## NEC Microcomputers, Inc.

## 1980 Catalog



## CONTENTS

## FUNCTIONAL AND NUMERICAL INDEXES ROM ORDERING PROCEDURE

MEMORY SELECTION GUIDE AND ALTERNATE SOURCE GUIDE

RANDOM ACCESS MEMORIES AND ALTERNATE SOURCE GUIDE
$\mu$ COM-4 SINGLE CHIP 4-BIT MICROCOMPUTERS
$\mu$ COM-8 MICROPROCESSORS
$\mu$ COM-8 SINGLE CHIP 8-BIT MICROCOMPUTERS
$\mu$ COM-8 PERIPHERALS

NOTES

## FUNCTIONAL INDEX

RANDOM ACCESS MEMORIESSelection Guide8
Alternate Source Guide ..... 9
Dynamic NMOS RAMs
$\mu$ PD411 ..... 11
$\mu$ PD411A ..... 19
$\mu$ PD416 ..... 27
$\mu$ PD21 18 ..... 36
$\mu$ PD4164 ..... 37
Static NMOS RAMs
$\mu$ PD410 ..... 43
$\mu$ PD4104 ..... 47
$\mu$ PD2114L ..... 53
$\mu$ PD2147 ..... 59
$\mu$ PD421 ..... 63
$\mu$ PD2167 ..... 67
CMOS RAMs ..... 69
$\mu$ PD $444 / 6514$ ..... 75
$\mu$ PD 445 L ..... 79
READ ONLY MEMORIES
Selection Guide ..... 8
Alternate Source Guide ..... 9
ROM Ordering Procedure ..... 6
Mask Programmable ROMs
$\mu$ PD2308A ..... 85
$\mu$ PD2316E ..... 89
$\mu$ PD2332A/B ..... 93
$\mu$ PD2364 ..... 97
Field Programmable ROMs
(U.V. Erasable)
$\mu$ PD2716 ..... 101
$\mu$ PD2732 ..... 102
$\mu$ COM-4 SINGLE CHIP 4-BIT MICROCOMPUTERS
Selection Guide ..... 104
ROM Ordering Procedure ..... 6
$\mu$ COM-42 ..... 109
$\mu$ PD548 ..... 113
$\mu$ COM-43/44/45 ..... 115
$\mu$ PD546 ..... 121
$\mu$ PD553 ..... 123
MPD557L ..... 125
$\mu$ PD650 ..... 127
$\mu$ PD547 ..... 129
$\mu$ PD547L ..... 131
$\mu$ PD552 ..... 133
$\mu$ PD651 ..... 135
$\mu$ PD550 ..... 139
$\mu$ PD550L ..... 141
$\mu$ PD554 ..... 143
$\mu$ PD554L ..... 145
$\mu$ PD652 ..... 147
Evaluation Chips
$\mu$ PD555 ..... 149
$\mu$ PD556 ..... 153
$\mu$ COM-75
$\mu$ PD7520 ..... 157
$\mu$ COM-8 MICROPROCESSORS
Selection Guide ..... 104
Alternate Source Guide ..... 106
$\mu$ PD8080AF ..... 165
$\mu$ PD8085A ..... 179
$\mu$ COM-8 SINGLE CHIP 8-BIT MICROCOMPUTERS
Selection Guide ..... 104
Alternate Source Guide ..... 106
ROM Ordering Procedure ..... 6
$\mu$ PD7801 ..... 193
$\mu$ PD8021 ..... 199
$\mu$ PD8022 ..... 205
$\mu$ PD8041/8741A ..... 211
$\mu$ PD8048/8748/8035L ..... 219
$\mu$ PD8049/8039L ..... 231
$\mu$ COM-8 PERIPHERALS
Selection Guide ..... 105
Alternate Source Guide ..... 106
$\mu$ PD765 ..... 241
$\mu$ PD781 ..... 259
$\mu$ PD782 ..... 271
$\mu$ PD3301 ..... 283
$\mu$ PD7001 ..... 291
$\mu$ PD7002 ..... 295
$\mu$ PD8155/8156 ..... 299
4PB8212 ..... 307
uPB8214 ..... 313
$\mu$ PB8216/8226 ..... 319
$\mu$ PB8224 ..... 323
4PB8228 ..... 329
$\mu$ PD8243 ..... 335
$\mu$ PD8251/8251A ..... 341
4PD8253 ..... 359
$\mu$ PD8255/8255A-5 ..... 367
$\mu$ PD8257 ..... 375
$\mu$ PD8259 ..... 383
$\mu$ PD8279-5 ..... 399
$\mu$ PD8355/8755A ..... 409

NOTÉS

## NEC Microcomputers, Inc.

## NUMERICAL INDEX

PRODUCT PAGE
$\mu$ PD4 10 ..... 43
$\mu$ PD411 ..... 11
$\mu$ PD411A ..... 19
$\mu$ PD4 16 ..... 27
$\mu$ PD421 ..... 63
$\mu$ PD444/6514 ..... 75
$\mu$ PD445L ..... 79
$\mu$ PD546 ..... 121
$\mu$ PD547 ..... 129
$\mu$ PD547L ..... 131
$\mu$ PD548 ..... 113
$\mu$ PD550 ..... 139
$\mu$ PD550L ..... 141
$\mu$ PD552 ..... 133
$\mu$ PD553 ..... 123
MPD554 ..... 143
$\mu$ PD554L ..... 145
MPD555 ..... 149
$\mu$ PD556 ..... 153
$\mu$ PD557L ..... 125
$\mu$ PD650 ..... 127
$\mu$ PD651 ..... 135
$\mu$ PD652 ..... 147
$\mu$ PD765 ..... 241
$\mu$ PD781 ..... 259
$\mu$ PD782 ..... 271
$\mu$ PD2114L ..... 53
$\mu$ PD2118 ..... 36
$\mu$ PD2147 ..... 59
$\mu$ PD 2167 ..... 67
$\mu$ PD2308A ..... 85
$\mu$ PD2316E ..... 89
$\mu$ PD2332A/B ..... 93
$\mu$ PD2364 ..... 97
$\mu$ PD2716 ..... 101
$\mu$ PD2732 ..... 102
$\mu$ PD3301 ..... 283
PRODUCTPAGE
$\mu$ PD4 104 ..... 47
$\mu$ PD4 164 ..... 37
$\mu$ PD5101L ..... 69
$\mu$ PD7001 ..... 291
$\mu$ PD7002 ..... 295
$\mu$ PD7520 ..... 157
$\mu$ PD7801 ..... 193
$\mu$ PD8021 ..... 199
$\mu$ PD8022 ..... 205
$\mu$ PD8035L ..... 219
$\mu$ PD8039L ..... 231
$\mu$ PD8041 ..... 211
$\mu$ PD8048 ..... 219
$\mu$ PD8049 ..... 231
$\mu$ PD8080AF ..... 165
$\mu$ PD8085A ..... 179
$\mu$ PD8155 ..... 299
$\mu$ PD8156 ..... 299
$\mu$ PB8212 ..... 307
$\mu$ PB8214 ..... 313
$\mu$ PB8216 ..... 319
$\mu$ PB8224 ..... 323
$\mu$ PB8226 ..... 319
$\mu$ PB8228 ..... 329
$\mu$ PD8243 ..... 335
$\mu$ PD8251 ..... 341
$\mu$ PD8251A ..... 341
$\mu$ PD8253 ..... 359
$\mu$ PD8255 ..... 367
$\mu$ PD8255A-5 ..... 367
$\mu$ PD8257 ..... 375
$\mu$ PD8259 ..... 383
$\mu$ PD8279-5 ..... 399
$\mu$ PD8355 ..... 409
$\mu$ PD8741A ..... 211
$\mu$ PD8748 ..... 219
$\mu$ PD8755A ..... 409

## ROM ORDERING PROCEDURE - MEMORIES AND MICROCOMPUTERS

The following NEC products fall under the guidelines set by the ROM Ordering Procedure:

| $\mu$ PD2308A | $\mu$ PD8049 | $\mu$ PD553 |
| :--- | :--- | :--- |
| $\mu$ PD2316E | $\mu$ PD8355 | $\mu$ PD554 |
| $\mu$ PD2332A $/ B$ | $\mu$ PD546 | $\mu$ PD554L |
| $\mu$ PD2364 | $\mu$ PD547 | $\mu$ PD557L |
| $\mu$ PD7801 | $\mu$ PD547L | $\mu$ PD650 |
| $\mu$ PD8021 | $\mu$ PD548 | $\mu$ PD651 |
| $\mu$ PD8022 | $\mu$ PD550 | $\mu$ PD652 |
| $\mu$ PD8041 | $\mu$ PD552 | $\mu$ PD7520 |

In order to facilitate the transferal of ROM mask information, NEC Microcomputers, Inc., is able to accept mask patterns in a variety of formats. These are intended to suit various customer needs and minimize the turnaround time. A listing of the code must always be enclosed. The following is a list of valid media for code transferal.

- Sample ROMs or ROM-based microcomputers
- PROM/EPROM equivalent to ROM parts
- NEC $\mu$ PD458 EEPROM
- BNPF Paper Tapes
- Hex Paper Tapes
- Timesharing Files
- Other (Contact NEC Microcomputers, Inc., for arrangements.)

Thoroughly tested verification procedures protect against unnecessary delays or costly mistakes. NEC Microcomputers, Inc., will return the ROM mask patterns to the customer in the most convenient format. Unprogrammed EPROMs, if sent with the ROM code can be programmed and returned for verification.

Earth satellites and the world-wide GE Mark III timesharing systems provide reliable and instant communication of ROM patterns to the factory. Customers with access to GE-TSS may further reduce the turnaround time by transferring files directly to NEC Microcomputers, Inc.

The following is an example of a ROM mask transferal procedure. The $\mu$ PD8048 is used here, however the process is the same for the other ROM-based products.

1. The customer contacts NEC Microcomputers, Inc., concerning a ROM pattern for the $\mu$ PD8048 that he would like to send.
2. Since an EPROM version of that part is available, the 8748 is proposed as a code transferal medium, or alternatively, a paper tape and listing.
3. Two programmed 8748 's are sent to NEC Microcomputers, Inc., with a listing and a paper tape as back-up.
4. NEC Microcomputers, Inc., compares the media provided and enters the code into GE-TSS. The GE-TSS file is accessed at the NEC factory and a copy of the code is returned to NEC Microcomputers for verification purposes. One of the 8748's is erased and reprogrammed with the customer's code as the NEC factory has it. Both 8748's along with a new papertape and listing are returned to the customer for his final verification.
5. Once the customer notifies NEC Microcomputers, Inc., in writing that the code is verified, and provides the mask charge and hard copy of the purchase order, work commences immediately on the development of his $\mu$ PD8048s.

## MEMORIES



## MEMORY SELECTION GUIDE

| DEVICE | SIZE | PROCESS | ACCESS <br> TIME | CYCLE | SUPPLY <br> VOLTAGES | PACKAGE |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | MATERIAL | PINS |  |  |  |  |  |

## DYNAMIC RANDOM ACCESS MEMORIES

| $\mu$ PD411 | $4 \mathrm{~K} \times 1 \mathrm{TS}$ | NMOS | 150 ns | 380 ns | $+12,+5,-5$ | D | 22 |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mu \mathrm{PD} 411-4$ | $4 \mathrm{~K} \times 1 \mathrm{TS}$ | NMOS | 135 ns | 320 ns | $+15,+5,-5$ | D | 22 |
| $\mu \mathrm{PD} 411 \mathrm{~A}$ | $4 \mathrm{~K} \times 1 \mathrm{TS}$ | NMOS | 200 ns | 400 ns | $+12,+5,-5$ | C | 22 |
| $\mu$ PD416 | $16 \mathrm{~K} \times 1 \mathrm{TS}$ | NMOS | 120 ns | 320 ns | $+12,+5,-5$ | $\mathrm{C} / \mathrm{D}$ | 16 |
| $\mu$ PD2118 | $16 \mathrm{~K} \times 1 \mathrm{TS}$ | NMOS | 100 ns | 235 ns | +5 | D | 16 |
| $\mu$ PD4164 | $64 \mathrm{~K} \times 1 \mathrm{TS}$ | NMOS | 200 ns | 375 ns | +5 | D | 16 |

STATIC RANDOM ACCESS MEMORIES

| $\mu \mathrm{PD} 5101 \mathrm{~L}$ | $256 \times 4$ TS | CMOS | 450 ns | 450 ns | +5 | C | 22 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mu$ PD444/6514 | $1 \mathrm{~K} \times 4 \mathrm{TS}$ | CMOS | 200 ns | 200 ns | +5 | C | 18 |
| $\mu \mathrm{PD} 445 \mathrm{~L}$ | $1 \mathrm{~K} \times 4 \mathrm{TS}$ | CMOS | 450 ns | 450 ns | +5 | C | 20 |
| $\mu \mathrm{PD} 2167$ | $16 \mathrm{~K} \times 1$ TS | NMOS | 35 ns | 55 ns | +5 | D | 20 |
| $\mu \mathrm{PD} 2114 \mathrm{~L}$ | $1 \mathrm{~K} \times 4 \mathrm{TS}$ | NMOS | 150 ns | 150 ns | +5 | C/D | 18 |
| $\mu \mathrm{PD} 2147$ | $4 \mathrm{~K} \times 1 \mathrm{TS}$ | NMOS | 55 ns | 55 ns | +5 | D | 18 |
| $\mu$ PD410 | $4 \mathrm{~K} \times 1 \mathrm{TS}$ | NMOS | 90 ns | 220 ns | $+12,+5,-5$ | C/D | 22 |
| $\mu \mathrm{PD} 421$ | $1 \mathrm{~K} \times 8 \mathrm{TS}$ | NMOS | 150 ns | 150 ns | +5 | D | 22 |
| $\mu$ PD4104 | $4 \mathrm{~K} \times 1 \mathrm{TS}$ | NMOS | 150 ns | 260 ns | +5 | C/D | 18 |

MASK PROGRAMMED READ ONLY MEMORIES

| $\mu \mathrm{PD} 2308 \mathrm{~A}$ | $1 \mathrm{~K} \times 8 \mathrm{TS}$ | NMOS | 450 ns | 450 ns | +5 | $\mathrm{C} / \mathrm{D}$ | 24 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mu \mathrm{PD} 2316 \mathrm{E}$ | $2 \mathrm{~K} \times 8 \mathrm{TS}$ | NMOS | 450 ns | 450 ns | +5 | C | 24 |
| $\mu \mathrm{PD} 2332 \mathrm{~A} / \mathrm{B}$ | $4 \mathrm{~K} \times 8 \mathrm{TS}$ | NMOS | 450 ns | 450 ns | +5 | C | 24 |
| $\mu \mathrm{PD} 2332 \mathrm{~A} / \mathrm{B}-1$ | $4 \mathrm{~K} \times 8 \mathrm{TS}$ | NMOS | 350 ns | 350 ns | +5 | C | 24 |
| $\mu \mathrm{PD} 2364$ | $8 \mathrm{~K} \times 8 \mathrm{TS}$ | NMOS | 450 ns | 450 ns | +5 | C | 24 |

FIELD PROGRAMMABLE READ ONLY MEMORIES (U.V. ERASABLE)

| $\mu$ PD2716 | $2 \mathrm{~K} \times 8 \mathrm{TS}$ | NMOS | 450 ns | 450 ns | +5 | $D$ | 24 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mu$ PD2732 | $4 \mathrm{~K} \times 8 \mathrm{TS}$ | NMOS | 450 ns | 450 ns | +5 | $D$ | 24 |

[^0]MEMORY ALTERNATE SOURCE GUIDE

| MANUFACTURER | PART NUMBER | DESCRIPTION | NEC REPLACEMENT |
| :---: | :---: | :---: | :---: |
| AMD | 2716 <br> 8308 <br> 9016 <br> 9060 <br> 9107 <br> 9114 <br> 9124 <br> 9147 <br> 9216 | $\begin{gathered} 2 \mathrm{~K} \times 8 \text { EPROM } \\ 1 \mathrm{~K} \times 8 \text { ROM } \\ 16 \mathrm{~K} \times 1 \text { DRAM } \\ 4 \mathrm{~K} \times 1 \text { DRAM } \\ 4 \mathrm{~K} \times 1 \text { DRAM } \\ 1 \mathrm{~K} \times 4 \text { SRAM } \\ 1 \mathrm{~K} \times 4 \text { SRAM } \\ 4 \mathrm{~K} \times 1 \text { SRAM } \\ 2 \mathrm{~K} \times 8 \text { ROM } \\ \hline \end{gathered}$ | $\mu$ PD2716 <br> $\mu$ PD2308A <br> $\mu$ PD416 <br> $\mu$ PD411/ $\mu$ PD411A <br> $\mu$ PD411/ $\mu$ PD411A <br> $\mu$ PD2114L <br> $\mu$ PD2114L <br> $\mu$ PD2147 <br> $\mu$ PD2316E |
| EM \& M | $\begin{aligned} & 2114 \\ & 4200 \\ & 4300 \\ & 4402 \\ & 8108 \\ & \hline \end{aligned}$ | $1 K \times 4$ SRAM $4 \mathrm{~K} \times 1$ SRAM $4 \mathrm{~K} \times 1$ SRAM $4 K \times 1$ SRAM $1 \mathrm{~K} \times 8$ SRAM | $\mu$ PD2114L <br> $\mu$ PD410 <br> $\mu$ PD410 <br> $\mu$ PD410 <br> $\mu$ PD421 |
| FAIRCHILD | $\begin{aligned} & \text { F2114 } \\ & \text { F2716 } \\ & \text { F16K } \end{aligned}$ | $1 \mathrm{~K} \times 4$ SRAM <br> 2K x 8 EPROM <br> 16K x 1 DRAM | $\mu$ PD2114L $\mu$ PD2716 $\mu$ PD416 |
| FUJITSU | MBM2147 <br> MBM2716 <br> MBM2732 <br> MB8107 <br> MB8114 <br> MB8116 <br> MB8216 <br> MB8308 <br> MB8414 | $4 \mathrm{~K} \times 1$ SRAM $2 \mathrm{~K} \times 8$ EPROM $4 K \times 8$ EPROM $4 K \times 1$ DRAM $1 \mathrm{~K} \times 4$ SRAM 16K $\times 1$ DRAM $16 \mathrm{~K} \times 1$ DRAM $1 \mathrm{~K} \times 1$ ROM $1 \mathrm{~K} \times 4$ SRAM | $\mu$ PD2147 <br> $\mu$ PD2716 <br> $\mu$ PD2732 <br> $\mu$ PD411/ $\mu$ PD411A <br> $\mu$ PD2114L <br> $\mu$ PD416 <br> $\mu$ PD416 <br> $\mu$ PD2308A <br> $\mu$ PD444/6514 |
| HARRIS | HM6501 <br> HM6514 | $\begin{array}{r} 256 \times 4 \text { SRAM } \\ 1 \mathrm{~K} \times 4 \text { SRAM } \\ \hline \end{array}$ | $\mu$ PD5101L <br> $\mu$ PD444/6514 |
| HITACHI | HM435101 <br> HM4716A <br> HM4816 <br> HM4864 <br> HM6147 | $256 \times 4$ SRAM <br> 16K x 1 DRAM <br> 16K x 1 DRAM <br> 16K x 1 DRAM <br> $4 \mathrm{~K} \times 1$ SRAM | $\mu$ PD5101L <br> $\mu$ PD416 <br> $\mu$ PD2118 <br> $\mu$ PD4164 <br> $\mu$ PD2147 |
| INTEL | $\begin{aligned} & 2107 \\ & 2114 \\ & 2117 \\ & 2118 \\ & 2147 \\ & 2308 \mathrm{~A} \\ & 2316 \mathrm{E} \\ & 2332 \\ & 2364 \\ & 2716 \\ & 2732 \\ & 5101 \end{aligned}$ | 4K $\times 1$ DRAM $1 \mathrm{~K} \times 4$ SRAM 16K $\times 1$ DRAM 16K $\times 1$ DRAM $4 \mathrm{~K} \times 1$ SRAM $1 \mathrm{~K} \times 8$ ROM $2 \mathrm{~K} \times 8$ ROM 4K x 8 ROM 8K x 8 ROM $2 \mathrm{~K} \times 8$ EPROM $4 \mathrm{~K} \times 8$ EPROM $256 \times 4$ SRAM | $\begin{aligned} & \mu \text { PD411 } / \mu \text { PD411A } \\ & \mu \text { PD2114L } \\ & \mu \text { PD416 } \\ & \mu \text { PD2118 } \\ & \mu \text { PD2147 } \\ & \mu \text { PD2308A } \\ & \mu \text { PD2316E } \\ & \mu \text { PD2332A/B } \\ & \mu \text { PD2364 } \\ & \mu \text { PD2716 } \\ & \mu \text { PD2732 } \\ & \mu \text { PD5101L } \end{aligned}$ |

MEMORY ALTERNATE SOURCE GUIDE

| MANUFACTURER | PART NUMBER | DESCRIPTION | NEC REPLACEMENT |
| :---: | :---: | :---: | :---: |
| INTERSIL | IM7114 | $1 \mathrm{~K} \times 4$ SRAM | $\mu \mathrm{PD} 2114 \mathrm{~L}$ |
| MITSUBISHI | M5L2114LP | $1 \mathrm{~K} \times 4$ SRAM | $\mu$ PD2114L |
| mostek | MK2147 <br> MK2716 <br> MK30000 <br> MK32000 <br> MK34000 <br> MK36000 <br> MK4104 <br> MK4116 <br> MK4164 <br> MK4516 | $4 \mathrm{~K} \times 1$ SRAM $2 \mathrm{~K} \times 8$ EPROM $1 \mathrm{~K} \times 8$ ROM $4 \mathrm{~K} \times 8$ ROM $2 \mathrm{~K} \times 8$ ROM $8 \mathrm{~K} \times 8$ ROM $4 \mathrm{~K} \times 1$ SRAM 16K $\times 1$ DRAM $64 \mathrm{~K} \times 1$ DRAM $16 \mathrm{~K} \times 1$ DRAM | $\mu$ PD2147 <br> $\mu$ PD2716 <br> $\mu$ PD2308A <br> $\mu$ PD2332A/B <br> $\mu$ PD2316E <br> $\mu$ PD2364 <br> $\mu$ PD4104 <br> $\mu$ PD416 <br> $\mu$ PD4164 <br> $\mu$ PD2118 |
| MOTOROLA | MCM145101 MCM2114 MCM2147 MCM2716 MCM4116 MCM4516 MCM6616 MCM6664 MCM68A308 MCM68A316E MCM68317. MCM68A332 MCM68A364 | $256 \times 4$ SRAM $1 \mathrm{~K} \times 4$ SRAM $4 \mathrm{~K} \times 1$ SRAM $2 \mathrm{~K} \times 8$ EPROM $16 \mathrm{~K} \times 1$ DRAM 16K $\times 1$ DRAM $16 \mathrm{~K} \times 1$ DRAM $64 \mathrm{~K} \times 1$ DRAM $1024 \times 8$ ROM $2 \mathrm{~K} \times 8$ ROM $2 \mathrm{~K} \times 8$ ROM $4 \mathrm{~K} \times 8$ ROM $8 \mathrm{~K} \times 8 \mathrm{ROM}$ | $\mu$ PD5101L <br> $\mu$ PD2114L <br> $\mu$ PD2147 <br> $\mu$ PD2716 <br> $\mu$ PD416 <br> $\mu$ PD416 <br> $\mu$ PD416 <br> $\mu$ PD4164 <br> $\mu$ PD2308A <br> $\mu$ PD2316E <br> $\mu$ PD2316E <br> $\mu$ PD2332A/B <br> $\mu$ PD2364 |
| NATIONAL | LH2308A <br> MM5257 <br> MM5280A <br> MM5281 <br> MM5290 <br> MM74C920 | $1024 \times 8$ ROM $4 \mathrm{~K} \times 1$ SRAM $4 K \times 1$ DRAM $4 \mathrm{~K} \times 1$ DRAM 16K x 1 DRAM $256 \times 4$ SRAM | ```\muPD2308A \muPD4104 \muPD411/\muPD411A \muPD411/\muPD411A \muPD416 \muPD5101L``` |
| RCA | MWS5114 | $1 \mathrm{~K} \times 4$ SRAM | $\mu$ PD444/6514 |
| Signetics | $\begin{aligned} & 2316 \\ & 2680 \\ & 2690 \\ & \hline \end{aligned}$ | $2 \mathrm{~K} \times 8$ ROM <br> 4K x 1 DRAM <br> 16K $\times 1$ DRAM | $\begin{aligned} & \mu \mathrm{PD} 2316 \mathrm{E} \\ & \mu \mathrm{PD} 411 / \mu \mathrm{PD} 411 \mathrm{~A} \end{aligned}$ $\mu \mathrm{PD} 416$ |
| T.I. | TMS4044 TMS4045 TMS4060 TMS4116 TMS4700 TMS4732 | 4K $\times 1$ SRAM <br> $1 \mathrm{~K} \times 4$ SRAM <br> 4K $\times 1$ DRAM <br> 16K $\times 1$ DRAM <br> $1 \mathrm{~K} \times 8$ ROM <br> $4 \mathrm{~K} \times 8$ ROM | $\mu$ PD4104 $\mu$ PD2114L $\mu$ PD411/ $\mu$ PD411A $\mu$ PD416 $\mu$ PD2308A $\mu$ PD2332A/B |
| TOSHIBA | TC5047 | $1 \mathrm{~K} \times 4$ SRAM | $\mu$ PD 445 L |

## FULLY DECODED RANDOM ACCESS MEMORY

DESCRIPTION The $\mu$ PD411 Family consists of six 4096 words by 1 bit dynamic $N$-channel MOS RAMs. They are designed for memory applications where very low cost and large bit storage are important design objectives. The $\mu$ PD411 Family is designed using dynamic circuitry which reduces the standby power dissipation.

Reading information from the memory is a non-destructive. Refreshing is easily accomplished by performing one read cycle on each of the 64 row addresses. Each row address must be refreshed every two milliseconds. The memory is refreshed whether Chip Select is a logic high or a logic low.
FEATURES All of these products are guaranteed for operation over the 0 to $70^{\circ} \mathrm{C}$ temperature range.
Important features of the $\mu$ PD4 11 family are:

- Low Standby Power
- 4096 words x 1 bit Organization
- A single low-capacitance high level clock input with solid $\pm 1$ volt margins.
- Inactive Power/0.3 mW (Typ.)
- Power Supply: +12,+5,-5V
- Easy System Interface
- TTL Compatible (Except CE)
- Address Registers on the Chip
- Simple Memory Expansion by Chip Select
- Three State Output and TTL Compatible
- 22 pin Ceramic Dual-in-Line Package
- Replacement for INTEL'S 2107B, TI'S 4060 and Equivalent Devices.
- 5 Performance Ranges:

|  | ACCESS TIME | R/W CYCLE | RMW CYCLE | REFRESH TIME |
| :--- | :---: | :---: | :---: | :---: |
| $\mu$ PD411 | 300 ns | 470 ns | 650 ns | 2 ms |
| $\mu$ PD411-1 | 250 ns | 470 ns | 640 ns | 2 ms |
| $\mu$ PD411-2 | 200 ns | 400 ns | 520 ns | 2 ms |
| $\mu$ PD411-3 | 150 ns | 380 ns | 470 ns | 2 ms |
| $\mu$ PD411-4 | 135 ns | 320 ns | 320 ns | 2 ms |



PIN NAMES

| $A_{0} \cdot A_{11}$ | Address Inputs |
| :--- | :--- |
| $A_{0} \cdot A_{5}$ | Refresh Addresses |
| $C E$ | Chip Enable |
| $\overline{C S}$ | Chip Select |
| $D_{\text {IN }}$ | Data Input |
| $\overline{D_{O U T}}$ | Data Output |
| $\overline{W E}$ | Write Enable |
| $V_{D D}$ | Power ( +12 V ) |
| $V_{C C}$ | Power ( +5 V ) |
| $V_{S S}$ | Ground |
| $V_{B B}$ | Power |
| $N C$ | No Connection |

## $\mu$ PD411

## CE Chip Enable

A single external clock input is required. All read, write, refresh and read-modify-write operations take place when chip enable input is high. When the chip enable is low, the memory is in the low power standby mode. No read/write operations can take place because the chip is automatically precharging.

## $\overline{\text { Cs }}$ Chip Select

The chip select terminal affects the data in, data out and read/write inputs. The data input and data output terminals are enabled when chip select is low. The chip select input must be low on or before the rising edge of the chip enable and can be driven from standard TTL circuits. A register for the chip select input is provided on the chip to reduce overhead and simplify system design.

## $\overline{W E}$ Write Enable

The read or write mode is selected through the write enable input. A logic high on the $\overline{W E}$ input selects the read mode and a logic low selects the write mode. The $\overline{W E}$ terminal can be driven from standard TTL circuits. The data input is disabled when the read mode is selected.

## A0-A11 Addresses

All addresses must be stable on or before the rising edge of the chip enable.pulse. All address inputs can be driven from standard TTL circuits. Address registers are provided on the chip to reduce overhead and simplify system design.

## DIN Data Input

Data is written during a write or read-modify-write cycle while the chip enable is high. The data in terminal can be driven from standard TTL circuits. There is no register on the data in terminal.

## DOUT Data Output

The three state output buffer provides direct TTL compatibility with a fan-out of two TTL gates. The output is in the high-impedance (floating) state when the chip enable is low or when the Chip Select input is high. Data output is inverted from data in.

## Refresh

Refresh must be performed every two milliseconds by cycling through the 64 addresses of the lower-order-address inputs $A_{0}$ through $A_{5}$ or by addressing every row within any 2-millisecond period. Addressing any row refreshes all 64 bits in that row.
The chip does not need to be selected during the refresh. If the chip is refreshed during a write mode, the chip select must be high.


| Operating Temperature | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | $+10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: |
| Storage Temperature | $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ | $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| All Output Voltages | -0.3 to +20 Volts | -0.3 to +25 Volts (1) |
| All Input Voltages | -0.3 to +20 Volts | -0.3 to +25 Volts (1) |
| Supply Voltage VDD | -0.3 to +20 Volts | -0.3 to +25 Volts (1) |
| Supply Voltage VCC | -0.3 to +20 Volts | -0.3 to +25 Volts (1) |
| Power Dissipation |  | 1.5W |

Note: (1) Relative to $V_{B B}$
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} T_{a}=25^{\circ} \mathrm{C}$
DC CHARACTERISTICS
$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{D D}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, Except $V_{D D}=+15 V \pm 5 \%$ for 4114 .

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP (1) | MAX |  |  |
| Input Load Current | ILI |  | 0.01 | 10 | $\mu \mathrm{A}$ | $V_{\text {IN }}=V_{\text {IL MIN }}$ to $V_{\text {IH MAX }}$ |
| CE Input Load Current | ${ }^{\text {LLC }}$ |  | 0.01 | 10 | $\mu \mathrm{A}$ | $V_{\text {IN }}=V_{\text {ILC }}$ MIN to $V_{\text {IHC }}$ MAX |
| Output Leakage Current for High Impedance State | ILo |  | 0.01 | 10 | $\mu \mathrm{A}$ | $\begin{aligned} & C E=V_{I L C} \text { or } \overline{C S}=V_{I H} \\ & V_{0}=0 V \text { to } 5.25 \mathrm{~V} \end{aligned}$ |
| VDD Supply Current during CE off | IDD OFF |  | 20 | 200 | $\mu \mathrm{A}$ | $C E=1.0 \mathrm{~V}$ to 0.6 V |
| VDD Supply Current during CE on | IDD ON |  | 35 (5) | 60 (4) | mA | $C E=V_{I H C}, T_{a}=25^{\circ} \mathrm{C}$ |
| Average $\mathrm{V}_{\mathrm{DD}}$ Current $\mu$ PD411 <br> $\mu$ PD411-1 <br> $\mu$ PD411-2 <br> $\mu$ PD411-3 <br> $\mu$ PD411-4 | IDD AV <br> IDD AV <br> IDD AV <br> IDD AV <br> IDD AV |  | $\begin{aligned} & 37 \\ & 37 \\ & 37 \\ & 41 \\ & 55 \end{aligned}$ | $\begin{aligned} & 60 \\ & 60 \\ & 60 \\ & 65 \\ & 80 \end{aligned}$ | mA <br> mA <br> mA <br> mA <br> mA | $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ <br> Cycle Time $=470 \mathrm{~ns}$ <br> Cycle Time $=470 \mathrm{~ns}$ <br> Cycle Time $=400 \mathrm{~ns}$ <br> Cycle Time $=380 \mathrm{~ns}$ <br> Cycle Time $=320 \mathrm{~ns}$ |
| $\mathrm{V}_{\text {BB S }}$ Supply Current (2) | $\mathrm{I}_{\mathrm{BB}}$ |  | 5 | 100 | $\mu \mathrm{A}$ |  |
| $V_{C C}$ Supply Current during CE off (3) | ICC OFF |  | 0.01 | 10 | $\mu \mathrm{A}$ | $C E=V_{\text {ILC }}$ or $\overline{C S}=\mathrm{V}_{\text {IH }}$ |
| Input Low Voltage | $\mathrm{V}_{\text {IL }}$ | 1.0 |  | 0.6 | V |  |
| Input High Voltage | $\mathrm{V}_{\text {IH }}$ | 2.4 |  | $V_{C C}+1$ | V |  |
| CE Input Low Voitage | $V_{\text {ILC }}$ | 1.0 |  | 0.6 | $\checkmark$ |  |
| CE Input High Voltage | $\mathrm{V}_{\text {IHC }}$ | $\mathrm{V}_{\text {DD }}{ }^{-1}$ | $\mathrm{V}_{\text {DD }}$ | $\mathrm{V}_{D D^{+1}}$ | v |  |
| Output Low Voltage | $\mathrm{V}_{\mathrm{OL}}$ | 0 |  | 0.40 | V | $\mathrm{I}^{\mathrm{OL}}=3.2 \mathrm{~mA}$ |
| Output High Voltage | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  | $\mathrm{v}_{\mathrm{Cc}}$ | v | $\mathrm{I}^{\mathrm{OH}}=2.0 \mathrm{~mA}$ |

Notes: (1) Typical values are for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and nominal power supply voltages.
(2) The $I_{B B}$ current is the sum of all leakage current.
(3) During $C E$ on $V_{C C}$ supply current is dependent on output loading. $V_{C C}$ is connected to output buffer only.
(4) 65 mA for $\mu$ PD411-3 80 mA for $\mu$ PD4 $11-4$
(5) 41 mA for $\mu$ PD411-3 55 mA for $\mu$ PD411-4

CAPACITANCE
$T_{a}=0^{\circ}-70^{\circ} \mathrm{C}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Address Capacitance, $\overline{\mathrm{CS}}$ | $C_{\text {AD }}$ |  | 4 | 6 | pF | $V_{\text {IN }}=V_{\text {SS }}$ |
| CE Capacitance | $\mathrm{C}_{\text {CE }}$ |  | 18 | 27 | pF | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$ |
| Data Output Capacitance | COUT |  | 5 | 7 | pF | $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ |
| DIN and WE Capacitance | CIN |  | 8 | 10 | pF | $\mathrm{V}_{\text {IN }}=V_{\text {SS }}$ |

READ CYCLE
$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{D D}=12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, unless otherwise noted, Except $V_{D O}=+15 \mathrm{~V} \pm 5 \%$ for $411-4$

| PARAMETER | SYMBOL | LIMITS |  |  |  |  |  |  |  |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PD411 |  | $\mu$ PD411-1 |  | $\mu$ PD411-2 |  | $\mu$ PD411-3 |  | $\mu$ PD411-4 |  |  |
|  |  | MIN | MAX |  |
| Time Between Refresh | tREF |  | 2 |  | 2 |  | 2 |  | 2 |  | 2 | ms |
| Address to CE Set Up Time | ${ }^{\text {t }}$ AC | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |
| Address Hold Time | ${ }^{\text {t }} \mathrm{AH}$ | 150 |  | 150 |  | 150 |  | 150 |  | 100 |  | ns |
| CE Off Time | ${ }^{t} \mathrm{CC}$ | 130 |  | 170 |  | 130 |  | 130 |  | 80 |  | ns |
| CE Transition Time | ${ }_{\text {t }}$ T | 0 | 40 | 0 | 40 | 0 | 40 | 0 | $\cdots$ | 0 | 40 | ns |
| CE Off to Output High Impedance State | ${ }^{t} \mathrm{CF}$ | 0 | 130 | 0 | 130 | . 0 | 130 | 0 | 130 | 0 | 130 | ns |
| Cycle Time | ${ }^{t} \mathrm{C} Y$ | 470 |  | 470 |  | 400 |  | 380 |  | 320 |  | ns |
| CE on Time | ${ }^{t} \mathrm{CE}$ | 300 | 3000 | 260 | 3000 | 230 | 3000 | 210 | 3000 | 200 | 3000 | ns |
| CE Output Delay | ${ }^{\text {t }} \mathrm{CO}$ |  | 280 |  | 230 |  | 180 |  | 130 |  | 115 | ns |
| Access Time | ${ }^{\text {t }}$ ACC |  | 300 |  | 250 |  | 200 |  | 150 |  | 135 | ns |
| CE to $\overline{W E}$ | tWL | $40^{\circ}$ |  | 40 |  | 40 |  | 40 |  | 40 |  | ns |
| $\overline{W E}$ to CE on | twC | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |

WRITE CYCLE
$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, V_{D D}=12 \mathrm{~V} \pm 5 \%, V_{C C}=5 \mathrm{~V} \pm 5 \%, V_{B B}=-5 \mathrm{~V} \pm 5 \%, V_{S S}=0 \mathrm{~V}$, unless otherwise noted,
Except $V_{D D}=+15 V \pm 5 \%$ for $411-4$

| PARAMETER | SYMBOL | LIMITS |  |  |  |  |  |  |  |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PD411 |  | $\mu$ PD411-1 |  | $\mu$ PD411-2 |  | $\mu$ PD411-3 |  | $\mu$ PD411-4 |  |  |
|  |  | MIN | MAX |  |
| Cycle Time | ${ }^{\text {t }} \mathrm{C}$ | 470 |  | 470 |  | 400 |  | 380 |  | 320 |  | ns |
| Time Between Refresh | tref |  | 2 |  | 2 |  | 2 |  | 2 |  | 2 | ms |
| Address to CE Set Up Time | ${ }^{t} A C$ | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |
| Address Hold Time | ${ }^{t}$ AH | 150 |  | 150 |  | 150 |  | 150 |  | 100 |  | ns |
| CE Off Time | ${ }^{\text {t }} \mathrm{C}$ | 130 |  | 170 |  | 130 |  | 130 |  | 80 |  | ns |
| CE Transition Time | t | 0 | 40 | 0 | 40 | 0 | 40 | 0 | 40 | 0 | 40 | ns |
| CE Off to Output High Impedance State | ${ }^{\text {t }} \mathrm{C}$ | 0 | 130 | 0 | 130 | 0 | 130 | 0 | 130 | 0 | 130 | ns |
| CE on Time | ${ }^{\text {t }}$ CE | 300 | 3000 | 260 | 3000 | 230 | 3000 | 210 | 3000 | 200 | 3000 | ns |
| $\overline{\text { WE to }}$ CE off | tw | 180 |  | 180 |  | 150 |  | 150 |  | 65 |  | ns |
| CE to $\overline{W E}$ | ${ }^{\text {t }} \mathrm{CW}$ | 300 |  | 260 |  | 230 |  | 210 |  | 200 |  | ns |
| DIN to $\overline{\text { WE Set Up (1) }}$ | tow | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |
| Din Hold Time | ${ }^{\text {t }}$ DH | 40 |  | 40 |  | 40 |  | 40 |  | 40 |  | ns |
| $\overline{\text { WE Pulse Width }}$ | twp | 180 |  | 180 |  | 150 |  | 100 |  | 65 |  | ns |

Note: (1) If $\overline{W E}$ is low before CE goes high then DIN must be valid when CE goes high.

READ - MODIFY - WRITE CYCLE
$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, unless otherwise noted,
Except $V_{D D}=+15 \mathrm{~V} \pm 5 \%$ for $411-4$

| PARAMETER | SYMBOL | LIMITS |  |  |  |  |  |  |  |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PD411 |  | $\mu$ PD411-1 |  | $\mu$ PD411-2 |  | $\mu$ PD411-3 |  | $\mu$ PD411-4 |  |  |
|  |  | MIN | MAX |  |
| Read-Modify-Write (RMW) Cycle Time | ${ }^{\text {trwe }}$ | 650 |  | 640 |  | 520 |  | 470 |  | 320 |  | ns |
| Time Between Refresh | treF |  | 2 |  | 2 |  | 2 |  | 2 |  | 2 | ms |
| Address to CE Set Up Time | ${ }^{t} \mathrm{AC}$ | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |
| Address Hold Time | ${ }^{\text {t }} \mathrm{AH}$ | 150 |  | 150 |  | 150 |  | 150 |  | 100 |  | ns |
| CE Off Time | ${ }^{\text {t }} \mathrm{C}$ | 130 |  | 170 |  | 130 |  | 130 |  | 80 |  | ns |
| CE Transition Time | ${ }^{\text {t }}$ | 0 | 40 | 0 | 40 | 0 | 40 | 0 | 40 | 0 | 40 | ns |
| CE Off to Output High Impedance State | ${ }^{\text {t }} \mathrm{CF}$ | 0 | 130 | 0 | 130 | 0 | 130 | 0 | 130 | 0 | 130 | ns |
| CE Width During RMW | ${ }^{\text {t }}$ CRW | 480 | 3000 | 430 | 3000 | 350 | 3000 | 300 | 3000 | 200 | 3000 | ns |
| $\overline{\text { WE }}$ to CE on | ${ }^{\text {t }} \mathrm{WC}$ | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |
| $\overline{\text { WE }}$ to CE off | tw | 180 |  | 180 | , | 150 |  | 150 |  | 65 |  | ns |
| $\overline{\text { WE Pulse Width }}$ | twp | 180 |  | 180 |  | 150 |  | 100 |  | 65 |  | ns |
| DIN to WE Set Up | tow | 0 | , | 0 |  | 0 | . | 0 |  | 0 |  | ns |
| DIN Hold Time | ${ }^{\text {t }} \mathrm{DH}$ | 40 |  | 40 |  | 40 |  | 40 |  | 40 |  | ns |
| CE to Output Display | ${ }^{\text {t }} \mathrm{CO}$ |  | 280 |  | 230 |  | 180 |  | 130 |  | 115 | ns |
| Access Time. | ${ }^{\text {t }}$ ACC |  | 300 |  | 250 |  | 200 |  | 150 |  | 135 | ns |



Notes: (1) For refresh cycle row and column addresses must be stable taC and remarn stable for entire taH period
(2) $V_{D D} \quad 2 \mathrm{~V}$ is the reference level for measuring timing of $C E$
(3) $\mathrm{V}_{\mathrm{SS}}+2 \mathrm{~V}$ is the reference level for measuring timing of CE .
(4) $V_{1 \text { HMIN }}$ is the reference level for measuring timing of the addresses, $\overline{\mathrm{CS}}$ WE and DIN
(5) VILMAX is the reference level for measuring timing of the addresses, $\overline{\mathrm{CS}}$ $\overline{W E}$ and $\mathrm{DIN}_{\text {IN }}$.
(6) $\mathrm{V}_{\mathrm{SS}}+2.0 \mathrm{~V}$ is the reference level for measuring timing of $\overline{\mathrm{DOUT}_{\mathrm{OUT}}}$.
(7) $\mathrm{V}_{\mathrm{SS}}+0.8 \mathrm{~V}$ is the reference level for measuring timing of $\overline{\mathrm{D}_{\mathrm{OUT}}}$

WRITE CYCLE


Notes: (1) $\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}$ is the reference level for measuring timing of $C E$
(2) $\mathrm{V}_{S S}+2 \mathrm{~V}$ is the reference level for measuring timing of $C E$.
(3) $V_{\text {IHMIN }}$ is the reference level for measuring timing of the addresses, $\overline{C S}$, $\overline{W E}$ and $\mathrm{D}_{1 \mathrm{~N}}$
(4) VILMAX is the reference level for measuring timing of the addresses, $\overline{\mathrm{CS}}$
$\overline{W E}$ and $\mathrm{D}_{\mathrm{IN}}$

READ-MODIFY-WRITE CYCLE



$$
{ }^{\mathrm{OH}}-\mathrm{V}_{\mathrm{OH}}
$$





IOL-VOL


TYPICAL OPERATING CHARACTERISTICS (Except 411-4)

Power consumption $=V_{D D} \times I_{D D A V}+V_{B B} \times I_{B B}$.
Typical power dissiption for each product is shown below.

|  | mW (TYP.) | CONDITIONS |
| :--- | :---: | :---: |
| $\mu$ PD411 | 450 | $\mathrm{Ta}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{c} ~}=470 \mathrm{~ns}, \mathrm{t}_{\mathrm{CE}}=300 \mathrm{~ns}$ |
| $\mu$ PD411-1 | 450 | $\mathrm{Ta}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{cy}}=470 \mathrm{~ns}, \mathrm{t}_{\mathrm{CE}}=260 \mathrm{~ns}$ |
| $\mu$ PD411-2 | 450 | $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{cy}}=400 \mathrm{~ns}, \mathrm{t}_{\mathrm{CE}}=230 \mathrm{~ns}$ |
| $\mu$ PD411-3 | 550 | $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{cy}}=380 \mathrm{~ns}, \mathrm{t}_{\mathrm{CE}}=210 \mathrm{~ns}$ |
| $\mu$ PD411-4 | 660 | $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{cy}}=320 \mathrm{~ns}, \mathrm{t}_{\mathrm{CE}}=200 \mathrm{~ns}$ |

See above curves for power dissipation versus cycle time.

POWER CONSUMPTION



PACKAGE OUTLINE
$\mu$ PD411D


| ITEM | MILLIMETERS | INCHES |
| :--- | :---: | :--- |
| A | 27.43 MAX | 1.079 MAX |
| B | 1.27 MAX | 0.05 MAX |
| C | $2.54 \pm 0.1$ | 0.10 |
| D | $0.42 \pm 0.1$ | 0.016 |
| E | $25.4 \pm 0.3$ | 1.0 |
| F | $1.5 \pm 0.2$ | 0.059 |
| G | $3.5 \pm 0.3$ | 0.138 |
| H | $3.7 \pm 0.3$ | 0.145 |
| I | 4.2 MAX | 0.165 MAX |
| J | 5.08 MAX | 0.200 MAX |
| K | $10.16 \pm 0.15$ | 0.400 |
| L | $9.1 \pm 0.2$ | 0.358 |
| M | $0.25 \pm 0.05$ | 0.009 |

## 4096 BIT DYNAMIC RAMS

DESCRIPTION The $\mu$ PD411A Famity consists of four 4096 words by 1 bit dynamic N -channel MOS RAMs. They are designed for memory applications where very low cost and large bit storage are important design objectives. The $\mu$ PD411A Family is designed using dynamic circuitry which reduces the standby power dissipation.

Reading information from the memory is non-destructive. Refreshing is easily accomplished by performing one read cycle on each of the 64 row addresses. Each row address must be refreshed every two milliseconds. The memory is refreshed whether Chip Select is a logic high or a logic low.

FEATURES - Low Standby Power

- 4096 words $\times 1$ bit Organization
- A single low-capacitance high level clock input with solid $\pm 1$ volt margins.
- Inactive Power 0.7 mW (Typ.)
- Power Supply $+12,+5,-5 \mathrm{~V}$
- Easy System Interface
- TTL Compatible (Except CE)
- Address Registers on the Chip
- Simple Memory Expansion by Chip Select
- Three State Output and TTL Compatible
- «< pin Plastic Dual-in-Line Package
- Replacement for INTEL's 2107B, TI's 4060 and Equivalent Devices.
- 3 Performance Ranges:

|  | ACCESS TIME | R/W CYCLE | RMW CYCLE | REFRESH TIME |
| :--- | :---: | :---: | :---: | :---: |
| $\mu$ PD411A | 300 ns | 470 ns | 650 ns | 2 ms |
| $\mu$ PD411A-1 | 250 ns | 430 ns | 600 ns | 2 ms |
| $\mu$ PD411A-2 | 200 ns | 400 ns | 520 ns | 2 ms |



PIN NAMES

| $A_{0} \cdot A_{11}$ | Address Inputs |
| :--- | :--- |
| $A_{0} \cdot A_{5}$ | Refresh Addresses |
| $C E$ | Chip Enable |
| $\overline{C S}$ | Chip Select |
| $D_{I N}$ | Data Input |
| $\overline{D_{O U T}}$ | Data Output |
| $\overline{W E}$ | Write Enable |
| $V_{D D}$ | Power (+12V) |
| $V_{C C}$ | Power (+5V) |
| $V_{S S}$ | Ground |
| $V_{B B}$ | (Powe. -5 V ) |
| NC | No Connection |

A single external clock input is required. All read, write, refresh and read-modify-write operations take place when chip enable input is high. When the chip enable is low, the memory is in the low power standby mode. No read/write operations can take place because the chip is automatically precharging.

## $\overline{\text { CS }}$ Chip Select

The chip select terminal affects the data in, data out and read/write inputs. The data input and data output terminals are enabled when chip select is low. The chip select input must be low on or before the rising edge of the chip enable and can be driven from standard TTL circuits. A register for the chip select input is provided on the chip to reduce overhead and simplify system design.

## WE Write Enable

The read or write mode is selected through the write enable input. A logic high on the $\overline{W E}$ input selects the read mode and a logic low selects the write mode. The $\overline{W E}$ terminal can be driven from standard TTL circuits. The data input is disabled when the read mode is selected.

## $\mathrm{A}_{0}-\mathrm{A}_{11}$ Addresses

All addresses must be stable on or before the rising edge of the chip enable pulse. All address inputs can be driven from standard TTL circuits. Address registers are provided on the chip to reduce overhead and simplify system design.

## Din Data Input

Data is written during a write or read-modify-write cycle while the chip enable is high. The data in terminal can be driven from standard TTL circuits. There is no register on the data in terminal.

## Dous Data Output

The three state output buffer provides direct TTL compatibility with a fan-out of two TTL gates. The output is in the high-impedance (floating) state when the chip enable is low or when the Chip Select input is high. Data output is inverted from data in.

## Refresh

Refresh must be performed every two milliseconds by cycling through the 64 addresses of the lower-order-address inputs $A_{0}$ through $A_{5}$ or by addressing every row within any 2 -millisecond period. Addressing any row refreshes all 64 bits in that row.
The chip does not need to be selected during the refresh. If the chip is refreshed during a write mode, the chip select must be high.


## ABSOLUTE MAXIMUM RATINGS*

Operating Temperature
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Output Voltage (1)
+20 to -0.3 Volts
All Input Voltages (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +20 to -0.3 Volts
Supply.Voltage VDD (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 to -0.3 Volts
Supply. Voltage VCC (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 to -0.3 Volts
Supply Voltage VSS (1) . . . . . . . . . . . .... . . . . . . . . . . . . . . . . +20 to - 0.3 Volts
Power Dissipation ...................................................... . . . . 1.0 W
Note: (1) Relative to $\mathrm{V}_{\mathrm{BB}}$.
COMMENT: Stress above those listed under "Absolute Maximum Ratingṣ" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
DC CHARACTERISTICS
$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN. | TYP. (1) | MAX. |  |  |
| Input Load Current | ILI |  | 0.01 | 10 | $\mu \mathrm{A}$ | $V_{\text {IN }}=V_{\text {IL }}$ MIN to $V_{\text {IH }}$ MAX |
| CE Input Load Current | ILC |  | 0.01 | 10 | $\mu \mathrm{A}$ | $V_{\text {IN }}=V_{\text {ILC }}$ MIN to $V_{\text {IHC }}$ MAX |
| Output Leakage Current for High Impedance State | ILO |  | 0.01 | $\pm 10$ | $\mu \mathrm{A}$ | $\begin{aligned} & C E=V_{I L C} \text { or } \overline{C S}=V_{I H} \\ & V_{O}=0 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \end{aligned}$ |
| VDD Supply Current during CE off | IDD OFF |  | 50 | 200 | $\mu \mathrm{A}$ | $C E=-1.0 \mathrm{~V}$ to 0.6 V |
| VDD Supply Current during CE on | IDD ON |  | 35 | 50 | mA | $C E=V_{I H C}, T_{a}=25^{\circ} \mathrm{C}$ |
| $\begin{aligned} & \text { Average VDD Current } \\ & \mu \text { PD } 411 \mathrm{~A} \\ & \mu \text { PD411A-1 } \\ & \mu \mathrm{PD} 411 \mathrm{~A}-2 \end{aligned}$ | IDD AV IDD AV IDD AV |  | $\begin{aligned} & 38 \\ & 38 \\ & 38 \end{aligned}$ | $\begin{aligned} & 55 \\ & 55 \\ & 55 \end{aligned}$ | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$ | $T_{a}=25^{\circ} \mathrm{C}$ <br> Cycle Time $=470 \mathrm{~ns}$ Cycle Time $=430 \mathrm{~ns}$ Cycle Time $=400 \mathrm{~ns}$ |
| $\mathrm{V}_{\text {BB }}$ Supply Current (2) | ${ }^{\text {IbB }}$ |  | 5 | 100 | $\mu \mathrm{A}$ | \% |
| VCC Supply Current during CE off (3) | ICC OFF |  | 0.01 | 10 | $\mu \mathrm{A}$ | $C E=V_{\text {ILC }}$ or $\overline{C S}=V_{\text {IH }}$ |
| Input Low Voltage | VIL | -1.0 |  | 0.6 | V |  |
| Input High Voltage | $\mathrm{V}_{\text {IH }}$ | 2.4 |  | $\mathrm{v}_{\mathrm{cc}+}+1$ | V |  |
| CE Input Low Voltage | VILC | -1.0 |  | 0.6 | v |  |
| CE Input High Voltage | VIHC | $V_{D D}-1$ | $\mathrm{V}_{\mathrm{DD}}$ | $\mathrm{V}_{\mathrm{DD}}+1$ | V |  |
| Output Low Voltage | $\mathrm{V}_{\text {OL }}$ | 0 |  | 0.40 | V | $1 \mathrm{OL}=3.2 \mathrm{~mA}$ |
| Output High Voltage | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  | $\mathrm{V}_{\text {cc }}$ | V | $1 \mathrm{OH}=-2.0 \mathrm{~mA}$ |

Notes: (1) Typical values are for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and nominal power supply voltages.
(2) The IBB current is the sum of all leakage currents.
(3) During CE on VCC supply current is dependent on output loading.

CAPACITANCE $\quad T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN. | TYP. | MAX. |  |  |
| Address Capacitance | CAD |  |  | 6 | pF | $\mathrm{V}_{\text {IN }}=V_{\text {SS }}$ |
| $\overline{\text { CS }}$ Capacitance | $\mathrm{C}_{\text {CS }}$ |  |  | 6 | pF | $V_{\text {IN }}=V_{\text {SS }}$ |
| DIN Capacitance | CIN |  |  | 6 | pF | $V_{\text {IN }}=V_{\text {SS }}$ |
| $\overline{\text { DOUT }}$ Capacitance | COUT |  |  | 7 | pF | $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}$ |
| WE Capacitance | CWE |  |  | 7 | pF | $V_{\text {IN }}=V_{\text {SS }}$ |
| CE Capacitance | CCE1 |  |  | 27 | pF | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$ |
|  | $\mathrm{C}_{\text {CE2 }}$ |  |  | 22 | pF | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$ |

READ CYCLE
$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, unless otherwise noted.

| PARAMETER | SYMBOL | LIMITS |  |  |  |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PD411A |  | $\mu$ PD411A. 1 |  | $\mu \mathrm{PD} 411 \mathrm{~A}$-2 |  |  |  |
|  |  | MIN | MAX | MIN | MAX | MIN | MAX |  |  |
| Time Between Refresh | tref |  | 2 |  | 2 |  | 2 | ms |  |
| Address to CE Set Up Time | ${ }_{t}$ AC | 0 |  | 0 |  | 0 |  | ns |  |
| Address Hold Time | ${ }_{\text {t }} \mathrm{AH}$ | 150 |  | 150 |  | 150 |  | ns |  |
| CE Off Time | tcc | 130 |  | 130 |  | 130 |  | ns | $\mathrm{tT}^{\text {c }} \mathrm{tr}_{\mathrm{r}}=\mathrm{tf}_{\mathrm{f}}=20 \mathrm{~ns}$ |
| CE Transition Time | tT | 0 | 40 | 0 | 40 | 0 | 40 | ns | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |
| CE Off to Output High Impedance State | ${ }^{\text {t }} \mathrm{CF}$ | 0 | 130 | 0 | 130 | 0 | 130 | ns. | Load $=1 \mathrm{TTL}$ Gate |
| Cycle Time | ${ }^{\text {t }} \mathrm{C}$ | 470 |  | 430 |  | 400 |  | ns | its |
| CE on Time | tCE | 300 | 3000 | 260 | 3000 | 230 | 3000 | ns |  |
| CE Output Delay | tCO |  | 280 |  | 230 |  | 180 | ns |  |
| Access Time | tacc |  | 300 |  | 250 |  | 200 | ns |  |
| CE to $\overline{\mathrm{WE}}$ | tWL | 40 |  | 40 |  | 40 |  | ns |  |
| $\overline{W E}$ to CE on | twC | 0 |  | 0 |  | 0 |  | ns |  |

WRITE CYCLE
$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{D D}=12 \mathrm{~V} \pm 10 \%, V_{C C}=5 \mathrm{~V} \pm 10 \%, V_{B B}=-5 \mathrm{~V} \pm 10 \%, V_{S S}=0 \mathrm{~V}$, unless otherwise noted.

| PARAMETER | SYMBOL | LIMITS |  |  |  |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu \mathrm{PD} 411 \mathrm{~A}$ |  | $\mu$ PD411A-1 |  | $\mu$ PD411A-2 |  |  |  |
|  |  | MIN | MAX | MIN | MAX | MIN | MAX |  |  |
| Cycle Time | ${ }^{\text {t }} \mathrm{CY}$ | 470 |  | 430 |  | 400 |  | ns | $\begin{aligned} & \mathrm{t}_{\mathrm{T}}=\mathrm{t}_{\mathrm{r}}=\mathrm{tf}_{\mathrm{f}}=20 \mathrm{~ns} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { Load }=1 \mathrm{TTL} \text { Gate } \\ & \mathrm{V}_{\text {ref }}=2.0 \text { or } 0.8 \text { Volts } \end{aligned}$ |
| Time Between Refresh | treF |  | 2 |  | 2 |  | 2 | ms |  |
| Address to CE Set Up Time | ${ }^{\text {t }}$ AC | 0 |  | 0 |  | 0 |  | ns |  |
| Address Hold Time | ${ }^{\text {t }} \mathrm{AH}$ | 150 |  | 150 |  | 150 |  | ns |  |
| CE Off Time | tcc | 130 |  | 130 |  | 130 |  | ns |  |
| -CE Transition Time | t | 0 | 40 | 0 | 40 | 0 | 40 | ns |  |
| CE Off to Output High Impedance State | ${ }^{\text {t C F }}$ | 0 | 130 | 0 | 130 | 0 | 130 | ns |  |
| CE on Time | tee | 300 | 3000 | 260 | 3000 | 230 | 3000 | ns |  |
| $\overline{\mathrm{WE}}$ to CE off | tw | 180 |  | 180 |  | 150 |  | ns |  |
| CE to WE | tCW | 300 |  | 260 |  | 230 |  | ns |  |
| DIN to WE Set Up (1) | 'DW | 0 |  | 0 |  | 0 |  | ns |  |
| Din Hold Time | ${ }_{\text {t }}$ H | 40 |  | 40 |  | 40 |  | ns |  |
| $\overline{\text { WE Pulse Width }}$ | tWP | 180 |  | 180 |  | 150 |  | ns |  |

Note:(1) If $\overline{W E}$ is low before CE goes high then DIN must be valid when CE goes high.
READ-MODIFY-WRITE CYCLE
$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{BB}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, unless otherwise noted.

| PARAMETER | SYMBOL | LIMITS |  |  |  |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu \mathrm{PD} 411 \mathrm{~A}$ |  | $\mu$ PD411A-1 |  | $\mu$ PD411A. 2 |  |  |  |
|  |  | MIN | MAX | MIN | MAX | MIN | MAX |  |  |
| Read-Modify-Write (RMW) Cycle Time | trwC | 650 |  | 600 |  | 520 |  | ns |  |
| Time Between Refresh | treF |  | 2 |  | 2 |  | 2 | ms |  |
| Address to CE Set Up Time | ${ }^{\text {t }}$ AC | 0 |  | 0 |  | 0 |  | ns |  |
| Address Hold Time | ${ }^{\text {ta }}$ H | 150 |  | 150 |  | 150 |  | ns |  |
| CE Off Time | ${ }_{\text {t }} \mathrm{C}$ | 130 |  | 130 |  | 130 |  | ns |  |
| CE Transition Time | tT | 0 | 40 | 0 | 40 | 0 | 40 | ns |  |
| CE Off to Output High Impedance State | ${ }^{\text {t }}$ CF | 0 | 130 | 0 | 130 | 0 | 130 | ns | $C_{L}=50 \mathrm{pF}$ |
| CE Width During RMW | tCRW | 480 | 3000 | 430 | 3000 | 350 | 3000 | ns | Load $=1 \mathrm{TTL}$ Gate |
| $\overline{\text { WE }}$ to CE on | twC | 0 |  | 0 |  | 0 |  | ns | $V_{\text {ref }}=2.0$ or 0.8 Volts |
| WE to CE off | tw | 180 |  | 180 |  | 150 |  | ns |  |
| WE Pulse Width | tWP | 180 |  | 180 |  | 150 |  | ns |  |
| DIN to WE Set Up | tDW | 0 |  | 0 |  | 0 |  | ns |  |
| DIN Hold Time | tDH | 40 |  | 40 |  | 40 |  | ns |  |
| CE to Output Delay | ${ }^{\text {t }} \mathrm{CO}$ |  | 280 |  | 230 |  | 180 | ns |  |
| Access Time | ${ }_{\text {t }}$ ACC |  | 300 |  | 250 |  | 200 | ns |  |

## READ AND REFRESH CYCLE (1)



Notes: (1) For refresh cycle, row and column addresses must be stable tAC and remain stable for entire tAH period.
(2) $V_{D D}-2 V$ is the reference level for measuring timing of $C E$ :
(3) $\mathrm{V}_{\mathrm{SS}}+2 \mathrm{~V}$ is the reference level for measuring timing of CE .
(4) VIHMIN is the reference level for measuring timing of the addresses, $\overline{\mathrm{CS}}, \overline{\mathrm{WE}}$ and DIN.
(5) VILMAX is the reference level for measuring timing of the addresses, CS, WE and DIN.
(6) $\mathrm{V}_{\mathrm{SS}}+2.0 \mathrm{~V}$ is the reference level for measuring timing of $\overline{\mathrm{DOUT}}$
(7) $\mathrm{V}_{\mathrm{SS}}+0.8 \mathrm{~V}$ is the reference level for measuring timing of $\overline{\mathrm{DOUT}}$.
(8) $\overline{W E}$ must be at $V_{I H}$ until end of $t \mathrm{CO}$.


TYPICAL OPERATING CHARACTERISTICS

Power consumption $=V_{D D} \times I_{D D A V}+V_{B B} \times I_{B B}$
POWER CONSUMPTION

Typical power dissipation for each product is shown below.

|  | mW (TYP.) | CONDITIONS |
| :--- | :---: | :---: |
| $\mu$ PD411A | 460 mW | $\mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{cy}}=470 \mathrm{~ns}, \mathrm{tCE}=300 \mathrm{~ns}$ |
| $\mu$ PD411A-1 | 460 mW | $\mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{c} y}=430 \mathrm{~ns}, \mathrm{t} \mathrm{CE}=260 \mathrm{~ns}$ |
| $\mu$ PD411A-2 | 460 mW | $\mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{cy}}=400 \mathrm{~ns}, \mathrm{t}_{\mathrm{C}}=230 \mathrm{~ns}$ |

See curve above for power dissipation versus cycle time.

## CURRENT WAVEFORMS (1)








| $\mu$ PD411AC (Plastic) |  |  |
| :--- | :---: | :--- |
| ITEM | MILLIMETERS | INCHES |
| A | 28.0 Max. | 1.10 Max. |
| B | 1.4 Max. | 0.025 Max. |
| C | 2.54. | 0.10 |
| D | 0.50 | 0.02 |
| E | 25.4 | 1.00 |
| F | 1.40 | 0.055 |
| G | 2.54 Min. | 0.10 Min. |
| H | 0.5 Min. | 0.02 Min. |
| I | 4.7 Maẍ. | 0.18 Max. |
| J | 5.2 Max. | 0.20 Max. |
| K | 10.16 | 0.40 |
| L | 8.5 | 0.33 |
| M | $0.25_{-0.05}^{+0.10}$ | $0.01_{-0.002}^{+0.004}$ |

## $16384 \times 1$ BIT DYNAMIC MOS RANDOM ACCESS MEMORY

The NEC $\mu$ PD 416 is a 16384 words by 1 bit Dynamic MOS RAM. It is designed for memory applications where very low cost and large bit storage are important design objectives.

The $\mu$ PD416 is fabricated using a double-poly-layer N channel silicon gate process which affords high storage cell density and high performance. The use of dynamic circuitry throughout, including the sense amplifiers, assures minimal power dissipation.

Multiplexed address inputs permit the $\mu$ PD416 to be packaged in the standard 16 pin dual-in-line package. The 16 pin package provides the highest system bit densities and is available in either ceramic or plastic. Noncritical clock timing requirements allow use of the multiplexing technique while maintaining high performance.

FEATURES • 16384 Words $\times 1$ Bit Organization

- High Memory Density - 16 Pin Ceramic and Plastic Packages
- Multiplexed Address Inputs
- Standard Power Supplies $+12 \mathrm{~V},-5 \mathrm{~V},+5 \mathrm{~V}$
- Low Power Dissipation; 462 mW Active (MAX), 40 mW Standby (MAX)
- Output Data Controlled by $\overline{\mathrm{CAS}}$ and Unlatched at End of Cycle
- Read-Modify-Write, $\overline{\mathrm{RAS}}$-only Refresh, and Page Mode Capability
- All Inputs TTL Compatible, and Low Capacitance
- 128 Refresh Cycles
- 5 Performance Ranges:

|  | ACCESS TIME | R/W CYCLE | RMW CYCLE |
| :--- | :---: | :---: | :---: |
| $\mu$ PD416 | 300 ns | 510 ns | 575 ns |
| $\mu$ PD416-1 | 250 ns | 410 ns | 465 ns |
| $\mu$ PD416-2 | 200 ns | 375 ns | 375 ns |
| $\mu$ PD416-3 | 150 ns | 320 ns | 320 ns |
| $\mu$ PD416-5 | 120 ns | 320 ns | 320 ns |



| $A_{0}-A_{6}$ | Address Inputs |
| :--- | :--- |
| $\overline{\mathrm{CAS}}$ | Column Address Strobe |
| $\mathrm{D}_{\text {IN }}$ | Data In |
| $\mathrm{D}_{\mathrm{OUT}}$ | Data Out |
| $\overline{\text { RAS }}$ | Row Address Strobe |
| $\overline{\text { WRITE }}$ | Read/Write |
| $\mathrm{V}_{\mathrm{BB}}$ | Power $(-5 \mathrm{~V})$ |
| $\mathrm{V}_{\mathrm{CC}}$ | Power $(+5 \mathrm{~V})$ |
| $\mathrm{V}_{\mathrm{DD}}$ | Power ( +12 V ) |
| $\mathrm{V}_{\text {SS }}$ | Ground |



Notes: (1) Relative to VBB
(2) Relative to $V_{S S}$

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$,
$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST <br> CONDITIONS |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance <br> $\left(\mathrm{A}_{0}-\mathrm{A}_{6}\right), \mathrm{D}_{\text {IN }}$ |  |  | 4 | 5 |  |  |
| Input Capacitance <br> RAS, <br> CAS, <br> WRITE | $\mathrm{C}_{\text {I2 }}$ |  | 8 | 10 | pF |  |
| Output Capacitance <br> (DOUT) | $\mathrm{C}_{0}$ |  | 5 | 7 | pF |  |

## CAPACITANCE

$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (1), $\mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$

| PARAMETER | SYMBOL | MIN | TYP |  | MAX | UNIT |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |

Notes: (1) $T_{a}$ is specified here for operation at frequencies to $t_{R C} \geqslant t_{R C}(\min )$. Operation at higher cycle rates with reduced ambient temperatures and high power dissipation is permissible, however, provided AC operating parameters are met. See Figure 1 for derating curve.
(2) All voltages referenced to $V_{S S}$.
(3) Output voltage will swing from $V_{S S}$ to $V_{C C}$ when activated with no current loading. For purposes of maintaining data in standby mode, $V_{C C}$ may be reduced to $V_{S S}$ without affecting refresh operations or data retention. However the $\mathrm{V}_{\mathrm{OH}}(\mathrm{min})$ specification is not guaranteed in this mode.
(4) IDD1, IDD3, and IDD4 depend on cycle rate. See Figures 2,3 and 4 for IDD limits at other cycle rates.
(5) ICC1 and ICC4 depend upon output loading. During readout of high level data $V_{C C}$ is connected through a low impedance $(135 \mathrm{~s} 2 \mathrm{typ})$ to data out. At all other times ICC consists of leakage currents only.

CYCLE TIME tRC (ns)


CYCLE RATE $(\mathrm{MHz})=10^{3} / \mathrm{t} \mathrm{RC}(\mathrm{ns})$

FIGURE 1
Maximum ambient temperature versus cycle rate for extended frequency operation. $\mathrm{T}_{\mathrm{a}}$ (max) for operation at cycling rates greater than $2.66 \mathrm{MHz}\left({ }^{\mathrm{CYC}}<375 \mathrm{~ns}\right)$ is determined by $T_{a}(\max )\left[{ }^{\circ} \mathrm{C}\right]=70-9.0 x$ (cycle rate $[\mathrm{MHz}]-2.66$ ). For $\mu$ PD416-5, it is $T_{a}(\max )\left[{ }^{\circ} \mathrm{C}\right]=70-9.0$ (cycle rate [ MHz ] - 3.125).


FIGURE 2
Maximum IDD1 versus cycle rate for device operation at extended frequencies.


FIGURE 3
Maximum IDD3 versus cycle rate for device operation at extended frequencies.

CYCLE TIME tpC (ns)


FIGURE 4
Maximum IDD4 versus cycle rate for device operation in page mode.
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$

| PARAMETER | SYMBOL | Limits |  |  |  |  |  |  |  |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | HPD416 |  | $\mu$ PD 416.1 |  | $\mu$ PD416-2 |  | $\mu$ PD416-3 |  | $\mu$ PD 416-5 |  |  |  |
|  |  | MIN | MAX |  |  |
| Fandom read or write cycle time | tre | 510 |  | 410 | - $\cdot$ | 375 | . | 320 | - . | 320 |  | ns | (3) |
| Pread-write cycle time | tRWC | 575 | . $\cdot$ | 465 |  | 375 |  | 320 |  | 320 |  | ns | (3) |
| Page mode cycle time | ${ }^{\text {tPC }}$ | 330 |  | 275 |  | 225 | , | 170 |  | 160 |  | ns |  |
| Access ti, ne from RAS | trac | : | 300 | - | 250 |  | 200 |  | 150 | $\because$ | 120 | ns | (4) (6) |
| Access time from | ${ }^{\text {t CaC }}$ | - | 200 | $\ldots$ | 4 165 | . | -135 | , | 100 | $\cdots$ | 80 | ns | (5) (6) |
| Output buffer từn-off delay | toff | 0 | 80 | 0 | 60 | 0 | 50 | 0 | - 40 | 0 | 35 | ns | (7) |
| Transition time (rise and fall) | ${ }^{t} T$ | 3. | $\bigcirc 50$ | 3 | $\because 50$ | 3 | 50 | 3 | $\therefore 35$ | 3 | : 35 | ns | (2) |
| BAS precharge time | $t_{\text {RP }}$ | 200 |  | 150 |  | 120 |  | 100 |  | 100 |  | ns |  |
| AAS pulse width | tras | 300 | 10,000 | 250 | 10,000 | 200 | 32,000 | 150 | 32,000 | 120 | 10,000 | ns |  |
| RAS hold time | trsh | 200 | . | 165 |  | 135 | ". | 100 | $1{ }^{\circ}$ | 80 | . | ns |  |
| $\overline{\text { CAS }}$ pulse width | ${ }^{\text {t CAS }}$ | 200 | 10,000 | 165 | 10,000 | 135 | 10,000 | 100 | 10,000 | 80 | 10,000 | ns |  |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ delay time | ${ }^{\text {tRCD }}$ | 40 | 100 | 35 | - 85 | 25 | 65 | 20 | 50 | 15 | 40 | ns | (8) |
| $\overline{\text { CAS }}$ to $\overline{\text { RAS }}$ precharge time | ${ }^{\text {t }}$ CRP | -20 |  | -20 |  | -20 |  | -20 |  | 0 |  | ns |  |
| Row address set-up time | tASR | 0 |  | 0 |  | 0 |  | 0 |  | 0 | , | ns |  |
| Row address hold time | ${ }^{\text {tRAH }}$ | 40 |  | 35 | , | 25 |  | 20 | : | 15 | - | ns |  |
| Column address set-up time | ${ }^{\text {t }}$ ASC. | -10 |  | -10 | . | -10 |  | -10 | - | -10 | , | ns |  |
| Column address hold time | ${ }^{\mathrm{t}} \mathrm{CAH}$ | 90 | - | 75 | $\therefore$ | 55 |  | 45 |  | 40 |  | ns |  |
| Column address hold time referenced to $\overline{R A S}$ | tAR | 190 |  | 160 | ; | 120 | $\cdots$ | 95 | $\ldots$ | 80 |  | ns |  |
| Read command set-up time | ${ }^{\text {tRCS }}$ | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time | ${ }^{\text {tren }}$ | 0 |  | 0 | " | 0 | $\because$, | 0 | $\because$ | 0 |  | ns |  |
| Write command hold time | ${ }^{\text {t }}$ WCH | 90 | $\because$ | 75 | . | 55 | . | 45 : |  | 40. | - | ns |  |
| Write command hold time referenced to $\overline{R A S}$ | tWCR | 190 |  | 160 | - | 120 |  | 95 |  | 80 | $\therefore$ | ns |  |
| Write command pulse width | ${ }^{\text {t }}$ WP | 90 |  | 75 | - | 55 | , | 45 | \% . . | 40 |  | ns |  |
| Write command to $\overline{\text { RAS lead time }}$ | ${ }^{\text {traw }}$ | 120 | , | 85 |  | 70 |  | 50 | $\therefore$; | 50 | - | ns |  |
| Write command to $\overline{\text { CAS lead time }}$ | ${ }^{\text {t }}$ CWL | 120 | $\because$ | 85 | $\because$ | 70 |  | 50 |  | 50 |  | ns |  |
| Data-in set-up time | ${ }^{\text {tos }}$ | 0 | - | 0 |  | 0 |  | 0 |  | 0 |  | ns | (9) |
| Data-in hold time | ${ }^{\text {t }} \mathrm{DH}$ | 90 |  | 75 |  | 55 |  | 45 |  | 40 |  | ns | (9) |
| Data-in hold time referenced to $\overline{\text { RAS }}$ | tDHR | 190 | , | 160 |  | 120 |  | 95 | - | 80 |  | ns |  |
| CAS precharge time (for page mode cycle only) | ${ }^{\text {tcP }}$ | 120 | . | 100 | , | . 80 |  | 60 |  | 60. |  | ns |  |
| Refresh period | treF |  | 2 |  | 2 |  | 2 |  | 2 |  | 2 | ms |  |
| WRITE command set-up time | twCs | -20 3 | + | -20. |  | -20 |  | -20 | . | 0 |  | ns | (10) |
| $\overline{\mathrm{CAS}}$ to $\overline{\text { WRITE }}$ delay | ${ }^{\text {t }}$ CWD | 140 | , | 125 | $\because$ | 95 | " | 70 |  | 80 |  | ns | (10) |
| $\overline{\text { RAS to WRITE }}$ delay | trwo | 240 |  | 200 |  | 160 | - | 120 |  | 120 |  | ns | (10) |

Notes: (1) AC measurements assume $\mathrm{t}_{\mathrm{T}}=5 \mathrm{~ns}$.
(2) $V_{I H C}(\min )$ or $V_{I H}(\min )$ and $V_{I L}(\max )$ are reference levels for measuring timing of input signals. AIso, transition times are measured between $V_{I H C}$ or $V_{I H}$ and $V_{I L}$
(3) The specifications for $\mathrm{tRC}^{(\mathrm{min})}$ and $\mathrm{t}_{\mathrm{RWC}}(\mathrm{min})$ are used only to indicate cycle time at which proper operation over the full temperature range $\left(0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{a}} \leqslant 70^{\circ} \mathrm{C}\right)$ is assured.
(4) Assumes that $t_{R C D} \leqslant t_{R C D}$ (max). If $t_{R C D}$ is greater than the maximum recommended value shown in this table, $t_{R A C}$ will increase by the amount that $t_{R C D}$ exceeds the values shown.
(5) Assumes that tRCD $\geqslant \mathrm{t}_{\mathrm{RCD}}$ (max).
(6) Measured with a load equivalent to 2 TTL loads and 100 pF
(7) tOFF (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
(8) Operation within the $t_{R C D}(\max )$ limit ensures that $t_{R A C}(\max )$ can be met, $t_{R C D}(\max )$ is specified as a reference point only, if $t_{R C D}$ is greater than the specified $t_{R C D}$ (max) limit, then access time is controlled exclusively by ${ }^{\text {t }} \mathrm{CAC}$
(9) These parameters are referenced to $\overline{\mathrm{CAS}}$ leading edge in early write cycles and to WRITE leading edge in delayed write or read-modify-write cycles.
(10) tWCS, t CWD and tRWD are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If twCS $\geqslant$ tWCS (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) $\geqslant t_{\text {RWD }}(\mathbf{m i n})$, the cycle is a read-write cycle and the data out will contain data read from the selected cell; if neither of the above sets of conditions is satisfied the condition of the data out (at access time) is indeterminate.


TIMING WAVEFORMS
(CONT.)


PAGE MODE WRITE CYCLE


## $\mu$ PD416

The 14 address bits required to decode 1 of 16,384 bit locations are multiplexed onto the 7 address pins and then latched on the chip with the use of the Row Address Strobe ( $\overline{\mathrm{RAS}}$ ), and the Column Address Strobe ( $\overline{\mathrm{CAS}}$ ). The 7 bit row address is first applied and $\overline{\mathrm{RAS}}$ is then brought low. After the $\overline{\mathrm{RAS}}$ hold time has elapsed, the 7 bit column address is applied and $\overline{\mathrm{CAS}}$ is brought low. Since the column address is not needed internally until a time of ${ }^{t}$ CRD MAX after the row address, this multiplexing operation imposes no penalty on access time as long as $\overline{\mathrm{CAS}}$ is applied no later than ${ }^{\mathrm{t}}$ CRD MAX. If this time is exceeded, access time will be defined from $\overline{\mathrm{CAS}}$ instead of $\overline{\text { RAS. }}$

For a write operation, the input data is latched on the chip by the negative going edge of $\overline{\text { WRITE }}$ or $\overline{\text { CAS, }}$, whichever occurs later. If $\overline{\text { WRITE }}$ is active before $\overline{\text { CAS }}$, this is an "early WRITE" cycle and data out will remain in the high impedance state throughout the cycle. For a READ, WRITE, OR READ-MODIFY-WRITE cycle, the data output will contain the data in the selected cell after the access time. Data out will assume the high impedance state anytime that $\overline{\mathrm{CAS}}$ goes high.

The page mode feature allows the $\mu$ PD416 to be read or written at multiple column addresses for the same row address. This is accomplished by maintaining a low on $\overline{\text { RAS }}$ and strobing the new column addresses with $\overline{\mathrm{CAS}}$. This eliminates the setup and hold times for the row address resulting in faster operation.

Refresh of the memory matrix is accomplished by performing a memory cycle at each of the 128 row addresses every 2 milliseconds or less. Because data out is not latched, " $\overline{\text { RAS }}$ only" cycles can be used for simple refreshing operation.

Either $\overline{\mathrm{RAS}}$ and/or $\overline{\mathrm{CAS}}$ can be decoded for chip select function. Unselected chip outputs will remain in the high impedance state.

In order to assure longterm reliability, $\mathrm{V}_{\mathrm{BB}}$ should be applied first during power up and removed last during power down.

ADDRESSING

DATA I/O

PAGE MODE

REFRESH

CHIP SELECTION

POWER SEQUENCING

$\mu$ PD416D
(Ceramic)

| ITEM | MILLIMETERS | INCHES |
| :--- | :---: | :--- |
| A | 20.5 MAX. | 0.81 MAX. |
| B | 1.36 | 0.05 |
| C | 2.54 | 0.10 |
| D | 0.5 | 0.02 |
| E | 17.78 | 0.70 |
| F | 1.3 | 0.051 |
| G | 3.5 MIN. | 0.14 MIN. |
| H | 0.5 MIN. | 0.02 MIN. |
| I | 4.6 MAX. | 0.18 MAX. |
| J | 5.1 MAX. | 0.20 MAX. |
| K | 7.6 | 0.30 |
| L | 7.3 | 0.29 |
| M | 0.27 | 0.01 |

## NEC Microcomputers, Inc.

## 16,384 x 1 BIT DYNAMIC MOS RANDOM ACCESS MEMORY

DESCRIPTION The NEC $\mu$ PD2118 is a 16,384 words by 1 bit Dynamic MOS RAM. Its single +5 V power supply requirement greatly simplifies system power considerations.

Multiplexed address inputs permit the $\mu$ PD2118 to be packaged in a standard 16 pin dual-in-line package for highest system bit densities. The use of $\overline{\mathrm{CAS}}$ controlled output permits hidden refresh operation for ease of system design.

FEATURES - Single +5 V supply; $+10 \%$ Tolerance

- Low Power: 200 mW Max. (Operating)

20 mW Max. (Standby)

- Low VCC Current Transients
- All Inputs, Including Clocks, TTL Compatible
- Non-Latched Output is Three State TTL Compatible
- $\overline{R A S}$ Only Refresh
- 128 Refresh Cycles Required Every 2 ms
- Page Mode Capability
- $\overline{\text { CAS }}$ Controlled Output Allows Hidden Refresh
- Access Time: 120 ns
- Available in a Standard 16 Pin Package

PIN CONFIGURATION


## 65,536 x 1 BIT DYNAMIC RANDOM ACCESS MEMORY



FEATURES

The NEC $\mu$ PD4164 is a 65,536 words by 1 bit Dynamic N-Channel MOS RAM designed to operate from a single +5 V power supply. The negative-voltage substrate bias is internally generated - its operation is both automatic and transparent.

The $\mu$ PD4164 utilizes a double-poly-layer N-channel silicon gate process which provides high storage cell density, high performance and high reliability.

The $\mu$ PD4164 uses a single transistor dynamic storage cell and advanced dynamic circuitry throughout, including the 512 sense amplifiers, which assures that power dissipation is minimized. Refresh characteristics have been chosen to maximize yield (low cost to user) while maintaining compatibility between Dynamic RAM generations.
 valid read or read-modify-write cycle, data is held on the output by holding $\overline{C A S}$ low. The data out pin is returned to the high impedance state by returning $\overline{\mathrm{CAS}}$ to a high state. The $\mu$ PD4164 hidden refresh feature allows $\overline{\mathrm{CAS}}$ to be held low to maintain output data while $\overline{\mathrm{RAS}}$ is used to execute $\overline{\mathrm{RAS}}$ only refresh cycles.
Refreshing is accomplished by performing $\overline{\text { RAS }}$ only refresh cycles, hidden refresh cycles, or normal read or write cycles on the 128 address combinations of $A_{0}$ through. A6 during a 2 ms period.

Multiplexed address inputs permit the $\mu$ PD4164 to be packaged in the standard 16 pin dual-in-line package. The 16 pin package provides the highests system bit densities and is compatible with widely available automated handling equipment.

PIN CONFIGURATION

- High Memory Density
- Multiplexed Address Inputs
- Single +5 V Supply
- On Chip Substrate Bias Generator
- Access Time: $\mu$ PD4164-1 - 250 ns

$$
\mu \text { PD4164-2 - } 200 \mathrm{~ns}
$$

- Read, Write Cycle Time: $\mu$ PD4164-1 - 410 ns

$$
\mu \text { PD4164-2 - } 375 \mathrm{~ns}
$$

- Low Power Dissipation: 250 mW (Active); 28 mW (Standby)
- Non-Latched Output is Three-State, TTL Compatible
- Read, Write, Read-Write; Read-Modify-Write, $\overline{R A S}$ Only Refresh, and Page Mode Capability
- All Inputs TTL Compatible, and Low Input Capacitance
- 128 Refresh Cycles ( $\mathrm{A}_{0}-\mathrm{A}_{6}$ Pins for Refresh Address)
- $\overline{\text { CAS }}$ Controlled Output Allows Hidden Refresh
- Available in Both Ceramic and Plastic 16 Pin Packages


| Operating Temperature | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| :---: | :---: |
| Storage Temperature (Ceramic Package) | $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| (Plastic Package) | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| Supply Voltages On Any Pin Except VCC | -1 to +7 Volts (1) |
| Supply Voltage VDD | -0.5 to +7 Volts (1) |
| Short Circuit Output Current | 50 mA |
| Power Dissipation | 1 Watt |

Note: (1) Relative to VSS
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}=0^{\circ}$ to $70^{\circ} \mathrm{C}$ (1); $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Supply Voltage | $\mathrm{V}_{\text {CC }}$ | 4.5 | 5.0 | 5.5 | V | All Voltages Referenced to $V_{S S}$ |
|  | $\mathrm{V}_{\text {SS }}$ | 0 | 0 | 0 | V |  |
| High Level Input Voltage. ( $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}$ ) | VIHC | 2.7 |  | 5.5 | V |  |
| High Level Input Voltage, All Inputs Except RAS, CAS, WE | $\mathrm{V}_{1 \mathrm{H}}$ | 2.4 |  | 5.5 | V |  |
| Low Level Input Voltage, All Inputs | VIL | -1.0 |  | 0.8 | V |  |
| Operating Current Average Power Supply Operating Current $\overline{\text { RAS }}, \overline{\mathrm{CAS}}$ Cycling; ${ }^{\mathrm{t}} \mathrm{RC}=\mathrm{t}_{\mathrm{RC}}$ (Min.) | ${ }^{\text {CCP1 }}$ |  |  | 45 | mA | (2) |
| Standby Current <br> Power Supply Standby <br> Current $\overline{\text { RAS }}=V_{1 H C}$, <br> DOUT $=$ Hi-Impedance) | ICC2 |  |  | 5.0 | mA |  |
| Refresh Current <br> Average Power Supply <br> Current, <br> Refresh Mode; <br> $\overline{\text { RAS }}$ Cycling, $\overline{\text { CAS }}=V_{1 H C}$, <br> ${ }^{\mathrm{t}} \mathrm{RC}=\mathrm{t}_{\mathrm{RC}}$ (Min.) | ICC3 |  |  | 32 | mA | (2) |
| Page Mode Current Average Power Supply Current, <br> Page Mode Operation <br> $\overline{\text { RAS }}=\mathrm{V}_{\text {IL }} ; \overline{\mathrm{CAS}}$ Cycling <br> ${ }^{\text {tPC }}=$ tPC (Min.) | ICC4 |  |  | 35 | mA | (2) |
| Input Leakage Current Any Input <br> $\mathrm{V}_{\text {IN }}=0$ to +5.5 Volts, All Other Pins Not Under Test $=0 \mathrm{~V}$ | II(L) | -10 |  | 10 | $\mu \mathrm{A}$ |  |
| Output Leakage Current DOUT is Disabled, $\mathrm{V}_{\text {OUT }}=0$ to +5.5 Volts | ${ }^{1} \mathrm{O}(\mathrm{L})$ | -10 |  | 10 | $\mu \mathrm{A}$ |  |
| Output Levels High Level Output | VOH | 2.4 |  |  | V |  |
| Low Level Output <br> Voltage (IOUT $=4.2 \mathrm{~mA}$ ) | $\mathrm{V}_{\mathrm{OL}}$ |  |  | 0.4 | V |  |

Notes: (1) $T_{a}$ is specified here for operation at frequencies to $t_{R C} \geq t_{R C}(\min )$. Operation at higher cycle rates with reduced ambient temperatures and high power dissipation is permissible, however, provided AC operating parameters are met.
(2) ICC1, ICC3 and ICC4 depend on output loading and cycle rates. Specified rates are obtained with the output open.

ABSOLUTE MAXIMUM RATINGS*

CAPACITANCE $\quad T_{a}=0^{\circ}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (1)


| PARAMETER | SYMBOL | LIMITS |  |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PD4164-1 |  | $\mu$ PD4 164-2 |  |  |  |
|  |  | MIN | MAX | MIN | MAX |  |  |
| Random Read or Write Cycle Time | ${ }^{\text {tRC }}$ | 410 |  | 375 |  | ns | (5) |
| Read-Write Cycle Time | ${ }^{\text {traw }}$ | 465 |  | 375 | . | ns | (5) |
| Page Mode Cycle Time | tPC | 275 |  | 225 |  | ns |  |
| Access Time from $\overline{\text { RAS }}$ | trac |  | 250 |  | 200 | ns | (6) (8) |
| Access Time from CAS | ${ }^{\text {t }}$ CAC |  | 165 |  | 135 | ns | (7) (8) |
| Output Buffer Turn-Off Delay | toff | 0 | 60 | 0 | 50 | ns | (9) |
| Transition Time (Rise and Fall) | ${ }^{\text {t }}$ | 3 | 50 | 3 | 50 | ns | (4) |
| $\overline{\text { RAS Precharge Time }}$ | ${ }^{t} \mathrm{RP}$ | 150 |  | 120 |  | ns |  |
| $\overline{\text { RAS }}$ Pulse Width | ${ }^{\text {tRAS }}$ | 250 | 10,000 | . 200 | 10,000 | ns |  |
| $\overline{\text { RAS }}$ Hold Time | trsh | 165 |  | 135 |  | ns |  |
| $\overline{\text { CAS }}$ Pulse Width | ${ }^{\text {t }}$ CAS | 165 |  | 135 |  | ns |  |
| $\overline{\text { CAS }}$ Hold Time | ${ }_{\text {tics }}$ | 200 |  | 250 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ Delay Time | ${ }_{\text {t }}^{\text {RCD }}$ | 35 | 85 | 25 | 65 | ns | (10) |
| $\overline{\text { CAS }}$ to $\overline{\mathrm{RAS}}$ Precharge Time | ${ }^{\text {t CRP }}$ | -20 |  | -20 |  | ns |  |
| Row Address Set-Up Time | tASR | 0 |  | 0 |  | ns |  |
| Row Address Hold Time | ${ }^{\text {tRAH }}$ | 35 |  | 25. |  | ns |  |
| Column Address Set-Up Time | ${ }^{\text {tasc }}$ | 0 |  | 0 |  | ns |  |
| Column Address Hold Time | tCAH | 75 |  | 55 |  | ns |  |
| Column Address Hold Time Referenced to $\overline{\text { RAS }}$ | tAR | 160 |  | 120 |  | ns |  |
| Read Command Set-Up Time | $t_{\text {tres }}$ | 0 |  | 0 |  | ns |  |
| Read Command Hold Time | $\mathrm{trch}^{\text {r }}$ | 0 |  | 0 |  | ns |  |
| Write Command Hold Time | twCH | 75 |  | 55 | . | ns |  |
| Write Command Hold Time Referenced to $\overline{\text { RAS }}$ | twCR | 160 |  | 120 |  | ns |  |
| Write Command Pulse Width | ${ }^{\text {t }}$ PP | 75 |  | 55 |  | ns |  |
| Write Command to $\overline{\text { RAS }}$ Lead Time | $t_{\text {RWL }}$ | 100 |  | 80 |  | ns |  |
| Write Command to CAS Lead Time | $\qquad$ | 100 |  | 80 |  | ns |  |
| Data-In Set-Up Time | tos | 0 |  | 0 |  | ns | (11) |
| Data-In Hold Time | ${ }^{t} \mathrm{DH}$ | 75 |  | 55 |  | ns | (11) |
| Data-In Hold Time <br> Referenced to $\overline{\text { RAS }}$ | tDHR | 160 |  | 120 |  | ns |  |
| $\overline{C A S}$ Precharge Time (For Page Mode Cycle Only) | ${ }^{t} \mathrm{CP}$ | 100 |  | 80 |  | ns |  |
| Refresh Period | treF |  | 2 |  | 2 | ms |  |
| WRITE Command Set-Up <br> Time | twCS | 0 |  | 0 |  | ns | (12) |
| $\overline{\text { CAS }}$ to WRITE Delay | ${ }^{\text {t }}$ (WD | 125 |  | 95 |  | ns | (12) |
| $\overline{\text { RAS }}$ to WRITTE Delay | ${ }^{\text {t }}$ WWD | 200 |  | 160 |  | ns | (12) |
| $\overline{\text { CAS }}$ Precharge Time | ${ }^{\text {t }}$ CPN | 50 |  | 40 |  | ns |  |

(2) Several $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ cycles are required after power-up before proper device operation is achieved.
(3) AC measurements assume $\mathrm{t}_{\mathrm{T}}=5 \mathrm{~ns}$.
(4) $V_{I H C}(\min )$ or $V_{I H}(\min )$ and $V_{I L}(\max )$ are reference levels for measuring timing of input signals. Also, transition times are measured between $V_{I H C}$ or $V_{I H}$ and $V_{I L}$.
(5) The specifications for $\mathrm{t}_{\mathrm{RC}}(\mathrm{min})$ and $\mathrm{t}_{\mathrm{RWC}}(\mathrm{min})$ are used only to indicate cycle times at which proper operation over the full temperature range $\left(0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{a}} \leqslant 70^{\circ} \mathrm{C}\right)$ is assured.
(6) Assumes that $t_{R C D} \leqslant t_{R C D}(\max )$. If $t_{R C D}$ is greater than the maximum recommended value shown in this table, trac $^{\text {RAll }}$ increase by the amount that $\mathrm{t}_{\mathrm{RCD}}$ exceeds the values shown.
(7) Assumes that $t_{R C D}>t_{\text {RCD }}$ (max).
(8) Measured with a load equivalent to 2 TTL loads and 100 pF .
(9) tOFF (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
(10) Operation within the $t_{R C D}(\max )$ limit ensures that t $_{\text {RAC }}$ (max) can be met, $t_{R C D}(\max )$ is specified as a reference point only, if trCD is greater than the specified trCD (max) limit, then access time is controlled exclusively by tCAC
(11) These parameters are referenced to $\overline{C A S}$ leading edge in early write cycles and to WRITE leading edge in delayed write or read-modify-write cycles.
(12) tWCS, $t_{\text {CWD }}$ and $t_{\text {RWD }}$ are restrictive operating parameters in read-write and read-modify-write cycles only. If twCS > twCs ( min ), the cycle is an early write cycle and the data output will remain open circuit throughout the entire cycle. If $\mathrm{t}_{\mathrm{CWD}}>\mathrm{t}_{\mathrm{CWD}}(\mathrm{min})$ and $\mathrm{t}_{\text {RWD }} \geqslant \mathrm{t}_{\text {RWD }}(\mathrm{min})$, the cycle is a read-write and the data output will contain data read from the selected cell. If neither of the above conditions are met the condition of the data out (at access time and until CAS goes back to $V_{I H}$ ) is indeterminate.

TIMING WAVEFORMS




## NEC Microcomputers,Inc.

## 4096 BIT HIGH SPEED STATIC MOS RANDOM ACCESS MEMORY

DESCRIPTION The $\mu$ PD410 is a very high speed 4 K bit static random access memory. It is organized as 4096 words by 1 bit per word and fabricated using N channel silicon gate MOS technology.

All signals to the device are TTL compatible except for Chip Enable which is standard +12 Volt MOS level.

Circuit operation starts with the rising edge of CE. Data is latched and valid until falling edge of CE. Address and Chip Select signals are latched on-chip to simplify

FEATURES - 4096 Words $\times 1$ Bit Organization

- Fully Decoded
- TTL Compatible (except CE)
- High Speed-Access Time: 90 ns max.
- Cycle Time: 220 ns min.
- Static Operation - No Refresh Required
- Standby Power: 75 mW max.
- Active Power: 470 mW typ.
- Supply Voltages: $\mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V}$
- Address Registers on the Chip
- Three State Output
- Standard 22 Pin Ceramic Dual-in-Line Package
- Pin Compatible with $\mu$ PD411 and Other 4K Dynamic RAMs

PIN CONFIGURATION



Operating Temperature
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Output Voltages -0.3 to +20 Volts (1)
All Input Voltages, -0.3 to +20 Volts ${ }^{(1)}$
Supply Voltage VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +20 Volts ${ }^{(1)}$
Supply Voltage VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to + 20 Volts ${ }^{(1)}$
Supply Voltage VSS . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +20 Volts ${ }^{(1)}$
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0W
Note: (1) Relative to $V_{B B}$
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolúte maximum rating conditions forextended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

| PARAMETER |  | SYMBOL | LIMITS |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | MAX |  |  |
| Input Leakage Current |  |  | ${ }^{\prime} \mathrm{LI}$ I |  | 10 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{\text {IN }}=V_{\text {IL MIN to }} \\ & V_{\text {IHMAX }} \end{aligned}$ |
| CE Input Leakage Current |  | ${ }^{\text {ILC }}$ |  | 10 | $\mu \mathrm{A}$ | $V_{\text {IN }}=V_{\text {ILC }}$ MIN to $V_{\text {IHC }}$ MAX |
| Output Leakage Current |  | ${ }^{1} \mathrm{LO}$ |  | 10 | $\mu \mathrm{A}$ | $\begin{aligned} & C E=V_{\text {ILC }} \text { or } \\ & \overline{C S}=V_{\text {IH }} \\ & V_{O}=0 V \text { to } 5.25 \mathrm{~V} \end{aligned}$ |
| VDD Supply Current during CE off |  | ${ }^{\text {I }}$ DDOFF |  | 200 | $\mu \mathrm{A}$ | $C E=-1.0 \mathrm{~V}$ to 0.6 V |
| $V_{\text {DD }}$ Supply Current during CE on |  | IDDON |  | 20 | mA | $C E=V_{\text {IHC }}$ |
| Average $V_{D D}$ Current | $\mu$ PD410 | IDDAV |  | 24 | mA | Minimum Cycle Time |
|  | $\mu$ PD410.1 | IDDAV |  | 32 | mA |  |
|  | $\mu$ PD410-2 | IDDAV |  | 45 | mA |  |
|  | $\mu$ PD410-3 | I DDAV |  | 45 | mA |  |
| $\mathrm{V}_{\text {BB }}$ Supply Current |  | ${ }^{\prime} \mathrm{BB}$ |  | 100 | $\mu \mathrm{A}$ |  |
| $V_{C C}$ Supply Current during CE off |  | ${ }^{\prime} \mathrm{CCOFF}$ |  | 15 | mA | $\begin{aligned} & C E=V_{\text {ILC }} \text { or } \\ & C S=V_{I H} \end{aligned}$ |
| Average $\mathrm{V}_{\text {CC }}$ Current |  | ${ }^{\text {I CCAV }}$ |  | 21 | mA | DOUT $=$ No load |
| Input Low Voltage |  | $V_{\text {IL }}$ | -1.0 | 0.6 | V |  |
| Input High Voltage |  | $\mathrm{V}_{\text {IH }}$ | 2.4 | $\mathrm{V}_{\mathrm{CC}}+1$ | V |  |
| CE Input Low Voltage |  | $V_{\text {ILC }}$ | -1.0 | 0.6 | $\checkmark$ |  |
| CE Input High Voltage |  | $\mathrm{V}_{1} \mathrm{HC}$ | $V_{D D^{-1}}$ | $\mathrm{V}_{\text {DD }}+1$ | V |  |
| Output Low Voltage |  | $\mathrm{V}_{\mathrm{OL}}$ | 0 | 0.4 | $\checkmark$ | ${ }^{1} \mathrm{OL}=3.2 \mathrm{~mA}$ |
| Output High Voltage |  | VOH | 2.4 | $\mathrm{V}_{\mathrm{CC}}$ | V | ${ }^{1} \mathrm{OH}=2.0 \mathrm{~mA}$ |

$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Address Capacitance | $\mathrm{C}_{\text {AD }}$ |  | 4 | 6 | pF | $\mathrm{V}_{\text {IN }}=V_{\text {SS }}$ |
| $\overline{\text { CS }}$ Capacitance | CCS |  | 4 | 6 | pF | $V_{\text {IN }}=V_{\text {SS }}$ |
| DIN Capacitance | CIN |  | 8 | 10 | pF | $V_{\text {IN }}=V_{\text {SS }}$ |
| $\overline{\text { DOUT }}$ Capacitance | COUT |  | 5 | 7 | pF | $V_{\text {OUT }}=V_{\text {SS }}$ |
| WE Capacitance | CWE |  | 8 | 10 | pf | $V_{\text {IN }}=V_{\text {SS }}$ |
| CE Capacitance | CCE |  | 18 | 27 | pf | $V_{\text {IN }}=V_{S S}$ |

## ABSOLUTE MAXIMUM

 RATINGS*DC CHARACTERISTICS

CAPACITANCE
$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

| PARAMETER | SYMBOL | LIMITS |  |  |  |  |  |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 410 |  | 410-1 |  | 410.2 |  | 410.3 |  |  |  |
|  |  | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX |  |  |
| READ, WRITE AND READ-MODIFY-WRITE |  |  |  |  |  |  |  |  |  |  |  |
| Address to CE Set Up Time | ${ }^{t} \mathrm{AC}$ | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Address Hold <br> Time | ${ }^{\text {t }} \mathrm{AH}$ | 90 |  | 70 |  | 50 |  | 50 |  | ns |  |
| CE Off Time | ${ }^{\mathrm{t}} \mathrm{C}$ | 190 |  | 140 |  | 90 |  | 90 |  | ns |  |
| CE Transition Time | ${ }^{\text {T }}$ | 0 | 40 | - 0 | 40 | 0 | 40 | 0 | 40 | ns |  |
| CE off to Output High Impedance State | ${ }^{\text {t }}$ CF | 0 | 90 | 0 | 90 | 0 | 90 | 0 | 90 | ns |  |
| READ |  |  |  |  |  |  |  |  |  |  |  |
| Cycle Time | ${ }^{t} \mathrm{CY}$ | 440 |  | 330 |  | 220 |  | 220 |  | ns |  |
| CE on Time | ${ }^{\text {t }} \mathrm{CE}$ | 230 | 2000 | 170 | 2000 | 110 | 2000 | 110 | 2000 | ns | 10 s |
| CE Output Delay | ${ }^{\text {t }} \mathrm{CO}$ |  | 190 | . | 140 |  | 90 |  | 80 | ns | $\begin{aligned} & \text { Load }=50 \mathrm{pF}+1 \mathrm{TTL} . \\ & \text { Ref }=2.0 \text { or } 0.8 \mathrm{~V} \end{aligned}$ |
| Access <br> Time | ${ }^{\text {t }} \mathrm{ACC}$ |  | 200 |  | 150 |  | 100 |  | 90 | ns | $\begin{aligned} & t_{A C C}={ }^{t} A C \\ & +{ }^{t} C O+{ }^{t} T \end{aligned}$ |
| CE to $\overline{W E}$ | ${ }^{\text {t W L }}$ | 20 |  | 20 |  | 20 |  | 20 |  | ns |  |
| WE to CE on | twC | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| WRITE |  |  |  |  |  |  |  |  |  |  |  |
| Cycle Time | ${ }^{\text {c }} \mathrm{C}$ | 440 |  | 330 |  | 220 |  | 220 |  | ns | $\mathrm{t}_{\mathrm{T}}=10 \mathrm{~ns}$ |
| CE on Time | ${ }^{\text {t }} \mathrm{CE}$ | 230 | 2000 | 170 | 2000 | 110 | 2000 | 110 | 2000 | ns |  |
| $\overline{W E}$ to CE off | tw | 130 |  | 100 |  | 70 |  | 70 |  | ns |  |
| CE to WE | ${ }^{\text {c }} \mathrm{CW}$ | 130 |  | 100 |  | 70 |  | 70 |  | ns |  |
| DIN to WE Set Up | ${ }^{\text {t }}$ W | 0 |  | 0 |  | 0 |  | 0 |  | ns | $\because$ |
| DIN Hold Time | ${ }^{\text {t }} \mathrm{DH}$ | 60 |  | 40 |  | 20 |  | 20 | $\because$ | ns | - |
| WE Pulse Width | ${ }^{\text {tWP }}$. | 130 |  | 100 |  | 70 |  | 70 |  | ns | $\cdots{ }^{\prime \prime}$ |
| READ-MODIFY-WRITE |  |  |  |  |  |  |  |  |  |  |  |
| Read-ModifyWrite (RMW) Cycle Time | ${ }^{\text {tRWC }}$ | 560 |  | 420 |  | 280 |  | 280 |  | ns | ${ }^{\mathrm{t}} \mathrm{~T}=10 \mathrm{~ns}$ |
| CE Width During RMW | ${ }^{\text {t CRW }}$ | 350 | 2000 | 260 | 2000 | 170 | 2000 | 170 | 2000 | ns | : |
| $\overline{W E}$ to CE on | ${ }^{\text {tw }}$ W | 0 |  | 0 |  | 0 |  | 0 |  | ns | ? |
| $\overline{W E}$ to CE off | tw | 130 |  | 100 |  | 70 |  | 70 |  | ns |  |
| $\bar{W} E$ Pulse Width | ${ }^{\text {t }}$ WP | 130 |  | 100 |  | 70 |  | 70 |  | ns |  |
| DIN to $\overline{W E}$ Set Up | ${ }^{\text {t }}$ W | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| $\begin{aligned} & \text { Din Hold } \\ & \text { Time } \\ & \hline \end{aligned}$ | ${ }^{\text {t }} \mathrm{DH}$ | 60 |  | 40 |  | 20 |  | 20 |  | ns |  |
| CE to Output Delay | ${ }^{\text {t }} \mathrm{CO}$ |  | 190 |  | 140 |  | 90 |  | 80 | ns | $\begin{aligned} & \text { Load }=50 \mathrm{pF}+1 \mathrm{TTL}, \\ & \text { Ref }=2.0 \text { or } 0.8 \mathrm{~V} \end{aligned}$ |
| Access Time | ${ }^{\text {t }} \mathrm{ACC}$ |  | 200 |  | 150 |  | 100 |  | 90 | ns | $\begin{aligned} & t_{A C C}={ }^{t_{A C}} \\ & +{ }^{t} C O=t^{t} T \end{aligned}$ |

## PACKAGE OUTLINE $\mu$ PD410D




Notes: (1) $\mathrm{V}_{\mathrm{DD}}-\mathbf{2 V}$ is the reference level for measuring timing of CE .
(2) $\mathrm{V}_{\mathrm{SS}}+2 \mathrm{~V}$ is the reference level for measuring timing of CE .
(3) $V_{\text {IHMIN }}$ is the reference level for measuring timing of the addresses, CS, WE and DIN.
(4) VILMAX is the reference level for measuring timing of the addresses, $\overline{\mathrm{CS}}, \mathrm{WE}$ and DIN.
(5) $\mathrm{V}_{\mathrm{SS}}+2.0 \mathrm{~V}$ is the reference level for measuring timing of $\overline{\mathrm{DOUT}}$.
(6) $\mathrm{V}_{\mathrm{SS}}+0.8 \mathrm{~V}$ is the reference level for measuring timing of $\overline{\mathrm{DOUT}}$.
(7) $\overline{W E}$ must be at $V_{I H}$ until end of tco.

The information presented in this document is believed to be accurate and reliable. The information is subject to change without notice.

## $4096 \times 1$ STATIC NMOS RAM

The $\mu$ PD4 104 is a high performance 4 K static RAM. Organized as $4096 \times 1$, it uses a combination of static storage cells with dynamic input/output circuitry to achieve high speed and low power in the same device. Utilizing NMOS technology, the $\mu$ PD4104 is fully TTL compatible and operates with a single $+5 \mathrm{~V} \pm 10 \%$ supply.

FEATURES - Fast Access Time - 150 ns ( $\mu$ PD4104-3).

- Very Low Stand-By Power - 28 mW Max.
- Low $V_{C C}$ Data Retention Mode to +3 Volts.
- Single $+5 \mathrm{~V} \pm 10 \%$ Supply.
- Fully TTL Compatible.
- Available in 18 Pin Plastic and Ceramic Dual-in-Line Packages.
- 4 Performance Ranges:

|  |  |  | SUPPLY CURRENT |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | ACCESS TIME | R/W CYCLE | ACTIVE | STANDBY | LOW VCC |
| $\mu$ PD4104 | 300 ns |  | 21 mA | 5 mA | 5 mA |
| $\mu$ PD4104-1 | 250 ns | 385 ns | 21 mA | 5 mA | 3.3 mA |
| $\mu$ PD4104-2 | 200 ns | 310 ns | 25 mA | 5 mA | 3.3 mA |
| $\mu$ PD4104-3 | 150 ns | 260 ns | 40 mA | 5 mA | 3.3 mA |

PIN CONFIGURATION


| PIN NAMES |  |
| :--- | :--- |
| $A_{0}-A_{11}$ | Address Inputs |
| $\overline{C E}$ | Chip Enable |
| $D_{I N}$ | Data Input |
| $D_{\text {OUT }}$ | Data Output |
| $V_{S S}$ | Ground |
| $V_{C C}$ | Power (+5V) |
| $\overline{W E}$ | Write Enable |



Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature (Plastic Package) . . . . . . . . . . . . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
(Ceramic Package) : . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -1 to +7 Volts (1)
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Watt
Short Circuit Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA
Note: (1) With respect to $V_{S S}$
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

| PARAMETER |  | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Supply Voltage |  |  | $\mathrm{V}_{\mathrm{CC}}$ | 4.5 | 5.0 | 5.5 | V | (1) |
| Logic "1" Voltage All Inputs |  | $\mathrm{V}_{\text {IH }}$ | 2.2 | -3 | 7.0 | V |  |  |
| Logic "0" Voltage All Inputs |  | $V_{\text {IL }}$ | -1.0 |  | 0.8 | V |  |  |
| Average $\mathrm{V}_{\mathrm{CC}}$ Power Supply Current | $\mu$ PD4104 | ICC1 |  |  | 21 | mA | (2) |  |
|  | $\mu$ PD4104-1 | ICC1 |  |  | 21 | mA |  |  |
|  | $\mu$ PD4104-2 | ICC1 |  |  | 25 | mA |  |  |
|  | $\mu$ PD4104-3 | ICC1 |  |  | 40 | mA |  |  |
| Standby VCC Power Supply Current |  | ICC2 |  |  | 5 | mA | (3) |  |
| Input Leakage Current (Any Input) |  | 1 IL | -10 |  | 10 | $\mu \mathrm{A}$ | (4) |  |
| Output Leakage Current |  | 1 OL | -10 |  | 10 | $\mu \mathrm{A}$ | (3) (5) |  |
| Output Logic " 1 " Voltage IOUT -500 $\mu \mathrm{A}$ |  | $\mathrm{VOH}^{\text {O }}$ | 2.4 | . |  | V |  |  |
| Output Logic " 0 " Voltage IOUT 5 mA |  | $\mathrm{V}_{\mathrm{OL}}$ |  |  | 0.4 | V |  |  |


| PARAMETER | SYMBOL | LIMITS |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | TYP | MAX | UNIT |  |  |
| Input Capacitance |  |  | 4 | 6 | pF | (7) |
| Output Capacitance | COUT |  | 6 | 7 | pF | (7) |

Notes: (1) All voltages referenced to $V_{S S}$
(2) ${ }^{I} \mathrm{CC} 1$ is related to precharge and cycle times. Guaranteed maximum values for ${ }^{{ }^{\mathrm{I}} \mathrm{CC} 1}$ may be calculated by

$$
I_{C C 1}|m a|=\left(5 t_{p}+13\left(t_{C}-t_{p}\right)+3420\right) \quad t_{C}
$$

where $t_{p}$ and $t_{C}$ are expressed in nanoseconds. Equation is referenced to the -2 device, other devices derate to the same curve.
(3) Output is disabled (open circuit), $\overline{C E}$ is at logic 1.
(4) All device pins at 0 volts except pin under test at $0 . V_{I N}=5.5$ volts.
(5) $0 V \leqslant V_{\text {OUT }} \leqslant+5.5 \mathrm{~V}$.
(6) During power up, $\overline{C E}$ and $\overline{W E}$ must be at $V_{I H}$ for minimum of 2 ms after $V_{C C}$ reaches 4.5 V , before a valid memory cycle can be accomplished.
(7) Effective capacitance calculated from the equation C $1 \frac{\Delta t}{\Delta V}$ with $\Delta V$ equal to $3 V$ and $\mathrm{V}_{\mathrm{CC}}$ nominal.

AC CHARACTERISTICS (2) (7)
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$ (1)

| PARAMETER | SYMBOL | LIMITS |  |  |  |  |  |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 4104 |  | 4104.1 |  | 41042 |  | $4104-3$ |  |  |  |
|  |  | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX |  |  |
| Read or Write Cycle Time | ${ }^{\text {t }}$ C | 460 |  | 385 |  | 310 |  | 250 |  | ns | (8) |
| Random Access | ${ }^{\text {t }}$ AC |  | 300 |  | 250 |  | 200 |  | 150 | ns | (3) |
| Chip Enable Pulse Width | ${ }^{\text {t }}$ CE | 300 | 10,000 | 250 | 10,000 | 200 | 10,000 | 150 | 10,000 | ns |  |
| Chip Enable Precharge Time | tp | 150 |  | 125 |  | 100 |  | 100 |  | ns |  |
| Address Hold Time | ${ }^{\text {t }}$ A ${ }^{\text {A }}$ | 165 |  | 135 |  | 110 |  | 95 |  | ns |  |
| Address Set-Up Time | ${ }^{\text {t }}$ AS | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Output Buffer Turn-Off Delay | toff | 0 | 75 | 0 | 65 | 0 | 50 | 0 | 50 | ns | (9) |
| Read Command Set-Up Time | tRS | 0 |  | 0 |  | 0 |  | 0 |  | ns | (4) |
| Write Enable Set-Up Time | tws | -20 |  | -20 |  | -20 |  | -20 |  | ns | (4) |
| Data Input Hold Time Referenced to WE | ${ }^{\text {T DIH }}$ | 25 |  | 25 |  | 25 |  | 20 |  | ns |  |
| Write Enabled Pulse Width | ${ }^{\text {tww }}$ | 90 |  | 75 |  | 60 |  | 55 |  | ns |  |
| Modify Time | ${ }^{\text {tMOD }}$ | 0 | 10,000 | 0 | 10,000 | 0 | 10,000 | 0 | 10,000 | ns | (5) |
| $\overline{\mathrm{WE}}$ to $\overline{\mathrm{CE}}$ Precharge Lead Time | tWPL | 105 |  | 85 |  | 70 |  | 65 |  | ns | (6) |
| Data Input Set-Up Time | tos | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write Enable Hold Time | ${ }^{\text {twh }}$ | 225 |  | 185 |  | 150 |  | 115 |  | ns |  |
| Transition Time | $t$ | 5 | 50 | 5 | 50 | 5 | 50 | 5 |  | ns |  |
| Read-Modify-Write Cycle Time | trmw | 565 |  | 470 |  | 380 |  | 325 |  | ns | (10) |

Notes: (1) All voltages referenced to $\mathrm{V}_{\mathrm{SS}}$
(2) During power up, $\overline{\mathrm{CE}}$ and $\overline{\mathrm{WE}}$ must be at $\mathrm{V}_{I H}$ for minimum of 2 ms after $V_{C C}$ reaches 4.5 V , before a valid memory cycle can be accomplished.
(3) Measured with load circuit equivalent to 2 TTL loads and $\mathrm{CL}=100 \mathrm{pF}$.
(4) If $\overline{W E}$ follows $\overline{C E}$ by more than twS then data out may not remain open circuited.
(5) Determined by user. Total cycle time cannot exceed tCE max.
(6) Data-in set-up time is referenced to the later of the two falling clock edges $\overline{C E}$ or $\overline{W E}$.
(7) AC measurements assume $\mathrm{tT}=5 \mathrm{~ns}$. Timing points are taken as $\mathrm{V}_{I \mathrm{~L}}=0.8 \mathrm{~V}$ and $\mathrm{V}_{I H}=2.2 \mathrm{~V}$ on the inputs and $\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$ on the output waveform.
(8) ${ }^{T} C={ }^{T} C E+t p+2 t T$.
(9) The true level of the output in the open circuit condition will be determined totally by output load conditions. The output is guaranteed to be open circuit within toff.
(10) $\mathrm{t}_{\mathrm{RMW}}=\mathrm{t}_{\mathrm{AC}}+\mathrm{t}_{W} \mathrm{PL}+\mathrm{t}_{\mathrm{P}}+3 \mathrm{t}_{\mathrm{T}}+\mathrm{t}_{\mathrm{M}}$.

STANDBY
CHARACTERISTICS
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

| PARAMETER | SYMBOL | LIMITS |  |  |  |  |  |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 4104 |  | 4104-1 |  | 4104-2 |  | 4104-3 |  |  |  |
|  |  | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX |  |  |
| $V_{\text {cc }}$ In Standby | $V_{\text {PD }}$ | 3.0 |  | 3.0 |  | 3.0 |  | 3.0 |  | V |  |
| Standby Current | IPD |  | 5.0 |  | 3.3 |  | 3.3 |  | 3.3 | mA | (1) |
| Power Supply Fall Time | $\mathrm{T}_{\mathrm{F}}$ | 100 |  | 100 |  | 100 |  | 100 |  | $\mu \mathrm{s}$ |  |
| Power Supply Rise Time | $T_{R}$ | 100 |  | 100 |  | 100 |  | 100 |  | $\mu \mathrm{s}$ |  |
| Chip Enable Pulse CE Width | TCE | 300 |  | 250 |  | 200 |  | 150 |  | $\mu \mathrm{s}$ |  |
| Chip Enable Precharge to Power Down Time | TPPD | 150 |  | 125 |  | 100 |  | 100 |  | ns |  |
| "I" Level CE Min Level | $\mathrm{V}_{\text {IH }}$ | 2.2 |  | 2.2 |  | 2.2 |  | 2.2 |  | V |  |
| Standby Recovery Time | TRC | 500 |  | 500 |  | 500 |  | 500 |  | $\mu \mathrm{s}$ |  |

Note: (1) Maximum value for $\mathrm{V}_{\mathrm{PD}}$ minimum value $(=3 \mathrm{~V}$ ).

POWER DOWN



TIMING WAVEFORMS (CONT.)

READ-MODIFY-WRITE CYCLE
$\overline{C E}$
ADD

DIN

Dout


## OPERATIONAL <br> DESCRIPTION

## READ CYCLE

The selection of one of the possible 4096 bits is made by virtue of the 12 address bits presented at the inputs. These are latched into the chip by the negative going edge of chip enable ( $\overline{\mathrm{CE}}$ ). If the write enable ( $\overline{\mathrm{WE}}$ ) input is held at a high level $\left(\mathrm{V}_{\mathrm{IH}}\right)$ while the $\overline{\mathrm{CE}}$ input is clocked to a low level ( $V_{I L}$ ), a read operation will be performed. At the access time ( $\mathrm{t} A C$ ), valid data will appear at the output. Since the output is unlatched by a positive transition of $\overline{C E}$, it will be in the high impedance state from the previous cycle until the access time. It will go to the high impedance state again at the end of the current cycle when $\overline{\mathrm{CE}}$ goes high.

The address lines may be set up for the next cycle any time after the address hold time has been satisfied for the current cycle.

## WRITE CYCLE

Data to be written into a selected cell is latched into the chîp by the later negative transition of $\overline{\mathrm{CE}}$ or $\overline{W E}$. If $\overline{\mathrm{WE}}$ is brought low before $\overline{\mathrm{CE}}$, the cycle is an "Early Write" cycle, and data will be latched by $\overline{\mathrm{CE}}$. If $\overline{\mathrm{CE}}$ is brought low before $\overline{\mathrm{WE}}$, as in a Read-Modify-Write cycle, then data will be latched by $\overline{W E}$.

If the cycle is an "Early Write" cycle, the output will remain in the high impedance state. For a Read-Modify-Write cycle; the output will be active for the Modify and Write portions of the memory cycle until $\overline{\mathrm{CE}}$ goes high. If $\overline{\mathrm{WE}}$ is brought low after $\overline{\mathrm{CE}}$ but before the access time, the state of the output will be undefined. The desired data will be written into the cell if data-in is valid on the leading edge of $\overline{W E}, \mathrm{~T} I H$ is satisfied, and $\overline{W E}$ occurs prior to $\overline{C E}$ going high by at least the minimum lead time (tWPL).

## READ-MODIFY-WRITE

Read and Write cycles can be combined to allow reading of a selected location and then modifying that data within the same memory cycle. Data is read at the access time and modified during a period defined by the user. New data is written between WE low and the positive transition of $\overline{C E}$. Data out will remain valid until the rising edge of $\overline{C E} . A$ minimum R-M-W cycle time can be calculated by $t_{R M W}=t_{A C}+t_{M O D}+t W P L+t P+$ 3 t ; where tRMW is the cycle time, $\mathrm{t} A C$ is the access time, tMOD is the user defined modify time, $t W P L$ is the $\overline{W E}$ to $\overline{C E}$ lead time, $t p$ is the $\overline{C E}$ high time, and $t T$ is one transition time.

## POWER DOWN MODE

In power down, data may be retained indefinitely by maintaining $\mathrm{V}_{\mathrm{CC}}$ at +3 V . However, prior to $V_{C C}$ going below $V_{C C}$ minimum ( $\leqslant 4.5 \mathrm{~V}$ ) $\overline{\mathrm{CE}}$ must be taken high ( $\mathrm{V}_{1 \mathrm{H}}=2.2 \mathrm{~V}$ ) and held for a minimum time period tPPD and maintained at $\mathrm{V}_{1 \mathrm{H}}$ for the entire standby period. After power is returned to $\mathrm{V}_{\mathrm{CC}} \min$ or above, $\overline{\mathrm{CE}}$ must be held high for a minimum of $\mathrm{t}_{\mathrm{RC}}$ in order that the device may operate properly. See power down waveforms herein. Any active cycle in progress prior to power down must be completed so that tCE min is not violated.


PACKAGE OUTLINES $\mu P D 4104 C / D$

Plastic

| ITEM | MILLIMETERS | INCHES |
| :--- | :--- | :--- |
| A | 23.2 MAX. | 0.91 MAX. |
| B | 1.44 | 0.055 |
| C | 2.54 | 0.1 |
| D | 0.45 | 0.02 |
| E | 20.32 | 0.8 |
| F | 1.2 | 0.06 |
| G | 2.5 MIN. | 0.1 MIN. |
| H | 0.5 MIN. | 0.02 MIN. |
| I | 4.6 MAX. | 0.18 MAX. |
| J | 5.1 MAX. | 0.2 MAX. |
| K | 7.62 | 0.3 |
| L | 6.7 | 0.26 |
| M | 0.25 | 0.01 |



Cerdip

| ITEM | MILLIMETERS | INCHES |
| :---: | :---: | :---: |
| A | 23.2 MAX. | 0.91 MAX . |
| B | 1.44 | 0.055 |
| C | 2.54 | 0.1 |
| D | 0.45 | 0.02 |
| E | 20.32 | 0.8 |
| F | 1.2 | 0.06 |
| G | 2.5 MIN . | 0.1 MIN . |
| H | 0.5 MIN . | 0.02 MIN . |
| 1 | 4.6 MAX. | 0.18 MAX . |
| $J$ | 5.1 MAX. | 0.2 MAX . |
| K | 7.62 | 0.3 |
| L | 6.7 | 0.26 |
| M | 0.25 | 0.01 |

## 4096 BIT (1024 $\times 4$ BITS) STATIC RAM

DESCRIPTION The NEC $\mu$ PD2114L is a 4096 bit static Random Access Memory organized as 1024 words by 4 bits using N-channel Silicon-gate MOS technology. It uses fully DC stable (static) circuitry throughout, in both the array and the decoding, and therefore requires no clocks or refreshing to operate and simplify system design. The data is read out nondestructively and has the same polarity as the input data. Common input/output pins are provided.

The $\mu$ PD2114L is designed for memory applications where high performance, low cost, large bit storage, and simple interfacing are important design objectives. The $\mu$ PD2114L is placed in an 18-pin package for the highest possible density.

It is directly TTL compatible in all respects: inputs, outputs, and a single +5 V supply. A separate Chip Select ( $\overline{\mathrm{CS}}$ ) lead allows easy selection of an individual package when outputs are OR-Tied.

FEATURES - Access Time: Selection from 150-450 ns

- Single +5 Volt Supply
- Directly TTL Compatible - All Inputs and Outputs
- Completely Static - No Clock or Timing Strobe Required
- Low Operating Power - Typically $0.06 \mathrm{~mW} /$ Bit
- Identical Cycle and Access Times
- Common Data Input and Output using Three-State Output
- High Density 18 -pin Plastic and Ceramic Packages
- Replacement for 2114L and Equivalent Devices


PIN NAMES

| $A_{0} \cdot A_{9}$ | Address Inputs |
| :--- | :--- |
| $\overline{W E}$ | Write Enable |
| $\overline{\mathrm{CS}}$ | Chip Select |
| $\mathrm{I} / \mathrm{O}_{1} \cdot 1 / \mathrm{O}_{4}$ | Data Input/Output |
| $\mathrm{V}_{\mathrm{CC}}$ | Power (+5V) |
| GND | Ground |



| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input Load Current (All Input Pins) | ${ }^{\text {L }}$ I |  |  | 10 | $\mu \mathrm{A}$ | $\mathrm{V}_{1 \mathrm{~N}}=0$ to 5.5 V |
| I/O Leakage Current | ${ }^{\prime}$ LO |  |  | 10 | $\mu \mathrm{A}$ | $\overline{\mathrm{CS}}=2 \mathrm{~V}, \mathrm{~V}_{1 / \mathrm{O}}=0.4 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}$ |
| Power Supply Current | 'CC1 |  |  | 65 | mA | $\begin{aligned} & V_{I N}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{I} / \mathrm{O}}=0 \mathrm{~mA}, \\ & T_{\mathrm{a}}=25^{\circ} \mathrm{C} \end{aligned}$ |
| Power Supply Current | ${ }^{1} \mathrm{CC} 2$ |  |  | 70 | mA | $\begin{aligned} & V_{1 \mathrm{~N}}=5.5 \mathrm{~V}, \mathrm{I}_{1 / \mathrm{O}}=0 \mathrm{~mA}, \\ & T_{a}=0^{\circ} \mathrm{C} \end{aligned}$ |
| Input Low Voltage | $V_{\text {IL }}$ | -0.5 |  | 0.8 | V |  |
| Input High Voltage | $\mathrm{V}_{\text {IH }}$ | 2.0 |  | 6.0 | V |  |
| Output Low Current | ${ }^{\prime} \mathrm{OL}$ | 3.2 |  |  | mA | $\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$ |
| Output High Current | ${ }^{\mathrm{I}} \mathrm{OH}$ |  |  | -1.0 | mA | $\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ |
|  |  |  |  |  |  | $\mathrm{V}_{\mathrm{OH}}=2.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ |

Operating Temperature
$-10^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Storage Temperature (Ceramic) $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
(Plastic) $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage on any Pin $\qquad$
Power Dissipation 1 Watt
Note: (1) With respect to ground.
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input/Output Capacitance | $\mathrm{C}_{1 / \mathrm{O}}$ |  |  | 8 | pf | $\mathrm{V}_{1 / \mathrm{O}}=0 \mathrm{~V}$ |
| Input Capacitance | CIN |  |  | 5 | pf | $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ |

$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$ unless otherwise noted.

ABSOLUTE MAXIMUM RATINGS*

CAPACITANCE

AC CHARACTERISTICS
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$, unless otherwise noted.

| PARAMETER | SYMBOL | LIMITS |  |  |  |  |  |  |  |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 2114L |  | 2114L-1 |  | 2114L-2 |  | 2114L-3 |  | 2114L.5 |  |  |  |
|  |  | MIN | MAX |  |  |
| READ CYCLE |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Read Cycle Time | ${ }^{\text {tra }}$ | 450 |  | 300 |  | 250 |  | 200 |  | 150 |  | ns | $\mathrm{t}_{\mathrm{T}}=\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}$ |
| Access Time | ${ }^{t} \mathrm{~A}$ |  | 450 |  | 300 |  | 250 |  | 200 |  | 150 | ns | $C_{L}=100 \mathrm{pF}$ |
| Chip Selection to Output Valid | ${ }^{\text {t }} \mathrm{CO}$ |  | 120 |  | $100$ |  | 80 |  | 70 |  | 60 | ns | $\text { Load = } 1 \mathrm{TTL} \text { gate }$ |
| Chip Selection to Output Active | ${ }^{t} \mathrm{C} X$ | 20 |  | 20 |  | 20 |  | 20 |  | 20 |  | ns | $\begin{aligned} & \text { Input Levels }=0.8 \\ & \text { and } 2.0 \mathrm{~V} \end{aligned}$ |
| Output 3-State from Deselection |  |  | 100 |  | 80 |  | 70 |  | 60 |  | 50 | ns | $V_{\text {ref }}=1.5 \mathrm{~V}$ |
| Output Hold from Address Change | ${ }^{\text {t OHA }}$ | 50 |  | 50 |  | 50 |  | 50 |  | 50 |  | ns |  |
| WRITE CYCLE |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Write Cycle Time | ${ }^{\text {t }}$ WC | 450 |  | 300 |  | 250 |  | 200 |  | 150 |  | ns | $\mathrm{t}_{\mathrm{T}}=\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}$ |
| Write Time | ${ }^{\text {t }}$ W | 200 |  | 150 |  | 120 |  | 120 |  | 80 |  | ns | $C_{L}=100 \mathrm{pF}$ |
| Write Release Time | ${ }^{t}$ WR | 0 | . | 0 |  | 0 |  | 0 |  | 0 |  | ns | Load $=1 \mathrm{TTL}$ gate |
| Output 3-State from Write | ${ }^{\text {totw }}$ |  | 100 |  | 80 |  | 70 |  | 60 |  | 50 | ns | $\begin{aligned} & \text { Input Levels }=0.8 \\ & \text { and } 2.0 \mathrm{~V} \end{aligned}$ |
| Data to Write Time Overlap | ${ }^{\text {t }}$ WW | 200 |  | 150 |  | 120 |  | 120 |  | 80 |  | ns | $v_{\mathrm{ref}}=1.5 \mathrm{~V}$ |
| Data Hold from Write Time | ${ }^{1} \mathrm{DH}$ | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns | - |
| Address to Write Setup Time | taw | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |

TIMING WAVEFORMS


NORMALIZED ACCESS TIME VS.
SUPPLY VOLTAGE


NORMALIZED POWER SUPPLY CURRENT VS. SUPPLY VOLTAGE


OUTPUT SINK CURRENT VS.
OUTPUT VOLTAGE


TYPICAL OPERATING CHARACTERISTICS

NORMALIZED ACCESS TIME VS.
AMBIENT TEMPERATURE


NORMALIZED POWER SUPPLY CURRENT VS. AMBIENT TEMPERATURE


OUTPUT SOURCE CURRENT VS. OUTPUT VOLTAGE


PACKAGE OUTLINES $\mu$ PD2114LC/D

$\mu$ PD2114LC (Plastic)

| ITEM | MILLIMETERS | INCHES |
| :--- | :--- | :--- |
| A | 23.2 MAX. | 0.91 MAX. |
| B | 1.44 | 0.055 |
| C | 2.54 | 0.1 |
| D | 0.45 | 0.02 |
| E | 20.32 | 0.8 |
| F | 1.2 | 0.06 |
| G | 2.5 MIN. | 0.1 MIN. |
| H | 0.5 MIN. | 0.02 MIN. |
| I | 4.6 MAX. | 0.18 MAX. |
| J | 5.1 MAX. | 0.2 MAX. |
| K | 7.62 | 0.3 |
| L | 6.7 | 0.26 |
| M | 0.25 | 0.01 |



| $\mu$ PD2114LD (Cerdip) |  |  |
| :---: | :---: | :--- |
| ITEM | MILLIMETERS | INCHES |
| A | 23.2 MAX. | 0.91 MAX. |
| B | 1.44 | 0.055 |
| C | 2.54 | 0.1 |
| D | 0.45 | 0.02 |
| E | 20.32 | 0.8 |
| F | 1.2 | 0.06 |
| G | 2.5 MIN. | 0.1 MIN. |
| H | 0.5 MIN. | 0.02 MIN. |
| I | 4.6 MAX. | 0.18 MAX. |
| J | 5.1 MAX. | 0.2 MAX. |
| K | 7.62 | 0.3 |
| L | 6.7 | 0.26 |
| M | 0.25 | 0.01 |

NOTES

## $4096 \times 1$ BIT STATIC RAM.

DESCRIPTION The $\mu$ PD2147 is a 4096 -bit static Random Access Memory organized as 4096 words by 1-bit. Using a scaled NMOS technology, it uses a uniquely innovative design approach which provides the ease-of-use features associated with non-clocked static memories and the reduced standby power dissipation without the need for clocks, address setup and hold times, nor reduced data rates due to cycle times that are longer than access times. $\overline{\mathrm{CS}}$ controls the power down feature. In less than a cycle time after $\overline{\mathrm{CS}}$ goes high deselecting the $\mu$ PD2147 - the part automatically reduces its power requirements and remains in this lower power standby mode as long as $\overline{\mathrm{CS}}$ remains high. This device feature results in system power savings as great as $85 \%$ in larger systems, where the majority of devices are deselected.
The $\mu$ PD2147 is placed in an 18 -pin ceramic package configured with the industry standard pinout. It is directly TTL compatible in all respects: inputs, outputs, and a single +5 V supply. The data is read out non-destructively and has the same polarity as the input data. A data input and a separate three-state output is used.
FEATURES

- Scaled NMOS Technology
- Completely Static Memory - No Clock or Timing Strobe Required
- Equal Access and Cycle Times
- Single +5V Supply
- Automatic Power-Down
- High Density 18-Pin Package
- Directly TTL Compatible - All Inputs and Outputs
- Separate Data Input and Output
- Three-State Output
- Available in a Standard 18-Pin Ceramic Package
- 2 Performance Ranges:

|  | MAX | SUPPLY CURRENT |  |
| :---: | :---: | :---: | :---: |
|  | ACCESS TIME | ACTIVE | STANDBY |
| $\mu$ PD2147-2 | 70 ns | 160 mA | 20 mA |
| $\mu$ PD2147-3 | 55 ns | 160 mA | 20 mA |

PIN CONFIGURATION


PIN NAMES

| $\mathrm{A}_{0} \cdot \mathrm{~A}_{11}$ | Address Inputs |
| :--- | :--- |
| $\overline{\mathrm{WE}}$ | Write Enable |
| $\overline{\mathrm{CS}}$ | Chip Select |
| $\mathrm{DIN}_{1 N}$ | Data Input |
| $\mathrm{D}_{\mathrm{OUT}}$ | Data Output |
| VCC | Power (+5V) |
| GND | Ground |

TRUTH TABLE

| $\overline{\mathbf{C S}}$ | $\overline{\text { WE }}$ | MODE | OUTPUT | POWER |
| :---: | :---: | :--- | :---: | :--- |
| H | X | Not Selected | High Z | Standby |
| L | L | Write | High Z | Active |
| L | H | Read | DOUT | Active |



Operating Temperature
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin -1 to +7 Volts (1) DC Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA

Note: (1) with respect to ground
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{VCC}=+5 \mathrm{~V} \pm 10 \%$, unless otherwise noted. (1)

| PARAMETER | SYMBOL | LIMITS |  |  |  |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PD2147-3 |  |  | $\mu$ PD2147-2 |  |  |  |  |
|  |  | MIN | TYP(2) | MAX | MIN | TYP(2) | MAX |  |  |
| Input Load Current (All Input Pins) | ${ }^{1} \mathrm{~L} /$ |  | 0.01 | 10 |  | 0.01 | 10 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{C C}=\operatorname{Max}, V_{I N}=G N D \text { to } \\ & V_{C C} \end{aligned}$ |
| Output Leakage Current | $\|\mathrm{LLO}\|$ |  | 0.01 | 10 |  | 0.01 | 10 | $\mu \mathrm{A}$ | $\begin{aligned} & \overline{C S}=V_{I H}, V_{C C}=\operatorname{Max}, \\ & V_{O U T}=G N D \text { to } V_{C C} \end{aligned}$ |
|  |  |  | 100 | 150 |  | 100 | 150 | mA |  |
|  |  |  |  | 160 |  |  | 160 | mA | $\mathrm{T}_{\mathrm{A}}=0{ }^{\circ} \mathrm{C}$ Outputs Open |
| Standby Current | ISB |  | 12 | 20 |  | 12 | 20 | mA | $\begin{aligned} & V_{C C}=M_{\text {in }} \text { to } M a x, \\ & C S=V_{I H} \end{aligned}$ |
| Peak Power.On Current | $1_{P O}{ }^{(3)}$ |  | 15 | 30 |  | 15 | 30 | mA | $\begin{aligned} & V_{C C}=\text { GND to } V_{C C}=M i n, \\ & C S \\ & =\text { Lower of } V_{C C} \text { or } \\ & V_{\text {IH }} M \text { In } \end{aligned}$ |
| Input Low Voltage | VIL | -0.3 |  | 0.8 | -0.3 |  | 0.8 | V |  |
| Input High Voltage | $\mathrm{V}_{\text {IH }}$ | 2.0 |  | 6.0 | 2.0 | . | 6.0 | V |  |
| Output Low Voltage | $\mathrm{V}_{\mathrm{OL}}$ |  |  | 0.4 |  |  | 0.4 | v | $\mathrm{IOL}=8 \mathrm{~mA}$ |
| Output High Voltage | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  |  | 2.4 |  |  | V | $1 \mathrm{OH}=-4.0 \mathrm{~mA}$ |

## CAPACITANCE

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1.0 \mathrm{MHz}(1)$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input Capacitance | CIN |  |  | 5 | pF | $V_{1 N}=0 V$ |
| Output Capacitance | COUT |  |  | 7 | pF | $V_{\text {OUT }}=0 \mathrm{~V}$ |

Note: (1) This parameter is sampled and not $100 \%$ tested.
AC CHARACTERISTICS READ CYCLE

| PARAMETER | SYMBOL | LIMITS |  |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu \mathrm{PD2147.3}$ |  | $\mu$ PD2147-2 |  |  |  |
|  |  | MIN | MAX | MIN | MAX |  |  |
| Read Crcle Time | ${ }^{\text {t }} \mathrm{RC}$ | 55 |  | 70 |  | ns | Input Voltage Levels |
| Address Access Time | ${ }^{\dagger} \mathrm{AA}$ |  | 55 | - | 70 | ns | $\mathrm{V}_{\mathrm{I}}=0$ to +3.5 Volts Input Rise Time |
| Chip Select <br> Access Time (1) | 'ACS1 |  | 55 |  | 70 | ns | $10 \mathrm{~ns}$ |
| Chip Select <br> Access Time | 'ACS2 | . | 75 |  | 90 | ns | $10 \text { ns }$ |
| Output Hold from Address Change | ${ }^{1} \mathrm{OH}$. | 5 |  | 5 |  | ns | Reference Level +1.5 Volts |
| Chip Selection to Output in Low Z | ${ }^{1} \mathrm{LZ}$ | 10 |  | 10 |  | ns | Output Load <br> See Figure 1 |
| Chip Deselection to Output in High Z | ${ }^{\text {thz }}$ | 0 | 40 | 0 | 40 | ns |  |
| Chip Selection to Power Up Time | ${ }^{1} \mathrm{PU}$ | 0 |  | 0 |  | ns |  |
| Chip Deselection to Power Down Time | ${ }^{\text {TPD }}$ |  | 30 |  | 30 | ns | , |

Notes: (1) Chip deselected for greater than 55 ns prior to selection.
(2) Chip deselected for a finite time that is less than 55 ns prior to selection. (If the deselect time is 0 ns , the chip is, by definition, selected and access occurs according to Read Cycle No. 1.)


TIMING WAVEFORMS
READ CYCLE (1)

Figure 1


Notes: (1) $\overline{W E}$ is high for Read Cycles.
(2) Device is continuously selected, $\overline{C S}=V_{1 L}$.
(3) Addresses valid prior to or coincident with $\overline{C S}$ transition low.
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$, unless otherwise noted.

| PARAMETER | SYMBOL | LIMITS |  |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PD2147.3 |  | $\mu \mathrm{PPD2147}$-2 |  |  |  |
|  |  | MIN | MAX | MIN | MAX |  |  |
| Write Cycle Time | twc | 55 |  | 70 |  | ns |  |
| Chip Selection to End of Write | ${ }^{\text {t }} \mathrm{W}$ W | 45 |  | 55 |  | ns |  |
| Address Valid to End of Write | ${ }^{\text {t }}$ AW | 45 |  | 55 |  | ns |  |
| Address Setup Time | ${ }^{\text {t }}$ AS | 0 |  | 0 |  | ns |  |
| Write Pulse Width * | tWP | 35 |  | 40 |  | ns |  |
| Write Recovery Time | twr | 10 |  | 15 |  | ns |  |
| Data Valid to End of Write | tow | 25 |  | 30 |  | ns |  |
| Data Hold Time | ton | 10 |  | 10 |  | ns |  |
| Write Enabled to Output in High Z | twz | 0 | 30 | 0 | 35 | ns |  |
| Output Active from End of Write | tow | 0 |  | 0 |  | ns |  |



| ITEM | MILLIMETERS | INCHES |
| :--- | :--- | :--- |
| A | 23.2 MAX. | 0.91 MAX. |
| B | 1.44 | 0.055 |
| C | 2.54 | 0.1 |
| D | 0.45 | 0.02 |
| E | 20.32 | 0.8 |
| F | 1.2 | 0.06 |
| G | 2.5 MIN. | 0.1 MIN. |
| H | 0.5 MIN. | 0.02 MIN. |
| I | $4.6 \mathrm{MAX}$. | 0.18 MAX. |
| J | $5.1 \mathrm{MAX}$. | 0.2 MAX. |
| K | 7.62 | 0.3 |
| L | 6.7 | 0.26 |
| M | 0.25 | 0.01 |

AC CHARACTERISTICS WRITE CYCLE

TIMING WAVEFORM WRITE CYCLE

PACKAGE OUTLINE $\mu$ PD2147D

# NEC Microcomputers, Inc. 

## 8K BIT STATIC RAM

DESCRIPTION The NEC $\mu$ PD421 is a very high speed 8192 bit static Random Access Memory organized as 1024 words by 8 bits. Features include a power down mode controlled by the chip select input for an $80 \%$ power saving.

FEATURES • $1024 \times 8$-bit Organization

- Very Fast Access Time: 150/200/250/300/450 ns
- Single +5 V Power Supply
- Low Power Standby Mode
- N-Channel Silicon Gate Process
- Fully TTL Compatible
- 6-Device Static Cell
- Three State Common I/O
- Compatible with 8108 and Equivalent Devices
- Available in 22 Pin Ceramic Dual-in-Line Package

PIN CONFIGURATION


## $\mu$ PD421



Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to +7 Volts (1)
Note: (1) With respect to ground.
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} T_{a}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$, unless otherwise specified

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input Load <br> Current <br> (All Inputs Pins) | ILI |  |  | 10 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=0$ to +5.5 V |
| I/O Leakage Current | ILO |  |  | 50 | $\mu \mathrm{A}$ |  |
| Operating Current | ICC |  |  | 150 | mA | $\begin{aligned} & V_{C C}=\text { Max; } \\ & \text { CS }=V_{I L} ; \\ & \text { Outputs Open } \end{aligned}$ |
| Stand-by Current | ${ }^{\text {ISB }}$ |  |  | 20 | mA | $\begin{aligned} & V_{C C}=\text { Min. to Max. } \\ & \overline{C S}=V_{I H} \end{aligned}$ |
| Input Low Voltage | VIL | -0.3 |  | 0.8 | V |  |
| Input High Voltage | $\mathrm{V}_{\text {IH }}$ | 2.0 |  | 6.0 | V |  |
| Output Low Voltage | VOL |  |  | 0.4 | V | ${ }^{1} \mathrm{OL}=3.2 \mathrm{~mA}$ |
| Output High Voltage | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  |  | V | ${ }^{\prime} \mathrm{OH}=1 \mathrm{~mA}$ |

ABSOLUTE MAXIMUM RATINGS*

CAPACITANCE $\quad \mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1.0 \mathrm{MHz}$

| PARAMETER | SYMBOL | LIMITS |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | MAX |  |  |
| Input/Output Capacitance | $\mathrm{Cl}_{1 / \mathrm{O}}$ |  | 7 | pF | $\mathrm{V}_{1 / \mathrm{O}}=0 \mathrm{~V}$ |
| Input Capitance | CIN |  | 5 | pF | $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ |

## AC CHARACTERISTICS

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$, unless otherwise specified.

| PARAMETER | SYMBOL | LIMITS |  |  |  |  |  |  |  |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PD421 |  | $\mu$ PD421-1 |  | $\mu$ PD421-2 |  | $\mu$ PD421-3 |  | $\mu$ PD421-5 |  |  |
|  |  | MIN | MAX |  |
| READ CYCLE |  |  |  |  |  |  |  |  |  |  |  |  |
| Read Cycle Time | ${ }^{t} \mathrm{RC}$ | 450 |  | 300 |  | 250 |  | 200 | - | 150 |  | ns |
| Address Access Time | ${ }^{t} A A$ | , | 450 |  | 300 | " | 250 |  | 200 | - | 150 | ns |
| Chip Select Access Time | ${ }^{t}$ ACS |  | 450 |  | 300 |  | 250 |  | 200 |  | 150 | ns |
| Output Hold from Address Change | ${ }^{\mathrm{t}} \mathrm{OH}$ | 10 |  | 10 |  | 10 |  | 10 |  | 10 |  | ns |
| Chip Selection To Output in Low Z | ${ }^{t} \mathrm{~L} Z$ | 10 |  | 10 |  | 10 |  | 10 |  | 10 |  | ns |
| Chip Deselection to Output in High Z | ${ }^{t} \mathrm{HZ}$ | 0 | 100 | 0 | 80 | 0 | 70 | 0 | 60 | 0 | 50 | ns |
| Chip Selection to Power Up Time | ${ }^{\text {t P }}$ | $\therefore 0$ |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |
| Chip Deselection to Power Down Time | ${ }_{\text {tPD }}{ }^{(1)}$ |  | 100 |  | 80 | - . | 70 |  | 60 | : | 50 | ns |
| WRITE CYCLE |  |  |  |  |  |  |  |  |  |  |  |  |
| Write Cycle Time | ${ }^{\text {tw }}$ C | 450 |  | 300 | " | 250 |  | 200 |  | 150 |  | ns |
| Chip Selection to End of Write | ${ }^{t} \mathrm{CW}$ | 360 |  | 240 |  | 200 |  | 160 |  | 130 |  | ns |
| Address Valid to End of Write | ${ }^{\text {t }}$ AW | 360 |  | 240 |  | 200 |  | 160 |  | 130 |  | ns |
| Address Setup Time | ${ }^{\text {t }}$ AS | - 10 |  | 10 | * | 10 |  | 10 |  | 10 |  | ns |
| Write Pulse Width | ${ }^{\text {t }} \mathrm{W}$ P | 200 |  | 150 |  | 120 |  | 120 |  | 80 |  | ns |
| Write Recovery Time | ${ }^{\text {t WR }}$ | 10 |  | 10 |  | 10 |  | 10 |  | 10 |  | ns |
| Data Valid to End of Write | ${ }^{\text {t }}$ WW | 200 |  | 150 |  | 120 |  | 100 |  | 80 |  | ns |
| Data Hold Time | ${ }^{t} \mathrm{DH}$ | 10 |  | 10 |  | 10 |  | 10 |  | 10 |  | ns |
| Write Enabled to Output in High Z | ${ }^{\text {t }}$ WZ |  | 100 |  | 80 |  | 70 |  | 60 |  | 50 | ns |
| Output Active from End of Write | ${ }^{\text {t O }}$ W | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |

Note: (1) $\operatorname{ICC}(t=t P D)=1 / 2 \operatorname{ICC}$ Active.


PACKAGE OUTLINE $\mu$ PD421D

## 16,384 x 1 BIT STATIC MOS RANDOM ACCESS MEMORY

DESCRIPTION The NEC $\mu$ PD2167 is a 16,384 words by 1 bit Static MOS RAM. Fabricated with NEC's NMOS technology, it offers the user single power supply operation and fast access times in a standard 20 pin dual-in-line package. Its use of automatic power down circuitry minimizes system operating power requirements. Fully static circuitry throughout means the cycle time and access time are equal.

FEATURES • $16,384 \times 1$ Organization

- Fully Static Memory - No Clock or Timing Strobe Required
- Equal Access and Cycle Times
- Single +5 V Supply
- Automatic Power Down
- Directly TTL Compatible - All Inputs and Outputs
- Separate Data Input and Output
- Three-State Output
- Access Time: 55 ns Max.
- Power Dissipation: 160 mA Max. (Active)

20 mA Max. (Standby)

- Available in a Standard 20 Pin Dual-in-line Package

PIN CONFIGURATION


PIN NAMES

| $A_{0}-A_{13}$ | Address Inputs |
| :--- | :--- |
| $\overline{\mathrm{WE}}$ | Write Enable |
| $\overline{\mathrm{CS}}$ | Chip Select |
| $\mathrm{D}_{\mathrm{IN}}$ | Data Input |
| $\mathrm{D}_{\mathrm{OUT}}$ | Data Output |
| $\mathrm{V}_{\mathrm{CC}}$ | Power ( +5 V ) |
| $\mathrm{V}_{\mathrm{SS}}$ | Ground |

TRUTH TABLE

| $\overline{C S}$ | $\overline{W E}$ | MODE | OUTPUT | POWER |
| :---: | :---: | :--- | :--- | :--- |
| $H$ | $X$ | Not Selected | High Z | Standby |
| $L$ | $L$ | Write | High Z | Active |
| $L$ | $H$ | Read | DOUT | Active |

## 1024 BIT (256x4) STATIC CMOS RAM

DESCRIPTION The $\mu$ PD5101L and $\mu$ PD5 $5101 \mathrm{~L}-1$ are very low power 1024 bit ( 256 words by 4 bits) static CMOS Random Access Memories. They meet the low power requirements of battery operated systems and can be used to ensure non-volatility of data in systems using battery backup power.
All inputs and outputs of the $\mu$ PD5101L and $\mu$ PD5 101L- 1 are TTL compatible. Two chip enables ( $\overline{\mathrm{CE}}_{1}, C E_{2}$ ) are provided, with the devices being selected when $\overline{\mathrm{CE}}_{1}$ is low and $\mathrm{CE}_{2}$ is high. The devices can be placed in standby mode, drawing $10 \mu \mathrm{~A}$ maximum, by driving $\overline{\mathrm{CE}}_{1}$ high and inhibiting all address and control line transitions. The standby mode can also be selected unconditionally by driving $\mathrm{CE}_{2}$ low.

The $\mu$ PD5101L and $\mu$ PD5101L- 1 have separate input and output lines. They can be used in common I/O bus systems through the use of the OD (Output Disable) pin and OR-tying the input/output pins. Output data is the same polarity as input data and is nondestructively read out. Read mode is selected by placing a high on the R/W pin. Either device is guaranteed to retain data with the power supply voltage as low as 2.0 volts. Normal operation requires a single +5 volt supply.
The $\mu$ PD5101L and $\mu$ PD5101L- 1 are fabricated using NEC's silicon gate complementary MOS (CMOS) process.

FEATURES - Directly TTL Compatible - All Inputs and Outputs

- Three-State Output
- Access Time - 650 ns ( $\mu$ PD5101L); 450 ns ( $\mu$ PD5101L-1)
- Single +5 V Power Supply
- CE $_{2}$ Controls Unconditional Standby Mode
- Available in a 22 -pin Dual-in-Line Package

PIN CONFIGURATION


PIN NAMES

| $D_{1}-D_{4}$ | Data Input |
| :--- | :--- |
| $A O_{0}-A_{7}$ | Address Inputs |
| $R / W$ | Read $/$ Write Input |
| $\overline{C E}_{1}, C E_{2}$ | Chip Enables |
| $O D$ | Output Disable |
| $D O_{1}-D_{4}$ | Data Output |
| $V_{C C}$ | Power $(+5 V)$ |



Operating Temperature
Storage Temperature
Voltage On Any Pin With Power Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +7.0 Volts
COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$, unless otherwise specified.

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP (1) | MAX |  |  |
| Input High Leakage | ILIH (2) |  |  | 1 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ |
| Input Low Leakage | ILIL (2) |  |  | -1 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ |
| Output High Leakage | ILOH(2) |  |  | 1 | $\mu \mathrm{A}$ | $\overline{C E}_{1}=2.2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$ |
| Output Low Leakage | ILOL (2) |  |  | -1 | $\mu \mathrm{A}$ | $\overline{\mathrm{CE}}_{1}=2.2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.0 \mathrm{~V}$ |
| Operating Current | 'CC1 |  |  | 22 | mA | $\begin{aligned} & V_{\text {IN }}=V_{\text {CC }} \text { Except } \overline{C E} \bar{E}_{1} \\ & \leqslant 0.65 \mathrm{~V} \text {, Outputs Open } \end{aligned}$ |
| Operating Current | ICC2 |  |  | 27 | mA | $\begin{aligned} & \mathrm{V}_{1 \mathrm{~N}}=2.2 \mathrm{~V} \text { Except } \overline{\mathrm{CE}}_{1} \\ & \leqslant 0.65 \mathrm{~V} \text {, Outputs Open } \end{aligned}$ |
| Standby Current | ' CCL (2) |  |  | 10 | $\mu \mathrm{A}$ | $\begin{aligned} & \mathrm{V}_{1 N}=0 \text { to } 5.25 \mathrm{~V} \\ & C E_{2} \leqslant 0.2 \mathrm{~V} \end{aligned}$ |
| Input Low Voltage | $V_{\text {IL }}$ | -0.3 |  | 0.65 | V |  |
| Input High Voltage | $\mathrm{V}_{\text {IH }}$ | 2.2 |  | $\mathrm{V}_{\mathrm{cc}}$ | V |  |
| Output Low Voltage | $\mathrm{V}_{\mathrm{OL}}$ |  |  | 0.4 | V | $\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$ |
| Output High Voltage | $\mathrm{V}_{\mathrm{OH} 1}$ | 2.4 |  |  | V | $1{ }^{1} \mathrm{OH}=-1.0 \mathrm{~mA}$ |
| Output High Voltage | $\mathrm{V}_{\mathrm{OH} 2}$ | 3.5 |  |  | V | $\mathrm{I}^{\mathrm{OH}}=-100 \mu \mathrm{~A}$ |

Notes:
(1) Typical values at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
(2) Current through all inputs and outputs included in ICCL.

| PARAMETER |  | LIMITS |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SYMBOL | MIN | TYP | MAX |  | TEST CONDITIONS |
| Input Capacitance <br> (All Input Pins) | CIN |  | 4 | 8 | pF | $V_{\text {IN }}-0 \mathrm{~V}$ |
| Output <br> Capacitance | COUT |  | 8 | 12 | pF | VOUT - OV |

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; V_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$, unless otherwise specified

| PARAMETER | SYMBOL | LIMITS |  |  |  |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 5101L |  |  | 5101L-1 |  |  |  |  |
|  |  | MIN | TVP | MAX | MIN | TVP | MAX |  |  |
| Read Cycle | ${ }^{\text {t }} \mathrm{RC}$ | 650 |  |  | 450 |  |  | ns | Input pulse amplitude: 0.65 to 2.2 Volts |
| Access Time | ${ }_{\text {t }}$ |  |  | 650 |  |  | 450 | ns | Input rise and fall |
| Chip Enable ( $\overline{\mathrm{CE}}_{1}$ ) to Output | ${ }^{\text {t }} \mathrm{CO1}$ |  |  | 600 |  |  | 400 | ns | times: 20 ns |
| Chip Enable ( $\mathrm{CE}_{2}$ ) to Output | ${ }^{\text {t }} \mathrm{CO} 2$ | $\cdot$ |  | 700 |  |  | 500 | ns | Timing measurement reference level: |
| Output Disable to Output | $\mathrm{tOD}$ |  |  | 350 |  |  | 250 | ns | Output load: ITTL |
| Data Output to High 2 State | ${ }^{t} D F$ | 0 |  | 150 | 0 |  | 130 | ns | Gate and $C_{L}=100 \mathrm{pF}$ |
| Previous Read Data <br> Valid with Respect to Address Change | ${ }^{\text {to }}$ | 0 |  |  | 0 |  |  | ns |  |
| Previous Read Data Valid with Respect to Chip Enable | ${ }^{\text {t }} \mathrm{OH} 2$ | 0 |  | $\therefore$ | 0 |  |  | ns | . |

## WRITE CYCLE

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$, unless otherwise specified

| PARAMETER | SYMBOL | LIMITS |  |  |  |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 5101L |  |  | $5101 \mathrm{~L}-1$ |  |  |  |  |
|  |  | MIN | TVP | MAX | MIN | TYP | MAX |  |  |
| Write Cycle | ${ }^{\text {tw }}$ W | 650 |  |  | 450 |  |  | ns | Input pulse amplitude: |
| Write Delay | ${ }^{\text {t }}$ AW | 150 |  |  | 130 |  |  | ns | 0.65 to 2.2 Volts |
| Chip Enable ( $\overline{C E}_{1}$ ) to Write | ${ }^{\text {t }}$ CW1 | 550 |  |  | 350 |  |  | ns | Input rise and fall times: 20 ns |
| Chip Enable (CE 2 ) to Write | ${ }^{\text {t }}$ CW2 | 550 |  |  | 350 |  |  | ns | Timing measurement reference level: |
| Data Setup | ${ }^{\text {t }}$ DW | 400 |  |  | 250 |  |  | ns | 1.5 Volt |
| Data Hold | ${ }^{\text {t }} \mathrm{DH}$ | 100 |  |  | 50 |  |  | ns | Output load: ITTL |
| Write Pulse | tWP | 400 |  |  | 250 |  |  | ns | Gate and $C_{L}=$ |
| Write Recovery | twR | 50 |  |  | 50 |  |  | ns | 100 pF |
| Output Disable Setup | ${ }^{\text {t }} \mathrm{DS}$ | 150 |  |  | 130 |  | - |  |  |

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| $\mathrm{V}_{\mathrm{CC}}$ for Data Retention | $\mathrm{v}_{\text {CCDR }}$ | +2.0 |  |  | v | $C E_{2} \leqslant+0.2 \mathrm{~V}$ |
| Data Retention Current | ${ }^{\text {I CCDR }}$ |  |  | +10 | $\mu \mathrm{A}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CCDR}}=+2.0 \mathrm{~V} \\ & \mathrm{CE}_{2} \leqslant+0.2 \mathrm{~V} \end{aligned}$ |
| Chip Deselect Setup Time | ${ }^{\text {t }} \mathrm{CDR}$ | 0 |  |  | ns |  |
| Chip Deselect Hold Time | ${ }^{\text {tR }}$ | $\mathrm{t}_{\mathrm{RC}}(1)$ |  |  | ns |  |

Note: (1) tri $=$ Read Cycle Time


Notes: (1) Typical values are for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and nominal supply voltage. OD may be tied low for separate I/O operation.
(3) During the write cycle, OD is "high" for common I/O and "don't care" for separate I/O operation.


TYPICAL OPERATING CHARACTERISTICS







PACKAGE OUTLINE $\mu$ PD5101LC


| ITEM | MILLIMETERS | INCHES |
| :---: | :---: | :---: |
| A | 280 Max | 1.10 Masx |
| B | 14 Max . | 0.025 M.1x. |
| C | 2.54 | 0.10 |
| D | $0.50 \quad 0.10$ | 0.020 .004 |
| E | 25.4 | 1.0 |
| F | 140 | 0.055 |
| G | 2.54 Mm . | 0.10 M 111 |
| H | 0.5 Mm . | 0.02 Mis |
| I | 4.7 Max | 0.18 M .1 x . |
| $J$ | 5.2 M.1x. | 0.20 M.1x |
| K | 10.16 | 040 |
| L | 8.5 | 0.33 |
| M | $\begin{array}{r} +010 \\ 025 \\ 005 \end{array}$ |  <br> 001 <br> 0.004 |

NOTES

## $1024 \times 4$ BIT STATIC CMOS RAM

DESCRIPTION The $\mu$ PD444/6514 is a high speed, low power, silicon gate CMOS 4096 bit static RAM organized 1024 words by 4 -bits. It uses fully DC stable (static) circuitry throughout and therefore requires no clock or refreshing to operate. Data access is particularly simple since address setup times are not required. The data is read out nondestructively and has the same polarity as the input data. Common input/output pins are provided.
$\overline{\mathrm{CS}}$ controls the power down feature. In less than a cycle time after $\overline{\mathrm{CS}}$ goes high deselecting the $\mu$ PD444/6514 - the part automatically reduces its power requirements and remains in this low power standby mode as long as $\overline{\mathrm{CS}}$ remains high. There is no minimum $\overline{\mathrm{CS}}$ high time for device operation, although it will determine the length of time in the power down mode. When $\overline{\mathrm{CS}}$ goes low, selecting the $\mu \mathrm{PD} 444 / 6514$, the $\mu$ PD444/6514 automatically powers up.

The $\mu$ PD444/6514 is placed in an 18 -pin plastic package for the highest possible density. It is directly TTL compatible in all respects: inputs, outputs, and a single +5 V supply. The $\mu$ PD444/6514 is pin compatible with the $\mu$ PD2114L NMOS Static RAM.
Data Retention is guaranteed to 2 volts on all parts. These devices are ideally suited for low power applications where battery operation or battery backup for nonvolatility are required.

FEATURES - Low Power Standby $-5 \mu \mathrm{~W}$ Typ.

- Low Power Operation
- Data Retention - 2.0V Min.
- Capability of Battery Backup Operation
- Fast Access Time - 200-450 ns
- Identical Cycle and Access Times
- Single +5V Supply
- No Clock or Timing Strobe Required Completely Static Memory
- Automatic Power-Down
- Directly TTL compatible: All Inputs and Outputs
- Common Data Input and Output using Three-State Outputs
- Replacement for $\mu$ PD2114L and Equivalent Devices
- Available in a Standard 18-Pin Plastic Package

PIN CONFIGURATION



| PARAMETER | SYMBOL | LIMITS |  |  |  |  |  |  |  |  |  |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 444/6514.3 |  |  | 444/6514.2 |  |  | 444/6514.1 |  |  | 444/6514 |  |  |  |  |
|  |  | MIN | TYP | MAX |  |  |
| Input Leakage Current | ${ }_{1}{ }_{L}$ | -1.0 |  | 1.0 | -1.0 |  | 1.0 | -1.0 |  | 1.0 | -1.0 |  | 1.0 | $\mu \mathrm{A}$ | $V_{\text {IN }}=G N D$ to $V_{C C}$ |
| I/O Leakage Current | 'Lo | -1.0 |  | 1.0 | -1.0 |  | 1.0 | -1.0 |  | 1.0 | -1.0 |  | 1.0 | $\mu \mathrm{A}$ | $\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{I H}, V_{I / O}=\mathrm{GND} \\ & \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$ |
| Operating Supply Current | 'CCA1 |  | 20 | 35 |  | 18 | 35 |  | 16 | 35 | . | 14 | 35 | mA | $\overline{\mathrm{CS}}=V_{I L}, V_{I N}=V_{C C} .$ <br> Outputs Open |
| Operating Supply Current | ${ }^{\prime} \mathrm{CCA} 2$ |  | 24 | 40 |  | 22 | 40 |  | 19 | 40 |  | 17 | 40 | mA | $\overline{C S}=V_{I L}, V_{I N}=2.4 \mathrm{~V},$ <br> Outputs Open |
| Average Operating Supply Current | ${ }^{\prime}$ CCA3 |  | 10 |  |  | 9 |  |  | 8 |  |  | 7 |  | mA | $\begin{array}{\|l} V_{\text {IN }}=G N D \text { or } V_{C C} . \\ \text { Outputs Open } f=1 \mathrm{MHz} \text {, } \\ \text { Duty } 50 \% \end{array}$ |
| Standby Supply Current | 'ccs |  |  | 50 |  |  | 50 |  |  | 50 |  |  | 50 | $\mu \mathrm{A}$ | $\begin{aligned} & \overline{\mathrm{CS}}=V_{\mathrm{CC}}, V_{I N}=\mathrm{GND} \\ & \text { to } V_{\mathrm{CC}} \end{aligned}$ |
| Input Low Voltage | $V_{\text {IL }}$ | -0.3 |  | 0.8 | -0.3 |  | 0.8 | -0.3 |  | 0.8 | -0.3 |  | 0.8 | v |  |
| Input High Voltage | $\mathrm{V}_{\text {IH }}$ | 2.4 |  | $\mathrm{V}_{\mathrm{Cc}}+0.3$ | 2.4 |  | $\mathrm{V}_{\mathrm{CC}}+0.3$ | 2.4 |  | $\mathrm{V}_{C C}+0.3$ | 2.4 |  | $\mathrm{V}_{C C}+0.3$ | v |  |
| Output Low Voltage | $\mathrm{V}_{\text {OL }}$ |  |  | 0.4 |  |  | 0.4 |  |  | 0.4 |  |  | 0.4 | V | $\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$ |
| Output High Voltage | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  |  | 2.4 |  |  | 2.4 |  |  | 2.4 |  |  | V | ${ }^{1} \mathrm{OH}=-1.0 \mathrm{~mA}$ |

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$
CAPACITANCE

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input/Output Capacitance | $\mathrm{C}_{1 / \mathrm{O}}$ |  |  | 10 | pF | $\mathrm{V}_{1 / \mathrm{O}}=0 \mathrm{~V}$ |
| Input Capacitance | $\mathrm{CIN}^{\text {IN }}$ |  |  | 5 | pF | $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ |

Note: This parameter is periodically sampled and not $100 \%$ tested.

AC CHARACTERISTICS
$T_{a}=-40 C$ to $+85 C: V_{C C}=+5 V+10 \%$ unless otherwise noted.


Notes: (1) Chip deselected for greater than 100 ns prior to selection
(2) Chip deselected for a finite time that is less than 100 ns prior to selection. (If the deselect time is $\mathbf{0} \mathrm{ns}$, the chip is by definition selected and access occurs according to Read Cycle No. 1.)

## LOW VCC DATA RETENTION CHARACTERISTICS

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Data Retention Supply Voltage | VCCDR | 2.0 |  |  | v | $\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \\ & \text { to } \mathrm{GND} \end{aligned}$ |
| Data Retention Supply Current | ${ }^{\text {I CCDR }}$ |  | 0.1 | 10 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{C C}=3 V, C S=V_{C C} \\ & V_{I N}=V_{C C} \text { to } G N D \end{aligned}$ |
| Chip Deselect to Data Retention Time | ${ }^{\text {t CDR }}$ | 0 |  |  | ns |  |
| Operation Recovery Time | ${ }^{\text {t }}$ | tre(1) |  |  | ns |  |

Note: (1) $\mathrm{t}_{\mathrm{RC}}=$ Read Cycle Time
PACKAGE OUTLINE $\mu$ PD444/6514C


Plastic

|  | ITEM | MILLIMETERS |
| :--- | :--- | :--- |
| A | 23.2 MAX. | INCHES |
| B | 1.44 | 0.91 MAX. |
| C | 2.54 | 0.055 |
| D | 0.45 | 0.1 |
| E | 20.32 | 0.02 |
| F | 1.2 | 0.8 |
| G | 2.5 MIN. | 0.05 |
| H | 0.5 MIN. | 0.1 MIN. |
| I | 4.6 MAX. | 0.02 MIN. |
| J | 5.1 MAX. | 0.18 MAX. |
| K | 7.62 | 0.2 MAX. |
| L | 6.7 | 0.3 |
| M | 0.25 | 0.26 |



TIMING WAVEFORMS


WRITE CYCLE (4) (5) (6)


Notes: (1) $\overline{W E}$ is high for Read Cycles.
(2) Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{1 \mathrm{~L}}$
(3) Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low.
(4) If the $\overline{\mathrm{CS}}$ low transition occurs simultaneously with the $\overline{\mathrm{WE}}$ low transition, the output buffers remain in a high impedance state.
(5) $\overline{W E}$ must be high during all address transitions.
(6) IWP is measured from the latter of $\overline{\mathrm{CS}}$ or $\overline{W E}$ going low to the earlier of $\overline{\mathrm{CS}}$ or $\overline{\mathrm{WE}}$ going high.


## FULLY DECODED 4096 STATIC CMOS RAM

DESCRIPTION The $\mu$ PD445L is a very low power 4,096 bit ( 1024 words by 4 bits) static RAM fabricated with NEC's complementary MOS (CMOS) process. It has two chip enable inputs ( $\overline{\mathrm{CE}}_{1}$, $C E_{2}$ ). Minimum standby current is drawn when $\overline{\mathrm{CE}}_{1}$ is at a high level, while inhibiting all address and control line transitions or, unconditionally when $\mathrm{CE}_{2}$ is at a low level. This device ideally meets the low power requirements of battery operated systems and battery back-up systems for non-volatility of data.

The $\mu$ PD445L uses fully static circuitry requiring no clocking. Output data is read out non-destructively by placing a high on the R/W pin and has the same polarity as input data. All inputs and outputs are directly TTL compatible. The device has common input/output data busses and an OD (Output Disable) pin for use in common I/O bus systems.

The $\mu$ PD445L is guaranteed to retain data with the power supply voltage as low as 2.0 volts.

FEATURES - Single +5V Power Supply

- Ideal for Battery Operation
- Low Standby Power for Data Retention
- Simple Memory Expänsion - Chip Enable Inputs
- Access Time - 650 ns Max. ( $\mu$ PD 445 L )
4.50 ns Max. ( $\mu$ PD $445 \mathrm{~L}-1$ )
- Directly TTL Compatible - All Inputs and Outputs
- Common Data Input and Output
- Static CMOS - No Clocks Refreshing Required
- 20 Pin Dual-In-Line Plastic Package


PIN NAMES

| $A_{\sigma} A_{9}$ | Address Input |
| :--- | :--- |
| $O D$ | Output Disable |
| $R / W$ | Read/Write |
| $\overline{C E}_{1}$ | Chip Enable 1 |
| $\mathrm{CE}_{2}$ | Chip Enable 2 |
| $\mathrm{I} / \mathrm{O}_{1}-1 / \mathrm{O}_{4}$ | Data Input/Output |
| $\mathrm{V}_{\mathrm{CC}}$ | Power Supply |
| GND | Ground |

OPERATION MODES

| $\overline{C E}_{1}$ | $C E_{2}$ | $O D$ | Chip | Output Mode |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 |  | Data Out |
| 0 | 1 | 1 | Selected | High Impedance |
| Others |  |  | Non-Selected |  |



Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Output Voltages . . . . . . . . . . . . . . . . . . . . - -0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$ Volts
All Input Voltages . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$ Volts
Supply Voltage $\mathrm{V}_{\text {CC }}$. . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +7 Volts
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}=-10$ to $+70^{\circ} \mathrm{C} ;+5 \mathrm{~V} \pm 10 \%$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input High Voltage | $\mathrm{V}_{\text {IH }}$ | +2.2 |  | $\mathrm{V}_{\mathrm{CC}}$ | V |  |
| Input Low Voltage | $V_{\text {IL }}$ | -0.3 |  | + 0.65 | V |  |
| Output High Voltage | $\mathrm{V}_{\mathrm{OH} 1}$ | +2.4 |  |  | V | ${ }^{1} \mathrm{OH}=-1.0 \mathrm{~mA}$ |
|  | $\mathrm{VOH}^{2}$ | +3.5 |  |  | V | ${ }^{1} \mathrm{OH}=100 \mu \mathrm{~A}$ |
| Output Low Voltage | $\mathrm{V}_{\mathrm{OL}}$ |  |  | + 0.4 | V | $\mathrm{I}^{\mathrm{OL}}=+2.0 \mathrm{~mA}$ |
| Input Leakage Current High | 'LIH |  |  | + 1.0 | $\mu \mathrm{A}$ | $V_{1}=V_{C C}$ |
| Input Leakage Current Low | 'LIL |  |  | - 1.0 | $\mu \mathrm{A}$ | $V_{1}=0 \mathrm{~V}$ |
| Output Leakage Current High | ${ }^{\prime} \mathrm{LOH}$ |  |  | + 1.0 | $\mu \mathrm{A}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{CE}_{1}=2.2 \mathrm{~V} \end{aligned}$ |
| Output Leakage Current Low | 'LOL | , | . | -- 1.0 | $\mu \mathrm{A}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \\ & \mathrm{CE}_{1}=2.2 \mathrm{~V} \end{aligned}$ |
| Supply Current | ICC1 | $\because$ | 12 | $\because 25$ | mA | Outputs Open $\begin{aligned} & \frac{V_{1}}{C E_{1}} \leqslant 0.65 \mathrm{~V} \text { except } \\ & \end{aligned}$ |
| Supply Current | 'CC2 |  | 16 | , 30 | mA | Outputs Open $V_{1}=2.2 \mathrm{~V}$ except $\overline{\mathrm{CE}}_{1} \leqslant 0.65 \mathrm{~V}$ |
| Standby Current | ${ }^{\text {I CCL }}$ |  |  | 40 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{1}=0 \text { to } 5.25 \mathrm{~V} \\ & \text { Except } C E_{2} \leqslant 0.2 \mathrm{~V} \end{aligned}$ |

ABSOLUTE MAXIMUM RATINGS*
$\mu$ PD445L
READ CYCLE
$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

| PARAMETER | SYMBOL | LIMITS |  |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 445L |  | 445L-1 |  |  |  |
|  |  | MIN | MAX | MIN | MAX |  |  |
| Read Cycle Time | tr ${ }^{\text {d }}$ | 650 |  | 450 |  | ns |  |
| Access Time | ${ }^{t} \mathrm{~A}$ |  | 650 |  | 450 | ns | Input Voltage Levels |
| Chip Enable ( $\overline{\mathrm{CE}}_{1}$ ) to Output | ${ }^{\mathrm{t}} \mathrm{CO}$ |  | 600 |  | 400 | ns | $V=+0.65$ to +2.2 V |
| Chip Enable ( $C E_{2}$ ) to Output | ${ }^{\text {t }} \mathrm{CO} 2$ |  | 700 |  | 500 | ns | Input Rise Time 20 ns |
| Output Enable to Output | ${ }^{\text {t }} \mathrm{OD}$ |  | 350 |  | 250 | ns | Input Fall Time 20 ns |
| Output Disable (OD) to Floating | ${ }^{\text {t }}$ DF | 0 | 150 | 0 | 130 | ns | Timing Measurement Reference Level $=$ |
| Data Output Hold Time | ${ }^{\text {t }} \mathrm{OH} 1$ | 0 |  | 0 |  | ns | Output Load |
| Chip Disable to Floating | ${ }^{\text {t }} \mathrm{OH} 2$ | 0 |  | 0 |  | ns | $1 \mathrm{TTL}+100 \mathrm{pF}$ |
| Address Rise and Fall Time | $\begin{aligned} & \mathrm{t}_{\mathrm{r}} \\ & \mathrm{t}_{\mathrm{f}} \end{aligned}$ |  | 300 |  | 300 | ns | For Address change during Chip Enabled |

WRITE CYCLE

| PARAMETER | SYMBOL | LIMITS |  |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 445L |  | 445L-1 |  |  |  |
|  |  | MIN | MAX | MIN | MAX |  |  |
| Write Cycle Time | twC | 650 |  | 450 |  | ns |  |
| Address Setup Time | tAW | 150 |  | 130 |  | ns | Input Voltage Levels $V_{1}=+0.65 \text { to }+2.2 \mathrm{~V}$ |
| Chip Enable $\left(\overline{\mathrm{CE}}_{1}\right)$ to Write s End | tCW1 | 550 |  | 350 |  | ns | Input Rise Time 20 ns |
| Chip Enable $\left(C E_{2}\right)$ to Write End | ${ }^{\text {t }}$ W2 | 550 |  | 350 |  | ns | Input Fall Time 20 ns |
| Data Setup Time | ${ }^{\text {t }}$ DW | 400 |  | 250 |  | ns |  |
| Data Hold Time | ${ }^{t} \mathrm{DH}$ | 100 |  | 50 |  | ns | Timing Measurement |
| Write Pulse Width | tWP | 400 |  | 250 |  | ns | Reference Level = |
| Address Hold Time | tWR | 50 |  | 50 |  | ns | +1.5V |
| Output Disable Setup Time | ${ }^{\text {t }}$ DS | 150 |  | 130 |  | ns |  |
| Address Rise and Fall Time | $\begin{aligned} & \mathrm{t}_{\mathrm{r}} \\ & \mathrm{t}_{\mathrm{f}} \end{aligned}$ |  | 300 |  | 300 | ns | For Address change during Chip Enabled |

LOW Vcc DATA RETENTION
$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| $V_{\text {CC }}$ for Data Retention | $V_{\text {CCDR }}$ | +2.0 |  |  | V | $C E_{2} \leqslant+0.2 \mathrm{~V}$ |
| Data Retention Current | 'CCDR | . |  | 40 | $\mu \mathrm{A}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CCDR}}=+2.0 \mathrm{~V} \\ & C E_{2} \leqslant+0.2 \mathrm{~V} \end{aligned}$ |
| Chip Deselect Setup Time | ${ }^{\text {t }}$ CDR | 0 |  |  | ns |  |
| Chip Deselect Hold Time | ${ }^{\text {tR }}$ | trc (1) |  |  | ns |  |

Note: (1) tRC $=$ Read Cycle Time

READ CYCLE


Note (1) Apply less than $V_{\text {CCDR }}$ to all inputs for data retention mode.

| CAPACITANCE $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$ |
| :--- |
|  |
| PARAMETER |
| PAR |
| SYMBOL |



| ITEM | MILLIMETERS | INCHES |
| :---: | :---: | :---: |
| A | 27.00 | 1.07 |
| B | 2.07 | 0.08 |
| C | 2.54 | 0.10 |
| D | 0.50 | 0.02 |
| E | 22.86 | 0.90 |
| F | 1.20 | 0.05 |
| G | 2.54 MIN | 0.10 MIN |
| H | 0.50 MIN | 0.02 MIN |
| I | 4.58 MAX | 0.18 |
| J | 5.08 MAX | 0.20 |
| K | 10.16 | 0.40 |
| L | 8.60 | 0.39 |
| M | $0.25_{-0.10}^{+0.05}$ | $0.01_{-0.004}^{+0.002}$ |

## FULLY DECODED 8,192 BIT MASK PROGRAMMABLE READ ONLY MEMORY

The NEC $\mu$ PD2308A is a high speed 8,192 bit mask programmable Read Only Memory organized as 1024 words by 8 bits. The $\mu$ PD2308A is fabricated with $N$-channel MOS technology.

The inputs and outputs are fully TTL compatible. The device operates with a single +5 V power supply. The three chip select inputs are programmable. Any combination of active high or low level chip select inputs can be defined and desired chip select code is fixed during the masking process.

## FEATURES - Access Time 450 ns Max

- 1024 Words $\times 8$ Bits Organization
- Single $+5 \mathrm{~V} \pm 10 \%$ Power Supply Voltage
- Directly TTL Compatible - All Inputs and Outputs
- Two Programmable Chip Select Inputs for Easy Memory Expansion
- Three-State Output - OR-Tie Capability
- On-Chip Address Fully Decoded
- All Inputs Protected Against Static Charge
- Direct Replacement for 2308A
- Available in 24-pin plastic or ceramic packages

PIN CONFIGURATION


| PIN NAMES |
| :---: | :---: |
| $A_{0}-A_{9}$ Address Inputs <br> $D_{0}-D_{7}$ Data Outputs <br> $C S_{1}-C S_{2}$ Programmable Chip Select Inputs |

Rev/1

## $\mu$ PD2308A



Note: (1) With Respect to Ground.
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP (1) | MAX |  |  |
| Input Load Current (All Input Pins) | ${ }^{\prime} \mathrm{LI}$ |  |  | +10 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ |
|  |  |  |  | -10 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ |
| Output Leakage Current | I LOH |  |  | +10 | $\mu \mathrm{A}$ | Chip Deselected, $\mathrm{V}_{0}=\mathrm{V}_{\mathrm{CC}}$ |
| Power Supply Current | ICC |  | 60 | 85 | mA |  |
| Input '"Low" Voltage | $V_{\text {IL }}$ | -0.5 |  | 0.8 | V |  |
| Input "High" Voltage | $\mathrm{V}_{\text {IH }}$ | 2.0 |  | VCC | v |  |
| Output "Low" Voltage | $\mathrm{V}_{\mathrm{OL}}$ |  |  | 0.4 | V | $1 \mathrm{OL}=3.2 \mathrm{~mA}$ |
| Output "High" Voltage | $\mathrm{V}_{\mathrm{OH}}$ | +2.4 |  |  | V | $\mathrm{I}^{\mathrm{OH}}=-200 \mu \mathrm{~A}$ |

Note: (1) Typical values for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.

ABSOLUTE MAXIMUM RATINGS*

CAPACITANCE $\quad T_{a}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

|  |  | LIMITS |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- |
| PARAMETER | SYMBOL | MIN | TYP | MAX | UNIT | TEST CONDITIONS |
| Input <br> Capacitance | CIN |  | 5 | 7 | pf | All Pins Except Pin <br> Under Test Tied to AC <br> Ground |
| Output <br> Capacitance | COUT |  | 7 | 10 | pf | All Pins Except Pin <br> Under Test Tied to AC <br> Ground |

AC CHARACTERISTICS
$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP(1) | MAX |  |  |
| Address to Output Delay Time | ${ }^{t} \mathrm{~A}$ |  | 350 | 450 | ns | $\begin{aligned} & \mathrm{t}_{\mathrm{T}}=\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \\ & \mathrm{~V}_{\text {ref in }}=1 \mathrm{~V}, 2.2 \mathrm{~V} \\ & \mathrm{~V}_{\text {ref out }}=0.8 \mathrm{~V}, 2 \mathrm{~V} \\ & \text { Output LOAD }=1 \mathrm{TTL} \\ & \text { GATE } \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pf} \end{aligned}$ |
| Chip Select to Output Enable Delay Time | ${ }^{\text {t }} \mathrm{CO}$ |  |  | 120 | ns |  |
| Chip Deselect to Output <br> Data Float Delay <br> Time | ${ }^{\text {t }}$ DF | 10 |  | 100 | ns |  |
| Previous Data Valid After Address Change | ${ }^{t} \mathrm{OH}$ | 20 |  |  | ns |  |

Note: (1) $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$

TIMING WAVEFORMS



PACKAGE OUTLINES $\mu$ PD2308AC $\mu$ PD2308AD

Plastic

| ITEM | MILLIMETERS | INCHES |
| :--- | :--- | :--- |
| A | 33 MAX | 1.3 MAX |
| B | 2.53 | 0.1 |
| C | 2.54 | 0.1 |
| D | $0.5 \pm 0.1$ | $0.02 \pm 0.004$ |
| E | 27.94 | 1.1 |
| F | 1.5 | 0.059 |
| G | 2.54 MIN | 0.1 MIN |
| H | 0.5 MIN | 0.02 MIN |
| I | 5.22 MAX | 0.205 MAX |
| J | 5.72 MAX | 0.225 MAX |
| K | 15.24 | 0.6 |
| L | 13.2 | 0.55 MAX |
| M | $0.25+0.10$ | $0.01+0.004$ |

* 



Ceramic

| ITEM | MILLIMETERS | INCHES |
| :---: | :---: | :---: |
| A | 30.78 MAX. | 1.23 MAX. |
| B | 1.53 MAX. | 0.07 MAX. |
| C | $2.54 \pm 0.1$ | $0.10 \pm 0.004$ |
| D | $0.46 \pm 0.8$ | $0.018 \pm 0.03$ |
| E | $27.94 \pm 0.1$ | $1.10 \pm 0.004$ |
| F | 1.02 MIN. | 0.04 MIN. |
| G | 3.2 MIN. | 0.125 MIN. |
| H | 1.02 MIN. | 0.04 MIN. |
| I | 3.23 MAX. | 0.13 MAX. |
| J | 4.25 MAX. | 0.17 MAX. |
| K | 15.24 TYP. | 0.60 TYP. |
| L | 14.93 TYP. | 0.59 TYP. |
| M | $0.25 \pm 0.05$ | $0.010 \pm 0.002$ |

## NEC Microcomputers, Inc.

## FULLY DECODED 16,384 BIT MASK PROGRAMMABLE READ ONLY MEMORY

The NEC $\mu$ PD2316E is a high speed 16,384 bit mask programmable Read Only Memory organized as 2048 words by 8 bits. The $\mu$ PD2316E is fabricated with $N$-channel MOS technology.

The inputs and outputs are fully TTL compatible. The device operates with a single +5 V power supply. The three chip select inputs are programmable. Any combination of active high or low level chip select inputs can be defined and desired chip select code is fixed during the masking process.

- 2048 Words $\times 8$ Bits Organization
- Single $+5 \mathrm{~V} \pm 10 \%$ Power Supply Voltage
- Directly TTL Compatible - All Inputs and Outputs
- Three Programmable Chip Select Inputs for Easy Memory Expansion
- Three-State Output - OR-Tie Capability
- On-Chip Address Fully Decoded
- All Inputs Protected Against Static Charge
- Direct Replacement for 2316E
- Available in 24-pin plastic or ceramic packages


PIN NAMES

| $A_{0}-A_{10}$ | Address Inputs |
| :--- | :--- |
| $D_{0}-D_{7}$ | Data Outputs |
| $C S_{1}-C_{3}$ | Programmable Chip Select Inputs |



Note: (1) With Respect to Ground.
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \pm 5 \%$ unless otherwise noted.

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP (1) | MAX |  |  |
| Input Load Current (All Input Pins) | ILI |  |  | +10 | $\mu \mathrm{A}$ | $V_{\text {IN }}=V_{\text {CC }}$ |
|  |  |  |  | -10 | $\mu \mathrm{A}$ | $V_{\text {IN }}=0 \mathrm{~V}$ |
| Output Leakage Current | I LOH |  |  | +10 | $\mu \mathrm{A}$ | Chip Deselected, $\mathrm{V}_{0}=\mathrm{V}_{\text {CC }}$ |
| Power Supply Current | I'C |  | 60 | 85 | mA |  |
| Input "Low" Voltage | $V_{\text {IL }}$ | -0.5 |  | 0.8 | V |  |
| Input "High" Voltage | $\mathrm{V}_{\text {IH }}$ | 2.0 |  | $\mathrm{V}_{\text {cc }}$ | V |  |
| Output "Low" Voltage | VOL |  |  | 0.4 | V | $\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$ |
| Output "High" Voltage | $\mathrm{V}_{\mathrm{OH}}$ | +2.4 |  |  | V | ${ }^{1} \mathrm{OH}=-200 \mu \mathrm{~A}$ |

Note: (1) Typical values for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.

CAPACITANCE $\quad T_{a}=25 \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input <br> Capacitance | CIN... |  | 5 | 7 | pf | All Pins Except Pin Under Test Tied to AC Ground |
| Output <br> Capacitance | COUT |  | 7 | 10 | pf | All Pins Except Pin Under Test Tied to AC Ground |

AC CHARACTERISTICS
$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; $\mathrm{V} \mathrm{CC}=+5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP(1) | MAX |  |  |
| Address to Output Delay Time | ${ }^{t} A$ |  | 350 | 450 | ns | $\begin{aligned} & \mathrm{t}_{\mathrm{T}}=\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \\ & V_{\text {ref in }}=1 \mathrm{~V}, 2.2 \mathrm{~V} \\ & V_{\text {ref out }}=0.8 \mathrm{~V}, 2 \mathrm{~V} \\ & \text { Output LOAD }=1 \mathrm{TTL} \\ & \text { GATE } \\ & C_{L}=100 \text { pf } \end{aligned}$ |
| Chip Select to Output Enable Delay Time | ${ }^{\text {t }} \mathrm{CO}$ |  |  | 120 | ns |  |
| Chip Deselect to Output Data Float Delay Time | ${ }^{\text {t }} \mathrm{DF}$ | 10 |  | 100 | ns |  |
| Previous Data Valid After Address Change | ${ }^{t} \mathrm{OH}$ | 20 |  |  | ns |  |

Note: (1) $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$

TIMING WAVEFORMS


## $\mu$ PD2316E



| ITEM | MILLIMETERS | INCHES |
| :---: | :--- | :--- |
| A | 33 MAX | 1.3 MAX |
| B | 2.53 | 0.1 |
| C | 2.54 | 0.1 |
| D | $0.5 \pm 0.1$ | $0.02 \pm 0.004$ |
| E | 27.94 | 1.1 |
| F | 1.5 | 0.059 |
| G | 2.54 MIN | 0.1 MIN |
| H | 0.5 MIN | 0.02 MIN |
| I | 5.22 MAX | 0.205 MAX |
| J | 5.72 MAX | 0.225 MAX |
| K | 15.24 | 0.6 |
| L | 13.2 | 0.55 MAX. |
| M | $0.25+0.10$ | $0.01+0.004$ |

PACKAGE OUTLINE $\mu$ PD2316EC/D

$\mu$ PD2316ED (Ceramic)

| ITEM | MILLIMETERS | INCHES |
| :---: | :---: | :---: |
| A | 30.78 MAX. | 1.23 MAX. |
| B | 1.53 MAX. | 0.07 MAX. |
| C | $2.54 \pm 0.1$ | $0.10 \pm 0.004$ |
| D | $0.46 \pm 0.8$ | $0.018 \pm 0.03$ |
| E | $27.94 \pm 0.1$ | $1.10 \pm 0.004$ |
| F | 1.02 MIN. | 0.04 MIN. |
| G | 3.2 MIN. | 0.125 MIN. |
| H | 1.02 MIN. | 0.04 MIN. |
| I | 3.23 MAX. | 0.13 MAX. |
| J | 4.25 MAX. | 0.17 MAX. |
| K | 15.24 TYP. | 0.60 TYP. |
| L | 14.93 TYP. | 0.59 TYP. |
| M | $0.25 \pm 0.05$ | $0.010 \pm 0.002$ |

## FULLY DECODED 32,768 BIT MASK PROGRAMMABLE READ ONLY MEMORY

DESCRIPTION The NEC $\mu$ PD2332A/B is a Fully Decoded 32,768 Bit Mask Programmable Read-Only Memory organized as 4,096 Words by 8 Bits. The $\mu$ PD2332A/B has two chip select inputs and the combination of "High"/"Low" levels of these inputs is maskprogrammable.

The $\mu$ PD2332A/B is fabricated with sophisticated $N$-channel MOS technology and features high speed and TTL compatibility for simple interface with bipolar circuits.

FEATURES • 4096 Words $\times 8$ Bits Organization

- Directly TTL Compatible - All Inputs and Outputs
- Fully Static (No Clock or Refresh Required)
- Single $+5 V$ Power Supply
- High Speed - Access Times: $\mu$ PD2332A/B -450 ns
$\mu$ PD2332A/B-1 - 350 ns
- Three-State Output - OR-Tie Capability
- Two Programmable Chip Select Inputs for Easy Memory Expansion
- Available in Either JEDEC Pinout: $\mu$ PD2332A or $\mu$ PD2332B
- N-Channel MOS Technology
- Pin Compatible with TI TMS4732
- Available in 24 Pin Plastic or Ceramic Dual-in-Line Package


PIN NAMES

| $A_{0}-A_{11}$ | Address Inputs |
| :--- | :--- |
| $D_{0}-D_{7}$ | Data Outputs |
| $C S_{1}-C S_{2}$ | Programmable Chip Select Inputs |

When ordering the $\mu$ PD2332A/B, specify a chip select combination of $\mathrm{CS}_{1}$ and $\mathrm{CS}_{2}$ from the following.

| $\mathrm{CS}_{2}$ | $\mathrm{CS}_{1}$ |
| :---: | :---: |
| 0 | 0 |
| 0 | 1 |
| 1 | 0 |
| 1 | 1 |



Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Supply Voltage On Any Pin . . . . . . . . . . . . . . . . . . . . . . . -0.5 to +7.0 Volts ${ }^{(1)}$

Note: (1) With Respect to Ground
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

* $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN. | TYP. ${ }^{(1)}$ | MAX. |  |  |
| Input Load Current (All Input Pins) | ${ }^{\prime} \mathrm{LI}$ |  |  | 10 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=0$ to +5.5 V |
| Output Leakage Current | ${ }^{\text {LOH }}$ |  |  | +10 | $\mu \mathrm{A}$ | $\mathrm{CS}=2.2 \mathrm{~V}$ (Deselected) $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$ |
| Output Leakage Current | ${ }^{\text {L LOL }}$ |  |  | -10 | $\mu \mathrm{A}$ | $\mathrm{CS}=2.2 \mathrm{~V}$ (Deselected) $\mathrm{V}_{\text {OUT }}=\mathrm{OV}$ |
| Power Supply Current | ${ }^{\text {I CC }}$ |  | 60 | 90 | mA | All inputs 5.25V Data Out Open |
| Input "Low" Voltage | $V_{\text {IL }}$ | -0.5 |  | 0.8 | V |  |
| Input "High" Voltage | $\mathrm{V}_{\mathrm{IH}}$ | 2.0 |  | $\mathrm{V}_{\mathrm{CC}}+1.0 \mathrm{~V}$ | $\checkmark$ |  |
| Output "Low" Voltage | $\mathrm{v}_{\mathrm{OL}}$ | , |  | 0.40 | V | 3.2 mA |
| Output "High" Voltage | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  |  | V | $-200 \mu \mathrm{~A}$ |

Note: (1) Typical $V$ alues for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and nominal supply voltages.
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN. | TYP. | MAX. |  |  |
| Input Capacitance | $\mathrm{C}_{\text {IN }}$ | . |  | 10 | pF | All Pins Except Pin Under Test Tied to AC Ground |
| Output Capacitance | $\mathrm{C}_{\text {OUT }}$ |  |  | 15 | pF | All Pins Except Pin Under Test Tied to AC Ground |

$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

| PARAMETER | SYMBOL | LIMITS |  |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu \mathrm{PD} 2332 \mathrm{~A} / \mathrm{B}$ |  | $\mu \mathrm{PD} 2332 \mathrm{~A} / \mathrm{B}-1$ |  |  |  |
|  |  | MIN. | MAX. | MIN. | MAX. |  |  |
| Address to Output Delay Time | ${ }^{\text {t }}$ ACC |  | 450 |  | 350 | ns | $\mathrm{t}_{\mathrm{T}}=\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ |
| Chip Select to Output Enable Delay Time | ${ }^{\text {t }} \mathrm{CO}$ |  | 150 |  | 150 | ns | $C_{L}=100 \mathrm{pF}$ |
| Chip Deselect to Output Data Float Delay Time | ${ }^{\text {t }}$ DF | 0 | 150 |  | 100 | ns | Load $=1$ ITTL gate |
| Output Hold Time | ${ }^{\text {t }} \mathrm{OH}$ | 20 |  | 20 |  | ns | $\begin{aligned} & V_{I N}=0.8 \text { to } 2 \mathrm{~V} \\ & V_{\text {ref }} \text { Input }=1.5 \mathrm{~V} \\ & V_{\text {ref }} \text { Output }=0.45 / 2.2 \mathrm{~V} \end{aligned}$ |

## ABSOLUTE MAXIMUM RATINGS*

$\mu$ PD2332A/B
TIMING WAVEFORMS


PACKAGE OUTLINE $\mu$ PD2332AC/D $\mu$ PD2332BC/D


Plastic

| ITEM | MILLIMETERS | INCHES |
| :---: | :--- | :--- |
| A | 33 MAX | 1.3 MAX |
| B | 2.53 | 0.1 |
| C | 2.54 | 0.1 |
| D | $0.5 \pm 0.1$ | $0.02 \pm 0.004$ |
| E | 27.94 | 1.1 |
| F | 1.5 | 0.059 |
| G | 2.54 MIN | 0.1 MIN |
| H | 0.5 MIN | 0.02 MIN |
| I | 5.22 MAX | 0.205 MAX |
| J | 5.72 MAX | 0.225 MAX |
| K | 15.24 | 0.6 |
| L | 13.2 | 0.55 MAX |
| M | $0.25{ }_{-0.0}^{+0.05}$ | $0.01+0.004$ |



Ceramic

| ITEM | MILLIMETERS | INCHES |
| :---: | :---: | :--- |
| A | 30.78 MAX. | 1.23 MAX. |
| B | 1.53 MAX. | 0.07 MAX. |
| C | $2.54 \pm 0.1$ | $0.10 \pm 0.004$ |
| D | $0.46 \pm 0.8$ | $0.018 \pm 0.03$ |
| E | $27.94 \pm 0.1$ | $1.10 \pm 0.004$ |
| F | 1.02 MIN. | 0.04 MIN. |
| G | 3.2 MIN. | 0.125 MIN. |
| H | 1.02 MIN. | 0.04 MIN. |
| I | 3.23 MAX. | 0.13 MAX. |
| J | 4.25 MAX. | 0.17 MAX. |
| K | 15.24 TYP. | 0.60 TYP. |
| L | 14.93 TYP. | 0.59 TYP. |
| M | $0.25 \pm 0.05$ | $0.010 \pm 0.002$ |

NOTES

# FULLY DECODED 65,536 BIT MASK PROGRAMMABLE READ ONLY MEMORY 

DESCRIPTION The NEC $\mu$ PD2364 is a high speed 65,536 bit mask programmable Read Only Memory organized as 8,192 words by 8 bits. The $\mu$ PD2364 is fabricated with N-channel MOS technology.

The inputs and outputs are fully TTL compatible. This device operates with a single +5 V power supply. The chip select input is programmable. Any of active high or low level chip select input can be defined and desired chip select code is fixed during the masking process.

## FEATURES - 8,192 Words $\times 8$ Bits Organization

- Directly TTL Compatible - All Inputs and Outputs
- Single +5 V Power Supply
- High Speed - Access Time 450 ns Max.
- Three-State Output - OR-Tie Capability
- One Programmable Chip Select Input for Easy Memory Expansion
- On-Chip Address Fully Decoded
- All Inputs Protected Against Static Charge
- Pin Compatible with MK36000
- Available in 24 Pin Ceramic or Plastic Dual-in-Line Package


| PIN NAMES |  |
| :--- | :--- |
| $A_{0}-A_{12}$ | Address Inputs |
| $O_{1}-O_{8}$ | Data Outputs |
| $C S$ | Programmable Chip Select Input |



BLOCK DIAGRAM

Operating Temperature .
$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltage On Any Pin . . . . . . . . . . . . . . . . . . . . . . . . - 0.5 to +7.0 Volts (1)
Note: (1) With Respect to Ground.
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{C}}=+5 \mathrm{~V} \pm 10 \%$, unless otherwise specified.

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP(1) | MAX |  |  |
| Input Load Current (All Input Pins) | 'LI |  |  | +10 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ |
|  |  |  |  | -10 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ |
| Output Leakage Current | ILOH |  |  | +10 | $\mu \mathrm{A}$ | Chip Deselected, $\mathrm{V}_{0}=\mathrm{V}_{\mathrm{CC}}$ |
| Output Leakage Current | ${ }_{\text {L }} \mathrm{LOL}$ |  |  | -10 | $\mu \mathrm{A}$ | Chip' Deselected, $\mathrm{V}_{0}=0 \mathrm{~V}$ |
| Power Supply Current | ${ }^{\text {I CC }}$ |  | 80 | 140 | mA |  |
| Input "Low" Voltage | $V_{\text {IL }}$ | -0.5 |  | 0.8 | V |  |
| Input "High" Voltage | $\mathrm{V}_{\text {IH }}$ | 2.0 |  | $\mathrm{V}_{\mathrm{Cc}}+1.0 \mathrm{~V}$ | V |  |
| Output "Low" Voltage | $\mathrm{V}_{\mathrm{OL}}$ |  |  | 0.45 | V | $1 \mathrm{OL}=2.1 \mathrm{~mA}$ |
| Output "High" Voltage | $\mathrm{V}_{\mathrm{OH}}$ | 2.2 |  |  | V | $\mathrm{I}^{\mathrm{OH}}=-400 \mu \mathrm{~A}$ |

Note: (1) Typical Values for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and nominal supply voltages.

ABSOLUTE MAXIMUM RATINGS*

CAPACITANCE $\quad T_{a}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

| PARAMETER |  | LIMITS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX | UNIT | TEST CONDITIONS |
| Input Capacitance |  |  |  | 10 | pF | All Pins Except Pin Under <br> Test Tied to AC Ground |
| Output Capacitance | COUT |  |  | 15 | pF | All Pins Except Pin Under <br> Test Tied to AC Ground |

$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Address to Output Delay Time | ${ }^{t} \mathrm{~A}$ |  |  | 450 | ns | $\mathrm{t}_{\mathrm{T}}=\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ |
| Chip Select to Output Enable Delay Time | ${ }^{\text {t }} \mathrm{CO}$ |  |  | 150 | ns | $C_{L}=100 \mathrm{pF}$ |
| Chip Deselect to Output Data Float Delay Time | ${ }^{\text {t }}$ DF | 0 |  | 150 | ns | Load $=1$ TTL gate |
| Output Hold Time | ${ }^{1} \mathrm{OH}$ | 20 |  |  | ns | $\begin{aligned} & V_{\text {IN }}=0.8 \text { to } 2 \mathrm{~V} \\ & V_{\text {ref }} \text { Input }=1.5 \mathrm{~V} \\ & V_{\text {ref }} \text { Output }=0.8 \text { to } 2.0 \mathrm{~V} \end{aligned}$ |

TIMING WAVEFORMS



PACKAGE OUTLINE $\mu$ PD2364C/D


Ceramic

| ITEM | MILLIMETERS | INCHES |
| :---: | :---: | :---: |
| A | 30.78 MAX. | 1.21 MAX. |
| B | 1.53 MAX. | 0.06 MAX. |
| C | $2.54 \pm 0.1$ | $0.10 \pm 0.004$ |
| D | $0.46 \pm 0.8$ | $0.018 \pm 0.03$ |
| E | $27.94 \pm 0.1$ | $1.10 \pm 0.004$ |
| F | 1.02 MIN. | 0.04 MIN. |
| G | 3.2 MIN. | 0.13 MIN. |
| H | 1.02 MIN. | 0.04 MIN. |
| I | 3.23 MAX. | 0.13 MAX. |
| J | 4.25 MAX. | 0.17 MAX. |
| K | 15.24 TYP. | 0.60 TYP. |
| L | 14.93 TYP. | 0.59 TYP. |
| M | $0.25 \pm 0.05$ | $0.010 \pm 0.002$ |

## 16K ULTRAVIOLET ERASABLE PROM

DESCRIPTION

FEATURES

The $\mu$ PD2716 is a 16,384 -bit Ultraviolet Erasable and Electrically Programmable Read Only Memory. Organized as 2048 words $\times 8$ bits, it operates from a single +5 volt power supply, making it ideal for microprocessor applications. It is pin-for-pin compatible with the $\mu$ PD2316E, allowing economical changeover to a masked ROM for production quantities.

The $\mu$ PD2716 features fast, simple, one pulse programming, controlled by TTL level signals. Total programming time for all 16,384 bits is only 100 seconds.

- Access Time - 450 ns Max
- 2048 Words x 8 Bits Organization
- Single +5 V Supply
- Pin Compatible with $\mu$ PD 2316E Masked ROM
- Fast Programming
- TTL Level Controls for Reading and Programming
- Available in a 24 Pin Ceramic Package

PIN CONFIGURATION

| PIN NAMES |  |
| :--- | :--- |
| $A_{0} \cdot A_{9}$ | Addresses |
| $\overline{\mathrm{CE}} / \mathrm{PGM}$ | Chip Enable/Program |
| $\overline{\mathrm{OE}}$ | Output Enable |
| $\mathrm{O}_{0} \mathrm{O}_{7}$ | Output Data |

MODE SELECTION

| MODE | $\overline{\text { CE/PGM }}$ | $\overline{O E}$ | Vpp | $\mathrm{V}_{\mathrm{CC}}$ | OUTPUTS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Read | $V_{\text {IL }}$ | $V_{\text {IL }}$ | +5 | +5 | DOUT |
| Standby | $V_{\text {IH }}$ | Don't Care' | +5 | +5 | High Z |
| Program | Pulsed $V_{\text {IL }}$ to $V_{\text {IH }}$ | $\mathrm{V}_{\text {IH }}$ | +25 | +5 | DIN |
| Program Verify | $\mathrm{V}_{\text {IL }}$ | $V_{\text {IL }}$ | +25 | +5 | Dout |
| Program Inhibit | VIL | $\mathrm{V}_{\text {IH }}$ | +25 | +5 | High Z |



## 32K ULTRAVIOLET ERASABLE PROM

DESCRIPTION The $\mu$ PD2732 is a 32,768 bit Ultraviolet Erasable and Electrically Programmable Read Only Memory. Organized as 4096 words x 8 bits, it operates from a single +5 V power supply, making it ideal for microprocessor applications. The $\mu$ PD2732 features fast, simple, one pulse programming, controlled by TTL level signals. Total Programming time for all 32,768 bits is only 200 seconds.

FEATURES • 4096 Words $\times 8$ Bits Organization

- Single +5 V Supply
- Fast Programming
- TTL Level Controls for Reading and Programming
- Available in a 24 Pin Ceramic Package

PIN CONFIGURATION

| $\mathrm{A}_{7}-1$ |  | 24 | $\square^{V_{C C}}$ |
| :---: | :---: | :---: | :---: |
| $A_{6} \square_{2}$ |  | 23 | $\square^{A_{8}}$ |
| $\mathrm{A}_{5} \mathrm{C}_{3}$ |  | 22 | $\square \mathrm{A}_{9}$ |
| $\mathrm{A}_{4} \square 4$ |  | 21 | $\square \mathrm{A}_{11}$ |
| $\mathrm{A}_{3} \square 5$ |  | 20 | - oe |
| $\mathrm{A}_{2}-6$ | $\mu \mathrm{PD}$ | 19 | $\square^{A_{10}}$ |
| $\mathrm{A}_{1} \square_{7}$ |  | 18 | $\square \overline{C E}$ |
| $A_{0} \square$ |  | 17 | $\square \mathrm{O}_{7}$ |
| $\mathrm{O}_{0} \square 9$ |  | 16 | $\square \mathrm{O}_{6}$ |
| $0_{1}-10$ |  | 15 | $\square \mathrm{O}_{5}$ |
| $\mathrm{O}_{2} \square_{11}$ |  | 14 | $\mathrm{\square}_{4}$ |
| GND 12 |  | 13 | $\square \mathrm{O}_{3}$ |



## $\mu$ COM-4 MICROCOMPUTER SELECTION GUIDE

| DEVICE | PRODUCT | ROM | RAM | 1/0 | PROCESS | OUTPUT | $\begin{gathered} \text { SUPPLY } \\ \text { VOLTAGES } \end{gathered}$ | PINS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mu$ PD548 | $\mu \mathrm{COM}-42 \mathrm{CPU}$ | $1920 \times 10$ | $96 \times 4$ | 35 | PMOS | -35V, O.D. | -10 | 42 |
| $\mu$ PD546 | $\mu \mathrm{COM}-43 \mathrm{CPU}$ | $2000 \times 8$ | $96 \times 4$ | 35 | PMOS | -10V, O.D. | -10 | 42 |
| $\mu$ PD553 | $\mu$ COM-43H CPU | $2000 \times 8$ | $96 \times 4$ | 35 | PMOS | -35V, O.D. | -10 | 42 |
| $\mu$ PD557L | $\mu$ COM-43SL CPU | $2000 \times 8$ | $96 \times 4$ | 21 | PMOS | -35V, O.D. | -8 | 28 |
| $\mu$ PD650 | $\mu \mathrm{COM}-43 \mathrm{C}$ CPU | $2000 \times 8$ | $96 \times 4$ | 35 | CMOS | push-pull | +5 | 42 |
| $\mu$ PD547 | $\mu$ COM-44 CPU | $1000 \times 8$ | $64 \times 4$ | 35 | PMOS | -10V, O.D. | -10 | 42 |
| $\mu$ PD547L | $\mu$ COM-44L CPU | $1000 \times 8$ | $64 \times 4$ | 35 | PMOS | -10V, O.D. | -8 | 42 |
| $\mu$ PD552 | $\mu$ COM-44H CPU | $1000 \times 8$ | $64 \times 4$ | 35 | PMOS | -35V, O.D. | -10 | 42 |
| $\mu$ PD651 | $\mu$ COM-44C CPU | $1000 \times 8$ | $64 \times 4$ | 35 | CMOS | push-pull | +5 | 42 |
| $\mu$ PD550 | $\mu \mathrm{COM}-45 \mathrm{CPU}$ | $640 \times 8$ | $32 \times 4$ | 21 | PMOS | -35V, O.D. | -10 | 28 |
| $\mu$ PD550L | $\mu$ COM-45L CPU | $640 \times 8$ | $32 \times 4$ | 21 | PMOS | -35V, O.D. | -8 | 28 |
| $\mu$ PD554 | $\mu \mathrm{COM}-45 \mathrm{CPU}$ | $1000 \times 8$ | $32 \times 4$ | 21 | PMOS | -35V, O.D. | -10 | 28 |
| $\mu$ PD554L | $\mu$ COM-45L CPU | $1000 \times 8$ | $32 \times 4$ | 21 | PMOS | -35V, O.D. | -8 | 28 |
| $\mu$ PD652 | $\mu$ COM-45C CPU | $1000 \times 8$ | $32 \times 4$ | 21 | CMOS | push-pull | +5 | 28 |
| $\mu$ PD555 | $\mu$ COM-42 EVACHIP | - | $96 \times 4$ | 35 | PMOS | -10V, O.D. | -10 | 64 |
| $\mu$ PD556 | $\mu$ COM-43 EVACHIP | - | $96 \times 4$ | 35 | PMOS | -10V, O.D. | -10 | 64 |
| $\mu$ PD7520 | $\mu$ COM-75 CPU | $768 \times 8$ | $48 \times 4$ | 24 | PMOS | Direct LED Drive | -6 to -10 variable | 28 |

[^1]
## $\mu$ COM-8 MICROCOMPUTER SELECTION GUIDE

## MICROPROCESSORS

| DEVICE | PRODUCT | SIZE | PROCESS | OUTPUT | CYCLE | SUPPLY <br> VOLTAGES | PINS |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mu$ PD8080AF | Microprocessor | 8 -bit | NMOS | 3 -State | 2.0 MHz | $+12 \pm 5$ | 40 |
| $\mu$ PD8080AF-2 | Microprocessor | 8 -bit | NMOS | 3 -State | 2.5 MHz | $+12 \pm 5$ | 40 |
| $\mu$ PD8080AF-1 | Microprocessor | 8 -bit | NMOS | 3 -State | 3.0 MHz | $+12 \pm 5$ | 40 |
| $\mu$ PD8085A | Microprocessor | 8 -bit | NMOS | 3 -State | 3.0 MHz | +5 | 40 |
| $\mu$ PD8085A-2 | Microprocessor | 8-bit | NMOS | 3 -State | 5.0 MHz | +5 | 40 |

SINGLE CHIP 8-BIT MICROCOMPUTERS

| DEVICE | SPECIAL FEATURES | ROM | RAM | 1/0 | PROCESS | OUTPUT | CYCLE | SUPPLY VOLTAGES | PINS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mu$ PD8021 | Zero-Cross Detector | $1024 \times 8$ | $64 \times 8$ | 21 | NMOS | BD | 3.6 MHz | +5V | 28 |
| $\mu$ PD8022 | On-Chip A/D Converter | $2048 \times 8$ | $64 \times 8$ | 26 | NMOS | BD | 3.6 MHz | +5V | 40 |
| $\mu$ PD8035L | $\mu$ PD8048 w/External Memory | External | $64 \times 8$ | 27 | NMOS | TS, BD | 6 MHz | +5V | 40 |
| $\mu$ PD8039L | $\mu$ PD8049 w/External Memory | External | $128 \times 8$ | 27 | NMOS | TS, BD | 11 MHz | +5V | 40 |
| $\mu$ PD8041 | Peripheral Interface w/Slave Bus | $1024 \times 8$ | $64 \times 8$ | 18 | NMOS | TS, BD | 6 MHz | +5V | 40 |
| $\mu$ PD8048 | Expansion Bus | $1024 \times 8$ | $64 \times 8$ | 27 | NMOS | TS, BD | 6 MHz | +5V | 40 |
| $\mu$ PD8049 | High Speed $\mu$ PD8048 | $2048 \times 8$ | $128 \times 8$ | 27 | NMOS | TS, BD | 11 MHz | +5V | 40 |
| $\mu$ PD8741A | UV-EPROM $\mu$ PD8041A | $1024 \times 8$ | $64 \times 8$ | 18 | NMOS | TS, BD | 6 MHz | +5V | 40 |
| $\mu$ PD8748 | UV-EPROM $\mu$ PD8048 | $1024 \times 8$ | $64 \times 8$ | 27. | NMOS | TS, BD | 6 MHz | +5V | 40 |
| $\mu \mathrm{PD} 7800$ | Development Chip | External | $128 \times 8$ | 48 | NMOS | TS, BD | 4 MHz | +5V | 64 |
| $\mu$ PD7801 | 8080 Type Expansion Bus 64K Memory Address Space | $4096 \times 8$ | $128 \times 8$ | 48 | NMOS | TS, BD | 4 MHz | +5V | 64 |

Notes: BD $=\mathrm{Bi}$-directional
TS = 3-State

## $\mu$ COM-8 MICROCOMPUTER SELECTION GUIDE

SYSTEM SUPPORT

| DEVICE | PRODUCT | SIZE | PROCESS | OUTPUT | CYCLE | SUPPLY VOLTAGES | PINS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mu$ PD765 | Double Sided/Double Density Floppy Disk Controller | 8-bit | NMOS | 3-State | 8 MHz | +5 | 40 |
| $\mu$ PD781 | Dot Matrix Printer Controller-Epson 500 Printer | 8-bit | NMOS | 3-State | 6 MHz | +5 | 40 |
| $\mu$ PD782 | Dot Matrix Printer Controller-Epson 200 Printer | 8-bit | NMOS | 3-State | 6 MHz | +5 | 40 |
| $\mu$ PD3301 | CRT Controller | 8-bit | NMOS | 3-State | 3 MHz | +5 | 40 |
| $\mu$ PD7001 | 8-Bit A/D Converter | 8-bit | CMOS | Open Collector Serial | 10 kHz <br> Conversion Time | +5 | 16 |
| $\mu$ PD7002 | 12-Bit A/D Converter | 8-bit | cmos | 3-State | 400 Hz <br> Conversion Time | +5 | 28 |
| $\mu$ PD8155 | $256 \times 8$ RAM with I/O Ports and Timer | 8-bit | NMOS | 3-State | - | +5 | 40 |
| $\mu$ PD8155-2 | $256 \times 8$ RAM with I/O Ports and Timer | 8-bit | NMOS | 3-State | - | +5 | 40 |
| $\mu$ PD8156 | $256 \times 8$ RAM with I/O Ports and Timer | 8-bit | NMOS | 3-State | $\cdots$ - | +5 | 40 |
| $\mu$ PD8156-2 | $256 \times 8$ RAM with I/O Ports and Timer | 8-bit | NMOS | 3-State | - | +5 | 40 |
| $\mu \mathrm{PB8212}$ | I/O Port | 8-bit ${ }^{\prime}$ | Bipolar | 3-State | - | +5 | 24 |
| MPB8214 | Priority Interrupt Controller | 3-bit | Bipolar | Open Collector | 3 MHz | +5 | 24 |
| $\mu \mathrm{PB8216}$ | Bus Driver Non-Inverting | 4-bit | Bipolar | 3-State | - | +5 | 16 |
| $\mu \mathrm{PB8224}$ | Clock Generator Driver | 2 phase | Bipolar | High Level Clock | 3 MHz | +12 $\pm 5$ | 16 |
| $\mu \mathrm{PB8226}$ | Bus Driver Inverting | 4-bit | Bipolar | 3-State | - | +5 | 16 |
| $\mu \mathrm{PB8228}$ | System Controller | 8-bit | Bipolar | 3-State | - | +5 | 28 |
| $\mu$ PD8243 | I/O Expander | $4 \times 4$ bits | NMOS | 3-State | - | +5 | 24 |
| $\mu$ PD8251 | Programmable Communications Interface (Async/Sync) | 8-bit | NMOS | 3-State | A-9.6K baud S-56K baud | +5 | 28 |
| $\mu$ PD8251A | Programmable Communications Interface (Async/Sync) | 8-bit | NMOS | 3-State | A-9.6K baud S-64K baud | +5 | 28 |
| $\mu \mathrm{PD8253}$ | Programmable Timer | 8-bit | NMOS | 3-State | 3.3 MHz | +5 | 24 |
| $\mu$ PD8253-5 | Programmable Timer | 8-bit | NMOS | 3-State | 3.3 MHz | +5 | 24 |
| $\mu$ PD8255 | Peripheral Interface | 8-bit | NMOS | 3-State | - | +5 | 40 |
| $\mu$ PD8255A-5 | Peripheral Interface | 8-bit | NMOS | 3-State | - | +5 | 40 |
| $\mu \mathrm{PD8257}$ | Programmable DMA Controller | 8-bit | NMOS | 3-State | 3 MHz | +5 | 40 |
| $\mu \mathrm{PD} 8257-5$ | Programmable DMA Controller | 8-bit | NMOS | 3-State | 3 MHz | +5 | 40 |
| $\mu \mathrm{PD} 8259$ | Programmable Interrupt Controller | 8-bit | NMOS | 3-State | - | +5 | 28 |
| $\mu$ PD8259-5 | Programmable Interrupt Controller | 8-bit | NMOS | 3-State | - | +5 | 28 |
| $\mu$ PD8279-5 | Programmable Keyboard/ Display Interface | 8-bit | NMOS | 3-State | - | +5 | 40 |
| $\mu \mathrm{PD} 8355$ | $2048 \times 8$ ROM with I/O Ports | 8-bit | NMOS | 3-State | - | +5 | 40 |
| $\mu$ PD8755A | $2048 \times 8$ EPROM with 1/O Ports | 8-bit | NMOS | 3-State | - | +5 | 40 |

MICROCOMPUTER ALTERNATE SOURCE GUIDE

| MANUFACTURER | PART NUMBER | DESCRIPTION | NEC REPLACEMENT |
| :---: | :---: | :---: | :---: |
| AMD | AM8080A/9080A <br> AM8080A-2/9080A-2 <br> AM8080A-1/9080A-1 <br> AM8085A <br> AM8155 <br> AM8156 <br> AM8212 <br> AM8214 <br> AM8216 <br> AM8224 <br> AM8226 <br> AM8228 <br> AM8251 <br> AM8255 <br> AM8257 <br> AM8355 <br> AM8048 | Microprocessor ( 2.0 MHz ) <br> Microprocessor ( 2.5 MHz ) <br> Microprocessor ( 3.0 MHz ) <br> Microprocessor ( 3.0 MHz ) <br> Programmable Peripheral Interface with $256 \times 8$ RAM <br> Programmable Peripheral Interface with $256 \times 8$ RAM <br> I/O Port (8-Bit) <br> Priority Interrupt Controller <br> Bus Driver, Inverting <br> Clock Generator/Driver <br> Bus Driver, Non-Inverting <br> System Controller <br> Programmable Communications <br> Interface <br> Programmable Peripheral Interface <br> Programmable DMA Controller <br> Programmable Peripheral Interface with 2048×8 ROM <br> Single Chip Microcomputer | $\mu$ PD8080AF <br> $\mu$ PD8080AF-2 <br> $\mu$ PD8080AF-1 <br> $\mu$ PD8085A <br> $\mu$ PD8155 <br> $\mu$ PD8156 <br> $\mu$ PB8212 <br> $\mu$ PB8214 <br> $\mu$ PB8216 <br> $\mu$ PB8224 <br> $\mu$ PB8226 <br> $\mu$ PB8228 <br> $\mu$ PD8251 <br> $\mu$ PD8255 <br> $\mu$ PD8257 <br> $\mu$ PD8355 <br> $\mu$ PD8048 |
| INTEL | 8080A <br> 8080A-2 <br> 8080A-1 <br> 8021 <br> 8022 <br> 8035L <br> 8039L <br> 8041 <br> 8048 <br> 8049 <br> 8085A <br> 8085A-2 <br> 8155/8155-2 <br> 8156/8156-2 <br> 8212 <br> 8214 <br> 8216 <br> 8224 <br> 8226 <br> 8228 <br> 8243 <br> 8272 | Microprocessor ( $\mathbf{2 . 0} \mathrm{MHz}$ ) <br> Microprocessor ( $\mathbf{2 . 5} \mathrm{MHz}$ ) <br> Microprocessor ( $\mathbf{3 . 0} \mathrm{MHz}$ ) <br> Microcomputer with ROM <br> Microcomputer with A/D Converter <br> Microprocessor <br> Microprocessor <br> Programmable Peripheral Controller with ROM <br> Microcomputer with ROM <br> Microcomputer with ROM <br> Microprocessor ( $\mathbf{3 . 0} \mathbf{~ M H z}$ ) <br> Microprocessor ( 5.0 MHz ) <br> Programmable Peripheral Interface <br> with $256 \times 8$ RAM <br> Programmable Peripheral Interface with $256 \times 8$ RAM <br> I/O Port (8-Bit) <br> Priority Interrupt Controller <br> Bus Driver, Non-Inverting <br> Clock Generator/Driver <br> Bus Driver, Inverting <br> System Controller <br> I/O Expander <br> Double Sided/Double Density <br> Floppy Disk Controller | $\mu$ PD8080AF <br> $\mu$ PD8080AF-2 <br> $\mu$ PD8080AF-1 <br> $\mu$ PD8021 <br> $\mu$ PD8022 <br> $\mu$ PD8035L <br> $\mu$ PD8039L <br> $\mu$ PD8041 <br> $\mu$ PD8048 <br> $\mu$ PD8049 <br> $\mu$ PD8085A <br> $\mu$ PD8085A-2 <br> $\mu$ PD8155/8155-2 <br> $\mu$ PD8156/8156-2 <br> $\mu$ PB8212 <br> $\mu$ PB8214 <br> $\mu$ PB8216 <br> $\mu$ PB8224 <br> $\mu$ PB8226 <br> $\mu$ PB8228 <br> $\mu$ PD8243 <br> $\mu$ PD765 |

## NEC Microcomputers, Inc.

NEC

MICROCOMPUTER ALTERNATE SOURCE GUIDE

| MANUFACTURER | PART NUMBER | DESCRIPTION | NEC REPLACEMENT |
| :---: | :---: | :---: | :---: |
| INTEL (CONT.) | 8251 <br> 8251A <br> 8253 <br> 8253-5 <br> 8255 <br> 8255A <br> 8255A-5 <br> 8257 <br> 8257-5 <br> 8259 <br> 8259-5 <br> 8279-5 <br> 8355 <br> 8741A <br> 8748 <br> 8755A | Programmable Communications Interface (Async/Sync) <br> Programmable Communications <br> Interface (Async/Sync) <br> Programmable Timer <br> Programmable Timer <br> Programmable Peripheral Interface <br> Programmable Peripheral Interface <br> Programmable Peripheral Interface <br> Programmable DMA Controller <br> Programmable DMA Controller <br> Programmable Interrupt Controller <br> Programmable Interrupt Controller <br> Programmable Keyboard/Display <br> Interface <br> Programmable Peripheral Interface with $2048 \times 8$ ROM <br> Programmable Peripheral Controller with EPROM <br> Microcomputer with EPROM <br> Programmable Peripheral Interface with <br> $2 \mathrm{~K} \times 8$ EPROM | $\mu$ PD8251 <br> $\mu$ PD8251A <br> $\mu$ PD8253 <br> $\mu$ PD8253-5 <br> $\mu$ PD8255 <br> $\mu$ PD8255A-5 <br> $\mu$ PD8255A-5 <br> $\mu$ PD8257 <br> $\mu$ PD8257-5 <br> $\mu$ PD8259 <br> $\mu$ PD8259-5 <br> $\mu$ PD8279-5 <br> $\mu$ PD8355 <br> $\mu$ PD8741A <br> $\mu$ PD8748 <br> $\mu$ PD8755A |
| NATIONAL | INS8080A <br> INS8080A-2 <br> INS8080A-1 <br> 8212 <br> 8214 <br> 8216 <br> 8224 <br> 8226 <br> 8228 <br> INS8251 <br> INS8253 <br> INS8255 <br> INS8257 <br> INS8259 | Microprocessor ( $\mathbf{2 . 0} \mathbf{~ M H z}$ ) <br> Microprocessor ( $\mathbf{2 . 5} \mathbf{~ M H z}$ ) <br> Microprocessor ( 3.0 MHz ) <br> I/O Port (8-Bit) <br> Priority Interrupt Controller <br> Bus Driver, Non-Inverting <br> Clock Generator/Driver <br> Bus Driver, Inverting <br> System Controller <br> Programmable Communications Interface <br> Programmable Timer <br> Programmable Peripheral Interface <br> Programmable DMA Controller <br> Programmable Interrupt Controller | $\mu$ PD8080AF $\mu$ PD8080AF-2 $\mu$ PD8080AF-1 $\mu$ PB8212 $\mu$ PB8214 $\mu$ PB8216 $\mu$ PB8224 $\mu$ PB8226 $\mu$ PB8228 $\mu$ PD8251 <br> $\mu$ PD8253 $\mu$ PD8255 $\mu$ PD8257 $\mu$ PD8259 |
| T.I. | TMS8080A <br> TMS8080A-2 <br> TMS8080A-1 <br> SN74S412 <br> SN74LS424 <br> SN74S428 | Microprocessor ( $\mathbf{2 . 0 \mathrm { MHz } \text { ) }}$ <br> Microprocessor ( $\mathbf{2 . 5} \mathbf{~ M H z}$ ) <br> Microprocessor ( 3.0 MHz ) <br> I/O Port (8-Bit) <br> Clock Generator/Driver <br> System Controller | $\mu$ PD8080AF $\mu$ PD8080AF-2 $\mu$ PD8080AF-1 $\mu$ PB8212 $\mu$ PB8224 $\mu$ PB8228 |

NOTES

## $\mu$ COM－42 4－BIT SINGLE CHIP MICROCOMPUTER

DESCRIPTION The $\mu$ COM－42（Part No．$\mu$ PD548）is a single chip microcomputer that is ideally suited for Electronic Cash Register（ECR），Point of Sale（POS）and Electronic Scale applications．

Containing a 4 －bit Parallel ALU，ROM for program storage and RAM for data storage， the $\mu$ COM－42 provides an economical and simple solution to many Vending／Calculating requirements．

Because of its extensive instruction set and five input／output ports，the $\mu$ COM－ 42 is capable of controlling an $8 \times 4$ keyboard，an 8 digit display and low cost ECR－type printers．

Finally，the on－chip RAM space can be augmented by an external CMOS RAM for applications requiring low power data retention．

FEATURES－Stand Alone 4－bit Microcomputer
－All 72 Instructions are Single Byte
－ $10 \mu \mathrm{sec}$ Instruction Cycle
－ $1920 \times 10$－Bit Program Memory（ROM）
－ $96 \times 4$－Bit Data Memory（RAM）
－4－Level Stack
－ 2 Interrupt Request Lines
－I／O Compatible with TTL
－ 10 Discrete Output Ports（ $\mathrm{F}_{0}-\mathrm{Fg}$ ）
－Two 8－Bit Output Ports（ $\left.\mathrm{U}_{0}-\mathrm{U}_{7}, \mathrm{R}_{0}-\mathrm{R}_{7}\right)$
－One 4－Bit Input Port（ $\mathrm{K}_{0}-\mathrm{K}_{3}$ ）
－One 4－Bit Input／Output Port $\left(\mathrm{S}_{0}-\mathrm{S}_{3}\right)$
－One Single Bit Testable Input Port（ $\mathrm{K}_{4}$ ）
－Single Phase TTL Level Clock（ 200 KHz Max．）
－Single Supply，－10V PMOS Technology
－ 42 Pin Plastic Dual－in－Line Package

| RES | 1 |  | 42 | ］ |
| :---: | :---: | :---: | :---: | :---: |
| K0 | 2 |  | 41 | $巳 \mathrm{VGG}^{(-10 \mathrm{~V})}$ |
| $\mathrm{K}_{1}{ }^{\text {O }}$ | 3 |  | 40 | $\mathrm{OK}_{4}$ |
| $\mathrm{K}_{2}$ | 4 |  | 39 | R7 |
| K3 | 5 |  | 38 | صR6 |
| TEST | 6 |  | 37 | $\mathrm{R}_{5}$ |
| So 5 | 7 |  | 36 | $\mathrm{R}_{4}$ |
| $\mathrm{S}_{1}{ }^{\text {d }}$ | 8 |  | 35 | $\mathrm{P}_{3}$ |
| $\mathrm{S}_{2} \mathrm{~S}^{\text {a }}$ | 9 |  | 34 | $\mathrm{R}_{2}$ |
| $\mathrm{S}_{3} 5$ | 10 | $\mu$ PD | 33 | RR1 |
| 14. | 11 | 548 | 32 | Ro |
| IB | 12 |  | 31 | 口U7 |
| $\mathrm{F}_{0} \mathrm{C}^{1}$ | 13 |  | 30 | $\cup_{6}$ |
| $\mathrm{F}_{1} \mathrm{I}^{\text {l }}$ | 14 |  | 29 | $\square U_{5}$ |
| $\mathrm{F}_{2} \mathrm{~S}^{1}$ | 15 |  | 28 | $\mathrm{V}_{4}$ |
| $\mathrm{F}_{3} \mathrm{C}$ | 16 |  | 27 | $\mathrm{U}_{3}$ |
| $\mathrm{F}_{4} \mathrm{I}$ |  |  | 26 | $\square U_{2}$ |
| $\mathrm{F}_{5}$ |  |  | 25 | $\mathrm{U}_{1}$ |
| $\mathrm{F}_{6}$ | 19 |  | 24 | 曰 U0 |
| F7 | 20 |  | 23 | P99 |
| GND | 21 |  | 22 | ］ $\mathrm{F}_{8}$ |

PIN NAMES

| RES | Reset |
| :--- | :--- |
| $\mathrm{K}_{0}-\mathrm{K}_{3}$ | Input Port K |
| TEST | Input for Testing <br> （Normally $\mathrm{V}_{\mathrm{GG}}$ ） |
| $\mathrm{S}_{0}-\mathrm{S}_{3}$ | Input／Output Port S |
| $\mathrm{IA}, \mathrm{IB}$ | Interrupt Input Ports |
| $\mathrm{F}_{0}-\mathrm{F}_{9}$ | Output Port F |
| $\mathrm{U}_{0}-\mathrm{U}_{7}$ | Output Port U |
| $\mathrm{R}_{0}-\mathrm{R}_{7}$ | Output Port R |
| $\mathrm{K}_{4}$ | Input Port for <br> Condition Test |
| $\phi$ | Clock Input |



Program Counter
FUNCTIONAL DESCRIPTION
The 11-bit program counter is composed of two sections, a 4-bit page register and a 7 -bit polynomial counter. The page register selects one page out of 15 , each consisting of 128 words addressed by the 7 -bit polynomial counter. The contents of the page register are independent of the operation of the polynomial counter, so that it is not affected by polynomial counter overflow.

## Stack Register

In order to store the program counter contents upon an interrupt or subroutine call, four 11-bit stack registers are provided to enable a combination of subroutine calls and interrupt nesting to four levels. The stack register is a LIFO (Last in, First-Out) type.

## ROM (Read Only Memory)

The on-chip ROM consists of 1,920 words of ten bits each and is divided into 15 pages. A page is selected by the page register, the upper four bits of the program counter.
Each page consists of 128 words addressed by the polynomial counter, the lower seven bits of the program counter.

## RAM (Data Memory)

The data memory is a $96 \times 4$-bit RAM addressed by a 7 -bit data pointer (DP). The RAM is divided into six rows of 164 -bit columns each. The 7 -bit data pointer consists of an upper 3-bit register (DPH) which selects the row address and a lower 4-bit register (DPL) which selects the column address.


## FUNCTIONAL DESCRIPTION

 (CONT.)
## Internal Registers

The Accumulator (ACC) is connected with the ALU and the carry flip-flop (C) and is able to perform either binary or decimal arithmetic by testing the decimal addition flip-flop (DAF) and the decimal subtraction flip-flop (DSF). Constants are loaded into the ACC as immediate data from ROM and variable data are loaded from or exchanged with RAM. The ACC is also connected with the temporary register (TR), the parallel I/O port $S$ and the parallel input port K. The TR is an auxiliary register used for temporary storage of 4 -bit data. The Q register is an 8 -bit serial-in/parallel-out shift register designed for display digit strobing and generation of printer hammer triggers.

## 1/O Ports

The $R$ port is an 8-bit parallel port that may be loaded from the Q register for digit strobing or loaded with the 4-bit TR and the 4-bit DPL for external RAM addressing. The $U$ port is an 8 -bit parallel port that is loaded with immediate data. It is usually used for outputting segment information for display and digit information for key scanning. The K port is a 4-bit input port that is usually used for key scan input. The K4 port is a single bit port that is testable by software. The $S$ port is a 4-bit parallel I/O port that is typically used as the data bus to external RAM. The F port consists of ten discrete output lines that can be individually set or reset under program control.

## Interrupt Ports

Two interrupt input lines, IA and IB, are available to accept an interrupt request when interrupts are enabled. IA has a higher priority level than IB. Thus when concurrent interrupts occur on both IA and IB only the IA interrupt is accepted and both are disabled. But a single IB interrupt disables only the IB interrupt and leaves IA enabled.

INSTRUCTION SET The $\mu$ COM-42 has a powerful 72, 10 -bit word, instruction set. All instructions are single words. There are a number of multi-function instructions which reduce the number of program steps. In addition, automatic data pointer modification, single word subroutine calls and N -way branch capability all help improve operation speed and reduce ROM requirements. The $\mu \mathrm{COM}-42$ instruction set is summarized below.

| MNEMONIC | CYCLES | DESCRIPTION | CONDITIONS FOR SKIP |
| :---: | :---: | :---: | :---: |
| CMA | 1 | $A_{C C} \leftarrow\left(\overline{A_{C C}}\right)$ |  |
| CIA | 1 | $A_{C C}-\left(\overline{A_{C C}}\right)+1$ |  |
| INA | 1/2 | $A_{C C}-\left(A_{C C}\right)+1$ | Carry $=1$ |
| DEA | 1/2 | $A_{C C}+\left(A_{C C}\right)-1$ | Borrow $\neq 1$ |
| RFC | 1 | $\mathrm{C} \leftarrow 0$ |  |
| SFC | 1 | $C \leftarrow 1$ |  |
| DSM | 1 | Decimal Subtract Mode |  |
| DAM | 1 | Decimal Add Mode |  |
| AD | 1/2 | $A_{C C} \leftarrow\left(A_{C C}\right)+[D P]$ | Carry $=1$ |
| ADC | 1 | $A_{C C}, C-\left(A_{C C}\right)+[D P]+(C)$ |  |
| ADI | 1/2 | $A_{C C} \leftarrow(A C C)+I_{3} I_{2} I_{1} I_{0}$ | Carry $=1$ |
| LM | 1 | $\begin{aligned} & A C C \leftarrow[D P] \\ & D P_{H} \leftarrow\left(D P_{H}\right) \forall M_{2} M_{1} M_{0} \end{aligned}$ |  |
| XM | 1 | $\begin{aligned} & \left(A_{C C}\right) \leftarrow[D P] \\ & D P_{H}-\left(D P_{H}\right) \forall M_{2} M_{1} M_{0} \end{aligned}$ |  |
| XMI | 1/2 | $\begin{aligned} & \left(A_{C C}\right) \leftarrow[D P] \\ & D P_{H} \leftarrow\left(D P_{H}\right) \forall M_{2} M_{1} M_{0} \\ & D P_{L} \leftarrow\left(D P_{L}\right)+1 \\ & \hline \end{aligned}$ | $\left(D P_{L}\right)=8$ or $\left(D P_{L}\right)=0$ |
| XMD | 1/2 | $\begin{gathered} (A C C) \leftrightarrow[D P] ; D P_{H} \leftarrow\left(D P_{H}\right) \\ M_{2} M_{1} M_{0} ; D P_{L} \leftarrow\left(D P_{L}\right)-1 \end{gathered}$ | $\left(D P_{L}\right)=F$ or $\left(D P_{L}\right)=7$ |
| LI | 1 | $A_{C C} \leftarrow I_{3} I_{2} I_{1} I_{0}$ |  |
| LDI | 1 | $D P \leftarrow I_{6}{ }^{-10}$ |  |
| IND | 1/2 | $D P_{L} \leftarrow\left(D P_{L}\right)+1$ | $\left(D P_{L}\right)=8$ or $\left(D P_{L}\right)=0$ |
| DED | 1/2 | $D P_{L} \leftarrow\left(\mathrm{DP} \mathrm{L}_{\mathrm{L}}\right)-1$ | $\left(D P_{L}\right)=F$ or $\left(D P_{L}\right)=7$ |
| XDP | 1 | $(\mathrm{DP}) \leftrightarrow\left(\mathrm{DP}{ }^{\prime}\right)$ |  |
| ZAG | 1 | $000 \mathrm{DP} \mathrm{L}^{-}-(\mathrm{DP})$ |  |

$\mu$ COM-42

| MNEMONIC | CYCLES | description | CONDITIONS FOR SKIP |
| :---: | :---: | :---: | :---: |
| XTA | 1 | ( ACC ) $\sim$ (TR) |  |
| LTI | 1 | TR $-11_{3} I_{2} I_{1} I_{0}$ |  |
| QS1 | 1 | $a_{n+1}+a_{n}, a_{0} \leftarrow 1$ |  |
| aso | 1 | $a_{n+1} \leftarrow a_{n} ; Q_{0} \leftarrow 0$ |  |
| SB | 1 | [DP, $\left.\mathrm{B}_{1}, \mathrm{~B}_{0}\right]+1$ |  |
| RB | 1 | $\left[\mathrm{DP}, \mathrm{B}_{1}, \mathrm{~B}_{0}\right] \leftarrow 0$ |  |
| SBT | 1/2 | Skip if [DP; $\left.B_{1}, B_{0}\right]=1$ | $\mathrm{B}_{1} \mathrm{~B}_{0}=1$ |
| SC | 1/2 | Skip if ( $C$ ) $=1$ | (C) $=1$ |
| SEM | 1/2 | Skip if ( ACC$)=[\mathrm{DP}]$ | $\left(A_{C C}\right)=[D P]$ |
| SEI | 1/2 | Skip if ( $A_{C C}$ ) $=i_{3} \mathrm{I}_{2} \mathrm{I}_{1} \mathrm{I}_{0}$ | ${ }^{\prime}\left(A_{C C}\right)=11_{3} I_{2} 1_{1} I_{0}$ |
| SK4 | 1/2 | Skip if $\mathrm{K}_{4}=1$ | $\mathrm{K}_{4}=1$ |
| JPT | 1 | $\mathrm{PC} \leftarrow(T R), \mathrm{P}_{6-0}$ |  |
| JPA | 1 | $\begin{aligned} & \mathrm{PC}_{6-4}+\mathrm{P}_{6-4} \\ & \mathrm{PC}_{3-0}+\mathrm{P}_{3-0} \mathrm{~V}(\mathrm{~A} C) \\ & \hline \end{aligned}$ |  |
| JCP. | 1. | $\mathrm{PC}_{6-0} \leftarrow \mathrm{P}_{6-0}$ |  |
| CAL | 1 | $\begin{aligned} & \text { [STACK] }+(\mathrm{PC}) \\ & \mathrm{PC}+1000 \mathrm{P}_{6} \mathrm{P}_{5} \mathrm{P}_{4} \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \end{aligned}$ | , |
| RT | 1 | PC - [STACK] |  |
| RTS | 2 | $\begin{aligned} & \hline \mathrm{PC} \leftarrow[\mathrm{STACK}] \\ & \mathrm{PC} \leftarrow(\mathrm{PC})+1 \\ & \hline \end{aligned}$ |  |
| EIA | 1 | Enable IA port |  |
| DIA | 1 | Disable IA port |  |
| EIB | 1 | Enable IB port |  |
| DIB | 1 | Disable IB port |  |
| OIU | 1 | $\begin{aligned} & \mathrm{U}_{7-0}+17-0 \\ & \mathrm{R}_{7-0}+\left(\mathrm{Q}_{7-0}\right) \\ & \hline \end{aligned}$ |  |
| ERO | 1 | Enable R port |  |
| DRO | 1 | Disable R port |  |
| OQR | 1 | R ( C ) |  |
| OTR | 1 | $\left.\mathrm{R}_{7-4}-(T R), \mathrm{R}_{3-0}-(\mathrm{DP})^{\prime}\right)$ |  |
| SFS | 1 | $s+\left(A_{C C}\right)$ |  |
| RFS | 1 | $S$ port Input Mode |  |
| IS | 1 | $\mathrm{A}_{\mathrm{Cl}}+\mathrm{S}$ |  |
| IK | 1 |  |  |
| RF1 | 1 | $\mathrm{F}_{1} \leftarrow 0$ |  |
| SF1 | 1 | $F_{1}$-1 |  |
| RF2 | 1 | $\mathrm{F}_{2} \leftarrow 0$ |  |
| SF2 | 1 | $\mathrm{F}_{2} \leftarrow 1$ |  |
| RF3 | 1 | $\mathrm{F}_{3}-0$ |  |
| SF3 | 1 | $\mathrm{F}_{3}+1$ |  |
| RF4 | 1 | $\mathrm{F}_{4} \leftarrow 0$ |  |
| SF4 | 1 | $\mathrm{F}_{4} \leftarrow 1$ | . |
| RF5 | 1 | $\mathrm{F}_{5} \leftarrow 0$ |  |
| SF5 | 1 | $\mathrm{F}_{5}$-1 |  |
| RF6 | 1 | $\mathrm{F}_{6}$-0 |  |
| SF6 | 1 | $\mathrm{F}_{6}$ ¢ 1 |  |
| RF7 | 1 | $\mathrm{F}_{7} \leftarrow 0$ |  |
| SF7 | 1 | $\mathrm{F}_{7}+1$ |  |
| RF8 | 1 | $\mathrm{F}_{8} \leftarrow 0$ |  |
| SF8 | 1 | $\mathrm{F}_{8}+1$ |  |
| RF9 | 1 | $\mathrm{Fg}_{9}+0$ |  |
| SF9 | 1 | $\mathrm{F}_{9}+1$ |  |
| RFO | 1 | $\mathrm{F}_{0}-0$ |  |
| SFO | 1 | $\mathrm{F}_{0}+1$ |  |
| NOP | 1 | No Operation |  |

## $\mu$ COM- 42 SINGLE CHIP MICROCOMPUTER

DESCRIPTION
The $\mu$ PD548 is the only version of the $\mu$ COM -42 . This PMOS, -10 volt part is designed to have TTL-level compatible inputs and was specifically designed for external RAM expansion. As a $\mu$ COM-42, it includes $1920 \times 10$ ROM, $96 \times 4$ RAM and 35 I/O lines in a 42 pin plastic dual-in-line package.

## ABSOLUTE MAXIMUM RATINGS*

| Operating Temperatur | $10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| :---: | :---: |
| Storage Temperature | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| Supply Voltage $\mathrm{VGG}_{\text {G }}$ | -15 to +0.3 Volts |
| Input Voltages. | -40 to +0.3 Volts |
| Output Voltages | -40 to +0.3 Volts |

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
DC CHARACTERISTICS
$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{GG}}=-10 \mathrm{~V} \pm 10 \%$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input High Voltage | $\mathrm{V}_{\text {IH }}$ | 0 |  | - 2.0 | V |  |
| Input Low Voltage | VIL | -4.3 |  | VGG | V |  |
| Output High Voltage | VOH1 |  |  | - 3.0 | V | $\mathrm{IOH}=-4 \mathrm{~mA} \mathrm{(1)}$ |
| Output High Voltage | $\mathrm{V}_{\mathrm{OH} 2}$ |  |  | - 1.0 | V | $\mathrm{IOH}=-1 \mathrm{~mA}$ <br> (for S port outputs) |
| Input Leakage Current High | ILIH |  |  | +10 | $\mu \mathrm{A}$ | $V_{1}=-1 V$ |
| Input Leakage Current Low | ILIL |  |  | -30 | $\mu \mathrm{A}$ | $V_{1}=-36 \mathrm{~V}$ |
| Output Current High | ${ }^{\mathrm{IOH}}$ | -1.0 |  |  | mA | $\mathrm{V}_{\mathrm{OH}}=-1 \mathrm{~V}$ |
| Output Leakage Current Low | ILOL1 |  |  | $-30$ | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{O}}=-36 \mathrm{~V}$ |
| Output Leakage Current Low | ILOL2 |  |  | -10 | $\mu \mathrm{A}$ | $V_{O}=-5 \mathrm{~V}$ <br> (for S port outputs) |
| Supply Current | ${ }^{\prime} \mathrm{GG}$ |  | -30 | -60 | mA |  |

Note: (1) For R port, and when only 1 bit is ON (high level)
AC CHARACTERISTICS
$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{GG}}=-10 \mathrm{~V} \pm 10 \%$, unless otherwise noted

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Clock Frequency | f $\phi$ | 100 |  | 200 | KHz |  |
| Clock Pulse Width | t $\phi$ w | 2.25 |  |  | $\mu \mathrm{s}$ |  |
| Clock Rise-Fall Time | tr, tf |  |  | 0.5 | $\mu \mathrm{s}$ |  |

$T_{a}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{GG}}=-10 \mathrm{~V} \pm 10 \%$, unless otherwise noted.
CAPACITANCE

|  |  | LIMITS |  |  | TEST <br> PARAMETER | SYMBOL |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | MIN



CLOCK WAVEFORM


| ITEM | MILLIMETERS | INCHES |
| :---: | :---: | :--- |
| A | 56.0 MAX | 2.2 MAX |
| B | 2.6 MAX | 0.1 MAX |
| C | 2.54 | 0.1 |
| D | $0.5 \pm 0.1$ | $0.02 \pm 0.004$ |
| E | 50.8 | 2.0 |
| F | 1.5 | 0.059 |
| G | 3.2 MIN | 0.126 MIN |
| H | 0.5 MIN | 0.02 MIN |
| I | 5.22 MAX | 0.20 MAX |
| J | 5.72 MAX | 0.22 MAX |
| K | 15.24 | 0.6 |
| L | 13.2 | 0.52 |
| M | $0.3 \pm 0.1$ | $0.01 \pm 0.004$ |

## $\mu$ COM-43/44/45 4-BIT SINGLE CHIP MICROCOMPUTERS

The $\mu$ COM-43 Family consists of three device types designed to offer a full range of cost/performance tradeoffs. All three devices share compatible hardware and instruction set. The $\mu$ COM-43 Family is designed for general purpose controller applications and offers ideal devices for industrial controls, appliance controls, games, etc.
All three devices contain the functional blocks necessary to enable their use for both industrial and non-industrial controller applications. These blocks include: a 4 -bit parallel ALU; 8 -bit wide ROM for program storage; 4 -bit wide RAM for data storage; stack register for subroutines; extensive I/O; and an on-chip clock generator.
The instruction set of the $\mu$ COM-43 Family is designed to perform controller-oriented functions and for efficient use of the fixed program memory space. The instruction set includes a number of multifunction instructions, powerful I/O instructions. including single bit manipulation, and test-and-skip instructions for conditional processing.
The three device types comprising the $\mu$ COM-43 Family are differentiated by ROM/ RAM size and I/O lines. The $\mu \mathrm{COM}-43$ has $2000 \times 8$ ROM, $96 \times 4$ RAM and 35 or 21 I/O lines. The $\mu$ COM- 44 has $1000 \times 8$ ROM, $64 \times 4$ RAM and 35 I/O lines. The $\mu$ COM- 45 has $1000 \times 8$ or $640 \times 8$ ROM, $32 \times 4$ RAM and $21 \mathrm{I} / \mathrm{O}$ lines. In addition, the $\mu \mathrm{COM}-43$ has real hardware interrupt, 3 level stack and programmable timer, while the $\mu$ COM- $44 / 45$ have pseudo-interrupt capability and a single level stack.

FEATURES - Stand Alone 4-Bit Microcomputers for Control Applications

- Powerful Instruction Set Capable of: Binary Addition; Decimal Addition and Subtraction; Logical Operations
- $10 \mu \mathrm{~s}$ Instruction Cycle
- Choice of ROM Size: $2000 \times 8-\mu$ COM-43 $1000 \times 8-\mu$ COM-44 $1000 \times 8$ $640 \times 8-\mu$ СОМ-45
- Choice of RAM Size: $96 \times 4-\mu$ COM- 43
$64 \times 4-\mu$ COM-44
$32 \times 4-\mu$ COM-45
- Choice of I/O Power: 35 lines

21 lines $-\mu$ COM- 43
35 lines - $\mu$ COM-44
21 lines - $\mu$ COM- 45

- All Capable of Single Bit Manipulation and 4 -Bit Parallel Processing.
- Interrupt Capability
- On-Chip Clock Generator
- Open Drain Outputs
- Choice of PMOS or CMOS Technology, Both Requiring Single Supplies
- Available in 42 Pin or 28 Pin Plastic Dual-in-Line Packages

| CL1 | 1 | 42 |  | $\square \mathrm{CL}_{0}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{PC}_{0} \square$ | 2 |  | 41 | $\square \mathrm{VGG}^{(-10 \mathrm{~V})}$ |  |  |
| $\mathrm{PC}_{1} \mathrm{P}^{-}$ | 3 |  | 40 | $\square^{\text {PB3 }}$ |  | NAMES |
| $\mathrm{PC}_{2}$ - | 4 |  | 39 | $\square \mathrm{PB}_{2}$ | $\mathrm{CL}_{0}-\mathrm{CL}_{1}$ | External Clock Source |
| $\mathrm{PC}_{3}-$ | 5 |  | 38 | $\square \mathrm{PB} 1$ | $\mathrm{PC}_{0}-\mathrm{PC}_{3}$ | Input/Output Port C |
| RES | 7 |  | 36 | ${ }^{1} \mathrm{PA}{ }^{\text {a }}$ | INT | Interrupt Input |
| $\mathrm{PD}_{0}-$ | 8 |  | 35 | $\square \mathrm{PA}_{2}$ | RES | Reset |
| PD1 | 9 |  | 34 | $\mathrm{PA}_{1}$ | $\mathrm{PD}_{0}-\mathrm{PD}_{3}$ | Input/Output Port D |
| $\mathrm{PD}_{2} \square_{1}$ | 10 | $\mu \mathrm{COM}$ | 33 | $\square \mathrm{PAO}$ | $P E_{0}-P E_{3}$ | Output Port E |
| $\mathrm{PD}_{3} \square 1$ | 11 | 43/ (1) | 32 | ] $\mathrm{Pl}_{2}$ | $\mathrm{PF}_{0}-\mathrm{PF}_{3}$ | Output Port F |
| $P E_{0} \square_{1} \square_{1}$ <br>  <br> 1 | 12 | 44 | 31 30 | $\square \mathrm{Pl}_{1} \mathrm{Pl}^{\mathrm{Pr}}$ | TEST | Input for Testing (Normally GND) |
| $\mathrm{PE}_{2} \square_{1}$ | 14 |  | 29 | $\mathrm{PH}_{3}$ | $\mathrm{PG}_{0}-\mathrm{PG} 3$ | Output Port G |
| $\mathrm{PE}_{3} \square_{1} 1$ | 15. |  | 28 | $\square \mathrm{PH}_{2}$ | $\mathrm{PH}_{0}{ }^{-\mathrm{PH}_{3}}$ | Output Port H |
| PF $\square_{0} 1$ | 16 |  | 27 | $\square \mathrm{PH}_{1}$ | $\mathrm{Pl}_{0}-\mathrm{Pl}_{3}$ | Output Port I |
| PF 1 -1 | 17 |  | 26 | $\square \mathrm{PH}_{0}$ | $\mathrm{PA}_{0}-\mathrm{PA}_{3}$ | Input Port A |
| $\mathrm{PF}_{2} \mathrm{~S}_{1}$ | 18 |  | 25 | $\square \mathrm{PG}_{3}$ | $\mathrm{PB}_{0}-\mathrm{PB}_{3}$ | Input Port B |
| $\mathrm{PF}_{3} \square_{1}$ | 19 |  | 24 | ] $\mathrm{PG}_{2}$ |  |  |
| TEST $\square_{2}$ | 20 |  | 23 | ${ }^{1} \mathrm{PG} 1$ | , |  |
| $\mathrm{V}_{\text {SS }} \mathrm{C}_{2}$ | 21 |  | 22 | $\square \mathrm{PG}_{0}$ |  |  |




Notes: (1) Not available on $\mu$ PD557.
(2) G Port on $\mu$ PD557 is a single line.

BLOCK DIAGRAMS $\mu$ COM-44

$\mu$ COM-45


FUNCTIONAL DESCRIPTION

Program Counter
The 11-bit program counter (10-bit for $\mu \mathrm{COM}-44 / 45$ ) is organized as a 3 -bit register (2-bit for $\mu$ COM-44/45) and an 8 -bit binary up-counter (lower eight bits). The contents of the upper register specify one of the fields of the ROM. The 8 -bit binary counter is divided so that the contents of the higher two bits specify one of four pages in a field and the lower six bits specify one of 64 addresses in a page. The contents of the lower eight bits of the program counter ( 8 -bit binary up-counter) are simply incremented to execute the instructions sequentially. In a field, a page is automatically extended to the next one and four pages ( 256 bytes) are automatically executed.

## Stack Register

The stack register is a last-in-first-out (LIFO) push down stack register organized as 3 words $\times 11$ bits ( 1 word $\times 10$ bits for $\mu \mathrm{COM}-44 / 45$ ). This register is used to save the contents of the program counter (return address) when a subroutine is called or an interrupt is acknowledged.
ROM (Read-Only Memory)
The user's application program is stored in the 8 -bit wide mask programmable read-only memory (ROM). The ROM is organized into fields and pages. The 2000 word ROM of the $\mu$ COM -43 has eight fields, the 1000 word ROM of the $\mu$ COM-44/45 has four fields and the 640 word ROM of the low-end $\mu$ COM -45 has two fields. Each field is divided into four pages of 64 words each, and each word consists of eight bits.

## $\mu$ COM-43/44/45

## RAM (Data Memory)

The RAM is organized in a multi-row by 16 column configuration. It is addressed by a data pointer of which the higher bits (DPH) address the row and the lower bits (DPL) address the column. The exact RAM size for each device is shown below.

|  | RAM | ROW/COLUMN <br> ORGANIZATION | DPH | DPL |
| :---: | :---: | :---: | :---: | :---: |
| $\mu$ COM-43 | $96 \times 4$ | $6 \times 16$ | 3 | 4 |
| $\mu$ COM-44 | $64 \times 4$ | $4 \times 16$ | 2 | 4 |
| $\mu$ COM-45 | $32 \times 4$ | $2 \times 16$ | 1 | 4 |

## Internal Registers

The ALU (Arithmetic Logic Unit) and the ACC (Accumulator) form the heart of the $\mu$ COM-43 Family microcomputer system. The ALU performs arithmetic and logical operations and tests for operation results. The result of an operation by the ALU is stored in the ACC and in the carry F/F. The ACC is a 4-bit register which stores ALU results and other data to be processed. The carry F/F is a single bit flip-flop which indicates when a carry bit is generated during addition.

## Flag Register ( $\mu$ COM-43 Only)

A 4-bit word in the RAM can be specifically used as a software controlled general purpose flag register. The individual flag bits can be set or reset and tested for either a 1 or a 0 . This can be done directly without modifying the RAM data pointer.

## Working Registers ( $\mu$ COM-43 Only)

There are six words in RAM that can be used as 4-bit general purpose working registers. These registers can be directly manipulated without modification of the data pointer and are used for data transfer and exchange between the data pointer and the working register, and between the ACC and the working register.

## Programmable Interval Timer ( $\mu$ COM-43 Only)

The $\mu \mathrm{COM}-43$ contains a software programmable interval timer composed of a 6 -bit polynomial counter and a 6-bit programmable binary counter.

The initial setting of the timer is done using the timer set instruction STM, with the timer starting to count at the end of the STM instruction execution. The STM instruction contains six binary bits of immediate data which is loaded in the 6 -bit programmable binary counter upon STM instruction execution. By varying the 6 -bit immediate data, one of 64 time intervals can be programmed.

## I/O Ports

The $\mu$ COM-43/44 have 35 input/output ports ( $\mu$ PD557 and $\mu$ COM-45 have 21) for communication with and control of the external world. These ports are organized into nine input/output ports ( A to I ). Eight ports ( A to H ) are composed of four bits each and the last port (I) is composed of three bits.

| Input Ports | $(4$ bits each $): A, B(1)$ |
| :--- | :--- |
| Input/Output Ports | $(4$ bits each $): C, D$ |
| Output Ports | $(4$ bits each $):$ E, F, G (2) , H (1) |
| Output Ports | $(3$ bits $): 1 \oplus$ |

Notes: (1) Not available on either $\mu$ PD557 or $\mu$ COM -45 .
(2) G port on $\mu \mathrm{PD} 557$ and $\mu \mathrm{COM}-45$ is a single line.

FUNCTIONAL DESCRIPTION (CONT.)

In order to provide flexible and efficient use of these I/O ports, a variety of input/ output instructions are provided which enable single bit set/reset, single bit test and conditional skip, 4 -bit parallel input/output and 8 -bit immediate parallel output. The I/O instructions are divided into two types, the ones dedicated to specific ports and the ones that use the 4 -bit data in the DPL to select a desired port. The former include such instructions as $I A$ and $O E$ that specifically access port $A$ and $E$, respectively. The latter require that a 4 -bit code assigned to the desired port be loaded into the DPL using data pointer manipulation instructions prior to $\mathrm{I} / \mathrm{O}$ instruction execution.

INSTRUCTION SET The $\mu$ COM- 43 has an 80 instruction set. The $\mu$ COM- $44 / 45$ have a 58 instruction subset of the $\mu \mathrm{COM}-43$. The majority of the 22 instruction difference is related to added hardware features of the $\mu \mathrm{COM}-43$. The instruction set is summarized below.

| MNEMONIC | BYTES | CYCLES | DESCRIPTION | CONDITION FOR SKIP |
| :---: | :---: | :---: | :---: | :---: |
| CLA | 1 | 1 | $\mathrm{A}_{\mathrm{CC}}{ }^{-}$ |  |
| CMA | 1 | 1 | $A_{C C}-\left(A_{\overline{C D}}\right)$ |  |
| CIA | 1 | 1 | $A_{C C}-\left(A_{\overline{C D}}\right)+1$ |  |
| INC | 1 | 1/2-3 | $A_{C C} \leftarrow\left(A_{C C}\right)+1$; skip if Carry | Carry |
| DEC | 1 | 1/2-3 | $\left.\mathrm{A}_{\mathrm{CC}} \leftarrow\left(\mathrm{A}_{\mathrm{C}}\right)\right)^{-1}$; skip if Borrow | Borrow |
| CLC | 1. | 1 | $\mathrm{C} \leftarrow$ |  |
| STC | 1 | 1 | $\mathrm{C} \leftarrow 1$ |  |
| XC | 1 | 1 | $(C) \leftrightharpoons\left(C^{\prime}\right)$ |  |
| RAR | 1 | 1 | $\begin{aligned} & \left(A_{C C n}-1\right) \leftarrow\left(A_{C C n}\right) ; C \leftarrow\left(A_{C C O}\right), \\ & \left(A_{C C 3}\right) \leftarrow(C) \end{aligned}$ |  |
| INM | 1 | 1/2-3 | $[(D P)] \leftarrow[(D P)]+1$; skip if $[(D P)]=0$ | $[(D P)]=0$ |
| DEM | 1 | 1/2-3 | $[(D P)] \leftarrow[(D P)]-1$; skip if [(DP)] $=F$ | $[(D P)]=F$ |
| AD | 1 | 1/2-3 | $A_{C C}^{\leftarrow} \leftarrow\left(A_{C C}\right)+[(D P)]$; skip if Carry | Carry |
| ADS | 1 | 1/2-3 | $\begin{aligned} & \text { ACC, } \mathrm{C} \leftarrow(\mathrm{~A} C \mathrm{C})+[(\mathrm{DP})]+(\mathrm{C}) \text {; } \\ & \text { skip if Carry } \end{aligned}$ | Carry |
| ADC | 1 | 1 | $A_{C C}, \mathrm{C} \leftarrow\left(\mathrm{A}_{\mathrm{Cl}}\right)+[(\mathrm{DP})]+(\mathrm{C})$ |  |
| DAA | 1 | 1 | $A_{C C} \leftarrow\left(A_{C C}\right)+6$ |  |
| DAS | 1 | 1 | $\mathrm{ACC}^{\leftarrow}\left(\mathrm{A}_{\text {CC }}\right)+10$ |  |
| EXL | 1 | 1 |  | . |
| LI | 1 | 1 | $A C C \leftarrow I_{3} l_{2} l_{1} l_{0}$ |  |
| S | 1 | 1 | [(DP)] $-\left(A_{C C}\right)$ |  |
| $\stackrel{L}{\square}$ | 1 | 1 | $A_{C C} \leftarrow[(\mathrm{DP})]$ |  |
| LM | 1 | 1 | $A_{C C} \leftarrow[(D P)] ; D P_{H} \leftarrow\left(D P_{H}\right) \forall O M_{1} M_{0}$ |  |
| $\times$ | 1 | 1 | $\left(A_{C C}\right) \rightleftharpoons[(D P)]$ |  |
| XM | 1 | 1 | $\left(A_{C C}\right) \rightleftharpoons[(D P)] ; D P_{H} \leftarrow\left(D P_{H}\right) \forall 0 M_{1} M_{0}$ |  |
| XD | 1 | 1/2-3 | $\begin{aligned} & \left(A_{C C}\right) \rightleftharpoons[(D P)] ; D P_{L} \leftarrow\left(D P_{L}\right)-1 \text {; } \\ & \text { skip if }\left(D P_{L}\right)=F \end{aligned}$ | $\left(D P_{L}\right)=F$ |
| XMD | 1 | 1/2-3 | $\begin{aligned} & \left(A_{C C}\right) \rightleftharpoons[(D P)] ; D P_{H} \leftarrow\left(D P_{H}\right) \forall 0 M_{1} M_{0} ; \\ & D P_{L} \leftarrow\left(D P_{L}\right)-1 \text {; skip if }\left(D P_{L}\right)=F \end{aligned}$ | $\left(D P_{L}\right)=F$ |
| XI | 1 | 1/2-3 | $\begin{aligned} & \left(A_{C C}\right) \rightleftharpoons[(D P)] ; D P_{L} \leftarrow\left(D P_{L}\right)+1 \text {; } \\ & \text { skip if }\left(D P_{L}\right)=0 \end{aligned}$ | $\left(D P_{L}\right)=0$ |
| XMI | 1 | 1/2-3 | $\begin{aligned} & \left(A_{C C}\right)=[(D P)] ; D P_{H} \leftarrow\left(D P_{H}\right) \forall 0 M_{1} M_{0} ; \\ & D P_{L} \leftarrow\left(D P_{L}\right)+1 \text {; skip if }\left(D P_{L}\right)=0 \end{aligned}$ | $\left(D P_{L}\right)=0$ |
| LDI | 2 | 2 | $D P_{4} \mathrm{I}_{6} \mathrm{I}_{0}$ |  |
| LDZ | 1 | 1 | $D P_{H} \leftarrow 0 ; D P_{L} \leftarrow I_{3} I_{2} l_{1} I_{0}$ |  |
| DED | 1 | 1/2-3 | $D P_{L} \leftarrow\left(D P_{L}\right)-1$; skip if $\left(D P_{L}\right)=F$ | $\left(D P_{L}\right)=F$ |
| IND | 1 | 1/2-3 | $D P_{L} \leftarrow\left(D P_{L}\right)+1$; skip if $\left(D P_{L}\right)=0$ | $\left(D P_{L}\right)=0$ |
| TAL | 1 | 1 | $D P_{L} \leftarrow\left(A_{C C}\right)$ |  |
| TLA | 1 | 1 | $A_{C C} \leftarrow\left(D P_{L}\right)$ |  |


| MNEMONIC | BYTES | CYCLES | DESCRIPTION | CONDITION FOR SKIP |
| :---: | :---: | :---: | :---: | :---: |
| XHX | 1 | 2 | $(\mathrm{X}) \rightleftharpoons\left(\mathrm{DP}_{\mathrm{H}}\right)$ |  |
| XLY | 1 | 2 | $(\mathrm{Y})=\left(\mathrm{DP}_{\mathrm{L}}\right)$ |  |
| THX | 1 | 2 | $\mathrm{X} \leftarrow\left(\mathrm{DP} \mathrm{H}^{\prime}\right)$ |  |
| TLY | 1 | 2 | $\mathrm{Y} \leftarrow\left(\mathrm{DP} \mathrm{P}_{\mathrm{L}}\right)$ |  |
| XAZ | 1 | 2 | $(Z) \Rightarrow(A C C)$ |  |
| XAW | 1 | 2 | $(\mathrm{W})=\left(\mathrm{A}_{\mathrm{Cl}}\right)$ |  |
| TAZ | 1 | 2 | $\mathrm{Z} \leftarrow\left(\mathrm{A}_{C C}\right)$ |  |
| TAW | 1 | 2 | W-(ACC) |  |
| XHR | 1 | 2 | $(\mathrm{R})=\left(\mathrm{DP}_{\mathrm{H}}\right)$ |  |
| XLS | 1 | 2 | $(\mathrm{S})=\left(\mathrm{DP} \mathrm{L}_{\mathrm{L}}\right)$ |  |
| SMB | 1 | 1 | [(DP, $\left.\left.\mathrm{B}_{1} \mathrm{~B}_{0}\right)\right] \leftarrow 1$ |  |
| RMB | 1 | 1 | $\left[\left(D P, B_{1} B_{0}\right)\right] \leftarrow 0$ |  |
| TMB | 1 | 1/2-3 | skip if $\left[\left(\mathrm{DP}, \mathrm{B}_{1} \mathrm{~B}_{0}\right)\right]=1$ | $\left[\left(\mathrm{DP}, \mathrm{B}_{1} \mathrm{~B}_{0}\right)\right]=1$ |
| TAB | 1 | 1/2-3 | skip if ( $\mathrm{AcC}^{\left.\left(\mathrm{B}_{1} \mathrm{~B}_{0}\right)\right)=1}$ | $\left(A_{C C}\left(B_{1} B_{0}\right)\right)=1$ |
| CMB | 1 | 1/2-3 | skip if ( $\left.A_{C C}\left(B_{1} B_{0}\right)\right)=\left[\left(D P, B_{1} B_{0}\right)\right]$ | $\left(\mathrm{AcCl}^{\left(\mathrm{B}_{1} \mathrm{~B}_{0}\right)}\right)=\left[\left(\mathrm{DP}, \mathrm{B}_{1} \mathrm{~B}_{0}\right)\right]$ |
| SFB | 1 | 2 | FLAG $\left(B_{1} B_{0}\right) \leftarrow 1$ |  |
| RFB | 1 | 2 | FLAG ( $\left.\mathrm{B}_{1} \mathrm{~B}_{0}\right)+0$ |  |
| FBT | 1 | 2/3-4 | skip if ( $F$ LAG ( $\left.\mathrm{B}_{1} \mathrm{~B}_{0}\right)$ ) $=1$ | (FLAG $\left.\left(B_{1} B_{0}\right)\right)=1$ |
| FBF | 1 | 2/3-4 | skip if ( $F$ LAG ( $\left.\mathrm{B}_{1} \mathrm{~B}_{0}\right)$ ) $=0$ | (FLAG( $\left.\mathrm{B}_{1} \mathrm{~B}_{0}\right)$ ) $=0$ |
| CM | 1 | 1/2-3 | skip if ( $\mathrm{ACC}^{\text {c }}$ ) $=[(\mathrm{DP})]$ | ( $\mathrm{A}_{C C}$ ) $=$ [(DP) $]$ |
| Cl | 2 | 2/3-4 | skip if ( $\mathrm{A} C C$ ) $=13 \mathrm{I}_{2} 1_{1} 1_{0}$ | ( ACC ) $=I_{3} l_{2} 1_{1} l_{0}$ |
| CLI | 2 | 2/3-4 | skip if $\left(\mathrm{DP} \mathrm{L}_{\mathrm{L}}\right)=1_{3} 1_{2} \_{1} 1_{0}$ | $\left(D P_{L}\right)=13121910$ |
| TC | 1 | 1/2-3 | skip if (C) $=1$ | (C) $=1$ |
| TIT | 1 | 1/2-3 | skip if (INT F/F) $=1$; INT F/F $\leftarrow 0$ | (INT F/F) $=1$ |
| JCP | 1 | 1 | $\mathrm{PC}_{5-0}-\mathrm{P}_{5}-\mathrm{P}_{0}$ |  |
| JMP | 2 | 2 | $\mathrm{PC} \leftarrow \mathrm{P}_{10}{ }^{-\mathrm{P}_{0}}$-- |  |
| JPA | 1 | 2 | $\mathrm{PC}_{5-0}-\mathrm{A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0} 00$ |  |
| EI | 1 | 1 | INTE F F $¢ 1$ |  |
| DI | 1 | 1 | INTE F F $\leftarrow 0$ |  |
| CZP | 1 | 1 | $\begin{aligned} & \text { STACK } \leftarrow(P C) \\ & \text { PC } \leftarrow 0000 P_{3} P_{2} P_{1} P_{0} 00 \\ & \hline \end{aligned}$ |  |
| CAL | 2 | 2 | STACK $\leftarrow$ (PC); PC $\leftarrow \mathrm{P}_{10} 0^{-\mathrm{P}_{0}}$ |  |
| RT | 1 | 2 | PC $\leftarrow$ (STACK) |  |
| RTS | 1 | 3-4 | PC $\leftarrow$ (STACK); PC $\leftarrow$ (PC) $+1,2$ | Unconditional |
| STM | 2 | 2 | TM F F $\leftarrow 0 ;$ TIMER $1_{5} \mathrm{~S}^{-10}$ |  |
| TTM | 1 | 1/2-3 | skip if (TM F/F) $=1$ | (TM F/F) $=1$ |
| SEB | 1 | 2 | PORT E ( $\left.\mathrm{B}_{1} \mathrm{~B}_{0}\right)^{\circ}-1$ |  |
| REB | 1 | 1 | PORT E ( $\left.\mathrm{B}_{1} \mathrm{~B}_{0}\right)<0$ |  |
| SPB | 1 | 1 | PORT ( $\mathrm{DP}_{\mathrm{L}}, \mathrm{B}_{1} \mathrm{~B}_{0}$ ) -1 |  |
| RPB | 1 | 1 | PORT ( $\mathrm{DP}_{\mathrm{L}}, \mathrm{B}_{1} \mathrm{~B}_{0}$ ) $\leftarrow 0$ |  |
| TPA | 1 | 2/3-4 | skip if (PORT A ( $\left.\mathrm{B}_{1} \mathrm{~B}_{0}\right)$ ) $=1$ | (PORT A $\left.\left(\mathrm{B}_{1} \mathrm{~B}_{0}\right)\right)=1$ |
| TPB | 1 | 1/2-3 | skip if (PORT ( $\mathrm{DL}_{L}, \mathrm{~B}_{1} \mathrm{~B}_{0}$ ) $)=1$ | (PORT (DP $\left.{ }_{\text {L }}, \mathrm{B}_{1} \mathrm{~B}_{0}\right)=1$ |
| OE | 1 | 2 | PORT E $H$ (ACC) |  |
| OP | 1 | 1 | PORT (DPL) $-\left(A_{C C}\right.$ ) |  |
| OCD | 2 | 2 | PORT C, $\mathrm{D} \leftarrow 17.10$ |  |
| IA | 2 | 2 | $A_{C C}{ }^{-(P O R T ~ A)}$ |  |
| IP | 1 | 1 | $\mathrm{A}_{\text {CC }-(P O R T ~(~}^{\text {P }}$ L $)$ ) |  |
| NOP | 1 | 1 | No Operation | . |

These instructions apply only to the $\mu \mathrm{COM}-43$.

## $\mu$ COM-43 SINGLE CHIP MICROCOMPUTER

DESCRIPTION The $\mu$ PD546 is the standard version of the $\mu$ COM-43. This PMOS, -10 volt part is designed to have TTL-level compatible inputs and is easily interfaced to external static RAM. As a $\mu$ COM -43 , it includes $2000 \times 8$ ROM, $96 \times 4$ RAM and 35 I/O lines in a 42 pin plastic dual-in-line package.

| ABSOLUTE MAXIMUM RATINGS* |  <br> COMMENT: Stress above those listed under "Absolute Maximum Ratings'' may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. |
| :---: | :---: |

${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GG}}=-10 \mathrm{~V} \pm 10 \%$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input High Voltage | $\mathrm{V}_{\text {IH }}$ | 0 |  | -2.0 | V | Ports A to D, $\overline{\text { INT }}$, RES |
| Input Low Voltage | VIL | -4.3 |  | $\mathrm{V}_{\mathrm{GG}}$ | V | Ports $A$ to $D$, INT, RES |
| Input Leakage Current High | 'LIH |  |  | +10 | $\mu \mathrm{A}$ | Ports A and B , INT, RES, TEST $V_{1}=-1 V$ |
| Input Leakage Current Low | ILIL |  |  | -10 | $\mu \mathrm{A}$ | Ports A and B, INT, RES, TEST $V_{1}=-11 \mathrm{~V}$ |
| I/O Leakage Current High | IOH |  |  | +30 | $\mu \mathrm{A}$ | Ports C and D $V_{1}=-1 V$ |
| I/O Leakage Current Low | IIOL |  |  | -30 | $\mu \mathrm{A}$ | Ports C and D $V_{1}=-11 \mathrm{~V}$ |
| Output Voltage | $\mathrm{VOH}^{1}$ |  |  | -1.0 | V | Ports C to I $\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$ |
|  | $\mathrm{V}_{\mathrm{OH} 2}$ |  |  | -2.3 | V | Ports C to 1 $\mathrm{I}_{\mathrm{OH}}=-3.3 \mathrm{~mA}$ |
| Output Leakage Current | ${ }^{\prime} \mathrm{OL}$ |  |  | -10 | $\mu \mathrm{A}$ | Ports C to I $V_{O}=-11 \mathrm{~V}$ |
| Supply Current | IGG |  | -30 | -50 | mA |  |
| Oscillator Frequency | F | 150 |  | 440 | KHz |  |

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input Capacitance | $\mathrm{C}_{1}$ |  |  | 15 | pf | $f=1 \mathrm{MHz}$ |
| Output Capacitance | Co |  |  | 15 | pf |  |
| Input/Output Capacitance | $\mathrm{ClO}^{1}$ |  |  | 15 | pf |  |

## CAPACITANCE

## CLOCK WAVEFORM

PACKAGE OUTLINE $\mu$ PD546C

| ITEM | MILLIMETERS | INCHES |
| :---: | :---: | :--- |
| A | 56.0 MAX | 2.2 MAX |
| B | 2.6 MAX | 0.1 MAX |
| C | 2.54 | 0.1 |
| D | $0.5 \pm 0.1$ | $0.02 \pm 0.004$ |
| E | 50.8 | 2.0 |
| F | 1.5 | 0.059 |
| G | 3.2 MIN | 0.126 MIN |
| H | 0.5 MIN | 0.02 MIN |
| $\overline{\mathrm{I}}$ | 5.22 MAX | 0.20 MAX |
| J | 5.72 MAX | 0.22 MAX |
| K | 15.24 | 0.6 |
| L | 13.2 | 0.52 |
| M | $0.3 \pm 0.1$ | $0.01 \pm 0.004$ |

## $\mu$ COM-43 SINGLE CHIP MICROCOMPUTER

DESCRIPTION

## ABSOLUTE MAXIMUM <br> RATINGS*

The $\mu$ PD553 is a high negative output version of the $\mu$ COM -43 . This PMOS, -10 volt part is designed with outputs capable of being pulled to -35 volts. This allows direct interfacing with Fluorescent Indicator Panels (FIPs). As a $\mu \mathrm{COM}-43$, it includes $2000 \times 8$ ROM, $96 \times 4$ RAM and 35 I/O lines in a 42 pin plastic dual-in-line package.

Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 15 to +0.3 Volts

(All Other Inputs). . . . . . . . . . . . . . . . . . . . . . . -40 to +0.3 Volts
Output Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40 to +0.3 Volts
Output Current (Each Output Bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . -12 mA
(Total Current) ․ . . . . . . . . . . . . . . . . . . . . . . . . . . . . $\quad-60 \mathrm{~mA}$
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
DC/AC CHARACTERISTICS
$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GG}}=-10 \mathrm{~V} \pm 10 \%$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input High Voltage | VIH | 0 |  | -3.5 | V | Ports $A$ to $D, \overline{I N T}$, RES |
| Input Low Voltage | VIL1 | -7.5 |  | $\mathrm{V}_{\mathrm{GG}}$ | V | Ports A and B, INT, RES |
|  | $\mathrm{V}_{\text {IL2 }}$ | -7.5 |  | -35 | V | Ports C and D |
| Input Leakage Current High | ILIH |  |  | +10 | $\mu \mathrm{A}$ | Ports $A$ and $B$, INT, RES, TEST $V_{1}=-1 V$ |
| Input Leakage Current Low | ILIL1 |  |  | -10 | $\mu \mathrm{A}$ | Ports A and B, INT, RES, TEST $V_{1}=-11 \mathrm{~V}$ |
|  | ILIL2 | . |  | -30 | $\mu \mathrm{A}$ | Ports A and B $V_{1}=-35 \mathrm{~V}$ |
| 1/O Leakage Current High | I OH |  |  | +10 | $\mu \mathrm{A}$ | Ports C and D $V_{1}=-1 V$ |
| I/O Leakage Current Low | IIOL1 |  |  | -10 | $\mu \mathrm{A}$ | Ports C and D $V_{1}=-11 \mathrm{~V}$ |
|  | $110 L 2$ |  |  | -30 | $\mu \mathrm{A}$ | Ports C and D $V_{1}=-35 V$ |
| Output Voltage | $\mathrm{V}_{\mathrm{OH}}$ |  |  | -2.0 | V | Ports C to I $10=-8 \mathrm{~mA}$ |
| Output Leakage Current | IOL1 |  |  | -10 | $\mu \mathrm{A}$ | Ports C to I $\mathrm{V}_{\mathrm{O}}=-11 \mathrm{~V}$ |
|  | IOL2 |  |  | -30 | $\mu \mathrm{A}$ | Ports C to I $V_{O}=-35 \mathrm{~V}$ |
| Supply Current | IGG |  | -30 | -50 | mA |  |
| Oscillator Frequency | $F$ | 150 |  | 440 | KHz |  |

## $\mu$ PD553

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input Capacitance | $\mathrm{C}_{1}$ |  |  | 15 | pf | $\mathrm{f}=1 \mathrm{MHz}$ |
| Output Capacitance | $\mathrm{CO}_{0}$ |  |  | 15 | pf |  |
| Input/Output Capacitance | $\mathrm{ClO}^{10}$ |  |  | 15 | pf |  |

CAPACITANCE

CLOCK WAVEFORM

PACKAGE OUTLINE $\mu$ PD553C

| ITEM | MILLIMETERS | INCHES |
| :---: | :---: | :--- |
| A | 56.0 MAX | 2.2 MAX |
| B | 2.6 MAX | 0.1 MAX |
| C | 2.54 | 0.1 |
| D | $0.5 \pm 0.1$ | $0.02 \pm 0.004$ |
| E | 50.8 | 2.0 |
| F | 1.5 | 0.059 |
| G | 3.2 MIN | 0.126 MIN |
| H | 0.5 MIN | 0.02 MIN |
| $\overline{\mathrm{I}}$ | 5.22 MAX | 0.20 MAX |
| J | 5.72 MAX | 0.22 MAX |
| K | 15.24 | 0.6 |
| L | 13.2 | 0.52 |
| M | $0.3 \pm 0.1$ | $0.01 \pm 0.004$ |

## $\mu$ COM-43 SINGLE CHIP MICROCOMPUTER

DESCRIPTION The $\mu$ PD557. L is a high negative output, reduced I/O, low power version of the $\mu$ COM-43. It features outputs capable of being pulled to -35 volts, allowing direct interfacing with Fluorescent Indicator Panels (FIPs). The $\mu$ PD557L is a modified PMOS device requiring a -8 volt power supply, with a reduced supply current specification. It also has $21 \mathrm{I} / \mathrm{O}$ lines to reduce pin count and package cost, while maintaining full compatibility with the $\mu$ COM- 43 instruction set. As a $\mu$ COM- 43 , it includes $2000 \times 8$ ROM, $96 \times 4$ RAM, and 21 I/O lines in a 28 pin dual-in-line package.

Operating Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
RATINGS*
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 to +0.3 Volts
Input Voltages (Port A, $\overline{\mathrm{INT}}, \mathrm{RES}$ ) . . . . . . . . . . . . . . . . . . . . . . 15 to +0.3 Volts
(Ports C, D) . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 to +0.3 Volts
Output Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 to +0.3 Volts
Output Current (Ports C, D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 mA
(Ports E, F, G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 mA
(Total Current) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mA
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input Voltage High | $\mathrm{V}_{\text {IH }}$ | 0 |  | -2.5 | V | Ports A, C, D, INT, RES |
| Input Voltage Low | VIL1 | -6.5 |  | $\mathrm{V}_{\mathrm{GG}}$ | V | Ports A, INT, RES |
|  | VIL2 | -6.5 |  | -35 | V | Ports C and D |
| Clock Voltage High | $\mathrm{V}_{\phi} \mathrm{H}$ | 0 |  | -0.6 | V | CLO Input, Ext. Clock |
| Clock Voltage Low | $\mathrm{V}_{\phi \mathrm{L}}$ | -5.0 |  | $\mathrm{V}_{\mathrm{GG}}$ | V | CLO Input, Ext. Clock |
| Input Leakage Current High | ILIH |  |  | +10 | $\mu \mathrm{A}$ | Ports A, C, D, INT, RES $V_{1}=-1 V$ |
| Input Leakage Current Low | 'LIL1 |  |  | -10 | $\mu \mathrm{A}$ | Ports A, C, D, $\overline{\mathrm{NT}}$, RES $V_{1}=-9 \mathrm{~V}$ |
|  | 'LIL2 |  |  | -30 | $\mu \mathrm{A}$ | Ports C and D $V_{1}=-35 V$ |
| Clock Input Leakage Current High | $l_{\text {L }}^{\prime}$ ¢ H |  |  | +200 | $\mu \mathrm{A}$ | CLO Input, $\mathrm{V}_{\phi} \mathrm{H}=0 \mathrm{~V}$ |
| Clock Input Leakage Current Low | IL L L |  |  | -200 | $\mu \mathrm{A}$ | CLo input, $\mathrm{V}_{\phi} \mathrm{H}=-9 \mathrm{~V}$ |
| Output Voltage High | $\mathrm{VOH}^{1}$ |  |  | -1.0 | V | Ports C to G $I_{0}=-2 \mathrm{~mA}$ |
|  | $\mathrm{V}_{\mathrm{OH} 2}$ |  |  | -4.0 | V | $\begin{aligned} & \text { Ports E, F, G } \\ & I_{\mathrm{OH}}=-20 \mathrm{~mA} \end{aligned}$ |
| Output Leakage Current Low | 'LOL1 |  |  | -10 | $\mu \mathrm{A}$ | Ports C to G $V_{O}=-9 \mathrm{~V}$ |
|  | 'LOL2 |  |  | -30 | $\mu \mathrm{A}$ | Ports C to G $V_{\mathrm{O}}=-35 \mathrm{~V}$ |
| Supply Current | IGG |  | -20 | -36 | mA |  |

## $\mu$ PD557L

$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{GG}}=-8.0 \mathrm{~V} \pm 10 \%$

| PARAMETER | SYiMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Oscillator Frequency | $f$ | 100 |  | 180 | KHz . |  |
| Rise and Fall Times | $t_{r}, t_{f}$ | 0 |  | 0.3 | $\mu \mathrm{s}$ | External Clock |
| Clock Pulse Width High | ${ }^{\text {t }}$ ¢ WH | 2.0 |  | 8.0 | $\mu \mathrm{s}$ | External Clock |
| Clock Pulse Width Low | ${ }^{t}{ }_{\phi} \mathrm{W}$ L | 2.0 |  | 8.0 | $\mu \mathrm{s}$ | External Clock |

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$.

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input Capacitance | $\mathrm{C}_{1}$ |  |  | 15 | pf | $\mathrm{f}=1 \mathrm{MHz}$ |
| Output Capacitance | $\mathrm{C}_{0}$ |  |  | 15 | pf |  |
| Input/Output Capacitance | $\mathrm{ClO}_{1}$ |  |  | 15 | pf |  |

CAPACITANCE


PACKAGE OUTLINE $\mu$ PD557LC

| ITEM | MILLIMETERS | INCHES |
| :--- | :---: | :--- |
| A | 38.0 MAX. | 1.496 MAX. |
| B | 2.49 | 0.098 |
| C | 2.54 | 0.10 |
| D | $0.5 \pm 0.1$ | $0.02 \pm 0.004$ |
| E | 33.02 | 1.3 |
| F | 1.5 | 0.059 |
| G | 2.54 MIN. | 0.10 MIN. |
| H | 0.5 MIN. | 0.02 MIN. |
| I | 5.22 MAX. | 0.205 MAX. |
| J | 5.72 MAX. | 0.225 MAX. |
| K | 15.24 | 0.6 |
| L | 13.2 | 0.52 |
| M | $0.25+0.10$ | $0.01+0.004$ |

## $\mu$ COM-43 SINGLE CHIP MICROCOMPUTER

DESCRIPTION The $\mu$ PD650 is a CMOS version of the $\mu$ COM -43 . It features a single +5 volt power supply, a 2 mA (max), $800 \mu \mathrm{~A}$ (typ) current drain and extended temperature range. As a $\mu$ COM-43, it includes $2000 \times 8$ ROM, $96 \times 4$ RAM and 35 I/O lines in a 42 pin plastic dual-in-line package.

| ABSOLUTE MAXIMUM | Operating Temperature | $-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: |
| RATINGS* | Storage Temperature . | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
|  | Supply Voltage | -0.3 to +7.0 Volts |
|  | Input Voltages | -0.3 to +7.0 Volts |
|  | Output Voltages | -0.3 to +7.0 Volts |
|  | Output Current (Each Output Bit) | 2.5 mA |

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
DC/AC CHARACTERISTICS

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT. | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input High Voltage | $V_{\text {IH }}$ | 0.7V CC |  | $V_{\text {cc }}$ | V | Ports $A$ to D, INT, RES |
| Input Low Voltage | $\mathrm{V}_{1} \mathrm{~L}$ | 0 |  | $0.3 \mathrm{~V}_{\mathrm{CC}}$ | V | Ports $A$ to D, INT, RES |
| Input Leakage Current High | ILIH |  |  | +10 | $\mu \mathrm{A}$ | Ports $A$ and $B, \overline{I N T}$, RES $\left(V_{1}=V_{C C}\right)$ |
| Input Leakage Current Low | ILIL |  |  | -10 | $\mu \mathrm{A}$ | Ports $A$ and $B, \overline{I N T}$, RES $\left(V_{1}=0 \mathrm{~V}\right)$ |
| I/O Leakage Current High | IIOH |  |  | +10 | $\mu \mathrm{A}$ | Ports C and D ( $\left.\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}\right)$ |
| I/O Leakage Current Low | IIOL |  |  | -10 | $\mu \mathrm{A}$ | Ports C and D ( $\left.\mathrm{V}_{0}=0 \mathrm{~V}\right)$ |
| Output High Voltage 1 | $\mathrm{V}_{\mathrm{OH} 1}$ | $\mathrm{V}_{\mathrm{CC}}{ }^{-0.5}$ |  |  | V | Ports C and D $\left(I_{\mathrm{OH}}=-1 \mathrm{~mA}\right)$ |
|  |  | $\mathrm{V}_{\mathrm{CC}}{ }^{-0.5}$ |  |  | V | Ports E and I $\left(1_{\mathrm{OH}}=-0.6 \mathrm{~mA}\right)$ |
| Output High Voltage 2 | $\mathrm{V}_{\mathrm{OH} 2}$ | $\mathrm{V}_{\mathrm{CC}}{ }^{-2.5}$ |  |  | V | Ports C to I ( $\left.\mathrm{OH}^{\prime}=-2 \mathrm{~mA}\right)$ |
| Output Low Voltage | VOL1 |  |  | 0.6 | V | Ports E to I $(1 \mathrm{OL}=2 \mathrm{~mA})$ |
|  | $\mathrm{V}_{\text {OL2 }}$ |  |  | 0.4 | V | Ports E to I $\left(\mathrm{I}_{\mathrm{OL}}=1.2 \mathrm{~mA}\right)$ |
| Supply Current | $I^{\text {CC }}$ |  | 0.8 | 2.0 | mA |  |
| Clock High Voltage | $\mathrm{V}_{\phi} \mathrm{H}$ | 0.7 V CC |  | $\mathrm{V}_{\mathrm{CC}}$ | V | CLO, Ext. Clk. |
| Clock Low Voltage | $V_{\phi L}$ | 0 |  | $0.3 \mathrm{~V}_{\mathrm{CC}}$ | V | CLO, Ext. Clk. |
| Clock Leakage Current High | ${ }^{\prime} \mathrm{L} \phi \mathrm{H}$ |  |  | 200 | $\mu \mathrm{A}$ | CLO, Ext. CIk. $\left(\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{CC}}\right)$ |
| Clock Leakage Current Low | ${ }^{\prime} \mathrm{L} \phi \mathrm{L}$ |  |  | -200 | $\mu \mathrm{A}$ | CLO, Ext. Clk. $\left(\mathrm{V}_{\mathrm{OL}}=0 \mathrm{~V}\right)$ |
| Clock Frequency | $f$ | 150 |  | 440 | KHz |  |
| Clock Rise and Fall Times | tr, tf | 0 |  | 0.3 | $\mu \mathrm{S}$ | Ext. Clk. |
| Clock Pulse Width | ${ }^{\text {t }}$ ¢ W | 0.5 |  | 5.6 | $\mu \mathrm{s}$ | Ext. Clk. |

$T_{a}=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$.

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input Capacitance | $\mathrm{Cl}_{1}$ |  |  | 15 | pf | $\mathrm{f}=1 \mathrm{MHz}$ |
| Output Capacitance | $\mathrm{C}_{0}$ |  |  | 15 | pf |  |
| 1/O Capacitance | $\mathrm{ClO}_{0}$ |  |  | 15 | pf |  |


ov-----


| ITEM | MILLIMETERS | INCHES |
| :---: | :---: | :--- |
| A | 56.0 MAX | 2.2 MAX |
| B | 2.6 MAX | 0.1 MAX |
| C | 2.54 | 0.1 |
| D | $0.5 \pm 0.1$ | $0.02 \pm 0.004$ |
| E | 50.8 | 2.0 |
| F | 1.5 | 0.059 |
| G | 3.2 MIN | 0.126 MIN |
| H | 0.5 MIN | 0.02 MIN |
| I | 5.22 MAX | 0.20 MAX |
| J | 5.72 MAX | 0.22 MAX |
| K | 15.24 | 0.6 |
| L | 13.2 | 0.52 |
| M | $0.3 \pm 0.1$ | $0.01 \pm 0.004$ |

## $\mu$ COM-44 SINGLE CHIP MICROCOMPUTER

DESCRIPTION The $\mu$ PD547 is the standard version of the $\mu$ COM -44 . This PMOS, -10 volt part is designed to have TTL-level compatible inputs and is easily interfaced to external static RAM. As a $\mu$ COM- 44 , it includes $1000 \times 8$ ROM, $64 \times 4$ RAM and 35 I/O lines in a 42 pin plastic dual-in-line package.

| ABSOLUTE MAXIMUM | Operating Temperature | $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: |
| RATINGS* | Storage Temperature . . | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
|  | Supply Voltage. | -15 to +0.3 Volts |
|  | Input Voltages | -15 to +0.3 Volts |
|  | Output Voltages | -15 to +0.3 Volts |
|  | Output Current. . . | . . . . . -4 mA |

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input High Voltage | $V_{I H}$ | 0 |  | -2.0 | V | Ports A tơ D, $\overline{\mathrm{INT}}$, RES |
| Input Low Voltage | VIL | -4.3 |  | $V_{G G}$ | V | Ports A to D, INT, RES |
| Input Leakage Current High | ILIH |  |  | +10 | $\mu \mathrm{A}$ | Ports A and B, INT, RES, TEST $V_{1}=-1 V$ |
| Input Leakage Current Low | ILIL |  |  | -10 . | $\mu \mathrm{A}$ | Ports A and B, INT, RES, TEST $V_{1}=-11 \mathrm{~V}$ |
| I/O Leakage Current High | I OH |  |  | +10 | $\mu \mathrm{A}$ | Ports $C$ and $D$ $V_{1}=-1 \mathrm{~V}$ |
| I/O Leakage Current Low | IIOL |  |  | -10 | $\mu \mathrm{A}$ | Ports C and D $V_{1}=-11 \mathrm{~V}$ |
| Output Voltage | VOH1 |  |  | $-1.0$ | V | Ports C to 1 $\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$ |
|  | $\mathrm{V}_{\mathrm{OH} 2}$ |  |  | -2.3 | V | Ports C to I $\mathrm{I}_{\mathrm{OH}}=-3.3 \mathrm{~mA}$ |
| Output Leakage Current | IOL |  |  | -10 | $\mu \mathrm{A}$ | Ports C to I $\mathrm{V}_{\mathrm{O}}=-11 \mathrm{~V}$ |
| Supply Current | IGG |  | $-30$ | -50 | mA |  |
| Oscillator Frequency | F | 150 |  | 440 | KHz |  |

## $\mu$ PD547

$T_{a}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input Capacitance | $\mathrm{C}_{1}$ |  |  | 15 | pf | $f=1 \mathrm{MHz}$ |
| Output Capacitance | Co |  |  | 15 | pf |  |
| Input/Output Capacitance | $\mathrm{ClO}_{10}$ |  |  | 15 | pf |  |

## CAPACITANCE

## CLOCK WAVEFORM

PACKAGE OUTLINE $\mu$ PD547C

| ITEM | MILLIMETERS | INCHES |
| :--- | :---: | :--- |
| A | 56.0 MAX | 2.2 MAX |
| B | 2.6 MAX | 0.1 MAX |
| C | 2.54 | 0.1 |
| D | $0.5 \pm 0.1$ | $0.02 \pm 0.004$ |
| E | 50.8 | 2.0 |
| F | 1.5 | 0.059 |
| G | 3.2 MIN | 0.126 MIN |
| H | 0.5 MIN | 0.02 MIN |
| I | 5.22 MAX | 0.20 MAX |
| J | 5.72 MAX | 0.22 MAX |
| K | 15.24 | 0.6 |
| L | 13.2 | 0.52 |
| M | $0.3 \pm 0.1$ | $0.01 \pm 0.004$ |

## $\mu$ COM-44 SINGLE CHIP MICROCOMPUTER

DESCRIPTION The $\mu$ PD547L is a low power version of the $\mu$ COM-44. It is a modified PMOS device requiring a -8 volt power supply with a reduced supply current specification. As a $\mu$ COM-44, it includes $1000 \times 8$ ROM, $64 \times 4$ RAM and 35 I/O lines in a 42 pin plastic dual-in-line package.


COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} T_{a}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GG}}=-8 \mathrm{~V} \pm 10 \%$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input High Voltage . | V IH | 0 |  | -1.6 | V | Ports $A$ to $D, \overline{I N T}$, RES |
| Input Low Voltage | VIL | -3.8 |  | $\mathrm{V}_{\mathrm{GG}}$ | V | $\begin{aligned} & \text { Ports A to D, } \\ & \text { INT, RES } \end{aligned}$ |
| Input Leakage Current High | ${ }_{\text {ILIH }}$ |  |  | +10 | $\mu \mathrm{A}$ | Ports $A$ and $B$, INT, RES, TEST $V_{1}=-1 V$ |
| Input Leakage Current Low | ILIL |  |  | -10 | $\mu \mathrm{A}$ | Ports A and B, INT, RES, TEST $V_{1}=-9 V$ |
| I/O Leakage Current High | ${ }^{1} \mathrm{OH}$ |  | . | +10 | $\mu \mathrm{A}$ | Ports C and D $V_{1}=-1 V$ |
| I/O Leakage Current Low | IIOL |  |  | -10 | $\mu \mathrm{A}$ | Ports C and D $V_{1}=-9 \mathrm{~V}$ |
| Output Voltage | $\mathrm{V}_{\mathrm{OH} 1}$ |  |  | -1.0 | V | Ports C to I $\mathrm{I}_{\mathrm{OH}}=-0.7 \mathrm{~mA}$ |
|  | $\mathrm{V}_{\mathrm{OH} 2}$ |  |  | -2.3 | V | Ports C to 1 ${ }^{1} \mathrm{OH}=-2.6 \mathrm{~mA}$ |
| Output Leakage Current | IOL |  |  | -10 | $\mu \mathrm{A}$ | Ports C to I $\mathrm{V}_{\mathrm{O}}=-9 \mathrm{~V}$ |
| Supply Current | IGG |  | -15 | -25 | mA |  |
| Oscillator Frequency | F | 100 |  | 180 | KHz |  |

$T_{a}=25^{\circ} \mathrm{C} ; f=1 \mathrm{MHz}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input Capacitance | $\mathrm{Cl}_{1}$ |  |  | 15 | pf | $\mathrm{f}=1 \mathrm{MHz}$ |
| Output Capacitance | $\mathrm{Co}_{0}$ |  |  | 15 | pf |  |
| Input/Output Capacitance | $\mathrm{ClO}^{1}$ |  |  | 15 | pf |  |

CAPACITANCE

CLOCK WAVEFORM

PACKAGE OUTLINE $\mu$ PD547LC

| ITEM | MILLIMETERS | INCHES |
| :---: | :---: | :--- |
| A | 56.0 MAX | 2.2 MAX |
| B | 2.6 MAX | 0.1 MAX |
| C | 2.54 | 0.1 |
| D | $0.5 \pm 0.1$ | $0.02 \pm 0.004$ |
| E | 50.8 | 2.0 |
| F | 1.5 | 0.059 |
| G | 3.2 MIN | 0.126 MIN |
| H | 0.5 MIN | 0.02 MIN |
| I | 5.22 MAX | 0.20 MAX |
| J | 5.72 MAX | 0.22 MAX |
| K | 15.24 | 0.6 |
| L | 13.2 | 0.52 |
| M | $0.3 \pm 0.1$ | $0.01 \pm 0.004$ |

## $\mu$ COM-44 SINGLE CHIP MICROCOMPUTER

DESCRIPTION
The $\mu$ PD552 is a high negative output version of the $\mu \mathrm{COM}-44$. This PMOS,-10 volt part is designed with outputs capable of being pulled to -35 volts. This allows direct interfacing with Fluorescent Indicator Panels (FIPs). As a $\mu$ COM-44, it includes $1000 \times$ 8 ROM, $64 \times 4$ RAM and 35 I/O lines in a 42 pin plastic dual-in-line package.

## ABSOLUTE MAXIMUM RATINGS*

Operating Temperature
$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -15 to +0.3 Volts
Input Voltages (Port A, INT, RES, TEST) . . . . . . . . . . . . . . . . . . -15 to +0.3 Volts
(All Other Inputs). . . . . . . . . . . . . . . . . . . . . . . -40 to +0.3 Volts
Output Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40 to +0.3 Volts
Output Current (Each Output Bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . - 12 mA
(Total Current) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -60 mA
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
DC/AC CHARACTERISTICS

| PARAMETER | SYMBOL | Limits |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | max |  |  |
| Input High Voltage | $\mathrm{V}_{\text {IH }}$ | 0 |  | -3.5 | $v$ | $\begin{aligned} & \text { Ports } A \text { to } D, \overline{\mathrm{NTT}}, \\ & \text { RES } \end{aligned}$ |
| Input Low Voltage | $\mathrm{v}_{1 L 1}$ | -7.5 |  | VGG | $v$ | Ports A and B , INT, RES |
|  | $\mathrm{V}_{\text {IL2 }}$ | -7.5 |  | -35 | $v$ | Ports C and D |
| Input Leakage Current High | ${ }^{\text {ILIH }}$ |  |  | +10 | $\mu \mathrm{A}$ | Ports A and B, INT, RES, TEST $V_{1}=-1 \mathrm{~V}$ |
| Input Leakage Current Low | 'LILI |  |  | -10 | $\mu \mathrm{A}$ | Ports $A$ and $B$, INT, RES, TEST $V_{1}=-11 \mathrm{~V}$ |
|  | 'LIL2 |  |  | -30 | $\mu \mathrm{A}$ | Ports A and B $V_{1}=-35 \mathrm{~V}$ |
| I/O Leakage Current High | IOH |  |  | +10 | $\mu \mathrm{A}$ | $\begin{aligned} & \text { Ports } C \text { and } D \\ & V_{1}=-1 \mathrm{~V} \end{aligned}$ |
| I/O Leakage Current Low | 'IOL1 |  |  | -10 | $\mu \mathrm{A}$ | $\begin{array}{\|l\|} \hline \text { Ports C and D } \\ V_{1}=-11 \mathrm{~V} \\ \hline \end{array}$ |
|  | 'IOL2 |  |  | -30 | $\mu \mathrm{A}$ | $\begin{array}{\|l} \hline \text { Ports C and D } \\ \mathrm{V}_{1}=-35 \mathrm{~V} \\ \hline \end{array}$ |
| Output Voltage | $\mathrm{V}_{\mathrm{OH}}$ |  |  | -2.0 | v | $\begin{array}{\|l\|} \hline \text { Ports } C \text { to } 1 \\ 10=-8 \mathrm{~mA} \\ \hline \end{array}$ |
| Output Leakage Current | 'OL1 |  |  | -10 | $\mu \mathrm{A}$ | $\begin{array}{\|l} \hline \text { Ports C to } 1 \\ \mathrm{~V}_{0}=-11 \mathrm{~V} \end{array}$ $v_{0}=-11 v$ |
|  | IOL2 |  |  | -30 | $\mu \mathrm{A}$ | $\begin{aligned} & \text { Ports C to I } \\ & V_{0}=-35 \mathrm{~V} \end{aligned}$ |
| Supply Current | IGG |  | -30 | -50 | mA |  |
| Oscillator Frequency | F | 150 |  | 440 | KHz |  |

## $\mu$ PD552

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input Capacitance | $C_{1}$ |  |  | 15 | pf |  |
| Output Capacitance | Co |  |  | 15 | pf | $\mathrm{f}=1 \mathrm{MHz}$ |
| Input/Output Capacitance | $\mathrm{ClO}_{1}$ |  |  | 15 | pf |  |

CAPACITANCE


CLOCK WAVEFORM


PACKAGE OUTLINE $\mu$ PD552C

| ITEM | MILLIMETERS | INCHES |
| :---: | :---: | :--- |
| A | 56.0 MAX | 2.2 MAX |
| B | 2.6 MAX | 0.1 MAX |
| C | 2.54 | 0.1 |
| D | $0.5 \pm 0.1$ | $0.02 \pm 0.004$ |
| E | 50.8 | 2.0 |
| F | 1.5 | 0.059 |
| G | 3.2 MIN | 0.126 MIN |
| H | 0.5 MIN | 0.02 MIN |
| $\overrightarrow{\mathrm{I}}$ | 5.22 MAX | 0.20 MAX |
| J | 5.72 MAX | 0.22 MAX |
| K | 15.24 | 0.6 |
| L | 13.2 | 0.52 |
| M | $0.3 \pm 0.1$ | $0.01 \pm 0.004$ |

## ભCOM-44 SINGLE CHIP MICROCOMPUTER

DESCRIPTION

## ABSOLUTE MAXIMUM <br> RATINGS*

The $\mu$ PD651 is a CMOS version of the $\mu$ COM-44. It features a single +5 volt power supply, a 2 mA (max), $800 \mu \mathrm{~A}$ (typ) current drain and extended temperature range. As a $\mu$ COM -44 , it includes $1000 \times 8$ ROM, $64 \times 4$ RAM and 35 I/O lines in a 42 pin plastic dual-in-line package, or a 52 pin flat plastic package.
Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +7.0 Volts
Input Voltages . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +7.0 Volts
Output Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +7.0 Volts
Output Current (Each Output Bit) . . . . . . . . . . . . . . . .

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability
${ }^{*} T_{a}=25^{\circ} \mathrm{C}$
$T_{a}=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$.

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input High Voltage | $\mathrm{V}_{\mathrm{IH}}$ | $0.7 \mathrm{~V}_{\mathrm{CC}}$ |  | $\mathrm{V}_{\text {cc }}$ | V | Ports A to D, $\overline{\mathrm{NT}}$, RES |
| Input Low Voltage | $V_{\text {IL }}$ | 0 |  | $0.3 \mathrm{~V}_{\mathrm{cc}}$ | V | Ports A to D, $\overline{\text { INT, }}$, RES |
| Input Leakage Current High | ILIH |  |  | +10 | $\mu \mathrm{A}$ | Ports $A$ and $B, \overline{I N T}$, RES $\left(V_{1}=v_{C C}\right)$ |
| Input Leakage Current Low | 'LIL |  |  | -10 | $\mu \mathrm{A}$ | Ports $A$ and $B, \overline{I N T}$, RES $\left(V_{1}=0 V\right)$ |
| I/O Leakage Current High | 1 OH |  |  | +10 | $\mu \mathrm{A}$ | Ports C and $\mathrm{D}\left(\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}\right)$ |
| I/O Leakage Current Low | IIOL |  |  | -10 | $\mu \mathrm{A}$ | Ports C and $\mathrm{D}\left(\mathrm{V}_{0}=0 \mathrm{~V}\right)$ |
| Output High Voltage 1 | $\mathrm{V}_{\mathrm{OH} 1}$ | $\mathrm{V}_{\mathrm{Cc}}-0.5$ |  |  | V | Ports C and D $(1 \mathrm{OH}=-1 \mathrm{~mA})$ |
|  |  | $\mathrm{V}_{\mathrm{CC}}-0.5$ |  |  | V | $\begin{array}{\|l\|} \hline \text { Ports E to I } \\ (1 \mathrm{OH}=-1 \mathrm{~mA}) \\ \hline \end{array}$ |
| Output High Voltage 2 | $\mathrm{V}_{\mathrm{OH} 2}$ | $\mathrm{V}_{\mathrm{Cc}}{ }^{-2.5}$ |  |  | V | Ports C to I ( $\left.\mathrm{IOH}^{\prime}=-2 \mathrm{~mA}\right)$ |
| Output Low Voltage | $\mathrm{V}_{\mathrm{OL} 1}$ |  |  | 0.6 | V | Ports E to I $(1 \mathrm{OL}=2 \mathrm{~mA})$ |
|  | VOL2 |  |  | 0.4 | V | $\begin{array}{\|l\|} \hline \text { Ports E to } 1 \\ (1 \mathrm{OL}=1.2 \mathrm{~mA}) \\ \hline \end{array}$ |
| Supply Current | ICC |  | 0.8 | 2.0 | mA |  |
| Clock High Voltage | $\mathrm{V}_{\phi} \mathrm{H}$ | 0.7 Vcc |  | $\mathrm{V}_{\mathrm{CC}}$ | V | CLO, Ext. Clk. |
| Clock Low Voltage | $\mathrm{V}_{\phi} \mathrm{L}$ | 0 |  | $0.3 \mathrm{~V}_{\mathrm{cc}}$ | v | CLO, Ext. Clk. |
| Clock Leakage Current High | ${ }^{\prime} \mathrm{L} \phi \mathrm{H}$ |  |  | 200 | $\mu \mathrm{A}$ | $\begin{aligned} & \text { CLO, Ext. CIk. } \\ & \left(\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{CC}}\right) \end{aligned}$ |
| Clock Leakage Current Low | 'L¢L |  |  | -200 | $\mu \mathrm{A}$ | $\begin{aligned} & \text { CLO, Ext. CIk. } \\ & \left(\mathrm{V}_{\mathrm{OL}}=\mathrm{OV}\right) \end{aligned}$ |
| Clock Frequency | f | 150 |  | 440 | KHz |  |
| Clock Rise and Fall Times | tr, tf | 0 |  | 0.3 | $\mu \mathrm{s}$ | Ext. Clk. |
| Clock Pulse Width | ${ }_{\text {t }}$ ¢ W | 0.5 |  | 5.6 | $\mu \mathrm{s}$ | Ext. Clk. |

$T_{\text {at }}=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$.
CAPACITANCE

|  |  | LIMITS |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SYMBOL | MIN | TYP | MAX | UNIT |  |
|  | $\mathrm{C}_{\mathrm{I}}$ |  |  | 15 | pf |  |
| Output Capacitance | $\mathrm{C}_{\mathrm{O}}$ |  |  | 15 | pf | $\mathrm{f}=1 \mathrm{MHz}$ |
| I/O Capacitance | $\mathrm{C}_{\mathrm{IO}}$ |  |  | 15 | pf |  |



CLOCK WAVEFORM
ov-----


| ITEM | MILLIMETERS | INCHES |
| :---: | :---: | :--- |
| A | 56.0 MAX | 2.2 MAX |
| B | 2.6 MAX | 0.1 MAX |
| C | 2.54 | 0.1 |
| D | $0.5 \pm 0.1$ | $0.02 \pm 0.004$ |
| E | 50.8 | 2.0 |
| F | 1.5 | 0.059 |
| G | 3.2 MIN | 0.126 MIN |
| H | 0.5 MIN | 0.02 MIN |
| $\overline{\mathrm{I}}$ | 5.22 MAX | 0.20 MAX |
| J | 5.72 MAX | 0.22 MAX |
| K | 15.24 | 0.6 |
| L | 13.2 | 0.52 |
| M | $0.3 \pm 0.1$ | $0.01 \pm 0.004$ |



Notes: (1) NC = No connection.
(2) Pin 1 index (" $O$ '" mark) is located where the pin 2 line and pin 51 line cross.
(3) Pin 7 and 33 of $\mu$ PD651G are connected inside the package

FLAT PACKAGE OUTLINE $\mu$ PD651G


| ITEM | MILLIMETERS | INCHES |
| :---: | :---: | :--- |
| A | 12.0 MAX. | 0.47 MAX. |
| B | $1.0 \pm 0.1$ | $0.04 \pm 0.004$ |
| C | 14.0 | 0.55 |
| D | 0.4 | 0.016 |
| E | $21.8 \pm 0.4$ | $0.86 \pm 0.016$ |
| F | 0.15 | 0.006 |
| G | 2.6 | 0.1 |

NOTES

## $\mu$ COM-45 SINGLE CHIP MICROCOMPUTER

DESCRIPTION
The $\mu$ PD550 is the $640 \times 8$ ROM version of the $\mu$ COM -45 . This PMOS, -10 volt part features both TTL-level compatible inputs as well as outputs capable of being pulled to -35 volts. This allows direct interfacing with Fluorescent Indicator Panels (FIPs). As a $\mu$ COM-45, it includes $32 \times 4$ RAM and 21 I/O lines in a 28 pin plastic dual-inline package.

## ABSOLUTE MAXIMUM RATINGS*

| Operating Temperature | $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| :---: | :---: |
| Storage Temperature | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| Supply Voltage . | -15 to +0.3 Volts |
| Input Voltages (Port A, $\overline{\mathrm{INT}}, \mathrm{RES}, \mathrm{TEST}$ ) | -15 to +0.3 Volts |
| (All Other Inputs) | -40 to +0.3 Volts |
| Output Voltages | -40 to +0.3 Volts |
| Output Current (Ports C, D) | -4 mA |
| (Ports E, F, G) | -15 mA |
| (Total Current) | -60 mA |

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$.

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | $\begin{aligned} & \text { TEST } \\ & \text { CONDITIONS } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Inout High Voltage | $\mathrm{V}_{\text {IH }}$ | 0 |  | -2.0 | V | Ports A, C, D, $\overline{\text { INT }}$, RES |
| Input Low Voltage | $V_{\text {IL1 }}$ | -4.3 |  | $\mathrm{V}_{\text {GG }}$ | V | Ports A, TNT, RES |
|  | $V_{\text {IL } 2}$ | -4.3 |  | -35 | V | Port C and D |
| Input Leakage Current High | ILIH |  |  | +10 | $\mu \mathrm{A}$ | Ports A; INT, RES, TEST $V_{1}=1 \mathrm{~V}$ |
| Input Leakage Current Low | ILIL |  |  | -10 | $\mu \mathrm{A}$ | Ports A, $\overline{\mathrm{INT}}$, RES, TEST $V_{1}=-11 \mathrm{~V}$ |
| I/O Leakage Current High | $\mathrm{I}_{\mathrm{IOH}}$ |  |  | +10 | $\mu \mathrm{A}$ | Ports C and D $V_{1}=-1 V$ |
| I/O Leakage Current Low | 110 L 1 |  |  | -10 | $\mu \mathrm{A}$ | Ports C and D $V_{1}=-11 \mathrm{~V}$ |
|  | IIOL2 |  |  | -30 | $\mu \mathrm{A}$ | Ports C and D $v_{1}=-35 \mathrm{~V}$ |
| Output Voltage | $\mathrm{V}_{\mathrm{OH} 1}$ |  | . | -1.0 | V | Ports C and D $I_{O}=-2 \mathrm{~mA}$ |
|  | $\mathrm{V}_{\mathrm{OH} 2}$ |  |  | -2.5 | V | Ports E, F, G $I_{O}=-10 \mathrm{~mA}$ |
| Output Leakage Current | 'OL1 |  |  | -10 | $\mu \mathrm{A}$ | Ports C, D, E, F, G $V_{O}=-11 \mathrm{~V}$ |
|  | IOL2 |  |  | -30 | $\mu \mathrm{A}$ | Ports C, D, E, F, G $\mathrm{V}_{\mathrm{O}}=-35 \mathrm{~V}$ |
| Supply Current | IGG |  | -20 | -40 | mA |  |
| Oscillator Frequency | $F$ | 150 |  | 440 | KHz |  |

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input Capacitance | $\mathrm{Cl}_{1}$ |  |  | 15 | pf | $\mathrm{f}=1 \mathrm{MHz}$ |
| Output Capacitance | $\mathrm{C}_{0}$ |  |  | 15 | pf |  |
| Input/Output Capacitance | $\mathrm{ClO}_{10}$ |  |  | 15 | pf |  |

CAPACITANCE

CLOCK WAVEFORM

PACKAGE OUTLINE $\mu$ PD550C

| ITEM | MILLIMETERS | INCHES |
| :--- | :---: | :--- |
| A | 38.0 MAX | 1.496 MAX. |
| B | 2.49 | 0.098 |
| C | 2.54 | 0.10 |
| D | $0.5 \pm 0.1$ | $0.02 \pm 0.004$ |
| E | 33.02 | 1.3 |
| F | 1.5 | 0.059 |
| G | 2.54 MIN. | 0.10 MIN. |
| H | 0.5 MIN. | 0.02 MIN. |
| I | 5.22 MAX | 0.205 MAX. |
| J | 5.72 MAX. | 0.225 MAX. |
| K | 15.24 | 0.6 |
| L | 13.2 | 0.52 |
| M | $0.25+0.10$ | $0.01+0.004$ |

# $\mu$ COM-45 SINGLE CHIP MICROCOMPUTER 

DESCRIPTION The $\mu$ PD550L is the $640 \times 8$ ROM, low power version of the $\mu$ COM-45. It is a modified PMOS device requiring a -8 Volt power supply, with a reduced supply current specification. The $\mu$ PD550L features both TTL level compatible inputs as well as outputs capable of being pulled to -35 Volts for direct interfacing with Fluorescent Indicator Panels (FIPs). As a $\mu$ COM-45, it includes $640 \times 8$ ROM; $32 \times 4$ RAM, and 21 I/O lines in a 28 pin plastic dual-in-line package.

## ABSOLUTE MAXIMUM RATINGS*

| Operating Temperature | $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| :---: | :---: |
| Storage Temperature | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| Supply Voltage | -15 to +0.3 Volts |
| Input Voltages (Port A, $\overline{\text { NTT, RES }}$ ) | -15 to +0.3 Volts |
| (Ports C, D) | -40 to +0.3 Volts |
| Output Voltages | -40 to +0.3 Volts |
| Output Current (Ports C, D) | -4 mA |
| (Ports E, F, G) | $-15 \mathrm{~mA}$ |
| (Total Current) | - -60 mA |

COMMENT: Stress above those listed under "Absolute Maxirnum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{GG}}=-8 \mathrm{~V} \pm 10 \%$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input Voltage High | $\mathrm{V}_{\mathrm{IH}}$ | 0 |  | -1.6 | V | Ports A, C, D, $\overline{\text { NT, }}$, RES |
| Input Voltage Low | $\mathrm{V}_{\text {ILI }}$ | -4.5 |  | $\mathrm{V}_{\mathrm{GG}}$ | V | Ports A, INT, RES |
|  | $V_{\text {IL2 }}$ | -4.5 |  | -35 | V | Ports C and D |
| Clock Voltage High | $\mathrm{V}_{\phi \text { H }}$ | 0 |  | -0.6 | V | CLo Input, External Clock |
| Clock Voltage Low | ${ }_{\sim}^{*} \mathrm{~V}_{\phi \mathrm{L}}$ | -5.0 |  | $\mathrm{V}_{\mathrm{GG}}$ | V | CLo Input, External Clock |
| Input Leakage Current High | 'LIH |  |  | +10 | $\mu \mathrm{A}$ | Ports A, C, D, $\overline{\mathrm{INT}}, \mathrm{RES}$ $V_{1}=-1 V$ |
| Input Leakage Current Low | 'LIL1 |  |  | -10 | $\mu \mathrm{A}$ | Ports A, C, D, INT, RES $V_{1}=-9 v$ |
|  | 'LIL2 |  |  | -30 | $\mu \mathrm{A}$ | Ports C and $\mathrm{D} ; \mathrm{V}_{1}=-35 \mathrm{~V}$ |
| Clock Leakage Current High | ${ }^{\mathrm{L}} \mathrm{L}$ ¢ H |  |  | +200 | $\mu \mathrm{A}$ | CLo Input, External Clock, $\mathrm{V}_{\mathrm{OH}}=0 \mathrm{~V}$ |
| Clock Leakage Current Low | ${ }^{\prime} \mathrm{L} \phi \mathrm{L}$ |  |  | -200 | $\mu \mathrm{A}$ | CLO Input, External Clock, $V_{O L}=-9 \mathrm{~V}$ |
| Output Voltage High | $\mathrm{V}_{\mathrm{OH} 1}$ |  |  | -1.0 | V | Ports $C$ and $\mathrm{D} ; \mathrm{IO}_{0}=-2 \mathrm{~mA}$ |
|  | $\mathrm{V}_{\mathrm{OH} 2}$ |  |  | -2.5 | V | Ports E, F, G; ${ }^{\text {O }}=-10 \mathrm{~mA}$ |
| Output Leakage Current | 'LOL1 |  |  | -10 | $\mu \mathrm{A}$ | $\begin{aligned} & \text { Ports C, D, E, F, G } \\ & V_{O}=-9 V \end{aligned}$ |
|  | 'LOL2 |  |  | -30 | $\mu \mathrm{A}$ | $\begin{aligned} & \text { Ports C, D, E, F, G } \\ & V_{O}=-35 V \end{aligned}$ |
| Supply Current | 'GG' |  | -10 | -24 | mA |  |
| Oscillator Frequency | $f$ | 100 |  | 180 | KHz |  |
| Rise and Fall Times | $\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$ | 0 |  | 0.3 | $\mu \mathrm{s}$ | External Clock |
| Clock Pulse Width High | ${ }^{\text {t }}{ }_{\phi} \mathrm{WH}$ | 2.0 |  | 8.0 | $\mu \mathrm{s}$ | External Clock |
| Clock Pulse Width Low | $\mathrm{t}_{\phi} \mathrm{WL}$ | 2.0 |  | 8.0 | $\mu \mathrm{s}$ | External Clock |

- $\quad T_{a}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$.

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input Capacitance | $\mathrm{C}_{1}$ |  |  | 15 | pf | : $f=1 \mathrm{MHz}$ |
| Output Capacitance | $\mathrm{C}_{0}$ |  | : | 15 | pf |  |
| Input/Output Capacitance | $\mathrm{ClO}_{10}$ |  |  | 15 | pf |  |



PACKAGE OUTLINE $\mu$ PD550LC

| ITEM | MILLIMETERS | INCHES |
| :--- | :--- | :--- |
| A | 38.0 MAX | 1.496 MAX. |
| B | 2.49 | 0.098 |
| C | 2.54 | 0.10 |
| D | $0.5 \pm 0.1$ | $0.02 \pm 0.004$ |
| E | 33.02 | 1.3 |
| F | 1.5 | 0.059 |
| G | 2.54 MIN. | 0.10 MIN. |
| H | 0.5 MIN. | 0.02 MIN. |
| I | 5.22 MAX | 0.205 MAX. |
| J | 5.72 MAX. | 0.225 MAX. |
| K | 15.24 | 0.6 |
| L | 13.2 | 0.52 |
| M | $0.25+0.10$ | $0.01+0.004$ |

## $\mu$ COM-45 SINGLE CHIP MICROCOMPUTER

DESCRIPTION The $\mu$ PD554 is the $1000 \times 8$ ROM version of the $\mu$ COM -45 . This PMOS, -10 volt part features both TTL-level compatible inputs as well as outputs capable of being pulled to -35 volts. This allows direct interfacing with Fluorescent Indicator Panels (FIPs). As a $\mu$ COM-45, it includes $32 \times 4$ RAM and 21 I/O lines in a 28 pin plastic, dual-in-line package.

Operating Temperature
$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage -15 to +0.3 Volts

(All Other Inputs) . . . . . . . . . . . . . . . . . . . . . . . -40 to +0.3 Volts
Output Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40 to +0.3 Volts
Output Current (Ports C, D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 4 mA
(Ports E, F, G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 15 mA
(Total Current) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -60 mA
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GG}}=-10 \mathrm{~V} \pm 10 \%$.

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input High Voltage | $\mathrm{V}_{\text {IH }}$ | 0 |  | -2.0 | V | Ports A, C, D, $\overline{I N T}$, RES |
| Input Low Voltage | $V_{\text {ILI }}$ | -4.3 |  | $\mathrm{V}_{\mathrm{GG}}$ | V | Ports A, $\overline{\text { INT, RES }}$ |
|  | $\mathrm{V}_{\text {IL2 }}$ | -4.3 |  | -35 | V | Port C and D |
| Input Leakage Current High | ILIH |  |  | +10 | $\mu \mathrm{A}$ | Ports A, $\overline{I N T}$, RES, TEST $V_{1}=1 \mathrm{~V}$ |
| Input Leakage Current Low | 'LIL1 | . |  | -10 | $\mu \mathrm{A}$ | Ports A, $\overline{\mathrm{INT}}$, RES TEST $V_{1}=-11 \mathrm{~V}$ |
|  | 'LIL2 |  |  | -30 | $\mu \mathrm{A}$ | Port A $V_{1}=-35 \mathrm{~V}$ |
| I/O Leakage Current High | I OH |  |  | +10 | $\mu \mathrm{A}$ | $\begin{aligned} & \text { Ports } C \text { and } D \\ & V_{1}=-1 \mathrm{~V} \end{aligned}$ |
| 1/O Leakage Current Low | IIOL1 |  |  | -10 | $\mu \mathrm{A}$ | $\begin{aligned} & \text { Ports C and D } \\ & V_{1}=-11 \mathrm{~V} \end{aligned}$ |
|  | $110 L 2$ |  |  | -30 | $\mu \mathrm{A}$ | Ports C and D $V_{1}=-35 \mathrm{~V}$ |
| Output Voltage | $\mathrm{V}_{\mathrm{OH} 1}$ |  |  | -1.0 | V | $\begin{aligned} & \text { Ports } C \text { and } D \\ & \mathrm{I}_{\mathrm{O}}=-2 \mathrm{~mA} \end{aligned}$ |
|  | $\mathrm{V}_{\mathrm{OH} 2}$ |  |  | -2.5 | V | Ports E, F, G $\mathrm{I}_{0}=-10 \mathrm{~mA}$ |
| Output Leakage Current | 'OL1 |  |  | -10 | $\mu \mathrm{A}$ | $\begin{aligned} & \text { Ports C, D, E, F, G } \\ & V_{O}=-11 \mathrm{~V} \end{aligned}$ |
|  | IOL2 |  |  | -30 | $\mu \mathrm{A}$ | Ports C, D, E, F, G $\mathrm{V}_{\mathrm{O}}=-35 \mathrm{~V}$ |
| Supply Current | IGG |  | -20 | -40 | mA |  |
| Oscillator Frequency | F | 150 |  | 440 | KHz |  |

## $\mu$ PD554

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$.

| PARAMETER |  | LIMITS |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SYMBOL | MIN | TYP | MAX | UNIT |  |
| Input Capacitance | $\mathrm{C}_{\mathrm{l}}$ |  |  | 15 | pf |  |
| Output Capacitance | $\mathrm{C}_{\mathrm{O}}$ |  |  | 15 | pf | $\mathrm{f}=1 \mathrm{MHz}$ |
| Input/Output Capacitance | $\mathrm{C}_{\mathrm{IO}}$ |  |  | 15 | pf |  |

PACKAGE OUTLINE $\mu$ PD554C

| ITEM | MILLIMETERS | INCHES |
| :--- | :---: | :--- |
| A | 38.0 MAX. | 1.496 MAX. |
| B | 2.49 | 0.098 |
| C | 2.54 | 0.10 |
| D | $0.5 \pm 0.1$ | $0.02 \pm 0.004$ |
| E | 33.02 | 1.3 |
| F | 1.5 | 0.059 |
| G | 2.54 MIN. | 0.10 MIN. |
| H | 0.5 MIN. | 0.02 MIN. |
| I | 5.22 MAX. | 0.205 MAX. |
| J | 5.72 MAX. | 0.225 MAX. |
| K | 15.24 | 0.6 |
| L | 13.2 | 0.52 |
| M | $0.25+0.10$ | $0.01+0.004$ |

## $\mu$ COM-45 SINGLE CHIP MICROCOMPUTER

DESCRIPTION
The $\mu$ PD554L is the $1000 \times 8$ ROM, low power version of the $\mu$ COM -45 . It is a modified PMOS device requiring a -8 Volt power supply, with a reduced supply current specification. The $\mu$ PD554L features both TTL level compatible inputs as well as outputs capable of being pulled to -35 Volts for direct interfacing with Fluorescent Indicator Panels (FIPs). As a $\mu$ COM-45, it includes $1000 \times 8$ ROM, $32 \times 4$ RAM, and 21 I/O lines in a 28 pin plastic dual-in-line package.

## ABSOLUTE MAXIMUM RATINGS*

| Operating Temperature | $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| :---: | :---: |
| Storage Temperature | - $40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| Supply Voltage | -15 to +0.3 Volts |
| Input Voltages (Port A, $\overline{\mathrm{INT}, \mathrm{RES} \text { ) }}$ | -15 to +0.3 Volts |
| (Ports C, D) | -40 to +0.3 Volts |
| Output Voltages | -40 to +0.3 Volts |
| Output Current (Ports C, D) | -4 mA |
| (Ports E, F, G) | -15 mA |
| (Total Current) | -60 m |

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
DC/AC CHARACTERISTICS
$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{GG}}=-8 \mathrm{~V} \pm 10 \%$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input Voltage High | $\mathrm{V}_{1 \mathrm{H}}$ | 0 |  | -1.6 | V | Ports A, C, D, $\overline{\text { NT }}$, RES |
| Input Voltage Low | $V_{\text {ILI }}$ | -4.5 |  | $V_{\text {GG }}$ | V | Ports A, INT, RES |
|  | VIL2 | -4.5 |  | -35 | V | Ports C and D |
| Clock Voltage High | $V_{\phi H}$ | 0 |  | -0.6 | V | CLo Input, External Clock |
| Clock Voltage Low | $\mathrm{V}_{\phi L}$ | -5.0 |  | $\mathrm{V}_{\mathrm{GG}}$ | V | CLor Input, External Clock |
| Input Leakage Current High | ILIH |  |  | +10 | $\mu \mathrm{A}$ | Ports A, C, D, $\overline{\mathrm{INT}}$, RES $V_{1}=-1 \mathrm{~V}$ |
| Input Leakage Current Low | 'LILT |  |  | -10 | $\mu \mathrm{A}$ | Ports A, C, D, INT, RES $V_{1}=-9 \mathrm{~V}$ |
|  | ILIL2 |  |  | -30 | $\mu \mathrm{A}$ | Ports C and D; $\mathrm{V}_{1}=-35 \mathrm{~V}$ |
| Clock Leakage Current High | ${ }^{\prime} \mathrm{L} \phi \mathrm{H}$ |  |  | +200 | $\mu \mathrm{A}$ | $\mathrm{CL}_{0}$ Input, $\mathrm{V}_{\mathrm{OH}}=0 \mathrm{~V}$ |
| Clock Leakage Current Low | ${ }^{\prime} \mathrm{L} \phi \mathrm{L}$ |  |  | -200 | $\mu \mathrm{A}$ | $\mathrm{CL}_{-}$Input, $\mathrm{V}_{\mathrm{OL}}=-9 \mathrm{~V}$ |
| Output Voltage High | $\mathrm{V}_{\mathrm{OH} 1}$ |  |  | -1.0 | V | Ports $C$ and $D: I^{\prime} \mathrm{O}=-2 \mathrm{~mA}$ |
|  | $\mathrm{V}^{\mathrm{OH} 2}$ |  |  | -2.5 | V | Ports E, F, G; ${ }^{\text {O }}=-10 \mathrm{~mA}$ |
| Output Leakage Current | 'LOL1 |  |  | -10 | $\mu \mathrm{A}$ | Ports C, D, E, F, G $v_{O}=-9 \mathrm{~V}$ |
|  | ILOL2 |  |  | -30 | $\mu \mathrm{A}$ | $\begin{aligned} & \text { Ports C, D, E, F, G } \\ & V_{O}=-35 V \end{aligned}$ |
| Supply Current | IGG |  | -12 | -24 | mA |  |
| Oscillator Frequency | $f$ | 100 |  | 180 | KHz |  |
| Rise and Fall Times | $\mathrm{tr}_{\mathrm{r}, \mathrm{tf}}$ | 0 |  | 0.3 | $\mu \mathrm{s}$ | External Clock |
| Clock Pulse Width High | $\mathrm{t}_{\phi} \mathrm{WH}$ | 2.0 |  | 8.0 | $\mu \mathrm{s}$ | External Clock |
| Clock Puise Width Low | ${ }^{\text {t }}{ }_{\phi} \mathrm{WL}$ | 2.0 |  | 8.0 | $\mu \mathrm{s}$ | External Clock |

## $\mu$ PD 554 L

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$.

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input Capacitance | $\mathrm{C}_{1}$ |  |  | 15 | pf | $f=1 \mathrm{MHz}$ |
| Output Capacitance | $\mathrm{C}_{0}$ |  |  | 15 | pf |  |
| Input/Output Capacitance | $\mathrm{ClO}_{1}$ |  |  | 15 | pf |  |

CAPACITANCE

CLOCK WAVEFORM

PACKAGE OUTLINE $\mu$ PD554LC

| ITEM | MILLIMETERS | INCHES |
| :--- | :---: | :--- |
| A | 38.0 MAX. | 1.496 MAX. |
| B | 2.49 | 0.098 |
| C | 2.54 | 0.10 |
| D | $0.5 \pm 0.1$ | $0.02 \pm 0.004$ |
| E | 33.02 | 1.3 |
| F | 1.5 | 0.059 |
| G | 2.54 MIN. | 0.10 MIN. |
| H | 0.5 MIN. | 0.02 MIN. |
| I | 5.22 MAX. | 0.205 MAX. |
| J | 5.72 MAX. | 0.225 MAX. |
| K | 15.24 | 0.6 |
| L | 13.2 | 0.52 |
| M | $0.25+0.10$ | $0.01+0.004$ |
| 0.0 .002 |  |  |

## $\mu C O M-45$ SINGLE CHIP MICROCOMPUTER

DESCRIPTION The $\mu$ PD652 is a CMOS version of the $\mu$ COM-45. It features a single +5 volt power supply, a 2 mA (max), $800 \mu \mathrm{~A}$ (typ) current drain and extended temperature range. As a $\mu$ COM 45 , it includes $1000 \times 8$ ROM, $32 \times 4$ RAM, and 21 I/O lines in a 28 pin plastic dual-in-line package.

## ABSOLUTE MAXIMUM RATINGS*

| Operating Temperature | $-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| :---: | :---: |
| Storage Temperature . . | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| Supply Voltage. | -0.3 to +7.0 Volts |
| Input Voltages | -0.3 to +7.0 Volts |
| Output Voltages | -0.3 to +7.0 Volts |
| Output Current (Each Output Bit) | 2.5 mA |

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
DC/AC CHARACTERISTICS
$T_{a}=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$.

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input High Voltage | $\mathrm{V}_{\text {IH }}$ | $0.7 \mathrm{~V}_{\mathrm{cc}}$ |  | $V_{C C}$ | V | Ports A, C, D, INT, RES |
| Input Low Voltage | $V_{\text {IL }}$ | 0 |  | $0.3 \mathrm{~V}_{\mathrm{CC}}$ | V | Ports A, C, D, INT, RES |
| Input Leakage Current High | ILIH |  |  | +10 | $\mu \mathrm{A}$ | Ports A, C, D, INT, RES $\left(V_{1}=V_{C C}\right)$ |
| Input Leakage Current Low | ILIL |  | , | -10 | $\mu \mathrm{A}$ | Ports A, C, D, INT, RES ( $V_{1}=0 \mathrm{~V}$ ) |
| I/O Leakage Current High | 1 OH |  |  | +10 | $\mu \mathrm{A}$ | Ports C and D ( $\left.\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}\right)$ |
| I/O Leakage Current Low | 110 L | * |  | -10 | $\mu \mathrm{A}$ | Ports C and $\mathrm{D}\left(\mathrm{V}_{0}=\mathrm{O}_{\mathrm{V}}\right)$ |
| Output High Voltage 1 | $\mathrm{VOH1}$ | $\mathrm{V}_{\mathrm{CC}}-0.5$ |  |  | V | Ports C and D $\left(I_{\mathrm{OH}}=-1 \mathrm{~mA}\right)$ |
|  |  | $\mathrm{V}_{\mathrm{CC}}-0.5$ |  |  | V | Ports E to G ( $1 \mathrm{OH}=-1 \mathrm{~mA}$ ) |
| Output High Voltage 2 | $\mathrm{V}_{\mathrm{OH} 2}$ | $\mathrm{V}_{\mathrm{CC}}-2.5$ | ' |  | V | Ports C to $\mathrm{G}(1 \mathrm{OH}=-2 \mathrm{~mA})$ |
| Output Low Voltage | $\mathrm{V}_{\text {OL1 }}$ |  |  | 0.6 | V | Ports E to G $(1 \mathrm{OL}=2 \mathrm{~mA})$ |
|  | VOL2 |  |  | 0.4 | V | $\begin{array}{\|l} \hline \text { Ports E to G } \\ (1 \mathrm{OL}=1.2 \mathrm{~mA}) \\ \hline \end{array}$ |
| Supply Current | ${ }^{1} \mathrm{CC}$ | - | 0.8 | 2.0 | mA |  |
| Clock High <br> Voltage | $\mathrm{V}_{\phi H}$ | 0.7 V CC |  | $V_{\text {CC }}$ | V | CLO, Ext. Clk. |
| Clock Low Voltage | $\mathrm{V}_{\phi} \mathrm{L}$ | 0 |  | $0.3 \mathrm{~V}_{\mathrm{CC}}$ | V | CLO, Ext. Clk. |
| Clock Leakage Current High | ${ }^{1} \mathrm{~L} \phi \mathrm{H}$ |  |  | 200 | $\mu \mathrm{A}$ | CLO, Ext. Clk. $\left(\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{CC}}\right)$ |
| Clock Leakage Current Low | IL $\quad$ L |  |  | -200 | $\mu \mathrm{A}$ | CLO, Ext. Clk. $\left(\mathrm{V}_{\mathrm{OL}}=0 \mathrm{~V}\right)$ |
| Clock Frequency | $f$ | 150 |  | 440 | KHz |  |
| Clock Rise and Fall Times | tr, tf | 0 |  | 0.3 | $\mu \mathrm{s}$ | Ext. Clk. |
| Clock Pulse Width | ${ }^{\text {t }}$ ¢ $W$ | 0.5 |  | 5.6 | $\mu \mathrm{s}$ | Ext. Clk. |

$T_{a}=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$.

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input Capacitance | $\mathrm{Cl}_{1}$ |  |  | 15 | pf | $f=1 \mathrm{MHz}$ |
| Output Capacitance | $\mathrm{C}_{0}$ |  |  | 15 | pf |  |
| I/O Capacitance | $\mathrm{ClO}^{10}$ |  |  | 15 | pf |  |


ov-----


PACKAGE OUTLINE $\mu$ PD652C

| ITEM | MILLIMETERS | INCHES |
| :--- | :---: | :--- |
| A | 38.0 MAX. | 1.496 MAX. |
| B | 2.49 | 0.098 |
| C | 2.54 | 0.10 |
| D | $0.5 \pm 0.1$ | $0.02 \pm 0.004$ |
| E | 33.02 | 1.3 |
| F | 1.5 | 0.059 |
| G | 2.54 MIN. | 0.10 MIN. |
| H | 0.5 MIN. | 0.02 MIN. |
| I | 5.22 MAX | 0.205 MAX. |
| J | 5.72 MAX. | 0.225 MAX. |
| K | 15.24 | 0.6 |
| L | 13.2 | 0.52 |
| M | $0.25+0.10$ | $0.01+0.004$ |

## EVACHIP-42

The $\mu$ PD555 is a system evaluation chip designed to support both hardware and software debugging of the $\mu$ COM-42 ( $\mu$ PD548) one-chip microcomputer system.

The $\mu$ PD555 and the $\mu$ PD548 have the same functionality in all aspects except that the $\mu$ PD555 does not contain a read only memory, but provides addressing capability to external memory and HOLD function for step-by-step operation.

FEATURES • 4-Bit Parallel Processor

- Powerful 72 Instruction Set Including Decimal/Binary Arithmetic Operations
- $10 \mu$ s Instruction Cycle Time
- Addressing Capability up to 1920 Words by 10-Bits of External Program Memory
- 96 Words by 4-Bit Data Memory On Chip
- 4-Level Subroutines
- Two Interrupt Input Lines (IA and IB)
- HOLD Capability
- A Variety of Input/Output Ports -
- 10 Discrete Output Ports (Fg-F0)
- Two 8-Bit Output Ports ( $\left.\mathrm{U}_{7}-\mathrm{U}_{0} ; \mathrm{R}_{7}-\mathrm{R}_{0}\right)$
- 4-Bit Input Port ( $\mathrm{K}_{3}-\mathrm{K}_{0}$ )
- 4-Bit Input/Output Port ( $\mathrm{S}_{3}-\mathrm{S}_{0}$ )

I/O Level Compatible with $\mu$ PD5101

- 1-Bit Test Input Line
- P-Channel MOS
- Open Drain Output
- Single Power Supply: -10 V
- Available in a 64 Pin Ceramic Dual-in-Line Package


| PIN NAMES |  |
| :--- | :--- |
| $P_{0}-P_{3}$ | Page Output |
| $A_{0}-A_{6}$ | Address Output |
| $I_{0}-I_{9}$ | Instruction Input |
| HOLD | HOLD Input |
| $R_{0}-R_{7}$ | Output Port R |
| $\phi$ | Clock Input |
| RES | Reset Input |
| K4 | K4 Test Input Line |
| $K_{0}-K_{3}$ | K Input Port |
| TEST | IC Test Input |
| $I_{1}$, IB | Interrupt Input |
| $S_{0}-S_{3}$ | Input/Output Port S |
| $F_{0}-F_{9}$ | Output Port F |
| $U_{0}-U_{7}$ | Output Port U |



| Operating Temperature. | $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| :---: | :---: |
| Storage Temperature | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| Supply Voltage VGG | -15 to +0.3 Volts |
| All Input Voltages | -20 to +0.3 Volts |
| All Output Voltages | 0 to +0.3 Vo |

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

$$
\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}
$$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input Capacitance | $C_{1}$ |  |  | 15 | pf | $\mathrm{f}=1 \mathrm{MHz}$ |
| Output Capacitance | $\mathrm{C}_{0}$ |  |  | 15 | pf |  |
| Input/Output Capacitance | $\mathrm{ClO}_{10}$ |  |  | 15 | pf |  |

## CAPACITANCE

$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{GG}}=-10 \mathrm{~V} \pm 10 \%$, unless otherwise noted.

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| High Level Input Voltage | VIH | 0 | - | -2.0 | V |  |
| Low Level Input Voltage | VIL1 | -4.3 |  |  | V | S, $\phi$, 19-0 |
|  | VIL2 | -7.0 |  |  | V | Except S, $\phi$, I9-0 |
| High Level Input Leakage Current | ILIH |  |  | +10 | $\mu \mathrm{A}$ | $V_{1}=-1 \mathrm{~V}$ |
| Low Level Input Leakage Current | ILIL |  |  | -10 | $\mu \mathrm{A}$ | $V_{1}=-11 \mathrm{~V}$ |
| High Level Output Current | 1 OH | -1.0 |  |  | mA | $V_{O}=-1 V$, except S port |
| Low Level Output Leakage Current | 'LOL1 |  |  | -30 | $\mu \mathrm{A}$ | $V_{O}=-11 \mathrm{~V},$ <br> except S port |
| High Level Output Voltage | V OH |  |  | -1.75 | V | $\begin{aligned} & \mathrm{IOH}=-100 \mu \mathrm{~A}, \\ & \mathrm{~S} \text { port } \end{aligned}$ |
| Low Level Output Leakage Current | 'LOL2 |  |  | -10 | $\mu \mathrm{A}$ | $V_{O}=-5 \mathrm{~V},$ <br> S port |
| Power Supply Current | IGG |  | -30 | -60 | mA |  |

AC CHARACTERISTICS
$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GG}}=-10 \mathrm{~V} \pm 10 \%$, unless otherwise noted.

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Clock Frequency | $\mathrm{f}_{\phi}$ | 100 |  | 200 | KHz |  |
| Clock Pulse Width | ${ }_{t}{ }_{\text {w }}$ | 2.25 |  |  |  |  |
| Clock Rise and Fall Times | $\overline{\mathrm{tr}, \mathrm{tf}}$ |  |  | 0.5 | $\mu \mathrm{s}$ |  |
| Input Setup Time from Output | tis |  |  | 2.5 | $\mu \mathrm{s}$ | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{~K} \Omega \end{aligned}$ |



LOAD CIRCUIT



PACKAGE OUTLINE $\mu$ PD555D

| ITEM | MILLIMETERS | INCHES |
| :---: | :---: | :--- |
| A | 82.0 MAX | 3.23 MAX |
| B | 1.6 | 0.063 |
| C | 2.54 | 0.1 |
| D | $0.43 \pm 0.1$ | $0.017 \pm 0.004$ |
| E | 78.8 | 3.1 |
| F | 1.27 | 0.05 |
| G | 3.2 MIN | 0.13 MIN |
| H | 1.3 MIN | 0.05 MIN |
| I | 3.9 | 0.154 |
| J | 5.2 MAX | 0.205 MAX |
| K | 22.96 | 0.904 |
| L | 20.3 | 0.8 |
| M | $0.3 \pm 0.1$ | $0.012 \pm 0.004$ |

## NEC Microcomputers, Inc.

## EVACHIP-43

DESCRIPTION The $\mu$ PD556 is an evaluation chip for the $\mu$ COM-43/44/45 single chip microcomputers. Designed to be used for both hardware and software debugging, the EVACHIP-43 is functionally equivalent to the $\mu \mathrm{COM}-43$, except that it does not contain on-chip ROM. Instead, it is able to address external memory. In addition, in order to facilitate debugging, the $\mu$ PD556 is capable of displaying the contents of the internal accumulator and data pointer and of being single stepped.

When the $\mu$ PD556 is being used to evaluate $\mu$ COM-44/45 designs, the external memory capacity should be restricted to that of the respective.on-chip ROM and the instructions should be restricted to the 58 comprising the $\mu \mathrm{COM}-44 / 45$ instruction set.

FEATURES • 4-bit Parallel Processor

- Full 80 Instruction Set of $\mu$ COM-43
- $10 \mu \mathrm{~s}$ Instruction Cycle
- Capable of addressing $2 \mathrm{~K} \times 8$-bits of external program memory
- Single step capability
- Full Functionality of $\mu \mathrm{COM}-43$
- Single supply: -10V PMOS Technology
- Available in a 64-pin Ceramic Quad-in-Line Package



| Operating Temperature | $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| :---: | :---: |
| Storage Temperature | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| Supply Voltage $\mathrm{V}_{\mathrm{GG}}$ | -15 to +0.3 Volts |
| All Input Voltages | -15 to +0.3 Volts |
| All Output Voltages | -15 to +0.3 Volts |
| Output Current | $-4 \mathrm{~mA} 1$ |

Note: (1) All output pins.
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=25^{\circ} \mathrm{C}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input Capacitance | $\mathrm{C}_{1}$ |  |  | 15 | pf | $\mathrm{f}=1 \mathrm{MHz}$ |
| Output Capacitance | $\mathrm{Co}_{0}$ |  |  | 15 | pf |  |
| Input/Output Capacitance | $\mathrm{Cl}_{10}$ |  |  | 15 | pf |  |

ABSOLUTE MAXIMUM RATINGS*

## CAPACITANCE

$T_{a}=-10$ to $+70^{\circ} \mathrm{C} ; V_{G G}=-10 \mathrm{~V} \pm 10 \%$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input High Voltage | $\mathrm{V}_{\mathrm{IH}}$ | 0 |  | -2.0 | V | Port A to D, 17 to 10 . BREAK, STEP, INT, RES, and $A C C / P C$ |
| Input Low Voltage | $V_{I L}$ | -4.3 |  | VGG | v | Port A to $\mathrm{D}_{1} 17$ to $\mathrm{I}_{0}$, BREAK, STEP, $\overline{I N T}$, RES, and $A C C / P C$ |
| Clock High Voltage | V OH | 0 | - | -0.8 | V | $\mathrm{CL}_{0}$ Input |
| Clock Low Voltage | Vol | -6.0 | , | $\mathrm{V}_{\mathrm{GG}}$ | V | CLo Input |
| Input Leakage Current High | ILIH |  |  | +10 | $\mu \mathrm{A}$ | Port $A$ and $B, 17$ to $I_{0}$ INT, RES, BREAK, STEP |
|  |  |  |  | +30 | $\mu \mathrm{A}$ | $\begin{aligned} & \mathrm{ACC} / \mathrm{PC}, \mathrm{~V}_{1}=-1 \mathrm{~V} \\ & \mathrm{Port} \mathrm{C} \text { and } \mathrm{D}, \mathrm{~V}_{1}=-1 \mathrm{~V} \end{aligned}$ |
| Input Leakage Current Low | 'LIL |  |  | -10 | $\mu \mathrm{A}$ | Port $A$ and $B, I_{7}$ to $I_{0}$ $\overline{\text { INT, RES, BREAK, STEP }}$ |
|  |  |  |  | $-30$ | $\mu \mathrm{A}$. | $\begin{aligned} & \mathrm{ACC} / \mathrm{PC}, \mathrm{~V}_{1}=-11 \mathrm{~V} \\ & \text { Port } \mathrm{C} \text { and } \mathrm{D}, \mathrm{~V}_{1}=-11 \mathrm{~V} \end{aligned}$ |
| Clock Input <br> Leakage High | $\mathrm{I}_{\mathrm{LOH}}$ |  |  | +200 | $\mu \mathrm{A}$ | $\mathrm{CL}_{\mathrm{O}}$ Input, $\mathrm{V}_{\mathrm{OH}}=0 \mathrm{~V}$ |
| Clock Input <br> Leakage Low | ILOL |  |  | -200 | $\mu \mathrm{A}$ | CLO Input, $\mathrm{V}_{\mathrm{OL}}=-11 \mathrm{~V}$ |
| Output High Voltage | $\mathrm{VOH}_{1}$ |  |  | -1.0 | v | $\begin{aligned} & \text { Port C to } 1, P_{10} \text { to } P_{0} \\ & I_{O H}=-1.0 \mathrm{~mA} \end{aligned}$ |
|  | $\mathrm{V}_{\mathrm{OH} 2}$ |  |  | -2.3 | V | $\begin{aligned} & \text { Port } C \text { to } 1, P_{10} \text { to } P_{0} \\ & I_{O H}=-3.3 \mathrm{~mA} \end{aligned}$ |
| Output Leakage Current Low | ILOL |  |  | -30 | $\mu \mathrm{A}$ | Port C to $\mathrm{I}, \mathrm{P}_{10}$ to $\mathrm{P}_{0}$ $V_{0}=-11 \mathrm{~V}$ |
| Supply Current. | IGG |  | -30 | -50 | mA |  |

Note: (1) Relative to $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

## AC CHARACTERISTICS

$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; V_{G G}=-10 \mathrm{~V} \pm 10 \%$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Frequency | $f$ | 150 |  | 440 | KHz | , |
| Clock Rise and Fall Times | $\mathrm{tr}_{\mathrm{r}, \mathrm{tf}}$ | 0 |  | 0.3 | $\mu \mathrm{s}$ |  |
| Clock Pulse Width High | t $\phi$ WH | 0.5 |  | 5.6 | $\mu \mathrm{s}$ |  |
| Clock Pulse Width Low | t $\varnothing$ WL | 0.5 |  | 5.6 | $\mu \mathrm{s}$ |  |
| Input Setup Time | $\mathrm{t}_{1}$ |  |  | 5 | $\mu \mathrm{s}$ |  |
| Input Hold Time | ${ }_{1} \mathrm{H}$ | 0 |  |  | $\mu \mathrm{s}$ |  |
| BREAK to STEP Interval | ${ }^{\text {t }}$ BS | 80 |  |  | tcy |  |
| STEP to RUN Interval | tSB | 80 |  |  | tcy |  |
| STEP Pulse Width | tWS | 12 |  |  | tcy |  |
| BREAK to ACC Interval | ${ }^{\text {tBA }}$ | 80 |  |  | tcy |  |
| Acc/PC Pulse Width | tWA | 12 |  |  | tcy |  |
| STEP to ACC Interval | tSA1. | 80. |  |  | tcy |  |
| PC to STEP Oiverlap | ${ }^{\text {t }}$ SA2 |  |  | 2 | tcy |  |
| PC to RUN Interval | ${ }^{1} \mathrm{AB}$ | 0 |  |  | $\mu \mathrm{s}$ |  |
| ACC $/ \mathrm{PC} \rightarrow \mathrm{P}_{10}-\mathrm{P}_{0}$ Delay | DAP1 |  |  | 6 | tcy | . |
|  | tDAP2 |  |  | 6 | tcy | . |




| ITEM | MILLIMETERS | INCHES |
| :---: | :---: | :--- |
| A | 41.5 | 1.634 MAX |
| B | 1.05 | 0.042 |
| C | 2.54 | 0.1 |
| D | $0.5 \pm 0.1$ | $0.2 \pm 0.004$ |
| E | 39.4 | 1.55 |
| F | 1.27 | 0.05 |
| G | 5.4 MIN | 0.21 MIN |
| I | 2.35 MAX | 0.13 MAX |
| J | 24.13 | 0.95 |
| K | 19.05 | 0.75 |
| L | 15.9 | 0.626 |
| M | $0.25 \pm 0.05$ | $0.01 \pm 0.002$ |



## HCOM-75 4-BIT SINGLE CHIP MICROCOMPUTER

DESCRIPTION The $\mu$ PD7520 is a high current output, variable power supply version of the $\mu$ COM-75 Microcomputer Family. It features output ports capable of directly driving an 8 -digit, 8 -segment LED display. The $\mu$ PD7520 is a PMOS device requiring a single power supply set between -6 V and -10 V . As a $\mu \mathrm{COM}-75$, it includes $768 \times 8$ ROM, $48 \times 4$ RAM, and 24 I/O lines in a 28 pin plastic package.

FEATURES • $768 \times 8$ Bit ROM

- $48 \times 4$ Bit RAM
- $20 \mu$ Instruction Cycle Time
- 47 Powerful Instructions
- One 4-Bit Input Port
- One 4-Bit I/O Port
- One 2-Bit Output Port (Capable of Driving Piezo Element)
- 6 Direct LED Drive Digit Outputs (8 Possible)
- 8 Direct LED Drive Segment Outputs
- Programmable Display Controller
- Can Drive 4,5, 6, or 8 Display Digits
- Automatic Synchronization of Segment and Digit Signals
- 2-Level Subroutine Stack
- Built-In Clock Signal Generation Circuitry
- Built-In Reset Circuitry
- Single, Variable Power Supply, From -6V to-10V
- Lower Power Consumption
- P Channel MOS LSI
- 28 Pin Plastic Dip

PIN NAMES

| PORT $1_{0}$ - PORT $1_{3}$ | Input PORT 1 |
| :--- | :--- |
| PORT $3_{0}$ - PORT $3_{1}$ | Output PORT 3 |
| PORT $4_{0}$ - PORT 43 | I/O PORT 4 |
| $\mathrm{T}_{0}-\mathrm{T}_{6}$ | Digit Drive <br> Signals |
| $\mathrm{S}_{0}-\mathrm{S}_{7}$ | Segment Drive <br> Signals |
| CLK | Clock |
| RESET | Reset |
| $V_{\text {GG }}$ | Power Supply <br> (-6V to -10V) |
| $V_{\text {SS }}$ | Ground |

## $\mu$ PD7520

The $\mu$ PD7520 is a low-cost, 4-Bit Single Chip Microcomputer, fabricated with P-Channel MOS technology. Its design is optimized for applications which require an LED Display, but the $\mu$ PD7520 can also function efficiently as a general-purpose microcomputer. Its wide operating voltage range and minimum external component requirements make the $\mu$ PD7520 desirable for a broad range of applications.

The $\mu$ PD7520's powerful instruction set encompasses 47 of the $\mu$ COM -75 family commands. These instructions can perform memory transfers, bit manipulation, automatic increment/decrement, table look-up, constant table formulation, input of command strings, and multiple branches. These enhancements allow the user to create highly efficient programs for his $\mu$ PD7520 application.

The Programmable Display Controller of the $\mu$ PD 7520 is designed to interface directly with 4 -digit to 8 -digit LED displays. Synchronization of the timing of the segment and digit lines is accomplished automatically by the on-board display controller. Display of an LED array can be done when the $\mu$ PD7520 is configured in the general-purpose mode.


## BLOCK DIAGRAM

| Operating Temperature | $-10^{\circ}$ to $+70^{\circ} \mathrm{C}$ |
| :---: | :---: |
| Storage Temperature | $-40^{\circ}$ to $+125^{\circ} \mathrm{C}$ |
| Supply Voltage | -15 to +0.3 Volts |
| Input Voltage | - 15 to +0.3 Volts |
| Output Voltage | - 15 to +0.3 Volts |
| Output Current (IOH Total) | - 100 mA |
| (IOL Total) | 90 mA |

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

## CAPACITANCE $T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{GG}}=-6 \mathrm{~V}$ to -10 V

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| input Capacitance | $C_{1}$ |  |  | 15 | pF | Port 1, Reset $f=1 \mathrm{MHz}$ |
| Output Capacitance | $\mathrm{C}_{0}$ |  |  | TBA <br> (3) | pF | $\begin{aligned} & \text { Port } 3, \mathrm{~S}_{0}-\mathrm{S}_{7}, \mathrm{~T}_{0}-\mathrm{T}_{5} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$ |
| 1/O Capacitance | $\mathrm{Cl}_{1 / \mathrm{O}}$ |  |  | 15 | pF | Port 4, $f=1 \mathrm{MHz}$ |
| Clock <br> Capacitance | $\mathrm{C}_{\text {Clock }}$ |  |  | $\begin{aligned} & \hline \text { TBA } \\ & \text { (3) } \end{aligned}$ | pF | CLK, $f=1 \mathrm{MHz}$ |


| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |  |
| Input Voltage High | $\mathrm{V}_{\text {IH }}$ |  |  | -2 | V | Port 1, Port 4, Reset, $\mathrm{V}_{\mathrm{GG}}=-9 \mathrm{~V} \pm 1 \mathrm{~V}$ |  |
|  |  |  |  | -1.8 | v | Port 1, Port 4, Reset, $\mathrm{V}_{\mathrm{GG}}=-6 \mathrm{~V}$ to -10 V |  |
| Input Voltage Low | VIL | $\mathrm{VGG}^{+2}$ |  |  | v | Port 1, Port 4, Reset, $\mathrm{V}_{\mathrm{GG}}=-9 \mathrm{~V} \pm 1 \mathrm{~V}$ |  |
|  |  | $\mathrm{V}_{\mathrm{GG}}{ }^{+1}$ |  |  | V | Port 1, Port 4, Reset, $\mathrm{V}_{\mathrm{GG}}=-6 \mathrm{~V}$ to -10V |  |
| Clock Voltage High | $\mathrm{V}_{\mathrm{OH}}$ |  |  | -0.5 | V | CLK, External Clock |  |
| Clock Voltage Low | $\mathrm{V}_{\mathrm{OL}}$ | TBA. (3) |  |  | v | CLK, External Clock |  |
| Input Load Current | I/H | 40 |  | 160 | $\mu \mathrm{A}$ | Port 1, Reset, | Reset, $\begin{aligned} & \mathrm{V}_{\mathrm{GG}}=-9 \mathrm{~V} \pm 1 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GG}}=-6 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}\end{aligned}$ |
| Input Leakage Current High | 'LIH |  |  | +5 | $\mu \mathrm{A}$ | Port 4, $\mathrm{V}_{1}=0 \mathrm{~V}$ |  |
| Input Leakage Current Low | ${ }^{\prime} \mathrm{LIL}_{1}$ |  |  | -5 | $\mu \mathrm{A}$ | Port 1, Reset, $\mathrm{V}_{\mathrm{GG}}=-10 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ |  |
|  | $\mathrm{ILIL}_{2}$ |  |  | -5 | $\mu \mathrm{A}$ | Port 4, $\mathrm{V}_{1}=0 \mathrm{~V}$ |  |
| Clock Leakage Current High | ILOH |  |  | $\begin{aligned} & \text { TBA } \\ & \text { (3) } \\ & \hline \end{aligned}$ | $\mu \mathrm{A}$ | CLK, External Clock $\mathrm{V}_{\mathrm{OH}}=0 \mathrm{~V}$ |  |
| Clock Leakage Current Low | 'LOL |  |  | TBA <br> (3) | $\mu \mathrm{A}$ | CLK, External Clock $\mathrm{V}_{\mathrm{OL}}=-10 \mathrm{~V}$ |  |
| Output Voltage Low | $\mathrm{V}_{\mathrm{OL}}$ | $\mathrm{V}_{\mathrm{GG}}+0.5$ |  |  | v | Port 3, $\mathrm{V}_{\mathrm{GG}}=-6 \mathrm{~V}$ to-10V No Load |  |
| Output Current High | ${ }^{\prime} \mathrm{OH}_{1}$ | -1.0 -0.6 |  |  | mA | Port 3, | 犃G $=-9 \mathrm{~V} \pm 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=-1.0 \mathrm{~V}$ |
|  | ${ }^{\prime} \mathrm{OH}_{2}$ | -2.0 |  |  | mA | Port 4, |  |
|  | ${ }^{\prime} \mathrm{OH}_{3}$ |  | $\frac{-10}{-6}$ |  | mA | S0-S7, |  |
|  | ${ }^{\prime} \mathrm{OH}_{4}$ |  | -48 |  | mA | T0. $\mathrm{T}_{5}$, | $\mathrm{V}_{\mathrm{GG}}=-9 \mathrm{~V} \pm 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=-2.0 \mathrm{~V}$ |
|  |  |  | -27 |  |  |  | $\mathrm{V}_{\mathrm{GG}}=-9 \mathrm{~V} \pm 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=-1.0 \mathrm{~V}$ |
|  |  |  | -18 |  |  |  | $\mathrm{V}_{\mathrm{GG}}=-6 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=-.1 .0 \mathrm{~V}$ |
| Output Current Low | ${ }^{\prime} \mathrm{OL}_{1}$ | 1 |  |  | mA | Port 3, | $V_{G G}=-9 \mathrm{~V} \pm 1 \mathrm{~V}, \mathrm{~V}_{\text {OL }}=V_{G G}+1 \mathrm{~V}(1)$ |
|  |  |  | 0.2 |  |  |  | $V_{G G}=-9 V \pm 1 V, V_{O L}=V_{G G}+3 V^{(2)}$ |
|  |  |  | 0.6 |  |  |  | $\mathrm{V}_{\mathrm{GG}}=-6 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=-5 \mathrm{~V}$ (1) |
|  |  |  | 0.2 |  |  |  | $\mathrm{VGG}_{\text {G }}=-6 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=-25 \mathrm{~V}$ (2) |
|  | ${ }^{1} \mathrm{OL} 2$ | 4.5 | 9 |  | mA | $\mathrm{S}_{0}-\mathrm{S}_{7}$ | $\mathrm{V}_{\mathrm{GG}}=-9 \mathrm{~V} \pm 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=-4 \mathrm{~V}$ |
|  |  | 1 | 2 |  |  |  | $\mathrm{V}_{\mathrm{GG}}=-9 \mathrm{~V} \pm 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=\mathrm{V}_{\mathrm{GG}}+3.5 \mathrm{~V}$ |
|  |  | 1 | 2 |  |  |  | $\mathrm{V}_{\mathrm{GG}}=-6 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=-2.5 \mathrm{~V}$ |
| Output Leakage Current High | ${ }^{\text {L }} \mathrm{OH}$ |  |  | +5 | $\mu \mathrm{A}$ | Port 4, | $\begin{aligned} & \mathrm{T}_{0} \cdot \mathrm{~T}_{5} ; \\ & \mathrm{V}_{0}=\mathrm{O}_{\mathrm{V}} \end{aligned}$ |
| Output Leakage Current Low | 'LOL |  |  | $-5$ | $\mu \mathrm{A}$ | Port 4, | $\begin{aligned} & T_{0} \cdot T_{5} ; \\ & v_{0}=-10 \mathrm{~V} \end{aligned}$ |
| Supply Current | 'GG |  | -5 |  | mA | $\mathrm{T}_{0}=25$ | $5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{GG}}=-9 \mathrm{~V}$ No Load |

Notes: (1) Current within 2.5 ms after turning to the low level.
(2) Constant Current
(3) TBA: To Be Announced.
$\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GG}}=-6 \mathrm{~V}$ to -10 V

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- |
|  |  | MIN | TYP | MAX |  |  |
| Supply Voltage | $\mathrm{V}_{\mathrm{GG}}$ | -10.0 |  | -6.0 | V |  |
| Oscillator <br> Frequency | f |  | 300 |  | kHz | $\mathrm{Rf}=1 \Omega \mathrm{~V}_{\mathrm{GG}}=-9 \mathrm{~V} \pm 1 \mathrm{~V}$ |
|  |  | TBA |  | $\mathrm{Rf}=1 \Omega, \mathrm{~V}_{\mathrm{GG}}=-6$ to -10 V |  |  |
| Clock Rise and <br> Fall Times | $\mathrm{t}_{\mathrm{r}, \mathrm{tf}}$ |  |  | TBA | $\mu \mathrm{s}$ | External Clock |
| Clock Pulse <br> Width High | $\mathrm{t}_{\phi} \mathrm{W}_{\mathrm{H}}$ |  |  | TBA | $\mu \mathrm{s}$ | External Clock |
| Clock Pulse <br> Width Low | $\mathrm{t}_{\phi} \mathrm{W}_{\mathrm{L}}$ |  |  | TBA | $\mu \mathrm{s}$ | External Clock |

Note: (1) TBA - To Be Announced.


TIMING WAVEFORM

DISPLAY CONTROLLER to control the operation of an 8 -digit (maximum) 8 -segment dynamic LED Display. The auxiliary function of the display controller is operation as 8 -bit and 6 -bit parallel output ports. The contents of the mode register determine which function the display controller will perform.

The Mode register is a 4-bit register used to control the operation of the display controller. The contents of the mode register are set by a transfer of the data in the accumulator to the output register. This is accomplished by use of the "output to port" (OPL) instruction, where $L=B(16)$. A summary of the 16 possible states appears in the table below:

| MD3 | MD2 | MD1 | MD0 | OPERATION |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | Reset ( $\mathrm{S}_{7}-\mathrm{S}_{0}$ : High level) ; ( $\mathrm{T}_{5}-\mathrm{T}_{0}$ : OFF) |  |
| 0 | 0 | 0 | 1 | $\mathrm{S}_{3} \cdot \mathrm{~S}_{0} \leftarrow(0 \mathrm{EH}) ; \mathrm{S}_{7} \cdot \mathrm{~S}_{4} \leftarrow(\mathrm{OFH})$ |  |
| 0 | 0 | 1 | 0 | Not used |  |
| 0 | 0 | 1 | 1 | Not used |  |
| 0 | 1 | 0 | 0 | 4-digit display ( $\mathrm{T}_{3}-\mathrm{T}_{0}$ ) | Segment area:OOH-OFH |
| 0 | 1 | 0 | 1 | 5 -digit display ( $\mathrm{T}_{4} \cdot \mathrm{~T}_{0}$ ) |  |
| 0 | 1 | 1 | 0 | 6 -digit display ( $\mathrm{T}_{5}-\mathrm{T}_{0}$ ) |  |
| 0 | 1 | 1 | 1 | 8 -digit display ( $\mathrm{T}_{7}-\mathrm{T}_{0}$ ) |  |
| 1 | 0 | 0 | 0 | Not used |  |
| 1 | 0 | 0 | 1 | $\mathrm{S}_{3}-\mathrm{S}_{0} \leftarrow(2 \mathrm{EH}) ; \mathrm{S}_{7} \cdot \mathrm{~S}_{4} \leftarrow(2 \mathrm{FH})$ |  |
| 1 | 0 | 1 | 0 | Not used |  |
| 1 | 0 | 1 | 1 | Not used |  |
| 1 | 1 | 0 | 0 | 4-digit display ( $\mathrm{T}_{3}-\mathrm{T}_{0}$ ) | Segment area:$20 \mathrm{H}-2 \mathrm{FH}$ |
| 1 | 1 | 0 | 1 | 5 -digit display ( $\mathrm{T}_{4}-\mathrm{T}_{0}$ ) |  |
| 1 | 1 | 1 | 0 | 6 -digit display ( $\mathrm{T}_{5}-\mathrm{T}_{0}$ ) |  |
| 1 | 1 | 1 | 1 | 8 -digit display ( $\mathrm{T}_{7}-\mathrm{T}_{0}$ ) |  |



INPUT/OUTPUT PORT CONFIGURATION



| ITEM | MILLIMETERS | INCHES |
| :--- | :---: | :--- |
| A | 38.0 MAX. | 1.496 MAX. |
| B | 2.49 | 0.098 |
| C | 2.54 | 0.10 |
| D | $0.5 \pm 0.1$ | $0.02 \pm 0.004$ |
| E | 33.02 | 1.3 |
| F | 1.5 | 0.059 |
| G | 2.54 MIN. | 0.10 MIN. |
| H | 0.5 MIN. | 0.02 MIN. |
| I | 5.22 MAX. | 0.205 MAX. |
| J | 5.72 MAX. | 0.225 MAX. |
| K | 15.24 | 0.6 |
| L | 13.2 | 0.52 |
| M | $0.25+0.10$ | $0.01+0.004$ |

The following abbreviations are used in the description of the $\mu$ PD7520 instruction set:

| SYMBOL |  |
| :---: | :--- |
| A | Accumulator |
| addr n | Immediate data, used as an address where n is the bit length of <br> the address. |
| C | Carry Flag |
| data n | Immediate data, used as data, where n is the bit length of the <br> data. |
| H | Register H |
| HL | Register pair HL |
| L | Register L |
| PC n | Bit n of Program Counter |
| ( ) | The contents of the data memory (RAM) location addressed by <br> the value within the brackets |
| $\leftarrow$ | Load, Store, or transfer |
| $\leftrightarrow$ | Exchange |
| - | Complement |
| $\forall$ | Exclusive OR |
| [ ] | Additional comment or explanation |

PACKAGE OUTLINE $\mu$ PD7520C

| MNEMONIC | FUNCTION | DESCRIPTION | D7 | $D_{6}^{I N}$ | $\begin{aligned} & \text { VSTRL } \\ & D_{5} \end{aligned}$ | $\mathrm{UCTI}_{\mathrm{D}_{4}}$ | $\begin{aligned} & \text { ION C } \\ & \mathrm{D}_{3} \end{aligned}$ | $\begin{gathered} \text { CODE } \\ \mathrm{D}_{2} \end{gathered}$ |  | $\mathrm{D}_{0}$ | BYTES | CYCLES | SKIP CONDITION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LOAD \& STORE |  |  |  |  |  |  |  |  |  |  |  |  |  |
| LAI data 4 | $\begin{aligned} & A \leftarrow \text { data } 4 \\ & {\left[\text { data } 4=I_{3-0}\right]} \end{aligned}$ | Load A with 4 bits of Immediate data | 0 | 0 | 0 | 1 | 13 | 12 | $\mathrm{I}_{1}$ | 10 | 1 | 1 |  |
| LHI data 2 | $\begin{aligned} & \mathrm{H} \leftarrow \text { data } 2 \\ & \text { [data } 2=(1-0) \end{aligned}$ | Load H with 2 bits of Immediate data | 0 | 0 | 1 | 0 | 1 | 0 | 11 | 10 | 1 | 1 |  |
| LHLI data 5 | $\begin{aligned} & \mathrm{HL} \leftarrow \text { data } 5 \\ & {\left[\begin{array}{l} H \leftarrow I_{4} \\ L \leftarrow I_{3-0} \end{array}\right]} \end{aligned}$ | Load HL with 5 bits of Immediate data | 1 | 1. | 0 | 14 | 13 | $\mathrm{I}_{2}$ | 11. | 10 | 1 | 1 |  |
| LAMT | $\begin{aligned} & A \leftarrow\left(P C_{9-6}, 0, C, A\right)_{H} \\ & (H L) \leftarrow\left(P C_{9-6}, 0, C, A\right)_{L} \end{aligned}$ | Load the upper 4 bits of Table Data in ROM to A; Load the lower 4 bits of Table Data in ROM to HL | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 2 |  |
| L | $A \leftarrow(H L)$ | Load $A$ with the contents of RAM addressed by HL | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 |  |
| LIS | $\begin{aligned} & A \leftarrow(H L) \\ & L=L+1 \\ & \text { Skip if } L=O H \end{aligned}$ | Load A with the contents of RAM addressed by HL; increment $L$; skip if $L=O H$ | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | $1+5$ | $\mathrm{L}=\mathrm{OH}$ |
| LDS | $\begin{aligned} & A \leftarrow(H L) \\ & L=L-1 \\ & \text { Skip if } L=F H \end{aligned}$ | Load A with the contents of RAM addressed by HL; decrement $L$; skip if $L=F H$ | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | $1+S$ | $\mathrm{L}=\mathrm{FH}$ |
| LADR addr 6 | $\begin{aligned} & A \leftarrow(\text { addr } 6) \\ & {\left[\text { addr } 6=D_{5-0}\right]} \end{aligned}$ | Load A with the contents of RAM addressed by the $\mathbf{6}$ bit immediate data addr 6 | 0 | 0 |  |  | $\mathrm{D}_{3}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{1}$ | $\mathrm{D}_{0}$ | 2 2 | 2 |  |
| ST | $(H L) \leftarrow A$ | Store A into the RAM location addressed by HL | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |  |
| STII data 4 | $\begin{aligned} & (\mathrm{HL}) \leftarrow \text { data } 4 \\ & \mathrm{~L} \leftarrow+1 \\ & {\left[\text { data } 4=\left.\right\|_{3-0}\right]} \end{aligned}$ | Store 4 bits of immediate data into the RAM location addressed by HL; increment L | 0 | 1 | 0 | 0 | 13 | 12 | 11 | 10 | 1 | 1 |  |
| XAH | $\begin{aligned} & A_{1-0} \stackrel{H_{1-0}}{\leftrightarrows} \\ & A_{3-2} \leftarrow 0 \mathrm{OH} \end{aligned}$ | Exchange A with H | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 |  |
| XAL | $A \longleftrightarrow L$ | Exchange A with L . |  |  |  | 1 | 1 | 0 | 1 | 1 | 1 | 1 |  |
| X | $A \longleftrightarrow(H L)$ | Exchange $A$ with the contents of the RAM location addressed by HL | 0 | 1 |  | 1 | 0 | 1 | 1 | 0 | 1 | 1 |  |
| xIS | $\begin{aligned} & A \leftrightarrows(H L) \\ & L \leftarrow L+1 \\ & \text { Skip if } L=O H \end{aligned}$ | Exchange A with the contents of the RAM location addressed by HL ; increment L ; skip if $L=O H$ | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | $1+S$ | $\mathrm{L}=\mathrm{OH}$ |
| XDS | $\begin{aligned} & A \leftrightarrows(H L) \\ & L \leftarrow L-1 \\ & \text { Skip if } L=F H \end{aligned}$ | Exchange $A$ with the contents of the RAM location addressed by HL; decrement L; skip if $L=F H$ | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | $1+5$ | $\mathrm{L}=\mathrm{FH}$ |
| XADR addr 6 | $\begin{aligned} & A \longleftrightarrow(\text { addr } 6) \\ & {\left[\text { addr } 6=D_{5-0}\right]} \end{aligned}$ | Exchange $A$ with the contents of RAM addressed by the 6 bit immediate data addr 6 | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  | $\begin{gathered} 1 \\ \mathrm{D}_{4} \end{gathered}$ | $\begin{gathered} 1 \\ \mathrm{D}_{3} \end{gathered}$ | $\begin{gathered} 0 \\ D_{2} \end{gathered}$ | $\underset{D_{1}}{0}$ | $\begin{gathered} { }^{1} \\ 0 \end{gathered}$ | 2 | 2 | . |
| ARITHMETIC AND LOGIC |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AISC data 4 | $A \leftarrow A+$ data 4 Skip if carry [data $4=I_{3-0}$ ] | Add the 4 -bit immediate data to $A$; Skip if carry is generated | 0 | 0 . | 0 | 0 | 13 | 12. | 11 | 10 | 1 | $1+5$ | Carry Flag = 1 |
| ASC | $A \leftarrow A+(H L)$ skip if carry | Add the contents of RAM addressed by HL to A; skip if carry is generated | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | $1+S$ | Carry Flag $=1$ |
| ACSC | $A, C \leftarrow A+(H L)+C$ skip if carry | Add the contents of RAM addressed by HL and the carry flag to $\mathbf{A}$; skip if carry is generated |  | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | $1+S$ | Carry Flag = 1 |
| EXL | $A \leftarrow A \forall(H L)$ | Perform an exclusive - OR operation between the contents of RAM addressed by HL and A; store the result in $A$ | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |  |
| CMA | $A \leftarrow \bar{A}$ | Complement A | 0 | 1 | 1. | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| RC | $C \leftarrow 0$ | Reset Carry Flag to 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |  |
| SC | $c \leftarrow 1$ | Set Carry Flag to 1 |  | 1 |  | 1 | 1 | 0 | 0 | 1 | 1 | 1 |  |
| INCREMENT AND DECREMENT |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ILS | $\begin{aligned} & L \leftarrow L+1 \\ & \text { Skip if } L=O H \end{aligned}$ | Increment L; <br> Skip if $\mathrm{L}=\mathrm{OH}$ | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | $1+\mathrm{S}$ | $\mathrm{L}=\mathrm{OH}$ |
| 'IDRS addr 6 | (addr 6) $\leftarrow($ addr 6$)+1$ <br> Skip if $($ addr 6$)=\mathrm{OH}$ $D_{5-0}=00 \mathrm{H}-2 \mathrm{FH}$ | Increment the contents of RAM addressed by the 6 Bit immediate data addr 6; Skip if the contents $=\mathbf{O H}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\stackrel{1}{D_{5}}$ | $\begin{gathered} 1_{4} \end{gathered}$ | $\begin{gathered} 1 \\ D_{3} \end{gathered}$ | $\begin{gathered} 1 \\ \mathrm{D}_{2} \end{gathered}$ | $\begin{gathered} 0 \\ D_{1} \end{gathered}$ | $\begin{gathered} 1 \\ D_{0} \end{gathered}$ | 2 | $2+S$ | $($ addr 6$)=0 \mathrm{H}$ |
| DLS | $L \leftarrow L-1$ | Decrement L; <br> Skip if $L=F H$ | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | $1+S$ | $L=F H$ |
| DDRS addr 6 | $\begin{aligned} & (\text { addr } 6) \leftarrow(\text { addr } 6)-1 \\ & \text { Skip if }(\text { addr } 6)=F H \\ & {\left[D_{5-0}=00 H-2 F H\right]} \end{aligned}$ | Decrement the contents of RAM addressed by the 6-Bit immediate data addr 6; skip if the contents $=\mathrm{FH}$ | $0$ | $0$ | $\begin{gathered} 1 \\ D_{5} \end{gathered}$ | $\begin{gathered} 1 \\ D_{4} \end{gathered}$ | $\begin{gathered} 1 \\ \mathrm{D}_{3} \end{gathered}$ | $\begin{gathered} 1 \\ D_{2} \end{gathered}$ |  | 0 $D_{0}$ | 2 | $2+5$ | $($ addr 6) $=\mathrm{FH}$ |

INSTRUCTION
SET
(CONT.)

| MNEMONIC | FUNCTION | DESCRIPTION | D7 | $D_{6}^{I N}$ | $\begin{aligned} & \text { ISTRU } \\ & D_{5} \end{aligned}$ | $\begin{aligned} & \text { UCTIC } \\ & D_{4} \end{aligned}$ | $\begin{aligned} & \text { ION CC } \\ & D_{3} \end{aligned}$ |  |  | $\mathrm{D}_{0}$ | BYTES | CYCLES | SKIP CONDITION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BIT MANIPULATION |  |  |  |  |  |  |  |  |  |  |  |  |  |
| RMB | $\begin{aligned} & (H L)_{b i t}+0 \\ & {\left[\text { bit }=B_{1-0}\right]} \end{aligned}$ | Reset a single bit of RAM, denoted by $\mathrm{B}_{1} \mathrm{~B}_{0}$, at the location addressed by HL to zero |  | 1 | 1 | 0 |  | 0 | $\mathrm{B}_{1}$ | $\mathrm{B}_{0}$ | 1 | 1 |  |
| SMB | $\begin{aligned} & (\mathrm{HL}) \mathrm{bit} \leftarrow 1 \\ & {\left[\mathrm{bit}=\mathrm{B}_{1.0}\right]} \end{aligned}$ | Set a single bit of RAM, denoted by $\mathrm{B}_{1} \mathrm{~B}_{0}$, at the location addressed by HL to one | 0 | 1 | 1 | 0 | 1 | 1 | $\mathrm{B}_{1}$ | $\mathrm{B}_{0}$ | 1 | 1 |  |
| JUMP AND CALL |  |  |  |  |  |  |  |  |  |  |  |  |  |
| JMP addr 10 | $\mathrm{PC}_{9-0} \leftarrow$ addr 10 [addr $10=P_{9.0}$ ] | Jump to the address specified by the 10 bit immediate data addr 10 | $\underset{P_{7}}{0}$ | $\stackrel{0}{\mathrm{P}_{6}}$ | $\begin{aligned} & 1 \\ & P_{5} \end{aligned}$ | $\begin{gathered} 0 \\ \mathrm{P}_{4} \end{gathered}$ |  | $\begin{gathered} 0 \\ \mathbf{P}_{2} \end{gathered}$ | $\begin{aligned} & P_{9} \\ & P_{1} \end{aligned}$ | $\begin{aligned} & \mathrm{P}_{8} \\ & \mathrm{P}_{0} \end{aligned}$ | 2 | 2 |  |
| JAM addr 2 | $\begin{aligned} & \mathrm{PC}_{9}-8 \leftarrow \text { addr } 2 \\ & \mathrm{PC}_{7}-4 \leftarrow A \\ & \mathrm{PC}_{3}-0 \leftarrow(\mathrm{HL}) \\ & \text { laddr } 2=\mathrm{P}_{1.0} \end{aligned}$ | Jump to the address which is specified by the 2 -bit immediate data addr 2, $A$, and (HL) | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 1 \\ & 0 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 0 \end{aligned}$ | $\begin{aligned} & 1 \\ & 0 \end{aligned}$ | $\begin{aligned} & 1 \\ & P_{1} \end{aligned}$ | $\begin{gathered} \mathbf{P}_{0} \end{gathered}$ | 2 | 2 |  |
| JCP addr 6 | $\mathrm{PC}_{5-0} \leftarrow$ addr [addr $6=P_{5-0}$ ] | Jump to the address within the current page specified by the 6 -bit immediate data addr 6 | 1 | 0 | $\mathrm{P}_{5}$ | $\mathrm{P}_{4}$ | $\mathrm{P}_{3}$ | $\mathrm{P}_{2}$ | $\mathrm{P}_{1}$ | $\mathrm{P}_{0}$ | 1 | 1 |  |
| CALL addr 10 | Stack $\leftarrow P C+2$ <br> PCg-0 $\leftarrow$ addr 10 <br> [addr $10=\mathrm{P}_{9-0}$ ] | Store a return address (PC + 2) in the stack; call the subroutine program at the location specified by the 10 -bit immediate data addr 10 | $\begin{gathered} 0 \\ P_{7} \end{gathered}$ | $\begin{gathered} 0 \\ P_{6} \end{gathered}$ | $\begin{gathered} 1 \\ P_{5} \end{gathered}$ | $\begin{gathered} 1 \\ P_{4} \end{gathered}$ | $\begin{gathered} 0 \\ P_{3} \end{gathered}$ | $\begin{gathered} 0 \\ P_{2} \end{gathered}$ | $\begin{aligned} & \mathbf{P}_{9} \\ & \mathbf{P}_{1} \end{aligned}$ | $\begin{aligned} & \mathrm{P}_{8} \\ & \mathrm{P}_{0} \end{aligned}$ | 2 | 2 |  |
| CAL addr X | $\begin{aligned} & \text { Stack } \leftarrow P C+1 \\ & P_{9}+0 \text { addr } X \\ & \text { [addr } X= \\ & \left.01 P_{4} P_{3} 000 P_{2} P_{1} P_{0}\right] \end{aligned}$ | Store a return address (PC +1 ) in the stack; call the subroutine program at one of the limited, special locations specified by the 10 -bit immediate data addr $X$ | 1 | 1 | 1 | $\mathrm{P}_{4}$ |  | $\mathrm{P}_{2}$ | $\mathrm{P}_{1}$ | $\mathrm{P}_{0}$ | 1 | 1 |  |
| RT | $\mathrm{PC} \leftarrow$ Stack | Return from Subroutine | 0 | 1 | 0 | 1 |  |  |  | 1 | 1 | 1 |  |
| RTS | PC $\leftarrow$ Stack <br> Skip unconditionally | Return from Subroutine; Skip unconditionally | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | $1+5$ | Unconditional |
| SKIP |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SKC | Skip if $\mathrm{C}=1$ | Skip if $\mathrm{C}=1$ | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | $1+s$ | $C=1$ |
| SKMBT bit | Skip if (HL) bit = 1 | Skip if the single bit of the location addressed by (HL), denoted by $\mathrm{B}_{1} \mathrm{~B}_{0}$ is true. | 0 | 1 | 1 | 0 | 0 |  | $\mathrm{B}_{1}$ | $\mathrm{B}_{0}$ | 1 | $1+5$ | $(H L) \text { bit }=1$ |
| SKMBF bit | $\begin{aligned} & \text { Skip if }(H L) \text { bit }=0 \\ & {\left[\text { bit }=B_{1.0}\right]} \end{aligned}$ | Skip if the single bit of the location addressed by (HL). denoted by $\mathrm{B}_{1} \mathrm{~B}_{0}$ is false. | 0 | 1 | 1 | 0 | 0 | 0 | $\mathrm{B}_{1}$ | $B_{0}$ | 1 | $1+s$ | $(H L) \text { bit }=0$ |
| SKABT Bit | $\begin{aligned} & \text { Skip if } A_{\text {bit }}=1 \\ & {\left[\text { bit }=B_{3-0}\right]} \end{aligned}$ | Skip if the single bit of $A$ denoted by $\mathrm{B}_{1} \mathrm{~B}_{0}$ is true. | 0 | 1 | 1. | 1 | 0 | 1 | $B_{1}$. | $\mathrm{B}_{0}$ | 1 | $1+5$ | $A_{\text {bit }}=1$ |
| SKAEI <br> Data 4 | $\begin{aligned} & \text { Skip if } A=\text { Data } 4 \\ & {\left[\text { Data } 4=I_{3-0}\right]} \end{aligned}$ | Skip if $A$ equals the 4 -bit immediate data Data 4 | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 0 \end{aligned}$ | $\begin{aligned} & 1 \\ & I_{3} \end{aligned}$ | $\begin{aligned} & 1 \\ & l_{2} \end{aligned}$ | $\begin{aligned} & 1 \\ & \mathbf{I}_{1} \end{aligned}$ | $\begin{aligned} & 1 \\ & i_{0} \end{aligned}$ | 2 | $2+5$ | $A=\text { Data } 4$ |
| SKAEM | Skip if $A=(H L)$ | Skip if $A$ equals the contents of RAM addressed by HL. | $0$ | $1$ | $0$ | $1$ |  |  | 1 | 1 | 1 | $1+5$ | $A=(H L)$ |
| 1/0 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| IPL | A $\leftarrow$ Port (L) | Input the contents of the port specified by $L$ to $A$ | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |  |
| IP1 | A ¢ Port 1 | Input the contents of Port 1 to A | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |  |
| OPL | Port (L) $\leftarrow$ ( | Output A to the port specified by $L$ | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 |  |
| OP3 | Port $3 \leftarrow \mathrm{~A}_{1-0}$ | Output the lower 2 bits of $A$ to Port 3 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |  |
| CPU CONTROL |  |  |  |  |  |  |  |  |  |  |  |  |  |
| NOP |  | Perform no operation; consume one machine cycle | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |  |

## $\mu$ PD8080AF 8-BIT N-CHANNEL MICROPROCESSOR FAMILY

DESCRIPTION

## FEATURES

The $\mu$ PD8080AF is a complete 8-bit parallel processor for use in general purpose digital computer systems. It is fabricated on a single LSI chip using N -channel silicon gate MOS process, which offers much higher performance than conventional microprocessors ( $1.28 \mu \mathrm{~s}$ minimum instruction cycle). A complete microcomputer system is formed when the $\mu$ PD8080AF is interfaced with I/O ports (up to 256 input and 256 output ports) and any type or speed of semiconductor memory. It is available in a 40 pin ceramic or plastic package.

- 78 Powerful Instructions
- Three Devices - Three Clock Frequencies $\mu$ PD8080AF -2.0 MHz $\mu$ PD8080AF-2 -2.5 MHz $\mu$ PD8080AF-1 - 3.0 MHz
- Direct Access to 64 K Bytes of Memory with 16-Bit Program Counter
- 256 8-Bit Input Ports and 256 8-Bit Output Ports
- Double Length Operations Including Addition
- Automatic Stack Memory Operation with 16-Bit Stack Pointer
- TTL Compatible (Except Clocks)
- Multi-byte Interrupt Capability
- Fully Compatible with Industry Standard 8080A
- Available in either Plastic or Ceramic Package

PIN CONFIGURATION


## $\mu$ PD8080AF

The $\mu$ PD8080AF contains six 8-bit data registers, an 8-bit accumulator, four testable flag bits, and an 8 -bit parallel binary arithmetic unit. The $\mu$ PD8080AF also provides decimal arithmetic capability and it includes 16-bit arithmetic and immediate operators which greatly simplify memory address calculations, and high speed arithmetic operations.

The $\mu$ PD8080AF utilizes a 16 -bit address bus to directly address 64 K bytes of memory, is fully TTL compatible ( 1.9 mA ), and utilizes the following addressing modes: Direct; Register; Register Indirect; and Immediate.

The $\mu$ PD8080AF has a stack architecture wherein any portion of the external memory can be used as a last in/first out (LIFO) stack to store/retrieve the contents of the accumulator, the flags, or any of the data registers.
The $\mu$ PD8080AF also contains a 16 -bit stack pointer to control the addressing of this external stack. One of the major advantages of the stack is that multiple level interrupts can easily be handled since complete system status can be saved when an interrupt occurs and then restored after the interrupt is complete. Another major advantage is that almost unlimited subroutine nesting is possible.
This processor is designed to greatly simplify system design. Separate 16 -line address and 8 -line bidirectional data busses are employed to allow direct interface to memories and I/O ports. Control signals, requiring no decoding, are provided directly by the processor. All busses, including the control bus, are TTL compatible.
Communication on both the address lines and the data lines can be interlocked by using the HOLD input. When the Hold Acknowledge (HLDA) signal is issued by the processor, its operation is suspended and the address and data lines are forced to be in the FLOATING state. This permits other devices, such as direct memory access channels (DMA), to be connected to the address and data busses.
The $\mu$ PD8080AF has the capability to accept a multiple byte instruction upon an interrupt. This means that a CALL instruction can be inserted so that any address in the memory can be the starting location for an interrupt program. This allows the assignment of a separate location for each interrupt operation, and as a result no polling is required to determine which operation is to be performed.
NEC offers three versions of the $\mu$ PD8080AF. These processors have all the features of the $\mu$ PD8080AF except the clock frequency ranges from 2.0 MHz to 3.0 MHz . These units meet the performance requirements of a variety of systems while maintaining software and hardware compatibility with other 8080A devices.


FUNCTIONAL DESCRIPTION
$\mu$ PD8080AF

| PIN |  |  | FUNCTION |
| :---: | :---: | :---: | :---: |
| NO. | SYMBOL | NAME |  |
| 1, 25-27, 29-40 | $\mathrm{A}_{15}-\mathrm{A}_{0}$ | Address Bus (output threestate) | The address bus is used to address memory (up to 64 K 8 -bit words) or specify the I/O device number (up to 256 input and 256 output devices). $A_{0}$ is the least significant bit. |
| 2 | VSS | Ground (input) | Ground |
| 3-10 | $\mathrm{D}_{7}-\mathrm{D}_{0}$ | Data Bus (input/ output three-state) | The bidirectional data bus communicates between the processor, memory, and I/O devices for instructions and data transfers. During each sync time, the data bus contains a status word that describes the current machine cycle. $D_{0}$ is the least significant bit. |
| 11 | $\mathrm{V}_{\text {BB }}$ | VBB Supply Voltage (input) | $-5 \mathrm{~V} \pm 5 \%$ |
| 12 | RESET | Reset (input) | If the RESET signal is activated, the program counter is cleared. After RESET, the program starts at location 0 in memory. The INTE and HLDA flip-flops are also reset. The flags, accumulator, stack pointer, and registers are not cleared. (Note: External synchronization is not required for the RESET input signal which must be active for a minimum of 3 clock periods.) |
| 13 | HOLD | Hold (input) | HOLD requests the processor to enter the HOLD state. The HOLD state allows an external device to gain control of the $\mu$ PD8080AF address and data buses as soon as the $\mu$ PD8080AF has completed its use of these buses for the current machine cycle. It is recognized under the following conditions: <br> - The processor is in the HALT state. <br> - The processor is in the T2 or TW stage and the READY signal is active. <br> As a result of entering the HOLD state, the ADDRESS BUS ( $A_{15}-A_{0}$ ) and DATA BUS $\left(D_{7}-D_{0}\right)$ are in their high impedance state. The processor indicates its state on the HOLD ACKNOWLEDGE (HLDA) pin. |
| 14 | INT | Interrupt Request (input) | The $\mu$ PD8080AF recognizes an interrupt request on this line at the end of the current instruction or while halted. If the $\mu$ PD8080AF is in the HOLD state, or if the Interrupt Enable flip-flop is reset, it will not honor the request. |
| 15 | $\phi_{2}$ | Phase Two (input) | Phase two of processor clock. |
| 16 | INTE (1) | Interrupt Enable (output) | INTE indicates the content of the internal interrupt enable flipflop. This flip-flop is set by the Enable (EI) or reset by the Disable (DI) interrupt instructions and inhibits interrupts from being accepted by the processor when it is reset. INTE is automatically reset (disabling further interrupts) during $\mathrm{T}_{1}$ of the instruction fetch cycle ( $\mathrm{M}_{1}$ ) when an interrupt is accepted and is also reset by the RESET signal. |
| 17 | DBIN | Data Bus In (output) | DBIN indicates that the data bus is in the input mode. This signal is used to enable the gating of data onto the $\mu$ PD8080AF data bus from memory or input ports. |
| 18 | $\overline{W R}$ | Write (output) | $\overline{W R}$ is used for memory WRITE or.I/O output control. The data on the data bus is valid while the $\overline{W R}$ signal is active ( $\overline{W R}=0$ ). |
| 19 | SYNC | Synchronizing Signal (output) | The SYNC signal indicates the beginning of each machine cycle. |
| 20 | $\mathrm{V}_{\mathrm{CC}}$ | VCC Supply <br> Voltage (input) | $+5 \mathrm{~V} \pm 5 \%$ |
| 21 | HLDA | Hold Acknowledge (output) | HLDA is in response to the HOLD signal and indicates that the data and address bus will go to the high impedance state. The HLDA signal begins at: <br> - T3 for READ memory or input operations. <br> - The clock period following T3 for WRITE memory or OUTPUT operations. <br> In either case, the HLDA appears after the rising edge of $\phi_{1}$ and high impedance occurs after the rising edge of $\phi_{2}$. |
| 22 | $\phi_{1}$ | Phase One (input) | Phase one of processor clock. |
| 23 | READY | Ready (input) | The READY signal indicates to the $\mu$ PD8080AF that valid memory or input data is available on the $\mu$ PD8080AF data bus. READY is used to synchronize the processor with slower memory or I/O devices. If after sending an address out, the $\mu$ PD8080AF does not receive a high on the READY pin, the $\mu$ PD8080AF enters a WAIT state for as long as the READY pin is low. (READY can also be used to single step the processor.) |
| 24 | WAIT | Wait (output) | The WAIT signal indicates that the processor is in a WAIT state. |
| 28 | $V_{\text {DD }}$ | VDD Supply Voltage (input) | $+12 \mathrm{~V} \pm 5 \%$ |

Note: (1) After the El instruction, the $\mu$ PD8080AF accepts interrupts on the second instruction following the El. This allows proper execution of the RET instruction if an interrupt operation is pending after the service routine.

## $\mu$ PD8080AF

Operating Temperature
Storage Temperature (Ceramic Package). . . . . . . . . . ................. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic Package) . . . . . . . . . . . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Output Voltages (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +20 Volts
All Input Voltages (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +20 Volts
Supply Voltages $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{DD}}$ and $\mathrm{V}_{\text {SS }}(1)$. . . . . . . . . . . . . . . . . . -0.3 to +20 Volts
Power Dissipation 1.5W

Note: (1) Relative to $V_{B B}$.
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, unless otherwise specified.

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Clock Input Low Voltage | VILC | VSS-1 |  | $\mathrm{V}_{\mathrm{SS}} \dot{+}+0.8$ | V |  |
| Clock Input High Voltage | VIHC | 9.0 |  | $V_{D D}+1$ | V |  |
| Input Low Voltage | VIL | VSS - 1 |  | VSS +0.8 | V |  |
| Input High Voltage | $\mathrm{V}_{\text {IH }}$ | 3.3 |  | $V_{C C}+1$ | V |  |
| Output Low Voltage | VOL |  |  | 0.45 | V | ${ }^{1} \mathrm{OL}=1.9 \mathrm{~mA}$ on all outputs |
| Output High Voltage | V OH | 3.7 |  |  | $\checkmark$ | $\mathrm{I}^{\mathrm{O}} \mathrm{OH}=-150 \mu \mathrm{~A}$ (2) |
| Avg. Power Supply Current (VDD) | IDD(AV) |  | 40 | 70 | mA |  |
| Avg. Power Supply Current (VCC) | ICC(AV) |  | 60 | 80 | mA | ${ }^{\text {t }} \mathrm{CY} \mathrm{Y}$ min |
| Avg. Power Supply Current (VBB) | ${ }^{\prime} \mathrm{BB}$ (AV) |  | 0.01 | 1 | mA |  |
| Input Leakage | IIL |  |  | $\pm 10$ (2) | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {SS }} \leqslant \mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\text {CC }}$ |
| Clock Leakage | ICL |  |  | $\pm 10$ (2) | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {SS }} \leqslant \mathrm{V}_{\text {CLOCK }} \leqslant \mathrm{V}_{\text {DD }}$ |
| Data Bus Leakage in Input Mode | IDL (1) |  |  | $\begin{aligned} & -100 \\ & -2 \end{aligned}$ | $\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$ | $\begin{aligned} & V_{S S} \leqslant V_{I N} \leqslant V_{S S}+0.8 V \\ & V_{S S}+0.8 V \leqslant V_{I N} \leqslant V_{C C} \end{aligned}$ |
| Address and Data Bus Leakage During HOLD | IfL |  |  | $\begin{aligned} & +10 \\ & -100 \end{aligned}$ | $\mu \mathrm{A}$ | $\begin{aligned} & V_{\text {ADDR/DATA }}=V_{C C} \\ & V_{\text {ADDR/DATA }}=V_{S S}+0.45 \mathrm{~V} \end{aligned}$ |

TYPICAL SUPPLY CURRENT VS. TEMPERATURE, NORMALIZED (3)


Notes: (1) When DBIN is high and $V_{\text {IN }}>V_{\text {IH }}$ internal active pull-up resistors will be switched onto the data bus.
(2) Minus ( - ) designates current flow out of the device.
(3) $\Delta$ I supply $/ \Delta T_{a}=-0.45 \% /{ }^{\circ} C_{\text {。 }}$

$$
T_{a}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} .
$$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Clock Capacitance | C ${ }^{\text {¢ }}$ |  | 17 | 25 | pF | $\mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}$ |
| Input Capacitance | CIN |  | 6 | 10 | pF | Unmeasured Pins |
| Output Capacitance | COUT |  | 10 | 20 | pF | Returned to V ${ }_{\text {SS }}$ |

ABSOLUTE MAXIMUM RATINGS*

PROCESSOR STATE TRANSITION DIAGRAM


Notes: . (1) INTE F/F IS RESET IF INTERNAL INT F/F IS SET.
(2) INTERNAL INT F/F IS RESET IF INTE F/F IS RESET.
(3) IF REQUIRED, $T_{4}$ AND $T_{5}$ ARE COMPLETED SIMULTANEOUSLY WITH ENTERING HOLD STATE.

## $\mu$ PD8080AF

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, unless otherwise specified.

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Clock Period | ${ }^{\text {t }} \mathrm{CY}(3)$ | 0.48 |  | 2.0 | $\mu \mathrm{sec}$ |  |
| Clock Rise and Fall Time | $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$ | 0 |  | 50 | nsec | ; |
| $\phi 1 \cdot$ Pulse Width | $\mathrm{t}_{\boldsymbol{\phi} 1}$ | 60 |  |  | nsec |  |
| $\phi 2$ Pulse Width | ${ }^{\text {t }}$ ¢ 2 | 220 |  |  | nsec |  |
| Delay $\phi 1$ to $\phi 2$ | ${ }^{\text {t } 11}$ | 0 |  |  | nsec |  |
| Delay $\phi 2$ to $\phi 1$ | ${ }^{\text {t }}$ 2 | 70 |  |  | nsec |  |
| Delay $\phi 1$ to $\phi 2$ Leading Edges | ${ }^{\text {t }}$ 3 | 80 |  |  | nsec |  |
| Address Output Delay From $\phi 2$ | ${ }^{\text {t }}$ DA (2) |  |  | 200 | nsec | $C_{L}=100 \mathrm{pF}$ |
| Data Output Delay From $\phi 2$ | tDD (2) | , |  | 220 | nsec |  |
| Signal Output Delay From $\phi 1$, or $\phi 2$ (SYNC, $\overline{\text { WR }}$, WAIT, HLDA) | ${ }^{\text {t }}$ ( ${ }^{\text {c (2) }}$ |  |  | 120 | nsec | $C_{L}=50 \mathrm{pF}$ |
| DBIN Delay From $\phi 2$ | ${ }^{\text {t }} \mathrm{DF}$ (2) | 25 |  | 140 | nsec |  |
| Delay for Input Bus to Enter Input Mode | ${ }_{\text {tol }}$ (1) |  |  | t DF | nsec |  |
| Data Setup Time During $\phi 1$ and DBIN | tDS1 | 30 |  |  | nsec | * |
| Data Setup Time to $\phi 2$ During DBIN | tDS2 | 150 |  |  | nsec |  |
| Data Hold Time From $\phi 2$ During DBIN | ${ }^{\text {t }}$ DH (1) | (1) |  |  | nsec |  |
| INTE Output Delay From $\phi 2$ | IIE (2) |  |  | 200 | nsec | $C_{L}=50 \mathrm{pF}$ |
| READY Setup Time During $\phi 2$ | ${ }^{\text {tr }}$ S | 120 |  |  | nsec |  |
| HOLD Setup Time to $\phi 2$ | ${ }^{\text {thS }}$ | 140 |  |  | nsec |  |
| INT Setup Time During $\phi 2$ (During $\phi 1$ in Halt Mode) | tis | 120 |  |  | nsec |  |
| Hold Time from $\phi 2$ (READY, INT, HOLD) | ${ }^{t} \mathrm{H}$ | 0 |  |  | nsec |  |
| Delay to Float During Hold (Address and Data Bus) | ${ }^{1} \mathrm{FD}$ |  |  | 120 | nsec |  |
| Address Stable Prior to $\overline{W R}$ | ${ }^{\text {taw }}$ (2) | (5) |  |  | nsec | $\begin{aligned} C_{L}= & 100 \mathrm{pF}: \text { Address, } \\ & \text { Data } \\ C_{L}= & 50 \mathrm{pF}: \overline{\text { WR },} \\ & \text { HLDA, DBIN } \end{aligned}$ |
| Output Data Stable Prior to $\overline{W R}$ | tDW (2) | (6) |  |  | nsec |  |
| Output Data Stable From $\overline{\text { WR }}$ | twD (2) | (7) |  |  | nsec |  |
| Address Stable from $\overline{\text { WR }}$ | tWA (2). | (7) |  |  | nsec |  |
| HLDA to Float Delay | thF (2) | (8) |  |  | nsec |  |
| WR to Float Delay | tWF (2) | (9) |  |  | nsec |  |
| Address Hold Time after DBIN during HLDA | ${ }^{1} A H^{(2)}$ | -20 |  |  | nsec |  |

AC CHARACTERISTICS $\mu$ PD8080AF

Notes: (1) Data input should be enabled with DBIN status. No bus conflict can then occur and data hold time is assured. $\mathrm{t}_{\mathrm{DH}}=50 \mathrm{~ns}$ or tDF, whichever is less.
(2) Load Circuit.

(3) Actual $t_{C Y}=t_{D} 3+t_{r \phi 2}+t_{\phi 2}+t_{f \phi 2}+t_{D 2}+t_{r \phi 1}>t_{C Y} M i n$.

TYPICAL $\triangle$ OUTPUT DELAY VS.


## AC CHARACTERISTICS $\mu$ PD8080AF-2

$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, unless otherwise specified.

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Clock Period | ${ }^{t}{ }^{\text {Cry }}$ (3) | 0.38 |  | 2.0 | $\mu \mathrm{sec}$ |  |
| Clock Rise and Fall Time | $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$ | 0 |  | 50 | nsec |  |
| $\phi 1$ Pulse Width | ${ }^{t}{ }_{\phi} 1$ | 60 |  |  | nsec |  |
| $\phi 2$ Pulse Width | ${ }^{\text {t }}$ ¢ 2 | 175 |  |  | nsec |  |
| Delay $\phi 1$ to $\phi 2$ | ${ }^{\text {t } 11}$ | 0 |  |  | nsec |  |
| Delay $\phi 2$ to $\phi 1$ | ${ }^{1} \mathrm{D} 2$ | 70 |  |  | nsec |  |
| Delay $\phi 1$ to $\phi 2$ Leading Edges | ${ }^{\text {t }} 3$ | 70 |  |  | nsec |  |
| Address Output Delay From $\phi 2$ | ${ }^{\text {t }}$ DA (2) |  |  | 175 | nsec | $C_{L}=100 \mathrm{pF}$ |
| Data Output Delay From $\phi 2$ | ${ }^{\text {t DD ( }}$ ( |  |  | 200 | nsec |  |
| Signal Output Delay From $\phi 1$, or $\$ 2$ (SYNC, $\overline{W R}$, WAIT, HLDA) | ${ }^{\text {t }} \mathrm{DC}$ ( 2) |  |  | 120 | nsec | $C_{L}=50 \mathrm{pF}$ |
| DBIN Delay From $\phi 2$ | ${ }^{\text {t }} \mathrm{DF}$ (2) | 25 |  | 140 | nsec |  |
| Delay for Input Bus to Enter Input Mode | ${ }^{1} \mathrm{DI} ~(1)$ |  |  | ${ }^{\text {t }}$ DF | nsec |  |
| Data Setup Time During $\phi 1$ and DBIN | ${ }^{\text {t }}$ DS1 | 20 |  |  | nsec |  |
| Data Setup Time to $\phi 2$ During DBIN | tos2 | 130 |  |  | nsec |  |
| Data Hold Time From $\phi 2$ During DBIN | ${ }^{\text {toh (1) }}$ | (1) |  |  | nsec |  |
| INTE Output Delay From $\phi 2$ | IIE (2) |  |  | 200 | nsec | $C_{L}=50 \mathrm{pF}$ |
| READY Setup Time During $\phi 2$ | ${ }^{\text {t }}$, | 90 |  |  | nsec |  |
| HOLD Setup Time to $\phi 2$ | ${ }^{\text {thS }}$ | 120 |  |  | nsec |  |
| INT Setup Time During $\boldsymbol{\phi} \mathbf{2}$ (for all modes) | ${ }^{\prime}$ is | 100 |  |  | nsec |  |
| Hold Time from $\phi 2$ (READY, INT, HOLD) | ${ }^{\dagger} \mathrm{H}$ | 0 |  |  | nsec |  |
| Delay to Float During Hold (Address and Data Bus) | ${ }^{t}$ FD |  |  | 120 | nsec |  |
| Address Stable Prior to $\overline{\mathrm{WR}}$ | ${ }^{\text {t AW }}$ (2) | (5) |  |  | nsec | $\begin{aligned} C_{L}= & 100 \mathrm{pF}: \text { Address, } \\ & \text { Data } \\ C_{L}= & 50 \mathrm{pF}: \overline{\mathrm{WR},} \\ & H L D A, \text { DBIN } \end{aligned}$ |
| Output Data Stable Prior to $\overline{\mathrm{WR}}$ | ${ }^{\text {t }}$ DW (2) | (6) |  |  | nsec |  |
| Output Data Stable From $\overline{\mathrm{WR}}$ | twD (2) | (7) |  |  | nsec |  |
| Address Stable from $\overline{\mathrm{WR}}$ | twa (2) | (7) |  |  | nsec |  |
| HLDA to Float Delay | ${ }^{\text {thF }}$ (2) | (8) |  |  | nsec |  |
| $\overline{\text { WR }}$ to Float Delay | ${ }^{\text {t }}$ WF (2) | (9) |  |  | nsec |  |
| Address Hold Time after DBIN during HLDA | ${ }^{1} \mathrm{AH}$ (2) | -20 |  |  | nsec |  |

## Notes Continued

(4) The following are relevant when interfacing the $\mu$ PD8080AF to devices having $\mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}$.
a. Maximum output rise time from 0.8 V to $3.3 \mathrm{~V}=100 \mathrm{~ns}$ at $\mathrm{C}_{\mathrm{L}}=\mathrm{SPEC}$.
b. Output delay when measured to $3.0 \mathrm{~V}=$ SPEC +60 ns at $C_{L}=$ SPEC.
c. If $C_{L} \neq$ SPEC, add $0.6 \mathrm{~ns} / \mathrm{pF}$ if $\mathrm{C}_{\mathrm{L}}>$ CSPEC, subtract $0.3 \mathrm{~ns} / \mathrm{pF}$ (from modified delay) if $^{\text {S }}$ $C_{L}<$ CSPEC.

## $\mu P D 8080 A F$

$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, V_{C C}=+5 \mathrm{~V} \pm 5 \%, V_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%, V_{\mathrm{SS}}=0 \mathrm{~V}$, unless otherwise specified.

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Clock Period | ${ }^{\mathrm{t}} \mathrm{CY}$ (3) | 0.32 |  | 2.0 | $\mu \mathrm{sec}$ |  |
| Clock Rise and Fall Time | $t_{r}, t_{f}$ | 0 |  | 25 | nsec |  |
| $\phi 1$ Pulse Width | ${ }_{t}{ }_{1}$ | 50 |  |  | nsec |  |
| $\phi 2$ Pulse Width | ${ }_{t}{ }_{\text {2 }}$ | 145 |  |  | nsec |  |
| Delay $\phi 1$ to $\phi 2$ | ${ }^{\text {t } 1}$ | 0 |  |  | nsec |  |
| Delay $\phi 2$ to $\phi 1$ | ${ }^{\text {t }}$ D2 | 60 |  |  | nsec |  |
| Delay $\phi 1$ to $\phi 2$ Leading Edges | ${ }^{\text {t }}$, 3 | 60 |  |  | nsec |  |
| Address Output Delay From $\phi 2$ | ${ }^{\text {t }}$ DA (2) |  |  | 150 | nsec | $C_{L}=50 \mathrm{pF}$ |
| Data Output Delay From $\phi 2$ | ${ }^{\text {t }}$ DD (2) |  |  | 180 | nsec |  |
| Signal Output Delay From $\phi 1$, or $\$ 2$ (SYNC, $\overline{W R}$, WAIT, HLDA) | ${ }^{\text {t }}$ DC (2) |  |  | 110 | nsec | $C_{L}=50 \mathrm{pF}$ |
| DBIN Delay From $\phi 2$ | ${ }^{\text {t }}$ DF (2) | 25 |  | 130 | nsec |  |
| Delay for Input Bus to Enter Input Mode | ${ }^{\text {tol }}$ (1) |  |  | tDF | nsec |  |
| Data Setup Time During $\phi 1$ and DBIN | ${ }^{\text {t }}$ DS1 | 10 |  | . | nsec |  |
| Data Setup Time to $\phi 2$ During DBIN | tDS2 | 120 |  |  | nsec |  |
| Data Hold Time From $\phi 2$ During DBIN | ${ }^{\text {t }} \mathrm{DH}$ (1) | (1) |  |  | nsec |  |
| INTE Output Delay From $\phi 2$ | $\mathrm{I}_{1} \mathrm{E}$ (2) |  |  | 200 | nsec | $C_{L}=50 \mathrm{pF}$ |
| READY Setup Time During $\phi 2$ | ${ }^{\text {t }}$ RS | 90 |  |  | nsec |  |
| HOLD Setup Time to $\phi 2$ | ${ }^{\text {t }} \mathrm{HS}$ | 120 |  |  | nsec |  |
| INT Setup Time During $\phi 2$ (for all modes) | tis | 100 |  |  | nsec |  |
| Hold Time from $\phi 2$ (READY, INT, HOLD) | ${ }^{t} \mathrm{H}$ | 0 |  |  | nsec |  |
| Delay to Float During Hold (Address and Data Bus) | ${ }^{\text {t }}$ FD |  |  | 120 | nsec |  |
| Address Stable Prior to $\overline{W R}$ | taw (2) | (5) |  |  | nsec | $\begin{aligned} C_{L}= & 50 \mathrm{pF}: \text { Address, } \\ & \text { Data } \\ C_{L}= & 50 \mathrm{pF}: \overline{W R}, \\ & H L D A, D B I N \end{aligned}$ |
| Output Data Stable Prior to $\overline{\mathrm{WR}}$ | tDW (2) | (6) |  |  | nsec |  |
| Output Data Stable From WR | twD (2) | (7) |  |  | nsec |  |
| Address Stable from $\overline{W R}$ | tWA (2) | (7) |  |  | nsec |  |
| HLDA to Float Delay | $\mathrm{t}_{\mathrm{HF}}$ (2) | (8) |  |  | nsec |  |
| $\overline{\text { WR }}$ to Float Delay | twF (2) | (9) |  |  | nsec |  |
| Address Hold Time after DBIN during HLDA | ${ }^{t}{ }^{\text {aH }}$ (2) | -20 |  |  | nsec |  |

Notes Continued: (5)

| Device | ${ }^{\mathrm{t}} \mathrm{AW}$ |
| :--- | :---: |
| $\mu \mathrm{PD} 8080 \mathrm{AF}$ | $2 \mathrm{t}_{\mathrm{C}}-{ }^{\mathrm{t}} \mathrm{D} 3-\mathrm{t}_{\mathrm{r} \phi 2}-140$ |
| $\mu \mathrm{PD} 8080 \mathrm{AF}-2$ | $2 \mathrm{t}_{\mathrm{CY}}-\mathrm{t}_{\mathrm{D}} 3-\mathrm{t}_{\mathrm{r} \phi 2}-130$ |
| $\mu \mathrm{PD} 8080 \mathrm{AF}-1$ | $2 \mathrm{t}_{\mathrm{C}} \mathrm{CY}-\mathrm{t}_{\mathrm{D}} 3-\mathrm{t}_{\mathrm{r} \phi 2}-110$ |

(6)

| Device | ${ }^{\text {t } D W}$ |
| :---: | :---: |
| $\mu$ PD8080AF | ${ }^{\mathrm{t}} \mathrm{C} Y-\mathrm{t}_{\mathrm{D} 3}-\mathrm{t}_{\mathrm{r} \phi 2}-170$ |
| $\mu$ PD8080AF-2 | ${ }^{\mathrm{t}} \mathrm{CY}-{ }^{\mathrm{t} D 3}-\mathrm{t}_{\mathrm{r} \phi 2}-170$ |
| $\mu$ PD8080AF-1 | ${ }^{\mathrm{t}} \mathrm{C} Y-{ }^{\mathrm{t}} \mathrm{D} 3-\mathrm{t}_{\mathrm{r} \phi 2}-150$ |

(7) If not HLDA, $t W D=t_{W A}=t_{D 3}+t_{r \phi 2}+10 \mathrm{~ns}$. If $H L D A, t_{W D}=t W A=t W F$.
(8) $\mathrm{t}_{\mathrm{HF}}=\mathrm{t}_{\mathrm{D} 3}+\mathrm{t}_{\mathrm{r} \phi 2}-50 \mathrm{~ns}$.
(9) $\mathrm{t}_{\mathrm{WF}}=\mathrm{t}_{\mathrm{D} 3}+\mathrm{t}_{\mathrm{r} \phi 2}-10 \mathrm{~ns}$.

AC CHARACTERISTICS $\mu$ PD8080AF-1
(Note: Timing measurements are made at the following reference voltages: CLOCK " 1 " $=8.0 \mathrm{~V}$, " 0 " = 1.0V; INPUTS " 1 " = 3.3V, " 0 " = 0.8 V ; OUTPUTS " 1 " = 2.0V, " $0 "=0.8 \mathrm{~V}$.)


Notes: (1) Data in must be stable for this period during DBIN • T3. Both tDS1 and tDS2 must be satisfied.
(2) Ready signal must be stable for this period during $T_{2}$ or $T_{W}$. (Must be externally synchronized.)
(3) Hold signal must be stable for this period during $T_{2}$ or $T_{W}$ when entering hold mode, and during $T_{3}, T_{4}, T_{5}$ and $T_{W H}$ when in hold mode. (External synchronization is not required.)
(4) Interrupt signal must be stable during this period of the last clock cycle of any instruction in order to be recognized in the following instruction. (External synchronization is not required.)
(5) This timing diagram shows timing relationships only; it does not represent any specific machine cycle.
(6) Timing measurements are made at the following reference voltages: CLOCK " $1 "=8.0 \mathrm{~V}, " 0^{\prime \prime}=1.0 \mathrm{~V}$; INPUTS " 1 " $=3.3 \mathrm{~V}$; " 0 " $=0.8 \mathrm{~V}$; OUTPUTS " 1 " $=2.0 \mathrm{~V},{ }^{\prime \prime} 0^{\prime \prime}=0.8 \mathrm{~V}$.

The instruction set includes arithmetic and logical operators with direct, register, indirect, and immediate addressing modes.
Move, load, and store instruction groups provide the ability to move either 8 or 16 bits of data between memory, the six working registers and the accumulator using direct, register, indirect, and immediate addressing modes.
The ability to branch to different portions of the program is provided with direct, conditional, or computed jumps. Also the ability to call and return from subroutines is provided both conditionally and unconditionally. The RESTART (or single byte call instruction) is useful for interrupt vector operation.
Conditional jumps, calls and returns execute based on the state of the four testable flags (Sign, Zero, Parity and Carry). The state of each flag is determined by the result of the last instruction executed that affected flags. (See Instruction Set Table.)
The Sign flag is set (High) if bit 7 of the result is a " 1 "; otherwise it is reset (Low). The Zero flag is set if the result is " 0 "; otherwise it is reset. The Parity flag is set if the modulo 2 sum of the bits of the result is " 0 " (Even Parity); otherwise (Odd Parity) it is reset. The Carry flag is set if the last instruction resulted in a carry or a borrow out of the most significant bit (bit 7) of the result; otherwise it is reset.
In addition to the four testable flags, the $\mu$ PD8080AF has another flag (ACY) that is not directly testable. It is used for multiple precision arithmetic operations with the DAA instruction. The Auxiliary Carry flag is set if the last instruction resulted in a carry or a borrow from bit 3 into bit 4; otherwise it is reset.
Double precision operators such as stack manipulation and double add instructions extend both the arithmetic and interrupt handling capability of the $\mu$ PD8080AF. The ability to increment and decrement memory, the six general registers and the accumulator are provided as well as extended increment and decrement instructions to operate on the register pairs and stack pointer. Further capability is provided by the ability to rotate the accumulator left or right through or around the carry bit.
Input and output may be accomplished using memory addresses as I/O ports or the directly addressed I/O provided for in the $\mu$ PD8080AF instruction set.
The special instruction group completes the $\mu$ PD8080AF instruction set: NOP, HALT stop processor execution; DAA provides decimal arithmetic capability; STC sets the carry flag; CMC complements it; CMA complements the contents of the accumulator; and XCHG exchanges the contents of two 16 -bit register pairs directly.

Data in the $\mu$ PD8080AF is stored as 8-bit binary integers. All data/instruction transfers to the system data bus are in the following format:

Instructions are one, two, or three bytes long. Multiple byte instructions must be stored in successive locations of program memory. The address of the first byte is used as the address of the instruction.

One Byte Instructions


Two Byte Instructions

| $\mathrm{D}_{7}$ | $\mathrm{D}_{6}$ | $\mathrm{D}_{5}$ | $\mathrm{D}_{4}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{1}$ | $\mathrm{D}_{0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{D}_{7}$ | $\mathrm{D}_{6}$ | $\mathrm{D}_{5}$ | $\mathrm{D}_{4}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{1}$ | $\mathrm{D}_{0}$ | OP OPERAND

Three Byte Instructions

| $\mathrm{D}_{7}$ | $\mathrm{D}_{6}$ | $\mathrm{D}_{5}$ | $\mathrm{D}_{4}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{1}$ | $\mathrm{D}_{0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{D}_{7}$ | $\mathrm{D}_{6}$ | $\mathrm{D}_{5}$ | $\mathrm{D}_{4}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{1}$ | $\mathrm{D}_{0}$ |
| $\mathrm{D}_{7}$ | $\mathrm{D}_{6}$ | $\mathrm{D}_{5}$ | $\mathrm{D}_{4}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{1}$ | $\mathrm{D}_{0}$ |

OP CODE Jump, call or direct load and store instructions
LOW ADDRESS OR OPERAND 1
HIGH ADDRESS OR OPERAND 2

## TYPICAL INSTRUCTIONS

Register to register, memory reference, arithmetic or logical rotate, return, push, pop, enable, or disable interrupt instructions

Immediate mode or I/O instructions

## DATA RMATS



## $\mu$ PD8080AF

One to five machine cycles ( $M_{1}-M_{5}$ ) are required to execute an instruction. Each machine cycle involves the transfer of an instruction or data byte into the processor or a transfer of a data byte out of the processor (the sole exception being the double add instruction). The first one, two or three machine cycles obtain the instruction from the memory or an interrupting I/O controller. The remaining cycles are used to execute the instruction. Each machine cycle requires from three to five clock times ( $T_{1}-T_{5}$ ). During $\phi_{1}{ }^{\circ}$ SYNC of each machine cycle, a status word that identifies the type of machine cycle is available on the data bus.
Execution times and machine cycles used for each type of instruction are shown below.


Machine Cycle Symbol Definition


Underlined ( $X \times Y Z \mathbb{N}$ ) indicates machine cycle is executed if condition is True.

STATUS INFORMATION DEFINITION

| SYMBOLS | DATA BUS BIT | $\therefore$ DEFINITION |
| :---: | :---: | :---: |
| INTA (1) | $\mathrm{D}_{0}$ | Acknowledge signal for INTERRUPT request. Signal should be used to gate a restart or CALL instruction onto the data bus when DBIN is active. |
| $\overline{\text { WO }}$ | D1 | Indicates that the operation in the current machine cycle will be a WRITE memory or OUTPUT function ( $\overline{\mathrm{WO}}=0$ ). Otherwise, a READ memory or INPUT operation will be executed. |
| STACK | $\mathrm{D}_{2}$ | Indicates that the address bus holds the pushdown stack address from the Stack Pointer. |
| HLTA | D3 | Acknowledge signal for HALT instruction. |
| OUT | D4 | Indicates that the address bus contains the address of an output device and the data bus will contain the output data when $\overline{W R}$ is active. |
| $M_{1}$ | $\mathrm{D}_{5}$ | Provides a signal to indicate that the CPU is in the fetch cycle for the first byte of an instruction. |
| INP (1) | D6 | Indicates that the address bus contains the address of an input device and the input data should be placed on the data bus when DBIN is active. |
| MEMR (1) | $\mathrm{D}_{7}$ | Designates that the data bus will be used for memory read data. |

Note: (1) These three status bits can be used to control the flow of data onto the $\mu$ PD8080AF data bus.


## $\mu$ PD8080AF



Plastic

| ITEM | MILLIMETERS | INCHES |
| :---: | :---: | :--- |
| A | 51.5 MAX. | 2.028 MAX. |
| B | 1.62 MAX. | 0.064 MAX. |
| C | $2.54 \pm 0.1$ | $0.10 \pm 0.004$ |
| D | $0.5 \pm 0.1$ | $0.019 \pm 0.004$ |
| E | $48.26 \pm 0.1$ | $1.9 \pm 0.004$ |
| F | 1.2 MIN. | 0.047 MIN. |
| G | 2.54 MIN. | 0.10 MIN. |
| H | 0.5 MIN. | 0.019 MIN. |
| I | 5.22 MAX. | 0.206 MAX. |
| J | 5.72 MAX. | 0.225 MAX. |
| K | 15.24 TYP. | 0.600 TYP. |
| L | 13.2 TYP. | 0.520 TYP. |
| M | 0.25+0.1 | 0.05 |



Ceramic

| ITEM | MILLIMETERS | INCHES |
| :---: | :---: | :--- |
| A | 51.5 MAX. | 2.03 MAX. |
| B | 1.62 MAX. | 0.06 MAX. |
| C | $2.54 \pm 0.1$ | $0.1 \pm 0.004$ |
| D | $0.5 \pm 0.1$ | $0.02 \pm 0.004$ |
| E | $48.26 \pm 0.1$ | $1.9 \pm 0.004$ |
| F | 1.02 MIN. | 0.04 MIN. |
| G | 3.2 MIN. | 0.13 MIN. |
| H | 1.0 MIN. | 0.04 MIN. |
| I | 3.5 MAX. | 0.14 MAX. |
| $J$ | 4.5 MAX. | 0.18 MAX. |
| K | 15.24 TYP. | 0.6 TYP. |
| L | 14.93 TYP. | 0.59 TYP. |
| M | $0.25 \pm 0.05$ | $0.01 \pm 0.0019$ |

## $\mu$ PD8085A SINGLE CHIP 8-BIT N-CHANNEL MICROPROCESSOR

DESCRIPTION The $\mu$ PD8085A is a single chip 8 -bit microprocessor which is 100 percent software compatible with the industry standard 8080A. It has the ability of increasing system performance of the standard 8080A by operating at a higher speed. Using the $\mu$ PD8085A in conjunction with its family of ICs allows the designer complete flexibility with minimum chip count.

FEATURES - Single Power Supply: +5 Volt

- Internal Clock Generation and System Control
- Internal Serial In/Out Port.
- Fully TTL Compatible
- Internal 4-Level Interrupt Structure
- Multiplexed Address/Data Bus for Increased System Performance
- Complete Family of Components for Design Flexibility
- Software Compatible with Standard 8080A
- Higher Throughput: $\mu$ PD8085A -3 MHz
$\mu$ PD8085A $-2-5 \mathrm{MHz}$
- Available in Either Plastic or Ceramic Package

| $x_{1} \boxed{1}$ |  | 40 | $\mathrm{V}_{C C}$ |
| :---: | :---: | :---: | :---: |
| $\times_{2}{ }^{-1}$ |  | 39 | $\square \mathrm{HOLD}$ |
| RO-3 |  | 38 | $\square \mathrm{HLDA}$ |
| SOD 4 |  | 37 | $\square$ CLK (OUT) |
| SID 5 |  | 36 | $\square \overline{\text { RESETIN }}$ |
| TRAP 6 |  | 35 | ]ready |
| RST 7.57 |  | 34 | $\square 10 \bar{M}$ |
| RST 6.58 |  | 33 | $\mathrm{S}_{1}$ |
| RST 5.59 |  | 32 | 日 $\overline{R D}$ |
| INTR 10 | $\mu \mathrm{PD}$ | 31 | $\square^{\overline{W R}}$ |
| INTA 11 | 8085A | 30 | $\square \mathrm{ALE}$ |
| $\mathrm{AD}_{0} 12$ |  | 29 | $\mathrm{S}_{0}$ |
| $\mathrm{AD}_{1}$-13 |  | 28 | $\square \mathrm{A}_{15}$ |
| $\mathrm{AD}_{2} 14$ |  | 27 | $\mathrm{a}_{14}$ |
| $\mathrm{AD}_{3}{ }^{15}$ |  | 26 | $\square A_{13}$ |
| $\mathrm{AD}_{4}{ }^{16}$ |  | 25 | $\mathrm{A}_{12}$ |
| $\mathrm{AD}_{5} \mathrm{Cl}^{17}$ |  | 24 | - $A_{11}$ |
| $A D_{6} 18$ |  | 23 | - $A_{10}$ |
| $\mathrm{AD}_{7} \mathrm{Cl}^{19}$ |  | 22 | $\square \mathrm{A}_{9}$ |
| vs ${ }^{\text {c }}$ |  | 21 | $\square \mathrm{A}_{8}$ |

## $\mu$ PD8085A

The $\mu$ PD8085A contains six 8 -bit data registers, an 8 -bit accumulator, four testable flag bits, and an 8 -bit parallel binary arithmetic unit. The $\mu$ PD8085A also provides decimal arithmetic capability and it includes 16 -bit arithmetic and immediate operators which greatly simplify memory address calculations, and high speed arithmetic operations.
The $\mu$ PD8085A has a stack architecture wherein any portion of the external memory can be used as a last in/first out (LIFO) stack to store/retrieve the contents of the accumulator, the flags, or any of the data registers.
The $\mu$ PD8085A also contains a 16 -bit stack pointer to control the addressing of this external stack. One of the major advantages of the stack is that multiple level interrupts can easily be handled since complete system status can be saved when an interrupt occurs and then restored after the interrupt is complete. Another major advantage is that almost unlimited subroutine nesting is possible.

The $\mu$ PD8085A was designed with speed and simplicity of the overall system in mind. The multiplexed address/data bus increases available pins for advanced functions in the processor and peripheral chips while providing increased system speed and less critical timing functions. All signals to and from the $\mu$ PD8085A are fully TTL compatible.

The internal interrupt structure of the $\mu$ PD8085A features 4 levels of prioritized interrupt with three levels internally maskable.

Communication on both the address lines and the data lines can be interlocked by using the HOLD input. When the Hold Acknowledge (HLDA) signal is issued by the processor, its operation is suspended and the address, data and control lines are forced to be in the FLOATING state. This permits other devices, such as direct memory access channels (DMA), to be connected to the address and data busses.

The $\mu$ PD8085A features internal clock generation with status outputs available for advanced read/write timing and memory/IO instruction indications. The clock may be crystal controlled, RC controlled, or driven by an external signal.
On chip serial in/out port is available and controlled by the newly added RIM and SIM instructions.


## PIN IDENTIFICATION

| PIN |  |  | FUNCTION |
| :---: | :---: | :---: | :---: |
| NO. | SYMBOL | NAME |  |
| 1.2 | $x_{1}, x_{2}$ | Crystal In | Crystai, RC, or external clock input ${ }^{\text {- }}$ |
| 3 | RO | Reset Out | Acknowledge that the processor is being reset to be used as a system reset |
| 4 | SOD | Serial Out Data | 1 -bit data out by the SiM instruction |
| 5 | SID | Serial In Data | 1-bit data into ACC bit 7 by the RIM instruction |
| 6 | Trap | Trap Interrupt Input | Highest priority nonmaskable restart interrupt |
| $\begin{aligned} & 7 \\ & 8 \\ & 9 \end{aligned}$ | $\begin{aligned} & \text { RST } 7.5 \\ & \text { RST } 6.5 \\ & \text { RST } 5.5 \end{aligned}$ | Restart Interrupts | Priority restart interrupt inputs, of which 7.5 is the highest and 5.5 the lowest priority |
| 10 | INTR | Interrupt <br> Request in | A general interrupt input which stops the PC from incrementing, generates INTA, and samples the data bus for a restart or call instruction |
| 11 | $\overline{\text { INTA }}$ | Interrupt Acknowledge | An output which indicates that the processor has responded to INTR: |
| 12.19 | $A D_{0}-A D_{7}$ | Low <br> Address/Data Bus | Multiplexed low address and data bus. |
| 20. | $\mathrm{V}_{\text {SS }}$ | Ground | Ground Reference |
| 21.28 | $\mathrm{A}_{8}-\mathrm{A}_{15}$ | High Address Bus | Nonmultiplexed high 8-bits of the address bus |
| 29,33 | $\mathrm{S}_{0}, \mathrm{~S}_{1}$ | Status Outputs. | Outputs which indicate data bus status Halt, Write, <br> Read, Fetch |
| 30 | ALE | Address Latch Enable Out | A signal which indicates that the lower 8 -bits of address are valid on the AD lines |
| 31.32 | $\overline{W R}, \overline{\text { RD }}$ | Write/Read Strobes Out | Signals out which are used as write and read strobes for memery and I/O devices |
| 34 | $10 \cdot \bar{M}$ | I/O or Memory Indicator | A signal out which indicates whether $\overline{\mathrm{RD}}$ or $\overline{\mathrm{W}} \overline{\mathrm{R}}$ strobes are for $1 / 0$ or memory devices |
| 35 | Ready | Ready input | An input which is used to increase the data and address bus access times ican be used for slow memory) |
| 36 | $\overline{\text { Reset }}$ In | Reset Input | An input which is used to start the processor activity at address 0 , resetting IE and HLDA flip-flops |
| 37 | CLK | Clock Out | System Clock Output |
| 38. 39 | HLDA, HOLD | Hold Acknowledge Out and Hold Input Request | Used to request and indicate that the processor should relinquish the bus for DMA activity. When hold is acknowledged, $\overline{R D}, \overline{W R}, 10 / \bar{M}$. Address and Data busses are all 3 -stated. |
| 40 | ${ }^{\text {V }}$ CC | 5V Supply | Power Supply Input |


| ABSOLUTE MAXIMUM | Operating Temperature | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: |
| RATINGS* | Storage Temperature (Ceramic Package) | $0^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
|  | All Output Voltages.... | $-40^{\circ} \mathrm{C}$ to |
|  | All Input Voltages | -0.3 to +7 Volts |
|  | Supply Voltage VCC. | -0.3 to +7 Volts |
|  | Power Dissipation | 1.5 |

COMMENT Stress above those listed under "Absolute Maximum Ratıngs" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device relıability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25 \mathrm{C}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input Low Voitage | $V_{\text {IL }}$ | $\mathrm{V}_{\text {SS }} \quad 0.5$ |  | $\mathrm{V}_{\mathrm{SS}}+0.8$ | $v$ | $\because$ |
| Input High Voltage | $\mathrm{V}_{\text {IH }}$ | 2.0 |  | $\mathrm{V}_{\mathrm{CC}}+0.5$ | $v$ |  |
| Output Low Voltage | $\mathrm{V}_{\mathrm{OL}}$ |  |  | 045 | $v$ | IOL $=2 \mathrm{~mA}$ on all outputs |
| Output High Voltage | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  |  | $\checkmark$ | $\mathrm{I}^{\mathrm{OH}}=400 \mu \mathrm{~s}$ (1) |
| Power Supply Current (VCC) | ICC (AV) |  |  | 170 | mA | ${ }^{\text {t }} \mathrm{CY} \mathrm{Mm}$ |
| Input Leakage | 1 IL |  |  | . 10 (1) | $\mu \mathrm{A}$ | $V_{\text {IN }} \cdot V_{\text {CC }}$ |
| Output Leakage | ILO |  |  | . 10 (1) | $\mu \mathrm{A}$ | $0.45 \mathrm{~V}=\mathrm{V}_{\text {OUT }} \cdot V_{\text {CC }}$ |
| Input Low Level, Reset | $V_{\text {ILR }}$ | - 0.5 |  | +0.8 | v |  |
| Input High Level, Reset | $V_{\text {IHR }}$ | 2.4 |  | $\mathrm{V}_{\mathrm{CC}}+0.5$ | v |  |
| Hysteresis, Reset | $\mathrm{V}_{\mathrm{HY}}$ | 0.25 |  |  | V |  |

Note: (1) Minus (-) designates current flow out of the device
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

| PARAMETER | SYMBOL | LIMITS |  |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu \mathrm{PD8085A}$ |  | [PD8085A-2 |  |  |  |
|  |  | MIN | MAX | MIN | MAX |  |  |
| CLK Cycle Period | TCYC | 320 | 2000 | 200 | 2000 | ns |  |
| CLK Low Time | $\mathrm{t}_{1}$ | 80 | . | 40 |  | ns |  |
| CLK. High Time | $\mathrm{t}_{2}$ | 120 |  | 70 |  | ns |  |
| CLK Rise and Fall Time | $t_{\text {r }}, \mathrm{t}_{\mathrm{f}}$ |  | 30 |  | 30 | ns | $\mathrm{T}_{\mathrm{CYC}}=320 \mathrm{~ns}$ |
| Address Valid Before Trailing Edge of ALE | ${ }^{\text {t }} \mathrm{AL}$ | 110 |  | 50 |  | ns | $C_{L}=150 \mathrm{pF}$ |
| Address Hold Time After ALE | tha | 100 |  | 50 |  | ns |  |
| ALE Width | ${ }_{\text {t }}^{\text {LL }}$ | 140 |  | 80 |  | ns |  |
| ALE Low During CLK High | ${ }_{\text {t }}$ LCK | 100 |  | 50 |  | ns | Output Voltages |
| Training Edge of ALE to Leading Edge of Control | tic. | 130. | . | 60 |  | ns | $\begin{aligned} & V_{L}=0.8 \text { Voits } \\ & V_{H}=2.0 \text { Volts } \end{aligned}$ |
| Address Float After Leading Edge of READ (INTA) | ${ }^{\text {t }}$ AFR |  | 0 |  | 0 | ns |  |
| Valid Address to Valid Data In | ${ }^{\text {t }}$ AD |  | 575 |  | 350 | ns | Input Voltages |
| $\overline{\text { READ ( }}$ ( $\overline{\text { INTA }}$ ) to Valid Data | ${ }_{\text {t }}$ |  | 300 |  | 150 | ns | $\mathrm{V}_{\mathrm{L}}=0.8 \mathrm{Volts}$ |
| Data Hold Time After $\overline{\text { READ ( }}$ (INTA) | $t_{\text {tRDH }}$ | 0 |  | 0 |  | ns | $\mathrm{V}_{\mathrm{H}}=1.5$ Volts at |
| Training Edge of $\overline{\text { READ }}$ to Re-Enabling of Address | trat | 150 |  | 90 |  | ns | 20 ns rise and fall times |
| Address ( $\mathrm{A}_{8}-\mathrm{A}_{15}$ ) Valid After Control (1) | ${ }^{t} \mathrm{CA}$ | 120 |  | 60 |  | ns | For outputs where |
| Data Valid to Training Edge of WRITE | t DW | 420 |  | 230 |  | ns | $C_{L}=150 \mathrm{pf}$, correct |
| Data Valid After Training Edge of WRITE | ${ }^{\text {t }}$ WD | 100 | , | 60 |  | ns | as follows: $25 \mathrm{pf} \leqslant \mathrm{CL}<150 \mathrm{pf}$ |
| Width of Control Low ( $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\text { INTA }}$ ) | ${ }^{\text {t }} \mathrm{CC}$ | 400 |  | 230 |  | ns | $-0.10 \mathrm{~ns} / \mathrm{pf}$ |
| Training Edge of Control to Leading Edge of ALE | ${ }^{\text {t }} \mathrm{CL}$ | 50 |  | 25 |  | ns |  |
| READY Valid from Address Valid | ${ }^{t}$ ARY |  | 220 |  | 100 | ns | $150 \mathrm{pf}<\mathrm{CL} \leqslant$ |
| READY Setup Time to Leading Edge of CLK | ${ }^{\text {t R M }}$ S | 110 |  | 100 |  | ns | $300 \mathrm{pf}+0.30 \mathrm{~ns} / \mathrm{pf}$ |
| READY Hold Time | ${ }^{\text {tRYH }}$ | 0 |  | 0 |  | ns |  |
| HLDA Valid to Training Edge of CLK | ${ }_{\text {t HACK }}$ | 110 |  | 40 |  | ns | Outputs measured |
| Bus Float After HLDA | ${ }^{\text {t HABF }}$ |  | 210 |  | 150 | ns | with only |
| HLDA to Bus Enable | $t_{\text {t }}$ HABE |  | 210 |  | 150 | ns | capacitive load |
| ALE to Valid Data In | ${ }^{\text {t }}$ LDR |  | 460 |  | 270 | ns |  |
| Control Training Edge to Leading Edge of Next Control | trv | 400 |  | 220 |  | ns |  |
| Address Valid to Leading Edge of Control | ${ }^{t}$ AC | 270 |  | 115 |  | ns |  |
| HOLD Setup Time to Training Edge of CLK | ${ }^{\text {thDS }}$ | 170 |  | 120 |  | ns |  |
| HOLD Hold Time | thDH | 0 |  | 0 |  | ns |  |
| INTR Setup Time to Leading Edge of CLK (M1, T1 only). Also RST and TRAP | ${ }^{\text {t }}$ INS | 160 |  | 150 |  | ns |  |
| INTR Hold Time | ${ }^{1} \mathrm{INH}$ | 0 |  | 0 |  | ns |  |
| $X_{1}$ Falling to CLLK Rising | ${ }^{\text {t XKR }}$ | 30 | 120 | 30 | 100 | ns |  |
| $X_{1}$ Falling to CLK Falling | ${ }^{\text {t }} \times$ KF | 30 | 150 | 30 | 110 | ns |  |

Note: (1) $10 / \bar{M}, \mathrm{SO}, \mathrm{SI}$
CLOCK TIMING


READ OPERATION


TIMING WAVEFORMS (CONT.)


HOLD OPERATION


INTERRUPT TIMING


Note:(1) $10 / \bar{M}$ is also floating during this time.


PROCESSOR STATE
TRANSITION DIAGRAM

Notes: (1) Bl indicates that the bus is idle during this machine cycle.
(2) CK indicates the number of clock cycles in this machine cycle.

As stated, the timing for the $\mu$ PD8085A may be generated in one of three ways; crystal, RC, or external clock. Recommendations for these methods are shown below.

1.6 MHz Input Frequency Parallel Resonant Crystal

EXTERNAL


Note: (1) Input frequency must be twice the internal operating frequency.

STATUS OUTPUTS The Status Outputs are valid during ALE time and have the following meaning:

|  | S1 | S0 |
| :--- | :---: | :---: |
| Halt | 0 | 0 |
| Write | 0 | 1 |
| Read | 1 | 0 |
| Fetch | 1 | 1 |

These pins may be decoded to portray the processor's data bus status.

## $\mu$ PD8085A

The $\mu$ PD8085A has five interrupt pins available to the user. INTR is operationally the same as the 8080 interrupt request, three (3) internally maskable restart interrupts: RESTART $5.5,6.5$ and 7.5 , and TRAP, a nonmaskable restart.

| PRIORITY | INTERRUPT | RESTART |
| :---: | :---: | :---: |
| ADDRESS |  |  |
| Highest | TRAP | 2416 |
| $\mid$ | RST 7.5 | $3 C_{16}$ |
| $\mid$ | RST 6.5 | 3416 |
| Lowest | RST 5.5 | $2 \mathrm{C}_{16}$ |

INTR, RST 5.5 and RST 6.5 are all level sensing inputs while RST 7.5 is set on a rising edge. TRAP, the highest priority interrupt, is nonmaskable and is set on the rising edge or positive level. It must make a low to high transition and remain high to be seen, but it will not be generated again until it makes another low to high transition.

Serial input and output is accomplished with two new instructions not included in the 8080: RIM and SIM. These instructions serve several purposes: serial I/O, and reading or setting the interrupt mask.

The RIM (Read Interrupt Mask) instruction is used for reading the interrupt mask and for reading serial data. After execution of the RIM instruction the ACC content is as follows:


Note: After the TRAP interrupt, the RIM instruction must be executed to preserve the status of IE.

The SIM (Set Interrupt Mask) instruction is used to program the interrupt mask and to output serial data. Presetting the ACC for the SIM instruction has the following meaning:


## DATA AND INSTRUCTION FORMATS

The instruction set includes arithmetic and logical operators with direct, register, indirect, and immediate addressing modes.

Move, load, and store instruction groups provide the ability to move either 8 or 16 bits of data between memory, the six working registers and the accumulator using direct, register, indirect, and immediate addressing modes.
The ability to branch to different portions of the program is provided with direct, conditional, or computed jumps. Also, the ability to call and return from subroutines is provided both conditionally and unconditionally. The RESTART (or single byte call instruction) is useful for interrupt vector operation.

Conditional jumps, calls and returns execute based on the state of the four testable flags (Sign, Zero, Parity and Carry). The state of each flag is determined by the result of the last instruction executed that affected flags. (See Instruction Set Table.)
The Sign flag is set (High) if bit 7 of the result is a " 1 "; otherwise it is reset (Low). The Zero flag is set if the result is " 0 "; otherwise it is reset. The Parity flag is set if the modulo 2 sum of the bits of the result is " 0 " (Even Parity); otherwise (Odd Parity) it is reset. The Carry flag is set if the last instruction resulted in a carry or a borrow out of the most significant bit (bit 7) of the result; otherwise it is reset.

In addition to the four testable flags, the $\mu$ PD8085A has another flag (ACY) that is not directly testable. It is used for multiple precision arithmetic operations with the DAA instruction. The Auxiliary Carry flag is set if the last instruction resulted in a carry or a borrow from bit 3 into bit 4; otherwise it is reset.

Double precision operators such as stack manipulation and double add instructions extend both the arithmetic and interrupt handling capability of the $\mu$ PD8085A. The ability to increment and decrement memory, the six general registers and the accumulator are provided as well as extended increment and decrement instructions to operate on the register pairs and stack pointer. Further capability is provided by the ability to rotate the accumulator left or right through or around the carry bit.
Input and output may be accomplished using memory addresses as I/O ports or the directly addressed I/O provided for in the $\mu$ PD8085A instruction set.

Two instructions, RIM and SIM, are used for reading and setting the internal interrupt mask as well as input and output to the serial I/O port.

The special instruction group completes the $\mu$ PD8085A instruction set: NOP, HALT stop processor execution; DAA provides decimal arithmetic capability; STC sets the carry flag; CMC complements it; CMA complements the contents of the accumulator; and XCHG exchanges the contents of two 16 -bit register pairs directly.

Data in the $\mu$ PD8085A is stored as 8 -bit binary integers. All data/instruction transfers to the system data bus are in the following format:

| $\mathrm{D}_{7}$ | $\mathrm{D}_{6}$ | $\mathrm{D}_{5}$ | $\mathrm{D}_{4}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{1}$ | $\mathrm{D}_{0}$ |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| MSB | DATA WORD |  |  |  |  | LSB |  |  |  |  |

Instructions are one, two, or three bytes long. Multiple byte instructions must be stored in successive locations of program memory. The address of the first byte is used as the address of the instruction.

| One Byte Instruction |  |  |  |  |  |  |  | OP CODE | TYPICAL INSTRUCTIONS <br> Register to register, memory reference, arithmetic or logical rotate, return, push, pop, enable or disable interrupt instructions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{D}_{7}$ | D6 | $\mathrm{D}_{5}$ | D4 | D3 | $\mathrm{D}_{2}$ | $\mathrm{D}_{1}$ | D0 |  |  |
| Two Byte Instructoons |  |  |  |  |  |  |  |  |  |
| $\mathrm{D}_{7}$ | $\mathrm{D}_{6}$ | $\mathrm{D}_{5}$ | $\mathrm{D}_{4}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{1}$ | $\mathrm{D}_{0}$ | OP CODE OPERAND | Immediate mode or I/O instruc tions |
| $\mathrm{D}_{7}$ | $\mathrm{D}_{6}$ | $\mathrm{D}_{5}$ | D4 | $\mathrm{D}_{3}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{1}$ | $\mathrm{D}_{0}$ |  |  |
| Three Byte Instructions |  |  |  |  |  |  |  | OP CODE | Jump, call or direct load and store instructions |
| $\mathrm{D}_{7}$ | $\mathrm{D}_{6}$ | $\mathrm{D}_{5}$ | $\mathrm{D}_{4}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{1}$ | $\mathrm{D}_{0}$ |  |  |
| $\mathrm{D}_{7}$ | $\mathrm{D}_{6}$ | $\mathrm{D}_{5}$ | $\mathrm{D}_{4}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{1}$ | $\mathrm{D}_{0}$ | LOW ADDRESS OR OPERAND 1 |  |
| $\mathrm{D}_{7}$ | $\mathrm{D}_{6}$ | $\mathrm{D}_{5}$ | $\mathrm{D}_{4}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{1}$ | $\mathrm{D}_{0}$ | HIGH ADD | RESS OR OPERAND 2 |

INSTRUCTION SET
TABLE

$\mu$ PD8085A

INSTRUCTION CYCLE TIMES

One to five machine cycles $\left(M_{1}-M_{5}\right)$ are required to execute an instruction. Each machine cycle involves the transfer of an instruction or data byte into the processor or a transfer of a data byte out of the processor (the sole exception being the double add instruction). The first one, two or three machine cycles obtain the instruction from the memory or an interrupting I/O controller. The remaining cycles are used to execute the instruction. Each machine cycle requires from three to five clock times ( $T_{1}-T_{5}$ ).

Machine cycles and clock states used for each type of instruction are shown below.

| INSTRUCTION TYPE | MACHINE CYCLES EXECUTED MIN/MAX | CLOCK STATUS MIN/MAX |
| :---: | :---: | :---: |
| ALU R | 1 | 4 |
| CMC | 1 | 4 |
| CMA | 1 | 4 |
| DAA | 1 | 4 |
| DCR R | 1 | 4 |
| DI | 1 | 4 |
| El | 1 | 4 |
| INR R | 1 | 4 |
| MOV R, R | 1 | 4 |
| NOP | 1 | 4 |
| ROTATE | 1 | 4 |
| RIM | 1 | 4 |
| SIM | 1 | 4 |
| STC | 1 | 4 |
| XCHG | 1 | 4 |
| HLT | 1 | 5 |
| DCX | 1 | 6 |
| INX | 1 | 6 |
| PCHL | 1 | 6 |
| RET COND. | 1/3 | 6/12 |
| SPHL | 1 | 6 |
| ALU I | 2 | 7 |
| ALU M | 2 | 7 |
| JNC | 2/3 | 7/10 |
| LDAX | 2 | 7 |
| MVI | 2 | 7 |
| MOV M, R | 2 | 7 |
| MOV R, M | 2 | 7 |
| STAX | 2 | 7 |
| CALL COND. | 2/5 | 9/18 |
| DAD | 3 | 10 |
| DCR M | 3 | 10 |
| IN | 3 | 10 |
| INR M | 3 | 10 |
| JMP | 3 | 10 |
| LOAD PAIR | 3 | 10 |
| MVI M | 3 | 10 |
| OUT | 3 | 10 |
| POP | 3 | 10 |
| RET | 3 | 10 |
| PUSH | 3 | 12 |
| RST | 3 | 12 |
| LDA | 4 | 13 |
| STA | 4 | 13 |
| LHLD | 5 | 16 |
| SHLD | 5 | 16 |
| XTHL | 5 | 16 |
| CALL | 5 | 18 |



PACKAGE OUTLINE $\mu$ PD8085AC/D

Plastic

| ITEM | MILLIMETERS | INCHES |
| :--- | :---: | :--- |
| A | 51.5 MAX | 2.028 MAX |
| B | 1.62 | 0.064 |
| C | $2.54 \pm 0.1$ | $0.10 \pm 0.004$ |
| D | $0.5 \pm 0.1$ | $0.019 \pm 0.004$ |
| E | 48.26 | 1.9 |
| F | 1.2 MIN | 0.047 MIN |
| G | 2.54 MIN | 0.10 MIN |
| H | 0.5 MIN | 0.019 MIN |
| I | 5.22 MAX | 0.206 MAX |
| J | 5.72 MAX | 0.225 MAX |
| K | 15.24 | 0.600 |
| L | 13.2 | 0.520 |
| M | 0.25 |  |



Ceramic

| ITEM | MILLIMETERS | INCHES |
| :---: | :---: | :--- |
| A | 51.5 MAX. | 2.03 MAX. |
| B | 1.62 MAX. | 0.06 MAX. |
| C | $2.54 \pm 0.1$ | $0.1 \pm 0.004$ |
| D | $0.5 \pm 0.1$ | $0.02 \pm 0.004$ |
| E | $48.26 \pm 0.1$ | $1.9 \pm 0.004$ |
| F | 1.02 MIN. | 0.04 MIN. |
| G | 3.2 MIN. | 0.13 MIN. |
| H | 1.0 MIN. | 0.04 MIN. |
| I | 3.5 MAX. | 0.14 MAX. |
| J | 4.5 MAX. | 0.18 MAX. |
| K | 15.24 TYP. | 0.6 TYP. |
| L | 14.93 TYP. | 0.59 TYP. |
| M | $0.25 \pm 0.05$ | $0.01 \pm 0.0019$ |

## $\mu$ PD8085A FAMILY MINIMUM SYSTEM CONFIGURATION

A minimum computer system consisting of a processor, ROM, RAM, and $\mathrm{I} / \mathrm{O}$ can be built with only $3-40$ pin packs. This system is shown below with its address, data, control busses and I/O ports.


NOTES

## SINGLE CHIP 8-BIT MICROCOMPUTER

DESCRIPTION The NEC $\mu$ PD7801 is an advanced 8-bit general purpose single chip microcomputer using N -channel silicon gate MOS technology. All the basic functional blocks $4096 \times 8$ of ROM program memory, $128 \times 8$ of RAM data memory, 8 -bit ALU, 48 I/O lines, 12 -bit timer and clock generator are provided on-chip to enhance single chip applications. The $\mu$ PD7801 is fully compatible with the industry standard 8080A's bus structure. Thus, expanded system operation can be easily implemented using any of the 8080A peripherals. Total memory space can be increased to 65 K bytes with industry staṇdard ROM and RAM products.
The powerful 125 instruction set coupled with 4 K bytes of ROM program memory and 128 bytes of RAM data memory greatly extends the range of single chip microcomputer applications. Five level vectored interrupt capability plus a $2 \mu$ s cycle time enables the $\mu$ PD7801 to compete with multi-chip microprocessor systems with the advantage that most of the support functions are on-chip.

FEATURES - NMOS Silicon Gate Technology Requiring a Single +5 V Supply

- $2 \mu$ s Cycle Time
- $4096 \times 8$ ROM Program Memory
- $128 \times 8$ RAM Data Memory
- 48 I/O Lines
- Serial I/O Lines
- Powerful 125 Instruction Set
- 12-Bit Timer
- Vectored Interrupts - 3 External, 2 Internal
- Internal Clock Generator
- Fully Bus Compatible with 8080A
- Expandable using 8080A Peripherals and Standard Memories
- Direct Addressing Capability to 65 K Bytes
- Available in 64 Pin Plastic Quad-In-Line Package


| PIN |  | FUNCTION |
| :---: | :---: | :---: |
| NO. | SYMBOL |  |
| 2 | ¢OUT | $\phi$ OUT provides a prescaled output clock for use with external peripherals, I/O devices, or memories. The prescaling is performed on the XTAL frequency and is fXTAL $\div 2$. |
| 3-10 | DB0-7 | This is the 8 -bit bidirectional data bus. Data moves between external memory or I/O and the accumulator is handled through this port. |
| 11.13 | INTO-2 | INT0-2 are the three interrupt lines featuring three different modes of activation. INT0 is level sensitive, triggered when an active high level is detected. $\mathrm{INT}_{1}$ is rising edge sensitive, and is triggered when a low-tohigh level transition is made. $\mathrm{INT}_{3}$ is a programmable edge sensitive interrupt input. If the ES-bit of the MASK register is set to a logic 1, $\mathrm{INT}_{2}$ will be rising edge sensitive. If $E S$ is a logic 0 , then $\mathrm{INT}_{2}$ will be falling edge sensitive. The priorities are as follows: INT $0>$ INTT $>$ $\operatorname{INT}_{1}>\operatorname{INT} \mathbf{2}_{2}>\operatorname{INTS}$, where INTT and INTS are internal interrupts. Refer to later sections. |
| 14 | $\overline{\text { WAIT }}$ | $\overline{\text { WAIT }}$ is the wait request input. The $\mu$ PD7801 can be wait-stated if memories with slower access times are used by applying an active low signal to this input. |
| 15 | M1 | M1 is an output pin signifying the first machine cycle of each instruction. It will go to an active high level during the fetch cycle of the first opcode from $T_{1}$ to $T_{3}$. M1 is also useful for single step or break operations. |
| 16 | $\overline{W R}$ | $\overline{W R}$ is an active low signal generated by the $\mu$ PD7801 to initiate data flow from the processor to the peripheral, memory, or I/O device. |
| 17 | $\overline{\mathrm{RD}}$ | $\overline{\mathrm{RD}}$ is an active low signal generated by the $\mu$ PD7801 to initiate data flow to the processor from the peripheral, memory or I/O device. |
| 18.25 | $\mathrm{PC}_{0.7}$ | This is an 8 -bit I/O port. The upper 6 bits ( $\mathrm{PC}_{2-7}$ ) can be programmed to provide various control capabilities using the MODE register. A more detailed description of this port's operation will follow in a later section. |
| 26 | $\overline{\text { SCK }}$ | $\overline{\text { SCK }}$ is the Serial In/Serial Out clock for the serial data port. |
| 27 | SI | SI is the Serial Input Port. Data is loaded through this port into the processor, Serial Register with the rising edge of $\overline{\mathrm{SCK}}$. The bit order for input data is from MSB to LSB. |
| 28 | SO | SO is the Serial Output Port. Serial output data is strobed from this port by the falling edge of SCK. The bit order for output data is from MSB to LSB. |
| 29 | RESET | $\overline{\text { RESET }}$ is an active low input for processor initialization. See subsequent sections for detailed description of the initialization process. |
| 30,31 | $\mathrm{X}_{2}, \mathrm{X}_{1}$ | These are the crystal inputs for the internal clock generator. $X_{1}$ can be used as an external clock input. Refer to following sections for. suggested clock input circuits. |
| 32 | VSS (0V) | The processor's ground potential. |
| 33-40 | PA0.7 | Port A is an 8-bit output port. Data at this port remains latched until written over by new data. Reference subsequent sections for further explanation. |
| 41-48 | $\mathrm{PB}_{0} \mathbf{- 7}$ | Port B is an 8 -bit $\mathrm{I} / \mathrm{O}$ port. Both input and output data are latched here. Each I/O line of Port B can be programmed through the MODE B Register to either an input or an output. A more detailed description follows later. |
| 49-63 | $\mathrm{PE}_{0.15}$ | Port E is a 16 -bit address bus/output port. Three different programmable modes are selectable under software control. A more detailed description follows later. |
| 64 | $V_{C C}$ | Processor's +5 V supply input. |

BLOCK DIAGRAM


FUNCTIONAL DESCRIPTION

## PA0.7 (Port A)

Port A is an 8-bit latched output port. Data can be readily transferred between the accumulator and the output latch buffers. The contents of the output latches can be modified using Arithmetic and Logic instructions. Data remains latched at Port A unless acted on by another Port A instruction or a RESET is issued.
$\mathrm{PB}_{0-7}$ (Port B)
Port B is an 8-bit I/O port. Data is latched at Port B in both the Input or Output modes. Each bit of Port B can be independently set to either Input or Output modes. The Mode $B$ register programs the individual lines of Port $B$ to be either an Input (Mode $B_{n}=1$ ) or an Output (Mode $B_{n}=0$ ).
PC0-7 (Port C)
Port $C$ is an 8 -bit I/O port. The Mode $C$ register is used to program the upper 6 bits of Port C to provide control functions or to set the I/O structure per the following table.

|  | MODE $\mathrm{Cn}_{\mathrm{n}}=\mathbf{0}$ | MODE $\mathrm{C}_{n}=1$ |
| :--- | :--- | :--- |
| $\mathrm{PC}_{0}$ | OUTPUT | INPUT |
| $\mathrm{PC}_{1}$ | OUTPUT | INPUT |
| $\mathrm{PC}_{2}$ | $\overline{\text { SCS }}$ INPUT | INPUT |
| $\mathrm{PC}_{3}$ | SAK OUTPUT | OUTPUT |
| $\mathrm{PC}_{4}$ | TO OUTPUT | OUTPUT |
| $\mathrm{PC}_{5}$ | IO/M OUTPUT | OUTPUT |
| $\mathrm{PC}_{6}$ | HLDA OUTPUT | OUTPUT |
| $\mathrm{PC}_{7}$ | HOLD INPUT | INPUT |

## DB0-7 (Data Bus)

DB0-7 form the 8-bit bidirectional data bus. Data moves between external memory or I/O and the accumulator are handled through this bus.

## - PD7801

## PE 0-15 (Port E)

Port E is a 16 -bit address bus/output port. It can be set to one of three operating modes using the PER, PEN, or PEX instructions.

- 16-Bit Address Bus - the PER instruction sets this mode for use with external I/O or memory expansion (up to 60 K bytes, externally).
- 4-Bit Output Port/12-Bit Address Bus - the PEN instruction sets this mode which allows for memory expansion of up to 4 K bytes, externally, plus the transfer of 4-bit nibbles.
- 16-Bit Output Port - the PEX instruction sets Port E to a 16 -bit output port. The contents of the $B$ and $C$ registers appear on $P E_{8-15}$ and $P E_{0-1}$, respectively.


## M1 (Machine Cycle 1)

M1 is an output pin used to signal external devices at the first machine cycle of each instruction. It can also be used in single step or breakpoint operation.

## $\overline{\text { WAIT }}$ (Wait Request)

$\overline{\text { WAIT }}$ (active-low) is used to extend the read/write timing for systems using slow speed external memories. A logic 0 detected at the end of T2 forces the $\mu$ PD7801 to a wait state until WAIT goes high.

## INTO, INT ${ }_{1}$, INT $_{2}$ (Interrupt Request)

$I_{N T}^{0-2}$ are the interrupt request lines. Their priorities are as follows: $I_{N T}>$ INTT $>$ INT ${ }_{1}>$ INT $_{2}>$ INTS, where INTT and INTS are internal interrupts. In order to minimize any possible noise interference, an internal sampling technique is used requiring an external interrupt be held for $4 \mu$ s to be recognized.

- $I N T_{0}$ is an active-high level-sensitive interrupt line.
- $\mathrm{INT}_{1}$ is a rising-edge-sensitive interrupt line.
- $\mathrm{INT}_{2}$ is a programmable edge-sensitive interrupt line.
- If the ES-bit in the MASK register is set to $E S=1$, then $I N T_{2}$ is rising-edge-sensitive. If $E S=0, I N T_{2}$ is falling-edge-sensitive.


## $\overline{\text { SCK }}$ (Serial Clock)

$\overline{\text { SCK }}$ is the serial input/output clock for the serial data port. The rising edge of $\overline{\text { SCK }}$ loads data from the Serial Input Port (SI) into the Serial Register (S/P). The falling edge of $\overline{\text { SCK }}$ loads data from the Serial Register to the Serial Output Port (SO). The bit order of data flow into and out of the Serial Ports is MSB first.

## $\overline{\text { RESET }}$ (Reset)

An active low-signal on this input for more than $4 \mu$ s forces the $\mu$ PD7801 into a Reset condition. $\overline{\operatorname{RESET}}$ affects the following internal functions:

- The Interrupt Enable Flags are reset, and Interrupts are inhibited.
- The Interrupt Request Flag is reset.
- The HALT flipflop is reset, and the Halt-state is released.
- The contents of the MODE B register are set to $F F_{H}$, and Port $B$ becomes an input port.
- The contents of the MODE C register are set to $\mathrm{FFH}_{\mathrm{H}}$. Port C becomes an I/O port and output lines go low.
- All Flags are reset to 0 .
- The internal COUNT register for timer operation is set to FFFH $_{H}$ and the timer F/F is reset.
- The ACK F/F is set.
- The HLDA F/F is reset.
- The contents of the Program Counter are set to 0000 H .
- The Address Bus (PE0-15), Data Bus (DB0-7), $\overline{\mathrm{RD}}$, and $\overline{W R}$ go to a high impedance state.
Once the $\overline{\text { RESET }}$ input goes high, the program is started at location 0000 H .

0
15

| PC |
| :---: |
| SP |


\left.| 70 |  |
| :---: | :---: |
| V | A |
| B | C |
| D | E |
| H | L |$\right\}$ Main

$\left.\begin{array}{|c|c|}\hline V^{\prime} & A^{\prime} \\ \hline B^{\prime} & C^{\prime} \\ \hline D^{\prime} & E^{\prime} \\ \hline H^{\prime} & L^{\prime} \\ \hline\end{array}\right\}$ Alternate

General Purpose Registers (B, C, D, E, H, L)
There are two sets of general purpose registers (Main: B, C, D, E, H, L: Alternate: B', $\left.C^{\prime}, D^{\prime}, E^{\prime}, H^{\prime}, L^{\prime}\right)$. They can function as auxiliary registers to the accumulator or in pairs as data pointers ( $B C, D E, H L, B^{\prime} C^{\prime}, D^{\prime} E^{\prime}, H^{\prime} L^{\prime}$ ). Auto Increment and Decrement addressing mode capabilities extend the uses for the $D E, H L, D^{\prime} E^{\prime}$, and $H^{\prime} L^{\prime}$ registerpairs. The contents of the BC, DE, and HL register-pairs can be exchanged with their Alternate Register counterparts using the EXX instruction.

## Vector Register (V)

When defining a scratch pad area in the memory space, the upper 8-bit memory address is defined in the V -register and the lower 8 -bits is defined by the immediate data of an instruction. Also the scratch pad indicated by the V-register can be used as $256 \times 8$-bit working registers for storing software flags, parameters and counters.

## Accumulator (A)

All data transfers between the $\mu$ PD7801 and external memory or I/O are done through the accumulator. The contents of the Accumulator and Vector Registers can be exchanged with their Alternate Registers using the EX instruction.

## Program Counter (PC)

The PC is a 16-bit register containing the address of the next instruction to be fetched. Under normal program flow, the PC is automatically incremented. However, in the case of a branch instruction, the PC contents are from another register or an instruction's immediate data. A reset sets the PC to 0000 H .

## Stack Pointer (SP)

The stack pointer is a 16 -bit register used to maintain the top of the stack area (last-in-first-out). The contents of the SP are decremented during a CALL or PUSH instruction or if an interrupt occurs. The SP is incremented during a RETURN or POP instruction.

TIMER The $\mu$ PD7801 contains a 12 -bit programmable interval timer. It is composed of TIMER REG 0 (8-bit), TIMER REG 1 (4-bit), PRESCALER, and 12 -bit DOWN COUNTER and is capable of counting from $4 \mu \mathrm{~s}$ to 16 ms with a $4 \mu \mathrm{~s}$ increment.

## $\mu$ PD7801

The $\mu$ PD7801 can directly address up to 64 K bytes of memory. Except for the on-chip ROM ( $0-4095$ ) and RAM ( $65,408-65,535$ ), any memory location can be used as either ROM or RAM. The following memory map defines the $0-64 \mathrm{~K}$ byte memory space for the $\mu$ PD7801 showing that the Reset Start Address, Interrupt Start Address, Call Tables, etc., are located in the internal ROM area.


PACKAGE OUTLINE $\mu$ PD7801B

## SINGLE CHIP 8-BIT MICROCOMPUTER

DESCRIPTION The NEC $\mu$ PD8021 is a stand alone 8-bit parallel microcomputer incorporating the following features usually found in external peripherals. The $\mu$ PD8021 contains: $1 \mathrm{~K} \times 8$ bits of mask ROM program memory, $64 \times 8$ bits of RAM data memory, 21 I/O lines, an 8-bit interval timer/event counter, and internal clock circuitry.

FEATURES - 8-Bit Processor, ROM, RAM, I/O, Timer/Counter

- Single +5 V Supply $(+4.5 \mathrm{~V}$ to $+6.5 \mathrm{~V})$
- NMOS Silicon Gate Technology
- $8.38 \mu \mathrm{~s}$ Instruction Cycle Time
- All Instructions 1 or 2 Cycles
- Instructions are Subset of $\mu$ PD8048/8748/8035
- High Current Drive Capability - 2 I/O Pins
- Clock Generation Using Crystal or Single Inductor
- Zero-Cross Detection Capability
- Expandable I/O Using $\mu 8243$ 's
- Available in 28 Pin Plastic Package

PIN CONFIGURATION


## - PD8021

The NEC $\mu$ PD8021 is a single component, 8-bit, parallel microprocessor using N -channel silicon gate MOS technology. The self-contained $1 \mathrm{~K} \times 8$-bit ROM, $64 \times 8$-bit RAM, 8 -bit timer/counter, and clock circuitry allow the $\mu$ PD8021 to operate as a single-chip microcomputer in applications ranging from controllers to arithmetic processors.
The instruction set, a subset of the $\mu$ PD8048/8748/8035, is optimum for high-volume, low cost applications where I/O flexibility and instruction set power are required. The $\mu$ PD8021 instruction set is comprised mostly of single-byte instructions with no instructions over two bytes.


Operating Temperature
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature (Ceramic Package) . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

$$
\text { (Plastic Package) . . . . . . . . . . . . . . . . . . . . }-65^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

Voltage on Any Pin -0.5 to +7 Volts (1)
Power Dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Watt
Note: (1) With Respect to Ground.
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device, This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.5 \mathrm{~V} \pm 1 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input Low Voltage <br> (All Except XTAL 1, XTAL 2) | $V_{\text {IL }}$ | -0.5 |  | + 0.8 | V |  |
| Input High Voltage <br> (All Except XTAL 1, XTAL 2) | $\mathrm{V}_{\text {IH }}$ | 2.0 |  | $V_{\text {cc }}$ | V | $V_{C C}=5.0 \mathrm{~V} \pm 10 \%$ |
| Input High Voltage <br> (All Except XTAL 1, XTAL 2) | $\mathrm{V}_{1+1}$ | 3.0 |  | VCC | V | $\mathrm{V}_{C C}=5.5 \mathrm{~V} \pm 1 \mathrm{~V}$ |
| Output Low Voltage | VoL |  |  | 0.45 | V | $\mathrm{IOL}=1.6 \mathrm{~mA}$ |
| Output Low Voltage $\left(P_{10}, P_{11}\right)$ | VOL1 |  |  | 2.5 | V | $\mathrm{IOL}=7 \mathrm{~mA}$ |
| Output High Voltage (All Unless Open Drain) | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  |  | V | $\mathrm{IOH}=50 \mu \mathrm{~A}$ |
| Output Leakage Current (Open Drain Option - Port 0) | ${ }^{\text {IOL}}$ |  |  | -10 | $\mu \mathrm{A}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \geqslant \mathrm{~V}_{\mathrm{IN}} \geqslant \mathrm{~V}_{\mathrm{SS}} \\ & +0.45 \mathrm{~V} \end{aligned}$ |
| VCC Supply Current | ICC |  |  | 60 | mA |  |

- PD8021

PIN IDENTIFICATION

| PIN |  | FUNCTION |
| :---: | :---: | :---: |
| No. | SYMBOL |  |
| $\begin{gathered} 1-2 \\ 26-27 \end{gathered}$ | $\begin{aligned} & \mathrm{P}_{20}-\mathrm{P}_{23} \\ & \text { (Port 2) } \end{aligned}$ | $\mathrm{P}_{20}-\mathrm{P}_{23}$ comprise the 4 -bit bi-directional I/O port which is also used as the expander bus for the $\mu$ PD8243. |
| 3 | PROG | PROG is the output strobe pin for the $\mu$ PD8243. |
| 4-11 | $\begin{aligned} & \mathrm{P}_{00}-\mathrm{P}_{07} \\ & \text { (Port 0) } \end{aligned}$ | One of the two 8 -bit quasi bi-directional I/O ports. |
| 12 | ALE | Address Latch Enable output (active-high). Occurring once every 30 input clock periods, ALE can be used as an output clock. |
| 13 | T1 | Testable input using transfer functions JT1 and JNT1. T 1 can be made the counter/timer input using the STRT CNT instruction. T1 also provides zero-cross sensing for low-frequency $A C$ input signals. |
| 14 | $\mathrm{V}_{\text {SS }}$ | Processor's ground potential. |
| 15 | XTAL 1 | One side of frequency source input using resistor, inductor, crystal or external source.(non-TTL compatible $\mathrm{V}_{\mathbf{I H}}$ ). |
| 16 | XTAL 2 | The other side of frequency source input. |
| 17 | RESET | Active high input that initializes the processor and starts the program at location zero. |
| 18-25 | $P_{10} \cdot P_{17}$ (Port 1) | The second of two 8-bit quasi bi-directional I/O ports. |
| 28 | $V_{C C}$ | +5 V power supply input. |

AC CHARACTERISTICS
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \pm 1 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Cycle Time | TCY | 8.38 |  | 50.0 | $\mu \mathrm{S}$ | $\begin{aligned} & 3.58 \mathrm{MHz} \text { XTAL (1) } \\ & \text { for } \mathrm{T}_{\mathrm{CY}} \text { Min. } \end{aligned}$ |
| Oscillator Frequency Variation (Resistor Mode) | $\Delta F$ | -20 |  | +20 | \% | $\mathrm{F}=2.5 \mathrm{MHz}$ (1) |

Note: (1) Control outputs: $C_{L}=80 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{~K} / 4.3 \mathrm{~K}$
PACKAGE OUTLINE
$\mu$ PD8021C

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{MNEMONIC} \& \multirow[b]{2}{*}{FUNCTION} \& \multirow[b]{2}{*}{DESCRIPTION} \& \multicolumn{8}{|c|}{INSTRUCTION CODE} \& \multirow[b]{2}{*}{CYCLES} \& \multirow[b]{2}{*}{BYTES} \& \multirow[t]{2}{*}{\begin{tabular}{l}
FLAG \\
C
\end{tabular}} \\
\hline \& \& \& \(\mathrm{D}_{7}\) \& \(\mathrm{D}_{6}\) \& \(\mathrm{D}_{5}\) \& \(\mathrm{D}_{4}\) \& \(\mathrm{D}_{3}\) \& \(\mathrm{D}_{2}\) \& \(\mathrm{D}_{1}\) \& \(\mathrm{D}_{0}\) \& \& \& \\
\hline \multicolumn{14}{|c|}{ACCUMULATOR} \\
\hline ADD A, = data \& \((A) \leftarrow(A)+\) data \& Add immediate the specified Data to the Accumulator. \& \[
\begin{gathered}
0 \\
d 7
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d_{6}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d_{5}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d 4
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d_{3}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d_{2}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
d_{1}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
d 0
\end{gathered}
\] \& 2 \& 2 \& - \\
\hline Add A, Rr \& \[
\begin{aligned}
\& (A) \leftarrow(A)+(R r) \\
\& \text { for } r=0-7
\end{aligned}
\] \& Add contents of designated register to the Accumulator. \& 0 \& 1 \& 1 \& 0 \& 1 \& r \& r \& r \& 1 \& 1 \& \(\bullet\) \\
\hline ADD A, @ Rr \& \[
\begin{aligned}
\& (A) \leftarrow(A)+((R r)) \\
\& \text { for } r=0-1
\end{aligned}
\] \& Add indirect the contents the data memory location to the Accumulator. \& 0 \& 1 \& 1 \& 0 \& 0 \& 0 \& 0 \& r \& 1 \& 1 \& - \\
\hline ADDC \(A,=\) data \& \((\mathrm{A}) \div(\mathrm{A})+(\mathrm{C})+\) data \& Add immediate with carry the specified data to the Accumulator. \& \[
\begin{gathered}
0 \\
d 7
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d_{6}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
\mathrm{~d} 5
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
d_{4}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d_{3}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
\mathrm{~d}_{2}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
d_{1}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
d_{0}
\end{gathered}
\] \& 2 \& 2 \& - \\
\hline ADDC A, Rr \& \[
\begin{aligned}
\& (A) \leftarrow(A)+(C)+(R r) \\
\& \text { for } r=0-7
\end{aligned}
\] \& Add with carry the contents of the designated register to the Accumulator. \& 0 \& 1 \& 1 \& 1 \& 1 \& \(r\) \& r \& r \& 1 \& 1 \& - \\
\hline ADDC A, @ Rr \& \[
\begin{aligned}
\& (A) \leftarrow(A)+(C)+((R r)) \\
\& \text { for } r=0-1
\end{aligned}
\] \& Add indirect with carry the contents of data memory location to the Accumulator. \& 0 \& 1 \& 1 \& 1 \& 0 \& 0 \& 0 \& r \& 1 \& 1 \& - \\
\hline ANL A, = data \& \((A)-(A)\) AND data \& Logical and specified Immediate Data with Accumulator. \& \[
\begin{gathered}
0 \\
d_{7}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
d_{6}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d_{5}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
d_{4}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d_{3}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d_{2}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
d_{1}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
\mathrm{~d}_{0}
\end{gathered}
\] \& 2 \& 2 \& \\
\hline ANL A, Rr \& \[
\begin{aligned}
\& (A)-(A) \text { AND }\left(R_{r}\right) \\
\& \text { for } r=0-7
\end{aligned}
\] \& Logical and contents of designated register with Accumulator. \& 0 \& 1 \& 0 \& 1 \& 1 \& r \& r \& r \& 1 \& 1 \& \\
\hline -ANL A, @ Rr \& \[
\begin{aligned}
\& (A) \leftarrow(A) \text { AND }((\operatorname{Rr})) \\
\& \text { for } r=0-1
\end{aligned}
\] \& Logical and Indirect the contents of data memory with Accumulator. \& 0 \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& r \& 1 \& 1 \& \\
\hline CPL A \& (A) .. NOT (A) \& Complement the contents of the Accumulator. \& 0 \& 0 \& 1 \& 1 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \\
\hline CLR A \& (A) \(\leftarrow 0\) \& CLEAR the contents of the Accumulator. \& 0 \& 0 \& 1 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \\
\hline DA A \& \& DECIMAL ADJUST the contents of the Accumulator. \& 0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& - \\
\hline DEC A \& \((A) \leftarrow(A)-1\) \& DECREMENT by 1 the Accumulator's contents. \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \\
\hline INC A \& \((A) \leftarrow(A)+1\) \& Increment by 1 the Accumulator's contents. \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \\
\hline ORL \(A\), data \& \((A) \leftarrow(A) O R\) data \& Logical OR specified immediate data with Accumulator \& \[
\begin{gathered}
0 \\
d_{7}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
d_{6}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
\mathrm{~d}_{5}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
\mathrm{~d}_{4}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d_{3}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d_{2}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
d_{1}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
d_{0}
\end{gathered}
\] \& 2 \& 2 \& \\
\hline ORL A, Rr \& \[
\begin{aligned}
\& (A) \leftarrow(A) O R(R r) \\
\& \text { for } r=0-7
\end{aligned}
\] \& Logical OR contents of designated register with Accumulator. \& 0 \& 1 \& 0 \& 0 \& 1 \& \(r\) \& r \& \(r\) \& 1 \& 1 \& \\
\hline ORLA@Rr \& \[
\begin{aligned}
\& (A) \leftarrow(A) \text { OR }((R r)) \\
\& \text { for } r=0-1
\end{aligned}
\] \& Logical OR Indirect the contents of data memory location with Accumulator. \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& r \& 1 \& 1. \& \\
\hline RLA \& \[
\begin{aligned}
\& (A N+1) \leftarrow(A N) \\
\& \left(A_{O}\right) \leftarrow(A 7) \\
\& \text { for } N=0-6
\end{aligned}
\] \& Rotate Accumulator left by 1 -bit without carry. \& 1 \& 1 \& 1 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \\
\hline RLCA \& \[
\begin{aligned}
\& (A N+1) \leftarrow(A N) ; N=0-6 \\
\& \left(A_{0}\right) \leftarrow(C) \\
\& (C) \leftarrow\left(A_{7}\right)
\end{aligned}
\] \& Rotate Accumulator left by. 1 -bit through carry. \& 1 \& 1 \& 1 \& 1 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& - \\
\hline RR A \& \[
\begin{aligned}
\& (A N) \leftarrow(A N+1) ; N=0-6 \\
\& \left(A_{7}\right) \leftarrow\left(A_{0}\right)
\end{aligned}
\] \& Rotate Accumulator right by 1 -bit without carry. \& 0 \& 1 \& 1 \& 1 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \\
\hline RRC A \& \[
\begin{aligned}
\& (A N) \leftarrow(A N+1) ; N=0-6 \\
\& (A 7) \leftarrow(C) \\
\& \text { (C) } \leftarrow\left(A_{0}\right)
\end{aligned}
\] \& Rotate Accumulator right by 1 -bit through carry. \& 0 \& 1 \& 1 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& - \\
\hline SWAP A \& \(\left(A_{4.7}\right) \rightleftarrows\left(A_{0}-3\right)\) \& Swap the 24 -bit nibbles in the Accumulator. \& 0 \& 1 \& 0 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \\
\hline XRL \(A_{\text {, }}=\) data \& \((\mathrm{A}) \leftarrow(\mathrm{A}) \times \mathrm{OR}\) data \& Logical XOR specified immediate data with Accumulator. \& \[
\begin{gathered}
1 \\
d_{7}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
d_{6}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d_{5}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
d 4
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
d_{3}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
\mathrm{~d}_{2}
\end{gathered}
\] \& \[
\begin{aligned}
\& 1 \\
\& d_{1}
\end{aligned}
\] \& \[
\begin{gathered}
1 \\
d_{0}
\end{gathered}
\] \& 2 \& 2 \& \\
\hline XRL A, Rr \& \[
\begin{aligned}
\& (A) \leftarrow(A) \text { XOR }(R r) \\
\& \text { for } r=0-7
\end{aligned}
\] \& Logical XOR contents of designated register with Accumulator. \& 1 \& 1 \& 0 \& 1 \& 1 \& \(r\) \& r \& r \& 1 \& 1 \& \\
\hline XRL A, @ Rr \& \[
\begin{aligned}
\& (A) \leftarrow(A) \text { XOR }((\mathrm{Rr})) \\
\& \text { for } r=0-1
\end{aligned}
\] \& Logical XOR Indirect the contents of data memory location with Accumulator. \& 1 \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& \(r\) \& 1 \& 1 \& \\
\hline \multicolumn{14}{|c|}{BRANCH} \\
\hline DJNZ Rr, addr \& \[
\begin{aligned}
\& (R r) \leftarrow(R r)-1 ; r=0-7 \\
\& I f(R r) \neq 0 \\
\& (P C 0-7) \leftarrow \text { addr }
\end{aligned}
\] \& Decrement the specified register and test contents. \& \[
\begin{gathered}
1 \\
a 7
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{6}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
\text { a5 }
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
04
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
\text { a3 }
\end{gathered}
\] \& \[
a_{2}
\] \& \[
\begin{gathered}
\mathrm{r} \\
\mathrm{a}_{1}
\end{gathered}
\] \& \[
\begin{gathered}
r \\
a \\
a
\end{gathered}
\] \& 2 \& 2 \& \\
\hline JC addr \& \[
\begin{aligned}
\& (P C 0-7) \leftarrow \text { addr if } C=1 \\
\& (P C) \leftarrow(P C)+2 \text { if } C=0
\end{aligned}
\] \& Jump to specified address if carry flag is set. \& \[
\begin{gathered}
1 \\
a_{7}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a 6
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
\text { a5 }
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
\mathrm{a4}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a_{3}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{2}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
\mathrm{a}_{1}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a 0
\end{gathered}
\] \& 2 \& 2 \& \\
\hline JMP addr \({ }^{\prime}\) \& \[
\begin{aligned}
\& (\text { PC } 8-10) \leftarrow \operatorname{addr} 8-10 \\
\& (\text { PC } 0-7) \leftarrow \operatorname{addr} 0-7 \\
\& (\text { PC 11) } \leftarrow \text { DBF }
\end{aligned}
\] \& Direct Jump to specified address within the \(\mathbf{2 K}\) address block. \& \& \& \[
\begin{aligned}
\& \text { a8 } \\
\& \text { a5 }
\end{aligned}
\] \& \[
\begin{gathered}
0 \\
\text { a4 }
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a_{3}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{2}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a_{1}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a_{0}
\end{gathered}
\] \& 2 \& 2 \& \\
\hline JMPP @ A \& \((P C 0-7) \leftarrow((A))\) \& Jump indirect to specified address with address page. \& 1 \& 0 \& 1 \& 1 \& 0 \& 0 \& 1 \& 1 \& 2 \& 1 \& . \\
\hline JNC addr \& \begin{tabular}{l}
(PC 0-7) \(\leftarrow\) addr if \(\mathrm{C}=0\) \\
\((P C) \leftarrow(P C)+2\) if \(C=1\)
\end{tabular} \& Jump to specified address if carry flag is low. \& \[
\begin{gathered}
1 \\
a 7
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a 6
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
\text { a5 }
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
04
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
\text { a3 }
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{2}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{1}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a_{0}
\end{gathered}
\] \& 2 \& 2 \& \\
\hline JNT1 addr \& \[
\begin{aligned}
\& (\mathrm{PC} 0-7) \leftarrow \text { addr if } \mathrm{T} 1=0 \\
\& (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } \mathrm{T} 1=1
\end{aligned}
\] \& Jump to specified address if Test 1 is low. \& \[
\begin{gathered}
0 \\
07
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a 6
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
\text { a5 }
\end{gathered}
\] \& \begin{tabular}{c}
0 \\
\\
\\
\\
\hline
\end{tabular} \& 0
a3 \& 1
\({ }^{1} 2\) \& \[
\begin{gathered}
1 \\
a_{1}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
\text { a0 }
\end{gathered}
\] \& 2 \& 2 \& \\
\hline JNZ addr \& \[
\begin{aligned}
\& (P C 0-7) \leftarrow \text { addr if } A=0 \\
\& \text { (PC) } \leftarrow(P C)+2 \text { if } A=0
\end{aligned}
\] \& Jump to specified address if Accumulator is non-zero. \& \[
\begin{gathered}
1 \\
a 7
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
\text { a6 }
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
\text { a5 }
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a 4
\end{gathered}
\] \& 0
\(a_{3}\) \& 1
\({ }^{1} 2\) \& \[
\begin{gathered}
1 \\
a_{1}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
\text { a0 }
\end{gathered}
\] \& 2 \& 2 \& \\
\hline JTF addr \& \[
\begin{aligned}
\& (P C O-7)+\text { addr if } T F=1 \\
\& (P C) \leftarrow(P C)+2 \text { if } T F=0
\end{aligned}
\] \& Jump to specified address if Timer Flag is set to 1 . \& \[
\begin{gathered}
0 \\
a_{7}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a_{6}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
05
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a 4
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a_{3}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{2}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{1}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a 0
\end{gathered}
\] \& 2 \& 2 \& \\
\hline JT1 addr \& \[
\begin{aligned}
\& (\mathrm{PC} 0-7) \leftarrow \text { addr if } \mathrm{T} 1=1 \\
\& (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \text { if } \mathrm{T} 1=0
\end{aligned}
\] \& Jump to specified address if Test 1 is a 1. \& \[
\begin{gathered}
0 \\
a 7
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a_{6}
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a_{5}
\end{gathered}
\] \& \begin{tabular}{l}
1 \\
3 \\
\hline
\end{tabular} \& 0
\(\mathrm{a}_{3}\) \& 1
\(a_{2}\) \& \[
\begin{gathered}
1 \\
a_{1}
\end{gathered}
\] \& 0
a \& 2 \& 2 \& . \\
\hline JZ addr \& \[
\begin{aligned}
\& (P C 0-7) \leftarrow \text { addr if } A=0 \\
\& (P C) \leftarrow(P C)+2 \text { if } A=0
\end{aligned}
\] \& Jump to specified address if Accumulator is 0 . \& \[
\begin{gathered}
1 \\
a_{7}
\end{gathered}
\] \& \[
\begin{gathered}
1 \\
a 6
\end{gathered}
\] \& \[
\begin{gathered}
0 \\
a_{5}
\end{gathered}
\] \& 0

4 \& 0
a \& 1

$a_{2}$ \& \[
$$
\begin{gathered}
1 \\
a_{1}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{0}
\end{gathered}
$$
\] \& 2 \& 2 \& <br>

\hline
\end{tabular}

| MNEMONIC | FUNCTION | DESCRIPTION | INSTRUCTION CODE |  |  |  |  |  |  |  | CYCLES | BYTES | FLAG <br> C |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{D}_{7}$ | $\mathrm{D}_{6}$ | $\mathrm{D}_{5}$ | $\mathrm{D}_{4}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{1}$ | $\mathrm{D}_{0}$ |  |  |  |
| DATA MOVES |  |  |  |  |  |  |  |  |  |  |  |  |  |
| MOV ${ }_{\text {c }}$ = data | $(\mathrm{A}) \leftarrow$ data | Move Immediate the specified data into the Accumulator. | $\begin{gathered} 0 \\ d_{7} \end{gathered}$ | $\begin{gathered} 0 \\ d_{6} \end{gathered}$ | $\begin{gathered} 1 \\ d_{5} \end{gathered}$ | $\begin{gathered} 0 \\ d_{4} \end{gathered}$ | $\begin{gathered} 0 \\ d_{3} \end{gathered}$ | $\begin{gathered} 0 \\ d_{2} \end{gathered}$ | $\begin{gathered} 1 \\ d_{1} \end{gathered}$ | $\begin{gathered} 1 \\ d_{0} \end{gathered}$ | 2 | 2 |  |
| MOV A, Rr | $(\mathrm{A})-(\mathrm{Rr}): r=0-7$ | Move the contents of the designated registers into the Accumulator. | 1 | 1 | 1 | 1 |  | r | r | r | 1 | 1 |  |
| MOV A, @ Rr | $(\mathrm{A}) \leftarrow((\mathrm{Rr})) ; \mathrm{r}=0-1$ | Move Indirect the contents of data memory location into the Accumulator. | 1 | 1 | 1 | 1 | 0 | 0 | 0 | $r$ | 1 | 1 |  |
| MOVRr, = data | $(\mathrm{Rr}) \leftarrow$ data; $\mathrm{r}=0-7$ | Move Immediate the specified data into the designated register. | $\begin{gathered} 1 \\ d_{7} \end{gathered} .$ | $\begin{gathered} 0 \\ d_{6} \end{gathered}$ | $\begin{gathered} 1 \\ d 5 \end{gathered}$ | $\begin{gathered} 1 \\ d_{4} \end{gathered}$ | $\begin{gathered} 1 \\ d_{3} \end{gathered}$ | $\begin{gathered} \mathrm{r} \\ \mathrm{~d}_{2} \end{gathered}$ | $\begin{gathered} r \\ d_{1} \end{gathered}$ | $\begin{gathered} \mathrm{r} \\ \mathrm{~d} \end{gathered}$ | 2 , | 2 |  |
| MOV Rr, A | $(\mathrm{Rr}) \leftarrow(\mathrm{A}) ; \mathrm{r}=0-7$ | Move Accumulator Contents into the designated register. | 1 | 0 | 1 | 0 | 1 | $r$ | $r$ | $r$ | 1 | 1 |  |
| MOV @ Rr, A | $((\mathrm{Rr})) \leftarrow(\mathrm{A}) ; \mathrm{r}=0-1$ | Move Indirect Accumulator Contents into data merriory location. | 1 | 0 | 1 | 0 | 0 | 0 | 0 | $r$ | 1 | 1 |  |
| MOV @ Rr, = data | $(1 R r) \leftarrow$ data; $r=0-1$ | Move Immediate the specified data into data memory. | $\begin{gathered} 1 \\ \mathrm{~d}_{7} \end{gathered}$ | $\begin{gathered} 0 \\ d_{6} \end{gathered}$ | $\begin{gathered} 1 \\ d_{5} \end{gathered}$ | $\begin{gathered} 1 \\ \mathrm{~d}_{4} \end{gathered}$ | $\begin{gathered} 0 \\ d_{3} \end{gathered}$ | $\begin{gathered} 0 \\ \mathrm{~d}_{2} \end{gathered}$ | $\begin{gathered} 0 \\ d_{1} \end{gathered}$ | $\begin{gathered} r \\ d_{0} \end{gathered}$ | 2 | 2 |  |
| MOVP A, @ A | $\begin{aligned} & (P C 0-7) \leftarrow(A) \\ & (A) \leftarrow((P C)) \end{aligned}$ | Move data in the current page into the Accumulator. | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 2 | 1 |  |
| $\mathrm{XCH} \mathrm{A}$, | $(\mathrm{A}) \rightleftarrows(\mathrm{Rr}) ; \mathrm{r}=0-7$ | Exchange the Accumulator and designated register's contents. | 0 | 0 | 1 | 0 | 1 | $r$ | $r$ | r | 1 | 1 |  |
| $\times \mathrm{CH} A, @ \mathrm{Rr}^{\text {r }}$ | $(A) \nleftarrow((R r)) ; r=0-1$ | Exchange Indirect contents of Accumulator and location in data memory. | 0 | 0 | 1 | 0 | 0 | 0 | 0 | r | 1. | 1 |  |
| XCHD A, @ Rr | $\begin{aligned} & (A 0-3) \rightleftarrows((\mathrm{Rr})) 0-3)) ; \\ & r=0-1 \end{aligned}$ | Exchange Indirect 4-bit contents of Accumulator and data memory. | 0 | 0 | 1 | 1 | 0 | 0 | 0 | $r$ | 1 | 1 |  |
| FLAGS |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CPL C | (C) $\leftarrow$ NOT (C) | Complement Content of carry bit. | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | - |
| CLR C | (C) -0 | Clear content of carry bit to 0 . | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | - |
| INPUT/OUTPUT |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ANLD Pp, A | $\begin{aligned} & \left(P_{p}\right) \leftarrow\left(P_{p}\right) \text { AND }(A 0-3) \\ & p=4-7 \end{aligned}$ | Logical and contents of Accumulator with designated port (4-7). | 1 | 0 | 0 | 1 | 1 | 1 | p | p | 2 | 1 |  |
| $\text { IN A, } P_{p}$ | $(\mathrm{A})+\left(\mathrm{P}_{\mathrm{p}}\right) ; \mathrm{p}=1-2$ | Input data from designated port (1-2) into Accumulator. | 0 | 0 | 0 | 0 | 1 | 0 | p | p | 2 | 1 |  |
| MOVD A, Pp | $\begin{aligned} & (A 0-3) \leftarrow\left(P_{p}\right) ; p=4-7 \\ & (A 4-7) \leftarrow 0 \end{aligned}$ | Move contents of designated port (4-7) into Accumulator. | 0 | 0 | 0 | 0 | 1 | 1 | p | $p$ | 2 | 1 |  |
| MOVD $P_{p}, A$ | $\left(P_{p}\right)-A 0-3 ; p=4-7$ | Move contents of Accumulator to designated port (4-7). | 0 | 0 | 1 | 1 | 1 | 1 | $p$ | $p$ | 1 | 1 |  |
| ORLD Prp $A$ | $\begin{aligned} & \left(P_{p}\right) \leftarrow\left(P_{p}\right) \text { OR }\left(\begin{array}{ll} A & 0-3 \end{array}\right) \\ & p=4-7 \end{aligned}$ | Logical or contents of Accumulator with designated port (4-7). | 1 | 0 | 0 | 0 | 1 | 1 | p | p | 1 | 1 | , |
| OUTL P $P_{p}, A$ | $\left(P_{p}\right) \leftarrow(A) ; p=1-2$ | Output contents of Accumulator to designated port (1-2). | 0 | 0 | 1 | 1 | 1 | 0 | p | p | 1 | 1 |  |
| REGISTERS |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $\left(R_{r}\right) \leftarrow\left(R_{r}\right)+1 ; r=0-7$ | Increment by 1 contents of designated reyister. | 0 | 0 | 0 | 1 | 1 | $r$ | $r$ | r | 1 | 1 |  |
| INC @ Rr | $\begin{aligned} & ((R r))-((R r))+1 ; \\ & r=0-1 \end{aligned}$ | Increment Indirect by 1 the contents of data memory location. | 0 | 0 | 0 | 1 | 0 | 0 | 0 | r | 1 | 1 |  |
| SUBROUTINE |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CALL addr | $\begin{aligned} & ((S P)) \leftarrow(P C),(\text { PSW } 4-7) \\ & (S P) \leftarrow(S P)+1 \\ & (P C 8-10) \leftarrow \text { addr } 8-10 \\ & (\text { PC } 0-7) \leftarrow \text { addr } 0-7 \\ & (\text { PC 11) DBF } \end{aligned}$ | Call designated Subroutine. | $\begin{aligned} & a_{10} \\ & a_{7} \end{aligned}$ | $\begin{aligned} & \text { a9 } \\ & \text { a6 } \end{aligned}$ | $\begin{aligned} & \text { a8 } \\ & \text { a5 } \end{aligned}$ | $\begin{array}{r} 1 \\ a 4 \end{array}$ | $\begin{gathered} 0 \\ \text { a3 } \end{gathered}$ | $\begin{gathered} 1 \\ a_{2} \end{gathered}$ | $\begin{gathered} 0 \\ a_{1} \end{gathered}$ | $\begin{gathered} 0 \\ a_{0} \end{gathered}$ | 2 | 2 |  |
| RET | $\begin{aligned} & (S P) \leftarrow(S P)-1 \\ & (P C) \leftarrow((S P)) \end{aligned}$ | Return from Subroutine without restoring Program Status Word. | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 1 |  |
| TIMER/COUNTER |  |  |  |  |  |  |  |  |  |  |  |  |  |
| MOV A, T | $(A) \leftarrow(T)$ | Move contents of Timer/Counter into Accumulator. | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |  |
| MOV T, A | $(T) \leftarrow(A)$ | Move contents of Accumulator into Timer/Counter. | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |  |
| STOP TCNT |  | Stop Count for Event Counter. | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 |  |
| STRT CNT |  | Start Count for Event Counter. | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 |  |
| STRT T |  | Start Count for Timer. | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 |  |
| MISCELLANEOUS |  |  |  |  |  |  |  |  |  |  |  |  |  |
| NOP |  | No Operation performed. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |  |

Notes: (1) Instruction Code Designations $r$ and $p$ form the binary representation of the Registers and Ports involved.
(2) The dot under the appropriate flag bit indicates that its content is subject to change by the instruction it appears in.
(3) References to the address and data are specified in bytes 2 and/or 1 of the instruction.
(4) Numerical.Subscripts appearing in the FUNCTION column reference the specific bits affected.

Symbol Definitions

| SYMBOL | DESCRIPTION |
| :---: | :--- |
| A | The Accumulator |
| addr | Program Memory Address (12 bits) |
| C | Carry Flag |
| CLK | Clock Signal |
| CNT | Event Counter |
| $D$ | Nibble Designator (4 bits) |
| data | Number or Expression (8 bits) |
| $P$ | "In-Page" Operation Designator |
| $P_{p}$ | Port Designator (p $=1,2$ or $4-7$ ) |
| $R_{r}$ | Register Designator ( $r=0,1$ or $0-7$ ) |


| SYMBOL | DESCRIPTION |
| :---: | :--- |
| $T$ | Timer |
| $\mathbf{T}$ | Testable Flag 1 |
| $\mathbf{X}$ | External RAM |
| $@$ | Prefix for Immediate Data |
| $\$$ | Prefix for Indirect Address |
| $(x)$ | Program Counter's Current Value |
| $((x))$ | Contents of External RAM Location <br> by the Contents of External RAM Location |
| $\leftarrow$ | Replaced By |

NOTES

## SINGLE CHIP 8-BIT MICROCOMPUTER WITH ON-CHIP A/D CONVERTER

DESCRIPTION The NEC $\mu$ PD8022 is designed for low cost, high volume applications requiring large ROM space, analog to digital conversion capability, a capacitive touchpanel keyboard interface and/or a power line time base. The $\mu$ PD8022 satisfies these requirements by integrating on one chip, an 8-bit $\mu$ PD8021 type processor with 2 K of ROM, a 2 channel 8 -bit A/D converter, a high impedance comparator input port, and a zero crossing detector.

FEATURES - 8-Bit Processor, ROM, RAM, I/O and Clock Generator

- Single +5 V Supply ( 4.5 V to 6.5 V )
- NMOS Silicon Gate Technology
- 2K x 8 ROM, $64 \times 8$ RAM, 26 I/O Lines
- On Chip 8-Bit A/D Converter with 2 Input Channels
- $8.3 \mu \mathrm{~s}$ Instruction Cycle Timer
- Instructions are a Subset of $\mu$ PD8048; Superset of $\mu$ PD8021
- Internal Timer/Event Counter
- External and Timer/Counter Interrupts
- On Chip Zero-Cross Detector
- High Impedance Comparator Port with Variable Threshold
- Clock Generator Using a Crystal or Single Inductor
- High Current Drive Capability on 2 I/O Pins
- Expandable I/O Utilizing the $\mu$ PD8243
- Available in 40 -Pin Plastic Dual-In-Line Package

PIN CONFIGURATION



Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature (Ceramic Package) . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
(Plastic Package) . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage on Any Pin . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to +7 Volts (1)
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Watt
Note: (1) With Respect to Ground.
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \pm 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input Low Voltage | $V_{\text {IL }}$ | -0.5 |  | 0.8 | V | $\mathrm{V}_{\text {TH }}$ Floating |
| Input Low Voltage (Port 0) | VIL1 | -0.5 |  | $\mathrm{V}_{\mathrm{TH}^{-0.1}}$ | V |  |
| Input High Voltage (All except XTAL 1, RESET) | $\mathrm{V}_{\text {IH }}$ | 2.0 |  | $\mathrm{V}_{\mathrm{CC}}$ | V | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \pm 10 \% \\ & \mathrm{~V}_{\mathrm{TH}} \text { Floating } \end{aligned}$ |
| Input High Voltage (All except XTAL 1, RESET) | VIH1 | 3.0 |  | $\mathrm{V}_{\mathrm{CC}}$ | V | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \pm 1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{TH}} \text { Floating } \end{aligned}$ |
| Input High Voltage (Port 0) | VIH2 | $\mathrm{V}_{\mathrm{TH}}{ }^{+0.1}$ |  | $\mathrm{V}_{\mathrm{CC}}$ | V |  |
| Input High Voltage (RESET, XTAL 1) | VIH3 | 3.0 |  | $\mathrm{V}_{\mathrm{CC}}$ | V |  |
| Port 0 Threshold Voltage | $V_{\text {TH }}$ | 0 |  | 0.4 VCC | V |  |
| Output Low Voltage | $\mathrm{V}_{\mathrm{OL}}$ |  |  | 0.45 | V | $1 \mathrm{OL}=1.6 \mathrm{~mA}$ |
| Output Low Voltage $\left(P_{10}, P_{11}\right)$ | VOL1 |  |  | 0.25 | V | $\mathrm{I}^{\mathrm{OL}}=7 \mathrm{~mA}$ |
| Output High Voltage (All unless open drain option for Port 0) | $\mathrm{V}_{\mathrm{OH}}$. | 2.4 |  | . | V | ${ }^{1} \mathrm{OH}=50 \mu \mathrm{~A}$ |
| Input Current (T1) | 'L1 |  |  | $\pm 200$ | $\mu \mathrm{A}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \geqslant \mathrm{~V}_{\mathrm{IN}} \\ & \geqslant \mathrm{~V}_{\mathrm{SS}}+0.45 \mathrm{~V} \end{aligned}$ |
| Output Leakage Current (Open drain option for Port 0) | ILO |  |  | $\pm 10$ | $\mu \mathrm{A}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \geqslant \mathrm{~V}_{\mathrm{IN}} \\ & \geqslant \mathrm{~V}_{\mathrm{SS}}+0.45 \mathrm{~V} \end{aligned}$ |
| $V_{\text {cc }}$ Supply Current | ${ }^{\prime} \mathrm{CC}$ |  |  | 100 | mA |  |

ABSOLUTE MAXIMUM RATINGS*

DC CHARACTERISTICS

| PIN |  | FUNCTION |
| :---: | :---: | :---: |
| NO. | SYMBOL |  |
| 8 | $\mathrm{T}_{0}$ | Active low interrupt input if enabled. Also testable using the conditional jump instructions JTO and JNTO. |
| 19 | $\mathrm{T}_{1}$ | Zero-cross detector input. After executing a STRT.CNT instruction this becomes the event counter input. Also testable using the conditional jump instructions JT1 and JNT1. Optional ROM mask pull-up resistor available. |
| 6 | ANO | Analog input to the A/D converter after execution of the SEL ANO instruction. |
| 5 | AN1 | Analog input to the A/D converter after execution of the SEL AN1 instruction. |
| 22 | XTAL 1 | Input for internal oscillator connected to one side of a crystal or inductor. Serves as an external frequency input also (Non-TTL compatible $\mathrm{V}_{\mathrm{IH}}$ ). |
| 23 | XTAL 2 | Input for internal oscillator connected to the other side of a crystal or inductor. This pin is not used when employing an external frequency source. |
| 37 | PROG | Strobe output for the $\mu$ PD8243 1/O expander. |
| 18 | ALE | Active high address latch enable output occurring once every instruction cycle. Can be used as an output clock. |
| 24 | RESET | Active high input that initializes the processor to a defined state and starts the program at memory location zero. |
| 40 | $\mathrm{V}_{\mathrm{CC}}$ | +5 V power supply. |
| 3 | $\mathrm{AV}_{\text {CC }}$ | +5V A/D converter power supply. |
| 20 | $\mathrm{V}_{\text {SS }}$ | Power supply ground potential. |
| 7 | $\mathrm{AV}_{\text {SS }}$ | A/D converter power supply ground potential. Sets conversion range lower limit. |
| 4 | $V_{\text {REF }}$ | Reference voltage for A/D converter. Sets conversion range upper limit. |
| 9 | $\mathrm{V}_{\text {TH }}$ | Port 0 comparator threshold reference input. |
| 21 | SUBST | Substrate connection used with bypass capacitor to $\mathrm{V}_{\mathrm{SS}}$ for substrate voltage stabilization and improvement of $A / D$ accuracy. |
| 10-17 | $\mathrm{P}_{00}{ }^{-P_{07}}$ | Port 0.8 -bit open drain I/O port with comparator inputs. The reference threshold is set via $\mathrm{V}_{\mathrm{TH}}$. Optional ROM mask pull-up resistors available. |
| 25-32 | $\mathrm{P}_{10}{ }^{-\mathrm{P}_{17}}$ | Port 1.8-bit quasi-bidirectional port. TTL compatible. |
| $\begin{array}{\|c\|} \hline 1-2 \\ 33-36 \\ 38-39 \\ \hline \end{array}$ | $\mathrm{P}_{20}{ }^{-\mathrm{P}_{27}}$ | Port 2.8-bit quasi-bidirectional port. TTL compatible. $\mathrm{P}_{20}{ }^{-\mathrm{P}_{23}}$ also function as an I/O expander port for the $\mu$ PD8243. |

$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \pm 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$

| PARAMETER | SYMBOL | L IMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Cycle Time | ${ }^{t} \mathrm{CY}$ | 8.38 | $\because$ | 50.0 | $\mu \mathrm{s}$ | 3.58 MHz XTAL for ${ }^{t} C Y$ min. |
| Zero-Cross Detection Input (T1) | $\mathrm{V}_{\mathrm{T} 1}$ | 1 | . | 3 | $V A C_{p p}$ | AC coupled |
| Zero-Cross Accuracy | AZC |  |  | $\pm 135$ | mV | 60 Hz Sine Wave |
| Zero-Cross Detection Input Frequency (T1) | ${ }^{\text {FT1 }}$ | 0.06 |  | 1 | kHz |  |
| Port Control Setup Before Falling Edge of PROG | ${ }^{t} \mathrm{CP}$ | 0.5 |  |  | $\mu \mathrm{s}$ | $\begin{aligned} & { }^{\mathrm{t}} \mathrm{CY}=8.38 \mu \mathrm{~s}, \\ & \mathrm{C}_{\mathrm{L}}=80 \mathrm{pF} \end{aligned}$ |
| Port Control Hold After Falling Edge of PROG | ${ }^{\text {tPC }}$ | 0.8 |  |  | $\mu \mathrm{s}$ | $\begin{aligned} & { }^{\mathrm{t}} \mathrm{CY}=8.38 \mu \mathrm{~s}, \\ & \mathrm{C}_{\mathrm{L}}=80 \mathrm{pF} \end{aligned}$ |
| PROG to Time P2 Input Must be Valid | ${ }^{\text {t PR }}$ |  |  | 1.0 | $\mu \mathrm{s}$ | $\begin{aligned} & \mathrm{t} \mathrm{CY}=8.38 \mu \mathrm{~s}, \\ & \mathrm{C}_{\mathrm{L}}=80 \mathrm{pF} \end{aligned}$ |
| Output Data Setup Time | ${ }^{\text {tpP }}$ | 7.0 |  |  | $\mu \mathrm{s}$ | $\begin{aligned} & { }^{\mathrm{t}} \mathrm{CY}=8.38 \mu \mathrm{~s}, \\ & \mathrm{C}_{\mathrm{L}}=80 \mathrm{pF} \end{aligned}$ |
| Output Data Hold Time | ${ }^{\text {t PD }}$ | 8.3 |  |  | $\mu \mathrm{s}$ | $\begin{aligned} & { }^{\mathrm{t}} \mathrm{CY}=8.38 \mu \mathrm{~s}, \\ & \mathrm{C}_{\mathrm{L}}=80 \mathrm{pF} \end{aligned}$ |
| Input Data Hold Time | tPF | 0 |  | 150 | $\mu \mathrm{s}$ | $\begin{aligned} & { }^{\mathrm{t}} \mathrm{C}_{\mathrm{C}}=8.38 \mu \mathrm{~s}, \\ & \mathrm{C}_{\mathrm{L}}=80 \mathrm{pF} \end{aligned}$ |
| PROG Pulse Width | tpp | 8.3 |  |  | $\mu \mathrm{s}$ | $\begin{aligned} & { }^{\mathrm{t}} \mathrm{CY}=8.38 \mu \mathrm{~s}, \\ & \mathrm{C}_{\mathrm{L}}=80 \mathrm{pF} \end{aligned}$ |
| ALE to Time P2 Input Must be Valid | ${ }^{\text {tPRL }}$ |  |  | 3.6 | $\mu \mathrm{s}$ | $\begin{aligned} & { }^{\mathrm{t}} \mathrm{CY}=8.38 \mu \mathrm{~s}, \\ & \mathrm{C}_{\mathrm{L}}=80 \mathrm{pF}, \end{aligned}$ |
| Output Data Setup Time | ${ }^{\text {tPL }}$ | 0.8 |  |  | $\mu \mathrm{s}$ | $\begin{aligned} & { }^{\mathrm{t}} \mathrm{CY}=8.38 \mu \mathrm{~s}, \\ & \mathrm{C}_{\mathrm{L}}=80 \mathrm{pF} \end{aligned}$ |
| Output Data Hold Time | ${ }^{\text {t }}$ LP | 1.6 |  |  | $\mu \mathrm{s}$ | $\begin{aligned} & { }^{\mathrm{t}} \mathrm{CY}=8.38 \mu \mathrm{~s}, \\ & \mathrm{C}_{\mathrm{L}}=80 \mathrm{pF} \end{aligned}$ |
| Input Data Hold Time | tPFL | 0 |  |  | $\mu \mathrm{s}$ | $\begin{aligned} & \mathrm{t}_{\mathrm{C} Y}=8.38 \mu \mathrm{~s}, \\ & \mathrm{C}_{\mathrm{L}}=80 \mathrm{pF} \end{aligned}$ |
| ALE Pulse Width | ${ }^{\text {t L L }}$ | 3.9 |  | 23.0 | $\mu \mathrm{s}$ | $\begin{aligned} & \text { tcy }=8.38 \mu \mathrm{~s} \\ & \text { for } \mathrm{min} . \end{aligned}$ |

PORT 2 TIMING


A/D CONVERTER CHARACTERISTICS
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \pm 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, A \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V} \pm 1 \mathrm{~V}, A \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$ $A V_{C C} / 2 \leqslant V_{A R E F} \leqslant A V_{C C}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNITS | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Resolution |  | 8 |  |  | BITS |  |
| Switch Point Accuracy | ${ }^{\text {A SP }}$ |  | $\pm 1 / 2$ |  | LSB | (2) |
| Absolute Accuracy | $\mathrm{A}_{\text {AB }}$ |  | $\pm 1$ |  | LSB |  |
| Sample Setup Before Falling Edge of ALE | ${ }^{\text {t }}$ SS |  | 0.20 |  | ${ }^{\text {t }} \mathrm{C}$ | (1) |
| Sample Hold After Falling Edge of ALE | ${ }^{\text {t }} \mathrm{SH}$ |  | 0.10 |  | ${ }^{\text {t }} \mathrm{C}$ | (1) |
| Input Capacitance (ANO, AN1) | $\mathrm{C}_{\text {AD }}$ |  | 1 |  | pF |  |
| Conversion Time | ${ }^{\text {t }}$ CNV | 4 |  | 4 | ${ }^{\text {t }} \mathrm{C} Y$ |  |
| Conversion Range |  | AVSS |  | $V_{\text {AREF }}$ | V |  |
| Reference Voltage | $\mathrm{V}_{\text {AREF }}$ | $\mathrm{AV}_{\mathrm{CC}} / 2$ |  | AVCC | V |  |

Note: (1) The analog signal on ANO and AN1 must remain constant during the sample time ${ }^{t} \mathrm{SS}^{+}{ }^{\mathrm{t}} \mathrm{SH}$
(2)


TIMING WAVEFORM


| ITEM | MILLIMETERS | INCHES |
| :--- | :---: | :--- |
| A | 51.5 MAX | 2.028 MAX |
| B | 1.62 | 0.064 |
| C | $2.54 \pm 0.1$ | $0.10 \pm 0.004$ |
| D | $0.5 \pm 0.1$ | $0.019 \pm 0.004$ |
| E | 48.26 | 1.9 |
| F | 1.2 MIN | 0.047 MIN |
| G | 2.54 MIN | 0.10 MIN |
| H | 0.5 MIN | 0.019 MIN |
| I | 5.22 MAX | 0.206 MAX |
| J | 5.72 MAX | 0.225 MAX |
| K | 15.24 | 0.600 |
| L | 13.2 | 0.520 |
| M | $0.25+0.1$ | $0.010+0.004$ |

The instruction set of the $\mu$ PD8022 is a subset of the $\mu$ PD8048 instruction set except for three instructions, SEL ANO, SEL AN1, and RAD, which are unique to the $\mu$ PD8022. The $\mu$ PD8022 instruction set is also a superset of the $\mu$ PD8021, meaning that the $\mu$ PD8022 will execute ALL of the $\mu$ PD8021 instructions PLUS some additional instructions which are listed below. For a summary of the $\mu$ PD8021 instruction set, please refer to that section. Symbols used below are defined in the same manner as in that section. Also note that the instructions listed below do not affect any status flags.

PACKAGE OUTLINE $\mu$ PD8022C

| MNEMONIC | FUNCTION | DESCRIPTION | INSTRUCTION CODE |  |  |  |  |  |  |  | CYCLES | BYTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{D}_{7}$ | $\mathrm{D}_{6}$ | $\mathrm{D}_{5}$ | $\mathrm{D}_{4}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{1}$ | $\mathrm{D}_{0}$ |  |  |
| JTO addr | $\begin{aligned} & \left(\mathrm{PC}_{0}-7\right) \leftarrow \text { addr if } \\ & \mathrm{T} 0=1 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \\ & \text { if } \mathrm{TO}=0 \end{aligned}$ | Jump to specified address if TO is high | 0 <br> a7 | $0$ $a_{6}$ | $\begin{array}{\|c\|} \hline 1 \\ a_{5} \\ \hline \end{array}$ | $\begin{gathered} 1 \\ a_{4} \end{gathered}$ | 0 <br> a3 | 1 <br> $a_{2}$ | $\begin{aligned} & 1 \\ & a_{1} \end{aligned}$ | 0 <br> $a_{0}$ | 2 | 2 |
| JNTO addr | $\begin{aligned} & \left(\mathrm{PC}_{0.7}\right) \leftarrow \text { addr if } \\ & \mathrm{TO}=0 \\ & (\mathrm{PC}) \leftarrow(\mathrm{PC})+2 \\ & \text { if } \mathrm{TO}=1 \end{aligned}$ | Jump to specified address if TO is low | $\begin{array}{\|c} 0 \\ a_{7} \end{array}$ | 0 a6 | $1$ $a_{5}$ | $\begin{gathered} 0 \\ \mathrm{a}_{4} \end{gathered}$ |  | $\begin{array}{r\|} 1 \\ a_{2} \end{array}$ | $\begin{gathered} 1 \\ a_{1} \end{gathered}$ | 0 <br> a0 | 2 | 2 |
| RAD | $(\mathrm{A}) \leftarrow(\mathrm{CRR})$ | Move to $A$ the contents of the $A / D$ conversion result register (CRR) | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 |
| SEL ANO |  | Select ANO as the input for the A/D converter | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 |
| SEL AN1 |  | Select AN1 as the input for the A/D converter | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 |
| EN I |  | Enable the external interrupt input TO | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 |
| DIS I |  | Disable the external interrupt input TO | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 |
| EN TCNTI |  | Enable internal timer/ counter interrupt | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 |
| DIS TCNTI |  | Disable internal timer/ counter interrupt | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 |
| RETI | $\begin{aligned} & (S P) \leftarrow(S P)-1 \\ & (P C) \leftarrow((S P)) \end{aligned}$ | Return from interrupt and re-enable interrupt input logic | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 2 | 1 |

# NEC Microcomputers, Inc. 

## UNIVERSAL PROGRAMMABLE PERIPHERAL INTERFACE 8-BIT MICROCOMPUTERS

DESCRIPTION
The $\mu$ PD8041 and $\mu$ PD8741A are 8-bit single component microcomputers which function as general purpose programmable interfaces between the host processor and many various peripheral devices. The $\mu$ PD8041 and $\mu$ PD8741A differ only in their internal program memories. The $\mu$ PD8041 contains $1024 \times 8$ bytes of mask ROM, while the $\mu$ PD8741A contains $1024 \times 8$ bytes of UV EPROM. Some of the features offered by both devices include $64 \times 8$ bytes of RAM data memory, an 8 -bit programmable counter/timer, 16 TTL compatible I/O lines, and two test inputs.

FEATURES - Fully Compatible with 8080A, 8085A, and 8048 Families

- Single +5 V Supply
- Fully Compatible ROM and EPROM Versions
- $1024 \times 8$ ROM/EPROM, $64 \times 8$ RAM
- 18 Programmable I/O Lines
- Expandable I/O
- Two Single Level Interrupts
- Single Package: 8-Bit Processor, ROM, RAM, Timer, I/O and Clock
- Asynchronous Data Register for Master Processor Interface
- Available in Both Plastic and Ceramic 40-Pin Packages

PIN CONFIGURATION


[^2]

| PIN |  | FUNCTION |
| :---: | :---: | :---: |
| No. | SYMBOL |  |
| 1,39 | $\mathrm{T}_{0}, \mathrm{~T}_{1}$ | Testable input pins using conditional transfer functions JT0, JNT0, JT1, JNT1. T 1 can be made the counter/ timer input using the STRT CNT instruction. The PROM programming and verification on the 8741A uses $\mathrm{T}_{0}$. |
| 2 | $\mathrm{X}_{1}$ | One side of the crystal input for external oscillator or frequency source. |
| 3 | $\mathrm{X}_{2}$ | The other side of the crystal input. |
| 4 | $\overline{\text { RESET }}$ | Active-low input for processor initialization. $\overline{\text { RESET }}$ is also used for EPROM programming, verification, and power down. |
| 5 | $\overline{\mathrm{SS}}$ | Single Step input (active-low). $\overline{\text { SS }}$ together with SYNC output allows the $\mu$ PD8741A to "single-step" through each instruction in program memory. |
| 6 | $\overline{\mathrm{CS}}$ | Chip Select input (active-low). $\overline{\mathrm{CS}}$ is used to select the appropriate $\mu$ PD8041/8741A on a common data bus. |
| 7 | EA | External Access input (active-high) is used for EPROM programming and EPROM/ROM verification. |
| 8 | $\overline{\mathrm{RD}}$ | Read strobe input (active-low). $\overline{\mathrm{RD}}$ will pulse low when the master processor reads data and status words from the DATA BUS BUFFER or Status Register. |
| 9 | $\mathrm{A}_{0}$ | Address input which the master processor uses to indicate if a byte transfer is a command or data. |
| 10 | $\overline{\mathrm{WR}}$ | Write strobe input (active-low). $\overline{\text { WR }}$ will pulse low when the master processor writes data or status words to the DATA BUS BUFFER or Status Register. |
| 11 | SYNC | The SYNC output pulses once for each $\mu$ PD8041/8741A instruction cycle. It can function as a strobe for external circuitry. SYNC can also be used together with $\overline{\mathrm{SS}}$ to "single-step" through each instruction in program memory. |
| 12-19 | D0-D7 BUS | The 8 -bit, bi-directional, tri-state DATA BUS BUFFER lines by which the $\mu$ PD8041/8741A interfaces to the 8 -bit master system data bus. |
| 20 | VSS | Processor's ground potential. |
| $\begin{aligned} & \text { 21-24, } \\ & 35-38 \end{aligned}$ | $\mathrm{P}_{20} \mathrm{P}_{27}$ | PORT 2 is the second of two 8 -bit, quasi-bi-directional I/O ports. $\mathrm{P}_{20}-\mathrm{P}_{23}$ contain the four most significant bits of the program counter during external memory fetches. $\mathrm{P}_{20}-\mathrm{P}_{23}$ also serve as a 4 -bit I/O bus for the $\mu$ PD8243, INPUT/OUTPUT EXPANDER. |
| 25 | PROG | Program Pulse. PROG is used in programming the $\mu$ PD8741A. It is also used as an output strobe for the $\mu$ PD8243. |
| 26 | $\mathrm{V}_{\mathrm{DD}}$ | $V_{D D}$ is the programming supply voltage for programming the $\mu$ PD8741A. It is +5 V for normal operation of the $\mu$ PD8041/8741A. VDD is also the Low Power Standby input for the ROM version. |
| 27-34 | $\mathrm{P}_{10}-\mathrm{P}_{17}$ | PORT 1 is the first of two 8 -bit quasi-bi-directional I/O ports. |
| 40 | $\mathrm{V}_{\mathrm{CC}}$ | Primary power supply. $\mathrm{V}_{\mathrm{CC}}$ must be +5 V for programming and operation of the $\mu$ PD8741A and for the operation of the $\mu$ PD8041. |

$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

| PARAMETER | SYMBOL | LIMITS |  |  |  | UNITS | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PD8041 |  | $\mu$ PD8741 |  |  |  |
|  |  | MIN | MAX | MIN | MAX |  |  |
| DBB READ |  |  |  |  |  |  |  |
| $\overline{\mathrm{CS}}, \mathrm{A}_{0}$ Setup to $\overline{\mathrm{RD}} \downarrow$ | ${ }^{\text {t AR }}$ | 0 |  | 60 |  | ns |  |
| $\overline{\mathrm{CS}}, \mathrm{A}_{0}$ Hold after $\overline{\mathrm{RD}} \uparrow$ | tra | 0 |  | 30 |  | ns |  |
| $\overline{\mathrm{RD}}$ Pulse Width | tRR | 250 |  | 300 | $2 \times \mathrm{tcy}$ | ns | ${ }^{\text {t }} \mathrm{CY}=2.5 \mu \mathrm{~s}$ |
| $\overline{\mathrm{CS}}, \mathrm{A}_{0}$ to Data Out Delay | ${ }_{\text {t }}$ AD |  | 150 |  | 370 | ns |  |
| $\overline{R D} \downarrow$ to Data Out Delay | tRD |  | 150 |  | 200 | ns |  |
| $\overline{\mathrm{RD}} \uparrow$ to Data Float Delay | ${ }^{\text {t }}$ D | 10 |  | 10 |  | ns |  |
|  |  |  | 100 |  | 140 | ns |  |
| Recovery Time between Reads and/or Writes | trv | 1 |  | 1 |  | $\mu \mathrm{s}$ |  |
| Cycle Time | ${ }^{\text {t }} \mathrm{C}$ | 2.5 |  | 2.5 |  | $\mu \mathrm{s}$ | 6 MHz Crystal |
| DBB WRITE |  |  |  |  |  |  |  |
| $\overline{\mathrm{CS}}, \mathrm{A}_{0}$ Setup to $\overline{W R} \downarrow$ | taw | 0 |  | 60 |  | ns |  |
| $\overline{\mathrm{CS}}, \mathrm{A}_{0}$ Hold after $\overline{W R} \uparrow$ | tWA | 0 |  | 30 |  | ns |  |
| $\overline{\text { WR }}$ Pulse Width | twW | 250 |  | 300 | $2 \times \mathrm{tc}$ | ns | ${ }^{\text {t }} \mathrm{CY}=2.5 \mu \mathrm{~s}$ |
| Data Setup to $\overline{W R} \uparrow$ | ${ }^{\text {t }}$ WW | 150 |  | 250 |  | ns |  |
| Data Hold after $\overline{W R} \uparrow$ | twD | 0 |  | 30 |  | ns |  |



WRITE OPERATION - DATA BUS BUFFER REGISTER


## PACKAGE OUTLINE $\mu$ PD8041C/D $\mu$ PD8741AC/D


(Plastic)

| ITEM | MILLIMETERS | INCHES |
| :--- | :---: | :--- |
| A | 51.5 MAX | 2.028 MAX |
| B | 1.62 | 0.064 |
| C | $2.54 \pm 0.1$ | $0.10 \pm 0.004$ |
| D | $0.5 \pm 0.1$ | $0.019 \pm 0.004$ |
| E | 48.26 | 1.9 |
| F | 1.2 MIN | 0.047 MIN |
| G | 2.54 MIN | 0.10 MIN |
| H | 0.5 MIN | 0.019 MIN |
| I | 5.22 MAX | 0.206 MAX |
| J | 5.72 MAX | 0.225 MAX |
| K | 15.24 | 0.600 |
| L | 13.2 | 0.520 |
| M | $0.25+0.1$ | $0.010+0.004$ |



Ceramic

| ITEM | MILLIMETERS | INCHES |
| :---: | :---: | :--- |
| A | 51.5 MAX. | 2.03 MAX. |
| B | 1.62 MAX. | 0.06 MAX. |
| C | $2.54 \pm 0.1$ | $0.1 \pm 0.004$ |
| D | $0.5 \pm 0.1$ | $0.02 \pm 0.004$ |
| E | $48.26 \pm 0.1$ | $1.9 \pm 0.004$ |
| F | 1.02 MIN. | 0.04 MIN. |
| G | 3.2 MIN. | 0.13 MIN. |
| H | 1.0 MIN. | 0.04 MIN. |
| I | 3.5 MAX. | 0.14 MAX. |
| J | 4.5 MAX. | 0.18 MAX. |
| K | 15.24 TYP. | 0.6 TYP. |
| L | 14.93 TYP. | 0.59 TYP. |
| M | $0.25 \pm 0.05$ | $0.01 \pm 0.0019$ |


|  | FUNCTION | DESCRIPTION | INSTRUCTION CODE |  |  |  |  |  |  |  |  | BYTES | c | Flags |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MNEMONIC |  |  | $\mathrm{D}_{7}$ | $\mathrm{D}_{6}$ | $\mathrm{D}_{5}$ | $\mathrm{D}_{4}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{1}$ | $\mathrm{D}_{0}$ | CyCles |  |  | AC | Fo | F1 18F | DBF |
| ACCUMULATOR |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ADD A, $=$ dita | $(A)+(A)+$ data | Add Immediate the specified Data to the Accumulator. | $\begin{gathered} 0 \\ d 7 \end{gathered}$ | $\begin{gathered} 0 \\ d_{6} \end{gathered}$ | $\begin{gathered} 0 \\ d_{5} \end{gathered}$ | $\begin{gathered} 0 \\ d_{4} \end{gathered}$ | $\begin{gathered} 0 \\ d_{3} \end{gathered}$ | $\begin{gathered} 0 \\ d_{2} \end{gathered}$ | $\begin{gathered} 1 \\ d_{1} \end{gathered}$ | $\begin{gathered} 1 \\ d_{0} \end{gathered}$ | 2 | 2 | - |  |  | , |  |
| ADD A, Rr | $\begin{aligned} & (A) \cdot(A)+(R r) \\ & \text { for } r=0-7 \end{aligned}$ | Add contents of designated register to the Accumulator. | 0 | 1 | 1 | 0 | 1 | $r$ | r | r | 1 | 1 | - |  |  |  |  |
| ADD A, @ Rr | $\begin{aligned} & (A)+(A)+\left(\left(R_{r}\right)\right) \\ & \text { for } r=0 \quad 1 \end{aligned}$ | Add Indirect the contents the data memory location to the Accumulator. | 0 | 1 | 1 | 0 | 0 | 0 | 0 | r | 1 | 1 | - |  |  |  |  |
| ADOC A. $=$ data | (A) - $(\mathrm{A})+(\mathrm{C})+$ data | Add Immediate with carry the specified data to the Accumulator. | $\begin{gathered} 0 \\ d 7 \end{gathered}$ | $\begin{gathered} 0 \\ d_{6} \end{gathered}$ | $\begin{gathered} 0 \\ d_{5} \end{gathered}$ | $\begin{gathered} 1 \\ d_{4} \end{gathered}$ | $\begin{gathered} 0 \\ d_{3} \end{gathered}$ | $\begin{gathered} 0 \\ d_{2} \end{gathered}$ | $\begin{gathered} 1 \\ d_{1} \end{gathered}$ | $\begin{gathered} 1 \\ d 0 \end{gathered}$ | 2 | 2 | - |  |  |  |  |
| ADDC A, Rr | $\begin{aligned} & (A) \cdot(A)+(C)+(R r) \\ & \text { for } r=07 \end{aligned}$ | Add with carry the contents of the designated register to the Accumulator. | 0 | 1 | 1 | 1 | 1 | $r$ | $r$ | r | 1 | 1 | - |  |  |  |  |
| ADNC A, @ Rr | $\begin{aligned} & (A) \cdots(A)+(C)+((\operatorname{Rr})) \\ & \text { for } r=0 \quad 1 \end{aligned}$ | Add Indirect with carry the contents of data memory location to the Accumulator. | 0 | 1 | 1 | 1 | 0 | 0 | 0 | $r$ | 1 | 1 | - |  |  |  |  |
| ANL $A$, = data | (A). (A) AND data | Logical and specified Immediate Data with Accumulator. | $\begin{gathered} 0 \\ d 7 \end{gathered}$ | $\begin{gathered} 1 \\ d 6 \end{gathered}$ | $\begin{gathered} 0 \\ d_{5} \end{gathered}$ | $\begin{gathered} 1 \\ d_{4} \end{gathered}$ | $\begin{gathered} 0 \\ d_{3} \end{gathered}$ | $\begin{gathered} 0 \\ d_{2} \end{gathered}$ | $\begin{gathered} 1 \\ d_{1} \end{gathered}$ | $\begin{gathered} 1 \\ d_{0} \end{gathered}$ | 2 | 2 |  |  |  |  |  |
| ANL A, Rr | $\begin{aligned} & (A)-(A) \text { AND }\left(R_{r}\right) \\ & \text { for } r=0-7 \end{aligned}$ | Logical and contents of designated. register with Accumulator. | 0 | 1 | 0 | 1 | 1 | , | r | r | 1 | 1 |  |  |  |  |  |
| ANL A, @ Rr | $\begin{aligned} & (A)-(A) \text { AND }\left(\left(R_{1}\right)\right) \\ & \text { for } r=0 \quad 1 \end{aligned}$ | Logical and Indirect the contents of data memory with Accumulator. | 0 | 1 | 0 | 1 | 0 | 0 | 0 | r | 1 | 1 |  |  |  |  |  |
| CPL A | $(A)$ - NOT (A) | Complement the contents of the Accumulato. | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |  |  |  |  |  |
| CLRA | $(\mathrm{A}) \cdot 0$ | CLEAR the contents of the Accumulator: | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |  |  |  |  |  |
| DA A |  | DECIMAL ADJUST the contents of the Accumulator. | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | - |  |  |  |  |
| DEC A | (A). (A) 1 | DECREMENT by 1 the accumulator's contents. | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |  |  |  |  |  |
| INC A | (A). $(\mathrm{A})+1$ | Increment by 1 the accumulator's contents. | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |  |  |  |  |  |
| ORLA, $=$ data | (A) . (A) OR data | Logical OR or specified immediate data with Accumulator | $\begin{gathered} 0 \\ d 7 \end{gathered}$ | $\begin{gathered} 1 \\ d_{6} \end{gathered}$ | $\begin{gathered} 0 \\ d 5 \end{gathered}$ | $\begin{gathered} 0 \\ d_{4} \end{gathered}$ | $\begin{gathered} 0 \\ d_{3} \end{gathered}$ | $\begin{gathered} 0 \\ d_{2} \end{gathered}$ | $\begin{gathered} 1 \\ d_{1} \end{gathered}$ | $\begin{gathered} 1 \\ d_{0} \end{gathered}$ | 2 | 2 |  |  |  |  |  |
| ORL A, Rr | $\begin{aligned} & (A) \cdot(A) O R(R r) \\ & \text { for } r=07 \end{aligned}$ | Logical OR contents of designated register with Accumulator. | 0 | 1 | 0 | 0 | 1 | r | r | r | 1 | 1 |  |  |  |  |  |
| ORL A, @ Rr | $\begin{aligned} & (A) \cdot(A) O R((R r)) \\ & \text { for } r=0 \quad 1 \end{aligned}$ | Logical OR indirect the contents of data memory location with Accumulator. | 0 | 1 | 0 | 0 | 0 | 0 | 0 | $r$ | 1 | 1 |  |  |  |  |  |
| RL A | $\begin{aligned} & (A N+1) \cdot(A N) \\ & \left(A_{0}\right)-\left(A_{7}\right) \\ & \text { for } N=06 \end{aligned}$ | Rotate Accumulator left by $\mathbf{1}$-bit without carry. | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |  |  |  |  |  |
| RLC A | $\begin{aligned} & (A N+1) \ldots(A N) ; N=0 \quad 6 \\ & \left(A_{0}\right)-(C) \\ & (C)-\left(A_{7}\right) \end{aligned}$ | Rotate Accumulator left by 1-bit through carry. | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | - |  |  |  |  |
| RR A | $\begin{aligned} & (A N)-(A N+1): N=0 \quad 6 \\ & (A 7)-\left(A_{0}\right) \end{aligned}$ | Rotate Accumulator right by 1 -bit without carry. | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |  |  |  |  |  |
| RRC A | $\begin{aligned} & (A N)-(A N+1): N=0-6 \\ & (A 7)-(C) \\ & (C)-\left(A_{0}\right) \end{aligned}$ | Rotate Accumulator right by 1 -bit through carry. | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | - |  |  |  |  |
| SWAP A | $\left(A_{4} 7\right) \cdot\left(A_{0}-3\right)$ | Swap the 24 -bit nibbles in the Accumulator. | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | $1$ |  |  |  |  |  |
| XRL A, \# data | (A) - (A) XOR data | Logical XOR specified immediate data with Accumulator. | $\int \begin{gathered} 1 \\ d 7 \end{gathered}$ | $\begin{gathered} 1 \\ d_{6} \end{gathered}$ | $\begin{gathered} 0 \\ d 5 \end{gathered}$ | $\begin{gathered} 1 \\ d_{4} \end{gathered}$ | $\begin{gathered} 0 \\ d_{3} \end{gathered}$ | $\begin{gathered} 0 \\ d_{2} \end{gathered}$ | $\begin{gathered} 1 \\ d_{1} \end{gathered}$ | $\begin{gathered} 1 \\ d 0 \end{gathered}$ | 2 | 2 |  |  |  |  |  |
| XRL A, Rr | $\begin{aligned} & (A) \cdot(A) \times O R(R r) \\ & \text { for } r=0-7 \end{aligned}$ | Logical XOR contents of designated register with Accumulator. | 1 | 1 | 0 | 1 | 1 | $r$ | r | , | 1 | 1 |  |  |  |  |  |
| XRL A, @ Rr | $\begin{aligned} & (A)=(A) \text { XOR }\left(\left(R_{r}\right)\right) \\ & \text { for } r=0-1 \end{aligned}$ | Logical XOR Indirect the contents of data memory location with Accumulator. | 1 | 1 | 0 | 1 | 0 | 0 | 0 | ' | 1 | 1 |  |  |  |  |  |
| BRANCH |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| DJNZ Rr, addr | $\begin{aligned} & \left(R_{r}\right)-\left(R_{r}\right)-1: t=0-7 \\ & \text { If }\left(R_{r}\right) \neq 0: \\ & (P C 0-7)-\text { addr } \end{aligned}$ | Decrement the specified register and test contents. | $\begin{gathered} 1 \\ a 7 \end{gathered}$ | $\begin{gathered} 1 \\ a_{6} \end{gathered}$ | $\begin{gathered} 1 \\ \text { a5 } \end{gathered}$ | $\begin{gathered} 0 \\ 34 \end{gathered}$ | $\begin{gathered} 1 \\ a_{3} \end{gathered}$ | $a_{2}$ | $\begin{gathered} r \\ a_{1} \end{gathered}$ | ${ }_{\text {a }}^{\text {a }}$ | 2 | 2 |  |  |  |  |  |
| JBb addr | $\begin{aligned} & (\mathrm{PC} 0-7)-\text { addr if } \mathrm{Bb}=1 \\ & (\mathrm{PC})-(\mathrm{PC})+2 \text { if } \mathrm{Bb}=0 \end{aligned}$ | Jump to specified address if Accumulator bit is set. |  | $\begin{aligned} & \mathrm{b}_{1} \\ & \mathrm{a}_{6} \end{aligned}$ | $\begin{aligned} & \mathrm{b}_{0} \\ & \mathrm{a}_{5} \end{aligned}$ | $\begin{gathered} 1 \\ a_{4} \end{gathered}$ | $\begin{gathered} 0 \\ a 3 \end{gathered}$ | $\begin{gathered} 0 \\ \mathrm{a}_{2} \end{gathered}$ | $\begin{gathered} 1 \\ a_{1} \end{gathered}$ | $\begin{gathered} 0 \\ a_{0} \end{gathered}$ | 2 | 2 |  |  |  |  |  |
| JC addr | $\begin{aligned} & \text { (PCO }-7) \leftarrow \text { add if } \mathrm{C}=1 \\ & (P C)-(P C)+2 \text { if } C=0 \end{aligned}$ | Jump to specified address if carry flag is set. |  | $\begin{gathered} 1 \\ a_{6} \end{gathered}$ | $\begin{gathered} 1 \\ 25 \end{gathered}$ | $\begin{gathered} 1 \\ 3 \end{gathered}$ | $\begin{gathered} 0 \\ a_{3} \end{gathered}$ | $\begin{gathered} 1 \\ a_{2} \end{gathered}$ | $\begin{array}{r} 1 \\ a_{1} \end{array}$ | $\begin{gathered} 0 \\ a_{0} \end{gathered}$ | 2 | 2 |  |  |  |  |  |
| JFO addr | $\begin{aligned} & (P C 0-7)-\text { addr if } F O=1 \\ & (P C)-(P C)+2 \text { if } F O=0 \end{aligned}$ | Jump to specified address if Flag FO is set. | $\text { a } \begin{gathered} 1 \\ a 7 \end{gathered}$ | $\begin{gathered} 0 \\ a_{6} \end{gathered}$ | $\begin{gathered} 1 \\ \text { a5 } \end{gathered}$ | $\begin{gathered} 1 \\ a_{4} \end{gathered}$ | $\begin{gathered} 0 \\ a_{3} \end{gathered}$ | $\begin{gathered} 1 \\ a_{2} \end{gathered}$ | $\begin{gathered} 1 \\ a_{1} \end{gathered}$ | $\begin{gathered} 0 \\ a_{0} \end{gathered}$ | 2 | 2 |  |  |  |  |  |
| JF1 addr | $\begin{aligned} & (P C 0-7)-\text { addr if } F 1=1 \\ & (P C)-(P C)+2 \text { if } F 1=0 \end{aligned}$ | Jump to specified address if Fiag F1 is set. | a | $\begin{gathered} 1 \\ a_{6} \end{gathered}$ | $\begin{gathered} 1 \\ a_{5} \end{gathered}$ | $\begin{gathered} 1 \\ 34 \end{gathered}$ | $\begin{gathered} 0 \\ \text { a3 } \end{gathered}$ | $\begin{gathered} 1 \\ \mathbf{a}_{2} \end{gathered}$ | $\begin{gathered} 1 \\ a_{1} \end{gathered}$ | $\begin{gathered} 0 \\ a_{0} \end{gathered}$ | 2 | 2 |  |  |  |  |  |
| JMP addr | $\begin{aligned} & (\text { PC } 8-10)-\text { addr } 8-10 \\ & \text { (PC 0-7)-addr 0-7 } \\ & \text { (PC 11) } \because \text { DBF } \end{aligned}$ | Direct Jump to specified address within the $\mathbf{2 K}$ address block. | $a_{10} a_{10}$ | a9 9 | a8 as | 0 34 | O ${ }_{3}$ | 1 <br> $a_{2}$ | $\begin{gathered} 0 \\ a_{1} \end{gathered}$ | $\begin{gathered} 0 \\ a_{0} \end{gathered}$ | 2 | 2 |  |  |  |  |  |
| JMPP@ A | (PC 0-7)-( $(\mathrm{A})$ ) | Jump indirect to specified address with with address page. | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 2 | 1 |  |  |  |  |  |
| JNC addr | $\begin{aligned} & \text { (PCO } 0-7) \leftarrow \text { addr if } C=0 \\ & (P C) \leftarrow(P C)+2 \text { if } C=1 \end{aligned}$ | Jump to specified address if carry flag is low. | $\left\lvert\, \begin{gathered} 1 \\ a 7 \end{gathered}\right.$ | $\begin{aligned} & 1 \\ & a_{6} \end{aligned}$ | $\begin{gathered} 1 \\ \text { a5 } \end{gathered}$ | $\begin{aligned} & 0 \\ & a 4 \end{aligned}$ | $\begin{gathered} 0 \\ \text { a3 } \end{gathered}$ | $\begin{gathered} 1 \\ a_{2} \end{gathered}$ | $\begin{gathered} 1 \\ a_{1} \end{gathered}$ | $\begin{gathered} 0 \\ a_{0} \end{gathered}$ | 2 | 2 |  |  |  |  |  |
| JNIBF addr | (PC O-7) $\leftarrow$ addr if $18 F=$ $(\mathrm{PC})-(\mathrm{PC})+2$ if $\mathrm{IBF}=1$ | Jump to specified address if input buffer full flag is low. | $\left\lvert\, \begin{gathered} 1 \\ a 7 \end{gathered}\right.$ | $\begin{gathered} 1 \\ a_{6} \end{gathered}$ | $\begin{gathered} 0 \\ a 5 \end{gathered}$ | $\begin{gathered} 1 \\ a 4 \end{gathered}$ | $\begin{gathered} 0 \\ a_{3} \end{gathered}$ | $\begin{gathered} 1 \\ a_{2} \end{gathered}$ | $\begin{gathered} 1 \\ a_{1} \end{gathered}$ | $\begin{aligned} & 0 \\ & a_{0} \end{aligned}$ | 2 | 2 |  |  |  |  |  |
| JOBF | $\begin{aligned} & (P C O-7) \leftarrow \text { addr if } O B F=1 \\ & (P C) \leftarrow(P C)+2 \text { if } O B F=0 \end{aligned}$ | Jump to specified address if output buffer full flag is set. | $\left\lvert\, \begin{gathered} 1 \\ 27 \end{gathered}\right.$ | $\begin{gathered} 0 \\ a_{6} \end{gathered}$ | $\begin{gathered} 0 \\ \text { a5 } \end{gathered}$ | $\begin{gathered} 0 \\ 34 \end{gathered}$ | $\begin{gathered} 0 \\ a 3 \end{gathered}$ | $\begin{gathered} 1 \\ 9 \\ \hline 2 \end{gathered}$ | $\begin{gathered} 1 \\ \mathrm{a}_{1} \end{gathered}$ | $\begin{gathered} 0 \\ \text { a } \end{gathered}$ | 2 | 2 |  |  |  |  |  |

INSTRUCTION SET (CONT.)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{MNEMONIC} \& \multirow[b]{2}{*}{FUNCTION} \& \multirow[t]{2}{*}{} \& \multicolumn{8}{|c|}{instruction code} \& \multirow[b]{2}{*}{crCles} \& \multirow[b]{2}{*}{bytes} \& \multicolumn{4}{|c|}{flags} <br>
\hline \& \& \& D7 \& $\mathrm{D}_{6}$ \& $\mathrm{D}_{5}$ \& $\mathrm{D}_{4}$ \& $\mathrm{D}_{3}$ \& $\mathrm{D}_{2}$ \& $\mathrm{D}_{1}$ \& $\mathrm{D}_{0}$ \& \& \& C ${ }^{\text {AC }}$ \& Fo \& F1 lbF \& OBF <br>
\hline \multicolumn{17}{|c|}{BRANCH ICONT.} <br>
\hline JNTO addr \& $$
\begin{aligned}
& \text { (PC O-7)-addr if TO }=0 \\
& (\mathrm{PC})-(\mathrm{PC})+2 \text { if } \mathrm{TO}=1
\end{aligned}
$$ \& Jump to specified address if Test 0 is low. \& $$
\begin{gathered}
0 \\
97
\end{gathered}
$$ \& 0
$a_{6}$ \& 1

0 \& $$
\begin{gathered}
0 \\
0 \\
a_{4}
\end{gathered}
$$ \& \[

$$
\begin{aligned}
& \hline 0 \\
& \hline 03
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1 \\
& a_{2}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
1 \\
a_{1}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\hline 0 \\
a_{0}
\end{gathered}
$$
\] \& 2 \& 2 \& \& \& \& <br>

\hline JNT1 addr \& $$
\begin{aligned}
& (\mathrm{PCO}-7)-\text { addr if } \mathrm{T} 1=0 \\
& (\mathrm{PC})-(\mathrm{PC})+2 \text { if } \mathrm{T} 1=1
\end{aligned}
$$ \& Jump to specified address if Test 1 is low. \& 0

a

7 \& 1
$a_{6}$
0 \& 0
as \& 0
0
4 \& 0
a3 \& 1
$a_{2}$
1 \& 1
$a_{1}$ \& 0
a \& 2 \& 2 \& . \& \& \& <br>

\hline JNZ addı \& $$
\begin{aligned}
& (\mathrm{PC} 0-7)-\operatorname{addr} \text { if } A \neq 0 \\
& (\mathrm{PC}) \cdots(\mathrm{PC})+2 \text { if } A=0
\end{aligned}
$$ \& Jump to specified address if accumulator is non-zero. \& \[

$$
\begin{gathered}
1 \\
a 7
\end{gathered}
$$
\] \& 0

96 \& 0
0

0 \& $$
\begin{gathered}
4 \\
1 \\
34
\end{gathered}
$$ \& \[

$$
\begin{gathered}
0 \\
0 \\
\text { a3 }
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
1 \\
a 2
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 1 \\
& a_{1}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
0 \\
0 \\
\text { a0 }
\end{gathered}
$$
\] \& 2 \& 2 \& : \& \& \& <br>

\hline JTF add \& $$
\begin{aligned}
& (\mathrm{PCO}-7)-\text { addr if } \mathrm{TF}=1 \\
& (\mathrm{PC}) \cdots(\mathrm{PC})+2 \text { if } T F=0
\end{aligned}
$$ \& Jump to specified address if Timer Flag is set to 1 . \& \[

$$
\begin{gathered}
0 \\
97
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{6}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
\text { a5 }
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
a_{4}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
\text { a3 }
\end{gathered}
$$

\] \& \[

$$
\begin{array}{r}
1 \\
a_{2}
\end{array}
$$

\] \& \[

$$
\begin{gathered}
1 \\
a_{1}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{0}
\end{gathered}
$$
\] \& 2 \& 2 \& \& \& \& <br>

\hline JTO add! \& $$
\begin{aligned}
& (\mathrm{PCO} 0-7) \leftarrow \text { addr if } \mathrm{TO}=1 \\
& (\mathrm{PC})-(\mathrm{PC})+2 \text { if } \mathrm{TO}=0
\end{aligned}
$$ \& Jump to specified address if Test 0 is a 2. \& \& 0

9 \& 1
0
0 \& 1
9
4. \& 0
a3 \& ${ }^{1}$ \& 1
$a_{1}$ \& 0
$a_{0}$ \& 2 \& 2 \& \& \& \& <br>

\hline JT1 addr \& $$
\begin{aligned}
& (\mathrm{PCO}-7)-\text { addr if } \mathrm{T} 1=1 \\
& (\mathrm{PC})-(\mathrm{PC})+2 \text { if } \mathrm{T}=0
\end{aligned}
$$ \& Jump to specified address if Test 1 is a 1 . \& \[

$$
\begin{gathered}
0 \\
a 7
\end{gathered}
$$
\] \& 1

$a_{6}$ \& 0
$a_{5}$ \& 1
$a_{4}$

1 \& $\stackrel{0}{0}$ \& 1
$a_{2}$
1 \& 1
$a_{1}$
1 \& $\stackrel{0}{0}$ \& 2 \& 2 \& \& \& \& <br>

\hline JZ addr \& \[
$$
\begin{aligned}
& (\mathrm{PCC} 0-7)-\operatorname{addr} \text { if } \mathrm{A}=0 \\
& (\mathrm{PC})-(\mathrm{PC})+2 \text { if } \mathrm{A}+0
\end{aligned}
$$

\] \& Jump to specified address if Accumulator is 0 . \& | 1 |
| :--- |
| 9 | \& | 1 |
| :--- |
| 9 | \& | 0 |
| :---: |
| ${ }_{\text {a }}$ | \& | 0 |
| :---: |
| ${ }_{3}{ }_{4}$ | \& \[

$$
\begin{gathered}
0 \\
\text { a3 }
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
a_{2}
\end{gathered}
$$
\] \& 1

${ }_{1} 1$ \& $$
\begin{gathered}
0 \\
0 \\
a_{0}
\end{gathered}
$$ \& 2 \& 2 \& \& \& \& <br>

\hline \multicolumn{17}{|c|}{CONTROL} <br>
\hline ENI \& \& Enable the External Interrupt input \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& , \& 1 \& $!$ \& 1 \& \& \& \& <br>
\hline DIS I \& \& Disable the External Interrupt input \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& - \& 1 \& 1 \& 1 \& \& \& \& <br>
\hline SEL Rbo \& (BS) -0 \& Select Bank 0 (locations 0-7) of Data Memory. \& 1 \& 1 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \& <br>
\hline SEL RB1 \& (BS) -1 \& Select Bank 1 (locations 24 31) of Data Memory. \& 1 \& 1 \& 0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \& <br>
\hline \multicolumn{17}{|c|}{data moves} <br>
\hline MOV A, = data \& (A) - data \& Move Immediate the specified data into the Accumulator. \& \& \& 1
$d_{5}$

1 \& $$
\begin{gathered}
0 \\
d_{4}
\end{gathered}
$$ \& \[

$$
\begin{gathered}
0 \\
0 \\
d 3
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& \overline{0} \\
& d_{2}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1 \\
& d_{1}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1 \\
& d_{0}
\end{aligned}
$$
\] \& 2 \& 2 \& \& \& \& <br>

\hline mov A, Rr \& ( A$)-(\mathrm{Rr}) ; \mathrm{r}=0-7$ \& Move the contents of the designated registers into the Accumulator. \& 1 \& 1 \& 1 \& 1 \& 1 \& r \& r \& , \& 1 \& 1 \& \& \& \& <br>
\hline MOV A, @ Rr \& $(\mathrm{A})-(\mathrm{Rr}))_{r} \mathrm{r}=0.1$ \& Move Indirect the contents of data memory location into the Accumulator, \& 1 \& 1 \& 1 \& 1 \& 0 \& 0 \& 0 \& r \& 1 \& 1 \& \& \& \& <br>
\hline MOV A, PSW \& (A) - (PSW) \& Move contents of the Program Status Word into the Accumulator. \& 1 \& 1 \& 0 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \& \& \& <br>

\hline MOV Rr , \# data \& $(\mathrm{Rr})+$ data; $\mathrm{r}=0-7$ \& Move Immediate the specified data into the designated register. \& \[
$$
\begin{gathered}
1 \\
d 7
\end{gathered}
$$

\] \& \& \[

$$
\begin{aligned}
& 1 \\
& d_{5}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d_{4}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d_{3}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& d_{2}
\end{aligned}
$$

\] \& \[

d_{1}^{\prime}

\] \& \[

d_{0}
\] \& 2 \& 2 \& \& \& \& <br>

\hline MOV $\mathrm{Rr}, \mathrm{A}$ \& $(\mathrm{Rr})-(\mathrm{A}) ; \mathrm{r}=0-7$ \& Move Accumulator Contents into the designated register. \& 1 \& 0 \& 1 \& 0 \& 1 \& , \& \& , \& 1 \& 1 \& \& \& \& <br>
\hline MOV @ Rr, A \& $($ (Rr) $)-(A) ; ~ r=0-1$ \& Move Indirect Accumulator Contents into data memory tocation. \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& ' \& 1 \& 1 \& \& \& \& <br>

\hline MOV @ Rr, \# data \& $($ (Rr) $)$-data; $\mathrm{r}=0-1$ \& Move Immediate the specified data into data memory. \& \[
$$
\begin{gathered}
1 \\
d 7
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{6}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 1 \\
& d_{5}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d_{4}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{3}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{2}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{1}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
d_{0} \\
d_{0}
\end{gathered}
$$
\] \& 2 \& 2 \& \& \& . \& <br>

\hline MOV PSW. A \& (PSW) - (A) \& Move contents of Accumulator into the program status word. \& 1 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \& \& \& <br>

\hline MOVP A.@A \& $$
\begin{aligned}
& (P C O-7)-(A) \\
& (A)-(1 P C))
\end{aligned}
$$ \& Move data in the current page into the Accumulator. \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1 \& 1 \& 2 \& 1 \& \& \& \& <br>

\hline MOVP3 A, @ A \& $$
\begin{aligned}
& (\text { PC } 0-7)-(A) \\
& \text { PC } 8-10)-011 \\
& (A)-(P P C 11)
\end{aligned}
$$ \& Move Program data in Page 3 into the Accumulator. \& 1 \& 1 \& 1 \& 0 \& 0 \& 0 \& 1 \& 1 \& 2 \& 1 \& \& \& \& <br>

\hline $\mathrm{XCH} A, \mathrm{Rr}$ \& $(\mathrm{A}) \geq(\mathrm{Rr}) ; \mathrm{r}=0-7$ \& Exchange the Accumulator and designated register's contents. \& 0 \& 0 \& 1 \& 0 \& 1 \& ' \& ' \& ' \& 1 \& 1 \& \& \& \& <br>
\hline XCH A, @ Rr \& $(\mathrm{A}) \geq(\mathrm{Rr})$ ) $\mathrm{r}=0-1$ \& Exchange Indirect contents of Accumulator and location in data memory. \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& ' \& 1 \& 1 \& \& \& \& <br>

\hline хCHD A, @ Rr \& $$
\begin{aligned}
& (A 0-3) \subsetneq((\mathrm{Rr})(0-3)) ; \\
& r=0-1
\end{aligned}
$$ \& Exchange Indirect 4-bit contents of Accumulator and data memory. \& 0 \& 0 \& 1 \& 1 \& 0 \& 0 \& 0 \& ' \& 1 \& 1 \& \& \& \& <br>

\hline \multicolumn{17}{|c|}{flags} <br>
\hline CPLC \& (C) - NOT (C) \& Complement Content of carry bit. \& 1 \& 0 \& 1 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& - \& \& \& <br>
\hline CPLFO \& (FO) - NOT (FO) \& Complement Content of Flag FO. \& 1 \& 0 \& 0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& - \& \& <br>
\hline CPLF1 \& (F1) - NOT (F1) \& Complement Content of Flag Fi \& 1 \& 0 \& 1 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& - \& <br>
\hline CLR C \& (C) -C \& Clear content of carry bit to 0 . \& 1 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& - \& \& \& <br>
\hline CLR FO \& (FO)-0 \& Clear content of Flag 0 to 0. \& 1 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& - \& \& <br>
\hline CLRF1 \& (F1) - 0 \& Clear content of Fiag 1 to 0. \& 1 \& 0 \& 1 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& - \& <br>
\hline
\end{tabular}




(3) Reteremices to the adders and batd ate specitied in bytes 2 and or 1 of the instruction
(4) Numer cat Subscriph appearing in the F UNCTION columin reference the specific bits affected.

Symbol Definitions:

| SYMBOL | DESCRIPTION |
| :---: | :--- |
| A | The Accumulator |
| AC | The Auxiliary Carry Flag |
| addr | Program Memory Address (12 bits) |
| Bb | Bit Designator (b =0 - 7) |
| BS | The Bank Switch |
| BUS | The BUS Port |
| C | Carry Flag |
| CLK | Clock Signal |
| CNT | Event Counter |
| D | Nibble Designator (4 bits) |
| data | Number or Expression (8 bits) |
| DBF | Memory Bank Flip-Flop |
| $F_{0,}$, F1 | Flags 0, 1 |
| I | Interrupt |
| P | "In-Page" Operation Designator |
| IBF | Input Buffer Full Flag |


| SYMBOL | DESCRIPTION |
| :---: | :---: |
| $\mathrm{P}_{\mathrm{p}}$ | Port Designator ( $p=1,2$ or 4-7) |
| PSW | Program Status Word |
| Rr | Register Designator ( $\mathrm{r}=0,1$ or 0-7) |
| SP | Stack Pointer |
| T | Timer |
| TF | Timer Flag |
| $\mathrm{T}_{0}, \mathrm{~T}_{1}$ | Testable Flags 0,1 |
| X | External RAM |
| \# | Prefix for Immediate Data |
| @ | Prefix for Indirect Address |
| \$ | Program Counter's Current Value |
| (x) | Contents of External RAM Location |
| ( $(\mathrm{x})$ ) | Contents of Memory Location Addressed by the Contents of External RAM Location. |
| $\leftarrow$ | Replaced By |
| OBF | Output Buffer Full |
| DBB | Data Bus Buffer |

## $\mu$ PD8048 FAMILY OF SINGLE CHIP 8-BIT MICROCOMPUTERS

## DESCRIPTION

The $\mu$ PD8048 family of single chip 8 -bit microcomputers is comprised of the $\mu$ PD8048, $\mu$ PD8748 and $\mu$ PD8035L. The processors in this family differ only in their internal program memory options: The $\mu$ PD8048 with $1 \mathrm{~K} \times 8$ bytes of mask ROM, the $\mu$ PD8748 with $1 \mathrm{~K} \times 8$ bytes of UV erasable EPROM and the $\mu$ PD8035L with external memory.

FEATURES - Fully Compatible With Industry Standard 8048/8748/8035

- NMOS Silicon Gate Technology Requiring a Single +5 V Supply
- $2.5 \mu$ s Cycle Time. All Instruction 1 or 2 Bytes
- Interval Timer/Event Counter
- $64 \times 8$ Byte RAM Data Memory
- Single Level Interrupt
- 96 Instructions: $70 \%$ Single Byte
- 27 I/O Lines
- Internal Clock Generator
- 8 Level Stack
- Compatible With 8080A/8085A Peripherals
- Available in Both Ceramic and Plastic 40 Pin Packages



## $\mu$ PD8048/8748/8035L

The NEC $\mu$ PD8048, $\mu$ PD8748 and $\mu$ PD8035L are sıngle component, 8 -bit, parallel microprocessors using N -channel silicon gate MOS technology. The $\mu$ PD8048/8748/

FUNCTIONAL DESCRIPTION 8035L efficiently function in control as well as arithmetic applications. The flexibility of the instruction set allows for the direct set and reset of individual data bits within the accumulator and the I/O port structure. Standard logic function implementation is facilitated by the large variety of branch and table look-up instructions.

The $\mu$ PD8048/8748/8035L instruction set is comprised of 1 and 2 byte instructions with over $70 \%$ single-byte and requiring only 1 or 2 cycles per instruction with over 50\% single-cycle.

The $\mu$ PD8048 series of microprocessors will function as stand alone microcomputers. Their functions can easily be expanded using standard 8080A/8085A peripherals and memories.

The $\mu$ PD8048 contains the following functions usually found in external peripheral devices: $1024 \times 8$ bits of ROM program memory; $64 \times 8$ bits of RAM data memory; 27 I/O lines; an 8-bit interval timer/event counter; oscillator and clock circuitry.

The $\mu$ PD8748 differs from the $\mu$ PD8048 only in its $1024 \times 8$-bit UV erasable EPROM program memory instead of the $1024 \times 8$-bit ROM memory. It is useful in preproduction or prototype applications where the software design has not yet been finalized or in system designs whose quantities do not require a mask RON.

The $\mu$ PD8035L is intended for applications using external program memory only. It contains all the features of the $\mu$ PD8048 except the $1024 \times 8$-bit internal ROM. The external program memory can be implemented using standard 8080A/8085A memory products.


| PIN |  | FUNCTION |
| :---: | :---: | :---: |
| NO. | SYMBOL |  |
| 1 | $\mathrm{T}_{0}$ | Testable input using conditional transfer functions JTO and JNTO. The internal State Clock (CLK) is available to $\mathrm{T}_{0}$ using the ENTO CLK instruction. $\mathrm{T}_{0}$ can also be used during programming as a testable flag. |
| 2 | XTAL 1 | One side of the crystal input for external oscillator or frequency (non TTL compatible $V_{I H}$ ). |
| 3 | XTAL 2 | The other side of the crystal input. |
| 4 | $\overline{\text { RESET }}$ | Active low input for processor initialization. $\overline{\operatorname{RESET}}$ is also used for PROM programming verification and powerdown (non TTL compatible $\mathrm{V}_{1 H}$ ). |
| 5 | $\overline{\text { SS }}$ | Single Step input (active-low). $\overline{\mathrm{SS}}$ together with ALE allows the processor to "single-step" through each instruction in program memory. |
| 6 | $\overline{\text { INT }}$ | Interrupt input lactive-low). $\overline{\text { INT }}$ will start an interrupt if an enable interrupt instruction has been executed. A reset will disable the interrupt. $\overline{\mathrm{INT}}$ can be tested by issuing a conditional jump instruction. |
| 7 | EA | External Access input (active-high). A logic "1" at this input commands the processor to perform all program memory fetches from external memory. |
| 8 | $\overline{R D}$ | READ strobe output (active-low). $\overline{R D}$ will pulse low when the processor performs a BUS READ. $\overline{R D}$ will also enable data onto the processor BUS from a peripheral device and function as a READ STROBE for external DATAMEMORY. |
| 9 | $\overline{\text { PSEN }}$ | Program Store Enable output (active-low). $\overline{\text { PSEN }}$ becomes active only during an external memory fetch. |
| 10 | $\overline{W R}$ | WRITE strobe output (active-low). $\overline{W R}$ will pulse low when the processor performs a BUS WRITE. WR can also function as a WRITE STROBE for external DATA MEMORY. |
| 11 | ALE | Address Latch Enable output \{sctive high). Occurring once each cycle, the falling edge of ALE latches the address for external memory or peripherals. ALE can also be used as a clock output. |
| 12-19 | $D_{0}-D_{7}$ BUS | 8-bit, bidirectional port. Synchronous reads and writes can be performed on this port using $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ strobes. The contents of the $\mathrm{D}_{0}-\mathrm{D}_{7}$ BUS can be latched in a static mode. <br> During an external memory fetch, the $D_{0}-D_{7}$ BUS holds the least significant bits of the program counter. PSEN controls the incoming addressed instruction. Also, for an external RAM data store instruction the $D_{0}-D_{7} B U S$, controlled by ALE, $\overline{R D}$ and $\overline{W R}$, contains address and data information. |
| 20 | $V_{\text {SS }}$ | Processor's GROUND potential. |
| $\begin{aligned} & 21-24 \\ & 35-38 \end{aligned}$ | $\begin{gathered} P_{20-} P_{27} \\ P_{O R T} \end{gathered}$ | Port 2 is the second of two 8 -bit quasi-bidirectional ports. For external data memory fetches, the four most significant bits of the program counter are contained in $\mathrm{P}_{20}-\mathrm{P}_{23}$. Bits $P_{20}-P_{23}$ are also used as a 4-bit I/O bus for the $\mu$ PD8243, INPUT/OUTPUT EXPANDER. |
| 25 | PROG | Program Pulse. A + 25 V pulse applied to this input is used for programming the $\mu$ PD8748. PROG is also used as an output strobe for the $\mu$ PD8243. |
| 26 | VDD | Programming Power Supply. VDD must be set to +25 V for programming the $\mu$ PD8748, and to +5 V for the ROM and PROM versions for normal operation. $V_{D D}$ functions as the Low Power Standby input for the $\mu$ PD8048. |
| 27-34 | $\begin{gathered} P_{10-}-P_{17} \\ \text { PORT }_{1} \end{gathered}$ | Port 1 is one of two 8-bit quasi-bidirectional ports. |
| 39 | T1 | Testable input using conditional transfer functions JT1 and JNT1. T1 can be made the counter/timer input using the STRT CNT instruction. |
| 40 | $\mathrm{V}_{\mathrm{CC}}$ | Primary Power Supply. VCC must be +5 V for programming and operation of the $\mu$ PD8748, and for operation of the $\mu$ PD8035L and $\mu$ PD8048. |

Operating Temperature
Storage Temperature (Ceramic Package) . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic Package) . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage on Any Pin . . . . . . . . . . . . . . . . . . . . . . . . . . - 0.5 to +7 Volts ${ }^{1}$
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 W
Note: (1) With respect to ground.

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} T_{a}=25^{\circ} \mathrm{C}$
$T_{a}=0 \mathrm{C}$ to $+70^{\prime} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}-V_{D D}=+5 \mathrm{~V} \pm 5^{\circ} \% ; V_{S S}=0 \mathrm{~V}$

|  | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER |  | MIN | TYP | MAX |  |  |
| Input Low Voltage <br> (All Except XTAL 1, XTAL 2) | VIL | 0.5 |  | 0.8 | V | : |
| Input High Voltage <br> (All Except XTAL 1, XTAL 2, $\overline{\text { RESET }}$ ) | VIH | 2.0 |  | $V_{C C}$ | V |  |
| Input High Voltage <br> (RESET, XTAL 1; XTAL 2) | $\mathrm{V}_{1} \mathrm{H}_{1}$ | 3.0 |  | $V_{\text {CC }}$ | V |  |
| Output Low Voltage (BUS, $\overline{R D}$, $\overline{W R}, \overline{\text { PSEN }}, \mathrm{ALE}$ ) | $\mathrm{V}_{\mathrm{OL}}$ |  |  | 0.45 | V | $1 O L=2.0 \ln A$ |
| Output Low Voltage (All Other Outputs Except PROG) | VOL1 |  |  | 0.45 | V | $\mathrm{I}^{\prime} \mathrm{OL}=1.6 \mathrm{~mA}$ |
| Output Low Voltage (PROG) | VOL2 |  |  | 0.45 | V |  |
| Output High Voltage (BUS, $\overline{R D}$, $\overline{W R}, \overline{\text { PSEN }}$; ALE) | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  |  | V | ${ }^{1} \mathrm{OH}=-100 \mu \mathrm{~A}$ |
| Output High Voltage (All Other Outputs) | VOHI | 2.4 | , |  | V | ${ }^{1} \mathrm{OH}=-50 \mu \mathrm{~A}$ |
| Input Leakage Current ( $T_{1}, E A, I N T$ ) | ${ }^{1} \mathrm{IL}$ |  |  | $\pm 10$ | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {SS }} \leqslant \mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\text {CC }}$ |
| Output Leakage Current (BUS, $\mathrm{T}_{0}$ - High Impedance State) | ${ }^{\prime} \mathrm{OL}$ |  |  | 10 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{CC}} \geqslant \mathrm{V}_{\text {IN }} \geqslant \mathrm{V}_{\mathrm{SS}}+0.45 \mathrm{~V}$ |
| Power Down Supply Current | IDD |  | 10 | 20 | mA | $\mathrm{T}_{\mathrm{a}}=25 \mathrm{C}$ |
| Total Supply Current | ${ }^{1} D D+{ }^{1} C C$ |  | 65 | 135 | mA | $T_{a}=25 \mathrm{C}$ |

$T_{a}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \% ; V_{D D}=+25 \mathrm{~V} \pm 1 \mathrm{~V}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| VDD Program Voltage High-Level | V OOH | 24.0 |  | 26.0 | V |  |
| $V_{\text {DD }}$ Voltage Low-Level | VDDL | 4.75 |  | 5.25 | V |  |
| PROG Voltage High-Level | VPH | 21.5 |  | 24.5 | V |  |
| PROG Voltage Low-Level | $\mathrm{V}_{\mathrm{PL}}$ |  |  | 0.2 | V |  |
| EA Program or Verify Voltage High-Level | VEAH | 21.5 |  | 24.5 | V |  |
| EA Voltage Low-Level | VEAL |  |  | 5.25 | V |  |
| VDD High Voltage Supply Current | IDD |  |  | 30.0 | mA |  |
| PROG High Voltage Supply Current | IPROG |  |  | 16.0 | mA |  |
| EA High Voltage Supply Current | IEA |  |  | 1.0 | mA |  |

ABSOLUTE MAXIMUM RATINGS*

## READ, WRITE AND INSTRUCTION FETCH - EXTERNAL

 DATA AND PROGRAM MEMORY$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| ALE Pulse Width | tLL | 400 |  |  | ns |  |
| Address Setup before ALE | ${ }^{\text {t }}$ AL | 150 |  |  | ns |  |
| Address Hold from ALE | t LA | 80 |  |  | ns |  |
| Control Pulse Width ( $\overline{\mathrm{PSEN}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ ) | ${ }^{\text {c }} \mathrm{C}$ | 900 |  |  | ns |  |
| Data Setup before WR | ${ }^{\text {t }}$ DW | 500 |  |  | ns |  |
| Data Hold after WR | twD | 120 |  |  | ns | $C_{L}=20 \mathrm{pF}$ |
| Cycle Time | ${ }^{t} \mathrm{CY}$ | 2.5 |  | 15.0 | $\mu \mathrm{s}$ | $6 \mathrm{MHz} \times$ TAL |
| Data Hold | tDR | 0 |  | 200 | ns |  |
| $\overline{\text { PSEN, }} \overline{\mathrm{RD}}$ to Data In | ${ }^{\text {tRD }}$ |  |  | 500 | ns |  |
| Address Setup before $\overline{W R}$ | ${ }^{\text {t }}$ AW | 230 |  |  | ns |  |
| Address Setup before Data In | ${ }^{\text {t }}$ AD |  |  | 950 | ns |  |
| Address Float to $\overline{\mathrm{RD}}, \overline{\mathrm{PSEN}}$ | ${ }^{\text {t }} \mathrm{AFC}$ | 0 |  |  | ns |  |

Notes: (1) For Control Outputs: $C_{L}=80 \mathrm{pF}$
(2) For Bus Outputs: $C_{L}=150 \mathrm{pF}$
(3) ${ }^{1} \mathrm{CY}=2.5 \mu \mathrm{~s}$

PORT 2 TIMING
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Port Controi Setup before Falling Edge of PROG | ${ }^{\text {t }} \mathrm{CP}$ | 110 |  |  | ns |  |
| Port Control Hold after Falling Edge of PROG | tPC | 140 |  |  | ns |  |
| $\widehat{\text { PROG }}$ to Time P2 Input must be Valid | tPR |  |  | 810 | ns |  |
| Output Data Setup Time | ${ }^{\text {t }}$ DP | 220 |  |  | ns |  |
| Output Data Hold Time | tPD | 65 |  |  | ns |  |
| Input Data Hold Time | tPF |  |  | 150 | ns |  |
| $\overline{\text { PROG Pulse Width }}$ | tpp | 1510 |  |  | ns |  |
| Port 2 I/O Data Setup | tPL | 400 |  |  | ns |  |
| Port 2 I/O Data Hold | ${ }^{\text {t }}$ LP | 150 |  |  | ns |  |

## PROGRAMMING SPECIFICATIONS - $\mu$ PD8748

$T_{a}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{C C}=+5 \mathrm{~V} \pm 5 \% ; V_{D D}=+25 \mathrm{~V} \pm 1 \mathrm{~V}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Address Setup Time before RESET $\uparrow$ | taw | 4 t CY |  |  |  |  |
| Address Hold Time after RESET $\uparrow$ | tWA | 4 t CY |  |  |  |  |
| Data In Setup Time before $\overline{\text { PROG } \uparrow}$ | tow | 4 t CY |  |  |  |  |
| Data In Hold Time after PROG $\downarrow$ | tWD | 4 t CY |  |  |  |  |
| RESET Hold Time to VERIFY | tPH | 4 tcY |  |  |  |  |
| $V_{\text {DD }}$ | tVDDW | 4 tCY |  |  |  |  |
| VDD Hold Time after $\overline{\text { PROG }} \downarrow$ | tVDDH | 0 |  |  |  |  |
| Program Pulse Width | tPW | 50 |  | 60 | ms |  |
| Test 0 Setup Time before Program Mode | tTW | 4 tcy |  |  |  |  |
| Test 0 Hold Time after Program Mode | tWT | 4 tcy |  |  |  |  |
| Test 0 to Data Out Delay | tD0 |  |  | 4 tcy |  |  |
| $\overline{\text { RESET }}$ Pulse Width to Latch Address | tww | 4 tCY |  |  |  |  |
| VDD and $\overline{\text { PROG Rise and Fall Times }}$ | $\mathrm{tr}_{\mathrm{r}}, \mathrm{tf}^{\text {f }}$ | 0.5 |  | 2.0 | $\mu \mathrm{s}$ |  |
| Processor Operation Cycle Time | ${ }_{\text {ter }}$ | 5.0 |  |  | $\mu \mathrm{s}$ |  |
| $\overline{\text { RESET Setup Time before EA } \uparrow \bigcirc \downarrow}$ | $t_{\text {RE }}$ | 4 tCY |  |  |  |  |

## $\mu$ PD8048/8748/8035L

TIMING WAVEFORMS


INSTRUCTION FETCH FROM EXTERNAL MEMORY


READ FROM EXTERNAL DATA MEMORY


WRITE TO EXTERNAL MEMORY

TIMING WAVEFORMS (CONT.)


PORT 2 TIMING


PROGRAM/VERIFY TIMING ( $\mu$ PD8748 ONLY)


## VERIFY MODE TIMING

 ( $\mu$ PD8048/8748 ONLY)[^3]| MNEMONIC | FUNCTION | DESCRIPTION | INSTRUCTION CODE |  |  |  |  |  |  |  | CYCLES | BYTES | FLAGS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{D}_{7}$ | $\mathrm{D}_{6}$ | $\mathrm{D}_{5}$ | $\mathrm{D}_{4}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{1}$ | $\mathrm{D}_{0}$ |  |  |  | AC | F0 | F1 |
| ACCUMULATOR |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ADD A, \# data | $(A) \leftarrow(A)+$ data | Add Immediate the specified Data to the Accumulator. | $\begin{gathered} 0 \\ d 7 \end{gathered}$ | $\begin{gathered} 0 \\ d_{6} \end{gathered}$ | $\begin{gathered} 0 \\ d_{5} \end{gathered}$ | $\begin{gathered} 0 \\ d_{4} \end{gathered}$ | $\begin{gathered} 0 \\ d_{3} \end{gathered}$ | $\begin{gathered} 0 \\ d_{2} \end{gathered}$ | $\begin{gathered} 1 \\ d_{1} \end{gathered}$ | $\begin{gathered} 1 \\ d 0 \end{gathered}$ | 2 | 2 | $\bullet$ |  |  |  |
| ADD A, Rr | $\begin{aligned} & (A)-(A)+(R r) \\ & \text { for } r=0-7 \end{aligned}$ | Add contents of designated register to the Accumulator. | 0 | 1 | 1 | 0 | 1 | r | r | r | 1 | 1 | - |  |  |  |
| ADD A, @ Rr | $\begin{aligned} & (A) \leftarrow(A)+((R r)) \\ & \text { for } r=0-1 \end{aligned}$ | Add Indirect the contents the data memory location to the Accumulator. | 0 | 1 | 1 | 0 | 0 | 0 | 0 | r | 1 | 1 | - |  |  |  |
| ADDC A, $=$ data | $(A) \leftarrow(A)+(C)+$ data | Add Immediate with carry the specified data to the Accumulator. | $\begin{gathered} 0 \\ d 7 \end{gathered}$ | $\begin{gathered} 0 \\ \mathrm{~d}_{6} \end{gathered}$ | $\begin{gathered} 0 \\ d_{5} \end{gathered}$ | $\begin{gathered} 1 \\ d 4 \end{gathered}$ | $\begin{gathered} 0 \\ d_{3} \end{gathered}$ | $\begin{gathered} 0 \\ d_{2} \end{gathered}$ | $\begin{gathered} 1 \\ d_{1} \end{gathered}$ | $\begin{gathered} 1 \\ d_{0} \end{gathered}$ | 2 | 2 | - |  |  |  |
| ADDC A, Rr | $\begin{aligned} & (A):(A)+(C)+(R r) \\ & \text { for } r=0-7 \end{aligned}$ | Add with carry the contents of the designated register to the Accumulator. | 0 | 1 | 1 | 1 | 1 | r | r | r | 1 | 1 | - |  |  |  |
| ADDC A, @ Rr | $\begin{aligned} & (A)-(A)+(C)+((R r)) \\ & \text { for } r=0-1 \end{aligned}$ | Add Indirect with carry the contents of data memory location to the Accumulator. | 0 | 1 | 1 | 1 | 0 | 0 | 0 | r | 1 | 1 | - |  |  |  |
| ANL $\mathrm{A}_{1}=$ data | (A) - (A) ANO data | Logıcal and specified Immedıate Data with Accumulator. | $\begin{gathered} 0 \\ d 7 \end{gathered}$ | $\begin{gathered} 1 \\ d_{6} \end{gathered}$ | $\begin{gathered} 0 \\ d_{5} \end{gathered}$ | $\begin{gathered} 1 \\ d_{4} \end{gathered}$ | $\begin{gathered} 0 \\ d_{3} \end{gathered}$ | $\begin{gathered} 0 \\ d_{2} \end{gathered}$ | $\begin{gathered} 1 \\ d_{1} \end{gathered}$ | $\begin{gathered} 1 \\ d_{0} \end{gathered}$ | 2 | 2 |  |  |  |  |
| ANL A, Rr | $\begin{aligned} & (A)-(A) \text { AND }(\mathrm{Rr}) \\ & \text { for } r=0-7 \end{aligned}$ | Logical and contents of designated register with Accumulator. | 0 | 1 | 0 | 1 | 1 | r | r | r | 1 | 1 |  |  |  |  |
| ANL A, @ Rr | $\begin{aligned} & (A)-(A) \text { AND }((\operatorname{Rr})) \\ & \text { for } r=0 \quad 1 \end{aligned}$ | Logical and Indirect the contents of data memory with Accumulator. | 0 | 1 | 0 | 1 | 0 | 0 | 0 | r | 1 | 1 |  |  |  |  |
| CPL A | $(\mathrm{A})$ - NOT (A) | Complement the contents of the Accumulator. | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |  |  |  |  |
| CLR A | $(\mathrm{A})=0$ | CLEAR the contents of the Accumulator. | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |  |  |  |  |
| DA A |  | DECIMAL ADJUST the contents of the Accumulator. | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | - |  |  |  |
| DEC A | (A). (A) 1 | DECREMENT by 1 the accumulator's contents. | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |  |  |  |  |
| INC A | $(A)-(A)+1$ | Increment by 1 the accumulator's contents. | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |  |  |  |  |
| ORL A. = data | (A) - (A) OR data | Logical OR specified immediate data with Accumulator | $\begin{gathered} 0 \\ d 7 \end{gathered}$ | $\begin{gathered} 1 \\ d_{6} \end{gathered}$ | $\begin{gathered} 0 \\ d_{5} \end{gathered}$ | $\begin{gathered} 0 \\ d_{4} \end{gathered}$ | $\begin{gathered} 0 \\ d_{3} \end{gathered}$ | $\begin{gathered} 0 \\ d_{2} \end{gathered}$ | $\begin{gathered} 1 \\ d_{1} \end{gathered}$ | $\begin{gathered} 1 \\ d_{0} \end{gathered}$ | 2 | 2 |  |  |  |  |
| ORL A, Rr | $\begin{aligned} & (A) \cdots(A) O R(R r) \\ & \text { for } r=0 \cdot 7 \end{aligned}$ | Logical ORcontents of designated register with Accumulator. | 0 | 1 | 0 | 0 | 1 | r | r | r | 1 | 1 |  |  |  |  |
| ORL A, @ Rr | $\begin{aligned} & \left.(A)-(A) G R\left(\mid R_{r}\right)\right) \\ & \text { for } r=0-1 \end{aligned}$ | Logical OR Indirect the corrierits of data memory location with Accumulator. | 0 | 1 | 0 | 0 | 0 | 0 | 0 | : | 1 | 1 |  |  |  |  |
| RL A | $\begin{aligned} & (A N+1)-(A N) \\ & \left(A_{0}\right)-\left(A_{7}\right) \\ & \text { for } N=0-6 \end{aligned}$ | Rotate Accumulator left by 1 -bit without carry. | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |  |  |  |  |
| RLC A | $\begin{aligned} & (A N+1)-(A N) ; N=0-6 \\ & \left(A_{0}\right)-(C) \\ & (C)-\left(A_{7}\right) \end{aligned}$ | Rotate Accumulator left by 1-bit through carry. | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | - |  |  |  |
| RR A | $\begin{aligned} & (A N)-(A N+1) ; N=0-6 \\ & \left(A_{7}\right)-\left(A_{0}\right) \end{aligned}$ | Rotate Accumulator right by 1 -bit without carry. | 0 | 1. | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |  |  |  |  |
| RRC A | $\begin{aligned} & (A N)-(A N+1) ; N=0-6 \\ & (A 7)-(C) \\ & (C)-\left(A_{0}\right) \end{aligned}$ | Rotate Accumulator right by 1 -bit through carry. | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | - |  |  |  |
| SWAP A | $\left(A_{4.7}\right) \div\left(A_{0}-3\right)$ | Swap the 24 -bit nibbles in the Accumulator. | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |  |  |  |  |
| XRL A, \# data | $(\mathrm{A})$ - (A) XOR data | Logical XOR specifted immediate data with Accumulator. |  | $\begin{gathered} 1 \\ d_{6} \end{gathered}$ | $\begin{gathered} 0 \\ d 5 \end{gathered}$ | $\begin{gathered} 1 \\ d_{4} \end{gathered}$ | $\begin{gathered} 0 \\ d_{3} \end{gathered}$ | $\begin{gathered} 0 \\ d_{2} \end{gathered}$ | $\begin{gathered} 1 \\ d_{1} \end{gathered}$ | $\begin{gathered} 1 \\ d_{0} \end{gathered}$ | 2 | 2 |  |  |  |  |
| XRL A, Rr | $\begin{aligned} & (A)-(A) \text { XOR }(R r) \\ & \text { for } r=0-7 \end{aligned}$ | Logical XOR contents of designated register with Accumulator. | 1 | 1 | 0 | 1 | 1 | r | r | r | 1 | 1 |  |  |  |  |
| XRL A, @ Rr | $\begin{aligned} & (A)-(A) \text { XOR }(\mid R r)) \\ & \text { for } r=0-1 \end{aligned}$ | Logical XOR Indirect the contents of data memory location with Accumulator. | 1 | 1 | 0 | 1 | 0 | 0 | 0 | r | 1 | 1 |  |  |  |  |
| BRANCH |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| DJNZ Rr, addr | $\begin{aligned} & \left(R_{r}\right) \leftarrow\left(R_{r}\right)-1 ; r=0-7 \\ & \text { If }\left(R_{r}\right) \neq 0: \\ & (P C 0-7) \leftarrow \text { addr } \end{aligned}$ | Decrement the specified register and test contents. | $\begin{gathered} 1 \\ a 7 \end{gathered}$ | $\begin{gathered} 1 \\ a_{6} \end{gathered}$ | $\begin{gathered} 1 \\ \text { a5 } \end{gathered}$ | $\begin{gathered} 0 \\ a 4 \end{gathered}$ | $\begin{gathered} 1 \\ a_{3} \end{gathered}$ | $\begin{gathered} \text { r } \\ a_{2} \end{gathered}$ | $\stackrel{r}{\mathbf{a}_{1}}$ | $\begin{gathered} r \\ a_{0} \end{gathered}$ | 2 | 2 |  |  |  |  |
| JBb addr | (PC $0-7$ ) $\leftarrow$ addr if $\mathrm{Bb}=1$ <br> $(P C)+(P C)+2$ if $\mathrm{Bb}=0$ | Jump to specified address if Accumulator bit is set. |  | $\begin{aligned} & \mathrm{b}_{1} \\ & \mathrm{a}_{6} \end{aligned}$ | $\begin{aligned} & \mathrm{b}_{0} \\ & \mathrm{a}_{5} \end{aligned}$ | $\begin{gathered} 1 \\ a_{4} \end{gathered}$ | $\begin{gathered} 0 \\ a_{3} \end{gathered}$ | $\begin{gathered} 0 \\ a_{2} \end{gathered}$ | $\begin{gathered} 1 \\ \mathbf{a}_{1} \end{gathered}$ | $\begin{gathered} 0 \\ a_{0} \end{gathered}$ | 2 | 2 |  |  |  |  |
| JC addr | $\begin{aligned} & (P C 0-7) \leftarrow \text { addr if } C=1 \\ & (P C)-(P C)+2 \text { if } C=0 \end{aligned}$ | Jump to specified address if carry flag is set. |  | $\begin{gathered} 1 \\ a_{6} \end{gathered}$ | $\begin{gathered} 1 \\ a_{5} \end{gathered}$ | $\begin{gathered} 1 \\ a_{4} \end{gathered}$ | $\begin{gathered} 0 \\ \mathbf{a}_{3} \end{gathered}$ | $\begin{gathered} 1 \\ a_{2} \end{gathered}$ | $\begin{gathered} 1 \\ a_{1} \end{gathered}$ | $\begin{gathered} 0 \\ a_{0} \end{gathered}$ | 2 | 2 |  |  |  |  |
| JFO addr | $(P C 0-7) \leftarrow$ addr if $F O=1$ <br> $(P C)-1(P C)+2$ if. $F O=0$ | Jump to specified address if Flag FO is set. |  | $\begin{gathered} 0 \\ a_{6} \end{gathered}$ | $\begin{gathered} 1 \\ a_{5} \end{gathered}$ | $\begin{gathered} 1 \\ a_{4} \end{gathered}$ | 0 93 | 1 $a_{2}$ | 1 $a_{1}$ | 0 $a_{0}$ | 2 | 2 |  |  |  |  |
| JF1 addr | $\begin{aligned} & (P C 0-7) \leftarrow \text { addr if } F 1=1 \\ & (P C)-(P C)+2 \text { if } F 1=0 \end{aligned}$ | Jump to specified address if Flag F1 is set. |  | $\begin{gathered} 1 \\ a_{6} \end{gathered}$ |  |  |  | $\begin{gathered} 1 \\ a_{2} \end{gathered}$ | $\begin{gathered} 1 \\ a_{1} \end{gathered}$ | 0 $a_{0}$ | 2 | 2 |  |  |  |  |
| JMP addr | $\begin{aligned} & (\text { PC } 8-10)-\text { addr } 8-10 \\ & \text { (PC 0-7) addr } 0-7 \\ & \text { (PC 11) DBF } \end{aligned}$ | Direct Jump to specified address within the $\mathbf{2 K}$ address block. |  | $\begin{aligned} & \text { ag } \\ & a_{6} \end{aligned}$ | $\begin{aligned} & \text { a8 } \\ & \text { a5 } \end{aligned}$ | $\begin{gathered} 0 \\ 34 \end{gathered}$ | $\begin{gathered} 0 \\ a_{3} \end{gathered}$ | $\begin{gathered} 1 \\ \mathbf{a}_{2} \end{gathered}$ | $\begin{gathered} 0 \\ a_{1} \end{gathered}$ | $\begin{gathered} 0 \\ a_{0} \end{gathered}$ | 2 | 2 |  |  |  |  |
| JMPP @ A | $(P, C 0-7)-((A))$ | Jump indirect to specified address with with address page. | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | $2 \cdot$ | 1 |  |  |  |  |
| JNC addr | $\begin{aligned} & (P C 0-7)-\text { addr if } C=0 \\ & (P C)-(P C)+2 \text { if } C=1 \end{aligned}$ | Jump to specified address if carry flag is low. |  | $\begin{gathered} 1 \\ a_{6} \end{gathered}$ | $\begin{gathered} 1 \\ a_{5} \end{gathered}$ | $\begin{gathered} 0 \\ a_{4} \end{gathered}$ | $\begin{gathered} 0 \\ a_{3} \end{gathered}$ | $\begin{gathered} 1 \\ \mathbf{a}_{2} \end{gathered}$ | $\begin{gathered} 1 \\ \mathbf{a}_{1} \end{gathered}$ | $\begin{gathered} 0 \\ a_{0} \end{gathered}$ | 2 | 2 |  |  |  |  |
| JNI addr | (PC O-7) - addr if $1=0$ <br> $(P C)+(P C)+2$ if $I=1$ | Jump to specified address if interrupt is low. | $\begin{gathered} 1 \\ a 7 \end{gathered}$ | $\begin{array}{r} 0 \\ a_{6} \end{array}$ | 0 <br> $a_{5}$ | 0 <br>  <br>  <br> 4 | $\begin{array}{r}0 \\ \text { a } \\ \hline\end{array}$ | 1 <br> $a_{2}$ | $\begin{array}{r}1 \\ a_{1} \\ \hline\end{array}$ | 0 <br> $a_{0}$ | 2 | 2 |  |  |  |  |




Notes (1) Instruction Code Designations $r$ and $p$ form the binary representation of the Registers and Ports involved
(2) The dot under the appropriate flag bit indicates that its content is subject to change by the instruction it appears in
(3) References to the address and data are specified in bytes 2 and/or 1 of the instruction
(4) Numerical Subscripts appearing in the FUNCTION column reference the specific bits affected.

Symbol Definitions:

| SYMBOL | DESCRIPTION |
| :---: | :--- |
| A | The Accumulator |
| AC | The Auxiliary Carry Flag |
| addr | Program Memory Address (12 bits) |
| Bb | Bit Designator (b $=0-7$ ) |
| BS | The Bank Switch |
| BUS | The BUS Port |
| C | Carry Flag |
| CLK | Clock Signal |
| CNT | Event Counter |
| D | Nibble Designator (4 bits) |
| data | Number or Expression (8 bits) |
| DBF | Memory Bank Flip-Flop |
| Fo, F $_{1}$ | Flags 0, 1 |
| I | Interrupt |
| P | "In-Page" Operation Designator |


| SYMBOL | DESCRIPTION |
| :---: | :--- |
| $P_{p}$ | Port Designator ( $p=1,2$ or $4-7$ ) |
| $P S W$ | Program Status Word |
| $R r$ | Register Designator ( $r=0,1$ or $0-7$ ) |
| $S P$ | Stack Pointer |
| $T$ | Timer |
| $T F$ | Timer Flag |
| $T_{0}, T_{1}$ | Testable Flags 0, 1 |
| $X$ | External RAM |
|  | Prefix for Immediate Data |
| $@$ | Prefix for Indirect Address |
| $\$$ | Program Counter's Current Value |
| $(x)$ | Contents of External RAM Location |
| $(x))$ | Contents of Memory Location Addressed <br> by the Contents of External RAM Location |
| $\square$ | Replaced By |

LOGIC SYMBOL


PACKAGE OUTLINES $\mu$ PD8048C/D $\mu$ PD8748D $\mu$ PD8035LC/D

Plastic

| ITEM | MILLIMETERS | INCHES |
| :--- | :---: | :--- |
| A | 51.5 MAX | 2.028 MAX |
| B | 1.62 | 0.064 |
| C | $2.54 \pm 0.1$ | $0.10 \pm 0.004$ |
| D | $0.5 \pm 0.1$ | $0.019 \pm 0.004$ |
| E | 48.26 | 1.9 |
| F | 1.2 MIN | 0.047 MIN |
| G | 2.54 MIN | 0.10 MIN |
| H | 0.5 MIN | 0.019 MIN |
| I | 5.22 MAX | 0.206 MAX |
| J | 5.72 MAX | 0.225 MAX |
| K | 15.24 | 0.600 |
| L | 13.2 | 0.520 |
| M | $0.25+0.1$ | $0.010+0.004$ |
| 0.005 |  |  |



Ceramic

| ITEM | MILLIMETERS | INCHES |
| :--- | :---: | :--- |
| A | 51.5 | 2.03 |
| B | 1.62 | 0.06 |
| C | 2.54 | 0.1 |
| D | $0.5 \pm 0.1$ | $0.02 \pm 0.004$ |
| E | 48.26 | 1.9 |
| F | 1.02 | 0.04 |
| G | 3.2 | 0.13 |
| H | 1.0 | 0.04 |
| I | 3.5 | 0.14 |
| J | 4.5 | 0.18 |
| K | 15.24 | 0.6 |
| L | 14.93 | 0.59 |
| M | $0.25 \pm 0.05$ | $0.01 \pm 0.0019$ |

## NOTES

# HIGH PERFORMANCE <br> SINGLE CHIP 8-BIT MICROCOMPUTERS 

DESCRIPTION The NEC $\mu$ PD8049 and $\mu$ PD8039L are single chip 8-bit microcomputers. The processors differ only in their internal program memory options: the $\mu$ PD8049 with $2 \mathrm{~K} \times 8$ bytes of mask ROM and the $\mu$ PD8039L with external program memory. Both of these devices feature new, high performance 11 MHz operation.

FEATURES - High Performance 11 MHz Operation

- Fully Compatible with Industry Standard 8049/8039
- Pin Compatible with the $\mu$ PD8048/8748/8035
- NMOS Silicon Gate Technology Requiring a Single $+5 \mathrm{~V} \pm 10 \%$ Supply.
- $1.36 \mu$ s Cycle Time. All Instructions 1 or 2 Bytes
- Programmable Interval Timer/Event Counter
- $2 \mathrm{~K} \times 8$ Bytes of ROM, $128 \times 8$ Bytes of RAM
- Single Level Interrupt
- 96 Instructions: 70 Percent Single Byte
- 27 I/O Lines
- Internal Clock Generator
- Expandable with 8080A/8085A Peripherals
- Available in Both Ceramic and Plastic 40-Pin Packages

PIN CONFIGURATION

| TO $\square_{1}^{1}$ |  | 40 | $\square{ }^{\square} \mathrm{CC}$ |
| :---: | :---: | :---: | :---: |
| XTAL 1 - 2 |  | 39 | $\square \mathrm{T}_{1}$ |
| XTAL 2 - 3 |  | 38 | - P 27 |
| RESET 4 |  | 37 | P26 |
| $\overline{S S} \square 5$ |  | 36 | $\square \mathrm{P} 25$ |
| INT 6 |  | 35 | P24 |
| EA 7 |  | 34 | P17 |
| $\overline{R D} 8$ |  | 33 | $\square \mathrm{P} 16$ |
| $\overline{\text { PSEN }} 9$ | $\mu \mathrm{PD}$ | 32 | $\square \mathrm{P} 15$ |
| $\overline{W R} \square 10$ | 8049/ | 31 | ] P14 |
| ALE 11 | 8039 L | 30 | ] P13 |
| $\mathrm{DB}_{0} \square 12$ |  | 29 | P12 |
| $D B_{1}-13$ |  | 28 | $\square \mathrm{P} 11$ |
| $\mathrm{DB}_{2} \square^{14}$ |  | 27 | P10 |
| $\mathrm{DB}_{3} \square 15$ |  | 26 | $\square V_{D D}$ |
| $\mathrm{DB}_{4}-16$ |  | 25 | P PROG |
| $\mathrm{DB}_{5} \square 17$ |  | 24 | $\square \mathrm{P} 23$ |
| $\mathrm{DB}_{6} \square 18$ |  | 23 | P22 |
| $\mathrm{DB}_{7} \square 19$ |  | 22 | P21 |
| ${ }^{\text {SS }} \square^{20}$ |  | 21 | $\square \mathrm{P} 20$ |

## $\boldsymbol{\mu}$ PD8049/8039L

The NEC $\mu$ PD8049 and $\mu$ PD8039L are high performance, single component, 8-bit parallel microcomputers using N -channel silicon gate MOS technology. The $\mu$ PD8049 and $\mu$ PD8039L function efficiently in control as well as arithmetic applications. The powerful instruction set eases bit handling applications and provides facilities for binary and BCD arithmetic. Standard logic functions implementation is facilitated by the large variety of branch and table look-up instructions.

The $\mu$ PD8049 and $\mu$ PD8039L instruction set is comprised of 1 and 2 byte instructions with over 70 percent single-byte. The instruction set requires only 1 or 2 cycles per instruction with over 50 percent single-cycle.

The $\mu$ PD8049 and $\mu$ PD8039L microprocessors will function as stand-alone microcomputers. Their functions can easily be expanded using standard 8080A/8085A peripherals and memories.

The $\mu$ PD8049 contains the following functions usually found in external peripheral devices: $2048 \times 8$ bits of mask ROM program memory; $128 \times 8$ bits of RAM data memory; 27 I/O lines; an 8 -bit interval timer/event counter; and oscillator and clock circuitry.

The $\mu$ PD8039L is intended for applications using external program memory only. It contains all the features of the $\mu$ PD8049 except the $2048 \times 8$-bit internal ROM. The external program memory can be implemented using standard 8080A/8085A memory products.


PIN IDENTIFICATION

| PIN |  | FUNCTION |
| :---: | :---: | :---: |
| NO. | SYMBOL |  |
| 1 | $\mathrm{T}_{0}$ | Testable input using conditional transfer functions JTO and JNTO. The internal State Clock (CLK) is available to $\mathrm{T}_{0}$ using the ENTO CLK instruction. $T_{0}$ can also be used during programming as a testable flag. |
| 2 | XTAL 1 | One side of the crystal, LC, or external frequency source. (Non-TTL compatible $\mathrm{V}_{\mathrm{IH}}$.) |
| 3 | XTAL 2 | The other side of the crystal or LC frequency source. For external sources, XTAL 2 must be driven with the logical complement of the XTAL 1 input. |
| 4 | RESET | Active low input from processor initialization. $\overline{\text { RESET }}$ is also used for PROM programming verification and power-down (non-TTL compatible $\mathrm{V}_{\mathrm{IH}}$ ). |
| 5 | $\overline{\mathrm{SS}}$ | Single Step input (active-low). $\overline{\mathrm{SS}}$ together with ALE allows the processor to "single-step" through each instruction in program memory. |
| 6 | $\overline{\text { INT }}$ | Interrupt input (active-low). $\overline{\text { INT }}$ will start an interrupt if an enable interrupt instruction has been executed. A reset will disable the interrupt. $\overline{\mathrm{NT}}$ can be tested by issuing a conditional jump instruction. |
| 7 | EA | External Áccess input (active-high). A logic " 1 " at this input commands the processor to perform all program memory fetches from external memory. |
| 8 | $\overline{R D}$ | READ strobe outputs active-low). $\overline{R D}$ will pulse low when the processor performs a BUS READ. $\overline{R D}$ will also enable data onto the processor BUS from a peripheral device and function as a READ STROBE for external DATA MEMORY. |
| 9 | $\overline{\text { PSEN }}$ | Program Store Enable output (active-low). $\overline{\text { PSEN }}$ becomes active only during an external memory fetch. |
| 10 | $\overline{W R}$ | WRITE strobe output (active-low). $\overline{W R}$ will pulse low when the processor performs a BUS WRITE. $\overline{\text { WR }}$ can also function as a WRITE STROBE for external DATA MEMORY. |
| 11 | ALE | Address Latch Enable output (active-high). Occurring once each cycle, the falling edge of ALE latches the address for external memory or peripherals. ALE can also be used as a clock output. |
| 12-19 | $\mathrm{D}_{0}-\mathrm{D}_{7} \mathrm{BUS}$ | 8-bit, bidirectional port. Synchronous reads and writes can be performed on this port using $\overline{R D}$ and $\overline{W R}$ strobes. The contents of the $\mathrm{D}_{0}-\mathrm{D}_{7}$ BUS can be latched in a static mode. <br> During an external memory fetch, the $\mathrm{D}_{0}-\mathrm{D}_{7}$ BUS holds the least significant bits of the program counter. $\overline{\text { PSEN }}$ controls the incoming addressed instruction. Also, for an external RAM data store instruction the $D_{0}-D_{7}$ BUS, controlled by $A L E, \overline{R D}$ and $\overline{W R}$, contains address and data information. |
| 20 | $\mathrm{V}_{\text {SS }}$ | Processor's GROUND potential. |
| $\begin{aligned} & 21-24, \\ & 35-38 \end{aligned}$ | $\begin{aligned} & \mathrm{P}_{20}-\mathrm{P}_{27}: \\ & \mathrm{PORT}_{2} \end{aligned}$ | Port 2 is the second of two 8-bit quasi-bidirectional ports. For external data memory fetches, the four most significant bits of the program counter are contained in $\mathrm{P}_{20}-\mathrm{P}_{23}$. Bits $\mathrm{P}_{20}-\mathrm{P}_{23}$ are also used as a 4-bit I/O bus for the $\mu$ PD8243, INPUT/OUTPUT EXPANDER. |
| 25 | PROG | PROG is used as an output strobe for $\mu$ PD8243's during I/O expansion. When the $\mu$ PD8049 is used in a stand-alone mode the PROG pan can be allowed to float. |
| 26 | $V_{\text {DD }}$ | $V_{D D}$ is used to provide +5 V to the $128 \times 8$ bit RAM section. During normal operation $V_{\text {CC }}$ must also be +5 V to provide power to the other functions in the device. During stand-by operation $V_{D D}$ must remain at +5 V while $\mathrm{V}_{\mathrm{CC}}$ is at ground potential. |
| 27-34 | $\begin{aligned} & \mathrm{P}_{10}-\mathrm{P}_{17}: \\ & \mathrm{PORT}_{1} \end{aligned}$ | Port 1 is one of two 8-bit quasi-bidirectional ports. |
| 39 | T1 | Testable input using conditional transfer functions JT1 and JNT1. T1 can be made the counter/timer input using the STRT CNT instruction. |
| 40 | $\mathrm{V}_{\mathrm{CC}}$ | Primary Power supply. $\mathrm{V}_{\mathrm{CC}}$ is +5 V during normal operation. |

Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature (Ceramic Package) . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic Package) . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage on Any Pin . . . . . . . . . . . . . . . . . . . . . . . -0.5 to +7 Volts ©
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 W

Note: (1) With respect to ground.

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} T_{a}=25^{\circ} \mathrm{C}$
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input Low Voltage <br> (All Except XTAL 1, XTAL 2) | VIL | -0.5 |  | 0.8 | V |  |
| Input High Voltage <br> (All Except XTAL 1, XTAL 2, $\overline{\text { RESET }}$ ) | $V_{\text {IH }}$ | 2.0 |  | VCC | V |  |
| $\begin{aligned} & \text { Input High Voltage } \\ & \text { (RESET, XTAL 1, XTAL 2) } \end{aligned}$ | VIHI | 3.8 |  | Vcc | V |  |
| Output Low Voltage (BUS, $\overline{R D}$. WR, PSEN, ALE) | VOL |  |  | 0.45 | V | $\mathrm{I}^{\mathrm{OL}}=2.0 \mathrm{~mA}$ |
| Output Low Voltage (All Other Outputs Except PROG) | VOL1 |  |  | 0.45 | V | $\mathrm{I}^{\prime} \mathrm{OL}=1.6 \mathrm{~mA}$ |
| Output Low Voltage (PROG) | VOL2 |  |  | 0.45 | V | $1 \mathrm{OL}=1.0 \mathrm{~mA}$ |
| Output High Voltage (BUS, $\overline{\mathrm{RD}}$, WR, PSEN, ALE) | VOH | 2.4 |  |  | V | $\mathrm{IOH}^{=}=-100 \mu \mathrm{~A}$ |
| Output High Voltage (All Other Outputs) | VOH1 | 2.4 |  |  | V | $\mathrm{I}^{\prime} \mathrm{OH}=-50 \mu \mathrm{~A}$ |
| Input Leakage Current ( $T_{1}, E A, I N T$ ) | IIL |  |  | $\pm 10$ | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {SS }} \leqslant \mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\text {CC }}$ |
| Output Leakage Current (BUS, T0 - High Impedance State) | '0L | , |  | $\pm 10$ | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{CC}} \geqslant \mathrm{V}_{\text {IN }} \geqslant \mathrm{V}_{\text {SS }}+0.45 \mathrm{~V}$ |
| Power Down Supply Current | IDD |  | 25 | 50 | mA | $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ |
| Total Supply Current | IDD + ICC |  | 100 | 170 | mA | $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ |



ABSOLUTE MAXIMUM RATINGS*

READ, WRITE AND INSTRUCTION FETCH - EXTERNAL DATA AND PROGRAM MEMORY
$T_{a}=0^{\prime} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 5 \% ; V_{S S}=0 \mathrm{~V}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| ALE Pulse Width | tLL | 150 |  |  | ns |  |
| Address Setup before ALE | ${ }^{t} A L$ | 70 |  |  | ns |  |
| Address Hold from ALE | tLA | 50 |  |  | ns |  |
| Control Pulse Width ( $\overline{\mathrm{PSEN}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ ) | ${ }^{\text {c }} \mathrm{C}$ | 300 |  |  | ns |  |
| Data Setup before $\overline{W R}$ | ${ }^{\text {t }}$ DW | 250 |  |  | ns |  |
| Data Hold after $\overline{W R}$ | twD | 40 |  |  | ns | $C_{L}=20 \mathrm{pF}$ (3) |
| Cycle Time | ${ }^{t} \mathrm{CY}$ | 1.36 |  | 15.0 | $\mu \mathrm{s}$ |  |
| Data Hold | ${ }^{t}$ DR | 0 |  | 100 | ns |  |
| $\overline{\text { PSEN, }} \overrightarrow{R D}$ to Data In | ${ }^{\text {tRD }}$ |  |  | 200 | ns |  |
| Address Setup before $\overline{W R}$ | ${ }^{\text {t }}$ AW | 200 |  |  | ns |  |
| Address Setup before Data In | ${ }^{t} A D$ |  |  | 400 | ns |  |
| Address Float to $\overline{\text { RD }}, \overline{\text { PSEN }}$ | ${ }^{t} A F C$ | -40 |  |  | ns |  |

Notes: (1) For Control Outputs: $C_{L}=80 \mathrm{pF}$
(2) For Bus Outputs: $C_{L}=150 \mathrm{pF}$
(3) ${ }^{\mathrm{t}} \mathrm{CY}=\mathbf{1 . 3 6} \mu \mathrm{s}$

PORT 2 TIMING
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TVP | MAX |  |  |
| Port Control Setup before Falling Edge of PROG | ${ }^{t} \mathrm{CP}$ | 100 |  |  | ns |  |
| Port Control Hold after Falling Edge of PROG | tPC | 60 |  |  | ns |  |
| PROG to Time P2 Input must be Valid | tPR |  |  | 650 | ns |  |
| Output Data Setup Time | ${ }^{\text {t }}$ P $P$ | 200 |  |  | ns |  |
| Output Data Hold Time | tPD | 20 |  |  | ns |  |
| Input Data Hold Time | tPF | 0 |  | 150 | ns |  |
| PROG Pulse Width | tpp | 700 |  |  | ns |  |
| Port 2 I/O Data Setup | $t P L$ | 150 |  |  | ns |  |
| Port 2 I/O Data Hold | ${ }_{\text {t }}^{\text {LP }}$ | 20 |  |  | ns |  |

TIMING WAVEFORMS


INSTRUCTION FETCH FROM EXTERNAL MEMORY


TIMING WAVEFORMS (CONT.)


READ FROM EXTERNAL DATA MEMORY

ALE

$\overline{W R}$


WRITE TO EXTERNAL MEMORY


PORT 2 TIMING


Notes: (1) Instruction Code Designations $r$ and $p$ form the binary representation of the Registers and Ports involved.
(2) The dot under the appropriate flag bit indicates that its content is subject to change by the instruction it appears in.
(3) References to the address and data are specified in bytes 2 and/or 1 of the instruction.
(4) Numerical Subscripts appearing in the FUNCTION column reference the specific bits affected.

Symbol Definitions:

| SYMBOL | DESCRIPTION |
| :---: | :--- |
| A | The Accumulator |
| AC | The Auxiliary Carry Flag |
| addr | Program Memory Address (12 bits) |
| Bb | Bit Designator (b $=0-7$ ) |
| BS | The Bank Switch |
| BUS | The BUS Port |
| C | Carry Flag |
| CLK | Clock Signal |
| CNT | Event Counter |
| D | Nibble Designator (4 bits) |
| data | Number or Expression (8 bits) |
| DBF | Memory Bank Flip-Flop |
| FO, F1 | Flags 0, 1 |
| I | Interrupt |
| P | "In-Page" Operation Designator |


| SYMBOL | DESCRIPTION |
| :---: | :--- |
| $P_{p}$ | Port Designator ( $p=1,2$ or $4-7$ ) |
| PSW | Program Status Word |
| $R r$ | Register Designator ( $r=0,1$ or $0-7$ ) |
| $S P$ | Stack Pointer |
| $T$ | Timer |
| $T F$ | Timer Flag |
| $T_{0}, T_{1}$ | Testable Flags 0,1 |
| $X$ | External RAM |
| $=$ | Prefix for Immediate Data |
| $@$ | Prefix for Indirect Address |
| $\$$ | Program Counter's Current Value |
| $(x)$ | Contents of External RAM Location |
| $((x))$ | Contents of Memory Location Addressed <br> by the Contents of External RAM Location. <br> -Replaced By |

## $\mu$ PD8049/8039L



Plastic

| ITEM | MILLIMETERS | INCHES |
| :---: | :---: | :---: |
| A | 51.5 MAX. | 2.028 MAX. |
| B | 1.62 MAX. | 0.064 MAX. |
| C | $2.54 \pm 0.1$ | $0.10 \pm 0.004$ |
| D | $0.5 \pm 0.1$ | $0.019 \pm 0.004$ |
| E | $48.26 \pm 0.1$ | $1.9 \pm 0.004$ |
| F | 1.2 MIN. | 0.047 MIN. |
| G | 2.54 MIN. | 0.10 MIN. |
| H | 0.5 MIN. | 0.019 MIN. |
| I | 5.22 MAX. | 0.206 MAX. |
| J | 5.72 MAX. | 0.225 MAX. |
| K | 15.24 TYP. | 0.600 TYP. |
| L | 13.2 TYP. | 0.520 TYP. |
| M | 0.25 +0.1 -0.05 | 0.010+0.004 |



Ceramic

| ITEM | MILLIMETERS | INCHES |
| :---: | :---: | :--- |
| A | 51.5 MAX. | 2.03 MAX. |
| B | 1.62 MAX. | 0.06 MAX. |
| C | $2.54 \pm 0.1$ | $0.1 \pm 0.004$ |
| D | $0.5 \pm 0.1$ | $0.02 \pm 0.004$ |
| E | $48.26 \pm 0.1$ | $1.9 \pm 0.004$ |
| F | 1.02 MIN. | 0.04 MIN. |
| G | 3.2 MIN. | 0.13 MIN. |
| H | 1.0 MIN. | 0.04 MIN. |
| I | 3.5 MAX. | 0.14 MAX. |
| J | 4.5 MAX. | 0.18 MAX. |
| K | 15.24 TYP. | 0.6 TYP. |
| L | 14.93 TYP. | 0.59 TYP. |
| M | $0.25 \pm 0.05$ | $0.01 \pm 0.0019$ |

PIN IDENTIFICATION

| PIN |  |  | INPUT/ OUTPUT | CONNECTION то | UNCTIO |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NO. | SYMBOL | NAME |  |  |  |
| 1 | RST | Reset | Input | Processor | Places FDC in idle state. Resets output lines to FDD to " 0 " (low). Does not effect SRT, HUT or HLY in Specify command. An interrupt signal is generated approximately 1.3 ms after receipt of reset pulse. |
| 2 | $\overline{\text { RD }}$ | Read | Input(1) | Processor | Control signal for transfer of data from FDC to Data Bus, when " 0 " (low). |
| 3 | WR | Write | Input(1) | Processor | Control signal for transfer of data to FDC via Data Bus, when " 0 " (low). |
| 4 | $\overline{\text { CS }}$ | Chip Select | Input | Processor | IC selected when " 0 ' (low), allowing $\overline{R D}$ and $\overline{W R}$ to be enabled. |
| 5 | ${ }^{\text {a }} 0$ | Data/Status Reg Select | Input(1) | Processor | Selects Data Reg ( $A_{0}=1$ ) or Status Reg ( $A_{0}=0$ ) contents of the FDC to be sent to Data Bus. |
| . 6.13 | $\mathrm{DB}_{0} \cdot \mathrm{DB}_{7}$ | Data Bus | Input/(1) Output | Processor | Bi-Directional 8-Bit Data Bus. |
| 14 | DRQ | Data DMA Request | Output | DMA | DMA Request is being made by FDC when DRQ $={ }^{\prime \prime} 1$ ". |
| 15 | DACK | DMA Acknowledge | Input | DMA | DMA cycle is active when " 0 " (low) and Controller is performing DMA transfer. |
| 16 | TC | Terminal Count | Input | DMA | Indicates the termination of a DMA transfer when "1" (high). |
| 17 | IDX | Index | Input | FDD | Indicates the beginning of a disk track. |
| 18 | INT | Interrupt | Output | Processor | Interrupt Request Generated by FDC: |
| 19 | CLK | Clock | Input |  | Single Phase 8 MHz Squarewave Clock. |
| 20 | GND | Ground |  | " | D.C. Power Return. |
| 21 | WCK | Write Clock | Input | $\cdots$ | Write data rate to FDD. $F M=500 \mathrm{kHz}$, MFM $=1 \mathrm{MHz}$, with a pulse width of 250 ns for both FM and MEM. |
| 22 | RDW | Read Data Window | Input | Phase Lock Loop | Generated by PLL, and used to sample data from FDD. |
| 23 | RDD | Read Data | Input | FDD | Read data from FDD, containing clock and data bits. |
| 24 | VCO | VCO Sync | Output | Phase Lock Loop | Inhibits VCO in PLL when " 0 " (low), enables VCO when " 1 " |
| 25 | WE | Write Enable | Output | FDD | Enables write data into FDD. |
| 26 | MFM | MFM Mode | Output | Phase Lock Loop | MFM mode when " 1 ", FM mode when " 0 ". |
| 27 | HD | Head Select | Output | FDD | Head 1 selected when " 1 "' (high), Head 0 selected when " 0 " ( Iow). |
| 28,29 | $\mathrm{US}_{1}, \mathrm{US}_{0}$ | Unit Select | Output | FDD | FDD Unit Selected. |
| 30 | WDA | Write Data | Output | FDD | Serial clock and data bits to FDD. |
| 31,32 | $\mathrm{PS}_{1}, \mathrm{PS}_{0}$ | Precompensation (pre-shift) | Output , | FDD | Write precompensation status during MFM mode. Determines early, late, and normal times. |
| 33 | $\mathrm{FLT} / \mathrm{TR}_{0}$ | Fault/Track 0 | Input | FDD | Senses FDD fault condition, in Read/ Write mode; and Track 0 condition in Seek mode. |
| 34 | WP/TS | Write Protect/ Two-Side | Input | FDD | Senses Write Protect status in Read/Write mode; and Two Side Media in Seek mode. |
| 35 | RDY | Ready | Input | FDD | Indicates FDD is ready to send or receive data. |
| 36 | HDL | Head Load | Output | FDD | Command which causes read/write head in FDD to contact diskette. |
| 37 | FR/STP | FIt Reset/Step | Output | FDD | Resets fault F.F. in FDD in Read/Write mode, contains step pulses to move head to another cylinder in Seek mode. |
| 38 | LCT/DIR | Low Current/ Direction | Output | FDD | Lowers. Write current on inner tracks in Read/Write mode, determines direction head will step in Seek mode. A fault reset pulse is issued at the beginning of each Read or Write command prior to the occurrence of the Head Load signal. |
| 39 | RW/SEEK | Read Write/SEEK | Output | FDD | When " 1 " (high) Seek mode selected and when " 0 " (low) Read/Write mode selected. |
| 40 | $\mathrm{V}_{\mathrm{CC}}$ | +5V |  |  | D.C. Power. |

Note: 1 Disabled when $C S=1$.
CAPACITANCE
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST <br> CONDITIONS |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| CON |  |  |  |  |  |

$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP(1) | MAX |  |  |
| Clock Period | $\Phi_{\text {CY }}$ | 120 | 125 | 500 | ns |  |
| Clpck Active (High) | $\Phi_{0}$ | 40 |  |  | ns |  |
| Clock Rise Time | $\Phi_{\mathrm{r}}$ |  |  | 20 | ns |  |
| Clock Fall Time | $\Phi_{\text {f }}$ |  |  | 20 | ns |  |
| $\mathrm{A}_{0}, \overline{\mathrm{CS}}, \overline{\mathrm{DACK}}$ Set Up Time to $\overline{\mathrm{RD}} \downarrow$ | TAR | 0 |  |  | ns |  |
| $\mathrm{A}_{0}, \overline{\mathrm{CS}}, \overline{\mathrm{DACK}}$ Hold Time from $\overline{\mathrm{RD}} \uparrow$ | TRA | 0 |  |  | ns |  |
| $\overline{\mathrm{RD}}$ Width | TRR | 250 |  |  | ns |  |
| Data Access Time from $\overline{\mathrm{RD}} \downarrow$ | $T_{\text {RD }}$ |  |  | 200 | ns | $C_{L}=100 \mathrm{pf}$ |
| DB to Float Delay Time from $\overline{\mathrm{RD}} \uparrow$ | TDF | 20 |  | 100 | ns | $C_{L}=100 \mathrm{pF}$ |
| $A_{0}, \overline{C S}, \overline{\text { DACK }}$ Set Up Time to $\overline{W R} \downarrow$ | TAW | 0 |  |  | ns |  |
| $A_{0}, \overline{C S}, \overline{\text { DACK }}$ Hold Time to $\overline{W R} \uparrow$ | TWA | 0 |  |  | ns |  |
| $\overline{\text { WR Width }}$ | TWW | 250 |  |  | ns |  |
| Data Set Up Time to $\overline{W R} \uparrow$ | TDW | 150 |  |  | ns |  |
| Data Hold Time from $\overline{W R} \uparrow$ | TWD | 5 |  |  | ns |  |
| INT Delay Time from $\overline{R D} \uparrow$ | TRI |  |  | 500 | ns |  |
| INT Delay Time from $\overline{\text { WR }} \uparrow$ | TWI |  |  | 500 | ns |  |
| DRQ Cycle Time | $\mathrm{T}_{\mathrm{MCY}}$ | 13 |  |  | $\mu \mathrm{s}$ |  |
| DRQ Delay Time from $\overline{\text { DACK }} \downarrow$ | TAM |  |  | 200 | ns |  |
| TC Width | TTC | 1 |  |  | $\phi_{\text {CY }}$ |  |
| Reset Width | TRST | 14 |  |  | $\phi \mathrm{CY}$ |  |
| WCK Cycle Time | ${ }^{T} \mathrm{CY}$ |  | $\begin{aligned} & \hline 2 \text { or } 4(2) \\ & 1 \text { or } 2 \\ & \hline \end{aligned}$ |  | $\mu \mathrm{s}$ | $\begin{aligned} & \text { MFM }=0 \\ & \text { MFM }=1 \end{aligned}$ |
| WCK Active Time (High) | $\mathrm{T}_{0}$ | 80 | 250 | 350 | ns |  |
| WCK R ise Time | $\mathrm{T}_{\mathrm{r}}$ |  |  | 20 | ns |  |
| WCK Fall Time | $\mathrm{T}_{\mathrm{f}}$ |  |  | 20 | ns |  |
| Pre-Shift Delay Time from WCK $\uparrow$ | $\mathrm{T}_{\text {CP }}$ | 20 |  | 100 | ns |  |
| WDA Delay Time from WCK $\uparrow$ | TCD | 20 |  | 100 | ns |  |
| RDD Active Time (High) | TRDD | 40 |  |  | ns |  |
| Window Cycle Time | TWCY |  | $\begin{array}{\|l\|} \hline 2.0 \\ 1.0 \end{array}$ |  | $\mu \mathrm{s}$ | $\begin{aligned} & \text { MFM }=0 \\ & \text { MFM }=1 \end{aligned}$ |
| Window Hold Time to/from RDD | TRDW TWRD | 15 |  |  | ns |  |
| US 0,1 Hold Time to RW/SEEK $\uparrow$ | TUS | 12 |  |  | $\mu \mathrm{s}$ |  |
| SEEK/RW Hold Time to LOW CURRENT/ DIRECTION $\uparrow$ | TSD | 7 |  |  | $\mu \mathrm{s}$ |  |
| LOW CURRENT/DIRECTION Hold Time to FAULT RESET/STEP $\uparrow$ | TDST | 1.0 |  |  | $\mu \mathrm{s}$ |  |
| US $_{0,1}$ Hold Time from FAULT RESET/STEP $\uparrow$ | Tstu | 5.0 |  |  | $\mu \mathrm{s}$ | 8 MHz Clock Period |
| STEP Active Time (High) ... | TSTP |  | 5.0 |  | $\mu \mathrm{s}$ |  |
| STEP Cycle Time | $\mathrm{T}_{\mathrm{SC}}$ | 33 | (3) | (3) | $\mu \mathrm{s}$ |  |
| FAULT RESET Active Time (High) | TFR | 8.0 |  | 10 | $\mu \mathrm{s}$ |  |
| Write Data Width | TWDD | T0-50 |  |  | ns |  |
| US ${ }_{0,1}$ Hold Time After SEEK | TSU | 15 |  |  | $\mu \mathrm{s}$ |  |
| Seek Hold Time from DIR | TDS | 30 |  |  | $\mu \mathrm{s}$ | 8 MHz Clock Period |
| DIR Hold Time after STEP | TSTD | 24 |  |  | $\mu \mathrm{s}$ |  |
| Index Puise Width | TIDX | 625 |  |  | $\mu \mathrm{s}$ |  |
| $\overline{\mathrm{RD}} \downarrow$ Delay from DRQ | TMR | 800 |  |  | ns |  |
| WR $\downarrow$ Delay from DRQ | TMW | 250 |  |  | ns | 8 MHz Clock Period |
| $\overline{W E}$ or $\overline{R D}$ Response Time from DRQ $\uparrow$ | TMRW |  |  | 12 | $\mu \mathrm{s}$ |  |

Notes: (1) Typical values for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
(2) The former value of 2 and 1 are applied to Standard Floppy, and the latter value of 4 and 2 are applied to Mini-floppy.
(3) Under Software Control. The range is from 1 ms to 16 ms at $\mathbf{8 M H z}$ Clock Period, and 2 to 32 ms at 4 MHz Clock Period.



TIMING WAVEFORMS (CONT.)


FDD READ OPERATION


## RESET



The $\mu$ PD 765 contains two registers which may be accessed by the main system processor; a Status Register and a Data Register. The 8 -bit Main Status Register contains the status information of the FDC, and may be accessed at any time. The 8-bit Data Register (actually consists of several registers in a stack with only one register presented to the data bus at a time), which stores data, commands, parameters, and FDD status information. Data bytes are read out of, or written into, the Data Register in order to program or obtain the results after a particular command. The Status Register may only be read and is used to facilitate the transfer of data between the processor and $\mu$ PD765.
The relationship between the Status/Data registers and the signals $\overline{R D}, \overline{W R}$, and $A_{0}$ is shown below.

| $A_{0}$ | $\overline{\mathrm{RD}}$ | $\overline{\mathrm{WR}}$ | FUNCTION |
| :---: | :---: | :---: | :--- |
| 0 | 0 | 1 | Read Main Status Register |
| 0 | 1 | 0 | Illegal |
| 0 | 0 | 0 | Illegal |
| 1 | 0 | 0 | Illegal |
| 1 | 0 | 1 | Read from Data Register |
| 1 | 1 | 0 | Write into Data Register |

## INTERNAL REGISTERS

 (CONT.)
## PACKAGE OUTLINE $\mu$ PD765C

The bits in the Main Status Register are defined as follows:

| BIT NUMBER | NAME | SYMBOL | DESCRIPTION |
| :---: | :---: | :---: | :---: |
| $\mathrm{DB}_{0}$ | FDD 0 Busy | $\mathrm{D}_{0} \mathrm{~B}$ | FDD number 0 is in the Seek mode. |
| $\mathrm{DB}_{1}$ | FDD 1 Busy | $\mathrm{D}_{1} \mathrm{~B}$ | FDD number 1 is in the Seek mode. |
| $\mathrm{DB}_{2}$ | FDD 2 Busy | $\mathrm{D}_{2}{ }^{\text {B }}$ | FDD number 2 is in the Seek mode. |
| $\mathrm{DB}_{3}$ | FDD 3 Busy | $\mathrm{D}_{3} \mathrm{~B}$ | FDD number 3 is in the Seek mode. |
| DB4 | FDC Busy | CB | A read or write command is in process. |
| $\mathrm{DB}_{5}$ | Non-DMA mode | NDM | Indicates the FDC is in the non-DMA mode. This bit is set only during execution phase in non-DMA mode. When $\mathrm{DB}_{5}$ goes low, execution phase has ended. |
| $\mathrm{DB}_{6}$ | Data Input/Output | DIO | Indicates direction of data transfer between FDC and Data Register. If DIO $=$ " 1 " then transfer is from Data Register to the Processor. If DIO = ' 0 ', then transfer is from the Processor to Data Register. |
| $\mathrm{DB}_{7}$ | Request for Master | RQM | Indicates Data Register is ready to send or receive data to or from the Processor. Both bits DIO and RQM should be used to perform the hand-shaking functions of "ready" and "direction' to the processor. |

The DIO and RQM bits in the Status Register indicate when Data is ready and in which direction data will be transferred on the Data Bus. The max time from the trailing edge of the last $\overline{R D}$ in the result phase to when $\mathrm{DB}_{4}$ (FDC Busy) goes low is $12 \mu \mathrm{~s}$.


| ITEM | MILLIMETERS | INCHES |
| :--- | :---: | :--- |
| A | 51.5 MAX | 2.028 MAX |
| B | 1.62 | 0.064 |
| C | $2.54 \cdot 0.1$ | $0.10 \pm 0.004$ |
| D | $0.5 \pm 0.1$ | $0.019 \pm 0.004$ |
| E | 48.26 | 19 |
| F | 1.2 MIN | 0.047 MIN |
| G | 2.54 MIN | 0.10 MIN |
| H | 0.5 MIN | 0.019 MIN |
| I | 5.22 MAX | 0.206 MAX |
| J | 5.72 MAX | 0.225 MAX |
| K | 15.24 | 0.600 |
| L | 13.2 | 0.520 |
| M | $0.25+0.1$ | $0.010+0.004$ |
|  | 0.05 | 0.002 |

The $\mu$ PD 765 is capable of performing 15 different commands. Each command is initiated by a multi-byte transfer from the processor, and the result after execution of the command may also be a multi-byte transfer back to the processor. Because of this multi-byte interchange of information between the $\mu$ PD765 and the processor, it is convenient to consider each command as consisting of three phases:

[^4]

Note: (1) Symbols used in this table are described at the end of this section.
(2) $A_{0}$ should equal binary 1 for all operations.
(3) $x=$ Don't care, usually made to equal binary 0 .


COMMAND SYMBOL

| SYMBOL | NAME | DESCRIPTION |
| :---: | :---: | :---: |
| $\mathrm{A}_{0}$ | Address Line 0 | $A_{0}$ controls selection of Main Status Register ( $A_{0}=0$ ) or Data Register ( $A_{0}=1$ ) |
| C | Cylinder Number | C stands for the current/selected Cylinder (track) number 0 through 76 of the medium. |
| D | Data | D stands for the data pattern which is going to be written into a Sector. |
| $\mathrm{D}_{7} \cdot \mathrm{D}_{0}$ | Data Bus, | 8 -bit Data Bus, where D7 stands for a most significant bit, and $D_{0}$ stands for a least significant bit. |
| DTL | Data Length | When $N$ is defined a: 00, DTL stands for the data length which users are going to read out or write into the Sector. |
| EOT | "End of Track | EOT stands for the final Sector number on a Cylinder. |
| GPL | Gap Length | GPL stands for the length of Gap 3 (spacing between Sectors excluding VCO Sync. Field). |
| H | Head Address | $H$ stands for head number 0 or 1 , as specified in ID field. |
| HD | Head | HD stands for a selected head number 0 or 1. ( $H=H D$ in all command words.) |
| HLT | Head Load Time | HLT stands for the head load time in the FDD ( 2 to 254 ms in $\mathbf{2 ~ m s}$ increments). |
| HUT | Head Unload Time | HUT stands for the head unload time after a read or write operation has occurred ( 16 to 240 ms in 16 ms increments). |
| MF | FM or MFM Mode | If MF is low, $F M$ mode is selected, and if it is high, MFM mode is selected. |
| MT | Multi-Track | If MT is high, a multi-track operation is to be performed. (A cylinder under both HDO and HD1 will be read or written.) |


| SYMBOL | NAME | DESCRIPTION |
| :---: | :---: | :---: |
| N | Number | N stands for the number of data bytes written in a Sector. |
| NCN | New Cylinder Number | NCN stands for a new Cylinder number, which is going to be reached as a result of the Seek operation. Desired position of Head. |
| ND | Non-DMA Mode | ND stands for operation in the Non-DMA Mode. |
| PCN | Present Cylinder Number | PCN stands for the Cylinder number at the completion of SENSE INTERRUPT STATUS <br> Command. Position of Head at present time. |
| R | Record | $R$ stands for the Sector number, which will be read or written. |
| R $N$ | Read/Write | R/W stand's for either Read (R) or Write (W) signal. |
| SC | Sector | SC indicates the number of Sectors per Cylinder. |
| SK | Skip | SK stands for Skip Deleted Data Address Mark. |
| SRT | Step Rate Time | SRT stands for the Stepping Rate for the FDD. (1 to 16 ms in 1 ms increments.) Stepping Rate applies to all drives, ( $F=1 \mathrm{~ms}, E=2 \mathrm{~ms}$, etc.). |
| ST 0 <br> ST 1 <br> ST 2 <br> ST 3 | Status 0 <br> Status 1 <br> Status 2 <br> Status 3. | ST 0.3 stand for one of four registers which store the status information after a command has been executed. This information is available during the result phase after command execution. These registers should not be confused with the main status register (selected by $A_{O}=0$ ). ST 0.3 may be read only after a command has been executed and contain information relevant to that particular command. |
| STP |  | During a Scan operation, if STP $=1$, the data in contiguous sectors is compared byte by byte with data sent from the processor (or DMA); and if STP $=2$, then alternate sectors are read and compared. |
| USO, US1 | Unit Select | US stands for a selected drive number 0 or 1 . |



PROCESSOR INTERFACE
During Command or Result Phases the Main Status Register (described earlier) must be read by the processor before each byte of information is written into or read from the Data Register. Bits D6 and D7 in the Main Status Register must be in a 0 and 1 state, respectively, before each byte of the command word may be written into the $\mu$ PD765. Many of the commands require multiple bytes, and as a result the Main Status Register must be read prior to each byte transfer to the $\mu$ PD765. On the other hand, during the Result Phase, D6 and D7 in the Main Status Register must both be 1's (D6 = 1 and $D 7=1$ ) before reading each byte from the Data Register. Note, this reading of the Main Status Register before each byte transfer to the $\mu$ PD765 is required in only the Command and Result Phases, and NOT during the Execution Phase.
During the Execution Phase, the Main Status Register need not be read. If the $\mu$ PD765 is in the NON-DMA Mode, then the receipt of each data byte (if $\mu$ PD765 is reading data from FDD) is indicated by an Interrupt signal on pin 18 (INT = 1). The generation of a Read signal ( $R D=0$ ) will reset the Interrupt as well as output the Data onto the Data Bus. If the processor cannot handle Interrupts fast enough (every $13 \mu \mathrm{~s}$ ) then it may poll the Main Status Register and then bit D7 (RQM) functions just like the Interrupt signal. If a Write Command is in process then the WR signal performs the reset to the Interrupt signal.
If the $\mu$ PD765 is in the DMA Mode, no Interrupts are generated during the Execution Phase. The $\mu$ PD765 generates DRQ's (DMA Requests) when each byte of data is available. The DMA Controller responds to this request with both a DACK $=0$ (DMA Acknowledge) and a RD $=0$ (Read signal). When the DMA Acknowledge signal goes low ( $D A C K=0$ ) then the DMA Request is reset ( $D R Q=0$ ). If a Write Command has been programmed then a WR signal will appear instead of RD. After the Execution Phase has been completed (Terminal Count has occurred) then an Interrupt will occur (INT = 1). This signifies the beginning of the Result Phase. When the first byte of data is read during the Result Phase, the Interrupt is automatically reset (INT = 0).
It is important to note that during the Result Phase all bytes shown in the Command Table must be read. The Read Data Command, for example has seven bytes of data in the Result Phase. All seven bytes must be read in order to successfully complete the Read Data Command. The $\mu$ PD765 will not accept a new command until all seven bytes have been read. Other commands may require fewer bytes to be read during the Result Phase.
The $\mu$ PD765 contains five Status Registers. The Main Status Register mentioned above may be read by the processor at any time. The other four Status Registers (ST0, ST1, ST2, and ST3) are only available during the Result Phase, and may be read only after successfully completing a command. The particular command which has been executed determines how many of the Status Registers will be read.

The bytes of data which are sent to the $\mu$ PD765 to form the Command Phase, and are read out of the $\mu$ PD765 in the Result Phase, must occur in the order shown in the Command Table. That is, the Command Code must be sent first and the other bytes sent in the prescribed sequence. No foreshortening of the Command or Result Phases are allowed. After the last byte of data in the Command Phase is sent to the $\mu$ PD765, the Execution Phase automatically starts. In a similar fashion, when the last byte of data is read out in the Result Phase, the command is automatically ended and the $\mu$ PD765 is ready for a new command. A command may be truncated (prematurely ended) by simply sending a Terminal Count signal to pin 16 (TC = 1). This is a convenient means of ensuring that the processor may always get the $\mu$ PD765's attention even if the disk system hangs up in an abnormal manner.
POLLING FEATURE OF THE $\mu$ PD765

After the Specify command has been sent to the $\mu$ PD765, the Unit Select line US0 and US1 will automatically go into a polling mode. In between commands (and between step pulses in the SEEK command) the $\mu$ PD765 polls all four FDD's looking for a change in the Ready line from any of the drives. If the Ready line changes state (usually due to a door opening or closing) then the $\mu$ PD765 will generate an interrupt. When Status Register 0 (STO) is read (after Sense Interrupt Status is issued), Not Ready (NR) will be indicated. The polling of the Ready line by the $\mu$ PD765 occurs continuously between instructions, thus notifying the processor which drives are on or off line.

## н PD765

## READ DATA

A set of nine（9）byte words are required to place the FDC into the Read Data Mode．After the Read Data command has been issued the FDC loads the head（if it is in the unloaded state），waits the specified head settling time（defined in the Specify Command），and begins reading ID Address Marks and ID fields．When the current sector number（＂$R$＂）stored in the ID Register（IDR）compares with the sector number read off the diskette，then the FDC outputs data（from the data field）byte－to－byte to the main system via the data bus．

After completion of the read operation from the current sector，the Sector Number is incremented by one， and the data from the next sector is read and output on the data bus．This continuous read function is called a＂Multi－Sector Read Operation．＂The Read Data Command may be terminated by the receipt of a Terminal Count signal．Upon receipt of this signal，the FDC stops outputting data to the processor，but will continue to read data from the current sector，check CRC（Cyclic Redundancy Count）bytes，and then at the end of the sector terminate the Read Data Command．
The amount of data which can be handled with a single command to the FDC depends upon MT（multi－ track），MF（MFM／FM），and N（Number of Bytes／Sector）．Table 1 below shows the Transfer Capacity．

| Multi－Track MT | MFM／FM MF | Bytes／Sector N | Maximum Transfer Capacity （Bytes／Sector）（Number of Sectors） | Final Sector Read from Diskette |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 00 | $(128)(26)=3,328$ | 26 at Side 0 |
| 0 | 1 | 01 | $(256)(26)=6,656$ | or 26 at Side 1 |
| 1 | 0 | 00 | $(128)(52)=6,656$ | 26 at Side 1 |
| 1 | 1 | 01 | $(256)(52)=13,312$ | 26 at Side 1 |
| 0 | 0 | 01 | $(256)(15)=3,840$ | 15 at Side 0 |
| 0 | 1 | 02 | $(512)(15)=7,680$ | or 15 at Side 1 |
| 1 | 0 | 01 | $(256)(30)=7,680$ | 15 at Side 1 |
| 1 | 1 | 02 | $(512)(30)=15,360$ | 5 |
| 0 | 0 | 02 | $(512)(8)=4,096$ | 8 at Side 0 |
| 0 | 1 | 03 | $(1024)(8)=8,192$ | or 8 at Side 1 |
| 1 | 0 | 02 | $(512)(16)=8,192$ | at Sid |
| 1 | 1 | 03 | $(1024)(16)=16,384$ | at Sid |

Table 1．Transfer Capacity
The＂multi－track＂function（MT）allows the FDC to read data from both sides of the diskette．For a particular cylinder，data will be transferred starting at Sector 0，Side 0 and completing at Sector L，Side 1 （Sector $L=$ last sector on the side）．Note，this function pertains to only one cylinder（the same track）on each side of the diskette．

When $N=0$ ，then DTL defines the data length which the FDC must treat as a sector．If DTL is smaller than the actual data length in a Sector，the data beyond DTL in the Sector，is not sent to the Data Bus．The FDC reads（internally）the complete Sector performing the CRC check，and depending upon the manner of com－ mand termination，may perform a Multi－Sector Read Operation．When $N$ is non－zero，then DTL has no meaning and should be set to FF Hexidecimal．
At the completion of the Read Data Command，the head is not unloaded until after Head Unload Time Interval（specified in the Specify Command）has elapsed．If the processor issues another command before the head unloads then the head settling time may be saved between subsequent reads．This time out is particularly valuable when a diskette is copied from one drive to another．
If the FDC detects the Index Hole twice without finding the right sector，（indicated in＂$R$＂），then the FDC sets the ND（No Data）flag in Status Register 1 to a 1 （high），and terminates the Read Data Command． （Status Register 0 also has bits 7 and 6 set to 0 and 1 respectively．）
After reading the ID and Data Fields in each sector，the FDC checks the CRC bytes．If a read error is detected（incorrect CRC in ID field），the FDC sets the DE（Data Error）flag in Status Register 1 to a 1 （high）， and if a CRC error occurs in the Data Field the FDC also sets the DD（Data Error in Data Field）flag in Status Register 2 to a 1 （high），and terminates the Read Data Command．（Status Register 0 also has bits 7 and 6 set to 0 and 1 respectively．）
Status Register 2 to a 1 （high），and terminates the Read Data Command．
If the FDC reads a Deleted Data Address Mark off the diskette，and the SK bit（bit D5 in the first Command Word）is not set（ $S K=0$ ），then the FDC sets the CM（Control Mark）flag in Status Register 2 to a 1 （high）， and terminates the Read Data Command，after reading all the data in the Sector．If SK $=1$ ，the FDC skips the sector with the Deleted Data Address Mark and reads the next sector．The CRC bits in the deleted data field are not checked when $S K=1$ ．
During disk data transfers between the FDC and the processor，via the data bus，the FDC，must be serviced by the processor every $27 \mu$ s in the FM Mode，and every $13 \mu$ s in the MFM Mode，or the FDC sets the OR （Over Run）flag in Status Register 1 to a 1 （high），and terminates the Read Data Command．

If the processor terminates a read（or write）operation in the FDC，then the ID Information in the Result Phase is dependent upon the state of the MT bit and EOT byte．Table 2 shows the values for C，H，R，and N ，when the processor terminatés the Command．

## FUNCTIONAL DESCRIPTION OF COMMANDS (CONT.)

| MT | EOT | Final Sector Transferred to Processor | ID Information at Result Phase |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | c | H | R | $N$ |
| 0 | $\begin{aligned} & 1 \mathrm{~A} \\ & 0 \mathrm{~F} \\ & 08 \end{aligned}$ | Sector 1 to 25 at Side 0 <br> Sector 1 to 14 at Side 0 <br> Sector 1 to 7 at Side 0 | NC | NC | $\mathrm{R}+1$ | NC |
|  | $\begin{aligned} & \text { 1A } \\ & 0 F \\ & 08 \end{aligned}$ | Sector 26 at Side 0 <br> Sector 15 at Side 0 <br> Sector 8 at Side 0 | C + 1 | NC | $\mathrm{R}=01$ | NC |
|  | $\begin{aligned} & \text { 1A } \\ & 0 F \\ & 08 \end{aligned}$ | Sector 1 to 25 at Side 1 <br> Sector 1 to 14 at Side 1 <br> Sector 1 to 7 at Side 1 | NC | NC | $\mathrm{R}+1$ | NC |
|  | $\begin{aligned} & 1 \mathrm{~A} \\ & 0 \mathrm{~F} \\ & 08 \end{aligned}$ | Sector 26 at Side 1 <br> Sector 15 at Side 1 <br> Sector 8 at Side 1 | C + 1 | NC | $\mathrm{R}=01$ | NC |
| 1 | $\begin{aligned} & \text { 1A } \\ & 0 \mathrm{~F} \\ & 08 \end{aligned}$ | Sector 1 to 25 at Side 0 <br> Sector 1 to 14 at Side 0 <br> Sector 1 to 7 at Side 0 | NC | NC | $\mathrm{R}+1$ | NC |
|  | $\begin{aligned} & \text { 1A } \\ & 0 F \\ & 08 \end{aligned}$ | Sector 26 at Side 0 <br> Sector 15 at Side 0 <br> Sector 8 at Side 0 | NC | LSB | $\mathrm{R}=01$. | NC |
|  | $\begin{aligned} & \text { 1A } \\ & 0 F \\ & 08 \end{aligned}$ | Sector 1 to 25 at Side 1 <br> Sector 1 to 14 at Side 1 <br> Sector 1 to 7 at Side 1 | NC | NC | $R+1$ | NC |
|  | $\begin{aligned} & 1 \mathrm{~A} \\ & 0 \mathrm{~F} \\ & 08 \end{aligned}$ | Sector 26 at Side 1 <br> Sector 15 at Side 1 <br> Sector 8 at Side 1 | C + 1 | LSB | $\mathrm{R}=01$ | NC |

Notes: 1 NC (No Change): The same value as the one at the beginning of command execution.
2 LSB (Least Significant Bit): The least significant bit of H is complemented.
Table 2: ID Information When Processor Terminates Command

## WRITE DATA

A set of nine (9) bytes are required to set the FDC into the Write Data mode. After the Write Data command has been issued the FDC loads the head (if it is in the unloaded state), waits the specified heat settling time (defined in the Specify Command), and begins reading ID Fields. When the current sector number (' $\mathrm{R}^{\prime \prime}$ ), stored in the ID Register (IDR) compares with the sector number read off the diskette, then the FDC takes data from the processor byte-by-byte via the data bu's, and outputs it to the FDD.
After writing data into the current sector, the Sector Number stored in " $R$ " is incremented by one, and the next data field is written into. The FDC continues this "Multi-Sector Write Operation" until the issuance of a Terminal Count signal. If a Terminal Count signal is sent to the FDC it continues writing into the current sector to complete the data field. If the Terminal Count signal is received while a data field is being written then the remainder of the data field is filled with 00 (zeros).
The FDC reads the ID field of each sector and checks the CRC bytes. If the FDC detects a read error (incorrect CRC) in one of the ID Fields, it sets the DE (Data Error) riag of Status Register 1 to a 1 (high), and terminates the Write Data Command. (Status Register 0 also has bits 7 'and 6 set to 0 and 1 respectively.)
The Write Command operates in much the same manner as the Read Command. The following items are the same, and one should refer to the Read Data Command for details:

- Transfer Capacity
- Head Unload Time Interval
- EN (End of Cylinder) Flag
- ID Information when the processor terminates command (see Table 2)
- ND (No Data) Flag
- Definition of DTL when $N=0$ and when $N \neq 0$

In the Write Data mode, data transfers between the processor and FDC, via the Data Bus, must occur every $31 \mu$ s in the FM mode, and every $15 \mu$ s in the MFM mode. If the time interval between data transfers is longer than this then the FDC sets the OR (Over Run) flag in Status Register 1 to a 1 (high), and terminates the Write Data Command. (Status Register 0 also has bit 7 and 6 set to 0 and 1 respectively.)

## WRITE DELETED DATA

This command is the same as the Write Data Command except a Deleted Data Address Mark is written at the beginning of the Data Field instead of the normal Data Address Mark.

## READ DELETED DATA

This command is the same as the Read Data Command except that when the FDC detects a Data Address Mark at the beginning of a Data Field (and SK $=0$ (low), it will read all the data in the sector and set the CM flag in Status Register 2 to a 1 (high), and then terminate the command. If $\mathrm{SK}=1$, then the FDC skips the sector with the Data Address Mark and reads the next sector.

## $\mu$ PD765

## READ A TRACK

This command is similar to READ DATA Command except that this is a continuous READ operation where the entire data field from each of the sectors are read. Immediately after encountering the INDEX HOLE, the FDC starts reading all data fields on the track, as continuous blocks of data. If the FDC finds an error in the ID or DATA CRC check bytes, it continues to read data from the track. The FDC compares the ID information read from each sector with the value stored in the IDR, and sets the ND flag of Status Register 1 to a 1 (high) if there is no comparison. Multi-track or skip operations are not allowed with this command.

This command terminates when EOT number of sectors have been read. If the FDC does not find an ID Address Mark on the diskette after it encounters the INDEX HOLE for the second time, then it sets the MA (missing address mark) flag in Status Register 1 to a 1 (high), and terminates the command. (Status Register 0 has bits 7 and 6 set to 0 and 1 respectively.)

## READ ID

The READ ID Command is used to give the present position of the recording head. The FDC stores the values from the first ID Field it is able to read. If no proper ID Address Mark is found on the diskette, before the INDEX HOLE is encountered for the second time then the MA (Missing Address Mark) flag in Status Register 1 is set to a 1 (high), and if no data is found then the ND (No Data) flag is also set in Status Register 1 to a 1 (high). The command is then terminated with Bits 7 and 6 in Status Register 0 set to 0 and 1 respectively.

## FORMAT A TRACK

The Format Command allows an entire track to be formatted. After the INDEX HOLE is detected, Data is written on the Diskette; Gaps, Address Marks, ID Fields and Data Fields, all per the IBM System 34 (Double Density) or System 3740 (Single Density) Format are recorded. The particular format which will be written is controlled by the values programmed into $N$ (number of bytes/sector), SC (sectors/cylinder), GPL (Gap Length), and D (Data Pattern) which are supplied by the processor during the Command Phase. The Data Field is filled with the Byte of data stored in D. The ID Field for each sector is supplied by the processor; that is, four data requests per sector are made by the FDC for $C$ (Cylinder Number), $H$ (Head Number), $R$ (Sector Number) and $N$ (Number of Bytes/Sector). This allows the diskette to be formatted with nonsequential sector numbers, if desired.
After formatting each sector, the processor must send new values for $C, H, R$, and $N$ to the $\mu$ PD765 for each sector on the track. The contents of the $R$ register is incremented by one after each sector is formatted, thus, the $R$ register contains a value of $R$ when it is read during the Result Phase. This incrementing and formatting continues for the whole track until the FDC encounters the INDEX HOLE for the second time, whereupon it terminates the command.

If a FAULT signal is received from the FDD at the end of a write operation, then the FDC sets the EC flag of Status Register 0 to a 1 (high), and terminates the command after setting bits 7 and 6 of Status Register 0 to 0 and 1 respectively. Also the loss of a READY signal at the beginning of a command execution phase causes bits 7 and 6 of Status Register 0 to be set to 0 and 1 respecitvely.

Table 3 shows the relationship between N, SC, and GPL for various sector sizes:
8' STANDARD FLOPPY

| FORMAT | SECTOR SIZE | N | SC | GPL (1) | GPL (2) | REMARKS | SECTOR SIZE | N | SC | GPL (1) | GPL (2) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FM Mode | 128 bytes/Sector | 00 | ${ }^{1 A}(16)$ | . 07 (16) | ${ }^{1 B}(16)$ | IBM Diskette 1 | 128 bytes/Sector | 00 | 12 | 07 | 09 |
|  | 256 | 01 | $\mathrm{OF}_{(16)}$ | ${ }^{0} E_{(16)}$ | $2 A_{(16)}$ | IBM Diskette 2 | 128 | 00 | 10 | 10 | 19 |
|  | 512 | 02 | 08 | ${ }^{1 B}(16)$ | $3{ }^{\text {A }}$ (16) |  | 256 | 01 | 08 | 18 | 30 |
| FM Mode | 1024 bytes/Sector | 03 | 04 | 47 | 8A |  | 512 | 02 | 04 | 46 | 87 |
|  | 2048 | 04 | 02 | C8 | FF |  | 1024 | 03 | 02 | C8 | FF |
|  | 4096 | 05 | 01 | C8 | FF |  | 2048 | 04 | 01 | C8 | FF |
| MFM Mode | 256 | 01 | ${ }^{1} A_{(16)}$ | ${ }^{O E}(16)$ | $36(16)$ | IBM Diskette 2D <br> IBM Diskette 2D | 256 | 01 | 12 | 0 A | OC |
|  | 512 | 02 | ${ }^{0} \mathrm{~F}_{(16)}$ | ${ }^{18}{ }_{(16)}$ | 54 (16) |  | 256 | 01 | 10 | 20 | 32 |
|  | 1024 | 03 | 08 | $35(16)$ | 74 (16) |  | 512 | 02 | 08 | 2 A | 50 |
|  | 2048 | 04 | 04 | 99 | FF |  | 1024 | 03 | 04 | 80 | FO |
|  | 4096 | 05 | 02 | C8 | FF |  | 2048 | 04 | 02 | C8 | FF |
|  | 8192 | 06 | 01 | C8 | FF |  | 4096 | 05 | 01 | C8 | FF |

Table 3
Note: (1) Suggested values of GPL in Read or Write Commands to avoid splice point between data field and ID field of contiguous sections.
(2) Suggested values of GPL in format command.

FUNCTIONAL DESCRIPTION OF COMMANDS (CONT.)

## SCAN COMMANDS

The SCAN Commands allow data which is being read from the diskette to be compared against data which is being supplied from the main system (Processor in NON-DMA mode, and DMA Controller in DMA mode). The FDC compares the data on a byte-by-byte basis, and looks for a sector of data which meets the conditions of DFDD $=$ DProcessor, DFDD $\leqslant$ DProcessor, or DFDD $\geqslant$ DProcessor. Ones complement arithmetic is used for comparison ( $F F=$ largest number, $00=$ smallest number). After a whole sector of data is compared, if the conditions are not met, the sector number is incremented ( $R+S T P \rightarrow R$ ), and the scan operation is continued. The scan operation continue's until one of the following conditions occur; the conditions for scan are met (equal, low, or high), the last sector on the track is reached (EOT), or the terminal count signal is received.
If the conditions for scan are met then the FDC sets the SH (Scan Hit) flag of Status Register 2 to a 1 (high), and terminates the Scan Command. If the conditions for scan are not met between the starting sector (as specified by R) and the last sector on the cylinder (EOT), then the FDC sets the SN (Scan Not Satisfied) flag of Status Register 2 to a 1 (high), and terminates the Scan Command. The receipt of a TERMINAL COUNT signal from the Processor or DMA Controller during the scan operation will cause the FDC to complete the comparison of the particular byte which is in process, and then to terminate the command. Table 4 shows the status of bits SH and SN under various conditions of SCAN.

| COMMAND | STATUS REGISTER 2 |  | COMMENTS |
| :--- | :---: | :---: | :---: |
|  | BIT 2 = SN | BIT 3 $=$ SH |  |
| Scan Equal | 0 | 1 | DFDD $=$ DProcessor |
|  | 1 | 0 | DFDD $\neq$ DProcessor |
|  | 0 | 1 | DFDD $=$ DProcessor |
|  | 0 | 0 | DFDD $<$ DProcessor |
|  | 1 | 0 | DFDD $>$ DProcessor |
| Scan High or Equal | 0 | 1 | DFDD $=$ DProcessor |
|  | 0 | 0 | DFDD $>$ DProcessor |
|  | 1 | 0 | DFDD $<$ DProcessor |

Table 4
If the FDC encounters a Deleted Data Address Mark on one of the sectors (and SK = 0), then it regards the sector as the last sector on the cylinder, sets CM (Control Mark) flag of Status Register 2 to a 1 (high) and terminates the command. If $S K=1$, the FDC skips the sector with the Deleted Address Mark, and reads the next sector. In the second case ( $\mathrm{SK}=1$ ), the FDC sets the CM (Control Mark) flag of Status Register 2 to a 1 (high) in order to show that a Deleted Sector had been encountered.

When either the STP (contiguous sectors $=01$, or alternate sectors $=02$ sectors are read) or the MT (MultiTrack) are programmed, it is necessary to remember that the last sector on the track must be read. For example, if $\mathrm{STP}=02, \mathrm{MT}=0$, the sectors are numbered sequentially 1 through 26 , and we start the Scan Command at sector 21 ; the following will happen. Sectors 21,23 , and 25 will be read, then the next sector (26) will be skipped and the Index Hole will be encountered before the EOT value of 26 can be read. This will result in an abnormal termination of the command. If the EOT had been set at 25 or the scanning started at sector 20, then the Scan Command would be completed in a normal manner.
During the Scan Command data is supplied by either the processor or DMA Controller for comparison against the data read from the diskette. In order to avoid having the OR (Over Run) flag set in Status Register 1, it is necessary to have the data available in less than $27 \mu \mathrm{~s}$ (FM Mode) or $13 \mu \mathrm{~s}$ (MFM Mode). If an Overrun occurs the FDC ends the command with bits 7 and 6 of Status Register 0 set to 0 and 1, respectively.

## SEEK

The read/write head within the FDD is moved from cylinder to cylinder under control of the Seek Command. The FDC compares the PCN (Present Cylinder Number) which is the current head position with the NCN (New Cylinder Number), and if there is a difference performs the following operation:

PCN < NCN: Direction signal to FDD set to a 1 (high), and Step Pulses are issued. (Step In.) PCN $>$ NCN: Direction signal to FDD set to a 0 (low), and Step Pulses are issued. (Step Out.)
The rate at which Step Pulses are issued is controlled by SRT (Stepping Rate Time) in the SPECIFY Command. After each Step Pulse is issued NCN is compared against PCN, and when NCN = PCN, then the SE (Seek End) flag is set in Status Register 0 to a 1 (high); and the command is terminated.

During the Command Phase of the Seek operation the FDC is in the FDC BUSY state, but during the Execution Phase it is in the NON BUSY state. While the FDC is in the NON BUSY state, another Seek Command may be issued; and in this manner parallel seek operations may be done on up to 4 Drives at once.
If an FDD is in a NOT READY state at the beginning of the command execution phase or during the seek operation, then the NR (NOT READY) flag is set in Status Register 0 to a 1 (high), and the command is terminated after bits 7 and 6 of Status Register 0 are set to 0 and 1 respectively.

## $\mu$ PD765

## RECALIBRATE

The function of this command is to retract the read/write head within the FDD to the Track 0 position. The FDC clears the contents of the PCN counter, and checks the status of the Track 0 signal from the FDD. As long as the Track 0 signal is low, the Direction signal remains 0 (low) and Step Pulses are issued. When the Track 0 signal goes high, the SE (SEEK END) flag in Status Register 0 is set to a 1 (high) and the command is terminated. If the Track 0 signal is still low after 77 Step Pulse have been issued, the FDC sets the SE (SEEK END) and EC (EQUIPMENT CHECK) flags of Status Register 0 to both 1 s (highs), and terminates the command after bits 7 and 6 of Status Register 0 is set to 0 and 1 respectively.

The ability to do overlap RECALIBRATE Commands to multiple FDDs and the loss of the READY signal, as described in the SEEK Command, also applies to the RECALIBRATE Command.

## SENSE INTERRUPT STATUS

An Interrupt signal is generated by the FDC for one of the following reasons:

1. Upon entering the Result Phase of:
a. Read Data Command
b. Read a Track Command
c. Read ID Command
d. Read Deleted Data Command
e. Write Data Command
f. Format a Cylinder Command
g. Write Deleted Data Command
h. Scan Commands
2. Ready Line of FDD changes state
3. End of Seek or Recalibrate Command
4. During Execution Phase in, the NON-DMA Mode

Interrupts caused by reasons 1 and 4 above occur during normal command operations and are easily discernible by the processor. However, interrupts caused by reasons 2 and 3 above may be uniquely identified with the aid of the Sense Interrupt Status Command. This command when issued resets the interrupt signal and via bits 5, 6, and 7 of Status Register 0 identifies the cause of the incerrupt.

| SEEK END <br> BIT 5 | INTERRUPT CODE |  | CAUSE |
| :---: | :---: | :---: | :---: |
|  | BIT 6 | BIT 7 |  |
| 0 | 1 | 1 | Ready Line changed state, either polarity |
| 1 | 0 | 0 | Normal Termination of Seek or Recalibrate Command |
| 1 | 1 | 0 | Abnormal Termination of Seek or Recalibrate Command |

Table 5
Neither the Seek or Recalibrate Command have a Result Phase. Therefore, it is mandatory to use the Sense Interrupt Status Command after these commands to effectively terminate them and to provide verification of where the head is positioned (PCN).

## SPECIFY

The Specify Command sets the initial values for each of the three internal timers. The HUT (Head Unload Time) defines the time from the end of the Execution Phase of one of the Read/Write Commands to the head unload state. This timer is programmable from 16 to 240 ms in increments of $16 \mathrm{~ms}(01=16 \mathrm{~ms}, 02=32 \mathrm{~ms} .$. . OF $=$ 240 ms ). The SRT (Step Rate Time) defines the time interval between adjacent step pulses. This timer is programmable from 1 to 16 ms in increments of $1 \mathrm{~ms}(F=1 \mathrm{~ms}, E=2 \mathrm{~ms}, D=3 \mathrm{~ms}$, etc.). The HLT (Head Load Time) defines the time between when the Head Load signal goes high and when the Read/Write operation starts. This timer is programmable from 2 to 254 ms in increments of 2 ms ( $01=2 \mathrm{~ms}, 02=4 \mathrm{~ms}, 03=6 \mathrm{~ms} \ldots 7 \mathrm{~F}=$ 254 ms ).
The time intervals mentioned above are a direct function of the clock (CLK on pin 19). Times indicated above are for an 8 MHz clock, if the clock was reduced to 4 MHz (mini-floppy application) then all time intervals are increased by a factor of 2.
The choice of DMA or NON-DMA operation is made by the ND (NON-DMA) bit. When this bit is high (ND = 1) the NON-DMA mode is selected, and when ND $=0$ the DMA mode is selected.

## SENSE DRIVE STATUS

This command may be used by the processor whenever it wishes to obtain the status of the FDDs. Status Register 3 contains the Drive Status information.

## INVALID

If an invalid command is sent to the FDC (a command not defined above), then the FDC will terminate the command after bits 7 and 6 of Status Register 0 are set to 1 and 0 respectively. No interrupt is generated by the $\mu$ PD765 during this condition. Bit 6 and bit 7 (DIO and RQM) in the Main Status Register are both high (" 1 ") indicating to the processor that the $\mu$ PD765 is in the Result Phase and the contents of Status Register 0 (STO) must be read. When the processor reads Status Register 0 it will find a 80 hex indicating an invalid command was received.
A Sense Interrupt Status Command must be sent after a Seek or Recalibrate Interrupt, otherwise the FDC will consider the next command to be an Invalid Command.
In some applications the user may wish to use this command as a No-Op command, to place the FDC in a standby or no operation state.

## STATUS REGISTER IDENTIFICATION

| BIT |  |  | DESCRIPTION |
| :---: | :---: | :---: | :---: |
| NO. | NAME | SYMBOL |  |
| STATUS REGISTER 0 |  |  |  |
| D7 | Interrupt Code | IC | $\mathrm{D}_{7}=0$ and $\mathrm{D}_{6}=0$ <br> Normal Termination of Command, (NT). Command was completed and properly executed. |
| $\mathrm{D}_{6}$ |  |  | $\mathrm{D}_{7}=0$ and $\mathrm{D}_{6}=1$ <br> Abnormal Termination of Command, (AT). <br> Execution of Command was started, but was not successfully completed. |
|  |  |  | $\mathrm{D}_{7}=1$ and $\mathrm{D}_{6}=0$ <br> Invalid Command issue, (IC). Command which was issued was never started. |
|  |  |  | $\mathrm{D}_{7}=1$ and $\mathrm{D}_{6}=1$ <br> Abnormal Termination because during command execution the ready signal from FDD changed state. |
| D5 | Seek End | SE | When the FDC completes the SEEK Command, this flag is set to 1 (high). |
| D4 | Equipment Check | EC | If a fault Signal is received from the FDD, or if the Track 0 Signal fails to occur after 77 Step Pulses (Recalibrate Command) then this flag is set. |
| $\mathrm{D}_{3}$ | Not Ready | NR | When the FDD is in the not-ready state and a read or write command is issued, this flag is set. If a read or write command is issued to Side 1 of a single sided drive, then this flag is set. |
| D2 | Head <br> Address | HD | This flag is used to indicate the state of the head at Interrupt. |
| D1 | Unit Select 1 | US 1 | These flags are used to indicate a Drive Unit |
| Do | Unit Select 0 | US 0 | Number at Interrupt |
| STATUS REGISTER 1 |  |  |  |
| $\mathrm{D}_{7}$ | End of Cylinder | EN | When the FDC tries to access a Sector beyond the final Sector of a Cylinder, this flag is set. |
| D6 |  |  | Not used. This bit is always 0 (low). |
| D5 | Data Error | DE | When the FDC detects a CRC error in either the ID field or the data field, this flag is set. |
| $\mathrm{D}_{4}$ | Over Run | OR | If the FDC is not serviced by the main-systems during data transfers, within a certain time interval, this flag is set. |
| D3 |  |  | Not used. This bit always 0 (low). |
| $\mathrm{D}_{2}$ | No Data | ND | During execution of READ DATA, WRITE DELETED DATA or SCAN Command, if the FDC cannot find the Sector specified in the IDR Register, this flag is set. |
|  |  |  | During executing the READ ID Command, if the FDC cannot read the ID field without an error, then this flag is set. |
|  |  |  | During the execution of the READ A Cylinder Command, if the starting sector cannot be found, then this flag is set. |


| BIT |  |  | DESCRIPTION |
| :---: | :---: | :---: | :---: |
| NO. | NAME | SYMBOL |  |
| STATUS REGISTER 1 (CONT.) |  |  |  |
| $\mathrm{D}_{1}$ | Not Writable | NW | During execution of WRITE DATA, WRITE DELETED DATA or Format A Cylinder Command, if the FDC detects a write protect signal from the FDD, then this flag is set. |
| $\mathrm{D}_{0}$ | Missing Address Mark | MA | If the FDC cannot detect the ID Address Mark after encountering the index hole twice, then this flag is set. |
|  |  |  | If the FDC cannot detect the Data Address Mark or Deleted Data Address Mark, this flag is set. Also at the same time, the MD (Missing Address Mark in Data Field) of Status Register 2 is set. |
| STATUS REGISTER 2 |  |  |  |
| D7 |  |  | Not used. This bit is always 0 (low). |
| $\mathrm{D}_{6}$ | Control Mark | CM | During executing the READ DATA or SCAN Command, if the FDC encounters a Sector which contains a Deleted Data Address Mark, this flag is set. |
| D5 | Data Error in Data Field | DD | If the FDC detects a CRC error in the data field then this flag is set. |
| D4 | Wrong Cylinder | WC | This bit is related with the ND bit, and when the contents of C on the medium is different from that stored in the IDR, this flag is set. |
| D3 | Scan Equal Hit | SH | During execution, the SCAN Command, if the condition of "equal" is satisfied, this flag is set. |
| $\mathrm{D}_{2}$ | Scan Not Satisfied | SN | During executing the SCAN Command, if the FDC cannot find a Sector on the cylinder which meets the condition, then this flag is set. |
| D1 | Bad Cylinder | BC | This bit is related with the ND bit, and when the content of C on the medium is different from that stored in the IDR and the content of C is FF, then this flag is set. |
| $\mathrm{D}_{0}$ | Missing <br> Address Mark in Data Field | MD | When data is read from the medium, if the FDC cannot find a Data Address Mark or Deleted Data Address Mark, then this flag is set. |
| STATUS REGISTER 3 |  |  |  |
| D7 | Fault | FT | This bit is used to indicate the status of the Fault signal from the FDD. |
| D6 | Write Protected | WP | This bit is used to indicate the status of the Write Protected signal from the FDD. |
| D5 | Ready | RY | This bit is used to indicate the status of the Ready signal from the FDD. |
| D4 | Track 0 | T0 | This bit is used to indicate the status of the Track 0 signal from the FDD. |
| D3 | Two Side | TS | This bit is used to indicate the status of the Two Side signal from the FDD. |
| $\mathrm{D}_{2}$ | Head Address | HD | This bit is used to indicate the status of Side Select signal to the FDD. |
| D1 | Unit Select 1 | US 1 | This bit is used to indicate the status of the Unit Select 1 signal to the FDD. |
| $\mathrm{D}_{0}$ | Unit Select 0 | US 0 | This bit is used to indicate the status of the Unit Select 0 signal to the FDD. |

## DOT MATRIX PRINTER CONTROLLER

DESCRIPTION
The $\mu$ PD781 is an LSI Dot Matrix Printer Controller chip which contains all the circuitry and control functions for interfacing an 8-bit processor to the Epson model 512, 522, and 542 Dot Matrix Printers. These printers are capable of printing 40 columns per row with a $5 \times 7$ dot matrix. The $\mu$ PD781 is ideally suited for low-cost Electronic Cash Registers (ECR) and Point of Sale (POS) systems because it frees the processor from direct control of the printer and simplifies I/O software.
There are nine separate instructions which the $\mu$ PD781 will execute. Each of these instructions requires only a single 8 -bit byte from the processor to be executed. Upon receipt of the instruction the $\mu$ PD781 assumes control of the printer, increments the print head, activates the print solenoids, performs line feed on either receipt or journal registers (or both), and performs these operations for an entire print line of 40 columns.
The $\mu$ PD781 contains its own on-board character generator of 96 symbols. It contains a 40 column printer buffer and is capable of supplying status information to the host processor on both the controller itself as well as the printer. Characters to be printed are written into the $\mu$ PD781 by the processor, and after the receipt of 40 characters the entire row is printed out with a single print command.

- Compatible with most Microprocessors including 8080A, 8085A, $\mu$ PD780 (Z80TM)
- Capable of Interfacing to Epson Model 512, 522, or 542 Printers
- Print Technique - Serial Dot Matrix
- Print Font $-5 \times 7$ Dot Matrix
- Column Print Capacity: 40 Columns for Model 512 and 522; 18 Columns for Receipt and 18 Columns for Journal-Model
- Buffer Capacity: 40 Columns - Model 512 and 522; 2 to 18 Columns - Model 542
- 96 Character Set (Alphanumerics Plus Symbols)
- Print Speed - Approximately 3 Lines/sec (Bidirectional Printing)
- Paper Feed: Independent or Simultaneous; Receipt and Journal Feed; Fast Feed
- Stamp Drive Output - Also Cutter Drive Output and Slip Release for Model 522.
- Sense Printer Status: Validation (Left/Right) Sensor - Model 512 and 522; TOF, BOF Sensor - Model 542; Low Paper Detector - Model 512 and 522
- On-Board 6 MHz Oscillator (External Crystal Required)
- Operates from a Single +5V Power Supply (NMOS Technology)
- Available in 40-Pin Plastic Package



| PIN |  |  | 1/0 | FUNCTION |
| :---: | :---: | :---: | :---: | :---: |
| NUMBER | SYMBOL | NAME |  |  |
| 2,3 | $\mathrm{x}_{1}, \mathrm{x}_{2}$ | External Crystal Input | 1 | This is a connection to external crystal (Frequency: 6 MHz ). $\mathrm{X}_{1}$ could also be used as input for external oscillator. |
| 4 | $\overline{\text { RESET }}$ | Reset | 1 | The Reset signal initializes the $\mu$ PD781. When $\overline{\text { RESET }}=0$, the buffer and register contents are: <br> Bus Buffer - (IOM-1, IOB=PSR=0). <br> Column Buffer - All characters in this buffer become 20(16) (ASCII). <br> Column Buffer Pointer - It indicates the left side of the buffer. <br> Column Capacity - 40 columns. <br> Print Head - Current Position. |
| 6 | $\overline{\mathrm{CS}}$ | Chip Select | 1 | If the Chip Select is 0 when the data bus becomes active, it enables the transfer of data between the processor and the $\mu$ PD781 via the data bus. If it is 1 , the data bus goes into High-Impedance state (inactive). However, the operation of the printer is not affected when $\overline{\mathrm{CS}}=1$. |
| 8 | $\overline{\mathrm{RD}}$ | Read | 1 | The Read Control Signal is used to read controller status or printer status to the host processor. When $\overline{\mathrm{RD}}=1$, status information is presented. |
| 10 | $\bar{W}$ | Write | 1 | The Write Control Signal is used to write commands or print data to the $\mu$ PD781. When $\overline{W R}=0$, data on the data bus is written into the $\mu$ PD781. |
| 9 | C/ $\bar{D}$ | Command/ Data Select | 1 | The $C / \bar{D}$ Select is used to indicate what kind of data is being input/output on the data bus by the host processor. When $C / \bar{D}=1$ in Read Operation, it is a Controller Status and in Write Operation it gives commands. When $C / \bar{D}=0$ in Read Operation it is a Printer Status and in Write Operation it is print data. |


|  | PIN |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| NUMBER | SYMBOL | NAME | O | FUNCTION |
| 12-19 | $\mathrm{D}_{0-7}$ | Data Bus | 1/O <br> 3-State | It is an 8-bit bi-directional data bus and is used to transfer the data between the host processor and the $\mu$ PD781. |
| $\begin{aligned} & 5,26, \\ & 40 \\ & \hline \end{aligned}$ | $\mathrm{V}_{\mathrm{CC}} 1-3$ | DC Power |  | These are connected to +5 V power supply. |
| 7,20 | $\mathrm{V}_{\text {SS } 1-2}$ | Signal Ground | , |  |
| 11,25 | OPEN 1 -2 | No Connection |  | These pins must be open. Do not connect them to +5 V , GND or any other signals. |
| $\begin{aligned} & 21-24, \\ & 35-37 \end{aligned}$ | $\overline{\mathrm{PR}}_{1} \cdot \overline{\mathrm{PR}}_{7}$ | Print Solenoid | 0 | These are drive signals for the print solenoids. When these signals are 0 , the print solenoid should be activated. They are synchronized with the timing signal (TIM), which is issued from the printer. |
| 38 | $\overline{\text { TIM }}$ | Timing Signal | 1 | The timing signal is issued from the printer. It is used to generate and synchronize all the basic printer operations such as paper feed, paper cut, etc. |
| 1 | RL | Reset Signal Left | 1 | The reset signal ( $R L=1$ ) is issued by the printer and indicates that the print-head is positioned at the left margin. |
| 39 | RR | Reset Signal Right | 1 | The reset signal ( $\mathrm{RR}=1$ ) is issued by the printer and indicates that the print-head is positioned at the right margin. |
| 30 | $\overline{\text { MTD }}$ | Motor Drive | 0 | The motor drive signal is issued to the printer, and is active during low state. |
| 34 | $\overline{\text { PFR }}$ | Paper Feed Receipt | 0 | This is the drive signal for the paper feed magnet and is active during low state. In Model 512 and 542 it is used as a paper feed magnet drive signal, and in Model 522 it is used as a receipt paper feed magnet drive signal. |
| 33 | $\overline{\text { PFJ }}$ | Paper Feed Journal | 0 | This is the drive signal for the journal paper feed and is active during low state. It is used only with Model 522, and is not used at all in Model 512 and 542. |
| 32 | $\overline{\text { STM }}$ | Stamp | 0 | This is the drive signal for both the stamp magnet and the paper cutter and is active during the low state. This signal is used only with Model 522. If partial-cut or stamp and full-cut are required, they may be implemented by using the Fast Feed command which is synchronized with each timing pulse before it is output. This signal is not used in the Model 512 and 542. |
| 31 | $\overline{\text { SLR }}$ | Slip <br> Release | 0 | This is the drive signal for the slip release magnet and is active during low state. It is used only with Model 542, and is active only during the Print command or Fast Feed command. This signal is not used in the Model 512 and 522. |
| 27 | VDR/BOF | Validation Right/BOF Sensor | 1 | In Model 512 and 522, the Validation Right signal (VDR) is used to detect when the print-head is located at the right side of the paper. In Model 542, the BOF Sensor signal (BOF) is used to detect the end of the paper. |
| 28 | VDL/TOF | Validation Left/TOF Sensor (1) | 1 | In Model 512 and 522, the Validation Left signal (VDL) is used to detect when the print-head is located at the left side of the paper. In Model 542, the TOF Sensor signal (TOF) is used to detect the top of the paper. |
| 29 | NE | Low Paper Detector(1) | 1 | This signal is used to indicate a low paper condition and is active in high state. |

Note: (1) The VDR/BOF, VDL/TOF and NE signals are available on the data bus when a Printer Status is requested by the host processor. The $\mu \mathrm{PD} 781$ passes these signals onto the host processor.

Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage On Any Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 0.5 to +7 Volts ${ }^{(1)}$
Note: (1) With Respect to Ground.
COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC} 1-3}=+5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{SS} 1-2}=0 \mathrm{~V}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input High Voltage (All except XTAL 1, XTAL 2, RESET) | $\mathrm{V}_{1 \mathrm{H} 1}$ | 2.0 |  | VCC | V |  |
| Input High Voltage (XTAL 1, XTAL 2, RESET) | $\mathrm{V}_{1 \mathrm{H} 2}$ | 3.5 |  | $\mathrm{V}_{\mathrm{CC}}$ | V |  |
| Input Low Voltage (All except XTAL 1, XTAL 2) | VIL | -0.5 |  | 0.8 | V |  |
| Output High <br> Voltage ( $\mathrm{D}_{0-7}$ ) | $\mathrm{V}_{\mathrm{OH} 1}$ | 2.4 |  |  | V | ${ }^{1} \mathrm{OH}=-400 \mu \mathrm{~A}$ |
| Output High Voltage (All Other Outputs) | $\mathrm{V}_{\mathrm{OH} 2}$ | 2.4 |  |  | V | ${ }^{1} \mathrm{OH}=-50 \mu \mathrm{~A}$ |
| Output Low Voltage $\left(D_{0-7}\right)$ | VOL1 |  |  | 0.45 | V | ${ }^{1} \mathrm{OL}=2.0 \mathrm{~mA}$ |
| Output Low Voltage (All Other Outputs except $\mathrm{D}_{0-7}$ ) | VOL2 |  |  | 0.45 | V | $\mathrm{I}^{\mathrm{OL}}=1.6 \mathrm{~mA}$ |
| Low Input Source Current (VDR/BOF, VDL/TOF, NE, TIM) | 'LII | . |  | 0.4 | mA | $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$ |
| Low Input Source Current ( $\overline{\text { RESET }}$ ) | 'LI2 |  |  | ${ }^{\bullet} 0.2$ | mA | $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$ |
| Input Leakage Current (RL, RR, $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{CS}}, \mathrm{C} / \overline{\mathrm{D}})$ | IIL |  |  | $\pm 10$ | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {SS }} \leqslant \mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\text {CC }}$ |
| Output Leakage Current ( $\mathrm{D}_{0-7}$, High Impedance State) | ${ }^{\prime} \mathrm{OL}$ |  |  | $\pm 10$ | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {SS }}+0.45 \leqslant \mathrm{~V}_{\text {IN }} \leqslant \mathrm{V}_{\text {CC }}$ |
| Total Supply Current (ICC1 ${ }^{+}$ ${ }^{\prime} \mathrm{CC} 2+{ }^{\prime} \mathrm{CC} 3$ ) | ${ }^{1} \mathrm{CC}$ |  | 65 | 135 | mA | $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ |

ABSOLUTE MAXIMUM RATINGS*
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC} 1-3}=+5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{SS} 1-2}=0 \mathrm{~V}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| READ OPERATION |  |  |  |  |  |  |
| $\overline{\mathrm{CS}}, \mathrm{C} / \overline{\mathrm{D}}$ Setup to $\overline{\mathrm{RD}} \downarrow$ | ${ }^{t} A R$ | 0 |  |  | ns | $D_{0-7}$ Input |
| CS, C/ $\overline{\mathrm{D}}$ Hold After $\overline{\mathrm{RD}} \uparrow$ | tRA | 0 |  |  | ns |  |
| $\overline{\mathrm{RD}}$ Pulse Width | trR | 250 |  | 5000 | ns |  |
| $\overline{\mathrm{CS}}, \mathrm{C} / \overline{\mathrm{D}}$ to Data Out Delay | ${ }^{t} A D$ |  |  | 180 | ns |  |
| $\overline{\mathrm{RD}} \downarrow$ to Data Out Delay | ${ }^{t}$ RD |  |  | 180 | ns |  |
| RD $\uparrow$ to Data Float Delay | ${ }^{t}$ DF | 10 |  | 100 | $\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$ |  |
| Recovery Time Between Reads And/Or Write | ${ }^{\text {t }} \mathrm{R} V$ | 1 |  |  | $\mu \mathrm{s}$ |  |

WRITE OPERATION

| $\overline{C S}, \mathrm{C} / \overline{\mathrm{D}}$ Setup to $\overline{W R} \downarrow$ | ${ }^{\text {t }}$ AW | 0 |  | ns | $\mathrm{D}_{0-7}$ Output$C_{L}=100 \mathrm{pF}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{\mathrm{CS}}, \mathrm{C} / \overline{\mathrm{D}}$ Hold After $\overline{\mathrm{WR}} \uparrow$ | tWA | 0 |  | ns |  |
| $\overline{\text { WR Pulse Width }}$ | ${ }^{\text {tWW }}$ | 250 | 5000 | ns |  |
| Data Setup to $\overline{W R} \uparrow$ | ${ }^{\text {t }}$ DW | 150 |  | ns |  |
| Data Hold After $\overline{\mathrm{WR}} \uparrow$ | tWD | 0 |  | ns |  |

PRINT OPERATION

| $\overline{\mathrm{TIM}} \downarrow$ to $\overline{\mathrm{PR}}_{1-7} \downarrow$ Delay | tTP |  |  | 167.5 | $\mu \mathrm{S}$ | 6 MHz Crystal |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{\mathrm{PR}}_{1.7}$ Pulse Width | tpp |  | 600 |  | $\mu \mathrm{S}$ |  |
| $\overline{\mathrm{TIM}} \downarrow$ to $\overline{\mathrm{PFJ}}, \overline{\mathrm{PFR}} \downarrow$ Delay | tTF1 |  |  | 140 | $\mu \mathrm{s}$ |  |
| $\overline{\mathrm{TIM}} \downarrow$ to $\overline{\mathrm{PFJ}}, \overline{\mathrm{PFR}} \uparrow$ Delay | tTF2 |  |  | 127.5 | $\mu \mathrm{s}$ |  |
| $\overline{\text { TIM }} \downarrow$ to $\overline{\text { SLR }} \downarrow$ Delay | ${ }^{\text {t TR1 }}$ |  |  | 60 | $\mu \mathrm{S}$ |  |
| $\overline{\text { TIM }} \downarrow$ to $\overline{\text { SLR }} \uparrow$ Delay | tTR2 |  |  | 50 | $\mu \mathrm{S}$ |  |
| $\overline{\text { TIM }} \downarrow$ to $\overline{\text { STM }} \downarrow$ Delay | tTS1 |  |  | 72.5 | $\mu \mathrm{s}$ |  |
| $\overline{\text { TIM }} \downarrow$ to $\overline{\text { STM }} \uparrow$ Delay | ${ }^{\text {t }}$ TS2 |  |  | 37.5 | $\mu \mathrm{s}$ |  |

PACKAGE OUTLINE $\mu$ PD781C


| ITEM | MILLIMETERS | INCHES |
| :--- | :--- | :--- |
| A | 51.5 MAX | 2.028 MAX |
| B | 1.62 | 0.064 |
| C | $2.54 \pm 0.1$ | $0.10 \pm 0.004$ |
| D | $0.5 \pm 0.1$ | $0.019 \pm 0.004$ |
| E | 48.26 | 1.9 |
| F | 1.2 MIN | 0.047 MIN |
| G | 2.54 MIN | 0.10 MIN |
| H | 0.5 MIN | 0.019 MIN |
| I | 5.22 MAX | 0.206 MAX |
| J | 5.72 MAX | 0.225 MAX |
| K | 15.24 | 0.600 |
| L | 13.2 | 0.520 |
| M | $0.25+0.1$ | $0.010+0.004$ |




All transfer of information between the $\mu$ PD781 and the host processor is via the data bus, and the four (4) control signals, $\overline{C S}, C / \bar{D}, \overline{W R}$ and $\overline{R D}$. The four control signals determine what type of data transfer will occur on the data bus.

| $\overline{\mathbf{C S}}$ | $\mathbf{C} / \overline{\mathrm{D}}$ | $\overline{\mathrm{RD}}$ | $\overline{\mathrm{WR}}$ | DATA BUS | OPERATION |
| :---: | :---: | :---: | :---: | :---: | :--- |
| 0 | 0 | 0 | 0 | - | Inhibited |
| 0 | 0 | 1 | 0 | Print Data | Write Data into Column Buffer |
| 0 | 0 | 0 | 1 | Printer Status | Read Printer Status |
| 0 | 0 | 1 | 1 | - | No Operation |
| 0 | 1 | 0 | 0 | - | Inhibited |
| 0 | 1 | 1 | 0 | Command | Write Command for Printer |
| 0 | 1 | 0 | 1 | Controller Status | Read Controller Status |
| 0 | 1 | 1 | 1 | - | No Operation |
| 1 | X | X | X | - | Disable $\mu$ PD781 |

Before issuing any new command or loading new data into the column buffer, the host processor should check the controller status bits IOM, IOB and PSR. No new operation should be performed if IOB bit indicates that the $\mu$ PD781 is busy.

Controller Status Register

| $x$ | $x$ | $x$ | $x$ | $x$ | $10 M$ | $1 O B$ | PSR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Printer Status Register

| $x$ | $x$ | $x$ | $x$ | $R$ | $S$ | $T$ | $U$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| COMMAND |  | DATA BUS |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | $\mathrm{DB}_{0}$ |
| Initialize |  | 0 | 0 | 0 | L/R | x | x | x | x |
| Request Printer Status |  | 0 | 0 | 1 | x | x | ${ }^{*}$ | x | x |
| Printer Format |  | 0 | 1 | $\mathrm{b}_{1}$ | $\mathrm{b}_{0}$ | x | $\times$ | x | x |
| Increment Column Printer |  | 0 | 1 | 1 | 1 | n3 | n2 | n1 | no |
| Print | Model 512 and 542 | 1 | 0 | 0 | 0 | x | LF | x | SR |
|  | Model 522 | 1 | 0 | $\mathrm{a}_{1}$ | a | LFJ | LFR | $\times$ | $\times$ |
| Fast Feed |  | 1 | 1 | c1 | co | n3 | n 2 | n1 | no |
| Write Print Data |  | x | $\mathrm{d}_{6}$ | d5 | d4 | d3 | $\mathrm{d}_{2}$ | $\mathrm{d}_{1}$ | do |

Note: X = Not Acceptable

IOM - Input/Output Buffer Mode
The IOM flag indicates the direction of data on the data bus. If IOM=1 data is from processor to $\mu$ PD781 (write into $\mu$ PD781). If IOM $=0$ data is from $\mu$ PD781 to processor (read from $\mu$ PD781). Immediately after reading printer status, IOM goes from 0 to 1 .

IOB - Input/Output Buffer Busy
The IOB flag indicates when the I/O buffer is busy and an operation is in process. If $I O B=1 \mathrm{I} / \mathrm{O}$ buffer is busy and no new command should be performed. If $\mathrm{IOB}=0$ $\mu$ PD781 is ready to accept new command.

PSR - Printer Status Ready
The PSR flag indicates that the printer status may be read by the processor. If $\mathrm{PSR}=1$ printer status is ready to be read by processor. If $\mathrm{PSR}=0$ printer status is not ready.

## PRINTER STATUS REGISTER

R - Location of Print Head
$R=1$ Print Head located at left side of carriage.
$\mathrm{R}=0$ Print Head located at right side of carriage.

| $\mathbf{R}$ | $\mathbf{S}$ (1) | $\mathbf{T}(1)$ | $\mathbf{U}(1)$ | OPERATION |
| :---: | :---: | :---: | :---: | :---: |
| $x$ | x | x | $\mathbf{1}$ | Detection of R/BOF Sensor |
| x | x | 1 | x | Detection of L/TOF Sensor |
| x | 1 | x | x | Detection of Low Paper (NE) |

Note: (1) These bits could have other meanings depending on the signals connected to pins 27, 28, 29.

## INITIALIZE COMMAND

This command is similar to the RESET command, but it also allows to position the print head.

L/R - Print Head Left/Right Side
$L / R=1$ Print Head is positioned at the left side.
$L / R=0$ Print Head is positioned at the right side.
Contents of column buffer is set to 20 hexadecimal (equal to blank), reset condition.
REQUEST PRINTER STATUS COMMAND
This command will latch the status of the printer in the internal register. It must be followed by a Printer Status Read Operation. No other command will be accepted until the printer status is read.

PRINTER FORMAT COMMAND
This command sets the controller for the appropriate printer model.
$\mathrm{b}_{1}, \mathrm{~b}_{0}$ - Format for Column Buffer

| $b_{1}$ | $b_{0}$ | COLUMN FORMAT | MODEL PRINTER | COMMENTS |
| :---: | :---: | :---: | :---: | :--- |
| 0 | 0 | 40 columns | 512 or 542 | Column Buffer Set at <br> 40 Column |
| 0 | 1 | 18 columns | 522 | Both Receipt and <br> Journal Print Identical <br> 18 Column |
| 1 | 0 | $2 \times 18$ columns | 522 | Receipt and Journal <br> Print Separate 18 <br> Columns, With <br> Receipt First and <br> Journal Second |

INCREMENT COLUMN POINTER COMMAND
The column pointer within the buffer is incremented to the right by the binary value indicated by $n_{0}$ through $n_{3}$. In the case of the $2 \times 18$ column format for the Model 522, the pointer can only move within the receipt or journal side, depending upon which side it is presently located.

PRINT COMMAND
The entire column buffer is printed and after the print operation is complete the contents of the buffer are reset to 20 hexidecimal (blank). During the execution of the print command no other commands are executed.
Models 512 and 542

| LF | SR | OPERATION |
| :---: | :---: | :--- |
| 0 | 0 | Print Only |
| 0 | 1 | After Printing Perform Slip Release Only |
| 1 | 0 | After Printing Perform Line Feed Only |
| 1 | 1 | After Printing Perform Both Line Feed and Slip Release |

Model 522

| $a_{1}$ | $a_{0}$ |  |
| :---: | :---: | :--- |
| 0 | 1 | Print Receipt Only |
| 1 | 0 | OPERATION |
| 1 | 1 | Print Journal Only |

Model 522

| LFJ | LFR |  |
| :---: | :---: | :--- |
| 0 | 0 | Print Only |
| 0 | 1 | After Printing Perform Line Feed on Receipt Only |
| 1 | 0 | After Printing Perform Line Feed on Journal Only |
| 1 | 1 | After Printing Perform Line Feed on Both Receipt and Journal |

FAST FEED COMMAND
The binary number indicated by no through n3 determines the number of continuous line feeds which will be performed. After the last line feed, the contents of the column buffer is reset to 20 hexadecimal (blank). During this operation no other commands are accepted.

| $\mathbf{c} \mathbf{1}$ | $\mathbf{c o}$ | OPERATION | MODEL |
| :---: | :---: | :--- | :---: |
| 0 | 0 | Performs Fast Feed Only | $512,522,542$ |
| 0 | 1 | After Fast Feed, Perform Partial Cut | 522 |
| 1 | 0 | After Fast Feed, Perform Stamp and Full Cut | 522 |
| 1 | 1 | After Fast Feed, Perform Slip Release | 542 |

After each character is written into the column buffer, the column printer is incremented by one. Do not exceed the column capacity defined in the printer format command. The following table defines the relationship between print data ( $\mathrm{d}_{0}$ through $\mathrm{d}_{6}$ ) and the character set.

|  |  |  |  | $\begin{gathered} (\mathrm{MSB}) \\ \mathrm{d}_{6} \end{gathered}$ | 0 | 0 | 1 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\mathrm{d}_{5}$ | 1 | 1 | 0 | 0 | 1 | 1 |
|  |  |  |  | $\mathrm{d}_{4}$ | 0 | 1 | 0 | 1 | 0 | 1 |
| d3 | $\mathrm{d}_{2}$ | $\mathrm{d}_{1}$ | $\begin{aligned} & \text { (LSB) } \\ & \mathrm{d}_{0} \end{aligned}$ |  | 2 | 3 | 4 | 5 | 6 | 7 |
| 0 | 0 | 0 | 0 | 0 |  | \%omom | -008 | ${ }_{8}^{6 \infty}$ | 8 | ¢088 |
| 0 | 0 | 0 | 1 | 1 | 88 | \&్\& | \% |  | comb | (osio |
| 0 | 0 | 1 | 0 | 2 | 88 | $\begin{aligned} & 0_{0}^{\infty \infty 8} \\ & 208 \\ & 208 \end{aligned}$ |  |  | \%\%8ㅇํ | 888 |
| 0 | 0 | 1 | 1 | 3 | \%8\% |  | $8_{8 \infty}^{\infty}{ }_{8}^{\infty}$ |  |  | com |
| 0 | 1 | 0 | 0 | 4 | $\begin{aligned} & \text { \%\% \% } \\ & \text { \%ifi } \end{aligned}$ | \&igis | ${ }^{80}{ }^{\circ} 8$ | \% | $\begin{aligned} & \text { mof } \\ & \text { obs } \end{aligned}$ | ${ }_{8}^{6}$ |
| 0 | 1 | 0 | 1 | 5 | $\begin{aligned} & \mathbb{8}{ }^{\circ} \mathrm{o} \\ & \circ_{\oplus}^{\circ} \end{aligned}$ |  |  | $\%_{80}^{88}$ | $\begin{aligned} & \text { mox } \\ & \text { on } \\ & \hline 8 \end{aligned}$ | omion |
| 0 | 1 | 1 | 0 | 6 |  | ${ }_{8}^{\infty}$ | ${ }_{8}^{\infty}$ | 88 | \%809 | - ${ }_{\text {a }}^{\infty}$ |
| 0 | 1 | 1 | 1 | 7 | \% ${ }_{8}^{8}$ | $\begin{gathered} \operatorname{com}_{8}^{\circ} \\ 8^{\circ} \end{gathered}$ | $\%^{8000}$ | \%\%8\% | $\begin{aligned} & \text { unk } \\ & \text { ank } \\ & 8 \end{aligned}$ | ¢0088 |
| 1 | 0 | 0 | 0 | 8 | \% |  | \%om | 808 888 888 |  | \%\%์ |
| 1 | 0 | 0 | 1 | 9 |  |  | \% | ${ }_{8}^{88} 8$ | ${ }_{\substack{8000 \\ 88 \\ 8}}$ | ${ }^{8}$ |
| 1 | 0 | 1 | 0 | A | \%\%\%ㅇํㅇ |  | $0_{\infty}^{\infty}$ | comg \%osion 8000 |  | $8^{8} 8$ |
| 1 | 0 | 1 | 1 | B | \% | $8^{\circ} \mathrm{om}$ | \& | como | \% ${ }_{\text {\% }}^{\substack{8 \\ 8 \\ 8 \\ 8}}$ | ${ }_{8}^{80 \infty}$ |
| 1 | 1 | 0 | 0 | C | $\%_{8}^{88}$ | \% $0^{88}$ | ${ }_{8000}^{8}$ | 88 88 88 |  | - ${ }_{\text {cos }}^{\infty}$ |
| 1 | 1 | 0 | 1 | D |  | \% | \%888 | 868 | como | ${ }^{\circ}{ }^{\circ} 8$ |
| 1 | 1 | 1 | 0 | E | 8 |  | \%\%\% | ${ }_{8}^{8} 0^{\circ}$ |  | \%2080 |
| 1 | 1 | 1 | 1 | F | $0^{0^{\circ}}$ | ${ }_{\infty}^{\infty}{ }^{8}$ | $8_{008}^{008}$ | \%omb | 8.8 08 08 | ¢0098 |



NOTES

## DOT MATRIX PRINTER CONTROLLER

## DESCRIPTION

The $\mu$ PD782 is an LSI Dot Matrix Printer Controller chip which contains all the circuitry and control functions for interfacing an 8-bit processor to the Epson Model 210, 220 and 240 Dot Matrix Printers. These printers are capable of printing up to 31 columns per row with $7 \times 7$ dot matrix. The $\mu$ PD782 is ideally suited for low-cost Electronic Cash Registers (ECR) and Point of Sale (POS) systems because it frees the processor from direct control of the printer and simplifies I/O software.

There are nine separate instructions, which the $\mu$ PD782 will execute. Each of these instructions requires a single 8 -bit byte from the processor to be executed. Upon receipt of the instruction, the $\mu$ PD782 assumes the control of the printer, increments the position of the print head, activates the print solenoids, performs line feeds in either receipt or journal mode (or both), and performs all these operations for an entire print line.

The $\mu$ PD782 contains its own on-board character generator of 96 symbols. It contains a 31 column printer buffer and is capable of supplying status information to the host processor on both the controller itself as well as the printer. After the character buffer is loaded from the host processor the entire row is printed out with a single print command.

FEATURES

- Compatible with most Microprocessors Including 8080A, 8085A, Z-80 TM and others
- Capable of Interfacing to Epson Model 210, 210S, 220 and 240 Printers
- Print Technique - Serial Dot Matrix
- Print Font - $7 \times 7$ Dot Matrix
- Column Print Capacity
- Model 210-31 Characters with 1 Dot Spacing; 26 Characters with 2 Dot Spacing
- Model 210S - 28 Characters with 1 Dot Spacing; 23 Characters with 2 Dot Spacing
- Model 220-14 + 14 Characters in Receipt/Journal Mode; 31 Characters in Normal Mode
- Model 240-31 Characters
- 96 Character Set (Alphanumerics Plus Symbols)
- Print Speed - Approximately 3 Lines/Sec.
- Paper Feed Receipt and Journal; Fast Feed
- Paper Release and Ink Ribbon Change-Over Outputs
- Motor Error and Write Request Interrupt
- On-Board 6 MHz Oscillator (External Crystal Required)
- Operates from a Single +5 V Power Supply (NMOS Technology)
- Available in 40 Pin Plastic Package


## PIN CONFIGURATION

PIN NAMES

| $\overline{\text { RIN }}$ | Reset In |
| :---: | :---: |
| $\mathrm{X}_{1} \times 2$ | Crystal Inputs |
| RESET | Reset |
| $\mathrm{V}_{\text {CC1-3 }}$ | DC Power |
| $\mathrm{V}_{\text {SS } 1-2}$ | Signal Ground |
| $\overline{C S}$ | Chip Select |
| $\overline{\mathrm{RD}}$ | Read |
| C/D | Command/Data |
| $\overline{W R}$ | Write |
| OPEN ${ }_{1-2}$ | No Connection |
| $\mathrm{D}_{0} \mathrm{D}_{7}$ | Data Bus |
| $\overline{P R}_{1} \cdot \overline{P R}_{7}$ | Print Solenoids |
| INT | Interrupt |
| STM | Stamp |
| $\overline{\text { RBN }} / \overline{\text { PRS }}$ | Ribbon/Paper Release |
| PFJ | Paper Feed Journal |
| PFR | Paper Feed Receipt |
| NE | Low Paper Detector |
| VDJ/BOF | Validation J/BOF Sensor |
| VDR/BOT | Validation R/BOT Sensor |
| $\overline{\text { MTD }}$ | Motor Drive |
| TIM | Timing Signal |



| PIN |  |  | 1/0 | FUNCTION |
| :---: | :---: | :---: | :---: | :---: |
| NUMBER | SYMBOL | NAME |  |  |
| 1 | $\overline{\text { RIN }}$ | Reset ln | 1 | This pin shouid be connected to the R Sensor from the printer so that it is activelow. |
| 2,3 | $\mathrm{x}_{1}, \mathrm{x}_{2}$ | External Crystal Input | 1 | This is a connection to external crystal (Frequency: 6 MHz ). $\mathrm{X}_{1}$ could also be used as input for external oscillator. |
| 4 | $\overline{\text { RESET }}$ | Reset | 1 | The Reset signal initializes the $\mu$ PD782 When $\overline{\text { RESET }}=0$, the buffer and register contents are: <br> Bus Buffer - (IOM-1, IOB=PSR=0). <br> Column Buffer - All characters in this buffer become 20(16) <br> Column Buffer Pointer - It indicates the left side of the buffer. |
| $\begin{aligned} & 5,26 \\ & 40 \\ & \hline \end{aligned}$ | ${ }^{\text {CCO-3 }}$ | DC Power |  | These are connected to +5 V power supply. |
| 6 | $\overline{\mathrm{CS}}$ | Chip Select | 1 | If the Chip Select is 0 when the data bus becomes active, it enables the transfer of data between the processor and the $\mu$ PD782 via the data bus. If it is 1, the data bus goes into High-Impedance state (inactive). However, the operation of the printer is not affected when $\overline{\mathrm{CS}}=1$. |
| 7,20 | $\mathrm{v}_{\text {SS1-2 }}$ | Signal Ground |  | - : |
| 8 | $\overline{\mathrm{RD}}$ | Read | 1 | The Read Control Signal is used to read controller status or printer status to the host processor. When $\overline{R D}=0$, status information is presented. |
| 9 | C/D | Command/ Data Select | 1 | The $C / \bar{D}$ Select is used to indicate what kind of data is being input/output on the data bus by the host processor. When $C / \bar{D}=1$ in Read Operation, it is a Controller Status and in Write Operation it gives commands. When $C / \bar{D}=0$ in Read Operation it is a Printer Status and in Write Operation it is print data. |

## PIN IDENTIFICATION

 (CONT.)| PIN |  |  | 1/0 | FUNCTION |
| :---: | :---: | :---: | :---: | :---: |
| NUMBER | SYMBOL | NAME |  |  |
| 10 | $\overline{W R}$ | Write | 1 | The Write Control Signal is used to write commands or print data to the $\mu$ PD782. When $\overline{W R}=0$, data on the data bus is written into the $\mu$ PD782. |
| 12-19 | $\mathrm{D}_{0-7}$ | Data Bus | $\begin{gathered} 1 / 0 \\ \text { 3-State } \end{gathered}$ | It is an 8 -bit bi-directional data bus and is used to transfer the data between the host processor and the $\mu$ PD782. |
| 11,25 | OPEN $_{1-2}$ | No Connection |  | These pins must be open. Do not connect them to +5 V , GND or any other signals. |
| $\begin{aligned} & 21-24, \\ & 35-37 \end{aligned}$ | $\overline{\mathrm{PR}}_{1} \cdot \overline{\mathrm{PR}}_{7}$ | Print <br> Solenoid | 0 | These are drive signals for the print solenoids. When these signals are 0 , the print solenoid should be activated. They are synchronized with the timing signal (TIM), which is issued from the printer. |
| 39 | TIM | Timing Signal | 1 | The timing signal is issued from the printer. It is used to generate and synchronize all the basic printer operations such as paper feed, paper cut, etc. |
| 27 | $\overline{\text { INT }}$ | Interrupt | 0 | There are two reasons for this signal to go low. One is when the $\mu$ PD782 is ready to receive data into the Data Buffer. It gets reset after the first byte of data is loaded. The other reason is the motor error during the printing or line feed. It will get set if the paper is jammed or if the print solenoid is kept on for more than 20 ms . It gets clear by the initialize command. |
| 28 | $\overline{\text { STM }}$ | Stamp | 0 | Stamp output for Model M-220 printer. After the stamp command is given, this signal goes low for 200 ms . |
| 29 | $\overline{\mathrm{RBN}} / \overline{\mathrm{PRS}}$ | Ribbon/ Paper Release | 0 | This is low active signal. For Model 210 and 210 it will select red ribbon. For Model 240 it will cause slip release. It is activated by print command. |
| 30 | $\overline{\text { PFJ }}$ | Paper Feed Journal | 0 | This is the drive signal for the journal paper feed for Model 220 and for normal paper feed for other models. It is a low active signal. |
| 31 | $\overline{\text { PFR }}$ | Paper Feed Receip | 0 | This is the drive signal for the receipt paper feed for Model 220 and should be left open for other models. |
| 32 | NE | Low <br> Paper Detector | 1 | This signal indicates a low paper condition in Model 220 and is active high. |
| 33,34 | VDR/TOF <br> VDJ/TOB | Validation Sensors | 1 | These signals indicate the position of the print head in the printer. <br> For Model 220 - right and left position. <br> For Model 240 - top and bottom. |
| 38 | $\overline{\text { MTD }}$ | Motor Drive | 0 | This signal activates the motor in the printer and is active low. |

Operating Temperature $\qquad$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage On Any Pin -0.5 to +7 Volts ${ }^{(1)}$
Note: (1) With Respect to Ground.
COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC} 1-3}=+5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{SS} 1-2}=0 \mathrm{~V}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input High Voltage <br> (All except XTAL 1, <br> XTAL 2, $\overline{\text { RESET }}$ ) | $\mathrm{V}_{1+1}$ | 2.0 |  | Vcc | V |  |
| Input High Voltage (XTAL 1, XTAL 2, RESET) | $\mathrm{V}_{1 \mathrm{H} 2}$ | 3.5 |  | $\mathrm{V}_{\mathrm{CC}}$ | V |  |
| Input Low Voltage (All except XTAL 1, XTAL ${ }^{2)}$ | VIL | $-0.5$ |  | 0.8 | V |  |
| Output High Voltage ( ${ }^{0} 7$ <br> Voltage ( $\mathrm{D}_{0-7}$ ) | $\mathrm{V}_{\mathrm{OH} 1}$ | 2.4 | . |  | V | $\mathrm{I}^{\mathrm{OH}}=-400 \mu \mathrm{~A}$ |
| Output High Voltage (All Other Outputs) | $\mathrm{V}_{\mathrm{OH} 2}$ | 2.4 |  |  | V | $\mathrm{IOH}^{\prime}=-50 \mu \mathrm{~A}$ |
| Output Low Voltage ( $\mathrm{D}_{0-7}$ ) | $\mathrm{V}_{\text {OL1 }}$ |  |  | 0.45 | V | $\mathrm{IOL}^{\prime}=2.0 \mathrm{~mA}$ |
| Output Low Voltage (All Other Outputs except $D_{0-7}$ ) | $\mathrm{V}_{\text {OL2 }}$ |  |  | 0.45 | V | ${ }^{\prime} \mathrm{OL}=1.6 \mathrm{~mA}$ |
| Low Input Source Current (VDR/BOF, VDL/TOF, NE, TIM) | 'LII |  |  | 0.4 | mA | $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$ |
| Low Input Source Current (RESET) | 'LI2 |  |  | $\bullet 0.2$ | mA | $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$ |
| Input Leakage Cürrent (RL, RR, $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{CS}}, \mathrm{C} / \overline{\mathrm{D}})$ | IIL |  |  | $\pm 10$ | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {SS }} \leqslant \mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\text {CC }}$ |
| Output Leakage Current ( $\mathrm{D}_{0-7}$, High Impedance State) | ${ }^{\text {IOL}}$ |  |  | $\pm 10$ | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {SS }}+0.45 \leqslant \mathrm{~V}_{\text {IN }} \leqslant \mathrm{V}_{\text {CC }}$ |
| Total Supply Current (ICC1 ${ }^{+}$ ICC2 + ICC3) | ${ }^{\text {I C }}$ |  | 65 | 135 | mA | $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ |



| ITEM | MILLIMETERS | INCHES |
| :---: | :---: | :--- |
| A | 51.5 MAX | 2.028 MAX |
| B | 1.62 | 0.064 |
| C | $2.54 \pm 0.1$ | $0.10 \pm 0.004$ |
| D | $0.5 \pm 0.1$ | $0.019 \pm 0.004$ |
| E | 48.26 | 1.9 |
| F | 1.2 MIN | 0.047 MIN |
| G | 2.54 MIN | 0.10 MIN |
| H | 0.5 MIN | 0.019 MIN |
| I | 5.22 MAX | 0.206 MAX |
| J | 5.72 MAX | 0.225 MAX |
| K | 15.24 | 0.600 |
| L | 13.2 | 0.520 |
| M | $0.25+0.1$ | $0.010+0.004$ |

ABSOLUTE MAXIMUM RATINGS*

DC CHARACTERISTICS

## PACKAGE OUTLINE $\mu$ PD782C

AC CHARACTERISTICS
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC} 1-3}=+5 \mathrm{~V} \pm 5 \% ; \mathrm{VSS}_{\mathrm{SS}}-2=0 \mathrm{~V}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
|  | READ OPERATION |  |  |  |  |  |
| $\overline{\mathrm{CS}}, \mathrm{C} / \overline{\mathrm{D}}$ Setup to $\overline{\mathrm{RD}} \downarrow$ | ${ }^{t} \mathrm{AR}$ | 0 |  |  | ns | D0-7 Input |
| CS, C/ $\overline{\mathrm{D}}$ Hold After $\overline{\mathrm{RD}} \uparrow$ | ${ }^{t}$ RA | 0 |  |  | ns |  |
| $\overline{\mathrm{RD}}$ Pulse Width | ${ }^{t}$ RR | 250 |  | 5000 | ns |  |
| $\overline{C S}, C / \bar{D}$ to Data Out Delay | ${ }^{t} \mathrm{AD}$ |  |  | 180 | ns |  |
| $\overline{\mathrm{RD}} \downarrow$ to Data Out Delay | ${ }^{t} R D$ |  |  | 180 | ns |  |
| $\overline{\mathrm{RD}} \uparrow$ to Data Float Delay | ${ }^{t} \mathrm{DF}$ | 10 |  | 100 | $\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$ |  |
| Recovery Time Between Reads And/Or Write | ${ }^{t} \mathrm{RV}$ | 1 |  |  | $\mu \mathrm{s}$ |  |
| WRITE OPERATION |  |  |  |  |  |  |
| $\overline{\mathrm{CS}}, \mathrm{C} / \overline{\mathrm{D}}$ Setup to $\overline{W R} \downarrow$ | taw | 0 |  |  | ns | D0-7 Output$C_{L}=100 \mathrm{pF}$ |
| $\overline{\mathrm{CS}}, \mathrm{C} / \overline{\mathrm{D}}$ Hold After $\bar{W} \mathrm{R} \uparrow$ | tWA | 0 |  |  | ns |  |
| $\overline{\text { WR Pulse Width }}$ | ${ }^{\text {tWW }}$ | 250 |  | 5000 | ns |  |
| Data Setup to $\overline{W R} \uparrow$ | tow | 150 |  |  | ns |  |
| Data Hold After $\overline{W R} \uparrow$ | twD | 0 |  |  | ns |  |
| PRINT OPERATION |  |  |  |  |  |  |
| $\overline{\mathrm{RIN}} \downarrow$ to $\overline{\mathrm{T}}_{1}$ Preset Time | ${ }_{\text {t } R T}$ |  |  | 140 | $\mu \mathrm{s}$ | 6 MHz Crystal |
| $\overline{\mathrm{TIM}} \downarrow$ to $\overline{\mathrm{PR}}_{1-7} \downarrow$ Delay | ${ }^{\text {t }}$ P | 40 |  | 50 | $\mu \mathrm{s}$ |  |
| $\overline{\text { RBN }} \downarrow$ to $\overline{M T D} \downarrow$ Delay | ${ }^{\text {t }}$ RM |  | 5 |  | $\mu \mathrm{s}$ |  |
| $\overline{\mathrm{RIN}} \downarrow$ to $\overline{\mathrm{RBN}}+$ Delay | ${ }^{\text {t RRBE }}$ | 10 |  | 15 | $\mu \mathrm{s}$ |  |
| $\overline{\mathrm{TIM}} \downarrow$ to $\overline{\mathrm{PFJ}}, \overline{\mathrm{PFR}} \downarrow$ Delay | tTF | 135 |  | 500 | $\mu \mathrm{s}$ |  |
| $\overline{\text { TIM }} \downarrow$ to $\overline{S L R} \downarrow$ Delay | tTR | 365 |  | 385 | $\mu \mathrm{s}$ |  |
| $\overline{\mathrm{RIN}} \downarrow$ to $\overline{\text { STM }} \downarrow$ Delay | ${ }^{\text {tR }}$ S |  | 12.5 |  | $\mu \mathrm{S}$ |  |
| $\overline{\mathrm{T}}_{125} \downarrow$ to $\overline{\text { STM }} \uparrow$ Delay | ${ }^{\text {t }}$ S |  | 42.5 |  | $\mu \mathrm{s}$ |  |
| Stamp Time | ${ }^{\text {t }}$ TM | 150.03 |  | 200.03 | ms |  |
| $\overline{\mathrm{TIM}} \downarrow$ to $\overline{\mathrm{MTD}} \uparrow$ | ${ }^{\text {t }}$ TM |  |  | 510 | $\mu \mathrm{s}$ |  |

TIMING WAVEFORMS
$\overline{C S} O R C / \bar{D}$
$\overline{R D}$
DATA BUS
(OUT)
$\overline{C S} O R C / \bar{D}$
$\overline{W R}$

DATA BUS
(IN)


PRINT OPERATION


TIMING WAVEFORMS (CONT.)

LINE FEED OPERATION

TIM
$\overline{\mathrm{RR}}_{1} \sim \overline{\mathrm{PR}}_{7}$
$\overline{\text { PF, }} \overline{\mathrm{PFR}}$
$\overline{\text { SLR }}$


STAMP OPERATION

FIN

TIM
$\overline{\text { STA }}$


MOTOR ENABLE

TIM
$\overline{\text { MTV }}$


All transfer of information between the $\mu$ PD782 and the host processor is via the data bus, and the four (4) control signals, $\overline{C S}, C / \bar{D}, \overline{W R}$ and $\overline{R D}$. The four control signals determine what type of data transfer will occur on the data bus.

| $\overline{\mathbf{C S}}$ | $\mathrm{C} / \overline{\mathrm{D}}$ | $\overline{\mathrm{RD}}$ | $\overline{\mathrm{WR}}$ | DATA BUS | OPERATION |
| :---: | :---: | :---: | :---: | :---: | :--- |
| 0 | 0 | 0 | 0 | - | Inhibited |
| 0 | 0 | 1 | 0 | Print Data | Write Data into Column Buffer |
| 0 | 0 | 0 | 1 | Printer Status | Read Printer Status |
| 0 | 0 | 1 | 1 | - | No Operation |
| 0 | 1 | 0 | 0 | - | Inhibited |
| 0 | 1 | 1 | 0 | Command | Write Command for Printer |
| 0 | 1 | 0 | 1 | Controller Status | Read Controller Status |
| 0 | 1 | 1 | 1 | - | No Operation |
| 1 | $\times$ | $\times$ | X | - | Disable $\mu$ PD782 |

Before issuing any new command or loading new data into the column buffer, the host processor should check the controller status bits IOM, IOB and PSR. No new operation should be performed if IOB bit indicates that the $\mu$ PD782 is busy.

CONTROLLER STATUS REGISTER

| $x$ | $x$ | $x$ | $x$ | $x$ | $I O M$ | $I O B$ | PSR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

PRINTER STATUS REGISTER

| $S$ | $T$ | $V$ | $X$ | $X$ | $X$ | $X$ | $M$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| COMMAND |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{DB}_{7}$ | $\mathrm{DB}_{6}$ | $\mathrm{DB}_{5}$ | $\mathrm{DB}_{4}$ | $\mathrm{DB}_{3}$ | $\mathrm{DB}_{2}$ | $\mathrm{DB}_{1}$ | $\mathrm{DB}_{0}$ |
| Initialize | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| Request Printer Status | 0 | 0 | 0 | 0 | $x$ | $x$ | $x$ | x |
| Printer Format | 0 | 1 | a | $\mathrm{b}_{4}$ | $\mathrm{~b}_{3}$ | $\mathrm{~b}_{2}$ | $\mathrm{~b}_{1}$ | $\mathrm{~b}_{0}$ |
| Increment Column <br> Printer | 0 | 0 | 1 | $\mathrm{n}_{4}$ | $\mathrm{n}_{3}$ | $\mathrm{n}_{2}$ | $\mathrm{n}_{1}$ | $\mathrm{n}_{0}$ |
| Print | 1 | 0 | LFJ | LFR | X | R | ST | SL |
| Fast Feed | 1 | 1 | $\mathrm{k}_{1}$ | $\mathrm{k}_{0}$ | $\mathrm{~m}_{3}$ | $\mathrm{~m}_{2}$ | $\mathrm{~m}_{1}$ | $\mathrm{~m}_{0}$ |
| Write Print Data | X | $\mathrm{d}_{6}$ | $\mathrm{~d}_{5}$ | $\mathrm{~d}_{4}$ | $\mathrm{~d}_{3}$ | $\mathrm{~d}_{2}$ | $\mathrm{~d}_{1}$ | $\mathrm{~d}_{0}$ |

Note: X = Don't Care

IOM - Input/Output Buffer Mode
The IOM flag indicates the direction of data on the data bus. If IOM=1 data is from processor to $\mu$ PD782 (write into $\mu$ PD782). If IOM $=0$ data is from $\mu$ PD782 to processor (read from $\mu$ PD782). Immediately after reading printer status, IOM goes from 0 to 1.

IOB - Input/Output Buffer Busy
The IOB flag indicates when the $1 / O$ buffer is busy and an operation is in process. If $1 O B=11 / O$ buffer is busy and no new command should be performed. If $10 B=0 \mu \mathrm{PD} 782$ is ready to accept new command.

PSR - Printer Status Ready
The PSR flag indicates that the printer status may be read by the processor. If PSR=1 printer status is ready to be read by processor. If $P S R=0$ printer status is not ready.

PRINTER STATUS REGISTER

| $\mathbf{S}$ | $\mathbf{T}$ | V | M | OPERATION |
| :---: | :---: | :---: | :---: | :--- |
| $\mathbf{1}$ | X | X | X | Status of the input pin 34 |
| X | 1 | X | X | Status of the input pin 33 |
| X | X | 1 | X | Status of the input pin 32 |
| X | X | X | 1 | Motor Error $-\mu$ PD782 will suspend <br> output to $\overline{\mathrm{PR}} 1$ - PR 7 solenoids and <br> turn the motor off. Cleared by the <br> initialize command. |

## INITIALIZE COMMAND

This command is the same as RESET signal. It clears the Data Buffer (set to blank 20H), set the Data Buffer Pointer to the left side. It also resets the motor error flag, and clears interrupt.

## REQUEST PRINTER STATUS COMMAND

This command will latch the status of the input pins 32,33 and 34 in the Printer Status Register. It must be followed by a Printer Status Read Operation. No other command will be accepted until the printer status is read.

## PRINTER FORMAT COMMAND

This command sets the controller for the appropriate printer model and controls the format and timing of printing and line feed for different models of Epson printer. It should be issued after initialize command but before any other command.
$a=0-1$ dot spacing between characters
$a=1-2$ dot spacing between characters - only for Model 210 and 210 S

| $\mathrm{b}_{4}$ | $\mathrm{~b}_{3}$ | $\mathrm{~b}_{2}$ | $\mathrm{~b}_{1}$ | $\mathrm{~b}_{0}$ | MODEL PRINTER |
| :---: | :---: | :---: | :---: | :---: | :--- |
| 1 | 1 | 1 | 1 | 0 | $M-210$ |
| 1 | 1 | 1 | 0 | 1 | $M-210 S$ |
| 0 | 1 | 0 | 1 | 1 | $M-220$ - Journal/Receipt mode'(14 + 14 characters) |
| 1 | 1 | 0 | 1 | 1 | $M-220$ - One line print (31 characters) |
| 1 | 0 | 1 | 1 | 1 | $M-240$ |

The Data Buffer Pointer is incremented to the right by the binary value indicated by $n_{0}$ through $\mathrm{n}_{4}$. In case of Model 220 in journal/receipt mode the pointer can only move within the receipt or journal side depending upon which side it is presently located.

## PRINT COMMAND

The entire Data Buffer is printed and after the print operation is completed the contents of the buffer are reset to $\mathbf{2 0 H}$ (blank). During the execution of the print command no other commands are allowed.

Model 220

| LFJ | LFR | OPERATION |
| :---: | :---: | :--- |
| 0 | 0 | After printing both receipt or journal line feed |
| 0 | 1 | After print performs line feed on receipt side only |
| 1 | 0 | After print performs line feed on journal side only |
| 1 | 1 | Print only |
| ST | 1 | No stamp |
|  | 0 | The receipt side performs line feed 11 times after <br> printing a line and the stamp solenoid is activated |

Model 210, $210 S$

| LFJ | R | OPERATION |
| :---: | :--- | :--- |
| 0 | $X$ | After printing performs line feed |
| $\mathbf{X}$ | $X$ | Print only |
| $X$ | 0 | Print ribbon set to red |
| $X$ | 1 | Print ribbon set to black |

Model 240

| LFJ | SL | OPERATION |
| :---: | :---: | :--- |
| 0 | $X$ | After printing performs line feed |
| 1 | $X$ | Print only |
| $X$ | 0 | After print performs slip release (only 29 char- <br> acters allowed in data buffer) |
| $X$ | 1 | No slip release |

FAST FEED COMMAND

The binary number indicated by $m_{3}$ through $m_{0}$ determines the number of continuous line feeds which is performed.

For Model 220

| $\mathbf{k}_{1}$ | $\mathbf{k}_{\mathbf{0}}$ | OPERATION |
| :--- | :--- | :--- |
| 0 | 0 | Receipt and Journal line feed |
| 0 | 1 | Receipt line feed only |
| 1 | 0 | Journal line feed only |

After each character is written into the column buffer, the column printer is incremented by one. Do not exceed the column capacity defined in the printer format command. The following table defines the relationship between print data ( $d_{0}$ through $d_{6}$ ) and the character set.

|  |  |  |  | $\begin{gathered} \text { (MSB) } \\ d_{6} \end{gathered}$ | 0 | 0 | 1 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\mathrm{d}_{5}$ | 1 | 1 | 0 | 0 | 1 | 1 |
|  |  |  |  | $\mathrm{d}_{4}$ | 0 | 1 | 0 | 1 | 0 | 1 |
| d3 | d2 | $\mathrm{d}_{1}$ | $\begin{gathered} \text { (LSB) } \\ d_{0} \end{gathered}$ |  | 2 | 3. | 4 | 5 | 6 | 7 |
| 0 | 0 | 0 | 0 | 0 |  | \%-mion | - ${ }^{00} 8$ | ${ }_{8}^{\infty}$ | 8 | -8098 |
| 0 | 0 | 0 | 1 | 1 | * | \% | \% ${ }_{8}^{\infty}$ | \% ${ }_{\text {\% }}^{\text {80, }}$ | comb | ¢09\% |
| 0 | 0 | 1 | 0 | 2 | 88 |  |  | \% | . ${ }_{8}^{\circ}{ }^{\circ}$ | 8888 |
| 0 | 0 | 1 | 1 | 3 | \% ${ }_{\text {\% }}^{\text {\% }}$ |  | $8_{8 \infty}^{\infty}$ | (80008 | ${ }^{\text {coskg }}$ | como |
| 0 | 1 | 0 | 0 | 4 | \%\% | \&\%\%్ర | ${ }_{80}^{\infty} 0^{\circ} 8$ | \% | \%osm | ${ }_{8}^{\circ}$ |
| 0 | 1 | 0 | 1 | 5 | $\begin{aligned} & \mathbb{B}_{\circ}^{\circ}{ }^{\circ} \mathrm{O} \\ & \mathrm{O}_{1} \end{aligned}$ |  |  | 888 | mof |  |
| 0 | 1 | 1 | 0 | 6 |  | 80m | ${ }_{8}^{\text {¢, }}$ | 88.8 |  | - ${ }_{0}^{\infty}$ |
| 0 | 1 | 1 | 1 | 7 | \%2098 | $\begin{aligned} & \text { cox } \\ & 8_{0}^{\circ} \end{aligned}$ | 为 ${ }_{\text {\% }}^{\infty}$ | \%88\% | \%2\% | comb |
| 1 | 0 | 0 | 0 | 8 | \% ${ }_{\text {com }}$ |  | \% ${ }^{6}$ | $88{ }^{\circ} 8^{8}$ 88 |  | ~\%\% |
| 1 | 0 | 0 | 1 | 9 |  |  | \% | 888 | ${ }^{80} 8$ | $8^{88}$ |
| 1 | 0 | 1 | 0 | A | \%\%్ㅇํ | ) ${ }_{\infty}^{\infty}$ | \% ${ }_{0}{ }^{\circ}$ | mong cosion 8000 | -000\% | $8_{8}^{\circ} 8$ |
| 1 | 0 | 1 | 1 | B | \& | $8{ }^{\circ} \mathrm{omg}$ |  |  | ${ }_{8}^{8}$ | ${ }_{8}^{8}$ |
| 1 | 1 | 0 | 0 | C | ${ }^{8} 8$ | $0^{\circ}{ }^{\circ}$ | ${ }_{8}^{8}$ | 8 | ${ }_{\substack{\infty \\ \infty \\ \infty \\ 0}}^{88}$ | - ${ }^{\infty}$ |
| 1 | 1 | 0 | 1 | D | 0000 | \% ${ }_{\text {\% }}^{\infty}$ | \%8888 | ¢ | \%ong | 8 |
| 1 | 1 | 1 | 0 | E | \% | ${ }^{800}$ | \% \% \% | \% $0^{\circ} 0^{\circ}$ | \% | chio 888 |
| 1 | 1 | 1 | 1 | F | $0^{\circ}{ }^{\circ}$ | ${ }_{\infty 0^{8}}$ | $8_{8 \infty}^{\infty} 8_{8}^{80}$ | \%om | 8.88 | ¢0088 |

## OPERATING PROCEDURES



NOTES

## PROGRAMMABLE CRT CONTROLLER

DESCRIPTION
The $\mu$ PD3301 is an LSI chip designed for use in CRT controllers. It contains a synchronous signal generator, row buffer, and attribute memory. This CRT controller is capable of handling not only black and white CRT, but also color CRT. The $\mu$ PD3301 provides control signals which simplify the design of the external circuitry needed in the systems. Thus, this device is a versatile controller that relieves the main CPU (and users) of many of the control burdens associated with implementing a CRT interface.
There are 8 separate commands which the $\mu$ PD3301 will execute. Some of these commands require multiple bytes to fully specify the operation which the processor wishes the CRT controller to perform. The following commands are available:

- RESET
- STOP DISPLAY
- START DISPLAY
- SET INTERRUPT MASK
- READ LIGHT PEN
- LOAD CURSOR POSITION
- RESET INTERRUPT
- RESET COUNTERS
- Programmable Screen and Character Format Capabilities;
- Characters per Row (up to 80 characters/row)
- Lines per Character (up to 32 lines/character)
- Rows per Frame (up to 64 rows/frame)
- Horizontal Retrace Time
- Vertical Retrace Time'
- Blinking Time
- DMA Control Mode
- Cursor Control Mode
- Three Independent Visual Field Attribute Modes such as;
- Transparent Attribute Color Mode
- Transparent Attribute Black and White Mode
- Non-Transparent Attribute Black and White Mode
- 12 Independent Field Attribute Functions such as;
- Vertical Line
- Blue
- Over-Line
- Red
- Reverse Video - Under-Line
- Blinking
- High-Light
- General Purpose
- Green

Light Pen Detection

- Maximum 256 Different Characters Control Capability
- Fully Bus Compatible with 8080
- 3 MHz Single Clock Input
- Single Power Supply, +5V N-MOS Technology
- Available in 40 pin Plastic and Ceramic Dual-In-Line Packages

PIN NAMES

| VRTC | Vertical Retrace |
| :---: | :---: |
| RVV | Reverse Video . |
| CSR | Cursor |
| L PEN | Light Pen |
| INT | Interrupt |
| DRQ | DMA Request |
| DACK | DMA Acknowledge |
| $A_{0}$ | Address Bus 0 |
| RD | Read |
| WR | Write |
| $\overline{\mathrm{CS}}$ | Chip Select |
| $\mathrm{DB}_{0-7}$ | Data Bus 0 to 7 |
| HRTC | Horizontal Retrace |
| C CLK | Character Clock |
| $\mathrm{CC}_{0-7}$ | Character Codes 0 to 7 |
| HLGT | High-light |
| GPA | General Purpose Attribute |
| SL12 | Slit Line 12 |
| VSP | Video Suppression |
| $\mathrm{LC}_{0-3}$ | Line Counter 0 to 3 |
| $\mathrm{SL}_{0}$ | Slit Line 0 |



Character Counter

Counts the characters in a row, up to the number of the characters defined in Characters/Row.

## Row Buffer

Consists of a dual RAM buffer. Each buffer can store up to 80 characters. During a DMA operation, the characters are written into the Row Buffer. One of the buffers is used for display purpose. Each character in the buffer is read with Character Clock (C CLK), and the data appears in CC0.7. At the same time, the data on the next row is written into another buffer by DMA control.

## Buffer Input/Output Controlier

- Writes the characters into the Row Buffer, up to the number defined by Characters/Row.
- Outputs the data from the Row Buffer to $\mathrm{CC}_{0-7}$.
- Writes the attributes and special control character codes into the FIFO, up to the number defined by Attributes/Row.
- Reads the attribute codes from the FIFO and transfers them to the video circuit.
- In case of Non-Transparent Attribute Mode, it distinguishes an ordinary character code from an attribute code among the character data read from the Row Buffer.


## FIFO (First Input, First Output)

Consists of a dual RAM buffer. Each buffer can store up to 20 characters. By DMA operation, attribute codes and special control characters are written into the FIFO. One of the buffers is used for display purpose. Whenever the read flag bit for FIFO is detected, an attribute code is read and transferred to the video circuit. And at the same time, the attribute codes in the next row are written into the rest of the buffers (another buffer) by DMA operation.

FUNCTIONAL DESCRIPTION (CONT.)

Counts the events of Rasters/Line, up to the number indicated by Lines/Character.
Raster Timing and Video Control

- Qutputs the HRTC based on the Character Counter during the time indicated by Horizontal Retrace Time.
- Outputs the VRTC based on Row Counter which counts up the contents, row by row, during the time indicated by Vertical Retrace Time.
- Outputs HLGT, RVV, VSP, SLo ${ }_{0}, \mathrm{SL}_{12}$, GPA based on attribute codes transferred from the Buffer Output Controller.
- Outputs the CSR based on the Blinking Time etc. at the position indicated by Cursor Address.


## Light Pen Register

Memorizes a row address and column address when the L PEN signal is input. By using READ LIGHT PEN instruction, the CPU can read the contents.

## ABSOLUTE MAXIMUM RATINGS*

Operating Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Output Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to +7 Volts
All Input Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 to +7 Volts
Supply Voltage VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 to +7 Volts

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} T_{a}=25^{\circ} \mathrm{C}$

## DC CHARACTERISTICS

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input Low Voltage | VIL | -0.5 |  | 0.8 | V |  |
| Input High Voltage | $\mathrm{V}_{\text {IH }}$ | 2.2 |  | $\mathrm{V}_{\mathrm{CC}}+0.5$ | V |  |
| Output Low Voltage | $\mathrm{V}_{\mathrm{OL}}$ |  |  | 0.45 | V | $\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$ |
| Output High Voltage | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  | $\mathrm{V}_{\mathrm{Cc}}$ | V | $\begin{aligned} & \mathrm{DB}_{0-7}: \mathrm{IOH}_{\mathrm{OH}}=-150 \mu \mathrm{~A}, \\ & \text { All Others: }-80 \mu \mathrm{~A} \\ & \hline \end{aligned}$ |
| Low Level Input Leakage | IIL |  |  | -10 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=0 . \mathrm{V}$ |
| High Level Input Leakage | IIH |  |  | +10 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ |
| Low Level Output Leakage | ${ }^{\text {I OL }}$ |  |  | -10 | $\mu \mathrm{A}$ | $V_{\text {OUT }}=0 V$ |
| High Level Output Leakage | ${ }^{\mathrm{O}} \mathrm{OH}$ |  |  | +10 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$ |
| Power Supply Current | ${ }^{\text {I CC }}$ |  | 90 |  | mA |  |

CAPACITANCE
$T_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{VCC}=0 \mathrm{~V}$

| PARAMETER | SYMBOL | LIMITS |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MAX |  |  |  |
| Input Capacitance | CIN |  | 10 | pF | fc $=1$ MHz, <br> All Pins Except Pin |
| Output Capacitance | COUT |  | 20 | pF | Under Test Tied to <br> AC Ground |

## $\mu$ PD3301

$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$

| PARAMETER |  | SYMBOL | LIMITS |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | MAX |  |  |
| Clock Cycle Time | $\mu$ PD3301-1 |  | ${ }^{t} \mathrm{C} Y$ | 0.5 | 10 | $\mu \mathrm{s}$ |  |
|  | $\mu \mathrm{PD} 3301-2$ | ${ }^{t} \mathrm{C} Y$ | 0.38 | 10 | $\mu \mathrm{S}$ | - |
| Clock High Level |  | ${ }^{t} \mathrm{CH}$ | 150 | , | ns |  |
| Clock Low Level |  | ${ }^{\mathrm{t}} \mathrm{CL}$ | 150 | 1000 | ns |  |
| Clock Rise Time |  | ${ }^{t} \mathrm{CR}$ | 5 | 30 | ns |  |
| Clock Fall Time |  | ${ }^{\mathrm{t}} \mathrm{CL}$ | 5 | 30 | ns |  |
| Output Delay from C CLK $\uparrow$ |  | ${ }^{\mathrm{t}} \mathrm{CO1}$ | 0 | 150 | ns | $1 \mathrm{TTL}+15 \mathrm{pF}$ : HRTC, $\mathrm{CC}_{0-7}$ |
| Output Delay from C CLK $\uparrow$ | $\mu$ PD3301-1 | ${ }^{\text {t }} \mathrm{CO} 2$ |  | 400 | ns | $\begin{aligned} & 1 \mathrm{TTL}+15 \mathrm{pF}: \\ & \text { Except HRTC, CC } \\ & 0-7 \end{aligned}$ |
|  | $\mu \mathrm{PD} 3301-2$ | ${ }^{t} \mathrm{CO} 2$ |  | 300 | ns |  |
| Command Cycle Time |  | ${ }^{\text {t }} \mathrm{E}$ | ${ }^{2 t} \mathrm{CY}+200$ |  | ns | ${ }^{\mathrm{t}} \mathrm{C} Y \geqslant 400 \mu \mathrm{~s}$ |
|  |  | ${ }^{\text {t }}$ E | 1 |  | $\mu \mathrm{s}$ | ${ }^{\text {t }} \mathrm{CY} \times 400 \mu \mathrm{~s}$ |
| $A_{0}, \overline{C S}$ Set Up Time to WR |  | ${ }^{\text {t }}$ AW | 0 |  | ns |  |
| $A_{0}, \overline{C S}$ Hold Time to $\overline{W R}$ |  | tWA | 0 |  | ns |  |
| $\overline{W R}$ Pulse Width |  | twW | 200 |  | ns |  |
| Data Set Up Time to $\overline{W R}$ |  | tDW | 150 |  | ns |  |
| Data Hold Time to WR |  | twD | 30 |  | ns |  |
| $\overline{\text { DACK }} \downarrow$ Set Up Time to $\overline{W R}$ |  | ${ }^{\text {t K W }}$ | 0 |  | ns |  |
|  |  | ${ }^{\text {t }}$ WK | 0 |  | ns |  |
| DRQ Delay from $\overline{\text { DACK }} \downarrow$ |  | ${ }^{t} \mathrm{KQ}$ | 0 | 250 | ns | $1 \mathrm{TTL}+50 \mathrm{pF}$ |
| INT Delay from $\overline{W R} \uparrow$ |  | ${ }^{\text {t W }}$ | ${ }^{\text {t }} \mathrm{CY}+20$ | ${ }^{2 \mathrm{t}} \mathrm{CY}+300$ | ns | $1 \mathrm{TTL}+50 \mathrm{pF}$ |
| INT Delay from C CLK $\uparrow$ |  | ${ }^{\mathrm{t}} \mathrm{Cl}$ | $\cdots$ | 300 | ns | $1 \mathrm{TTL}+50 \mathrm{pf}$ |
| $A_{0}, \overline{C S}$ Set Up Time to $\overline{R D}$ |  | ${ }^{t} A R$ | 0 |  | ns |  |
| $A_{0}, \overline{C S}$ Hold Time to $\overline{R D}$ |  | ${ }^{t} R A$ | 0 |  | ns |  |
| $\overline{\text { RD Pulse Width }}$ |  | ${ }^{t} \mathrm{RR}$ | 300 |  | ns |  |
| Data Access Time from $\overline{\mathrm{RD}} \downarrow$ |  | ${ }^{t} R D$ | 0 | 250 | ns | $C_{L}=100 \mathrm{pF}$ |
| Data Float Delay from $\overline{\mathrm{RD}} \uparrow$ |  | ${ }^{t}$ DR |  | 150 | ns | $C_{L}=100 \mathrm{pF}$ |
|  |  | 20 |  | ns | $C_{L}=15 \mathrm{pF}$ |  |

AC CHARACTERISTICS


TIMING WAVEFORMS

TIMING WAVEFORMS (CONT.)


DMA, INTERRUPT AND WRITE OPERATION


From the external memory which contains the information about characters and attributes, the data is transferred to the Row Buffer under the control of $\mu$ PD8257 DMA Controller. The data read from the Row Buffer are Video Control Outputs and ROM Address Signal Outputs toward External Character Generator. The $\mu$ PD3301 also outputs horizontal and vertical retrace signals.



Plastic

| ITEM | MILLIMETERS | INCHES |
| :---: | :---: | :---: |
| A | 51.5 MAX. | 2.028.MAX. |
| B | 1.62 MAX. | 0.064 MAX. |
| C | $2.54 \pm 0.1$ | $0.10 \pm 0.004$ |
| D | $0.5 \pm 0.1$ | $0.019 \pm 0.004$ |
| E | $48.26 \pm 0.1$ | $1.9 \pm 0.004$ |
| F | 1.2 MIN. | 0.047 MIN. |
| G | 2.54 MIN. | 0.10 MIN . |
| H | 0.5 MIN. | 0.019 MIN . |
| I | 5.22 MAX. | 0.206 MAX. |
| J | 5.72 MAX. | 0.225 MAX. |
| K | 15.24 TYP. | 0.600 TYP. |
| L | 13.2 TYP. | 0.520 TYP. |
| M | $0.25 \begin{gathered} +0.1 \\ -0.05 \end{gathered}$ | 0.010 ${ }^{+0.004}$-0.002 |



Ceramic

| ITEM | MILLIMETERS | INCHES |
| :---: | :---: | :--- |
| A | 51.5 MAX. | 2.03 MAX. |
| B | 1.62 MAX. | 0.06 MAX. |
| C | $2.54 \pm 0.1$ | $0.1 \pm 0.004$ |
| D | $0.5 \pm 0.1$ | $0.02 \pm 0.004$ |
| E | $48.26 \pm 0.1$ | $1.9 \pm 0.004$ |
| F | 1.02 MIN. | 0.04 MIN. |
| G | 3.2 MIN. | 0.13 MIN. |
| H | 1.0 MIN. | 0.04 MIN. |
| I | 3.5 MAX. | 0.14 MAX. |
| J | 4.5 MAX. | 0.18 MAX. |
| K | 15.24 TYP. | 0.6 TYP. |
| L | 14.93 TYP. | 0.59 TYP. |
| M | $0.25 \pm 0.05$ | $0.01 \pm 0.0019$ |

NOTES

## 8-BIT SERIAL OUTPUT A/D CONVERTER

| DESCRIPTION | The $\mu$ PD7001 is a high performance, low power 8 -bit CMOS A/D converter which <br> contains a 4 channel analog multiplexer and a digital interface circuit for serial <br> data I/O. The A/D converter uses a successive approximation as a conversion <br> technique. |
| :--- | :--- |
|  | A/D conversion system can be easily designed with the $\mu$ PD 7001 including all |
| circuits for A/D convertion. The $\mu$ PD 7001 can be directly connected to 8 -bit or |  |
| 4-bit microprocessors. |  |
| FEATURES | - Single chip A/D Converter |
|  | - Resolution: 8 Bit |
|  | - 4 Channel Analog Multiplexer |
|  | - Auto-Zeroscale and Auto-Fullscale Corrections without any external components |
|  | - High Input Impedance: $1,000 \mathrm{M} \Omega$ - |
|  | - Single +5V Power Supply |
|  | - Conversion Speed: $112 \mu \mathrm{~s}$ (Typ.) |
| - Low Power Operation |  |
|  | - Available in 16 Pin Plastic Package |

PIN CONFIGURATION


| EOC(1) | End of Conversion |
| :---: | :---: |
| DL | Analog Channel Data Load |
| SI | Serial Data Input |
| $\overline{\text { SCK }}$ | Serial Data Clock |
| So(1) | Serial Data Output |
| $\overline{\mathrm{CS}}$ | Chip Select |
| $\mathrm{CL}_{0}, \mathrm{CL}_{1}$ | Successive Approximation Clock |
| $\mathrm{V}_{\text {SS }}$ | Digital Ground |
| $A_{0}, A_{1}, A_{2}, A_{3}$ | Analog Inputs |
| AG | Analog Ground |
| $V_{\text {REF }}$ | Reference Voltage |
| $\mathrm{V}_{\text {DD }}$ | $+5 \mathrm{~V}$ |

Note: (1) Open Drain.

The 4 channel analog inputs are selected by the 2-bit signal which is applied to a serial input and latched with a DL signal. The converted 8 -bit digital signals are output from an open collector serial output (SO). The serial digital signals are synchronized with an external clock signal applied to a $\overline{\text { SCK }}$ terminal. The internal sequence controller controls $A / D$ conversion by initiating a conversion cycle at a rise of the Chip Select ( $\overline{\mathrm{CS}}$ ). At the final step of each A/D conversion cycle the converted data is transmitted to an 8 -bit shift register and immediately the next conversion cycle is started. This results in storage of the newest data in a shift register. At the final step of the first $A / D$ conversion cycle, an end of conversion signal $(\overline{\mathrm{EOC}})$ is output indicating that the converted data is stored in a shift register. At a low level (active) of the chip select, the sequence controller and $\overline{\mathrm{EOC}}$ are reset and the A/D conversion is stopped.

## FUNCTIONAL

 DESCRIPTIONBLOCK DIAGRAM


Operating Temperature
$-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Analog Input Voltage
Reference Input Voltage -0.3 to $V_{D D}+0.3$ Volts

Digital Inpu Volage
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +12 Volts
Max. Pull-up Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +12 Volts
Supply Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +7 Volts
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 mW
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} T_{a}=25^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS*

AC CHARACTERISTICS
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \pm 10 \% ; \mathrm{fCK}=500 \mathrm{kHz} ; \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$; (1)

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| EOC Hold Time | tHECS | 0 |  |  | $\mu \mathrm{s}$ | $\overline{\text { EOC }}$ to $\overline{C S}$ |
| CS Setup Time | ${ }^{\text {t }}$ SCSK | 10 |  |  | $\mu \mathrm{s}$ | $\overline{\text { CS }}$ to SCK, (1) |
| Address Data Setup Time | ${ }^{\text {t }}$ IIK | 150 |  |  | ns |  |
| Address Data Hold Time | ${ }^{\text {t HKI }}$ | 100 |  |  | ns |  |
| High Level Serial Clock Pulse Width | ${ }^{\text {tWHK }}$ | 400 |  |  | ns |  |
| Low Level Serial Clock Pulse Width | ${ }^{\text {t W }}$ WK | 400 |  |  | ns |  |
| Data Latch Hold Time | ${ }^{\text {t HKDL }}$ | 200 |  |  | ns | $\overline{\text { SCK }}$ to DL |
| Data Latch Pulse Width | ${ }^{\text {t WHDL }}$ | 200 |  |  | ns |  |
| Serial Data Delay Time | ${ }^{\text {t }}$ (KO |  |  | 500 | ns | $\begin{aligned} & \overline{S C K} \text { to } S O, R_{L}=3 K,(2) \\ & C_{L}=100 \mathrm{pF} \end{aligned}$ |
| Delay Time to Floating SO | ${ }^{\text {t }}$ FCSO |  |  | 250 | ns | CS to High Impedance SO |
| CS Hold Time | ${ }^{\text {t HKCS }}$ | 200 |  |  | ns |  |

Notes: (1) At a low level of $\overline{\mathrm{CS}}$ the data is exchanged with external digital circuit and at a high level of $\overline{\mathrm{CS}}$ the $\mu$ PD 7001 performs A/D conversion and does not accept any external digital signal. However, 5 pulses of internal clock are needed before digital data output and then the $\mu$ PD7001 remains at the previous state of high level $\overline{\mathrm{CS}}$.
The rating corresponds to the 5 pulses of clock signal. ${ }^{\text {tsCSK }}(\mathrm{Min})=.5 / \mathrm{f} \mathrm{CK}$
(2) The serial data delay time depends on load capacitance and pull-up resistance.

## DC CHARACTERISTICS

$T_{a}=25^{\circ} \mathrm{C} \pm 10 \% ; V_{D D}=+5 \mathrm{~V} \pm 10 \% ; V_{R E F}=2.5 \mathrm{~V} ; \mathrm{f} C K=500 \mathrm{k}: \mathrm{lz}$.

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Resolution |  |  | 8 | 8 | Bit | $\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{\text {REF }}=2.25 \text { to } 2.75 \mathrm{~V} \end{aligned}$ |
| Non Linearity |  |  |  | 0.8 | \%FSR |  |
| Full-Scale Error |  |  |  | 2 | LSB | $\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{\text {REF }}=2.25 \text { to } 2.75 \mathrm{~V} \end{aligned}$ |
| Full-Scale Error Temp. Coefficient |  |  | 30 | . | $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |  |
| Zero Error |  |  |  | 2 | LSB |  |
| Zero Error Temp. <br> Coefficient |  |  | 30 |  | ppm/ ${ }^{\circ} \mathrm{C}$ |  |
| Total Unadjusted Error 1 | TUE 1 | , |  | 2 | LSB | $\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{\text {REF }}=2.25 \text { to } 2.75 \mathrm{~V} \end{aligned}$ |
| Total Unadjusted Error 2 | TUE 2 |  |  | 2 | LSB | $\begin{aligned} & V_{D D}=4.5 \text { to } 5.5 \mathrm{~V} \\ & V_{\text {REF }}=2.5 \mathrm{~V} \end{aligned}$ |
| Analog Input Voltage | $v_{1}$ | 0 |  | $V_{\text {REF }}$ | V | (1) |
| Analog Input Resistance | $\mathrm{R}_{1}$ |  | 1000 |  | $\mathrm{M} \Omega$ | $V_{1}=0$ to $V_{D D}$ |
| Supply Voltage Rejection | SVR |  |  | 1 | LSB | $V_{D D}=4.5$ to 6.0 V |
| Conversion Time | ${ }^{\text {t }}$ CONV |  | 112 |  | $\mu \mathrm{s}$ | (2) |
| Clock Frequency Range | ${ }^{\text {f CK }}$ | 0.01 | 0.5 | 0.65 | MHz |  |
| Clock Frequency Distribution | ${ }^{\Delta f} \mathrm{CK}$ |  | $\pm 5$ | 20 | \% | $\begin{aligned} & \mathrm{R}=47 \mathrm{~K} \Omega, \mathrm{C}=20 \mathrm{pF} \\ & (\mathrm{f} \mathrm{CK} \approx 0.5 \mathrm{MHz}) \\ & \hline \end{aligned}$ |
| Serial Clock Frequency | ${ }^{\text {f SCK }}$ |  |  | 1 | MHz | (3) |
| High Level Voltage | $\mathrm{V}_{1} \mathrm{H}$ | 3.6 |  |  | V |  |
| Low Level Voltage | $V_{\text {IL }}$ |  |  | 1.4 | V |  |
| Digital Input Leakage Current | II |  | 1.0 | 10 | $\mu \mathrm{A}$ | $\mathrm{V}_{1}=\mathrm{V}_{\text {SS }}$ to +10 V |
| Low Level Output Voltage | $\mathrm{v}_{\mathrm{OL}}$ |  |  | 0.4 . | v | $\mathrm{IOL}=1.7 \mathrm{~mA}$ |
| Output Leakage Current | 'L |  | 1.0 | 10 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{O}}=+10 \mathrm{~V}$ |
| Power Dissipation | $\mathrm{P}_{\mathrm{d}}$ |  | 5 | 15 | mW |  |

Notes: (1) All digital outputs are put at a high level when $V_{1}>V_{\text {REF }}$.
(2) The $A / D$ conversion is started with $\overline{C S}$ going to a high level and at the final step of the first $A / D$ conversion the EOC is at a low.
The conversion time is:
${ }^{\mathrm{t}} \mathrm{CONV}=14 \times 4 \times 1 / \mathrm{f} \mathrm{CK}$
(3) For fSCK $>500 \mathrm{kHz}$, the load capacitor (stray capacitance included) and the pull-up resistor which are connected to serial output are required to be not more than 30 pF and $4 \mathrm{~K} \Omega$ respectively.

DIGITAL DATA OUTPUT


ANALOG CHANNEL SELECTION


Notes: (1) The address set can be performed simultaneously with the digital data outputting.
(2) Analog Multiplexer Channel Selections:

| Analog Input Address | $D_{0}$ | $D_{1}$ |
| :---: | :---: | :---: |
| $A_{0}$ | $L$ | $L$ |
| $A_{1}$ | $H$ | $L$ |
| $A_{2}$ | $L$ | $H$ |
| $A_{3}$ | $H$ | $H$ |

(3) Rise and fall time of the above waveforms should not be more than 50 ns .


TIMING WAVEFORMS

## 12-BIT BINARY A/D CONVERTER

DESCRIPTION
The $\mu$ PD7002 is a high performance, low power, monolithic CMOS A/D converter designed for microprocessor applications. The analog input voltage is applied to one of the four analog inputs. By loading the input register with the multiplexer channel and the desired resolution ( 8 or 12 bits) the integrating $A / D$ conversion sequence is started. At the end of conversion $\overline{E O C}$ signal goes low and if connected to the interrupt line of microprocessor it will cause an interrupt. At this point the digital data can be read in two bytes from the output registers. The $\mu$ PD7002 also features a status register that can be read at any time.

FEATURES

- Single Chip CMOS LSI
- Resolution: 8 or 12 Bits
- 4 Channel Analog Multiplexer
- Auto-Zeroscale and Auto-Fullscale Corrections without any External Components
- High Input Impedance: 1000 MHz
- Readout of Internal Status Register Through Data Bus
- Single +5V Power Supply
- Interfaces to Most 8-Bit Microprocessors
- Conversion Speed: 5 ms
- Power Consumption: $\mathbf{2 0} \mathrm{mW}$
- Available in a 28 Pin Plastic Package

PIN NAMES

| $\mathrm{X}_{0}, \mathrm{X}_{\mathrm{I}}$ | Clock Input |
| :--- | :--- |
| $\mathrm{V}_{\mathrm{SS}}$ | TTL Ground |
| $\mathrm{C}_{\mathrm{I}}$ | Integrating Capacitor |
| GD | Guard |
| $\mathrm{V}_{\mathrm{REF}}$ | Reference Voltage |
| GND | Analog Ground |
| CH 3 | Analog Channel 3 |
| CH 2 | Analog Channel 2 |
| CH 1 | Analog Channel 1 |
| CHO | Analog Channel 0 |
| $\mathrm{V}_{\mathrm{DD}}$ | TTL Voltage (+5V) |
| $\mathrm{D}_{0}-\mathrm{D}_{7}$ | Data Bus |
| $\overline{\mathrm{CS}}$ | Chip Select |
| $\overline{\mathrm{WR}}, \overline{\mathrm{RD}}$ | Control Bus |
| $\mathrm{A}_{0}, \mathrm{~A}_{1}$ | Address Bus |
| $\overline{\mathrm{EOC}}$ | End of Conversion Interrupt |


$T_{a}=25 \pm 2^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=+5 \pm 0.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+2.50 \mathrm{~V}, \mathrm{f} \mathrm{CK}=1 \mathrm{MHz}$
DC CHARACTERISTICS

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Resolution |  |  | 12 |  | Bits | $\begin{aligned} & V_{R E F}=2.25 \text { to } 2.75 \mathrm{~V} ; \\ & V_{D D}=5 \mathrm{~V} \end{aligned}$ |
| Non Linearity |  |  | 0.025 | 0.08 | \%FSR |  |
| Fullscale Error |  |  | 0.025 | 0.08 | \%FSR |  |
| Zeroscale Error |  |  | 0.05 | 0.08 | \%FSR |  |
| Fullscale Temperature Coefficient |  |  | 10 |  | PPM $/{ }^{\circ} \mathrm{C}$ |  |
| Zeroscale Temperature Coefficient |  |  | 10 |  | PPM $/{ }^{\circ} \mathrm{C}$ |  |
| Analog Input Voltage Range | $V_{\text {IA }}$ | 0 |  | $\mathrm{V}_{\text {REF }}$ | v |  |
| Analog Input Resistance | $\mathrm{R}_{1 /}$ |  | 1000 |  | $\mathrm{m} \Omega$ | $V_{\text {IA }}=V_{\text {SS }}$ to $V_{\text {DD }}$ |
| Total Unadjusted Error 1 | TUE 1 |  | c. 05 | 0.08 | \%FSR | $\begin{aligned} & V_{R E F}=2.25 \text { to } 2.75 \mathrm{~V} \\ & V_{D D}=5 \mathrm{~V} \end{aligned}$ |
| Total Unadjusted Error 2 | TUE 2 |  | 0.05 | 0.08 | \%FSR | $\begin{aligned} & \mathrm{V}_{\mathrm{REF}}=2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=4.75 \text { to } 5.25 \mathrm{~V} \end{aligned}$ |
| Clock Input Current | \| $\times 1$ |  | 5 | 50 | $\mu \mathrm{A}$ |  |
| Clock Input High Level | $\mathrm{V}_{\text {XIH }}$ | $\begin{aligned} & \hline \mathrm{VDD}_{\mathrm{DD}} \\ & -1.6 \\ & \hline \end{aligned}$ |  |  | V |  |
| Clock Input Low Level | $\mathrm{V}_{\text {XIL }}$ |  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{SS}} \\ & +1.4 \\ & \hline \end{aligned}$ | v |  |
| High Level Input Voltage | $\mathrm{V}_{1 \mathrm{H}}$ | 2.0 |  |  | V | $\mathrm{T}_{\mathrm{a}}=0^{\circ}$ to $70^{\circ} \mathrm{C}$ |
| Low Level Input Voltage | $V_{\text {IL }}$ |  |  | 0.8 | V | $\mathrm{T}_{\mathrm{a}}=0^{\circ}$ to $70^{\circ} \mathrm{C}$ |
| High Level Output Voltage | $\mathrm{V}_{\mathrm{OH}}$ | 3.5 |  |  | V | $\mathrm{I}_{0}=-2 \mathrm{~mA}$ |
| Low Level Output Voltage | $\mathrm{V}_{\mathrm{OL}}$ |  |  | 0.4 | V | $10=+2 \mathrm{~mA}$ |
| Digital Input Leakage Current | 1 |  | 1 | 10 | $\mu \mathrm{A}$ | $V_{i}=V_{\text {SS }}$ to $V_{\text {DD }}$ |
| High-Z Output Leakage Current | 'Leak |  | 1 | 10 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {SS }}$ to $\mathrm{V}_{\text {DD }}$ |
| Power Dissipation | Pd |  | 15 | 25 | mW | ${ }^{\text {f }} \mathrm{CK} \leqslant 1 \mathrm{MHz}$ |

## ABSOLUTE MAXIMUM RATINGS*

Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Input Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 0.3 to VDD +0.3 Volts
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 0.3 to +7 Volts
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 mW
Analog GND Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VSS $\pm 0.3$ Volts
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

AC CHARACTERISTICS
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \pm 2^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=+5 \pm 0.25 \mathrm{~V} ; \mathrm{V}_{\text {REF }}=2.5 \mathrm{~V} ; \mathrm{f}_{\mathrm{CK}}=1 \mathrm{MHz} ; \mathrm{C}_{\mathrm{INT}}=0.033 \mu \mathrm{~F}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Conversion Speed (12 bit) | tconv | 8.5 | 10 | 15 | ms | ${ }^{\mathrm{f}} \mathrm{CK}=1 \mathrm{MHz}$ |
| Conversion Speed (8 bit) | ${ }^{\text {t }}$ CONV | 2.4 | 4 | 5 | ms |  |
| Clock Frequency Range | ${ }^{\text {f CK }}$ | 0.1 | 1 | 3 | MHz |  |
| Integrating Capacitor Value | $\mathrm{C}_{\text {INT }}$ |  | (1) |  | $\mu \mathrm{F}$ | $\mathrm{V}_{\text {REF }}=2.50 \mathrm{~V}$ |
| Address Setup Time $\overline{C S}, A_{0}, A_{1}$, to $\overline{W R}$ | ${ }^{\text {t }}$ AW | 50 |  |  | ns |  |
| Address Setup Time $\overline{C S}, A_{0}, A_{1}$, to $\overline{R D}$ | ${ }^{\text {t }} \mathrm{AR}$ | 50 |  |  | ns |  |
| Address Hold Time $\overline{W R}$ to $\overline{C S}, A_{0}, A_{1}$ | twa | 50 |  |  | ns |  |
| Address Hold Time $\overline{\mathrm{RD}}$ to $\overline{\mathrm{CS}}, \mathrm{A}_{0}, \mathrm{~A}_{1}$ | tra | 50 |  |  | ns |  |
| Low Level $\overline{\text { WR }}$ Pulse Width | ${ }^{\text {t }}$ WW | 400 |  |  | ns |  |
| Low Level $\overline{\text { RD Pulse Width }}$ | trR | 400 |  |  | ns |  |
| Data Setup Time Input Data to $\overline{W R}$ | ${ }^{\text {t }} \mathrm{W}$ W | 300 |  |  | ns |  |
| Data Hold Time $\overline{W R}$ to Input Data | ${ }^{\text {tw }}$ | 50 |  |  | ns |  |
| Output Delay Time $\overline{\mathrm{RD}}$ to Output Data | ${ }^{\text {tRD }}$ |  |  | 300 | ns | $1 \mathrm{TTL}+100 \mathrm{pF}$ |
| Delay Time to High Z Output $\overline{\mathrm{RD}}$ to Floating Output | ${ }^{\text {t }} \mathrm{F} F$ |  |  | 150 | ns |  |

Note: (1) $\mathrm{C}_{\text {INT }}=\frac{29}{\mathrm{f}_{\mathrm{CK}}(\mathrm{kHz})}$
TIMING WAVEFORMS


| CONTROL TERMINALS |  |  |  |  | MODE | INTERNAL FUNCTION | DATA INPUT-OUTPUT TERMINALS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CS | $\overline{\text { RD }}$ | $\overline{W R}$ | $A_{1}$ | $A_{0}$ |  |  |  |
| H | $\times$ | $\times$ | $\times$ | x | Not selected | - | High impedance |
| L | H | H | $\times$ | $\times$ | - | - |  |
| L | H | L | L | L | Write mode | Data latch <br> A/D start | Input status, $\mathrm{D}_{1}, \mathrm{D}_{0}=\mathrm{MPX}$ address $D_{3}=8{ }^{\circ}$ bit $/ 12$ bit conversion designation. (1) |
| L | H | L | L | H | - | - | High impedance |
| L | H | L | H | L | - | - |  |
| L | H | L | H | H | Test mode | Test status | Input status (2) |
| L | L | H | L | L | Read mode | Internal status | $\begin{aligned} & D_{7}=\overline{E O C}, D_{6}=B U S Y, D_{5}=M S B, \\ & D_{4}=2 \text { nd } M S B, D_{3}=8 / 12, \\ & D_{2}=\text { not defined, } D_{1}=M P X, \\ & D_{0}=M P X \end{aligned}$ |
| L | L | H | H | L | Read mode | High data byte | $\mathrm{D}_{7}-\mathrm{D}_{0}=$ MSB -8 th bit |
| L | L | H | L | H | Read mode | Low data byte | $D_{7}-D_{4}=9$ th -12 th bit, $D_{3}-D_{0}=L$ |
| L | L | H | H | H | Read mode | Low data byte |  |

CONTROL TERMINAL FUNCTIONS

Notes:
(1) Designation of number of conversion bits: $8 \mathrm{bit}=\mathrm{L} ; 12 \mathrm{bit}=\mathrm{H}$
(2) Test Mode: Used for inspecting the device. The data input-output terminals assume an input state and are connected to the A/D counter. Therefore, the A/D conversion data read out after this is meaningless.


PACKAGE OUTLINE $\mu$ PD7002C

| ITEM | MILLIMETERS | INCHES |
| :--- | :---: | :--- |
| A | 38.0 MAX. | 1.496 MAX. |
| B | 2.49 | 0.098 |
| C | 2.54 | 0.10 |
| D | $0.5 \pm 0.1$ | $0.02 \pm 0.004$ |
| E | 33.02 | 1.3 |
| F | 1.5 | 0.059 |
| G | 2.54 MIN. | 0.10 MIN. |
| H | 0.5 MIN. | 0.02 MIN. |
| I | 5.22 MAX. | 0.205 MAX. |
| J | 5.72 MAX. | 0.225 MAX. |
| K | 15.24 | 0.6 |
| L | 13.2 | 0.52 |
| M | $0.25+0.10$ | $0.01+0.004$ |

## NEC Microcomputers, Inc.

## 2048 BIT STATIC MOS RAM WITH I/O PORTS AND TIMER

The $\mu$ PD8155 and $\mu$ PD8156 are $\mu$ PD8085A family components having $256 \times 8$ Static RAM, 3 programmable I/O ports and a programmable timer. They directly interface to the multiplexed $\mu$ PD8085A bus with no external logic. The $\mu$ PD8155 has an active low chip enable while the $\mu$ PD8156 is active high.

## FEATURES • $256 \times 8$-Bit Static RAM

- Two Programmable 8-Bit I/O Ports
- One Programmable 6-Bit I/O Port
- Single Power Supplies: +5 Volt
- Directly interfaces to the $\mu$ PD8085A and $\mu$ PD8085A-2
- Available in 40 Pin Plastic Packages

PIN CONFIGURATION


## $\mu$ PD8155/8156

The $\mu$ PD8155 and $\mu$ PD8156 contain 2048 bits of Static RAM organized as $256 \times 8$. The 256 word memory location may be selected anywhere within the 64 K memory space by using combinations of the upper 8 bits of address from the $\mu$ PD8085A as a chip select.

The two general purpose 8 -bit ports (PA and PB ) may be programmed for input or output either in interrupt or status mode. The single 6 -bit port (PC) may be used as control for PA and PB or general purpose input or output port. The $\mu \mathrm{PD} 8155$ and $\mu$ PD8156 are programmed for their system personalities by writing into their Command/Status Registers (C/S) upon system initialization.

The timer is a single 14 -bit down counter which is programmable for 4 modes of operation; see Timer Section.


[^5]Note: (1) With Respect to Ground.
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

FUNCTIONAL DESCRIPTION

BLOCK
DIAGRAM

ABSOLUTE MAXIMUM RATINGS*

| PIN IDENTIFICATION | PIN |  |  | FUNCTION |
| :---: | :---: | :---: | :---: | :---: |
|  | NO. | SYMBOL | NAME |  |
|  | $\begin{aligned} & 1,2,5 \\ & 39,38,37 \end{aligned}$ | $\begin{aligned} & \mathrm{PC}_{3}, \mathrm{PC}_{4}, \mathrm{PC}_{5} \\ & \mathrm{PC}_{2}, \mathrm{PC}_{1}, P C_{0} \end{aligned}$ | Port C | Used as control for PA and PB or as a 6-bit general purpose port |
|  | 3 | TIMER IN | Timer Clock In | Clock input to the 14 -bit binary down counter |
|  | 4 | RESET | Reset $\ln$ | From $\mu$ PD 8085A system reset to set PA, PB, PC to the input mode |
|  | 6 | $\overline{\text { TIMER }}$ | Timer Counter Output | The output of the timer function |
|  | 7 | $10 / \bar{M}$ | I/O or Memory Indicator | Selects whether operation to and from the chip is directed to the internal RAM or to I/O ports |
|  | 8 | CE/ $/ \overline{C E}$ | Chip Enable | Chip Enable Input. Active low for $\mu$ PD8155 and active high for $\mu$ PD8156 |
|  | 9 | $\overline{\mathrm{RD}}$ | Read Strobe | Causes Data Read |
|  | 10 | $\overline{W R}$ | Write Strobe | Causes Data Write |
|  | 11 | ALE | Address Low Enable | Latches low order address in when valid |
|  | 12-19 | $A D_{0}-A D_{7}$ | Low Address/Data | 3-State address/data bus to interface directly to $\mu$ PD8085A |
|  | 20 | $\mathrm{V}_{\text {SS }}$ | Ground | Ground Reference |
|  | 21-28 | $P A_{0}-P A_{7}$ | Port A | General Purpose I/O Port |
|  | 29.36 | $\mathrm{PB}_{0}-\mathrm{PB}_{7}$ | Port B | General Purpose 1/O Port |
|  | 40 | $\mathrm{V}_{\mathrm{CC}}$ | 5 Volt Input | Power Supply |

DC CHARACTERISTICS
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

| PARAMETER |  | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input Low Voltage |  |  | $V_{\text {IL }}$ | -0.5 |  | 0.8 | V |  |
| Input High Voltage |  | $\mathrm{V}_{\text {IH }}$ | 2.0 |  | $\mathrm{V}_{\mathrm{CC}}+0.5$ | V |  |
| Output Low Voltage |  | $\mathrm{V}_{\mathrm{OL}}$ |  |  | 0.45 | V | $\mathrm{IOL}=2 \mathrm{~mA}$ |
| Output High Voltage |  | VOH | 2.4 |  |  | V | $1 \mathrm{OH}=400 \mu \mathrm{~A}$ |
| Input Leakage |  | IIL |  |  | $\pm 10$ | $\mu \mathrm{A}$ | $V_{\text {IN }}=V_{\text {CC }}$ to $0 V$ |
| Output Leakage Current |  | ILO |  |  | $\pm 10$ | $\mu \mathrm{A}$ | $\begin{aligned} & 0.45 \mathrm{~V} \leqslant \mathrm{~V}_{\text {OUT }} \\ & \leqslant \mathrm{V}_{\text {CC }} \end{aligned}$ |
| VCC Supply Current |  | ICC |  |  | 180 | mA |  |
| Chip <br> Enable <br> Leakage | $\mu$ PD81 55 | IIL (CE) |  |  | +100 | $\mu \mathrm{A}$ | $V_{\text {IN }}=V_{\text {CC }}$ to $O V$ |
|  | MPD8156 | IIL (CE) |  |  | -100 | $\mu \mathrm{A}$ |  |

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

| PARAMETER | SYMBOL | LIMITS |  |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 8155/8156 |  | 8155-2/8156-2 |  |  |  |
|  |  | MIN | MAX | MIN | MAX |  |  |
| Address to Latch Set Up Time | ${ }^{\text {t }}$ AL | 50 |  | 30 |  | ns |  |
| Address Hold Time after Latch | tha | 80 |  | 30 |  | ns |  |
| Latch to READ/WRITE Control | t LC | 100 |  | 40 |  | ns |  |
| Valid Data Out Delay from READ Control | tro |  | 170 |  | 140 | ns |  |
| Address Stable to Data Out Valid | ${ }^{\text {t }}$ AD |  | 400 |  | 330 | ns |  |
| Latch Enable Width | ${ }^{\text {t }}$ LL | 100 |  | 70 |  | ns |  |
| Data Bus Float After READ | tRDF | 0 | 100 | 0 | 80 | ns |  |
| READ/WRITE Control to Latch Enable | ${ }^{\text {t }} \mathrm{CL}$ | 20 |  | 10 |  | ns |  |
| READ/WRITE Control Width | ${ }^{\text {t }}$ CC | 250 |  | 200 |  | ns |  |
| Data in to WRITE Set Up Time | tDW | 150 |  | 100 |  | ns |  |
| Data in Hold Time After WRITE | tWD | 0 |  | 0 |  | ns |  |
| Recovery Time Between Controls | tRV | 300 |  | 200 |  | ns | 150 pF Load |
| WRITE to Port Output | twp |  | 400 |  | 300 | ns |  |
| Port Input Setup Time | tPR | 70 |  | 50 |  | ns |  |
| Port Input Hold Time | ${ }_{\text {tr }}$ | 50 |  | 10 |  | ns |  |
| Strobe to Buffer Full | tSBF |  | 400 |  | 300 | ns |  |
| Strobe Width | ${ }^{\text {t }}$ S | 200 |  | 150 |  | ns |  |
| READ to Buffer Empty | ${ }^{\text {t RBE }}$ |  | 400 |  | 300 | ns |  |
| Strobe to INTR On | ${ }_{\text {T }}$ I |  | 400 |  | 300 | ns |  |
| READ to INTR Off | trDI |  | 400 |  | 300 | ns |  |
| Port Setup Time to Strobe | tPSS | 50 |  | 0 |  | ns |  |
| Port Hold Time After Strobe | tPHS | 120 |  | 100 |  | ns |  |
| Strobe to Buffer Empty | tsBE |  | 400 |  | 300 | ns |  |
| WRITE to Buffer Full | tWBE |  | 400 |  | 300 | ns |  |
| WRITE to INTR Off | twi |  | 400 |  | 300 | ns |  |
| TIMER-IN to TIMER-OUT Low | tTL |  | 400 |  | 300 | ns |  |
| TIMER-IN to TIMER-OUT High | ${ }^{\text {t }}$ TH |  | 400 |  | 300 | ns |  |
| Data Bus Enable from READ Control | trDE | 10 |  | 10 |  | ns |  |



TIMING WAVEFORMS

WRITE CYCLE


TIMING WAVEFORMS (CONT.)

STROBED INPUT MODE


BASIC INPUT MODE


BASIC OUTPUT MODE


The Command Status Register is an 8-bit register which must be programmed before the $\mu$ PD8155/8156 may perform any useful functions. Its purpose is to define the mode of operation for the three ports and the timer. Programming of the device may be accomplished by writing to I/O address XXXXX000 ( X denotes don't care) with a specific bit pattern. Reading of the Command Status Register can be accomplished by performing an I/O read operation at address $\mathrm{XXXXX} \mathbf{0 0 0}$. The pattern returned will be a 7-bit status report of PA, PB and the Timer. The bit patterns for the Command Status Register are defined as follows:

COMMAND STATUS WRITE

| TM2 | TM1 | IEB | IEA | $\mathrm{PC}_{2}$ | $\mathrm{PC}_{1}$ | PB | PA |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

where:

| TM2-TM1 | Define Timer Mode |
| :--- | :--- |
| IEB | Enable Port B Interrupt |
| IEA | Enable Port A Interrupt |
| PC $_{2}-$ PC $_{1}$ | Define Port C Mode |
| PB/PA | Define Port B/A as In or Out (1) |

The Timer mode of operation is programmed as follows during command status write:

| TM2 | TM1 | TIMER MODE |
| :---: | :---: | :--- |
| 0 | 0 | Don't Affect Timer Operation |
| $\mathbf{0}$ | $\mathbf{1}$ | Stop Timer Counting |
| 1 | 0 | Stop Counting after TC |
| $\mathbf{1}$ | $\mathbf{1}$ | Start Timer Operation |

Interrupt enable status is programmed as follows:

| IEB/IEA | INTERRUPT ENABLE PORT B/A |
| :---: | :---: |
| 0 | No |
| 1 | Yes |

Port C may be placed in four possible modes of operation as outlined below. The modes are selected during command status write as follows:

| PC $_{2}$ | PC $_{1}$ | PORT C MODE |
| :---: | :---: | :---: |
| 0 | 0 | ALT 1 |
| 0 | 1 | ALT 3 |
| 1 | 0 | ALT 4 |
| 1 | 1 | ALT 2 |

The function of each pin of port C in the four possible modes is outlined as follows:

| PIN | ALT 1 | ALT 2 | ALT 3 (2) | ALT 4 (2) |
| :--- | :---: | :--- | :--- | :--- |
| PCO | IN | OUT | A INTR | A INTR |
| PC1 | IN | OUT | A BF | A BF |
| PC2 | IN | OUT | A STB | A STB |
| PC3 | IN | OUT | OUT | B INTR |
| PC4 | IN | OUT | OUT | B BF |
| PC5 | IN | OUT | OUT | B STB |

Notes: (1) PB/PA Sets Port B/A Mode: $0=$ Input; $1=$ Output
(2) In ALT 3 and ALT 4 mode the control signals are initialized as follows:

| CONTROL | INPUT | OUTPUT |
| :--- | :--- | :--- |
| $\overline{\text { STB }}$ (Input Strobe) | Input Control | Input Control |
| INTR (Interrupt Request) | Low | High |
| BF (Buffer Full) | Low | Low |


| $T I$ | $I N T E$ <br> $B$ | $B$ <br> $B F$ | $I N T R$ <br> $B$ | $I N T E$ | $A$ | $I N T R$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $A$ | $B F$ | $A$ |  |  |  |  |

Where the function of each bit is as follows:

| TI | Defines a Timer Interrupt. Latched high at TC and <br> reset after reading the CS register or starting a new <br> count. |
| :--- | :--- |
| INTE B/A | Defines If Port B/A Interrupt is Enabled. <br> High = enabled. |
| B/A BF | Defines If Port B/A Buffer is Full-Input Mode or <br> Empty-Output Mode. High = active. |
| INTR B/A | Port B/A Interrupt Request. High = active. |

The programming address summary for the status, ports, and timer are as follows:

| 1/O Address | Number of Bits | Function |
| :---: | :---: | :---: |
| XXXXX000 | 8 | Command Status |
| XXXXX001 | 8 | PA |
| XXXXX010 | 8 | PB |
| $\times \times \times \times \times 011$ | 6 | PC |
| XXXXX100 | 8 | Timer-Low |
| XXXXX101 | 8 | Timer-High |

TIMER The Internal Timer is a 14 -bit binary down counter capable of operating in 4 modes. Its desired mode of operation is programmable at any time during operation. Any TTL clock meeting timer in requirements (See AC Characteristics) may be used as a time base and fed to the timer input. The timer output may be looped around and cause an interrupt or used as I/O control. The operational modes are defined as follows and programmed along with the 6 high bits of timer data.

| M2 | M1 | Operation |
| :---: | :---: | :--- |
| 0 | 0 | High at Start, Low During Second Half of Count |
| 0 | 1 | Square Wave <br> (Period = Count Length, Auto Reload at TC) |
| 1 | 0 | Single Pulse at TC |
| 1 | 1 | Single Pulse at TC with Auto Reload |

Note that counting will be stopped by a hardware reset and a START command must be issued via the Command Status Register to begin counting. A new mode and/or count length can be loaded while counter is counting, but will not be used until a START command is issued.


Programming the timer requires two words to be written to the $\mu$ PD8155/8156 at I/O address $X X X X X 100$ and $X X X X X 101$ for the low and high order bytes respectively. Valid count length must be between 2 H and $3 F F F_{H}$. The bit assignments for the high and low programming words are as follows:

| Word | Bit Pattern |  |  |  |  |  |  |  | I/O Address |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| High Byte | M2 | M1 | T13 | T12 | T11 | T10 | T9 | T8 | XXXXX101 |
| Low Byte | T7 | T6 | T5 | T4 | T3 | T2 | T1 | T0 | XXXXX100 |

The control of the timer is performed by TM2 and TM1 of the Command Status Word.
TIMER (CONT.)

Plastic

| ITEM | MILLIMETERS | INCHES |
| :--- | :--- | :--- |
| A | 51.5 MAX | 2.028 MAX |
| B | 1.62 | 0.064 |
| C | $2.54 \pm 0.1$ | $0.10 \pm 0.004$ |
| D | $0.5 \pm 0.1$ | $0.019 \pm 0.004$ |
| E | 48.26 | 1.9 |
| F | 1.2 MIN | 0.047 MIN |
| G | 2.54 MIN | 0.10 MIN |
| H | 0.5 MIN | 0.019 MIN |
| I | 5.22 MAX | 0.206 MAX |
| J | 5.72 MAX | 0.225 MAX |
| K | 15.24 | 0.600 |
| L | 13.2 | 0.520 |
| M | $0.25+0.1$ | $0.010+0.004$ |

PACKAGE OUTLINE $\mu$ PD8155C $\mu$ PD8156C

## EIGHT-BIT INPUT/OUTPUT PORT

DESCRIPTION
The $\mu$ PB8212 input/output port consists of an 8-bit latch with three-state output buffers along with control and device selection logic. Also included is a service request flip-flop for the control and generation of interrupts to the microprocessor.

The device is multimode in nature and can be used to implement latches, gated buffers or multiplexers. Thus, all of the principal peripheral and input/output functions of a microcomputer system can be implemented with this device.

## FEATURES <br> - Fully Parallel 8-Bit Data Register and Buffer

- Service Request Flip-Flop for Interrupt Generation
- Low Input Load Current $\mathbf{- 0 . 2 5 \mathrm { mA } \text { Max. }}$
- Three State Outputs
- Outputs Sink 15 mA
- 3.65V Output High Voltage for Direct Interface to 8080A Processor
- Asynchronous Register Clear
- Replaces Buffers, Latches and Multiplexers in Microcomputer Systems
- Reduces System Package Count
- Available in 24-pin Plastic and Cerdip Packages



## $\mu$ PB8212

## Data Latch

The 8 flip-flops that compose the data latch are of a " $D$ " type design. The output ( $Q$ ) of the flip-flop follows the data input (D) while the clock input (C) is high. Latching occurs when the clock (C) returns low.
The data latch is cleared by an asynchronous reset input ( $\overline{\mathrm{CLR}}$ ).
(Note: Clock (C) Overrides Reset ( $\overline{C L R}$ ).)

## Output Buffer

The output of the data latch $(\mathrm{Q})$ are connected to three-state, non-inverting output buffers. These buffers have a common control line (EN); enabling the buffer to transmit the data from the outputs of the data latch ( Q ) or disabling the buffer, forcing the output into a high impedance state (three-state).
This high-impedance state allows the designer to connect the $\mu$ PB8212 directly to the microprocessor bi-directional data bus.

## Control Logic

The $\mu$ PB8212 has four control inputs: $\overline{\mathrm{DS}}_{1}, \mathrm{DS}_{2}, \mathrm{MD}$ and STB. These inputs are employed to control device selection, data latching, output buffer state and the service request flip-flop.

## $\overline{\mathrm{DS}}_{1}, \mathrm{DS}_{2}$ (Device Select)

These two inputs are employed for device selection. When $\overline{D S}_{1}$ is low and $\mathrm{DS}_{2}$ is high $\left(\overline{\mathrm{DS}}_{1} \cdot \mathrm{DS}_{2}\right)$ the device is selected. In the selected state the output buffer is enabled and the service request flip-flop (SR) is asynchronously set.

## Service Request Flip-Flop (SR)

The (SR) flip-flop is employed to generate and control interrupts in microcomputer systems. It is asynchronously set by the $\overline{C L R}$ input (active low). When the (SR) flipflop is set it is in the non-interrupting state.
The output ( Q ) of the ( SR ) flip-flop is connected to an inverting input of a "NOR" gate. The other input of the "NOR" gate is non-inverting and is connected to the device selection logic ( $\overline{\mathrm{DS}}_{1} \cdot \mathrm{DS}_{2}$ ). The output of the "NOR" gate ( $\overline{\mathrm{NNT}}$ ) is active low (interrupting state) for connection to active low input priority generating circuits.

## MD (Mode)

This input is employed to control the state of the output buffer and to determine the source of the clock input (C) to the data latch.
When MD is in the output mode (high) the output buffers are enabled and the source of clock (C) to the data latch is from the device selection logic ( $\overline{\mathrm{SS}}_{1} \cdot \mathrm{DS}_{2}$ ).
When MD is in the input mode (low) the output buffer state is determined by the device selection logic ( $\overline{\mathrm{SS}}_{1} \cdot \mathrm{DS}_{2}$ ) and the source of clock (C) to the data latch is the STB (Strobe) input.

## STB (Strobe)

STB is employed as the clock ( $C$ ) to the data latch for the input mode ( $M D=0$ ) and to synchronously reset the service request flip-flop (SR).
Note that the SR flip-flop triggers on the negative edge of STB which overrides $\overline{\mathrm{CLR}}$.
Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Output or Supply Voltages. . . . . . . . . . . . . . . . . . . -0.5 to +7 Volts
All Input Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0 to +5.5 Volts
Output Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 mA

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} T_{a}=25^{\circ} \mathrm{C}$

## ABSOLUTE MAXIMUM RATINGS*


$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{VCC}=+5 \mathrm{~V} \pm 5 \%$

| PARAMETER | SYMBOL | LIMITS |  |  | MIN | TYP |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Pulse Width | tpw | 30 |  |  | ns | Input Pulse <br> Amplitude $=2.5 \mathrm{~V}$ |
| Data To Output Delay | $\mathrm{t}_{\mathrm{pd}}$ |  | 20 | 30 | ns |  |
| Write Enable To Output Delay | $\mathrm{t}_{\text {we }}$ |  |  | 40 | ns | Input Rise and Fall Times $=5$ ns |
| Data Setup Time | $\mathrm{t}_{\text {set }}$ | 15 |  |  | ns |  |
| Data Hold Time | th | 20 |  |  | ns | Between 1V and 2V |
| Reset to Output Delay | $\mathrm{t}_{\mathrm{r}}$ |  |  | 40 | ns | Measurement made |
| Set To Output Delay | ts |  |  | 30 | ns | at 1.5 V with 15 mA |
| Output Enable/Disable Time | $\mathrm{t}_{\mathrm{e}} / \mathrm{t}_{\mathrm{d}}$ |  |  | 45 | ns |  |
| Clear To Output Delay | $\mathrm{t}_{\mathrm{c}}$ |  |  | 55 | ns | (2) Load |

Notes: (1) $\mathrm{R}_{1}=300 \Omega / 10 \mathrm{~K} \Omega ; \mathrm{R}_{2}=600 \Omega / 1 \mathrm{~K} \Omega$
(2) $R_{1}=300 \Omega ; R_{2}=600 \Omega$


TEST CIRCUIT
Note: (1) Including Jig and Probe Capacitance


TIMING WAVEFORMS

CAPACITANCE (1) $\quad T_{a}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} ; \mathrm{V}_{\mathrm{BIAS}}=2.5 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input Capacitance | CIN |  | 7 | 12 | pF | $\overline{\mathrm{DS}}_{1}, \mathrm{MD}$ |
| Input Capacitance | CIN |  | 4 | 9 | pF | $\mathrm{DS}_{2}, \mathrm{CLR}, \mathrm{STB}, \mathrm{DI}_{1}-\mathrm{DI}_{8}$ |
| Output Capacitance | COUT |  | 6 | 12 | pF | $\mathrm{DO}_{1}-\mathrm{DO}_{8}$ |

Note: (1) This parameter is periodically sampled and not $100 \%$ tested

## TYPICAL CHARACTERISTICS








## $\mu$ PB8212



PACKAGE OUTLINE $\mu$ PB8212C/D

| ITEM | MILLIMETERS | INCHES |
| :--- | :--- | :--- |
| A | 33 MAX | 1.3 MAX |
| B | 2.53 | 0.1 |
| C | 2.54 | 0.1 |
| D | $0.5 \pm 0.1$ | $0.02 \pm 0.004$ |
| E | 27.94 | 1.1 |
| F | 1.5 | 0.059 |
| G | 2.54 MIN | 0.1 MIN |
| H | 0.5 MIN | 0.02 MIN |
| I | 5.22 MAX | 0.205 MAX |
| J | 5.72 MAX | 0.225 MAX |
| K | 15.24 | 0.6 |
| L | 13.2 | 0.52 |
| M | $0.25+0.10$ | $0.01+0.004$ |


$\mu$ PB8212D (Cerdip)

| ITEM | MILLIMETERS | INCHES |
| :--- | :--- | :--- |
| A | 33.5 MAX. | 1.32 MAX. |
| B | 2.78 | 0.11 |
| C | 2.54 | 0.1 |
| D | 0.46 | 0.018 |
| E | 27.94 | 1.1 |
| F | 1.5 | 0.059 |
| G | 2.54 MIN. | 0.1 MIN. |
| H | 0.5 MIN. | 0.019 MIN. |
| I | 4.58 MAX. | 0.181 MAX. |
| J | 5.08 MAX. | 0.2 MAX. |
| K | 15.24 | 0.6 |
| L | 13.5 | 0.53 |
| M | $0.25_{-0.05}^{+0.10}$ | $0.01_{-0.004}^{+0.002}$ |

## PRIORITY INTERRUPT CONTROLLER

DESCRIPTION
The $\mu$ PB8214 is an eight-level priority interrupt controller. Designed to simplify interrupt driven microcomputer systems, the $\mu$ PB8214 requires a single +5 V power supply and is packaged in a 24 pin plastic Dual-in-line package.

The $\mu$ PB8214 accepts up to eight interrupts, determines which has the highest priority and then compares that priority with a software created current status register. If the incoming requires is of a higher priority than the interrupt currently being serviced, an interrupt request to the processor is generated. Vector information that identifies the interrupting device is also generated.

The interrupt structure of the microcomputer system can be expanded beyond eight interrupt levels by cascading $\mu$ PB8214s. The $\mu$ PB8214's interrupt and vector information outputs are open collector and control signals are provided to simplify expansion of the interrupt structure.

FEATURES • Eight Priority Levels

- Current Status Register and Priority Comparator
- Easily Expanded Interrupt Structure
- Single +5 Volt Supply



## PIN NAMES

| Inputs: |  |
| :---: | :---: |
| $\overline{R_{0}}-\overline{R_{7}}$ | Request Levels ( $\overline{R_{7}}$ Highest Priority) |
| $\overline{\mathrm{B}_{0}}-\overline{\mathrm{B}}_{2}$ | Current Status |
| $\overline{\text { SGS }}$ | Status Group Select |
| $\overline{\mathrm{ECS}}$ | Enable Current Status |
| INTE | Interrupt Enable |
| $\overline{\text { CLK }}$ | Clock (INT F-F) |
| ELR | Enable Level Read |
| ETLG | Enable This Level Group |
| Outputs: |  |
| $\overline{\mathrm{A}_{0}}-\overline{\mathrm{A}_{2}}$ | Request Levels $\quad$ Open |
| $\overline{\overline{N T}}$ | Interrupt (Act. Low) Collector |
| ENLG | Enable Next Level Group |



## General

The $\mu$ PB8214 is an LSI device designed to simplify the circuitry required to

FUNCTIONAL DESCRIPTION implement an interrupt driven microcomputer system. Up to eight interrupting devices can be connected to a $\mu$ PB8214, which will assign priority to incoming interrupt requests and accept the highest. It will also compare the priority of the highest incoming request with the priority of the interrupt being serviced. If the serviced interrupt has a higher priority, the incoming request will not be accepted.

A system with more than eight interrupting devices can be implemented by interconnecting additional $\mu$ PB8214s. In order to facilitate this expansion, control signals are provided for cascading the controllers so that there is a priority established among the controllers. In addition, the interrupt and vector information outputs are open collector.

## Priority Encoder and Request Latch

The priority encoder portion of the $\mu$ PB8214 accepts up to eight active low interrupt requests ( $\overline{R_{0}}-\overline{R_{7}}$ ). The circuit assigns priority to the incoming requests, with $\overline{R_{7}}$ having the highest priority and $\overline{R_{0}}$ the lowest. If two or more requests occur simultaneously, the $\mu$ PB8214 accepts the one having the highest priority. Once an incoming interrupt request is accepted, it is stored by the request latch and a three-bit code is output. As shown in the following table, the outputs, $\left(\overline{A_{0}}-\overline{A_{2}}\right)$ are the complement of the request level (modulo 8) and directly correspond to the bit pattern required to generate the one byte RESTART (RST) instructions recognized by an 8080A. Simultaneously with the $\overline{\mathrm{A}_{0}}-\overline{\mathrm{A}_{2}}$ outputs, a system interrupt request (INT) is output by the $\mu$ PB8214. It should be noted that incoming interrupt requests that are not accepted are not latched and must remain as an input to the $\mu$ PB8214 in order to be serviced.

FUNCTIONAL
DESCRIPTION (CONT.)

| PRIORITY REQUEST |  | RST | $\mathrm{D}_{7}$ | $\mathrm{D}_{6}$ | $\mathrm{D}_{5}$ | $\mathrm{D}_{4}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{1}$ | $\mathrm{D}_{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 1 | $\overline{A_{2}}$ | $\overline{A_{1}}$ | $\overline{A_{0}}$ | 1 | 1 | 1 |
| LOWEST | $\overline{R_{0}}$ |  | 7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
|  | $\overline{R_{1}}$ | 6 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
|  | $\overline{R_{2}}$ | 5 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 |
|  | $\overline{R_{3}}$ | 4 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 |
|  | $\overline{R_{4}}$ | 3 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
|  | $\overline{\bar{R}_{5}}$ | 2 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 |
| $\dagger$ | $\mathrm{R}_{6}$ | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
| HIGHEST | $\overline{R_{7}}$ | 0 * | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |

CAUTION: RST 0 will vector the program counter to location 0 (zero) and invoke the same routine as the "RESET" input to 8080A.

## Current Status Register

The current status register is designed to prevent an incoming interrupt request from overriding the servicing of an interrupt with higher priority. Via software, the priority level of the interrupt being serviced by the microprocessor is written into the current status register on $\overline{\mathrm{B}_{0}}-\overline{\mathrm{B}_{2}}$. The bit pattern written should be the complement of the interrupt level.

The interrupt level currently being serviced is written into the current status register by driving $\overline{\text { ECS }}$ (Enable Current Status) low. The $\mu$ PB8214 will only accept interrupts with a higher priority than the value contained by the current status register. Note that the programmer is free to use the current status register for other than as above. Other levels may be written into it. The comparison may be completely disabled by driving $\overline{\mathrm{SGS}}$ (Status Group Select) low when $\overline{\mathrm{ECS}}$ is driven low. This will cause the $\mu$ PB8214 to accept incoming interrupts only on the basis of their priority to each other.

## Priority Comparator

The priority comparator circuitry compares the level of the interrupt accepted by the priority encoder and request latch with the contents of the current status register. If the incoming request has a priority level higher than that of the current status register, the $\overline{\mathrm{INT}}$ output is enabled. Note that this comparison can be disabled by loading the current status register with $\overline{\mathrm{SGS}}=0$.

## Expansion Control Signals

A microcomputer design may often require more than eight different interrupts. The $\mu \mathrm{PB} 8214$ is designed so that interrupt system expansion is easily performed via the use of three signals: ETLG (Enable This Level Group); ENLG (Enable Next Level Group); and $\overline{E L R}$ (Enable Level Read). A high input to ETLG indicates that the $\mu$ PB8214 may accept an interrupt. In a typical system, the 'ENLG output from one $\mu$ PB8214 is connected to the ETLG input of another $\mu$ PB8214, etc. The ETLG of the $\mu$ PB8214 with the highest priority is tied high. This configuration sets up priority among the cascaded $\mu$ PB8214's. The ENLG output will be high for any device that does not have an interrupt pending, thereby allowing a device with lower priority to accept interrupts. The ELR input is basically a chip enable and allows hardware or software to selectively disable/enable individual $\mu$ PB8214's. A low on the $\overline{E L R}$ input enables the device.

## Interrupt Control Circuitry

The $\mu$ PB8214 contains two flip-flops and several gates which determine whether an accepted interrupt request to the $\mu \mathrm{PB} 8214$ will generate a system interrupt to the 8080A. A condition gate drives the $D$ input of the interrupt flip-flop whenever an interrupt request has been completely accepted. This requires that: the ETLG (Enable This Level Group) and INTE (Interrupt Enable) inputs to the $\mu$ PB8214 are high; the $\overline{E L R}$ input is low; the incoming request must be of a higher priority than the contents of the current status register; and the $\mu$ PB8214 must have been enabled to accept interrupt requests by the clearing of the interrupt disable flip-flop.

Once the condition gate drives the D input of the interrupt flip-flop high, a system interrupt (INT) to the 8080A is generated on the next rising edge of the $\overline{\text { CLK }}$ input to the $\mu$ PB8214. This CLK input is typically connected to the $\phi 2$ (TTL) output of an 8224 so that 8080A set-up time specifications are met. When INT is generated, it sets the interrupt disable flip-flop so that no additional system interrupts will be generated until it is reset. It is reset by driving $\overline{E C S}$ (Enable Current Status) Iow, thereby writing into the current status register.
It should be noted that the open collector INT output from the $\mu$ PB8214 is active for only one clock period and thus must be externally latched for inputting to the 8080A. Also, because the INT output is open collector, when $\mu$ PB8214's are cascaded, an $\overline{\mathrm{INT}}$ output from any one will set all of the interrupt disable flipflops in the array. Each $\mu$ PB8214's interrupt disable flip-flop must then be cleared individually in order to generate subsequent system interrupts.


FUNCTIONAL DESCRIPTION (CONT.)

TYPICAL $\mu$ PB8214 CIRCUITRY
Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Output and Supply Voltages . . . . . . . . . . . . . . . -0.5 to +7 Volts
All Input Voltages . . . . . . . . . . . . . . . . . . . . . . . 1.0 to +5.5 Volts
Output Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mA

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

$$
{ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}
$$

- PB8214

DC CHARACTERISTICS $T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN. | TYP.(1) | MAX. |  |  |
| Input Clamp Voltage (all inputs) | $\mathrm{V}_{\mathrm{C}}$ |  |  | 1.0 | V | $\mathrm{I}^{\mathrm{C}}=-5 \mathrm{~mA}$ |
| Input Forward Current: ETLG input all other inputs | ${ }^{\prime} \mathrm{F}$ |  | $\begin{array}{r} .15 \\ -.08 \\ \hline \end{array}$ | $\begin{aligned} & \hline-0.5 \\ & -0.25 \end{aligned}$ | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$ | $V_{F}=0.45 \mathrm{~V}$ |
| Input Reverse Current: ETLG input all other inputs | $\mathrm{I}_{\mathrm{R}}$ |  |  | $\begin{aligned} & 80 \\ & 40 \end{aligned}$ | $\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$ | $\mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}$ |
| Input LOW Voltage: all inputs | VIL |  |  | 0.8 | V | $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ |
| Input HIGH Voltage: all inputs | VIH | 2.0 |  |  | V | $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ |
| Power Supply Current | ICC |  | 90 | 130 | mA | (2) |
| Output LOW Voltage: all outputs | $\mathrm{V}_{\mathrm{OL}}$ |  | . 3 | 45 | V | $1 \mathrm{OL}=10 \mathrm{~mA}$ |
| Output HIGH Voltage: ENLG output | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 | 3.0 |  | V | $1 \mathrm{OH}^{=}=1 \mathrm{~mA}$ |
| Short Circuit Output Current: ENLG output | IOS | 20 | -35 | -55 | mA | $\mathrm{V}_{\text {OS }}=0 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=5.0 \mathrm{~V}$ |
| Output Leakage Current: $\overline{\mathrm{INT}}$ and $\overline{\bar{A}_{0}}-\overline{\bar{A}_{2}}$ | ICEX |  |  | 100 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {CEX }}=5.25 \mathrm{~V}$ |

CAPACITANCE (3) $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN. | TYP.(1) | MAX. |  |  |
| Input Capacitance | CIN |  | 5 | 10 | pF | $\begin{aligned} & V_{B I A S}=2.5 \mathrm{~V} \\ & V_{C C}=5 \mathrm{~V} \\ & f=1 \mathrm{mHz} \end{aligned}$ |
| Output Capacitance | COUT |  | 7. | 12 | pF |  |

AC CHARACTERISTICS $\quad T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN. | TYP.(1) | MAX. |  |  |
| $\overline{\text { CLK }}$ Cycle Time | ${ }_{\text {t }} \mathrm{C}$ | 80 | 50 |  | ns | Input pulse amplitude: 2.5 Volts |
| $\overline{\text { CLK }}$, $\overline{\mathrm{ECS}}, \overline{\text { INT Pulse Width }}$ | tPW | 25 | 15 |  | ns |  |
| INTE Setup Time to CLK | tiss | 16 | 12 |  | ns |  |
| INTE Hold Time after CLK | ${ }_{\text {tish }}$ | 20 | 10 |  | ns |  |
| ETLG Setup Time to CLK | tETCS ${ }^{(4)}$ | 25 | 12 |  | ns | Input rise and fall <br> times: 5 ns between <br> 1 and 2 Volts |
| ETLG Hold Time After CLK | ${ }^{\text {t ETCH }}{ }^{(4)}$ | 20 | 10 |  | ns |  |
| ECS Setup Time to CLK | tECCS (4) | 80 | 50 |  | ns |  |
| ECS Hold Time After $\overline{\text { CLK }}$ | ${ }^{\text {t }}$ ECCH ${ }^{(5)}$ | 0 |  |  | ns |  |
| $\overline{\text { ECS }}$ Setup Time to $\overline{\text { CLK }}$ | tECRS ${ }^{(5)}$ | 110 | 70 |  | ns |  |
| ECS Hold Time After $\overline{\text { CLK }}$ | ${ }_{\text {t ECRH }}{ }^{(5)}$ | 0 |  |  |  | Output loading of 15 mA and 30 pF . |
| $\overline{\text { ECS }}$ Setup Time to CLEK | tECSS (4) | 75 | 70 |  | ns |  |
| $\overline{\text { ECS }}$ Hold Time After CLK | ${ }^{\text {t }}$ ECSH (4) | 0 |  |  | ns |  |
| $\overline{\text { SGS }}$ and $\overline{\mathrm{B}_{0}}-\overline{\bar{B}_{2}}$ Setup Time to $\overline{\mathrm{CLK}}$ | tDCs ${ }^{(4)}$ | 70 | 50 |  | ns |  |
| $\overline{\text { SGS }}$ and $\overline{\mathrm{B}_{0}}-\overline{\mathrm{B}_{2}}$ Hold Time After $\overline{\text { CLK }}$ | ${ }^{\text {toch (4) }}$ | 0 |  |  | ns | Speed measurements taken at the 1.5 Volts levels. |
| $\overline{\mathrm{R}_{0}}-\overline{\mathrm{R}_{7}}$ Setup Time to $\overline{\mathrm{CLK}}$ | trcs (5) | 90 | 55 |  | ns |  |
| $\overline{\mathrm{R}_{0}}-\overline{\mathrm{R}_{7}}$ Hold Time After $\overline{\mathrm{CLK}}$ | trCH 5 | 0 |  |  | ns |  |
| $\overline{\text { INT }}$ Setup Time to $\overline{\text { CLK }}$ | tics | 55 | 35 |  | ns |  |
| $\overline{\text { CLK }}$ to INT Propagation Delay | ${ }^{t} \mathrm{Cl}$ |  | 15 | 25 | ns |  |
| $\overline{\bar{R}_{0}}-\overline{\bar{R}_{7}}$ Setup Time to $\overline{\mathrm{R}_{0}} \overline{\mathrm{R}_{7}}$ | tris (6) | 10 | 0 |  | ns |  |
| $\overline{\mathrm{R}_{0}}-\overline{\mathrm{R}_{7}}$ Hold Time After INT | triH (6) | 35 | 20 |  | ns |  |
| $\overline{R_{0}}-\overline{\mathrm{R}_{7}}$ to $\overline{\mathrm{A}_{0}}-\overline{\mathrm{A}_{2}}$ Propagation Delay | tra |  | 80 | 100 | ns |  |
| $\overline{\text { ELR }}$ to $\overline{\bar{A}_{0}}-\overline{\bar{A}_{2}}$ Propagation Delay | tela |  | 40 | 55 | ns |  |
| $\overline{\text { ECS }}$ to $\overline{\mathrm{A}_{0}}-\overline{\mathrm{A}_{2}}$ Propagation Delay | tECA |  | 100 | 120 | ns |  |
| ETLG to $\overline{\mathrm{A}_{0}}-\overline{\mathrm{A}_{2}}$ Propagation Delay | tETA |  | 35 | 70 | ns |  |
| $\overline{\text { SGS }}$ and $\overline{\bar{B}_{0}}-\overline{B_{2}}$ Setup Time to $\overline{E C S}$ | tDECS (6) | 15 | 10 |  | ns |  |
| $\overline{\mathrm{SGS}}$ and $\overline{\mathrm{B}_{0}}-\overline{\bar{B}_{2}}$ Hold Time After $\overline{\mathrm{ECS}}$ | ${ }^{\text {IDECH (6) }}$ | 15 | 10 |  | ns |  |
| $\overline{\mathrm{R}_{0}}-\overline{\bar{R}_{7}}$ to ENLG Propagation Delay | tren |  | 45 | 70 | ns |  |
| ELTG to ENLG Propagation ${ }^{\text {D Delay }}$ | teTEN |  | 20 | 25 | ns |  |
| ECS to ENLG Propagation Delay | tECRN |  | 85 | 90 | ns |  |
| $\overline{\text { ECS }}$ to ENLG Propagation Delay | tecsn |  | 35 | 55 | ns |  |

Notes: (1) Typical values are for $T_{a}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
(2) $\overline{\mathrm{B}_{0}}-\overline{\mathrm{B}_{2}}, \overline{\mathrm{SGS}}, \overline{\mathrm{CLK}}, \overline{\mathrm{R}_{0}}-\overline{\mathrm{R}_{4}}$ grounded, all other inputs and all outputs open.
(3) This parameter is periodically sampled and not $100 \%$ tested.
(4) Required for proper operation if INTE is enabled during next clock pulse
(5) These times are not required for proper operation but for desired change in interrupt flip-flop.
(6) Required for new request or status to be properly loaded.


PACKAGE OUTLINE $\mu$ PB8214C

| ITEM | MILLIMETERS | INCHES |
| :---: | :---: | :---: |
| A | 33 MAX. | 1.28 |
| B | 2.53 | 0.1 |
| C | 2.54 | 0.1 |
| D | $0.5 \pm 0.1$ | $0.02 \pm 0.004$ |
| E | 27.94 | 1.1 |
| F | 1.5 | 0.059 |
| H | 3.2 MIN. | 0.125 MIN. |
| I | 0.5 MIN. | 0.02 MIN. |
| J | 5.22 MAX. | 0.205 MAX. |
| K | 5.72 MAX. | 0.225 MAX. |
| L | 15.24 | 0.6 |
| M | 13.2 | 0.52 |

## 4 BIT PARALLEL BIDIRECTIONAL BUS DRIVER

DESCRIPTION All inputs are low power TTL compatible. For driving MOS, the DO outputs provide a high $3.65 \mathrm{~V}(\mathrm{VOH})$, and for high capacitance terminated bus structures, the DB outputs provide a high 55 mA (IOL) capability.

FEATURES - Data Bus Buffer Driver for $\mu$ COM-8 Microprocessor Family

- Low Input Load Current - 0.25 mA Maximum
- High Output Drive Capability for Driving System Data Bus
- 3.65V Output High Voltage for Direct Interface to $\mu \mathrm{COM}-8$ Microprocessor Family
- Three State Outputs
- Reduces System Package Count
- Available in 16 pin packages: Cerdip and Plastic



## $\boldsymbol{\mu P B 8 2 1 6 / 8 2 2 6}$

Microprocessors like the $\mu$ PD8080A are MOS devices and are generally capable of driving a single TTL load. This also applies to MOS memory devices. This type of drive is sufficient for small systems with a few components, but often it is necessary to buffer the microprocessor and memories when adding components or expanding to a multi-board system.

The $\mu$ PD8216/8226 is a four bit bi-directional bus driver specifically designed to buffer microcomputer system components.

## Bi-Directional Driver

Each buffered line of the four bit driver consists of two separate buffers. They are three state in nature to achieve direct bus interface and bi-directional capability. On one side of the driver the output of one buffer and the input of another are tied together (DB), this is used to interface to the system side components such as memories, I/O, etc. Its interface is directly TTL compatible and it has high drive ( 55 mA ). For maximum flexibility on the other side of the driver the inputs and outputs are separate. They can be tied together so that the driver can be used to buffer a true bi-directional bus such as the 8080A Data Bus. The DO outputs on this side of the driver have a special high voltage output drive capability ( 3.65 V ) so that direct interface to the 8080 A processor is achieved with an adequate amount of noise immunity ( 650 mV worst case).

## Control Gating $\overline{\mathbf{C S}}, \overline{\text { DIEN }}$

The $\overline{\mathrm{CS}}$ input is used for device selection. When $\overline{\mathrm{CS}}$ is "high" the output drivers are all forced to their high-impedance state. When it is "low" the device is selected (enabled) and the data flow direction is determined by the $\overline{\text { DIEN }}$ input.

The $\overline{\text { DIEN }}$ input controls the data flow direction (see Block Diagrams for complete truth table). This directional control is accomplished by forcing one of the pair of buffers to its high impedance state. This allows the other to transmit its data. This is accomplished by a simple two gate circuit.
The $\mu$ PB8216/8226 is a device that will reduce component count in microcomputer systems and at the same time enhance noise immunity to assure reliable, high performance operation.


| $\overline{\text { DIEN }}$ | $\overline{\text { CS }}$ | RESULT |
| :---: | :---: | :--- |
| 0 | 0 | $\mathrm{DI} \rightarrow \mathrm{DB}$ |
| 1 | 0 | $\mathrm{DB} \rightarrow \mathrm{DO}$ |
| 0 | 1 | High Impedance |
| 1 | 1 |  |


| ABSOLUTE MAXIMUM RATINGS* | Operating Temperature | $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: |
|  | Storage Temperature (Cerdip) | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
|  | (Plastic) | $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
|  | All Output and Supply Voltages | -0.5 to +7 Volts |
|  | All Input Voltages. | -1.3 to +5.5 Volts |
|  | Output Currents | 125 mA |

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
DC CHARACTERISTICS

| PARAMETER |  | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP (1) | MAX |  |  |
| Input Load Current $\overline{\text { DIEN, }} \overline{\mathrm{CS}}$ |  |  | IF1 |  |  | -0.5 | mA | $V_{F}=0.45$ |
| Input Load Current All Other Inputs |  | IF2 |  |  | -0.25 | mA | $V_{F}=0.45$ |
| Input Leakage Current $\overline{\text { DIEN, }} \overline{\mathrm{CS}}$ |  | IR1 |  |  | 20 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}$ |
| Input Leakage Current DI Inputs |  | 'R2 |  |  | 10 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}$ |
| Input Forward Voltage Clamp |  | $\mathrm{V}_{\mathrm{C}}$ |  |  | -1.0 | V | ${ }^{\prime} \mathrm{C}=-5 \mathrm{~mA}$ |
| Input "Low" Voltage |  | $V_{\text {IL }}$ |  |  | 0.95 | V |  |
| Input "High" Voltage |  | $\mathrm{V}_{\text {IH }}$ | 2.0 |  |  | V |  |
| Output Leakage Current (3-State) | DO | 10 |  |  | 20 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{O}}=0.45 / 5.25 \mathrm{~V}$ |
|  | DB | 10 |  |  | 100 |  |  |
| Power Supply Current | 8216 | ICC |  |  | 130 | mA |  |
|  | 8226 | ${ }^{\text {ICC }}$ |  |  | 120 | mA |  |
| Output "Low" Voltage |  | $\mathrm{V}_{\text {OLI }}$ |  |  | 0.48 | V | $\begin{aligned} & \text { DO Outputs IOL }=15 \mathrm{~mA} \\ & \text { DB Outputs IOL }=25 \mathrm{~mA} \\ & \hline \end{aligned}$ |
| Output "Low" Voltage | 8216 | $\mathrm{V}_{\mathrm{OL} 2}$ |  |  | 0.7 | V | DB Outputs $1 \mathrm{OL}=55 \mathrm{~mA}$ |
|  | 8226 | VOL2 |  |  | 0.7 | V | DB Outputs $1 \mathrm{OH}=50 \mathrm{~mA}$ |
| Output "High" Voitage |  | VOH1 | 3.65 |  |  | V | DO Outputs $1 \mathrm{OH}=-1 \mathrm{~mA}$ |
| Output "High" Voltage |  | $\mathrm{V}_{\mathrm{OH} 2}$ | 2.4 |  |  | V | DB Outputs $1 \mathrm{OH}=-10 \mathrm{~mA}$ |
| Output Short Circuit Current |  | Ios | -15 |  | -65 | mA | DO Outputs $\mathrm{V}_{0} \mathrm{O}=0 \mathrm{~V}$ |
|  |  | Ios | -30 |  | -120 | mA | DB Outputs $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ |

Note: (1) Typical values are for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input Capacitance | $\mathrm{C}_{\text {IN }}$ |  |  | 8 | pF | $\begin{aligned} & V_{\text {BIAS }}=2.5 \mathrm{~V} \\ & V_{C C}=5 \mathrm{~V} \\ & T_{a}=25^{\circ} \mathrm{C} \\ & f=1 \mathrm{MHz} \end{aligned}$ |
| Output Capacitance | COUT1 |  |  | 10 (2) | pF |  |
| Output Capacitance | COUT2 |  |  | 18 (3) | pF |  |

Notes: (1) This parameter is periodically sampled and not $100 \%$ tested.
(2) DO Output.
(3) DB Output.
$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$

| PARAMETER |  | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | TYP (1) | MAX |  |  |
| Input to Output Delay DO Outputs |  | tPD1 |  |  | 25 | ns | $\begin{aligned} & C_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{1}=300 \Omega, \\ & \mathrm{R}_{2}=600 \Omega \text { (4) } \end{aligned}$ |
| Input to Output Delay DB Outputs | 8216 | tPD2 |  |  | 30 | ns | $\begin{aligned} & C_{L}=300 \mathrm{pF}, R_{1}=90 \Omega, \\ & R_{2}=180 \Omega 4 \end{aligned}$ |
|  | 8226 | tPD2 |  |  | 25 | ns |  |
| Output Enable Time | 8216 | te |  |  | 65 | ns | (2) (4) |
|  | 8226 | tE |  |  | 54 | ns |  |
| Output Disable Time |  | tD | $\because$ |  | 35. | ns | (3) (4) |

Notes: (1) Typical values are for $T_{a}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
(2) DO Outputs, $C_{L}=30 \mathrm{pF}, \mathrm{R}_{1}=300 / 10 \mathrm{~K} \Omega, \mathrm{R}_{2}=600 / 1 \mathrm{~K} \Omega$, DB Outputs, $C_{L}=300 \mathrm{pF}, \mathrm{R}_{1}=90 / 10 \mathrm{~K} \Omega, \mathrm{R}_{2}=180 / 1 \mathrm{~K} \Omega$.
(3) DO Outputs, $C_{L}=5 p F, R_{1}=300 / 10 \mathrm{~K} \Omega, R_{2}=600 / 1 \mathrm{~K} \Omega$, DB Outputs, $C_{L}=5 \mathrm{pF}, \mathrm{R}_{1}=90 / 10 \mathrm{~K} \Omega, R_{2}=180 / 1 \mathrm{~K} \Omega$.
(4). Input pulse amplitude: 2.5 V

Input rise and fall times of 5 ns between 1 and 2 volts.
Output loading is 5 mA and 10 pF .
Speed measurements are made at 1.5 volt levels.


TEST CIRCUIT


PACKAGE OUTLINE $\mu$ PB8216C/D $\mu$ PB8226C/D

SP8216/8226-8-77-GN-CAT

## CLOCK GENERATOR AND DRIVER FOR 8080A PROCESSORS

The $\mu$ PB8224 is a single chip clock generator and driver for 8080A processors. The clock frequency is determined by a user specified crystal and is capable of meeting the timing requirements of the entire 8080A family of processors. MOS and TTL level clock outputs are generated.

Additional logic circuitry of the $\mu$ PB8224 provides signals for power-up reset, an advance status strobe and properly synchronizes the ready signal to the processor. This greatly reduces the number of chips needed for 8080A systems.

The $\mu$ PB8224 is fabricated using NEC's Schottky bipolar process.

- Crystal Controlled Clocks
- Oscillator Output for External Timing
- MOS Level Clocks for 8080A Processor
- TTL Level Clock for DMA Activities
- Power-up Reset for 8080A Processor
- Ready Synchronization
- Advanced Status Strobe
- Reduces System Package Count
- Available in 16 -pin Cerdip and Plastic Packages



## $\mu$ PB8224

## Clock Generator

The clock generator circuitry consists of a crystal controlled oscillator and a divide-by-nine counter. The crystal frequency is a function of the 8080A processor speed and is basically nine times the processor frequency, i.e.:

$$
\text { Crystal frequency }=\frac{9}{{ }^{\mathrm{t}} \mathrm{CY}}
$$

where $t^{t} \mathrm{C}$ is the 8080A processor clock period.
A series resonant fundamental mode crystal is normally used and is connected across input pins XTAL1 and XTAL2. If an overtone mode crystal is used, an additional LC network, AC coupled to ground, must be connected to the TANK input of the $\mu$ PB8224 as shown in the following figure.


The formula for the $L C$ network is: $L C=\left(\frac{1}{2 \pi F}\right)^{2}$
where $F$ is the desired frequency of oscillation.
The output of the oscillator is input to the divide-by-nine counter. It is also buffered and brought out on the OSC pin, allowing this stable, crystal controlled source to be used for derivation of other system timing signals. The divide-bynine counter generates the two non-overlapping processor clocks, $\phi_{1}$ and $\phi_{2}$, which are buffered and at MOS levels, a TTL level $\phi_{2}$ and internal timing signals.
The $\phi_{1}$ and $\phi_{2}$ high level outputs are generated in a 2-5-2 digital pattern, with $\phi_{1}$ being high for two oscillator periods, $\phi_{2}$ being high for five oscillator periods, and then neither being high for two oscillator periods. The TTL level $\phi_{2}, \phi_{2}$ (TTL), is normally used for DMA activities by gating the external device onto the 8080A bus once a Hold Acknowledge (HLDA) has been issued.

## Additional Logic

In addition to the clock generator circuitry, the $\mu$ PB8224 contains additional logic to aid the system designer in the proper timing of several interface signals.
The $\overline{\text { STSTB }}$ signal indicates, at the earliest possible moment, when the status signals output from the 8080A processor are stable on the data bus. $\overline{\text { STSTB }}$ is designed to connect directly to the $\mu$ PB8228 System Controller and automatically resets the $\mu$ PB8228 during power-on Reset.
The $\overline{\text { RESIN }}$ input to the $\mu$ PB8224 is used to automatically generate a RESET signal to the 8080A during power initialization. The slow rise of the power supply voltage in an external RC network is sensed by an internal Schmitt Trigger. The output of the Schmitt Trigger is gated to generate an 8080A compatible RESET. An active low manual switch may also be attached to the RC circuit for manual system reset.
The RDYIN input to the $\mu$ PB8224 accepts an asynchronous "wait request" and generates a READY output to the 8080A that is fully synchronized to meet the 8080A timing requirements.

BLOCK DIAGRAM


## ABSOLUTE MAXIMUM RATINGS*

Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ All Output Voltages (TTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 to +7 Volts All Output Voltages (MOS) . . . . . . . . . . . . . . . . . . . . . . . . . . . -1.0 to +13.5 Volts All Input Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -1.5 to +7 Volts Supply Voltage VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to +7 Volts Supply Voltage VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to +13.5 Volts Output Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mA

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input Current Loading | IF |  |  | -0.25 | mA | $V_{F}=0.45 \mathrm{~V}$ |
| Input Leakage Current | $\mathrm{I}_{\mathrm{R}}$ |  |  | 10 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}$ |
| Input Forward Clamp Voltage | $\mathrm{V}_{\mathrm{C}}$ | - |  | -1.0 | V | $\mathrm{I}^{\prime} \mathrm{C}=-5 \mathrm{~mA}$ |
| Input "Low" Voltage | $\mathrm{V}_{\text {IL }}$ |  |  | 0.8 | V | $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ |
| Input "High" Voltage | $\mathrm{V}_{\text {IH }}$ | $\begin{aligned} & 2.6 \\ & 2.0 \\ & \hline \end{aligned}$ |  |  | V | Reset Input <br> All Other Inputs |
| RESIN Input Hysteresis | $\mathrm{V}_{\text {IH }} \cdot \mathrm{V}_{\text {IL }}$ | 0.25 |  |  | V | $\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}$ |
| Output "Low" Voltage | $\mathrm{V}_{\mathrm{OL}}$ |  |  | $\begin{aligned} & 0.45 \\ & 0.45 \end{aligned}$ | v <br> v | $\left(\phi_{1}, \phi_{2}\right)$, Ready, Reset, STSTB $\mathrm{I}_{\mathrm{OL}}=2.5 \mathrm{~mA}$ <br> All Other Inputs $\mathrm{I}_{\mathrm{OL}}=15 \mathrm{~mA}$ |
| Output "High" Voltage $\phi_{1}, \phi_{2}$ <br> READY, RESET <br> All Other Outputs | $\mathrm{v}_{\mathrm{OH}}$ | $\begin{aligned} & 9.4 \\ & 3.6 \\ & 2.4 \\ & \hline \end{aligned}$ |  |  | v <br> v <br> V | $\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}^{\prime} \mathrm{OH}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \hline \end{aligned}$ |
| Output Short Circuit Current (All Low Voltage Outputs Only) | ${ }^{\prime} \mathrm{Sc}{ }^{(1)}$ | -10 |  | -60 | mA | $\begin{aligned} & v_{\mathrm{O}}=0 \mathrm{~V} \\ & v_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$ |
| Power Supply Current | ICC |  |  | 115 | mA | - . |
| Power Supply Current | IDD | - |  | 15 | mA |  |

Note: (1) Caution, $\phi_{1}$ and $\phi_{2}$ output drivers do not have short circuit protection
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} ; \mathrm{V}_{\mathrm{BIAS}}=2.5 \mathrm{~V}$
CAPACITANCE (1)

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input Capacitance | CIN $^{2}$ |  |  | 8 | pF |  |

Note: (1) This parameter is periodically sampled and not $100 \%$ tested.
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%$

| PARAMETER | SYMBOL | LIMITS (1) |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| $\phi_{1}$ Pulse Width | ${ }^{\text {t }}$ ¢ 1 | $\frac{2 \mathrm{t} C \mathrm{Y}}{9}-20 \mathrm{~ns}$ |  |  | ns | $C_{L}=20 \mathrm{pF}$ to 50 pF |
| $\phi_{2}$ Pulse Width | ${ }^{\text {t }}$ 2 | $\frac{5 t^{C} \mathrm{CY}}{9}-35 \mathrm{~ns}$ |  | * |  |  |
| $\phi_{1}$ to $\phi_{2}$ Delay | tD1 | 0 |  |  |  |  |
| $\phi_{2}$ to $\phi_{1}$ Delay | ${ }^{\text {t } 22}$ | $\frac{{ }^{2 t} C Y}{9}-14 \mathrm{~ns}$ |  |  |  |  |
| $\phi_{1}$ to $\phi_{2}$ Delay | tD3 | $\frac{{ }^{2}{ }^{\text {C }} \mathrm{CY}}{9}$ |  | $\frac{2 t_{C Y}}{9}+20 \mathrm{~ns}$ |  |  |
| $\phi_{1}$ and $\phi_{2}$ Rise Time | $\mathrm{t}_{\mathrm{R}}$ |  |  | 20 |  |  |
| $\phi_{1}$ and $\phi_{2}$ Fall Time | ${ }_{\text {t }}$ |  |  | 20 |  |  |
| $\phi_{2}$ to $\phi_{2}$ (TTL) Delay | ${ }^{\text {t }}$ ¢ ${ }^{2}$ | -5 |  | +15 | ns | $\begin{aligned} & \phi_{2} \mathrm{TTL}, \mathrm{CL}=30 \mathrm{pF} \\ & \mathrm{R}_{1}=300 \Omega \\ & \mathrm{R}_{2}=600 \Omega \\ & \hline \end{aligned}$ |
| $\mathrm{T}_{2}$ to STSTB Delay | toss | $\frac{6 \mathrm{t}^{\text {c }} \text { ( }}{9}-30 \mathrm{~ns}$ |  | $\frac{6 \mathrm{t} \mathrm{Cr}^{9}}{9}$ | ns | $\overline{\text { STSTB }}, C L=15 \mathrm{pF}$$\begin{aligned} & R_{1}=2 K \\ & R_{2}=4 K \end{aligned}$ |
| STSTB Pulse Width | tpW | $\frac{{ }^{\text {c }} \mathrm{CY}}{9}-15 \mathrm{~ns}$ |  |  | ns |  |
| RDYIN Setup Time to STSTB | tors | $50 \mathrm{~ns}-\frac{4{ }^{4} \mathrm{CY}}{9}$ |  |  |  |  |
| RDYIN Hold Time After $\overline{\text { STSB }}$ | tDRH | $\frac{4{ }^{4} \mathrm{CY}}{9}$ |  |  |  |  |
| READY or RESET to $\phi_{2}$ Delay | ${ }^{\text {t }} \mathrm{R}$ | $\frac{4 \mathrm{t} C Y}{9}-25 \mathrm{~ns}$ |  |  | ns | Ready and Reset $\begin{aligned} & C L=10 \mathrm{pF} \\ & \mathrm{R}_{1}=2 \mathrm{~K} \\ & \mathrm{R}_{2}=4 \mathrm{~K} \\ & \hline \end{aligned}$ |
| Crystal Frequency | ${ }^{\text {f CLK }}$ |  | $\frac{9}{t^{t} Y}$ |  | MHz |  |
| Maximum Oscillating Frequency | $f_{\text {max }}$ |  |  | 27 | MHz |  |

Note: (1) ${ }^{\text {t }} \mathrm{CY}$ represents the processor clock period


TEST CIRCUIT


Voltage Measurement Points: $\phi_{1}, \phi_{2}$ Logic " 0 " $=1.0 \mathrm{~V}$, Logic " 1 " $=8.0 \mathrm{~V}$. All other signals measured at 1.5 V .
Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $0.005 \% ~ a t ~$
$0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$
Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . Series (Fundamental) ©
Load Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $20-35 ~ p F ~$
Equivalent Resistance. . . . . . . . . . . . . . . . . . . . . . . . . . . $75-20$ ohms
Power Dissipation (Min) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 mW

Note: (1) With tank circuit use 3rd overtone mode.

PACKAGE OUTLINE $\mu$ PB8224C/D


| $\mu$ PB8224C (Plastic) |  |  |
| :---: | :---: | :---: |
| ITEM | MILLIMETERS | INCHES |
| A | 19.4 MAX. | 0.76 MAX. |
| B | 0.81 | 0.03 |
| C | 2.54 | 0.10 |
| D | 0.5 | 0.02 |
| E | 17.78 | 0.70 |
| F | 1.3 | 0.051 |
| G | 2.54 MIN. | 0.10 MIN. |
| H | 0.5 MIN. | 0.02 MIN. |
| I | 4.05 MAX. | 0.16 MAX. |
| J | 4.55 MAX. | 0.18 MAX. |
| K | 7.62 | 0.30 |
| L | 6.4 | 0.25 |
| M | 0.25 |  |


| $\mu$ PB8224D (Cerdip) |  |  |
| :---: | :---: | :--- |
| ITEM | MILLIMETERS | INCHES |
| A | 19.9 MAX | 0.784 MAX |
| B | 1.06 | 0.042 |
| C | 2.54 | 0.10 |
| D | $0.46 \pm 0.10$ | $0.018 \pm 0.004$ |
| E | 17.78 | 0.70 |
| F | 1.5 | 0.059 |
| G | 2.54 MIN | 0.10 MIN |
| H | 0.5 MIN | 0.019 MIN |
| I | 4.58 MAX | 0.181 MAX |
| J | 5.08 MAX | 0.20 MAX |
| K | 7.62 | 0.30 |
| L | 6.8 | 0.27 |
| M | $0.25+0.10$ | $0.0098+0.0039$ |



## NOTES

## 8080A SYSTEM CONTROLLER AND BUS DRIVER

DESCRIPTION The $\mu$ PB8228/8238 is a single chip controller and bus driver for 8080A based systems. All the required interface signals necessary to connect RAM, ROM and I/O components to a $\mu$ PD8080A are generated.

The $\mu$ PB8228/8238 provides a bi-directional three-state bus driver for high TTL fan-out and isolation of the processor data bus from the system data bus for increased noise immunity.

The system controller portion of the $\mu$ PB8228/8238 consists of a status latch for definition of processor machine cycles and a gating array to decode this information for direct interface to system components. The controller can enable gating of a multi-byte interrupt onto the data bus or can automatically insert a RESTART 7 onto the data bus without any adaitional components.

Two devices are provided. The $\mu$ PB8228 for small systems without tight write timing constraints and the $\mu$ PB8238 for larger systems.

FEATURES - System Controller for 8080A Systems

- Bi-Directional Data Bus for Processor Isolation
- 3.60V Output High Voltage for Direct Interface to 8080A Processor
- Three State Outputs on System Data Bus
- Enables Use of Multi-Byte Interrupt Instructions
- Generates RST 7 Interrupt Instruction
- $\mu$ PB8228 for Small Memory Systems
- $\mu$ PB8238 for Large Memory Systems
- Reduces System Package Count
- Schottky Bipolar Technology


| PIN NAMES |  |
| :---: | :---: |
| $\mathrm{D}_{7}-\mathrm{D}_{0}$ | Data Bus (Processor Side) |
| DB7-DB0 | Data Bus (System Side) |
| I/OR | 1/O Read |
| I/OW | I/O Write |
| MEMR | Memory Read |
| MEMW | Memory Write |
| DBIN | DBIN (From Processor) |
| INTA | Interrupt Acknowledge |
| HLDA | HLDA (From Processor) |
| WR | WR (From Processor) |
| BUSEN | Bus Enable Input |
| STSTB | Status Strobe (From $\mu$ PB8224) |
| $V_{C C}$ | +5V |
| GND | 0 Volts |

## $\mu$ PB8228

## Bi-Directional Bus Driver

The eight bit, bi-directional bus driver provides buffering between the processor data bus and the system data bus. On the processor side, the $\mu \mathrm{PB} 8228 / 8238$ exceeds the minimum input voltage requirements (3.0V) of the $\mu$ PD8080A. On the system side, the driver is capable of adequate drive current ( 10 mA ) for connection of a large number of memory and I/O devices to the bus. Signal flow in the bus driver is controlled by the gating array and its outputs can be forced into a high impedance state by use of the BUSEN input.

## Status Latch

The Status Latch in the $\mu$ PB8228/8238 stores the status information placed on the data bus by the 8080A at the beginning of each machine cycle. The information is latched when STSTB goes low and is then decoded by the gating array for the generation of control signals.

## Gating Array

The Gating Array generates "active low" control signals for direct interfacing to system components by gating the contents of the status latch with control signals from the 8080A.
$\overline{M E M / R}, \overline{I / O R}$ and $\overline{\text { INTA }}$ are generated by gating the DBIN signal from the processor with the contents of the status latch. $\overline{\mathrm{I} O R}$ is used to enable an I/O input onto the system data bus. $\overline{M E M / R}$ is used to enable a memory input.
$\overline{\mathrm{INTA}}$ is normally used to gate an interrupt instruction onto the system data bus. When used with the $\mu$ PD8080A processor, the $\mu$ PB8228/8238 will decode an interrupt acknowledge status word during all three machine cycles for a multi-byte interrupt instruction. For 8080A type processors that do not generate an interrupt acknowledge status word during the second and third machine cycles of a multi-byte interrupt instruction, the $\mu$ PB8228/8238 will internally generate an $\overline{\mathrm{NTA}}$ pulse for those machine cycles.
The $\mu$ PB8228/8238 also provides the designer the ability to place a single interrupt instruction onto the bus without adding additional components. By connecting the +12 volt supply to the INTA output ( pin 23 ) of the $\mu \mathrm{PB} 8228 / 8238$ through a 1 K ohm series resistor, RESTART 7 will be gated onto the processor data bus when DBIN is active during an interrupt acknowledge machine cycle.
$\overline{M E M / W}$ and $\overline{I / O W}$ are generated by gating the $\overline{W R}$ signal from the processor with the contents of the status latch. I/OW indicates that an output port write is about to occur. $\overline{M E M / W}$ indicates that a memory write will occur.
The data bus output buffers and control signal buffers can be asynchronously forced into a high impedance state by placing a high on the BUSEN pin of the $\mu \mathrm{PB} 8228 /$ 8238. Normal operation is performed with BUSEN low.


BLOCK DIAGRAM

## ABSOLUTE MAXIMUM RATINGS*

Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Output or Supply Voltages . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to +7 Volts
All Input Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 to 5.5 Volts
Output Currents ....................................................... . 100 mA
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input Clamp Voltage, All Inputs | $\mathrm{V}_{\mathrm{C}}$ |  |  | -1.0 | V | $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ : $\mathrm{ICC}=-5 \mathrm{~mA}$ |
| Input Load Current, STSTB | ${ }^{\prime} \mathrm{F}$ |  |  | 500 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{C C}=5.25 \mathrm{~V} \\ & V_{F}=0.45 \mathrm{~V} \end{aligned}$ |
| $\mathrm{D}_{2}$ and $\mathrm{D}_{6}$ |  |  |  | 750 | $\mu \mathrm{A}$ |  |
| $D_{0}, D_{1}, D_{4}, D_{5}$, and $D_{7}$ |  |  |  | 250 | $\mu \mathrm{A}$ |  |
| All Other Inputs |  |  |  | 250 | $\mu \mathrm{A}$ |  |
| Input Leakage Current, STSTB | $I_{R}$ |  |  | 100 | $\mu \mathrm{A}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{R}}=5.0 \mathrm{~V} \end{aligned}$ |
| $\mathrm{DB}_{0}$ through DB7 |  |  |  | 20 | $\mu \mathrm{A}$ |  |
| All Other Inputs |  |  |  | 100 | $\mu \mathrm{A}$ |  |
| Input Threshold Voltage, All inputs | $\mathrm{V}_{\text {TH }}$ | 0.8 |  | 2.0 | v | $\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$ |
| Power Supply Current | ICC |  |  | 190 | mA | $V_{C C}=5.25 \mathrm{~V}$ |
| Output Low Voltage, $\mathrm{D}_{0}$ through $\mathrm{D}_{7}$ | vol |  |  | 0.45 | v | $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \cdot 1 \mathrm{OL}=2 \mathrm{~mA}$ |
| All Other Outputs |  |  |  | 0.48 | V | $1 \mathrm{OL}=10 \mathrm{~mA}$ |
| Output High Voltage, $\mathrm{D}_{0}$ through $\mathrm{D}_{7}$ | $\mathrm{V}_{\mathrm{OH}}$ | 3.6 |  |  | v | $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} ; \mathrm{IOH}=-10 \mu \mathrm{~A}$ |
| All Other Outputs |  | 2.4 |  |  | v | $\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$ |
| Short Circuit Current, All Outputs | Ios | 15 |  | 90 | mA | $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ |
| Off State Output Current, All Control Outputs | 'O(off) |  |  | 100 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=5.0 \mathrm{~V}$ |
|  |  |  |  | -100 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{O}}=0.45 \mathrm{~V}$ |
| INTA Current | IINT |  |  | 5 | mA | (See Figure below) |



INTA TEST CIRCUIT
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input Capacitance | $C_{\text {IN }}$ |  |  | 12 | pF | $\begin{aligned} & V_{B I A S}=2.5 \mathrm{~V} \\ & V_{C C}=5.0 \mathrm{~V} \end{aligned}$ |
| Output Capacitance Control Signals | COUT |  |  | 15 | pF |  |
| I/O Capacitance (D or DB) | $\mathrm{Cl}_{1 / \mathrm{O}}$ |  |  | 15 | pF | $\mathrm{f}=1 \mathrm{MHz}$ |

NOTE: This parameter is periodically sampled and not $100 \%$ tested.
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Width of Status Strobe | tpw | 22 |  |  | ns |  |
| Setup Time, Status Inputs $\mathrm{D}_{\mathrm{O}} \mathrm{D}_{7}$ | tss | 8 |  |  | ns |  |
| Hold Time, Status Inputs $\mathrm{D}_{0}-\mathrm{D}_{7}$ | ${ }^{\text {tS }} \mathrm{H}$ | 5 |  |  | ns |  |
| Delay from STSTB to any Control Signal | ${ }^{t} \mathrm{DC}$ | 20 |  | 60 | ns | $C_{L}=100 \mathrm{pF}$ |
| Delay from DBIN to Control Outputs | trR |  |  | 30 | ns | $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ |
| Delay from DBIN to Enable/ Disable 8080A Bus | tre |  |  | 45 | ns | $C_{L}=25 \mathrm{pF}$ |
| Delay from System Bus to 8080A Bus during Read | tro |  |  | 30 | ns | $C_{L}=25 \mathrm{pF}$ |
| Delay from $\overline{\mathrm{WR}}$ to Control Outputs | ${ }^{\text {twr }}$ | 5 |  | 45 | ns | $C_{L}=100 \mathrm{pF}$ |
| Delay to Enable System Bus $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ after STSTB | tWE |  |  | 30 | ns | $C_{L}=100 \mathrm{pF}$ |
| Delay from 8080A Bus $\mathrm{D}_{0}-\mathrm{D}_{7}$ to System Bus $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ during Write | two | 5 |  | 40 | ns | $C_{L}=100 \mathrm{pF}$ |
| Delay from System Bus Enable to System Bus $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ | ${ }^{\text {t }}$ E |  |  | 30 | ns | $C_{L}=100 \mathrm{pF}$ |
| HLDA to Read Status Outputs | tho |  |  | 25 | ns |  |
| Sețup Time, System Bus Inputs to HLDA | ${ }^{\text {tos }}$ | 10 |  |  | ns |  |
| Hold Time, System Bus Inputs to HLDA | ${ }^{\text {tob }}$ | 20 |  |  | ns | $C_{L}=100 \mathrm{pF}$ |

For $D_{0}-D_{7}: R_{1}=4 \mathrm{~K} \Omega, R_{2}=\infty \Omega$, $C_{L}=25 \mathrm{pF}$. For all other outputs: $R_{1}=500 \Omega, R_{2}=1 \mathrm{~K} \Omega, C_{L}=100 \mathrm{pF}$.


TEST CIRCUIT


VOLTAGE MEASUREMENT POINTS $D_{0}$. $D_{7}$ (when outputs) Logic " 0 " $=0.8 \mathrm{~V}$, Logic " 1 " $=3.0 \mathrm{~V}$. All other signals measured at 1.5 V

STATUS WORD CHART



PACKAGE OUTLINE $\mu$ PB8228C/D
(Plastic)

| ITEM | MILLIMETERS | INCHES |
| :--- | :---: | :--- |
| A | 38.0 MAX. | 1.496 MAX. |
| B | 2.49 | 0.098 |
| C | 2.54 | 0.10 |
| D | $05 \pm 0.1$ | $0.02 \pm 0.004$ |
| E | 33.02 | 1.3 |
| F | 1.5 | 0.059 |
| G | 2.54 MIN. | 0.10 MIN. |
| H | 0.5 MIN. | 0.02 MIN. |
| I | 5.22 MAX. | 0.205 MAX. |
| J | 5.72 MAX. | 0.225 MAX. |
| K | 15.24 | 0.6 |
| L | 13.2 | 0.52 |
| M | $0.25+0.10$ | $0.01+0.004$ |


$\mu$ PB8228
(Ceramic)

| ITEM | MILLIMETERS | INCHES |
| :--- | :---: | :--- |
| A | 36.2 MAX. | 1.43 |
| B | 1.59 MAX. | 0.06 |
| C | 2.54 | 0.1 |
| D | $0.46 \pm 0.05$ | $0.02 \pm 0.004$ |
| E | 33.02 | 1.3 |
| F | 1.02 | 0.04 |
| G | 3.2 MIN. | 0.13 |
| H | 1.0 | 0.04 |
| I | 3.5 | 0.14 |
| J | 4.5 | 0.18 |
| K | 15.24 | 0.6 |
| L | 14.93 | 0.59 |
| M | $0.25 \pm 0.05$ | $0.01 \pm 0.002$ |

## INPUT/OUTPUT EXPANDER FOR $\mu$ PD8048/8748/8035

DESCRIPTION The $\mu$ PD8243 input/output expander is directly compatible with the $\mu$ PD8048 family of single-chip microcomputers. Using NMOS technology the $\mu$ PD8243 provides high drive capabilities while requiring only a single +5 V supply voltage.

The $\mu$ PD8243 interfaces to the $\mu$ PD8048 family through a 4-bit I/O port and offers four 4-bit bi-directional static I/O ports. The ease of expansion allows for multiple $\mu$ PD8243's to be added using the bus port.

The bi-directional I/O ports of the $\mu$ PD8243 act as an extension of the I/O capabilities of the $\mu$ PD8048 microcomputer family. They are accessible with their own ANL, MOV, and ORL instructions.

FEATURES - Four 4-Bit I/O Ports

- Fully Compatible with $\mu$ PD8048 Microcomputer Family
- High Output Drive
- NMOS Technology
- Single +5 V Supply
- Direct Extension of Resident $\mu$ PD8048 I/O Ports
- Logical AND and OR Directly to Ports
- Compatible with Industry Standard 8243
- Available in a 24 -Pin Plastic Package

| $\mathrm{P}_{50}-1$ |  | 24 | $\mathrm{V}_{\mathrm{Cc}}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{P}_{40} \mathrm{C}^{2}$ |  | 23 | $\mathrm{P}_{51}$ |
| $\mathrm{P}_{41} \square_{3}$ |  | 22 | $\mathrm{P}_{52}$ |
| $\mathrm{P}_{42} \square^{4}$ |  | 21 | $\mathrm{P}_{53}$ |
| $\mathrm{P}_{43} \square_{5}$ |  | 20 | $\mathrm{P}_{60}$ |
| $\overline{\mathrm{CS}} \square^{6}$ | $\mu \mathrm{PD}$ | 19 | P61 |
| PROG $\square 7$ | 8243 | 18 | $\mathrm{P}_{62}$ |
| $\mathrm{P}_{23} \square 8$ |  | 17 | $\mathrm{P}_{63}$ |
| $\mathrm{P}_{22} \square 9$ |  | 16 | $]^{P_{73}}$ |
| $\mathrm{P}_{21} \square_{10}$ |  | 15 | - $\mathrm{P}_{72}$ |
| $\mathrm{P}_{20} \square_{11}$ |  | 14 | $\square^{P_{71}}$ |
| GND 12 |  | 13 | ] $\mathrm{P}_{70}$ |

## MPD8243

## General Operation

The I/O capabilities of the $\mu$ PD8048/8748/8035 can be enhanced in four 4-bit I/O port increments using one or more $\mu$ PD8243's. These additional I/O lines are addressed as ports 4-7. The following lists the operations which can be performed on ports 4-7.

- Logical AND Accumulator to Port.
- Logical OR Accumulator to Port.
- Transfer Port to Accumulator.
- Transfer Accumulator to Port.

Port 2 ( $\mathrm{P}_{20}-\mathrm{P}_{23}$ ) forms the 4-bit bus through which the $\mu$ PD8243 communicates with the host processor. The PROG output from the $\mu$ PD8048/8748/8035 provides the necessary timing to the $\mu$ PD8243. There are two 4 -bit nibbles involved in each data transfer. The first nibble contains the op-code and port address followed by the second nibble containing the 4-bit data. Multiple $\mu$ PD8243's can be used for additional I/O. The output lines from the $\mu$ PD8048/8748/8035 can be used to form the chip selects for the additional $\mu$ PD8243's.

## Power On Initialization

Applying power to the $\mu$ PD8243 sets ports $4-7$ to the tri-state mode and port 2 to the input mode. The state of the PROG pin at power on may be either high or low. The PROG pin must make a high-to-low transition in order to exit from the power on mode. The power on sequence is initiated any time VCC drops below 1V. The table below shows how the 4 -bit nibbles on Port 2 correspond to the $\mu$ PD8243 operations.

| Port Address |  |  | Op-Code |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $P_{21}$ | $P_{20}$ | Address Code | $P_{23}$ | $P_{22}$ | Instruction Code |
| 0 | 0 | Port 4 | 0 | 0 | Read |
| 0 | 1 | Port 5 | 0 | 1 | Write |
| 1 | 0 | Port 6 | 1 | 0 | ORLD |
| 1 | 1 | Port 7 | 1 | 1 | ANLD |

For example an 0010 appearing on $\mathrm{P}_{20}-\mathrm{P}_{23}$, respectively, would result in a Write to Port 4.

## Read Mode

There is one Read mode in the $\mu$ PD8243. A falling edge on the PROG pin latches the op-code and port address from input Port 2. The port address and Read operation are then decoded causing the appropriate outputs to be tri-stated and the input buffers switched on. The rising edge of PROG terminates the Read operation. The Port $(4,5,6$, or 7$)$ that was selected by the Port address $\left(P_{21}-P_{20}\right)$ is returned to the tri-state mode, and Port 2 is switched to the input mode.

Generally, in the read mode, a port will be an input and in the write mode it will be an output. If during program operation, the $\mu$ PD8243's modes are changed, the first read pulse immediately following a write should be ignored. The subsequent read signals are valid. Reading a port will then force that port to a high impedance state.

## Write Modes

There are three write modes in the $\mu$ PD8243. The MOVD $P_{p}, A$ instruction from the $\mu$ PD8048/8748/8035 writes the new data directly to the specified port (4,5,6, or 7). The old data previously latched at that port is lost. The ORLD Pp,A instruction performs a logical OR between the new data and the data currently latched at the selected port. The result is then latched at that port. The final write mode uses the ANLD Pp,A instruction. It performs a logical AND between the new data and the data currently latched at the specified port. The result is latched at that port.
The data remains latched at the selected port following the logical manipulation until new data is written to that port.


PIN IDENTIFICATION

| PIN |  | FUNCTION |
| :--- | :--- | :--- |

Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature (Ceramic Package) . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic Package) . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage on Any Pin . . . . . . . . . . . . . . . . . . . . . . . -0.5 to +7 Volts ${ }^{\text {© }}$ (
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 W

Note: (1) With respect to ground.
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} T_{a}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input Low Voltage | $V_{\text {IL }}$ | -0.5 |  | 0.8 | V |  |
| Input High Voitage | $\mathrm{V}_{1} \mathrm{H}$ | 2.0 |  | $\mathrm{V}_{\mathrm{CC}}+0.5$ | V |  |
| Output Low Voltage (Ports 4-7) | VOL1 |  |  | 0.45 | V | $\mathrm{I}_{\mathrm{OL}}=5 \mathrm{~mA}$ (1) |
| Output Low Voltage (Port 7) | $\mathrm{V}_{\mathrm{OL} 2}$ |  |  | 1 | V | $\mathrm{IOL}=20 \mathrm{~mA}$ |
| Output Low Voltage (Port 2) | $\mathrm{V}_{\mathrm{OL} 3}$ |  |  | 0.45 | V | $1 \mathrm{OL}=0.6 \mathrm{~mA}$ |
| Output High Voltage (Ports 4-7) | $\mathrm{V}_{\mathrm{OH} 1}$ | 2.4 |  |  | V | $\mathrm{I}_{\mathrm{OH}}=240 \mu \mathrm{~A}$ |
| Output High Voltage (Port 2) | $\mathrm{V}_{\mathrm{OH} 2}$ | 2.4 |  |  | V | ${ }^{1} \mathrm{OH}=100 \mu \mathrm{~A}$ |
| Sum of All $\mathrm{IOL}_{01}$ From 16 Outputs | IOL |  |  | 100 | mA | 5 mA Each Pin |
| Input Leakage Current (Ports 4-7) | IIL1 | -10 |  | 20 | $\mu \mathrm{A}$ | $V_{\text {IN }}=V_{\text {CC }}$ to 0 V |
| Input Leakage Current (Port 2, $\overline{C S}, ~ P R O G)$ | IIL2 | -10. |  | 10 | $\mu \mathrm{A}$ | $V_{\text {IN }}=V_{\text {CC }}$ to $0 V$ |
| $\mathrm{V}_{\text {CC }}$ Supply Current | ${ }^{1} \mathrm{Cc}$ |  | 10 | 20 | mA |  |

Note: (1) Refer to graph of additional sink current drive.
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$

| PARAMETER | SYMBOL | LIMITS |  |  | UNITS | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Code Valid Before PROG | ${ }^{t} \mathrm{~A}$ | 100 |  |  | ns | 80 pF Load |
| Code Valid After PROG | ${ }^{\text {t }}$ B | 60 |  |  | ns | 20 pF Load |
| Data Valid Before PROG | ${ }^{\text {t }} \mathrm{C}$ | 200 |  |  | ns | 80 pF Load |
| Data Valid After PROG | ${ }^{\text {t }}$ D | 20 |  |  | ns | 20 pF Load |
| Port 2 Floating After PROG | ${ }_{\text {t }}^{\mathrm{H}}$ | 0 |  | 150 | ns | 20 pF Load |
| PROG Negative Pulse Width | ${ }^{t} \mathrm{~K}$ | 900 |  |  | ns. |  |
| Ports 4-7 Valid After PROG | tPO |  |  | 700 | ns | 100 pF Load |
| Ports 4.7 Valid Before/After PROG | ${ }^{\text {t L P } 11}$ | 100 |  |  | ns |  |
| Port 2 Valid After PROG | ${ }^{\text {t ACC }}$ |  |  | 750 | ns | 80 pF Load |
| $\overline{\text { CS }}$ Valid Before/After PROG | $\mathrm{t}_{\mathrm{CS}}$ | 50 |  |  | ns |  |



ABSOLUTE MAXIMUM

## CURRENT SINKING CAPABILITY (1)



Note: (1) This curve plots the guaranteed worst case current sinking capability of any I/O port line versus the total sink current of all pins. The $\mu$ PD8243 is capable of sinking 5 mA (for $\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$ ) through each of the $16 \mathrm{I} / \mathrm{O}$ lines simultaneously. The current sinking curve shows how the individual I/O line drive increases if all the I/O lines are not fully loaded.

## PACKAGE OUTLINES $\mu$ PD8243C



| ITEM | MILLIMETERS | INCHES |
| :--- | :--- | :--- |
| A | 33 MAX | 1.3 MAX |
| B | 2.53 | 0.1 |
| C | 2.54 | 0.1 |
| D | $0.5 \pm 0.1$ | $0.02 \cdot 0.004$ |
| E | 27.94 | 1.1 |
| F | 1.5 | 0.059 |
| G | 2.54 MIN | 0.1 MIN |
| H | 0.5 MIN | 0.02 MIN |
| I | 5.22 MAX | 0.205 MAX |
| J | 5.72 MAX | 0.225 MAX |
| K | 15.24 | 0.6 |
| L | 13.2 | 0.52 |
| M | $0.25+0.10$ | $0.01+0.004$ |

## PROGRAMMABLE COMMUNICATION INTERFACES

## DESCRIPTION

The $\mu$ PD8251 and $\mu$ PD8251A Universal Synchronous/Asynchronous Receiver/ Transmitters (USARTs) are designed for microcomputer systems data communications. The USART is used as a peripheral and is programmed by the $\mu$ PD8080 or other processor to communicate in commonly used serial data transmission techniques including IBM Bi-Sync. The USART receives serial data streams and converts them into parallel data characters for the processor. While receiving serial data, the USART will also accept data characters from the processor in parallel format, convert them to serial format and transmit. The USART will signal the processor when it has completely received or transmitted a character and requires service. Complete USART status including data format errors and control signals such as TxE and SYNDET, is available to the processor at any time.

FEATURES - Asynchronous or Synchronous Operation

- Asynchronous:

5-8 Bit Characters
Clock Rate -1 , 16 or $64 \times$ Baud Rate
Break Character Generation
Select 1, 1-1/2, or 2 Stop Bits
False Start Bit Detector
Automatic Break Detect and Handling ( $\mu$ PD8251A)

- Synchronous:

5-8 Bit Characters
Internal or External Character Synchronization
Automatic Sync Insertion
Single or Double Sync Characters

- Baud Rate (1X Mode) - DC to 56K Baud ( $\mu$ PD8251)
- DC to 64K Baud ( $\mu$ PD8251A)
- Full Duplex, Double Buffered Transmitter and Receiver
- Parity, Overrun and Framing Flags
- Fully Compatible with 8080/8085/ $\mu$ PD780 (Z80TM)
- All Inputs and Outputs are TTL Compatible
- Single +5 Volt Supply
- Separate Device Receive and Transmit TTL Clocks
- 28 Pin Plastic DIP Package
- N-Channel MOS Technology
PIN CONFIGURATION


## $\mu$ PD8251/8251A

The $\mu$ PD8251 and $\mu$ PD8251A Universal Synchronous/Asynchronous Receiver/ Transmitters are designed specifically for 8080 microcomputer systems but work with

FUNCTIONAL DESCRIPTION most 8 -bit processors. Operation of the $\mu$ PD8251 and $\mu$ PD8251A, like other I/O devices in the 8080 family, are programmed by system software for maximum flexibility.

In the receive mode, the $\mu$ PD8251 or $\mu$ PD8251A converts incoming serial format data into parallel data and makes certain format checks. In the transmit mode, it formats parallel data into serial form. The device also supplies or removes characters or bits that are unique to the communication format in use. By performing conversion and formatting services automatically, the USART appears to the processor as a simple or "transparent" input or output of byte-oriented parallel data.

The $\mu$ PD8251A is an advanced design of the industry standard 8251 USART. It operates with a wide range of microprocessors, including the 8080,8085 , and $\mu$ PD780 (Z80 TM). The additional features and enhancements of the $\mu$ PD8251A over the $\mu$ PD8251 are listed below.

1. The data paths are double-buffered with separate I/O registers for control, status, Data In and Data Out. This feature simplifies control programming and minimizes processor overhead.
2. The Receiver detects and handles "break" automatically in asynchronous operations, which relieves the processor of this task.
3. The Receiver is prevented from starting when in "break" state by a refined Rx initialization. This also prevents a disconnected USART from causing unwanted interrupts.
4. When a transmission is concluded the TxD line will always return to the marking state unless SBRK is programmed.
5. The Tx Disable command is prevented from halting transmission by the $T_{x}$ Enable Logic enhancement, until all data previously written has been transmitted. The same logic also prevents the transmitter from turning off in the middle of a word.
6. Internal Sync Detect is disabled when External Sync Detect is programmed. An External Sync Detect Status is provided through a flip-flop which clears itself upon a status read.
7. The possibility of a false sync detect is minimized by:

- ensuring that if a double sync character is programmed, the characters be contiguously detected.
- clearing the Rx register to all Logic 1s $\left(\mathrm{VOH}_{\mathrm{OH}}\right)$ whenever the Enter Hunt command is issued in Sync mode.

8. The $\overline{R D}$ and $\overline{W R}$ do not affect the internal operation of the device as long as the $\mu$ PD8251A is not selected.
9. The $\mu$ PD8251A Status can be read at any time, however, the status update will be inhibited during status read.
10. The $\mu$ PD8251A has enhanced $A C$ and DC characteristics and is free from extraneous glitches, providing higher speed and improved operating margins.
11. Baud rate from $D C$ to $64 K$.

| $\mathbf{C} / \overline{\mathbf{D}}$ | $\overline{\mathbf{R D}}$ | $\overline{\mathbf{W R}}$ | $\overline{\mathbf{C S}}$ |  |
| :---: | :---: | :---: | :---: | :--- |
| 0 | 0 | 1 | 0 | $\mu$ PD8251 $/ \mu$ PD8251A $\rightarrow$ Data Bus |
| 0 | 1 | 0 | 0 | Data Bus $\rightarrow \mu$ PD8251 $/ \mu$ PD8251A |
| 1 | 0 | 1 | 0 | Status $\rightarrow$ Data Bus |
| 1 | 1 | 0 | 0 | Data Bus $\rightarrow$ Control |
| $X$ | $X$ | $X$ | 1 | Data Bus $\rightarrow$ 3-State |
| $X$ | 1 | 1 | 0 |  |

BASIC OPERATION

TM:Z80 is a registered trademark of Zilog.


| ABSOLUTE MAXIMUM RATINGS* | Operating Temperature | $-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: |
|  | Storage Temperature | $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
|  | Ali Output Voltages | -0.5 to +7 Volts |
|  | All Input Voltages | -0.5 to +7 Volts |
|  | Supply Voltages | -0.5 to +7 Volts |

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
DC CHARACTERISTICS
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% ; \mathrm{GND}=0 \mathrm{~V}$

| PARAMETER | SYMBOL | LIMITS |  |  |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PD8251 |  |  | $\mu$ PD8251A |  |  |  |
|  |  | MIN | TYP | MAX | MIN | MAX |  |  |
| Input Low Voltage | $V_{\text {IL }}$ | -0.5 |  | 0.8 | 0.5 | 0.8 | V |  |
| Input High Voltage | $V_{1 H}$ | 2.0 |  | $\mathrm{V}_{\mathrm{CC}}$ | 2.0 | $\mathrm{V}_{\mathrm{CC}}$ | V |  |
| Output Low Voltage | $\mathrm{V}_{\mathrm{OL}}$ |  |  | 0.45 |  | 0.45 | V | $\begin{aligned} & \mu \mathrm{PD} 8251: \quad \mathrm{I}_{\mathrm{OL}}=1.7 \mathrm{~mA} \\ & \mu \mathrm{PD} 8251 \mathrm{~A}: \mathrm{I}_{\mathrm{OL}}=2.2 \mathrm{~mA} \end{aligned}$ |
| Output. High Voltage | VOH | 2.4 |  |  | 2.4 | - | V | $\mu$ PD8251: $\quad{ }^{\mathrm{I} O H}=-10 \mathrm{C} \mu \mathrm{A}$ <br> $\mu \mathrm{PD} 8251 \mathrm{~A}: \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$ |
| Data Bus Leakage |  |  |  | -50 |  | -10 | $\mu$ | $\mathrm{V}_{\text {OUT }}=0.45 \mathrm{~V}$ |
|  | ' |  |  | 10 |  | 10 | $\mu$ | $V_{\text {OUT }}=V_{\text {CC }}$ |
| Input Load Current | IIL |  |  | 10 |  | 10 | $\mu \mathrm{A}$ | At 5.5 V |
| Power Supply Current | !cc |  | 45 | 80 |  | 100 | mA | $\mu$ PD8251A: All Outputs $=$ Logic 1 |

CAPACITANCE
$T_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{VCC}=\mathrm{GND}=0 \mathrm{~V}$

| PARAMETER | SYMBOL | MIN | TYP | MAX | UNIT | TEST <br> CONDITIONS |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance | $\mathrm{C}_{\text {IN }}$ |  |  | 10 | pF | $\mathrm{fc}=1 \mathrm{MHz}$ |
| I/O Capacitance | $\mathrm{C}_{\mathrm{I} / \mathrm{O}}$ |  |  | 20 | pF | Unmeasured <br> pins returned <br> to GND |

$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}-5.0 \mathrm{~V} \cdot 5 \% ; \mathrm{GND}=0 \mathrm{~V}$.

| PARAMETER | SYMBOL | LIMITS |  |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PD8251 |  | $\mu$ PD8215A |  |  |  |
|  |  | MIN | MAX | MIN | MAX |  |  |
| READ |  |  |  |  |  |  |  |
| Address Stable before $\overline{\mathrm{READ}}, \mathrm{C} \overline{\mathrm{S}}, \overline{\mathrm{C} / \bar{D}}$ ) | ${ }^{\text {t }}$ AR | 50 | . . | 0 |  | ns |  |
| Address Hold Time for READ, ICS, CD | tra | 5 |  | 0 |  | ns |  |
| READ Pulse Width | trR | 430 |  | 250 |  | ns |  |
| Data Delay from $\overline{\text { READ }}$ | ${ }^{\text {tr }}$ D |  | 350 |  | 200 | ns | $\begin{aligned} & \mu \text { PD8251: } C_{L}=100 \mathrm{pF} \\ & \mu \text { PD8251A: } C_{L}=150 \mathrm{pF} \end{aligned}$ |
| $\overline{\text { READ }}$ to Data Floating | ${ }^{1} \mathrm{DF}$ | 25 | 200 | 10 | 100 | ns | $\begin{array}{ll} \mu \text { PD8251 } & C_{L}=100 \mathrm{pF} \\ \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{array}$ |
| WRITE |  |  |  |  |  |  |  |
| Address Stable before $\overline{\text { WRITE }}$ | taw | 20 |  | 0 |  | ns |  |
| Address Hold Time for WRITE | twA | 20 |  | 0 |  | ns |  |
| WRITE Pulse Width | tww | 400 |  | 250 |  | ns |  |
| Data Set-Up Time for WRITE | tow | 200 |  | 150 |  | ns |  |
| Data Hold Time for WRITE | two | 40 |  | 0 |  | ns |  |
| Recovery Time Between WRITES (2) | tRV | 6 |  | 6 |  | ${ }^{\text {t }} \mathrm{CY}$ |  |
| OTHER TIMING |  |  |  |  |  |  |  |
| Clock Period (3) | ${ }^{1} \mathrm{CY}$ | 0.420 | 1.35 | 0.32 | 1.35 | $\mu \mathrm{s}$ |  |
| Clock Pulse Width High | ${ }_{\text {tow }}$ | 220 | ${ }^{0.7}{ }^{\text {c }} \mathrm{CY}$ | 120 | ${ }^{\text {T }} \mathrm{Cr} 9.90$ | ns |  |
| Clock Pulse Width Low | ${ }^{\text {tow }}$ |  |  | 90 |  | ns |  |
| Clock Rise and Fall Time | tr.tF | 0 | 50 | 5 | 20 | ns |  |
| T×D Delay from Falling Edge of $T \times \mathrm{C}$ | ${ }^{\text {D DTX }}$ |  | 1 |  | 1 | us | $\mu \mathrm{PD} 8251$ : $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ |
| R× Data Set-Up Time to Sampling Puise | ${ }^{\text {I SR }}$ x | 2. |  | 2 |  | $\mu \mathrm{s}$ |  |
| Rx Data Hoid Time to Sampling Pulse | ${ }_{\text {thRx }}$ | 2 |  | 2 |  | $\mu \mathrm{s}$ |  |
| Transmitter Input Clock Frequency <br> $1 \times$ Baud Rate <br> 16× Baud Rate <br> $64 \times$ Baud Rate | ${ }^{\text {f }}$ Tx | DC | 56 |  | 64 | $\mathrm{kHz}_{2}$ |  |
|  |  | DC | 520 |  | 310 | $\mathrm{kH}_{2}$ |  |
|  |  | DC | 520 |  | 615 | kHz |  |
| iransinitter Inpui Clock Pulse Width <br> $1 \times$ Baud Rate <br> 16X and $64 \times$ Baud Rate | ${ }^{\text {t }}$ TPW | $\frac{12}{1}$ |  | $\frac{12}{1}$ |  | ${ }^{\text {t }} \mathrm{C} \mathrm{C} Y$ |  |
| Transmitter Input Clock Pulse Delay <br> $1 \times$ Baud Rate <br> 16X and $64 \times$ Baud Rate | ${ }^{\text {t }}$ TPD | $\frac{15}{3}$ |  | 15 3 |  | ${ }_{\text {try }}^{\text {try }}$ |  |
| Receiver Input Clock Frequency <br> $1 \times$ Baud Rate <br> 16X Baud Rate <br> 64× Baud Rate | ${ }^{\text {f }} \times$ | DC | 56 | 3 | 64 | ' CY kHz kHz |  |
|  |  | DC | 520 |  | 310 | $\mathrm{kHz}^{\mathrm{kHz}}$ |  |
|  |  | DC | 520 |  | 615 | kHz |  |
| Receiver Input Clock Pulse Width 1X Baud Rate 16 X and 64 X Baud Rate | ${ }^{\text {t R P W }}$ | 12 | . | 12 |  | ticy |  |
| Receiver Input Clock Pulse Delay 1X Baud Rate 16X and $64 \times$ Baud Rate | ${ }^{\text {t RPD }}$ | 15 3 |  | 15 |  | CY ter icy |  |
|  |  | 3 |  | 3 |  | ${ }^{1} \mathrm{CY}$ |  |
| TxRDY Delay from Center of Data Bit | ${ }^{1} \mathrm{~T} \times$ |  | 16 |  | 8 | ${ }^{\text {t }} \mathrm{CY}$ | $\mu$ PD8251: $C_{L}=50 \mathrm{pF}$ |
| RxRDY Delay from Center of Data Bit Internal SYNDET Delay from Center of Data Bit | $\begin{aligned} & \hline \text { trx } \\ & \text { is } \end{aligned}$ |  | $\begin{aligned} & 20 \\ & 25 \end{aligned}$ |  | $\begin{aligned} & 24 \\ & 24 \end{aligned}$ | $\begin{aligned} & { }^{\circ} \mathrm{CY} \\ & { }^{\mathrm{C}} \mathrm{CY} \end{aligned}$ |  |
| External SYNDET Set-Up Time before Falling Edge of $\overline{R \times C}$ | 'ES ${ }^{\text {. }}$ |  | 16 |  | 16 | ${ }^{1} \mathrm{C} Y$ |  |
| TxEMPTY Delay from Center of Data Bit | ${ }^{\text {t }}$ T $\times$ E |  | 16 |  | 20 | ${ }^{1} \mathrm{CY}$ | $\mu \mathrm{PD8251} \mathrm{C}_{\text {c }} \mathrm{C}_{\text {L }}=50 \mathrm{pF}$ |
| Control Delay from Rising Edge of WRITE (TXE, $\overline{\text { DTR }, ~ \overline{R T S})}$ | ${ }^{\text {t }} \mathrm{W}$ C |  | 16 |  | 8 | ${ }^{1} \mathrm{C} Y$. |  |
| Control to READ Set.Up Time ( $\overline{\mathrm{DSR}}, \overline{\mathrm{CTS}}$ ) | ${ }^{\text {c }}$ CR |  | 16 |  | 20 | ${ }^{1} \mathrm{Cr}$ |  |

Notes. (1) AC timings measured at $V_{O H}=2.0, V_{O L}=0.8$, and with load circuit of Figure 1
(2) This recovery time is for initialization only, when MODE, SYNC1, SYNC2, COMMAND and first DATA BYTES are written into the USART. Subsequent writing of both COMMAND and DATA are only allowed when TxRDY $=1$.
(3) The $T \times C$ and $R \times C$ frequencies have the following limitations with respect to CLK.

For 16 X and $64 \times$ Baud Rate, ${ }^{\prime} T X$ or $\mathrm{f}_{\mathrm{RX}} \leqslant 1 /(4.5 \mathrm{t} \mathrm{CY})$
(4) Reset Pulse Width $=6^{\mathrm{t}} \mathrm{CY}^{\mathrm{CY}}$ minimum.


TIMING WAVEFORM



TIMING WAVEFORM (CONT.)

WRITE CONTROL OR OUTPUT PORT CYCLE
(PROCESSOR $\rightarrow$ USART)


READ CONTROL OR INPUT PORT CYCLE (PROCESSOR $\leftarrow$ USART)

NOTES:
(1) $\mathrm{T}_{\mathrm{Wc}}$ Includes the response timing of a control byte.
(2) $T_{C R}$ Includes the effect of $\mathbf{C T S}$ on the $T_{X E N B L}$ circuitry


TRANSMITTER CONTROL AND FLAG TIMING (ASYNC MODE)

TIMING WAVEFORM (CONT.)


RECEIVER CONTROL AND FLAG TIMING (ASYNC MODE)


EXAMPLE FORMAT $\mathbf{= 5} 5$ BIT CHARACTER WITH PARITY ANO 2 SYNC CHARACTERS.

TRANSMITTER CONTROL AND FLAG TIMING (SYNC MODE)


## RECEIVER CONTROL AND FLAG TIMING (SYNC MODE)

| PIN |  |  | FUNCTION |
| :---: | :---: | :---: | :---: |
| NO. | SYMBOL | NAME |  |
| $\begin{gathered} 1,2, \\ 27,28 \end{gathered}$ $5-8$ | $\mathrm{D}_{7}-\mathrm{D}_{0}$ | Data Bus Buffer | An 8-bit, 3-state bi-directional buffer used to interface the USART to the processor data bus. Data is transmitted or received by the buffer in response to input/output or, Read/ Write instructions from the processor. The Data Bus Buffer also transfers Control words, Command words, and Status. |
| 26 | $\mathrm{V}_{\mathrm{CC}}$ | $V_{\text {CC }}$ Supply Voltage | +5 volt supply |
| 4 | GND | Ground | Ground |
| Read/Write Control Logic |  |  | This logic block accepts inputs from the processor Control Bus and generates control signals for overall USART operation. The Mode Instruction and Command Instruction registers that store the control formats for device functional definition are located in the Read/ Write Control Logic. |
| 21 | RESET | Reset | A "one" on this input forces the USART into the "Idle" mode where it will remain until reinitialized with a new set of control words. Minimum RESET pulse width is $6{ }^{t} \mathrm{CY}$. |
| 20 | CLK | Clock Pulse | The CLK input provides for internal device timing and is usually connected to the Phase 2 (TTL) output of the $\mu$ PB8224 Clock Generator. External inputs and outputs are not referenced to CLK, but the CLK frequency must be at least 30 times the Receiver or Transmitter clocks in the synchronous mode and 4.5 times for the asynchronous mode. |
| 10 | $\overline{W R}$ | Write Data | A "zero" on this input instructs the USART to accept the data or control word which the processor is writing out on the data bus. |
| 13. | $\overline{\mathrm{RD}}$ | Read Data | A "zero" on this input instructs the USART to place the data or status information onto the Data Bus for the processor to read. |
| 12 | C/D | Control/Data | The Control/Data input, in conjunction with the $\overline{W R}$ and $\overline{R D}$ inputs, informs the USART to accept or provide either a data character, control word or status information via the Data Bus. $0=$ Data; $1=$ Control. |
| 11 | $\overline{\overline{C S}}$ | Chip Select | A "zero" on this input enables the USART to read from or write to the processor. |
| : | . Mod | Control | The $\mu$ PD8251 and $\mu$ PD8251A have a set of control inputs and outputs which may be used to simplify the interface to a Modem. |
| 22 | $\overline{\mathrm{DSR}}$ | Data Set Ready | The Data Set Ready input can be tested by the processor via Status information. The $\overline{\mathrm{DSR}}$ input is normally used to test Modem Data Set Ready condition. |
| 24 | $\overline{\text { DTR }}$ | Data Terminal Ready | The Data Terminal Ready output can be controlled via the Command word. The DTR output is normally used to drive Modem Data Terminal Ready or Rate Select lines. |
| 23 | $\overline{\text { RTS }}$ | Request to Send | The Request to Send output can be controlled via the Command word. The RTS output is normally used to drive the Modem Request to Send line. |
| 17 | $\overline{\mathrm{CTS}}$ | Clear to Send | A "zero" on the Clear to Send input enables the USART to transmit serial data if the TxEN bit in the Command Instruction register is enabled (one). |

TRANSMIT BUFFER
The Transmit Buffer receives parallel data from the Data Bus Buffer via the internal data bus, converts parallel to serial data, inserts the necessary characters or bits needed for the programmed communication format and outputs composite serial data on the TxD pin.

## PIN IDENTIFICATION (CONT.)

| PIN |  |  | FUNCTION |
| :---: | :---: | :---: | :---: |
| NO. | SYMBOL | NAME |  |
| Transmit Control Logic |  |  | The Transmit Control Logic accepts and outputs all external and internal signals necessary for serial data transmission. |
| 15 | TxRDY | Transmitter Ready | Transmitter Ready signals the processor that the transmitter is ready to accept a data character. TxRDY can be used as an interrupt or may be tested through the Status information for polled operation. Loading a character from the processor automatically resets $T \times R D Y$, on the leading edge. |
| 18 | TxE | Transmitter Empty | The Transmitter Empty output signals the processor that the USART has no further characters to transmit. T×E is automatically reset upon receiving a data character from the processor. In half-duplex, TxE can be used to signal end of a transmission and request the processor to "turn the line around." The TxEn bit in the command instruction does not effect TXE. <br> In the Synchronous mode, a "one" on this output indicates that a Sync character or characters are about to be automatically transmitted as "fillers" because the next data character has not been loaded. |
| 9 | $\overline{\mathrm{TxC}}$ | Transmitter Clock | The Transmitter Clock controls the serial charac ter transmission rate. In the Asynchronous mode, the $\overline{T \times C}$ frequency is a multiple of the actual Baud Rate. Two bits of the Mode Instruction select the multiple to be $1 x, 16 x$, or $64 x$ the Baud Rate. In the Synchronous mode, the $\overline{T \times C}$ frequency is automatically selected to equal the actual Baud Rate. <br> Note that for both Synchronous and Asynchronous modes, serial data is shifted out of the USART by the falling edge of $\overline{T x C}$. |
| 19 | T×D | Transmitter Data | The Transmit Control Logic outputs the composite serial data stream on this pin. |



The Receive Buffer accepts serial data input at the $\overline{\mathrm{RxD}}$ pin and converts the data from serial to parallel format. Bits or characters required for the specific communication technique in use are checked and then an eight-bit "assembled" character is readied for the processor. For communication techniques which require less than eight bits, the $\mu$ PD8251 and $\mu$ PD8251A set the extra bits to "zero."

| PIN |  |  | FUNCTION |
| :---: | :---: | :---: | :---: |
| NO. | SYMBOL | NAME |  |
| Receiver Control Logic |  |  | This block manages all activities related to incoming data. |
| 14 | $R \times R D Y$ | Receiver Ready | The Receiver Ready output indicates that the Receiver Buffer is ready with an "assembled" character for input to the processor. For Polled operation, the processor can check RxRDY using a Status Read or RxRDY can be connected to the processor interrupt structure. Note that reading the character to the processor automatically resets R×RDY. |
| 25 | $\overline{\mathrm{R} \times \mathrm{C}}$ | Receiver Clock | The Receiver Clock determines the rate at which the incoming character is received. In the Asynchronous mode, the $\overrightarrow{\mathrm{RxC}}$ frequency may be 1.16 or 64 times the actual Baud Rate but in the Synchronous mode the $\widehat{R \times C}$ frequency must equal the Baud Rate. Two bits in the mode instruction select Asynchronous at $1 x, 16 x$ or $64 x$ or Synchronous operation at $1 x$ the Baud Rate. <br> Unlike $\overline{T \times C}$, data is sampled by the $\mu$ PD8251 and $\mu \mathrm{PD} 8251 \mathrm{~A}$ on the rising edge of $\overline{\mathrm{R} \times \mathrm{C}}$. (1) |
| 3 | $R \times D$ | Receiver Data | A composite serial data stream is received by the Receiver Control Logic on this pin. |
| 16 | SYNDET ( $\mu$ PD8251) | Sync Detect | The SYNC Detect pin is only used in the Synchronous mode. The $\mu$ PD8251 may be programmed through the Mode Instruction to operate in either the internal or external Sync mode and SYNDET then functions as an output or input respectively. In the internal Sync mode, the SYNDET output will go to a "one" when the $\mu$ PD8251 has located the SYNC character in the Receive mode. If double SYNC character (bi-sync) operation has been programmed, SYNDET will go to "one" in the middle of the last bit of the second SYNC character. SYNDET is automatically reset to "zero" upon a Status Read or RESET. In the external SYNC mode, a "zero" to "one" transition on the SYNDET input will cause the $\mu$ PD8251 to start assembling data character on the next falling edge of $\overline{\mathrm{R} \times C}$. The length of the SYNDET input should be at least one $\overline{R \times C}$ period, but may be removed once the $\mu$ PD8251 is in SYNC. |
| 16 | SYNDET/BD ( $\mu$ PD8251A) | Sync Detect/ Break Detect | The SYNDET/BD pin is used in both Siynchronous and Asynchronous modes. When in SYNC mode the features for the SYNDET pin described above apply. When in Asynchronous mode, the Break Detect output will go high when an all zero word of the programmed length is received. This word consists of: start bit, data bit, parity bit and one stop bit. Reset only occurs when Rx data returns to a logic one state or upon chip reset. The state of Break Detect can be read as a status bit. |

Note: (1) Since the $\mu$ PD8251 and $\mu$ PD8251A will frequently be handling both the reception and transmission for a given link, the Receive and Transmit Baud Rates will be same. $\overline{R \times C}$ and $\overline{T \times C}$ then require the same frequency and may be tied together and connected to a single clock source or Baud Rate Generator.
Examples: If the Baud Rate equals 110 (Async): If the Baud Rate equals 300:
$\overline{R x C}$ or $\overline{T x C}$ equals $110 \mathrm{~Hz}(1 x)$
$\overline{\mathrm{RxC}}$ or $\overline{\mathrm{TxC}}$ equals $1.76 \mathrm{KHz}(16 x)$
$\overline{\mathrm{RxC}}$ or $\overline{\mathrm{TXC}}$ equals $7.04 \mathrm{KHz}(64 x)$
$\overline{R x C}$ or $\overline{T x C}$ equals $300 \mathrm{~Hz}(1 x) A$ or $S$
$\overline{R x C}$ or $\overline{T x C}$ equals 4800 Hz (16x) A only
$\overline{\mathrm{RxC}}$ or $\overline{\mathrm{TxC}}$ equals 19.2 KHz (64x) A only

OPERATIONAL DESCRIPTION

A set of control words must be sent to the $\mu$ PD8251 and $\mu$ PD8251A to define the desired mode and communications format. The control words will specify the BAUD RATE FACTOR ( $1 \mathrm{x}, 16 \mathrm{x}, 64 \mathrm{x}$ ), CHARACTER LENGTH ( 5 to 8 ), NUMBER OF STOP BITS (1, 1-1/2, 2) ASYNCHRONOUS or SYNCHRONOUS MODE, SYNDET (IN or OUT), PARITY, etc.

After receiving the control words, the $\mu \mathrm{PD} 8251$ and $\mu \mathrm{PD} 8251 \mathrm{~A}$ are ready to communicate. TxRDY is raised to signal the processor that the USART is ready to receive a character for transmission. When the processor writes a character to the USART, TxRDY is automatically reset.

Concurrently, the $\mu$ PD8251 and $\mu$ PD8251A may receive serial data; and after receiving an entire character, the RxRDY output is raised to indicate a completed character is ready for the processor. The processor fetch will automatically reset RxRDY.

Note: The $\mu$ PD8251 and $\mu$ PD8251A may provide faulty RxRDY for the first read after power-on or for the first read after receive is re-enabled by a command instruction ( $R \times E$ ). A dummy read is recommended to clear faulty $R \times R D Y$. But this is not the case for the first read after hardware or software reset after the device operation has once been established.

The $\mu$ PD8251 and $\mu$ PD8251A cannot transmit until the TxEN (Transmitter Enable) bit has been set by a Command Instruction and until the $\overline{\text { CTS }}$ (Clear to Send) input is a "zero". TxD is held in the "marking"' state after Reset awaiting new control words.

USART PROGRAMMING
The USART must be loaded with a group of two to four control words provided by the processor before data reception and transmission can begin. A Reset (internal or external) must immediately proceed the control words which are used to program the complete operational description of the communications interface. If an external RESET is not available, three successive 00 Hex or two successive 80 Hex command instructions ( $C / \bar{D}=1$ ) followed by a software reset command instruction ( 40 Hex ) can be used to initialize the $\mu$ PD8251 and $\mu$ PD8251A.

There are two control word formats:

1. Mode Instruction
2. Command Instruction

MODE INSTRUCTION This control word specifies the general characteristics of the interface regarding the SYNCHRONOUS or ASYNCHRONOUS MODE, BAUD RATE FACTOR, CHARACTER LENGTH, PARITY, and NUMBER OF STOP BITS. Once the Mode Instruction has been received, SYNC characters or Command Instructions may be inserted depending on the Mode Instruction content.


> NOTE (1) The second SYNC character is skipped if MODE instruction has programmed the $\mu$ PD8251 and $\mu$ PD8251A to single character Internal SYNC Mode. Both SYNC characters are skipped if MODE instruction has programmed the $\mu$ PD8251 and $\mu$ PD8251A to ASYNC mode.

## MODE INSTRUCTION DEFINITION

## ASYNCHRONOUS TRANSMISSION

ASYNCHRONOUS RECEIVE

## MODE INSTRUCTION <br> FORMAT ASYNCHRONOUS MODE



PROCESSOR BYTE (5-8 BITS/CHAR)


TRANSMISSION FORMAT


PROCESSOR BYTE (5-8 BITS/CHAR) (3)


Notes: (i) Generated by $\mu$ PD8251/8251A
(2) Does not appear on the Data Bus.
(3) If character length is defined as 5, 6, or 7 bits, the unused bits are set to "zero."

## $\mu$ PD8251/8251A

As in Asynchronous transmission, the TxD output remains "high" (marking) until the $\mu$ PD8251 and $\mu$ PD8251A receive the first character (usually a S.YNC character) from the processor. After a Command Instruction has set TxEN and after Clear to Send ( $\overline{\mathrm{CTS}}$ ) goes low, the first character is serially transmitted. Data is shifted out on the falling edge of $\overline{\mathrm{TxC}}$ and the same rate as $\overline{\mathrm{TxC}}$.

Once transmission has started, Synchronous Mode format requires that the serial data stream at TxD continue at the $\overline{T \times C}$ rate or SYNC will be lost. If a data character is not provided by the processor before the $\mu$ PD8251 and $\mu$ PD8251A Transmit Buffer becomes empty, the SYNC character(s) loaded directly following the Mode Instruction will be automatically inserted in the TxD data stream. The SYNC character(s) are inserted to fill the line and maintain synchronization until new data characters are available for transmission. If the $\mu$ PD8251 and $\mu$ PD8251A become empty, and must send the SYNC character(s), the TxEMPTY output is raised to signal the processor that the Transmitter Buffer is empty and SYNC characters are being transmitted. TxEMPTY is automatically reset by the next character from the processor.

In Synchronous Receive, character synchronization can be either external or internal. If the internal SYNC mode has been selected, and the Enter HUNT (EH) bit

## SYNCHRONOUS RECEIVE

 has been set by a Command Instruction, the receiver goes into the HUNT mode.Incoming data on the RxD input is sampled on the rising edge of $\overline{\mathrm{R} \times \mathrm{C}}$, and the Receive Buffer is compared with the first SYNC character after each bit has been loaded until a match is found. If two SYNC characters have been programmed, the next received character is also compared. When the SYNC character(s) programmed have been detected, the $\mu$ PD8251 and $\mu$ PD8251A leave the HUNT mode and are in character synchronization. At this time, the SYNDET (output) is set high. SYNDET is automatically reset by a STATUS READ.

If external SYNC has been specified in the Mode Instruction, a "one" applied to the SYNDET (input) for at least one $\overline{\mathrm{RxC}}$ cycle will synchronize the USART.

Parity and Overrun Errors are treated the same in the Synchronous as in the Asynchronous Mode. If not in HUNT, parity will continue to be checked even if the receiver is not enabled. Framing errors do not apply in the Synchronous format.

The processor may command the receiver to enter the HUNT mode with a Command Instruction which sets Enter HUNT (EH) if synchronization is lost.


MODE INSTRUCTION FORMAT SYNCHRONOUS MODE

## TRANSMIT/RECEIVE FORMAT SYNCHRONOUS MODE



COMMAND INSTRUCTION FORMAT

After the functional definition of the $\mu$ PD8251 and $\mu$ PD8251A has been speeified by the Mode Instruction and the SYNC character(s) have been entered (if in SYNC mode), the USART is ready to receive Command Instructions and begin communication. A Command Instruction is used to control the specific operation of the format selected by the Mode Instruction. Enable Transmit, Enable Receive, Error Reset and Modem Controls are controlled by the Command Instruction.
After the Móde Instruction and the SYNC character(s) (as needed) are loaded, all subsequent "control writes" ( $C / \bar{D}=1$ ) will load or overwrite the Command Instruction register. A Reset operation (internal via CMD IR or external via the RESET input) will cause the $\mu$ PD8251 and $\mu$ PD8251A to interpret the next "control write", which must immediately follow the reset, as a Mode Instruction.

STATUS READ FORMAT It is frequently necessary for the processor to examine the status of an active interface device to determine if errors have occurred or if there are other conditions which require a response from the processor. The $\mu$ PD8251 and $\mu$ PD8251A have features which allow the processor to read the device status at any time. A data fetch is issued by the processor while holding the $C / \bar{D}$ input "high" to obtain device Status Information. Many of the bits in the status register are copies of external pins. This dual status arrangement allows the $\mu$ PD8251 and $\mu$ PD8251A to be used in both Polled and interrupt driven environments. Status update can have a maximum delay of 16 clock periods in the $\mu$ PD8251 and 28 clock periods in the $\mu$ PD8251A.

When a parity error is detected, the PE flag is set. It is cleared by setting the ER bit in a subsequent Command Instruction. PE being set does not inhibit USART operation.

OVERRUN ERROR

FRAMING ERROR

If the processor fails to read a data character before the one following is available, the OE flag is set. It is cleared by setting the ER bit in a subsequent Command Instruction. Although OE being set does not inhibit USART operation, the previously recejved character is overwritten and lost.

| $D_{7}$ | $D_{6}$ | $D_{5}$ | $D_{4}$ | $D_{3}$ | $D_{2}$ | $D_{1}$ | $D_{0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| EH | $I R$ | $R T S$ | $E R$ | SBRK | RXE | DTR | TXEN |

COMMAND INSTRUCTION FORMAT

TRANSMIT ENABLE 1 = enable $0=$ disable

DATA TERMINAL READY "high" will force $\overline{\text { DTP. }}$ output to zero

## RECEIVE ENABLE 1 = enable

 $0=$ disable

REQUEST TO SEND "high" will force $\overline{R T S}$ output to zero


OVERRUN ERROR
The OE flag is set when the CPU does not read a character before the next one becomes available It is reset by the ER bit of the Command Instruction. OE does not inhibit operation of the $\mu$ PD8251 and $\mu$ PD8251A; but, the previously overrun character is los


Notes:
(1) No effect in ASYNC mode.
(2) TxRDY, status bit is not totally equivalent to the TxRDY output pin, the relationship is as follows
$\qquad$


ASYNCHRONOUS SERIAL INTERFACE TO CRT TERMINAL, DC to 9600 BAUD


ASYNCHRONOUS INTERFACE TO TELEPHONE LINES


SYNCHRONOUS INTERFACE TO TERMINAL OR PERIPHERAL DEVICE


Plastic

| ITEM | MILLIMETERS | INCHES |
| :--- | :---: | :--- |
| A | 38.0 MAX. | 1.496 MAX. |
| B | 2.49 | 0.098 |
| C | 2.54 | 0.10 |
| D | $0.5 \pm 0.1$ | $0.02 \pm 0.004$ |
| E | 33.02 | 1.3 |
| F | 1.5 | 0.059 |
| G | 2.54 MIN. | 0.10 MIN. |
| H | 0.5 MIN. | 0.02 MIN. |
| I | 5.22 MAX. | 0.205 MAX. |
| J | 5.72 MAX. | 0.225 MAX. |
| K | 15.24 | 0.6 |
| L | 13.2 | 0.52 |
| M | $\dot{d}+0.10$ | $0.01+0.004$ |

PACKAGE OUTLINES $\mu$ PD8251C/D $\mu$ PD8251AC/D


Ceramic

| ITEM | MILLIMETERS | INCHES |
| :---: | :---: | :--- |
| A | 51.5 MAX. | 2.03 MAX. |
| B | 1.62 MAX. | 0.06 MAX. |
| C | $2.54 \pm 0.1$ | $0.1 \pm 0.004$ |
| D | $0.5 \pm 0.1$ | $0.02 \pm 0.004$ |
| E | $48.26 \pm 0.1$ | $1.9 \pm 0.004$ |
| F | 1.02 MIN. | 0.04 MIN. |
| G | 3.2 MIN. | 0.13 MIN. |
| H | 1.0 MIN. | 0.04 MIN. |
| I | 3.5 MAX. | 0.14 MAX. |
| J | 4.5 MAX. | 0.18 MAX. |
| K | 15.24 TYP. | 0.6 TYP. |
| L | 14.93 TYP. | 0.59 TYP. |
| M | $0.25 \pm 0.05$ | $0.01 \pm 0.0019$ |

# SINGLE/DOUBLE DENSITY FLOPPY DISK CONTROLLER 

DESCRIPTION

FEATURES

TM:Z80 is a registered trademark of Zilog, Inc.
The $\mu$ PD765 is an LSI .Floppy Disk Controller (FDC) Chip, which contains the circuitry and control functions for interfacing a processor to 4 Floppy Disk Drives. It is capable of supporting either IBM 3740 single density format (FM), or IBM System 34 Double Density format (MFM) including double sided recording. The $\mu$ PD765 provides control signals which simplify the design of an external phase locked loop, and write precompensation circuitry. The FDC simplifies and handles most of the burdens associated with implementing a Floppy Disk Interface.
Hand-shaking signals are provided in the $\mu$ PD765 which make DMA operation easy to incorporate with the aid of an external DMA Controller chip, such as the $\mu$ PD8257. The FDC will operate in either DMA or Non-DMA mode. In the Non-DMA mode, the FDC generates interrupts to the processor every time a data byte is available. In the DMA mode, the processor need only load the command into the FDC and all data transfers occur under control of the $\mu$ PD765 and DMA controller.
There are 15 separate commands which the $\mu$ PD765 will execute. Each of these commands require multiple 8-bit bytes to fully specify the operation which the processor wishes the FDC to perform. The following commands are available:

| Read Data | Scan High or Equal | Write Deleted Data |
| :--- | :--- | :--- |
| Read ID | Scan Low or Equal | Seek |
| Read Deleted Data | Specify | Recalibrate (Restore to Track 0) |
| Read a Track | Write Data | Sense Interrupt Status |
| Scan Equal | Format a Track | Sense Drive Status |

Address mark detection circuitry is internal to the FDC which simplifies the phase locked loop and read electronics. The track stepping rate, head load time, and head unload time may be programmed by the user. The $\mu$ PD765 offers many additional features such as multiple sector transfers in both read and write with a single command, and full IBM compatibility in both single and double density modes.

- IBM Compatible in Both Single and Double Density Recording Formats
- Programmable Data Record Lengths: 128, 256,512, or 1024 Bytes/Sector
- Multi-Sector and Multi-Track Transfer Capability
- Drive Up to 4 Floppy Disks
- Data Scan Capability - Will Scan a Single Sector or an Entire Cylinder's Worth of Data Fields, Comparing on a Byte by Byte Basis, Data in the Processor's Memory with Data Read from the Diskette
- Data Transfers in DMA or Non-DMA Mode
- Parallel Seek Operations on Up to Four Drives
- Compatible with Most Microprocessors Including 8080A, 8085A, $\mu$ PD780 (Z80TM)
- Single Phase 8 MHz Clock
- Single +5 Volt Power Supply
- Available in 40 Pin Plastic Dual-in-Line Package



| Operating Temperature | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| :---: | :---: |
| Storage Temperature | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| All Output Voltages | -0.5 to +7 Volts |
| All Input Voltages | -0.5 to +7 Volts |
| Supply Voltage VCC | -0.5 to +7 Volts |
| Power Dissipation | 1 Watt |

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP(1) | MAX |  |  |
| Input Low Voltage | VIL | -0.5 |  | 0.8 | V |  |
| Input High Voltage | $\mathrm{V}_{\text {IH }}$ | 2.0 |  | $\mathrm{V}_{\mathrm{CC}}+0.5$ | V |  |
| Output Low Voltage | $\mathrm{V}_{\mathrm{OL}}$ |  |  | 0.45 | V | $\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$ |
| Output High Voltage | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  | $\mathrm{V}_{\text {CC }}$ | V | $\mathrm{I}^{\mathrm{OH}}=-200 \mu \mathrm{~A}$ |
| Input Low Voltage (CLK + WR Clock) | $V_{\text {IL }}(\Phi)$ | -0.5 |  | 0.65 | V |  |
| Input High Voltage (CLK + WR Clock) | $\mathrm{V}_{1 H}(\Phi)$ | 2.4 |  | $V_{C C}+0.5$ | V |  |
| $V_{\text {cC }}$ Supply Current | ${ }^{1} \mathrm{CC}$ |  |  | 150 | mA |  |
| Input Load Current | ILI |  |  | 10 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ |
| (All Input Pins) |  |  |  | -10 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ |
| High Level Output Leakage Current | ${ }^{1} \mathrm{LOH}$ |  |  | 10 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$ |
| Low Level Output Leakage Current | ILOL |  |  | -10 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {OUT }}=+0.45 \mathrm{~V}$ |

Note: (1) Typical values for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.

| MNEMONIC | FUNCTION | DESCRIPTION | INSTRUCTION CODE |  |  |  |  |  |  |  | crcles | BYTES | FLAGS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{D}_{7}$ | $\mathrm{D}_{6}$ | D5 | $\mathrm{D}_{4}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{1}$ | $\mathrm{D}_{0}$ |  |  | C | AC | F0 | F1 |
| ACCUMULATOR |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ADD A. $=$ data | (A) - $(\mathrm{A})+$ data | Add Immediate the specified Data to the Accumulator. |  | $\begin{gathered} 0 \\ d_{6} \end{gathered}$ | $\begin{gathered} 0 \\ d_{5} \end{gathered}$ | $\begin{gathered} 0 \\ d \\ 4 \end{gathered}$ | $\begin{gathered} 0 \\ d 3 \end{gathered}$ | $\begin{gathered} 0 \\ \mathrm{~d}_{2} \end{gathered}$ | $\begin{gathered} 1 \\ \mathrm{~d}_{1} \end{gathered}$ | $\begin{gathered} 1 \\ 40 \end{gathered}$ | 2 | 2 | - |  |  |  |
| ADD A, Rr | $\begin{aligned} & (A) \cdot(A)+(R r) \\ & \text { for } r=0-7 \end{aligned}$ | Add contents of designated register to the Accumulator. |  | 1 | 1 | 0 | 1 | 1 | , | 1 | 1 | 1 | - |  |  |  |
| ADD A, @ Rr | $\begin{aligned} & (A) \cdot(A)+((R r)) \\ & \text { for } r=0 \quad 1 \end{aligned}$ | Add Indirect the contents the data memory location to the Accumulator. | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | - |  |  |  |
| ADDC A, = data | $(A) \cdot(A)+(C)+$ data | Add Immediate with carry the specified data to the Accumulator. |  | $\begin{gathered} 0 \\ \mathrm{~d}_{6} \end{gathered}$ | $\begin{gathered} 0 \\ d_{5} \end{gathered}$ | $\begin{gathered} 1 \\ d_{4} \end{gathered}$ | $\begin{gathered} 0 \\ d_{3} \end{gathered}$ | $\begin{gathered} 0 \\ d_{2} \end{gathered}$ | $\begin{gathered} 1 \\ d_{1} \end{gathered}$ | $\begin{gathered} 1 \\ d_{0} \end{gathered}$ | $?$ | 2 | - |  |  |  |
| ADDC A, Rr | $\begin{aligned} & (A) \cdot(A)+(C)+(R r) \\ & \text { for } r=07 \end{aligned}$ | Add with carry the contents of the designated register to the Accumulator. |  | 1 | 1 | 1 | 1 | 1 | , | , | 1 | 1 | - |  |  |  |
| ADDC A, @ Rr | $\begin{aligned} & (A) \cdot(A)+(C)+((\operatorname{Rr})) \\ & \text { for } r=0, \end{aligned}$ | Add Indirect with carry the contents of data memory location to the Accumulator. | $0{ }^{*}$ | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | - |  |  |  |
| ANL $\mathrm{A}_{1}=$ data | (A) - (A) AND data | Logical and specified Immediate Data with Accumulator. |  | $\begin{gathered} 1 \\ d_{6} \end{gathered}$ | $\begin{gathered} 0 \\ d_{5} \end{gathered}$ | $\begin{gathered} 1 \\ d_{4} \end{gathered}$ | $\begin{gathered} 0 \\ d_{3} \end{gathered}$ | $\begin{gathered} 0 \\ d_{2} \end{gathered}$ | $\begin{gathered} 1 \\ d_{1} \end{gathered}$ | $\begin{gathered} 1 \\ \mathrm{~d}_{0} \end{gathered}$ | 2 | 2 |  |  |  |  |
| ANL A, Rr | $\begin{aligned} & \text { (A). (A) AND (Rr) } \\ & \text { for } r=07 \end{aligned}$ | Logical and contents of designated register with Accumulator. | 0 | 1 | 0 | 1 | 1 | $r$ | r | r | 1 | 1 |  |  |  |  |
| ANL A, @ Rr | ```(A) - (A) AND ((Rr)) for }r=0\quad``` | Logical and Indirect the contents of data memory with Accumulator. | 0 | 1 | 0 | 1 | 0 | 0 | 0 | r | 1 | 1. |  |  |  |  |
| CPL A | (A). NOT (A) | Complement the contents of the Accumulator | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |  |  |  |  |
| CLR A | (A) - 0 | CLEAR the contents of the Accumulator. | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |  |  |  |  |
| DA A |  | DECIMAL ADJUST the contents of the Accumulator. | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | - |  |  |  |
| DEC A | (A). (A) 1 | DECREMENT by 1 the accumulator's contents. | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |  |  |  |  |
| INC A | $(A) \cdot(A)+1$ | Increment by 1 the accumulator's contents. | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |  |  |  |  |
| ORL A. $=$ data | (A). $(\mathrm{A})$ OR data | Logical OR specified immediate datá with Accumulator |  | $\begin{gathered} 1 \\ d_{6} \end{gathered}$ | $\begin{gathered} 0 \\ d 5 \end{gathered}$ | $\begin{gathered} 0 \\ 0 \end{gathered}$ | $\begin{gathered} 0 \\ d_{3} \end{gathered}$ | $\begin{gathered} 0 \\ d_{2} \end{gathered}$ | $\begin{gathered} 1 \\ d_{1} \end{gathered}$ | $\begin{gathered} 1 \\ \mathrm{~d}_{0} \end{gathered}$ | 2 | 2 |  |  |  |  |
| ORL A, Rr | $\begin{aligned} & (A) \cdot(A) \text { OR (Rr) } \\ & \text { for } r=07 \end{aligned}$ | Logical ORcontents of designated register with Accumulator. | 0 | 1 | . 0 | 0 | 1 | r | r | r | 1 | 1 |  |  |  |  |
| ORL A, @ Rr | (A) - (A) OR ((Rr)) for $r=0 \quad 1$ | Logical OR Indirect the contents of data memory location with Accumulator. | 0 | 1 | 0 | 0 | 0 | 0 | 0 | $r$ | 1 | 1 |  |  |  |  |
| RL A | $\begin{aligned} & (A N+1) \cdot(A N) \\ & \left(A_{0}\right)-\left(A_{7}\right) \\ & \text { for } N=0-6 \end{aligned}$ | Rotate Accumulator left by 1 -bit without carry. | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |  |  |  |  |
| RLC A | $\begin{aligned} & (A N+1)-(A N): N=0 \quad 6 \\ & \left(A_{0}\right)-(C) \\ & (C)-\left(A_{7}\right) \end{aligned}$ | Rotate Accumulator left by 1 -bit through carry. | 1 | 1 | 1 | 1 | 0 | 1 | - 1 | 1 | 1 | 1 | - |  |  |  |
| RR A | $\begin{aligned} & (A N)-(A N+1): N=0-6 \\ & \left(A_{7}\right) \cdot\left(A_{0}\right) \end{aligned}$ | Rotate Accumulator right by 1 -bit without carry. | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |  |  |  |  |
| RRC A | $\begin{aligned} & (A N)-(A N+1): N=0-6 \\ & (A 7) \cdot(C) \\ & (C) \cdot\left(A_{0}\right) \end{aligned}$ | Rotate Accumulator right by 1 -bit through carry. | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | - |  |  |  |
| SWAP A | $\left(A_{4,7}\right) \cdot\left(A_{0}-3\right)$ | Swap the 24 -bit nibbles in the Accumulator. | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |  |  |  |  |
| XRL A, = data | (A) - (A) XOR data | Logical XOR specified immediate data with Accumulator. |  | $\begin{gathered} 1 \\ d_{6} \end{gathered}$ | $\begin{gathered} 0 \\ d_{5} \end{gathered}$ | $\begin{gathered} 1 \\ d 4 \end{gathered}$ | $\begin{gathered} 0 \\ d 3 \end{gathered}$ | $\begin{gathered} 0 \\ \mathrm{~d}_{2} \end{gathered}$ | $\begin{gathered} 1 \\ d_{1} \end{gathered}$ | $\begin{gathered} 1 \\ \mathrm{~d}_{0} \end{gathered}$ | 2 | 2 |  |  |  |  |
| XRL A, Rr | $\begin{aligned} & (A) \cdot(A) \times O R(\mathrm{Rr}) \\ & \text { for } r=0-7 \end{aligned}$ | Logical XOR contents of designated register with Accumulator. |  | 1 | 0 | 1 | 1 | r | , | r | 1 | 1 |  |  |  |  |
| XRL A, @ Rr | $\begin{aligned} & (A) \cdot(A) \times O R((R r)) \\ & \text { for } r=0-1 \end{aligned}$ | Logical XOR indirect the contents of data memory location with Accumulator. | 1 | 1 | 0 | 1 | 0 | 0 | 0 | r | 1 | 1 |  |  |  |  |
| BRANCH |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| DJNZ Rr, addr | $\begin{aligned} & \left(R_{r}\right)-\left(R_{r}\right)-1: r=0-7 \\ & \text { If }(R r) \neq 0: \\ & (P C 0-7)-\text { addr } \end{aligned}$ | Decrement the specified register and test contents. | $\begin{gathered} 1 \\ a_{7} \end{gathered}$ | $\begin{gathered} 1 \\ 3_{6} \end{gathered}$ | $\begin{gathered} 1 \\ a_{5} \end{gathered}$ | $\begin{gathered} 0 \\ a_{4} \end{gathered}$ | $\begin{gathered} 1 \\ a_{3} \end{gathered}$ | $a_{2}$ | $a_{1}$ | a $a_{0}$ | 2 | 2 |  |  |  |  |
| JBb addr | (PCO 7) - addr if $\mathrm{Bb}=1$ <br> $(\mathrm{PC}) \cdot(\mathrm{PC})+2$ if $\mathrm{Bb}=0$ | Jump to specified address if Accumulator bit is set. |  | $\begin{aligned} & b_{1} \\ & a_{6} \end{aligned}$ | $\begin{aligned} & b_{0} \\ & a_{5} \end{aligned}$ | $\begin{gathered} 1 \\ a 4 \end{gathered}$ | $\begin{gathered} 0 \\ a 3 \end{gathered}$ | $\begin{gathered} 0 \\ a_{2} \end{gathered}$ | $\begin{gathered} 1 \\ a_{1} \end{gathered}$ | $\begin{gathered} 0 \\ a_{0} \end{gathered}$ | 2 | 2 |  |  |  |  |
| JC addr | $\begin{aligned} & (P C 0-7)-\text { addr if } C=1 \\ & (P C) \cdot(P C)+2 \text { if } C=0 \end{aligned}$ | Jump to specified address if carry flag is set. |  | $\begin{gathered} 1 \\ a_{6} \end{gathered}$ |  | $\begin{gathered} 1 \\ a_{4} \end{gathered}$ |  |  | 1 $a_{1}$ | 0 $a_{0}$ | 2 | 2 |  |  |  |  |
| JFO addr | (PC 0 - 7) - addr if $F O=1$ <br> $(P C) \cdot)(P C)+2$ if $F O=0$ | Jump to specified address if Flag F0 is set. | $\begin{gathered} 1 \\ a 7 \end{gathered}$ | $\begin{gathered} 0 \\ a_{6} \end{gathered}$ | $\begin{gathered} 1 \\ a_{5} \end{gathered}$ | $\begin{gathered} 1 \\ a_{4} \end{gathered}$ | $\begin{gathered} 0 \\ a_{3} \end{gathered}$ | $\begin{gathered} 1 \\ a_{2} \end{gathered}$ | $\begin{gathered} 1 \\ a_{1} \end{gathered}$ | $\begin{gathered} 0 \\ \text { ao } \end{gathered}$ | 2 | 2 |  |  |  |  |
| JF1 addr | $\begin{aligned} & (P C 0 \\ & (P)-\operatorname{addr} \text { if } F 1=1 \\ & (P C) \cdot(P C)+2 \text { if } F 1=0 \end{aligned}$ | Jump to specified address if Flag F1 is set. |  | $\begin{gathered} 1 \\ a_{6} \end{gathered}$ | $\begin{gathered} 1 \\ a_{5} \end{gathered}$ | $\begin{gathered} 1 \\ a 4 \end{gathered}$ | $\begin{gathered} 0 \\ a_{3} \end{gathered}$ | $\begin{gathered} 1 \\ a_{2} \end{gathered}$ | $\begin{gathered} 1 \\ a_{1} \end{gathered}$ | $\begin{gathered} 0 \\ a_{0} \end{gathered}$ | 2 | 2 |  |  |  |  |
| JMP addr | $\begin{aligned} & \text { (PC } 8 \quad 10) \cdot \text { addr } 8 \quad 10 \\ & \text { (PC 0.7) - addr } 0 \cdot 7 \\ & \text { (PC 11): DBF } \end{aligned}$ | Direct Jump to specified addiess within the 2 K address block. |  | $\begin{aligned} & \text { a9 } \\ & 06 \end{aligned}$ | $\begin{aligned} & \mathrm{a} 8 \\ & \text { a5 } \end{aligned}$ | $\begin{array}{r} 0 \\ 0 \\ a \end{array}$ | $\begin{gathered} 0 \\ a_{3} \end{gathered}$ | $\begin{gathered} 1 \\ a_{2} \end{gathered}$ | $\begin{gathered} 0 \\ a_{1} \end{gathered}$ | $\begin{gathered} 0 \\ a_{0} \end{gathered}$ | 2 | 2 |  |  |  |  |
| JMPP @ A | (PCO 7) - ( $(\mathrm{A}) 1)$ | Jump indirect to specified address with with address page. | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 2 | 1 |  |  |  |  |
| JNC addr | (PCO 7) $\cdot$ addr if $\mathrm{C}=0$ <br> (PC) $\cdot(\mathrm{PC})+2$ if $\mathrm{C}=1$ | Jump to specified address if carry flag is low. | $\begin{gathered} 1 \\ a 7 \end{gathered}$ | $\begin{gathered} 1 \\ a_{6} \end{gathered}$ | $\begin{gathered} 1 \\ a_{5} \end{gathered}$ | $\begin{gathered} 0 \\ a 4 \end{gathered}$ | $\begin{gathered} 0 \\ a_{3} \end{gathered}$ | $\begin{gathered} 1 \\ a_{2} \end{gathered}$ | $\begin{array}{r} 1 \\ \cdot a_{1} \end{array}$ | $\begin{gathered} 0 \\ a_{0} \end{gathered}$ | 2 | 2 |  |  |  |  |
| JNI addr | $\begin{aligned} & (P C 0 \cdot 7) \div \text { addr if } 1=0 \\ & (P C) \cdot(P C)+2 \text { if }=1 \end{aligned}$ | Jump to specified address if interrupt is low. | $\begin{gathered} 1 \\ a 7 \end{gathered}$ | $\begin{gathered} 0 \\ a_{6} \end{gathered}$ | $\begin{gathered} 0 \\ a_{5} \end{gathered}$ | $\begin{gathered} 0 \\ a 4 \end{gathered}$ | $\begin{gathered} 0 \\ a 3 \end{gathered}$ | $\begin{gathered} 1 \\ 32 \end{gathered}$ | $\begin{gathered} 1 \\ a_{1} \end{gathered}$ | $\begin{gathered} 0 \\ a_{0} \end{gathered}$ | 2 | 2 |  |  |  |  |

## 8

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{MNEMONIC :} \& \multirow[b]{2}{*}{FUNCTION} \& \multirow[b]{2}{*}{description} \& \multicolumn{8}{|c|}{instruction code} \& \multirow[t]{2}{*}{CYCLES} \& \multirow[b]{2}{*}{bYtes} \& \multicolumn{4}{|c|}{flags} <br>
\hline \& \& \& $\mathrm{D}_{7}$ \& $\mathrm{D}_{6}$ \& $\mathrm{D}_{5}$ \& $\mathrm{D}_{4}$ \& $\mathrm{D}_{3}$ \& $\mathrm{D}_{2}$ \& $\mathrm{D}_{1}$ \& $\mathrm{D}_{0}$ \& \& \& c \& AC \& F0 \& F1 <br>
\hline \multicolumn{17}{|c|}{BRANCH (CONT.)} <br>
\hline JNT0 addr \& $$
\begin{aligned}
& (\mathrm{PC} 0-7) \cdots \text { addr if } \mathrm{TO}=0 \\
& (\mathrm{PC})-(\mathrm{PC})+2 \text { if } \mathrm{TO}=1
\end{aligned}
$$ \& Jump to specified address if Test 0 is low. \& $$
\begin{gathered}
0 \\
07 \\
97
\end{gathered}
$$ \& $$
\begin{gathered}
0 \\
a_{6}
\end{gathered}
$$ \& 1
$a_{5}$ \& 0

4 \& 0
a3 \& 1
9

9 \& $$
\begin{aligned}
& 1 \\
& a_{1}
\end{aligned}
$$ \& \[

$$
\begin{gathered}
\hline 0 \\
a_{0}
\end{gathered}
$$
\] \& 2 \& 2 \& \& \& \& <br>

\hline JNT1 addr \& $$
\begin{aligned}
& (\mathrm{PC} 0-7)-\text { addr if } \mathrm{T} 1=0 \\
& (\mathrm{PC})-(\mathrm{PC})+2 \text { if } \mathrm{T} 1-1
\end{aligned}
$$ \& Jump to specified address if Test 1 is low. \& 0

97 \& 1
96 \& 0

0 \& 0

4 \& - ${ }_{\text {a }}$ \& 1
$a_{2}$
1 \& ${ }^{1} 1$ \& 0
a
0 \& 2 \& 2 \& \& \& \& <br>

\hline JNZ addr \& $$
\begin{aligned}
& (P C O \cdots 7) \cdots \text { addr if } A \neq 0 \\
& (P C) \cdot(P C)+2 \text { if } A \quad 0
\end{aligned}
$$ \& Jump to specified address if accumulator is non-zero. \& \& \[

$$
\begin{gathered}
0 \\
a_{6}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{5}
\end{gathered}
$$
\] \& 1

$a_{4}$

1 \& $$
\begin{gathered}
0 \\
{ }^{2} 3
\end{gathered}
$$ \& \[

$$
\begin{gathered}
1 \\
a_{2}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
a_{1}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
\text { a0 }
\end{gathered}
$$
\] \& 2 \& 2 \& \& \& \& <br>

\hline JTF addr \& $$
\begin{aligned}
& (\mathrm{PC} 0-7)-\text { addr if } T F=1 \\
& (\mathrm{PC}) \cdot(\mathrm{PC})+2 \text { if } T F-0
\end{aligned}
$$ \& Jump to specified address if Timer Flag is set to 1 . \& \& \[

$$
\begin{gathered}
0 \\
a_{6}
\end{gathered}
$$
\] \& 0

5 \& 1
9 \& - ${ }_{\text {a }}$ \& 1
$a_{2}$
1 \& 1
$a_{1}$
1 \& 0
$a_{0}$ \& 2 \& 2 \& \& \& \& <br>

\hline JTO addr \& $$
\begin{aligned}
& (\mathrm{PC} 0-7)-\text { addr if } \mathrm{TO}=1 \\
& (\mathrm{PC})-(\mathrm{PC})+2 \text { if } \mathrm{TO}=0
\end{aligned}
$$ \& Jump to specified address if Test 0 is a :. \& \& 0

96 \& 1
35 \& 1
3
4 \& 0
$a_{3}$
0 \& 1
$a_{2}$
1 \& 1
$a_{1}$
1 \& 0
a
0 \& 2 \& 2 \& \& \& \& <br>

\hline JT1 addr \& $$
\begin{aligned}
& (\mathrm{PCO} \quad 7) \cdot \text { addr if } \mathrm{T} 1=1 \\
& (\mathrm{PC}) \cdot(\mathrm{PC})+2 \text { if } \mathrm{T} 1 \quad 0
\end{aligned}
$$ \& Jump to specified address if Test 1 is a 1. \& \& \& \& 1

$a_{4}$ \& a ${ }^{\text {a }}$ \& 1
$a_{2}$
1 \& 1
$a_{1}$
1 \& 0
a

0 \& 2 \& 2 \& \& \& \& <br>

\hline JZ addr \& $$
\begin{aligned}
& (\mathrm{PCO} 0-7) \cdot \operatorname{addr} \text { if } A=0 \\
& (\mathrm{PC}) \cdot(\mathrm{PC})+2 \text { if } A: 0
\end{aligned}
$$ \& Jump to specified address if Accumulator is 0 . \& \& \[

$$
\begin{gathered}
1 \\
26 \\
\hline
\end{gathered}
$$

\] \& | 0 |
| :---: |
|  |
|  |
|  |
|  |
|  | \& | 0 |
| :---: |
|  |
|  | \& \[

$$
\begin{array}{r}
0 \\
\text { a3 } \\
\hline
\end{array}
$$
\] \& 1

$a_{2}$ \& \[
$$
\begin{array}{r}
1 \\
a_{1}
\end{array}
$$

\] \& \[

$$
\begin{gathered}
0 \\
a_{0}
\end{gathered}
$$
\] \& 2 \& 2 \& \& \& \& <br>

\hline \multicolumn{17}{|c|}{CONTROL} <br>
\hline EN 1 \& \& Enable the External Interrupt input. \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \& <br>
\hline DIS I \& \& Disable the External Interrupt input. \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \& <br>
\hline ENTO Clk \& \& Enable the Clock Output pin TO. \& 0 \& 1 \& 1 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \& <br>
\hline SEL MBO \& (DBF) - 0 \& Select Bank 0 (locations 0 2047) of Program Memory. \& 1 \& 1 \& 1 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \& <br>
\hline SEL MB1 \& (DBF) . 1 \& Select Bank 1 (locations 2048 4095) of Program Memory. \& 1 \& 1 \& 1 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \& <br>
\hline SEL RBO \& (BS) - 0 \& Select Bank 0 (locations 0-7) of Data Memory. \& 1 \& 1 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \& <br>
\hline SEL RB1 \& (BS) . 1 \& Select Bank 1 (locations 24 31) of Data Memory. \& 1 \& 1 \& 0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \& <br>
\hline \multicolumn{17}{|c|}{DATA MOVES} <br>

\hline MOV A, : data \& (A) - data \& Move Immediate the specified data into the Accumulator. \& \& \& $$
\begin{gathered}
1 \\
d_{5}
\end{gathered}
$$ \& \[

$$
\begin{gathered}
0 \\
0 \\
d 4
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{3}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{2}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 1 \\
& d_{1}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1 \\
& d_{0}
\end{aligned}
$$
\] \& 2 \& 2 \& \& \& \& <br>

\hline MOV A, Rr \& (A) - (Rr) $\mathrm{ra}^{\text {r }} 07$ \& Move the contents of the designated registers into the Accumulator. \& 1 \& 1 \& 1 \& 1 \& 1 \& $r$ \& r \& r \& 1 \& 1 \& \& \& \& <br>
\hline MOV A, @ Rr \& $(\mathrm{A}) \cdot((\mathrm{Rr})$ ) $\mathrm{r}=0 \quad 1$ \& Move Indirect the contents of data memory location into the Accumulator. \& 1 \& 1 \& 1 \& 1 \& 0 \& 0 \& 0 \& r \& 1 \& 1 \& - \& \& \& <br>
\hline MOV A, PSW \& (A). (PSW) \& Move contents of the Program Status Word into the Accumulator. \& 1 \& 1 \& 0 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \& \& \& <br>

\hline MOV Rr, "\% data \& (Rr) - data; $r=07$ \& Move Immediate the specified data into the designated register. \& \[
$$
\begin{gathered}
1 \\
d 7
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{6}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d_{5}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d 4
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d_{3}
\end{gathered}
$$

\] \& \[

d_{2}

\] \& \[

$$
\begin{gathered}
r \\
d_{1}
\end{gathered}
$$

\] \& \[

\stackrel{r}{d_{0}}
\] \& 2 \& 2 \& \& \& \& <br>

\hline MOV Rr. A \& (Rr) -- (A): $r=0 \quad 7$ \& Move Accumulator Contents into the designated register. \& 1 \& 0 \& 1 \& 0 \& 1 \& , \& r \& r \& 1 \& 1 \& \& \& \& <br>
\hline MOV @ Rr, A \& $((R r)) \cdots(A) ; r=0 \cdot 1$ \& Move Indirect Accumulator Contents into data memory location. \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& ' \& 1 \& 1 \& \& \& \& <br>

\hline MOV @ Rr, = data \& ((Rr)) - data: r-0 \& Move Immediate the specified data into data memory. \& $$
\begin{gathered}
1 \\
d 7
\end{gathered}
$$ \& \[

$$
\begin{gathered}
0 \\
d_{6}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d_{5}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
d_{4}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{3}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{2}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0 \\
d_{1}
\end{gathered}
$$

\] \& \[

\stackrel{r}{d_{0}}
\] \& 2 \& 2 \& \& \& \& <br>

\hline MOV PSW. A \& (PSW) - (A) \& Move contents of Accumulator into the program status word. \& 1 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& \& \& \& <br>

\hline MOVP A, @ A \& | (PCO 7)..(A) |
| :--- |
| (A). ( $(\mathrm{PC}))$ | \& Move data in the current page into the Accumulator. \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1 \& 1 \& 2 \& 1 \& \& \& \& <br>

\hline MOVP3 A.@A \& $$
\begin{aligned}
& (\operatorname{PC} 0 \\
& (\mathrm{PC} 8) \cdot(\mathrm{A}) \\
& (\mathrm{A}) \cdot(10) \cdots 011
\end{aligned}
$$ \& Move Program data in Page 3 into the Accumulator. \& 1 \& 1 \& 1 \& 0 \& 0 \& 0 \& 1 \& 1 \& 2 \& 1 \& \& \& \& <br>

\hline MOVX A, @R \& $(\mathrm{A})-((\mathrm{Rr})$ ) $\mathrm{r}=0 \quad 1$ \& Move Indirect the contents of external data memory into the Accumulator. \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& $r$ \& 2 \& 1 \& \& \& \& <br>
\hline movx @ R, A \& $(\| R r) \mid-(A): r=0 \quad 1$ \& Move Indirect the contents of the Accumulator into external data memory. \& 1 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& r \& 2 \& 1 \& \& \& \& <br>
\hline XCH A, Rr \& $(\mathrm{A}) \geq(\mathrm{Rr}) ; \mathrm{r}=0-7$ \& Exchange the Accumulator and designated register's contents. \& 0 \& 0 \& 1 \& 0 \& 1 \& r \& $r$ \& ' \& 1 \& 1 \& \& \& \& <br>
\hline $\mathrm{XCH} \mathrm{A}$, \& (A) $二=($ (Rr) $) ; r=0-1$ \& Exchange Indirect contents of Accumulator and location in data memory. \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& r \& 1 \& 1 \& \& \& \& <br>

\hline XCHD A, @ Rr \& $$
\begin{aligned}
& (A 0-3) \leftrightharpoons((\mathrm{Rr})) 0-3)) ; \\
& r=0-1
\end{aligned}
$$ \& Exchange Indirect 4 -bit contents of Accumulator and data memory. \& 0 \& 0 \& 1 \& 1 \& 0 \& 0 \& 0 \& r \& 1 \& 1 \& \& \& \& <br>

\hline \multicolumn{17}{|c|}{FLAGS} <br>
\hline CPL C \& (C) - NOT (C) \& Complement Content of carry bit. \& 1 \& 0 \& 1 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& $\bullet$ \& \& \& <br>
\hline CPL Fo \& (FO) - NOT (F0) \& Complement Content of Flag FO. \& 1 \& 0 \& 0 \& 1 \& 0 \& 1 \& 0 \& 1 \& $\dagger$ \& 1 \& \& \& \& <br>
\hline CPLF1 \& (F1). NOT (F1) \& Complement Content of Flag Fi \& 1 \& 0 \& 1 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \& - <br>
\hline CLR C \& (C) - 0 \& Clear content of carry bit to 0 . \& 1 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& - \& \& \& <br>
\hline CLR FO \& (FO) - 0 \& Clear content of Flag 0 to 0. \& 1 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \& <br>
\hline CLR F1 \& (F1). 0 \& Clear content of Flag 1 to 0 . \& 1 \& 0 \& 1 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& \& \& \& - <br>
\hline
\end{tabular}

## PROGRAMMABLE INTERVAL TIMER

DESCRIPTION
The NEC $\mu$ PD8253 contains three independent, programmable, multi-modal 16 -bit counter/timers. It is designed as a general purpose device, fully compatible with the 8080 family. The $\mu$ PD8253 interfaces directly to the busses of the processor as an array of I/O ports.

The $\mu$ PD8253 can generate accurate time delays under the control of system software. The three independent 16 -bit counters can be clocked at rates from $D C$ to 3 MHz ( $\mu$ PD8253-5 DC to 4 MHz ). The system software controls the loading and starting of the counters to provide accurate multiple time delays. The counter output flags the processor at the completion of the time-out cycles.

System overhead is greatly improved by relieving the software from the maintenance of timing loops. Some other common uses for the $\mu$ PD8253 in microprocessor based systems are:

- Programmable Baud Rate Generator
- Event Counter
- Binary Rate Multiplier
- Real Time Clock
- Digital One-Shot
- Complex Motor Controller

FEATURES

- Three Independent 16-Bit Counters
- Clock Rate: DC to 2 MHz ( $\mu$ PD8253) DC to $4 \mathrm{MHz}(\mu$ PD8253-5)
- Count Binary or BCD
- Single +5 Volt Supply
- 24 Dual-In-Line Plastic Package


PIN NAMES

| D7-D $_{0}$ | Data Bus (8-Bit) |
| :--- | :--- |
| CLK N | Counter Clock Inputs |
| GATE N | Counter Gate Inputs |
| OUT N | Counter Outputs |
| $\overline{R D}$ | Read Counter |
| $\overline{W R}$ | Write Command or Data |
| $\overline{C S}$ | Chip Select |
| $A_{0}, A_{1}$ | Counter Select |
| $V_{C C}$ | +5 Volts |
| GND | Ground |

9

## MPD8253

## Data Bus Buffer

The 3-state, 8-bit, bi-directional Data Bus Buffer interfaces the $\mu$ PD8253 to the 8080A microprocessor system. It will transmit or receive data in accordance with the INput or OUTput instructions executed by the processor. There are three basic functions of the Data Bus Buffer.

1. Program the modes of the $\mu$ PD8253
2. Load the count registers.
3. Read the count values.

## Read/Write Logic

The Read/Write Logic controls the overall operation of the $\mu$ PD8253 and is governed by inputs received from the processor system bus.

## Control Word Register

Two bits from the address bus of the processor, $A_{0}$ and $A_{1}$, select the Control Word Register when both are at a logic " 1 " (active-high logic). When selected, the Control Word Register stores data from the Data Bus Buffer in a register. This data is then used to control:

1. The operational MODE of the counters.
2. The selection of $B C D$ or Binary counting.
3. The loading of the count registers.

## $\overline{\mathrm{RD}}$ (Read)

This active-low signal instructs the $\mu$ PD8253 to transmit the selected counter value to the processor.

## WR (Write)

This active-low signal instructs the $\mu$ PD8253 to receive MODE information or counter input data from the processor.
$A_{1}, A_{0}$
The $A_{1}$ and $A_{0}$ inputs are normally connected to the address bus of the processor. They control the one-of-three counter selection and address the control word register to select one of the six operational MODES.

## $\overline{\mathbf{C S}}$ (Chip Select)

The $\mu$ PD8253 is enabled when an active-low signal is applied to this input. Reading or writing from this device is inhibited when the chip is disabled. The counter operation, however, is not affected.

## Counters \#0, \#1, \#2

The three identical, 16 -bit down counters are functionally independent allowing for separate MODE configuration and counting operation. They function as Binary or BCD counters with their gate, input and output line configuration determined by the operational MODE data stored in the Control Word Register. The system software overhead time can be reduced by allowing the control word to govern the loading of the count data.
The programmer, with READ operations, has access to each counter's contents. The $\mu$ PD8253 contains the commands and logic to read each counter's contents while still counting without disturbing its operation.
The following is a table showing how the counters are manipulated by the input signals to the Read/Write Logic.

| $\overline{\mathbf{C S}}$ | $\overline{\mathbf{R D}}$ | $\overline{\mathbf{W R}}$ | $\mathbf{A}_{\mathbf{1}}$ | $\mathbf{A}_{\mathbf{0}}$ | FUNCTION |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 0 | 0 | Load Counter No. 0 |
| 0 | 1 | 0 | 0 | 1 | Load Counter No. 1 |
| 0 | 1 | 0 | 1 | 0 | Load Counter No. 2 |
| 0 | 1 | 0 | 1 | 1 | Write Mode Word |
| 0 | 0 | 1 | 0 | 0 | Read Counter No. 0 |
| 0 | 0 | 1 | 0 | 1 | Read Counter No. 1 |
| 0 | 0 | 1 | 1 | 0 | Read Counter No. 2 |
| 0 | 0 | 1 | 1 | 1 | No-Operation, 3-State |
| 1 | X | X | X | X | Disable, 3-State |
| 0 | 1 | 1 | X | X | No-Operation, 3-State |

BLOCK DIAGRAM

ABSOLUTE MAXIMUM Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ RATINGS*
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage on Any Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 0.5 to +7 Volts 1

Note: (1) With respect to ground.
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device realiability.
${ }^{*} T_{a}=25^{\circ} \mathrm{C}$
DC CHARACTERISTICS
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input Low Voltage | $V_{\text {IL }}$ | -0.5 |  | 0.8 | V |  |
| Input High Voltage | $\mathrm{V}_{\text {IH }}$ | 2.0 |  | $\mathrm{V}_{\mathrm{CC}}+0.5$ | V |  |
| Output Low Voltage | $\mathrm{V}_{\mathrm{OL}}$ |  |  | 0.45 | $V$ | $\mathrm{I}^{\mathrm{OL}}=2.2 \mathrm{~mA}$ |
| Output High Voltage | V OH | 2.4 |  |  | V | $\mathrm{IOH}=-400 \mu \mathrm{~A}$ |
| Input Load Current | IIL |  |  | $\pm 10$ | $\mu \mathrm{A}$ | $V_{\text {IN }}=V_{\text {CC }}$ to 0 V |
| Output Float Leakage Current | IOFL |  |  | $\pm 10$ | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$ to 0 V |
| $\mathrm{V}_{\text {CC }}$ Supply Current | ICC |  |  | 140 | mA |  |

CAPACITANCE $\quad T_{a}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{GND}=0 \mathrm{~V}$

|  |  | LIMITS |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYMBOL | MIN | TYP | MAX | UNIT | TEST CONDITIONS |
| Input Capacitance | $\mathrm{C}_{\text {IN }}$ |  |  | 10 | pF | $\mathrm{f}_{\mathbf{c}}=1 \mathrm{MHz}$ |
| Input/Output Capacitance | $\mathrm{C}_{\mathrm{I} / \mathrm{O}}$ |  |  | 20 | pF | Unmeasured pins returned <br> to $V_{\text {SS }}$ |

$T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{GND}=0 \mathrm{~V}$


Note: (1) AC Timing Measured at $\mathrm{V}_{\mathrm{OH}}=2.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$.


CLOCK AND GATE TIMING

PROGRAMMING
THE $\mu$ PD8253

The programmer can select any of the six operational MODES for the counters using system software. Individual counter programming is accomplished by loading the CONTROL WORD REGISTER with the appropriate control word data ( $A_{0}, A_{1}=11$ ).

CONTROL WORD FORMAT

| $\mathrm{D}_{7}$ | $\mathrm{D}_{6}$ | $\mathrm{D}_{5}$ | $\mathrm{D}_{4}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{1}$ | $\mathrm{D}_{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SC 1 | SC 0 | RL 1 | $\mathrm{RL0}$ | M 2 | M 1 | $\mathrm{M0}$ | BCD |

SC - Select Counter

| SC1 | SC0 |  |
| :---: | :---: | :--- |
| 0 | 0 | Select Counter 0 |
| 0 | 1 | Select Counter 1 |
| 1 | 0 | Select Counter 2 |
| 1 | 1 | Invalid |

RL - Read/Load

| RL1 | RL0 |  |
| :---: | :---: | :--- |
| 0 | 0 | Counter Latching Operation |
| 1 | 0 | Read/Load Most Significant Byte Only |
| 0 | 1 | Read/Load Least Significant Byte Only |
| 1 | 1 | Read/Load Least Significant Byte First, Then Most <br> Significant Byte |

BCD

| 0 | Binary Counter, 16-Bits |
| :--- | :--- |
| 1 | BCD Counter, 4-Decades |

M-Mode

| M2 | M1 | M0 |  |
| :---: | :---: | :---: | :--- |
| 0 | 0 | 0 | Mode 0 |
| 0 | 0 | 1 | Mode 1 |
| X | 1 | 0 | Mode 2 |
| X | 1 | 1 | Mode 3 |
| 1 | 0 | 0 | Mode 4 |
| 1 | 0 | 1 | Mode 5 |

## $\boldsymbol{\mu}$ PD8253

Each of the three counters can be individually programmed with different operating MODES by appropriately formatted Control Words. The following is a summary of the MODE operations.

## Mode 0: Interrupt on Terminal Count

The initial MODE set operation forces the OUTPUT low. When the specified counter is loaded with the count value, it will begin counting. The OUTPUT will remain low until the terminal count sets it high. It will remain in the high state until the trailing edge of the second $\overline{W R}$ pulse loads in COUNT data. If data is loaded during the counting process, the first $\overline{W R}$ stops the count. Counting starts with the new count data triggered by the falling clock edge after the second $\overline{W R}$. If a GATE pulse is asserted while counting, the count is terminated for the duration of GATE. The falling edge of CLK following the removal of GATE restarts counting from the terminated point.


## Mode 1: Programmable One-Shot

The OUTPUT is set low by the falling edge of CLOCK following the trailing edge of GATE. The OUTPUT is set high again at the terminal count. The output pulse is not affected if new count data is loaded while the OUTPUT is low. The new data will be loaded on the rising edge of the next trigger pulse. The assertion of a trigger pulse while OUTPUT is low, resets and retriggers the One-Shot. The OUTPUT will remain low for the full count value after the rising edge of TRIGGER.


## Mode 2: Rate Generator

The RATE GENERATOR is a variable modulus counter. The OUTPUT goes low for one full CLOCK period as shown in following timing diagram. The count data sets the time between OUTPUT pulses. If the count register is reloaded between output pulses the present period will not be affected. The subsequent period will reflect the new value. The OUTPUT will remain high for the duration of the asserted GATE input. Normal operation resumes on the falling CLOCK edge following the rising edge of GATE.


Note: (1) All internal counter events occur at the falling edge of the associated clock in all modes of operation.

## OPERATIONAL MODES (1) <br> (Cont.)

Mode 3: Square Wave Generator
MODE 3 resembles MODE 2 except the OUTPUT will be high for half of the count and low for the other half (for even values of data). For odd values of count data the OUTPUT will be high one clock cycle longer than when it is low (High Period $\rightarrow \frac{N+1}{2}$ clock cycles; Low Period $\rightarrow \frac{N-1}{2}$ clock periods, where $N$ is the decimal value of count data). If the count register is reloaded with a new value during counting, the new value will be reflected immediately after the output transition of the current count.

The OUTPUT will be held in the high state while GATE is asserted. Counting will start from the full count data after the GATE has been removed.


## Mode 4: Software Triggered Strobe

The OUTPUT goes high when MODE 4 is set, and counting begins after the second byte of data has been loaded. When the terminal count is reached, the OUTPUT will pulse low for one clock period. Changes in count data are reflected in the OUTPUT as soon as the new data has been loaded into the count registers. During the loading of new data, the OUTPUT is held high and counting is inhibited.

The OUTPUT is held high for the duration of GATE. The counters are reset and counting begins from the full data value after GATE is removed.



## Mode 5: Hardware Triggered Strobe

Loading MODE 5 sets OUTPUT high. Counting begins when count data is loaded and GATE goes high. After terminal count is reached, the OUTPUT wi'I pulse low for one clock period. Subsequent trigger pulses will restart the counting ser;uence with the OUTPUT pulsing low on terminal count following the last rising eage of the trigger input (Reference bottom half of timing diagram).


## $\boldsymbol{\mu}$ PD8253




PACKAGE OUTLINE $\mu$ PD8253C $\mu$ PD8253C-5

| ITEM | MILLIMETERS | INCHES |
| :---: | :--- | :--- |
| A | 33 MAX | 1.3 MAX |
| B | 2.53 | 0.1 |
| C | 2.54 | 0.1 |
| D | $0.5 \pm 0.1$ | $0.02 \pm 0.004$ |
| E | 27.94 | 1.1 |
| F | 1.5 | 0.059 |
| G | 2.54 MIN | 0.1 MIN |
| H | 0.5 MIN | 0.02 MIN |
| I | 5.22 MAX | 0.205 MAX |
| J | 5.72 MAX | 0.225 MAX |
| K | 15.24 | 0.6 |
| L | 13.2 | 0.52 |
| M | $0.25+0.10$ | $0.01+0.004$ |

# PROGRAMMABLE PERIPHERAL INTERFACES 

DESCRIPTION The $\mu$ PD8255 and $\mu$ PD8255A-5 are general purpose programmable INPUT/OUTPUT devices designed for use with the 8080A/8085A microprocessors. Twenty-four (24) I/O lines may be programmed in two groups of twelve (group I and group II) and used in three modes of operation. In the Basic mode, (MODE 0), each group of twelve I/O pins may be programmed in sets of 4 to be input or output. In the Strobed mode, (MODE 1), each group may be programmed to have 8 lines of input or output. Three of the remaining four pins in each group are used for handshaking strobes and interrupt control signals. The Bidirectional Bus mode, (MODE 2), uses the 8 lines of Port A for a bidirectional bus, and five lines from Port C for bus control signals. The $\mu$ PD8255 and $\mu$ PD8255A-5 are packaged in 40 pin plastic dual-in-line packages.

FEATURES - Fully Compatible with the 8080A/8085 Microprocessor Families

- All Inputs and Outputs TTL Compatible
- 24 Programmable I/O Pins
- Direct Bit SET/RESET Eases Control Application Interfaces
- 8-2 mA Darlington Drive Outputs for Printers and Displays ( $\mu$ PD8255)
- 8-4 mA Darlington Drive Outputs for Printers and Displays ( $\mu$ PD8255A-5)
- LSI Drastically Reduces System Package Count
- Standard 40 Pin Dual-In-Line Plastic and Ceramic Packages


PIN NAMES

| $\mathrm{D}_{7}-\mathrm{D}_{0}$ | Data Bus (Bi-Directional) |
| :--- | :--- |
| RESET | Reset Input |
| $\overline{\mathrm{CS}}$ | Chip Select |
| $\overline{\mathrm{RD}}$ | Read Input |
| $\overline{\mathrm{WR}}$ | Write Input |
| $\mathrm{A}_{0}, \mathrm{~A}_{1}$ | Port Address |
| $\mathrm{PA}_{7} \cdot \mathrm{PA}_{0}$ | Port A (Bit) |
| $\mathrm{PB}_{7} \cdot \mathrm{~PB}_{0}$ | Port B (Bit) |
| $\mathrm{PC}_{7} \cdot \mathrm{PC}_{0}$ | Port C (Bit) |
| $\mathrm{V}_{\mathrm{CC}}$ | +5 Volts |
| GND | 0 Volts |

## $\mu$ PD8255/8255A-5

General
The $\mu$ PD8255 and $\mu$ PD8255A-5 Programmable Peripheral Interfaces (PPI) are designed for use in 8080A/8085A microprocessor systems. Peripheral equipment can be effectively and efficiently interfaced to the 8080A/8085A data and control busses with the $\mu$ PD8255 and $\mu$ PD8255A-5. The $\mu$ PD8255 and $\mu$ PD8255A- 5 are functionally configured to be programmed by system software to avoid external logic for peripheral interfaces.

Data Bus Buffer
The 3-state, bidirectional, eight bit Data Bus Buffer ( $\mathrm{D}_{0}-\mathrm{D}_{7}$ ) of the $\mu$ PD8255 and $\mu$ PD8255A-5 can be directly interfaced to the processor's system Data Bus ( $\mathrm{D}_{0}-\mathrm{D}_{7}$ ). The Data Bus Buffer is controlled by execution of IN and OUT instructions by the processor. Control Words and Status information are also transmitted via the Data Bus Buffer.

## Read/Write and Control Logic

This block manages all of the internal and external transfers of Data, Control and Status. Through this block, the processor Address and Control busses can control the peripheral interfaces.
Chip Select, $\overline{\mathbf{C S}}$, pin 6
A Logic Low, VIL, on this input enables the $\mu$ PD8255 and $\mu$ PD8255A- 5 for communication with the 8080A/8085A.
Read, $\overline{\mathrm{RD}}, \operatorname{pin} 5$
A Logic Low, VIL, on this input enables the $\mu$ PD8255 and $\mu$ PD8255A- 5 to send Data or Status to the processor via the Data Bus Buffer.
Write, $\overline{W R}$, pin 36
A Logic Low, VIL, on this input enables the Data Bus Buffer to receive Data or Control Words from the processor.

## Port Select $0, A_{0}$, pin 9

Port Select 1, A1, pin 8
These two inputs are used in conjunction with $\overline{C S}, \overline{R D}$, and $\overline{W R}$ to control the selection of one of three ports on the Control Word Register. $A_{0}$ and $A_{1}$ are usually connected to $A_{0}$ and $A_{1}$ of the processor Address Bus.

## Reset, pin 35

A Logic High, VIH $_{1 H}$, on this input clears the Control Register and sets ports $A, B$, and $C$ to the input mode. The input latches in ports $A, B$, and $C$ are not cleared.

## Group I and Group II Controls

Through an OUT instruction in System Software from the processor, a control word is transmitted to the $\mu$ PD8255 and $\mu$ PD8255A-5. Information such as "MODE," "Bit SET," and "Bit RESET" is used to initialize the functional configuration of each I/O port.
Each group (I and II) accepts "commands" from the Read/Write Control Logic and "control words" from the internal data bus and in turn controls its associated I/O ports.

```
Group I - Port A and upper Port C (PC7-PC4)
Group II - Port B and lower Port C (PC3.PC0)
```

While the Control Word Register can be written into, the contents cannot be read back to the processor.
Ports A, B, and C
The three 8 -bit I/O ports (A, B, and C) in the $\mu$ PD8255 and $\mu$ PD8255A-5 can all be configured to meet a wide variety of functional requirements through system software. The effectiveness and flexibility of the $\mu$ PD8255 and $\mu$ PD8255A-5 is further enhanced by special features unique to each of the ports.

Port $A=A n 8$-bit data output latch/buffer and data input latch.
Port $B=A n 8$-bit data input/output latch/buffer and an 8 -bit data input buffer.
Port $C=A n 8$-bit output latch/buffer and a data input buffer (input not latched).
Port C may be divided into two independent 4-bit control and status ports for use with Ports A and B.

TIMING WAVEFORMS (CONT.) MODE 1

MODE 2


Note: (1) Any sequence where $\overline{W R}$ occurs before $\overline{\mathrm{ACK}}$ and $\overline{\mathrm{STB}}$ occurs before $\overline{\mathrm{RD}}$ is permissible. (INTR $=I B F \cdot \overline{M A S K} \cdot \overline{S T B} \cdot \overline{R D}+\overline{O B F} \cdot \overline{M A S K} \cdot \overline{A C K} \cdot \overline{W R})$
(2) When the $\mu$ PD8255A-5 is set to Mode 1 or $2, \overline{\mathrm{OBF}}$ is reset 10 be high (logic 1 ).

## $\mu$ PD8255/8255A-5

The $\mu$ PD8255 and $\mu$ PD8255A- 5 can be operated in modes ( 0,1 or 2 ) which are selected
MODES
MODE 0

- MODE 0 provides for basic Input and Output operations through each of the ports A, B, and C. Output data is latched and input data follows the peripheral. No "handshaking" strobes are needed.
16 different configurations in MODE 0
Two 8-bit ports and two 4-bit ports
Inputs are not latched
Outputs are latched
MODE 1 provides for Strobed Input and Output operations with data transferred through Port A or B and handshaking through Port C.
Twe I/O Groups (I and II)
Both groups contain an 8-bit data port and a 4 -bit control/data port
Both 8-bit data ports can be either Latched Input or Latched Output
MODE 2 provides for Strobed bidirectional operation using $\mathrm{PA}_{0-7}$ as the bidirectional latched data bus. $\mathrm{PC}_{3-7}$ is used for interrupts and "handshaking" bus flow controls similar to Mode 1 . Note that $\mathrm{PB}_{0-7}$ and $\mathrm{PC}_{0-2}$ may be defined as Mode 0 or 1 , input or output in conjunction with Port $\mathbf{A}$ in Mode 2.
An 8-bit latched bidirectional bus port ( $\mathrm{PA}_{0.7}$ ) and a 5 -bit control port ( $\mathrm{PC}_{3}-7$ )
Both inputs and outputs are latched
An additional 8-bit input or output port with a 3-bit control port

| INPUT OPERATION (READ) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $A_{1}$ | $A_{0}$ | $\overline{R D}$ | $\overline{W R}$ | $\overline{\mathrm{CS}}$ |  |  |  |
| 0 | 0 | 0 | 1 | 0 | PORT A $\longrightarrow$ DATA BUS |  |  |
| 0 | 1 | 0 | 1 | 0 | PORT $B \rightarrow$ DATA BUS |  |  |
| 1 | 0 | 0 | 1 | 0 | PORT $C \longrightarrow$ DATA BUS |  |  |


| OUTPUT OPERATION (WRITE) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{A}_{1}$ | $\mathbf{A}_{0}$ | $\overline{R D}$ | $\overline{\mathbf{W R}}$ | $\overline{\mathbf{C S}}$ |  |  |
| 0 | 0 | 1 | 0 | 0 | DATA BUS $\rightarrow$ PORT A |  |
| 0 | 1 | 1 | 0 | 0 | DATA BUS $\rightarrow$ PORT B |  |
| 1 | 0 | 1 | 0 | 0 | DATA BUS $\rightarrow$ PORT C |  |
| 1 | 1 | 1 | 0 | 0 | DATA BUS $\rightarrow$ CONTROL |  |


| DISABLE FUNCTION |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $A_{1}$ | $A_{0}$ | $\overline{\mathbf{R D}}$ | $\overline{\text { WR }}$ | $\overline{\mathbf{C S}}$ |  |  |
| $x$ | $x$ | $x$ | $x$ | 1 | DATA BUS $\rightarrow$ <br> HIGH $Z$ STATE |  |
| $x$ | $x$ | 1 | 1 | 0 | DATA BUS $\rightarrow$ <br> HIGH $Z$ STATE |  |

NOTES: (1) $\times$ means "DO NOT CARE."
(2) All conditions not listed are illegal and should be avoided.


FORMATS
ABSOLUTE MAXIMUM Operating Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$RATINGS*
Storage Temperature ..... $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Output Voltages (1) ..... -0.5 to +7 Volts
All Input Voltages (1) ..... -0.5 to +7 Volts
Supply Voltages (1) ..... -0.5 to +7 Volts

Note: (1) With respect to $V_{S S}$
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} T_{a}=25^{\circ} \mathrm{C}$
DC CHARACTERISTICS

| PARAMETER | SYMBOL | LIMITS |  |  |  |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PD8255 |  |  | $\mu$ PD8255A. 5 |  |  |  |  |
|  |  | MIN | TYP | MAX | MIN | TYP | MAX |  |  |
| Input Low Voltage | $V_{\text {IL }}$ | $\mathrm{V}_{\text {SS }}-0.5$ |  | 0.8 | -0.5 |  | 0.8 | V |  |
| Input High Voltage | $\mathrm{V}_{\text {IH }}$ | 2 |  | $\mathrm{V}_{\mathrm{Cc}}$ | 2 |  | $\mathrm{V}_{\mathrm{Cc}}$ | V |  |
| Output Low Voltage | $\mathrm{VOL}^{\text {O }}$ |  |  | 0.4 |  |  | 0.45 | V | (2) |
| Output High Voltage | VOH | 2.4 |  |  | 2.4 |  | . | v | (3) |
| Darlington Drive Current | ${ }^{1} \mathrm{OH}(1)$ | 1 | 2 | 4 | -1 |  | -4 | mA | $\mathrm{VOH}^{\prime}=1.5 \mathrm{~V}, \mathrm{R}_{\text {EXT }}=750 \Omega 2$ |
| Power Supply Current | ${ }^{\text {I CC }}$ |  | 40 | 120 |  |  | 120 | mA | $\mathrm{V}_{C C}=+5 \mathrm{~V}$. Output Open |
| Input Leakage Current | ILIH |  |  | 10 |  |  | 10 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=v_{\text {cC }}$ |
| Input Leakage Current | ILIL |  |  | -10 |  |  | -10 | $\mu \mathrm{A}$ | $V_{\text {IN }}=0.4 \mathrm{~V}$ |
| Output Leakage Current | ${ }^{1} \mathrm{LOH}$ |  |  | 10 |  |  | $\pm 10$ | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }} ; \overline{\mathrm{CS}}=2.0 \mathrm{~V}$ |
| Output Leakage Current | ILOL |  |  | -10 |  |  | -10 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}, \overline{\mathrm{CS}}=2.0 \mathrm{~V}$ |

Notes: (1) Any set of eight (8) outputs from ether Port A, B, or C can source 2 mA into 1.5 V for $\mu$ PD8255, or 4 mA into 1.5 V for $\mu \mathrm{PD} 8255 \mathrm{~A} .5$.
(2) For $\mu$ PD8255: $10 \mathrm{OL}=1.7 \mathrm{~mA}$

For $\mu$ PD8255A.5: ${ }^{1} \mathrm{OL}=2.5 \mathrm{~mA}$ for DB Port, 1.7 mA for Peripheral Ports.
(3) For $\mu$ PD8255: $\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$ for DB Port; $50 \mu$ s for Peripheral Ports. For $\mu$ PD8255A-5: $\mathrm{IOH}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$ for dB Port; $-200 \mu \mathrm{~s}$ for Peripheral Ports.

CAPACITANCE $\quad \mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

| PARAMETER | SYMBOL | MIN | TYP | MAX | UNIT | TEST CONDITIONS |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{CIN}_{\text {IN }}$ |  |  | 10 | pF | $\mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}$ |
| I/O Capacitance | $\mathrm{C}_{\mathrm{I}} / \mathrm{O}$ |  |  | 20 | pF | Unmeasured pins <br> returned to $\mathrm{V}_{\mathrm{SS}}$ |

$\mathrm{T}_{\mathrm{B}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}: \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

| PARAMETER | SYMBOL | LIMITS |  |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MPD8255 |  | HPD8255A.5 |  |  |  |
|  |  | MIN | MAX | MIN | MAX |  |  |
| READ |  |  |  |  |  |  |  |
| Address Stable Before $\overline{\text { AEAB }}$ | ${ }^{\text {A }}$ AR | 50 |  | 0 | . | m | , |
| Address Stable After READ | tra | 0 |  | 0 |  | ns |  |
| FiEA ${ }^{\text {d Pulse Width }}$ | $t_{\text {RR }}$ | 405 |  | 300 |  | ns |  |
| Dota Valid From REAO | ${ }^{\text {tr }}$ D |  | 295 |  | 200 | ns | $\begin{aligned} & 8255: C_{L}=100 \mathrm{pF} \\ & \text { 8255A-5: } C_{L}=150 \mathrm{pF} \\ & \hline \end{aligned}$ |
| Data Float After REAB | ${ }^{\text {tof }}$ | 10 | 150 | 10 | 100 | $\begin{aligned} & \hline \mathrm{ms} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$ | $\begin{aligned} & C_{\mathrm{L}}=100 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \hline \end{aligned}$ |
| Time Between $\overline{\text { AEADS }}$ and/or WRITES | trv | 850 |  | 850 |  | ns | (2) |
| WRITE |  |  |  |  |  |  |  |
| Address Stoble Before WRITE | taw | 20 |  | 0 |  | $n 8$ |  |
| Addrens Stuble After Wirlte | twa | 20 |  | 20 |  | nt |  |
| WRITE Pulse Width | *W | 400 |  | 300 | . | $n$ |  |
| Date Valid To WRITE (L.E.) | tow | 10 |  | 100 |  | ns |  |
| Dats Valid After White | two | 35 |  | 30 |  | ns |  |
| OTHER TIMING |  |  |  |  |  |  |  |
| $\overline{\text { WR }}=0$ To Output | tw |  | 500 |  | 350 | ns | $\begin{aligned} & 8255: C_{L}=50 \mathrm{pF} \\ & \text { 8256A.5: } \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF} \end{aligned}$ |
| Peripheral Data Before RD | $\mathrm{I}_{\text {IR }}$ | 0 |  | 0 |  | ns |  |
| Peripherel Data After AD | ${ }^{\text {tHR }}$ | 50 |  | 0 |  | ns |  |
| $\overline{\text { ACK }}$ Pulse Width | ${ }_{\text {IAK }}$ | 500 |  | 300 |  | $n 8$ |  |
| STTB Pulse Width | ${ }^{\text {t }}$ ST | 350 |  | 500 |  | ns |  |
| Per. Data Before T.E. Of STB | tPS | 60 |  | 0 |  | $n$ |  |
| Per. Dats After T.E. Of STTB | $\Psi_{\text {PH }}$ | 150 |  | 180 |  | ns |  |
| $\overline{\text { ACK }}=0$ To Output | ${ }^{\text {ta }}$ |  | 400 |  | 300 | ns | $\begin{aligned} & 8255: C_{L}=50 \mathrm{pF} \\ & 8255 \mathrm{~A} \cdot \mathrm{5}: \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF} \end{aligned}$ |
| ACK $=0$ To Output Float | ${ }^{\text {\% K }}$ | 20 | 300 | 20 | 250 | ns | $8255\left\{\begin{array}{l} C_{L}=50 \mathrm{pF} \\ C_{L}=15 \mathrm{pF} \end{array}\right.$ |
| Wh = 1 T0 OGFF $=0$ | WOOB |  | 300 |  | 650 | ns |  |
| $\overline{A C R}=0$ TO $_{\text {OBF }}=1$ | ${ }^{\text {a }}$ AOB |  | 450 |  | 350 | ns |  |
| STB $=0$ To IBF $=1$ |  |  | 450 |  | 300 | ns | 8255: $C_{L}=50 \mathrm{pF}$ |
| $\overline{\mathrm{RD}}=1$ TO IBF $=0$ | ${ }_{\text {thib }}$ |  | 360 |  | 300 | $n s$ | 826: Cl |
| RD $=0$ TO INTR $=0$ | tilt |  | 450 |  | 400 | ns |  |
| STB - 1 TO INTR - 1 | ${ }_{\text {tSIT }}$ | - | 400 |  | 300 | ns | 8255A-6: $C_{L}=150 \mathrm{pF}$ |
| ACK = 1 TO INTR - 1 | ${ }_{\text {talt }}$ |  | 400 |  | 350 | ns |  |
| WH $=0$ TO INTR $=0$ | ${ }^{\text {TWIT }}$ |  | 850 |  | 850 | $n \mathrm{~s}$ |  |

Notes: (1) Period of Reset pulse must be at least $50 \mu$ s during or after power on. Subsequent Reset pulse can be 500 ns min.


## PACKAGE OUTLINE $\mu$ PD8255C $\mu$ PD8255AC/D-5



Plastic

| ITEM | MILLIMETERS | INCHES |
| :---: | :---: | :--- |
| A | 51.5 MAX | 2.028 MAX |
| B | 1.62 | 0.064 |
| C | $2.54 \pm 0.1$ | $0.10 \pm 0.004$ |
| D | $0.5 \pm 0.1$ | $0.019 \pm 0.004$ |
| E | 48.26 | 1.9 |
| F | 1.2 MIN | 0.047 MIN |
| G | 2.54 MIN | 0.10 MIN |
| H | 0.5 MIN | 0.019 MIN |
| I | 5.22 MAX | 0.206 MAX |
| J | 5.72 MAX | 0.225 MAX |
| K | 15.24 | 0.600 |
| L | 13.2 | 0.520 |
| M | $0.25+0.1$ | $0.010+0.004$ |


Ceramic

| ITEM | MILLIMETERS | INCHES |
| :---: | :---: | :--- |
| A | 51.5 MAX. | 2.03 MAX. |
| B | 1.62 MAX. | 0.06 MAX. |
| C | $2.54 \pm 0.1$ | $0.1 \pm 0.004$ |
| D | $0.5 \pm 0.1$ | $0.02 \pm 0.004$ |
| E | $48.26 \pm 0.1$ | $1.9 \pm 0.004$ |
| F | 1.02 MIN. | 0.04 MIN. |
| G | 3.2 MIN. | 0.13 MIN. |
| H | 1.0 MIN. | 0.04 MIN. |
| I | 3.5 MAX. | 0.14 MAX. |
| J | 4.5 MAX. | 0.18 MAX. |
| K | 15.24 TYP. | 0.6 TYP. |
| L | 14.93 TYP. | 0.59 TYP. |
| M | $0.25 \pm 0.05$ | $0.01 \pm 0.0019$ |

## PROGRAMMABLE DMA CONTROLLER

DESCRIPTION The $\mu$ PD8257 is a programmable four-channel Direct Memory Access (DMA) controller. It is designed to simplify high speed transfers between peripheral devices and memories. Upon a peripheral request, the 8257 generates a sequential memory address, thus allowing the peripheral to read or write data directly to or from memory. Peripheral requests are prioritized within the 8257 so that the system bus may be acquired by the generation of a single HOLD command to the 8080. DMA cycle counts are maintained for each of the four channels, and a control signal notifies the peripheral when the preprogrammed member of DMA cycles has occurred. Output control signals are also provided which allow simplified sectored data transfers and expansion to other 8257 devices for systems requiring more than four DMA channels.

FEATURES - Four Channel DMA Controller

- Priority DMA Request Logic
- Channel Inhibit Logic
- Terminal Count and Modulo 128 Outputs
- Automatic Load Mode
- Single TTL Clock
- Single +5 V Supply
- Expandable
- 40 Pin Plastic Dual-In-Line Package



## $\mu$ PD8257

The 8257 is a programmable, Direct Memory Access (DMA) device and when used with an 8212 I/O port device, it provides a complete four-channel DMA controller for use in 8080 based systems. Once initialized by an 8080 CPU, the 8257 will block transfer up to 16,364 bytes of data between memory and a peripheral device without any attention from the CPU, and it will do this on all 4-DMA channels. After receiving a DMA transfer request from a peripheral, the following sequence of events occur within the 8257.

- It acquires control of the system bus (placing 8080 in hold mode).
- Resolves priority conflicts if multiple DMA requests are made.
- A 16 bit memory address word is generated with the aid of an 8212 in the following manner:

The 8257 outputs the least significant eight bits $\left(A_{0}-A_{7}\right)$ which go directly onto the address bus.
The 8257 outputs the most significant eight bits $\left(A_{8} \cdot A_{15}\right)$ onto the data bus where they are latched into an 8212 and then sent to the high order bits on the address bus.

- The appropriate memory and I/O read/write control signals are generated allowing the peripheral to receive or deposit a data byte directly from or tc the appropriate memory location.

Block transfer of data (e.g., a sector of data on a floppy disk) either to or from a peripheral may be accomplished as long as the peripheral maintains its DMA Request ( $D R Q_{n}$ ). The 8257 retains control of the system bus as long as $D R Q_{n}$ remains high or until the Terminal Count (TC) is reached. When the Terminal Count occurs, TC goes high, informing the CPU that the operation is complete.

There are three different modes of operation:

- DMA read; which causes data to be transferred from memory to a peripheral;
- DMA write; which causes data to be transferred from a peripheral to memory; and
- DMA verify; which does not actually involve the transfer of data.

The DMA read and write modes are the normal operating conditions for the 8257. The DMA verify mode responds in the same manner as read/write except no memory or I/O read/write control sianals are generated, thus preventing the transfer of data. The peripheral gains control of the system bus and obtains DMA Acknowledgements for its requests, thus allowing it to access each byte of a data block for check purposes or accumulation of a CRC (Cyclic Redundancy Code) checkword. In some applications it is necessary for a block of DMA read or write cycles to be followed by a block of DMA verify cycles to allow the peripheral to verify its newly acquired data.


BLOCK DIAGRAM

AC CHARACTERISTICS
BUS PARAMETERS
$\mu$ PD8257
PERIPHERAL (SLAVE) MODE
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C} 1070^{\circ} \mathrm{C}: \mathrm{VCC}^{2}=5 \mathrm{~V}=5 \% ; \mathrm{GND}=0 \mathrm{~V}$ (1)

| PARAMETER | SYMBOL | LIMITS |  |  |  |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PD8257 |  |  | $\mu$ PD8257.5 |  |  |  |  |
|  |  | MIN | TYP | MAX | MIN | TYP | MAX |  |  |
| REAO |  |  |  |  |  |  |  |  |  |
| Adr or $\overline{\text { CS }}$ S Stup to $\overline{\mathrm{Rd}}$ ! | $\mathrm{T}_{\text {AR }}$ | 0 |  |  | 0 |  |  | ns |  |
| Adr or $\overline{\mathrm{CS}} \uparrow$ Hold from Rdt | TRA | 0 |  |  | 0 |  |  | ns |  |
| Data Access from $\overline{\mathrm{Rd}} \downarrow$ | TrDE | 0 |  | 300 | 0 |  | 170 | ns | $C_{L}=100 \mathrm{pF}$ |
| DB $\rightarrow$ Float Delay from $\overline{\mathrm{Rd}} \dagger$ | Trof | 20 |  | 150 | 20 |  | 100 | $\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$ | $\begin{aligned} & C_{L}=100 \mathrm{pF} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$ |
| $\overline{\mathrm{Rd}}$ Width | TRW | 250 |  |  | 250 |  |  | ns |  |
| WRITE |  |  |  |  |  |  |  |  |  |
| $\overline{\mathrm{CS}} \mathfrak{l}$ Setup to $\overline{\mathrm{Wr}_{1}}$ | TCW | 300 |  |  | 300 |  |  | ns |  |
| $\overline{\mathrm{CS}} \uparrow$ Hold from $\overline{\mathrm{W}_{r} \dagger}$ | TwC | 20 |  |  | 20 |  |  | ns |  |
| Adr Setup to $\overline{W r}$ t | $\mathrm{T}_{\text {AW }}$ | 20 |  |  | 20 |  |  | ns |  |
| Adr Hold from $\overline{W_{r}}+$ | TWA | 0 |  |  | 0 |  |  | ns |  |
| Data Setup to $\overline{\mathrm{Wr}}$ t | Tow | 200 |  |  | 200 |  |  | ns |  |
| Data Hold from $\overline{W r}$ t | TWD | 0 |  |  | 0 |  |  | ns |  |
| Wr Width | Twws | 200 |  |  | 200 |  |  | ns |  |
| OTHER TIMING |  |  |  |  |  |  |  |  |  |
| Reset Puise Width | TRSTW | 300 |  |  | 300 |  |  | ns |  |
| Power Supply $\uparrow\left(\mathrm{V}_{\mathrm{CC}}\right)$ Setup to Reset 4 | TRSTD | 500 |  |  | 500 |  |  | $\mu \mathrm{s}$ | . |
| Signal Rise Time | $\mathrm{T}_{\mathrm{r}}$ |  |  | 20 |  |  | 20 | ns |  |
| Signal Fall Time | $\mathrm{T}_{\mathrm{f}}$ |  |  | 20 |  |  | 20 | ns |  |
| Reset to First $\overline{\text { IOWR }}$ | TRSTS | 2 |  |  | 2 |  |  | ${ }^{\text {t }} \mathrm{CY}$ |  |

Note: (1) All timing measurements are made at the following reference voltages unless specified otherwise. Input " 1 " at $2.0 \mathrm{~V}, " 0$ " at 0.8 V . Output " 1 " at $2.0 \mathrm{~V}, ~ " 0$ " at 0.8 V .

TIMING WAVEFORMS PERIPHERAL (SLAVE) MODE

READ TIMING


WRITE TIMING


## लPD8257

$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \% ; G N D=0 \mathrm{~V}$

| PARAMETER | SYMBOL | LIMITS |  |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mu$ PD8257 |  | $\mu$ PD8257.5 |  |  |  |
|  |  | MIN | MAX | MIN | MAX |  |  |
| Cycle Time (Period) | $\mathrm{T}_{\mathrm{C}} \mathrm{C}^{\text {r }}$ | 0.320 | 4 | 0.250 | 4 | $\mu \mathrm{s}$ |  |
| Clock Active (High) | $\mathrm{T}_{\theta}$ | 120 | . 8 T CY | 30 | . 8 T CY | ns |  |
| DRQ $\uparrow$ Setup to $\theta \downarrow$ (SI, S4) | Tos | 120 |  | 120 |  |  |  |
| DRQ $\downarrow$ Hold from HLDA $\uparrow$ | TOH | 0 |  | 0 |  |  | (4) |
| HRQ $\uparrow$ or $\downarrow$ Delay from $\theta \uparrow$ (SI, S4) (measured at 2.0 V ) | TDO |  | 160 |  | 160 | ns | (1) |
| HRQ $\dagger$ or $\downarrow$ Delay from $\theta \uparrow$ (SI, S4) (measured at 3.3 V ) | TDO1 |  | 250 |  | 250 | ns | (3) |
| HLDAt or + Setup to $\theta \downarrow$ (SI, S4) | THS | 100 |  | 100 |  | ns |  |
| AEN $\uparrow$ Delay from $\theta \downarrow$ (S1) | $\mathrm{T}_{\text {AEL }}$ |  | 300 |  | 250 | ns | (1) |
| AEN $\downarrow$ Delay from $\theta \uparrow$ (SI) | TAET |  | 200 |  | 200 | ns | (1) |
| Adr (AB) (Active) Delay from AENt (S1) | TAEA | 20 |  | 20 |  | ns | (4) |
| Adr (AB) (Active) Delay from $\theta \uparrow$ (S1) | TFAAB |  | 250 |  | 250 | ns | (2) |
| Adr (AB) (Float) Delay from $\theta \uparrow$ (SI) | $T^{\prime}$ AFAB |  | 150 |  | 150 | ns | (2) |
| Adr (AB) (Stable) Delay from $\theta \uparrow(\mathrm{S} 1$ ) | $\mathrm{T}_{\text {ASM }}$ |  | 250 |  | 250 | ns | (2) |
| Adr (AB) (Stable) Hold from $\theta \uparrow$ (S1) | $T_{\text {A }}$ H | TASM ${ }^{-50}$ |  | TASM-50 |  |  | (2) |
| Adr (AB) (Valid) Hold from $\overline{\mathrm{Rd}} \uparrow(\mathrm{S} 1, \mathrm{SI})$ | TAHR | 60 |  | 60 |  | ns | (4) |
| Adr (AB) (Valid) Hold from $\overline{\mathrm{Wr}}{ }^{+}$(S1;'SI) | TAHW | 300 |  | 300 |  | ns | (4) |
| Adr (DB) (Active) Delay from $\theta \uparrow(\mathrm{S} 1$ ) | TFADB |  | 300 |  | 250 | ns | (2) |
| Adr (DB) (Float) Delay from $\theta \uparrow$ (S2) | $\mathrm{T}_{\text {AFDB }}$ | TSTT ${ }^{+20}$ | 250 | $\mathrm{T}_{\text {STT }}+20$ | 170 | ns | (2) |
| Adr (DB) Setup to Adr Stb $\downarrow$ (S1-S2) | TASS | 100 |  | 100 |  | ns | (4) |
| Adr (DB) (Valid) Hold from Adr Stb $\downarrow$ (S2) | TAHS | 50 |  | 50 |  | ns | (4) |
| Adr Stb ¢ Delay from $\theta \uparrow$ (S1) | ${ }^{\text {T STL }}$ |  | 200 |  | 200 | ns | (1) |
| Adr Stb + Delay from $\theta \uparrow$ (S2) | TSTT |  | 140 |  | 140 | ns | (1) |
| Adr Stb Width (S1-S2) | TSW | TCY-100 |  | $\mathrm{T}_{\text {cY-100 }}$ |  | ns | (4) |
| $\overline{\text { Rd }} \downarrow$ or $\overline{\text { Wr }}$ (Ext) $\downarrow$ Delay from Adr Stb $\downarrow$ (S2) | TASC | 70 |  | 70 |  | ns | (4) |
| $\overline{\mathrm{Rd}} \downarrow$ or $\overline{\mathrm{Wr}_{r}}$ (Ext) $\downarrow$ Delay from Adr (DB) (Float) (S2) | ${ }^{\text {T DBC }}$ | 20 |  | 20 |  | ns | (4) |
| DACK $\uparrow$ or $\downarrow$ Delay from $\theta \downarrow(\mathbf{S} 2, \mathbf{S} 1)$ and <br> TC/Mark $\dagger$ Delay from $\theta \uparrow(\mathrm{S} 3)$ and <br> TC/Mark \& Delay from $\theta \uparrow$ (S4) | ${ }^{\text {TAK }}$ |  | 250 |  | 250 | ns | (1) (5) |
| $\overline{\mathrm{Rd}} \downarrow$ or $\overline{W_{r}}$ (Ext) \& Delay from $\theta \uparrow$ (S2) and $\overline{\text { Wr }} \downarrow$ Delay from $\theta \dagger$ (S3) | ${ }^{T}$ DCL |  | 200 |  | 200. | ns | (2) (6) |
| $\overline{\mathrm{Rd}} \uparrow$ Delay from $\theta \downarrow$ (S1, SI) and $\overline{\text { Wr }} \uparrow$ Delay from $\theta \uparrow$ (S4) | TDCT |  | 200 |  | 200 | ns | (2).7) |
| $\overline{\mathrm{Rd}}$ or $\overline{\mathrm{Wr}}$ (Active) from $\theta \dagger$ (S1) | TFAC |  | 300 |  | 250 | ns | (2) |
| $\overline{\mathrm{Rd}}$ or $\overline{\mathrm{Wr}_{r}}$ (Float) from $\theta \uparrow$ (SI) | TAEC |  | 150 |  | 150 | ns | (2) |
| $\overline{\mathrm{Rd}}$ Width (S2-S1 or S1) | $T_{\text {RWM }}$ | $\begin{aligned} & 2 \mathrm{~T}_{\mathrm{CY}} \\ & \mathrm{~T}_{\theta}-50 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 2 \mathrm{~T}_{\mathrm{CY}}+ \\ & \mathrm{T}_{\theta}-50 \\ & \hline \end{aligned}$ |  | ns | (4) |
| $\bar{W}{ }_{\text {Wr }}$ Width (S3-S4) | TwWM | TCY-50 |  | TCY-50 |  | ns | (4) |
| $\overline{\mathrm{Wr}}$ (Ext) Width (S2-S4) | TWWME | ${ }^{2} \mathrm{~T}_{\mathrm{CY}} \mathrm{C}-50$ |  | 2TCY-50 |  | ns | (4) |
| READY Set Up Time to $\theta \uparrow$ ( $\mathrm{S} 3, \mathrm{Sw}$ ) | TRS | 30 |  | 30 |  | ns |  |
| READY Hold Time from $\theta \uparrow\left(\begin{array}{l}\text { ( }\end{array}\right.$ | TRH | 20 |  | 20 |  | ns |  |

Notes: (1) Load $=1 \mathrm{TTL}$
(2) Load $=1 \mathrm{TTL}+50 \mathrm{pF}$
(3) Load $=1 \mathrm{TTL}+\left(\mathrm{R}_{\mathrm{L}}=3.3 \mathrm{~K}\right), \mathrm{V}_{\mathrm{OH}}=3.3 \mathrm{~V}$
(4) Tracking Specification
(5) $\Delta T_{A K}<50 \mathrm{~ns}$
(6) $\Delta T_{\mathrm{DGL}}<50 \mathrm{~ns}$
(7) $\Delta T_{D C T}<50 \mathrm{~ns}$

AC CHARACTERISTICS DMA (MASTER) MODE

## TIMING WAVEFORMS DMA (MASTER) MODE



Internally the 8257 contains six different states (S0, S1, S2, S3, S4 and SW), the
DMA OPERATION duration of each state is determined by the input clock. In the idle state, (S1), no DMA operation is being executed. A DMA cycle is started upon receipt of one or more DMA Requests $\left(\mathrm{DRO}_{n}\right)$, then the 8257 enters the SO state. During state SO a Hold Request (HRQ) is sent to the 8080 and the 8257 waits in S0 until the 8080 issues a Hold Acknowledge (HLDA) back. During SO, DMA Requests are sampled and DMA priority is resolved (based upon either the fixed or priority scheme). After receipt of HLDA, the DMA Acknowledge line ( $\overline{\mathrm{DACK}}_{n}$ ) with the highest priority is driven low selecting that particular peripheral for the DMA cycle. The DMA Request line ( $D R Q_{n}$ ) must remain high until either a DMA Acknowledge ( $\overline{\mathrm{DACK}}_{n}$ ) or both $\overline{\mathrm{DACK}}_{n}$ and TC (Terminal Count) occur, indicating the end of a block or sector transfer (burst mode).

The DMA cycle consists of four internal states; $\mathrm{Si}, \mathrm{S} 2, \mathrm{~S} 3$ and S4. If the access time of the memory or I/O device is not fast enough to return a Ready command to the 8257 after it reaches state S3, then a Wait state is initiated (SW). One or more than one Wait state occurs until a Ready signal is received, and the 8257 is allowed to go into state S4. Either the extended write option or the DMA Verify mode may eliminate any Wait state. .

If the 8257 should lose control of the system bus (i.e., HLDA goes low) then the current DMA cycle is completed, the device goes into the S1 state, and no more DMA cycles occur until the bus is reacquired. Ready setup time (tRS), write setup time (tDW), read data access time (tRD) and HLDA setup time (tQS) should all be carefully observed during the handshaking mode between the 8257 and the 8080.

During DMA write cycles, the I/O Read ( $\overline{\mathrm{I} / \mathrm{OR}}$ ) output is generated at the beginning of state S2 and the Memory Write ( $\overline{M E M W}$ ) output is generated at the beginning of S3. During DMA read cycles, the Memory Read ( $\overline{M E M R}$ ) output is generated at the
 No Read or Write control signals are generated during DMA verify cycles.


DMA OPERATION
STATE DIAGRAM

Notes: (1) HRQ is set if $\mathrm{DRQ}_{\mathrm{n}}$ is active.
(2) HRQ is reset if $D R Q_{n}$ is not active.


Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to +7 Volts (1)
Power Dissipation
Note: (1) With Respect to Ground

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN. | TYP. | MAX. |  |  |
| Input Low Voltage | $V_{\text {IL }}$ | -0.5 |  | 0.8 | Volts |  |
| Input High Voltage | $\mathrm{V}_{\mathrm{IH}}$ | 2.0 |  | $\mathrm{V}_{\mathrm{CC}}+0.5$ | Volts |  |
| Output Low Voltage | $\mathrm{V}_{\mathrm{OL}}$ |  |  | 0.45 | Volts | $\mathrm{I}^{\mathrm{OL}}=1.7 \mathrm{~mA}$ |
| Output High Voltage | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  | $\mathrm{V}_{\mathrm{CC}}$ | Volts | $I_{O H}=-150 \mu A$ for $A B$, <br> DB and AEN <br> $\mathrm{I}_{\mathrm{OH}}=-80 \mu \mathrm{~A}$ for others |
| HRQ Output High Voltage | $V_{\text {HH }}$ | 3.3 |  | $\mathrm{V}_{\mathrm{CC}}$ | Volts | $\mathrm{I}_{\mathrm{OH}}=-80 \mu \mathrm{~A}$ |
| $\mathrm{V}_{\text {CC }}$ Current Drain | ${ }^{\text {cc }}$ |  |  | 120 | mA |  |
| Input Leakage | $I_{\text {IL }}$ |  |  | 10 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ |
| Output Leakage During Float | ${ }^{\text {I OFL }}$ |  | , | 10 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {OUT }}{ }^{(1)}$ |

Note: ${ }^{(1)} \mathrm{V}_{\mathrm{CC}}>\mathrm{V}_{\text {OUT }}>$ GND +0.45 V
$T_{a}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{GND}=0 \mathrm{~V}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
|  |  | TYP. | MAX. |  |  |  |
| Input Capacitance | $\mathrm{C}_{\text {IN }}$ |  |  | 10 | pF | $\mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}$ |
| I/O Capacitance | $\mathrm{C}_{I / O}$ |  |  | 20 | pF | Unmeasured pins <br> returned to GND |



ABSOLUTE MAXIMUM RATINGS*

DC CHARACTERISTICS

## CAPACITANCE

PACKAGE OUTLINE $\mu$ PD8257C $\mu$ PD8257C-5

## PROGRAMMABLE INTERRUPT CONTROLLER

DESCRIPTION The NEC $\mu$ PD8259 is a programmable interrupt controller directly compatible with the 8080A/8085A/ $\mu$ PD780(Z80 ${ }^{\text {TM }}$ ). It can service eight levels of interrupts and contains on-chip logic to expand interrupt capabilities up to sixty-four levels with the addition of other $\mu$ PD8259's. The user is offered a selection of priority algorithms to tailor the priority processing to meet his systems requirements. These algorithms can be dynamically modified during operation, expanding the versatility of the microprocessor system.

FEATURES • Eight Level Priority Controller

- Programmable Base Vector Address
- Expandable to 64 Levels
- Programmable Interrupt Modes (Algorithms)
- Individual Request Mask Capability
- Single +5 V Supply (No Clocks)
- Full Compatibility with 8080A/ $\mu$ PD780(Z80 ${ }^{\text {TM }}$ )
- $\mu$ PD8259-5 Compatible with 8085A Speeds
- Available in 28 Pin Plastic and Ceramic Packages

PIN CONFIGURATION


## $\mu$ PD8259

## INTERRUPT REQUEST REGISTER (IRR) AND IN-SERVICE REGISTER (ISR)

The interrupt request register and in-service register store the in-coming interrupt BASIC FUNCTIONAL request signals appearing on the IRO-7 lines (refer to functional block diagram). The inputs requesting service are stored in the IRR while the interrupts actually being serviced are stored in the ISR.

A positive transition on an IR input sets the corresponding bit in the Interrupt Request Register, and at the same time the INT output of the $\mu$ PD8259 is set high. The IR input line must remain high until the first INTA input has been received. Multiple, nonmasked interrupts occurring simultaneously can be stored in the IRR. The incoming INTA sets the appropriate ISR bit (determined by the programmed interrupt algorithm) and resets the corresponding IRR bit. The ISR bit stays high-active during the interrupt service subroutine until it is reset by the programmed End-of-Interrupt (EOI) command.

## PRIORITY RESOLVER

The priority resolver decides the priority of the interrupt levels in the IRR. When the highest priority interrupt is determined it is loaded into the appropriate bit of the In-Service register by the first $\overline{\text { INTA }}$ pulse.

## DATA BUS BUFFER

The 3-state, 8-bit, bi-directional data bus buffer interfaces the $\mu$ PD8259 to the processor's system bus. It buffers the Control Word and Status Data tránsfers between the $\mu$ PD8259 and the processor bus.

## READNRITE LOGIC

The read/write logic accepts processor data and stores it in its Initialization Command Word (ICW) and Operation Command Word (OCW) registers. It also controls the transfer of the Status Data to the processor's data bus.

## CHIP SELECT ( $\overline{C S}$ )

The $\mu$ PD8259 is enabled when an active-low signal is received at this input. Reading or writing of the $\mu$ PD8259 is inhibited when it is not selected.

## WRITE (WR)

This active-low signal instructs the $\mu$ PD8259 to receive Command Data from the processor.

## READ ( $\overline{\mathrm{RD}})$

When an active-low signal is received on the $\overline{R D}$ input, the status of the Interrupt Request Register, In-Service Register, Interrupt Mask Register or binary code of the Interrupt Level is placed on the data bus.

## INTERRUPT (INT)

The interrupt output from the $\mu$ PD8259 is directly connected to the processor's INT input. The voltage levels of this output are compatible with the 8080's input voltage and timing requirements.

## INTERRUPT MASK REGISTER (IMR)

The interrupt mask register stores the bits for the individual interrupt bits to be masked. The IMR masks the data in the ISR. Lower priority lines are not affected by masking a higher priority line.

FUNCTIONAL DESCRIPTION
(CONT.)

## INTERRUPT ACKNOWLEDGE (INTA)

The interrupt acknowledge signal is usually received from the 8228 (system controller for the 8080A). The system controller generates three INTA pulses to signal the 8259 to issue a 3 -byte CALL instruction onto the data bus.

## $\mathrm{A}_{0}$

$A_{0}$ is usually connected to the processor's address bus. Together with $\overline{W R}$ and $\overline{R D}$ signals it directs the loading of data into the command register or the reading of status data. The following table illustrates the basic operations performed. Note that it is divided into three functions: Input, Output and Bus Disable distinguished by the $\overline{R D}, \overline{W R}$, and $\overline{C S}$ inputs.

| $\mu$ PD8259 BASIC OPERATION |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{A}_{0}$ | D4 | D3 | $\overline{\mathrm{RD}}$ | $\overline{W R}$ | $\overline{\mathrm{CS}}$ | PROCESSOR INPUT OPERATION (READ) |
| 0 1 |  |  | 0 | 1 1 | 0 | IRR, ISR or IR $\rightarrow$ Data Bus (1) IMR $\rightarrow$ Data Bus |
|  |  |  |  |  |  | PROCESSOR OUTPUT OPERATION (WRITE) |
| 0 | 0 | 0 | 1 | 0 | 0 | Data Bus $\rightarrow$ OCW2 |
| 0 | 0 | 1 | 1 | 0 | 0 | Data Bus $\rightarrow$ OCW3 |
| 0 | 1 | X | 1 | 0 | 0 | Data Bus $\rightarrow$ ICW1 |
| 1 | X | X | 1 | 0 | 0 | Data Bus $\rightarrow$ OCW1, ICW2, ICW3 (2) |
| DISABLE FUNCTION |  |  |  |  |  |  |
| X | X | X | 1 | 1 | 0 | Data Bus $\rightarrow$ 3-State |
| X | X | X | X | X | 1 | Data Bus $\rightarrow 3$-State |

Notes: (1) The contents of OCW2 written prior to the READ operation governs the selection of the IRR, ISR or Interrupt Level.
(2) The sequencer logic on the $\mu$ PD8259 aligns these commands in the proper order.

## CASCADE BUFFER/COMPARATOR. (For Use in Multiple $\mu$ PD8259 Array.)

The ID's of all $\mu$ PD8259's are buffered and compared in the cascade buffer/comparator. The master $\mu$ PD8259 will send the ID of the interrupting slave device along the CASO, 1, 2 lines to all slave devices. The cascade buffer/comparator compares its preprogrammed ID to the CASO, 1, 2 lines. The next two INTA pulses strobe the preprogrammed, 2 byte CALL routine address onto the data bus from the slave whose ID matches the code on the CASO, 1, 2 lines.

## SLAVE PROGRAM ( $\overline{\mathbf{S P}}$ ). (For Use in Multiple $\mu$ PD8259 Array.)

The interrupt capability can be expanded to 64 levels by cascading multiple $\mu$ PD8259's in a master-plus-slaves array. The master controls the slaves through the CASO, 1, 2 lines. The $\overline{\mathrm{SP}}$ input to the device selects the CAS0-2 lines as either outputs ( $\overline{\mathrm{SP}}=1$ ) for the master or as inputs ( $\overline{\mathrm{SP}}=0$ ) for the slaves. For one device only the $\overline{\mathrm{SP}}$ must be set to a logic " 1 " since it is functioning as a master.



Note: (1) With respect to ground.
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

$$
{ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}
$$

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{GND}=0 \mathrm{~V}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input Capacitance | CIN |  |  | 10 | pF | $\mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}$ |
| I/O Capacitance | $\mathrm{Cl}_{1 / \mathrm{O}}$ |  |  | 20 | pF | Unmeasured Pins Returned to $V_{\text {SS }}$ |


| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input Low Voltage | $V_{\text {IL }}$ | -0.5 |  | 0.8 | $\checkmark$ |  |
| Input High Voltage | $\mathrm{V}_{\text {IH }}$ | 2.0 |  | $\mathrm{v}_{\mathrm{CC}}+0.5 \mathrm{~V}$ | V |  |
| Output Low Voltage | $\mathrm{V}_{\mathrm{OL}}$ |  |  | 0.45 | V | $\mathrm{I}^{\mathrm{OL}}=2 \mathrm{~mA}$ |
| Output High Voltage | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  |  | V | $\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$ |
| Interrupt OutputHigh Voltage | VOH-INT | 2.4 |  |  | V | $\mathrm{I}^{\mathrm{OH}}=-400 \mu \mathrm{~A}$ |
|  |  | 3.5 |  |  | V | $1 \mathrm{OH}=-50 \mu \mathrm{~A}$ |
| Input Leakage Current for $\mathrm{IR}_{0-7}$ | $\mathrm{I}_{1 L}\left(1 \mathrm{R}_{0.7}\right)$ |  |  | -300 | $\mu \mathrm{A}$ | $V_{\text {IN }}=0 V$ |
|  |  |  |  | 10 | $\mu \mathrm{A}$ | $V_{\text {IN }}=V_{C C}$ |
| Input Leakage Current for other Inputs | $\mathrm{I}_{\mathrm{IL}}$ |  |  | $\pm 10$ | $\mu \mathrm{A}$ | $V_{\text {IN }}=V_{C C}$ to $0 V$ |
| Output Leakage Current | $\mathrm{I}_{\text {LOL }}$ |  |  | - 10 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {OUT }}=0.45 \mathrm{~V}$ |
| Output Leakage Current | $\mathrm{I}_{\mathrm{LOH}}$ |  |  | 10 | $\mu \mathrm{A}$ | $V_{\text {OUT }}=V_{\text {CC }}$ |
| $V_{\text {CC }}$ Supply Current | $\mathrm{I}_{\mathrm{CC}}$ |  |  | 85 | mA |  |


\section*{PACKAGE OUTLINE $\mu$ PD8259C/D <br>  <br> (Plastic) <br> | ITEM | MILLIMETERS | INCHES |
| :--- | :---: | :--- |
| A | 38.0 MAX. | 1.496 MAX. |
| B | 2.49 | 0.098 |
| C | 2.54 | 0.10 |
| D | $0.5 \pm 0.1$ | $0.02 \pm 0.004$ |
| E | 33.02 | 1.3 |
| F | 1.5. | 0.059 |
| G | 2.54 MIN. | 0.10 MIN. |
| H | 0.5 MIN. | 0.02 MIN. |
| I | 5.22 MAX. | 0.205 MAX. |
| J | 5.72 MAX. | 0.225 MAX. |
| K | 15.24 | 0.6 |
| L | 13.2 | 0.52 |
| M | $0.25+0.10$ | $0.01+0.004$ |}


(Ceramic)

| ITEM | MILLIMETERS | INCHES |
| :---: | :---: | :---: |
| A | 36.2 MAX. | 1.43 MAX. |
| B | 1.59 MAX. | 0.06 MAX. |
| C | $2.54 \pm 0.1$ | $0.1 \pm 0.004$ |
| D | $0.46 \pm 0.01$ | $0.02 \pm 0.004$ |
| E | $33.02 \pm 0.1$ | $1.3 \pm 0.004$ |
| F | 1.02 MIN. | 0.04 MIN. |
| G | 3.2 MIN. | 0.13 MIN. |
| H | 1.0 MIN. | 0.04 MIN. |
| I | 3.5 MAX. | 0.14 MAX. |
| J | 4.5 MAX. | 0.18 MAX. |
| K | 15.24 TYP. | 0.6 TYP. |
| L | 14.93 TYP. | 0.59 TYP. |
| M | $0.25 \pm 0.05$ | $0.01 \pm 0.002$ |

## $\mu$ PD8259

| PARAMETER | SYMBOL | LIMITS |  |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 8259 |  | 8259.5 |  |  |  |
|  |  | MIN | MAX | MIN | MAX |  |  |
| READ |  |  |  |  |  |  |  |
| $\overline{\mathrm{CS}} / \mathrm{A}_{0}$ Stable Before $\overline{\mathrm{RD}}$ or $\overline{\text { INTA }}$ | tAR | 50 |  | 0 |  | ns |  |
| $\overline{\mathrm{CS}} / \mathrm{A}_{0}$ Stable After $\overline{\mathrm{RD}}$ or $\overline{\mathrm{INTA}}$ | tra | 50 |  | 0 |  | ns |  |
| $\overline{R D}$ Pulse Width | trR | 420 |  | 250 |  | ns |  |
| Data Valid From $\overline{\mathrm{RD}} / \overline{\mathrm{NNTA}}$ | trD |  | 300 |  | 150 | ns | (1) |
| Data Float After $\overline{\mathrm{RD}} / \overline{\mathrm{NTA}}$ | t DF | 20 | 200 | 20 | 100 | ns | (1) |
| WRITE |  |  |  |  |  |  |  |
| $A_{0}$ Stable Before $\overline{W R}$ | ${ }^{\text {t }}$ AW | 50 |  | 0 |  | ns |  |
| $A_{0}$ Stable After $\overline{\text { WR }}$ | twA | 20 |  | 0 |  | ns |  |
| $\overline{\text { CS Stable Before } \overline{W R}}$ | ${ }^{\text {t }}$ W | 50 |  |  |  | ns |  |
| $\overline{\text { CS }}$ Stable After $\overline{\text { WR }}$ | twC | 20 |  |  |  | ns |  |
| $\overline{\text { WR }}$ Pulse Width | tww | 400 |  | 250 |  | ns |  |
| Data Valid to $\overline{W R}$ (T.E.) | t DW | 300 |  | 150 |  | ns |  |
| Data Valid After $\overline{W R}$ | two | 40 |  | 0 |  | ns |  |
| OTHER |  |  |  |  |  |  |  |
| Width of Interrupt Request Pulse | tiw | 100 |  | 100 |  | ns |  |
| INT $\uparrow$ After IR $\uparrow$ | tint | 400 |  | 250 |  | ns |  |
| Cascade Line Stable After $\overline{\text { INTA }} \uparrow$ | ${ }_{1} \mathrm{C}$ | 400 |  | 300 |  | ns |  |

Note: (1) For $\mu$ PD8259: $C_{L}=100 \mathrm{pf}$; for $\mu$ PD8259-5: $\mathrm{C}_{\mathrm{L}}=150 \mathrm{pf}$


WRITE


TIMING WAVEFORMS (CONT.)

READ STATUS/POLL MODE


OTHER


Note: IR must stay "high" at least until the leading edge of 1st INTA.

INPUT WAVEFORMS FOR AC TESTS


INITIALIZATION SEQUENCE


## MPD8259

The $\mu$ PD8259 derives its versatility from its programmable interrupt modes and its ability to jump to any memory address through programmable CALL instructions. The following sequence demonstrates how the $\mu$ PD8259 interacts with the processor.

1. An interrupt or interrupts appearing on $\mid \mathrm{R}_{0-7}$ sets the corresponding IR bit(s) high. This in turn sets the corresponding IRR bit(s) high.
2. Once the IRR bit(s) has been set, the $\mu$ PD8259 will resolve the priorities according to the preprogrammed interrupt algorithm. It then issues an INT signal to the processor.
3. The processor group issues an INTA to the $\mu$ PD8259 when it receives the INT.
4. The INTA input to the $\mu$ PD8259 from the processor group sets the highest priority ISR bit and resets the corresponding IRR bit. The INTA also signals the $\mu$ PD8259 to issue an 8-bit CALL instruction op-code (11001101) onto its Data bus lines.
5. The CALL instruction code instructs the processor group to issue two more INTA pulses to the $\mu$ PD8259.
6. The two INTA pulses signal the $\mu$ PD8259 to place its preprogrammed interrupt vector address onto the Data bus. The first INTA releases the low-order 8-bits of the address and the second INTA releases the high-order 8-bits.
7. The $\mu$ PD8259's CALL instruction sequence is complete. A preprogrammed EOI (End-of-Interrupt) command is issued to the $\mu$ PD8259 at the end of an interrupt service routine to reset the ISR bit and allow the $\mu$ PD8259 to service the next interrupt.

Two types of command words are required from the processor to fully define the operating modes of the $\mu$ PD8259.

DETAILED OPERATIONAL DESCRIPTION

PROGRAMMING THE $\mu$ PD8259

## 1. Initialization Command Words (ICWs)

Each $\mu$ PD8259 in the interrupt array must be initialized prior to normal operation.
The initialization is performed by a 2 or 3 -byte sequence clocked by $\overline{W R}$ pulses.
Figùre 1 shows this sequence. (Refer to Figure 2 for bit definitions.)


INITIALIZATION SEQUENCE - FIGURE 1.

## PROGRAMMING THE $\mu$ PD8259 (CONT.)

INITIALIZATION COMMAND WORDS 1 and 2 (ICW1 and ICW2)

## 2. Operation Command Words (OCWs)

The operation command words are used to program the various interrupt algorithms listed below:

- Fully Nested Mode
- Rotating Priority Mode
- Special Mask Mode
- Polled Mode

Once the $\mu$ PD8259 has been initialized, OCWs can be written at any time.
When $A_{0}=0$ and $D_{4}=1$ in a command to the $\mu P D 8259$, together with $\overline{C S}=0$, it is recognized as Initialization Command Word 1. This is the start of the initialization sequence and causes the following to occur:

- The Interrupt Request edge-sense circuitry is reset so that an input must make a low-to-high transition to generate its interrupt.
- The initialization sequence clears Interrupt Mask Register to all unmasked and resets the Special Mask Mode and Status Read Flip-Flops.
- IR7 input is set to priority 7.

There are eight equally-spaced base vector addresses in memory for the eight interrupt inputs. The interval between the base vector addresses can be programmed to be either four or eight requiring 32 or 64 bytes in memory, respectively. The following shows how the address format is mapped onto the Data bus.


The $\mu$ PD8259 automatically defines $A_{0-4}$ with a separate address for each interrupt input. The base vector addresses $\mathrm{A}_{15-6}$ are programmed by ICW 1 and ICW2. $\mathrm{A}_{5}$ is either defined by the $\mu$ PD8259 if the address interval is eight or must be user-defined if the interval is 4. The 8-byte CALL interval is consistent with 8080A processor RESTART instruction software. The 4-byte CALL interval can be used for a compact jump table. Refer to Figure 4 for a table of address formats.

The following is an example of an interrupt acknowledge sequence. The $\mu$ PD8259 has been programmed for a CALL address (base vector address) interval of eight ( $F=0$ ) and there is an interrupt appearing on IR4. The 3-byte sequence is strobed out to the Data bus by three INTA pulses.

| . | $\begin{array}{cccccccccl} \\ \mathrm{D}_{7} \ldots & \mathrm{D}_{6} & \mathrm{D}_{5} & \mathrm{D}_{4} & \mathrm{D}_{3} & \mathrm{D}_{2} & \mathrm{D}_{1} & \mathrm{D}_{0}\end{array}$ |  |  |  |  |  |  |  | CALL CODE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1ST INTA | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 |  |
| 2ND INTA | $A_{7}$ | $\mathrm{A}_{6}$ | 1 | 0 | 0 | 0 | 0 | 0 | LOWER ROUTINE |
|  |  |  |  |  |  |  |  |  | ADDRESS (FROM <br> FIGÜRE 4) |
| 3RD $\overline{\text { INTA }}$ | A15 | A14 | $\mathrm{A}_{13}$ | A12 | A11 | A 10 | A9 | $A_{8}$ | HIGHER ROUTINE |

## MPD8259

It is only necessary to program ICW3 when there are multiple $\mu$ PD8259s in the interrupt array, i.e., $S=0$. There are two types of ICW3s. The first is for programming the master $\mu$ PD8259. The second is for the slaves.

1. ICW3-Master $\mu$ PD8259. $A$ " 1 " is set in $\mathrm{S}_{0-7}$ for each corresponding slave in the interrupt array. The $\mathrm{S}_{0-7}$ bits, together with $\overrightarrow{\mathrm{SP}}=1$, instructs the cascade buffer/ comparator to send the ID of the interrupting slave on the CAS0,1,2 lines.
2. ICW3-SLAVE $\mu$ PD8259(s). Bits D7-D3 are "don't care" bits and have no effect on ICW3. The ID of each slave is programmed by bits $D_{0-2}\left(I D_{0,1,2}\right)$. Once the master $\mu$ PD8259 has sent out the first byte of the CALL sequence, the slave device(s) with their $\overline{\mathrm{SP}}$ inputs set to Logic 0 , compare their IDs appearing on the CAS0,1,2 lines through the cascade buffer/comparator. The slave whose ID matches the CASO, 1,2 code then issues bytes 2 and 3 of the CALL sequence.

Once the $\mu$ PD8259 has been programmed with Initialization Command Words, it can now be programmed for the appropriate interrupt algorithm by the Operation Command Words. Interrupt algorithms in the $\mu$ PD8259 can be changed at any time during program operation by issuing another set of Operation Command Words. The following sections describe the various algorithms available and their associated OCWs.

OPERATIONAL COMMAND WORDS (OCWs) (2)

## INTERRUPT MASKS

The individual Interrupt Request input lines are maskable by setting the corresponding bits in the Interrupt Mask Register to a logic " 1 " through OCW1. The actual masking is performed upon the contents of the In-Service Register (e.g., if Interrupt Request line 3 is to be masked, then only bit 3 of the IMR is set to logic "1." The IMR in turn acts upon the contents of the ISR to mask bit 3). Once the $\mu$ PD8259 has acknowledged an interrupt, i.e., the $\mu$ PD8259 has sent an INT signal to the processor and the system controller has sent it an INTA signal, the interrupt input, although it is masked, will inhibit lower priority requests from being acknowledged. There are two means of enabling these lower priority interrupt lines. The first is by issuing an End-of-Interrupt (EOI) through Operation Command Word 2 (OCW2), thereby resetting the appropriate ISR bit. The second approach is to select the Special Mask Mode through OCW3. The Special Mask Mode (SMM) and End-of-Interrupt (EOI) will be described in more detail further on.

## FULLY NESTED MODE

The fully nested mode is the $\mu$ PD8259's basic operating mode. It will operate in this mode after the initialization sequence, requiring no Operation Command Words for formatting. Priorities are set $I R_{0}$ through $I R_{7}$ with $\mathrm{IR}_{0}$ the highest priority. After the interrupt has been acknowledged by the processor and system controller, only higher priorities will be serviced. Upon receiving an INTA, the priority resolver determines the priority of the interrupt, the corresponding ISR bit is set, and the vector address is output to the Data bus. The EOI command resets the corresponding ISR bit at the end of its service routine.

Notes: (1) Reference Figure 2
(2) Reference Figure 3

OPERATIONAL COMMAND WORDS (CONT.)

## ROTATING PRIORITY MODE COMMANDS

The two variations of Rotating Priorities are the Auto Rotate and Specific Rotate modes. These two modes are typically used to service interrupting devices of equivalent priorities.

1. Auto Rotate Mode

Programming the Auto Rotate Mode through OCW2 assigns priorities 0-7 to the interrupt request input lines. Interrupt line $I R_{0}$ is set to the highest priority and $I_{7} 7$ to the lowest. Once an interrupt has been serviced it is automatically assigned the lowest priority. That same input must then wait for the devices ahead of it to be serviced before it can be acknowledged again. The Auto Rotate Mode is selected by programming OCW2 in the following way (refer to Figure 3): set Rotate Priority bit " $R$ " to a logic " 1 "; program EOI to a logic " 1 " and SEOI to a logic " 0 ." The EOI and SEOI commands are discussed further on. The following is an example of the Auto Rotate Mode with devices requesting interrupts on lines $\mathrm{IR}_{2}$ and $\mathrm{IR}_{5}$.
Before Interrupts are Serviced:


According to the Priority Status Register, $\mathrm{IR}_{2}$ has a higher priority than $\mathrm{IR}_{5}$ and will be serviced first.
After Servicing:


At the completion of $I R_{2}$ 's service routine the corresponding $\ln$-Service Register bit, $I S_{2}$ is reset to " 0 " by the preprogrammed EOI command. $I R_{2}$ is then assigned the lowest priority level in the Priority Status Register. The $\mu$ PD8259 is now ready to service the next highest interrupt, which in this case, is $\mathbf{I R}_{\mathbf{5}}$.
2. Specific Rotate Mode

The priorities are set by programming the lowest level through OĊW2. The $\mu$ PD8259 then automatically assigns the highest priority. If, for example, IR3 is set to the lowest priority (bits $L_{2}, L_{1}, L_{0}$ form the binary code of the bottom priority level), then $\mathrm{IR}_{4}$ will be set to the highest priority. The Specific Rotate Mode is selected by programming OCW2 in the following manner: set Rotate Priority bit "R" to a logic "1," program EOI to a logic " 0, , SEOI to a logic " 1 " and $L_{2}, L_{1}, L_{0}$ to the lowest priority level. If EOI is set to a logic "1," the ISR bit defined by $L_{2}, L_{1}, L_{0}$ is reset.

## END-OF-INTERRUPT (EOI) AND SPECIFIC END-OF-INTERRUPT (SEOI)

The End-of-Interrupt or Specific End-of-Interrupt command must be issued to reset the appropriate In -Service Register bit before the completion of a service routine. Once the ISR bit has been reset to logic " 0, " the $\mu$ PD8259 is ready to service the next interrupt.

Two types of EOIs are available to clear the appropriate ISR bit depending on the $\mu$ PD8259's operating mode.

1. Non-Specific End-of-Interrupt (EOI)

When operating in interrupt modes where the priority order of the interrupt inputs is preserved (e.g., fully nested mode), the particular ISR bit to be reset at the completion of the service routine can be determined. A non-specific EOI command will automatically reset the highest priority ISR bit of those set. The highest priority ISR bit must necessarily be the interrupt being serviced and must necessarily be the service subroutine returned from.
2. Specific End-of-Interrupt (SEOI)

When operating in interrupt modes where the priority order of the interrupt inputs is not preserved (e.g., rotating priority mode) the last serviced interrupt level may not be known. In these modes a Specific End-of-Interrupt must be issued to clear the ISR bit at the completion of the interrupt service routine. The SEOI is programmed by setting the appropriate bits in OCW3 (Figure 2) to logic " 1 "s. Both the EOI and SEOI bits of OCW3 must be set to a logic " 1 " with $L_{2}, L_{1}, L_{0}$ forming the binary code of the ISR bit to be reset.

## SPECIAL MASK MODE

Setting up an interrupt mask through the Interrupt Mask Register (refer to Interrupt Mask Register section) by setting the appropriate bits in OCW 1 to a logic " 1 " will inhibit lower priority interrupts from being acknowledged. In applications requiring that the lower priorities be enabled while the IMR is set, the Special Mask Mode can be used. The SMM is programmed in OCW3 by setting the appropriate bits to a logic "1." Once the SMM is set, the $\mu$ PD8259 remains in this mode until it is reset. The Special Mask Mode does not affect the higher priority interrupts.

## POLLED MODE

In the Poll Mode the processor must be instructed to disable its interrupt input (INT). Interrupt service is initiated through software by a Poll Command. The Poll Mode is programmed by setting the Poll Mode bit in OCW3 $(P=1)$, during a $\overline{W R}$ pulse. The following $\overline{\mathrm{RD}}$ pulse is then considered as an interrupt acknowledge. If an interrupt input is present, that $\overrightarrow{R D}$ pulse sets the appropriate ISR bit and reads the interrupt priority level. The Poll Mode is a one-time operation and must be programmed through OCW3 before every read. The word strobed onto the Data bus during Poll Mode is of the form:

| $\mathrm{D}_{7}$ | $\mathrm{D}_{6}$ | $\mathrm{D}_{5}$ | $\mathrm{D}_{4}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{1}$ | $\mathrm{D}_{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I | x | x | x | x | $\mathrm{w}_{2}$ | $\mathrm{w}_{1}$ | $\mathrm{w}_{0}$ |

where: $I=1$ if there is an interrupt requesting service
$=0$ if there are no interrupts
$\mathrm{W}_{2-0}$ forms the binary code of the highest priority level of the interrupts requesting service
The Poll Mode can be used when an interrupt service toutine is common to several interrupt inputs. The INTA sequence is no longer required offering a saving in ROM space. The Poll Mode can also be used to expand the number of interrupts beyond 64. pace The Poll Mode can also be used to expand the number interupts beyond 64.

OPERATIONAL COMMAND WORDS (CONT.)

The following major registers' status is available to the processor by appropriately formatting OCW3 and issuing $\overline{\mathrm{RD}}$ command.

## INTERRUPT REQUEST REGISTER (8-BITS)

The Interrupt Request Register stores the interrupt levels awaiting acknowledgement. Once it has been acknowledged, the highest priority in-service bit is reset. (Note that the Interrupt Mask Register has no effect on the IRR.) A $\overline{W R}$ command must be issued with OCW3 prior to issuing the $\overline{\mathrm{RD}}$ command. The bits which determine whether the IRR and ISR are being read from are RIS and ERIS. To read contents of the IRR, ERIS must be logic " 1 " and RIS a logic " 0 ."

## IN-SERVICE REGISTER (8-BITS)

The In-Service Register stores the priorities of the interrupt levels being serviced. Assertion of an End-of-Interrupt (EOI) updates the ISR to the next priority level. A $\overline{\mathrm{WR}}$ command must be issued with OCW3 prior to issuing the $\overline{\mathrm{RD}}$ command. Both ERIS and RIS should be set to a logic "1."

## INTERRUPT MASK REGISTER (8-BITS)

The Interrupt Mask Register holds mask data modifying interrupt levels. To read the IMR status a $\overline{W R}$ pulse preceding the $\overline{R D}$ is not necessary. The IMR data is available to the data bus when $\overline{\mathrm{RD}}$ is asserted with $\mathrm{A}_{0}$ at a logic " 1. ."

A single OCW3 is sufficient to enable successive status reads providing it is of the same register. A status read is over-ridden by the Poll Mode where bits P and ERIS of OCW3 are set to a logic " 1 ."

CASCADING MULTIPLE $\mu$ PD8259s

If more than eight interrupt levels are required, multiple $\mu$ PD8259s can be cascaded with one master and up to eight slaves, to accommodate up to 64 levels of interrupt.
As shown in Figure 5, the master device directs the appropriate slave to release its CALL address through its three cascade lines (CASO,1,2).
The INT output of the slave devices go to the IR inputs of the master device. The master $\mu$ PD8259's INT output is connected to the processor's control bus. When the slave device signals the master that it has acknowledged an interrupt, the master issues an 8080A CALL Op-code at the first $\overline{\text { INTA }}$ pulse. The master then signals that slave device (via CASO,1,2) to issue the appropriate CALL address during the second and third INTA pulses.
The slave address code is present on cascade lines $0,1,2$ (active-high logic) from the trailing edge of the first $\overline{\text { INTA }}$ to the trailing edge of the third INTA. Each device in the $\mu$ PD8259 array must be individually initialized and can be programmed in different operating modes. Two End-of-Interrupt commands must be issued for the master and its corresponding slave. An address decoder is used to drive the Chip Select inputs for each $\mu$ PD8259 in the array. The Slave Program (SP) input must be held at a logic " 0 " level for each slave device and held at logic "1" level for the master. The $\overline{\mathbf{S P}}$ input selects the Cascade lines as either inputs $\overline{(S P}=0)$ or outputs $(\overline{\mathrm{SP}}=1)$.


FIGURE 2
ocw 1.


CW2


BINARY LEVEL TO BE RESET
OR PUT INTO LOWEST PRIORITY

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
\end{array}
$$

OCW3:


FIGURE 3

INITIALIZATION COMMAND WORD FORMAT

OPERATION COMMAND WORD FORMAT

SUMMARY OF OPERATION COMMAND WORD PROGRAMMING


LOWER MEMORY INTERRUPT VECTOR ADDRESS

| INTERVAL $=4$ |  |  |  |  |  |  |  |  | INTERVAL $=8$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{D}_{7}$ | $\mathrm{D}_{6}$ | $\mathrm{D}_{5}$ | $\mathrm{D}_{4}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{1}$ | $\mathrm{D}_{0}$ | D7 | $\mathrm{D}_{6}$ | $\mathrm{D}_{5}$ | $\mathrm{D}_{4}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{1}$ | Do |
| $\mathrm{IR}_{7}$ | $A_{7}$ | $A_{6}$ | $\mathrm{A}_{5}$ | 1 | 1 | 1 | 0 | 0 | $A_{7}$ | $A_{6}$ | 1 | 1 | 1 | 0 | 0 | 0 |
| $\mathrm{IR}_{6}$ | $A_{7}$ | $\mathrm{A}_{6}$ | $\mathrm{A}_{5}$ | 1 | 1 | 0 | 0 | 0 | $A_{7}$ | $A_{6}$ | 1 | 1 | 0 | 0 | 0 | 0 |
| $\mathrm{IR}_{5}$ | $A_{7}$ | $A_{6}$ | $A_{5}$ | 1 | 0 | 1 | 0 | 0 | $A_{7}$ | $\mathrm{A}_{6}$ | 1 | 0 | 1 | 0 | 0 | 0 |
| $\mathrm{IR}_{4}$ | $A_{7}$ | $A_{6}$ | $A_{5}$ | 1 | 0 | 0 | 0 | 0 | $A_{7}$ | $A_{6}$ | 1 | 0 | 0 | 0 | 0 | 0 |
| $\mathrm{IR}_{3}$ | A7 | $A_{6}$ | $\mathrm{A}_{5}$ | 0 | 1 | 1 | 0 | 0 | $A_{7}$ | $A_{6}$ | 0 | 1 | 1 | 0 | 0 | 0 |
| $\mathrm{IR}_{2}$ | $A_{7}$ | $A_{6}$ | $\mathrm{A}_{5}$ | 0 | 1 | 0 | - 0 | 0 | $A_{7}$ | $\mathrm{A}_{6}$ | 0 | 1 | 0 | 0 | 0 | 0 |
| $\mathrm{IR}_{1}$ | $A_{7}$ | $A_{6}$ | $A_{5}$ | 0 | 0 | 1 | 0 | 0 | $A_{7}$ | $A_{6}$ | 0 | 0 | 1 | 0 | 0 | 0 |
| $\mathrm{IR}_{0}$ | $A_{7}$ | $A_{6}$ | $A_{5}$ | 0 | 0 | 0 | 0 | 0 | $A_{7}$ | $A_{6}$ | 0 | 0 | 0 | 0 | 0 | 0 |

FIGURE 4

Note: Insure that the processor's interrupt input is disabled during the execution of any control command and initial ization sequence for all $\mu$ PD8259s.


| Instruction Number | Mnemonic | $\mathrm{A}_{0}$ | D7 | $\mathrm{D}_{6}$ | D5 | $\mathrm{D}_{4}$ | D3 | $\mathrm{D}_{2}$ | D1 | $\mathrm{D}_{0}$ | Operation Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | ICW1 A | 0 | $A_{7}$ | $A_{6}$ | $\mathrm{A}_{5}$ | 1 | 0 | 1 | 1 | 0 | Byte 1 Initialization, Format $=4$, Single |
| 2 | ICW1 B | 0 | $A_{7}$ | $\mathrm{A}_{6}$ | $\mathrm{A}_{5}$ | 1 | 0 | 1 | 0 | 0 | Byte 1 Initialization, Format $=4$, Not Single |
| 3 | ICW1 C | 0 | $A_{7}$ | $A_{6}$ | $\mathrm{A}_{5}$ | 1 | 0 | 0 | 1 | 0 | Byte 1 Initialization, Format $=8$, Single |
| 4 | ICW1 D | 0 | $A_{7}$ | $A_{6}$ | $\mathrm{A}_{5}$ | 1 | 0 | 0 | 0 | 0 | Byte 1 Initialization, Format $=8$, Not Single |
| 5 | ICW2 | 1 | A15 | $\mathrm{A}_{14}$ | $A_{13}$ | A12 | $A_{11}$ | A10 | A9 | $\mathrm{A}_{8}$ | Byte 2 Initialization (Address No. 2) |
| 6 | ICW3 M | 1 | $\mathrm{S}_{7}$ | $\mathrm{S}_{6}$ | $\mathrm{S}_{5}$ | $\mathrm{S}_{4}$ | $\mathrm{S}_{3}$ | $S_{2}$ | $\mathrm{S}_{1}$ | $\mathrm{S}_{0}$ | Byte 2 Initialization MASTER |
| 7 | ICW3 s | 1 | 0 | 0 | 0 | 0 | 0 | $\mathrm{S}_{2}$ | $\mathrm{S}_{1}$ | $\mathrm{S}_{0}$ | Byte 3 Initialization SLAVE |
| 8 | OCW1 | 1 | $M_{7}$ | $M_{6}$ | $\mathrm{M}_{5}$ | $\mathrm{M}_{4}$ | M 3 | $\mathrm{M}_{2}$ | M1 | $M_{0}$ | Load Mask Register, Read Mask Register |
| 9 | OCW2 E | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | Non-Specific EOI |
| 10 | OCW2 SE | 0 | 0 | 1 | 1 | 0 | 0 | $L_{2}$ | L1 | $L_{0}$ | Specific EOI, L ${ }_{2}, L_{1}, L_{0}$ Code of IS to be Reset |
| 11 | OCW2 RE | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | Rotate at EOI (Auto Mode) |
| 12 | OCW2 RSE | 0 | 1 | 1 | 1 | 0 | 0 | $\mathrm{L}_{2}$ | L1 | $L_{0}$ | Rotate at EOI (Specific Mode). $L_{2}, L_{1}, L_{0}$ Code of Line to be Reset and Selected as Bottom Priority. |
| 13 | OCW2 RS | 0 | 1 | 1 | 0 | 0 | 0 | $L_{2}$ | L1 | Lo | $\mathrm{L}_{2}, \mathrm{~L}_{1}, \mathrm{~L}_{0}$ - Code of Bottom Priority Line. |
| 14 | OCW3 P | 0 | - | 0 | 0 | 0 | 1 | 1 | 0 | 0 | Poll Mode |
| 15 | OCW3 RIS | 0 | - | 0 | 0 | 0 | 1 | 0 | 1 | 1 | Read IS Register |
| 16 | OCW3 RR | 0 | - | 0 | 0 | 0 | 1 | 0 | 1 | 0 | Read Requests Register |
| 17 | OCW3 SM | 0 | - | 1 | 1 | 0 | 1 | 0 | 0 | 0 | Set Special Mask Mode |
| 18 | OCW3 RSM | 0 | - | 1 | 0 | 0 | 1 | 0 | 0 | 0 | Reset Special Mask Mode |

Note: Insure that the processor's interrupt input is disabled during the execution of any control command and initialization sequence for all $\mu$ PD8259s.

## PROGRAMMABLE KEYBOARDIDISPLAY INTERFACE

The $\mu$ PD8279-5 is a programmable keyboard and display Input/Output device. It provides the user with the ability to display data on alphanumeric segment displays or simple indicators. The display RAM can be programmed as $16 \times 8$ or a dual $16 \times 4$ and loaded or read by the host processor. The display can be loaded with right or left entry with an auto-increment of the display RAM address.

The keyboard interface provides a scanned signal to a 64 contact key matrix expandable to 128 . General sensors or strobed keys may also be used. Keystrokes are stored in an 8 character FIFO and can be either 2 key lockout or N key rollover. Keyboard entries generate an interrupt to the processor.

FEATURES - Programmable by Processor

- 32 HEX or 16 Alphanumeric Displays
- 64 Expandable to 128 Keyboard
- Simultaneous Keyboard and Display
- 8 Character Keyboard - FIFO
- 2 Key Lockout or N Key Rollover
- Contact Debounce
- Programmable Scan Timer
- Interrupt on Key Entry
- Single +5 Volt Supply
- Fully Compatible with 8080A, 8085A, $\mu$ PD 780 (Z80 TM)
- Available in 40 Pin Plastic Package


PIN NAMES

| $\mathrm{DB}_{0-7}$ | Data Bus (Bi-directional) |
| :---: | :---: |
| CLK | Clock Input |
| RESET | Reset Input |
| $\overline{\mathrm{CS}}$ | Chip Select |
| $\overline{\mathrm{RD}}$ | Read Input |
| $\overline{\mathrm{WR}}$ | Write Input |
| $A_{0}$ | Buffer Address |
| IRQ | Interrupt Request Output |
| $\mathrm{SL}_{0-3}$ | Scan Lines |
| RL0.7 | Return Lines |
| SHIFT | Shift Input |
| CNTL/STB | Control/Strobe Input |
| OUT A0.3 | Display (A) Outputs |
| OUT $\mathrm{B}_{0.3}$ | Display (B) Outputs |
| $\overline{B D}$ | Bland Display Output |

## $\mu$ PD8279-5

The $\mu$ PD8279-5 has two basic functions: 1) to control displays to output and 2) to control a keyboard for input. Its specific purpose is to unburden the host processor from monitoring keys and refreshing displays. The $\mu$ PD8279-5 is designed to directly interface the microprocessor bus. The microprocessor must program the operating mode to the $\mu$ PD8279-5, these modes are as follows:

## Output Modes

- 8 or 16 Character Display
- Right or Left Entry


## Input Modes

- Scanned Keyboard with Encoded $8 \times 8 \times 4$ Key Format or Decoded $4 \times 8 \times 8$ Scan Lines.
- Scanned Sensor Matrix with Encoded $8 \times 8$ or Decoded $4 \times 8$ Scan Lines.
- Strobed Input.


Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Output Voltages . . . . . . . . . . . . . . . . . . . . . . -0.5 to +7 Volts(1)
All Input Voltages . . . . . . . . . . . . . . . . . . . . . . . -0.5 to +7 Volts(1)
Supply Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to +7 Volts(1)
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 W
Note: (1) With respect to $V_{S S}$
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent
damage to the device. This is a stress rating only and functional operation of the device at these or
any other conditions above those indicated in the operational sections of this specification is not
implied. Exposure to absolute maximum rating conditions for extended periods may affect device
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent
damage to the device. This is a stress rating only and functional operation of the device at these or
any other conditions above those indicated in the operational sections of this specification is not
implied. Exposure to absolute maximum rating conditions for extended periods may affect device
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent
damage to the device. This is a stress rating only and functional operation of the device at these or
any other conditions above those indicated in the operational sections of this specification is not
implied. Exposure to absolute maximum rating conditions for extended periods may affect device
COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent
damage to the device. This is a stress rating only and functional operation of the device at these or
any other conditions above those indicated in the operational sections of this specification is not
implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

FUNCTIONAL DESCRIPTION

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS*

## PIN IDENTIFICATION

| PIN |  |  | DESCRIPTION |
| :---: | :---: | :---: | :---: |
| NO. | SYMBOL | NAME |  |
| $\begin{aligned} & 1,2,5 \\ & 6,7,8 \\ & 38,39 \end{aligned}$ | RL0-7 | Return Lines | Return line inputs which are connected to the scan lines through the keys or sensor switches. They have active internal pullups to keep them high until a switch closure pulls one low. They also serve as an 8 -bit input in the Strobed Input mode. |
| 3 | CLK | Clock | Clock from system used to generate internal timing. |
| 4 | IRQ | Interrupt <br> Request | Interrupt Request. In a keyboard mode, the interrupt line is high when there is data in the FIFO/ Sensor RAM. The interrupt line goes low with each FIFO/Sensor RAM read and returns high if there is still information in the RAM. In a sensor mode, the interrupt line goes high whenever a change in a sensor is detected. |
| 9 | Reset | Reset Input | A high signal on this pin resets the $\mu$ PD8279-5. |
| 10 | $\overline{\mathrm{RD}}$ | Read Input | Input/Output read and write. These signals enable the data buffers to either send data to the external bus or receive it from the external bus. |
| 11 | $\overline{W R}$ | Write Input |  |
| 12-19 | DB0.7 | Data Bus | Bi -Directional data bus. All data and commands between the processor and the $\mu$ PD8279-5 are transmitted on these lines: |
| 20 | VSS | Ground Reference | Power Supply Ground |
| 21 | $A_{0}$ | Buffer Address | Buffer Address. A high on this line indicates the signals in or out are interpreted as a command or status. A low indicates that they are data. |
| 22 | $\overline{\mathrm{CS}}$ | Chip Select | Chip Select. A low on this pin enables the interface functions to receive or transmit. |
| 23 | $\overline{\mathrm{BD}}$ | Blank Display Output | Blank Display. This output is used to blank the display during digit switching or by a display blanking command. |
| 24.27 | OUT A0.3 | Display A Outputs | These two ports are the outputs for the $16 \times 4$ display refresh registers. The data from these outputs is synchronized to the scan lines ( $\mathrm{SL}_{0}-\mathrm{SL}_{3}$ ). for multiplexed digit displays. The two 4-bit ports may be blanked independently. These two ports may also be considered as one 8 -bit port. |
| 28-31 | OUT B0-3 | Display B Outputs |  |
| 32.35 | SL0-3 | Scan Lines | Scan Lines, which are used to scan the key switch or sensor matrix and the display digits. These lines can be either encoded (1 of 16) or decoded (1 of 4). |
| 36 | Shift | Shift Input | The shift input status is stored along with the key position on key closure in the Scanned Keyboard modes. It has an active internal pullup to keep it high until a switch closure pulls it low. |
| 37 | CNTL/STB | Control/ <br> Strobe Input | For keyboard modes this line is used as a control input and stored like status on a key closure. The line is also the strobe line that enters the data into the FIFO in Strobed input mode (Rising Edge). It has an active internal pullup to keep it high until a switch closure pulls it low. |
| 40 | $\mathrm{V}_{\text {CC }}$ | +5V Input | Power Supply Input |

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$.

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input Low Voltage for Shift, Control and Return Lines | VIL1 | -0.5 |  | 1.4 | V |  |
| Input Low Voltage (Others) | VIL2 | -0.5 |  | 0.8 | V |  |
| Input High Voltage for Shift, Control and Return Lines | $\mathrm{V}_{\text {IH1 }}$ | 2.2 |  |  | V |  |
| Input High Voltage (Others) | V1H2 | 2.0 |  |  | V |  |
| Output Low Voltage | VOL |  |  | 0.45 | V | $1 \mathrm{OL}=2.2 \mathrm{~mA}$ |
| Output High Voltage on Interrupt Line | VOH | 3.5 |  |  | V | $\mathrm{I}^{\mathrm{OH}}=-400 \mu \mathrm{~A}$ |
| Input Current on Shift, | IIL1 |  |  | +10 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ |
| Control and Return Lines |  |  |  | -100 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ |
| Input Leakage Current (Others) | 1 IL2 |  |  | $\pm 10$ | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ to 0 V |
| Output Float Leakage | IOFL |  |  | $\pm 10$ | $\mu \mathrm{A}$ | VOUT $=$ VCC to 0 V |
| Power Supply Current | ICC |  | - | 120 | mA |  |


| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input Capacitance | CIN | 5 |  | 10 | pF | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ |
| Output Capacitance | COUT | 10 |  | 20 | pF | $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$ |

## CAPACITANCE

$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| READ |  |  |  |  |  |  |
| Address Stable Before $\overline{\text { READ }}$ | tAR | 0 |  |  | ns |  |
| Address Hold Time for $\overline{\text { READ }}$ | tRA | 0 |  |  | ns |  |
| $\overline{\text { READ Pulse Width }}$ | trR | 250 |  |  | ns |  |
| Data Delay from $\overline{\text { READ }}$ | tRD |  |  | 150 | ns | $\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$ |
| Address to Data Valid | ${ }^{\text {t }}$ AD |  |  | 250 | ns | $C_{L}=150 \mathrm{pF}$ |
| $\overline{\text { READ }}$ to Data Floating | tDF | 10 |  | 100 | ns |  |
| Read Cycle Time | trcy | 1 |  |  | $\mu \mathrm{S}$ |  |
| WRITE |  |  |  |  |  |  |
| Address Stable Before $\overline{\text { WRITE }}$ | ${ }^{\text {t }}$ AW | 0 |  |  | ns |  |
| Address Hold Time for WRITE | tWA | 0 |  |  | ns |  |
| WRITE Pulse Width | tWW | 250 |  |  | ns |  |
| Data Set Up Time for WRITE | t DW | 150 |  |  | ns |  |
| Data Hold Time for WRITE | tWD | 0 |  |  | ns |  |
| OTHER |  |  |  |  |  |  |
| Clock Pulse Width | $\mathrm{t}_{\phi} \mathrm{W}$ | 120 |  |  | ns |  |
| Clock Period | ${ }^{\text {t }} \mathrm{C} Y$ | 320 |  |  | ns |  |

GENERAL TIMING

| Keyboard Scan Time: | 5.1 ms | Digit-on Time: | $480 \mu \mathrm{~s}$ |
| :--- | ---: | :--- | ---: |
| Keyboard Debounce Time: | 10.3 ms | Blanking Time: | $160 \mu \mathrm{~s}$ |
| Key Scan Time: | $80 \mu \mathrm{~s}$ | Internal Clock Cycle: | $10 \mu \mathrm{~s}$ |
| Display Scan Time: | 10.3 ms |  |  |



READ


WRITE


## CLOCK INPUT



## $\mu$ PD8279-5

The following is a description of each section of the $\mu$ PD8279-5. See the block diagram for functional reference.

## I/O Control and Data Buffers

Communication to and from the $\mu$ PD8279-5 is performed by selecting $\overline{C S}, A_{0}, \overline{R D}$ and $\overline{W R}$. The type of information written or read by the processor is selected by $A_{0}$. $A$ logic 0 states that information is data while a 1 selects command or status. $\overline{R D}$ and $\overline{W R}$ select the direction by which the transfer occurs through the Data Buffers. When the chip is deselected ( $\overline{\mathrm{CS}}=1$ ) the bi-directional Data Buffers are in a high impedance state thus enabling the $\mu$ PD8279-5 to be tied directly to the processor data bus.

## Timing Registers and Timing Control

The Timing Registers store the display and keyboard modes and other conditions programmed by the processor. The timing control contains the timing counter chain. One counter is a divide by N scaler which may be programmed to match the processor cycle time. The scaler must take a value between 2 and 31 in binary. A value which scales the internal frequency to 100 KHz gives a 5.1 ms scan time and 10.3 ms switch debounce. The other counters divide down to make key, row matrix and display scans.

## Scan Counter

The scan counter can operate in either the encoded or decoded mode. In the encoded mode, the counter provides a count which must be decoded to provide the scan lines. In the decoded mode, the counter provides a 1 out of 4 decoded scan. In the encoded mode the scan lines are active high and in the decoded mode they are active low.

## Return Buffers, Keyboard Debounce and Control

The eight return lines are buffered and latched by the return buffers. In the keyboard mode these lines are scanned sampling for key closures in each row. If the debounce circuit senses a closure, about 10 ms are timed out and a check is performed again. If the switch is still pressed, the address of the switch matrix plus the status of shift and control are written into the FIFO. In' the scanned sensor mode, the contents of return lines are sent directly to the sensor RAM (FIFO) each key scan. In the strobed mode, the transfer takes place on the rising edge of CNTL/STB.

## FIFO/Sensor RAM and Status

This section is a dual purpose $8 \times 8$ RAM. In strobe or keyboard mode it is a FIFO. Each entry is pushed into the FIFO and read in order. Status keeps track of the number of entries in the FIFO. Too many reads or writes to the FIFO will be treated as an error condition. The status logic generates an IRQ whenever the FIFO has an entry. In the sensor mode the memory is a sensor RAM which detects changes in the status of a sensor. If a change occurs, the IRO is generated until the change is acknowledged.

## Display Address Registers and Display RAM

The Display Address Register contains the address of the word being read or written by the processor, as well as the word being displayed. This address may be programmed to auto-increment after each read or write. The display RAM may be read by the processor any time after the mode and address is set. Data entry to the display RAM may be set to either right or left entry.

The commands programmable to the $\mu$ PD8279-5 via the data bus with $\overline{\mathrm{CS}}$ active (0) and $A_{O}$ high are as follows:

## Keyboard/Display Mode Set

| 0 | 0 | 0 | $D$ | $D$ | $K$ | $K$ | $K$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| MSB |  |  |  |  |  |  |  |

Display Mode:
DD

| 0 | 0 | $8-8$-bit character display - Left entry |
| :--- | :--- | :--- |
| 0 | 1 | (1) |
| 1 | 0 | $8-8$ bit character display - Left entry |
| 1 | 1 | $16-8$ bit character display - Right entry |
| Note: (1) Power on default condition |  |  |

Keyboard Mode:

## KKK

| 0 | 0 | 0 | Encoded Scan - 2 Key Lockout |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | Decoded Scan - 2 Key Lockout |
| 0 | 1 | 0 | Encoded Scan - N Key Rollover |
| 0 | 1 | 1 | Decoded Scan - N Key Rollover |
| 1 | 0 | 0 | Encoded Scan-Sensor Matrix |
| 1 | 0 | 1 | Decoded Scan-Sensor Matrix |
| 1 | 1 | 0 | Strobed Input, Encoded Display Scan |
| 1 | 1 | 1 | Strobed Input, Decoded Display Scan |


| Program Clock |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | $P$ | $P$ | $P$ | $P$ | $P$ |

Where PPPPP is the prescaler value between 2 and 31 this prescaler divides the external clock by PPPPP to develop its internal frequency. After reset, a default value of 31 is generated.

## Read FIFO/Sensor RAM

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 0 & A 1 & X & A & A & A \\
\hline
\end{array} \quad A_{0}=0
$$

$A_{I}$ is the auto-increment flag. AAA is the row to be read by the processor. The read command is accormplished with ( $\overline{\mathrm{CS}} \cdot \mathrm{RD} \cdot \overline{\mathrm{AO}}$ ) by the processor. If $\mathrm{A}_{I}$ is 1 , the row select counter will be incremented after each read. Note that auto-incrementing has no effect on the display.

## Read Display RAM

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 1 & \mathrm{~A} 1 & \mathrm{~A} & \mathrm{~A} & \mathrm{~A} & \mathrm{~A} \\
\hline
\end{array} \quad \mathrm{~A}_{0}=0
$$

Where $A_{I}$ is the auto-increment flag and AAAA is the character which the processor is about to read.

where AAAA is the character the processor is about to write.
Display Write Inhibit Blanking

| 1 | 0 | 1 | $X$ | IW <br> $A$ | IW <br> B | BL <br> $A$ | $B L$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Where IWA and IWB are Inhibit Writing nibble $A$ and $B$ respectively, and BLA, BLB are blanking. When using the display as a dual 4-bit, it is necessary to mask one of the 4-bit halves to eliminate interaction between the two halves. This is accomplished with the IW flags. The BL flags allow the programmer to blank either half of the display independently. To blank a display formatted as a single 8-bit, it is necessary to set both BLA and BLB. Default after a reset is all zeros. All signals are active high (1).

| $C_{\text {D }}$ | $C_{D}$ |  | 1 | 1 | 0 | C |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{D}$ |  |  |  |  |
| 1 | 0 | X |  |  |  |  |
| 1 | 1 | 0 |  | 201 |  |  |
| 1 | 1 | 1 |  |  |  |  |
| 0 | X | X |  | e cl | d |  |

COMMAND OPERATION (CONT.)

This command is used to clear the display RAM, the FIFO, or both. The CD options allow the user the ability to clear the display RAM to either all zeros or all ones.

CF clears the FIFO.
$\mathrm{C}_{\mathrm{A}}$ clears all.
Clearing the display takes one complete display scan. During this time the processor can't write to the display RAM.
$C_{F}$ will set the FIFO empty flag and reset IRQ. The sensor matrix mode RAM pointer will then be set to row 0 .
$C_{A}$ is equivalent to $C_{F}$ and $C_{D}$. The display is cleared using the display clear code specified and resets the internal timing logic to synchronize it.

## End Interrupt/Error Mode Set

| 1 | 1 | 1 | $E$ | $X$ | $X$ | $X$ | $X$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

In the sensor matrix mode, this instruction clears IRQ and allows writing into RAM.
In N key rollover, setting the E bit to 1 allows for operating in the special Error mode. See Description of FIFO status.

## FIFO Status

| DU | S/E | O | U | F | N | N | N |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Where: $\mathrm{D}_{\mathrm{U}}=$ Display Unavailable because a clear display or clear all command is in progress.
S/E = Sensor Error flag due to multiple closure of switch matrix.
$O=$ FIFO Overrun since an attempt was made to push too many characters into the FIFO.
$U=$ FIFO Underrun. An indication that the processor tried to read an empty FIFO.
$F=$ FIFO Full Flag.
NNN = The Number of characters presently in the FIFO.
The FIFO Status is Read with AO high and $\overline{\mathrm{CS}}, \overline{\mathrm{RD}}$ active low.
The Display not available is an indication that the $C_{D}$ or $C_{A}$ command has not completed its clearing. The S/E flags are used to show an error in multiple closures has occurred. The O or U , overrun or underrun, flags occur when too many characters are written into the FIFO or the processor tries to read an empty FIFO. F is an indication that the FIFO is full and NNN is the number of characters in the FIFO.

## Data Read

Data can be read during $A_{0}=0$ and when $\overline{C S}, \overline{R D}$ are active low. The source of the data is determined by the Read Display or Read FIFO commands.

## Data Write

Data is written to the chip when $A_{0}, \overline{C S}$, and $\overline{W R}$ are active low. Data will be written into the display RAM with its address selected by the latest Read or Write Display command.

COMMAND OPERATION (CONT.)

PACKAGE OUTLINE $\mu$ PD8279C-5

(Plastic)

| ITEM | MILLIMETERS | INCHES |
| :---: | :---: | :--- |
| A | 51.5 MAX | 2.028 MAX |
| B | 1.62 | 0.064 |
| C | $2.54 \div 0.1$ | $0.10 \pm 0.004$ |
| D | $0.5 \pm 0.1$ | $0.019 \pm 0.004$ |
| E | 48.26 | 1.9 |
| F | 1.2 MIN | 0.047 MIN |
| G | 2.54 MIN | 0.10 MIN |
| H | 0.5 MIN | 0.019 MIN |
| I | 5.22 MAX | 0.206 MAX |
| J | 5.72 MAX | 0.225 MAX |
| K | 15.24 | 0.600 |
| L | 13.2 | 0.520 |
| M | $0.25+0.1$ | $0.010+0.004$ |

NOTES

## 16,384 BIT ROM WITH I/O PORTS 16,384 BIT EPROM WITH I/O PORTS

DESCRIPTION The $\mu$ PD8355 and the $\mu$ PD8755A are $\mu$ PD8085A Family components with the $\mu$ PD8355 containing $2048 \times 8$ bits of mask ROM and the $\mu$ PD8755A containing $2048 \times 8$ bits of mask EPROM for program development. Both components also contain two general purpose 8 -bit I/O ports. They are housed in 40 pin packages, are designed to directly interface to the $\mu$ PD8085A and are pin for pin compatible to each other.

FEATURES • $2048 \times 8$ Bits Mask ROM ( $\mu$ PD8355)

- $2048 \times 8$ Bits Mask EPROM ( $\mu$ PD8755A)
- 2 Programmable I/O Ports
- Single Power Supplies: +5V
- Directly Interfaces to the $\mu$ PD8085A
- Pin for Pin Compatible
- $\mu$ PD8755A: UV Eraseable and Electrically Programmable
- $\mu$ PD8355 available in Plastic Package
- $\mu$ PD8755A Available in Ceramic Package

PIN CONFIGURATIONS


| CE |  | 40 | $\mathrm{V}_{\mathrm{Cc}}$ |
| :---: | :---: | :---: | :---: |
| CE |  | 39 | $\mathrm{PB}_{7}$ |
| CLK ${ }^{\text {c }}$ |  | 38 | - $\mathrm{PB}_{6}$ |
| RESET $\square^{-1}$ |  | 37 | $]^{\mathrm{PB}_{5}}$ |
| $V_{D D}{ }^{\text {d }}$ |  | 36 | [ $\mathrm{PB}_{4}$ |
| READY - |  | 35 | $\square \mathrm{PB}_{3}$ |
| 10/M |  | 34 | $\mathrm{PB}_{2}$ |
| $\overline{O R}$ |  | 33 | $\mathrm{PB}_{1}$ |
| $\overline{\mathrm{RD}}$ - |  | 32 | $\mathrm{PB}_{0}$ |
| IOW 10 | $\mu \mathrm{PD}$ | 31 | $\square \mathrm{PA}_{7}$ |
| ALE 1 | 8755A | 30 | $\square \mathrm{PA}_{6}$ |
| $A D_{0}{ }^{1}$ |  | 29 | $\mathrm{PP}_{5}$ |
| $A D 10^{13}$ |  | 28 | $\mathrm{P}^{\mathrm{PA}_{4}}$ |
| $A D_{2}{ }^{1}$ |  | 27 | $\mathrm{p}^{\mathrm{Pa}} \mathrm{S}_{3}$ |
| $A D S 3^{-1}$ |  | 26 | $\mathrm{QPA}_{2}$ |
| $\mathrm{AD}_{4}{ }^{1}$ |  | 25 | $\mathrm{f}^{\mathrm{Pa}} \mathrm{A}_{1}$ |
| $A_{5} \mathrm{C}_{1}$ |  | 24 | $\square \mathrm{P}_{0}$ |
| $A D_{6}{ }^{1}$ |  | 23 | $\mathrm{A}_{10}$ |
| $\mathrm{AD}_{7} \mathrm{C}_{1}$ |  | 22 | ص A9 |
| $\mathrm{v}_{\text {SS }} \square^{2}$ |  | 21 | $\mathrm{A}_{8}$ |



NC: Not Connected

## $\boldsymbol{\mu}$ PD8355/8755A

The $\mu$ PD8355 and $\mu$ PD8755A contain 16,384 bits of mask ROM and EPROM respectively, organized as $2048 \times 8$. The 2048 word memory location may be selected anywhere within the 64 K memory space by using the upper 5 -bits of address from the $\mu$ PD8085A as a chip select.
The two general purpose I/O ports may be programmed input or output at any time. Upon power up, they will be reset to the input mode.


Note:$V_{D D}$ applies to $\mu$ PD8755A only.

> Operating Temperature ( $\mu$ PD8355) ( $\mu$ PD8755A)
> Storage Temperature (Ceramic Package) . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
> (Plastic Package) . . . . . . . . . . . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
> Voltage on Any Pin ( $\mu$ PD8355). . . . . . . . . . . . . . . . . . . . . -0.3 to +7 Volts (1)
> ( $\mu$ PD8755A) . . . . . . . . . . . . . . . . . -0.5 to +7 Volts (1)
> Power Dissipation 1.5 W

## Note: (1) With Respect to Ground

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{*} \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Input Low Voltage | $V_{\text {IL }}$ | -0.5 |  | 0.8 | V | $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ (1) |
| Input High Voltage | $\mathrm{V}_{\text {IH }}$ | 2.0 |  | $\mathrm{V}_{\mathrm{CC}}{ }^{+0.5}$ | V | $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \cdot 1$ |
| Output Low Voltage | $\mathrm{V}_{\mathrm{OL}}$ |  |  | 0.45 | V | $\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$ |
| Output High Voltage | VOH | 2.4 |  |  | V | $\mathrm{IOH}^{\prime}=-400 \mu \mathrm{~A}$ |
| Input Leakage | IIL |  |  | 10 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ to 0 V |
| Output Leakage Current | ILO |  |  | $\pm 10$ | $\mu \mathrm{A}$ | $0.45 \mathrm{~V} \leqslant \mathrm{~V}_{\text {OUT }} \leqslant \mathrm{V}_{\text {CC }}$ |
| $\mathrm{V}_{\text {cC }}$ Supply Current | Icc |  |  | 180 | mA |  |

Note: (1) These conditions apply to $\mu$ PD8355 only.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS*

DC CHARACTERISTICS

| PIN |  |  | FUNCTION |
| :---: | :---: | :---: | :---: |
| NO. | SYMBOL | NAME |  |
| 1,2 | $\overline{\mathrm{CE}}, \mathrm{CE}$ | Chip Enables | Enable Chip activity for memory or I/O |
| 3 | CLK | Clock Input | Used to Synchronize Ready |
| 4 | Reset | Reset Input | Resets PA and PB to all inputs |
| 5 (1) | NC | Not Connected |  |
| 5 (2) | VDD | Programming Voltage | Used as a programming voltage, tied to +5 V normally |
| 6 | Ready | Ready Output | A tri-state output which is active during data direction register loading |
| 7 | $10 / \bar{M}$ | I/O or Memory Indicator | An input signal which is used to indicate I/O or memory activity |
| 8 | IOR | 1/O Read | 1/O Read Strobe In |
| 9 | $\overline{\mathrm{RD}}$ | Memory Read | Memory Read Strobe In |
| 10 | $\overline{\text { IOW }}$ | I/O Write | I/O Write Strobe In |
| 11 | ALE | Address Low Enable | Indicates information on Address/Data lines is valid |
| 12-19 | $\mathrm{AD}_{0}-\mathrm{AD}_{7}$ | Low Address/Data Bus | Multiplexed Low Address and Data Bus |
| 20 | $\mathrm{V}_{\text {SS }}$ | Ground | Ground Reference |
| 21-23 | $\mathrm{A}_{8}-\mathrm{A}_{10}$ | High Address | High Address inputs for ROM reading |
| 24-31 | $\mathrm{PA}_{0}-\mathrm{PA}_{7}$ | Port A | General Purpose I/O Port |
| 32-39 | $\mathrm{PB}_{0} \cdot \mathrm{~PB}_{7}$ | Port B | General Purpose I/O Port |
| 40 | $\mathrm{V}_{\mathrm{CC}}$ | 5 V Input | Power Supply |

Notes: (1) $\mu$ PD8355
(2) $\mu$ PD8755A

I/O PORTS I/O Port activity is controlled by performing I/O reads and writes to selected I/O port numbers. Any activity to and from the $\mu$ PD8355 requires the chip enables to be active. This can be accomplished with no external decoding for multiple devices by utilizing the upper address lines for chip selects. (1) Port activity is controlled by the following I/O addresses:

| $\mathrm{AD}_{1}$ | AD $_{\mathbf{0}}$ | PORT SELECTED | FUNCTION |
| :---: | :---: | :---: | :--- |
| 0 | 0 | A | Read or Write PA |
| 0 | 1 | B | Read or Write PB |
| 1 | 0 | A | Write PA Data Direction |
| 1 | 1 | B | Write PB Data Direction |

Since the data direction registers for PA and PB are each 8-bits, any pin on PA or PB may be programmed as input or output ( $0=\mathrm{in}, 1=$ out ).

Note: © ${ }^{(1)}$ During ALE time the data/address lines are duplicated on $\mathrm{A}_{15}$-A8.

| PARAMETER | SYMBOL | LIMITS |  |  | UNIT | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |  |
| Clock Cycle Time | ${ }^{\text {t }} \mathrm{CrOC}_{1}$ | 320 |  |  | ns | $C_{\text {LOAD }}=150 \mathrm{pF}$ |
| CLK Pulse Width | $\mathrm{T}_{1}$ | 80 |  |  | ns |  |
| CLK Pulse Width | $T_{2}$ | 120 |  |  | ns |  |
| CLK Rise and Fall Tıme | $t_{f}, t_{f}$ |  |  | 30 | ns |  |
| Address to Latch Set Uo Time | ${ }^{\text {t }} \mathrm{AL}$ | 50 |  |  | ns | 150 pF Load |
| Address Hold Time After Latch | tha | 80 |  |  | ns |  |
| Latch to READ/WRITE Control | te | 100 |  |  | ns |  |
| Valid Data Out Delay from READ Control | ${ }^{\text {tr }}$ D |  |  | $\begin{aligned} & 120(1) \\ & 150(2) \\ & \hline \end{aligned}$ | ns |  |
| Address Stable to Data Out Valid | ${ }^{1}$ AD |  |  | 400 | ns |  |
| Latch Enable Width | ${ }_{\text {t }}{ }_{\text {L }}$ | 100 |  |  | ns | : |
| Data Bus Float After READ | trdF | 0 |  | 100 | ns |  |
| READ/WRITE Control to Latch Enable | ${ }^{1} \mathrm{CL}$ | 20 | , |  | ns |  |
| READ/WRITE Control Width | ${ }^{\text {c }} \mathrm{CC}$ | 250 |  |  | ns |  |
| Data In to WRITE Set Up Time | tow | 150 |  |  | ns |  |
| Data In Hold Time After WRITE | two | 10 (3) |  |  | ns |  |
| WRITE to Port Output | twp |  |  | 400 | ns |  |
| Port Input Set Up Time | tPR | 50 |  |  | ns |  |
| Port Input Hold Time | tRP | 50 |  |  | ns |  |
| READY HOLD TIME | trym | 0 |  | $\frac{160(1)}{120(2)}$ | ns |  |
| ADDRESS (CE) to READY | ${ }_{\text {t ARY }}$ |  |  | 160 | ns |  |
| Recovery Time Between Controls | trv | 300 |  |  | ns |  |
| Data Out Delay from READ Control | tRDE | 10 |  |  | ns |  |

Notes: (1) $\mu$ PD8355 (3) 30 ns for $\mu$ PD88755A
ROM READ, I/O READ AND WRITE (1)


PROM READ, I/O READ AND WRITE (2)


TIMING WAVEFORMS (CONT.)

CLOCK


WAIT STATE TIMING (READY $=0$ )


I/O PORT
INPUT MODE:


OUTPUT MODE:


EPROM PROGRAMMING $\mu$ PD8755A

Erasure of the $\mu$ PD8755A occurs when exposed to ultraviolet light sources of wavelengths less than $4000 \AA$. It is recommended, if the device is exposed to room fluorescent lighting or direct sunlight, that opaque labels be placed over the window to prevent exposure. To erase, expose the device to ultraviolet light at $2537 \AA$ at a minimum of 15 W -sec $/ \mathrm{cm}^{2}$ (intensity X expose time). After erasure, all bits are in the logic 1 state. Logic 0 's must be selectively programmed into the desired locations. It is recommended that NEC's prom programmer be used for this application.


Plastic

| ITEM | MILLIMETERS | INCHES |
| :--- | :---: | :--- |
| A | 51.5 MAX | 2.028 MAX |
| B | 1.62 | 0.064 |
| C | $2.54 \pm 0.1$ | $0.10 \pm 0.004$ |
| D | $0.5 \pm 0.1$ | $0.019 \pm 0.004$ |
| E | 48.26 | 1.9 |
| F | 1.2 MIN | 0.047 MIN |
| G | 2.54 MIN | 0.10 MIN |
| H | 0.5 MIN | 0.019 MIN |
| I | 5.22 MAX | 0.206 MAX |
| J | 5.72 MAX | 0.225 MAX |
| K | 15.24 | 0.600 |
| L | 13.2 | 0.520 |
| M | $0.25+0.1$ | $0.010+0.004$ |



Ceramic

| ITEM | MILLIMETERS | INCHES |
| :---: | :---: | :--- |
| $A$ | 51.5 MAX. | 2.03 MAX. |
| B | 1.62 MAX. | 0.06 MAX. |
| C | $2.54 \pm 0.1$ | $0.1 \pm 0.004$ |
| $D$ | $0.5 \pm 0.1$ | $0.02 \pm 0.004$ |
| E | $48.26 \pm 0.1$ | $1.9 \pm 0.004$ |
| F | 1.02 MIN. | 0.04 MIN. |
| G | 3.2 MIN. | 0.13 MIN. |
| H | 1.0 MIN. | 0.04 MIN. |
| I | 3.5 MAX. | 0.14 MAX. |
| J | 4.5 MAX. | 0.18 MAX. |
| K | 15.24 TYP. | 0.6 TYP. |
| L | 14.93 TYP. | 0.59 TYP. |
| M | $0.25 \pm 0.05$ | $0.01 \pm 0.0019$ |

## NEC Quality Assurance Procedures

One of the important factors contributing to the final quality of our memory and microcomputer components is the attention given to the parts during the manufacturing process. All Production Operations in NEC follow the procedures of MIL Standard 883A. Of particular importance to the reliability program are three areas that demonstrate NEC's commitment to the production of components of the highest quality.
I. Burn-In - All memory and microcomputer products are dynamically burned in at an ambient temperature sufficient to bring the junction to a temperature of $150^{\circ} \mathrm{C}$. The duration of the burn-in is periodically adjusted to reflect the production history and experience of NEC with each product. $100 \%$ of all NEC memory and microcomputer products receive an operational burn-in stress.
II. Electrical Test - Memory and microcomputer testing at NEC is not considered a statistical game where the device is subjected to a series of pseudo random address and data patterns. Not only is this unnecessarily time consuming, but it does not effectively eliminate weak or defective parts. NEC's test procedures are based on the internal physical and electrical organization of each device and are designed to provide the maximum electrical margin for solid board operation. For further information on NEC's testing procedures see your local NEC representative.
III. After completion of all $100 \%$ test operations, production lots are held in storage until completion of two groups of extended sample testing: an operating life test and a series of environmental tests. Upon successful completion of these tests, the parts are released from storage and sent to final Q.A. testing.

## NEC



10

| Eastern | Midwestern | Northeastern | Southern | Western |
| :--- | :--- | :--- | :--- | :--- |
| 275 Broadhollow Rd; Rt. 110 | 5105 Tollview Drive | 21 G Olympia Avenue | 14330 Midway Road, Suite 225 | 2914 E. Katella Ave. |
| Melville NY 11747 | Rolling Meadows IL 60008 | Woburn MA 01801 | Dallas TX 75234 | Orange CA 92667 |
| $516 / 293-5660$ | $312 / 298-7081$ | $617 / 935-6339$ | $214 / 980-6976$ | $714 / 633-2980$ |

## U.S. REPRESENTATIVES

| Alabama | Illinois |
| :---: | :---: |
| 20th Century Marketing, Inc. | Technology Sales, Inc. |
| Huntsville AL | Palatine IL |
| 205/772-9237 | 312/991-6600 |
| Arizona | Advanced Technical Sales |
| Eltron | Overland Park KS |
| Phoenix AZ | 913/492-4333 |
| 602/997-1042 |  |
|  | Indiana |
| Arkansas | Technology Sales, Inc. |
| Action Unlimited | Palatine IL |
| Arlington TX | 312/991-6600 |
| 817/461-8039 | lowa |
| California | Electronic Innovators, Inc. |
| Cerco | Minneapolis MN |
| San Diego CA | 612/835-0303 |
| 714/560-9143 |  |
|  | Kansas |
| Santana Sales | Advanced Technical Sales |
| Los Alamitos CA | Overland Park KS |
| 714/827-9100 | 913/492-4333 |
| Trident Associates, Inc. | Kentucky |
| Sunnyvale CA | Imtech, Inc. |
| 408/734-5900 | Dayton OH |
| Colorado | 513/278-6507 |
| D/Z Associates, Inc. |  |
| Denver CO | Louisiana |
| 303/534-3649 | Action Unlimited |
| Connecticut | Arlington TX |
| HLM Associates, Inc. 817/461-8039 |  |
| Torrington CT |  |
| 203/482-6880 | Maine |
|  | Contact Sales, Inc. |
| Professional | Burlington MA |
| Representatives, Inc. | 617/273-1520 |
| Pikesville MD |  |
| 301/484-7970 | Maryland Professional |
| Florida | Representatives, Inc. |
| Perrott Associates, Inc. | Pikesville MD |
| Sunrise FL | 301/484-7970 |
| 305/792-2211 Massachusetts |  |
| Clearwater FL | Contact Sales, Inc. |
| 813/585-3327 | Burlington MA |
| 305/275-1132 | 617/273-1520 |
|  | Stone Component Sales |
| Georgia | Framingham MA |
| 20th Century Marketing, Inc. | 617/875-3266 |
| Huntsville AL |  |
| 205/772-9237 | Michigan |
|  | R.C. Nordstrom \& Company |
| Idaho | Lathrup Village MI |
| Tri-Tronix, N.W. | 313/559-7373 |
| Mercer Island WA | Jenison MI |
| 206/232-4993 | 616/457-5762 |


| Minnesota | North Carolina | Utah |
| :---: | :---: | :---: |
| Electronic Innovators, Inc. | Wolffs Electronic Sales, Inc. | D/Z Associates, Inc. |
| Minneapolis MN | Raleigh NC | Salt Lake City UT |
| 612/835-0303 | 919/851-2800 | 801/486-4251 |
| Mississippi | North Dakota | Vermont |
| 20th Century Marketing, Inc. | Electronic Innovators, Inc. | Contact Sales, Inc. |
| Huntsville AL | Minneapolis MN | Burlington MA |
| 205/772-9237 | 612/835-0303 | 617/273-1520 |
| Missouri | Ohio | Washington |
| Advanced Technical Sales | Imtech, Inc. | Tri-Tronix, N.W. |
| Overland Park KS | Akron OH | Mercer Island WA |
| 913/492-4333 | 216/666-1185 | 206/232-4993 |
| Montana | Dayton OH |  |
| Tri-Tronix, N.W. | 513/278-6507 | West Virginia |
| Mercer Island WA | Oklahoma | Imtech, Inc. |
| 206/232-4993 | Action Unlimited | Dayton OH |
|  | Arlington TX | 513/278-6507 |
| Nebraska | 817/461-8039 | Wisconsin |
| Advanced Technical Sales | Oregon | Electronic Innovators, Inc. |
| Overland Park KS | Tri-Tronix N.W. | Minneapolis MN |
| 913/492-4333 | Wilsonville OR | 612/835-0303 |
|  | 503/682-2323 | Technology Sales |
| Nevada | Pennsylvania | Palatine IL |
| Eltron | Imtech, Inc. | 312/991-6600 |
| Phoenix AZ | Akron OH | Milwaukee WI |
| 602/997-1042 | 216/666-1185 | 42 |
|  |  | Wyoming |
| Trident Associates, Inc. | Harry Nash Associates | D/Z Associates, Inc. |
| Sunnyvale CA | Willow Grove PA | Denver CO |
| 408/734-5900 | 215/657-2213 | 303/534-3649 |
|  | Rhode Island |  |
| New Hampshire | Stone Component Sales |  |
| Contact Sales, Inc. | Waltham MA | CANADIAN |
| Burlington MA | 617/890-1440 | REPRESENTATIVE |
| 617/273-1502 |  | Ontario |
|  | South Carolina | Manitoba |
| New Jersey | Wolffs Electronic Sales, Inc. | Kaytronics Limited |
| HLM Associates, Inc. | Raleigh NC |  |
| Parsippany NJ | 919/851-2800 | Concord Ontario <br> 416/669-2262 |
| 201/263-1535 |  | 416/669-2262 |
|  | South Dakota | British Columbia |
| Willow Grove PA | Electronic Innovators, Inc. | Saskatchewan |
| 215/657-2213 | Minneapolis MN <br> 612/835-0303 | Alberta |
|  |  | Bergford \& Associates |
| New Mexico | Tennessee | Olympia WA |
| Action Unlimited | 20th Century Marketing, Inc. | 206/866-2001 |
| Arlington TX | Knoxville TN | New Brunswick |
| 817/461-8039 | 615/966-3608 | Newfoundland |
|  | Texas | Nova Scotia |
|  | Action Unlimited | Ontario |
| Rochester NY | Arlington TX | Prince Edward Island |
| 716/328-3000 | 817/461-8039 | Quebec |
| HLM Associates, Inc. | 512/255-1381 | Kaytronics Limited |
| Northport NY | Houston TX | Ville St. Pierre Quebec |
| 516/757-1606 | . 713/495-7119 | 514/487-3434 |

# NEC Microcomputers, Inc. 

173 Worcester Street
Wellesley, Massachusetts
02181
Telephone: 617/237-1910
TWX 710-383-1745


[^0]:    Notes: (F) - Future Product

    *     - Read Mode

    C - Plastic Package
    D - Hermetic Package
    TS - 3-State

[^1]:    Notes: O.D. $=$ Open Drain
    $H=$ High Negative Voltage Outputs
    C = CMOS
    L = Low Power
    $\mathrm{S}=$ Reduced I/O

[^2]:    *All data pertaining to the $\mu$ PD8741A is Preliminary.

[^3]:    Notes (1) Conditions $\overline{\mathrm{CS}}$ TTL Louc "1". Ao TTL Logic "O" muss De me
    (2) ter 5 us can be ach me $x$ aL a 3 Mur tai 2 narisile
    (2) 'CY 5 us can be achieved usiny a 3 MHr frequencr source
    $\times T A L$ or externall at the $X T A L ?$ and $X T A L 2$ inputs.

[^4]:    Command Phase: The FDC receives all information required to perform a particular operation from the processor.

    Execution Phase: The FDC performs the operation it was instructed to do.
    Result Phase: After completion of the operation, status and other housekeeping information are made available to the processor.

[^5]:    Operating Temperature.
    Storage Temperature (Plastic Package). . . . . . . . . . . . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
    Voltage on Any Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +7 Volts ${ }^{(1)}$
    Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 W

