
1 February 1977

NATIONAL BASIC (PACE) PROGRAMMER REFERENCE MANUAL

NATIONAL BASIC (PACE) Programmer Reference Manual

Table of contents

1. INTRODUCTION
1.1. System Requirements
1. 2 ~ Features

2. STARTING THE INTERPRETER

3;. PROGRAMS
3.1. Line Numbers
3~2~ Program Lines
3.3. Statements
3~3.1. Multiple Statements On A Single Line
3~4. Program Entry and Editing
3~4.1. Carriage Return
3~4.2~ Backspace
3~4.3. Null. Rubout. Line Feed. Escape
3.4.4. Line Abort
3.4.5~ Tab
3~4.6. Lower Case
3~4.7. ETX (Control/C)

4. DATA
4.1. Constants and Strings
4.1.1. Numeric Constants
4.1.2. Hexadecimal Constants
4.1.3. Quoted Strings
4.1.4. Unquoted Strings
4.2~ Variables
4.2~1. Variable Names
4.3. Ex~ressions
4.3.1. Mathematical Operators
4.3.2~ Relational Operators
4.3.3. Logical Operators
4.3.4. Operator Precedence

5~ REMARKS AND COMMENTS
5.1. REM Statement
5.2~ Comments

6. ASSIGNMENTS: LET STATEMENT

7~ CONTROL STATEMENTS.
7~1. GOTO
7~2; ON ~ •• GOTO
7~3. IF ~~~THEN
7. 4. FOR, NEXT
7 .5~ STOP, END

i

1 Feb 77

-1
-1
-2

-3

-4
-4
-4
-s
-5
-5
-6
-6
-6
-6
-6
-7
-7

-8
-8
-8
-8
-9
-9
-9

-10
-10
-11
-11
-12
-12

-14
-14
-14

-15

-16
-16
-16
-17
-17
-18

' NATIONAL BASIC (PACE) Programmer Reference Manual

Table of contents

8. INPUT/OUTPUT
8.1. DATA, READ, RESTORE
8. 2 ~ PRINT
8.3. Print Functions
8.4. INPUT

.9;. SUBROUTINES

10.

9 .1. GOSUB
9. 2;. ON .. ;. GOSUB
9.3. RETURN
9. 4. CALL

FUNCTIONS
10.1. Intrinsic Functions
10.l.l;. Standard Numeric Functions
10.1.2. Advanced Numeric Functions
10.1.3. String to Numeric Conversion
10.l.4~ Numeric to Strino Conversion
10;.l.5;. Substring Functions
10.2; RANDOMIZE
10.3. User-defined Functions

11. HARDWARE ORIENTED STATEMENTS
11.1. POKE, OUT
11.2;. WAIT
11.3. TWAIT

12. ADVANCED CONTROL STATEMENTS
12.1. SIZE
12. 2;. TRACE
12.3. WIDTH

13~ ARRAYS
13;.l. Declaration: DIM

14;. DISK FACILITIES

15. COMMANDS
15;.l. Editing Commands
15;.l.l. SCRATCH
15.1.2~ TAPE
15 ;. 1 • 3 • AUTO
15 .1. 4. DELETE
15. 2;. CLEAR
15.3. Execution Control Commands
15. 3~1. RUN
15.3.2;. CONTINUE
15.3;.3. BYE

ii

Functions
Functions

1 Feb 77

-20
-20
-21
-23
-24

-26
-26
-26
-26
-27

-28
-28
-28
-29
-30
-30
-30
-31
-31

-33
-33
-34
-34

-35
-35
-35
-36

-37
-37

-38

-39
-39
-39
-39
-40
-40
-41
-41
-41
-41
-42

'
NATIONAL BASIC (PACE) Programmer Reference Manual

Table of contents

15~4. ·Listing Commands

16. IMMEDIATE MODE OPERATION

17~ PROGRAM EXECUTION

18.

17.1. Interrupting Proqram Execution
1 7 • 2 ~ Restart

HINTS
18~1.
18.2~
18~3.
18.4.

Peripheral Use
POKE Protection
Editing BASIC Files
Assembly Language Subroutines

19. APPENDIX
19~1. Command Summary
19~2~ Statement Summary
19~3. Function Summary
19~4. Error Messages
19~4.l. Program Errors
19~4.2~ Warnings
19~4.3. Internal Errors

iii

1 Feb 77

-42

-44

-45
-45
-45

-46
-46
-46
-47
-47

-48
-48
-49
-50
-51
-51
-51
-52

'NATIONAL BASIC (PACE) Programmer Reference Manual 1 Feb 77

l~ INTRODUCTION

NATIONAL BASIC is an interpreter for an enhanced version of
the BASIC computer programming lanquage. It is highly
interactive, allowing users to modify, test, and run programs
without requiring intermediate storage of the program on paper
tape or other media. BASIC is intended foi applications requiring
a simple high-level language but not reouiring high speed or small
amounts of memory. Since BASIC is an interpretive lanquage, no
object code is generated: the program statements are kept in an
internal form and interpreted each time the statement is executed.

This manual is a reference manual for the details of the
NATIONAL BASIC language: it is not intended as a primer~
Familiarity with high level computer programming languages is
assumed: familiarity with BASIC is desirable but not required.
There are many excellent introductory textbooks on BASIC which
should be consulted if a more tutorial approach is desired.

1.1. System Requirements

The BASIC interpreter described in this manual runs on a PACE
microcomputer system with a m1n1mum of 8K words of memory
(0000-lFFF) and the standard I/O firmware ROMs. A Teletype or
Teletype-like terminal is also required. Other periph@rals
supported are a high speed printer (Centronics 306) , and a high
speed paper tape reader and/or punch (via the firmware). BASIC
uses about 6.SK words of memory for itself, leaving about I.SK
words for the user program and variable storage in an BK system.

The PACE Disk Operating System (DOS) may be used for storage
of of BASIC programs. If disk files are used, at least 12K words
of memory are reauired (although BASIC itself will load in 8K,
there will be very little user space in an BK system when disk
files are needed).

1

~ATIONAL BASIC (PACE) Programmer Reference Manual 1 Feb 77

1~2~ Features

NATIONAL BASIC includes· the following features:

Statements are checked for proper syntax as they are entered:

Leading blanks are allowed in statements:

String and numeric arrays of one or two dimensions are
provided:

Strings may be manjpulated with
concatenation:

substring
i

functions or

Boolean operators (AND, OR, XOR, NOT) are available for
expressions and bit manipulations;

Assembly language subroutines may be called with the CALL
statement. and USR function:

TRACE ON and TRACE OFF may be used for logging program flow
when debugging programs;

Peripherals may be directly accessed with the INP function
and OUT statement;

Memory may be examined or altered with the PEEK function and
POKE statement:

Hexadecimal constants and the HEX$ conversion function make
memory and I/O use more convenient;

An extensive set of arithmetic operators includes MIN, MAX,
and MOD, as well-as boolean and relational operators which
may be used in any expression;

FOR/NEXT loops are skipped if the terminating condition is
not met in the initial execution.

2

~
I

NATIONAL BASIC (PACE) Programmer Reference Manual 1 Feb 77

2. STARTING THE INTERPRETER

When BASIC is loaded, it goes through an initialization
sequence to set up internal variables needed for program
execution~ A message is printed identifying the version of the
program, and_the amount of available memory is determined. BASIC
will then ask two questions regarding the system in use. The
standard response for each is simply a: carriage return. ·

The first question is "Disk Files Needed?"~ NATIONAL BASIC
provides the capability to store programs on disk: this question
determines whether disk files are required bv the user. The
question is asked only if the DOS monitor is present: if no
monitor is present, no disk files are possible and the question is
skipped. Valid responses are 'Y' (yes) or 'N' (no) or carriage
return (yes). If no disk files are needed, the disk comm~nds
become illegal and the disk routine area will become part of the
edit buffer, allowing larger programs to be used.

The second question is "Memory Size?". The res9onse may be a
number indicating the highest address to be used by BASIC (to
allow room at the top of read/write memory for assembly languaqe
subroutines); the address may be specified in decimal or in
hexadecimal ($xxxx). If a blank line is entered. BASIC will use
all available contiguous read/write memory. If an improper
response is received, or if the number is too small, the user will
be asked for the information again. If the number entered is
larger than the calculated memory size. the calculated value will
be used instead~

When BASIC has initialized itself, it prints the message

READY

to indicate that the inter~reter· is now ready to receive commands
or program lines. The "READY" message is also printed following
the execution of a proqram, after certain system commands have
been processed, and after execution time errors. "READYn
indicates that the interpreter is now back in command mode. BASIC
will then prompt for an input from the user by printing a question
mark and a space ("? ")~

3

NATIONAL BASIC (PACE) Programmer Reference Manual 1 Feb 77

3. PROGRAMS

BASIC is a line-oriented language. A program is composed of
a sequence of lines ordered by line numbers~ Proqram lines are
executed in sequential order, starting with the first line, until

(1) some other action is dictated by a control statement,
(2) a fatal error condition occurs,
(3) the user interrupts execution of the program.
(4) a STOP statement or END statement is executed, or
(5) the last line of the program is executed without

transferring control. ·

3.1. Line Numbers

Each line beqins with a line number which does not contain
any spaces. Leading spaces and leading zeroes wi11· be ignored.
If the value of the integer represented by the line number is
zero. or if the line number is omitted, the statement is
interpreted as a direct command rather than a proqram statement.
The range of ~llowable line numbers is 1 through 9999~

3.2. Program Lines

A program line consists of a line number followed by one or
more statements. Any number of spaces may be used to separate the
line number and the first statement on the line: these sp~ces may
be used to indent FOR-blocks to improve program readability.

Program lines may be entered in any order: they are sorted
into ascending line-number order by the editor. Entry of a line
with a line number equal to a previously existing line number will
cause the previous line to be replaced by the new line. Entry of
a line number with no statement following it will delete any
existing line with that line number~

The maximum length of a program line is determined by the
WIDTH command. Initially, the maximum length is set to 72
characters (not including the carriage return). The maximum line
length that can be set by ·the WIDTH command is 132 characters. and
the minimum width is 15 ~haracters.

4

-!

NATIONAL BASIC (PACE) Programmer Reference Manual 1 Feb 77

Each statement in BASIC begins with a "keyword" which
identifies the statement type. Other keywords in BASIC are the
command names and function names. These keywords may be
abbreviated to the first three characters when the proqram is
being entered: the keyword is replaced by a one-byte code by the
editor. When the keyword is printed, the word is completely
spelled out, regardless of how it was entered.

The statements supported by NATIONAL BASIC are described in
later chapters of this manual.

3.3.1. Multiple Statements On A Single Line

A program line may consist of more than one statement:
statements are separated by a colon (":"). Only the first
statement of a program line contains a line number. An example of
a program line coniaining three statemerits is:

100 A=4 : PRINT J*S : GOTO 999

Any statement may be used anywhere within a proqram line,
with one restriction:

Any statement that may transfer control, or is
non-executable, may not be followed by another statement
on the same program line~ These statements are DATA,
DEF, DIM, END, FOR, GOTO, GOSUB, ON, NEXT, RETURN, STOP,
and all system commands.

The initial release of NATIONAL BASIC also requires that DATA
and NEXT statements be the only statement on a program.line.

3.4. Program Entry and Editing

BASIC is a conversational language which allows the user to
communicate with the languaqe interpreter by typing on the
terminal keyboard. All inputs from the terminal are solicited
with a question mark and space ("? ") prompt sequence. The prompt
indicates that BASIC is ready to accept a line from the keyboard.
This section describes those characters that have special
significance to BASIC~ ·

5

NATIONAL BASIC (PACE} Programmer Reference Manual 1 Feb 77

3.4.l~ Carriage Return

The carriage return is used to terminate the line being
entered and cause it to be processed by BASIC.

3.4.2; Backspace

Either the ASCII backspace character (Control/H) or the
underline (left-arrow) may be used to backspace arid correct a
character which was entered incorrectly. For each backso3ce typed
in. one previously entered character is deleted. As many
backspaces may be typed as needed to correct the mist3ke.

3.4.3. Null. Rubout, Line Feed, Escape

Four characters are ignored on input. primarily to facilitate
the reading of paper tapes. These characters are NULL, RUBOUT.
LINE FEED, and ESCAPE; Escape sequences consist of the ESCAPE
character followed by any ASCII character: both characters of the
escape sequence are ignored. The ignored characters are echoed to
the terminal (except in paper tape mode) but will not be included
in statement text.

3.4.4~ Line Abort

Any control character not otherwise used (backspace, line
feed, tab, carriage return) will cause the line being entered to
be aborted: the user may then try entering the line again. The
characters commonly used are Control/Q and Control/C. Control/C
echoes as ·c , and other control characters will echo as two
backslashes (\\}.

3.4.5~ Tab

The tab character (Control/I) may be used to cause a
tabulation in the listing. Tab stops are eight columns aoart. at
columns 9. 17, 25, 33, etc. The tab is echoed as itself when
entering the line, but is always printed as the prooer number of
space characters when the line is listed. Use of a tab within a
string will cause blanks to be printed when the program is listed.
but the string will contain the tab character when the program is

6

NATIONAL BASIC (PACE) Programmer Reference Manual 1 Feb 77

executed. Runtime printing of a string with a tab character will
print the tab character rather than the blanks.

3.4.6~ Low~r Case

L·ower case characters are accepted by the editor and are
automatically converted to upper case where necessary. Lower case
is preserved only. within strings, remarks, DATA statements, and
INPUT responses. ·

3.4.7. ETX (Control/C)

Typing the ASCII End-of-text (Control/Cl character in
response to an input prompt will not only abort the line being
typed in, but will also terminate the current input mode. ETX
will terminate paper tape input (if desired to quit reading the
tape before the END line} and AUTO mode~ An ETX in resoonse to an
INPUT solicitation stops the program and returns to co~mand mode:
a CONTINUE would then retry with the INPUT. The ETX is echoed to
the terminal as nc •

7

NATIONAL BASIC (PACE) Programmer Reference Manual 1 Feb 77

4. DATA

4.1. Constants and Strings

4.1.1. Numeric Constants

All numbers are stored
representation with one sign bit,
exoonent bits (includinq siqn).
be in the range of lE-38 to 1E+38.

internally in floating point
23 mantissa bits, and eight
Floating ooint numbers may thus

Numeric constants are expressed in scientific notation with
an optional sign and an optional ex~onent~ There are four general
forms of numeric constants:

where

sd; ~. d
sd~ ~ ;drd ••• d
sd~;;drd.~.dEsdd
sd~;~dEsdd

d is a decimal digit,
r is a t;>eriod,
s is an optional sign (+ or -) , and
E is the explicit character E.

Examples of numeric constants include:
2. 1 500 -21. .255 1El0
SE-1 .4E3 123.456E7

Numeric con~tants may contain an arbitrary number of digits
(with a minimum of one), but only six digits of significance are
maintained~ Non-zero constants with exponents outside the range
-38 to 38 will cause an underflow or overflow warning, but will
otherwise be accepted~

4;1.2; Hexadecimal Con~tants

A hexadecimal constant consists of a dollar-siqn ("$")
followed by one to four hexadecimal digits (0-9, A-F). A
hexadecimal constant may be used wherever a floating point number

8

NATIONAL BASIC (PACE) Programmer Reference Manual 1 Feb 77

is allowed. The hexadecimal value is converted from binary
(integer) to floating point when it is used.

4.1.3. Quoted Strings

The auotation mark (") denotes the start and endinq of a
string. Any printable ASCII character (plus space and tab) may be
included in the string constant. A auotation mark may be included
in the string by the ~se of two adjacent quotation marks. For
example,

100 PRINT """"

will print one quotation mark;

4.1.4. Unquoted Strings

Strinqs in DATA statements and INPUT responses do not need to
be included in quotation marks if the strinq does not contain any
leading blanks or any of the terminating characters~ The
characters which will terminate an unquoted string are: comma
(.). aoostronhe ('), ampersand (&).and exclamation point (!).
These characters are specified in the ANSI standard becau~e they
may have special significance to certain implementations.

4.2. Variables

A variable is a data item that contains a value that may be
changed under program control. The LET. INPUT, and READ
statements are used to assign values to variables.

BASIC allows two types of variables (simple or subscripted)
in two modes (numeric or strinq). A numeric variable contains a
number as its value: a strinq variable contains a character strinq
as its value: the character string may be of 0 to 72 characters in
length. Subscripted variables contain one or more values.
depending upon the number of dimensions to the array. Each
elerne~t of a subscripted variable is a number (for numeric arrays)
or~ complete strinq {for string arrays)~

9

NATIONAL BASIC (PACE) Programmer Refer~nce Manual 1 Feb 77

4.2.1. Variable Names

A variable name consists of a single letter or a letter and a
digit. A vaiiable name may also consist of the first two letters
in a sequence of letters, with the restriction that no keyword be
embedded within the variable name, since keywords are reolaced bv
an internal code.reoardless of the characters surrounding the
keyword in the statement. Blanks are never allowed within a name.

A strinq variable is denoted by a variable name followed by a
dollar sian ("$")~ A subscripted variable consists of a variable
name followed by a subscript list in parentheses~

Each of the four types of variables is independent, even
though the names may have the same root. For example, the simple
numeric variable A • the array A(5) • the strinq variable A$,
and the strinq array A$(2,3) may all exist simultaneously
without conflict.

Some variable name examples are:

Simple Numeric:
Numeric Array:
Simple String:
String Array:
Illegal:

4.3. Expressions

A C4 Z9
A(l0) 01(12,5)
A$ 07$
A$(3) Z7$(5) XX$(12,4)
ATO C77 7FX

Expressions may contain any numeric function, simple
variable, array variable, or constant, using any mathematical,
logical or relational operator. Parentheses may be used to group
subexpressions~

19

NATIONAL BASIC (PACE) Programmer Reference Manual

4.3.1. Mathematical Operators

The mathematical operators are:

+

*
I
~

or
MOD
MAX
MIN

**

Addition or unary plus
Subtraction or unary minus
Multiplication
Division
Exponentiation
Modulus (remainder) function
Maximum function
Mininurn function

1 Feb 77

All mathematical operators have a binary format such as A*B.
The + and - operators also have a unary form, where the operator
is not preceded by a value or expression.

4.3.2; Relational Operators

The relational operators are used for comparinq the values of
numbers or strings. The relational operators return the result of
-1 if the relation is true and ~ if the relation is false. The
operators are:

< Less than
(::: or =< Less than or equal
= Eau al
<> or >< Not eaual
>= or => Greater than or equal
> Greater than

The alternative forms of the relational operators (>< , =< ,
=>) are automatically translated to the standard notation for
compatibility.

Comparisons of strings are done in alphabetical order using
the collating seauence of the ASCII code. If the strinqs are of
different lengths, the shorter strinq will be padded on the right
with nulls for the comparison. Therefore, the string "Y " is
greater than "Y"; A string comparison may be used in a PRINT
statement only if it is enclosed in parentheses~

11

-
NATIONAL BASIC (PACE) Programmer Reference Manual 1 Feb 77

4.3.3. Loqical Operators

The logical ooerators are:

AND Logical product: A ANO B is true only if both A
and B are true.

OR Logical sum: A OR B is true if either (or both)
of A or B is true.

XOR Logical difference: A XOR B is true if either A
or B is true, but not both.

NOT Logical neqation (unary): NOT A is true if A is
false: NOT A is false if A is true.

All of the logical operators convert their operands to
integer format. perform the logical function, and then convert the
result back to floating ooint format. The logicdl operators may
therefore be used for bit manipulations as well as for loqical
testing. A value is true if it is non-zero, and false if it is
zero.

ExamplE:s:

A AND $FF

$5555 XOR $0FF0

4.3.4. Operator Precedence

returns the lower 8 bits
of the value in A

returns the value $SAAS

Highest: !tring comparisons < <= = <> >= >

Lowest:

NOT
MOD
* I
+
MAX MIN
< <= =
AND
OR XOR

+ (unary operators)

<> >= >

Special case: unary operators which occur immediately
following another operator have the highest precedence
and are always grouped with the expression immediately
following the operator.

12

NATIONAL BASIC (PACE) Programmer Reference Manual 1 Feb 77

Parentheses may be used to force different grouping of
operations than would occur riormally. Approximately ten levels of
parentheses may be used (depending upon the operators involved and
the complexity of the expression).

Example. Eauivalent formula

A+-B A+(-B)
A~+B A~(+B)

A-B*C A-(B*C)
A AND B OR C (A AND B) OR C
-A-B -(A~B)

-A*B (-A)*B
A>B AND C OR D ((A>B) AND C) OR D
A*B>C (A*B)>C
A*B$>C$ A*(B$>C$)

13

NATIONAL BASIC (PACE) Programmer Reference Manual 1 Feb 77

S. REMARKS AND COMMENTS

S~l. REM Statement

The remark statement has the general form:

REM remark-string

The rem3rk-strinq may cont~in any print~ble ASCII characters,
including blank and tab, and is.terminated by the end of the line
(carriage return).

The sole function of the remark is to provide a means of
placing explanatory information into the proqrarn listing: no
action is performed when a remark is executed. A control
statement may branch to a remark statement.

5.2~ Comments

The apostrophe (') is a special remark character: it may be
used even on statements that do not normally allow another
statement (e.g., after a GOTO). For example,

•
100 IF A<B THEN 999 ' TEST IF DONE
120 GO TO 10 1 COMPUTE AGAIN

•

The comment beginning with the
REM statement: its advantaae is
is not allowed. For ec~nomy
listing, it is recommended that
precede the comment~

apostrophe is treated just like a
that it may be used ~here a REM
of storage and readability of the
the TAB character be used to

14

NATIONAL BASIC (PACE) Programmer Reference Manual 1 Feb 77

6. ASSIGNMENTS: LET STATEMENT

The LET statement provides for the assignment of the value of
an expression to a variable. Numeric values may be assigned to
numeric variables, and string values may be assigned to string
variables. .The general form of the LET statement is:

LET variable = expression

The expression is evaluated and its value is assiqned to the
variable to the left of the equals sign. The keyword LET is
optional.

String variables may be assiqned string values: the string
expression may have the form

string+ strinq + ~~~ +string

The "+" operator. if used, causes two strings to be
concatenated (pieced together end-to-end to form a longer string).
Each string may be a string constant, a string variable. or a
string function~ The length of the strinq variable following the
assignment will be the sum of the lengths of the strings, with a
maximum of 72 characters. If the string length would exceed 72,
the excessive characters on the riqht will be lost. For example.

LET A$="THIS IS A"+" STRING"

will assign AS the value "THIS IS A STRING"~

String concatenation is done to a temoorary string variable
before the final assignment is made: therefore the following
program will assign th~ value "DEFABC" to A$:

10 A$="ABCDEF"
20 A$=RIGHT$(A$,3)+LEFT$(A$,3)

15

NATIONAL BASIC (PACE) Programmer Reference Manual 1 Feb 77

7. CONTROL STATEMENTS

Control statements
sequence of execution
continue at a S?ecif ied
higher line number.

allow for the interruption of the normal
of statements by causing execution to

line, rather than at the one with the next

7.1. GOTO

The GOTO statement

GOTO line-number

~llows for an unconditional transfer. The next statement to be
executed will be the first statement on the designated line.

The keyword GOTO may be spelled as two words, as in

GO TO 1 ine-nurnb.er

The split form of the GOTO may be used wherever the GOTO keyword
is specified, including the IF and ON statements.

Note: the "GO TO" form takes at least three bytes
of storage while the "GOTO" takes only one byte.

No additional statement may appear followinq a GOTO on the
same program line (except for a comment beginning with ').

7.2. ON ••• GOTO

The ON - GOTO statement

ON expression GOTO line-number, line-number. ~;.
ON expression GO TO line-number, line-number ••• ~

allows control to be transferred to a selected line. The
expression is evaluated and rounded to ~n integer whose value is
then used to select a line-number from the list following the
GOTO.. The line numbers in the list are indexed from left to
right, starting with 1. Execution of the program continues at the
line number selected by the expression index~

16

-r
I

NATIONAL BASIC (PACE) Programmer Reference Manual 1 Feb 77

An error will occur and program execution will be stopped if
the value of the expression is less than one or greater than the
number of line numbers in the list.

7.3. l·F .. THEN • • •

The IF statement has three forms:.

IF expression THEN line-number
IF expression GOTO line-number
IF expression THEN statement

The expression is evaluated and tested. If the value is zero
(false) then the rest of the IF statement is iqnored and the
program line with the next higher line number is executed. If the
value of the expression is not zero, the expression is "true" and
the second part of the IF statement is processed.

The first two forms of the IF statement are equivalent:
execution is transferred to the line with the designated line
number if the expression is true (non-zero);.

The third form of the IF statement is very useful for writing
readable programs with a minimum number of statements. The
statement or statements specified will be executed if the
IF-expression is true;. Any executable BASIC statement may be used
on the IF line except DATA, DEF, DIM, FOR, NEXT, or REM.

7 ;.4. FOR, NEXT

The FOR and NEXT statements provide for the construction of
program loops. The general forms of these statements are

FOR var = initial-value TO limit STEP increment
NEXT var

The sequence of statements beginning with a FOR statement and
continuing up to and including the first NEXT statement with the
same control variable is termed a "For-block". For-blocks may be
nested, i.e., on~ may contain another (providing that they use
different control variables), but they may not be interleaved.

In the absence of a STEP clause in a FOR statement, the
increment is assumed to be +l.

17

NATIONAL BASIC (PACE} Programmer Reference Manual 1 Feb 77

Execution of the FOR statement· causes the limit-value and
increment-value expressions to be evaluated and saved in a special
area reserved for the for-block control varidble. The initial
value is assigned to the control variable, and the test is then
made to determine whether the loop is to be processed. If the
initial variable value is greater than the limit (for a positive
increment), or less than the limit (for a negative increment),
then the loop is skipped and execution of the program resumes at
the statement following the NEXT statement which closes the
for-block.

A for-block becomes active upon execution of its FOR
statement and remains active until it is exited via its NEXT
statement or until control is transferred to a FOR statement
(which may or may not be the one associated with that for-blo~k)
having the same control variable.

Nesting of the for-blocks is checked during pass one of a RUN
command: an error will occur if blocks are nested improperly or
more than ten deep~

For proper operation, the NEXT statement must be the only
statement on its program line~ The syntax analyzer will qive an
error only if it is not the last statement on the line.

The value of the control variable upon exit from the
for-block via its NEXT statement is the first value not used: if
e~it is via a control statement, the control variable retains its
current value and the for-block remains active.

Transferring into an inactive for-block will cause an error
when the NEXT statement is encountered. Transferrinq into an
active for-block causes the NEXT statement to use the values last
associated with the specified control variable.

1. 5; STOP, END

The STOP and END statements orovide means for terminating a
program. The major difference betw~en the two statements is that
the STOP statement will print a message

STOP IN nnnn

where nnnn is the line number of the line containing the STOP
statement. The END statement also terminates the proqram, but
without any message as to the line number of the line containing
the END statement~ Control is transferred to command mode and the
"READY" message indicates that the program is finished and BASIC

18

NATIONAL BASIC (PACE) Programmer Reference Manual 1 Feb 77

is ready to accept a command or new program lines.

The END statement does not need to be the last statement of
the program, nor does the ~rograrn need to end with an END
statement. The END statement does. however, cause orogram entry
from paper tape to be termin~ted: therefore. the END statement
should not be used in the middle of a program (use a GOTO or STOP
instead).

19

NATIONAL BASIC (PACE) Programmer Reference Manual 1 Feb 77

8. INPUT/OUTPUT

8.1. DATA, READ, RESTORE

The DATA statement provides for the crea~ion of a sequence of
representations for use by the READ statement. The general
syntactic form of the DATA statement is

DATA datum, - - -.... , datum

where each datum is either a numeric constant, a string constant,
or an unquoted string constant.

The READ statement provides for the assignment of values to
variables from a seauence of data created from DATA statements.
The RESTORE statement allows the data from DATA statements in the
proqram to be reread. The general syntactic forms of the READ and
RESTORE statements are

READ variable, ••• , variable
and RESTORE

Data from the DATA statements in the
single data seauence. The order in which
determines the order of the data in
unquoted string which is a valid numeric
assigned to either a string variable or
READ statement;

proqram are read from a
data appear textually
the data sequence. An
representation may be
a numeric variable by a

If the execution of a program reaches a line containing a
DATA statement, it proceeds to the next line with no other effect.

The DATA statement must be the only statement on its program
line. The syntax analyzer will give an error message only if the
DATA statement has improper syntax.

The READ statement causes variables in the variable list to
be assigned values, in order. from the data seauence. A pointer
is associated with the data sequence& Af the initiation of
execution of a program. this pointer points to the first datum in
the data sequence~ Each time a READ statement is executed,
variables in the variable list are .as,signed values from the data
sequence beginning with the datum indicated by the pointer. and
the pointer is advanced to point behind the data used.

20

NATIONAL BASIC (PACE) Programmer Reference Manual l Feb 77

The RESTORE statement resets the pointer for the data
sequence to the beqinninq of the sequence, so that the next READ
statement executed will read data from the beginning of the
sequence once again.

The type of a datum in the data sequence must correspond to
the type of the variable to which it is to be assigned~ i.e.,
numeric variables require numeric constants as data, and strinq
variables require quoted strings or unquoted strings as data~

Subscript expressions in the variable list are evaluated
after values have been assigned to the variables preceding them
(i.e., to the left of them) ·in the list.

There is no provision for null data items, i.e •• for two
adjacent commas in a DATA statement. If the null string is to be
included as a datum, it must be en~losed in quotation marks.

Errors resulting from underflows or overflows in the
conversion of numeric data will cause a warning and the standard
action for expressions to be taken: i.e., an underflow warning
will use zero as the value, and an overflow warninq will use the
maximum reoresentable value. The program will proceed normally in
case such errors occur.

8.2~ PRINT

The PRINT statement is desiqned for simple generation of
labeled and unlabeled output or of output in a consistent tabular
format. The general syntactic form of the PRINT statement is

PRINT item p item p •• ~ p item

where each item is either a
function, or null; and each
comma, a semicolon, or null~

string, an
punctuation

expression. a print
mark o is either a

The execution of a PRINT statement generate a string of
characters for transmission to an external device (norm~lly the
console). This strinq of characters is determined by the
successive evaluation of each print-item and print-separator in
the print-list~

21

NATIONAL BASIC (PACE) Programmer Reference Manual 1 Feb 77

Numeric expressions
characters consisting of
positive. or a leading
followed by the decimal
trailing space.

are evaluated to
a leading space

minus sign if the
reoresentation of

produce a string of
if the number is
number is negative.
the number and a

Each number that can be represented exactly as an integer
with 6 or fewer decimal digits will be Printed usinq the standard
integer representation without a decimal point~

Numbers which are not integers. but have values in the range
0.01 to 999999.5 , are represented in fixed point format with a
maximum of 6 significant digits and a decimal point: trailing
zeroes in the fractional part will be omitted.

All other numbers will be represented in scientific notation;
for example,

sign signif icand E sign two-digit-integer

where the value x of the signif icand is in the range 1 <= x < 10
and is to be represented with six digits of precision. If the
first sign is a plus sign, it is replaced by a space.

String constants. string variables, and string functions are
evaluated (if necessary), generating a string -of characters
exactly corresponding to the string itself~

The evaluation of the semicolon seoarator (or an internal
null separator) generates a null string. i.e., a string of zero
length.

The evaluation of a comma separator depends upon the string
of characters already generated by the current or previous print
statements. The "current line" is the (possibly empty) string of
characters generated sinae the last end-of-orint-line was
generated; The "margin" is the number of characters that may be
printed on one line: the "columnar position" of the current line
is the print position that will be occupied by the next character
printed on that line~ Print positions are numbered consecutively
from the left, starting with position one.

Each print line is divided into a fixed number of print
zones; Each 9ririt zone is fourteen (14) characters wide: the
number of print zones on a line depends .upon the current width of
the line. The last print zone on the line may be longer than
fourteen characters if the line width is not a multiple of
fourteen.

22

NATIONAL BASIC (PACE) Programmer Reference Manual 1 Feb 77

The evaluation of the comma seoarator generates enough spaces
to fill out the current print zone,· unless this is the last print
zone on the line, in which case a carriage return - line feed
sequence is printed such that the next character to be printed
will be in column one of the next print line~

If the .print list does not end in a print separator (comma or
semicolon), the orint line is ended with a carriage return and
line feed, and the next PRINT statement to be executed will then
print on a new line.

If the evaluation of any print item in a print list would
cause the columnar position of a nonempty line to exceed the
margin, a new print line is started b~fore the characters
generated by that print-item, If a strinq is printed that is
longer than the number of characters in a print line. a new print
line is generated each time the columnar position of the current
line exceeds the margin~

A completely empty
end-of-print-line (carriage
the current line of output.
a blank line results~

print-list will generate an
return, line feed), thereby completing
If this line contained no ~haracters,

Null print-items, as in PRINT .,x,
of tabulating over several print zones;

are allowed as a means

8;3. Print Functions

The print functions may be used only in PRINT statements.

TAB(!)

SPC(I)

Sets the columnar position of the current line to
the specified value prior to printing the next
print item. The arqurnent I is rounded to the
nearest integer to determine the new print column~
Columns are numbered starting at column 1 on the
left~ If I is greater than the line width m, then
the value I is reduced by an integral multiole of m
such that 1 <= I <= m • If the columnar position
is less than or equal to I. enouqh spaces are
generated to move the columnar position to I~ If
the columnar position is greater than I. a new
print line is initiated and spaces generated to
move to column I.

The argument is rounded to ~n integer and the
~orresponding numbe~ of spaces is printed.

. .

23

.
NATIONAL BASIC (PACE) Programmer Reference Manual 1 Feb 77

LIN(!)

8.4. INPUT

The argument is rounded to an inteoer and the
corresponding number of line feeds is printed.

INPUT s~atements provide for interaction with a running
program by allowing variables to be assigned values that are
supplied from a source external to the program. The inout
statement enables the entry of mixed string and numeric d~ta, with
data items being separated by commas~ The general syntactic form
of the INPUT statement is

INPUT variable, ~~~,variable

The INPUT statement causes the user to be prompted at the
terminal to supply a data list~ Once the data has been typed, the
INPUT statement will cause the variables in the variable-list to
be assigned, in order, the values from the input-reply.

The type of each datum in the input-reply must correspond to
the type of the vari~ble to which it is to be assiqned: i.e.,
numeric constants must be supplied as input for numeric variables,
and either ouoted strings or unauoted strings must be supplied as
input for string variables~ If the response to an inout for a
string variable is an unquoted string, leadinq blanks are ignored.

Subscript expressions in the variable list are evaluated
after values have been assigned to the variables preceding them
(i.e., to the left of them) in the variable list~

If the data supplied on the input-reply is insufficient to
fill the variables in the variable list, the user is prompted by a
double question mark ("??") for more input. If more data is
supplied than is required for the variable list, the extra data is
ignored and no error message is printed.

If the data supplied is not the correct type for the
corresponding variable, or if a syntax error is detected in the
input-reply, the message "ERROR: RETYPE LINE" is printed and the
user is prompted to retype the entire input-reply.

24

NATIONAL BASIC· (PACE) Programmer Reference Manual 1 Feb 77

A prompt string may be supplied on the INPUT statement: the
general form is

INPUT "string 0 p variable, ~~~.variable

where the string may be any legal ouoted string constant. and p
is a print delimiter (either a comma or a semicolon). The string
and the print delimit~r are printed in the same manner as they
would be printed by a PRINT-statement. then the prompt is printed
for the input reply.

25

NATIONAL BASIC (PACE) Programmer Reference Manual 1 Feb 77

9. SUBROUTINES

A subroutine is a section of code performing some operation
required at more than one place in the program. The GOSUB
statement is used to transfer control to the subroutine and the
RETURN statement is used to return control to the place from which
the subroutine was called;

9;1. GOSUB

The GOSUB statement has the general syntactic form

GOSUB line-number

The GOSUS statement is processed in the same manner as the
GOTO statement, except that the address of the next line in the
program (after the GOSUB) is saved on a stack to be retrieved by a
RETURN statement. GOSUB may be spelled as either one word or two
words ("GO SUB")~ "GOSUB" will occupy one byte of program storage.
while "GO SUB" will occupy at least three bytes of storage.

ON GOSUB

The ON-GOSUB statement is similar to the ON-GOTO statement
except that the action taken upon selection of one of the line
numbers in the list is a subroutine jump (GOSUB statement) rather
than an unconditional jump (GOTO statement). An error will occur
if the expression has a value less than one or greater than the
number of line numbers in the list~

9~3. RETURN

The RETURN statement is used to terminate a subroutine which
was initiated by a GOSUB statement. The RETURN statement mupt be
the last statement on its program line~ Each time a RETURN is
executed. the address on top of the qosub-stack is removed from
the stack and execution of the proqram is continued at the line
located at the indicated address: i.e •• the return is to the
proqram line following the last unterminated GOSUB statement.

26

. NATIONAL BASIC (PACE) Programmer Reference Manual 1 Feb 77

Programs can execute up to ten GOSUB statements without an
intervening RETURN statement. It is not necessary that equal
numbers of GOSUB statements and RETURN statements be executed
before termination of the proqram.

9;4. CALL

The CALL statement provides a simple method of linkinq to
external machine code subroutines (normally written in assembly
language)~ The general syntactic form of the CALL statement is

CALL address

where the address is a numeric expression which is rounded to an
integer (in the range -32768 to +32767). The integer value is
then used as the entry point address of the machine code
subroutine. No Parameters are passed to the subroutine (the
register contents are undefined), and no results are returned. If
a parameter or returned value is required, the USR function should
be used instead~

The machine code subroutine will have free use of all of the
machine registers (except that the stack interrupt enable and
master interrupt enable should not be changed), and at least
fifteen stack levels.

27

NATIONAL BASIC (PACE) Programmer Reference Manual 1 Feb 77

10. FUNCTIONS

Many mathematical operations are built into BASIC as
intrinsic functions. In qeneral, a function takes one value,
known as the. aroument, performs the defined operation. and returns
a single valpe as the result of the functi6n. The function result
may then be processed by any other operators that are Present in
the expression in which the function is used.

10.1. Intrinsic Functions

The orocessing of the function arguments is denoted as
follows: an argument (X) denotes a function that uses a floating
point value: an argument (I) denotes a function that rounds its
argument to an integer in the range -32768 to 32767 before
processing it~ and an argument (S$) denotes a string argument.

10.1.1. Standard Numeric Functions

ABS(X)

ATN(X)

COS(X)

EXP(X)

INT(X)

LOG(X)

Returns the absolute value of X: i.e., X if X>=0.
or -x if x<0.

Returns the arctangent
result will be in the
radians.

of the
ranqe of

argument x.
-PI/2 to

The
PI/2

Returns the cosine of the argument X (in radians).

Exponential: returns the constant "e" (2.71828)
raised to the power x.
Returns the greatest integer which is less than or
equal to the value of the argument x. For example.
INT(2;7) is 2, and INT(-5.1) is -6.

Returns the natural (base e) logarithm of the
argument x~

RND Returns a uniformly distributed pseudo-random
number in the range 0 <= result < 1 • An argument
may be provided [for example, RND(X)], but it will
be ignored. The RANDOMIZE statement is used to
alter the number seauence generated by successive
RND function calls.

28

NATIONAL BASIC (PACE) Proqrammer Reference Manual 1 Feb 77

SGN(X)

SIN(X)

SQR(X)

TAN(X)

Returns the sign function of X: -1 if X<0, 0 if
X=0, or +l if X>0.

Returns the sine of the argument X (in radians).

Returns the square root of the argument X: X must
be >= 0~

Returns the tangent of the argument X (in radians).

10.1.2. Advanced Numeric Functions

BRK(I)

INP (I)

PEEK(!)

POS(I)

USR(I)

This function enables the user to enable or disable
the capability to interrupt execution by striking a
key on the keyboard~ The function returns as its
value the previous state of the break capability (0
or 1). An argument less than zero leaves the
capability unchanged:. an argument of zero disables
the break capability: and an argument greater than
zero turns the break capability on.

Read peripheral: a read operation is done with the
device address specified by the argument I~ Bit 15
of the address is always set for this operation.

Read memory: a read operation is done with the
memory address specified by the argument I~ Since
both perioherals and memory use the same
instructions. this function may be used to access
either memory or peripherals: the only difference
between INP and PEEK is that PEEK does not
automatically set address bit 15.

Returns the current cursor column on the output
terminal~ The leftmost column is column 1.

The user supplied (assembly languaqe) function
whose address has been Placed into location 0010 is
called. If location 0010 has not been preset ·by
the user (with a POKE statement). a USR ERROR will
occur. The argument is rounded to an integer and
passed to the user function in the register AC0.
The function result should be returned as an
inteqer in AC0~

29

I
I •

NATIONAL BASIC (PACE) Programmer Reference Manual 1 Feb 77

10.1.3~ String to Numeric Conversion Functions

ASC(S$)

LEN(S$)

VAL(S$)

Returns the ASCII value of the first character of
the string~ For example, ASC("AB") returns 65,
which is the decimal value of the character "A".

Returns the current length (in characters) of the
argument string.

Returns the decoded decimal value of the string.
If the strinq does riot contain a proper numeric
representation. the result will be 0.

10.1.4. Numeric to String Conversion Functions

CHR$(1)

HEX$(!)

STR$ (X)

Converts the decimal number I to an ASCII character
with the corresponding binary value~ Only the
least significant eight bits of the argument I are
used to form the character~ For example, c·HR$(65)
returns the character string "Au.

Returns a strinq consisting of the hexadecimal
representation of the argument I; The string will
be four characters long, in the form "XXXX".

Returns a string
representation of
the string returned
the number. The
would be printed by

consisting of the decimal
the argument X. The length of
will 9epend upon the value of
representation is the same as
a PRINT statement.

10.l.5~ Substring Functions

The substring functions provide access to specified groups of
characters within a complete string.
descriptions. Il and 12 denote the numeric
function arguments, and 13 denotes the
contained in the string represented by the

In the following
values specified as the

number of characters
argument S$..

MID$(S$.Il.I2) or MID$(S$.Il)
Returns a substring of
numeri~ argument (Il)
at which the substring
numeric arqument (I2)
of characters in the

. 39

the arqument S$. The first
denotes the character number
is to beain. The second
specifies the maximum number
substring. If I2 is not

NATIONAL BASIC (PACE) Programmer Reference Manual l Feb 77

specified, the substring will consist of the
remainder of the original strinq: i.e.. it will
contain I3-Il+l · characters~ In no case will the
substring contain more characters than the
remainder of the string: the length of the
substring is the minimum of I2 (if specified) and
I3-Il+l. If Il is qreater than I3, the substring
will be null (zero length).

LEFT$(S$.Il)
Returns the leftmost Il characters of the string
S$. If the string S$ contains fewer than Il
characters, the entire string will be returned~

RIGHT$(S$,Il)
Returns the
5$. If
characters.

rightmost Il characters of the string
the string contains fewer than Il
the entire string will be returned.

NOTE: The substring functions are not recursive:· the string
argument may be any string except another substring function.

18.2~ RANDOMIZE

The RANDOMIZE statement overrides the predefined sequence of
pseudo-random numbers as values for the RND function, allowing
different (and unpredictable) sequences each time a given program
is executed.

In the absence of a RANDOMIZE statement, the RND function
will generate the same seauence of pseudo-random numbers each time
a program is run. This convention is chosen so that programs
employing pseudo-random numbers can be executed several times with
the same result - a desirable feature if one is trying to debug a
program.

18.3. User-defined Functions

In addition to the intrinsic functions provided for the
convenience of the programmer, BASIC allows the programmer to
define new functions within a program.

31

I
i
I .

l
I

NATIONAL BASIC (PACE) Programmer Reference Manual 1 Feb 77

The general form of statements for defining functions is

DEF FNx (parameter) = expression

where x
variable.

is a single letter and a parameter is a simple numeric

A function definition soecifies the means of evaluating the
function in terms of the value of an expression which may involve
the parameter and other variables or constants~ When the function
is referenced, i.e., when an expression involvinq. the function is
evaluated. the expression in the argument list .for the function is
evalu3ted and its value is assigned to the parameter in the
parameter-list for the function definition. The expression in the
function definition is evaluated then, and this value is assigned
as the value of the function~

The parameter appearing in the parameter-list of a function
definition is local to that definition, i.e •• it is distinct from
any variable with the same name 9utside of the function
definition. Variables which do not appear in the parameter-list
are the variables of the same name outside the function
definition.

The function definition must appear only once in a program,
but need not appear before the location of the first reference to
it. The expression in a DEF statement is not evaluated (except to
check proper syntax) unless the defined function is referenced.
If control is Passed to a DEF statement, the statement on the
program line immediately following the DEF statement will be the
next one executed~

A function definition may refer to other defined functions,
up to a nesting limit of ten~ If a function references itself, it
will always result in a nesting error.

32

NATIONAL BASIC (PACE) Programmer Reference Manual 1 Feb 77

11. HARDWARE ORIENTED STATEMENTS

11.1. POKE, OUT

The POKE a~d OUT statements are used .to write inteqer data to
memory or peripherals. The general syntactic forms of these
statements are

POKE address, data
OUT address, data

where address and data are both expressions which are evalutated
and rounded to an inteqer value in the range -32768 to 32767~
Since the PACE microorocessor uses memory reference instructions
for input/output, the major difference between these statements is
that the OUT statement forces addr~ss bit 15 to be set reqardless
of its specification in the address expression. This is to
conform to the normal use of upper memory addresses for
peripherals. For example,

POKE $8048,1
and OUT $48.l

perform exactly the same O?eration. Since POKE is intended for
memory alteration, and OUT for peripheral output. POKE will verify
that the POKE operation was performed successfully (resulting in a
POKE WARNING if not) , while OUT sends its data to the peripheral
without verification•

33

NATIONAL BASIC (PACE) Programmer Reference Manual 1 Feb 77

11~2~. WAIT

The WAIT statement is used to read data (usually a status
word) from an input port, and wait until a particular bit
configuration is obtained. The general syntactic form is

WAIT address, and-m~sk, xor-mask

where the xor-mask is optional~ Each of the expressions in the
WAIT statement is evaluated and rounded to an integer. The
address specified is then read, exclusive-OR'ed with the xor-mask
(if supplied), AND'ed with the and-mask, and then checked for the
resulting value. If the value is zero, the process is repeated
and the program will wait until the series of ooerations result in
a non-zero value. When a non-zero value is obtained, control is
then allowed to proceed to the next statement.

11.3. TWAIT

The TWAIT statement provides a timed wait capability~ The
general form of the statement is

TWAIT ex·pression

The expression is evaluated, rounded to an inteqer,
that number of milliseconds takes place~ The
possible is 32767 milliseconds (32~8 seconds).
does not include the time required to interpret the
to evaluate the expression.

34

and a delay of
maximum 'delay
The delay time

statement or

NATIONAL BASIC (PACE) Programmer Reference Manual 1 Feb 77

12. ADVANCED CONTROL STATEMENTS

The SIZE, TRACE, and WIDTH statements are provided to aid in
the debugging of programs an~ to allow different terminal widths.

12.1. SIZE

The SIZE statement Prints out a summary table of the address
ranqes used for the program, for array and strina storage, and for
the symbol table. This information may be used to determine the
amount of unused memory still available.

12.2~ TRACE

The TRACE statement will cause each proqrarn line to be
printed as it is executed. The printout occurs before
interpretation of the statements on the line takes place~ The
listing of the program line is orefixed by a "->" character
sequence. The program trace may be turned on and off at will to
print only those statements in a particular line range. The
statement forms are

TRACE
TRACE ON
TRACE OFF

Either of the first two forms turns on the program trace, and the
third form disables the trace~ The TRACE Statement may be used
either in command mode or as a statement in a program: trace mode
is changed only by the TRACE statement and is not changed by the
RUN command.

35

NATIONAL BASIC (PACE) Proqrammer Reference Manual 1 Feb 77

12.3. WIDTH

The WIDTH statement is used to accommodate BASIC to terminals
with different line lengths. The statement form is

WIDTH expression

where the expression is evaluated and rourlded to an integer in the
rang~ of 15 to 132. representing the number of print columns to be
used on the user's terminal~ Any expression value less than 15
will cause a length of 15 to be used (one print zone) • and any
value.greater than 132 will cause a width of 132·to be used.

The terminal width is initialized to 72 when BASIC is loaded:
the WIDTH statement may be used in either command mode or program
mode to change it at any time. The terminal width affects both
the length of a line that can be accepted for editinq. and
controls the number of print zones which.will be printed on a
line.

36

NATIONAL BASIC (PACE) Programmer Reference Manual 1 Feb 77

13. ARRAYS

Arrays and string arrays may have either one or two
dimensions. The current implementation of NATIONAL BASIC
allocates strings and arrays when the RUN command is issued: no
array or string may be used in immediate mode which has not been
previously allocated by running a program. There are two methods
of specifying the storage needed by an array: explicit declaration
with the DIM statement, or implicitly by the appearance of the
array in the program.

13~1. Declaration: DIM

The DIM statement is used to reserve space for arrays.
Unless declared in a DIM statement, all array subscripts have a
lower bound of zero and an upper bound of ten. Thus the default
space allocation reserves space for 11 elements in one-dimensional
arrays and 121 elements in two-dimensional arrays. By use of a
DIM statement. the subscript{s) of an array may be declared to
have an upper bound other than ten.

The general form of the dimension statement is

DIM d~claration. ~.~,declaration

where each declaration has the form

array-variable (constant)
or array-variable (constant,constant)

and each array variable may be either a numeric array variable or
a string array variable.

Each array declaration occurring in a dimension statement
declares the array named to be either one or two dimensional
accordinq to whether one or two bounds are listed for the array.
In addition, the bounds specify the maximum values that subscript
expressions can have. Each array may· be dimensioned only once in
a program. Arrays that are not . declared in any dimension
statement are declared implicitly to be one dimensional, and to
have an upper bound of ten~-

37

NATIONAL BASIC (PACE) Programmer Reference Manual 1 Feb 77

14~ DISK FACILITIES

Four commands are available to load and save proqrams on disk
files~ These commands are legal only
Needed?" prompt at initialization was
carriage return~ The commands are:

when the "Disk Files
answered with "Y" or a

LOAD filename Scratch the current program and load a
new file from disk~

MERGE filename Merge a disk file into the current
program.

EXEC filename

SAVE filename

Scratch the current program. load a ne~
proqram from disk, and execute it. This
statement may be used in a program.

Write the current program to a source
file on the disk.

The filename specification for these commands is a literal
string and may be either quoted or unquoted (as in a DATA
statement). The filename should be in the form of

drive:name.modifier

where only the name is required. If the drive number is not
specified. drive 1 will be used: if a file modifier is not
specified, it will be BAS~ Refer to the PACE Disk Operating
System Users Manual for additional information on files~

38

NATIONAL BASIC (PACE) Proqramrner Reference Manual 1 Feb 77

15. COMMANDS

Several system commands are provided to read and list
programs from storage media, to edit proqrams in memory. and to
control program execution~ The system commands in this list
always retu~n to command mode: no additional st~ternent may follow
a command on the same line~

The command syntax allows for zero, one. or two line numbers
to follow a command. Any command that doesn't need line numbers
will just ignore any that are specified.

15.1. Editino Commands

The editing commands direct BASIC to read a program from a
device other than the user's terminal, or to control entry or
deletion of program lines~

15;1.l. SCRATCH

The SCRATCH command tells BASIC to delete the current
program, and prepare to read a new program.

15~1.2; TAPE

The TAPE command tells BASIC to read a program from paper
tape~ The data is read in the same manner as it would be read
from the terminal, except that the program lines are not echoed to
the terminal. Syntax error messages, if any, are printed on the
terminal, but the lines in error are saved so that they may be
listed by the user.

Paper tape input mode is terminated by either of the
following:

(1) the END statement, or
(2) typinq a control/C;

39

NATIONAL BASIC (PACE) Programmer Reference Manual 1 Feb 77

15.1.3~ AUTO

Command format: AUTO [start [.increment]

The AUTO command causes proqram lines to
the terminal with line numbe~s supplied
starting line number and the increment may
command: the defaults are 10 for each.
specified then the starting number must also

For example:

? AUTO 100
100 ? REM THIS IS THE LINE ENTERED
110 ? REM THIS LINE IS ALSO ENTERED
120 ? -c
?

be solicited
by the system.

be supplied on

from
The
the

If an increment is
be specified.

AUTO mode is.terminated by typing a blank line to the prompt,
or by abortinq the line input with a control/C. If the line is
aborted (with a control character other than control/C) or found
to be in error. the user will be prompted for the same line aqain~
The line number may be overridden by supplying a new line number
following the prompt: the next line prompted will be the line
number entered plus the increment: for example,

? AUTO 100
100 ? REM THIS IS EXAMPLE TWO
110 ? 200 REM LINE 200
210 ? REM LINE 210
220 ?
?

will result in lines 100, 200, and 210 being entered.

15~1.4. DELETE

The DELETE command is used to delete a ranqe of lines from
the program. If one line number is specified on the command, only
that line will be deleted. If two line numbers are specified on
the command, all lines in the program with line rtumbers in the
range of linel through line2, inclusive, will be deleted. If the
value of the second line number is less than the value of the
first line number, 6nly the line (if ~ny) with the first line
number will be deleted.

The command formats are:

40

NATIONAL BASIC (PACE) Programmer Reference Manual

DELETE linel
DELETE linel,line2

15~2; CLEAR

Delete sinqle line.
Delete lin~ range (inclusive).

1 Feb 77

The CLEAR command is used to clear the symbol table created
by immediate mode operations: this has the effect of
reinitializing all variables to zero and removing the allocation
of all arrays~

15~3. Execution Control Commands

15.3.1. RUN

General form: RUN [startline)

The RUN command causes the symbol table to be cleared (so
that all variables will start off with zero or null values), and
the program to be executed. Normally, the first statement in the
program is the first statement to be e~ecuted, but that may be
overridden by the specification of a starting line number on the
RUN command: the effect will be as if a GOTO statement appeared
before the first program line. If the specified starting line
number does not exist, execution will begin with the next nigher
numbered line (if any).

15;3.2; CONTINUE

General form: CONTINUE [startline)

The CONTINUE command is used to resume program execution
following a STOP, END, break. or error. The CONTINUE command is
valid only if the current proqram has been run and has not been
edited since run termination~ Certain errors are considered fatal
and will invalidate any use of CONTINUE, but this situation should
not occur often~

Program execution is normally resumed at the proqram line
following the last line executed or the designated line if the
last statement was a control statement (GOTO. etc;)~ The normal
next line may be changed by specifyinq a line number on the

41

NATIONAL BASIC (PACE) Programmer Reference Manual 1 Feb 77

CONTINUE command, in which case execution will resume at the
designated line (or the line with the next higher line number, if
the designated line does not exist).

15~3.3~ BYE

The BYE command returns control to the system monitor~ This
is the only means by which control is relinquished by BASIC
(except for the front panel).

15~4. Listing Commands

Listing commands may have one of three forms:

command
command
command

line#
linel,line2

The commands are:

LIST
HLIST
PUNCH

List all lines in edit buffer
List all lines starting at linet
List line range (inclusive)

List on console
List on high speed printer
Punch paper tape

Note: the terminal width should be set to 132 to avoid
extra characters which may be printed on long lines~

A break during a list operation will stop the list after the
current line has finished printing, and return to command mode~
The break capability is always enabled for lists~

An example of the list format is:

1 REM SAMPLE LIST
10 PRINT "LINE 10"

100 REM •• LINE 100
9999 END

Line numbers are 1 isted with leading· spaces arid followed by at
least one space, so that the program lines will always be lined ~P
and easier to read.· This can sometimes cause a line to print· more
characters than were entered (due to the extra spaces). Since the
WlDTH command may be used to change the number of characters that
are printed on a line~ it i~ possible that the line as printed
will require more characters than may be printed on a single line.
In this case, a carriage return and line feed will be printed at

42

NATIONAL BASIC {PACE) Programmer Reference Manual 1 Feb 77

the column indicated by the WIDTH setting. This should not
adversely affect legibility of program listings, but it does mean
that any listing to paper tape may not read properly when
reloaded. For this reason, it is recommended that a WIDTH 132 be
issued before the PUNCH command is used.

43

1 •

NATIONAL BASIC (PACE) Programmer Reference Manual l Feb 77

16. IMMEDIATE MODE OPERATION

NATIONAL BASIC may be used in immediate mode, to function
like a desk calculator. It is not necessary to write a complete
program and run it to obtain information. Most of the statements
may be used ~ither in a . program or may be given on-line as
commands, which are immediately executed b¥ the BASIC interpreter~

!

Lines entered for later execution and lines entered for
immediate execution are differentiated by the presence of a
non-zero line number preceding the program line~ Statements which
begin with a line number are stored: statements without a line
number (or a zero line number) are executed immediately upon being
entered to the system.

Immediate mode operation is especially useful for program
debugging. Once a program has run, the values of the variables
may be printed or changed by the user, and the CONTINUE command
may then be used to resume proqram execution. The user may either
place STOP statements at strategic places in the program, or
merely use the break facility to interrupt execution when desired.

Program lines used in immediate (command) mode may include
more than one statement, separated by a colon (":"), as usual.
Interpretation of the line will stop if an error occurs (with an
error message printed), or a system command is executed (since
commands always return to command mode).

The statement summary in the appendix indicates which
statements may be used in immediate mode~ Any statement which has
an optional line number may be used in immediate mode: use of any
other statement will result in a "STMT ERROR" (impro·per statement
use).

44

NATIONAL BASIC (PACE) Programmer Reference Manual 1 Feb 77

17~ PROGRAM EXECUTION

Execution is in a two-pass mode. During the first pass. all
statements are checked for proper syntax and FOR-NEXT nesting,
arrays and strings are allocated storage space, and the symbol
table is created and initialized. If any errors are encountered.
they are iisted and analysis continues: execution will not be
stopped until all statements have been checked.

After the program has been completely checked, the second
pass is started which is the actual program execution. If a
starting line number was specified on the RUNP command, the
program execution will begin there (if the line exists): otherwise
execution will start with the first line in the program.

17~1. Interrupting Program Execution

Any key struck on the keyboard while a run is in progress
will "break" or interrupt .program execution. The break key is
recommended since it is most reliably detected by the hardware.
The break will occur after a line has completely finished
execution. The line number appearing on the break message is the
line number of the next line to be executed. The break capability
may be turned off by the BRK(0) function and restored by BRK(l)~

17~2~ Restart

If it is necessary to stop execution immediately. and the
break key is not satisfactory (or has been disabled), BASIC may be
restarted by depressing the INITIALIZE then the RUN swi~ches on
the front panel of the computer~ This seouence will restart BASIC
in command mode, which then types "READY" and waits for a new
command~ This orocedure is the only way to get out of a WAIT
statement that waits indefinitely for some non-existant event: it
is also necessary if the break capability has been turned off.
Restart of BASIC does not affect the program or the current values
of the variables: a CONTINUE command should work properly,
although it will probably return to the same program line which
was being executed when the switches were depressed.

45

NATIONAL BASIC (PACE) Programmer Reference Manual 1 Feb 77

18. HINTS

18.1~ Peripheral Use

BASIC normally does all of its input and output to the
terminal serving as the comp~ter console: howev~r. it is possible
to use the built-in routines to print on the high speed printer
(Centronics 306 or eauiv.alent), or to read paper tapes (without
echo or line feeds). The POKE statement is used to change the
peripheral device flag that BASIC uses to determine which device
is active. The statements are:

POKE $18,2
POKE $1B,0
POKE $1A,l
POKE $1A,0

to set output device to printer:
to set output device to terminal:
to set input device to paper tape:
to set input device to terminal~

These commands may be used anywhere in a proaram.
setting the output device to the printer does not
printout of prompt strings on the INPUT statement: the
always printed on the console. Setting the device
however, affect all PRINT statements~

Note that
chanqe the
prompt is
flag does,

For best results during command mode, the POKE statement and
PRINT statement should be used together on a program line: for
example,

POKE $1B,2:PRINT CHR$($C):

will send a form feed character to the high speed printer~

18.2; POKE Protection

The POKE statement is normally inhibited from altering the
BASIC interpreter or any system firmware locations (0000. 0002,
000A-000F, and the top locations in RAM). A orotect fiaq is
located at 0011 which may be used disable the protection tes~ and
enable the user to poke anywhere. The integrity of the system
cannot be guaranteed if protection is turned off and POKE is used

. indiscriminately: be sure you know what you are doing. The
statements which affect POKE protection are:

POKE $11~0
POKE $11,l

to turn off protection;
to turn on protection.

46

..
'NATIONAL BASIC (PACE) Proqrammer Reference Manual 1 Feb 77

18~3. Editing BASIC Files

BASIC proqrams stored as a disk file may be created or
modified by the text editor·. The default file modifier for these
files is ~BAS to denote a BASIC file: this modifier will be used
unless otherwise specified on the file name. Please note that the
BASIC line numbers must be part of the text: the sequential line
numbers _used by the editor are not part of the text file and
cannot be used by BASIC~

The file created ~y th~ editor may contain commands
(unnumbered lines): these lines will be executed immediately as
the file is loaded by BASIC~ The WIDTU and PRINT statements may
be useful in certain situations. Unnumbered statements will not
be written to the file by a SAVE command: they can be created only
by the editor~

18.4. Assembly Languaqe Subroutines

NATIONAL BASIC provides two methods for linking to assembly
language subroutines: the ·CALL statement and the USR function.
The CALL statement is used when no parameters are to be passed:
the USR function is used when a parameter is to be passed between
BASIC and the subroutine (in either or both directions).

The USR function gets
memory location 0010: the POKE
address. For example,

POKE $10.,$E000
A=USR(12)

the address of the subroutine from
statement is used to set the

This example calls a subroutine at location 0E000 with the
integer value 12 in register AC0: the integer value in AC0 upon
return from the subroutine is assigned to the variable A.

If subroutines are to included in main memory together with
the BASIC interpreter and program, th~ "Memory Size?" prompt at
initialization time must be answered wit-h an address lower· than
the starting address of the subroutine area, in order to keep
BASIC from using the memory area occupied by the s~broutine.

47

I •

~ATIONAL BASIC (PACE) Programmer Reference Manual 1 Feb 77

19. APPENDIX

19~1. Command Summary

AUTO [start [,increment]]
Start line number prompt mode.

BYE Return to monitor.

CLEAR Clear symbol table and reset flags and
pointers.

CONTINUE [startline]

DELETE line I

DELETE linel.line2

HLIST [start [,end 1]

LIST [start [,end]]

LOAD filename

MERGE filename

SAVE filename

SCRATCH

PUNCH [start [,end]]

RUN [startline]

TAPE

Continue after break. stop or error.

Delete single line~

Delete line range (inclusive).

List on high speed printer~

List on console~

Scratch the current proqrarn and load a
new program from the disk.

Merge a source file from the disk into
the current program. ,

Save the current program as a source
file on the disk~

Scratch program: clear the buffer and
prepare to read a new program.

Punch a paper tape of the current
program.

Run the program.

Read pape~ tape and merge into the
. current program~

48

NATIONAL BASIC (PACE) Programmer Reference Manual 1 Feb 77

19.2~ Statement Summary

n = Line Number

Items enclosed in brackets (~~~) are optional.

[n) CALL address
n DATA constant list
n DEF FNid(arg) = expression
n DIM array(const), array(const,const) .~~.

[n) END
[n) EXEC filename
n FOR id = expression TO expression [STEP expression]
n GOTO linef
n GOSUB linel
n IF expression GOTO linei
n IF expression THEN linei

[n] IF expression THEN statement
NOTE: Any statement except DATA, DEF,
DIM, FOR, NEXT. or REM may be used.

n INPUT ["prompt" delirn) variable list
[n) [LET) variable = expression
[n] [LET] strvar = string expression
n NEXT id
n ON expression GOTO line# list
n ON expression GOSUB linei list

[n] OUT address.data
(n) POKE address.data
(n] PRINT list
[n] RANDOMIZE
n READ variable list

[n] REM comment
. [n] RESTORE

n RETURN
[n) SIZE
[n] STOP
[n] TRACE [ON}
[n] TRACE OFF
[n] TWAIT milliseconds
[n] WAIT address, andmask [.xor-mask]
(n] WIDTH expr

49

i (

NATIONAL BASIC (PACE) Programmer Reference Manual 1 Feb 77

19.3~ Function Summary

ABS (X)
ASC(S$)
ATN (X)
BRK (I) .
CHR$ (I)
COS(X)
EXP(X)
HEX$(!)
INP (I)
INT(X)
LEFT$(S$,Il)
LEN(S$)
LOG(X)
MID$(S$.Il.I2)
MIO${S$,Il)
PEEK(!)
POS(I)
RIGHT$(S$,Il)
RND
SGN(X)
SIN(X)
SQR(X)
STR$ (X)
TAN(X)
USR (I)
VAL(S$)

Absolute value of X
ASCII value of first character
Arctangent of X
Break capability (returns status and resets)
Single character having.ASCII value of I
Cosine of x
Exponential {E-X)
Converts number to hexadecimal format string
Read peripheral
Greatest inteqer <= X
Left justified substring
Length of string
Natural logarithm
Substrinq function (specified length)
Substrin~ function (remainder of string)
Read memory
Console cursor position
Right justified substring
Random number (0 to 1)
Sign of X (-1. 0. +l)
Sine of X
Sauare root of x
Converts number to decimal format string
Tanqent of X
Calls user-supplied function
Value of string

50

~ NATIONAL BASIC (PACE) Programmer Reference Manual 1 Feb 77

19.4. Error Messages

Most error messages are of the form

xxxx ERROR [IN nnnn]

where xxxx · is the error name (see below) , and nnnn is the line
number in which it occurred (omitted if in a direct command).

19~4.l. · Program Errors

ERROR

AREA
ARG
CHAR
CONT
DATA
DDEF
DDIM

DISK
END"
FOR
NEST

NEXT
NOGO

RANG
RTRN
SNTX
STMT
TYPE
UDEF
USR
VALU

DIV0
IFIX
OVFL
POKE
UNFL

MEANING

Out of memory
Argument out of range {to math functions)
Character after logical end of statement
No continue possible
Out of data (READ statement)
Duplicate function {FNx) definition
Duplicate array dimensioning

(DIM statement)
Disk or file error
No endinq quote on string
FOR without NEXT -
Nesting limit exceeded (expressions, FOR,

GOSUB, etc.)
NEXT without FOR
Line number specified by a control statement

(GOTO. etc.) does not exist
Subscript or parameter out of range
RETURN without previous GOSUB
Syntax
Statement type used improperly
Type mismatch (numeric or string)
Undefined function (FNx)
Undefined USR function address
Constant format or value

Division by zero
Integer overflow ,
Floating point overflow
POKE does not verify. or POKE into BASIC.
Floating point underflow

51

! ,..

~ NATIONAL BASIC (PACt) Programmer Reference Manual 1 Feb 77

Warnings indicate that some action is worthy of a messaqe to
the user, ·but is not sufficiently fatal to cause termination of
the program. The action taken when each of these messaqes occurs
is as follows:

DIVS Division by zero: plus or minus infinity is
returned.

IFIX Integer overflow: +32767 or -32768 is returned.
This messaae ·occurs if th~ numeric value is less
than -32767 or greater· than +32767 when an integer
conversion is attempted~

OVFL Overflow: plus or minus infinity is returned; the
sign depends upon the sign of the original number.

POKE POKE into reserved locations is iqnored. These
locations are 0, 2. 0A-0F; the BASIC interpreter
itself, and the read/write memory .used by the
firmware. Thi~ message also occurs when a POKE
into non-existent or ROM memory is attempted~

UNFL Underflow: 0 is returned.

19;4.3. Internal Errors

SYSTEM ERROR AT nnnn
OPERAND ERROR AT nnnn

These are internal errors in BASIC; The processor will halt
if either of these messages appears1 the number is the hexadecimal
address where the error occurred. Pressing the RUN switch on the
computer will return the interpreter to command mode (the halt is
to facilitate debugging}o

If either of these messages is encountered, there are two
possible causes. The more likely-case is that part of BASIC has
been lost due to a memory failure or other hardware problem. -0r
due to an error in an assembly language subroutine. If the error
persists,. BASIC should be reloaded. If the error still persists,.
the diagnostic.programs should be run to determine if there has
been a system malfunction.

A less likely possibility is an error in the BASIC
interpreter itself. If the error persists ·and the ~ystem passes
diagnostics. the error should .be reported to Natio"nal
Semiconductor·. along with as much information as possible about

. what the program was doing ~t that point.

52

