the Club Of Microprocessor Programmers, Users, and Technical Experts
Georgia Marszalek, Editor • David Graves, Editor

Increasing Throughput for IMP-16 Serial Input/Output

Application Note 160, by Keith Winter, National Semiconductor

INTRODUCTION

A method of increasing the throughput for serial transfer of input/output data between the IMP-16 microprocessor and peripheral devices is described in this application note. Obtaining maximum throughput is of great importance for a high-performance microprocessor such as the National Semiconductor IMP-16. Until recently, however, the best method for generating serial input/output transfers with microprocessors had been to use a programcontrol method. This method requires the use of a flag output and a sense input to send and receive data. The bit-time generation is accomplished under program control by loading a RAM counter with a fixed constant determined by the baud rate desired and then decrementing this counter until it reaches zero. At the completion of the count, the next bit is sent, and the process is repeated until all bits of the character have been sent. The same method is used when receiving a character. This method has two serious drawbacks: inefficiency and possible loss of information.
The program-control method is inefficient with respect to throughput since the CPU is dedicated to bit-time generation and is unable to perform any other functions. This amounts to a substantial loss of CPU time if the baud rate is low or if there is a large amount of data that must be transferred over a serial line. In addition to the bit serialization (parallel-to-serial conversion) of the character, the CPU must compute parity, if any, and perform the function of adding and deleting start and stop bits. Figure 1 is a graph of average instruction execution times versus character transmittal times. As evident from the graph, at low baud rates, a large quantity of CPU time is consumed during bit serialization. At 110 baud, for example, an average of more than 12,000 instruction times are used to produce one character. Refer to table 1 for exact times and numbers of instructions per character.

The possible loss of characters is a problem if the CPU were to be interrupted in the middle of the data stream. This is evident in the IMP-16P system at baud rates of 300 and above when control panel interrupts are enabled. The panel interrupts every 100 milliseconds, and at 300 baud this is once every third or fourth
character. The resultant interrupt service routine causes program control to be transferred out of the bit-time generation routine. The result is invalid bit sampling and garbled characters. An identical situation exists for general user interrupts that cannot be tolerated during serial input/output timing.

Obviously, a device that performs all of the functions previously mentioned and removes them from CPU responsibility is desirable. Such a device, available as a single integrated circuit, is the UAR/T (Universal Asynchronous Receiver/Transmitter).

SUMMARY OF UAR/T OPERATION

The MM5303 UAR/T is an MOS/LSI device that takes parallel 8 -bit data from the CPU and converts it to a serial data stream for transmission. On reception, a serial bit stream is converted to a parallel character that the CPU can take in a single instruction. The UAR/T has provisions to select externally even parity, odd parity, or no parity, 5 -, 6-, 7 -, or 8 -bit data lengths, and baud rate as a function of the external clock frequency. Since the transmit and receive clocks are separate, the UAR/T can send and receive simultaneously at different baud

(NOT TO SCALE)
Figure 1. Baud Rate Vs. Number of Instructions

Figure 2. UAR/T Interfacing

Baud Rate	Characters per Second	Time per Character	Approximate Number of Instructians Executed During Character Transmission*
50	5	200 ms	24,875
110	10	100 ms	12,438
150	15	66 ms	8,209
300	30	33 ms	4,104
600	60	16 ms	1,990
900	90	11 ms	1,368
1200	120	8.33 ms	1,036
1800	180	5.5 ms	691
2400	240	4.16 ms	518
3600	360	2.77 ms	345
4800	480	2.08 ms	258
7200	720	1.38 ms	173
9600	960	1.04 ms	129

*Using average instruction time of 8.04 microseconds for IMP-16P system with three clock holds for memory-reference
instructions.

Table 1. Average Instructions Executed per Character
rates. Also included are status flags to indicate parity errors, framing errors and overrun errors, control signals for Receiver Data Available (RDA), Transmitter Buffer Empty (TBMT), Control Strobe (CS), Receiver Data Enable ($\overline{\mathrm{RDE}}$), Status Word Enable ($\overline{\mathrm{SWE}}$), Transmitter Data Strobe ($\overline{\mathrm{TDS}}$), and Transmitter End of Character (TEOC). These bits comprise the UAR/T status flag register.

SYSTEM IMPLEMENTATION

For breadboarding convenience, the UAR/T was interfaced to an IMP-16P prototyping system. Nevertheless, the principle is the same for any IMP-16 application. Refer to figure 2 for a schematic diagram of the circuit used to interface the IMP-16P with a serial input/output peripheral unit.

(Signal Mnemonics, Refer to IMP-16P System)
Figure 3. UAR/T Timing Diagram

In this application, memory-reference instructions are used rather than peripheral-communication instructions to make use of the clock holds inherent in the IMP-16P prototyping system. This is necessary as the data-hold time on the UAR/T for a load is greater than the 700 nanoseconds available for data transfer with Register In (RIN) and Register Out (ROUT) instructions. Figure 3 is a timing diagram for the UAR/T circuit.
Peripheral decoding is simple and straightforward. Four address lines are used to select the UAR/T. Address lines ADX14* and ADX15 produce the absolute device address; ADX00 and ADX01 select the order code. This produces four order codes each for loads and stores: $800016,800116,800216$, and 800316 .
A flowchart of the Interrupt Service Routine for receiving and transmitting serial input/output data is shown in figure 4.

Figure 4. Interrupt Service Routine

In the receive mode, an interrupt is received when a character has been placed in the Receiver Register and the CPU then executes a Load Instruction from the $U A R / T$; thus, the character and the contents of the UAR/T status register are brought into the specified accumulator. The service routine tests the status of the UAR/T to determine if the interrupt is a receive or transmit interrupt. If transmit mode is indicated, the next character is sent to the UAR/T. If in the receive mode, the error flags are tested. If errors exist, the error routines are executed. If no errors exist, the character, now in the lower 8 bits of the accumulator, is stored in an input table. The Interrupt Service Routine has the task of updating the pointers and the contents of the Output Data Table (ODATA) and Input Data Table (IDATA). Processing of input data is left to the main program. An example of an interrupt service routine used with this application is given in appendix A.
There is no enable on receiver interrupts, as the occurrence of incoming data is unpredictable. Thus, this interrupt is always enabled.

On the transmitter output (TSO) and receiver input (RSI), level translators (LM1488, LM1489) are used to convert the TTL levels of the UAR/T to RS 232C levels.
Any baud rate from 50 to 9600 is available simply by changing the control character sent to the baud-rategeneration circuit. This consists of a crystal-controlled
oscillator, latch and programmable frequency divider (MM5307). The oscillator runs at a frequency of 921.60 kilohertz and the divider produces a clock that is 16 times the desired baud rate.
The timing diagram, figure 2 , shows the signal relationships for sending and receiving characters. Note the extend time of $\mathrm{T} 4(\mathrm{~T} 4+1, \mathrm{~T} 4+2, \mathrm{~T} 4+3)$ to allow additional access time for a memory-reference instruction.
The receiving devices for this project were a Texas Instruments ASR Silent 700 terminal operated at 300 baud and a Lear-Siegler ADM-1 and ADM-2 CRT terminal operated at 1200 and 9600 baud, respectively. The test program continuously transmitted a block of ASCII characters while receiving a block from the terminal. When a block length was received, it was transmitted back to the inputting terminal.

CONCLUSIONS

As can be seen from the test and the graph, figure 1 and table 1, the use of a device such as a UAR/T can increase greatly communication throughput with a small increase in component count. System integrity is similarly improved. This type of serial input/output can be applied easily to an end-user application designed around the IMP- 16 chip set, or it can be used at the card or prototyping system level for communication with any asynchronous peripheral.

Appendix A


```
00107 FGE4 H
00109 90-E F
0069 1[40 म
ST
; DET EHAREHGTEE AND ETATIS
EIT1S,DIH! ; CHECK FOF RECEIVE OR SENO
44 6001 TGSE A
0010 50134 H
G01E 4G6E F
001F GこEG A
0020 50:0 A
0121 E421 F
00cc EGE= A
102S E0ST }
0624 E106 F
75
76
7
78
79
80
8 1
8
83
84
85
86
87
89
90
G1
92
93
94
95
96
97
98
99
89
42
E
GE
6%
```

100
101
102
103
104
105
106
107
102:
109

INS8080A 8-Bit N-Channel Microprocessor

general description

The INS8080A is an 8 -bit microprocessor housed in a standard, 40 -pin dual-in-line package. The chip, which is fabricated using N-channel silicon gate MOS technology, functions as the central processing unit (CPU) in National Semiconductor's N8080 microcomputer family.

The INS8080A has a 16 -bit address bus that is capable of addressing up to 65 k bytes of memory and up to 256 input and 256 output devices. Data is routed to and from the INS8080A on a separate bidirectional 8 -bit bus. This data bus is also TRI-STATE ${ }^{\circledR}$, making direct memory addressing (DMA) and multiprocessing applications possible. The INS8080A directly provides signals to control the interface to memory and I/O ports. All buses, including control, are TTL compatible.

An asynchronous interrupt capability is included in the INS8080A to allow external signals to change the instruction sequence. The interrupting device may vector the program to a particular service routine location (or some other direct function) by specifying an interrupt instruction to be executed.

features

- 74 Instructions - Variable Length
- General Purpose Registers - Six plus an Accumulator
- Direct Addressing up to 65k Bytes
- Variable Length Stack Accessed by 16 -bit Stack Pointer
- Addresses 256 Input and 256 Output Ports
- Provisions for Vectored Interrupts
- TRI-STATE ${ }^{\circledR}$ Bus for DMA and Multiprocessing Capability
- TRI-STATE TTL Drive Capabilities for Address and Data Buses
- Decimal Arithmetic Capability
- Multiple Addressing Modes
- Direct
- Register
- Register Indirect
- Immediate
- Direct Plug-in Replacement for Intel 8080A

N8080A microcomputer family block diagram

absolute maximum ratings

Temperature Under Bias $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Input or Output Voltages
with Respect to V_{BB}. -0.3 V to +20 V
$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{DD}}$ and V_{SS} with Respect to V_{BB}. . -0.3 V to +20 V
Power Dissipation . 1.5W

Note: Maximum ratings indicate limits beyond which permanent damage may occur. Continuous operation at these limits is not intended and should be limited to those conditions specified under dc electrical characteristics.

dc electrical characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, unless otherwise noted.

Symbol	Parameter	Min.	Typ.	Max.	Unit	Test Condition
$V_{\text {ILC }}$	Clock Input Low Voltage	$\mathrm{V}_{S S}-1$		$\mathrm{V}_{\text {SS }}+0.8$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=1.9 \mathrm{~mA} \text { on all outputs, } \\ & \mathrm{I}_{\mathrm{OH}}=150 \mu \mathrm{~A} . \end{aligned}$
$\mathrm{V}_{\text {IHC }}$	Clock Input High Voltage	9.0		$\mathrm{V}_{\mathrm{DD}}+1$	V	
$V_{\text {IL }}$	Input Low Voltage	$\mathrm{V}_{\mathrm{SS}}-1$		$\mathrm{V}_{\text {SS }}+0.8$	V	
$V_{\text {IH }}$	Input High Voltage	3.3		$\mathrm{V}_{\mathrm{CC}}+1$	V	
$\mathrm{V}_{\text {OL }}$	Output Low Voltage			0.45	V	
V_{OH}	Output High Voltage	3.7			V	
$\mathrm{I}_{\text {DD (AV) }}$	Avg. Power Supply Current ($\mathrm{V}_{\text {DD }}$)		40	70	mA	
ICC (AV)	Avg. Power Supply Current (V_{CC})		60	80	mA	Operation $\mathrm{t}_{\mathrm{CY}}=0.48 \mu \mathrm{~s}$
$\mathrm{I}_{\text {BB (AV) }}$	Avg. Power Supply Current (V_{BB})		0.01	1	mA	
${ }_{\text {IL }}$	Input Leakage			± 10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {SS }} \leqslant \mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\text {CC }}$
$\underline{I_{\text {cL }}}$	Clock Leakage			± 10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {SS }} \leqslant \mathrm{V}_{\text {CLOCK }} \leqslant \mathrm{V}_{\text {DD }}$
$\mathrm{I}_{\mathrm{DL}}{ }^{2}$	Data Bus Leakage in Input Mode			$\begin{array}{r} \hline-100 \\ -2.0 \\ \hline \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}} \leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant \mathrm{~V}_{\mathrm{SS}}+0.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{SS}}+0.8 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant \mathrm{~V}_{\mathrm{CC}} \end{aligned}$
I_{FL}	Address and Data Bus Leakage During HOLD			$\begin{gathered} +10 \\ -100 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {ADDR/DATA }}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\text {ADDR/DATA }}=\mathrm{V}_{\mathrm{SS}}+0.45 \mathrm{~V} \end{aligned}$

capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V}$

Symbol	Parameter	Typ.	Max.	Unit	Test Condition
C_{ϕ}	Clock Capacitance	17	25	pF	$\mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance	6	10	pF	Unmeasured Pins
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	10	20	pF	Returned to V_{SS}

Notes:

1. The RESET signal must be active for a minimum of 3 clock cycles.
2. When DBIN is high and $V_{I N}>V_{I H}$ an internal active pullup will be switched onto the Data Bus.
3. ΔI supply $/ \Delta T_{A}=-0.45 \% /{ }^{\circ} \mathrm{C}$.

DATA BUS CHARACTERISTIC DURING DBIN

ac electrical characteristics

Symbol	Parameter	Min.	Max.	Unit	Test Condition
$\mathrm{t}_{\mathrm{Cr}}{ }^{3}$	Clock Period	0.48	2.0	$\mu \mathrm{s}$	$] \quad C_{L}=100 \mathrm{pF}$
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Clock Rise and Fall Time	0	50	ns	
$\mathrm{t}_{\phi 1}$	ϕ_{1} Pulse Width	60		ns	
$\mathrm{t}_{\phi 2}$	ϕ_{2} Pulse Width	220		ns	
$\mathrm{t}_{\mathrm{D} 1}$	Delay ϕ_{1} to ϕ_{2}	0		ns	
$\mathrm{t}_{\mathrm{D} 2}$	Delay ϕ_{2} to ϕ_{1}	70		ns	
$\mathrm{t}_{\mathrm{D} 3}$	Delay ϕ_{1} to ϕ_{2} Leading Edges	80		ns	
$\mathrm{t}_{\text {DA }}{ }^{2}$	Address Output Delay from ϕ_{2}		200	ns	
$t_{D D}{ }^{2}$	Data Output Delay from ϕ_{2}		220	ns	
${ }^{\text {D }}$ (${ }^{2}$	Signal Output Delay from ϕ_{1} or ϕ_{2} (SYNC, $\overline{W R}$, WAIT, HLDA)		120	ns	
$t_{\text {DF }}{ }^{2}$	DBIN Delay from ϕ_{2}	25	140	ns	
$\mathrm{t}_{\mathrm{DI}}{ }^{1}$	Delay for Input Bus to Enter Input Mode		$\mathrm{t}_{\text {DF }}$	ns	
${ }^{\text {D }}$ S1	Data Setup Time During ϕ_{1} and DBIN	30		ns	

timing waveforms

Note: Timing measurements are made at the following reference voltages: CLOCK ' 1 ' $=8.0 \mathrm{~V},{ }^{\prime} 0$ ' $=1.0 \mathrm{~V}$; INPUTS ' 1 ' $=3.3 \mathrm{~V}$, ' 0 ' = 0.8 V ; OUTPUTS ' 1 ' = $2.0 \mathrm{~V},{ }^{\prime} 0$ ' $=0.8 \mathrm{~V}$.

ac electrical characteristics (cont'd.)

Symbol	Parameter	Min.	Max.	Unit	Test Condition
$t_{\text {DS2 }}$	Data Setup Time to ϕ_{2} During DBIN	150		ns	$C_{L}=50 \mathrm{pF}$
${ }_{\text {t }}{ }^{\text {d }}{ }^{1}$	Data Hold Time from ϕ_{2} During DBIN	1		ns	
$\mathrm{t}_{\mathrm{IE}}{ }^{2}$	INTE Output Delay from ϕ_{2}		200	ns	
t_{RS}	READY Setup Time During ϕ_{2}	120		ns	
t_{HS}	HOLD Setup Time to ϕ_{2}	140		ns	
$\mathrm{t}_{\text {IS }}$	INT Setup Time During ϕ_{2} (During ϕ_{1} in Halt Mode)	120		ns	
t_{H}	Hold Time from ϕ_{2} (READY, INT, HOLD)	0		ns	
$\mathrm{t}_{\text {FD }}$	Delay to Float During Hold (Address and Data Bus)		120	ns	
$\mathrm{t}_{\mathrm{AW}}{ }^{2}$	Address Stable Prior to $\overline{W R}$	5		ns	$C_{L}=100 \mathrm{pF}$: Address, Data $C_{L}=50 \mathrm{pF}: \overline{W R}$, HLDA, DBIN
$\mathrm{t}_{\text {DW }}{ }^{2}$	Output Data Stable Prior to $\overline{W R}$	6		ns	
$t_{W D}{ }^{2}$	Output Data Stable from $\overline{W R}$	7		ns	
tWA^{2}	Address Stable from $\overline{W R}$	7		ns	
$\mathrm{t}_{\mathrm{HF}}{ }^{2}$	HLDA to Float Delay	8		ns	
$\mathrm{t}_{\mathrm{W}}{ }^{2}$	$\overline{W R}$ to Float Delay	9		ns	
$\mathrm{t}_{\mathrm{AH}}{ }^{2}$	Address Hold Time After DBIN During HLDA	-20		ns	

Notes:

1. Data input should be enabled with DBIN status. No bus conflict can then occur and data hold time is assured. $\mathrm{t}_{\mathrm{DH}}=50 \mathrm{~ns}$ or t_{DF}, whichever is less.
2. Typical load circuit:

3. $t_{C Y}=t_{D} 3+t_{r \phi 2}+t_{\phi 2}+t_{D} 2+t_{f \phi 2}+t_{r \phi} 1 \geqslant 480 n s$.

TYPICAL \triangle OUTPUT DISPLAY VS. \triangle CAPACITANCE

4. The following are relevant when interfacing the INS8080A to devices having $\mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}$:
a) Maximum output rise time from 0.8 V to $3.3 \mathrm{~V}=100 \mathrm{~ns} @$ $C_{L}=S P E C$.
b) Output Delay when measured to $3.0 \mathrm{~V}=\mathrm{SPEC}+60 \mathrm{~ns}$ @ $C_{L}=S P E C$.
c) If $C_{L} \neq$ SPEC, add $0.6 \mathrm{~ns} / \mathrm{pF}$ if $C_{L}>$ C $_{\text {SPEC }}$, subtract $0.3 \mathrm{~ns} / \mathrm{pF}$ (from modified delay) if $\mathrm{C}_{\mathrm{L}}<\mathrm{C}_{S P E C}$.
5. $t_{A W}=2 t_{C Y}-t_{D} 3-t_{r} \phi 2-140 \mathrm{~ns}$.
6. $t_{D W}=t_{C Y}-t_{D} 3-t_{r \phi 2}-170 \mathrm{~ns}$.
7. If not HLDA, $\mathrm{t}_{\mathrm{WD}}=\mathrm{t}_{\mathrm{WA}}=\mathrm{t}_{\mathrm{D}} 3+\mathrm{t}_{\mathrm{r} \phi 2}+10 \mathrm{~ns}$. If $\mathrm{HLDA}, \mathrm{t}_{\mathrm{WD}}=$ ${ }^{t} W A=t W F$.
8. $t_{H F}=t_{D} 3+t_{r} 2-50 \mathrm{~ns}$.
9. $t_{W F}=t_{D} 3+t_{r \phi 2}-10 \mathrm{~ns}$.
10. Data in must be stable for this period during DBIN $\cdot T_{3}$. Both ${ }^{t}$ DS1 and tDS2 must be satisfied.
11. Ready signal must be stable for this period during T_{2} or T_{W}. (Must be externally synchronized.)
12. Hold signal must be stable for this period during T_{2} or T_{W} when entering hold mode, and during T_{3}, T_{4}, T_{5}, and $T_{W H}$ when in hold mode. (External synchronization is not required.)
13. Interrupt signal must be stable during this period of the last clock cycle of any instruction in order to be recognized on the following instruction. (External synchronization is not required.)
14. This timing diagram shows timing relationships only; it does not represent any specific machine cycle.

INS8080A functional pin definition

The following describes the function of all of the INS8080A input/output pins. Some of these descriptions reference internal timing periods.

INPUT SIGNALS

Ready: When high (logic 1), indicates that valid memory or input data are available to the CPU on the INS8080A data bus. The READY signal is used to synchronize the CPU with slower memory or input/output devices. If the INS8080A does not receive a high READY input after sending out an address to memory or an input/output device, the INS8080A enters a WAIT mode for as long as the READY input remains low (logic 0). The CPU may also be single stepped by the use of the READY signal.

Hold: When high, requests that the CPU enter the HOLD mode. When the CPU is in the HOLD mode, the CPU address and data buses both will be in the high-impedance state. The HOLD mode allows an external device to gain control of the INS8080A address and data buses immediately following the completion of the current machine cycle by the CPU. The CPU acknowledges the HOLD mode via the HOLD ACKNOWLEDGE (HLDA) output line. The HOLD request is recognized under the following conditions:

- The CPU is in the HALT mode.
- The READY signal is active and the CPU is in the t_{2} or t_{W} microcycle.

Interrupt (INT) Request: When high, the CPU recognizes an interrupt request on this line after completing the current instruction or while in the HALT mode. An interrupt request is not honored if the CPU is in the HOLD mode (HLDA $=$ logic 1) or the Interrupt Enable Flip-flop is reset $($ INTE $=$ logic 0$)$.

Reset: When activated (high) for a minimum of three clock periods, the content of the Program Counter is cleared and the Interrupt Enable and Hold Acknowledge Flip-flops are reset. Following a RESET, program execution starts at
memory location 0 . It should be noted that the status flags, accumulator, stack pointer, and registers are not cleared during the RESET sequence.
ϕ_{1} and ϕ_{2} Clocks: Two non-TTL compatible clock phases which provide nonoverlapping timing references for internal storage elements and logic circuits of the CPU.
+12 Volts: VDD Supply.
+5 Volts: VCC Supply.
-5 Volts: $V_{B B}$ Supply.
Ground: $V_{S S}$ (0 volt) reference.

OUTPUT SIGNALS

Synchronizing (SYNC) Signal: When activated (high), the beginning of a new machine cycle is indicated and the status word is outputted on the Data Bus.

Address $\left(A_{15}-A_{0}\right)$ Bus: This bus comprises sixteen TRI-STATE output lines. The bus provides the address to memory (up to 65 k bytes) or denotes the input/output device number for up to 256 input and 256 output peripherals.

Wait: When high, acknowledges that the CPU is in the WAIT mode.

Write ($\overline{W R}$): When low, the data on the data bus are stable for WRITE memory or output operation.
Hold Acknowledge (HLDA): Goes high in response to a logic 1 on the HOLD line and indicates that the data and address bus will go to the high-impedance state. The HLDA begins at one of the following times:

- The t_{3} microcycle of a READ memory input operation.
- The clock period following the t_{3} microcycle of a WRITE memory output operation.
In both cases, the HLDA signal starts after the rising edge of the ϕ_{1} clock, and high impedance occurs after the rising edge of the ϕ_{2} clock.

Interrupt Enable (INTE): Indicates the content of the internal Interrupt Enable Flip-flop. The Enable and Disable Interrupt (EI and DI) Instructions cause the Interrupt Enable Flip-flop to be set and reset, respectively. When the flip-flop is reset (INTE $=$ logic 0), it inhibits interrupts from being accepted by the CPU. In addition, the Interrupt Enable Flip-flop is automatically reset (thereby disabling further interrupts) at the t_{1} microcycle of the instruction fetch cycle, when an interrupt is accepted; it is also reset by the RESET Signal.

Data Bus In (DBIN): When high, indicates to external circuits that the data bus is in the input mode. The DBIN Signal should be used to gate data from memory or an I/O device onto the Data Bus.

INPUT/OUTPUT SIGNALS

Data ($\mathrm{D}_{7}-\mathrm{D}_{\mathbf{0}}$) Bus: This bus comprises eight TRI-STATE input/output lines. The bus provides bidirectional communication between the CPU, memory, and input/output devices for instructions and data transfers. A status word (which describes the current machine cycle) is also outputted on the data bus during the first microcycle of each machine cycle (SYNC = logic 1).

pin configuration

A10	1		40	-	A_{11}
GND	2		39	$\rightarrow 0$	A_{14}
D_{4}	3		38	$\rightarrow 0$	A_{13}
D	4		37	$\rightarrow 0$	A_{12}
D_{6}	5		36	-	A_{15}
D_{7}	6		35	-	Ag
D_{3}	7		34	-	A_{8}
D_{2}	8		33	-0	A7
D_{1}	9		32	-	A_{6}
D0	10	INS8080A	31	0	A_{5}
-5V	11	nsauda	30	0	A_{4}
RESET	12		29	\rightarrow	A_{3}
HOLD	13		28	-	+12V
INT	14		27	\rightarrow	A_{2}
¢2	15		26	-	A_{1}
INTE	16		25	$\rightarrow 0$	A
DBIN	17		24	-	WAIT
WR	18		23	-0	READY
SYNC	19		22	0	¢1
+5V	20		21	$\rightarrow 0$	HLDA

8080A status

Instructions for the 8080A require from one to five machine cycles for complete execution. The 8080A sends out 8 bits of status information on the data bus at the beginning of each machine cycle (during SYNC time). The following table defines the status information.

Status Information Definition

Symbols	$\begin{gathered} \text { Data Bus } \\ \text { Bit } \end{gathered}$	Definition	Symbols	$\begin{gathered} \text { Data Bus } \\ \text { Bit } \end{gathered}$	Definition
INTA*	Do	Acknowledge signal for INTERRUPT request. Signal should be used to gate a restart instruction onto the data bus when DBIN is active.	OUT	D_{4}	Indicates that the address bus contains the address of an output device and the data bus will contain the output data when WR is active.
WO	D_{1}	Indicates that the operation in the current machine cycle will be a WRITE memory or OUTPUT function (WO =	M_{1}	D_{5}	Provides a signal to indicate that the CPU is in the fetch cycle for the first byte of an instuction.
		$0)$. Otherwise, a READ memory or INPUT operation will be executed.	INP*	D_{6}	Indicates that the address bus contains the address of an input device and the
STACK	D_{2}	Indicates that the address bus holds the pushdown stack address from the Stack Pointer.			input data should be placed on the data bus when DBIN is active.
HLTA	D_{3}	Acknowledge signal for HALT Instruction.	MEMR*	D_{7}	Designates that the data bus will be used for memory read data.

* These three status bits can be used to control the flow of data onto the INS8080A data bus.

Status Word Chart

Machine Cycle	Type	Data Bus Bit							
		D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
Instruction Fetch	1	1	0	1	0	0	0	1	0
Memory Read	2	1	0	0	0	0	0	1	0
Memory Write	3	0	0	0	0	0	0	0	0
Stack Read	4	1	0	0	0	0	1	1	0
Stack Write	5	0	0	0	0	0	1	0	0
Input Read	6	0	1	0	0	0	0	1	0
Output Write	7	0	0	0	1	0	0	0	0
Interrupt Acknowledge	8	0	0	1	0	0	0	1	1
Halt Acknowledge	9	1	0	0	0	1	0	1	0
Interrupt Acknowledge While Halt	10	0	0	1	0	1	0	1	1

instruction set (cont'd.)

Mnemonic	Description	Operation	Op Code								No. of Bytes	No. of Machine (M) Cycles	No. of μ cycles (T)	Condition Flags			
			D7	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}				S	Z AC	P	CY
BRANCH GROUP																	
CALL	Call Unconditional	$\begin{aligned} & ((S P)-1) \leftarrow(P C H) \\ & ((S P)-2) \leftarrow(P C L) \\ & (S P) \leftarrow(S P)-2 \\ & (P C) \leftarrow(\text { byte } 3) \text { (byte } 2) \end{aligned}$	1	1	0	0	1	1	0	1	3	5	17	(Flags Not Affected)			
CC	Call on Carry	$\begin{aligned} & \text { If } C Y=1 \text {, } \\ & ((S P)-1) \leftarrow(P C H) \\ & ((S P)-2) \leftarrow(P C L) \\ & \text { (SP) } \leftarrow(S P)-2 \\ & \text { (PC) } \leftarrow(\text { byte } 3) \text { (byte } 2) \end{aligned}$	1	1	0	1	1	1	0	0	3	3/5	11/17				
CM	Call on Minus	$\begin{aligned} & \text { If } S=1 \\ & ((S P)-1) \leftarrow(P C H) \\ & ((S P)-2) \leftarrow(P C L) \\ & (S P) \leftarrow(S P)-2 \\ & (P C) \leftarrow(\text { byte } 3) \text { (byte } 2) \end{aligned}$	1	1	1	1	1	1	0	0	3	3/5	11/17				
CNC	Call on No Carry	$\begin{aligned} & \text { If } C Y=0 \\ & ((S P)-1) \leftarrow(P C H) \\ & \text { ((SP) }-2) \leftarrow(P C L) \\ & \text { (SP) } \leftarrow(S P)-2 \\ & \text { (PC) } \leftarrow \text { (byte 3) (byte 2) } \end{aligned}$	1	1	0	1	0	1	0	0	3	3/5	11/17				
CNZ	Call on Not Zero	$\begin{aligned} & \text { If } Z=0, \\ & ((S P)-1) \leftarrow(P C H) \\ & ((S P)-2) \leftarrow(P C L) \\ & (S P) \leftarrow(S P)-2 \\ & (P C) \leftarrow(\text { byte } 3) \text { (byte } 2) \end{aligned}$	1	1	0	0	0	1	0	0	3	3/5	11/17				
CP	Call on Positive	$\begin{aligned} & \text { If } S=0, \\ & ((S P)-1) \leftarrow(P C H) \\ & ((S P)-2) \leftarrow(P C L) \\ & (S P) \leftarrow(S P)-2 \\ & (P C) \leftarrow(\text { byte } 3) \text { (byte } 2) \end{aligned}$	1	1	1	1	0	1	0	0	3	3/5	11/17				
CPE	Call on Parity Even	$\begin{aligned} & \text { If } P=1 \\ & \text { (} \mathrm{SP} \text {) }-1) \leftarrow(P C H) \\ & \text { (SP) }-2) \leftarrow(P C L) \\ & \text { (SP) } \leftarrow(S P)-2 \\ & \text { (PC) } \leftarrow \text { (byte } 3) \text { (byte } 2) \end{aligned}$	1	1	1	0	1	1	0	0	3	3/5	11/17				
CPO	Call on Parity Odd	$\begin{aligned} & \text { If } P=0 \\ & ((S P)-1) \leftarrow(P C H) \\ & ((S P)-2) \leftarrow(P C L) \\ & \text { (SP) } \leftarrow(S P)-2 \\ & (P C) \leftarrow(\text { byte } 3) \text { (byte } 2) \end{aligned}$	1	1	1	0	0	1	0	0	3	3/5	11/17				
cz	Call on Zero	$\begin{aligned} & \text { If } Z=1 \\ & ((S P)-1) \leftarrow(P C H) \\ & ((S P)-2) \leftarrow(P C L) \\ & (S P) \leftarrow(S P)-2 \\ & (P C) \leftarrow(\text { byte } 3)(\text { byte } 2) \end{aligned}$	1	1	0	0	1	1	0	0	3	3/5	11/17				
Jc	Jump on Carry	$\begin{aligned} & \text { If } C Y=1 \text {, } \\ & (P C) \leftarrow(\text { byte } 3) \text { (byte } 2) \end{aligned}$	1	1	0	1	1	0	1	0	3	3	10				
JM	Jump on Minus	$\begin{aligned} & \text { If } S=1 \text {, } \\ & \text { (PC) } \leftarrow(\text { byte } 3)(\text { byte } 2) \end{aligned}$	1	1	1	1	1	0	1	0	3	3	10				
JMP	Jump Unconditional	$(\mathrm{PC}) \leftarrow($ byte 3$)$ (byte 2)	1	1	0	0	0	0	1	1	3	3	10				
JNC	Jump on No Carry	$\begin{aligned} & \text { If } C Y=0 \text {, } \\ & \text { (PC) } \leftarrow(\text { byte } 3)(\text { byte } 2) \end{aligned}$	1	1	0	1	0	0	1	0	3	3	10				
JNZ	Jump on Not Zero	$\begin{aligned} & \text { If } Z=0 \\ & (P C) \leftarrow(\text { byte } 3)(\text { byte } 2) \end{aligned}$	1	1	0	0	0	0	1	0	3	3	10				
JP	Jump on Positive	$\begin{aligned} & \text { If } S=0 \\ & \text { (PC) } \leftarrow \text { (byte 3) (byte 2) } \end{aligned}$	1	1	1	1	0	0	1	0	3	3	10 10				
JPE	Jump on Parity Even	$\begin{aligned} & \text { If } P=1 \\ & \text { (PC) } \leftarrow \text { (byte 3) (byte 2) } \end{aligned}$	1	1	1	0	1	0	1	0	3	3	10				
JPO	Jump on Parity Odd	$\begin{aligned} & \text { If } P=0, \\ & \text { (PC) } \leftarrow(\text { byte } 3) \text { (byte } 2) \end{aligned}$	1	1	1	0	0	0	1	0	3	3	10				
Jz	Jump on Zero	$\begin{aligned} & \text { If } Z=1 \text {, } \\ & \text { (PC) } \leftarrow \text { (byte 3) (byte 2) } \end{aligned}$	1	1	0	0	1	0	1	0	3	3	10				
PCHL	H and L to Program Counter	$\begin{aligned} & (\mathrm{PCH}) \leftarrow(\mathrm{H}) \\ & (\mathrm{PCL}) \leftarrow(\mathrm{L}) \end{aligned}$	1	1	1	0	1	0	0	1	1	1	5				
RC	Return on Carry	$\begin{aligned} & \text { If } C Y=1 . \\ & (P C L) \leftarrow((S P)) \\ & (P C H) \leftarrow((S P)+1) \\ & (S P) \leftarrow(S P)+2 \end{aligned}$	1	1	0	1	1	0	0	0	1	1/3	5/11				
RET	Return	$\begin{aligned} & (P C L) \leftarrow((S P)) ; \\ & (P C H) \leftarrow((S P)+1) ; \\ & (S P) \leftarrow(S P)+2 ; \end{aligned}$	1	1	0	0	1	0	0	1	1	3	10				
RM	Return on Minus	$\begin{aligned} & \text { If } S=1, \\ & (P C L) \leftarrow((S P)) \\ & (P C H) \leftarrow((S P)+1) \\ & \text { (SP) } \leftarrow(S P)+2 \end{aligned}$	1	1	1	1	1	0	0	0	1	1/3	5/11				
RNC	Return on No Carry	$\begin{aligned} & \text { If } C Y=0 \\ & (P C L) \leftarrow((S P)) \\ & (P C H) \leftarrow((S P)+1) \\ & (S P) \leftarrow(S P)+2 \end{aligned}$	1	1	0	1	0	0	0	0	1	1/3	5/11				
RNZ	Return on Not Zero	$\begin{aligned} & \text { If } Z=0, \\ & (P C L) \leftarrow((S P)) \\ & (P C H) \leftarrow((S P)+1) \\ & (S P) \leftarrow(S P)+2 \end{aligned}$	1	1	0	0	0	0	0	0	1	1/3	5/11				
RP	Return on Positive	$\begin{aligned} & \text { If } S=0, \\ & (P C L) \leftarrow((S P)) \\ & (P C H) \leftarrow((S P)+1) \\ & (S P) \leftarrow(S P)+2 \end{aligned}$	1	1	1	1	0	0	0	0	1	1/3	5/11				
RPE	Return on Parity Even	$\begin{aligned} & \text { If } P=1, \\ & (P C L) \leftarrow((S P)) \\ & (P C H) \leftarrow((S P)+1) \\ & (S P) \leftarrow(S P)+2 \end{aligned}$	1	1	1	0	1	0	0	0	1	1/3	5/11				
RPO	Return on Parity Odd	$\begin{aligned} & \text { If } P=0, \\ & (P C L) \leftarrow((S P)) \\ & (P C H) \leftarrow((S P)+1) \\ & (S P) \leftarrow(S P)+2 \end{aligned}$	1	1	1	0	0	0	0	0	1	1/3	5/11				

instruction set (cont'd.)

Mnemonic		Description	Operation	Op Code								No. of Bytes	No. of Machine (M) Cycles	No. of ucycles (T)	Condition Flags					
		D_{7}		D_{6}	D_{5}	D_{4}	D_{3}			D_{0}	S				Z	AC	P	CY		
BRANCH GROUP (continued)																				
RST			Restart	$\begin{aligned} & ((S P)-1) \leftarrow(P C H) \\ & ((S P)-2) \leftarrow(P C L) \\ & (S P) \leftarrow(S P)-2 \\ & (P C) \leftarrow 8 *(N N N) \end{aligned}$		1	N	N	N	1	1	1	1	3	11					
RZ		Return on Zero	$\begin{aligned} & \text { If } Z=1, \\ & (P C L) \leftarrow((S P)) \\ & (P C H) \leftarrow((S P)+1) \\ & (S P) \leftarrow(S P)+2 \end{aligned}$	1	1	0	0	1	0	0	0	1	1/3	5/11						
STACK, I/O, AND MACHINE CONTROL GROUP																				
DI		Disable Interrupts	The Interrupt system is disabled following the execution of the D instruction.	1	1	1	1	0	0	1	1	1	1	4	-	-	-		-	
El		Enable Interrupts	The interrupt system is enabled following the execution of next instruction.	1	1	1	1	1	0	1	1	1	1	4	-	-	-	-	-	
HLT		Halt	Processor is stopped; registers and flags are unaffected.	0	1	1	1	0	1	1	0	1	1	7	-	-	-	-	-	
IN		Input	(A) \leftarrow (data)	1	1	0	1	1	0	1	1	2	3	10	-	-	-	-	-	
NOP		No Operation	No operation is performed; registers and flags are unaffected.	0	0	0	0	0	0	0	0	1	1	4	
OUT		Output	$($ data) $\leftarrow(A)$		10	0	1	0	0	1	1	2	3	10	-	-	-	-	-	
POP	B	Pop Registers B and C off Stack	$\begin{aligned} & (C) \leftarrow((S P)) \\ & (B) \leftarrow((S P)+1) \\ & (S P) \leftarrow(S P)+2 \end{aligned}$	1	10	0	0	0	0	0	1	1	3	10	-	
POP	D	Pop Registers D and E off Stack	$\begin{aligned} & (D) \leftarrow((S P)) \\ & (E) \leftarrow((S P)+1) \\ & (S P) \leftarrow(S P)+2 \end{aligned}$	1	1	0	1	0	0	0	1	1	3	10	-	-	-	-	-	
POP	H	Pop Registers H and L off Stack	$\begin{aligned} & (H) \leftarrow((S P)) \\ & (L) \leftarrow((S P)+1) \\ & (S P) \leftarrow(S P)+2 \end{aligned}$	1	1	1	0	0	0	0	1	1	3	10	-	-	-	-	-	
POP	PSW	Pop Accumulator and Flags off Stack	$\begin{aligned} & (C Y) \leftarrow((S P))_{0} \\ & (P) \leftarrow((S P))_{2} \\ & (A C) \leftarrow((S P))_{4} \\ & (Z) \leftarrow((S P))_{6} \\ & (S) \leftarrow((S P))_{7} \\ & (A) \leftarrow((S P)+1) \\ & (S P) \leftarrow(S P)+2 \end{aligned}$	1	1	1	1	0	0	0	1	1	3	10	\ddagger	\downarrow	\downarrow	\downarrow	\downarrow	
PUSH	B	Push Registers B and C on Stack	$\begin{aligned} & ((S P)-1) \leftarrow(B) \\ & ((S P)-2) \leftarrow(C) \\ & (S P) \leftarrow(S P)-2 \end{aligned}$	1	10	0	0	0	1	0	1	1	3	11	-	-	-	-	-	
PUSH	D	Push Registers D and E on Stack	$\begin{aligned} & ((S P)-1) \leftarrow(D) \\ & ((S P)-2)-(E) \\ & (S P)-(S P)-2 \end{aligned}$	1	10	01	1	0	1	0	1	1	3	11	-	-	-	-	-	
PUSH	H	Push Registers H and L on Stack	$\begin{aligned} & ((S P)-1) \leftarrow(H) \\ & ((S P)-2) \leftarrow(L) \\ & (S P) \leftarrow(S P)-2 \end{aligned}$	1	11	10	0	0	1	0	1	1	3	11	-	-	-	-	-	
PUSH	PSW	Push Accumulator and Flags on Stack	$\begin{aligned} & ((\mathrm{SP})-1) \leftarrow(\mathrm{A}) \\ & ((\mathrm{SP})-2)_{0} \leftarrow(\mathrm{CY}) \\ & ((\mathrm{SP})-2)_{1} \leftarrow 1 \\ & ((\mathrm{SP})-2)_{2} \leftarrow(\mathrm{P}) \\ & ((\mathrm{SP})-2)_{3} \leftarrow 0 \\ & ((\mathrm{SP})-2)_{4} \leftarrow(\mathrm{AC}) \\ & ((\mathrm{SP})-2)_{5} \leftarrow 0 \\ & ((\mathrm{SP})-2)_{6} \leftarrow(\mathrm{Z}) \\ & ((\mathrm{SP})-2)_{7} \leftarrow(\mathrm{~S}) \\ & (\mathrm{SP}) \leftarrow(\mathrm{SP})-2 \end{aligned}$	1	11	11	1	0	1	0	1	1	3	11	-	-	-	-	-	
SPHL		Move H and L to Stack Pointer	$(\mathrm{SP}) \leftarrow(\mathrm{H})(\mathrm{L})$		11	11	1				1	1	1	5	-	-	-	-	-	
XTHL		Exchange Top of Stack with H and L	$\begin{aligned} & (L) \leftrightarrow((S P)) \\ & (H) \leftrightarrow((S P)+1) \end{aligned}$								1	1	5	18	

condition flags and standard rules

There are five condition flags associated with the execution of instructions on the INS8080A. They are Zero, Sign, Parity, Carry, and Auxiliary Carry, and each flag is represented by a 1 -bit register in the CPU. A flag is "set" by forcing the bit to 1 , "reset" by forcing the bit to 0 . The bit positions of the flags are indicated in the PUSH and POP PSW instructions.
Unless indicated otherwise, when an instruction affects a flag, it affects it in the following manner:
ZERO (Z): If the result of an instruction has the value 0 , this flag is set; otherwise, it is reset.
SIGN (S): If the most significant bit of the result of the operation has the value 1 , this flag is set; otherwise, it is reset.
PARITY (P): If the modulo 2 sum of the bits of the result of the operation is 0 (that is, if the result has even parity), this flag is set;
otherwise, it is reset (that is, if the result has odd parity).
CARRY (CY): If the instruction resulted in a carry (from addition) or a borrow (from subtraction or a comparison) out of the high-order bit, this flag is set; otherwise, it is reset.
AUXILIARY
CARRY (AC): If the instruction caused a carry out of bit 3 and into bit 4 of the resulting value, the auxiliary carry is set; otherwise, it is reset. This flag is affected by singleprecision additions, subtractions, increments, decrements, comparisons, and logical operations; however, AC is used principally with additions and increments preceding a DAA (Decimal Adjust Accumulator) Instruction.

symbols and abbreviations

The following symbols and abbreviations are used in the subsequent description of the INS8080A instructions:		Symbols	Meaning
		PC	16-bit program counter register (PCH and PCL are used to refer to the high-order and loworder 8 bits respectively.)
Symbols	Meaning Register A (Accumulator)	SP	16 -bit stack pointer register (SPH and SPL are
A			used to refer to the high-order and low-order 8 bits respectively.)
B	Register B		
C	Register C	()	The contents of the memory location or registers enclosed in the parentheses
D	Register D	\leftarrow	"Is replaced by"
H	Register H	\wedge	Logical AND
L	Register L	\forall	Exclusive OR
DDD, SSS	The bit pattern designating one of the registers A, B, C, D, E, H, L (DDD = destination, SSS = source):	V	Inclusive OR
		+	Addition
	DDD or SSS Register Name	-	Twos complement subtraction
	111 A	*	Multiplication
	000 B	\leftrightarrow	"Exchange"
	001 C		The ones complement (for example, (\bar{A}))
	010 D	n	The restart number 0 through 7
	011 E	NNN	The binary representation 000 through 111 for
	100 H		restart number 0 through 7 respectively
	101 L	-	"Not affected"
byte 2	The second byte of the instruction	0	"Reset"
byte 3	The third byte of the instruction	1	"Set"
port	8 -bit address of an 1/O device	\times	Unknown
r, r1, r2	One of the registers A, B, C, D, E, H, L	\downarrow	Flags affected according to Standard Rules

physical dimensions

Figure 5. UART-Serial I/O via UAR/T

MICROPROCESSOR CONSULTANTS

COMPUTERWISE
13126 South 71 Hwy.
Kansas City, Missouri 64030
(816) 765-3330

Contact: Bill Brown

BINARY ENTERPRISES

24794 Greenfield
South Bend, Indiana 46628
(219) 277-0691

INTERPHASE ASSOCIATES
619 Newberry Drive
Richardson, Texas 75080
(214) $231-4459$

Contact: Mike Cope

SHEPARDSON
 MICROSYSTEMS

Suite 302, 10601 S. Saratoga-
Sunnyvale Road
Cupertino, California 95014
(408) 257-2996

COMPUTE Newsletter • Vol. 2, No. 9

MICROCOMPUTER

CONCEPTS, INC.
10683 Cranks Road
Culver City, California 90230
Formerly: C.A. Pullen \& Assoc.

COMPUWRAP

10357 Kinsman Road
Newbury, Ohio 44065
(216) 564-1152

SUDBURY SYSTEMS, INC.
80 Union Avenue
Box Q
Sudbury, Mass. 01776
(617) 443-3133

DANYL CORPORATION
310 Cooper Center
North Park Dr. \&
Browning Road
Pennsauken, N.J. 08109
(609) 662-6615

GILL STARR MICRO-DIGITAL, INC.
2357 Lemoine Avenue
Ft. Lee, N.J. 07024
(201) 461-3324

SYSCOM
3058-B Scott Blvd.
Santa Clara, Ca. 95050
(408) 246-2437

ABLER DATA
SYSTEMS, INC.
740 Garvens Avenue
Brookfield, Wisconsin 53005
(414) 786-2448

Sulbroutine Lilbrary Catalog

SL0001A, IMP-16

BINBCD
Binary to BCD Conversion - BINBCD converts a binary number to its equivalent $B C D$ number, using the standard IMP-16 Instruction Set.

SL002A, IMP-16

BCD
Binary to BCD Conversion and BCD to Binary Conversion BCD consists of 2 subroutines. The first converts a binary number to its equivalent BCD number. The second converts a $B C D$ number to its equivalent binary number. Both routines use IMP-16 Extended Instructions.

SL0003A, IMP-16

MD
Multiply and Divide Routines - MD contains divide and multiply routines compatible to the routines available in the IMP-16 CROM-2 Extended Instruction Set. From outward appearances they will be identical except for execution time.

SL0004A, IMP-16

PTBIN (may have errors)
Binary Tape Punch and Verify Package - PTBIN is package of 2 main programs and 6 subroutines for the IMP-16P.

PTPNCH - Binary Paper Tape Punch.
SEARCH - Loads PTPNCH format Binary Tape.
LEADER - Punches 40 null characters on tape.
CKSM - Reads, packs, and stores ASCII characters.
ASCBIN - Converts 4 packed hex ASCII chars to Binary and stores in AC1.
UNPACK - Unpack ASCII chars, STRIP parity bit and right adjust in AC0, AC1.
READPK - Reads 2 ASCII chars from TTY and pack into ACO.
SL0005A, IMP-16
BINASC
Binary to HEX ASCII Conversion - BINASC converts a binary number in ACO to 4 hex ASCII characters and prints the result on the TTY using the PUTC routine in TTY16P.

SL0006A, IMP-16

BINGRAY
Binary to Gray Code Conversion - Converts up to 16 binary numbers to their equivalent Gray Code representation and stores the result in a 16 -word table.

SL0007A, IMP-16

BCDBIN
$B C D$ to Binary Conversion - Converts 4 unpacked BCD digits to its binary equivalent using the standard IMP-16 Instruction Set.

SL0008A, IMP-16

PNMULT

Positive/Negative Conversiorı Routine - PNMULT accepts positive and/or negative 16 -bit numbers to be used by MD (SL0003A). Converts to positive before the multiply or divide operation and assigns a sign to the product based on the signs of the operands.

SL0009A, IMP-8

IMP-8 Math Routines
MPY Unsigned Multiply
SMPY Signed Multiply
DIV Unsigned Divide
SDIV Signed Divide

BCDBIN
BINBCD
DADD
DSUB
DCMP2
RANDOM
$\begin{array}{ll}\text { PWR } & \text { I to the power of J } \\ \text { SQRT } & \text { Integer Square Root }\end{array}$

SL0010A, IMP-16

MEMORY DUMP

A general memory dump program to allow any section of memory to be dumped through TTY keyboard access. There are no restrictions as to dump range or dump locations. (Contributed by Crest Engineering, Minneapolis.)
SL0011A, IMP-16
GALPAT
This is an IMP-16 memory diagnostic diagnostic designed to be loaded into two 256×8-bit PROMs located on an IMP-16C card in the FF00-FFFF slots. It exercises memory locations 0000-0FFF, and uses only the hardware stack and registers for data storage.

SL0012A, IMP-16

RAMDUMP
This program punches out data from RAM or PROM. Standard RLM format is used. The program prompts for the start and end addresses. It replaces SL0004A, PTBIN.

SL0013A, IMP-16

TAPE TITLER
This program develops alpha-numeric characters in a 6×8 dot format and prints them longitudinally on the tape. The characters are then readable with the eye. It can be used in conjunction with the assembler and will punch up to 60 characters.

SL0014A, IMP-16
 GRAY CODE CONVERSION

This routine converts 8 or 16 bit GRAY CODE to binary.

SL0015A, PACE

PACRAM
This program has commands for punching paper tapes, reading paper tapes, punching leader, executing a program and altering memory locations.

Note: The punch format is absolute binary. (Contributed by TELEPLEX.)

SL0016A, IMP-16

PRTPLT

Print Plot routines uses TTY or High Speed Printer. (Contributed by NASA/AMES.)

SL0017A, IMP-16

TSTPLT
Data for testing SL0016A.
SL0018A, PACE
CALCULATOR
This program makes a PACE Microprocessor Development System, with a Teletype-type terminal, into a nine decimal digit, four-function calculator, using only positive integers of nine or fewer digits. There is no check for incorrect results (overflow) of addition or multiplication, and no check for negative results from subtract, but in these cases, the output routine may halt in the double precision divide routine. The
division routine calculates a double precision quotient and a double precision remainder, so there is no error situation. $(0 / 0=0,0)$

In operation; this program prints a $>$ (greater than) sign at the left margin, and waits for you to enter nine or fewer decimal digits, without any other characters or blanks, one arithmetic operation symbol ($+-^{*} /$), a second operand and any character (the equal sign looks best, and a carriage return will cause overprinting); then the program calculates the rightmost 32 bits of the sum, difference, product or the 32 bit quotient and the 32 bit remainder, and prints the result(s).
Examples:
$5+37=000000042$
$37-5=000000032$
$>2 * 2=000000004$
$>5 / 2=000000002,000000001$
This program can run as a subroutine under the DEBUG program (PACDBG).
(Contributed by C. Strain, ELECTRO Units Corp.)
SL0019A, IMP-16
MESGH
Output Routine for High Speed Printer analogous to TTY
MESG Subroutine.
SLO020A, IMP-16
CHARST
Character String Routines for IMP-16 (Veripen Corp.).

SL0026A, IMP-16, PACE

TABTAP

This program reduces the length of the source tapes from the IMP and PACE Editors by using a single tab character to replace a string of spaces. This program overwrites the card reader routines in the editors and may be loaded by pressing 'Load Prog' again after the editor is loaded.
SL0027A, SC/MP
SC/MP Match Package
SC/MP Math Routines. Double Add, Double Negate, Double Subtract, Multiply, Divide, BCD Multiply, BCD Add, BCD Subtract, BCD Complement, BCD Divide.

SL0028A, IMP-16

SQRT
Takes a 24 -bit square root of a 32 -bit number.
SL0021A, IMP-16
CONTAP
Converts an RLM tape to a printed listing that is useful for punching RLM cards.

SLO022A, PACE

NUMPRG
Converts a binary value in register 0 to a six character ASCII value in registers 0,1 , and 2.

SL0023A, IMP-16

Disc RLM-Promsft-B
Update for Promsft-B. Allows PROM to be programmed using a RLM from the disc.
SL0024A, IMP-16
Disc RLM-Promsft-C
Update for Promsft-C. Like SL0023A.
SLOO25A, PACE
PALM
PALM 'Punch Absolute Load Module'. PALM punches an absolute Load Module of any selected memory. An entry location may also be specified for program execution. Blocks
of 12 are always punched and the specified end of range will be extended to accommodate this block of 12 words.

Note: PALM will even punch itself.
TTY Prompts: TYPE ÍN THE RANGE 0123:ABCF Response is four hex digits, colon, four hex digits.
TTY Prompts: ENTRY 045F (turn on punch) Response is four hex digits and turn on punch. Load Module is punched and the system will halt.

SC/MP Application Cards

Bob Pecotich, National Semiconductor

The SC/MP family of microprocessor application cards are here NOW. Products are:

CPU CARDS

ISP-8C/100 - card with on-card timing, buffered 16 -bit address, and 8 -bit data bus, includes 256 bytes of RAM and sockets for 512 bytes of PROM/ROM (MM5204Q/MM5214).

MEMORY CARDS

ISP8C/002 - 2 k byte static read/write memory card, with on-card address decode.
ISP-8C/004B or P - 4k byte ROM/PROM memory card. "B" designates card with sockets for 8 MM5204Q/MM5214; " P " designates card with 8 blank MM5204Q's.
Users are (among others):
Engineers replacing electro-mechanical controls and logic with a purely electronic approach, e.g., pipeline, engine, and complex appliance controls.
Medical Analysis/Diagnostic System Manufacturers.
Electronic Lab Measurement Systems Manufacturers.
Broad categories of users having limited electronic enyineering, PC card fab or, software experience, but wanting to implement microprocessor cost savings.
SC/MP Cards offer:
Ease of use/system integration/software development. Low use cost. Look at the prices!

	1	10	25	50	100
ISP-8C/100	$\$ 250$	$\$ 238$	$\$ 218$	$\$ 188$	$\$ 98$
ISP-8C/002	160	152	139	120	99
ICP-8C/004B	125	119	109	94	60
ISP-8C/004P	525	499	457	394	325

Class Schedules

Eastern Training	Western Training
Center	Center

Microprocessor Fundamentals	November 8-12	October 25-29
SC/MP Applications	November 15-10	November 8-12
PACE Applications	October 18-22	November 1-5

Processor is Calculator-Oriented!

Looking for a versatile, low-cost, dedicated or customprogrammable calculator or control system? We've got it! Our MM5799 contains all system timing functions, all arithmetic and logic functions, all RAM functions (384 bits), and all control ROM functions (1536 microinstructions 8 -bits wide, $10-\mu \mathrm{s} /$ microcycle) that you'll need to implement a variety of small control and microprocessor systems.
A single MOS/LSI chip, the MM5799 can scan 56 keyboard switches, or you can enter BCD data words. Its eight outputs present information in either a BCD or a seven-segment-plus-decimal-point format, and four additional latched outputs give you encoded digit-timing information. Further, a serial-in port and a serial-out port let you expand the basic RAM store and interface to peripherals.
And speaking of peripherals and extra storage, our MM5788 printer interface, DS8664 Series oscillator and decoder/drivers, MM5785 RAM interface, and MM2102 and MM74C930 1k static RAMs are a perfect match to an MM5799-based system.
For information, contact National Semiconductor Marketing Services, 2900 Semiconductor Drive, Santa Clara, CA 95051.

Support Hardware for SC/MP and PACE Application Cards!

Bob Pecotich, National Semiconductor

SC/MP and PACE share a common $4.375^{\prime \prime} \times 4.862^{\prime \prime}$ card size, with both families of application cards using the standard 72 pin, 0.1 with center edge connector. The card size is one widely supported by AUGAT, INC. (with its M Series line) and a number of second sources. The following table lists support hardware commonly needed:

Manufacturer	Part No.	Price/Qty.
72 CONTACT		
EDGE CONNECTOR		
Augat	$14005-17 P 3$	$\$ 4.81 / 1$,
Robinson/Nugent	EC721	$\$ 4.22$
		$\$ 7.55 / 1$,
Elco	$00-6307-072-309-001$	
Cerich	$50-720-30$	
National Connector	$900100-36$	
Stanford Applied	CDP7000-72	
Engineering		
Winchester	HW36C0111	$\$ 4.79 / 1$,
		$\$ 3.51 / 100$
CONNECTOR CARD		
WITH BACKPLANE:		
Augat	$8170-M G 1$	$\$ 177.50 / 1$,
Robinson/Nugent	MECA-1	$\$ 147.75 / 10-24$
		$\$ 202 / 1$,

Movnlo ous
Let us know, complete the form below and send to:

UNITED STATES
Marketing Services/520
National Semiconductor
2900-Semiconductor Drive
Santa Clara, CA 95051

GERMANY
National Semiconductor GmBH 808 Fuerstenfeldbruck
Industriestrasse 10
Tel: 08141/1371
Telex: 05-27649

NEW ADDRESS

NAME \qquad
TITLE \qquad
COMPANY \qquad
ADDRESS \qquad
CITY
STATE \qquad ZIP

DATE EFFECTIVE

ADDRESS LABEL
 OR PRINT OLD
 ADDRESS

NAME \qquad
TITLE
COMPANY \qquad
ADDRESS \qquad
CITY
STATE \qquad ZIP
LIFETIME
MEMBERSHIP FORM!
Lifetime membership fee is only $\$ 15.00$. Make checks payable to COMPUTE and send to:

UNITED STATES
COMPUTE/208
National Semiconductor 2900 Semiconductor Drive
Santa Clara, CA 95051

GERMANY
National Semiconductor GmBH
808 Fuerstenfeldbruck
Industriestrasse 10
Tel: 08141/1371
Telex: 05-27649

NAME

\qquad
TITLE
COMPANY \qquad
ADDRESS
CITY
STATE \qquad ZIP \qquad
COMPUTE Newsletter • Vol. 2, No. 9

User Library Order Form

PROGRAM	NAME	LISTING QUANTITY N/C	SOURCE PAPER TAPES QUANTITY \$5.00 EACH
SL0001A IMP	BINBCD		N/A
SL0002A IMP	BCD		N/A
SL003A IMP	MD		N/A
SL0004A IMP	PTBIN		N/A
SL0005A IMP	BINASC		N/A
SL0006A IMP	BINGRAY		N/A
SL0007B IMP	BCDBIN		N/A
SL0008A IMP	PNMULT		N/A
SL0009A IMP	IMP-8 MATH		N/A
SL0010A IMP	MEMORY DUMP		
SL0011A IMP	GALPAT		
SL0012B IMP	RAMDUMP		
SL0013A IMP	TAPE TITLER		
SL0014A IMP	GRAY CODE		
SL0015A PACE	PACRAM		
SL0016A IMP	PRTPLT		
SL0017A IMP	TSTPLT		
SL0018A PACE	CALCULATOR		
SL0019A IMP	MESGH		
SL0020A IMP	CHARST		
SL0021A IMP	CONTAP		
SL0022A PACE	NUMPRG		
SL0023A IMP	DISC RLM-PROMSFT-B		
SL0024A IMP	DISC RLM-PROMSFT-C		
SL0025A PACE	PALM		
SL0026A PACE IMP	TABTAP		
SL0027A SC/MP	SC/MP MATH PACKAGE		
SL0028A IMP	SQRT		

Fill out the form completely, make your check payable to COMPUTE, and mail to:

UNITED STATES
COMPUTE/208
National Semiconductor 2900 Semiconductor Drive
Santa Clara, CA 95051

GERMANY
National Semiconductor GmBH 808 Fuerstenfeldbruck Industriestrasse 10 Tel: 08141/1371 Telex: 05-27649

NAME \qquad
TITLE \qquad
COMPANY \qquad
ADDRESS \qquad
CITY \qquad
STATE
ZIP
Please make sure the programs you select are for the microprocessor you have.

UNITED STATES

COMPUTE/208
NATIONAL SEMICONDUCTOR CORP.
2900 SEMICONDUCTOR DRIVE
SANTA CLARA, CA. 95051
TEL: (408) 247-7924
TWX: 910-338-0537

EUROPE

GERMANY

National Semiconductor GmBH
808 Fuerstenfeldbruck
Industriestrasse 10
Tel: 08141/1371
Telex: 05-27649

AUSTRALIA

NS Electronics Pty Ltd
Cnr. Stud Rd. \& Mtn. Highway
Bayswater, Victoria 3153
Tel: 03-729-6333
Telex: 32096

