
TL/DD/9140

H
P
C

M
IC

R
O

W
IR

E
/
P
L
U

S
M

a
s
te

r-S
la

v
e

H
a
n
d
s
h
a
k
in

g
P
ro

to
c
o
l

A
N

-4
7
4

National Semiconductor
Application Note 474
Richard Lazovick
June 1988

HPC MICROWIRE/PLUSTM

Master-Slave Handshaking
Protocol

INTRODUCTION

This applications note describes how to use National Semi-

conductor’s MICROWIRE/PLUS to communicate between

two members of the HPC family of microcontrollers, and will

discuss the implications of adding other MICROWIRETM pe-

ripherals. MICROWIRE/PLUS (mWIRE) may be effectively

used to communicate between chips, such as in Small Area

Networks (SANs). Possible applications range from setting

up a communications network within an automobile to home

security systems. Among the standard MICROWIRE periph-

erals available are display drivers (LCD, VF, LED), memo-

ries (RAM, EEPROM), A/D converters, and frequency gen-

erators/timers. Each MICROWIRE peripheral requires its

own handshaking protocol, however the HPC’s MICRO-

WIRE is flexible enough to work with any peripheral and

allows you to define your own handshaking protocol when

having two HPC family members communicate.

MICROWIRE

MICROWIRE/PLUS is an extension of National Semicon-

ductor’s MICROWIRE communications interface. It allows

high speed two way serial communications between a mas-

ter processor and one or more slave processors or periph-

erals. MICROWIRE/PLUS uses only three wires plus chip

selects, therefore it saves on intricate bus routing and does

not waste 8-bit ports. Figure 1 shows the block diagram of a

sample application using two HPC family members and an

8-bit A/D peripheral to monitor and control certain environ-

mental conditions within a system.

MICROWIRE/PLUS has an 8-bit parallel-loaded, serial shift

register (SIO) using SI as the serial input and SO as the

serial output. The contents of the SIO register may be ac-

cessed through any of the memory access instructions. SK

is the clock for the SIO register (seeFigure 2). The SK clock

signal can be provided by an internal or external source.

The internal clock rate is programmable by the DIVBY regis-

ter. Data to be transmitted from the SIO register is shifted

out on the falling edge of the SK clock. Serial data on the SI

pin is latched in on the rising edge of the SK clock (see

Figure 3 mWIRE Timing).

TL/DD/9140–1

FIGURE 1. HPC mWIRE Block Diagram

(Environmental Control System)

TRI-STATEÉ is a registered trademark of National Semiconductor Corporation.

MICROWIRETM and MICROWIRE/PLUSTM are trademarks of National Semiconductor Corporation.

C1995 National Semiconductor Corporation RRD-B30M105/Printed in U. S. A.



TL/DD/9140–2

Note: The most significant bit is shifted out first. The SO pin reflects the contents of the MSB in the SIO register.

FIGURE 2. MICROWIRE/PLUS Block Diagram

TL/DD/9140–3

Note: The first bit of every eight bits in the SIO register being shifted out will have a longer duration then the other bits. This results from the hardware

implementation used for MICROWIRE.

* This bit becomes valid immediately when the transmitting device loads its SIO register.

² Arrows indicate points at which SI is sampled.

FIGURE 3. mWIRE Timing

2



A mWDONE flag in the IRPD (Interrupt Pending) register

indicates when the data shift is completed.

The HPC can enter the MICROWIRE/PLUS mode as a

master or a slave. The mWMODE control bit in the IRCD

(Interrupt Condition) register determines whether the HPC is

a master or slave. The shift clock is generated internally

when the HPC is configured as a master. An externally gen-

erated shift clock on the SK pin is used when the HPC is

configured as a slave. When the HPC is a master, the

DIVBY register allows the SK clock frequency to be pro-

grammed in 14 selectable steps from 122 Hz to 1 MHz

when CKI is 16 MHz (see Table I).

HOW TO USE MICROWIRE/PLUS

To use MICROWIRE, start by setting up the B port appropri-

ately for the MICROWIRE functions. The SO and SK func-

tions are multiplexed onto Port B pins B5 and B6 respective-

ly. For the master, set bits 5 and 6 in the DIRB register

(direction register for Port B) to set SO and SK as outputs.

For the slave, set bit 5 and reset bit 6 in the DIRB register to

set SO as an output and SK as an input . The BFUN register

(Port B function register) is used to set SO and SK as alter-

nate functions in the master and only SO as an alternate

function in the slave. The MICROWIRE/PLUS mode can be

enabled or disabled any time under program control. This is

done through the BFUN register. Placing a ‘‘1’’ in the corre-

sponding bit location causes the alternate function to be

activated, a ‘‘0’’ causes the alternate function to be dis-

abled. It is good practice to initialize the output pins by set-

ting PORTB (Port B data register) to a known state.

The SI function is multiplexed onto Port I pin I5. This pin is

always an input and the SI function is automatically selected

when in the MICROWIRE mode. Setting the mWMODE con-

trol bit, bit 1, in the IRCD register will enable the part to be a

master, resetting the bit will make it a slave. For the master,

the DIVBY register has to be initialized to set the appropri-

ate SK frequency (see Table I.). For example if the crystal

frequency is 16 MHz and an SK frequency of 1 MHz is de-

sired, load the least significant nibble of the DIVBY register

with 2 (16 MHz/16 e 1 MHz).

For a summary of the register and pin configurations for the

master and slave modes see Table II.

TABLE I. HPC mWIRE DIVBY Register

mWIRE SK Divisor

MSB LSB CLOCK

0 0 0 0 not allowed

0 0 0 1 not recommended*
0 0 1 0 CKI/16

0 0 1 1 CKI/32

0 1 0 0 CKI/64

0 1 0 1 CKI/128

0 1 1 0 CKI/256

0 1 1 1 CKI/512

1 0 0 0 CKI/1024

1 0 0 1 CKI/2048

1 0 1 0 CKI/4096

1 0 1 1 CKI/8192

1 1 0 0 CKI/16384

1 1 0 1 CKI/32768

1 1 1 0 CKI/65536

1 1 1 1 CKI/131072

*This option uses timer T3 output, but does not generate a square wave.

(See HPC users manual for more details.)

TABLE II. mWIRE Register and Pin Conditions for Master and Slave Operation

Operation mWMODE BFUN BFUN DIRB DIRB PIN PIN PIN

bit B5 B6 B5 B6 B5 B6 I5

MICROWIRE 1 1 1 1 1 SO INT. SI

Master SK

MICROWIRE 1 1 1 0 1 TRI- INT. SI

Master STATEÉ SK

MICROWIRE 0 1 0 1 0 SO EXT. SI

Slave SK

MICROWIRE 0 1 0 0 0 TRI- EXT. SI

Slave STATE SK

3



DEFINING THE MASTER/SLAVE HANDSHAKING

PROTOCOL

There are a few things to keep in mind when defining a

handshaking protocol for the HPC:

1) Only the master can generate SK clocks.

2) As 8 bits are shifted into the SIO register, the 8 bits al-

ready in there are shifted out.

3) After 8 bits are shifted into (or out of) the SIO register the

MICROWIRE done (mWIRE DONE) flag gets set.

4) ANY access to the SIO register in the master that per-

forms a write operation causes the contents of SIO to be

shifted out.

5) No data will be shifted into or out of the slave’s SIO

register if its mWIRE DONE flag is set.

6) Any write to the SIO register in the master or slave resets

its mWIRE DONE flag.

Keeping the above six points in mind, let’s look at one pos-

sible handshaking protocol between a master HPC and a

slave HPC. Number two above tells us we can send and

receive data at the same time, however since only the mas-

ter initiates data transfer we want to be sure the slave is

ready before we get started with the exchange. Since the

master initiates the transfer process there is no need for the

master’s MICROWIRE routine to be interrupt driven (though

it can be if it is desired to have the slave initiate data trans-

fers also). On the other hand, since the slave will be off

doing other tasks it is most effective to have its MICRO-

WIRE routine be interrupt driven.

A FEW THINGS TO NOTE ABOUT THE PROGRAMS

The following programs refer to the system configuration

shown in Figure 1. This example code does a simple data

transfer. The master reads in data on Port D, sends it via

MICROWIRE to the slave, and reads it back. They both start

by initializing the chip mode and number of wait states

(PSW), disabling interrupts, setting the DIVBY register as

necessary, initializing Port B, and enabling the appropriate

MICROWIRE mode (IRCD). Then the slave continues with

its main code (a wait loop) until interrupted. When the mas-

ter decides it’s ready to send MICROWIRE data, it signals

the slave by setting the slave interrupt pin on Port B, then it

waits for the slave to respond.

Meanwhile, the slave goes into action. It clears the

mWDONE flag and loads the SIO register (X A, SIO), then

notifies the master that it is ready to continue. Once the

master realizes the slave is ready to continue, it removes

the interrupt signal to the slave (RESET PORTB.SLAVI),

reads in the data to be sent (LD A, PORTD), and starts

transmitting it (X A, SIO). At the same time the master reads

in the data received at the last data exchange with the

slave. Then the master loops until it is done transferring

data and loops again until the slave is finished with its inter-

rupt routine. In a real program the master would be off exe-

cuting code and not having to wait in these loops. Once the

transmission is complete the slave reads in the new data

(LD A, SIO), lets the master know it is done with its interrupt

routine (RESET PORTB.MASTR), and re-enables interrupts

as it returns to the main routine (RETI).

In the master’s code there is only one access to the SIO

register and that access is an exchange. Remember point
Ý4, we can take advantage of the exchange instruction (X

A, SIO), which is a read-modify-write instruction. Therefore,

with one instruction, we can read the data from the previous

transfer into the accumulator, and write the data to be trans-

ferred into the SIO register. If this method is not practical,

then separate read and write instructions must be used.

When accessing the SIO register be sure the mWIRE DONE

flag is set so you know the data is not changing. At other

times we have to be sure the flag is reset or no data will

ever be transferred (shifted in or out). Notice that the

‘‘X A, SIO’’ was used to reset the mWIRE DONE flag as well

as load the register with the data to be sent.

4



MASTER’S Flow Chart

TL/DD/9140–4

SLAVE’S Flow Chart

TL/DD/9140–5

MASTER’s SAMPLE CODE

;

;VARIABLE DECLARE

;

PSW 4 M(00C0)

BFUN 4 W(0F4) ;Port B ALTERNATE FUNCTION REGISTER

DIRB 4 W(0F2) ;Port B DIRECTION REGISTER

PORTB 4 W(0E2) ;Port B DATA REGISTER

PORTD 4 M(0104) ;Port D (INPUT PORT)

ENIR 4 M(0D0) ;INTERRUPT ENABLE REGISTER

IRPD 4 M(0D2) ;INTERRUPT PENDING REGISTER

IRCD 4 M(0D4) ;INTERRUPT CONDITION REGISTER

SIO 4 M(0D6) ;SERIAL I/O REGISTER

PORTI 4 M(0D8) ;INTERRUPT (AND uWIRE SERIAL IN) INPUT PORT

DIVBY 4 W(018E) ;TIMER DIVIDE BY REGISTER

SLAVI 4 4 ;SLAVE INTERRUPT BIT (IN Port B)

uWDONE 4 0 ;uWIRE DONE BIT (IN IRPD)

uWMODE 4 1 ;uWIRE MASTER/SLAVE BIT (IN IRCD)

SK 4 6 ;uWIRE SERIAL CLOCK (IN Port B)

SLAVR 4 2 ;SLAVE RESPONSE BIT (IN Port B)

5



MASTER’s SAMPLE CODE (Continued)

.40F800 ;START PROGRAM

BEGIN:

LD PSW,008 ;SINGLE CHIP MODE, 1 WAIT STATE

LD ENIR,00 ;DISABLE ALL INTERRUPTS

LD DIVBY,02222 ;uWIRE CLOCK 4 /16

LD DIRB,0FFFF ;Port B ALL OUTPUTS

LD BFUN,00060 ;ONLY SO & SK HAVE ALTERNATE FUNCTIONS

LD PORTB,00000 ;INIT PORTB TO ALL ZEROs

SET IRCD.uWMODE ;SET THIS HPC AS MASTER

DOITAG: ;JUMP TO HERE TO DO IT AGAIN

SET PORTB.SLAVI ;NOTIFY SLAVE (INTERRUPT THE SLAVE)

WAIT:

IF PORTI.SLAVR ;SLAVE READY?

JP SLAVRS ;GO SEND/RECEIVE uWIRE DATA

JP WAIT ;NO IT IS NOT READY YET

SLAVRS:

RESET PORTB.SLAVI ;REMOVE SLAVE NOTIFIER

LD A,PORTD ;LOAD A W/ DATA TO SEND

X A,SIO ;SEND NEW DATA AND READ DATA FROM

;...LAST uWIRE EXCHANGE

DONE:

IF IRPD.uWDONE ;WAIT TILL DONE EXCHANGING

JP CONT ;uWIRE IS DONE

JP DONE ;uWIRE NOT DONE (KEEP TESTING)

CONT:

IF PORTI.SLAVR ;IS SLAVE READY TO CONTINUE?

JP CONT ;NO

JP DOITAG ;START ALL OVER (DO IT AGAIN)

.END BEGIN

SLAVE’s SAMPLE CODE

;

;VARIABLE DECLARE

;

PSW 4 M(00C0)

BFUN 4 W(0F4) ;Port B ALTERNATE FUNCTION REGISTER

DIRB 4 W(0F2) ;Port B DIRECTION REGISTER

PORTB 4 W(0E2) ;Port B DATA REGISTER

6



SLAVE’s SAMPLE CODE (Continued)

ENIR 4 M(0D0) ;INTERRUPT ENABLE REGISTER

IRPD 4 M(0D2) ;INTERRUPT PENDING REGISTER

IRCD 4 M(0D4) ;INTERRUPT CONDITION REGISTER

SIO 4 M(0D6) ;SERIAL I/O REGISTER

SO 4 5 ;uWIRE SERIAL OUTPUT PIN (ON Port B)

MASTR 4 4 ;MASTER RESPONSE BIT (IN Port B)

uWDONE 4 0 ;uWIRE DONE BIT (IN IRPD)

uWMODE 4 1 ;uWIRE MASTER/SLAVE BIT (IN IRCD)

INT2 4 2 ;INTERRUPT 2 BIT

.40FFFA ;INT2 - INTERRUPT VECTOR

.WORD MASNOT ;...MASTER NOTIFICATION

.40F800 ;START PROGRAM

BEGIN:

LD PSW,008 ;SINGLE CHIP MODE, 1 WAIT STATE

LD ENIR,01 ;DISABLE ALL INTERRUPTs, BUT ENABLE GIE

LD DIRB,0FF10 ;Port B UPPER, & MASTR ARE OUTPUTS

;...(use LD DIRB,0FF30 to set SO as an

;...output if not using any peripherals)

LD BFUN,00020 ;ONLY SO HAS ALTERNATE FUNCTION

;...NOTE: SK is NOT an alternate

;...function in the slave!

LD PORT B,00000 ;INIT PORTB TO ALL ZEROS

RESET IRCD.uWMODE ;SET THIS HPC AS A SLAVE

SET IRCD.INT2 ;SET INT2 INTERRUPT (0) POLARITY

SET ENIR.INT2 ;ENABLE EXTERNAL INTERRUPT TO

;...RECEIVE SLAVE RESPONSE

PAU:

JP PAU ;WAIT HERE FOR INTERRUPT FROM MASTER

MASNOT: ;uWIRE INTERRUPT ROUTINE

X A,SIO ;CLEAR uWDONE FLAG (AND LOAD DATA FROM

;...ACCUMULAT0R TO SEND)

SET PORTB.SO ;ENABLE SO (needed only if using a peripheral)

SET PORTB.MASTR ;NOTIFY MASTER THAT READY TO CONTINUE

NOTDN:

IF IRPD.uWDONE ;WAIT TILL DONE SHIFTING

JP DONE ;DONE, GO CONTINUE

JP NOTDN ;NOT DONE, CONTINUE LOOPING

DONE:

LD A,SIO ;READ IN NEW DATA

RESET PORT B.SO ;TRI-STATE SO (needed only if

; using a peripheral)

RESET PORTB.MASTR ;REMOVE SIGNAL TO MASTER

RETI

.END BEGIN

7



A
N

-4
7
4

H
P
C

M
IC

R
O

W
IR

E
/
P
L
U

S
M

a
s
te

r-
S
la

v
e

H
a
n
d
s
h
a
k
in

g
P
ro

to
c
o
l

ADDING PERIPHERALS OR ANOTHER SLAVE

Adding another slave HPC or a peripheral to the above Mi-

crowire configuration can add more power to your design

with minimal extra cost and design time. In Figure 1, an

extra peripheral is shown in dotted outline form. The hard-

ware and software modifications are straightforward, how-

ever there are a few considerations to keep in mind:

Ð Tri-state the SO pin on the slave HPC by resetting B5 in

the DIRB register when the slave is not ‘chip-selected’

by the master.

Ð When adding more HPC slaves, the master’s and

slave’s routines remain the same. Only different B port

pins for chip select and I or B port pins for slave ac-

knowledge need to be used.

Ð For peripherals the principals of operation are still the

same and so are the initialization procedures, however

some of the code will have to be modified to accommo-

date the specific handshaking required by the peripheral.

(Note: some of the peripherals require 16 or more con-

secutive bits without interruption of the SK clock. To pro-

vide continuous SK clocks, set up the accumulator with

next byte of data to send, loop until mWDONE is set,

then exchange the contents of the accumulator and the

SIO register (X A, SIO). The above steps will provide

nearly continuous SK clocksÐthe slower the SK clock is

set for, the more continuous they will appear.)

APPLICATIONS

Now that you are more familiar with MICROWIRE/PLUS,

where can you get experience using it?

Ð It can be used in a security system where the on-site

master lets the periphery slaves know which security

codes they can now let in, while at the same time the

slaves monitor fire alarms and smoke detectors.

Ð It can be used in automotive brakes to allow all the

wheels to communicate with each other. The wheels

can trade information on road conditions and a master

can monitor all four wheels to coordinate them and

check for malfunctions.

Ð It can be used in a robot arm to allow each joint to make

the decision as to how it will help the entire arm reach its

final position. This application is one example of how

MICROWIRE/PLUS can be used for system task parti-

tioning.

Ð It can be used in a MUX-WIRING system.

When using MICROWIRE to communicate between two

chips on the same board, a high data rate can be used.

When communicating over longer distances, slower speeds

should be used.

SUMMARY

MICROWIRE/PLUS can be a very powerful tool that can

easily add power to a microcontroller based system. It is

easy to use and does not require much hardware to imple-

ment. To add a new feature to your current design, choose

a peripheral and add a small amount of code. To start using

MICROWIRE, define the handshake protocol best suited for

your application keeping in mind the six points given above

in the ‘Defining the Master/Slave Handshaking Protocol’

section. Then initialize the appropriate registers: BFUN,

DIRB, PORTB, DIVBY, and IRCD. The MICROWIRE circuit-

ry will then run independent of the CPU except to exchange

data between the SIO register and the CPU, and to initiate

the data exchange between the master and slaves. With a

CPU clock of 16 MHz, MICROWIRE/PLUS may achieve a

maximum data rate of 1 MHz. MICROWIRE can be used to

add display controllers, A/D’s, memories, timers, and even

other microcontrollers to an HPC microcontroller based de-

sign. Remember MICROWIRE/PLUS is not a trivial piece of

very fine wire, it is a high speed two way serial communica-

tions interface!

Lit. Ý100474

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor
Corporation Europe Hong Kong Ltd. Japan Ltd.
1111 West Bardin Road Fax: (a49) 0-180-530 85 86 13th Floor, Straight Block, Tel: 81-043-299-2309
Arlington, TX 76017 Email: cnjwge@ tevm2.nsc.com Ocean Centre, 5 Canton Rd. Fax: 81-043-299-2408
Tel: 1(800) 272-9959 Deutsch Tel: (a49) 0-180-530 85 85 Tsimshatsui, Kowloon
Fax: 1(800) 737-7018 English Tel: (a49) 0-180-532 78 32 Hong Kong

Fran3ais Tel: (a49) 0-180-532 93 58 Tel: (852) 2737-1600
Italiano Tel: (a49) 0-180-534 16 80 Fax: (852) 2736-9960

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.


