers onto the bus.
17	$\frac{\mathrm{MCE} /}{\mathrm{PDEN}}$	Master Cascade Enable Peripheral Data Enable	Dual function pin system. MC/E - In the bus mode, this signal is active during an interrupt sequence to read the cascade address from the master interrupt controller onto the data bus. PDEN - In the I/O bus mode, it enables the transceivers for the I/O bus just as DEN enables bus transceivers in the system bus mode.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS*

OPERATING TEMPERATURE . $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ All Output and Supply Voltages ${ }^{(1)} .$. -0.5 V to +7 V All Input Voltages ${ }^{(1)}$. -1.0 V to +5.5 V Note: (1) With Respect to Ground.
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

μ PB8288

The three status lines ($\overline{\mathrm{SO}}, \overline{\mathrm{S} 1}, \overline{\mathrm{~S} 2}$) from the μ PD8086 CPU are decoded by the command logic to determine which command is to be issued. The following chart shows the decoding:

$\overline{S_{2}}$	$\overline{S_{1}}$	$\overline{\mathbf{S}_{0}}$	μ PD8086 State	μ PB8288 Command
0	0	0	Interrupt Acknowledge	$\overline{\text { INTA }}$
0	0	1	Read I/O Port	$\overline{\overline{I O R C}}$
0	1	0	Write I/O Port	$\overline{\text { IOWC }}, \overline{\text { AIOWC }}$
0	1	1	Halt	None
1	0	0	Code Access	$\overline{\text { MRDC }}$
1	0	1	Read Memory	$\overline{\text { MRDC }}$
1	1	0	Write Memory	$\overline{\text { MWTC }}, \overline{\text { AMWC }}$
1	1	1	Passive	None

There are two ways the command is issued depending on the mode of the μ PB8288.
The I/O bus mode is enabled if the IOB pin is pulled high. In this mode, all I/O command lines are always enabled and not dependent upon $\overline{\text { AEN }}$. When the processor sends out an I/O command, the μ PB8288 activates the command lines using $\overline{\text { PDEN }}$ and $D T / \bar{R}$ to control any bus transceivers.

This mode is advantageous if I/O or peripherals dedicated to one microprocessor are in a multiprocessor system, allowing the μ PB8288 to control two external buses. No waiting is required when the CPU needs access to the I/O bus, as an $\overline{\mathrm{AEN}}$ low signal is needed to gain normal memory access.

If the IOB pin is tied to ground, the μ PB8288 is in the system bus mode. In this mode, commanu signals are dependent upon the $\overline{\mathrm{AEN}}$ line. Thus the command lines are activated 105 ns after the $\overline{A E N}$ line goes low. In this mode, there must be some bus arbitration logic to toggle the $\overline{\mathrm{AEN}}$ line when the bus is free for use. Here, both memory and I/O are shared by more than one processor, over one bus, with both memory and I/O commands waiting for bus arbitration.

Among the command outputs are some advanced write commands which are initiated early in the machine cycle and can be used to prevent the CPU from entering unnecessary wait states.

The $\overline{\text { INTA }}$ signal acts as an I/O read during an interrupt cycle. This is to signal the interrupting device that its interrupt is teing acknowledged, and to place the interrupt vector on the data bus.

The control outputs of the μ PB8288 are used to control the bus transceivers in a system $\mathrm{DT} / \overline{\mathrm{R}}$ determines the direction of the data transfer, and DEN is used to enable the outputs of the transceiver. In the IOB mode the MCE/PDEN pin acts as a dedicated data enable signal for the I/O bus.

The MCE signal is used in conjunction with an interrupt acknowledge cycle to control the cascade address when more than one interrupt controller (such as a μ PD8259A) is used. If there is only one interrupt controller in a system, MCE is not used as the INTA signal gates the interrupt vector onto the processor bus. In multiple interrupt controller systems, MCE is used to gate the μ PD8259A's cascade address onto the processors local bus, where ALE strobes it into the address latches. This occurs during the first INTA cycle. During the second $\overline{\text { INTA }}$ cycle the addressed slave μ PD8259A gates its interrupt vector onto the processor bus.
The ALE signal occurs during each machine cycle and is used to strobe data into the address latches and to strobe the status ($\overline{\mathbf{S} 0}, \overline{\mathrm{~S} 1, \bar{S} 2 \text {) into the } \mu \text { PB8288. ALE also }}$ occurs during a halt state to accomplish this.

The CEN (Command Enable) is used to control the command lines. If pulled high the μ PB8288 functions normally and if grounded all command lines are inactive.

AC CHARACTERISTICS
$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
TIMING REQUIREMENTS

PARAMETER	SYMBOL	MIN	MAX	UNIT	LOADING
CLK Cycle Period	TCLCL	100		ns	
CLK Low Time	TCLCH	50		ns	
CLK High Time	TCHCL	30		ns	
Status Active Setup Time	TSVCH	35		ns	
Status Active Hold Tıme	TCHSV	10		ns	
Status Inactive Setup Time	TSHCL	35		ns	
Status Inactive Hold Tıme	TCLSH	10		ns	
Input Rıse Tıme	TILIH		20	ns	
Input Fall Time	TIHIL		12	ns	

PARAMETER	SYMBOL	MIN	MAX	UNIT	LOADING
Control Active Delay	TCVNV	5	45	ns	
Control Inactive Delay	TCVNX	10	45	ns	
ALE MCE Active Delay (from CLK)	TCLLH, TCLMCH		20	ns	
ALE MCE Active Delay (from Status)	TSVLH, TSVMCH		20	ns	
ALE Inactive Delay	TCHLL	4	15	ns	
Command Active Delay	TCLML	10	35	ns	
Command Inactive Delay	TCLMH	10	35	ns	
Direction Control Active Delay	TCHDTL		50	ns	
Direction Control Inactive Delay	TCHDTH		30	ns	
Command Enable Time	TAELCH		40	ns	
Command Disable Time	TAEHCZ		40	ns	
Enable Delay Time	TAELCV	105	275	ns	Oner $\quad\left\{\begin{array}{l}\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \\ \mathrm{OH}=-1 \mathrm{~mA}\end{array}\right.$
AEN to DEN	TAEVNV		20	ns	Other $\left\{\begin{array}{l}\mathrm{OH}=-1 \mathrm{~mA}\end{array}\right.$
CEN to DEN, PDEN	TCEVNV		25	ns	
CEN to Command	TCELRH		TCLML	ns	
Output Rise Time	TOLOH		20	ns	
Output Fall Time	TOHOL		12	ns	

notes-
(1) ADDRESS/DATA BUS IS SHOWN ONLY FOR REFERENCE PURPOSES
(2) LEADING EDGE OF ALE AND MCE IS DETERMINED BY THE FALLING EDGE OF CLK OR STATUS GOING ACTIVE, WHICHEVER OCCURS LAST
(3) ALL TIMING MEASUREMENTS ARE MADE AT 15 V UNLESS SPECIFIED OTHERWISE

DEN, $\overline{P D E N}$ QUALIFICATION TIMING
μ PB8288 ADDRESS ENABLE
$\overline{(\mathrm{AEN})}$ TIMING
(3-STATE ENABLE/DISABLE)

TEST LOAD CIRCUITS

3-STATE COMMAND OUTPUT TEST LOAD

6

AC TESTING INPUT, OUTPUT WAVEFORM

Package Outlines

For information, see Package Outline Section 7.
Cerdip, μ PB8288D

Description

The μ PB8289 Bus Arbiter is used with the μ PD8288 Bus Controller to interface 8086 and 8088 microprocessors to a multimaster system bus. The μ PD8289 controls the μ PD8288 bus controller and the bus transceivers and address latches, preventing them from accessing the system bus if the processor does not have use of the bus.
An external command sequence will cause the associated microprocessor to enter a wait state until the bus is ready. The processor remains in the wait state until the bus arbiter acquires use of the multimaster system bus. Then, the arbiter allows the bus controller, data transceivers, and address latches to access the system.
Once use of the bus has been acquired and data has been transferred, transfer acknowledge (XACK) is returned to the processor to indicate that the accessed slave device is ready. The processor may then complete its transfer cycle.

Features

Multimaster system bus protocol8086 and 8088 processor synchronization with multimaster busSimple interface with the 8288 bus controller and 8283/8282 address latches to a system busFour operating modes for flexible system configuration
Simplified interface to MultibusTM systemsParallel, Serial, and Rotating priority resolutionBipolar buffering and drive capability

Pin Configuration

TM: Multibus is a registered trademark of Intel Corporation.

Functional Configuration

Pin Identification

Pin Number	Pin Name	Direction	Pin Functions
18, 19, 1	$\overline{\mathbf{S 0}}, \overline{\mathbf{S 1}}, \overline{\mathbf{S 2}}$	IN	Status inputs from the $\mathbf{8 0 8 6}$ or $\mathbf{8 0 8 8}$ processor. The μ PB8289 decodes them to begin bus requests and surrenders.
17	CLK	IN	Clock signal from the $\mathbf{8 2 8 4}$ clock generator.
16	$\overline{\text { LOCK }}$	IN	
15	$\overline{\text { CRQLCK }}$	IN	Common Request Lock. Prevents the μ PB8289 from surrendering the bus in response to request on the $\overline{C B R Q}$ input.
4	$\overline{\text { RESB }}$	IN	Resident Bus Input. This signal tells the μ PB8289 that there is a multimaster and resident bus. When this signal is high, the SYSB/RESB pin handles bus arbitration.
14	ANYRQST	IN	This signal allows the multimaster bus to be surrendered to a lower priority arbiter
2	$\overline{10 B}$	IN	I/O Bus. This signal tells the μ PB8289 that there is an I/O peripheral bus and a multimaster system bus.
13	$\overline{\text { AEN }}$	OUT	Address Enable. This output tells the 8288 bus controller, 8284 clock driver, and the processor's address latches when to tri-state their output drivers.
3	SYSB/RESB	IN	System Bus/Resident Bus. This signal determines when bus requests and surrenders are permitted in SR mode.
12	$\overline{\text { CBRQ }}$	IN/OUT	Common Bus Request. This is an input from a lower priority arbiter requesting the bus. It is an output from arbiters that surrender the multimaster bus upon request.
6	INIT	IN	Initialize. This is an active low input that resets all bus arbiters on the multimaster bus. No arbiters have use of the bus following INIT.
5	$\overline{\text { BCLK }}$	IN	System Bus Clock. This clock synchronizes all system bus interface signais.
7	BREQ	OUT	Bus Request. This output is used by an arbiter to request use of the muitimaster system bus.
9	$\overline{\text { BPRN }}$	IN	Bus Priority In. This signal tells the arbiter it may acquire the bus on the next falling edge of $\overline{B C L K}$.

Rev/1 arbiter it may acquire the bus on the next falling edge of $\overline{B C L K}$.

Block Dlagram

Pin Functions (Cont.)

Pin Number	PIn Name	Direction	PIn Functions

Bus Master Arbitration

Higher priority masters generally acquire use of the bus when a lower priority master completes its present transfer cycle. Lower priority masters acquire the bus when no higher priority master is accessing the system bus. The ANYRQST strapping option allows the arbiter to surrender the bus to a lower priority master as if it were a higher priority master. The arbiter maintains the bus as long as no other bus masters are requesting the bus and its processor has not entered the Halt state. The arbiter does not voluntarily surrender the bus and must be forced off by a request from another bus master, unless the arbiter's processor has entered the Halt state. Additional strapping options allow for other sets of conditions.

Priority Resolving Techniques

The μ PB8289 provides several techniques for resolving priority between the many possible bus masters of a multimaster system bus. All of these techniques assume that one bus master will have priority over all others at any given time. You may use Parallel, Serial, or Rotating Priority Resolving.

Parallel Priority Resolving

This technique uses a Bus Request line (BREQ) for each arbiter on the multimaster system bus. Each BREQ line goes to a priority encoder that generates the address of the highest priority active BREQ line. This binary address is decoded to select the Bus Priority In line (BPRN) that is returned to the highest priority active arbiter. The arbiter that receives priority (BPRN true) allows its bus master onto the multimaster system bus as soon as the bus becomes available. An arbiter that gets priority over another arbiter cannot immediately seize the bus, but must wait until the current bus transaction is complete. When the transaction is complete, the current occupant of the bus surrenders the bus by releasing BUSY. BUSY is an active low OR tied line which goes to every arbiter on the system bus. When BUSY goes high (inactive), the priority arbiter seizes the bus and brings BUSY low to keep other arbiters off the bus. Note that all multimaster system bus transactions are, synchronized to the bus clock ($\overline{\mathrm{BCLK}}$).

Parallel Priority Resolving

Higher Priority Arbiter Obtaining the Bus from a Lower Priority Arbiter

Serial Priority Resolving

The serial priority resolving technique daisy-chains the bus arbiters together by connecting the higher priority arbiter's BPRO output to the BPRN of the next lowest priority arbiter. This eliminates the need for the priority encoder-decoder arrangement. The number of arbiters that may be daisy-chained together is a function of $\overline{B C L K}$ and the propagation delay from arbiter to arbiter. At 10 MHz , only 3 arbiters may be daisy-chained.

Rotating Priority Resolving

This technique resembles the parallel priority resolving technique except that priority is dynamically reassigned. The priority encoder is replaced by a circuit that rotates priority between arbiters to allow each arbiter an equal chance to use the system bus.

Modes of Operation

The $\mu \mathrm{PB} 8289$ has two basic operating modes: I/O Peripheral Bus mode ($\overline{\mathrm{OB}}$ mode), and Resident Bus mode (RESB mode). The $\overline{\mathrm{OB}}$ strapping option configures the μ PB8289 into $\overline{\text { IOB }}$ mode and the RESB strapping option configures it to RESB mode. If both options are strapped false, the arbiter interfaces the processor to a multimaster system bus only. If both options are strapped true, the arbiter interfaces the processor to a multimaster system bus, a resident bus, and an I/O bus.

IOB Mode

IOB mode allows the processor to access both an I/O peripheral bus and a multimaster system bus. On an l/O peripheral bus, all devices on the bus, including memory, are treated as I/O devices and addressed by I/O commands. All memory commands are directed to the multimaster system bus. In $\overline{\mathrm{OB}}$ mode, the processor communicates with and controls peripherals over the peripheral bus and communicates with system memory over the system memory bus.

RESB Mode

RESB mode allows the processor to communicate over both a resident bus and a multimaster system bus. A resident bus can issue memory and I/O commands, but it is separate from the multimaster system bus. The resident bus has one master and is dedicated to only that master. The 8086 and 8088 can communicate with a resident bus and a multimaster system bus. The processor can access the memory and peripherals of both buses. Memory mapping selects which bus is accessed. The SYSB/RESB input on the arbiter instructs the arbiter on which bus to access. The signal connected to SYSB/RESB also enables and disables commands from one of the bus controllers.

	Status Lines From 8086 or 8088 or 8089			IOB Mode Only		$\begin{gathered} \text { RESB (Mode) Only } \\ \text { IOB }=\text { High RESB }=\text { Migh } \end{gathered}$		$\begin{aligned} & \text { 108 Mode RESB Mode } \\ & \text { 10B }=\text { Low RESB }=\text { High } \end{aligned}$		```Single Bus Mode IOB = High RESB = LOW```
	\$2	$\overline{51}$	50	IOB	= Low	SYSB/RESB $=$ High	$\begin{gathered} \text { SYSB/RESB }= \\ \text { Low } \end{gathered}$	$\text { SYSB/RESB }=$ High	SYsB/RISB $=$ Low	
	0	0	0		x	\checkmark	x	x	x	\checkmark
I/O Commands	0	0	1		x	\sim	\mathbf{x}	\mathbf{x}	\mathbf{x}	\sim
	0	1	0		x	\checkmark	\mathbf{x}	x	\mathbf{x}	r
Halt	0	1	1		x	x	x	x	\mathbf{x}	\mathbf{x}
	1	0	0		\checkmark	\checkmark	x	\checkmark	\mathbf{x}	\checkmark
Memory Commands	1	0	1		\sim	\checkmark	\mathbf{x}	\checkmark	\mathbf{x}	\checkmark
	1	1	0		\checkmark	r	x	\sim	\mathbf{x}	\checkmark
Idle	1	1	1		x	x	x	x	\mathbf{x}	x

Notes:

(1) $x=$ Multumaster System Bus is allowed to be surrendered.
(2) $r=$ Multimaster System Bus is requested.

Multimaster System Bus

Mode	Pin Strapping	Requested (1)	Surrendered (2)
Single Bus Multimaster Mode	$\begin{aligned} & \overline{\overline{O O B}}=\mathrm{High} \\ & \text { RESB }=\text { Low } \end{aligned}$	When the processor's status lines go active	HLT + TI \cdot HPBRQ \dagger
RESB Mode Only	$\begin{aligned} & \overline{\overline{O B B}}=\mathrm{High} \\ & \text { RESB }=\mathrm{High} \end{aligned}$	SYSB/ $\overline{\text { RESB }}=$ High 2 Active	$\begin{aligned} & \text { (SYSB//्रESB }= \\ & \text { Low + TI) CBRQ + } \\ & \text { HLT + HPBRQ } \end{aligned}$
IOB Mode Only	$\begin{aligned} & \overline{\mathrm{IOB}}=\text { Low } \\ & \text { RESB }=\text { Low } \end{aligned}$	Memory Commands	(I/O Status + TI) CBRQ + HLT + HPBRQ
IOB Mode • RESB Mode	$\begin{aligned} & \overline{\mathrm{OBB}}=\text { Low } \\ & \text { RESB }=\mathrm{High} \end{aligned}$	(Memory Command) • (SYSB/RESB $=$ High)	((I/O Status Commands) + (TI) (SYSB/RESB = Low) - CBRQ + HPBRQ $\dagger+$ HLT)

Notes:

(1) Except for HALT and Idle status.
(2) $\overline{\text { LOCK }}$ prevents surrender of bus to any other arbiter. $\overline{\text { CRQLCK }}$ prevents surrender of bus to a lower priority arbiter.
(3) $\mathrm{HLT}=$ processor halt; $\overline{\mathrm{S}}_{2}-\overline{\mathrm{S}}_{0}=011$.
(4) $\mathrm{TI}=$ processor idle; $\overline{\mathrm{S}}_{2}-\overline{\mathrm{S}}_{0}=111$.
(5) + means OR.
(6) - means AND.
\dagger HPBRQ $=$ higher priority bus request or $\overline{\mathrm{BPRN}}=1$.

DC Characteristics

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathbf{C c}}=5 \mathrm{~V} \pm \mathbf{1 0 \%}$

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Input Low Voitage	V_{IL}			0.8	v	
Input High Voltage	$\mathrm{V}_{\mathbf{I H}}$	2.0			v	
Input Clamp Voltage	v_{C}			-1.0	v	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=450 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA} \end{aligned}$
Input Forward Current	${ }^{\prime} \mathbf{F}$			-0.5	mA	$\begin{aligned} & V_{C C}=5.50 \mathrm{~V}, \\ & V_{F}=0.45 \mathrm{~V} \end{aligned}$
Reverse Input Leakage Current	IR			60	$\mu \mathrm{A}$	$\begin{aligned} & v_{c C}=5.50 \mathrm{~V} \\ & v_{R}=5.50 \mathrm{~V} \end{aligned}$
```Output Low Voltage BUSY, CBRQ AEN BPRO, \overline{BREQ}```	$\mathrm{v}_{\mathrm{OL}}$			$\begin{aligned} & 0.45 \\ & 0.45 \\ & 0.45 \end{aligned}$	$\begin{aligned} & \mathbf{v} \\ & \mathbf{v} \\ & \mathbf{v} \end{aligned}$	$\begin{aligned} \mathrm{I}_{\mathrm{OL}} & =20 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OL}} & =16 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OL}} & =10 \mathrm{~mA} \end{aligned}$
Output High Voltage $\overline{B U S Y}, \mathbf{C B R Q}$	$\mathrm{V}_{\mathrm{OH}}$		Open	Collector		
All Other Outputs		2.4			v	$\mathrm{I}_{\mathrm{OH}}=400 \mu \mathrm{~A}$
Power Supply Current	'cc			165	mA	

## Capacitance

			Limits			
Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Input Capacitance	Cin Status		25	pF		
Input Capacitance	Cin (Others)			12	pF	

## Absolute Maximum Ratings*

$\boldsymbol{T}_{\mathbf{a}}=25^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $\mathbf{7 0}{ }^{\circ} \mathrm{C}$
Operating Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature	$-\mathbf{0 . 5 \mathrm { V } \text { to } + 7 \mathrm { V }}$
Voltage on Any Pin	-1.0 V to +5.5 V
All Input Voltages	1.5 W
Power Dissipation	

*COMMENT: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


## Typical CPU System Using the $\mu$ PB8289 Bus Arbiter



## بPB8289



*By addıng another 8289 arbiter and connecting its AEN to the 8288 whose AEN is presenty grounded,
the processor could have access to two multi-master buses.

## AC Characteristics

 Timing Requirements$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; V_{C C}=5 V \pm 10 \%$

Parameter	Symbol	Limits			Unit	Test Conditions
		MIn	Typ	Max		
CLK Cycle Period	${ }^{\text {t CLCL }}$	125			ns	
CLK Low Time	${ }^{\text {t }} \mathrm{CLCH}$	65			ns	
CLK High Time	${ }^{\mathbf{t}} \mathbf{C H C L}$	35			ns	
Status Active Setup	${ }^{\text {t }}$ SVCH	65		${ }^{\mathbf{t}} \mathrm{CLCL}^{-10}$	ns	
Status Inactive Setup	${ }^{\text {t }} \mathrm{SHCL}$	50		${ }^{\text {t }} \mathrm{CLCL}^{-10}$	ns	
Status Active Hold	${ }^{\text {thVCH }}$	10			ns	
Status Inactive Hold	${ }^{\text {thVCL }}$	10			ns	
$\overline{\text { BUSY }} \uparrow \downarrow$ Setup to BCLK $\downarrow$	${ }^{\text {t }}$ BYSBL	20			ns	
CBRQ $\uparrow \downarrow$ Setup to BCLK $\downarrow$	${ }^{\text {t }}$ CBSBL	20			ns	
BCLK Cycle Time	${ }^{\text {t BLBL }}$	100			ns	
$\overline{\overline{B C L K}}$ High Time	${ }^{\text {t }}$ BHCL	30		065 (t taLBL )	ns	
LOCK Inactive Hold	${ }^{\text {t CLLL } 1}$	10			ns	
LOCK Active Setup	${ }^{\text {t CLLL2 }}$	40			ns	
$\overline{B P R N} \downarrow \uparrow$ to $\overline{B C L K}$ Setup Time	${ }^{\text {t PNBL }}$	15			ns	
SYSB/RESB Setup	${ }^{\text {t CLSR1 }}$	0			ns	
SYSB/RESB Hold	$\mathrm{t}_{\text {CLSR2 }}$	20			ns	
Initialization Pulse Width	tiVIH	$\begin{gathered} 3 t_{\mathrm{BLBL}}+ \\ 3 \mathrm{t}_{\mathrm{CLCL}} \\ \hline \end{gathered}$			ns	
Input Rise Time	$t_{\text {ILIH }}$			20	ns	From 0.8 V to 2.0 V
Input Fall Tıme	tIHIL			12	ns	From 20 V to 0.8 V

## Timing Responses

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
$\overline{B C L K}$ to $\overline{B R E Q}$ Delay (1)	${ }^{\text {tBLBRL }}$			35	ns	
$\overline{B C L K}$ to $\overline{B P R O}$ (1) (2)	$\mathrm{t}_{\mathrm{BLPOH}}$			40	ns	
$\overline{\text { BPRN }} \downarrow \uparrow$ to $\overline{\text { BPRO}} \downarrow \uparrow$ Delay (1) (2)	${ }^{\text {tPNPO }}$			25	ns	
$\overline{\text { BCLK }}$ to $\overline{\text { BUSY }}$ Low	${ }^{\text {tBLBYL }}$			60	ns	
$\begin{aligned} & \overline{\overline{B C L K}} \text { to } \overline{\mathrm{BUSY}} \\ & \text { Float (3) } \end{aligned}$	$\mathrm{t}_{\text {BLBYH }}$			35	ns	,
CLK to AEN High	${ }^{\text {t CLAEH }}$			65	ns	
$\overline{\text { BCLK }}$ to $\overline{\text { AEN }}$ Low	${ }^{\text {t BLAEL }}$			40	ns	
$\overline{\overline{B C L K}}$ to $\overline{\text { CBRQ }}$ Low	$t_{\text {BLCBL }}$			60	ns	
$\overline{B C L K}$ to $\overline{\text { CBRQ }}$   Float (3)	${ }^{\text {t }}$ RLCRH			35	ns	
Output Rise Tıme	${ }^{\text {toLOH }}$			20	ns	From 0.8 V to 2.0 V
Output Fall Time	${ }^{\text {t }} \mathrm{OHOL}$			12	ns	From 2.0 V to 0.8 V

## Notes:

(1) Denotes that the spec applies to both transitions of the signal.
(2) $\overline{\mathrm{BCLK}}$ generates the first $\overline{\mathrm{BPRO}}$. Subsequent changes of $\overline{\mathrm{BPRO}}$ are generated through BPRON
(3) Measured at 0.5 V above GND

## AC Test Condition Waveform

Input/Output


AC Testing inputs are driven at 2.4 V for LOGIC 1 and 0.45 V for LOGIC 0 . The clock is driven at 4.3 V and 0.25 Tıming measurements are made at 1.5 V for LOGIC 1 and 0 .

## Timing Waveforms

The signals related to CLK are typical processor signals and do not relate to the depicted sequence of events of the signals referenced to BCLK. The signals shown related to the $\overline{B C L K}$ represent a hypothetical sequence of events for illustration. Assume three bus arbiters of priorities 1, 2, and 3 configured in the serial priority resolving scheme. Assume arbiter 1 has the bus and is holding BUSY low. Arbiter 2 detects its processor wants the bus and pulls BREQ \#2 low. If BPRN \#2 is high (as shown), arbiter 2 pulls $\overline{C B R Q}$ low. CBRQ signals to higher priority arbiter 1 that a lower priority arbiter wants the bus. A higher priority arbiter would be given BPRN when it makes the bus request rather than having to wait for another arbiter to release the bus through CBRQ. Arbiter 1 relinquishes the multimaster system bus when it enters a state of not requiring it, by lowering its BPRO \#1 (tied to BPRN \#2) and releasing BUSY. Arbiter 2 now sees that it has priority from BPRN \#2 being low and releases $\overline{C B R Q}$. As soon as $\overline{B U S Y}$ signifies the bus is available (high), arbiter 2 pulls BUSY low on the next falling edge of BCLK. Note that if arbiter 2 didn't want the bus at the time it received priority, it would pass priority to the next lower priority by lowering its BPRO \#2 (TPNPO). Note also that even a higher priority aribiter which is acquiring the bus through BPRN will momentarily drop CBRQ until it has acquired the bus.

## Timing Waveforms



## Package Outlines

For information, see Package Outline Section 7.
Cerdip, $\mu$ PB88289D

## 16,384-BIT ROM WITH I/O PORTS *16,384-BIT EPROM WITH I/O PORTS

## DESCRIPTION The $\mu$ PD8355 and the $\mu$ PD8755A are $\mu$ PD8085A Family components. The $\mu$ PD8355

 contains $2048 \times 8$ bits of mask ROM and the $\mu$ PD8755A contaıns $2048 \times 8$ bits of mask EPROM for program development. Both components also contaın two general purpose 8 -bit I/O ports. They are housed in 40 pin packages, are designed to directly interface to the $\mu$ PD8085A, and are pin-for-pin compatıble with each other.FEATURES - $2048 \times 8$ Bits Mask ROM ( $\mu$ PD8355 and $\mu$ PD8355-2)

- $2048 \times 8$ Bits Mask EPROM ( $\mu$ PD8755A)
- 2 Programmable I/O Ports
- Single Power Supplies: +5V
- Directly Interfaces to the $\mu$ PD8085A
- Pin for Pin Compatible
- $\mu$ PD8755A: UV Erasable and Electrically Programmable
- $\mu$ PD8335 and $\mu$ PD8355-2 Available in Plastic Package
- $\mu$ PD8755A Available in Ceramic Package


The $\mu$ PD8355 and $\mu$ PD8755A contain 16,384 bits of mask ROM and EPROM respectively, organized as $2048 \times 8$. The 2048 word memory location may be selected anywhere within the 64 K memory space by using the upper 5 bits of address from the $\mu$ PD8085A as a chip select.

The two general purpose I/O ports may be programmed input or output at any time. Upon power up, they will be reset to the input mode.


Operatıng Temperature ( $\mu$ PD8355) $\ldots \ldots . . \ldots \ldots .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin ( $\mu$ PD8355) . . . . . . . . . . . . . . . . . . . . . . . -0.5 to +7V (1) ( $\mu$ PD8755A) . . . . . . . . . . . . . . . . . . . . . . -0.5 to +7V (1)
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5W
Note: (1) With Respect to Ground
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maxımum Ratıngs" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maxımum ratıng conditions for extended periods may affect device reliability.

PARAMETER	SYMBOL	LIMITS		UNIT	TEST CONDITIONS
		MIN	MAX		
Input Low Voltage	$V_{\text {IL }}$	-0.5	0.8	V	$\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}$
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0	$\mathrm{V}_{\mathrm{Cc}}+0.5$	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ (1)
Output Low Voltage	$\mathrm{V}_{\mathrm{OL}}$		0.45	V	${ }^{\prime} \mathrm{OL}=2 \mathrm{~mA}$
Output High Voltage	$\mathrm{V}_{\mathrm{OH}}$	2.4		V	$\mathrm{I}^{\mathrm{OH}}=-400 \mu \mathrm{~A}$
Input Leakage	IIL		10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ to 0 V
Output Leakage Current	ILO		$\pm 10$	$\mu \mathrm{A}$	$0.45 \mathrm{~V} \leqslant \mathrm{~V}_{\text {OUT }} \leqslant \mathrm{V}_{\text {CC }}$
$\mathrm{V}_{\text {CC }}$ Supply Current	ICC		180/125	mA	$\mu$ PD8355/8355-2

Note: (1) These conditions apply to $\mu$ PD8355/ $\mu$ PD8355-2 only.

FUNCTIONAL DESCRIPTION

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS*

DC CHARACTERISTICS

PIN			FUNCTION
NO.	SYMBOL	NAME	
1,2	$\overline{\mathrm{CE}}, \mathrm{CE}$	Chip Enables	Enable Chıp actıvity for memory or I/O
3	CLK	Clock Input	Used to Synchronize Ready
4	Reset	Reset Input	Resets PA and PB to all inputs
5 (1)	NC	Not Connected	
5 (2)	$\mathrm{V}_{\mathrm{DD}}$	Programming Voltage	Used as a programming voltage, tied to +5 V normally
6	Ready	Ready Output	A tri-state output which is active during data direction register loading
7	10/M	I/O or Memory Indicator	An input signal which is used to indicate I/O or memory activity
8	IOR	1/O Read	1/O Read Strobe In
9	$\overline{\mathrm{RD}}$	Memory Read	Memory Read Strobe In
10	$\overline{\text { IOW }}$	I/O Write	I/O Write Strobe In
11	ALE	Address Low Enable	Indicates information on Address/Data lines is valid
12-19	$\mathrm{AD}_{0}-\mathrm{AD}_{7}$	Low Address/Data Bus	Multiplexed Low Address and Data Bus
20	$\mathrm{V}_{\text {SS }}$	Ground	Ground Reference
21-23	$\mathrm{A}_{8}$ - $\mathrm{A}_{10}$	High Address	High Address inputs for ROM reading
24-31	$\mathrm{PA}_{0}-\mathrm{PA}_{7}$	Port A	General Purpose I/O Port
32-39	$\mathrm{PB}_{0}-\mathrm{PB}_{7}$	Port B	General Purpose I/O Port
40	$\mathrm{V}_{\mathrm{CC}}$	5V Input	Power Supply

$$
\text { Notes: (1) } \mu \text { PD8355 }
$$

I/O PORTS I/O port activity is controlled by performing I/O reads and writes to selected I/O port numbers. Any activity to and from the $\mu$ PD8355 requires the chip enables to be active. This can be accomplished with no external decoding for multıple devices by utilizing the upper address lines for chip selects. (1) Port activity is controlled by the following I/O addresses:

$\mathrm{AD}_{1}$	AD $_{\mathbf{0}}$	PORT SELECTED	FUNCTION
0	0	A	Read or Write PA
0	1	B	Read or Write PB
1	0	A	Write PA Data Direction
1	1	B	Write PB Data Direction

Since the data direction registers for PA and PB are each 8 -bits, any pin on PA or PB may be programmed as input $\mathrm{O}_{\mathrm{I}}$ output ( $0=\mathrm{in}, 1=$ out ).

Note: (1) During ALE time the data/address lines are duplicated on $\mathrm{A}_{15}-\mathrm{A}_{8}$.

Symbol	Parameter	8355		8355-2		Unit	Test Conditions
		Mın	Max.	Min.	Max		
${ }^{\text {t }} \mathrm{CYC}$	Clock Cycle Tıme	320		200		ns	$C_{\text {LOAD }}=150 \mathrm{pF}$
$\mathrm{T}_{1}$	CLK Pulse Width	80		40		ns	
$\mathrm{T}_{2}$	CLK Pulse Width	120	,	70		ns	
$\mathrm{t}_{\mathrm{f}, \mathrm{t}_{\mathrm{r}}}$	CLK Rise and Fall Time		30		30	ns	
${ }^{\text {t }}$ AL	Address to Latch Set Up Time	50		30		ns	150 pr Load
tha	Address Hold Time after Latch	80		30		ns	
${ }_{\text {t }}$ C	Latch to READ/WRITE Control	100		40		ns	
tri	Valıd Data Out Dealy from READ Control		170		140	ns	
${ }^{t} A D$	Address Stable to Data Out Vahid		400		330	ns	
${ }^{\text {t }}$ LL	Latch Enable Width	100		70		ns	
tRDF	Data Bus Float after READ	0	100	0	85	ns	
${ }^{\text {t }} \mathrm{CL}$	READ/WRITE Control to Latch Enable	20		10		ns	
${ }^{\text {t }} \mathrm{C}$	READ/WRITE Control Width	250		200		ns	
${ }^{\text {t }}$ W	Data in to Write Set Up Time	150		150		ns	
twD	Data in Hold Time After WRITE	10		10		ns	
twp	WRITE to Port Output		400		400	ns	
tPR	Port Input Set Up Time	50		50		ns	
trp	Port Input Hold Time	50		50		ns	
tryH	READY HOLD Time	0	160	0	160	ns	
${ }^{\text {t }}$ ARY	ADDRESS (CE) to READY		160		160	ns	
tr V	Recovery Time Between Controls	300		200		ns	
trde	READ Control to Data Bus Enable	10		10		ns	

ROM READ, I/O READ AND WRITE (1)
TIMING WAVEFORMS


PROM READ, I/O READ AND WRITE (2)


TIMING WAVEFORMS
(CONT.)

## CLOCK



WAIT STATE TIMING (READY $=0$ )


## I/O PORT <br> INPUT MODE.



OUTPUT MODE


EPROM PROGRAMMING $\mu$ PD8755A

Erasure of the $\mu$ PD8755A occurs when exposed to ultraviolet light sources of wavelengths less than $4000 \AA$. It is recommended, if the device is exposed to room fluorescent lighting or direct sunlight, that opaque labels be placed over the window to prevent exposure. To erase, expose the device to ultraviolet light at $2537 \AA$ at a minimum of $15 \mathrm{~W}-\mathrm{sec} / \mathrm{cm}^{2}$ (intensity X expose time). After erasure, all bits are in the logic 1 state. Logic 0 's must be selectively programmed into the desired locations. It is recommended that NEC's PROM programmer be used for this application.

## Package Outlines

For information, see Package Outline Section 7.
Plastic, $\mu$ PD8355HC/8755AC
Ceramic, $\mu$ PD8355D
Ceramic, $\mu$ PD8355HD
Ceramic, $\mu$ PD8755AD
Cerdip, $\mu$ PD8755AD, has quartz window

NEC

## PACKAGE OUTLINES

## -

All packaging information is contained in this Package Outlines section. Specifications and dimensions for every package are shown together with a list of the products available in each. Additions, changes, and updates will be incorporated in succeeding editions of the catalog.

Item	Millimeters	Inches
A	19.4 max	0.76 max
B	0.81	0.03
C	2.54	0.10
D	0.5	002
E	17.78	0.70
F	1.3	0.051
G	2.54 mın	0.10 min
H	0.5 min	002 min
I	4.05 max	0.16 max
$J$	4.55 max	018 max
K	7.62	0.30
L	6.4	025
M	$0.25+010$	0.01
Item	Millimeters	Inches
A	19.9 max	0.784 max
B	1.06	0.042
C	2.54	0.10
D	$0.46 \pm 0.10$	$0.018 \pm 0.004$
E	17.78	0.70
F	1.5	0.059
G	2.54 mın	0.10 min
H	0.5 min	0.019 min
1	4.58 max	0.181 max
$J$	5.08 max	0.20 max
K	7.62	0.30
L	6.4	0.25
M	$\begin{array}{r} +0.10 \\ 025+0.05 \end{array}$	$0.0098+0.0039$


$\mu$ PB8216C/26C

## Cerdip



Item	Millimeters	Inches
A	23.2 max	0.91 max
B	1.44	0.055
C	2.54	0.1
D	0.45	0.02
E	20.32	0.8
F	1.5	0.059
G	2.5 min	0.1 min
H	05 min	0.02 min
I	4.6 max	0.18 max
J	5.1 max	0.2 max
K	7.62	0.3
L	6.7	0.26
M	0.25	0.01



## PACKAGE OUTLINES

## 18 PIN (Cont.)

## Cerdip

$\mu$ PB8284AD


## 20 PIN

## Plastic

$\mu$ PB8282C/83C $\mu$ PB8286C/87C

## Cerdip



Item	Millimeters	Inches
A	26.7 max	1.05 max
B	0.7	0.028
C	2.54	0.1
D	$0.46 \pm 0.1$	$0.018 \pm 0.004$
E	22.86	0.9
F	1.4	0.055
G	2.54 min	0.1 min
H	0.5 min	0.02 min
I	4.32 max	0.17 max
J	5.08 max	0.2 max
K	7.62	0.3
L	6.8	0.27
M	$0.25+0.10$	$0.01+0.004$

## 24 PIN

## Plastic

$\mu$ PB8212C $\mu$ PD8243C $\mu$ PD82C43C $\mu$ PD8253C-5


Item	Millimeters	Inches
A	33 max	1.3 max
B	2.53	0.1
C	2.54	0.1
D	$0.5 \pm 0.1$	$0.02 \pm 0.004$
E	27.94	1.1
F	1.5	0.059
G	2.54 min	0.1 min
H	0.5 min	0.02 min
I	5.22 max	0.205 max
J	5.72 max	0.225 max
K	15.24	0.6
L	13.2	0.52
M	$0.25+0.10$	$0.01+0.004$


Item	Millimeters	Inches
A	30.78 max	1.21 max
B	1.53 max	0.06 max
c	$2.54 \pm 0.1$	$0.10 \pm 0.004$
D	$0.46 \pm 0.8$	$0.018 \pm 0.03$
E	$27.94 \pm 0.1$	$1.10 \pm 0.004$
F	1.02 min	0.04 min
G	3.2 min	0.13 min
H	1.02 min	0.04 min
1	3.23 max	0.13 max
$J$	4.25 max	0.17 max
K	15.24 typ	0.60 typ
L	14.93 typ	0.59 typ
M	$0.25 \pm 0.05$	$0.010 \pm 0.002$
Item	Millimeters	Inches
A	33.5 max	1.32 max
B	2.78	0.11
C	2.54	0.1
D	0.46	0.018
E	27.94	1.1
F	1.5	0.059
G	2.54 min	0.1 min
H	0.5 min	0.019 min
1	4.58 max	0.181 max
J	5.08 max	0.2 max
K	15.24	0.6
L	13.5	0.53
M	$\begin{array}{r} +0.10 \\ 0.25-0.05 \end{array}$	$\begin{array}{r} +0.004 \\ 0.01 \\ -0.002 \end{array}$
Item	Millimeters	Inches
A	33 max	1.3 max
B	2.53	0.1
C	2.54	0.1
D	$0.5 \pm 0.1$	$0.02 \pm 0.004$
E	27.94	1.1
F	1.5	0.059
G	2.54 min	0.1 min
H	0.5 min	0.02 min
1	5.22 max	0.205 max
J	5.72 max	0.225 max
K	7.62	0.30
L	6.4	0.25
M	$\begin{array}{r} +0.10 \\ 0.25-0.05 \end{array}$	$\begin{aligned} & 0.01+0.004 \\ & -0.0019 \end{aligned}$

## Cerdip

$\mu$ PB8212D $\mu$ PD8243D $\mu$ PD82C43D $\mu$ PD8253D-5

## Plastic Skinnydip <br> $\mu$ PD82C43CX



Item	Millimeters	Inches
A	38.0 max	1.496 max
B	2.49	0.098
C	2.54	0.10
D	$0.5 \pm 0.1$	$0.02 \pm 0.004$
E	33.02	1.3
F	1.5	0.059
G	2.54 min	0.10 min
H	0.5 min	0.02 min
I	5.22 max	0.205 max
J	5.72 max	0.225 max
K	15.24	0.6
$L$	13.2	0.52
M	$\begin{array}{r} +0.10 \\ -0.05 \end{array}$	$\begin{array}{r} 0.01+0.004 \\ -0.002 \end{array}$



## Plastic

$\mu \mathrm{COM}-4 \mathrm{C}$
$\mu$ PD557LC
$\mu$ PD550C/554C
$\mu$ PD550LC/554LC
$\mu$ PD7506C
$\mu$ PD7507SC
$\mu$ PD7520C
$\mu$ PD8021C
$\mu$ PD8251AC/AFC $\mu$ PD8259AC

## PACKAGE OUTLINES

## 28 PIN (Cont.)

## Ceramic

$\mu$ PD7720D
$\mu$ PD77P20D*
$\mu$ PD8251AD/AFD
*has quartz window


## Cerdip

$\mu$ PD8021D $\mu$ PD8251AD/AFD $\mu$ PD8259AD


Item	Millimeters	Inches
A	36.2 max	1.43 max
B	1.59 max	0.06 max
C	$2.54 \pm 0.1$	$0.1 \pm 0.004$
D	$0.46 \pm 0.01$	$0.02 \pm 0.004$
E	$33.02 \pm 0.1$	$1.3 \pm 0.004$
F	1.02 min	0.04 min
G	3.2 min	0.13 min
H	1.0 min	0.04 min
1	3.5 max	0.14 max
$J$	4.5 max	0.18 max
K	15.24 typ	0.6 typ
$L$	14.93 typ	0.59 typ
M	$0.25 \pm 0.05$	$0.01 \pm 0.002$
Item	Millimeters	Inches
A	37.7 max	1.48 max
B	2.78	1.1
C	2.54	0.1
D	$0.46 \pm 0.10$	$0.018 \pm 0.004$
E	27.94	1.10
F	1.3	0.05
G	2.54 min	0.1 min
H	0.5 min	0.020
1	5.0 max	0.20
$J$	5.5 max	0.216
K	15.24	0.60
L	14.66	0.58
M	$0.25 \pm 0.05$	$0.010 \pm 0.002$
Item	Millimeters	Inches
A	15.95 max	. 628 max
C	1.778	. 07
D	0.5	. 02
E	24.89	. 98
F	1.1	. 043
G	2.54	. 1
H	. 51 min	. 02 min
$J$	5.08 max	. 2 max
K	15.24	. 600
L	13.2	. 52
M	$\begin{array}{r} 0.25+0.10 \\ -0.05 \end{array}$	$\begin{array}{r} .01 .004 \\ -.002 \end{array}$


Item	Millimeters	Inches
A	51.5 max	2.03 max
B	1.62 max	0.06 max
C	$2.54 \pm 0.1$	$0.1 \pm 0.004$
D	$0.5 \pm 0.1$	$0.02 \pm 0.004$
E	$48.26 \pm 0.1$	$1.9 \pm 0.004$
F	1.02 min	0.04 min
G	3.2 min	0.13 min
H	1.0 min	0.04 min
I	3.5 max	0.14 max
J	4.5 max	0.18 max
K	15.24 typ	0.6 typ
L	14.93 typ	0.59 typ
M	$0.25 \pm 0.05$	$0.01 \pm 0.0019$



Item	Millimeters	Inches
A	53.34 max	2.1 max
B	13.2	.52
C	$2.54 \pm 0.25$	$.1 \pm .01$
D	$0.5 \pm 0.1$	$.002 \pm .004$
E	48.56	1.91
F	1.3	.051
G	0.51 min	.02 min
H	7.62	.3
J	5.08 max	.2 max
K	15.24	.6
M	$0.25 \pm 0.05$	$.01 \pm .002$



Item	Millimeters	Inches
A	39 max	1.54 max
C	1.778	.07
D	0.5	.02
E	35.56	1.4
F	1.1	.043
G	2.54	.1
H	.51 min	.02 min
J	5.08 max	.2 max
K	15.24	.600
L	13.2	.52
M	0.25	+0.10



## Plastic <br> Shrinkdip

$\mu$ PD7507CU $\mu$ PD7508CU $\mu$ PD7508ACU $\mu$ PD7507HCU $\mu$ PD7508HCU $\mu$ PD80C48CU $\mu$ PD80C49HCU

## 40 PIN (Cont.)

Ceramic Piggyback
$\mu$ PD75CG08E


42 PIN

## Plastic

$\mu$ COM-4C
${ }_{\mu}$ PD552C/553C
$\mu$ PD7527C/28C/37C/38C


## Cerdip

## MC-430PD



Item	Millimeters	Inches
A	56.5 max	2.24 max
B	$27.94 \pm 0.5$	$1.1 \pm .02$
C	2.54	0.1
D	$\begin{gathered} 0.50 .25 \\ 0.0 .1 \end{gathered}$	$\begin{gathered} .02+.01 \\ -.004 \end{gathered}$
E	50.8	2.0
F	1.27	. 05
G	2.54 min	0.1 min
H	$1.5 \pm 0.3$	. $059 \pm .012$
1	1.0 min	. 039 min
$J$	6.5 max	. 256 max
K	15.24	0.6
L	1	. 039
M	$\begin{gathered} +0.25 \\ 0.35-0.1 \end{gathered}$	$\begin{gathered} .014+.01 \\ -.004 \end{gathered}$
$N$	1.6	. 063
0	$2.54 \pm 0.3$	$0.1 \pm .012$
P	2.0	. 079
0	$1.74 \pm 0.25$	. $685 \pm .01$
R	21.0 max	. 827 max


Item	Millimeters	Inches
A	55.88 max	2.2 max
B	20.32	.80
C	$2.5 \pm 0.25$	$.1 \pm .01$
D	$0.46 \pm 0.05$	$.018 \pm .002$
E	50.80	2.0
F	1.02	.04
G	3.2 min	.126 min
H	1.02 min	.04 min
I	$\mathbf{3 . 0} \mathrm{max}$	.118 max
J	4.32 max	.17 max
K	15.24	.6
L	15.24	.6
M	$0.25 \pm 0.05$	$.001 \pm .01$
N	33.02	1.3
O	$2.54 \pm 0.25$	$.1 \pm .01$



42 PIN (Cont.)
Ceramic Piggyback
$\mu$ PD75CG28E/CG38E


Plastic Shrinkdip
$\mu$ PD7527CU/28CU/ 37CU/38CU

Item	Millimeters	Inches
A	$1.36 \pm 0.4$	$.054 \pm .016$
B	$10+.3$	$.394+.012$
C	$0.8 \pm 0.2$	$.03 \pm .008$
D	$.35+0.3$	$.014+.01$
E	$8.0 \pm 0.3$	$.315 \pm .012$
F	$1.0 \pm 0.2$	$.39 \pm .008$
G	$0.15+0.10$	$.006+.004$
H	$0.0 \pm 0.1$	$0.0 \pm .004$
I	1.5 max	$.059 \max$



Plastic Miniflat
$\mu$ PD80C49G $\mu$ PD80C48G

52 PIN
Plastic
Miniflat
$\mu$ COM-4G
$\mu$ PD7506G $\mu$ PD7507G/08G $\mu$ PD80C49G/C39G $\mu$ PD80C48G/C35G $\mu$ PD7225G
Iter

## 64 PIN

## Plastic QUIL

$\mu$ PD7500G Evaluation Chip
$\mu$ PD7800G
$\mu$ PD7801G/02G $\mu$ PD7810G/11G $\mu$ PD7519G $\mu$ PD78C05G $\mu$ PD7807G/09G


Item	Millimeters	Inches
A	41.5	1.63
B	$1.05 \pm 0.2$	$.041 \pm .008$
C	2.54	0.1
D	$0.5 \pm 0.1$	$.02 \pm .004$
E	$39.4 \pm 0.3$	$1.55 \pm .012$
F	$1.27 \pm 0.25$	$.05 \pm .01$
I	3.6	.142
J	24.13	.95
K	19.05	.75
L	16.5	.65
$\mathbf{N}$	$23.1 \sim 25.2$	$.909 \sim .99$
$\mathbf{O}$	$18.0 \sim 20.1$	$.709 \sim .791$

## Ceramic

 QUIL$\mu$ PD556B


Item	Millimeters	Inches
A	41.5	1.634 max
B	1.05	0.042
C	2.54	0.1
D	$0.5 \pm 0.1$	$0.2 \pm 0.004$
E	39.4	1.55
F	1.27	0.05
G	5.4 min	0.21 min
I	2.35 max	0.13 max
J	24.13	0.95
K	19.05	0.75
L	15.9	0.626
M	$0.25 \pm 0.05$	$0.01 \pm 0.002$


Item	Millimeters	Inches
A	42.0 max	1.65 max
B	26.67	1.05
C	$2.54 \pm 0.25$	$0.1 \pm .01$
D	$0.46 \pm 0.05$	$0.018 \pm .002$
E	38.10	1.5
F	1.02	.04
G	$1.27 \pm 0.25$	$.05 \pm .01$
H	1.02 min	.04 min
I	3.9 max	.154 max
J	4.45 max	.175 max
K	3.2 min	.126 min
L	33.02	1.3
M	$2.54 \pm 0.25$	$0.1 \pm .01$
N	$0.25 \pm 0.05$	$.01 \pm .002$
O	15.24	.6
P	19.05	.75
Q	24.13	.95


Item	Millimeters	Inches
A	58 typ	2.284 typ
C	1.778 typ	0.07 typ
D	0.5 typ	.0197 typ
E	55.12 typ	2.17 typ
F	1.1 typ	0.043 typ
G	3.2	.126
H	22.3 typ	.878 typ
I	4.05 typ	.159 typ
J	3.95 typ	0.156 typ
K	19.05 typ	0.75 typ
L	17 typ	0.669 typ
M	2.75 typ	0.108 typ



Plastic
Shrinkdip
$\mu$ PD7519CW $\mu$ PD7519HCW $\mu$ PD7801CW $\mu$ PD7802CW $\mu$ PD7810CW/11cW $\mu$ PD7809CW/07CW

Item	Millimeters	Inches
A	14	.551
B	$12 \pm 0.3$	$.472 \pm .012$
C	$18.0 \pm 0.3$	$.709 \pm .012$
D	20	.787
E	$1.0 \pm 0.15$	$.039 \pm .006$
F	$0.4+0.2$	$.016+.008$
G	$24.7 \pm 0.4$	$.972 \pm .016$
H	$0.15+0.10$	$.006+.004$
I	$1.2 \pm 0.05$	.006
J	$2.35 \pm 0.2$	$.0925 \pm .008$
K	$18.7 \pm 0.4$	$.736 \pm .016$
L	2.3 max	$.091 \max$



Plastic Miniflat
$\mu$ PD7501G $\mu P D 7502 G / 03 G$ $\mu$ PD7227G $\mu$ PD78C06G

## PACKAGE OUTLINES



NEC

## QUALITY AND RELIABILITY OF NEC MICROPROCESSORS

## Introduction

As large-scale integration reaches a higher level of density, reliability of devices imposes a profound impact on system reliability. And as device reliability becomes a major factor, test methods to assure acceptable reliability become more complicated. Simply performing a reliability test according to a conventional method cannot satisfy the demanding requirements for higher reliability: at these new, higher levels of LSI density, it is increasingly difficult to activate all the elements in the internal circuits. A different philosophy and methodology is needed for reliability assurance in microprocessors and family products. Moreover, as integration density increases, the degradation of internal elements in an LSI device is seldom detected by measuring characteristics across external terminals.
In order to improve and guarantee a certain level of reliability for large-scale integrated circuits, it is essential to build quality and reliability into the product. Then the conventional reliability tests are followed to ensure that the product demonstrates an acceptable level of reliability.
NEC has introduced the concept of Total Quality Control (TQC) across its entire semiconductor production line. By adopting TQC, NEC can build quality into the product and thus assure higher reliability. The concept and methodology of Total Quality Control are companywide activities-involving workers, engineers, quality control staffs, and all levels of management.
NEC has also introduced a prescreening method into the production line that helps eliminate most of the potentially defective units. The combination of building quality in and screening projected early failures out has resulted in superior quality and excellent reliability.
This Reliability Report describes the philosophy and methodology used by NEC to attain a higher level of reliability for microprocessors and family products.

## Technology Description

Most microprocessors and family products are produced utilizing high performance, high density, N-channel MOS technology. State-of-the-art high performance has been achieved by introducing fine line generation techniques. The data presented in this report shows that this advanced technology yields products as reliable as those from previous technologies.
By reducing physical parameters, circuit density and performance were increased while active circuit power dissipation decreased. Current state-of-the-art N-channel MOS technology utilizes $2-4 \mu \mathrm{~m}$ channel length and a gate oxide thickness of $300-500 \AA$. This advanced process yields integration densities of $400-800$ gates $/ \mathrm{mm}^{2}$ with a speed-power product of $1 p J$ or less.

## Technology evolution

Technology evolved from early P-channel MOS to current state-of-the-art high performance, high density, N-channel MOS during the past decade. This evolution is expected to continue in the future. As a result, even more high level functions will be included in a small area, as past history demonstrates.

## Reliability Testing

Reliability is defined as the characteristics of an item expressed by the probability that it will perform a required function under stated conditions for a stated period of time. This involves the concept of probability, definition of a required function(s), and the critical time used in defining the reliability.
Definition of a required function, by implication, treats the definition of a failure. Failure is defined as the termination of the ability of a device to perform its required function(s). Futhermore, a device is said to have failed if it shows inability to perform within guaranteed parameters as given in an electrical specification.
Discussion of reliability and failure can be approached in two ways: with respect to systems or to individual devices. The accumulation of normal device failure rates constitutes the expected failure rate of the system hardware. Important considerations here are the constant failure period, the early failure (infant mortality) period, and overall reliability level. With regard to individual devices, areas of prime interest include specific failure mechanisms, failures in accelerated tests, and screening tests.
Some of these failure considerations pertain to both systems and devices. The probability of no failures in a system is the product of the probability of no failure in each of its components. The failure rate of system hardware is then the sum of the failure rates of the components used to construct the system.

## Life distribution

The fundamental principles of Reliability Engineering predict that the failure rate of a group of devices will follow the wellknown Bathtub curve in Figure 1. The curve is divided into three regions: Infant Mortality, Random Failures, and Wearout Failures.


Figure 1. Reliability Life (Bathtub) Curve

Infant mortality, as the name implies, represents the early life failures of devices. These failures are usually associated with one or more manufacturing defects.
After some period of time, the failure rate reaches a low value. This is the random failure portion of the curve, representing the useful portion of the life of a device. During this random failure period there is a decline in the failure rate due to the depletion of potential random failures from the general population.
The wearout failures occur at the end of the device's useful life. They are characterized by a rapidly rising failure rate over time as devices wear out both physically and electrically.

## Quality and Reliability of NEC Microprocessors

Thus, for devices which have very long life expectancies compared to those of systems, the areas of concern will be the infant mortality and the random failure portions of the population.
The system failure rates are related to the collective device failure rates. In a given system, after elimination of the early failures, the system will be left to the failure rate of its components. In order to make proper projections of the failure rate in the operating environment, time-to-failure must be accelerated in tests in a predictable way.

## Failure distribution at NEC

MOS and Bipolar integrated circuits returned to NEC from the field underwent extensive failure analysis at NEC's Integrated Circuit Division.
First, approximately 50 percent of the field returns were found to be damaged either from improper handling or misuse of the devices. These units were eliminated from the analysis. The remaining failed units were classified by their failure mechanisms, as depicted in Figure 2. These failures were then related to the major integrated circuit failure mechanisms and to their origins in a particular manufacturing step.
As shown in Figure 2, the first four failure mechanisms accounted for more than 90 percent of total failures. As a result, NEC improved processes and material to reduce these failures. Additionally, NEC introduced screening procedures to detect and eliminate defective devices.
Temperature, humidity, and bias tests are used for testing the moisture resistance of plastic encapsulated integrated circuits. NEC developed a special process to improve the plastic encapsulation material. As a result, moisture-relatedthus packaging-related-failures have been drastically reduced.
As a preventive measure, NEC has introduced a special screening procedure embedded in the production line. A burn-in at an elevated temperature is performed for 100 percent of the lots. This burn-in effectively removes the potentially defective units. In addition, improvement of the plastic encapsulation material has lowered the failures in a high temperature and high humidity environment.


Figure 2. Failure Distribution of MOS Integrated Circuits

## Accelerated reliability testing

As an example, assume that an electronic system contains 1000 integrated circuits and can tolerate 1 percent system failures per month. The failure rate per component is:

$$
\frac{0.01 \text { Failures }}{720 \mathrm{~K} \text { Device Hours }}=\begin{gathered}
13.888 \times 10^{-9} \text { Failures/Hour } \\
\text { or } 13.8888 \text { FITs }
\end{gathered}
$$

Where: FIT = Failure unit per $10^{9}$ device hours
To demonstrate this failure rate, note that 13.8888 FITs correspond to one failure in about 7,000 devices in an operating test of 10,000 hours. It is quickly apparent that a test condition is required to accelerate the time-to-failure in a predictable and understandable way. The implicit requirement for the accelerated stress test is that the relationship between the accelerated stress testing condition and the condition of actual use be known.
A most common time-to-failure relationship involves the effect of temperature, which accelerates many physiochemical reactions leading to device failure. Other environmental conditions are voltage, current, humidity, vibration, or some combination of these. Table 2 lists the Reliability Assurance Tests performed at NEC for the N -channel MOS devices.

Table 1. Monthly NEC Reliability Tests

Test	Method	Test Conditions
Life Test High Temperature, Operating	$\begin{aligned} & \text { MIL-STD-883B } \\ & \text { 1005A, D } \end{aligned}$	$\mathrm{Ta}_{\mathrm{a}}=100^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ for 1000 hrs
High Temperature, Storage	1008C	$\mathrm{T}_{\mathrm{a}}=150^{\circ} \mathrm{C}$ for 1000 hrs
High Temperature, High Humidity Test	-	$\mathrm{T}_{\mathrm{a}}=85^{\circ} \mathrm{C} @ 85 \% \mathrm{RH}$ for 1000 hrs
Pressure Cooker Test	-	$\mathrm{Ta}_{\mathrm{a}}=125^{\circ} \mathrm{C} @ 2.3 \mathrm{Atm}$ for 168 hrs
Environmental Test Soldering Heat Test	2031*	$\mathrm{T}=260^{\circ} \mathrm{C}$ for 10 s without flux
Temperature Cycle	1010C	$\mathrm{T}=-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ for 10 cycles
Thermal Shock	1011A	$\mathrm{T}=\mathbf{0}^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ for 15 cycles
Lead Fatigue	2004B2	@250gm: 3 leads, 3 bends
Solderability	2003	$\mathrm{T}=230^{\circ} \mathrm{C}$ for 5 s with flux
Note: *MIL-STD-750A		

Temperature Effect: The effect of temperature that concerns us is that which responds to the Arrhenius relationship. This relates the reaction rate to temperature.

$$
\mathrm{R}=\mathrm{Ro} \operatorname{Exp}[-\mathrm{Ea} / \mathrm{kT}]
$$

Where: Ro = Constant
$\mathrm{Ea}=$ Activation energy in eV
$\mathrm{k}=$ Boltzmann's constant
$=8.617^{*} 10^{\star *}(-5) \mathrm{eV} /$ degrees K
$T=$ Absolute temperature in degrees K
The significance of this relationship is that the failure mechanisms of semiconductor devices are directly applicable to it. A linear relationship between failure mechanism and time is assumed.
Activation Energy: Associated with each failure mechanism is an activation energy value. Table 3 lists some of the more common failure mechanisms and the associated activation energy of each.

# Quality and Reliability of NEC Microprocessors 

Table 2. Activation Energy and Detection of Failure Mechanisms

Failure Mechanism	Activation Energy	Detection
Oxide Defect	0.3 eV	High Temperature Operating Life Test
Silicon Defect	0.3 eV	
lonic Contamination	$1.0-1.35 \mathrm{eV}$	
Electromigration	0.4-0.8eV	
Charge Injection	1.3 eV	
Gold-Aluminum Interface	0.8 eV	
Metal Corrosion	0.7 eV	High Humidity Operating Llife Test

High Temperature Operating Life Test: This test is used to accelerate failure mechanisms by operating the devices at an elevated temperature. For N -channel MOS microprocessors and their family products, the operating temperature is $125^{\circ} \mathrm{C}$. The data obtained is translated to a lower temperature by using the Arrhenius relationship.

## High Temperature and High Humidity Test: Semi-

 conductor integrated circuits are highly sensitive to the general accelerating effect of humidity in causing electrolytic corrosion between biased lines. The high temperature and high humidity test is performed to detect failure mechanisms which are accelerated by these conditions. This test is effective in accelerating leakage-related failures and drifts in device parameters due to process instability.High Temperature Storage Test: Another common test is the high temperature storage test in which devices are subjected to elevated temperatures with no applied bias. This test is used to detect mechanical problems and process instability.
Environmental Test: Other environmental tests are performed to detect problems related to the package, material, susceptibility to extremes in environment, and problems related to usage of the devices.

## Failure Rate Calculation and Prediction

Analysis of integrated circuit failure rates can serve many useful purposes. For example, the early life failure rate helps establish a warranty period, while the mature life failure rate aids in estimating repair costs, spare parts stock requirements, or product downtime. Accurate prediction of failure rates can also be used for process control.
The following sections describe the failure rate calculation and prediction methods used by NEC's Integrated Circuit Division.

## The Arrhenius model

Most integrated circuit failure mechanisms depend, to some degree, on temperature. This relationship can be represented by the Arrhenius model, which includes the effects of temperature and activation energy of the failure mechanisms. As applied to accelerated life testing of integrated circuits, the Arrhenius model assumes that degradation of a performance parameter is linear with time. Temperature dependence is taken to be the exponential function that defines the probability of occurrence. The relationship of failure rate to temperature is expressed as:

$$
F_{1}=F_{2}{ }^{*} \operatorname{Exp}\left[(E a / k){ }^{*}\left(1 / T_{1}-1 / T_{2}\right)\right]
$$

Where: $F_{2}=$ Failure rate at $T_{2}$<br>$\mathrm{F}_{1}=$ Failure rate at $\mathrm{T}_{1}$<br>Ea = Activation energy<br>k = Boltzmann's constant<br>$\mathrm{T}=$ Operating junction temperature in degrees K

This equation explains the thermal dependence of integrated circuit failure rates and is used for derating the resulting failure rate to a more realistic temperature.

## Acceleration factor

The acceleration factor is the factor by which the failure rate can be accelerated by increased temperature. This factor is derived from the Arrhenius failure rate expression, resulting in the following form:

$$
A=F_{1} / F_{2}=\operatorname{Exp}\left[(E a / k)^{*}\left(1 / T_{1}-1 / T_{2}\right)\right]
$$

Where: $\mathrm{A}=$ Acceleration factor
$\mathrm{F}_{2}=$ Failure rate at $\mathrm{T}_{2}$
$\mathrm{F}_{1}=$ Failure rate at $\mathrm{T}_{1}$
In calculating the field reliability of an integrated circuit, it is necessary to calculate the junction temperature. In general, the junction temperature will depend on the ambient temperature, cooling, package type, operating cycle time, and power dissipation of the circuit itself. In these terms, the junction temperature $\left(\mathrm{T}_{\mathrm{J}}\right)$ is expressed as:

$$
T_{1}=T_{a}+P d * A f^{*} \theta j A
$$

Where: $\mathrm{T}_{1}=$ Junction temperature
$\mathrm{T}_{\mathrm{a}}=$ Ambient temperature
$\mathrm{Pd}=$ Power dissipation
Af = Air flow factor
${ }^{\mathrm{\theta j}} \mathrm{~A}$ = Package thermal resistance
Table 4 lists derating factors of various failure mechanisms. This table is generated assuming that an accelerated test is performed at a junction temperature of $125^{\circ} \mathrm{C}$. The result is then derated to $55^{\circ} \mathrm{C}$ junction temperature. The acceleration factor may then be obtained by taking the inverse of the derating factor.

Table 3. Derating Factors of Failure Mechanisms

Failure Mechanism	Activation Energy	Derating Factor
Oxıde Defect	0.3 eV	0.1546
Silicon Defect	0.3 eV	0.1546
lonic Contaminatıon	1.0 eV	0.001984
Electromıgration	0.4 eV	0.08307
Charge Injection	1.3 eV	0.0003067
Metal Corrosıon	0.7 eV	0.01315
Gold-Alumınum Interface	0.8 eV	0.006886

The acceleration of failure mechanisms in a high humidity and high temperature environment must be expressed as a function not only of temperature but also of humidity.
According to the reliability test statistics, the acceleration factor in such an environment can best be approximated with Peck's model as follows:

$$
A=\operatorname{Exp}\left[(E a / k)^{*}\left(1 / T_{1}-1 / T_{2}\right)\right]^{*}\left[H_{2} / H_{1}\right]^{* *} 4.5
$$

Where: $\mathrm{Ea}=$ Activation energy
$\mathrm{k}=$ Boltzmann's constant
T = Junction temperature
$\mathrm{H}=$ Relative humidity

## Quality and Reliability of NEC Microprocessors

For example, the acceleration factor for high humidity and high temperature or pressure cooker tests ranges from 100 to 1000 times that of the normal operating environment.

## Failure rate calculation

As an example, suppose that NEC's microprocessors and family product samples are submitted to a 1000-hour life test at $125^{\circ} \mathrm{C}$ junction temperature and encounter two failures: one oxide and one metalization defect. The sample size is 885 units.
Thus, the oxide failure rate is 0.11 percent per 1000 hours and the metalization failure rate is 0.11 percent per 1000 hours. Therefore, the total failure rate at $125^{\circ} \mathrm{C}$ sums to 0.22 percent per 1000 hours at 1 K hours.

## Failure rate prediction

To derate these failure rates to a normal operating environment, use the derating factors listed in Table 4.

$$
\begin{aligned}
& \text { Oxide Failures }=0.11 * 0.1546=0.01701 \% \text { per } 1 \mathrm{~K} \text { hrs } \\
& \text { Metal Failures }=0.1{ }^{*} 0.01315=0.00145 \% \text { per } 1 \mathrm{~K} \text { hrs } \\
& \text { Total Failures }=0.01846 \% \text { per } 1 \mathrm{~K} \text { hours }
\end{aligned}
$$

Note that the example above is a snapshot of the high temperature life test performed on a particular lot. It is not accumulated data that can be used to represent overall reliability. This conservative illustration, however, shows that the failure rate in a normal operating environment is approximately 12 times lower than that of a higher temperature environment. The failure rate prediction takes different activation energies into account whenever the causes of failures are known through performing failure analysis. In some cases, however, an average activation energy is assumed in order to accomplish a quick first-order approximation: NEC assumes an average activation energy of 0.7 eV whenever the exact failure mechanism is not known, to yield a conservative estimate of failure rates.

## Reliability Test Results

Before introducing new technologies or products, NEC's internal reliability goals must be attained. Several categories of testing are used in the internal qualification program to assure that product reliability meets NEC's reliability goals. Once the product is qualified, its reliability level is regularly monitored in a monthly reliability test.

## NEC's Goals on Failure Rates

NEC's approach to achieving high reliability is to build quality into the product, as opposed to merely screening out defective units. The use of distributed control methods embedded in the production line, in conjunction with conventional screening methods, results in the highest reliability at the lowest cost.
NEC currently maintains failure rates for infant mortality and long-term device operation as listed in Table 4.

Table 4. Infant Mortality and Long-term Failure Rates

	Percent Failure   Rate Goals
Infant Mortality Failure Rate	$0.10 / 1 \mathrm{~K} \mathrm{hrs}$
Long-term Life Failure Rate	
1.2M Device Hour Average	$0.02 / 1 \mathrm{~K} \mathrm{hrs}$
3.0M Device Hour Average	$0.01 / 1 \mathrm{~K} \mathrm{hrs}$

## Infant mortality process average goals

The infant mortality goal for each product group is set at 0.10 percent. When a failure rate exceeds this level, there is prompt remedial action to reduce this rate.

## Long-term failure rate goals

The long-term failure rate goal is based on the following conditions:

A minimum of 1.2 million device hours at $125^{\circ} \mathrm{C}$ is accumulated to resolve 0.02 percent per 1000 hours at $55^{\circ} \mathrm{C}$ with a 60 percent confidence level.
$\square$ A minimum of 3 million device hours at $125^{\circ} \mathrm{C}$ is accumulated to resolve 0.01 percent per 1000 hours at $55^{\circ} \mathrm{C}$ with a 60 percent confidence level.

## Infant Mortality Failure Screening

It is logical to assume that the integrated circuit that fails at one temperature would also fail at another temperature, except that it would fail sooner at a higher temperature. As can be expected, the failure rate is a function of its associated activation energy. Establishing infant mortality screening, therefore, requires knowledge of the likely failure mechanisms and their associated activation energy. The most likely mechanisms associated with infant mortality failures are generally manufacturing defects and process anomalies. These generally consist of contamination, cracked chips, wire bond shorts, or bad wire bonds. Since these describe a number of possible mechanisms, any one of which might predominate at a given time, the activation energy for infant mortality might be expected to vary considerably.
The effectiveness of a screening condition, preferably at some stress level in order to shorten the time, varies greatly with the failure mechanism being screened for. Another factor is the economics of the screening process introduced into the production line. Optimal conditions and duration of a screening process will be a compromise of these two factors.
For example, failures due to ionic contamination have an activation energy of approximately 1.0 eV . Therefore, a 15 -hour stress at $125^{\circ} \mathrm{C}$ junction temperature would be the equivalent of approximately 90 days of operation at a junction temperature of $55^{\circ} \mathrm{C}$. On the other hand, failures due to oxide defects have an activation energy of approximately 0.3 eV , and a 15 -hour stress at $125^{\circ} \mathrm{C}$ junction temperature would be the equivalent of approximately one week's operation at $55^{\circ} \mathrm{C}$ junction temperature. As indicated by this, the condition and duration of infant mortality screening would be a strong function of the allowable component failures, hence the system failure, in the field.
Empirical data, gathered over more than a year at NEC, indicates that early failure does occur after less than 4 hours of stress at $125^{\circ} \mathrm{C}$ ambient temperature. This fact is supported by the life test of the same lot, where the failure rate shows random distribution, as opposed to a decreasing failure rate which then runs into the random failure region.
NEC has adopted the initial infant mortality burn-in at $125^{\circ} \mathrm{C}$ as a standard production screening procedure. As a result, the field reliability of NEC devices is an order of magnitude higher than the goals set for NEC's integrated circuit products.

# Quality and Reliability of NEC Microprocessors 

## Life Tests

The most significant difference between NEC's products and those of other integrated circuit manufacturers is the fact that NEC's have been prescreened for their infant mortality defects. The products delivered to customers are operating at the beginning of the random failure region of the life curve. The life test data also reflect this fact, as will be shown in the following sections.
The failure mechanism distribution from field failures, as previously shown in Figure 2, also contains a very low percentage due to infant mortality. The majority of failures are longterm life failures, and these can be eliminated by stringent process control. Usually, these failure mechanisms have low activation energy associated with them.
Another significant improvement devised by NEC is plastic encapsulation and passivation. As a result, NEC products show excellent reliability in both high humidity and high temperature environments. Following is life test data accumulated over more than a year for N -channel microprocessors and family products.

## High temperature operating life test

This test is used to accelerate failure mechanisms by operating the devices at an elevated temperature. For microprocessors and family products, the failure rate is 0.242 percent per 1000 hours at $125^{\circ} \mathrm{C}$. This is equivalent to 0.0071 percent per 1000 hours in an operating environment of $55^{\circ} \mathrm{C}$ (Table 5).
Table 5. High Temperature Operating Life Test

Number of Samples	Number of Failures at				
	48 hrs	96 hrs	168 hrs	500 hrs	1 Khrs
3317	0	0	1	4	3
$\begin{array}{ll} \hline \text { Total Number of Failures at } 1 \mathrm{~K} \text { hrs } & =8 \\ \text { Failure Rate at } 1 \mathrm{~K} \mathrm{hrs} \mathrm{at} 125^{\circ} \mathrm{C} & =0.242 \% \text { per } 1 \mathrm{~K} \text { hrs } \\ \text { Projected Failure Rate at } 55^{\circ} \mathrm{C} & =0.007 \% \text { per } 1 \mathrm{~K} \text { hrs } \\ \hline \end{array}$					

## High temperature and high humidity life test

This test is used to accelerate failure mechanisms by operating the devices at high temperature and high humidity. Leakage-related failures and device parameter drift are accelerated by this test. For microprocessors and family products, the failure rate is 0.091 percent per 1000 hours. This is equivalent to 0.0027 percent per 1000 hours in an operating environment of $55^{\circ} \mathrm{C}$. The test conditions are $\mathrm{T}_{\mathrm{a}}=85^{\circ} \mathrm{C}$ and relative humidity $(\mathrm{RH})=80 \%$ (Table 6).
Table 6. High Temperature and High Humidity Life Test

| Number of <br> Samples | Number of Failures at |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 48 hrs | $\mathbf{9 6} \mathrm{hrs}$ | 168 hrs | 500 hrs | 1 K hrs |
|  | 0 | 0 | 0 | 0 | 2 |

Total Number of Failures at $1 \mathrm{~K} \mathrm{hrs}=2$
Failure Rate at $1 \mathrm{~K} \mathrm{hrs} \mathrm{at} 85^{\circ} \mathrm{C} / 85 \% \mathrm{RH}=0.091 \%$ per 1 K hrs
Projected Failure Rate at $55^{\circ} \mathrm{C} / 60 \%$ RH $=\mathbf{0 . 0 0 3} \%$ per 1 K hrs

## High temperature storage life test

This test is effective in accelerating the failure mechanisms related to mechanical reliability problems and process instability. For microprocessors and family products, the failure rate is 0.207 percent per 1000 hours at $125^{\circ} \mathrm{C}$. This is equivalent to 0.0061 percent per 1000 hours in an operating environment of $55^{\circ} \mathrm{C}$ (Table 7).

Table 7. High Temperature Storage Life Test

Number of   Samples	48 hrs	96 hrs	168 hrs	500 hrs	1K hrs
	2410	0	0	0	1

Total Number of Failures at 1 K hrs $=5$
Failure Rate at 1 K hrs at $125^{\circ} \mathrm{C} \quad=\mathbf{0 . 2 0 7} \%$ per 1 K hrs
Projected Failure Rate at $55^{\circ} \mathrm{C} \quad=\mathbf{0 . 0 0 6 \%}$ per 1 K hrs

## Pressure cooker test

This test is effective in accelerating failure mechanisms related to metalization corrosion due to moisture. The failure rate is 0.52 percent per 1000 hours at $\mathrm{T}_{\mathrm{a}}=125^{\circ} \mathrm{C}$ and 2.3 Atm at 100 percent humidity. This is equivalent to 0.0013 percent per 1000 hours at $55^{\circ} \mathrm{C}$ and an environment of 60 percent humidity (Table 8).
Table 8. Pressure Cooker Test

| Number of |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Samples |$\quad 48 \mathrm{c}$ Number of Failures at


Total Number of Failures at 168 hrs	$=9$
Failure Rate at $125^{\circ} \mathrm{C}$	$=0.54 \%$ per 1 K hrs
Projected Failure Rate at $55^{\circ} \mathrm{C}$	$=0.001 \%$ per 1 K hrs

Life test data summary
Table 9 summarizes the life test results and projected failure rates in the normal operating environment. The failure rate shows random distribution as opposed to a decreasing failure rate. This is a result of infant mortality screening.

## Table 9. Life Test Data

Test Item	Number of Samples	Number of Failures at				Total Number of Failures
		96 hrs	168 hrs	500 hrs	1 Khrs	
High Temperature Life Test	3317	0	1	4	3	8
High Humıdity Life Test	2190	0	0	0	2	2
High Temperature Storage Life Test	2410	0	0	1	4	5
Pressure Cooker Test	1718	4	5	*	*	9
Total	9635	4	6	5	9	24

The projected failure rate in the normal operating environment is calculated assuming that the average activation energy is 0.7 eV .
Figure 3 shows the life distribution of NEC integrated circuits as a form of the Bathtub curve.


Figure 3. Plot of Life Test Results

## Quality and Reliability of NEC Microprocessors

This life test data shows improvements of approximately an order of magnitude better than NEC's goal. The hours of operation are equivalent to the normal operating environment. Wear-out failures, which had been the main target for reliability improvement, have also been significantly reduced. This result comes mainly from process improvements and stringent manufacturing process control.
NEC's main goal has been to improve reliability with respect to infant mortality and long-term life failures. This can be achieved by introducing an effective screening method for infant mortality and building quality into the product.

## Thermal stress tests

Temperature cycling and thermal shock test the thermal compatibility of material and metal used to make integrated circuits. Table 10 lists the reliability test results of thermal stress tests.
Table 10. Thermal Stress Results

Test Item	Number of   Samples	Number of   Failures
Soldering Heat Test   $\mathrm{T}_{\mathrm{a}}=260^{\circ} \mathrm{C}$ for 10 seconds	1891	0
Temperature Cycle   $\mathrm{T}_{\mathrm{a}}=-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}, 10$ cycies	1891	0
Thermal Shock $\mathrm{Test}^{\circ}$   $\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}, 15$ cycles	1891	0

## Mechanical stress tests

In addition to the device life test, NEC performs mechanical stress tests to detect reliability problems related to the package, material, and device susceptibility to an extreme environment. Table 11 lists mechanical stress test results.

Table 11. Mechanical Stress Results

Test Item	Number of   Samples	Number of   Failures
Mechanical Shock Test   @15kg, 3 axis	315	0
Vibration Test   @100Hz to 2kHz, 20g	315	0
Constant Acceleration   @20kg, 3 axis	315	0
Lead Fatigue Test   @250 gms	638	0
Solderability Test   @230	638	0

## Built-in Quality and Reliability

As large-scale integration reaches even higher levels of density, simple quality inspections cannot assure adequate levels of product quality and reliability. In order to ensure the reliability of state-of-the-art, very large-scale integrated circuits, NEC has adopted another approach. Highest reliability and superior quality of a device can only be achieved by building these characteristics into the product at each process step. NEC, therefore, has introduced the notion of Total Quality Control (TQC) into its entire semiconductor production line. Quality control is distributed into each process step and then all are summed to form a consolidated system.

## Approaches to Total Quality Control

First, the quality control function is embedded into each process. This method enables early detection of possible causes of failure and immediate feedback.

Second, the reliability and quality assurance policy is an integral part of the entire organization. This enables a companywide quality control activity. At NEC, everyone in the company is involved with the concept and methodology of Total Quality Control.
Third, there is an on-going research and development effort to set even higher standards of device quality and reliability. Fourth, extensive failure analysis is performed periodically and corrective actions are taken as preventive measures. Process control is based on statistical data gathered from this analysis.
The goal is to maintain the superior product quality and reliability that has become synonymous with the NEC name. The new standard is continuously upgraded and the iterative process continues.

## Implementation of distributed quality control

Building quality into a product requires early detection of possible cause of failure at each process step. Then, immediate feedback to remove the cause of failure is a must. A fixed station quality inspection is often lacking in immediate feedback. It is, therefore, necessary to distribute quality control functions to each process step, including the conceptual stage. NEC has implemented a distributed quality control function at each step of the process. Following is a breakdown of the significant steps:

## Product development phase <br> Wafer processing <br> Chip mounting and packaging <br> Electrical testing and thermal aging <br> Incoming material inspection

Product Development Phase: The product development phase includes conception of a product, review of the device proposal, organization and physical element design, engineering evaluation, and finally, transfer of the product to manufacturing. Quality and reliability are considered at every step. More significantly, at the design review stage and prior to product transfer, the quality and reliability requirements have to be examined and determined to be satisfactory. This often adds two to three months to the product development cycle. Building in high reliability, however, cannot be sacrificed.
Wafer Processing Stage Inspection: The in-process quality inspections that occur at the wafer fabrication stage are listed in Table 12.
Table 12. Wafer Fabrication Inspection

Process	Inspection Item
Wafer	Resistivity, Dimension, and Appearance,   Lot Sampling Inspection
Mask	Alignment and Etching, 100 Percent Inspection
Photo-Lithography	Oxide Thickness, Sheet Resistivity, Lot Sampling   Inspection
Cleanıng	Thickness, Vth, C-V Characteristics, and Lot Sampling
Metalization and Passivation	DC Parameters, 100 Percent Inspection
Wafer Sort and Scribe	100 Percent Visual Inspection
Die Sort	

# Quality and Reliability of NEC Microprocessors 

Chip Mounting and Packaging: The in-process quality inspections that are done at the chip mounting and packaging stage are listed in Table 13.
Table 13. Chip Mounting and Packaging Inspection

Process	Inspection Item
Die	Incoming Material Inspection
Die Attach	Appearance, Lot Samplıng Inspection
Wire Bonding	Bond Strength, Appearance, Lot Sampling
Packagıng	100 Percent Appearance Inspection
Fine Leak*	Lot Samplıng
Gross Leak*	100 Percent Inspection

Note: * For ceramic package devices only
Electrical Testing and Screening: Electrical testing and infant mortality screening are performed at this stage. A flowchart of the process is depicted in Figure 4.


Figure 4. Electrical Testing and Screening
At the first electrical test, DC parameters are tested, according to the electrical specifications, on 100 percent of each lot. This is a prescreening prior to the infant mortality test. At the second electrical test, AC functional as well as DC parameter tests are performed on 100 percent of the subjected lot. If the percentage of defective units exceeds the limit, the lot is subjected to an additional burn-in. As this defective lot is being subjected to an additional burn-in, the defective units are undergoing a failure analysis, the results of which are then fed back into the process for corrective action.
Incoming Material Inspection: Prior to warehouse storage, lots are subjected to an incoming inspection according to the following sampling plan:

$\square$ Electrical test: DC parameters	LTPD	$3 \%$	
	Functional test	LTPD	$3 \%$
$\square$ Appearance		LTPD	$3 \%$

## Reliability assurance test

Samples are continually taken from the warehouse and subjected to monthly reliability tests as discussed in the previous section. They are taken from similar process groups so that it can be assumed that any device is representative of the reliability of that group.

## In-process screening

Perhaps the most significant preventive measure that NEC has implemented is the introduction of 100 percent burn-in as an integral part of the standard production process. Most of the potential infant failures are effectively screened from every lot, thereby improving reliability. Assuming average activation energy of 0.7 eV , burn-in at $\mathrm{T}_{\mathrm{a}}=125^{\circ} \mathrm{C}$ for four hours is equivalent to a week's operation in a normal operating environment. This appears to be ample time for accelerating the time-to-failure mechanisms for early failures.
Process automation, as previously mentioned, has also contributed a great deal in improving reliability. Since its introduction, assembly related failure mechanisms have been substantially reduced. And, in combination with in-process screening and materials improvement, it has helped establish quality and reliability above NEC's initial goals.

## Summary and Conclusion

As has been discussed, building quality and reliability into products is the most efficient way to ensure product reliability. NEC's approach of distributing quality control functions to process steps, then forming a consolidated quality control system, has produced superior quality and excellent reliability.
Prescreening, introduced as an integral part of large-scale integrated circuit production, has been a major factor in improving reliability. The most recent year's production clearly demonstrates continuation of NEC's high reliability and the effectiveness of this method.
Reliability Assurance Tests (RATs), performed monthly, have ensured high outgoing quality levels. The combination of building quality into products, effective prescreening of potential failures, and the reliability assurance test has established a singularly high standard of quality and reliability for NEC's large-scale integrated circuits.
With a companywide quality control program, NEC is committed to building superior quality and highest reliability into all its products. Through continuous research and development activities, extensive failure analysis, and process improvements, a higher standard of quality and reliability will continuously be set and maintained.

## Notes

NEC

## U.S. REPRESENTATIVES

Alabama	Michigan	Washington
20th Century Marketng, Inc Huntsville, AL 35801 205-533-9281	Miltumore Sales, Inc Grand Rapids, MI 49506 616-942-9721	Electronic Technical Sales Associates Kirkland, WA 98033   206-827-8086
Arizona	Novi, MI 48050 313-349-0260	
Fred Board Associates, Inc Scottsdale, AZ 85251 602-994-9388	Minnesota   George Russell \& Associates	CANADIAN   REPRESENTATIVES
$\begin{aligned} & \text { Tucson, AZ } 85704 \\ & 602-299-1508 \end{aligned}$	Bloomington, MN 55420 612-854-1166	British Columbia
California	Hew Jersey	Kaytronics Western Surrey, BC V3R 4G8
$\begin{aligned} & \text { CERCO } \\ & \text { San Diego, CA92117 } \\ & 619-2744-1901 \end{aligned}$	B G R Associates Martion, NJ 08053 609-428-2440	604-581-7611 Ontario
Quorum Technical Sales Santa Clara, CA 95054 408-980-0812	HLM Associates, Inc Parsippany, NJ 07054 201-263-1535	Kaytronics, Inc Concord, Ontario L4K 1B1 416-669-2262
Colorado	Mew Mexico	613-592-6606
Candal, Inc   Golden, CO 80401   303-233-0155	Rontek, Inc   Albuquerque, NM 87191   505-299-4124	Quebec   Kaytronics, Inc Ville St Pierre, QU H8R 3 Y8
Connecticut	Hew York	514-367-0101
HLM Associates Waterbury, CT 06708 203-753-9894	ELCOM Sales   Pentield, NY 14526   716-385-1400	
Florida	Skaneateles, NY 13152 315-685-8245	
Semtronics, Inc Altamonte Springs, FL 32701 305-831-8233   Clearwater, FL 33515	HLM Associates, Inc Northport, NY 11768 516-757-1606	
813-461-4675	Morth Carolina	
Georgia   Montgomery Marketing, Inc Norcross, GA 30092 404-447-6124	Montgomery Marketing, Inc Cary, NC 27511 919-467-6319	
	Pennsylvania	
Illinois   A ME Sales Collinsville, IL 62234	Imtech, Inc Pittsburgh, PA 15243 412-344-0844	
	Ohio	
Seiger Associates Rolling Meadows, IL 60008 312-991-6161	Imtech, Inc Akron, OH 44321 216-666-1185	
Indiana	Dayton, OH 45414 513-278-6507	
M/S Sales \& Associates, Inc   Fort Wayne, IN 46808   219-484-1904   Indianapolis, IN 46260   317-257-8915	Oragon   Electronic Technical Sales Associates Hillsboro, OR 97123 $503-640-8086$	
Iowa	Tennessee	
George Russell \& Associates Cedar Rapids, IA 52402 319-369-9134	20th Century Marketing, Inc Knoxville, TN 37923 615-966-3608	
Kansas	Texas	
$\begin{aligned} & \text { A M E Sales } \\ & \text { Overland Park, KS } 66202 \\ & 913-262-3771 \end{aligned}$	Technical Marketing, Inc Austin, TX 78758 512-835-0064	
Maryland	$\underset{\substack{\text { Carrollton, TX } \\ \text { 214-387-3601 }}}{ } 75006$	
Professional Representatives Baltumore, MD 21208   301-653-3600	$\begin{aligned} & \text { Houston, TX } 77081 \\ & 713-777-9228 \end{aligned}$	
Massachusetts   Compass Technology Woburn, MA 01801 617-933-3336	Utah   Aspen Sales Salt Lake City, UT 84115 801-467-240	

## NEC NEC Electronics

401 Ellis Street
Mountain View, CA 94043
TEL. 415-960-6000, TWX: 910-379-6985


[^0]:    $\mathrm{A}=-35 \mathrm{~V}$ VF Display Drive
    $B=\mu C O M-4$ Evaluation Chip
    C $=\mu$ PD750X Evaluation Chıp
    D = LCD Controller/Driver
    E = LED Display Controller/Driver
    F = VF Display Controller/Driver
    G $=$ Pin-Compatible with $\mu$ PD546
    O.D. $=$ Open Drain

[^1]:    ABSOLUTE MAXIMUM
    Operating Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
    RATINGS*
    Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
    Supply Voltage, VGG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -15 to +0.3V
    Input Voltages (Port A, $\overline{\text { INT, }}$, RESET) . . . . . . . . . . . . . . . . . . . . . . . . -15 to +0.3V
    (Ports C, D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 to +0.3V
    Output Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40 to +0.3V
    Output Current (Ports C, D, each bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 mA
    (Ports E, F, G, each bit) . . . . . . . . . . . . . . . . . . . . . . . . . - 15 mA
    (Total, all ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 60 mA
    $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
    *COMMENT. Stress above those listed under "Absolute Maxımum Ratıngs" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum ratıng conditions for extended periods may affect device reliability.

[^2]:    $\downarrow$ Flag affected according to result of operation
    1 Flag set
    0 Flag reset

    - Flag not affected

[^3]:    Notes:
    (1) For $2 \times W C L K, V_{11}=-0.5 \mathrm{~V}$ to +0.6 V .
    (3) For 2XWCLK, $\mathrm{V}_{1 H}=+3.9 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$

[^4]:    TM Z80 is a registered trademark of Zilog inc

[^5]:    Operating Temperature
    $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
    Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
    Voltage on Any Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to +7 Volts (1)
    Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 W

[^6]:    *TM - Multibus is a trademark of Intel Corporation.

[^7]:    Operating Temperature $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
    $\qquad$All Output and Supply Voltages. . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 V to +7VAll Input Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -1.0 V to +5.5 V
    $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
    *COMMENT: Stress above those listed under "Absolute Maxımum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

