
TL/H/11908

In
te

rfa
c
in

g
th

e
L
M

1
2
4
5
4
/
8

D
a
ta

A
c
q
u
is

itio
n

S
y
s
te

m
C

h
ip

s
to

M
ic

ro
p
ro

c
e
s
s
o
rs

a
n
d

M
ic

ro
c
o
n
tro

lle
rs

A
N

-9
0
6

National Semiconductor
Application Note 906
Farid Saleh
August 1993

Interfacing the LM12454/8
Data Acquisition System
Chips to Microprocessors
and Microcontrollers

TABLE OF CONTENTS

1.0 INTRODUCTION

2.0 GENERAL OVERVIEW

2.1 The DAS Programming Model

2.2 Programming Procedure

2.3 A Typical Program Flowchart and Alternative

Approaches

2.4 The DAS/Processor Interface

3.0 INTERFACING THE DAS TO HPCTM

MICROCONTROLLERS

3.1 Complete Address Decoding

3.2 Minimal Address Decoding

3.3 Timing Analysis

3.3.1 Complete Address Decoding Circuit

3.3.2 Minimal Address Decoding Circuit

4.0 A SYSTEM EXAMPLE: A SEMICONDUCTOR

FURNACE

4.1 System Requirements and Assumptions

4.2 DAS Setup and Register Programming

4.3 Microcontroller Programming

4.3.1 HPC Assembly Routines for the Semiconductor

Furnace Example

1.0 INTRODUCTION

The LM12454/8 family of data acquisition system (DAS)

chips offers a fully differential self-calibrating 12-bita sign

A/D converter with differential reference, 4 or 8 input analog

multiplexer and extensive flexible and programmable logic.

The logic embodies different units to perform specific tasks,

for instance:

Ð An instruction RAM for stand-alone execution (after be-

ing programmed by the host) with programmable acqui-

sition time, input selection, 8-bit or 12-bit conversion

mode, etc.

Ð Limit registers for comparison of the inputs against high

and low limits in ‘‘watchdog’’ mode.

Ð A 32-word FIFO register for storage of conversion

results.

Ð Interrupt control logic with interrupt generation for 8 dif-

ferent conditions.

Ð A 16-bit timer register.

Ð Circuitry for synchronizing signal acquisition with exter-

nal events.

Ð A parallel microprocessor interface with selectable 8-bit

or 16-bit data access.

Because of its functionality and flexibility, working with the

LM12454/8 family may appear to be an overwhelming task

at first glance. However, this is not the case when the user

gains a basic understanding of the device’s functional units

and the philosophy of its operation. This note shows how

easy it is to use the LM12454/8 family and walks the user

through the straightforward steps of the interfacing and pro-

gramming of the device.

The LM12454/8 family has 6 members. The members and

their differences are shown in Table I. For simplicity, the

DAS abbreviation will be used throughout this Application

Note as a generic name for any member of the family. Simi-

larly, the drawings illustrate only the 8 input versions of the

family. Note that this Application Note should be used in

conjunction with the device data sheet and assumes the

reader has some degree of familiarity with the device. How-

ever, a brief overview of the DAS and information related to

the subjects being discussed are given here.

2.0 GENERAL OVERVIEW

2.1 The DAS Programming Model

Figure 1 illustrates the functional block diagram or user pro-

gramming model of the DAS. (This diagram is not meant to

reflect the actual implementation of the DAS internal build-

ing blocks.) The DAS model consists of the following

blocks:

Ð A flexible analog multiplexer with differential output at

the front end of the device.

TABLE I: Members of the LM12454/8 Family

Device
Clock Operating

Number of Internal Low Voltage

Number
Frequency Supply Voltage

MUX Inputs Reference Flag
(Max, MHz) (V)

LM12454 5 5.0 g10% 4 Yes Yes

LM12458 5 5.0 g10% 8 Yes Yes

LM12H454 8 5.0 g10% 4 Yes Yes

LM12H458 8 5.0 g10% 8 Yes Yes

LM12L454 6 3.3 g10% 4 No No

LM12L458 6 3.3 g10% 8 No No

HPCTM is a trademark of National Semiconductor Corporation.

C1995 National Semiconductor Corporation RRD-B30M75/Printed in U. S. A.



TL/H/11908–1

FIGURE 1. DAS Functional Block Diagram, Programming Model

Ð A fully-differential, self-calibrating 12-bita sign A/D

converter.

Ð A 32-word FIFO register as the output data buffer.

Ð An instruction RAM that can be programmed to repeat-

edly perform a series of conversions and comparisons

on the selected input channels.

Ð A series of registers for overall control and configuration

of the DAS operation and indication of internal opera-

tional status.

Ð Interrupt generation logic to request service from the

processor under specified conditions.

Ð Parallel interface logic for input/output operations be-

tween the DAS and the processor. All the registers

shown in the diagram can be read and most of them can

also be written to by the user through the input/output

block.

Ð A controller unit that controls the interactions of the dif-

ferent blocks inside the DAS and performs the conver-

sion, comparison and calibration sequences.

The DAS has 3 different modes of operation: 12-bita sign

conversion, 8-bita sign conversion and 8-bita sign com-

parison, (also called ‘‘watchdog’’ mode). In the watchdog

mode no conversion is performed, but the DAS samples an

input and compares it with the values of the two limits

stored in the Instruction RAM. If the input voltage is above

or below the limits (as defined by the user) an interrupt can

be generated to indicate a fault condition.

The INSTRUCTION RAM is divided into 8 separate words,

each with 48 (3x16) bit length. Each word is separated into

three 16-bit sections. Each word has a unique address and

different sections of the instruction are selected by the 2-bit

RAM pointer (RP) in the configuration register. As shown in

Figure 1, the Instruction RAM sections are labeled Instruc-

tions, Limits Ý1 and Limits Ý2. The Instruction section

holds operational information such as; the input channels to

be selected, the mode of operation for each instruction, and

how long the acquisition time should be. The other two sec-

tions are used in the watchdog mode and the user defined

limits are stored in them. Each watchdog instruction has 2

limits associated with it (usually the low and high limits, but

two low or two high limits may be programmed instead). The

DAS can start executing from Instruction 0 and continue

executing the next instructions up to any user specified in-

struction and, then ‘‘loops back’’ to Instruction 0. This

means that not all 8 instructions need to be executed in the

loop. The cycle may be repeatedly executed until stopped

by the user. The user should access the Instruction RAM

only when the instruction sequencer is stopped.

The FIFO Register is used to store the results of the conver-

sion. This register is ‘‘read only’’ and all the locations are

accessed through a single address. Each time a conversion

is performed the result is stored in the FIFO and the FIFO’s

internal write pointer points to the next location. The pointer

rolls back to location 1 after a write to location 32. The

same flow occurs when reading from the FIFO. The internal

FIFO writes and the external FIFO reads do not affect each

other’s pointer locations.

The CONFIGURATION Register is the main ‘‘control panel’’

of the DAS. Writing 1s and 0s to the different bits of the

Configuration Register commands the DAS to perform dif-

ferent actions such as start or stop the sequencer, reset the

pointers and flags, enter standby mode for low power con-

sumption, calibrate offset and linearity, and select sections

of the RAM.

The INTERRUPT ENABLE Register lets the user activate up

to 8 sources for interrupt generation. It also holds two user

programmable values. One is the number of conversions to

be stored in the FIFO register before the generation of the

data ready interrupt. The other value is the instruction num-

ber that generates an interrupt when the sequencer reaches

that instruction.

The INTERRUPT STATUS and LIMIT STATUS Registers

are ‘‘read only’’ registers. They are used as vectors to indi-

cate which conditions have generated the interrupt and

what limit boundaries have been passed. Note that the bits

2



are set in the status registers upon occurrence of their cor-

responding interrupt conditions, regardless of whether the

condition is enabled for external interrupt generation.

The TIMER Register can be programmed to insert a delay

before execution of each instruction. A bit in the Instruction

register enables or disables the insertion of the delay before

the execution of an instruction.

Appendix A shows all the DAS accessible registers and a

brief description of their bits assignments. These bit assign-

ments are discussed in detail in the data sheet and are re-

peated here for reference. There are also empty register

models available on the same pages that can be used as a

programming tool. The designer can fill these register mod-

els with ‘‘1s’’ and ‘‘0s’’ during design based on system re-

quirements. The user can also use these sheets for design

documentation.

2.2 Programming Procedure

The DAS is designed for control by a processor. However,

the functionality of the DAS off loads the processor to a

great extent, resulting in reduction of the software over-

head. At the start, the processor downloads a set of opera-

tional instructions to the DAS’ RAM and registers and then

gives a start command to the DAS. The DAS performs con-

tinuous conversions and/or comparisons as dictated by the

instructions and loads the conversion results in the FIFO.

From this point the processor has two basic options for in-

teraction with the DAS. The DAS can generate an interrupt

to the processor when the predetermined number of con-

version results are stored in the FIFO or when any other

interrupt conditions have occurred. The processor will then

service the interrupt by reading the FIFO or taking corrective

action, depending on the nature of the interrupt. Alternative-

ly, rather than responding to an interrupt, the processor at

any time can read the data or give a new command to the

DAS.

Defining a general programming procedure is not practical

due to the extreme flexibility of the DAS and the variety of

the applications. However, the following typical procedure

demonstrates the basic concepts of the DAS start-up rou-

tine:

Ð Reset the DAS by setting the RESET bit and select RAM

section ‘‘00’’ through the Configuration register.

Ð Load instructions to the Instruction RAM (1 to 8 instruc-

tions).

Ð Select RAM section ‘‘01’’ (if used) through the Configu-

ration register.

Ð Load limits Ý1, 1 to 8 values (if used).

Ð Select the RAM section ‘‘10’’ (if used) through the Con-

figuration register.

Ð Load limits Ý2, 1 to 8 values (if used).

Ð Initialize the Interrupt Enable register, by selecting the

conditions to generate an interrupt at the INT pin (if

used).

Ð Program the Timer register for required delay (if used).

Ð Start the sequencer operation by setting the START bit

in the Configuration register. Set the other bits in the

Configuration register as required at the same time.

After the DAS starts operating, the processor may respond

to interrupts from the DAS or it may interrogate the DAS at

any time.

2.3 A Typical Program Flowchart and Alternative Ap-

proaches

A typical DAS program flowchart is shown in Figure 2. Fig-
ure 2a shows the initialization of the DAS and the start of

the conversions. Figure 2b shows the general form of the

DAS interrupt service routine. It is assumed that the DAS

interacts with the processor through an interrupt line. This

means the host processor generally is busy with other tasks

and responds to the DAS through its interrupt service rou-

tine.

3



TL/H/11908–2

FIGURE 2a. A Typical Program Flowchart for the DAS Initialization and Start of Conversions

4



TL/H/11908–3

FIGURE 2b. A Typical Program Flowchart for the DAS Interrupt Service Routine

5



There is a processor initialization step at the start of the

flowchart. It is included as a reminder that some specific

processor initialization may be needed just for interaction

with the DAS.

The DAS initialization steps are a series of write operations

to the DAS registers. These steps are the same as men-

tioned in Section 2.2.

A full calibration cycle is usually performed after setting the

DAS’ registers. This is required for 12-bit accuracy. You may

choose to perform one full calibration at power up, or peri-

odic calibrations at specified time intervals, or condition-

based calibrations, e.g., calibrations after a specified

change in temperature. Calibration is done by writing the

appropriate control code to the Configuration register. A full

calibration cycle takes about 1 ms (989 ms) with a 5 MHz

clock and about 0.6 ms (618 ms) with an 8 MHz clock. You

can insert a delay after starting a calibration cycle, or can

detect the end of calibration by an interrupt, or by reading

the Interrupt Status register for the corresponding flag bit. In

the flowchart, the end-of-calibration detection is handled in

the interrupt service routine. The full calibration cycle af-

fects some of the DAS’ internal flags and pointers that will

influence the execution of the first instruction after calibra-

tion. To avoid false instruction execution, the DAS should be

reset after a calibration cycle. This is shown on the flow-

chart for the interrupt service routine.

After a calibration, the DAS is ready to start conversions.

Conversion is initiated by writing to the configuration register

and setting the START bit to ‘‘1’’. The data to be written to

the configuration register is shown in binary format in the

flowchart. The bits shown by ‘‘P’’ (program) are the control

bits that determine different modes of operation during con-

versions. All the other bits should be programmed as

shown. As mentioned before, the host processor can per-

form data manipulation and other control tasks after starting

the DAS, and will respond to the DAS interrupts as required.

At the start of the interrupt service routine (Figure 2b ), a

zero is written to START bit in the Configuration register, to

stop the conversion. Stopping the conversion is not neces-

sarily needed unless it is required for accuracy or timing

purposes. Generally the results of conversions will be noisi-

er and less accurate if reads or writes to and from the DAS

are performed while it is converting. However, the degree of

this inaccuracy depends on many aspects of system design

and is not easy to quantify. Power supply and ground rout-

ing, supply bypassing, speed of logic transitions on the bus,

the logic family being used, and the loading (resistive and

capacitive) on the data bus being driven by the DAS, all can

affect conversion noise. Nevertheless, reading during con-

versions has been shown not to cause serious accuracy

problems in most systems.

There are two timing issues regarding the reading during

conversion.

During any read or write from or to the DAS, the DAS inter-

nal clock will stop while the CS is low. This is done for

synchronization between external and internal bus activities,

thus preventing internal conflicts. Note that reads and writes

are asynchronous to internal bus activities. A pause of inter-

nal clock cycles will increase the total acquisition plus con-

version time for each instruction. The amount of this time

increase is variable and is not easily predictable, because

the processor and the DAS work asynchronously. As a re-

sult, the user should not perform reads during conversions if

the fixed time intervals between the signal acquisitions are

critical in the system performance.

The second timing issue depends on the speed of the con-

versions and the speed of the read cycles from the FlFO.

The rule is to read the FIFO fast enough that old data will

not be overwritten with new data during continuous conver-

sions.

Returning to the flowchart, the main task of the interrupt

service routine is to read the DAS’ Interrupt Status register

and test its bits for the source of the interrupt. The interrupt

service routine shows all the interrupt bits in the DAS being

tested. However, real systems often use only a few number

of the interrupts, so the extra bit tests should be eliminated

from the routine. Also, the sequence in which the bits are

tested depends on the priority level of the interrupts in the

system. The tasks to be performed for each interrupt are

mainly system related and are not elaborated upon in the

flowchart. If conversions are stopped at the start of the in-

terrupt service, one possibility is to restart conversion be-

fore returning from the interrupt service routine. Otherwise

conversions will be restarted again at some other point in

the system routines.

2.4 The DAS/Processor Interface

The interface between the processor and the DAS is sim-

ilar to a memory or I/O interface. Some possible DAS/

microcontroller interface schemes are shown in Figures 3,

4 and 5.

TL/H/11908–4

FIGURE 3. LM12458 to HPC or 8051 Microcontroller Interface

6



TL/H/11908–5

FIGURE 4. LM12458 to 68HCII Microcontroller Interface

TL/H/11908–6

FIGURE 5. LM12458 to HPC or 8051 Microcontroller Interface (Minimum System)

From the processor’s point of view, the DAS is a group of

I/O registers with specific addresses.Figure 6 illustrates the

DAS registers with their address assignments and the DAS

interface buses and control signals. The DAS provides stan-

dard architecture for address, data and control buses for

parallel interface to processors. The DAS can be interfaced

to both multiplexed and non-multiplexed address/data bus

architectures. An ALE input and internal latches allow the

DAS to interface to a multiplexed address/data bus when

external address latches are not required by the system.

The DAS can be accessed in either 8-bit or 16-bit data

width. BW (Bus Width) input pin selects the 8-bit or 16-bit

access. In 8-bit access mode, each 16-bit I/O register is

accessed in 2 cycles. Address line A0 selects the lower or

upper portions of a 16-bit register. In 16-bit access mode,

address line A0 is a ‘‘don’t care’’. As shown in the Figures
6a and 6b, the DAS appears to the processor as 14 sepa-

rate 16-bit or 28 separate 8-bit I/O locations.

7



TL/H/11908–7

FIGURE 6a. DAS Registers, Address Assignments, Interface Buses and Control Signals for 8-Bit Bus Width

TL/H/11908–8

FIGURE 6b. DAS Registers, Address Assignments, Interface Buses and Control Signals for 16-Bit Bus Width

8



The interface should provide the address, data and control

signals to the DAS with the following requirements:

Ð An address decoder is needed to generate a chip-select

for the DAS within the required address range.

Ð The switching relationship between ALE, CS, RD, WR,

address bus and data bus should satisfy the DAS timing

requirements. (Please refer to the data sheet for timing

requirements.)

Ð When the DAS is working in an interrupt-driven I/O envi-

ronment, a suitable service request link between the

DAS and the system should be provided. This can be as

simple as connecting the DAS’ INT output to a proces-

sor’s interrupt input or as sophisticated as using interrupt

arbitration logic (interrupt controller) in systems that

have many I/O devices.

Figure 3 illustrates the generic interface for the National

Semiconductor’s HPC family of 16-bit microcontrollers and

the 8051 family of 8-bit microcontrollers. Figure 4 illustrates

the interface for the 68HC11 family of microcontrollers or

the processors with similar control bus architecture. The cir-

cuits in Figures 3 and 4 are the maximum system schemes

assuming the microcontroller is accessing other peripherals

in addition to the DAS, therefore external address latches

and an address decoder are required to select the DAS as

well as the other peripherals. The size and complexity of the

address decoder, however, depends on the system. In a

minimum system scheme, the DAS can be interfaced to the

microcontroller with minimal external logic for address latch-

es and address decoder. This is shown in Figure 5. Note

that the DAS’ CS signal is also latched with the ALE inside

the DAS, so a higher order address bit can be used to drive

CS input. In this scheme a wide range of addresses (with

many bits as ‘‘don’t cares’’) are used to access the DAS.

Care must be taken not to use this address range for any

other memory or I/O locations. For example, lets assume bit

A15 is used for CS, and must be 1 (inverter in place) to

select the DAS. As a result, all the 32k of the upper address

range is used for the DAS. However, address bits A5 to A14

are ‘‘don’t cares’’ and the DAS can be mapped anywhere

within the upper 32k of the address range.

3.0 INTERFACING THE DAS TO HPC

MICROCONTROLLERS

In this section we are going to develop a detailed interface

circuit between the HPC46083 microcontroller and the DAS.

The HPC46083 is a member of the HPC family of high per-

formance 16-bit microcontrollers. The HPC family is avail-

able in a variety of versions suitable for specific applica-

tions. The reader is encouraged to refer to HPC family data

sheets for complete information, available versions, and

their specifications. The HPC46083, a 16-bit microcontroller

with 16-bit multiplexed data and address lines, is one of the

simplest members of the family. It is a complete microcon-

troller containing all the necessary system timing, internal

logic, ROM, RAM, and I/O, and is optimized for implement-

ing dedicated control functions in a variety of applications.

Its architecture recognizes a single 64k byte of address

space containing all the memory, registers and I/O address-

es (memory-mapped I/O). The addressing space of the first

512 bytes (0000H to 01 FFH) contains 256 bytes of on-chip

user RAM and internal registers. (The address values are

given in hexadecimal format with suffix ‘‘H’’ as an indicator.)

The last 8 kbytes of the address space (E000H to FFFFH)

are on-chip ROM used mainly for program storage. In the

following applications, the HPC46083 is setup for the ex-

panded mode (as opposed to the single-chip mode) of oper-

ation that allows the external address range (0200H to

DFFFH) to be accessed. The external data bus in the HPC

family is configurable as 8-bit or 16-bit, allowing it to effi-

ciently interface with a variety of peripheral devices.

Interrupt handling is accomplished by the HPC46083’s vec-

tor interrupt scheme. There are eight possible interrupt

sources for the HPC46083. Four of these are maskable ex-

ternal interrupt inputs. These inputs can be programmed for

different schemes, e.g., interrupt at low level, high level, ris-

ing edge or falling edge. One of these interrupts is used for

interface with the DAS. The term ‘‘HPC’’ will be used

throughout the remainder of this discussion to refer to the

HPC46083.

Two different interface circuits are presented in Figures 7
and 8. The first circuit in Figure 7 uses complete address

decoding with the external address latches. This scheme

assumes the HPC is accessing other devices using other

address ranges. The circuit in Figure 8 assumes the DAS is

the only (or one of a few) peripherals interfaced to the HPC,

so incomplete address decoding is used for minimum inter-

face logic. Note that the address decoding schemes used in

these circuits are only two of many different possibilities and

are presented as generic forms of address decoding. These

circuits are used as vehicles to illustrate the issues regard-

ing the interface, and different schemes with other logic

families or PAL devices can also be used for interface cir-

cuits.

9



T
L
/
H

/
1
1
9
0
8
–
9

F
IG

U
R

E
7
.
T
h
e

D
A

S
/
H

P
C

M
ic

ro
c
o
n
tr

o
ll
e
r
In

te
rf

a
c
e

(C
o
m

p
le

te
A

d
d
re

s
s

D
e
c
o
d
in

g
)

10



T
L
/
H

/
1
1
9
0
8
–
1
0

F
IG

U
R

E
8
.
T
h
e

D
A

S
/
H

P
C

M
ic

ro
c
o
n
tr

o
ll
e
r
In

te
rf

a
c
e

(M
in

im
a
l
A

d
d
re

s
s

D
e
c
o
d
in

g
)

11



3.1 Complete Address Decoding

Figure 7 shows the circuit with complete address decoding

to generate the DAS’ CS signal. The DAS is accessed as

memory mapped I/O at the start of the external address

range (0200H to 021BH), and 16-bit data access is selected

for the DAS. External address latches, U2 and U3,

(74HC573) are used for the HPC’s multipIexed 16-bit data/

address lines. As a result, the ALE input of the DAS is tied

high. An 8-bit magnitude comparator, U4, (74HC688) de-

codes the high order address byte [A15...A8] by comparing

it with the logic input from the address range selector jump-

ers on header JP1. The jumper setting shown in Figure 7 is

02H. The output of the magnitude comparator enables 3-to-

8 line decoder chip, U5, (74HC138). The 3-to-8 line decoder

inputs are address lines A5 to A7. The output Y0 of the 3-to-

8 line decoder is activated for the 32 locations of address

space from 0200H to 021FH. This output (Y0) is used for

the DAS’ CS input. Address lines A1 to A4 are directly con-

nected to the DAS address inputs. The A0 input of the DAS

is tied to ground since 16-bit data access is used and A0 is a

‘‘don’t care’’. The DAS uses 28 bytes of address locations

with addresses from 0200H to 021BH.

The DAS signal timing requires that its CS be active at least

20 ns before RD or WR. This requirement cannot be met

with the HPC running at 20 MHz clock frequency. In order to

compensate for the propagation delays in the address latch-

es and decoder, 2 inverting buffers (U7), are placed in the

RD control line. The need for these inverters will be dis-

cussed further in the following Timing Analysis section. The

WR line does not require this delay compensation.

The DAS’ INT output drives the INT4 input of the HPC. This

allows the DAS to request service when acquired data is

ready or for any other condition for which processor atten-

tion is needed. The selection of INT4 is arbitrary, and any

other external interrupt input could have been used. In a real

system, selection of a processor interrupt input will be

based on the number of interrupt driven I/O devices and the

priority for each device.

The DAS’ clock is driven with an 8 MHz crystal clock mod-

ule. The output of the clock module is separately buffered

for the DAS. This keeps the DAS’ clock clean and minimizes

interference that might be generated and induced by other

devices using the same clock line.

3.2 Minimal Address Decoding

The circuit in Figure 8 does not use the external address

latches (U2, U3), the 8-bit magnitude comparator (U4), and

the address setting jumpers (JP1). The 3-to-8 line decoder

(U5) is still used and is enabled by the address/data lines

DA9 and DA15. DA9 should be ‘‘1’’ to enable U5. This is

selected to prevent address conflict between the DAS and

the HPC internal RAM and registers, which use the address

range 0000H to 01FFH with DA9 equal to ‘‘0’’. DA15 should

be ‘‘0’’ to enable U5. This is selected to prevent conflict

between the DAS and the HPC internal ROM, which uses

the address range E000H to FFFFH with DA15 equal to ‘‘1’’.

The Y0 output of U5 is still driving the DAS’ CS input. The

ALE output of the HPC directly drives the DAS’ ALE input.

The ALE latches the address and CS lines on the DAS’

internal latches at the start of any data transfer cycle with

the DAS.

The DAS can still be accessed with the same address range

in the Figure 7 circuit, which is 0200H to 021BH. However,

many address bits are ‘‘don’t care’’ in this case. The binary

form of the DAS register addresses for the circuit inFigure 8
is: 0XXX,XX1X,000P,PPP0. The P’s indicate program bits,

these will be programmed to select different registers. The

X’s are ‘‘don’t care’’ bits. The rest of the bits should be

programmed as shown.

The 3-to-8 line decoder (U5) outputs, Y1 to Y7, can still be

used to access other peripherals, those peripherals should

have internal latches for the address and chip-select as

well. For example, up to eight DAS chips can be interfaced

to an HPC using the circuit in Figure 8, for monitoring and

data logging of 64 analog input channels. If the interface is

for one DAS only, the DAS’ CS input can be generated with

minimum of 2 gates, as shown within the dashed-lines on

Figure 8, replacing the U5.

The critical DAS timing requirement for the circuit inFigure 8
is the address and chip-select setup time to ALE going low.

The HPC running at 20 MHz clock frequency cannot satisfy

this timing specification. As a result, the clock speed of the

HPC is lowered to 11.09 MHz to meet the DAS requirement.

This point is also discussed further in the Timing Analysis

section.

3.3 Timing Analysis

The user should perform a timing analysis along with the

interface hardware design to ensure proper transaction of

information between the processor and the DAS. For exam-

ple the buffers in the RD input of the DAS in Figure 7 are

necessary to ensure proper timing. Similarly, the clock fre-

quency of the HPC in Figure 8 was reduced to ensure prop-

er timing. For every new circuit design the DAS timing speci-

fications for read and write cycles should be compared with

the HPC (or the processor being used) timing specifications.

Any mismatch between the timing characteristics must be

compensated by hardware design changes or software

techniques.

3.3.1 Complete Address Decoding Circuit

Study of the switching characteristics of the DAS and the

HPC (running at 20 MHz) shows that the read cycle timing is

more stringent than that of the write cycle. The timing dia-

gram (Figure 9 ) shows the timing relationship for the signals

involved in a read cycle. The first three signals are generat-

ed by the HPC (ALE, ADD/DATA, RD), and are shown with

their minimum timing relationships. The three other signals

are CS and RD received by the DAS, and DATA(DAS) which

is sent to the HPC. The CS’ longest propagation delay

through the address latch (U3), magnitude comparator (U4),

and 3-to-8 line decoder (U5) starts from the moment an

address becomes valid. This propagation delay is, typically,

54 ns up to worst case of 116 ns.

Note: Maximum propagation delays for 74HC series logic devices are for

4.5V supply, 50 pF load and b40§C to 85§C temperature range. Typi-

cal values are for the same conditions at 25§C.

This delay, referred to the falling edge of the RD(HPC), is 16

ns to 78 ns. The DAS requires that its RD becomes active

20 ns after its CS. This requirement compels insertion of

delay on the HPC’s RD line before it is received by the DAS.

Referenced to the HPC’s RD signal falling edge the DAS’

should receive a RD signal that is delayed by 36 ns to 98 ns

(16 a 20 ns to 78 a 20 ns). Inverting buffers U7B and U7C

12



(75HC540) provide RD signal delay between the HPC and

the DAS. The two buffers’ propagation delay specification is

typically 24 ns and the maximum is 50 ns. This is less than

the 36 ns to 98 ns requirement drawn from the analysis.

However, practical measurements have shown that this de-

lay is sufficient within a temperature range of 0§C to 50§C.

This discrepancy results from the fact that the operating

conditions on the specification sheets (loading capacitance,

supply voltage) for the logic devices are more severe than

the ones in the practical circuit. However, if the circuit is to

perform reliably in worst case conditions, extra delay may

be inserted in the RD line.

The second timing requirement is the data setup time refer-

enced to the rising edge of the HPC’s RD line. The DAS

data outputs will be valid from a typical 10 ns to a maximum

of 80 ns after the falling edge of its RD line. The HPC re-

quires 45 ns of setup time and has a RD pulse width of

140 ns (1 wait state), resulting in 95 ns of total delay in the

RD buffers and data latency of the DAS. Again, at the ex-

treme limits of the operating conditions, the valid data might

miss the 45 ns of required setup time, so the insertion of 1

extra wait state (100 ns) in the read cycle of the HPC is

required. The design shown here is an example to demon-

strate necessary design considerations and may not be the

best possible solution for every application.

The circuit of Figure 7 was implemented and tested using

the ‘‘HPC Designer’s Kit’’ development system. The devel-

opment system performs the HPC real time emulation and

all of the HPC’s features are available for use in the applica-

tion. The HPC Designer’s Kit also closely resembles the real

processor’s switching characteristics.

Figure 10 shows scope photos of the CS, RD and WR sig-

nals from the Figure 7 circuit, using the HPC development

system. Figure 10a shows a read and a write cycle when no

inverter is added in the RD line. There is plenty of setup time

for CS to WR but not for CS to RD. Figure 10b shows a

close look of the CS to RD setup time of Figure 10a. The

setup time is 18 ns (at room temperature), very close to 20

ns, but not enough margin for circuit and temperature varia-

tions. Figure 10c shows a close look of the CS and RD

signals after adding the inverters in the RD line. The setup

time has increased to 30 ns with 10 ns of margin to cover

for circuit variations and temperature changes.

3.3.2 Minimal Address Decoding Circuit

Study of the switching characteristics for the circuit of Fig-
ure 8 shows that the DAS address and CS setup times to

ALE low are not satisfied when the HPC is running at

20 MHz. The HPC generates a valid address only 18 ns

(min) before its ALE goes low at this speed (see Figure 9 ).

The DAS needs 40 ns of setup time. The solution is reduc-

ing the HPC’s clock frequency. The HPC running at 10 MHz

will have a minimum setup time of 43 ns. There is some

extra delay for the DAS’ CS through U5 that must also be

considered. This is the input to output propagation delay of

U5, from the moment that address lines become valid to the

point that the DAS’ CS (Y0 output of U5) goes low.

TL/H/11908–11

FIGURE 9. DAS/HPC Interface Timing Diagram (Complete Address Decoding)

13



TL/H/11908–12

a) A Write and a Read Cycle,

No Inverter in RD Line

TL/H/11908–13

b) A Close Look at the CS to RD

Setup Time, No Inverter in RD Line

TL/H/11908–14

c) A Close Look at the CS to RD

Setup Time, 2 Inverters in RD Line

FIGURE 10. Scope Photos of CS, RD and

WR Signals at the DAS,Figure 7 Circuit

TL/H/11908–15

a) A Read and a Write Cycle with Zero Wait State

TL/H/11908–16

b) A Read Cycle with One Wait State

TL/H/11908–17

c) A Read Cycle with Zero Wait State

FIGURE 11. Scope Photos of ALE, CS, RD

and WR Signals at the DAS,Figure 8 Circuit

Practical measurements have shown reliable data transfer

between the DAS and the HPC with the HPC running at

11.09 MHz clock at room temperature.

As a result of the HPC’s lower clock frequency, the external

data transfer can be performed with zero wait state, as op-

posed to the circuit of Figure 7 where 1 wait state is essen-

tial. This speeds up the external read and write cycles and is

especially useful when multiple successive reads are per-

formed from the FIFO.

The circuit of Figure 8 was also implemented and tested

using the HPC development system.Figure 11 shows scope

photos of the ALE, CS, RD and WR signals at the DAS

inputs for theFigure 8 circuit.Figure 11a shows a read and a

write cycle with zero wait states. Notice that the read and

write pulse rising edges occur after the CS signal. This does

not matter since CS is internally latched. Figures 11b and

11c give a more detailed view of the read cycles with 1 and

0 wait states, demonstrating about 180 ns shorter read cy-

cle with no wait states. There is also about 38 ns of CS to

14



ALE low setup time. This is still about 2 ns less than the

published DAS specifications. Although, practical tests re-

sulted in reliable data transfer, to ensure dependable opera-

tion for the extremes of the circuit parameters and tempera-

ture variations, designers should use 10 MHz or less clock

frequency for the HPC.

4.0 A SYSTEM EXAMPLE: A SEMICONDUCTOR

FURNACE

In this application example the DAS measures the inputs

from five sensors in a semiconductor furnace. We assume

one of the circuits in Figures 7 or 8 is used as the furnace

data acquisition and control system. The system require-

ments will be defined and based on these requirements the

DAS programming values for the DAS registers will be spec-

ified. A typical assembly routine for the HPC will also be

presented for the DAS initialization and data capture.

Figure 12 shows a diagram of a typical measurement ar-

rangement in a semiconductor furnace. A flow sensor mea-

sures the gas flow in the furnace chamber’s duct. A pres-

sure sensor measures the pressure in the chamber. Three

temperature sensors measure the furnace temperature at

the middle and each end of the furnace.

4.1 System Requirements and Assumptions

To control the operation of the furnace the following five

measurements must be made:

Ð Absolute temperature at T1, with 12-bit resolution.

Ð Relative temperature, T1 to T2, with 12-bit a sign reso-

lution.

Ð Relative temperature, TI to T3, with 12-bit a sign resolu-

tion.

Ð Gas flow, F, through the chamber, with 8-bit resolution.

Ð Pressure, P, in the chamber, with 8-bit resolution.

There are three alarm conditions that are also being moni-

tored:

Ð Gas flow, F, exceeds a maximum limit.

Ð Gas flow, F, drops below a minimum limit.

Ð Pressure, P, exceeds a maximum limit.

The following assumptions are also made for the system:

Ð All the signals from the sensors are conditioned (gain

and offset adjusted) to provide voltage levels within

0V–2.5V for the DAS inputs.

Ð The output of all signal conditioning circuits are single

ended with respect to analog ground.

Ð The signal at the output of the flow sensor signal condi-

tioner has 600X source impedance.

Ð The DAS reference voltage is 2.5V, i.e., VREFa
e 2.5V

and VREFb
e AGND.

Ð The circuits in Figure 7 or 8 (either one) is used for the

furnace measurement and monitoring system. The fol-

lowing discussions and the program codes will be valid

for both circuits.

Ð An approximate throughput rate of 50 Hz is desired for

each set of measurement results (a set of results every

20 ms). However, due to the slow varying nature of the

input signals, precisely controlled throughput rate is not

essential for proper system performance.

4.2 DAS Setup and Register Programming

Based on the system requirements, we can proceed with

the DAS setup and register settings.

The five sensor outputs are assigned to the first five DAS

inputs:

Ð IN0: T1

Ð IN1: T2

Ð IN2: T3

Ð IN3: F

Ð IN4: P

Ð IN5: Not used - Tied to GND

Ð IN6: Not used - Tied to GND

Ð IN7: Not used - Tied to GND

TL/H/11908–22
Single Ended 0V–2.5V Signals to the DAS Inputs

FIGURE 12. Diagram of a Typical Measurement Arrangement in a Semiconductor Furnace

15



Seven DAS instructions are needed for measurement and

limit monitoring. Five perform the conversions and two per-

form the ‘‘watchdog’’ function for comparison of ‘‘F’’ and

‘‘P’’ against programmed limits. Note that the variable ‘‘F’’

needs only 1 instruction to monitor both high and low limits.

The following procedures are assumed for system opera-

tions:

Ð The seven instructions are executed in sequence from 0

to 6 with zero delay between them.

Ð After execution of instruction Ý6 the DAS loops back to

instruction Ý0 and continues. Each loop is called an in-

struction loop.

Ð A delay is added, using the Timer register, before in-

struction Ý0 to provide 50 Hz throughput rate.

Ð Each instruction loop generates 5 conversion results.

The FIFO is filled with 30 (6 sets of 5) results and is then

read by the microcontroller. This is done by having an

interrupt (from the DAS to the HPC) when a specified

number of results are contained in the FIFO.

Ð Conversion will not be stopped during FIFO reads.

Reads are performed during last comparison instruction

(Ý6) and during the delay before instruction Ý0. The

reads add extra delay after each six instruction loop, but

the amount of the delay is negligible compared to the

20 ms loop duration. (See Section 2.3 for a discussion

on reading during conversion and the interruption of the

internal clock during reads and writes.)

The input from the flow sensor has a 600X source imped-

ance, so it requires additional acquisition time. Referring to

the equation in the DAS data sheet, for the 8-bit and

‘‘watchdog’’ mode, the acquisition time value (D) pro-

grammed in bits D12 through D15 of the Instruction register

should be equal to 2 (De0.36cRs(kX)cfclk(MHz)e0.36c

0.6 c 8 e 1.73).

Now the contents of the DAS registers can be specified.

INSTRUCTION REGISTER:

Ð Sync and Pause bits are not used.

Instruction Register definition:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Acquisition Time W-dog 8/12 Timer Sync VIN
b VIN

a Paus. Loop

Instruction Ý0: Measuring T1, Single Ended, 12-Bit, Timer enabled

VIN
a e IN0 (T1), VINb e AGND

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Instruction Ý1: Measuring T1–T2, Differential mode, 12-Bit a sign

VIN
a e IN0 (T1), VINb e IN1 (T2)

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Instruction Ý2: Measuring T1–T3, Differential mode, 12-Bit a sign

VIN
a e IN0 (T1), VIN

b e IN2 (T3)

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

Instruction Ý3: Measuring F, Single Ended, 8-Bit, D e 2

VIN
a e IN3 (F), VIN

b e AGND

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0

Instruction Ý4: Watchdog mode, F, Single Ended, D e 2

VIN
a e IN3 (F), VIN

b e AGND

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0

Instruction Ý5: Measuring P, Single Ended, 8-Bit

VIN
a e IN4 (P), VIN

b e AGND

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

Instruction Ý6: Watchdog mode, P, Single Ended, Loop bit enabled

VIN
a e IN4 (P), VIN

b e AGND

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1

Instruction Ý7: Not Used

16



Instructions Ý4 and Ý6 also have limit values. Instruction Ý4 has two limit values and instruction Ý6 has only one limit value.

These values are referred to as FÐMIN, FÐMAX, PÐMAX.

Instruction RAM, Limits definition:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Don’t Care l/k Sign Limit

Instruction Ý4, Limit Ý1

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 0 0 1 0 FÐMAX

Instruction Ý4, Limit Ý2

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 0 0 0 0 FÐMIN

Instruction Ý6, Limit Ý1

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 0 0 1 0 PÐMAX

Instruction Ý6, Limit Ý2, Limit value equal negative full-scale to prevent false interrupts.

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

INTERRUPT ENABLE REGISTER:

Ð INT0: Comparison Limit: Enable

Ð INT1: Instruction Number: Disable

Ð INT2: FIFO Full: Enable

Ð INT3: Auto Zero Complete: Disable

Ð INT4: Calibration Complete: Enable

Ð INT5: Pause: Disable

Ð INT6: Low Supply: Disable

Ð INT7: Standby Return: Disable

Ð Programmed instruction number: 0, Not used

Ð Programmed number of results in FIFO: 30 (11110 binary)

Interrupt Enable Register

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Number of results in FIFO Instruction Number INT7 INT6 INT5 INT4 INT3 INT2 INT1 INT0

1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 1

17



CONFIGURATION REGISTER:

Ð No auto zero or calibration before each conversion.

Ð Instruction number on bits D13 to D15 of the conversion results.

Ð Sync bit is not used and can be programmed as either input or output.

Configuration Register, Start Conversion Command

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Don’t Care Diag. Test
RAM Sync A/Z Chan Stand- Full Auto

Reset Start
Pointer I/O Each Mask by Cal Zero

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Configuration Register, Reset Command

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Configuration Register, Full Calibration Command

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Configuration Register, RAM bank 1 Selection Command (Conversion is stopped)

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Configuration Register, stopping the Conversion Command

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TIMER REGISTER:

To calculate the timer preset value, we must first calculate the total instruction execution time. The following table shows the

number of clock cycles for each instruction. Please see datasheet, Section 4.0 (Sequencer), for the discussion of the states and

their duration.

Instruction

Ý
State 0 State 1 State 7 State 6 State 4 State 5 of Clock

Number

Cycles

0 1 1 9 44 55

1 1 1 9 44 55

2 1 1 9 44 55

3 1 1 2 21 25

4 1 1 2 5 1 5 15

5 1 1 6 21 29

6 1 1 6 5 1 5 19

Total: 253

18



There is a total of 253 clock cycles required for instruction

execution. The Timer delay includes a fixed 2 clock cycles

that must be added to 253, resulting in

253 a 2 e 255 clock cycles.

The total time for 255 clock cycles would be:

255 c (/8 MHz e 31.875 ms.

This time must be subtracted from 20 ms to get the Timer

delay.

20 ms b 31.875 ms e 19.968 ms.

A Timer count is 32 clock cycles, with an 8 MHz clock

(125 ns period), each Timer count is

32 c 125 ns e 4 ms.

The timer preset value is then

19.968 ms d 4 ms e 4992,

with a hex value of 1380H.

Once the required contents of the DAS registers have been

determined, the next step is to program the processor to

interact with the DAS.

4.3 Microcontroller Programming

Interaction between a microcontroller and the DAS is basi-

cally accomplished by read and write operations, the micro-

controller’s external data transfer instructions are used for

communications with the DAS.

A write operation to the DAS needs 2 variables: The DAS

register address and the data to be written. A read operation

from the DAS needs only the register address. The DAS

register address and data will be referred to as DASÐ
REGÐADD and DASÐDATA in the following examples.

Examples of assembly mnemonics for the DAS read and

write operations are presented below for the HPC, 8051,

and 68HC11 microcontroller families:

The HPC family can directly write 16-bit data to a memory-

mapped I/O. Its main data transfer instruction is ‘‘LD’’

(load). Each read or write is only one instruction.

Write:

LD DAS REG ADD,ÝDAS DATA

Read:

LD [destination],DAS REG ADD

The 8051 family accesses an external memory-mapped I/O

indirectly through the DPTR (data pointer) register. The data

should be preloaded to the accumulator for writes and the

accumulator is the destination for reads. The transfer is 8-bit

and two cycles are needed for 16 bits of data. The basic

instruction are ‘‘MOV’’ (move), ‘‘MOVX’’ (move external) and

‘‘INC’’ (increment).

Write:

MOV DPTR,ÝDAS REG ADD

MOV A,DAS DATA(low byte)

MOVX @DPTR,A

INC DPTR

MOV A,DAS DATA(high byte)

MOVX @DPTR,A

Read:

MOV DPTR,ÝDAS REG ADD

MOVXA,@DPTR

MOV [destination],A

INC DPTR

MOVXA,@DPTR

The above examples assume 16-bit addressing, however

registers R0 or R1 of the 8051 can be used in place of

DPTR for 8-bit addressing.

The 68HC11 family can access external memory mapped

I/O directly. The data should be preloaded to the accumula-

tor for writes and the accumulator is the destination for

reads. Although, the 68HC11 is an 8-bit processor, it has

16-bit data transfer instructions that uses a double accumu-

lator (A a B, called D) and performs 2 transfer cycles using

a single instruction. The basic instructions are ‘‘LDD’’ (load

double accumulator) and ‘‘STD’’ (store double accumulator).

Write:

LDD ÝDAS DATA

STD DAS REG ADD

Read:

LDD DAS REG ADD

4.3.1 HPC Assembly Routines for the Semiconductor

Furnace Example

The program listing in Figure 13 is the HPC assembly rou-

tine for the semiconductor furnace application example. The

program contains only the DAS initialization and the DAS

interrupt service routine. A complete program for the appli-

cation will have all the data manipulation and control func-

tions, which are not discussed here.

The routines closely follow the procedure in the flowcharts

of Figure 2 and are extensively commented to be self-ex-

planatory. The routines also separated according to the

flowchart sections. The main difference between the rou-

tines and the flowchart is that the DAS is not stopped at the

start of the interrupt service routine.

The interrupt service routine uses the IFBIT (if bit is true)

instruction to test for the state of the interrupt status bits.

This is very handy for control applications.

The READÐFIFO routine reads the FIFO contents and

stores them to a specified block of memory starting at the

location called DASÐRESULT. The size of the block and,

consequently, the number of FIFO locations being read is

programmable (30 locations on the listing). The routine is

only 5 lines of assembly. It uses the multi-function ‘‘XS’’

(exchange and skip) instruction to perform the data transfer,

address increment or decrement, and a compare for deci-

sion making. The first LD instruction in the READÐFIFO

routine loads the HPC’s B and K registers with the starting

address and the ending address of the memory block. The

second instruction reads a word (16-bit) from the FIFO to

‘‘A’’ (accumulator). The XS instruction stores A in the mem-

ory location pointed to by B, increments B by 2 (for 2 bytes)

and then compares B with K to test for the end of the mem-

ory block. If the end of the block has not been reached, the

program jumps back to load the next word from the FIFO,

otherwise the program skips the ‘‘JP’’ (jump) instruction and

returns from the service routine.

19



TL/H/11908–18

FIGURE 13. HPC Assembly Program Listing (Continued)

20



TL/H/11908–19

FIGURE 13. HPC Assembly Program Listing (Continued)

21



TL/H/11908–20

FIGURE 13. HPC Assembly Program Listing

22



APPENDIX A: Registers Bit Assignments and Programmer’s Notes

CONFIGURATION REGISTER (Read/Write):

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Don’t Care Diag. Test RAM Sync A/Z Chan Stand- Full Auto Reset Start

Pointer I/O Each Mask by Cal Zero

D0: - Start: 0 e Stops the instruction execution. 1 e Starts the instruction execution

D1: - Reset: When set to 1, resets the Start bit, also resets all the bits is status registers and resets the

instruction pointer to zero, will automatically reset itself to zero after 2 clock pulses

D2: - Auto-Zero: When set to 1 a long auto-zero calibration cycle is performed

D3: - Full Calibration: When set to 1 a full calibration cycle is performed

D4: - Standby: When set to 1 the chip goes to low-power standby mode, resetting the bit will return the chip to

active mode after a power-up delay

D5: - Channel Mask: 0 e Bits 13 to 15 of the conversion result hold the instruction number to which the result belongs,

1 e Bits 13 to 15 of the result hold the extended sign bit

D6: - A/Z Each: When set to 1 a short auto-zero cycle if performed before each conversion

D7: - Sync I/O: 0 e Sync pin is input, 1 e Sync pin is output

D9–D8: - RAM Pointer: Selects the sections of the instruction RAM, 00 e Instructions, 01 e Limits Ý1, 10 e Limits Ý2

D10: - This bit is used for production testing, must be kept zero for normal operation

D11: - Diagnostic: When set to 1 perform diagnostic conversion along with a properly selected instruction

D15–D12: - Don’t care

PROGRAMMER’S NOTES:

Configuration Registers: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Hexadecimal value:

Configuration Register: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Hexadecimal value:

Configuration Register: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Hexadecimal value:

23



APPENDIX A: Registers Bit Assignments and Programmer’s Notes

INSTRUCTION RAM (Read/Write): (Continued)

Instruction:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Acquisition Time W-dog 8/12 Timer Sync VINb VINa Paus. Loop

D0: - Loop: 0 e Go to next instruction, 1 e Loop back to instruction Ý0

D1: - Pause: 0 e No pause, 1 e Pause, don’t do the instruction, Start bit in configuration register resets to 0 when a

pause encountered, a 1 written to Start bit restarts the instruction execution

D4–D2: - VINa: Selects which input channel is connected to A/D’s non-inverting input

D7–D5: - VINb: Selects which input channel is connected to A/D’s inverting input

D8: - Sync: 0 e Normal operation, internal timing, 1 e S/H and conversion (comparison) timing, is controlled by SYNC

input pin

D9: - Timer: 0 e No timer operation, 1 e Instruction execution halts until timer counts down to zero

D10: - 8/12: 0 e 12-bit a sign resolution, 1 e 8-bit a sign resolution

D11: - Watchdog: 0 e No watchdog comparision, 1 e Instruction performs watchdog comparisons

D15–D12: - Acquisition Time: Determines S/H acquisition time

For 12-bit a sign: (9 a 2D) clock cycles, For 8-bit a sign: (2a2D) clock cycles

D e Content of D15–D12, RS e Input source resistance

For 12-bit a sign: D e 0.45 x RS[kX] x fCLK[MHz]
For 8-bit a sign: D e 0.36 x RS[kX] x fCLK[MHz]

PROGRAMMER’S NOTES:

Instruction Ý 0: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Hexadecimal value:

Instruction Ý 1: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Hexadecimal value:

Instruction Ý 2: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Hexadecimal value:

Instruction Ý3: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Hexadecimal value:

24



APPENDIX A: Registers Bit Assignments and Programmer’s Notes

INSTRUCTION RAM (Read/Write): (Continued)

PROGRAMMER’S NOTES:

Instruction Ý 4: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Hexadecimal value:

Instruction Ý 5: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Hexadecimal value:

Instruction Ý 6: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Hexadecimal value:

Instruction Ý 7: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Hexadecimal value:

25



APPENDIX A: Registers Bit Assignments and Programmer’s Notes

INSTRUCTION RAM (Read/Write): (Continued)

Limits Ý 1

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Don’t Care l/k Sign Limit

D7–D0: - Limit: 8-bit limit value

D8: - Sign: Sign bit for limit value, 0 e Positive, 1 e Negative

D9: - l/k: High or low limit determination, 0 e Inputs lower than limit generate interrupt, 1 e Inputs higher than limit

generate interrupt

D15–D10 - Don’t Care

PROGRAMMER’S NOTES:

Instruction Ý 0, Limit Ý 1: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Hexadecimal value:

Instruction Ý 1, Limit Ý 1: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Hexadecimal value:

Instruction Ý 2, Limit Ý 1: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Hexadecimal value:

Instruction Ý 3, Limit Ý 1: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Hexadecimal value:

Instruction Ý 4, Limit Ý 1: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Hexadecimal value:

Instruction Ý 5, Limit Ý 1: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Hexadecimal value:

Instruction Ý 6, Limit Ý 1: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Hexadecimal value:

Instruction Ý 7, Limit Ý 1: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Hexadecimal value:

26



APPENDIX A

INSTRUCTION RAM (Read/Write): (Continued)

Limits Ý2

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Don’t Care l/k Sign Limit

D7–D0: - Limit: 8-bit limit value

D8: - Sign: Sign bit for limit value, 0 e Positive, 1 e Negative

D9: - l/k: High or low limit determination, 0 e Inputs lower than limit generate interrupt, 1 e Inputs higher than limit

generate interrupt

D15–D10 - Don’t Care

PROGRAMMER’S NOTES:

Instruction Ý 0, Limit Ý 2: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Hexadecimal value:

Instruction Ý 1, Limit Ý 2: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Hexadecimal value:

Instruction Ý 2, Limit Ý 2: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Hexadecimal value:

Instruction Ý 3, Limit Ý 2: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Hexadecimal value:

Instruction Ý 4, Limit Ý 2: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Hexadecimal value:

Instruction Ý 5, Limit Ý 2: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Hexadecimal value:

Instruction Ý 6, Limit Ý 2: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Hexadecimal value:

Instruction Ý 7, Limit Ý 2: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Hexadecimal value:

27



APPENDIX A: Registers Bit Assignments and Programmer’s Notes

INTERRUPT ENABLE REGISTER (Read/Write):

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Number of results in FIFO to Instruction Number INT7 INT6 INT5 INT4 INT3 INT2 INT1 INT0

Generate Interrupt (INT2) to Generate Interrupt

(INT1)

Bits Ý 0 to 7 enable interrupt generaton for the following conditions when the bit is set to 1.

D0: - INT0: Generates interrupt when a limit is passed in watchdog mode

D1: - INT1: Generates interrupt when the programmed instruction (D10–D8) is reached for execution

D2: - INT2: Generates interrupt when number of conversion results in FIFO is equal to the programmed

value (D15–D11)

D3: - INT3: Generates interrupt when an auto-zero cycle is completed

D4: - INT4: Generates interrupt when a full calibration cycle is completed

D5: - INT5: Generates interrupt when a pause condition is encountered

D6: - INT6: Generates interrupt when low power supply is detected

D7: - INT7: Generates interrupt when the chip is returned from standby and is ready

D10–D8: - Programmable instruction number to generate an interrupt when that instruction is reached foR execution

D15–D11: - Programmable number of conversion results in the FIFO to generate an interrupt

PROGRAMMER’s NOTES:

Interrupt Enable Register: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Hexadecimal value:

Interrupt Enable Register: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Hexadecimal value:

TIMER REGISTER (Read/Write):

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

N e Timer Preset Value

Timer delays the execution of an instruction if Timer bit is set in the instruction.

The time delay in number of clock cycles is:

Delay e 32 x N a 2 [Clock Cycles]

PROGRAMMER’s NOTES:

Timer Register: Address: Symbol

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Hexadecimal value:

Timer Register: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Hexadecimal value:

28



APPENDIX A: Registers Bit Assignments and Programmer’s Notes

FIFO REGISTER (Read only):

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Instruction Number Sign Conversion Result

or Extended Sign

D11–D0: - Conversion Result:

For 12-bit a sign: 12-bit result value

For 8-bit a sign: D11–D4 e result value, D3–D0 e 1110

D12: - Sign: Conversion result sign bit, 0 e Positive, 1 e Negative

D15–D13: - Instruction number associated with the conversion result or the extended sign bit for 2’s complement

arithmetic, selected by bit D5 (Chan Mask) of Configuration Register

PROGRAMMER’S NOTES:

FIFO Register: Address: Symbol:

Note:

INTERRUPT STATUS REGISTER (Read only):

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Number of results in FIFO Instruction Number INST7 INST6 INST5 INST4 INST3 INST2 INST1 INST0

Being executed

BITS Ý 0 to 7 are interrupt flags (vectors) that will be set to 1 when the following conditions occur. The bits set to 1 whether

the interrupt is enabled or disabled in the Interrupt Enable register. The bits reset to 0 when the register is read, or by a

device reset through Configuration register.

D0: - INST0: Is set to 1 when a limit is passed in watchdog mode

D1: - INST1: Is set to 1 when the programmed instruction (D10–D8) is reached for execution

D2: - INST2: Is set to 1 when number of conversion results in FIFO is equal to the programmed value (D15–D11)

D3: - INST3: Is set to 1 when an auto-zero cycle is completed

D4: - INST4: Is set to 1 when a full calibration cycle is completed

D5: - INST5: Is set to 1 when a pause condition is encountered

D6: - INST6: Is set to 1 when low power supply is detected

D7: - INST7: Is set to 1 when the chip is returned from standby and is ready

D10–D8: - Holds the instruction number being executed or will be executed during a Pause or Timer delay

D15–D11: - Holds the present number of conversion results in the FIFO while the device is running

PROGRAMMER’S NOTES:

Interrupt Status Register: Address: Symbol:

Note:

29



In
te

rf
a
c
in

g
th

e
L
M

1
2
4
5
4
/
8

D
a
ta

A
c
q
u
is

it
io

n
S
y
s
te

m
C

h
ip

s
A

N
-9

0
6

to
M

ic
ro

p
ro

c
e
s
s
o
rs

a
n
d

M
ic

ro
c
o
n
tr

o
ll
e
rs APPENDIX A: Registers Bit Assignments and Programmer’s Notes

LIMIT STATUS REGISTER (Read only):

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Limits Ý2: Status Limits Ý1: Status

The bits in this register are limit flags (vectors) that will be set to 1 when a limit is passed. The bits are associated to

individual instruction limits as indicated below.

D0: - Limit Ý 1 of Instruction Ý 0 is passed

D1: - Limit Ý 1 of Instruction Ý 1 is passed

D2: - Limit Ý 1 of Instruction Ý 2 is passed

D3: - Limit Ý 1 of Instruction Ý 3 is passed

D4: - Limit Ý 1 of Instruction Ý 4 is passed

D5: - Limit Ý 1 of Instruction Ý 5 is passed

D6: - Limit Ý 1 of Instruction Ý 6 is passed

D7: - Limit Ý 1 of Instruction Ý 7 is passed

D8: - Limit Ý 2 of Instruction Ý 0 is passed

D9: - Limit Ý 2 of Instruction Ý 1 is passed

D10: - Limit Ý 2 of Instruction Ý 2 is passed

D11: - Limit Ý 2 of Instruction Ý 3 is passed

D12: - Limit Ý 2 of Instruction Ý 4 is passed

D13: - Limit Ý 2 of Instruction Ý 5 is passed

D14: - Limit Ý 2 of Instruction Ý 6 is passed

D15: - Limit Ý 2 of Instruction Ý 7 is passed

PROGRAMMER’S NOTES:

Limit Status Register: Address Symbol:

Note:

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor National Semiconductores National Semiconductor
Corporation GmbH Japan Ltd. Hong Kong Ltd. Do Brazil Ltda. (Australia) Pty, Ltd.
2900 Semiconductor Drive Livry-Gargan-Str. 10 Sumitomo Chemical 13th Floor, Straight Block, Rue Deputado Lacorda Franco Building 16
P.O. Box 58090 D-82256 F 4urstenfeldbruck Engineering Center Ocean Centre, 5 Canton Rd. 120-3A Business Park Drive
Santa Clara, CA 95052-8090 Germany Bldg. 7F Tsimshatsui, Kowloon Sao Paulo-SP Monash Business Park
Tel: 1(800) 272-9959 Tel: (81-41) 35-0 1-7-1, Nakase, Mihama-Ku Hong Kong Brazil 05418-000 Nottinghill, Melbourne
TWX: (910) 339-9240 Telex: 527649 Chiba-City, Tel: (852) 2737-1600 Tel: (55-11) 212-5066 Victoria 3168 Australia

Fax: (81-41) 35-1 Ciba Prefecture 261 Fax: (852) 2736-9960 Telex: 391-1131931 NSBR BR Tel: (3) 558-9999
Tel: (043) 299-2300 Fax: (55-11) 212-1181 Fax: (3) 558-9998
Fax: (043) 299-2500

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.


